
Magnús M. Halldórsson
Kazuo Iwama
Naoki Kobayashi
Bettina Speckmann (Eds.)

 123

42nd International Colloquium, ICALP 2015
Kyoto, Japan, July 6–10, 2015
Proceedings, Part I

Automata, Languages,
and ProgrammingLN

CS
 9

13
4

AR
Co

SS

Lecture Notes in Computer Science 9134

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
John C. Mitchell, USA
Bernhard Steffen, Germany
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Takeo Kanade, USA
Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland
Moni Naor, Israel
C. Pandu Rangan, India
Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Magnús M. Halldórsson • Kazuo Iwama
Naoki Kobayashi • Bettina Speckmann (Eds.)

Automata, Languages,
and Programming
42nd International Colloquium, ICALP 2015
Kyoto, Japan, July 6–10, 2015
Proceedings, Part I

123

Editors
Magnús M. Halldórsson
Reykjavik University
Reykjavik
Iceland

Kazuo Iwama
Kyoto University
Kyoto
Japan

Naoki Kobayashi
The University of Tokyo
Tokyo
Japan

Bettina Speckmann
Technische Universiteit Eindhoven
Eindhoven
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-47671-0 ISBN 978-3-662-47672-7 (eBook)
DOI 10.1007/978-3-662-47672-7

Library of Congress Control Number: 2015941869

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

ICALP 2015, the 42nd edition of the International Colloquium on Automata, Lan-
guages and Programming, was held in Kyoto, Japan during July 6–10, 2015. ICALP is
a series of annual conferences of the European Association for Theoretical Computer
Science (EATCS), which first took place in 1972. This year, the ICALP program
consisted of the established track A (focusing on algorithms, automata, complexity, and
games) and track B (focusing on logic, semantics, and theory of programming), and
of the recently introduced track C (focusing on foundations of networking).

In response to the call for papers, the Program Committee received 507 submissions,
the highest ever: 327 for track A, 115 for track B, and 65 for track C. Out of these, 143
papers were selected for inclusion in the scientific program: 89 papers for Track A, 34
for Track B, and 20 for Track C. The selection was made by the Program Committees
based on originality, quality, and relevance to theoretical computer science. The quality
of the manuscripts was very high indeed, and many deserving papers could not be
selected.

The EATCS sponsored awards for both a best paper and a best student paper for
each of the three tracks, selected by the Program Committees. The best paper awards
were given to the following papers:

– Track A: Aaron Bernstein and Clifford Stein. “Fully Dynamic Matching in Bipartite
Graphs”

– Track B: Jarkko Kari and Michal Szabados. “An Algebraic Geometric Approach to
Nivat’s Conjecture”

– Track C: Yiannis Giannakopoulos and Elias Koutsoupias. “Selling Two Goods
optimally”

The best student paper awards, for papers that are solely authored by students, were
given to the following papers:

– Track A: Huacheng Yu. “An Improved Combinatorial Algorithm for Boolean
Matrix Multiplication”

– Track A: Radu Curticapean. “Block Interpolation: A Framework for Tight Expo-
nential-Time Counting Complexity”

– Track B: Georg Zetzsche. “An Approach to Computing Downward Closures”

Track A gave out two student paper awards this year because of the very high
quality of the two winning papers.

The conference was co-located with LICS 2015, the 30th ACM/IEEE Symposium
on Logic in Computer Science.

Apart from the contributed talks, ICALP 2015 included invited presentations by
Ken-ichi Kawarabayashi, Valerie King, Thomas Moscibroda, Anca Muscholl, Peter
O’Hearn, of which the latter two were joint with LICS. Additionally, it contained
tutorial sessions by Piotr Indyk, Andrew Pitts, and Geoffrey Smith, all joint with LICS,

and a masterclass on games by Ryuhei Uehara. Abstracts of their talks are included in
these proceedings as well. The program of ICALP 2015 also included presentation
of the EATCS Award 2015 to Christos Papadimitriou.

This volume of the proceedings contains all contributed papers presented at the
conference in Track A. A companion volume contains all contributed papers presented
in Track B and Track C together with the papers and abstracts of the invited speakers.
The following workshops were held as satellite events of ICALP/LICS 2015:
HOPA 2015 — Workshop on the Verification of Higher-Order Programs
LCC 2015 — 16th International Workshop on Logic and Computational Complexity
NLCS 2015 — Third Workshop on Natural Language and Computer Science
LOLA 2015 — Workshop on Syntax and Semantics for Low-Level Languages
QCC 2015 — Workshop on Quantum Computational Complexity
WRAWN 2015 — 6th Workshop on Realistic Models for Algorithms in Wireless

Networks
YR-ICALP 2015 — Young Researchers Forum on Automata, Languages and

Programming

We wish to thank all authors who submitted extended abstracts for consideration,
the Program Committees for their scholarly effort, and all referees who assisted the
Program Committees in the evaluation process.

We thank the sponsors (ERATO Kawarabayashi Large Graph Project; MEXT
Grant-in-Aid for Scientific Research on Innovative Areas “Exploring the Limits of
Computation”; Research Institute for Mathematical Sciences, Kyoto University; and
Tateisi Science and Technology Foundation) for their support.

We are also grateful to all members of the Organizing Committee and to their
support staff.

Thanks to Andrei Voronkov and Shai Halevi for writing the conference manage-
ment systems EasyChair andWeb-Submission-and-Review software, which were used
in handling the submissions and the electronic Program Committee meeting, as well as
in assisting in the assembly of the proceedings.

Last but not least, we would like to thank Luca Aceto, the president of EATCS, for
his generous advice on the organization of the conference.

May 2015 Magnús M. Halldórsson
Kazuo Iwama

Naoki Kobayashi
Bettina Speckmann

VI Preface

Organization

Program Committee

Track A

Peyman Afshani Aarhus University, Denmark
Hee-Kap Ahn POSTECH, South Korea
Hans Bodlaender Utrecht University, The Netherlands
Karl Bringmann Max-Planck Institut für Informatik, Germany
Sergio Cabello University of Ljubljana, Slovenia
Ken Clarkson IBM Almaden Research Center, USA
Éric Colin de Verdière École Normale Supérieure Paris, France
Stefan Dziembowski University of Warsaw, Poland
David Eppstein University of California at Irvine, USA
Dimitris Fotakis National Technical University of Athens, Greece
Paul Goldberg University of Oxford, UK
MohammadTaghi

Hajiaghayi
University of Maryland at College Park, USA

Jesper Jansson Kyoto University, Japan
Andrei Krokhin Durham University, UK
Asaf Levin Technion, Israel
Inge Li Gørtz Technical University of Denmark, Denmark
Pinyan Lu Microsoft Research Asia, China
Frédéric Magniez Université Paris Diderot, France
Kazuhisa Makino Kyoto University, Japan
Elvira Mayordomo Universidad de Zaragoza, Spain
Ulrich Meyer Goethe University Frankfurt am Main, Germany
Wolfgang Mulzer Free University Berlin, Germany
Viswanath Nagarajan University of Michigan, USA
Vicky Papadopoulou European University Cyprus, Cyprus
Michał Pilipczuk University of Bergen, Norway
Liam Roditty Bar-Ilan University, Israel
Ignaz Rutter Karlsruhe Institute of Technology, Germany
Rocco Servedio Columbia University, USA
Jens Schmidt TU Ilmenau, Germany
Bettina Speckmann TU Eindhoven, The Netherlands
Csaba D. Tóth California State University Northridge, USA
Takeaki Uno National Institute of Informatics, Japan
Erik Jan van Leeuwen Max-Planck Institut für Informatik, Germany
Rob van Stee University of Leicester, UK
Ivan Visconti University of Salerno, Italy

Track B

Andreas Abel Chalmers and Gothenburg University, Sweden
Albert Atserias Universitat Politècnica de Catalunya, Spain
Christel Baier TU Dresden, Germany
Lars Birkedal Aarhus University, Denmark
Luís Caires Universidade Nova de Lisboa, Portugal
James Cheney University of Edinburgh, UK
Wei Ngan Chin National University of Singapore, Singapore
Ugo Dal Lago University of Bologna, Italy
Thomas Ehrhard CNRS and Université Paris Diderot, France
Zoltán Ésik University of Szeged, Hungary
Xinyu Feng University of Science and Technology of China, China
Wan Fokkink VU University Amsterdam, The Netherlands
Shin-ya Katsumata Kyoto University, Japan
Naoki Kobayashi The University of Tokyo, Japan
Eric Koskinen New York University, USA
Antonín Kučera Masaryk University, Czech Republic
Orna Kupferman Hebrew University, Israel
Annabelle Mclver Macquarie University, Australia
Dale Miller Inria Saclay, France
Markus Müller-Olm University of Münster, Germany
Andrzej Murawski University of Warwick, UK
Joel Ouaknine University of Oxford, UK
Prakash Panangaden McGill University, Canada
Pawel Parys University of Warsaw, Poland
Reinhard Pichler TU Vienna, Austria
Simona Ronchi Della Rocca University of Turin, Italy
Jeremy Siek Indiana University, USA

Track C

Ioannis Caragiannis University of Patras, Greece
Katarina Cechlarova Pavol Jozef Safarik University, Slovakia
Shiri Chechik Tel Aviv University, Israel
Yuval Emek Technion, Israel
Sándor Fekete TU Braunschweig, Germany
Pierre Fraigniaud CNRS, Université Paris Diderot, France
Leszek Gąsieniec University of Liverpool, UK
Aristides Gionis Aalto University, Finland
Magnús M. Halldórsson Reykjavik University, Iceland
Monika Henzinger Universität Wien, Austria
Bhaskar Krishnamachari University of Southern California, USA
Fabian Kuhn University of Freiburg, Germany
Michael Mitzenmacher Harvard University, USA
Massimo Merro University of Verona, Italy

VIII Organization

Gopal Pandurangan University of Houston, USA
Pino Persiano University of Salerno, Italy
R. Ravi Carnegie Mellon University, USA
Ymir Vigfusson Emory University, USA
Roger Wattenhofer ETH Zürich, Switzerland
Masafumi Yamashita Kyushu University, Japan

Organizing Committee

Masahito Hasegawa Kyoto University, Japan
Atushi Igarashi Kyoto University, Japan
Kazuo Iwama Kyoto University, Japan
Kazuhisa Makino Kyoto University, Japan

Financial Sponsors

ERATO Kawarabayashi Large Graph Project
MEXT Grant-in-Aid for Scientific Research on Innovative Areas: “Exploring the
Limits of Computation”
Research Institute for Mathematical Sciences, Kyoto University
Tateisi Science and Technology Foundation

Additional Reviewers

Abboud, Amir
Abdulla, Parosh
Abed, Fidaa
Abraham, Ittai
Ailon, Nir
Ajwani, Deepak
Albers, Susanne
Almeida, Jorge
Alt, Helmut
Alur, Rajeev
Alvarez, Victor
Alvarez-Jarreta, Jorge
Ambainis, Andris
Aminof, Benjamin
Anagnostopoulos, Aris
Andoni, Alexandr
Angelidakis, Haris
Anshelevich, Elliot
Antoniadis, Antonios

Arai, Hiromi
Aronov, Boris
Asada, Kazuyuki
Aspnes, James
Aubert, Clément
Augustine, John
Auletta, Vincenzo
Austrin, Per
Avin, Chen
Avni, Guy
Baelde, David
Baillot, Patrick
Bansal, Nikhil
Banyassady, Bahareh
Barnat, Jiri
Barth, Stephan
Barto, Libor
Basavaraju, Manu
Bassily, Raef

Organization IX

Baswana, Surender
Bateni, Mohammadhossein
Batu, Tugkan
Baum, Moritz
Béal, Marie-Pierre
Beigi, Salman
Beimel, Amos
Ben-Amran, Amr
Berenbrink, Petra
Bernáth, Attila
Berthé, Valérie
Bes, Alexis
Besser, Bert
Bevern, René Van
Bi, Jingguo
Bienstock, Daniel
Bille, Philip
Bilò, Vittorio
Bizjak, Ales
Björklund, Henrik
Blais, Eric
Bläsius, Thomas
Blömer, Johannes
Bogdanov, Andrej
Bojanczyk, Mikolaj
Bollig, Benedikt
Bonfante, Guillaume
Bonnet, Edouard
Bourhis, Pierre
Bousquet, Nicolas
Boyar, Joan
Bozzelli, Laura
Bradfield, Julian
Brandes, Philipp
Brandt, Sebastian
Braverman, Vladimir
Bresolin, Davide
Brzuska, Christina
Brânzei, Simina
Bucciarelli, Antonio
Buchbinder, Niv
Buchin, Kevin
Bulatov, Andrei
Cai, Jin-Yi
Cai, Zhuohong
Canonne, Clement

Cao, Yixin
Carayol, Arnaud
Carmi, Paz
Caron, Pascal
Caskurlu, Bugra
Cassez, Franck
Castagnos, Guilhem
Castellani, Ilaria
Castelli Aleardi, Luca
Cenzer, Douglas
Chakrabarty, Deeparnab
Chalermsook, Parinya
Chan, T.-H. Hubert
Chan, Timothy M.
Chattopadhyay, Arkadev
Chekuri, Chandra
Chen, Ho-Lin
Chen, Wei
Chen, Xi
Chen, Xujin
Chitnis, Rajesh
Chlamtac, Eden
Chlebikova, Janka
Cho, Dae-Hyeong
Chonev, Ventsislav
Christodoulou, George
Cicalese, Ferdinando
Cimini, Matteo
Clairambault, Pierre
Claude, Francisco
Clemente, Lorenzo
Cleve, Richard
Cloostermans, Bouke
Cohen-Addad, Vincent
Columbus, Tobias
Cording, Patrick Hagge
Coretti, Sandro
Cormode, Graham
Cornelsen, Sabine
Cosentino, Alessandro
Coudron, Matthew
Crouch, Michael
Cygan, Marek
Czerwiński, Wojciech
Czumaj, Artur
Dachman-Soled, Dana

X Organization

Dahlgaard, Søren
Dalmau, Victor
Dantchev, Stefan
Daruki, Samira
Das, Anupam
Dasler, Philip
Datta, Samir
Daum, Sebastian
Dawar, Anuj
De Bonis, Annalisa
De Caro, Angelo
De, Anindya
Dehghani, Sina
Deligkas, Argyrios
Dell, Holger
Demangeon, Romain
Demri, Stéphane
Denzumi, Shuhei
Diakonikolas, Ilias
Dibbelt, Julian
Dietzfelbinger, Martin
Dinsdale-Young, Thomas
Dinur, Itai
Disser, Yann
Dobrev, Stefan
Doerr, Carola
Döttling, Nico
Dotu, Ivan
Doty, David
Dräger, Klaus
Drucker, Andrew
Duan, Ran
Dubslaff, Clemens
Duetting, Paul
van Duijn, Ingo
Duncan, Ross
Durand, Arnaud
Durand-Lose, Jérôme
Dürr, Christoph
Dvorák, Wolfgang
Dyer, Martin
Efthymiou, Charilaos
Eirinakis, Pavlos
Elbassioni, Khaled
Elmasry, Amr
Emanuele, Viola

Emmi, Michael
Emura, Keita
Englert, Matthias
Epelman, Marina
Epstein, Leah
Ergun, Funda
Erickson, Alejandro
Esfandiari, Hossein
Fahrenberg, Uli
Farinelli, Alessandro
Faust, Sebastian
Fawzi, Omar
Fefferman, Bill
Feldman, Moran
Feldmann, Andreas Emil
Feng, Yuan
Fernique, Thomas
Ferraioli, Diodato
Fijavz, Gasper
Filinski, Andrzej
Filmus, Yuval
Filos-Ratsikas, Aris
Find, Magnus Gausdal
Firsov, Denis
Fleiner, Tamas
Foerster, Klaus-Tycho
Fomin, Fedor
Fontes, Lila
Forbes, Michael A.
Forejt, Vojtech
Formenti, Enrico
François, Nathanaël
Fränzle, Martin
Frascaria, Dario
Friedrich, Tobias
Fu, Hongfei
Fuchs, Fabian
Fuchsbauer, Georg
Fukunaga, Takuro
Fuller, Benjamin
Funk, Daryl
Fürer, Martin
Gabizon, Ariel
Gaboardi, Marco
Gacs, Peter
Gaertner, Bernd

Organization XI

Galanis, Andreas
Galčík, František
Ganguly, Sumit
Ganor, Anat
Ganty, Pierre
Garg, Naveen
Gaspers, Serge
Gawrychowski, Pawel
Gazda, Maciej
Gehrke, Mai
Gemsa, Andreas
Georgiadis, Loukas
Gerhold, Marcus
van Glabbeek, Rob
Göller, Stefan
Goncharov, Sergey
Göös, Mika
Gopalan, Parikshit
Gorbunov, Sergey
Gouveia, João
Grandjean, Etienne
Grandoni, Fabrizio
Green Larsen, Kasper
Grigoriev, Alexander
Grohe, Martin
Groote, Jan Friso
Grossi, Roberto
Grunert, Romain
Guessarian, Irène
Guiraud, Yves
Guo, Heng
Gupta, Anupam
Hadfield, Stuart
Hague, Matthew
Hahn, Ernst Moritz
Haitner, Iftach
Halevi, Shai
Hamann, Michael
Hampkins, Joel
Hansen, Kristoffer Arnsfelt
Har-Peled, Sariel
Harrow, Aram
Hastad, Johan
Hatano, Kohei
Haverkort, Herman
He, Meng

Heindel, Tobias
Hendriks, Dimitri
Henze, Matthias
Hermelin, Danny
Herranz, Javier
Heunen, Chris
Heydrich, Sandy
Hlineny, Petr
Hoffmann, Frank
Hoffmann, Jan
Hofheinz, Dennis
Hofman, Piotr
Holm, Jacob
Holmgren, Justin
Hong, Seok-Hee
Houle, Michael E.
Høyer, Peter
Hsu, Justin
Huang, Shenwei
Huang, Zengfeng
Huang, Zhiyi
Hwang, Yoonho
van Iersel, Leo
Im, Sungjin
Immerman, Neil
Inaba, Kazuhiro
Iovino, Vincenzo
Ishii, Toshimasa
Italiano, Giuseppe F.
Ito, Takehiro
Ivan, Szabolcs
Iwata, Yoichi
Izumi, Taisuke
Jaberi, Raed
Jaiswal, Ragesh
Jancar, Petr
Janin, David
Jansen, Bart M.P.
Jansen, Klaus
Jayram, T.S.
Jeavons, Peter
Jeffery, Stacey
Jerrum, Mark
Jeż, Łukasz
Jhanwar, Mahabir Prasad
Johnson, Matthew

XII Organization

Johnson, Matthew P.
Jones, Mark
Jones, Neil
Jordan, Charles
Jørgensen, Allan Grønlund
Jovanovic, Aleksandra
Jukna, Stasys
Kakimura, Naonori
Kalaitzis, Christos
Kamiyama, Naoyuki
Kanade, Varun
Kanazawa, Makoto
Kane, Daniel
Kanellopoulos, Panagiotis
Kantor, Erez
Kanté, Mamadou Moustapha
Kaplan, Haim
Karhumaki, Juhani
Kari, Jarkko
Kärkkäinen, Juha
Kashefi, Elham
Katajainen, Jyrki
Katz, Matthew
Kawachi, Akinori
Kazana, Tomasz
Kelk, Steven
Keller, Barbara
Keller, Orgad
Kenter, Sebastian
Kerenidis, Iordanis
Khan, Maleq
Khani, Reza
Khoussainov, Bakhadyr
Kida, Takuya
Kiefer, Stefan
Kijima, Shuji
Kim, Eun Jung
Kim, Heuna
Kim, Min-Gyu
Kim, Ringi
Kim, Sang-Sub
Kishida, Kohei
Kiyomi, Masashi
Klauck, Hartmut
Klavík, Pavel
Klima, Ondrej

Klin, Bartek
Knauer, Christian
Kobayashi, Yusuke
Kollias, Konstantinos
Kolmogorov, Vladimir
Komusiewicz, Christian
König, Barbara
König, Michael
Konrad, Christian
Kontogiannis, Spyros
Kopczynski, Eryk
Kopelowitz, Tsvi
Kopparty, Swastik
Korman, Matias
Kortsarz, Guy
Korula, Nitish
Kostitsyna, Irina
Kotek, Tomer
Kothari, Robin
Kovacs, Annamaria
Kozen, Dexter
Kraehmann, Daniel
Kral, Daniel
Kralovic, Rastislav
Kratsch, Dieter
Kratsch, Stefan
Krcal, Jan
Krenn, Stephan
Kretinsky, Jan
Kreutzer, Stephan
van Kreveld, Marc
Kriegel, Klaus
Krinninger, Sebastian
Krishna, Shankara Narayanan
Krishnaswamy, Ravishankar
Krizanc, Danny
Krumke, Sven
Krysta, Piotr
Kulkarni, Raghav
Kumar, Amit
Kumar, Mrinal
Künnemann, Marvin
Kuperberg, Greg
Kuroda, Satoru
Kurz, Alexander
Kyropoulou, Maria

Organization XIII

Labourel, Arnaud
Lachish, Oded
Łącki, Jakub
Lagerqvist, Victor
Lamani, Anissa
Lammich, Peter
Lampis, Michael
Lanese, Ivan
Lange, Martin
Lasota, Sławomir
Laudahn, Moritz
Laura, Luigi
Laurent, Monique
Lauriere, Mathieu
Lavi, Ron
Lazic, Ranko
Le Gall, Francois
Le, Quang Loc
Le, Ton Chanh
Lecerf, Gregoire
Lee, James
Lee, Troy
Lengler, Johannes
Leonardos, Nikos
Leung, Hing
Levy, Paul Blain
Lewenstein, Moshe
Lewis, Andrew E.M.
Li, Guoqiang
Li, Jian
Li, Liang
Li, Yi
Li, Yuan
Li, Zhentao
Liaghat, Vahid
Lianeas, Thanasis
Liang, Hongjin
Liu, Jingcheng
Liu, Shengli
Liu, Zhengyang
Livnat, Adi
Lodi, Andrea
Löding, Christof
Loff, Bruno
Löffler, Maarten
Lohrey, Markus

Lokshtanov, Daniel
Lopez-Ortiz, Alejandro
Lovett, Shachar
Lucier, Brendan
Luxen, Dennis
Mahabadi, Sepideh
Mahmoody, Mohammad
Makarychev, Konstantin
Makarychev, Yury
Maneth, Sebastian
Manlove, David
Manokaran, Rajsekar
Manthey, Bodo
Manuel, Amaldev
Mardare, Radu
Martens, Wim
Masuzawa, Toshimitsu
Matsuda, Takahiro
Matulef, Kevin
Matuschke, Jannik
May, Alexander
Mayr, Richard
McGregor, Andrew
Megow, Nicole
Meier, Florian
Meir, Or
Mertzios, George
de Mesmay, Arnaud
Mestre, Julian
Michail, Othon
Michalewski, Henryk
Mignosi, Filippo
Mihalák, Matúš
Misra, Neeldhara
Mitsou, Valia
Mnich, Matthias
Mogelberg, Rasmus
Mohar, Bojan
Moitra, Ankur
Monemizadeh, Morteza
Montanaro, Ashley
Morihata, Akimasa
Morin, Pat
Morizumi, Hiroki
Moruz, Gabriel
Moseley, Benjamin

XIV Organization

Mousset, Frank
Mucha, Marcin
Mueller, Tobias
Müller, David
Müller-Hannemann, Matthias
Murakami, Keisuke
Murano, Aniello
Musco, Christopher
Mustafa, Nabil
Nadathur, Gopalan
Nagano, Kiyohito
Nakazawa, Koji
Nanongkai, Danupon
Narayanan, Hariharan
Navarra, Alfredo
Navarro, Gonzalo
Nayyeri, Amir
Nederhof, Mark-Jan
Nederlof, Jesper
Newman, Alantha
Nguyen, Huy
Nguyen, Kim Thang
Nguyen, Viet Hung
Niazadeh, Rad
Nicholson, Patrick K.
Niedermann, Benjamin
Nielsen, Jesper Buus
Nielsen, Jesper Sindahl
Nies, André
Nikolov, Aleksandar
Nishimura, Harumichi
Nitaj, Abderrahmane
Nöllenburg, Martin
Nordhoff, Benedikt
Novotný, Petr
Obremski, Maciej
Ochremiak, Joanna
Oh, Eunjin
Okamoto, Yoshio
Oliveira, Igor
Onak, Krzysztof
Ordóñez Pereira, Alberto
Oren, Sigal
Orlandi, Claudio
Otachi, Yota
Ott, Sebastian

Otto, Martin
Oveis Gharan, Shayan
Ozeki, Kenta
Ozols, Maris
Padro, Carles
Pagani, Michele
Pagh, Rasmus
Paluch, Katarzyna
Panagiotou, Konstantinos
Panigrahi, Debmalya
Paolini, Luca
Parter, Merav
Pasquale, Francesco
Paul, Christophe
Pedersen, Christian Nørgaard Storm
Pelc, Andrzej
Penna, Paolo
Perdrix, Simon
Perelli, Giuseppe
Persiano, Giuseppe
Pettie, Seth
Peva, Blanchard
Philip, Geevarghese
Phillips, Jeff
Piccolo, Mauro
Pietrzak, Krzysztof
Pilaud, Vincent
Piliouras, Georgios
Pilipczuk, Marcin
Pinto, Joao Sousa
Piterman, Nir
Place, Thomas
Poelstra, Andrew
Pokutta, Sebastian
Polak, Libor
Polishchuk, Valentin
Pountourakis, Emmanouil
Prencipe, Giuseppe
Pruhs, Kirk
Prutkin, Roman
Qin, Shengchao
Quas, Anthony
Rabehaja, Tahiry
Räcke, Harald
Raghavendra, Prasad
Raghothaman, Mukund

Organization XV

Raman, Rajiv
Raskin, Jean-Francois
Razenshteyn, Ilya
Regev, Oded
Rehak, Vojtech
Reis, Giselle
van Renssen, André
Reshef, Yakir
Reyzin, Leonid
Reyzin, Lev
Riba, Colin
Richerby, David
Riely, James
Riveros, Cristian
Robere, Robert
Robinson, Peter
Roeloffzen, Marcel
Röglin, Heiko
Rote, Günter
Rotenberg, Eva
Roth, Aaron
Rothvoss, Thomas
de Rougemont, Michel
Rümmele, Stefan
Sabel, David
Sabok, Marcin
Sacchini, Jorge Luis
Sach, Benjamin
Saha, Ankan
Saha, Chandan
Saitoh, Toshiki
Sakavalas, Dimitris
Salvati, Sylvain
Sanchez Villaamil, Fernando
Sangnier, Arnaud
Sankowski, Piotr
Sankur, Ocan
Saptharishi, Ramprasad
Saraswat, Vijay
Satti, Srinivasa Rao
Saurabh, Saket
Sawant, Anshul
Scharf, Ludmila
Schieber, Baruch
Schlotter, Ildikó
Schneider, Stefan

Schnitger, Georg
Schoenebeck, Grant
Schrijvers, Okke
Schweitzer, Pascal
Schweller, Robert
Schwitter, Rolf
Schöpp, Ulrich
Scquizzato, Michele
Seddighin, Saeed
Segev, Danny
Seidel, Jochen
Seiferth, Paul
Sekar, Shreyas
Sen, Siddhartha
Senizergues, Geraud
Serre, Olivier
Seshadhri, C.
Seto, Kazuhisa
Seurin, Yannick
Shepherd, Bruce
Sherstov, Alexander
Shi, Yaoyun
Shinkar, Igor
Shioura, Akiyoshi
Siebertz, Sebastian
Singh, Mohit
Sitters, Rene
Sivignon, Isabelle
Skorski, Maciej
Skrzypczak, Michał
Skutella, Martin
Smith, Adam
Soares Barbosa, Rui
Sobocinski, Pawel
Solan, Eilon
Sommer, Christian
Son, Wanbin
Sorensen, Tyler
Sorge, Manuel
Sottile, Frank
Spalek, Robert
Spoerhase, Joachim
Srba, Jiri
Srivastava, Piyush
Staals, Frank
Stampoulis, Antonis

XVI Organization

Staton, Sam
Stefankovic, Daniel
Stein, Clifford
Stein, Yannik
Stenman, Jari
Stephan, Frank
Stirling, Colin
Stokes, Klara
Stolz, David
Strasser, Ben
Streicher, Thomas
Sun, He
Sun, Xiaorui
Suomela, Jukka
Svendsen, Kasper
Sviridenko, Maxim
Swamy, Chaitanya
Takahashi, Yasuhiro
Takazawa, Kenjiro
Talebanfard, Navid
Tamaki, Suguru
Tan, Li-Yang
Tan, Tony
Tang, Bo
Tanigawa, Shin-Ichi
Tasson, Christine
Tavenas, Sébastien
Teillaud, Monique
Telelis, Orestis
Thaler, Justin
Thapper, Johan
Thomas, Rekha
Ting, Hingfung
Tiwary, Hans
Torán, Jacobo
Tov, Roei
Tovey, Craig
Treinen, Ralf
Triandopoulos, Nikos
Trung, Ta Quang
Tsukada, Takeshi
Tulsiani, Madhur
Tuosto, Emilio
Tzamos, Christos
Uchizawa, Kei
Ueno, Shuichi

Uitto, Jara
Ullman, Jon
Ullman, Jonathan
Umboh, Seeun
Unno, Hiroshi
Uno, Yushi
Uramoto, Takeo
Urrutia, Florent
Vagvolgyi, Sandor
Vahlis, Yevgeniy
Valiron, Benoît
Vanden Boom, Michael
Vdovina, Alina
Veith, David
Venkatasubramanian, Suresh
Venkitasubramaniam,

Muthuramakrishnan
Ventre, Carmine
Vereshchagin, Nikolay
Vidick, Thomas
Vijayaraghavan, Aravindan
Vildhøj, Hjalte Wedel
Vinayagamurthy, Dhinakaran
Vishnoi, Nisheeth
Vitanyi, Paul
Vivek, Srinivas
Vondrak, Jan
Voudouris, Alexandros
Wahlström, Magnus
Walter, Tobias
Walukiewicz, Igor
Wasa, Kunihiro
Watanabe, Osamu
Wee, Hoeteck
Wegner, Franziska
Wei, Zhewei
Weichert, Volker
Weinberg, S. Matthew
Weinstein, Omri
Wenner, Alexander
Werneck, Renato
Wexler, Tom
White, Colin
Wichs, Daniel
Wiese, Andreas
Willard, Ross

Organization XVII

Williams, Ryan
Williamson, David
Wilson, David
Wimmer, Karl
Winslow, Andrew
Woeginger, Gerhard J.
Wojtczak, Dominik
de Wolf, Ronald
Wolff, Alexander
Wong, Prudence W.H.
Woodruff, David
Wootters, Mary
Worrell, James
Wrochna, Marcin
Wu, Xiaodi
Wu, Zhilin
Xiao, Tao
Xie, Ning
Xu, Jinhui
Yamakami, Tomoyuki
Yamamoto, Masaki
Yamauchi, Yukiko
Yang, Kuan

Yaroslavtsev, Grigory
Yehudayoff, Amir
Yodpinyanee, Anak
Yogev, Eylon
Yoon, Sang-Duk
Yoshida, Yuichi
Yun, Aaram
Yuster, Raphael
Zampetakis, Emmanouil
Zanuttini, Bruno
Zemor, Gilles
Zhang, Chihao
Zhang, Jialin
Zhang, Qin
Zhang, Shengyu
Zhou, Gelin
Zhou, Yuan
Živný, Stanislav
Zois, Georgios
Zorzi, Margherita
van Zwam, Stefan
Zwick, Uri

XVIII Organization

Contents – Part I

Track A: Algorithms, Complexity and Games

Statistical Randomized Encodings: A Complexity Theoretic View 1
Shweta Agrawal, Yuval Ishai, Dakshita Khurana,
and Anat Paskin-Cherniavsky

Tighter Fourier Transform Lower Bounds . 14
Nir Ailon

Quantifying Competitiveness in Paging with Locality of Reference 26
Susanne Albers and Dario Frascaria

Approximation Algorithms for Computing Maximin Share Allocations 39
Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad,
and Amin Saberi

Envy-Free Pricing in Large Markets: Approximating Revenue
and Welfare . 52

Elliot Anshelevich, Koushik Kar, and Shreyas Sekar

Batched Point Location in SINR Diagrams via Algebraic Tools 65
Boris Aronov and Matthew J. Katz

On the Randomized Competitive Ratio of Reordering Buffer Management
with Non-uniform Costs . 78

Noa Avigdor-Elgrabli, Sungjin Im, Benjamin Moseley, and Yuval Rabani

Serving in the Dark Should Be Done Non-uniformly 91
Yossi Azar and Ilan Reuven Cohen

Finding the Median (Obliviously) with Bounded Space 103
Paul Beame, Vincent Liew, and Mihai Pǎtras�cu

Approximation Algorithms for Min-Sum k-Clustering
and Balanced k-Median . 116

Babak Behsaz, Zachary Friggstad, Mohammad R. Salavatipour,
and Rohit Sivakumar

Solving Linear Programming with Constraints Unknown 129
Xiaohui Bei, Ning Chen, and Shengyu Zhang

Deterministic Randomness Extraction from Generalized and Distributed
Santha-Vazirani Sources . 143

Salman Beigi, Omid Etesami, and Amin Gohari

Limitations of Algebraic Approaches to Graph Isomorphism Testing 155
Christoph Berkholz and Martin Grohe

Fully Dynamic Matching in Bipartite Graphs . 167
Aaron Bernstein and Cliff Stein

Feasible Interpolation for QBF Resolution Calculi 180
Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla

Simultaneous Approximation of Constraint Satisfaction Problems. 193
Amey Bhangale, Swastik Kopparty, and Sushant Sachdeva

Design of Dynamic Algorithms via Primal-Dual Method. 206
Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano

What Percentage of Programs Halt? . 219
Laurent Bienvenu, Damien Desfontaines, and Alexander Shen

The Parity of Set Systems Under Random Restrictions with Applications
to Exponential Time Problems . 231

Andreas Björklund, Holger Dell, and Thore Husfeldt

Spotting Trees with Few Leaves . 243
Andreas Björklund, Vikram Kamat, Łukasz Kowalik, and Meirav Zehavi

Constraint Satisfaction Problems over the Integers with Successor 256
Manuel Bodirsky, Barnaby Martin, and Antoine Mottet

Hardness Amplification and the Approximate Degree
of Constant-Depth Circuits. 268

Mark Bun and Justin Thaler

Algorithms and Complexity for Turaev-Viro Invariants 281
Benjamin A. Burton, Clément Maria, and Jonathan Spreer

Big Data on the Rise? – Testing Monotonicity of Distributions 294
Clément L. Canonne

Unit Interval Editing Is Fixed-Parameter Tractable 306
Yixin Cao

Streaming Algorithms for Submodular Function Maximization. 318
Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud

XX Contents – Part I

Multilinear Pseudorandom Functions. 331
Aloni Cohen and Justin Holmgren

Zero-Fixing Extractors for Sub-Logarithmic Entropy. 343
Gil Cohen and Igor Shinkar

Interactive Proofs with Approximately Commuting Provers 355
Matthew Coudron and Thomas Vidick

Popular Matchings with Two-Sided Preferences and One-Sided Ties 367
Ágnes Cseh, Chien-Chung Huang, and Telikepalli Kavitha

Block Interpolation: A Framework for Tight Exponential-Time
Counting Complexity . 380

Radu Curticapean

On Convergence and Threshold Properties of Discrete Lotka-Volterra
Population Protocols . 393

Jurek Czyzowicz, Leszek Ga�sieniec, Adrian Kosowski,
Evangelos Kranakis, Paul G. Spirakis, and Przemysław Uznański

Scheduling Bidirectional Traffic on a Path. 406
Yann Disser, Max Klimm, and Elisabeth Lübbecke

On the Problem of Approximating the Eigenvalues of Undirected Graphs
in Probabilistic Logspace . 419

Dean Doron and Amnon Ta-Shma

On Planar Boolean CSP. 432
Zdeněk Dvořák and Martin Kupec

On Temporal Graph Exploration. 444
Thomas Erlebach, Michael Hoffmann, and Frank Kammer

Mind Your Coins: Fully Leakage-Resilient Signatures
with Graceful Degradation . 456

Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi

A (1+e)-Embedding of Low Highway Dimension Graphs into Bounded
Treewidth Graphs . 469

Andreas Emil Feldmann, Wai Shing Fung, Jochen Könemann,
and Ian Post

Lower Bounds for the Graph Homomorphism Problem 481
Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov,
and Ivan Mihajlin

Contents – Part I XXI

Parameterized Single-Exponential Time Polynomial Space Algorithm
for Steiner Tree . 494

Fedor V. Fomin, Petteri Kaski, Daniel Lokshtanov, Fahad Panolan,
and Saket Saurabh

Relative Discrepancy Does not Separate Information
and Communication Complexity. 506

Lila Fontes, Rahul Jain, Iordanis Kerenidis, Sophie Laplante,
Mathieu Laurière, and Jérémie Roland

A Galois Connection for Valued Constraint Languages of Infinite Size. 517
Peter Fulla and Stanislav Živný

Approximately Counting H-Colourings Is #BIS-Hard 529
Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum

Taylor Polynomial Estimator for Estimating Frequency Moments. 542
Sumit Ganguly

ETR-Completeness for Decision Versions of Multi-player (Symmetric)
Nash Equilibria. 554

Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod

Separate, Measure and Conquer: Faster Polynomial-Space Algorithms
for Max 2-CSP and Counting Dominating Sets . 567

Serge Gaspers and Gregory B. Sorkin

Submatrix Maximum Queries in Monge Matrices Are Equivalent
to Predecessor Search . 580

Paweł Gawrychowski, Shay Mozes, and Oren Weimann

Optimal Encodings for Range Top-k, Selection, and Min-Max 593
Paweł Gawrychowski and Patrick K. Nicholson

2-Vertex Connectivity in Directed Graphs . 605
Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura,
and Nikos Parotsidis

Ground State Connectivity of Local Hamiltonians 617
Sevag Gharibian and Jamie Sikora

Uniform Kernelization Complexity of Hitting Forbidden Minors 629
Archontia C. Giannopoulou, Bart M.P. Jansen, Daniel Lokshtanov,
and Saket Saurabh

Counting Homomorphisms to Square-Free Graphs, Modulo 2 642
Andreas Göbel, Leslie Ann Goldberg, and David Richerby

XXII Contents – Part I

Approximately Counting Locally-Optimal Structures 654
Leslie Ann Goldberg, Rob Gysel, and John Lapinskas

Proofs of Proximity for Context-Free Languages and Read-Once
Branching Programs (Extended Abstract). 666

Oded Goldreich, Tom Gur, and Ron D. Rothblum

Fast Algorithms for Diameter-Optimally Augmenting Paths. 678
Ulrike Große, Joachim Gudmundsson, Christian Knauer,
Michiel Smid, and Fabian Stehn

Hollow Heaps . 689
Thomas Dueholm Hansen, Haim Kaplan, Robert E. Tarjan,
and Uri Zwick

Linear-Time List Recovery of High-Rate Expander Codes. 701
Brett Hemenway and Mary Wootters

Finding 2-Edge and 2-Vertex Strongly Connected Components
in Quadratic Time. 713

Monika Henzinger, Sebastian Krinninger, and Veronika Loitzenbauer

Improved Algorithms for Decremental Single-Source Reachability
on Directed Graphs . 725

Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai

Weighted Reordering Buffer Improved via Variants of Knapsack
Covering Inequalities . 737

Sungjin Im and Benjamin Moseley

Local Reductions . 749
Hamid Jahanjou, Eric Miles, and Emanuele Viola

Query Complexity in Expectation . 761
Jedrzej Kaniewski, Troy Lee, and Ronald de Wolf

Near-Linear Query Complexity for Graph Inference 773
Sampath Kannan, Claire Mathieu, and Hang Zhou

A QPTAS for the Base of the Number of Crossing-Free Structures
on a Planar Point Set. 785

Marek Karpinski, Andrzej Lingas, and Dzmitry Sledneu

Finding a Path in Group-Labeled Graphs with Two Labels Forbidden. 797
Yasushi Kawase, Yusuke Kobayashi, and Yutaro Yamaguchi

Lower Bounds for Sums of Powers of Low Degree Univariates 810
Neeraj Kayal, Pascal Koiran, Timothée Pecatte, and Chandan Saha

Contents – Part I XXIII

Approximating CSPs Using LP Relaxation . 822
Subhash Khot and Rishi Saket

Comparator Circuits over Finite Bounded Posets . 834
Balagopal Komarath, Jayalal Sarma, and K.S. Sunil

Algebraic Properties of Valued Constraint Satisfaction Problem 846
Marcin Kozik and Joanna Ochremiak

Towards Understanding the Smoothed Approximation Ratio
of the 2-Opt Heuristic . 859

Marvin Künnemann and Bodo Manthey

On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy 872
Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli

Replacing Mark Bits with Randomness in Fibonacci Heaps 886
Jerry Li and John Peebles

A PTAS for the Weighted Unit Disk Cover Problem 898
Jian Li and Yifei Jin

Approximating the Expected Values for Combinatorial Optimization
Problems Over Stochastic Points . 910

Lingxiao Huang and Jian Li

Deterministic Truncation of Linear Matroids . 922
Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan,
and Saket Saurabh

Linear Time Parameterized Algorithms for Subset Feedback Vertex Set 935
Daniel Lokshtanov, M.S. Ramanujan, and Saket Saurabh

An Optimal Algorithm for Minimum-Link Rectilinear Paths
in Triangulated Rectilinear Domains . 947

Joseph S.B. Mitchell, Valentin Polishchuk, Mikko Sysikaski,
and Haitao Wang

Amplification of One-Way Information Complexity via Codes
and Noise Sensitivity. 960

Marco Molinaro, David P. Woodruff, and Grigory Yaroslavtsev

A (2+e)-Approximation Algorithm for the Storage Allocation Problem 973
Tobias Mömke and Andreas Wiese

Shortest Reconfiguration Paths in the Solution Space
of Boolean Formulas . 985

Amer E. Mouawad, Naomi Nishimura, Vinayak Pathak,
and Venkatesh Raman

XXIV Contents – Part I

Computing the Fréchet Distance Between Polygons with Holes 997
Amir Nayyeri and Anastasios Sidiropoulos

An Improved Private Mechanism for Small Databases 1010
Aleksandar Nikolov

Binary Pattern Tile Set Synthesis Is NP-Hard. 1022
Lila Kari, Steffen Kopecki, Pierre-Étienne Meunier, Matthew J. Patitz,
and Shinnosuke Seki

Near-Optimal Upper Bound on Fourier Dimension of Boolean Functions
in Terms of Fourier Sparsity . 1035

Swagato Sanyal

Condensed Unpredictability . 1046
Maciej Skórski, Alexander Golovnev, and Krzysztof Pietrzak

Sherali-Adams Relaxations for Valued CSPs . 1058
Johan Thapper and Stanislav Živný

Two-Sided Online Bipartite Matching and Vertex Cover: Beating
the Greedy Algorithm . 1070

Yajun Wang and Sam Chiu-wai Wong

The Simultaneous Communication of Disjointness with Applications
to Data Streams . 1082

Omri Weinstein and David P. Woodruff

An Improved Combinatorial Algorithm for Boolean Matrix Multiplication. . . . 1094
Huacheng Yu

Author Index . 1107

Contents – Part I XXV

Contents – Part II

Invited Talks

Towards the Graph Minor Theorems for Directed Graphs 3
Ken-Ichi Kawarabayashi and Stephan Kreutzer

Automated Synthesis of Distributed Controllers . 11
Anca Muscholl

Track B: Logic, Semantics, Automata and Theory of Programming

Games for Dependent Types . 31
Samson Abramsky, Radha Jagadeesan, and Matthijs Vákár

Short Proofs of the Kneser-Lovász Coloring Principle. 44
James Aisenberg, Maria Luisa Bonet, Sam Buss, Adrian Crãciun,
and Gabriel Istrate

Provenance Circuits for Trees and Treelike Instances 56
Antoine Amarilli, Pierre Bourhis, and Pierre Senellart

Language Emptiness of Continuous-Time Parametric Timed Automata 69
Nikola Beneš, Peter Bezděk, Kim G. Larsen, and Jiří Srba

Analysis of Probabilistic Systems via Generating Functions and Padé
Approximation . 82

Michele Boreale

On Reducing Linearizability to State Reachability 95
Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

The Complexity of Synthesis from Probabilistic Components. 108
Krishnendu Chatterjee, Laurent Doyen, and Moshe Y. Vardi

Edit Distance for Pushdown Automata . 121
Krishnendu Chatterjee, Thomas A. Henzinger, Rasmus Ibsen-Jensen,
and Jan Otop

Solution Sets for Equations over Free Groups Are EDT0L Languages 134
Laura Ciobanu, Volker Diekert, and Murray Elder

Limited Set quantifiers over Countable Linear Orderings. 146
Thomas Colcombet and A.V. Sreejith

Reachability Is in DynFO . 159
Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick,
and Thomas Zeume

Natural Homology . 171
Jérémy Dubut, Éric Goubault, and Jean Goubault-Larrecq

Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations,
and Reachability for Branching Markov Decision Processes 184

Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis

Trading Bounds for Memory in Games with Counters. 197
Nathanaël Fijalkow, Florian Horn, Denis Kuperberg,
and Michał Skrzypczak

Decision Problems of Tree Transducers with Origin 209
Emmanuel Filiot, Sebastian Maneth, Pierre-Alain Reynier,
and Jean-Marc Talbot

Incompleteness Theorems, Large Cardinals, and Automata
over Infinite Words. 222

Olivier Finkel

The Odds of Staying on Budget . 234
Christoph Haase and Stefan Kiefer

From Sequential Specifications to Eventual Consistency 247
Radha Jagadeesan and James Riely

Fixed-Dimensional Energy Games Are in Pseudo-Polynomial Time 260
Marcin Jurdziński, Ranko Lazić, and Sylvain Schmitz

An Algebraic Geometric Approach to Nivat’s Conjecture 273
Jarkko Kari and Michal Szabados

Nominal Kleene Coalgebra . 286
Dexter Kozen, Konstantinos Mamouras, Daniela Petris�an,
and Alexandra Silva

On Determinisation of Good-for-Games Automata 299
Denis Kuperberg and Michał Skrzypczak

Owicki-Gries Reasoning for Weak Memory Models 311
Ori Lahav and Viktor Vafeiadis

On the Coverability Problem for Pushdown Vector Addition Systems
in One Dimension. 324

Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

XXVIII Contents – Part II

Compressed Tree Canonization. 337
Markus Lohrey, Sebastian Maneth, and Fabian Peternek

Parsimonious Types and Non-uniform Computation 350
Damiano Mazza and Kazushige Terui

Baire Category Quantifier in Monadic Second Order Logic 362
Henryk Michalewski and Matteo Mio

Liveness of Parameterized Timed Networks. 375
Benjamin Aminof, Sasha Rubin, Florian Zuleger, and Francesco Spegni

Symmetric Strategy Improvement . 388
Sven Schewe, Ashutosh Trivedi, and Thomas Varghese

Effect Algebras, Presheaves, Non-locality and Contextuality 401
Sam Staton and Sander Uijlen

On the Complexity of Intersecting Regular, Context-Free,
and Tree Languages . 414

Joseph Swernofsky and Michael Wehar

Containment of Monadic Datalog Programs via Bounded Clique-Width 427
Mikołaj Bojańczyk, Filip Murlak, and Adam Witkowski

An Approach to Computing Downward Closures . 440
Georg Zetzsche

How Much Lookahead Is Needed to Win Infinite Games?. 452
Felix Klein and Martin Zimmermann

Track C: Foundations of Networked Computation: Models,
Algorithms and Information Management

Symmetric Graph Properties Have Independent Edges 467
Dimitris Achlioptas and Paris Siminelakis

Polylogarithmic-Time Leader Election in Population Protocols 479
Dan Alistarh and Rati Gelashvili

Core Size and Densification in Preferential Attachment Networks 492
Chen Avin, Zvi Lotker, Yinon Nahum, and David Peleg

Maintaining Near-Popular Matchings . 504
Sayan Bhattacharya, Martin Hoefer, Chien-Chung Huang,
Telikepalli Kavitha, and Lisa Wagner

Contents – Part II XXIX

Ultra-Fast Load Balancing on Scale-Free Networks 516
Karl Bringmann, Tobias Friedrich, Martin Hoefer, Ralf Rothenberger,
and Thomas Sauerwald

Approximate Consensus in Highly Dynamic Networks: The Role
of Averaging Algorithms . 528

Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak

The Range of Topological Effects on Communication. 540
Arkadev Chattopadhyay and Atri Rudra

Secretary Markets with Local Information . 552
Ning Chen, Martin Hoefer, Marvin Künnemann, Chengyu Lin,
and Peihan Miao

A Simple and Optimal Ancestry Labeling Scheme for Trees 564
Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Noy Rotbart

Interactive Communication with Unknown Noise Rate 575
Varsha Dani, Mahnush Movahedi, Jared Saia, and Maxwell Young

Fixed Parameter Approximations for k-Center Problems in Low Highway
Dimension Graphs . 588

Andreas Emil Feldmann

A Unified Framework for Strong Price of Anarchy in Clustering Games. . . . 601
Michal Feldman and Ophir Friedler

On the Diameter of Hyperbolic Random Graphs. 614
Tobias Friedrich and Anton Krohmer

Tight Bounds for Cost-Sharing in Weighted Congestion Games 626
Martin Gairing, Konstantinos Kollias, and Grammateia Kotsialou

Distributed Broadcast Revisited: Towards Universal Optimality 638
Mohsen Ghaffari

Selling Two Goods Optimally . 650
Yiannis Giannakopoulos and Elias Koutsoupias

Adaptively Secure Coin-Flipping, Revisited . 663
Shafi Goldwasser, Yael Tauman Kalai, and Sunoo Park

Optimal Competitiveness for the Rectilinear Steiner Arborescence
Problem. 675

Erez Kantor and Shay Kutten

XXX Contents – Part II

Normalization Phenomena in Asynchronous Networks 688
Amin Karbasi, Johannes Lengler, and Angelika Steger

Broadcast from Minicast Secure Against General Adversaries 701
Pavel Raykov

Author Index . 713

Contents – Part II XXXI

Statistical Randomized Encodings:
A Complexity Theoretic View

Shweta Agrawal1, Yuval Ishai2, Dakshita Khurana3(B),
and Anat Paskin-Cherniavsky4

1 IIT, Delhi, India
shweta@cse.iitd.ac.in
2 Technion, Haifa, Israel

yuvali@cs.technion.ac.il
3 UCLA and Center for Encrypted Functionalities, Los Angeles, USA

dakshita@cs.ucla.edu
4 Ariel University and UCLA, Ariel, Israel

anatpc@ariel.ac.il

Abstract. A randomized encoding of a function f(x) is a randomized
function f̂(x, r), such that the “encoding” f̂(x, r) reveals f(x) and essen-
tially no additional information about x. Randomized encodings of func-
tions have found many applications in different areas of cryptography,
including secure multiparty computation, efficient parallel cryptography,
and verifiable computation.

We initiate a complexity-theoretic study of the class SRE of lan-
guages (or boolean functions) that admit an efficient statistical random-
ized encoding. That is, f̂(x, r) can be computed in time poly(|x|), and
its output distribution on input x can be sampled in time poly(|x|) given
f(x), up to a small statistical distance.

We obtain the following main results.

• Separating SRE from efficient computation: We give the first
examples of promise problems and languages in SRE that are widely
conjectured to lie outside P/poly. Our candidate promise problems
and languages are based on the standard Learning with Errors
(LWE) assumption, a non-standard variant of the Decisional Diffie
Hellman (DDH) assumption and the “Abelian Subgroup Member-
ship problem” (which generalizes Quadratic-Residuosity and a vari-
ant of DDH).

• Separating SZK from SRE: We explore the relationship of SRE
with the class SZK of problems possessing statistical zero knowledge
proofs. It is known that SRE ⊆ SZK. We present an oracle separation
which demonstrates that a containment of SZK in SRE cannot be
proved via relativizing techniques.

Y. Ishai–Research supported by the European Union’s Tenth Framework Programme
(FP10/2010-2016) under grant agreement no. 259426 ERC-CaC, ISF grants 1361/10
and 1709/14 and BSF grant 2012378.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 1–13, 2015.
DOI: 10.1007/978-3-662-47672-7 1

2 S. Agrawal et al.

1 Introduction

A randomized encoding (RE) of a function [5,13] allows one to represent a complex
function f(x) by a “simpler” randomized function, f̂(x, r), such that the “encod-
ing” f̂(x, r) reveals f(x) but no other information about x1. More specifically,
there should exist an (unbounded) decoder that computes f(x) given f̂(x, r), and
an efficient randomized simulator that simulates the output of the encoder f̂(x, r),
only given |x| and f(x). We refer to the former decoding requirement as correct-
ness and to the latter simulation requirement as privacy. Privacy can either be
perfect, statistical, or computational, depending on the required notion of “close-
ness” between the simulated distribution and the output distribution of f̂ . The
complexity class SRE (resp. PRE, CRE) is defined to be the class of boolean func-
tions f : {0, 1}∗ → {0, 1}, or equivalently languages, admitting a randomized
encoding f̂ that can be computed in polynomial time and having statistical (resp.
perfect, computational) privacy. In this paper, we initiate the study of the class
SRE of functions admitting a statistical randomized encoding (SRE).

As a cryptographic primitive, randomized encodings were first studied explic-
itly by Ishai and Kushilevitz [13], although they were used implicitly in prior
work in the context of secure multiparty computation [11,16,19]. They have
found application in different areas of cryptography, such as parallel implemen-
tations of cryptographic primitives [5], verifiable computation and secure del-
egation of computations [6], secure multiparty computation [4,8,9,13,14], and
even in algorithm design [15]. We refer the reader to [3] for a survey of such
applications.

The parallel complexity of randomized encodings was studied by Applebaum
et al. [5], who demonstrated that all functions in the complexity class NC1 (and
even certain functions that are conjectured not to be in NC [2]) admit an SRE
in NC0. This establishes a provable speedup in the context of parallel time com-
plexity. It is natural to ask a similar question in the context of sequential time
complexity. For which functions (if any) can an SRE enable a super-polynomial
speedup? This question is the focus of our work.

Characterizing the Class SRE. Let us consider the power of the class SRE of
all functions admitting a polynomial-time computable statistical randomized
encoding. It is evident that P ⊆ SRE, where f̂(x, r) simply outputs f(x). This
satisfies both the correctness and privacy requirements. But is SRE ⊆ P?

• SRE for trivial hard languages. First, we consider unary languages, i.e.,
languages L ⊆ {0}∗. These languages admit the trivial SRE defined by
f̂(x) = x. Indeed, the decoder can be defined by D(z) = f(z) and the
simulator, on input (1n, b), can output 0n. Privacy holds since there is only
one input of every length. However, such unary languages may not even be

1 It also reveals |x|. This is unavoidable, as otherwise the output of f̂ is one of two
disjoint distributions supported over a finite domain, which puts f(x) in BPP.

Statistical Randomized Encodings: A Complexity Theoretic View 3

decidable, as illustrated for example by the language UHP - the unary encod-
ing of the halting problem, which admits an SRE but is not decidable. This
example also extends to “trivial” binary languages such that for a given input
length, all inputs are either in the language or not. However, note that such
trivial languages are always contained in the class P/poly, namely the class
of functions admitting polynomial-size (but possibly non-uniform) circuits.
This demonstrates that getting a candidate separation between SRE and P
or even PSPACE is not enough; to demonstrate the power of randomized
encodings over efficient computation in a meaningful way, we must separate
the class SRE from P/poly.

• Is SRE more powerful that P/poly? Let us now examine the relationship
of SRE and P/poly. To begin, observe that for functions with long outputs,
it is easy to find candidate functions that are not known to be efficiently
computable by non-uniform circuits, but admit an efficient SRE. For exam-
ple, assume there exists a family of one way permutations {fn}n∈N

secure
against non-uniform adversaries. Then the seemingly hard function f−1(x)
can be encoded by the identity f̂−1(x) = x. As f−1 is also a permutation,
this encoding is both private and correct. However, for boolean functions,
the question looks much more interesting. To the best of our knowledge, no
previous candidates for languages or promise problems that are conjectured
to lie outside P/poly but admit efficient SRE have been proposed. This is
one of the questions we study in this work.

• Is SZK more powerful that SRE? Another natural question about random-
ized encodings is their relationship with the class SZK of languages admitting
statistical zero knowledge proofs. It is not hard to show that SRE ⊆ SZK [2].2

This implies that SRE is unlikely to contain NP. Based on current examples
for SZK languages it seems likely that the containment SRE ⊆ SZK is strict,
but no formal evidence was given in this direction. This motivates the ques-
tion of finding an oracle relative to which SZK is not contained in SRE.

Why is the class SRE interesting? As has been pointed out already, for functions
that are efficiently computable, the SRE can just compute the function itself.
Therefore, the class SRE is interesting only when the functions themselves are
not efficiently computable, in which case the complexity of the decoder must
inherently be super-polynomial. While most known applications of randomized
encodings of functions require the decoder to be efficient, there are some applica-
tions that do not (see [3]). Moreover, even in cases where the decoder is required
to be efficient, SRE functions can be “scaled down” so that decoding takes a
feasible time T whereas encoding time is sub-polynomial in T . For instance, the
computation of an SRE function can be delegated from a weak client to a pow-
erful but untrusted server by directly applying an SRE on instances of a small
2 Here and in the following, when writing SRE ⊆ SZK we restrict SRE to only contain

languages L that are non-trivial in the sense that for every sufficiently large input
length n there are inputs x0, x1 of length n such that x0 ∈ L and x1 �∈ L. This
excludes languages such as the unary undecidable language mentioned earlier. The
containment proof in [2] implicitly assumes non-triviality.

4 S. Agrawal et al.

size n, such that the server may be allowed to run in time exp(n) while the client
is only required to run in time poly(n). Indeed, many real-life problems require
exponential time to solve using the best known algorithms.

1.1 Our Results

Our results can be summarized as follows.

1. Separating SRE from P/poly:
We provide three candidates to separate SRE from efficient computation.

• We give a candidate language, for which we conjecture hardness based
on a non-standard variant of the DDH assumption. We give an efficient
SRE for this language which builds on the random self reduction for
DDH demonstrated by Naor and Reingold [17].

• Next, we give a candidate (dense) promise problem, the hardness of which
follows from the hardness of the standard Learning with Errors assump-
tion. We devise an efficient SRE for this promise problem.

• Last, we design a non-uniform SRE for the Abelian subgroup mem-
bership ASM family of promise problems. This problem generalizes
quadratic residuosity and (an instance of an augmented) co-DDH prob-
lem. We also give a specific instance of this promise problem, which is
a language, and conjecture that this language is outside of P/poly based
on a variant of co-DDH, an assumption introduced in [12].

2. Separating SZK from SRE: We show the existence of an oracle, relative
to which SZK �⊂ SRE. This oracle separation implies that the containment
SZK ⊆ SRE (if true) cannot be proved via relativizing proof techniques.

1.2 Overview of Main Techniques

We now give an overview of the main techniques used for our separations.

Separating SRE from P/poly. We provide several SRE constructions for problems
that are conjectured to lie outside P/poly. It may be helpful to point out here,
that problems in SRE also admit an SZK proof, and the existence of hard prob-
lems in SZK implies the existence of one-way functions. Therefore, we cannot
hope to get an unconditional result, or even one based on P �= NP. We have the
following candidates based on various assumptions, which we later summarize
in Table 1.

• Candidate Language Related to DDH.
Our first candidate is a language, which we call DDH′, whose hardness is
related to the Decisional Diffie Hellman (DDH) assumption. We consider
inputs of the form 〈g, ga, gb, gc〉 where g is any generator of a fixed DDH
group per input length. Roughly, the input is in the language iff it corre-
sponds to a DDH tuple, that is, if gc = gab in a fixed group generated by g.
Our SRE for this problem builds on the random self-reduction given by
Naor and Reingold [17] for DDH. However, not only do we randomize the

Statistical Randomized Encodings: A Complexity Theoretic View 5

DDH exponents following [17], but also randomize the generator of the DDH
group.
Finally, in order to devise a candidate language, we must fix the description
of the group and its generator, given just the length of the input. We achieve
this by suggesting an efficient, deterministic procedure to generate a DDH
group and other parameters required by the encoding algorithm, given the
input length. However, note that the hardness of DDH′ cannot be reduced
to the standard DDH. This is because DDH is an average case assumption,
where the public parameters are chosen randomly. In our case, we must
fix the public parameters per input length, and DDH does not guarantee
that this restriction preserves hardness. We conjecture however, that DDH′

remains infeasible for fixed parameters.
• Dense Promise Problem Based on LWE.

Our second example is a (dense) promise problem DLWE′, whose hardness
reduces to the hardness of the standard LWE problem. DLWE′ approximately
classifies noisy codewords (A,b = As+e) into Yes and No instances, depend-
ing upon on the size of the error vector e. Roughly speaking, Yes instances
correspond to small errors and No instances to large errors.
Note that, an SRE encoding of input (A,b = As + e) must be oblivi-
ous of all information about A, s, e except the relative size of the error
vector e. We begin by using the additive homomorphism of the LWE
secret to mask s. Specifically, we choose a random vector t and compute
b′ = b + At = A(s + t) + e. Now, b′ no longer retains information about s.
To hide A, we multiply (A,b) by a random low norm matrix R and invoke
the leftover hash lemma to argue that RA looks random even when R’s
entries are chosen from a relatively small range. For No instances, e is large
enough that Re also hides e via LHL, but to hide the smaller e of Yes
instances, we must add additional noise r0. This extra noise is large enough
to hide e but not large enough to affect correctness. For more details, please
see Section 3.1.

• Generalizing QR, and candidate language related to co-DDH.
Our final candidate is the Abelian Subgroup Membership (promise) problem
ASM, which generalizes the quadratic residuosity problem QRN for compos-
ite modulus N . ASM is specified by an abelian group G, and a subgroup H
of G, such that I(G/H) = Z

t
q for prime q, integer t and some isomorphism

I. We define Yes instances to be well-formed x ∈ H, and No instances to be
well-formed x ∈ G \ H. We note that QRN ∈ P/poly, and therefore is not a
candidate for separation. However, we present a different candidate language,
which is an instance of ASM, and which we conjecture to lie outside P/poly
based on a variant of the co-DDH assumption in [12].
At a high level, our SRE for the generalized ASM promise problem is con-
structed as follows. Given input x,

• Compute y = x · h for random h
$← H.

6 S. Agrawal et al.

• Pick random elements (x1, x2, . . . xt−1)
$← G.

Define X = [I(x1), . . . , I(xt−1), I(y)].
• Pick R $← Z

t×t
q . Output R · X.

The first step randomizes x within its coset3, erasing all information except
the coset of x. Next, observe that membership of x in the subgroup H is
encoded by the rank of X – if x ∈ H then X is singular, whereas if x �∈ H,
then X is non-singular with high probability. Thus, randomizing X via RX
hides everything except the rank of X, effectively erasing coset information
about x. The decoder learns whether x ∈ H by computing the rank of RX.
Finally, we amplify the privacy and correctness parameters by applying a
generic masking technique, that may be of independent interest.

Table 1. Our Candidates. The SREs are uniform and private against non-uniform
adversaries. If not a language, we exhibit a promise problem. The * denotes that a
specific instance of ASM is a language, though ASM is in general a promise problem.

Candidate Language Hardness
DDH′ Language Non-Std DDH
DLWE′ (Dense) Promise Problem Std LWE
ASM(co-DDH) Language* Non-Std co-DDH

Separating SZK from SRE Applebaum [2] showed that any language that admits
an SRE encoding also admits an SZK proof. This was done by reducing SRE
to the statistical distance problem [18] which admits a two-round SZK protocol.
The question of whether this containment is strict is still open.

We give an oracle separation between the classes SZK and SRE. We diago-
nalize over oracle SRE encoders to obtain a language that is not in oracle-SRE,
but admits an oracle-SZK proof. Our technique involves generalizing the method
of [1] that separates oracle-SZK machines from oracle-BPP machines, with the
oracle being determined during diagonalization. This technique is reminiscent of
the one in [7] showing that any proof for P=NP does not relativize. However,
our setting diverges from that of [1] in two ways.

First, we diagonalize over SRE encoders such that decoders are unbounded.
However, in the presence of unbounded machines, an oracle similar to [1] would
be only as powerful as the plain model. To deal with this, we derive an alter-
nate definition for SRE, where the output of PPT encoders falls into two dis-
tinct distributions over a polynomially large support (unlike binary output BPP
machines). In order to derive an outlying language via diagonalization in this
new setting, we must account for the size of the support. We stress here that
our separation does not reduce to the SZK − BPP separation in [1], and can in
fact, be viewed as a generalization of their result.

3 This step is similar to the classic SRE for QRp which encodes x by x ·r2 for randomly
chosen r. However, this is insufficient even for QRN where N is composite (hence for
ASM), as it leaks coset information of x.

Statistical Randomized Encodings: A Complexity Theoretic View 7

1.3 Related Work

The classes PREN, SREN and CREN have been defined by Applebaum, Ishai
and Kushilevitz [6] as the class of functions that admit perfect (resp. statistical,
computational) randomized encodings in NC0 with a polynomial-time decoder.
In contrast, in this work we do not restrict the complexity of decoding the
output. Applebaum [2] observed that QRp ∈ SREN while not known to be in NC,
suggesting a separation between these classes.

Aiello and H̊astad[1] gave a technique for the oracle separation of SZK from
BPP, by diagonalizing over oracle-BPP machines. Our technique for the oracle
separation of SZK from uniform SRE follows in their broad outline, but must
be adapted to oracle-SRE machines whose outputs are over a large support.
Also, note that SRE has been used in the past for reducing the complexity of
complete problems for a subclass of SZK (more specifically, the class SZKPL of
problems having statistical zero-knowledge proofs where the honest verifier and
its simulator are computable in logarithmic space) [10].

2 Preliminaries

In this section, we define basic notation and recall some definitions which will be
used in our paper. Given a vector x, |x| denotes its size. We let size(C) denote the
size of a circuit C and size(f) denote the size of the smallest circuit computing
f . The statistical distance between two distributions X and Y over space Ω, is
defined as Δ(X ,Y) ≡ 1

2Σu∈Ω |PrX∼X [X = u] − PrY ∼Y [Y = u]|.
The definition of a promise problem, the class P/poly (extended to also

include promise problems) and the class SZK, are mostly standard in the lit-
erature.

We now formally define the notion of a statistical randomized encoding of
a function, language or promise problem. Similarly to the previous definition
from [5], our definition requires the encoding to be uniform by default.

Definition 1 (Statistical randomized encodings ((ε, δ)-SRE))). [5] Let
f : {0, 1}∗ → {0, 1}∗ be a function and l(n) an output length function such
that |f(x)| = l(|x|) for every x ∈ {0, 1}∗. We say that f̂ : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ is a ε(n)-private δ(n)-correct (uniform) statistical randomized encoding
of f (abbreviated (ε, δ)-SRE), if the following holds:

• Length regularity. There exist polynomially-bounded and efficiently com-
putable length functions m(n), s(n) such that for every x ∈ {0, 1}n and
r ∈ {0, 1}m(n), we have |f̂(x, r)| = s(n).

• Efficient encoding. There exists a polynomial-time encoding algorithm
denoted by enc(·, ·) that, given x ∈ {0, 1}∗ and r ∈ {0, 1}m(|x|), outputs
f̂(x, r).

• δ-correctness. There exists an unbounded decoder dec, such that for every
x ∈ {0, 1}n we have Pr[dec(1n, f̂(x,Um(n))) �= f(x)] ≤ δ(n).

8 S. Agrawal et al.

• ε-privacy. There exists a probabilistic polynomial-time simulator S, such
that for every x ∈ {0, 1}n we have Δ(S(1n, f(x)), f̂(x,Um(n))) ≤ ε(n).

An (ε, δ)-SRE of a language L ⊂ {0, 1}∗ is an (ε, δ)-SRE of the correspond-
ing boolean function f : {0, 1}∗ → {0, 1}. When ε and δ are omitted, they are
understood to be negligible functions.

Extensions. A non-uniform (ε, δ)-SRE of f is defined similarly, except that the
encoding algorithm is implemented by a family of polynomial-size circuits. For
a partial function f , defined over a subset X ⊆ {0, 1}∗, the correctness and
privacy requirements should only hold for every x ∈ X. An (ε, δ)-SRE of a
promise problem (Yes,No) is an (ε, δ)-SRE of the corresponding partial boolean
function.

Definition 2 (The class SRE4). The class SRE is defined to be the set of all
languages that admit an SRE (namely, an (ε, δ)-SRE for some negligible ε, δ). For
concrete functions ε(n), δ(n), we use (ε, δ)-SRE to denote the class of languages
admitting an (ε, δ)-SRE.

3 Separating SRE from Efficient Computation

We devise three candidates for separating SRE from efficient computation. In
this section, we outline one candidate promise problem, that belongs to SRE
and is unlikely to be in P/poly based on the standard LWE assumption.

We also devise a candidate language based on a non-standard, but plausible,
hardness assumption related to DDH. The final candidate is based on the Abelian
Subgroup Membership problem. Please refer to the full version for details on
these candidates.

3.1 Learning with Errors (LWE)-based Promise Problem

In this section, we devise a candidate promise problem DLWE′ based on the
hardness of the Learning with Errors (LWE) assumption.

Definition 3. DLWE′ = {Yes,No} where Yes and No are defined as follows.

Yes =
⋃

n

Yesn, No =
⋃

n

Non

The parameters m, p, ε are set per input length n as m = n2, p = n40, δ = 0.05.

Yesn
Δ
=
{

(A,As + e) | A ∈ Z
m×n
p , s ∈ Z

n
p , e ∈ [−pδ, pδ]m, Δ(RA, Um×n) ≤ p−0.16m

}

Non
Δ
=
{

(A,As + e) | A ∈ Z
m×n
p , s ∈ Z

n
p , e ∈ Z

m
p \ [−p2/3, p2/3]m,

Δ
(
(RA, Re), (Um×n, Um)

) ≤ p−0.16m
}

\ Yesn

4 The difference between the class SRE and the class SREN defined in [5] is that SRE
allows the encoding algorithm to run in polynomial time whereas SREN restricts the
encoding algorithm to be in NC0.

Statistical Randomized Encodings: A Complexity Theoretic View 9

Here, RA denotes the distribution RA(mod p) induced by choosing R uniformly
in [−p2/3, p2/3]m×m. Similarly, Re denotes the distribution Re(mod p) induced
by choosing R (same as before) uniformly in [−p2/3, p2/3]m×m. Um×n and Um

denote the uniform distribution in Z
m×n
p and Z

m
p respectively.

We must explicitly subtract Yesn from Non because there may exist s, e and
s̃, ẽ such that As+e = As̃+ ẽ and ẽ ∈ (Zp \ [−p2/3, p2/3])m but e ∈ [−pδ, pδ]m,
resulting in an overlap between the sets Yesn and Non. The condition involving
the statistical distance is a technicality required for using the leftover hash lemma
in the construction. The value p−0.16m in the definition is a representative inverse
polynomial function in the input size n. We also define a new promise problem
DLWE′′ which is exactly the same as DLWE′, except setting p = 2n for each input
length n. The analysis of DLWE′′ is the same except p−0.16m is negl(n).

It is easy to show that the hardness of DLWE′ and DLWE′′ against P/poly fol-
lows from the hardness of the standard decisional Learning with Errors problem
DLWE for the same parameters.

Theorem 1. DLWE′ ∈ (1/poly, 1/poly)-SRE and DLWE′′ ∈ (negl, negl)-SRE.

Proof. We construct an SRE for DLWE′ here. On input an instance of size n, the
encoder, decoder, simulator compute parameters m, ε, δ, p as functions of n.

Encoding. The algorithm encSRE(1n,A,b) is defined as follows.

1. Pick R $← [−p2/3, p2/3]m×m, r0
$← [−p2/3+3δ, p2/3+3δ]m, t $← Z

n
p .

2. Set A′ = RA and b′ = r0 + Rb.
3. Output (A′′,b′′) = (A′,A′t + b′).

Decoding. The algorithm decSRE(1n,A′′,b′′) accepts if and only if there exist
x ∈ Z

n
p , e ∈ Z

m
p , such that b′′ = A′′x + e′′, and e′′ ∈ [−p2/3+4δ, p2/3+4δ].

Simulation. On input 1n and a bit b where b = 0/1 represents membership in
Yes/No respectively, the simulator does the following.

• If b = 0, pick U $← Z
m×n
p , t $← Z

n
p , e $← [−p2/3+3δ, p2/3+3δ]m. Output

(U,Ut + e).
• If b = 1, pick U $← Z

m×n
p and u $← Z

m
p . Output (U,u).

Analysis. We give a brief overview of the correctness and privacy arguments.
Recall that,

encSRE(1n,A,As + e) =
(
RA, RA(s + t) + (Re + r0)

)
where

t $← Z
n
p , R $← [−p2/3, p2/3]m×m, r0

$← [−p2/3+3δ, p2/3+3δ]m.

Thus, the secret in b′′, namely s + t, is distributed uniformly in Z
n
p .

10 S. Agrawal et al.

• Case 1: (A,As + e) ∈ Yesn. In this case, e ∈ [−pδ, pδ]m.
Then, for R $← [−p2/3, p2/3]m, Re ∈ [−p2/3+2δ, p2/3+2δ]m.
Moreover, by choice of r0, we have Re << r0, thus Δ

(
Re+ r0, r0

) ≤ p−δm.
By definition of the promise problem, we have that Δ(RA,Um×n) ≤ p−0.16m.
Then the following hold:

• Correctness. Re + r0 ∈ [−p2/3+4δ, p2/3+4δ]. Thus, correctness is perfect.
• Privacy. By the above arguments on the distribution of (RA), (s + t)

and (Re + r0), and by the simulator’s choice of (U, t, e), we can argue
that the output distribution is at most p−0.16m-far from the distribution
induced by SRE.enc on an instance of Yesn.

• Case 2: (A,As + e) ∈ Non. We have that e ∈ (Zp \ [−p2/3, p2/3])
m

and
Δ((RA, Re), (Um×n, um)) ≤ p−0.16m. Then the following hold:

• Correctness. Standard averaging arguments prove that all entries of
Re+r0 are larger than p2/3+4δ with probability ≥ 1−p−0.13m. Moreover,
the probability that randomizing an instance in Non results in an encod-
ing that corresponds to some ‘small’ error vector5, ≤ p−δm. Overall, we
obtain p−0.1m-correctness.

• Privacy. We show that a random sample (A,b) $←Z
m×n
p ×Z

m
p (simulator

output) is (1 − p−0.1m) close to the distribution induced by SRE.enc on
a Non instance. First, we show that randomly chosen (A,b) are such
that, w.h.p. there exist no (s, small5 e) such that b = As + e. We also
prove that w.h.p. A, e corresponding to random (A,b) are such that the
distributions RA and Re are close to uniform.

4 Oracle Separation Between SRE and SZK

In this section, we crucially use the following Lemma about the class (ε, δ)-SRE.
This Lemma follows directly from the definition of (ε, δ)-SRE.

Lemma 1. Let Ex denote the distribution enc(x, r) for the algorithm enc(·, ·) of
a language L admitting an (ε, δ)-SRE, induced for any input x by picking r uni-
formly at random in {0, 1}∗. Then, Δ(Ex, Ex′) ≤ 2ε iff f(x) = f(x′) (equivalently,
both x, x′ ∈ L or both x, x′ �∈ L). Moreover, Δ(Ex, Ex′) ≥ 1 − 2δ iff f(x) �= f(x′)
(equivalently, either x ∈ L, x′ �∈ L or x �∈ L, x′ ∈ L).

In this section, we study the relation between the classes SRE and SZK. We
recall the following theorem from [2].

Imported Theorem 1. [2] Any non-trivial language that admits an (ε, δ)-
SRE such that (1 − 2δ)2 > 2ε, also admits an SZK proof.

5 Here, ‘small’ denotes error of magnitude less than p2/3+4δ, such that the instance
wrongly decodes to Yes. However, in the rest of the paper, ‘small’ denotes error ≤ pδ.

Statistical Randomized Encodings: A Complexity Theoretic View 11

Here, we explore whether the containment SRE ⊆ SZK/poly is strict. We give
an oracle separation between the classes SZK (more precisely, the class SZK[2]
of languages that admit a 2-round SZK proof - note that this is the strongest
separation) and SRE, but restricted to the uniform setting. For any oracle A, we
denote by SREA the class SRE where encoders have oracle access to A. Similarly,
we denote by SZKA the class SZK where verifiers have oracle access to A.

Theorem 2. There exists an oracle A, such that SZK[2]A �⊂ SREA.

Proof Overview. Broadly, we diagonalize over all oracle SRE-encoder machines
to obtain a language which does not have any SRE encoding. We construct this
language in rounds, one for each input length. Specifically, we will ensure that
for every input length n, the output of the encoder on inputs 0n and 1n is either
less than (1−2δ) or more than ε, violating the definition of SRE from Lemma 16.

This is done via classifying the characteristic vector of the language into
unique and redundant sets, such that it is impossible for any encoder with poly-
nomially many oracle queries to distinguish between unique versus redundant
characteristic. Moreover, a contrived language is set such that 0n is never in the
language, and 1n is in the language iff the characteristic vector is unique.

Intuitively, since encoders cannot distinguish between a unique versus redun-
dant characteristic, one of the following cases will always occur. Either, there
exists a redundant characteristic (implying that both 0n and 1n are not in the
language) such that the encodings of 0n and 1n are more than ε-apart; or, there
exists a unique characteristic (implying that 1n is in the language while 0n is
not) such that the encodings of 0n and 1n are less than (1 − 2δ)-apart. We set
the language according to whichever of these cases is true. This ensures that the
output of the encoders is not an SRE for this language.

However, proving either of the two cases is true is significantly more involved
than in the BPP setting of [1] (refer to the full version for details). Finally, we can
show that this language has an SZK proof, this follows in a similar manner as [1].

5 Conclusion and Open Problems

In this paper, we study the class SRE of languages and promise problems that
admit efficient statistical randomized encodings. We present the first candidates
for SRE problems that are not in P/poly. These include a candidate promise
problem based on the hardness of standard LWE, as well as candidate languages
based on variants of the DDH assumption and the co-DDH assumption of [12].

Then, we explore the relationship of the class SRE with the class SZK of
languages admitting statistical zero knowledge proofs. While it is known that
all non-trivial languages in SRE are also in SZK [2], whether the converse holds
is open. However, we exhibit an oracle and a (non-trivial) language that has an

6 It is interesting to note that unlike the BPP-SZK [1] separation, a unary language is
not helpful for separation since such a language will always have an SRE. Thus, our
contrived language will be non-trivial and binary.

12 S. Agrawal et al.

oracle-based SZK proof but does not have an oracle-based SRE. This shows that
a containment of SZK in SRE cannot be proved via relativizing techniques.

Several natural questions remain open. The first is to identify a complete lan-
guage in SRE, thereby obtaining a better characterization of this class. A second
is to better understand the relation between statistical randomized encodings
and random self-reductions (RSR). An RSR for a language or a promise prob-
lem can be viewed as a restricted form of SRE where the decoder just decides
the problem itself. Our LWE-based language is a candidate for a problem in SRE
which is not in RSR, thus supporting the conjecture that RSR ⊂ SRE. Is there
an oracle separating these classes? Finally, it would be interesting to find addi-
tional (and preferably “useful”) candidates for intractable problems in SRE, as
well as natural polynomial-time solvable problems for which an SRE can provide
polynomial speedup over the best known algorithms.

References

1. Aiello, W., H̊astad, J.: Relativized perfect zero knowledge is not BPP. Inf. Comput.
(1991)

2. Applebaum, B.: Cryptography in Constant Parallel Time. Ph.D. thesis, Technion
(2007)

3. Applebaum, B.: Randomly encoding functions: a new cryptographic paradigm. In:
Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 25–31. Springer, Heidelberg (2011)

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. In: IEEE Conference on Computational Com-
plexity, pp. 260–274. IEEE Computer Society (2005)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM J. Comput.
36(4), 845–888 (2006)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient
verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010)

7. Baker, T.P., Gill, J., Solovay, R.: Relativizatons of the P =? NP question. SIAM
J. Comput. 4(4), 431–442 (1975)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC. ACM (1988)

9. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: STOC, pp. 11–19. ACM, New York (1988)

10. Dvir, Z., Gutfreund, D., Rothblum, G.N., Vadhan, S.: On approximating the
entropy of polynomial mappings. In: ICS, pp. 460–475 (2011)

11. Feige, U., Killian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: STOC, pp. 554–563 (1994)

12. Galbraith, S.D., Rotger, V.: Easy decision-diffie-hellman groups (2004)
13. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with

applications to round-efficient secure computation. In: FOCS, pp. 294–304. IEEE
Computer Society (2000)

14. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002)

Statistical Randomized Encodings: A Complexity Theoretic View 13

15. Ishai, Y., Kushilevitz, E., Paskin-Cherniavsky, A.: From randomizing polynomials
to parallel algorithms. In: ITCS. ACM, New York (2012)

16. Kilian, J.: Founding crytpography on oblivious transfer. In: STOC, pp. 20–31.
ACM, New York (1988)

17. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), Mar 2004

18. Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. J. ACM
50(2), 196–249 (2003). http://doi.acm.org/10.1145/636865.636868

19. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

http://doi.acm.org/10.1145/636865.636868

Tighter Fourier Transform Lower Bounds

Nir Ailon(B)

Technion Israel Institute of Technology, Haifa, Israel
nailon@cs.technion.ac.il

Abstract. The Fourier Transform is one of the most important linear
transformations used in science and engineering. Cooley and Tukey’s
Fast Fourier Transform (FFT) from 1964 is a method for computing this
transformation in time O(n log n). Achieving a matching lower bound in
a reasonable computational model is one of the most important open
problems in theoretical computer science. In 2014, improving on his pre-
vious work, Ailon showed that if an algorithm speeds up the FFT by a
factor of b = b(n) ≥ 1, then it must rely on computing, as an intermediate
“bottleneck” step, a linear mapping of the input with condition number
Ω(b(n)). Our main result shows that a factor b speedup implies existence
of not just one but Ω(n) b-ill conditioned bottlenecks occurring at Ω(n)
different steps, each causing information from independent (orthogonal)
components of the input to either overflow or underflow. This provides
further evidence that beating FFT is hard. Our result also gives the
first quantitative tradeoff between computation speed and information
loss in Fourier computation on fixed word size architectures. The main
technical result is an entropy analysis of the Fourier transform under
transformations of low trace, which is interesting in its own right.

1 Introduction

The (discrete) normalized Fourier transform (DFT) is a complex mapping send-
ing input x ∈ C

n to Fx ∈ C
n, where F is a unitary matrix defined by

F (k, �) = n−1/2e−i2πk�/n. The Walsh-Hadamard transform is a real orthogo-
nal mapping in R

n (for n an integer power of 2) sending an input x to Fx,
where F (k, �) = 1√

n
(−1)〈[k−1],[�−1]〉, with 〈·, ·〉 is dot-product, and [p] denotes

(here only) the bit representation of the integer p ∈ {0, . . . , n − 1} as a vec-
tor of log2 n bits. Both transformations are special (and most important) cases
of abstract Fourier transforms defined with respect to corresponding Abelian
groups. The Fast Fourier Transform (FFT) of Cooley and Tukey [9] is a method
for computing the DFT of x ∈ C

n in time O(n log n). The fast Walsh-Hadamard
transform computes the Walsh-Hadamard transform in time O(n log n). Both
fast transformations perform a sequence of rotations on pairs of coordinates,
and are hence special cases of so-called linear algorithms, as defined in [17].

The DFT is instrumental as a subroutine in fast polynomial multiplication
[10] (chapter 30), fast integer multiplication [11–13], cross-correlation and auto-
correlation detection in images and time-series (via convolution) and, as a more

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 14–25, 2015.
DOI: 10.1007/978-3-662-47672-7 2

Tighter Fourier Transform Lower Bounds 15

recent example, convolution networks for deep learning [16]. Both DFT and
Walsh-Hadamard are useful for fast Johnson-Lindenstrauss transform for dimen-
sionality reduction [4–6,15] and the related restricted isometry property (RIP)
matrix construction [7,15,19]). It is beyond the scope of this work to survey
all uses of Fourier transforms in both theory of algorithms and in complex-
ity. For the sake of simplicity the reader is encouraged to assume that F is
the Walsh-Hadamard transform, and that by the acronym “FFT” we refer to
the fast Walsh-Hadamard transform. The modifications required for the DFT
(rather, the real embedding thereof) require a slight modification to the poten-
tial function which we mention but do not elaborate on for simplicity. Our results
nevertheless apply also to DFT.

It is not known whether Ω(n log n) operations are necessary, and this problem
is one of the most important open problems in theoretical computer science [8].
It is trivial that a linear number of steps is necessary, because every input coor-
dinate must be probed. Papadimitriou derives in [18] an Ω(n log n) lower bound
for DFT over finite fields using a notion of an information flow network. It is
not clear how to extend that result to the Complex field. There have also been
attempts [20] to reduce the constants hiding in the upper bound of O(n log n),
while also separately counting the number of additions versus the number of
multiplications (by constants). In 1973, Morgenstern proved that if the moduli
of the constants used in the computation are bounded by 1 then the number
of steps required for computing the unnormalized Fourier transform, defined by
n1/2F in the linear algorithm model is at least 1

2n log2 n. He used a potential
function related to matrix determinant, which makes the technique inapplica-
ble for deriving lower bounds for the (normalized) F . Morgenstern’s result also
happens to imply that the transformation

√
n Id (

√
n times the identity) has the

same complexity as the Fourier transform, which is not a satisfying conclusion.
Also note that stretching the input norm by a factor of

√
n requires representing

numbers of ω(log n) bits, and it cannot be simply assumed that a multiplication
or an addition over such numbers can be done in O(1) time.

Ailon [1] studied the complexity of the (normalized) Fourier transform in a
computational model allowing only orthogonal transformations acting on (and
replacing in memory) two intermediates at each step. He showed that at least
Ω(n log n) steps were required. The proof was done by defining a potential func-
tion on the matrices M (t) defined by composing the first t gates. The potential
function is simply the sum of Shannon entropy of the probability distributions
defined by the squared modulus of elements in the matrix rows. (Due to orthog-
onality, each row, in fact, thus defines a probability distribution). That result
had two shortcomings: (i) The algorithm was assumed not to be allowed to use
extra memory in addition to the space used to hold the input. In other words, the
computation was done in place. (ii) The result was sensitive to the normalization
of F , and was not useful in deriving any lower bound for γF for γ �∈ {±1}.

In [2], Ailon took another step forward by showing a lower bound for com-
puting any scaling of the Fourier transform in a stronger model of computa-
tion which we call uniformly well conditioned. At each step, the algorithm can

16 N. Ailon

perform a nonsingular linear transformation on at most two intermediates, as
long as the matrix M (t) defining the composition of the first t steps must have
condition number at most κ, for all i. We remind the reader that condition num-
ber of a matrix is defined as the ratio between its largest and smallest (nonzero)
singular values. Otherwise stated, the result implies that if an algorithm com-
putes the Fourier transform in time (n log n)/b for some b > 1, then some M (t)

must have condition number at least Ω(b). This means that the computation
output relies on an ill conditioned intermediate step. The result in [2] made a
qualitative claim about compromise of numerical stability due to a ill condition.

1.1 Our Contribution

Here we establish (Theorem 51) that a b-factor speedup of FFT for b = b(n) =
ω(1) either overflows at Ω(n) different time steps due to Ω(n) pairwise orthogo-
nal input directions, or underflows at Ω(n) different time steps, losing accuracy
of order Ω(b) at n orthogonal input directions. Note that achieving this could
not be simply done by a more careful analysis of [2], but rather requires an intri-
cate analysis of the entropy of Fourier transform under transformations of small
trace. This analysis (Lemma 61) is interesting in its own right.

2 Computational Model

We remind the reader of the computational model discussed in [1,2], which is
a special case of the linear computational model. The machine state represents
a vector in R

� for some � ≥ n, where it initially equals the input x ∈ R
n (with

possible padding by zeroes, in case � > n). Each step (gate) is either a rotation
or a constant. A rotation applies a 2-by-2 rotation mapping on a pair of machine
state coordinates (rewriting the result of the mapping to the two coordinates).
We remind the reader that a 2-by-2 rotation mapping is written in matrix form

as
(

cos θ sin θ

− sin θ cos θ

)
for some real (angle) θ. A constant gate multiplies a single

machine state coordinate (rewriting the result) by a nonzero constant. In case
the constant equals −1, we call it a reflection gate.

In case � = n we say that we are in the in-place model. Any nonsingular linear
mapping over R

n can be decomposed into a sequence of rotation and constant
gates in the in-place model, and hence our model is, in a sense, universal. FFT
works in the in-place model, using rotations (and possibly reflections) only. A
restricted method for dealing with � > n was developed in [2], and can be applied
here too in a certain sense (see Section 7 for a discussion). We focus in this work
on the in-place model only.

Since both rotations and constants apply a linear transformation on the
machine state, their composition is a linear transformation. If An is an in-place
algorithm for computing a linear mapping over R

n, it is convenient to write it
as An = (M (0) = Id,M (1), . . . , M (m)) where m is the number of steps (gates),
M (t) ∈ R

n×n is the mapping that satisfies that for input x ∈ R
n (the initial

Tighter Fourier Transform Lower Bounds 17

machine state), M (t)x is the machine state after t steps. (Id is the identity
matrix). The matrix M (m) is the target transformation, which will typically be
F in our setting. In fact, due to the scale invariance of the potential function we
use, we could take M (m) to be any nonzero scaling of F , but to reduce notation
we simply assume a scaling of 1. For any t ∈ [m], if the t’th gate is a rotation,
then M (t) defers from M (t−1) in at most two rows, and if the t’th gate is a
constant, then M (t) defers from M (t−1) in at most one row.

2.1 Numerical Architecture

The in-place model implicitly assumes representation of a vector in R
n in mem-

ory using n words. A typical computer word represents a coordinate (with respect
to some fixed orthogonal basis) in the range [−1, 1] to within some accuracy
ε = Θ(1).1 For sake of simplicity, ε should be thought of as 2−31 or 2−63 in
modern computers of 32 or 64 bit words, respectively.

To explain the difficulties in speeding up FFT on computers of fixed precision
in the in-place model, we need to understand whether (and in what sense) stan-
dard FFT is at all suitable on such machines. First, we must restrict the domain
of inputs. Clearly this domain cannot be R

n, because computer words can only
represent coordinates in the range [−1, 1], by our convention. We consider input
from an n-ball of radius Θ(

√
n), which we denote B(Θ(

√
n)). An n-ball is invari-

ant under orthogonal transformations, and is hence a suitable domain. Encoding
a single coordinate of such an input might require ω(1) bits (an overflow). How-
ever, using well known tools from high dimensional geometry, encoding a single
coordinate of a typical input chosen randomly from B(Θ(

√
n)) requires O(1)

bits, fitting inside a machine word.2 We hence take a statistical approach and
define a state of overflow as trying to encode, in some fixed memory word (coor-
dinate), a random number of ω(1) bits in expectation, at a fixed time step in
the algorithm. This definition allows us to avoid dealing with accommodation
of integers requiring super-constant bits and, in turn, with logical bit-operation
complexity. Although the definition might seem impractical at first, it allows
us to derive very interesting information vs computational speed tradeoffs. (In
the future work Section 7 we shall discuss allowing varying word sizes and its
implications on complexity.) By our definition, standard FFT for input drawn
uniformly from B(Θ(

√
n)) does not overflow at all, because any coordinate of

the machine state at any step is tightly concentrated (in absolute value) around
Θ(1). It will be easier however to replace the uniform distribution from the ball
with the multivariate Gaussian N (0, Θ(n) · Id), which is a good approximation
of the former for large n. With this assumption, any coordinate of the standard
FFT machine state at any step follows the law N (0, Θ(1)). By simple integra-
tion against the Gaussian measure, one can verify that the expected number of
bits required to encode such a random variable (to within fixed accuracy ε) is

1 The range [−1, 1] is immaterial and can be replaced with any range of the form
[−a, a] for a > 0.

2 By “encoding” here we simply mean the base-2 representation of the integer �x(i)/ε�.

18 N. Ailon

Θ(1), hence no overflow occurs. This input assumption together with the no-
overflow guarantee will serve as our benchmark. For further discussion on
the numerical arhitecture and definition of overflow we refer the reader, due to
lack of space, to the extended version [3].

3 The Matrix Quasi-Entropy Function

The set {1, . . . , q} is denoted by [q]. By R
a×b we formally denote matrices of

a rows and b columns. Matrix transpose is denoted by (·)T . We use (·)−T as
shorthand for ((·)−1)T = ((·)T)−1. If A ∈ R

a×b is a matrix and I is a subset of
[b], then (borrowing from Matlab syntax) A(:, I) is the submatrix obtained by
stacking the columns corresponding to the indices in I side by side and A(I, :)
is the submatrix obtained by stacking the rows corresponding to the indices in
I one on top of the other. We shall also write, for i ∈ [b], A(:, i) and A(i, :) as
shorthands for A(:, {i}) and A({i}, :), respectively. All logarithms are base 2.

We slightly abuse notation and extend the definition of the quasi-entropy
function Φ(M) defined on nonsingular matrices M from [2], as follows. Given
two matrix arguments A,B ∈ R

a×b for some a, b ≥ 1, Φ(A,B) is defined as∑a
i=1

∑b
j=1 −A(i, j)B(i, j) log |A(i, j)B(i, j)|.

This naturally extends to vectors, namely for u, v ∈ R
a, Φ(u, v) is as above

by viewing R
a as R

a×1. If A,B ∈ R
a×b and a, b are even, then we define the

complex quasi-entropy function ΦC(A,B) to be:

a∑

i=1

b/2∑

j=1

(
− (A(i, 2j − 1)B(i, 2j − 1) + A(i, 2j)B(i, 2j))×

log |A(i, 2j − 1)B(i, 2j − 1) + A(i, 2j)B(i, 2j)|
)

.

The function ΦC can be used for proving our results for the real representation of
the complex DFT, which we omit from this manuscript for simplicity. The reason
we need this modification to Φ for DFT is explained in the proof of Lemma 61,
needed by Theorem 51 below. Elsewhere, we will work (for convenience and
brevity) only with Φ. Abusing notation, and following [2], we define for any
nonsingular matrix M : Φ(M) := Φ

(
M,M−T

)
, ΦC(M) := ΦC

(
M,M−T

)
. It is

easy to see that Φ(F) = n log n for the Walsh-Hadamard transform, because
all matrix elements are ±1/

√
n. If F is a real representation of the (n/2)-DFT,

then clearly ΦC(F) = n log(n/2), because all matrix elements of the (complex
representation of the) (n/2)-DFT are complex unit roots times (n/2)−1/2.

It will be also useful to consider a generalization of the potential of a
nonsingular matrix M , by allowing linear operators acting on the rows of
M and M−T , respectively. More precisely, we will let ΦP,Q(M) be shorthand
for Φ(MP,M−T Q), where P,Q ∈ R

n×a are some mappings. (We will only
be working with projection matrices P,Q here). Similarly, ΦC

P,Q(M,M−T) :=
ΦC(MP,M−T Q).

Tighter Fourier Transform Lower Bounds 19

Further notation: For any matrix A ∈ R
n×n, let σ1(A), . . . , σn(A) denote

its singular values, where we use the convention σ1(A) ≥ · · · ≥ σn(A). If A is
nonsingular, then the condition number κ(A) is defined by σ1(A)/σn(A). For any
matrix A, we let ‖A‖ denote its spectral norm and ‖A‖F its Frobenius norm. If
x is a vector, hence, ‖x‖ = ‖x‖2 = ‖x‖F . Let B denote the Euclidean unit ball
in R

n. For an integer a, let [a] be shorthand for {1, . . . , a}.

4 Generalized Ill Conditioned Bottleneck from Speedup

We show that if an in-place algorithm An = (M (0) = Id, . . . , M (m) = F) speeds
up FFT by a factor of b ≥ 1, then for some t the matrix M (t) is ill conditioned
(in a generalized sense, to be explained). This is a generalization of the main
result in [2], with a simpler proof that can be found in the extended version [3].
for the sake of completeness.

Theorem 41. Fix n, and let An = {Id = M (0, . . . , M (m)} be an in-place algo-
rithm computing some linear function in R

n and let P,Q ∈ R
n×n be two matri-

ces. For any t ∈ [m], let {it, jt} denote the set of at most two indices that are
affected by the t’th gate (if the t’th gate is a constant gate, then it = jt, oth-
erwise it’s a rotation acting on indices it, jt). Then for any R ∈ [n/2
] there
exists t ∈ [m] such that

∥∥∥(M (t)P)(It, :)
∥∥∥

F

∥∥∥((M (t))−T Q)(It, :)
∥∥∥

F
≥ R(ΦP,Q(M (m)) − ΦP,Q(Id))

m log 2R
,

(4.1)
where It =

⋃t+R−1
t′=t {it′ , jt′}. Additionally, if R = 1 then the t’th gate can be

assumed to be a rotation.
In particular, if M (m) = F and m = (n log n)/b for some b ≥ 1 (“An speeds

up FFT by a factor of b”) and P = Q = Id, then

∥∥∥(M (t))(It, :)
∥∥∥

F

∥∥∥((M (t))−T)(It, :)
∥∥∥

F
≥ Rb

log 2R
. (4.2)

For the main result in this paper in the next section, we will only need the
case R = 1 of the theorem. It is worthwhile, however, to state the case of general
R > 1 because it gives rise to a stronger notion of ill-condition than is typically
used. Since this is not the main focus of this work, we omit the details of this
discussion. Henceforth, we will only use the theorem with R = 1.

We discuss the implication of the theorem, in case R = 1, P = Q = Id.
The theorem implies that an algorithm with m = (n log n)/b must exhibit an
intermediate matrix M (t) and a pair of indices it, jt such that the t’th gate is a
rotation acting on it, jt and additionally:
√(‖M (t)(it, :)‖2 + ‖M (t)(jt, :)‖2

) (‖(M (t))−T (it, :)‖2 + ‖(M (t))−T (jt, :)‖2
) ≥ b .

20 N. Ailon

Hence, either

(i)
√

‖M (t)(it, :)‖2 + ‖M (t)(jt, :)‖2 ≥
√

b -or-

(ii)
√

‖(M (t))−T (it, :)‖2 + ‖(M (t))−T (jt, :)‖2 ≥
√

b .

Case (i). We can assume wlog that

‖M (t)(it, :)‖2 ≥ b/2 . (4.3)

Let xT
over := M (t)(it, :)/‖M (t)(it, :)‖ ∈ R

n (xover is the normalized it’th
row of M (t), transposed). Recall that the input x is distributed according to
the law N (0, Θ(1) · Id). The it’th coordinate just before the t’th gate equals
‖M (t)(it, :)‖xT xover, and is hence distributed N (0, Θ(‖M (t)(it, :)‖2)). Using (4.3),
this is N (0, Ω(b)). If b = b(n) = ω(1), then by our definition we reach overflow.

It is possible as a preprocessing step to replace x with x−(xT xover)xover (elim-
inating the overflow component), and then to reintroduce the offending compo-
nent by adding (xT xover)Fxover as a postprocessing step. In the next section,
however, we shall show that, in fact, there must be Ω(n) pairwise orthonormal
directions (in input space) that overflow at Ω(n) different time steps, so such a
simple “hack” cannot work.

Case (ii). This scenario, as the reader guesses, should be called underflow. In
case (ii), wlog

‖(M (t))−T (it, :)‖2 ≥ b/2 . (4.4)

Now define xT
under = (M (t))−T (it, :)/‖(M (t))−T (it, :)‖ ∈ R

n, and consider the
orthonormal basis u1, . . . un ∈ R

n so that u1 = xunder. For any t′ ∈ [m] (and in
particular for t′ = t):

g1 := xT
underx = (xT

under(M
(t′))−1) · (M (t′)x) .

Now notice that the it’th coordinate of (xT
under(M

(t))−1) has magnitude at least√
b/2 by (4.4) and the construction of xunder. Also notice that for all i �= it, the

row M (t)(i, :) is orthogonal to xover, by matrix inverse definition. This means
that coordinate i �= it of M (t)x contains no information about g1. All the infor-
mation in g1 is hence contained in (M (t)x)(it). More precisely, g1 is given by
g1 = ((M (t))−T xunder)(it) × (M (t)x)(it) − e, where e is a random variable inde-
pendent of g1. But |((M (t))−T xunder)(it)| ≥ √

b/2, and (M (t)x)(it) is known
only up to an additive error of ε, due to our assumptions on quantization in the
numerical architecture. This means that g1 can only be known up to an additive
error of at least ε

√
b/2, for any value of e. It is important to note that this

uncertainty cannot be “recovered” later by the algorithm, because at any step
the machine state contains all the information about the input (aside from the
input distribution prior). In other words, any information forgotten at any step
cannot be later recalled. For an illustration, we refer the reader to the extended
version [3].

Tighter Fourier Transform Lower Bounds 21

Notice that at step 0, the input vector coordinates x(1), . . . , x(n) are repre-
sented in individual words, each of which gives rise to an uncertainty interval
of width ε. So merely storing the input in memory in the standard coordinate
system implies knowing its location up to an uncertainty n-cube with side ε,
and of diameter ε

√
n.3 An uncertainty interval of size ε

√
b/2 = O(ε

√
log n) in a

single direction is therefore relatively benign. The next section tells us, however,
that the problem is amplified Ω(n)-fold.

5 Many Independent Ill Conditioned Bottlenecks

,

all j

where
,

all j

where

all j ∈ [n

The proof heavily relies on Lemma 61 (Section 6) and can be found in the
extended version [3] due to lack of space. We discuss its numerical implications,
continuing the discussion following Theorem 41. In the severe overflow case,
Theorem 51 tells us that there exists an orthonormal collection v1, . . . , vn′ (with
n′ = Ω(n)) in input space, such that each vi behaves like xover from the previous
section. This means that, if the speedup factor b is ω(1), we have overflow caused
by a linear number of independent input components, occurring at Ω(n) different
time steps (by the last sentence in the theorem). In the extreme case of speedup
b = Θ(log n) (linear number of gates), this means that in a constant fraction of
time steps overflow occurs.

For the severe underflow case we offer a geometric interpretation. The theo-
rem tells us that there exists an orthonormal collection u1, . . . , un′ in the input

3 To be precise, we must acknowledge the prior distribution on x which also provides
information about its whereabouts.

22 N. Ailon

space that is bad in the following sense. For each j ∈ [n′], redefine gj = uT
j x

to be the input component in direction uj . Again, the variables g1, . . . , gn′ are
iid N (0, Θ(1)). The first element in the series, u1, can be analyzed as xunder

(from the previous section) whereby it was argued that before the t1’th step, the
component g1 = uT

1 x can only be known to within an interval of width Ω(γ1ε),
independently of information from components orthogonal to u1. We remind the
reader that by this we mean that the width of the interval is independent, but
the location of the interval depends smoothly (in fact, linearly) on information
from orthogonal components of x.

As for u2, . . . , un′ : For each j ∈ [n′], let zj := (M (tj))−T (ij , :). Therefore
u1 = z1/‖z1‖ and by (5.2), for j > 1 we can write zj = γjuj + hj , where
hj ∈ span{u1, . . . , uj−1}. Treating zj/‖zj‖ again as xunder, we conclude that the
component (zj/‖zj‖)T x can only be known to within an interval of size Ω(ε‖zj‖),
given any value of the projection of input x onto the space orthogonal to z.

We extend the list of vectors z1, . . . , zn′ , orthonormal vectors u1, . . . , un′ ,
numbers γ1, . . . , γn′ and projections Q1, . . . , Qn′ to size n as follows. Having
defined zj , uj , Qj , γj for some j ≥ n′, we inductively define Qj+1 as projection
onto the space orthogonal to span{z1, . . . , zj} = span{u1, . . . , uj} and zj+1 to
be a standard basis vector such that ‖Qj+1zj+1‖2 ≥ 1 − j/n. (Such a vector
exists because there must exist an index i0 ∈ [n] such that

∑j
j′=1 uj′(i0)2 ≤

j/n, by orthonormality of the collection u1, . . . , uj ; Now set zj+1 to have a
unique 1 at coordinate i0 and 0 at all other coordinates.) We let uj+1 be
Qj+1zj+1/‖Qj+1zj+1‖, that is, a normalized vector pointing to the component
of zj+1 that is orthogonal to span{z1, . . . , zj} = span{u1, . . . , uj}. The number
γj+1 is defined as ‖Qj+1zj+1‖. By construction, γj+1 ≥ √

1 − j/n.
The above extends the partial construction arising from the severe underflow

to a full basis, with the following property:

Proposition 52. For any j ∈ [n], even given exact knowledge of the exact pro-
jection x̃ of x onto the space orthogonal to zj, the quantity xT (zj/‖zj‖) upon
termination of the algorithm can only be known to within an interval of the form
[s, s + ε‖zj‖] where s depends smoothly (in fact, linearly) on x̃.

The proposition is simply a repetition of the analysis done for xunder in the
previous section. For j > n′ it is a simple consequence of the fact that upon ini-
tialization of the algorithm with input x, each coordinate of x (and in particular
xT zj) is stored in a single machine word, while all other machine words store
information independent of xT zj . Hence the uncertainty of width ε‖zj‖ = ε.

What do we know about x upon termination of the algorithm? As stated
earlier, any information that was lost during execution, cannot be later recovered.
Let I denote the set of possible inputs, given the information we are left with
upon termination. Consider the projection Q2 onto the space orthogonal to u1 =
z1/‖z1‖, as a function defined over I. Let I2 = Q2I denote its image. The
preimage of any point w ∈ I2 must contain a line segment of length at least
εγ1 parallel to u1, due to the uncertainty in xT u1. Hence the volume of I is

Tighter Fourier Transform Lower Bounds 23

at least εγ1 times the (n − 1)-volume of I2.4 Continuing inductively, we lower
bound the (n − j + 1)-volume of Ij := QjI = QjIj−1 for j > 2. Consider the
projection Qj as a function operating on Ij−1, and any point w in the image Ij .
By definition of Qj , there exists ŵ ∈ I such that Qjŵ = w. By proposition 52,
the intersection of the line L = {ŵ+ηzj : η ∈ R} with I must contain a segment
Δ of size ε‖zj‖. The projection QjΔ of this segment is contained in the line
QjL = {w+ηuj : η ∈ R}. The size of the segment is ε‖Qjzj‖ = εγj . This means
that the (n − j + 1)-volume of Ij+1 is at least εγj times the (n − j)-volume of
Ij+1 = Qj+1Ij .

Concluding, we get that the volume of I is at least
∏n

j=1 γj . From the con-
struction immediately preceding Proposition 52, we get (using the fact that

n′ = Ω(n)): log vol(I)
εn ≥ n′ log

√
b/2 +

∑n
j=n′+1 log

√
1 − j−1

n = Ω(n log b). This
tells us that the volume of uncertainty in the input (and hence, the output) of
a b-speedup of FFT in the in-place model is at least bΩ(n) times the volume of
uncertainty incurred simply by storing the input in memory.

6 Main Technical Lemma

The following is the most important technical lemma in this work. Roughly
speaking, it tells us that application of operators that are close to Id to the rows
of F and F−T does not reduce the corresponding potential by much. Similarly,
assuming that P,Q are positive semidefinite with spectral norm at most 1, apply-
ing these transformations to the rows of Id does not increase the corresponding
potential by much.

Lemma 61. Let P,Q ∈ R
n×n be two matrices. Let P̂ = Id−P, Q̂ = Id−Q.

Then

Φ(FP, F−T Q) ≥ n log n − (tr P̂ + tr Q̂) log n − O
(
(‖P̂‖2F + ‖Q̂‖2F) log n

)
.

If, additionally, P and Q are positive semi-definite contractions, then

ΦP,Q(Id) = Φ(P,Q) ≤ tr P̂ + tr Q̂ + O
(
(‖P̂‖2F + ‖Q̂‖2F) log n

)
.

The proof, available in the extended version [3], takes advantage of the
smoothness of the matrices F and Id (that is, almost all matrix elements have
exactly the same magnitude). This is the reason we needed to modify Φ and work
with ΦC for the complex case: If F were the real representation of the n/2-DFT
matrix, then it is not smooth in this sense. It does hold though that for any
i ∈ [n] and j ∈ [n/2]: F (i, 2j − 1)2 + F (i, 2j)2 = 2/n, so the matrix is smooth
only in the sense that all pairs of adjacent elements have the same norm (viewed
as R

2 vectors).
4 We need to be precise about measurability, but this is a simple technical point from

the fact that the interval endpoint depends smoothly on the projection, as claimed
in Proposition 52.

24 N. Ailon

7 Future Work

Taking into account bit operation complexity, and using state-of-the-art integer
multiplication algorithms [11,12] it can be quite easily shown that both severe
overflow and severe underflow could be resolved by allowing flexible word size,
accommodating either large numbers (in the overflow case) or increased accu-
racy (in the underflow case). In fact, allowing O(log b)-bit words at the time
steps at which overflow (or underflow) occur, of which there are Ω(n) many
by Theorem 51, suffice. Hence, this work does not rule out the possibility of
(in the extreme case of b = Θ(log n)) a Fourier transform algorithm in the
in-place model using a linear number of gates, in bit operation complexity of
Ω̃(n log log n), where Õ() here hides log log log n factors arising from fast inte-
ger multiplication algorithms. We conjecture that such an algorithm does not
actually exist, and leave this as the main open problem.

Another problem that was left out in this work is going beyond the in-place
model. In the more general model, the algorithm works in space R

� for � > n,
where the (�−n) extra coordinates can be assumed to be initialized with 0, and
the first n are initialized with the input x ∈ R

n. The final matrix M (m) of Fourier
transform algorithm An = {Id = M (0), . . . , M (m)} contains F as a sub matrix,
so that the output Fx can simply be extracted from a subset of n coordinates
of M (m)x, which can be assumed to be the first. The matrix M (m) (and its
inverse-transpose) therefore contains (� − n) extra rows. The submatrix defined
by the extra rows (namely, the last � − n) and the first n columns were referred
to in [2] as the “garbage” part of the computation. To obtain an Ω(n log n)
computational lower bound in the model assumed there,5 it was necessary to
show that ΦP,P (M (m))P = Ω(n log n), where P ∈ R

�×� is projection onto the
space spanned by the first n standard basis vectors.6 To that end, it was shown
that such a potential lower bound held as long as spectral norm of the “garbage”
submatrices was properly upper bounded. That result, in fact, can be deduced as
a simple outcome of Lemma 61 that was developed here. What’s more interesting
is how to generalize Theorem 51 to the non in-place model, and more importantly
how to analyze the numerical accuracy implications of overflow and underflow
to the non in-place model. Such a generalization is not trivial and is another
immediate open problem following this work.

Another interesting possible avenue is to study the complexity of Fourier trans-
form on input x for which some prior knowledge is known. The best example is
when Fx is assumed sparse, for which much interesting work on the upper bound
side has been recently done by Indyk et al. (see [14] and references therein).

Many algorithms use the Fourier transform as a subroutine. In certain cases
(fast polynomial multiplication, fast integer multiplication [11,12], fast Johnson-
Lindenstrauss transform for dimensionality reduction [4–6,15] and the related

5 In [2], the model simply assumed that all matrices M (t) for t−1 . . . m have bounded
condition number. Quantifying the effect of ill condition on numerical stability, over-
flow and underflow, was not done there.

6 The function ΦP,Q(M) was not defined in [2], and was only implicitly used.

Tighter Fourier Transform Lower Bounds 25

restricted isometry property (RIP) matrix construction [7,15,19]) the Fourier
transform subroutine is the algorithm’s bottleneck. Can we use the techniques
developed here to derive lower bounds (or rather, time-accuracy tradeoffs) for
those algorithms as well? Moreover, we can ask how the implications of speeding
up the Fourier transform subroutine (as derived in this work) affect the numerical
outcome of these algorithms, assuming they insist on using Fourier transform as
a black box.

References

1. Ailon, N.: A lower bound for Fourier transform computation in a linear model over
2x2 unitary gates using matrix entropy. Chicago J. of Theo. Comp. Sci. (2013)

2. Ailon, N.: An n log n lower bound for Fourier transform computation in the well
conditioned model (2014). arXiv:1403.1307

3. Ailon, N.: Tighter Fourier transform complexity tradeoffs. Technical report (2015).
(arxiv:1404:1741)

4. Ailon, N., Chazelle, B.: The fast Johnson-Lindenstrauss transform and approxi-
mate nearest neighbors. SIAM J. Comput. 39(1), 302–322 (2009)

5. Ailon, N., Liberty, E.: Fast dimension reduction using rademacher series on dual
BCH codes. Discrete & Computational Geometry 42(4), 615–630 (2009)

6. Ailon, N., Liberty, E.: An almost optimal unrestricted fast Johnson-Lindenstrauss
transform. ACM Transactions on Algorithms 9(3), 21 (2013)

7. Ailon, N., Rauhut, H.: Fast and rip-optimal transforms. Discrete & Computational
Geometry 52(4), 780–798 (2014)

8. Various Authors. List of unsolved problems in computer science. Wikipedia
9. Cooley, J.W., Tukey, J.W.: An algorithm for the machine computation of complex

Fourier series. J. of American Math. Soc., 297–301 (1964)
10. Cormen,T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

3rd edition. MIT Press (2009)
11. Anindya, De., Kurur, P.P., Saha, C., Saptharishi, R.: Fast integer multiplication

using modular arithmetic. SIAM J. on Comp. 42 (2013)
12. Fürer, M.: Faster integer multiplication. SIAM J. Comp. 39(3), 979–1005 (2009)
13. Harvey, D., van der Hoeven, J., Lecerf, G.: Even faster integer multiplication.

Technical report (2014). (arXiv:1407.3360)
14. Indyk, P., Kapralov, M., Price, E.: (Nearly) sample-optimal sparse fourier trans-

form. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5–7, 2014, pp.
480–499 (2014)

15. Krahmer, F., Ward, R.: New and improved Johnson-Lindenstrauss embeddings via
the restricted isometry property. SIAM J. Math. Analysis 43(3), 1269–1281 (2011)

16. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks
through FFTs. In: International Conference on Learning Representations (ICLR)
(2014)

17. Morgenstern, J.: Note on a lower bound on the linear complexity of the fast Fourier
transform. J. ACM 20(2), 305–306 (1973)

18. Papadimitriou, C.H.: Optimality of the fast Fourier transform. J. ACM 26(1),
95–102 (1979)

19. Rudelson, M., Vershynin, R.: Sampling from large matrices: An approach through
geometric functional analysis. J. ACM, 54(4) (2007)

20. Winograd, S.: On computing the discrete Fourier transform. Proc. Nat. Assoc. Sci.
73(4), 1005–1006 (1976)

http://arxiv.org/abs/1403.1307

Quantifying Competitiveness in Paging
with Locality of Reference

Susanne Albers(B) and Dario Frascaria

Department of Computer Science, Technische Universität München,
München, Germany

{albers,frascari}@informatik.tu-muenchen.de

Abstract. The classical paging problem is to maintain a two-level mem-
ory system so that a sequence of requests to memory pages can be served
with a small number of faults. Standard competitive analysis gives overly
pessimistic results as it ignores the fact that real-world input sequences
exhibit locality of reference. In this paper we study the paging problem
using an intuitive and simple locality model that records inter-request
distances in the input. A characteristic vector C defines a class of request
sequences that satisfy certain properties on these distances. The concept
was introduced by Panagiotou and Souza [19].

As a main contribution we develop new and improved bounds on the
performance of important paging algorithms. A strength and novelty of
the results is that they express algorithm performance in terms of locality
parameters. In a first step we develop a new lower bound on the number
of page faults incurred by an optimal offline algorithm opt. The bound
is tight up to a small additive constant. Based on these expressions for
opt’s cost, we obtain nearly tight upper and lower bounds on lru’s com-
petitiveness, given any characteristic vector C. The resulting ratios range
between 1 and k, depending on C. Furthermore, we compare lru to fifo
and fwf. For the first time we show bounds that quantify the difference
between lru’s performance and that of the other two strategies. The
results imply that lru is strictly superior on inputs with a high degree
of locality of reference. In particular, there exist general input families
for which lru achieves constant competitive ratios whereas the guaran-
tees of fifo and fwf tend to k, the size of the fast memory. Finally, we
report on an experimental study that demonstrates that our theoretical
bounds are very close to the experimentally observed ones. Hence we
believe that our contributions bring competitive paging again closer to
practice.

1 Introduction

Paging is a fundamental resource management problem in computer science. In
algorithms research it has been studied extensively ever since Sleator and Tarjan

Susanne Albers Work supported by the German Research Foundation, grant Al
464/7-1.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 26–38, 2015.
DOI: 10.1007/978-3-662-47672-7 3

Quantifying Competitiveness in Paging with Locality of Reference 27

published their seminal paper [20] on the competitive analysis of algorithms. In
the paging problem we are given a two-level memory system consisting of a small
fast memory and a large slow memory. At any time up to k pages, for some k ∈ IN,
can reside in fast memory. A paging algorithm alg is presented with a request
sequence σ = σ(1), . . . , σ(m), where each request σ(t) specifies a memory page.
If the referenced page is in fast memory, a memory hit occurs. Otherwise σ(t)
is a page fault and the missing page must be loaded from slow memory into fast
memory. If the fast memory is full, alg must evict a page from fast memory; in
the online setting this decision must be made without knowledge of any future
requests. The goal is to serve σ so as to minimize the total number of faults.

For an online algorithm alg and a request sequence σ, let alg(σ) denote the
number of page faults incurred. Let opt(σ) be the number of faults generated
by an optimal offline algorithm opt. Strategy alg is c-competitive if, for every
σ, alg(σ) is at most c times opt(σ). The optimal competitive ratio achieved
by deterministic online algorithms is equal to k [20]. Classical algorithms such
as lru (Least-Recently-Used), fifo (First-In First-out) and fwf (Flush-When-
Full) are all k-competitive.

It was soon observed that the competitiveness of k is overly pessimistic. In
practice algorithms such as lru and fifo attain constant performance ratios in
the range [1.5, 4], see also [21]. Furthermore, lru outperforms fifo, which does
not show in competitive analysis. The deficiency of the competitive measure is
that it considers arbitrary request sequences whereas input sequences generated
by real programs have a special structure. They exhibit locality of reference,
i.e. whenever a page is requested it is likely to be referenced again in the near
future. In a cornerstone paper Borodin et al. [9] initiated the investigation of
paging with locality of reference. Over the years various frameworks modeling
locality of reference have been proposed. Moreover, new and alternative per-
formance measures have been introduced. In this paper we revisit paging with
locality of reference, considering again the competitive performance measure.
Compared to previous studies we present for the first time strong guarantees
that quantify competitiveness in terms of locality parameters of the input. We
analyze individual algorithms and relate pairs of strategies.

Input Model: We use a model for locality of reference introduced by Panagiotou
and Souza [19]. The framework is simple, yet captures the essentials of locality of
reference: Whenever a page is requested, it is likely to be re-accessed soon. Hence
locality can appropriately be modeled by inter-request distances. Specifically,
feasible input is defined by a characteristic vector C = (c0, . . . , cp−1), where p
denotes the total number of distinct pages referenced. Again, let σ be a request
sequence and σ(t) be the request at time t. We refer to σ(t) as a distance-l
request , where 0 ≤ l ≤ p − 1, if the following two conditions hold. (1) The page
x referenced by σ(t) has been requested before in σ and its most recent request
was σ(t′). (2) The number of distinct pages requested between σ(t′) and σ(t) is
equal to l, i.e. |{σ(t′+1), . . . , σ(t−1)}| = l. In a request sequence σ characterized
by C = (c0, . . . , cp−1), there are exactly cl distance-l requests, for l = 0, . . . , p−1.
The total number of requests in σ is p +

∑p−1
l=0 cl. Given any C, the competitive

28 S. Albers and D. Frascaria

ratio of an algorithm alg is defined as Ralg(C) = maxσ alg(σ)/opt(σ), where
the maximum ranges over all request sequences characterized by C. As this set
of sequences it finite, the maximum is well-defined.

Previous Work: There exists a considerable body of literature on paging with
locality of reference. Due to the wealth of results we can only present a selection.
A good survey article is [11]. In their initial paper [9] Borodin et al. introduced
access graphs G, representing the execution of programs, to model locality of
reference. The vertices of G correspond to the memory pages. Page x may be
requested after y if they are adjacent in G. Borodin et al. showed that, for any G,
the competitiveness Rlru(G) of lru depends on the number of articulation nodes
whose removal separates G. They also developed an algorithm that achieves the
best possible competitive ratio attainable for any given G, up to a constant
factor [9,18]. Chrobak and Noga [12] proved that lru is always at least as good
as fifo, i.e. for any G, Rlru(G) ≤ Rfifo(G).

Articles [4,16,17] make probabilistic assumptions about the input. A diffuse
adversary [17] generates a request sequence according to a probability distri-
bution that belongs to a known family of distributions. In Markov paging [16]
the input is generated by a Markov chain. Algorithms are evaluated in terms of
the page fault rate. In [1] concave functions, modeling the working set sizes of
programs, restrict the allowed input. Again page fault rates are evaluated.

Especially in recent years various alternative performance measures, in addi-
tion to the well-known page fault rate, have been proposed. These include (a) the
max/max ratio [5], (b) bijective and average analysis [2,3], (c) the relative worst-
order ratio [6,7], (e) relative interval analysis [8,13] and (e) parametrized anal-
ysis [10]. In a bijective analysis two algorithms alg1 and alg2 are compared
on permutations of the same requests. Let In denote the request sequences of
length n. alg1 is no worse than alg2, in signs alg1 � alg2, if for all n ≥ n0

there is a bijection b : In → In such that alg1(σ) ≤ alg2(b(σ)) for all σ ∈ In.
In this setting lru is no worse than any other online algorithm alg assuming
that locality is modeled by a concave function [3]. However, lru � fifo and
fifo � lru, see [2], so that there is no strict separation between lru and fifo
under bijective analysis.

The concept of characteristic vectors was defined by Panagiotou and
Souza [19]. As a main result they lower bound the number of page faults incurred
by opt on a request sequence σ characterized by C = (c0, . . . , cp−1), i.e.

opt(σ) ≥ 1
1+ k−1

k − k−1
p−1

∑p−1
l=k

l−k+1
l cl. (1)

They define an (α, β)-adversary that chooses vectors C satisfying
∑αk−1

l=k cl ≤
β

∑p−1
l=αk cl. Against this adversary lru achieves a competitive ratio of 2(1 +

β)α/(α − 1).

Our Contribution: We investigate paging using classical competitive analysis
and adopt the concept of characteristic vectors C = (c0, . . . , cp−1) to model local-
ity of reference. It is intuitive to represent input characteristics by a fingerprint
of the inter-request distances: If a request sequence exhibits a high degree of

Quantifying Competitiveness in Paging with Locality of Reference 29

locality, then a large majority of the requests are distance-l requests, for small l,
so that the corresponding vector entries cl take large values. Given a real-world
trace, the underlying C can be extracted easily by a single scan over the data.

We present new and significantly improved bounds on the performance of the
most important paging strategies. A particular strength and novelty of the results
is that they quantify algorithm performance in terms of locality parameters.
Furthermore, the bounds very accurately predict the performance observed in
practice. This finding results from an experimental study we conducted with
traces from a benchmark library. These tests confirm the value of our theoretical
bounds.

In Section 2, given any characteristic vector C, we develop a new lower bound
on the number of page faults incurred by opt to serve any request sequence σ
characterized by C. Technically, the analysis relies on a new approach that relates
the number of page faults to the number of memory hits and amortizes the values
appropriately. Specifically, we show that

opt(σ) ≥ max
{

p, k +
∑λ−1

l=k cl
l−k+1
k−1 + c∗

λ
λ−k+1

k−1

}
. (2)

Here λ and c∗
λ are solutions of an equation that matches faults and hits, assuming

that page faults preferably occur on long-distance requests. We prove that our
lower bound is tight, up to an additive term of at most 2(λ − k + 1), which
in turn is upper bounded by 2(p − k). More precisely, we construct an input
sequence that opt can serve with the stated number of faults. The construction
and cost analysis of the sequence are involved. Additionally, we show that our
lower bound (2) is always greater than that given in (1). In the experiments (2)
significantly outperforms (1).

In Section 3 we evaluate the competitiveness of lru. Given the analysis of
opt(σ), we derive nearly tight upper and lower bounds on Rlru(C), for any C.
The resulting ratios range between 1 and k, depending on C. In the experi-
ments it shows that these refined ratios are very close to lru’s experimentally
observed competitiveness. For all the traces and all values of k, the theoret-
ical bounds are at most 2.5 times the experimentally observed performance.
In most cases the gap is much smaller. To the best of our knowledge this is
the first time that theoretical performance guarantees for paging match the
experimental ones up to a constant factor, independently of k. We remark that
our theoretical guarantees cannot exactly match the experimental ones because
Rlru(C) = maxσ lru(σ)/opt(σ) is still a worst-case ratio. A real-world trace, in
general, is not a worst-case input for the underlying C.

In Section 4 we show that lru is superior to other popular paging strategies.
We focus on a comparison with fifo and fwf, which have received considerable
attention in the memory management literature. We first prove that lru is
always at least as good as the other two strategies, i.e. Rlru(C) ≤ Rfifo(C)
and Rlru(C) ≤ Rfwf(C) for any C. This is not surprising; similar relations have
been shown in other frameworks as well. In this paper we go one step further
and quantify the performance difference between lru and fifo, respectively
fwf. We make use of the fact that lru’s competitiveness can be expressed as

30 S. Albers and D. Frascaria

Rlru(C) = lru(C)/opt(C), where opt(C) denotes the minimum number of page
faults required to serve any request sequence defined by C and lru(C) is lru’s
fixed cost for every input specified by C. We prove that

Rfifo(C) ≥ lru(C) + c(k − 1)
opt(C) + c(1 − 1/k) + 1

,

where c depends on the vector entries cl, 1 ≤ l ≤ p−1. If the number of distance-l
requests with l ≥ k is not too small, then fifo’s competitiveness tends to k as the
locality in the input (captured by entries cl, for small l) increases. In particular,
there exist input classes C for which lru’s competitiveness is constant while
that of fifo is close to k. The same results hold for fwf, except that slightly
“weaker” assumptions on the input are made.

Notation and Conventions: Throughout this paper we assume that the initial
fast memory is empty. Furthermore we assume p > k since otherwise a request
sequence can be served without any faults. Moreover let k ≥ 2. When construct-
ing and analyzing a request sequence, a page is called new if it has not been
referenced so far.

2 Analysis of opt

Let C = (c0, . . . , cp−1) be an arbitrary characteristic vector. First we develop a
lower bound on opt(σ), for any σ defined by C. Then we prove that our bound
is nearly tight.

2.1 A lower Bound

Given any σ, let fl denote the total number of page faults incurred by opt on
distance-l requests, 0 ≤ l ≤ p − 1, and let hl = cl − fl be the number of hits on
this type of requests. We relate the total number of faults to the number of hits.

Lemma 1. Let σ be any request sequence characterized by C. There holds
a) opt(σ) = p +

∑p−1
l=k fl and b) p +

∑p−1
l=k fl ≥ k +

∑p−1
l=k hl

l−k+1
k−1 .

Proof. We first prove part a). There holds opt(σ) = p +
∑p−1

l=0 fl because opt
incurs one page fault whenever any of the p distinct pages is requested for the
first time. Moreover, by the definition of fl, opt has exactly fl faults on the
distance-l requests, for l = 0, . . . , p − 1. It remains to argue that fl = 0, for
l = 0, . . . , k − 1. Obviously, f0 = 0. So assume l ≥ 1. Consider a distance-l
request σ(t) = x and let σ(t′), where t′ < t, be the most recent request when
page x was referenced in σ. Immediately after opt has served σ(t′), page x is
in fast memory. Whenever opt incurs a fault on a request σ(s), t′ < s < t,
the set {σ(s), . . . , σ(t)} of pages referenced until and including σ(t) contains at
most l + 1 ≤ k pages. Hence the set contains at most k − 1 pages different from
y = σ(s). When serving σ(s), opt evicts a page whose next request is farthest
in the future. Thus it drops a page not referenced by σ(s + 1), . . . , σ(t).

Quantifying Competitiveness in Paging with Locality of Reference 31

We next prove part b). To this end we assign tokens to page faults whenever
opt has a hit on a distance-l request, where l ≥ k, in σ. Let σ(t) = x be such a
request and let σ(t′) be the most recent request to x. A total of l distinct pages
are referenced in the subsequence σ(t′ + 1), . . . , σ(t − 1). Since l ≥ k opt incurs
at least l − (k − 1) page faults in this subsequence because σ(t) is a hit. Now we
select the last l − (k − 1) page faults occurring before σ(t) and assign a token
to each of these faults. By this process, exactly

∑p−1
l=k hl(l − k + 1) tokens are

placed.
In the following we upper bound the number of tokens a page fault may be

assigned. A page fault on σ(s) can receive a token whenever there is a hit on a
request σ(t) with s < t, page x = σ(t) is not referenced in σ(s + 1), . . . , σ(t − 1)
and x is in fast memory immediately after σ(s) is served. By the latter property,
there can be a most k − 1 such pages and hence σ(t) is assigned not more than
k − 1 tokens.

We next argue that the first k page faults in σ do not receive any token. Let
σ(t1), . . . , σ(tk) be the requests where these first k page faults occur. Recall
that the initial fast memory is empty. Hence σ(t1) = 1, the k pages referenced
by σ(t1), . . . , σ(tk) are pairwise distinct and the subsequence σ(1), . . . , σ(tk) only
contains requests to these pages. Furthermore, the first hit on a distance-l request
with l ≥ k occurs after σ(tk). Let σ(t), t > tk, be such a hit and assume that the
referenced page x = σ(t) was requested most recently by σ(t′), where t′ < tk,
so that any of the faults σ(t1), . . . , σ(tk) could potentially be assigned a token.
The subsequence σ(t′ + 1), . . . , σ(t − 1) contains l pages, at least l − (k − 1)
of which are different from those referenced by σ(t1), . . . , σ(tk). These pages
different from σ(t1), . . . , σ(tk) are referenced after σ(tk) and the first request to
each of these pages is a fault since, again, the initial fast memory is empty. Our
token assignment scheme places l − (k − 1) tokens on the last l − (k − 1) page
faults prior to σ(t). Hence faults σ(t1), . . . , σ(tk) do not receive any token.

We conclude that the total number of tokens is upper bounded by (p−k)(k−
1) +

∑p−1
l=k fl(k − 1), i.e.

∑p−1
l=k hl(l − k + 1) ≤ (p − k)(k − 1) +

∑p−1
l=k fl(k − 1).

Dividing the last inequality by k − 1 and adding k we obtain, as desired, k +∑p−1
l=k hl

l−k+1
k−1 ≤ p +

∑p−1
l=k fl. �

For the further analysis, given a vector C = (c0, . . . , cp−1), we define two
functions f and g as well as values λ and c∗

λ. For any integer j with k ≤ j ≤ p−1
and any real number γ with 0 ≤ γ ≤ cj , let

f(j, γ) = k+
∑j−1

l=k cl
l−k+1
k−1 +γ j−k+1

k−1 and g(j, γ) = p+(cj−γ)+
∑p−1

l=j+1 cl.

Intuitively, f(i, γ) is the number of page faults, as implied by Lemma 1, if
memory hits occur on all the distance-l requests, for l = k, . . . , j − 1, and γ
distance-j requests. The corresponding g(j, γ) is the number of requests where
these faults can occur. If f(p − 1, cp−1) ≤ g(p − 1, cp−1), then let λ = p − 1 and
c∗
λ = cp−1. Otherwise determine the largest λ and corresponding c∗

λ such that
f(λ, c∗

λ) = g(λ, c∗
λ). Note that in either case f(λ, c∗

λ) ≤ g(λ, c∗
λ). The following

technical Lemma 2 is proven in the full paper. Part b) will be important in the

32 S. Albers and D. Frascaria

sequel. Given any parameter pair j′, γ′ with f(j′, γ′) ≤ g(j′, γ′), it relates the
function values to those of the pair λ, c∗

λ.

Lemma 2. a) The values λ and c∗
λ are well-defined.

b) Let j′ and γ′ be a pair such that f(j′, γ′) ≤ g(j′, γ′). Then f(j′, γ′) ≤
f(λ, c∗

λ) ≤ g(λ, c∗
λ) ≤ g(j′, γ′). Moreover, j′ ≤ λ. If j′ = λ, then γ′ ≤ c∗

λ.

Theorem 1. Let σ be any request sequence characterized by C. There holds

opt(σ) ≥ max
{

p, k +
∑λ−1

l=k cl
l−k+1
k−1 + c∗

λ
λ−k+1

k−1

}
.

Proof. Obviously, opt(σ) ≥ p. By Lemma 1

opt(σ) = p +
∑p−1

l=k fl ≥ k +
∑p−1

l=k hl
l−k+1
k−1 . (3)

Determine the largest j′, where k ≤ j′ ≤ p − 1, and corresponding γ′, where
0 ≤ γ′ ≤ cj′ such that

∑p−1
l=k hl =

∑j′−1
l=k cl + γ′. Intuitively, we express the

total number of hits in terms of a prefix of the cl-values, for increasing l ≥ k.
Of course, the hits do not necessarily occur on all the distance-l requests, where
l ≤ j′. Taking into account that fl = cl − hl, for any l, we obtain

opt(σ) = p +
∑p−1

l=k cl − ∑p−1
l=k hl = p + (cj′ − γ′) +

∑p−1
l=j′+1 cl = g(j′, γ′). (4)

In (3) expression k +
∑p−1

l=k hl
l−k+1
k−1 is minimized if the hits occur on distance-

l requests with smallest possible l subject to the constraint that at most cl

distance-l requests occur in σ. Hence

k +
∑p−1

l=k hl
l−k+1
k−1 ≥ k +

∑j′−1
l=k cl

l−k+1
k−1 + γ′ j′−k+1

k−1 = f(j′, γ′).

Combining (3) and (4) together with the last inequality we obtain opt(σ) =
g(j′, γ′) ≥ k +

∑p−1
l=k hl

l−k+1
k−1 ≥ f(j′, γ′). Using Lemma 2, part b), we conclude

opt(σ) ≥ f(λ, c∗
λ) = k +

∑λ−1
l=k cl

l−k+1
k−1 + c∗

λ
λ−k+1

k−1 . �

Proposition 1. The lower bound on opt(σ) stated in Theorem 1 is always
greater than that in inequality (1).

The proof is given in the full version of the paper.

2.2 Tightness of the Lower Bound

The lower bound of Theorem 1 is essentially best possible. We develop a strategy
that, given an arbitrary C = (c0, . . . , cp−1), constructs a request sequence that
can be served with the stated number of page faults, up to an additive constant
of 2(λ − k + 1). The strategy is called GenerateRequestSequence, or GRS for
short. It takes the original C and in a general step issues a distance-l request,
0 ≤ l ≤ p − 1, according to a specific protocol. The corresponding value cl is
reduced by 1. The process stops when all vector entries cl, 0 ≤ l ≤ p−1, are equal

Quantifying Competitiveness in Paging with Locality of Reference 33

to 0 and all the p distinct pages have been requested. Due to space limitations a
detailed presention of GRS (along with pseudo-code) is given in the full version
of the paper. In the following we just give a sketch of the strategy.

High-level description of GRS : First, starting with an empty fast memory,
GRS requests k new pages. Then GRS generates a sequence of phases in which
requests to new pages or distance-l requests with k ≤ l ≤ p − 1 are issued.
The goal is to reduce the vector entries ck, . . . , cp−1 to 0 while generating sub-
sequences of requests that can be served with low cost. Each phase, except for
possibly the last one, consists of exactly l∗ requests, for some properly chosen
l∗ that depends of the state of C at the beginning of the phase. Such a phase is
complete. The last phase may contain fewer requests.

The Phases: Each phase with l∗ requests, for the calculated value l∗, contains
l∗−k+1 so called long distance requests followed by k−1 short distance requests.
When generating a long distance request, GRS either requests a new page or
issues a distance-l request, for the largest index l ≥ k such that cl > 0. In a
short distance request GRS poses a distance-l request, for the smallest possible
l ≥ k such that cl > 0. We will prove that each phase can be served so that page
faults occur only on the long distance requests.

Phase Lengths: An important component of GRS is the choice of l∗, for each
phase. Loosely speaking, l∗ is the smallest j such that (a)

∑j
l=k cl ≥ k − 1 and

(b)
∑p−1

l=k cl ≥ j, provided that such a value exists. Condition (a) ensures that
k − 1 short distance requests can be issued. Condition (b) guarantees that a
complete phase can be generated.

The analysis of the request sequence constructed by GRS is involved. Again,
a complete analysis is contained in the full paper. We state the main result.

Theorem 2. Let σ be the request sequence generated by GRS. There holds

opt(σ) ≤ k +
∑λ−1

l=k cl
l−k+1
k−1 + c∗

λ
λ−k+1

k−1 + 2(λ − k + 1).

3 The Competitiveness of lru

We present upper and lower bounds on the competitive ratio Rlru(C), for any
C. While the bounds involve a number of terms, we stress that they are nearly
tight, up to an additive constant of 2(λ−k+1) in the denominator of the ratios.
Of course, one could simplify the expressions at the expense of weakening the
bounds. In the experiments the gap between the upper and the lower bounds
is extremely small. After stating the corollary we show that our expressions for
Rlru(C) range between 1 and k.

Corollary 1. Let C = (c0, . . . , cp−1) be an arbitrary characteristic vector. Then

Rlru(C) ≤ p +
∑p−1

l=k cl

max
{

p, k +
∑λ−1

l=k cl
l−k+1
k−1 + c∗

λ
λ−k+1

k−1

} (5)

34 S. Albers and D. Frascaria

and
Rlru(C) ≥ p +

∑p−1
l=k cl

k +
∑λ−1

l=k cl
l−k+1
k−1 + c∗

λ
λ−k+1

k−1 + 2(λ − k + 1)
.

Proof. For any σ, lru(σ) = p +
∑p−1

l=k cl. This holds true because lru never
incurs a page fault on a distance-l request with 0 ≤ l ≤ k − 1 as the referenced
page is still in fast memory. Moreover, lru has a fault on every distance-l request
with k ≤ l ≤ p − 1 since the accessed page has been evicted from fast memory
since its last reference. The corollary then follows from Theorems 1 and 2. �

We argue that the upper bound in (5) can be constant, and as low as 1, in particu-
lar when given vectors C modeling request sequences with a high degree of locality
of reference. First consider the very simple case that C = (c0, . . . , ck−1, 0, . . . , 0).
The ratio in (5) is equal to 1. A more interesting case is the scenario in which C
has a small number of positive entries cl with l ≥ k. In the benchmark library we
used there exist traces with this property. In order to keep the calculations simple
we assume that there is a single positive entry cl with l ≥ k. W.l.o.g. cp−1 > 0,
i.e. C = (c0, . . . , ck−1, 0, . . . , 0, cp−1). If cp−1 ≤ p, then the ratio in (5) is upper
bounded by 2. So assume cp−1 > p. In this case f(p − 1, cp−1) > g(p − 1, cp−1).
Hence λ = p − 1 and c∗

λ satisfies k + c∗
λ(p − k)/(k − 1) = p + cp−1 − c∗

λ. Solv-
ing the last equation for c∗

λ, we obtain that the ratio in (5) is upper bounded by
(p+cp−1)/(k+cp−1(p−k)/(p−1)). For increasing cp−1 the last ratio approaches
p−1
p−k . If p = k + 1, then the latter expression is equal to k, which is consistent
with the fact that lru is k-competitive on sequences in which a total of k + 1
distinct pages are referenced. If p = rk, for some constant r > 1, then p−1

p−k is
smaller than r

r−1 , i.e. we obtain constant competitive ratios if r is not too close
to 1.

Finally, we check that the upper bound for Rlru(C) is at most k. First assume
that, for the given C, there holds f(p − 1, cp−1) ≤ g(p − 1, cp−1). In this case
k+

∑p−1
l=k cl

l−k+1
k−1 ≤ p, which implies

∑p−1
l=k cl ≤ (k−1)p. Thus the numerator in

(5) is upper bounded by kp. On the other hand, if f(p−1, cp−1) > g(p−1, cp−1),
then f(λ, c∗

λ) = g(λ, c∗
λ). In this case the numerator p +

∑p−1
l=k cl in (5) is

p +
∑λ−1

l=k cl + c∗
λ + (cλ − c∗

λ) +
∑p−1

l=λ+1 cl =
∑λ−1

l=k cl + c∗
λ + g(λ, cλ∗)

=
∑λ−1

l=k cl + c∗
λ + f(λ, c∗

λ) = k +
∑λ−1

l=k cl
l

k−1 + c∗
λ

λ
k−1 ,

which is at most k times the denominator in (5) as l
l−k+1 ≤ k, for any l ≥ k.

4 Separating lru from fifo and fwf

We compare lru to fifo and fwf and start with a comparision to fifo. The
detailed proofs of all the results of this section are presented in the full paper.

Theorem 3. For any C, there holds Rfifo(C) ≥ Rlru(C).

Quantifying Competitiveness in Paging with Locality of Reference 35

The next Theorem 4 sharply separates lru from fifo. Observe that, for any
C, the competitiveness of lru can be expressed as Rlru(C) = lru(C)/opt(C),
where lru(C) = p +

∑p−1
l=k cl is the number of faults incurred by lru on every

input characterized by C and opt(C) denotes the minimum number of page faults
required to serve any request sequence defined by C. We use this notation in the
following.

Theorem 4 presents a lower bound on Rfifo(C), for any C, given
Rlru(C) = lru(C)/opt(C). In that lower bound c depends on the minimum
cl, where 1 ≤ l ≤ k − 1, and roughly

∑p−1
l=k cl. For increasing c, the compet-

itiveness of fifo can be made arbitrarily close to (k − 1)/(1 − 1/k) = k. In
Section 3 we analyzed vectors C = (c0, . . . , ck−1, 0, . . . , 0, cp−1) and showed that
lru’s competitiveness is constant, for sufficiently large cp−1, provided that p is
not to close to k. Hence, for large c1, . . . , ck−1 and cp−1, the competitiveness of
lru is a small constant while that of fifo is close to k. We remark that c cannot
be larger than lru(C) but this is sufficient to establish a lower bound of at least
k/2 on fifo’s competitiveness.

Theorem 4. Let C = (c0, . . . , cp−1) be any vector. Let cmin = min1≤l≤k−1 cl

and c = min{�cmin/2�, p − k +
∑p−1

l=k cl}. Then

Rfifo(C) ≥ lru(C) + c(k − 1)
opt(C) + c(1 − 1/k) + 1

.

Since Theorem 4 is a main result of this paper we give a proof sketch here. Again,
a full analysis is provided in the full paper.

First, the proof relies on a characterization of request sequences that opt can
serve with low cost. For any C, consider the sequences defined by C for which opt
incurs the smallest number opt(C) of page faults. We prove that, among these
sequences, there exists one in which all distance-l requests with 0 ≤ l ≤ k − 1
occur at the end of the sequence. In fact the proofs of all the results presented
in this section rely on this property.

The proof of Theorem 4 then starts out with a sequence σ∗ just described:
opt incurs opt(C) faults; all distance-l requests with 0 ≤ l ≤ k − 1 occur at the
end. Given σ∗, a nemesis sequence for fifo is constructed in three steps. (1) We
remove all distance-l requests with 0 ≤ l ≤ k − 1 from σ∗. From this truncated
sequence we further remove the last c requests. (2) To the sequence obtained
in step (1) we append c phases P (1), . . . , P (c). Any P (i) consists of two parts.
In the first part, for increasing l = 1, . . . , k − 1, a distance-l request is issued.
The second part of the phase starts with a request to a new page or a distance-l
request. Then again, for increasing l = 1, . . . , k−1, a distance-l request is issued.
(3) Finally, we append the missing distance-l requests, where 0 ≤ l ≤ k − 1. The
resulting sequence σ is one characterized by C. In the proof we show that fifo has
a page fault on every request in the prefix sequence of σ that was not modified
by the construction described above. Furthermore, we show that fifo incurs k
page faults in every phase P (i). This implies fifo(σ) ≥ lru(C) + c(k − 1). In a
final step we prove that opt’s cost increases by at most c(1 − 1/k) + 1.

36 S. Albers and D. Frascaria

Next we address fwf and give results corresponding to those for fifo. In
the separation bound of Theorem 6 the vector entries c1, . . . , ck−1 may be by a
factor of 2 smaller compared to those in Theorem 4.

Theorem 5. For any C, there holds Rfwf(C) ≥ Rlru(C).

Theorem 6. Let C = (c0, . . . , cp−1) be any vector. Let cmin = min1≤l≤k−1 cl

and c = min{cmin, p − k +
∑p−1

l=k cl}. Then
Rfwf(C) ≥ lru(C) + c(k − 1)

opt(C) + c(1 − 1/k) + 1
.

5 Experiments

We briefly report on an experimental study we have performed with reference
traces from a benchmark library. We summarize the main results; the full ver-
sion of this paper contains a detailed report including many figures. In our
experiments we used the benchmark library [14]. This test suite was specifically
designed to evaluate the performance of memory systems. A detailed descrip-
tion can be found in the SIGMETRICS paper [15]. The trace library consists
of 15 files that contain sequential logs of memory locations used by various pro-
grams. Standard applications from the Linux and the Windows NT operating
systems were executed.

In a first step, for each trace, we have extracted the underlying characteristic
vector, simply by counting the number of distance-l requests, for each l ≥ 0, in
it. Uniformly over all files, in each resulting vector, the entries basically form
a non-increasing sequence, with a huge majority of the requests representing
distance-l requests, for small values of l. Once again this confirms the fact that
real-world sequences exhibit a high degree of locality.

In a second step we have compared, for each trace/request sequence σ, the
optimum number of page faults opt(σ) to our bounds given in Theorems 1 and 2.
For all the traces the difference is small. Hence our lower bound on opt(σ) in
Theorem 1 quite accurately predicts the optimum cost. Furthermore, the addi-
tive expression of 2(λ − k + 1) in the bound of Theorem 2 is not critical. We
point out that our lower bound on opt(σ) cannot match the true service cost
because the bound holds for every request sequence specified by a characteristic
vector C. The given trace σ, in general, is not a sequence that can be served
with the minimum number of faults, among inputs characterized by the under-
lying C. Additionally, we have evaluated the lower bound on opt(σ) given by
Panagiotou and Souza [19], cf. inequality (1). In the experiments our new lower
bound developed in this paper is always significantly better. The gap increases
as the fast memory size k increases. For larger values of k, the lower bound by
Panagiotou and Souza is relatively weak. One could improve it by considering
the maximum of p and (1). Even for small k, our new lower bound improves
upon that of Panagiotou and Souza by at least 25% to 100%.

Finally we have compared, for each trace σ and underlying C, the upper &
lower bounds on lru’s competitiveness Rlru(C) (see Corollary 1) to the experi-
mentally observed competitiveness for σ. For all the files, our bounds give small

Quantifying Competitiveness in Paging with Locality of Reference 37

constant competitive factors that are typically in the range [1, 4]. In a few excep-
tional cases the factor might be as high as 8. Our upper bound on Rlru(C) is
always at most 2.5 times the experimentally observed competitiveness. Again,
our bounds cannot exactly match the latter competitiveness since Rlru(C) is the
maximum ratio of lru(σ)/opt(σ), considering σ characterized by C. A trace
at hand, in general, is not such a worst-case sequence. Interestingly, for varying
k, our bounds exhibit the same overall behavior as the experimentally observed
competitiveness. Thus they correctly describe the general qualitative behavior
of Rlru(C), depending on k. We finally remark that this is the first work on
the paging problem in which theoretically proven and experimentally observed
performance guarantees match up to small constant factors, independently of k.

References

1. Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. J.
Comput. Syst. Sci. 70(2), 145–175 (2005)

2. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equiva-
lence of paging strategies. In: Proc. 18th ACM-SIAM SODA, pp. 229–237 (2007)

3. Angelopoulos, S., Schweitzer, P.: Paging and list update under bijective analysis.
J. ACM 60(2), 7 (2013)

4. Becchetti, L.: Modeling locality: a probabilistic analysis of LRU and FWF. In:
Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 98–109. Springer,
Heidelberg (2004)

5. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11(1), 73–91 (1994)

6. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst-order ratio applied
to paging. J. Comput. Syst. Sci. 73(5), 818–843 (2007)

7. Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for LRU versus FIFO
under relative worst order analysis. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012.
LNCS, vol. 7357, pp. 328–339. Springer, Heidelberg (2012)

8. Boyar, J., Gupta, S., Larsen, K.S.: Relative interval analysis of paging algorithms
on access graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013.
LNCS, vol. 8037, pp. 195–206. Springer, Heidelberg (2013)

9. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with local-
ity of reference. J. Comput. Syst. Sci. 50, 244–258 (1995)

10. Dorrigiv, R., Ehmsen, M.R., López-Ortiz, A.: Parameterized analysis of paging
and list update algorithms. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS,
vol. 5893, pp. 104–115. Springer, Heidelberg (2010)

11. Dorrigiv, R., López-Ortiz, A.: On developing new models, with paging as a case
study. SIGACT News 40(4), 98–123 (2009)

12. Chrobak, M., Noga, J.: LRU is better than FIFO. Algorithmica 23, 180–185
(1999)

13. Dorrigiv, R., López-Ortiz, A., Munro, J.I.: On the relative dominance of paging
algorithms. Theor. Comput. Sci. 410(38–40), 3694–3701 (2009)

14. S. Kaplan. Trace reduction for virtual memory simulation. Benchmark library at
https://www3.amherst.edu/∼sfkaplan/research/trace-reduction/

15. Kaplan, S.F., Smaragdakis, Y., Wilson, P.R.: Trace reduction for virtual memory
simulations. In: Proc. International ACM SIGMETRICS Conference, pp. 47–58
(1999)

https://www3.amherst.edu/~sfkaplan/research/trace-reduction/

38 S. Albers and D. Frascaria

16. Karlin, A., Phillips, S., Raghavan, P.: Markov paging. SIAM J. Comput. 30(3),
906–922 (2000)

17. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM J.
Comput. 30(1), 300–317 (2000)

18. Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging
with locality of reference. SIAM J. Comput. 25, 477–497 (1996)

19. Panagiotou, K., Souza, A.: On adequate performance measures for paging. In:
Proc. 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 487–
496 (2006)

20. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28, 202–208 (1985)

21. Young, N.E.: The k-server dual and loose competitiveness for paging. Algorith-
mica 11, 525–541 (1994)

Approximation Algorithms for Computing
Maximin Share Allocations

Georgios Amanatidis1, Evangelos Markakis1(B), Afshin Nikzad2,
and Amin Saberi2

1 Department of Informatics, Athens University of Economics and Business,
Athens, Greece

{gamana,markakis}@aueb.gr
2 Department of Management Science and Engineering, Stanford University,

Stanford, USA
{nikzad,saberi}@stanford.edu

Abstract. We study the problem of computing maximin share guaran-
tees, a recently introduced fairness notion. Given a set of n agents and a
set of goods, the maximin share of a single agent is the best that she can
guarantee to herself, if she would be allowed to partition the goods in
any way she prefers, into n bundles, and then receive her least desirable
bundle. The objective then in our problem is to find a partition, so that
each agent is guaranteed her maximin share. In settings with indivisible
goods, such allocations are not guaranteed to exist, hence, we resort to
approximation algorithms. Our main result is a 2/3-approximation, that
runs in polynomial time for any number of agents. This improves upon
the algorithm of Procaccia and Wang [14], which also produces a 2/3-
approximation but runs in polynomial time only for a constant number
of agents. We then investigate the intriguing case of 3 agents, for which
it is already known that exact maximin share allocations do not always
exist. We provide a 6/7-approximation algorithm for this case, improving
on the currently known ratio of 3/4. Finally, we undertake a probabilis-
tic analysis. We prove that in randomly generated instances, with high
probability there exists a maximin share allocation. This can be seen
as a justification of the experimental evidence reported in [5,14], that
maximin share allocations exist almost always.

1 Introduction

We study a fair division problem in the context of allocating indivisible goods.
Fair division has attracted the attention of various scientific disciplines, including

A full version of this paper can be found at: http://arxiv.org/abs/1503.00941.
Georgios Amanatidis and Evangelos Markakis—Research co-financed by the Euro-
pean Union (European Social Fund - ESF) and Greek national funds through the
Operational Program “Education and Lifelong Learning” of the National Strategic
Reference Framework (NSRF) - Research Funding Program: “THALES - Investing
in knowledge society through the European Social Fund”.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 39–51, 2015.
DOI: 10.1007/978-3-662-47672-7 4

http://arxiv.org/abs/1503.00941

40 G. Amanatidis et al.

among others, mathematics, economics, and political science. Ever since the first
attempt for a formal treatment by Steinhaus, Banach, and Knaster [17], many
interesting and challenging questions have emerged. Over the past decades, a
vast literature has developed, see e.g., [7,15], and several notions of fairness
have been suggested. The area gradually gained popularity in computer science
as well, as most of the questions are inherently algorithmic, see among others,
[9,19] for earlier works, and the upcoming survey [13] on more recent results.

The objective in fair division problems is to allocate a set of resources to a
set of n agents in a way that leaves every agent satisfied. In the continuous case,
the available resources are typically represented by the interval [0, 1], whereas in
the discrete case, we have a set of distinct, indivisible goods. The preferences of
each agent are represented by a valuation function, which is usually an additive
function on the set of goods (a probability distribution in the continuous case).
Given such a setup, many solution concepts have been proposed as to what
constitutes a fair solution. Some of the standard ones include proportionality,
envy-freeness, equitability and several variants of them.

All the above solutions can be attained in the case of divisible goods. In the
presence of indivisible goods however, we cannot have any such guarantees; in
fact in most cases we cannot even guarantee reasonable approximations. Instead,
we focus on a concept recently introduced by Budish [8], that can be seen as a
relaxation of proportionality. The rationale is as follows: suppose that an agent,
say agent i, is asked to partition the goods into n bundles and then the rest of
the agents make a choice before i. In the worst case, agent i will be left with her
least valuable bundle. Hence, a risk-averse agent would choose a partition that
maximizes the minimum value of a bundle in the partition. This value is called
the maximin share of agent i. The objective then is to find an allocation where
every person receives at least her maximin share. Even for this notion, existence
is not guaranteed under indivisible goods (see [10,14]). But, it is possible to
have constant factor approximations, as has been recently shown in [14].

Contribution: Our main result, in Section 4, is a (2/3−ε)-approximation algo-
rithm, for any constant ε > 0, that runs in polynomial time for any number of
agents. That is, the algorithm produces an allocation where every agent receives
a bundle worth at least 2/3− ε of her maximin share. Our result improves upon
the 2/3-approximation of Procaccia and Wang [14], which runs in polynomial
time only for a constant number of agents. To achieve this, we redesign certain
parts of the algorithm in [14], arguing about the existence of appropriate, care-
fully constructed matchings in a bipartite graph representation of the problem.
Before that, in Section 3, we provide a simpler, faster 1/2-approximation algo-
rithm. Despite the worse factor, this algorithm still has its own merit due to its
simplicity. We then investigate the case of n = 3 agents. This case is an inter-
esting turning point on the approximability of the problem, as we know that
for n = 2, there always exist maximin share allocations. Adding a third agent
makes the problem significantly more complex, and the best known ratio was
3/4 by [14]. We provide an algorithm with an improved approximation guaran-
tee of 6/7, by examining more deeply the set of allowed matchings that we can

Approximation Algorithms for Computing Maximin Share Allocations 41

use to satisfy the agents. Finally, motivated by the apparent difficulty in find-
ing impossibility results on the approximability of the problem, we undertake a
probabilistic analysis. Our analysis shows that in randomly generated instances,
maximin share allocations exist with high probability. This may be seen as a
justification of the experimental evidence reported in [5,14], which show that
maximin share allocations exist in most cases even for a small number of agents.

Related Work: For an overview of the classic fairness notions and related
results, we refer the reader to the books of [7] and [15]. The notion we study
here was introduced by Budish in [8] for ordinal utilities (where agents have
rankings over alternatives), building on concepts by Moulin [12]. The work of [5]
defined the notion for cardinal utilities, in the form that we study it here, and
also provided many important insights as well as experimental evidence. Fur-
ther, in [14], a 2/3 approximation is provided along with constructions showing
instances where no maximin share allocation exists even for n = 3. The negative
results of [14], and more recently of [10], as well as the extensive experimenta-
tion by Bouveret and Lemâıtre [5], reveal that it has been challenging to produce
lower bounds, i.e., instances where no α-approximation of a maximin share allo-
cation exists, even for α very close to 1. Finally, in [10], a probabilistic analysis,
similar in spirit but more general than ours, is provided, covering a wide range
of distributions on the valuation functions. However, their analysis, general as
it may be, needs very large values of n to guarantee relatively high probability,
hence it does not fully justify the experimental results discussed above.

A seemingly related problem is that of max-min fairness (or Santa Claus),
see e.g. [1–3]. In this problem we want to find an allocation where the value of
the least happy person is maximized. With identical agents, the two problems
coincide, but beyond this special case, they exhibit very different behavior.

2 Definitions and Notation

Let N = {1, ..., n} be a set of n agents and M = {1, ...,m} be a set of indivisible
goods. For any k ∈ N, we will also be using [k] to denote the set {1, ..., k}. We
assume each agent has an additive valuation function vi(·), so that for every
S ⊆ M , vi(S) =

∑
j∈S vi({j}). For j ∈ M , we will use vij for vi({j}).

Given any subset S ⊆ M , an allocation of S to the n agents is a partition
T = (T1, ..., Tn), where Ti ∩ Tj = ∅ and

⋃
Ti = S. Let Πn(S) be the set of all

partitions of a set S into n bundles. The notions below were originally defined
by Budish [8] and later on by [5] in the same setting that we study here.

Definition 1. Given a set of n agents, and any set S ⊆ M , the n-maximin
share of an agent i with respect to S, is: μi(n, S) = max

T∈Πn(S)
min
Tj∈T

vi(Tj) .

We refer to μi(n,M) simply as the maximin share of i. The solution concept
defined in [8] asks for a partition that gives each agent her maximin share.

Definition 2. Given a set of agents N , and a set of goods M , a partition T =
(T1, ..., Tn) ∈ Πn(M) is called a maximin share allocation if vi(Ti) ≥ μi(n,M) ,
for every agent i ∈ N .

42 G. Amanatidis et al.

As shown in [14], maximin share allocations do not always exist. Hence, our
focus is on approximation algorithms, i.e. algorithms that produce a partition
where each agent i receives a bundle worth at least ρ ·μi(n,M), for some ρ ≤ 1.

3 Warmup: A Polynomial Time 1/2-approximation

We find it instructive to provide first a simpler and faster algorithm that achieves
a worse approximation of 1/2. In the course of obtaining this algorithm, we also
identify some important properties and insights that we will use in the next
sections.

We start with an upper bound on our solution for each agent. The maximin
share guarantee is a relaxation of proportionality, so we trivially have:

Claim 1. For every i ∈ N and every S ⊆ M , μi(n, S) ≤ vi(S)
n

=

∑
j∈S vij

n
.

We now show how to get an additive approximation. Algorithm 1 below
achieves an additive approximation of vmax, where vmax = maxi,j vij . This sim-
ple algorithm, which we will refer to as the Greedy Round-Robin Algorithm, has
also been discussed in [5], where it was shown that when all item values are in
{0, 1}, it produces an exact maximin share allocation. Some variations of this
algorithm have also been used in other allocation problems, see e.g., [6], or the
protocol in [4]. We discuss further the properties of Greedy Round-Robin in
Section 6. The set VN in the statement of the algorithm is the set of valuation
functions VN = {vi : i ∈ N}, which can be encoded as a valuation matrix since
the functions are additive.

Algorithm 1. Greedy Round-Robin(N,M, VN)
1 Set Si = ∅ for each i ∈ N .
2 Fix an ordering of the agents arbitrarily.
3 while ∃ unallocated items do
4 Si = Si ∪ {j}, where i is the next agent to be examined in the current round

(proceeding in a round-robin fashion) and j is i’s most desired item among
the currently unallocated items.

5 return (S1, ..., Sn)

Theorem 2. If (S1, ..., Sn) is the output of Algorithm 1, then for every i ∈ N ,

vi(Si) ≥
∑

j∈M vij

n
− vmax ≥ μi(n,M) − vmax .

The next important ingredient is the following monotonicity property, which
says that we can allocate a single good to an agent without decreasing the
maximin share of others.

Lemma 1 (Monotonicity property). For any agent i and any good j, it
holds that μi(n − 1,M {j}) ≥ μi(n,M).

Approximation Algorithms for Computing Maximin Share Allocations 43

Algorithm 2. apx-mms1/2(N,M, VN)

1 Set S = M
2 for i = 1 to |N | do
3 Let αi =

∑
j∈S vij

|N|

4 while ∃i, j s.t. vij ≥ αi/2 do
5 Allocate j to i.
6 S = S {j}
7 N = N {i}
8 Recompute the αis.

9 Run Greedy Round-Robin on the remaining instance.

We are now ready for the 1/2-approximation, obtained by Algorithm 2, which
uses Greedy Round-Robin, but only after we allocate the most valuable goods.

Theorem 3. Let N be a set of n agents with additive valuations, and let M be
a set of goods. Algorithm 2 produces an allocation (S1, ..., Sn) such that

vi(Si) ≥ 1
2
μi(n,M) , ∀i ∈ N .

The proofs of this section are omitted due to space constraints.

4 A Polynomial Time
(
2
3
− ε

)
-approximation

The main result of this section is Theorem 4, establishing a polynomial time
algorithm for achieving a 2/3-approximation to the maximin share of each agent.

Theorem 4. Let N be a set of n agents with additive valuation functions, and
let M be a set of goods. For any constant ε > 0, there exists a polynomial time
algorithm, producing an allocation (S1, ..., Sn), such that for all i ∈ N :

vi(Si) ≥
(2

3
− ε

)
μi(n,M) .

Our result is based on the algorithm by Procaccia and Wang in [14], which
also guarantees to each agent a 2/3-approximation; however, it runs in polyno-
mial time only for a constant number of agents. Here, we identify the source
of exponentiality and take a different approach regarding certain parts of their
algorithm. For the sake of completeness, we first present the necessary related
results of [14], before we discuss the steps that are needed to obtain our result.

First of all, note that for a single agent i, the problem of deciding whether
μi(n,M) ≥ k for a given k is NP-complete. However, a PTAS follows by Woeg-
inger [18]. In the original paper, which is in the context of job scheduling, Woeg-
inger gave a PTAS for maximizing the minimum completion time on identical
machines. But this scheduling problem is identical to computing a maximin
partition with respect to a given agent i. Indeed, it is enough to think of the
machines as identical agents all having i’s valuation function. Hence:

44 G. Amanatidis et al.

Theorem 5 (follows from [18]). Suppose we have a set M of goods to be
divided among n agents. Then, for each agent i, there exists a PTAS for approx-
imating μi(n,M).

A central quantity in the algorithm of [14] is the n-density balance parameter,
denoted by ρn and defined below. Before stating the definition, we give a high
level idea for clarity. Assume that in the course of an algorithm, we have used a
subset of the items to “satisfy” some of the agents, and that those items do not
have “too much” value for the rest of the agents. Then we should expect to be
able to “satisfy” the remaining agents using the remaining unallocated items.
Essentially, the parameter ρn is the best guarantee one can hope to achieve for
the remaining agents, based only on the fact that the complement of the set left
to be shared is relatively small. After a quite technical analysis, Procaccia and
Wang calculate the exact value of ρn in the following lemma.

Lemma 2 (Density Balance Lemma, Lemma 3.2 of [14]). For any number
of agents n ≥ 2, let

ρn = max

{
λ

∣∣∣∣∣
∀M,∀ additive vi ∈ (R+)2

M

,∀S ⊆ M,∀k, � s.t. k + � = n,
vi(M S) ≤ �λμi(n,M) ⇒ μi(k, S) ≥ λμi(n,M)

}
.

Then, ρn =
2
n�odd

3
n�odd − 1
>

2
3
, where
n�odd denotes the largest odd integer less

than or equal to n.

We are now ready to state the algorithm, referred to as apx-mms (Algo-
rithm 3 below). We elaborate on the crucial differences between Algorithm 3
and the result of [14] after Lemma 3. At first, the algorithm computes each
agent’s (1 − ε′)-approximate maximin value using Woeginger’s PTAS, where
ε′ = 3ε

4 . Let ξ = (ξ1, . . . , ξn) be the vector of these values. Hence, ∀i, μi(n,M) ≥
ξi ≥ (1 − ε′)μi(n,M). Then, apx-mms makes a call to the recursive algorithm
rec-mms to compute a

(
2
3 − ε

)
-approximate partition. rec-mms takes the argu-

ments ε′, n = |N |, ξ, S (the set of items that have not been allocated yet), K
(the set of agents that have not received a share of items yet), and the valuation
functions VK = {vi|i ∈ K}. The guarantee provided by rec-mms is that as long
as the already allocated goods are not worth too much for the currently active
agents of K, we can satisfy them with the remaining goods. More formally, under
the assumption that

∀i ∈ K, vi(M S) ≤ (n − |K|)ρnμi(n,M) , (1)

which we will show that it holds before each call, rec-mms(ε′, n, ξ, S,K, VK)
computes a |K|-partition of S, so that each agent receives items of value at least
(1 − ε′)ρnξi ≥ (1 − ε′)2ρnμi(n,M) > (1 − 2ε′) 23μi(n,M) = (23 − ε)μi(n,M).

The initial call of the recursion is, of course, rec-mms(ε′, n, ξ,M,N, VN).
Before moving on to the next recursive call, rec-mms appropriately allocates
some of the items to some of the agents, so that they receive value at least

Approximation Algorithms for Computing Maximin Share Allocations 45

(1 − ε′)ρnξi each. This is achieved by identifying an appropriate matching
between some currently unsatisfied agents and certain bundles of items. In par-
ticular, the most important step in the algorithm is to first compute the set X+

(line 6), which is the set of agents that will not be matched in the current call.
The remaining active agents are then guaranteed to get matched in the current
round, whereas X+ will be satisfied in the next recursive calls. In order to ensure
this for X+, rec-mms guarantees that for the rest of the items, and for the set
X+, inequality (1) holds. Note that (1) trivially holds for the initial call.

Algorithm 3. apx-mms(ε,N,M, VN)
1 ε′ = 3ε

4

2 for i = 1 to |N | do
3 Use Woeginger’s PTAS to compute a (1 − ε′)-approximation ξi of

μi(|N |, M). Let ξ = (ξ1, . . . , ξn).

4 return rec-mms(ε′, |N |, ξ, M, N, VN)

For simplicity, in the description of rec-mms, we assume that K = {1, 2, . . .,
|K|}. Also, for the bipartite graph defined below in the algorithm, by Γ (U) we
denote the set of neighbors of the vertices in U .

Algorithm 4. rec-mms(ε′, n, ξ, S,K, VK)
1 if |K| = 1 then
2 Allocate all of S to agent 1.
3 else
4 Use Woeginger’s PTAS to compute a (1 − ε′)-approximate |K|-maximin

partition of S with respect to agent 1 from K, say (S1, . . . , S|K|).
5 Create a bipartite graph G = (X ∪ Y, E), where X = Y = K and

E = {(i, j) | i ∈ X, j ∈ Y, vi(Sj) ≥ (1 − ε′)ρnξi}.
6 Find a set X+ ⊂ X, as described in Lemma 3.
7 Given a perfect matching A, between X X+ and a subset of Y Γ (X+),

allocate Sj to agent i iff (i, j) ∈ A (the matching is a byproduct of line 6).
8 if X+ = ∅ then
9 Output the above allocation.

10 else
11 Output the above allocation, together with rec-mms(ε′, n, ξ, S∗,

X+, VX+), where S∗ is the subset of S not allocated in line 7.

To proceed with the analysis, and since the choice of X+ plays an important
role, we should clarify what properties of X+ are needed for the algorithm to
work. The following lemma is the most crucial part in the design of our algorithm.

46 G. Amanatidis et al.

Lemma 3. Assume that for n,M, S,K, VK , inequality (1) holds, and let G =
(X ∪Y,E) be the bipartite graph defined in line 5 of rec-mms. Then there exists
a subset X+ of X {1}, such that:
(i) X+ can be found efficiently.
(ii) There exists a perfect matching between X X+ and a subset of Y Γ (X+).
(iii) If we allocate subsets to agents according to such a matching (as described

in line 7) and X+ = ∅, then inequality (1) holds for n,M, S∗,X+, VX+ ,
where S∗ is the unallocated subset of S.

Before we prove Lemma 3, we elaborate on the main differences between our
setup and the approach of Procaccia and Wang [14]:
Choice of X+. In [14], X+ is defined as arg maxZ⊆K {1}{|Z| | |Z| ≥ |Γ (Z)|}.
Clearly, when n is constant, so is |K|, and thus the computation of X+ is trivial.
However, it is not clear how to efficiently find such a set in general, when n
is not constant. We propose an alternative definition of X+, which is efficiently
computable and has the desired properties. In short, our X+ is any appropriately
selected counterexample to Hall’s Theorem for the graph G in line 5.
Choice of ε. The algorithm works for any ε > 0, but in [14] the choice of ε
depends on n, and is chosen so that (1 − ε)ρn ≥ 2

3 . This is possible since for any
n, ρn ≥ 2

3 (1 + 1
3n−1). However, in this case, the running time of Woeginger’s

PTAS is not polynomial in n. Here, we consider any fixed ε, independent of n.
We present below the definition of X+ and prove Lemma 3.

Proof of Lemma 3 : We will show that either X+ = ∅ (in the case where G
has a perfect matching), or any set X+ with

X+ ∈ {
Z ⊆ X : |Z| > |Γ (Z)| and ∃ matching of size |X Z| in G Z

}

has the desired properties. We show how to find such a set efficiently. We first
find a maximum matching B of G. If |B| = |K|, then we are done, since for
X+ = ∅, properties (i) and (ii) of Lemma 3 hold, while we need not check (iii).
If |B| < |K|, then there must be a subset of X violating the condition of Hall’s
Theorem. Let Xu,Xm be the partition of X in unmatched and matched vertices
respectively, according to B. Similarly, we define Yu, Ym. Now, we construct a
directed graph G′ = (X ∪ Y,E′), where we direct all edges of G from X to Y ,
and on top of that, we add one copy of each edge of the matching with direction
from Y to X. In particular, ∀i ∈ X,∀j ∈ Y if (i, j) ∈ E then (i, j) ∈ E′ and if
moreover (i, j) ∈ B then (j, i) ∈ E′. We claim that the following set satisfies the
desired properties

X+ := Xu ∪ {v ∈ X : v is reachable from Xu} .

Note that X+ is easy to compute; after finding the maximum matching in G, and
constructing G′, we can run a depth-first search in each connected component
of G′, starting from the vertices of Xu.

Given the definition of X+, we now show property (ii). Back to the original
graph G, we first claim that |X+| > |Γ (X+)|. To prove this, note that if j ∈

Approximation Algorithms for Computing Maximin Share Allocations 47

Γ (X+), then j ∈ Ym. If not, then it is not difficult to see that there is an
augmenting path from a vertex in Xu to j, which contradicts the maximality
of B. Indeed, since j ∈ Γ (X+), let i be a neighbor of j in X+. If i ∈ Xu,
then the edge (i, j) would enlarge the matching. Otherwise i ∈ Xm and since
also i ∈ X+, there is a path in G′ from some vertex of Xu to i. But this
path by construction of the directed graph G′ must consist of an alternation of
unmatched and matched edges, hence together with (i, j) we have an augmenting
path. Therefore, Γ (X+) ⊆ Ym, i.e., for any j ∈ Γ (X+), there is an edge (i, j) in
the matching B. But then i has to belong to X+, by the construction of G′ (and
since j ∈ Γ (X+)). To sum up: for any j ∈ Γ (X+), there is exactly one distinct
i ∈ X+∩Xm, i.e., |X+∩Xm| ≥ |Γ (X+)|. In fact, we have equality here, because
it is also true that for any i ∈ X+ ∩Xm, there is a distinct vertex j ∈ Ym, which
is trivially reachable from X+. Hence, |X+ ∩ Xm| = |Γ (X+)|. Since Xu = ∅,
we have |X+| = |Xu| + |X+ ∩ Xm| ≥ 1 + |Γ (X+)|. So, |X+| > |Γ (X+)|. Also,
note that X+ ⊆ X {1}, because for any Z ⊆ X that contains vertex 1 we have
|Γ (Z)| = |K| ≥ |Z|, since v1(Sj) ≥ (1 − ε′)μ1(k, S) ≥ (1 − ε′)ρnμ1(n,M) ≥
(1 − ε′)ρnξ1(n,M), for all 1 ≤ j ≤ |K|.

We now claim that if we remove X+ and Γ (X+) from G, then the restriction
of B on the remaining graph, still matches all vertices of X X+, establishing
property (ii). Indeed, note first that for any i ∈ X X+, i ∈ Xm, since X+

contains Xu. Also, for any edge (i, j) ∈ B with i ∈ X and j ∈ Γ (X+), we have
i ∈ X+ by the construction of X+. So, for any i ∈ X X+, its pair in B belongs
to Y Γ (X+). Equivalently, B induces a perfect matching between X X+ and
a subset of Y Γ (X+) (this is the matching A in line 7 of the algorithm).

What is left to prove is that property (iii) also holds for X+. This can be
done by the same arguments as in [14], thus we have the following lemma.

Lemma 4 ([14], end of Subsection 3.1). Assume that inequality (1) holds
for n,M, S,K, VK , and let G be the graph defined in line 5. For any Z ⊆ X, if
there exists a perfect matching between X Z and a subset of Y Γ (Z), say Y ∗,
and there are no edges between Z and Y ∗ in G, then property (iii) holds as well.

Clearly, there can be no edges between X+ and Y Γ (X+). Hence, Lemma
4 can be applied to X+, completing the proof. �

Given Lemma 3, we can now easily complete the proof for the correctness of
apx-mms and thus the proof of Theorem 4 (omitted due to space constraints).

5 The Case of n = 3 Agents

We now focus on the intriguing case of 3 agents. When n = 2, it is pointed out
in [5] that maximin share allocations exist via an analog of the cut and choose
protocol. Using the PTAS of [18], we can then have a (1 − ε)-approximation in
polynomial time. In contrast, as soon as we move to n = 3, things become more
interesting. It is proved in [14] that with 3 agents there exist instances where no
maximin share allocation exists. The best known approximation guarantee is 3

4 ,
by observing that the quantity ρn, defined in Section 4, satisfies ρ3 ≥ 3

4 .

48 G. Amanatidis et al.

We provide a different algorithm, improving the approximation to 6
7 − ε. To

do this, we combine ideas from both algorithms presented so far in Section 3
and Section 4. The main result of this subsection is as follows:

Theorem 6. Let N = {1, 2, 3} be a set of three agents with additive valuations,
and let M be a set of goods. For any constant ε > 0, there exists a polynomial
time algorithm that produces an allocation (S1, S2, S3), such that for all i ∈ N :

vi(Si) ≥
(6

7
− ε

)
μi(3,M) .

The algorithm is shown below, while the proof of Theorem 6 is omitted. Here,
we provide a brief outline of how the algorithm works.

Algorithm 5. apx-3-mms(ε,M, v1, v2, v3)
1 ε′ = 7

6
ε

2 Compute a (1 − ε)-approximation ξi of μi(3, M) for i ∈ {1, 2, 3}.
3 if ∃i ∈ {1, 2, 3}, j ∈ M such that vij ≥ 6

7
ξi then

4 Give item j to agent i and divide M {j} among the other two agents in a
“cut-and-choose” fashion.

5 else
6 Agent 1 computes an (1 − ε)-approximate maximin partition of M into

three sets, say (A1, A2, A3).
7 if ∃j2, j3 ∈ {1, 2, 3} such that j2 �= j3, v2(Aj2) ≥ 6

7
ξ2 and v3(Aj3) ≥ 6

7
ξ3

then
8 Give set Aj2 to agent 2, set Aj3 to agent 3, and the last set to agent 1.

9 else
10 There are two sets that have value less than 6

7
ξ2 w.r.t. agent 2, say for

simplicity A2 and A3.
11 Agent 2 computes (1 − ε′)-approximate 2-maximin partitions of A1 ∪ A2

and A1 ∪ A3, say (B1, B2) and (B′
1, B

′
2) respectively, and discards the

partition with the smallest maximin value, say (B′
1, B

′
2).

12 Agent 3 takes the set she prefers from (B1, B2); agent 2 takes the other,
and agent 1 takes A3.

Algorithm Outline: First, approximate values for the μis are calculated as
before. Then, if there are items with large value to some agent, in analogy to
Algorithm 2, we first allocate one of those, reducing this way the problem to the
simple case of n = 2. If there are no items of large value, then the first agent
partitions the items as in Algorithm 3. In the case where this partition does not
satisfy all three agents, then the second agent repartitions two of the bundles of
the first agent. Actually, she tries two different such repartitions, and we show
that at least one of them works out. The definition of a bipartite preference
graph and a corresponding matching (as in Algorithm 3) is never mentioned
explicitly here. However, the main idea is that if there is more than one way to

Approximation Algorithms for Computing Maximin Share Allocations 49

pick a perfect matching between X X+ and a subset of Y Γ (X+), then we try
them all and choose the best one.

6 A Probabilistic Analysis

Setting efficient computation aside, what is the best ρ for which a ρ-approximate
allocation does exist? All we know so far is that ρ = 1 by the elaborate con-
structions in [10,14]. However, extensive experimentation in [5] (and also [14]),
showed that in all generated instances, there always existed a maximin share
allocation. Motivated by these experimental observations and by the lack of
impossibility results, we present a probabilistic analysis, showing that indeed we
expect that in most cases there exist allocations where every agent receives her
maximin share. In particular, we analyze the Greedy Round-Robin algorithm
from Section 3 when each vij is drawn from the uniform distribution over [0, 1].

Recently, in [10], similar results are shown for a large set of distibutions over
[0, 1], including U [0, 1]. Although, asymptotically, their results yield a theorem
that is more general than ours, we consider our analysis to be of independent
interest, since we have much better bounds on the probabilities for the special
case of U [0, 1], even for relatively small values of n. We start with the following:

Theorem 7. Let N = [n] be a set of agents and M = [m] be a set of goods,
and assume that the vijs are i.i.d. random variables that follow U [0, 1]. Then,
for m ≥ 2n and large enough n, the Greedy Round-Robin algorithm allocates
to each agent i a set of goods of total value at least 1

n

∑m
j=1 vij with probability

1 − o(1). The o(1) term is O(1/n) when m > 2n and O(log n/n) when m = 2n.

The proof is based on tools like Hoeffding’s and Chebyshev’s inequalities,
and on a very careful estimation of the probabilities when m < 2.5n. Note that
for m ≥ 2n, this provides an even stronger guarantee than the maximin share.

We now state a similar result for any m. We use a modification of Greedy
Round-Robin. While m < 2n, the algorithm picks any agent uniformly at random
and gives her only her “best” item. When the number of available items becomes
two times the number of active agents, the algorithm proceeds as usual.

Theorem 8. Let N = [n], M = [m], and the vijs be as in Theorem 7. Then, for
any m and large enough n, the Modified Greedy Round-Robin algorithm allocates
to each agent i a set of items of total value at least μi(n,M) with probability
1 − o(1). The o(1) term is O(1/n) when m > 2n and O(log n/n) when m ≤ 2n.

Theorems 7 and 8 may leave the impression that n has to be large. Actually,
there is no reason why we cannot consider n fixed and let m grow. Following
very closely the proof of Theorem 7 for m ≥ 4n, we get the next corollary.

Corollary 1. Let N = [n], M = [m], and the vijs be as in Theorem 7. Then,
for fixed n and large enough m, the Greedy Round-Robin algorithm allocates to
each agent i a set of goods of total value at least 1

n

∑m
j=1 vij with probability

1 − O(log2 m/m2).

50 G. Amanatidis et al.

7 Conclusions

The most interesting open question is undoubtedly whether one can improve on
the 2/3-approximation. Going beyond 2/3 seems to require a drastically differ-
ent approach. Even establishing better ratios for special cases could still provide
new insights into the problem. It would be interesting, for example, to see if we
can have an improved ratio for the special case studied in [2] for the Santa Claus
problem. Obtaining negative results seems to be an even more challenging task,
given our probabilistic analysis and the results of related works. The negative
results in [10,14] require very elaborate constructions, which still do not yield an
inapproximability factor far away from 1. Apart from improving the approxima-
tion quality, exploring practical aspects of our algorithms is another direction,
see e.g. [16]. Finally, we have not addressed here the issues of truthfulness and
mechanism design, a stimulating topic for future work. Given the impossibility
results in [11] for a related problem, we expect similar negative results here too.
When payments are allowed however, more interesting questions may arise.

References

1. Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation
of indivisible goods. In: ACM Symposium on Theory of Computing (STOC), pp.
114–121 (2007)

2. Bansal, N., Sviridenko, M.: The santa claus problem. In: ACM Symposium on
Theory of Computing (STOC), pp. 31–40 (2006)

3. Bezakova, I., Dani, V.: Allocating indivisible goods. ACM SIGecom Exchanges 5,
11–18 (2005)

4. Bouveret, S., Lang, J.: A general elicitation-free protocol for allocating indivisible
goods. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, IJCAI 2011, pp. 73–78 (2011)

5. Bouveret, S., Lemâıtre, M.: Characterizing conflicts in fair division of indivisible
goods using a scale of criteria. In: International conference on Autonomous Agents
and Multi-Agent Systems, AAMAS 2014, pp. 1321–1328 (2014)

6. Brams, S.J., King, D.: Efficient fair division - help the worst off or avoid envy.
Rationality and Society 17(4), 387–421 (2005)

7. Brams, S.J., Taylor, A.D.: Fair Division: from Cake Cutting to Dispute Resolution.
Cambrige University Press (1996)

8. Budish, E.: The combinatorial assignment problem: Approximate competitive equi-
librium from equal incomes. Journal of Political Economy 119(6), 1061–1103
(2011)

9. Edmonds, J., Pruhs, K.: Balanced allocations of cake. In: Symposium on Founda-
tions of Computer Science (FOCS), pp. 623–634 (2006)

10. Kurokawa, D., Procaccia, A.D., Wang, J.: When can the maximin share guarantee
be guaranteed? Manuscript (2015)

11. Markakis, E., Psomas, C.-A.: On worst-case allocations in the presence of indivis-
ible goods. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) Internet and Network
Economics. LNCS, vol. 7090, pp. 278–289. Springer, Heidelberg (2011)

12. Moulin, H.: Uniform externalities: Two axioms for fair allocation. Journal of Public
Economics 43(3), 305–326 (1990)

Approximation Algorithms for Computing Maximin Share Allocations 51

13. Procaccia, A.D.: Cake cutting algorithms. In: Brandt, F., Conitzer, V., Endriss, U.,
Lang, J., Procaccia, A. (eds.) Handbook of Computational Social Choice, chap. 13.
Cambridge University Press (2015)

14. Procaccia, A.D., Wang, J.: Fair enough: guaranteeing approximate maximin shares.
In: ACM Conference on Economics and Computation, EC 2014, pp. 675–692 (2014)

15. Robertson, J.M., Webb, W.A.: Cake Cutting Algorithms: be fair if you can. AK
Peters (1998)

16. Spliddit: Provably fair solutions (2015). http://www.spliddit.org/
17. Steinhaus, H.: The problem of fair division. Econometrica 16, 101–104 (1948)
18. Woeginger, G.: A polynomial time approximation scheme for maximizing the min-

imum machine completion time. Operations Research Letters 20, 149–154 (1997)
19. Woeginger, G., Sgall, J.: On the complexity of cake cutting. Discrete Optimization

4(2), 213–220 (2007)

http://www.spliddit.org/

Envy-Free Pricing in Large Markets:
Approximating Revenue and Welfare

Elliot Anshelevich, Koushik Kar, and Shreyas Sekar(B)

Rensselaer Polytechnic Institute, Troy, NY, USA
eanshel@cs.rpi.edu, koushik@ecse.rpi.edu, sekars@rpi.edu

Abstract. We study the classic setting of envy-free pricing, in which a
single seller chooses prices for its many items, with the goal of maximiz-
ing revenue once the items are allocated. Despite the large body of work
addressing such settings, most versions of this problem have resisted good
approximation factors for maximizing revenue; this is true even for the
classic unit-demand case. In this paper, we study envy-free pricing with
unit-demand buyers, but unlike previous work we focus on large markets:
ones in which the demand of each buyer is infinitesimally small compared
to the size of the overall market. We assume that the buyer valuations
for the items they desire have a nice (although reasonable) structure,
i.e., that the aggregate buyer demand has a monotone hazard rate and
that the values of every buyer type come from the same support.

For such large markets, our main contribution is a 1.88 approximation
algorithm for maximizing revenue, showing that good pricing schemes
can be computed when the number of buyers is large. We also give a
(e, 2)-bicriteria algorithm that simultaneously approximates both maxi-
mum revenue and welfare, thus showing that it is possible to obtain both
good revenue and welfare at the same time. We further generalize our
results by relaxing some of our assumptions, and quantify the necessary
tradeoffs between revenue and welfare in our setting. Our results are the
first known approximations for large markets, and crucially rely on new
lower bounds which we prove for the profit-maximizing solutions.

1 Introduction

How should a seller controlling multiple goods choose prices for these goods,
so that the prices yield good revenue and yet are efficiently computable? This
question is among the most fundamental of algorithmic challenges motivated by
Economic paradigms. At a high level, this setting can be modeled as a two-stage
game: the seller chooses prices, and the buyers respond by purchasing goods at
these prices. A common constraint in this context is one of envy-freeness, i.e.,
every buyer receives items that maximize her utility, and thus would not want
to “switch places” with any other buyer.

Despite the surge of papers studying envy-free pricing in recent years [3,14],
even the simplest versions of this problem have resisted good approximation
factors for maximizing revenue. This is true even for the common setting of

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 52–64, 2015.
DOI: 10.1007/978-3-662-47672-7 5

Envy-Free Pricing in Large Markets: Approximating Revenue and Welfare 53

unit-demand buyers, where every buyer desires one unit of good from a demand
set Si (possibly different for each buyer i); she values all items in Si equally and
has no value for items outside of Si. The problem of revenue-maximization with
unit-demand buyers is among the most popular versions of the pricing problem.
While the best known approximation algorithm for the item-pricing version of
this problem has only a logarithmic factor [3,14], more sophisticated pricing
mechanisms have yielded some beautiful, near-optimal mechanisms, but only by
giving up envy-freeness [6,13].

In this paper, we study envy-free pricing with unit-demand buyers, and form
good approximation algorithms for maximizing both revenue and welfare. Unlike
most previous work on this subject, we focus on large markets: ones in which
the demand of each buyer is infinitesimally small compared to the market size.
For envy-free settings, studying large markets is much more reasonable than a
market with only a few buyers. Indeed, in such a market, a seller may not be
able to price discriminate (i.e., sell the same good to different buyers at different
prices), and would instead simply post a price for each good, which would apply
to all of the buyers. The fact that all buyers who receive a copy of the same good
pay the same price, along with buyers always purchasing a unit of the cheapest
good in their set Si, would guarantee that the allocation is envy-free.

Our Model. We consider a single monopolist producing a set S of goods, which
are near-substitutes. The seller can produce any desired quantity xt of a good
t ∈ S, for which he incurs a cost of Ct(xt). The seller’s main objective is to set
prices on the goods to maximize revenue; in addition to revenue, the seller may
also be interested in welfare guarantees. The market consists of a set B of buyer
types: for a given type i ∈ B, all the buyers having this type desire the same
set Si ⊆ S of items. Every individual buyer’s demand is infinitesimal compared
to the market size. Therefore, we can represent every type i ∈ B by a (inverse)
demand function λi(x) such that for any given v, we know how many buyers x
have a valuation of v = λi(x) or more for items in Si.

Assumptions on Buyer Demand: In this work, we will assume that all
the inverse demand functions considered have a Monotone Hazard Rate (See
Section 2). This is a common assumption on the demand, encompassing sev-
eral popular functions previously considered in the literature, including concave,
power-law, and exponential demand [2]. Secondly, in large markets with similar
items, it is typical to assume that the valuations across buyer types are corre-
lated; for example when the valuations of all buyers are sampled (albeit differ-
ently) from some global distribution. Our main results hold under a Uniform
Peak assumption that captures many such natural settings where the buyer val-
uations are correlated. Formally, an instance satisfies the Uniform Peak assump-
tion if the peak of the supports of the demand functions are the same across
buyer types. In Section 4, we generalize our results to settings without this
assumption. Our model captures several scenarios of interest; we illustrate two
of them below.

54 E. Anshelevich et al.

1. PEV Charging: As Plug-in Electric Vehicles become commonplace, it is
expected that charging stations will be set up at many locations. Due to
the variable cost of electricity generation, these stations may have different
prices for charging during different time intervals. We can model each time
slot as an item t; every buyer has a set of time slots during which she can
charge, and the seller may be able to predict the demand using prior data.

2. Display Advertising: A publisher may have a set of items (e.g., adver-
tising slots) being sold via simultaneous posted price auctions. The ad-slots
are differentiated (in their position or location on the website) and a large
number of buyers are interested in buying these items, each interested in
some specific subset depending on their target audience.

Our model retains the combinatorial flavor of the general envy-free pricing
problem: different buyer types have access to different subsets of items, and
these subsets are not correlated in any way. It is this combinatorial aspect which
contributes to the hardness of the problem. In fact, recent complexity results
[3,4] indicate that the general unit-demand problem with uniform valuations may
not admit approximation algorithms with factors better than O(log |B|). The
starting point of our work is the fact that in large markets with many buyer types,
O(log |B|) algorithms are not acceptable. A large body of work has circumvented
this hardness by studying interesting instances in which the combinatorial aspect
of the model is limited or rendered moot [5,7,11]. In contrast, we impose no
such restriction on the model, instead making the assumption that the buyer
valuations follow a nice (monotone hazard rate) structure, while the sets Si can
be arbitrary. For the large market settings we are interested in, our assumptions
seem more reasonable than restricting demand sets.

Two aspects of large markets that we will feature in this paper warrant fur-
ther discussion. First, while the majority of literature has focused on envy-free
pricing to maximize revenue (see Related Work for exceptions), we focus on
maximizing both revenue and social welfare, and the trade-offs therein. This is
motivated by the fact that in large markets with repeated engagement, compro-
mising on welfare may often lead to poor revenue in the long-run. Second, in
our model sellers face convex production costs Ct for each item. This strictly
generalizes models with limited or unlimited supply which are usually the norm.
In large markets, assuming limited supply is too rigid as sellers may often be
able to increase production, albeit at a higher cost. Costs, however, are a non-
trivial addition to the envy-free model. Many of the standard techniques that
previously yielded good algorithms, especially single-pricing for all items, fail
to do so in our framework. The seller now faces the onerous task of balancing
demand with production costs, which may be different for different items.

1.1 Our Results

Our main contribution in this work is an algorithm for envy-free pricing that
extracts more than half the optimal revenue. Additionally, we show that by
giving up a small amount of revenue, the seller can guarantee high social welfare.

Envy-Free Pricing in Large Markets: Approximating Revenue and Welfare 55

(Main Theorems). For settings with Monotone Hazard Rate demand func-
tions that obey the Uniform Peak assumption, we present

1. A 1.88-Approximation algorithm for maximizing revenue
2. A (e, 2)-Bicriteria algorithm that simultaneously approximates both maxi-

mum revenue (factor e) and welfare (factor 2).

Although both of our results use a continuous ascending-price algorithm, we
describe an efficient implementation for this algorithm. We also show that rev-
enue maximization remains NP-Hard even with the Uniform Peak assumption.

We next generalize the uniform peak assumption and consider markets where
every buyer type i has a (potentially different) support [λmin

i , λmax
i]. For this

setting, our results are parameterized by a factor Δ that equals the ratio of the
maximum λmax

i to the minimum λmax
i across buyer types. We show a O(log Δ)

approximation to the optimal revenue in this setting, and thus imply that as
long as the valuations for different buyer types are not too different, we can
still extract high revenue. Moreover, we show that this O(log Δ) solution also
guarantees one fourth of the optimum social welfare. Although the actual buyer
demand may be quite asymmetric, our result depends only on the difference in
the peak of the supports; it is reasonable to expect that this difference is not too
large if the goods are similar.

We now summarize the two high-level contributions that enable our results.

1. We provide a general framework to derive good algorithms for large markets
with production costs, extensively using techniques from the theory of min-
cost flows.

2. Our constant-approximation factors depend crucially on the insight that we
gain on the prices in the revenue-maximizing solution. In contrast to previous
work, where the approximation factor of the revenue of the computed solu-
tion is usually obtained by comparing it to the optimum social welfare [14]
(which is an upper bound on optimum revenue), we are able to directly
compare the revenue of our solution to the profit-maximizing solution.

1.2 Related Work

Our work is a part of a rather extensive body of literature studying envy-free or
item-pricing; the field is too vast to survey here and we will only sample the most
relevant results. The Unit-Demand Pricing (UDP) problem where buyers have
different valuations for different items was first considered in [14], which gave
a O(log |B|) approximation algorithm for maximizing revenue. The version that
we study (each buyer has equal valuation for all items in Si, and 0 otherwise) has
been referred to as UDP-MIN or UDP with Uniform Valuations. Surprisingly,
the addition of uniform values has not lead to any improved algorithms for the
general UDP problem. Moreover, recent complexity results [3,4] indicate that a
sub-logarithmic approximation factor may be unlikely for both problems.

Assuming more structure on the combinatorial aspect of UDP (i.e., sets Si

stating which buyers have access to which items) has yielded more tractable

56 E. Anshelevich et al.

instances. For example, good approximation algorithms exist when each item is
desired by at most k buyer types [7,15]. For settings with budgeted buyers who
have access to all items but have a limit on the amount of money they can spend,
[11] give a 0.5-approximation algorithm; we remark that budgeted buyers can
be captured with an inverse demand λ(x) = c/x. In contrast, ours is among the
few papers that makes no assumptions on the demand sets Si but still obtains a
constant approximation factor. Finally, another active line of work has looked at
envy-free pricing when each buyer demands a single bundle of items. For more
details, the reader is asked to refer to [3] and the references therein.

More broadly, our work bears certain similarities to algorithmic pricing mech-
anisms [5] in a Bayesian setting, especially posted price mechanisms. In fact, the
aggregate demand that we consider can be interpreted as buyers deriving values
from a known distribution. Although posted pricing provides excellent guaran-
tees, even in multi-parameter settings [6,13], the mechanisms seldom result in
envy-free allocations because it is assumed that buyers choose items in some
order. At a high level, our work is a part of the literature exploring the space of
multi-parameter settings with some structure. In addition to a valuation, buy-
ers have a demand set (Si) in our model, whereas researchers have looked at
other models where the additional parameter is the quantity demanded [8] or a
position in a metric space [9].

Finally, envy-free pricing to maximize welfare coincides with the notion of
Walrasian Equilibrium minus the market clearing constraint. In large markets,
Walrasian Equilibria are guaranteed to exist [1], although their revenue may
be poor. In discrete markets, existence is not guaranteed and the focus has
been on solutions that are approximately envy-free but still guarantee good wel-
fare [10,12]. There has also been some work on approximating both revenue and
welfare over a restricted space of solutions; for instance, the space of all equilib-
ria in GSP [16], or all competitive equilibria for sharp multi-unit demand [8]. In
contrast, bi-criteria approximations like ours, which compare both objectives for
the same solution to the unrestricted global optima, have not been previously
considered in the envy-free literature to the best of our knowledge.

2 Model and Preliminaries

We study the pricing problem faced by a central seller controlling a set S of
goods with a large number of buyers, each belonging to one of the buyer types
in B. All the buyers having a given type Bi have the same set of desired items
Si ⊆ S. We model the market structure as a bipartite graph G = (B ∪ S,E)
where there is an edge between each buyer type Bi and every good in Si. For
every individual buyer j ∈ Bi, her valuation is vj for items in her demand set Si

and 0 otherwise. Note that different buyers belonging to the same type Bi can
have different valuations for the items in Si.

Aggregate Demand and Production Cost: Every individual buyer’s
demand is infinitesimal compared to the market size. Therefore, we can model

Envy-Free Pricing in Large Markets: Approximating Revenue and Welfare 57

the aggregate demand of all buyers having type Bi using an inverse demand func-
tion λi(x); v = λi(xi) means that xi of these buyers have a value of v or more for
the items in Si. As an example, consider λi(x) = 1−x for x ∈ [0, 1]. This means
that the total population of buyers with type Bi is one; λi(0.25) = 0.75 implies
that one-fourth of these buyers have a valuation of 0.75 or more. Finally, the
seller incurs a production cost of Ct(x) for producing x amount of good t ∈ S.

Best-Reponse and Envy-Freeness: A complete solution consists of prices and
an allocation, and is specified by three vectors (p,x,y). The seller’s strategy is
to select a price vector p where pt is the price on item t ∈ S. We define x to be
the buyer demand vector such that xi is the amount of good allocated to buyers
from type Bi. Finally, y is the allocation such that yt is the total amount of good
t allocated to buyers and yt(i), the amount to buyer type Bi. We only consider
allocations y that are feasible with x and G: for all i,

∑
t yt(i) should equal xi,

and buyers in Bi must only receive allocations of items belonging to Si. Then,

• Given p, we let pi denote the minimum price available to buyers from type
Bi, i.e., pi = mint∈Si

pt.
• The buyer demand x is said to be a best-response to the prices p iff ∀Bi,

pi = λi(xi). That is, a population of xi buyers from Bi have a value of pi or
larger, and thus are maximizing their utility by deciding to purchase items
at a price of pi.

• Given p and x, the allocation y is said to be envy-free if buyer demand is a
best-response to the prices, and if for every buyer the items they are allocated
are the lowest priced items available to them, i.e., yt(i) > 0 ⇒ pt = pi.

Our main objective is an envy-free solution that maximizes revenue. Given
(p,x,y), the revenue or profit1 of the seller is the total payment minus costs
incurred, i.e.,

Revenue =
∑

t∈S

(ptyt − Ct(yt)).

We also consider solutions with good social welfare, i.e., the total utility of all
the buyers plus that of the seller. As long as the solution is envy-free, buyers are
utility-maximizing, and so the aggregate utility of buyers belonging to type i is
the sum of their values minus payments, which is

∫ xi

0
λi(x)dx − pixi. Since the

payments cancel out, the total social welfare of a solution is equal to

Social Welfare =
∑

Bi∈B

∫ xi

x=0

λi(x)dx −
∑

t∈S

Ct(yt).

We make the following assumptions on the inverse demand and cost functions.

1. By definition, λi(x) cannot increase with x. Additionally, we assume that
λi(x) is continuously differentiable on (0, Ti) (here Ti is the population of
buyers in Bi), and has a monotone hazard rate (see definition below).

1 We use the terms revenue and profit interchangeably to be consistent with previous
revenue-maximization literature.

58 E. Anshelevich et al.

2. For all t ∈ S, we take the production costs Ct(y) to be convex, which is the
norm in the literature. We also assume that Ct(y) is continuously differen-
tiable and define ct(y) to be its derivative. All our results hold if an item t
has a limited supply of Yt, and Ct(y) is only differentiable until y = Yt.

Definition 1. (MHR) An inverse demand function λ(x) is said to be log-
concave or equivalently, have a monotone hazard rate if λ′(x)

λ(x) is non-increasing
with x.

Many commonly used buyer demand functions belong to this class including
uniform (λ(x) = a), linear (λ(x) = a − x) and exponential inverse demand
(λ(x) = e−x). Although the monotone hazard rate requirement gives the appear-
ance of being somewhat restrictive, this assumption is actually rather weak. We
show that even with only MHR demand, our framework encompasses the previ-
ously studied unit-demand pricing problem (UDP) in small markets.

Proposition 2. Any UDP instance with uniform valuations in markets with a
finite number of buyers can be reduced to an instance of our problem where all
buyer types have MHR inverse demand.

Therefore, our setting strictly generalizes previously studied UDP problems, and
we show in Theorem 8 that our general problem does not admit approximation
algorithms with any reasonable approximation factor. Our main contribution,
however, is proving that the addition of a little bit of structure (via uniform
peaks) to this general framework provides much greater insight into the nature
of the revenue-maximizing solution, and leads to good algorithms.

Optimal Solutions. We use the notation (popt,xopt,yopt) to denote an envy-
free solution maximizing revenue, and (x∗,y∗) to denote an allocation that max-
imizes welfare (since welfare does not depend on the prices). Given a graph G,
functions λi and Ct, it is easy to see that the solution maximizing social welfare
can be computed using a convex program. We also note that for the price vector
p∗ where p∗

t = ct(y∗
t), (x∗,y∗) is actually an envy-free allocation. Finally. it is

not difficult to show that popt
t ≥ p∗

t ; in Lemma 6 we show much stronger lower
bounds on popt which enable us to prove our results.

Connection to Flows: We can view a feasible allocation y as a flow from the
items S to the buyers with a demand of x, assuming that G is fixed. Notice
that there are several feasible flows for a given demand x. We will be most
interested in min-cost flows: the feasible allocation y that also minimizes the
total production cost

∑
t Ct(yt). The min-cost flow is independent of the prices

and given x, can be computed efficiently using a convex program.
It is easy to see that y∗ is a min-cost flow, but general envy-free solutions

including (popt,xopt,yopt), may not use min-cost flows, since envy-freeness con-
strains the buyers to use only the items with cheapest price, while min-cost flows
form allocations to optimize production costs. We reiterate that given a price
vector p, the best-response buyer demand x can be computed using pi = λi(xi),

Envy-Free Pricing in Large Markets: Approximating Revenue and Welfare 59

and given (p,x), we can always determine an envy-free allocation y. Interest-
ingly, the solutions returned by our algorithms are not only envy-free, but also
use min-cost flows for the corresponding buyer demand x.

3 Large Markets with Uniform Peak Valuations

As argued in the Introduction, for markets with a large number of buyers it
often makes sense to assume that the inverse demand functions λi have the
same support [λmin, λmax] for all i ∈ B. In fact, all our results in this section
hold under a more general Uniform Peak assumption, which only requires that
the peak support value λmax = λi(0) is the same for all buyer types i. This would
occur, for example, when a large population of buyers is assigned to different
buyer types in a random way. However, this assumption does not affect the
combinatorial nature of the optimization problem, i.e., choosing which items get
a high price, and which receive a lower price. Therefore, the NP-Hardness proof
for the unit-demand case in [14] can be adapted to our setting.

Claim 3. The problem of envy-free revenue-maximization is NP-Hard even in
large markets with Uniform Peak valuations and MHR Inverse Demand.

In this section, we establish our main result: a 1.88 approximation algorithm for
maximizing revenue when the inverse demand functions are MHR with uniform
peaks. We begin with a general, parameter-dependent procedure for generating
prices, which will be the building block of all our algorithms. Although the
algorithm is described here as a more intuitive continuous-time procedure, it can
be efficiently implemented using O(|B| log λmax) min-cost flow computations. To
simplify discussion, henceforth we will use “buyer” interchangeably with “buyer
type” as long as the context is clear and use i instead of Bi for buyer types.

Algorithm 1 begins by pricing all the items at the price vector p∗, which
makes (p∗,x∗,y∗) an envy-free allocation. We gradually increase prices on the
items belonging to an ‘active set’, initialized to the set of cheapest items in p∗

and the buyers receiving these items. At each stage, every item in the active set
has the same price (active price) allowing us to compute the min-cost flow for
only the active buyers and items. As we increase the active price, if it equals p∗

t

for some inactive t, we add t and buyers using t to the active set. This simple
ascending-price algorithm continues until a stopping condition dependent on a
parameter k ≥ 1 is reached for some item t (Equation (1)); once this happens
the price of item t becomes fixed, and item t is removed from the active set.
We now discuss some properties of this algorithm that hold for all k. For a given
parameter k ≥ 1, we will use (pk,xk,yk) to denote the solution returned by our
algorithm. Recall that (popt,xopt,yopt) is the revenue-maximizing solution.

Properties Satisfied by Algorithm 1 and Price Hierarchy. Every ‘stage’
of our algorithm corresponds to a unique value of the active price (i.e., price of
all the active items), so we can refer to the allocation formed by the algorithm
at some point as the allocation at active price p. Figure 1 describes the natural
hierarchy between the Active, Inactive, and Finished sets at every value of the

60 E. Anshelevich et al.

Algorithm 1 Ascending-Price Procedure with Stop Parameter k

1: Set initial prices on the items, pt = p∗
t .

2: ACTIVE ← All minimally priced items and all buyers using these items.
3: INACTIVE ← B ∪ S \ ACTIVE; FINISH ← ∅
4: while FINISH �= B ∪ S do
5: Increase the price of all ACTIVE items by an infinitesimal amount

{All ACTIVE items have the same price, the active price.}
6: Compute the min-cost flow for the sub-graph induced by ACTIVE {We prove

later: At every stage active buyers only receive allocations of active items}
7: if t ∈ INACTIVE s.t p∗

t equals the active price then
8: Remove t, buyers using t from INACTIVE and add to ACTIVE
9: end if

10: if t ∈ ACTIVE meets the stopping criterion in the current solution then
11: Remove t, buyers using t from ACTIVE and add to FINISH.
12: end if
13: end while

Stopping Criterion(pt, yt, k) : pt − ct(yt) =
1

k
(λmax − ct(yt)) (1)

active price p. It is not difficult to show that the statement in Figure 1 always
holds, starting with the initial envy-free solution (p∗,x∗,y∗). Also notice that
the following properties always hold.

Buyer Types Items

Inactive Inactive

Active Active

Finished Finished

P
ri
ce

Fig. 1. At any stage of Algorithm 1,
the order of prices for the different items
is: Inactive > Active > Finished. Thick
edges indicate that the buyers in a cer-
tain set (Active, Inactive or Finished)
receive allocations only from the items
in the same set. Dotted edges between
a buyer set and an item set indicate
although the buyers have access to the
items in that set, they are not currently
receiving any allocation of that item.

Lemma 4. Suppose that at some stage of Algorithm 1 where the active price is
p, the corresponding solution is p,x,y. Then, the following invariants hold:

1. x, y is an envy-free allocation to the corresponding prices p.
2. y is a min-cost flow to the corresponding buyer demand x.

(Proof Sketch) A solution is a min-cost flow (respectively envy-free) if all buyers
are using the items with the smallest marginal costs (price) available to them.
We claim that analogous to the price hierarchy of Figure 1, there is a similar

Envy-Free Pricing in Large Markets: Approximating Revenue and Welfare 61

hierarchy for the marginal costs of the items belonging to the three sets. There-
fore, it suffices to show that buyers are using the items with the smallest prices
or marginal costs within the same set, since all cross-edges go to items with
a higher price or marginal cost. For inactive buyers and items, the prices and
allocations are the same as in (p∗,x∗,y∗), so both envy-freeness and minimum
cost follow immediately. For active buyers, this is trivially true since all active
items have the same price and we compute a min-cost flow within the active set.

Finally, consider a finished buyer i receiving some item t. Any t′ with a
lower price must have reached the stopping condition before t. So i was active
when t′ became finished which implies (i, t′) /∈ E. Similarly, a rearrangement of
Equation 1 shows us that any t′ with a smaller marginal cost than t must have
finished strictly before t. By the same reasoning, i cannot have an edge to t′. So,
i has no edges to items with smaller price or marginal cost than t. �

Now we are ready to state the main result of this section.

Theorem 5. Running Algorithm 1 for k = e and k =
√

e and returning the
solution with higher profit results in an envy-free allocation which has a (4

√
e −

2 − e) ≈ 1.877 approximation to the optimal profit.

Since we already argued that Algorithm 1 returns envy-free solutions, we
only need to establish the approximation bound. The crucial lemma that allows
us to do this is the following lower bound which we prove on the prices in popt.
Specifically, this lower bound allows us to compare our solution directly to the
revenue-maximizing solution, instead of using the welfare-maximizer as a proxy.

Lemma 6. For every item t, its price in popt cannot be smaller than its price
in pe, the prices returned by Algorithm 1 for k = e.

(Proof Sketch.)The actual proof is rather technical and we provide only the
basic ideas here. We proceed by contradiction. Suppose for some t, popt

t < pe
t ,

w.l.o.g, let t be the item with the lowest price satisfying this inequality. We claim
that the amount of item t allocated in yopt cannot be smaller than the amount
allocated in ye. Essentially, this is true because the decreased prices in yopt

lead to larger demand and larger allocations. Now in our solution, once an item
becomes finished, we change neither its price nor its allocation. This means that
every finished item must still obey the stopping condition. For t,

pe
t − ct(ye

t) =
1
e
(λmax − ct(ye

t)) (and) popt
t − ct(y

opt
t) <

1
e
(λmax − ct(y

opt
t)) (2)

The equality is from the stopping condition and the inequality from the fact
that yopt

t ≥ ye
t and popt

t < pe
t . We now claim that there exists a price p2 such

that if we take the prices popt, and then increase the price of t and similarly-
priced items to p2, then the resulting envy-free allocation has higher revenue
than the optimal one, giving us a contradiction. To prove this we make use of
MHR properties, most crucially that for a non-increasing MHR function fi(x)
with fi(0) > efi(x1) for a given x1, fi(x1 − ε)(x1 − ε) > fi(x1)x1 for some ε.
Define fi(x) := λi(x) − c, where c is the marginal cost of t. Recall that for any

62 E. Anshelevich et al.

buyer i if at a price of p1, the corresponding demand is x1, then p1 = λi(x1);
this means that when we increase the price from p1 to p2, the change in profit
is fi(x2)x2 − fi(x1)x1, where x2 is the new flow. Now, take the optimal prices
popt (p1 = popt

t), and increase the price of all items with the same price as t
(p2 = p1+δ); for some buyer type i, let the reduced flow be given by x2 = x1−ε.
From Equation(2), we know fi(0) > efi(x1), and so applying the MHR property
and summing over all buyer types, we get that the new profit is higher. �

To complete the proof of Theorem 5, recall that we return the best of Algo-
rithm 1 for k = {e,

√
e}. Note that p

√
e ≥ pe since decreasing k in Equation (1)

only delays the stopping point. Define BH to be the buyers whose payment in
popt is larger than in p

√
e, and BL to be the rest of the buyers. We can show

that pe extracts a large fraction of the optimum profit from the buyers in BL

and p
√

e from BH . A key lemma that completes the bound is that for MHR
functions, for an increase in price from pe to p

√
e, the profit loss is at most a

factor two, and so p
√

e extracts at least half the profit from the buyers in BL.
The precise factor of 1.88 comes from carefully balancing these bounds; this

leads to the choice of p
√

e and pe. It is important to note that p
√

e is not simply
a scaled version of the prices in pe; its construction crucially depends on the
stopping condition, which in turn depends on both the price and the production
cost. The presence of production costs means that previous approaches (e.g.,
scale prices uniformly, choose a single price for all items) do not work well, as
they can end up with solutions with high cost and thus low overall profit.

3.1 Approximating Revenue and Social Welfare Simultaneously

For sellers who care about both revenue and welfare, as is common in repeated
mechanisms where you want the buyers to “leave happy”, we also provide the
following guarantees.

Theorem 7. Algorithm 1 for k = e provides an envy-free solution which is a
e-approximation to the optimal profit with at least half the optimal welfare.

This result actually provides an additional, stronger revenue-welfare trade-off.
Suppose we run the algorithm in Theorem 7, and obtain welfare which is exactly
1
α of optimum (we know that α ≤ 2). Then, our analysis guarantees that the
profit of the resulting solution is actually at least max(1e , α−1

α) of the optimum;
for instance if α = 2, then we actually get half the optimal revenue.

4 Relaxing the Uniform Peak Valuation Assumption

In this section, we relax the assumption that for all demand functions, λi(0) is
the same. We capture the distortion in this quantity via a parameter Δ which is
the ratio of the maximum value of λi(0) over all i to the minimum value. Even
though the λi’s may not be the same, it is likely that they are closely distributed
since all buyers are interested in a similar type of good. Unfortunately, the
revenue-maximization problem (UDP) without the Uniform Peak assumption is

Envy-Free Pricing in Large Markets: Approximating Revenue and Welfare 63

so general (recall Proposition 2) that it does not admit approximation factors
that are even polynomial in Δ. However, we show that we can still extract a good
fraction of the optimum revenue and welfare as long as the production costs Ct(x)
are doubly convex, i.e., their derivatives are also convex with ct(0) = 0.

Theorem 8. 1. There cannot be a O(Δk)-approximation algorithm for any
k > 0 for UDP in Large Markets with MHR inverse demand and convex
costs unless NP ⊆ DTIME(n(logcn)) for some constant c.

2. For any instance with MHR demand and Doubly Convex costs, we can com-
pute an envy-free solution which is a O(log Δ)-approximation to the optimal
revenue, and which also guarantees 1

4

th of the optimum welfare.

All the omitted proofs can be found in a full version of this paper available at
http://arxiv.org/abs/1503.00340.

Acknowledgements. This work was partially supported by NSF awards CCF-
1101495 and CNS-1218374.

References

1. Eduardo, M., Azevedo, E., Weyl, G., White, A.: Walrasian equilibrium in large,
quasilinear markets. Theoretical Economics 8(2), 281–290 (2013)

2. Bagnoli, M., Bergstrom, T.: Log-concave probability and its applications. Economic
Theory 26(2), 445–469 (2005)

3. Briest, P., Krysta, P.: Buying cheap is expensive: Approximability of combinatorial
pricing problems. SIAM J. Comput. 40(6), 1554–1586 (2011)

4. Chalermsook, P., Chuzhoy, J., Kannan, S., Khanna, S.: Improved hardness results
for profit maximization pricing problems with unlimited supply. In: Gupta, A.,
Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RANDOM 2012.
LNCS, vol. 7408, pp. 73–84. Springer, Heidelberg (2012)

5. Chawla, S., Hartline, J.D., Kleinberg, R.D.: Algorithmic pricing via virtual valua-
tions. In: Proceedings of EC (2007)

6. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism
design and sequential posted pricing. In: Proceedings of STOC (2010)

7. Chen, N., Deng, X.: Envy-free pricing in multi-item markets. ACM Transactions
on Algorithms 10(2), 7 (2014)

8. Chen, N., Deng, X., Goldberg, P.W., Zhang, J.: On revenue maximization with
sharp multi-unit demands. Journal of Combinatorial Optimization 1–32 (2014)

9. Chen, N., Ghosh, A., Vassilvitskii, S.: Optimal envy-free pricing with metric sub-
stitutability. SIAM J. Comput. 40(3), 623–645 (2011)

10. Chen, N., Rudra, A.: Walrasian equilibrium: Hardness, approximations and
tractable instances. Algorithmica 52(1), 44–64 (2008)

11. Feldman, M., Fiat, A., Leonardi, S., Sankowski, P.: Revenue maximizing envy-free
multi-unit auctions with budgets. In: EC (2012)

12. Feldman, M., Gravin, N., Lucier, B.: Combinatorial walrasian equilibrium. In:
STOC 2013 (2013)

http://arxiv.org/abs/1503.00340

64 E. Anshelevich et al.

13. Feldman, M., Gravin, N., Lucier, B.: Combinatorial auctions via posted prices. In:
Proceedings of SODA (2015)

14. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.:
On profit-maximizing envy-free pricing. In: Proceedings of SODA (2005)

15. Im, S., Pinyan, L., Wang, Y.: Envy-free pricing with general supply constraints for
unit demand consumers. J. Comput. Sci. Technol. 27(4), 702–709 (2012)

16. Lucier, B., Leme, R.P., Tardos, É.: On revenue in the generalized second price
auction. In: Proceedings of WWW 2012 (2012)

Batched Point Location in SINR Diagrams
via Algebraic Tools

Boris Aronov1 and Matthew J. Katz2(B)

1 Department of Computer Science and Engineering,
Polytechnic School of Engineering, New York University, Brooklyn, NY 11201, USA

boris.aronov@nyu.edu
2 Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

matya@cs.bgu.ac.il

Abstract. The SINR model for the quality of wireless connections has
been the subject of extensive recent study. It attempts to predict whether
a particular transmitter is heard at a specific location, in a setting con-
sisting of n simultaneous transmitters and background noise. The SINR
model gives rise to a natural geometric object, the SINR diagram, which
partitions the space into n regions where each of the transmitters can be
heard and the remaining space where no transmitter can be heard.

Efficient point location in the SINR diagram, i.e., being able to build
a data structure that facilitates determining, for a query point, whether
any transmitter is heard there, and if so, which one, has been recently
investigated in several papers. These planar data structures are con-
structed in time at least quadratic in n and support logarithmic-time
approximate queries. Moreover, the performance of some of the proposed
structures depends strongly not only on the number n of transmitters and
on the approximation parameter ε, but also on some geometric parame-
ters that cannot be bounded a priori as a function of n or ε.

In this paper, we address the question of batched point location
queries, i.e., answering many queries simultaneously. Specifically, in one
dimension, we can answer n queries exactly in amortized polylogarithmic
time per query, while in the plane we can do it approximately.

All these results can handle arbitrary power assignments to the trans-
mitters. Moreover, the amortized query time in these results depends only
on n and ε.

Finally, these results demonstrate the (so far underutilized) power
of combining algebraic tools with those of computational geometry and
other fields.

1 Introduction

The SINR (Signal to Interference plus Noise Ratio) model attempts to more
realistically predict whether a wireless transmission is received successfully, in

Work on this paper by B.A. has been partially supported by NSF Grants CCF-11-
17336 and CCF-12-18791. Work on this paper by M.K. has been partially supported
by grant 1045/10 from the Israel Science Foundation. A more complete version of
this paper is available on arXiv [3].

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 65–77, 2015.
DOI: 10.1007/978-3-662-47672-7 6

66 B. Aronov and M.J. Katz

a setting consisting of multiple simultaneous transmitters in the presence of
background noise. In particular, it takes into account the attenuation of electro-
magnetic signals. The SINR model has been explored extensively in the litera-
ture [19].

Let S = {s1, . . . , sn} be a set of n points in the plane representing n trans-
mitters. Let pi > 0 be the transmission power of transmitter si, i = 1, . . . , n.
In the SINR model, a receiver located at point q is able to receive the signal
transmitted by si if the following inequality holds:

pi

|q−si|α
Σj �=i

pj

|q−sj |α + N
≥ β ,

where |a − b| denotes the Euclidean distance between points a and b, and α > 0,
β > 1,1 and N > 0 are given constants (N represents the background noise).
This inequality is also called the SINR inequality, and when it holds, we say
that q receives (or hears) si; we refer to the left hand side of the inequality as
SIN ratio (for receiver q w.r.t. transmitter si).

Notice that, since β > 1, a necessary condition for q to receive si is that
pi/|q−si| > pj/|q−sj |, for any j �= i. In particular, in the uniform power setting
where p1 = p2 = · · · = pn, a necessary condition for q to receive si is that si is the
closest to q among the transmitters in S. This simple observation implies that,
for any point q in the plane, either exactly one of the transmitters is received by
q or none of them is. Thus, one can partition the plane into n not necessarily
connected reception regions Ri, one per transmitter in S, plus an additional
region R∅ consisting of all points where none of the transmitters is received.
This partition is called the SINR diagram of S. Consider the multiplicatively-
weighted Voronoi diagram D of S in which the region Vi associated with si

consists of all points q in the plane for which 1
α
√

pi
|q − si| < 1

α
√

pj
|q − sj |, for any

j �= i [4]. Then Ri ⊂ Vi.
In a seminal paper, Avin et al. [6] studied properties of SINR diagrams, focus-

ing on the uniform power setting. Their main result is that in this setting the
reception regions Ri are convex and fat. (Here, Ri is fat if the ratio between
the radii of the smallest disk centered at si containing Ri and the largest disk
centered at si contained in Ri is bounded by some constant.) In the non-uniform
power setting, on the other hand, the reception regions are not necessarily con-
nected, and their connected components are not necessarily convex or fat. In
fact, they may contain holes [17].

A natural question that one may ask is: “Given a point q in the plane, does
q receive one of the transmitters in S, and if yes which one?” Or equivalently:
“Which region of the SINR diagram does q belong to?” The latter question is
referred to as a point-location query in the SINR diagram of S. We can answer
it in linear time by first finding the sole candidate, si, as the transmitter for

1 In this paper, we assume β > 1. A variant of our techniques applies also when β < 1:
up to 1/β receivers can be heard simultaneously, multiple nearest neighbors need to
be identified as the candidates, and the algorithms slow down correspondingly.

Batched Point Location in SINR Diagrams via Algebraic Tools 67

which the ratio 1
α
√

p |q − s| is minimum, and then evaluating the SIN ratio and
comparing it to β. To facilitate multiple queries, one may want to build a data
structure that can guarantee faster response. We can expedite the first step by
constructing the appropriate Voronoi diagram D = D(S) together with a point-
location structure, so that the sole candidate transmitter for a point q can be
found in O(log n) time. However, the boundary of the region Ri is described by a
degree-Θ(n) algebraic curve; it seems difficult (impossible, in general?) to build
a data structure that can quickly determine the side of the curve a given point
lies on. The answer is not even obvious in one dimension (where the transmitters
and potential receivers all lie on a line), as there Ri is a collection of intervals
delimited by roots of a polynomial of degree Θ(n).

The problem has been approached by constructing data structures for approx-
imate point location in SINR diagrams. All approaches use essentially the same
logic: first find the sole candidate si that the query point q may hear and then
approximately locate q in Ri. This is done by constructing two sets R+

i , R−
i

such that R+
i ⊂ Ri ⊂ R−

i ⊂ Vi,2 and preprocessing them for point location. In
the region R+

i reception of si is guaranteed, so if q ∈ R+
i , return “can hear si.”

Outside of R−
i one cannot hear si, so if q �∈ R−

i , return “cannot hear anything.”
The set R−

i \R+
i is where the approximation occurs: si may or may not be heard

there, so if q ∈ R−
i but q �∈ R+

i , return “may or may not hear si.”
Two different notions of approximation have appeared in the literature. In the

first [6,17], it is guaranteed that the uncertain answer is only given infrequently,
namely that area(R−

i \ R+
i) ≤ ε · area(Ri), for a suitable parameter ε > 0. In

the second [17], it is promised that the SIN ratio for every point in R−
i \ R+

i lies
within [c1β, c2β] for suitable constants c1, c2 with 0 < c1 < 1, c2 > 1.

We now briefly summarize previous work. Observing the difficulty of answer-
ing point-location queries exactly, Avin et al. [6] resorted to approximate query
answers in the uniform power setting. Given an ε > 0 they build a data struc-
ture in total time O(n2/ε) and space O(n/ε) that can be wrong only in a region
of area ε · area(Ri) for each si (i.e., approximation of the first type described
above). It supports logarithmic-time queries.

In a subsequent paper, Kantor et al. [17] studied properties of SINR diagrams
in the non-uniform power setting. After revealing several interesting and useful
properties, such as that the reception regions in the (d + 1)-dimensional SINR
diagram of a d-dimensional scene are connected, they present several solutions
to the problem of efficiently answering point-location queries. One of them uses
the second type of approximation, with c1 = (1 − ε)2α and c2 = (1 + ε)2α, for
a prespecified ε > 0. Queries can be performed in time O(log(n · ϕ/ε)), where
ϕ is an upper bound on the fatness parameters of the reception regions (which
cannot be bounded as a function of n or ε). The size of this data structure is
O(n · ϕ′/ε2) and its construction time is O(n2 · ϕ′/ε2), where ϕ′ > ϕ2 is some
function of the fatness parameters of the reception regions.

2 Notice that we have not followed the original notation in the literature, for consis-
tency with our notation below.

68 B. Aronov and M.J. Katz

Although highly non-trivial, the known results for point location in the SINR
model are unsatisfactory, in that they suffer from very large preprocessing times.
Moreover, in the non-uniform setting, the bounds include geometric parameters
such as ϕ and ϕ′ above, which cannot be bounded as a function of n or ε. In
this paper we focus on batched point location in the SINR model. That is, given
a set Q of m query points, determine for each point q ∈ Q whether it receives
one of the transmitters in S, and if yes, which one. Often the set of query points
is known in advance, for example, in the planning stage of a wireless network or
when examining an existing network. In these cases, one would like to exploit
the additional information to speed up query processing. We achieve this goal
in the SINR model; that is, we devise efficient approximation and exact algo-
rithms for batched point location in various settings. Our algorithms use a novel
combination of sophisticated geometric data structures and tools from computer
algebra for multipoint evaluation, interpolation, and fast multiplication of poly-
nomials and rational functions. For example, consider 1-dimensional batched
point location where m = n and power is non-uniform. We can answer exactly a
point-location query in amortized time O(log2 n log log n). Considering the same
problem in the plane, for any ε > 0, we can approximately answer a query in
amortized time polylogarithmic in n and ε, as opposed to the result of Kantor
et al. [17] mentioned above in which the bounds depend on additional geometric
parameters which cannot be bounded as a function of n or ε.

1.1 Related Work

The papers most relevant to ours are those by Avin et al. [6] and Kantor
et al. [17] discussed above. Avin et al. [5] also considered the problem of handling
queries of the following form (in the uniform-power setting): Given a transmit-
ter si and query point q, does q receive si by successively applying interference
cancellation? (Interference cancellation is a technology that enables a point q to
receive a transmitter s, even if s’s signal is not the strongest one received at q;
see [5] for further details.)

Gupta and Kumar [11] initiated an extensive study of the maximum capacity
and scheduling problems in the SINR model. Given a set L of sender-receiver
pairs (i.e., directional links), the maximum capacity problem is to find a fea-
sible subset of L of maximum cardinality, where L′ ⊆ L is feasible if, when
only the senders of the links in L′ are active, each of the links in L′ is feasi-
ble according to the SINR inequality. The scheduling problem is to partition L
into a minimum number of feasible subsets (i.e., rounds). We mention several
papers and results dealing with the maximum capacity and scheduling prob-
lems. Goussevskaia et al. [10] showed that both problems are NP-complete, even
in the uniform power setting. Goussevskaia et al. [9], Halldórsson and Watten-
hofer [14], and Wan et al. [24] gave constant-factor approximation algorithms for
the maximum-capacity problem yielding an O(log n)-approximation algorithm
for the scheduling problem, assuming uniform power. In [9] they note that their
O(1)-approximation algorithm also applies to the case where the ratio between
the maximum and minimum power is bounded by a constant and for the case

Batched Point Location in SINR Diagrams via Algebraic Tools 69

where the number of different power levels is constant. More recently, Halldórsson
and Mitra [13] have considered the case of oblivious power. This is a special case
of non-uniform power where the power of a link is a simple function of the link’s
length. They gave an O(1)-approximation algorithm for the maximum capacity
problem, yielding an O(log n)-approximation algorithm for scheduling. Finally,
the version where one assigns powers to the senders (i.e., with power control)
has also been studied, see, e.g., [2,12,13,18,22].

1.2 Our Tools and Goals

Besides making progress on the actual problems being considered here, we view
this work as another demonstration of what we hope to be a developing trend
of combining tools from the computer algebra world with those of computa-
tional geometry and other fields. Several relatively recent representatives of such
synergy show examples of seemingly impossible speed-ups in geometric algo-
rithms by expressing a subproblem in algebraic terms [1,20,21]. The algebraic
tools themselves are mostly classical ones, such as Fast Fourier Transform, fast
polynomial multiplication, multipoint evaluation, and interpolation [7,23]; see
[3, Appendix A] for details. We combine them with only slightly newer tools
from computational geometry, such as Voronoi diagrams, point location struc-
tures in the plane, fast exact and approximate nearest-neighbor query data struc-
tures, and range searching data structures [8]; refer to [3, Appendix B]. One very
recent result we need is that of Har-Peled and Kumar [15] that, as a special case,
allows one to build a compact data structure for approximating multiplicatively
weighted nearest-neighbor queries in the plane; the exact version appears to
require building the classical multiplicatively weighted Voronoi diagram, which
is a quadratic-size object.

We hope that the current work will lead to further productive collaborations
between computational geometry and computer algebra.

1.3 Our Results

We now summarize our main results. We use O∗ notation to suppress logarithmic
factors and Oε to denote polynomial dependence on 1/ε, where ε > 0 is the
approximation parameter. In general, we present algorithms for both the uniform-
power and non-uniform-power settings, where the algorithms of the former type
are usually somewhat simpler.

– In one dimension, we can perform n queries among n transmitters exactly
in O∗(n) total time; see Section 2.

– In two dimensions, we can perform n queries among n transmitters approxi-
mately in O∗

ε(n) total time; see Section 3.2.
– We can also facilitate exact batch queries when queries or transmitters form

a grid; we omit the details in this version; see [3].

70 B. Aronov and M.J. Katz

2 Batched Point Location on the Line

In this section S is a set of n ≥ 3 point transmitters and Q is a set of m query
points, both on the line. We first consider the uniform-power version of the
problem, where each transmitter has transmission power 1 (i.e., p1 = · · · = pn =
1), and then extend the approach to the arbitrary power version.

2.1 Uniform Power

A query point q receives si if and only if

1
|q−si|α

Σj �=i
1

|q−sj |α + N
≥ β .

Recall that, since β > 1, if q receives one of the transmitters, then it must be
the transmitter that is closest to it; we call it the candidate transmitter for q
and denote it by s(q) = s(q,S).

Next, we define a univariate function f as

f(q) :=
n∑

j=1

1
|q − sj |α .

Then, q can hear its candidate transmitter s(q) if and only if

E(q) :=
1

|q−s(q)|α
f(q) − 1

|q−s(q)|α + N
≥ β .

Theorem 1. For any fixed positive even integer α, given a set S of transmitters
(all of power 1) and a set Q of receivers, of sizes n and m respectively, we can
determine which, if any, transmitter is received by each receiver in total time
O((n + m) log2 n log log n).

Proof. As pointed out above, a receiver q can receive only the closest transmitter
s(q), if any, as the SINR inequality implies 1

|q−s(q)|α > 1
|q−s|α for any s �= s(q),

or equivalently, |q − s(q)| < |q − s|. So, as a first step, we identify the closest
transmitter for each receiver, which can be done, for example, by sorting S, and
using binary search for each receiver, in total time O((m + n) log n). Moreover,
we can compute the term 1

|q−s(q)|α , for each q ∈ Q, in the same amount of time.
Observe that f is a sum of n low-degree fractional functions of a single real

variable q, so according to [3, Corollary 1], we can now evaluate f on all points
of Q simultaneously in time O((n + m) log2 n log log n).

In O(m) additional operations we can evaluate the expressions
E(q1), . . . , E(qm) and determine for which receivers the SINR inequality holds,
so that the signal is actually received.

Computing and evaluating the fraction dominates the computation cost, so
the total running time is O((n + m) log2 n log log n).

Batched Point Location in SINR Diagrams via Algebraic Tools 71

2.2 Arbitrary Power

We proceed in a similar manner, except the construction of the multiplicatively
weighted Voronoi diagram on a line, which is more subtle; see [3].

Theorem 2. For any fixed positive even integer α, given a set S of transmitters
(not necessarily all of the same power) and a set Q of receivers, of sizes n and
m respectively, we can determine which, if any, transmitter is received by each
receiver in total time O((n + m) log2 n log log n).

3 Batched Point Location in the Plane

In this section S = {si} is a set of n point transmitters in the plane. We consider
three versions of (batched) point location, where in the first two the answers we
obtain are exactly correct, while in the third one the answer to a query q may
be either “s” (meaning that q receives s), “no” (meaning that q does not receive
any transmitter), or “maybe” (meaning that q may or may not be receiving some
transmitter; the SIN ratio is too close to β and we are unable to decide quickly
whether it is above or below β).

Specifically, we consider the following three versions of (batched) point loca-
tion. In the first version, we assume that the transmitters form an

√
n × √

n
non-uniform grid and that each transmitter has power 1. We show how to solve
a single point-location query in this setting in O(

√
n log2 n log log n) (rather than

linear) time. In the second version, we assume that the receivers form an n × n
non-uniform grid, but the n transmitters, on the other hand, are located any-
where in the plane. Moreover, we allow arbitrary transmission powers. We show
how to answer the n2 queries in near-quadratic (rather than cubic) time. The
details of these two versions are omitted due to space limitations; see [3].

Finally, in the third version (Section 3.2), we do not make any assumptions
on the location of the devices (either transmitters or receivers). As a result of
this, we might not be able to give a definite answer in borderline instances.
Specifically, given n transmitters and m receivers, we compute (in total time
near-linear in n + m), for each receiver q, its unique candidate transmitter s
and a value Ẽ(q), such that, if Ẽ(q) is sufficiently greater than β, then q surely
receives s, if Ẽ(q) is sufficiently smaller than β, then q surely does not receive
s, and otherwise, q may or may not receive some transmitter (i.e., Ẽ(q) lies in
the uncertainty interval). We first present a solution for which the uncertainty
interval is [2−α/2β, 2α/2β), i.e., a constant-factor approximation. We then gener-
alize it so that the uncertainty region is [(1 − ε)β, (1 + ε)β), for any ε > 0, i.e.,
a PTAS. We consider both the uniform- and arbitrary-power settings.

3.1 General Discussion

Once again, the SINR inequality determines which, if any, of the transmitters
s ∈ S can be heard by a receiver at point q and the only candidate transmit-
ter s(q) is the one that minimizes |q − s|/p1/α among all transmitters s with

72 B. Aronov and M.J. Katz

corresponding power p. In the uniform-power case, this means the transmitter
closest to q in Euclidean distance, and the matching space decomposition is the
Euclidean Voronoi diagram which can be constructed in O(n log n) time (see [8]),
where n = |S|. In the non-uniform-power case, this corresponds to the multiplica-
tively weighted Voronoi diagram in the plane, which is a structure of worst-case
complexity Θ(n2) that can be constructed in time O(n2); see [4].

Once again we define the function f(q), which represents the total signal
strength at q from all transmitters, and express the decision of whether the
transmitter s(q) is received at q by computing E(q) and comparing it with β.
The difference from the one-dimensional case is that f(q) is now a sum of low-
degree bivariate fractions, with the two variables being the coordinates of q.

In all cases, the goal is to evaluate f(q), for each receiver q, and to identify
the suitable candidate transmitter s(q), faster than by brute force. Given this
information, the decision can be made in constant time per receiver.

Due to space constraints, we omit the discussion of transmitters on a grid
and of receivers on a grid; see [3]. Therefore in the remainder of the section we
focus on the last version of the problem.

3.2 Approximating the General Case

We now abandon the ambition to get exact answers and aim for an approximation
algorithm, in the sense we will make precise below. Again, S = {si} is the set
of n transmitters, with each si a point in the plane with power pi; similarly
Q = {qj} is the set of m receivers, where a generic receiver is q = (qx, qy).

For a query point q and a transmitter s = (sx, sy) of power p, set l(q, s) =
max{|qx−sx|, |qy −sy|}; in other words, l(q, s) is the L∞ distance between points
q and s. In complete analogy to our previous approach, put

f̃(q) :=
n∑

i=1

pi

l(q, si)α
and Ẽ(q) :=

p
l(q,s)α

f̃(q) − p
l(q,s)α + N

.

What is the significance of the quantity Ẽ(q)? Since for any two points s, q,
l(q, s) ≤ |q − s| ≤ √

2l(q, s),

2−α/2 pj

l(q, sj)α
≤ pj

|q − sj |α ≤ pj

l(q, sj)α
,

so 2−α/2f̃(q) ≤ f(q) ≤ f̃(q), and therefore 2−α/2Ẽ(q) ≤ E(q) ≤ 2α/2Ẽ(q).
Informally, Ẽ(q) is “pretty close” to E(q).

This suggests an approximation strategy that begins by computing Ẽ(q)
instead of E(q). If Ẽ(q) ≥ 2α/2β, we know that E(q) ≥ β and the signal from the
unique candidate transmitter s(q) is received. If Ẽ(q) < 2−α/2β, then E(q) < β
and the signal from s(q) is not received and therefore no signal is received by q.
For intermediate values of Ẽ(q), we cannot definitely determine whether s(q)’s
signal is received at q.

Now we turn to the actual batch computation of Ẽ(q) for all receivers in Q
and point out a few additional caveats.

Batched Point Location in SINR Diagrams via Algebraic Tools 73

Computationally, Ẽ(q) can be evaluated in constant time, given f̃(q) and
point s(q) = s(q,S). So we focus on these two subproblems. For the uniform-
power case, we can construct the Voronoi diagram of S, preprocess it for point
location, and query it with each receiver, for a total cost of O((n + m) log n) [8].
In the case of non-uniform power, if we are content with near-quadratic running
time, we can determine s(q) by computing the multiplicatively weighted Voronoi
diagram of S as outlined above, and then querying it with each receiver in total
time O(n2 + m log n) (see [4,8], which is too much for m ≈ n. We provide an
alternative below.

We show how to compute the values f̃(q1), . . . , f̃(qm) in near-linear time,
using a two-dimensional orthogonal range search tree. Indeed, observe that
l(s, q) = |qx − sx| provided |qx − sx| ≥ |qy − sy|. For a fixed q, the region
Wq containing the transmitters of S satisfying this inequality is a 90◦ dou-
ble wedge. Using (a tilted version of) the orthogonal range search tree [8]
(see, [Section B.1, Fact 14]), we can construct a pair decomposition {(Si,Qi)} of
small size, so that each pair (s, q) with s ∈ Wq appears in exactly one product
Si × Qi.

We now denote by f̃(q, Z) the sum analogous to f̃(q), where the summation
goes over the elements of the supplied set Z rather than those of S. Clearly,

f̃(q,S ∩ Wq) =
∑

i:q∈Qi

f̃(q,Si), (1)

by the definition of the pair decomposition. The number of terms in the last
sum is O(log2 n). Notice that f̃(q,Si), for a fixed i, is a sum of small fractional
univariate functions, with |Si| terms in it, since the expression for transmitters
in Wq depends only on qx and not on qy. Now for each pair (Qi,Si), we use
[3, Corollary 1] to evaluate f̃(q,Si) on each q ∈ Qi in total time O((|Qi| +
|Si|) log2 |Si| log log |Si|) = O((|Qi| + |Si|) log2 n log log n). This gives us all the
summands of (1) and therefore allows us to evaluate f̃(q,S ∩ Wq) for all q ∈ Q,
in total time at most proportional to

∑
i(|Qi|+ |Si|) log2 n log log n = (

∑
i(|Qi|+

|Si|)) log2 n log log n = O((m + n) log4 n log log n).
Of course, we have only treated those s that lie in Wq. But the calculation is

repeated in the complementary double wedge, where now only the y-coordinates
matter and f̃(q) is the sum of the two values thus obtained.

Theorem 3. For any fixed positive even integer α, given a set S of n transmit-
ters (all of power 1) and a set Q of m receivers, we can do the following in total
time O((m + n) log4 n log log n). For each q ∈ Q, we find its unique candidate
transmitter s(q) and compute a value Ẽ(q), such that (i) if Ẽ(q) ≥ 2α/2β, then
q can definitely hear s(q), (ii) if Ẽ(q) < 2−α/2β, then q definitely cannot hear
s(q), and (iii) if 2−α/2β ≤ Ẽ(q) < 2α/2β, then q may or may not hear s(q).

The algorithm for the non-uniform power case is hampered by the fact that
the obvious way to identify the candidate transmitter each receiver might hear
seems to involve constructing the multiplicatively weighted Voronoi diagram of
quadratic complexity. However, we do not need the exact multiplicatively closest

74 B. Aronov and M.J. Katz

neighbor, but rather a reasonably-close approximation of the value |q−s|/p(s)1/α,
over all s ∈ S (being off by a multiplicative factor of at most 21/2 is sufficient;
see the discussion below). Such an approximation is provided by an algorithm
of Har-Peled and Kumar [15,16], by setting ε = 21/2 − 1 (see [3]), yielding the
following:

Theorem 4. For any fixed positive even integer α and any β > 2α/2, given a set
S of n transmitters of arbitrary powers and a set Q of m receivers, we can do the
following in total time O(n log7 n+m log4 n log log n) and O(n log4 n+m log2 n)
space: For each q ∈ Q, we find a transmitter sq and compute a value Ẽ(q), such
that (i) if Ẽ(q) ≥ 2α/2β, then q can definitely hear sq (implying that sq = s(q)),
(ii) if Ẽ(q) < 2−α/2β, then q definitely cannot hear any transmitter, and (iii) if
2−α/2β ≤ Ẽ(q) < 2α/2β, then q may or may not hear one of the transmitters.

Note. The transmitter sq in the theorem above is not necessarily the unique
candidate transmitter s(q). We would like to show that if Ẽ(q) ≥ 2α/2β (and
therefore E(q) ≥ β), then sq is necessarily s(q). Assume that they are different
(i.e., that sq �= s(q)), and let eq (resp., e(q)) be the strength of sq’s signal
(resp., s(q)’s signal) at q. Then, we know that eq ≤ e(q) ≤ 2α/2eq. Notice that
E(q) ≤ e(q)/eq, since E(q) is maximized when there is no third transmitter and
no noise, so e(q)/eq ≥ β (since E(q) ≥ β). Recall that we are assuming that
β > 2α/2, so we get that e(q)/eq > 2α/2, which is a contradiction.

We now turn the algorithm described above into a PTAS, in the sense that
we will confine Ẽ(q) to the range ((1−ε)E(q), (1+ε)E(q)], for a given ε > 0. We
outline the approach below. Consider the regular k-gon Kk circumscribed around
the Euclidean unit disk, for a large enough even k ≥ 4 specified below. We modify
the above algorithm, replacing the L∞-norm whose “unit disk” is a square, with
the norm | . . . |k with Kk as the unit disk. Then |v|k ≤ |v| ≤ (1 + Θ(k−2))|v|k,
for any vector v in the plane. In the range-searching data structure, wedges with
opening angle π/2 = 2π/4 are replaced by wedges with opening angle 2π/k, and
we need k/2 copies of the structure.

In terms of the quality of approximation, the factor 2α/2 = (
√

2)α is replaced
by (1 + Θ(k−2))α ≈ 1 + αΘ(k−2). Hence to obtain an approximation factor of
1 + ε, we set 1 + ε = 1 + αΘ(k−2), or k = c(α/ε)1/2, for a suitable absolute
constant c. In other words, it is sufficient to create O(ε−1/2) copies of the data
structure. To summarize, we have:

Theorem 5. For a positive ε, any fixed positive even integer α, given a set S
of n transmitters (all of power 1) and a set Q of m receivers, we can do the
following in total time O((m + n)ε−1/2 log4 n log log n). For each q ∈ Q, we find
its unique candidate transmitter s(q) and compute a value Ẽ(q), such that (i) if
Ẽ(q) ≥ (1 + ε)β, then q can definitely hear s(q), (ii) if Ẽ(q) < (1 − ε)β, then q
definitely cannot hear s(q), and (iii) if (1 − ε)β ≤ Ẽ(q) < (1 + ε)β, then q may
or may not hear s(q).

Batched Point Location in SINR Diagrams via Algebraic Tools 75

Theorem 6. For a positive ε, any fixed positive even integer α, and any β > 1+
ε,3 given a set S of n transmitters of arbitrary powers and a set Q of m receivers,
we can do the following in total time O(nε−6 log7 n+mε−1/2 log4 n log log n) and
O(nε−6 log4 n + mε−1/2 log2 n) space: For each q ∈ Q, we find a transmitter sq

and compute a value Ẽ(q), such that (i) if Ẽ(q) ≥ (1+ ε)β, then q can definitely
hear sq (implying that sq = s(q)), (ii) if Ẽ(q) < (1−ε)β, then q definitely cannot
hear any transmitter, and (iii) if (1−ε)β ≤ Ẽ(q) < (1+ε)β, then q may or may
not hear one of the transmitters.

4 Concluding Remarks

We described several algorithms that combine computational geometry tech-
niques and methods of computer algebra to obtain very fast batched SINR
diagram point-location queries.

We believe that Theorems 5 and 6 can be applied to speed up the prepro-
cessing stage of existing point-location results. Consider, e.g., the data structure
presented by Avin et al. [6] for a set of n uniform-power transmitters, whose con-
struction time is O(n2/δ). This data structure is actually a collection of n data
structures, one per transmitter, where the data structure DSi for transmitter
si consists of an inner (R+

i) and outer (R−
i) approximation for reception region

Ri, so that area(R−
i \ R+

i) ≤ δ · area(Ri), see the definitions in the introduction.
The construction of DSi is based on the convexity and fatness of region Ri and
consists of two stages. In the first, explicit estimates for the radii of the largest
disk centered at si and contained in Ri and the smallest such disk containing
Ri are obtained, by applying a binary-search-like procedure (beginning with the
distance between si to its nearest (other) transmitter in S), where each com-
parison is resolved by explicitly evaluating the SIN ratio at some point q and
comparing it to β, i.e., by an in/out test. In the second stage, a 1/δ × 1/δ grid
scaled to exactly cover the outer disk is laid, and, by performing O(1/δ) addi-
tional in/out tests, the sets R+

i and R−
i are obtained (as collections of grid cells).

This algorithm thus performs Θ(log n + 1/δ) in/out tests per transmitter, at a
cost of Θ(n) operations each; the high cost of each test is the bottleneck.

We believe that it is possible to speed up the algorithm by constructing the
n individual data structures in parallel. During the construction, we will form
O(log n + 1/δ) batches of n queries each, and use Theorem 5 to deal with each
of them in near-linear time. The only problem is that our query answers are not
exact, but approximate; for some queries, instead of “in” or “out,” we answer
“maybe. We think that there is a way to overcome this problem, but we leave it
for a full version.

Besides speeding up the construction time of known structures, we would like
to find other applications of batched point location to other problems studied in
the SINR model.
3 This requirement is analogous to that in Theorem 4 to guarantee that the approx-

imately highest-strength transmitter returned by the data structure is in fact the
right one.

76 B. Aronov and M.J. Katz

We note that our results are general, in the sense that analogous results can
be obtained for diagrams that are induced by other inequalities similar to the
SINR inequality.

Finally, on a larger scale, we are interested in further applications where alge-
braic and geometric tools can be combined to achieve significant improvements.

Acknowledgments. B.A. would like to acknowledge the help of Sariel Har-Peled in
matters of approximation and of Guillaume Moroz in matters of algebra. He would
also like to thank Pankaj K. Agarwal for general encouragement.

References

1. Ajwani, D., Ray, S., Seidel, R., Tiwary, H.R.: On computing the centroid of the
vertices of an arrangement and related problems. In: Dehne, F., Sack, J.-R., Zeh, N.
(eds.) WADS 2007. LNCS, vol. 4619, pp. 519–528. Springer, Heidelberg (2007)

2. Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in the
SINR model: Complexity and game theory. In: INFOCOM, pp. 1332–1340 (2009)

3. Aronov, B., Katz, M.J.: Batched point location in SINR diagrams via algebraic
tools (2014). arXiv:1412.0962 [cs.CG]

4. Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the
weighted Voronoi diagram in the plane. Pattern Recognition 251–257 (1984)

5. Avin, C., Cohen, A., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D.:
SINR diagram with interference cancellation. In: SODA, pp. 502–515 (2012)

6. Avin, C., Emek, Y., Kantor, E., Lotker, Z., Peleg, D., Roditty, L.: SINR diagrams:
Convexity and its applications in wireless networks. J. ACM 59(4), 18:1–318:4
(2012)

7. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations: Fundamental Algo-
rithms, vol. 1. Birkhauser Verlag, Basel (1994)

8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.H.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer-Verlag, Berlin (2008)

9. Goussevskaia, O., Halldórsson, M.M., Wattenhofer, R., Welzl, E.: Capacity of arbi-
trary wireless networks. In: INFOCOM, pp. 1872–1880 (2009)

10. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geometric SINR.
In: MobiHoc, pp. 100–109 (2007)

11. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Informa-
tion Theory 46(2), 388–404 (2000)

12. Halldórsson, M.M.: Wireless scheduling with power control. ACM Transactions on
Algorithms 9(1) (2012)

13. Halldórsson, M.M., Mitra, P.: Wireless capacity with oblivious power in general
metrics. In: SODA, pp. 1538–1548 (2011)

14. Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in APX. In: Albers,
S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009, Part I. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

15. Har-Peled, S., Kumar, N.: Approximating minimization diagrams and generalized
proximity search. SIAM J. Comput. Accepted for publication. http://sarielhp.org/
p/12/wann/wann.pdf

16. Har-Peled, S., Kumar, N.: Approximating minimization diagrams and generalized
proximity search. In: FOCS, pp. 717–726 (2013)

http://arxiv.org/abs/1412.0962
http://sarielhp.org/p/12/wann/wann.pdf
http://sarielhp.org/p/12/wann/wann.pdf

Batched Point Location in SINR Diagrams via Algebraic Tools 77

17. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The topology of wireless communica-
tion. In: STOC, pp. 383–392 (2011)

18. Kesselheim, T.: A constant-factor approximation for wireless capacity maximiza-
tion with power control in the SINR model. In: SODA, pp. 1549–1559 (2011)

19. Lotker, Z., Peleg, D.: Structure and algorithms in the SINR wireless model.
SIGACT News 41(2), 74–84 (2010)

20. Moroz, G., Aronov, B.: Computing the distance between piecewise-linear bivariate
functions. In: SODA, pp. 288–293 (2012)

21. Moroz, G., Aronov, B.: Computing the distance between piecewise-linear bivari-
ate functions. ACM Transactions on Algorithms (2013). Accepted for publication
arXiv:1107.2312 [cs.CG]

22. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: INFOCOM, pp. 23–29 (2006)

23. von zur Gathen, J.: Modern Computer Algebra. Cambridge University Press,
Cambridge (1999)

24. Wan, P.-J., Jia, X., Yao, F.: Maximum independent set of links under physical
interference model. In: Liu, B., Bestavros, A., Du, D.-Z., Wang, J. (eds.) WASA
2009. LNCS, vol. 5682, pp. 169–178. Springer, Heidelberg (2009)

http://arxiv.org/abs/1107.2312

On the Randomized Competitive Ratio
of Reordering Buffer Management

with Non-Uniform Costs

Noa Avigdor-Elgrabli1, Sungjin Im2(B), Benjamin Moseley3,
and Yuval Rabani4

1 Yahoo! Labs Haifa, MATAM, Haifa 31095, Israel
noaa@yahoo-inc.com

2 University of California, Merced, CA 95344, USA
sim3@ucmerced.edu

3 Washington University in St. Louis, St. Louis, MO 63130, USA
bmoseley@wustl.edu

4 The Hebrew University of Jerusalem, Jerusalem 91904, Israel
yrabani@cs.huji.ac.il

Abstract. Reordering buffer management (RBM) is an elegant theoret-
ical model that captures the tradeoff between buffer size and switching
costs for a variety of reordering/sequencing problems. In this problem,
colored items arrive over time, and are placed in a buffer of size k. When
the buffer becomes full, an item must be removed from the buffer. A
penalty cost is incurred each time the sequence of removed items switches
colors. In the non-uniform cost model, there is a weight wc associated
with each color c, and the cost of switching to color c is wc. The goal
is to minimize the total cost of the output sequence, using the buffer to
rearrange the input sequence.

Recently, a randomized O(log log k)-competitive online algorithm
was given for the case that all colors have the same weight (FOCS
2013). This is an exponential improvement over the nearly tight bound
of O(

√
log k) on the deterministic competitive ratio of that version of

the problem (Adamaszek et al., STOC 2011). In this paper, we give an
O((log log kγ)2)-competitive algorithm for the non-uniform case, where γ
is the ratio of the maximum to minimum color weight. Our work demon-
strates that randomness can achieve exponential improvement in the
competitive ratio even for the non-uniform case.

1 Introduction

Motivation and background. In the reordering buffer management problem
(RBM) a stream of colored items enters a buffer of limited capacity k, which
is used to permute the input stream. Once the buffer is full, any item can be
removed from the buffer to the permuted output stream to make room for the

Sungjin Im—Supported in part by NSF grant CCF-1409130.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 78–90, 2015.
DOI: 10.1007/978-3-662-47672-7 7

On the Randomized Competitive Ratio of Reordering Buffer Management 79

next input item. This is repeated until the buffer is empty. The goal is to mini-
mize the context switching cost of the output stream due to color changes. The
literature considers various cost models. The simplest version is the uniform cost
model, where each color switch costs 1. In this paper, we are concerned with the
so-called non-uniform cost model, where each color c has a weight wc, and a
switch in the output stream to color c costs wc. In the online version of the
problem, the decision on which item to remove from the buffer must be made
on-the-fly without knowing the future input stream. In the offline version of the
problem, the entire input stream is known in advance.

RBM models a wide range of applications in production engineering, logis-
tics, computer systems, network optimization, and information retrieval (see,
e.g., [6,12,14,15]). In essence, RBM, introduced in [15], gives a nice theoretical
framework which allows us to study the tradeoff between buffer size and con-
text switching costs. This tradeoff is evident in many applications. From the
perspective of the theory of algorithms, this seemingly simple problem is NP-
hard [8], and it presents significant algorithmic challenges both in the offline and
the online settings. For instance, simple algorithms such as greedy or FIFO are
known to have poor performance.

RBM was studied mostly in the online setting [1,3,5,9–11,15]. The perfor-
mance guarantees for uniform RBM were essentially resolved in a sequence of
papers. There is a deterministic O(

√
log k)-competitive online algorithm and a

nearly matching Ω(
√

log k/ log log k) lower bound [1]. The randomized compet-
itive ratio is Θ(log log k). The lower bound is from [1] and the upper bound was
recently proved in [5]. So, similar to some other online problems such as paging,
randomness gives an exponential improvement in the competitive ratio. In the
offline setting, there is an O(1)-approximation algorithm [4] (see alternative algo-
rithms in [5,13]), but no hardness of approximation result beyond NP-hardness
of the exact solution.

In contrast, there is a wide gap in our understanding of non-uniform RBM.
The best known upper bound on the competitive ratio of non-uniform RBM is
min{log k/ log log k,

√
log kγ}, where γ is the ratio of maximum to minimum color

weight. This bound combines the results for two deterministic algorithms from [3]
and [1]. For γ which is polynomial in k, the algorithm in [1] nearly matches
the deterministic lower bound for the uniform case. The above-mentioned uni-
form case upper bounds of O(log log k) on the randomized competitive ratio
and of O(1) on the approximation guarantee seem to use uniformity inherently.
So the randomized competitive ratio and the approximability of non-uniform
RBM were far from settled. Very recently, an offline approximation guarantee
of O(log log kγ) was shown [13]. Hence, the looming question concerning non-
uniform RBM was if randomness can give an exponential improvement of the
competitive ratio as it did for the uniform case. (We note that in the case of pag-
ing, for instance, the analogous question regarding the randomized competitive
ratio of weighted caching remained open for a very long time.)

Our Results. In this paper, we answer the above question in the affirmative.
Specifically, we prove the following theorem.

80 N. Avigdor-Elgrabli et al.

Theorem 1. There is a randomized O((log log kγ)2)-competitive online algo-
rithm for the non-uniform RBM problem.

Our algorithm is based on the online primal-dual schema (see [7] for a sur-
vey). The algorithm consists of two phases. In the first phase, the algorithm
computes deterministically a feasible fractional solution to an LP relaxation for
non-uniform RBM. The LP solution is computed online. In parallel, the algo-
rithm examines the partial LP solution and rounds it online using randomness
to get an integral RBM solution which is the output of the algorithm. We lose
a factor of O(log log kγ) in each of the two phases. Interestingly, both phases
use a resource augmentation argument to bound the cost of the online solution
they produce. In the first phase, the cost of the online generated LP solution is
compared against the cost of a dual LP solution for a smaller buffer (see [2,5,10]
for previous application of this idea in similar contexts). In the second phase,
resource augmentation is used to give the integral solution a bit more buffer
space than the LP solution that is rounded to generate it. Overall, the integral
solution uses a buffer of size k (thus respecting the buffer capacity constraint),
the LP primal solution uses a buffer of size k − k

log kγ , and the LP dual that
is used for bounding the LP cost is for a buffer of size roughly k − 2k

log kγ . We
note that all the previous resource augmentation proofs for RBM either did not
apply to the non-uniform case, or they did not prove sufficiently tight bounds.
Our proof is new and different from previous proofs.

The first phase of computing the LP solution is generally framed after the
algorithm for the uniform case in [5]. The algorithm combines two methods.
One method uses the online version of the multiplicative weights update method
(see [7]) and works well as long as the color blocks in the buffer do not exceed
a size of O(k/ log kγ). The other method uses an integral dual fitting-based
algorithm that works well when all the color blocks in the buffer have size
Ω(k/ log kγ) when they are removed. In [5], the main difficulty was to com-
bine the two algorithms to work well when the buffer contains a mixture of the
two types of color blocks. However, the way the two algorithms were combined
in [5] inherently uses uniformity, because whenever there was a switch between
the two types in one color, other completely arbitrary colors could be charged.
In order to facilitate the combination in the non-uniform case, the algorithm and
its analysis had to be modified. The result happens to be a simpler and cleaner
algorithm and analysis.

The second phase of the algorithm is motivated by the recent offline approxi-
mation algorithm in [13]. There, a solution to a slightly different LP was rounded
to give an O(log log kγ) approximation guarantee (without using resource aug-
mentation). However, the algorithm in [13] had several steps that rely crucially
on offline information about the LP solution. In particular, that algorithm makes
decisions based on when the LP removes certain items in the future. Here we
show how to round an LP solution without using future information, exploiting
resource augmentation instead. The algorithm is substantially different, sim-
pler than the offline rounding algorithm, and even simpler than the rounding
algorithms for the uniform case. (The uniform case rounding algorithms relied

On the Randomized Competitive Ratio of Reordering Buffer Management 81

crucially on uniformity, and it does not seem that they could be modified to
handle color weights.)

Due to lack of space, most of the proofs are deferred to the full version of
the paper. We give some informal intuition on the analysis.

2 Preliminaries

In the reordering buffer management problem we consider, there is a sequence I
of n items that arrive over time online. Each item i is associated with a specific
color c(i) which stands for the item’s type. A single item arrives at every time
step from 1 to n and we assume items are indexed in increasing order. Each color
c has a positive weight wc and we denote the ratio of maximum to minimum
weight by γ. There is a buffer of size k, and we are allowed to hold items up to
the buffer size. Once the buffer becomes full, we are forced to output an item.
The goal is to reorder the items using the buffer to minimize the total cost of
color switches in the output. Each color switch costs the weight of the color
switched to.

Another useful view of the output is to view the sequence of items output
as a partition of items into color blocks – a color block or simply block refers
to a sequence of items of the same color. In this view, each block of color c
contributes wc to the objective. We assume without loss of generality that each
block I is a contiguous sequence of items of the same color ordered in first-in-
first-out manner starting with the first arriving item in I. Let c(I) denote the
color of the items in I. When a block I is associated with the time t that its
first item is removed from the buffer, we call the pair (I, t) a batch. For a batch
b = (I, t) and an item i ∈ I, we denote by Mb(i) the time that i is removed from
the buffer. Note that the total number of all possible blocks is polynomial in n,
and so is the total number of possible batches.

For a given input instance, we let OPTk denote the optimal solution with
a buffer of size k. Throughout the analysis, we will compare an algorithm with
a buffer of size k to an optimal or linear program solution with a buffer of size
smaller than k. This will be clearly indicated when we are making the compari-
son. We appeal to the following theorem when comparing against a solution with
a smaller buffer size. A similar theorem was shown for the unweighted version
of the problem and we extend this to the weighted version. In our analysis, we
will set k′ to be roughly k − k

log kγ , which can increase the cost of the optimal
solution by at most a constant factor.

Theorem 2. For any input sequence and k′ < k, respectively, OPTk′ ≤ O(1) ·
(k

k′ +(k−k′) log k′γ
k′)OPTk, where OPTs denotes the cost of the optimal solution

using a buffer of size s.

82 N. Avigdor-Elgrabli et al.

We use the following linear programming relaxation for the problem, which
is defined over x ≥ 0. It is similar to the relaxation introduced in [3].

min
∑

I,j

wc(I)xI,j s.t.
∑

(I,j),i∈I

xI,j ≥ 1 ∀i = 1, 2, . . . , n (1)

∑

(I,j′):j′≤j<j′+|I|
xI,j′ ≤ 1 ∀j = k + 1, . . . , k + n (2)

The quantity xI,j , which we call the height of batch (I, j), refers to the
amount by which the batch (I, j) is scheduled. It is an easy exercise to see this
is a valid LP relaxation. The first constraint ensures that each item is processed
by an amount of 1. The second constraint ensures that the total height of the
intervals at a time step is at most 1. Put βi,j =

∑
xI,j′ , where the sum is

taken over batches (I, j′) such that i ∈ I and MI,j′(i) ≤ j. So βi,j denotes the
total amount item i is processed by time j. Also put vi,j = 1 − βi,j ; this is the
remaining “volume” of item i that still needs to be processed at time j. The dual
of the linear program is over y, z ≥ 0 and is given as follows.

max
n∑

i=1

yi−
k+n∑

j=k+1

zj s.t.
∑

i∈I

yi −
j+|I|−1∑

j′=j

zj′ ≤ wc(I) ∀(I, j) (3)

We will denote the LP for a buffer of size k as lpk and the dual for a buffer of
size k as dpk.

Our online algorithm will use this LP to guide its decisions. In particular,
the algorithm approximately solves this LP in an online fashion. The algorithm
simultaneously rounds this LP online to construct the solution. Formally the
following is what we mean by solving the LP online. Consider any fixed time t.
All batches considered so far end no later than time t – at the next time step
t + 1, some of batches reaching this time moment t can be extended to time
t + 1 by adding an extra element to the batch if there is an available element
of the same color to be scheduled. In this case, the height of such a batch must
remain the same. Note that formally, the batch changes to a larger batch. Also,
new batches can start at the current time, and Constraints (2) must be satisfied
at each time until time t. Finally, Constraints (1) must be eventually satisfied.
Our algorithm and analysis are split into two parts. In Section 3 we show how
to construct the LP solution online and in Section 4 we show how to round the
LP solution in an online fashion.

3 Solving the LP Online

3.1 The Algorithm

We give an online algorithm that constructs a primal fractional LP solution x
for a buffer of size k. We prove that the cost of x, which is

∑
(I,j) wc(I) · xI,j

is at most O(log log(kγ)) times the optimal cost. In order to prove this bound,

On the Randomized Competitive Ratio of Reordering Buffer Management 83

the algorithm also constructs a dual solution (y, z) for a buffer of a smaller
size k′ = k − k

2 ln(kγ) . The bound is then obtained by comparing the costs of
the primal and dual solutions. The construction of (y, z) is done by scaling an
infeasible solution (ŷ + ȳ, ẑ), where (ŷ, ẑ) is generated through a version of the
online primal-dual schema, and ȳ is an extra penalty imposed via a dual fitting
procedure. Informally, (ŷ, ẑ) pays for removing from the buffer “small” blocks,
and ȳ pays for removing “large” blocks. The meaning of “small” and “large”
will be made precise in the discussion below. In addition to all of the above
variables, we also maintain pseudo-primal variables x̃ that will help us construct
the fractional solution x.

The algorithm proceeds as follows. Initially, all primal and dual variables are
set to 0 (this includes x, y, z, x̃, ŷ, ẑ, ȳ). Our initial output slot is t = k +1, and
the first k input items are fully in the buffer. We raise some of the dual variables
at a uniform rate, so it is convenient to think about the solution as a function of
μ ∈ [0,∞), where μ = 0 denotes the initial state. (Of course, the implementation
is not a continuous process—there is a finite sequence of “interesting” values of
μ where something happens, and the algorithm can compute those thresholds.
However, it is convenient to describe the continuous process.)

The algorithm increases all the variables ŷi for all input items i in that are
in the buffer and have not been scheduled to be removed completely from the
buffer (see below), and all the variables ẑj for all output slots j ≥ t at the same
rate dμ. Notice that this affects future i-s and j-s. We don’t need their values
until we reach them, and at that point the value can be computed given the past.
Raising some of the variables in (ŷ, ẑ) changes the primal solution x. In order
to see how this is done, consider the buffer’s contents. Of the total volume of k,
there might be some volume that we already decided to remove, but its removal
will happen past the current output slot t. We’ll call it phantom volume and the
rest real volume. Part of the real buffer volume is kept as frozen volume (it will
consist only of integral items). We’ll call the real volume that is not frozen active
volume.

Consider a dual constraint indexed (I, j). Put σI,j =
∑

i∈I ŷi −∑j+|I|−1
j′=j ẑj′ .

This is the current dual cost of the batch (I, j). Notice that we know the current
dual cost even if the batch is matched to output slots we haven’t yet reached
(and even if it includes items we haven’t yet seen). As we raise (ŷ, ẑ), the dual
cost of some of the batches may increase. We want to measure only part of this
increase, the part that is due to items that contribute to the active volume in
the buffer. We call this part the pseudo-dual cost and we denote it by σ̃I,j . In
order to explain this, notice that dσI,j

dμ is precisely the number of items of color
c(I) that contribute to the real volume and are scheduled by (I, j) before the
current output slot t. Thus, we raise σ̃I,j at a rate dσ̃I,j

dμ which is the number
of items of color c(I) that contribute to the active volume (i.e., excluding items
that are frozen) and are scheduled by (I, j) before the current output slot t.
This is what normally happens with σ̃. However, there are special “events” that
trigger a reset of σ̃I,j to 0. After a reset, σ̃I,j grows again at the rate defined
above.

84 N. Avigdor-Elgrabli et al.

The pseudo-dual costs determine the values of the pseudo-primal variables.
We maintain at all times the equation

x̃I,j =

{
1

ln(kγ) · σ̃I,j

wc(I)
σ̃I,j < wc(I),

1
ln(kγ) · eσ̃I,j/wc(I)−1 σ̃I,j ≥ wc(I).

(It should be noted that when we reset σ̃I,j this also resets x̃I,j . However, the
reader will soon notice that by Equation (4) this does not reset any actual pri-
mal variable—such a reset would violate our intention to construct the solution
online.) Now, the items that contribute to the active volume are further classified
as fractional or integral. For each color present in the active volume there are
either fractional or integral items (contributing to the active volume), but not
both. We say that the active items of a specific color constitute an active block
in the buffer, which is either a fractional active block or an integral active block.

We are now ready to explain how the schedule up to time t − 1 is extended
(i.e., how to update the primal solution x). It will be convenient to present
the algorithm as choosing batches to schedule and then increasing their height
continuously until some event stops the increase and sets the final height of the
scheduled batch. Also, when we decide to schedule a batch, we may not know
its full extent, because it may end with items that we haven’t yet reached in the
input stream. However, we will be able to extend the batch as we go along, so
in describing the algorithm, we also specify the rule that determines the extent
of the batch, and this rule is checked as we go along. Notice that the current
output slot t might be already partially filled with previously scheduled batches
that haven’t reached their end (the partial schedule from t onward is precisely
the phantom volume). So our goal is to fill up output slot t and then move on
to the next output slot that is not completely filled up.

If an output slot gets filled up, or an item gets scheduled completely, this stops
the increase of the height of the current batches, and we execute the following
procedure, depending on the event.

Filling up an output slot: When we fill up the output slot t, we have to
advance to a later output slot and start the extention process afresh. In this
case, new items enter into the buffer, replacing the volume that is removed from
the buffer in the filled up output slots (t and possibly later slots). When an
item enters the buffer, it is usually frozen, unless the buffer contains an integral
active block of this color. In the latter case, the item is sometimes appended to
the integral block, according to the rule that specifies the end of the batches
that will remove this block from the buffer. If the item is not appended to the
integral block, it is frozen as usual.

Scheduling an item entirely: At some point, the initial items of some batch
may get scheduled with total height 1. This means that they are either removed
from the buffer, or (if they are scheduled in the future) they no longer contribute
to the real volume (but they still contribute to the phantom volume). In this
case the height of the relevant batch is fixed, and we may continue scheduling
a new batch of this color that begins with the items that still contribute to the
real volume.

On the Randomized Competitive Ratio of Reordering Buffer Management 85

We now describe how an output slot t gets filled up. There are a few cases
to consider:

Evicting integral blocks: We first consider the integral active blocks. If there
exists (I, j) for which x̃I,j reached 1 and the items of color c(I) in the buffer are
an integral active block B, we set ȳi = wc(I)

2|B| for all i ∈ B. We reset σ̃I′,j′ (and
hence x̃I′,j′) for all (I ′, j′) of color c(I). Then, we schedule batches consisting of
this block followed by all the items that can be appended to it assuming it is
removed starting from output slot t. The total height of the batches we schedule
is 1 (i.e., we remove the block and the appended items completely from the
buffer), but we may have to split the height across several batches because some
of the output volume beyond time t − 1 might be already taken by previously
scheduled batches.

Releasing frozen items: We next consider the frozen items in the buffer. We
release frozen items in two cases. Firstly, if there is a color c with more than

k
100 ln(kγ) frozen items in the buffer, we first schedule batches to remove all the
volume of the fractional active block of color c from the buffer (they all end
with the same last unfrozen item of color c; notice that while we schedule these
batches, t might move forward). Then, we reset σ̃I,j to 0 for all batches (I, j)
with c(I) = c. Finally, we move the frozen items (including additional items that
may have been added while removing the preceding fractional volume) to form
an integral active block. Secondly, if there is a fractional active block with fewer
than k

10 ln(kγ) items, we add all the frozen items of this color to the fractional
active block. Notice that this event can happen while we are filling up output
slot t (because some items get scheduled completely).

Scheduling fractional blocks: We finally consider fractional active blocks
(assuming none of the above cases can now be applied). We schedule them in
batches in parallel. Such a batch (J, t) consists of the sequence of items in the
fractional active block, followed by the items of this color that are in the frac-
tional active block at the time that they are needed to continue the batch. Thus,
a fractional batch ends in one of three cases: (i) we haven’t reached the next
input item of this color; (ii) the next input item of this color is frozen (in this
case we say that the batch is interrupted); (iii) the next input item of this color
begins an integral block. (Notice, that when a batch is being scheduled, we may
know only a prefix of the sequence of items in the batch. However, we can extend
this sequence on-the-fly and transfer the fractional weight from the prefix to the
extended batch as we go along. This does not change the packing of the items
in the past time slots, only in future time slots.)

All these fractional batches are scheduled in parallel. Their height is increased
as μ grows by the following rate.

dxJ,t

dμ
= max

(I,j)

{
dx̃I,j

dμ
: c(I) = c(J)

}
. (4)

We increase their height until, as explained above, some event triggers a change
in the batch or in t. A batch (J, t) is said to be relevant to (the dual cost of)

86 N. Avigdor-Elgrabli et al.

(I, j) for every (I, j) that has at some point μ a positive value in the right-hand
side of the above expression (i.e., c(I) = c(J) and x̃I,j grows while xJ,t grows).

Regular resets: Occasionally while scheduling fractional batches, we reset
some σ̃I,j to 0. We will call this a regular reset (to distinguish it from other
resets that happen while dealing with integral blocks). Suppose that a fractional
batch (J, t) is interrupted at output slot t′ > t. Let i be the interrupting item
(i.e., i is frozen when we reach t′). We consider the set of batches that (J, t) is
relevant to. For such a batch (I, j) we reset σ̃I,j if and when the following three
conditions hold: (i) The block I contains i; (ii) item i is the first item of I that
ever interrupted a batch that is relevant to (I, j); (iii) more than half of the
items of color c(i) that contribute to the real volume are frozen. Notice that for
any (I, j), a regular reset happens at most once. We denote the value of μ at
the time of this regular reset by μ0(I, j) and the interrupting item i by f(I, j).
If (I, j) never experiences a regular reset, we put μ0(I, j) = ∞. Also recall that
if σ̃I,j is reset to 0, automatically x̃I,j is reset to 0.

Occasional cleanup: We sometimes clean up the buffer of a color c. The condi-
tion for cleaning up color c is as follows: since the previous execution of this step,
we just moved past the end of scheduled fractional batches of color c of total
height at least 1

10 . (For this purpose we count only batches that are removed
while μ increases and not batches that are removed during cleanup.) In this
case, we append the frozen items of color c to the color c batches that occupy
the current output slot. Then, if there are still items of color c that contribute
to the real volume, we schedule additional batches to remove all color c items
from the real volume. Obviously, all the frozen items of color c will now be part
of the phantom volume.

3.2 Competitive Analysis

Clearly, the algorithm computes a feasible primal solution x. We show that the
primal cost of x (which uses a buffer of size k) is proportional to the dual cost
of the infeasible solution (ŷ + ȳ, ẑ) (which uses a smaller buffer size k′). Then
we prove an upper bound on the factor that is needed to scale (ŷ + ȳ, ẑ) to a
feasible solution (y, z).

Properties of the Primal Solution. We begin with a bound on the phantom
volume. This justifies the choice of k′.

Lemma 1. At any time during the execution of the algorithm, the phantom
volume never exceeds 12k

100 ln(kγ) .

Lemma 1 immediately implies the following corollary.

Corollary 1. At any given time, the real volume in the buffer is more than
k − 12k

100 ln(kγ) ≥ k′.

Next we show that the pseudo-primal variables are bounded.

Claim. For every batch (I, j), it holds that x̃I,j ≤ 11
10 always.

On the Randomized Competitive Ratio of Reordering Buffer Management 87

The main idea behind the proof is that x̃I,j is bounded by the total height of
color c(I) batches that are removed since the last reset of x̃I,j . The total height
of batches that extend beyond the current output slot is at most 1, and the total
height of batches that ended is less than 1

10 , otherwise we would have executed
a cleanup step.

Bounding the primal cost. We show that the primal cost of x is proportional to
the dual cost of (ŷ + ȳ, ẑ).

Lemma 2. At the end,
∑

(I,j) xI,j = O(1) ·
(∑n

i=1 ŷi +
∑n

i=1 ȳi −∑k′+n
j=k′+1 ẑj

)
.

The main idea of the proof is the following. We bound separately the cost of
scheduling fractional blocks, the cost of evicting integral blocks, and the cost
of cleanup. For fractional blocks, we relate the rate by which the primal cost
is increased to the rate by which the dual cost is increased. We use the gap
between the primal and dual buffer size and the fact that the real volume is
most of the buffer (Corollary 1) to show that the dual cost increases sufficiently
fast. For integral blocks, the increase in

∑n
i=1 ȳi directly bounds the primal cost

of evicting those blocks. The cleanup cost is charged against the primal cost of
the fractional batches that caused the cleanup.

Dual Feasibility. Here we show that if we scale (ŷ + ȳ, ẑ) by a factor of
O(log log(kγ)), then we get a feasible dual solution (x, y), namely, for every
batch (I, j),

∑
i∈I yi − ∑j+|I|−1

j′=j zj′ ≤ wc(I). So fix a batch (I, j). The main idea
of the proof is to partition I into segments, according to what the algorithm
does with these items. A segment is a maximal substring of items that were
all scheduled as a fractional block or an integral block. So there are alternat-
ing fractional and integral segments. (Notice that a fractional segment includes
also items that were removed during cleanup.) We then partition (I, j) into two
sub-batches (I1, j), (I2, j′) as follows. Let i ∈ I be the first item that still con-
tributes to the real volume when the algorithm reaches the output slot that (I, j)
matches to i. Then, I1 contains all the items in I that precede i, and I2 contains
the rest of I’s items (so j′ = MI,j(i)). The cost of each sub-batch is bounded
using a different argument. Roughly speaking, in (I1, j) the fractional segments
do not incur a positive cost, and at most O(log log(kγ)) integral segments incur
a positive cost of O(wc(I)). In (I2, j′) there are O(1) segments, and each frac-
tional segment incurs a cost of O(wc(I)) · log log(kγ)). This discussion leads to
the following lemma.

Lemma 3. The pair (y, z) is a feasible dual solution for a buffer of size k′.

We conclude with the main result of this section.

Theorem 3. The primal cost of the output x of the LP algorithm is within a
factor of O(log log(kγ)) of the LP optimum.

Proof. Notice that
∑

I,j wc(I) ·xI,j ≤ O(1)·
(∑n

i=1 ŷi +
∑n

i=1 ȳi −∑k′+n
j=k′+1 ẑj

)
=

O(log log(kγ)) ·
(∑n

i=1 yi −∑k′+n
j=k′+1 zj

)
≤ O(log log(kγ)) ·dpk′ = O(log log(kγ)) ·

88 N. Avigdor-Elgrabli et al.

lpk′ ≤ O(log log(kγ)) · lpk. The first inequality uses Lemma 2. The second
inequality uses Lemma 3. The third inequality uses Theorem 2.

4 Rounding the LP Online

In this section we give an algorithm that rounds the linear program solution of
the previous section in an online fashion. Our online rounding requires a sam-
pling which we name α-sampling. The α-sampling is essentially a “boosted-up”
independent rounding. Let 0 < α ≤ 1 be a constant to be fixed later. We sample
each batch b starting at time t independently with probability min{α, xb}/α,
and add it to a pool Bag. Define an item i’s α-ready time, tαi as the first time t
such that there is a batch b ∈ Bag that schedules i at time t – if no such batch b
exists, then set tαi = ∞. At any time t ≥ tαi , we say that i is α-ready at time t.

To see that we can do the sampling online, note that each batch in the LP
keeps the same height from when it starts until it ends. Hence we can immediately
decide whether to add a batch to Bag or not when the batch starts in the LP
solution.

4.1 Online Rounding Algorithm

The online rounding algorihtms takes as input an online LP solution with a
buffer of size k′ = k − k

log kγ and returns an online algorithm using a buffer of
size k. Recall that reducing the optimal solution’s buffer by k

log kγ only increases
its cost by a O(1) factor, as we have shown in Lemma 2. In the previous section,
we presented how to construct an LP solution online assuming the buffer size is
k for notaitonal simplicity. The actual LP solution should has a buffer of size k′

and the dual LP’s buffer size should be scaled appropriately.
The algorithm at any time always outputs an item for the color that was

previously output in the last time step if possible. Otherwise, the algorithm needs
to decide which color to switch to. The algorithm has several rules on which color
to switch to at time t and attempts to execute the rules in the following order.
The first three rules are easy cases and the crux of the algorithm is the final two
rules. The rules are similar to the algorithm in [13]. However, the algorithm in
[13] required an additional rule and also the main rules in their algorithm used
future offline information from the LP.

We require some notation to define formally the algorithm. Let ε be any
constant between 0 and 1/100 and α be a constant at most ε. We will later set
ε = 1/100 and α = ε. Let B(t) denote (the set of items in) the algorithm’s buffer
at time t. Let nA

c (t) denote the number of items for color c in B(t). Let nO
c (t)

be the number of items in the LP at time t for color c that have been processed
by at most 1/2 + ε. Let Cs(t) contain all colors c where 0 < nA

c (t) ≤ k
log3 kγ

and
Cb(t) contain all colors c where nA

c (t) > k
log3 kγ

. Let EO(t) be the set of items
that have been processed by at most 1/2+2ε in the LP at time t that are not in
B(t), i.e. EO(t) := {i �∈ B(t) | i ≤ t, βi,t ≤ 1/2 + 2ε}. Let c∗(t) be the color such

On the Randomized Competitive Ratio of Reordering Buffer Management 89

that batches in the LP for color c∗(t) that intersect time t is greater than 1/2,
if it exists. Let vO

c,t =
∑

i,c(i)=c 1 − βi,t denote the remaining volume of items for
color c in the LP at time t.

Algorithm:

Rule (i)If there is an item in i ∈ B(t) processed by ε in the LP, switch to color c(i).

Rule (ii)If there is an item i ∈ B(t) that is α ready at time t, switch to color c(i).

Rule (iii)If there is a color c where nA
c (t) ≥ k/10, switch to color c.

Rule (iv)If the LP has processed items in B(t) corresponding to colors in Cs(t) by

a total of at least |EO(t)|
8

+ k
2 log kγ

by time t then switch to the color of minimum
weight that is not c∗(t).

Rule (v)We perform this rule if none of the others apply. In this case, the algorithm
switches to a color c ∈ Cb(t) such that nA

c (t) ≥ 10
11

vO
c,t. (We can show that such a

color exists.)

References

1. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: Almost tight bounds for
reordering buffer management. In: STOC, pp. 607–616 (2011)

2. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: Optimal online buffer schedul-
ing for block devices. In: STOC, pp. 589–598 (2012)

3. Avigdor-Elgrabli, N., Rabani, Y.: An improved competitive algorithm for reorder-
ing buffer management. In: SODA, pp. 13–21 (2010)

4. Avigdor-Elgrabli, N., Rabani, Y. : An improved competitive algorithm for reorder-
ing buffer management. In: FOCS, pp. 1–10 (2013)

5. Avigdor-Elgrabli, N., Rabani, Y.: An optimal randomized online algorithm for
reordering buffer management (2013). CoRR, 1303.3386

6. Blandford, D., Blelloch, G.: Index compression through document reordering. In:
Proceedings of the Data Compression Conference, DCC 2002, pp. 342-. IEEE Com-
puter Society, Washington, DC (2002)

7. Buchbinder, N., Naor, J.: The design of competitive online algorithms via a primal-
dual approach. Foundations and Trends in Theoretical Computer Science 3(2–3),
93–263 (2009)

8. Chan, H.-L., Megow, N., Sitters, R., van Stee, R.: A note on sorting buffers offline.
Theor. Comput. Sci. 423, 11–18 (2012)

9. Englert, M., Räcke, H., Westermann, M.: Reordering buffers for general metric
spaces. Theory of Computing 6(1), 27–46 (2010)

10. Englert, M., Westermann, M.: Reordering buffer management for non-uniform cost
models. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 627–638. Springer, Heidelberg (2005)

11. Gamzu, I., Segev, D.: Improved online algorithms for the sorting buffer problem
on line metrics. ACM Transactions on Algorithms 6(1) (2009)

12. Gutenschwager, K., Spiekermann, S., Vos, S.: A sequential ordering problem in
automotive paint shops. Intl. J. of Production Research 42(9), 1865–1878 (2004)

90 N. Avigdor-Elgrabli et al.

13. Im, S., Moseley, B.: New approximations for reordering buffer management. In:
SODA, pp. 1093–1111 (2014)

14. Krokowski, Jens, Räcke, Harald, Sohler, Christian, Westermann, Matthias: Reduc-
ing state changes with a pipeline buffer. In: VMV, p. 217 (2004)

15. Räcke, H., Sohler, C., Westermann, M.: Online scheduling for sorting buffers.
In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 820–832.
Springer, Heidelberg (2002)

Serving in the Dark should be done
Non-Uniformly

Yossi Azar and Ilan Reuven Cohen(B)

Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
azar@tau.ac.il, ilanrcohen@gmail.com

Abstract. We study the following balls and bins stochastic game
between a player and an adversary: there are B bins and a sequence of
ball arrival and extraction events. In an arrival event a ball is stored in an
empty bin chosen by the adversary and discarded if no bin is empty. In an
extraction event, an algorithm selects a bin, clears it, and gains its con-
tent. We are interested in analyzing the gain of an algorithm which serves
in the dark without any feedback at all, i.e., does not see the sequence, the
content of the bins, and even the content of the cleared bins (i.e. an oblivi-
ous algorithm). We compare that gain to the gain of an optimal, open eyes,
strategy that gets the same online sequence. We name this gain ratio the
“loss of serving in the dark”.

The randomized algorithm that was previously analyzed is choosing a
bin independently and uniformly at random, which resulted in a compet-
itive ratio of about 1.69. We show that although no information is ever
provided to the algorithm, using non-uniform probability distribution
reduces the competitive ratio. Specifically, we design a 1.55-competitive
algorithm and establish a lower bound of 1.5. We also prove a lower bound
of 2 against any deterministic algorithm. This matches the performance of
the round robin 2-competitive strategy. Finally, we present an application
relating to a prompt mechanism for bounded capacity auctions.

1 Introduction

The behavior of an algorithm inherently depends on its input. In some cases
the input is only partially known to the algorithm (e.g. online algorithms, dis-
tributed algorithms and incentive compatible algorithms) and it may still per-
form well. In extreme cases the input is virtually unknown to the algorithm.
In these cases the algorithm needs to act (almost) independently of the input.
Such algorithms are called oblivious algorithms. Typically, oblivious algorithms
act uniformly at random over their choices. For example, consider a case where
there are m weighted balls and n bins. The algorithm needs to assign the balls
to the bins as to minimize the maximum load over all bins (where the load of a
bin is the sum of weights of balls which are assigned to it). Consider a simple
case where m = n2, n of them are of weight 1 and the others are of weight 0.
Clearly, the optimal solution is 1. An oblivious algorithm does not know the

Supported in part by the Israel Science Foundation and by the Israeli Centers of
Research Excellence (I-CORE) program (Center No. 4/11).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 91–102, 2015.
DOI: 10.1007/978-3-662-47672-7 8

92 Y. Azar and I.R. Cohen

weights (it only knows n and m). Clearly any deterministic oblivious algorithm
may encounter a maximum of load of n. Fortunately, using randomization an
algorithm which assigns each ball uniform at random achieves an expected maxi-
mum load of log n/ log log n. In this paper, we consider a problem where the best
previous known oblivious algorithm is to select uniformly at random. Interest-
ingly, we show that using a non-uniform distribution improves the performance.
This problem is called serving in the dark and has an application in prompt
mechanism design for packet scheduling.

The Serving in the Dark Game. In this game, there is an arbitrary sequence
of ball arrival events and ball extraction events. On the arrival of a new ball, the
adversary assigns the ball to an unoccupied bin of its choice. The ball is discarded
only if all bins are occupied. On an extraction event the algorithm chooses one
of the bins, clears it, and gains its contents. Once the sequence ends, all the
bins that contain balls are cleared and their content is added to the total gain.
The goal of the algorithm is to maximize the number of cleared balls for the
sequence. If the algorithm can see the content of the bins, at any extraction step
it would choose a bin with a ball, if one exists, thereby maximizing the total
gain. This gain is defined as the optimal gain (note that in such a case, the
adversary’s choices of which bin to assign the ball to are irrelevant). We consider
an algorithm which serves in the dark. Specifically, the algorithm is not aware of
the arrival events and of the content of the bins. Moreover, when the algorithm
clears a bin, it does not see the bin content. Equivalently, the algorithm does not
get any feedback during the sequence (as such, it can also be called an oblivious
algorithm). We can describe any sequence which contains N extractions as a
sequence of N time units X = 〈X1, . . . , XN 〉, where at time j, Xj ≥ 0 balls
arrive and then one extraction event takes place. In this paper we compare the
gain achieved by an algorithm that serves in the dark to the optimal gain on
the worst possible sequence.

The most natural algorithm is the round robin on the bins, which is (2−1/B)-
competitive. We show in this paper that this is the best possible deterministic
algorithm. Hence, in order to improve this bound one needs to use randomization.
The most natural randomized algorithm is to choose a bin independently and
uniformly at random. For such an algorithm, the choices the adversary makes for
the assignment of the balls become irrelevant and the game becomes somewhat
degenerate. For the uniform algorithm, the exact competitive ratio for the worst
sequence has been determined in [4] to be approximately 1.69.

On one hand, it may seem that the best possible strategy for an algorithm
is to choose a bin uniformly at random, since the algorithm does not get any
feedback during the sequence. Hence, if some bin is chosen with a smaller prob-
ability, then the adversary is more likely to put the next ball in that bin. On the
other hand, although no information is provided, the algorithm might want to
choose a bin that has not been examined recently. Here we show that by using
a non-uniform distribution we can substantially improve the competitive ratio
to 1.55 and get relatively close to the lower bound of 1.5 that we establish.

Serving in the Dark should be done Non-Uniformly 93

Application: Prompt Mechanism Design for Packet Scheduling. Con-
sider the basic packet scheduling mechanism in which an online sequence of
packets with arbitrary private values arrives to a network device that can accom-
modate up to B packets. The device can transmit one packet in each time step.
The goal is to maximize the overall value of the transmitted packets. A trivial
greedy mechanism keeps the B packets with the highest values at any moment in
time, and transmits the packet with the highest value when possible. This mech-
anism is optimal, truthful, but not prompt, i.e., the price cannot be determined
at the time of transmission (see [7]). A prompt mechanism can be designed
by using a value-oblivious algorithm. Such algorithms have the property that
during transmission no preference is given to a packet with a higher value. We
note that value-oblivious algorithms may inspect the values of packets on their
arrival. Therefore, one can assume, without loss of generality, that any value-
oblivious algorithm keeps the B packets with the highest values at any moment
in time. One example of a value-oblivious algorithm is the FIFO algorithm,
which transmits the earliest packet in the buffer. This algorithm is known to
be 2 − 1/B-competitive against the absolute optimum [10]. An algorithm which
transmits a packet independently and uniformly at random is approximately
1.69-competitive [4]. A natural question is whether one can gain from using a
non-uniform distribution. This question can be reduced, by the zero-one princi-
ple [5], to the the Serving in the dark Game described above.

1.1 Our Results

In this paper, we provide a time-order based algorithm that uses a non-uniform
distribution over the bins. This algorithm is approximately 1.55-competitive for
the serving in the dark game, which improves the previously known results.
Recall that the competitive ratio of a randomized algorithm is the worst ratio
over all sequences between the optimal gain and the expected gain of the algo-
rithm.

Theorem 1. There exists a randomized algorithm for serving in the dark which
is (1.55 + o(1))-competitive, where o(1) is a function of B.

We also show a relatively close lower bound for any randomized algorithm
for serving in the dark.

Theorem 2. Any randomized algorithm for serving in the dark is at least 1.5-
competitive.

The lower bound for Theorem 2, and all other missing details and proofs are in
the appendix. In order to prove Theorem 1, we actually prove a more general
theorem, for any time-order based algorithm. A time-order based algorithm is
described by a probability distribution on B ordered bins, where the order is
determined by the last time a bin has been cleared. A probability distribution
is called monotone non-decreasing, if for any two bins, the most recent bin in the
order does not have a higher probability than the least recent bin. We analyze
any monotone time-order based algorithm as follows:

94 Y. Azar and I.R. Cohen

Theorem 3. For any p a monotone non-decreasing and bounded probability dis-
tribution on [0, 1] , let H(x) =

∫ 1

x
p(y)dy. Let f be the solution to the differential

equation f ′(x) = −H(f(x)), with f(0) = 1. The competitive ratio of a block time-
order based algorithm which uses p is maxx≥1

{
x

x−f(x)+f(x−1)−1

}
(1 + o(1)),

where o(1) is a function of B.

In the above theorem f(x) corresponds to the fraction of balls in the bins
starting with B balls followed by xB extractions step with no arrivals.

Application: Prompt Mechanisms for Bounded Capacity Auctions. We
can use the a serving in the dark algorithm to establish a truthful and prompt
selection mechanism for bounded capacity auctions. A bounded capacity auction
is a single-item periodic auction for bidders that arrive online, in which the
number of participating bidders is bounded, e.g., when the auction room has
a limited size. We can apply the serving in the dark algorithm for designing
a mechanism for packet scheduling. Specifically, we design a truthful prompt
mechanism that is approximately (1.55 + o(1))-competitive.

1.2 Our Approach and Techniques

An essential component in our approach is to utilize a deterministic fractional
algorithm, which describes in vector form the ’expected’ content of the bins,
since we do not know how to analyze directly the randomized algorithm. The
deterministic fractional algorithm will be used as a proxy for the analysis. We
analyze the gain of this fractional algorithm compared with the gain of the
optimal gain-maximizing strategy. This fractional algorithm is designed in a
natural way to correspond to the randomized algorithm and depends on its
probability density function.

It is important to note that our analysis is significantly more complicated
than the analysis of the uniform distribution case. Specifically, when using the
uniform distribution the state of all the bins can be described by a single num-
ber, the number of balls in the bins. For arbitrary distributions, presenting the
state as a vector is crucial in analyzing the behavior of the algorithm, since dif-
ferent bins are chosen with different probabilities and the probability of choosing
one specific bin changes over time. We carefully examine the arrival events and
the extraction events for this vector. Our techniques enable us to consider any
monotone probability density function for a time-order based algorithm, and
characterize up to one parameter the worst input sequence for a fractional algo-
rithm that uses this distribution.

Next, we compare the randomized algorithm with the fractional one. We
observe that the gain of this algorithm is not the expected gain of the random-
ized algorithm, but rather dominates it. Nevertheless, we still establish that it
is within a 1 + o(1) factor away from the expected gain of the randomized algo-
rithm. For the uniform distribution this was previously done by defining a simple
supermartingale on the Markov process of the difference between the number of
balls in the fractional algorithm and that in the randomized algorithm. Here, we

Serving in the Dark should be done Non-Uniformly 95

have to define a chain of separate Markov processes for groups of consecutive
bins. In addition, each Markov process in the chain influences the next one. In
order to deal with this complex process, we design sequence of hybrid algorithms,
each has some randomized part followed by some fractional part. We compare
the fractional algorithm to the randomized algorithm by performing a sequence
of comparisons between a consecutive hybrid algorithms. Finally by combining
the result comparing the fractional algorithm and the optimum algorithm with
the result comparing randomized algorithm to the fractional one enables us to
prove the upper bound.

1.3 Further Related Work

In the example that we previously considered there are m weighted balls and
n bins. The algorithm needs to assign the balls to the bins to minimize the
maximum load. Sanders [17] considered the case where the size of the balls are
unknown to the algorithm. He analyzed an oblivious algorithm which assigns
each ball uniformly at random to a bin and proved that the worst ratio of
the maximum load to the optimal maximum load is achieved when a subset of
balls have equal size and the rest are 0. Obliviously, this ratio is bounded by
log n/ log log n. As mentioned before any deterministic oblivious algorithm will
achieve a ratio of at least n. Another version of the balls and bins problem is
assigning B balls to B bins, where the goal is to maximize the number of non
empty bins, where the bins may be permuted by an adversary. A simple result
states that if the balls are placed independently and uniformly at random in the
bins, then the expected fraction of full bins is 1 − 1/e. If this procedure could
have been performed under light i.e. the permutation at each step was known,
then one could deterministically place each ball in a different bin, and hence the
fraction of full bins would have been 1.

There are other randomized balls and bins stochastic processes that have been
analyzed using various techniques such as martingales and Azuma’s inequality.
We refer the reader to the papers [1,2,8,9,11–14] and to the references therein
for a more comprehensive review of the literature.

Another example of an algorithm that behaves oblivious to the input is an
algorithm for scheduling jobs with release times on identical machines in order to
minimize the weighted completion time, introduced by Schulz and Skutella [18].
Their 2-competitive algorithm assigns each job uniformly to a random machine,
independently of the assignment of other jobs, while the order of processing
the jobs on each machine depends on the input. For the flow time Chekuri
et al. [6] showed a constant competitive ratio using the same random oblivious
dispatching with extra resources.

Another problem that can be viewed as serving requests independently
of the input is the well studied oblivious routing [3,15,16]. Here, a graph is
given together with a set of requests to connect pairs of vertices with arbitrary
demands. At the preprocessing stage, the graph is given without the requested
pairs. The oblivious routing algorithm determines a route (a flow) between any
two vertices, independently of their demands and the existence of other pairs.

96 Y. Azar and I.R. Cohen

For each request pair, the service is performed using the predetermined flow for
this pair scaled by their demand. This achieves logarithmic approximation with
respect to the optimal solution for the specific pairs and demands.

2 The Model

Given B bins, consider an arbitrary sequence of arrival events and extraction
events.

− Arrival event: a new ball is stored in an unoccupied bin determined by the
adversary. If all the bins are occupied, then the ball is discarded.

− Extraction event: the algorithm chooses one of the bins, clears it, and gains
its content.

The goal of the algorithm is to maximize the number of extracted balls for
the sequence. We assume that all the balls that remain in the bins at the end
of the sequence are extracted (this is not required if the optimal gain is large
enough).

We consider an algorithm which serves in the dark, i.e., without any input
during the whole process (except for the value of B). The algorithm can be
viewed as a probability distribution over all infinite sequences of numbers in the
set {1, . . . , B}. Note that the input sequence is arbitrary and the algorithm does
not know the sequence or does not know when the sequence ends. We assume
that the adversary knows the algorithm, and that at any moment of time it sees
the contents of all bins (even if the algorithm is randomized).

We can describe any sequence which contains N extractions as a sequence
of N time steps X = 〈X1, . . . , XN 〉, where at time step j, Xj ≥ 0 balls arrive
and then one extraction event takes place. For a given algorithm ALG, we set
Gi = 1 if a ball is extracted in extraction step i, and Gi = 0 otherwise. Let Li

be the number of balls in the bins before extraction step i: Li = min{Li−1 +
Xi −Gi−1, B}. Denote by Oi the number of overflown (discarded) balls at arrival
time i. We have Oi = max{Li−1 + Xi − Gi−1 − B, 0}. Using these notations,
let G(X) bet the total gain of ALG on a sequence X. By definition, G(X) =
N∑

i=1

Gi + LN+1 =
N∑

i=1

Xi −
N∑

i=1

Oi. The gain of a randomized algorithm is its

expected gain over all algorithm’s coins tosses.
The open eye optimal gain: We compare the gain achieved by an algo-

rithm that serves in the dark with the optimal gain on the worst possible
sequence. The optimal algorithm can see the contents of the bins at any extrac-
tion step and would always choose a bin with a ball if one exists. By that it
would maximize the total gain (defined as optimal gain). Since the optimal
algorithm (called OPT) sees the content of the bins, the choices of the adversary
are irrelevant. The gain of OPT in each step i is GOPT

i = min{LOPT
i , 1}. We

use the standard measure to compare a general algorithm with the optimal one
(denoted as �): ρ(X) = GOPT(X)

G(X) and � = maxX ρ(X).

Serving in the Dark should be done Non-Uniformly 97

3 Deterministic Serving Algorithms

One simple deterministic serving algorithm is to perform a round robin over the
bins, i.e., on an extraction event the algorithm chooses the least recent bin that
it had cleared.

Theorem 4. The round robin serving algorithm is (2 − 1/B)-competitive.

The proof is a simpler version of the proof given for FIFO packet schedul-
ing [10]. Next, we give a bound for the competitiveness of any deterministic
serving algorithm.

Theorem 5. Any deterministic serving algorithm is at least (2 − 1/B)-
competitive.

4 Randomized Algorithms and their Analysis

In this section, we design and analyze randomized serving in the dark algorithms.

4.1 Time-Order Based Randomized Algorithms

Let p : [0, 1] → R be a monotone non-decreasing probability density function
(i.e.,

∫ 1

0
p(x)dx = 1). We define a time-order based algorithm, denoted by TOBp,

as follows:

On each extraction event:

− Order the bins according to their last extraction step (latest is first).

− Clear one bin, where the probability to clear the j’th ordered bin is

∫ j/B

(j−1)/B

p(x)dx.

Algorithm 1: Time-Order Based Algorithm TOBp

The algorithm may be described as follows: the bins are ordered in a line of
length B. At each step a position in the line is chosen with a fixed monotone
non-decreasing probability distribution function p on the positions. The ball (if
exists) is extracted from the corresponding bin and then the bin is moved to the
beginning of the line.

4.2 Grouping Bins Together

In order to use a concentration result for the bins, we generalize the algorithm so
that instead of B ordered bins, we keep b1, . . . , bB/K ordered blocks of volume K
(i.e., with K bins each), for some constant K ≥ 1. We impose no internal order
inside a block of bins. The algorithm, denoted as TOBK

p , uses a data structure
of list of B/K blocks, where each block contains K bin indices. On an extraction

98 Y. Azar and I.R. Cohen

event, it chooses a block r with probability qr =
∫ Kr/B

K(r−1)/B
p(x)dx. Afterwards,

it chooses one of the bins in the block uniformly at random and clear it. Finally,
for each block r′ < r a bin is chosen uniformly at random from it and associate
it to the next ordered block, where the extracted bin is associated to the first
block in the order.

Algorithm TOBK
p on extraction event i:

− Choose block ci with probability Pr[ci = r] = qr =

∫ Kr/B

K(r−1)/B

p(x)dx.

− Choose a bin jr ∈ br from each block r ≤ ci uniformly at random.
− Clear bin jci (from block ci).
− Associate bin jr with block br+1 (for r < ci), associate bin jci with block b1.

Algorithm 2: The Block Time-Order Based Algorithm - TOBK
p

Note that the block time-order based algorithm with K = 1 is exactly the
time-order based algorithm introduced above. We introduce the following nota-
tion with respect to the K-block time-order based algorithm with monotone
distribution p ,called TOBK

p , (we omit K and p if they are clear from the con-
text). Let ci be the block chosen in step i. Let Er

i be the indicator of whether
in extraction step i a ball is extracted from block r, i.e., Er

i = 1 if r ≤ ci and jr

contains a ball, 0 otherwise. The gain in step i is Gi = Eci
i . Clearly, the gain is

equal to 1 if we extracted a ball from the chosen block. Let Lr
i be the number

of balls in the r’th ordered block before extraction step i. By the definition of
the algorithm, the load of block r after the i’th extraction is Lr

i + Er−1
i − Er

i if
r ≤ ci, otherwise it remains Lr

i .

Fig. 1. The algorithm’s selection in some step i: the selected block is ci, jci contains
a ball therefore Gi = Eci

i = 1. Note also that the algorithm choses a bin from each
block before ci and associates this bin with the next block, and that the algorithm
associates the extracted bin jci with the first block. Specifically, in the above example,
E1

i = 1, E2
i = 0, therefore, the load in the first block decreased by one and the load in

the second block increased by one.

Next, let us consider arrival events. Since the algorithm uses a fixed monotone
non-decreasing distribution over the ordered blocks, it is easy to determine the
optimal strategy of the adversary.

Serving in the Dark should be done Non-Uniformly 99

Observation 6. For the block time-order based algorithm, on an arrival event
the adversary assigns a ball in the block with the smallest index that has an empty
bin.

By the above observation, on an arrival event the number of balls in the
minimum index block block whose load is smaller than K increases by one. Note
that for a given sequence X, the load in each block is a random variable. Since a
new ball is stored in the first vacant bin, the block index of this new ball is also
a random variable, which makes the analysis of the algorithm complicated. In
order to circumvent this difficulty, we next introduce a deterministic fractional
algorithm that is close to the randomized one.

4.3 Fractional Deterministic Algorithms

We define a deterministic algorithm that ‘behaves like’ the expectation of the
TOBK

p algorithm. Given an input sequence X, the gain and the current loads of
the blocks in TOBK

p are (integer) random variables, since there is randomization
in the extraction events. Alternatively, we define FRCK

p algorithm as a deter-
ministic fractional algorithm, where a fractional of a ball is the deterministically
extracted. In each step, the fraction of the balls that is extracted in FRCK

p corre-
sponds to the the probability that a ball is extracted in TOBK

p given the current
state. Specifically, the load of a block after an extraction event is defined as (we
omit FRC,K, p,X if those are clear from the context)

Lr
i−1 +

(
Er−1

i − Er
i

) B/K∑

j=r

qj , (1)

where Er
i = Lr

i /K. The gain in each step is Gi =
∑B/K

r=1 qrEr
i . The arrival of

balls is defined as for the randomized algorithm. Note that since the load is
fractional, a ball can be split into parts lying in several different blocks.

Fig. 2. The fractional block time-order based algorithm, FRC in which Lj
i , E

j
i , Gi are

fractional numbers. In the example above Er
i = 3/5.

4.4 Analyzing the Fractional Algorithm versus the Optimal
Algorithm

The analysis consists of two parts. In the first part we characterize the worst
sequence for any distribution p. In the second part we analyze the worst gain
ratio of that sequence. By combining the two parts we bound the maximum gain
ratio using p. The proof is in the appendix.

100 Y. Azar and I.R. Cohen

Theorem 7. Given an arbitrary monotone non-decreasing and bounded proba-
bility density function p, let Hp(x) =

∫ 1

x
p(y)dy. Let f be a function that satisfies

f(0) = 1 and f ′(x) = −Hp(f(x)). The competitive ratio � of the fractional algo-
rithm that uses the function p: �FRC ≤ maxx≥1

{
x

x−f(x)+f(x−1)−1

}
(1 + o(1)).

4.5 Analysis of the Randomized Algorithm versus the Fractional
One

In order to compare the fractional algorithm with the randomized one, it is
sufficient to analyze input instances in which the fractional algorithm does not
overflow. The reason is that removing balls which overflow in the fractional algo-
rithm from the sequence, does not decrease the gain of the fractional algorithm
and does not increase the gain of the randomized algorithm. We prove that with
high probability a randomized algorithm with slightly larger volume does not
overflow on such sequences. First, we compare a single fractional block to a single
randomized block:

We define the extraction probability of a block with index i as the prob-
ability that a block with index at least i will be chosen. We define the input
sequence of a block as the sum of: (A) the volume overflown from the previ-
ous block and (B) the volume extracted from the previous block that was not
added to the gain. Additionally, we define the output sequence of a block is
its extracted volume plus its overflown volume. Note that, the load of a block
depends on the block’s input sequence and on its extraction probability.

We prove that any input sequence that does not overflow a fractional block,
does not overflow a ’slightly larger’ randomized block with high probability.
A slightly larger means that we increase the randomized block size as well as
increase its extraction probability . We prove that this implies that their out-
put sequences are close for any input sequence. Finally, we introduce a hybrid
algorithm HYBm, in HYBm the first m blocks are randomized and the rest are
fractional. Note that in the HYBm algorithm the input sequence for the block
m+1 is a random sequence. We compare a HYBm algorithm to a HYBm+1 algo-
rithm by replacing block m + 1 (a fractional block) with a randomized block.
Specifically, using coupling on the randomized choices in the first m blocks we
get that the input sequences for the block m+1 are the same. Next, we compare
the output sequence of the block m+1 in HYBm+1 with the deterministic output
(after the coupling) of block m+1 in HYBm. Specifically, given a sequence and a
coupling for which HYBm does not overflow then HYBm+1 with a slightly larger
fractional block does not overflow with high probability. By applying this itera-
tively for m = 0 to B/K, we prove that with high probability the randomized
algorithm will not overflow and deduce the following theorem:

Theorem 8. For any fractional block algorithm FRC there exists a time order
base TOB algorithm such that GTOB(X) ≥ GFRC(X)(1 − o(1)), for any input
sequence X.

Serving in the Dark should be done Non-Uniformly 101

Single Fractional Block versus Randomized Block. Recall that for a frac-
tional or a randomized block, the load in each step depends only on its input
sequence, and its extraction probability as defined above. First, we bound
(with high probability) the difference in the load between a fractional block and
a randomized block for sequences where the fractional block does not overflow.
Let ε

N,ΔK
= N3 exp

(−(ΔK)2/8N
)

(we omit N,ΔK).

Lemma 1. Let BFRC be a fractional block of size K and extraction probability
QBFRC and BTOB be a randomized block of size K+ΔK and extraction probability
QBTOB = QBFRC K+ΔK

K . Then for any input sequence X that BFRC does not
overflow,
Pr(∃i ≤ N : |LBFRC

i (X) − LBTOB
i (X)| ≥ ΔK) ≤ N3 exp

(−(ΔK)2/8N
)

= ε.

Next, we examine the output sequence Y of the FRC block compared to out-
put sequence of the TOB block for any input sequence X. The output sequence
is defined as the extracted volume plus the overflow volume, i.e., Yi = Ei + Oi.

Lemma 2. Let BFRC be a fractional block of size K and extraction probability
QBFRC , and let TOB be a randomized block of size K + ΔK and extraction
probability QBTOB = QBFRC K+ΔK

K . For any input sequence X we have with
probability of at least 1−ε that −ΔK ≤ ∑i

j=1

(
Y BTOB

j (X)−Y BFRC
j (X)

) ≤ 3ΔK.

The Hybrid Algorithm. We define the hybrid algorithm HYBm in which
the first m blocks are randomized and the rest are fractional. On extraction
step i a block ci is chosen. A randomized block r (r ≤ m) will extract from
one of its bins if r ≤ ci. The extraction from the fractional block is done as
in the fractional algorithm independent of the choice ci. Note that HYB0 is a
fractional algorithm and that HYBB/K is a randomized algorithm. We design
HYBm+1 such that all the blocks except block m + 1 and block B/K are with
the same size and extraction probability as in HYBm. In HYBm+1 we set block
m + 1 to be of size K + ΔK and extraction probability Q · (K + ΔK)/K, where
K and Q are the size and extraction probability of block m + 1 in HYBm. In
addition, we set the last block of HYBm+1 to be of size K̃ + 4ΔK and set its
extraction probability to Q̃ · (K̃ +4ΔK)/K̃, where K̃ and Q̃ are the size and the
extraction probability of the last block in HYBm. Denote Xm as the (random)
input sequence to the block m. The following observation follows immediately
from the above construction of HYBm+1.

Observation 9. For any input sequence Xm such that HYBm−1(Xm) does not
overflow then HYBm(Xm) has at least 4ΔK vacant volume in each step.

Lemma 3. If a sequence X does not overflow HYBm−1 with probability of at
least (1 − ε)m−1 then X does not overflow HYBm with probability of at least
(1 − ε)m.

By applying Lemma 3 B/K times we obtain the following

Corollary 1. If a sequence X does not overflow HYB0 then X does not overflow
HYBB/K with probability of at least (1 − ε)B/K .

102 Y. Azar and I.R. Cohen

Putting Everything Together. The summary of the proof of Theorem 8 is in
the appendix. By combining Theorem 7 and Theorem 8, we conclude that ρTOB ≤
maxx≥1

{
x

x−f(x)−1+f(x−1)

}
(1 + o(1)), which completes the proof for Theorem 3.

The specific distribution function to prove Theorem 1 is in the appendix.

References

1. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. Wiley, New York
(2000)

2. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM J.
Comput 29(1), 180–200 (1999)

3. Azar, Y., Cohen, E., Fiat, A., Kaplan, H., Räcke, H.: Optimal oblivious routing in
polynomial time. J. Comput. Syst. Sci 69(3), 383–394 (2004)

4. Azar, Y., Cohen, I.R., Gamzu, I.: The loss of serving in the dark. In: Proceedings
45th Annual ACM Symposium on Theory of Computing, pp. 951–960 (2013)

5. Azar, Y., Richter, Y,: The zero-one principle for switching networks. In: Proceed-
ings 36th Annual ACM Symposium on Theory of Computing, pp. 64–71 (2004)

6. Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to min-
imize flow time with epsilon resource augmentation. In: Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13–16,
2004, pp. 363–372 (2004)

7. Cole, R., Dobzinski, S., Fleischer, L.K.: Prompt mechanisms for online auctions.
In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 170–181.
Springer, Heidelberg (2008)

8. Dubhashi, P.D., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press (2009)

9. Johnson, N.L., Kotz, S.: Urn Models and Their Applications. John Wiley & Sons
(1977)

10. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in qos switches. SIAM J. Comput 33(3), 563–583
(2004)

11. Kolchin, V.F., Sevastyanov, B.A., Chistyakov, V.P.: Random Allocations. John
Wiley & Sons (1978)

12. McDiarmid, C.: Concentration. In: Probabilistic Methods for Algorithmic Discrete
Mathematics, Springer (1998)

13. Mitzenmacher, M., Richa, A.W., Sitaraman, R.: The power of two random choices:
a survey of techniques and results. In: Handbook of Randomized Computing.
Springer

14. Mitzenmacher, M., Upfal, E.: Probability and computing - randomized algorithms
and probabilistic analysis. Cambridge University Press (2005)

15. Räcke, H.: Minimizing congestion in general networks. In: 43rd Symposium on
Foundations of Computer Science, pp. 43–52. IEEE Computer Society (2002)

16. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in
networks. In: Proceedings 40th Annual ACM Symposium on Theory of Computing,
pp. 255–264 (2008)

17. Sanders, P.: On the competitive analysis of randomized static load balancing. In:
Proceedings of the first Workshop on Randomized Parallel Algorithms, RANDOM
(1996)

18. Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding.
SIAM J. Discrete Math. 15(4), 450–469 (2002)

Finding the Median (Obliviously)
with Bounded Space

Paul Beame(B), Vincent Liew, and Mihai Pǎtraşcu

University of Washington, Seattle, WA, USA
beame@cs.washington.edu

Abstract. We prove that any oblivious algorithm using space S to
find the median of a list of n integers from {1, . . . , 2n} requires time
Ω(n log logS n). This bound also applies to the problem of determining
whether the median is odd or even. It is nearly optimal since Chan,
following Munro and Raman, has shown that there is a (randomized)
selection algorithm using only s registers, each of which can store an
input value or O(log n)-bit counter, that makes only O(log logs n) passes
over the input. The bound also implies a size lower bound for read-
once branching programs computing the low order bit of the median and
implies the analog of P �= NP ∩ coNP for length o(n log log n) oblivious
branching programs.

1 Introduction

The problem of selection or, more specifically, finding the median of a list of
values is one of the most basic computational problems. Indeed, the classic
deterministic linear-time median-finding algorithm of [9], as well as the more
practical expected linear-time randomized algorithm QuickSelect are among the
most widely taught algorithms.

Though these algorithms are asymptotically optimal with respect to time,
they require substantial manipulation and re-ordering of the input during their
execution. Hence, they require the ability to write into a linear number of mem-
ory cells. (These algorithms can be implemented with only O(1) memory loca-
tions in addition to the input if they are allowed to overwrite the input memory.)
In many situations, however, the input is stored separately and cannot be over-
written unless it is brought into working memory. The number of bits S of
working memory that an algorithm with read-only input uses is its space. This
naturally leads to the question of the tradeoffs between the time T and space S
required to find the median, or for selection more generally.

Munro and Paterson [18] gave multipass algorithms that yield deterministic
time-space tradeoff upper bounds for selection for small space algorithms and

P. Beame—Research supported by NSF grants CCF-1217099 and CCF-0916400.
V. Liew—Research supported by NSF grant CCF-1217099.
M. Pǎtraşcu—Much of this work was done with Mihai in 2009 and 2010 when the
lower bounds for oblivious algorithms were obtained. This paper is dedicated to his
memory.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 103–115, 2015.
DOI: 10.1007/978-3-662-47672-7 9

104 P. Beame et al.

showed that the number of passes p must be Ω(logs n) where S = s log2 n. Build-
ing on this work, Frederickson [14] extended the range of space bounds to nearly
linear space, deriving a multipass algorithm achieving a time-space tradeoff of
the form T = O(n log∗ n + n logs n). In the case of randomly ordered inputs,
Munro and Raman [19] showed that on average an even better upper bound of
p = O(log logs n) passes and hence T = O(n log logs n) is possible. Chakrabarti,
Jayram, and Pǎtraşcu [12] showed that this is asymptotically optimal for mul-
tipass computations on randomly ordered input streams. Their analysis also
applied to algorithms that perform arbitrary operations during their execution.

Chan [13] showed how to extend the ideas of Munro and Raman [19] to yield
a randomized median-finding algorithm achieving the same time-space tradeoff
upper bound as in the average case that they analyze. The resulting algorithm,
like all of those discussed so far, only accesses its input using comparisons. Chan
coupled this algorithm with a corresponding time-space tradeoff lower bound
of T = Ω(n log logS n) for randomized comparison branching programs, which
implies the same lower bound for the randomized comparison RAM model. This
is the first lower bound for selection allowing more than multipass access to the
input; the input access can be input-dependent but the algorithm must base all
its decisions on the input order. Though a small gap remains because S �= s, the
main question left open by [13] is that of finding time-space tradeoff lower bounds
for median-finding algorithms that are not restricted to the use of comparisons.

Comparison-based versus general algorithms. Though comparison-based algo-
rithms for selection may be natural, when the input consists of an array of
O(log n)-bit integers, as one often assumes, there are natural alternatives to com-
parisons such as hashing that might potentially yield more efficient algorithms.
Though comparison-based algorithms match the known time-space tradeoff lower
bounds in efficiency for sorting when time T is Ω(n log n) [4,10,21], they are pow-
erless in the regime when T is o(n log n). Moreover, if one considers the closely
related problem of element distinctness, determining whether or not the input
has duplicates, the known time-space tradeoff lower bound of T = Ω(n2−o(1)/S)
for (randomized) comparison branching programs [22] can be beaten for S up
to n1−o(1) by an algorithm using hashing [5] that achieves T = Õ(n3/2/S1/2)1.
Therefore, the restriction to comparison-based algorithms can be a significant
limitation on efficiency.

Our results. We prove a tight T = Ω(n log logS n) lower bound for median-finding
usingarbitraryobliviousalgorithms.Obliviousalgorithmsare those that canaccess
the data in any order, not just in a fixed number of sweeps across the input, but
that order cannot be data dependent. Our lower bound applies even for the deci-
sion problem of computingMedianBit, the low order bit of the median, when the
input consists of n integers chosen from {1, . . . , 2n}. This bound substantially gen-
eralizes the lower bound of [12] for multipass median-finding algorithms. Though
our lower bound does not apply when there is input-dependent access to the input,

1 We use Õ and Ω̃ notations to hide logarithmic factors.

Finding the Median (Obliviously) with Bounded Space 105

it allows one to hash the input data values into working storage, and to organize
and manipulate working storage in arbitrary ways.

The median can be computed by a simple nondeterministic oblivious read-
once branching program of polynomial size that guesses and verifies which input
integer is the median. When expressed in terms of size for time-bounded oblivious
branching programs our lower bound therefore shows that for every time bound
T that is o(n log log n), MedianBit and its complement have nondeterministic
oblivious branching programs of polynomial size but MedianBit requires super-
polynomial size deterministic oblivious branching programs, hence separating the
analogs of P from NP ∩ coNP.

We derive our lower bound using a reduction from a new communication
complexity lower bound for two players to find the low order bit of median of
their joint set of input integers in a bounded number of rounds. The use of
communication complexity lower bounds in the “best partition” model to derive
lower bounds for oblivious algorithms is not new, but the necessity of bounded
rounds is. We derive our bound via a round-preserving reduction from oblivious
computation to best-partition communication complexity [2,20]. This reduction
is asymptotically less efficient than the reductions of [3,11] but the latter do
not preserve the number of rounds, which is essential here since there is a very
efficient O(log n)-bit communication protocol using an unbounded number of
rounds [17]. Moreover, the loss in efficiency does not prevent us from achieving
asymptotically optimal lower bounds.

We further show that the fact that the median function is symmetric in its
inputs implies that our oblivious branching program lower bound also applies to
the case of non-oblivious read-once branching programs. Ideally, we would like
to extend our non-oblivious results to larger time bounds. However, we show
that extending our lower bound even to read-twice branching programs in the
non-oblivious case would require fundamentally new lower bound techniques.
The hardness of the median problem is essentially that of a decision problem:
Though the median problem has Θ(log n) bits of output, the high order bits of
the median are very easy to compute; it is really the low order bit, Median-
Bit, that is the hardest to produce and encapsulates all of the difficulty of the
problem. Moreover, all current methods for time-space tradeoff lower bounds for
decision problems on general branching programs, and indeed for read-k branch-
ing programs for k > 1, also apply to nondeterministic algorithms computing
either the function or its complement and hence cannot apply to the median
because it is easy for such algorithms.

2 Preliminaries

Let D and R be finite sets. We first define branching programs that compute
functions f : Dn → R: A D-way branching program is a connected directed
acyclic multigraph with special nodes: the source node and possibly many sink
nodes, a sequence of n input values and one output. Each non-sink node is
labeled with an input index and every edge is labeled with a symbol from D,

106 P. Beame et al.

which corresponds to the value of the input indexed at the originating node;
there is precisely one out-edge from each non-sink node labeled by each element
of D. We assume that each sink node is labeled by an element of R. The time
T required by a branching program is the length of the longest path from the
source to a sink and the space S is log2 of the number of nodes in the branching
program. A branching program is leveled iff all the paths from the source to any
given node in the program are of the same length; a branching program can be
leveled by adding at most log2 T to its space.

A branching program B computes a function fB : Dn → R by starting at the
source and then proceeding along the nodes of the graph by querying the input
locations associated with each node and following the corresponding edges until
it reaches a sink node; the label of the sink node is the output of the function.

A branching program is oblivious iff on every path from the source node to
a sink node, the sequence of input indices is precisely the same. It is (syntactic)
read-k iff no input index appears more than k times on any path from the source
to a sink.

Branching programs can easily simulate any sequential model of computa-
tion using the same time and space bounds. In particular branching programs
using time T and space S can simulate random-access machine (RAM) algo-
rithms using time T measured in the number of input locations queried and
space S measured in the number of bits of read/write storage required. The
same applies to the simulation of randomized RAM algorithms by randomized
branching programs.

We also find it useful to discuss nondeterministic branching programs for (non-
Boolean) functions,which simulate nondeterministicRAMalgorithms for function
computation. These have the property that multiple outedges from a single node
can have the same label and outedges for some labels may not be present. Every
input must have at least one path that leads to a sink and all paths followed by
an input vector that lead to a sink must lead to the same one, whose label is the
output value of the program. This is different from the usual version for decision
problems in which one only considers accepting paths and infers the output value
for those that are not accepting. When we consider Boolean functions we will typ-
ically assume the usual version based on accepting paths only.

We consider bounded-round versions of deterministic and randomized two-
party communication complexity in which two players Alice and Bob receive
x ∈ X and y ∈ Y and cooperate to compute a function f : X × Y → Z. A
round in a protocol is a maximal segment of communication in which the player
who speaks does not change. For a distribution D on X × Y, we say that a
2-party deterministic communication protocol computes f with error at most
ε < 1/2 under D iff the probability over D that the output of the protocol on
input (x, y) ∼ D is equal to f(x, y) is at least 1 − ε. As usual, via Yao’s lemma,
for any such distribution D, the minimum number of bits communicated by any
deterministic protocol that computes f with error at most ε is a lower bound
on the number of bits communicated by any (public coin) randomized protocol
that computes f with error at most ε.

Finding the Median (Obliviously) with Bounded Space 107

We say that a 2-party deterministic communication protocol has parameters
[P, ε;m1,m2, . . .] for f over a distribution D if:

– the first player to speak is P ∈ {A,B};
– it has error ε < 1

2 under input distribution D;
– the players alternate turns, sending messages of m1,m2, . . . bits, respectively.

For probability distributions P and Q on a domain U , the statistical distance
between P and Q, is ||P − Q|| = maxA⊆U |P (A) − Q(A)|, which is 1/2 of the L1

distance between P and Q. Let log denote log2 unless otherwise specified. i Let
H(X) be the binary entropy of random variable X, H(X|Y) = Ey∼Y H(X|Y =y),
and let I(X;Y |Z) be the mutual information between random variables X and
Y conditioned on random variable Z. We have I(X;Y |Z) ≤ H(X|Z) ≤ H(X).

3 Round Elimination

Let f : X × Y → {0, 1} and consider a distribution D on X × Y. We define the
2-player communication problem f [k] as follows: Alice receives x ∈ X k, while
Bob receives y ∈ Yk and j ∈ [k]; together they want to find f(xj , yj). Also,
given D we define an input distribution D[k] for f [k] by choosing each (xi, yi)
pair independently from D, and independently choosing j uniformly from [k].

The following lemma is a variant of standard techniques and was suggested
to us by Anup Rao; its proof is in the full paper.

Lemma 1. Assume that there exists a 2-party deterministic protocol for f [k]

with parameters [A, ε;m1,m2,m3, . . .
]
over D[k] where m1 = δ2k/(8 ln 2). Then

there exists a 2-party deterministic protocol for f with parameters
[
B, ε +

δ;m2,m3, . . .
]
over D.

The intuition for this lemma is that, since f [k] has k independent copies of
the function f and Alice’s first message has length at most m1 which is only
a small fraction of k, there must be some copy of f on which B learns very
little information. This is so much less than one bit that B could forego this
information in computing f and still only lose δ in his probability of correctness.
The quadratic difference between the number of bits of information per copy,
δ2/(8 ln 2), and the probability difference, δ, comes from Pinsker’s inequality
which relates information and statistical distance.

4 The Bounded-Round Communication Complexity
of (the Least-Significant Bit of) the Median

We consider the complexity of the following communication game. Given a set
A of n elements from [2n] partitioned equally between Alice and Bob, determine
the least significant bit of the median of A. (Since n must be even in order for A
to be partitioned evenly, we take the median to be n/2-th largest element of A.)
We consider the number of rounds of communication required when the length
of each message is at most m for any m ≥ log n.

108 P. Beame et al.

Fig. 1. Recursive construction of the pairing for the hard instances

A Hard Distribution on Median Instances. For our hard instances we first
define a pairing of the elements of [2n] that depends on the value ofm. The setAwill
include precisely one element from each pair. For the input to the communication
problem, we randomly partition the pairs equally between the two players which
will therefore also automatically equally partition the set A. We then show how to
randomly choose one element from each pair to include in A.

In the construction, we define the pairing of [2n] recursively; the param-
eters of each recursive pairing will depend on the initial value n0 of n. Let
k = k(m,n0) = m log2 n0. If

√
n < k log3 n0 then the elements of [1, 2n] are sim-

ply paired consecutively. If
√

n ≥ k log3 n0 then the pairing of [2n] consists of a
“core” of γ =

√
n/ log2 n0 pairs, plus n−γ “shell” pairs on [1, n−γ]∪[n+1+γ, 2n].

In the shell, i and 2n+1−i are paired. The core pairs are obtained by embedding
k recursive instances (using the same values of m and n0) of n′ = γ

k pairs each
on consecutive sets of 2γ

k elements, and placing them back-to-back in the value
range [n − γ + 1, n + γ], see Figure 1. The size of the problem at each level of
recursion decreases from n to n′ = γ/k =

√
n/(m log4 n0). In determining the

median, the only relevant information about the shell elements is how many are
below n; let this number be n

2 − x. If x ∈ [1, γ], the median of the entire array
A will be the x-th order statistic of the core.

If furthermore, x = γ
k (j − 1

2) for an integer j, the median of A will be
exactly the median of the j-th embedded subproblem. In our distribution of
hard instances, we will ensure that x has this nice form.

Formally, the distribution Dn
m,n0

of the hard instances A of size n on [2n] is the

following. Generate k recursive instances on Dγ/k
m,n0 and place shifted versions of

them back-to-back inside the core. Choose j ∈ [k] uniformly at random. Choose
n
2 − γ

k (j − 1
2) uniformly random shell elements in [1, n − γ] to include in A; for

every i ∈ [1, n− γ] \A, we have 2n+1− i ∈ A. This will ensure that the median
of A is precisely the median of the j-th recursive instance inside the core.

Initially we have n = n0 and the recursion only continues when γ =√
n/ log2 n0 ≥ k log n0, so in the base case we have at least log n0 elements.

In this case, the i-th element is chosen randomly and uniformly from the paired
elements 2i− 1 and 2i and so the least significant bit of the median is uniformly
chosen in {0, 1}.

The size of the problem after t levels of recursion remains at least
n

1/2t

0 /(m log4 n0)2−1/2t−1
and our definition gives at least t levels provided that

this size n
1/2t

0 /(m log4 n0)2−1/2t−1 ≥ log n0; i.e., n0 ≥ m2t+1−2 log9·2t−2 n0. We

Finding the Median (Obliviously) with Bounded Space 109

will show that after one message for each level of recursion, the answer is still
not determined.

The general idea of the lower bound is that each round of communication,
which consists of at most m bits and is much smaller than the branching factor
k, will give almost no information about a typical recursive subproblem in the
core.

We use the round elimination lemma to make this precise, and with it derive
the following theorem:

Theorem 1. If, for A chosen according to Dn
m,n and partitioned randomly, Alice

and Bob determine the least significant bit of the median of A with bounded
error ε < 1/2 using t messages of at most m ≥ log n bits each, then m2t+1−2 >

n/ log9·2t−2 n, which implies that t ≥ log logm n − c for some constant c.

The Partition Between the Players. To ensure that neither player has
enough information to skip a level of the recursion, we insist that the shell for
each subproblem be nicely partitioned between the two players. For any given
shell there is a set of n′ > m2/2 ≥ 0.5 log2 n0 shell pairs. Since a player receives
a random 1/2 of all pairs, by Hoeffding’s inequality, with probability 2−Ω(n′),
which is n

−Ω(log n0)
0 , at least n′

3 pairs go to each player. We can use this to say
that with high probability at least 1/3 of all shell elements at a level go to each
player at every level of the recursion: This follows easily because over all levels of
the recursive pairing, there are only a total of o(

√
n0) different shells associated

with subproblems and each one fails only with probability n
−Ω(log n0)
0 .

From now on, fix a partition satisfying the above requirement at all recursion
nodes. We will prove a lower bound for any partition satisfying this property.
Since we are discarding o(1) of possible partitions, the error of the protocol may
increase by o(1), which is negligible.

The Induction. Our proof of Theorem 1 will work by induction, using the
following message elimination lemma:

Lemma 2. Assume that there is a protocol for the median on instances of
size n, with error ε on Dn

m,n0
for

√
n ≥ k log n0 = m log3 n0, using t messages

of size at most m starting with Alice. Then, there is a protocol for a subproblem
of size γ/k, with error ε + O(1

log n0
) on Dγ/k

m,n0 , using t − 1 messages of size at
most m starting with Bob.

We use Lemma 2 to prove Theorem 1 by inductively eliminating all messages.
Let n0 = n. At each application we remove one message to get an error increase
of O(1

log n0
). If the number of rounds is less than the number of levels of recursion,

i.e., m2t+1−2 ≤ n/ log9·2t−2 n, then the MedianBit value of the subproblem will
still be a uniformly random bit on the remaining input, but the protocol will have
no communication and the error will have increased to at most ε+O(t

log n) < 1/2
since t is O(log logm n), which is a contradiction.

110 P. Beame et al.

To prove Lemma 2 we want to apply Lemma 1 using the k subproblems
in the core, but the assumption of Lemma 1 requires that (1) Alice does not
know anything about which subproblem j ∈ [k] is chosen by Bob, and (2) that
subproblem j is chosen uniformly at random. The choice of subproblem j is
determined by the shell elements at this level.

Denote Alice’s shell elements by xs, and Bob’s shell elements by ys. Let
Alice’s part of the core subproblems be x1, . . . , xk, and Bob’s part be y1, . . . , yk.
Note that the choice of the relevant subproblem j is some function of (xs, ys),
and the median of the whole array is the median of xj ∪ yj .

The proof of Lemma 2 proceeds in two stages:

Fixing xs. We first fix the value of xs so that the choice of subproblem does
not depend on Alice’s input and, moreover, so that the probabilities for different
values of j over Bob’s input ys will not be very different from each other because
they are still near the middle binomial coefficients.

By the niceness of the partition of the pairs, we know that the number of
Alice’s shell pairs is |xs| ∈ [

1
3 (n−γ), 2

3 (n−γ)
]
. Let a be the number of elements

in xs that are below n. We want to fix xs such that the error does not increase
too much, and |a − |xs|

2 | ≤ √
n · log n0:

No matter which value of j ∈ [k] is chosen in the input distribution, the shell
elements chosen to be below n consist of a random subset of xs ∪ ys of a fixed
size that is between n/2−γ and n/2+γ; i.e., of fractional size pj between 1

2 − γ
n

and 1
2 + γ

n . By Hoeffding’s inequality, the probability that the actual number a
of these elements that land in xs deviates from |xs|/2 by more than (t+ γ

n)|xs| is
at most 2e−2t2|xs|. Since (n− γ)/3 ≤ |xs| ≤ 2(n− γ)/3, the probability that this
deviates from |xs|/2 by more than

√
n log n0 is at most n

−O(log n0)
0 . We discard

all values of xs that lead to a outside this range. Now fix xs to be the value that
minimizes the conditional error.

Making j uniform. Once xs is fixed, j is a function only of ys. Thus, we are
close to the setup of Lemma 1: Alice receives x1, . . . , xk, Bob receives y1, . . . , yk

and j ∈ [k], and they want to compute a function f(xj , yj). The only problem
is that the lemma requires a uniform distribution of j, whereas our distribution
is no longer uniform (having fixed xs). However, we will argue that it is not far
from uniform.

For each fixed j0 ∈ [k], if a shell elements from Alice’s part are below n, then
Bob must have n

2 −a− γ
k (j0 − 1

2) shell elements below n. Therefore, Pr[j = j0] is

proportional to
(|ys|

n
2 − a − γ

k (j0 − 1
2)

)
. More precisely Pr[j = j0] is this binomial

coefficient divided by the sum of the coefficients for all j0. Thus, to understand
how close j is to uniform, we must understand the the dependence of these
binomial coefficients on j0.

Let Δ = a − |xs|/2. This satisfies |Δ| ≤ √
n log n0. Since |ys| = n − |xs| ≥

n−γ
3 > n/4 we have

(|ys|
n
2 −a− γ

k (j0− 1
2)

)
=

(|ys|
|ys|/2−Δ−δj0

)
where 0 < δj0 < γ. Assume

wlog that Δ ≥ 0. The ratio between different binomial coefficients is at most the

Finding the Median (Obliviously) with Bounded Space 111

ratio
(

n/4
n/8 − Δ

)
/

(
n/4

n/8 − Δ − γ

)
=

(n/8 + Δ + γ) · · · (n/8 + Δ + 1)
(n/8 − Δ) · · · (n/8 − Δ − γ + 1)

≤
(

1 +
10(2Δ + γ)

n

)γ

which is 1 + O(Δγ
n) = 1 + O(1

log n0
) given the values of Δ and γ.

Therefore we have shown that the statistical distance between the induced
distribution on j and the uniform distribution is O(1

log n0
). We can thus con-

sider the following alternative distribution for the problem: pick j uniformly
at random, and manufacture ys conditioned on this j. The error on the new
distribution increases by at most O(1

log n0
). Now we can apply Lemma 1. As

k ≥ m log2 n0, the round elimination will increase the error by O(1
log n0

).

5 Oblivious Branching Programs and the Median

The following result is essentially due to Okol’nishnikova [20], who used it with
slightly different parameters for read-k branching programs, and was indepen-
dently derived by Ajtai [2] in the context of general branching programs.

Proposition 1. Let s be a sequence of of kn elements from [n]. If s is divided
into r = 4k2 segments s1, . . . , sr, each of length n/(4k), then there is an assign-
ment of 2k segments sj to a set LA and all remaining segments sj to LB so that
the number nA (nB) of elements of [n] whose only appearances are in segments
in LA (respectively, LB) satisfy nA ≥ n/(2

(
4k2

2k

)
) and nB ≥ n/2.

Proof. There is a subset V of at least n/2 elements of [n] that occur at most 2k
times in s and hence appear in at most 2k segments of s. Choose the 2k sets sj

to include in LA uniformly at random. For a given i ∈ V , i will contribute to nA

if and only if all of the the at most 2k segments that contain its occurrences are
chosen for LA. This occurs with probability at least 1/

(
r
2k

)
; hence the expected

number of elements in V that only occur in segments of LA is at least |V |/(
r
2k

)
.

Therefore we can select a fixed assignment that contains has at least this number.
Since the total length of segments in LA is at most 2kn/(4k) ≤ n/2, at least n/2
elements of [n] only occur in segments in LB .

Lemma 3. Suppose that there is a 2n-way oblivious branching program of size
2S running in time T = kn that computes MedianBit for n distinct inputs from
[2n]. Then there is deterministic 2-party communication protocol using at most
4k messages of S bits each plus a final 1-bit message to compute MedianBit

for N = �n/
(
4k2

2k

)� distinct inputs from [2N] that are divided evenly between the
two players.

Proof. Let s be the length T sequence of indices of inputs queried by the obliv-
ious branching program. Let k = T/n, r = 4k2, and N = �n/

(
r
2k

)�. Fix the
assignment of segments to LA and LB given by Proposition 1. Arbitrarily select

112 P. Beame et al.

a subset IA of N/2 of the nA indices that only appear in LA and give those
inputs to player A. Similarly, select a subset IB of N/2 of the nB indices that
only appear in LB and give those inputs to player B. Let Q be the remaining
set of n − N input indices.

Fix any input assignment to the indices in Q that assigns (n−N)/2 distinct
values from [n − N] to half the elements of Q and the same number of distinct
values from [n + N + 1, 2n] to the other half of the elements of Q. After fixing
this partial assignment we restrict the remaining inputs to have values in the
segment [n − N + 1, n + N] of length 2N .

The communication protocol is derived as follows: Alice (resp. Bob) interprets
her N/2 inputs from [2N] as assignments from [2n] to the elements of IA (resp.
IB) by adding n − N to each value. Alice will simulate the branching program
executing the segments in LA and Bob will simulate the branching program
executing the segments in LB . A player will continue the simulation until the next
segment is held by the other player, at which point that player communicates the
name of the node in the branching program reached at the end of its layer. Since
LA has only 2k segments, there are at most 4k alternations between players as
well as the final output bit which gives the total communication. By construction,
the median of the whole problem is the median of the N elements and the final
answer for MedianBit on [2N] is computed by XOR-ing the result with the low
order bit of n − N .

Theorem 2. Any oblivious branching program computing MedianBit for n

inputs from [2n] in time T ≤ kn requires size at least 2Ω̃(n1/24k+2
); in partic-

ular, if it uses space S, any oblivious branching program requires time T ≥
0.25n log logS n − c n for some constant c.

Proof. Since T/n ≤ k, applying Lemma 3 we derive a 2-party communication
protocol sending t = 4k + 1 messages of at most S ≥ log n bits each to compute
MedianBit on N ≥ n/

(
4k2

2k

) ≥ n/(2ek)2k inputs from [2N]. By Theorem 1,

S > N1/(2t+1−2)/ log(9·2t−2)/(2t+1−2) N > N1/(24k+2−2)/ log71/15 N since t ≥ 4
and hence S ≥ n1/(24k+2−2)/ log5 n. The size of the branching program is 2S

where S is its space. Moreover, taking logarithms base S and then base 2 we
have 4k ≥ log logS n − c′ for some constant c′.

Analog of P �= NP ∩ coNP for time-bounded oblivious BPs

Corollary 1. Any oblivious branching program of length T ≤ kn computing the
low order bit of the median requires size at least exp(Ω̃(n1/24k+2

)); in particular,
this size is super-polynomial when T is o(n log log n).

On the other hand, the median can be computed by a nondeterministic obliv-
ious read-once branching program using only O(log n) space.

Lemma 4. There is a nondeterministic oblivious read-once branching program
of size O(n4) that computes the median on n integers from [2n].

Finding the Median (Obliviously) with Bounded Space 113

Proof. The branching program guesses the value of the median in [2n] and keeps
track of the number of elements that it has seen both less than the median and
equal to the median in order to check that the value is correct.

In particular, in contrast to Corollary 1, Lemma 4 implies that Median-
Bit can be computed in polynomial size by length n nondeterministic and co-
nondeterministic oblivious branching programs, hence we have shown the analog
of P �= NP ∩ coNP for oblivious branching programs of length o(n log log n).

6 Beyond Oblivious Branching Programs

We first observe that our lower bounds for the median problem extend to the case
of read-once branching programs by using the fact that such programs for the
median can also be assumed to be oblivious without loss of generality. (Obliv-
ious read-once branching programs are also known as ordered binary decision
diagrams (OBDDs).)

Lemma 5. If f : Dn → R is a symmetric function of its inputs then for every
read-once branching B computing f there is an oblivious read-once branching
program, of precisely the same size as B, that computes f .

Proof. With each node v in a read-once branching program, we can associate a
set Iv ⊆ [n] of input indices that are read along paths from the source node to
v. We make B into an oblivious branching program by replacing the index at
node v by |Iv| + 1. This yields an oblivious read-once branching program (not
necessarily leveled) that reads its inputs in the order x1, x2, . . . , xn along every
path (possibly skipping over some inputs on the path). Since f is a symmetric
function, a path of length t ≤ n in B queries t different input locations and the
value of the function on the partial inputs is the same because the function is
symmetric and the values in those t input locations are the same.

Corollary 2. For any ε < 1/2, any read-once branching program computing
MedianBit for n integers from [2n] requires size 2nΩ(1)

.

In particular this means that MedianBit is another example, after those
in [16], of a problem showing the analogue of P �= NP ∩ coNP for read-once
branching programs. However, proving the analogous property even for read-
twice branching programs remains open and will require a fundamentally new
technique for deriving branching program lower bounds.

The approach in all lower bounds for general branching programs (or even
for read-k branching programs) computing decision problems [1,2,6–8,11,20]
applies equally well to nondeterministic computation. (For example, the fact
that the technique also works for nondeterministic computation is made explicit
in [11].) Though this technique has been used to separate nondeterministic from
deterministic computation [2] computing a Boolean function f , it is achieved
by proving a nondeterministic lower bound for computing f . Since the nonde-
terministic oblivious read-once branching program computing the median has

114 P. Beame et al.

T = n and S = O(log n), the core of the median’s hardness, MedianBit, and
its complement do not have non-trivial lower bounds; hence current time-space
tradeoff lower bound techniques are powerless for computing the median.

We conjecture that the lower bound T = Ω(n log logS n) also holds for finding
the median using general non-oblivious algorithms.

References

1. Ajtai, M.: A non-linear time lower bound for boolean branching programs. In:
Proceedings 40th IEEE FOCS Conference, pp. 60–70. New York, NY (1999)

2. Ajtai, M.: Determinism versus non-determinism for linear time RAMs with memory
restrictions. Journal of Computer and System Sciences 65(1), 2–37 (2002)

3. Alon, N., Maass, W.: Meanders and their applications in lower bounds arguments.
Journal of Computer and System Sciences 37, 118–129 (1988)

4. Beame, P.: A general sequential time-space tradeoff for finding unique elements.
SIAM Journal on Computing 20(2), 270–277 (1991)

5. Beame, P., Clifford, R., Machmouchi, W.: Element distinctness, frequency
moments, and sliding windows. In: Proceedings 54th IEEE FOCS Conference, pp.
290–299. Berkeley, CA (2013)

6. Beame, P., Saks, M., Sun, X., Vee, E.: Time-space trade-off lower bounds for ran-
domized computation of decision problems. J. ACM 50(2), 154–195 (2003)

7. Beame, P., Jayram, T.S., Saks, M.: Time-space tradeoffs for branching programs.
Journal of Computer and System Sciences 63(4), 542–572 (2001)

8. Beame, P., Vee, E.: Time-space tradeoffs, multiparty communication complexity,
and nearest-neighbor problems. In: Proceedings 34th ACM STOC Conference, pp.
688–697. Montreal, Quebec, Canada (2002)

9. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. Journal of Computer and System Sciences 7(4), 448–461 (1972)

10. Borodin, A., Cook, S.A.: A time-space tradeoff for sorting on a general sequential
model of computation. SIAM Journal on Computing 11(2), 287–297 (1982)

11. Borodin, A., Razborov, A.A., Smolensky, R.: On lower bounds for read-k times
branching programs. Computational Complexity 3, 1–18 (1993)

12. Chakrabarti, A., Jayram, T.S., Patrascu, M.: Tight lower bounds for selection in
randomly ordered streams. In: Proceedings 19th ACM-SIAM SODA Conference,
pp. 720–729. San Francisco, CA (2008)

13. Chan, T.M.: Comparison-based time-space lower bounds for selection. ACM Trans-
actions on Algorithms 6(2), 26:1–26:16 (2010)

14. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection.
Journal of Computer and System Sciences 34(1), 19–26 (1987)

15. Holenstein, T.: Parallel repetition: Simplification and the no-signaling case. Theory
of Computing 5(1), 141–172 (2009)

16. Jukna, S., Razborov, A.A., Savický, P., Wegener, I.: On P versus NP∩ co-NP for
decision trees and read-once branching programs. Computational Complexity 8(4),
357–370 (1999)

17. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge, England; New York (1997)

18. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoretical
Computer Science 12, 315–323 (1980)

Finding the Median (Obliviously) with Bounded Space 115

19. Munro, J.I., Raman, V.: Selection from read-only memory and sorting with mini-
mum data movement. Theoretical Computer Science 165(2), 311–323 (1996)

20. Okol’nishnikova, E.: On lower bounds for branching programs. Siberian Advances
in Mathematics 3(1), 152–166 (1993)

21. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: Proceedings
39th IEEE FOCS Conference, pp. 264–268. Palo Alto, CA (1998)

22. Yao, A.C.-C.: Near-optimal time-space tradeoff for element distinctness. SIAM
Journal on Computing 23(5), 966–975 (1994)

Approximation Algorithms for Min-Sum
k-Clustering and Balanced k-Median

Babak Behsaz, Zachary Friggstad(B), Mohammad R. Salavatipour,
and Rohit Sivakumar

Department of Computing Science, University of Alberta, Edmonton, AB, Canada
{behsaz,zacharyf,mreza,rohit2}@ualberta.ca

Abstract. We consider two closely related fundamental clustering prob-
lems in this paper. In the Min-Sum k-Clustering problem, one is given
a metric space and has to partition the points into k clusters while min-
imizing the total pairwise distances between the points assigned to the
same cluster. In the Balanced k-Median problem, the instance is the same
and one has to obtain a partitioning into k clusters C1, . . . , Ck, where
each cluster Ci has a center ci, while minimizing the total assignment
costs for the points in the metric; here the cost of assigning a point j to
a cluster Ci is equal to |Ci| times the distance between j and ci in the
metric.

In this paper, we present an O(log n)-approximation for both these
problems where n is the number of points in the metric that are to be
served. This is an improvement over the O(ε−1 log1+ε n)-approximation
(for any constant ε > 0) obtained by Bartal, Charikar, and Raz [STOC
’01]. We also obtain a quasi-PTAS for Balanced k-Median in metrics with
constant doubling dimension.

As in the work of Bartal et al., our approximation for general metrics
uses embeddings into tree metrics. The main technical contribution in
this paper is an O(1)-approximation for Balanced k-Median in hierar-
chically separated trees (HSTs). Our improvement comes from a more
direct dynamic programming approach that heavily exploits properties
of standard HSTs. In this way, we avoid the reduction to special types
of HSTs that were considered by Bartal et al., thereby avoiding an addi-
tional O(ε−1 logε n) loss.

1 Introduction

One of the most ubiquitous problems encountered in computing science is clus-
tering. At a high level, a clustering problem arises when we want to aggregate
data points into groups of similar objects. Often, there are underlying metric dis-
tances d(u, v) between data points u, v that quantify their similarities. Ideally,
we want to cluster the objects into few clusters while ensuring that the distances
within a cluster are small.

M.R. Salavatipour—Supported by NSERC.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 116–128, 2015.
DOI: 10.1007/978-3-662-47672-7 10

Approximation Algorithms for Min-Sum k-Clustering 117

In this paper, we focus on two closely related problems, which are referred
to in the literature as Min-Sum k-clustering (MSkC) and Balanced k-Median
(BkM). In both problems, we are given a metric space over a set of n points
V , which we assume is given as a weighted graph G = (V,E) with shortest-
path distances d(u, v) between any two vertices u, v ∈ V . In the MSkC problem
the goal is to partition the points V into k clusters C1, . . . , Ck to minimize
the sum of pair-wise distances between points assigned to the same cluster:∑k

i=1

∑
{j,j′}⊆Ci

d(j, j′).
This problem (MSkC) was first introduced by Sahni and Gonzalez [14] and is

the complement of the Max k-Cut problem. Bartal et al. [4] gave an O(ε−1 logε n)-
approximation for any constant ε > 0, for the case of Hierarchically Separated
Trees (HSTs), which in turn (using the O(log n) bound for approximating met-
rics using HSTs [8]), gives an O(ε−1 log1+ε n)-approximation for general metrics.
To do this, Bartal et al. consider BkM, where the input is the same as MSkC and
the goal is to select k points c1, . . . , ck ∈ V as the centers of the clusters and par-
tition the nodes V into clusters C1, . . . , Ck to minimize

∑k
i=1 |Ci|

∑
v∈Ci

d(v, ci).
The multiplier |Ci| on the contribution of d(v, ci) to the objective function penal-
izes clusters for being too large, hence the term balanced. As observed in [4], it
is easy to show that an α-approximation for either MSkC or BkM implies a 2α-
approximation for the other problem in metric graphs. The approximation of [4]
for MSkC was obtained by presenting such an approximation for BkM.

1.1 Related Work

The facility location interpretation of the BkM leads to a natural generalization
of the problem. In this generalization, we are given a set of clients C ⊆ V and
a set of facilities F ⊆ V . We need to choose k facilities from F to open and
the clients in C must be served by these k facilities. In other words, the set
of clients must be partitioned into k clusters and the center assigned to each
partition must be chosen from F . Note that C and F can have common vertices.
The special case that C = F = V is the original problem we defined. We often
use the term “facility” to refer to the center of a cluster in BkM and the points
assigned to that center are the “clients” that get served by that facility.

The O(ε−1 log1+ε n)-approximation of [4] stands as the best approximation
for both MSkC and BkM after fourteen years. They also describe a bicriteria
O(1)-approximation (for BkM) that uses O(k) clusters. Fernandez de la Vega

et al. [9] gave a (1+ε)-approximation for MSkC with running time of O(n3k2ε−k2

).
BkM and MSkC have been further studied in more restricted settings. BkM

can be solved in time nO(k) by “guessing” the center locations and their capac-
ities, and then finding a minimum-cost assignment from the clients to these
centers [10]. This yields a 2-approximation for MSkC when k is regarded as a
constant. Furthermore, Indyk gives a PTAS [11] for MSkC when k = 2.

The factor-2 reduction between BkM and MSkC fails to hold when the dis-
tances are not in a metric space. Indeed, one can still solve non-metric instances
of BkM in nO(k) time, however no n2−ε-approximation is possible for non-metric
MSkC for any constant ε > 0 and any k ≥ 3 [12]. An O(

√
log n)-approximation

118 B. Behsaz et al.

for non-metric MSkC for k = 2 is known as this is just a reformulation of the
Minimum Uncut problem [1].

These problems have been studied in geometric spaces as well. For point
sets in R

d and a constant k Schulman [15] gave an algorithm for MSkC that
either outputs a (1 + ε)-approximation, or a solution that agrees with the opti-
mum clustering on (1 − ε)-fraction of the points but may have a much larger
than optimum cost. Finally, Czumaj and Sohler [7] have developed a (4 + ε)-
approximation algorithm for MSkC for the case when k = o(log n/ log log n) and
constant ε.

Perhaps the most well studied related problem is the classical k-Median prob-
lem where one has to find a partition of the point set into k sets C1, . . . , Ck, each
having a center ci while minimizing the total sum of distances of the points to
their respective center. Some of the most recent results, following a long line of
research, are [5,13,17], which bring down the approximation ratio to 2.592 + ε.
It is worth pointing out that both MSkC and BkM seem significantly more diffi-
cult than the classical k-median problem. For instance, for the case of k-median
if one is given the set of k centers the clustering of the points is immediate as
each point will be assigned to the nearest center point; this has been used in a
simple local search algorithm that is proved to have approximation ratio 3 + ε
[2]. However, for the case of BkM, even if one is given the location of k centers
it is not clear how to cluster the points optimally.

1.2 Results and Techniques

Our two primary results are O(log n)-approximation algorithms for both BkM
and MSkC, improving over their previous O(ε−1 log1+ε n)-approximations for
any constant ε > 0 [4], and a quasi-polynomial time approximation scheme
(QPTAS) for BkM in metrics with constant doubling dimension (a.k.a. doubling
metrics). Note that this includes Euclidean spaces of constant dimension. Before
this work, there were no results known for Euclidean metrics apart from what
was known about general metrics.

Similar to the approximation in [4], our improved O(log n)-approximation
for general metrics uses Hierarchically Separated Trees (HSTs), defined formally
in Section 2. Specifically, we give a deterministic constant-factor approximation
for BkM on HSTs. As is well-known, an arbitrary metric can be probabilistically
embedded into an HST with the expected stretch of each edge being O(log n) [8],
thus our algorithm leads immediately to a randomized, polynomial time algo-
rithm that computes a solution with expected cost O(log n) times the optimum
solution cost.

The approximation in [4] relied on slightly non-conventional HSTs where the
diameters of the subtrees drop by an O(logε n)-factor instead of the usual O(1)
factor. One can obtain such HSTs with O(1ε log n/ log log n) height which was
necessary in order to ensure that their algorithm runs in polynomial time. Our
dynamic programming approach is quite different and requires a few observa-
tions about the structure of optimal solutions in 2-HSTs. In this way, we avoid
dependence on the height of the tree in the running time of our algorithm,

Approximation Algorithms for Min-Sum k-Clustering 119

thereby obtaining a polynomial-time, constant-factor approximation for 2-HSTs
and ultimately, a O(log n)-approximation in general metrics.

Our second result, which is a QPTAS for BkM, is essentially a dynamic
programming algorithm which builds on the hierarchical decomposition of a
metric space with constant doubling dimensions. We start this by presenting
a QPTAS for BkM for the case of a tree metric and show how this can be
extended to metrics with constant doubling dimensions. This result strongly
suggests that the problem is not APX-hard and therefore should have a PTAS
for these metrics.

For our algorithms we consider a special case of the BkM problem in which
each cluster has a type based on rounding up the size of the cluster to the nearest
power of (1 + ε) for some given constant ε > 0; we call this the ε-Restricted
Balanced k-median (RBkM) problem. Here each cluster has one of the types
0, 1, . . . , �log1+ε n�, where n denotes the number of clients, i.e., n = |C|. A cluster
that is of type i can serve at most (1 + ε)i clients and the cost of serving each
client j in a type i cluster with center (facility) c is (1 + ε)i · d(c, j) (regardless
of how many clients are served by the facility). We sometimes refer to (1 + ε)i

as the capacity or the multiplier of the center (facility) of the cluster. We also
say that the center of the cluster and all the clients of that cluster are of type i.
It is not hard to see that an α-approximation algorithm for this version results
in a ((1 + ε)α)-approximation algorithm for the BkM problem.

Section 2 outlines our approach for the general O(log n)-approximation,
including specific definitions of the HSTs we use. The dynamic programming
approach for HSTs appears in Section 3. We present the QPTAS for BkM in
doubling metrics in Section 4.

2 An O(logn)-Approximation for General BkM

As noted earlier, our O(log n)-approximation uses embeddings into tree metrics.
In particular, we use the fact that an arbitrary metric can be probabilistically
approximated by Hierarchically Separated Trees with O(log n) distortion. We
begin by listing some properties of μ-HSTs that we use in our algorithm.

Definition 1. For μ > 1, a μ-Hierarchical Well Separated Tree (μ-HST) is a
metric space defined on the leaves of a rooted tree T . Let the level of an internal
node in the tree be the number of edges on the path to the root. Let Δ denote the
diameter of the resulting metric space. For a vertex u ∈ T , let Δ(u) denote the
diameter of the subtree rooted at u. Then the tree has the following properties:

– All edges at a particular level have the same weight.
– All leaves are at the same level.
– For any internal node u at level i, Δ(u) = Δ · μ−i.

By this definition, any two leaf nodes u and v with a least common ancestor
w are at distance exactly Δ(w) from each other. If T is a μ-HST then we let
dT (u, v) denote the distance between u and v in T . It follows from [8] that for any

120 B. Behsaz et al.

integer μ > 1, any metric can be probabilistically embedded into μ-HSTs with
stretch O(μ·logμ n). Furthermore, we can sample a μ-HST from this distribution
in polynomial time.

In an instance of BkM on μ-HSTs T , only the leaf nodes of T correspond
to clients and all the cluster centers must be leaf nodes of T . We use this in a
standard way to get a randomized O(log n)-approximation for BkM and MSkC.

Note: Our techniques can be used to get a PTAS for μ-HSTs for any constant μ
by solving the ε-RBkM problem exactly for appropriately small values of ε, but it
is enough to describe a 2-approximation for BkM in 2-HSTs to get an O(log n)-
approximation in general metrics. Thus, we focus on this case for simplicity.

3 Dynamic Programming for BkM in 2-HSTs

Recall that in ε-RBkM, the capacity of each facility (or the size of each cluster)
is rounded up to the nearest power of 1 + ε. For ease of exposition, we focus
on the 1-RBkM problem (i.e. where all cluster sizes are powers of two) and
present an exact algorithm for this problem on 2-HSTs. Clearly, this implies a
2-approximation for the BkM problem on such graphs. In this section we simply
use RBkM to refer to 1-RBkM. We prove the following:

Theorem 1. RBkM instances in 2-HSTs can be solved in polynomial time.

To solve RBkM exactly on 2-HSTs using Dynamic Programming, we start by
demonstrating the existence of an optimal solution with certain helpful proper-
ties. Let T = (V,E) denote the 2-HST rooted at a vertex r ∈ V . For any vertex
v ∈ V , let Tv denote the subtree of T rooted at v. It is obvious that Tv itself
is a 2-HST. A client (or facility) is said to be located in the subtree Tv if its
corresponding vertex in the tree belongs to Tv. In the same vein, a client (or
facility) is located outside Tv if it is located in the subtree T\Tv.

We say that a facility at location vf serves a client at location vc if vc is part
of the cluster with center vf . We emphasize that only the leaf nodes of a 2-HST
are clients and we can only open facilities at leaf nodes. We say that a facility
at vf is of type i if it is open with capacity 2i. Thus, each client v being served
by vf is being served with cost 2i · d(vf , v).

The following two lemmas are helpful in narrowing our search for the opti-
mum solution. There proofs are omitted due to lack of space.

Lemma 1. In an optimal solution, each open facility serves its collocated client.

Lemma 2. For every optimal solution and for each vertex v, there is at most
one type i of facility in Tv that serves clients located outside Tv. Also, any other
facility in Tv has type at least i.

We record a few more simple observations before describing our recurrence.

Approximation Algorithms for Min-Sum k-Clustering 121

Observation 1. In an optimal solution to RBkM with two vertices u, v ∈ V
such that Tu and Tv are disjoint, there cannot exist two facilities fu and fv and
clients cu and cv in the subtrees rooted at u and v, respectively, such that fu

serves cv and fv serves cu.

If this were not the case, we can reduce the cost by swapping the clients and
having fu serving to cu and fv serving to cv to get a cheaper solution.

Observation 2. For any feasible solution to RBkM and a vertex v in the tree,
if u,w ∈ Tv are two clients served by two facilites fu, fw �∈ Tv then the cost of
pairing u with fu and w with fw is the same as the cost of pairing u with fw

and w with fu.

This is because for every vertex v ∈ T , all clients and facilities in Tv are equidis-
tant from v by Definition 1. For the next observation, recall that all the leaves
in T are located at the same level.

Observation 3. For a facility with multiplier mf located at vf and a client
located at vc, let vlca denote their least common ancestor. Then the cost of serving
vc at vf is 2 · mf · d(vf , vlca).

This will be helpful in our algorithm because, in some sense, it only keeps track
of the distance between vf and vlca for a client vc served by vf . For an edge e
between vf and vlca, we call 2 · mf · d(e) the actual cost of the edge e for the
(vc, vf) pair, where d(e) is the weight of e in the metric. Note that the sum of
the actual costs of edges between vf and vlca is precisely mf · d(vf , vc).

Definition 2. For a subtree Tv of T and any feasible solution to RBkM, we use
costinTv

to refer to the sum of the actual costs of edges within Tv accrued due to
all the facility-client pairs (vf , vc) where vf ∈ Tv.

Thus, for any feasible solution to RBkM, costinTr
is the cost of this solution.

Definition 3. In a partial assignment of clients to facilities, the slack of a facil-
ity f is the difference between its capacity and the number of clients assigned to
f . The slack of a subtree Tv rooted at a v is the total slack of facilities in Tv.

We first present our dynamic programming algorithm under the assumption
that the 2-HST is a full binary tree. This cannot be assumed in general, but we
present this first because it is simpler than the general case and still introduces
the key ideas behind our algorithm.

The general case is more technical and requires two levels of DP; the details
will appear in the full version of this paper. Some intuition regarding this case
is discussed at the end of this section.

122 B. Behsaz et al.

3.1 The Special Case of Full Binary Trees

To define a subproblem for the DP, let us consider an arbitrary feasible solution
and focus on a subtree Tv, for v ∈ T . We start by defining a few parameters:

– kv is the number of facilities opened in the subtree Tv.
– tv denotes the type of the facility, if any, in Tv which serves clients located

outside Tv (c.f. Lemma 2). We assign a value of −1 to tv if no client in T\Tv

is served by a facility in Tv.
– uv is the number of clients in T\Tv that are served by facilities in Tv.
– dv is the number of clients in Tv that are served by facilities in T\Tv (and)
– o is the slack of Tv.

Each table entry is of the form A[v, kv, tv, uv, dv, o]. For a vertex v ∈ V , the value
stored in this table entry is the minimum of costinTv

over all feasible solutions with
parameters kv, tv, uv, dv, o if the cell is a non-pessimal state (defined below).

Observation 3 in the previous section provides insight on why it is sufficient
to keep track of the dv values without caring about the type or the location of
the facilities outside of Tv for calculating the cost of the solution. Our algorithm
for RBkM fills the table for all permissible values of parameters v, kv, tv, uv, dv

and o for every vertex v in a bottom-up fashion (from leaf to root). For vertices
in the same level, ties are broken arbitrarily.

Pessimal States and Base Cases. An entry of the dynamic programming
table is said to be trivially suboptimal if it is forced to contain a facility that
does not cover its collocated client and is said to be infeasible when either the
number of clients to be covered or the number of facilities to be opened within
a subtree is greater than the total number of nodes in the subtree. We call an
entry of the table pessimal when it is either infeasible or trivially suboptimal. It
is easy to determine the pessimal states in the DP table at the leaf level of the
tree. For other subproblems, a cell in the table is pessimal if and only if all its
subproblems are pessimal states. For the ease of execution of our DP, we assign
a value of ∞ to these cells in our table.

Notice that, at the leaf level of a 2-HST, all the vertices are client nodes. But
some of these nodes may also have a collocated facility opened. At this stage,
the only non-pessimal subproblems are the following:

(a) Facility nodes that correspond to subproblems of the kind A[v, 1, tv, uv, 0, o]
satisfying the capacity constraint that uv + o + 1 = 2tv , where the number
1 indicates the facility’s collocated client from Lemma 1 (and)

(b) Client nodes which have subproblems of the form A[v, 0,−1, 0, 1, 0].

The value stored in these entries are zero.

Approximation Algorithms for Min-Sum k-Clustering 123

The Recurrence. If the vertex v has two children v1 and v2 and the values for
the dynamic program are already computed for all subproblems of Tv1 and Tv2 ,
then the recurrence we use is given as follows:

A[v, kv, tv, uv, dv, o] = min
k′,k′′,t∗

1 ,t∗
2 ,u∗

1 ,u∗
2 ,d∗

1 ,d∗
2 ,o1,o2

(A[v1, k′, t∗1, u
∗
1, d

∗
1, o1]

+ A[v2, k′′, t∗2, u
∗
2, d

∗
2, o2] + 2

∑

i∈{1,2},t∗
i ≥0

2t∗
i · u∗

i · d(v, vi)),

where the subproblems in the above equation satisfy the following “consistency
constraints”:
Type Consistency: We consider two cases for the type tv assuming that uv > 0.
If uv = 0, the problem boils down to the case where tv = −1.

1. If tv = −1, then no facility in Tv serves clients located in T\Tv. Therefore,
all the clients served by facilities in Tv1 are located within Tv1 or in Tv2 .
Similarly, for the subtree Tv2 , every client served by a facility in Tv2 is either
located in Tv1 or in Tv2 . But it is clear from Observation 1 that an optimal
solution cannot simultaneously have a facility in Tv1 serving a client in Tv2

and a facility in Tv2 serving a client in Tv1 . Hence, min(tv1 , tv2) = tv = −1.
2. If tv ≥ 0, then there exists at least one client in T\Tv that will be served by

a facility in Tv. Without loss of generality, if one of the two subtrees, say Tv1

has a type tv1 = −1, then the type of the other subtree tv2 must be equal to
the type of the facility leaving its parent, tv. Otherwise, if both the values
tv1 and tv2 are non-negative, Lemma 2 implies that min(tv1 , tv2) = tv.

Slack Consistency: The slack of Tv comes from the combined slack of facilities
in both its subtrees, Tv1 and Tv2 . Therefore, o = o1 + o2.
Consistency in the Number of Facilities : kv is the number of facilities
opened in Tv. Since these facilities belong to either of the two subtrees Tv1 and
Tv2 , we have that kv = k′ + k′′.
Flow Consistency: u∗

1 + u∗
2 + dv = d∗

1 + d∗
2 + uv. This constraint ensures that

the subproblems we are looking at are consistent with the uv and dv values in
hand. More specifically, note that u∗

1 is the number of clients in T\Tv1 served by
facilities in Tv1 and that these u∗

1 clients can either be located in Tv2 or in the
subtree T\Tv. Let us denote by u∗

1a, the number of such clients in T\Tv and by
u∗
1b, the number of clients in Tv2 served by facilities in Tv1 . Likewise, let u∗

2a be
the number of clients in T\Tv and u∗

2b, the number of clients in Tv1 which are
served by facilities in Tv2 . It is easy to see that u∗

1a+u∗
1b = u∗

1 and u∗
2a+u∗

2b = u∗
2.

Also, by accounting for the clients in T\Tv served by facilities in Tv we see

uv = u∗
1a + u∗

2a (1)

Out of the d∗
1 clients in Tv1 and d∗

2 clients in Tv2 which are served by facilities
located outside their respective subtrees, dv of these clients are served by facilities
in T\Tv, while the remaining clients d∗

1 + d∗
2 − dv must either be served by the

u∗
1b facilities situated in Tv1 and u∗

2b situated in Tv2 . Hence,

d∗
1 + d∗

2 = dv + u∗
1b + u∗

2b (2)

124 B. Behsaz et al.

Summing up the Equations (1) and (2) and from the observation that u∗
1a+u∗

1b =
u∗
1 and u∗

2a + u∗
2b = u∗

2, we get the flow constraint stated above.
The last term in the recurrence gives the sum of actual costs of the edges

between v and its children for the client-facility pairs where the facility is inside
one of the two subtrees Tv1 or Tv2 . From Definition 2, this value is equal to the
difference, costinTv

− (costinTv1
+ costinTv2

).
The optimal RBkM solution is the minimum value from among the entries

A[r, k,−1, 0, 0, o] for all values of o. Note that the number of different values each
parameter can take is bounded by the number of nodes in the tree (we assume k
is at most the number of leaves, or else the problem is trivial) and the number of
recursive calls made to compute a single entry is also polynomially-bounded, so
these values can be computed in polynomial time using dynamic programming.

Intuition Behind General HSTs

In HSTs that are not necessarily binary, we still computes the values A as
described in the binary case. However, computing these values for subproblems
rooted at a verticex v with multiple children u1, . . . , u� requires a more sophis-
ticated approach. For this, we use an “inner” dynamic programming algorithm
that, for each 0 ≤ i ≤ k, tracks the movement of clients between {Tu1 , . . . , Tui

}
and

{
Tui+1 , . . . , Tu�

}
, as well as movement in and out of Tv. Using observations

like in the binary case, we only have to keep track of the number of clients from
a constant number of types.

4 QPTAS for Doubling Metrics

In this section we consider the generalization of BkM where C and F are not
necessarily equal and present a QPTAS for it when the input metric has con-
stant doubling dimension. We also assume that ε > 0 is a fixed constant (error
parameter) and present an exact algorithm for ε-RBkM which clearly implies a
(1 + ε)-approximation for BkM.

For simplicity of explanation, we will describe the QPTAS only for tree met-
rics and defer the details for doubling metrics to the full version of this paper. At
a high level, the extension to doubling metrics uses similar ideas as our QPTAS
in trees, modified appropriately to work with the hierarchical decomposition of
doubling metrics described by by Talwar [16].

4.1 A QPTAS for Tree Metrics

In this section, we present an exact quasi-polynomial time algorithm for the
ε-RBkM problem on trees. Without loss of generality, we assume the tree is
rooted at an arbitrary vertex r. We repeatedly remove leaves with no client
or facility until there is no such leaf in the tree. We also repeatedly remove
internal vertices of degree two with no client or facility by consolidating their
incident edges into one edge of the total length. Also, it is not hard to see that by
introducing dummy vertices and zero length edges, we can convert this modified

Approximation Algorithms for Min-Sum k-Clustering 125

rooted tree into an equivalent binary tree1 in which the clients and facilities are
only located on distinct leaves. In other words, each leaf has either a client or a
facility. The number of vertices and edges in this binary tree remains linear in
the size of the original instance.

Let p = �log1+ε n�. In a solution for the ε-RBkM problem, we say a client or
facility has type i if it belongs to a type i cluster for some 0 ≤ i ≤ p. We first
observe a structural property in an optimal solution of an instance of ε-RBkM.
We think of the clients get connected to facilities (the center of the cluster) to
get some service. Having said this, we prove that there is an optimal solution in
which type i clients either enter or leave a subtree but not both. In other words,
in this solution, there are no two clients of the same type such that one enters the
subtree to get connected to a facility and one leaves the subtree to get connected
to a facility. To see this, let Tv be the subtree rooted at an arbitrary vertex v,
and assume clients j1 and j2 have the same type, j1 is not in Tv but enters this
subtree to be served by facility i1, and client j2 is in Tv but leaves this subtree
to be served by a facility i2. Then, it is not hard to see that because j1 and
j2 have the same type, if we send j1 to i2 and j2 to i1, we get another feasible
clustering with no more cost. Therefore, starting from an optimal solution, one
can transform it to a new optimal solution satisfying the above property. We
now present a dynamic programming to compute the optimal solution for the
given instance of ε-RBkM in quasi-polynomial time.

The Table. The table in our dynamic programming algorithm captures “snap-
shots” of solutions in a particular subtree which includes the information of how
many clients of each type either enter or leave this subtree. The subproblems
have the form (v, k′,Q), where v is a vertex of the tree, k′ ≤ k, and Q is a vector
of length p + 1 of integers; we describe these parameters below. We want to find
the minimum cost solution to cover all the clients in Tv, the subtree rooted at
v, such that:

1. There are at most 0 ≤ k′ ≤ k open facilities in Tv. These facilities serve
clients inside or outside Tv.

2. The clients in Tv are covered by the facilities inside Tv or outside Tv.
3. Q is a p + 1 dimensional vector. The ith component of this vector qi deter-

mines the number of type i clients that enter or leave Tv. When 0 ≤ qi ≤ n,
qi is the number of type i clients that enter Tv and when −n ≤ qi ≤ 0, |qi|
is the number of type i clients that leave Tv.

In a partial solution for the subproblem, the types of clients in Tv and the at
most k′ facilities to be opened in Tv must be determined. Each client must be
assigned to an open facility of the same type in Tv or sent to v to be serviced
outside, and each client shipped from outside to v must be assigned to a facility
of its type inside Tv. The cost of a partial solution accounts for the cost of sending
a client in Tv to a facility inside or to v (i.e., distance to the facility of v times
(1 + ε)i where i is the type client) plus, for the clients shipped from outside of

1 A tree in which every node other than the leaves has two children.

126 B. Behsaz et al.

Tv to v, the cost of sending them from v to their designated facility in Tv (i.e.
the distance from v to the facility times (1 + ε)i where i is the type client).
We keep the value of a minimum cost partial solution in table entry A[v, k′,Q].
After filling this table, the final answer will be in the entry A[r, k,0] where 0 is
a vector with p + 1 zero components.

Base Case 1: There is a client on v. Then, for each 0 ≤ j ≤ p, we do as follows.
We form a vector Q with p + 1 components such that the ith component qi = 0
for all i �= j and qi = −1 for i = j. Then, we set A[v, 0,Q] = 0. We set all other
entries of the form A[v, ., .] to infinity.

Base Case 2: There is a facility on v. Then, for each type 0 ≤ j ≤ p and for
each integer (1+ ε)j−1 < t ≤ (1+ ε)j , we do as follows. We form a vector Q with
p+1 components such that the ith component qi = 0 for all i �= j and qi = t for
i = j. We set A[v, 1,Q] = 0 and all other entries of the form A[v, ., .] to infinity.

Recursive Case: Consider a subtree rooted at a vertex v with two children
v1 and v2. We say the subproblem corresponding (v, k′,Q) is consistent with
subproblems (v1, k′

1,Q1) and (v2, k′
2,Q2) if k′

1 + k′
2 ≤ k′ and Q1 + Q2 = Q.

To find the value of a subproblem (v, k′,Q), we initialize A[v, k′,Q] = ∞
and enumerate over all subproblems for its children v1 and v2. For each pair of
consitent subproblems (v1, k′

1,Q1) and (v2, k′
2,Q2), we update the entry to the

minimum of its current value and:
2∑

i=1

(A[vi, k
′
i,Qi] +

p∑

j=0

|q(i)j | · (1 + ε)j · d(vi, v)),

where q
(i)
j is the jth component of Qi.

Note that the size of the DP table is O(np+3) and we can compute each entry
in time nO(p), therefore:

Theorem 2. There is a QPTAS for the BkM problem on tree metrics.

5 Conclusion

In this paper, we have given an O(log n)-approximation for BkM and MSkC in
general metrics and also a quasi-PTAS for BkM in doubling metrics. Of course,
the most natural open problem is to determine if either of these problems admits
a true constant-factor approximation in arbitrary metric spaces. A PTAS for
BkM in doubling dimension metrics or even Euclidean metrics seems quite plau-
sible but even obtaining a constant-factor approximation in such cases is an
interesting open problem. Perhaps one direction of attack would be to consider
LP relaxation for the problem. It can be shown that the most natural configu-
ration based LP (where we would have a variable xi,C for every possible facility
location i and a set C of clients assigned to it) is equivalent to the natural LP
relaxation. One of the difficulties of using LP for BkM is that most of the stan-
dard rounding techniques that have been used successfully for facility location

Approximation Algorithms for Min-Sum k-Clustering 127

or the k-median problem (such as filtering, clustering, etc) do not seem to work
for the BkM due to the multiplier of cluster sizes. For example, the bicriteria
approximation of [4] relies on a correspondence between BkM and a variant
of capacitated k-median on a semi-metric space. They then used a Lagrangian
relaxation and a primal-dual method to solve the capacitated k-median; the end
result though opens O(k) centers. Chuzhoy and Rabani [6] presented a better
approximation for capacitated k-median where there are at most k locations
of centers while up to O(1) centers may be open at each location. Adapting
their algorithm to work for the semi-metric space resulting from the work of [4]
breaks down at a technical point. In particular, where one has to combine two
solutions obtained from the primal-dual method with k1 < k < k2 number of
centers. If one could overcome this technical difficulty then it could lead to a
O(1)-approximation for MSkC and BkM on general metrics. Overall, it would
be interesting to see if the standard LP relaxation has a constant integrality gap.

References

1. Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.: O(
√
logn)-

approximation algorithms for Min UnCut, Min-2CNF deletion, and directed cut
problems. In: Proc. of STOC (2005)

2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
Search Heuristics for k-Median and Facility Location Problem. SIAM Journal on
Computing 33, 544–562 (2004)

3. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic appli-
cation. In: Proc. of FOCS (1996)

4. Bartal, Y., Charikar, M., Raz, D.: Approximating min-sum k-Clustering in metric
spaces. In: Proc. of STOC (2001)

5. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approx-
imation for k-median, and positive correlation in budgeted optimization. In: Proc.
of SODA (2015)

6. Chuzhoy, J., Rabani, Y.: Approximating k-median with non-uniform capacities.
In: Proc. of SODA (2005)

7. Czumaj, A., Sohler, C.: Small space representations for metric min-sum
k -clustering and their applications. In: Thomas, W., Weil, P. (eds.) STACS 2007.
LNCS, vol. 4393, pp. 536–548. Springer, Heidelberg (2007)

8. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: Proc. of STOC (2003)

9. de la Vega, W.F., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes
for clustering problems. In: Proc. STOC (2003)

10. Guttman-Beck, N., Hassin, R.: Approximation algorithms for min-sum
p-clustering. Discrete Applied Mathematics 89, 125–142 (1998)

11. Indyk, P.: A sublinear time approximation scheme for clustering in metric spaces.
In: Proc. of FOCS (1999)

12. Kann, V., Khanna, S., Lagergren, J., Panconessi, A.: On the hardness of max k-cut
and its dual. In: Israeli Symposium on Theoretical Computer Science (1996)

13. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. In: Proc.
of STOC (2013)

128 B. Behsaz et al.

14. Sahni, S., Gonzalez, T.: P -Complete Approximation Problems. J. of the ACM
(JACM) 23(3), 555–565 (1976)

15. Schulman, L.J.: Clustering for edge-cost minimization. In: Proc. of STOC (2000)
16. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In:

Proc. of STOC (2004)
17. Wu, C., Xu, D., Du, D., Wang, Y.: An improved approximation algorithm for

k-median problem using a new factor-revealing LP. http://arxiv.org/abs/1410.4161

http://arxiv.org/abs/http://arxiv.org/abs/1410.4161

Solving Linear Programming
with Constraints Unknown

Xiaohui Bei1(B), Ning Chen2, and Shengyu Zhang3(B)

1 Max Planck Institute for Informatics, Saarbrücken, Germany
xbei@mpi-inf.mpg.de

2 Nanyang Technological University, Singapore, Singapore
3 The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract. What is the value of input information in solving linear pro-
gramming? The celebrated ellipsoid algorithm tells us that the full infor-
mation of input constraints is not necessary; the algorithm works as long
as there exists an oracle that, on a proposed candidate solution, returns a
violation in the form of a separating hyperplane. Can linear programming
still be efficiently solved if the returned violation is in other formats?

Motivated by some real-world scenarios, we study this question in a
trial-and-error framework: there is an oracle that, upon a proposed solu-
tion, returns the index of a violated constraint (with the content of the
constraint still hidden). When more than one constraint is violated, two
variants in the model are investigated. (1) The oracle returns the index
of a “most violated” constraint, measured by the Euclidean distance of
the proposed solution and the half-spaces defined by the constraints. In
this case, the LP can be efficiently solved (under a mild condition of
non-degeneracy). (2) The oracle returns the index of an arbitrary (i.e.,
worst-case) violated constraint. In this case, we give an algorithm with
running time exponential in the number of variables. We then show that
the exponential dependence on n is unfortunately necessary even for the
query complexity. These results put together shed light on the amount of
information that one needs in order to solve a linear program efficiently.

The proofs of the results employ a variety of geometric techniques,
including the weighted spherical Voronoi diagram and the furthest
Voronoi diagram.

1 Introduction

Solving linear programming (LP) is a central question studied in operations
research and theoretical computer science. The existence of efficient algorithms
for LP is one of the cornerstones of a broad class of designs in, for instance,
approximation algorithms and combinatorial optimization. The feasibility prob-
lem of linear programming asks to find an x ∈ R

n to satisfy a number of linear
constraints Ax > b. Some previous algorithms, such as the simplex and interior
point algorithms, assume that the constraints are explicitly given. In contrast,
the ellipsoid method is able to find a feasible solution even without full knowl-
edge of the constraints. This remarkable property grants the ellipsoid method
an important role in many theoretical applications.
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 129–142, 2015.
DOI: 10.1007/978-3-662-47672-7 11

130 X. Bei et al.

A central ingredient in the ellipsoid method is an oracle that, for a pro-
posed (infeasible) point x ∈ R

n, provides a violation that separates x and the
feasible region of the LP in the format of a hyperplane. Such a separation ora-
cle captures situations in which the input constraints are unavailable or cannot
be accessed affordably, and the available information is from separating hyper-
planes for proposed solutions. A natural question is what if the feedback for a
proposed solution is not a separating hyperplane. Aside from theoretical curios-
ity, the question relates to practical applications, where the acquired violation
information is actually rather different and even more restricted and limited.

Transmit power control in cellular networks has been extensively studied in
the past two decades, and the techniques developed have become foundations in
the CDMA standards in today’s 3G networks. In a typical scenario, there are a
number of pairs of transmitters and receivers, and the transmission power of each
transmitter needs to be determined to ensure that the signal is strong enough for
the target receiver, yet not so strong that it interferes with other receivers. This
requirement can be written as an LP of the form Ax > b, where each constraint i
corresponds to the requirement that the Signal to Interference Ratio (SIR) is no
less than a certain threshold. In general the power control is a well-known hard
problem (except for very few cases, such as power minimization [9]); a major
difficulty is that matrix A depends mainly on the “channel gains”, which are
largely unknown in many practical scenarios [4]. Thus the LP Ax > b needs
to be solved despite the unavailability of (A, b). What is available here is that
the system can try some candidate solution x and observe violation information
(namely whether the SIR exceeds the threshold). The system can then adjust
and propose new solutions until finally finding an x to satisfy Ax > b.

There are more examples in other areas (e.g., normal form games and product
design and experiments [20]) with input information hidden. In these examples,
for any proposed solution that does not satisfy all the constraints, only certain
salient phenomena of violation (such as signal interference) are exhibited, which
give indices of violated constraints only. With so little information obtained from
violations, is it still possible to solve LP efficiently? In general, what is the least
amount of input information, in what format, that one needs to solve a linear
program efficiently? This work attempts to address these questions on the value
of input information in solving LP.

1.1 Model and Results

Our model is defined as follows. In an LP Ax > b, the constraints aix > bi are
hidden from us. We can propose candidate solutions x ∈ R

n to a verification
oracle1. If x satisfies Ax > b, then the oracle returns Yes and the job is done.
If x is not a feasible solution, then the oracle returns the index of a violated
constraint. The algorithm continues until it either finds a feasible solution or
1 The verification oracle is simply a means of determining whether a solution is feasible.

It arises from the nature of LP as shown from the foregoing examples. For infeasible
solutions, the feedback is a signaled violation.

Solving Linear Programming with Constraints Unknown 131

concludes that no feasible solution exists. The algorithm is adaptive in the sense
that future queries may depend on the information returned during previous
queries. We focus only on the feasibility problem, to which an optimization LP
can be transformed by a standard binary search.

Note that when the proposed solution is not feasible, the oracle returns only
the index i of a violation rather than the constraint aix > bi itself. We make this
assumption for two reasons. First, consistent with the aforementioned examples,
we are often only able to observe unsatisfactory phenomena (such as a strong
interference in the power control problem). However, the exact reasons (corre-
sponding to the content of violated constraints) for these problems may still be
unknown. Second, as our major focus is on the value of information in solving
linear programming, a weaker assumption on the information obtained implies
stronger algorithmic complexity results. Indeed, as will be shown, in some set-
tings efficient algorithms exist even with this seeming deficit of information.

For a proposed solution x, if there are multiple violated constraints, the oracle
returns the index of one of them2. This raises the question of which violation
the oracle returns, and two variants are studied in this paper. In the first one,
the oracle gives more information by returning the index of a “most violated”
constraint, where the extent of a violation is measured by (bi −〈ai, x〉)/‖ai‖, the
Euclidean distance of the proposed solution x and the half-space defined by the
constraint. This oracle, referred to as the furthest oracle, attempts to capture
the situation in which the first violation that occurs or is observed is usually
the most severe and dominant one. The second variant follows the tradition of
worst-case analysis in theoretical computer science, and makes no assumption
about the returned violation. This oracle is referred to as the worst-case oracle.

We will denote by UnknownLP the problem of solving LP with unknown
constraints in the above model. In either oracle model, the time complexity is
the minimum amount of time needed for any algorithm to solve the UnknownLP
problem, where each query, as in the standard query complexity, costs a unit of
time.

Our results are summarized below. In a nutshell, when given a furthest oracle,
a polynomial-time algorithm exists to solve LP (under a mild condition of non-
degeneracy). On the other hand, if only a worst-case oracle is given, the best
time cost is polynomial in m, the number of constraints, but exponential in
n, the number of variables. Note that it is efficient when n is small, a well-
studied scenario called fixed-dimensional LP. The exponential dependence on
n is unfortunately necessary even for the query complexity. This lower bound,
when combined with the positive result for the furthest oracle case, yields an
illustration of the boundary of tractable LP.
2 It is also natural to consider the case where the oracle returns the indices of all

violated constraints. That model turns out to be so strong as to make the linear
program easily solvable. By moving the proposed points and observing the change
of the set of violated constraints, one can quickly identify the value of each (ai, bi).

132 X. Bei et al.

Theorem 1. The UnknownLP problem can be solved in time polynomial in the
input size3 in the furthest oracle model, provided that the input is non-degenerate.

The exact definition of non-degeneracy is given in Section 3. The condition is
mild; actually a random perturbation on inputs yields non-degeneracy, thus the
theorem implies that the smooth complexity is polynomial.

The main idea of the algorithm design is as follows. Instead of searching for
a solution x directly, we consider the point (A, b) ∈ R

m(n+1) as a degenerate
polyhedron, and use the ellipsoid method to find (A, b). In each iteration take
the center (A′, b′) of the current ellipsoid in R

m(n+1), and aim to construct a
separating hyperplane between (A, b) and (A′, b′) through queries to the furthest
oracle. The main difficulty lies in the case when (A′, b′) is infeasible, in which a
separating hyperplane cannot be constructed explicitly. It can be observed that
upon a query x, with the help of the furthest oracle, the information returned
from the oracle has a strong connection to the Voronoi diagram. Specifically,
if x is not a feasible solution, then the returned index is always the furthest
Voronoi cell that contains x. We can manage to compute the Voronoi diagram,
but this does not uniquely determine the constraints that define the LP. To
handle this difficulty, we give a sufficient and necessary characterization reducing
the input LP to that of a new and homogeneous LP, for which the constraints can
be identified using the structure of a corresponding weighted spherical closest
Voronoi diagram.

For the worst-case oracle, we first establish the following upper bound which
is exponential in the number of variables only.

Theorem 2. The UnknownLP problem with m constraints, n variables, and
input size L can be deterministically solved in time (mnL)poly(n). In particular,
the algorithm is of polynomial time for constant dimensional LP (i.e. constant
number of variables n).

At the heart of the efficiency guarantee of our algorithm is a technical bound
of

∑n
i=0

(
m
i

)
on the number of “holes” formed by the union of m convex bodies

in R
n.

The above theorem implies a polynomial time algorithm when the number n
of variables is a constant. This is a well-studied scenario, called fixed dimensional
LP in which n is much smaller than the number of constraints m; see [5,8,15,
18,19] and the survey [7].

On the other hand, a natural question is whether the exponential dependence
is necessary; at the very least, can we improve the bound to subexponential,
as Kalai [15] and Matousěk et al. [18] have done for simplex-like algorithms?
Unfortunately, the next lower bound theorem indicates that this is impossible.

Theorem 3. Any algorithm that solves the UnknownLP problem with m con-
straints and n variables needs Ω

(
m�n/2�) queries to the oracle, regardless of its

time cost.
3 The notion of input size in the unknown input setting is explained in Section 2.

Solving Linear Programming with Constraints Unknown 133

We prove this by constructing a family of 2k = Θ(m�n/2�) LPs, such that the
first k LPs Pi have disjoint feasible regions, and the last k LPs P ′

i are the
infeasible variants of the first k LPs. Unless the algorithm proposes a point in
one of feasible regions, the oracle is designed to return a fixed (thus meaningless)
constraint index. After k − 1 queries, the algorithm still cannot distinguish LP
Pi and P ′

i for some i. Thus even the feasibility problem cannot be solved with
less than k queries.

It is worth comparing the exponential hardness of UnknownLP with the com-
plexities of Nash and CE, the problems of finding a Nash or correlated equilibrium
in a normal-form game, in the trial-and-error model. In our previous work [2], we
presented algorithms with polynomial numbers of queries for Nash and CE with
unknown payoff matrices in the model with worst-case oracle4. Nash and CE can
be written as quadratic and linear programs, respectively, but why is the gen-
eral UnknownLP hard while the unknown-input Nash and CE are easy (especially
when all are given unlimited computational power)? The most critical reason is
that in normal-form games, there always exists a Nash and a correlated equi-
librium, but a general linear program may not have feasible solutions. Indeed,
if a feasible solution is guaranteed to exist (even for only a random instance),
such as when the number of constraints is no more than that of variables, then
an efficient algorithm for UnknownLP does exist: see the full version [3]. (In our
algorithms for UnknownLP, the major effort is devoted to handling infeasible
LP instances.) It is interesting to see that the solution-existing property plays a
fundamental role in developing efficient algorithms.

Related Work. There were a few work studying LP with restricted input infor-
mation [22,23,25], in settings different than the current paper; see the full ver-
sion [3] for detailed comparisons. The trial-and-error model was proposed in
[2], where a number of specific questions were studied. In [14], the model of
[2] is extended to probabilistic queries and systematic studies about Constraint
Satisfaction Problems (CSP) are conducted.

2 Preliminaries

Consider the following linear program (LP): Ax > b, where A = (aij)m×n ∈
R

m×n and b = (b1, . . . , bm)T ∈ R
m. The feasibility problem asks to find a feasible

solution x ∈ R
n that satisfies Ax > b (or report that such a solution does

not exist). Equivalently, this is to find a point x ∈ R
n that satisfies m linear

constraints {aix > bi : i ∈ [m]}, where each ai = (ai1, . . . , ain).
In the unknown-constraint LP feasibility problem, denoted by UnknownLP,

the coefficient matrix A and the vector b are unknown to us, and we need to
determine whether the LP has a feasible solution and find one if it does. We
can propose candidate solutions x ∈ R

n to a verification oracle. If a query x
is indeed a feasible solution, the oracle returns Yes and the problem is solved.
4 An algorithm proposes a candidate equilibrium and a verification oracle returns the

index of an arbitrary better response of some player as a violation.

134 X. Bei et al.

Otherwise, the oracle returns an index i satisfying aix ≤ bi, i.e., the index of
a violated constraint. Note that from this, the algorithm knows only the index
i, but not ai and bi. In addition, if multiple constraints are violated, only the
index of one of them is returned.

We will analyze the complexity for two types of oracles: the furthest oracle
which returns the index of a “most” violated constraint (Section 3), and the
worst-case oracle which can return an arbitrary index among those violated
constraints (Section 4). In either variant, a query to the oracle takes unit time.

Input Size and Solution Precision. A clarification is needed for the size of
the input. Since the input LP instance (A, b) is unknown, neither do we know its
binary size. To handle this issue, we assume that we are given the information
that there are m constraints5, n variables, and the binary size of the input
instance (A, b) is at most L. Note that L is O(mn log(N)), where N is the
maximum entry (in absolute value) in A and b. We say that an algorithm solves
UnknownLP efficiently if its running time is poly(m,n,L).

Given an LP with input size L = O(mn log(N)), it is known [16] that if the LP
has a feasible solution, then there is one whose numerators and denominators of
all components are bounded by (nN)n. Hence, an alternative way to describe our
assumption is that, instead of knowing the input size bound L, there is a required
precision for feasible solutions. That is, we only look for a feasible solution in
which the numerators and denominators of all components are bounded by the
required precision. These two assumptions, i.e., giving an input size bound and
giving a solution precision requirement, are equivalent, and it is necessary to
have one of them in our algorithms.6 In the rest of the paper, we will use the
first one, the input size bound, to analyze the running time of our algorithms.

The unit sphere in R
n is denoted by Sn−1 = {x ∈ R

n : ‖x‖ = 1}, where,
throughout this paper, ‖ · ‖ refers to the �2-norm. A set C ⊆ R

n is a convex
cone if for any x, y ∈ C and any α, β > 0, αx + βy is also in C. The normalized
volume of a convex cone C is defined as the ratio v(C) = voln(C∩Bn)

1
2 ·voln(Bn)

where Bn

is the closed unit ball in R
n and voln refers to the n-dimensional volume. For

any set C ∈ R
n, its polar cone C∗ is the set C∗ =

{
y ∈ R

n : 〈x, y〉 ≤ 0,∀x ∈ C
}
.

Lemma 4 [24]. Let C1, C2, . . . , Ck be k closed convex cones, then (
⋂

i Ci)∗ =
conv(

⋃
i C

∗
i).

5 Indeed, the number of constraints can be unknown to us as well: In an algorithm,
we only need to track those violated constraints that have ever been returned by the
oracle.

6 Otherwise, we may not be able to distinguish between cases when there are no
feasible solutions (e.g., x > 0, x < 0) and when there are feasible solutions but the
feasible set is very small (e.g., x > 0, x < ε). For any queried solution y > 0, the
oracle always returns that the second constraint is violated. However, we cannot
distinguish whether it is x < 0 in the first LP or x < ε in the second LP, as ε can be
arbitrarily small and we have no information on how small it is.

Solving Linear Programming with Constraints Unknown 135

It was shown in [21] (Lemma 8.14) that if an LP has a feasible solution, then
the set of solutions within the ball

{
x ∈ R

n : ‖x‖ ≤ n2L
}

has volume at least
2−(n+2)L. Given this lemma, we can easily derive the following claim.

Lemma 5. If a linear program Ax > 0 has a feasible solution, then the feasible
region is a convex cone in R

n and has normalized volume no less than 2−(2n+3)L.

3 Furthest Oracle

In this section, we will consider the UnknownLP problem Ax > b with the furthest
oracle, formally defined as follows. For a proposed candidate solution x, if x is
not a feasible solution, instead of returning the index of an arbitrary (worse case)
violated constraint, the oracle returns the index of a “most violated” constraint,
measured by the Euclidean distance from the proposed solution x and the half-
space defined by the constraint. More precisely, the oracle returns the index of a
constraint which, among all i with 〈ai, x〉 ≤ bi, maximizes bi−〈ai,x〉

‖ai‖ , the distance
from x to the half-space {z ∈ R

n : 〈ai, z〉 ≥ bi}. If there are more than one
maximizer, the oracle returns an arbitrary one.

Compared to the worse-case oracle, the furthest oracle reveals more informa-
tion about the unknown LP system, and indeed, it can help us to derive a more
efficient algorithm. Our main theorem in this section is the following.

Theorem 6. The UnknownLP problem Ax > b with a non-degenerate matrix A
in the furthest oracle model can be solved in time polynomial in the input size.

We call a matrix A = (a1, . . . , am)T non-degenerate if for each point p ∈
Sn−1, at most n points in

{
a1

‖a1‖ , . . . , am

‖am‖
}

have the same spherical distance to
p on Sn−1. This assumption is with little loss of generality; it holds for almost
all real instances and can be derived easily by a small perturbation.

Next we describe our algorithm for the special case of Ax > 0.

3.1 Algorithm Solving Ax > 0

We assume without loss of generality that ‖ai‖ = 1 for all i. Furthermore, we
can also always propose points in Sn−1 for the same reason.

Ellipsoid Method and Issues. The main approach of the algorithm is to
use the ellipsoid method to find the unknown matrix A = (aij)m×n, which can
be viewed as a point in the dimension R

mn, i.e., a degenerate polyhedron in
R

mn. Initially, for the given input size information m,n and L, we choose a
sufficiently large ellipsoid that contains the candidate region of A, and pick the
center A′ ∈ R

mn of the ellipsoid. To further the ellipsoid method, we need a
hyperplane separating A′ from A.

Consider the linear system A′x > 0. If it has a feasible solution x, then
{x : A′x > 0} is a full-dimensional cone. We query an x in this cone to the
oracle. If the oracle returns an affirmative answer, then x is a feasible solution

136 X. Bei et al.

of Ax > 0 as well, and the job is done. Otherwise, the oracle returns an index i,
meaning that 〈ai, x〉 ≤ 0. Hence, we have 〈a′

i, x〉 > 0 ≥ 〈ai, x〉, which defines a
separating hyperplane between A and A′ with normal vector (0, . . . , 0︸ ︷︷ ︸

(i−1)n

, x, 0, . . . , 0︸ ︷︷ ︸
(m−i)n

)

(note that a hyperplane in R
mn has a normal vector of dimension mn, and x is

a vector of dimension n, also that we know the information of A′ and x). Thus,
we can cut the candidate region of A by a constant fraction and continue with
the ellipsoid method.

Note that there is a small issue: In our problem, the solution polyhedron
degenerates to a point A ∈ R

mn and has volume 0. As the input A is unknown,
we cannot use the standard approach in the ellipsoid method to introduce a
positive volume for the polyhedron by adding a small perturbation. This issue
can be handled by a more involved machinery developed by Grötschel, Lovász,
and Schrijver [11,12], which solves the strong nonemptiness problem for well-
described polyhedra given by a strong separation oracle, as long as a strong
separation oracle exists. In the algorithms described below, we will construct
such oracles, thereby circumventing the issue of perturbation of the unknown
point A. The same idea has been used in [2] to find a Nash equilibrium when
the payoff matrix is unknown and degenerates to a point in a high-dimensional
space. More discussions refer to [2,11,12].

The main difficulty is when the LP A′x > 0 is infeasible. In the following
part of this section we will discuss how to find a proper separating hyperplane
in this case.

Spherical (Closest) Voronoi Diagram. Note that Ax > 0 is equivalent to
−Ax < 0, and i minimizes 〈ai, x〉 if and only if it maximizes 〈−ai, x〉. In the
rest of this subsection, for notational convenience, we use x ∈ Sn−1 to denote
a proposed solution point, and let y = −x. Since the distance from a proposed
solution x to a half-space {z ∈ R

n : 〈ai, z〉 ≥ 0} is −〈ai, x〉 = 〈ai, y〉, the oracle
returns us an index i ∈ arg maxi

{〈ai, y〉 : 〈ai, y〉 ≥ 0
}

if x is not feasible. Note
that ‖z − ai‖ ≤ ‖z − aj‖ if and only if 〈ai, z〉 ≥ 〈aj , z〉 for any z ∈ Sn−1; thus,
〈ai, y〉 is closely related to the distance between ai and y on Sn−1. That is,
the oracle actually provides information about the closest Voronoi diagram of
a1, . . . , am on Sn−1.

The (closest) Voronoi diagram of a set of points {ai}i in Sn−1 is a partition
of Sn−1 into cells, such that each point ai is associated with the cell {z ∈ Sn−1 :
d(z, ai) ≤ d(z, aj),∀j}, where d in our case is the spherical distance on Sn−1. We
denote by Vor the spherical (closest) Voronoi diagram of the points a1, . . . , am

on Sn−1 and denote by Vor(i) the cell in the diagram associated with ai, i.e.,

Vor(i) =
{
z ∈ Sn−1 : 〈ai, z〉 ≥ 〈aj , z〉, ∀j ∈ [m]

}
(1)

=
{
z ∈ Sn−1 : ‖z − ai‖ ≤ ‖z − aj‖, ∀j ∈ [m]

}
.

If the oracle returns i upon a query x = −y ∈ Sn−1, then y ∈ Vor(i).

Representation. Note that for a general (spherical) Voronoi diagram formed
by m points, it is possible that some of its cells contain exponential number of

Solving Linear Programming with Constraints Unknown 137

vertices, which is unaffordable for our algorithm. However, in the H-
representation of a convex polytope, every cell can be represented by at most m
linear inequalities, as shown in Formula (1). In the following, we will see that the
information of these linear inequalities is sufficient to implement our algorithm
efficiently.

Weighted Spherical (Closest) Voronoi Diagram. For the presumed matrix
A′, note that it can be an arbitrary point in the space R

mn and each row in A′

may not necessarily fall into Sn−1. Our solution is to consider a weighted spherical
Voronoi diagram, denoted by Vor′, of points a′

1
‖a′

1‖ , . . . ,
a′
m

‖a′
m‖ on Sn−1 as follows:

for each point a′
i

‖a′
i‖ , its associated cell is defined as

Vor′(i) =
{
z ∈ Sn−1 : 〈a′

i, z〉 ≥ 〈a′
j , z〉,∀j ∈ [m]

}
.

Note that Vor′ is a partition of Sn−1; and if we assign a weight ‖a′
i‖ to each

point a′
i

‖a′
i‖ , then for each point p ∈ Vor′(i), the site among a′

1
‖a′

1‖ , . . . ,
a′
m

‖a′
m‖ that

has the smallest weighted distance to p is a′
i

‖a′
i‖ .7 Note that each cell of Vor′ is

defined by a set of linear inequalities (other than the unit norm requirement)
and each of them can be computed efficiently.

Now we have two diagrams: Vor, which is unknown, and Vor′, which can
be represented efficiently using the H-representation. If Vor
= Vor′, then there
exists a point y ∈ Sn−1 such that y ∈ Vor(i) and y /∈ Vor′(i). Suppose that
y ∈ Vor′(j) for some j
= i. According to the definition, we have 〈ai, y〉 ≥ 〈aj , y〉
and 〈a′

i, y〉 < 〈a′
j , y〉; this gives us a separating hyperplane between A and A′.

The questions are then (1) how to find such a point y when Vor
= Vor′, and (2)
what if Vor = Vor′.

Consistency Check. In this part we will show how to check whether Vor = Vor′,
and if not equal, how to find a y as above. Although we know neither the positions
of points a1, . . . , am, nor the corresponding spherical Voronoi diagram Vor, we
can still efficiently compare it with Vor′, with the help of the oracle.

For each cell Vor′(i), assume that it has k facets (i.e., (n − 1)-dimensional
faces). Note that k ≤ m and that Vor′(i) is uniquely determined by these facets.
Further, each facet is defined by a hyperplane H ′

ij = {z ∈ Sn−1 : 〈a′
i, z〉 =

〈a′
j , z〉} for some j
= i. To decide whether Vor = Vor′, for each i and j such that

Vor′(i) ∩ Vor′(j)
= ∅, we find a sufficiently small εy and three points y, y + εy,
y − εy, such that

y ∈ Vor′(i)∩Vor′(j) ⊂ H ′
ij , y + εy ∈ Vor′(i) \Vor′(j), y − εy ∈ Vor′(j) \Vor′(i).

Notice that such y and εy exist and can be found efficiently. We now query points
y+ εy and y− εy to the oracle. If the oracle does return us the expected answers,

7 The reason of defining such a weighted spherical Voronoi diagram is that we want
to have a separating hyperplane between A and A′ = (a′

1, . . . , a
′
m)T , rather than(a′

1
‖a′

1‖ , . . . ,
a′
m

‖a′
m‖
)T

.

138 X. Bei et al.

i.e., i and j, respectively, then, with ‖εy‖ sufficiently small (up to 2−poly(L)), we
can conclude that y must also be in the facet of Vor(i) and Vor(j) of the hidden
diagram Vor. That is, y ∈ Hij = {z ∈ Sn−1 : 〈ai, z〉 = 〈aj , z〉}. We implement
the above procedure n − 1 times to look for n − 1 linearly independent points
y1, . . . , yn−1 ∈ Vor′(i)∩Vor′(j). If the oracle always returns the expected answers
i and j, respectively, for all k = 1, . . . , n − 1, then we know that Hij = H ′

ij .
The procedure described above can be implemented in polynomial time. Now

we can use this approach to check all facets of all of the cells of Vor′. If none of
them returns us an unexpected answer, we know that every facet of every cell
Vor′(i) is also a facet of cell Vor(i), i.e., the set of linear constraints that defines
Vor′(i) is a subset of those that define Vor(i). Thus, we have Vor(i) ⊆ Vor′(i) for
each i. Together with the fact that both Vor and Vor′ are tessellations of Sn−1,
we can conclude that Vor = Vor′.

Lemma 7. For the hidden matrix A ∈ R
mn with spherical Voronoi diagram Vor

and proposed matrix A′ ∈ R
mn with weighted spherical Voronoi diagram Vor′,

we can in polynomial time

– either conclude that Vor = Vor′, or
– find a separating hyperplane between A and A′.

A formal and detailed description of this consistency check procedure and its
correctness proof can be found in the full version [3].

Voronoi Diagram Recognition. If the above process concludes that
Vor = Vor′, we have successfully found the Voronoi diagram Vor (in its H-
representation) for the hidden points a1, . . . , am. It was shown by Hartvigsen [13]
that given a Voronoi diagram with its H-representation, a set of points that
generates the diagram can be computed efficiently. Further, Ash and Bolker [1]
showed that the set of points that generates a non-degenerate Voronoi diagram
is unique. Therefore, by coupling these two results and the assumption that
the input matrix A is non-degenerate, we are able to identify the positions of
a1, . . . , am given the computed Voronoi diagram Vor, and easily determine if the
LP Ax > 0 has a feasible solution, and compute one if it exists.

The general case of Ax > b New difficulties arise in the general case of Ax > b. A
particular one is that, even for the non-degenerate input A, the Voronoi diagram
may correspond to multiple sets of points ai, which makes it hard to recover the
ai’s. To handle this difficulty, we give a sufficient and necessary characterization
reducing the input LP to that of a new and homogeneous LP, for which the
constraints can be identified using the structure of a corresponding weighted
spherical closest Voronoi diagram. We unfortunately have to leave this part to
the full version [3] due to space limit.

4 Worst-Case Oracle

In this section, we consider the worst-case oracle. Recall that in this setting, the
oracle plays as an adversary by giving the worst-case violation index to force an
algorithm to use the maximum amount of time to solve the problem.

Solving Linear Programming with Constraints Unknown 139

For any linear program Ax > b, we can introduce another variable y and
transform the linear program into the following form:

Ax − by > 0, y > 0

It is easy to check that Ax > b is feasible if and only if the new LP is feasible,
and the solutions of these two linear systems can be easily transformed to each
other. Given the oracle for Ax > b, one can also get another oracle for the new
LP easily. (On a query (x, y), if y ≤ 0, return the index m + 1; otherwise, query
x/y to the oracle for Ax > b.) This means that the UnknownLP problem of the
homogeneous form Ax > 0 is no easier than the problem of the general form.
In all the analysis of this section, we will therefore only consider the problem of
form Ax > 0.

Geometric Explanations. Let us consider the problem from a geometric view-
point. Any matrix A = (aij)m×n can be considered as m points a1, a2, . . . , am in
the n-dimensional space R

n, where each ai = (ai1, ai2, . . . , ain). The positions of
these points are unknown to us. Finding a feasible solution x ∈ R

n that satisfies
Ax > 0 is equivalent to finding an open half-space

Hx =
{
y ∈ R

n : 〈x, y〉 � x1y1 + x2y2 + · · · + xnyn > 0
}

containing all points ai.
In an algorithm, we propose a sequence of candidate solutions. When a query

x ∈ R
n violates a constraint i, we know that 〈ai, x〉 ≤ 0. Hence, ai cannot be

contained in the half-space Hx, and we are able to cut Hx off from the possible
region of ai. Based on this observation, we maintain a set region(i), the region
of possible positions of point ai consistent with the information obtained from
the previous queries. Initially, no information is known about the position of any
point; thus, region(i) = R

n for all 1 ≤ i ≤ m.
Let us have a closer look at these regions. For each i, suppose that

xi
1, x

i
2, . . . , x

i
k are the queried points we have made so far for which the oracle

returns index i. Then all information we know about ai till this point is that the
possible region is region(i) =

⋂k
j=1{y ∈ R

n : 〈xi
j , y〉 ≤ 0}. Since region(i) is the

intersection of k closed half-spaces, it is a convex set. Equivalently, this means
that any feasible solution to the LP, if existing, cannot be in region(i)∗, the polar
cone of region(i). Since the polar cone of a half-space {y ∈ R

n | 〈xi
j , y〉 ≤ 0} is

the ray along its normal vector, i.e., {λxi
j | λ ≥ 0}, we have by Lemma 4 that

region(i)∗ = conv
(⋃

j

{
y | 〈xi

j , y〉 ≤ 0
}∗) = conv

({
λxi

j | 1 ≤ j ≤ k, λ ≥ 0
})

.

Since region(i)∗’s are the forbidden areas for any feasible solution, we can con-
clude that the LP has no feasible solution if

⋃
i region(i)

∗ = R
n.

Convex Hull Covering Algorithms. Based on above observations, we now
sketch a framework of convex hull covering algorithms that solves the UnknownLP
problem. The algorithm maintains a list of m convex cones

region(1)∗, region(2)∗, . . . , region(m)∗ ⊆ R
n.

140 X. Bei et al.

Initially, region(i)∗ = ∅ for all 1 ≤ i ≤ m. On each query x ∈ R
n, the oracle either

returns Yes, indicating that the problem is solved, or returns us an index i, in
which case we update region(i)∗ to conv (region(i)∗, {λx | λ > 0}). The algorithm
terminates when either the oracle returns Yes, or when R

n − ⋃
i region(i)

∗ does
not contain a convex cone with normalized volume at least 2−(2n+3)L, which
indicates that the given instance has no feasible solution. The above discussion
can be formalized into the following theorem.

Theorem 8. Any algorithm that falls into the convex hull covering algorithm
framework solves the UnknownLP problem.

Though the framework guarantees the correctness, it does not specify how to
make queries to control complexity. Next we will show an algorithm with nearly
optimal complexity. The basic idea is to use induction on dimension. That is,
we pick an (n − 1)-dimensional subspace and recursively solve the problem on
the subspace. The subroutine either finds a point x in the subspace that satisfies
Ax > 0 (in which case the algorithm ends), or finds out that there is no feasible
solution in the entire subspace. In the latter case, the whole space of candidate
solutions can be divided into two open half-spaces, and we will work on each
of them separately. In general, we have a collection of connected regions that
can still contain a valid solution. These regions are the “holes”, formally called
chambers, separated by

⋃
i region(i)

∗ (recall that points in region(i)∗ cannot be a
feasible solution). We can then pick a chamber with the largest volume, and cut
it into two balanced halves by calling the subroutine on the hyperplane slicing
the chamber.

There are several issues for the above approach. The main one is that there
may be too many chambers: a priori, the number can grow exponentially with
m. There are also other technical issues to be handled, such as how to represent
chambers (which are generally concave), how to compute (even approximately)
the volume of chambers, how to find a hyperplane to cut a chamber into two
balanced halves, etc.

For the first and main issue, it can be shown that the number of chambers
cannot be too large. In general, Kovalev [17] showed that any m convex sets
in R

n cannot form more than
∑n

i=1

(
m
i

)
chambers. For the rest of the technical

issues, we deal with them in the following way. Instead of keeping track of all
actual chambers, in our algorithm, we maintain a collection of disjoint sector
cylinders, which can be shown to be supersets of chambers. Furthermore, we
keep only cylinders that contain at least one chamber, thus, the bound for the
number of chambers also bounds the number of cylinders from above.

Theorem 2 can be proved based on the ideas described above. The details of
the algorithm and its analysis can be found in the full version [3].

5 Concluding Remarks

We consider solving LP when the input constraints are unknown, and show that
different kinds of violation information yield different computational complexi-
ties. LP is a powerful tool employed in real applications dealing with objects that

Solving Linear Programming with Constraints Unknown 141

are largely unknown. For example, in the node localization of sensor networks
where the locations of targets are unknown [6], the computation of the locations
in some settings can be formulated as a linear program with constraints that
measure partial information obtained from data [10]. However, the estimation
usually has various levels of error, which may lead to violations of the presumed
constraints. Interesting questions that deserve further explorations are what can
be theoretically analyzed there, and in general, what other natural formats of
violations there are in linear programming and what complexities they impose.

References

1. Ash, P.F., Bolker, E.D.: Recognizing dirichlet tessellations. Geometriae Dedicata
19(2), 175–206 (1985)

2. Bei, X., Chen, N., Zhang, S.: On the complexity of trial and error. In: Proceedings
of the 45th ACM Symposium on Theory of Computing, pp. 31–40 (2013)

3. Bei, X., Chen, N., Zhang, S.: Solving linear programming with constraints unknown
(2013). arXiv:1304.1247

4. Chiang, M., Hande, P., Lan, T., Tan, C.-W.: Power control in wireless cellular
networks. Foundations and Trends in Networking 2(4), 381–533 (2007)

5. Clarkson, K.L.: Las vegas algorithms for linear and integer programming when the
dimension is small. Journal of the ACM 42(2), 488–499 (1995)

6. Doherty, L., Pister, K., Ghaoui, L.E.: Convex position estimation in wireless sen-
sor networks. In: Proceedings of the Twentieth IEEE Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM), pp. 1655–1663
(2001)

7. Dyer, M., Megiddo, N., Welzl, E.: Linear programming. In: Goodman, J.E.,
O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. CRC
Press (2004)

8. Dyer, M.E.: On a multidimensional search technique and its application to the
euclidean one-centre problem. SIAM Journal on Computing 15(3), 725–738 (1986)

9. Foschini, G.J., Miljanic, Z.: A simple distributed autonomous power control algo-
rithm and its convergence. IEEE Transactions on Vehicular Technology 42(3),
641–646 (1993)

10. Gentile, C.: Distributed sensor location through linear programming with triangle
inequality constraints. In: Proceedings of IEEE Conference on Communications,
pp. 3192–3196 (2005)

11. Grötschel, M., Lovász, L., Schrijver, A.: Geometric methods in combinatorial opti-
mization. In: Progress in Combinatorial Optimization, pp. 167–183 (1984)

12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer (1988)

13. Hartvigsen, D.: Recognizing voronoi diagrams with linear programming.
INFORMS Journal on Computing 4(4), 369–374 (1992)

14. Ivanyos, G., Kulkarni, R., Qiao, Y., Santha, M., Sundaram, A.: On the complexity
of trial and error for constraint satisfaction problems. In: Esparza, J., Fraigniaud,
P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 663–675.
Springer, Heidelberg (2014)

15. Kalai, G.: A subexponential randomized simplem algorithm. In: Proceedings of the
ACM Symposium on Theory of Computing (STOC), pp. 475–482 (1992)

http://arxiv.org/abs/1304.1247

142 X. Bei et al.

16. Khachiyan, L.: A polynomial algorithm in linear programming. Doklady Akademii
Nauk SSSR 244, 1093–1096 (1979)

17. Kovalev, M.: A property of convex sets and its application. Matematicheskie
Zametki, pp. 89–99. English translation: Mathematical Notes, 44, 537–543 (1988)

18. Matousek, J., Sharir, M., Welzl, E.: A subexponential bound for linear program-
ming. Algorithmica 16(4/5), 498–516 (1996)

19. Megiddo, N.: Linear programming in linear time when the dimension is fixed.
Journal of the ACM 31(1), 114–127 (1984)

20. Montgomery, D.: Design and Analysis of Experiments, 7 edn. Wiley (2008)
21. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and

Complexity. Dover Publications (1998)
22. Papadimitriou, C.H., Yannakakis, M.: Linear programming without the matrix.

In: Proceedings of the ACM Symposium on Theory of Computing (STOC),
pp. 121–129 (1993)

23. Ryzhov, I.O., Powell, W.B.: Information collection for linear programs with uncer-
tain objective coefficients. SIAM Journal on Optimization 22(4), 1344–1368 (2012)

24. Sandgren, L.: On convex cones. Mathematica Scandinavica 2, 19–28 (1954)
25. Yudin, D.B., Nemirovskii, A.S.: Informational complexity and efficient methods for

the solution of convex extremal problems. Ekonomika i Matematicheskie Metody,
12, 357–369 (1976). English translation: Matekon 13(3), 25–45 (1977)

Deterministic Randomness Extraction
from Generalized and Distributed

Santha-Vazirani Sources

Salman Beigi1, Omid Etesami1(B), and Amin Gohari1,2

1 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
Tehran, Iran

salman.beigi@gmail.com, etesami@ipm.ir
2 Department of Electrical Engineering,

Sharif University of Technology, Tehran, Iran
aminzadeh@sharif.edu

Abstract. A Santha-Vazirani (SV) source is a sequence of random bits
where the conditional distribution of each bit, given the previous bits,
can be partially controlled by an adversary. Santha and Vazirani show
that deterministic randomness extraction from these sources is impos-
sible. In this paper, we study the generalization of SV sources for non-
binary sequences. We show that unlike the binary case, deterministic
randomness extraction in the generalized case is sometimes possible. We
present a necessary condition and a sufficient condition for the possibility
of deterministic randomness extraction. These two conditions coincide in
“non-degenerate” cases.

Next, we turn to a distributed setting. In this setting the SV source
consists of a random sequence of pairs (a1, b1), (a2, b2), . . . distributed
between two parties, where the first party receives ai’s and the second
one receives bi’s. The goal of the two parties is to extract common ran-
domness without communication. Using the notion of maximal correla-
tion, we prove a necessary condition and a sufficient condition for the
possibility of common randomness extraction from these sources. Based
on these two conditions, the problem of common randomness extrac-
tion essentially reduces to the problem of randomness extraction from
(non-distributed) SV sources. This result generalizes results of Gács and
Körner, and Witsenhausen about common randomness extraction from
i.i.d. sources to adversarial sources.

1 Introduction

Randomized algorithms are simpler and more efficient than their deterministic
counterparts in many applications. In some settings such as communication com-
plexity and distributed computing, it is even possible to prove unconditionally
that allowing randomness improves the efficiency of algorithms (see e.g., [14,19,
30]). However, access to sources of randomness (especially common randomness)
may be limited, or the quality of randomness in the source may be far from per-
fect. Having such an imperfect source of randomness, one may be able to extract
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 143–154, 2015.
DOI: 10.1007/978-3-662-47672-7 12

144 S. Beigi et al.

(almost) unbiased and independent random bits using randomness extractors.
A randomness extractor is a function applied to an imperfect source of random-
ness whose outcome is an almost perfect source of randomness.

The problem of randomness extraction from imperfect sources of randomness
was perhaps first considered by Von Neumann [28]. A later important work in
this area is [23] where Santha and Vazirani introduced the imperfect sources
of randomness now often called Santha-Vazirani (SV) sources. These sources
can easily be defined in terms of an adversary with two coins. Consider an
adversary who has two different coins, one of which is biased towards heads (e.g.,
Pr(heads) = 2/3) and the other one is biased towards tails (e.g., Pr(heads) =
1/3). The adversary, in each time step, chooses one of the two coins and tosses
it. Adversary’s choice of coin may depend (probabilistically) on the previous
outcomes of the tosses. The sequence of random outcomes of these coin tosses is
called a SV source.

Santha and Vazirani [23] show that randomness extraction from the above
sources through a deterministic method is impossible. More precisely, they show
that for every deterministic way of extracting one random bit, there is a strategy
for the adversary such that the extracted bit is biased, or more specifically, the
extracted bit is 0 with probability either ≥ 2/3 or ≤ 1/3. Subsequently, other
proofs for this result have been found (see e.g., [1,21]). Fig 1 shows a more refined
version of this result, which provides a more detailed picture of the limits of what
the adversary can achieve.

Despite this negative result, such imperfect sources of randomness are enough
for many applications. For example, as shown by Vazirani and Vazirani [25,26],
randomized polynomial-time algorithms that use perfect random bits can be
simulated using SV sources. This fact can also be verified using the fact that
the min-entropy of SV sources is linear in the size of the source (where min-
entropy, in the context of extractors, was first introduced by [9]). Indeed, by the
later theory of randomness extraction (e.g., see [31]), it is possible to efficiently
extract polynomially many almost random bits from such sources with high min-
entropy if we are, in addition to the imperfect source, endowed with a perfectly
random seed of logarithmic length. (In fact, for the special case of SV sources,
a seed of constant length is enough [27, Problem6.6]). For the application of
randomized polynomial-time algorithms, we can enumerate in polynomial time
over all possible seeds.

Enumerating over all seeds may be inefficient for some applications, or does
not work at all, e.g., in interactive proofs and one-shot scenarios such as cryptog-
raphy. Therefore, it is natural to ask whether deterministic randomness extrac-
tion from imperfect sources of randomness is possible. For most applications, it
is also necessary to require that the extractor be explicit, i.e., extraction can be
done efficiently (in polynomial time). Previous to this work, explicit determinis-
tic extractors had been constructed for many different classes of sources, includ-
ing i.i.d. bits with unknown bias [28], Markov chains [5], affine sources [7,16],
polynomial sources [11,12], and sources consisting of independent blocks [6].

Deterministic Randomness Extraction 145

α

β

Fig. 1. Given any deterministic extractor, the pair (α, β) is above the curve specified
in this figure, where α and β are the minimum and maximum value of probability of
the output being zero that the adversary can achieve by choosing its strategy. The
plot is for the binary SV source with two coins with probability of heads respectively
equal to 1/3 and 2/3. The point (1/2, 1/2) is specified by a red star in the figure. The
curve has fractal-like self-similiarity: The curve can be split at point (1/3, 2/3) into two
curves each of which is a normalized version of the whole curve. To see how the curve
is obtained, see Appendix A of the full version [2].

Deterministic Extractors for Generalized SV Sources. Although [23]
proves the impossibility of deterministic randomness extraction from SV sources,
this impossibility is shown only for binary sources. In this paper we show that
if we consider a generalization of SV sources over non-binary alphabets, deter-
ministic randomness extraction is indeed possible under certain conditions.

To generalize SV sources over non-binary alphabets, we assume that the
adversary, instead of coins, has some multi-faceted (say 6-sided) dice. The num-
bers written on the faces of different dice are the same, but each die may have
a different probability for a given face value. The adversary throws these dice n
times, each time choosing a die to throw depending on the results of the previous
throws. Again, the outcome is an imperfect source of randomness, for which we
may ask whether deterministic randomness extraction is possible or not.

When the dice are non-degenerate, i.e., all faces of all dice have non-zero
probability, we give a necessary and sufficient condition for the existence of
a deterministic strategy for extracting one bit with arbitrarily small bias. For
example, when the dice are 6-sided, the necessary and sufficient condition implies
that we can deterministically extract an almost unbiased bit when the adver-
sary has access to any arbitrary set of five non-degenerate dice, but random-
ness extraction is not possible in general when the adversary has access to six
non-degenerate 6-sided dice. More precisely, a set of non-degenerate dice leads

146 S. Beigi et al.

to extractable generalized SV sources if and only if the convex hull of the set
of probability distributions associated with the set of dice does not have full
dimension in the “probability simplex”. We emphasize that when we prove the
possibility of deterministic extraction, we also provide an explicit extractor.

Relation to Block-Sources. The generalized SV sources considered in this
paper are also a generalization of “block-sources” defined by Chor and Goldreich
[9], where the source is divided into several blocks such that each block has
min-entropy at least k conditioned on the value of the previous blocks. Such a
block-source can be thought as a generalized SV source where the adversary can
generate each block (given previous blocks) using any “flat” distribution with
support 2k. Being a special case of generalized SV sources (defined here), block-
sources have another difference as well: Since it is impossible to extract from
a single block-source deterministically, the common results regarding extraction
from block-sources are about either seeded extractors (e.g. [18]) or extraction
from at least two independent block-sources (e.g. [20]).

Common Randomness Extractors. Common random bits, shared by dis-
tinct parties, constitute an important resource for distributed algorithms; com-
mon random bits can be used by the parties to synchronize the randomness of
their local actions. We may ask the question of randomness extraction in this
setting too. Assuming that the parties are provided with an imperfect source of
common randomness, the question is whether perfect common randomness can
be extracted from this source or not.

Gács and Körner [15] and Witsenhausen [29] have looked at the problem of
extraction of common random bits from a very special class of imperfect sources,
namely i.i.d. sources. In this case, the bipartite source available to the parties is
generated as follows: In each time step, a pair (A,B) with some predetermined
distribution (known by the two parties) and independent of the past is generated;
A is revealed to the first party and B is revealed to the second party. After
receiving arbitrarily many repetitions of random variables A and B, the two
parties aim to extract a common random bit. It is known that in this case,
the two parties (who are not allowed to communicate) can generate a common
random bit if and only if A and B have a common data [29]. This means that
common randomness generation is possible if A and B can be expressed as
A = (A′, C) and B = (B′, C) for a nonconstant common part C, i.e., there are
nonconstant functions f, g such that C = f(A) = g(B). Observe that when a
common part exists, common randomness can be extracted by the parties by
applying the same extractor on the sequence of C’s. That is, the problem of
common randomness extraction in the i.i.d. case is reduced to the problem of
ordinary randomness extraction. These results are obtained using a measure
of correlation called maximal correlation. The key feature of this measure of
correlation that helps proving the above result is the tensorization property, i.e.,
the maximal correlation between random variables A and B is equal to that of
An and Bn for any n, where An and Bn denote n i.i.d. repetitions of A and B.

Deterministic Randomness Extraction 147

In this paper we consider the problem of common randomness extraction
from distributed SV sources defined as follows. In a distributed SV source, the
adversary again has some multi-faceted dice, but here, instead of a single number,
a pair of numbers (A,B) is written on each face. As before, the set of values
written on the faces of the dice is the same, but the probabilities of face values
may differ in different dice. In each time step, the adversary depending on the
results of the previous throws, picks a die and throws it. If (A,B) is the result
of the throw, A is given to the first party and B to second party. Thus, the two
parties will observe random variables A and B whose joint distribution depends
on the choice of die by the adversary. An application of this distributed case
would be a key-agreement scenario under tampering.

Again consider the non-degenerate case where all faces on all the dice of the
adversary have positive probability. We show that in this case, we can extract a
common random bit from the distributed SV source if and only if it is possible
to extract randomness from the common part of A and B. That is, similar to
the i.i.d. case, the problem of common randomness extraction from distributed
SV sources is reduced to the problem of randomness extraction from non-binary
generalized SV sources. Since by our results, we know when randomness extrac-
tion from generalized SV sources is possible, we obtain a complete answer to the
problem in the distributed case too.

In cases more general than non-degenerate cases we have the following: If
C is the common data of A and B, then if there does not exist a nonzero real
function of C which has zero expectation under all the different dice of the
adversary, then common randomness extraction is impossible. This shows that
the relation between the problem of common randomness extraction and the
problem of randomness extraction from the common part holds also in some
settings other than non-degenerate cases. For example, it resolves the problem
of common randomness extraction from the following interesting distributed SV
source.

Example. A concrete example of a distributed SV source is as follows. Let
us start with the original source considered by Santha and Vazirani with two
coins. Assume that the adversary chooses coin S ∈ {1, 2} (where coin 1 is biased
towards heads and coin 2 is biased towards tails) and let the outcome of the throw
of the coin be denoted by random variable C. The first party, Alice, is assumed
to observe both the identity of the coin chosen by the adversary, i.e., S, and the
outcome of the coin, which is C. The second party, Bob, observes the outcome
of the coin C, but only gets to see the choice of the adversary with probability
0.99. That is, Bob gets B = (C, S̃) where S̃ is the result of passing S through a
binary erasure channel with erasure probability 0.01. Here the common part of
A = (C,S) and B = (C, S̃) is just C. Our result (Theorem 3) then implies that
Alice and Bob cannot benefit from their knowledge of the actions of adversary,
and should only consider the C sequence. But then from the result of [23], we
can conclude that common random bit extraction is impossible in this example.

148 S. Beigi et al.

Proof Techniques. We briefly explain the techniques used in the proof of the
above results. For the full proofs, we refer the reader to the full version of the
paper [2].

To show the possibility of deterministic extraction, we use a nonzero real
function of the die face values that has zero expectation under all distributions
induced by the different dice of the adversary. Then as we throw the dice several
times, we consider the sum of the value of this function applied to the outcome
of the dice throws. This sum forms a martingale. We stop the martingale once its
absolute value exceeds a particular bound. Since the function used was nonzero,
the martingale has large variance after a few throws, and therefore the martingale
will be stopped with high probability. Also by the theorem of stopping times,
the martingale has zero mean whenever we stop it. Then the extracted bit,
determined by whether the stopped martingale is positive or is negative, would
be unbiased.

To show the impossibility of deterministic extraction, we view a deterministic
extractor that extracts one bit from a generalized SV source as labeling the leaves
of a rooted tree with zeros and ones. Each sequence of dice throws corresponds
to a path from the root to one of the leaves, and at each node, the adversary
has some limited control of which branch to take while moving from the root
towards the leaves. We need to show that either the minimum or the maximum
of the probability of the output bit being zero, over all adversary’s strategies, is
far from 1/2. Our idea is to track these maximum and minimum probabilities in
a recursive way, i.e., to find these probabilities for any node of the tree in terms
of these values for its children. We then by induction show that for each node
of the tree either the minimum probability or the maximum probability is far
from 1/2.

To be more precise, given a deterministic extractor, let α be the minimum
probability of output bit being zero (over all strategies of the adversary). Simi-
larly, let β be the maximum probability of output bit being zero (over all strate-
gies of the adversary). Then we show that under certain conditions, there exists
a continuous function g(·) on the interval [0, 1], such that β ≥ g(α) and fur-
thermore g(1/2) > 1/2. We prove β ≥ g(α) inductively using the tree structure
discussed above. This implies the desired impossibility result, as by the conti-
nuity of g(·), both α and β cannot be close to 1/2. For instance, for the binary
SV source with two coins having probability of heads respectively equal to 1/3
and 2/3, Figure 1 shows a curve where (α, β) always lies above it. This curve is
clearly isolated from (1/2, 1/2).

We follow similar ideas for proving our impossibility result for common ran-
domness extraction from a distributed SV source; again we construct a continu-
ous function, which somehow captures not only the minimum and maximum of
the probability of the extracted common bit being zero, but also the probabil-
ity that the two parties agree on their extracted bits. The construction of this
function is more involved in the distributed case; it has two terms one of which
is similar to the function in the non-distributed case, and the other is inspired
by the definition of maximal correlation mentioned above.

Deterministic Randomness Extraction 149

Contributions to Information Theory. As mentioned above, the problem
of common randomness extraction from i.i.d. sources has been studied in the
information theory community. Then our work provides a generalization and an
alternative proof of known results in the i.i.d. case. In particular, we give a new
proof of Witsenhausen’s result [29] on the impossibility of common randomness
extraction from certain i.i.d. sources.

We also would like to point out that a generalized SV source as we define,
is indeed an arbitrarily varying source (AVS) [10,13] with a causal adversary.
These sources are studied in the information theory literature from the point of
view of source coding [4].

Notations. In this paper we consider functions X : C → R. Such a function can
be thought of as a random variable X = X(C). We sometimes for simplicity use
the notation X(c) = xc. The expected value and variance of X are denoted by
E[X] and Var[X] respectively.

We sometimes have several distributions over the same set C which are
indexed by elements s ∈ S. In this case to avoid confusions, the expectation
value and variance are specified by a subscript s.

For simplicity of notation a sequence C1, . . . , Cn of (not necessarily i.i.d.)
random variables is denoted by Cn. Similarly for c1, . . . , cn ∈ C we use cn =
(c1, . . . , cn). We also use the notation c[k:k+�] = (ck, ck+1, . . . , ck+�).

2 Randomness Extraction from Generalized SV Sources

Definition 1 (Generalized SV source). Let C be a finite alphabet set. Con-
sider a finite set of distributions over C indexed by a set S. That is, assume that
for any s ∈ S we have a distribution over C determined by numbers ps(c) for
all c ∈ C. A sequence C1, C2, · · · of random variables, each over alphabet set C,
is said to be a generalized SV source with respect to distributions ps(c), if the
sequence is generated as follows: Assume that C1, . . . , Ci−1 are already gener-
ated. In order to determine Ci, an adversary chooses Si = si ∈ S, depending
only on C1, . . . , Ci−1. Then Ci is sampled from the distribution psi

(c).

We can think of specifying s as choosing a particular multi-faceted die, and c
as the facet that results from throwing the die. The joint probability distribution
p(c1, c2, · · · , cn, s1, s2, · · · , sn) of random variables C1, . . . , Cn and S1, . . . , Sn in
a generalized SV source factorizes as follows:

q(s1)ps1(c1)q(s2|c1)ps2(c2) · · · q(sn|c1 · · · cn−1)psn
(cn),

where q(si|c1 · · · ci−1) describes the action of the adversary at time i. Here, first
the adversary chooses S1 = s1 with probability q(s1), and then C1 = c1 is
generated with probability ps1(c1). Then the adversary chooses S2 = s2 with
probability q(s2|c1) and then C2 = c2 is generated with probability ps2(c2), and
so on.

150 S. Beigi et al.

Generalized SV sources can be alternatively characterized as follows: Given
i and C1 = c1, . . . , Ci−1 = ci−1, the distribution of Ci should be a convex
combination of the set of |S| distributions {ps(·) : s ∈ S}.

We emphasize that even after fixing distributions ps(c), the generalized SV
source (similar to ordinary SV sources) is not a fixed source, but rather a class of
sources. This is because in each step si is chosen arbitrarily by the adversary as
a (probabilistic) function of C1, . . . , Ci−1. Nevertheless, once we fix adversary’s
strategy, the generalized SV source is fixed in that class of sources.

Definition 2 (Deterministic extraction). We say that deterministic ran-
domness extraction from the generalized SV source determined by distributions
ps(c) is possible if for every ε > 0 there exist n and Γn : Cn → {0, 1} such
that for every strategy of the adversary, the distribution of Γn(Cn) is ε-close,
in total variation distance, to the uniform distribution. That is, independent of
adversary’s strategy, Γn(Cn) is an almost uniform bit.

In the following we present a necessary condition and separately a sufficient
condition for the existence of deterministic extractors for generalized SV sources.
In the non-degenerate case, i.e., when ps(c) > 0 for all s, c, these two conditions
coincide. Thus we fully characterize the possibility of deterministic randomness
extraction from generalized SV sources in the non-degenerate case.

2.1 A Sufficient Condition for the Existence of Randomness
Extractors

Theorem 1. Consider a generalized SV source with alphabet C, set of dice S,
and probability distributions ps(c). Suppose that there exists ψ : C → R such that
for every s ∈ S we have E(s)[ψ(C)] = 0 and Var(s)[ψ(C)] > 0, where E(s) and
Var(s) are expectation and variance with respect to the distribution ps(·). Then
randomness can be extracted from this SV source.

Observe that if ps(c) > 0 for all s, c, then this theorem can equivalently be
stated as follows: Thinking of each distribution ps(·) as a point in the probability
simplex, if the convex hull of the set of points {ps(·) : s ∈ S} in the probability
simplex does not have full dimension, then deterministic randomness extraction
is possible. For instance if |S| < |C| this condition is always satisfied and then
we can deterministically extract randomness.

Remark 1. The analysis of the proof of Theorem 1 would show that the bias
could be polynomially small, namely a bias of Θ(n−1/3).

2.2 A Necessary Condition for the Existence of Randomness
Extractors

The main result of this subsection is the following theorem.

Theorem 2. Consider a generalized SV source with alphabet C, set of dice S,
and probabilities ps(c). Suppose that there is no non-zero function ψ : C → R

Deterministic Randomness Extraction 151

such that for all s ∈ S we have E(s)[ψ(C)] = 0. Then deterministic randomness
extraction from this generalized SV source is impossible.

Again, let us consider the case where ps(c) > 0 for all s, c. In this case
ψ being non-zero is equivalent to Var(s)[ψ] > 0 for all s. Then comparing to
Theorem 1 we find that the necessary and sufficient condition for the possibility
of deterministic extraction is the existence of a non-zero ψ with E(s)[ψ] = 0.

Corollary 1. Consider a generalized SV source with alphabet C, set of dice S,
and probabilities ps(c). Let S ′ be a subset of S and let C′ be the set of all c for
which there exists some s ∈ S ′ such that ps′(c) > 0. Suppose that there is no
non-zero function ψ : C → R such that (i) ψ is zero on C − C′, and (ii) for all
s ∈ S ′ we have E(s)[ψ(C)] = 0. Then deterministic randomness extraction from
this generalized SV source is impossible.

3 Distributed SV Sources

Distributed SV sources can be defined similarly to generalized SV sources except
that in this case, the outcome in each time step is a pair that is distributed
between two parties.

Definition 3. Fix finite sets A,B, S. Let ps(ab) define a probability distribution
over A×B for any s ∈ S. The distributed SV source with respect to distributions
ps(ab) is defined as follows. The adversary in each time step i, depending on the
previous outcomes (A1, B1) = (a1, b1), . . . , (Ai−1, Bi−1) = (ai−1, bi−1) chooses
some Si = si. Then (Ai, Bi) = (ai, bi) is sampled from the distribution psi

(aibi).
The sequence of random variables (A1, B1), (A2, B2), . . . , is called a distributed
SV source.

Here we assume that the outcomes of this SV source are distributed between
two parties, say Alice and Bob. That is, in each time step i, Ai is revealed to
Alice and Bi is revealed to Bob. So Alice receives the sequence A1, A2, . . . , and
Bob receive the sequence B1, B2,

In this section we are interested in whether two parties can generate a com-
mon random bit from distributed SV sources. To be more precise, let us first
define the problem more formally.

Definition 4. We say that common randomness can be extracted from the dis-
tributed SV source (A1, B1), (A2, B2), . . . if for every ε > 0 there is n and func-
tions Γn : An → {0, 1} and Λn : Bn → {0, 1} such that for every strategy of
adversary, the distributions of K1 = Γn(An) and K2 = Λn(Bn) are ε-close (in
total variation distance) to uniform distribution, and that Pr[K1 �= K2] < ε.

In the above definition we considered only deterministic protocols for extract-
ing a common random bit. We could also consider probabilistic protocols where
Γn and Λn are random functions depending on private randomnesses of Alice
and Bob respectively. More precisely, we could take K1 = Γn(An, R1) and

152 S. Beigi et al.

K2 = Λn(Bn, R2) with the above conditions on K1,K2, where R1 and R2 are
private randomnesses of Alice and Bob respectively, which are independent of
the SV source and of each other. Nevertheless, if a common random bit can
be extracted with probabilistic protocols, then common randomness extraction
with deterministic protocols is also possible.

Lemma 1. In the problem of common random bit extraction, with no loss of
generality we may assume that the parties do not have private randomness.

3.1 Common Data

As discussed in the introduction, the notion of the common data of two random
variables A,B first appeared in the problem of common randomness extraction
from i.i.d. sources. Briefly speaking, common data of A and B is the finest
random variable C that can be computed both as a function C = C1(A) of A,
and as a function C = C2(B) of B. In the full version of this paper [2], we give
a new proof of Witsenhausen’s theorem that randomness extraction from i.i.d.
repetitions of (A,B) is feasible if and only if common data exists, if and only if
maximal correlation is equal to 1.

Here we are interested in common randomness extraction from distributed SV
sources. So we need to define common data for such sources. The common data
of a distributed SV source (given by distributions ps(ab) indexed by s ∈ S) is the
finest random variable C that can be computed both as a function C = C1(A)
of A, and as a function C = C2(B) of B. Here we need C1(A) = C2(B) to hold
with probability 1 under all distributions ps(ab).

3.2 Common Random Bit Extraction from Distributed SV Sources

Theorem 3. Consider a distributed SV source (as in Definition 3) with cor-
responding sets S, A, and B and corresponding distributions ps(ab). Let C be
the common data of the distributed SV source. Let ps(abc) denote the induced
joint distribution of A, B, and C. Suppose that there is no non-zero function
ψ : C → R such that E(s)[ψ(C)] = 0 for all s. Then common randomness cannot
be extracted from this distributed SV source.

An algorithm to extract common random bits is to focus on the common
part C that can be computed by both Alice and Bob. Indeed C itself can be
thought of as a generalized SV source. If deterministic randomness extraction
from C is possible, then Alice and Bob can obtain a common random bit by
individually applying the randomness extraction protocol. Comparing with The-
orems 1 and 2, and assuming ps(c) > 0 for all s, c, the above theorem states that
a common random bit can be extracted if and only if deterministic randomness
extraction from C is possible.

Deterministic Randomness Extraction 153

4 Future Work

In this paper we completely characterized the randomness extraction problem
for non-degenerate cases. A future work could be to solve this problem for the
degenerate cases. In the degenerate cases, for generalized non-distributed sources
Corollary 1 gives a mildly stronger necessary condition than Theorem 2, but
there is still a gap between this necessary condition and the sufficient condition
of Theorem 1.

We note that our randomness extractor in Theorem 1 extracts a bit whose
bias is inverse polynomially small in the length of the source sequence. It is
interesting to see if this extractor could be improved to yield a bit with an
exponentially small bias. Furthermore, if we want to produce more than one bit
of randomness, the tradeoff between the number of produced random bits and
their quality is open.

Another interesting problem is to look at efficient adversaries, similar to the
work of [1]. Our proofs only show existence of inefficient adversaries.

Another way to restrict the adversary is to put limitations on the number
of times the adversary can choose a strategy s ∈ S, i.e. there can be a cost
associated to each strategy s.

A different type of limitation can be on the adversary’s knowledge about the
sequence generated so far. More specifically, the adversary might have noisy or
partial access to the previous outcomes in the sequence (these sources are called
“active sources” [22]). These sources model adversaries with limited memory.
Space bounded sources have been studied in [17,24].

Finally, the problem of common randomness extraction can be studied for
three or more parties instead of just two parties.

References

1. Austrin, P., Chung, K.-M., Mahmoody, M., Pass, R., Seth, K.: On the impossibility
of cryptography with tamperable randomness. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 462–479. Springer, Heidelberg (2014)

2. Beigi, S., Etesami, O., Gohari, A.: Deterministic Randomness Extraction from
Generalized and Distributed Santha-Vazirani Sources (2014). arXiv:1412.6641

3. Beigi, S., Tse, D.: under preparation
4. Berger, T.: The source coding game. IEEE Trans. on Information Theory

IT–17(1), 71–76 (1971)
5. Blum, M.: Independent unbiased coin flips from a correlated biased source - a finite

state Markov chain. Combinatorica 6(2), 97–108 (1986)
6. Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-

cations. International Journal of Number Theory (2005)
7. Bourgain, J.: On the construction of affine extractors. Geometric And Functional

Analysis 17(1), 33–57 (2007)
8. Chor, B., Goldreich, O., H̊astad, J., Freidmann, J., Rudich, S., Smolensky, R.: The

bit extraction problem of t-resilient functions. In: Proceedings of the 26th Annual
Symposium on Foundations of Computer Science, pp. 396–407 (1985)

http://arxiv.org/abs/1412.6641

154 S. Beigi et al.

9. Chor, B., Goldreich, O.: Unbiased Bits from Sources of Weak Randomness and
Probabilistic Communication Complexity. SIAM J. Comput. 17(2), 230–261 (1988)

10. Dobrusin, R.L.: Individual methods for transmission of information for discrete
channels without memory and messages with independent components. Sov. Math.
4, 253–256 (1963)

11. Dvir, Z.: Extractors for varieties. Computational Complexity 21(4), 515–572 (2012)
12. Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for polyno-

mial sources. In: FOCS 2007: Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Science, pp. 52–62 (2007)

13. Dobrusin, R.L.: Unified methods of optimal quantizing of messages. Sov. Math. 4,
284–292 (1963)

14. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Information Processing Letters 14, 183–186 (1982)

15. Gács, P., Körner, J.: Common information is far less than mutual information.
Problems of Control and Information Theory 2(2), 119–162 (1972)

16. Gabizon, A., Raz, R.: Deterministic extractors for affine sources over large fields.
In: Proceedings of the 46th FOCS, pp. 407–418 (2005)

17. Kamp, J., Rao, A., Vadhan, S., Zuckerman, D.: Deterministic extractors for small-
space sources. In: Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pp. 691–700 (2006)

18. Nisan, N., Zuckerman, D.: Randomness is Linear in Space. Journal of Computer
and System Sciences 52(1), 43–52 (1996)

19. Rabin, M.O.: Randomized byzantine generals. In: Proceedings of the 24th Annual
Symposium on Foundations of Computer Science, pp. 403–409 (1983)

20. Rao, A.: Extractors for a constant number of polynomially small min-entropy inde-
pendent sources. In: Proceedings of the 38th STOC, pp. 497–506 (2006)

21. Reingold, O., Vadhan, S., Wigderson, A.: A note on extracting randomness from
Santha-Vazirani sources. Unpublished manuscript (2004)

22. Palaiyanur, H., Chang, C., Sahai, A.: Lossy compression of active sources. In: IEEE
International Symposium on Information Theory, pp. 1977–1981 (2008)

23. Santha, M., Vazirani, U.: Generating quasi-random sequences from slightly-random
sources. In: Proceedings of Symposium on the Foundations of Computer Science
(1984). Jourdnal of Computer and System Sciences, 33(1), 75–87 (1986)

24. Vazirani, U.V.: Efficiency considerations in using semi-random sources. In:
Proceedings of the Nineteenth STOC, pp. 160–168 (1987)

25. Vazirani, U.V., Vazirani, V.V.: Random polynomial time is equal to slightly-
random polynomial time. In: Proc. 26th Annual IEEE Symposium on the
Foundations of Computer Science, pp. 417–428 (1985)

26. Vazirani, U.V., Vazirani, V.V.: Sampling a population with a single semi-random
source. In: Proc. 6th FST & TCS Conf. (1986)

27. Vadhan, S.: Pseudorandomness. Now Publishers (2012)
28. von Neumann, J.: Various techniques used in connection with random digits.

Applied Math Series 12, 36–38 (1951)
29. Witsenhausen, H.S.: On sequences of pairs of dependent random variables. SIAM

Journal on Applied Mathematics 28(1), 100–113 (1975)
30. Yao, A.C.: Some Complexity Questions Related to Distributed Computing.

In: Proc. of 11th STOC, vol. 14, pp. 209–213 (1979)
31. Zuckerman, D.: Randomness-optimal oblivious sampling. Random Structures and

Algorithms 11, 345–367 (1997)

Limitations of Algebraic Approaches to Graph
Isomorphism Testing

Christoph Berkholz(B) and Martin Grohe

RWTH Aachen University, Aachen, Germany
{berkholz,grohe}@informatik.rwth-aachen.de

Abstract. We investigate the power of graph isomorphism algorithms
based on algebraic reasoning techniques like Gröbner basis computation.
The idea of these algorithms is to encode two graphs into a system of
equations that are satisfiable if and only if if the graphs are isomor-
phic, and then to (try to) decide satisfiability of the system using, for
example, the Gröbner basis algorithm. In some cases this can be done in
polynomial time, in particular, if the equations admit a bounded degree
refutation in an algebraic proof systems such as Nullstellensatz or poly-
nomial calculus. We prove linear lower bounds on the polynomial calculus
degree over all fields of characteristic �= 2 and also linear lower bounds
for the degree of Positivstellensatz calculus derivations.

We compare this approach to recently studied linear and semidefinite
programming approaches to isomorphism testing, which are known to be
related to the combinatorial Weisfeiler-Lehman algorithm. We exactly
characterise the power of the Weisfeiler-Lehman algorithm in terms of
an algebraic proof system that lies between degree-k Nullstellensatz and
degree-k polynomial calculus.

1 Introduction

The graph isomorphism problem (GI) is notorious for its unresolved complexity
status. While there are good reasons to believe that GI is not NP-complete, it
is wide open whether it is in polynomial time.

Complementing recent research on linear and semidefinite programming
approaches to GI [1,7,10,13,14], we investigate the power of GI-algorithms based
on algebraic reasoning techniques like Gröbner basis computation. The idea of
all these approaches is to encode isomorphisms between two graphs as solutions
to a system of equations and possibly inequalities and then try to solve this
system or relaxations of it. Most previous work is based on the following encod-
ing: let G,H be graphs with adjacency matrices A,B, respectively. Note that G
and H are isomorphic if and only if there is a permutation matrix X such that
AX = XB. If we view the entries xvw of the matrix X as variables, we obtain a
system of linear equations. We introduce equations forcing all row- and column

RWTH Aachen University—The first author is currently at KTH Stockholm, sup-
ported by a fellowship within the Postdoc-Program of the German Academic
Exchange Service (DAAD).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 155–166, 2015.
DOI: 10.1007/978-3-662-47672-7 13

156 C. Berkholz and M. Grohe

sums of X to be 1 and add the inequalities xvw ≥ 0. It follows that the inte-
ger solutions to this system are 0/1-solutions that correspond to isomorphisms
between G and H. Of course this does not help to solve GI, because we can-
not find integer solutions to a system of linear inequalities in polynomial time.
The first question to ask is what happens if we drop the integrality constraints.
Almost thirty years ago, Tinhofer [17] proved that the system has a rational
(or, equivalently, real) solution if and only if the so-called colour refinement
algorithm does not distinguish the two graphs. Colour refinement is a simple
combinatorial algorithm that iteratively colours the vertices of a graph accord-
ing to their “iterated degree sequences”, and, to distinguish two graphs, tries
to detect a difference in their colour patterns. For every k, there is a natural
generalisation of the colour refinement algorithm that colours k-tuples of ver-
tices instead of single vertices; this generalisation is known as the k-dimensional
Weisfeiler-Lehman algorithm (k-WL). Atserias and Maneva [1] and indepen-
dently Malkin [13] proved that the Weisfeiler-Lehman algorithm is closely tied
to the Sherali-Adams hierarchy [16] of increasingly tighter LP-relaxations of the
integer linear program for GI described above: the distinguishing power of k-WL
is between that of the (k − 1)st and kth level of the Sherali-Adams hierarchy.
Otto and the second author of this paper [10] gave a precise correspondence
between k-WL and the nonnegative solutions to a system of linear equations
between the (k − 1)st and kth level of the Sherali-Adams hierarchy. Already
in 1992, Cai, Fürer, and Immerman [5] had proved that for every k there are
non-isomorphic graphs Gk,Hk (called CFI-graphs in the following) of size O(k)
that are not distinguished by k-WL, and combined with the results of Atserias-
Maneva and Malkin, this implies that no sublinear level of the Sherali-Adams
hierarchy suffices to decide isomorphism. O’Donnell, Wright, Wu, and Zhou [14]
(also see [7]) studied the Lasserre hierarchy [12] of semi-definite relaxations of
the integer linear program for GI. They proved that the same CFI-graphs cannot
even be distinguished by sublinear levels of the Lasserre hierarchy.

However, there is a different way of relaxing the integer linear program to
obtain a system that can be solved in polynomial time: we can drop the nonneg-
ativity constraints, which are the only inequalities in the system. Then we end
up with a system of linear equalities, and we can ask whether it is solvable over
some finite field or over the integers. As this can be decided in polynomial time,
it gives us a new polynomial time algorithm for graph isomorphism: we solve
the system of equations associated with the given graphs. If there is no solu-
tion, then the graphs are nonisomorphic. (We say that the system of equations
distinguishes the graphs.) If there is a solution, though, we do not know if the
graphs are isomorphic or not. Hence the algorithm is “sound”, but not necessar-
ily “complete”. Actually, it is not obvious that the algorithm is not complete. If
we interpret the linear equations over F2 or over the integers, the system does
distinguish the CFI-graphs (which is not very surprising because these graphs
encode systems of linear equations over F2). Thus the lower bound techniques
applied in all previous results do not apply here. However, we construct noniso-
morphic graphs that cannot be distinguished by this system (see Theorem 6.4).

Limitations of Algebraic Approaches to Graph Isomorphism Testing 157

In the same way, we can drop the nonnegativity constraints from the levels of
the Sherali-Adams hierarchy and then study solvability over finite fields or over
the integers, which gives us increasingly stronger systems. Even more powerful
algorithms can be obtained by applying algebraic techniques based on Gröbner
basis computations. Proof complexity gives us a good framework for proving
lower bounds for such algorithms. There are algebraic proof systems such as the
polynomial calculus [6] and the weaker Nullstellensatz system [2] that charac-
terise the power of these algorithms. The degree of refutations in the algebraic
systems roughly corresponds to the levels of the Sherali-Adams and Lasserre
hierarchies for linear and semi-definite programming, and to the dimension of
the Weisfeiler-Lehman algorithm. We identify a fragment of the polynomial cal-
culus, called the monomial polynomial calculus, such that degree-k refutations in
this system precisely characterise distinguishability by k-WL (see Theorem 4.4).

As our main lower bounds, we prove that for every field F of characteristic
�= 2, there is a family of nonisomorphic graphs Gk,Hk of size O(k) that cannot
be distinguished by the polynomial calculus in degree k. Furthermore, we prove
that there is a family of nonisomorphic graphs Gk,Hk of size O(k) that cannot
be distinguished by the Positivstellensatz calculus in degree k. The Positivstel-
lensatz calculus [9] is an extension of the polynomial calculus over the reals and
subsumes semi-definite programming hierarchies. Thus, our results slightly gen-
eralise the results of O’Donnell et al. [14] on the Lasserre hierarchy (described
above). Technically, our contribution is a low-degree reduction from systems of
equations describing so-called Tseitin tautologies to the systems for graph iso-
morphism. Then we apply known lower bounds [3,9] for Tseitin tautologies.

2 Algebraic Proof Systems

Polynomial calculus (PC) is a proof system to prove that a given system of
(multivariate) polynomial equations P over a field F has no 0/1-solution. We
always normalise polynomial equations to the form p = 0 and just write p to
denote the equation p = 0. The derivation rules are the following (for polynomial
equations p ∈ P, polynomials f, g, variables x and field elements a, b):

p
,

x2 − x
,

f

xf
,

g f

ag + bf
.

The axioms of the systems are all p ∈ P and x2−x for all variables x. A PC refu-
tation of P is a derivation of 1. The polynomial calculus is sound and complete,
that is, P has a PC refutation if and only if it is unsatisfiable. The degree of a
PC derivation is the maximal degree of all polynomials in the derivation. Origi-
nally, Clegg et. al. [6] introduced the polynomial calculus to model Gröbner basis
computation. Moreover, using the Gröbner basis algorithm, it can be decided in
time nO(d) whether a given system of polynomial equations has a PC refutation
of degree d (see [6]).

We introduce the following restricted variant of the polynomial calculus.
A monomial-PC derivation is a PC-derivation where we require that the

158 C. Berkholz and M. Grohe

polynomial f in the multiplication rule f
xf is either a monomial or the prod-

uct of a monomial and an axiom.
If we restrict the application of the multiplication rule even further and

require f to be the product of a monomial and an axiom, we obtain the Null-
stellensatz proof system [2]. This proof system is usually stated in the following
static form. A Nullstellensatz refutation of a system P of polynomial equations
consists of polynomials fp, for p ∈ P, and gx, for all variables x, such that

∑

p∈P

fpp +
∑

x

gx(x2 − x) = 1.

The degree of a Nullstellensatz refutation is the maximum degree of all polyno-
mials fpp.

2.1 Low-Degree Reductions

To compare the power of the polynomial calculus for different systems of poly-
nomial equations, we use low degree reductions [4]. Let P and R be two sets of
polynomials in the variables X and Y, respectively. A degree-(d1, d2) reduction
from P to R consist of the following:

– for each variable y ∈ Y a polynomial fy(x1, . . . , xk) of degree at most d1 in
variables x1, . . . , xk ∈ X ;

– for each polynomial r(y1, . . . , y�) ∈ R a degree-d2 PC derivation of

r
(
fy1(x11, . . . , x1k1), . . . , fy�

(x�1, . . . , x�k�
)
)

from P.
– for each variable y ∈ Y a degree-d2 PC derivation of

fy(x1, . . . , xk)2 − fy(x1, . . . , xk)

from P.

Lemma 2.1 ([4]). If there is a degree-(d1, d2) reduction from P to R and R has
a polynomial calculus refutation of degree k, then P has a polynomial calculus
refutation of degree max(d2, kd1).

2.2 Linearisation

For a system of polynomial equations P over variables xi let Pr be the set of all
polynomial equations of degree at most r obtained by multiplying a polynomial
in P by a monomial over the variables xi. Furthermore, for a system of polynomial
equations P let MLIN(P) be the the multi-linearisation of P obtained by replacing
every monomial xi1 · · · xi�

by a variable X{i1,...,i�}. Observe that if P has a 0/1-
solution α, then so does MLIN(P) as we can set α(X{i1,...,i�}) := α(xi1) · · · α(xi�

).
The converse however does not hold since a solution α for MLIN(P) does not
have to satisfy α(X{ab}) = α(X{a})α(X{b}). The next lemma states a well-known
connection between Nullstellensatz and Linear Algebra.

Limitations of Algebraic Approaches to Graph Isomorphism Testing 159

Lemma 2.2 [3]. Let P be a system of polynomial equations. The following state-
ments are equivalent.

– P has a degree r Nullstellensatz refutation.
– The system of linear equations MLIN(Pr) has no solution.

This characterisation of Nullstellensatz proofs in terms of a linear system of
equations (also called design [3]) is a useful tool for proving lower bounds on
the Nullstellensatz degree. Unfortunately, a similar characterisation for bounded
degree PC is not in sight. However, for the newly introduced system monomial-
PC, which lies between Nullstellensatz and PC, we have a similar criterion for
the non-existence of refutations. The proof is deferred to the appendix.

Lemma 2.3. If MLIN(Pd) has a solution α that additionally satisfies

α(Xπ) = 0 =⇒ α(Xρ) = 0, for all π ⊆ ρ,

then P has no degree d monomial-PC derivation.

2.3 Linear and Semidefinite-Programming Approaches

In the previous section we have seen that degree-d Nullstellensatz corresponds
to solving a system of linear equations of size nO(d), which can be done in
time nO(d). Over the reals, this approach can be strengthened by considering
hierarchies of relaxations for linear and semi-definite programming.

In this setting one additionally adds linear inequalities, typically 0 ≤ x ≤ 1.
In the same way as for the Nullstellensatz, one lifts this problem to higher dimen-
sions, by multiplying the inequalities and equations with all possible monomials
of bounded degree. Afterwards, one linearises this system as above to obtain a
system of linear inequalities of size nO(d), which can also be solved in polyno-
mial time using linear programming techniques. This lift-and-project technique
is called Sherali-Adams relaxation of level d [16].

Another even stronger relaxation is based on semidefinite programming tech-
niques. This technique has different names: Positivstellensatz, Sum-of-Squares
(SOS), or Lasserre Hierarchy. Here we take the view point as a proof system,
which was introduced by Grigoriev and Vorobjov [9] and directly extends the
Nullstellensatz over the reals. A degree-d Positivstellensatz refutation of a sys-
tem P of polynomial equations consists of polynomials fp, for p ∈ P, and gx, for
all variables x, and in addition polynomials hi such that

∑

p∈P

fpp +
∑

x

gx(x2 − x) = 1 +
∑

i

h2
i .

The degree of a Positivstellensatz refutation is the maximum degree of all poly-
nomials fpp and h2

i . It is important to note that Positivstellensatz refutations
can be found in time nO(d) using semi-definite programming. This has been inde-
pendently observed by Parrilo [15] in the context of algebraic geometry and by
Lasserre [12] in the context of linear optimisation.

160 C. Berkholz and M. Grohe

Grigoriev and Vorobjov [9] also introduced a proof system called Positivstel-
lensatz calculus, which extends polynomial calculus in the same way as Posi-
tivstellensatz extends Nullstellensatz. A Positivstellensatz calculus refutation of
a system of polynomials P is a polynomial calculus derivation over the reals of
1+

∑
i h2

i . Again, the degree of such a refutation is the maximum degree of every
polynomial in the derivation.

3 Equations for Graph Isomorphism

We find it convenient to encode isomorphism using different equations than
those from the system AX = XB described in the introduction. However, the
equations AX = XB can easily be derived in our system, and thus lower bounds
for our system imply lower bounds for the AX = XB-system.

Throughout this section, we fix graphs G and H, possibly with coloured
vertices and/or edges. Isomorphisms between coloured graphs are required to
preserve the colours. We assume that either |V (G)| ≥ 2 or |V (H)| ≥ 2. We
shall define a system Piso(G,H) of polynomial equations that has a solution if
and only if G and H are isomorphic. The equations are defined over variables
xvw, v ∈ V (G), w ∈ V (H). A solution to the system is intended to describe an
isomorphism ι from G to H, where xvw �→ 1 if ι(v) = w and xvw �→ 0 otherwise.
The system Piso(G,H) consists of the following linear and quadratic equations:

∑

v∈V (G)

xvw − 1 = 0 for all w ∈ V (H) (3.1)

∑

w∈V (H)

xvw − 1 = 0 for all v ∈ V (G) (3.2)

xvwxv′w′ = 0 for all v, v′ ∈ V (G), w, w′ ∈ V (H) such
that {(v, w), (v′, w′)} is not a local iso-
morphism.

(3.3)

A local isomorphism from G to H is an injective mapping π with domain in V (G)
and range in V (H) (often viewed as a subset of V (G) × V (H)) that preserves
adjacencies, that is vw ∈ E(G) ⇐⇒ π(v)π(w) ∈ E(H). If G and H are coloured
graphs, local isomorphisms are also required to preserve colours.

To enforce 0/1-assignments we add the following set Q of quadratic equalities

x2
vw − xvw = 0 for all v ∈ V (G), w ∈ V (H). (3.4)

We treat these equations separately because they are axioms of the polynomial
calculus anyway. Observe that the equations (3.1) and (3.2) in combination with
(3.4) make sure that every solution to the system describes a bijective mapping
from V (G) to V (H). The equations (3.3) make sure that this bijection is an
isomorphism. Thus, for every field F, the system Piso(G,H) ∪ Q has a solution
over F if and only G and H are isomorphic.

Limitations of Algebraic Approaches to Graph Isomorphism Testing 161

4 Weisfeiler-Lehman Is Located Between Nullstellensatz
and Polynomial Calculus

To relate the Weisfeiler-Lehman algorithm to our proof systems, we use the
following combinatorial game. The bijective k-pebble game [11] on graphs G and
H is played by two players called Spoiler and Duplicator. Positions of the game
are sets π ⊆ V (G) × V (H) of size |π| ≤ k. The game starts in an initial position
π0. If |V (G)| �= |V (H)| or if π0 is not a local isomorphism, then Spoiler wins the
game immediately, that is, after 0 rounds, Otherwise, the game is played in a
sequence of rounds. Suppose the position after the ith round is πi. In the (i+1)st
round, Spoiler chooses a subset π ⊆ πi of size |π| < k. Then Duplicator chooses
a bijection f : V (G) → V (H). Then Spoiler chooses a vertex v ∈ V (G), and the
new position is πi+1 := π ∪ {(v, f(v))}. If πi+1 is not a local isomorphism, then
Spoiler wins the play after (i + 1) rounds. Otherwise, the game continues with
the (i+2)nd round. Duplicator wins the play if it lasts forever, that is, if Spoiler
does not win after finitely many rounds. Winning strategies for either player in
the game are defined in the natural way.

Lemma 4.1 ([5,11]). k-WL distinguishes G and H if and only if Spoiler has a
winning strategy for the bijective k-pebble game on G,H with initial position ∅.

Observe that each game position π = {(v1, w1), . . . , (v�, w�)} of size � corre-
sponds to a multilinear monomial xπ = xv1w1 . . . xv�w�

of degree �; for the empty
position we let x∅ := 1.

Lemma 4.2. Let F be a field of characteristic 0. If Spoiler has a winning strategy
for the r-round bijective k-pebble game on G, H with initial position π0, then
there is a degree k monomial-PC derivation of xπ0 from Piso(G,H) over F.

Proof. The proof is by induction over r. For the base case r = 0, suppose that
Spoiler wins after round 0. If |V (G)| �= |V (H)|, the system Piso(G,H) has the
following degree-1 Nullstellensatz refutation:

∑
v∈V (G)

1
a

(∑
w∈V (H) xvw − 1

)
+

∑
w∈V (H) − 1

a

(∑
v∈V (G) xvw − 1

)
= 1,

where a = |V (G) − V (H)|. It yields a degree-1 monomial PC refutation of
Piso(G,H) and thus a derivation of xπ0 of degree |π0| ≤ k. Otherwise, π0 is not
a local isomorphism. Then there is a 2-element subset π := {(v, w), (v′, w′)} ⊆ π0

that is not a local isomorphism. Multiplying the axiom xvwxv′w′ = xπ with the
monomial xπ0\π, we obtain a monomial-PC derivation of xπ0 of degree |π0| ≤ k.

For the inductive step, suppose that Spoiler has a winning strategy for the
(r + 1)-round game starting in position π0. Let π ⊆ π0 with |π| < k be the set
chosen by Spoiler in the first round of the game. We can derive xπ0 from xπ

by multiplying with the monomial xπ0\π. Hence it suffices to show that we can
derive xπ in degree k.

Consider the bipartite graph B on V (G) V (H) which has an edge vw for
all v ∈ V (G), w ∈ V (H) such that Spoiler cannot win from position π ∪{(v, w)}

162 C. Berkholz and M. Grohe

in at most r rounds. As from position π, Spoiler wins in r + 1 rounds, there is
no bijection f : V (G) → V (H) such that (v, f(v)) ∈ E(B) for all v ∈ V (G). By
Hall’s Theorem, it follows that there is a set S ⊆ V (G) such that |NB(S)| < |S|.
Let S be a maximal set with this property and let T := NB(S).

We claim that NB(T) = S. To see this, suppose for contradiction that there
is a vertex v ∈ NB(T) \ S. By the maximality of S, we have NB(v) �⊆ T . Let
w ∈ NB(v) \ T . Moreover, let w′ ∈ NB(v) ∩ T (exists because v ∈ NB(T)) and
v′ ∈ NB(w′) ∩ S (exists because T = NB(S)). Then by the definition of B,
Duplicator has a winning strategy for the r-round bijective k-pebble game with
initial positions π ∪{(v′, w′)}, π ∪{(v, w′)}, and π ∪{(v, w)}, which implies that
she also has a winning strategy for the game with initial position π ∪ {(v′, w)}.
Here we use the fact that the relation “duplicator has a winning strategy for the
r-round bijective k-pebble game” defines an equivalence relation on the initial
positions. Thus (v′, w) ∈ E(B), which contradicts w �∈ NB(S). This proves the
claim.

By the induction hypothesis and the claim we know that (�) xπxvw has a
degree-k monomial PC derivation if v ∈ S,w /∈ T or v /∈ S,w ∈ T . Furthermore,
we can derive

∑

v∈S

xπ

⎛

⎝
∑

w∈V (H)

xvw − 1

⎞

⎠ −
∑

w∈T

xπ

⎛

⎝
∑

v∈V (G)

xvw − 1

⎞

⎠ (4.1)

by multiplying the axioms (3.1), (3.2) with xπ and building a linear combination.
By subtracting and adding monomials from (�), this polynomial simplifies to
(|T | − |S|)xπ. After dividing by the coefficient |T | − |S| �= 0, we get xπ. We can
divide by |T | − |S| because the characteristic of the field F is 0. ��

The following lemma is, at least implicitly, from [10]. As the formal framework
is different there, we nevertheless give the proof in the appendix.

Lemma 4.3. Let F be a field of characteristic 0 and k ≥ 2. If Duplicator has a
winning strategy for the bijective k-pebble game on G, H then there is a solution α
of MLIN(Piso(G,H)k) over F that additionally satisfies α(Xπ) = 0 =⇒ α(Xρ) =
0 for all π ⊆ ρ.

Theorem 4.4. Let F be a field of characteristic 0. Then the following statements
are equivalent for two graphs G and H.

(1) The graphs are distinguishable by k-WL.
(2) There is a degree-k monomial-PC refutation of Piso(G,H) over F.

Proof. Follows immediately from lemmas 2.3, 4.2 and 4.3. ��
We do not now the exact relation between Nullstellensatz and monomial-PC

for the graph isomorphism polynomials. In particular, we do not know whether
degree-k Nullstellensatz is as strong as the k-dimensional Weisfeiler-Lehman
algorithm and leave this as open question. In the other direction, we remark

Limitations of Algebraic Approaches to Graph Isomorphism Testing 163

that, at least for degree 2, full polynomial calculus is strictly stronger than
degree-2 monomial-PC and hence the Colour Refinement Algorithm. However,
we believe that the gap is not large. Our intuition is supported by Theorem 6.2,
which implies that low-degree PC is not able to distinguish Cai-Fürer-Immerman
graphs. Thus, polynomial calculus has similar limitations as the Weisfeiler-
Lehman algorithm [5], Resolution [18], the Sherali-Adams hierarchy [1,10] and
the Positivstellensatz [14].

5 Groups CSPs and Tseitin Polynomials

5.1 From Group CSPs to Graph Isomorphism

We start by defining a class of constraint satisfaction problems (CSPs) where
the constraints are co-sets of certain groups. Throughout this section, we let Γ
be a finite group. Recall that a CSP-instance has the form (X ,D, C), where X
is a finite set of variables, D is a finite set called the domain and C a finite
set of constraints of the form (x̄, R), where x̄ ∈ X k and R ⊆ Dk, for some
k ≥ 1. A solution to such an instance is an assignment α : X → D such
that α(x̄) ∈ R for all constraints (x̄, R) ∈ C. An instance of a Γ -CSP has
domain Γ and constraints of the form

(
x̄,Δγ

)
, where Δ ≤ Γ k is a subgroup of a

k-fold direct product Γ k of Γ and γ ∈ Γ k, so that Δγ is a right coset of Δ. We
specify instances as sets C of constraints; the variables are given implicitly. With
each constraint C =

(
(x1, . . . , xk),Δγ

)
, we associate the homogeneous constraint

C̃ =
(
(x1, . . . , xk),Δ

)
. For an instance C, we let C̃ = {C̃ | C ∈ C}.

Next, we reduce Γ -CSP to GI. Let C be a Γ -CSP in the variable set X . We
construct a coloured graph G(C) as follows.

– For every variable x ∈ X we take vertices γ(x) for all γ ∈ Γ . We colour all
these vertices with a fresh colour L(x).

– For every constraint C = ((x1, . . . , xk),Δγ) ∈ C we add vertices β(C) for
all β ∈ Δγ. We colour all these vertices with a fresh colour L(C). If β =
(β1, . . . , βk), we add an edge {β(C), β

(xi)
i } for all i ∈ [k]. We colour this edge

with colour M (i).

We let G̃(C) be the graph G(C̃) where for all constraints C ∈ C we identify the
two colours L(C) and L(˜C).

Lemma 5.1. A Γ -CSP instance C is satisfiable if and only if the graphs G(C)
and G̃(C) are isomorphic.

Example 1 (The Tseitin Tautologies and the CFI-construction). For every graph
H and set T ⊆ V (H) we define the following Z2-CSP T S = T S(H,T).

– For every edge e ∈ E(H) we have a variable ze.
– For every vertex v ∈ V (H) we define a constraint Cv. Suppose that v is

incident with the edges e1, . . . , ek (in an arbitrary order), and let zi := zei
.

164 C. Berkholz and M. Grohe

Let Δ := {(i1, . . . , ik) ∈ Z
k
2 | ∑k

i=1 ij = 0} ≤ Z
k
2 . We will also use the

coset Δ + (1, 0, . . . , 0) = {(i1, . . . , ik) ∈ Z
n
2 | ∑k

i=1 ij = 1} If v �∈ T , we let
Cv :=

(
z1, . . . , zk,Δ), and if v ∈ T we let Cv :=

(
z1, . . . , zk,Δ+(1, 0, . . . , 0)).

Observe that T S is a set of Boolean constraints, all of them linear equations
over the field F2; they are known as the Tseitin tautologies associated with H
and T . We think of assigning a “charge” 1 to every vertex in T and charge 0
to all remaining vertices. Now we are looking for a set F ⊆ E(H) of edges such
that for every vertex v, the number of edges in F incident with v is congruent
to the charge of v modulo 2. A simple double counting argument shows that T S
is unsatisfiable if |T | is odd. (The sum of degrees in the graph (V (H), F) is even
and, by construction, equal to the sum |T | of the charges, which is odd.)

It turns out that the graphs G(T S) and G̃(T S) are precisely the CFI-graphs
defined from H with all vertices in T “twisted”. These graphs have been intro-
duced by Cai, Fürer, and Immerman [5] to prove lower bounds for the Weisfeiler-
Lehman algorithm and have found various other applications in finite model
theory since then.

5.2 Low-Degree Reduction From Tseitin to Isomorphism

For every graph H and set T ⊆ V (H), we let PTs(H,T) be the following system
of polynomial equations:

z2e − 1 = 0 for all e ∈ E(H), (5.1)
1 + ze1ze2 · · · zek

= 0 for all v ∈ T with incident edges e1, . . . , ek, (5.2)
1 − ze1ze2 · · · zek

= 0 for all v ∈ V (H) \ T with incident edges e1, . . . , ek.
(5.3)

Observe that for every field F of characteristic �= 2 there is a one-to-one corre-
spondence between solutions to the system PTs(H,T) over F and solutions for
the CSP-instance T S(H,T) (see Example 1) via the “Fourier” correspondence
1 �→ 0,−1 �→ 1.

Lemma 5.3. Let F be a field of characteristic �= 2. Let k ≥ 2 be even and
H a k-regular graph, and let T ⊆ V (H). Let G := G(T S(H,T)) and G̃ :=
G̃(T S(H,T)).

Then there is a degree-(k, 2k) reduction from PTs(H,T) to Piso(G,H).

6 Lower Bounds

We obtain our lower bounds combining the low-degree reduction of the previous
section with known lower bounds for Tseitin polynomials due to Buss et al. [4]
for polynomial calculus and Grigoriev [8] for the Positivstellensatz calculus.

Theorem 6.1 ([4,8]). For every n ∈ N there is a 6-regular graph Hn of size
O(n) such that PTs(Hn, V (Hn)) is unsatisfiable, but:

Limitations of Algebraic Approaches to Graph Isomorphism Testing 165

(1) there is no degree-n polynomial calculus refutation of PTs(Hn, V (Hn)) over
any field F of characteristic �= 2;

(2) there is no degree-n Positivstellensatz calculus refutation of PTs(Hn, V (Hn))
over the reals.

Now our main lower bound theorem reads as follows.

Theorem 6.2. For every n ∈ N there are non-isomorphic graphs Gn, G̃n of
size O(n), such that

(1) there is no degree-n polynomial calculus refutation of Piso(Gn, G̃n) over any
field F of characteristic �= 2;

(2) there is no degree-n Positivstellensatz calculus refutation of Piso(Gn, G̃n)
over the reals.

Proof. This follows from Lemmas 2.1 and 5.3 and Theorem 6.1. ��
It follows that over finite fields, polynomial calculus has similar shortcomings

than over fields of characteristic 0. However, a remarkable exception is F2, where
we are not able to prove linear lower bounds on the degree. Here the approach
to reduce from Tseitin fails, as the Tseitin Tautologies are satisfiable over F2. As
a matter of fact, the next theorem shows that CFI-graphs can be distinguished
with Nullstellensatz of degree 2 over F2.

Theorem 6.3. Let H be a graph T ⊆ V (H) such that |T | is odd. Then
there is a degree-2 Nullstellensatz refutation over F2 of Piso(G, G̃), where G =
G(T S(H,T)) and G̃ = G̃(T S(H,T)).

Thus, to prove lower bounds for algebraic proof systems over F2 we need new
techniques. Our final theorem, which even derives lower bound over Z, is a first
step.

Theorem 6.4. There are non-isomorphic graphs G, H such that the system of
linear Diophantine equations MLIN(Piso(G,H)2) has a solution over Z.

Corollary 6.5. There are non-isomorphic graphs G, H such that Piso(G,H)
has no degree-2 Nullstellensatz refutation over Fq for any prime q.

7 Concluding Remarks

Employing results and techniques from propositional proof complexity, we prove
strong lower bounds for algebraic algorithms for graph isomorphism testing,
which show that these algorithm are not much stronger than known algorithms
such as the Weisfeiler-Lehman algorithm.

Our results hold over all fields except—surprisingly—fields of characteristic
2. For fields of characteristic 2, and also for the ring of integers, we only have
very weak lower bounds. It remains an challenging open problem to improve
these.

Acknowledgments. We thank Anuj Dawar and Erkal Selman for many inspiring
discussions in the initial phase of this project.

166 C. Berkholz and M. Grohe

References

1. Atserias, A., Maneva, E.: Sherali-Adams relaxations and indistinguishability in
counting logics. SIAM J. Comput. 42(1), 112–137 (2013)

2. Beame, P., Impagliazzo, R., Krajicek, J., Pitassi, T., Pudlak, P.: Lower bounds
on Hilbert’s nullstellensatz and propositional proofs. In: Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, pp. 794–806 (1994)

3. Buss, S.: Lower bounds on nullstellensatz proofs via designs. In: Proof Complexity
and Feasible Arithmetics, pp. 59–71. American Mathematical Society (1998)

4. Buss, S., Grigoriev, D., Impagliazzo, R., Pitassi, T.: Linear gaps between degrees for
the polynomial calculus modulo distinct primes. Journal of Computer and System
Sciences 62(2), 267–289 (2001)

5. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identification. Combinatorica 12, 389–410 (1992)

6. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to
find proofs of unsatisfiability. In: Proceedings of the 28th Annual ACM Symposium
on Theory of Computing, pp. 174–183 (1996)

7. Codenotti, P., Schoenbeck, G., Snook, A.: Graph isomorphism and the Lasserre
hierarchy (2014). CoRR arXiv:1107.0632v2

8. Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs
for the parity. Theoretical Computer Science 259(1–2), 613–622 (2001)

9. Grigoriev, D., Vorobjov, N.: Complexity of null- and positivstellensatz proofs.
Annals of Pure and Applied Logic 113(1–3), 153–160 (2001)

10. Grohe, M., Otto, M.: Pebble games and linear equations. In: Cégielski, P., Durand,
A. (eds.) Proceedings of the 26th International Workshop on Computer Science
Logic. Leibniz International Proceedings in Informatics (LIPIcs), vol. 16, pp. 289–
304 (2011)

11. Hella, L.: Logical hierarchies in PTIME. Information and Computation 129, 1–19
(1996)

12. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM Journal on Optimization 11(3), 796–817 (2001)

13. Malkin, P.: Sherali-Adams relaxations of graph isomorphism polytopes. Discrete
Optimization 12, 73–97 (2014)

14. O’Donnell, R., Wright, J., Wu, C., Zhou, Y.: Hardness of robust graph isomor-
phism, Lasserre gaps, and asymmetry of random graphs. In: Proceedings of the 25th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1659–1677 (2014)

15. Parrilo, P.: Structured Semidefinite Programs and Semialgebraic Geometry Meth-
ods in Robustness and Optimization. Ph.D. thesis, California Institute of Technol-
ogy (2000)

16. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics 3(3), 411–430 (1990)

17. Tinhofer, G.: Graph isomorphism and theorems of Birkhoff type. Computing 36,
285–300 (1986)

18. Torán, J.: On the resolution complexity of graph non-isomorphism. In: Järvisalo,
M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 52–66. Springer,
Heidelberg (2013)

http://arxiv.org/abs/1107.0632v2

Fully Dynamic Matching in Bipartite Graphs

Aaron Bernstein1 and Cliff Stein2(B)

1 Department of Computer Science, Columbia University, New York, NY, USA
bernstei@gmail.com

2 Department of IEOR and Computer Science, Columbia University,
New York, NY, USA

cliff@ieor.columbia.edu

Abstract. We present two fully dynamic algorithms for maximum car-
dinality matching in bipartite graphs. Our main result is a determin-
istic algorithm that maintains a (3/2 + ε) approximation in worst-case
update time O(m1/4ε−2.5). This algorithm is polynomially faster than all
previous deterministic algorithms for any constant approximation, and
faster than all previous algorithms (randomized included) that achieve a
better-than-2 approximation. We also give stronger results for bipartite
graphs whose arboricity is at most α, achieving a (1+ε) approximation in
worst-case update time O(α(α+log(n))+ε−4(α+log(n))+ε−6), which is
O(α(α+log n)) for constant ε. Previous results for small arboricity graphs
had similar update times but could only maintain a maximal matching
(2-approximation). All these previous algorithms, however, were not lim-
ited to bipartite graphs.

1 Introduction

Finding a maximum cardinality matching in a bipartite graph is a classic problem
in computer science and combinatorial optimization. There are efficient polyno-
mial time algorithms (e.g. [11]), and well-known applications, ranging from early
algorithms to minimize transportation costs (e.g. [10,13]) to recent applications
in on-line advertising and social media (e.g. [7,15]). For matching, the restriction
to bipartite graphs is natural and models many real-world applications. Further-
more, in many of these applications, the graph is actually changing over time.
We study the fully dynamic variant of bipartite matching in which the goal is
to maintain a near-maximum matching in a graph subject to a sequence of edge
insertions and deletions. When an edge change occurs, the goal is to maintain the
matching in time significantly faster than simply recomputing it from scratch.

One of our results is for bipartite small-arboricity graphs, which we define
here. The arboricity of a graph, denoted by α(G) is maxJ

|E(J)|
V (J)−1 where J =

(V (J), E(J)) is any subgraph of G induced by at least two vertices. Many classes
of graphs in practice have constant arboricity, including planar graphs, graphs
with bounded genus and graphs with bounded tree width. Every graph has
arboricity at most O(

√
m).

A. Bernstein—Supported in part by an NSF Graduate Fellowship and a Simons
Foundation Graduate Fellowship.
C. Stein—Supported in part by NSF grants CCF-1349602 and CCF-1421161.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 167–179, 2015.
DOI: 10.1007/978-3-662-47672-7 14

168 A. Bernstein and C. Stein

1.1 Previous Work

In addition to exact algorithms on static graphs, there is previous work on
approximating matching and on finding online matchings. Duan and Pettie
showed how to find a (1+ε)-approximate weighted matching in nearly linear time
[6]; their paper also contains an excellent summary of the history of matching
algorithms. Motivated partly by online advertising, there has also been signif-
icant work on “online matching” (e.g. [7,15]), both exact and approximate. In
most online matching work, the graph is dynamic, but with a restricted set of
updates. Typically, one side of the bipartite graph is fixed at the beginning of the
algorithm. The vertices on the other side arrive, one at a time, and when a vertex
arrives, we learn about all of its incident edges. Deletions are not allowed, nor
typically are changes to the matching, although some work also studies models
that measure the number of changes needed to maintain a matching [4,5,8].

We now turn to fully dynamic matchings. Algorithms can be classified by
update time, approximation ratio, whether they are randomized or deterministic
and whether they have a worst-case or amortized update time. The distinction
between deterministic and randomized is particularly important here as all of the
existing randomized algorithms require the assumption of an oblivious adversary
that does not see the algorithm’s random bits; thus, in addition to working
only with high probability, randomized dynamic algorithms must make an extra
assumption on the model which makes them inadequate in certain settings.

For maintaining an exact maximum matching, the best known update time
is O(n1.495) (Sankowski [19]), which in dense graphs is much faster than recon-
structing the matching from scratch. If we restrict the model to bipartite graphs
and to the incremental or decremental setting – where we allow only edge inser-
tions or only edge deletions (but not both) – Bosek et al.([4]) show that we can
achieve total update time (over all insertions or all deletions) m

√
n for an exact

matching and mε−1 for a (1 + ε)-matching, which is optimal in that it matches
the best known bounds for the static case. For the special case of convex bipar-
tite graphs in the fully dynamic setting, Brodal et al. showed how to maintain
an implicit (exact) matching with very fast update but slow query time.

Going back to the general problem of maintaining an explicit matching in a
fully dynamic setting, we can achieve a much faster update time than O(n1.495)
if we allow approximation. One can trivially maintain a maximal (and so 2-
approximate) matching in O(n) time per update. Ivkovic and Lloyd [12] showed
how to improve the update time to O((m+n)

√
2/2). Onak and Rubinfeld [18] were

to first to achieve truly fast update times, presenting a randomized algorithm
that maintains a O(1)-approximate matching in amortized update time O(log2 n)
time (with high probability). Baswana et al.[2] improved upon this with a ran-
domized algorithm that maintains a maximal matching (2-approximation) in
amortized update O(log n) time per update. These two algorithms are extremely
fast, but suffer from being amortized and inherently randomized, and also from
the fact their techniques focus on local changes, and so seem unable to break
through the barrier of a 2-approximation.

Fully Dynamic Matching in Bipartite Graphs 169

The first result to achieve a better-than-2 approximation was by Neiman and
Solomon [17], who presented a deterministic, worst-case algorithm for maintain-
ing a 3/2-approximate matching. However, the price of this improvement was a
huge increase in update time: from O(log n) to O(

√
m). Gupta and Peng [9] later

improved upon the approximation, presenting a deterministic algorithm that
maintains a (1+ε)-approximate matching in worst-case update time O(

√
mε−2).

The two deterministic algorithms are strongly tethered to the
√

m bound
and do not seem to contain any techniques for breaking past it. An impor-
tant open question was thus: can we achieve o(

√
m) update with a determin-

istic algorithm? (In fact Onak and Rubinfeld [18] presented a deterministic
algorithm with amortized update time O(log2 n), but it only achieves a log(n)-
approximation.) Very recently, Bhattacharya, Henzinger, and Italiano [3] pre-
sented a deterministic algorithm with worst-case update time O(m1/3ε−2) that
maintains a (4 + ε) approximation; this can be improved to (3 + ε) at the cost
of introducing amortization. The same paper presents a deterministic algorithm
with amortized update time only O(ε−2 log n) that maintains a (2+ ε) fractional
matching. Finally, Neiman and Solomon [17] showed that in graphs of constant
arboricity we can maintain a maximal (so 2-approximate) matching in amor-
tized time O(log(n)/ log log(n)); using a recent dynamic orientation algorithm
of Kopelowitz et al.[14], this algorithm yields a O(log(n)) worst-case update
time.

Abboud and Williams [1] recently showed a conditional lower bound for
dynamic matching in general graphs assuming that 3-sum cannot be solved in
o(n2) time; they show that there exists a constant k ∈ [2, 10] with the following
property: any algorithm that maintains an approximate matching in which every
augmenting path has length at least 2k −1 has amortized update time Ω(m1/3).

1.2 Results

If we disregard special cases such as small arboricity or fractional matchings, we
see that existing algorithms for dynamic matching seem to fall into two groups:
there are fast (mostly randomized) algorithms that do not break through the 2-
approximation barrier, and there are slow algorithms with O(

√
m) update that

achieve a better-than-2 approximation. Thus the obvious question is whether we
can design an algorithm – deterministic or randomized – that achieves a tradeoff
between these two: a o(

√
m) update and a better-than-2 approximation. We

answer this question in the affirmative for bipartite graphs.

Theorem 1. Let G be a bipartite graph subject to a series of edge insertions and
deletions, and let ε be < 2/3. Then, we can maintain a (3/2 + ε)-approximate
matching in G in deterministic worst-case update time O(m1/4ε−2.5).

This theorem achieves a new trade-off even if one considers existing random-
ized algorithms. Focusing on only deterministic algorithms the improvement is
even more drastic: our algorithm improves upon not just

√
m but m1/3, and

so achieves the fastest known deterministic update time (excluding the log(n)-
approximation of [18]), while still maintaining a better-than-2 approximation.

170 A. Bernstein and C. Stein

Also, since m1/4 = O(
√

n), our algorithm is the first to achieve a better-than-2
approximation in time strictly sublinear in the number of nodes. Of course, our
algorithm has the disadvantage of only working on bipartite graphs.

For small arboricity graphs we also show how to break through the maximal
matching (2-approximation) barrier and achieve a (1 + ε)-approximation.

Theorem 2. Let G be a bipartite graph subject to a series of edge insertions
and deletions, and let ε be < 1. Say that at all times G has arboricity at most
α. Then, we can maintain a (1+ ε)-approximate matching in G in deterministic
worst-case update time O(α(α+ log(n))+ ε−4(α+ log(n))+ ε−6) For constant α
and ε the update time is O(log(n)), and for α and ε polylogarithmic the update
time is polylogarithmic.

Note that a (1 + ε)-approximation with polylog update time is pretty much the
best we can hope for. The conditional lower bound of Abboud and Williams [1]
provides an indication that such a result might not be possible for general graphs,
but we have presented the first class of graphs (bipartite, polylog arboricity) for
which it is achievable.

1.3 Techniques

We can think of the dynamic matching problem as follows: We are given a
dynamic graph G and want to maintain a large subgraph M of maximum
degree 1. This task turns out to be quite hard because, as the graph evolves, M
is unstable and has few appropriate structural properties.

Very recently, Bhattacharya et al.[3] presented the idea of using a transition
subgraph H, which they refer to as a kernel of G: the idea is to maintain H as
G changes, and then maintain M in H. Maintaining an approximate matching
M is significantly easier in a bounded degree graph, so we need a graph H that
has the following properties: it should have bounded degree, it should be easy to
maintain in G, and most importantly, a large matching using edges in H should
be a good approximation to the maximum matching in G.

Our algorithm uses the same basic idea of transition subgraph with bounded
degree, but the details are entirely different from those in [3] . Their subgraph
H is just a maximal B-matching with B around m1/3, that allows some slack on
the maximality constraint. The use of a maximal matching is a natural choice
in a dynamic setting because maximality is a purely local constraint, and so
easier to maintain dynamically. The downside is that as long as one relies on
maximality, one can never achieve a better-than-2 approximation; due to other
difficulties, their paper in fact only achieves a (3 + ε)-approximation.

The main technical contribution of this paper is to present a new type of
bounded-degree subgraph, which we call an edge degree constrained subgraph
(EDCS). The problem with a simple B-matching is that the edges are not
sufficiently “spread out” to all the vertices: imagine that G consists of 4 sets
L1, L2, R1, R2, each of size n/2, where the edges form a complete graph except
that there are no edges between L2 and R2. One possible maximal B-matching

Fully Dynamic Matching in Bipartite Graphs 171

includes many edges between L1 and R1 while leaving L2 and R2 completely iso-
lated. The resulting matching is only 2-approximate, which is what we are trying
to overcome. Our EDCS circumvents this problem by trying to spread out edges.
For each edge, instead of separately upper bounding the matching-degree of both
endpoints (B-matching) it upper bounds the sum of the matching-degrees of the
endpoints, and then captures the notion of maximality by also lower bounding
this sum for edges not in the matching. Using an EDCS prevents the above sce-
nario as the sum of the matching-degrees of edges from L1 to R2 will be illegally
small unless the matching-degree of R2 is raised by adding some of those edges
to the graph, thus ensuring a larger matching in H.

Although the definition is somewhat similar, the structure of an edge degree
constrained subgraph is entirely different from that of a maximal B-matching,
and for this reason both our analysis of the approximation factor and our algo-
rithm for maintining this subgraph are entirely different from those in [3]. In
particular, while the constraints in an EDCS seem purely local in that they con-
cern only the degrees of the endpoints of an edge, they in fact have a global effect
in a way that they do not in a maximal B-matching. In the latter, as long as an
edge does not directly violate the degree constraints, it can always be added to
the maximal B-matching, without concern for the edges elsewhere in the graph.
But as seen from the above example, this is not true in an EDCS: although the
edges from L1 and R1 do not themselves violate any constraints, they prevent
the constraints between L1 and R2 or L2 and R1 from being satisfied. An anal-
ysis of this global structure is what allows us to go beyond the 2-approximation.
On the other hand, the same global structure makes the EDCS more difficult
to maintain dynamically; we end up showing that an EDCS contains something
akin to augmenting paths, although more locally well behaved. We also develop
a general new technique for maintaining a transition subgraph based on dynamic
graph orientation, which allows us to reduce the update time from O(m1/3) to
O(m1/4). That being said, the additional complications inherent in an EDCS
have so far prevented us from extending our results to non-bipartite graphs.

We omit many details in this extended abstract and refer the reader to the
full paper for details.

2 Preliminaries

Let G = (L
⋃

R,E) be an undirected, unweighted bipartite graph where |L| =
|R| = n and |E| = m. Unless otherwise specified, “graph” will always refer to
a bipartite graph. In general, we will often be dealing with graphs other than
G, so all of our notation will be explicit about the graph in question. We define
dG(v) to be the degree of a vertex v in G; if the graph in question is weighted,
then dG(v) is the sum of the weights of all incident edges. We define edge degree
as δ(u, v) = d(u)+d(v). If H is a subgraph of G, we say that an edge in G is used
if it is also in H, and unused if it is not in H. Throughout this paper we will
only be dealing with subgraphs H that contain the full vertex set of G, so we
will use the notion of a subgraph and of a subset of edges of G interchangeably.

172 A. Bernstein and C. Stein

A matching in a graph G is a set of disjoint edges in G. We let μ(G) denote
the size of the maximum matching in G. A vertex is called matched if it is
incident to one of the sets in the matching, and free or unmatched otherwise. We
now state a simple corollary of an existing result of [9].

Lemma 1 ([9]). If a dynamic graph G has maximum degree B at all times,
then we can maintain a (1 + ε)-approximation matching under insertions and
deletions in worst-case update time O(Bε−2) per update.

Proof. This lemma immediately follows from a simple algorithm presented in
Sect. 3.2 of [9] which shows how to achieve update time |E(G)|ε−2/μ(G) (for the
transition from amortized to worst-case see appendix A.3 of the same paper), as
well as the fact that we always have |E(G)|/μ(G) ≤ 2B because all edges must
be incident to one of the 2μ(G) matched vertices in the maximum matching,
and each of those vertices have degree at most B.

Orientations An orientation of an undirected graph G is an assignment of a
direction to each edge in E. Given an orientation of edge (u, v) from u to v,
we say that u owns edge (u, v) and will define the load of a vertex v to be
the number of edges owned by v. Orientations of small max load are closely
linked to arboricity: every graph with arboricity α has an α-orientation [16].
Our algorithms will at all times maintain an orientation of the dynamic graph
G. We rely on two results to do this: one by Kopelowitz et al.[14], and a second
simple result new to this paper whose proof we leave for the full version.

Theorem 3. [14] Given a dynamic graph G that at all times has arboricity
≤ α, there exists an algorithm that maintains an orientation with max load
O(α log(n)) such that every insertion/deletion to G is processed in worst-case
update time O(α(α + log(n))) and requires at most O(α + log(n)) edge reorien-
tations.

Theorem 4. Given a dynamic graph G, we can maintain an orientation with
max load O(

√
m) in worst-case update time O(1) per insertion/deletion to G.

3 The Framework

We now define the transition subgraph H mentioned in Sect. 1.3.

Definition 1. An unweighted edge degree constrained subgraph(EDCS)
(G, β, β−) is a subset of the edges H ⊆ E with the following properties:

(P1) if (u, v) is used (in H) then dH(u) + dH(v) ≤ β ,
(P2) if (u, v) is unused (in G − H) then dH(u) + dH(v) ≥ β−.

We also define a similar subgraph where edges in H have weights, effectively
allowing them to be used more than once. The properties change somewhat as
now used edges can always take more weight, so it makes sense to lower bound
the degrees of used edges as well. Recall that the degree of a vertex in a weighted
graph is the sum of the weights of the incident edges. returnpoint

Fully Dynamic Matching in Bipartite Graphs 173

Definition 2. A weighted edge degree constrained subgraph(EDCS) (G, β, β−)
is a subset of the edges H ⊆ E with positive integer weights that has properties:

(P1) if (u, v) is used then dH(u) + dH(v) ≤ β
(P2) for all edges (u, v), we have dH(u) + dH(v) ≥ β−

Algorithm Outline: To process an edge insertion/deletion in G: First, we update
the small-max-load edge orientation (Theorem 3 or 4. Second, we update the sub-
graph H so it remains a valid EDCS of the changed graph G (Sect. 5); this relies
on the graph orientation for efficiency. Third, we update the (1+ε)-approximate
matching in H with respect to the changes to H from the previous step (See
Lemma 1). The maintained (1 + ε)-approximate matching of H is also our final
matching in G; the central claim of this paper is that because H is an EDCS,
μ(H) is not too far from μ(G), so a good approximation to μ(H) is also a decent
approximation to μ(G) (see Sectionr̃efsec:matching).

There is a subtle difficulty that arises from using a transition graph in a
dynamic algorithm. By Lemma 1, as long as H has degree bounded by ΔH , we
can maintain a (1 + ε)-approximate matching in H in time O(ΔH) per update
in H. But a single change in G could in theory causes many changes in H,
each of which would take O(ΔH) time to process. This motivates the following
definition: given an algorithm A that maintains a subgraph H in a dynamic
graph G, we define the update ratio of A to be the maximum number of edge
changes (insertions or deletions) that A could make to H given a single edge
change in G.

We can now state the main theorems of the paper. We present general and
small arboricity graphs separately, but the basic framework described above
remains the same in both cases. In all the theorems below, the parameter ε
corresponds to the desired approximation ratio (either (1 + ε) or (3/2 + ε)).

3.1 General Bipartite Graphs

For the sake of intuition, think of β in the two theorems below as roughly m1/4.

Theorem 5. Let G be a bipartite graph, and let λ = ε/4. Let H be an unweighted
EDCS with β− = β(1 − λ), where β is a parameter we will choose later. Then
μ(H) ≥ (2/3 − ε)μ(G).

Theorem 6. Let G be a bipartite graph. Let H be an unweighted EDCS with
β− = β(1 − λ), where λ is a positive constant less than 1. There is an algorithm
that maintains H over updates in G (i.e. maintains H as a valid edge degree
constrained subgraph) with the following properties:

– The algorithm has worst case update time O(
(
1
λ

) (
β +

√
m

λβ

)
).

– The update ratio of the algorithm is O(1/λ).

174 A. Bernstein and C. Stein

Proof of Theorem 1 We use the algorithm outline presented near the beginning
of Sect. 3. We let be transition subgraph H be an unweighted EDCS(G, β, β(1−
λ)) with λ = 4ε−1 = O(ε−1) and β = m1/4ε1/2. By Theorem 6 we can maintain
H in worst-case update time O(

(
1
λ

) (
β +

√
m

λβ

)
) = O(m1/4ε−2.5 + m1/4ε−.5) =

O(m1/4ε−2.5). The update ratio is O(λ−1) = O(ε−1). Since degrees in H are
clearly bounded by β, by Lemma 1 we can maintain a (1 + ε)-approximate
matching in H in time O(βε−2); multiplying by the update ratio of maintaining
H in G, we need O(βε−3) = O(m1/4ε−2.5) time to maintain the matching per
change in G. By Theorem 7, μ(H) is a (3/2 + ε)-approximation to μ(G), so our
matching is a (3/2 + ε)(1 + ε) = (3/2 + ε)-approximate matching in G. �

3.2 Small Arboricity Graphs

Theorem 7. Let G be a bipartite graph, and let β > 4ε−2. Let H be a weighted
EDCS with β− = β − 1. Then μ(H) ≥ μ(G)(1 − ε).

Theorem 8. Let G be a bipartite graph with arboricity α. Let H be a weighted
EDCS with β− = β − 1. There is an algorithm that maintains H over updates
in G with the following properties:

– The algorithm has worse-case update time O(β2(α + log n) + α(α + log n)) .
– The update ratio of the algorithm is O(β).

The proof of Theorem 2 is analogous to that of Theorem 1 with β set to ε−2.

4 An EDCS Contains an Approximate Matching

In this section we prove Theorems 5 and 7. Both proofs will be by contra-
diction; for example, for Theorem 5 to be false, there must be an unweighted
EDCS(G, β, β(1 − λ)) H such that μ(H) < (2/3 − ε)μ(G). To exhibit the con-
tradiction, we start by establishing a property that must hold of any subgraph
H defined on the full vertex set of G for which μ(H) is smaller than μ(G); the
smaller μ(H), the more constraining the property. Loosely speaking, the prop-
erty is a generalization of the fact that the maximum matching on H establishes
an (S, T) cut with no edges crossing in H, but at least μ(G)−μ(H) edges cross-
ing in G. We use the convention that the subscript L or R refer to the side of the
bipartition in which the vertices lie. The proof of the following lemma involves
a careful accounting of augmenting paths and is left for the full version.

Lemma 2. Let G = (V,EG) be a bipartite graph, and let H = (V,EH) be a sub-
graph of G. Then, there exist vertex sets S∗

L, SL, SR, T ∗
R, TR, TL with the following

properties:

1. |SL| + |TL| = |SR| + |TR| = μ(H).
2. In EH , all edges incident to SL

⋃
S∗

L go to SR and all edges incident to
TR

⋃
T ∗

R go to TL.

Fully Dynamic Matching in Bipartite Graphs 175

3. G contains a perfect matching between SL and SR and between TL and TR

(|SL| = |SR|, |TL| = |TR|).
4. |S∗

L| = |T ∗
R| = μ(G)−μ(H) and G contains a perfect matching between these

sets.

Let us say, for contradiction, that μ(H) is much smaller than μ(G). Then accord-
ing to Lemma 2, there is a perfect matching between S∗

L and T ∗
R in G but not

H. Thus, by property P2 of an EDCS, for every edge (v, w) on that matching
dH(v) + dH(w) must be almost β. This implies that the average degree in H of
vertices in S∗

L and T ∗
R must be at least around β/2. But all the edges in H inci-

dent to S∗
L and T ∗

R can only go to SL and TR, which are relatively small if μ(H)
is much smaller than μ(G). To close the contradiction we argue that because of
property P1 of an EDCS, we simply won’t be able to fit all those edges from S∗

L

to SR and T ∗
R to TL. We argue this by bounding how high degrees can get in

an EDCS. Intuitively, if U and V have equal size and all edges are between U
and V , we expect the average degree on each side to be no more than β/2, as
if each vertex had degree β/2 then all edge degrees would be β – the maximum
allowed by property P1. We now state a generalization of this intuition which
shows that if one of the sets U, V is larger than the other, it will have average
degree below β/2; the proof is left for the full version.

Lemma 3. Let us say that in some graph we have disjoint sets (U, V) such that
|U | = c|V |, and all edges incident to U go to V (but there may be edges incident
to V which do not go to U). Let d(v) be the degree of vertex v in this graph, and
say that for every edge (u, v) in the graph d(u) + d(v) ≤ β for some parameter
β. Then, the average degree of vertices in U is at most β

c+1 .

Proof of Theorem 5: Let us say, for the sake of contradiction, that we had
μ(H) < (2/3−ε)μ(G). Then, we have sets S∗

L, SL, SR, T ∗
R, TR, TL as in Lemma 2.

By property 4 of this lemma, S∗
L and T ∗

R have a perfect matching between them
consisting of μ(G)−μ(H) edges in EG−EH – that is, a perfect matching of unused
edges. Thus, by the property P2 of an EDCS, for each edge (u, v) in this matching
we have dH(u)+dH(v) ≥ β(1−λ), which implies that the total degree of vertices
in S∗

L

⋃
T ∗

R is at least β(1 − λ)(μ(G) − μ(H)). Now, by property 4 of Lemma 2
we know that |S∗

L| = |T ∗
R| = μ(G) − μ(H), so |S∗

L

⋃
T ∗

R| = 2(μ(G) − μ(H)), so
we have:

average degree of S∗
L

⋃
T ∗
R ≥ β(1 − λ)(μ(G) − μ(H))

2(μ(G) − μ(H))
= β

(1 − λ)

2
. (1)

We argue such a high average degree is not possible. Since μ(H) < (2/3−ε)μ(G):

|S∗
L

⋃
T ∗
R| = 2(μ(G) − μ(H)) > μ(H)(1 + ε). (2)

Observe that we are now in the situation described in Lemma 3: S∗
L

⋃
T ∗

R corre-
sponds to U , and SR

⋃
TL corresponds to V . Property 2 of Lemma 2 precisely

tells us that all edges from U go to V , as needed in Lemma 3. We know from

176 A. Bernstein and C. Stein

properties 3 and 1 of Lemma 2 that |V | = |SR

⋃
TL| = |SR|+|TL| = |SL|+|TL| =

μ(H) so by Eq. 2 we have |U | = |S∗
L

⋃
T ∗

R| = c|V | for some c > (1 + ε). Thus
Lemma 3 tells us that the average degree of U is at most β/(1 + c) ≤ β/(2 + ε),
which some simple algebra shows is strictly less than β(1 − λ)/2 because we set
λ = ε/4. We have thus arrived at a contradiction with Eq. 1, so our original
assumption that μ(H) < (2/3 − ε)μ(G) must be false. �

Small Arboricity Graphs: We now turn to Theorem 7. The full proof is left for
the full version, but we give some intuition here. The statement is very similar to
Theorem 5, but with two crucial differences: we are now dealing with a weighted
EDCS H, and the approximation we need to guarantee is 1−ε instead of 2/3−ε.
(Note that Theorem 7 is true of general graphs as well; we only use it for small
arboricity graphs, however, because a weighted EDCS is difficult to maintain in
general graphs.) It may seem unintuitive that a weighted EDCS contains a better
matching than an unweighted one since it will in fact have fewer total edges to
work with. To show why a weighted EDCS is better, see for a simple example
where an unweighted EDCS only contains a (3/2)-approximate matching, but a
weighted one does not suffer the same issues.

In the proof of Theorem 5 we constructed the sets S∗
L, SL, SR, T ∗

R, TR, TL

from Lemma 2 and then argued that S∗
L (and analogously T ∗

R) must have low
average degree because all of its edges go to SR, so we simply cannot fit that
many edges before violating property P1 of an EDCS. Now, we could upper
bound the average degree of S∗

L even better if we could argue that there also
had to be other edges coming into SR, taking up space. The natural candidate
would be the edges on the matching from SL to SR guaranteed by property 3
of Lemma 2. In Theorem 5 we were unable to take advantage of these edges
because we were dealing with an unweighted EDCS, so a single matching worth
of edges did not count for much. The properties of a weighted EDCS, however,
can force this single matching to be used multiple times, thus leaving even less
space for edges leaving S∗

L. The proof of Theorem 7 is thus analogous to that of
Theorem 5 but requires a stronger version of Lemma 3.

5 Maintaining an Edge Degree Constrained Subgraph

In this section, we outline the proofs of Theorems 6 and 8, leaving the details
for the full version of the paper.

Recall that δ(u, v) denotes the edge degree of (u, v), dH(u)+dH(v). We define
an edge to be full if it is in H and has edge degree β. We define it to be deficient
if it is not in H and has the minimum allowable edge degree β−: this is β − 1
for the weighted EDCS in Theorem 8 and β(1 − λ) for the unweighted EDCS
of Theorem 6. We define a vertex to be increase-safe if it has no incident full
edges and decrease-safe if it has no incident deficient edges; it is easy to see that
increasing (decreasing) the degree of an increase-safe (decrease-safe) vertex by
one does not lead to a violation of any EDCS constraints.

Now, let us say that we delete some edge (u, v) from G. If (u, v) was not in the
EDCS H then all constraints remain satisfied. Otherwise, deleting (u, v) causes

Fully Dynamic Matching in Bipartite Graphs 177

the degree of u and v to decrease by one. Let us focus on fixing up vertex v; vertex
u can then be handled analogously. If v was decrease-safe, then all constraints
relating to v remain satisfied and we are done. Otherwise, it must have had some
incident deficient edge (v, v2). Adding this edge to H rebalances the degree of
v to what it was before the deletion, but now the degree of v2 has increased by
one. If v2 was increase-safe, the degree increase does not violate any constraints,
and we are done. Otherwise, v2 must have an incident full edge (v2, v3) which
we delete from the graph; this rebalances v2 but decreases the degree of v3, so
we look for an incident deficient edge. We continue in this fashion until we end
on an increase/decrease-safe vertex.

We can thus fix up an edge deletion by finding an alternating path of full
and deficient edges that ends in an increase/decrease-safe vertex. Insertions are
handled analogously. This is similar to finding an augmenting path in a matching
except that this latter case is much harder because we might hit a dead end and
have to back track; but we can fix up an EDCS by following any sequence of
full/deficient edges. Moreover, the resulting alternating path is always simple and
contains few edges: for the small arboricity case (Theorem 8) where β− = β − 1,
it is not hard to see that in any such alternating path the vertex degrees dH(v)
on either side of the bipartition are either increasing or decreasing by 1, so
since dH(v) is always between 0 and β, the path has length O(β); in the small
arboricity case, O(β) is small because we set β = O(1/ε2). In the general case
(Theorem 6), β is large but the gap between β and β− is βλ, so degrees on either
side change by βλ and the path has length only O(1/λ).

To find such an alternating path of full and deficient edges we maintain a
data structure that for any vertex v can return an incident full or deficient edge
(whichever is asked for), or indicate that none exists. Since the alternating path
will always be short, this data structure will only be queried a small number
of times per insertion/deletion in G. We maintain this data structure using a
dynamic orientation, in which each edge is owned by one of its endpoints (see end
of Sect. 2). Let us focus on the small arboricity case, where the dynamic orien-
tation maintains a small max load. Each vertex will maintain fullness/deficiency
information about the edges it does not own, storing each category of edge
(full/deficient) in its own list. To find a full/deficient edge incident to some ver-
tex v, the data structure simply picks an edge from the corresponding list in
O(1) time; if the list is empty, the data structure then manually checks all the
edges that v does own: since the max load is small, this can be done efficiently.
When the status of a vertex v changes, to maintain itself the data structure
must transfer this information along all edges (v, u) that are not owned by u,
but since these are precisely the edges owned by v, there can only be a small
number of them.

The basic idea is the same for general bipartite graphs (Theorem 6), except
that now the max load is O(

√
m), and we cannot afford to spend O(

√
m) per

update. Note that in this case, however, there is a gap of βλ between full and
deficient edges, so intuitively, the degree of a vertex has to change βλ time
before it must be updated in the data structure. This leads to an update time

178 A. Bernstein and C. Stein

of around
√

m/(βλ), as needed in Theorem 6. The details, however, are quite
involved, especially since we need a worst-case update time.

6 Conclusion

We have presented the first fully dynamic matching algorithm to achieve a o(
√

m)
update time while maintaining a better-than-2-approximate bipartite matching.
It is also the fastest known deterministic algorithm for achieving any constant
approximation, and certainly any better-than-2 approximation. The main open
questions are in how far we can push this tradeoff. Can we achieve a random-
ized better-than-2 approximation with update time polylog(n)? For determin-
istic algorithms, can we achieve a constant approximation with update time
polylog(n), or a (1 + ε)-approximation with update time o(

√
m)?

The other natural question is whether our results can be extended to gen-
eral (non-bipartite) graphs and non-bipartite graphs of small arboricity. The
definition of an edge degree constrained subgraph does not inherently rely on
bipartiteness, and neither do many of the techniques in this paper. The main
obstruction to the generalization seems to lie in the structural property exhibited
in Lemma 2. Is there an analogue for non-bipartite graphs?

Acknowledgments. We thank Tsvi Kopelowitz for several helpful discussions and
for pointing us towards useful information about orientations.

References

1. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. In: Proceedings of FOCS 2014, pp. 434–443 (2014)

2. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in O (log n)
update time. In: Proceedings of FOCS 2011, pp. 383–392 (2011)

3. Bhattacharya, S., Henzinger, M., Italiano, G.F.: Deterministic fully dynamic data
structures for vertex cover and matching. In: SODA, pp. 785–804 (2015)

4. Bosek, B., Leniowski, D., Sankowski, P., Zych, A.: Online bipartite matching in
offline time. In: Proceedings of FOCS 2014, pp. 384–393 (2014)

5. Chaudhuri, K., Daskalakis, C., Kleinberg, R.D., Lin, H.: Online bipartite perfect
matching with augmentations. In: INFOCOM, pp. 1044–1052 (2009)

6. Duan, R., Pettie, S.: Linear-time approximation for maximum weight matching. J.
ACM 61(1), 1 (2014)

7. Feldman, J., Henzinger, M., Korula, N., Mirrokni, V.S., Stein, C.: Online stochastic
packing applied to display ad allocation. In: de Berg, M., Meyer, U. (eds.) ESA
2010, Part I. LNCS, vol. 6346, pp. 182–194. Springer, Heidelberg (2010)

8. Gupta, A., Kumar, A., Stein, C.: Maintaining assignments online: matching,
scheduling, and flows. In: SODA, pp. 468–479 (2014)

9. Gupta, M., Peng, R.: Fully dynamic (1+ e)-approximate matchings. In: Proceed-
ings of FOCS 2013, pp. 548–557 (2013)

10. Hitchcock, F.: The distribution of a product from several sources to numberous
localities. J. Math Phys. 20, 224–230 (1941)

Fully Dynamic Matching in Bipartite Graphs 179

11. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matching in bipartite
graphs. SIAM Journal on Computing 2, 225–231 (1973)

12. Ivković, Z., Lloyd, E.L.: Fully dynamic maintenance of vertex cover. In: van
Leeuwen, Jan (ed.) WG 1993. LNCS, vol. 790, pp. 99–111. Springer, Heidelberg
(1994)

13. Kantorovitch, L.: On the translocation of masses. Doklady Akad. Nauk SSSR 37,
199–201 (1942)

14. Kopelowitz, T., Krauthgamer, R., Porat, E., Solomon, S.: Orienting fully dynamic
graphs with worst-case time bounds. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 532–543.
Springer, Heidelberg (2014)

15. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized on-line
matching. In: Proceedings of FOCS 2005, pp. 264–273 (2005)

16. Nash-Williams, C.S.J.A.: Edge disjoint spanning trees of finite graphs. Journal of
the London Mathematical Society 36, 445–450 (1961)

17. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic max-
imal matching. In: Proceedings of STOC 2013, pp. 745–754 (2013)

18. Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover.
In: Proceedings of STOC 2010, pp. 457–464 (2010)

19. Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: Proceedings
of SODA 2007, pp. 118–126 (2007)

Feasible Interpolation for QBF
Resolution Calculi

Olaf Beyersdorff1(B), Leroy Chew1, Meena Mahajan2, and Anil Shukla2

1 School of Computing, University of Leedds, Leedds, UK
{o.beyersdorff,mm12lnc}@leeds.ac.uk

2 The Institute of Mathematical Sciences, Chennai, India
{meena,anilsh}@imsc.res.in

Abstract. In sharp contrast to classical proof complexity we are cur-
rently short of lower bound techniques for QBF proof systems. We
establish the feasible interpolation technique for all resolution-based QBF
systems, whether modelling CDCL or expansion-based solving. This both
provides the first general lower bound method for QBF calculi as well as
largely extends the scope of classical feasible interpolation. We apply our
technique to obtain new exponential lower bounds to all resolution-based
QBF systems for a new class of QBF formulas based on the clique problem.
Finally, we show how feasible interpolation relates to the recently estab-
lished lower bound method based on strategy extraction [7].

1 Introduction

The main aim in proof complexity is to understand the complexity of theo-
rem proving. Arguably, what is even more important is to establish techniques
for lower bounds, and the recent history of computational complexity speaks
volumes on how difficult it is to develop general lower bound techniques. Under-
standing the size of proofs is important for at least two reasons. The first is its
tight relation to the separation of complexity classes: NP vs. coNP for proposi-
tional proofs, and NP vs. PSPACE in the case of proof systems for quantified
boolean formulas (QBF). New superpolynomial lower bounds for specific proof
systems rule out specific classes of non-deterministic poly-time algorithms for
problems in co-NP or PSPACE, thereby providing an orthogonal approach to
the predominantly machine-oriented view of computational complexity.

The second reason to study lower bounds for proofs is the analysis of SAT
and QBF solvers: powerful algorithms that efficiently solve the classically hard
problems of SAT and QBF for large classes of practically relevant formulas. Mod-
ern SAT solvers routinely solve industrial instances in millions of variables for
various applications. Although QBF solving is at a much earlier state, due to its
greater expressivity, QBF even applies to further fields such as formal verification

Feasible Interpolation for QBF Resolution Calculi—This work was supported by the
EU Marie Curie IRSES grant CORCON, grant no. 48138 from the John Temple-
ton Foundation, EPSRC grant EP/L024233/1, and a Doctoral Training Grant from
EPSRC (2nd author).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 180–192, 2015.
DOI: 10.1007/978-3-662-47672-7 15

Feasible Interpolation for QBF Resolution Calculi 181

or planning [5,13,24]. Each successful run of a solver on an unsatisfiable instance
can be interpreted as a proof of unsatisfiability; and modern SAT solvers based
on conflict-driven clause learning (CDCL) are known to implicitly generate res-
olution proofs. Thus, understanding the complexity of resolution proofs directly
translates into sharp bounds for the performance of CDCL-based SAT solvers.

The picture is more complex for QBF solving, as there exist two main, yet
conceptually very different paradigms: CDCL-based and expansion-based solv-
ing. A variety of QBF resolution systems have been designed to capture the
power of QBF solvers based on these paradigms. The core system is Q-Resolution
(Q-Res), introduced in [17]. This has been augmented to capture ideas from
CDCL solving, leading to long-distance resolution (LD-Q-Res) [2], universal res-
olution (QU-Res) [25], or its combinations like LQU+-Res [3]. Powerful proof
systems for expansion-based solving were recently developed in the form of
∀Exp+Res [16], and the stronger IR-calc and IRM-calc [6]. Latest findings show
that CDCL and expansion are indeed orthogonal paradigms as the underlying
proof systems from the two categories are incomparable with respect to simula-
tions [7].

Understanding which general techniques can be used to show lower bounds
for proof systems is of paramount importance in proof complexity. For proposi-
tional proof systems we have a number of effective techniques, most notably the
size-width technique [4], deriving size from width bounds, game characterisations
(e.g. [9,23]), the approach via proof-complexity generators (cf. [19]), and feasible
interpolation. Feasible interpolation, first introduced by Kraj́ıček [18], is a partic-
ularly successful paradigm that transfers circuit lower bounds to proof size lower
bounds. The technique has been shown to be effective for resolution [18], cutting
planes [22] and even Frege systems for modal and intuitionistic logics [15]. How-
ever, feasible interpolation fails for strong propositional systems as Frege systems
under plausible cryptographic and number-theoretic assumptions [10,11,20].

The situation is drastically different for QBF proof systems, where we cur-
rently possess a very limited bag of techniques. At present we only have the very
recent strategy extraction technique [7], which works only for Q-Res, a game
characterisation of the very weak tree-like Q-Res [8], and ad-hoc lower bound
arguments for various systems [7,17]. In addition, the recent paper [3] develops
methods to lift some previous lower bounds from Q-Res to stronger systems.

Our Contributions

1. A General Lower Bound Technique. We show that the feasible inter-
polation technique applies to all resolution-type QBF proof systems, whether
expansion or CDCL based. This provides the first truly general lower bound
technique for QBF proof systems, and—at the same time—hugely extends the
scope of the feasible interpolation method.

In a nutshell, feasible interpolation works for true implications A(p, q) →
B(p, r) (or, equivalently, false conjunctions A(p, q)∧¬B(p, r)), which by Craig’s
interpolation theorem [12] possess interpolants C(p) in the common variables p.
Such interpolants, even though they exist, may not be of polynomial size [21].

182 O. Beyersdorff et al.

However, it may be the case that we can always efficiently extract such inter-
polants from a proof of the implication in a particular proof system P , and in
this case, the system P is said to admit feasible interpolation. If we know that
a particular class of formulas does not admit small interpolants (either uncondi-
tional or under suitable assumptions), then there cannot exist small proofs of the
formulas in the system P . Here we show that this feasible interpolation theorem
holds for arbitrarily quantified formulas A(p, q) and B(p, r) above, when the
common variables p are existentially quantified before all other variables.

2. New Lower Bounds for QBF Systems. As our second contribution we
exhibit new hard formulas for QBF resolution systems. It is fair to say that we
are currently quite short of hard examples: research so far has mainly considered
formulas of Kleine Büning et al. [17] and their modifications [3,7], a principle
from [16], and parity formulas recently introduced in [7]. This again is in sharp
contrast with classical proof complexity where a wealth of different combinatorial
principles as well as random formulas are known to be hard for resolution.

Our new hard formulas are QBF contradictions formalising the easy and
appealing fact that a graph cannot both have and not have a k-clique. The trick
is that in our formulation, each interpolant for these formulas has to solve the
k-clique problem. Using our interpolation theorem together with the exponen-
tial lower bound for the monotone circuit complexity of clique [1], we obtain
exponential lower bounds for the clique-co-clique formulas in all CDCL and
expansion-based QBF resolution systems.

We remark that conceptually our clique-co-clique formulas are different from
and indeed simpler than the clique-colour formulas used for the interpolation
technique in classical proof systems. This is due to the greater expressibility
of QBF. Indeed it is not clear how the clique-co-clique principle could even be
formulated succinctly in propositional logic.

3. Comparison to Strategy Extraction. On a conceptual level, we uncover a
tight relationship between feasible interpolation and strategy extraction. Strat-
egy extraction is a very desirable property of QBF proof systems and is known to
hold for the main resolution-based systems, cf. eg. [6]. From a refutation of a false
QBF, a winning strategy for the universal player can be efficiently extracted.

Like feasible interpolation, the lower bound technique based on strategy
extraction from [7] also transfers circuit lower bounds to proof size bounds.
However, instead of monotone circuit bounds as in the case of feasible inter-
polation, the strategy extraction technique imports AC0 circuit lower bounds.
Here we show that each feasible interpolation problem can be transformed into
a strategy extraction problem, where the interpolant corresponds to the win-
ning strategy of the universal player on the first universal variable. This clarifies
that indeed feasible interpolation can be viewed as a special case of strategy
extraction.

Organisation of the Paper. In Sect. 2 we review definitions and relations of
relevant QBF calculi. In Sect. 3 we start by recalling the overall idea for feasible
interpolation and show interpolation theorems for the strongest CDCL-based

Feasible Interpolation for QBF Resolution Calculi 183

system LQU+-Res as well as the strongest expansion-based proof system IRM-
calc. This implies feasible interpolation for all QBF resolution-based systems.
Further we show that all these systems even admit monotone feasible interpola-
tion. In Sect. 4 we obtain the new lower bounds for the clique-co-clique formulas.
Section 5 reformulates interpolation as a strategy extraction problem.

2 Preliminaries

A literal is a boolean variable or its negation. We say that literals x and ¬x are
complementary. A clause is a disjunction of literals and a term is a conjunction
of literals. The empty clause is denoted by �, and is semantically equivalent to
false. A formula in conjunctive normal form (CNF) is a conjunction of clauses.
For a literal l = x or l = ¬x, we write var(l) for x and extend this notation to
var(C) for a clause C. For any partial assignment α and clause C, we write C|α
for the clause obtained after applying the partial assignment α to C.

Quantified Boolean Formulas (QBFs) extend propositional logic with boolean
quantifiers with the standard semantics: ∀x.F is satisfied by the same truth
assignments as F |x=0 ∧ F |x=1 and ∃x.F as F |x=0 ∨ F |x=1. We assume that
QBFs are

(Ax)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and
lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

We consider four instantiations of the Res-rule:
S∃R: x is existential.
If z ∈ C1, then ¬z /∈ C2. U1 = U2 = U = ∅.
S∀R: x is universal. Other conditions same as S∃R.
L∃R: x is existential.
If l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then
l1 = l2 �= z∗. U1, U2 contain only universal literals
with var(U1) = var(U2). ind(x) < ind(u) for each
u ∈ var(U1).
If w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u then w1 =
¬w2, w1 = u∗ or w2 = u∗. U = {u∗ | u ∈ var(U1)}.
L∀R: x is universal. Other conditions same as L∃R.

Fig. 1. The rules of CDCL-based proof systems

in closed prenex form
with a CNF matrix,
i.e., we consider the
form Q1X1 . . . QkXk.φ,
where Qi ∈ {∃,∀},
Qi �= Qi+1, and Xi are
pairwise disjoint sets
of variables. The for-
mula φ is in CNF
and is defined only on
variables X1 ∪ . . . ∪ Xk.
The propositional part
φ is called the matrix
and the rest the prefix.
If x ∈ Xi, we say that
x is at level i and write
lv(x) = i; we write lv(l)
for lv(var(l)). The index
ind(x) provides more
detailed information on
the position of x in the
prefix, i.e. all variables
are indexed by 1, . . . , n
from left to right.

A QBF Q1X1 . . . QkXk. φ can be thought of as a game between the universal
and the existential player. In the i-th step of the game, the player Qi assigns val-
ues to all the variables Xi. The existential player wins the game iff the matrix φ

184 O. Beyersdorff et al.

evaluates to 1 under the assignment constructed in the game; otherwise the uni-
versal player wins. Given a universal variable u with index i, a strategy for u
is a function from all variables of index < i to {0, 1}. A QBF is false iff there
exists a winning strategy for the universal player, i.e. if the universal player has
a strategy for all universal variables that wins any possible game [14].
Resolution-Based Calculi for QBF. We now give a brief overview of the
main existing resolution-based calculi for QBF. We start by describing the proof
systems modelling CDCL-based QBF solving ; their rules are summarized in
Fig. 1. The most basic and important system is Q-resolution (Q-Res) by Kleine
Büning et al. [17]. It is a resolution-like calculus that operates on QBFs in prenex
form with CNF matrix. In addition to the axioms, Q-Res comprises the resolution
rule S∃R and universal reduction ∀-Red (cf. Fig. 1).

(Ax){
x[τ] | x ∈ C, x is exist.

}

C is a non-tautological clause from
the matrix.
τ = {0/u | u is universal in C},
where the notation 0/u for literals u
is shorthand for 0/x if u = x and 1/x
if u = ¬x.

C (Instantiation)
inst(τ, C)

τ is an assignment to universal vari-
ables with rng(τ) ⊆ {0, 1}.

xτ∪ξ ∨ C1 ¬xτ∪σ ∨ C2 (Res)
inst(σ, C1) ∪ inst(ξ, C2)

dom(τ), dom(ξ) and dom(σ) are
mutually disjoint. rng(τ) = {0, 1}

C ∨ bμ ∨ bσ

(Merging)
C ∨ bξ

dom(μ) = dom(σ).
ξ = {c/u | c/u ∈ μ, c/u ∈ σ} ∪

{∗/u | c/u ∈ μ, d/u ∈ σ, c �= d}

Fig. 2. The rules of IRM-calc [6]

Long-distance resolution (LD-Q-Res)
appears originally in the work of Zhang
and Malik [26] and was formalized into
a calculus by Balabanov and Jiang [2].
It merges complementary literals of a
universal variable u into the special lit-
eral u∗. LD-Q-Res uses the rules L∃R,
∀-Red and ∀-Red∗ (cf. Fig. 1).

QU-resolution (QU-Res) [25] removes
the restriction from Q-Res that the
resolved variable must be an existential
variable and allows resolution of univer-
sal variables. The rules of QU-Res are
S∃R, S∀R and ∀-Red.

LQU+-Res [3] extends LD-Q-Res and
QU-Res by allowing short and long dis-
tance resolution over arbitrary pivots;
however, the pivot is never a merged lit-
eral z∗. LQU+-Res uses the rules L∃R,
L∀R, ∀-Red and ∀-Red∗.

The second type of calculi models
expansion-based QBF solving. These cal-
culi are based on instantiation of uni-
versal variables: ∀Exp+Res [16], IR-calc,
and IRM-calc [6]. All these calculi oper-
ate on clauses that comprise only exis-
tential variables from the original QBF,
which are additionally annotated by a
substitution to some universal variables,

e.g. ¬x0/u11/u2 . For any annotated literal lσ, the substitution σ must not make
assignments to variables at a higher quantification level than l, i.e. if u ∈ dom(σ),
then u is universal and lv(u) < lv(l). To preserve this invariant, we use the aux-
iliary notation l[σ], which for an existential literal l and an assignment σ to

Feasible Interpolation for QBF Resolution Calculi 185

the universal variables filters out all assignments that are not permitted, i.e.
l[σ] = l{c/u∈σ | lv(u)<lv(l)}.

On partial assignments we use auxiliary operations of completion and instan-
tiation. For assignments τ and μ, we write τ � μ for the assignment σ defined
as σ(x) = τ(x) if x ∈ dom(τ), otherwise σ(x) = μ(x) if x ∈ dom(μ). The
operation τ � μ is called completion as μ provides values for variables not
defined in τ . The operation is associative and therefore we can omit parentheses.

Tree-Q-Res

Q-Res∀

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

Fig. 3. The simulation order of QBF resolu-
tion systems. Systems on the left correspond
to expansion-based solving, whereas the systems
on the right are CDCL based.

For an assignment τ and an
annotated clause C, the function
inst(τ, C) returns the annotated
clause

{
l[σ � τ] | lσ ∈ C

}
. The sys-

tem IR-calc uses annotations and
instantiation [6]. The calculus
IRM-calc further extends IR-calc
by enabling annotations contain-
ing ∗. The rules of IRM-calc are
shown in Fig. 2. The symbol ∗
may be introduced by the merge
rule, e.g. by collapsing x0/u ∨x1/u

into x∗/u.
The simulation order of QBF

resolution systems is shown in
Fig. 3. All proof systems have
been exponentially separated (cf.
[7] and references therein).

Definition 1. For clauses C,D we write C � D if for any literal l ∈ C we have
l ∈ D or l∗ ∈ D and for any l∗ ∈ C we have l∗ ∈ D.

For annotations τ and σ we say that τ � σ if dom(τ) = dom(σ) and for any
c/u ∈ τ we have c/u ∈ σ or ∗/u ∈ σ and for any ∗/u ∈ τ we have ∗/u ∈ σ.

If C,D are annotated clauses, we write C � D if there is an injective function
f : C ↪→ D such that for all lτ ∈ C we have f(lτ) = lσ with τ � σ.

3 Feasible (Monotone) Interpolation

In this section we show that feasible interpolation and feasible monotone inter-
polation hold for LQU+-Res and IRM-calc. We adapt the technique first used by
Pudlák [22] to re-prove and generalise the result of Kraj́ıček [18].

3.1 The Setting

Consider a false QBF sentence F of the form ∃pQqQr.
[
A(p, q)∧B(p, r)

]
, where

p, q, and r are mutually disjoint sets of propositional variables, A(p, q) is a CNF
formula on variables p and q, and B(p, r) is a CNF formula on variables p and
r. Thus p are the common variables between them. The q and r variables can
be quantified arbitrarily, with any number of quantification levels. The sentence
is equivalent to the following, not in prenex form ∃p[Qq.A(p, q) ∧ Qr.B(p, r)

]
.

186 O. Beyersdorff et al.

Definition 2. Let F be a false QBF of the form ∃pQqQr. [A(p, q) ∧ B(p, r)].
An interpolation circuit for F is a boolean circuit G such that on every 0, 1
assignment a for p we have G(a) = 0 =⇒ Qq.A(a, q) is false.

G(a) = 1 =⇒ Qr.B(a, r) is false.
We say that a QBF proof system S has feasible interpolation if for any S-proof
π of a QBF F of the form above, we can extract from π an interpolation circuit
for F of size polynomial in the size of π.

We say that S has monotone feasible interpolation if the following holds: in
the same setting as above, if p appears only positively in A(p, q), then we can
extract from π a monotone interpolation circuit for F .

As our main results, we show that both LQU+-Res and IRM-calc have monotone
feasible interpolation. We first outline the general idea.

Proof Idea. Fix a proof system S ∈ {LQU+-Res, IRM-calc } and an S-proof π
of F . Consider the following definition of a q-clause and an r-clause.

Definition 3. We call a clause C in π a q-clause (resp. r-clause), if C contains
only variables p, q (resp. p, r). We also call C a q-clause (resp. r-clause), if C
contains only p variables, but all its descendant clauses in the proof π (all clauses
with a directed path to C in π) are q (resp. r)-clauses. In the case of IRM-calc
the annotations are not considered and can be from either set.

From π we construct a circuit Cπ with the p-variables as inputs: For each node
u with clause Cu in the proof π, associate a gate gu (or a constant-size circuit)
in the circuit Cπ. Next, we inductively construct, for any assignment a to the
p variables, another proof-like structure π′(a). For each node u with clause Cu

in the proof π, associate a clause C ′
u,a in the structure π′(a). Finally, we obtain

π′′(a) from the structure π′(a) by instantiating p variables to the assignment
a and doing some pruning, and show that π′′(a) is a valid proof in S. We then
find that if Cπ(a) = 0, then π′′(a) uses only q-clauses and thus is a refutation
of Qq.A(a, q), and if Cπ(a) = 1, then π′′(a) uses only r-clauses and thus is a
refutation of Qr.B(a, r). Thus Cπ is the desired interpolant circuit.

More precisely, we show by induction on the height of u in π (that is, the
length of the longest path to u from a source node in π) that:

1. C ′
u,a � Cu.

2. gu(a) = 0 =⇒ C ′′
u,a is a q-clause and can be obtained from the clauses of

A(a, q) alone using the rules of S.
3. gu(a) = 1 =⇒ C ′′

u,a is an r-clause and can be obtained from the clauses of
B(a, r) alone using the rules of S.

From the above, we have the following conclusion. Let r be the root of π. Then
on any assignment a to the p variables we have:

(1) C ′
r,a � Cr = �, so C ′

r,a = �. Therefore, C ′′
r,a = C ′

r,a|a = �.
(2) gr(a) = 0 =⇒ � is a q-clause and can be obtained from the clauses

of A(a, q) alone using the rules of system S. Hence by soundness of S,
Qq.A(a, q) is false.

Feasible Interpolation for QBF Resolution Calculi 187

(3) gr(a) = 1 =⇒ � is an r-clause and can be obtained from the clauses
of B(a, r) alone using the rules of system S. Hence by soundness of S,
Qq.B(a, r) is false.

Thus gr, the output gate of the circuit, computes an interpolant.
When F has only existential quantification, π is a classical resolution proof,

and this is exactly the interpolant computed by Pudlák’s method in [22]. The
challenge here is to construct π′ and π′′ appropriately when the stronger proof
systems are used for general QBF, while maintaining the inductive invariants.

3.2 Interpolants from LQU+-Res Proofs

We now implement the idea described above for LQU+-Res.

Theorem 1. LQU+-Res has feasible interpolation.

Proof Sketch. As mentioned in the proof outline, for an LQU+-Res proof π of F
we describe the circuit Cπ with input p, and the proof-like structure π′(a). All
the claims given in the outline can be established using induction on the height
of u, completing the proof.

The DAG underlying the circuit Cπ and the structure π′(a) is exactly the
same as the DAG underlying the proof π. For each node u with clause Cu in π
we associate a gate gu and clause C ′

u,a as follows:

1. u is a leaf node. Then gu is a constant gate, valued 0 if Cu ∈ A(p, q) and
valued 1 if Cu ∈ B(p, r), and C ′

u,a = Cu.
2. u is a universal reduction node with child v, where a literal l with var(l) = x

is reduced. Then gu is a no-operation gate, and C ′
u,a = C ′

v,a \ {x,¬x, x∗}.
3. u corresponds to a resolution step with an existential variable x ∈ p as pivot.

Let v and w be the children of u, and Cv = C1 ∨ x, Cw = C2 ∨ ¬x, Cu = C.
In this case, gu is the selector “gate” sel(x, gv, gw), where sel(x, a, b) = (¬x∧
a) ∨ (x ∧ b). Note that all the variables in p are existential variables. We
define C ′

u,a as C ′
v,a\{x} or C ′

w,a\{¬x} to correspond with the selector gate.
4. u corresponds to a resolution step with a variable x ∈ q as pivot. Then gu is

an OR gate. To define C ′
u,a, we consider several cases. Let v and w be the

children of u, with Cv = C1 ∨U1 ∨x, Cw = C2 ∨U2 ∨¬x, Cu = C1 ∨C2 ∨U .
(a) If gv(a) = 1, then C ′

u,a = C ′
v,a.

(b) Else if gw(a) = 1, then C ′
u,a = C ′

w,a.
(c) Else if x �∈ C ′

v,a, then C ′
u,a = C ′

v,a.
(d) Else if ¬x �∈ C ′

w,a, then C ′
u,a = C ′

w,a.
(e) Else C ′

u,a is obtained by resolving C ′
v,a and C ′

w,a on x.
5. u corresponds to a resolution step with a variable x ∈ r as pivot. Then gu

is an AND gate. The definition of C ′
u,a is dual to the above case. �

188 O. Beyersdorff et al.

3.3 Interpolants from IRM-calc Proofs

We now establish the interpolation theorem for the expansion-based calculi,
following the same overall idea described in Sect. 3.1.

Theorem 2. IRM-calc has feasible interpolation.

Proof Sketch. We construct the circuit in the same way as in Theorem 1 for the
resolution rules and unary rules. The structure π′ is constructed similarly; we
copy clauses or use applicable resolution in almost the same situations. However,
we now have to respect the definition of � for annotated clauses. We use the
instantiation rule to ensure that we have the same domains as in the original
proof as required for C ′

u,a � Cu. However, even if these domains are identical the
values may differ slightly (as we cannot use the instantiation rule for ∗) and this
may cause more literals to appear (l0/u and l∗/u may appear where originally
there was just l∗/u). We adjust for this by using the merging rule, which will
give us the injection as required for �. �

3.4 Monotone Interpolation

To transfer known circuit lower bounds into size of proof bounds, we need a
monotone version of the previous interpolation theorems, which we prove next.

Theorem 3. LQU+-Res and IRM-calc have monotone feasible interpolation.

Proof. In previous subsections, we have shown that the circuit Cπ(p) is a correct
interpolant for the QBF sentence F . That is, if Cπ(p) = 0 then Qq.A(a, q) is
false, and if Cπ(p) = 1 then Qr.B(a, r) is false.

However, if p occurs only positively in A(p, q) then we construct a monotone
circuit Cmon

π (p) such that, on every 0, 1 assignment a to p we have

Cmon
π (a) = 0 =⇒ Qq.A(a, q) is false, and

Cmon
π (a) = 1 =⇒ Qr.B(a, r) is false.

We obtain Cmon
π (p) from Cπ(p) by replacing all selector gates gu = sel(x, gv, gw)

by the following monotone ternary connective: gu = (x ∨ gv) ∧ gw where nodes v
and w are the children of u in π. We also change the proof-like structure π′(a);
the construction is the same as before except that at p-resolution nodes, the rule
for fixing C ′

u,a is also changed to reflect the monotone function used instead.
More precisely, the functions sel(x, gv, gw) and gu = (x ∨ gv) ∧ gw differ only

when x = 0, gv(a) = 1, and gw(a) = 0. We set C ′
u,a to C ′

w,a \ {¬x} if x = 1 or
if x = 0, gv(a) = 1 and gw(a) = 0, and to C ′

v,a \ {x} otherwise.
We need to show that at the differing setting, the inductive statements relat-

ing the modified C ′
u,a, gu(a) and C ′′

u,a continue to hold. The relation C ′′
u,a � Cu

holds by induction. Now consider the gate values.
We know by induction that gv(a) = 1 means that C ′′

v,a is an r-clause and can
be derived from B(a, r) alone. When x = 0, C ′

u,a = C ′
v,a and the selector gate

Feasible Interpolation for QBF Resolution Calculi 189

will output the value of gv(a) which is a 1. Hence C ′′
u,a is an r-clause. However,

observe that at this setting, gw(a) = 0, which means by induction that C ′′
w,a is a

q-clause and can be derived using A(a, q) clauses alone via the appropriate proof
system. Thus by our assumption about p variables appearing only positively in
A, the clause C ′

w,a does not contain ¬x. Thus we can safely assign C ′
u,a = C ′

w,a.
This completes the proof. �

4 New Lower Bounds for IRM-calc and LQU+-Res

We now apply our interpolation theorems to obtain new exponential lower
bounds for a new class of QBFs. The lower bound will be directly transferred
from the following monotone circuit lower bound for the problem Clique(n, k),
asking whether a given graph with n nodes has a clique of size k.

Theorem 4 (Alon, Boppana 87 [1]). All monotone circuits that compute
Clique(n, n/2) are of exponential size.

We now build the QBF. Fix an integer n (indicating the number of vertices
of the graph) and let p be the set of variables {puv | 1 ≤ u < v ≤ n}. An
assignment to p picks a set of edges, and thus an n-vertex graph. Let q be the
set of variables {qiu | i ∈ [n

2], u ∈ [n]}. We use the following clauses.

Ci = qi1 ∨ · · · ∨ qin for i ∈ [n
2]

Di,j,u = ¬qiu ∨ ¬qju for i, j ∈ [n
2], i < j and u ∈ [n]

Ei,u,v = ¬qiu ∨ ¬qiv for i ∈ [n
2] and u, v ∈ [n], u < v

Fi,j,u,v = ¬qiu ∨ ¬qjv ∨ puv for i, j ∈ [n
2], i < j and u �= v ∈ [n].

We can now express Clique(n, n/2) as a polynomial-size QBF ∃q.An(p, q):

An(p, q) =
∧

i∈[n2]

Ci ∧
∧

i<j,u∈[n]

Di,j,u ∧
∧

i∈[n2],u<v

Ei,u,v ∧
∧

i<j,u�=v

Fi,j,u,v.

The F -part verifies that the size-n/2 subset picked out by the C,D,E-parts is
a clique. Note that the edge variables p appear monotone in An(p, q).

Likewise co-Clique(n, n/2) can be written as a QBF ∀r1∃r2.Bn(p, r1, r2)
of polynomial size. To construct this we use a polynomial-size circuit that checks
whether the nodes specified by r1 fail to form a clique in the graph given by
p. We then use existential variables r2 for the gates of the circuit and can then
form a CNF Bn(p, r1, r2) that represents the circuit computation.

Now we can form a sequence of false QBFs, stating that the graph encoded
in p both has a clique of size n/2 (as witnessed by q) and likewise does not have
such a clique as expressed in the B part:

Φn(p, q, r) = ∃p∃q∀r1∃r2.An(p, q) ∧ Bn(p, r1, r2).

This formula has the unique interpolant Clique(n, n/2)(p). But since all mono-
tone circuits for this are of exponential size by Theorem 4 and monotone circuits
of size polynomial in IRM-calc and LQU+-Res proofs can be extracted by Theo-
rem 3, all such proofs must be of exponential size, yielding:

190 O. Beyersdorff et al.

Theorem 5. The QBFs Φn(p, q, r) require exponential-size proofs in IRM-calc
and LQU+-Res.

5 Feasible Interpolation Vs Strategy Extraction

Recall the two player game semantics of a QBF: every false QBF has a winning
strategy for the universal player, where the strategy for each variable depends
only on the variables played before. We now explain the relation between strategy
extraction — one of the main paradigms for QBF systems — and feasible interpo-
lation. In Sect. 3 we studied QBFs of the form F = ∃pQqQr. [A(p, q) ∧ B(p, r)].
If we add a common universal variable b we can change it to an equivalent QBF

Fb = ∃p∀b QqQr. [(A(p, q) ∨ b) ∧ (B(p, r) ∨ ¬b)] .

If F is false, then also Fb is false and thus the universal player has a winning
strategy, including a strategy for b = σ(p) for the common universal variable b.

Remark 1. Every winning strategy σ(p) for b is an interpolant for F , i.e., for
every 0, 1 assignment a of p, σ(a) = 0 =⇒ Qq.A(a, q) is false, and σ(a) =
1 =⇒ Qr.B(a, r) is false.

Theorem 6. Fix a proof system S ∈ {LQU+-Res, IRM-calc }.
1. From each S-refutation π of Fb we can extract in polynomial time a boolean

circuit for σ(p), i.e., the part of the winning strategy for variable b.
2. If in the same setting as above for Fb, the variables p appear only positively

in A(p, q), then we can extract a monotone boolean circuit for σ(p) from an
S-refutation π of Fb in polynomial time (in the size of π).

Proof Sketch. As we can compute the (monotone) interpolant when b is absent,
we use the same proof with a few modifications for the new formula.

We first change the definition of q and r-clauses to allow for b and ¬b literals:
We call any clause in the proof a q-clause (resp. r-clause) if it contains only
variables p, q or literal b (resp. p, r or literal ¬b). We retain the inheritance
property for clauses only containing p variables. We also slightly modify the
invariants to include the new definitions. Additionally we make a small change
to the first invariant: we now claim that C ′

u,a\{b,¬b} � Cu.
While constructing the circuit Cπ, we also need to consider a resolution step

on the common universal variable b. Here we arbitrarily pick one of v or w. For
example here we pick v and let gu = gv, disregarding the input from gw.

Similarly while constructing π′, we need to consider a resolution step on b.
Let Cu be obtained by resolving Cv and Cw on b, with b ∈ Cv and ¬b ∈ Cw.
To find C ′

u,a we look at our choice of wiring in the circuit construction. If gu is
wired to gv (gu = gv) then we take C ′

u,a to equal C ′
v,a.

The rest of the proof, showing that all the (modified) invariants hold, goes
through by induction as before, and allows us to conclude that gr, the output
gate of the circuit, computes σ(p). �
As a corollary, the versions Φb

n(p, q, r) of the formulas from Sect. 4 also require
exponential-size proofs in IRM-calc and LQU+-Res.

Feasible Interpolation for QBF Resolution Calculi 191

Acknowledgements. We thank Pavel Pudlák and Mikoláš Janota for helpful
discussions on the relation between feasible interpolation and strategy extraction
during the recent Dagstuhl Seminar ‘Optimal Algorithms and Proofs’ (14421).

References

1. Alon, N., Boppana, R.B.: The monotone circuit complexity of boolean functions.
Combinatorica 7(1), 1–22 (1987)

2. Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications.
Formal Methods in System Design 41(1), 45–65 (2012)

3. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Heidelberg (2014)

4. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple.
Journal of the ACM 48(2), 149–169 (2001)

5. Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and
perspectives. JSAT 5(1–4), 133–191 (2008)

6. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based
calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part
II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)

7. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In : STACS, pp. 76–89 (2015)

8. Beyersdorff, O., Chew, L., Sreenivasaiah, K.: A game characterisation of tree-like
Q-resolution size. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B.
(eds.) LATA 2015. LNCS, vol. 8977, pp. 486–498. Springer, Heidelberg (2015)

9. Beyersdorff, O., Kullmann, O.: Unified characterisations of resolution hardness
measures. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 170–187.
Springer, Heidelberg (2014)

10. Bonet, M.L., Domingo, C., Gavaldà, R., Maciel, A., Pitassi, T.: Non-
automatizability of bounded-depth Frege proofs. Computational Complexity
13(1–2), 47–68 (2004)

11. Maria Luisa Bonet: Toniann Pitassi, and Ran Raz. On interpolation and automa-
tization for Frege systems. SIAM Journal on Computing 29(6), 1939–1967 (2000)

12. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic 22(3), 269–285 (1957)

13. Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a
case study of incremental QBF solving (2014). CoRR, abs/1405.7253

14. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating
proofs and strategies for both true and false QBF formulas. In: IJCAI, pp. 546–553
(2011)

15. Hrubeš, P.: On lengths of proofs in non-classical logics. Annals of Pure and
Applied Logic 157(2–3), 194–205 (2009)

16. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

17. Hans Kleine Büning: Marek Karpinski, and Andreas Flögel. Resolution for quan-
tified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)

18. Kraj́ıček, J.: Interpolation theorems, lower bounds for proof systems and inde-
pendence results for bounded arithmetic. J. Symb. Log. 62(2), 457–486 (1997)

192 O. Beyersdorff et al.

19. Kraj́ıček, J.: Forcing with random variables and proof complexity, vol. 382,
Lecture Note Series. London Mathematical Society (2011)

20. Kraj́ıček, J., Pudlák, P.: Some consequences of cryptographical conjectures for S1
2

and EF . Information and Computation 140(1), 82–94 (1998)
21. Mundici, D.: Tautologies with a unique Craig interpolant, uniform vs. nonuniform

complexity. Annals of Pure and Applied Logic 27, 265–273 (1984)
22. Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone

computations. The Journal of Symbolic Logic 62(3), 981–998 (1997)
23. Pudlák, P.: Proofs as games. American Math. Monthly, pp. 541–550 (2000)
24. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF.

In: AAAI, pp. 1045–1050. AAAI Press (2007)
25. Van Gelder, A.: Contributions to the theory of practical quantified boolean for-

mula solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663.
Springer, Heidelberg (2012)

26. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: ICCAD, pp. 442–449 (2002)

Simultaneous Approximation of Constraint
Satisfaction Problems

Amey Bhangale1(B), Swastik Kopparty2, and Sushant Sachdeva3

1 Department of Computer Science, Rutgers University, New Brunswick, USA
amey.bhangale@rutgers.edu

2 Department of Mathematics and Department of Computer Science,
Rutgers University, New Brunswick, USA

swastik.kopparty@rutgers.edu
3 Department of Computer Science, Yale University, New Haven, USA

sachdeva@cs.yale.edu

Abstract. Given k collections of 2SAT clauses on the same set of vari-
ables V , can we find one assignment that satisfies a large fraction of
clauses from each collection? We consider such simultaneous constraint
satisfaction problems, and design the first nontrivial approximation algo-
rithms in this context.

Our main result is that for every CSP F , for k < Õ(log
1/4 n), there

is a polynomial time constant factor Pareto approximation algorithm
for k simultaneous Max-F-CSP instances. Our methods are quite gen-
eral, and we also use them to give an improved approximation fac-
tor for simultaneous Max-w-SAT (for k < Õ(log

1/3 n)). In contrast,
for k = ω(log n), no nonzero approximation factor for k simultaneous
Max-F-CSP instances can be achieved in polynomial time (assuming
the Exponential Time Hypothesis).

These problems are a natural meeting point for the theory of con-
straint satisfaction problems and multiobjective optimization. We also
suggest a number of interesting directions for future research.

1 Introduction

The theory of approximation algorithms for constraint satisfaction problems
(CSPs) is a very central and well developed part of modern theoretical computer
science. Its study has involved fundamental theorems, ideas, and problems such as
thePCP theorem, linear and semidefinite programming, randomized rounding, the
Unique Games Conjecture, and deep connections between them [3,4,15,21,29,30].

Amey Bhangale—Research supported in part by NSF grant CCF-1253886.
Swastik Kopparty—Research supported in part by a Sloan Fellowship and NSF grant
CCF-1253886.
Sushant Sachdeva—Research supported by the NSF grants CCF-0832797, CCF-
1117309, and Daniel Spielman’s & Sanjeev Arora’s Simons Investigator Grants. Part
of this work was done when this author was at the Simons Institute for the Theory
of Computing, UC Berkeley, and at the Department of Computer Science, Princeton
University.
The rights of this work are transferred to the extent transferable according to title
17 §105 U.S.C.

c© Springer-Verlag Berlin Heidelberg 2015 (outside the US)
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 193–205, 2015.
DOI: 10.1007/978-3-662-47672-7 16

194 A. Bhangale et al.

In this paper, we initiate the study of simultaneous approximation algorithms
for constraint satisfaction problems. A typical such problem is the simultaneous
Max-CUT problem: Given a collection of k graphs Gi = (V,Ei) on the same
vertex set V , the problem is to find a single cut (i.e., a partition of V) so that
in every Gi, a large fraction of the edges go across the cut.

More generally, let F be a set of bounded-arity predicates on [q]-valued vari-
ables. Let V be a set of n [q]-valued variables. An F-CSP is a weighted collection
W of constraints on V , where each constraint is an application of a predicate
from F to some variables from V . For an assignment f : V → [q] and a F-CSP
instance W, we let val(f,W) denote the total weight of the constraints from W
satisfied by f . The Max-F-CSP problem is to find f which maximizes val(f,W).
If F is the set of all predicates on [q] of arity w, then Max-F-CSP is also called
Max-w-CSPq.

We now describe the setting for the problem we consider: k-fold simultaneous
Max-F-CSP. Let W1, . . . ,Wk be F-CSPs on V , each with total weight 1. Our
high level goal is to find an assignment f : V → [q] for which val(f,W�) is large
for all � ∈ [k].

These problems fall naturally into the domain of multi-objective optimiza-
tion: there is a common search space, and multiple objective functions on that
space. Since even optimizing one of these objective functions could be NP-hard,
it is natural to resort to approximation algorithms. Below, we formulate some of
the approximation criteria that we will consider, in decreasing order of difficulty:

1. Pareto approximation: Suppose (c1, . . . , ck) ∈ [0, 1]k is such that there is
an assignment f∗ with val(f∗,W�) ≥ c� for each � ∈ [k].
An α-Pareto approximation algorithm in this context is an algorithm, which
when given (c1, . . . , ck) as input, finds an assignment f such that val(f,W�) ≥
α · c�, for each � ∈ [k].

2. Minimum approximation: This is basically the Pareto approximation
problem when c1 = c2 = . . . = ck. Define Opt to be the maximum, over all
assignments f∗, of min�∈[k] val(f∗,W�).
An α-minimum approximation algorithm in this context is an algorithm
which finds an assignment f such that min�∈[k] val(f,W�) ≥ α · Opt.

3. Detecting Positivity: This is a very special case of the above, where the
goal is simply to determine whether there is an assignment f which makes
val(f,W�) > 0 for all � ∈ [k].

When k = 1, minimum approximation and Pareto approximation correspond
to the classical Max-CSP approximation problems (which have received much
attention). Our focus in this paper is on general k. It is useful to think of k
as O(1), or a slowly growing function of n, say log log n. As we will see in the
discussions below, the nature of the problem changes quite a bit for k > 1. In
particular, direct applications of classical techniques like random assignments
and convex programming relaxations fail to give even a constant factor approx-
imation for values of k greater than certain threshold.

The theory of exact multiobjective optimization has been very well studied,
(see eg. [10,27] and the references therein). A common theme in this area is to

Simultaneous Approximation of Constraint Satisfaction Problems 195

consider a classical optimization problem, optimizing a given objective function
over a given search space, and to then consider the problem of simultaneously
optimizing many such objective functions on a common search space.

This viewpoint has motivated the study of multiobjective versions of many
exactly optimizable problems, including shortest paths, minimum spanning trees,
matchings, etc. [12,27].

Here we undergo a systematic study of multiobjective optimization in the
context of MAX-CSPs. This gives rise to a number of interesting problems and
phenomena that seem ripe for study given the current technology in the study of
CSPs, and also worthy of study in their own right. This is the main motivation
for our paper. We discuss the existing works on multiobjective approximation of
certain CSPs in Section 1.6.

We have two further motivations for studying simultaneous approximations
for constraint satisfaction problems. Firstly, these are very natural algorithmic
questions that capture optimization constraints in a way which more näıve for-
mulations (such as taking linear combinations of the given CSPs) cannot. Sec-
ondly, the study of simultaneous approximation algorithms for CSPs sheds new
light on various aspects of standard approximation algorithms for CSPs. For
example, as we will see later, the trivial random assignment based algorithms
turn out to be more useful in the simultaneous setting for us than the SDP-based
algorithms, even though SDP-based algorithms in general give better approxi-
mation factors for many CSPs.

1.1 Observations About Simultaneous Approximation

We now discuss why a direct application of the classical CSP algorithms fails in
this setting, and limitations on the approximation ratios that can be achieved.

We begin with a trivial remark. Finding an α-minimum (or Pareto) approxima-
tion to the k-fold Max-F-CSP is at least as hard as finding an α-approximation
the classical Max-F-CSP problem (i.e., k = 1). Thus the known limits on
polynomial-time approximability extend naturally to our setting.
Max-1-SAT. The simplest simultaneous CSP is Max-1-SAT. The problem of
getting a 1-Pareto or 1-minimum approximation to k-fold simultaneous Max-
1-SAT is essentially the NP-hard SUBSET-SUM problem. There is a simple
2poly(k/ε)·poly(n)-time (1−ε)-Pareto approximation algorithm based on dynamic
programming.

It is easy to see that detecting positivity of a k-fold simultaneous Max-1-
SAT is exactly the same problem as detecting satisfiability of a SAT formula
with k clauses (a problem studied in the fixed parameter tractability community.
Thus, this problem can be solved in time 2O(k) ·poly(n) (see [26]), and under the
Exponential Time Hypothesis, one does not expect a polynomial time algorithm
when k = ω(log n).
Random Assignments. Let us consider algorithms based on random assign-
ments. A typical example is Max-CUT. A uniformly random partition in a

196 A. Bhangale et al.

weighted graph cuts 1/2 the total weight in expectation. This gives a 1/2 - approx-
imation to the classical Max-CUT problem.

In the simultaneous setting, if we happened to know that the cut value of all
the instances is concentrated around 1/2 with high probability, then using union
bound we would obtain a cut that is simultaneously good for all instances.

However, in general, such concentration does not hold. For k ≥ 3, the
probability that a random assignment cuts a constant fraction of the edges
in each of the k instances, can be zero. In particular, there is no “trivial”
random-assignment-based constant factor approximation algorithm for simul-
taneous CSPs.
SDP Algorithms. How do algorithms based on semi-definite programming
(SDP) generalize to the simultaneous setting?

For the usual Max-CUT problem (k = 1), the celebrated Goemans-
Williamson SDP algorithm [15] gives a 0.878-approximation. The SDP relax-
ation generalizes naturally to the simultaneous setting; it allows us to find a
vector solution which is a simultaneously good cut for G1, . . . , Gk. Perhaps we
can apply hyperplane rounding to the SDP solution to obtain a simultaneously
good cut for all Gi? We know that each Gi gets a good cut in expectation,
but we need each Gi to get a good cut with high probability to guarantee a
simultaneously good cut.

However, there are cases where the hyperplane rounding fails completely.
For weighted instances, the SDP does not have any constant integrality gap. For
unweighted instances, for every fixed k, we find an instance of k-fold simultaneous
Max-CUT (with arbitrarily many vertices and edges) where the SDP relaxation
has value 1 − Ω

(
1
k2

)
, while the optimal simultaneous cut has value only 1/2.

Furthermore, applying the hyperplane rounding algorithm to this vector solu-
tion gives (with probability 1) a simultaneous cut value of 0. These integrality
gaps are described in the full version of this paper. [6]

Thus the natural extension of SDP based techniques for simultaneous approx-
imation fail quite spectacularly. A-priori, this failure is quite surprising, since
SDPs (and LPs) generalize to the multiobjective setting seamlessly.
Matching the Random Assignment Threshold? Given the ease and sim-
plicity of algorithms based on random assignments for k = 1, giving algorithms
in the simultaneous setting that match their approximation guarantees is a nat-
ural benchmark. Perhaps, it is always possible to do as well in the simultaneous
setting as a random assignment for one instance.

Somewhat surprisingly, this is incorrect. For simultaneous Max-Ew-SAT
(CNF-SAT where every clause has exactly w distinct literals), a simple reduc-
tion from Max-E3-SAT (with k = 1) shows that it is NP-hard to give a (7/8+ε)-
minimum approximation for k-fold simultaneous Max-Ew-SAT for large enough
constants k (see full version [6] for the proof).

Proposition 1. For every integer w ≥ 4 and a real number ε > 0, given 2w−3

instances of Max-Ew-SAT that are simultaneously satisfiable, it is NP-hard to
find a (7/8 + ε)-minimum (or Pareto) approximation.

Simultaneous Approximation of Constraint Satisfaction Problems 197

On the other hand, a random assignment to a single Max-Ew-SAT instance
satisfies a 1 − 2−w fraction of constraints in expectation. In particular, it shows
that simultaneous CSPs can have worse approximation factors than their clas-
sical (k = 1) counterparts.

1.2 Results

Our results address the approximability of k-fold simultaneous Max-F-CSP for
large k. Our main algorithmic result shows that for every F , and k not too large,
k-fold simultaneous Max-F-CSP has a constant factor Pareto approximation
algorithm.

Theorem 1. Let q, w be constants. For every ε > 0, there is a 2O(k4/ε2 log(k/ε)) ·
poly(n)-time

(
1

qw−1 − ε
)
-Pareto approximation algorithm for k-fold simultane-

ous Max-w-CSPq.

The dependence on k implies that the algorithm runs in polynomial time
up to k = Õ((log n)1/4) simultaneous instances.1

For particular CSPs, our methods allow us to do significantly better, as
demonstrated by our following result for Max-w-SAT.

Theorem 2. Let w be a constant. For every ε > 0, there is a 2O(k3/ε2 log(k/ε)) ·
poly(n)-time (3/4 − ε)-Pareto approximation algorithm for k-fold Max-w-SAT.

Given a single Max-Ew-SAT instance, a random assignment satisfies a 1 −
2−w fraction of the constraints in expectation. The approximation ratio achieved
by the above theorem seems modest in comparison (even though it is for general
Max-w-SAT). However, Proposition 1 demonstrates it is NP-hard to do much
better. The proofs of the above theorems appear in the full version [6].
Remarks:

1. As demonstrated by Proposition 1, it is sometimes impossible to match the
approximation ratio achieved by a random assignment for k = 1. By com-
parison, the approximation ratio given by Theorem 1 is slightly better than
that achieved by a random assignment (1/qw). This is comparable to the
best possible approximation ratio for k = 1, which is w/qw−1 up to con-
stants [8,25]. Our methods also prove that picking the best assignment out
of 2O(k4/ε2 log(k/ε)) independent and uniformly random assignments achieves
a (1/qw − ε)-Pareto approximation with high probability.

2. Our method is quite general. For any CSP with a convex relaxation and
an associated rounding algorithm that assigns each variable independently
from a distribution with certain smoothness property, it can be combined
with our techniques to achieve essentially the same approximation ratio for k
simultaneous instances. The distribution associated with rounding algorithm
is called smooth if every variable has at least some constant probability,
bounded away from 0, of getting any given element in the domain (see full
version [6] for the formal definition).

1 The Õ(·) hides poly(log log n) factors.

198 A. Bhangale et al.

3. We reiterate that Pareto approximation algorithms achieve a multiplica-
tive approximation for each instance. One could also consider the prob-
lem of achieving simultaneous approximations with an α-multiplicative and
ε-additive error. This problem can be solved by a significantly simpler algo-
rithm and analysis (but note that this variation does not even imply an
algorithm for detecting positivity).

4. Our analysis, in fact, proves that a uniformly random assignment achieves
a (1/qk − ε) Pareto-approximation with tiny but noticeable probability
(about q−poly(k/ε)). Note that it is not true that a random assignment, with
non-trivial probability, satisfies a constant fraction of constraints in every
instance, as the simultaneous objective value may be arbitrarily small. Our
analysis is involved, and does not simply follow by analyzing the behavior
of a random assignment on each of the k instances individually.

1.3 Complementary Results

Refined Hardness Results. As we saw earlier, assuming ETH, there is no
algorithm for even detecting positivity of k-fold simultaneous Max-1-SAT for
k = ω(log n). A predicate P : {0, 1}w → {True,False} is said to be 0-valid/1-
valid if the all-0-assignment/all-1-assignment satisfies P . We call a collection
F of predicates trivial if either all predicates in F are 0-valid or all of them are
1-valid. Clearly, if F is trivial, then the simultaneous Max-F-CSP instances can
be solved exactly (by considering the all-0-assignment/all-1-assignment). Here
we prove that for any “nontrivial”collection of Boolean predicates F , assuming
ETH, there is no polynomial time algorithm for detecting positivity for k-fold
simultaneous Max-F-CSP instances for k = ω(log n). In particular, it is hard
to obtain any poly-time constant factor approximation for k = ω(log n). This
implies a complete dichotomy theorem for constant factor approximations of k-
fold simultaneous Boolean CSPs.

Theorem 3. Assume the Exponential Time Hypothesis [18,19]. Let F be a fixed
finite set of Boolean predicates. If F is non trivial in the above sense, then
for k = ω(log n), detecting positivity of k-fold simultaneous Max-F-CSP on n
variables requires time super-polynomial in n.

Simultaneous Approximations via SDPs. It is a tantalizing possibility that
one could use SDPs to improve the LP-based approximation algorithms that we
develop. Especially for constant k, it is not unreasonable to expect that one
could obtain a constant factor Pareto or minimum approximation, for k-fold
simultaneous CSPs, better than what can be achieved by linear programming
methods.

In this direction, we show how to use simultaneous SDP relaxations to obtain
a polynomial time (1/2 + Ω(1/k2))-minimum approximation for k-fold simultane-
ous Max-CUT on unweighted graphs.

Simultaneous Approximation of Constraint Satisfaction Problems 199

Theorem 4. For large enough n, there is an algorithm that, given k-fold
simultaneous unweighted Max-CUT instances on n vertices, runs in time

22
2O(k) · poly(n), and computes a

(
1
2 + Ω

(
1
k2

))
-minimum approximation.

See the full version [6] for proofs of Theorems 3 and 4.

1.4 Techniques

For the initial part of this discussion, we focus on the q = w = 2 case, and only
achieve a (1/4 − ε)-Pareto approximation. Explicitly, we have a set of Boolean
variables V , and k instances W1, . . . ,Wk of width-2 CSPs on this set of variables.
We know that there is an assignment f∗ : V → {0, 1} s.t. for each instance � ∈ [k],
val(f∗,W�) ≥ c�. Our goal is to find an assignment f : V → {0, 1} s.t. for each
instance � ∈ [k], val(f,W�) ≥ (14 − ε) · c�.
Preliminary Observations. Consider a uniformly random assignment g : V →
{0, 1}. It is easy to see that for each instance � ∈ [k], E[val(g,W�)] (i.e., the
expected satisfied weight in instance �) is at least 1/4 the total weight of all
constraints in instance �. If for some reason we knew that for each � ∈ [k], the
random variable val(g,W�) is concentrated around its expected value with high
probability, then we could take a union bound over all the instances and conclude
that with high probability, val(g,W�) is large for every � ∈ [k].

It turns out that for any instance where the desired concentration does not
occur, there is some variable x ∈ V which has high degree in that instance (i.e.,
the weight of all constraints involving that variable is a constant fraction of the
total weight of all constraints). This high degree variable seems very useful for
our goal of finding a good assignment, since we can potentially influence the
satisfaction of the instance quite a bit by just by changing this one variable.

This motivates a high level plan: either all the instances are well-
concentrated, in which case a random assignment works, or else the some instance
has a high degree variable, in which case we can try to set that variable and
repeat.
A Recursive Algorithm. The simplest possible implementation of the above
high-level plan leads to the following algorithm.

This algorithm is initially called with ρ being the trivial partial assignment.
Algorithm1(ρ)
Given variables V , instances W1,W2, . . . ,Wk, target values c1, . . . , ck.
ρ : Sρ → {0, 1}, with Sρ ⊆ V , is a partial assignment.

1. For a uniformly random assignment g : V \ Sρ → {0, 1}, compute, for each
� ∈ [k], μ� = E[val(ρ ∪ g,W�)] and σ2

� = Var[val(ρ ∪ g,W�)].
2. If for each � ∈ [k], we have σ2

� � μ2
� (i.e., concentration), then:

(a) pick a uniformly random assignment g : V \ Sρ → {0, 1}, and consider
the total assignment ρ ∪ g.

(b) return min�∈[k]
val(ρ∪g,calW�)

c�

200 A. Bhangale et al.

3. Otherwise, pick some � with σ2
� = Ω(μ2

�).
(a) Find a variable x ∈ V \ Sρ with high degree in the residual instance

W�|ρ.
(b) Consider the two partial assignments ρ0, ρ1 obtained by extending the

domain of ρ to include x, with ρ0(x) = 0 and ρ1(x) = 1.
(c) return max(Algorithm1(ρ0),Algorithm1(ρ1))

Based on the discussion earlier, one can easily show that the above algo-
rithm is a (1/4 − ε)-Pareto approximation algorithm. Indeed, these recursive
calls partition the assignment space {0, 1}V into subcubes (based on the partial
assignments), such that within each subcube, we know that a uniformly random
assignment to the unset variables makes the satisfied weight of any instance
concentrate around its expected value (which is at least (1/4 − ε) times the
maximum possible satisfied weight within that subcube).

On the other hand, this algorithm need not terminate in polynomial
time; the recursive calls might lead the algorithm to take exponential time. In
what follows, we force (a small variation of) the above algorithm to terminate
any recursion that has reached depth poly(k

ε). The main challenge which we
need to overcome, and this occupies most of this paper, is to show that this new
algorithm is still a (1/4 − ε)-Pareto approximation algorithm.
The Truncated Recursion. We now give the outline of a better version of
the previous algorithm in which the recursion is truncated to run in polynomial
time (for ease of exposition, some details have been swept under the rug).

This algorithm is initially called with ρ being the trivial partial assignment,
and count being an array of all 0’s.
Algorithm2(ρ, count)
Given variables V , instances W1,W2, . . . ,Wk, target values c1, . . . , ck.
Parameter t is set to poly(k/ε).
ρ : Sρ → {0, 1}, with Sρ ⊆ V , is a partial assignment.
count : [k] → N maintains a count of how many times the recursion was caused
by each instance.

1. For a uniformly random assignment g : V \ Sρ → {0, 1}, compute, for each
� ∈ [k], μ� = E[val(ρ ∪ g,W�)] and σ2

� = Var[val(ρ ∪ g,W�)].
2. If for each � ∈ [k], we have ((σ2

� � μ2
�) OR (count(�) ≥ t)), then:

(a) Pick a uniformly random partial assignment g : V \ Sρ → {0, 1}.
(b) For each h : Sρ → {0, 1}, consider the total assignment h∪g : V → {0, 1}.
(c) return maxh min�∈[k]

val(h∪g,calW�)
c�

3. Otherwise, pick some � with (σ2
� = Ω(μ2

�)) AND (count(�) < t).
(a) Find a variable x ∈ V \ Sρ with high degree in the residual instance

W�|ρ.
(b) Consider the two partial assignments ρ0, ρ1 obtained by extending the

domain of ρ to include x, where ρ0(x) = 0 and ρ1(x) = 1.
(c) Let count′ = count. Let count′(�) = count′(�) + 1.
(d) return max(Algorithm2(ρ0, count′),Algorithm2(ρ1, count′))

Simultaneous Approximation of Constraint Satisfaction Problems 201

The two most notable differences between this algorithm and the previous
one are (1) the recursion is truncated so that no instance can cause more than
t = poly(k/ε) recursive calls, and (2) at the end of the recursion, the algo-
rithm considers every possible assignment to Sρ along with a uniformly random
assignment to V \ Sρ.

Analyzing the Truncated Recursion. The analysis starts by considering the
assignment f∗ : V → {0, 1} satisfying val(f∗,W�) ≥ c� for each � ∈ [k]. There is
a unique branch of the recursion in which the argument ρ is consistent with f∗

(i.e., satisfies ρ|Sρ
= f∗|Sρ

. Let us follow this branch of the recursion until the
recursion stops, i.e., the condition in step 2 is satisfied. At this point we know
that every instance � is either ‘low-variance” (namely the satsfied weight of a
uniformly random assignment is close to its expectation with high probability),
or else it is “high-variance”, in which case we know know that count(�) = t. It
is easy to show that for every low variance instance � ∈ [k], the output f of the
algorithm will have val(f,W�) ≥ (1/4 − ε) · c�.

To argue about a high variance instance � ∈ [k], we need to make several
observations. Since count(�) = t, we know that instance � caused t of the recursive
calls on this branch. Every time a recursive call is made because of instance �, it
means that we found some variable x ∈ V whose degree in the residual instance
is large, and we brought x into the domain of ρ (thus reducing the total weight of
all constraints, counted with multiplicity of the number of unset variables in it,
in the new residual instance). Thus for high variance instances, where t recursive
calls have been made, we can conclude that the total weight of all constraints
(counted with multiplicity) remaining in the residual instance is exponentially
small in t. If we choose t to be sufficiently large in k and ε, then this total weight
can be made small.

These ingredients are already enough to show that the algorithm outputs an
assignment f with the following additive-multiplicative approximation guaran-
tee: for each � ∈ [k], val(f,W�) ≥ (1/4) ·c� −ε · totalwt(W�), where totalwt(W�) is
the total weight of all constraints in the instance W�. This is still far from a pure
multiplicative approximation guarantee, which seems to require a significantly
more delicate analysis.

To achieve the pure multiplicative approximation guarantee, we show that
there is a perturbation h of f∗|Sρ

which simultaneously (1) satisfies a lot of weight
from every high variance instance, and (2) preserves the property that for a
uniformly random assignment g : V \Sρ → {0, 1}, for every low variance instance
� ∈ [k] we have that val(h ∪ g,W�) is well-concentrated around its expectation.
The procedure that constructs this perturbation itself is quite involved (but this
happens only in the analysis). It is based on (1) the fact that there are many
variables which were brought into the domain of ρ which have high weight in
instance �, and (2) understanding how much changing the value of these variables
affects the other instances.

Improved Approximation, and Generalization. To get the claimed (12−ε)-
Pareto approximation for the q = w = 2 case, we replace the uniformly random

202 A. Bhangale et al.

choice of g : V \ S → {0, 1} by a suitable LP relaxation + randomized rounding
strategy. Concretely, we write an LP relaxation of the residual CSP, and round
it to obtain g : V \Sρ → {0, 1}. The rounding is via a certain rounding algorithm
of Trevisan (which has some desirable smoothness properties). The analysis is
nearly identical (but crucially uses the smoothness of the rounding), and the
improved approximation comes from the improved approximation factor of the
classical LP relaxation for MAX-2-CSP.

The generalization of this algorithm to general q, w is notationally technical,
but conceptually there is only one new ingredient. Instead of bringing a high-
degree variable x into the domain of the assignment ρ, we bring in a set of
variables X, such that the total weight of all constraints which involve all the
variables in X is large. The size of this X may vary from 1 to w. This turns out
to be the appropriate generalization of the previous algorithm, and the analysis
goes along the lines of the previous analysis, except for an additional appearance
of a concentration bound for Lipschitz functions.

The algorithm for Max-w-SAT uses the fact that there is an LP-based 3/4
approximation for Max-w-SATwith a smooth rounding algorithm. The origi-
nal LP-based 3/4-approximation algorithms [14,35] did not have smooth round-
ing algorithms, but it turns out that Trevisan’s rounding algorithm (which is
smooth) also gives a 3/4-factor approximation for Max-w-SAT, and this suffices
for our purposes. We also use the fact that a Max-w-SAT constraint can be
satisfied by perturbing any one variable. This leads to some significant simplifi-
cation in the actual algorithm.

1.5 Discussion

We have only made initial progress on what we believe is a large number of
interesting problems in the realm of simultaneous approximation of CSPs. We
list here a few of the interesting directions for further research:

1. When designing SDP-based algorithms for the classical Max-CSP problems,
we are usually only interested in the expected value of the rounded solution.
For k-fold simultaneous Max-F-CSP with k > 1, we are naturally led to
the question of how concentrated the value of the solution output by the
rounding is around its mean.

Decorrelation of SDP rounding arises in recent algorithms [5,16,31] based
on SDP hierarchies. It would be interesting to see if such ideas could be
useful in this context.

2. When k = O(1), for each F , one can ask the question: what is the best Pareto
approximation factor achievable for k-fold Max-F-CSP in polynomial time?
While in Theorem 1 we do not focus on giving improved approximation fac-
tors for special F , our methods will give better approximation factors for any
F which has a good LP relaxation that comes equipped with a sufficiently
smooth independent-rounding algorithm. It would be very interesting if one
could employ SDPs for approximating simultaneous Max-F-CSP. A par-
ticularly nice question here: Is there a polynomial time 0.878-Pareto approx-
imation algorithm for O(1)-fold simultaneous Max-CUT? We do not even

Simultaneous Approximation of Constraint Satisfaction Problems 203

know a (1/2+ ε)-Pareto approximation algorithm (but note that Theorem 4
does give this for O(1)-fold simultaneous unweighted Max-CUT).

3. As demonstrated by hardness result for Max-w-SAT given in Proposi-
tion 1, even for constant k, the achievable approximation factor can be
strictly smaller than its classical counterpart. It would be very interesting
to have a systematic theory of hardness reductions for simultaneous CSPs
for k = O(1). The usual paradigm for proving hardness of approximation
based on label cover and long codes seems to break down completely for
simultaneous CSPs.

1.6 Related Work

The theory of exact multiobjective optimization has been very well studied, (see
eg. [10,27] and the references therein).

The only directly comparable work for simultaneous approximation algo-
rithms for CSPs we are aware of is the work of Glaßer et al. [13]. They give
a 1/2-Pareto approximation for Max-SAT with a running time of nO(k2). For
bounded width clauses, our algorithm does better in both approximation guar-
antee and running time.

For Max-CUT, there are a few results of a similar flavor. For two graphs,
the results of Angel et al. [2] imply a 0.439-Pareto approximation algorithm
(though their actual results are incomparable to ours). Bollobás and Scott [7]
asked what is the largest simultaneous cut in two unweighted graphs with m
edges each. Kuhn and Osthus [22], using the second moment method, proved
that for k simultaneous unweighted instances, there is a simultaneous cut that
cuts at least m/2−O(

√
km) edges in each instance, and give a deterministic algo-

rithm to find it (this leads to a (12 − o(1))-Pareto approximation for unweighted
instances with sufficiently many edges). Our main theorem implies the same
Pareto approximation factor for simultaneous Max-CUT on general weighted
instances, while for k-fold simultaneous Max-CUT on unweighted instances,
our Theorem 4 gives a

(
1
2 + Ω(1

k2)
)
-minimum approximation algorithm.

References

1. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX- r-SAT above a
tight lower bound. Algorithmica 61(3), 638–655 (2011)

2. Angel, E., Bampis, E., Gourvs, L.: Approximation algorithms for the bi-criteria
weighted MAX-CUT problem. Discrete Applied Mathematics 154(12), 1685–1692
(2006)

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

4. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP.
J. ACM 45(1), 70–122 (1998)

5. Barak, B., Raghavendra, P., Steurer, D.: Rounding semidefinite programming hier-
archies via global correlation. In: FOCS, pp. 472–481 (2011)

204 A. Bhangale et al.

6. Bhangale, A., Kopparty, S., Sachdeva, S.: Simultaneous approxima-
tion of constraint satisfaction problems. CoRR abs/1407.7759 (2014).
http://arxiv.org/abs/1407.7759

7. Bollobás, B., Scott, A.D.: Judicious partitions of bounded-degree graphs. Journal
of Graph Theory 46(2), 131–143 (2004)

8. Chan, S.O.: Approximation resistance from pairwise independent subgroups. In:
STOC 2013, pp. 447–456. ACM (2013)

9. Charikar, M., Makarychev, K., Makarychev, Y.: Note on MAX-2SAT. Electronic
Colloquium on Computational Complexity (ECCC) 13(064) (2006)

10. Diakonikolas, I.: Approximation of Multiobjective Optimization Problems. Ph.D.
thesis, Columbia University (2011)

11. Dinur, I., Regev, O., Smyth, C.D.: The hardness of 3 - uniform hypergraph coloring.
In: FOCS 2002, p. 33. IEEE Computer Society, Washington (2002)

12. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)

13. Glaßer, C., Reitwießner, C., Witek, M.: Applications of discrepancy theory in mul-
tiobjective approximation. In: FSTTCS 2011, pp. 55–65 (2011)

14. Goemans, M.X., Williamson, D.P.: A new 3
4
-approximation algorithm for MAX

SAT. In: IPCO, pp. 313–321 (1993)
15. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (1995)

16. Guruswami, V., Sinop, A.K.: Lasserre hierarchy, higher eigenvalues, and approx-
imation schemes for graph partitioning and quadratic integer programming with
psd objectives. In: FOCS, pp. 482–491 (2011)

17. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
18. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer

and System Sciences 62(2), 367–375 (2001)
19. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential

complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)
20. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of

constraint satisfaction problems. SIAM J. Comput. 30(6), 1863–1920 (2001)
21. Khot, S.: On the power of unique 2-prover 1-round games, pp. 767–775 (2002)
22. Kühn, D., Osthus, D.: Maximizing several cuts simultaneously. Comb. Probab.

Comput. 16(2), 277–283 (2007)
23. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: Maxsat and

maxcut. J. Algorithms 31(2), 335–354 (1999)
24. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed

values. J. Comput. Syst. Sci. 75(2), 137–153 (2009)
25. Makarychev, Konstantin, Makarychev, Yury: Approximation algorithm for non-

boolean MAX k-CSP. In: Gupta, Anupam, Jansen, Klaus, Rolim, José, Servedio,
Rocco (eds.) APPROX 2012 and RANDOM 2012. LNCS, vol. 7408, pp. 254–265.
Springer, Heidelberg (2012)

26. Marx, D.: Slides: CSPs and fixed-parameter tractability (2013). http://www.cs.
bme.hu/dmarx/papers/marx-bergen-2013-csp.pdf

27. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: Proceedings, 41st Annual Symposium on Foun-
dations of Computer Science, 2000, pp. 86–92 (2000)

28. Patel, V.: Cutting two graphs simultaneously. J. Graph Theory 57(1), 19–32 (2008)
29. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP?

In: STOC 2008, pp. 245–254. ACM, New York (2008)

http://arxiv.org/abs/http://arxiv.org/abs/1407.7759
http://www.cs.bme.hu/ dmarx/papers/marx-bergen-2013-csp.pdf
http://www.cs.bme.hu/ dmarx/papers/marx-bergen-2013-csp.pdf

Simultaneous Approximation of Constraint Satisfaction Problems 205

30. Raghavendra, P., Steurer, D.: How to round any CSP. In: In Proc. 50th IEEE
Symp. on Foundations of Comp. Sci. (2009)

31. Raghavendra, P., Tan, N.: Approximating csps with global cardinality constraints
using sdp hierarchies. In: SODA, pp. 373–387 (2012)

32. Rautenbach, D., Szigeti, Z.: Simultaneous large cuts. Forschungsinstitut für
Diskrete Mathematik, Rheinische Friedrich-Wilhelms-Universität (2004)

33. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC 1978,
pp. 216–226. ACM, New York (1978)

34. Trevisan, L.: Parallel approximation algorithms by positive linear programming.
Algorithmica 21(1), 72–88 (1998)

35. Yannakakis, M.: On the approximation of maximum satisfiability. In: SODA 1992,
pp. 1–9 (1992)

Design of Dynamic Algorithms via
Primal-Dual Method

Sayan Bhattacharya1(B), Monika Henzinger2, and Giuseppe F. Italiano3

1 Institute of Mathematical Sciences, Chennai, India
bsayan@imsc.res.in

2 University of Vienna, Vienna, Austria
monika.henzinger@univie.ac.at

3 Università di Roma “Tor Vergata”, Rome, Italy
giuseppe.italiano@uniroma2.it

Abstract. In this paper, we develop a dynamic version of the primal-
dual method for optimization problems, and apply it to obtain the fol-
lowing results. (1) For the dynamic set-cover problem, we maintain an
O(f2)-approximately optimal solution in O(f · log(m + n)) amortized
update time, where f is the maximum “frequency” of an element, n is
the number of sets, and m is the maximum number of elements in the
universe at any point in time. (2) For the dynamic b-matching prob-
lem, we maintain an O(1)-approximately optimal solution in O(log3 n)
amortized update time, where n is the number of nodes in the graph.

1 Introduction

The primal-dual method lies at the heart of the design of algorithms for com-
binatorial optimization problems. The basic idea, contained in the “Hungarian
Method” [8], was extended and formalized by Dantzig et al. [5] as a general
framework for linear programming, and thus it became applicable to a large
variety of problems. Few decades later, Bar-Yehuda et al. [1] were the first to
apply the primal-dual method to the design of approximation algorithms. Sub-
sequently, this paradigm was applied to obtain approximation algorithms for
a wide collection of NP-hard problems [11]. When the primal-dual method is
applied to approximation algorithms, an approximate solution to the problem
and a feasible solution to the dual of an LP relaxation are constructed simultane-
ously, and the performance guarantee is proved by comparing the values of both
solutions. The primal-dual method was also extended to online problems [4].
Here, the input is revealed only in parts, and an online algorithm is required to
respond to each new input upon its arrival (without being able to see the future).
The algorithm’s performance is compared against the benchmark of an optimal
omniscient algorithm that can view the entire input sequence in advance.

Monika Henzinger—Supported by the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agree-
ment no. 340506.
Giuseppe F. Italiano—Partially supported by MIUR under Project AMANDA.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 206–218, 2015.
DOI: 10.1007/978-3-662-47672-7 17

Design of Dynamic Algorithms via Primal-Dual Method 207

In this paper, we focus on dynamic algorithms for optimization problems. In
the dynamic setting, the input of a problem is being changed via a sequence of
updates, and after each update one is interested in maintaining the solution to
the problem much faster than recomputing it from scratch. We remark that the
dynamic and the online setting are completely different: in the dynamic scenario
one is concerned more with guaranteeing fast (worst-case or amortized) update
times rather than comparing the algorithms’ performance against optimal offline
algorithms. As a main contribution of this paper, we develop a dynamic version
of the primal-dual method, thus opening up a completely new area of application
of the primal-dual paradigm to the design of dynamic algorithms. With some
careful insights, our recent algorithms for dynamic matching and dynamic vertex
cover [3] can be reinterpreted in this new framework. In this paper, we apply
the new dynamic primal-dual framework to the design of two other optimization
problems: the dynamic set-cover problem and the dynamic b-matching problem.

Definition 1 (Set-Cover). We are given a universe U of at most m elements,
and a collection S of n sets S ⊆ U . Each set S ∈ S has a (polynomially bounded
by n) “cost” cS > 0. The goal is to select a subset S ′ ⊆ S such that each element
in U is covered by some set S ∈ S ′ and the total cost

∑
S∈S′ c(S) is minimized.

Definition 2 (Dynamic Set-Cover). Consider a dynamic version of the prob-
lem specified in Definition 1, where the collection S, the costs {cS}, S ∈ S, the
upper bound f on the maximum frequency maxu∈U |{S ∈ S : u ∈ S}|, and the
upper bound m on the maximum size of the universe U remain fixed. The uni-
verse U , on the other hand, keeps changing dynamically. In the beginning, we
have U = ∅. At each time-step, either an element u is inserted into the universe
U and we get to know which sets in S contain u, or some element is deleted from
the universe. The goal is to maintain an approximately optimal solution to the
set-cover problem in this dynamic setting.

Definition 3 (b-Matching). We are given an input graph G = (V,E) with
|V | = n nodes, where each node v ∈ V has a capacity cv ∈ {1, . . . , n}. A b-
matching is a subset E′ ⊆ E of edges such that each node v has at most cv edges
incident to it in E′. The goal is to select the b-matching of maximum cardinality.

Definition 4 (Dynamic b-Matching). Consider a dynamic version of the
problem specified in Definition 3, where the node set V and the capacities
{cv}, v ∈ V remain fixed. The edge set E, on the other hand, keeps changing
dynamically. In the beginning, we have E = ∅. At each time-step, either a new
edge is inserted into the graph or some existing edge is deleted from the graph.
The goal is to maintain an approximately optimal solution to the b-matching
problem in this dynamic setting.

As stated in [4,11], the set-cover problem has played a pivotal role both
for approximation and for online algorithms, and thus it seems a natural prob-
lem to consider in our dynamic setting. Our definition of dynamic set-cover is
inspired by the standard formulation of the online set-cover problem [4], where
the elements arrive online.

208 S. Bhattacharya et al.

Our Techniques. Roughly speaking, our dynamic version of the primal-dual
method works as follows. We start with a feasible primal solution and an infea-
sible dual solution for the problem at hand. Next, we consider the following
process: gradually increase all the primal variables at the same rate, and when-
ever a primal constraint becomes tight, stop the growth of all the primal vari-
ables involved in that constraint, and update accordingly the corresponding dual
variable. This primal growth process is used to define a suitable data structure
based on a hierarchical partition. A level in this partition is a set of the dual
variables whose corresponding primal constraints became (approximately) tight
at the same time-instant. To solve the dynamic problem, we maintain the data
structure, the hierarchical partition and the corresponding primal-dual solution
dynamically using a simple greedy procedure. This is sufficient for solving the
dynamic set-cover problem. For the dynamic b-matching problem, we need some
additional ideas. We first get a fractional solution to the problem using the previ-
ous technique. To obtain an integral solution, we perform randomized rounding
on the fractional solution in a dynamic setting. This is done by sampling the
edges with probabilities that are determined by the fractional solution.

Our Results. Our new dynamic primal-dual framework yields efficient dynamic
algorithms for both the dynamic set-cover problem and the dynamic b-matching
problem. In particular, for the dynamic set-cover problem we maintain a O(f2)-
approximately optimal solution in O(f · log(m + n)) amortized update time
(see Corollary 1 in Section 2). On the other hand, for the dynamic b-matching
problem, we maintain a O(1)-approximation in O(log3 n) amortized time per
update (see Theorem 7 in Section 3). Further, we can show that an edge inser-
tion/deletion in the input graph, on average, leads to O(log2 n) changes in the
set of matched edges maintained by our algorithm.

Related Work. The design of dynamic algorithms is one of the classic areas in
theoretical computer science with a countless number of applications. Dynamic
graph algorithms have received special attention, and there have been many
efficient algorithms for several dynamic graph problems, including dynamic con-
nectivity, minimum spanning trees, transitive closure, shortest paths and match-
ing problems (see, e.g., the survey in [6]). The b-matching problem contains
as a special case matching problems, for which many dynamic algorithms are
known [2,3,7,9,10]. Unfortunately, none of the results on dynamic matching
extends to the dynamic b-matching problem. To the best of our knowledge, no
previous result was known for dynamic set-cover problem.

2 Maintaining a Set-Cover in a Dynamic Setting

We define a problem called “fractional hypergraph b-matching” (Defini-
tion 5). Later, we show that this generalizes the well-known set-cover problem
(Lemma 1). Our main result is Theorem 2, which, along with Lemma 1, implies
Corollary 1.

Design of Dynamic Algorithms via Primal-Dual Method 209

Definition 5 (Fractional Hypergraph b-Matching). We are given an input
hypergraph G = (V,E) with |V | = n nodes and at most m ≥ |E| edges. Let
Ev ⊆ E denote the set of edges incident upon a node v ∈ V , and let Ve = {v ∈
V : e ∈ Ev} denote the set of nodes an edge e ∈ E is incident upon. Let cv > 0
denote the “capacity” of a node v ∈ V , and let μ ≥ 1 denote the “multiplicity” of
an edge. We assume that the μ and the cv values are polynomially bounded by n.
Our goal is to assign a “weight” x(e) ∈ [0, μ] to each edge e ∈ E in such a way
that (a)

∑
e∈Ev

x(e) ≤ cv for all nodes v ∈ V , and (b) the sum of the weights of
all the edges is maximized.

Below, we write a linear program for the above problem and its dual.

Primal LP: Maximize
∑

e∈E

x(e) (1)

subject to:
∑

e∈Ev

x(e) ≤ cv ∀v ∈ V. (2)

0 ≤ x(e) ≤ μ ∀e ∈ E. (3)

Dual LP: Minimize
∑

v∈V

cv · y(v) +
∑

e∈E

μ · z(e) (4)

subject to: z(e) +
∑

v∈Ve

y(v) ≥ 1 ∀e ∈ E. (5)

y(v), z(e) ≥ 0 ∀v ∈ V, e ∈ E. (6)

Definition 6. A feasible solution to LP (1) is λ-maximal, λ ≥ 1, iff for every
edge e ∈ E with x(e) < μ, there is some node v ∈ Ve with

∑
e′∈Ev

x(e′) ≥ cv/λ.

Theorem 1. Let f ≥ maxe∈E |Ve| be an upper bound on the maximum possible
“frequency” of an edge. Let OPT be the optimal objective value of LP (1). Any
λ-maximal solution to LP (1) has an objective value that is at least OPT/(λf+1).

Proof (Sketch). Follows from LP duality. �	
Definition 7 (Dynamic Fractional Hypergraph b-Matching). Consider
a dynamic version of the problem specified in Definition 5, where the node-set
V , the capacities {cv}, v ∈ V , the upper bound f on the maximum frequency
maxe∈E |Ve|, and the upper bound m on the maximum number of edges remain
fixed. The edge-set E, on the other hand, keeps changing dynamically. In the
beginning, we have E = ∅. At each time-step, either an edge is inserted into
the graph or an edge is deleted from the graph. The goal is to maintain an
approximately optimal solution to the problem in this dynamic setting.

Theorem 2. We can maintain a (f + 1 + εf)-maximal solution to dynamic
fractional hypergraph b-matching in O(f · log(m+n)/ε2) amortized update time.

We now compare fractional hypergraph b-matching with set-cover.

210 S. Bhattacharya et al.

Lemma 1. The dual LP (4) is an LP-relaxation of the set-cover problem.

Proof (Sketch). Given an instance of the set-cover problem, we create an instance
of the hypergraph b-matching problem as follows. For each element u ∈ U create
an edge e(u) ∈ E, and for each set S ∈ S, create a node v(S) ∈ V with capacity
cv(S) = cS . Ensure that an element u belongs to a set S iff e(u) ∈ Ev(S). Set
μ = maxv∈V cv + 1. Since μ > maxv∈V cv, it can be shown that an optimal
solution to the dual LP (4) will set z(e) = 0 for every edge e ∈ E. Thus, we can
remove the variables {z(e)} from the constraints and the objective function of
LP (4) to get a new LP with the same optimal objective value. This new LP is
an LP-relaxation for the set-cover problem. �	
Corollary 1. We can maintain an (f2+f+εf2)-approximately optimal solution
to the dynamic set cover problem in O(f · log(m+n)/ε2) amortized update time.

Proof (Sketch). We map the set cover instance to a fractional hypergraph b-
matching instance as in the proof of Lemma 1. By Theorem 2, in O(f log(m +
n)/ε2) amortized update time, we can maintain a feasible solution {x∗(e)} to
LP (1) that is λ-maximal, where λ = f+1+εf . Consider a collection of sets S∗ =
{S ∈ S :

∑
e∈Ev(S)

x(e) ≥ cv(S)/λ}. Since we can maintain the fractional solution
{x∗(e)} in O(f log(m + n)/ε2) amortized update time, we can also maintain
S∗ without incurring any additional overhead in the update time. Now, using
complementary slackness conditions, we can show that each element e ∈ U is
covered by some S ∈ S∗, and the sum

∑
S∈S∗ cS is at most (λf)-times the size

of the primal solution {x∗(e)}. The corollary follows from LP duality. �	
For the rest of this section, we focus on proving Theorem 2. First, in the

static setting, inspired by the primal-dual method for set-cover we consider the
following algorithm for the fractional hypergraph b-matching problem.

− Consider a primal solution with x(e) ← 0 for all e ∈ E, and let F ← E.
− While there is some primal constraint that is not tight:

• Keep increasing the primal variables {x(e)}, e ∈ F , uniformly at the same
rate till some primal constraint becomes tight. At that instant, “freeze” all
the primal variables involved in that constraint and delete them from the
set F , and set the corresponding dual variable to one.

Figure 1 defines a variant of the above procedure that happens to be easier to
maintain in a dynamic setting. The main idea is to discretize the continuous pri-
mal growth process. Define cmin = minv∈V cv, and without any loss of generality,
assume that cmin > 0. Fix α, β > 1, and define L = �logβ(mμα/cmin)�.

Claim 3. If x(e) = μ·β−L for all e ∈ E, then we have a feasible primal solution.

Proof. Clearly, x(e) ≤ μ for all e ∈ E. Now, consider any node v ∈ V . We have∑
e∈Ev

x(e) = |Ev| ·μ ·β−L ≤ |E| ·μ ·β−L ≤ m ·μ ·β−L ≤ m ·μ · (cmin/(mμα)) =
cmin/α < cv. Hence, all the primal constraints are satisfied. �	

Design of Dynamic Algorithms via Primal-Dual Method 211

01. Set x(e) ← μ · β−L for all e ∈ E, and define c∗
v = cv/(fαβ) for all v ∈ V .

02. Set VL ← {v ∈ V :
∑

e∈Ev
x(e) ≥ c∗

v}, and EL ← ⋃v∈VL
Ev.

03. For i = L − 1 to 1:

04. Set x(e) ← x(e) · β for all e ∈ E \⋃L
k=i+1 Ei.

05. Set Vi ←
{

v ∈ V \⋃L
k=i+1 Vk :

∑
e∈Ev

x(e) ≥ c∗
v

}
.

06. Set Ei ← ⋃v∈Vi
Ev.

07. Set V0 ← V \⋃L
k=1 Vi, and E0 ← ⋃v∈V0

Ev.

08. Set x(e) ← x(e) · β for all e ∈ E0.

Fig. 1. DISCRETE-PRIMAL-DUAL()

Our new algorithm is described in Figure 1. We initialize our primal solution
by setting x(e) ← μβ−L for every edge e ∈ E, as per Claim 3. Say that a node
v is nearly-tight if its corresponding primal constraint is tight within a factor
of fαβ, and slack otherwise. Say that an edge is nearly-tight if it is incident
upon some nearly-tight node, and slack otherwise. Let VL ⊆ V and EL ⊆ E
respectively denote the sets of nearly-tight nodes and edges, immediately after
the initialization step. The algorithm then performs L − 1 iterations.

At iteration i ∈ {L − 1, . . . , 1}, the algorithm increases the weight x(e) of
every slack edge e by a factor of β. Since the total weight received by every slack
node v (from its incident edges) never exceeds cv/(fαβ), this weight-increase
step does not violate any primal constraint. The algorithm then defines Vi (resp.
Ei) to be the set of new nodes (resp. edges) that become nearly-tight due to this
weight-increase step.

Finally, the algorithm defines V0 (resp. E0) to be the set of nodes (resp.
edges) that are slack at the end of iteration i = 1. It terminates after increasing
the weight of every edge in E0 by a factor of β.

When the algorithm terminates, it is easy to check that x(e) = μ · β−i for
every edge e ∈ Ei, i ∈ {0, . . . , L}. We also have c∗

v ≤ ∑
e∈Ev

x(e) ≤ β ·c∗
v for every

node v ∈ ⋃L
k=1 Vk, and

∑
e∈Ev

x(e) ≤ c∗
v for every node v ∈ V0. Furthermore, at

the end of the algorithm, every edge e ∈ E is either nearly-tight, or it has weight
x(e) = μ. We, therefore, reach the following conclusion.

Claim 4. The algorithm described in Figure 1 returns an (fαβ)-maximal solu-
tion to the fractional hypergraph b-matching problem.

Our goal is to make a variant of the procedure in Figure 1 work in a dynamic
setting. Towards this end, we introduce the concept of an (α, β)-partition (see
Definition 8) satisfying a certain invariant (see Invariant 5). The reader is encour-
aged to notice the similarities between this construct and Figure 1.

Definition 8. Fix any two parameters α, β > 1 and let cmin = minv∈V cv > 0.
An (α, β)-partition of the hypergraph G partitions its node-set V into subsets
V0 . . . VL, where L = �logβ(mμα/cmin)�. For i ∈ {0, . . . , L}, we identify the
subset Vi as the ith “level” of this partition, and denote the level of a node v by

212 S. Bhattacharya et al.

�(v). Thus, we have v ∈ V�(v) for all v ∈ V . We also define the level of each edge
e ∈ E as �(e) = maxv∈Ve

{�(v)}, and assign a “weight” w(e) = μ · β−�(e) to e.

Given an (α, β)-partition, let Ev(i) = {e ∈ Ev : �(e) = i} denote the set of
edges incident to v that are in the ith level, and let Ev(i, j) =

⋃j
k=i Ev(k) denote

the set of edges incident to v whose levels are in the range [i, j]. Similarly, we
define the notations Dv = |Ev| and Dv(i, j) = |Ev(i, j)|. Let Wv =

∑
e∈Ev

w(e)
denote the total weight a node v ∈ V receives from the edges incident to it. We
also define the notation Wv(i) =

∑
e∈Ev

μ ·β−max(�(e),i). It gives the total weight
the node v would receive from the edges incident to it, if the node v itself were
to go to the ith level. It is easy to check that an (α, β)-partition satisfies the
following conditions for all nodes v ∈ V .

Wv(L) ≤ cmin/α (7)
Wv(L) ≤ · · · ≤ Wv(i) ≤ · · · ≤ Wv(0) (8)

Wv(i) ≤ β · Wv(i + 1) ∀i ∈ {0, . . . , L − 1}. (9)

Invariant 5. Define c∗
v = cv/(fαβ). For every node v ∈ V , if �(v) = 0, then

Wv ≤ fαβ · c∗
v. Else if �(v) ≥ 1, then c∗

v ≤ Wv ≤ fαβ · c∗
v.

Lemma 2. Consider an (α, β)-partition that satisfies Invariant 5. The edge-
weights {w(e)}, e ∈ E, give an (fαβ)-maximal solution to LP (1).

Proof (Sketch). Similar to the proof of Claim 4. �	
Handling an Edge Insertion/Deletion. Consider an (α, β)-partition in the
graph G. A node is called dirty if it violates Invariant 5, and clean otherwise.
Since the edge-set E is initially empty, every node is clean and at level zero before
the first update. Now consider the time instant just prior to the tth update. By
induction hypothesis, at this instant every node is clean. Then the tth update
takes place, which inserts (resp. deletes) an edge e in E with weight w(e) =
μβ−�(e). This increases (resp. decreases) the weights {Wx}, x ∈ Ve. Due to this
change, the nodes x ∈ Ve might become dirty. To recover from this, we call the
subroutine in Figure 2.

Consider any node v ∈ V and suppose that Wv > fαβc∗
v = cv ≥ cmin. In

this event, since α > 1, equation 7 implies that Wv(L) < Wv(�(v)) and hence we
have L > �(v). In other words, when the procedure described in Figure 2 decides
to increment the level of a dirty node v (Step 02), we know for sure that the
current level of v is strictly less than L (the highest level in the (α, β)-partition).

Next, consider an edge e ∈ Ev. If we change �(v), then this may change the
weight w(e), and this in turn may change the weights {Wz}, z ∈ Ve. Thus, a
single iteration of the While loop in Figure 2 may lead to some clean nodes
becoming dirty, and some other dirty nodes becoming clean. If and when the
While loop terminates, however, we are guaranteed that every node is clean
and that Invariant 5 holds.

Bounding the Amortized Update Time. For each node v ∈ V and each
i ∈ {0, . . . , L}, we store the set of edges {e ∈ Ev : �(e) = i} in a doubly linked

Design of Dynamic Algorithms via Primal-Dual Method 213

01. While there exists a dirty node v
02. If Wv > fαβc∗

v, Then
// If true, then by equation 7, we have �(v) < L.

03. Increment the level of v by setting �(v) ← �(v) + 1.
04. Else if (Wv < c∗

v and �(v) > 0), Then
05. Decrement the level of v by setting �(v) ← �(v) − 1.

Fig. 2. RECOVER()

list Neighbors[v, i]. The update time of our algorithm is dominated by the time
taken to update these lists. Next, note that each time the level of an edge changes,
we have to update at most f lists (one corresponding to each node v ∈ Ve).
Hence, the time taken to update the lists is given by f ·δl, where δl is the number
of times the procedure in Figure 2 changes the level of an edge. Using a potential
function, in the full version of the paper we show that δl ≤ t ·O(L/ε) after t edge
insertions/deletions in G starting from an empty graph, for α = 1 + 1/f + 3ε,
β = 1 + ε. Since L = �logβ(mμα/cmin)� and μ, cmin are polynomially bounded
by n, the amortized update time is O(fδl/t) = O(f log(m + n)/ε2).

3 Maintaining a b-Matching in a Dynamic Setting

In this section, we will present a dynamic algorithm for the problem specified
in Definitions 3, 4 (see Theorem 7). Given any subset of edges E′ ⊆ E and any
node v ∈ V , let N (v,E′) = {u ∈ V : (u, v) ∈ E′} denote the set of neighbors
of v with respect to the edge-set E′, and let deg(v,E′) = |N (v,E′)|. Next,
consider any “weight” function w : E′ → R+. For every node v ∈ V , we define
Wv =

∑
u∈N (v,E) w(u, v). Finally, for every subset of edges E′ ⊆ E, we define

w(E′) =
∑

e∈E′ w(e). Next, we show how to maintain a “fractional” b-matching.

Theorem 6. Fix a constant ε ∈ (0, 1/4), and let λ = 4. In O(log n) amortized
update time, we can maintain a fractional b-matching w : E → [0, 1] in G =
(V,E) such that:

Wv ≤ cv/(1 + ε) for all nodes v ∈ V. (10)
w(u, v) = 1 for each edge (u, v) ∈ E with Wu,Wv < cv/λ. (11)

Further, the size of the optimal b-matching in G is O(1) times the sum∑
e∈E w(e).

Proof (Sketch). Note that the fractional b-matching problem is a special case of
fractional hypergraph b-matching (Definitions 5, 7) where μ = 1, m = n2, and
f = 2.

We scale down the capacity of each node v ∈ V by a factor of (1 + ε), by
defining c̃v = cv/(1 + ε) for all v ∈ V . Next, we apply Theorem 2 on the input
graph G = (V,E) with μ = 1, m = n2, f = 2, and the reduced capacities

214 S. Bhattacharya et al.

{c̃v}, v ∈ V . Let {w(e)}, e ∈ E, be the resulting (f + 1 + εf)-maximal matching
(see Definition 6). Since ε < 1/3 and f = 2, we have λ ≥ f + 1 + εf . Since ε is a
constant, the amortized update time for maintaining the fractional b-matching
becomes O(f ·log(m+n)/ε2) = O(log n). Finally, by Theorem 1, the fractional b-
matching {w(e)} is an (λf +1) = 9-approximate optimal b-matching in G in the
presence of the reduced capacities {c̃v}. But scaling down the capacities reduces
the objective of LP (1) by at most a factor of (1 + ε). Hence, the size of the
optimal b-matching in G is at most 9(1 + ε) = O(1) times the sum

∑
e∈E w(e).

This concludes the proof. �	
Set λ = 4 for the rest of this section. We will show how to dynamically

convert the fractional b-matching {w(e)} from Theorem 6 into an integral b-
matching, by losing a constant factor in the approximation ratio. The main idea
is to randomly sample the edges e ∈ E based on their w(e) values. But, first we
introduce the following notations.

Say that a node v ∈ V is “nearly-tight” if Wv ≥ cv/λ and “slack” otherwise.
Let T denote the set of all nearly-tight nodes. We also partition the node-set
V into two subsets: B ⊆ V and S = V \ B. Each node v ∈ B is called “big”
and has deg(v,E) ≥ c log n, for some large constant c > 1. Each node v ∈ S is
called “small” and has deg(v,E) < c log n. Define EB = {(u, v) ∈ E : either u ∈
B or v ∈ B} to be the subset of edges with at least one endpoint in B, and let
ES = {(u, v) ∈ E : either u ∈ S or v ∈ S} be the subset of edges with at least
one endpoint in S. We define the subgraphs GB = (V,EB) and GS = (V,ES).
Overview of Our Approach. We maintain the following quantitates. (1) A
random subset HB ⊆ EB , and a weight function wB : HB → [0, 1] in the
subgraph GB(H) = (V,HB), as per Definition 9. (2) A random subset HS ⊆ ES ,
and a weight function wS : HS → [0, 1] in the subgraph GS(H) = (V,HS), as
per Definition 10. (3) A maximal b-matching MS ⊆ HS in the subgraph GS(H),
that is, for every edge (u, v) ∈ HS \ MS , there is a node q ∈ {u, v} such that
deg(q,MS) = cq. (4) The set of edges E∗ = {e ∈ E : w(e) = 1}.

We will show that with high probability, one of the edge-sets HB ,MS , E∗ is
an O(1)-approximation to the optimal b-matching in G. The rest of this section
is organized as follows. In Lemma 3 (resp. Lemma 4), we prove some properties
of the random set HB (resp. HS) and the weight function wB (resp. wS). In
Lemma 5, we show that the edge-sets HB ,HS ,MS and E∗ can be maintained
in a dynamic setting in O(log3 n) amortized update time. We prove our main
result in Theorem 7.

Definition 9. Let ZB(e) ∈ {0, 1} be a random variable such that (a) it is set to
one if e ∈ HB and zero otherwise, and (b) the following properties are satisfied.

With probability one, deg(v,HB) ≤ cv for every small node v ∈ S. (12)
Pr[e ∈ HB] = E[ZB(e)] = w(e) for every edge e ∈ EB . (13)

∀v ∈ B, variables {ZB(u, v)}, u ∈ N (v,EB), are mutually independent. (14)
For each edge e ∈ HB , we have wB(e) = 1 (15)

Design of Dynamic Algorithms via Primal-Dual Method 215

Definition 10. Let ZS(e) ∈ {0, 1} be a random variable such that (a) it is set
to one if e ∈ HS and zero otherwise, and (b) the following properties hold.

Pr[e ∈ HS] = E[ZS(e)] = pe = min(1, w(e) · (cλ log n/ε)) ∀e ∈ ES . (16)
The variables {ZS(e)}, e ∈ ES , are mutually independent. (17)

For each edge e ∈ HS ,we have wS(e) =

{
w(e) if pe ≥ 1;
ε/(cλ log n) if pe < 1.

(18)

Lemma 3. For every node v ∈ V , define WB
v =

∑
u∈N (v,HB) wB(u, v). The

following conditions hold with high probability. (a) For every node v ∈ V , we
have WB

v ≤ cv. (b) For every node v ∈ B ∩ T , we have WB
v ≥ (1 − ε) · (cv/λ).

Proof (Sketch).
Consider any small node v ∈ S. By equations 12, 15, we have WB

v =
deg(v,HB) ≤ cv with high probability. Now, consider any big node v ∈ B. By
equations 13, 15 and linearity of expectation, we have E[WB

v] = Wv ≤ cv/(1 + ε).
Furthermore, if v ∈ B ∩ T , then we have E[WB

v] = Wv ≥ cv/λ. Since cv ≥ c log n,
the Lemma now follows from equation 14 and Chernoff bound. �	
Lemma 4. For every node v ∈ V , define WS

v =
∑

u∈N (v,HS) wS(u, v). The
following conditions hold with high probability. (a) For each node v ∈ V , we
have WS

v ≤ cv. (b) For each node v ∈ S, we have deg(v,HS) = O(log2 n). (c)
For each node v ∈ S ∩ T , we have WS

v ≥ (1 − ε) · (cv/λ).

Proof (Sketch). In order to highlight the main idea subject to space constraints,
we assume that pe < 1 for every edge e ∈ ES . First, consider any small node
v ∈ S. Since N (v,ES) = N (v,E), from equations 10, 16, 18 and linearity of
expectation, we infer that E[deg(v,HS)] = (cλ log n/ε) · Wv ≤ (cλ log n/ε) ·
(cv/(1 + ε)). Since cv ∈ [1, c log n], from equation 17 and Chernoff bound we
infer that deg(v,HS) ≤ (cλ log n/ε) · cv = O(log2 n) with high probability. Next,
note that WS

v = deg(v,HS)·(ε/(cλ log n)). Hence, we also get WS
v ≤ cv with high

probability. Next, suppose that v ∈ S ∩T . In this case, we have E[deg(v,HS)] =
(cλ log n/ε)·Wv ≥ (cλ log n/ε)·(cv/λ). Again, since this expectation is sufficiently
large, applying Chernoff bound we get deg(v,HS) ≥ (cλ log n/ε) · (1 − ε) · (cv/λ)
with high probability. It follows that WS

v = (ε/(cλ log n)) · deg(v,HS) ≥ (1 − ε) ·
(cv/λ) with high probability.

Finally, applying a similar argument we can show that for every big node
v ∈ B, we have WS

v ≤ cv with high probability. �	
Lemma 5. With high probability, we can maintain the edge-sets HB, E∗, HS,
and a maximal b-matching MS in GS(H) = (V,HS) in O(log3 n)-amortized
update time.

216 S. Bhattacharya et al.

Proof (Sketch). We maintain the fractional b-matching {w(e)} as per Theorem 6.
This requires O(log n) amortized update time, and starting from an empty graph,
t edge insertions/deletions in G lead to O(t log n) many changes in the edge-
weights {w(e)} (see Section 2). Thus, we can easily maintain the edge-set E∗ =
{e ∈ E : w(e) = 1} in O(log n) amortized update time.

Next, we show to maintain the edge-set HS . We do this by independently
sampling each edge e ∈ ES with probability pe. This probability is completely
determined by the weight w(e). So we need to resample the edge each time its
weight changes. Thus, the amortized update time for maintaining HS is O(log n).

Next, we show how to maintain the maximal b-matching MS in HS . Every
edge e ∈ HS has at least one endpoint in S, and each node v ∈ S has
deg(v,HS) = O(log2 n) with high probability (see Lemma 4). Due to this
fact, for each node v ∈ B, we can maintain the set of its free neighbors
Fv(S) = {u ∈ N (v,HS) : u is unmatched in MS} in O(log2 n) worst case time
per update in HS , with high probability (w.h.p.). Using the sets {Fv(S)}, v ∈ B,
after each edge insertion/deletion in HS , we can update the maximal b-matching
MS in O(log2 n) worst case time w.h.p. [9]. Since each edge insertion/deletion
in G, on average, leads to O(log n) edge insertions/deletions in HS , we spend
O(log3 n) amortized update time for maintaining MS , w.h.p.

Finally, we show how to maintain the set HB . The edges (x, y) ∈ EB with
both endpoints x, y ∈ B are sampled independently with probability w(x, y).
This requires O(log n) amortized update time. Next, each small node v ∈ S
randomly selects some neighbors u ∈ N (v,EB) and adds the corresponding
edges (u, v) to the set HB , ensuring that Pr[(u, v) ∈ HB] = w(u, v) for all
u ∈ N (v,EB) and that deg(v,HB) ≤ cv. The random choices made by the
different small nodes are mutually independent, which implies equation 14. But,
for a given node v ∈ S, the random variables {ZB(u, v)}, u ∈ N (v,EB), are
completely correlated. They are determined as follows.

In the beginning, we pick a number ηv uniformly at random from the interval
[0, 1), and, in a predefined manner, label the set of big nodes as B = {v1, . . . , v|B|}.
For each i ∈ {1, . . . , |B|}, we define ai(v) = w(v, vi) if vi ∈ N (v,EB) and zero
otherwise. We also define Ai(v) =

∑i
j=1 aj(v) for each i ∈ {1, . . . , |B|} and set

A0(v) = 0. At any given point in time, we define N (v,HB) = {vi ∈ B : Ai−1(v) ≤
k+ηv < Ai(v) for some nonnegative integer k < cv}. Under this scheme, for every
node vi ∈ B, we have Pr[vi ∈ N (v,HB)] = Ai(v)−Ai−1(v) = ai(v). Thus, we get
Pr[vi ∈ N (v,HB)] = w(v, vi) for all vi ∈ N (v,EB), and Pr[vi ∈ N (v,HB)] = 0
for all vi �= N (v,EB). Also note that deg(v,HB) ≤ �∑vi∈N (v,EB) w(v, vi)� ≤
�Wv� ≤ �cv/(1 + ε)� ≤ cv. Hence, equations 12, 13 are satisfied.

In the full paper, we show that the sums {Ai(v)}, v ∈ S, i, and the sets
{N (v,HB)}, v ∈ S, can be maintained using a balanced binary tree data struc-
ture in O(log3 n) amortized update time. This means that the set HB can also
be maintained in O(log3 n) amortized update time. �	
Theorem 7. With high probability, we can maintain an O(1)-approximately
optimal b-matching in the input graph G in O(log3 n) amortized update time.

Design of Dynamic Algorithms via Primal-Dual Method 217

Proof (Sketch). We maintain the random sets of edges HB and HS , a maximal
b-matching MS in the subgraph GS(H) = (V,HS), and the set of edges E∗ =
{e ∈ E : w(e) = 1} as per Lemma 5. This requires O(log3 n) amortized update
time with high probability (w.h.p.). We will show that w.h.p., one of the edge-
sets E∗,HB and MS is an O(1)-approximately optimal b-matching in G. But,
first, we claim that:

w(E∗) +
∑

v∈B∩T

Wv +
∑

v∈S∩T

Wv ≥ w(E) (19)

equation 19 holds since each edge e ∈ E \ E∗ has at least one endpoint in
T (by equation 11), and hence each edge e ∈ E contributes at least w(e) to
the left hand side and exactly w(e) to the right hand side. Next, note that by
Lemmas 3, 4, the weight functions wB , wS are fractional b-matchings in G with
high probability. For the rest of proof, we condition on this event, and consider
three possible cases based on equation 19.

Case 1. w(E∗) ≥ (1/3) · w(E). In this case, since w(e) = 1 for all e ∈ E∗,
Theorem 6 imply that E∗ is an O(1)-approximately optimal b-matching in G.

Case 2.
∑

v∈B∩T Wv ≥ (1/3) · w(E). Here, Lemma 3 and equation 15 imply
that:

∑
v∈B∩T Wv ≤ ∑

v∈B∩T cv ≤ ∑
v∈B∩T O(1) · WB

v ≤ O(1) · 2 · wB(HB) =
O(1) · |HB |. Since O(1) · |HB | ≥ ∑

v∈B∩T Wv ≥ (1/3) · w(E), Theorem 6 implies
that the edge-set HB is an O(1)-approximately optimal b-matching in G.

Case 3.
∑

v∈S∩T Wv ≥ (1/3) ·w(E). Here, Lemma 4 implies that:
∑

v∈S∩T Wv ≤∑
v∈S∩T cv ≤ O(1) · ∑

v∈S∩T WS
v ≤ O(1) · 2 · wS(HS) ≤ O(1) · |MS |. The last

inequality holds since MS is a 1-maximal b-matching in GS(H) = (V,HS), and
hence we have wS(HS) ≤ 3 · |MS | (see Theorem 1). Finally, since O(1) · |MS | ≥∑

v∈S∩T Wv ≥ (1/3) ·w(E), Theorem 6 implies that the edge-set MS is an O(1)-
approximately optimal b-matching in G. �	

References

1. Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted
vertex cover problem. Journal of Algorithms 2, 198–203 (1981)

2. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in O(log n)
update time. In: FOCS, pp. 383–392 (2011)

3. Bhattacharya, S., Henzinger, M., Italiano, G.F.: Deterministic fully dynamic data
structures for vertex cover and matching. In: Procs. 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2015), pp. 785–804 (2015)

4. Buchbinder, N., Naor, J.: The design of competitive online algorithms via a primal-
dual approach. Foundations and Trends in Theoretical Computer Science 3(2–3),
93–263 (2009)

5. Dantzig, G.B., Ford, L.R., Fulkerson, D.R.: A primal-dual algorithm for linear
programs. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related
Systems, pp. 171–181. Princeton University Press (1956)

218 S. Bhattacharya et al.

6. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah,
M.J., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, 2nd
edn., vol. 1, pp. 9.1–9.28. CRC Press (2009)

7. Gupta, M., Peng, R.: Fully dynamic (1 + ε)-approximate matchings. In: FOCS,
pp. 548–557 (2013)

8. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2, 83–97 (1955)

9. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic max-
imal matching. In: STOC, pp. 745–754 (2013)

10. Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover.
In: STOC, pp. 457–464 (2010)

11. Vazirani, V.: Approximation Algorithms. Springer-Verlag, NY (2001)

What Percentage of Programs Halt?

Laurent Bienvenu1(B), Damien Desfontaines2, and Alexander Shen3,4

1 LIAFA - CNRS and Université Paris 7, Paris, France
laurent.bienvenu@liafa.univ-paris-diderot.fr

2 Google Inc., Zurich, Switzerland
damien@desfontain.es

3 LIRMM - CNRS and Université Montpellier, Montpellier, France
4 On leave from IITP RAS, Moscow, Russia

alexander.shen@lirmm.fr

Abstract. Fix an optimal Turing machine U and for each n consider
the ratio ρU

n of the number of halting programs of length at most n by the
total number of such programs. Does this quantity have a limit value? In
this paper, we show that it is not the case, and further characterise the
reals which can be the limsup of such a sequence ρU

n . We also study, for
a given optimal machine U , how hard it is to approximate the domain
of U from the point of view of coarse and generic computability.

1 Introduction

1.1 Motivation

The title of this paper, ‘What percentage of programs halt?’ is intentionally
provocative; obviously, the answer depends on the programming language. To
make this question reasonable, we need to put some restrictions on the program-
ming language (=interpreter). Following the theory of algorithmic information,
we consider “optimal programming languages”. That is, we consider an optimal
Turing machine U (see below for the exact definition) and look, for each n, at the
fraction ρU

n of inputs of length at most n on which U halts (among all inputs of
those lengths). It is well known that the sequence ρU

n is not computable (knowing
the exact values of ρU

n , one can solve the halting problem). What else can be said
about it? For example, can ρU

n converge to some limit? As we will see, this cannot
happen (Theorem 4). What can then be said about the limit points of ρU

n ? They
are Martin-Löf random numbers, even relative to 0′ (Theorem 5). What are the
possible values of lim sup ρU

n ? All 0′-lower semicomputable 0′-random numbers
(Theorem 6; for lim inf similar question remains open).

In the second part of the paper we build on these results to study a related
question: can we somehow approximate the domain of U? That is, can we find
an algorithm that tells us whether U(p) terminates or not, giving the correct
answer for most inputs p? This question may be formalized in different ways.
For most of them, the answer will not depend on the particular choice of optimal
machine, with the notable exception of Theorem 15.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 219–230, 2015.
DOI: 10.1007/978-3-662-47672-7 18

220 L. Bienvenu et al.

All these questions are quite natural and similar results appeared in differ-
ent settings. In 1974 Nancy Lynch [11] considered similar questions for a more
restricted class of machines that are optimal in some effective sense, as defined
by Schnorr [15]. Later the question for some specific universal machine was stud-
ied by Hamkins and Miasnikov who showed [7] that the halting problem can be
approximated in this case. They considered Turing machines with one-sided tape.
(Their result implies that corresponding universal machine is not optimal and
thus not effectively optimal.) The criterion for the domains of optimal machines
(a set is a domain for some optimal machine if and only if it is a computably
enumerable set such that the complexity of the number of strings of length at
most n in this set is n − O(1)) was obtained by Calude, Nies, Staiger, and
Stephan [4]. The recursion-theoretic properties of different versions of approx-
imate computability have been studied by Downey, Jockusch, and Schupp [6].
See also Antti Valmari [16] who provides a survey of some other results, includ-
ing the ones from [14] and [8]. Our goal in this paper is to provide a unified
approach that allows us to give simple proofs of known results (sometimes in a
more general form) and establish some new ones.

1.2 Definitions and Notation

For a set E, by χE we denote the characteristic function of this set. If E is finite,
|E| denotes its cardinality. We write ‘log’ for base 2 logarithms.

We denote by {0, 1}∗ the set of all (finite) binary strings, by {0, 1}n the set
of strings of length n and by {0, 1}�n the set of strings of length at most n. The
length of a string x is denoted by |x|. We denote by {0, 1}ω the set of infinite
binary sequences. They are also identified with real numbers in [0, 1] in binary
notation; we mention the cases when the non-uniqueness (the same number has
two representations) creates problems.

For a partial computable function f , the domain of f , denoted by dom(f), is
the set of inputs on which f halts. A machine is a partial computable function
from {0, 1}∗ to {0, 1}∗. An input p of a machine M is sometimes referred to as
a program, and if M(p) = x, we say that p is a description of x (relative to M),
or that x is the output of program p.

By C and K we respectively denote the plain and prefix-free versions of
Kolmogorov complexity. We assume that the reader has some background in
computability theory, Kolmogorov complexity and algorithmic randomness (see,
e.g., [5,10,13,17]).

Definition 1. A machine U is said to be optimal if for every machine M there
is a constant cM such that whenever M(p) = x, there is a q such that |q| �
|p| + cM and U(q) = x.

This definition is used to define plain Kolmogorov complexity: if U is optimal,
then CU (x) = min{|q| : U(q) = x} is the plain Kolmogorov complexity function
(defined up to O(1) additive term).

In the rest of this paper, we assume that U is a fixed optimal Turing machine.
Let Hn be the number of programs of length at most n on which U halts, and

What Percentage of Programs Halt? 221

let ρU
n be the fraction of programs of length at most n on which U halts among

all programs of lengths at most n. For simplicity, we define ρU
n = Hn/2n+1, even

though technically there are only 2n+1 − 1 programs of length at most n. Since
we are only concerned in the asymptotic behaviour, this does not matter (to
make things completely formal we could also add an extra program of length 0).

2 Counting How Many Programs Halt

2.1 The Complexity of Hn

The following easy lemma is well-known (see for example [17]).

Lemma 2. For all n, C(Hn|n) = C(Hn) = n with O(1)-precision.

Proof. Indeed, C(Hn|n) � C(Hn) � n with O(1)-precision since Hn � 2n+1.
Conversely, if we have a program q that maps n to Hn and is d bits shorter
than n, we may take O(log d)-bit self-delimiting description of d and append q;
the resulting string allows us to reconstruct d, then q, then n = |q| + d, then
Hn = q(n). Then we find all strings of length at most n where U is defined, and
a string z that has no description of size at most n. This gives C(z) > n and
C(z) � O(log d) + n − d + O(1) at the same time, so d = O(1). ��

The next lemma extends this result to approximations for Hn.

Lemma 3. Let N be an integer such that |N − Hn| � 2k. Then C(N |n) �
n − k − K(k|n) − O(1) and K(N |n) � n − k − O(1).

Proof. Let N be an approximation of Hn with error at most 2k, and let t be the
program of length C(N |n) that maps n to N . We can reconstruct Hn given n, t
and the difference N −Hn (first we reconstruct N and then Hn). So C(Hn|n) �
C(t,N −Hn|n). The pair (t,N −Hn) can be described by appending t to the self-
delimiting description of N−Hn (the latter requires k+K(k|n) bits), or we could
use self-delimiting program t and append plain description of N −Hn (the latter
requires k+O(1) bits).1 This gives respectively n � C(N |n)+k+K(k|n)+O(1)
and n � K(N |n) + k + O(1). ��

2.2 Limit Points of ρU
n

Lemma 3 can be used to get some information about ρU
n . Assume that rn is

some computable sequence of rational numbers. How close can it approximate
ρU

n ? The complexity K(rn|n) is O(1), so Lemma 3 gives a constant upper bound
for n− k, so k = n−O(1), which means an absolute error for Hn of size at least
Ω(2n), so |ρn − rn| is separated from 0 for sufficiently large n.

In particular, taking rn = 0 or rn = 1, we see that ε � ρU
n � 1 − ε for some

ε > 0 and for all sufficiently large n.

1 In other words, we use the inequality C(u, v) � K(u) + C(v) in two different ways.

222 L. Bienvenu et al.

We will use this lemma to show that ρU
n has no limit. Note first that it is

very easy to construct a particular optimal machine V such that ρV
n does not

converge. (For example, it is easy to construct an optimal machine V defined only
on inputs of even length, then ρV

2n and ρV
2n+1 differ by factor 2: the numerator

is the same and the denominators differ by factor 2.) The next theorem shows
that ρU

n never converges, no matter which optimal machine we choose.

Theorem 4. The sequence (ρU
n)n∈N does not converge.

Proof. Consider a computable sequence rn that is everywhere dense in [0, 1] (say,
enumerates all rational numbers in [0, 1]). If ρU

n has some limit ρ, then ρU
n is close

to ρ for all sufficiently large n while rn is close to ρ for infinitely many n, so the
difference rn − ρU

n cannot be separated from 0. ��
Now that we know that the sequence ρU

n does not converge, one can study
its limit points. The next theorem shows that any limit point of the sequence
must be quite complex, indeed, Martin-Löf random relative to 0′.

Theorem 5. All limit points of (ρU
n)n∈N are Martin-Löf random relative to 0′.

Proof. For this proof we need to use a theorem by Miller [12] (see also [1] for a
simple proof): a real number (a bit sequence) x ∈ [0, 1] is Martin-Löf random
relative to 0′ if and only if there is a constant c such that for every prefix σ of
x, there is a finite string τ extending σ such that C(τ) � |τ | − c.

Suppose x is a limit point of ρU
n . First note that x cannot be a rational

number (otherwise the constant sequence rn = r approximates ρU
n), so x has

a unique binary representation. Let σ be a prefix of x and let k be the length
of σ. Split [0, 1] into 2k equal intervals of size 2−k. Then x is strictly inside
one of these intervals (this interval consists of all binary extensions of σ). Since
x is a limit point, some ρU

n also belongs to this interval. Recall that ρU
n is a

binary fraction Hn/2n+1 (here it is important that we use this denominator,
not 2n+1 − 1; of course, this does not change the limit points). Therefore, Hn

(considered as a string of length n + 1 with leading zeros) is an extension of
σ, and C(Hn) � |Hn| − O(1) due to Lemma 2, so it remains to use Miller’s
result. ��

We do not know whether the converse holds, i.e., whether any real that is
Martin-Löf random relative to 0′ is a limit point of some sequence ρU

n for some
optimal U . However, we can give a full characterisation of the reals that are
lim sup’s of those sequences.

Theorem 6. The lim sup of (ρU
n)n∈N is upper semicomputable relative to 0′

(and Martin-Löf random relative to 0′ by the previous theorem). Moreover, the
converse holds: every real in [0, 1] that is upper semicomputable relatively to 0′

and Martin-Löf random relative to 0′ is the lim sup of ρV
n for some optimal

machine V .

What Percentage of Programs Halt? 223

Proof. Let us consider first a simpler question. Assume that X is an arbitrary
computably enumerable set, i.e., the domain of some machine, not necessarily
an optimal one; xn is the number of strings of length n in X, and Xn is the
number of strings of length at most n in X (so Xn = x0 + . . . + xn). Consider
the upper density of X, i.e., lim sup Xn/2n+1. Which reals can appear as upper
densities of computably enumerable sets?

Lemma 7. A real number x in [0, 1] is the upper density of some computably
enumerable set X if and only if x is upper semicomputable relative to 0′.

Proof. In one direction: Xn/2n+1 is a uniformly lower semicomputable sequence
of reals, and one can show (see, e.g., [6]) that lim sup of such a sequence is upper
semicomputable relative to 0′.

Reverse direction: assume that x is upper semicomputable relative to 0′.
It is known that x can be represented as lim sup kn for some computable
sequence kn of rational numbers (see [6] or [17]). Then x = limn Kn, where
Kn = sup(kn, kn+1, . . .) form a uniformly lower semicomputable sequence. We
may assume without loss of generality that Kn ∈ [0, 1] (since the limit is in [0, 1])
and that Kn are rational numbers with denominator 2n (by rounding; note that
the resulting sequence Kn may not be computable, only lower semicomputable).
Then we consider a computably enumerable set X that contains exactly Kn

strings of length n (here we use that Kn are lower semicomputable). It is easy
to see that the upper density of X is x; in fact, the density (the limit, not only
lim sup) exists and is equal to x, since the fraction of n-bit strings in X converges
to x as n → ∞. ��

It remains to show that for x that are not only upper semicomputable relative
to 0′ but also Martin-Löf random relative to 0′, the set X can be made a domain
of an optimal machine. Our next step is the following simple observation.

Lemma 8. If some real x ∈ [0, 1] is the upper density of the domain of some
optimal machine, the same is true for x/2 and (1 + x)/2.

(In terms of binary representation x/2 is 0x, and (1 + x)/2 is 1x.)

Proof. For x/2 we just “shift” the domain of the optimal machine by adding
leading 0 to all the arguments. For (1 + x)/2 we do the same and also add all
strings starting with 1 to the domain (with arbitrary values, e.g., they all can
be mapped to an empty string). In both cases the machine remains optimal, the
complexity increases only by 1. ��

Deleting the first bit preserves randomness, so we may assume without loss
of generality that x (that is random and upper semicomputable relative to 0′) is
smaller than 1/2 (starts with 0), and then apply Lemma 8 to add leading ones.

Now we are ready to use another known result: every random upper semicom-
putable x is Solovay complete among upper semicomputable reals (all properties
are considered relative to 0′); according to one of the equivalent definitions of
Solovay completeness, this means that for every other upper semicomputable

224 L. Bienvenu et al.

(relative to 0′) y and for large enough N there exists another upper semicom-
putable (relative to 0′) z such that x = y/N + z. This result combines the
work of Calude et al. [3] and Kučera-Slaman [9] (see [2] for a simplified proof).
Technically these papers consider lower semicomputable reals instead of upper
semicomputable ones. However, an upper semicomputable real is just the oppo-
site of a lower semicomputable real, randomness is stable under sign change,
and Solovay reducibility, although often restricted to numbers in [0, 1], extends
naturally to all real numbers (again, see [2]), so the result also holds for upper
semicomputable reals. Also, we need a relativized version of their result to 0′;
as usual, relativization is straightforward.

So let us assume that x ∈ (0, 1/2) and x = y/2d + z where y is the upper
density for some optimal machine U and z is upper semicomputable relative
to 0′. (The large denominator N is chosen to be a power of 2.) Now we combine
two tricks used for Lemmas 7 and 8. Namely, we apply Lemma 7 to 2z (note
that z < 1/2), and then add leading 1’s to all the strings in the corresponding
set. This gives us density z while using only right half of the binary tree (strings
that start with 1). Then we add d zeros to all strings in the domain of U as we
did when proving Lemma 8; this gives us density y/2d using only left half of the
binary tree (actually, a small part of it, if d is large). Then we combine both
parts and get an optimal machine (since the left part is optimal) with upper
density y/2d + z as required. (Note that in general lim sup is not additive, but
in our case we have not only lim sup, but limit in one of the parts, so additivity
holds.) ��

3 Approximating the Halting Problem

3.1 Generic and Coarse Computability

Instead of just counting the terminating programs of bounded length, one can
also look at a related question: is there an algorithm which, given p, predicts
whether or not p ∈ dom(U), and is right “most of the time”? This is a rather
informal question; to make it formal we have to specify what we mean by ‘pre-
dict’, and ‘most of the time’. There are several ways to do this, and two paradigms
in particular have received a lot of attention in the recent literature, the so-called
coarse computability and generic computability. For both of them, “being right
most of the time” is understood as “being right on a set of density 1”. (Recall
that the upper density ρ̄(A) of a set A ⊆ {0, 1}∗ is lim supn |A ∩ {0, 1}�n|/2n+1,
the lower density ρ(A) is lim infn |A ∩ {0, 1}�n|/2n+1, and when the two are
equal, their common value is called the density of A. Sometimes the density is
defined for sets of natural numbers and all the initial segments are considered,
not only powers of 2, but for density 1 this does not matter.)

The difference between coarse computability and generic computability lies
in the prediction model. In coarse computability, the predictor is a total com-
putable function which given an input p ∈ {0, 1}∗ should always return 0 or 1
(meaning “p /∈ dom(U)” and “p ∈ dom(U)” respectively), but is allowed to be
incorrect sometimes, as long as the set of errors has density zero. In the generic

What Percentage of Programs Halt? 225

computability model, the predictor function is still 0/1-valued, but is allowed to
be partial as long as its domain has density 1, and whenever a 0/1-prediction is
made, it must be correct. Formally, we have the following definitions.

Definition 9. A set A ⊆ {0, 1}∗ is coarsely computable if there exists a total
computable function f : {0, 1}∗ → {0, 1} such that the set {p | f(p) = χA(p)} has
density 1. A set A ⊆ {0, 1}∗ is generically computable if there exists a partial
computable function f : {0, 1}∗ → {0, 1} such that dom(f) has density 1 and
f(p) = χA(p) for all p ∈ dom f .

These two notions are incomparable: a computably enumerable set can be
coarsely computable but not generically computable and vice-versa (see [6]).
The initial informal question we started with can now be precisely formulated:
if U is an optimal machine, can dom(U) be coarsely computable? generically
computable? The answer is no, even if we allow the approximating function f
to be both non-total and sometimes wrong — still requiring that it is correct
for most inputs. Moreover, f has Ω(1) fraction of errors among strings of length
at most n, for all sufficiently large n, not only for infinitely many n (as it is
needed to show that f is not coarsely/generically computable). Similar results
were obtained in a slightly different setting in [14]; we provide a simple argument
that requires only optimality and covers both generic and coarse computability.

Theorem 10. For every partial computable function f : {0, 1}∗ → {0, 1} there
exists some ε > 0 so that the fraction of strings x of size at most n where
f is undefined or gives a wrong answer (f(x) 	= χdom U (x)) exceeds ε for all
sufficiently large n.

Proof. We repeat the proof of Lemma 3. Knowing n and some bound 2n−d for
the number of errors (of both types: f is undefined or the value is wrong) that
f makes for strings of length at most n, we wait until f becomes defined on all
strings of those lengths except for 2n−d many. Then we count the number of
positive answers; it differs from Hn by at most O(2n−d). The difference can be
specified by n−d+O(1) bits, so the complexity C(Hn|n) is bounded by K(d|n)+
(n − d) + O(1), where O(1)-constant depends on f . The bound C(Hn|n) �
n − O(1) then implies that d − K(d|n) � O(1), so d = O(1). This provides the
required bound 2−O(1) for the fraction of errors for all large enough n. ��

3.2 Allowing a Small Density of Errors and ‘Infinitely
Often’-Success

The constant ε in Theorem 10 may depend on the predictor f . Can we prove a
stronger result where the same ε is used for all predictors? It is indeed possible
if we only want the predictor to have a lot of errors for infinitely many lengths,
not for all sufficiently large ones. The result of this type was obtained in [8];
we provide a simple proof of its version for arbitrary optimal machines. More
precisely, let us consider the following definition (which makes sense when α is
close to 1).

226 L. Bienvenu et al.

Definition 11. Let α ∈ [0, 1]. A set A ⊆ {0, 1}∗ is α-coarsely computable if
there exists a total computable function f : {0, 1}∗ → {0, 1} such that the set {p |
f(p) = χA(p)} has lower density at least α. A set A ⊆ {0, 1}∗ is α-generically
computable if there exists a partial computable function f : {0, 1}∗ → {0, 1} such
that dom(f) has lower density at least α and f(p) = χA(p) for all p ∈ dom(f).

Although we saw that there was no implication between being generically
computable and coarsely computable, there is such a link in the quantified set-
ting. Namely, if a set is α-generically computable, it is β-coarsely computable
for any β < α. Indeed, consider some rational threshold r between β and α. We
know that for infinitely many lengths the fraction of answers provided by generic
predictor f , exceeds r. These lengths can be ultimately discovered (by waiting
until the fraction exceeds r). Let us consider a fast growing computable sequence
that contains only these lengths (not necessarily all of them). For lengths in
this sequence we know r-fraction of correct answers and give arbitrary answers
for the rest. (There is a small technical problem since these answers could be
incompatible with the answers chosen previously, for smaller lengths. But if the
lengths in the sequence grow fast enough, this small change is compensated by
the difference between β and r.)

Theorem 12. There exists α < 1 such that dom(U) is neither α-coarsely com-
putable nor α-generically computable.

Proof. This result, like Theorem 10, remains true even if we allow errors of both
types (as before), and the proof is similar. Proving Theorem 10, we noted that
C(Hn|n) � K(d|n) + (n − d) + O(1), if some (fixed) algorithm f has fraction
of errors at most 2−d on strings of length at most n. Here the constant in
O(1) depends on f . We also can treat f as a parameter; the same argument
gives then C(Hn|n) � K(d|n) + (n − d) + K(f |n) + O(1), where K(f |n) is the
prefix conditional complexity of an algorithm computing f , given n. Now O(1)
is the same for all f . It remains to note that for every computable f there are
infinitely many n such that K(f |n) = O(1), where the constant does not depend
on f (or n). For example, we may consider n whose binary representation starts
with self-delimited encoding of the program for f . The rest of proof remains the
same, and we get the same ε for all f (but only for n that make f simple). ��

The next natural question is whether we can combine both results and beat
each predictor for all sufficiently large lengths, still using the same ε for all
predictors. The following definition formalizes this question; we use dual notions
where lower density is replaced by upper density (and “i.o.” stands for “infinitely
often”).

Definition 13. Let α ∈ [0, 1]. A set A ⊆ {0, 1}∗ is α-i.o.-coarsely computable
if there exists a total computable function f : {0, 1}∗ → {0, 1} such that the set
{p | f(p) = χA(p)} has an upper density of at least α. A set A ⊆ {0, 1}∗ is α-i.o.-
generically computable if there exists a partial computable function f : {0, 1}∗ →
{0, 1} such that dom(f) has an upper density of at least α and f(p) = χA(p) for
all p ∈ dom(f).

What Percentage of Programs Halt? 227

Now the situation changes.

Theorem 14. For any α < 1, dom(U) is α-i.o.-coarsely computable.

Note however that dom(U) is never 1-i.o.-computable due to Theorem 10.

Proof sketch. The proof is similar to the argument above (that relates generic
and coarse computations). Consider the value ρ = lim sup ρU

n , and consider some
rational number r that is smaller than ρ but very close to it (the difference
is less that 1 − α). There are infinitely many lengths for which the fraction
of terminating computations exceeds r, and these lengths can be discovered
ultimately, so we can consider a computable fast increasing sequence containing
only those “good” lengths (not necessarily all of them). For each length in this
sequence, we run U until we get r-fraction of terminating programs, and use
the results for coarse prediction. The positive answers are guaranteed to be
correct, while the negative answers may be incorrect. But the fraction of incorrect
answers ultimately becomes less than 1 − α, since for large n the values ρU

n can
only slightly exceed ρ (and therefore r). Again we should be careful enough to
consider a fast growing sequence of lengths, so that small lengths do not interfere
with large ones. ��

This argument provides i.o.-coarse computability but not i.o.-generic com-
putability. In fact, the latter may depend on the choice of the optimal machine
(the rare situation we mentioned in the introduction).

Theorem 15. There exists an optimal machine U1 such that for any α < 1 the
set dom(U1) is α-i.o.-generically computable. But there also exists an optimal
machine U2 such that dom(U2) is not α-i.o.-generically computable for some
α < 1.

The second statement appeared (in a bit different setting) in [11].
Proof sketch. In fact, we can use any “left-total” optimal machine as U1. A
machine is called left-total if for each n it is defined on some initial segment of
{0, 1}n in lexicographical order. (Any other computable ordering on {0, 1}n will
work.) In other words, if such a machine is defined on some string, it is also
defined on all preceding strings of the same length.

It is easy to construct a left-total optimal machine U1 by transforming a
given optimal machine U into a total one: when a new description of length n
is discovered for U , we add to U1 a description of the same object using the
lexicographically first string not used earlier.

Now we need to show that for a left-total machine U1 its domain dom(U1)
is α-i.o.-generically computable. The idea is simple: for the left-total machine
knowing the number of n-bits strings in its domain determines what are these
strings. And if we know this number with some precision, we can guarantee
both the positive and negative answers except for some interval in the middle
(its length is the difference between the upper and lower bounds). So we use the
same trick as before, but for strings of the same length. Let us see how this can
be done.

228 L. Bienvenu et al.

Let ρ′
n be the number of strings of length n in the domain of U1, and let

ρ′ = lim sup ρ′
n. Fix some rational threshold that is smaller than ρ′ but very

close to it. If it is given to us as an advice, together with the position after
which ρ′

n exceed ρ′ only by a very small margin, we can effectively find lengths
where we can generically compute U1 with a small fraction of omissions. Again
we can form a computable increasing sequence of lengths with this property, and
construct a generic predictor that is quite precise for these lengths and undefined
on all other lengths (to avoid false answers for the cases where we do not have
enough information).

However, this is not enough for us, since in our definition the fraction of
prediction failures is calculated in the set of all strings of length at most n, and
even if we know everything for n-bit strings, this covers only half of the strings
in question. So in this way we cannot make the error less than 1/2.

But we can repeat the trick: consider the lengths that just precede the lengths
in the subsequence. For them we have no information yet, but we may consider
corresponding ρ′

n and guess the lim sup for this subsequence. Then, using some
rational threshold close to this lim sup, and the position after which ρ′

n exceed
this lim sup only by a small margin, we can get a (computable increasing) sub-
sequence of lengths where we have guaranteed good approximations for two
subsequent lengths, thus reducing the error from 1/2 to 1/4 (approximately).

Now we can repeat the trick finitely many times and get arbitrary small
error. Note that for this we need only finitely many bits of advice, so this still
gives a partial computable predictor. The first statement is proven.

For the second part we use the argument provided by Lynch [11]. We can take
the standard universal machine as U2: let U2(0e1p) = Me(p) where Me is eth
machine in a standard enumeration. It remains to show that the domain of U2

is not α-i.o.-generically computable for some α < 1. It is because some special
computably enumerable set is embedded into this domain with fixed density.
Here are the details.

Post has shown that there exist simple sets, i.e., computably enumerable
sets whose complement is infinite but does not contain an infinite enumerable
subset. It is easy to construct a very sparse simple set S (either by adapting
the original Post’s construction or taking the set of strings whose Kolmogorov
complexity is very small compared to their length). Such a set can be α-i.o.-
generically computable only for very small α. Indeed, our predictor gives only
finitely many negative answers (otherwise we get an enumerable infinite subset
of the complement). Also it can give positive answers only for a very sparse set
(in all lengths), since the entire set S is sparse (and positive answers form a
subset).

It remains to take machine Me whose domain is S, and note that the strings
of the form 0e1p form a fixed-density subset in the set of all strings; let δ be this
density. A generic predictor for the domain of U2 that gives error less than δ/2
for infinitely many n, will provide i.o.-generic prediction for S with threshold
approximately δ/2, which is not possible. ��

What Percentage of Programs Halt? 229

3.3 The Probabilistic Case

Most of the results proven in this section are negative, i.e., they show that
dom(U) is hard to approximate deterministically. Does the situation change if
try to get such approximations probabilistically? This can be understood in sev-
eral ways; in the sequel we use the approach motivated by mass problems in
Medvedev’s sense. Let us start by giving the corresponding definitions. We con-
sider machines with random oracle (a sequence of independent fair coin tosses).

Definition 16. A set A ⊆ {0, 1}∗ is coarsely probabilistically computable if
there exists an oracle machine ΓX with random oracle X such that the event
“ΓX computes a total function such that the set {p | ΓX(p) = χA(p)} has den-
sity 1” has positive probability. A set A ⊆ {0, 1}∗ is generically probabilistically
computable if there exists an oracle machine ΓX such that the event “dom(ΓX)
has density 1 and ΓX(p) = χA(p) for all p ∈ dom(ΓX)” has positive prob-
ability. The notions of α-coarsely probabilistically computable, α-generically
probabilistically computable, α-i.o-coarsely probabilistically computable, and α-
i.o.-generically probabilistically computable are defined in a similar way.

One could think that allowing probabilistic computations does not change
the situation. Admittedly, it does not change it much. All the results above
remain the same in the probabilistic case (with more complicated proofs), with
the exception of 1-i.o.-coarse computability.

Theorem 17. Just like in the deterministic case, for α sufficiently close to 1:

(i) dom(U) is neither α-coarsely probabilistically computable nor α-generically
probabilistically computable;

(ii) whether dom(U) is α-i.o.-generically probabilistically computable or not
depends on the particular choice of machine U ;

(iii) dom(U) is not 1-i.o.-generically probabilistically computable.

However, unlike in the deterministic case:

(iv) dom(U) is always 1-i.o.-coarsely probabilistically computable.

The full proof of these statements is quite long, and is omitted due to space
restrictions.

Acknowledgments. This paper is based on the work done while D.D. was visiting
LIRMM (Montpellier) and Poncelet laboratory (Moscow). We thank our colleagues
from both laboratories (in particular the ESCAPE team, and Kolmogorov seminar
group) for hostpitality. A.S. thanks Antti Valmari for interesting discussion (during
RuFiDiM seminar in Turku) that was the starting point for some of the arguments
in this paper. Thanks also go to three anonymous referees for helpful feedback. The
authors also acknowledge the support of the Templeton Foundation.

230 L. Bienvenu et al.

References

1. Bienvenu, L., Muchnik, A., Shen, A., Vereshchagin, N.: Limit complexities revisited
[once more]. Technical report (2012). arxiv:1204.0201

2. Bienvenu, L., Shen, A.: Random semicomputable reals revisited. In: Dinneen,
M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond. LNCS,
vol. 7160, pp. 31–45. Springer, Heidelberg (2012)

3. Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively enumerable
reals and chaitin omega numbers. In: Meinel, C., Morvan, M. (eds.) STACS 1998.
LNCS, vol. 1373, pp. 596–606. Springer, Heidelberg (1998)

4. Calude, C., Nies, A., Staiger, L., Stephan, F.: Universal recursively enumerable
sets of strings. Theoretical Computer Science 412(22), 2253–2261 (2011)

5. Downey, R., Hirschfeldt, D.: Algorithmic randomness and complexity. Theory and
Applications of Computability. Springer, New York (2010)

6. Downey, R.G., Jockusch Jr., C.G., Schupp, P.E.: Asymptotic density and com-
putably enumerable sets. Journal of Mathematical Logic 13(02) (2013)

7. Hamkins, J.D., Miasnikov, A.: The halting problem is decidable on a set of asymp-
totic probability one. Notre Dame Journal of Formal Logic 47(4) (2006)

8. Köhler, S., Schindelhauer, C., Ziegler, M.: On approximating real-world halting
problems. In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623,
pp. 454–466. Springer, Heidelberg (2005)

9. Kučera, A., Slaman, T.: Randomness and recursive enumerability. SIAM Journal
on Computing 31, 199–211 (2001)

10. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer, New York (2007)

11. Lynch, N.: Approximations to the halting problem. Journal of Computer and Sys-
tem Sciences, 9–143 (1974)

12. Miller, J.S.: Every 2-random real is Kolmogorov random. Journal of Symbolic Logic
69(3), 907–913 (2004)

13. Nies, A.: Computability and randomness. Oxford University Press, Oxford Logic
Guides (2009)

14. Schindelhauer, C., Jakoby, A.: The non-recursive power of erroneous computation.
In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS,
vol. 1738, p. 394. Springer, Heidelberg (1999)

15. Claus Peter Schnorr: Optimal enumerations and optimal Gödel numberings. Math-
ematical Systems Theory 8(2), 181–191 (1974)

16. Valmari, A.: The asymptotic proportion of hard instances of the halting problem.
Technical report, November 2014. arxiv:1307.7066v2

17. Vereshchagin, N., Uspensky, V., Shen. A.: Kolmogorov complexity and algorith-
mic randomness (In Russian. See www.lirmm.fr/∼ashen for the draft translation.).
MCCME (2013)

www.lirmm.fr/~ashen

The Parity of Set Systems Under Random
Restrictions with Applications to Exponential

Time Problems

Andreas Björklund1, Holger Dell2(B), and Thore Husfeldt1,3

1 Lund University, Lund, Sweden
2 Saarland University and Cluster of Excellence (MMCI), Saarbrucken, Germany

hdell@mmci.uni-saarland.de
3 IT University of Copenhagen, Copenhagen, Denmark

Abstract. We reduce the problem of detecting the existence of an object
to the problem of computing the parity of the number of objects in
question. In particular, when given any non-empty set system, we prove
that randomly restricting elements of its ground set makes the size of the
restricted set system an odd number with significant probability. When
compared to previously known reductions of this type, ours excel in their
simplicity: For graph problems, restricting elements of the ground set
usually corresponds to simple deletion and contraction operations, which
can be encoded efficiently in most problems. We find three applications
of our reductions:

1. An exponential-time algorithm: We show how to decide Hamiltonic-
ity in directed n-vertex graphs with running time 1.9999n provided
that the graph has at most 1.0385n Hamiltonian cycles. We do so by
reducing to the algorithm of Björklund and Husfeldt (FOCS 2013)
that computes the parity of the number of Hamiltonian cycles in
time 1.619n.

2. A new result in the framework of Cygan et al. (CCC 2012) for ana-
lyzing the complexity of NP-hard problems under the Strong Expo-
nential Time Hypothesis: If the parity of the number of Set Covers
can be determined in time 1.9999n, then Set Cover can be decided
in the same time.

3. A structural result in parameterized complexity: We define the
parameterized complexity class ⊕W[1] and prove that it is at least
as hard as W[1] under randomized fpt-reductions with bounded one-
sided error; this is analogous to the classical result NP ⊆ RP⊕P by
Toda (SICOMP 1991).

1 Introduction

A set family F with an odd number of elements is of course nonempty. In
the present paper we study randomized reductions where the opposite holds
with significant probability: We reduce the decision problem of determining if
|F | is non-zero to the parity problem of determining if |F | is odd. Originally
such decision-to-parity reductions were obtained as mere corollaries to various
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 231–242, 2015.
DOI: 10.1007/978-3-662-47672-7_19

232 A. Björklund et al.

“isolation lemmas,” such as the one of Valiant and Vazirani [16], where the
reduction is to the unambiguous problem of distinguishing between |F | = 0 and
|F | = 1. More recently, Gupta [11] designed one that is not isolating but achieves
a significantly better success probability.

Our decision-to-parity reductions are not isolating, but they have a much
simpler structure than the existing options in that they compute random restric-
tions of the universe. In other words, they randomly delete or contract elements
of the universe. Surprisingly, the success probabilities that this approach yields
do not depend on the size of the universe – they do depend on the cardinality
of the sets in F or the cardinality of F itself, and they lie between the success
probabilities of Valiant and Vazirani [16] and Gupta [11].

Organization. In §1.1, we state the main lemma of this paper and discuss its
relationship with and consequences for probabilistic polynomial identity tests as
well as various isolation lemmas. Before we prove the Main Lemma in §2, we
first state its applications for Hamiltonicity in §1.2, for Set Cover in §1.3, and
for W[1] in §1.4. The formal proofs of these results appear in the full version of
this paper.

1.1 Set Systems Under Random Reductions

Let F denote a family of sets. We present our reductions in a general combina-
torial setting, but for the sake of concreteness we invite the reader to think of
F as the family of all vertex subsets that form a k-clique, or the family of all
edge subsets that form a Hamiltonian cycle. For instance, in the house graph in
Fig. 1, the family {{1, 2, 3, 4, 7}, {1, 3, 4, 6, 8}} corresponds to the Hamiltonian
cycles.

1
2

34
5

67 8

Fig. 1

Let U be the ground set of F , that is, F ⊆ 2U . A restriction is a function
ρ : U → {0, 1, ∗}. The restricted family F �ρ consists of all sets F ∈ F that
satisfy i ∈ F for all i with ρ(i) = 1 and i /∈ F for all i with ρ(i) = 0. A random
restriction is a distribution over restrictions ρ where ρ(i) is randomly sampled for
each i independently subject to Prρ(ρ(i) = 0) = p0 and Prρ(ρ(i) = 1) = p1. We
are interested in the event that the number of sets in the restricted family F �ρ

is odd, which we write as ⊕F �ρ.

Lemma 1 (Main Lemma). Let F be a nonempty family of sets, each of size
at most k. Let ρ denote a random restriction with p1 = 0.

The Parity of Set Systems Under Random Restrictions 233

(i) If p0 ≥ 1
2 , then

Pr
ρ

(⊕F �ρ) ≥ (1 − p0)k . (1)

(ii) If p0 < 1
2 , then

Pr
ρ

(⊕F �ρ) ≥ (1 − p0)k

(
p0

1 − p0

)min{log |F | , k}
. (2)

All of our applications are based on random restrictions with p1 = 0; in
this case, the success probabilities do not depend on the size of the underlying
ground set – they do when p1 > 0: As we will see in Lemma 9, the bound we
get for the success probability has a factor of (1 − p1)n−k. Since in our setting n
is big compared to k, the case p1 > 0 leads to success probabilities that are
exponentially small in n, which is no good.

Examples. Consider the graph of Fig. 1, where |U | = 8, k = 5, and |F | = 2, and
assume p1 = 0. The restriction ρ results in an odd number of Hamiltonian cycles
exactly if ρ(1) = ρ(3) = ρ(4) = ∗ and either ρ(2) = ρ(7) = ∗ or ρ(6) = ρ(8) = ∗
(but not both). For p0 = 1

2 this happens with probability 12
256 = 3

64 , slightly
better than the bound 1

32 promised by (1). If we set p0 = 1
5 then (2) promises

the better bound Prρ(⊕F �ρ) = (4
5)5 · 14 = 256

3125 ≥ 0.081. For completeness, direct
calculation shows that Prρ(⊕F �ρ) = 4 · (4

5)6 · 1
5 + 2 · (4

5)5 · (1
5)2 = 18432

78125 ≥ 0.235 ,
so the bound is far from tight in this example.

A simple example that attains (1) with equality is the singleton family F
consisting only of the set {1, . . . , k}. Then one easily computes Prρ(⊕F �ρ) =
Prρ(ρ(1) = · · · = ρ(k) = ∗) = (1 − p0)k. For an example attaining (2) with
equality, consider the family F of sets F satisfying {1, . . . , (1 − ε)k} ⊆ F ⊆
{1, . . . , k}, where 0 < ε ≤ 1

2 holds and εk is an integer. Then |F | = 2εk. There is
but one restriction ρ for which the event ⊕F �ρ happens, namely when ρ(i) 	= 0
for all i ≤ (1 − ε)k and ρ(i) = 0 for all i > (1 − ε)k. Thus, with p0 = ε we have

Pr
ρ

(⊕F �ρ) = (1 − p0)(1−ε)kpεk
0 = (1 − p0)k

(
p0

1 − p0

)log |F |
.

Connection with Probabilistic Polynomial Identity Tests. The Main Lemma can
be expressed in terms of polynomials over finite fields instead of restricted set
systems by considering the nonempty set system F as the nonzero polynomial

p(x1, . . . , xn) =
∑

F ∈F

∏
i∈F

xi

in the polynomial ring GF(2)[x]. The Main Lemma then says that if a ∈ GF(2)n

is chosen uniformly at random, we have

Pr
a

(
p(a1, . . . , an) = 0

)
≤ 1 − 2−k ,

234 A. Björklund et al.

where k is the total degree of p; since p is multilinear, k corresponds to the
maximum number of variables occurring in a monomial.

Thus, our Main Lemma can be understood as a variant of the well-known
probabilistic polynomial identity test of DeMillo and Lipton (1978), Schwartz
(1980), and Zippel (1979) (cf. [1, Lemma 7.5]). In its standard form, this lemma
bounds the probability by k/2, where the 2 stems from the size of the finite
field GF(2); we usually have k/2 ≥ 1 and so the bound is vacuous. Nevertheless,
variants of the lemma for small finite fields have been studied. In particular, the
basic form of the Main Lemma where p0 = 1

2 and p1 = 0 appears in Cohen
and Tal [7, Lemma 2.2] and Vassilevska Williams et al. [17, Lemma 2.2.]. For
smaller values of p0, the Main Lemma yields as a corollary the following proba-
bilistic polynomial identity test, which may be new and of independent interest;
it applies to sparse polynomials over GF(2).

Corollary 2. Let p(x1, . . . , xn) be a non-zero polynomial over GF(2) in n vari-
ables, with total degree k and at most 2εk monomials. Let a ∈ {0, 1}n be sampled
from the distribution where Pr(ai = 1) = ε holds for each i independently. Then

Pr
a

(
p(a1, . . . , an) = 0

)
≤ 1 − 2−H(ε)k .

Comparison to isolation lemmas based on linear equations. In their seminal
paper, Valiant and Vazirani [16] prove an isolation lemma that can be described
for non-empty set systems F over a ground set U of size n as follows: Suppose
we know s = log |F | for some s. Then we sample a function h : {0, 1}U → {0, 1}s

at random from a family of pairwise uniform hash functions. We interpret h as
mapping subsets of U to vectors in {0, 1}s. We define the restricted family Fh=0
as

Fh=0 =
{

F ∈ F : h(F) = (0, . . . , 0)
}

.

Valiant and Vazirani [16] prove that Fh=0 has exactly one element with proba-
bility at least some positive constant. Since the cardinality of F is not known,
the value of s must be guessed at random from {1, . . . , n}, and the success prob-
ability for the whole construction becomes Ω(1/n). In particular,

Pr
h

(⊕Fh=0) ≥ Ω(1
n) .

The procedure we just described is useful for problems that are sufficiently
rich to express the condition h(F) = 0. In particular, the set of all affine linear
functions h : GF(2)n → GF(2)s is often used as the family of hash functions;
these functions have the form h(x) = Ax+b for some suitable matrix A and vec-
tor b over GF(2). Thus the condition h(F) = 0 becomes a set of linear equations
over GF(2), which can be expressed as a polynomial-size Boolean formula – in
fact most natural NP-complete problems are able to express linear constraints
with only a polynomial overhead in instance size.

In the exponential time setting, we cannot afford such polynomial blow-
up and many problems, including the satisfiability of k-CNF formulas, are not

The Parity of Set Systems Under Random Restrictions 235

known to be able to efficiently express arbitrary linear constraints. Nevertheless,
Calabro et al. [6] are able to design an isolation lemma for k-CNF satisfiability,
essentially by considering sparse linear equation systems, that is, systems where
each equation depends only on k variables. Things seem to get even worse for
problems such as Set Cover, where we are unable to efficiently express sparse
linear equations. This is where our random restrictions come into play since
they are much simpler than linear equations; in terms of CNF formulas, they
correspond to adding singleton clauses like (xi) or (¬xi).

Neglecting, for a moment, the fact that we may be unable to express the
necessary constraints, let us compare the guarantees of Valiant and Vazirani [16]
and the Main Lemma: we only achieve oddness instead of isolation, but we do
so with probability 2−k instead of Ω(1

n) — our probability is better if n ≥ 2k.

Comparison to isolation lemmas based on minimizing weight. Another iso-
lation lemma for k-CNF satisfiability suitable for the exponential-time
setting is due to Traxler [15] and is based on the isolation lemma of Mulmu-
ley, Vazirani, and Vazirani [13]. Their construction associates random weights
w(x) ∈ {1, . . . , 2|U |} with each element in the ground set. One then considers
for each r ∈ {0, . . . , 2k|U |} the subfamily of sets of weight exactly r, formally
defined as

Fw,r =
{

F ∈ F :
∑

x∈F w(x) = r
}

.

The isolation lemma of Mulmuley, Vazirani, and Vazirani [13] says that there
is a unique set F ∈ F of minimum weight r with probability at least 1

2 . In
particular, for this r = r(F , w) we have Prw

(⊕Fw,r

∣∣ r = r(F , w)
) ≥ 1

2 .
Since r is not known, we sample it uniformly at random, which yields the overall
success probability

Pr
w,r

(⊕Fw,r

) ≥ Ω(1
kn) .

The difficulty with this approach is that, when the weighted instance of, say,
Set Cover is translated back to an unweighted instance, the parameters are not
preserved because the weights are taken from a set of nonconstant size. On the
other hand, the weights 0 and 1 can be expressed in many problems as simple
deletions or contractions.

We can view the Main Lemma in the weight-minimization framework as
follows: sample random weights w(x) ∈ {0, 1} independently for each x such
that w(x) = 0 holds with probability p0, and define the weight of F ∈ F
as

∏
x∈F w(x); note by taking the logarithm that minimizing the product is

identical to minimizing the sum. The Main Lemma yields a lower bound on the
probability that the number of sets with nonzero weight is odd. For comparison
with Traxler [15], note that we only achieve oddness instead of isolation, but we
do so with probability 2−k instead of Ω(1

kn), which is much better when k is
small.

Other parity lemmas and optimality. Not all decision-to-parity reductions are
based on an isolation procedure: Gupta [11] uses a construction of small-bias

236 A. Björklund et al.

sample spaces to design a randomized polynomial-time procedure that maps
any Boolean formula F , whose set of satisfying assignments corresponds to a
set family F , to a formula F ′, whose family of satisfying assignments F ′ is a
subfamily of F ; the guarantee is that, if F is not empty, then Pr(⊕F ′) ≥ 1

2 .
The constraints in the construction of Gupta [11] are arbitrary linear equa-

tions, which we do not know how to encode into less expressive problems such
as Set Cover. On the other hand, restrictions of families often correspond to
contractions or deletions, which are typically easy to express. Nevertheless, the
success probability of Gupta [11] is much better than the one guaranteed by the
Main Lemma, and one may wonder whether this is an artifact of our proof. Alas,
we prove in the full version of this paper that this is not the case: no decision-to-
parity reduction that is based on random restrictions can have a better success
probability than what is achieved by the Main Lemma.

1.2 Consequences for Directed Hamiltonicity

The most straightforward algorithmic application of our reductions is to trans-
late a decision problem to its corresponding parity problem. This is useful in case
a faster variant is known for the parity version. In the regime of exponential time
problems, we currently know a single candidate for this approach: Björklund and
Husfeldt [2] recently found an algorithm that computes the parity of the number
of Hamiltonian cycles in a directed n-vertex graph in O(1.619n) time, but we do
not know how to decide Hamiltonicity in directed graphs in time (2 − Ω(1))n.
We devise such an algorithm in the special case that the number of Hamiltonian
cycles is guaranteed to be small. Let H : [0, 1] → R denote the binary entropy
function given by H(ε) = −(1 − ε) log2(1 − ε) − ε log2 ε .

Theorem 3. For all ε > 0, there is a randomized O(2(0.6942+H(ε))n) time algo-
rithm to detect a Hamiltonian cycle in a given directed n-vertex graph G with at
most 2εn Hamiltonian cycles.

In particular, if the number of Hamiltonian cycles is known to be bounded
by 1.0385n, we decide Hamiltonicity in time O(1.9999n).

Discussion and related work. The best time bound currently known for directed
Hamiltonicity is 2n/ exp(Ω(

√
n/ log n)) due to Björklund [3]. In particular, no

1.9999n algorithm is known. There are no insightful hardness arguments to
account for this situation; for instance, there is no lower bound under the Strong
Exponential Time Hypothesis. We do know an O(1.657n) time algorithm for
Hamiltonicity detection in undirected graphs [4] and an O(1.888n) time algo-
rithm for bipartite directed graphs [8]. The existence of a (2 − Ω(1))n algorithm
for the general case is currently an open question.

Is Theorem 3 further evidence for a (2 − Ω(1))n time algorithm for directed
Hamiltonicity? We are undecided about this. For a counterargument, consider
another problem where a restriction of the solution set leads to a (2−Ω(1))n time
algorithm, without making the general case seem easier: Counting the number

The Parity of Set Systems Under Random Restrictions 237

of perfect matchings in a bipartite 2n-vertex graph. It is not known how to solve
the general problem faster than 2n/ exp(Ω(

√
n/ log n)), but when there are not

too many matchings, they can be counted in time (2 − Ω(1))n [5].
We remark that when the input graph is bipartite, we could reduce to the faster

parity algorithm of Björklund and Husfeldt [2], which runs in time 1.5n poly(n).
For this class of graphs, our constructions imply that there is a randomized algo-
rithm to detect a Hamiltonian cycle in time O(2(0.5848+H(ε))n) if the input graph
has at most 2εn Hamiltonian cycles. In particular, if the number of Hamilto-
nian cycles is at most O(1.0431n), the resulting bound is better than the bound
O(1.888n) of Cygan, Kratsch, and Nederlof [8]. Similarly, for the undirected (non-
bipartite) case, we can beat the O(1.657n) bound of Björklund [4] for the undi-
rected case for instances with at most O(1.0024n) cycles.

In summary, detecting a Hamiltonian cycle seems to become easier when we
know that there are few of them. Currently, this result appears to be the most
interesting application of the Main Lemma. However, it is unclear if future work
on Hamiltonicity will prove it to be a central linchpin in our final understanding,
or render it completely useless—it could still turn out that the decision problem
in the general case is easier than the parity problem.

1.3 Consequences for Set Cover and Hitting Set

For Set Cover and Hitting Set, we establish a strong connection between the
parity and decision versions, namely that computing the parity of the number
of solutions cannot be much easier than finding one.

Consider as input a family F of m subsets of some universe U with n ele-
ments. A subfamily C ⊆ F is covering if the union of all C ∈ C equals U . The
Set Cover problem is given a set family F and a positive integer t to decide if
there is a covering subfamily with at most t sets. The problem’s parity analogue
⊕ Set Covers is to determine the parity of the number covering subfamilies with
at most t sets.

Dually, a set H ⊆ U is a hitting set if H intersects F for every F ∈ F . The
Hitting Set problem is given a set family F and a positive integer t to decide if
there exists a hitting set of size at most t. The parity analogue ⊕ Hitting Sets
is to determine the parity of the number of hitting sets of size at most t.

Theorem 4. Let c ≥ 1.

(i) If ⊕ Set Covers can be solved in time dn · poly(n + m) for all d > c, then
the same is true for Set Cover.

(ii) If ⊕ Hittings Sets can be solved in time dm · poly(n + m) for all d > c, then
the same is true for Hitting Set.

Discussion and related work. Theorem 4 should be understood in the framework
of Cygan et al. [9], where it establishes a new reduction in their network of
reductions. Our results are complementary to the alternative parameterization,
with n and m exchanged in Theorem 4, which is already known: The isolation

238 A. Björklund et al.

lemma of Calabro et al. [6] in combination with Cygan et al. [9] implies that if
⊕ Hitting Sets can be solved in time dn · poly(n + m) for all d > c, then the
same is true for Hitting Set.

1.4 Consequences for W[1]

We define the parameterized complexity class ⊕W[1] in terms of its complete
problem ⊕ Multicolored Cliques: This problem is given a graph G and a coloring
c : V (G) → [k] to decide if there is an odd number of multicolored cliques, that is,
cliques of size exactly k where each color is used exactly once. Formally we treat
⊕ Multicolored Cliques as an ordinary decision problem. We let ⊕W[1] be the
class of all parameterized problems that have an fpt-reduction to ⊕ Multicolored
Clique. We recall from Flum and Grohe [10, Def. 2.1] that fpt-reductions are
deterministic many-to-one reductions that run in fixed-parameter tractable time
and that map an instance with parameter k to an instance with parameter at
most f(k). The following connection between W[1] and ⊕W[1] is a consequence
of the Main Lemma.

Theorem 5. There is a randomized fpt-reduction from Multicolored Clique to
⊕ Multicolored Cliques with one-sided error at most 1

2 ; errors may only occur
on yes-instances.

Discussion and related work. Our motivation for Theorem 5 stems from struc-
tural complexity: Toda’s theorem [14] states that PH ⊆ P#P, that is, every
problem in the polynomial-time hierarchy reduces to counting satisfying assign-
ments of Boolean formulas. Theorem 5 aspires to be a step towards an interesting
analogue of Toda’s theorem in parameterized complexity. In particular, the first
step of Toda’s proof is

NP ⊆ RP⊕P , (3)

or in words: there is a randomized polynomial-time oracle reduction from Sat
to ⊕ Sat with bounded error and which can only err on positive instances; the
existence of such a reduction follows from the isolation lemma. Using a trick
that we also rely on in the proof of Theorem 5, Toda [14] is able to turn this
reduction into a many-to-one reduction. In terms of structural complexity, the
existence of such a many-to-one reduction from Sat to ⊕ Sat then implies

NP ⊆ RP⊕P[1] , (4)

where the notation [1] indicates that the number of queries to the ⊕P-oracle is at
most one. Theorem 5 is a natural and direct parameterized complexity analogue
of (4), but for obvious reasons we decided not to state it as W[1] ⊆ RFPT⊕W[1][1].

Montoya and Müller [12, Theorem 8.6] prove a parameterized complexity
analogue of the isolation lemma. Implicit in their work is a W[1]-analogue of
(3); more precisely, they obtain a reduction with similar specifications as the one
in Theorem 5, but with two main differences: While their reduction guarantees

The Parity of Set Systems Under Random Restrictions 239

uniqueness rather than just oddness, it is only a many-to-many and not a many-
to-one reduction. Moving from (3) to (4) is almost automatic in the polynomial-
time setting, however we do not see how Theorem 5 could be obtained directly
from its weaker many-to-many version.

We remark that Theorem 5 reveals a body of algorithmic open problems, the
most intriguing of which, perhaps, is the question whether ⊕ k-Paths is fixed-
parameter tractable or ⊕W[1]-hard. Note that ⊕ k-Matchings is polynomial-time
solvable by a reduction to the determinant, which is established using a standard
interpolation argument in the matching polynomial.

2 Proof of the Main Lemma

Let U = [n] = {1, . . . , n}. We define the distribution D(p0, p1, n) over the set
of all restrictions ρ : [n] → {0, 1, ∗} as follows: For each i ∈ [n] independently,
we sample ρ(i) at random so that ρ(i) = b holds with probability exactly pb for
b ∈ {0, 1, ∗} where p∗ is defined as 1 − (p0 + p1). The following cancellation trick
lies at the heart of the Main Lemma.

Lemma 6 (Cancellation Lemma). Let F be a family of subsets of [n] and
let i ∈ [n]. We define the family of sets for which i is relevant as

F�i
.=

{
f ∈ F : (f
{i}) 	∈ F

}
.

Then, for all ρ : [n] → {0, 1, ∗} with ρ(i) = ∗, we have ⊕F �ρ = ⊕F�i�ρ.

Proof. We prove that F ′ .= (F �ρ)\ (F�i�ρ) has an even number of elements by
defining a fixed-point free involution π : F ′ → F ′. For each f ∈ F ′, we define
π(f) = f
{i}. Note that π(f) is indeed a member of F ′ because ρ(i) = ∗ and
π(f) ∈ (F �ρ) \ F�i. It is clear that π(f) 	= f and π(π(f)) = f , and so π is a
fixed-point free involution. �

The proof of the Main Lemma works by an induction. The base case for the
induction is a set family that is extremal in the following sense.

Definition 7. Let F be a family over [n]. Let I = { i ∈ [n] : F�i = ∅ } be
the set of all irrelevant vertices of F and let Fb = { i ∈ [n] : F �[i�→b] = ∅ } for
b ∈ {0, 1} be the set of all vertices of F that are forced to b. The family F is
extremal if it is non-empty and satisfies [n] = F0 ∪ F1 ∪ I, that is, each variable
is either forced or irrelevant.

We collect a few basic observations about these sets in the following lemma.

Lemma 8. Let F be an extremal family over [n] = F0 ∪ F1 ∪ I, let k+
.=

maxf∈F |f | and k−
.= minf∈F |f |. Then

(i) the sets I, F1, and F0 are pairwise disjoint,
(ii) the number of irrelevant vertices is |I| ≤ k+ − k−,

240 A. Björklund et al.

(iii) the number of vertices forced to one is |F1| ≤ k−,
(iv) the number of vertices forced to zero is |F0| ≤ n − k+, and
(v) F is extremal if and only if F = { F1 ∪ g : g ⊆ I }.
Proof. (i) follows immediately from the definitions of the sets. Let f ∈ F . Then
f \ I ∈ F and f ∪ I ∈ F . Clearly k− ≤ |f \ I| = |f ∪ I| − |I| ≤ k+ − |I|, which
proves (ii). By definition, F1 is contained in all sets f ∈ F , which implies (iii).
Symmetrically, any set f ∈ F satisfies f ∩ F0 = ∅, which implies (iv). Finally,
for (v), let f ∈ F . By definition, F1 ⊆ f ⊆ [n] \ F0. Since [n] = F0 ∪̇ F1 ∪̇ I, this
implies f ⊆ F1 ∪I. For the reverse inclusion, let f = F1 ∪g for some g ⊆ I. Since
F is not empty, it must contain a set, which by the first inclusion has the form
F1∪g′ for some g′ ⊆ I. Since g ⊆ I we have f = F1∪g = (F1∪g′)
(g
g′) ∈ F . �

Lemma 9. Let F be an extremal family over [n] = F0 ∪ F1 ∪ I.
Let D .= D(p0, p1, n). Then

Pr
ρ∼D

(
⊕F �ρ

)
= (1 − p1)|F0|(1 − p0)|F1|(p0 + p1)|I|

.

Proof. Note that F0 ∩ F1 = ∅ and (F0 ∪ F1) ∩ I = ∅ holds for all F 	= ∅. The
assumption is that every vertex is either forced to 0, forced to 1, or irrelevant.
By Lemma 6, for all i ∈ I, the event ρ(i) = ∗ implies that F �ρ is of even size.
Hence we need to condition on the event ρ(i) ∈ {0, 1} for all i ∈ I. This event
occurs with probability (p0 + p1)|I|. Furthermore, since the vertices in I are all
irrelevant, if we set them to 0 or 1 arbitrarily, we end up with a family F ′ that
has the same cardinality regardless of the assignment on the irrelevant vertices.
In particular, since all vertices in [n] \ I are forced, each set F ′ has exactly one
element. The probability that the unique element of F ′ survives after further
restricting the vertices of F0 ∪ F1 randomly is equal to (1 − p1)|F0|(1 − p0)|F1|. �

To analyze the probability of the event ⊕F �ρ for non-extremal families F 	=
∅, we consider the following type of branching process:

◦ If F is extremal, return F as a leaf.
◦ If F 	= ∅ is not extremal, let i ∈ [n] \ F0 ∪ F1 ∪ I and add the following two

children to the branching tree:

F0
.=

{
f ⊆ [n] \ {i} : f ∈ F

}

F∗
.=

{
f ⊆ [n] \ {i} : f ∈ F xor f
{i} ∈ F

}

Note that F0 = F �[i�→0] and F∗ = F�i − i where

F − i
.=

{
f ⊆ [n] \ {i} : f ∈ F or f ∪ {i} ∈ F

}
.

Therefore, i 	∈ F1 implies F0 	= ∅ and i 	∈ I implies F∗ 	= ∅.

The Parity of Set Systems Under Random Restrictions 241

The above process defines a finite branching tree T of F 	= ∅, which is generally
not unique since we can choose which i should be branched on next. We let the
cost of a branching tree T of F be the maximum |I(F ′)| over all leaves F ′ of
T , that is, it is the maximum number of irrelevant vertices that any leaf has.
The cost of F is the minimum cost over all branching trees of F . We provide
the following simple upper bound on the cost of any branching tree.

Lemma 10. Let F 	= ∅. Any branching tree T of F has cost ≤
min{k+, log|F |}.
Proof. Note that F0 and F∗ have size at most |F | and contain sets of size at
most k+. Thus, by induction, any leaf F ′ in T has size at most |F | and contains
sets of size at most k+. We apply Lemma 8 to the extremal family F ′. We get
|I(F ′)| ≤ k+ as well as 2|I(F ′)| = |F ′| ≤ |F |, which proves the claim. �

Lemma 11 (Main Lemma Based on Family Cost). Let F be a non-
empty family of cost at most c and with sets of size at most k. Let D .= D(p, 0, n).

If p ≥ 1
2 , then Prρ∼D

(
⊕F �ρ

)
≥ (1 − p)k

.

If p < 1
2 , then Prρ∼D

(
⊕F �ρ

)
≥ (1 − p)k−c

pc .

Clearly our bound for p ≥ 1
2 is maximized at p = 1

2 . Moreover, note that (1 −
p)k−cpc ≥ 2−H(p)k holds if c/k ≤ p ≤ 1

2 and is maximized at p = c/k. Thus once
c and k are fixed, Lemma 11 gives its best guarantee for p = min{ 1

2 , c
k }.

Proof. Let T be a branching tree for F that has cost at most c. We prove the
claim by induction on the structure of T . If F is a leaf of T , then F is extremal
and we are in the situation of Lemma 9 with p0 = p = 1 − p∗ and p1 = 0. This
yields Prρ(⊕F �ρ) = (1 − p)|F1| · p|I| ≥ (1 − p)k−|I| · p|I| , where the inequality
follows from Lemma 8. If p < 1

2 , the function x �→ hp(x) .= (1 − p)k−xpx is
strictly decreasing and the assumption |I| ≤ c implies hp(|I|) ≥ hp(c), which
proves the claimed inequality. If p ≥ 1

2 , then hp(x) is non-decreasing and we use
the trivial lower bound hp(|I|) ≥ hp(0) to obtain the claimed inequality.

Now let F be an inner vertex of T , where T selects some i ∈ [n] \ F0 ∪ F1 ∪ I
and produces the children F0 and F∗. We estimate the probability of the event
⊕F �ρ by conditioning on the i-th coordinate:

Pr
ρ

(
⊕F �ρ

)
= p0 · Pr

ρ

(
⊕F �ρ

∣∣∣ ρ(i) = 0
)

+ p∗ · Pr
ρ

(
⊕F �ρ

∣∣∣ ρ(i) = ∗
)

.

Recall that p1 = 0 and p0 + p∗ = 1. Thus it remains to prove that (1 − p)k or
(1 − p)k−cpc are lower bounds for the two remaining conditional probabilities.
The event ρ(i) = 0 implies F �ρ = F0�ρ′ where ρ′ is identical to ρ except that
it is undefined on i. Furthermore, if ρ(i) = ∗, then the Cancellation Lemma 6
implies ⊕F �ρ = ⊕F∗�ρ′ . Since i is neither in F1 nor in I, the families F0 and F∗
are not empty. Moreover, their maximum set sizes are bounded by k. Also note
that, by definition of the cost, the cost of F0 and the cost of F∗ are each at
most c. Thus we can apply the induction hypothesis on the families F0 and F∗.
This finishes the proof of the lemma. �

242 A. Björklund et al.

Acknowledgments. We would like to thank Radu Curticapean for reminding some of
us of the matching polynomial, Moritz Müller for helping us understand the relationship
between our decision-to-parity reduction and their variant of the isolation lemma, and
Ryan Williams for pointing us to [17]. AB and TH are supported by the Swedish
Research Council, grant VR 2012-4730: Exact Exponential-time Algorithms.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press (2009)

2. Björklund, A., Husfeldt, T.: The parity of directed hamiltonian cycles. In: Proc.
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS, Berke-
ley, CA, USA, October 26–29, pp. 727–735 (2013)

3. Björklund, A.: Below all subsets for permutational counting problems, (2012)
arXiv:1211.0391 [cs:DS]

4. Björklund, A.: Determinant sums for undirected Hamiltonicity. SIAM J. Comput.
43(1), 280–299 (2014)

5. Björklund, A., Husfeldt, T., Lyckberg, I.: Computing the permanent modulo a
prime power. In: preparation (2015)

6. Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique
k-SAT: An isolation lemma for k-CNFs. In: Proc. 18th IEEE Conference on Com-
putational Complexity, CCC, Aarhus, Denmark, July 7–10 (2003)

7. Cohen, G., Tal, A.: Two structural results for low degree polynomials and applica-
tions. Electronic Colloquium on Computational Complexity (ECCC). Tech report
TR13-145 (2013)

8. Cygan, M., Kratsch, S., Nederlof, J.: Fast Hamiltonicity checking via bases of
perfect matchings. In: Proc. 45th Symposium on Theory of Computing, STOC,
Palo Alto, CA, USA, June 1–4, pp. 301–310 (2013)

9. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi,
R., Saurabh, S., Wahlström, M.: On problems as hard as CNFSAT. In: Proc.
27th IEEE Conference on Computational Complexity, CCC, Porto, Portugal, June
26–84 (2012)

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
11. Gupta, S.: Isolating an odd number of elements and applications in complexity

theory. Theor. Comput. Syst. 31(1), 27–40 (1998)
12. Montoya, J.A., Müller, M.: Parameterized random complexity. Theor. Comput.

Syst. 52(2), 221–270 (2013)
13. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-

sion. Combinatorica 7(1), 105–113 (1987)
14. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),

865–877 (1991)
15. Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Nieder-

meier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201. Springer, Heidelberg
(2008)

16. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theor.
Comput. Sci. 47, 85–93 (1986)

17. Williams, V.V., Wang, J., Williams, R., Yu, H.: Finding four-node subgraphs in tri-
angle time. In: Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, San Diego, CA, USA, January 4–6, 2015, pp. 1671–1680 (2015)

http://arxiv.org/abs/1211.0391

Spotting Trees with Few Leaves

Andreas Björklund1, Vikram Kamat2, �Lukasz Kowalik2(B), and Meirav Zehavi3

1 Department of Computer Science, Lund University, Lund, Sweden
2 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,

Warsaw, Poland
kowalik@mimuw.edu.pl

3 Department of Computer Science, Technion – Israel Institute of Technology,
Haifa, Israel

Abstract. We show two results related to the Hamiltonicity and
k-Path algorithms in undirected graphs by Björklund [FOCS’10], and
Björklund et al., [arXiv’10]. First, we demonstrate that the technique
used can be generalized to finding some k-vertex tree with l leaves in
an n-vertex undirected graph in O∗(1.657k2l/2) time. It can be applied
as a subroutine to solve the k-Internal Spanning Tree (k-IST) prob-
lem in O∗(min(3.455k, 1.946n)) time using polynomial space, improving
upon previous algorithms for this problem. In particular, for the first
time, we break the natural barrier of O∗(2n). Second, we show that the
iterated random bipartition employed by the algorithm can be improved
whenever the host graph admits a vertex coloring with few colors; it can
be an ordinary proper vertex coloring, a fractional vertex coloring, or
a vector coloring. In effect, we show improved bounds for k-Path and
Hamiltonicity in any graph of maximum degree Δ = 4, . . . , 12 or with
vector chromatic number at most 8.

1 Introduction

Given an undirected host graph G on n vertices, the (k, l)-Tree problem asks
if G contains a tree T on k vertices, such that the number of leaves in T is exactly
l. This problem is a natural generalization of the classic k-Path problem: for
l = 2, the definitions of (k, l)-Tree and k-Path coincide. For k = n and l = 2, we
get the classic Hamiltonian Path. Furthermore, (k, l)-Tree is tightly linked
to the well-studied k-Internal Spanning Tree (k-IST) problem, which asks if
a given graph G on n vertices contains a spanning tree T with at least k internal
vertices. Indeed, it is well-known that a yes-instance of k-IST is a yes-instance
of (k + l, l)-Tree for some l ≤ k, and vice versa [9]. Because of the connections
to Hamiltonian Path, the (k, l)-Tree, k-IST and k-Path problems, even in
bipartite graphs or in graphs of bounded degree 3, are NP-hard.

In this paper, we study parameterized algorithms, which attempt to solve
NP-hard problems by confining the combinatorial explosion to a parameter k.

Work partially supported by the National Science Centre of Poland, grant number
2013/09/B/ST6/03136 and ERC StG project PAAl no. 259515 (�LK). The paper was
prepared while the second author held a post-doctoral position at Warsaw Center of
Mathematics and Computer Science.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 243–255, 2015.
DOI: 10.1007/978-3-662-47672-7 20

244 A. Björklund et al.

More precisely, a problem is fixed-parameter tractable (FPT) with respect to a
parameter k if it can be solved in time O∗(f(k)) for some function f , where O∗

hides factors polynomial in the input size. Our results have also consequences in
the field of moderately exponential-time algorithms, where one aims at providing
an O(cn)-time algorithm, with the constant c > 1 being as small as possible.

We develop an FPT algorithm for (k, l)-Tree in general graphs that relies
upon a non-trivial generalization of the technique underlying the Hamiltonic-
ity and k-Path algorithms in [2,4]. We thus break the natural barrier of O∗(2n)
in the running time bound for k-IST. Then, we conduct a thorough examination
of (k, l)-Tree in special classes of graphs that admit a vertex coloring with few
colors. This in turn implies faster algoritms for Hamiltonicity, k-Path and
k-IST in bounded degree graphs. Apart from the classic vertex coloring, we con-
sider fractional coloring and vector coloring, thus showing that the latter tool,
famous in approximation algorithms, is also helpful in parameterized complexity.

1.1 Related Work

The k-IST problem and its directed version, k-Internal Out-Branching
(k-IOB),1 are of interest in database systems [12] and water supply network
design [30]. Note that any k-IOB algorithm also solves k-IST (after replacing
every edge of the input graph by two oppositely oriented arcs). Over the last
decade k-IST and k-IOB were heavily researched, resulting in a number of algo-
rithms using a variety of approaches. The first FPT algorithm, running in time
O∗(2O(k log k)) was due to Prieto et al. [29]. Cohen et al [9] obtained an algorithm
running in time O∗(49.4k), which was the first O∗(2O(k))-time bound. Currently
the fastest algorithms are due to Zehavi [36] and run in O∗(3.617k) randomized
time or O∗(5.139k) deterministic time. However, both these algorithms use expo-
nential space. Prior to this work the best time bound of a polynomial space algo-
rithm was O∗(4k): first, Daligault [11] and Zehavi [35] obtained a randomized
algorithm and very recently, Li et al. [24] showed a 2k-kernel implying a determin-
istic algorithm. For the special case of graphs of bounded degree Δ, Zehavi [35]
shows a k-IOB algorithm running in time O∗(4(1− Δ+1

2Δ(Δ−1))k). Another specialized
algorithm, due to Raible et al. [30], solves k-IST in graphs of maximum degree 3
in time O∗(2.137k). There also has been quite some interest in moderately expo-
nential time algorithms for k-IST. Unlike in many other graph problems, even an
O∗(2n) algorithm is not completely trivial. Algorithms achieving this bound were
shown by Raible et al. [30] (with exponential space) and Nederlof [28] (polyno-
mial space). Note that O∗(2n) is a natural barrier, as it corresponds to the num-
ber of all subsets of vertices. During recent years, researchers managed to surpass
this barrier for a number of problems, like Dominating Set by Grandoni [19],
Feedback Vertex Set by Razgon [31] and Hamiltonicity by Björklund [2].
Raible et al. [30] explicitly posed an open question asking whether the approach of
Björklund [2] can be extended to k-IST either for general graphs or for graphs of

1 In the k-IOB problem, we need to decide if a directed graph G contains a spanning
tree T with exactly one vertex of in-degree 0 and at least k internal vertices.

Spotting Trees with Few Leaves 245

large vertex cover. Raible et al. [30] were able to cross the O∗(2n) barrier for graphs
of bounded degree — they get an algorithm running in time O∗((2Δ+1−1)

n
Δ−1)

and present a further improvement to O∗(1.862n) when Δ = 3.
The (k, l)-Tree problem was implicitly introduced by Cohen et al. [9] as a

tool for solving k-IOB. They obtain an O∗(6.14k)-time algorithm. Currently, the
fastest randomized algorithms, due to Daligault [11] and Zehavi [35], run in time
O∗(2k) and have a polynomial space complexity. Note that we meet the O∗(2k)
barrier again. For the deterministic case, Zehavi [36] (relying on [33]) shows an
O∗(2.597k)-time algorithm for (k, l)-Tree with an exponential space complexity.

The fundamental k-Path problem is well-studied in the field of Parameter-
ized Complexity. In the past three decades, it enjoyed a race towards obtaining
the fastest FPT algorithm (see [1,4,8,15,16,23,26,34,36]). Currently, the best
randomized algorithm, due to Björklund et al. [4], runs in time O∗(1.657k) and
has a polynomial space complexity, and the best deterministic algorithm, due to
Zehavi [36], runs in time O∗(2.597k) and has an exponential space complexity.

The result in [4] extends Björklund’s O∗(1.657n) time algorithm for Hamil-
tonicity in [2]. The same paper contains also a better bound of O∗(2n/2) for
bipartite graphs. Hamiltonicity in graphs of bounded maximum degree Δ
received a considerable attention beginning with the paper of Eppstein [14],
followed by works of Iwama and Nakashima [22], Gebauer [20] and Björklund
et al. [3]. Currently the best algorithm for Δ = 3, due to Cygan et al. [10], runs
in time O∗(1.201n) [10], while prior to this work, for Δ ≥ 4 the best bound was
that of the general Björklund’s O∗(1.657n)-time algorithm.

1.2 Our Contribution

We obtain improved algorithms for (k, l)-Tree, k-IST, k-Path and Hamil-
tonicity. Our algorithms are randomized Monte-Carlo with one sided error
(they never report a false positive, and they report false negatives with constant
probability), having polynomial space complexities. Our contribution is twofold.
While we focus on decision problems, the corresponding search versions can be
solved with an additional O(k log n) running time overhead, see [7].

From Paths to Trees. First, we develop an algorithm that solves (k, l)-Tree
in general graphs in time O∗(1.657k2�/2). This can be seen as a generalization of
the technique of Björklund et al. [2,4] from detecting paths to detecting trees.
In the original technique one enumerates walks of length k (rather than paths,
which are walks without repeating vertices) and then uses an algebraic tool
to sieve-out the walks which are not paths. The algebraic tool is to design a
polynomial which is a sum of monomials, each corresponding to a walk. The
trick is that thanks to the use of bijective labelings, the non-path walks can be
paired-up so that both corresponding monomials are the same and thus cancel
over a field of characteristic 2. It is quite clear that in the tree case walks should
be replaced by branching walks (see [27]). However, the main difficulty lies in
the pairing argument, which requires a new labeling scheme and becomes much
more delicate. Indeed, this extension is non-trivial as it is exactly the topic of
the open problem posed by Raible et al. [30] mentioned in the previous section.

246 A. Björklund et al.

Table 1. Running times of our k-Path algorithm in bounded degree graphs (left), and
bounded vector chromatic number (right). For bounds for Hamiltonicity, set k = n.

Δ Running Time

3 O∗(1.5705k)

4 O∗(22k/3) = O∗(1.5874k)

5, 6 O∗(27k/10) = O∗(1.6245k)

7, 8 O∗(25k/7) = O∗(1.6406k)

9, 10 O∗(213k/18) = O∗(1.6497k)

11, 12 O∗(28k/11) = O∗(1.6555k)

χv(G) Running Time

4 O∗(1.6199k)

5 O∗(1.6356k)

6 O∗(1.6448k)

7 O∗(1.6510k)

8 O∗(1.6554k)

Our algorithm, similarly as in [4], uses a random bipartition of the vertices. The
running time depends in a crucial way on a random variable (called the number
of needed labels) in the resulting probability space. The second difficulty was to
determine the distribution of this variable (Lemma 7), and again this turned out
to be much more demanding than in the path case.

The (k, l)-Tree algorithm described above already implies an improved
result for k-IST in general graphs. However, it works much faster if the hid-
den spannning tree has few leaves. We design a different strategy, based on
finding a maximum matching, to accelerate the algorithm when it looks for solu-
tions with many leaves. By merging the two strategies, we obtain an O∗(3.455k)
time algorithm for k-IST. This is the first O∗((4 − Ω(1))k)-time algorithm that
uses polynomial space. It immediately implies a moderately exponential time
algorithm running in time O∗(1.946n), which breaks the O∗(2n) barrier.

Paths and Trees in Colored Graphs. Next, we study (k, l)-Tree in graphs
that admit a vertex coloring with d colors. This can be seen as an extension of
Björklund’s O∗(2n/2)-time algorithm for Hamiltonicity in bipartite graphs [2].
However, the insight in [2] was to find a small vertex cover of the hidden solution.
Here, we use a different insight: by choosing roughly half of the color classes, we
get a small subset of the hidden solution vertices which covers many (but not

all) of its edges. The resulting algorithm runs in O∗(2(1− �d/2��d/2�
d(d−1))k) time when

l = O(1) (see Section 3 for a more complicated bound in the general case). For
a graph of bounded degree Δ that is neither complete nor an odd cycle, one can
construct a proper Δ-coloring in linear time (e.g., by Lovász’s proof of Brooks’
theorem [25]). This immediately results in a fast algorithm for (k, l)-Tree in
such graphs (see Table 1 for the special cases of k-Path and Hamiltonicity;
the case Δ = 3 is solved by a special algorithm, see below), along with an
improved algorithm for k-IST in such graphs (for details see the full version [5]).

Fractional coloring is a well studied generalization of the classical vertex
coloring. Our algorithm for graphs of low chromatic number generalizes quite
easily to the case of low fractional chromatic number. This has consequences in
improved algorithms for some special graph classes, e.g. an O∗(1.571k1.274l)-
time algorithm for (k, l)-Tree in subcubic triangle-free graphs, or O∗(1.571k)-
time algorithm for k-Path in general subcubic graphs. For subcubic graphs of
even larger girth, we get further improved bounds.

Spotting Trees with Few Leaves 247

Another relaxation of the classical coloring is vector coloring, known for its
importance in approximation algorithms (e.g. [18]). Its important advantage is
that, contrary to the classical or fractional coloring, a (1 + ε)-approximation
can be found in polynomial time [17]. We provide an algorithm for (k, l)-Tree
that applies vector coloring. It results in improved running time when the vector
chromatic number is at most 8.

Organization. Section 2 developes an algorithm for (k, l)-Tree in general
graphs. Then, our contributions for colored graphs are given in Section 3 (proper
coloring, along with a consequence for (k, l)-Tree in bounded degree graphs).
Due to space limitations, we omitted some details in this extended abstract.
We also had to skip the description of the remaining constributions, i.e., our
algorithm for k-IST in general graphs, algorithms for graphs of low fractional
coloring number or vector coloring number, consequences for k-IST in bounded
degree graphs and for (k, l)-Tree in graphs with small chromatic number, and
specialized algorithms for (k, l)-Tree and k-Path in subcubic graphs. All this
missing material can be found in the technical report [5].

Notation. Throughout the paper we consider undirected graphs. For an integer
k, by [k] we denote the set {1, 2, . . . , k}. For a set S and an integer k, by

(
S
k

)
we

denote the family of all subsets of S of size k. Let us write V = V (G) = [n] for
the vertex set and E = E(G) for the edge set of the host graph G.

2 Finding Trees on k Vertices with l Leaves

In this section we generalize the k-Path algorithm by Björklund et al. [2,4] to
finding subtrees on k nodes including l leaves. Throughout this section, assume
we have a fixed partition V = V1 ∪ V2 of the vertices of the input graph. For the
promised generalization, we will use a random bipartition, similarly as in [2,4].

Branching Walks. The notion of branching walk was introduced by Ned-
erlof [27]. A mapping h : V (T) → V (G) is a homomorphism from a graph T to
the host G if {h(a), h(b)} ∈ E(G) for all {a, b} ∈ E(T). We adopt the convention
of calling the elements of V (T) nodes and the elements of V (G) vertices.

A branching walk in G is a pair B = (T, h) where T is an unordered rooted
tree and h : V (T) → V (G) is a homomorphism from T to G. The walk starts
from the vertex h(1) in G, and its size is |V (T)|. We say that the walk is simple if
h is injective, and weakly simple if for any node x ∈ V (T), the homomorphism h
is injective on children of x. The walk is U-turn-free if for any node a of T , every
child b of a maps to a different vertex than the parent c of a, i.e., h(b) �= h(c).

A proper order of B is any permutation π : V (T) → {1, . . . , |V (T)|} such
that for every two nodes a, b ∈ V (T),

(i) if depth(a) < depth(b) then π(a) < π(b),
(ii) if a, b �= root(T) and π(parent(a)) < π(parent(b)) then π(a) < π(b),

(iii) if a and b are siblings and h(a) < h(b) then π(a) < π(b).

The following proposition is immediate.

248 A. Björklund et al.

Proposition 1. Any weakly simple branching walk has exactly one proper order.

We say that a weakly simple branching walk B is properly ordered if V (T) =
{1, . . . , |V (T)|} and the proper order from Proposition 1 is the identity function.

Labeling. For a tree T , by L(T) we note the set of leaves of T and by I(T) we
denote the set of internal vertices of T , i.e., I(T) = V (T) \ L(T).

Like in [4] or [6] our crucial tool are labelled branching walks. In [6], every node
in the tree T of a branching walk (T, h) was assigned a label. Here, similarly as
in [4], we do not assign labels to some nodes, but we assign labels to some edges
of T . We define the set of labellable elements of a branching walk B = (T, h) as
la(B) = L(T) ∪ (h(I(T)) ∩ V1) ∪ {uv ∈ E(T) : h(u), h(v) ∈ V2}. Similarly, for a
subtree T of graph G, let la(T) = L(T)∪ (I(T)∩V1)∪{uv ∈ E(T) : u, v ∈ V2}.

We say that a branching walk B = (T, h) is admissible when B is weakly
simple, U-turn-free, and properly ordered. For nonnegative integers k, l, r, we
also say that B is (k, l, r)-fixed if T has k nodes and l leaves, and | la(B)| = r.

The Polynomial. Let r be an integer. We use three kinds of variables in our
polynomial. First, for any edge uv ∈ E(G), where u < v, we have a variable xuv.
For simplicity we will denote xvu = xuv. Second, for each q ∈ V ∪E and for each
l ∈ [r] we have a variable yq,l. Third, for each v ∈ V (G), we have a variable zv.
By x we denote the sequence of all xuv-type variables, while by y we denote the
sequence of all yq,l-type variables.

For a branching walk B = (T, h) and a labeling � : la(B) → [| la(B)|], we
define the monomial

mon(B, �) = zh(1)

∏

{u,v}∈E(T)
u<v

xh(u),h(v)

∏

q∈la(B)

yh(q),�(q) ,

where for uv ∈ E(T), h(uv) denotes the edge h(u)h(v) ∈ E(G). We define a
multivariate polynomial Pi with coefficients in a field of characteristic 2 by

Pi =
∑

B=(T,h)
B is admissible

B is (k, l, i)-fixed

∑

�:la(B)→[| la(B)|]
� bijective

mon(B, �) .

Finally, let Pr↓ =
∑r

i=2 Pi.

Lemma 1. The set of pairs (B, �), where B is a non-simple, admissible and
(k, l, i)-fixed branching walk and � : la(B) → [| la(B)|] is a bijection, can be parti-
tioned into pairs, and the two monomials corresponding to each pair are identical.

The proof consists of three cases (see [5]). If a non-simple branching walk B =
(T, h) contains two elements e1, e2 ∈ la(B) (vertices or edges) which h maps to
the same element of G, then we pair up (B, �) with (B, �′), where �′ is obtained
from � by swapping the labels of e1 and e2. In the second case we assume there
is a pair of vertices u, v such that h(u) = h(v) and u is an ancestor of v. Then,
we modify the tree in B by reversing the order of vertices on the path between

Spotting Trees with Few Leaves 249

u and v. Finally, in the third case we assume there is a pair of vertices u, v such
that h(u) = h(v) and neither u is an ancestor of v nor v is an ancestor of u.
Then, we modify the tree in B by swapping the subtrees rooted at u and v. In all
of the three cases we show that the constructed new labelled branching walk is
non-simple, admissible, (k, l, i)-fixed, and corresponds to an identical monomial
as B. The most delicate issue, however, is to guarantee that if we start from the
new labelled branching walk, and we follow the same way of assignment, then
we get B back. This is obtained by a very careful way of choosing the case to
apply (if more than one applies), and the pair of elements that map to the same
place in G (if there are several such pairs).

The following lemma follows quite easily from Lemma 1 (see [5]).

Lemma 2. The polynomial P↓r is non-zero iff the input graph contains a subtree
TG with k nodes and l leaves, such that la(TG) ≤ r.

Evaluating the Polynomial. Due to lack of space, we only sketch an algorithm
that evaluates the polynomial P↓r in a given point (x,y, z) in time O∗(2r). For
a detailed description, see [5]. Clearly, it suffices to show this bound for every
polynomial Pi. To this end, we rewrite Pi as a sum of 2r polynomials such that
each of them can be evaluated in polynomial time. For each X ⊆ [r], let

PX
i =

∑

B=(T,h)
B is admissible

B is (k, l, i)-fixed

∑

�:la(B)→X

mon(B, �) .

Note that the labelings in the second summation may not be bijective. By
the Principle of Inclusion and Exclusion, and since the coefficients of Pi are from
a field of characteristic 2, it can be shown that Pi =

∑

X⊆{1,2,...,k}
PX

i . Therefore,

it suffices to evaluate each of the polynomials PX
i in polynomial time, which can

be done by a complicated, but standard, dynamic programming. We get that

Lemma 3. P↓r can be evaluated in time O∗(2r) and polynomial space.

A Single Evaluation Algorithm. Assume that if there is a (k, l)-tree TG

in G, then parameter r is at least as large as | la(TG)|. Then, by Lemma 2, we
can test the existence of a (k, l)-tree by testing whether the polynomial P↓r is
non-zero. The latter task can be performed efficiently using a single evaluation
of the polynomial P↓r. For this purpose, we need the Schwartz-Zippel Lemma,
shown independently by DeMillo and Lipton [13], Schwartz [32] and Zippel [37].

Lemma 4. Let p(x1, x2, . . . , xn) ∈ F [x1, . . . , xn] be a polynomial of degree at
most d over a field F , and assume p is not identically zero. Let S be a finite
subset of F . Sample values a1, a2, . . . , an from S uniformly at random. Then,

Pr(p(a1, a2, . . . , an) = 0) ≤ d/|S|.

250 A. Björklund et al.

Lemma 5. Let V (G) = V1 ∪ V2 be a fixed bipartition of the vertex set of G.
There is an algorithm running in O∗(2r) time and polynomial space such that

− If G does not contain a (k, l)-tree, then the algorithm always answers NO,
− If G contains a (k, l)-tree TG such that | la(TG)| ≤ r, then the algorithm

answers YES with probability at least 1
2 .

Proof. The algorithm is as follows: using the algorithm from Lemma 3, evaluate
the polynomial P↓r over the field GF(2	log2(k+r)
+1), substituting the variables
by independently chosen random field elements. The time bound follows from
Lemma 3. If there is no (k, l)-tree in the input graph, by Lemma 2 the evaluation
returns 0, so we report the correct answer.

Now assume there is a (k, l)-tree TG such that la(TG) ≤ r. Then, by Lemma 2,
P is a non-zero polynomial. Note that deg(Pi) = k + i, hence deg(P↓r) ≤ k + r.
Hence, by the Schwartz-Zippel Lemma, P evaluates to the zero field element
with probability at most 1

2 . This finishes the proof.
�
The Random Bipartition Algorithm. Now we assume that V = V1∪V2 is a
random bipartition, i.e., every vertex goes to V1 independently with probability
1/2. We aim to choose the value of parameter r large enough so that if there is a
(k, l)-tree TG in G, then with high probability | la(TG)| ≤ r. Then, by Lemma 5,
we are done. Of course, putting r = k would perfectly achieve the above goal,
but then we only get the running time of O∗(2k), matching that of Zehavi [35].

A natural choice is to set the value of r close to the expectation of
| la(TG)|. The next lemma follows from the definition of la(TG), by the linearity
of expectation.

Lemma 6. For every (k, l)-tree TG in G, we have E(| la(TG)|) = 3
4k + 1

2 l − 1
4 .

By the lemma above and Markov’s inequality, if we put r = 3
4k+ 1

2 l, then the
probability that | la(TG)| ≤ r is Ω(1

k+l). Hence it suffices to repeat the algorithm
from Lemma 5 (i.e., evaluate the polynomial P↓r) O(k + l) times, answering
true iff at least one evaluation was non-zero, to get a Monte-Carlo algorithm
for testing the existence of a (k, l)-tree. The complexity of this algorithm is
O∗(2(3k+2l)/4). However, similarly as in [2,4], we can do better. The idea is to use
a value of r smaller than that appearing in the expectation by an Ω(k) term; then
the probability that a (k, l)-subtree is admissible is inverse-exponential. Hence,
we need to repeat the algorithm from Lemma 5 exponentially many times, every
time for a different random bipartition. It turns out that for carefully selected
values of r, this pays off. To find this value, the following lemma is crucial.

Lemma 7. Fix an arbitrary (k, l)-tree TG in G. For any integer t such that

0 ≤ t ≤ (k − 1)/2, we have Pr
(| la(TG)| ≤ k + l

2 − t
) ≥ 1

2k+1

(
k − 1

2t

)
.

Proof. Root TG at an arbitrary vertex r. Let the random variable X22 denote
the number of edges uv ∈ E(TG) such that u, v ∈ V2. Also, let X1,i denote the
number of internal vertices in V1. Then, by the definition of la(TG), we have
| la(GT)| = l + X1,i + X22.

Spotting Trees with Few Leaves 251

Fix a subset of edges S ∈ (
E(TG)

2t

)
. For a = 0, 1, let ca : V (TG) → {1, 2} be

the assignment of vertices of TG to sets V1, V2 such that for every v ∈ V (TG), we
have ca(v) = 1 if and only if on the path from r to v in TG the number of edges
from S is congruent to a modulo 2. Since every vertex is colored 1 in exactly
one of the colorings c0, c1, we infer that X1,i(c0) + X1,i(c1) = k − l. Similarly,
every edge in E(TG)\S is colored 22 in exactly one of the colorings c0, c1; hence
X22(c0) + X22(c1) = k − 1 − 2t. It follows that

min{X1,i(c0) + X22(c0),X1,i(c1) + X22(c1)} ≤ (k − l + k − 1 − 2t)/2 < k − l
2 − t.

Hence, for at least one of the colorings c0, c1, we have | la(TG)| < k + l
2 − t. For

all choices of S there are at least 1
2

(
k−1
2t

)
such colorings, so the claim follows.
�

The following lemma follows immediately from Stirling’s approximation.

Lemma 8. For any fixed α, 0 < α < 1,
(

n

αn

)
= O∗

((
1

αα(1 − α)1−α

)n)
.

Theorem 1. There is a randomized O∗(1.66k2l/2)-time polynomial space algo-
rithm for (k, l)-Tree.

Proof. Fix ε ≥ 0. Let t = �(14 +ε)k and r = k − t + � l
2� = �(34 −ε)k� + � l

2�. We
choose a random bipartition V = V1∪V2, and apply the algorithm from Lemma 5.
We repeat this �2k+1/

(
k−1
2t

)� times, returning YES iff at least one of the execu-
tions of the algorithm from Lemma 5 returned YES. If there is no (k, l)-tree in
the input graph, by Lemma 5 we report the correct answer. Now assume there is
a (k, l)-tree TG. Call a bipartition nice if | la(TG)| ≤ r. By Lemma 7, a random
bipartition is nice with probability at least p = 1

2k+1

(
k−1
2t

)
. Hence, at least one of

the tried bipartitions is nice with probability at least 1−(1−p)1/p ≥ 1−1/e. For
such a bipartition, the algorithm from Lemma 5 answers YES with probability
at least 1

2 . Hence we report a false-negative with probability at most 1/e+ 1
2 < 1.

By Lemma 5, the running time is

O∗
(

2r+k/

(
k − 1

2t

))
= O∗

(
2(7/4−ε)k+l/2/

(
k

(1/2 + 2ε)k

))
.

By Lemma 8, we can express this by O∗((f(ε))k2l/2), for f(ε) = 27/4−ε(12 +
2ε)

1
2+2ε(12 − 2ε)

1
2−2ε. The function f attains a minimum smaller than 1.65685

for ε = 0.042894. Hence the claim.
�

3 Colored Graphs

In this section, to improve the running times of algorithms from Section 2 in
restricted settings, we adjust the partition V = V1 ∪ V2 to particular graph
classes where vertex colorings guide us in making the partition. We will consider
three ways of coloring the vertices. The first is ordinary proper vertex coloring of

252 A. Björklund et al.

the graph, i.e., color the vertices so that no edge has both its endpoints colored
by the same color. The least number of colors needed is denoted by χG. The
second way is fractional vertex coloring, that assigns a subset of b colors to
each vertex from a palette of a colors so that the endpoints of each edge receive
disjoint subsets of colors. The smallest possible ratio a/b is denoted by χf (G).
The third way is vector coloring, that assigns unit length vectors to the vertices
so the minimum angle α between every edge’s endpoints’ vectors is as large as
possible. The smallest possible value of 1 + cos−1(α) is denoted by χv(G).

The following chain of inequalities holds (see e.g. [21]), where ω(G) is the
clique number, i.e., the size of the largest clique in G.

Theorem 2. For any graph G, ω(G) ≤ χv(G) ≤ χf (G) ≤ χ(G).

Consider a proper d-coloring c : V → {1, . . . , d} of the host graph G. Fix a
number t ∈ {0, . . . , d}. Our idea is to define V1 as the union of t color classes,
and V2 as the remaining vertices. Clearly, for some choices of the colors the set
la(TG) for a solution TG can be large, and then by Lemma 2 we need to set the
parameter r high (which makes the running time slow). However, if we try all
the possible choices of t colors, in at least one of them the set la(TG) will be
small enough. This is stated in the following lemma.

Lemma 9. Let c be a given d-coloring of G. Let TG be a fixed (k, l)-tree in G.
There is a choice of t color classes c1, . . . , ct such that for V1 =

⋃t
i=1 c−1(i),

la(TG) ≤
(

1 − x(d − x)
d(d − 1)

)
k +

(
1 − x

d

)
l,

where x = �d+(l/k)(d−1)
2 �. In particular, | la(TG)| ≤

(
1 − �d

2�d
2�

d(d − 1)

)
k +

l

2
.

Proof. For i = 1, . . . , d, let ki denote the number of nodes of TG colored by
i. Similarly, let li denote the number of leaves of TG colored by i. Finally, for
i, j = 1, . . . , d, let ki,j denote the number of edges in TG with one endpoint
colored with i and the other colored with j. Note that

∑d
i=1 ki = k,

∑d
i=1 li = l,

and
∑

1≤i<j≤d ki,j = k − 1. Fix t = 0, . . . , d. It follows that the average size of
| la(TG)|, over all possible choices of the set S of t colors, equals

1(
d
t

)
∑

S∈([d]
t)

⎛

⎝
∑

i∈S

ki +
∑

i�∈S

li +
∑

{i,j}∩S=∅
ki,j

⎞

⎠ =

(
d−1
t−1

)
k +

(
d−1

t

)
l +

(
d−2

t

)
(k − 1)

(
d
t

) ≤

(
1 − t(d − t)

d(d − 1)

)
k +

d − t

d
l.

To minimize the above expression, we choose t = x. The choice t = �d/2� is
optimal when l is small (as e.g. in the application for k-Path).
�

By combining Lemma 5 with Lemma 9, we get the following theorem.

Spotting Trees with Few Leaves 253

Theorem 3. Assume we are given a proper d-coloring of the host graph, for
some fixed d. Then, there is a randomized polynomial space algorithm for finding
a (k, l)-tree running in time O∗(2(1− x(d−x)

d(d−1))k+(1− x
d)l), where x = �d+(l/k)(d−1)

2 �.
In particular, the running time can be bounded by O∗(2(1− � d

2 �� d
2 �

d(d−1))k+ l
2).

If the input graph is a clique or an odd cycle, (k, l)-Tree can clearly be solved
in polynomial time. Otherwise, one can find a proper Δ-coloring in linear time
by Lovász’s proof of Brooks’ theorem [25], so Theorem 3 implies the following.

Corollary 1. There is a randomized polynomial space algorithm for (k, l)-Tree

in graphs of bounded degree Δ which runs in time O∗(2(1− x(Δ−x)
Δ(Δ−1))k+(1− x

Δ)l),
where x = �Δ+(l/k)(Δ−1)

2 �. In particular, the running time can be bounded by

O∗(2(1− � Δ
2 �� Δ

2 �
Δ(Δ−1))k+ l

2). With l = 2, the same result holds for k-Path, and with
k = n, for Hamiltonicity.

References

1. Alon, N., Yuster, R., Zwick, U.: Color coding. J. ACM 42(4), 844–856 (1995)
2. Björklund, A.: Determinant sums for undirected Hamiltonicity. SIAM J. on Com-

puting 43(1), 280–299 (2014)
3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The travelling salesman

problem in bounded degree graphs. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I.
LNCS, vol. 5125, pp. 198–209. Springer, Heidelberg (2008)

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameter-
ized paths and packings (2010). CoRR, abs/1007.1161

5. Björklund, A., Kamat, V., Kowalik, L., Zehavi, M.: Spotting trees with few leaves
(2015). CoRR, abs/1501.00563

6. Björklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: Proc.
STACS 2013. LIPIcs, vol. 20, pp. 20–31 (2013)

7. Björklund, A., Kaski, P., Kowalik, �L.: Fast witness extraction using a deci-
sion oracle. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737,
pp. 149–160. Springer, Heidelberg (2014)

8. Chen, J., Kneis, J., Lu, S., Molle, D., Richter, S., Rossmanith, P., Sze, S.H., Zhang,
F.: Randomized divide-and-conquer: Improved path, matching, and packing algo-
rithms. SIAM J. on Computing 38(6), 2526–2547 (2009)

9. Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for
finding k-vertex out-trees and its application to k-internal out-branching problem.
J. Comput. Syst. Sci. 76(7), 650–662 (2010)

10. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M.,
Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in
single exponential time. In: Proc. FOCS 2011, pp. 150–159 (2011)

11. Daligault, J.: Combinatorial techniques for parameterized algorithms and kernels,
with applications to multicut. PhD thesis, Universite Montpellier II (2011)

12. Demers, A., Downing, A.: Minimum leaf spanning tree. US Patent no. 6,105,018,
August 2013

254 A. Björklund et al.

13. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing.
Inf. Process. Lett. 7, 193–195 (1978)

14. Eppstein, D.: The traveling salesman problem for cubic graphs. J. Graph Algo-
rithms Appl. 11(1), 61–81 (2007)

15. Fomin, F., Lokshtanov, D., Saurabh, S.: Efficient computation of representa-
tive sets with applications in parameterized and exact agorithms. In: SODA,
pp. 142–151 (2014)

16. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of
product families. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737,
pp. 443–454. Springer, Heidelberg (2014)

17. Gärtner, B., Matǒusek, J.: Approximation algorithms and semidefinite program-
ming. Springer, Heidelberg (2012)

18. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of
the ACM 42(6), 1115–1145 (1995)

19. Grandoni, F.: A note on the complexity of minimum dominating set. J. Discrete
Algorithms 4(2), 209–214 (2006)

20. Gebauer, H.: On the number of hamilton cycles in bounded degree graphs. In:
Proc. ANALCO 2008, pp. 241–248 (2008)

21. Gvozdenovic, N., Laurent, M.: The operator psi for the chromatic number of a
graph. SIAM Journal on Optimization 19(2), 572–591 (2008)

22. Iwama, K., Nakashima, T.: An improved exact algorithm for cubic graph TSP. In:
Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 108–117. Springer, Heidelberg
(2007)

23. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

24. Li, W., Wang, J., Chen, J., Cao, Y.: A 2k-vertex kernel for maximum internal
spanning tree (2014). CoRR abs/1412.8296

25. Lovász, L.: Three short proofs in graph theory. J. Combin. Theory Ser. 19, 269–271
(1975)

26. Monien, B.: How to find long paths efficiently. Annals of Discrete Mathematics 25,
239–254 (1985)

27. Nederlof, J.: Fast polynomial-space algorithms using möbius inversion: improv-
ing on steiner tree and related problems. In: Albers, S., Marchetti-Spaccamela,
A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS,
vol. 5555, pp. 713–725. Springer, Heidelberg (2009)

28. Nederlof, J.: Fast polynomial-space algorithms using inclusion-exclusion. Algorith-
mica 65(4), 868–884 (2013)

29. Prieto, E., Sloper, C.: Reducing to independent set structure - the case of k-internal
spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)

30. Raible, D., Fernau, H., Gaspers, D., Liedloff, M.: Exact and parameterized algo-
rithms for max internal spanning tree. Algorithmica 65(1), 95–128 (2013)

31. Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds,
R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)

32. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

Spotting Trees with Few Leaves 255

33. Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based app-
roach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797.
Springer, Heidelberg (2014)

34. Williams, R.: Finding paths of length k in O∗(2k) time. Inf. Process. Lett. 109(6),
315–318 (2009)

35. Zehavi, M.: Algorithms for k -internal out-branching. In: Gutin, G., Szeider, S.
(eds.) IPEC 2013. LNCS, vol. 8246, pp. 361–373. Springer, Heidelberg (2013)

36. Zehavi, M.: Mixing color coding-related techniques (2014). CoRR, abs/1410.5062
37. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.)

EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer,
Heidelberg (1979)

Constraint Satisfaction Problems over the
Integers with Successor

Manuel Bodirsky1(B), Barnaby Martin2, and Antoine Mottet3

1 Institut für Algebra, TU Dresden, Dresden, Germany
Manuel.Bodirsky@tu-dresden.de

2 School of Science and Technology, Middlesex University, London, UK
3 École Normale Supérieure de Cachan, Cachan, France

Abstract. A distance constraint satisfaction problem is a constraint sat-
isfaction problem (CSP) whose constraint language consists of relations
that are first-order definable over (Z; succ), i.e., over the integers with
the successor function. Our main result says that every distance CSP is
in P or NP-complete, unless it can be formulated as a finite domain CSP
in which case the computational complexity is not known in general.

1 Introduction

“Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist
Menschenwerk.”1 Leopold Kronecker

A constraint satisfaction problem is a computational problem where the input
consists of a finite set of variables and a finite set of constraints, and where
the question is whether there exists a mapping from the variables to some fixed
domain such that all the constraints are satisfied. When the domain is finite,
and arbitrary constraints are permitted in the input, the CSP is NP-complete.
However, when only constraints for a restricted set of relations are allowed in
the input, it might be possible to solve the CSP in polynomial time. The set
of relations that is allowed to formulate the constraints in the input is often
called the constraint language. The question which constraint languages give
rise to polynomial-time solvable CSPs has been the topic of intensive research
over the past years. It has been conjectured by Feder and Vardi [8] that CSPs
for constraint languages over finite domains have a complexity dichotomy: they
are in P or NP-complete.

A famous CSP over an infinite domain is feasibility of linear inequalities
over the integers. It is of great importance in practice and theory of computing,

M. Bodirsky—The first author has received funding from the European Research
Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013 Grant Agreement no. 257039).
B. Martin—The second author was supported by EPSRC grant EP/L005654/1.

1 “God made the integers, all the rest is the work of man.” Quoted in Philosophies of
Mathematics, page 13, by Alexander George, Daniel J. Velleman, Philosophy, 2002.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 256–267, 2015.
DOI: 10.1007/978-3-662-47672-7 21

Constraint Satisfaction Problems over the Integers with Successor 257

and NP-complete. In order to obtain a systematic understanding of polynomial-
time solvable restrictions and variations of this problem, Jonsson and Lööw [13]
proposed to study the class of CSPs where the constraint language Γ is definable
in Presburger arithmetic; that is, it consists of relations that have a first-order
definition over (Z;≤,+). Equivalently, each relation R(x1, . . . , xn) in Γ can be
defined by a disjunction of conjunctions of the atomic formulas of the form
p ≤ 0 where p is a linear polynomial with integer coefficients and variables from
{x1, . . . , xn}. The constraint satisfaction problem for Γ , denoted by CSP(Γ), is
the problem of deciding whether a given conjunction of formulas of the form
R(y1, . . . , yn), for some n-ary R from Γ , is satisfiable in Γ . By appropriately
choosing such a constraint language Γ , a great variety of problems over the
integers can be formulated as CSP(Γ). Several constraint languages Γ over the
integers are known where the CSP can be solved in polynomial time. However,
a complete complexity classification for the CSPs of Jonsson-Lööw languages
appears to be a very ambitious goal.

In this paper, we study one of the most basic classes of constraint languages
that falls into the framework of Jonsson and Lööw, namely the class of distance
constraint satisfaction problems [1]. A distance constraint satisfaction problem
is a CSP for a constraint language over the integers whose relations have a first-
order definition over (Z; succ) where succ is the successor function. The structure
(Z; succ) has quantifier-elimination, and it is easy to see that a relation is first-
order definable over (Z; succ) if and only if it can be defined by a disjunction of
conjunctions of literals of the form x = succc(y) or x �= succc(y) for c ∈ N.

It has been shown previously that distance CSPs for constraint languages
whose relations have bounded Gaifman degree are either NP-complete, or in P,
or can also be formulated with a constraint language over a finite domain [1].
The finite Gaifman degree assumption is quite strong; however, here we prove
that the same is true even if we drop this assumption. In other words, we show
that if the Feder-Vardi dichotomy conjecture for finite domain CSPs is true, then
also the class of all distance CSPs exhibits a complexity dichotomy.

Our proof relies on the so-called universal-algebraic approach; this is the first
time that this approach has been used for constraint languages that are not finite
or countably infinite ω-categorical. The central insight of the universal-algebraic
approach to constraint satisfaction is that the computational complexity of a
CSP is captured by the set of polymorphisms of the constraint language. One
of the ideas of the present paper is that in order to use polymorphisms when
the constraint language is not ω-categorical, we have to pass to the countably
saturated model of the integers with successor. The relevance of saturated models
for the universal-algebraic approach has already been pointed out in joint work
of the authors with Martin Hils [2], but this is the first time that this perspective
has been used to perform complexity classification for a large class of concrete
computational problems.

The formal definitions of CSPs and distance CSPs can be found in Section 2.
The border between distance CSPs in P and NP-complete distance CSPs can be
most elegantly stated using the terminology of the mentioned universal-algebraic

258 M. Bodirsky et al.

approach to constraint satisfaction. This is why we first give a brief introduction
to this approach in Section 3, and only then give the technical description of our
main result in Section 4. Section 5 gives a classification of distance constraint
languages that might be of independent interest; this classification is the basis
of our classification of the complexity of distance CSPs. Our algorithmic results
can be found in Section 6. Finally, we put all the results together to prove our
main result in Section 7. We discuss our result and promising future research
questions in Section 8.

2 Distance CSPs

Let Γ be a structure with a finite relational signature τ . When R is a relation
symbol from τ , we write RΓ for the relation it denotes in the structure Γ .

A τ -formula is a first-order formula built from the relations from τ , and
equality. A τ -formula is primitive positive (pp) if it is of the form ∃x1, . . . , xk(ψ1∧
· · · ∧ψm) where each ψi is an atomic τ -formula. Sentences are formulas without
free variables.

Definition 1 (CSP(Γ)). The constraint satisfaction problem for Γ is the fol-
lowing computational problem.
Input: A primitive positive τ -sentence Φ.
Question: Γ |= Φ?

The structure Γ will also be called the constraint language of CSP(Γ). A
relational structure Γ is a reduct of a structure Δ if it has the same domain as
Δ and every relation RΓ of arity k is first-order definable over Δ, that is, there
exists a first-order formula ϕ in the signature of Δ with k free variables such that
for all elements u1, . . . , uk of Γ we have RΓ (u1, . . . , uk) ⇔ Δ |= ϕ(u1, . . . , uk).

We write (Z; succ) for the structure of the integers with the successor func-
tion.

Definition 2 (Distance CSP). A distance CSP is a constraint satisfaction
problem where the constraint language is finite and a reduct of (Z; succ).

It is well-known that (Z; succ) admits quantifier elimination (this is easy to
prove, and can be found explicitly in [9]). Moreover, it is easy to see that every
quantifier-free formula is over (Z; succ) equivalent to a quantifier-free formula
in conjunctive normal form (CNF) where every atomic formula is of the form
y = succn(x) for n ∈ N, where succn(x) is defined inductively by succ0(x) = x,
and succn+1(x) = succ(succn(x)). We will call formulas of this form standardized.

Example 1. We give examples of reducts of (Z; succ); the relations from those
examples will re-appear in later sections.

1. (Z; DiffS), where DiffS := {(x, y) : x, y ∈ Z, y−x ∈ S} for a finite set S ⊂ Z.
2. (Z; Diff{2}, {(x, y) : |x − y| ≤ 2}).

Constraint Satisfaction Problems over the Integers with Successor 259

3. (Z;F) where F is the 4-ary relation {(x, y, u, v) : x = succ(y) ⇔ u =
succ(v)}.

4. (Z; �=,Disti) where Disti := {(x, y) : |x − y| = i}.

The last two examples have unbounded Gaifman degree (see Section 5.1), so
they do not fall into the scope of [1]. The following is easy to see.

Proposition 1. All distance CSPs are in NP.

3 The Algebraic Approach

The starting point of the universal algebraic approach to analyze the complexity
of CSPs is the observation that when a relation R can be defined by a primitive
positive formula over Γ , then CSP(Γ) allows to simulate the ‘richer’ problem
CSP(Δ) where Δ = (Γ,R) has been obtained from Γ by adding R as another
relation. The proof of this fact given by Jeavons, Cohen, and Gyssens [12] works
for all structures Γ over finite or over infinite domains. Since we will use this
fact very frequently, we will not explicitly refer back to it from now on.

Polymorphisms are an important tool to study the question of which rela-
tions are primitive positive definable in Γ . We say that a function f : Dn → D
preserves a relation R ⊆ Dm if for all t1, . . . , tn ∈ R the tuple f(t1, . . . , tn)
obtained by applying f componentwise to the tuples t1, . . . , tn is also in R; oth-
erwise, f violates R. A polymorphism of a relational structure Γ with domain
D is a function from Dn to D, for some finite n, which preserves all relations
of Γ . We write Pol(Γ) for the set of all polymorphisms of Γ . It is clear that
a polymorphism of a structure Γ also preserves all relations that are primitive
positive definable in Γ ; this holds for arbitrary finite and infinite structures Γ . If
Γ is finite or ω-categorical [5], then a relation is preserved by all polymorphisms
if and only if it is primitive positive definable in Γ .

The structures that we consider in this paper will not be ω-categorical; how-
ever, following the philosophy in [2], one can refine these universal-algebraic
methods to apply them also in our situation. The (first-order) theory of a struc-
ture Γ , denoted by Th(Γ), is the set of all first-order sentences that are true
in Γ . We define some notation to conveniently work with models of Th(Γ) and
their reducts.

Definition 3 (κ.Z). Let κ be a cardinal. We write κ.Z for κ copies of Z indexed
by the elements of κ; formally, κ.Z is the set {(a, z) : a ∈ κ, z ∈ Z}. Then
(κ.Z; succ) is the structure where succ denotes the function that maps (a, z) to
(a, z + 1).

It is well-known and easy to see that the models of Th(Z; succ) are precisely
the structures isomorphic to (κ.Z; succ), for some cardinal κ. When k ∈ Z and
u = (a, z) ∈ κ.Z, we write u + k for (a, z + k).

260 M. Bodirsky et al.

Definition 4 (κ.Γ). Let Γ be a reduct of (Z; succ) with signature τ . Then κ.Γ
denotes the ‘corresponding’ reduct of (κ.Z; succ) with signature τ . Formally, when
R ∈ τ and ϕR is a formula that defines RΓ , then Rκ.Γ is the relation defined by
ϕR over (κ.Z; succ).

We use ω to denote the smallest infinite cardinal throughout the article. Note
that (ω.Z; succ) is isomorphic to the structure (Q;x �→ x + 1). In the following,
we identify (Z; succ) with the copy of (Z; succ) induced by 0.Z in (ω.Z; succ).
That is, we view (Z; succ) as a substructure of (ω.Z; succ), and consequently Γ
as a substructure of ω.Γ for each reduct Γ of (Z; succ).

A type of a structure Δ is a set p of formulas with one free variable x such that
p∪Th(Δ) is satisfiable (that is, {ϕ(c) : ϕ ∈ p}∪Th(Δ), for a new constant symbol
c, has a model). A τ -structure Γ is ω-saturated if for all choices of finitely many
constants c1, . . . , cn for elements of Γ , and every type p of (Γ, c1, . . . , cn), there
exists an element d of Γ such that (Γ, c1, . . . , cn) |= ϕ(d) for all ϕ ∈ p. When Γ
and Δ are two countable ω-saturated structures with the same first-order theory,
then Γ and Δ are isomorphic [11]. Note that (ω.Z; succ) is ω-saturated. More
generally, ω.Γ is ω-saturated for every reduct Γ of (Z; succ).

We define the function − : (κ.Z)2 → (Z ∪ {ω}) for x, y ∈ κ.Z by

x − y := z ∈ Z if x = succz(y) for z ≥ 0,

or y = succ−z(x) for z < 0;
x − y := ω otherwise.

When Γ and Δ are two structures with the same relational signature τ ,
then a homomorphism from Γ to Δ is a function from the domain of Γ to the
domain of Δ such that for every R ∈ τ of arity k we have RΓ (u1, . . . , uk) ⇒
RΔ(f(u1), . . . , f(uk)). It is straightforward to see that if there is a homomor-
phism from Γ to Δ, and vice versa, then CSP(Γ) and CSP(Δ) are the same
computational problem.

Lemma 1 (See Lemma 2.1 in [2]). Let Γ be ω-saturated, let Δ be countable,
let d1, . . . , dk be elements of Δ, and let c1, . . . , ck be elements of Γ . Suppose
that for all primitive positive formulas ϕ such that Δ |= ϕ(d1, . . . , dk) we have
Γ |= ϕ(c1, . . . , ck). Then there exists a homomorphism from Δ to Γ that maps
di to ci for all i ≤ k.

An endomorphism is a unary polymorphism. To classify the computational
complexity of the CSP for all reducts of a structure Γ , it often turns out to
be important to study the possible endomorphisms of those reducts first, before
studying the polymorphisms, e.g. for the reducts of (Q;<) in [4] and the reducts
of the countably infinite random graph in [6].

We are now in the position to state a general result, Theorem 1, that might
explain the importance of ω-saturated models for the universal-algebraic app-
roach. When Γ is a structure, then the orbit of a k-tuple (a1, . . . , ak) of elements
of Γ is the set {(α(a1), . . . , α(ak)) | α ∈ Aut(Γ)}.

Constraint Satisfaction Problems over the Integers with Successor 261

Theorem 1. Let Γ be a countable ω-saturated structure, let Δ be a reduct of
Γ , and R a relation with a first-order definition in Γ . Then

– R has a first-order definition in Δ if and only if R is preserved by the auto-
morphisms of Δ;

– R has an existential positive definition in Δ if and only if R is preserved by
the endomorphisms of Δ;

– if R consists of n orbits of k-tuples in Γ , then R has a primitive positive
definition in Δ if and only if R is preserved by all polymorphisms of Δ of
arity n.

4 Statement of Results

The border between NP-complete successor CSPs and successor CSPs in P can
be described as follows, modulo the Feder-Vardi dichotomy conjecture. A reduct
Γ of (Z; succ) is positive if all relations of Γ have a positive first-order definition
in (Z; succ), this is, by a first-order formula without negation. We write N for
the natural numbers including 0, and N

+ for the set of positive natural numbers.

Definition 5. For d ∈ N
+, the d-modular maximum, maxd : Z2 → Z, is defined

by maxd(x, y) := max(x, y) if x = y mod d and maxd(x, y) := x otherwise. The
d-modular minimum is defined analogously.

Note that these two operations are not commutative when d > 1.

Theorem 2. Let Γ be a reduct of (Z; succ) with finite signature. Then there
exists a structure Δ such that CSP(Δ) equals CSP(Γ) and one of the following
cases applies.

1. Δ has a finite domain, and the CSP for Γ is conjectured to be in P or
NP-complete [8].

2. Δ is a reduct of (Z; succ) and preserved by a modular max or modular min.
In this case, CSP(Γ) is in P.

3. Δ is a reduct of (Z; succ) such that ω.Δ is preserved by an (equivalently, all)
isomorphisms between (ω.Z; succ)2 and (ω.Z; succ). In this case, CSP(Γ) is
in P.

4. CSP(Γ) is NP-complete.

5 Definability of Successor

The goal of this section is a proof that the CSPs for reducts of (Z; succ) fall into
four classes. This will allow us to focus in later sections on reducts of (Z; succ)
where succ is pp-definable, where succ is now used to denote the graph of the
successor function, that is, succ = {(x, y) ∈ Z

2 | y = x + 1}.

262 M. Bodirsky et al.

Theorem 3. Let Γ be a reduct of (Z; succ) with finite signature. Then CSP(Γ)
equals CSP(Δ) where Δ is one of the following:

1. a finite structure;
2. a reduct of (Z; =);
3. a reduct of (Z;F) where Distk is pp-definable for all k ≥ 1 (see Example 1);
4. a reduct of (Z; succ) where succ is pp-definable.

The proof of this result requires some effort and spreads over the following
subsections. Before we go into this, we explain the significance of the four classes
for the CSP.

It is easy to see that there exists a structure Δ with a finite domain such
that CSP(Γ) equals CSP(Δ) if and only if Γ has an endomorphism with finite
range. So we will assume in the following that this is not the case.

The CSPs for reducts of (Z; =) have been studied in [3]; they are either in P
or NP-complete. Hence, we are also done if there exists a reduct Δ of (Z; =) such
that CSP(Δ) = CSP(Γ). Several equivalent characterizations of those reducts
Γ will be given in Section 5.2. This is essential for proving Theorem 3.

When Γ is a reduct of (Z; succ) where for all k ≥ 1 the relation Distk is pp-
definable, then CSP(Γ) is NP-complete; this is a consequence of the following
proposition from [1].

Proposition 2 (Proposition 26 in [1]). Suppose that the relations Dist1 and
Dist5 are pp-definable in Γ . Then CSP(Γ) is NP-hard.

The previous paragraphs explain why Theorem 3 indeed reduces the com-
plexity classification of CSPs for finite-signature reducts Γ of (Z; succ) to the
case where succ is pp-definable in Γ .

5.1 Degrees

We consider three notions of degree for relations R that are first-order definable
in (Z; succ):

– For x ∈ Z, we consider the number of y ∈ Z that appear together with x
in a tuple from R; this number is the same for all x ∈ Z, and called the
Gaifman-degree of R (it is the degree of the Gaifman graph of (Z;R)).

– The distance degree of R is the supremum of d such that there are x, y ∈ Z

that occur together in a tuple of R and |x − y| = d.
– The quantifier-elimination-degree (qe-degree) of R is the minimal q so that

there is a quantifier-free definition of R containing no nesting of succ that is
greater than q.

The degree of a reduct of (Z; succ) is the supremum of the degrees of its rela-
tions, for any of the three notions of degree. The paper [1] considered reducts
of (Z; succ) with finite Gaifman-degree. Note that the Gaifman-degree is finite
if and only if the distance degree is finite. In this paper, qe-degree will play the
central role, as any reduct of (Z; succ) with finite relational signature clearly
has finite qe-degree. We call a binary relation trivial if it is pp-definable over
(Z; succ), and non-trivial otherwise.

Constraint Satisfaction Problems over the Integers with Successor 263

5.2 Petrus

The following theorem is the rock upon which we build our church.

Theorem 4 (Petrus). Let Γ be a reduct of (Z; succ) with finite relational sig-
nature and without an endomorphism of finite range. Then the following are
equivalent:

1. there exists a reduct Δ of (Z; =) such that CSP(Δ) equals CSP(Γ);
2. ω.Γ has an endomorphism whose range induces a structure isomorphic to a

reduct of (Z; =);
3. for all � greater than the qe-degree of Γ , there exists e ∈ End(Γ) so that the

range of e is included in {�z | z ∈ Z};
4. for all t ≥ 1, there is an e ∈ End(Γ), z ∈ Z, such that |e(z + t) − e(z)| > t;
5. for all t ≥ 1, there is an e ∈ End(ω.Γ), z ∈ ω.Z, such that |e(z+t)−e(z)| > t;
6. all binary relations with a primitive positive definition in Γ are either the

equality relation or have unbounded distance degree;
7. for all distinct z1, z2 ∈ Z there is a homomorphism h : Γ → ω.Γ such that

h(z1) − h(z2) = ω;
8. for all distinct z1, z2 ∈ Z there is an e ∈ End(ω.Γ) such that e(z1) − e(z2) =

ω, and for all x, y ∈ ω.Z with x − y = ω we have e(x) − e(y) = ω;
9. there exists an e ∈ End(ω.Γ) with infinite range such that e(x) − e(y) = ω

or e(x) = e(y) for any two distinct x, y ∈ ω.Γ .

We would like to mention that the finite-signature assumption in the state-
ment of Theorem 4 is necessary.

Example 2. Consider the reduct Γ := (Z; I1, I2, . . .) of (Z; succ) where Ii :=
{(x, y) : x �= succi(y)}. Then the endomorphisms of Γ are precisely the auto-
morphisms of (Z; succ), and hence Γ does not satisfy items (3) and (4), but it
does satisfy the remaining items.

5.3 Boundedness and Rank

Let Γ be a reduct of (Z; succ) without a finite-range endomorphism. Theorem 4
(Petrus) characterized the “degenerate case” when CSP(Γ) is the CSP for a
reduct of (Z; =). For such Γ , as we have mentioned before, the complexity of the
CSP has already been classified. In the following we will therefore assume that
the equivalent items of Theorem 4, and in particular, item (5), do not apply. To
make the best use of those findings, we introduce the following terminology.

Definition 6. Let k ∈ N
+, c ∈ N. A function e : κ1.Z → κ2.Z is (k, c)-bounded

if for all u ∈ κ1.Z we have |e(u + k) − e(u)| ≤ c .

264 M. Bodirsky et al.

We say that e is tightly-k-bounded if it is (k, k)-bounded, and k-bounded if it
is (k, c)-bounded for some c ∈ N. We say that κ.Γ is (k, c)-bounded if all its
endomorphisms are; similarly, κ.Γ is tightly-k-bounded if all its endomorphisms
are. We call the smallest t ∈ N

+ such that κ.Γ is tightly-t-bounded the tight
rank of κ.Γ . Similarly, we call the smallest r ∈ N

+ such that κ.Γ is r-bounded
the rank of κ.Γ . The negation of item (5) in Theorem 4 says that there exists
a t ∈ N

+ such that ω.Γ is tightly-t-bounded. Clearly, being tightly-t-bounded
implies being t-bounded. Hence, the negation of item (5) in Theorem 4 also
implies that ω.Γ has finite rank r ≤ t.

Example 3. There are rank one reducts of (Z; succ) which do have non-injective
endomorphisms, but no finite-range endomorphisms. Consider the second struc-
ture in the Example 1:

Γ := (Z; Diff{2}, {(x, y) : |x − y| ≤ 2}) .

Note that Γ has rank one: as e preserves the relation {(x, y) : |x − y| ≤ 2}) we
have |e(x+1)−e(x)| ≤ 2. Also note that Γ has the non-injective endomorphism
e defined by e(x) = x for even x, and e(x) = x + 1 for odd x.

These two notions of rank are the key to generalize the results from [1] about
reducts of (Z; succ) with finite distance degree to general finite-signature reducts.

Remark. All reducts of (Z; succ) are strongly minimal (see [11][14]), another
important concept from model theory. Our notion of rank resembles the notion
of dimension in this context. However, the two notions are different. Consider
for instance the structure

(
Z; succ2, �=, {(x, y) : x �= succ3(y)}) .

This structure has dimension one, since the algebraic closure of any of its ele-
ments is all of Z. However, the rank of this structure is two and not one.

In order to understand the relations pp-definable in a reduct of (ω.Z, succ)
with finite rank, we start with the structures which have rank 1, and then show
how to factor structures with higher rank to structures of rank 1.

Theorem 5. Let Γ be a finite-signature reduct of (Z; succ) so that ω.Γ has rank
one. Then CSP(Γ) equals CSP(Δ) where Δ is one of the following:

1. a finite structure;
2. a reduct of (Z;F) where Distk is pp-definable for all k ≥ 1 (see Example 1);
3. a reduct of (Z; succ) where succ is pp-definable.

Definition 7. Let Γ be a reduct of (Z; succ) and k ∈ N
+. Then we write Γ/k

for the substructure of Γ induced by the set {z ∈ Z : z = 0 mod k}.
For instance, in Example 3 the structure Γ/2 is isomorphic to

(Z; succ, {(x, y) : |x − y| ≤ 1}) .

Constraint Satisfaction Problems over the Integers with Successor 265

Proposition 3. Let Γ be a reduct of (Z; succ) such that ω.Γ has rank r ∈ N.
Then Γ/r has the same CSP as Γ , and is isomorphic to a reduct Δ of (Z; succ)
such that ω.Δ has rank one.

Theorem 3 can now be proved using a combination of Proposition 3,
Theorem 5, and Theorem 4.

6 Algorithms

We treat items 2 and 3 in Theorem 2. Let si be any isomorphism between
(ω.Z, succ)2 and (ω.Z, succ). A standardized formula is Horn if all its clauses
have at most one positive literal, i.e., a literal of the form x = succp(y).

Proposition 4. Let Γ be a reduct of (Z; succ). If ω.Γ is preserved by si then
every relation of Γ has a quantifier-free Horn definition over (Z; succ). In this
case, CSP(Γ) is in P.

The key algorithmic result here is that satisfiability of Horn formulas can be
decided as follows: when the positive unit clauses imply that a literal in the input
is false (this can be checked in polynomial time), remove this literal. Repeat this
step. If we derive an empty clause in this way, there is no satisfying assignment.
Otherwise, we are finally in a situation in which every literal is satisfied by a
solution to the positive clauses. Using the assumption that si is a polymorphism
of ω.Γ , we obtain a satisfying assignment for all clauses in the input.

Theorem 6. Let Γ be a finite-signature reduct of (Z; succ) preserved by maxd

or mind for some d ∈ N. Then CSP(Γ) is in P.

We describe two ideas for the proof of Theorem 6. The first is to reduce
CSP(Γ) to CSP(Γ/d). We prove that Γ/d is preserved by max or min. The second
idea is to solve CSP(Γ/d) using the (still polynomial-time) uniform version of the
arc-consistency procedure, where both the instance and the (finite) template are
given in the input. It suffices to work with templates that are finite substructure
of Γ/d whose size is linear in the size of the instance of CSP(Γ/d).

7 The Classification

In this section we prove Theorem 2. By Theorem 3, we are essentially left with
the task to classify the CSP for finite-signature expansions of (Z; succ), i.e.,
reducts of (Z; succ) which have succ among their relations.

Theorem 7. Let Γ be a first-order expansion of (Z; succ). Then at least one of
the following is true:
1. Γ is positive and preserved by maxd or mind for some d ∈ N,
2. Γ is non-positive and ω.Γ is preserved by si,
3. CSP(Γ) is NP-hard.

To show this theorem, we first prove the following lemma. A standardized
formula over the signature of (Z; succ) in DNF is called reduced when every
formula obtained by removing literals or clauses is not equivalent over (Z; succ).
It is clear that every quantifier-free formula is equivalent to a reduced formula.

266 M. Bodirsky et al.

Lemma 2. For a first-order expansion Γ of (ω.Z; succ), are equivalent:

1. every reduced DNF that defines a relation of Γ is positive,
2. Γ has an endomorphism that violates the binary relation given by |x−y| = ω,
3. Γ does not pp-define a non-trivial binary relation of infinite distance degree.

Using Lemma 2, we treat positive and non-positive expansions Γ of (Z; succ)
separately. In the non-positive case, we first show that when ω.Γ omits si as a
polymorphism, then there exists a non-trivial binary relation with finite distance
degree with a pp-definition in Γ . Together with the non-trivial binary relation of
infinite distance degree from Lemma 2, one can then prove hardness of CSP(Γ)
by a reduction from CSPs for finite undirected graphs G, using the classic result
that CSP(G) is hard if G contains an odd cycle [10].

To treat the positive case, we make essential use of results and techniques
that have been developed for reducts with finite distance degree in [1], based on
the following lemma.

Lemma 3. Let Γ be a positive first-order expansion of (Z; succ) that does not
admit a modular max or modular min polymorphism. Then there is a non-trivial
finite binary relation pp-definable in Γ .

One of the concepts needed in the proof of Lemma 3 above and Proposition 5
below is the notion of decomposability. A relation R of arity n is r-decomposable
if R(x1, . . . , xn) is equivalent to

∧
J ∃j �∈Jxj .R(x1, . . . , xn) where J ranges over

all the r-element subsets of {1, . . . , n}.

Definition 8. A d-progression is a set of the form [a, b | d] := {a, a + d, a +
2d, . . . , b}, for a ≤ b with b − a divisible by d.

One can show that if there is a non-trivial finite binary relation R pp-definable
in Γ , and {b − a ∈ Z | (a, b) ∈ R} is not a d-progression for any d ≥ 1, then
CSP(Γ) is NP-hard. By considering Γ/d instead of Γ , we can reduce to the case
d = 1. In order to prove Theorem 7, it thus suffices to show the following.

Proposition 5. Let Γ be a positive first-order expansion of (Z; succ), and S ⊂ Z

a 1-progression, |S| > 1, such that DiffS is pp-definable in Γ . Then Γ is preserved
by max or min; or CSP(Γ) is NP-hard.

In the proof of this proposition we use known results about finite domain
CSPs. More specifically, we apply these results to substructures Δ of (Γ, 0)
induced by {−n, . . . , n}. All singleton unary relations are pp definable in Δ.
Then it is known that CSP(Δ) is NP-hard, or Δ has a so-called weak near una-
nimity polymorphism of arity k ≥ 2 (combining a result from [7] with a result
from [15]). We show that in our situation, such polymorphisms must generate
min or max on {−n, . . . , n}, which then implies that also Γ is preserved by min
or max.

Constraint Satisfaction Problems over the Integers with Successor 267

8 Discussion

The structure (Z; succ) is among the simplest structures that is not ω-categorical.
Note that (Z; succ) and its reducts are uncountably categorical and ω-stable.
They are also automatic in the sense of algorithmic model theory.

We want to stress that the difficulties we had to overcome when classifying
reducts of (Z; succ) will be present in classifications of reducts of richer struc-
tures, such as (Z; succ,≤) (which has the same reducts as (Z;<)), (Z; +), or even
(Z; +,≤), i.e., Presburger arithmetic, and we view it as an interesting question
which of our techniques might generalise to such more general contexts.

References

1. Bodirsky, M., Dalmau, V., Martin, B., Pinsker, M.: Distance constraint satisfac-
tion problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 162–173. Springer, Heidelberg (2010)

2. Bodirsky, M., Hils, M., Martin, B.: On the scope of the universal-algebraic approach
to constraint satisfaction. Logical Methods in Computer Science (LMCS) 8(3), 13
(2012). An extended abstract that announced some of the results appeared in the
proceedings of Logic in Computer Science (LICS 2010)

3. Bodirsky, M., Kára, J.: The complexity of equality constraint languages. Theory
of Computing Systems 3(2), 136–158 (2008). A conference version appeared in the
proceedings of Computer Science Russia (CSR 2006)

4. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction prob-
lems. Journal of the ACM 57(2), 1–41 (2009). An extended abstract appeared in
the Proceedings of the Symposium on Theory of Computing (STOC 2008)

5. Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous
templates. Journal of Logic and Computation 16(3), 359–373 (2006)

6. Bodirsky, M., Pinsker, M.: Schaefer’s theorem for graphs. In: Proceedings of
the Annual Symposium on Theory of Computing (STOC), pp. 655–664 (2011).
Preprint of the long version available at arxiv.org/abs/1011.2894

7. Bulatov, A.A., Jeavons, P., and Krokhin, A.A.: The complexity of constraint
satisfaction: an algebraic approach (a survey paper). In: Structural Theory of
Automata, Semigroups and Universal Algebra (Montreal, 2003), NATO Science
Series II: Mathematics, Physics, Chemistry 207, 181–213 (2005)

8. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM Jour-
nal on Computing 28, 57–104 (1999)

9. Hedman, S.: A First Course in Logic: An Introduction to Model Theory, Proof The-
ory, Computability, and Complexity (Oxford Texts in Logic). Oxford University
Press Inc, New York (2004)

10. Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B 48, 92–110 (1990)

11. Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge
(1997)

12. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of
the ACM 44(4), 527–548 (1997)

13. Jonsson, P., Lööw, T.: Computation complexity of linear constraints over the inte-
gers. Artificial Intelligence 195, 44–62 (2013)

14. Marker, D.: Model Theory: An Introduction. Springer, New York (2002)
15. Maróti, M., McKenzie, R.: Existence theorems for weakly symmetric operations.

Algebra Universalis 59, 3 (2008)

http://arxiv.org/abs/1011.2894

Hardness Amplification and the Approximate
Degree of Constant-Depth Circuits

Mark Bun1(B) and Justin Thaler2

1 Harvard University, Cambridge, Massachusetts
mbun@seas.harvard.edu

2 Yahoo! Labs, New York, USA
jthaler@fas.harvard.edu

Abstract. We establish a generic form of hardness amplification for
the approximability of constant-depth Boolean circuits by polynomi-
als. Specifically, we show that if a Boolean circuit cannot be pointwise
approximated by low-degree polynomials to within constant error in a
certain one-sided sense, then an OR of disjoint copies of that circuit can-
not be pointwise approximated even with very high error. As our main
application, we show that for every sequence of degrees d(n), there is
an explicit depth-three circuit F : {−1, 1}n → {−1, 1} of polynomial-
size such that any degree-d polynomial cannot pointwise approximate
F to error better than 1 − exp(−Ω̃(nd−3/2)). As a consequence of our
main result, we obtain an exp(−Ω̃(n2/5)) upper bound on the the dis-

crepancy of a function in AC0, and an exp(Ω̃(n2/5)) lower bound on

the threshold weight of AC0, improving over the previous best results of
exp(−Ω(n1/3)) and exp(Ω(n1/3)) respectively.

Our techniques also yield a new lower bound of Ω(n1/2/ log(d−2)/2(n))
on the approximate degree of the AND-OR tree of depth d, which is
tight up to polylogarithmic factors for any constant d, as well as new
bounds for read-once DNF formulas. In turn, these results imply new
lower bounds on the communication and circuit complexity of these
classes, and demonstrate strong limitations on existing PAC learning
algorithms.

1 Introduction

The ε-approximate degree of a Boolean function f : {−1, 1}n → {−1, 1}, denoted
d̃egε(f), is the minimum degree of a real polynomial that approximates f to error
ε in the �∞ norm. Approximate degree has pervasive applications in theoretical

The full version of this paper is available at http://arxiv.org/abs/1311.1616.
Supported by an NDSEG Fellowship and NSF grant CNS-1237235.
Parts of this work were done while the author was a graduate student at Harvard
University, and a Research Fellow at the Simons Institute for the Theory of Com-
puting. This work was supported by an NSF Graduate Research Fellowship, NSF
grants CNS-1011840 and CCF-0915922, and a Research Fellowship from the Simons
Institute for the Theory of Computing.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 268–280, 2015.
DOI: 10.1007/978-3-662-47672-7 22

http://arxiv.org/abs/1311.1616

Hardness Amplification and the Approximate Degree 269

computer science. For example, lower bounds on approximate degree underly
many tight lower bounds on quantum query complexity (e.g., [2,3,5,31]), and
have been used to resolve several long-standing open questions in communication
complexity [27]. Meanwhile, upper bounds on approximate degree underly many
of the fastest known learning algorithms, including PAC learning DNF and read-
once formulas [4,14], agnostically learning disjunctions [12], and PAC learning
in the presence of irrelevant information [15,24].

Despite the range and importance of these applications, large gaps remain
in our understanding of approximate degree. The approximate degree of any
symmetric Boolean function has been understood since Paturi’s 1992 paper [22],
but once we move beyond symmetric functions, few general results are known.

In this paper, we perform a careful study of the approximate degree of
constant-depth Boolean circuits. In particular, we establish a generic form of
hardness amplification for the pointwise approximation of small depth circuits by
low-degree polynomials: we show that if a Boolean circuit f cannot be pointwise
approximated to within constant error in a certain one-sided sense by polyno-
mials of a given degree, then the circuit F obtained by taking an OR of disjoint
copies of f cannot be approximated even with error exponentially close to 1.
Notice that if f is computed by a circuit of polynomial size and constant depth,
then so is F .

Our proof extends a recent line of work [8,18,25,33] that seeks to prove
approximate degree lower bounds by constructing explicit dual polynomials,
which are dual solutions to a linear program that captures the approximate
degree of any function. Specifically, we show that given a dual polynomial demon-
strating that f cannot be approximated to within constant error, we can con-
struct a dual polynomial demonstrating that F cannot be approximated even
with error exponentially close to 1.

As the main application of our hardness amplification technique, for any
d > 0 we exhibit an explicit function F : {−1, 1}n → {−1, 1} computed by a
polynomial size circuit of depth three for which any degree-d polynomial can-
not pointwise approximate F to error 1 − exp(−Ω̃(nd−3/2)). We then use this
result to obtain new bounds on two quantities that play central roles in learn-
ing theory, communication complexity, and circuit complexity: discrepancy and
threshold weight. Specifically, we prove a new upper bound of exp(−Ω̃(n2/5)) for
the discrepancy of a function in AC0, and a new lower bound of exp(Ω̃(n2/5)) for
the threshold weight of AC0. As a second application, our hardness amplification
result allows us to resolve, up to polylogarithmic factors, the approximate degree
of AND-OR trees of arbitrary constant depth. Finally, our techniques also yield
new lower bounds for read-once DNF formulas.

2 Hardness Amplification

Recall that the ε-approximate degree of a Boolean function f is the minimum
degree of a real polynomial that pointwise approximates f to error ε. Another
fundamental measure of the complexity of f is its threshold degree, denoted

270 M. Bun and J. Thaler

deg±(f). The threshold degree of f is the least degree of a real polynomial that
agrees in sign with f at all Boolean inputs.

Central to our results is a measure of the complexity of a Boolean function
that we call one-sided approximate degree. This quantity, which we denote by
˜odegε(f), is an intermediate complexity measure that lies between ε-approximate
degree and threshold degree. Unlike approximate degree and threshold degree,
one-sided approximate degree treats inputs in f−1(1) and inputs in f−1(−1)
asymmetrically.

More specifically, ˜odegε(f) captures the least degree of a one-sided approx-
imation for f . Here, a one-sided approximation p for f is a polynomial that
approximates f to error at most ε at all points x ∈ f−1(1), and satisfies the
threshold condition p(x) ≤ −1 + ε at all points x ∈ f−1(−1). Notice that
˜odegε(f) is always at most d̃egε(f), but can be smaller. Similarly, ˜odegε(f)
is always at least deg±(f), but can be larger.

One-sided approximate degree is the complexity measure that we amplify for
constant-depth circuits: given a depth k circuit f on m variables that has one-
sided approximate degree greater than d, we show how to generically transform
f into a depth k +1 circuit F on t ·m variables such that F cannot be pointwise
approximated by degree d polynomials even to error 1 − 2−t.1

Theorem 1. Suppose f : {−1, 1}m → {−1, 1} has one-sided approximate degree
õdeg1/2(f) > d. Denote by F : {−1, 1}m·t → {−1, 1} the block-wise composition
ORt(f, . . . , f), where ORt denotes the OR function on t variables. Then F can-
not be pointwise approximated by degree-d polynomials to within error 1−2−t by
degree-d polynomials. That is, the (1 − 2−t)-approximate degree of F is greater
than d.
Remark: Theorem 1 demonstrates that one-sided approximate degree admits
a form of hardness amplification within AC0, which does not generally hold for
the ordinary approximate degree. Indeed, Theorem 1 fails badly if the condition
˜odeg1/2(f) > d is replaced with the weaker condition d̃eg1/2(f) > d (in fact,
f = ORm is a counter-example).

A dual formulation of one-sided approximate degree was previously exploited
by Gavinsky and Sherstov to separate the multi-party communication versions
of NP and co-NP [9], as well as by the current authors [8] and independently by
Sherstov [25] to resolve the approximate degree of the two-level AND-OR tree. In
this paper, we introduce the primal formulation of one-sided approximate degree,
which allows us to express Theorem 1 as a hardness amplification result. We
also argue for the importance of one-sided approximate degree as a complexity
measure in its own right.

Prior Work on Hardness Amplification for Approximate Degree. For
the purposes of this discussion, we informally consider a hardness amplifica-
tion result for approximate degree to be any statement of the following form:
1 Follow-up work by Sherstov [26] has established a lower bound on the threshold
degree of F . Specifically, he has shown that there is some constant c such that
deg±(F) > min{ct, d}. See Section 6 for further discussion of this result.

Hardness Amplification and the Approximate Degree 271

Fix two functions f : {−1, 1}m → {−1, 1} and g : {−1, 1}t → {−1, 1}. Then
the composed function g(f, . . . , f) : {−1, 1}m·t → {−1, 1} is strictly harder to
approximate in the �∞ norm by low-degree polynomials than is the function f .

We think of such a result as establishing that application of the outer function
g to t disjoint copies of f amplifies the hardness of f . Here we consider poly-
nomial degree to be a resource, and “harder to approximate” can refer either
to the amount of resources required for the approximation, to the error of the
approximation, or to a combination of the two.

Two particular kinds of hardness amplification results for approximate degree
have received particular attention. Direct-sum theorems focus on amplifying the
degree required to obtain an approximation, but do not focus on amplifying
the error. For example, a typical direct-sum theorem identifies conditions on f

and g that guarantee that d̃egε(g(f, . . . , f)) ≥ d̃egε(g) · d̃egε(f). In contrast, a
direct-product theorem focuses on amplifying both the error and the minimum
degree required to achieve this error. An XOR lemma is a special case of either
type of theorem where the combining function g is the XOR function. Ideally, an
XOR lemma of the direct-product form establishes that there exists a sufficiently
small constant δ > 0 such that d̃eg1−2−δt(XORt(f, . . . , f)) ≥ t · d̃eg1/3(f). That
is, an XOR lemma establishes that approximating the XOR of t disjoint copies
of f requires a t-fold blowup in degree relative to f , even if one allows error
exponentially close to 1.

O’Donnell and Servedio [21] proved an XOR lemma for threshold degree,
establishing that XORt(f, . . . , f) has threshold degree t times the threshold
degree of f . In later work, Sherstov [33] proved a direct sum result for approx-
imate degree that holds whenever the combining function g has low block-
sensitivity. His techniques also capture O’Donnell and Servedio’s XOR lemma
for threshold degree as a special case. In [31], Sherstov proved a number of hard-
ness amplification results for approximate degree. Most notably, he proved an
optimal XOR lemma, as well as a direct-sum theorem that holds whenever the
combining function has close to maximal approximate degree (i.e., approximate
degree Ω(t)). Sherstov used his XOR lemma to prove direct product theorems for
quantum query complexity, and in subsequent work [32], to show direct product
theorems for the multiparty communication of set disjointness.

Comparison to Prior Work. In this paper, we are interested in establishing
approximate degree lower bounds for constant-depth circuits over the basis
{AND,OR,NOT}. For this purpose, it is essential to consider combining func-
tions (such as OR, see Theorem 1) that are themselves in AC0, ruling out the use
of XOR as a combining function. Our hardness amplification result (Theorem
1) is orthogonal to direct-sum theorems: direct-sum theorems focus on amplify-
ing degree but not error, while Theorem 1 focuses on amplifying error but not
degree. Curiously, Theorem 1 is nonetheless a critical ingredient in our proof of
a direct-sum type theorem for AND-OR trees of constant depth (Theorem 3).

Proof Idea. As discussed in the introduction, our proof of Theorem 1 relies on a
dual characterization of one-sided approximate degree (see the full version of this

272 M. Bun and J. Thaler

work). Specifically, for any m-variate Boolean function f satisfying ˜odeg1/2(f) >
d, there exists a dual object ψ : {−1, 1}m → R that witnesses this fact — we
refer to ψ as a “dual polynomial” for f . The dual polynomial ψ satisfies three
important properties: (1) ψ has high correlation with f , (2) ψ has zero correlation
with all polynomials of degree at most d, and (3) ψ(x) agrees in sign with f(x)
for all x ∈ f−1(−1). We refer to the second property by saying ψ has pure high
degree d, and we refer to the third property by saying that ψ has one-sided error.

Our proof proceeds by taking a dual witness ψ to the high one-sided approxi-
mate degree of f , and a certain dual witness Ψ for the function ORt, and combin-
ing them to obtain a dual witness ζ for the fact that d̃eg1−2−t(ORt(f, . . . , f)) >
d. Our analysis of the combined dual witness crucially exploits two properties:
first, that ψ has one-sided error and second, that the vector whose entries are
all equal to −1 has very large (in fact, maximal) Hamming distance from the
unique input in OR−1

t (1).
Our method of combining the two dual witnesses was first introduced by

Sherstov [33, Theorem 3.3] and independently by Lee [18]. This method was
also used by the present authors in [8] to resolve the approximate degree of the
two-level AND-OR tree, and by Sherstov [31] to prove direct sum and direct
product theorems for polynomial approximation. However, as discussed above,
prior work used this method of combining dual witnesses exclusively to amplify
the degree in the resulting lower bound; in contrast, we use the combining method
in the proof of Theorem 1 to amplify the error in the resulting lower bound.

From a technical perspective, the primary novelty in the proof of Theorem
1 lies in our choice of an appropriate (and simple) dual witness Ψ for ORt,
and the subsequent analysis of the correlation of the combined witness ζ with
ORt(f, . . . , f). By our choice of Ψ , we are able to show that ζ has correlation
with ORt(f, . . . , f) that is exponentially close to 1, yielding a lower bound even
on the degree of approximations with very high error.

3 Lower Bounds For AC0

3.1 A New One-Sided Approximate Degree Lower Bound for AC0

Our ultimate goal is to use Theorem 1 to construct a function F in AC0 that
is hard to approximate by low-degree polynomials even with error exponentially
close to 1. However, in order to apply Theorem 1, we must first identify an AC0

function f such that ˜odeg1/2(f) is large.
To this end, we identify fairly general conditions guaranteeing that the one-

sided approximate degree of a function is equal to its approximate degree, up
to a logarithmic factor. To express our result, let [N] = {1, . . . , N}, and let
m,N,R be a triple of positive integers such that R ≥ N , and m = N · log2 R.
In most cases, we will take R = N . We specifically consider Boolean functions f
on {−1, 1}m that interpret their input x as the values of a function gx mapping
[N] → [R]. That is, we break x up into N blocks each of length log2 R, and
regard each block xi as the binary representation of gx(i). Hence, we think of

Hardness Amplification and the Approximate Degree 273

f as computing some property φf of functions gx : [N] → [R]. We say that a
property φ is symmetric if for all g : [N] → [R], all permutations σ on [R], and
all permutations π on [N], it holds that φ(g) = φ(σ ◦ g ◦ π).

Theorem 2. Let f : {−1, 1}m → {−1, 1} be a Boolean function corresponding
to a symmetric property φf of functions gx : [N] → [R]. Suppose that for every
pair x, y ∈ f−1(−1), there is a pair of permutations σ on [R] and π on [N] such
that gx = σ ◦ gy ◦ π. Then õdegε(f) ≥ 1

log2 R · d̃egε(f) for all ε > 0.

Proof Idea. It is enough to show that any one-sided ε-approximation p to f
can be transformed into an actual ε-approximation r to f in a manner that
does not increase the degree by too much (i.e., in a manner guaranteeing that
deg(r) ≤ (log2 R) deg(p)).

Our transformation from p to r consists of two steps. In the first step, we
turn p into a “symmetric” polynomial psym(x) := Ey∼x[p(y)] where y ∼ x if
gy = σ ◦ gx ◦ π for some permutations σ on [R] and π on [N]. It follows from
work of Ambainis [3] that the map p �→ psym increases the degree of p by a
factor of at most log2 R. In the second step, we argue that there is an affine
transformation r of psym that is an actual ε-approximation to f , completing the
construction.

The existence of the affine transformation r of psym follows from two obser-
vations: (1) if p is a one-sided approximation for f , then so is psym (this holds
because φf is symmetric), and (2) psym takes on a constant value v on f−1(−1),
i.e., psym(x) = v for all x ∈ f−1(−1) (this holds because x ∼ y for every pair of
inputs x, y ∈ f−1(−1)). Thus even if psym poorly approximates f on f−1(−1),
we can still obtain a good approximation r by applying an affine transformation
to the range of psym that maps v to −1 and moves all values closer to 1.

In our primary application of Theorem 2, we let f : {−1, 1}m → {−1, 1} be
the Element Distinctness function. Aaronson and Shi [2] showed that the
approximate degree of Element Distinctness is Ω((m/ log m)2/3). Element
Distinctness is computed by a CNF of polynomial size, and Aaronson and
Shi’s result remains essentially the best-known lower bound for the approximate
degree of a function in AC0. Theorem 2 applies to Element Distinctness,
yielding the following corollary.

Corollary 1. Let f : {−1, 1}m → {−1, 1} denote the Element Distinctness

function. Then õdeg(f) = Ω̃(m2/3).
The best known lower bound on the one-sided approximate degree of an AC0

function that followed from prior work was Ω(m1/2) (which holds for the AND
function [9,20]). Section 6 describes some further implications of Theorem 2.

3.2 Accuracy-Degree Tradeoff Lower Bounds for AC0

By Corollary 1, we can apply Theorem 1 to Element Distinctness to obtain
a depth-three Boolean circuit F with t ·m inputs such that d̃egε(F) = Ω̃(m2/3),

274 M. Bun and J. Thaler

for ε = 1 − 2−t. By choosing t and m appropriately, we obtain a depth-three
circuit on n = t · m variables of size poly(n) such that any degree-d polynomial
cannot pointwise approximate F to error better than 1 − exp(−Ω̃(nd−3/2)).

Corollary 2. For every d > 0, there is a depth-3 Boolean circuit F : {−1, 1}n →
{−1, 1} of size poly(n) such that any degree-d polynomial cannot pointwise
approximate F to error better than 1 − exp(−Ω̃(nd−3/2)). In particular, there
is a depth-3 circuit F such that any polynomial of degree at most n2/5 cannot
pointwise approximate F to error better than 1 − exp(−Ω̃(n2/5)).

3.3 Discrepancy Upper Bound

Discrepancy is a central quantity in communication complexity and circuit com-
plexity. For instance, upper bounds on the discrepancy of a function f imme-
diately yield lower bounds on the cost of small-bias communication protocols
for computing f (The full version of this work has details). The first exponen-
tially small discrepancy upper bounds for AC0 were proved by Burhman et al.
[7] and Sherstov [29,30], who exhibited constant-depth circuits with discrepancy
exp(−Ω(n1/3)). We improve the best-known upper bound to exp(−Ω̃(n2/5)).

Table 1. Comparison of our new discrepancy bound for AC0 to prior work. The circuit
depth column lists the depth of the circuit used to exhibit the bound.

Reference Discrepancy Bound Circuit Depth

Sherstov [30] exp(−Ω(n1/5)) 3

Buhrman et al. [7] exp(−Ω(n1/3)) 3

Sherstov [29] exp(−Ω(n1/3)) 3

This work exp(−Ω̃(n2/5)) 4

Our result relies on a powerful technique developed by Sherstov [29], known as
the pattern-matrix method. This technique allows one to automatically translate
lower bounds on the ε-approximate degree of a Boolean function F into upper
bounds on the discrepancy of a related function F ′ as long as ε is exponentially
close to one. By applying the pattern-matrix method to Corollary 2, we obtain
the following result.

Corollary 3. There is a depth-4 Boolean circuit F ′ : {−1, 1}n → {−1, 1} with
discrepancy exp(−Ω̃(n2/5)).

3.4 Threshold Weight Lower Bound

A polynomial threshold function (PTF) for a Boolean function f is a multilinear
polynomial p with integer coefficients that agrees in sign with f on all Boolean
inputs. The weight of an n-variate polynomial p is the sum of the absolute
value of its coefficients. The degree-d threshold weight of a Boolean function
f : {−1, 1}n → {−1, 1}, denoted W (f, d), refers to the least weight of a degree-d

Hardness Amplification and the Approximate Degree 275

PTF for f . We let W (f) denote the quantity W (f, n), i.e., the least weight of any
threshold function for f regardless of its degree. As discussed in the full version
of this work, threshold weight has important applications in learning theory.

Threshold weight is closely related to ε-approximate degree when ε is very
close to 1. This allows us to translate Corollary 2 into a lower bound on the
degree-d threshold weight of AC0.

Corollary 4. For every d > 0, there is a depth-3 Boolean circuit F : {−1, 1}n →
{−1, 1} of size poly(n) such that W (F, d) ≥ exp(Ω̃(nd−3/2)). In particular,
W (F, n2/5) = exp(Ω̃(n2/5)).

A result of Krause [16] allows us to extend our new degree-d threshold weight
lower bound for F into a degree independent threshold weight lower bound for a
related function F ′. The previous best lower bound on the threshold weight of
AC0 was exp(Ω(n1/3)), due to Krause and Pudlák [17].

Corollary 5. There is a depth-4 Boolean circuit F ′ : {−1, 1}n → {−1, 1} sat-
isfying W (F ′) = exp(Ω̃(n2/5)).

Moreover, while the threshold weight bound of Corollary 5 is stated for
polynomial threshold functions over {−1, 1}n, we show that the same thresh-
old weight lower bound also holds for polynomials over {0, 1}n.

4 Approximate Degree Lower Bounds for AND-OR Trees

The d-level AND-OR tree on n variables is a function described by a read-once
circuit of depth d consisting of alternating layers of AND gates and OR gates. We
assume for simplicity that all gates have fan-in n1/d. For example, the two-level
AND-OR tree is a read-once CNF in which all gates have fan-in n1/2.

Until recently, the approximate degree of AND-OR trees of depth two or
greater had resisted characterization, despite 19 years of attention [3,8,10,20,
25,33,34]. The case of of depth two was reposed as a challenge problem by
Aaronson in 2008 [1], as it captured the limitations of existing lower bound
techniques. This case was resolved last year by the current authors [8], and
independently by Sherstov [25], who proved a lower bound of Ω(

√
n), matching

an upper bound of Høyer, Mosca, and de Wolf [10]. However, the case of depth
three or greater remained open. To our knowledge, the best known lower bound
for d ≥ 3 was Ω(n1/4+1/2d), which follows by combining the depth-two lower
bound [8,25] with an earlier direct-sum theorem of Sherstov [33, Theorem 3.1].

By combining the techniques of our earlier work [8] with our hardness amplifi-
cation result (Theorem 1), we improve this lower bound to Ω(n1/2/ log(d−2)/2(n))
for any constant d ≥ 2. A line of work on quantum query algorithms [4,10,23]
established an upper bound of O(n1/2) for AND-OR trees of any depth, demon-
strating that our result is optimal up to polylogarithmic factors.

Theorem 3. Let AND-ORd,n denote the d-level AND-OR tree on n variables.
Then d̃eg(AND-ORd,n) = Ω(n1/2/ log(d−2)/2 n) for any constant d ≥ 2.

276 M. Bun and J. Thaler

Proof Idea. To introduce our proof technique, we first describe the method used
in [8] to construct an optimal dual polynomial in the case d = 2, and we identify
why this method breaks down when trying to extend to the case d = 3. We then
explain how to use our hardness amplification result (Theorem 1) to construct
a different dual polynomial that does extend to the case d = 3.

Let M denote the fan-in of all gates in OR-AND2,M2 . In our earlier work [8],
we constructed a dual polynomial for OR-AND2,M2 as follows. It is known that
there is a dual polynomial γ1 witnessing the fact that ˜odeg(ANDM) = Ω(M1/2),
and a dual polynomial γ2 witnessing the fact that d̃eg(ORM) = Ω(M1/2). We
then combined the dual witnesses γ1 and γ2, using the same “combining” tech-
nique as in the proof of Theorem 1, to obtain a dual witness γ3 : {−1, 1}M2 → R

for the high approximate degree of OR-AND2,M2 .
Recall that we say a dual witness has pure high degree d if it has zero corre-

lation with every polynomial of degree at most d. It followed from earlier work
[33] that γ3 has pure high degree equal to the product of the pure high degrees
of γ1 and γ2, yielding an Ω(M) lower bound on the pure high degree of γ3. The
new ingredient of the analysis in [8] was to use the one-sided error of the “inner”
dual witness γ1 to argue that γ3 also had good correlation with OR-AND2,M2 .

Extending to Depth Three. Let M = n1/3 denote the fan-in of all
gates in AND-OR3,n. To construct a dual witness for AND-OR3,n = ANDM

(OR-AND2,M2 , . . . ,OR-AND2,M2), it is natural to try the following approach.
Let γ4 be a dual polynomial witnessing the fact that the approximate degree of
ANDM = Ω(

√
M). Then we can combine γ3 and γ4 as above to obtain a dual

function γ5.
The difficulty in establishing that γ5 is a dual witness to the high approximate

degree of AND-OR3,n is in showing that γ5 has good correlation with AND-OR3.
In our earlier work, we showed γ3 has large correlation with OR-AND2,n by
exploiting the fact that the inner dual witness γ1 had one-sided error, i.e., γ1(y)
agrees in sign with ANDM whenever y ∈ AND−1

M (−1) . However, γ3 itself does
not satisfy an analogous property: there are inputs xi ∈ OR-AND−1

2,M2(−1) such
that γ3(xi) > 0, and there are inputs xi ∈ OR-AND−1

2,M2(1) such that γ3(xi) < 0.
To circumvent this issue, we use a different inner dual witness γ′

3 in place of
γ3. Our construction of γ′

3 utilizes our hardness amplification analysis to achieve
the following: while γ′

3 has error “on both sides”, the error from the “wrong
side” is very small. The hardness amplification step causes γ′

3 to have pure high
degree that is lower than that of the dual witness γ3 constructed in [8] by a√

log n factor. However, the hardness amplification step permits us to prove the
desired lower bound on the correlation of γ5 with AND-OR3,n. The proof for the
general case, which is quite technical, appears in the full version of this work.

5 Lower Bounds for Read-Once DNFs and CNFs

Our techniques also yield new lower bounds on the approximate degree and
degree-d threshold weight of read-once DNF and CNF formulas. Before stating
our results, we discuss relevant prior work.

Hardness Amplification and the Approximate Degree 277

In their seminal work on perceptrons, Minsky and Papert exhibited a read-
once DNF f : {−1, 1}n → {−1, 1} with threshold degree Ω(n1/3) [19]. That is, a
real polynomial requires degree Ω(n1/3) just to agree with f in sign. However,
to our knowledge no non-trivial lower bound on the degree-d threshold weight
of read-once DNFs was known for any d = ω(n1/3).

In an influential result, Beigel [6] exhibited a polynomial-size (read-many)
DNF called ODD-MAX-BIT satisfying the following: there is some constant
δ > 0 such that d̃eg1−2−δn/d2 (ODD-MAX-BIT) > d, and hence also W (ODD-

MAX-BIT, d) = exp(Ω(n/d2)). Motivated by applications in computational
learning theory, Klivans and Servedio showed that Beigel’s lower bound is essen-
tially tight for d < n1/3 [15]. Very recently, Servedio, Tan, and Thaler showed an
alternative lower bound on the degree-d threshold weight of ODD-MAX-BIT.
Specifically, they showed that W (ODD-MAX-BIT, d) = exp(Ω(

√
n/d)) [24].

The lower bound of Servedio et al. improves over Beigel’s for any d > n1/3, and
is essentially tight in this regime (i.e., when d > n1/3).

While ODD-MAX-BIT is a relatively simple DNF (in fact, it is a decision
list), it is not a read-once DNF. Our results extend the lower bounds of Servedio
et al. and Beigel from decision lists to read-once DNFs and CNFs. In the state-
ment of the results below, we restrict ourselves to DNFs, as the case of CNFs is
entirely analogous.

5.1 Extending Servedio et al.’s Lower Bound to Read-Once DNFs

In order to extend the lower bound of Servedio et al. to read-once DNFs and
CNFs, we extend our hardness amplification techniques from one-sided approxi-
mate degree to a new quantity we call degree-d one-sided non-constant approxi-
mate weight. This quantity captures the least L1 weight (excluding the constant
term) of a polynomial of degree at most d that is a one-sided approximation of
f . We denote the degree-d one-sided approximate weight of a Boolean function
f by W ∗

ε (f, d), where ε is an error parameter. We prove the following analog of
Theorem 1.

Theorem 4. Fix d > 0. Let f : {−1, 1}m → {−1, 1}, and suppose W ∗
3/4(f, d) >

w. Let F : {−1, 1}m·t → {−1, 1} denote the function ORt(f, . . . , f). Then any
degree-d polynomial that approximates F to error 1− 2−t requires weight 2−5tw.

Adapting a proof of Servedio et al., we can show that W ∗
3/4(ANDm, d) ≥

2Ω(m/d). By applying Theorem 4 with f = ANDm, along with standard manip-
ulations, we are able to extend the lower bound of Servedio et al. to read-once
CNFs and DNFs.

Corollary 6. For each d = o(n/ log4 n), there is a read-once DNF F satisfying
W (F, d) = exp(Ω(

√
n/d)).

In particular, there is a read-once DNF that cannot be computed by any
PTF of poly(n) weight, unless the degree is Ω̃(n).

278 M. Bun and J. Thaler

5.2 Extending Beigel’s Lower Bound to Read-Once DNFs

It is known that ˜odeg(ANDm) = Ω(m1/2). By applying Theorem 1 with f =
ANDm, we obtain the following result.

Corollary 7. There is an (explicit) read-once DNF F : {−1, 1}n → {−1, 1}
with d̃eg1−2−n/d2 (F) = Ω(d).

We remark that for d < n1/3, Corollary 7 is subsumed by Minsky and
Papert’s seminal result that exhibited a read-once DNF F with threshold degree
Ω(n1/3) [19]. However, for d > n1/3, it is not subsumed by Minsky and Papert’s
result, nor by Corollary 6. Indeed, Corollary 6 yields a lower bound on the
degree-d threshold weight of read-once DNFs, but not a lower bound on the
approximate-degree of read-once DNFs.

6 Discussion

Subsequent Work by Sherstov. In 1969, Minsky and Papert gave a lower
bound of Ω(n1/3) on the threshold degree of an explicit read-once DNF formula.
Klivans and Servedio [14] proved their lower bound to be tight within a loga-
rithmic factor for DNFs of polynomial size, but it remained a well-known open
question to give a threshold degree lower bound of Ω(n1/3+δ) for a function in
AC0; the only progress prior to our work was due to O’Donnell and Servedio
[21], who established an Ω(n1/3 logk n) lower bound for any constant k > 0.

Let f denote the Element Distinctness function on n3/5 variables.
In an earlier version of this work, we conjectured that the function F =
ORn2/5(f, . . . , f) appearing in Corollary 2 in fact satisfies deg±(f) = Ω̃(n2/5),
and observed that this would yield the first polynomial improvement on Minsky
and Papert’s lower bound. Sherstov [26, Theorem 7.1] has recently proved our
conjecture. His proof, short and elegant, extends our dual witness construction
in the proof of Theorem 1 to establish a different form of hardness amplifica-
tion, from one-sided approximate degree to threshold degree. Specifically, he
shows that if a Boolean function f has one-sided approximate degree d, then the
block-wise composition ORt(f, . . . , f) has threshold degree at least min{ct, d}
for some constant c. This result is incomparable to our Theorem 1 when t ≤ d,
but when t
 d, Sherstov’s result is a substantial strengthening of Theorem 1.

In the same work, Sherstov has also proven a much stronger and more difficult
result: for any k > 2, he gives a read-once formula of depth k with threshold
degree Ω(n(k−1)/(2k−1)). Notice that for any constant δ > 0, this yields an AC0

function with threshold degree Ω(n1/2−δ). This in turn yields an improvement
of our discrepancy upper bound (Corollary 3) for AC0 to exp(−Ω(n1/2−δ)), and
of our threshold weight lower bound (Corollary 5) to exp(Ω(n1/2−δ)).

Subsequent Work by Kanade and Thaler. Existing applications of one-
sided approximate degree [8,9,25,26] have all been of a negative nature (proving
communication or circuit lower bounds, establishing limitations on PAC learning

Hardness Amplification and the Approximate Degree 279

algorithms, etc.). Kanade and Thaler [13] have identified a positive (algorithmic)
application of one-sided approximate degree. Specifically, they show that one-
sided approximate degree upper bounds imply fast algorithms in the reliable
agnostic learning framework of Kalai et al. [11]. This framework captures learn-
ing tasks in which one type of error (such as false negative errors) is costlier than
other types. Kanade and Thaler use this result to give the first sub-exponential
time algorithms for distribution-independent reliable learning of several funda-
mental concept classes.

In light of these developments, we are optimistic that the notion of one-sided
approximate degree will continue to enable progress on questions within the
analysis of Boolean functions and computational complexity theory.

Acknowledgments. We are grateful to Sasha Sherstov, Robert Špalek, Li-Yang
Tan, and the anonymous reviewers for valuable feedback on earlier versions of this
manuscript.

References

1. Aaronson, S.: The polynomial method in quantum and classical computing. In:
FOCS (2008). (Slides available at www.scottaaronson.com/talks/polymeth.ppt)

2. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. Journal of the ACM 51(4), 595–605 (2004)

3. Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: Col-
lision and element distinctness with small range. Theory Comput. 1(1), 37–46
(2005)

4. Ambainis, A., Childs, A.M., Reichardt, B., Špalek, R., Zhang, S.: Any AND-OR
formula of size N can be evaluated in time N1/2+o(1) on a quantum computer.
SIAM J. Comput. 39(6), 2513–2530 (2010)

5. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bound
by polynomials. J. ACM 48(4), 778–797 (2001)

6. Beigel, R.: Perceptrons, PP, and the polynomial hierarchy. Computational Com-
plexity 4, 339–349 (1994)

7. Buhrman, H., Vereshchagin, N.K., de Wolf, R.: On computation and communica-
tion with small bias. CCC, pp. 24–32 (2007)

8. Bun, M., Thaler, J.: Dual lower bounds for approximate degree and markov-
bernstein inequalities. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D.
(eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 303–314. Springer, Heidelberg
(2013)

9. Gavinsky, D., Sherstov, A.A.: A separation of NP and coNP in multiparty com-
munication complexity. Theory of Computing 6(1), 227–245 (2010)

10. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In:
ICALP, pp. 291–299 (2003)

11. Kalai, A., Kanade, V., Mansour, Y.: Reliable agnostic learning. J. Comput. Syst.
Sci. 78(5), 1481–1495 (2012)

12. Kalai, A., Klivans, A., Mansour, Y., Servedio, R.: Agnostically learning halfspaces.
SIAM Journal on Computing 37(6), 1777–1805 (2008)

13. Kanade, V., Thaler, J.: Distribution-independent reliable learning. In: COLT
(2014)

www.scottaaronson.com/talks/polymeth.ppt

280 M. Bun and J. Thaler

14. Klivans, A.R., Servedio, R.A.: Learning DNF in time 2Õ(n1/3). J. of Comput. and
System Sci. 68(2), 303–318 (2004)

15. Klivans, A.R., Servedio, R.A.: Toward attribute efficient learning of decision lists
and parities. Journal of Machine Learning Research 7, 587–602 (2006)

16. Krause, M.: On the computational power of Boolean decision lists. Computational
Complexity 14(4), 362–375 (2005)

17. Krause, M., Pudlák, P.: On the computational power of depth-2 circuits with
threshold and modulo gates. Theor. Comput. Sci. 174(1–2), 137–156 (1997)

18. Lee, T.: A note on the sign degree of formulas (2009). CoRR abs/0909.4607
19. Minsky, M.L., Papert, S.A.: Perceptions: An Introduction to Computational Geom-

etry. MIT Press, Cambridge (1969)
20. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials.

Computational Complexity 4, 301–313 (1994)
21. O’Donnell, R., Servedio, R.: New degree bounds for polynomial threshold functions.

Combinatorica 30(3), 327–358 (2010)
22. Paturi, R.: On the degree of polynomials that approximate symmetric Boolean

functions (Preliminary Version). STOC, pp. 468–474 (1992)
23. Reichardt, B.: Reflections for quantum query algorithms. In: SODA (2011)
24. Servedio, R.A., Tan, L.-Y., Thaler, J.: Attribute-Efficient learning and weight-

degree tradeoffs for polynomial threshold functions. COLT 23, 14.1–14.19 (2012)
25. Sherstov, A.A.: Approximating the AND-OR Tree. Theory of Computing (2013)
26. Sherstov, A.A.: Breaking the Minsky-Papert Barrier for constant-depth circuits.

STOC (2014)
27. Sherstov, A.A.: Communication lower bounds using dual polynomials. Bulletin of

the EATCS 95, 59–93 (2008)
28. Sherstov, A.A.: Optimal bounds for sign-representing the intersection of two half-

spaces by polynomials. STOC, pp. 523–532 (2010)
29. Sherstov, A.A.: The pattern matrix method. SIAM J. Comput. 40(6), 1969–2000

(2011)
30. Sherstov, A.A.: Separating AC0 from depth-2 majority circuits. SIAM J. Comput.

28(6), 2113–2129 (2009)
31. Sherstov, A.A.: Strong direct product theorems for quantum communication and

query complexity. SIAM J. Comput. 41(5), 1122–1165 (2012)
32. Sherstov, A.A.: The multiparty communication complexity of set disjointness.

STOC, pp. 525–524 (2012)
33. Sherstov, A.A.: The intersection of two halfspaces has high threshold degree. FOCS,

pp. 343–362 (2009). (To appear in SIAM J. Comput. (special issue for FOCS 2009))
34. Shi, Y.: Approximating linear restrictions of Boolean functions. Manuscript (2002)

web.eecs.umich.edu/shiyy/mypapers/linear02-j.ps

http://web.eecs.umich.edu/shiyy/mypapers/linear02-j.ps

Algorithms and Complexity
for Turaev-Viro Invariants

Benjamin A. Burton(B), Clément Maria, and Jonathan Spreer

The University of Queensland, Brisbane, QLD 4072, Australia
bab@maths.uq.edu.au, {c.maria,j.spreer}@uq.edu.au

Abstract. The Turaev-Viro invariants are a powerful family of topolog-
ical invariants for distinguishing between different 3-manifolds. They are
invaluable for mathematical software, but current algorithms to compute
them require exponential time.

The invariants are parameterised by an integer r ≥ 3. We resolve
the question of complexity for r = 3 and r = 4, giving simple proofs
that computing Turaev-Viro invariants for r = 3 is polynomial time,
but for r = 4 is #P-hard. Moreover, we give an explicit fixed-parameter
tractable algorithm for arbitrary r, and show through concrete implemen-
tation and experimentation that this algorithm is practical—and indeed
preferable—to the prior state of the art for real computation.

Keywords: Computational Topology · 3-Manifolds · Invariants · #P-
hardness · Parameterised complexity

1 Introduction

In geometric topology, testing homeomorphism (topological equivalence) is a
fundamental algorithmic problem. However, beyond dimension two it is remark-
ably difficult. In dimension three—the focus of this paper—an algorithm follows
from Perelman’s proof of the geometrisation conjecture [12], but it is extremely
intricate, its complexity is unknown and it has never been implemented.

As a result, practitioners in computational topology rely on simpler invari-
ants—properties of a topological space that can tell different spaces apart. One
of the best known invariants is homology, but for 3-manifolds (the 3-dimensional
generalisation of surfaces) this is weak: there are many topologically different 3-
manifolds with same homology. Therefore major software packages in 3-manifold
topology rely on invariants that are stronger but more difficult to compute.

In the discrete setting, among the most useful invariants for 3-manifolds are
the Turaev-Viro invariants [19]. These are analogous to the Jones polynomial for
knots: they derive from quantum field theory, but offer a much simpler combina-
torial interpretation that lends itself well to algorithms and exact computation.

A full version of this article is available at arXiv:1503.04099.
J. Spreer — Supported by the Australian Research Council (projects DP1094516,
DP140104246).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 281–293, 2015.
DOI: 10.1007/978-3-662-47672-7 23

arXiv:1503.04099

282 B.A. Burton et al.

They are implemented in the major software packages Regina [5] and the Mani-
fold Recogniser [14,15], and they play a key role in developing census databases,
which are analogous to the well-known dictionaries of knots [3,14]. Their main
difficulty is that they are slow to compute: current implementations [5,15] are
based on backtracking searches, and require exponential time.

The aims of this paper are to (i) introduce the Turaev-Viro invariants to
the wider computational topology community; (ii) understand the complexity of
computing them; and (iii) develop new algorithms suitable for practical software.

The Turaev-Viro invariants are parameterised by two integers r and q, with
r ≥ 3; we denote these invariants by TVr,q. A typical algorithm for computing
TVr,q will take as input a triangulated 3-manifold, composed of n tetrahedra
attached along their triangular faces; we use n to indicate the input size. For
all known algorithms, the difficulty of computing TVr,q grows significantly as r
increases (but in contrast, the difficulty is essentially independent of q).

Our main results are as follows.

– Kauffman and Lins [9] state that for r = 3, 4 one can compute TVr,q via
“simple and efficient methods of linear algebra”, but they give no details
on either the algorithms or the complexity. We show here that in fact the
situations for r = 3 and r = 4 are markedly different: computing TVr,q for
orientable manifolds and r = 3 is polynomial time, but for r = 4 is #P-hard.

– We give an explicit algorithm for computing TVr,q for general r that is fixed-
parameter tractable (FPT). Specifically, for any fixed r and any class of input
triangulations whose dual graphs have bounded treewidth, the algorithm
has running time linear in n. Furthermore, we show through comprehensive
experimentation that this algorithm is practical—we implement it in the
open-source software package Regina [5], run it through exhaustive census
databases, and find that this new FPT algorithm is comparable to—and
often significantly faster than—the prior backtracking algorithm.

– We give a new geometric interpretation of the formula for TVr,q, based on
systems of “normal arcs” in triangles. This generalises earlier observations
of Kauffman and Lins for r = 3 based on embedded surfaces [9], and offers
an interesting potential for future algorithms based on Hilbert bases.

The #P-hardness result for r = 4 is the first classical hardness result for the
Turaev-Viro invariants.1 However, the proofs for this and the polynomial-time
r = 3 result are simple: the algorithm for r = 3 derives from a known homological
formulation [14], and the result for r = 4 adapts Kirby and Melvin’s NP-hardness
proof for the more complex Witten-Reshetikhin-Turaev invariants [10].

The FPT algorithm for general r is significant in that it is not just theoretical,
but also practical—and indeed preferable—for real software. It was previously
known that computing TVr,q is FPT [6], but that prior result was purely existen-
tial (based on Courcelle’s theorem), and would lead to infeasibly large constants
in the running time if translated to a concrete algorithm. More generally, FPT
algorithms do not always translate well into practical software tools, and this
1 For quantum computation, approximating Turaev-Viro invariants is universal [1].

Algorithms and Complexity for Turaev-Viro Invariants 283

paper is significant in giving the first demonstrably practical FPT algorithm in
3-manifold topology.

2 Preliminaries

Let M be a closed 3-manifold. A generalised triangulation of M is a collection
of n abstract tetrahedra Δ1, . . . , Δn equipped with affine maps that identify
(or “glue together”) their 4n triangular faces in pairs, so that the underlying
topological space is homeomorphic to M . See the full paper for details.

Generalised triangulations are widely used across major 3-manifold software
packages. They are (as the name suggests) more general than simplicial com-
plexes, which allows them to express a rich variety of different 3-manifolds using
very few tetrahedra. For instance, with just n ≤ 11 tetrahedra one can create
13 400 distinct prime orientable 3-manifolds [4,14].

2.1 The Turaev-Viro Invariants

Let T be a generalised triangulation of a closed 3-manifold M , and let r and q
be integers with r ≥ 3, 0 < q < 2r, and gcd(r, q) = 1. We define the Turaev-Viro
invariant TVr,q(T) as follows.

Let V , E, F and T denote the set of vertices, edges, triangles and tetrahedra
respectively of the triangulation T. Let I = {0, 1/2, 1, 3/2, . . . , (r − 2)/2}; note
that |I| = r − 1. We define a colouring of T to be a map θ : E → I; that is, θ
“colours” each edge of T with an element of I. A colouring θ is admissible if, for
each triangle of T, the three edges e1, e2, and e3 bounding the triangle satisfy:

– the parity condition θ(e1) + θ(e2) + θ(e3) ∈ Z;
– the triangle inequalities θ(e1) ≤ θ(e2) + θ(e3), θ(e2) ≤ θ(e1) + θ(e3), and

θ(e3) ≤ θ(e1) + θ(e2); and
– the upper bound constraint θ(e1) + θ(e2) + θ(e3) ≤ r − 2.

More generally, we refer to any triple (i, j, k) ∈ I × I × I satisfying these three
conditions as an admissible triple of colours.

For each admissible colouring θ and for each vertex v ∈ V , edge e ∈ E,
triangle f ∈ F or tetrahedron t ∈ T , we define weights |v|θ, |e|θ, |f |θ, |t|θ ∈ C.
Their precise values are unimportant, but depend only on the colours of the
incident edges; see the full paper for details. What is important though is that
the weights are all polynomials on ζ with rational coefficients, where ζ = eiπq/r.

Using these weights, we define the weight of the colouring to be

|T|θ =
∏

v∈V

|v|θ ×
∏

e∈E

|e|θ ×
∏

f∈F

|f |θ ×
∏

t∈T

|t|θ, (1)

and the Turaev-Viro invariant to be the sum over all admissible colourings

TVr,q(T) =
∑

θ admissible

|T|θ.

284 B.A. Burton et al.

Fig. 1. The dual graph and a tree decomposition of a 3-manifold triangulation

In [19], Turaev and Viro show that TVr,q(T) is indeed an invariant of the
manifold; that is, if T and T′ are generalised triangulations of the same closed
3-manifold M , then TVr,q(T) = TVr,q(T′) for all r, q. Although TVr,q(T) is
defined on the complex numbers C, it always takes a real value (more precisely,
it is the square of the modulus of a Witten-Reshetikhin-Turaev invariant) [21].

2.2 Treewidth and Parameterised Complexity

Throughout this paper we always refer to nodes and arcs of graphs, to clearly
distinguish these from the vertices and edges of triangulations.

Robertson and Seymour introduced the concept of the treewidth of a graph
[17], which now plays a major role in parameterised complexity. Here, we adapt
this concept to triangulations in a straightforward way.

Definition 1. Let T be a generalised triangulation of a 3-manifold, and let T
be the set of tetrahedra in T. A tree decomposition (X, {Bτ}) of T consists of a
tree X and bags Bτ ⊆ T for each node τ of X, for which:

– each tetrahedron t ∈ T belongs to some bag Bτ ;
– if a face of some tetrahedron t1 ∈ T is identified with a face of some other

tetrahedron t2 ∈ T , then there exists a bag Bτ with t1, t2 ∈ Bτ ;
– for each tetrahedron t ∈ T , the bags containing t correspond to a connected

subtree of X.

The width of this tree decomposition is defined as max |Bτ | − 1. The treewidth
of T, denoted tw(T), is the smallest width of any tree decomposition of T.

The relationship between this definition and the classical graph-theoretical
notion of treewidth is simple: tw(T) is the treewidth of the dual graph of T, the
4-valent multigraph whose nodes correspond to tetrahedra of T and whose arcs
represent pairs of tetrahedron faces that are identified together.

Figure 1 shows the dual graph of a 9-tetrahedra triangulation of a 3-manifold,
along with a possible tree decomposition. The largest bags have size three, and
so the width of this tree decomposition is 3 − 1 = 2.

Algorithms and Complexity for Turaev-Viro Invariants 285

Definition 2. A nice tree decomposition of a generalised triangulation T is a
tree decomposition (X, {Bτ}) of T whose underlying tree X is rooted, and where:

– The bag Bρ at the root of the tree is empty (Bρ is called the root bag);
– If a bag Bτ has no children, then |Bτ | = 1 (such a Bτ is called a leaf bag);
– If a bag Bτ has two children Bσ and Bμ, then Bτ = Bσ = Bμ (such a Bτ is

called a join bag);
– Every other bag Bτ has precisely one child Bσ, and either:

• |Bτ | = |Bσ|+ 1 and Bτ ⊃ Bσ (such a Bτ is called an introduce bag), or
• |Bτ | = |Bσ| − 1 and Bτ ⊂ Bσ (such a Bτ is called a forget bag).

Given a tree decomposition of a triangulation T of width k and O(n) bags,
we can convert this in O(n) time into a nice tree decomposition of T that also
has width k and O(n) bags [13].

3 Algorithms for Computing Turaev-Viro Invariants

All of the algorithms in this paper use exact arithmetic. This is crucial if we wish
to avoid floating-point numerical instability, since computing TVr,q may involve
exponentially many arithmetic operations.

We briefly describe how this exact arithmetic works. Since all weights in
the definition of TVr,q are rational polynomials in ζ = eiπq/r, all arithmetic
operations remain within the rational field extension Q(ζ). If ζ is a primitive
nth root of unity then this field extension is called the nth cyclotomic field. This
in turn is isomorphic to the polynomial field Q[X]/Φn(X), where Φn(X) is the
nth cyclotomic polynomial with degree ϕ(n) (Euler’s totient function). Therefore
we can implement exact arithmetic using degree ϕ(n) polynomials over Q.

If r is odd and q is even, then ζ is a primitive rth root of unity, and
Q(ζ) ∼= Q[X]/Φr(X). Otherwise ζ is a primitive (2r)th root of unity, and
Q(ζ) ∼= Q[X]/Φ2r(X). In this paper we give our complexity results in terms
of arithmetic operations in Q(ζ); see the full paper for details on the underlying
complexity of arithmetic in this field.

3.1 The Backtracking Algorithm for Computing TVr,q

There is a straightforward but slow algorithm to compute TVr,q for arbitrary
r, q. The core idea is to use a backtracking algorithm to enumerate all admissible
colourings of edges, and compute and sum their weights. Both major software
packages that compute Turaev-Viro invariants—the Manifold Recogniser [15]
and Regina [5]—currently employ optimised variants of this.

Let T be a 3-manifold triangulation, with � edges e1, . . . , e�. A simple Euler
characteristic argument gives � = n+v where n is the number of tetrahedra and
v is the number of vertices in T. Therefore � ∈ Θ(n).

To enumerate colourings, since each edge admits r − 1 possible colours, the
backtracking algorithm traverses a search tree of O((r − 1)�) nodes: a node at
depth i corresponds to a partial colouring of the edges e1, . . . , ei, and each node

286 B.A. Burton et al.

has degree r−1 (one edge per colour). Each leaf on the tree represents a (possibly
not admissible) colouring of all the edges. At each node we maintain a “weight”
of the current partial colouring, and update this weight as we traverse the tree.
If we reach a leaf whose colouring is admissible, we add this weight to our total.

Lemma 3. If we sort the edges e1, . . . , e� by decreasing degree, the backtracking
algorithm terminates in O((r − 1)�) arithmetic operations in Q(ζ).

The proof is simple. The main complication is to ensure that updating the
weight of the current partial colouring takes amortised constant time. For this
we use Chebyshev’s inequality, plus the observation that the average edge degree
is ≤ 6. See the full version of this paper for the detailed proof.

To obtain a bound in the number of tetrahedra n, we note that a closed and
connected 3-manifold triangulation with n > 2 tetrahedra must have v ≤ n + 1
vertices. Combined with n = � − v above, we have a worst-case running time of
O((r − 1)2n+1) arithmetic operations in Q(ζ).

3.2 A Polynomial-Time Algorithm for r = 3

In this section, we assume some basic knowledge on homology theory. We refer
to the full version of this article or [16] for an overview. Throughout this section,
T will denote an n-tetrahedra triangulation of an orientable 3-manifold M .

The value of TV3,q(T), q ∈ {1, 2}, is closely related to H2(M,Z2), the 2-
dimensional homology group of M with Z2 coefficients. H2(M,Z2) is a Z2-vector
space whose dimension is the second Betti number β2(M,Z2). Its elements are
(for our purposes) equivalence classes of 2-cycles, called homology classes, which
can be represented by 2-dimensional triangulated surfaces S embedded in T.2

The Euler characteristic of a triangulated surface S, denoted by χ(S), is
χ(S) = v − e + f , where v, e and f denote the number of vertices, edges and
triangles of S respectively. We define the Euler characteristic χ(c) of a 2-cycle c
to be the Euler characteristic of the embedded surface it represents. Given T, the
dimension β2(M,Z2) of H2(M,Z2) may be computed in O(poly(n)) operations.

The following result is well known [14]:

Proposition 4. Let M be a closed orientable 3-manifold. Then TV3,2(M) =
the order of H2(M,Z2). Moreover, if M contains a 2-cycle with odd Euler char-
acteristic then TV3,1(M) = 0, and otherwise TV3,1(M) = TV3,2(M).

Consequently TV3,2(M) = 2β2(M,Z2), and one can compute TV3,2(M) in
polynomial time. The parity of the Euler characteristic of 2-cycles does not
change within a homology class; moreover, given two 2-cycles c and c′, χ(c +
c′) ≡ χ(c) + χ(c′) mod 2. Consequently, one can check whether TV3,1(M) = 0
or TV3,1(M) = TV3,2(M) by computing the Euler characteristic of a cycle
in each of the β2(M,Z2) homology classes that generate H2(M,Z2). Because
β2(M,Z2) = O(n), this leads to a polynomial time algorithm also.

2 We use discrete normal surfaces, which are transversal to the 1-skeleton of T.

Algorithms and Complexity for Turaev-Viro Invariants 287

3.3 #P -Hardness of TV4,1

The complexity class #P is a function class that counts accepting paths of a non-
deterministic Turing machine [20]. Informally, given an NP decision problem C
asking for the existence of a solution, its #P analogue #C is a counting problem
asking for the number of such solutions. A problem is #P -hard if every problem
in #P polynomially reduces to it. For example, the problem #3SAT , which asks
for the number of satisfying assignments of a 3CNF formula, is #P -hard.

Naturally, counting problems are “harder” than their decision counterpart,
and so #P -hard problems are at least as hard as NP -complete problems—
specifically, #P complete problems are as hard as any problem in the polynomial
hierarchy [18]. Hence proving #P hardness is a strong complexity statement.

Kirby and Melvin [11] prove that computing the Witten-Reshetikhin-Turaev
invariant τr is #P hard for r = 4. This is a more complex 3-manifold invari-
ant which is closely linked to the Turaev-Viro invariant TVr,1 by the formula
TVr,1(M) = |τr(M)|2. Although computing TVr,1 is “easier” than computing
τr, the we can adapt the Kirby-Melvin hardness proof to fit our purposes.

To prove their result, Kirby and Melvin reduce the problem of counting the
zeros of a cubic form to the computation of τ4. Given a cubic form

c(x1, . . . , xn) =
∑

i

ci xi +
∑

i,j

cij xixj +
∑

i,j,k

cijk xixjxk

in n variables over Z/2Z and with #c zeros, they define a triangulation of a
3-manifold Mc with O(poly(n)) tetrahedra satisfying τ4(Mc) = 2#c − 2n and
hence TVr,1 = (2#c − 2n)2.

Consequently, counting the zeros of c(x1, . . . , xn) reduces to computing
τ4(Mc), and so computing TV4,1 determines #c up to a ± sign ambiguity
(depending on whether or not c admits more than half of the input as zeros).

Establishing the existence of a zero for a cubic form is an NP -complete prob-
lem, which implies that counting the number of zeros is #P complete. Conse-
quently, computing τ4 is #P hard. Kirby and Melvin prove this claim explicitly
by reducing #3SAT to the problem of counting the zeros of a cubic form; more-
over, we observe that their construction ensures that this cubic form admits more
than half of its inputs as zeros. See the full paper for details of the argument.

Thus the same reduction process as for τ4 applies for TV4,1, and so:

Corollary 5. Computing TV4,1 is #P hard.

4 A Fixed-Parameter Tractable Algorithm

We present an explicit FPT algorithm for computing TVr,q for fixed r. As is com-
mon for treewidth-based methods, the algorithm involves dynamic programming
over a tree decomposition (X, {Bτ}). We first describe the data that we compute
and store at each bag Bτ , and then give the algorithm itself.

Our first step is to reorganise the formula for TVr,q(T) to be a product
over tetrahedra only. This makes it easier to work with “partial colourings”
corresponding to triangulation edges.

288 B.A. Burton et al.

Definition 6. Let T be a generalised triangulation of a 3-manifold, and let V ,
E, F and T denote the vertices, edges, triangles and tetrahedra of T respectively.
For each vertex x ∈ V , each edge x ∈ E and each triangle x ∈ F , we arbitrarily
choose some tetrahedron Δ(x) that contains x.

Now consider the definition of TVr,q(T). For each admissible colouring
θ : E → I and each tetrahedron t ∈ T , we define the adjusted tetrahedron
weight |t|′θ:

|t|′θ = |t|θ ×
∏

v∈V

Δ(v)=t

|v|θ ×
∏

e∈E

Δ(e)=t

|e|θ ×
∏

f∈F

Δ(f)=t

|f |θ.

It follows from equation (1) that the full weight of the colouring θ is just

|T|θ =
∏

t∈T

|t|′θ.

Notation 7. Let X be a rooted tree. For any non-root node τ of X, we denote
the parent node of τ by τ̂ . For any two nodes σ, τ of X, we write σ ≺ τ if σ is
a descendant node of τ .

Definition 8. Let T be a generalised triangulation of a 3-manifold, and let V ,
E, F and T denote the vertices, edges, triangles and tetrahedra of T respectively.
Let (X, {Bτ}) be a nice tree decomposition of T. For each node τ of the rooted
tree X, we define the following sets:

– Tτ ⊆ T is the set of all tetrahedra that appear in bags beneath τ but not in
the bag Bτ itself. More formally: Tτ = (

⋃
σ≺τ Bσ)\Bτ .

– Fτ ⊆ F is the set of all triangles that appear in some tetrahedron t ∈ Tτ .
– Eτ ⊆ E is the set of all edges that appear in some tetrahedron t ∈ Tτ .
– E∗

τ ⊆ Eτ is the set of all edges that appear in some tetrahedron t ∈ Tτ and
also some other tetrahedron t′ /∈ Tτ ; we refer to these as the current edges
at node τ .

We can make the following immediate observations:

Lemma 9. If τ is a leaf of the tree X, then we have Tτ = Fτ = Eτ = E∗
τ = ∅. If

τ is the root of the tree X, then we have Tτ = T , Fτ = F , Eτ = E, and E∗
τ = ∅.

The key idea is, at each node τ of the tree, to store explicit colours on the
“current” edges e ∈ E∗

τ and to aggregate over all colours on the “finished” edges
e ∈ Eτ\E∗

τ . For this we need some further definitions and notation.

Definition 10. Again let T be a generalised triangulation of a 3-manifold, and
let (X, {Bτ}) be a nice tree decomposition of T. Fix some integer r ≥ 3, and
consider the set of colours I = {0, 1/2, 1, 3/2, . . . , (r − 2)/2} as used in defining
the Turaev-Viro invariants TVr,q.

Let τ be any node of X. We examine “partial colourings” that only assign
colours to the edges in Eτ :

Algorithms and Complexity for Turaev-Viro Invariants 289

– Consider any colouring θ : Eτ → I. We call θ admissible if, for each triangle
in Fτ , the three edges e, f, g bounding the triangle yield an admissible triple
(θ(e), θ(f), θ(g)).

– Define Ψτ to be the set of all colourings ψ : E∗
τ → I that can be extended to

some admissible colouring θ : Eτ → I.
– Consider any colouring ψ ∈ Ψτ (so ψ : E∗

τ → I). We define the “partial
invariant”

TVr,q(T, τ, ψ) =
∑

θ admissible
θ=ψ on E∗

τ

∏

t∈Tτ

|t|′θ.

Essentially, the partial invariant TVr,q(T, τ, ψ) considers all admissible ways
θ of extending the colouring ψ from the current edges E∗

τ to also include the
“finished” edges in Eτ , and then sums the weights of the partial colourings∏ |t|′θ for all such extensions θ using only the tetrahedra in Tτ .

We can now give our full fixed-parameter tractable algorithm for TVr,q.

Algorithm 11. Let T be a generalised triangulation of a 3-manifold. We com-
pute TVr,q(T) for given r, q as follows.

Build a nice tree decomposition (X, {Bτ}) of T. Then work through each node
τ of X from the leaves of X to the root, and compute Ψτ and TVr,q(T, τ, ψ) for
each ψ ∈ Ψτ as follows.

1. If τ is a leaf bag, then E∗
τ = Eτ = ∅, Ψτ contains just the trivial colouring ψ

on ∅, and TVr,q(T, τ, ψ) = 1.
2. If τ is some other introduce bag with child node σ, then Tτ = Tσ. This means

that Ψτ = Ψσ, and for each ψ ∈ Ψτ we have TVr,q(T, τ, ψ) = TVr,q(T, σ, ψ).
3. If τ is a forget bag with child node σ, then Tτ = Tσ ∪ {t} for the unique

“forgotten” tetrahedron t ∈ Bτ\Bσ. Moreover, E∗
τ extends E∗

σ by including
the six edges of t (if they were not already present).
For each colouring ψ ∈ Ψσ, enumerate all possible ways of colouring the six
edges of t that are consistent with ψ on any edges of t that already appear in
E∗

σ, and are admissible on the four triangular faces of t. Each such colouring
on t yields an extension ψ′ : E∗

τ → I of ψ : E∗
σ → I. We include ψ′ in Ψτ ,

and record the partial invariant TVr,q(T, τ, ψ′) = TVr,q(T, σ, ψ).
4. If τ is a join bag with child nodes σ1, σ2, then Tτ is the disjoint union Tσ1 ∪̇

Tσ2 . Here E∗
τ is a subset of E∗

σ1
∪ E∗

σ2
.

For each pair of colourings ψ1 ∈ Ψσ1 and ψ2 ∈ Ψσ2 , if ψ1 and ψ2 agree on
the common edges in E∗

σ1
∩ E∗

σ2
then record the pair (ψ1, ψ2).

Each such pair yields a “combined colouring” in Ψτ , which we denote by
ψ1 · ψ2 : E∗

τ → I; note that different pairs (ψ1, ψ2) might yield the same
colouring ψ1 · ψ2 since some edges from E∗

σ1
∪ E∗

σ2
might not appear in E∗

τ .
Then Ψτ consists of all such combined colourings ψ1 · ψ2 from recorded pairs
(ψ1, ψ2). Moreover, for each combined colouring ψ ∈ Ψτ we compute the
partial invariant TVr,q(T, τ, ψ) by aggregating over all duplicates:

TVr,q(T, τ, ψ) =
∑

(ψ1,ψ2) recorded
ψ1·ψ2=ψ

TVr,q(T, σ1, ψ1) · TVr,q(T, σ2, ψ2).

290 B.A. Burton et al.

Once we have processed the entire tree, the root node ρ of X will have E∗
ρ = ∅,

Ψρ will contain just the trivial colouring ψ on ∅, and TVr,q(T, ρ, ψ) for this trivial
colouring will be equal to the Turaev-Viro invariant TVr,q(T).

The time complexity of this algorithm is simple to analyse. Each leaf bag or
introduce bag can be processed in O(1) time (of course for the introduce bag we
must avoid a deep copy of the data at the child node). Each forget bag produces
|Ψτ | ≤ (r − 1)|E∗

τ | colourings, each of which takes O(|E∗
τ |) time to analyse.

Näıvely, each join bag requires us to process |Ψσ1 | · |Ψσ2 | ≤ (r − 1)|E∗
σ1

|+|E∗
σ2

|

pairs of colourings (ψ1, ψ2). However, we can optimise this. Since we are only
interested in colourings that agree on E∗

σ1
∩ E∗

σ2
, we can first partition Ψσ1

and Ψσ2 into buckets according to the colours on E∗
σ1

∩ E∗
σ2

, and then combine
pairs from each bucket individually. This reduces our work to processing at
most (r − 1)|E∗

σ1
∪E∗

σ2
| pairs overall. Each pair takes O(|E∗

τ |) time to process,
and the preprocessing cost for partitioning Ψσi

is O
(|Ψσi

| · log |Ψσi
| · |E∗

σi
|) =

O
(
(r − 1)|E∗

σi
| · |E∗

σi
|2 log r

)
.

Suppose that our tree decomposition has width k. At each tree node τ , every
edge in E∗

τ must belong to some tetrahedron in the bag Bτ , and so |E∗
τ | ≤ 6(k+1).

Likewise, at each join bag described above, every edge in E∗
σ1

or E∗
σ2

must belong
to some tetrahedron in the bag Bσi

and therefore also the parent bag Bτ , and
so |E∗

σ1
∪ E∗

σ2
| ≤ 6(k + 1). From the discussion above, it follows that every bag

can be processed in time O
(
(r − 1)6(k+1) · k2 log r

)
, and so:

Theorem 12. Given a generalised triangulation T of a 3-manifold with n
tetrahedra, and a nice tree decomposition of T with width k and O(n) bags, Algo-
rithm 11 computes TVr,q(T) in O

(
n · (r − 1)6(k+1) · k2 log r

)
arithmetic opera-

tions in Q(ζ).

Theorem 12 shows that, for fixed r, if we can keep the treewidth small then
computing TVr,q becomes linear time, even for large inputs. This of course is the
main benefit of fixed-parameter tractability. In our setting, however, we have an
added advantage: TVr,q is a topological invariant, and does not depend on our
particular choice of triangulation.

Therefore, if we are faced with a large treewidth triangulation, we can retri-
angulate the manifold (for instance, using bistellar flips and related local moves),
in an attempt to make the treewidth smaller. This is extremely effective in prac-
tice, as seen in Section 5.

Even if the treewidth is large, every tree node has |E∗
τ | ≤ �, where � is the

number of edges in the triangulation. Therefore the time complexity of Algo-
rithm 11 reduces to O

(
n · (r − 1)� · �2 log r

)
, which is only a little slower than the

backtracking algorithm (Lemma 3). This is in sharp contrast to many FPT algo-
rithms from the literature, which—although fast for small parameters—suffer
from extremely poor performance when the parameter becomes large.

Algorithms and Complexity for Turaev-Viro Invariants 291

5 Implementation and Experimentation

Here we implement Algorithm 11 (the fixed-parameter tractable algorithm), and
subject both it and the backtracking algorithm to exhaustive experimentation.

The FPT algorithm is implemented in the open-source software package
Regina [5]: the source code is available from Regina’s public git repository, and
will be included in the next release. For consistency we compare it to Regina’s
long-standing implementation of the backtracking algorithm.3

In our implementation, we do not compute treewidths precisely (an NP-
complete problem)—instead, we implement the quadratic-time GreedyFillIn
heuristic [2], which is reported to produce small widths in practice [7]. This
way, costs of building tree decompositions are insignificant (but included in the
running times). For both algorithms, we use relatively näıve implementations of
arithmetic in cyclotomic fields—these are asymptotically slower than described
in Section 3, but have very small constants.

We use two data sets for our experiments, both taken from large “census
databases” of 3-manifolds to ensure that the experiments are comprehensive
and not cherry-picked.

The first census contains all 13 400 closed prime orientable manifolds that
can be formed from n ≤ 11 tetrahedra [4,14]. This simulates “real-world”
computation—the Turaev-Viro invariants were used to build this census. Since
the census includes all minimal triangulations of these manifolds, we choose the
representative whose heuristic tree decomposition has smallest width (since we
are allowed to retriangulate).

The second data set contains the first 500 triangulations from the (much
larger) Hodgson-Weeks census of closed hyperbolic manifolds [8]. This shows
performance on larger triangulations, with n ranging from 9 to 20.

We compare the performance of both algorithms for each data set, measuring
running times for TV7,1 (the largest r for which the experiments were feasible);
see the full paper for details and plots. The results are striking: the FPT algo-
rithm runs faster in over 99% of cases, including most of the cases with largest
treewidth. In the worst example the FPT algorithm runs 3.7× slower than the
backtracking, but both data sets have examples that run > 440× faster. It is
also pleasing to see a clear impact of the treewidth on the performance of the
FPT algorithm, as one would expect.

6 An Alternate Geometric Interpretation

In this section, we give a geometric interpretation of admissible colourings on
a triangulation of a 3-manifold T in terms of normal arcs, i.e., line segments
passing through triangles of T that each connect two distinct edges, do not meet
any vertices of T, and are pairwise disjoint. More precisely, we have the following:

3 The Manifold Recogniser [15] also implements a backtracking algorithm, but it is
not open-source and so comparisons are more difficult.

292 B.A. Burton et al.

Theorem 13. Given a 3-manifold triangulation T, and r ≥ 3, an admissible
colouring of the edges of T with r − 1 colours corresponds to a system of normal
arcs in the 2-skeleton with ≤ r−2 arcs per triangle forming a collection of cycles
on the boundary of each tetrahedron of T.

See the full version of this paper for a proof of this statement, as well as more
details on the system of normal arcs.

Now, let T be a closed n-tetrahedron 3-manifold triangulation, t a tetrahedron
of T, f1 and f2 two triangles of t with common edge e of colour φ(e), and ai

and bi the respective non-negative numbers of the two normal arc types in fi

meeting e, i ∈ {1, 2}. Since the system of normal arcs on t forms a collection of
cycles on the boundary of t, we must have a1+b1 = a2+b2 ≤ r−2, giving rise to
a total of 6n linear equations and 12n linear inequalities on 6n variables which
all admissible colourings on T must satisfy. Thus, finding admissible colourings
on T translates to the enumeration of integer lattice points within the polytope
defined by the above equalities and inequalities.

Now, if we drop the upper bound constraint above, we get a cone. Computing
the Hilbert basis of integer lattice points of this cone yields a finite description
of all admissible colourings for any r ≥ 3 and, thus, the essential information to
compute TVr,q(T) for arbitrary r. Transforming this approach into a practical
algorithm is work in progress.

References

1. Alagic, G., Jordan, S.P., König, R., Reichardt, B.W.: Estimating Turaev-Viro
three-manifold invariants is universal for quantum computation. Physical Review
A 82(4), 040302(R) (2010)

2. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations. I. Upper bounds.
Inform. and Comput. 208(3), 259–275 (2010)

3. Burton, B.A.: Structures of small closed non-orientable 3-manifold triangulations.
J. Knot Theory Ramifications 16(5), 545–574 (2007)

4. Burton, B.A.: Detecting genus in vertex links for the fast enumeration of 3-manifold
triangulations. In: ISSAC 2011: Proceedings of the 36th International Symposium
on Symbolic and Algebraic Computation, pp. 59–66. ACM (2011)

5. Burton, B.A., Budney, R., Pettersson, W., et al.: Regina: Software for 3-manifold
topology and normal surface theory. http://regina.sourceforge.net/

6. Burton, B.A., Downey, R.G.: Courcelle’s theorem for triangulations, March 2014.
arXiv:1403.2926 (Preprint)

7. van Dijk, T., van den Heuvel, J.P., Slob, W.: Computing treewidth with LibTW
(2006). http://www.treewidth.com

8. Hodgson, C.D., Weeks, J.R.: Symmetries, isometries and length spectra of closed
hyperbolic three-manifolds. Experiment. Math. 3(4), 261–274 (1994)

9. Kauffman, L.H., Lins, S.: Computing Turaev-Viro invariants for 3-manifolds.
Manuscripta Math. 72(1), 81–94 (1991)

10. Kirby, R., Melvin, P.: The 3-manifold invariants of Witten and Reshetikhin-Turaev
for sl(2, C). Invent. Math. 105(3), 473–545 (1991)

11. Kirby, R., Melvin, P.: Local surgery formulas for quantum invariants and the Arf
invariant. Geom. Topol. Monogr. 7, 213–233 (2004) (Geom. Topol. Publ.)

http://regina.sourceforge.net/
http://arxiv.org/abs/1403.2926
http://www.treewidth.com

Algorithms and Complexity for Turaev-Viro Invariants 293

12. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12(5), 2587–2855
(2008)

13. Kloks, T.: Treewidth: Computations and Approximations, vol. 842. Springer,
Heidelberg (1994)

14. Matveev, S.: Algorithmic Topology and Classification of 3-Manifolds. No. 9 in
Algorithms and Computation in Mathematics. Springer, Heidelberg (2003)

15. Matveev, S., et al.: Manifold recognizer. http://www.matlas.math.csu.ru/
16. Munkres, J.R.: Elements of algebraic topology. Addison-Wesley (1984)
17. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.

J. Algorithms 7(3), 309–322 (1986)
18. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),

865–877 (1991)
19. Turaev, V.G., Viro, O.Y.: State sum invariants of 3-manifolds and quantum 6j-

symbols. Topology 31(4), 865–902 (1992)
20. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci.

8, 189–201 (1979)
21. Walker, K.: On Witten’s 3-manifold invariants (1991). http://canyon23.net/math/

http://www.matlas.math.csu.ru/
http://canyon23.net/math/

Big Data on the Rise?
Testing Monotonicity of Distributions

Clément L. Canonne(B)

Columbia University, New York, USA
ccanonne@cs.columbia.edu

Abstract. The field of property testing of probability distributions,
or distribution testing, aims to provide fast and (most likely) correct
answers to questions pertaining to specific aspects of very large datasets.
In this work, we consider a property of particular interest, monotonic-
ity of distributions. We focus on the complexity of monotonicity test-
ing across different models of access to the distributions [5,7,8,20]; and
obtain results in these new settings that differ significantly (and some-
what surprisingly) from the known bounds in the standard sampling
model [1].

1 Introduction

Before even the advent of data, information, records and insane amounts
thereof to treat and analyze, probability distributions have been everywhere,
and understanding their properties has been a fundamental problem in Statis-
tics.1 Whether it be about the chances of winning a (possibly rigged) game in a
casino, or about predicting the outcome of the next election; or for social stud-
ies or experiments, or even for the detection of suspicious activity in networks,
hypothesis testing and density estimation have had a role to play. And among
these distributions, monotone ones have often been of paramount importance:
is the probability of getting a cancer decreasing with the distance from, say,
one’s microwave? Are aging voters more likely to vote for a specific party? Is the
success rate in national exams correlated with the amount of money spent by
the parents in tutoring?

All these examples, however disparate they may seem, share one unifying
aspect: data may be viewed as the probability distributions it defines and origi-
nates from; and understanding the properties of this data calls for testing these
distributions. In particular, our focus here will be on testing whether the data –
its underlying distribution – happens to be monotone,2 or on the contrary far
from being so.

The full version of this work is available as [4].
1 As well as – crucially – in crab population analysis [16].
2 Recall that a distribution D on {1, . . . , n} is said to be monotone (non-increasing)

if D(1) ≥ · · · ≥ D(n), i.e. if its probability mass function is non-increasing. We
hereafter denote by M the class of monotone distributions.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 294–305, 2015.
DOI: 10.1007/978-3-662-47672-7_24

Big Data on the Rise? 295

Since the seminal work of Batu, Kumar, and Rubinfeld [1], this fundamental
property has been well-understood in the usual model of access to the data,
which only assumes independent samples. However, a recent trend in distribution
testing has been concerned with introducing and studying new models which
provide additional flexibility in observing the data. In these new settings, our
understanding of what is possible and what remains difficult is still in its infancy;
and this is in particular true for monotonicity, for which very little is known.
This work intends to mitigate this state of affairs.

We hereafter assume the reader’s familiarity with the broad field of property
testing, and the more specific setting of distribution testing. For detailed surveys
of the former, she or he is referred to, for instance, [11,12,17,18]; an overview
of the latter can be found e.g. in [19], or [3]. Details of the models we consider
(besides the usual sampling oracle setting, denoted by SAMP) are described
in [5,6,8] (for the conditional sampling oracle COND, and its variants INTCOND
and PAIRCOND restricted respectively to interval and pairwise queries); [1,7,
14] for the Dual and Cumulative Dual models; and [20] for the evaluation-only
oracle, EVAL. The reader confused by the myriad of notations featured in the
previous sentence may find the relevant definitions in Section 2 (as well as in the
aforementioned papers).

Results. In this paper, we provide both upper and lower bounds for the problem
of testing monotonicity, across various types of access to the unknown distri-
bution. A summary of results, including the best currently known bounds on
monotonicity testing of distributions, can be found in Table 1 below. As noted
in Section 3, many of the lower bounds are implied by the corresponding lower
bound on testing uniformity.

Table 1. Summary of results for monotonicity testing. The highlighted ones are new;
bounds with an asterisk∗ hold for non-adaptive testers.

Model Upper bound Lower bound

SAMP Õ
(√

n
ε6

)
Ω

(√
n

ε2

)

COND Õ
(

1
ε22

)
, Õ

(
log2 n

ε3 + log4 n
ε2

)
Ω

(
1

ε2

)
INTCOND Õ

(
log5 n

ε4

)
Ω

(√
log n

log log n

)

EVAL O
(
max

(log n
ε

, 1
ε2

))∗ Ω
(log n

ε

)∗, Ω
(log n
log log n

)
Cumulative Dual Õ

(
1

ε4

)
Ω

(
1
ε

)

Techniques. Two main ideas are followed in obtaining our upper bounds: the first
one, illustrated in Section 3 and Section 4.1, is the approach of Batu et al. [1],
which reduces monotonicity testing to uniformity testing on polylogarithmically

296 C.L. Canonne

many intervals. This relies on a structural result for monotone distributions
which asserts that they admit a succinct partition in intervals, such that on each
interval the distribution is either close to uniform (in �2 distance), or puts very
little weight.

The second approach, on which Section 4.2 is based (as well as the results for
the EVAL and Dual models) also leverages a structural result, due this time to
Birgé [2]. As before, this theorem states that each monotone distribution admits
a succinct “flat approximation,” but in this case the partition does not depend on
the distribution itself (see Section 2 for a more rigorous exposition). From there,
the high-level idea is to perform two different checks: first, that the distribution
D is close to its “flattening” D̄; and then that this flattening itself is close to
monotone – where to be efficient the latter exploits the fact that the effective
support of D̄ is very small, as there are only polylogarithmically many intervals
in the partition. If both tests succeed, then it must be the case that D is close
to monotone.

Organization. In this extended abstract, we focus on the upper bounds for the
conditional models, Theorem 5 and Theorem 6, which can be found in Section 4.
Indeed, these two results illustrate both of our key approaches, and many of the
ideas that are used to obtain our bounds in the other access models are already
developed in the proofs of these two theorems. Due to space constraints, the
pseudocode of our algorithms, as well as the full proofs of the theorems covered
in this extended abstract, are deferred to the full version [4]. (This full version
also contains the statements and details of the results pertaining to the EVAL
and Cumulative Dual models, as well as additional results on tolerant testing
and learning in some of the models considered.)

2 Preliminaries

All throughout this paper, we denote by [n] the set {1, . . . , n}, and by log the
logarithm in base 2. A probability distribution over a (finite) domain Ω is a
non-negative function D : Ω → [0, 1] such that

∑
x∈Ω D(x) = 1. We denote by

U(Ω) the uniform distribution on Ω. Given a distribution D over Ω and a set
S ⊆ Ω, we write D(S) for the total probability weight

∑
x∈S D(x) assigned

to S by D. Finally, for S ⊆ Ω such that D(S) > 0, we denote by DS the
conditional distribution of D restricted to S, that is DS(x) = D(x)

D(S) for x ∈
S and DS(x) = 0 otherwise. As is usual in distribution testing, in this work
the distance between two distributions D1, D2 on Ω will be the total variation
distance dTV(D1, D2) def= 1

2‖D1 − D2‖1 = maxS⊆Ω(D1(S) − D2(S)) which takes
value in [0, 1].

Models and access to the distributions. We shall work in the framework of prop-
erty testing, where a testing algorithm for some fixed property is a randomized
algorithm which, on input ε, must (with high probability) accept any input that
has the property; and reject any input that is at a distance ε from any object

Big Data on the Rise? 297

satisfying the property. In our case, the inputs are probability distributions over
a (known) domain [n], and a property is a subset of all distributions over [n]. We
now describe (informally) the settings we shall work in, which define the type of
access the testing algorithms are granted to the input distribution.3 In the first
and most common setting (SAMP), the testers access the unknown distribution
by getting independent and identically distributed samples from it.

A natural extension, COND, allows the algorithm to provide a query set
S ⊆ [n], and get a sample from the conditional distribution induced by D on S:
that is, the distribution DS on S defined by DS(i) = D(i)/D(S). By restricting
the type of allowed query sets to the class of intervals {a, . . . , b} ⊆ [n], one gets
a weaker version of this model, INTCOND (for “interval-cond”).

Of a different flavor, providing (only) evaluation queries to the probabil-
ity mass function (pmf) (resp. to the cumulative distribution function (cdf)) of
the distribution an EVAL (resp. CEVAL) oracle access. When the algorithm is
provided with both SAMP and EVAL (resp. SAMP and CEVAL) oracles to the
distribution, we say it has Dual (resp. Cumulative Dual) access to it.

Monotone distributions. We now state here a few crucial facts about monotone
distributions, namely that they admit a succinct approximation, itself monotone:

Definition 1 (Oblivious decomposition). Given a parameter ε > 0, the cor-
responding oblivious decomposition of [n] is the partition Iε = (I1, . . . , I�), where
� = Θ

(
log n

ε

)
and |Ik| =

⌊
(1 + ε)k

⌋
, 1 ≤ k ≤ �.

For a distribution D and parameter ε, define Φε(D) to be the flattened distribu-
tion with relation to the decomposition Iε: Φε(D)(i) = D(Ik)

|Ik| for k ∈ [�], ∀i ∈ Ik.
Note that while Φε(D) (obviously) depends on D, the partition Iε itself does
not; i.e., it can be computed prior to getting any sample from D.

Theorem 1 ([2]). If D is monotone non-increasing, dTV(D, Φε(D)) ≤ ε.

Remark 1. The first use of this result in this discrete learning setting is due to
Daskalakis et al. [9]. For a proof for discrete distributions (whereas the original
paper by Birgé is intended for continuous ones), the reader is referred to [10]
(Section 3.1, Theorem 5).

Corollary 1 (Robustness). Suppose D is ε-close to monotone non-increasing.
Then dTV(D, Φα(D)) ≤ 2ε + α; furthermore, Φα(D) is also ε-close to monotone
non-increasing.

Other tools. Finally, we will use as subroutines the following results of Canonne,
Ron, and Servedio. The first one, restated below, provides a way to “compare”
the probability weight of disjoint subsets of elements in the COND model:

3 For a formal definition of these models, the reader is referred to the full version [4].

298 C.L. Canonne

Lemma 1 ([5, Lemma2]). Given as input two disjoint subsets of points
X, Y ⊆ Ω together with parameters η ∈ (0, 1], K ≥ 1, and δ ∈ (0, 1/2], as
well as COND query access to a distribution D on Ω, there exists a procedure
Compare that either outputs a value ρ > 0 or outputs High or Low, and satisfies
the following:

(i) If D(X)/K ≤ D(Y) ≤ K · D(X) then with probability at least 1 − δ the
procedure outputs a value ρ ∈ [1 − η, 1 + η]D(Y)/D(X);

(ii) If D(Y) > K ·D(X) then with probability at least 1−δ the procedure outputs
either High or a value ρ ∈ [1 − η, 1 + η]D(Y)/D(X);

(iii) If D(Y) < D(X)/K then with probability at least 1−δ the procedure outputs
either Low or a value ρ ∈ [1 − η, 1 + η]D(Y)/D(X).

The procedure performs O
(

K log(1/δ)
η2

)
COND queries on the set X ∪ Y .

The second estimates the distance between the uniform distribution and an
unknown distribution, given a conditional oracle for the latter:

Theorem 2 ([5, Theorem14]). Given as input ε ∈ (0, 1] and δ ∈ (0, 1], as well
as PAIRCOND query access to a distribution D on Ω, there exists an algorithm
that outputs a value d̂ and has the following guarantee. The algorithm performs
Õ

(
1/ε20 log(1/δ)

)
queries and, with probability at least 1−δ, the value it outputs

satisfies
∣∣∣d̂ − dTV(D, U)

∣∣∣ ≤ ε.

3 Previous Work: Standard Model

In this section, we describe the currently known results for monotonicity testing
in the standard (sampling) oracle model. These bounds on the sample complex-
ity, tight up to logarithmic factors, are due to Batu et al. [1];4 while not directly
applicable to the other access models we will consider, we note that some of the
techniques they use will be of interest to us in Section 4.1.

Theorem 3 ([1, Theorem10]). There exists an O
(√

n
ε6 polylog n

)
-query tester

for monotonicity in the SAMP model.

Proof (sketch). Their algorithm works by taking this many samples from D,
and then using them to recursively split the domain [n] in half, as long as the
conditional distribution on the current interval is not close enough to uniform (or
not enough samples fall into it). If the binary tree created during this recursive
process exceeds O

(
log2 n/ε

)
nodes, the tester rejects. Batu et al. then show

that this succeeds with high probability, the leaves of the recursion yielding a
partition of [n] in � = O

(
log2 n/ε

)
intervals I1, . . . , I�, such that either (a) the

conditional distribution DIj
is O(ε)-close to uniform on this interval; or (b) Ij

is “light,” i.e. has weight at most O(ε/�) under D. This implies this partition

4 [1] originally states an Õ(
√

n/ε4) sample complexity, but their argument seems to
only result in an Õ(

√
n/ε6) bound.

Big Data on the Rise? 299

defines an �-flat distribution D̄ which is ε/2-close to D, and can be easily learnt
from another batch of samples; once this is done, it only remains to test (e.g.,
via linear programming, which can be done efficiently) whether this D̄ is itself
ε/2-close to monotone, and accept if and only this is the case.

Theorem 4 ([1, Theorem11]). Any tester for monotonicity in the SAMP
model must perform Ω

(√
n

ε2

)
queries.

To prove this lower bound, they reduce the problem of uniformity testing to
monotonicity testing: the result then follows from the Ω(

√
n/ε2) lower bound

of [15] for testing uniformity.5 We note that the argument above extends to
all models: that is, any lower bound for testing uniformity directly implies a
corresponding lower bound for monotonicity in the same access model (giving
the bounds in Table 1).

4 With Conditional Samples

In this section, we focus on testing monotonicity with a stronger type of access to
the underlying distribution, that is given the ability to ask conditional queries.
More precisely, we prove the following theorem:

Theorem 5. There exists an Õ
(1

ε22

)
-query tester for monotonicity in the COND

model.

Furthermore, assuming only a (restricted) type of conditional queries are allowed,
one can still get an exponential improvement from the standard sampling model:

Theorem 6. There exists an Õ
(

log5 n
ε4

)
-query tester for monotonicity in the

INTCOND model.

We now prove these two theorems, starting with Theorem 6. In doing so, we
will also derive a weaker, poly(log n, 1/ε)-query tester for COND; before turning
in Section 4.2 to the constant-query tester of Theorem 5.

4.1 A poly(log n, 1/ε)-Query Tester for INTCOND

Our algorithm (Algorithm 1) follows the same overall idea as the one from [1],
which a major difference. As in theirs, the first step will be to partition [n] into
a small number of intervals, such that the conditional distribution DI on each
interval I is close to uniform; that is,

dTV(DI , UI) =
∑
i∈I

∣∣∣∣ D(i)
D(I) − 1

|I|
∣∣∣∣ ≤ ε

4 . (1)

5 While [1] only shows a Ω
(√

n
)

lower bound, as they invoke the (previously best
known) lower bound of [13] for uniformity testing, their argument straightforwardly
extends to the result of Paninski.

300 C.L. Canonne

The original approach (in the sampling model) of Batu et al. was based on
estimating the �2 norm of the conditional distribution via the number of collisions
from a sufficiently large sample; this yielded a Õ(

√
n) sample complexity.

However, using directly as a subroutine (in the COND model) an algorithm for
(tolerantly) testing uniformity, one can perform this first step with �max log 1

δ =
�max log �max calls6 to this subroutine, each with approximation parameter ε

4
(the proof of correctness of [1] does not depend on how the test of uniformity
is actually performed, in the partitioning step). A first idea would be to use for
this the following result:

Fact 1 ([6]). One can test ε-uniformity of a distribution Dr over [r] in the
conditional sampling model:
− with Õ

(
1/ε2

)
samples, given access to a CONDDr

oracle;
− with Õ

(
log3 r/ε3

)
samples, given access to a INTCONDDr

oracle.

However, this does not suffice for our purpose: indeed, Algorithm 1 needs in
Step 6 not only to reject distributions that are too far from uniform, but also
to accept those that are close enough. A standard uniformity tester as the one
above does not ensure the latter condition: for this, one would a priori need
tolerant tester for uniformity. While [6] does describe such a tolerant tester
(see Theorem 2), it only applies to COND – and we aim at getting an INTCOND
tester.

To resolve this issue, we observe that what the algorithm requires is slightly
weaker: namely, to distinguish distributions on an interval I that (a) are Ω(ε)-far
from uniform from those that are (b) O(ε/ |I|)-close to uniform in �∞ distance.
It is not hard to see that the two testers of Fact 1 can be adapted in a straight-
forward fashion to meet this guarantee, with the same query complexity. Indeed,
(b) is equivalent to asking that the ratio D(x)/D(y) of any two points in I be
in [1 − ε, 1 + ε], which is exactly what both testers check.
As a corollary, we get:

Corollary 2. Given access to a conditional oracle O for a distribution D over
[n], the algorithm TestMonCond

O outputs yes when D is monotone and no
when it is ε-far from monotone, with probability at least 2/3. The algorithm uses

− Õ
(

�max
ε + �max

ε2 + log4 n
ε2

)
= Õ

(
log2 n

ε3 + log4 n
ε2

)
samples, when O = CONDD;

− Õ
(

�max
ε + �max

log3 n
ε3 + log4 n

ε2

)
= Õ

(
log5 n

ε4

)
samples, when O = INTCONDD.

This is turn implies Theorem 6. Note that we make sure in Step 9 that each of
the intervals we recurse on contains at least one of the “reference samples” hi:
this is in order to guarantee all conditional queries made on a set with non-zero
probability. Discarding the “light intervals” can be done without compromising
the correctness, as with high probability each of them has probability weight at

6 Where the logarithmic dependence on δ aims at boosting the (constant) success
probability of the uniformity testing algorithm, in order to apply a union bound
over the O(�max) calls.

Big Data on the Rise? 301

Algorithm 1 General algorithm TestMonCond
O

Require: O ∈ {COND, INTCOND} access to D

1: Define �max
def= O

(
log2 n/ε

)
, δ

def= O(1/�max).
2: Draw m

def= O
(

ε
�max

log 1
δ

)
samples h1, . . . , hm.

3: PartitionStart
4: Start with interval I ← [n]
5: repeat
6: Test (with probability ≥ 1 − δ) if DI is ε/4-close to the U(I)
7: if dTV(DI , UI) > ε

4 then
8: bisect I in half
9: recursively test each half that contains some hi, mark the others as

“light”
10: else if �max splits have been made then
11: return no
12: end if
13: until all intervals are close to uniform or have been marked “light”
14: PartitionEnd
15: Let I� = 〈I1, . . . , I�〉 denote the partition of [n] into intervals induced by the leaves

of the recursion from the previous step.
16: Obtain an additional sample T of size O

(
log4 n

ε2

)
.

17: Let D̂ denote the �-flat distribution described by (w, I�) where ωj is the fraction
of samples from T falling in Ij .

18: if D̂ is (ε/2)-close to monotone then � Can be checked in poly(�)-time
19: return yes
20: end if
21: return no

most ε
4�max

, and therefore in total the light intervals can amount to at most ε/4
of the probability weight of D – as in the original argument of Batu et al., we
can still conclude that with high probability D̂ is ε/2-close to D.

4.2 A poly(1/ε)-Query Tester for COND

The idea in proving Theorem 5 is to reduce the task of testing monotonicity to
another property, but on a (related) distribution over a much smaller domain.
We begin by some relevant notations and definitions:

Reduction from Testing Properties Over [�]. For fixed α and D, let Dred
α

be the reduced distribution on [�] with respect to the oblivious decomposition Iα,
where all throughout � = �(α, n) as per Definition 1; i.e, ∀k ∈ [�], Dred

α (k) =
D(Ik) = Φα(D)(Ik). (Note that given oracle access SAMPD, it is easy to simulate
SAMPDred

α
.)

Definition 2 (Exponential Property). Fix n, α, and the corresponding � =
�(n, α). For distributions over [�], let the property Pα be defined as “Q ∈ Pα if
and only if there exists D ∈ M over [n] such that Q = Dred

α .”

302 C.L. Canonne

Fact 2. Given a distribution Q over [�], let expandα(Q) denote the distribution
over [n] obtained by “spreading” uniformly Q(k) over Ik (again, considering the
oblivious decomposition of [n] for α). Then,

Q ∈ Pα ⇔ expandα(Q) ∈ M (2)

Fact 3. Given a distribution Q over [�], the following also holds:7 Q ∈ Pα if
and only if ∀k < �, Q(k + 1) ≤ (1 + α)Q(k). Moreover, by Fact 2, we have that
for D over [n], Φα(D) ∈ M if and only if Dred

α ∈ Pα.

We shall also use the following result on flat distributions (adapted from [1,
Lemma7]) and whose proof is deferred to the full version.

Fact 4. Φα(D) is ε-close to monotone if and only if it is ε-close to a Iα-
flat monotone distribution (that is, a monotone distribution piecewise constant,
according to the same partition Iα).

Observe that Facts 2, 3 and 4 altogether imply that, for Iα-flat distributions,
distance to monotonicity and distance to Pα of the reduced distribution are
equal.

Efficient Approximation of Distance to Φ(D).

Lemma 2. Given COND access to a distribution D over [n], there is an algo-
rithm that, on input α and ε, δ ∈ (0, 1], makes Õ

(1
ε22 log 1

δ

)
queries (inde-

pendent of α) and outputs d̂ such that, with probability at least 1 − δ, |d̂ −
dTV(D, Φα(D))| ≤ ε.

Proof. We describe such algorithm for a constant probability of success; boost-
ing the success probability to 1 − δ at the price of a multiplicative log 1

δ factor
can then be achieved by standard techniques (repetition, and taking the median
value). Let D, ε and Iα be defined as before; define Z to be a random vari-
able taking values in [0, 1], such that, for k ∈ [�], Z is equal to dTV(DIk

, UIk
)

with probability ωk = D(Ik). An easy computation then shows that EZ =∑�
k=1 ωkdTV(DIk

, UIk
) = dTV(D, Φα(D)). Putting aside for now the fact that

we only have (using as a subroutine the COND algorithm from Theorem 2 to
estimate the distance to uniformity) access to additive approximations of the
dTV(DIk

, UIk
)’s, one can simulate independent draws from Z by taking each

time a fresh sample i ∼ D, looking up the k for which i ∈ Ik, and calling the
COND subroutine to get the corresponding value. Applying a Chernoff bound,
only O

(
1/ε2

)
such draws are needed, each of them costing Õ

(
1/ε20

)
COND

queries.

7 We point out that the equivalence stated here once again ignores, for the sake of con-
ceptual clarity, technical details arising from the discrete setting. Taking these into
account would yield a slightly weaker characterization, with a twofold implication
instead of an equivalence; which would still be good enough for our purpose.

Big Data on the Rise? 303

Dealing with approximation. It suffices to estimate EZ within an additive ε/2,
which can be done with probability 9/10 by simulating m = O

(
1/ε2

)
samples

from Z. To get each sample, for the index k drawn we can call the COND
subroutine with parameters ε/2 and δ = 1/(10m) to obtain an estimate of
dTV(DIk

, UIk
). By a union bound we get that, with probability at least 9/10, all

estimates are within an additive ε/2 of the true value, incurring only a O(log 1/ε)
additional factor in the overall sample complexity Õ

(
1/ε20

)
. Conditioned on this,

we get that the approximate value we compute instead of EZ is off by at most
ε/2+ε/2 = ε (where the first term corresponds to the approximation of the value
of Z for each draw, and the second comes from the additive approximation of
EZ by sampling).

The Algorithm. The tester is described in Algorithm 2. The second step, as
argued in Lemma 2, uses Õ

(
1/ε22

)
samples; we will show shortly after that

efficiently testing ε-farness to Pγ is also achievable with Õ
(
1/ε6

)
COND queries

– concluding the proof of Theorem 5.

Algorithm 2 Algorithm TestMonCond

Require: COND access to D
1: Simulating CONDDred

α
, check if Φα(D) is (ε/4)-close to monotone by testing (ε/4)-

farness (of Dred
α) to Pα; return no if not.

2: Test whether Φα(D) is (ε/4)-close to D using the sampling approach discussed
above; return no if not.

3: return yes

Correctness of Algorithm 2. Assume we can efficiently perform the two steps,
and condition on their execution being correct (as each of them is run with for
instance parameter δ = 1/10, this happens with probability at least 3/4).
− If D is monotone non-increasing, so is Φα(D); by Fact 3, this means that

Pα(Dred
α) holds, and the first step passes. Theorem 1 then ensures that D

and Φα(D) are α-close, and the algorithm outputs yes;
− If D is ε-far from monotone, then either (a) Φα(D) is ε

2 -far from monotone or
(b) dTV(D, Φα(D)) > ε

2 ; if (b) holds, no matter how the algorithm behaves
in first step, the algorithm not go further that the second step, and output
no. Assume now that (b) does not hold, i.e. only (a) is satisfied. By putting
together Facts 2 to 4, we conclude that (a) implies that Dred

α is ε
2 -far from

Pα, and the algorithm outputs no in the first step.

Testing ε-farness to Pγ . To achieve this objective, we begin with the following
lemmas, which relate the distance between a distribution Q and Pα to the total
weight of points that violate the property.

304 C.L. Canonne

Algorithm 3 TestingExponentialProperty

Require: PAIRCOND access to Q, α ∈ [0, 1) � Useful for α = Θ(ε) < 1
Ensure: with probability at least 3/4 returns no if Q is O(ε)-close to Pα, and yes if it

satisfies Pα.
Set τ

def= εα2

Draw m
def= Θ

(
1

εα

)
samples s1, . . . , sm from Q � Contains an element from Wτ

w.h.p.
for i = 1 to m do

if si ≥ 2 then
Call Compare (from Lemma 1) on {si − 1}, {si} with η = τ

2 , K = 2 and
δ = 1

10m
.

if the procedure outputs High then return no
else if it outputs a value ρ then � 1−η

ρ
· Q(si) ≤ Q(si − 1) ≤ 1+η

ρ
· Q(si)

if ρ < 1+η
1+α+τ

then return no
end if

end if
end if

end for
return yes

Lemma 3. For a distribution Q over [�], let W = { i : Q(i) > (1 + α)Q(i − 1) }
be the set of witnesses (points which violate the property). Then, the distance
from Q to the property Pα is O(1/α)Q(W).

This implies that when Q is ε-far from having the property, it suffices to
get O(1/(αε)) samples from Q and compare them to their neighbors to detect a
violation with high probability. While this last step would be easy with an exact
EVAL oracle, for the purpose of this section we can only use an approximate
one. The lemma below addresses this issue, by ensuring that there will be many
points “patently” violating the property.

Lemma 4. For Q as above and τ > 0, let Wτ = { i : Q(i) > (1 + α + τ) }
Q(i − 1) be the set of τ -witnesses (so that W =

⋃
τ>0 Wτ). Then, the distance

from Q to the property Pα is at most O(1/(α + τ))Q(Wτ) + O
(
τ/α2)

.

Corollary 3. Taking α = Θ(ε) and τ = εα2, we get that if Q(Wτ) ≤ ε2, then
Q is O(ε)-close to Pα.

By leveraging Corollary 3, we are able to obtain efficient approximation of
the distance of a distribution to the “exponential property”:
Theorem 7. There exists a constant 0 < c < 1 such that, for any ε > 0: if Q
satisfies Pα (where α = cε),then with probability at least 2/3 Algorithm Test-

ExpProperty returns yes, and if Q is Ω(ε)-far from Pα, then with probability
at least 2/3 Algorithm TestExpProperty returns no. The number of PAIR-
COND queries performed by the algorithm is Õ

(
1/ε8

)
.

The algorithm can be found in Algorithm 3. (The proofs of Lemmas 3, 4, and
Theorem 7 are deferred to the full version.)

Big Data on the Rise? 305

References

1. Batu, T., Kumar, R., Rubinfeld, R.: Sublinear algorithms for testing mono-
tone and unimodal distributions. In: Proceedings of STOC, pp. 381–390. ACM,
New York (2004)

2. Birgé, L.: On the risk of histograms for estimating decreasing densities. The Annals
of Statistics 15(3), 1013–1022 (1987)

3. Canonne, C.L.: A Survey on Distribution Testing: Your Data is Big. But is it Blue?
Electronic Colloquium on Computational Complexity (ECCC) 22, 63 (2015)

4. Canonne, C.L.: Big Data on the Rise: Testing monotonicity of distributions.
ArXiV:abs/1501.06783 (2015)

5. Canonne, C.L., Ron, D., Servedio, R.A.: Testing probability distributions using
conditional samples. ArXiV:abs/1211.2664, November 2012

6. Canonne, C.L., Ron, D., Servedio, R.A.: Testing equivalence between distributions
using conditional samples. In: Proceedings of SODA, pp. 1174–1192. SIAM (2014),
see also [5] (full version)

7. Canonne, C.L., Rubinfeld, R.: Testing probability distributions underlying aggre-
gated data. In: Proceedings of ICALP, pp. 283–295 (2014)

8. Chakraborty, S., Fischer, E., Goldhirsh, Y., Matsliah, A.: On the power of condi-
tional samples in distribution testing. In: Proceedings of ITCS, pp. 561–580. ACM,
New York (2013)

9. Daskalakis, C., Diakonikolas, I., Servedio, R.A.: Learning k-modal distributions
via testing. In: Proceedings of SODA, pp. 1371–1385. SIAM (2012)

10. Daskalakis, C., Diakonikolas, I., Servedio, R.A., Valiant, G., Valiant, P.: Testing
k-modal distributions: Optimal algorithms via reductions. In: Proceedings of
SODA, pp. 1833–1852. SIAM (2013)

11. Fischer, E.: The art of uninformed decisions: A primer to property testing.
BEATCS 75, 97–126 (2001)

12. Goldreich, O. (ed.): Property Testing: Current Research and Surveys. LNCS,
vol. 6390. Springer, Heidelberg (2010)

13. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Technical
report, TR00-020, Electronic Colloquium on Computational Complexity (ECCC)
(2000)

14. Guha, S., McGregor, A., Venkatasubramanian, S.: Streaming and sublinear
approximation of entropy and information distances. In: Proceedings of SODA,
pp. 733–742. SIAM, Philadelphia (2006)

15. Paninski, L.: A coincidence-based test for uniformity given very sparsely sampled
discrete data. IEEE Transactions on Information Theory 54(10), 4750–4755 (2008)

16. Pearson, K.: Contributions to the Mathematical Theory of Evolution. Philosophical
Transactions of the Royal Society of London. (A.) 185, 71–110 (1894)

17. Ron, D.: Property Testing: A Learning Theory Perspective. Foundations and
Trends in Machine Learning 1(3), 307–402 (2008)

18. Ron, D.: Algorithmic and analysis techniques in property testing. Foundations and
Trends in Theoretical Computer Science 5, 73–205 (2010)

19. Rubinfeld, R.: Taming Big Probability Distributions. XRDS 19(1), 24–28 (2012)
20. Rubinfeld, R., Servedio, R.A.: Testing monotone high-dimensional distributions.

Random Structures and Algorithms 34(1), 24–44 (2009)

http://arxiv.org/abs/1501.06783
http://arxiv.org/abs/1211.2664

Unit Interval Editing
Is Fixed-Parameter Tractable

Yixin Cao(B)

Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
yixin.cao@polyu.edu.hk

Abstract. Given a graph G and integers k1, k2, and k3, the unit interval
editing problem asks whether G can be transformed into a unit interval
graph by at most k1 vertex deletions, k2 edge deletions, and k3 edge
additions. We give an algorithm solving the problem in 2O(k log k) ·(n+m)
time, where k := k1 + k2 + k3, and n, m denote respectively the numbers
of vertices and edges of G. Therefore, it is fixed-parameter tractable
parameterized by the total number of allowed operations.

This implies the fixed-parameter tractability of the unit interval edge
deletion problem, for which we also present a more efficient algorithm
running in time O(4k · (n + m)). Another result is an O(6k · (n + m))-
time algorithm for the unit interval vertex deletion problem, significantly
improving the best-known algorithm running in time O(6k · n6).

1 Introduction

A graph is a unit interval graph if its vertices can be assigned to unit-length
intervals on the real line such that there is an edge between two vertices if and
only if their corresponding intervals intersect. Most important applications of
unit interval graphs were found in computational biology [7,9], where data are
mainly obtained by unreliable experimental methods. Thus, the graph represent-
ing the raw data is very unlikely to be a unit interval graph, and an important
step toward understanding the data is to find out and fix the hidden errors. Var-
ious modification problems to unit interval graphs have been formulated: Given
a graph G on n vertices and m edges, can we make G a unit interval graph by at
most k modifications [7,9]. In particular, edge additions (completion) and edge
deletions are used to fix false negatives and false positives respectively, while
vertex deletions can be viewed as the elimination of outliers. We have thus three
variants, all known to be NP-complete [7,10,16].

The problems unit interval completion and unit interval vertex deletion were
known to be fixed-parameter tractable (FPT) [1,9]. We show that the edge
deletion variant is FPT as well.

Theorem 1. The problems unit interval vertex deletion and unit interval edge
deletion can be solved in time O(6k · (n + m)) and O(4k · (n + m)) respectively.

Work partially done at Institute for Computer Science and Control, Hungarian
Academy of Sciences, supported by ERC 280152 and OTKA NK105645.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 306–317, 2015.
DOI: 10.1007/978-3-662-47672-7 25

Unit Interval Editing Is Fixed-Parameter Tractable 307

t3

t1 v1 v2 t2

v3

(a) net

t3

t1 v3 t2
v2 v1

(b) tent (c) W5 (d) C6

Fig. 1. Small forbidden induced graphs

The algorithm for unit interval vertex deletion significantly improves the cur-
rently best-known result, which takes O(6k · n6) time [8]. We also improve the
running time of the O(n7)-time approximation algorithm [8] to O(nm), while
preserving the approximation ratio 6.

We leave it as an open problem the existence of polynomial kernels of the
unit interval edge deletion problem. Recall that polynomial kernels were known
for unit interval completion [9] and unit interval vertex deletion [6]. However, the
kernel size O(k53) for unit interval vertex deletion is way too large, so further
efforts are needed to make it reasonably small.

We further consider the unit interval editing problem, which, given a graph G,
asks whether there are a set V− of at most k1 vertices, a set E− of at most k2
edges, and a set E+ of at most k3 non-edges, such that the deletion of V− and
E− and the addition of E+ make G a unit interval graph. This formulation
generalizes all the three single-type modifications, and is also natural from the
aspect of the aforementioned applications for de-noising data, where different
types of errors are commonly found coexisting. Indeed, the assumption that the
input data contains only a single type of errors is somewhat counterintuitive. We
show that this general editing problem is also FPT, parameterized by the total
number of allowed operations.

Theorem 2. The unit interval editing problem can be solved in 2O(k log k)·(n+m)
time, where k := k1 + k2 + k3.

The study of general editing problems was initiated by Cai [3], who observed
that the problem is FPT if the objective graph class has a finite number of min-
imal forbidden induced subgraphs. More challenging is to devise parameterized
algorithms for those graph classes whose minimal forbidden induced subgraphs
are not finite. Prior to this paper, the only known nontrivial graph class on which
the general editing problem is FPT is the chordal graphs [5]. We extend this
territory by including another well-studied graph class. As a corollary, Thm. 2
implies the fixed-parameter tractability of the unit interval edge editing problem
[2], which allows both edge operations but not vertex deletions.

It is known that a graph is a unit interval graph if and only if it contains no
claw, net, tent, (see Fig. 1,) or any hole (i.e., a cycle induced by at least four
vertices) [15]. Unit interval graphs are thus a subclass of chordal graphs, which
are those graphs containing no holes. Modification problems to chordal graphs
and unit interval graphs are among the earliest studied problems in parameter-
ized computation, and their study had been closely related. For example, the

308 Y. Cao

algorithm for unit interval completion in [9] is a natural spin-off of their algo-
rithm for chordal completion. A better analysis was shortly done by Cai [3], who
also made explicit the use of bounded-search tree in disposing of finite forbidden
induced subgraphs. This observation and the parameterized algorithm of [13] for
the chordal vertex deletion problem immediately imply that unit interval vertex
deletion is FPT. However, neither approach can be adapted to the edge deletion
version in a simple way. Compared to completion that needs to add Ω(�) edges
to fill a C� (i.e., a hole of length �) in, an arbitrarily large hole can be fixed
by a single edge deletion. On the other hand, the deletion of vertices leaves an
induced subgraph, which allows us to focus on holes once all claws, nets, and
tents have been eliminated; however, the deletion of edges to fix holes of a {claw,
net, tent}-free graph may introduce new claw(s), net(s), and/or tent(s). There-
fore, it is not obvious how to use the parameterized algorithm for chordal edge
deletion [13] to solve the unit interval edge deletion problem.

Direct algorithms for unit interval vertex deletion were later discovered [1,8],
both of which use a two-phase approach. The first phase of their algorithms
breaks all forbidden induced subgraphs on at most six vertices. Although this
phase is conceptually intuitive, how to efficiently carry it out is rather nontrivial,
e.g., the simple brute-force way used by [1,8] introduces an n6 factor to the
running time. Their approaches diverse completely in the second phase. A high-
complexity procedure was used in [1], while [8] showed that a graph after the
first phase is a proper circular-arc graph, on which the problem is linear-time
solvable.

Although the algorithm of [8] is nice and simple, its self-contained proof is
excruciatingly complex. We revisit the relation between unit interval graphs and
some subclasses of proper circular-arc graphs, and study it in a structured way.
In particular, we observe that unit interval graphs are precisely the intersection
of chordal graphs and proper Helly circular-arc graphs. They inspire us to show
that a connected {claw, net, tent, C4, C5}-free graph is a proper Helly circular-
arc graph. Hence, the unit interval vertex deletion problem can be solved in
linear time on them [8]. Likewise, using the structural properties of proper Helly
circular-arc graphs, we can derive a linear-time algorithm for unit interval edge
deletion on them. By further characterizing connected {claw, net, tent, C4}-free
graphs that are not proper Helly circular-arc graphs, we are able to show a
stronger result.

Theorem 3. The problems unit interval vertex deletion and unit interval edge
deletion can be solved in O(n + m) time on {claw, net, tent, C4}-free graphs.

It is then quite simple to use bounded-search tree to develop the parameterized
algorithms stated in Thm. 1, though some nontrivial analysis is required to
obtain the time bound for unit interval edge deletion.

Our algorithm for unit interval editing also uses the two-phase approach.
However, we are not able to show that it can be solved in polynomial time on
proper Helly circular-arc graphs. Therefore, in the first phase, we do away with
not only claws, nets, nets, and C4’s, also all holes of length at most k3 +3, in all

Unit Interval Editing Is Fixed-Parameter Tractable 309

possible ways. The high exponential factor in the running time is purely due to
this phase. After that, every hole has length at least k3 + 4, and has to be fixed
by vertex or edge deletions. We show that an inclusion-wise minimal solution of
this reduced graph does not add edges, and the problem can then be solved in
linear time.

2 {Claw, net, tent, C4}-free Graphs

All graphs discussed in this paper are undirected and simple. All input graphs
are assumed to be connected, hence n = O(m). If we add a new vertex to a C�

and make it adjacent to no or all vertices in the hole, then we end with a C∗
� or

W�, respectively. The complement graph of a graph G is denoted by G.
An interval graph is the intersection graph of a set of intervals on the real

line. A natural way to extend interval graphs is to use arcs and a circle in the
place of intervals and the real line, and the intersection graph of arcs on a circle
is a circular-arc graph. The set of intervals or arcs is called an interval model or
arc model respectively, and it can be specified by their 2n endpoints. In a unit
interval or a unit arc model, every interval or arc has length 1. An interval or
arc model is proper if no interval or arc in it properly contains another interval
or arc. A graph is a unit/proper interval/circular-arc graph if has a unit/proper
interval/arc model respectively.

Clearly, any (unit/proper) interval model can be viewed as a (unit/proper)
arc model with some point uncovered, and hence all (unit/proper) interval graphs
are always (unit/proper) circular-arc graphs. A unit interval/arc model is nec-
essarily proper, but the other way does not hold true in general. A well-known
result states that a proper interval model can always be made unit, and thus
these two graph classes coincide [14,15]. This fact will be heavily used in the
present paper; e.g., most of our proofs consist in modifying a proper arc model
into a proper interval model, which represents the desired unit interval graph.
On the other hand, the class of unit circular-arc graphs is only a proper subclass
of proper circular-arc graphs, evidenced by, say, the tent. An arc model is Helly if
every set of pairwise intersecting arcs has a common intersection. A circular-arc
graph is proper Helly if it has an arc model that is both proper and Helly. The
set of minimal forbidden induced subgraphs of proper Helly circular-arc graphs
includes claw, net, tent, W4, W5, C6, and C∗

� for all � ≥ 4 [11]. As a consequence,
if a proper Helly circular-arc graph is chordal, then it is a unit interval graph.

Let F denote the set {claw, net, tent, C4}. We use fat W5 to denote a graph
obtained from a W5 by replacing each of its six vertices by a distinct clique,
where five cliques make its fat hole, and the other clique is its hub.

Theorem 4. Let G be a connected graph.

(1) If G is F-free, then it is either a fat W5 or a proper Helly circular-arc graph.
(2) In O(m) time we can detect an induced subgraph in F , partition V (G) into

6 cliques constituting a fat W5, or build a proper and Helly arc model for G.

310 Y. Cao

The reader is referred to the full version of this paper [4] for more discussions as
well as all proofs omitted here.

A unit interval model is always a proper and Helly arc model, but a unit
interval graph might have an arc model that is neither proper nor Helly. On
the other hand, if a proper Helly circular-arc graph G is not chordal, then the
set of arcs for vertices in a hole necessarily covers the circle, and it is minimal.
Interestingly, the converse holds true as well.

Proposition 1. [11] In a proper and Helly arc model for a non-chordal graph,
a minimal set of arcs whose union covers the circle corresponds to a hole.

Proposition 1 forbids a proper and Helly arc model to have two or three arcs
that cover the entire circle (i.e., the model must be normal and Helly, though not
necessarily proper). These observations enable us to find a shortest hole from
a proper Helly circular-arc graph by finding a minimal set of arcs covering the
circle. This is another important step of our algorithm for unit interval editing.

Lemma 1. There is an O(m)-time algorithm for finding a shortest hole of a
proper Helly circular-arc graph.

In this paper, all intervals and arcs are closed, and no distinct intervals or
arcs are allowed to share an endpoint. In an interval model, the interval Iv for
vertex v is given by [lp(v), rp(v)], where lp(v) < rp(v) are its left and right
endpoints respectively. In an arc model, the arc Av for vertex v is given by
[ccp(v), cp(v)], where ccp(v) and cp(v) are its counterclockwise and clockwise
endpoints respectively. All points in an arc model are assumed to be nonnegative.
We point out that possibly ccp(v) > cp(v); such an arc Av necessarily passes
through the point 0. We say that an arc model is canonical if the perimeter of
the circle is 2n, and every endpoint is a different integer in {0, 1, . . . , 2n − 1}.

Each point α in an interval model A or arc model I defines a clique, denoted
by KA(α) or KI(α) respectively, which is the set of vertices whose intervals
or arcs contain α. There are at most 2n distinct cliques defined as such. For
any point ρ, we can find a positive value ε such that the only possible endpoint
in [ρ − ε, ρ + ε] is ρ. Here the value of ε should be understood as a function—
depending on the model as well as the point ρ—instead of a constant.

In a proper and Helly arc model A for graph G, if uv ∈ E(G), then either
ccp(v) or cp(v) (but not both) is contained in Au. Thus, we can define for them
a left-right relation, which can be understood from the viewpoint of an observer
placed at the center of the model. We say that arc Av intersects arc Au from
the left when cp(v) ∈ Au, denoted by v → u.

3 Vertex Deletion

A set V− of vertices is a hole cover of G if G − V− is chordal. The hole covers of
proper Helly circular-arc graphs are characterized by the following lemma.

Lemma 2. Let A be a proper and Helly arc model for a non-chordal graph G.
A set V− is a hole cover of G iff it contains KA(α) for some point α in A.

Unit Interval Editing Is Fixed-Parameter Tractable 311

It is easy to verify that in a fat W5, it suffices to delete the clique from the fat
hole with the minimum size. Therefore, Thm. 4 and Lem. 2 imply the following.

Corollary 1. The unit interval vertex deletion problem can be solved in O(m)
time (1) on proper Helly circular-arc graphs and (2) on F-free graphs.

Our parameterized algorithm calls Thm. 4(2), and then based on the outcome,
it solves the problem by making recursive calls to itself, or calling the algorithm
of Cor. 1. Note that a subgraph in F has at most 6 vertices, and at least one of
them needs to be deleted. For each subgraph, at most 6 recursive calls are made.
For the approximation algorithm, instead of branching, we delete all vertices of
a subgraph in F .

Lemma 3. There are an O(6k · m)-time algorithm for unit interval vertex dele-
tion and an O(nm)-time 6-approximation algorithm for its minimization version.

4 Edge Deletion

Our algorithm for unit interval edge deletion goes similarly as Lem. 3. Therefore,
the focus of this section is on the disposal of F-free graphs, i.e., the proof of the
second part of Thm. 3. Let G be a proper Helly circular-arc graph. For each
point α in a proper and Helly arc model A for G, we can define the following
set of edges:

−→
E A(α) = {vu : v ∈ KA(α), u �∈ KA(α), v → u}.

It is easy to verify that the following gives a proper interval model for G−−→
E A(0):

Iv :=

{
[ccp(v), cp(v) + �] if v ∈ KA(0),
[ccp(v), cp(v)] otherwise,

where � is the perimeter of the circle in A. For an arbitrary point α, the model
G−−→

E A(α) can be given analogously, e.g., we may rotate the model first to make
α = 0. Note that rotating all arcs in the model does not change the intersections
among them.

Proposition 2. Let A be a proper and Helly arc model for a non-chordal graph
G. For any point α in A, the subgraph G − −→

E A(α) is a unit interval graph.

The other direction is more involved and more challenging. For two disjoint
sets X,Y of vertices, let EG

(
X,Y

)
denote the set of edges of G that has one end

in X and the other end in Y , i.e.,
(
X×Y

)∩E(G). A unit interval graph G is called
a (spanning) unit interval subgraph of G if V (G) = V (G) and E(G) ⊆ E(G); it
is called maximum if it has the largest number of edges among all unit interval
subgraphs of G. To prove all maximum unit interval subgraphs have a certain
property, we use the following argument by contradiction. Given a unit interval
subgraph G not having the property, we locally modify a unit interval model I
for G to a proper interval model I ′ such that the represented graph G′ satisfies
E(G′) ⊆ E(G) and |E(G′)| > |E(G)|.

312 Y. Cao

Lemma 4. Let A be a proper and Helly arc model for a non-chordal graph
G. For any maximum unit interval subgraph G of G, the deleted edges E− :=
E(G) \ E(G) is

−→
E A(ρ) for some point ρ in A.

Proof. We fix a unit interval model I for G. Let v be the vertex with the leftmost
interval [0, 1] in I. All arcs in the proof are referred to the model A for G. Denote
by u and w the vertices of NG[v] that have the leftmost and the rightmost arcs
respectively; possibly u = v and/or w = v. Note that NG[v] = KI(1), which is
a clique; hence, if u �= w, then uw ∈ E(G) ⊂ E(G), and in particular, u → w.
Let α := ccp(u) − ε and β := cp(w) + ε; for notational convenience, we may
assume that [α, β] does not cover the point 0 (the union of Au, Av, and Aw does
not cover the circle). Note that an arc covering α or β has to intersect Au or
Aw respectively. Thus, since the model is proper and by Prop. 1, no arc contains
both α and β. On the other hand, the arc Ax for any x ∈ NG[v] is in (α, β).
Therefore, KA(α), KA(β), and NG[v] are pairwise disjoint.

We argue first that KA(α) and KA(β) cannot be both adjacent to NG[v] in
G. This holds vacuously if NG[v] is a single component of G. Hence we assume
otherwise: let Ix be the first interval with lp(x) > rp(v), then lp(x) < 2 and
NG(x) intersects NG[v]. Note that x �∈ NG[v], as otherwise setting Iv to [lp(x)+
ε − 1, lp(x) + ε] gives a spanning unit interval subgraph of G with edges E(G) ∪
{vx}, a contradiction. Hence, x is in either KA(α) or KA(β). Assume first that
x ∈ KA(α) \ NG[v] and we show that KA(β) is nonadjacent to NG[v] in G.
Suppose for contradiction, that there is some vertex y ∈ KA(β) such that Iy

intersects Iz for z ∈ NG[v]. Then lp(y) < rp(z) < 2 < rp(x), which means
that Iy intersects Ix as well (noting lp(x) < lp(y)). As a result, xy ∈ E(G) ⊆
E(G), and Ax intersects Ay; by the selection of α and β, we must have y → x,
but then Ax, Ay, and Az do not satisfy the Helly property, a contradiction. A
symmetric argument implies that KA(α) is nonadjacent to NG[v] in G when
x ∈ KA(β) \ NG[v].

Assume without loss of generality that KA(α) is not adjacent to NG[v] in G.
Let μ := cp(u); note that μ ∈ Av and KA(μ) ⊆ NG[v]. Since the model A is
proper and Helly, no arc in A can contain both α and μ. Therefore, KA(α) and
KA(μ) are disjoint, and from the definition of α, we can conclude that

−→
E A(α) = EG

(
KA(α),KA(μ)

)
.

Let E− := E(G) \ E(G); by Prop. 2, |E−| ≤ |−→E A(α)|. We argue that they
have to be equal. Suppose for contradiction, E− �= −→

E A(α), then
−→
E A(α) �⊆ E−.

There must be some vertices in KA(μ) that are adjacent to KA(α) in G; by
assumption (that KA(α) is not adjacent to NG[v] in G), these vertices are not in
NG[v]. Let X := KA(μ)\NG[v]. We take a vertex x ∈ X such that NG(x)∩KA(α)
has the largest cardinality, which is positive. Recall that u ∈ NG[v]; hence x �= u
and u → x. We may assume that lp(x) is contained in some interval for a vertex
in KA(α), and the other case follows by symmetry. Note that NG(x) \ NG(u)
is disjoint from KA(α), and by the Helly property, it cannot be adjacent to
NG(x) ∩ KA(α). Therefore, for any y ∈ NG(x) \ NG(u) ⊆ NG(x) \ NG(u), the

Unit Interval Editing Is Fixed-Parameter Tractable 313

interval Iy has to contain rp(x); in other words, lp(y) ∈ Ix. Let

γ :=

{
rp(x) if NG(x) \ NG(u) = ∅,

miny∈NG(x)\NG(u) lp(y) otherwise.

Setting I ′
u = [miny:γ∈Iy lp(y) − ε, γ − ε] gives also a proper interval model I ′.

To see that I ′ represents a subgraph of G, note that NG[X] ∩ KA(α) ⊆ NG(u).
Since G is a maximum spanning unit interval subgraph of G, it follows that
|NG(x) ∩ KA(α)| ≤ |NG(u)|. Likewise, since NG(u) ⊆ NG[v], it follows that
NG[u] = NG[v] (otherwise we can set I ′

v = [lp(u) − ε, rp(u) − ε] to get a larger
spanning unit interval subgraph of G). Therefore, for every x′ ∈ X, it holds that

|NG(x′) ∩ KA(α)| ≤ |NG(x) ∩ KA(α)| ≤ |NG(u)| < |NG[u]| = |NG[v]|.
The first inequality is ensured by the selection of x. However, noting that NG[v] ⊆
NG(x′) for every x′ ∈ X, it can be inferred

|E−| ≥ |EG

(
KA(α), NG[v]

)| + |EG

(
X, NG[v]

)| + |EG

(
KA(α), X

) \ EG

(
KA(α), X

)|
= |EG

(
KA(α), NG[v]

)| + |EG

(
KA(α), X

)| + |EG

(
X, NG[v]

)| − |EG

(
KA(α), X

)|
= |EG

(
KA(α), NG[v]

)| + |EG

(
KA(α), X

)| +
∑
x′∈X

(|NG[v]| − |NG(x′) ∩ KA(α)|)

> |EG

(
KA(α), NG[v]

)| + |EG

(
KA(α), X

)|
= |−→E A(α)|,

which contradicts Prop. 2. Thus, E− =
−→
E A(α), and this concludes the proof.

�
There is a linear number of different places to check, and thus the edge deletion
problem can also be solved in linear time on proper Helly circular-arc graphs.
The problem is also simple on fat W5’s.

Theorem 5. The unit interval edge deletion problem can be solved in O(m) time
(1) on proper Helly circular-arc graphs and (2) on F-free graphs.

Proof. For (1), we may assume that the input graph G is not an unit interval
graph; it is then connected and not chordal. We build a proper and Helly arc
model A for G; without loss of generality, assume that it is canonical. According
to Lem. 4, the problem reduces to finding a point α in A such that

−→
E A(α) is

minimized. It suffices to consider the 2n points i+0.5 for i ∈ {0, . . . , 2n−1}. We
calculate first

−→
E A(0.5), and then for i = 1, . . . , 2n − 1, we deduce

−→
E A(i + 0.5)

from
−→
E A(i − 0.5) as follows. If i is a clockwise endpoint of some arc, then−→

E A(i + 0.5) =
−→
E A(i − 0.5). Otherwise, i = ccp(v) for some vertex v, then the

difference between
−→
E A(i + 0.5) and

−→
E A(i − 0.5) is the set of edges incident to

v. In particular, {uv : u → v} =
−→
E A(i − 0.5) \ −→

E A(i + 0.5), while {uv : v →
u} =

−→
E A(i + 0.5) \ −→

E A(i − 0.5). Note that the initial value
−→
E A(0.5) can be

314 Y. Cao

calculated in O(m) time, and then each vertex and its adjacency list is scanned
exactly once. It follows that the total running time is O(m).

For (2), we may assume that the input graph G is connected, as otherwise
we work on its components one by one. According to Thm. 4(1), G is either a
proper Helly circular-arc graph or a fat W5. The former case has been considered
above, and now assume G is a fat W5. Let K0, . . . , K4 be the five cliques in the
fat hole, and let K5 be the hub. Consider a pair of vertices u, v in Ki, where
i ∈ {0, . . . , 5}. By definition, NG[u] = NG[v]. We argue that NG[u] = NG[v] for
any maximum spanning unit interval subgraph G of G. Suppose the contrary,
then setting Iu to Iv or Iv to Iu will end with a spanning unit interval subgraph
of G with strictly more edges than G. Therefore, we need to delete EG

(
Ki,Ki+1

)

as well as EG

(
K5,Ki

)
or EG

(
K5,Ki+1

)
for some i ∈ {0, . . . , 4} (all subscripts

are modulo 5). Once the sizes of all six cliques have been calculated, which can
be done in O(m) time, the minimum set of edges can be decided in constant
time. Therefore, the total running time is O(m). The proof is now complete. �

Theorems 4 and 5 already imply a bound-search tree algorithm for the unit
interval edge deletion problem running in time O(9k · m). Here the constant
9 is decided by the tent, which has 9 edges. However, a closer look at it tells
us that deleting one edge from a tent introduces a claw or C4, which forces us
to delete some other edge(s). The disposal of a net is similar. This observation
and a refined analysis will yield the running time claimed in Theorem 1. What
dominates the branching step is the disposal of C4’s. With the technique the
author developed in [12], one may (slightly) improve the runtime to O(ck · m)
for some constant c < 4.

5 General Editing

Let V− ⊆ V (G), and let E− and E+ be a set of edges and a set of non-edges
of G − V− respectively. We say that (V−, E−, E+) is an editing set of G if the
deletion of E− from and the addition of E+ to G − V− create a unit interval
graph. Its size is defined to be the 3-tuple (|V−|, |E−|, |E+|), and we say that it
is smaller than (k1, k2, k3) if all of |V−| ≤ k1 and |E−| ≤ k2 and |E+| ≤ k3 hold
true and at least one inequality is strict. The unit interval editing problem is
formally defined as follows.

Input: A graph G and three nonnegative integers k1, k2, and k3.
Task: Either construct an editing set (V−, E−, E+) of G that has size

at most (k1, k2, k3), or report that no such set exists.

By and large, our algorithm for the unit interval editing also uses the same
two-phase approach as the previous algorithms. The main discrepancy lies in the
first phase, when we are not satisfied with an F-free graph; in particular, we also
want to do away with all holes of length at most k3+3, which are precisely those
holes fixable by merely adding edges. In the very special cases where k3 = 0
or 1, a fat W5 satisfies these conditions. It is not hard to solve the problem on

Unit Interval Editing Is Fixed-Parameter Tractable 315

fat W5’s, but to make the rest of the section more focused and to simplify the
presentation, we exclude these cases by disposing of all C5’s in the first phase.

A graph is called reduced if it contains no claw, net, tent, C4, C5, or C�

with � ≤ k3 + 3. A reduced graph G is a proper Helly circular-arc graph, and
hence if it happens to be chordal, then it must be a unit interval graph, and
we terminate the algorithm. Otherwise, our algorithm enters the second phase.
Now that G is reduced, every minimal forbidden induced subgraph is a hole C�

with � > k3 + 3, which can only be fixed by deleting vertices and/or edges. Here
we again exploit a proper and Helly arc model A for G. According to Lem. 2, if
there exists some point ρ in the model such that |KA(ρ)| ≤ k1, then it suffices
to return (KA(ρ), ∅, ∅) as the solution. Therefore, we may assume hereafter that
no such point exists, then G remains reduced and non-chordal after at most k1
vertex deletions. As a result, we have to delete edges as well.

Consider an (inclusion-wise minimal) editing set (V−, E−, E+) to a reduced
graph G. It is easy to verify that (∅, E−, E+) is an (inclusion-wise minimal)
editing set of the reduced graph G−V−. In particular, E− intersects all holes of
G−V−. We use A−V− as a shorthand for {Av ∈ A : v �∈ V−}. One may want to
use Lem. 4 to find a minimum set E− of edges (i.e.,

−→
E A−V−(α) for some point

α) to finish the task. However, Lem. 4 has not ruled out the possibility that we
delete less edges to break all long holes, and subsequently add edges to fix the
incurred subgraphs in {claw, net, tent, C4, C5, C�} with � ≤ k3 + 3. So we need
the following lemma.

Lemma 5. Let (V−, E−, E+) be an inclusion-wise minimal editing set of a
reduced graph G. If |E+| ≤ k3, then E+ = ∅.
Proof. We may assume without loss of generality V− = ∅, as otherwise it suffices
to consider the inclusion-wise minimal editing set (∅, E−, E+) to the still reduced
graph G − V−. Let A be a proper and Helly arc model for G. Let E′

− be an
inclusion-wise minimal subset of E− such that for every hole in G − E′

−, the
union of arcs for its vertices does not cover the circle of A. Note that E′

− exists
because E− itself satisfies this condition: suppose that there exists in G − E− a
hole whose arcs cover the circle, then it has at least k3 +4 vertices (Prop. 1) and
cannot be fixed by the addition of E+. We argue that G := G − E′

− is already a
unit interval graph. It follows that E− = E′

− and E+ = ∅.
Suppose for contradiction, there is X ⊆ V (G) inducing a claw, net, tent,

or a hole in G[X]. We find three vertices u, v, w ∈ X such that uw ∈ E′
− and

uv, vw ∈ E(G) as follows. Note that
⋃

v∈X Av cannot cover the whole circle: by
assumption, this is true when G[X] is a hole; on the other hand, by Lem. 1,
and noting that G is {C4, C5}-free, at least 6 arcs are needed to cover the circle
(Prop. 1), but a claw, net, or tent has at most 6 vertices, and cannot be a
subgraph of a C6. Thus, G[X] is a unit interval graph. So we can find two
vertices x, z from X having xz ∈ E′

−. We find a shortest x-z path in G[X]. If
the path has more than one inner vertex, then it makes a hole together with xz,
which means that there exists an inner vertex y of this path such that xy ∈ E′

−
or yz ∈ E′

−. We consider then the new pair x, y or y, z accordingly. Note that

316 Y. Cao

their distance in G[X] is smaller than xz, and hence repeating this argument
(at most |X| − 3 times) will end with two vertices with distance precisely 2 in
G[X]. They are the desired u and w, while any common neighbor of them in
G[X] can be v. By the minimality of E′

−, in G + uw there exists a hole H such
that arcs for its vertices cover the circle in A. This hole H necessarily passes
uw, and we denote it by x1x2 · · · x�−1x�, where x1 = u and x� = w. Note that
Au intersects Aw, and since A is proper and Helly, Au, Av, Aw cannot cover the
circle. From x1x2 · · · x�−1x� we can find p and q such that 1 ≤ p < q ≤ � and
vxp, vxq ∈ E(G) but vxi �∈ E(G) for every p < i < q. Here possibly p = 1 and/or
q = �. Then vxp · · · xq makes a hole of G, and the union of its arcs covers the
circle, contradicting the definition of E′

−. �
Therefore, a yes-instance on a reduced graph always has a solution adding

no edges. We present here a stronger algorithmic result on deleting vertices and
edges to make a graph a unit interval graph.

Lemma 6. Given a proper Helly circular-arc graph G and a nonnegative integer
p, we can calculate in O(m) time the minimum number q such that G has an
editing set of size (p, q, 0). In the same time we can find such an editing set.

Proof. Let us fix a proper and Helly arc model A for G. We may assume that G
is not chordal and KA(ρ) > p for any point ρ. Hence, q > 0: for any subset V−
of at most p vertices, G−V− remains reduced and non-chordal. For each point ρ
in A, we can define an editing set (V−, E−, ∅) by taking the p vertices in KA(ρ)
with the rightmost arcs as V− and

−→
E A−V−(ρ) as E−. We argue first that the

minimum cardinality of this edge set, taken among all points in A is the desired
number q.

Let (V ∗
−, E∗

−, ∅) be an editing set of G with size (p, q, 0). According to Lem. 4,
there is a point α such that the deletion of E′

− :=
−→
E A−V ∗

−(α) from G−V ∗
− makes

it a unit interval graph and |E′
−| ≤ |E∗

−|. We now consider the original model A.
Note that a vertex in V ∗

− is in either KA(α) or {v �∈ KA(α) : u → v, u ∈ KA(α)};
otherwise replacing this vertex by any end of an edge in E∗

−, and removing
this edge from E∗

− gives an editing set of size (p, q − 1, 0). Let V− comprise
the |V ∗

− ∩ KA(α)| vertices of KA(α) whose arcs are the rightmost in them, as
well as the first |V ∗

− \ KA(α)| vertices whose arcs are to the right of α. And let
E− :=

−→
E A−V−(α). It is easy to verify that |E−| ≤ |E∗

−| = q and (V−, E−, ∅) is
also an editing set of G (Lem. 2). Note that arcs for V− are consecutive in A.
Let v be the vertex in V− with the rightmost arc, and then ccp(v) − ε is the
desired point ρ.

We give now the O(m)-time algorithm for finding the desired point, for which
we assume that A is canonical. It suffices to consider the 2n points i + 0.5 for
i ∈ {0, . . . , 2n − 1}. We calculate first the V− and E− for 0.5, and maintain a
queue of p elements, which are the vertices corresponding to the p rightmost
arcs containing 0.5. For i = 1, . . . , 2n − 1, we deduce the new sets for i + 0.5
from the previous point as follows. If i is a clockwise endpoint of some arc,
then both of them do not change. Otherwise, i = ccp(v) for some vertex v,
then we enqueue v, and dequeue u, and the difference between

−→
E A(i + 0.5) and

Unit Interval Editing Is Fixed-Parameter Tractable 317

−→
E A(i − 0.5) is the number of edges incident to u. In particular, {xu : x → u} =−→
E A(i−0.5)\−→

E A(i+0.5), while {xu : x → u} =
−→
E A(i+0.5)\−→

E A(i−0.5). Note
that the initial value

−→
E A(0.5) can be found in O(m) time, and then each vertex

and its adjacency is scanned exactly once. The total running time is O(m). �
The combinatorial characterization on mixed hole covers consisting of both ver-
tices and edges, thereby extending Lems. 2 and 4. Lemmas 5 and 6 have the
following consequence: it suffices to call the algorithm with p = k1, and returns
the found editing set if q ≤ k2, or “NO” otherwise.

Corollary 2. The unit interval editing problem can be solved in O(m) time on
reduced graphs.

Putting together these steps, Thm. 2 follows.

References

1. van Bevern, R., Komusiewicz, C., Moser, H., Niedermeier, R.: Measuring indif-
ference: unit interval vertex deletion. In: Thilikos, D.M. (ed.) WG 2010. LNCS,
vol. 6410, pp. 232–243. Springer, Heidelberg (2010)

2. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification
problems. Discrete Appl. Math. 154(13), 1824–1844 (2006)

3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Proc. Letters 58(4), 171–176 (1996)

4. Cao, Y.: Unit interval editing is fixed-parameter tractable. arXiv:1504.04470 (2015)
5. Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. In: Mayr, E.W.,

Portier, N. (eds.) STACS. LIPIcs, vol. 25, pp. 214–225. Schloss Dagstuhl (2014)
6. Fomin, F.V., Saurabh, S., Villanger, Y.: A polynomial kernel for proper interval

vertex deletion. SIAM J. Discr. Math. 27(4), 1964–1976 (2013)
7. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against

physical mapping of DNA. J. Comput. Biol. 2(1), 139–152 (1995)
8. van’t Hof, P., Villanger, Y.: Proper interval vertex deletion. Algorithmica 65(4),

845–867 (2013)
9. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion

problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Com-
put. 28(5), 1906–1922 (1999)

10. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. System Sci. 20(2), 219–230 (1980)

11. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Normal Helly circular-arc graphs and
its subclasses. Discrete Appl. Math. 161(7–8), 1037–1059 (2013)

12. Liu, Y., Wang, J., You, J., Chen, J., Cao, Y.: Edge deletion problems: Branching
facilitated by modular decomposition. Theor. Comp. Sci. 573, 63–70 (2015)

13. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4),break
747–768 (2010)

14. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph
Theory, pp. 139–146. Academic Press, New York (1969)

15. Wegner, G.: Eigenschaften der Nerven homologisch-einfacher Familien im Rn.
Ph.D. thesis, Universität Göttingen (1967)

16. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg.
Discrete Methods 2(1), 77–79 (1981)

http://arxiv.org/abs/1504.0447

Streaming Algorithms for Submodular Function
Maximization

Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud(B)

Department of Computer Science, University of Illinois, Urbana, IL 61801, USA
{chekuri,sgupta49,quanrud2}@illinois.edu

Abstract. We consider the problem of maximizing a nonnegative sub-
modular set function f : 2N → R

+ subject to a p-matchoid constraint
in the single-pass streaming setting. Previous work in this context has
considered streaming algorithms for modular functions and monotone
submodular functions. The main result is for submodular functions that
are non-monotone. We describe deterministic and randomized algorithms
that obtain a Ω(1

p
)-approximation using O(k log k)-space, where k is an

upper bound on the cardinality of the desired set. The model assumes
value oracle access to f and membership oracles for the matroids defining
the p-matchoid constraint.

1 Introduction

Let f : 2N → R be a set function defined over a ground set N . f is submodular
if it exhibits decreasing marginal values in the following sense: if e ∈ N is any
element, and A,B ⊆ N with A ⊆ B are any two nested sets, then f(A + e) −
f(A) ≥ f(B +e)−f(B). The gap f(A+e)−f(A) is called the marginal value of
e with respect to f and A, and denoted fA(e). An equivalent characterization for
submodular functions is that for any two sets A,B ⊆ N , f(A∪B)+f(A∩B) ≤
f(A) + f(B).

Submodular functions play a fundamental role in classical combinatorial opti-
mization where rank functions of matroids, edge cuts, coverage, and others are
instances of submodular functions (see [24,37]). More recently, there is a large
interest in constrained submodular function optimization driven both by theoret-
ical progress and a variety of applications in computer science. The needs of the
applications, and in particular the sheer bulk of large data sets, have brought into
focus the development of fast algorithms for submodular optimization. Recent
work on the theoretical side include the development of faster worst-case approx-
imation algorithms in the traditional sequential model of computation [3,13,27],
algorithms in the streaming model [2,12] as well as in the map-reduce model of
computation [30].

C. Chekuri—Work on this paper supported in part by NSF grant CCF-1319376.
S. Gupta—Work on this paper supported in part by NSF grant CCF-1319376.
K. Quanrud—Work on this paper supported in part by NSF grants CCF-1319376,
CCF-1421231, and CCF-1217462.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 318–330, 2015.
DOI: 10.1007/978-3-662-47672-7 26

Streaming Algorithms for Submodular Function Maximization 319

In this paper we consider constrained submodular function maximization. The
goal is to find maxS∈I f(S) where I ⊆ 2N is a downward-closed family of sets; i.e.,
A ∈ I and B ⊆ A implies B ∈ I. I is also called an independence family and any
set A ∈ I is called an independent set . Submodular maximization under various
independence constraints has been extensively studied in the literature. The prob-
lem can be easily seen to be NP-hard even for a simple cardinality constraint as
it encompasses standard NP-hard problems like the Max-k-cover problem. Con-
strained submodular maximization has found several new applications in recent
years. Some of these include data summarization [17,34,39], influence maximiza-
tion in social networks [15,16,25,28,38], generalized assignment[10], mechanism
design [1], and network monitoring [33].

In some of these applications, the amount of data involved is much larger than
the main memory capacity of individual computers. This motivates the design of
space-efficient algorithms which can process the data in streaming fashion, where
only a small fraction of the data is kept in memory at any point. There has been
some recent work on submodular function maximization in the streaming model,
focused on monotone functions (i.e. f(A) ≤ f(B), whenever A ⊆ B). This
assumption is restrictive from both a theoretical and practical point of view.

Fig. 1. Hierarchy of set systems

In this paper we present streaming
algorithms for non-monotone submodular
function maximization subject to various
combinatorial constraints, the most gen-
eral being a p-matchoid. p-matchoid’s
generalize many basic combinatorial con-
straints such as the cardinality constraint,
the intersection of p matroids, and match-
ings in graphs and hyper-graphs. A for-
mal definition of a p-matchoid is given
in Section 2. We consider the abstract
p-matchoid constraint for theoretical rea-
sons, and most constraints in practice
should be simpler. We explicitly consider
the cardinality constraint and obtain an
improved bound.

We now describe the problem formally.
We are presented a groundset of elements
N = {e1, e2, . . . en}, with no assumption made on the order or the size of the
datastream. The goal is to select an independent set S ⊆ N (where indepen-
dence is defined by the p-matchoid), which maximizes a nonnegative submod-
ular function f while using as little space as possible. We make the following
assumptions: (i) the function f is available via a value oracle, that takes as
input a set S ⊆ N and returns the value f(S); (ii) the independence family I is
available via a membership oracle with some additional information needed in
the p-matchoid setting; and (iii) the constraints specify explicitly, and a priori,
an upper bound k on the number of elements to be chosen. We discuss these

320 C. Chekuri et al.

in turn. The availability of a value oracle for f is a reasonable and standard
assumption in the sequential model of computation, but needs some justifica-
tion in restrictive models of computation such as streaming where the goal is
to store at any point of time only a small subset of the elements of N . Can
f(S) be evaluated without having access to all of N ? This of course depends
on f . [2] gives several examples of interesting and useful functions where this
is indeed possible. The second assumption is also reasonable if, as we remarked,
the p-matchoid constraint is in practice going to be a simple one that combines
basic matroids such as cardinality, partition and laminar matroid constraints
that can be specified compactly and implicitly. Finally, the third assumption is
guided by the fact that an abstract model of constraints can in principle lead to
every element being chosen. In many applications the goal is to select a small
and important subset of elements from a much larger set; and it is therefore
reasonable to expect knowledge of an upper bound on how many can be chosen.
Submodular set functions are ubiquitous and arise explicitly and implicitly in
a variety of settings. The model we consider in this paper may not be directly
useful in some important scenarios of interest. Nevertheless, the ideas underlying
the analysis in the streaming model that we consider here may still be useful in
speeding up existing algorithms and/or reduce their space usage.

As is typical for streaming algorithms, we measure performance in four basic
dimensions: (i) the approximation ratio f(S)/OPT, where S is the output of the
algorithm and OPT is the value of an optimal solution; (ii) the space usage of
the algorithm; (iii) the update time or the time required to process each stream
element; and (iv) the number of passes the algorithm makes over the data stream.

Our Results. We develop randomized and deterministic algorithms that yield
an Ω(1/p)-approximation for maximizing a non-negative submodular function
under a p-matchoid constraint in the one-pass streaming setting. The space usage
is O(k log k), essentially matching recent algorithms for the simpler setting of
maximizing a monotone submodular function subject to a cardinality constraint
[2]. The randomized algorithm achieves better constants than the deterministic
algorithm. As far as we are aware, we present the first streaming algorithms
for non-monotone submodular function maximization under constraints beyond
cardinality. We give an improved bound of 1−ε

2+e for the cardinality constraint. For
the monotone case our bounds match those of Chakrabarti and Kale [12] for a
single pass; we give a self-contained algorithm and analysis. Table 1 summarizes
our results for a variety of constraints.

A brief overview of techniques. Streaming algorithms for constrained modular
and submodular function optimization are usually clever variations of the greedy
algorithm, which picks elements in iterations to maximize the gain in each iter-
ation locally while maintaining feasibility. For monotone functions, in the offline
setting, greedy gives a 1/(p + 1)-approximation for the p-matchoid constraint
and a (1 − 1/e)-approximation for the cardinality constraint [23]. The offline
greedy algorithm cannot be directly implemented in streams, but we outline two
different strategies that are still greedy in spirit. For the cardinality constraint,

Streaming Algorithms for Submodular Function Maximization 321

Table 1. Best known approximation bounds for submodular maximization. Bounds
for randomized algorithms that hold in expectation are marked (R). For hypergraph
b-matchings and matroid intersection, p is fixed. In the results for p-matchoids, o(1)
goes to zero as p increases. New bounds attained in this paper are marked (�). All new
bounds except for the cardinality constraint are the first bounds for their class. The
best previous bound for the cardinality constraint is about .0893, by [9].

offline streaming

constraint monotone nonnegative monotone nonnegative

cardinality 1 − 1/e [36] 1/e + .004 [8] 1−ε
2

[2] 1−ε
2+e

(R,�)

matroid 1 − 1/e (R) [11] 1−ε
e

(R) [20] 1/4 [12] 1−ε
4+e

(R,�)

matchings 1
2+ε

[21] 1
4+ε

[21] 4/31 [12] 1−ε
12+ε

(R,�)

b-matchings 1
2+ε

[21] 1
4+ε

[21] 1/8 (�) 1−ε
12+ε

(R,�)

rank p
hypergraph
b-matching

1
p+ε

(R) [21] p−1
p2+ε

[21] 1/4p (�) (1−ε)(p−1)

5p2−4p+ε
(R,�)

intersection of
p matroids

1
p+ε

[32] p−1
p2+(p−1)ε

[32] 1/4p [12] (1−ε)(p−1)

5p2−4p
(R,�)

p-matchoids 1
p+1

[11,23] (1−ε)(2−o(1))
ep

(R)
[14,20]

1/4p (�) (1−ε)(2−o(1))
(8+e)p

(R,�)

Badanidiyuru et al. [2] designed an algorithm that adds an element to its run-
ning solution S only if the marginal gain is at least a threshold of about OPT/2k.
Although the quantity OPT/2k is not known a priori, they show that it lies in a
small and identifiable range, and can be approximated with O(log k) well-spaced
guesses. The algorithm then maintains O(log k) solutions in parallel, one for each
guess. Another strategy from Chakrabarti and Kale [12], based on previous work
for matchings [19,35] and matroid constraints [4] with modular weights, will con-
sider deleting elements from S when adding a new element to S is infeasible. More
specifically, when a new element e is encountered, the algorithm finds a subset
C ⊆ S such that (S \C)+e is feasible, and compare the gain f((S \C)+e)−f(S)
to a quantity representing the value that C adds to S. In the modular case, this
may be the sum of weights of elements in C; for monotone submodular functions,
Chakrabarti and Kale used marginal values, fixed for each element when the ele-
ment is added to S, as proxy weights instead.

The non-monotone case is harder because marginal values can be negative
even when f is non-negative. The natural greedy algorithm fails for even the
simple cardinality constraint, and the best offline algorithms for nonnegative
submodular maximization are uniformly weaker (see Table 1). To this end, we
adapt techniques from the recent work of Buchbinder et al. [8] in our randomized
algorithm, and techniques from Gupta et al. [26] for the deterministic version.
Buchbinder et al. randomized the standard greedy algorithm (for cardinality)

322 C. Chekuri et al.

by repeatedly gathering the top (say) k remaining elements, and then randomly
picking only one of them. We adapt this to the greedy setting by adding the top
elements to a buffer B as they appear in the stream, and randomly adding an
element from B to S only when B fills up. What remains of B at the end of the
stream is post-processed by an offline algorithm. Gupta et al. gave a framework
for adapting any monotone submodular maximization algorithm to nonnegative
submodular functions, by first running the algorithm once to generate one inde-
pendent set S1, then running the algorithm again on the complement of S1 to
generate a second set S2, and running an unconstrained maximization algorithm
on S1 to produce a third set S3, finally returning the best of S1, S2, and S3. Our
deterministic streaming algorithm is a natural adaptation, piping the rejected
elements of one instance of a streaming algorithm directly into a second instance
of the same algorithm, and post-processing all the elements taken by the first
streaming instance. Both of our algorithms require that we limit the number of
elements ever added to S, which then limits the size of the input for the post-
processor. This limit is enforced by the idea of additive thresholds from [2] and
a simple but subtle notion of value that ensures the properties we desire.

Related Work. There is substantial literature on constrained submodular
function optimization, and we only give a quick overview. Many of the basic
problems are NP-Hard, so we will mainly focus on the development of approx-
imation algorithms. The (offline) problem maxS∈I f(S) for various constraints
has been extensively explored starting with the early work of Fisher, Nemhauser,
Wolsey on greedy and local search algorithms [23,36]. Recent work has obtained
many new and powerful results based on a variety of methods including vari-
ants of greedy [7,8,26], local search [22,31,32], and the multilinear relaxation
[5,11,14,29]. Monotone submodular functions admit better bounds than non-
monotone functions (see Table 1). For a p-matchoid constraint, which is our pri-
mary consideration, an Ω(1/p)-approximation can be obtained for non-negative
functions. Recent work has also obtained new lower bounds on the approximation
ratio achievable in the oracle model via the so-called symmetery gap technique
[40]; this also yields lower bounds in the standard computational models [18].

Streaming algorithms for submodular functions are a very recent phe-
nomenon with algorithms developed recently for monotone submodular functions
[2,12]. [2] gives a 1/2−ε approximation for monotone functions under cardinality
constraint using O(k log k/ε) space. [12] focuses on more general constraints like
interesctions of p-matroids and rank p hypergraphs, giving an approximation of
1/4p using a single pass. Their algorithm extends to multiple passes, with an
approximation bound of 1/(p + 1 + ε) with O(ε−3 log p) passes. The main focus
of [30] is on the map-reduce model although they claim some streaming results
as well.

Related to the streaming models are two online models where elements arrive
in an online fashion and the algorithm is required to maintain a feasible solution
S at all times; each element on arrival has to be processed and any element which
is discarded from S at any time cannot be added back later. Strong lower bounds
can be shown in this model and two relaxations have been considered. In the

Streaming Algorithms for Submodular Function Maximization 323

secretary model , the elements arrive according to a random permutation of the
ground set and an element added to S cannot be discarded later. In the secretary
model, constant factor algorithms are known for the cardinality constraint and
some special cases of a single matroid constraint [6,26]. These algorithms assume
the stream is randomly ordered and their performance degrades badly against
adversarial streams; the best competitive ratio for a single general matroid is
O(log k) (where k is the rank of the matroid). Recently, Buchbinder et al. [9]
considered a different relaxation of the online model where preemptions are
allowed: elements added to S can be discarded later. Algorithms in the pre-
emptive model are usually streaming algorithms, but the converse is not true
(although the one-pass algorithms in [12] are preemptive). For instance, the algo-
rithm in [2] maintains multiple feasible solutions and our algorithms maintain
a buffer of elements neither accepted nor rejected. The space requirement of an
algorithm in the online model is not necessarily constrained since in principle an
algorithm is allowed to keep track of all the past elements seen so far. The main
result in [9], as it pertains to this work, is a randomized 0.0893-competitive algo-
rithm for cardinality constraints using O(k)-space. As Table 1 shows, we obtain
a (1 − ε)/(2 + e)-competitive algorithm for this case using O(k log k/ε2)-space.

Paper Organization. Section 2 reviews combinatorial definitions and introduces
the notion of incremental values. Section 3 analyzes an algorithm that works
for monotone submodular functions, and Section 4 adapts this algorithm to the
non-monotone case. Due to space constraints, we defer all proofs as well as a
deterministic streaming algorithm to the full version1.

2 Preliminaries

Matroids. A matroid is a finite set system M = (N , I), where N is a set and
I ⊆ 2N is a family of subsets such that: (i) ∅ ∈ I, (ii) If A ⊆ B ⊆ N , and B ∈ I,
then A ∈ I, (iii) If A,B ∈ I and |A| < |B|, then there is an element b ∈ B \ A
such that A + b ∈ I. In a matroid M = (N , I), N is called the ground set
and the members of I are called independent sets of the matroid. The bases of M
share a common cardinality, called the rank of M.

Matchoids. Let M1 = (N1, I1), . . . ,Mq = (Nq, Iq) be q matroids over overlap-
ping groundsets. Let N = N1∪· · ·∪Nq and I = {S ⊆ N : S ∩ N� ∈ I� for all �}.
The finite set system Mp = (N , I) is a p-matchoid if for every element e ∈ N , e
is a member of N� for at most p indices � ∈ [q]. p-matchoids generalizes matchings
and intersections of matroids, among others (see Figure 1).

Maximizing submodular functions under a p-matchoid constraint. Let N be
a set of elements, f : 2N → R≥0 a nonnegative submodular function on N ,
and Mp = (N , I) a p-matchoid for some integer p. We want to approximate

1 available on arXiv

324 C. Chekuri et al.

OPT = maxS∈I f(S). There are several polynomial-time approximation algo-
rithms that give an Ω(1/p)-approximation for this problem, with better bounds
for simpler constraints (see Table 1). These algorithms are used as a black box
called Offline, with approximation ratio denoted by γp: if Offline returns
S ∈ I, then E[f(S)] ≥ γpOPT (possibly without expectation, if Offline is
deterministic).

Incremental Value. Let N be a ground set, and let f : 2N → R be a submodular
function. For a set S ⊆ N and an element e ∈ S, what is the value that e adds
to S? One idea is to take the margin fS−e(e) = f(S) − f(S − e) of adding e
to S − e. However, because f is not necessarily modular, we can only say that∑

e∈S fS−e(e) ≤ f(S) without equality. It is natural to ask for a different notion
of value where the values of the parts sum to the value of the whole.

Let N be an ordered set and f : 2N → R be a set function. For a set S ⊆ N and
element e ∈ N , the incremental value of e in S, denoted ν(f, S, e), is defined as

ν(f, S, e) = fS′(e), where S′ = {s ∈ S : s < e}.

The key point of incremental values is that they capture the entire value of a set.
The following holds for any set function.

Lemma 1. Let N be an ordered set, f : 2N → R a set function, and S ⊆ N a
set. Then f(S) =

∑
e∈S ν(f, S, e).

When f is submodular, we have decreasing incremental values analogous (and
closely related) to decreasing marginal returns of submodular function.

Lemma 2. Let S ⊆ T ⊆ N be two nested subsets of an ordered set N , let
f : 2N → R be submodular, and let e ∈ N . Then ν(f, T, e) ≤ ν(f, S, e).

The following is also an easy consequence of submodularity.

Lemma 3. Let N be an ordered set of elements, let f : 2N → R be a submodular
function, S,Z ⊆ N two sets, and e ∈ S. Then ν(fZ , S, e) ≤ ν(f, Z ∪ S, e).

3 Streaming Greedy

Let Mp = (N , I) be a p-matchoid and f a submodular function. The elements
of N are presented in a stream, and we order N by order of appearance. We
assume value oracle access to f , that given S ⊆ N , returns the value f(S). We
also assume membership oracles for each of the q matroids defining Mp: given
S ⊆ N�, there is an oracle for M� that returns whether or not S ∈ I�.

We first present a deterministic streaming algorithm Streaming-Greedy that
yields an Ω(1/p)-approximation for monotone submodular functions, but per-
forms poorly for non-monotone functions. The primary motivation in
presenting Streaming-Greedy is as a building block for a randomized algorithm
Randomized-Streaming-Greedy presented in Section 4, and a deterministic

Streaming Algorithms for Submodular Function Maximization 325

Streaming-Greedy(α,β)

S ← ∅
while (stream is not empty)

e ← next element in the stream

C ← Exchange-Candidates(S,e)
// C satisfies S − C + e ∈ I
if fS(e) ≥ α + (1 + β)

∑
c∈C ν(f, S, c)

S ← S \ C + e
end while

return S

Exchange-Candidates(S,e)

C ← ∅
for � = 1, . . . , q

if e ∈ N� and (S + e) ∩ N� /∈ I�

S� = S ∩ N�

X ← {s ∈ S� : (S� − s + e) ∈ I�}
// X + e is a circuit

c� ← arg minx∈X ν(f, S, x)
C ← C + c�

end if

end for

return C

algorithm deferred to the full version.The analysis for these algorithms relies cru-
cially on properties of Streaming-Greedy.

Streaming-Greedy maintains an independent set S ∈ I; as an element arrives
in the stream, it is either discarded or added to S in exchange for a well-chosen
subset of S. The threshold for exchanging is tuned by two nonnegative parameters
α and β. At the end of the stream, Streaming-Greedy outputs S.

The overall strategy is similar to previous algorithms developed for matchings
[19,35] and intersections of matroids [4] when f is modular, and generalized by
[12] to monotone submodular functions. There are two main differences. One is
the use of the additive threshold α. The second is the use of the incremental
value ν. By using incremental value, the value of an element e ∈ S is not fixed
statically when e is first added to S, and increases over time as other elements
are dropped from S. These two seemingly minor modifications are crucial to the
eventual algorithms for non-monotone functions.

We remark that Streaming-Greedy also fits the online preemptive model.

Outline of the Analysis: Let T ∈ I be some fixed feasible set (we can think of T
as an optimum set). In the offline analysis of the standard greedy algorithm one
can show that f(S ∪ T) ≤ (p + 1)f(S), where S is the output of greedy; for the
monotone case this implies that f(S) ≥ f(T)/(p + 1). The analysis here hinges
on the fact that each element of T \ S is available to greedy when it chooses
each element. In the streaming setting, this is no longer feasible and hence
the need to remove elements in favor of new high-value elements. To relate S̃,
the final output, to T , we consider U , the set of all elements ever added to S.
The analysis proceeds in two steps.

First, we upper bound f(U) by f(S̃) as f(U) ≤ (1+ 1
β) ·f(S̃)− α

β |U |. Second,

we upper bound f(T ∪U) as f(T ∪U) ≤ kα+ (1+β)2

β ·p·f(S̃). For α = 0, we obtain

f(T ∪U) ≤ (1+β)2

β ·p ·f(S̃), which yields f(T) ≤ 4pf(S̃) when f is monotone (for
β = 1); this gives the same bound as [12]. The crucial difference is that we are
able to prove an upper bound on the size of U , namely, |U | ≤ OPT/α; hence, if
we choose the threshold α to be cOPT/k for some parameter c we have |U | ≤ k/c.
This plays a critical role in analyzing the non-monotone case in the subsequent
sections that use Streaming-Greedy as a black box. The upper bound on |U |

326 C. Chekuri et al.

is achieved by the definition of ν and the threshold α; we stress that this is not
as obvious as it may seem because the function f can be non-monotone and the
marginal values can be negative.

4 Randomized Streaming Greedy

Randomized-Streaming-Greedy adapts Streaming-Greedy to nonnegative sub-
modular functions by employing a randomized buffer B to limit the probability
that any element is added to the running solution S. Like Streaming-Greedy,

Randomized-Streaming-Greedy(α, β)

S ← ∅, B ← ∅
while (stream is not empty)

e ← next element in the stream

if Is-Good(S,e) then B ← B + e
if |B| = K then

e ← uniformly random from B
C ← Exchange-Candidates(S,e)
B ← B − e, S ← (S \ C) + e
for all e′ ∈ B

unless Is-Good(S,e′)
B ← B − e′

end if

end while

S′ ← Offline(B)

return arg maxZ∈{S,S′} f(Z)

Is-Good(S,e)

C ← Exchange-Candidates(S,e)
if fS(e) ≥ α + (1 + β)

∑
e′∈C ν(f, S, e′)

return TRUE

else return FALSE

Randomized-Streaming-Greedy
maintains the invariant S ∈ I.
However, when a “good” element
would have been added to S by
Streaming-Greedy , it is instead

placed in B. Once the number of
elements in B hits a limit K, we
pick one element in B uniformly
at random and add it to S just as
Streaming-Greedy would. Mod-

ifying S may break the invariant
that the buffer only contains good
elements. Since f is submodular,
the incremental value ν(f, S, e) of
each e ∈ S may increase if a pre-
ceding element is deleted. Further-
more, the marginal value fS(b) of
each buffered element b ∈ B may
decrease as elements are added to
S. Thus, after modifying S, we
reevaluate each b ∈ B and discard
elements that are no longer good.

Let B̃ be the set of elements
remaining in the buffer B when the
stream ends. We process B̃ with an
offline algorithm to produce a second solution S′, and finally return the set Ŝ
which is the better of S and S′.

Outline of the Analysis. Let T ∈ I be an arbitrary independent set. Let T ′ =
T \ B̃ be the portion fully processed by the online portion and T ′′ = T ∩ B̃ the
remainder left over in the buffer and processed offline.

In the full version, we first show that the analysis for T ′ largely reduces to
that of Section 3. In particular, this gives us a bound on f(U ∪T ′). We combine
this with a bound on f(T ′′), guaranteed by the offline algorithm, to obtain an
overall bound on f(U ∪ T) by f(Ŝ). We then bound f(T) with respect to f(U),
leveraging the fact that the buffer limits the probability of elements being added
to S. We tie together the analysis to bound f(T) by f(Ŝ) for fixed α and β.

Streaming Algorithms for Submodular Function Maximization 327

The analysis reveals that the optimal choice for β is 1, and that α should be
chosen in proportion to OPT/k, where k is the rank of the Mp. Since OPT is not
known a prioriwe leverage a technique by Badanidiyuru et al. [2] that efficiently
guesses the α to within a constant factor of the target value. The final algorithm
is then log k copies of Randomized-Streaming-Greedy run in parallel, each
instance corresponding to a “guess” for α. One of these guesses is approximately
correct, and attains the bounded asserted in Theorem 1.

Theorem 1. Let Mp = (N , I) be a p-matchoid of rank k, let f : 2N → R≥0 a
nonnegative submodular function over N , and let ε > 0 be fixed. Suppose there
exists an algorithm for the offline instance of the problem with approximation
ratio γp. Then there exists a streaming algorithm using total space O

(
k log k

ε2

)

that, given a stream over N , returns a set Ŝ ∈ I such that

(1 − ε)OPT ≤
(

4p +
1
γp

)
E

[
f(Ŝ)

]
.

4.1 Simpler Algorithm and Better Bound for Cardinality Constraint

Randomized-Streaming-Greedy(α,∞)

B ← ∅, S ← ∅
while (stream is not empty)

e ← next element in the stream

if |S| ≤ k and fS(e) > α then

B ← B + e
if |B| = K then

e ← uniformly random from B
B ← B − e, S ← S + e
for all e′ ∈ B s.t. fS(e′) ≤ α

B ← B − e′

end if

end while

S′ ← Offline(B)

return arg maxZ∈{S,S′} f(Z)

When the p-matchoid is sim-
ply a cardinality constraint with
rank k, we can do better. If
we set β = ∞ in
Randomized-Streaming-Greedy
α,β , then the algorithm will

only try to add to S with-
out exchanging while |S| < k,
effectively halting once we meet
the cardinality constraint |S| =
k. On the right, we rewrite
Randomized-Streaming-Greedy
α,∞ with the unnecessary

logic removed.
The analysis, provided in

the full version, reveals that
the appropriate choice for α is
OPT/(2 + e)k, where OPT =
max{f(T) : |T | ≤ k} is the maxi-
mum value attainable by a set of k elements, and that a sufficiently large choice
for K is k/ε. As before, we can efficiently approximate α by guessing α in increas-
ing powers of (1+ε), maintaining at most O(log1+ε k) = O(ε−1 log k) instances of
Randomized-Streaming-Greedy(α,∞) at any instant. The resulting bound is
stronger than derived above for a 1-matchoid.

Theorem 2. Let f : 2N → R≥0 be a nonnegative submodular function over a
ground set N , and let ε > 0 be fixed. Then there exists a streaming algorithm

328 C. Chekuri et al.

using total space O
(

k log k
ε2

)
that, given a stream over N , returns a set Ŝ such

that |Ŝ| ≤ k and f(Ŝ) ≥ 1−ε
2+e · OPT, where OPT = max{f(T) : |T | ≤ k} is the

maximum value attainable by a set of k elements.

References

1. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and
online mechanisms. In: Proc. 18th ACM-SIAM Sympos. Discrete Algs. (SODA),
pp. 434–443. Philadelphia, PA, USA (2007)

2. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submod-
ular optimization: massive data summarization on the fly. In: Proc. 20th ACM
Conf. Knowl. Disc. and Data Mining (KDD), pp. 671–680 (August 2014)

3. Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular func-
tions. In: Proc. 25th ACM-SIAM Sympos. Discrete Algs. (SODA), pp. 1497–1514
(2014)

4. Badanidiyuru Varadaraja, A.: Buyback problem - approximate matroid intersec-
tion with cancellation costs. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 379–390. Springer, Heidelberg (2011)

5. Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: Solving packing integer
programs via randomized rounding with alterations. Theo. Comput. 8(1), 533–565
(2012)

6. Bateni, M., Hajiaghayi, M., Zadimoghaddam, M.: Submodular secretary problem
and extensions. ACM Trans. Algs. 9(4), 32:1–32:23 (2013)

7. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In: Proc. 53rd Annu.
IEEE Sympos. Found. Comput. Sci. (FOCS), pp. 649–658 (2012)

8. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: Submodular maximization
with cardinality constraints. In: Proc. 25th ACM-SIAM Sympos. Discrete Algs.
(SODA), pp. 1433–1452 (2014)

9. Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization
with preemption. In: Proc. 26th ACM-SIAM Sympos. Discrete Algs. (SODA),
pp. 1202–1216 (2015)

10. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set
function subject to a matroid constraint (extended abstract). In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer,
Heidelberg (2007)

11. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011)

12. Chakrabarti, A., Kale, S.: Submodular maximization meets streaming: matchings,
matroids, and more. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp.
210–221. Springer, Heidelberg (2014)

13. Chekuri, C., Jayram, T.S., Vondrák, J.: On multiplicative weight updates for con-
cave and submodular function maximization. In: Proceedings of ITCS (2015)

14. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In: Proc. 43th Annu.
ACM Sympos. Theory Comput. (STOC), pp. 783–792 (2011)

Streaming Algorithms for Submodular Function Maximization 329

15. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: Proc. 16th ACM Conf. Knowl. Disc.
and Data Mining (KDD), pp. 1029–1038 (2010)

16. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proc. 15th ACM Conf. Knowl. Disc. and Data Mining (KDD), pp. 199–208.
New York, NY, USA (2009)

17. Dasgupta, A., Kumar, R., Ravi, S.: Summarization through submodularity and
dispersion. In: Proc. 51st Ann. Meet. Assoc. for Comp. Ling. (ACL), vol. 1,
pp. 1014–1022 (2013)

18. Dobzinski, S., Vondrak, J.: From query complexity to computational complexity. In:
Proc. 44th Annu. ACM Sympos. Theory Comput. (STOC), pp. 1107–1116 (2012)

19. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theo. Comp. Sci. 348(2–3), 207–216 (2005)

20. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for
submodular maximization. In: Proc. 52nd Annu. IEEE Sympos. Found. Comput.
Sci. (FOCS), pp. 570–579 (2011)

21. Feldman, M., Naor, J.S., Schwartz, R., Ward, J.: Improved approximations for
k -exchange systems. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 784–798. Springer, Heidelberg (2011)

22. Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-
oblivious local search. SIAM J. Comput. 43(2), 514–542 (2014)

23. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions - II. Math. Prog. Studies 8, 73–87 (1978)

24. Fujishige, S.: Submodular functions and optimization, vol. 58. Elsevier (2005)
25. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: A data-based approach to social influ-

ence maximization. Proc. VLDB Endow. 5(1), 73–84 (2011)
26. Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone

submodular maximization: offline and secretary algorithms. In: Saberi, A. (ed.)
WINE 2010. LNCS, vol. 6484, pp. 246–257. Springer, Heidelberg (2010)

27. Iyer, R., Jegelka, S., Bilmes, J.: Fast semidifferential-based submodular func-
tion optimization. In: Proc. 30th Int. Conf. Mach. Learning (ICML), vol. 28,
pp. 855–863 (2013)

28. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proc. 9th ACM Conf. Knowl. Disc. and Data Mining (KDD),
pp. 137–146. New York, NY, USA (2003)

29. Kulik, A., Shachnai, H., Tamir, T.: Approximations for monotone and nonmono-
tone submodular maximization with knapsack constraints. Math. Oper. Res. 38(4),
729–739 (2013)

30. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in
mapreduce and streaming. In: Proc. 25th Ann. ACM Sympos. Parallelism Alg.
Arch. (SPAA), pp. 1–10 (2013)

31. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone
submodular functions under matroid or knapsack constraints. SIAM J. Discrete
Math. 23(4), 2053–2078 (2010)

32. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res. 35, 795–806 (2010)

33. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proc. 13th ACM Conf. Knowl.
Disc. and Data Mining (KDD), pp. 420–429. New York, NY, USA (2007)

330 C. Chekuri et al.

34. Lin, H., Bilmes, J.: A class of submodular functions for document summariza-
tion. In: Proc. 49th Ann. Meet. Assoc. Comput. Ling.: Human Lang. Tech. (HLT),
vol. 1, pp. 510–520 (2011)

35. McGregor, A.: Finding graph matchings in data streams. In: 8th Intl. Work.
Approx. Algs. Combin. Opt. Problems, pp. 170–181 (2005)

36. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions - I. Math. Prog. 14(1), 265–294 (1978)

37. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency, vol. 24.
Springer Verlag (2003)

38. Seeman, L., Singer, Y.: Adaptive seeding in social networks. In: Proc. 54th Annu.
IEEE Sympos. Found. Comput. Sci. (FOCS), pp. 459–468 (2013)

39. Sipos, R., Swaminathan, A., Shivaswamy, P., Joachims, T.: Temporal corpus sum-
marization using submodular word coverage. In: Proc. 21st ACM Int. Conf. Inf.
and Know. Management (CIKM), pp. 754–763 (2012)

40. Vondrák, J.: Symmetry and approximability of submodular maximization prob-
lems. SIAM J. Comput. 42(1), 265–304 (2013)

Multilinear Pseudorandom Functions

Aloni Cohen(B) and Justin Holmgren(B)

MIT, Cambridge, MA, USA
{aloni,holmgren}@mit.edu

Abstract. We define the new notion of a multilinear pseudorandom
function (PRF), and give a construction with a proof of security assuming
the hardness of the decisional Diffie-Hellman problem. A direct appli-
cation of our construction yields (non-multilinear) PRFs with aggre-
gate security from the same assumption, resolving an open question
in [CGV15]. Additionally, multilinear PRFs give a new way of viewing
existing algebraic PRF constructions: our main theorem implies they too
satisfy aggregate security.

1 Introduction

Pseudorandom functions (PRFs) are of fundamental importance in modern
cryptography. A PRF is efficiently computable and succinctly described, but
is indistinguishable from a random function. But a random functions are too
unstructured for many applications, and as a result many specialized pseudo-
random functions with more structure have emerged. Goldreich, Goldwasser, and
Nussboim [GGN03] define a general notion of pseudo-implementing huge random
objects with extra structure. In this paper, we define and construct multilin-
ear pseudorandom functions assuming the decisional Diffie-Hellman assumption
(DDH), and we show applications to prior work. Before presenting an informal
definition, we discuss the motivating applications.

The recent work of Cohen, Goldwasser, and Vaikuntanathan [CGV15] intro-
duced the notion of an aggregate pseudorandom function family F with extra
efficiency and security properties. First, the key K for a PRF f enables efficient
computation of Aggf (S) =

∑
x∈S f(x) for some class of succinctly described,

but possibly exponentially large, sets S. Second, no efficient algorithm can dis-
tinguish oracle access to f(·) and Aggf (·) from oracle access to g(·) and Aggg(·),
where g is a truly random function. The main constructions of [CGV15] were
proven secure assuming the subexponential hardness of DDH.

A different line of work studies a notion of algebraic pseudorandom functions
by Benabbas, Gennaro, and Vahlis [BGV11]. This notion is incomparable to aggre-
gate PRFs: algebraic PRFs generalize efficient aggregation, but provide no secu-
rity guarantees when an adversary has an aggregation oracle. Algebraic PRFs have
a number of applications in verifiable computation and multiparty computation
[BGV11,Haz15]. Because of their restricted security, algebraic PRFs have thus far
only been considered for polynomially-sized domains – security over large domains
would require subexponential hardness of DDH.
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 331–342, 2015.
DOI: 10.1007/978-3-662-47672-7 27

332 A. Cohen and J. Holmgren

In both works, the reliance on subexponential hardness of DDH (or the small-
domain restriction) is unsatisfying. Subexponential hardness is a significantly
stronger assumption, and is, for example, false in Z

∗
p. Additionally, security

reductions from subexponential hardness assumptions necessitate larger secu-
rity parameters and thus lose efficiency.

We define a multilinear PRF family as a family of functions {F : V1 × · · · ×
Vn → Y } mapping a product of vector spaces Vi to another vector space Y ,
in which a random function from the family is indistinguishable from a ran-
dom multilinear function with the same domain and codomain. One case of
particular interest is when each Vi is F2

p. Then any multilinear function from
V1 × · · · × Vn → W is defined by 2n values, which we think of as inducing a
PRF mapping {0, 1}n → Y . Multilinearity allows us to efficiently compute spe-
cific weighted sums of exponentially many PRF values from the above works.
This encompasses “hypercube” aggregation from [CGV15] and the closed-form
efficiency requirements of [BGV11].

2 Preliminaries

Notation For a set S, we use x ← S to mean that x is sampled uniformly at
random from S. We denote the finite field of order p by Fp. All vectors v are
column vectors, and vt denotes the transpose.

2.1 Linear Maps

Given a vector spaces V and W over a field F, we say that a map T : V → W
is linear if T (c1v1 + c2v2) = c1T (v1) + c2T (v2) is a valid identity for all vectors
v1, v2 in V and scalars c1, c2 in F. We say that a map T : V1 × · · · × Vn → W
is multilinear if it is linear in each component.

When V and W have finite dimensions dV and dW (which is the only case
we consider in this paper), a linear map from V to W can be represented by a
matrix in F

dW ×dV . This representation depends on the choice of bases for V and
W . When F is a finite field (also the only case we consider), a random linear map
from V → W can be sampled by picking an arbitrary basis for V and W and
sampling a uniformly random matrix from F

dW ×dV . The set of all linear maps
from V to W will be denoted as WV .

2.2 Tensor Products of Vector Spaces

Given vector spaces V and W of dimensions dV and dW over F, the tensor
product V ⊗ W is defined as a dV dW -dimensional vector space over F. For any
v ∈ V and w ∈ W , their tensor product v ⊗ w ∈ V ⊗ W can be defined by the
following laws:

1. (v1 + v2) ⊗ w = v1 ⊗ w + v2 ⊗ w
2. v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

3. For any c ∈ F, (cv) ⊗ w = v ⊗ (cw) = c(v ⊗ w).

Multilinear Pseudorandom Functions 333

If V has a basis v1, . . . , vdV
, and W has a basis w1, . . . , wdW

, there is a natural
basis for V ⊗W , namely {vi ⊗wj}i∈[dV],j∈[dW]. Expanding v =

∑
i∈[dV] aivi and

w =
∑

j∈[dW] bjwj in the respective bases of V and W , and applying the above
laws yields v ⊗ w =

∑
i∈[dV],j∈[dW] aibj(vi ⊗ wj). A simple tensor is defined as

one which can be written as v ⊗ w.
One can repeat the tensor product operation to obtain a space V1 ⊗ · · · ⊗ Vn

for any n vector spaces, with simple tensors of the form v1 ⊗ · · ·⊗ vn. Vectors in
such a space are sometimes called tensors, and the vector spaces in which they
reside are called tensor spaces.

It is easy to observe that the mapping φ : V1 × · · · × Vn → V1 ⊗ · · · ⊗ Vn

given by φ(v1, . . . , vn) = v1 ⊗ · · · ⊗ vn is multilinear. In fact, this map is in some
sense the most general multilinear map on V1 × · · · Vn. Given any other vector
space Z and a multilinear map h : V1 × · · · Vn → Z, there exists a unique linear
map fh : V1 ⊗ · · · ⊗ Vn → Z such that h = fh ◦ φ. As a result, multilinear
functions mapping V1 × · · · × Vn → Z naturally correspond to linear functions
mapping V1 ⊗ · · · ⊗ Vn → Z, and vice versa. This is known as the universal
property of a tensor product space. This correspondence will be essential to
proving correctness of Algorithm 2 and thereby the main theorem of this work.

Abusing our notation for the set of linear maps, we will write Y V1⊗···⊗Vn to
denote the set of all multilinear functions mapping V1 × · · · × Vn into Y .

SpanSearch Solver for Simple Tensors. We will also need an algorithm which
can solve the following problem: Suppose we are given m + 1 simple tensors
u0, . . . ,um in V1 ⊗ · · · ⊗ Vn, with each ui given in the form vi

1 ⊗ · · · ⊗ vi
n.

Can we find coefficients c1, . . . , cm ∈ F such that u0 =
∑m

i=1 ciui? Or is u0

independent of u1, . . . ,um? The standard linear algebra algorithm of Gaussian
elimination takes time which is poly(

∏
i dim(Vi)), which is exponential in the

problem description length n due to the simple tensors’ succinct representation.
[BW04] gives a deterministic polynomial-time algorithm solving this problem,

which we will use in our security proof. For completeness, we reproduce a version
of their simpler randomized algorithm in the full version of this paper.

2.3 Decisional Diffie-Hellman Assumption

We define an adversary’s advantage in distinguishing distributions:

Definition 1. We say that a probabilistic algorithm A has advantage |ε| in dis-
tinguishing distributions D0 and D1 if

Pr [A(xb) = b|x0 ← D0, x1 ← D1, b ← {0, 1}] =
1
2

+ ε.

We now recall the standard DDH assumption. For self-consistency of notation
we will denote the group operation additively, even though the DDH assumption
is more commonly presented with a multiplicative group operation1. Suppose a
1 This is probably because the first groups suspected to satisfy the Diffie-Hellman

assumption were subgroups of Z∗
p.

334 A. Cohen and J. Holmgren

group G with generator g and prime order p are fixed, and denote by TG the
time to perform the group operation.

Definition 2. Define DDHR as the distribution of

(ag, bg, cg)

where a, b, and c are chosen independently and uniformly at random from Fp.

Definition 3. Define DDHPR as the distribution of

(ag, bg, abg)

where a and b are chosen independently and uniformly at random from Fp.

Assumption 1 ((τ, ε)-DDH) All probabilistic algorithms A running in time at
most τ have advantage at most ε in distinguishing DDHR from DDHPR.

The standard DDH assumption postulates an ensemble of groups {Gλ}λ∈N such
that when G ← Gλ, G satisfies (poly(λ), negl(λ))-DDH.

(d×T)-Matrix DDH. Our proof of security will use the Matrix DDH assump-
tion of Boneh et al. [BHHO08], which is known to follow from the standard DDH
assumption.

Definition 4. Define Id×T
R as the distribution of Cg when C is chosen uni-

formly at random from Fd×T
p .

Definition 5. Define Id×T
PR as the distribution of abtg where a and b are chosen

uniformly at random from Fd
p and FT

p respectively.

Boneh et al. prove the following (which in their paper is also Lemma 1).

Lemma 1 ([BHHO08]). For every (d, T), if there is an adversary A distinguish-
ing Id×T

PR from Id×T
R with advantage ε in time τ , there is a distinguisher D which

distinguishes DDHPR from DDHR with advantage ε/d in time τ + O(TG · d ·
T log p), where TG is the time to perform the group operation in G.

3 Definition

The security definition for a multilinear pseudorandom function family parallels
the usual definition of a pseudorandom function family. That is, oracle access
to a multilinear pseudorandom function must be indistinguishable from oracle
access to a random multilinear function.

Definition 6. Syntactically, a multilinear pseudorandom function family con-
sists of a probabilistic polynomial-time algorithm KeyGen and a deterministic
polynomial-time algorithm Eval.

Multilinear Pseudorandom Functions 335

– KeyGen(1λ): KeyGen takes a security parameter in unary. KeyGen outputs a
secret key K, and also outputs as public parameters a field F, input vector
spaces V1, . . . , Vn, and a codomain vector space Y .

– Eval(K,v1, . . . ,vn): Eval takes as input a secret key K and vectors (v1, . . . ,
vn), and outputs a vector y = FK(v1, . . . ,vn) in the codomain.

KeyGen and Eval must satisfy security: for all probabilistic polynomial-time
algorithms A,

Pr
[
AFb(PP, 1λ) = b

∣∣∣∣
(K,PP) ← KeyGen(1λ), b ← {0, 1}
F0 = Eval(K, ·), F1 ← Y V1⊗···⊗Vn

]
≤ 1

2
+ negl(λ)

Truthfulness. While our definition only requires indistinguishability from a ran-
dom multilinear function, Construction 1 is actually multilinear itself. This fact
allows our construction to satisfy the definition of an aggregate PRF, as dis-
cussed in Section 5. We adopt the terminology of [GGN03], calling this property
“truthfulness”.

Remark 1. One can imagine variants on Definition 6. Specifically, we imagine
specifying the domain and codomain arbitrarily rather than receiving them as
outputs of KeyGen. Our construction achieves this in a limited sense; we can
specify n and dim(V1), . . . ,dim(Vn), but Y must always be a DDH-hard group
of large prime order, and F must be Fp. Constructing a multilinear pseudoran-
dom function family over arbitrary finite fields or rings is an intriguing open
question. A special case of this question was posed by [GGN03].Paraphrased
in our terminology, they asked whether there is a multilinear pseudorandom
function family mapping F2

2 × · · · × F2
2 → F2.

One might naively attempt to solve this by composing our construction with
a homomorphism from Y to F2. Unfortunately, in our construction Y must be
a DDH-hard group, so no such homomorphism can be efficiently computable.

4 Construction

We now construct a multilinear pseudorandom function family based on DDH-
hard groups. Given as public parameters a DDH-hard group G of order p with
generator g, and arbitrary dimensions d1, . . . , dn, we construct a multilinear
pseudorandom function family Fd1,...,dn

mapping Fd1
p × · · · × Fdn

p → G. The
security of our construction is determined only by the choice of G, and so we
have no explicit security parameter, in contrast to Definition 6. To match the
definition, one can easily let KeyGen generate a group in which the (assumed)
hardness of the DDH problem corresponds to the given security parameter.

Construction 1. Fd1,...,dn
is defined by

– KeyGen(): KeyGen samples vectors w1, . . . ,wn, where wi ← Fdi
p is sampled

uniformly at random. It returns the secret key K = (w1, . . . ,wn).
– Eval(K, (v1, . . . ,vn)): Eval returns (

∏n
i=1〈wi,vi〉) g, where 〈·, ·〉 denotes the

inner product.

336 A. Cohen and J. Holmgren

Remark 2. This construction generalizes the Naor-Reingold PRF[NR04], but we
allow richer queries. Specifically, to recover the Naor-Reingold construction, set
each di = 2, and restrict each vi to be a basis vector.

Remark 3 (Truthfulness). Every function in Fd1,...,dn
is truly multilinear (not

just indistinguishable from multilinear). This follows from the bilinearity of the
inner product and the multilinearity of multiplication (e.g. (x, y, z)
→ xyz is
multilinear).

4.1 Proof of Security

Our main security proof is the following theorem.

Theorem 1. When instantiated with a DDH-hard group G, Construction 1 sat-
isfies Definition 6.

Specifically, if there is an algorithm A running in time T such that

Pr
[
AFb(1λ) = b

∣∣∣∣
K ← KeyGen(), F0 = Eval(K, ·),
F1 ← GFd1

p ⊗···⊗Fdn
p , b ← {0, 1}

]
=

1
2

+ ε

then there is a distinguisher D running in time poly(T, TG,
∑

i di) which distin-
guishes DDHPR from DDHR with advantage at least |ε|

n·maxi di
.

Proof Overview. In this overview, we outline a proof by induction on n. In
our actual proof we “unroll” the induction and prove the theorem directly.

When n = 1, our construction is a truly random linear function mapping
V1 → G, given by v
→ 〈w,v〉g for randomly chosen w and generator g.

We now show that an oracle implementing our construction is pseudorandom
for n > 1. By definition, F0(v1, . . . ,vn) is equal to 〈wn,vn〉∏n−1

i=1 〈wi,vi, 〉g. By
the inductive hypothesis, oracle access to 〈wn,vn〉Rn−1(v1, . . . ,vn) is indistin-
guishable, where Rn−1 is a truly random multilinear function in GV1⊗···⊗Vn−1 .
Although dim(V1 ⊗ · · · ⊗ Vn−1) is exponential in n, we are able to efficiently
implement an oracle to Rn−1 in a stateful manner.

It remains to show that oracle access to 〈wn,vn〉Rn−1 is indistinguishable
from a random multilinear function F1 = Rn ← GV1⊗···⊗Vn . We show that a
distinguisher A of oracle access to Rn from oracle access to 〈wn,vn〉Rn−1 violates
the Matrix DDH assumption. This indistinguishability relies on two different
ways of statefully implementing any Rn, given in Algorithm 1 and Algorithm 2.

While we described the proof as an induction, directly applying these ideas in
our main proof does not yield an efficient reduction. Below, we use the standard
hybrid argument technique to avoid this pitfall.

Our proof relies on two different algorithms for statefully and efficiently
implementing oracle access to a random multilinear function, Rn from V1 ×
· · · × Vn to G. We can instead consider Rn as a random linear function from
V = V1 ⊗· · ·⊗Vn to G, using the correspondence described in the preliminaries.
Because we consider linear functions on V1 ⊗ · · · ⊗ Vn only as a tool to describe
multilinear functions on V1 × · · · × Vn, we are able to restrict our attention to
simple tensors in the analysis.

Multilinear Pseudorandom Functions 337

Algorithm 1. We maintain a map M which stores a subset of a mapping
V → Y . That is M stores a collection of pairs (u
→ y); we say that M(u) = y
if such an entry for u exists in M , and that M(u) = ⊥ otherwise. Initially M is
the empty set. A query v is answered by executing the following steps:

1. Check whether {v}∪{u : M(u) = ⊥} is linearly independent. If it is, sample
a random vector y ← Y and add the mapping (v
→ y) to M .

2. Compute v =
∑

j cjuj where for each j, M(uj) = ⊥.
3. Return

∑
j cjM(uj).

The efficiency of Steps 1 and 2 relies on the SpanSearch algorithm, which works
for simple tensors.

Proposition 1. Algorithm 1 implements a random linear function mapping
V → Y .

Proof. Suppose the queries up to time t are given by v1, . . . ,vt ∈ V . Let (vi1
→
yi1), . . . , (vij
→ yij) be the first j entries in M . The vectors vi1 , . . . ,vij are a
basis for span(v1, . . . ,vt). It is easy to see that Algorithm 1 implements a linear
map on span(v1, . . . ,vt) which is given by a random matrix. In particular, this
matrix has columns yi1 , . . . ,yij .

We now give an alternate algorithm implementing a random linear function
mapping U ⊗ W → Y for any vector spaces U , W , and Y . In particular, we will
take U = V1 ⊗ · · · ⊗ Vj−1 and W = Vj .

Algorithm 2. Queries are of the form u⊗w ∈ U ⊗ W . We maintain a map M
which stores a subset of a mapping U → Y W . That is M stores a collection of
pairs (z
→ f), where each f is a linear map from W to Y . We say that M(z) = f
if such an entry for z exists in M , and that M(z) = ⊥ otherwise. Initially M is
the empty set. A query u ⊗ w is answered by executing the following steps:

1. Check whether {u}∪{z : M(z) = ⊥} is linearly independent. If it is, sample
a random linear map f : W → Y and add the mapping (z
→ f) to M .

2. Write u =
∑

j cjzj where for each j, M(zj) = fj .
3. Return

∑
j cjfj(w).

Proposition 2. Algorithm 2 implements a random linear function mapping
U ⊗ W → Y .

Proof. A linear function mapping U to the space Y W of linear functions from W
to Y can be equivalently viewed as a bilinear function mapping U ×W → Y . As
discussed in the preliminaries, there is a bijective correspondence between such
bilinear functions and linear functions mapping U ⊗W → Y . Then Proposition 2
is just a special case of Proposition 1.

The main lemma used in the proof of Theorem 1 is that the following two
distributions on linear functions are indistinguishable.

Definition 7. For j > 0, let RFj denote GFd1
p ⊗···⊗F

dj
p . Let RF0 = G.

338 A. Cohen and J. Holmgren

Definition 8. For j > 0, let PRFj denote the distribution of multilinear func-
tions defined by

(v1 ⊗ · · · ⊗ vj)
→ 〈w,vj〉R(v1 ⊗ · · · ⊗ vj−1)

where w is sampled from Fdj
p and R is sampled from RFj−1.

Lemma 2. If there is an oracle algorithm A running in time T such that

Pr
[AFb() = b

∣∣F0 ← PRFj , F1 ← RFj , b ← {0, 1}] =
1
2

+ ε

then there is a distinguisher D running in time poly(T,
∑

i≤j di) such that D
breaks Matrix DDH with the same advantage. That is,

Pr
[
D(Mb) = b

∣∣∣M0 ← I
dj×T
PR ,M1 ← I

dj×T
PR , b ← {0, 1}

]
=

1
2

+ ε.

The distinguisher D is defined to execute the following steps:

1. Take C̃g as input. Here C̃ is either equal to abt for random a ∈ Fdj
p and

b ∈ FT
p or is sampled uniformly at random C ← Fdj×T

p . Denote the kth

column of C̃g by γk

2. Create an (initially empty) map M to store a subset of Fd1
p × · · · × Fdj−1

p →
Gdj . That is M stores a collection of pairs (v1 ⊗ · · · ⊗ vj−1
→ g), where
each g ∈ Gdj . We will preserve the invariant that {u : M(u) = ⊥} is linearly
independent.

3. Run the adversary A(), answering queries as follows:
On the ith query vi

1 ⊗· · ·⊗vi
j−1 ⊗vi

j , first define vi
−j = vi

1 ⊗· · ·⊗vi
j−1. Use

our SpanSearch solver to check whether {vi
−j} ∪ {u : M(u) = ⊥} is linearly

independent. If it is, add the mapping (vi
−j
→ γi) to M .

Otherwise, our SpanSearch solver tells us how to write vi
−j as

∑
k αkuk, where

each M(uk) is not ⊥. D then answers A’s query with
∑

k αk

〈
M(uk),vi

j

〉
.

4. Finally, D outputs the same answer that A outputs.

Lemma 2 follows from the following two claims.

Claim. When C̃ is uniformly random, then D answers queries according to the
same distribution as RFj .

Proof. This follows from Proposition 2. Namely, when C̃ is uniformly random,
the columns γi define independent and uniformly random linear maps from
Fdj

p → G. A’s queries are therefore answered according to a random multilinear
function, which is the same as RFj .

Multilinear Pseudorandom Functions 339

Claim. When C̃ is generated as abt, then D answers queries according to the
same distribution as PRFj .

Proof. Suppose that C̃ is abt. Then each γi is abi, where each bi is sampled inde-
pendently and uniformly at random from Fp. So D can equivalently change M to
only store (vi

−j
→ big) and now answers queries with 〈a,vi
j〉 (

∑
k αkM(uk)). By

Proposition 1, this is the same as 〈a,vi
j〉R(φ(vi

−j)) with R sampled from RFj .
By definition, this is the same as answering queries with a randomly sampled R′

from PRFj .

We can now prove Theorem 1.

Proof (of Theorem 1). We define distinguishers DJ for each J ∈ {0, . . . , n} that
execute the following steps:

1. Prepare a stateful implementation R ← RFJ using Algorithm 1 backed by
our SpanSearch solver.

2. Sample wi uniformly at random from Fdi
p for each i ∈ {J + 1, . . . , n}.

3. RunA, answering itsqueries (v1, . . . ,vn)with
(∏n

i=J+1〈wi,vi〉
)
R(v1, . . . ,vJ).

4. Output whatever A outputs.

First, it is clear that the output of D0 is the same as the output of AEval(K,·)()
where K ← KeyGen(), and the output of Dn is the same as the output of
AF1() where F1 ← RFn. By a standard hybrid argument, there must exist
some j ∈ {0, . . . , n − 1} such that Dj and Dj+1 output 1 with probabilities
differing by at least |ε|/n.

But if we replace Dj+1’s (black-box) usage of F ← RFj+1 by F ← PRFj+1,
then Dj+1 is functionally equivalent to Dj . So Dj+1 can be used to distinguish
oracle access to RFj+1 from oracle access to PRFj+1. Lemma 2 implies that
Dj+1 can be used to distinguish I

dj+1×Q
R from I

dj+1×Q
PR with advantage at least

|ε|/n, where Q is any bound on the number of linearly independent queries
made by A. In particular Q ≤ T . Lemma 1 implies that Dj+1 can be used to
distinguish DDHR from DDHPR with advantage at least |ε|

n·dj+1
. ��

5 Applications

In this section, we show how our multilinear PRF simplifies and improves PRF
constructions in [BGV11] and [CGV15]. We instantiate the vector spaces F di

p of
Construction 1 appropriately, and show that oracle access to a multilinear PRF
suffices to perfectly simulate oracle access to the functions from those works.

Aggregate PRFs [CGV15] are PRF families with extra efficiency and secu-
rity properties. First, the key K for a PRF f enables efficient computation of
Aggf (S) =

∑
x∈S f(x) for some class of succinctly described, but possibly expo-

nentially large, sets S. Second, no efficient algorithm can distinguish oracle access
to f(·) and Aggf (·) from oracle access to g(·) and Aggg(·), where g is a truly
random function.

340 A. Cohen and J. Holmgren

One specific setting that [CGV15] addresses is when S can be any “hyper-
cube”. A hypercube Hp ⊂ {0, 1}n is described by a pattern p ∈ {{0}, {1}, {0, 1}}n.
Hp is defined as {x ∈ {0, 1}n : xi ∈ pi}. Informally, Hp is the set obtained by
fixing the bits of x at particular indices, and allowing all other bits to vary freely.
[CGV15] showed a construction with efficent evaluation, but security relied on
the subexponential hardness of the DDH problem.

We show that the hypercube construction in [CGV15] is a special case of
Construction 1. The correctness of the aggregate queries is implied by the truth-
fulness of our construction. Thus we prove aggregate security of their construc-
tion relying only on the standard DDH assumption.

Corollary 1. Assuming the (polynomial) hardness of DDH over the group G,
[CGV15]’s PRFs for hypercubes2 and decision trees 3 are secure aggregate PRFs.

Proof. As shown in [CGV15], it suffices to prove the case of hypercubes.
Let B denote the 2-dimensional vector space whose basis vectors are |0〉 and

|1〉. Our construction gives a pseudorandom multilinear function F mapping Bn

to G. This function F induces a pseudorandom function f : {0, 1}n → G given
by f(b1 . . . bn) = F (|b1〉 , . . . , |bn〉).

First observe we can compute the sum of f(x) for all x as

F
(|0〉+|1〉 , . . . , |0〉+|1〉).

To fix a bit xi to b – thus aggregating over a smaller hypercube – we replace
the ith argument of F above with |b〉. That is, to compute Aggf (Hp) for some
hypercube Hp, we evaluate

F

⎛

⎝
∑

b∈p1

|b〉 , . . . ,
∑

b∈pn

|b〉
⎞

⎠

This yields the correct aggregate value by the truthfulness (multilinearity) of
our construction. Therefore oracle access to Aggf can be simulated with even a
restricted oracle to F . Namely, we only make queries where each argument is either
|0〉, |1〉, or |0〉 + |1〉. Theorem 1 then implies aggregate PRF security of f . ��

We can actually achieve the more generalized aggregation, as required in
the work of Benabbas, Gennaro, and Vahlis [BGV11] on algebraic PRFs, while
maintaining aggregate security. For example, efficiently evaluating

pf (z) =
∑

x∈{0,1}n

f(x)zn

has applications in verifiable and multiparty computation [BGV11,Haz15]. We
can achieve this functionality with oracle access to our multilinear PRF F , thus
2 Section 3.2.
3 Section 3.3.

Multilinear Pseudorandom Functions 341

keeping aggregate security. Specifically, instantiate Construction 1 as above. One
can then compute

pf (z) = F
(|0〉+z2

n−1 |1〉 , . . . , |0〉+z |1〉).
Correctness and security follow directly because F is a pseudorandom multilinear
function. This can easily be extended to cover the more general multivariable
algebraic PRF considered in [BGV11] (Section 4.2), along with a number of
other immediate generalizations.

Each of the above applications uses only the simplest of vector spaces. There
are many other ways in which a multilinear PRF can be invoked, but we highlight
these two examples as applications which have already appeared in the literature.

6 Extensions

Two other classes of functions which are fundamental in mathematics are sym-
metric and skew-symmetric multilinear functions. Informally, a function from
V n → Y is symmetric if swapping any arguments xi and xj does not affect the
value, and is skew-symmetric if such a swap negates the value. Pseudorandom
implementations of these classes of functions are interesting open problems.

Definition 9. A function F : V n → Y is said to be symmetric if for all i = j,

F (x1, . . . , xn) = F (x′
1, . . . , x

′
n),

where

x′
k =

⎧
⎪⎨

⎪⎩

xi if k = j

xj if k = i

xk otherwise.

F is said to be skew-symmetric if F (x1, . . . , xn) = −F (x′
1, . . . , x

′
n).

Given a group G of order p with generator g, we present a candidate con-
struction of a symmetric multilinear pseudorandom function family,

Construction 2. Fd,n is defined by

– KeyGen(): KeyGen samples a vector w uniformly at random from Fd
p.

– Eval(w,v1, . . . ,vn)): Eval returns (
∏n

i=1〈w,vi〉) g, where 〈·, ·〉 denotes the
inner product.

This is a modification to Construction 1 in which w1 = · · · = wn, which clearly
yields symmetric multilinear functions, but security is less clear.

In case d = 2, security reduces to the n-Strong DDH assumption. This
assumption states that (h, xh, . . . , xnh) is indistinguishable from n + 1 random
elements of G, when h is a randomly chosen generator of G, and x is a random
element of Fp. This is because a symmetric multilinear function on (F2

p)
n is

defined by n + 1 “basis” values, which in the above construction correspond to
this tuple.

342 A. Cohen and J. Holmgren

Conjecture 1. With a suitably chosen group G, Construction 2 defines a sym-
metric multilinear family of pseudorandom functions.

Acknowledgements. The authors would like to thank Shafi Goldwasser and Vinod
Vaikuntanathan for their helpful discussions and mentorship.

Aloni Cohen’s research was supported in part by the NSF Graduate Student Fel-
lowship.

Justin Holmgren’s research was supported in part by the NSF MACS project.

References

[BGV11] Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation
over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 111–131. Springer, Heidelberg (2011)

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

[BW04] Bogdanov, A., Wee, H.M.: A stateful implementation of a random func-
tion supporting parity queries over hypercubes. In: Jansen, K., Khanna, S.,
Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS,
vol. 3122, pp. 298–309. Springer, Heidelberg (2004)

[CGV15] Cohen, A., Goldwasser, S., Vaikuntanathan, V.: Aggregate pseudorandom
functions and connections to learning. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 61–89. Springer, Heidelberg (2015)

[GGN03] Goldreich, O., Goldwasser, S., Nussboim, A.: On the implementation of
huge random objects. In: Proceedings of the 44th Annual Symposium on
Foundations of Computer Science, pp. 68–79 (2003)

[Haz15] Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from
algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015)

[NR04] Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-
random functions. Journal of the ACM (JACM) 51(2), 231–262 (2004)

Zero-Fixing Extractors
for Sub-Logarithmic Entropy

Gil Cohen1 and Igor Shinkar2(B)

1 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel

2 Courant Institute of Mathematical Sciences, New York University, New York, USA
ishinkar@cims.nyu.edu

Abstract. An (n, k)-bit-fixing source is a distribution on n bit strings,
that is fixed on n − k of the coordinates, and jointly uniform on the
remaining k bits. Explicit constructions of bit-fixing extractors by Gabi-
zon, Raz and Shaltiel [SICOMP 2006] and Rao [CCC 2009], extract
(1 − o(1)) · k bits for k = poly log n, almost matching the probabilistic
argument. Intriguingly, unlike other well-studied sources of randomness,
a result of Kamp and Zuckerman [SICOMP 2006] shows that, for any
k, some small portion of the entropy in an (n, k)-bit-fixing source can
be extracted. Although the extractor does not extract all the entropy, it
does extract log(k)/2 bits.

In this paper we prove that when the entropy k is small enough com-
pared to n, this exponential entropy-loss is unavoidable. More precisely, we
show that for n > Tower(k2) one cannot extract more than log(k)/2+O(1)
bits from (n, k)-bit-fixing sources. The remaining entropy is inaccessi-
ble, information theoretically. By the Kamp-Zuckerman construction, this
negative result is tight. For small enough k, this strengthens a result by
Reshef and Vadhan [RSA 2013], who proved a similar bound for extrac-
tors computable by space-bounded streaming algorithms.

Our impossibility result also holds for what we call zero-fixing sources.
These are bit-fixing sources where the fixed bits are set to 0. We comple-
ment our negative result, by giving an explicit construction of an (n, k)-
zero-fixing extractor that outputs Ω(k) bits for k ≥ poly log log n. Finally,
we give a construction of an (n, k)-bit-fixing extractor, that outputs k −
O(1) bits, for entropy k = (1 + o(1)) · log log n, with running-time

nO((log logn)2). This answers an open problem by Reshef and Vadhan [RSA
2013].

1 Introduction

Randomness is an invaluable resource in many areas of theoretical computer
science, such as algorithm design, data structures and cryptography. For many

G. Cohen—Supported by an ISF grant and by the I-CORE Program of the Planning
and Budgeting Committee.
I. Shinkar—Research supported by NSF grants CCF 1422159, 1061938, 0832795 and
Simons Collaboration on Algorithms and Geometry grant.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 343–354, 2015.
DOI: 10.1007/978-3-662-47672-7 28

344 G. Cohen and I. Shinkar

computational tasks, the best known algorithms assume that random bits are
to their disposal. In cryptography and in distributed computing, randomness is,
provably, a necessity. Nevertheless, truly random bits are not always available. A
source of randomness might be defective, producing random bits that are biased
and correlated. Even a sample from an ideal source of randomness can suffer
such defects due to information leakage. Motivated by this problem, the notion
of randomness extractors was introduced.

Broadly speaking, a randomness extractor is a function that extracts
almost truly random bits given a sample from a defective source of random-
ness. Well-known instantiations are seeded extractors [NZ96,GUV09,DKSS09],
two-source extractors [CG88,Raz05,Bou05], and more generally multi-source
extractors [Raz05,BKS+05,BIW06,Rao09a,Li11a,Li13], as well as affine extrac-
tors [Bou07,Yeh11,Li11b]. Randomness extractors are central objects in pseudo-
randomness, with many applications beyond their original motivation. Over the
last 30 years, a significant research effort was directed towards the construction
of randomness extractors in different settings. We refer the reader to Shaltiel’s
introductory survey on randomness extractors [Sha11] for more information.

Bit-fixing Extractors. A well-studied defective source of randomness is a
bit-fixing source. An (n, k)-bit-fixing source is a distribution X over {0, 1}n,
where some n − k of the bits of X are fixed, and the joint distribution of
the remaining k bits is uniform. The problem of extracting randomness from
bit-fixing sources was initiated in the works of [Vaz85,BBR85,CGH+85], moti-
vated by applications to fault-tolerance, cryptography and communication com-
plexity. More recently, bit-fixing extractors have found applications to formulae
lower bounds [KRT13], and for compression algorithms for “easy” Boolean func-
tions [CKK+13].

The early works on bit-fixing extractors were concentrated on positive and
negative results for extracting a truly uniform string. In [CGH+85], it was
observed that one can efficiently extract a uniform bit even from (n, 1)-bit-
fixing sources, simply by XOR-ing all the input bits. In a sharp contrast, it
was shown that extracting two jointly uniform bits cannot be done even from
(n, n/3 − 1)-bit-fixing sources. Given this state of affairs, early works dealt
with what we call “the high-entropy regime”. Using a relation to error cor-
recting codes, Chor et al. [CGH+85] showed how to efficiently extract roughly
n− t · log2(n/t) truly uniform output bits from (n, n− t)-bit-fixing sources, with
t = o(n). The authors complemented this result by an almost matching upper
bound of n−(t/2) · log2(n/t) on the number of truly uniform output bits one can
extract. In the same paper, some results were obtained also for (n, k)-bit-fixing
sources, where k is slightly below n/2. Further lower bounds for this regime of
parameters were obtained by Friedman [Fri92].

Zero-Fixing Extractors for Sub-Logarithmic Entropy 345

These negative results naturally led to study the relaxation, where the output
of the extractor is only required to be close to uniform, in statistical distance.1 A
simple probabilistic argument can be used to show that, computational aspects
aside, one can extract m = k−2 log(1/ε)−O(1) bits that are ε-close to uniform,
from any (n, k)-bit-fixing source, as long as k ≥ log(n) + 2 log(1/ε) + O(1). For
simplicity, in the rest of this section we think of ε as a small constant. Thus,
in particular, by allowing for some small constant error ε > 0, one can extract
almost all the entropy k from any (n, k)-bit-fixing source, even for k as low as
log(n) + O(1). We call the range log n ≤ k ≤ o(n), “the low-entropy regime”.

The probabilistic argument mentioned above only yields an existential proof,
whereas efficiently computable extractors are far more desired. Kamp and Zuck-
erman [KZ06] gave the first explicit construction of an (n, k)-bit-fixing extractor,
with k = o(n). More precisely, for any constant γ > 0, an explicit (n, n1/2+γ)-
bit-fixing extractor was given, with Ω(n2γ) output bits. In a subsequent work,
Gabizon, Raz and Shaltiel [GRS06] obtained an explicit (n, logc n)-bit-fixing
extractor, where c > 1 is some universal constant. Moreover, the latter extractor
outputs (1−o(1))-fraction of the entropy, thus getting very close to the parame-
ters of the non-explicit construction obtained by the probabilistic method. Using
different techniques, Rao [Rao09b] obtained a bit-fixing extractor with improved
dependency on the error ε.

For a vast majority of randomness extraction problems, such as the problem
of constructing two-source extractors and affine extractors, a näıve probabilistic
argument yields (non-explicit) extractors with essentially optimal parameters.
Interestingly, this is not the case for bit-fixing extractors. The first evidence
for that comes from the observation mentioned above. Namely, the XOR func-
tion is an extractor for (n, 1)-bit-fixing sources. A result of Kamp and Zuck-
erman [KZ06] shows that this is not an isolated incident, and in fact, for any
k ≥ 1 there is an (explicit and simple) extractor for (n, k)-bit-fixing sources, that
outputs Ω(log2(k)) random bits that are ε-close to uniform for ε = exp(−kΩ(1)).
This result was later improved and simplified by Reshef and Vadhan [RV13],
who showed how to extract 0.5 · (log k − log log(1/ε)) bits. On the other hand,
one can show that, with high probability, a random function with a single out-
put bit is constant on some bit-fixing source with entropy, say, log(n)/10. Thus,
in this setting, structured functions outperform random functions, in the sense
that the former can extract a logarithmic amount of the entropy from bit-fixing
sources with arbitrarily low entropy, whereas the latter are constant, with high
probability, on some (n, log(n)/10)-bit-fixing source.

Reshef and Vadhan [RV13] considered k that is sub-logarithmic in n – a
regime we call the “very low entropy regime”. In [RV13] it is shown that any

1 Friedman [Fri92] studied other notions of closeness. Although different measures
are of interest, when analyzing extractors, the gold standard measure of closeness
between distributions is statistical distance. In this paper we follow the convention,
and measure the error of an extractor by the statistical distance of its output to the
uniform distribution.

346 G. Cohen and I. Shinkar

extractor that is computable by a space-bounded streaming algorithm can output
only O(log k) bits in this regime.

1.1 Our Contribution

Our first result states that when the entropy k is small enough compared to n,
one cannot extract more than 0.5 · log2(k) + O(1) bits from an (n, k)-bit-fixing
source, information theoretically. That is, for small enough k, the computational
assumption on the extractor imposed in [RV13] can be removed. Note that this
negative result is tight as implied by the constructions of [KZ06,RV13].

In fact, the following impossibility result holds also for what we call zero-fixing
sources. A random variable X is an (n, k)-zero-fixing source if it is an (n, k)-bit-
fixing source, where all the fixed bits are set to zero. Zero-fixing sources are
natural as they model bit-fixing sources in which the fixed bits are set to some
default value rather than to an arbitrary value.

To state the result, we introduce the function Tower : N → N that is defined
as follows: Tower(0) = 1, and for an integer n ≥ 1, Tower(n) = 2Tower(n−1).

Theorem 1. For any integers n, k such that Tower(k3/2) < n, the following
holds. Let Ext : {0, 1}n → {0, 1}m be an (n, k)-zero-fixing extractor with error ε.
If m > 0.5 · log2(k) + O(1), then ε ≥ 0.99.

Since the impossibility result stated in Theorem 1 holds for the more
restricted type of sources, namely for zero-fixing sources, it is natural to try
and complement it with feasibility results. Using a näıve probabilistic argu-
ment, one can prove the existence of an (n, k)-zero-fixing extractor, for any
k ≥ log log n + log log log n + O(1), with m = k − O(1) output bits, where
we treat the error ε as constant, for simplicity. Our second result is an almost
matching explicit construction.

Theorem 2. For any constant μ > 0, n, k ∈ N, such that k ≥ (log log n)2+μ,
there exists an efficiently computable function

ZeroBFExt : {0, 1}n → {0, 1}m,

where m = Ω(k), with the following property. For any (n, k)-zero-fixing source
X, it holds that ZeroBFExt(X) is (2−kΩ(1)

+ (k log n)−Ω(1))-close to uniform.

We remark that the techniques used in [GRS06,Rao09b] for the constructions
of bit-fixing extractors seem to work only for k ≥ poly log n, even for zero-fixing
sources, and new ideas are required in order to exploit the extra structure of
zero-fixing sources in order to extract Ω(k) bits from such sources with sub-
logarithmic entropy.

As mentioned, Reshef and Vadhan [RV13] proved that for k = o(log n),
any space-bounded streaming algorithm can extract at most O(log k) bits. The
authors left open the problem of whether or not one can extract Ω(k) bits for
k = o(log n). Theorem 1 shows that this is impossible for k which is very small

Zero-Fixing Extractors for Sub-Logarithmic Entropy 347

compared to n. Nevertheless, in the following theorem we answer the open prob-
lem of [RV13] positively and show that one can extract k − O(1) bits even when
k = O(log log n). For simplicity, we state here the theorem for a constant error ε.

Theorem 3. For any integers n, k, and constant ε > 0, such that k > log log n+
2 log log log n + Oε(1), there exists a function

QuasiBFExt : {0, 1}n → {0, 1}m,

where m = k − Oε(1), with the following property. Let X be an (n, k)-bit-fixing
source. Then, QuasiBFExt(X) is ε-close to uniform. The running-time of evalu-
ating QuasiBFExt is nOε((log log n)2).

Due to space limitations the full proofs of Theorem 1, Theorem 2 and
Theorem 3 are omitted from this extended abstract. In Section 3 we give an
overview for the proofs of Theorem 1 and Theorem 2. For the sake of clarity, in
this section we allow ourselves to be informal and somewhat imprecise.

2 Preliminaries

Throughout the paper we denote by log the logarithm to the base 2. For n ∈ N,
we denote the set {1, 2, . . . , n} by [n]. For n, r ∈ N, we let log(r)(n) be the compo-
sition of the log function with itself r times, applied to n. Formally, log(0)(n) = n,
and for r ≥ 1, we define log(r)(n) = log(log(r−1)(n)). For an integer h ∈ N, we
let Tower(h) be a height h tower of exponents of 2. More formally, Tower(0) = 1,
and for h ≥ 1, Tower(h) = 2Tower(h−1).

Sources of Randomness. In this paper we use the following sources of ran-
domness.

Definition 1 (Bit-fixing sources). Let n, k be integers such that n ≥ k. A
random variable X on n bits is called an (n, k)-bit-fixing source, if there exists
S ⊆ [n] with size |S| = k, such that X|S is uniformly distributed, and each Xi

with i �∈ S is fixed.

Definition 2 (Affine sources). Let n, k be integers, with n ≥ k. A random
variable X on n bits is called an (n, k)-affine source, if X is uniformly distributed
on some affine subspace U ⊆ F

n
2 of dimension k.

Definition 3 (Weak sources). Let n, k be integers such that n ≥ k. A random
variable X on n bits is called an (n, k)-weak source, if for any x ∈ supp(X), it
holds that Pr[X = x] ≥ 2−k.

Note that any (n, k)-bit-fixing source is an (n, k)-affine source, and any (n, k)-
affine source is an (n, k)-weak source. We introduce the following two sources of
randomness.

348 G. Cohen and I. Shinkar

Definition 4 (Zero-fixing sources). Let n, k be integers such that n ≥ k. A
random variable X on n bits is called an (n, k)-zero-fixing source, if there exists
S ⊆ [n] with size |S| = k, such that X|S is uniformly distributed, and each Xi

with i �∈ S is fixed to zero.

Definition 5 (Fixed-weight sources). Let n, k, w be integers, with n ≥ k ≥
w. A random variable X ⊆ {0, 1}n is called an (n, k, w)-fixed-weight source,
if there exists S ⊆ [n], with size |S| = k, such that a sample from x ∼ X
is obtained as follows. First, one samples a string x′ ∈ {0, 1}k of weight w,
uniformly at random from all

(
k
w

)
such strings. Then, x|S = x′, and xi = 0 for

all i �∈ S.

Wewill need the followingknownconstructions of an extractor andacondenser.

Theorem 4 ([Li13]). For every constant μ > 0 and all integers n, k with
k ≥ log2+μ n, there exists an explicit function Li : ({0, 1}n)c → {0, 1}m, with
m = Ω(k) and c = O(1/μ), such that the following holds. If X1, . . . , Xc are
independent (n, k)-weak sources, then

Li(X1, . . . , Xc) ≈ε Um,

where ε = n−Ω(1) + 2−kΩ(1)
.

Theorem 5 ([Rao09b]). For all integers n, k, there exists an efficiently com-
putable linear transformation Cond : {0, 1}n → {0, 1}k log n, such that for any
(n, k)-bit-fixing source X it holds that Cond restricted to X is one-to-one.

We further use of the following well-known fact.

Fact 1. For any integer n, and 0 < α < 1/2, it holds that

�αn�∑

k=0

(
n

k

)
≤ 2H(α)·n,

where H(p) = −p log2(p) − (1 − p) log2(1 − p) is the binary entropy function.

3 Proof Overviews

In this section we give an overview for the proofs of Theorem 1 and Theorem 2.
For the sake of clarity, in this section we allow ourselves to be informal and
somewhat imprecise.

3.1 Proof Overview for Theorem 1

To give an overview for the proof of Theorem 1, we start by considering a
related problem. Instead of proving an upper bound on the number of output
bits of an (n, k)-zero-fixing extractor, we prove an upper bound for zero-error

Zero-Fixing Extractors for Sub-Logarithmic Entropy 349

dispersers. Generally speaking, a zero-error disperser for a class of sources is
a function that obtains all outputs, even when restricted to any source in the
class. More concretely, an (n, k)-zero-fixing zero-error disperser is a function
ZeroErrDisp : {0, 1}n → {0, 1}m, such that for any (n, k)-zero-fixing source X,
it holds that supp(ZeroErrDisp(X)) = {0, 1}m. We show that for any such zero-
error disperser, if k is small enough compared to n, then m ≤ log2(k + 1). More
specifically, we prove that for any integers n, k such that Tower(k2) < n and
m =
log2(k + 1)� + 1, for any function f : {0, 1}n → {0, 1}m, there exists an
(n, k)-zero-fixing source, restricted to which f is a symmetric function, i.e., f
depends only on the input’s weight. In particular, f does not obtain all pos-
sible outputs.2 This implies that if f : {0, 1}n → {0, 1}m is a (n, k)-zero-fixing
zero-error dispersers and Tower(k2) < n, then m ≤ log2(k + 1).

Given f : {0, 1}n → {0, 1}m, we construct the required source X in a level-
by-level fashion, as follows. Trivially, f is symmetric on any (n, 1)-zero-fixing
source, regardless of the value of m. Next, we find an (n, 2)-zero-fixing source on
which f is symmetric. By the pigeonhole principle, there exists a set of indices
I1 ⊆ [n], with size |I1| ≥ n/2m, such that f(ei) = f(ej) for all i, j ∈ I1. Here, for
an index i ∈ [n], we denote by ei the unit vector with 1 at the ith coordinate. If
n > 2m, then |I1| ≥ 2, and so there exist two distinct i, j ∈ I1. Thus, f restricted
to the (n, 2)-zero-fixing source {0, ei, ej , ei + ej} is symmetric.

We take a further step, and find an (n, 3)-zero-fixing source on which f is
symmetric. We restrict ourselves to the index set I1 above, and consider the
complete graph with vertex set I1, where for every two distinct vertices i, j ∈ I1,
the edge connecting them is colored by the color f(ei + ej), where we think of
{0, 1}m as representing 2m colors. By the multi-color variant of Ramsey theorem,
there exists a set I2 ⊆ I1, of size

|I2| ≥ log(|I1|)/poly(2m),

such that the complete graph induced by I2 is monochromatic. Therefore, if
n > 22

O(m)
= 2poly(k), then |I2| ≥ 3, and so there exist distinct i1, i2, i3 ∈ I2

such that

f(ei1) = f(ei2) = f(ei3),
f(ei1+ei2) = f(ei1 + ei3) = f(ei2 + ei3).

Thus, f is symmetric on the (n, 3)-zero-fixing source spanned by {ei1 , ei2 , ei3}.
To construct an (n, 4)-zero-fixing source on which f is symmetric, we consider

the complete 3-uniform hypergraph on vertex set I2 as above, where an edge
{i1, i2, i3} is colored by f(ei1 + ei2 + ei3). Applying the multi-color Ramsey
theorem for hypergraphs, we obtain a subset of the vertices I3 ⊆ I2, with size

|I3| ≥ log log(|I2|)/poly(2m),

2 If m > �log2(k + 1)� + 1, then the same result can be obtained by restricting the
output to the first �log2(k + 1)� + 1 output bits.

350 G. Cohen and I. Shinkar

such that the induced complete hypergraph by the vertex set I3 is monochro-
matic. Therefore, if log log log n ≥ poly(k), then |I3| ≥ 4, and thus there are
distinct coordinates i1, i2, i3, i4 ∈ I3 such that f is symmetric on the (n, 4)-zero-
fixing source spanned by {ei1 , ei2 , ei3 , ei4}.

We continue this way, and find an (n, k)-zero-fixing source on which f is
symmetric, by applying similar Ramsey-type arguments on r-uniform complete
hypergraphs, with 2m colors, for r = 4, 5, . . . , k − 1. A calculation shows that as
long as Tower(k2) < n, such a source can be found.

To obtain the negative result for (n, k)-bit-fixing extractors, we follow a sim-
ilar argument. The only difference is that in this case, it is enough to find an
(n, k)-bit-fixing source X, such that f is symmetric restricted only to the O(

√
k)

middle levels of X. Since most of the weight of X sits in these levels, an (n, k)-bit-
fixing extractor cannot be symmetric restricted to these middle levels, regardless
of the values obtained by the extractor in the remaining points of X.

3.2 Proof Overview for Theorem 2

Informally speaking, the advantage one should exploit when given a sample from
an (n, k)-zero-fixing source X, as apposed to a sample from a more general bit-
fixing source, is that “1 hits randomness”. More formally, if Xi = 1, then we
can be certain that i ∈ S, where S ⊂ [n] is the set of indices for which X|S is
uniform. How should we exploit this advantage?

A natural attempt would be the following. Consider all (random) indices
1 ≤ i1 < i2 < · · · < iW ≤ n, such that Xi1 = · · · = XiW

= 1. Note that W , the
Hamming weight of the sample, is a random variable concentrated around k/2.
Let M = iW/2 be the median of these random indices. One can show that, with
high probability with respect to the value of M , both the prefix (X1,X2, . . . , XM)
and the suffix (XM+1,XM+2, . . . , Xn) have entropy roughly k/2. Intuitively, this
is because the “hidden” random bits, namely bits in coordinates i ∈ S such that
Xi = 0, must be somewhat intertwined with the “observed” random bits – bits
in coordinates i ∈ S for which Xi = 1. In particular, except with probability
2−Ω(k) over the value of M , both the prefix and the suffix have entropy at least
0.49k. Thus, by appending these prefix and suffix with zeros, one can get two n
bit sources Xleft,Xright, each having entropy at least 0.49k.

We observe that conditioned on the value of the median M , the random vari-
ables Xleft and Xright preserve the zero-fixing structure. Unfortunately, however,
Xleft,Xright are dependent. In this proof overview, we rather continue with the
description of the zero-fixing extractor as if Xleft,Xright were independent, and
deal with the dependencies later on.

After obtaining Xleft and Xright, we apply the lossless-condenser of Rao from
Theorem 5 on each of these random variables. This is an efficiently computable
function Cond : {0, 1}n → {0, 1}k log n, that is one-to-one when restricted to any
(n, k)-bit-fixing source. We compute Yleft = Cond(Xleft) and Yright = Cond(Xright)
to obtain two (k log n, 0.49k)-weak sources. Note that the one-to-one guarantee
implies that no entropy is lost during the condensing, and so the entropy of
Yleft, Yright equals the entropy of Xleft,Xright, respectively.

Zero-Fixing Extractors for Sub-Logarithmic Entropy 351

At this point, for simplicity, assume we have an explicit optimal two-source
extractor

TwoSourceExt : {0, 1}k log n × {0, 1}k log n → {0, 1}m

to our disposal Given this extractor, the output of our zero-fixing extractor
is TwoSourceExt(Yleft, Yright). Working out the parameters, one can see that an
optimal two-source extractor would yield an (n, k)-zero-fixing extractor for k >
log log n + O(log log log n), error 2−Ω(k) and output length, say, 0.9k.

Constructing two-source extractors for even sub-linear entropy, let alone for
logarithmic entropy, as used in the last step, is a major open problem in pseudo-
randomness. Even for our short input length k log n = Õ(log n), no poly(n)-time
construction is known. In this proof overview however, we choose to rely on such
an assumption for the sake of clarity. In the real construction, we apply the
split-in-the-median process above, recursively, to obtain c weak-sources, for any
desired constant c. In a recent breakthrough, Li [Li13] gave an explicit construc-
tion of a multi-source extractor, that extracts a constant fraction of the entropy,
from a constant number of weak-sources with poly-logarithmic entropy. In the
actual construction, instead of using a two-source extractor, we use the extractor
of Li with the appropriate constant c, as stated in Theorem 4.

Working Around the Dependencies. So far we ignored the dependencies between
Xleft and Xright, even though their condensed images are given as inputs to a
two-source extractor, and the latter expects its inputs to be independent. As we
now explain, the dependencies between Xleft and Xright can be worked around.

The crucial observation is the following: conditioned on the fixing of the Ham-
ming weight W of the sample X, and conditioned on any fixing of the median
M , the random variables Xleft,Xright are independent! To see this, fix W = w.
Then, conditioned on the event M = m, the value of the prefix X1, . . . , Xm gives
no information whatsoever about the suffix. More precisely, conditioned on any
fixing of the prefix X1, . . . , Xm, the suffix is distributed uniformly at random
over all n − m bit strings, with zeros outside S ∩ {m + 1, . . . , n}, and exactly
w/2 ones in S ∩ {m + 1, . . . , n}.

This observation motivates the following definition. We say that a random
variable X is an (n, k, w)-fixed-weight source, if there exists S ⊆ [n], with size
|S| = k, such that a sample x ∼ X is obtained as follows. First, one samples a
string x′ ∈ {0, 1}k of weight w, uniformly at random from all

(
k
w

)
such strings,

and then sets X|S = x′, and Xi = 0 for all i �∈ S. It is easy to see that any
(n, k)-zero-fixing source is 2−Ω(k)-close to a convex combination of (n, k, w)-
fixed-weight sources, with w ranges over k/3, . . . , 2k/3. Therefore, any extractor
for (n, k, w)-fixed-weight sources, for all such values of w, is also an extractor for
(n, k)-zero-fixing sources.

We now reanalyze the algorithm described above. Since an (n, k)-zero-fixing
source is 2−Ω(k)-close to a convex combination of (n, k, w)-fixed-weight sources,
with k/3 ≤ w ≤ 2k/3, we may assume, for the analysis sake, that the input is
sampled from an (n, k, w)-fixed-weight source for some fixed k/3 ≤ w ≤ 2k/3.
Fix also the median M to some value m ∈ [n]. Note that Xleft is an

352 G. Cohen and I. Shinkar

(n, kleft(m), w/2)-fixed-weight source3, and Xright is an (n, kright(m), w/2)-fixed-
weight source, with kleft(m) and kright(m) being deterministic functions of m,
satisfying kleft(m) + kright(m) = k. Moreover, by the discussion above, we have
that conditioned on the fixing M = m, the two random variables Xleft, Xright are
independent.

To summarize, conditioned on any fixing M = m, the two random variables
Xleft,Xright are independent and preserve their fixed-weight structure. We fur-
ther note that, with probability 1 − 2−Ω(k) over the value of M , it holds that
kleft, kright ≥ 0.49k.

Recall that at this point we apply Rao’s lossless-condenser on both Xleft and
Xright, to obtain shorter random variables Yleft, Yright. Rao’s condenser is one-to-
one when restricted to bit-fixing sources. Since Xleft and Xright are fixed-weight
sources, they are in particular contained in some (n, k)-bit-fixing sources, and so
the random variables Yleft, Yright have the same entropy as Xleft,Xright, respectively.

It is worth mentioning that Rao’s condenser Cond is linear, and as a result,
if Xleft were a bit-fixing source, then the resulting Yleft = Cond(Xleft) would have
been an affine source. This property was crucial for Rao’s construction of bit-
fixing extractors. Since we wanted to maintain independence between Xleft,Xright,
in our case these random variables are no longer bit-fixing sources, but rather
fixed-weight sources. Thus, the resulting Yleft, Yright are not affine sources, but
only weak sources, with min-entropy log2(

(
0.49k
w/2

)
) = Ω(k). This is good enough

for our needs, as in the next step we use a two-source extractor, and do not rely
on the affine-ness.

Lastly, we apply a two-source extractor on the condensed random variables
Yleft, Yright, which is a valid application, as these sources are independent, and
with probability 1 − 2−Ω(k), both have entropy Ω(k).

4 Conclusion and Open Problems

The Number of Extractable Bits in Terms of the Dependency of k in n.
In this paper we study the intriguing behavior of the number of output bits
one can extract from zero-fixing sources (and bit-fixing sources) in terms of the
dependency of k in n. Theorem 2 and Theorem 3 imply that when k > (1 +
o(1)) · log log n, one can extract essentially all the entropy of the source, whereas
when Tower(k3/2) < n, one cannot extract more than a logarithmic amount of
the entropy. The remaining entropy is inaccessible, information theoretically.

Is there a threshold phenomena behind this problem? Namely, is there some
function τ : N → N, such that when k > τ(n), one can extract Ω(k) bits, whereas
when k < o(τ(n)), one can extract only O(log k) bits? Or perhaps the number
of extractable bits in terms of the dependency of k in n is more gradual? Are
there different behaviors for zero-fixing and bit-fixing sources? Theorem 3 shows
that if there is such a threshold τ(n), then the function τ(n) is asymptotically
not larger than log log n.
3 To be more precise, Xleft is not an (n, kleft(m), w/2)-fixed-weight source per se, as its

mth bit is constantly 1. Ignoring this bit would make Xleft a fixed-weight source.

Zero-Fixing Extractors for Sub-Logarithmic Entropy 353

Explicit Bit-fixing Extractors for Sub-logarithmic Entropy. Theorem 3
gives a bit-fixing extractor QuasiBFExt that outputs essentially all the entropy
of the source, even when the entropy is double-logarithmic in the input length.
Although the running-time of evaluating QuasiBFExt is not polynomial in n, it is
not very high, and we feel that constructing a polynomial-time bit-fixing extrac-
tor for sub-logarithmic, or even double-logarithmic entropy, should be attainable.
We suspect that such a construction would require new ideas, as the ideas used
in [GRS06,Rao09b] inherently require the entropy to be at least logarithmic in
the input length. Furthermore, the split-in-the-median idea used in the proof
of Theorem 2, is based on the “1 hits randomness” property that is unique to
zero-fixing sources, and does not seem to be helpful for general bit-fixing sources.

Acknowledgement. We are thankful to Ran Raz and Avishay Tal for many fruitful
discussions regarding this work. We thank the anonymous referees for their valuable
comment.

References

[BBR85] Bennett, C.H., Brassard,G., Robert, J.M.: How to reduce your enemys infor-
mation. In: Advances in Cryptology (CRYPTO), vol. 218, pp. 468–476.
Springer (1985)

[BIW06] Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using
few independent sources. SIAM Journal on Computing 36(4), 1095–1118
(2006)

[BKS+05] Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Simulating
independence: new constructions of condensers, ramsey graphs, dispersers,
and extractors. In: Proceedings of the Thirty-Seventh Annual ACM Sym-
posium on Theory of Computing, pp. 1–10. ACM (2005)

[Bou05] Bourgain, J.: More on the sum-product phenomenon in prime fields and its
applications. International Journal of Number Theory 1(1), 1–32 (2005)

[Bou07] Bourgain, J.: On the construction of affine extractors. GAFA Geometric
And Functional Analysis 17(1), 33–57 (2007)

[CG88] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal on Computing
17(2), 230–261 (1988)

[CGH+85] Chor, B., Goldreich, O., H̊astad, J., Freidmann, J., Rudich, S., Smolensky,
R.: The bit extraction problem or t-resilient functions. In: Proceedings of
the 26th Annual Symposium on Foundations of Computer Science, pp. 396–
407. IEEE (1985)

[CKK+13] Chen, R., Kabanets, V., Kolokolova, A., Shaltiel, R., Zuckerman, D.: Min-
ing circuit lower bound proofs for meta-algorithms. In: Electronic Collo-
quium on Computational Complexity (ECCC), vol. 20, pp. 57 (2013)

[DKSS09] Dvir, Z., Kopparty, S., Saraf, S., Sudan, M.: Extensions to the method of
multiplicities, with applications to Kakeya sets and mergers. In: Proceedings
of the 50th Annual IEEE Symposium on Foundations of Computer Science,
pp. 181–190. IEEE (2009)

354 G. Cohen and I. Shinkar

[Fri92] Friedman, J.: On the bit extraction problem. In: Proceedings of the 33rd
Annual Symposium on Foundations of Computer Science, pp. 314–319.
IEEE (1992)

[GRS06] Gabizon, A., Raz, R., Shaltiel, R.: Deterministic extractors for bit-fixing
sources by obtaining an independent seed. SIAM Journal on Computing
36(4), 1072–1094 (2006)

[GUV09] Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and ran-
domness extractors from Parvaresh-Vardy codes. Journal of the ACM 56(4),
20 (2009)

[KRT13] Komargodski, I., Raz, R., Tal, A.: Improved average-case lower bounds for
DeMorgan formula size. In: Proceedings of the 54th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pp. 588–597. IEEE
(2013)

[KZ06] Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources
and exposure-resilient cryptography. SIAM Journal on Computing 36(5),
1231–1247 (2006)

[Li11a] Li, X.: Improved constructions of three source extractors. In: Proceedings of
the 26th IEEE Annual Conference on Computational Complexity (CCC),
pp. 126–136. IEEE (2011)

[Li11b] Li, X.: A new approach to affine extractors and dispersers. In: Proceedings
of the 26th IEEE Annual Conference on Computational Complexity (CCC),
pp. 137–147. IEEE (2011)

[Li13] Li, X.: Extractors for a constant number of independent sources with poly-
logarithmic min-entropy. In: Proceedings of the 54th IEEE Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 100–109. IEEE
(2013)

[NZ96] Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Com-
puter and System Sciences 52(1), 43–52 (1996)

[Rao09a] Rao, A.: Extractors for a constant number of polynomially small min-
entropy independent sources. SIAM Journal on Computing 39(1), 168–194
(2009)

[Rao09b] Rao, A.: Extractors for low-weight affine sources. In: Proceedings of 24th
Annual IEEE Conference on Computational Complexity, (CCC 2009), pp.
95–101. IEEE (2009)

[Raz05] Raz, R.: Extractors with weak random seeds. In: Proceedings of the Thirty-
Seventh Annual ACM Symposium on Theory of Computing, pp. 11–20.
ACM (2005)

[RV13] Reshef, Y., Vadhan, S.: On extractors and exposure-resilient functions for
sublogarithmic entropy. Random Structures & Algorithms 42(3), 386–401
(2013)

[Sha11] Shaltiel, R.: An introduction to randomness extractors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756,
pp. 21–41. Springer, Heidelberg (2011)

[Vaz85] Vazirani, V.U.: Towards a strong communication complexity theory or gen-
erating quasi-random sequences from two communicating slightly-random
sources. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing, pp. 366–378. ACM (1985)

[Yeh11] Yehudayoff, A.: Affine extractors over prime fields. Combinatorica 31(2),
245–256 (2011)

Interactive Proofs with Approximately Commuting
Provers

Matthew Coudron1(B) and Thomas Vidick2

1 Massachusetts Institute of Technology, Cambridge, MA, USA
mcoudron@mit.edu

2 California Institute of Technology, Pasadena, CA, USA
vidick@cms.caltech.edu

Abstract. The class MIP∗ of promise problems that can be decided
through an interactive proof system with multiple entangled provers pro-
vides a complexity-theoretic framework for the exploration of the nonlo-
cal properties of entanglement. Very little is known in terms of the power
of this class. The only proposed approach for establishing upper bounds is
based on a hierarchy of semidefinite programs introduced independently
by Pironio et al. and Doherty et al. in 2006. This hierarchy converges to
a value, the field-theoretic value, that is only known to coincide with the
provers’ maximum success probability in a given proof system under a
plausible but difficult mathematical conjecture, Connes’ embedding con-
jecture. No bounds on the rate of convergence are known.

We introduce a rounding scheme for the hierarchy, establishing that
any solution to its N-th level can be mapped to a strategy for the provers
in which measurement operators associated with distinct provers have
pairwise commutator bounded by O(�2/

√
N) in operator norm, where �

is the number of possible answers per prover.
Our rounding scheme motivates the introduction of a variant of quan-

tum multiprover interactive proof systems, called MIP∗
δ , in which the

soundness property is required to hold against provers allowed to oper-
ate on the same Hilbert space as long as the commutator of operations
performed by distinct provers has norm at most δ. Our rounding scheme
implies the upper bound MIP∗

δ ⊆ DTIME(exp(exp(poly)/δ2)). In terms
of lower bounds we establish that MIP∗

2− poly contains NEXP with com-
pleteness 1 and soundness 1 − 2− poly. We discuss connections with the
mathematical literature on approximate commutation and applications to
device-independent cryptography.

1 Introduction

In a multiprover interactive proof system, a verifier with bounded resources (a
polynomial-time Turing machine) interacts with multiple all-powerful but non-
communicating provers in an attempt to verify the truth of a mathematical state-
ment — the membership of some input x, a string of bits, in a language L, such
as 3-SAT. The provers always collaborate to maximize their chances of making
the verifier accept the statement, and their maximum probability of success in
c© Springer-Verlag Berlin Heidelberg 2015

M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 355–366, 2015.
DOI: 10.1007/978-3-662-47672-7 29

356 M. Coudron and T. Vidick

doing so is called the value ω = ω(x) of the protocol. We will sometimes refer
to a given protocol as an “interactive game” and call the provers “players”. A
proof system’s completeness c is the smallest value of ω(x) over all x ∈ L, while
its soundness s is the largest value of ω(x) over x /∈ L; a protocol is sound if
s < c.

The class of all languages that have multiprover interactive proof systems
with c ≥ 2/3 and s ≤ 1/3, denoted MIP, is a significant broadening of its
non-interactive, single-prover analogue MA, as is witnessed by the character-
ization MIP = NEXP [BFL91]. This result is one of the cornerstones on which
the PCP theorem [AS98,ALM+98] was built, with consequences ranging from
cryptography [BOGKW88] to hardness of approximation [FGL+96].

Quantum information suggests a natural extension of the class MIP. The
laws of quantum mechanics assert that, in the physical world, a set of non-
communicating provers may share an arbitrary entangled quantum state, a
physical resource which strictly extends their set of strategies but provably
does not allow them to communicate. The corresponding extension of MIP is
the class MIP∗ of all languages that have multiprover interactive proof systems
with entangled provers [KM03].

Physical intuition for the significance of the prover’s new resource,
entanglement, dates back to Einstein, Podolsky and Rosen’s paradoxical
account [EPR35] of the consequences of quantum entanglement, later clarified
through Bell’s pioneering work [Bel64]. To state the relevance of Bell’s results
more precisely in our context we first introduce the mathematical formalism
used by Bell to model locality. With each prover’s private space is associated a
separate Hilbert space. The joint quantum state of the provers is specified by a
unit vector |Ψ〉 in the tensor product of their respective Hilbert spaces. Upon
receiving its query from the verifier, each prover applies a local measurement (a
positive operator supported on its own Hilbert space) the outcome of which is
sent back to the verifier as its answer. The supremum of the provers’ probabil-
ity of being accepted by the verifier, taken over all Hilbert spaces, states in their
joint tensor product, and local measurements, is called the entangled value ω∗
of the game. The analogue quantity for “classical” provers (corresponding to
shared states which are product states) is denoted ω.

Bell’s work and the extensive literature on Bell inequalities [CHSH69,Ara02]
and quantum games [CHTW04] establishes that there are protocols, or interac-
tive games, for which ω∗ > ω. This simple fact has important consequences
for interactive proof systems. First, a proof system sound with classical provers
may no longer be so in the presence of entanglement. Cleve et al. [CHTW04]
exhibit a class of restricted interactive proof systems, XOR proof systems, such
that the class with classical provers equals NEXP while the same proof sys-
tems with entangled provers cannot decide any language beyond EXP. Second,
the completeness property of a proof system may also increase through the
provers’ use of entanglement. As a result optimal strategies may require the
use of arbitrarily large Hilbert spaces for the provers — no explicit bound on
the dimension of these spaces is known as a function of the size of the game.

Interactive Proofs with Approximately Commuting Provers 357

In fact no better upper bound on the class MIP∗ is known other than its lan-
guages being recursively enumerable: they may not even be decidable! This
unfortunate state of affairs stems from the fact that, while the value ω∗ may be
approached from below through exhaustive search in increasing dimensions,
there is no verifiable criterion for the termination of such a procedure.

Bounding entangled-Prover Strategies. The question of deriving algorithmic
methods for placing upper bounds on the entangled value ω∗ of a given proto-
col has long frustrated researchers’ efforts. Major progress came in 2006 through
the introduction of a hierarchy of relaxations based on semidefinite program-
ming [DLTW08,NPA07] that we will refer to as the QCSDP hierarchy. These
relaxations follow a similar spirit as e.g. the Lasserre hierarchy in combinato-
rial optimization [Lau03], and can be formulated using the language of sums of
squares of non-commutative polynomials. In contrast with the commutative set-
ting, this leads to a hierarchy that is in general infinite and need not converge
at any finite level.

The limited convergence results that are known for the QCSDP hierarchy
involve a formalization of locality for quantum provers which originates in the
study of infinite-dimensional systems such as those that arise in quantum field
theory. Here the idea is that observations made at different space-time locations
should be represented by operators which, although they may act on the same
Hilbert space, should nevertheless commute — a minimal requirement ensur-
ing that the joint outcome of any two measurements made by distinct parties
should be well-defined and independent of the order in which the measure-
ments were performed.

For the case of finite-dimensional systems this seemingly weaker condition
is equivalent to the existence of a tensor product representation [DLTW08].
In contrast, for the case of infinite-dimensional systems the two formulations
are not known to be equivalent. This question, known as Tsirelson’s problem
in quantum information, was recently shown to be equivalent to a host of
deep mathematical conjectures [SW08,JNP+11], in particular Connes’ embed-
ding conjecture [Con76] and Kirchberg’s QWEP conjecture [Kir93]. The valid-
ity of these conjectures has a direct bearing on our understanding of MIP∗. The
QCSDP hierarchy is known to converge to a value called the field-theoretic value
ω f of the game, which is the maximum success probability achievable by com-
muting strategies of the type described above. A positive answer to Tsirelson’s
conjecture thus implies that ω∗ = ω f and both quantities are computable.
However, even assuming the conjecture and in spite of strong interest (the use
of the first few levels of the hierarchy has proven extremely helpful to study a
range of questions in device independence [BSS14,YVB+14] and the study of
nonlocality [PV10]) absolutely no bounds have been obtained on the conver-
gence rate of the hierarchy. It is only known that if a certain technical condition,
called a rank loop, holds, then convergence is achieved [NPA08]; unfortunately
the condition is computationally expensive to verify (even for low levels of the
hierarchy) and, in general, may not be satisfied at any finite level.

358 M. Coudron and T. Vidick

Beyond the obvious limitations for practical applications, these severe com-
putational difficulties are representative of the intrinsic difficulty of working
with the model of entangled provers. Our work is motivated by this state of
affairs: we establish the first quantitative convergence results for the quantum
SDP hierarchy. Our main observation is that successive levels of the hierarchy
place bounds on the value achievable by provers employing a relaxed notion
of strategy in which measurements applied by distinct provers are allowed to
approximately commute: their commutator is bounded, in operator norm, by a
quantity that goes to zero with the level in the hierarchy.

In this abstract we describe our quantitative results, use them to motivate
the introduction of a sub-class MIP∗

ac of MIP∗ and prove non-trivial lower and
upper bounds on that class. We discuss the relevance of the study of MIP∗

ac for
that of MIP∗ and closely related results from the mathematical literature. We
refer to the full version for precise definitions as well as complete proofs of the
results announced here.

2 A Rounding Scheme for the QCSDP Hierarchy

Our main technical result is a rounding procedure for the QCSDP hierarchy
of semidefinite programs [NPA07,DLTW08]. The procedure maps any feasible
solution to the N-th level of the hierarchy to a set of measurement operators
for the provers that approximately commute. For simplicity we state and prove
our results for the case of a single round of interaction with two provers and
classical messages only. Extension to multiple provers is straightforward; we
expect generalizations to multiple rounds and quantum messages to be possible
but leave them for future work.

Definition 1. An (m, �) strategy for the provers specified by two sets of m POVMS
{Aa

x}1≤a≤� and {Bb
y}1≤b≤� with � outcomes each, where x, y ∈ {1, . . . , m}.

A strategy is said to be δ-AC if for every x, y, a and b, ‖Aa
xBb

y − Bb
y Aa

x‖ ≤ δ, where
‖ · ‖ denotes the operator norm.

Our results apply to the QCSDP hierarchy of semidefinite programs as
defined in [NPA07].

Theorem 1. Let G be a 2-prover one-round game with classical messages in which
each player has � possible answers, and ωN

QCSDP(G) the optimum of the N-th level of

the QCSDP hierarchy. Then there exists a δ = O(�2/
√

N) and a δ-AC strategy for
the provers with success probability ωN

QCSDP(G) in G.1

1 Due to the approximate commutation of the provers’ strategies the success probability
of δ-AC strategies may a priori depend on the order in which the measurement oper-
ators are applied. In our context the parameter δ will always be small enough that we
can neglect this effect. Moreover, for the particular kind of strategies constructed in
our rounding scheme the value will not be affected by the order.

Interactive Proofs with Approximately Commuting Provers 359

Our result is the first to derive the condition that the operator norm of com-
mutators is small. In contrast it is not hard to show that a feasible solution to
the first level of the hierarchy already gives rise to measurement operators that
exactly satisfy a commutation relation when evaluated on the state (corresponding
to the zeroth-order vector provided by the hierarchy). While the latter condi-
tion can be successfully exploited to give an exact rounding procedure from the
first level for the class of XOR games [CHTW04], and an approximate rounding
for the more general class of unique games [KRT10], we do not expect it to be
sufficient in general. In particular, even approximate tightness of the first level
of the hierarchy for three-player games would imply EXP = NEXP [Vid13].
We will furtherore show that the problem of optimizing over strategies which
approximately commute, to within sufficiently small error and in operator norm,
is NEXP-hard (see Section 3 for details).

The proof of Theorem 1 is constructive: starting from any feasible solution
to the N-th level of the QCSDP hierarchy we construct measurement operators
for the provers with pairwise commutators bounded by δ in operator norm, and
which achieve a value in the game that equals the objective value of the N-th
level SDP. Recall that this SDP has O(m�)N vector variables indexed by strings
of length at most N over the formal alphabet {Pa

x , Qb
y} containing a symbol

for each possible (question,answer) pair to any of the provers. Our main idea
is to introduce a “graded” variant of the construction in [NPA08] (which was
used to show convergence under the rank loop constraint). Rather informally,
the rounded measurement operators, {P̃a

x} for the first prover and {Q̃b
y} for the

second, can be defined as follows:

P̃a
x ≡ 1

N − 1

N−1

∑
i=1

Π≤iΠPa
x
Π≤i and Q̃b

y ≡ 1
N − 1

N−1

∑
j=1

Π≤jΠQb
y
Π≤j.

Here ΠPa
x

and ΠQb
y

are projectors as defined in [NPA08], i.e. as the projection

onto vectors associated with strings ending in the formal label Pa
x , Qb

y of the cor-
responding operator. The novelty is the introduction of the Π≤i, which project
onto the subspace spanned by all vectors associated with strings of length at
most i. Thus P̃a

x itself is not a projector, and it gives more weight to vectors
indexed by shorter strings.

The intuition behind this rounding scheme is as follows. The winning prob-
ability is unchanged because it is determined by the action of the measurement
operators on the subspace Im(Π≤1). On the other hand, the rounded opera-
tors approximately commute in the operator norm because the original opera-
tors commuted exactly on the subspace Im(Π≤N−1), and we have now shifted
the weight of the operators so that they are supported on that subspace. Fur-
thermore, while truncating the operators abruptly at level N − 1 (by conjugat-
ing by Π≤N−1 for example) could result in a large commutator, we perform a
“smooth” truncation across vectors indexed by strings of increasing length.

360 M. Coudron and T. Vidick

3 Interactive Proofs with Approximately Commuting Provers

Motivated by the rounding procedure ascertained in Theorem 1 we propose a
modification of the class MIP∗ in which the assumption that isolated provers
must perform perfectly commuting measurements is relaxed to a weaker con-
dition of approximately commuting measurements.

Definition 2. Let MIP∗
δ(k, c, s) be the class of promise problems (Lyes, Lno) that can

be decided by an interactive proof system in which the verifier exchanges a single round
of classical messages with k quantum provers P1, . . . , Pk and such that:

– If the input x ∈ Lyes then there exists a perfectly commuting strategy for the
provers that is accepted with probability at least c,

– If x ∈ Lno then any δ-AC strategy is accepted with probability at most s.

Note that the definition of MIP∗
δ requires the completeness property to be

satisfied with perfectly commuting provers; indeed we would find it artificial
to seek protocols for which optimal strategies in the “honest” case would be
required to depart from the commutation condition. Instead, only the sound-
ness condition is relaxed by giving more power to the provers, who are now
allowed to apply any “approximately commuting” strategy. The “approxi-
mately” is quantified by the parameter δ,2 and for any δ′ ≤ δ the inclusions
MIP∗

δ ⊆ MIP∗
δ′ ⊆ MIP∗ trivially hold. It is important to keep in mind that while

δ can be a function of the size of the protocol it must be independent of the
dimension of the provers’ operators, which is unrestricted.

δ-AC strategies were previously considered by Ozawa [Oza13] in connec-
tion with Tsirelson’s problem. Ozawa proposes a conjecture, the “Strong Kirch-
berg Conjecture (I)”, which if true implies the equality MIP∗ = ∪δ>0 MIP∗

δ . We
state and discuss the conjecture further as Conjecture 1 below. Unfortunately
the conjecture seems well beyond the reach of current techniques (Ozawa him-
self formulates doubts as to its validity). However, in our context less strin-
gent formulations of the conjecture would still imply conclusive results relating
MIP∗

δ to MIP∗; we discuss such variants in Section 4.
Further motivation for the definition of MIP∗

δ may be found by thinking
operationally — with e.g. cryptographic applications in mind, how does one
ascertain that “isolated” provers indeed apply commuting measurements? The
usual line of reasoning applies the laws of quantum mechanics and special rel-
ativity to derive the tensor product structure from space-time separation. How-
ever, not only is strict isolation virtually impossible to enforce in all but the
simplest experimental scenarios, but the implication “separation =⇒ tensor
product” may itself be subject to questioning — in particular it may not be a
testable prediction, at least not to precision that exceeds the number of measure-
ments, or observations, performed. Relaxations of the tensor product condition

2 As a first approximation the reader may think of δ as a parameter that is inverse
exponential in the input length |x|. In terms of games, this corresponds to δ being
inverse polynomial in the number of questions in the game, which is arguably the
most natural setting of parameters.

Interactive Proofs with Approximately Commuting Provers 361

have been previously considered in the context of device-independent cryp-
tography; for instance Silman et al. [SPM13] require that the joint measurement
performed by two isolated devices be close, in operator norm, to a tensor prod-
uct measurement. Our approximate commutation condition imposes a weaker
requirement, and thus our convergence results on the hierarchy also apply to
their setting; we discuss this in more detail in Section 4.2.

A computationally Tractable Class? Theorem 1 can be interpreted as evidence
that the hierarchy converges at a polynomial rate to the maximum success
probability for MIP∗

ac provers. More formally, it implies the inclusion MIP∗
δ ⊆

TIME(exp(exp(poly)/δ2)) for any δ > 0, thereby justifying our claim that the
class MIP∗

δ is tractable. This stands in stark contrast with MIP∗ = MIP∗
0, for

which no upper bound is known.
Having shown that the new class has “reasonable” complexity, it is natu-

ral to ask whether the additional power granted to the provers might actually
make the class trivial — could provers that are δ-AC be no more useful than a
single quantum prover, even for very small δ? We show this is not the case by
establishing the inclusion NEXP ⊆ MIP∗

2− poly(2, 1, 1 − 2− poly). This is a direct
analogue of the same lower bound for MIP∗ [IKM09], and is proven using the
same technique. We conjecture that the inclusion NEXP ⊆ MIP∗

2− poly(3, 1, 2/3)
also holds, and that this can be derived by a careful extension of the results
in [IV12,Vid13].

4 Discussion

Our introduction of MIP∗
ac is motivated by a desire to develop a framework

for the study of quantum multiprover interactive proof systems that is both
computationally tractable and relevant for typical applications of such proof
systems. Our main technical result, Theorem 1, demonstrates the first aspect. In
this section we discuss the relevance of the new model, its connection with the
standard definition of MIP∗, and possible applications to quantum information.

4.1 Commuting Approximants: Some Results, Limits, and Possibilities

While we believe MIP∗
ac is of interest in itself, we do not claim that approx-

imately commuting provers are more natural than commuting provers, or
provers in tensor product form; the main goal in introducing the new class
is to shed light on its thus-far-intractable parent MIP∗. In light of the results
from Section 2 the relationship between the two classes seems to hinge on the
general mathematical problem of finding exactly commuting approximants to
approximately commuting matrices.

Limits for Commuting Approximants. The main objection to the existence
of a positive answer for the “commuting approximants” question is revealed

362 M. Coudron and T. Vidick

by a beautiful construction of Voiculescu who exhibits a surprisingly simple
scenario in which commuting approximants provably do not exist [Voi83]. The
following is a direct consequence of Voiculescu’s result.

Theorem 2 (Voiculescu). For every d ∈ N there exists a pair of unitary matrices
U1, U2 ∈ Cd×d with ‖[U1, U2]‖ ≤ O(1

d), such that for any pair of complex matrices
A, B ∈ Cd×d satisfying [A, B] = 0, max(‖U1 − A‖, ‖U2 − B‖) = Ω(1).

In Voiculescu’s example U1 is a d-dimensional cyclic permutation matrix,
and U2 is a diagonal matrix whose eigenvalues are the dth roots of unity. The
proof draws on a connection to homology, in particular using a homotopy
invariant to establish the lower bound on distance to commuting approximants.
A succinct and elementary proof of the result is given by Exel and Loring
[EL89].

In the context of non-local entangled strategies one is most concerned with
Hermitian matrices representing measurements, rather than unitaries. How-
ever, as a consequence of Theorem 2 we see that if one considers the Hermitian

operators Mj
k = (−i)j

2 (Uk + (−1)jU†
k) (j ∈ {0, 1}) we have that ‖[Mj

1, Mj′
2]‖ ≤

O(1
d), and yet any exactly commuting set of matrices must be a constant dis-

tance away in the operator norm. Thus Theorem 2 rules out the strongest form
of a “commuting approximants” statement, which would ask for approximants
in the same space as the original matrices, and with a commutator bound that
does not depend on the dimension of the matrices.

Theorem 2 invites us to refine the “commuting approximants” question and
distinguish the ways in which it may avoid the counter-example.

Ozawa’s Conjecture. Motivated by the study of Tsirelson’s problem and the
relationship with Tsirelson’s conjecture, Ozawa [Oza13] introduces two equiv-
alent conjectures, the “Strong Kirchberg Conjecture (I)” and “Strong Kirch-
berg Conjecture (II)” respectively, which conjecture the existence of commuting
approximants to approximately commuting sets of POVM measurements and
unitaries respectively. The novelty of these conjectures, which allows them to
avoid the immediate pitfall given by Voiculescu’s example, is that Ozawa con-
siders approximants in a larger Hilbert space than the original approximately
commuting operators. Precisely, his Strong Kirchberg Conjecture (I) states the
following:

Conjecture 1 (Ozawa). Let m, � ≥ 2 be such that (m, �) �= (2, 2) 3. For every
κ > 0 there exists ε > 0 such that, if dim H < ∞ and (Pk

i), (Q
l
j) is a pair of

m projective �-outcome POVMs on H satisfying ‖[Pk
i , Ql

j]‖ ≤ ε, then there is a

finite-dimensional Hilbert space H̃ containing H and projective POVMs P̃k
i , Q̃l

j

3 The case (m, �) = (2, 2) is the only nontrivial setting for which we have some under-
standing. In particular nonlocal games with two inputs and two outputs per party
can be analyzed via an application of Jordan’s lemma [Mas05].

Interactive Proofs with Approximately Commuting Provers 363

on H̃ such that ‖[P̃k
i , Q̃l

j]‖ = 0 and ‖ΦH(P̃k
i)− Pk

i ‖ ≤ κ and ‖ΦH(Q̃l
j)− Ql

j‖ ≤ κ.
Here ΦH denotes the compression to H, defined by ΦH(M) ≡ PHMPH, where
PH is the projection onto H.

Ozawa gives an elegant proof of a variant of the conjecture that applies to
just two approximately commuting unitaries, thereby establishing that extend-
ing the Hilbert space can allow one to avoid the complications in Voiculescu’s
example. He also establishes that the conjecture is stronger than Kirchberg’s con-
jecture (itself equivalent to Tsirelson’s problem and Connes’ embedding conjec-
ture), casting doubt, if not on its validity, at least on its approachability.

Nevertheless, we can mention the following facts. First, Conjecture 1 implies
the equality MIP∗

ac = MIP∗; in fact it implies that MIP∗
δ = MIP∗ for small

enough δ, depending on how the parameter ε in Conjecture 1 depends on κ,
m and d. For this it suffices to verify that a state ρ optimal for a strategy based
on POVMs Pk

i and Ql
j in a given protocol can be lifted to a state ρ̃ on H̃ such

that the correlations exhibited by performing the POVMs P̃k
i , Q̃l

j on ρ̃ approx-

imately reproduce those generated by Pk
i , Ql

j on ρ; this is easily seen to be the
case provided κ is small enough.

Second, Conjecture 1 can be weakened in several ways without losing the
implication that MIP∗

ac = MIP∗. For instance, it is not necessary for the exactly
commuting P̃k

i , Q̃l
j to approximate the Pk

i , Ql
j in operator norm — in the context

of interactive games, only the correlations obtained by measuring a particular
state need to be preserved, and this does not in general imply an approximation
as strong as that promised in Conjecture 1.

Dimension Dependent Bounds. An alternative relaxation for the “commuting
approximants” question is to allow the approximation error to depend explic-
itly on the dimension of the matrices. A careful analysis of the rounding scheme
from Theorem 1 shows that it produces d-dimensional POVM elements with
an O(1/

√
log(d)) bound on the commutators (this is because the dimension

of the subspace Im(Π≤N−1) is exponential in N). Unfortunately, Voiculescu’s
result (Theorem 2) shows that one can only hope for good approximants in
the operator norm if the commutator bound is o(1/d). It remains instructive
to find any explicit existence result for commuting approximants in the general
case, regardless of dimension dependence. Concretely, we conjecture that Con-
jecture 1 may be true with a parameter κ that scales with the dimension d of the
operators {Pk

i , Ql
j} as κ = εc poly(d)(ml)2

for some constant 0 < c ≤ 1.

An Alternative Norm. Another relaxation of the “commuting approximants”
question, which would be sufficient to imply MIP∗

ac = MIP∗, is to allow for
any set of commuting approximants which approximately preserves the win-
ning probability of the game. For concreteness we include a precise version of
a possible statement along these lines:

364 M. Coudron and T. Vidick

Conjecture 2. There exists a function f (ε, k) : R+ × N → R+ satisfying
limε→0 f (ε, k) = 0 for all k ∈ N, such that for every game G and (m, �) strategy
(Aa

x, Bb
y, ρ)which is δ-AC, there exists a 0-AC strategy (Ãa

x, B̃b
y, ρ) for G satisfying

∣∣∣ω∗(((Aa
x, Bb

y, ρ); G
) − ω∗((Ãa

x, B̃b
y, ρ); G

)∣∣∣ ≤ f (δ, m�).

4.2 Device-Independent Randomness Expansion and Weak Cross-Talk

A device-independent randomness expansion (DIRE) protocol is a protocol
which may be used by a classical verifier to certify that a pair of untrusted
devices are producing true randomness. Under the sole assumptions that the
devices do not communicate with each other, and that the verifier has access
to a small initial seed of uniform randomness, the protocol allows for the gen-
eration of much larger quantities of certifiably uniform random bits; hence the
term “randomness expansion”. This conclusion relies only on the assumption
that the two devices do not communicate, and in particular does not require
any limit on the computational power of the devices, as is typically the case in
the study of pseudorandomness. The precise formalization of DIRE protocols is
rather involved, and we direct the interested reader to the flourishing collection
of works on the topic [CK11,PAM10,MS14].

Our definition of MIP∗
ac is directly relevant to the notion of devices with weak

cross-talk introduced in [SPM13] as a model which relaxes the assumption that
the devices must not communicate, leading to protocols that are more robust to
leakage than the traditional model of device-independence. [SPM13] proposes
the use of the QCSDP hierarchy in order to optimize over the set of “weakly
interacting” quantum strategies that they introduce, but no bounds are shown
on the rate of convergence. This is where MIP∗

ac becomes relevant. Our notion of
δ-AC strategies is easily seen to be a relaxation of weak cross-talk, and thus the
analogue of the approach in [SPM13] when performed with a δ-AC constraint
is at least as robust as the weak cross-talk approach. Our rounding scheme for
the QCSDP hierarchy thus provides a specific algorithm and complexity bound
that applies to both δ-AC strategies and strategies with weak cross-talk.

References

[ALM+98] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verifica-
tion and the hardness of approximation problems. J. ACM 45(3), 501–555
(1998)

[Ara02] Aravind, P.K.: The magic squares and Bell’s theorem. Technical report
(2002 arXiv:quant-ph/0206070

[AS98] Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization
of NP. J. ACM 45(1), 70–122 (1998)

[Bel64] John, S.: Bell. On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200
(1964)

[BFL91] Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has
two-prover interactive protocols. Comput. Complexity 1, 3–40 (1991)

http://arxiv.org/abs/quant-ph/0206070

Interactive Proofs with Approximately Commuting Provers 365

[BOGKW88] Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interac-
tive proofs: How to remove intractability assumptions. In: Proceedings of
the 20th Annual ACM Symposium on Theory of Computing (STOC), pp.
113–131 (1988)

[BSS14] Bancal, J.-D., Sheridan, L., Scarani, V.: More randomness from the same
data. New Journal of Physics 16(3), 033011 (2014)

[CHSH69] Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment
to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

[CHTW04] Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of non-
local strategies. In: Proc. 19th IEEE Conf. on Computational Complexity
(CCC 2004), pp. 236–249. IEEE Computer Society (2004)

[CK11] Colbeck, R., Kent, A.: Private randomness expansion with untrusted
devices. Journal of Physics A: Mathematical and ..., 1–11 (2011)

[Con76] Connes, A.: Classification of injective factors cases ii1, ii∞, iiiλ, λ �= 1.
Annals of Mathematics 104(1), 73–115 (1976)

[DLTW08] Doherty, A.C., Liang, Y-C., Toner, B., Wehner, S.: The quantum moment
problem and bounds on entangled multi-prover games. In: Proc. 23rd
IEEE Conf. on Computational Complexity (CCC 2008), pp. 199–210 (2008)

[EL89] Exel, R., Loring, T.: Almost commuting unitary matrices. In: Proceedings
of the American Mathematical Society 106(4), 913–915 (1989)

[EPR35] Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical descrip-
tion of physical reality be considered complete? Physical Review 47, 777–
780 (1935)

[FGL+96] Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive
proofs and the hardness of approximating cliques. J. ACM 43(2), 268–292
(1996)

[IKM09] Ito, T., Kobayashi, H., Matsumoto, K.: Oracularization and two-prover
one-round interactive proofs against nonlocal strategies. In: Proc. 24th
IEEE Conf. on Computational Complexity (CCC 2009), pp. 217–228. IEEE
Computer Society (2009)

[IV12] Ito, T., Vidick, T., A multi-prover interactive proof for NEXP sound against
entangled provers. In: Proc. 53rd FOCS, pp. 243–252 (2012)

[JNP+11] Junge, M., Navascues, M., Palazuelos, C., Perez-Garcia, D., Scholz, V.B.,
Werner, R.F.: Connes’ embedding problem and tsirelson’s problem. J.
Math. Physics 52(1) (2011)

[Kir93] Kirchberg, E.: On non-semisplit extensions, tensor products and exactness
of group C∗-algebras. Inventiones mathematicae 112(1), 449–489 (1993)

[KM03] Kobayashi, H., Matsumoto, K.: Quantum multi-prover interactive proof
systems with limited prior entanglement. Journal of Computer and Sys-
tem Sciences 66(3), 429–450 (2003)

[KRT10] Kempe, J., Regev, O., Toner, B.: Unique games with entangled provers are
easy. SIAM J. Comput. 39(7), 3207–3229 (2010)

[Lau03] Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and
Lasserre relaxations for 0–1 Programming. Mathematics of Operations
Research 28(3), 470–496 (2003)

[Mas05] Ll. Masanes. Extremal quantum correlations for n parties with
two dichotomic observables per site. Technical report (2005).
arXiv:quant-ph/0512100

[MS14] Miller, C.A., Shi, Y.: Robust protocols for securely expanding randomness
and distributing keys using untrusted quantum devices. In: Proc. 46th
STOC. ACM New York (2014)

http://arxiv.org/abs/quant-ph/0512100

366 M. Coudron and T. Vidick

[NPA07] Navascués, M., Pironio, S., Acı́n, A.: Bounding the set of quantum correla-
tions. Phys. Rev. Lett. 98, 010401 (2007)

[NPA08] Navascués, M., Pironio, S., Acı́n, A.: A convergent hierarchy of semidefi-
nite programs characterizing the set of quantum correlations. New Journal
of Physics, 10(073013) (2008)

[Oza13] Ozawa, N.: Tsirelson’s problem and asymptotically commuting unitary
matrices. Journal of Mathematical Physics 54(3) (2013)

[PAM10] Pironio, S., Acı́n, A., Massar, S.: Random numbers certified by Bell’s theo-
rem. Nature, 1–26 (2010)

[PV10] Pál, K.F., Vértesi, T.: Maximal violation of a bipartite three-setting, two-
outcome Bell inequality using infinite-dimensional quantum systems.
Phys. Rev. A 82, 022116 (2010)

[SPM13] Silman, J., Pironio, S., Massar, S.: Device-independent randomness gener-
ation in the presence of weak cross-talk. Phys. Rev. Lett. 110, 100504 (2013)

[SW08] Scholz, V.B., Werner, R.F.: Tsirelson’s problem. Technical report (2008).
arXiv:0812.4305v1 [math-ph]

[Vid13] Vidick, T.: Three-player entangled XOR games are NP-hard to approxi-
mate. In: Proc. 54th FOCS (2013)

[Voi83] Voiculescu, D.: Asymptotically commuting finite rank unitary operators
without commuting approximants. Acta Sci. Math. (Szeged) 45, 429–431
(1983)

[YVB+14] Yang, T.H., Vertesi, T., Bancal, J-D., Scarani, V., Navascues, M.: Robust
and Versatile Black-Box Certification of Quantum Devices. Phys. Rev. Lett.
113(4), (July 22, 2014)

http://arxiv.org/abs/0812.4305v1

Popular Matchings with Two-Sided Preferences
and One-Sided Ties

Ágnes Cseh1(B), Chien-Chung Huang2(B), and Telikepalli Kavitha3(B)

1 TU Berlin, Berlin, Germany
cseh@math.tu-berlin.de

2 Chalmers University, Göteborg, Sweden
huangch@chalmers.se

3 Tata Institute of Fundamental Research, Mumbai, India
kavitha@tcs.tifr.res.in

Abstract. We are given a bipartite graph G = (A ∪ B,E) where each
vertex has a preference list ranking its neighbors: in particular, every
a ∈ A ranks its neighbors in a strict order of preference, whereas the
preference lists of b ∈ B may contain ties. A matching M is popular if
there is no matching M ′ such that the number of vertices that prefer
M ′ to M exceeds the number that prefer M to M ′. We show that the
problem of deciding whether G admits a popular matching or not is
NP-hard. This is the case even when every b ∈ B either has a strict
preference list or puts all its neighbors into a single tie. In contrast, we
show that the problem becomes polynomially solvable in the case when
each b ∈ B puts all its neighbors into a single tie. That is, all neighbors of
b are tied in b’s list and and b desires to be matched to any of them. Our
main result is an O(n2) algorithm (where n = |A ∪ B|) for the popular
matching problem in this model. Note that this model is quite different
from the model where vertices in B have no preferences and do not care
whether they are matched or not.

1 Introduction

We are given a bipartite graph G = (A ∪ B,E) where the vertices in A are
called applicants and the vertices in B are called posts, and each vertex has a
preference list ranking its neighbors in an order of preference. Here we assume
that vertices in A have strict preferences while vertices in B are allowed to have
ties in their preference lists. Thus each applicant ranks all posts that she finds
interesting in a strict order of preference, while each post need not come up
with a total order on all interested applicants – here applicants may get grouped
together in terms of their suitability, thus equally competent applicants are tied
together at the same rank.

Our goal is to compute a popular matching in G. The definition of popularity
uses the notion of each vertex casting a “vote” for one matching versus another.

Á. Cseh—Work done while visiting TIFR, supported by the Deutsche Telekom
Stiftung.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 367–379, 2015.
DOI: 10.1007/978-3-662-47672-7 30

368 Á. Cseh et al.

A vertex v prefers matching M to matching M ′ if either v is unmatched in M ′

and matched in M or v is matched in both matchings and M(v) (v’s partner
in M) is ranked better than M ′(v) in v’s preference list. In an election between
matchings M and M ′, each vertex v votes for the matching that it prefers or it
abstains from voting if M and M ′ are equally preferable to v. Let φ(M,M ′) be
the number of vertices that vote for M in an election between M and M ′.

Definition 1. A matching M is popular if φ(M,M ′) ≥ φ(M ′,M) for every
matching M ′.

If φ(M ′,M) > φ(M,M ′), then we say M ′ is more popular than M and denote
it by M ′ � M ; else M � M ′. Observe that popular matchings need not always
exist. Consider an instance where A = {a1, a2, a3} and B = {b1, b2, b3} and for
i = 1, 2, 3, each ai has the same preference list which is b1 followed by b2 followed
by b3 while each bi ranks a1, a2, a3 the same, i.e. a1, a2, a3 are tied together in bi’s
preference list. It is easy to see that for any matching M here, there is another
matching M ′ such that M ′ � M , thus this instance admits no popular matching.

The popular matching problem is to determine if a given instance G = (A ∪
B,E) admits a popular matching or not, and if so, to compute one. This problem
has been studied in the following two models.

• 1-sided model: here it is only vertices in A that have preferences and cast
votes; vertices in B are objects with no preferences or votes.

• 2-sided model: vertices on both sides have preferences and cast votes.

Popular matchings need not always exist in the 1-sided model and the prob-
lem of whether a given instance admits one or not can be solved efficiently using
the characterization and algorithm from [1]. In the 2-sided model when all prefer-
ence lists are strict, it can be shown that any stable matching is popular [3]; thus a
popular matching can be found in linear time using the Gale-Shapley algorithm.
However when ties are allowed in preference lists on both sides, Biró, Irving, and
Manlove [3] showed that the popular matching problem is NP-complete. In this
paper we focus on the following variant:

∗ it is only vertices in A that have preference lists ranking their neighbors,
however vertices on both sides cast votes.

That is, vertices in B have no preference lists ranking their neighbors – how-
ever b desires to be matched to any of its neighbors. Thus in an election between
two matchings, b abstains from voting if it is matched in both or unmatched
in both, else it votes for the matching where it is matched. An intuitive under-
standing of such an instance is that A is a set of applicants and B is a set of tasks
– while each applicant has a preference list over the tasks that she is interested
in, each task just cares to be assigned to anyone who is interested in performing
it. We will see in Section 2 that the above problem is significantly different from
the popular matching problem in the 1-sided model where vertices in B do not
cast votes. We show the following results here, complementing our polynomial
time algorithm in Theorem 1 with our hardness result in Theorem 2.

Popular Matchings with Two-Sided Preferences and One-Sided Ties 369

Theorem 1. Given a bipartite graph G = (A ∪ B,E) where each a ∈ A has a
strict preference list over its neighbors while each b ∈ B puts all its neighbors
into a single tie, the popular matching problem in G can be solved in O(n2) time,
where |A ∪ B| = n.

Theorem 2. The popular matching problem is NP-complete in G = (A ∪ B,E)
where each a ∈ A has a strict preference list while each b ∈ B either has a strict
preference list or puts all its neighbors into a single tie.

Note that our NP-hardness reduction needs B to have Ω(|B|) vertices with
strict preference lists and Ω(|B|) vertices with single ties as their preference
lists. Theorem 2 follows from a simple reduction from the (2,2)-e3-sat problem
which is NP-complete [2]. Our reduction shows that the 2-sided popular matching
problem in G = (A∪B,E) where every vertex in A has a strict preference list of
length 2 or 4 and every vertex in B has either a strict preference list of length 2
or a single tie of length 2 or 3 as a preference list is NP-complete.

We show Theorem 1 by partitioning the set B into three sets: the first set
X is a subset of top posts and, roughly speaking, the second set Y consists of
mid-level posts, and the third set Z consists of unwanted posts (see Figure 1).
Applicants get divided into two sets: the set of those with one or more neighbors
in the set Z (call this set nbr(Z)) and the rest (this set is A \ nbr(Z)).

Our algorithm performs the partition of B into X,Y , and Z over several
iterations. Initially X = F , where F is the set of top posts, Y = B \ F , and
Z = ∅. In each iteration, certain top posts get demoted from X to Y and certain
non-top posts get demoted from Y to Z. With new posts entering Z, we also
have applicants moving from A \nbr(Z) to nbr(Z). Using the partition 〈X,Y,Z〉
of B, we will build a graph H where each applicant keeps at most two edges:
either to its most preferred post in X and also in Y or to its most preferred post
in Z and also in Y . Some dummy posts may be included in Y .

We prove that G admits a popular matching if and only if H admits an
A-complete matching, i.e., one that matches all vertices in A. We show that
corresponding to any popular matching in G, there is a partition 〈L1, L2, L3〉
of B into top posts, mid-level posts, and unwanted posts such that X ⊇ L1 and
Z ⊆ L3, where 〈X,Y,Z〉 is the partition computed by our algorithm. This allows
us to show that if H does not admit an A-complete matching, then G has no
popular matching. In fact, not every popular matching in G becomes an A-
complete matching in H. However it will be the case that if G admits popular
matchings, then at least one of them becomes an A-complete matching in H.

Background. Popular matchings have been well-studied in the 1-sided model
[1,9–15] where only vertices of A have preferences and cast votes. Abraham et
al. [1] gave polynomial time algorithms to determine if a given instance admits
a popular matching or not – their algorithm also works when preference lists of
vertices in A admit ties. Gärdenfors [5], who introduced the notion of popular
matchings, considered this problem in the domain of 2-sided preference lists. In
any instance G = (A∪B,E) with 2-sided strict preference lists, a stable matching

370 Á. Cseh et al.

is actually a minimum size popular matching and polynomial algorithms for
computing a maximum size popular matching were given in [7,8].
Organization of the Paper. Section 2 has preliminaries, Section 3 has our
algorithm and our proof of correctness. Due to the space constraints, certain
proofs (incl. the proof of Theorem 2) have been omitted from this version of the
paper. These proofs will be included in the full version of the paper.

2 Preliminaries

For any a ∈ A, let f(a) denote a’s most desired post. Let F = {f(a) : a ∈ A} be
the set of top posts. We will refer to posts in F as f -posts and to those in B\F as
non-f -posts. For any a ∈ A, let ra be the rank of a’s most preferred non-f -post
in a’s preference list; when all of a’s neighbors are in F , we set ra = ∞. The
following theorem characterizes popular matchings in the 1-sided voting model.

Theorem 3 (from [1]). Let G = (A ∪ B,E) be an instance of the 1-sided
popular matching problem, where each a ∈ A has a strict preference list. Let M
be any matching in G. M is popular if and only if the following two properties
are satisfied:

(i) M matches every b ∈ F to some applicant a such that b = f(a);
(ii) M matches each applicant a to either f(a) or its neighbor of rank ra.

Thus the only applicants that may be left unmatched in a popular matching
here are those a ∈ A that satisfy ra = ∞.

Let us consider the following example where A = {a1, a2, a3} and B =
{b1, b2, b3}: both a1 and a2 have the same preference list which is b1 > b2 (b1
followed by b2) while a3’s preference list is b1 > b2 > b3. Assume first that only
applicants cast votes. The only posts that any of a1, a2, a3 can be matched to
in a popular matching here are b1 and b2. As there are three applicants and
only two possible partners in a popular matching, there is no popular match-
ing here. However in our 2-sided voting model, where posts also care about
being matched and all neighbors are in a single tie, we have a popular match-
ing {(a1, b1), (a2, b2), (a3, b3)}. Note that b3 is ranked third in a3’s preference
list, which is worse than ra3 = 2, however such edges are permitted in popular
matchings in our 2-sided model.

Consider the following example: A = {a0, a1, a2, a3} and B = {b0, b1, b2, b3};
both a1 and a2 have the same preference list which is b1 > b2 while a3’s preference
list is b1 > b0 > b2 and a0’s preference list is b0 > b3. There is again no popular
matching here in the 1-sided model, however in our 2-sided voting model, we
have a popular matching {(a0, b3), (a1, b1), (a2, b2), (a3, b0)}. Note that b0 ∈ F
and here it is matched to a3 and f(a3) �= b0; also a3 is matched to its second
ranked post: this is neither its top post nor its ra3 -th ranked post (ra3 = 3 here).

Thus popular matchings in our 2-sided voting model are quite different from
the characterization given in Theorem 3 for popular matchings in the 1-sided
model. Our algorithm (presented in Section 3) uses the following decomposition.

Popular Matchings with Two-Sided Preferences and One-Sided Ties 371

Dulmage-Mendelsohn Decomposition [4]. Let M be a maximum matching in a
bipartite graph G = (A∪B,E). Using M , we can partition A∪B into three dis-
joint sets: a vertex v is even (similarly, odd) if there is an even (resp., odd) length
alternating path (with respect to M) from an unmatched vertex to v. Similarly,
a vertex v is unreachable if there is no alternating path from an unmatched
vertex to v. Denote by E , O, and U the sets of even, odd, and unreachable ver-
tices, respectively. The following properties (proved in [6]) will be used in our
algorithm and analysis.

• E , O, and U are pairwise disjoint. Let M ′ be any maximum matching in G
and let E ′, O′, and U ′ be the sets of even, odd, and unreachable vertices with
respect to M ′, respectively. Then E = E ′, O = O′, and U = U ′.

• Every maximum matching M matches all vertices in O ∪ U and has size
|O| + |U|/2. In M , every vertex in O is matched with some vertex in E , and
every vertex in U is matched with another vertex in U .

• The graph G has no edge in E × (E ∪ U).

3 Finding Popular Matchings in a 2-sided Voting Model

The input is G = (A ∪ B,E) where each applicant a ∈ A has a strict preference
list while each post b ∈ B has a single tie as its preference list. Our algorithm
below builds a graph H using a partition 〈X,Y,Z〉 of B that is constructed in
an iterative manner. Initialize X = F , Y = B \ F , and Z = ∅.

For any a ∈ A, recall that ra is the rank of a’s most preferred non-f -post.
For any U ⊆ B, let nbr(U) (similarly, nbrH(U)) denote the set of neighbors
in G (resp., in H) of the vertices in U . Note that our algorithm will maintain
nbrH(X) ∩ nbr(Z) = ∅ by ensuring that nbrH(X) ⊆ A \ nbr(Z).

(I) While true do
0. H is the empty graph on A ∪ B.
1. For each a ∈ A \ nbr(Z) do:

– if f(a) ∈ X then add the edge (a, f(a)) to H.
2. For every b ∈ X that is isolated in H do:

– delete b from X and add b to Y .
3. For each a ∈ A do:

– let b be a’s most preferred post in the set Y ; if the rank of b in a’s
preference list is ≤ ra (i.e., ra or better), then add (a, b) to H.

4. Consider the graph H constructed in steps 1-3. Compute a maximum
matching in H. [This is to identify “even” posts in H.]

– If there exist even posts in Y then delete all even posts from Y
and add them to Z.

– Else quit the While-loop.
(II) Every a ∈ nbr(Z) adds the edge (a, b) to H where b is a’s most preferred

post in the set Z.
(III) Add all posts in D = {�(a) : a ∈ A and ra = ∞} to Y , where �(a) is the

dummy last resort post of applicant a. For every applicant a such that
nbr({a}) ⊆ X, add the edge (a, �(a)) to H.

372 Á. Cseh et al.

Note that if a matching M includes the edge (a, �(a)), it means a is unmatched
in M . The condition for exiting the While-loop ensures that all posts in Y , and
hence all in X ∪ Y , are odd/unreachable in the subgraph of H with the set of
posts restricted to real posts in X ∪ Y (i.e., the non-dummy ones). So starting
with a maximum matching in this subgraph and augmenting it after adding the
edges on posts in Z in Step (II) and the edges on dummy posts in Step (III),
we get a maximum matching in H that matches all real posts in X ∪ Y . After
the construction of H, our algorithm for the popular matching problem in G is
given below.

• If H admits an A-complete matching, then return one that matches all real
posts in X ∪ Y ; else output “G has no popular matching”.

Fig. 1. The set B gets partitioned into X,Y , and Z. We have nbrH(X) ∩ nbr(Z) =
∅. In the figure on the right, the horizontal edges belong to M . Only the edges of
(M(Y) × X) ∪ (M(Z) × (X ∪ Y)) can be labeled +1.

In the rest of this section, we prove the following theorem.

Theorem 4. G admits a popular matching if and only if H admits an A-
complete matching, i.e., one that matches all vertices in A.

The Sufficient Part. We first show that if H admits an A-complete matching,
then G admits a popular matching. We have already observed that if H admits

Popular Matchings with Two-Sided Preferences and One-Sided Ties 373

an A-complete matching, then H has an A-complete matching that matches all
real posts in X ∪ Y . Call this matching M ; other than the dummy last resort
posts, all posts that are unmatched in M have to be in Z.

A useful observation is that Z ⊆ B \ F . This is because in Step 4 of the
While-loop in our algorithm, all f -posts in Y are odd/unreachable in H as they
are the only neighbors in H of applicants who regard them as f -posts.

We now assign edge labels in {±1} to all edges in G\M : for an edge (a, b) in
G \ M , if a prefers b to M(a), then we label this edge +1, else we label this −1.
The label of (a, b) is basically a’s vote for b vs M(a). Figure 1 is helpful here.

For any U ∈ {X,Y,Z}, let M(U) ⊆ A be the set of applicants matched in
M to posts in U . The following lemma is important.

Lemma 1. Every edge of G in M(X) × Y is labeled −1; similarly, every edge
in M(Y) × Z is labeled −1. Any edge labeled +1 has to be either in M(Y) × X
or in M(Z) × (X ∪ Y).

Proof. Every edge of nbr(X) × X that is present in H is a top ranked edge.
Since M belongs to H, the edges of M from nbr(X) × X are top ranked edges.
Thus it is clear that every edge of G in M(X) × Y is labeled −1. Regarding
M(Y) × Z, every edge of nbr(Y) × Y that is present in the graph H is an edge
(a, b) where the rank of b in a’s preference list is ≤ ra (i.e., ra or better); on the
other hand, every edge of nbr(Z) × Z that is present in the graph H is an edge
(a, b′) where the rank of b′ in a’s preference list is ≥ ra (because b′ ∈ B \ F).
Since M belongs to H, the edges of M from nbr(Y) × Y are ranked better than
edges of nbr(Z) × Z. Thus every edge of G in M(Y) × Z is labeled −1.

We now show that any edge labeled +1 has to be in either M(Y) × X or
M(Z)×(X∪Y) (see Figure 1). Consider any edge (a, b) /∈ M such that b ∈ U and
a ∈ M(U), where U ∈ {X,Y,Z}. It follows from the construction of the graph
H that a vertex in nbr(U) can be adjacent in H to only its most preferred post
in U . Thus any edge (a, b) /∈ M where b ∈ U and a ∈ M(U) is ranked −1. We
have already seen that all edges in M(X) × Y and in M(Y) × Z are labeled −1.
There are no edges in M(X) × Z since M(X) ⊆ A \ nbr(Z). Thus any edge
labeled +1 has to be in either M(Y) × X or M(Z) × (X ∪ Y). ��

Let M ′ be any matching in G. The symmetric difference of M ′ and M is
denoted by M ′ ⊕ M : this consists of alternating paths and alternating cycles
– note that edges here alternate between M and M ′. It will be convenient to
assume that last resort posts are used only in M and not in M ′. The claim that
M � M ′ follows easily from Lemma 2. This proves the popularity of M .

Lemma 2. Consider M ′ ⊕ M . The following three properties hold:

(i) in any alternating cycle in M ′⊕M , the number of edges that are labeled −1
is at least the number of edges that are labeled +1.

(ii) in any alternating path in M ′ ⊕M , the number of edges that are labeled +1
is at most two plus the number of edges that are labeled −1; in case one
of the endpoints of this path is a last resort post, then the number of edges
labeled +1 is at most one plus the number of edges labeled −1.

374 Á. Cseh et al.

(iii) in any even length alternating path in M ′ ⊕ M , the number of edges that
are labeled −1 is at least the number of edges that are labeled +1; in case
one of the endpoints of this path is a last resort post, then the number of
edges labeled −1 is at least one plus the number of edges labeled +1.

The Necessary Part. We now show the other side of Theorem 4. That is, if
G admits a popular matching, then H admits an A-complete matching. Let M∗

be a popular matching in G. Lemma 3 will be useful to us.

Lemma 3. If (a, b) ∈ M∗ and b ∈ F , then b has rank better than ra in a’s
preference list.

Label the edges of G\M∗ by +1 or −1: the label of an edge (a, b) in G\M∗ is
the vote of a for b vs M∗(a). In case a is not matched in M∗, then vote(a, b) = +1
for any neighbor b of a. Due to the popularity of M∗, the following two properties
hold on these edge labels (otherwise M∗ ⊕ ρ � M∗).

(∗) there is no alternating path ρ such that the edge labels in ρ \ M∗ are
〈+1,+1,+1, · · · 〉, i.e., no three consecutive non-matching edges labeled +1.

(∗∗) there is no alternating path ρ where the edge labels in ρ \ M∗ are
〈+1,+1,−1, +1,+1, · · · 〉.

From the matching M∗ and the edge labels on G \ M∗, we partition B into
L1 ∪ L2 ∪ L3 as follows. This partition uses property (∗) in a crucial way.

0. Initialize L1 = L2 = ∅ and L3 = {b ∈ B : b is unmatched in M∗}. We now
add more posts to the sets L1, L2, L3 as described below.

1. Any alternating path with respect to M∗ can have at most two consecutive
non-matching edges that are labeled +1. For each length-5 alternating path
ρ = a0-b0-a1-b1-a2-b2 where (a0, b0), (a1, b1), (a2, b2) ∈ M∗ and both (a1, b0)
and (a2, b1) are marked +1, add bi−1 to Li, for i = 1, 2, 3.

2. Now consider those b ∈ B that are matched in M∗ but b is not a part of any
length-5 alternating path where both the non-matching edges are labeled +1.
We repeat the following two steps till there are no more posts to be added
to either L2 or L3 via these rules:

– suppose M∗(b) has no +1 edge incident on it: if M∗(b) ∈ nbr(L3), then
add b to L2.

– if M∗(b) has a +1 edge to a vertex in L2, then add b to L3.
3. For each b such that M∗(b) has no +1 edge incident on it:

– if M∗(b) /∈ nbr(L3), then add b to L1.
4. For each b not yet in L2 ∪ L3 and M∗(b) has a +1 edge to a vertex in L1:

– add b to L2.

Lemma 4. The above partition 〈L1, L2, L3〉 satisfies the following properties:

(1) F ⊆ L1 ∪ L2, where F is the set of top posts.
(2) M∗(L1) ∩ nbr(L3) = ∅.

Popular Matchings with Two-Sided Preferences and One-Sided Ties 375

We will use the partition 〈L1, L2, L3〉 of B to build the following subgraph
G′ = (A ∪ B,E′) of G. For each a ∈ A, include the following edges in E′:

(i) if a /∈ nbr(L3), then add the edge (a, f(a)) to E′.
(ii) if a has a neighbor of rank ≤ ra in L2, then add the edge (a, b) to E′, where

b is a’s most preferred neighbor in L2.
(iii) if a ∈ nbr(L3), then add the edge (a, b) to E′, where b is a’s most preferred

neighbor in L3.

Lemma 5. Every edge of the matching M∗ belongs to the graph G′.

Proof. The set B has been partitioned into L1 ∪L2 ∪L3. We will now show that
for each post b0 that is matched in M∗, the edge (M∗(b0), b0) belongs to G′.
– Case 1. The post b0 ∈ L1. Hence there is no +1 edge incident on a0 = M∗(b0),
in other words, b0 = f(a0). Lemma 4.2 tells us that M∗(L1)∩nbr(L3) = ∅; hence
a0 has no neighbor in L3 and by rule (i) above, the edge (a0, f(a0)) = (a0, b0)
belongs to the edge set of G′.
– Case 2. Next we consider the case when b0 ∈ L2. It is easy to see that b0
has to be a0’s most preferred post in L2, where a0 = M∗(b0). Otherwise there
would have been an edge (a0, b1) labeled +1 with b1 ∈ L2, where b1 is a0’s most
preferred post in L2. Then either b1 ∈ L1 or b0 ∈ L3 (from how we construct
the sets L1, L2, L3), a contradiction. We now have to show that the rank of b0
in a0’s preference list is ≤ ra, otherwise the edge (a0, b0) does not belong to G′.

Suppose b0 ∈ F . Since the edge (a0, b0) ∈ M∗, which is a popular matching,
it follows from Lemma 3 that b0 is ranked better than ra0 in a0’s preference list;
thus the edge (a0, b0) would belong to G′. So the case left is when b0 /∈ F . If b0
is not a0’s most preferred post outside F , then there is the length-5 alternating
path ρ = b0-a0-b1-a1-f(a1)-M∗(f(a1)), where b1 is the most preferred post of a0

outside F and a1 = M∗(b1). The alternating path ρ has two consecutive non-
matching edges (a0, b1) and (a1, f(a1)) that are labeled +1. This contradicts the
presence of b0 in L2 as such a post would have to be in L3. Thus if b0 /∈ F ,
then b0 has to be a0’s most preferred post outside F , i.e. b0 has rank ra0 in a0’s
preference list.
– Case 3. We finally consider the case when the post b0 ∈ L3. We need to show
that b0 is the most preferred post of a0 = M∗(b0) in L3. Suppose not. Let b1 be
a0’s most preferred post in L3. Since b1 ∈ L3 while F ∩ L3 = ∅ (by Lemma 4.1),
we know that there is an edge labeled +1 incident on a1 = M∗(b1). Let this
edge be (a1, b2) and let a2 be M∗(b2). So there is a length-5 alternating path
p = b0-a0-b1-a1-b2-a2 where both the non-matching edges (a0, b1) and (a1, b2)
are labeled +1. This contradicts the presence of b1 in L3 as such a post would
have to be in L2. Thus b0 is a0’s most preferred post in L3. ��

The following lemma shows the relationship between the partition 〈L1, L2, L3〉
and the partition 〈X,Y,Z〉 constructed by our algorithm earlier.

Lemma 6. The set X ⊇ L1 and the set Z ⊆ L3, where X and Z are the sets
in the partition 〈X,Y,Z〉 constructed by our algorithm that builds the graph H.

376 Á. Cseh et al.

The matching M∗ need not be A-complete. However it would help us to
assume that M∗ is A-complete, so we augment M∗ by adding (a, �(a)) edges for
every a ∈ A that is unmatched in M∗. Recall that �(a) is the dummy last resort
post of a. However the augmented matching M∗ need not belong to the graph
G′ any longer – hence we augment G′ also by adding some dummy vertices and
some edges as described below.

The augmentation of G′ is analogous to Step (III) of our algorithm – we
augment G′ as follows: let L2 = L2 ∪ D, where D = {�(a) : a ∈ A and ra = ∞};
if nbr({a}) ⊆ L1, then add (a, �(a)) to G′. Thus when compared to G′, the
augmented G′ has some new vertices (all these are dummy last resort posts) and
some new edges – each new edge is of the form (a, �(a)) where �(a) is a’s only
neighbor in L2 ∪ L3. These new edges are enough to show the following lemma.

Lemma 7. The augmented matching M∗ belongs to the augmented graph G′.

Since the augmented M∗ is an A-complete matching, it follows from Lemma 7
that the augmented graph G′ admits an A-complete matching. Theorem 5 uses
Lemma 6 to show that if the augmented graph G′ admits an A-complete match-
ing, then so does the graph H constructed by our algorithm.

Theorem 5. If H does not admit an A-complete matching, then the augmented
graph G′ cannot admit an A-complete matching.

Proof. We will use G′ to refer to the augmented graph G′ in this proof. The rules
for adding edges in H and in G′ are exactly the same – the only difference is
in the partition 〈X,Y,Z〉 on which H is based vs the partition 〈L1, L2, L3〉 on
which G′ is based. If 〈X,Y,Z〉 = 〈L1, L2, L3〉, then the graphs H and G′ are
exactly the same.

Refer to Figure 2. This denotes how the partition 〈X,Y,Z〉 can be modified
to the partition 〈L1, L2, L3〉. We know from Lemma 6 that X ⊇ L1 and Z ⊆ L3.
Consider the subgraph G′

0 of G′ induced on the vertex set A′ = (A \ nbr(Z)) ∪
(nbr(Z) ∩ nbrH(L3 \ Z)) and B′ = X ∪ Y . This is the part bounded by the box
in Figure 2. In our analysis, we can essentially separate G′ into G′

0 and the part
outside G′

0 due to the following claim that says G′ has no edges between A′

and Z.

Claim 1. G′ has no edge (a, b) where a ∈ A′ and b ∈ Z.

Proof. Any applicant a ∈ A′ has to belong to either A \ nbr(Z) or to nbr(Z) ∩
nbrH(L3 \ Z) (see Figure 2). There is obviously no edge in G between a vertex
in A \ nbr(Z) and any vertex in Z. So suppose a ∈ nbr(Z) ∩ nbrH(L3 \ Z). For
b ∈ L3, if the edge (a, b) is in G′, then b has to be a’s most preferred post in
L3. We will now show that b ∈ L3 \ Z, equivalently b /∈ Z. Thus G′ has no edge
(a, b) where a ∈ A′ and b ∈ Z.

Since a ∈ nbrH(L3 \ Z), the graph H contains an edge between a and some
b′ ∈ L3 \ Z. Recall that an element of L3 \ Z is a real post in Y . By the rules of
including edges in H, it follows that the rank of b′ in a’s preference list is ≤ ra.

Popular Matchings with Two-Sided Preferences and One-Sided Ties 377

Fig. 2. The part of G′ inside the box will be called G′
0. The graph G′ has no edge

between any applicant in A′ and any post in Z.

The entire set L3 cannot contain any post of rank better than ra for any a ∈ A
since any post of rank better than ra in a’s list belongs to F while L3 ∩ F = ∅
(by Lemma 4.1). So b′ has rank ra in a’s list. Thus a’s most preferred neighbor
in L3 belongs to L3 \ Z. ��

Let G0 be the subgraph of G′
0 obtained by deleting from G′

0 the edges that
are absent in H. Thus G0 is a subgraph of both G′ and H. The following claim
will be useful to us.

Claim 2. All posts in (X \L1)∪ (L3 \Z) are odd/unreachable in G0. Moreover,
every edge (a, b) in G′ that is missing in H satisfies b ∈ (X \ L1) ∪ (L3 \ Z).

Consider the graph G1 whose edge set is the intersection of the edge sets of
G′ and H. Equivalently, G1 can be constructed by adding to the edge set of G0

the edges incident on A′′ = nbr(Z) \ nbrH(L3 \ Z) that are present in both G′

and H (see Fig. 2). This is due to the fact that G′ has no edge in A′ × Z.
We claim that all posts in (X \ L1) ∪ (L3 \ Z) are odd/unreachable in G1.

This is because Claim 2 tells us that each post in this set is odd/unreachable in
G0 and due to the absence of A′ × Z edges in G′, the graph G1 has no new edge
(new when compared to G0) incident on the set A′ of applicants in G0. Hence
all posts in (X \ L1) ∪ (L3 \ Z) remain odd/unreachable in G1.

378 Á. Cseh et al.

Claim 2 also tells us that all edges in G′ that are missing in H are incident on
posts in (X \ L1) ∪ (L3 \ Z). We know that all these posts are odd/unreachable
in G1, hence G′ has no new edge (new when compared to G1) on posts that are
even in G1. Thus the size of a maximum matching in G′ equals the size of a
maximum matching in G1. This is at most the size of a maximum matching in
H, since G1 is a subgraph of H. Hence if H has no A-complete matching, then
neither does G′. ��

Theorem 5, along with Lemma 7, finishes the proof of the necessary part of
Theorem 4 and this completes the proof of correctness of our algorithm.

It is easy to see that each iteration of our algorithm takes O(n) time (where
|A∪B| = n) since it involves finding a maximum matching in a subgraph where
each vertex in A has degree at most 2. Thus the running time of our algorithm
is O(n2) and Theorem 1 stated in Section 1 follows.

Conclusions and an Open Problem. We gave an O(n2) algorithm for the
popular matching problem in G = (A ∪ B,E) where vertices in A have strict
preference lists while each vertex in B puts all its neighbors into a single tie and
n = |A∪B|. Our algorithm needs the preference lists of vertices in A to be strict
and the complexity of this problem when ties are allowed in the preference lists
of vertices in A is currently unknown.

References

1. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings.
SIAM Journal on Computing 37(4), 1030–1045 (2007)

2. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmet-
ric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity
Report, number 49 (2003)

3. Biró, P., Irving, R.W., Manlove, D.F.: Popular Matchings in the Marriage and
Roommates Problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol.
6078, pp. 97–108. Springer, Heidelberg (2010)

4. Dulmage, A., Mendelsohn, N.: Coverings of bipartite graphs. Canadian Journal of
Mathematics 10, 517–534 (1958)

5. Gärdenfors, P.: Match making: assignments based on bilateral preferences.
Behavioural Science 20, 166–173 (1975)

6. Graham, R.L., Grötschel, M., Lovasz, L., (eds.) The Handbook of Combinatorics,
chapter 3, Matchings and Extensions, by W. R. Pulleyblank, pp. 179–232. North
Holland (1995)

7. Huang, C.-C., Kavitha, T.: Popular Matchings in the Stable Marriage Problem.
In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755,
pp. 666–677. Springer, Heidelberg (2011)

8. Kavitha, T.: Popularity vs Maximum cardinality in the stable marriage setting.
In: Proceedings of the 23rd SODA, pp. 123–134 (2012)

9. Kavitha, T., Mestre, J., Nasre, M.: Popular Mixed Matchings. In: Albers, S.,
Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP
2009, Part I. LNCS, vol. 5555, pp. 574–584. Springer, Heidelberg (2009)

Popular Matchings with Two-Sided Preferences and One-Sided Ties 379

10. Kavitha, T., Nasre, M.: Note: Optimal popular matchings. Discrete Applied Math-
ematics 157(14), 3181–3186 (2009)

11. Mahdian, M.: Random popular matchings. In: Proceedings of the 7th EC,
pp. 238–242 (2006)

12. Manlove, D.F., Sng, C.T.S.: Popular Matchings in the Capacitated House Allo-
cation Problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 492–503. Springer, Heidelberg (2006)

13. McCutchen, R.M.: The Least-Unpopularity-Factor and Least-Unpopularity-
Margin Criteria for Matching Problems with One-Sided Preferences. In: Laber,
E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957,
pp. 593–604. Springer, Heidelberg (2008)

14. McDermid, E., Irving, R.W.: Popular Matchings: Structure and Algorithms.
In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 506–515. Springer,
Heidelberg (2009)

15. Mestre, J.: Weighted Popular Matchings. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg
(2006)

Block Interpolation: A Framework for Tight
Exponential-Time Counting Complexity

Radu Curticapean1,2(B)

1 Department of Computer Science, Saarland University, Saarbrücken, Germany
curticapean@cs.uni-sb.de

2 Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary

Abstract. We devise a framework for proving tight lower bounds under
the counting exponential-time hypothesis #ETH introduced by Dell et
al. Our framework allows to convert many known #P-hardness results for
counting problems into results of the following type: If the given problem
admits an algorithm with running time 2o(n) on graphs with n vertices
and O(n) edges, then #ETH fails. As exemplary applications of this
framework, we obtain such tight lower bounds for the evaluation of the
zero-one permanent, the matching polynomial, and the Tutte polynomial
on all non-easy points except for two lines.

1 Introduction

Counting complexity is a classical sub-field of complexity theory, launched by
the seminal paper [17] that introduced the class #P and proved #P-hardness
of the permanent. Since then, various counting problems were systematically
proven to be #P-hard, including the evaluation of graph polynomials such as
the Tutte polynomial [12] and the cover polynomial [1], and counting solutions
to constraint-satisfaction problems [2,3] as well as so-called Holant problems [5].

We depart from the classical setting of #P-hardness and follow the route
taken by [7], who proved conditional lower bounds on the running times required
to solve counting problems. Our results assume the exponential-time hypothesis
#ETH, introduced in [7], which postulates that the satisfying assignments to a
3-CNF formula ϕ on n variables and O(n) clauses cannot be counted in time
2o(n). This hypothesis is trivially implied by its decision version ETH, introduced
in [11], which assumes the same lower bound for deciding satisfiability of ϕ.

We obtain our lower bounds by a play on polynomial interpolation, which is
arguably the most important technique for non-parsimonious reductions between
counting problems, as used in [4,7,9,10,12,14,16]. As a first example of this
technique, let us reduce counting perfect matchings to counting matchings that
are not necessarily perfect, using a simplification of an argument in [16].

Step 1: Given a graph G, let mk for k ∈ N denote its number of matchings with
exactly k unmatched vertices. Define the polynomial μ(x) =

∑n
k=0 mkxk and

R. Curticapean—Supported by ERC Starting Grant PARAMTIGHT (No. 280152).
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 380–392, 2015.
DOI: 10.1007/978-3-662-47672-7_31

Block Interpolation: A Framework for Tight Exponential-Time 381

observe that its coefficient m0 is equal to the number of perfect matchings
in G. Since μ has maximum degree n, we can use Lagrange interpolation to
recover all of its coefficients (and m0 in particular) from evaluations of μ at
n + 1 distinct input points.

Step 2: We show how to evaluate μ(t) for t ∈ N by a reduction to counting
matchings: Let Gt be obtained from G by adding, for each v ∈ V (G), a
gadget consisting of t−1 fresh vertices adjacent to v. Then it can be checked
that μ(t) is equal to the number of matchings in Gt.

By evaluating μ(t) for all t ∈ [n + 1] via Step 2 and an oracle for counting
matchings, we can use Lagrange interpolation as in Step 1 to obtain m0. This
also provides a lower bound for counting matchings, which is however far from
tight: If counting perfect matchings on n-vertex graphs has a lower bound of
2Ω(n), then only a 2Ω(

√
n) lower bound for counting matchings follows from the

above argument. This is because Gn+1 has a gadget of size n at each vertex, and
thus n2 vertices in total. Using more sophisticated gadgets with O(logc n) ver-
tices, similar reductions (for other problems) were obtained in [7,9,10], implying
2Ω(n/ logc n) lower bounds for these problems, which are however still not tight.
In particular, the tight lower bound for the source problem of computing a hard
coefficient was “shrinked” in the reduction.

Let us call a reduction gadget-interpolation-based if it proceeds along the two
steps above: First encode a hard problem into the coefficients of a polynomial
p, then find “local” gadgets that can be placed at vertices or edges, and which
allow to evaluate p(ξ) at sufficiently many points ξ by reduction to the target
problem. Finally use Lagrange interpolation to recover p from these evaluations.
This is a well-trodden route for obtaining #P-hardness proofs.

When carried out on n-vertex graphs G, such reductions typically yield poly-
nomials p of degree n, hence require n+1 evaluations of p at distinct points, and
thus in turn require n + 1 distinct gadgets to be placed at vertices of G. Since
there are only finitely many simple graphs on O(1) vertices, the size of such gad-
gets must necessarily grow as some unbounded function α(n), and we can hence
only obtain 2Ω(n/α(n)) lower bounds for α ∈ ω(1). Additionally, such reductions
run in polynomial time, which is required for the setting of #P-hardness, but
nonessential in exponential-time complexity: To obtain a lower bound of 2Ω(n),
we might as well use a reduction that requires 2o(n) time and issues 2o(n) queries
to the target problem. The limitations we observed in this paragraph are imma-
nent to every known lower bound under #ETH.

In this paper, we circumvent these barriers by introducing a framework that
allows to apply the full power of subexponential reductions to counting problems.
To this end, we use a simple trick based on multivariate polynomial interpola-
tion: In this setting, we are not given an unknown univariate polynomial p of
degree n, which we have to interpolate from n + 1 oracle calls, but rather a
multivariate polynomial p with total degree n, but maximum degree c = O(1)
in each indeterminate, which we can interpolate from 2o(n) evaluations. Each
evaluation p(ξ) is performed at a tuple ξ whose entries are contained in a set
of size c + 1, and this will enable us to compute p(ξ) by attaching only c + 1

382 R. Curticapean

distinct gadgets to G. The catch here is that different vertices may obtain dif-
ferent gadgets, which was not feasible in the univariate setting.

Our technique is phrased as a general framework that allows to convert a large
body of gadget-interpolation-based #P-hardness proofs into tight lower bounds
under #ETH. The growth of the gadgets used in such proofs is irrelevant to the
framework, as only a constant number of gadgets will be used. This allows us to
use luxuriously large gadgets, and in particular, we do not need to invoke involved
gadget constructions, e.g., for simulating weights in the Tutte polynomial [7,10]
or in the independent set polynomial [9]. To showcase our framework, we show
that #ETH implies 2Ω(n) lower bounds for the following problems on unweighted
simple graphs G with n vertices and O(n) edges1, all of which admit trivial 2O(n)

algorithms on such graphs.

– Counting perfect matchings, even for bipartite unweighted graphs G. In [7],
only a lower bound of 2Ω(n/ log n) was shown under #ETH. A tight lower
bound of 2Ω(n) was obtained only (a) under rETH, which implies ETH, which
in turn implies #ETH, but no converse direction is known, or (b) under
#ETH, but by introducing negative edge weights. Negative edge weights are
generally worrying, e.g., because perfect matchings in bipartite graphs can
be approximately counted on graphs with non-negative edge weights, but
are inapproximable when negative edge weights are present [13].

– Evaluating the matching polynomial μ(G; ξ) at fixed ξ ∈ Q. No lower bounds
for this problem are stated in the literature.

– Evaluating the independent set polynomial I(G; ξ) at fixed ξ ∈ Q \ {0}. In
[9], a lower bound of 2Ω(n/ log3 n) was shown at general ξ ∈ Q\{0}, and 2Ω(n)

at ξ = 1, but neither of these bounds assume sparse graphs.
– Evaluating the Tutte polynomial at all points except for two lines. In [7],

only lower bounds of 2Ω(n/ logc n) could be shown on sparse simple graphs.

2 Preliminaries

The graphs in this paper are finite, undirected and simple. They may feature
edge- or vertex-weights within intermediate steps of arguments, but all such
weights will ultimately be removed to obtain hardness results on unweighted
graphs. For simplicity, we phrase our results using only rational numbers, but
they could be easily adapted to R and, with some care, also to C.

Our arguments and results use graph polynomials, which are functions that
map graphs G to polynomials p(G) ∈ Q[x], where x is some set of indetermi-
nates. We abbreviate p(G; ξ) := (p(G))(ξ). The arguably most famous graph
polynomial is the Tutte polynomial, which we define in the following, along with
the matching polynomial and the independent set polynomial.
1 As is common to exponential-time complexity, it is crucial to obtain hardness results

for sparse graphs, which feature O(n) edges on n vertices: Many reductions proceed
by placing gadgets at edges, and this would map graphs with ω(n) edges to target
graphs on ω(n) vertices, thus ruling out tight lower bounds of the type 2Ω(n).

Block Interpolation: A Framework for Tight Exponential-Time 383

Definition 1. Let G be a graph. Let M[G] denote the set of (not necessarily
perfect) matchings in G and let usat(G, M) for M ∈ M[G] denote the set of
unmatched vertices of G in M . Then we define the matching polynomial μ (also
called matching defect polynomial) as μ(G; x) =

∑
M∈M[G] x|usat(G,M)|.

Let I[G] denote the set of independent sets of G. Then we define the inde-
pendent set polynomial I as I(G; x) =

∑
S∈I[G] x|S|.

Let k(G, A) denote the number of connected components in the edge-induced
subgraph G[A]. Then define the classical parameterization of the Tutte polyno-
mial as T (G; x, y) =

∑
A⊆E(G)(x − 1)k(G,A)−k(G,E)(y − 1)k(G,A)+|A|−|V |. We will

also work with the following random-cluster formulation of the Tutte polynomial,
which is defined by Z(G; q, w) =

∑
A⊆E(G) qk(G,A)w|A|.

The polynomials Z and T are essentially the same polynomial up to repa-
rameterization. As in [7], with q = (x − 1)(y − 1) and w = y − 1, we have

T (G; x, y) = (x − 1)−k(G,E)(y − 1)−|V (G)|Z(G; q, w). (1)

For the following definition, let E denote the set of all edges of all graphs.

Definition 2. Write PM[G] for the set of perfect matchings of G, and let x =
(xe)e∈E be a set of indeterminates. Then the perfect matching polynomial is
defined as PerfMatch(G) =

∑
M∈PM[G]

∏
e∈M xe. Note that only finitely many

indeterminates are present in PerfMatch(G). If G is bipartite, we also denote
PerfMatch(G) by the permanent perm(G).

For any graph polynomial p, we define two problems Coeff(p) and Eval(p),
and a family of problems EvalS(p) for fixed subsets S ⊆ Q.

Coeff(p) : On input G, compute all coefficients of p(G).
Eval(p) : On input G and a tuple ξ, evaluate p(G; ξ). We often see ξ as vertex-

or edge-weights that are substituted into indeterminates of p(G).
EvalS(p) : On input G and a tuple ξ whose entries are from S, evaluate p(G; ξ).

If p is univariate and S = {a}, this simply asks asks to compute
p(G; a), and we write Evala(p) in this case.

Rather than evaluating a multivariate graph polynomial p like PerfMatch on
an unweighted graph G and a tuple ξ, we often annotate edges/vertices of G
with the entries of ξ, assuming V (G) and E(G) to be ordered. We then speak of
evaluating p(G′) on the weighted graph G′ derived from G, ξ this way.

Given a univariate polynomial p ∈ Q[x] of degree n, we can use Lagrange
interpolation to compute the coefficients of p when provided with the set
{(ξ, p(ξ)) | ξ ∈ Ξ} for any Ξ ⊆ Q of size n + 1. This can be generalized to
multivariate polynomials p ∈ Q[x], for instance, if Ξ is a sufficiently large grid.

Lemma 1. Let p ∈ Q[x1, . . . , xn], and for i ∈ [n], let the degree of xi in p be
bounded by di ∈ N. Let Ξ = Ξ1 × . . .×Ξn where Ξi ⊆ Q and |Ξi| = di +1 for all
i ∈ [n]. Then we can compute the coefficients of p in time O(|Ξ|3) when given
as input the set {(ξ, p(ξ)) | ξ ∈ Ξ}. ��

384 R. Curticapean

We also adapt subexponential-time Turing reduction families [11] for our use.

Definition 3. A subexponential reduction family from problem A to B is an
algorithm T with oracle access for B. Its inputs are pairs (G, ε) where G is an
input graph for A, and ε with 0 < ε ≤ 1 is a runtime parameter, such that

1. T computes A(G), and it does so in time f(ε) · 2ε|V (G)| · |V (G)|O(1), and
2. T only invokes the oracle for B on graphs G′ with at most g(ε) · (|V (G)| +

|E(G)|) vertices and edges.

In these statements, f and g are computable functions that depend only on ε.
We write A ≤serf B if such a reduction exists.

That is, the runtime of T (and hence, the number of oracle queries) can
be chosen as 2εn for arbitrarily small ε, in particular for ε = 1/ω(1). We can
hence ensure that the runtime of T is 2o(n), but this comes at the cost of incur-
ring a “blowup factor” of g(ε) in the reduction images. It can be verified that
subexponential reductions preserve lower bounds as expected, see [11]:

Lemma 2. If A admits a subexponential reduction family to B and B can be
solved in time 2o(n)nO(1) on graphs with n vertices and O(n) edges, then A can
be solved in time 2o(n)nO(1) on graphs with n vertices and O(n) edges. ��

The paper is organized as follows: In Section 3, we introduce our interpolation
framework, and in Section 4, we present examples for graph polynomials that fit
into this framework, and for which we consequently obtain tight lower bounds.

3 The Block Interpolation Framework

For a general class of univariate graph polynomials p, we show that Coeff(p) ≤serf
Evalξ(p) at fixed ξ ∈ Q. In the introduction, we have seen an example for such
a reduction involving the polynomial μ, which was however not tight. In this
section, we generalize this argument and ensure that it yields tight lower bounds.

To this end, we first describe, in Section 3.1, the “format” required from
p for our framework to apply. Then we show in Section 3.2 how to reduce
Coeff(p) ≤serf EvalS(p), where p is a multivariate version of p and S ⊆ Q

has size O(1). In Section 3.3, we then show how to reduce to Evalξ(p).

3.1 Admissible Graph Polynomials

Our framework applies to all univariate graph polynomials that admit “obvious”
multivariate generalizations. More specifically, we call p subset-admissible if p is
induced by a sieving function χ which filters the structures counted by p, and a
weight selector ω which assigns a weight to each of these structures.

Block Interpolation: A Framework for Tight Exponential-Time 385

Definition 4. Let G denote the set of all graphs, and let F denote the set of all
vertices and edges of graphs. For χ : G × 2F → C and ω : G × 2F → 2F , we say
that (χ, ω) induce the graph polynomial

pχ,ω(G; x) =
∑

A⊆V (G)∪E(G)

χ(G, A) · x|ω(G,A)|. (2)

The polynomial p is subset-admissible if p = pχ,ω for some (χ, ω) as above.

Note that χ and ω may be partial functions, since, e.g., the value of χ(G, A)
is irrelevant if A �⊆ V (G) ∪ E(G).

In the following, we observe that μ and I from Definition 1 are subset-
admissible. It would be nice to show the same for T and Z, but this fails for syn-
tactic reasons, since admissible polynomials are univariate by definition. Instead,
we work with restrictions of Z to Zq := Z(q, ·) for fixed q ∈ Q.

Example 1. Given a sentence φ, let [φ] = 1 if φ is true, and [φ] = 0 otherwise.
The polynomial μ is induced by χ : (G, A)
→ [A ∈ M[G]] and ω : (G, A)
→
usat(G, A), and I is induced by χ : (G, A)
→ [A ∈ I[G]] and ω : (G, A)
→ A.

For q ∈ Q \ {0}, the polynomial Zq = Z(q, ·) is induced by χ : (G, A)
→
qκ(G,A) and ω : (G, A)
→ A. We stress again that Zq ∈ Q[x] is a univariate
restriction of Z for fixed q ∈ Q.

Every graph polynomial of the form pχ,ω admits a canonical multivariate
generalization pχ,ω on indeterminates x = {xa | a ∈ F}, which is given by

pχ,ω(G;x) =
∑

A⊆V (G)∪E(G)

χ(G, A)
∏

a∈ω(G,A)

xa. (3)

Compare this to (2). The polynomial pχ,ω coincides with pχ,ω when substituting
xa ← x for all b ∈ F . Note also that p is multilinear by definition. Similar
multivariate generalizations were known, e.g., for the Tutte polynomial [15].

Example 2. Consider p = pχ,ω with χ(G, A) = [A ∈ PM[G]] and ω(G, A) = A.
Then p = mG · x|V (G)|/2, where mG = |PM[G]|. We also have p = PerfMatch.

We remark also that the coefficients of p can be recovered from those of p:

Lemma 3. For any monomial θ, let cθ denote the coefficient of θ in p. For
k ∈ N, let Ck denote the set of monomials in p with total power k. For k ∈ N,
the coefficient of xk in p is equal to

∑
θ∈Ck

cθ. ��

3.2 First Reduction Step: Multivariate Interpolation

Let p = pχ,ω be subset-admissible. For ease of presentation, we assume for now
that ω : G ×2F → 2E , that is, ω maps only into edge-subsets rather than subsets
of edges and vertices. The general case is shown identically, with more notation.

We reduce Coeff(p) ≤serf Eval(p) by means of interpolation, where p denotes
the multivariate generalization of p. Recall that, in the univariate case, to obtain

386 R. Curticapean

p(G) for an m-edge graph G, we require the evaluations of p(G; ξ) at m+1 distinct
points ξ. For the multivariate generalization p, we can interpolate via Lemma 1:
Since p is multilinear, this requires the evaluations of p(G; ξ) on a grid with two
distinct values per coordinate, say Ξ = [2]m. By Lemma 3, the coefficients of p
can be obtained from those of p, so we could interpolate p to recover p.

While this detour seems extremely wasteful due to its 2m incurred evalua-
tions, it yields the following reward: For each variable xe in p, the setting of
Lemma 1 only requires us to substitute two distinct values (or weights) into xe,
whereas interpolation on p requires m + 1 distinct substitutions to its only vari-
able x. A small number of distinct weights will be very useful, since each such
weight will be simulated by a certain gadget at e. If there are only two weights
to simulate, then we require only two fixed gadgets, whose sizes are trivially
bounded by O(1).

However, to interpolate p, we still need the prohibitively large number of 2m

evaluations. To overcome this, we trade off the number of evaluations with the
numbers of distinct values that need to be simulated at each edge, and thus,
with the size of the gadgets ultimately required.
Lemma 4. Let p be subset-admissible, with multivariate generalization p, and
let W = (w0, w1, . . .) be an infinite recursively enumerable sequence of pairwise
distinct numbers in Q. Then Coeff(p) ≤serf Eval(p) holds by a reduction that, on
input (G, ε), only asks queries p(G′) on graphs G′ obtained from G by introducing
edge-weights from Wd = {w0, . . . , wd} for d = f(ε).

When invoking Lemma 4, the list W contains the weights that can be sim-
ulated by gadgets. Note that any such list W can be used if W is infinite and
recursively enumerable. Furthermore, note that p is evaluated only on edge-
weighted versions of G itself; properties such as bipartiteness are hence trivially
preserved. In the following, we write x ← y for substituting y into x.
Proof (of Lemma 4). Let d ∈ N be a parameter, to be chosen later depending
on ε, and let G = (V, E) be an m-edge graph for which we want to determine
the coefficients of p = p(G). Let x = {xe | e ∈ E} denote the indeterminates of
p and note that both p and p have maximum degree m.

In the first step, partition E into t = �m/d blocks E1, . . . , Et of size at most
d each, using an arbitrary equitable assignment of edges to blocks. Define new
indeterminates y = {y1, . . . , yt} and a new multivariate polynomial q ∈ Q[y]
by substituting xe ← yi for all i ∈ [t] and e ∈ Ei. We are working with three
polynomials, namely p, p and q. While the total degree of q is bounded by m, the
degree of each indeterminate yi in q is bounded by d, since each block contains
at most d edges. Hence, the number of monomials in q is at most (d+1)t = 2d′m

with d′ = O(log(d)/d). Note that d′ → 0 as d → ∞.
We will obtain the coefficients of q via interpolation, and we observe that

the coefficients of q allow to determine those of the univariate version p. Write
cp

k for the coefficient of xk in p and cqθ for the coefficient of the monomial θ in
q. Analogously to Lemma 3, we have cp

k =
∑

θ∈Ck
cqθ where Ck for k ∈ N is

the set of all monomials with total power k in q. This allows us to compute the
coefficients of p from those of q.

Block Interpolation: A Framework for Tight Exponential-Time 387

It remains to describe how to obtain the coefficients of q. For this, recall
the definition of Wd from the statement. We evaluate q on the grid Ξ = (Wd)t

using the oracle for Eval(p): For each ξ ∈ Ξ, substitute yi ← ξi for all i ∈ [t] to
obtain an edge-weighted graph Gξ that contains only weights from Wd, and for
which we can thus compute p(Gξ). Using |Ξ| = (d + 1)t = 2d′m oracle calls and
grid interpolation via Lemma 1, we obtain all coefficients of q in time O(23d′m).
Since d′ → 0 as d → ∞, we can pick d large enough such that 3d′ ≤ ε and thus
achieve running time O(2εm). No vertices or edges are added to G. ��

3.3 Second Reduction Step: Weight Simulation by Gadgets

With Lemma 4, we can reduce Coeff(p) on a graph G to Eval(p) on versions
Gξ obtained from G by introducing O(1) distinct edge-weights. For the full
reduction, this latter problem must be reduced to Evalξ(p) for fixed ξ ∈ Q. This
may not work for all ξ ∈ Q: For instance, Eval0(I) for I at 0 is trivial. We must
hence impose conditions on ξ to enable this reduction.
Definition 5. Let p be subset-admissible, let ξ ∈ Q and

– let W = (w0, w1, . . .) be a sequence of pairwise distinct values in Q,
– let H = (H0, H1, . . .) be a sequence of edge-gadgets, which are triples

(H, u, v) with a graph H and attachment vertices u, v ∈ V (H), and
– let F : G × Q → Q \ {0} be a polynomial-time computable factor function.

If G is edge-weighted with weights from W , let T (G) be obtained by replacing,
for i ∈ N, each uv ∈ E(G) of weight wi with a fresh copy of Hi by identifying
u, v across G and Hi. We say that (H, F) allows to reduce EvalW (p) to Evalξ(p)
if the following holds: Whenever G is a graph with edge-weights from W , then

p(G) = p(T (G); ξ)
F (G, ξ) . (4)

The same definition applies to vertex-weighted graphs; here we use vertex-
gadgets, which are pairs (H, v) with an attachment vertex v ∈ V (H). Vertex-
gadgets are inserted at a vertex v ∈ V (G) by identifying v in H and G.

As a first example, we consider (well-known) edge-gadgets for PerfMatch.
Example 3. Let p denote the polynomial from Example 2 with p = PerfMatch.
Let H = (H1, H2, . . .) be such that Hk for k ∈ N is the graph obtained by
placing k parallel edges between u and v and then subdividing each edge twice.
Let N = (1, 2, 3, . . .) and let F denote the function that maps all inputs to 1.
Then (H, F) allows to reduce EvalN(p) to Eval1(p).

We then easily observe the following lemma.
Lemma 5. Let W = (w0, w1, . . .) and let (H, F) allow to reduce EvalW (p) to
Evalξ(p). Let G feature only edge-weights from W . Then we can use (4) to com-
pute p(G) from p(T (G); ξ). If G has n vertices and m edges, and only contains
edge-weights wi with i ≤ t for some t ∈ N, then T (G) has O(n + sm) vertices
and edges, where s = maxi∈[t] |V (Hi)| + |E(Hi)| depends only on H and t.

388 R. Curticapean

By combining Lemmas 4 and 5, we obtain the wanted reduction from Coeff(p)
to Evalξ(p) at fixed points ξ ∈ Q and finish the set-up of our framework.

Theorem 1. Let p be subset-admissible and let ξ ∈ Q. Assuming #ETH, the
problem Evalξ(p) admits no 2o(n) time algorithm on unweighted graphs with O(n)
vertices and edges, provided that the following holds:

(C1) Assuming #ETH, the problem Coeff(p) admits no 2o(n) algorithm on
graphs with n vertices and O(n) edges.

(C2) There is a recursively enumerable sequence W = (w0, w1, . . .) of pairwise
distinct weights, a sequence of gadgets H = (H0, H1, . . .) and a factor func-
tion F such that (H, F) allows to reduce EvalW (p) to Evalξ(p).

Proof. We present a subexponential reduction family from Coeff(p) to Evalξ(p).
Given ε > 0 and a graph G with n vertices and O(n) edges, apply Lemma 4
to reduce Coeff(p) to multiple instances of Eval(p) in time 2εn such that each
instance uses only weights w0, . . . , ws with s = f(ε).

Since (H, F) allows to reduce EvalW (p) to Evalξ(p), we can invoke Lemma 5
and reduce each instance G′ for Eval(p) to an instance of Evalξ(p) on the graph
T (G), which features O(sn) vertices and edges. ��
Remark 1. If the source instance G for Coeff(p) has maximum degree Δ, then
the reduction images T (G) feature maximum degree Δ+O(1). By suitable choice
of H, we can also ensure other properties on T (G): For instance, if G is bipartite
and all edge-gadgets (H, u, v) ∈ H can be 2-colored such that u and v receive
different colors (as can be verified for Example 3), then T (G) is bipartite as well.

4 Applications of the Framework

In the following subsections, we apply Theorem 1 to obtain tight lower bounds
for counting problems, including the unweighted permanent in Section 4.1, the
matching polynomial in Section 4.2 and the Tutte polynomial in Section 4.3.

4.1 The Unweighted Permanent

As stated in the introduction, it was shown in [7] that, unless #ETH fails, the
problem Eval{−1,1}(perm) on graphs with n vertices and O(n) edges admits
no algorithm with runtime 2o(n). It was also shown that an algorithm for the
unweighted permanent on such graphs would falsify rETH, the randomized ver-
sion of ETH. We improve upon this by showing that it is sufficient to assume
#ETH, which is a priori weaker than ETH and is a more natural assumption for
lower bounds on counting problems.

Theorem 2. Assuming #ETH, the problem Eval1(perm) of counting unweighted
perfect matchings in bipartite graphs cannot be solved in time 2o(n) on graphs with
n vertices and O(n) edges.

Block Interpolation: A Framework for Tight Exponential-Time 389

Proof. We invoke Theorem 1 to show Eval{−1,1}(perm) ≤serf Eval1(perm). Let G
be a graph with edge-weights from {−1, 1} on n vertices and O(n) edges and let
E−1(G) denote the set of edges with weight −1 in G. Define a sieve χ(G, A) =
[A ∈ PM[G]] and weight selector ω(G, A) = A ∩ E−1(G) and observe that
these induce a univariate graph polynomial p = pχ,ω with p(G; −1) = perm(G).
Since knowledge of the coefficients of p(G) allows to evaluate p(G; −1), we obtain
from [7, Thm. 1.3] that Coeff(p) admits no 2o(n) time algorithm on sparse graphs
under #ETH. Hence (C1) of Theorem 1 is satisfied.

To check (C2), recall the pair (H, F) from Example 3 that allows to reduce
EvalN(p) to Eval1(p). By Remark 1, the reduction images T (G) constructed by
Theorem 1 are bipartite as well. ��

We collect a series of corollaries for other counting problems from this the-
orem. Let L(G) denote the line graph of a graph G = (V, E): This graph has
vertex set E, and e, e′ ∈ E(G) are adjacent in L(G) iff e ∩ e′ �= ∅. A graph is line
if it is the line graph of some graph.

Corollary 1. Assuming #ETH, the following cannot be solved in time 2o(n):

1. Eval1(perm) on graphs with n vertices and maximum degree 3.
2. Counting maximum independent sets (or minimum vertex covers), even in

line graphs with n vertices and maximum degree 4.
3. Counting minimum-weight satisfying assignments to monotone 2-CNF for-

mulas on n variables, even if every variable appears in at most four clauses.

Proof. For the first statement, we use a reduction from the permanent on general
graphs to graphs of maximum degree 3, shown in [6], which maps graphs with
n vertices and m edges to graphs with O(n + m) vertices and edges.

For the second statement, if G has m edges and maximum degree Δ =
Δ(G), then L(G) has m vertices and maximum degree 2(Δ−1). The set PM[G]
corresponds bijectively to the independent sets of size n/2 in L(G), which are the
maximum independent sets in L(G), unless G has no perfect matching, which
we can test efficiently. The maximum independent sets in turn stand in bijection
with the minimum vertex covers of L(G) via complementation. We thus obtain
the statement by reduction from Eval1(perm) on graphs of maximum degree 3.

For the third statement, observe that the minimum vertex covers of a graph
H = (V, E) correspond bijectively to the minimum-weight satisfying assignments
of the following monotone 2-CNF formula ϕ: Create a variable xv for each v ∈ V
and a clause (xu ∨ xv) for each uv ∈ E. This is standard, noted also in [16]. ��

4.2 The Matching and Independent Set Polynomials

We prove a tight lower bound for Evalξ(μ) at fixed ξ ∈ Q by invoking Theo-
rem 1. The perfect matchings of G are counted by the coefficient of x0 in μ(G),
so Coeff(μ) and Eval0(μ) have the same lower bound as perm0,1 on graphs of
maximum degree 3, settling (C1). In the full version, we show (C2) and obtain:

390 R. Curticapean

Theorem 3. If there is some ξ ∈ Q such that Evalξ(μ) can be solved in time
2o(n) on graphs with n vertices and maximum degree O(1), then #ETH fails.
This holds especially for Eval1(μ), which amounts to counting matchings.

As in Corollary 1, we can easily obtain corollaries for the independent set
polynomial and for monotone 2-SAT, improving upon [7,9].

Corollary 2. Assuming #ETH, the following cannot be solved in time 2o(n):

1. Evalξ(I) on line graphs of maximum degree O(1), for ξ ∈ Q \ {0}, especially
at ξ = 1, which amounts to counting independent sets (or vertex covers).

2. Counting satisfying assignments to monotone 2-CNF formulas, even if every
variable appears in at most O(1) clauses.

To prove the first statement, recall that the matchings with k edges in G
correspond bijectively to the independent k-sets in L(G). In μ(G; ξ), a matching
with k edges is weighted by ξn−2k. We can therefore obtain the claim by reduction
from Evalξ′(μ) at fixed ξ′. For the second statement, see Corollary 1.

4.3 The Tutte Polynomial

We use univariate restrictions of Z, as discussed in Example 1. Writing Zq =
Z(q, ·) for fixed q ∈ Q \ {0} and Z0(G; q, w) =

∑
A⊆E(G) qk(G,A)−k(G,E)w|A| for

q = 0 as in [7], we use Theorem 1 to prove lower bounds for Evalw(Zq) at fixed
w ∈ Q. As in the previous examples, we require a lower bound for Coeff(Zq),
which we adapt from [7], and weight simulation.

Lemma 6. [7, Propositions 4.1 and 4.3] Assuming #ETH, the problem
Coeff(Zq) for q ∈ Q \ {1} cannot be solved in time 2o(n) on n-vertex graphs
with O(n) edges.

In [7], the problem Coeff(Zq) is reduced to unweighted evaluation via Theta
graphs and wumps, families of edge-gadgets that incur only O(logc n) blowup.
This economical (but still not constant) factor however requires a quite involved
analysis. Using block interpolation, we can instead use mere paths, and hence
perform “stretching”, a classical weight simulation technique for the Tutte poly-
nomial [7,8,12]. Recall Zq, as defined by Example 1 and (3).

Lemma 7. For k ∈ N, let Pk denote the path on k edges with distinguished
start/end vertices u, v ∈ V (Pk) and let P = (P1, P2, . . .). Let w, q ∈ Q be fixed
with w �= 0 and q /∈ {1, −w, −2w}. Then there is an infinite sequence of pairwise
distinct weights W and a factor function F such that (P, F) allows to reduce
EvalW (Zq) to Evalw(Zq).

The proof is given in the full version. By combining Lemma 6 for (C1) and
Lemma 7 for (C2), we can then invoke Theorem 1 and obtain:

Theorem 4. Let w �= 0 and q /∈ {1, −w, −2w}. Assuming #ETH, the problem
Evalw(Zq) admits no 2o(n) algorithm on graphs with n vertices and O(n) edges.

Block Interpolation: A Framework for Tight Exponential-Time 391

Using the substitution (1) that maps Z(·, ·) to the classical parameterization
T (·, ·) of the Tutte polynomial, we obtain the following corollary.

Corollary 3. Assuming #ETH, the Tutte polynomial T (x, y) cannot be eval-
uated in time 2o(n) on graphs with n vertices and O(n) edges, provided that
y /∈ {0, 1} and (x, y) /∈ {(1, 1), (−1, −1), (0, −1), (−1, 0)} and (x − 1)(y − 1) �= 1.

If (x, y) satisfies either of the last two conditions of the corollary, then T (x, y)
admits a polynomial-time algorithm. The remaining points with y ∈ {0, 1} are
however not covered by Corollary 3, and we obtain no lower bounds.

Acknowledgments. The author thanks Holger Dell and the anonymous reviewers for
proofreading earlier versions of this paper.

References

1. Bläser, M., Dell, H.: Complexity of the Cover Polynomial. In: Arge, L., Cachin,
C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 801–812.
Springer, Heidelberg (2007)

2. Bulatov, A.A.: The Complexity of the Counting Constraint Satisfaction Problem.
In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 646–661. Springer,
Heidelberg (2008)

3. Cai, J.-Y., Chen, X.: Complexity of counting CSP with complex weights. STOC
2012, 909–920 (2012)

4. Cai, J.-Y., Lu, P., Xia, M.: A Computational Proof of Complexity of Some
Restricted Counting Problems. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009.
LNCS, vol. 5532, pp. 138–149. Springer, Heidelberg (2009)

5. Cai, J., Pinyan, L., Xia, M.: Dichotomy for Holant* problems of boolean domain.
SODA 2011, 1714–1728 (2011)

6. Dagum, P., Luby, M.: Approximating the permanent of graphs with large factors.
Theor. Comput. Sci. 102(2), 283–305 (1992)

7. Dell, H., Husfeldt, T., Marx, D., Taslaman, N., Wahlen, M.: Exponential time
complexity of the permanent and the tutte polynomial. ACM Transactions on
Algorithms 10(4), 21 (2014)

8. Leslie Ann Goldberg and Mark Jerrum: The complexity of computing the sign of
the tutte polynomial. SIAM J. Comput. 43(6), 1921–1952 (2014)

9. Hoffmann, C.: Exponential Time Complexity of Weighted Counting of Independent
Sets. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 180–191.
Springer, Heidelberg (2010)

10. Husfeldt, T., Taslaman, N.: The Exponential Time Complexity of Computing the
Probability That a Graph Is Connected. In: Raman, V., Saurabh, S. (eds.) IPEC
2010. LNCS, vol. 6478, pp. 192–203. Springer, Heidelberg (2010)

11. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Computer and Sys. Sci. 63(4), 512–530 (2001)

12. Jaeger, F., Vertigan, D.L., Welsh, D J.A.: On the computational complexity of
the Jones and Tutte polynomials. Mathematical Proceedings of the Cambridge
Philosophical Society 108(1), 35–53 (1990)

392 R. Curticapean

13. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. J. ACM 51(4), 671–697
(2004)

14. Linial, N.: Hard enumeration problems in geometry and combinatorics. SIAM Jour-
nal on Algebraic and Discrete Methods 7(2), 331–335 (1986)

15. Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and
matroids. Surveys in Combinatorics 327, 173–226 (2005)

16. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs.
SIAM J. Comput. 31(2), 398–427 (2001)

17. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8(2), 189–201 (1979)

On Convergence and Threshold Properties
of Discrete Lotka-Volterra Population Protocols

Jurek Czyzowicz1, Leszek Ga̧sieniec2, Adrian Kosowski3(B)

Evangelos Kranakis4, Paul G. Spirakis2,5, and Przemys�law Uznański6

1 Department d’Informatique, Université du Québec en Outaouais,
Gatineau, QC, Canada

jurek.czyzowicz@uqo.ca
2 Department of Computer Science, University of Liverpool, Liverpool, UK

L.A.Gasieniec@liverpool.ac.uk
3 Inria Paris and LIAFA, Université Paris Diderot, Paris, France

adrian.kosowski@inria.fr
4 Carleton University, School of Computer Science, Ottawa, ON, Canada

kranakis@scs.carleton.ca
5 CTI, Patras, Greece

P.Spirakis@liverpool.ac.uk
6 Helsinki Institute for Information Technology HIIT,

Aalto University, Espoo, Finland
przemyslaw.uznanski@aalto.fi

Abstract. In this work we focus on a natural class of population pro-
tocols whose dynamics are modeled by the discrete version of Lotka-
Volterra equations with no linear term. In such protocols, when an agent
a of type (species) i interacts with an agent b of type (species) j with a
as the initiator, then b’s type becomes i with probability Pij . In such an
interaction, we think of a as the predator, b as the prey, and the type
of the prey is either converted to that of the predator or stays as is.
Such protocols capture the dynamics of some opinion spreading models
and generalize the well-known Rock-Paper-Scissors discrete dynamics.
We consider the pairwise interactions among agents that are scheduled
uniformly at random.

We start by considering the convergence time and show that any
Lotka-Volterra-type protocol on an n-agent population converges to some
absorbing state in time polynomial in n, w.h.p., when any pair of agents
is allowed to interact. By contrast, when the interaction graph is a
star, there exist protocols of the considered type, such as Rock-Paper-
Scissors, which require exponential time to converge. We then study
threshold effects exhibited by Lotka-Volterra-type protocols with 3 and
more species under interactions between any pair of agents. We present
a simple 4-type protocol in which the probability difference of reaching

This research was partially funded by the EU IP FET Proactive project MULTI-
PLEX, by ERC Project ALGAME, by ANR project DISPLEXITY, by NCN grant
DEC-2011/02/A/ST6/00201, by University of Liverpool EEE/CS NeST initiative,
and by NSERC. A full version of the paper is available at http://arxiv.org/abs/
1503.09168.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 393–405, 2015.
DOI: 10.1007/978-3-662-47672-7 32

http://arxiv.org/abs/1503.09168
http://arxiv.org/abs/1503.09168

394 J. Czyzowicz et al.

the two possible absorbing states is strongly amplified by the ratio of the
initial populations of the two other types, which are transient, but “con-
trol” convergence. We then prove that the Rock-Paper-Scissors protocol
reaches each of its three possible absorbing states with almost equal prob-
ability, starting from any configuration satisfying some sub-linear lower
bound on the initial size of each species. That is, Rock-Paper-Scissors is
a realization of a “coin-flip consensus” in a distributed system. Some of
our techniques may be of independent value.

1 Introduction

Population protocols are a recent model of computation that captures the way
in which the complex behavior of systems (biological, sensor nets, etc.) emerges
from the underlying local interactions of agents. Agents are modeled as anony-
mous automata with a finite number of states, and interactions (changes of
state) occur between randomly chosen pairs of agents under some fixed set of
local rules. The interaction follows from the mobility of agents in the population,
as in the case of birds flying past each other in a flock in the setting originally
described by Angluin et al. [2,4]. More generally, we can model agents as nodes
of an interaction graph G, and assume interactions take place along the edges
of this graph.

Population protocols provide a way of describing dynamical effects which may
occur in a population. For example, one can imagine that members of a popu-
lation can be either healthy or infected, and whenever two individuals meet, if
one is infected, then the other one also becomes infected. Thus the interesting
question becomes: how fast can the infection spread? Quite naturally, population
protocols are also used to model opinion spread in populations under interac-
tions. An interaction between a pair of agents, one holding opinion A and the
other opinion B, results in a possible change of opinion by one of the interacting
agents. Eventually, the population protocol may lead the system to converge to
a state in which one type, A or B, becomes dominant in the population. The
probability of convergence to a given dominant type may potentially depend
on the initial state of the population in different ways, e.g., exhibiting linear
behavior, or transitions at one or more thresholds (cf. Fig. 1).

Fig. 1. Examples of objective functions for opinion spreading: probability p that a
given type becomes dominant in the population as a function of the fraction r of its
supporters in the initial population

On Convergence and Threshold Properties 395

In this work, we focus on a natural scenario of interactions modeled by the
discrete version of Lotka-Volterra equations, with the goal of better understand-
ing their applicability in the computational framework of opinion spreading and
voting protocols. In their original form, the (continuous) Lotka-Volterra differen-
tial equation were initially applied in the modeling of periodic chemical reactions
and also in the predator-prey dynamics of fish in the Adriatic Sea [12, p.11], and
are perhaps best known for their connection to replicator dynamics and to evolv-
ing strategies in game theory [12,19]. In discrete Lotka-Volterra-type (LV-type)
population protocols, during an interaction, the initiating agent (holding some
state A) tries to impose its state on the other agent (holding some other state B)
and succeeds with some probability PAB . LV-type interactions are natural both
in the context of predator-prey protocols, in that they correspond to a possible
expansion of the predating (initiating) agent into the ecological niche of its prey,
and in opinion propagation, in that they do not allow a new derived state C to
be created as a result of an interaction.

Our Results. We start by proving in Section 2 a general convergence result:
any LV-type protocol on a n-agent population converges to some absorbing state
in time O(poly(n)), w.h.p., under the model of uniformly random interactions
between agents (i.e., when the interaction graph is the complete graph G = Kn).
By contrast, we also show in Section 2 that introducing an interaction constraint
can severely impact the convergence time for LV-type protocol. We consider a
specific LV-type protocol known as rock-paper-scissors (RPS), in which each of
the three types overcomes exactly one other type in cyclic manner, and show
that RPS requires exponential time to converge to an absorbing state when the
interaction graph is a star (G = K1,n).

Next, we look at the applicability of LV-type protocols in the context of their
threshold behavior in voting problems which require a consensus of opinion. For
the case of 2 types, the only unbiased LV-type protocol encompasses the so-called
“game of life and death” between the 2 types, converging to a given absorbing
state with probability proportional to its initial representation in the population
(regardless of the interaction graph G). This captures the linear behavior shown
in Fig. 1. We show, however, that for 3 and more types, threshold effects become
apparent even under uniform interactions (G = Kn). We start by proposing in
Section 3 a simple 4-type majority-type protocol, in which the probability differ-
ence of reaching the two absorbing types is amplified with respect to the ratio of
the initial populations of the two other states. We close the paper by exhibiting
in Section 4, for the before-mentioned RPS protocol a completely different type
of threshold effect in the small population region. We prove that RPS reaches
each of its three absorbing types with almost equal probability (1/3 ± o(1)),
starting from any configuration satisfying some sub-linear lower bound on the
sizes of the three types. Our proof proceeds by a Martingale-type analysis and
takes into account the symmetries of the state space of the protocol. We can thus
view the RPS protocol as an embodiment of the “coin-flip consensus” illustrated
in Fig. 1: any opinion with non-negligible representation in the population, even

396 J. Czyzowicz et al.

a minority one, has an equal chance of success in the opinion-spreading pro-
cess. To the best of our knowledge, this is the first population protocol with
polynomial-time convergence for which such a property has been identified.

Related Work. The population protocol model of Angluin et al. [2,3] cap-
tures random interactions between finite-state agents, motivated by applications
in sensor mobility. Despite the limited computational capabilities of individual
sensors, such protocols permit at least (depending on available extensions to the
model) the computation of two important classes of functions: threshold predi-
cates, which decide if the weighted average of types appearing in the population
exceeds a certain value, and modulo remainders of similar weighted averages.
The majority function, which belongs to the class of threshold functions, was
shown to be stably computable for the complete interaction graph [2]. Another
majority protocol for the complete interaction graph, converging to a popula-
tion of a single type, was proposed in [3]. This protocol relies on 3 types, two of
which represent the original types present in the population, while the third is a
transient type representing a blank opinion. The type reached by the protocol is
the initial majority type, w.h.p., provided that the initial difference between the
majority and minority type is ω(

√
n log n) for a n-agent population. A 4-state

protocol for finding a majority is presented in [5], based on a different principle
of “leader” and “follower” agents, and achieves similar performance guarantees.
Finally, [17] presented a 4-state protocol which converges in expected polyno-
mial time to the initial majority type with probability 1, even when the difference
between types in the original population is constant and when interactions are
not spread uniformly over the population, but restricted to a connected sub-
graph of agent pairs. Other applications and models of population protocols are
surveyed in [5,18].

Spreading of Opinion and Voting. The spread of trust and opinion in a social
network was one of the original motivations for the study of population proto-
cols [9]. Problems in which a set of nodes has to converge to a consensus decision
chosen from a candidate set of values proposed by the participating nodes, are
also of fundamental importance in distributed computing, in tasks such as serial-
ization of database operations or leader election [11]. Models of voting processes,
which solve such questions, involve the propagation of opinion through multiple
push- or pull-operations between pairs of agents, usually performed in parallel
throughout the system. From the perspective of security and simplicity of design,
a desirable property of the protocols is that at any time during the execution,
the state of the node should describe its current opinion, belonging to the set of
opinions initially represented in the population. Under this constraint, given a
set of only 2 initial opinions, it is impossible to obtain convergence to the major-
ity opinion w.h.p. of correctness in the standard model of voting (cf. e.g. [7]).
However, majority voting can be achieved in many graph classes by extensions of
the population protocol framework, allowing simultaneous interactions between
more than 2 nodes. Specifically, protocols in which a node polls a constant num-
ber k of randomly chosen neighbors in the interaction graph and changes its

On Convergence and Threshold Properties 397

opinion as the majority opinion in the chosen neighborhood set, have been con-
sidered in the literature [1,6–8].

Discrete LV Dynamics and Cyclic Games. The continuous Lotka-Volterra
dynamics, first defined in [16], gave rise to several discrete variants of predator-
prey models of interaction in a population, which differ essentially in the way
the population size is maintained after the prey is attacked by the predator.
The LV-type model is particularly worthy of study due to its transient stabil-
ity in a setting in which several species are in a cyclic predator-prey relation,
useful for maintaining biodiversity, e.g., in bacterial colonies [13,14]. Cycles of
length 3, in which type 1 attacks type 2, type 2 attacks type 3, and type 3
attacks type 1, form the basis of the best-known such protocol, called rock-
paper-scissors (RPS). The transient properties of RPS and related protocols,
describing in particular the time until the system collapses to an absorbing state,
have been studied in the statistical physics literature using a variety of experi-
mental and analytical techniques, under various scheduler models. The original
analytical estimation method applied to RPS was based on approximation with
the Fokker-Planck equation [21]. A subsequent analysis of cyclic 3- and 4-species
models using Khasminskii stochastic averaging can be found in [10]. A mean field
approximation-based analysis of RPS was performed in [20]. All of these results
provide a qualitative understanding of cyclic protocols, and at a quantitative
level, provide evidence that the RPS protocol reaches an absorbing state after
roughly O(n2) interactions.

Model and Preliminaries. We consider population protocols in the following
setting. The population V with k types (species) is a set of n agents, with
each agent v ∈ V assigned a state variable s, whose value at time t is denoted
st(v) ∈ {1, . . . , k} ≡ [k], describing its current type. The elements of V are
connected into an (undirected, connected) interaction graph G = (V,E). Agents
assigned to type i at time t, 1 ≤ i ≤ k, are called the population of type i at
time t.

The population protocol P is a probability distribution over [k]2, taking val-
ues in [k]2. In an execution of protocol P , at each time step t = 1, 2, 3, . . .,
a scheduler daemon picks a pair of interacting agents u, v ∈ V such that
(u, v) ∈ E u.a.r., and updates the state variables of these agents, sampling the
pair (st+1(u), st+1(v)) according to the distribution P (st(u), st(v)). We will say
that the population protocol is of the Lotka-Volterra type (LV-type for short) if
the state of the initiating agent (the predator) never changes during an inter-
action, and the state of the other agent (the prey) either remains unchanged
or changes to that of the initiator, i.e., for any transition which occurs with
non-zero probability, we have st+1(u) = st(u) and st+1(v) ∈ {st(u), st(v)}.

For i ∈ [k] and a fixed execution of protocol P , we will denote the size of
the i-th population as ni(t) = |{v ∈ V : st(v) = i}|, and its relative size as
xi(t) = ni(t)/n. The set of states of all n agents at time t is referred to as
the state or configuration of the system. When the interaction graph G is the

398 J. Czyzowicz et al.

complete graph Kn, then we identify the state of the system with the vector x(t).
For G = Kn, the protocol P defines a Markov chain on the set X of possible
states x(t). We note that in this case, the size of the state space can be trivially
bounded as O(nk), i.e., is polynomial in n for any fixed protocol.

Throughout the paper, any LV-type protocol P will be identified with its k×k
probability matrix P , such that for an interaction (u, v), we have st+1(v) = st(u)
with probability Pst(u),st(v), and st+1(v) = st(v) with probability 1−Pst(u),st(v).
(Informally, we may write: “ij → ii with probability Pij”.) In general, matrix
P need not be symmetric nor stochastic. We only assume that Pii = 0, for
1 ≤ i ≤ k, and that every type interacts in some way with at least one other
type (for every i, 1 ≤ i ≤ k, there exists j, 1 ≤ i ≤ k, such that Pij > 0 or
Pji > 0). We will denote the value of the minimal non-zero entry of matrix P
as Pmin. For every LV-type protocol, we construct the corresponding digraph
D(P), whose vertex set is the set of types [k], and an arc (i, j) exists if Pi,j > 0.
We call the dynamics irreducible if the digraph D(P) has no sources (i.e., there
are no types without a predator, so each column of matrix P has at least one
non-zero entry) and is connected.

We remark that as n → ∞, our random process converges to its (deter-
ministic) limit continuous dynamics, given by the following set of first-order
differential equations (a special case of the continuous Lotka-Volterra equations,
with no linear term):

dxi(t)
dt

= xi(t)
k∑

j=1

[(Pij − Pji)xj(t)] , for 1 ≤ i ≤ k. (1)

Our discrete population case with finite n can be informally seen as a special
form of “noise” introduced into the Lotka-Volterra equation (1).

In this paper, we also give our attention to two specific LV-type protocols:
– Rock-Paper-Scissors (RPS) is the LV-type protocol with k = 3 types

(denoted 1, 2, 3), whose probability matrix P has the following non-zero
entries: P12 = P23 = P31 = 1.

– Wolves-and-Sheep (WS) is the LV-type protocol with k = 4 types (denoted
X,Y, x, y), whose probability matrix P has the following non-zero entries:
PXY = PXx = PY X = PY y = 1, PXy = PY x = 1/2.

We use the term “with very high probability” (w.v.h.p.) to denote events occur-
ring with probability at least 1−e−Ω(log2 n) and the term “with high probability”
(w.h.p.) for events occurring with probability at least 1 − n−Ω(1). In time and
distance analysis, we will use the notation Õ to conceal poly-logarithmic factors
(Õ(f) = O(fpolylog(n))).

2 Convergence of Discrete LV-type Protocols

We start by showing that any LV-type protocol on a population of size n con-
verges to an absorbing state in time O(poly(n)), when there are no population
constraints (the interaction graph is Kn).

On Convergence and Threshold Properties 399

Theorem 1 (LV-type convergence for complete interactions). For any
probability matrix P , there exists a constant c such that the LV-type protocol
defined by P converges for the complete interaction graph to an absorbing state
in O(nc) steps, w.v.h.p.

Before proceeding with the proof, we introduce some auxiliary notation. For
a fixed matrix P , we define the skew-symmetric net interaction matrix A as
A = P − PT . Observe that Aij = Pij − Pji and equation (1) describing the
continuous dynamics now takes the simpler form:

dxi

dt
= xi(Aix), (2)

where we treat x as a column vector, and Ai is the i-th row vector of matrix
A (cf. [12, Chapter7] for a more detailed exposition of the properties of this
continuous dynamics).

For a fixed real vector b ∈ Rk, which we will appropriately choose later, we
define the potential U of a system state x as (compare [12, equation(5.3)]):

U(x) =
k∑

i=1

bi ln xi,

and by U(t) we will mean U(x(t)). Observe that under evolution of the system
given by the continuous dynamics (2), we have:

dU

dt
=

k∑

i=1

bi
1
xi

dxi

dt
=

k∑

i=1

bi(Aix) =
k∑

j=1

((
k∑

i=1

biAij

)
xj

)
= bT Ax.

We define vector b as follows:
(i) if there exists a non-zero vector b ≥ 0, such that bT A = 0, choose b as any

such vector with ‖b‖∞ = 1.
(ii) otherwise, choose b as any vector satisfying bT A > 0, with ‖b‖∞ = 1.
The completeness of the above definition follows from a basic theorem of linear
optimization, known as the “no arbitrage theorem” in financial mathematics (cf.
also [12, proofofThm. 5.2.1]).

Proof (of Theorem 1, sketch). Observe that by the definition of the LV-type
process, if a certain type i has been eliminated by time t (xi(t) = 0), then it will
never reappear (xi(τ) = 0, for all τ ≥ t). We will now show that the number of
non-zero values of xi, 1 ≤ i ≤ k, is reduced by at least one within a polynomial
number of steps, w.h.p. Note that this is sufficient to obtain the claim of the
theorem, since we may iterate the argument, each time restricting the definition
of the dynamics and the matrix A to those of the k types which are non-empty.
In the rest of the proof, we will be assuming w.l.o.g. that xi > 0, for all i.
We will also be assuming that the dynamics is irreducible; otherwise, if digraph
D(P) is disconnected, we can consider each of the weakly connected components
separately, and if any of the weakly connected components has a source, then

400 J. Czyzowicz et al.

one can easily show that all the prey of this source is eliminated in a polynomial
number of steps.

The main part of the proof is contained in the following claim.
Claim. For any irreducible LV-type protocol, there exists a constant nmin,

such that for any n > 0, for any initialization of the protocol with n agents,
w.v.h.p. there exists a time step T ∈ O(poly(n)) in which ni(T) < nmin, for
some type i, 1 ≤ i ≤ k.

The proof of the claim proceeds by a careful analysis of the change of potential
U in time. Depending on case (i) and (ii) in the definition of vector b, we provide
an absolute lower bound on the expectation E(δ(t)|x(1), . . . , x(t − 1)) for the
stochastic process δ(t) = U(t + 1) − U(t), given that ni(T) ≥ nmin for all types
i. We then perform a super/sub-martingale analysis for the deviation of δ(t)
from this expected change of potential for the two cases (i) and (ii), applying
Azuma’s inequality to bound the number of steps of the process until we reach
ni(T) < nmin, for some type i. The details are provided in the full version of the
paper.

To obtain the claim of the theorem, we now need to notice that whenever the
population of some type drops below a constant threshold nmin, the probability
that the population is eliminated completely within the next O(1) steps of the
irreducible protocol is polynomially large in n. Overall, after at most O(n2nmin+1)
occurrences of the event “there exists 1 ≤ i ≤ k such that ni < nmin”, each of
which takes place every polynomial number of steps w.v.h.p. by the Claim, one
of the species will have been eliminated completely w.v.h.p., which gives the
claim of the theorem.
�

It turns out that for LV-type protocols, the convergence time may become
exponential when the interaction graph is not complete. Whereas all LV-type
protocols with 2 species (e.g., the game of life-and-death [12]) converge in poly-
nomial time to an absorbing state for any interaction graph, this is no longer
true when the number of species is at least 3. We observe this for the rock-paper-
scissors (RPS) protocol on the star.

Theorem 2 (RPS convergence on the star). The RPS protocol with a K1,n

interaction graph, initialized so that initially each type has at least nmin ≥ n/3−
n/200 agents, reaches the absorbing state in expected time Tabs ≥ enΩ(1)

.

3 The Wolves-and-Sheep (WS) Protocol

In this section, we investigate the dynamics of the Wolves-and-Sheep LV-type
protocol, aiming at replicating dynamics of infection spreading for two different
infections and two types of partial immunity to infections. In the considered
setting, initially almost all the population consists of types x and y (susceptible
agents known as “sheep”). A constant number of infected agents of types X and
Y (the “wolves”) are introduced into the population. Following the definition of
the protocol, a wolf acting as a predator infects a sheep of a type denoted by the

On Convergence and Threshold Properties 401

same lower-case with probability 1, and a sheep of the opposite lower-case type
with smaller probability (1/2). Thus, in the protocol, population x of sheep has
affinity towards X (or resistance for Y), and population y has affinity towards
Y (or resistance for X). We note that in the definition of the WS protocol, we
also add some random drift between the species X and Y , which does not affect
the nature of the process, but allows us to achieve an absorbing state in which
eventually only the dominant type is represented.

Theorem 3 (majority amplification by WS). Let nX(0) = 1, nY (0) = 1,
nx(0) = Θ(n) and ny(0) = Θ(n), such that nx(0)

ny(0)
= 1+ε

1−ε for some absolute
constant ε > 0. Then the system reaches the absorbing state with only population
X, w.h.p.

4 The Rock-Paper-Scissors (RPS) Protocol

In this section, our goal is to show that the RPS protocol reaches each of absorb-
ing states with almost equal probability, given that the initial population of
each species is linear (or slightly sub-linear) in n. The RPS protocol admits a
cyclic symmetry of behavior with respect to its species. For each of the species
a ∈ {1, 2, 3}, the relative change Δxa in population of this species in the given
step can be expressed as:

Δxa =
1
n

· Δna =

⎧
⎪⎨

⎪⎩

+1/n, with probability xaxa+1,

−1/n, with probability xa+2xa,

0, otherwise,
(3)

where the population of at most one species changes in every step. The indices of
populations are always 1, 2, or 3, and other values should be treated as mod 3, in
the given range. We also introduce the continuous dynamics x̄(t) corresponding
to the RPS process, given for each species by the differential equation:

dx̄a

dt
=

x̄a

n
(x̄a+1 − x̄a+2), (4)

which corresponds precisely to the continuous dynamics (1), up to an additional
time-scaling factor of n introduced for easier comparison with the discrete pro-
cess. In all further considerations, we set the potential U used in the analysis
as: U(x) = lnx1 + ln x2 + ln x3. Lines U = const correspond to orbits in the
continuous setting (4).

Theorem 4 (coin-flip consensus property of RPS). For any state x such
that xa > n−0.002 for all a ∈ {1, 2, 3}, the probability of the system reaching any
one of its three possible absorbing states is 1

3 ± Õ(n−0.05).

The proof of the theorem relies on the observation that the discrete RPS
protocol approximately follows the limit cycle (orbit) of its continuous version.

402 J. Czyzowicz et al.

More precisely, we will observe that for an appropriately chosen starting state
x(0) = (x1, x2, x3) of the system, there is a time moment t (corresponding to
an approximate traversal of 1/3 of the limit cycle) for which the state is given
as x(t) = (x3 + Δx3, x1 + Δx1, x2 + Δx2), with Δxi sufficiently small. We will
then use this to observe that if the probability of reaching any fixed absorbing
state i from state (x1, x2, x3) is p and of reaching absorbing state i from state
(x1+Δx1, x2+Δx2, x3+Δx3) is pΔ, then by cyclic symmetry of populations, the
probability of reaching state (i + 1)mod 3 from state x(t) is also pΔ. If p ≈ pΔ,
then state x(0) leads to absorbing states i and (i + 1)mod 3 with almost the
same probability.

At an intuitive level, the main arguments of the proof are the following. To
show that the probability of reaching an absorbing states are almost the same
for points x(0) = (x1, x2, x3) and y(0) = (x3, x1, x2), we perform a coupling
of walks starting from x(0) and y(0). Here, coupling of Markovian processes is
understood in the usual sense (cf. e.g.[15]), though it is worth noting that since
we are interested only in reaching an absorbing state, we can in some steps of
the coupling decide to delay one of the walks, allowing the other to run, provided
that each of the processes remains unbiased. For simplicity, suppose that a walk
x is located at a point at which all populations are of linear size in N and the
difference in size between the largest and smallest population is also linear in n
(e.g., U(x) = −20). The behavior of the (undelayed) walk x under our evolution
in the next t steps (for t sufficiently small with respect to n) can be seen as a
superposition of three types of motion:
1. Propagation along the trajectory U(x) = const at a speed approximately

given by the evolution of the continuous process (4). The Euclidean distance
traversed in a single step is Θ(1/n), or Θ(t/n) over t steps.

2. Random drift along the trajectory U(x) = const (slowing or accelerating
with respect to the average speed). Over a short interval time of length t,
this drift shifts the point by ±Õ(

√
t/n) along its trajectory.

3. Random drift orthogonal to the trajectory U(x) = const. Over a short
interval time of length t, this drift shifts the potential U of the point by
±Õ(

√
t/n).

The analysis of the process is somewhat technical, since the two types of ran-
dom drift have slightly biased averages, the probabilities of different moves are
changing over time, and the motion in different directions is not independent.
The drift and the propagation speed also depend on the relation between the
maximum and minimum of the sizes of the three populations, which change in
time. We recall the following simple property of a simple random walk on a line:
a walk starting from point 0 and proceeding for T steps is confined to an interval
of the form [−Õ(

√
T), Õ(

√
T)] w.v.h.p, but is likely to hit all points at a distance

of o(
√

T) from 0. The random drifts of our process behaves closely enough to a
combination of independent random walks that by a Doob martingale analysis,
we can apply a generalization of this property to our process (see the full version
of the paper for details). We first introduce two measures of distance of a pair
of points x(a), x(b) in our state space:

On Convergence and Threshold Properties 403

– dU (x(a), x(b)) = |U(x(a)) − U(x(b))|,
– d∞(x(a), x(b)) = ‖x(a)−x(b)‖∞ = max{|x(a)

1 −x
(b)
1 |, |x(a)

2 −x
(b)
2 |, |x(a)

3 −x
(b)
3 |}.

We next show a sequence of claims bounding the distances dU and d∞ of a process
progressing under the discrete RPS protocol from that under the continuous
dynamics (4). For compactness, these are given here in the form of the following
summary lemma.

Lemma 1. Let x(0) be a point in the state space of RPS with U(x(0)) > −γ ln n
for some absolute constant 0 < γ < 1/6, let x(t) be the random variable repre-
senting the point reached after following the population protocol for t steps start-
ing from point x(0). Next, consider the process x̄(t) governed by the continuous
RPS dynamics (4) with any starting point x̄(0) such that d∞(x̄(0), x(0)) ≤ Δ, for
some Δ > 0. Then, for sufficiently large n and any integer T > 0, the following
claim holds:
– If T ≤ n5/3, then: ∀t∈{1,...,T} dU (x(t), x(0)) = Õ(T 0.5/n1−γ), w.v.h.p.
– If T ≤ n2/3, then: ∀t∈{1,...,T} d∞(x(t), x̄(t)) = Õ(Δ + T 0.5/n), w.v.h.p.
– If T ≤ n5/3 and −10 > U(x(0)) > −γ ln n for some absolute constant 0 <

γ < 1/6, then: ∀t∈{1,...,T} d∞(x(t), x̄(t)) = Õ((Tnγ−2/3+1)·(Δ+T 0.5nγ−1)),
w.v.h.p.

– If n6γ ≤ T ≤ n4/3−8γ , Δ ≤ T 0.5nγ−1, and −10 > U(x(0)) > −γ ln n for
some absolute constant 0 < γ < 1/6, then there exists an integer time step
T ′ = (1 + o(1))T , such that d∞(x(T ′), x̄(T)) = Õ(T 0.5nγ−1), w.v.h.p.

We are now ready to apply the coupling technique to obtain the main technical
result of this section.

Lemma 2. Fix γ = 0.005 and ε = 0.05. Let x(0) = (x1(0), x2(0), x3(0)) be arbi-
trarily fixed with −12 > U(x(0)) > −γ ln n, and let y(0) = (x3(0), x1(0), x2(0)).
Then, there exist a coupling of x and y which leads to the same absorbing state
with probability 1 − Õ(n−ε).

Proof (sketch). The proof proceeds by a coupling of walks originating from x and
y. By a slight abuse of notation, we will denote by x(t) and y(t) the position of
each of the two walks in the state space after t steps, which may include steps in
which a given walk is delayed. Our goal is to make points x(t) and y(t) coalesce
within a small number of steps T , i.e., to obtain x(T) = y(T) with probability
1 − O(n−ε), where T � n1.33.

The coupling proceeds in five phases. We limit this proof sketch to a high-
level overview, thinking for now of the potential U(x(0)) = Θ(1) to simplify
calculations. In Phase 1, point x approaches point y, which is stopped. In this
way, the infinity norm distance between x and y is reduced, at the cost of increas-
ing the dU distance to slightly over n−0.5. Next, in Phase 2 we run both walks
independently, so that the distance dU in time follows a random evolution resem-
bling a random walk, and after slightly more than n steps, the value dU = 0 is
hit with sufficiently high probability. Whereas the walks are now orthogonally
aligned, we also need to align them along the orbit, since we may at this point
have them at a distance of d∞ > n−1/3 apart. By allowing the slower walk to

404 J. Czyzowicz et al.

catch up, we reduce d∞ to slightly more than n−2/3, at the cost of increasing
dU to a similar value. In this way, we have decreased the norm in both distances
(from about n−0.5 to about n−2/3). We iterate Phase 2, reducing each time the
distance between the two walks in both norms, up to an iteration in which the
size of the populations in x and y differ by an arbitrarily small polynomial in n.
At this point, only a very small number of time steps remains until coalescence.
We first align the two states by evolving one of them until the size of one of the
three populations is identical for x and y at the end of Phase 3, and then perform
a standard coupling by correlating the evolution of x and y in Phase 4, so as to
make the sizes of the other two populations meet for x and y, while maintaining
equality on the size of the population coalesced in Phase 3. After the coupling is
achieved, we evolve the coalesced state into an absorbing state in Phase 5.
�

The assumptions of Lemma 2 hold for any point x satisfying the assumptions
of Theorem 4, either at time 0, or after a certain number of steps, once potential
U has been sufficiently reduced. This completes the proof of Theorem 4.

References

1. Abdullah, M.A., Draief, M.: Global majority consensus by local majority polling
on graphs of a given degree sequence. Discrete Applied Mathematics 180, 1–10
(2015)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

3. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distributed Computing 21(2), 87–102 (2008)

4. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20(4), 279–304 (2007)

5. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Middleware
for Network Eccentric and Mobile Applications, pp. 97–120. Springer Verlag (2009)

6. Becchetti, L., Clementi, A.E.F., Natale, E., Pasquale, F., Silvestri, R., Trevisan,
L.: Simple Dynamics for Majority Consensus. In: Proc. SPAA, pp. 247–256 (2014)

7. Cooper, C., Elsässer, R., Radzik, T.: The power of two choices in distributed voting.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014,
Part II. LNCS, vol. 8573, pp. 435–446. Springer, Heidelberg (2014)

8. Cruise, J., Ganesh, A.: Probabilistic consensus via polling and majority rules.
Queueing Systems: Theory and Applications 78(2), 99–120 (2014)

9. Diamadi, Z., Fischer, M.J.: A simple game for the study of trust in distributed
systems. Wuhan University Journal of Natural Sciences 6(1–2), 72–82 (2001)

10. Dobrinevski, A., Frey, E.: Extinction in neutrally stable stochastic Lotka-Volterra
models. Phys. Rev. E 85, 051903 (2012)

11. Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to propor-
tionate agreement. Information & Computation 171(2), 248–268 (2001)

12. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cam-
bridge University Press (1998)

13. Kerr, B., Riley, M.A., Feldman, M.W., Bohannan, B.J.M.: Local dispersal promotes
biodiversity in a real-life game of rock-paper-scissors. Nature 418(6894), 171–174
(2002)

On Convergence and Threshold Properties 405

14. Kirkup, B.C., Riley, M.A.: Antibiotic-mediated antagonism leads to a bacterial
game of rock-paper-scissors in vivo. Nature 428(6981), 412–414 (2004)

15. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American
Mathematical Society (2006)

16. Lotka, A.J.: Contribution to the Theory of Periodic Reactions. J. Phys. Chem.
14(3), 271–274 (1910)

17. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Determin-
ing majority in networks with local interactions and very small local memory.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 871–882. Springer, Heidelberg (2014)

18. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: New Models for Population Pro-
tocols. Morgan & Claypool Synthesis Lectures on Distributed Computing Theory
(2011)

19. Szolnoki, A., Mobilia, M., Jiang, L.-L., Szczesny, B., Rucklidge, A.M., Perc, M.:
Cyclic dominance in evolutionary games: a review. J. R. Soc. Interface 11, 20140735
(2014)

20. Parker, M., Kamenev, A.: Extinction in the Lotka-Volterra model. Phys. Rev. E
80, 021129 (2009)

21. Reichenbach, T., Mobilia, M.: M, and E. Frey. Coexistence versus extinction in the
stochastic cyclic Lotka-Volterra model. Phys. Rev. E 74, 051907 (2006)

Scheduling Bidirectional Traffic on a Path

Yann Disser, Max Klimm, and Elisabeth Lübbecke(B)

Department of Mathematics, Technische Universität Berlin, Berlin, Germany
{disser,klimm,eluebbecke}@math.tu-berlin.de

Abstract. We study the fundamental problem of scheduling bidirec-
tional traffic along a path composed of multiple segments. The main
feature of the problem is that jobs traveling in the same direction can be
scheduled in quick succession on a segment, while jobs in opposing direc-
tions cannot cross a segment at the same time. We show that this tradeoff
makes the problem significantly harder than the related flow shop prob-
lem, by proving that it is NP-hard even for identical jobs. We complement
this result with a PTAS for a single segment and non-identical jobs. If
we allow some pairs of jobs traveling in different directions to cross a
segment concurrently, the problem becomes APX-hard even on a single
segment and with identical jobs. We give polynomial algorithms for the
setting with restricted compatibilities between jobs on a single and any
constant number of segments, respectively.

Keywords: Bidirectional traffic · Scheduling · Packet routing · Compu-
tational complexity · PTAS · APX-hardness

1 Introduction

The scheduling of bidirectional traffic on a path is essential when operating
single-track infrastructures such as single-track railway lines, canals, or commu-
nication channels. Roughly speaking, the schedule governs when to move jobs
from one node of the path to another along the segments of the path. The goal
is to schedule all jobs such that the sum of their arrival times at their respective
destinations is minimized. A central feature of real-world single-track infrastruc-
tures is that after one job enters a segment of the path, further jobs moving in
the same direction can do so with relatively little headway, while traffic in the
opposite direction usually has to wait until the whole segment is empty again
(cf. Fig. 1a for a schematic illustration).

Formally, in the bidirectional scheduling problem we are given a path of
consecutive segments connected at nodes, and a set of jobs, each with a release
date and a designated start and destination node. The time job j needs to
traverse segment i is governed by two quantities: its processing time pij and its
transit time τij . While the former prevents the segment from being used by any

M. Klimm and E. Lübbecke—This research was carried out in the framework of
Matheon supported by Einstein Foundation Berlin.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 406–418, 2015.
DOI: 10.1007/978-3-662-47672-7 33

Scheduling Bidirectional Traffic on a Path 407

1 2 3
4

τi1pi1

segment ii−1 i+1

(a) without compatibilities

1 2 3
5 4

τi1pi1

segment ii−1 i+1

(b) with compatibilities

Fig. 1. Bidirectional scheduling of ship traffic through a canal, with and without
compatibilities. The processing time pij of job j is the time needed to enter segment i
with sufficient security headway, i.e., the delay before other jobs in the same direction
may enter the segment. The travel time τij is the time needed to traverse the entire
segment once entered. In both (a) and (b), jobs 1, 2, 3 can enter the segment in quick
succession, while job 4 has to wait until they left the segment. In (b), job 5 is compatible
with jobs 1, 2, 3 so that they may cross concurrently. The time to cross turnouts is
assumed to be negligible.

other job (running in either direction), the latter only blocks the segment from
being used by jobs running in opposite direction. For example, this allows us to
model settings with bidirectional train traffic on a railway line split into single-
track segments that are connected by turnouts (cf. Lusby et al. [17, Section 2]).
In this setting, jobs correspond to trains, the processing time of a job is the time
needed for the train to fully enter the next segment, and the transit time is the
time to traverse the segment (and entirely move into the next turnout). While
a train is entering a single-track segment of the line, no other train may do so.
The next train in the same direction can enter immediately afterwards, whereas
trains in opposite direction have to wait until the segment is clear again in order
to prevent a collision.

Fig. 2 shows the path-time-diagram of a feasible schedule for two segments
and four jobs. Jobs are represented by parallelograms of the same color. The pro-
cessing time of a job on a segment is reflected by the height of the corresponding
parallelogram, while the transit time is the remaining time (y-distance) to the
lowest point of the parallelogram. In a feasible schedule, jobs may not intersect,
and, in particular, a job can only begin being processed at a segment once it has
fully exited the previous segment. Note that in the example it makes sense for
the two rightbound jobs to switch order while waiting at the central node.

We also study a generalization of the model to situations where some of
the jobs are allowed to pass each other when traveling in different directions
(cf. Fig. 1b). This is a natural assumption, e.g., when scheduling the ship traffic
on a canal, where smaller ships are allowed to pass each other while larger
ships are not (cf. Lübbecke et al. [16]). In practice, the rules that decide which
ships are allowed to pass each other are quite complex and depend on multiple
parameters of the ships such as length, width, and draught (e.g., cf. [5]). We

408 Y. Disser et al.

i = 1 i = 2

timej

j

rj
p2j

τ2j

p1j

τ1j
Cj

Fig. 2. Representation of a schedule on two segments (i = 1, 2) and four jobs as a
path-time-diagram. In this example, all jobs are processed immediately at their release
date. Job j is released at time rj at the right end of segment 2 and needs to reach
the left end of segment 1. Since it never has to wait, its completion time is smallest
possible: Cj = rj + p2j + τ2j + p1j + τ1j .

model these complex rules in the most general way by a bipartite compatibility
graph for each segment, where vertices correspond to jobs and two jobs running
in different directions are connected by an edge if they can cross the segment
concurrently.

Our Results. Table 1 gives a summary of our results. We first show that
scheduling bidirectional traffic is hard, even without processing times and with
identical transit times (Section 3). The proof is via a non-standard reduction
from MaxCut. The key challenge is to use the local interaction of the jobs on
the path to model global interaction between the vertices in the MaxCut. We
overcome this issue by introducing polynomially many vertex gadgets encoding
the partition of each vertex and synchronizing these copies along the instance. We
complement this result with a polynomial time approximation scheme (PTAS)
for a single segment and arbitrary processing times (Section 4) using the (1+ ε)-
rounding technique of Afrati et al. [1].

We then show that bidirectional scheduling with arbitrary compatibility
graphs is APX-hard already on a single segment and with identical processing
times (Section 5). The proof is via a reduction from a variant of Max-3-Sat
which is NP-hard to approximate within a factor smaller than 1016/1015, as
shown by Berman et al. [3]. As a byproduct, we obtain that also minimizing the
makespan is APX-hard in this setting. We again complement our hardness result
by polynomial algorithms for identical jobs on constant numbers of segments
and with a constant number of compatibility types (Section 6).

Significance. With this paper we initiate the mathematical study of optimized
dispatching of traffic in networks with bidirectional edges, e.g. train networks,
ship canals, communication channels, etc. In all of these settings, traffic in one
direction limits the possible throughput in the other direction. While in the
past decades a wealth of results has been established for the unidirectional case
(i.e., classical scheduling, and, in particular, flow shop models), surprisingly, and

Scheduling Bidirectional Traffic on a Path 409

Table 1. Overview of our results for bidirectional scheduling.
1 even if p = 0, τi = 1, 2 only if p = 1, τi ≤ const, 3 even if τi = p = 1.

Number m of segments
compatibilities m = 1 m const. m arbitrary

Different jobs pij = pj, τij = τi
PTAS [Thm. 2]

none/all compatible
NP-hard [15]

NP-hard1
[Thm. 1]

Identical jobs pij = p, τij = τi
none compatible

const. # types
polynomial [Thm. 5] polynomial2 [Thm. 6] NP-hard1

[Thm. 1]

arbitrary APX-hard3
[Thm. 4]

despite their practical importance, bidirectional infrastructures have not received
a similar attention so far.

The bidirectional scheduling model that we propose captures the essence of
bidirectional traffic by distinguishing processing and transit times. This simple
framework already allows to exhibit the computational key challenges of this
setting. In particular, we show that bidirectional scheduling is already hard for
identical jobs on a path, which is in contrast to the unidirectional case. We
observe another increase in complexity when allowing specific types of traffic to
use an edge concurrently in both directions. In practice, this is reasonable e.g.
for ship traffic in a canal, where small vessels may pass each other. In that sense,
we show that scheduling ship traffic is already hard on a single edge and, thus,
considerably harder than scheduling train traffic.

While bidirectional scheduling is hard in general, we show that certain fea-
tures of real-world scenarios can make the problem tractable, e.g., a small number
of turnouts along a single path and/or a small number of different vessels. In
this work we restrict ourselves to simple paths, but we hope that our results are
a first step towards understanding traffic in general bidirectional networks.

Related Work. Scheduling problems are a fundamental class of optimization
problems with a multitude of known hardness and approximation results (cf.
Lawler et al. [13] for a survey). To the best of our knowledge, the bidirectional
scheduling model that we propose and study in this paper has not been con-
sidered in the past nor is it contained as a special case in any other scheduling
model. We give an overview of known results for related models.

For a single segment and jobs traveling from left to right, bidirectional
scheduling reduces to the classical single machine scheduling problem, which
Lenstra et al. [15] showed to be hard when minimizing total completion time.
Afrati et al. [1] gave a PTAS with generalizations to multiple identical or a
constant number of unrelated machines. Chekuri and Khanna [6] further gen-
eralized the result to related machines. We give a different generalization for

410 Y. Disser et al.

bidirectional scheduling. For unrelated machines Hoogeveen et al. [11] showed
that the completion time cannot be approximated efficiently within arbitrary
precision, unless P = NP.

Bidirectional scheduling also has similarities to scheduling of two job families
with a setup time that is required between jobs of different families. The general
comments in Potts and Kovalyov [19] on dynamic programs for such kinds of
problems apply in part to our technique for Theorem 5.

When all jobs need to be processed on all segments in the same order and all
transit times are zero, bidirectional scheduling reduces to flow shop scheduling.
Garey et al. [10] showed that it is NP-hard to minimize the sum of completion
times in flow shop scheduling, even when there are only two machines and no
release dates. They showed the same result for minimizing the makespan on
three machines. Hoogeveen et al. [11] showed that there is no PTAS for flow
shop scheduling without release dates, unless P = NP. In contrast, Brucker
et al. [4] showed that flow shop problems with unit processing times can be
solved efficiently, even when all jobs require a setup on the machines that can
be performed by a single server only.

Job shop scheduling is a generalization of flow shop scheduling that allows
jobs to require processing by the machines in any (not necessarily linear) order,
cf. Lawler et al. [13, Section 14] for a survey. In this setting, the minimization of
the sum of completion times was proven to even be MAX-SNP-hard by Hoogeveen
et al. [11]. Queyranne and Sviridenko [20] gave a O((log(mμ)/ log log(mμ))2)-
approximation for the weighted case with release dates, where μ denotes the
maximum number of operations per job. Fishkin et al. [8] gave a PTAS for a
constant number of machines and operations per job. It is worth noting that job
shop scheduling does not contain bidirectional scheduling as a special case, since
it does not incorporate the distinction between processing and transit times for
jobs passing a machine in different directions.

Job shop scheduling problems with unit jobs are strongly related to packet
routing problems where general graphs are considered, see the discussion in
seminal paper by Leighton et al. [14]. They proved that the makespan of any
packet routing problem is linear in two trivial lower bounds, called the congestion
and the dilation. For more recent progress in this direction, see, e.g., Scheideler
[21] and Peis and Wiese [18]. All these works, however, consider minimizing the
makespan and assume that the orientation of the graph is fixed. Antoniadis et al.
[2] also consider average flow time on a directed line. They give lower bounds for
competitive ratios in the online setting and O(1) competitive algorithms with
resource augmentation for the maximum flow time.

2 Preliminaries

In the bidirectional scheduling problem, we are given a set M = {1, . . . , m}
of segments which we imagine to be ordered from left to right. Further, we are
given two disjoint sets of J r and J l of rightbound and leftbound jobs, respectively,
with J = J r ∪ J l and n = |J |. Each job is associated with a release date rj ∈

Scheduling Bidirectional Traffic on a Path 411

N, a start segment sj and a target segment tj , where sj ≤ tj for rightbound
jobs and sj ≥ tj for leftbound jobs. A rightbound job j needs to cross the
segments sj , sj +1, . . . , tj −1, tj , and a leftbound job needs to cross the segments
sj , sj −1, . . . , tj +1, tj . We denote by Mj the set of segments that job j needs to
cross. Each job j is associated with a processing time pj ∈ N and each segment i
is associated with a transit time τi ∈ N. Note that we restrict ourselves to
identical processing times for a single job and identical transit times for a single
segment. We call pj + τi the running time of job j on segment i.

A schedule is defined by fixing the start times Sij for each job j on each
segment i ∈ Mj . The completion time of job j on segment i is then defined as
Cij = Sij +pj +τi. The overall completion time of job j is Cj = Ctjj . A schedule
is feasible if it has the following properties.
1. Release dates are respected, i.e., rj ≤ Ssjj for each j ∈ J .
2. Jobs travel towards their destination, i.e., Cij ≤ Si+1,j (resp. Cij ≤ Si−1,j)

for rightbound (resp. leftbound) jobs j and i ∈ Mj \ {tj}.
3. Jobs j, j′ traveling in the same direction are not processed on segment i ∈

Mj ∩ Mj′ concurrently, i.e., [Sij , Sij + pj) ∩ [Sij′ , Sij′ + pj′) = ∅.
4. Jobs j, j′ traveling in different directions are neither processed nor in transit

on segment i ∈ Mj ∩ Mj′ concurrently, i.e., [Sij , Cij) ∩ [Sij′ , Cij′) = ∅.
Our objective is to minimize the total completion time

∑
Cj =

∑
j∈J Cj .

Other natural objectives are the minimization of the makespan Cmax =
max{Cj | j ∈ J} or the total waiting time

∑
Wj =

∑
j∈J Wj where the individ-

ual waiting time of a job j is Wj = Cj−
∑

i∈Mj
(pj+τi)−rj . Note that minimizing

the total waiting time is equivalent to minimizing the total completion time.
We also consider a generalization of the model, where some of the jobs trav-

eling in different directions are allowed to pass each other. Formally, for each
segment i, we are given a bipartite compatibility graph Gi = (J r ·∪J l, Ei) with
Ei ⊆ J r × J l. Two jobs j, j′ that are connected by an edge in Gi are allowed
to run on segment i concurrently, i.e., condition 4 above need not be satisfied.
Specifically, jobs j, j′ may be processed or be in transit simultaneously.

In the following sections we give an intuitive overview of our constructions
and refer for the details of all omitted proofs to the full version [7].

3 Hardness of Bidirectional Scheduling

First, we show that scheduling bidirectional traffic is hard, even when all process-
ing times are zero and all transit times coincide. In other words, we eliminate
all interaction between jobs in the same direction and show that hardness is
merely due to the decision when to switch between left- and rightbound opera-
tion of each segment. This is in contrast to one-directional (flow shop) scheduling
with identical processing times, which is trivial. Formally, we show the following
result.

Theorem 1. The bidirectional scheduling problem is NP-hard even if pj = 0
and τi = 1 for each j ∈ J and i ∈ M .

412 Y. Disser et al.

Fig. 3. Illustration of the vertex gadget in the leftbound (left) and the rightbound
(right) state. At each time t = 0, . . . , 11 multiple right- and leftbound jobs are released.
Since all jobs have processing time 0, jobs in the same direction can be processed
simultaneously. The only two sensible schedules differ in whether leftbound jobs are
processed at even or odd times.

We reduce from the MaxCut problem which is contained in Karp’s list of 21
NP-complete problems [12]. Given an undirected graph G = (V,E) and some
k ∈ N we ask for a partition V = V1 ·∪V2 with |E ∩ (V1 × V2)| ≥ k.

For a considered instance I of MaxCut we construct an instance of the
bidirectional scheduling problem which can be scheduled without exceeding some
specific waiting time if and only if I admits a solution. The translation to sum
of completion times is then straightforward.

A cornerstone of our construction is the vertex gadget that occupies a fixed
time interval on a single segment and can only be (sensibly) scheduled in two
ways (cf. Fig. 4), which we interpret as the choice whether to put the corre-
sponding vertex in the first or second part of the partition, respectively. We
introduce multiple vertex segments that each have exactly one vertex gadget for
each vertex in I and add further gadgets that ensure that the state of all ver-
tex gadgets for the same vertex is the same across all segments. These gadgets
allow us to synchronize vertex gadgets on consecutive vertex segments in two
ways. We can either simply synchronize vertex gadgets that occupy the same
time interval on the two vertex segments (copy gadget), or we can synchronize
pairs of vertex gadgets occupying the same consecutive time intervals on the two
vertex segments by linking the first gadget on the first segment with the second
one on the second segment and vice-versa, i.e., we can transpose the order of two
consecutive gadgets from one vertex segment to the next (transposition gadget).

We construct an edge gadget for each edge in I that incurs a small waiting
time if two vertex gadgets in consecutive time intervals and segments are in
different states and a slightly higher waiting time if they are in the same state.
By tuning the multiplicity of each job, we can ensure that only schedules make
sense where vertex gadgets are scheduled consistently. Minimizing the waiting
time then corresponds to maximizing the number of edge gadgets that link vertex
gadgets in different states, i.e., maximizing the size of a cut.

In order to fully encode the given MaxCut instance I, we need to introduce
an edge gadget for each edge in I. However, edge gadgets can only link vertex

Scheduling Bidirectional Traffic on a Path 413

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Fig. 4. Illustration of our hardness construction for a single edge e = {u, v}. First,
a sequence of segments is used to change the order of vertex gadgets, such that the
vertex gadgets corresponding to u and v occupy consecutive time intervals. Then, an
edge gadget is added that incurs an increased waiting time if the vertex gadgets for u
and v are in the same state.

gadgets in consecutive time intervals. We can overcome this limitation by adding
a sequence of vertex segments and transposing the order of two vertex gadgets
from one segment to the next as described before. With a linear number of vertex
segments we can reach an order where the two vertex gadgets we would like to
connect with an edge gadget are adjacent. At that point, we can add the edge
gadget, and then repeat the process for all other edges in I (cf. Fig. 4).

We can reformulate Theorem 1 for nonzero processing times, simply by mak-
ing the transit time large enough that the processing time does not matter.

Corollary 1. The bidirectional scheduling problem is NP-hard even if pj = 1
and τi = τ for each j ∈ J and i ∈ M .

4 A PTAS for Bidirectional Scheduling

We give a polynomial time approximation scheme (PTAS), i.e., a polynomial
(1 + ε)-approximation algorithm for each ε > 0, for bidirectional scheduling on
a single segment with general processing times. This problem is hard even if all
jobs have the same direction [15]. We extend the machine scheduling PTAS of
Afrati et al. [1] to the bidirectional case, provided that the jobs are either all
pairwise in conflict or pairwise compatible. The main issue when trying to adopt
the technique of [1] is to account for the different roles of processing and transit
times for the interaction of jobs in the same and different directions.

Theorem 2. The bidirectional scheduling problem on a single segment and with
compatibility graph G1 ∈ {Knr,nl , ∅} admits a PTAS.

414 Y. Disser et al.

The first part of the proof in [1] is to restrict to processing times and release
dates of the form (1+ε)x for some x ∈ N and rj ≥ ε(pj +τ1). Allowing fractional
processing and release times we can show that any instance can be adapted to
have these properties, without making the resulting schedule worse by a factor
of more than (1 + ε). We may thus partition the time horizon into intervals
Ix = [(1 + ε)x, (1 + ε)x+1], such that every job is released at the beginning
of an interval. Since jobs are not released too early, we may conclude that
the maximum number of intervals σ covered by the running time of a sin-
gle job is constant. This allows us to group intervals together in blocks Bt =
{Itσ, Itσ+1, . . . , I(t+1)σ−1} of σ intervals each, such that every job scheduled to
start in block Bt will terminate before the end of the next block Bt+1.

To use the fact that each block only interacts with the next block in our
dynamic program, we need to specify an interface for this interaction. For that
purpose we introduce the notion of a frontier. A block respects an incoming
frontier F = (fl, fr) if no leftbound (rightbound) job scheduled to start in the
block starts earlier than fl (fr). Similarly, a block respects an outgoing fron-
tier F = (fl, fr) if no leftbound or rightbound job scheduled to start in the
block would interfere with a leftbound (rightbound) job starting at time fl (fr).
The symmetrical structure of the compatibility graph (Knr,nl or ∅) allows us
to use this simple interface. We introduce a dynamic programming table with
entries T [t, F, U] that are designed to hold the minimum total completion time of
scheduling all jobs in U ⊆ J to start in block Bt or earlier, such that Bt respects
the outgoing frontier F . We define C(t, F1, F2, V) to be the minimum total com-
pletion time of scheduling all jobs in V to start in Bt with Bt respecting the
incoming frontier F1 and the outgoing frontier F2 (and ∞ if this is impossible).
We have the following recursive formula for the dynamic programming table:

T [t, F, U] = minF ′,V ⊆U{T [t − 1, F ′, U \ V] + C(t, F ′, F, V)}.

To turn this into an efficient dynamic program, we need to limit the depen-
dencies of each entry and show that C(·) can be computed efficiently. The
number of blocks to be considered can be polynomially bounded by log D,
where D = maxj rj + n · (maxj pj + τ1) is an upper bound on the makespan.
The following lemma shows that we only need to consider polynomially many
other entries to compute T [t, F, U] and we only need to evaluate C(·) for job sets
of constant size, which we can do in polynomial time by simple enumeration.

Lemma 1. There is a schedule with a sum of completion times within a factor
of (1 + ε) of the optimum and with the following properties:
1. The number of jobs scheduled in each block is bounded by a constant.
2. Every two consecutive blocks respect one of constantly many frontiers.

Proof (sketch). Partitioning the released jobs of each interval direction-wise by
processing time into small and large jobs and bundling small jobs into packages
of roughly the same size allows us to bound the number of released jobs per
interval by a constant, similarly as in [1]. Furthermore, we establish that we may
assume jobs to remain unscheduled only for constantly many blocks.

Scheduling Bidirectional Traffic on a Path 415

For the second property, we stretch all time intervals by a factor of (1 + ε),
which gives enough room to decrease the start times of those jobs interfering
with two blocks such that an 1/ε2-fraction of an interval separates jobs starting
in two consecutive blocks. Thus, we only need to consider σ

ε2 possible frontier
values per direction, or a total of

(
σ
ε2

)2 possible frontiers.
�

5 Hardness of Custom Compatibilities

In Section 3, we showed that bidirectional scheduling is hard on an unbounded
number of machines, even for identical jobs. As the main result of this section,
we show that for arbitrary compatibility graphs the problem is APX-hard already
on a single segment and with unit processing and transit times. For ease of expo-
sition, we first show that the minimization of the makespan is NP-hard. Later
we extend this result towards minimum completion time and APX-hardness.

Theorem 3. The bidirectional scheduling problem on a single segment and with
an arbitrary compatibility graph is NP-hard even if pj = τ1 = 1 for each j ∈ J .

We give a reduction from an NP-hard variant of Sat (cf. [9]). (≤ 3, 3)-Sat
considers a formula with a set of clauses C of size three over a set of variables X,
where each variable appears in at most three clauses and asks if there is a truth
assignment of X satisfying C. Note the difference to the polynomially solvable
(3, 3)-Sat, where each variable appears in exactly three clauses [22].

For a given (≤ 3, 3)-Sat formula we construct a bidirectional scheduling
instance that can be scheduled within some specific makespan T if and only if
the given formula is satisfiable. Our construction is best explained by partitioning
the time horizon [0, T] into four parts (cf. Fig. 5 along with the following).

We use a frame of blocking jobs that need to be scheduled at their release
date. We can enforce this by making sure that at least one blocking job is released
at (almost) each unit time step and that blocking jobs that are not supposed
to run concurrently are incompatible. We release variable jobs that have to be
scheduled into gaps between the blocking jobs. More precisely, in the first part
of the construction we release 6 jobs within a separate time interval for each
variable. Two of these jobs are leftbound and need to be scheduled within the
first two parts of the construction, which implies that one of the two remaining
pairs of rightbound jobs must be scheduled after the second part. If the first
pair is delayed we interpret this as an assignment of true to the variable and
otherwise as false.

The third part of the construction has a gap for each clause, with compatibil-
ities ensuring that only variable jobs can be scheduled into the gap which satisfy
the clause. Since each literal can only appear in at most two clauses, there are
enough variable jobs to satisfy all clauses if the formula is satisfied. Finally, the
last part has 2|X| − |C| gaps that fit any variable job. In order to schedule all
variable jobs before the end of the last part, we thus need to schedule a variable
job into each gap of a clause. This is possible if and only if the given (≤3, 3)-Sat
formula is satisfiable. We can easily extend our result to completion or waiting

416 Y. Disser et al.

xi

xi+1

xi

xi+1

...

(a) P1 and P2: variable assignment

ck
ck+1

...

...

(b) P3: clauses

...

(c) P4:
leftover
jobs

Fig. 5. Illustration (colored) of the four parts of our construction. Time is directed
downwards, rightbound (leftbound) jobs are depicted on the left (right) of each figure.

times by adding many blocking jobs after the last part, such that violating the
makespan also ruins the the total completion time.

With a slight adaption of the construction and more involved arguments, we
can even show APX-hardness of the problem. We reduce from a specific variant
of Max-3-Sat, where each literal occurs exactly twice, and which is NP-hard to
approximate within a factor of 1016/1015, see Berman et al. [3].

Theorem 4. The bidirectional scheduling problem on a single segment and with
an arbitrary compatibility graph is APX-hard even if pj = τ1 = 1 for each j ∈ J .

6 Dynamic Programs for Restricted Compatibilities

After establishing the hardness of bidirectional scheduling with a general compat-
ibility graph in the last section, in this section we turn to the case of a constant
number of different compatibility types. Due to the identical processing times,
the jobs in each direction can be scheduled in the order of their release dates.
The only decision left is when to switch between left- and rightbound operation
of the segments. This decision is hard in the general case (Theorem 1), but we
are able to formulate a dynamic program for any constant number of segments.

Our result generalizes to the case when some jobs of different directions are
compatible as long as the number of compatibility types is constant, where two
jobs j1, j2 in the same direction are defined to have the same compatibility type
if the set of jobs compatible with j1 is equal to the set of jobs compatible with j2
on each segment. Formally, j1 and j2 have the same compatibility type if

{
j :

{j1, j} ∈ Ei

}
=

{
j : {j2, j} ∈ Ei

}
for the compatibility graphs Gi = (J l ·∪J r, Ei)

of each segment i.
For a single segment we partition J into κ subsets of jobs J1, . . . , Jκ where

all jobs of Jc, c ∈ 1, . . . , κ, have the same compatibility type c, and let nc = |Jc|.
Since the jobs of each subset only differ in their release dates, they can again be
scheduled in the order of their release dates. This observation allows us to define
a dynamic program that decides how to merge the job sets J1, . . . , Jκ such that
the resulting schedule has minimum total completion time.

Scheduling Bidirectional Traffic on a Path 417

Theorem 5. The bidirectional scheduling problem can be solved in polynomial
time if m = 1, κ is constant and pj = p for each j ∈ J .

We now consider a constant number of segments m > 1. The main complica-
tion in this setting is that decisions on one segment can influence decisions on
other segments, and, in general, every job can influence every other job in this
way. In particular, we need to keep track of how many jobs of each type are in
transit at each segment, and we can thus not easily adapt the dynamic program
for a single segment. We propose a different dynamic program that relies on all
transit times being bounded by a constant and can be adapted for assumptions
complementary to Theorem 1.

Theorem 6. The bidirectional scheduling problem can be solved in polynomial
time if m and κ are constant and either pj = 1 for each j ∈ J and τi is constant
for each i ∈ M or pj = 0 for each j ∈ J and τi = 1 for each i ∈ M .

References

1. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I.,
Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes
for minimizing average weighted completion time with release dates. In: Proc. 40th
Symposium on Foundations of Computer Science (FOCS), pp. 32–43 (1999)

2. Antoniadis, A., Barcelo, N., Cole, D., Fox, K., Moseley, B., Nugent, M., Pruhs,
K.: Packet forwarding algorithms in a line network. In: Pardo, A., Viola, A. (eds.)
LATIN 2014. LNCS, vol. 8392, pp. 610–621. Springer, Heidelberg (2014)

3. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmet-
ric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity
(ECCC) 10(49) (2003)

4. Brucker, P., Knust, S., Wang, G.: Complexity results for flow-shop problems with
a single server. European J. Oper. Res. 165, 398–407 (2005)

5. Bundesamt für Seeschifffahrt und Hydrographie (BSH). German Traffic Regula-
tions for Navigable Maritime Waterways. Hamburg and Rostock, Germany (2013)

6. Chekuri, C., Khanna, S.: A PTAS for minimizing weighted completion time on
uniformly related machines. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)
ICALP 2001. LNCS, vol. 2076, pp. 848–861. Springer, Heidelberg (2001)

7. Disser, Y., Klimm, M., Lübbecke, E.: Scheduling bidirectional traffic on a path.
arXiv:1504.07129 (2015)

8. Fishkin, A.V., Jansen, K., Mastrolilli, M.: On minimizing average weighted com-
pletion time: A PTAS for the job shop problem with release dates. In: Ibaraki, T.,
Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 319–328. Springer,
Heidelberg (2003)

9. Garey, M.R., Johnson, D.S.: Computers and intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York (1979)

10. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

11. Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results
for scheduling problems with minsum criteria. In: Bixby, R.E., Boyd, E.A.,
Ŕıos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 353–366. Springer,
Heidelberg (1998)

http://arxiv.org/abs/1504.0712

418 Y. Disser et al.

12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103 (1972)

13. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and
scheduling: algorithms and complexity. In: Handbooks in Operations Research and
Management Science, vol. 4, pp. 445–522 (1993)

14. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling
in o(congestion+dilation) steps. Combinatorica 14(2), 167–186 (1994)

15. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine schedul-
ing problems. Ann. Discrete Math. 1, 343–362 (1977)

16. Lübbecke, E., Lübbecke, M.E., Möhring, R.H.: Ship traffic optimization for the
Kiel Canal. Technical Report 4681, Optimization. Online 12 (2014)

17. Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D.: Railway track allocation: models
and methods. OR Spectrum 33(4), 843–883 (2011)

18. Peis, B., Wiese, A.: Universal packet routing with arbitrary bandwidths and tran-
sit times. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655,
pp. 362–375. Springer, Heidelberg (2011)

19. Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: A review. European J.
Oper. Res. 120(2), 228–249 (2000)

20. Queyranne, M., Sviridenko, M.: New and improved algorithms for minsum
shop scheduling. In: Proc. 11th Symposium on Discrete Algorithms (SODA),
pp. 871–878 (2000)

21. Scheideler, C.: Offline routing protocols. In: Universal Routing Strategies for Inter-
connection Networks, pp. 57–71 (1998)

22. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math.
8(1), 85–89 (1984)

On the Problem of Approximating
the Eigenvalues of Undirected Graphs

in Probabilistic Logspace

Dean Doron(B) and Amnon Ta-Shma

The Blavatnik School of Computer Science,
Tel-Aviv University, 69978 Tel Aviv, Israel

deandoron@mail.tau.ac.il, amnon@tau.ac.il

Abstract. We introduce the problem of approximating the eigenvalues
of a given stochastic/symmetric matrix in the context of classical space-
bounded computation.

The problem can be exactly solved in DET ⊆ NC2. Recently, it
has been shown that the approximation problem can be solved by a
quantum logspace algorithm. We show a BPL algorithm that approxi-
mates any eigenvalue with a constant accuracy. The result we obtain
falls short of achieving the polynomially-small accuracy that the quan-
tum algorithm achieves. Thus, at our current state of knowledge, we can
achieve polynomially-small accuracy with quantum logspace algorithms,
constant accuracy with probabilistic logspace algorithms, and no non-
trivial result is known for deterministic logspace algorithms. The quan-
tum algorithm also has the advantage of working over arbitrary, possibly
non-stochastic Hermitian operators.

Our work raises several challenges. First, a derandomization chal-
lenge, trying to achieve a deterministic algorithm approximating eigen-
values with some non-trivial accuracy. Second, a de-quantumization
challenge, trying to decide whether the quantum logspace model is
strictly stronger than the classical probabilistic one or not. It also casts
the deterministic, probabilistic and quantum space-bounded models as
problems in linear algebra with differences between symmetric, stochastic
and arbitrary operators. We therefore believe the problem of approximat-
ing the eigenvalues of a graph is not only natural and important by itself,
but also important for understanding the relative power of deterministic,
probabilistic and quantum logspace computation.

1 Introduction

A graph G can be associated with a linear operator A that describes a random
walk on G. The operator A takes an especially simple form when G is undirected:

D. Doron—Supported by the Israel science Foundation grant no. 994/14, by the
United States – Israel Binational Science Foundation grant no. 2010120 and by the
Blavatnik Fund.
A. Ta-Shma—Supported by the Israel science Foundation grant no. 994/14 and by
the United States – Israel Binational Science Foundation grant no. 2010120.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 419–431, 2015.
DOI: 10.1007/978-3-662-47672-7 34

420 D. Doron and A. Ta-Shma

If G is regular and undirected then A is symmetric and has a complete
basis of orthonormal eigenvectors with real eigenvalues. In other words, there
exists a unitary basis under which A is diagonal with real eigenvalues λi on
the diagonal.

If G is undirected but not necessarily regular, then A is s diagonalizable with
real eigenvalues, i.e., the picture is the same as before except that the basis
is not necessarily unitary.1

If G is directed then A does not necessarily have a full basis of eigenvectors. In
this case A (like any other linear operator) can be brought to its canonical
Jordan Normal Form, where there exists a basis under which A is block-
diagonal and each block has an eigenvalue λ on the main diagonal and 1 on
the diagonal above it.

In this paper we raise the following natural questions:

– How difficult is it to approximate the largest eigenvalues of a general (not
necessarily stochastic or non-negative) operator?

– How difficult is it to approximate all the spectrum of an operator?
– Does the problem become easy and belong to L when the graph is undirected?
– How about approximating the singular values of a graph?

1.1 The Bigger Picture

Derandomization is a major challenge of theoretical computer science. In the
space-bounded model, Nisan [1] constructed a pseudo-random generator (PRG)
against logarithmic space-bounded non-uniform algorithms that uses seed length
O(log2 n). Using that he showed BPL is contained in the class having simultane-
ously polynomial time and O(log2 n) space. Saks and Zhou [2] showed BPL is con-
tained in DSPACE(log1.5 n). Reingold [3] showed that undirected st-connectivity
(which was shown to be in RL by [4]) already belongs to L. These results seem to
indicate that randomness does not add additional power to the model and many
conjecture that in fact BPL = L. Yet, we currently do not know a PRG with
seed length o(log2 n), nor a general derandomization result that simultaneously
uses o(log2 n) space and polynomial time.

One can look up and ask which upper bounds we know on BPL. We then
know the following:

NC1 ⊆ L ⊆ RL ⊆ NL ⊆ DET ⊆ NC2 ⊆ DSPACE(O(log2 n)),

where DET is the class of languages that are NC1 Turing-reducible to the problem
intdet of computing the determinant of an integer matrix (see [5] for a definition

1 If G is undirected and irregular, then the adjacency matrix Ã is symmetric but
the transition matrix A = D−1Ã, where D is the diagonal degrees matrix, is not
symmetric. Yet, consider the matrix L = D−1/2ÃD−1/2. L is symmetric and thus
has an eigenvector basis with real eigenvalues. A = D−1/2LD1/2 is conjugate to
L and thus is diagonalizable and has the same eigenvalues. As A is stochastic its
eigenvalues are in the range [−1, 1].

On the Problem of Approximating the Eigenvalues of Undirected Graphs 421

of DET). As it turns out, many important problems in linear algebra, such as
inverting a matrix, or equivalently, solving a set of linear equations are in DET,
and often complete for it (see, e.g., [5]). The fact that NL ⊆ DET is due to [5] who
showed that the directed connectivity problem, STCON is reducible to intdet.
DET ⊆ NC2 follows from Csansky’s algorithm [6] for the parallel computation of
the determinant. In addition to the above we also know that BPL ⊆ DET (e.g.,
using the fact that matrix powering is DET complete).

While matrix powering is complete for DET, approximating matrix powering
of stochastic matrices is in BPL. To see that, assume A represents a stochastic
matrix. Then one can approximate Ak[s, t] by estimating the probability a ran-
dom walk over A starting at s reaches t after k steps.2 Conversely, it is possible to
convert a BPL machine to a stochastic operator A such that the probability the
machine moves from s to t in k steps is Ak[s, t].3 Thus, in a sense, approximating
matrix-powering of stochastic operators is complete for BPL.

We now deviate from the classical picture we had so far and consider a quan-
tum space-bounded model. In 1999, Watrous [7] defined the model of quantum
logspace computation, and proved several facts on it. The definition was mod-
ified several times, see, [8]. Roughly speaking, a language is in BQL if there
exists an L–uniform family of quantum circuits solving the language with only
O(log n) qubits. The quantum circuits are over some universal basis of gates
(e.g., CNOT, HAD, T) plus intermediate measurements (that in particular may
simulate a stream of random coins). For details we refer the reader to [8,9]. The
works of Watrous, van Melkebeek and Watson showed that BQL is also contained
in NC2.

Recently, it was shown in [9], building on an earlier work by [10], that it is
possible to approximate the singular value decomposition (SVD) of a given linear
operator in BQL. This also implies that it is possible to approximately invert a
matrix in BQL. A natural question left open by this work is:

Open Problem: Is it possible to approximate the SVD of an arbitrary lin-
ear operator in BPL? The problem is also open for Hermitian operators, where
singular values and eigenvalues coincide (up to their sign).

In fact, this question is open also when the operator is the transition matrix
arising from a walk on a regular, undirected graph.

Thus, somewhat surprisingly, we see that the deterministic / probabilistic /
quantum space-bounded classes and the class DET are capable of doing some
sort of linear algebra on corresponding operators. Namely,

– In DET we can compute exactly the determinant which is the product of all
eigenvalues as well as the product of all singular values. We can also solve
matrix powering. Both problems are complete in DET. With that we can
approximately invert an operator or perform the SVD decomposition.

2 For completeness we include a proof of this in Appendix A. We also extend the class
for which this works to matrices with non-negative or complex entries as long as
their infinity norm is at most 1.

3 This reduction is standard and appears in many papers, e.g., already in [1].

422 D. Doron and A. Ta-Shma

In a sense, DET is an exact computation of the spectrum (e.g., in terms of
the characteristic polynomial) of an arbitrary linear operator.

– BQL is capable of approximating the whole singular value decomposition of
any operator. This is somewhat equivalent to saying that BQL is capable of
approximating the eigenvalues of Hermitian operators.

– BPL is capable of approximating matrix powering. In this paper we will show
BPL can approximate any eigenvalue of an undirected graph with constant
accuracy. We do not know yet whether we can do the same for directed graphs
or whether we can approximate the whole spectrum of undirected graphs.

– In L we do not know how to do any of the above, but Reingold showed L is
capable of solving USTCON, i.e., connectivity on undirected graphs. Notice
that undirected graphs roughly correspond to the intersection of stochastic
and Hermitian operators.

1.2 On the Problem of Approximating Arbitrary Eigenvalues
of Undirected Graphs in BPL

We define the following promise problem:

Definition 1. (EVα,β) The input is a stochastic, Hermitian matrix A, λ ∈
[−1, 1] and α < β.

Yes instances : There is an eigenvalue λi of A such that |λi − λ| ≤ α.
No instances : All eigenvalues of A are β–far from λ.

One way to design a BPL algorithm for the problem is by “de-quantumizing”
the quantum algorithm.4 The BQL algorithm solves the above problem for any
Hermitian operator A whose eigenvalues are τ–separated, for, say, τ = n−c,
α = τ

4 and β = 2α. That is, the quantum algorithm can handle any polynomially
small accuracy. With such accuracy one can turn the solution of the promise
problem to a procedure approximating the whole spectrum.

We develop a BPL algorithm that follows the main idea of the quantum
algorithm, and in that sense we de-quantumize the quantum algorithm, but we
achieve much worse parameters. Specifically, we prove that the promise problem
EVα,β belongs to BPL, for constant parameters α < β. On the one hand the
result is disappointing because the quantum algorithm does so much better and
can handle polynomially small gaps. On the other hand, we remark that we
do not know how to achieve even constant approximation with a deterministic
logspace algorithm. We are not aware of many natural promise problems in BPL
that are not known to be in L. This paper shows EVα,β is such a promise problem.

4 We remark that Ben-Or and Eldar [11] recently de-quantumized the SVD quantum
algorithm and obtained a classical probabilistic algorithm for inverting matrices that
achieves the state of the art running time, using a completely new approach that is
derived from the quantum algorithm. We would like to do the same in the space-
bounded model.

On the Problem of Approximating the Eigenvalues of Undirected Graphs 423

1.3 Our Technique

The usual way of describing the quantum algorithm is that it applies quantum
phase estimation on the completely mixed state. The completely mixed state
is a uniform mixture of the pure states that are formed from the eigenvectors
of A, and on each such eigenvector, the quantum phase estimation estimates
the corresponding eigenvalue. Thus, if the procedure can be run in (quantum)
logarithmic space, we essentially sample a random eigenvector/eigenvalue pair,
and from that we can approximately get the SVD decomposition of A.

Another (less standard) way of viewing the quantum algorithm is that it
manipulates the eigenvalues of an input matrix A without knowing the decom-
position of A to eigenvectors and eigenvalues. This can be done using the simple
fact that if λ1, . . . , λn are the roots of the characteristic polynomial of A, and
if p is an arbitrary univariate polynomial, then p(λ1), . . . , p(λn) are the roots of
the characteristic polynomial of the matrix p(A). The probability the algorithm
measures λ is proportional to Tr (p(A)), where p is a shift of the Fejér kernel
by λ (see, e.g., [12, Chapter2]). Applying p on A amplifies the eigenvalues that
are close to λ to a value close to 1, and damps eigenvalues far from λ close to 0.
Thus, Tr (p(A)) approximately counts the number of eigenvalues close to λ.

We would like to follow the same approach but with a probabilistic algorithm
rather than a quantum one. We say a matrix A is simulatable if a probabilistic
logspace algorithm can approximate Ak[s, t] for any k polynomial in n and with
polynomially-small accuracy (see Definition 2 for the exact details). From the
discussion above it is clear that if A is the transition matrix of a (directed or
undirected) graph then A is simulatable (see Lemma 1). We remark that in the
appendix we show that even non-stochastic matrices A with negative or complex
entries are simulatable as long as A has infinity norm at most 1, namely, those
matrices A for which all rows i ∈ [n] have �1 norm at most 1,

∑
j |A[i, j]| ≤ 1.

If A is simulatable and the coefficients of p(x) =
∑

i cix
i are not too large

(i.e., only polynomially large in n), then we can approximate in BPL the matrix
p(A) =

∑
i ciA

i. In particular, we can also approximate Tr (p(A)). By taking p
to be a threshold polynomial with degree logarithmic in n (that guarantees the
size of the coefficients ci is polynomial in n) and a threshold around λ, we can
solve EVα,β(A) for constants α < β (see Section 3).

There are many other possible candidate functions for a threshold polynomial
p. However, we prove in Theorem 2 that no polynomial can do significantly better
than a threshold polynomial. The reason the quantum algorithm works better is
because it is able to take p up to some polynomial degree (rather than logarithmic
degree) not worrying about the (quite large) size of the coefficients, thus leading
to much better accuracy. The quantum algorithm also has the advantage that it
works for any normal operator A, not necessarily stochastic or simulatable.

Thus, the algorithm we give for EVα,β is simple: Approximate Tr (p(A)) to
a simple logarithmic degree polynomial p. Nevertheless, we believe it features a
new component that has not been used before by probabilistic space-bounded
algorithms. An algorithm that takes a random walk on a graph and takes a
decision based on the walk length and connectivity properties of the graph (as,

424 D. Doron and A. Ta-Shma

e.g., [4]) works with some power of the input matrix A. More generally, such an
algorithm can work with a convex combination of powers of the input matrix
(by probabilistically choosing which power to take). The algorithm we present
utilizes arbitrary (positive or negative) combinations of matrix powers and we
believe it is a crucial feature of the solution. We are not aware of previous BPL
algorithms using such a feature.

The approach above does not work for approximating the eigenvalues of a
directed graph G. It is still true that the resulting operator A is stochastic and
therefore simulatable. Also, it remains true that if λ is an eigenvalue of A (i.e., a
root of the characteristic polynomial) then p(λ) is a root of p(A). However, since
A is not Hermitian, the eigenvalues λ of A may be complex and we do not know
how to control p(λ) when p may have both negative and positive coefficients. We
believe it should be possible to approximate in BPL an arbitrary eigenvalue of
any stochastic operator (not necessarily Hermitian) to within constant accuracy,
but we have not been able to show it so far.

1.4 A Short Discussion

We believe the problem of approximating the eigenvalues of an undirected graph
is natural and important. Also, at our current state of knowledge, it simultane-
ously separates deterministic, probabilistic and quantum complexity: In BQL we
can solve it with polynomially-small accuracy, in BPL with constant accuracy
and in L we do not know how to solve it at all. Thus it poses several challenges:

– First, there is the natural question of whether one can approximate eigenval-
ues in BPL with better accuracy. A positive answer would imply BPL approx-
imations to many important linear algebra problems that are currently only
known to be in NC2. A negative answer would imply a separation between
BQL and BPL.

– Second, it raises the natural question of derandomization. Can one design a
deterministic algorithm approximating eigenvalues to constant accuracy?

We believe the solution of this problem is not only important by itself, but
may also shed new light on the strengths and weaknesses of the space-bounded
model, and the relative strengths of the deterministic, probabilistic and quantum
models of space-bounded computation.

2 Preliminaries

Often we are interested in approximating a value (e.g., an entry in a matrix with
integer values or the whole matrix) with a probabilistic machine. More precisely,
assume there exists some value u = u(x) ∈ R that is determined by the input
x ∈ {0, 1}n. We say a probabilistic TM M(x, y) (ε, δ)–approximates u(x) if:

∀x∈{0,1}n Pr
y

[|M(x, y) − u(x)| ≥ ε] ≤ δ. (1)

On the Problem of Approximating the Eigenvalues of Undirected Graphs 425

A random walk on a graph G (or its transition matrix A) can be simulated
by a probabilistic logspace machine. As a consequence, a probabilistic logspace
machine can approximate powers of A well. Here we try to extend this notion
to arbitrary linear operators A, not necessarily stochastic. We say a matrix A is
simulatable if any power of it can be approximated by a probabilistic algorithm
running in small space. Formally:

Definition 2. We say that a family of matrices A is simulatable if there exists
a probabilistic algorithm that on input A ∈ A of dimension n with ‖A‖ ≤ poly(n),
k ∈ N, s, t ∈ [n], runs in space O(log nk

εδ) and (ε, δ)–approximates Ak[s, t].

In Appendix A we give for completeness a proof that:

Lemma 1. The family of transition matrices of (directed or undirected) graphs
is simulatable.

We say ‖A‖∞ ≤ c if for every i ∈ [n],
∑

j |A[i, j]| ≤ c. In the same Appendix
we also show:

Lemma 2. The family of real matrices with infinity norm at most 1 is simulat-
able.

3 Approximating Eigenvalues with Constant Accuracy

In this section we prove:

Theorem 1. There exists a probabilistic algorithm that on input a stochastic
matrix B with real eigenvalues in [0, 1], constants β > α > 0 and λ ∈ [0, 1] such
that:

– There are d eigenvalues λi satisfying |λ − λi| ≤ α,
– All other eigenvalues λi satisfy |λ − λi| ≥ β,

outputs d with probability at least 2/3. Furthermore the algorithm runs in prob-
abilistic space O(log n).

We remark that Theorem 1 covers the case of transition matrices of undi-
rected graphs. As mentioned earlier, a transition matrix A of an undirected
graph has an eigenvector basis with real eigenvalues in the range [−1, 1]. Tak-
ing B = 1

2A + 1
2In×n we get a stochastic matrix with eigenvalues in the range

[0, 1], and whose eigenvectors are in a natural one-to-one correspondence with
A’s eigenvalues.

Proof. (Of Theorem 1) The input to the algorithm is n,B, λ, α, β. We assume a
univariate polynomial p(x) =

∑M
i=0 cix

i with the following properties:

– p has a sharp peak around λ, i.e., p(x) ≥ 1 − η for x ∈ [λ − α, λ + α] and
p(x) ≤ η for x ∈ [0, 1] \ (λ − β, λ + β), where η = η(n) = n−2.

426 D. Doron and A. Ta-Shma

– p can be computed in L. Formally, M = deg(p) and |ci| are at most poly(n)
and for every i, ci can be computed (exactly) by a deterministic Turing
machine that uses O(log n) space.

In the next subsection we show how to obtain such a polynomial p with M =
32(β − α)−2 log n and |ci| ≤ 2O(M).

Choose ε = 1
n and δ = 1

3 . Set ε′ = ε · 2−2M and δ′ = δ · 2−M . The output of
the algorithm is the integer closest to

R =
M∑

i=0

ci · TP(B,n, i, ε′, δ′)

where TP is the probabilistic algorithm guaranteed by Lemma 2 that (ε′, δ′)–
approximates Tr (Bi).

It is easy to check that:

Claim. Pr[|R − Tr (p(B))| ≥ ε] ≤ δ.

As Tr (p(B)) =
∑n

i=1 p(λi), Pr[|R − ∑n
i=1 p(λi)| ≥ ε] ≤ δ. However, p(λi)

is large when λi is α–close to λ and small when it is β–far from λ, and we are
promised that all eigenvalues λi are either α–close or β–far from λ. Thus,

|Tr (p(B)) − d| ≤ nη.

Altogether, except for probability δ, |R−d| ≤ ε+nη ≤ 1
3 , and the nearest integer

closest to R is d. The correctness follows. It is also straightforward to check that
the space complexity is O(log(nε−1δ−1)) = O(log n).

The constant accuracy we achieve is far from being satisfying. The matrix
B has n eigenvalues in the range [0, 1], so the average distance between two
neighboring eigenvalues is 1/n. Thus, the assumption that there is an interval
of length β − α with no eigenvalue is often not true. The desired accuracy we
would like to get is o(1/n). Having such accuracy would enable outputting an
approximation of the whole spectrum of B, using methods similar to those in [9],
thus getting a true classical analogue to the quantum algorithm in [9]. However,
we do not know how to achieve subconstant accuracy. The question whether
better accuracy is possible in BPL is one of the main questions raised by this
work.

3.1 Using the Symmetric Threshold Functions

There are several natural candidates for the function p above. In this subsection
we use the threshold function to obtain such a function p. For λ = k

M for some
integers k and M , define:

pλ(x) =
M∑

i=k

(
M

i

)
xi(1 − x)M−i.

On the Problem of Approximating the Eigenvalues of Undirected Graphs 427

pλ approximates well the threshold function Thλ(x) : [0, 1] → {0, 1} that
is one for x ≥ λ and zero otherwise. Specifically, using the Chernoff bound, we
obtain:

Lemma 3. Let x ∈ [0, 1]. pλ(x) approximates Thλ(x) over [0, 1] with accuracy
(ξ(ε))Mx, where ε = λ−x

x and ξ(ε) = eε

(1+ε)1+ε .

As a polynomial in x, pλ(x) =
∑M

i=0 cix
i with ci = (−1)i

∑i
j=λM(

M
j

)(
M−j
i−j

)
(−1)j and therefore |ci| ≤ ∑i

j=λM

(
M
j

)(
M−j
i−j

) ≤ M
(

M
M/2

)2
= 2O(M).

Furthermore, ci can be computed (exactly) by a deterministic Turing machine
that uses O(M) space by simply running through the loop over j, each time
updating the current result by (−1)j

(
M
j

)(
M−j
i−j

)
.

To obtain our polynomial p, define p as the difference between the threshold
polynomial around λ + Δ and the threshold polynomial around λ − Δ,

p(x) = pλ−Δ(x) − pλ+Δ(x)

where M = 32(β − α)−2 log n and Δ = (α + β)/2. It is easy to check that

Lemma 4. p(x) ≥ 1 − n−2 for every x that is α–close to λ (i.e., |x − λ| < α)
and p(x) ≤ n−2 for every x that is β–far from λ (i.e., |x − λ| ≥ β).

3.2 The Limitation of the Technique

In this subsection, we prove the accuracy of the above technique cannot be
enhanced merely by choosing a different polynomial p. Approximating threshold
functions by a polynomial is well-studied and well understood (see, for example,
[13–15] and references therein). However, we need to adapt this work to our
needs because we have an additional requirement that the magnitude of the
polynomial’s coefficients is small.

We start by formalizing the properties of p that were useful to us. We say
that P = {pλ,n}λ∈[0,1],n∈N

is a family of polynomials if for every λ ∈ [0, 1] and
n ∈ N, pλ,n is a univariate polynomial with coefficients in R.

Definition 3. (Small family) Let P be a family of polynomials and fix λ ∈ [0, 1].
For every n ∈ N, write pλ,n(x) =

∑deg(pλ,n)
i=0 cλ,n,ix

i. We say the family is s(n)–
small if,

– deg(pλ,n) ≤ 2s(n),
– For every 0 ≤ i ≤ deg(pλ,n), |cλ,n,i| ≤ 2s(n), and
– There exists a deterministic Turing machine running in space s(n) that out-

puts cλ,n,0, . . . , cλ,n,deg(pλ,n).

Definition 4. (Distinguisher family) Let P be a family of polynomials and fix
n ∈ N. Given α < β in (0, 1) and η < 1/2, we say the family is (α, β, η)–
distinguisher for λ ∈ [0, 1] if,

428 D. Doron and A. Ta-Shma

– For every x ∈ [0, 1] that is α–close to λ, pλ,n(x) ∈ [1 − η, 1], and
– For every x ∈ [0, 1] that is β–far from λ, pλ,n(x) ∈ [0, η].

Theorem 2. Let α, β, λ, η be such that α ≤ β, β = o(1), η = o(n−1) and
λ+β ≤ 1

2 . Then there is no (α, β, η)–distinguisher family for λ that is O(log n)–
small.

Proof. Assume there exists such a family {pλ,n}λ∈[0,1],n∈N
with s(n) = c′ log n.

We first show that without loss of generality p has logarithmic degree. Let rλ,n(x)
be the residual error of truncating pλ,n(x) after c log n terms, for c that will soon
be determined. Also, w.l.o.g., assume x ∈ [0, 1) is bounded away from 1. Then:

rλ,n(x) ≤
deg(pλ,n)∑

i=c log n+1

|cλ,n,i| · xi ≤ nc′ · xc log n

1 − x
≤ 1

1 − x
nc′−c log(1/x).

So, by taking c = 	 c′+2−log(1−x)
log(1/x)
 we obtain rλ,n(x) ≤ n−2.

We now show that O(log n)–degree polynomials cannot decay around λ fast
enough. Assume to the contrary that there exists such a distinguisher family, so
|pλ,n(x)| < n−1 for x ∈ [λ + β, 1]. The following lemma states that if a function
has a small value on an interval, than it cannot be too large outside it. Namely,

Lemma 5. [16, Theorem 2.9.11] Let Tn(x) be the Chebyshev polynomial (of the
first kind) of degree n. Then, if the polynomial Pn(x) =

∑n
i=0 cix

i satisfies the
inequality |Pn(x)| ≤ L on the segment [a, b] then at any point outside the segment
we have

|Pn(x)| ≤ L ·
∣∣∣∣Tn

(
2x − a − b

b − a

)∣∣∣∣ .

For properties of the Chebyshev polynomials see [17, Chapter 1.1]. We men-
tion a few properties that we use. An explicit representation of Tn(x) is given by

Tn(x) = (x−√
x2−1)n

+(x+
√

x2−1)n

2 . |Tn(−x)| = |Tn(x)| and Tn is monotonically
increasing for x > 1. Also,

|Tn(1 + δ)| ≤
(
1 + δ +

√
(1 + δ)2 − 1

)n

≤
(
1 + 4

√
δ
)n

≤ e4n
√

δ ≤ 28n
√

δ (2)

for 0 ≤ δ ≤ 1. Then:

|pλ,n(λ)| ≤ n−1 ·
∣
∣
∣Tc·log n

(
λ−β−1

−λ−β+1

)∣
∣
∣

= n−1 ·
∣
∣
∣Tc·log n

(

1 + 2β
1−λ−β

)∣
∣
∣ By |Tn(x)| = |Tn(−x)|

≤ n−1 · |Tc·log n(1 + 4β)| By the monotonicity of Tn(x) for x > 1 and λ + β ≤ 1
2

By Equation (2) |pλ,n(λ)| ≤ n−1232c
√

β log n ≤ n−1+32c
√

β . As β = o(1) for n
large enough we have |pλ,n(λ)| ≤ n−1/2, contradicting the fact that |pλ,n(λ)| ≥
1 − n−1.

We note that for values very close to 1, polynomials of higher degrees are
useful, and indeed better approximations are possible. In particular, one can
separate a 1 eigenvalue from 1 − 1

n by using the polynomial xn2
.

On the Problem of Approximating the Eigenvalues of Undirected Graphs 429

References

1. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12, 449–461 (1992)

2. Saks, M.E., Zhou, S.: BPHSPACE(S) ⊆ DSPACE(S3/2). J. Comput. Syst. Sci. 58,
376–403 (1999)

3. Reingold, O.: Undirected connectivity in log-space. J. ACM 55 (2008)
4. Aleliunas, R., Karp, R.M., Lipton, R., Lovasz, L., Rackoff, C.: Random walks, uni-

versal traversal sequences, and the complexity of maze problems. In: 20th Annual
Symposium on Foundations of Computer Science, pp. 218–223 (1979)

5. Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Information
and Control 64 (1985); International Conference on Foundations of Computation
Theory

6. Csansky, L.: Fast parallel matrix inversion algorithms. SIAM Journal of Computing
5, 618–623 (1976)

7. Watrous, J.: Space-bounded quantum complexity. Journal of Computer and System
Sciences 59, 281–326 (1999)

8. van Melkebeek, D., Watson, T.: Time-space efficient simulations of quantum com-
putations. Electronic Colloquium on Computational Complexity (ECCC) 17, 147
(2010)

9. Ta-Shma, A.: Inverting well conditioned matrices in quantum logspace. In: Pro-
ceedings of the 45th Annual ACM Symposium on Symposium on Theory of Com-
puting, STOC 2013, pp. 881–890. ACM, New York (2013)

10. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of
equations. Phys. Rev. Lett. 103, 150502 (2009)

11. Ben-Or, M., Eldar, L.: Optimal algorithms for linear algebra by quantum inspira-
tion. CoRR abs/1312.3717 (2013)

12. Hoffman, K.: Banach Spaces of Analytic Functions. Dover Books on Mathematics
Series. Dover Publications, Incorporated (2007)

13. Saff, E.B., Totik, V.: Polynomial approximation of piecewise analytic functions.
Journal of the London Mathematical Society s2–39, 487–498 (1989)

14. Eremenko, A., Yuditskii, P.: Uniform approximation of sgn(x) by polynomials and
entire functions. Journal d’Analyse Mathématique 101, 313–324 (2007)

15. Diakonikolas, I., Gopalan, P., Jaiswal, R., Servedio, R.A., Viola, E.: Bounded inde-
pendence fools halfspaces. SIAM Journal on Computing 39, 3441–3462 (2010)

16. Timan, A.: Theory of Approximation of Functions of a Real Variable. Dover books
on advanced mathematics. Pergamon Press (1963)

17. Rivlin, T.: The Chebyshev polynomials. Pure and applied mathematics. Wiley
(1974)

A Simulatable Matrices

Lemma 1. The family of transition matrices of (directed or undirected) graphs
is simulatable.

Proof. Let G = (V,E) be a graph with n vertices and let A be its transition
matrix. Let k ∈ N, s, t ∈ [n] and δ, ε > 0. Consider the algorithm that on input
k, s, t, takes T independent random walks of length k over G starting at vertex

430 D. Doron and A. Ta-Shma

s. The algorithm outputs the ratio of walks that reach vertex t. Let Yi be the
random value that is 1 if the i-th trial reached t and 0 otherwise. Then, for every
i, E[Yi] = Ak[s, t]. Also, Y1, . . . , YT are independent. By Chernoff,

Pr[| 1
T

T∑

i=1

Yi − Ak[s, t]| ≥ ε] ≤ 2e−2ε2T

Taking T = poly(ε−1, log δ−1), the error probability (i.e., getting an estimate
that is ε far from the correct value) is at most δ. Altogether, the algorithm runs in
space O(log(Tnk|E|)) = O(log(nkε−1)+log log δ−1), assuming |E| = poly(n, k).

We say ‖A‖∞ ≤ c if for every i ∈ [n],
∑

j |A[i, j]| ≤ c. We show:

Lemma 2. The family of real matrices with infinity norm at most 1 is simulat-
able.

Proof. We prove the result to real matrices, with positive or negative entries, as
long as they have bounded infinity norm. By generalizing the sign of an entry
to its phase, the result easily applies to complex matrices as well.

Let A be a real matrix of dimension n such that ‖A‖∞ ≤ 1. Let di(A) =∑
j |A[i, j]|.Let k ∈ N, s, t ∈ [n] and δ, ε > 0. Note that:

Ak[s, t] =
n∑

i1=1

n∑

i2=1

· · ·
n∑

ik−1=1

A[s, i1] · A[i1, i2] · . . . · A[ik−1, t]

=
n∑

i1=1

n∑

i2=1

· · ·
n∑

ik−1=1

|A[s, i1]|
ds(A)

· |A[i1, i2]|
di1(A)

· . . . ·

×|A[ik−1, t]|
dik−1(A)

· p (A, 〈s, i1, i2, . . . , ik−1, t〉) ,

where

p (A, 〈s, i1, i2, . . . , ik−1, t〉) =
ds(A) · di1(A) · . . . · dik−1(A)

sgn (A[s, i1] · A[i1, i2] · . . . · A[ik−1, it])
.

Consider the algorithm that on input k, s, t, takes T independent random
walks of length k over G starting from vertex s. Iterating over all random walks,
the algorithm approximates 1

T

∑
i y(i), where y(i) = p(A, i) if the walk i reached

t, and 0 otherwise. Correspondingly, let Yi be the random value that is p(A, i)
if the i’th walk reached t and 0 if it did not. Then,

On the Problem of Approximating the Eigenvalues of Undirected Graphs 431

E[Yi] =
n∑

i1=1

n∑

i2=1

· · ·
n∑

ik−1=1

A[s, i1] · A[i1, i2] · . . . · A[ik−1, t] · p(A, 〈s, i1, . . . , ik−1, t〉) = Ak[s, t].

Denote the algorithm’s outcome by M(k, s, t). As in Lemma 1, and using the
fact that |p(A, i)| ≤ 1, the algorithm can (ε, δ)–approximates E[Yi] by choos-
ing T which is poly(ε−1, log δ−1). Following the same analysis as of Lemma 1,
the algorithm runs in O(log nkε−1 + log log δ−1) space. We conclude that A is
simulatable.

On Planar Boolean CSP

Zdeněk Dvořák(B) and Martin Kupec

Computer Science Institute, Charles University in Prague, Prague, Czech Republic
{rakdver,magon}@iuuk.mff.cuni.cz

Abstract. We give a partial classification of the complexity of Planar
Boolean CSP, including a complete dichotomy for templates containing
only relations of arity at most 5.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a far-reaching generalization of
many natural satisfaction and coloring problems. It is usually parameterized by
its domain and template. A domain D is an arbitrary finite set. In this paper, we
almost exclusively consider the boolean CSP, where the domain is the set {0, 1}.
A template T is a finite set of constraint types; each constraint type R ∈ T is a
relation over D of finite arity a(R), i.e., R is a subset of Da(R).

Let T be a template. An instance A over T consists of a finite set V (A) of
variables, and a finite set C(A) of constraints; each constraint c ∈ C(A) is a tuple
(R, v1, . . . , va(R)), where R is a constraint type belonging to T and v1, . . . , va(R)

are variables belonging to V (A). The instance A is satisfiable if there exists a
function f : V (A) → D such that for every constraint (R, v1, . . . , va(R)) ∈ C(A),
the tuple (f(v1), . . . , f(va(R))) satisfies the relation R. The function f is called a
satisfying assignment. For a template T , the T -CSP is the algorithmic problem
of deciding whether an input instance over T is satisfiable.

One of the best known open questions in computer science is the CSP
Dichotomy Conjecture of Feder and Vardi [9], stating that for every finite
domain D and for every template T over D, the T -CSP problem is either
polynomial-time solvable, or NP-complete. Although there has been much
progress recently [1–4], the dichotomy conjecture is still open. However, the com-
plexity of T -CSP has been characterized for many natural classes of templates
T . Most relevant to the topic of this paper is the celebrated result of Schae-
fer [16] which proved the dichotomy conjecture over the boolean domain. In a
more modern language, we can state his result in the terms of polymorphisms.

For integers a, k ≥ 0, a domain D, a function f : Dk → D and a-tuples T1 =
(x1

1, x
1
2, . . . , x

1
a), . . . , Tk = (xk

1 , x
k
2 , . . . , x

k
a) of elements of D, let f(T1, . . . , Tk)

denote the a-tuple

(f(x1
1, x

2
1, . . . , x

k
1), f(x1

2, x
2
2, . . . , x

k
2), . . . , f(x1

a, x2
a, . . . , xk

a)).

Z. Dvořák—Supported by project GA14-19503S (Graph coloring and structure) of
Czech Science Foundation.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 432–443, 2015.
DOI: 10.1007/978-3-662-47672-7 35

On Planar Boolean CSP 433

A function f : Dk → D is a polymorphism of a relation R ⊆ Da if all T1, . . . , Tk ∈
R satisfy f(T1, . . . , Tk) ∈ R. We say that f is a polymorphism of a template T if
it is a polymorphism of R for every R ∈ T . Let us define several special functions
that often appear as polymorphisms:

− ZERO : {0, 1} → {0, 1} given by ZERO(x) = 0 for every x ∈ {0, 1},
− ONE : {0, 1} → {0, 1} given by ONE(x) = 1 for every x ∈ {0, 1},
− AND : {0, 1}2 → {0, 1} given by AND(x, y) = xy for every x, y ∈ {0, 1},
− OR : {0, 1}2 → {0, 1} given by OR(x, y) = x + y − xy for every x, y ∈ {0, 1},
− XOR3 : {0, 1}3 → {0, 1} given by XOR3(x, y, z) = (x + y + z) mod 2 for

every x, y, z ∈ {0, 1},
− MAJ3 : {0, 1}3 → {0, 1} given by MAJ3(x, x, y) = MAJ3(x, y, x) =

MAJ3(y, x, x) = x for every x, y ∈ {0, 1}, and
− NOT : {0, 1} → {0, 1} given by NOT(x) = 1 − x for every x ∈ {0, 1}.

We say that a template T over boolean domain is Schaefer-easy if ZERO,
ONE, AND, OR, XOR3, or MAJ3 is a polymorphism of T .

Theorem 1 (Schaefer [16]). Let T be a template over boolean domain. If T
is Schaefer-easy, then T -CSP is polynomial-time solvable, otherwise T -CSP is
NP-complete.

Suppose that T is not Schaefer-easy. We are interested in restrictions that can
be imposed on the input instances of T -CSP that make the problem polynomial-
time solvable. A natural way is to restrict the incidence graph of the instance
A, that is, the bipartite multigraph with vertex set V (A)∪C(A) and with edges
cvi for every c = (R, v1, . . . , va(R)) ∈ C(A) and i = 1, . . . , a(R). We study
the planar variant of the boolean constraint satisfaction problem, where the
incidence graph of the input instance is required to be planar. It is well-known
that there can be a difference in the complexities; for instance, letting NAE =
{0, 1}3\{(0, 0, 0), (1, 1, 1)}, note that {NAE}-CSP is NP-complete by Theorem 1,
but it can be solved in polynomial time when restricted to instances whose
incidence graph is planar [14].

Additionally, in this paper we require the order of the edges around the con-
straint vertices in the plane drawing of the incidence graph to respect the order
of the arguments of the corresponding constraint. Note that the variant without
this additional restriction can be modelled: simply replace each constraint type
R by all constraint types obtained from R by permuting the order of the inputs.
Hence, this choice leads to a finer classification.

Let us remark that dealing only with the boolean domain is natural, as it
avoids a number of difficulties not encountered in the non-planar case; for exam-
ple, planar {�=}-CSP over 4-element domain is polynomial-time solvable, but for
highly non-trivial reasons (Four Color Theorem). Let us also point out somewhat
related works of Cai et al. [5] and Guo and Williams [11], who considered the
counting version of the problem (restricted to symmetric constraints).

Let us now describe the considered problem formally. Rather than working
with the incidence graph, we equivalently define the problem in the terms of a

434 Z. Dvořák and M. Kupec

related plane graph where constraints correspond to faces (this simplifies some
of the transformations that we describe later). Throughout the paper, graphs
are allowed to have loops, possibly several at a single vertex, and parallel edges.

For a connected plane graph G, let F (G) denote the set of faces of G, let fo(G)
denote the outer face of G, and let F ′(G) = F (G)\{fo(G)}. For a face f ∈ F (G),
let b(f) denote the closed walk bounding f , enumerated in the clockwise order
around f . A plane instance over a template T is an instance A over T together
with a connected plane graph G with vertex set V (A), and an injective (but not
necessarily surjective) function ϕ : C(A) → F (G), such that every constraint
c = (R, v1, . . . , va(R)) ∈ C(A) satisfies b(ϕ(c)) = v1v2 . . . va(R)v1. The planar T -
CSP is the algorithmic problem of deciding whether for an input plane instance
(A,G,ϕ), the instance A is satisfiable. Let us remark that given an instance A, it
is possible to decide in linear time whether there exists a plane instance (A,G,ϕ),
by a straightforward dynamic programming algorithm over the SPQR-tree [13]
of the incidence graph of A; hence, including the plane representation of A in
the input does not affect the complexity of the problem.

In order to partially classify the complexity of planar T -CSP, we need sev-
eral more definitions. A relation or a template over the boolean domain is self-
complementary if NOT is its polymorphism. Let ⊕ denote addition (or equiva-
lently, subtraction) modulo 2. Consider an a-tuple T = (x1, . . . , xa) ∈ {0, 1}a. By
dT , denote the a-tuple (x1⊕x2, x2⊕x3, . . . , xa−1⊕xa, xa⊕x1). Let R ⊆ {0, 1}a be
a self-complementary relation. Let dR = {dT : T ∈ R}. Note that since R is self-
complementary, |dR| = |R|/2 and dR uniquely determines R. Furthermore, every
element of dR has even number of entries equal to 1. For a self-complementary
template T , let dT = {dR : R ∈ T }.

For two a-tuples T = (x1, . . . , xa) ∈ {0, 1}a and T ′ = (x′
1, . . . , x

′
a) ∈ {0, 1}a,

let T ⊕T ′ = (x1 ⊕x′
1, x2 ⊕x′

2, . . . , xa ⊕x′
a). Let I(T) = {i ∈ {1, . . . , a} : xi = 1}.

Let ea,i denote the a-tuple with I(ea,i) = {i}. A set S ⊆ {0, 1}a is an even
Δ-matroid if

− |I(T)| has the same parity for every T ∈ S, and
− for every T1, T2 ∈ S and for every i ∈ I(T1 ⊕ T2), there exists j ∈ I(T1 ⊕

T2) \ {i} such that T1 ⊕ ea,i ⊕ ea,j ∈ S.

An instance A over a template T is binary if each variable appears exactly
twice in the constraints. A plane-binary instance consists of a binary instance
A, a connected plane graph G and a bijective function ϕ : C(A) → F (G), such
that V (A) = E(G) and every c = (R, e1, . . . , ea(R)) ∈ C(A) satisfies b(ϕ(c)) =
e1e2 . . . ea(R). Note the key distinction between plane instances and plane-binary
instances: in the former, the variables correspond to the vertices of the graph,
while in the latter, they correspond to the edges. For a template T , we define
the binary T -CSP and planar-binary T -CSP algorithmic problems in the natural
way.

For any integer a ≥ 1, let EVENa = {(x1, . . . , xa) ∈ {0, 1}a :
x1 + . . . + xa is even}. Let EVENS = {EVEN1,EVEN2,EVEN3}.

On Planar Boolean CSP 435

Let T be a template over the boolean domain. As the main result of this
paper, we give the following partial classification of planar T -CSP:

− If T is Schaefer-easy, then (planar) T -CSP is polynomial-time solvable by
Theorem 1.

− If T is neither Schaefer-easy nor self-complementary, then planar T -CSP is
NP-complete (see Section 2)

− If T is self-complementary, then planar T -CSP is polynomially equivalent to
planar-binary (dT ∪ EVENS)-CSP (see Section 3).

• If additionally there exists R ∈ T such that dR is not an even Δ-matroid
and T is not Schaefer-easy, then planar T -CSP is NP-complete (see
Section 4).

• Otherwise, the complexity of planar T -CSP is open, except for the
polynomial-time solvable cases discussed below.

Note that we know no template T ′ over the boolean domain such that every
R′ ∈ T ′ is an even Δ-matroid and binary T ′-CSP is NP-complete (even without
the assumption of planarity). Hence, it is plausible that in the last case, planar
T -CSP is always polynomial-time solvable.

The motivation for the even Δ-matroid restriction comes from the study of
the complexity of binary T -CSP by Feder [8], who showed that the complex-
ities of T -CSP and binary T -CSP coincide unless R is a Δ-matroid for every
R ∈ T (the Δ-matroids do not have to be even—we omit the definition of a
general Δ-matroid, since it is not relevant to our study). If R is a Δ-matroid for
every R ∈ T , then binary T -CSP becomes a special case of the parity problem
in Δ-matroids. A number of additional restrictions ensuring a polynomial-time
algorithm were identified before—this is the case if all the Δ-matroids R ∈ T
are compact [12], or all are co-independent [8], or all are local [6], or all are
linear [10] (see the respective papers for the definitions of these classes of Δ-
matroids). Ultimately, though, the full classification of the complexity of binary
boolean CSP is still an open problem.

Let us point out another case solvable in polynomial time. Let G be a graph
and let v1, . . . , va ∈ V (G) be pairwise distinct vertices of G. For an a-tuple
T = (x1, . . . , xa) ∈ {0, 1}a, let GT = G − {vi : 1 ≤ i ≤ a, xi = 1}, and let

M(G, v1, . . . , va) = {T ∈ {0, 1}a : GT has a perfect matching}.

We say that a relation R ⊆ {0, 1}a is matching-realizable if R = M(G, v1, . . . , va)
for some (not necessarily planar) graph G and some pairwise distinct vertices
v1, . . . , va ∈ V (G). By considering alternating paths in pairs of matchings, it is
easy to see that every matching-realizable set is an even Δ-matroid. We say that
a template T over the boolean domain is matching-realizable if R is matching-
realizable for every R ∈ T .

For a matching-realizable template T , the (not necessarily planar) binary
T -CSP reduces to testing whether a graph has a perfect matching (for each con-
straint in the instance, add a copy of the graph showing that its constraint type
is matching-realizable, and join by edges the vertices corresponding to the same

436 Z. Dvořák and M. Kupec

variable). This can be decided in polynomial time [7]. Since EVENa is matching-
realizable for every a ≥ 1 (by a clique on a or a + 1 vertices, whichever is even),
we have the following consequence of the last case of the partial classification.

Corollary 1. If T is a self-complementary template and dT is matching-
realizable, then planar T -CSP is polynomial-time solvable.

For example, let GNAE be the graph with vertex set {w, v1, v2, v3} and
edges viw for i = 1, 2, 3, then dNAE = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} =
M(GNAE, v1, v2, v3). Hence, the corollary implies the well-known result that
planar {NAE}-CSP can be solved in polynomial time. More importantly, in
Section 5, we show that all even Δ-matroids of arity at most 5 are matching-
realizable. This implies the following corollary, which completes the classification
of the complexity of planar T -CSP over boolean domain under the assumption
that all relations in T have arity at most 5.

Corollary 2. Suppose that T is a self-complementary template such that dR is
an even Δ-matroid for every R ∈ T . If a(R) ≤ 5 for every R ∈ T , then planar
T -CSP is polynomial-time solvable.

The rest of paper is structured as follows. In Section 2, we study the tem-
plates that are neither Schaefer-easy nor self-complementary, and show the NP-
hardness of the planar CSP for such templates. In Section 3, we consider the tem-
plates T that are self-complementary, and establish the polynomial-time equiva-
lence with planar-binary CSP for the template (dT ∪ EVENS). In Section 4, we
show that for a self-complementary, non-Schaefer easy template T such that not
all relations in dT are even Δ-matroids, the planar T -CSP is NP-complete.
Section 5 is devoted to the study of matching-realizable sets, establishing
Corollary 2.

2 Non-Self-Complementary Templates

Let T be a template over the binary domain, let (A,G,ϕ) be a plane instance
over T such that ϕ−1(fo(G)) = ∅, and let b(fo(G)) = vava−1 . . . v1va (where
the vertices v1, . . . , va need not be pairwise distinct). Let R(A,G,ϕ) ⊆ {0, 1}a

consist of the a-tuples (x1, . . . , xa) ∈ {0, 1}a such that there exists a satisfying
assignment f : V (A) → {0, 1} with f(vi) = xi for i = 1, . . . , a. If a relation
R ⊆ {0, 1}a is equal to R(A,G,ϕ) for some plane instance (A,G,ϕ) over T ,
then we say that R is planarly T -expressible.

The following observations are standard.

Lemma 1. Let T be a template over the boolean domain and let R ⊆ {0, 1}a

and R′ ⊆ {0, 1}b be arbitrary relations. Suppose that R is planarly T -expressible.
Then

− every polymorphism of T is also a polymorphism of R,
− planar T -CSP is polynomially equivalent to planar (T ∪ {R})-CSP, and
− if R′ is planarly T ∪ {R}-expressible, then R′ is also planarly T -expressible.

On Planar Boolean CSP 437

Let us remark that without the planarity restriction, the expressibility is
exactly characterized by polymorphisms. However, planar expressibility and
especially non-expressibility seem much harder to demonstrate.

Let C0, C1 and N be the relations defined as C0 = {(0)}, C1 = {(1)}, and
N = {(0, 1), (1, 0)}. Let R ⊆ {0, 1}a be a relation and let I be a subset of
{1, . . . , a}, I = {i1, . . . , ib} with i1 < i2 < . . . < ib. The projection of R to
coordinates I is the set R[I] ⊆ {0, 1}b such that (x′

1, . . . , x
′
b) ∈ R[I] if and only

if there exists some (x1, . . . , xa) ∈ R satisfying x′
1 = xi1 , . . . , x′

b = xib
. For

v = 0, 1, the fixation R[I → v] denotes the relation such that T = (x1, . . . , xa) ∈
R[I → v] if and only if T ∈ R and xi = v for every i ∈ I. Let R[I �→ v]
denote the relation R[I → v][{1, . . . , a} \ I]. The twist R � I of R is the relation{
T ⊕ ⊕

i∈I ea,i : T ∈ R
}
. For i ∈ {1, . . . , a}, the =-restriction of R at i is the

relation R[i = i + 1] ⊆ R such that T = (x1, . . . , xa) ∈ R[i = i + 1] if and only
if T ∈ R and xi = xi+1 (where xa+1 = x1), and the �=-restriction of R at i is
the set R[i �= i + 1] ⊆ R such that T = (x1, . . . , xa) ∈ R[i �= i + 1] if and only if
T ∈ R and xi �= xi+1.

Lemma 2. Let T be a template over the boolean domain. Suppose that a relation
R ⊆ {0, 1}a is planarly T -expressible.

1. All projections and =-restrictions of R are planarly T -expressible.
2. If N is planarly T -expressible, then all �=-restrictions and twists of R are

planarly T -expressible.
3. If C0 and C1 are planarly T -expressible, then all fixations of R are planarly

T -expressible.

For a relation R ⊆ {0, 1}a, let ‖R‖ = (a, |R|). Let us start with a key express-
ibility result.

Lemma 3. Let T be a template over the boolean domain that is not Schaefer-
easy. Then N is planarly T -expressible, and if T is not self-complementary, then
C0 and C1 are planarly T -expressible.

Proof. Let R ⊆ {0, 1}a be a non-empty planarly T -expressible relation such
that ZERO is not a polymorphism of R and subject to these conditions, ‖R‖ is
lexicographically minimal. Note that ZERO is a polymorphism of a non-empty
set if and only if the set contains the zero tuple (0, . . . , 0). By the minimality,
ZERO is a polymorphism of every projection of R to a − 1 coordinates. Hence,
ea,1, ea,2, . . . , ea,a ∈ R. If a ≥ 3, then let R′ = R[1 = 2]. Note that ea,3 ∈ R′ and
ea,1 �∈ R′, and since ZERO is not a polymorphism of R′, we obtain a contradiction
with the minimality of R. Hence, a ≤ 2. If a = 2, then the same argument shows
that (1, 1) �∈ R, and thus R = N . If a = 1, then R = C1. Hence,

either N or C1 is planarly T -expressible, and symmetrically either N or C0 is
planarly T -expressible.

(1)

438 Z. Dvořák and M. Kupec

Suppose now that C0 and C1 are planarly T -expressible. Let R ⊆ {0, 1}a be a
non-empty planarly T -expressible relation such that AND is not a polymorphism
of R and subject to these conditions, ‖R‖ is lexicographically minimal. Let T =
(x1, . . . , xa) ∈ R and T ′ = (x′

1, . . . , x
′
a) ∈ R be a-tuples such that AND(T, T ′) �∈

R. If there exists i ∈ {1, . . . , a} such that xi = x′
i, then let R′ = R[{i} �→ xi].

Then AND is not a polymorphism of R′ and we obtain a contradiction with the
minimality of R. Hence, xi �= x′

i for i = 1, . . . , a for all T, T ′ ∈ R such that
AND(T, T ′) �∈ R. Since AND is a polymorphism of every projection of R to
a − 1 coordinates, any such projection contains a projection of AND(T, T ′) =
(0, . . . , 0). Hence ea,1, ea,2, . . . , ea,a ∈ R. Since AND is not a polymorphism of R,
we have a ≥ 2. Note that AND(ea,1, ea,a) = (0, . . . , 0) �∈ R, and as we observed
before, ea,1 and ea,a differ in all coordinates. Therefore, a = 2. We conclude that
N ⊆ R ⊆ N ∪ {(1, 1)}.

Similarly, since OR is not a polymorphism of T , it follows that some set R′

such that N ⊆ R′ ⊆ N ∪{(0, 0)} is planarly T -expressible. Let A be the instance
containing constraints (R, v1, v2) and (R′, v1, v2), let G be the graph consisting
of three edges between vertices v1 and v2, and let ϕ be the function mapping
the elements of C(A) to the two non-outer faces of G. Then (A,G,ϕ) is a plane
instance showing that N is planarly {R,R′}-expressible, and by Lemma 1, N is
planarly T -expressible. Hence,

if C0 and C1 are planarly T -expressible, then N is planarly T -expressible.
(2)

Let us now consider the case that N is planarly T -expressible and that T is
not self-complementary. Let R ⊆ {0, 1}a be a non-empty planarly T -expressible
relation such that NOT is not a polymorphism of R and subject to these condi-
tions, ‖R‖ is lexicographically minimal. Let T = (x1, . . . , xa) ∈ R be such that
NOT(T) �∈ R. If a ≥ 2, then either x1 = x2 or x1 �= x2. In the former case, let
R′ = R[1 = 2][{2, . . . , a}]. In the latter case, let R′ = R[1 �= 2][{2, . . . , a}]. In
both cases, NOT is not a polymorphism of R′, which contradicts the minimality
of R. Hence, a = 1, and thus R = C0 or R = C1. By Lemma 2, R � {1} is also
planarly T -expressible. Hence,

if N is planarly T -expressible and T is not self-complementary, then C0 and C1

are planarly T -expressible.
(3)

If T is self-complementary, then every planarly T -expressible relation is
self-complementary by Lemma 1, and thus neither C0 nor C1 is planarly T -
expressible. By (1), N is planarly T -expressible.

If T is not self-complementary, then (1) implies that either N or both C0

and C1 are planarly T -expressible. In the latter case, (2) implies that N also is
planarly T -expressible. Hence, C0 and C1 are planarly T -expressible by (3). �

Using Lemmas 2 and 3 as well as ideas similar to the proof of Lemma 3, we
prove the following. Let 1-IN-3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Lemma 4. Let T be a template over the boolean domain that is not Schaefer-
easy. If T is not self-complementary, then 1-IN-3 is planarly T -expressible.

On Planar Boolean CSP 439

Note that planar {1-IN-3}-CSP is known to be NP-complete [15]. Hence, we
obtain the main result of this section.

Corollary 3. If T is a template over the boolean domain that is neither
Schaefer-easy nor self-complementary, then planar T -CSP is NP-complete.

3 Self-Complementary Templates and Binary CSP

We now aim to prove the equivalence between planar T -CSP and planar-binary
(dT ∪ EVENS)-CSP for any self-complementary template T .

Let T be a template over the binary domain. A partial plane-binary instance
over T consists of an instance B over T , a connected plane graph H such that the
outer face of H is not incident with a bridge, and a bijective function θ : C(B) →
F ′(H), such that V (B) = E(H) and every c = (R, e1, . . . , ea(R)) ∈ C(B) satisfies
b(θ(c)) = e1e2 . . . ea(R). Let b(fo(H)) = eaea−1 . . . e1. Note that the variables e1,
. . . , ea appear exactly once in B, while all other variables appear exactly twice.
Let Rb(B,H, θ) ⊆ {0, 1}a consist of all a-tuples (x1, . . . , xa) ∈ {0, 1}a such that
there exists a satisfying assignment f : V (B) → {0, 1} with f(ei) = xi for
i = 1, . . . , a. If a relation R ⊆ {0, 1}a is equal to Rb(B,H, θ) for some partial
plane-binary instance (B,H, θ) over T , then we say that R is plane-binary T -
expressible.

We say that a plane instance (A,G,ϕ) is near-total when ϕ−1(f) = ∅ if
and only if f is the outer face of G, and the outer face of G is not incident
with a bridge. Let T be a self-complementary template. Let (A,G,ϕ) be a near-
total plane instance over T . Let (B,G, θ) be a partial plane-binary instance
over dT defined as follows. We set V (B) = E(G). For each constraint c =
(R, v1, . . . , va(R)) ∈ C(A), letting e1e2 . . . ea(R) be the walk bounding the face
ϕ(c), where e1 = v1v2, e2 = v2v3, . . . , ea(R) = va(R)v1, we add the constraint
c′ = (dR, e1, . . . , ea(R)) to C(B) and set θ(c′) = ϕ(c). We say that the partial
plane-binary instance (B,G, θ) is derived from (A,G,ϕ).

Lemma 5. Let T be a self-complementary template. Let (A,G,ϕ) be a near-
total plane instance over T , and let (B,G, θ) be the partial plane-binary instance
over dT derived from it. Then Rb(B,G, θ) = dR(A,G,ϕ).

For any i ≥ 1, let ALLi = {0, 1}i, and note that dALLi = EVENi. Let ALLS =
{ALL1,ALL2,ALL3}.

Corollary 4. Let T be a self-complementary template. A relation R ⊆ {0, 1}a

is planarly T -expressible if and only if the relation dR is plane-binary (dT ∪
EVENS)-expressible.

This gives the sought correspondence with planar-binary CSP.

Theorem 2. For any self-complementary template T , planar T -CSP and
planar-binary (dT ∪ EVENS)-CSP are polynomially equivalent.

440 Z. Dvořák and M. Kupec

Proof. Let (A,G,ϕ) be any planar instance over T . Replace an arbitrary edge
uv of G by two parallel edges, add a loop e at v to the resulting 2-face, and make
the face bounded by the loop e the outer face of G. Let R = R(A,G,ϕ). Let
(B,H, θ) be the partial plane-binary instance over dT ∪EVENS such that dR =
Rb(B,H, θ), which we constructed in Corollary 4 (where |B| + |V (H)| + |E(H)|
is bounded by a polynomial in |A|+|V (G)|+|E(G)|). Note that A is satisfiable if
and only if R �= ∅, which is in turn equivalent to dR �= ∅ and B being satisfiable.

Similarly, we can transform any plane-binary instance (B,H, θ) over (dT ∪
EVENS) to an equivalent plane instance over T : replace any edge of H by a dou-
ble edge and make the resulting 2-face into the outer one, thus obtaining a partial
plane-binary instance (B′,H ′, θ′) over dT ∪EVENS such that Rb(B′,H ′, θ′) �= ∅
if and only if B is satisfiable, and apply Corollary 4 in the opposite direction. �

4 NP-Hardness of the Non-Δ-Matroid Case

Let CROSS = {(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)}. Let T be a template
over the boolean domain. Note that given any instance over T with non-planar
incidence graph, CROSS can be used to replace the crossings and to obtain an
equivalent plane instance over T ∪ {CROSS}. In conjunction with Lemma 1, we
have the following.

Observation 1. Let T be a template over the boolean domain. If CROSS is
planarly T -expressible, then T -CSP and planar T -CSP are polynomially equiv-
alent.

We say that a self-complementary relation R′ ⊆ {0, 1}4 is a standardized
inconsistent relation if CROSS ⊆ R′ and every (s1, s2, s3, s4) ∈ R′ satisfies
s1 = s2 or s1 = s3 �= s2 = s4.

Lemma 6. Let T be a self-complementary template such that N is planarly
T -expressible. Suppose that there exists a relation R′ ⊆ {0, 1}a such that dR′

is not an even Δ-matroid and R′ is planarly T -expressible. Then there exists a
standardized inconsistent relation R that is planarly T -expressible.

Next, we consider the sets that can be expressed from a standardized incon-
sistent relation. Let NEAR-CROSS = CROSS ∪ {(0, 0, 0, 1), (1, 1, 1, 0)}. Given
a standardized inconsistent relation R and the relation N , the plane instance
depicted in Figure 1(a) shows that either CROSS or NEAR-CROSS is planarly
{R,N}-expressible. Furthermore, the plane instance depicted in Figure 1(b)
shows that CROSS is planarly {NEAR-CROSS}-expressible. Using these facts,
we can now describe exactly when CROSS is planarly T -expressible for a self-
complementary template T that is not Schaefer-easy.

Lemma 7. Let T be a self-complementary template such that N is planarly
T -expressible. Then CROSS is planarly T -expressible if and only if dR is not an
even Δ-matroid for some R ∈ T .

On Planar Boolean CSP 441

4

3

2

1

2

1

4

3 NEAR-CROSSNEAR-CROSS
3

2
1

4
4

3
2
1 RR NN

v1

v2

v3

v4
m m v2

(a)

v2

v3

v4

v1
m

(b)

Fig. 1. Expressing CROSS from a standardized inconsistent relation

We can now easily prove the rest of the NP-hardness part of our partial charac-
terization.

Theorem 3. Let T be a self-complementary template that is not Schaefer-easy,
and suppose that there exists R ∈ T such that dR is not an even Δ-matroid.
Then planar T -CSP is NP-complete.

Proof. By Lemma 3, N is planarly T -expressible. By Lemma 7, CROSS is pla-
narly T -expressible. Therefore, Observation 1 and Theorem 1 imply that planar
T -CSP is NP-complete. �

5 Matching-Realizability of Even Δ-Matroids of Arity at
Most 5

In this section, we prove that all even Δ-matroids of arity at most 5 are matching-
realizable, which finishes the classification of the complexity of plane boolean
CSP restricted to arity at most 5.

Let π be a permutation of {1, . . . , a}. For T = (t1, . . . , ta) ∈ Da, let π ◦ T =
(tπ(1), tπ(2), . . . , tπ(a)), and for a relation R ⊆ {0, 1}a, let π ◦ R denote the set
{π ◦ T : T ∈ R}.

Lemma 8. Let R ⊆ {0, 1}a be an even Δ-matroid.

(a) The twist R′ of R at any subset I of {1, . . . , a} is an even Δ-matroid. Fur-
thermore, if R is matching-realizable, then R′ is matching-realizable.

(b) For any permutation π of {1, . . . , a}, the set π ◦ R is an even Δ-matroid.
Furthermore, if R is matching-realizable, then π ◦ R is matching-realizable.

We say that sets R,R′ ⊆ {0, 1}a are similar if R′ = π ◦ R′′ for a twist R′′ of
R and some permutation π. Note that R is an even Δ-matroid if and only if R′

is an even Δ-matroid.

Theorem 4. Let a ≤ 5 be a positive integer and let R ⊆ {0, 1}a be a relation.
Then R is an even Δ-matroid if and only if R is matching-realizable.

442 Z. Dvořák and M. Kupec

Empty set (arity 1) 1 0 1 Empty set (arity 2) 1

2

11 12

00, 11 12 Empty set (arity 3) 1

2

3 011 1

2

3 101, 011 1

2

3

110, 101, 011 1

2

3 000, 110, 101, 011 1

2

3

Empty set (arity 4) 1

23

4 1111 1

2

3

4

0110, 1111 1

2

3

4

1010, 0110, 1111 1

2

3

4

1100, 0110, 0101, 1111 1

2

3

4

1100, 1010, 0110, 1111 1

2

3

4

0000, 1010, 0101, 1111 1

2

4

3

0000, 1010, 0110, 0101, 1111 1

2

4

3

0000, 1100, 1010, 0110,
0101, 1111 1

2

4

3

0000, 1010, 0110, 1001,
0101, 1111 1

3

2

4

0000, 1100, 1010, 0110,
1001, 0101, 1111 1

3

2

4

0000, 1100, 1010, 0110,
1001, 0101, 0011, 1111 1

2

3

4

Empty set (arity 5) 1

23

4

5

111110

23

4

5

10111, 01111 1

23

4

5

11011, 10111, 01111 1

23

4

5

00110, 11110, 10111, 01111 1

23

4

5

11101, 11011, 10111, 01111 1

23

4

5

01010, 00110, 11011, 10111 1

23

4

5

01010, 00110, 11011, 10111,
01111 1

23

4

5

01010, 00110, 11110, 11011,
10111, 01111 1

23

4

5

10010, 01010, 00110, 11011,
10111, 01111 1

34

2 5

10010, 01010, 00110, 11110,
11011, 10111, 01111 1

34

2 5

10100, 01100, 00110, 11110,
00101, 11101, 10111, 01111 1

23

5

4

11110, 11101, 11011, 10111,
01111 1

23

4

5

01100, 01010, 00110, 11101,
11011, 10111 1

23

4

5

01100, 01010, 00110, 11101,
11011, 10111, 01111 1

23

4

5

01100, 01010, 00110, 11110,
11101, 11011, 10111, 01111 1

23

4

5

10100, 01100, 10010, 01010,
00110, 11101, 11011, 01111 1

25

3

4

10100, 01100, 10010, 01010,
00110, 11110, 11101, 11011,
01111

1

25

3

4

10100, 01100, 10010, 01010,
00110, 11101, 11011, 10111,
01111

1

34

2 5

10100, 01100, 10010, 01010,
00110, 11110, 11101, 11011,
10111, 01111

1

34

2 5

00000, 10100, 10010, 00110,
01001, 11101, 11011, 01111 1

25

3

4

00000, 10100, 10010, 00110,
01001, 00101, 11101, 11011,
10111, 01111

1

25

3

4

00000, 01100, 10010, 01010,
00110, 11110, 01001, 00101,
11011, 10111, 01111

1

3

2

5 4

00000, 11000, 10100, 01100,
10010, 01010, 00110, 11110,
00101, 11101, 10111, 01111

1

23

5

4

11000, 10100, 01100, 10010,
01010, 00110, 11101, 11011,
10111, 01111

1

24

3 5

11000, 10100, 01100, 10010,
01010, 00110, 11110, 11101,
11011, 10111, 01111

1

24

3 5

00000, 10100, 01100, 10010,
00110, 11110, 01001, 00101,
11101, 11011, 10111, 01111

1

25

3

4

00000, 10100, 01100, 10010,
01010, 00110, 01001, 00101,
11101, 11011, 10111

1

43

2 5

00000, 10100, 01100, 10010,
01010, 00110, 01001, 00101,
11101, 11011, 10111, 01111

1

43

2 5

00000, 10100, 01100, 10010,
01010, 00110, 11110, 01001,
00101, 11101, 11011, 10111,
01111

1

43

2 5

00000, 11000, 10100, 10010,
01010, 00110, 01001, 00101,
11101, 11011, 10111, 01111

1

25

3

4

00000, 11000, 10100, 01100,
10010, 01010, 00110, 01001,
00101, 11101, 11011, 10111,
01111

1

25

3

4

00000, 11000, 10100, 01100,
10010, 01010, 00110, 11110,
01001, 00101, 11101, 11011,
10111, 01111

1

25

3

4

00000, 10100, 01100, 10010,
01010, 00110, 11110, 10001,
01001, 00101, 11101, 11011,
10111, 01111

1

3

4

2 5

00000, 11000, 10100, 01100,
10010, 01010, 00110, 11110,
10001, 01001, 00101, 11101,
11011, 10111, 01111

1

42

3 5

00000, 11000, 10100, 01100,
10010, 01010, 00110, 11110,
10001, 01001, 00101, 11101,
00011, 11011, 10111, 01111

1

24

3 5

Fig. 2. Even Δ-matroids and graphs by that they are matching-realized

Proof. For every even Δ-matroid R, there exists a similar relation R′ such that
all elements of R′ have even number of entries equal to 1. There are 22

a−1 ≤ 65536
subsets of {0, 1}a whose elements have even number of entries equal to 1. Using
the program which can be found at http://atrey.karlin.mff.cuni.cz/∼rakdver/
consistent.c, we enumerated all such subsets, and checked that every subset of
{0, 1}a that is an even Δ-matroid is similar to one of the sets listed in Figure 2.
For each set R′ listed in the figure, we also show a graph G and its vertices
1, . . . , a such that R′ = M(G, 1, . . . , a). By Lemma 8, we conclude that R is
matching-realizable. �

http://atrey.karlin.mff.cuni.cz/~rakdver/consistent.c
http://atrey.karlin.mff.cuni.cz/~rakdver/consistent.c

On Planar Boolean CSP 443

Acknowledgments. We would like to thank Victor Dalmau for useful discussions
leading to the connection with binary CSP and with Δ-matroids.

References

1. Barto, L., Kozik, M.: Constraint satisfaction problems of bounded width. In: Pro-
ceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer
Science, pp. 595–603. IEEE Computer Society, Washington, DC (2009)

2. Barto, L., Kozik, M., Niven, T.: The CSP dichotomy holds for digraphs with no
sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell).
SIAM Journal on Computing 38(5), 1782–1802 (2009)

3. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a
3-element set. Journal of the ACM (JACM) 53(1), 66–120 (2006)

4. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34(3), 720–742 (2005)

5. Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms with matchgates capture
precisely tractable planar #CSP. In: Proceedings of the 2010 51st Annual IEEE
Symposium on Foundations of Computer Science, pp. 427–436. IEEE Computer
Society, Washington, DC (2010)

6. Dalmau, V., Ford, D.K.: Generalized satisfiability with limited occurrences per
variable: a study through delta-matroid parity. In: Rovan, B., Vojtáš, P. (eds.)
MFCS 2003. LNCS, vol. 2747, pp. 358–367. Springer, Heidelberg (2003)

7. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)
8. Feder, T.: Fanout limitations on constraint systems. Theor. Comput. Sci. 255,

281–293 (2001)
9. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP

and constraint satisfaction: A study through Datalog and group theory. SIAM
Journal on Computing 28(1), 57–104 (1998)

10. Geelen, J.F., Iwata, S., Murota, K.: The linear Delta-matroid parity problem. Jour-
nal of Combinatorial Theory, Series B 88(2), 377–398 (2003)

11. Guo, H., Williams, T.: The complexity of planar boolean #CSP with complex
weights. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part I. LNCS, vol. 7965, pp. 516–527. Springer, Heidelberg (2013)

12. Istrate, G.: Looking for a version of Schaefer’s dichotomy theorem when each vari-
able occurs at most twice, technical Report TR652, The University of Rochester
(1997)

13. Mac Lane, S.: A structural characterization of planar combinatorial graphs. Duke
Mathematical Journal 3, 460–472 (1937)

14. Moret, B.M.E.: Planar NAE3SAT is in P. SIGACT News 19(2), 51–54 (1988)
15. Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM 55(2)

(2008)
16. Schaefer, T.: The complexity of satisfiability problems. In: Proceedings of the Tenth

Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM (1978)

On Temporal Graph Exploration

Thomas Erlebach1(B), Michael Hoffmann1, and Frank Kammer2

1 Department of Computer Science, University of Leicester, Leicester, England
{te17,mh55}@leicester.ac.uk

2 Institut für Informatik, Universität Augsburg, Augsburg, Germany
kammer@informatik.uni-augsburg.de

Abstract. A temporal graph is a graph in which the edge set can change
from step to step. The temporal graph exploration problem TEXP is the
problem of computing a foremost exploration schedule for a temporal
graph, i.e., a temporal walk that starts at a given start node, visits all
nodes of the graph, and has the smallest arrival time. We consider only
temporal graphs that are connected at each step. For such temporal
graphs with n nodes, we show that it is NP-hard to approximate TEXP
with ratio O(n1−ε) for any ε > 0. We also provide an explicit construction
of temporal graphs that require Θ(n2) steps to be explored. We then
consider TEXP under the assumption that the underlying graph (i.e.
the graph that contains all edges that are present in the temporal graph
in at least one step) belongs to a specific class of graphs. Among other
results, we show that temporal graphs can be explored in O(n1.5k2 log n)
steps if the underlying graph has treewidth k and in O(n log3 n) steps if
the underlying graph is a 2× n grid. We also show that sparse temporal
graphs with regularly present edges can always be explored in O(n) steps.

Keywords: Inapproximability · Planar graphs · Bounded treewidth ·
Regularly present edges · Irregularly present edges

1 Introduction

Many networks are not static and change over time. For example, connections
in a transport network may only operate at certain times. Connections in social
networks are created and removed over time. Links in wired or wireless net-
works may change dynamically. Dynamic networks have been studied in the con-
text of faulty networks, scheduled networks, time-varying networks, etc. For an
overview, see [5,15,18]. We consider a model of time-varying networks called tem-
poral graphs. A temporal graph G is given by a sequence of graphs G0 = (V,E0),
G1 = (V,E1), G2 = (V,E2), . . . , GL = (V,EL) that all share the same vertex
set V , but whose edge sets may differ. The number L is called the lifetime of G.
We assume that the whole temporal graph is presented to the algorithm.

Standard algorithms for well known problems such as connected components,
diameter, reachability, shortest paths, graph exploration, etc. cannot be used
directly in temporal graphs. In particular, Berman [2] observes that the vertex
version of Menger’s theorem does not hold for temporal graphs. Kempe et al. [10]
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 444–455, 2015.
DOI: 10.1007/978-3-662-47672-7 36

On Temporal Graph Exploration 445

characterize the temporal graphs in which Menger’s theorem holds and show that
it is NP-complete to decide whether there are two node-disjoint time-respecting
paths between a given source and sink. Mertzios et al. [14] show that there is a
natural variation of Menger’s theorem that holds for temporal graphs. Moreover,
the standard algorithms usually optimize only one parameter, but problems in
temporal graphs usually have more than one parameter to optimize, e.g., one can
search for a shortest, a foremost, or a fastest s-t-path [3], i.e., a path from s to t
with a minimal number of edges, earliest arrival time, and a shortest duration,
respectively.

We consider the temporal graph exploration problem, introduced in [16] and
denoted TEXP, whose goal is to compute a schedule (or temporal walk) with the
earliest arrival time such that an agent can visit all vertices in V . The agent is
initially located at a start node s ∈ V . In step i (i ≥ 0) the agent can either
remain at its current node or move to an adjacent node via an edge that is present
in Ei. We remark that static undirected graphs can easily be explored in less than
2|V | steps using depth-first search, while there are static directed graphs for which
exploration requires Θ(|V |2) steps. The problem to explore a graph (as part of an
exploration of a maze) was already formulated by Shannon [19] in 1951.

Flocchini et al. [7] consider the graph exploration problem on temporal graphs
with periodicity defined by the periodic movements of carriers. Much of the
research is based on models where edges appear with a certain probability [1,9,11]
or with some kind of periodicity [4,13]. Except in Sect. 5, we do not assume that
edges appear with some periodicity or certain probabilistic properties. Instead,
unless stated otherwise, we only assume that the given temporal graph is always
connected. Michail and Spirakis [16] observe that without the assumption that the
given temporal graph is connected at all times, it is even NP-complete to decide if
the graph can be explored at all. They also show that, under this assumption, any
temporal graph can be explored with an arrival time n2. They also prove that there
is no (2−ε)-approximation for TEXP for any ε > 0 unless P = NP. They define
the dynamic diameter of a temporal graph to be the minimum integer d such that
for any time i and any vertex v, any other vertex w can be reached in d steps on
a temporal walk that starts at v at time i. They provide a d-approximation algo-
rithm forTEXP, where d is the dynamic diameter of the temporal graph. We note
that d can be as large as n − 1, and hence the approximation ratio of their algo-
rithm in terms of n is only n−1. Thus, there is a significant gap between the lower
bound of 2 − ε and the upper bound of n − 1 on the best possible approximation
ratio, which we address in this paper.

Our contributions. We close the gap between the upper and lower bound on
the approximation ratio of TEXP by proving that it is NP-hard to approx-
imate TEXP with ratio O(n1−ε) for any ε > 0. Furthermore, we provide an
explicit construction of undirected temporal graphs that require Θ(n2) steps to
be explored. We then consider TEXP under the assumption that the underlying
graph (i.e. the graph that contains all edges that are present in the temporal
graph in at least one step) belongs to a specific class of graphs. We show that
temporal graphs can be explored in O(n1.5k2 log n) steps if the underlying graph

446 T. Erlebach et al.

has treewidth k, in O(n log3 n) steps if the underlying graph is a 2× n grid, and
in O(n) steps if the underlying graph is a cycle or a cycle with a chord. Several
of these results use a technique by which we specify an exploration schedule for
multiple agents and then apply a general reduction from the multi-agent case to
the single-agent case. We also show that there exist temporal graphs where the
underlying graph is a bounded-degree planar graph and each Gi is a path such
that the optimal arrival time of the exploration walk is Ω(n log n). Finally, we
consider a setting where the underlying graph is sparse and edges are present
with a certain regularity and show that temporal graphs can always be explored
with an arrival time O(n). A full version of our paper can be found in [6].

The remainder of the paper is structured as follows. In Sect. 2, we give
some definitions and preliminary results. Section 3 presents our inapproxima-
bility result for general temporal graphs. The results for temporal graphs with
restricted underlying graphs are given in Sect. 4. Temporal graphs with regularly
present edges are considered in Sect. 5, and Sect. 6 concludes the paper.

2 Preliminaries

Definitions. A temporal graph G with vertex set V and lifetime L is given by
a sequence of graphs (Gi)0≤i≤L with Gi = (V,Ei). Throughout the paper, we
only consider temporal graphs for which each Gi is connected and undirected.
We refer to i, 0 ≤ i ≤ L, as time i or step i. The graph G = (V,E) with
E =

⋃
0≤i≤L Ei is called the underlying graph of G. If the underlying graph is

an X, we call the temporal graph a temporal X or a temporal realization of X.
For example, a temporal cycle is a temporal graph whose underlying graph is
a cycle, and a temporal graph of bounded treewidth is a temporal graph whose
underlying graph has bounded treewidth.

If an edge e is in Ei, we use the edge-time pair (e, i) to denote the existence
of e at time i. A temporal (or time-respecting) walk from v0 ∈ V starting at
time t to vk ∈ V is an alternating sequence of vertices and edge-time pairs
v0, (e0, i0), v1, . . . , (ek−1, ik−1), vk such that ej = {vj , vj+1} ∈ Eij for 0 ≤ j ≤
k − 1 and t ≤ i0 < i1 < · · · < ik−1. The walk reaches vk at time ik−1 + 1. We
often explain the construction of a temporal walk by describing the actions of
an agent that is initially located at v and can in every step i either stay at its
current node or move to a node that is adjacent to v in Ei.

For a given temporal graph G with source node s, an exploration schedule S
is a temporal walk that starts at s at time 0 and visits all vertices. The arrival
time of S is the time step in which the walk reaches the last unvisited vertex. An
exploration schedule with smallest arrival time is called foremost. The temporal
exploration problem TEXP is defined as follows: Given a temporal graph G
with source node s and lifetime at least |V |2, compute a foremost exploration
schedule. To ensure the existence of a feasible solution, we assume that the
lifetime of the given temporal graph G is at least |V |2. We also consider a multi-
agent variant k-TEXP of TEXP in which there are k agents initially located
at s. An exploration schedule S comprises temporal walks for all k agents such

On Temporal Graph Exploration 447

that each node of G is visited by at least one agent. The arrival time of S is then
the time when the last unvisited node is reached by an agent.

A ρ-approximation algorithm for TEXP or k-TEXP is an algorithm that
runs in polynomial time and outputs an exploration schedule whose arrival time
is at most ρ times the arrival time of the optimal exploration schedule.

Preliminary Results. We establish some preliminary results that will be useful
for the proofs of our main results. The following lemma allows us to bound the
steps of a temporal walk from one vertex to another vertex in a temporal graph.

Lemma 1 (Reachability). Let G be a temporal graph with vertex set V .
Assume that an agent is at vertex u. Let v be another vertex and H a sub-
set of the vertices that includes u and v and has size k. If in each of k − 1 steps
the subgraph induced by H contains a path from u to v (which can be a different
path in each step), then the agent can move from u to v in these k − 1 steps.

Proof. For i ≥ 0, let Si be the set of vertices that the agent could have reached
after i steps. We have S0 = {u}. We claim that as long as v /∈ Si, at least one
vertex of H is added to Si to form Si+1. To see this, consider the graph in step
i + 1. By the assumption, the graph induced by H contains a path from u to v.
The first vertex on this path that is not in Si is added to Si+1. As H contains
only k vertices, there can be at most k − 1 steps until v is reached. ��

We now show that a solution to k-TEXP yields a solution to TEXP.

Lemma 2 (Multi-agent to Single-agent). Let G be a graph with n vertices.
If any temporal realization of G can be explored in t steps with k agents, any
temporal realization of G can be explored in O((t+n)k log n) steps with one agent.

Proof. Let G be a temporal realization of G. Consider the exploration schedule
constructed as follows: In the first t steps, the k agents explore G in t steps. Then
all k agents move back to the start vertex in n steps. Refer to these t+n steps as
a phase. Note that the phase can be repeated as often as we like. We construct
a schedule for a single agent x by copying one of the k agents in each phase.
In each phase, the k agents together visit all n vertices, so the agent that visits
the largest number of vertices that have not yet been explored by x must visit
at least a 1/k fraction of these unexplored vertices. We let x copy that agent in
this phase. This is repeated until x has visited all vertices.

The number of unexplored vertices is n initially. Each iteration takes t + n
steps and reduces the number of unexplored vertices by a factor of 1 − 1/k.
Then after �k ln n� + 1 iterations, the number of unexplored vertices is less than
n · (1 − 1/k)k lnn ≤ ne− lnn = 1 and therefore all vertices are explored. ��

The next lemma shows that edge contractions do not increase the arrival
time of an exploration in the worst case.

Lemma 3 (Edge Contraction). Let G be a graph such that any temporal
realization of G can be explored in t steps. Let G′ be a graph that is obtained
from G by contracting edges. Then any temporal realization of G′ can also be
explored in t steps.

448 T. Erlebach et al.

Proof. Consider a temporal realization of G′. Consider the corresponding tem-
poral realization of G in which all the contracted edges are always present. Let
S be a schedule with an arrival time t that explores the temporal realization
of G. S can be executed in t steps in the temporal realization of G′ simply by
ignoring moves along edges that were contracted. ��
Corollary 1. Let c < 1 be a constant and t(n) a function that is monotone
increasing and satisfies t(kn) = O(t(n)) for any constant k > 0, e.g., a polyno-
mial. Let C be a class of graphs such that any temporal realization of a graph G
in the class can be explored in t(n) steps, where n is the number of nodes of G.
Let D be the class of graphs that contains all graphs that can be obtained from a
graph G in C with n vertices by at most cn edge contractions. Then any temporal
realization of a graph in D with n′ vertices can be explored in O(t(n′)) steps.

Proof. Let G be a graph in the class C, and let H be obtained from G by at
most cn edge contractions. Furthermore, let n and n′ be the number of vertices
of G and H, respectively. Thus, n′ ≥ (1 − c)n. Since any temporal realization of
G can be explored in t(n) steps, by Lemma 3, any realization of H can also be
explored in t(n) ≤ t(n′/(1 − c)) = O(t(n′)) steps. ��

3 Lower Bounds for General Temporal Graphs

While static undirected graphs with n nodes can always be explored in less than
2n steps, the following lemma shows that there are temporal graphs that require
Ω(n2) steps.

Lemma 4. There is an infinite family of temporal graphs that, for every n ≥ 1,
contains a 2n-vertex temporal graph G that requires Ω(n2) steps to be explored.

Proof. Let V = {cj , �j | 0 ≤ j ≤ n − 1} be the vertex set of G. For any step
i ≥ 0, the graph Gi is a star with center ci mod n. The start vertex is c0. If an
agent is at a vertex that is not the current center, the agent can only wait or
travel to the current center. As in the next step the center will have changed,
the agent is again at a vertex that is not the current center. Hence, to get from
one vertex �j to another vertex �k for k 	= j, n steps are needed: The fastest way
is to move from �j to the center of the current star, and then to wait for n − 1
steps until that vertex is again the center of a star, and then to move to �k. The
total number of steps is Ω(n2). ��

Lemmas 2 and 4 also imply the following.

Corollary 2. For any constant number of agents, there is an infinite family of
temporal graphs such that each n-vertex temporal graph in the family cannot be
explored in o(n2/ log n) steps.

The underlying graph of the temporal graph in the proof of Lemma 4 has
maximum degree |V | − 1. For graphs with maximum degree bounded by d, we
can show a lower bound of Ω(dn) in the following lemma.

On Temporal Graph Exploration 449

Lemma 5. For every even d ≥ 2, there is an infinite family of temporal graphs
with underlying graphs of maximum degree d that require Ω(dn) steps to be
explored, where n is the number of vertices of the graph.

Proof. Without loss of generality, n is a multiple of d. We construct G in two
steps. First, we construct n/d copies of a temporal graph G′, which we connect in
the end. G′ is the graph with d vertices constructed as in the proof of Lemma 4
(by setting the n to d/2). Note that moving from a vertex �j in a copy of G′ to
a vertex �k for k 	= j in the same copy of G′ requires Ω(d) steps.

Let G1, . . . ,Gn/d be the n/d copies of G′. For all i = 1, . . . , n/d−1, connect Gi

and Gi+1 by merging vertex �1 of Gi with �0 of Gi+1. Let G be the graph obtained.
Note that the underlying graph of G has maximum degree d (the vertices that
have been merged have degree d, all other vertices �j have degree d/2, and all
vertices cj have degree d − 1). Note that, by our way of merging, G is connected
at all times as this is true for all copies of G′.

Let us consider an exploration schedule of G. Similar to the arguments used
in the proof of Lemma 4, we can now observe that getting from any �i in one
copy of G′ to a different vertex �j in the same or another copy of G′ takes at
least d/2 steps (in most of these, the agent may not move). As there are at least
n/d · (d/2 − 2) = Ω(n) such pairs in every exploration schedule of G, we need
Ω(dn) steps in total. ��
Theorem 1. Approximating temporal graph exploration with ratio O(n1−ε) is
NP-hard.

Proof. We give a reduction from the Hamiltonian s-t path problem, which is
NP-hard [8]. Assume we are given an instance I ′ of the Hamiltonian s-t path
problem consisting of an undirected n′-vertex graph G′, a start vertex s, and an
end vertex t. We now construct an instance I of the temporal graph exploration
problem as follows: Take the temporal graph as constructed in the proof of
Lemma 4 with n = (n′)c for some constant c. In addition, replace each �i by a
copy of G′. Call it the ith copy of G′. The edges in each copy of G′ are present
in every step. The edge {cj , �i} is replaced by an edge connecting cj and vertex
s in the ith copy. We also call the vertices ci the center vertices. In addition, we
have so-called quick links. Each quick link is an edge that connects the vertex
t of the i-th copy with the vertex s of the (i + 1)-th one only in step i · n′ for
every 1 ≤ i < n − 1. Denote by G the resulting temporal graph. Note that G has
n∗ = n(1 + n′) vertices and that n = Θ((n∗)c/(c+1)).

Clearly, if G′ has a Hamiltonian path from s to t, then G can be explored
in O(n∗) steps: The agent starts at c0 and then explores the first copy of G′

in n′ steps by following the Hamiltonian s-t-path. The agent arrives at t in the
first copy of G′ at step n′, and we can use a quick link in step n′ to move to s
in the second copy of G′, etc. After exploring all copies of G′, we can explore
all remaining center vertices ci in O(n∗) steps, i.e., G can be explored in O(n∗)
steps.

Now assume that G′ does not have a Hamiltonian s-t-path. This means that
a copy of G′ cannot be explored in one visit while using both available quick

450 T. Erlebach et al.

link connections. Hence in the exploration, every copy must either be visited or
left via a center vertex. As moving from one copy to another via a center vertex
takes n steps, exploring the n copies takes at least 1

2n(n − 1) steps. So a total
of at least Ω(n2) = Ω((n∗)2c/(c+1)) = Ω((n∗)2−ε) steps are needed, where ε can
be made arbitrarily small by choosing c large enough.

Distinguishing whether G can be explored in O(n∗) steps or whether it
requires Ω((n∗)2−ε) steps therefore solves the Hamiltonian s-t-path problem,
and the theorem follows. ��

4 Restricted Underlying Graphs

In Sect. 3, we showed that arbitrary temporal graphs may require Ω(n2) steps
to be explored and that it is NP-hard to approximate the optimal arrival time
of an exploration schedule within O(n1−ε) for any ε > 0. This motivates us
to consider the case where the underlying graph is from a restricted class of
graphs. In particular, the underlying graph of the construction from Lemma 4
is dense (it contains Ω(n2) edges) and has large maximum degree. For the case
of underlying graphs with degree bound d, we could only show that there are
graphs that require Ω(dn) steps. It is therefore interesting to consider cases of
underlying graphs that are sparse, or have bounded degree, or are planar. We
consider several such cases in this section.

4.1 Lower Bound for Planar Bounded-Degree Graphs

First, we show that even the restriction to underlying graphs that are planar and
have bounded degree is not sufficient to ensure the existence of an exploration
schedule with a linear number of steps.

Theorem 2. Even if the underlying graph G = (V,E) of a temporal graph G is
planar with maximum degree 4 and the graph Gi in every step i ≥ 0 is a simple
path, an optimal exploration can take Ω(n log n) steps, where n = |V |.
Proof (sketch). Without loss of generality, we assume that n = 2k for some
k ≥ 3. Consider the following underlying graph G: It contains vertices V0 =
{ti, bi | 0 ≤ i ≤ n/4 − 1}, the edges {ti, ti+1}, {bi, bi+1}, {ti, bi+1} and {bi, ti+1}
for 0 ≤ i < n/4−1, and a path P of n/2 additional vertices that connects t0 and
b0. It is not hard to see that G is planar: Arrange the vertices as in Figure 1.
For each 0 ≤ i < n/4−1, draw the edge {bi, ti+1} as shown in the figure and the
edge {ti, bi+1} around the outside. We refer to the edges {ti−1, ti} and {bi−1, bi}
as horizontal edges of column i, and the edges {ti−1, bi} and {bi−1, ti} as cross
edges of column i. Consider the following temporal realization of G:

The path P is always present. We divide the time into rounds, the first round
consists of the first n/2 steps, etc. For the first round, the graph additionally
contains the horizontal edges of all columns. For the next round, the horizontal
edges of column n/8 are replaced by the cross edges. For the next round, the

On Temporal Graph Exploration 451

b6

t0t1t2t3t4t5t6t7

b0b1b2b3b4b5b7

Fig. 1. The underlying graph constructed in the proof of Theorem 2 for n = 32. Edges
present at the second round are drawn solid, the remaining edges are drawn dashed.

horizontal edges of columns n/16 and 3n/16 are replaced by the cross edges.
Following the same pattern of replacements (each time the horizontal edges of
the middle column in each stretch of horizontal edges are replaced by the cross
edges), this is repeated for O(log n) rounds.

Observe that with n/2 steps, any agent can explore either the vertices in V0

connected to t0 or those connected to b0. Furthermore, no matter which of the
two sets of vertices the algorithm visits, in the next n/2 steps half of the unvisited
vertices will be connected to t0 and half to b0. Thus, for all start positions of an
agent, it requires Ω(log n) rounds until all vertices are visited. ��

4.2 Underlying Graphs with Bounded Treewidth

Theorem 3. Any temporal graph whose underlying graph has treewidth at most
k can be explored in O(n1.5k2 log n) steps.

Proof. Consider a nice tree decomposition [12,17] of the underlying graph, i.e.,
the tree is a binary tree and all nodes are so-called join nodes, introduce nodes,
or forget nodes. Select bags as separators via the following procedure: Visit the
bags in a post-order traversal of the tree. Select a bag B as a separator if the
number of unmarked vertices below the bag exceeds

√
n, or if the number of

selected bags that are below B and are not descendants of another selected bag
is at least 2. If a bag B is selected, mark all vertices in B and below B. Vertices
in B are called separator vertices. The number of bags selected as separators
is O(

√
n). This can be shown as follows. At any point of the procedure, call a

selected bag a topmost bag if it is not a descendant of another selected bag. If
a bag is selected because there are more than

√
n unmarked vertices below, the

number of topmost bags increases by at most one and
√

n unmarked vertices
become marked. This can happen at most

√
n times. If a bag is selected because

there are two topmost bags below it, the number of topmost bags decreases by
one. As the number of topmost bags increases by one at most

√
n times, it can

also decrease at most
√

n times, and hence at most
√

n bags are selected because
there are two topmost selected bags immediately below them.

The selected separators split the graph into O(
√

n) components (that are not
necessarily connected) such that each component contains at most 2

√
n vertices

(not counting separators) and is connected to a constant number of separators,
i.e., to at most ck separator vertices for some constant c. The algorithm now
explores the components one by one. Each component H is explored with ck
agents as follows: First, in n steps, move one virtual agent to each of the ck

452 T. Erlebach et al.

vertices in the separators that separate the component from the rest of the graph.
Then repeat the following operation: Let v be an arbitrary unvisited vertex in H.
In each of the next 4ck

√
n steps, v is connected to at least one of the ck separator

vertices, so there exists one separator vertex s to which v is connected in at least
4
√

n steps. The agent from s can visit v and return to s in these steps. Therefore,
all of the up to 2

√
n vertices in H can be visited in 2

√
n · 4ck

√
n = O(kn) steps

by ck agents. Using the idea in the proof of Lemma 2, this implies that one agent
can explore H in O(k2n log n) steps. As there are O(

√
n) components, the whole

graph can be explored in O(n1.5k2 log n) steps. ��

4.3 Cycles and Cycles with Chords

Theorem 4. Any temporal cycle C of length n can be explored in 3n steps and
the optimal number of steps can be computed in polynomial time.

Proof. Consider two virtual agents, one moving clockwise and one counterclock-
wise. Since C is connected, at most one edge of C is missing at all times. Thus, in
each step, one of the two agents can move, except when the agents are in adja-
cent places and the edge between them is absent. If the edge stays absent for the
next n steps, one of the agents can visit the whole cycle by turning around and
traversing the cycle. If the edge is present in one of the next n steps, the agents
can use the edge to pass each other and continue the traversal of the cycle. One
of the virtual agents will have completed the traversal of the whole cycle in at
most 3n steps. Pick that agent and use it as the solution.

By shortcutting backward and forward moves of the agents such that no ver-
tices are skipped completely, the optimal schedule is of one of a constant number
of types: move clockwise around the cycle; move counter-clockwise around the
cycle; move clockwise to some vertex v, then counter-clockwise until the cycle
is explored; move counter-clockwise to some vertex w, then clockwise until the
cycle is explored. The types can be enumerated in polynomial time, and the
optimal schedule for each can be calculated in a greedy way. ��
Observation 1. There is a temporal cycle graph in which the optimal explo-
ration requires at least 2n − 3 steps.

Proof (sketch). Assume that u, v, w is a subpath of the cycle and the agent is
initially at u. Let the edge {u, v} be absent for the first n − 2 steps, and let the
edge {v, w} be absent in all steps after that. ��
Theorem 5. A temporal cycle with one chord can be explored in O(n) time.

Proof. Let the left and right cycle be the two cycles that contain the chord.
Check how often the chord is present in the first 10n steps. If the chord is
present in more than 7n steps, use 3n of these to explore the (left or right) cycle
in which the start node is contained, n to move to the other cycle, and 3n to
explore that cycle. Otherwise, there are 3n steps in which the chord is absent
and the remaining graph is a cycle instance. The cycle can be explored in these
steps. ��

We conjecture that Theorem 5 can be extended to O(1) chords.

On Temporal Graph Exploration 453

4.4 The 2 × n Grid

Theorem 6. Any temporal 2 × n grid can be explored in O(n log n) steps with
4 log n agents.

Proof. We show a slightly more general statement. We show that, if we are given
an underlying graph G′ being a grid of size 2×n′ and a subgrid G′′ of size 2×n′′

of G′ such that each pair of vertices in G′′ is connected in G′, then 4 log n′ agents
initially on some vertices of G′′ can explore G′′ in T (n′) = O(n′(log n′)) time.
The theorem follows by taking G′ = G′′ = G.

We start with exploring the left half H ′ of G′′. The idea is to move 4 agents
to the corners of H ′, one to each corner, and all remaining 4(log n′) − 4 agents
to a suitable middle location of H ′—specified below—using the first 2n′ steps.
This is possible by Lemma 1. For the next T (n′/2) + n′/2 steps, in each step
where it is possible, we move the 2 agents �1 and �2 on the left corners of H ′

in parallel to the right using only horizontal edges. Similarly, we move the 2
agents r1 and r2 on the right corners to the left in parallel. Let i and j be the
number of steps of �1 and r1, respectively. The middle location is any position
between the final position of �1 and �2 on the left and the final position of r1
and r2 on the right. If the agents on the left and on the right meet, they stop
moving and H ′ is explored. In particular, if H ′ is a 2 × 1 grid, �1 and r1 (as
well as �2 and r2) are at the same vertex, i.e., we can stop immediately and
T (1) = O(1). Otherwise, in the same T (n′/2) + n′/2 steps where the 4 agents
move, we explore recursively the subgrid H ′′ of H ′ consisting of the columns
that are not visited by the 4 corner agents. More precisely, whenever neither the
2 agents �1 and �2 nor the 2 agents r1 and r2 move, each pair of vertices of H ′′ is
connected in H ′ and the agents starting in the middle location can explore H ′′

in T (n′/2) steps. Consequently, after the first 2n′ steps to place the agents, the
next T (n′/2) + i + j ≤ T (n′/2) + n′/2 steps are enough to explore H ′.

We subsequently explore the right half in the same way. The total time to
explore G′′ is T (n′) ≤ 2(2n′ + T (n′/2) + n′/2) = O(n′ log n′). ��

Using Lemma 2, we can reduce the number of agents to one.

Corollary 3. A temporal 2 × n grid can be explored in O(n log3 n) steps by one
agent.

5 Temporal Graphs with Regularly Present Edges

We say that a temporal graph has regularly present edges if for every edge e
there is a constant integer Ie such that the number of consecutive steps in which
e is absent from the temporal graph is at most Ie and at least Ie/c for some
constant c > 1.

Theorem 7. A temporal graph G with regularly present edges that has n vertices
and O(n) edges can be explored in O(n) steps.

454 T. Erlebach et al.

Proof (sketch). Round all Ie down to the nearest power of 2; denote the result
by Je. Calculate a minimum spanning tree T with respect to edge weights Je.
Explore the graph by following an Euler tour of T . Moving over an edge e takes
at most Ie ≤ 2Je steps, so the total exploration takes at most 2

∑
e∈T Je steps.

We next show that
∑

e∈T Je = O(n). Consider any k ≥ 0 such that T contains
at least one edge e with Je = 2k. Consider the connected components C1, . . . , Crk

of T \ {e ∈ T | Je = 2k}. Observe that every edge leaving a component Ci (i.e.,
with one endpoint in Ci) must have weight at least 2k. Let Ei be the set of
edges of the underlying graph of G that leave Ci. Since in each step the graph is
connected and hence in each step at least one of the edges of Ei must be present,∑

e∈Ei
1/(Ie/c) ≥ 1. Thus,

∑
e∈Ei

c
Je

≥ 1. Assign a charge of c2k/Je to each e ∈
Ei. The total charge that Ci assigns to Ei is

∑
e∈Ei

c2k/Je = 2k
∑

e∈Ei
c/Je ≥

2k. As an edge receives charge c2k/Je from at most two components Ci, no edge
receives more than 2c2k/Je of charge for every fixed k.

The total weight of edges of weight 2k in T is 2k(rk −1). Each of the rk com-
ponents assigns a charge of 2k to edges, so the total charge of the rk components
is greater than the total cost of edges of weight 2k in T . To bound the total
charge that an edge e of G can receive, let the weight of e be Je = 2j . For k > j,
e does not receive any charge. For each k ≤ j, e receives charge at most 2c2k/2j .
The total charge received by e is then at most

∑
k≤j

2c2k

2j ≤ 2c2j+1

2j = 4c.
So we have that all the weight of T is charged to edges of G, and no edge of

G receives more than 8c of charge. As G has O(n) edges, the total charge is at
most O(4cn) = O(n), and hence the weight of T is O(n). ��

6 Conclusion

The study of temporal graphs is still in its infancy, and we do not yet have
intuition and a range of techniques comparable to what has been developed over
many years for static graphs. Even seemingly simple tasks such as construct-
ing temporal graphs (possibly with an underlying graph from a given family)
that cannot be explored quickly is surprisingly difficult. We hope that the meth-
ods used in this paper to prove results for temporal graphs, e.g., the general
conversion of multi-agent solutions to single-agent solutions, contribute to the
formation of a growing toolbox for dealing with temporal graphs.

Our results directly suggest a number of questions for future work. In partic-
ular, deriving tight bounds on the largest number of steps required to explore a
temporal graph whose underlying graph is an m×n grid, a bounded degree graph,
or a planar graph would be interesting. It would also be interesting to study the
approximability of TEXP for restricted underlying graphs, and to identify fur-
ther cases of underlying graphs, where the temporal exploration problem can be
solved optimally in polynomial time.

An interesting variation of TEXP is to allow the agent to make two moves
(instead of one) in every time step. The temporal graph constructed in the proof
of Lemma 4 can be explored with an arrival time O(n) in the modified model.
It would be interesting to determine tight bounds for the modified model.

On Temporal Graph Exploration 455

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: Largest random component of a k-cube.
Combinatorica 2(1), 1–7 (1982)

2. Berman, K.A.: Vulnerability of scheduled networks and a generalization of
Menger’s theorem. Networks 28(3), 125–134 (1996)

3. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

4. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in
delay-tolerant networks. In: Proc. 25th Conference on IEEE International Sym-
posium on Parallel and Distributed Processing (IPDPS 2011), pp. 209–218. IEEE
(2011)

5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPEDS 27(5), 387–408 (2012)

6. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. CoRR
abs/1504.07976 (2015). arXiv:1504.07976

7. Flocchini, P., Mans, B., Santoro, N.: Exploration of periodically varying graphs. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 534–543.
Springer, Heidelberg (2009)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., San Francisco (1979)

9. Karlin, A.R., Nelson, G., Tamaki, H.: On the fault tolerance of the butterfly. In:
Proc. 26th Annual ACM Symposium on Theory of Computing, STOC 1994, pp.
125–133. ACM (1994)

10. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

11. Kesten, H.: The critical probability of bond percolation on the square lattice equals
1
2
. Comm. Math. Phys. 74(1), 41–59 (1980)

12. Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

13. Liu, C., Wu, J.: Scalable routing in cyclic mobile networks. IEEE Trans. Parallel
Distrib. Syst. 20(9), 1325–1338 (2009)

14. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network
optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp.
657–668. Springer, Heidelberg (2013)

15. Michail, O.: An introduction to temporal graphs: An algorithmic perspective.
CoRR abs/1503.00278 (2015). arXiv: 1503.00278

16. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS,
vol. 8635, pp. 553–564. Springer, Heidelberg (2014)

17. Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with
bounded tree-width. Technical Report 396, Department of Mathematics, Techni-
sche Universität Berlin (1994)

18. Scheideler, C.: Models and techniques for communication in dynamic networks. In:
Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 27–49. Springer,
Heidelberg (2002)

19. Shannon, C.: Presentation of a maze-solving machine. In: Proc. 8th Conference of
the Josiah Macy Jr. Found (Cybernetics), pp. 173–180 (1951)

http://arxiv.org/abs/1504.07976
http://arxiv.org/abs/1503.00278

Mind Your Coins: Fully Leakage-Resilient
Signatures with Graceful Degradation

Antonio Faonio1(B), Jesper Buus Nielsen1, and Daniele Venturi2

1 Aarhus University, Aarhus, Denmark
{antfa,jbn}@cs.au.dk

2 Sapienza University of Rome, Rome, Italy
venturi@di.uniromal.it

Abstract. We construct a new leakage-resilient signature scheme. Our
scheme remains unforgeable in the noisy leakage model, where the only
restriction on the leakage is that it does not decrease the min-entropy
of the secret key by too much. The leakage information can depend on
the entire state of the signer; this property is sometimes known as fully
leakage resilience.

An additional feature of our construction, is that it offers a graceful
degradation of security in situations where standard existential unforge-
ability is impossible. This property was recently put forward by Nielsen
et al. (PKC 2014) in the bounded leakage model, to deal with settings
in which the secret key is much larger than the size of a signature.

For security parameter κ, our scheme tolerates leakage on the entire
state of the signer until ω(log κ) bits of min-entropy are left in the secret
key, and is proven secure in the standard model. While we describe our
scheme in terms of generic building blocks, we also explain how to instan-
tiate it efficiently under fairly standard number-theoretic assumptions.

Keywords: Cryptography · Leakage-resilience · Signature schemes

1 Introduction

Cryptography relies on secret information and random sources to accomplish its
tasks. In order for a given cryptographic primitive to be secure, it is typically
required that its secrets and randomness are well-protected, and cannot be influ-
enced by an attacker. In practice, however, it is not always possible to fulfil this
requirement, and partial information about the secret state of a cryptosystem
can leak to an external adversary, e.g., via so-called side-channel attacks exploit-
ing physical characteristics of a crypto-device, such as power consumption [1],
electromagnetic radiation [2], and running times [3].

A. Faonio and J.B. Nielsen—Supported by European Research Council Starting
Grant 279447.
D. Venturi—Partially supported by the European Commission (Directorate-General
Home Affairs) under the GAINS project HOME/2013/CIPS/AG/4000005057, and
by the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 644666.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 456–468, 2015.
DOI: 10.1007/978-3-662-47672-7 37

Fully Leakage-Resilient Signatures with Graceful Degradation 457

Recently a lot of effort has been put into constructing cryptographic primitives
that come along with some form of leakage resilience, meaning that the scheme
should remain secure even in case the adversary obtains some type of leakage on
the secrets used within the system. A common way to model leakage attacks, is
to empower the adversary with access to a leakage oracle, taking as input (adap-
tively chosen) functions fi and returning fi(st) where st is the current secret state
of the cryptosystem under attack. Clearly some restriction on the functions fi has
to be put, as otherwise there is no hope for security. By now, a plethora of leakage
models (corresponding to different ways how to restrict the functions fi) have been
proposed.Themost relevant to ourwork is the so-callednoisy leakage model, which
assumes the total amount of leakage does not reduce the entropy of the secret key
by too much. This setting is a natural strengthening of the bounded leakage setting
(see, among others, [4–16]).), where the leakage has to obey to the stricter restric-
tion that the total length of the leakage information is bounded by some a-priori
fixed value.1 Known leakage-resilient primitives in the noisy leakage model include
one-way relations, public-key encryption, and signature schemes [4,9,17].

For a signature scheme to remain existentially unforgeable in the presence of
leakage, it must necessarily be the case that the signature algorithm is not in
the set of the allowed leakage functions, as otherwise an adversary could simply
leak a forgery. A first consequence of this is that signatures must be very long, as
the goal is to enlarge the secret key to tolerate more and more leakage, which is
impractical. A second consequence is that we cannot make any meaningful secu-
rity statement (even for the case of bounded leakage) for schemes where the size
of the secret key is much larger than the size of a single signature. One remark-
able such case is the setting of the Bounded Retrieval Model [18–20] (BRM),
where one intentionally inflates the size of the secret key while keeping constant
the size of a signature and the verification key, as well as the computational
complexity of the scheme (w.r.t. signature computation/verification). Still, we
would like to not consider a scheme completely insecure if the adversary cannot
do better than leaking a few signatures.

A first step towards addressing the above issues was recently taken by Nielsen
et al. [15] (for the bounded leakage model) who introduced a “graceful degra-
dation” property requiring that an adversary should not be able to produce
more forgeries than what he could have leaked. More precisely, in order to break
unforgeability, an adversary has to produce n forgeries where n ≈ λ/(γ ·s)+1 for
signatures of size s, a total of λ bits of leakage, and a “slack parameter” γ ∈ (0, 1]
measuring how close to optimal security a scheme is. The main advantage is that
one can design schemes where the size of the secret key is independent of the
signature size, leading to shorter signatures. This flavour of leakage resilience
still allows for interesting applications, e.g., leaky identification [15].

Our Contribution. We generalize the graceful degradation property to the setting
of fully leakage resilience in the noisy leakage model. Our main notion, dubbed
fully-leakage one-more unforgeability, is essentially the same as the one of [15],
1 Physical leakage rarely obeys to this restriction, e.g., a power trace could be much

longer than the secret key, making schemes in the noisy leakage model more desirable.

458 A. Faonio et al.

with the twist that leakage functions can be applied to the entire state of the
signer and are not bounded in their length.

We construct a fully leakage-resilient signature scheme in the noisy leakage
model; our signature scheme is based on generic cryptographic building blocks
and improves over previous works. The scheme tolerates leakage on the entire
state of the signer until ω(log κ) bits of min-entropy are left in the secret key,
and offers graceful degradation with slack parameter O(1/qs), where qs is the
number of adversarial signature queries, allowing to have short signatures of size
independent of the size of the secret key.

We refer the reader to Section 4 for a description of our scheme along with
an outline of its proof of security.

Extensions. In the full version of this paper [21], we analyse several extensions of
the above result. First off, we propose a “middle-ground” notion which models a
setting where secure erasures of the state are available. In particular, we consider
that the random coins sampled by the signer are completely erased after each
invocation of the signing algorithm. In this model we construct two schemes that
obtain optimal leakage resilience and graceful degradation with slack parameter
O(1/κ) (independent from the number of signature queries made by the adver-
sary). While requiring perfect erasure is a strong assumption (see, e.g., [22]), we
believe our notion might still make sense for some applications, as it in particular
allows to design simpler and more efficient schemes.

Second, we construct a practical scheme secure in the BRM with optimal
slack parameter and leakage resilience, but which requires a random oracle.

Related work. On a high level, our scheme follows the pattern of [5]; our tech-
niques are mostly related to the ones in [11,12]. We stress that these schemes
are known to be secure only in the bounded leakage setting (and, in fact, some
of them can be shown to be insecure for noisy leakage).

In the full version [21] we review the schemes of [5,11,12], and provide a
more detailed comparison with our scheme. We also explain how to instantiate
our scheme efficiently, under fairly standard number-theoretic assumptions.

Signature schemes with bounded leakage resilience are also constructed in
[16,23,24]. The setting of noisy leakage is also studied in the context of leakage-
resilient circuit compilers; see, e.g., [25,26].

2 Preliminaries

If x is a string, we denote its length by |x|; if X is a set, |X | represents the
number of elements in X . Vectors and matrices are typeset in boldface. For a
vector v = (v1, . . . , vn) we sometimes write v[i] for the i-th element of v. When
x is chosen randomly in X , we write x ←$ X . When A is an algorithm, we write
y ← A(x) to denote a run of A on input x and output y; if A is randomized, then
y is a random variable and A(x; r) denotes a run of A on input x and randomness
r. An algorithm A is probabilistic polynomial-time (ppt) if A is randomized and

Fully Leakage-Resilient Signatures with Graceful Degradation 459

for any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most
poly(|x|) steps. Throughout the paper we let κ denote the security parameter.
We say that a function ν : N → R is negligible in the security parameter κ
if ν(κ) = κ−ω(1). A positive function f is noticeable if there exist a positive
polynomial p(·) and a number κ0 such that f(κ) � 1/p(κ) for all κ � κ0. For
two ensembles X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write X ≡ Y if they are
identically distributed and X ≈ Y to denote that the two distributions are
statistically or computationally close.

Random variables and min-entropy. The min-entropy of a random variable X
over a set X is defined as H∞(X) := − log maxx P [X = x] and represents the
best chance of guessing X by an unbounded adversary. Conditional average min-
entropy captures how hard it is to guess X on average, given some side informa-
tion Z, and it is denoted as H̃∞(X|Z) := − logEz [maxx Pr [X = x|Z = z]].

Commitment schemes. A (non-interactive) commitment scheme (CS) is a tuple
of algorithms (Setup,Com), defined as follows: (1) Algorithm Setup takes as input
the security parameter and outputs a verification key ϑ; (2) Algorithm Com takes
as input a message m ∈ M, randomness r ∈ R, the verification key ϑ and outputs
a value com ∈ C. To open a commitment com we output (m, r); an opening is
valid if and only if com = Com(ϑ,m; r). A commitment scheme has two standard
properties, known as binding and hiding. Whenever M and R are a finite field
F, we say that a commitment is linearly homomorphic if given commitments
com = Com(ϑ,m; r) and com ′ = Com(ϑ,m′; r′) and a field element c ∈ F, one
can efficiently compute the commitments com∗ := Com(ϑ,m + m′; r + r′) and
com ′′ := Com(ϑ, c · m; c · r). We write com · com ′ and comc for the mappings
(com, com ′) �→ com∗ and (c, com) �→ com ′′.

Trapdoor commitments. A trapdoor CS is a tuple of algorithms (ESetup,Com
,ECom,Equiv) specified as follows: (1) ESetup takes as input the security param-
eter and outputs a pair (ϑ, τ) ← ESetup(1κ); (2) The tuple (ESetup1,Com) is a
computationally binding commitment scheme with message space M, random-
ness space R, and commitment space C;2 (3) ECom takes as input a pair (ϑ, τ)
and outputs a pair (com, r′) ← ECom(ϑ, τ); (4) Equiv takes as input (τ,m, r′)
and outputs r ← Equiv(τ,m, r′).

For a trapdoor linearly homomorphic CS we require the following additional
property. Let (ϑ, τ) ← ESetup(1κ), (com1, r

′
1) ← ECom(ϑ, τ) and (com2, r

′
2) ←

ECom(ϑ, τ). Then we can use randomness r′
1 +r′

2 to equivocate com1 ·com2, and
randomness c · r′

1 to equivocate comc
1 (for any c).

Hybrid commitments. A hybrid [27] CS is either perfectly binding or trapdoor
hiding, depending on the setup of the verification key.

Definition 1. We say that COM = (Setup,Com,ESetup,ECom,Equiv) is a
hybrid commitment scheme if the following holds.
2 Algorithm ESetup1 outputs the first output of ESetup.

460 A. Faonio et al.

Perfectly Binding: (Setup,Com) forms a perfectly binding CS;
Trapdoor Hiding: (ESetup,Com,ECom,Equiv) forms a trapdoor CS;
Hybridness: The distribution ensemble {ϑ : (ϑ, τ) ←$ ESetup(1κ)}κ∈N

is com-
putationally indistinghuishable from {ϑ : ϑ ←$ Setup(1κ)}κ∈N

.

We call a verification key equivocable (resp. binding) if it is generated by algo-
rithm ESetup (resp. Setup). Similarly, a commitment is equivocable (resp. bind-
ing) if it is generated using an equivocable (resp. binding) verification key.

NIWI arguments. For a NP-relation R ⊆ {0, 1}∗ × {0, 1}∗, the language asso-
ciated with R is LR = {x : ∃w s.t. (x,w) ∈ R}. A non-interactive argument
system (Init,Prove,Ver) is a tuple of algorithms specified as follows: (1) Init
takes as input the security parameter and outputs a common reference string
crs ← Init(1κ); (2) Prove takes as input a pair (x,w) ∈ R, and outputs a proof
π ← Prove(crs, x, w); (3) Ver takes as input a statement x and a proof π, and
outputs a bit b ← Ver(crs, x, π).

A non-interactive witness indistinguishable argument system satisfies a prop-
erty known as completeness, and two additional properties known as adaptive
soundness and statistical witness indistinguishability.

3 Fully-Leakage One-More Unforgeability

We explain how to extend the notion of one-more unforgeability from [15] in two
directions: (i) all intermediate values generated within the lifetime of the system
(and not just the secret key) are subject to leakage; (ii) the amount of leakage
is constraint only by the min-entropy left in the secret key (and not by its total
length). Following Dodis et al. [9], we need a notion of a function being
-leaky.

Definition 2. A (possibly randomized) function f : {0, 1}∗ → {0, 1}∗ is
-leaky,
if for all κ ∈ N we have that H̃∞(Uκ|f(Uκ)) ≥ κ −
, where Uκ is the uniform
distribution over {0, 1}κ.

A signature scheme is a triple of ppt algorithms SS = (KGen,Sign,Verify)
defined as follows: (1) KGen takes as input the security parameter κ and outputs
a verification key/signing key pair (vk , sk); (2) Sign takes as input a message m ∈
M and the signing key sk and outputs a signature σ; (3) Verify takes as input the
verification key vk and a pair (m,σ) and outputs a bit Verify(vk , (m,σ)) ∈ {0, 1}.
We denote by s̃ := |σ| the size of a signature output via Sign(sk , ·) and with
s := H̃∞(sk | pk) − maxm∈M H̃∞(sk | pk ,Sign(sk ,m)) the amount of information
of the secret key that one signature carries. We say that SS satisfies correctness if
for all messages m ∈ M and for all pairs of keys (vk , sk) generated via KGen, we
have that Verify(vk , (m,Sign(sk ,m))) returns 1 with overwhelming probability
over the randomness of the signing algorithm.

Given a signature scheme SS, consider the experiment Expone−more
SS,A (κ,
, qs, γ)

running with a ppt adversary A and parametrized by the security parameter

Fully Leakage-Resilient Signatures with Graceful Degradation 461

κ ∈ N, the leakage parameter
 ∈ N, and the slack parameter γ := γ(κ) defined
as follow:

1. Sample r0 ∈ {0, 1}∗, run the key generation algorithm to obtain a pair
(vk , sk) := KGen(1κ; r0), and return vk to A; let st = {r0}.

2. The adversary A can adaptively issue signing queries. Upon input a message
m ∈ M, the adversary is given a signature σ := Sign(sk ,m; r) computed
using fresh coins r. The state is updated to st := st ∪ {r}. Let Q be the set
of signing queries issued by A.

3. The adversary A can adaptively issue leakage queries. Upon input an arbi-
trary efficiently computable function f described as a circuit, the adversary
is given f(st) where st is the current state.

4. The adversary A outputs n pairs (m∗
1, σ

∗
1), . . . , (m

∗
n, σ∗

n).
5. The experiment outputs 1 if and only if the following conditions are satisfied:

(a) Verify(vk , (m∗
i , σ

∗
i)) = 1 and m∗

i �∈ Q, for all i ∈ [n].
(b) The messages m∗

1, . . . , m
∗
n are pairwise distinct.

(c) Each leakage function is
i-leaky,
∑

i
i ≤
, and |Q| ≤ qs.
(d) If s = 0 then n � �
̃/(γ · s̃)� + 1 otherwise n � �
/(γ · s)� + 1 where
̃ is

the total length of the leakage.

Definition 3. We say that SS is (
, qs, γ, ε)-fully-leakage one-more unforgeable
w.r.t. noisy leakage if for every ppt adversary A asking qs signature queries we
have that P[Expone−more

SS,A (κ,
, qs, γ) = 1] ≤ ε.

The above definition requires that an adversary should produce a number of forg-
eries strictly larger than the ones he could have leaked (up-to the slack factor γ),
however the number of leaked signatures now might depend on the amount of
information that a signature actually carries. We distinguish two cases, depend-
ing on whether the signature algorithm (statistically) reveals partial information
on the secret key or not. In the first case, the parameter n in the winning con-
dition is related to the leakage parameter
, since a forgery is de-facto a leaky
function of the secret; in the second case we need to be more pessimistic, and
let the parameter n be related to the actual leakage
̃ performed by the adver-
sary. Note that in the bounded leakage setting
̃ =
; in particular Definition 3
implies [15, Definition1].

As pointed out in [15], the slack parameter γ specifies how close to optimal
security SS is. In particular, in case γ = 1 one-more unforgeability requires that
A cannot forge even a single signature more than what it could have leaked via
leakage queries. As γ decreases, so does the strength of the signature scheme
(the extreme case being γ = |M|−1, where we have no security).

4 The Signature Scheme

We start by abstracting away a special type of hybrid commitment scheme
(whose properties are used in a modular way in the security proof), called a
secret sharing hybrid commitment (SSHCS). We describe it in Section 4.1. The
signature scheme and an outline of the security proof are given in Section 4.2.

462 A. Faonio et al.

4.1 Secret Sharing Hybrid Commitment

Let COM = (Setup,Com,ESetup,ECom,Equiv) be a hybrid linearly homomor-
phic CS, with M = F

μ and R = F
ν for a finite field F and parameters μ, ν ∈ N.

For parameters p, t ∈ N such that 0 ≤ p � t, consider the following algorithms:

− The key generation algorithm Setupss(1κ) picks t different and independent
verification keys using Setup(1κ), and lets the output be ϑ̄ = (ϑ1, . . . , ϑt).

− The commitment algorithm Comss(ϑ̄,m) first picks uniformly random val-
ues s1, . . . , sp ←$ (Fμ)p such that m =

∑
i si (i.e., it defines a secret sharing

of the message m); then for any i ∈ [p] it commits to the share si picking
a uniformly chosen verification key ϑji , i.e., comi := Com(ϑji , si; ri) where
ri ←$ F

ν . The output is (j, com) = ((J1, . . . , Jp), (com1, . . . , comp)); the ran-
domness is r = (r1, . . . , rp) ∈ (Fν)p := Rss .

The size of a commitment is O(μpκ). We extend (Setupss ,Comss) with a special
key generation algorithm and a corresponding equivocal commitment algorithm:

− The probable binding key generation algorithm Setup(1κ, c) takes as input
an auxiliary parameter 1 � c � log κ. The algorithm follows the same pro-
cedure of Setupss but for a random subset I∗ of [t] with cardinality 2−ct
picks the verification keys using the equivocal key generation algorithm
(ϑ, τ) ←$ ESetup(1κ). It outputs ϑ̄ and the trapdoor τ̄ :=

(
I∗, {τi}i∈[t]\I∗

)
.

− The equivocal commitment algorithm ECom takes as input the trapdoor
τ̄ . It picks SSSj ←$ [t]p, and if all the sampled indexes are not in I∗ then
it outputs a special symbol ⊥, otherwise it commits to p − 1 uniformly
random shares S1, . . . , Sp−1 and generates an equivocal commitment using as
verification key the one with the smallest index lying in I∗ ∩ j. To equivocate
to the message m the algorithm Equiv sets the equivocal commitment to(
m − ∑p−1

I=1 si

)
.

It follows by hybridness of COM that verification keys and commitments gener-
ated with Setup, ECom and Equiv are computationally indistinguishable from the
ones generated with Setupss and Comss . We say that a commitment (j, com) is
Binding if the intersection of j and I∗ is empty. We state the following important
properties for COMss := (Setupss ,Setup,Comss ,ECom,Equiv).

Lemma 1 (Probable Binding Property, informal). For any c ∈ N such
that 0 < c � log κ the following holds. If p � log κ and t � κ:

(a) Any adversarial commitment is binding with probability at least 1
κc −negl(κ).

(b) For any verification key ϑ̄ produced by Setup(1κ, c) the probability that algo-
rithm ECom(ϑ̄, τ̄) outputs ⊥ is 1/κc.

The lemma is proven in the full version [21].

Fully Leakage-Resilient Signatures with Graceful Degradation 463

4.2 Scheme Description

Let COM be a trapdoor hiding, linearly homomorphic CS. Let COMss be the
SSHCS described in Section 4.1. Our scheme SS = (KGen,Sign,Verify) has mes-
sage space3 equal to F and is described below:

Key Generation. Let t, d, μ ∈ N be parameters. Run crs ← Init(1κ), sample
ϑ ← Setup(1κ), and ϑ̄ := (ϑ1, . . . , ϑt) ← Setupss(1κ). Sample Δ ←$ (Fμ)d+1

and r = (r0, . . . , rd) ←$ F
d+1, and compute commitments comi = Com(ϑ, δi;

ri) for i ∈ [0, d], where δi ∈ F
μ is the i-th column of Δ. Output

sk = (Δ, r) vk = (crs, ϑ, {ϑi}t
i=1, {comi}d

i=0).

Signature. For j ∈ [μ], let δj(X) be the degree d polynomial having as
coefficients the elements in the j-th row of Δ, similarly let r(X) be the
degree d polynomial having as coefficients the elements of r;4 moreover,
let com(X) :=

∏
i com

Xi

i . Define Δ(X) to be the vector of polynomials
(δ1(X), . . . , δμ(X)). Consider the following polynomial-time relation:

R :=
{

(ϑ, ϑ̄, ˜com, ¯com); (m̃, r̃, r̄)
∣∣∣∣

˜com = Com(ϑ, m̃; r̃)
¯com = Comss(ϑ̄, m̃; r̄)

}
.

To sign a message m ∈ F compute m̃ = Δ(m) and r̃ = r(m), and let
˜com := Com(ϑ, m̃; r̃) and ¯com := Comss(ϑ̄, m̃; r̄) where r̄ ←$ Rss . Using crs

as common reference string, generate a NIWI argument π for (ϑ, ϑ̄, ˜com, ,) ∈
LR, the language generated by the above relation R. Output σ = (π, ¯com).

Verification. Given a pair (m,σ), parse σ as σ = (π, ¯com). Output the same
as Ver(crs, π, (ϑ, ϑ̄, com(m), ¯com)).

Theorem 1. Let μ ∈ N, and let F be a finite field of size log |F| = κ for security
parameter κ ∈ N. For any constant 0 � ξ < μ/(μ + 1), let θ ∈ N be such that

θ � log (2eμ) − log
(

μ
μ+1 − ξ

)
.

Whenever d = κθ, t = κ and p = log κ the above signature scheme is (ξ|sk |, qs,
O(1

qs
), negl(κ))-fully-leakage one-more unforgeable.

The slack parameter γ(κ, qs) is linear in the number of signature queries,
but still polynomial in the security parameter as qs = poly(κ). As shown in [15,
Section5] this is good enough for some applications.

We outline the proof of Theorem 1 and refer the reader to the full version for
the details. We start by defining a series of hybrid experiments computationally
close to each other by the cryptographic security of the primitives we used. Then
we prove two lemmas on the conditional min-entropy of the secret key in the
3 To obtain a signature scheme with message space {0, 1}∗ it is sufficient to first apply

a collision resistant hash function from {0, 1}∗ to F to the message, and then sign.
4 Namely, we set δj(X) :=

∑d
i=0 δj,i · Xi and r(X) :=

∑d
i=0 ri · Xi.

464 A. Faonio et al.

final hybrid experiment, and show that if an adversary wins the security game
with noticeable probability then the two lemmas are in contradiction.

Let A be an adversary asking qs = κc (for some constant c) signature queries,
such that

P[Expone−more
SS,A (κ,
, qs, γ) = 1] = ε(κ).

The goal of the sequence of hybrids is to reach a final experiment in which signa-
ture queries on average do not reveal information about the secret polynomial
δ(X). For space reasons, we omit the description of the intermediate hybrids
here and present directly the final experiment HLeakΔ(·)

3 .
Hybrid HLeakΔ(·)

3 does not sample Δ as part of the signing key, but can
instead access it via LeakΔ(·). The commitments {comi}d

i=0 in the verification
key of the signature scheme are equivocal (let {r′

i}d
i=0 be the second output of the

equivocal commitment algorithm) and the verification key ϑ̄ of the SSHCS is gen-
erated using the probable binding key generation algorithm Setup(1κ, c). More-
over, signature queries are answered using the equivocal commitment algorithm
ECom(ϑ̄, τ̄). Specifically, upon input a message m the hybrid replies as follow:
(i) it produces an equivocal commitment ¯com ←$ ECom(ϑ̄, τ̄); (ii) if ECom(ϑ̄, τ̄)
does not return ⊥, it produces an argument π that both the commitment ¯com
and the commitment com(m) =

∏
i com

mi

i open to (0)μ.
The equivocation algorithm guarantees a valid witness and maintains the

hybrid indistinguishable to the real experiment; in fact, it allows to simulate
the “real” randomness for the commitment. Similarly, the statistical property
of the NIWI allows to simulate the “real” randomness for the argument π. In
particular, we write st(Δ) to stress that the real randomness can be expressed
as a randomized function of Δ. Therefore, any leakage query f(sk , st) can be
re-defined as a query f ′′(sk) := f(sk , st(sk)), as Δ is part of sk . The hybrid
makes two kind of oracle queries to LeakΔ(·):
T1 For each signature query m ∈ F where ECom(ϑ̄, τ̄) returns ⊥, the experiment

defines the leakage function f ′
m := Δ(m) and queries LeakΔ(·) on f ′

m. We call
such signature query a bad query (otherwise it is called good). Given the value
Δ(m), the signature σ = (¯com, π) is computed by committing to Δ(m),
namely ¯com = Comss(ϑ̄,m; r̄); then the hybrid equivocates com(m) to Δ(m)
and, given the witness (Δ(m), r̄, r) where r ← Equiv(vk ,Δ(m), r′(m)), it
produces the argument π.

T2 For each leakage query f the experiment defines a function f ′′ and queries
LeakΔ(·) on f ′′. The function f ′′(Δ) := f ′(Δ, st(Δ)) hard-wires all values
necessary to reconstruct the current state st = st(Δ); this includes the
trapdoor information needed in order to reconstruct r, and all random coins
used to simulate previous signature queries.

One can show that ε3 � ε−negl(κ), where ε3 is the advantage of A in H3. We
prove two lemmas on the conditional min-entropy of the secret vector Δ given
the view View3 in the hybrid experiment H3.

Fully Leakage-Resilient Signatures with Graceful Degradation 465

Lemma 2 (Lower Bound). The following inequality holds

P [H∞ (Δ| View3 = v) � |Δ| − 2eμ log |F| − log 4 −
] >
2
3
, (1)

where the probability is taken over the randomness of the experiment.

Intuitively, the only relevant information that the view View3 reveals on Δ comes
from the bad signature queries (leakage of type T1) and from the leakage queries
made by the adversary (leakage of type T2); in fact, both the verification key
and the answers to good signatures queries are completely independent of Δ.
Let Z be the number of bad signature queries. By a Chernoff bound, Z does not
diverge significantly from the average:

E [Z] =
qs∑

i=1

Pr[EComss(ϑ̄) = ⊥]=
qs∑

i=1

1
qs

= 1,

where the last equality holds because of point (a) in Lemma 1. Therefore the
total size of leakage is w.h.p. 2eμ log |F| from type T1 queries and
 from type
T2 queries. The lemma follows by the chain rule for leaky functions, and by a
Markov-like argument on the average conditional min-entropy.

Lemma 3 (Upper Bound). For any adversary A such that P[Expone−more
SS,A (κ,
,

qs, γ) = 1] = ε, there exists a constant c′ > 0 such that:

E [H∞ (Δ| View3 = v)] �
(

d + 1 − n

qs

)
μ log |F| − c′ log ε(κ), (2)

where the expectation is taken over the randomness of the experiment.

We define a predictor strategy that outputs Δ with “high probability” and uses
as subrutine the adversary A. The predictor runs the hybrid experiment H3 with
A. Eventually, the adversary A outputs a set of forgeries (m∗

1, σ
∗
1), . . . , (m

∗
n, σ∗

n).
We say that a signature σ∗ = (π∗, ¯com∗) is binding if the commitment ¯com∗ is
binding. Let K the number of binding forged signatures; w.l.o.g. let us assume
that the first K forged signatures are binding. The predictor finds, for all i ∈ [K],
the unique vector Δ(m∗

i) such that ,∗i = Comss(ϑ̄,Δ(m∗
i); r̄

∗
i) (for some random-

ness r̄∗
i ∈ Rss). For any i ∈ [K], if the argument π∗

i is for a valid statement
then the found vector must be exactly Δ(m∗

i). The predictor can succeed only
if the adversary A outputs n valid forgeries and does not break the soundness
of the NIWI argument system in hybrid experiment H3, which happens with
probability greater or equal to ε3. This explains the term −c′ log ε(κ) in Eq. (2).

For any j ∈ [μ] the predictor knows K points on the polynomial5 δj(X);
moreover any type T1 query reveals other points. Therefore, if Z is the number of
bad signatures, the predictor obtains K +Z points of the polynomial δj(X). The
predictor simply guesses d+1−K−Z points and uses polynomial interpolation to

5 Recall that δj(X) is the polynomial defined by the coefficients in the j-th row of Δ.

466 A. Faonio et al.

retrieve the coefficients of δj . We compute the average number of points known
by the predictor for any polynomial δj . By linearity of expectation:

E[X + Z] ≥ n(1/qs − negl(κ)) + 1 > n/qs,

where we used that E [Z] = 1 and E [K] � n(1/qs − negl(κ)) by point (b) of
Lemma 1. Therefore, if A wins the one-more unforgeability game the predictor
needs to guess on average μ(d + 1 − n/qs) elements in F.

We are now ready to prove Theorem 1. Recall that log |F| = κ; by Markov’s
inequality on Eq. (2):

P

[
E [H∞ (Δ|View3 = v)] ≤ 3

((
d + 1 − n

qs

)
μκ − c′ log ε(κ)

)]
>

2
3
. (3)

If the inequality below (see Eq. (4)) holds then the event in Eq. (3) is the negation
of the event in Eq. (1). However the sum of the probabilities is bigger than 1,
yielding a contradiction.

3
((

d + 1 − n

qs

)
μκ − c′ log ε(κ)

)
� (d + 1)μκ − 2eμκ − log 4 −
. (4)

First we note that the left hand side of the equation above is a positive value,
therefore it must be that
 � (d + 1)μκ − 2eμκ − log 4. For any 0 � ξ ≤ μ

μ+1 ,
the last equation holds if we set θ (recall that d = κθ) as in the statement of the
theorem. The inequality holds if

nμκ

qs
�

(
2e

3
+ d + 1

)
μκ +

3
− c′ log ε +

log 4
3

.

Therefore:
nκ

qs
= Ω(
 − log ε(κ)). (5)

Since n � � �
γ·s� + 1, s = Θ(κ) and ε is noticeable, Eq. (5) holds if we set

γ = O(1
qs

). ��

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

3. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

4. Naor, M., Segev, G.: Public-Key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

Fully Leakage-Resilient Signatures with Graceful Degradation 467

5. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

6. Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009)

7. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-Resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010)

8. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In:
FOCS, pp. 501–510 (2010)

9. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS, pp. 511–520 (2010)

10. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

11. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011)

12. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to contin-
ual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 89–106. Springer, Heidelberg (2011)

13. Bitansky, N., Canetti, R., Halevi, S.: Leakage-Tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012)

14. Nielsen, J.B., Venturi, D., Zottarel, A.: On the connection between leakage tol-
erance and adaptive security. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013.
LNCS, vol. 7778, pp. 497–515. Springer, Heidelberg (2013)

15. Nielsen, J.B., Venturi, D., Zottarel, A.: Leakage-Resilient signatures with graceful
degradation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 362–379.
Springer, Heidelberg (2014)

16. Dagdelen, Ö., Venturi, D.: A second look at fischlin’s transformation. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469,
pp. 356–376. Springer, Heidelberg (2014)

17. Garg, S., Jain, A., Sahai, A.: Leakage-Resilient zero knowledge. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)

18. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

19. Dziembowski, S.: Intrusion-Resilience via the bounded-storage model. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006)

20. Dziembowski, S.: On forward-secure storage. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006)

21. Faonio, A., Nielsen, J.B., Venturi, D.: Mind your coins: Fully leakage-resilient sig-
natures with graceful degradation. IACR Cryptology ePrint Archive 2014, 913
(2014)

468 A. Faonio et al.

22. Canetti, R., Eiger, D., Goldwasser, S., Lim, D.-Y.: How to protect yourself without
perfect shredding. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 511–523. Springer, Heidelberg (2008)

23. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-Resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

24. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012)

25. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

26. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

27. Catalano, D., Visconti, I.: Hybrid trapdoor commitments and their applications.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 298–310. Springer, Heidelberg (2005)

A (1+ ε)-Embedding of Low Highway Dimension
Graphs into Bounded Treewidth Graphs

Andreas Emil Feldmann(B), Wai Shing Fung, Jochen Könemann, and Ian Post

Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Canada

{andreas.feldmann,wsfung,jochen}@uwaterloo.ca, ian@ianpost.org

Abstract. Graphs with bounded highway dimension were introduced
in [Abraham et al., SODA 2010] as a model of transportation networks.
We show that any such graph can be embedded into a distribution over
bounded treewidth graphs with arbitrarily small distortion. More con-
cretely, if the highway dimension of G is constant we show how to ran-
domly compute a subgraph of the shortest path metric of the input
graph G with the following two properties: it distorts the distances of
G by a factor of 1 + ε in expectation and has a treewidth that is poly-
logarithmic in the aspect ratio of G. In particular, this result implies
quasi-polynomial time approximation schemes for a number of optimiza-
tion problems that naturally arise in transportation networks, including
Travelling Salesman, Steiner Tree, and Facility Location.

To construct our embedding for low highway dimension graphs we
extend Talwar’s [STOC 2004] embedding of low doubling dimension met-
rics into bounded treewidth graphs, which generalizes known results for
Euclidean metrics. We add several non-trivial ingredients to Talwar’s
techniques, and in particular thoroughly analyze the structure of low
highway dimension graphs. Thus we demonstrate that the geometric
toolkit used for Euclidean metrics extends beyond the class of low dou-
bling metrics.

1 Introduction

In [12,13], Bast et al. studied shortest-path computations in road networks and
observed that such networks are highly structured: there is a small number of
transit or access nodes such that when travelling from any point A to a distant
location B along a shortest path, one will visit at least one of these nodes. The
authors presented a shortest-path algorithm (called transit node routing) that
capitalizes on this structure in road networks and demonstrated experimentally
that it improves over previously best algorithms by several orders of magnitude.
Motivated by Bast et al.’s work (among others), Abraham et al. [1–3] introduce
a formal model for transportation networks and define the notion of highway
dimension. Informally speaking, an edge-weighted graph G = (V,E) has small
highway dimension if, for any scale r ≥ 0 and for all vertices v ∈ V , shortest

A.E. Feldmann—Supported by ERC Starting Grant PARAMTIGHT (No. 280152).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 469–480, 2015.
DOI: 10.1007/978-3-662-47672-7 38

470 A.E. Feldmann et al.

paths of length at least r that are close (in terms of r) to v are hit by a small set of
hub vertices. In the following formal definition, if dist(u, v) denotes the shortest-
path distance between vertices u and v, let Br(v) = {u ∈ V |dist(u, v) ≤ r} be
the ball of radius r centered at v.

Definition 1. The highway dimension of a graph G is the smallest integer k
such that, for some universal constant c ≥ 4, for every r ∈ R

+, and every ball
Bcr(v) of radius cr, there are at most k vertices in Bcr(v) hitting all shortest
paths in Bcr(v) of length more than r.

Rather than working with the above definition directly, we often consider the
closely related notion of shortest path covers (also introduced in [1]).

Definition 2. For a graph G and r ∈ R
+, a shortest path cover spc(r) ⊆ V

is a set of hubs that cover all shortest paths of length in (r, cr/2] of G. Such a
cover is called locally s-sparse for scale r, if no ball of radius cr/2 contains more
than s vertices from spc(r).

In particular, a graph with highway dimension k can be seen to have a locally
k-sparse shortest path cover for any scale r [1]. In both definitions above Abra-
ham et al. [1] specifically choose c = 4 but also note that this choice is, to some
extent, arbitrary. In the present paper, the flexibility of being able to choose a
slightly larger value of c is crucial as we will explain shortly. In the following, we
will let λ = c − 4 and call it the violation of Abraham et al.’s original definition.
While we believe that a small positive violation does not stray from the intended
meaning of highway dimension, we also point out that there are graphs whose
highway dimension is highly sensitive to the value of c. Hence this is not an
entirely innocuous change.

Abraham et al. [1–3] focus on the shortest-path problem and formally investi-
gate the performance of various prominent heuristics as a function of the highway
dimension of the underlying metric. They also point out that, “conceivably, bet-
ter algorithms for other [optimization] problems can be developed and analyzed
under the small highway dimension assumption”. The latter statement is the
starting point of this paper.

We study three prominent NP-hard optimization problems that arise natu-
rally in transportation networks: Travelling Salesman, Steiner Tree and Facil-
ity Location (cf. [25] for formal definitions). Each of these was first studied in
the context of transportation networks, and as we will show they admit quasi-
polynomial time approximation schemes (QPTASs) on graphs with bounded
highway dimension. Our work thereby provides a complexity-theoretic separa-
tion between the class of low highway dimension and general graphs, in which
the aforementioned problems are APX-hard [16,17,19].

Technically, we achieve the above results by employing the powerful machin-
ery of metric space embeddings [10,18]. Specifically, we compute a distribution
over metrics induced by weighted low-treewidth graphs, each of which dominates
the original metric, and whose expected distortion is (arbitrarily) small. The fol-
lowing is the main result of this paper, where the aspect ratio is the maximum
distance divided by the minimum distance between any vertices.

A (1 + ε)-Embedding of Low Highway Dimension Graphs 471

Theorem 3. Let G be a graph with highway dimension k of violation λ >
0, and aspect ratio α. For any ε > 0, there is a polynomial-time computable
probabilistic embedding H of G with treewidth (log α)O(log2(k

ελ)/λ) and expected
distortion 1 + ε.

Low highway dimension graphs do not exclude fixed-size minors and there-
fore do not have low treewidth [23]: the complete graph on vertices {1, . . . , n}
where each edge {i, j} with i < j has length ci, has highway dimension 1. The
example also shows that the aspect ratio of a low-highway dimension graph can
be exponential. We can show that the aspect ratio may be assumed to be polyno-
mial for our considered problems when aiming for 1+ε approximations. Existing
algorithms for bounded treewidth graphs [5,14] then imply QPTASs on graphs
with constant highway dimension.1

While Travelling Salesman, Facility Location, and Steiner Tree are APX-hard
in general graphs, improved algorithms are known in special cases. For example,
polynomial time approximation schemes (PTASs) for all three of these problems
are known if the input metric is low-dimensional Euclidean or planar [4,6,8,14,
15,21,22]. Talwar [24] also showed that the work in [6,8,22] extends (albeit with
quasi-polynomial running time) to low doubling dimension metrics. Bartal et al.
[11] later presented a PTAS for Travelling Salesman instances in this class.

The concept of doubling dimension was first studied by Gupta et al. [20],
and captures metrics that have restricted volume growth. Formally, a metric
has doubling dimension at most d if every ball of radius 2r can be covered
by 2d balls of radius r, for any r. The class of constant doubling dimension
metrics strictly generalizes that of Euclidean metrics in constant dimensions.
Doubling dimension and highway dimension (as defined here) are incomparable
metric parameters, however: Abraham et al. [1] noted that grids have doubling
dimension 2 but highway dimension Θ(

√
n), while stars have doubling dimension

Θ(log n) and highway dimension 1.
We briefly note here that there are alternative definitions of highway dimen-

sion. In particular, the more restrictive definition in [3] implies low doubling-
dimension and hence Talwar [24] readily yields a QPTAS for the optimization
problems we study. Our choice of definition is deliberate, however, and motivated
by the fact that Definition 1 captures natural transportation networks that the
more restrictive definition does not. For instance, typical hub-and-spoke networks
used in airtraffic models are non-planar and have high doubling dimension, since
they feature high-degree stars. This immediately renders them incompatible with
the highway dimension definition in [3]. Nevertheless they have low highway
dimension by Definition 1, since the airports act as hubs, which become sparser
with growing scales as longer routes tend to be serviced by bigger airports. We
can also prove that our definition is a strict generalization of the one in [3]: any
graph with highway dimension k according to [3] has highway dimension O(k2)
according to Definition 1, while a corresponding lower bound is not possible in
general.
1 All missing details and proofs of this extended abstract are deferred to the full version

of the paper.

472 A.E. Feldmann et al.

Our results not only provide further evidence that the highway dimension
parameter is useful in characterizing the complexity of graph theoretic problems
in combinatorial optimization. Importantly, they also show that the geometric
toolkit of [6,8,22] extends beyond the class of low doubling dimension metrics,
since the proof of Theorem 3 heavily relies on the embedding techniques pro-
posed in [24].

1.1 Our Techniques

The embedding constructed in the proof of Theorem 3 heavily relies on previous
work by Talwar [24] but needs many non-trivial new ideas, a few of which we
sketch here. First, we give a quick overview of Talwar’s embedding. The rough
idea is to recursively decompose balls of points called clusters into child clusters
of half the radius. This results in a hierarchy of clusters at different scales, which
gives rise to a so called split-tree. In addition, each cluster is associated with a
set of net points, which is a small set of well-spaced points covering the cluster.
For each cluster, only the edges between the net points of its child clusters are
kept. The shortest path between two points can then be approximated by a path
that exits each cluster only via the net points. The error introduced due to the
shifting of points to net points, as well as the total distortion, can be bounded as
the sum of errors over all the scales. In the tree decomposition of the resulting
embedding, each bag corresponds to a cluster and consists of the net points of its
child clusters. Using the bounded doubling dimension assumption, the number of
child clusters and number of net points per cluster can be bounded by constants
depending on the doubling dimension and the desired stretch, which bounds the
embedding’s treewidth.

Fig. 1. The sprawl (enclosed
by dotted lines) contains ver-
tices close to hubs (crosses).
Each town (dashed circles) has
small diameter and is far from
other vertices.

We want to construct a similar recursive
decomposition for metrics with low highway
dimension, which, however, turns out to be a non-
trivial task. In order to obtain a decomposition
we observe that the hubs in the shortest path
cover induce a natural clustering of the vertices
in G for any r (see Figure 1). Each vertex v ∈ V
whose distance from any hub is larger than 2r is
said to belong to a town that is contained in the
ball of radius r centered at v. All vertices that
are not part of a town (and hence at distance no
more than 2r from some hub) are said to be part
of the sprawl. We will show that towns are nicely
separated from other towns and the sprawl, and
that the degree of separation is highly sensitive to the choice of c in Definition 1.
It turns out that choosing c = 4 yields a separation that is just barely too small.

Based on this clustering, we compute a hierarchical decomposition of the
graph that we call the towns decomposition. It is a laminar family of towns and
recursively separates the graph into towns of decreasing scales, and our embed-
ding is computed recursively on this decomposition. The towns decomposition is

A (1 + ε)-Embedding of Low Highway Dimension Graphs 473

analogous to the quadtree decomposition in PTASs for Euclidean graphs [6–9] or
the split-tree decomposition for low doubling dimension metrics [24], though the
particulars differ greatly. At a high level, a town is similar to a cluster in Talwar’s
split-tree decomposition, though a town can contain many child towns. However
a town belongs to the sprawl at a higher scale, which at that scale can be covered
by a constant number of balls centered at the hubs. Roughly speaking, we can
apply Talwar’s decomposition technique to the sprawl and recursively construct
a low treewidth embedding for each child town as long as we can somehow attach
these embeddings to the embedding of the sprawl.

We prove that to preserve all distances within a town T it suffices to connect
tree decompositions of T ’s subtowns in the towns decomposition via a carefully
chosen set of so-called core hubs within T . It is noteworthy that unlike the nets
in Talwar’s split-tree decomposition, the hubs do not form a hierarchy, i.e., a
hub at some scale may not be a hub at a lower scale. Nevertheless, we show that
core hubs at different scales can be aligned: they can be shifted slightly in order
to obtain a nested structure that is similar to a hierarchy. We are able to show
that this alignment process does not affect the target stretch of our embedding
and, most importantly, ensures that the resulting set of approximate core hubs
within T has small doubling dimension. We first apply Talwar’s [24] embedding
of low doubling dimension metrics into bounded treewidth graphs to the approx-
imate core hubs and then connect the recursively computed embeddings of the
subtowns of smaller scales with each other through the embedding of these hubs.
The details are described in section 4.

The most intricate part of our result is to prove low doubling dimension of
the approximate core hubs. The general idea is to rely on the local sparsity of
the shortest path covers: by definition, the core hubs lie in the sprawls of various
scales, and for scale r the sprawl can be covered by balls of radius 2r around the
hubs of the shortest path cover. In a low highway dimension graph, any ball B of
radius cr/2 contains only a small number of hubs. Hence, to bound the doubling
dimension, we attempt to use these hubs as centers of balls of smaller radius to
cover the core hubs. Since these balls have radius 2r < cr/2, this scheme can be
applied recursively in order to cover the core hubs in B with balls of half the
radius. Several issues arise with this approach though. To give only one example,
part of the sprawl for scale r in B might be covered by balls centered at hubs
outside of B. However a key insight of our work is that in fact the number of
hubs in the vicinity of a ball is also bounded when using Definition 1 for the
highway dimension.

2 Embeddings for Low Doubling Dimension Metrics

Next we formally define the treewidth and summarize the properties of
Talwar’s [24] embedding for low doubling dimension metrics that we require.
Let G = (V,E) be a graph. For u, v ∈ V we denote the length of the shortest
path between u and v by dist(u, v) and the distance between two sets S, T ⊂ V by
dist(S, T) = minu∈S,v∈T dist(u, v). If the metric used for distances is ambiguous

474 A.E. Feldmann et al.

we specify the graph in the subscript, such as distG(u, v) or distH(u, v). The
diameter diam(·) of a graph or set of vertices is the maximum distance between
any two vertices.

Definition 4. A tree decomposition D of a graph G is a (rooted) tree with
vertices b1, . . . , bt, where each bi, for i ∈ {1, . . . , t}, is called a bag and is a subset
of V . Additionally it satisfies the following properties: (a)

⋃t
i=1 bi = V , (b) for

every edge {u, v} ∈ E there is a bag b with u, v ∈ b, and (c) for every v ∈ V
the bags containing v form a connected subtree of D. The width of the tree
decomposition is max{|bi −1| | i ∈ {1, . . . , t}}. The treewidth of a graph G is the
minimum width of any tree decomposition for G.

To construct our embedding we will mainly focus on the shortest path metric
of the graph G. We let the distance function of every considered metric be the
function dist(·, ·) of the underlying graph. Though the treewidth is a property
of a graph’s edge set, whereas doubling dimension is a property of the metric it
defines, Talwar [24] shows that low doubling dimension graphs can be approx-
imated to within 1 + ε by bounded treewidth graphs. Formally this means the
following.

Definition 5. Let (X, dist) be a metric, and D be a distribution over met-
rics (X, dist′). If for all x, y ∈ X, dist(x, y) ≤ dist′(x, y) for each dist′ ∈ D,
and Edist′∈D[dist′(x, y)] ≤ a · dist(x, y), then D is an embedding with (expected)
stretch or distortion a. If every dist′ ∈ D is the shortest path metric of some
graph class G, then D is a (probabilistic) embedding into G.

The main result of Talwar [24] that we use for our embedding of low highway
dimension graphs into bounded treewidth graphs, is the following.

Theorem 6 ([24]). Let (X, dist) be a metric with doubling dimension d and
aspect ratio α. For any ε > 0, there is a polynomial-time computable proba-
bilistic embedding H of (X, dist) with treewidth (d log(α)/ε)O(d) and expected
distortion 1 + ε.

As described in the introduction, Talwar’s embedding employs a randomized
split-tree decomposition, which is a hierarchical decomposition of the vertices X
of a metric into clusters of smaller and smaller diameter. A cluster is a subset
of X, where the highest cluster is X itself and the lowest ones are individual
vertices. Each level of this hierarchy is associated with an index. Our construction
of the embedding for low highway dimension graphs also has levels associated
with indices, but these have different growth rates. To avoid confusion we will
denote the levels of Talwar’s split-tree decomposition with indices ī, j̄, etc., and
ours with indices i, j etc.

The tree decomposition constructed from the split-tree has a bag for each
cluster. The tree on the bags exactly corresponds to the split-tree. Each bag
contains a coarse set of points of the cluster. More concretely, for a metric
(X, dist), a subset Y ⊆ X is called a δ-cover if for every u ∈ X there is a
v ∈ Y such that dist(u, v) ≤ δ. A δ-net is a δ-cover with the additional property

A (1 + ε)-Embedding of Low Highway Dimension Graphs 475

that dist(u, v) > δ for all vertices u, v ∈ Y . For a cluster C on level ī the cor-
responding bag contains a Θ(ε2ī/(d log α))-net of C. For every bag b the graph
embedding contains a complete graph on the nodes in b. The net in each bag
thus serves as a set of portals, through which connections leaving the cluster are
routed, analogous to those in [7].

3 Properties of Low Highway Dimension Graphs

We assume w.l.o.g. that every shortest path is unique by slightly perturbing edge
lengths. Thus it is possible to compute locally O(k log k)-sparse shortest path
covers in polynomial time [2] (or locally k-sparse covers in time nO(k)). We can
show that computing the highway dimension is NP-hard even for graphs with
unit edge lengths, so in general approximations are needed.

An important observation is that the vertices of low highway dimension
graphs are grouped together in all regions that are far from the hubs. This
gives rise to our main observation on the structure of low highway dimension
graphs, as summarized in the following definition: for any scale the vertices are
partitioned into one sprawl and several towns with large separations in between.

Definition 7. Given a shortest path cover spc(r) for scale r, and a vertex v ∈ V
such that dist(v, spc(r)) > 2r, we call the set T = {u ∈ V |dist(u, v) ≤ r} a town
for scale r. The sprawl for scale r is the set of all vertices that are not in towns.

Note that the vertices of the sprawl are at most 2r away from a hub, but
there can be vertices in towns that are closer than 2r to some hub, as long as
the town has some other vertex that is farther away. Note also that the towns
are defined with respect to a shortest path cover spc(r), and using two distinct
shortest path covers will not always result in the same set of towns. We will fix
a minimal shortest path cover spc(r) for any scale r and only consider towns
with respect to this cover. We summarize the basic properties of towns below.

Lemma 8. Let T be a town of scale r. Then diam(T) ≤ r and dist(T, V \T) > r.
For any vertex v of the sprawl of scale r, dist(v, spc(r)) ≤ 2r.

We will exploit this structure for growing scales to construct our embedding.
More concretely, we will consider scales ri = (c/4)i for values i ∈ N0 and call i
the level of the sprawl, towns, and shortest path cover of scale ri. We choose
our scales in this way since 2ri = cri−1/2. As a consequence, a ball of radius 2ri

around a hub of level i that covers part of the sprawl contains at most s hubs of
the next lower level i− 1 if the shortest path covers are locally s-sparse. We will
exploit this in our analysis in order to bound the treewidth of our embedding.

Note that the scales do not grow if c = 4, i.e., if the highway dimension
definition is not violated. In the introduction we claimed that we need the vio-
lation in order to obtain large separations between towns and other vertices of
the graph. It turns out that for violation λ = 0 it is technically possible to have
growing scales with similar properties that can be used recursively. However the
growth of the scales and the separation between a town and the rest of the

476 A.E. Feldmann et al.

graph, as given by Lemma 8, are inevitably connected. In particular, if λ = 0
the largest separation obtainable is at most r. Our reason for introducing non-
zero violations in Definition 1 is that we need separations greater than r for our
construction.

By scaling we can assume that the shortest distance between any two ver-
tices is slightly more than c/2. Hence spc(r0) = ∅ since there are no paths of
length in (r0, cr0/2]. Throughout this paper we will assume that the shortest
path covers are minimal. In particular this means that on level 0 there is no
sprawl, and each vertex forms a singleton town. The highest level we consider
is m = 	logc/4 diam(G)
. At this level spc(rm) = ∅ and hence the whole vertex
set V of the graph is a town.

We show next that towns of different levels form a laminar family T . Due
to this laminar structure of towns we will use tree terminology such as parents,
children, siblings, ancestors, and descendants of towns in T . The root of the
laminar family is the highest level town V .

Lemma 9. Given a graph G, the set T := {T ⊆ V | T is a town on level i ∈
N0} forms a laminar family. Furthermore, any town T ∈ T on level i either
has 0 or at least 2 child towns, and in the latter case these are towns on levels
below i.

We refer to the laminar family T as the towns decomposition of G. Note
that although a town T ∈ T appears once in T , T can be a town on multiple
levels of the shortest path covers, if it is a town with respect to both spc(ri) and
spc(ri+1). From now on we will consider the graph metric (V,distG) induced
by G instead of G itself. All properties of towns and sprawl, such as given by
Lemma 8 and 9, are still valid in the metric.

4 Constructing the Embedding

We now describe our algorithm in more detail. All missing parts leading to the
proof of Theorem 3 are deferred to the full version of the paper. PTASs for
Euclidean and low doubling graphs [7,24] use graph decomposition coupled with
a small number of “portal” nodes: paths leaving a cluster in the decomposition
must do so via an appropriate portal, resulting in a small “interface” between
distinct clusters in the decomposition. Intuitively, the hubs are natural choices for
portals, since long paths through some ball must pass through a hub. However
problems crop up almost immediately because hubs are not guaranteed to be
well-spaced or consistent between levels, and although all long paths through a
ball may be hit by portals, there may be many short paths that go nowhere near
one.

We overcome these difficulties using the towns decomposition. Lemma 8 guar-
antees that towns are isolated from both each other and the sprawl. Conse-
quently, any approximate shortest paths between nodes in a town must remain
within that town. The embedding is constructed recursively on the metric using
the structure of the towns decomposition T . That is, for a town T ∈ T we

A (1 + ε)-Embedding of Low Highway Dimension Graphs 477

assume that we have already computed an embedding (and accompanying tree
decomposition) with expected stretch 1 + ε for each child town of T . We then
connect these embeddings so that distances between them are preserved within
a 1 + ε factor in expectation. This gives an embedding for T , and since V itself
is the root of the towns decomposition, eventually yields an embedding for G.

The key insight that lets us connect the child towns of T is that there exists a
set of so-called approximate core hubs XT in T with low doubling dimension that
can serve as the crossroads through which child towns connect. We will compute
a low-treewidth embedding of the set XT based on Theorem 6 and connect the
embeddings of the child towns to it. In particular, for every child town T ′ we will
identify a bag b of the tree decomposition of XT containing hubs that are close
to T ′. We call b the connecting bag of T ′. The embedding of T is constructed
by connecting every vertex in each child town to every hub in the corresponding
connecting bag. This means that short connections between child towns can be
routed directly through hubs in the connecting bags. Long connections on the
other hand can be routed through the embedding of the core hubs XT at only a
small overhead.

The tree decomposition for T is constructed by connecting each tree decom-
position DT ′ for a child town T ′ to the corresponding connecting bag b of the
tree decomposition DX for the hubs in XT . Even though this yields a tree of
bags containing all vertices of the town T , properties (b) and (c) of Definition 4
might be violated by this initial attempt. We need to make two modifications
to the bags: first we need to add all vertices of b to each bag of DT ′ . Since the
treewidth of DX is bounded by Theorem 6, this does not let the bags grow by
too much. Then we also need to add all hubs of XT in the child town T ′ to
each bag of DT ′ , and to b and all descendants of b in DX . To bound the growth
of the bags in this step, we will bound the number of hubs in XT in a child
town T ′.

The set XT is an approximate hub set of T . To define the set properly we
need some additional insights on the structure of hubs of different levels in T .
The core of T is the intersection of sprawls formed by removing all subtowns of
T above a given level:

Definition 10. Let T ∈ T be a town on level j, and let Si be the sprawl of
V on level i ≤ j. The core Ci of T on level i is inductively defined as follows:
Cj = T , and Ci = Si ∩ Ci+1 for i ≤ j − 1. The core hubs of T are given by the
set

⋃j−1
i=1 Ci ∩ spc(ri).

By this definition a town T on level j can be partitioned into its core on
level i and its child towns on levels i and higher. Observe also that the set
system {Ci}j

i=0 forms a chain, i.e., Ci−1 ⊆ Ci. Intuitively, the core hubs should
have low doubling dimension: if the shortest path covers are locally s-sparse,
then in a ball around a hub at level i there will be at most s hubs in that ball
on level i − 1 that cover the core on that level. In fact one can show that the
doubling dimension of the core hubs is fairly small but unfortunately not small
enough for our purposes. In particular, we need the doubling dimension to be

478 A.E. Feldmann et al.

independent of the aspect ratio α of the metric. To circumvent this issue, roughly
speaking, we shift each core hub so that it overlaps with lower level core hubs if
possible, making the hubs nested to some degree. However, in order to preserve
distances we will only shift them by at most an ε fraction. This shifting produces
the set XT of approximate core hubs of T , which we use to construct our core
embedding. Note that we do not use the approximate hubs XT to define our
towns decomposition, only to produce a low-treewidth core embedding. We rely
on the following non-trivial properties, which require an intricate proof.

Theorem 11. Let T be a towns decomposition of a graph of highway dimen-
sion k, given by locally s-sparse shortest path covers on all levels with violation
λ > 0. For any town T ∈ T of a level j there exists a polynomially computable
set of approximate core hubs XT ⊆ T such that for any core hub h ∈ Ci ∩spc(ri)
of T on level i ∈ {1, . . . , j −1}, there is a vertex h′ ∈ XT with distG(h, h′) ≤ εri,
and the doubling dimension of XT is d = O(log(ks log(1/ε)

λ)/λ).

From now on, we use d to denote the above doubling dimension bound. Unfor-
tunately we cannot apply the embedding of Theorem 6 to the set XT directly
because we must show the existence of a valid, low-width tree decomposition
of the resulting embedding of T , after connecting the embeddings of T ’s child
towns to the embedding HX of XT . For this to work we need to make sure that
the approximate core hubs contained in the same child town T ′ do not end up
in different bags in the tree decomposition DT of HT . Our solution is to pick a
representative core hub for each child town T ′. Specifically, let YT ⊆ XT con-
tain one arbitrary approximate core hub for each child town T ′ of T for which
T ′ ∩ XT �= ∅. We say that a vertex v ∈ YT of a child town T ′ represents the
nodes in XT ∩ T ′ (including v itself). Since YT is a sub-metric of XT it inherits
the doubling dimension bound of Theorem 11. Therefore we can compute an
embedding for the metric (YT ,distG) with bounded treewidth by Theorem 6.

Given the embedding of YT , we convert it into an embedding HX of XT by
replacing a vertex v ∈ YT with the clique on all approximate core hubs that
v represents in the embedding. We obtain the tree decomposition DX of HX

from the decomposition of the embedding for YT by also replacing v with all
the hubs it represents in each bag containing v. It is easy to see that DX is a
valid tree decomposition, i.e., it satisfies all properties of Definition 4. We can
show that the number of approximate core hubs in each child town is bounded,
and therefore the growth of the treewidth caused by replacing a vertex by its
represented hubs is also bounded. We also need to bound the extra distortion
incurred by going from YT to XT and show that a 1+ε distortion on YT translates
into a 1 + O(ε) distortion on XT , which entails reproving the relevant parts of
Theorem 6.

After computing the embedding HX for XT , we connect each recursively
computed embedding for the child towns of T to HX to form the final embed-
ding HT . We need to argue that HX exists every time there are child towns to
connect. From Lemma 9 we know that T has at least two child towns if it has
any. We can show that there is a core hub h in T on any shortest path between

A (1 + ε)-Embedding of Low Highway Dimension Graphs 479

a pair of child towns. By Theorem 11, there is an approximate core hub in XT

close to h. Since XT is non-empty, HX exists. Once we compute HX we connect
every vertex of a child town T ′ to all hubs in a bag b of the tree decomposi-
tion DX of HX . This bag b is log2(1/ε) + log d levels higher in the split-tree
decomposition than the level corresponding to the shortest distance that needs
to be bridged from T ′ to any other vertex in T . At the same time we will make
sure that the net defining b is fine enough so that lengths of connections passing
through b are preserved to a sufficient degree. This way, short connections from
T ′ to core hubs with length up to O(1/ε) times the separation of T ′ are preserved
in expectation by routing through the hubs in b. Connections to more distant
hubs can be rerouted from a hub close to T ′ through the embedding HX with
only an ε overhead.

Recall that levels of the split-tree decomposition are denoted by ī, j̄ etc. To
determine the level of the bag b, note that due to our growth rate of c/4 = 1+λ/4
of the levels (and the assumption that the violation λ is at most 4) the intervals
(ri, 2ri] of the shortest path covers might overlap. Let i be the level for which
the distance between T ′ and its closest sibling town lies in the interval (ri, ri+1],
and let ī = 	log2 ri
 be the corresponding level of the split tree decomposition
of DX . Now let h ∈ XT be the closest approximate core hub to T ′ (which might
lie inside of T ′). If j̄ is the highest level of DX , i.e. it is the level of the cluster
containing all of XT , then the bag b of the tree decomposition DX is the one
on level l̄ = min{j̄, ī + log2(1/ε) + log2 d} for which the corresponding cluster C
contains h. All edges between vertices of T ′ and b are added to the embedding
for T , and we call the bag b the connecting bag for T ′.

Note that there are several parameters ε we can adjust independently: the tar-
get distortion of Talwar’s algorithm, the level in the split-tree decomposition at
which a child town is attached, and the amount of adjustment permitted in defin-
ing XT . The latter two parameters we set to ε, but the distortion in Theorem 6
needs to be smaller. We use ε′ for the target distortion of this embedding and
set ε′ = ε2.

References

1. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest
paths, and provably efficient algorithms. In: Proceedings, ACM-SIAM Symposium
on Discrete Algorithms, pp. 782–793 (2010)

2. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-dimension
and shortest path algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011)

3. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimen-
sion, shortest paths, and provably efficient shortest path algorithms. Technical
Report (2013)

4. Ageev, A.A.: An approximation scheme for the uncapacitated facility location prob-
lem on planar graphs

5. Ageev, A.A.: A criterion of polynomial-time solvability for the network location
problem. In: Proceedings, MPS Conference on Integer Programming and Combi-
natorial Optimization, pp. 237–245 (1992)

480 A.E. Feldmann et al.

6. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM 45(5), 753–782 (1998)

7. Arora, S.: Approximation schemes for np-hard geometric optimization problems:
A survey. Math. Programming 97(1–2), 43–69 (2003)

8. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for euclidean k-medians
and related problems. In: Proceedings, ACM Symp. on Theory of Computing,
pp. 106–113 (1998)

9. Arora, S.: Polynomial time approximation schemes for euclidean traveling sales-
man and other geometric problems. In: Proceedings, ACM Symp. on Theory of
Computing, pp. 2–11 (1996)

10. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: Proceedings,
ACM Symp. on Theory of Computing, pp. 161–168 (1998)

11. Bartal, Y., Gottlieb, L.-A., Krauthgamer, R.: The traveling salesman problem: low-
dimensionality implies a polynomial time approximation scheme. In: Proceedings,
ACM Symp. on Theory of Computing, pp. 663–672 (2012)

12. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to con-
stant time shortest-path queries in road networks. In: Algorithm Engineering &
Experiments. SIAM (2007)

13. Bast, H., Funke, S., Matijevic, D.: Ultrafast shortest-path queries via transit
nodes. The Shortest Path Problem: Ninth DIMACS Implementation Challenge 74,
175–192 (2009)

14. Bateni, M., Chekuri, C., Ene, A., Hajiaghayi, M.T., Korula, N., Marx, D.: Prize-
collecting steiner problems on planar graphs. In: Proceedings, ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1028–1049 (2011)

15. Borradaile, G., Kenyon-Mathieu, C., Klein, P.: A polynomial-time approximation
scheme for steiner tree in planar graphs. In: Proceedings, ACM-SIAM Symposium
on Discrete Algorithms, pp. 1285–1294 (2007)

16. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of the steiner tree problem
on graphs. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368,
pp. 170–179. Springer, Heidelberg (2002)

17. Engebretsen, L., Karpinski, M.: Approximation hardness of TSP with bounded
metrics. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 201–212. Springer, Heidelberg (2001)

18. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: Proceedings, ACM Symp. on Theory of Computing,
pp. 448–455. ACM (2003)

19. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms.
J. Algorithms 31(1), 228–248 (1999)

20. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: Proceedings, IEEE Symposium on Foundations of Com-
puter Science, pp. 534–543 (2003)

21. Klein, P.: A linear-time approximation scheme for tsp in undirected planar graphs
with edge-weights. SIAM Journal on Computing 37(6), 1926–1952 (2008)

22. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric tsp, k-mst, and
related problems. SIAM Journal on Computing 28(4), 1298–1309 (1999)

23. Robertson, N., Seymour, P.D.: Graph minors. ii. algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

24. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In:
Proceedings, ACM Symp. on Theory of Computing, pp. 281–290 (2004)

25. Vazirani, V.V.: Approximation Algorithms. Springer-Verlag, New York (2001). Inc

Lower Bounds for the Graph Homomorphism
Problem

Fedor V. Fomin1,3, Alexander Golovnev2,3(B), Alexander S. Kulikov3,
and Ivan Mihajlin3,4

1 University of Bergen, Bergen, Norway
2 New York University, New York, USA

alexgolovnev@gmail.com
3 St. Petersburg Department of Steklov Institute of Mathematics,

Saint Petersburg, Russia
4 UC San Diego, San Diego, USA

Abstract. The graph homomorphism problem (HOM) asks whether the
vertices of a given n-vertex graph G can be mapped to the vertices of
a given h-vertex graph H such that each edge of G is mapped to an
edge of H. The problem generalizes the graph coloring problem and at
the same time can be viewed as a special case of the 2-CSP problem.
In this paper, we prove several lower bounds for HOM under the Expo-
nential Time Hypothesis (ETH) assumption. The main result is a lower

bound 2
Ω
(

n log h
log log h

)

. This rules out the existence of a single-exponential
algorithm and shows that the trivial upper bound 2O(n log h) is almost
asymptotically tight.

We also investigate what properties of graphs G and H make it dif-
ficult to solve HOM(G, H). An easy observation is that an O(hn) upper
bound can be improved to O(hvc(G)) where vc(G) is the minimum size
of a vertex cover of G. The second lower bound hΩ(vc(G)) shows that the
upper bound is asymptotically tight. As to the properties of the “right-
hand side” graph H, it is known that HOM(G, H) can be solved in time
(f(Δ(H)))n and (f(tw(H)))n where Δ(H) is the maximum degree of
H and tw(H) is the treewidth of H. This gives single-exponential algo-
rithms for graphs of bounded maximum degree or bounded treewidth.
Since the chromatic number χ(H) does not exceed tw(H) and Δ(H)+1,
it is natural to ask whether similar upper bounds with respect to χ(H)
can be obtained. We provide a negative answer by establishing a lower
bound (f(χ(H)))n for every function f . We also observe that similar
lower bounds can be obtained for locally injective homomorphisms.

1 Introduction

A homomorphism G → H from an undirected graph G to an undirected graph H
is a mapping from the vertex set G to that of H such that the image of every edge
of G is an edge of H. Then the Graph Homomorphism problem HOM(G,H)

The full version of the paper is available at http://arxiv.org/abs/1502.05447

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 481–493, 2015.
DOI: 10.1007/978-3-662-47672-7 39

http://arxiv.org/abs/1502.05447

482 F.V. Fomin et al.

is the problem to decide for given graphs G and H, whether G → H. Many
combinatorial structures in G, for example independent sets and proper vertex
colorings, may be viewed as graph homomorphisms to a particular graph H,
see the book of Hell and Nešetřil [18] for a thorough introduction to the topic.
It was shown by Feder and Vardi in [8] that the Constraint Satisfaction
Problem (CSP) can be interpreted as a homomorphism problem on relational
structures, and thus Graph Homomorphism encompasses a large family of
problems generalizing Coloring but less general than CSP.

Hell and Nešetřil showed that for any fixed simple graph H, the problem
whether there exists a homomorphism from G to H is solvable in polynomial
time if H is bipartite, and NP-complete if H is not bipartite [17]. Since then,
algorithms for and the complexity of graph homomorphisms (and homomor-
phisms between other discrete structures) have been studied studied intensively
[1,2,15,26,27].

There are two different ways graph homomorphisms are used to extract useful
information about graphs. Let us consider two homomorphisms, from a “small”
graph F into a “large” graph G and from a “large” graph G into a “small”
graph H, which can be represented by the following formula (here we borrow
the intuitive description from the book of Lovász [25]): F → G → H. Then
“left-homomorphisms” from various small graphs F into G are useful to study
the local structure of G. For example, if F is a triangle, then the number of
“left-homomorphisms” from F into G is the number of triangles in graph G.
This type of information is closely related to sampling, and we refer to the book
of Lovász [25] which provides many applications of homomorphisms. “Right-
homomorphisms” into “small” different graphs H are related to global properties
of graph G.

The trivial brute-force algorithm solving “left-homomorphism” from an
f -vertex graph F into an n-vertex graph G runs in time 2O(f log n): we try all
possible vertex subsets of G of size at most f , which is nO(f) and then for each
subset try all possible ff mappings into it from F . Interestingly, this näıve algo-
rithm is asymptotically optimal. Indeed, as it was shown by Chen et al. [4],
assuming Exponential Time Hypothesis (ETH), there is no g(k)no(k) time algo-
rithm deciding if an input n-vertex graph G contains a clique of size at least k,
for any computable function g. Since this is a very special case of Graph Homo-
morphism HOM(F,G) with F being a clique of size k, the result of Chen et al.
rules out algorithms for Graph Homomorphism of running time g(f)2o(f log n),
from F to G, when the number of vertices f in F is significantly smaller than
the number of vertices n in G.

Brute-force for “right-homomorphism” HOM(G,H), checking all possible
mappings from G into H, also runs in time 2O(n log h), where h is the number of
vertices in H. However, prior to our work there were no results indicating that
asymptotically better algorithms, say of running time 2O(n), are highly unlikely.

Our interest in “right-homomorphisms” is due to the recent developments in
the area of exact exponential algorithms for Coloring and 2-CSP (CSP where
all constraints have arity at most 2) problems. The area of exact exponential

Lower Bounds for the Graph Homomorphism Problem 483

algorithms is about solving intractable problems significantly faster than the
trivial exhaustive search, though still in exponential time [12]. For example, as
for Graph Homomorphism, a näıve brute-force algorithm for coloring an n-
vertex graph G in h colors is to try for every vertex a possible color, resulting in
the running time O∗(hn) = 2O(n log h).1 Since h can be of order Ω(n), the brute-
force algorithm computing the chromatic number runs in time 2O(n log n). It was
already observed in 1970s by Lawler [21] that the brute-force for the Coloring
problem can be beaten by making use of dynamic programming over maximal
independent sets resulting in single-exponential running time O∗((1 + 3

√
3)n) =

O(2.45n). Almost 30 years later Björklund, Husfeldt, and Koivisto [3] succeeded
to reduce the running time to O∗(2n). It is well-known that Coloring is a
special case of graph homomorphism. More precisely, graph G is colored in at
most h colors if and only if G → Kh, where Kh is a complete graph on h vertices.
Due to this, very often in the literature HOM(G,H), when h = |V (H)| ≤ n, is
referred as H-coloring of G. And as we observed already, for H-coloring, the
brute-force algorithm solving H-coloring runs in time 2O(n log h). In spite of all
the similarities between graph coloring and homomorphism, no substantially
faster algorithm was known and it was an open question in the area of exact
algorithms if there is a single-exponential algorithm solving H-coloring in time
2O(n+h) [11,28,31,32], see also [12, Chapter12].

On the other hand, Graph Homomorphism is a special case of 2-CSP with
n variables and domain of size h. It was shown by Traxler [30] that unless the
Exponential Time Hypothesis (ETH) fails, there is no algorithm solving 2-CSP
with n variables and domain of size h in time ho(n) = 2o(n log h). This excludes
(up to ETH) the existence of a single-exponential cn time algorithm for some
constant c > 1 for 2-CSP.

Our Results. In this paper we show that from the algorithmic perspective, the
behavior of “right-homomorphism” is, unfortunately, much closer to 2-CSP than
to Coloring. The main result of this paper is the following theorem, which
excludes (up to ETH) resolvability of HOM(G,H) in time 2o(n log h

log log h).

Theorem 1. Unless ETH fails, for any constant d > 0 there exists a constant
c = c(d) > 0 such that for any function 3 ≤ h(n) ≤ nd, there is no algorithm
solving HOM(G,H) for an n-vertex graph G and h(n)-vertex graph H in time

O∗
(
2

cn log h(n)
log log h(n)

)
. (1)

Remark 1. In order to obtain more general results, in all lower bounds proven
in this paper we assume implicitly that the number h of vertices of the graph
H is a function of the number n of the vertices of the graph G. At the same
1 O∗(·) hides polynomial factors in the input length. Most of the algorithms considered

in this paper take graphs G and H as an input. By saying that such an algorithm
has a running time O∗(f(G, H)) we mean that the running time is upper bounded
by p(|V (G)| + |E(G)| + |V (H)| + |E(H)|) · f(G, H) for a fixed polynomial p.

484 F.V. Fomin et al.

time, to exclude some pathological cases we assume that the function h(n) is
“reasonable” meaning that it is non-decreasing and time-constructible.

While Theorem 1 rules out the existence of a single-exponential algorithm
for Graph Homomorphism, single-exponential algorithms can be found in the
literature for a number of restricted conditions on the “right hand” graph H.
For example, when the treewidth of H is at most t, or more generally, when the
clique-width of the core of H does not exceed t, the problem is solvable in time
f(t)n for some function f [32]. Another example is when the maximum vertex
degree Δ(H) of H is bounded by a constant. In this case, it is easy to see that a
simple branching algorithm also resolves HOM(G,H) in single-exponential time.
The chromatic number χ(H) of H does not exceed the treewidth of H, nor does
it exceed Δ(H) (plus one). Therefore, it is natural to ask if a single-exponential
algorithm exists when the chromatic number of H is bounded. Unfortunately,
this is unlikely to happen.2

Theorem 2 (∗). Unless ETH fails, for any function f : N → N there is no
algorithm solving HOM(G,H) for an n-vertex graph G and a graph H in time
O∗ ((f(χ(H)))n) .

Another interesting question about homomorphisms concerns the complexity
of the problem when graph G poses a specific structure. In particular, when the
treewidth of G does not exceed t, then HOM(G,H) is solvable in time O∗(ht)
[7]. Let vc(G) be the minimum size of a vertex cover in graph G. We prove that

Theorem 3 (∗). Unless ETH fails, for any constant d there exists a constant
c = c(d) > 0 such that for any function 3 ≤ h(n) ≤ nd, there is no algorithm
solving HOM(G,H) for an n-vertex graph G and h(n)-vertex graph H in time
O∗ (

h(n)c·vc(G)
)
.

Since vc(G) is always at most the treewidth of G, Theorem 3 shows that the
known bounds O∗(ht) = O∗(hvc(G)) on the complexity of homomorphisms from
graphs of bounded treewidth and vertex cover are asymptotically optimal (Note
that the minimum vertex cover of G can be found in time 1.28vc(G) · nO(1) [5]).
It is interesting to compare Theorem 3 with existing results on variants of graph
homomorphism parameterized by the vertex cover and the treewidth of an input
graph. The techniques of obtaining lower bounds developed by Lokshtanov,
Marx, and Saurabh in [23], can be used to show that Coloring cannot be
computed in time 2o(vc(G) log vc(G)), unless ETH fails [22]. However, the question
if coloring in h colors of a given graph G can be done in time ho(vc(G)) remains
open. Another work related to Theorem 3 is the paper of Marx [26] providing
lower bounds on the running time of algorithms for “left-homomorphisms” on
classes of structures of bounded treewidth.

As a byproduct of our proof of Theorem 1, we obtain similar lower bounds
for locally injective graph homomorphisms. A homomorphism f : G → H is

2 Proofs of the statements marked with (∗) are omitted due to space restrictions.

Lower Bounds for the Graph Homomorphism Problem 485

called locally injective if for every vertex u ∈ V (G), its neighborhood is mapped
injectively into the neighborhood of f(u) in H, i.e., if every two vertices with a
common neighbor in G are mapped onto distinct vertices in H. As graph homo-
morphism generalizes graph coloring, locally injective graph homomrohism can
be seen as a generalization of graph distance constrained labelings. An L(2, 1)-
labeling of a graph G is a mapping from V (G) into the nonnegative integers
such that the labels assigned to vertices at distance 2 are different while labels
assigned to adjacent vertices differ by at least 2. This problem was studied inten-
sively in combinatorics and algorithms, see e.g. Griggs and Yeh [14] or Fiala et
al. [9]. Fiala and Kratochv́ıl suggested the following generalization of L(2, 1)-
labeling, we refer [10] for the survey. For graphs G and H, an H(2, 1)-labeling
is a mapping f : V (G) → V (H) such that for every pair of distinct adjacent
vertices u, v ∈ V (G), images f(u) f(v) are distinct and nonadjacent in H. More-
over, if the distance between u and v in G is two, then f(u) �= f(v). It is easy
to see that a graph G has an L(2, 1)-labeling with maximum label at most k
if and only if there is an H(2, 1)-labeling for H being a k-vertex path. Then
the following is known, see for example [10], there is an H(2, 1)-labeling of a
graph G if and only if there is a locally injective homomorphism from G to the
complement of H.

Several single-exponential algorithms for L(2, 1)-labeling can be found in
the literature, the most recent algorithm is due to Junosza-Szaniawski et al.
[20] which runs in time O(2.6488n). For H(2, 1)-labeling, or equivalently for
locally injective homomorphisms, single-exponential algorithms were known only
for special cases when the maximum degree of H is bounded [16] or when the
bandwidth of the complement of H is bounded [28]. The following theorem
explains why no such algorithms were found for arbitrary graph H.

Theorem 4 (∗). Unless ETH fails, for any constant d > 0 there exists a con-
stant c = c(d) > 0 such that for any function 3 ≤ h(n) ≤ nd, there is no
algorithm deciding if there is a locally injective homomorphism from an n-vertex
graph G and h(n)-vertex graph H in time O∗

(
2

cn log h(n)
log log h(n)

)
.

To establish lower bounds for graph homomorhisms, we proceed in two steps.
First we obtain lower bounds for List Graph Homomorphism by reducing it to
the 3-coloring problem on graphs of bounded degree. More precisely, for a given
graph G with vertices of small degrees, we construct an instance (G′,H ′) of List
Graph Homomorphism, such that G is 3-colorable if and only if there exists
a list homomorphism from G′ to H ′. Moreover, our construction guarantees
that a “fast” algorithm for list homomorphism parameterized by the number of
vertices, size of a vertex cover or the chromatic number, implies an algorithm
for 3-coloring violating ETH. The reduction is based on a “grouping” technique,
however, to do the required grouping we need a trick exploiting the condition
that G has a bounded maximum vertex degree and thus can be colored in a
bounded number of colors in polynomial time. In the second step of reductions
we proceed from list homomorphisms to normal homomorphisms. Here we need

486 F.V. Fomin et al.

specific gadgets with a property that any homomorphism from such a graph to
itself preserves an order of its specific structures.

The remaining part of the paper is organized as follows. In Section 2 we
give all the necessary definitions. Section 3 contains all the necessary reductions
which are used to prove lower bounds for the Graph Homomorphism problem
in Section 4.

2 Preliminaries

Graphs. We consider simple undirected graphs, where V (G) denotes the set of
vertices and E(G) denotes the set of edges of a graph G. For a given subset S
of V (G), G[S] denotes the subgraph of G induced by S, and G − S denotes the
graph G[V (G) \ S]. A vertex set S of G is an independent set if G[S] is a graph
with no edges, and S is a clique if G[S] is a complete graph. The set of neighbors
of a vertex v in G is denoted by NG(v), and the set of neighbors of a vertex set
S is NG(S) =

⋃
v∈S NG(v) \ S. By NG[S] we denote the closed neighborhood of

the set S, i.e., the set S together with all its neighbors: NG[S] = S ∪NG(S). For
an integer n, we use [n] to denote the set of integers {1, . . . , n}.

The complete graph on k vertices is denoted by Kk. A coloring of a graph
G is a function assigning a color to each vertex of G such that adjacent vertices
have different colors. A k-coloring of a graph uses at most k colors, and the
chromatic number χ(G) is the smallest number of colors in a coloring of G. By
Brook’s theorem, for any connected graph G with maximum degree Δ > 2, the
chromatic number of G is at most Δ unless G is a complete graph, in which case
the chromatic number is Δ + 1. Moreover, a (Δ + 1)-coloring of a graph can be
found in polynomial time by a straightforward greedy algorithm.

Throughout the paper we implicitly assume that there is a total order on the
set of vertices of a given graph. This allows us to treat a k-coloring of a n-vertex
graph simply as a vector in [k]n.

A set S ⊆ V (G) is a vertex cover of G, if for every edge of G at least one of
its endpoints belongs to S.

Let G be an n-vertex graph, 1 ≤ r ≤ n be an integer, and V (G) = B1
B2

. . .
 B�n

r � be a partition of the set of vertices of G into sets of size r with the
last set possibly having less than r vertices. Then the edge preserving r-grouping
of G with respect to the partition V (G) = B1
 B2
 . . .
 B�n

r � is a graph Gr

with vertices B1, . . . , B�n
r � such that Bi and Bj are adjacent if and only if there

exist u ∈ Bi and v ∈ Bj such that {u, v} ∈ E(G). To distinguish vertices of the
graphs G and Gr, the vertices of Gr will be called buckets.

For a graph G, its square G2 has the same set of vertices as G and {u, v} ∈
E(G2) if and only if there is a path of length at most 2 between u and v in G
(thus, E(G) ⊆ E(G2)). It is easy to see that if the degree of G is less than Δ
then the degree of G2 is less than Δ2 and hence a Δ2-coloring of G2 can be
easily found.

Lower Bounds for the Graph Homomorphism Problem 487

Homomorphisms and list homomorphisms. Let G and H be graphs. A mapping
ϕ : V (G) → V (H) is a homomorphism if for every edge {u, v} ∈ E(G) its image
{ϕ(u), ϕ(v)} ∈ E(H). If there exists a homomorphism from G to H, we often
write G → H. The Graph Homomorphism problem HOM(G,H) asks whether
or not G → H.

Assume that for each vertex v of G we are given a list L(v) ⊆ V (H). A list
homomorphism of G to H, also known as a list H-colouring of G, with respect
to the lists L, is a homomorphism ϕ : V (G) → V (H), such that ϕ(v) ∈ L(v) for
all v ∈ V (G). The List Graph Homomorphism problem LIST-HOM(G,H)
asks whether or not graph G with lists L admits a list homomorphism to H with
respect to L.

Exponential Time Hypothesis. Our lower bounds are based on a well-known
complexity hypothesis formulated by Impagliazzo, Paturi, and Zane [19].

Exponential Time Hypothesis (ETH): There is a constant s > 0
such that 3-CNF-SAT with n variables and m clauses cannot be solved
in time 2sn(n + m)O(1).

This hypothesis is widely applied in the theory of exact exponential algo-
rithms, we refer to [6,24] for an overview of ETH and its implications.

In our paper we are using the following application of ETH with respect to
3-Coloring. The 3-Coloring problem is the problem to decide whether the
given graph can be properly colored in 3 colors.

Proposition 1 (Theorem 3.2 in [24], and Exercise 7.27 in [29]). Unless
ETH fails, there exists a constant α > 0 such that 3-Coloring on n-vertex
graphs of average degree four cannot be solved in time O∗ (2αn).

It is well known that 3-Coloring remains NP-complete on graphs of max-
imum vertex degree four. Moreover, the classical reduction, see e.g. [13], allows
for a given n-vertex graph G to construct a graph G′ with maximum vertex
degree at most four and |V (G′)| = O(|E(G)|) such that G is 3-colorable if and
only if G′ is. Thus Proposition 1 implies the following (folklore) lemma which
will be used in our proofs.

Lemma 1. Unless ETH fails, there exists a constant β > 0 such that there is
no algorithm solving 3-Coloring on n-vertex graphs of maximum degree four
in time O∗ (

2βn
)
.

3 Reductions

This section constitutes the main technical part of the paper and contains all the
necessary reductions used in the lower bounds proofs. Using these reductions as
building blocks the lower bounds follow from careful calculations. The general
pipeline is as follows. To prove a lower bound with respect to a given graph

488 F.V. Fomin et al.

complexity measure we take a graph G of maximum degree four that needs to
be 3-colored and construct an equisatisfiable instance (G′,H ′) of LIST-HOM
(using Lemma 2 or Lemma 3). We then use Lemma 5 to transform (G′,H ′)
into an equisatisfiable instance (G′′,H ′′) of HOM. Thus, an algorithm checking
whether there exists a homomorphism from G′′ to H ′′ can be used to check
whether the initial graph G can be 3-colored. At the same time we know a lower
bound for 3-Coloring under ETH (Lemma 1). This gives us a lower bound for
HOM. We emphasize that our reductions provide almost tight lower bounds for
HOM under ETH.

Lemma 2 (3-Coloring(G) → LIST-HOM(G′,H ′) with small |V (G′)|).
There exists an algorithm that given an n-vertex graph G of maximum degree
four and an integer 2 ≤ r ≤ n constructs an instance (G′,H ′) of LIST-HOM
such that |V (G′)| = �n/r� and |V (H ′)| ≤ r50r which is satisfiable if and only if
the initial graph G is 3-colorable. The running time of the algorithm is polyno-
mial in n and the size of the output graphs.

Proof. Constructing G′. Partition the vertices of G into sets of size r (this is
possible since r ≤ n) arbitrarily and let G′ = Gr be the edge preserving r-
grouping of G with respect to this partition. The maximum vertex degree in
graph G′ does not exceed 4r, hence its square can be properly colored with at
most L = 16r2 + 1 colors (and such a coloring can be computed efficiently).
Fix any such coloring and denote by �(B) the color of a bucket B ∈ V (G′).
To distinguish this coloring from a 3-coloring of G that we are looking for, in
the following we call �(B) a label of B. An important property of this labelling
is that all the neighbors of any bucket have different labels. Thus to specify a
neighbor of a given bucket B it is sufficient to specify the label of this neighbor.
This will be crucial for the construction of the graph H ′ given below.

Constructing H ′. The graph H ′ is constructed as follows. Roughly, it contains
all possible “configurations” of buckets from G′, where a configuration of B ∈
V (G′) contains its label �(B), a 3-coloring of all r vertices of the bucket B ⊆
V (G), and a 3-coloring of all the neighbors of these r vertices in G. We will use
lists to allow mapping of a bucket B ∈ V (G′) to only those configurations that
are consistent with a 3-coloring of the closed neighborhood NG[B].

A configuration is a tuple C = (�, c, (p1, �1, q1, c1), . . . , (p4r, �4r, q4r, c4r)) from
[L] × [3]r × ([r] × [L] × [r] × [3])4r and the set of vertices of H ′ is the set of all
configurations. Thus, the number of vertices in H ′ is equal to (recall that r ≥ 2)

L · 3r · (r2 · L · 3)4r ≤ r4r · r2r · (r2 · r7 · r2)4r ≤ r50r . (2)

For a given bucket B ∈ V (G′) such a configuration C sets the following.
Integer � ∈ [L] is a label of B, c ∈ [3]r is a 3-coloring of B ⊆ V (G) (we assume
a fixed order on the vertices of the graph G so that the vector c ∈ [3]r can be
uniquely decoded to a 3-coloring of B). The rest of C defines a 3-coloring of
all the vertices adjacent to B in G as follows. Let {u1, v1}, . . . , {uk, vk} ∈ E(G)
be all the edges in the lexicographic order such that ui ∈ B and vi �∈ B for all

Lower Bounds for the Graph Homomorphism Problem 489

i ∈ [k]. Note that k ≤ 4r since the degree of G is at most 4 and |B| ≤ r. Then
(pi, �i, qi, ci) ∈ [r] × [L] × [r] × [3] defines an edge {vi, wi} and a color of vi as
follows: pi ∈ [r] is the number of ui in B, �i ∈ [L] is the label of the unique
possible neighbor B′ � vi of B in G′, qi ∈ [r] is the number of vi in B′, and
ci ∈ [3] is the color of vi.

Two configurations C1 = (�1, c1, {(p1i , �
1
i , q

1
i , c1i)}4r

i=1) and C2 =
(�2, c2, {(p2i , �

2
i , q

2
i , c2i)}4r

i=1) are adjacent if their colorings do not contradict each
other. I.e., C1 contains colors of vertices from a bucket labeled by �2. We require
them to be the same as the ones from the coloring c2 (and similarly for the sec-
ond configuration). More formally, C1 and C2 are adjacent if for every i ∈ [4r],
if �1i = �2 then c1i is equal to the color of q1i -th vertex in the vector c2, and if
�2i = �1 then c2i is equal to the color of q2i -th vertex in c1.

Defining lists of allowed vertices. We allow to map a bucket B ∈ V (G′) to a
configuration C = (�, . . .) ∈ V (H ′) if and only if �(B) = � and C defines a valid
3-coloring of NG[B] (that is, any two adjacent vertices from NG[B] are given
different colors).

Correctness. We now show that G is 3-colorable if and only if there is a
list-homomorphism from G′ to H ′. The forward direction is clear: given a 3-
coloring of G, one can map each bucket B to the configuration containing the
label of this bucket and the coloring of NG[B]. For the reverse direction, we
take a homomorphism φ : G′ → H ′ and for each bucket B we decode from
φ(B) the 3-coloring of all the vertices of NG[B]. Note that if NG[B] ∩ NG[B′] �=
∅ for buckets B,B′ ∈ V (G′), then {B,B′} ∈ E(G′). In this case, the edges
of H ′ guarantee that φ(B) and φ(B′) assign the same color to each vertex in
NG[B]∪NG[B′]. Hence such a decoding of a 3-coloring from the homomorphism φ
is well defined. The list constraints of the LIST-HOM instance further guarantee
that the resulting 3-coloring is valid.

Running time of the reduction. Clearly, the algorithm takes time polynomial
in n and the size of the graphs G′ and H ′. �

Lemma 3 ((∗) 3-Coloring(G) → LIST-HOM(G′,H ′) with small vc(G′)).
There exists an algorithm that given an n-vertex graph G of maximum degree 4
and an integer 2 ≤ r ≤ n constructs an instance (G′,H ′) of LIST-HOM such
that vc(G′) = �n/r� and |V (H ′)| ≤ 300r which is satisfiable if and only if the
initial graph G is 3-colorable. The running time of the algorithm is polynomial
in n and the size of the output graphs.

Lemma 4 ((∗) LIST-HOM → LIST-HOM with small χ(H ′)). Given an
instance (G,H) of LIST-HOM and a k-coloring of G one can construct in poly-
nomial time a graph H ′ such that χ(H ′) ≤ k, |V (H ′)| = k|V (H)|, and (G,H)
is equisatisfiable to (G,H ′).

490 F.V. Fomin et al.

Lemma 5 ((∗) LIST-HOM → HOM). There is a polynomial-time algorithm
that from an instance (G,H) of LIST-HOM where |V (G)| = n, |V (H)| = h ≥ 3,
χ(H) ≤ t constructs an equisatisfiable instance (G′,H ′) of HOM where |V (G′)| ≤
n+Δ, vc(G′) ≤ vc(G)+Δ, |V (H ′)| ≤ Δ for Δ = (h+1)(t+11), χ(H ′) ≤ t+10.

The main technical contribution of the paper is Lemma 5. Due to space
restrictions we only sketch the proof here. Our goal is to reduce an instance
(G,H) of LIST-HOM to an instance (G,H) of HOM. Intuitively, we want to
incorporate the list constraints into a new instance of HOM. The first approach
is to take G′ = G∪H, H = H. For every list constraint that forbids u ∈ V (G) to
be mapped to v ∈ V (H), we add an edge {u, v} to E(G). If the graph H from G′

is mapped to the graph H ′ identically, then this edge represents the constraint.
Unfortunately, the left-hand side copy of H might not be mapped into the right-
hand side one identically(for example, if H has non-trivial automorphisms). In
order to get around this, we introduce h = |H| vertices in both G and H. These
new vertices play the role of the graph H in the previous example, namely, using
simple gadgets they implement the list constraints. The main challenge now is
to construct two gadgets L and R such that they have h selected vertices L ⊆ L,
R ⊆ R, and L can be mapped to R only. We construct one gadget Tt,k and take
L = R = Tt,k such that Tt,k can be mapped to itself only. First we show a gadget
D on 6 vertices that has a fixed point z ∈ V (D), i.e. any homomorphism D → D
maps z to z. We then combine k such gadgets in a row to get the Tt,k gadget
that has t fixed points. Then it remains to note that we can add t large cliques
to Tt,k so that no part of this gadget can be mapped into the graph H.

4 Lower Bounds for the Graph Homomorphism Problem

Proof (of Theorem 1).
Let γ > 4 be a large enough constant such that log x

100 log log x ≥ 2 for x ≥ γ. If
h(n) < γ for all values of n, then an algorithm with running time (1) would solve

3-Coloring in time O∗
(
2

cn log h(n)
log log h(n)

)
= O∗ (

2cn log γ
)

(recall that h(n) ≥ 3).
Therefore, by choosing a small enough constant c such that c log γ < β, we
arrive to a contradiction with Lemma 1.

From now on we assume that h(n) ≥ γ for large enough values of n. Let G be
an n-vertex graph of maximum degree 4 that needs to be 3-colored. We first use
Lemma 2, for a parameter 2 ≤ r ≤ n to be defined later, to get an equisatisfiable
instance (G′,H ′) of LIST-HOM with |V (G′)| = n/r and |V (H ′)| ≤ r50r. Note
that χ(H ′) ≤ |V (H ′)| ≤ r50r. Hence Lemma 5 provides us with an equisatisfiable
instance (G′′,H ′′) of HOM with |V (G′′)| ≤ n/r + (r50r + 1)(r50r + 11) ≤ n/r +
r102r and |V (H ′′)| ≤ (r50r + 1)(r50r + 11) ≤ r102r. Let

r′ =
log n

204 log log n
, r = min

(
r′,

log h(2n
r′)

102 log log h(2n
r′)

)
.

Lower Bounds for the Graph Homomorphism Problem 491

Note that r ≤ r′ < n. Also, h(n) ≥ γ implies that r ≥ 2 for sufficiently large
values of n. Let us show that

r ≥ log h(2n
r′)

d · 204 log log h(2n
r′)

. (3)

This clearly holds if r < r′, so consider the case r = r′. The function
log x/ log log x increases for x > 4. Recall that h(n) ≥ γ for large enough values
of n, hence h(2n/r′) ≥ γ > 4 for large enough values of n. Hence

log h
(
2n
r′

)

log log h
(
2n
r′

) ≤ d log n

log log n + log d
≤ d log n

log log n
= 204dr′ = 204dr

which implies (3). Then |V (G′′)| ≤ n
r + r102r ≤ n

r + (log n)
log n

2 log log n ≤ 2n
r ,

|V (H ′′)| ≤ r102r ≤
(

log h

(
2n

r′

)) log h(2n
r′)

log log h(2n
r′)

=h

(
2n

r′

)
≤h

(
2n

r

)
≤ h(|V (G′′)|).

Hence one can add isolated vertices to both G′′ and H ′′ (clearly this does not
change the problem) such that |V (G′′)| = 2n/r and |V (H ′′)| = h(2n/r) and run
an algorithm from the theorem statement on the instance (G′′,H ′′).

Note that the running time of the reduction is polynomial in |G|, |G′|, |G′′|,
|H|, |H ′|, |H ′′|, i.e. poly(n, h(2n/r)) = O∗(1). Thus, an algorithm with running
time (1) for HOM implies an algorithm for 3-Coloring with running time

O∗
(

2
c· 2nr · log h(2n

r′)

log log h(2n
r′)

)
= O∗ (

2408cdn
)

(recall the inequality (3)). Therefore, by choosing a small enough constant c > 0
such that 408cd < β, we arrive to a contradiction with Lemma 1.

�

Acknowledgments. We are grateful to Daniel Lokshtanov and Saket Saurabh for
helpful discussions as well as for anonymous referees for many useful comments. The
results from Section 3 are obtained with a partial support by the Government of the
Russian Federation (grant 14.Z50.31.0030). Results presented in Section 4 are sup-
ported by the Grant of the President of the Russian Federation (MK-6550.2015.1).

References

1. Austrin, P.: Towards sharp inapproximability for any 2-CSP. SIAM J. Comput.
39(6), 2430–2463 (2010)

2. Barto, L., Kozik, M., Niven, T.: Graphs, polymorphisms and the complexity of
homomorphism problems. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing (STOC), pp. 789–796 (2008)

492 F.V. Fomin et al.

3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Computing 39(2), 546–563 (2009)

4. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via
parameterized complexity. J. Computer and System Sciences 72(8), 1346–1367
(2006)

5. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical
Computer Science 411(40–42), 3736–3756 (2010)

6. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)

7. Diaz, J., Serna, M., Thilikos, D.M.: Counting H-colorings of partial k-trees. The-
oretical Computer Science 281, 291–309 (2002)

8. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1998)

9. Fiala, J., Golovach, P.A., Kratochv́ıl, J.: Computational complexity of the distance
constrained labeling problem for trees (extended abstract). In: Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008, Part I. LNCS, vol. 5125, pp. 294–305. Springer, Heidelberg (2008)

10. Fiala, J., Kratochv́ıl, J.: Locally constrained graph homomorphisms - structure,
complexity, and applications. Computer Science Review 2(2), 97–111 (2008)

11. Fomin, F.V., Heggernes, P., Kratsch, D.: Exact algorithms for graph homomor-
phisms. Theory of Computing Systems 41(2), 381–393 (2007)

12. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)
13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman (1979)
14. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J.

Discrete Math. 5(4), 586–595 (1992)
15. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems

seen from the other side. J. ACM 54(1) (2007)
16. Havet, F., Klazar, M., Kratochv́ıl, J., Kratsch, D., Liedloff, M.: Exact algorithms

for L(2, 1)-labeling of graphs. Algorithmica 59(2), 169–194 (2011)
17. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Combinatorial Theory

Ser. B 48(1), 92–110 (1990)
18. Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford Lecture Series in Math-

ematics and its Applications, vol. 28. Oxford University Press, Oxford (2004)
19. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential

complexity. J. Computer and System Sciences 63(4), 512–530 (2001)
20. Junosza-Szaniawski, K., Kratochv́ıl, J., Liedloff, M., Rossmanith, P., Rzazewski,

P.: Fast exact algorithm for l(2, 1)-labeling of graphs. Theor. Comput. Sci. 505,
42–54 (2013)

21. Lawler, E.L.: A note on the complexity of the chromatic number problem. Inf.
Process. Lett. 5(3), 66–67 (1976)

22. Lokshtanov, D.: Private communication (2014)
23. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized

problems. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 760–776. SIAM (2011)

24. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bulletin of EATCS 3(105) (2013)

25. Lovász, L.: Large networks and graph limits, vol. 60. American Mathematical Soc.
(2012)

Lower Bounds for the Graph Homomorphism Problem 493

26. Marx, D.: Can you beat treewidth? Theory of Computing 6(1), 85–112 (2010)
27. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP?

In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC), pp. 245–254 (2008)

28. Rzażewski, P.: Exact algorithm for graph homomorphism and locally injective
graph homomorphism. Inf. Process. Lett. 114(7), 387–391 (2014)

29. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2005)
30. Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Nieder-

meier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201. Springer, Heidelberg
(2008)

31. Wahlström, M.: Problem 5.21. time complexity of graph homomorphism. In: Thore
Husfeldt, Dieter Kratsch, R.P., Sorkin, G. (eds.) Exact Complexity of NP-Hard
Problems. Dagstuhl Seminar 10441 Final Report. Dagstuhl (2010)

32. Wahlström, M.: New plain-exponential time classes for graph homomorphism. The-
ory of Computing Systems 49(2), 273–282 (2011)

Parameterized Single-Exponential Time
Polynomial Space Algorithm for Steiner Tree

Fedor V. Fomin1, Petteri Kaski2, Daniel Lokshtanov1, Fahad Panolan1,3(B),
and Saket Saurabh1,3

1 University of Bergen, Bergen, Norway
{fomin,daniello}@uib.no

2 Aalto University, Espoo, Finland
petteri.kaski@aalto.fi

3 Institute of Mathematical Sciences, Chennai, India
{fahad,saket}@imsc.res.in

Abstract. In the Steiner tree problem, we are given as input a con-
nected n-vertex graph with edge weights in {1, 2, . . . , W}, and a subset
of k terminal vertices. Our task is to compute a minimum-weight tree
that contains all the terminals. We give an algorithm for this problem
with running time O(7.97k ·n4 · logW) using O(n3 · log nW · log k) space.
This is the first single-exponential time, polynomial-space FPT algorithm
for the weighted Steiner Tree problem.

1 Introduction

In the Steiner Tree problem, we are given as input a connected n-vertex
graph, a non-negative weight function w : E(G) → {1, 2, . . . ,W}, and a set of
terminal vertices T ⊆ V (G). The task is to find a minimum-weight connected
subgraph ST of G containing all terminal nodes T . In this paper we use the
parameter k = |T |.

Steiner Tree is one of the central and best-studied problems in Computer
Science with various applications. We refer to the book of Prömel and Steger
[16] for an overview of the results and applications of the Steiner tree problem.
Steiner Tree is known to be APX-complete, even when the graph is complete
and all edge costs are either 1 or 2 [2]. On the other hand the problem admits
a constant factor approximation algorithm, the currently best such algorithm
(after a long chain of improvements) is due to Byrka et al. and has approximation
ratio ln 4 + ε < 1.39 [6].

SteinerTree is a fundamental problem in parameterized algorithms [7]. The
classic algorithm for Steiner Tree of Dreyfus and Wagner [8] from 1971 might
well be the first parameterized algorithm for any problem. The study of parameter-
ized algorithms for Steiner Tree has led to the design of important techniques,

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreements 267959, 338077 and 306992

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 494–505, 2015.
DOI: 10.1007/978-3-662-47672-7 40

Parameterized Single-Exponential Time Polynomial Space Algorithm 495

such as Fast Subset Convolution [3] and the use of branching walks [13]. Research
on the parameterized complexity of Steiner Tree is still on-going, with very
recent significant advances for the planar version of the problem [14,15].

Algorithms for Steiner Tree are frequently used as a subroutine in fixed-
parameter tractable (FPT) algorithms for other problems; examples include ver-
tex cover problems [11], near-perfect phylogenetic tree reconstruction [4], and
connectivity augmentation problems [1].

Motivation and Earlier Work. For more than 30 years, the fastest FPT algo-
rithm for Steiner Tree was the 3k · log W · nO(1)-time dynamic programming
algorithm by Dreyfus and Wagner [8]. Fuchs et al. [10] gave an improved algo-
rithm with running time O((2 + ε)knf(1/ε) log W). For the unweighted version
of the problem, Björklund et al. [3] gave a 2knO(1) time algorithm. All of these
algorithms are based on dynamic programming and use exponential space.

Algorithms with high space complexity are in practice more constrained
because the amount of memory is not easily scaled beyond hardware constraints
whereas time complexity can be alleviated by allowing for more time for the
algorithm to finish. Furthermore, algorithms with low space complexity are typ-
ically easier to parallelize and more cache-friendly. These considerations motivate
a quest for algorithms whose memory requirements scale polynomially in the
size of the input, even if such algorithms may be slower than their exponential-
space counterparts. The first polynomial space 2O(k)nO(1)-time algorithm for the
unweighted Steiner Tree problem is due to Nederlof [13]. This algorithm runs
in time 2knO(1), matching the running time of the best known exponential space
algorithm. Nederlof’s algorithm can be extended to the weighted case, unfortu-
nately this comes at the cost of a O(W) factor both in the time and the space
complexity. Lokshtanov and Nederlof [12] showed that the O(W) factor can be
removed from the space bound, but with a factor O(W) in the running time.
The algorithm of Lokshtanov and Nederlof [12] runs in 2k · nO(1) · W time and
uses nO(1) log W space. Note that both the algorithm of Nederlof [13] and the
algorithm of Lokstanov and Nederlof [12] have a O(W) factor in their running
time. Thus the running time of these algorithms depends exponentially on the
input size, and therefore these algorithms are not FPT algorithms for weighted
Steiner Tree.

For weighted Steiner Tree, the only known polynomial space FPT algo-
rithm has a 2O(k log k) running time dependence on the parameter k. This algo-
rithm follows from combining a (27/4)k ·nO(log k) · log W time, polynomial space
algorithm by Fomin et al. [9] with the Dreyfus–Wagner algorithm. Indeed, one
runs the algorithm of Fomin et al. [9] if n ≤ 2k, and the Dreyfus–Wagner algo-
rithm if n > 2k. If n ≤ 2k, the running time of the algorithm of Fomin et al. is
bounded from above by 2O(k log k). When n > 2k, the Dreyfus–Wagner algorithm
becomes a polynomial time (and space) algorithm.

Prior to this work the existence of a polynomial space algorithm with running
time 2O(k) · nO(1) · log W , i.e a single exponential time polynomial space FPT
algorithm, was an open problem asked explicitly in [9,12].

496 F.V. Fomin et al.

Contributions and Methodology. The starting point of our present algo-
rithm is the (27/4)k ·nO(log k) · log W -time, polynomial-space algorithm by Fomin
et al. [9]. This algorithm crucially exploits the possibility for balanced separation
(cf. Lemma 1 below). Specifically, an optimal Steiner tree ST can be partitioned
into two trees ST1 and ST2 containing the terminal sets T1 and T2 respectively, so
that the following three properties are satisfied: (a) The two trees share exactly
one vertex v and no edges. (b) Neither of the two trees ST1 or ST2 contain more
than a 2/3 fraction of the terminal set T . (c) The tree ST1 is an optimal Steiner
tree for the terminal set T1 ∪ {v}, and ST2 is an optimal Steiner tree for the
terminal set T2 ∪ {v}.

Dually, to find the optimal tree ST for the terminal set T it suffices to (a)
guess the vertex v, (b) partition T into T1 and T2, and (c) recursively find optimal
trees for the terminal sets T1 ∪ {v} and T2 ∪ {v}. Since there are n choices for
v, and

(
k

k/3

)
ways to partition T into two sets T1 and T2 such that |T1| = |T |/3,

the running time of the algorithm is essentially governed by the recurrence

T (n, k) ≤ n ·
(

k

k/3

)
· (T (n, k/3) + T (n, 2k/3)). (1)

Unraveling (1) gives the (27/4)k · nO(log k) · log W upper bound for the running
time, and it is easy to see that the algorithm runs in polynomial space. However,
this algorithm is not an FPT algorithm because of the nO(log k) factor in the
running time.

The factor nO(log k) is incurred by the factor n in (1), which in turn origi-
nates from the need to iterate over all possible choices for the vertex v in each
recursive call. In effect the recursion tracks an O(log k)-sized set S of split ver-
tices (together with a subset T ′ of the terminal vertices T) when it traverses the
recursion tree from the root to a leaf.

The key idea in our new algorithm is to redesign the recurrence for optimal
Steiner trees so that we obtain control over the size of S using an alternation
between

1. balanced separation steps (as described above), and
2. novel resplitting steps that maintain the size of S at no more than 3 vertices

throughout the recurrence.

In essence, a resplit takes a set S of size 3 and splits that set into three sets
of size 2 by combining each element in S with an arbitrary vertex v, while
at the same time splitting the terminal set T ′ into three parts in all possible
(not only balanced) ways. While the combinatorial intuition for resplitting is
elementary (cf. Lemma 2 below), the implementation and analysis requires a
somewhat careful combination of ingredients.

Namely, to run in polynomial space, it is not possible to use extensive
amounts of memory to store intermediate results to avoid recomputation. Yet, if
no memoization is used, the novel recurrence does not lead to an FPT algorithm,
let alone to a single-exponential FPT algorithm. Thus neither a purely dynamic
programming nor a purely recursive implementation will lead to the desired

Parameterized Single-Exponential Time Polynomial Space Algorithm 497

algorithm. A combination of the two will, however, give a single-exponential
time algorithm that uses polynomial space.

Roughly, our approach is to employ recursive evaluation over subsets T ′ of
the terminal set T , but each recursive call with T ′ will compute and return the
optimal solutions for every possible set S of split vertices. Since by resplitting we
have arranged that S always has size at most 3, this hybrid evaluation approach
will use polynomial space. Since each recursive call on T ′ yields the optimum
weights for every possible S, we can use dynamic programming to efficiently
combine these weights so that single-exponential running time results.

In precise terms, our main result is as follows:

Theorem 1. Steiner Tree can be solved in time O(7.97kn4 log nW) time
using O(n3 log nW log k) space.

Whereas our main result seeks to optimize the polynomial dependency in n
for both the running time and space usage, it is possible to trade between poly-
nomial dependency in n and the single-exponential dependency in k to obtain
faster running time as a function k, but at the cost of increased running time
and space usage as a function of n. In particular, we can use larger (but still
constant-size) sets S to avoid recomputation and to arrive at a somewhat faster
algorithm:

Theorem 2. There exists a polynomial-space algorithm for Steiner Tree run-
ning in O(6.751knO(1) log W) time.

2 Preliminaries

Given a graph G, we write V (G) and E(G) for the set of vertices and edges of
G, respectively. For subgraphs G1, G2 of G, we write G1 + G2 for the subgraph
of G with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). For a graph
G, S ⊆ V (G) and v ∈ V (G), we use G − S and G − v to denote the induced
subgraphs G[V (G)\S] and G[V (G)\{v}] respectively. For a path P = u1u2 · · · u�

in a graph G, we use
←−
P to denote the reverse path u�u�−1 · · · u1. The minimum

weight of a Steiner tree of G on terminals T is denoted by stG(T). When graph
G is clear from the context, we will simply write st(T). For a set U and a non
negative integer i, we use

(
U
i

)
and

(
U
≤i

)
to denote the set of all subsets of U , of

size exactly i and the set of all subsets of U , of size at most i respectively. For
a set U , we write U1 � U2 � · · · � U� = U if U1, U2, . . . , U� is a partition of U .
Separation and Resplitting. A set of nodes S is called an α-separator of a
graph G, 0 < α ≤ 1, if the vertex set V (G) \ S can be partitioned into sets VL

and VR of size at most αn each, such that no vertex of VL is adjacent to any
vertex of VR. We next define a similar notion, which turns out to be useful for
Steiner trees. Given a Steiner tree ST on terminals T , an α-Steiner separator S
of ST is a subset of nodes which partitions ST − S in two forests R1 and R2,
each one containing at most αk terminals from T .

498 F.V. Fomin et al.

Lemma 1 (Separation). [5,9] Every Steiner tree ST on terminal set T , |T | ≥
3, has a 2/3-Steiner separator S = {s} of size one.

The following easy lemma enables us to control the size of the split S set at no
more than 3 vertices.

Lemma 2 (Resplitting (�)1). Let F be a tree and S ∈ (
V (F)

3

)
. Then there is a

vertex v ∈ V (F) such that each connected component in F − v contains at most
one vertex of S.

3 Algorithm

In this section we design an algorithm for Steiner Tree which runs in time
O(7.97kn4 log nW) time using O(n3 log nW log k) space. Most algorithms for
Steiner Tree, including ours, are based on recurrence relations that reduce
finding the optimal Steiner tree to finding optimal Steiner trees in the same
graph, but with a smaller terminal set. We will define four functions fi for
i ∈ {0, 1, 2, 3}. Each function fi takes as input a vertex set S of size at most
i and a subset T ′ of T . The function fi(S, T ′) returns a real number. We will
define the functions using recurrence relations, and then prove that fi(S, T ′) is
exactly stG(T ′ ∪ S).

In the recurrences we will work with the following partitioning schemes for
the current set of terminals T ′. Let P(T ′) be the set of all possible partitions
(T1, T2, T3) of T ′ into three parts and let B(T ′) be the set of all possible partitions
(T1, T2) of T ′ into two parts such that |T1|, |T2| ≤ 2k/3.

For T ′ ⊆ T , i ∈ {0, 1, 2, 3}, and S ∈ (
V (G)

≤i

)
, we define fi(S, T ′) as follows.

When |T ′| ≤ 2, fi(S, T ′) = stG(T ′ ∪ S). For |T ′| ≥ 3, we define fi(S, T ′) using
the following recurrences.

Separation. For i ∈ {0, 1, 2}, let us define

fi(S, T ′) = min
(T1,T2)∈B(T ′)

min
v∈V (G)

S1�S2=S

fi+1

(
S1 ∪ {v}, T1

)
+ fi+1

(
S2 ∪ {v}, T2

)
(2)

Resplitting. For i = 3, let us define

fi(S, T ′) = min
(T1,T2,T3)∈P(T ′)

min
S1�S2�S3=S

|S1|,|S2|,|S3|≤i−2
v∈V (G)

3∑

r=1

fi−1

(
Sr ∪ {v}, Tr

)
(3)

The recurrences (2) and (3) are recurrence relations for Steiner Tree:

Lemma 3 (�). For all T ′ ⊆ T , 0 ≤ i ≤ 3, and S ∈ (
V (G)

≤i

)
it holds that

fi(S, T ′) = stG(T ′ ∪ S).

1 Proofs of results marked with a � are deferred to the full version of the paper

Parameterized Single-Exponential Time Polynomial Space Algorithm 499

Algorithm 1. Implementation of procedure Fi for i ∈ {0, 1, 2}
Input: T ′ ⊆ T
Output: stG(T

′ ∪ S) for all S ∈ (V (G)
≤i

)
1 if |T ′| ≤ 2 then

2 for S ∈ (V (G)
≤3

)
do

3 A[S] ← stG(T
′ ∪ S) (compute using the Dreyfus–Wagner algorithm)

4 return A

5 for S ∈ (V (G)
≤i

)
do

6 A[S] ← ∞
7 for T1, T2 ∈ B(T ′) do
8 A1 ← Fi+1(T1)
9 A2 ← Fi+1(T2)

10 for S1 � S2 ∈ (V (G)
≤i

)
such that |S2| ≤ |S1| and v ∈ V (G) do

11 if A[S1 � S2] > A1[S1 ∪ {v}] + A2[S2 ∪ {v}] then
12 A[S1 � S2] ← A1[S1 ∪ {v}] + A2[S2 ∪ {v}]

13 return A.

Our algorithm uses (2) and (3) to compute f0(∅, T), which is exactly the
cost of an optimum Steiner tree. A näıve way of turning the recurrences into
an algorithm would be to simply make one recursive procedure for each fi, and
apply (2) and (3) directly. However, this would result in a factor nO(log k) in the
running time, which we seek to avoid. As the näıve approach, our algorithm has
one recursive procedure Fi for each function fi. The procedure Fi takes as input
a subset T ′ of the terminal set, and returns an array that, for every S ∈ (

V (G)
≤i

)
,

contains fi(S, T ′).
The key observation is that if we seek to compute fi(S, T ′) for a fixed T ′ and

all choices of S ∈ (
V (G)

≤i

)
using recurrence (2) or (3), we should not just iterate

over every choice of S and then apply the recurrence to compute fi(S, T ′) because
it is much faster to compute all the entries of the return array of Fi simultaneosly,
by iterating over every eligible partition of T , making the required calls to Fi+1

(or Fi−1 if we are using recurrence (3)), and updating the appropriate array
entries to yield the return array of Fi. Next we give pseudocode for the procedures
F0, F1, F2, F3.

The procedure Fi for 0 ≤ i ≤ 2 operates as follows. (See Algorithm 1.)
Let T ′ ⊆ T be the input to the procedure Fi. If |T ′| ≤ 2, then Fi computes
stG(T ′ ∪ S) for all S ∈ (

V (G)
≤i

)
using the Dreyfus–Wagner algorithm and returns

these values. The procedure Fi has an array A indexed by S ∈ (
V (G)

≤i

)
. At

the end of the procedure Fi, A[S] will contain the value stG(T ′ ∪ S) for all
S ∈ (

V (G)
≤i

)
. For each (T1, T2) ∈ B(T ′) (line 7), Fi calls Fi+1(T1) and Fi+1(T2)

and it returns two sets of values {fi+1(S, T1) | S ∈ (
V (G)
≤i+1

)} and {fi(S, T2) | S ∈

500 F.V. Fomin et al.

Algorithm 2. Implementation of procedure F3

Input: T ′ ⊆ T
Output: stG(T

′ ∪ S) for all S ∈ (V (G)
≤3

)
1 if |T ′| ≤ 2 then

2 for S ∈ (V (G)
≤3

)
do

3 A[S] ← stG(T
′ ∪ S) (compute using the Dreyfus–Wagner algorithm)

4 return A

5 for S ∈ (V (G)
≤3

)
do

6 A[S] ← ∞
7 for T1, T2, T3 ∈ P(T ′) do
8 A1 ← F2(T1)
9 A2 ← F2(T2)

10 A3 ← F2(T3)

11 for S1, S2, S3 ∈ (V (G)
≤1

)
and v ∈ V (G) do

12 if A[S1 ∪ S2 ∪ S3] > A1[S1 ∪ {v}] + A2[S2 ∪ {v}] + A3[S3 ∪ {v}] then
13 A[S1 ∪ S2 ∪ S3] ← A1[S1 ∪ {v}] + A2[S2 ∪ {v}] + A3[S3 ∪ {v}]

14 return A.

(
V (G)

≤i

)}, respectively. Let A1 and A2 be two arrays used to store the return
values of Fi+1(T1) and Fi+1(T2) respectively. That is, A1[S] = fi+1(S, T1) for
all S ∈ (

V (G)
≤i+1

)
and A2[S′] = fi(S′, T2) for all S′ ∈ (

V (G)
≤i+1

)
. Now we update A

as follows. For each S1 � S2 ∈ (
V (G)

≤i

)
and v ∈ V (G) (line 10), if A[S1 � S2] >

A1[S1 ∪{v}]+A2[S2 ∪{v}], then we update the entry A[S1 �S2], with the value
A1[S1 ∪ {v}] + A2[S2 ∪ {v}]. So at the end the inner for loop, A[S] contains the
value

min
v∈V (G)

S1�S2=S

fi+1(S1 ∪ {v}, T1) + fi(S2 ∪ {v}, T2).

Since we do have a outer for loop which runs over (T1, T2) ∈ B(T ′), we have
updated A[S] with

min
(T1,T2)∈B(T ′)

min
v∈V (G)

S1�S2=S

fi+1(S1 ∪ {v}, T1) + fi(S2 ∪ {v}, T2).

at the end of the procedure. Then Fi will return A.
The procedure F3 works as follows. (See Algorithm 2.) Let T ′ ⊆ T be the

input to the procedure F3. If |T ′| ≤ 2, then F3 computes stG(T ′ ∪ S) for all
S ∈ (

V (G)
≤3

)
using the Dreyfus–Wagner algorithm and returns these values. The

procedure F3 has an array A indexed by S ∈ (
V (G)
≤3

)
. At the end of the pro-

cedure F3, A[S] will contain the value stG(T ′ ∪ S) for all S ∈ (
V (G)
≤3

)
. For

each (T1, T2, T3) ∈ P(T ′) (line 7), F3 calls F2(T1), F2(T2) and F2(T3), and it
returns three sets of values {f2(S, T1) | S ∈ (

V (G)
≤2

)}, {f2(S, T2) | S ∈ (
V (G)
≤2

)}

Parameterized Single-Exponential Time Polynomial Space Algorithm 501

and {f2(S, T3) | S ∈ (
V (G)
≤2

)}, respectively. Let A1, A2 and A3 be three
arrays used to store the outputs of F2(T1), F2(T2) and F2(T3) respectively.
That is, Ar[S] = f2(S, Tr) for r ∈ {1, 2, 3}. Now we update A as follows.
For each S1, S2, S3 ∈ (

V (G)
≤1

)
and v ∈ V (G) (line 11), if A[S1 ∪ S2 ∪ S3] >

A1[S1∪{v}]+A2[S2∪{v}]+A3[S3∪{v}], then we update the entry A[S1∪S2∪S3],
with the value A1[S1 ∪{v}]+A2[S2 ∪{v}]+A3[S3 ∪{v}]. So at the end the inner
for loop, A[S] contains the value

min
S1∪S2∪S3=S

|S1|,|S2|,|S3|≤1
v∈V (G)

3∑

r=1

f2(Sr ∪ {v}, Tr).

Since we do have a outer for loop which runs over (T1, T2, T3) ∈ P(T ′), we have
updated A[S] with

min
(T1,T2,T3)∈P(T ′)

min
S1∪S2∪S3=S

|S1|,|S2|,|S3|≤1
v∈V (G)

3∑

r=1

f2(Sr ∪ {v}, Tr).

at the end of the procedure. Then F3 will return A as the output.
In what follows we prove the correctness and analyze the running time and

memory usage of the call to the procedure F0(T).

Lemma 4. For every i ≤ 3, T ′ ⊆ T the procedure Fi(T ′) outputs an array that
for every S ∈ (

V (G)
≤i

)
, contains fi(S, T ′).

Proof. Correctness of Lemma 4 follows directly by an induction on |T |. Indeed,
assuming that the lemma statement holds for the recursive calls made by the
procedure Fi, it is easy to see that each entry of the output table is exactly equal
to the right hand side of recurrence (2) (recurrence (3) in the case of F3). ��
Observation 1. The recursion tree of the procedure F0(T) has depth O(log k).

Proof. For every i ≤ 2 the procedure Fi(T ′) only makes recursive calls to
Fi+1(T ′′) where |T ′′| ≤ 2|T ′|/3. The procedure F3(T ′) makes recursive calls
to F2(T ′′) where |T ′′| ≤ |T ′|. Therefore, on any root-leaf path in the recursion
tree, the size of the considered terminal set T ′ drops by a constant factor every
second step. When the terminal set reaches size at most 2, no further recursive
calls are made. Thus any root-leaf path has length at most O(log k). ��
Lemma 5. The procedure F0(T) uses O(n3 log nW log k) space.

Proof. To upper bound the space used by the procedure F0(T) it is sufficient to
upper bound the memory usage of every individual recursive call, not taking into
account the memory used by its recursive calls, and then multiply this upper
bound by the depth of the recursion tree.

502 F.V. Fomin et al.

Each individual recursive call will at any point of time keep a constant num-
ber of tables, each containing at most O(n3) entries. Each entry is a number
less than or equal to nW , therefore each entry can be represented using at most
O(log nW) bits. Thus each individual recurisve call uses at most O(n3 log nW)
bits. Combining this with Observation 1 proves the lemma. ��

Next we analyze the running time of the algorithm. Let τi(k) be the total
number of arithmetic operations of the procedure Fi(T ′) for all i ≤ 3, where
k = |T ′| on an n-vertex graph. It follows directly from the structure of the
procedures Fi for i ≤ 2, that there exits a constant C such that the following
recurrences hold for τi, i ≤ 2:

τi(k) ≤
∑

k
3 ≤j≤ 2k

3

(
k

j

)
(τi+1(j) + τi+1(k − j) + Cn3)

≤ 2
∑

k
3 ≤j≤ 2k

3

(
k

j

)
(τi+1(j) + Cn3) ≤ 2k max

k
3 ≤j≤ 2k

3

(
k

j

)
(τi+1(j) + Cn3) (4)

Let
(

k
i1,i2,i3

)
be the number of partitions of k distinct elements into sets of sizes

i1, i2, and i3. It follows directly from the structure of the procedure F3, that
there exists a constant C such that the following recurrence holds for τ3:

τ3(k) =
∑

i1+i2+i3=k

(
k

i1, i2, i3

)
(τ2(i1) + τ2(i2) + τ2(i3) + Cn4)

≤
∑

i1≥i2,i3

(
k

i1, i2, i3

)
3 · (τ2(i1) + Cn4) ≤ 3

∑

i1≥ k
3

(
k

i1

)
2k−i1 · (τ2(i1) + Cn4)

≤ 3k max
i1≥ k

3

(
k

i1

)
2k−i1 · (τ2(i1) + Cn4) (5)

Now we will bound τ3(k) from above using (4) and (5). The following facts are
required for the proof.

Fact 1. By Stirling’s approximation,
(

k
αk

) ≤ (
α−α(1 − α)(α−1)

)k
[17].

Fact 2. For every fixed x ≥ 4, function f(y) = xy

yy(1−y)1−y is increasing on
interval (0, 2/3].

Lemma 6. There exists a constant C such that τ3(k) ≤ C · 11.7899kn4

Proof. We prove by induction on k, that τ2(k) ≤ Ĉk(c log k)9.78977kn4 and
τ3(k) ≤ Ĉk(c log k)11.7898kn4. We will pick Ĉ to be a constant larger than the
constants of (4) and (5), and sufficiently large so that the base case of the induc-
tion holds. We prove the inductive step. By the induction hypothesis and (4),
we have that

Parameterized Single-Exponential Time Polynomial Space Algorithm 503

τ2(k) ≤ 2k max
1
3≤α≤ 2

3

(
k

αk

)(
Ĉ(αk)(c log αk)11.7898αkn4 + Ĉn3

)

≤ 2k

(
11.78982/3

(2/3)2/3(1/3)1/3

)k

·
(

Ĉ

(
2k

3

)(c log 2k/3)

n4 + Ĉn3

)
(Fact 1, 2)

≤ (9.78977)k · 2k ·
(

Ĉ

(
2k

3

)(c log 2k/3)

n4 + Ĉn3

)

≤ 9.78977k · Ĉk(c log k)n4

The last inequality holds if c is a sufficiently large constant (independent of k).
By the induction hypothesis and (5), we have that

τ3(k) ≤ 3k max
1≥α≥ 1

3

(
k

αk

)
2(1−α)k ·

(
9.78977αk · Ĉ(αk)(c log αk)n4 + Ĉn4

)

≤ 3k max
1≥α≥ 1

3

(
α−α(1 − α)(α−1)2(1−α)9.78977α

)k

·
(
Ĉ(αk)(c log αk) + Ĉn4)

)

≤ 11.7898k · Ĉk(c log k)n4

The last inequality holds for sufficiently large constants Ĉ and c. For a sufficiently
large constant C it holds that

C · 11.7899kn4 ≥ 11.7898k · Ĉk(c log k)n4,

completing the proof. ��
Lemma 7. For every i ≤ 2 and constants Ci+1 and βi+1 ≥ 4 such that for
every k ≥ 1 we have τi+1(k) ≤ Ci+1β

k
i+1n

4, there exists a constant Ci such that
τi(k) ≤ Ci · 1.8899k · β

2k/3
i+1 · n4.

Proof. By (4) we have that

τi(k) ≤ 2k max
k
3 ≤i≤ 2k

3

(
k

j

)
(τi+1(j) + Cn3)

≤ (2k + C) max
k
3 ≤i≤ 2k

3

(
k

j

)
(Ci+1β

j
i+1n

4)

≤ Ci+1 · (2k + C) · (
3

22/3
)k · β

2k/3
i+1 · n4

≤ Ci · 1.8899k · β
2k/3
i+1 · n4

The last inequality holds for a sufficiently large Ci depending on Ci+1 and βi+1

but not on k. ��
Lemma 8. The procedure F0(T) uses O(7.97kn4 log nW) time.

504 F.V. Fomin et al.

Proof. We show that τ0(k) = O(7.9631kn4). Since each arithmetic operation
takes at most O(log nW) time the lemma follows. Applying Lemma 7 on the
upper bound for τ3(k) from Lemma 6 proves that

τ2(k) = O(1.8899k · 11.78992k/3n4) = O(9.790kn4).

Re-applying Lemma 7 on the above upper bound for τ2(k) yields

τ1(k) = O(1.8899k · 9.7902k/3n4) = O(8.6489kn4).

Re-applying Lemma 7 on the above upper bound for τ1(k) yields

τ0(k) = O(1.8899k · 8.64892k/3n4) = O(7.9631kn4).

This completes the proof. ��
We are now in position to prove our main theorem.

Proof (of Theorem 1). The algorithm calls the procedure F0(T) and returns the
value stored for f0(∅, T). By Lemma 4 the procedure F0(T) correctly computes
f0(∅, T), and by Lemma 3 this is exactly equal to the cost of the optimal Steiner
tree. By Lemma 5 the space used by the algorithm is at most O(n3 log nW log k),
and by Lemma 8 the time used is O(7.97kn4 log nW). ��
Obtaining Better Parameter Dependence. The algorithm from Theorem 1
is based on defining and computing the functions fi, 0 ≤ i ≤ 3. The func-
tions fi, i ≤ 2 are defined using recurrence (2), while the function f3 is defined
using recurrence (3). For every constant t ≥ 4 we could obtain an algorithm for
Steiner Tree by defining functions fi, 0 ≤ i ≤ t − 1 using (2) and ft using
(3). A proof identical to that of Lemma 3 shows that fi(S, T ′) = STG(S ∪ T ′)
for every i ≤ t.

We can now compute f0(∅, T) using an algorithm almost identical to the
algorithm of Theorem 1, except that now we have t + 1 procedures, namely a
procedure Fi for each i ≤ t. For each i and terminal set T ′ ⊆ T a call to the
procedure Fi(T ′) computes an array containing fi(S, T ′) for every set S of size
at most i.

For i < t, the procedure Fi is based on (2) and is essentially the same as
Algorithm 1. Further, the procedure Ft is based on (3) and is essentially the
same as Algorithm 2. The correctness of the algorithm and an O(nt log(nW))
upper bound on the space usage follows from arguments identical to Lemma 4
and Lemma 5 respectively.

For the running time bound, an argument identical to Lemma 6 shows that
τt(k) = O(11.7899knt+1). Furthermore, Lemma 7 now holds for i ≤ t − 1. In
the proof of Lemma 8 the bound for τ0(k) is obtained by starting with the
O(11.7899kn4) bound for τ3 and applying Lemma 7 three times. Here we can
upper bound τ0(k) by starting with the O(11.7899knt+1) bound for τt and apply-
ing Lemma 7 t times. This yields a C0 · βk

0 upper bound for τ0(k), where

β0 = (11.7899(2/3)t)1.8899
∑t−1

i=0(2/3)i

It is easy to see that as t tends to infinity, the upper bound for β0 tends to a
number between 6.75 and 6.751. This proves Theorem 2.

Parameterized Single-Exponential Time Polynomial Space Algorithm 505

References

1. Basavaraju, M., Fomin, F.V., Golovach, P., Misra, P., Ramanujan, M.S., Saurabh,
S.: Parameterized algorithms to preserve connectivity. In: Esparza, J., Fraigniaud,
P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 800–811.
Springer, Heidelberg (2014)

2. Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. Inf.
Process. Lett. 32(4), 171–176 (1989)

3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast
subset convolution. In: Proceedings of the 39th Annual ACM Symposium on The-
ory of Computing (STOC), pp. 67–74. ACM, New York (2007)

4. Blelloch, G.E., Dhamdhere, K., Halperin, E., Ravi, R., Schwartz, R., Sridhar, S.:
Fixed parameter tractability of binary near-perfect phylogenetic tree reconstruc-
tion. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4051, pp. 667–678. Springer, Heidelberg (2006)

5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209(1–2), 1–45 (1998)

6. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via
iterative randomized rounding. J. ACM 60(1), 6 (2013)

7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer (2013)

8. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–
207 (1971)

9. Fomin, F.V., Grandoni, F., Kratsch, D., Lokshtanov, D., Saurabh, S.: Computing
optimal Steiner trees in polynomial space. Algorithmica 65(3), 584–604 (2013)

10. Fuchs, B., Kern, W., Mölle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic
programming for minimum Steiner trees. Theory of Computing Systems 41(3),
493–500 (2007)

11. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized
vertex cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)

12. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: Proceedings of the
42nd Annual ACM Symposium on Theory of Computing (STOC), pp. 321–330.
ACM (2010)

13. Nederlof, J.: Fast polynomial-space algorithms using inclusion-exclusion. Algorith-
mica 65(4), 868–884 (2013)

14. Pilipczuk, M., Pilipczuk, M., Sankowski, P., van Leeuwen, E.J.: Subexponential-
time parameterized algorithm for Steiner tree on planar graphs. In: Proceedings
of the 30th International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, vol. 20, pp. 353–364. Dagstuhl, Ger-
many (2013)

15. Pilipczuk, M., Pilipczuk, M., Sankowski, P., van Leeuwen, E.J.: Network sparsifi-
cation for Steiner problems on planar and bounded-genus graphs. In: Proceedings
of the 55th Annual Symposium on Foundations of Computer Science (FOCS), pp.
276–285. IEEE (2014)

16. Prömel, H.J., Steger, A.: The Steiner Tree Problem. Advanced Lectures in Math-
ematics. Friedr. Vieweg & Sohn, Braunschweig (2002)

17. Robbins, H.: A remark on Stirling’s formula. Amer. Math. Monthly 62, 26–29
(1955)

Relative Discrepancy Does not Separate
Information and Communication Complexity

Lila Fontes1(B), Rahul Jain2, Iordanis Kerenidis3, Sophie Laplante1,
Mathieu Laurière1(B), and Jérémie Roland4

1 LIAFA, Université Paris-Diderot, Paris, France
{fontes,laplante,mathieu.lauriere}@liafa.univ-paris-diderot.fr

2 CQT, National University of Singapore, Singapore, Singapore
rahul@comp.nus.edu.sg

3 LIAFA, CNRS, Université Paris-Diderot, Paris, France
jkeren@liafa.univ-paris-diderot.fr

4 ULB, QuIC, Ecole Polytechnique de Bruxelles, Brussel, Belgium
jroland@ulb.ac.be

Abstract. Does the information complexity of a function equal its com-
munication complexity? We examine whether any currently known tech-
niques might be used to show a separation between the two notions.
Ganor et al. recently provided such a separation in the distributional case
for a specific input distribution. We show that in the non-distributional
setting, the relative discrepancy bound is smaller than the information
complexity, hence it cannot separate information and communication
complexity. In addition, in the distributional case, we provide a linear
program formulation for relative discrepancy and relate it to variants
of the partition bound, resolving also an open question regarding the
relation of the partition bound and information complexity. Last, we
prove the equivalence between the adaptive relative discrepancy and the
public-coin partition, implying that the logarithm of the adaptive relative
discrepancy bound is quadratically tight with respect to communication.

1 Introduction

The question of whether information complexity equals communication com-
plexity is one of the most important outstanding questions in communication
complexity. Communication complexity measures the amount of bits Alice and
Bob need to communicate to each other in order to compute a function whose
input is shared between them. On the other hand, information complexity mea-
sures the amount of information Alice and Bob must reveal about their inputs
in order to compute the function. Equality between information and commu-
nication complexity is equivalent to a compression theorem in the interactive
setting. It is known that a single message can be compressed to its information
content [1–4] and here the question is whether such a compression is possible for
an interactive conversation.

An important application of information complexity is to prove direct
sum theorems for communication complexity, namely show that computing k

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 506–516, 2015.
DOI: 10.1007/978-3-662-47672-7 41

RD Does not Separate Information and Communication Complexity 507

instances of a function costs k times the communication of computing a single
instance. This has been shown to be true in the simultaneous and one-way mod-
els [5,6], for bounded-round two-way protocols under product distributions [3,7]
or non-product distributions [1], and also for specific functions like Disjointness
[8]; non-trivial direct sum theorems have also been shown for general two-way
randomized communication complexity [9]. Since the information complexity
is equal to amortized communication complexity [1], the question of whether
information and communication complexity are equal is equivalent to whether
communication complexity has a direct sum property [1,10]. Note that in the
case of deterministic, zero-error protocols, a separation between information and
communication complexity is known for Equality [10].

Since information complexity deals with the information Alice and Bob trans-
mit about their inputs, it is necessary to define a distribution on these inputs.
For each fixed distribution μ, we define the distributional information complex-
ity of a function f (also known as the information cost) as the information Alice
and Bob transmit about their inputs in any protocol that solves f with small
error according to μ [1,5]. The (non-distributional) information complexity of
the function f is defined as its distributional information complexity for the
worst distribution μ [10]. In this paper we consider the internal information
complexity.

Similarly, for communication complexity, one may also consider a model with
a distribution μ over the inputs, and the error probability of the protocol is
taken over this distribution. This is called a distributional model, and Yao’s
minmax principle [11] states that the randomized communication complexity of f
is equal to its distributional communication complexity for the worst distribution
μ, where the randomized communication complexity of a function f is defined
as the minimum number of bits exchanged, in the worst case over the inputs,
for a randomized protocol to compute the function with small error [12].

One can therefore ask whether the following stronger relation holds: is the
distributional communication complexity equal to the distributional informa-
tion complexity for all input distributions μ? A positive answer to this question
would also imply a positive answer to the initial question, proving the equality
of information and communication complexity.

In a recent breakthrough, Ganor et al. [13,14] defined a function f and a
distribution μ, for which there is an exponential separation between the distribu-
tional information and communication complexity. Does this settle the question
of communication versus information? First, let us note that the gap, although
exponential, is very small compared to the input size: a log log(n) communication
lower bound and a log log log(n) information upper bound, for inputs of size n.
More importantly, Ganor et al.’s results prove that the distributional information
and communication complexities are not equal for all distributions μ.

How could we settle the question in the non-distributional setting? To prove a
separation it is necessary to show that the communication complexity of a specific
function is large, while its information complexity is small. In other words, we

508 L. Fontes et al.

need a lower bound technique which provides a lower bound for communication
but not for information.

In previous work, Kerenidis et al. [15] showed that almost all known lower
bound techniques for communication also provide lower bounds for information.
More precisely, they studied the relaxed partition bound and proved that it sub-
sumes all known lower bound techniques (except the partition bound [16]). In
addition, they proved that for any distribution μ, the distributional informa-
tion complexity can be lower bounded by the relaxed partition bound. This also
holds in the non-distributional setting. An open question was whether the parti-
tion bound remained a candidate for separating information and communication
complexity.

2CC

�����
���

���
��

��
�

2IC

���
��

��
� prt

����
��
�

prt

��
wprt �� prt+

��
�� rdisc

��

(a) The non-distributional case. The
fact that rdisc is upper bounded by the
prt is given in Theorem 3.

2CC

����
��
�

���
��

��
�

2IC

		�
��

��
�

not true

������

not true

��

	

 � � � �

prt

���
��

��

����
��
�

prt

���
��

��
prt+

����
��
� �� rdisc

��

wprt

(b) The distributional case. The equiv-
alence between prt+and rdisc is given
in Theorem 5. The separation given by
Ganor et al. is between IC and rdisc.

Fig. 1. Definitions follow in Sections 3, 4, and 5. An arrow from one bound to another
indicates that the former is at least as large as the latter.

The main question we ask is whether the techniques developed by Ganor et
al. can help in proving, or disproving, the equality of information and commu-
nication complexity of a function f in the non-distributional setting. For their
separation, Ganor et al. introduced a new communication lower bound called
relative discrepancy. They showed that for a specific function f and a specific
distribution μ, this quantity is high, while the distributional information com-
plexity is low. We study how large this new bound is compared to the other
known lower bound techniques, and whether it can be used to separate informa-
tion and communication complexity in the non-distributional setting. Our main
results are:

Result 1: In the non-distributional case, we show that relative discrepancy is
bounded above by the relaxed partition bound (Theorem 3). By the results of
[15], this means that relative discrepancy cannot be used to separate information
and communication complexity.

RD Does not Separate Information and Communication Complexity 509

Result 2: In the distributional case, we provide a clear relation between relative
discrepancy, relaxed partition and partition bound. We give an equivalent linear
program formulation for relative discrepancy (Theorem 5) and show how rela-
tive discrepancy and relaxed partition can be derived from the partition bound
by imposing some simple extra constraints. This also answers negatively to the
open question in [15] regarding whether the partition bound is a lower bound
on information.

Recently, lower bound techniques that use partitions instead of considering
just rectangles have been proposed. Jain et al. defined the public coin partition
bound, and showed that its logarithm is quadratically related to communica-
tion complexity [17]. In addition, Ganor et al. introduced the adaptive relative
discrepancy [14]. We study the relation between them and show the following:

Result 3: For any μ, adaptive relative discrepancy and public-coin partition
bound are equivalent (Theorem 6). Hence the logarithm of the adaptive relative
discrepancy is quadratically tight to communication.

In addition to providing a linear program for relative and adaptive rela-
tive discrepancies, the different variants of the partition bound have several
other advantages. They can be defined for a wider range of problems, includ-
ing non-boolean functions; they have natural interpretations in terms of zero-
communication protocols, a fact used for relating information complexity to
these bounds [15] and for recent advances in the log rank conjecture [18].

In Section 2 we provide the necessary background and definitions. In Section 3
we prove that relative discrepancy is less than relaxed partition (in the non-
distributional setting). In Section 4 we consider the setting with a fixed μ, and
compare the partition bound and its variants to the relative discrepancy bound.
In Section 5, we consider the adaptive relative discrepancy and compare it to
the public coin partition bound. The full version of the paper appears in [19].

2 Preliminaries

Let X and Y be the sets of inputs to the two players, and Z be the set of
possible outputs. Since the discrepancy-based bounds studied in this paper apply
naturally only to boolean functions, f will usually denote a (possibly partial)
function over X × Y taking values in Z = {0, 1}, while μ denotes a probability
distribution over X × Y. 1

2.1 Information and Communication Complexity

For any (possibly partial) function f over inputs X × Y, and any ε ∈ (0, 1/2),
the communication cost of a protocol that computes f with error probability at
most ε is the number of bits sent for the worst case input.
1 The partition-based definitions apply to non-boolean functions, relations, and bipar-

tite distributions as well, but we do not give the full definitions in this paper for those
settings.

510 L. Fontes et al.

Definition 1. The (public-coin) communication complexity of f , denoted
Rε(f), is the best communication cost for any protocol that computes f using
public coins with error at most ε for any input (x, y). For any distribution μ
over the inputs, the distributional (public-coin) communication complexity of f ,
denoted Rε(f, μ), is the cost of the best protocol that computes f with error at
most ε, where the error probability is taken over the input distribution.

For information complexity, we are interested not in the number of bits
exchanged, but the amount of information revealed about the inputs. We con-
sider the internal information complexity in this paper. Here I(X;Y) denotes
the mutual information between random variables X and Y , and I(X;Y |Z) is
the mutual information conditioned on Z.

Definition 2 (Information complexity). Fix f, μ, ε. Let (X,Y,Π) be the
tuple distributed according to (X,Y) sampled from μ and then Π being the tran-
script of the protocol π applied to X,Y . Then define:
1. ICμ(π) = I(X;Π | Y) + I(Y ;Π | X)
2. ICμ(f, ε) = infπ ICμ(π), where π computes f with error at most ε
3. IC(f, ε) = maxμ ICμ(f, ε)

2.2 Lower Bound Techniques

For any family of variables {βx,y}(x,y)∈X×Y and any subset E ⊆ X×Y, we will
denote β(E) =

∑
(x,y)∈E βx,y, and β = β(X × Y). Unless otherwise specified

“∀x, y” means “∀x, y ∈ X × Y”, “∀z” means “∀z ∈ Z”, “∀R” means “for all
rectangles R in X × Y”, and “∀P” means “for all partitions P of X × Y into
labeled rectangles (R, z)”. We also denote by |P | the size of the partition, that
is, the number of rectangles (R, z) it contains.

Following Ganor et al. (with small changes that do not affect the value of
the bound), we define the relative discrepancy bound rdiscε(f, μ), as follows.
Without loss of generality, we assume supp(μ) = supp(f).

Definition 3 (Relative discrepancy bound [14]). Let μ be a distribution
over X × Y and let f : supp(μ) → {0, 1} be a function.

rdiscε(f, μ) = sup
κ,δ,ρxy

1
δ
(12 − κ − ε)

subject to
(
1
2 − κ

) · ρ(R) ≤ μ(R ∩ f−1(z)) ∀R, z s.t. ρ(R) ≥ δ
∑

xy

ρxy = 1, 0 ≤ κ <
1
2
, 0 < δ < 1, ρxy ≥ 0 ∀(x, y).

For the non-distributional case, we define rdiscε(f) = maxμ rdiscε(f, μ), where
the maximum is over distributions μ over X×Y (which implicitly adds nonneg-
ativity and normalization constraints on μ).

RD Does not Separate Information and Communication Complexity 511

Note that neither the constraints nor the objective function are linear in the
variables. Intuitively, the distribution ρ rebalances the weight of the 0-region and
the 1-region of any rectangle R by putting weights on all (x, y) and not just the
ones in the support of μ. If this rebalancing is possible even for rectangles with
very small weight (i.e. δ is small), then the relative discrepancy increases.

Using this formulation, Ganor et al. show:

Theorem 1 ([14]). Let f : supp(μ) → {0, 1} be a (possibly partial) function.
Then log(rdiscε(f, μ)) ≤ Rε(f, μ).

The relaxed partition bound was introduced by Kerenidis et al. [15] who
proved that for any function, it is bounded above by its information complexity.
Their result holds also relative to any input distribution.2

Definition 4 (Relaxed partition bound [15]). Let μ be a distribution over
X × Y and let f : supp(μ) → {0, 1} be a function.

prtε(f, μ) = max
α,βxy

β − αε

subject to : β(R) − αμ(R ∩ f−1(z)) ≤ 1 ∀R, z

α ≥ 0, αμxy − βxy ≥ 0 ∀(x, y),

where R ranges over all rectangles, (x, y) ∈ X × Y and z ∈ {0, 1}. The non-
distributional relaxed partition bound is prtε(f) = maxμ prtε(f, μ). For the non-
distributional case, we use αx,y instead of αμx,y (which is not linear if μ is no
longer fixed), with αx,y positive but not normalized.

Kerenidis et al. [15] provided both a primal and dual formulation of the relaxed
partition bound. The above is the dual formulation. The corresponding primal
formulation can be interpreted in terms of the highest non-abort probability of
a zero-communication protocol for f .

Theorem 2 ([15]). For all μ, boolean functions f over the support of μ and all
ε ∈ (0, 1

4], Ω
(
ε2 log prt2ε(f, μ)

)
= ICμ(f, ε) ≤ Rε(f, μ).

3 Relative Discrepancy Is Bounded by Relaxed Partition

We show that the non-distributional relative discrepancy is bounded above by
the relaxed partition, which implies that a stronger technique is necessary in
order to separate information and communication complexity. (See Figure 1a).

Theorem 3. For any boolean f , and ε ∈ (0, 1/3), rdisc 3
2 ε

(f) ≤ prtε(f).

2 Compared with the original formulation [15], there is an implicit change of variables:
we use βx,y here to denote what was αx,y−βx,y in the original notation.

512 L. Fontes et al.

Proof. It suffices to show that for any feasible solution of rdisc, there exists
a feasible solution for prt whose objective value is at least as large. Let
(κ, δ, {ρx,y}x,y, {μx,y}x,y) be a feasible solution of relative discrepancy for f .
Define for any (x, y) ∈ X×Y, αx,y = 1

δ (12−κ)ρx,y+ 1
δ μx,y and βx,y = 1

δ (12−κ)ρx,y.
We show that the relaxed partition constraints are satisfied. First, the sign con-
straints are satisfied. Moreover, for any R, z,

β(R) − α(R ∩ f−1(z))

=
1
δ
(12 − κ)ρ(R) − 1

δ
μ(R ∩ f−1(z)) − 1

δ
(12 − κ)ρ(R ∩ f−1(z))

≤ 1
δ
(12 − κ)ρ(R) − 1

δ
μ(R ∩ f−1(z)) (since ρxy ≥ 0 for any (x, y))

There are two cases: if ρ(R) ≥ δ, then 1
δ (12 − κ)ρ(R) − 1

δ μ(R ∩ f−1(z)) ≤ 0 ≤ 1
by the relative discrepancy constraint; otherwise ρ(R) < δ and 1

δ (12 − κ)ρ(R) −
1
δ μ(R ∩ f−1(z)) < (12 − κ) − 1

δ μ(R ∩ f−1(z)) ≤ 1
2 ≤ 1.

Finally we compare the objective values. Since ρ and μ are distributions,
α = 1

δ

(
3
2 − κ

)
and β = 1

δ

(
1
2 − κ

)
, so β − εα = 1

δ

[
1
2 − κ − (32 − κ)ε

] ≥ 1
δ (12 −κ−

3
2ε) = rdisc3

2 ε
(f). 	

Combining Theorem 2 and Theorem 3 gives us that relative discrepancy is a
lower bound on information complexity.

Corollary 1. For all functions f : X × Y → {0, 1} and all ε ∈ (0, 1
6],

Ω
(
ε2 log(rdisc3ε(f))

)
= IC(f, ε) ≤ Rε(f).

Remark 1. Our change of variables satisfies an additional constraint :

βx,y ≥ 0 for any (x, y) ∈ X × Y. (1)

since ρx,y ≥ 0. We will examine the role of this constraint in Section 4. It turns
out to be a key point in understanding how relative discrepancy relates to the
partition bound and its variants. Also notice that αx,y is not proportional to
μx,y, so this change of variable does not carry over to the distributional case,
since αx,y cannot be written as αμxy.

4 The Distributional Case

In this section we study how the various bounds relate, relative to a fixed dis-
tribution μ, and uncover an elegant relationship between the bounds by adding
simple positivity constraints to the partition bound.

We start with a fixed-distribution version of the partition bound [16], which
we define below. It follows easily from the original proof that this is a lower bound
on distributional communication complexity and that it equals the partition
bound in the worst case distribution.

RD Does not Separate Information and Communication Complexity 513

Definition 5 (Partition bound).

prtε(f, μ) = max
α,βxy

β − εα

subject to : β(R) − αμ(R ∩ f−1(z)) ≤ 1 ∀R, z

α ≥ 0.

The non-distributional bound is prtε(f) = maxμ prtε(f, μ). Going from the non-
distributional setting to a fixed distribution μ, αx,y is replaced by α · μx,y, that
is, {αx,y} is {μx,y} scaled by a factor α.

Theorem 4 ([16]). Let f : supp(μ) → {0, 1} be a (possibly partial) function.
Then log(prtε(f, μ)) ≤ Rε(f, μ).

Note that the relaxed partition bound (Definition 4) is obtained from the
partition bound by adding the constraint αμx,y − βxy ≥ 0 for all (x, y).

As suggested in the proof of Theorem 3, we now consider the constraint
βx,y ≥ 0 for all x, y. Adding this constraint to the partition bound results in a
new bound which we call the positive partition bound.

Definition 6 (Positive partition bound).

prt+ε(f, μ) = max
α,βxy

β − εα

subject to : β(R) − αμ(R ∩ f−1(z)) ≤ 1 ∀R, z

α ≥ 0, βxy ≥ 0 ∀(x, y).

We also define prt+ε(f) = maxμ prt+ε(f, μ), and use αx,y instead of αμx,y.

The weak partition bound is obtained by adding both constraints.

Definition 7 (Weak partition bound).

wprtε(f, μ) = max
α,βxy

β − εα

subject to : β(R) − αμ(R ∩ f−1(z)) ≤ 1 ∀R, z,

α ≥ 0, βxy ≥ 0, αμxy − βxy ≥ 0 ∀(x, y).

We also define wprtε(f) = maxμ wprtε(f, μ).

Because we have added a constraint to a maximization problem, it is easy to
see that the following holds (see Figure 1b).

Proposition 1. For all f, μ, ε,

wprtε(f, μ) ≤ prt+ε(f, μ) ≤ prtε(f, μ) and wprtε(f, μ) ≤ prtε(f, μ) ≤ prtε(f, μ).

In [19], we show the following equivalence:

Theorem 5. Let μ be a distribution on X × Y and f be a boolean function on
the support of μ such that either rdiscε(f, μ) ≥ 1 or prt+4ε(f, μ) > 2. Then for
any ε ∈ (0, 1/4), ε

2prt+4ε(f, μ) ≤ rdiscε(f, μ) ≤ prt+ε(f, μ).

Each inequality is proven by a different change of variables. At a high level,
ρx,y is proportional to βx,y and δ is a scaling factor.

514 L. Fontes et al.

Revisiting the non-distributional case For the change of variables in the proof of
Theorem 3, we have noted that the constraint βxy ≥ 0 holds ∀(x, y) (see Inequal-
ity 1). This shows that, in the non-distributional case, relative discrepancy is, in
fact, no larger than the weak partition bound, i.e. rdiscε(f) ≤ wprt2

3 ε
(f).

Lemma 1. For any boolean f , and ε ∈ (0, 1/2), prt+ε(f) ≤ wprt ε
2
(f) + ε

2 .

Proof. Let αx,y, βx,y be a feasible solution for prt+, and consider the following
assignment for wprt: α′

x,y = αx,y +βx,y, β′
x,y = βx,y. The constraint on rectan-

gles is still satisfied, and the added positivity constraint α′
x,y −β′

x,y = αx,y ≥ 0 is
also satisfied. Finally, the objective function for wprt with error ε

2 is β′ − ε
2α′ =

β − ε
2β − ε

2α ≥ β − εα − ε
2 (where we have used the constraint on R = X×Y),

as claimed. 	

The change of variables in the proof of Theorem 3 is just the composition of

the two changes of variables in Theorem 5 and Lemma 1. It is also now clearer
how the distributional and the non-distributional settings differ. It cannot be
the case that prt+ε(f, μ) ≤ wprtε(f, μ) for fixed distribution, since Ganor et
al. provide a counterexample. We can also see that for this specific change of
variable, by setting α′

x,y = αx,y + βx,y, α′
x,y cannot be written as αx,y = αμx,y,

as we would need in the distributional case, since it is a combination of α and
β.

5 Adaptive Relative Discrepancy Is Equivalent to the
Public Coin Partition

In this section, we compare two lower bound techniques for communication com-
plexity introduced recently. We give below a distributional version of the public-
coin partition3.

Definition 8 (Public coin partition bound [17]).

pprtε(f, μ) = max
α,β

β − εα

subject to : β −
∑

(R,z)∈P

αμ(R ∩ f−1(z)) ≤ |P | ∀P

α ≥ 0, β ≥ 0.

Ganor et al. introduced the following notion, which is not a linear program:

3 Note that this is a simplified definition with respect to the original one by means of
removing redundant variables and constraints in the primal formulation, taking the
dual of the resulting expression, and replacing αx,y by αμx,y, where the distribution
μ is fixed.

RD Does not Separate Information and Communication Complexity 515

Definition 9 (Adaptive relative discrepancy [14]).

ardiscε(f, μ) = sup
κ,δ,ρP

x,y

1
δ

(
1
2 − κ − ε

)
subject to :

(
1
2 − κ

)
ρP (R) ≤ μ(R ∩ f−1(z)), ∀P, ∀(z,R) ∈ P : ρP (R) ≥ δ

0 ≤ κ < 1
2 , 0 < δ < 1, ρP = 1, ρP

x,y ≥ 0, ∀P,∀(x, y).

Then ardiscε(f) = maxμ ardiscε(f, μ).

In [19], we prove the following result :

Theorem 6. For any distribution μ, any function f : supp(μ) → {0, 1} and
ε ∈ (0, 1

4) such that either ardiscε(f, μ) ≥ 1 or pprt4ε(f, μ) > 2,

ε

2
pprt4ε(f, μ) ≤ ardiscε(f, μ) ≤ pprtε(f, μ).

Since the logarithm of the public coin partition bound is polynomially related
to randomized communication complexity [17], this tells us that the logarithm of
the adaptive relative discrepancy is also polynomially related to communication
complexity.

Corollary 2. For any μ, f : supp(μ) → {0, 1} and ε ∈ (0, 1
8),

log(ardiscε(f, μ)) ≤ Rε(f, μ) ≤
(

log ardiscε/8(f, μ) + 2 log
1
ε

+ 6
)2

.

Acknowledgments. We are grateful to Nikos Leonardos for useful discussions and we
also thank Virginie Lerays for many fruitful discussions and for the simplification of the
public coin partition bound. R.J. would like to thank Anurag Anshu, Prahladh Harsha,
Priyanka Mukhopadhyay and Vankatesh Srinivasan for helpful discussions. L.F., I.K.,
S.L. and M.L. acknowledge support from the French ANR Blanc project RDAM ANR-
12-BS02-005, European Union CHIST-ERA grant DIQIP, the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement n. 600700 (QALGO)
and the ERC project QCC. J.R. acknowledges support from the Belgian ARC project
COPHYMA. The work of R.J. is supported by the Singapore Ministry of Education
Tier 3 Grant, the National University of Singapore Young Researcher Award 2012
and the Core Grants of the Center for Quantum Technologies, Singapore. Part of the
work done while visiting the Banff International Research Station for Mathematical
Innovation and Discovery, Banff, Canada and while visiting the Simon’s Institute, U.C.
Berkeley, USA.

References

1. Braverman, M., Rao, A.: Information equals amortized communication. IEEE
Transactions on Information Theory 60(10), 6058–6069 (2014)

2. Fano, R.M.: The transmission of information, Technical Report 65, Research Lab-
oratory for Electronics. MIT, Cambridge (1949)

516 L. Fontes et al.

3. Jain, R., Radhakrishnan, J., Sen, P.: A direct sum theorem in communication-
complexity via message compression. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 300–315. Springer,
Heidelberg (2003)

4. Shannon, C.E.: A Mathematical Theory of Computation. The Bell System Tech-
nical Journal 27, 379–423, 623–656 (1948)

5. Chakrabarti, A., Wirth, A., Yao, A., Shi, Y.: Informational complexity and the
direct sum problem for simultaneous message complexity. In: FOCS, pp. 270–278
(2001)

6. Jain, R., Radhakrishnan, J., Sen, P.: Optimal direct sum and privacy trade-
off results for quantum and classical communication complexity. In: CoRR, vol.
abs/0807.1267, pp. 285–296 (2008)

7. Harsha, P., Jain, R., McAllester, D., Radhakrishnan, J.: The communication com-
plexity of correlation. In: CCC, pp. 10–23 (2007)

8. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. Journal of Computer and
System Sciences 68(4), 702–732 (2004)

9. Barak, B., Braverman, M., Chen, X., Rao, A.: How to compress interactive com-
munication. In: STOC, pp. 67–76 (2010)

10. Braverman, M.: Interactive information complexity. In: STOC, pp. 505–524 (2012)
11. Yao, A.C.-C.: Lower bounds by probabilistic arguments. In: FOCS, pp. 420–428

(1983)
12. Yao, A.C.C.: Some complexity questions related to distributive computing (pre-

liminary report). In: STOC, pp. 209–213 (1979)
13. Ganor, A., Kol, G., Raz, R.: Exponential separation of information and communi-

cation. In: ECCC, vol. 21, p. 49 (2014)
14. Ganor, A., Kol, G., Raz, R.: Exponential separation of information and communi-

cation for boolean functions. In: ECCC, vol. 113 (2014)
15. Kerenidis, I., Laplante, S., Lerays, V., Roland, J., Xiao, D.: Lower bounds on infor-

mation complexity via zero-communication protocols and applications. In: FOCS,
pp. 500–509 (2012)

16. Jain, R., Klauck, H.: The partition bound for classical communication complexity
and query complexity. In: CCC, pp. 1–28 (2010)

17. Jain, R., Lee, T., Vishnoi, N.: A quadratically tight partition bound for classical
communication complexity and query complexity. In: CoRR, vol. abs/1401.4512
(2014)

18. Gavinsky, D., Lovett, S.: En route to the log-rank conjecture: new reductions and
equivalent formulations. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias,
E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 514–524. Springer, Heidelberg (2014)

19. Fontes, L., Jain, R., Kerenidis, I., Laplante, S., Lauriere, M., Roland, J.: Rela-
tive Discrepancy does not separate Information and Communication Complexity
(2015). http://eccc.hpi-web.de/report/2015/028/

http://eccc.hpi-web.de/report/2015/028/

A Galois Connection for Valued Constraint
Languages of Infinite Size

Peter Fulla and Stanislav Živný(B)

Department of Computer Science, University of Oxford, Oxford, UK
{peter.fulla,standa.zivny}@cs.ox.ac.uk

Abstract. A Galois connection between clones and relational clones on
a fixed finite domain is one of the cornerstones of the so-called algebraic
approach to the computational complexity of non-uniform Constraint
Satisfaction Problems (CSPs). Cohen et al. established a Galois con-
nection between finitely-generated weighted clones and finitely-generated
weighted relational clones [SICOMP’13], and asked whether this con-
nection holds in general. We answer this question in the affirmative for
weighted (relational) clones with real weights and show that the com-
plexity of the corresponding Valued CSPs is preserved.

1 Introduction

The constraint satisfaction problem (CSP) is a general framework capturing
decision problems arising in many contexts of computer science [13]. The CSP
is NP-hard in general but there has been much success in finding tractable
fragments of the CSP by restricting the types of relations allowed in the con-
straints. A set of allowed relations has been called a constraint language [11].
For some constraint languages, the associated constraint satisfaction problems
with constraints chosen from that language are solvable in polynomial-time,
whilst for other constraint languages this class of problems is NP-hard [11];
these are referred to as tractable languages and NP-hard languages, respectively.
Dichotomy theorems, which classify each possible constraint language as either
tractable or NP-hard, have been established for constraint languages over two-
element domains [19], three-element domains [5], for conservative (containing all
unary relations) constraint languages [7], for maximal constraint languages [4,8],
for graphs (corresponding to languages containing a single binary symmetric
relation) [12], and for digraphs without sources and sinks (corresponding to lan-
guages containing a single binary relations without sources and sinks) [2]. The
most successful approach to classifying the complexity of constraint languages
has been the algebraic approach [1,6,15].

The valued constraint satisfaction problem (VCSP) is a general frame-
work that captures not only feasibility problems but also optimisation prob-
lems [10,14]. A VCSP instance represents each constraint by a weighted relation,

The authors were supported by a Royal Society Research Grant. Stanislav Živný
was supported by a Royal Society University Research Fellowship.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 517–528, 2015.
DOI: 10.1007/978-3-662-47672-7 42

518 P. Fulla and S. Živný

which is a Q-valued function where Q = Q ∪ {∞}, and the goal is to find a
labelling of variables minimising the sum of the values assigned by the con-
straints to that labelling. Tractable fragments of the VCSP have been identified
by restricting the types of allowed weighted relations that can be used to define
the valued constraints. A set of allowed weighted relations has been called a val-
ued constraint language [10]. Classifying the complexity of all valued constraint
languages is a challenging task as it includes as a special case the classification
of {0,∞}-valued languages (i.e. constraint languages); this would answer the
conjecture of Feder and Vardi [11], which asserts that every constraint language
is either tractable or NP-hard, and its algebraic refinement, which specifies the
precise boundary between tractable and NP-hard languages [6]. However, several
nontrivial results are known, see [14] for a recent survey. Dichotomy theorems,
which classify each possible valued constraint language as either tractable or
NP-hard, have been established for valued constraint languages over two-element
domains [10], for conservative (containing all {0, 1}-valued unary cost functions)
valued constraint languages [17], and also for finite-valued (all weighted rela-
tions are Q-valued) constraint languages [22]. Moreover, the power of the basic
linear programming relaxation for valued constraint languages has been charac-
terised [16,21].

Cohen et al. have introduced an algebraic theory of weighted clones [9], fur-
ther extended in [18], for classifying the computational complexity of valued con-
straint languages. This theory establishes a one-to-one correspondence between
valued constraint languages closed under expressibility (which does not change
the complexity of the associated class of optimisation problems), called weighted
relational clones, and weighted clones [9]. This is an extension of (a part of) the
algebraic approach to CSPs which relies on a one-to-one correspondence between
constraint languages closed under pp-definability (which does not change the
complexity of the associated class of decision problems), called relational clones,
and clones [6], thus making it possible to use deep results from universal alge-
bra. In fact, the recent progress on the power of the basic linear programming
relaxation [16] and the classification of finite-valued constraint languages [22], as
well as results on special cases of Valued CSPs such as Min-Sol-Hom [23], rely
on the work of Cohen et al [9].

Contributions

The Galois connection between weighted clones and weighted relational clones
established in [9] was proved only for weighted (relational) clones generated by a
set of a finite size. The authors asked whether such a correspondence holds also
for weighted (relational) clones in general. In this paper we answer this question
in the affirmative.

Firstly, we show that the Galois connection from [9] (using only rational
weights) does not work for general weighted (relational) clones. Secondly, we
alter the definition of weighted (relational) clones and establish a new Galois
connection that holds even when the generating set has an infinite size. We
allow weighted relations and weightings to assign real weights instead of rational,

A Galois Connection for Valued Constraint Languages of Infinite Size 519

require weighted relational clones to be closed under operator Opt, and prove
that these changes preserve tractability of a constraint language.

Including the Opt operator in the definition of weighted relational clones
simplifies the structure of the space of all weighted clones, and guarantees that
every non-projection polymorphism of a weighted relational clone Γ is assigned
a positive weight by some weighted polymorphism of Γ .

The proof of the Galois connection in [9] relies on results on linear program-
ming duality; we used their generalisation from the theory of convex optimisation
in order to establish the connection even for infinite sets.

2 Background

2.1 Valued CSPs

Throughout the paper, let D be a fixed finite set of size at least two.

Definition 1. An m-ary relation1 over D is any mapping φ : Dm → {c,∞}
for some c ∈ Q. We denote by R(m)

D the set of all m-ary relations and let
RD =

⋃
m≥1 R(m)

D .

Given an m-tuple x ∈ Dm, we denote its ith entry by x[i] for 1 ≤ i ≤ m.
Let Q = Q∪ {∞} denote the set of rational numbers with (positive) infinity.

Definition 2. An m-ary weighted relation over D is any mapping γ : Dm →
Q. We denote by Φ(m)

D the set of all m-ary weighted relations and let ΦD =⋃
m≥1 Φ(m)

D .

From Definition 2 we have that relations are a special type of weighted rela-
tions.

Example 1. An important example of a (weighted) relation is the binary equality
φ= on D defined by φ=(x, y) = 0 if x = y and φ=(x, y) = ∞ if x �= y.

Another example of a relation is the unary empty relation φ∅ defined on D
by φ∅(x) = ∞ for all x ∈ D.

For any m-ary weighted relation γ ∈ Φ(m)
D , we denote by Feas(γ) = {x ∈

Dm|γ(x) < ∞} ∈ R(m)
D the underlying feasibility relation, and by Opt(γ) = {x ∈

Feas(γ) | γ(x) ≤ γ(y) for every y ∈ Dm} ∈ R(m)
D the relation of minimal-value

tuples.

1 An m-ary relation over D is commonly defined as a subset of Dm. Note that Defini-
tion 1 is equivalent to the standard definition as any mapping φ can be seen as set
R = {x ∈ Dm | φ(x) < ∞}, and any set R ⊆ Dm can be represented by mapping
φ such that φ(x) = 0 when x ∈ R and φ(x) = ∞ otherwise. Consequently, we shall
use both definitions interchangeably.

520 P. Fulla and S. Živný

Definition 3. Let V = {x1, . . . , xn} be a set of variables. A valued constraint
over V is an expression of the form γ(x) where γ ∈ Φ(m)

D and x ∈ V m. The
number m is called the arity of the constraint, the weighted relation γ is called
the constraint weighted relation, and the tuple x the scope of the constraint.

We call D the domain, the elements of D labels (for variables), and say that
the weighted relation in ΦD take values or weights.

Definition 4. An instance of the valued constraint satisfaction problem, VCSP,
is specified by a finite set V = {x1, . . . , xn} of variables, a finite set D of labels,
and an objective function I expressed as follows:

I(x1, . . . , xn) =
q∑

i=1

γi(xi) , (1)

where each γi(xi), 1 ≤ i ≤ q, is a valued constraint over V . Each constraint can
appear multiple times in I.

The goal is to find an assignment (or a labelling) of labels to the variables
that minimises I.

CSPs are a special case of VCSPs using only (unweighted) relations with the
goal to determine the existence of a feasible assignment.

Definition 5. Any set Γ ⊆ ΦD is called a (valued) constraint language over
D, or simply a language. We will denote by VCSP(Γ) the class of all VCSP
instances in which the constraint weighted relations are all contained in Γ .

Definition 6. A constraint language Γ is called tractable if VCSP(Γ ′) can be
solved (to optimality) in polynomial time for every finite subset Γ ′ ⊆ Γ , and Γ
is called intractable if VCSP(Γ ′) is NP-hard for some finite Γ ′ ⊆ Γ .

We are interested in the computational complexity of various constraint lan-
guages, see [14] for a recent survey on this topic.

2.2 Weighted Relational Clones

Definition 7. A weighted relation γ of arity r can be obtained by addition from
the weighted relation γ1 of arity s and the weighted relation γ2 of arity t if γ
satisfies the identity

γ(x1, . . . , xr) = γ1(y1, . . . , ys) + γ2(z1, . . . , zt) (2)

for some (fixed) choice of y1, . . . , ys and z1, . . . , zt from amongst the x1, . . . , xr.

Definition 8. A weighted relation γ of arity r can be obtained by minimisation
from the weighted relation γ′ of arity r + s if γ satisfies the identity

γ(x1, . . . , xr) = min
y1∈D,...,ys∈D

γ′(x1, . . . , xr, y1, . . . , ys) . (3)

A Galois Connection for Valued Constraint Languages of Infinite Size 521

Definition 9. A constraint language Γ ⊆ ΦD is called a weighted relational
clone if it contains the binary equality relation φ= and the unary empty relation
φ∅,2 and is closed under addition, minimisation, scaling by non-negative rational
constants, and addition of rational constants.

For any Γ , we define wRelClone(Γ) to be the smallest weighted relational
clone containing Γ .

Note that for any weighted relational clone Γ , if γ ∈ Γ then Feas(γ) ∈ Γ as
Feas(γ) = 0γ (we define 0 · ∞ = ∞).

Definition 10. Let Γ ⊆ ΦD be a constraint language, I ∈ VCSP(Γ) an
instance with variables V , and L = (v1, . . . , vr) a list of variables from V . The
projection of I onto L, denoted πL(I), is the r-ary weighted relation on D defined
as

πL(I)(x1, . . . , xr) = min
{s:V →D | (s(v1),...,s(vr))=(x1,...,xr)}

I(s) . (4)

We say that a weighted relation γ is expressible over a constraint language Γ if
γ = πL(I) for some I ∈ VCSP(Γ) and list of variables L. We call the pair (I, L)
a gadget for expressing γ over Γ .

The list of variables L in a gadget may contain repeated entries. The mini-
mum over an empty set is ∞.

Example 2. For any Γ ⊆ ΦD, we can express the binary equality relation φ=

on D over language Γ using the following gadget. Let I ∈ VCSP(Γ) be the
instance with a single variable v and no constraints, and let L = (v, v). Then,
by Definition 10, πL(I) = φ=.

We may equivalently define a weighted relational clone as a set Γ ⊆ ΦD

that contains the unary empty relation φ∅ and is closed under expressibility,
scaling by non-negative rational constants, and addition of rational constants [9,
Proposition4.5].

The following result has been shown in [9].

Theorem 1. A constraint language Γ is tractable if and only if wRelClone(Γ)
is tractable, and Γ is intractable if and only if wRelClone(Γ) is intractable.

Consequently, when trying to identify tractable constraint languages, it is
sufficient to consider only weighted relational clones.

2.3 Weighted Clones

Any mapping f : Dk → D is called a k-ary operation. We will apply a k-ary
operation f to k m-tuples x1, . . . ,xk ∈ Dm coordinatewise, that is,

f(x1, . . . ,xk) = (f(x1[1], . . . ,xk[1]), . . . , f(x1[m], . . . ,xk[m])) ∈ Dm . (5)

2 Although the definition in [9] does not require inclusion of φ∅, the proofs there
implicitly assume its presence in any weighted relational clone.

522 P. Fulla and S. Živný

Definition 11. Let γ be an m-ary weighted relation on D and let f be a k-ary
operation on D. Then f is a polymorphism of γ if, for any X = (x1, . . . ,xk) ∈
(Feas(γ))k, we have that f(X) = f(x1, . . . ,xk) ∈ Feas(γ).

For any constraint language Γ over a set D, we denote by Pol(Γ) the set of
all operations on D which are polymorphisms of all γ ∈ Γ . We write Pol(γ) for
Pol({γ}).

A k-ary projection is an operation of the form e
(k)
i (x1, . . . , xk) = xi for some

1 ≤ i ≤ k. Projections are (trivial) polymorphisms of all constraint languages.

Definition 12. The superposition of a k-ary operation f : Dk → D with k �-ary
operations gi : D� → D for 1 ≤ i ≤ k is the �-ary function f [g1, . . . , gk] : D� → D
defined by

f [g1, . . . , gk](x1, . . . , x�) = f(g1(x1, . . . , x�), . . . , gk(x1, . . . , x�)) . (6)

Definition 13. A clone of operations, C, is a set of operations on D that con-
tains all projections and is closed under superposition. The k-ary operations in
a clone C will be denoted by C(k).

Example 3. For any D, let JD be the set of all projections on D. By Definition 13,
JD is a clone.

It is well known that Pol(Γ) is a clone for all constraint languages Γ .

Definition 14. A k-ary weighting of a clone C is a function ω : C(k) → Q

such that ω(f) < 0 only if f is a projection and
∑

f∈C(k)

ω(f) = 0 . (7)

We will call a function ω : C(k) → Q that satisfies Equation (7) but assigns a
negative weight to some operation f �∈ J(k)

D an improper weighting. In order to
emphasise the distinction we may also call a weighting a proper weighting.

Definition 15. For any clone C, a k-ary weighting ω of C, and g1, . . . , gk ∈
C(�), the superposition of ω and g1, . . . , gk, is the function ω[g1, . . . , gk] : C(�) →
Q defined by

ω[g1, . . . , gk](f ′) =
∑

{f∈C(k) | f [g1,...,gk]=f ′}
ω(f) . (8)

If the result of a superposition is a proper weighting (that is, negative weights
are only assigned to projections), then that superposition will be called a proper
superposition.

Definition 16. A weighted clone, Ω, is a non-empty set of weightings of some
fixed clone C, called the support clone of Ω, which is closed under scaling by
non-negative rational constants, addition of weightings of equal arity, and proper
superposition with operations from C.

A Galois Connection for Valued Constraint Languages of Infinite Size 523

We now link weightings and weighted relations by the concept of weighted
polymorphism, which will allow us to establish a useful correspondence between
weighted clones and weighted relational clones.

Definition 17. Let γ be an m-ary weighted relation on D and let ω be a k-ary
weighting of a clone C of operations on D. We call ω a weighted polymorphism
of γ if C ⊆ Pol(γ) and for any X = (x1,x2, . . . ,xk) ∈ (Feas(γ))k, we have

∑

f∈C(k)

ω(f) · γ(f(X)) =
∑

f∈C(k)

ω(f) · γ(f(x1,x2, . . . ,xk)) ≤ 0 . (9)

If ω is a weighted polymorphism of γ, we say that γ is improved by ω.

Example 4. Consider the class of submodular functions. These are precisely the
functions γ defined on D = {0, 1} satisfying γ(min(x1,x2)) + γ(max(x1,x2)) −
γ(x1) − γ(x2) ≤ 0, where min and max are the two binary operations that
return the smaller and larger of their two arguments respectively (with respect
to the usual order 0 < 1). In other words, the set of submodular functions is
the set of weighted relations improved by the binary weighting ωsub defined
by: ωsub(f) = −1 if f ∈ {e

(2)
1 , e

(2)
2 }, ωsub(f) = +1 if f ∈ {min,max}, and

ωsub(f) = 0 for all other binary operations on D.

Definition 18. For any Γ ⊆ ΦD, we define wPol(Γ) to be the set of all weight-
ings of Pol(Γ) which are weighted polymorphisms of all weighted relations γ ∈ Γ .
We write wPol(γ) for wPol({γ}).

Definition 19. We denote by WC the set of all possible weightings of clone C,
and define WD to be the union of the sets WC over all clones C on D.

Any Ω ⊆ WD may contain weightings of different clones over D. We can
then extend each of these weightings with zeros, as necessary, so that they are
weightings of the same clone C, where C is the smallest clone containing all the
clones associated with weightings in Ω.

Definition 20. We define wClone(Ω) to be the smallest weighted clone contain-
ing this set of extended weightings obtained from Ω.

For any Ω ⊆ WD, we denote by Imp(Ω) the set of all weighted relations in
ΦD which are improved by all weightings ω ∈ Ω.

The main result in [9] establishes a 1-to-1 correspondence between weighted
relational clones and weighted clones.

Theorem 2 ([9]).

1. For any finite D and any finite Γ ⊆ ΦD, Imp(wPol(Γ)) = wRelClone(Γ).
2. For any finite D and any finite Ω ⊆ WD, wPol(Imp(Ω)) = wClone(Ω).

Thus, when trying to identify tractable constraint languages, it is sufficient to
consider only languages of the form Imp(Ω) for some weighted clone Ω.

524 P. Fulla and S. Živný

3 Results

First we show that Theorem 2 can be slightly extended to certain constraint
languages and sets of weightings of infinite size.

Theorem 3.

1. Let Γ ⊆ ΦD. Then Imp(wPol(Γ)) = wRelClone(Γ) if and only if
wRelClone(Γ) = Imp(Ω) for some Ω ⊆ WD.

2. Let Ω ⊆ WD. Then wPol(Imp(Ω)) = wClone(Ω) if and only if
wClone(Ω) = wPol(Γ) for some Γ ⊆ ΦD.

Proof. We will only prove the first case as the second one is analogous. Suppose
that wRelClone(Γ) = Imp(Ω) for some Ω ⊆ WD. As Γ ⊆ wRelClone(Γ), every
weighting in Ω improves Γ , hence Ω ⊆ wPol(Γ) and Imp(wPol(Γ)) ⊆ Imp(Ω) =
wRelClone(Γ). The inclusion wRelClone(Γ) ⊆ Imp(wPol(Γ)) follows from the
fact that Imp(wPol(Γ)) is a weighted relational clone [9, Proposition 6.2] that
contains Γ .

The converse implication holds trivially for Ω = wPol(Γ).

We remark that any finitely generated weighted relational clone on a finite
domain satisfies, by Theorem 2 (1), the condition of Theorem 3 (1). Similarly, any
finitely generated weighted clone on a finite domain, by Theorem 2 (2), satisfies
the condition of Theorem 3 (2).

However, our next result shows that Theorem 2 does not hold for all infinite
constraint languages and infinite sets of weightings.

Theorem 4. There is a finite D and an infinite Γ ⊆ ΦD with Imp(wPol(Γ)) �=
wRelClone(Γ). Moreover, there is a finite D and an infinite Ω ⊆ WD with
wPol(Imp(Ω)) �= wClone(Ω).

Our aim is to establish a Galois connection even for infinite sets of weighted
relations and weightings. As we demonstrate in the proof of Theorem 4, this
cannot be done when restricted to rational weights; hence we allow weighted
relations and weightings to assign real-valued weights. To distinguish them
from their formerly defined rational-valued counterparts, we will use a sub-
script/superscript R.

We will show that wPolR(Γ) is a closed weighted clone for any set of weighted
relations Γ ; analogously, we will show that ImpR(Ω) is a closed weighted rela-
tional clone for any set of weightings Ω. Therefore, the one-to-one correspondence
between weighted relational clones and weighted clones which we want to estab-
lish cannot possibly hold for sets that are not closed. As there exist (infinite)
sets Γ ⊆ ΦR

D, Ω ⊆ WR

D such that wRelCloneR(Γ), wCloneR(Ω) are not closed,
we need to include the closure operator in the statement defining the Galois
connection.

Inspired by weighted pp-definitions [20], we extend the notion of weighted
relational clones: we require them to be closed under the Opt operator. This
change is justified by a result in which we prove that the inclusion of Opt

A Galois Connection for Valued Constraint Languages of Infinite Size 525

preserves tractability. In order to retain the one-to-one correspondence with
weighted clones, we need to alter their definition too: weightings now assign
weights to all operations and hence are independent of the support clone (which
becomes meaningless and we discard it).

Including the Opt operator brings two advantages to the study of weighted
clones. Firstly, it slightly simplifies the structure of the space of all weighted
clones. According to the original definition, a weighted clone is determined by
its support clone and the set of weightings it consists of; by our definition a
weighted clone equals the set of its weightings. Secondly, any non-projection
polymorphism of a weighted relational clone Γ is assigned a positive weight by
some weighted polymorphism of Γ .

Our main result is the following theorem, which holds for our new definition
of real-valued weightings and weighted relations.

Theorem 5 (Main).

1. For any finite D and any Γ ⊆ ΦR

D, ImpR(wPolR(Γ)) = wRelCloneR(Γ).
Moreover, if Γ is finite, then ImpR(wPolR(Γ)) = wRelCloneR(Γ).

2. For any finite D and any Ω ⊆ WR

D, wPolR(ImpR(Ω)) = wCloneR(Ω). More-
over, if Ω is finite, then wPolR(ImpR(Ω)) = wCloneR(Ω).

Finally, we show that taking the weighted relational clone of a constraint
language preserves solvability with an absolute error bounded by ε (for any
ε > 0).

4 New Galois Connection

Let R = R∪{∞} denote the set of real numbers with (positive) infinity. We will
allow weights in relations and weighted relations, as defined in Definition 1 and 2
respectively, to be real numbers. In other words, an m-ary weighted relation γ
on D is a mapping γ : Dm → R. We will add a subscript/superscript R to the
notation introduced in Section 2 in order to emphasise the use of real weights.

For any fixed arity m and any F ⊆ Dm, consider the set of all m-ary weighted
relations γ ∈ ΦR

D with Feas(γ) = F . Let us denote this set by H and equip it
with the inner product defined as

〈α, β〉 =
∑

x∈F

α(x) · β(x) (10)

for any α, β ∈ H; H is then a real Hilbert space. Set ΦR

D is a disjoint union of such
Hilbert spaces for all m and F , and therefore a topological space with the disjoint
union topology induced by inner products on the underlying Hilbert spaces.
When we say a set of weighted relations is open/closed, we will be referring to
this topology.

526 P. Fulla and S. Živný

Definition 21. A constraint language Γ ⊆ ΦR

D is called a weighted relational
clone if it contains the binary equality relation φ= and the unary empty rela-
tion φ∅, and is closed under addition, minimisation, scaling by non-negative real
constants, addition of real constants, and under the Opt operator.

For any Γ , we define wRelCloneR(Γ) to be the smallest weighted relational
clone containing Γ .

For a weighted relational clone Γ , its topological closure Γ is also a weighted
relational clone, as all the operations that we require weighted relational clones
to be closed under are continuous mappings.

As opposed to Definition 9, our new definition requires weighted relational
clones to be closed under operator Opt. In order to establish a Galois connection
now, we need to make an adjustment to the definition of weighted clone too. We
will discard the explicit underlying support clone; instead, (k-ary) weightings
will assign weights to all (k-ary) operations. The role of the support clone of a
weighted clone Ω is then taken over by supp(Ω) (see Lemma 1).

We denote by O(k)
D the set of all k-ary operations on D and let OD =⋃

k≥0 O(k)
D .

Definition 22. A k-ary weighting is a function ω : O(k)
D → R such that ω(f) <

0 only if f is a projection and
∑

f∈O(k)
D

ω(f) = 0 . (11)

We define supp(ω) = {f ∈ O(k)
D | ω(f) > 0 ∨ f ∈ J(k)

D }.
We will call a function ω : O(k)

D → R that satisfies Equation (11) but assigns
a negative weight to some operation f �∈ J(k)

D an improper weighting. In order
to emphasise the distinction we may also call a weighting a proper weighting.

We denote by WR

D the set of all weightings on domain D. For any fixed arity
k, consider the set H of all functions O(k)

D → R equipped with the inner product
defined as

〈α, β〉 =
∑

f∈O(k)
D

α(f) · β(f) (12)

for any α, β ∈ H; H is then a real Hilbert space. Set WR

D lies in the disjoint
union of such Hilbert spaces for all k, which is a topological space with the
disjoint union topology induced by inner products on the underlying Hilbert
spaces. When we say a set of weightings is open/closed, we will be referring to
this topology. Clearly, any closure point of a set of weightings is itself a weighting.

Definition 23. Let Ω be a non-empty set of weightings on a fixed domain D.
We define supp(Ω) = JD ∪ ⋃

ω∈Ω supp(ω).
We call Ω a weighted clone if it is closed under scaling by non-negative real

constants, addition of weightings of equal arity, and proper superposition with
operations from supp(Ω).

A Galois Connection for Valued Constraint Languages of Infinite Size 527

For any weighted clone Ω, its topological closure Ω is also a weighted clone,
as all the operations that we require weighted clones to be closed under are
continuous mappings.

Again, we link weightings and weighted relations by the concept of weighted
polymorphism.

Definition 24. Let γ be an m-ary weighted relation on D and let ω be a k-ary
weighting on D. We call ω a weighted polymorphism of γ if supp(ω) ⊆ Pol(γ)
and for any X = (x1,x2, . . . ,xk) ∈ (Feas(γ))k, we have

∑

f∈supp(ω)

ω(f) · γ(f(X)) =
∑

f∈supp(ω)

ω(f) · γ(f(x1,x2, . . . ,xk)) ≤ 0 . (13)

If ω is a weighted polymorphism of γ we say that γ is improved by ω.

In the proof of Theorem 5, we will often use the following characterisation of
weighted polymorphisms. Let γ ∈ ΦR

D be a weighted relation and ω ∈ WR

D a k-
ary weighting such that supp(ω) ⊆ Pol(γ). Let us denote by H the Hilbert space
of functions Pol(k)(γ) → R with the inner product analogous to (12). As weight-
ing ω assigns non-zero weights only to operations from supp(ω) ⊆ Pol(k)(γ),
we can identify ω with its restriction to Pol(k)(γ). For any X ∈ (Feas(γ))k, we
define γ[X] ∈ H as γ[X](f) = γ(f(X)). Inequality (13) is then equivalent to
〈ω, γ[X]〉 ≤ 0.

The (internal) polar cone K◦ of a set K ⊆ H is defined as

K◦ = {α ∈ H | 〈α, β〉 ≤ 0 for all β ∈ H} . (14)

It is well known ([3]) that K◦ is a convex cone, i.e. K◦ is closed under addition
of vectors and scaling by non-negative constants. Moreover, K◦ is a closed set,
and K◦◦ = (K◦)◦ is the closure of the smallest convex cone containing K. If
K is a finite set, then the smallest convex cone containing K is closed. Let
K = {γ[X] | X ∈ (Feas(γ))k}; weighting ω is then a weighted polymorphism of
γ if and only if ω ∈ K◦.

The following lemma (and its corollary) shows that supp(Ω) consists of all
polymorphisms of ImpR(Ω) and hence fulfills the same role as the support clone
in Definition 16.

Lemma 1. Let Ω ⊆ WR

D be a weighted clone. Then supp(Ω) = Pol(ImpR(Ω)).

Corollary 1. Let Γ ⊆ ΦR

D be a weighted relational clone. Then we have that
supp(wPolR(Γ)) = Pol(Γ).

Theorem 6. Let Γ, Γ ′ ⊆ ΦR

D be finite constraint languages such that Γ contains
only weighted relations of the form c · γ′ for c ≥ 0, γ′ ∈ Γ ′. For any ε > 0 there
is a polynomial-time reduction that for any instance I ∈ VCSP(Γ) outputs an
instance I ′ ∈ VCSP(Γ ′) such that for any optimal assignment s′ of I ′ it holds
I(s′) ∈ [v, v + ε], where v is the value of an optimal assignment of I.

528 P. Fulla and S. Živný

References

1. Barto, L., Kozik, M.: Constraint Satisfaction Problems Solvable by Local Consis-
tency Methods. Journal of the ACM 61(1), article No. 3

2. Barto, L., Kozik, M., Niven, T.: The CSP dichotomy holds for digraphs with no
sources and no sinks. SIAM Journal on Computing 38(5), 1782–1802 (2009)

3. Boyd, S.P., Vandenberghe, L.: Convex Optimization, CUP (2004)
4. Bulatov, A.: A graph of a relational structure and constraint satisfaction problems.

In: Proc. LICS 2004. IEEE Computer Society, pp. 448–457 (2004)
5. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a

3-element set. Journal of the ACM 53(1), 66–120 (2006)
6. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the Complexity of Constraints

using Finite Algebras. SIAM Journal on Computing 34(3), 720–742 (2005)
7. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM

Transactions on Computational Logic 12(4), article 24
8. Bulatov, A.A., Krokhin, A.A., Jeavons, P.G.: The complexity of maximal con-

straint languages. In: Proc. STOC 2001, pp. 667–674 (2001)
9. Cohen, D.A., Cooper, M.C., Creed, P., Jeavons, P., Živný, S.: An algebraic the-

ory of complexity for discrete optimisation. SIAM Journal on Computing 42(5),
915–1939 (2013)

10. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The Complexity of Soft
Constraint Satisfaction. Artificial Intelligence 170(11), 983–1016 (2006)

11. Feder, T., Vardi, M.Y.: The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM
Journal on Computing 28(1), 57–104 (1998)

12. Hell, P., Nešetřil, J.: On the Complexity of H-coloring. Journal of Combinatorial
Theory, Series B 48(1), 92–110 (1990)

13. Hell, P., Nešetřil, J.: Colouring, constraint satisfaction, and complexity. Computer
Science Review 2(3), 143–163 (2008)

14. Jeavons, P., Krokhin, A., Živný, S.: The complexity of valued constraint satis-
faction. Bulletin of the European Association for Theoretical Computer Science
(EATCS) 113, 21–55 (2014)

15. Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure Properties of Constraints. Jour-
nal of the ACM 44(4), 527–548 (1997)

16. Kolmogorov, V., Thapper, J., Živný, S.: The power of linear programming for
general-valued CSPs. SIAM Journal on Computing 44(1), 1–36 (2015)

17. Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs. Journal
of the ACM 60(2), article No. 10

18. Kozik, M., Ochremiak, J.: Algebraic properties of valued constraintsatisfaction
problem. In: Proc. ICALP 2015. Springer (2015)

19. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC 1978,
pp. 216–226. ACM (1978)

20. Thapper, J.: Aspects of a constraint optimisation problem, Ph.D. thesis, Depart-
ment of Computer Science and Information Science, Linköping University (2010)

21. Thapper, J., Živný, S.: The power of linear programming for valued CSPs. In:
Proc. FOCS 2012, pp. 669–678. IEEE (2012)

22. Thapper, J., Živný, S.: The complexity of finite-valued CSPs. In: Proc. STOC
2013, pp. 695–704. ACM (2013)

23. Uppman, H.: The complexity of three-element min-sol and conservative min-cost-
hom. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part I. LNCS, vol. 7965, pp. 804–815. Springer, Heidelberg (2013)

Approximately Counting H-Colourings
is #BIS-Hard

Andreas Galanis1(B), Leslie Ann Goldberg1, and Mark Jerrum2

1 Department of Computer Science, University of Oxford, Oxford, UK
agalanis@cs.ox.ac.uk

2 School of Mathematical Sciences, Queen Mary University of London, London, UK

Abstract. We consider counting H-colourings from an input graph G
to a target graph H. We show that for any fixed graph H without trivial
components, this is as hard as the well-known problem #BIS, the prob-
lem of (approximately) counting independent sets in a bipartite graph.
#BIS is a complete problem in an important complexity class for approx-
imate counting, and is believed not to have an FPRAS. If this is so, then
our result shows that for every graph H without trivial components, the
H-colouring counting problem has no FPRAS. This problem was studied
a decade ago by Goldberg, Kelk and Paterson. They were able to show
that approximately sampling H-colourings is #BIS-hard, but it was not
known how to get the result for approximate counting. Our solution
builds on non-constructive ideas using the work of Lovász. The full ver-
sion is available at arxiv.org/abs/1502.01335. The theorem numbering
here matches the full version.

1 Introduction

The independent set and k-colouring models are well-known statistical physics
models which have also been studied in computer science. A particularly inter-
esting question is the complexity of counting and approximate counting in these
models. Given an input graph G, the problem is to approximate the number of
independent sets (or proper k-colourings) of G. Both of these problems can be
viewed as special cases of the more general problem of approximately counting
H-colourings. This paper studies the complexity of the more general problem.

We begin with few definitions. Let H = (V (H), E(H)) be a fixed graph which
is allowed to have self-loops, but not parallel edges. An H-colouring of a graph
G = (V (G), E(G)) is a homomorphism from G to H, i.e., an assignment h :
V (G) → V (H) that maps every edge (u, v) of G to an edge of H. Given an input
graph G, we are interested in computing the number of H-colourings of G. We

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) ERC grant agreement no. 334828. The paper reflects only the
authors’ views and not the views of the ERC or the European Commission. The
European Union is not liable for any use that may be made of the information
contained therein.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 529–541, 2015.
DOI: 10.1007/978-3-662-47672-7 43

530 A. Galanis et al.

refer to this problem as the #H-Col problem. Also, we denote by #H-Col(G)
the number of H-colourings of G. The examples mentioned earlier correspond
to H-colourings as follows. Proper k-colourings of G correspond to H-colourings
of G when H is a k-clique. Independent sets of G correspond to H-colourings of
G when H is the connected 2-vertex graph with exactly one self-loop.

Our goal in this work is to quantify the computational complexity of approx-
imately counting H-colourings. In particular, we seek to determine for which
graphs H the problem #H-Col admits a fully polynomial randomised approxi-
mation scheme (FPRAS). Dyer and Greenhill [3] have completely classified the
computational complexity of exactly counting H-colourings in terms of the param-
eter graph H. We say that a connected graph is trivial if it is either a clique with
self-loops on every vertex or a complete bipartite graphs with no self-loops. Dyer
and Greenhill showed that the problem #H-Col is polynomial-time solvable when
each connected component of H is trivial ; otherwise it is #P-complete. The com-
plexity of the corresponding decision problem has also been characterised. Hell
and Nešetřil [7] showed that deciding whether an input graph G admits an H-
colouring is NP-complete unless H contains a self-loop or H is bipartite (in which
case it admits a trivial polynomial-time algorithm).

The problem of approximately sampling H-colourings has been shown to
be #BIS-hard [6] provided that H contains no trivial components (the exis-
tence of trivial components may lead to artificial approximation schemes, see
[6, Section 7] for an explicit example). More precisely, for any such H, a fully
polynomial approximate sampler (FPAS) for H-colourings would imply that
there is an FPRAS for #BIS, which is the problem of counting the indepen-
dent sets of a bipartite graph. #BIS plays an important role in approximation
complexity. Despite many attempts, nobody has found an FPRAS for #BIS and
it is conjectured that none exists (even though it is unlikely that approximating
#BIS is NP-hard). Various natural algorithms have been ruled out as candi-
date FPRASes for #BIS [4,5,11]. Moreover, Dyer et al. [1] showed that #BIS is
complete under approximation-preserving (AP) reductions in a logically defined
class of problems, called #RHΠ1, to which an increasing variety of problems
have been shown to belong.

Perhaps surprisingly, the hardness result of [6] for sampling H-colourings does
not imply hardness for approximately counting H-colourings. This might be puz-
zling at first since, for the independent set and k-colouring models, approximate
counting is well-known to be equivalent to approximate sampling (this equiv-
alence has been proved in [8] for the so-called class of self-reducible problems
in #P). However, for general graphs H it is only known [2] that an FPAS for
sampling H-colourings implies an FPRAS for counting H-colourings (but not
the reverse direction). For a thorough discussion of this point we refer the reader
to [2] (where also an example of a problem in #P is given which, under usual
complexity theory assumptions, admits an FPRAS but not an FPAS).

In this paper, we address the following questions: “Is there a graph H for
which approximately counting H-colourings is substantially easier than approx-
imately sampling H-colourings?” “Is there a graph H such that #H-Col lies
between P and the class of #BIS-hard problems?” We present the analogue of

Approximately Counting H-Colourings is #BIS-Hard 531

the hardness result of [6] in the counting setting, therefore providing evidence
that the answers to the previous questions are negative. To formally state the
result, recall the notion of an approximation preserving reduction ≤AP (intro-
duced in [1]). For counting problems #A and #B, #A≤AP#B implies that an
FPRAS for #B yields an FPRAS for #A. Our main result is the following.

Theorem 1. Let H be a graph with no trivial components. (H has no parallel
edges but can have self loops.) Then #BIS ≤AP #H-Col.

Interestingly, in the proof of Theorem 1 we use a non-constructive
approach, partly inspired by tools from graph-homomorphism theory introduced
by Lovász [10].

2 Reductions for Sampling versus Reductions for Counting

We start by considering the closely related work [6]. The assumptions on the
graph H are the same as in Theorem 1 — namely that H does not have trivial
components. The proof in [6] shows that approximately sampling H-colourings
is at least as hard as #BIS. We first overview the approach of this paper since we
will use several ingredients of their proof. We will also describe the new ingredi-
ents which will allow us to leap from the sampling setting to the counting setting.

Let H be a graph for which we wish to show that #BIS ≤AP #H-Col. To do
this, it clearly suffices to find a subgraph H ′ of H such that #BIS ≤AP #H ′-Col
and #H ′-Col ≤AP #H-Col. For a subset S of V (H), let H[S] be the subgraph
of H induced by the set S. Further, let N∪(S) denote the neighbourhood of S
in H, i.e., the set of vertices in H which are adjacent to a vertex in S.

Restricting H-colourings to Induced-subgraph Colourings. To motivate
how to find such a subgraph H ′, we give a high-level reduction scheme. This will
reveal that the subgraphs induced by the neighbourhoods of maximum-degree
vertices of H are natural choices for H ′.1 To see this, let’s temporarily suppose
that we already have a subgraph H ′ of H in mind, and let G′ be an input for
#H ′-Col such that |V (G′)| = n′. We next construct an instance G of #H-Col
by adding to G′ a special vertex w and a large independent set I with |I| � n′.
We also add all edges between the special vertex w and the vertices of G′ and I.
See the first graph G in the figure (on page 12). Let h be a homomorphism from
G to H with h(w) = vi. Observe that the edges between w and the rest of G
enforce that the restriction of h to G′ is an N∪(vi)-colouring of G′. Similarly, the
restriction of h to I is a N∪(vi)-colouring of I. There are (degH(vi))|I| choices
for the restriction of h on the independent set I. From this, it is not hard to
show that the effect of the large independent set I is to enforce that in all but
a negligible fraction of H-colourings of G, the special vertex w is assigned a
colour among the maximum-degree vertices of H and thus G′ is coloured using
the subgraph of H induced by the neighbourhood of such a vertex.

1 We will later modify this reduction scheme in a non-trivial way, but still the aspects
we highlight will carry over to the modified reduction scheme.

532 A. Galanis et al.

In an ideal scenario, there is a unique vertex v in H with maximum degree
and, further, the subgraph H ′ = H[N∪(v)] of H is non-trivial and different from
H. If both of these hypotheses hold, the reduction above can be used to show
that #H ′-Col ≤AP #H-Col (since the uniqueness of v implies that h(w) = v in
“almost all” H-colorings) and (say, by induction) we have #BIS ≤AP #H ′-Col.
But what happens when these hypotheses do not hold?

A significant problem which arises at this point is the existence of multiple
relevant neighbourhoods. That is, there may be several maximum-degree vertices
in H, and the subgraphs induced by their neighbourhoods may not be isomor-
phic. It is much easier to deal with this problem in the sampling setting than
in the counting setting. We now describe the difference between these settings,
and our approach to this (initial) hurdle.

Counting Subgraph-induced Colourings — the Case of Multiple Sub-
graphs. To illustrate concretely the part of the sampling argument in [6] which
breaks down in the counting setting, we consider the toy example H (2nd graph
in the figure) and overview how the argument in [6] works. Since H is regular, the
relevant (induced) neighbourhoods of the vertices in H are given by the graphs
H1 and H2 (depicted in the figure immediately after H). These correspond to
the neighbourhoods of the vertices v1 and v2, respectively (the remaining neigh-
bourhoods are isomorphic to H2). Note that #BIS ≤AP #H1-Col and #BIS ≤AP

#H2-Col (see [9] where all graphs H with up to four vertices are classified).
So we already have sampling reductions from #BIS to #H1-Col and #H2-Col

and we want a sampling reduction from #BIS to #H-Col, e.g., an algorithm for
sampling bipartite independent sets using an oracle for sampling H-colourings.
Here’s how it works. Let G′ be an input to #BIS. Using the sampling reduc-
tions to #H1-Col and #H2-Col, construct from G′ two graphs G1 and G2 such
that an (approximately) uniform H1-colouring of G1 allows us to construct an
(approximately) uniform independent set of G′ and similarly an (approximately)
uniform H2-colouring of G2 also allows this. Then let G be the graph obtained
by taking the disjoint union of G1 and G2, adding a special vertex w, and adding
all edges between w and G1 and G2 (note, there is no need for the independent
set I used previously since H is regular; see the graph G in the bottom row of
the figure).

Given a random H-colouring h of G, revealing the colour of the special vertex
w allows us to generate either a random H1-colouring of G1 or a random H2-
colouring of G2. In particular, if h(w) is v1, by considering the restriction of h
on G1 we obtain a random H1-colouring of G1. Similarly, if h(w) is any other
vertex, we obtain a random H2-colouring of G2. By our assumptions for G1 and
G2, in each case we can then obtain a random independent set of G′.

In contrast, the aforementioned reduction scheme fails in the counting setting.
Namely, considering cases for the colour h(w), we obtain the following equality

#H-Col(G) = #H1-Col(G1)#H1-Col(G2) + 4#H2-Col(G1)#H2-Col(G2). (1)

Given an approximation of #H-Col(G), say Z, observe that (1) yields little
information about whether Z is a good approximation for #H1-Col(G1) or

Approximately Counting H-Colourings is #BIS-Hard 533

#H2-Col(G2). This issue goes away in the sampling setting precisely because
we can distinguish between the two cases by just looking at the colour of the
special vertex w in the random H-colouring of G.

Thus, to proceed with the reduction in the counting setting we have to focus
our attention on one of H1 or H2, say H1, and somehow prove that #H1-Col ≤AP

#H-Col. The question which arises is how to choose between H1 and H2. This
becomes more complicated for general graphs H since it is not hard to imagine
that instead of just two graphs H1,H2 we will typically have a collection of graphs
H1, . . . , Ht corresponding to the induced neighbourhoods of vertices v1, . . . , vt

of H, for some t which can be arbitrarily large (depending on the graph H).
To make matters worse, apart from very basic information on the Hi’s (such
as connectedness or number of vertices/edges), we will not be able to control
significantly their graph structure.

At this point, we employ a non-constructive approach using a tool from
[10]: for arbitrary non-isomorphic graphs H1,H2 there exists a (fixed) graph
J depending only on H1 and H2 such that #H1-Col(J) �= #H2-Col(J). In
Lemma 7 of the full version, we extend this to an arbitrary collection of
pairwise non-isomorphic graphs H1, . . . , Ht as follows: we prove the existence of
a graph J so that for some i∗ ∈ [t] it holds that #Hi∗ -Col(J) > #Hi-Col(J) for
all i �= i∗. Intuitively, the graph J will be used to “select” the subgraph Hi∗ .
Note, we will not require any further knowledge about what Hi∗ or J is, freeing
us from the cumbersome (and perhaps difficult) task of looking into the finer
details of the graph structure of H1, . . . , Ht. With the graph J in hand, we then
take sufficiently many disjoint copies of J and connect them to the special vertex
w. This ensures that in most H-colourings the vertex w gets coloured with the
vertex vi.

To utilise the above, we will further need to ensure that #BIS ≤AP #Hi-Col
for every i. If we could ensure that the Hi’s are proper subgraphs of H and
non-trivial, then using the arguments above, we could complete the proof using
induction. However, this is clearly not possible in general since for example, as
we noted earlier, there may exist a vertex v in H such that N∪(v) = V (H).
Dealing with such cases is the bulk of the work in the sampling setting of [6]
and these cases cause even more problems for us. To deal with them, we need
a further non-constructive argument — one that turns out to be more technical
than, and substantially different from the ideas in Lovász [10].

3 Proof Outline

Since we are interested in instances of #BIS, which are bipartite, we will need to
consider H-colourings of bipartite graphs. We will assume that every bipartite
graph G comes with a (fixed) proper 2-colouring of its parts with colours {L,R}.
We will use L(G) and R(G) to denote the vertices of G coloured with L and R
respectively. We will refer to a bipartite graph as a 2-coloured graph to emphasise
the proper 2-colouring of its vertices. Colour-preserving homomorphisms are
those that map L(G) to L(H) and R(G) to R(H). Given input G, #FixedH-Col

534 A. Galanis et al.

is the problem of computing the colour-preserving homomorphisms from G to
H, which we denote #FixedH-Col(G). This problem is key to our analysis.

A bipartite graph H will be called full if there exist vertices u ∈ L(H) and
v ∈ R(H) such that u is adjacent to every vertex in R(H) and v is adjacent to
every vertex in L(H). In this case, vertices u and v are also called full. If H is
full, then it is also connected. The full version of our paper proves the following
lemma, which is an analogue of Lemma 7 in [6] and allows us to restrict our
attention to the #FixedH-Col problem. The proof is along the lines described in
Section 1, albeit with some modifications to account for technical details.

Lemma 3. Let H be a graph without trivial components. There exists a full and
non-trivial 2-coloured graph H ′ such that #FixedH ′-Col ≤AP #H-Col.

Theorem 1 follows easily from Lemma 3 and the following central lemma.

Lemma 4. Let H be a 2-coloured graph which is full and not trivial. Then
#BIS ≤AP #FixedH-Col.

4 Overview of Proof of Lemma 4

Let (VL, VR) denote the vertex partition of H and let FL, FR be the subsets of
full vertices in VL, VR, respectively (i.e., every vertex in FL is connected to every
vertex in VR and every vertex in FR is connected to every vertex in VL). Since H
is full, we have FL, FR �= ∅. For a subset S of V (H), let H[S] be the subgraph of
H induced by the set S. We will use N∩(S) to denote the joint neighbourhood
of S in H, i.e., the set of vertices in H which are adjacent to every vertex in S.

An Inductive Approach Using Maximal Bicliques of H. The proof of
Lemma 4 will be by induction on the number of vertices of H. Our goal will
be to find a subgraph H ′ of H (which will also be 2-coloured, full and not
trivial) with |V (H ′)| < |V (H)| such that #FixedH ′-Col ≤AP #FixedH-Col. If we
find such an H ′, we will finish using the inductive hypothesis that #BIS ≤AP

#FixedH ′-Col. When we are not able to find such a subgraph H ′, we will use an
alternative method to show that #BIS ≤AP #FixedH-Col.

To select H ′, we consider the set C of bicliques in H. Bicliques will be
denoted as (SL, SR), where SL, SR are the parts of the biclique belonging to
VL, VR, respectively. Formally, C = {(SL, SR) : SL ⊆ VL, SR ⊆ VR, SL ×
SR ⊆ E(H)}. In fact, we will be more interested in (inclusion) maximal
bicliques of H, i.e., bicliques which are not contained in another biclique. Note,
(FL, VR), (VL, FR) are maximal bicliques in H. For lack of better terminology,
we refer to these two special bicliques as the extremal bicliques. Our interest in
maximal bicliques is justified by the following simple claim on which we base
our inductive step.

Lemma 8. Let (SL, SR) be a maximal biclique which is not extremal, i.e, SL �=
FL, SR �= FR. We have that SL �= VL, SR �= VR, N∪(SL) = VR and N∪(SR) =
VL. Let H1 = H[SL ∪ VR] and H2 = H[VL ∪ SR]. Then, for i ∈ {1, 2}, we have
that Hi is full and not trivial and further satisfies |V (Hi)| < |V (H)|.

Approximately Counting H-Colourings is #BIS-Hard 535

The Basic Gadget. We now discuss a gadget that is used in [6]. While it will
not work for us, it will nevertheless help to motivate our later selection of a
more elaborate gadget for our needs. Consider a complete bipartite graph Ka,b

with a vertices on the left and b vertices on the right. The integers a and b
should be thought of as sufficiently large numbers which may depend on the
size of the input to #FixedH-Col. Roughly speaking, we will be interested in
the colours appearing on the left and right of Ka,b in a typical colour-preserving
homomorphism from Ka,b to H.

To make this precise, for a colour-preserving homomorphism h : Ka,b → H,
the phase of h is the pair

(
h(L(Ka,b)), h(R(Ka,b))

)
, i.e., the subsets of VL and VR

appearing on the left and right of Ka,b under the homomorphism h, respectively.
Since Ka,b is a complete bipartite graph, we have that a phase is a biclique of
H, i.e., an element of C. Let (SL, SR) ∈ C. For convenience, we will refer to the
total number of colour-preserving homomorphisms whose phase equals (SL, SR)
as the contribution of the phase/biclique (SL, SR) to the gadget. Our induction
step crucially depends on analysing the dominant phases of the gadget, i.e., the
phases with the largest contribution.

It is not hard to see that the contribution of a phase/biclique (SL, SR) to
the gadget Ka,b is roughly equal to |SL|a|SR|b. Thus, the dominant phases are
determined by the ratio a/b. Rather than restricting ourselves to integers a
and b it will be convenient to consider positive real numbers α, β > 0 and the
corresponding phases with dominant contribution.

Definition 9 (The set of dominating bicliques Cα,β). Let α and β be posi-
tive real numbers. Define Cα,β to be the set of bicliques (SL, SR) which maximize
|SL|α|SR|β. Note that for positive α, β the bicliques in Cα,β are in fact maximal.

For the purpose of the following discussion and to avoid delving into (at this
point) unnecessary technical details, we will assume for now that α and β are
rationals so that, for an integer Q we have that a = Qα and b = Qβ are integers
and α/β = a/b. In the full version, we use Dirichlet’s approximation.

A Reduction Scheme. The structure of our reduction scheme expands on the
work of [6]. The following are implicit in [6]:

1. if the set of the dominating bicliques Cα,β consists only of the extremal
bicliques, and both of these are in Cα,β , then #BIS reduces to #FixedH-Col.

2. if |Cα,β | = 1 and the unique dominating biclique in Cα,β is not extremal,
then #FixedH ′-Col reduces to #FixedH-Col for some subgraph H ′ of H.

Unfortunately, there are graphs H (such as the graph H in the bottom row of
the figure) such that, for every choice of α and β, we do not fall into case 1 or
case 2. This graph is analysed in the full version. Despite such bad examples, It
will be useful to see how the gadget Ka,b is used, so we give a quick overview of
the reductions which yield Items 1 and 2 (since these are only implicit in [6]).

For Item 1, let G′ be a (2-coloured) bipartite graph which is an input to
#BIS. To construct an instance of #FixedH-Col, replace each vertex of G′ with
a distinct copy of Ka,b. Further, for each edge (u, v) in G′ with u ∈ L(G′) and

536 A. Galanis et al.

v ∈ R(G′) add all edges between the right part of u’s copy of Ka,b and the left
part of v’s copy of Ka,b. In the final graph, say G, by scaling a, b to be much
larger than the size of G′ (while keeping fixed the ratio a/b = α/β), the phases
of the gadgets Ka,b in “almost all” colour-preserving homomorphisms from G to
H are elements of Cα,β and in particular are extremal bicliques. It then remains
to observe that independent sets of G′ are encoded by those homomorphisms
where the phase of a gadget corresponding to a vertex in L(G′) is (FL, VR) if
the vertex is in the independent set and (VL, FR) otherwise. Similarly, the phase
of a gadget corresponding to a vertex in R(G′) is (VL, FR) if the vertex is in the
independent set and (FL, VR) otherwise.

For Item 2, the use of the gadget Ka,b is depicted at the beginning of the
bottom row in the figure. Namely, for a 2-coloured connected bipartite graph
G′, consider the graph obtained by adding all edges between L(G′) and R(Ka,b).
We will typically denote the graph obtained by this construction as Ka,b(G′).
For the following discussion, we set G := Ka,b(G′). In the setting of Item 2,
we have that Cα,β consists of a unique maximal biclique (SL, SR) which is not
extremal. Once again, by making a, b large relative to the size of G′ (while
maintaining the ratio a/b = α/β), the phase of the gadget Ka,b in “almost all”
homomorphisms h of the graph G will be the dominating biclique (SL, SR). Let
us consider such a homomorphism h whose restriction on Ka,b has as a phase the
maximal biclique (SL, SR). The edges between R(Ka,b) and L(G′) enforce that
h(L(G′)) ⊆ N∩(SR) = SL, where in the latter equality we used that (SL, SR) is
a maximal biclique. It follows that h(R(G′)) ⊆ N∪(SL) = VR (see Lemma 8 for
the latter equality). Thus, the restriction of h on G′ is an H1-colouring of the
graph G′, where H1 = H[SL ∪ VR] is the same graph as in Lemma 8. Viewing
G′ as an instance of #H1-Col and G as an instance of #H-Col, one obtains
#H1-Col ≤AP #H-Col. Since H1 is full, not trivial and has fewer vertices than
H, one can use the inductive hypothesis to conclude #BIS ≤AP #H1-Col. We
remark here that using the non-constructive approach of Lemma 7 and along
the lines we described in Section 1, we will be able to remove the restriction that
|Cα,β | = 1 as long as Cα,β does not include an extremal biclique of H.

In view of Items 1 and 2, the scheme pursued in [6] (and which we will also fol-
low to a certain extent) is to fix 1 > α, β > 0 such that |FL|α|VR|β = |VL|α|FR|β ,
so that the contribution of the extremal bicliques (FL, VR) and (VL, FR) to the
gadget Ka,b is equal. This has the beneficial effect that Cα,β includes either none
or both of the extremal bicliques. The only very bad scenario remaining is when
Cα,β includes both the extremal bicliques as well as (at least) one non-extremal
biclique, since then not only |Cα,β | > 1 (which is already a problem for the
approach implicit in [6]) but also the coexistence of extremal and non-extremal
bicliques in Cα,β impedes the non-constructive approach of Lemma 7. While
for the sampling problem studied in [6] the coexistence of extremal and non-
extremal bicliques was recoverable by “gluing” the reductions together (as we
explained in a simplified setting in Section 1), this is no longer the case in the
counting setting. More precisely, for the counting problem we will have to under-
stand for which graphs H the coexistence of extremal and non-extremal bicliques

Approximately Counting H-Colourings is #BIS-Hard 537

occurs and consider more elaborate gadgets in the reduction to overcome this
coexistence.

A Non-constructive Gadget. The key idea is to introduce another non-
constructive argument (in addition to the approach suggested by Lemma 7)
by viewing the construction of Ka,b(G′) (see again the bottom row of the figure)
as a gadget parameterised by the graph G′. To emphasize that G′ is no longer
an input graph, let us switch notation from G′ to Γ , i.e., Γ is a 2-coloured graph
and Ka,b(Γ) is the graph in the figure where G′ is replaced by the graph Γ .
We will choose a, b sufficiently large so that the graph Γ is “small” relative to
the graph Ka,b, so its effect on the dominant phases will be of second order.
We stress here that we will never try to specify Γ explicitly; all we need is the
existence of a helpful Γ . In the following, we expand on this point and set up
some relevant quantities for the proof.

As for the basic gadget, we define the phase of a colour-preserving homo-
morphism h : Ka,b(Γ) → H as the pair

(
h(L(Ka,b)), h(R(Ka,b))

)
. Note that

the phase of h is determined by its restriction on Ka,b (but not on Γ) and,
thus, as before the phases are supported on bicliques of H. We once again set
a = Qα, b = Qβ and let Q be a large integer relative to the size of Γ . With
this setup, the phases with the dominant contribution in Ka,b(Γ) are related to
those in Ka,b and in particular we will make a and b sufficiently large to ensure
that they are a subset of Cα,β . Note however that the graph Γ has the effect of
reweighting each phase contribution in Ka,b(Γ) relative to the one in Ka,b.

To understand the reweighted contribution, consider a homomorphism h :
Ka,b(Γ) → H whose phase is a biclique (SL, SR) ∈ C. The edges between R(Ka,b)
and L(Γ) enforce that h(L(Γ)) ⊆ N∩(SR) and thus (since we will ensure that Γ
has no isolated vertices) we obtain that h(R(Γ)) ⊆ N∪(N∩(SR)); it follows that
the restriction of h to Γ is supported by vertices in H[N∩(SR) ∪ N∪(N∩(SR))].
It is useful to see what happens when the phase (SL, SR) of the homomorphism
is a maximal biclique (say in Cα,β): then, N∩(SR) = SL and N∪(SL) = VR (from
Lemma 8). Thus, in the case where the phase of h corresponds to a maximal
biclique, the restriction of h to Γ is supported by vertices in H[SL ∪ VR]. It will
be useful to distill the following definitions from the above remarks.

Definition 10 (The graph HSL,SR
). Let (SL, SR) be a biclique in H,

i.e., (SL, SR) ∈ C. Define HSL,SR
to be the (bipartite) graph H[N∩(SR) ∪

N∪(N∩(SR))], whose 2-colouring is naturally induced by the 2-colouring of
H. Note that when (SL, SR) is a maximal biclique, we have that HSL,SR

=
H[SL ∪ VR].

Definition 11 (The parameter ζ(SL, SR, Γ)). Let Γ be a 2-coloured graph
and let (SL, SR) be a biclique in H, i.e., (SL, SR) ∈ C. We will use ζ(SL, SR, Γ)
to denote #FixedHSL,SR

-Col(Γ), where HSL,SR
is as in Definition 10.

Utilising the above definitions and the remarks earlier, we obtain that the con-
tribution of the biclique (SL, SR) to the gadget Ka,b(Γ) is roughly equal to
ζ(SL, SR, Γ)|SL|a|SR|b. The guiding principle will be to choose a, b, and Γ

538 A. Galanis et al.

appropriately so that the dominant phases are supported either on (both of)
the extremal bicliques or on the non-extremal bicliques (but not a combination
of both). Roughly, the choice of a, b will restrict the dominant phases in Ka,b(Γ)
to be a subset of Cα,β , while the graph Γ will pick out either the extremal
bicliques or a set of non-extremal bicliques. (In the latter case, we will further
need to ensure that exactly one non-extremal biclique makes a significant con-
tribution to the gadget. To do this, we will utilise Lemma 7.) When there is no
such graph Γ , we will use an alternative method to find a (2-coloured) subgraph
H ′ of H which is also full and not trivial such that #FixedH ′-Col reduces to
#FixedH-Col. In other words, the non-existence of a “helpful” gadget Γ will
establish a useful property for #FixedH-Col on an arbitrary input.

We will equalise the contribution of the extremal bicliques in the gadget
Ka,b(Γ), so we we will use the following special case of Definition 11.

Definition 12 (The parameters ζex1 (Γ), ζex2 (Γ)). Let Γ be a 2-coloured
graph. Let ζex1 (Γ), ζex2 (Γ) be the values of ζ(SL, SR, Γ) when (SL, SR) is the
extremal biclique (FL, VR), (VL, FR) respectively. By definition, ζex1 (Γ) equals
ζ(FL, VR, Γ) which equals |FL||L(Γ)||VR||R(Γ)| and ζex2 (Γ) := ζ(VL, FR, Γ) =
#FixedH-Col(Γ).

(To see that ζ(FL, VR, Γ) = |FL||L(Γ)||VR||R(Γ)|, note that H[FL ∪ VR] is a com-
plete bipartite graph; to see the second equality in the def’n of ζex2 (Γ), note that
H[VL ∪ VR] = H. The “asymmetry” in the definitions of ζex1 (Γ) and ζex2 (Γ) is
caused by the choice of connecting the right part of Ka,b to the left part of Γ .)

To equalise the contribution of the extremal bicliques in the final gadget we
will need to slightly perturb our selection of a, b. Instead of setting a = Qα and
b = Qβ, we will choose â = Qα and b̂ = Qβ + γ for some appropriate γ (note
that we only perturb the size of b). Now, for a phase (SL, SR) the multiplicative
correction to its contribution in Kâ,b̂(Γ) relative to the one in Ka,b is given by
ζ(SL, SR, Γ)|SR|γ . Thus, to equalise the contribution of the extremal bicliques
in Kâ,b̂(Γ), we will need the following parameter γ = γ(Γ).

Definition 13 (The parameter γ(Γ)). Let Γ be a 2-coloured graph. Define
γ(Γ) to be the unique (real) solution to the following equation: ζex1 (Γ) |VR|γ(Γ) =
ζex2 (Γ) |FR|γ(Γ). Note that FR ⊂ VR so γ(Γ) is well-defined for all Γ .

With these definitions, for a 2-coloured Γ , we define the following subset of Cα,β :

Definition 15 (The set of dominating bicliques CΓ
α,β). Let 1 > α, β >

0 and Γ be a 2-coloured graph. Define CΓ
α,β to be set of (maximal) bicliques

(SL, SR) ∈ Cα,β which further maximize ζ(SL, SR, Γ)|SR|γ(Γ).

The Cases in the Proof of Lemma 4 (Overview with Examples). Con-
sider the set of maximal bicliques Cα,β where 1 > α, β > 0 satisfy |FL|α|VR|β =
|VL|α|FR|β . For the discussion in this section we may assume that Cα,β includes
both extremal bicliques and at least one non-extremal biclique. Let

(
S
(1)
L , S

(1)
R

)
,

Approximately Counting H-Colourings is #BIS-Hard 539

. . . ,
(
S
(t)
L , S

(t)
R

)
be an enumeration of the non-extremal bicliques in Cα,β . Recall

that all elements of Cα,β are maximal bicliques of H. For convenience, in this
section let Hi denote the subgraph H[S(i)

L ∪ VR] (this corresponds to the graph
H

S
(i)
L ,S

(i)
R

in Definition 10) and set ζi(Γ) = ζ(S(i)
L , S

(i)
R , Γ) = #FixedHi-Col(Γ)

(cf. Definition 11). For the extremal bicliques we will instead use the notation
Hex

1 ,Hex
2 to denote the graphs HFL,VR

,HVL,FR
respectively. Note that Hex

1 is a
complete bipartite graph with bipartition {FL, VR} while Hex

2 is H itself.
There are three complementary cases to consider for the proof of Lemma 4.

Recall by construction that for every 2-coloured graph Γ , the extremal bicliques
have equal contribution in the graph Kâ,b̂(Γ) (where â = Qa, b̂ = Qb + γ(Γ) for
some large Q). The three cases are as follows.

1. There exists i ∈ [t] and a 2-coloured graph Γ such that the biclique(
S
(i)
L , S

(i)
R

)
dominates over the extremal bicliques in the gadget Kâ,b̂(Γ).

2. There exists i ∈ [t] so that for every 2-coloured graph Γ the biclique(
S
(i)
L , S

(i)
R

)
has the same contribution as the extremal bicliques in the gadget

Kâ,b̂(Γ).
3. For all i ∈ [t] and every 2-coloured graph Γ , the contribution of the biclique(

S
(i)
L , S

(i)
R

)
is at most the contribution of the extremal bicliques in Kâ,b̂(Γ).

Further, for all i ∈ [t] there exists a 2-coloured graph Γi such that the biclique(
S
(i)
L , S

(i)
R

)
is dominated by the extremal bicliques in the gadget Kâ,b̂(Γi).

Case 1. An example of Case 1 is the graph H at the right of the top row of the
figure. Let us first see why the example is in Case 1. The full vertices of H are
vertices 1 and 1′ and the extremal bicliques of H are ({1}, [9′]) and ([9], {1′}).
Thus, the α, β pairs which equalise the contribution of the extremal bicliques in
Ka,b satisfy α = β. The dominating bicliques Cα,β for α = β are the extremal
bicliques and the two bicliques ({1, 2, 3}, {1′, 2′, 3′}) and ({1, 8, 9}, {1′, 8′, 9′}). In
the full version of the paper, we show that when the graph Γ is an edge, the
only dominating biclique in CΓ

α,β for the gadget Kâ,b̂(Γ) is ({1, 2, 3}, {1′, 2′, 3′}).
Now, in the general setting of Case 1, we have that, in the gadget Kâ,b̂(Γ), the

extremal bicliques are not dominating (since they are dominated by the biclique
(S(i)

L , S
(i)
R)). Note however that there may still be more than one element in

CΓ
α,β , unlike the example in the figure. To pick out only one biclique from CΓ

α,β

we further apply Lemma 7 on the graphs Hi corresponding to bicliques in CΓ
α,β .

This yields a graph J which “prefers” a particular graph, say, Hj . Then, by an
argument analogous to the one in Section 1 (i.e., paste sufficiently many disjoint
copies of J in Kâ,b̂(Γ)), one can show that #FixedHj-Col ≤AP #FixedH-Col. By
induction, we have #BIS ≤AP #FixedHj-Col and hence #BIS ≤AP #FixedH-Col.

Case 2. An example of Case 2 is the graph H in the final row of the figure. In
the full version of the paper, we show that H falls into Case 2 of our analysis
based on the following equality which holds for the graphs H1 and Hex

1 in the
bottom row of the figure and any 2-coloured graph Γ (note that Hex

2 = H):

540 A. Galanis et al.

(#FixedH1-Col(Γ))2 = #FixedHex
1 -Col(Γ)#FixedHex

2 -Col(Γ). (2)
A “quick” way to derive (2) is to observe that the tensor product of H1 with
itself is the same graph as the tensor product of the graphs Hex

1 and Hex
2 .

Now, in the general setting of Case 2, the non-existence of a gadget Kâ,b̂(Γ)

that distinguishes between (S(i)
L , S

(i)
R) and the extremal bicliques for any choice

of Γ allows us to obtain an equality (analogous to (2)) relating #FixedH-Col(Γ)
and #FixedHi-Col(Γ) on every “input” Γ . It follows that #FixedHi-Col ≤AP

#FixedH-Col and we thus obtain that #BIS ≤AP #FixedH-Col(Γ) as in Case 1.

Case 3. To obtain an example of Case 3, modify the example graph H from
Case 1 adding edges (5, 5′) and (6, 6′). The dominating bicliques Cα,β for α = β
are once again the extremal bicliques and the two bicliques ({1, 2, 3}, {1′, 2′, 3′}),
({1, 8, 9}, {1′, 8′, 9′}). In the full version, we show that when Γ is an edge, the
dominating bicliques in CΓ

α,β for the gadget Kâ,b̂(Γ) are the extremal bicliques.
Now, in the general setting of Case 3, we have that, for every i, in the gadget

Kâ,b̂(Γi), the extremal bicliques are dominating over the biclique (S(i)
L , S

(i)
R).

Consider the graph Γ which is the disjoint union of the Γi’s. It is not hard
then to show that in the gadget Kâ,b̂(Γ) the extremal bicliques are dominating
over all non-extremal bicliques. One can then use the reduction for Item 1 in
Section 4 to show that #BIS ≤AP #FixedH-Col (instead of using the gadget Ka,b

as discussed there, we instead use the gadget Kâ,b̂(Γ)).

References

1. Dyer, M.E., Goldberg, L.A., Greenhill, C.S., Jerrum, M.: The relative complexity
of approximate counting problems. Algorithmica 38(3), 471–500 (2003)

2. Dyer, M.E., Goldberg, L.A., Jerrum, M.: Counting and sampling H-colourings.
Information and Computation 189(1), 1–16 (2004)

3. Dyer, M.E., Greenhill, C.: The complexity of counting graph homomorphisms.
Random Structures and Algorithms 17(3–4), 260–289 (2000)

Approximately Counting H-Colourings is #BIS-Hard 541

4. Ge, Q., Štefankovič, D.: A graph polynomial for independent sets of bipartite
graphs. In: FSTTCS, pp. 240–250 (2010)

5. Goldberg, L., Jerrum, M.: A counterexample to rapid mixing of the Ge-Štefankovič
process. Electron. Commun. Probab. 17(5), 1–6 (2012)

6. Goldberg, L.A., Kelk, S., Paterson, M.: The complexity of choosing an H-coloring
(Nearly) uniformly at random. SIAM J. Comput. 33(2), 416–432 (2004)

7. Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B 48(1), 92–110 (1990)

8. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. TCS 43, 169–188 (1986)

9. Kelk, S.: On the relative complexity of approximately counting H-colourings. Ph.D.
Thesis, University of Warwick (2004)

10. Lovász, L.: Operations with structures. Acta Math. Acad. Sci. Hungar. 18, 321–328
(1967)

11. Mossel, E., Weitz, D., Wormald, N.: On the hardness of sampling independent sets
beyond the tree threshold. Prob. Theory Related. Fields 143, 401–439 (2009)

Taylor Polynomial Estimator for Estimating
Frequency Moments

Sumit Ganguly(B)

Indian Institute of Technology, Kanpur, India
sganguly@cse.iitk.ac.in

Abstract. We present a randomized algorithm for estimating the pth
moment Fp of the frequency vector of a data stream in the general update
(turnstile) model to within a multiplicative factor of 1 ± ε, for p > 2,
with high constant confidence. For 0 < ε ≤ 1, the algorithm uses space
O(n1−2/pε−2+n1−2/pε−4/p log(n)) words. This improves over the current
bound of O(n1−2/pε−2−4/p log(n)) words by Andoni et al. in [2]. Our
space upper bound matches the lower bound of Li and Woodruff [17] for
ε = (log(n))−Ω(1) and the lower bound of Andoni et al. [3] for ε = Ω(1).

1 Introduction

The data stream model is relevant for online applications over massive data,
where an algorithm may use only sub-linear memory and a single pass over
the data to summarize a large data-set that appears as a sequence of incre-
mental updates. Queries may be answered using only the data summary. A
data stream is viewed as a sequence of m records of the form (i, v), where,
i ∈ [n] = {1, 2, . . . , n} and v ∈ {−M,−M + 1, . . . , M − 1,M}. The record (i, v)
changes the ith coordinate fi of the n-dimensional frequency vector f to fi + v.
The pth moment of the frequency vector f is defined as Fp =

∑
i∈[n]|fi|p, for

p ≥ 0. The (randomized) Fp estimation problem is: Given p and ε ∈ (0, 1], design
an algorithm that makes one pass over the input stream and returns F̂p such
that Pr

[|F̂p − Fp| ≤ εFp

] ≥ 0.6 (where, the constant 0.6 can be replaced by any
other constant > 1/2.) In this paper, we consider estimating Fp for the regime
p > 2, called the high moments problem. The problem was posed and studied in
the seminal work of Alon, Matias and Szegedy in [1].

Space lower bounds. Since a deterministic estimation algorithm for Fp

requires Ω(n) bits [1], research has focussed on randomized algorithms [3,5,10,
13,16,17,22,23]. Andoni et al. in [3] present a bound of Ω(n1−2/p log(n)) words
assuming that the algorithm is a linear sketch. Li and Woodruff in [17] show a
lower bound of Ω(n1−2/pε−2 log(n)) bits in the turnstile streaming model. For
linear sketch algorithms, the lower bound is the sum of the above two lower
bounds, namely, Ω(n1−2/p(ε−2 + log(n))) words.

Space upper bounds. The table in Figure 1 chronologically lists algorithms and
their properties for estimating Fp for p > 2 of data streams in the turnstile mode.
Algorithms for insertion-only streams are not directly comparable to algorithms
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 542–553, 2015.
DOI: 10.1007/978-3-662-47672-7 44

Taylor Polynomial Estimator for Estimating Frequency Moments 543

for update streams—however, we note that the best algorithm for insertion-only
streams is by Braverman et al. in [7] that uses O(n1−2/p) bits, for p ≥ 3 and
ε = Ω(1).

Contribution. We show that for each fixed p > 2 and 0 < ε ≤ 1, there is
an algorithm for estimating Fp in the general update streaming model that uses
space O(n1−2/p(ε−2 + ε−4/p log(n))) words, with word size O(log(nmM)) bits.
It is the most space economical algorithm as a function of n and 1/ε. The space
bound of our algorithm matches the lower bound of Ω(n1−2/pε−2) of Li and
Woodruff in [17] for ε ≤ (log n)−p/(2(p−2)) and the lower bound Ω(n1−2/p log(n))
words of Andoni et al. in [3] for linear sketches and ε = Ω(1).

Algorithm Space in O(·) words Update time O(·)
IW[15] n1−2/p

(
ε−1 log(n)

)O(1)
(logO(1) n)(log(mM))

Hss[6] n1−2/pε−2−4/p log(n) log2(nmM) log(n) log(nmM)

MW [18] n1−2/p(ε−1 log(n))O(1) n1−2/p(ε−1 log n)O(1)

AKO[2] n1−2/pε−2−4/p log(n) log n

BO-I [8] n1−2/pε−2−4/p log(n) log(c)(n) log n

this paper n1−2/pε−2 + n1−2/pε−4/p log(n) log2(n)

Fig. 1. Space requirement of published algorithms for estimating Fp, p > 2. Word-
size is O(log(nmM)) bits for algorithms for update streams. log(c)(n) denotes c times
iterated logarithm for c = O(1).

Techniques and Overview. We design the Geometric-Hss algorithm for esti-
mating Fp that builds upon the Hss technique presented in [6,12]. It uses a
layered data structure with L + 1 = O(log n) levels numbered from 0 to L and
uses an �2-heavy-hitter structure based on CountSketch [11] at each level to
identify and estimate |fi|p for each heavy-hitter. The heavy-hitters structure at
each level has the same number of s = O(log n) hash tables with each hash
table having the number of buckets (height of table). The main new ideas are as
follows. The height of any CountSketch table at level l is αl times the height of
any of the tables of the level 0 structure, where, 0 < α < 1 is a constant. The
geometric decrease ensures that the total space required is a constant times the
space used by the lowest level and avoids increasing space by a factor of O(log n)
as in the Hss algorithm.

In all previous works, an estimate for |fi|p for a sampled item i was obtained
by retrieving an estimate f̂i of fi from the heavy-hitter structure of an appro-
priately chosen level, and then computing |f̂i|p. In order for |f̂i|p to lie within
(1±ε)|fi|p, |f̂i −fi| had to be constrained to be at most O(ε|fi|/p). By the lower
bound results of [20], the estimation error for CountSketch is in general optimal
and cannot be improved. We circumvent this problem by designing a more accu-
rate estimator ϑ̄(λ, k) for |fi|p directly. If λ is an estimate for |fi| that is accurate
to within a constant relative error, that is, λ ∈ (1 ± O(1/p))|fi| and there are
independent, identically distributed and unbiased estimates X1,X2, . . . , XΘ(k)

544 S. Ganguly

of |fi| with standard deviation σ[Xj] ≤ O(|fi|/p), then, it is shown that (i)
E

[
ϑ̄(λ, k)

] ∈ (1 ± O(1/p)k)|fi|p, and (ii) Var
[
ϑ̄(λ, k)

] ≤ O(|fi|2p−2σ2[Xj]).
The estimator ϑ̄ is designed using a Taylor polynomial estimator. Given an

estimate λ = |f̂i| for |fi| such that λ ∈ (1 ± O(1/p))|fi|, the k + 1 term Taylor
polynomial estimator denotes ϑ(λ, k) =

∑k
j=0

(
p
j

)
λp−j(X1 −λ)(X2 −λ) . . . (Xj −

λ), where, X1, . . . , Xk are independent and identically distributed estimators of
|fi|. Note that replacing the Xj ’s by |fi| gives the expression

∑k−1
j=0

(
p
j

)
λp−j(|fi|−

λ)j , which is the degree-k term Taylor polynomial expansion of |fi|p around λ
(i.e., (λ + (|fi| − λ))p. A new estimator ϑ̄(λ, k, r) is defined as the average of r
dependent Taylor polynomial estimators ϑ’s, where, each of these r ϑ-estimators
is obtained from a certain k-subset of random variables X1, . . . , Xs, with s =
O(k), and each k-subset is drawn from an appropriate code and has a controlled
overlap with another k-subset from the code. Note that now, only a constant
factor (i.e., within a factor of 1 ± O(1/p)) accuracy for the estimate λ of |fi| is
needed, rather than an O(ε)-accuracy needed earlier.

Finally, we note that Hss algorithm [12] used full independence of hash func-
tions and then invoked Indyk’s method [14] of using Nisan’s pseudo-random
generator to fool space-bounded computations [19]. In our algorithm, we show
that it suffices to use only limited d = O(log n)-wise independence of hash fam-
ilies, by changing the way the hash functions are composed.

2 Taylor Polynomial Estimator

Let X be a random variable with E [X] = μ and Var [X] = σ2. Singh in [21] con-
sidered the following problem: given a function ψ : R → R, design an unbiased
estimator θ for ψ(E [X]) (i.e., E [θ] = ψ(E [X]). Singh proposed the following
solution for an analytic function ψ(t) =

∑
k≥0 γk(0)tk. Choose any distribution

ν over N (naturals) with probability function pν(n), choose n ∼ ν and define
the estimator θ = (pν(n))−1γn(0) · X1 · X2 . . . · Xn where the Xi’s are inde-
pendent copies of X. The estimator satisfies E [θ] =

∑
n≥0(pν(n))−1 · pν(n) ·

γn(0)E [X1] E [X2] . . . E [Xn] =
∑

n≥0 γn(0)μn = ψ(μ). However, the variance
can be large; for the geometric distribution ν with pν(n) = q(1 − q)n, for n ≥ 0
and 0 < q ≤ 1, it is shown in [9] that E

[
θ2

]
= (1/q)

∑
n≥0 γ2

n(0)((μ2 + σ2)/(1 −
q))n.

The Taylor polynomial estimator (abbreviated as tp estimator) is derived
from the Taylor’s series of ψ(μ) = ψ(λ + (μ − λ)) by expanding it around λ, an
estimate of μ, and then truncating it after the first k + 1 terms. Let X1, . . . , Xk

be independent and identically distributed as X. Define

ϑ(ψ, λ, k, {Xl}k
l=1) =

∑k
j=0 γj(λ)(X1 − λ)(X2 − λ) . . . (Xj − λ) .

where, γj(t) is the function ψ(j)(t)/j!, for j = 0, 1, Its expectation and
variance properties are given below. Denote by σ2 = Var [Xj] and η2 =
E

[
(Xj − λ)2

]
= σ2 + (μ − λ)2, for j = 1, . . . , k.

Taylor Polynomial Estimator for Estimating Frequency Moments 545

Lemma 1. Let {Xl}k
l=1 be independent random variables with expectation μ and

standard deviation σ. Let η = (σ2 + (μ − λ)2)1/2 and let ψ be analytic in the
region [λ, μ]. Then the following hold.

1. For some λ′ ∈ (μ, λ),
∣∣
E

[
ϑ(ψ, λ, k, {Xl}k

l=1)
]−ψ(μ)

∣∣ ≤ |γk+1(λ′)|·|μ−λ|k+1.

2. Var
[
ϑ(ψ, λ, k, {Xl}k

l=1)
] ≤

(∑k
j=1|γj(λ)|ηj

)2

.

Corollaries 1 and 2 apply the Taylor polynomial estimator to ψ(t) = tp.

Corollary 1. Assume the premises of Lemma 1. Further, let ψ(t) = tp, p ≥ 1,
μ > 0, |λ − μ| ≤ αμ, for some 0 ≤ α < 1/2 and k + 1 > p. Then,∣∣
E

[
ϑ(xp, λ, k, {Xl}k

l=1

] − μp
∣∣ ≤ (

α
1−α

)(k+1) · μp · (p
k+1

)�p�+1. In particular, for p

integral, E

[
ϑ(xp, λ, k, {Xl}k

l=1

]
= μp.

Corollary 2. Assume the premises of Lemma 1. Further let ψ(t) = tp, p ≥ 2,
μ > 0, |λ − μ| ≤ min(μ, λ)/(25p) and σ ≤ λ/(25p). Then Var

[
ϑ(xp, λ, {Xl}k

l=1

]

≤ (1.08)p2μ2p−2η2.

Averaged Taylor polynomial estimator. We use a version of the Gilbert-
Varshamov theorem from [4].

Theorem 1 (Gilbert-Varshamov). For positive integers q ≥ 2 and k > 1,
and real value 0 < ε < 1 − 1/q, there exists a set C ⊂ {0, 1}qk of binary vectors
with exactly k ones such that C has minimum Hamming distance 2εk and log|C| >
(1−Hq(ε))k log q, where, Hq is the q-ary entropy function Hq(x) = −x logq

x
q−1−

(1 − x) logq(1 − x).

Corollary 3. For k ≥ 150, there exists a code Y ⊂ {0, 1}8k such that |Y | ≥ 16k,
each y ∈ Y has exactly k 1’s, and the minimum Hamming distance among
distinct codewords in Y is 3k/2.

Let Y be a code as given by Corollary 3. Each y ∈ Y is a boolean vector
y = (y(1), y(2), . . . , y(s)) of dimension s = 8k with exactly k 1’s. It can be
equivalently viewed as a k-dimensional ordered sequence y ≡ (y1, y2, . . . , yk)
where 1 ≤ y1 < y2 < . . . < yk ≤ s, and yj is the index of the jth occurrence of
1 in y.

We first define the tp estimator for ψ(μ) given an estimate λ for μ = E [Xj]
corresponding to a codeword y ∈ Y and ordered according to a given permuta-
tion π : [k] → [k]. Let π : [k] → [k] be a permutation and y = (y1, . . . , yk)
be an ordered sequence of size k. Then, π(y) denotes the sequence of indices
(yπ(1), . . . , yπ(k)). The tp estimator corresponding to y ∈ Y and permutation π
is defined as

ϑ(ψ, λ, k, s, y, π, {Xt}s
t=1) =

k∑

v=0

γv(λ)
v∏

l=1

(
Xyπ(l) − λ

)
.

Let {πy}y∈Y denote a set of |Y | randomly and independently chosen permuta-
tions that map [k] → [k] that is placed in (arbitrary) 1-1 correspondence with Y .

546 S. Ganguly

The averaged Taylor polynomial estimator avgtp averages the |Y | tp estima-
tors corresponding to each codeword in Y , ordered by the permutations {πy}y∈Y

respectively, as follows.

ϑ̄(ψ, λ, k, s, Y, {πy}y∈Y , {Xl}s
l=1) =

1
|Y |

∑

y∈Y

ϑ(ψ, λ, k, s, y, πy, {Xl}s
l=1) (1)

The Taylor polynomial estimator in RHS of Eqn. (1) corresponding to each y ∈
Y is referred to simply as ϑy, when the other parameters are clearly understood
from context. Note that for any y ∈ Y and permutation πy, E [ϑy] is the same.
Therefore, due to averaging, the avgtp estimator has the same expectation as
the ϑy’s.

Lemma 2. Let p ≥ 2, q = 8, k ≥ max(150, 40(p
 + 2)) and s = qk. Let
Y ⊆ {0, 1}s such that, (a) |Y | ≥ 16k, (b) each y ∈ Y has exactly k ones, and
(c) the minimum Hamming distance among distinct codewords in Y is 3k/2.
Let {X1, . . . , Xs} be a family of independent and identically distributed ran-
dom variables with expectation μ > 0 and variance σ2. Let λ be an estimate
for μ satisfying |λ − μ| ≤ min(μ, λ)/(25p) and let σ < min(μ, λ)/(25p). Let
η = ((λ−μ)2 +σ2)1/2 > 0. Let ϑ̄ denote ϑ̄(tp, λ, k, s, Y, {πy}y∈Y , {Xl}s

l=1). Then

Var
[
ϑ̄
] ≤

(
5p2

12k

)
μ2p−2η2 .

3 Algorithm

The Geometric-Hss algorithm uses a level-wise structure corresponding to levels
l = 0, 1, . . . , L, where, the values of L and the other parameters are given in
Figure 2. The original stream S is sub-sampled hierarchically to produce random
sub-streams for each of the levels S0 = S ⊃ S1 ⊃ S2 ⊃ · · · SL, where, Sl is the
sub-stream that maps to level l. The stream S0 is the entire input stream. S1

is obtained by sampling each item i appearing in S0 with probability 1/2; if
i is sampled, then all its records (i, v) are included in S1, otherwise none of
its records are included. In general, Sl+1 is obtained by sampling items from
Sl with probability 1/2, so that Pr [i ∈ Sl+1 | i ∈ Sl] = 1/2. This is done by
a sequence of independently chosen random hash functions g1, g2, . . . , gL each
mapping [n] → {0, 1}. Then i is included in Sl iff g1(i), g2(i), . . . , gl(i) are each
equal to 1. The gl’s are chosen from a d = O(log n)-wise independent hash family.

Corresponding to each level l = 0, 1, . . . , L − 1, a pair of structures
(HHl,TPEstl) are kept, where, HHl is a CountSketch(16Cl, s) structure with
s = O(log n) hash tables each consisting of 16Cl buckets. The TPEstl struc-
ture is used by the Taylor polynomial estimator at level l and is a standard
CountSketch(16Cl, 2s) structure except as follows. (a) The hash functions hlr’s
used for the hash tables Tlr’s are 5-wise independent. (b) The Rademacher fam-
ily {ξlr(i)}i∈[n] is 4-wise independent for each table index r, and is indepen-
dent across the r’s, r ∈ [2s]. The hash tables {Tlr}r∈[2s] have 16Cl buckets
each and use the hash function hlr, for r ∈ [2s]. Corresponding to the final

Taylor Polynomial Estimator for Estimating Frequency Moments 547

Reduction factor α = 1 − (1 − 2/p)ν, ν = 0.01

Basic space parameters
B = 425(2α)p/2n1−2/pε−2/ min(ε4/p−2, log(n))
C = (27p)2B

Number of levels L L = �log2α
n
C

�
Degree of independence of
g1, . . . , gL

d = 50�log n�

Level-wise space parameters
Bl = 4αlB, l = 0, 1, . . . , L − 1

Cl = 4αlC, l = 0, 1, . . . , L − 1
CL = 16(4αLC),

Taylor Polynomial Estimator
Parameters

k = 100�log n�, r = 16k, s = 8k

Degree of independence of
table hash functions

t = 6

Fig. 2. Parameters used by the Geometric-Hss algorithm

level L, there is only an HHL structure which is a CountSketch(C∗
L, s) struc-

ture, where C∗
L = 16CL. The structure at level L uses O(1) times larger space

for HHL to facilitate the discovery of all items and their frequencies mapping
to this level (with very high probability). By using random bits independent
of the ones used in the above structures, we assume that there exists an esti-
mate F̂2 satisfying F2 ≤ F̂2 ≤ (1 + 0.01/(2p))F2 with probability 1 − n−25. Let
ε̄ = (B/C)1/2 = 1/(27p) and define the level-wise thresholds as follows.

T0 =

(
F̂2

B

)1/2

, Tl =
(

1
2α

)l/2

T0, l ∈ [L − 1], and

Ql = Tl − ε̄Tl, l ∈ {0} ∪ [L − 1], QL = 1/2 . (2)

Sampled Groups Ḡl. Let f̂il be the estimate for fi obtained from level l using
HHl. For l ∈ {0}∪ [L−1], we say that i is “discovered” at level l, or that ld(i) = l

if l is the smallest level such that |f̂il| ≥ Ql. Define f̂i = f̂i,ld(i). ld(i) is set to
L iff i ∈ SL and i has not been discovered at any earlier level. Items are placed
into sample groups, denoted by Ḡl, for l ∈ {0}∪ [L], as follows. If i is discovered
at level l and |f̂il| ≥ Tl, then, i is included in Ḡl. If i is discovered at level l but
|f̂il| < Tl, then, i is placed in Ḡl+1 with probability 1/2 if the flip of an unbiased
coin Ki turns up heads. That is,

Ḡ0 = {i : |f̂i| ≥ T0},

Ḡl = {i : (ld(i) = l and |f̂i| ≥ Tl) or (ld(i) = l − 1 and |f̂i| < Tl−1 and Ki = 1)}
ḠL = {i : ld(i) = L or (ld(i) = L − 1 and |f̂i| < TL−1 and Ki = 1)}

where, the definition for Ḡl in the second equation above applies to 1 ≤ l ≤ L−1.
The event NoColl. Let ̂Topkl(Cl) be the set of the top-Cl elements in terms
the estimates |f̂il| at level l. For l ∈ [L], NoColll is said to hold if for each
i ∈ ̂Topkl(Cl), there exists a set Rl(i) ⊂ [2s] of indices of hash tables of the

548 S. Ganguly

structure tpestl such that |Rl(i)| ≥ s and that i does not collide with any other
item of ̂Topkl(Cl) in the buckets hlq(i), for q ∈ Rl(i). More precisely,

NoColll ≡ ∀i ∈ ̂Topkl(Cl),∃Rl(i) ⊂ [2s] (|Rl(i)| ≥ s and

∀q ∈ Rl(i),∀j ∈ ̂Topkl(Cl) \ {i} hlq(i) �= hlq(j)
)

. (3)

The event NoColl is defined as NoColl ≡ ∧L
l=0NoColll. The analysis shows

NoColl to be a high probability event, however, if NoColl fails, then, the
estimate for Fp returned is 0.

For each sampled item i whose discovery level ld(i) < L, the averaged Taylor
polynomial estimator is used to obtain an estimate of |fi|p using the struc-
ture tpest at level ld(i). If ld(i) = L, then with high probability f̂i = fi

and one can use the simpler estimator |f̂i|p instead. For i ∈ [n] such that
ld(i) < L, the parameter λi used by the Taylor polynomial estimator for
estimating |fi|p is set to |f̂i| = |f̂i,ld(i)|. Let l = ld(i). By NoColl, let
Rl(i) = {t1, t2, . . . , ts} ⊂ [2s]. Let Xijl be the (standard) estimate for |fi|
obtained from table Tl,j , that is, Xijl = Tlj [hlj(i)] · ξlj(i) · sgn(f̂i), for j ∈ Rl(i).
The estimator ϑ̄i = ϑ̄(tp, |f̂i|, k, s, Y, {πj}s

j=1, {Xijl}j∈Rl(i)}) where, Y is a code
satisfying Corollary 3 and is s = qk-dimensional and of size at least 16k. The
parameters k and s are given in Figure 2. The estimator F̂p for Fp is defined
below.

F̂p =
L∑

l=0

∑

i∈Ḡl,ld(i)<L

2l · ϑ̄i +
∑

i∈ḠL,ld(i)=L

2L · |f̂i|p . (4)

4 Analysis

In this section, we analyze the Geometric-Hss algorithm.
Let the permutation rank(·) place items in non-decreasing order by their

absolute frequencies. The k-residual second moment of f is defined as F res
2 (k) =∑

i∈[n],rank(i)>k f2
i . Let F res

2 (k, l) denote the (random) k-residual second moment
of the frequency vector corresponding to Sl. The analysis is conditioned on the
conjunction of the following set of events, collectively denoted as G.

(1) GoodF2 ≡ F2 ≤ F̂2 ≤ (1 + 0.001/(2p))F2,

(2) NoColl defined in (3),

(3) goodest ≡ ∀l : 0 ≤ l ≤ L, ∀i ∈ [n], |f̂il − fi| ≤ (F res
2 (Cl, l) /Cl

)1/2
,

(4) smallres ≡ ∀l : 0 ≤ l ≤ L, F res
2 (2Cl, l) ≤ 1.5F res

2

(
�(2α)lC�

)
/2l−1 .

(5) accuest ≡ ∀l : 0 ≤ l ≤ L, ∀i ∈ [n], |f̂il − fi| ≤ (F res
2

(
�(2α)lC�

)
/(2(2α)lC)

)1/2
,

(6) goodL ≡ ∀i ∈ SL, f̂iL = fi.

(7) smallhh ≡ ∀l : 0 ≤ l ≤ L, {i : |f̂il| ≥ Ql} ⊂ Topk(Cl).

Taylor Polynomial Estimator for Estimating Frequency Moments 549

The events comprising G may be explained as follows. The event that F̂2 is an
1+O(1/p)-factor approximation of F2 is given by GoodF2. The event goodest
states that for all items and all levels, the frequency estimation errors incurred
by the HH structure at any level and for any item remains within the high-
probability error bound as given by the CountSketch algorithm [11]. However, the
bounds in goodest have to be expressed in terms of F res

2 (Cl, l), which are them-
selves random variables. The event smallres gives some control on this random
variable by giving an upper bound on F res

2 (Cl, l) as 1.5F res
2

(
(2α)lC)/2l−1

)
. This

is then used by the event accuest to assert that the frequency estimation for
an item i at a certain level l has an additive accuracy of F res

2

(
(2α)lC)/(2α)lC)

)
,

which is a non-random function of l. An item i is classified as a heavy-hitter at
level l if f̂il ≥ Ql, that is, its estimate obtained from the HH structure at level
l exceeds the threshold Ql. The event smallhh is said to hold if at each level,
the set of heavy hitters are a subset of the set of the items with the top-Cl esti-
mated frequencies. The NoCollision event is used only by the tpest family
of structures at each level, and ensures that each heavy-hitter remains isolated
from all the other heavy-hitters of that level in at least s of the tables of the
tpest structure at that level. Lemma 3 shows that G holds except with inverse
polynomially low probability.

Lemma 3. For the choice of parameters in Figure 2, G holds with probability
1 − O(n−24).

Items are divided into groups according to their frequencies, as follows.

G0 = {i : |fi| ≥ T0}, Gl = {i : Tl ≤ |fi| < Tl−1}, l ∈ [L − 1], GL = {i : 1 ≤ |fi| < TL−1} .

The groups are partitioned into subsets lmargin(Gl),mid(Gl) and rmargin(Gl).

lmargin(Gl) = {i : Tl ≤ |fi| < Tl(1 + ε̄)}, l = 0, . . . , L − 1,

rmargin(Gl) = {i : Tl−1(1 − 2ε̄) ≤ |fi| < Tl−1}, l ∈ [L]
mid(Gl) = {i : Tl + Tlε̄ ≤ |fi| < Tl−1 − 2Tl−1ε̄}, l ∈ [L − 1],
mid(G0) = {i : |fi| ≥ T0(1 + ε̄)}
mid(GL) = {1 ≤ |fi| < TL−1(1 − 2ε̄)} .

G0 and GL have no rmargin(G0) and lmargin(GL) defined, respectively. These
definitions are similar (though not identical) to the Hss algorithm [12]. The group
Gl consists of all items in the frequency range (Tl−1, Tl). The ratio Tl−1/Tl =
(2α)1/2, except for the last group GL, whose frequency range is [1, TL−1) and
the frequency ratio TL−1/1 ≥ ((2α)

ε̄)1/2(F2
n)1/2 and can be large.

Properties of the Sampling Scheme. Lemma 4 presents basic properties of
the sampling scheme. In the remainder of this paper, we assume that c > 23 is
a constant satisfying Pr [¬G] /Pr [G] ≤ n−c.

Lemma 4. Let i ∈ Gl.

550 S. Ganguly

1. If i ∈ mid(Gl), then,
∣∣2lPr

[
i ∈ Ḡl | G] − 1

∣∣ ≤ 2ln−c. Further, conditional on
G, (i) i ∈ Ḡl iff i ∈ Sl, and, (ii) i may not belong to any Ḡl′ , for l′ �= l.

2. If i ∈ lmargin(Gl), then
∣∣2l+1Pr

[
i ∈ Ḡl+1 | G]

+ 2lPr
[
i ∈ Ḡl | G] − 1

∣∣ ≤
2ln−c. Further, conditional on G, i may belong to either Ḡl or Ḡl+1, but
not to any other sampled group.

3. If i ∈ rmargin(Gl), then
∣∣2lPr

[
i ∈ Ḡl | G]

+ 2l−1Pr
[
i ∈ Ḡl−1 | G] − 1

∣∣ ≤
O(2ln−c). Further, conditional on G, i can belong to either Ḡl−1 or Ḡl and
not to any other sampled group.

Lemma 4 is essentially true (with minor changes) for the original Hss method [6,
12], although the Hss analysis used full-independence of hash functions whereas
here we work with limited independence.

Lemma 5 essentially repeats the results of Lemma 4, conditional upon the
event that another item maps to some sampled group. This property is useful in
variance calculations later.

Lemma 5. Let i, j ∈ [n], i �= j and j ∈ Gr. Then,∑L
r′=0 2r′

Pr
[
j ∈ Ḡr′ | i ∈ Sl,G

]
= 1 ± O(2rn−c). In particular, the following

hold.

1. If j ∈ mid(Gr), then 2rPr
[
j ∈ Ḡr | i ∈ Sl,G

]
= 1±2rn−c and for any r �= r′,

Pr
[
j ∈ Ḡr′ | i ∈ Sl,G

]
= 0.

2. If j ∈ lmargin(Gr), then, 2r+1Pr
[
j ∈ Ḡr+1 | i ∈ Sl,G

]
+ 2rPr

[
j ∈ Ḡr |]

i ∈ Sl,G = 1 ± 2r+1n−c. Further, for any r′ �∈ {r, r + 1},Pr
[
j ∈ Ḡr′ |]

i ∈ Sl,G = 0.
3. If j ∈ rmargin(Gr), then 2rPr

[
j ∈ Ḡr | i ∈ Sl,G

]
+ 2r−1Pr

[
j ∈ Ḡr−1 |]

i ∈ Sl,G = 1 ± 2r+1n−c. Further, for any r′ �∈ {r − 1, r},Pr
[
j ∈ Ḡr′ |]

i ∈ Sl,G = 0.

For variance calculations, we need good control on the joint probability dis-
tribution Pr

[
i ∈ Ḡr, j ∈ Ḡr′ | G]

, which is shown in Lemma 6.

Lemma 6. For i ∈ Gl, j ∈ Gm and i, j distinct,∣∣∑
r,r′ 2r+r′

Pr
[
i ∈ Ḡr, j ∈ Ḡr′ | G] − 1

∣∣ ≤ O((2l + 2m)n−c) .

Application of Taylor Polynomial Estimator. Let i ∈ Ḡl′ for some
l′ ∈ {0} ∪ [L − 1]. Then, i has been discovered at a level ld(i) = l (say).
The algorithm estimates |fi|p from the tpest structure at the discovery level
l using the estimator ϑ̄i = ϑ̄(ψ(t) = tp, |f̂i|, k, s, Y, {πj}s

j=1, {Xijl}j∈Rl(i)}). If
ld(i) = l and i ∈ Ḡl′ for some l′, then, f̂i is defined as f̂il and for any j ∈ Rl(i),
σil = (Var [Xijl])1/2 and ηil = (σ2

il+(|fi|−|f̂il|)2. We first show that the premises
of Corollary 1 and Lemma 2 are satisfied so that we can use their implications.

Lemma 7. Assume the parameter values listed in Figure 2 and assume that G
holds. Then, if ld(i) = l for some l ∈ {0}∪ [L− 1], then, the following properties
hold. (i) |f̂il − fi| ≤ |fi|/(26p), (ii) E

[
Xijl | ld(i) = l, |f̂il| > Ql, j ∈ Rl(i),G

]
=

Taylor Polynomial Estimator for Estimating Frequency Moments 551

|fi| (iii) |fi| ≥ 15pηil, (iv) η2
il ≤ 2.7(ε̄Tl)2, (v) |f̂il − fi| ≤ |f̂i|/(26p) and (vi)

|f̂i|/ηil ≥ 16p. Further, (vii) if ld(i) = L, then, f̂i = fi and ηiL = 0.

For i, k ∈ Sl, j ∈ [2s], let uikjl = 1 iff hlj(i) = hlj(k) and 0 otherwise.

Lemma 8. Assume the parameters in Figure 2 and p ≥ 2. Suppose i ∈ Ḡl, for
some l ∈ {0} ∪ [L − 1]Then,

∣∣
E

[
ϑ̄i | G] − |fi|p

∣∣ ≤ n−2500p|fi|p. Further if p is
integral, then, E

[
ϑ̄i | G]

= |fi|p.
We denote by ξ̄ the set of random bits defining the family of Rademacher

random variables used by the tpest structures, that is, the set of random bits
that defines the family {ξlj(i) | i ∈ [n], j ∈ [2s], l ∈ {0} ∪ [L]}. Lemma 9 shows
that the event NoColl gives an uncorrelated property for product of Taylor
polynomial estimators.

Lemma 9. Suppose i ∈ Ḡr and i′ ∈ Ḡr′ . Then,
Eξ̄

[
ϑ̄iϑ̄i′ | f̂i, f̂i′ ,G]

= Eξ̄

[
ϑ̄i | f̂i,G

]
Eξ̄

[
ϑ̄i′ | f̂i′ ,G]

.

Expectation and Variance of F̂p Estimator. For uniformity of notation,
let ϑ̄i denote |f̂i| when ld(i) = L and otherwise, let its meaning be unchanged.
Let zil be an indicator variable that is 1 if i ∈ Ḡl and 0 otherwise. Since an item
may be sampled into at most one group,

∑
l∈[L] zil ∈ {0, 1}. Using the extended

definition of ϑ̄i mentioned above, we can write F̂p as,

F̂p =
L∑

l=0

∑

i∈Ḡl

2lϑ̄i =
∑

i∈[n]

L∑

l=0

zil · 2l · ϑ̄i =
∑

i∈[n]

Yi,where, Yi =
L−1∑

l′=0

2l′zil′ ϑ̄i. (5)

Lemma 10 shows that F̂p is almost an unbiased estimator for Fp. This easily
follows from Lemma 8.

Lemma 10. E

[
F̂p | G]

= Fp(1 ± O(n−c+1)).

We will use the following facts.

F2 ≤ n1−2/pF 2/p
p and F2p−2 ≤ F 2−2/p

p , for p ≥ 2. (6)

Lemma 11. Let B = Kn1−2/pε−2/ log(n) and C = (27p)2B. Then,

Var [Yi | G] ≤

⎧
⎪⎨

⎪⎩

ε2|fi|2p−2F
2/p
p

(5)(10)4K
if i ∈ mid(G0)

2l+1(1.002)|fi|2p (i ∈ Gl for some l ≥ 1) or (i ∈ lmargin(G0).

Lemma 12 builds on the approximate pair-wise independence of the sampling
scheme (Lemmas 5 and 6) and of the ϑ̄i estimators (Lemma 9) to show that the
contribution of the cross terms of the form |E [YiYj | G]−E [Yi | G] E [Yj | G]|, for
i �= j is very small.

552 S. Ganguly

Lemma 12. Let i �= j. Then,
∣∣
E [YiYj | G] − E [Yi | G] E [Yj | G]

∣∣ ≤
O(n−c+1)|fi|p|fj |p.
Lemma 13. Var

[
F̂p | G] ≤ ε2F 2

p /50.

Theorem 2. For each fixed p > 2 and 0 < ε ≤ 1, there exists an algorithm in
the general update data stream model that returns F̂p satisfying

∣∣F̂p − Fp

∣∣ < εFp

with probability 3/4. The algorithm uses space O(n1−2/pε−2+n1−2/pε−4/p log(n))
words of size O(log(nmM)) bits. The time taken to process each stream update
is O(log2 n).

Acknowledgments. The author thanks Venugopal G. Reddy for correcting an error
in the analysis.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating fre-
quency moments. Journal of Computer Systems and Sciences 58(1), 137–147
(1998). Preliminary version appeared in Proceedings of ACM Symposium on The-
ory of Computing (STOC) 1996, pp. 1–10

2. Andoni, A., Krauthgamer, R., Onak, K.: Streaming algorithms via precision sam-
pling. In: Proceedings of IEEE Foundations of Computer Science (FOCS) (2011).
A version appears in arXiv:1011.1263v1 [cs.DS] November 2010

3. Andoni, A., Nguyen, H.L., Polyanskiy, Y., Wu, Y.: Tight lower bound for linear
sketches of moments. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D.
(eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 25–32. Springer, Heidelberg (2013)

4. Ba, K.D., Indyk, P., Price, E., Woodruff, D.: Lower bounds for sparse recovery.
In: Proceedings of ACM Symposium on Discrete Algorithms (SODA) (2008)

5. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. In: Proceedings of ACM
Symposium on Theory of Computing STOC, pp. 209–218 (2002)

6. Bhuvanagiri, L., Ganguly, S., Kesh, D., Saha, C.: Simpler algorithm for estimat-
ing frequency moments of data streams. In: Proceedings of ACM Symposium on
Discrete Algorithms (SODA), pp. 708–713 (2006)

7. Braverman, V., Katzman, J., Seidell, C., Vorsanger, G.: Approximating large fre-
quency moments with O(n1−2/k) bits. In: Proceedings of International Workshop
on Randomization and Computation (RANDOM) (2014). Published earlier as
arXiv:1401.1763, January 2014

8. Braverman, V., Ostrovsky, R.: Recursive Sketching For Frequency Moments
(November 2010). arXiv:1011.2571v1 [cs.DS]

9. Cesa-Bianchi, N., Shwartz, S.S., Shamir, O.: Online learning of noisy data with
kernels. In: Proceedings of ACM International Conference on Learning Theory
(COLT) (2010)

10. Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-party
communication complexity of set disjointness. In: Proceedings of International
Conference on Computational Complexity (CCC) (2003)

11. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data
streams. Theoretical Computer Science 312(1), 3–15 (2004). Preliminary version
appeared inProceedings of ICALP 2002, pp. 693–703

http://arxiv.org/abs/1011.1263v1
http://arxiv.org/abs/1401.1763
http://arxiv.org/abs/1011.2571v1

Taylor Polynomial Estimator for Estimating Frequency Moments 553

12. Ganguly, S., Bhuvanagiri, L.: Hierarchical Sampling from Sketches: Estimating
Functions over Data Streams. Algorithmica 53, 549–582 (2009)

13. Ganguly, S.: A Lower Bound for Estimating High Moments of a Data Stream
(December 2011). arXiv:1201.0253

14. Indyk, P.: Stable distributions, pseudorandom generators, embeddings, and
data stream computation. J. ACM 53(3), 307–323 (2006). Preliminary Version
appeared in Proceedings of IEEE FOCS 2000, pp. 189–197

15. Indyk, P., Woodruff, D.: Optimal approximations of the frequency moments. In:
Proceedings of ACM Symposium on Theory of Computing STOC, pp. 202–298.
Baltimore, Maryland, USA (June 2005)

16. Jayram, T.S., Woodruff, D.: Optimal bounds for johnson-lindenstrauss transforms
and streaming problems with low error. In: Proceedings of ACM Symposium on
Discrete Algorithms (SODA) (2011)

17. Li, Y., Woodruff, D.P.: A tight lower bound for high frequency moment estimation
with small error. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim,
J.D.P. (eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 623–638.
Springer, Heidelberg (2013)

18. Monemizadeh, M., Woodruff, D.: 1-pass relative-error lp-sampling with applica-
tions. In: Proceedings of ACM Symposium on Discrete Algorithms (SODA) (2010)

19. Nisan, N.: Pseudo-random generators for space bounded computation. In: Pro-
ceedings of ACM Symposium on Theory of Computing STOC, pp. 204–212 (May
1990)

20. Price, E., Woodruff, D.: (1 + ε)-approximate sparse recovery. In: Proceedings of
IEEE Foundations of Computer Science (FOCS) (2011)

21. Singh, R.: Existence of unbiased estimates. Sankhya: The Indian Journal of Statis-
tics 26(1), 93–96 (1964)

22. Woodruff, D.P.: Optimal space lower bounds for all frequency moments. In: Pro-
ceedings of ACM Symposium on Discrete Algorithms (SODA), pp. 167–175 (2004)

23. Woodruff, D.P., Zhang, Q.: Tight bounds for distributed functional monitoring.
In: Proceedings of ACM Symposium on Theory of Computing STOC (2012)

http://arxiv.org/abs/1201.0253

ETR-Completeness for Decision Versions
of Multi-player (Symmetric) Nash Equilibria

Jugal Garg1, Ruta Mehta 2(B), Vijay V. Vazirani2, and Sadra Yazdanbod2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
jgarg@mpi-inf.mpg.de

2 College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
{rmehta,vazirani,syazdanb}@cc.gatech.edu

Abstract. As a result of some important works [4–6,10,15], the com-
plexity of 2-player Nash equilibrium is by now well understood, even
when equilibria with special properties are desired and when the game is
symmetric. However, for multi-player games, when equilibria with spe-
cial properties are desired, the only result known is due to Schaefer and
Štefankovič [18]: that checking whether a 3-player NE (3-Nash) instance
has an equilibrium in a ball of radius half in l∞-norm is ETR-complete,
where ETR is the class Existential Theory of Reals.

Building on their work, we show that the following decision versions
of 3-Nash are also ETR-complete: checking whether (i) there are two
or more equilibria, (ii) there exists an equilibrium in which each player
gets at least h payoff, where h is a rational number, (iii) a given set of
strategies are played with non-zero probability, and (iv) all the played
strategies belong to a given set.

Next, we give a reduction from 3-Nash to symmetric 3-Nash, hence
resolving an open problem of Papadimitriou [14]. This yields ETR-
completeness for symmetric 3-Nash for the last two problems stated above
as well as completeness for the class FIXPa, a variant of FIXP for strong
approximation. All our results extend to k-Nash, for any constant k ≥ 3.

1 Introduction

Nash equilibrium (NE) is arguably the most important and well-studied solution
conceptwithin game theory andunderstanding its complexity has led to an impres-
sive theory which was discovered largely over the last decade. We denote by k-Nash
the problem of computing a NE in a k-player game for a constant k. For the case
of 2-Nash, the seminal results of Daskalakis, Goldberg and Papadimitriou [6], and
Chen and Deng [4] exactly characterized the complexity of this problem, namely
it is PPAD-complete. This leads us to another basic question: of finding a k-Nash
solution that satisfies special properties, e.g., has a payoff of at least h for each
player. These questions were first studied by Gilboa and Zemel [10]: they consid-
ered 2-Nash under numerous special properties and showed them all to be NP-
complete [5]. Thus the complexity of the 2-player case is very well understood.

Supported by NSF Grants CCF-0914732 and CCF-1216019.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 554–566, 2015.
DOI: 10.1007/978-3-662-47672-7 45

ETR-Completeness for Decision Versions of Multi-player (Symmetric) NE 555

Although the 2-player case is the most classical and well studied case, it is
also important to study the complexity of the multi-player, especially in the
context of new applications arising on the Internet and other large networks
where multiple players are locked in strategic situations. Indeed there has been
much activity on this front, e.g., see [1,11,16], but the picture is not as clear
as the 2-player case. A fundamental difference between 2-Nash and k-Nash, for
k ≥ 3, is that whereas the former always admits an equilibrium that can be
written using rational numbers [12], the latter require irrational numbers in
general, as shown by Nash himself [13] (we will assume that all numbers in the
given instance are rational). It is easy to see that in the latter case, equilibria
are algebraic numbers. This difference makes the multi-player case much harder.

Daskalakis, Goldberg and Papadimitriou [6], showed that for k-player games,
k ≥ 3, finding an ε-approximate Nash equilibrium is PPAD-complete. The com-
plexity of exact equilibrium was resolved by Etessami and Yannakakis [7], who
showed this case to be complete for their class FIXP. How about the complexity
of finding a k-Nash solution that satisfies special properties? Due to the inherent
difficulty of dealing with irrational numbers, this problem remained open until
2009, when Schaefer and Štefankovič [18] formally defined class Existential The-
ory of Reals (ETR), and showed that checking if a 3-player game has a NE in
which every strategy is played with probability at most 0.5 (InBox) is ETR-
complete. ETR is the class of “yes” instances of existentially quantified formulas
with bases {+,−, ∗,∧,∨,=, <,>} on real numbers; we note that this class was
informally known and used earlier than [18], e.g., see [2].

Our first set of results extend ETR-completeness to NE computation with a
number of special properties in ≥ 3 player games: (i) checking if a game has more
than one NE (NonUnique). NE where, (ii) each player gets at least h payoff
(MaxPayoff), (iii) a given set of strategies are played with +ve probability
(Subset), or (iv) all the played strategies belong to a given set (Superset).

Our second set of results deal with symmetric games. Symmetry arises nat-
urally in numerous strategic situations and with the growth of the Internet,
on which typically users are indistinguishable, such situations are only becom-
ing more ubiquitous. In a symmetric game all players participate under identical
circumstances, i.e., strategy sets and payoffs. Thus the payoff of player i depends
only on the strategy, s, played by her and the multiset of strategies, S, played by
the others, without reference to their identities. Furthermore, if any other player
j were to play s and the remaining players S, the payoff to j would be identical
to that of i. A symmetric Nash equilibrium (SNE) is a NE in which all players
play the same strategy. Nash [13], while providing game theory with its central
solution concept, also defined the notion of a symmetric game and proved, in a
separate theorem, that such games always admit a symmetric equilibrium.

A simple reduction is known from 2-Nash to symmetric 2-Nash, and it shows
that the latter is also PPAD-complete. The questions studied by Gilboa and
Zemel [10] for 2-player games were studied by Conitzer and Sandholm [5] for
symmetric games and were shown to be NP-complete. On the other hand, no
reduction is known from 3-Nash to symmetric 3-Nash. Indeed, after giving the

556 J. Garg et al.

reduction from 2-Nash to symmetric 2-Nash, Papadimitriou [14] states, “Amaz-
ingly, it is not clear how to generalize this proof for three player games!”

Our second set of results deals with symmetric k-player games, for k ≥ 3. We
first give a reduction from 3-Nash to symmetric 3-Nash, hence settling the open
problem of [14]. This also enables us to show that symmetric 3-Nash is complete
for the class FIXPa, Strong Approximation FIXP, which is a variant of FIXP
that is meant for the Turing machine model. It also yields ETR-completeness
for Superset and Subset in such games. Once the 3-player case is settled, we
prove analogous results for symmetric k-player games, for k > 3.

[8] gave a dichotomy for NE, showing a qualitative difference between 2-
Nash and k-Nash along three different criteria, see Table 1. The results of this
paper add a fourth criterion to this dichotomy, namely complexity of decision
problems. Additionally, we get an analogous dichotomy for symmetric NE, see
Table 2. Results of current paper are indicated by CP in the tables.

Table 1. Dichotomy for Nash equilibrium

2-Nash k-Nash, k ≥ 3

Nature of solution Rational [12] Algebraic; irrational example [13]

Complexity PPAD-complete [3,6,15] FIXP-complete [7]

Practical algorithms Lemke-Howson [12] ?

Decision problems NP-complete [5,10]
ETR-complete: [18]

CP (Theorems 13, 14)

Table 2. Dichotomy for symmetric Nash equilibrium

Symmetric 2-Nash Symmetric k-Nash, k ≥ 3

Nature of solution Rational [12]
Algebraic; irrational example

CP together with [13]

Complexity PPAD-complete [3,6,15] FIXPa-complete: CP (Theorem 24)

Practical algorithms Lemke-Howson [12,17] ?

Decision problems NP-complete [5] ETR-complete: CP (Theorems 23)

1.1 Technical Overview

We first give the main idea behind our reduction from 3-Nash to symmetric 3-
Nash (Theorem 19). We will reduce the given game (A,B,C), where each tensor
is m×n×p, to a symmetric game, D, of dimension l× l× l, where l = m+n+p
(see Section 2.1 for the description of (symmetric) games). In this game, under
each symmetric NE, the strategy of each player can be decomposed into three
vectors, say x,y,z, of dimension m,n, p, respectively. An essential condition for
recovering a Nash equilibrium for the original game (A,B,C) is that each of these
three vectors be non-zero; this is also the most difficult part of the reduction.

To achieve this we construct a 3 × 3 × 3 symmetric game G all of whose
symmetric NE are of full support, even though it is only partially specified (see
(4)). We “blow up” G to derive D, which is l × l × l, and the unspecified entries
of G create room where tensors A,B,C are “inserted”. Now, if (x,y,z) is a
symmetric NE of D then so is (

∑
i xi,

∑
j yj ,

∑
k zk) of G. As a result, each vector,

ETR-Completeness for Decision Versions of Multi-player (Symmetric) NE 557

x,y,z �= 0. Next we show that if these vectors are scaled to probability vectors,
they form a NE for (A,B,C). Additional arguments yield ETR-completeness for
Subset and Superset for symmetric k-Nash (Theorems 20 and 21).

Next we give idea for showing that symmetric 3-Nash is complete for the
class FIXPa (Theorem 22), Strong Approximation FIXP, which is a variant of
FIXP that is meant for the Turing machine model. Note that we are unable
to show that symmetric 3-Nash is complete for the class FIXP itself, since we
don’t see how to express the solution to the given instance as a rational linear
projection of the solution of the reduced instance.

Under FIXPa, given an instance I and a rational ε > 0, we need to compute a
vector x that is within (additive) ε distance from some solution, i.e., ∃x∗ ∈ Sol(I)
such that |x∗ −x|∞ ≤ ε, in time polynomial in size[I] and log(1/ε). In the above
reduction, obtaining a solution of (A,B,C) involves e.g., dividing x by

∑
i xi.

If the latter is very small, this may give us a vector that is very far away from
a solution of (A,B,C), even though x may be close to a solution of D.

We get around this problem by a small change in the above reduction, namely,
we need to multiply the tensors A,B,C by a small constant ε′ before they are
“inserted” at the appropriate places in G′ to get symmetric game D. This ensures
that (

∑
i xi,

∑
j yj ,

∑
k zk) is approximately (1/3, 1/3, 1/3). As a result, given a

point close to a solution of D, we can get a point “close” to a solution of (A,B,C).
Next, we describe how we show ETR-completeness for the four decision prob-

lems, mentioned in the previous section, for k-Nash. To show hardness in case
of 3-players, we reduce InBox, which is known to be ETR-complete for 3-Nash
[18], to each of MaxPayoff, Subset and Superset, and then from MaxPayoff
to NonUnique. Hardness for the k-Nash, k > 3, follows since 3-Nash reduces
to k-Nash trivially by introducing dummy players. To show containment in ETR
we give a Non-linear complementarity problem (NCP) formulation that exactly
captures NE of a given game.

Next, we briefly explain the reduction from InBox to MaxPayoff for the
2-player case (see Section 3.1 for details); 3-player case is an extension of it. Let
the given game be represented by two payoff matrices (A,B) of dimension m×n,
one for each player. The InBox problem is to check if it has a NE in which all
strategies are played with at most 0.5 probability. We reduce it to checking if
another game (C,D) has a NE in which every player gets payoff at least h > 0
(MaxPayoff). Wlog we can assume that A,B > 0.

We construct m(n + 1) × n(m + 1) matrices C and D, where the top-left
block is set to A + h and B + h respectively. This ensures that if each player
gets payoff h at a NE, then strategies from this block are played with non-zero
probability, and normalizing them gives a NE of (A,B). The latter follows since
NE set remains invariant under additive scaling of payoffs. In order to retrieve a
NE in 0.5 ball, we ensure that if any of these strategies is (relatively) played with
more than 0.5 probability then a sequence of deviations leads to both players
playing only among their last mn strategies where payoff is zero (< h).

In particular suppose the second player plays y in the top-left block. The
last mn strategies of the row player are divided in to n blocks of size m, one

558 J. Garg et al.

for each yj , j ≤ n such that if yj > 0.5 then best response of the first player
is to deviate to jth block. The payoff of the second player is set to −1 in these
blocks, so then yj fetches −1 and second player is forced to deviate to her last
mn strategies where both get zero. Similarly for the first player.

Due to space constraints, next we present overview of our two results (i)
ETR-hardness for MaxPayoff, Subset and Superset, through reduction from
InBox, (ii) reduction from 3-Nash to symmetric 3-Nash, and ETR-hardness
results for the latter. For missing proofs and details refer to full-version [9].

2 Preliminaries

In this section we formally define the (symmetric) k-Nash problem, and their
decision problems. Further, we discuss the complexity classes ETR and FIXP.
Notations: All vectors are in bold-face letters, and ith coordinate of vector x is
denoted by xi, and x−i denotes the vector x with ith coordinate removed. 1 and 0
represent all ones and all zeros vector respectively of appropriate dimension. For
integers k < l, x(k : l) = (xk, xk+1, . . . , xl). We use [n] to denote set {1, . . . , n}
and [k : l] to denote {k, k + 1, . . . , l}. If x is of m dimension, then by σ(x) we
mean

∑m
i=1 xi, and η(x) = x/σ(x). Concatenation of vectors x and y is denoted

by (x|y). Given a matrix A and h ∈ R, A+h denotes the matrix A with h added
to each of its entries. Further, A(i, :) is its ith row and A(:, j) is its jth column.

2.1 (Symmetric) k-Nash

For a given k-player game let Si, i ∈ [k] be the set of pure strategies of player i,
and let S = ×iSi. The payoffs of player i can be represented by a k-dimensional
tensor Ai, such that Ai(s) denotes the payoff she gets when s ∈ S is played.
Players may randomize among their strategies. Let Δi denote the set of mixed
strategy profiles of player i, and let Δ = ×iΔi. Expected payoff of player i from
x = (x1, . . . ,xk) ∈ Δ is πi(x) =

∑
s∈S(Πi∈[k]x

i
si)Ai(s).

Definition 1. (Nash Equilibrium (NE) [13]) x ∈ Δ is said to be a NE
if no player gains by unilateral deviation. Formally, ∀i, ∀x′ ∈ Δi, πi(x) ≥
πi(x′,x−i).

Let πi(s,x−i) denote the payoff i receives when she plays s ∈ Si and others
play as per x−i. It is easy to see that, x is a NE iff [13],

∀i ∈ [k], ∀s ∈ Si, xi
s > 0 ⇒ πi(s,x−i) = max

t∈Si

πi(t,x−i) (1)

Symmetric k-Nash: In a symmetric game the players are indistinguishable.
Their strategy sets are identical (S) and payoffs are symmetric represented by
one tensor A. For a player, the payoff she gets by playing s′ ∈ S, when others are
playing s ∈ Sk−1, is A(s′, s). Further, who is playing what in s does not matter.
Formally, A satisfies A(s′, s) = A(s′, sτ) for all permutations τ of (1, . . . , k − 1),
where sτ is the corresponding permuted vector.

ETR-Completeness for Decision Versions of Multi-player (Symmetric) NE 559

A profile x ∈ Δ is called symmetric if xi = xj , ∀i, j, thus one vector x ∈ Δ
is enough to denote a symmetric profile. At a symmetric strategy profile all the
players get the same payoff, and we denote it by π(x). The problem of computing
symmetric NE (SNE) of a symmetric game is called symmetric k-Nash.

Note that description of a (symmetric) k-player game takes O(kmk) space,
where m = maxi |Si|, which is exponential in m and k. To keep it polynomial,
we consider k as a constant. Further, wlog (A1, . . . , Ak) > 0 because adding a
constant to the tensors does not change the set of NE.

2-Nash: The payoff tensors in case of 2-player game are matrices, say (A,B),
A for player one and B for player two. If the first player plays i and second plays
j, then their respective payoff are Aij and Bij . Game is said to be symmetric if
B = AT . A mixed strategy is (x,y) ∈ Δ1 × Δ2, and respective payoffs at such
a strategy are xT Ay and xT By. The NE characterization of (1) reduces to:

∀i ∈ S1, xi > 0 ⇒ (Ay)i = max
k∈S1

(Ay)k; ∀j ∈ S2, yj > 0 ⇒ (xTB)j = max
k∈S2

(xTB)k(2)

3-Nash: It is the k-Nash problem with 3 players. Such a game can be represented
by 3-dimensional tensors (A,B,C); A for player one, B for player two, and C
for player three. If player one plays i, two plays j and three plays k, then their
respective payoffs are Aijk, Bijk, and Cijk. If the game is symmetric then we
have Aijk = Aikj = Bjik = Bkij = Cjki = Ckji. A mixed strategy is denoted by
(x,y,z) ∈ Δ1 × Δ2 × Δ3. Thus NE characterization of (1) reduces to:

∀i ∈ S1, xi > 0 ⇒ ∑
j,k Aijkyjzk = maxl∈S1

∑
j,k Aljkyjzk

∀j ∈ S2, yj > 0 ⇒ ∑
i,k Bijkxizk = maxl∈S2

∑
i,k Bilkxizk

∀k ∈ S3, zk > 0 ⇒ ∑
i,j Cijkxiyj = maxl∈S3

∑
i,j Cijlxiyj

(3)

Decision Problems: Computational complexity of numerous decision problems
have been studied for 2-Nash and 3-Nash [5,10]. Here are some interesting ones:

– NonUnique: If there exists more than one NE.
– MaxPayoff: Given a rational number h, if there exists a NE where every

player gets payoff at least h.
– Subset: Given sets Ti ⊂ Si, ∀i ∈ [1 : k], if there exists a NE where every

strategy in Ti is played with positive probability by player i.
– Superset: Given sets Ti ⊂ Si, ∀i ∈ [1 : k], if there exists a NE where all

the strategies outside Ti are played with zero probability by player i.
– InBox: If there is a NE where every strategy is played with ≤ 0.5 probability.

All but last have been shown to be NP-complete in case of 2-Nash [5,10], and
the last one is shown to be ETR-complete in case of 3-Nash [18]. In this paper,
we show ETR-completeness for the first four decision problems for k-Nash, and
for third and fourth for symmetric k-Nash.

2.2 Existential Theory of Reals (ETR)

In order to capture decision problems arising in existential theory of reals (ETR),
Schaefer and Štefankovič [18] defined complexity class ETR as follows: An

560 J. Garg et al.

instance I of class ETR consists of a sentence of the form,

(∃x1, . . . , xn) φ(x1, . . . , xn),

where φ is a quantifier-free (∧,∨,¬)-Boolean formula over the predicates
(sentences) defined by signature {0, 1,−1,+, ∗, <,≤,=} over variables that take
real values. The question is if the sentence is true. The size of the problem is
n + size(φ), where n is the number of variables and size(φ) is the minimum
number of signatures needed to represent φ (we refer the reader to [18] for more
details on ETR, and its relation with other classes like PSPACE). Schaefer and
Štefankovič showed that for 3-Nash, problem InBox is ETR-complete.

2.3 The Class FIXP and Its Variant FIXPa

Etessami and Yannakakis [7] defined the class FIXP to capture complexity of the
exact fixed point problems with algebraic solutions. A FIXP problem is to find
a fixed-point of a function F : D → D over a convex, compact domain D, i.e.,
find x ∈ D s.t. F (x) = x. The function is given by an arithmetic circuit C with
{min,max,+,−, ∗, /} gates, rational constants, and n input/output; size[C] =
n+# gates + bit-length(constants). Given �∈ D to C as an input, all its gates
are well defined.

Fixed-points of F may be irrational. To remain faithful to Turing machine
computation, Etessami and Yannakakis [7] defined a discrete class FIXPa.
(Strong) Approximation FIXPa: Given circuit C defining function F , and a
rational ε > 0, compute a vector x that is within (additive) ε distance from x∗

where F (x∗) = x∗ (a fixed-point), in time polynomial in size[C] and log(1/ε).

Theorem 2. [7] Given a 3-player game (A1, A2, A3), computing its NE
is FIXP-complete. The corresponding (Strong) Approximation is complete for
FIXPa.

3 k-Nash: ETR-completeness for Decision Problems

In this section we show that MaxPayoff, Subset, Superset and NonUnique
are ETR-hard in k-player games, for any constant k ≥ 3; refer to full-version
[9] for containment in ETR. It suffices to show the results for 3-Nash, as a 3-
player game can be reduced to a k-player game trivially by adding k −3 dummy
players, with one strategy each. To show hardness for MaxPayoff, Subset
and Superset we reduce from InBox, and for NonUnique we reduce from
MaxPayoff.

3.1 InBox to MaxPayoff, Subset and Superset

To convey the main ideas, we first describe the reduction in 2-player games
and later generalize it to the 3-player case (see [9]). We show the reduction from

ETR-Completeness for Decision Versions of Multi-player (Symmetric) NE 561

InBox to MaxPayoff, and from the intermediate lemmas, reduction to Subset
and Superset will follow. Let the given two player game be represented by m×n
dimensional payoff matrices (A,B) > 0.

For a ≥ 0, let Ba = [0, a]m+n be a ball of radius a at origin in l∞ norm.
We will construct another game (C,D), with m(n + 1) × n(m + 1)-dimensional
matrices, and show that it has a NE where each player gets at least h > 0 payoff
(MaxPayoff) if and only if the game (A,B) has a NE in ball B0.5 (InBox).
First we define a couple of notations required for the construction.

Definition 3. Let i and j be integers where i ∈ [m] and j ∈ [n], and h be a
real number. We define the following operators:

A(i,:)+h : matrix A with h added to the entries in its ith row.
A(:,j)+h : matrix A with h added to the entries in its jth column.

Definition 4. Given a matrix M of dimension a × b and integers r, s such
that a + r − 1 ≤ m(n + 1) and b + s − 1 ≤ n(m + 1), define [M]r,s to be an
m(n + 1) × n(m + 1)-dimensional matrix where M is copied starting at position
(r, s), and all other coordinates are set to zero.

Using the above notations we construct matrices C,D as follows, where h > 0.

C = [A + h]1,1 + [(−1)m×mn]1,n+1 +
∑

j∈[n][A(:,j)+2h]jm+1,1

D = [B + h]1,1 + [(−1)mn×n]m+1,1 +
∑

i∈[m][B(i,:)+2h]1,in+1

A+ h (−1)m×mn

A(:,1)+2h

A(:,n)+2h

(0)mn×mn

n mn
m

mn

B + h

(−1)mn×n

B(1,:)+2h B(m,:)+2h

C :
(0)mn×mn

n mn
m

mn
D :

The next lemma follows from the construction of C,D. Recall σ(x) =
∑

i xi.

Lemma 5. Given a strategy (x′,y′) of game (C,D), let x = x′(1 : m), y =
y′(1 : n), α = h∗σ(y)−σ(y′(n+1 : (m+1)n)), and β = h∗σ(x)−σ(x′(m+1 :
(n + 1)m)). Then,

(Cy′)i =

{
α + (Ay)i if i ∈ [m]

2hy�(i−1)/m� + (Ay)r if i ∈ [m + 1, m(n + 1)], r = ((i − 1) mod m) + 1.

(x′TD)j =

{
β + (xTB)j if j ∈ [n]

2hx�(j−1)/n� + (xTB)r if j ∈ [n + 1, n(m + 1)], r = ((j − 1) mod n) + 1.

Before the formal reduction, here is a brief intuition. Note that in (C,D) we
have copied (A + h,B + h) in the top-left m × n block, we call it first block now
on. Since adding a constant does not change NE of a game, if strategies from the
first block are played with non-zero probability at a NE of (C,D), then it may

562 J. Garg et al.

give a NE of (A,B). This is ensured if payoffs achieved at the NE are positive
(or at least h > 0; a solution of MaxPayoff), using Lemma 5.

To guarantee a in B0.5 for game (A,B) (solution of InBox), we make use
of the blocks added after the first block in both the directions. In particular,
in Lemma 5, if ∃j ∈ [n], yj > 0.5 ∗ σ(y), then for the first player her first m
strategies are worse than those from block [mj +1 : mj +m], forcing her to play
only from her last mn strategies. This will force the second player to move away
from the first block too (or else he gets −ve payoff), and thereby leading to a NE
where both play from last mn strategies and both get zero payoff (not a solution
of MaxPayoff). We will use these observations crucially in the reduction.

For game (A,B) only those NE (x,y) are interesting which satisfy x,y ≤ 0.5
(solutions of InBox). We show that such NE are retained as NE of (C,D). The
proof uses the fact that in C and D, top-left block encodes A and B respectively.

Lemma 6. (A, B) has a NE (x,y) ∈ B0.5 iff ((x, 0mn), (y, 0mn)) is a NE of
(C, D).

Lemma 6 maps a solution of InBox in game (A,B) to a NE of (C,D) where
players play only among their first m,n strategies respectively. Next we show
a reverse mapping: a NE of (C,D) where both players play some of first m,n
strategies, gives a NE of game (A,B). Recall that for vector x, η(x) = x/σ(x).

Lemma 7. If (x′,y′) is a NE of game (C,D) s.t. x = x′[1 : m] and y = y′[1 :
n] are non zero, then (η(x), η(y)) is a NE for game (A,B), and (η(x), η(y)) ∈
B0.5.

Lemmas 6 and 7 implies that game (A,B) has a NE in B0.5 if and only if
game (C,D) has a NE where both the players play some of first m,n strategies
respectively. If we show that to get payoff of at least h in the latter game, players
have to play some of first m,n strategies, then clearly the reduction will follow.

Lemma 8. Given a strategy profile (x′,y′), if x′T Cy′ ≥ h and x′T Dy′ ≥ h
then x = x′(1 : m) and y = y′(1 : n) are non-zero.

The next theorem follows using Lemmas 6, 7, and 8.

Theorem 9. Game (A,B) has a NE in ball B0.5 if and only if game (C,D)
has a NE where every player gets payoff at least h.

Next theorem shows reduction from InBox to Superset using Lemma 6.

Theorem 10. Game (A,B) has a NE in B0.5 if and only if game (C,D) has
a NE where all the strategies played with non-zero probability by first and second
player are from T1 = [1 : m] and T2 = [1 : n].

Lemmas 6 and 7 imply that, one of first m,n strategies are played with non-
zero probability by respective players in game (C,D) if and only if game (A,B)
has a NE in ball B0.5. Thus next theorem gives a Turing (and not a many-one)
reduction from InBox to Subset.

ETR-Completeness for Decision Versions of Multi-player (Symmetric) NE 563

Theorem 11. Game (A,B) has a NE in ball B0.5 if and only if ∃i ∈ [m],∃j ∈
[n] such that for T1 = {i} and T2 = {j}, game (C,D) has a NE where all
strategies of T1 and T2 are played with non-zero probability.

We can extend Theorems 9, 10 and 11 to 3-player games; see full-version [9]
for details. These together with ETR-hardness of InBox in 3-Nash [18], and
containment in ETR gives the next result.

Theorem 12. Problems MaxPayoff, Subset and Superset are ETR-
complete in 3-player games.

A 3-player game can be reduced to a k-player game trivially, without changing
its set of NE, by adding k − 3 dummy players with one strategy each (payoff
tensor Ai = [h], i > 3 for MaxPayoff). And therefore, the next theorem follows.

Theorem 13. Given a k-player game (A1, . . . , Ak), for a constant k ≥ 3, prob-
lems of NonUnique, MaxPayoff, Subset and Superset are ETR-complete.

Finally, to show ETR-completeness for NonUnique, we reduce MaxPayoff
to NonUnique in 3-player games (see [9]), and thereby obtain,

Theorem 14. Given a k-player game (A1, . . . , Ak), for a constant k ≥ 3,
problem of NonUnique is ETR-complete.

4 Symmetric 3-Nash: ETR and FIXPa Completeness

In this section, we give a reduction from 3-Nash to symmetric 3-Nash, and
thereby obtain ETR-hardness for Subset and Superset, and FIXPa-hardness;
for containment in ETR and FIXPa see full-version [9].

Let the given game be (A,B,C), where each tensor is m × n × p. Let D
denote the reduced symmetric game, which will be of dimension l × l × l, where
l = m + n + p. Let (x,y,z) be a NE of (A,B,C). We will show that there are
positive numbers α, β, γ such that (d,d,d) is a NE of the reduced game, where
d is a l-dimensional vector (αx|βy|γz). Furthermore, let (d,d,d) be a NE of the
reduced game, where d decomposes into vectors x′,y′,z′ of dimension m,n, p
respectively. Scaling these vectors gives a NE (x,y,z) of game (A,B,C). This
will yield mapping in both directions.

Essential to this reduction is the 3 × 3 × 3 symmetric game G(a, b, c) given
below. We represent the payoff tensor of the first player by three 3 × 3 matrices,
one for each of her pure strategy. Here a, b, c are any non-negative reals.

⎡

⎣
0 0 0
0 1 a
0 a 0

⎤

⎦ ,

⎡

⎣
0 0 b
0 0 0
b 0 1

⎤

⎦ ,

⎡

⎣
1 c 0
c 0 0
0 0 0

⎤

⎦ (4)

Lemma 15. If (α, β, γ) is a symmetric NE of game G, then α, β, γ > 0.

564 J. Garg et al.

From G, we derive symmetric game D, which is l × l × l, by blowing up each
of the three strategies of G to m,n, p number of strategies respectively. Copy 0s
and 1s to their respective blocks, and replace blocks corresponding to a, b, c by
A,B,C respectively. For a formal description of D see full-version [9].

In the above game, suppose two players are playing mixed-strategy d =
(x|y|z), where x,y,z are of dimensions m,n, p respectively. Then from strategy
s the third player receives payoff:

πD(s,d) =

⎧
⎪⎨

⎪⎩

(σ(y))2 + 2
∑

j∈[n],k∈[p] Asjkyjzk, if s ≤ m,

(σ(z))2 + 2
∑

i∈[m],k∈[p] Biskxizk if m < s ≤ m + n

(σ(x))2 + 2
∑

i∈[m],j∈[n] Cijsxiyj if m + n < s ≤ l

(5)

Wlog we assume that A,B,C ≥ 0 and hence D ≥ 0. We consider 0
0 as 0.

Lemma 16. If d = (x|y|z) is a SNE of game D then (σ(x), σ(y), σ(z))
is a NE of G(a, b, c) where a =

maxs≤m

∑
jk Asjkyjzk

σ(y)σ(z) , b =
maxs≤n

∑
i,k Biskxizk

σ(x)σ(z) ,

c =
maxs≤p

∑
i,j Cijsxiyj

σ(x)σ(y) .

Lemmas 15 and 16 imply that at any SNE d = (x|y|z), all three components
x,y,z of the strategy profile are non-zero. Next we show that normalizing each
gives a NE of the original game (A,B,C).

Lemma 17. If d = (x|y|z) is a SNE of game D, then (η(x), η(y), η(z)) is a
NE of game (A,B,C).

The mapping from SNE of game D to NE of game (A,B,C) established in
Lemma 17 implies that computing SNE in symmetric games is no easier than
computing a NE in normal games. We can extend this reduction to k-Nash (see
[9]). Next, we show a mapping in reverse direction, i.e., from NE of (A,B,C) to
a SNE of D, to obtain ETR-hardness results for a number of decision problems
in symmetric 3-Nash.

Lemma 18. Let (x,y,z) be a NE of (A,B,C), and let (α, β, γ) be a NE
of game G(a, b, c) where a, b, c are set to payoffs of the first, second and third
players respectively at the NE of game (A,B,C). Then d = (αx|βy|γz) is a
SNE of game D.

The next theorem summaries the relation between NE of game (A,B,C) and
SNE of game D, and follows using Lemmas 17 and 18.

Theorem 19. Profile d = (x|y|z) is a SNE of game D iff (η(x), η(y), η(z))
is a NE of game (A,B,C).

We showed a number of ETR-completeness results for 3-Nash in Section 3.
Since, support of NE remains intact in the reduction from 3-Nash to symmetric
3-Nash as shown in Theorem 19, next we show ETR-completeness of Subset
and Superset problems for symmetric 3-Nash.

ETR-Completeness for Decision Versions of Multi-player (Symmetric) NE 565

Theorem 20. Given a symmetric game D and a subset T ⊂ S, it is ETR-
complete to check if there exists a SNE x s.t. xs > 0, ∀s ∈ T (Subset).

The next theorem follows similarly using Theorems 12 and 19.

Theorem 21. Given a symmetric game D and a subset T ⊂ S, it is ETR-
complete to check if there exists a SNE x s.t. xs = 0, ∀s ∈ S \ T (Superset).

Even though Theorem 19 reduces 3-Nash, which is known to be FIXP-
complete [7], to symmetric 3-Nash, we do not get FIXP-harness for the latter.
This is because to obtain a solution, say x, of former requires division among the
coordinates of a solution, say d, of latter. While FIXP reduction requires that
every xi is a linear function of some dj , with rational coefficients (because of irra-
tional solutions). Instead, we show FIXPa-completeness for symmetric 3-Nash
which always has a rational solution (see [9]), and obtain the following.

Theorem 22. Symmetric 3-Nash is FIXPa-complete.

Since there is no trivial extension of symmetric 3-player game to symmetric
k-player game, we can extend Theorems 20, 21 and 22 to symmetric k-Nash,
and get the following.

Theorem 23. For symmetric k-Nash, problems Subset and Superset are
ETR-complete, where k ≥ 3 is a constant.

Theorem 24. For a constant k ≥ 3, symmetric k-Nash is FIXPa-complete.

We refer the reader to full-version [9] for a discussion on the significance of our
results and open questions.

References

1. Babichenko, Y.: Query complexity of approximate Nash equilibria. In: STOC,
pp. 535–544 (2014)

2. Canny, J.: Some algebraic and geometric computations in PSPACE. In: STOC,
pp. 460–467 (1988)

3. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player
Nash equilibria. Journal of the ACM 56(3) (2009)

4. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In:
FOCS, pp. 261–272 (2006)

5. Conitzer, V., Sandholm, T.: New complexity results about Nash equilibria. Games
and Economic Behavior 63(2), 621–641 (2008)

6. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)

7. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other
fixed points. SIAM Journal on Computing 39(6), 2531–2597 (2010)

8. Garg, J., Mehta, R., Vazirani, V.V.: Dichotomies in equilibrium computation, and
complementary pivot algorithms for a new class of non-separable utility functions.
In: ACM Symposium on the Theory of Computing, pp. 525–534 (2014)

566 J. Garg et al.

9. Garg, J., Mehta, R., Vazirani, V.V., Yazdanbod, S.: ETR-completeness for decision
versions of multi-player (symmetric) nash equilibria (2015). http://www.cc.gatech.
edu/∼vazirani/3NASH.pdf

10. Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considera-
tions. Games Econ. Behav. 1, 80–93 (1989)

11. Jiang, A.X., Leyton-Brown, K.: Polynomial-time computation of exact correlated
equilibrium in compact games. In: ACM EC, pp. 119–126 (2011)

12. Lemke, C.E., Howson Jr., J.T.: Equilibrium points of bimatrix games. SIAM J. on
Applied Mathematics 12(2), 413–423 (1964)

13. Nash, J.F.: Non-cooperatie games. Annals of Mathematics 54(2), 286–295 (1951)
14. Papadimitriou, C.H.: http://www.cs.berkeley.edu/∼christos/agt11/notes/lect3.

pdf
15. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-

cient proofs of existence. JCSS 48(3), 498–532 (1994)
16. Papadimitriou, C.H., Roughgarden, T.: Computing equilibria in multi-player

games. In: SODA, pp. 82–91 (2005)
17. Savani, R., von Stengel, B.: Hard-to-solve bimatrix games. Econometrica 74(2),

397–429 (2006)
18. Schaefer, M., Štefankovič, D.: Fixed points, Nash equilibria, and the existential

theory of the reals. manuscript (2011)

http://www.cc.gatech.edu/~vazirani/3NASH.pdf
http://www.cc.gatech.edu/~vazirani/3NASH.pdf
http://www.cs.berkeley.edu/~christos/agt11/notes/lect3.pdf
http://www.cs.berkeley.edu/~christos/agt11/notes/lect3.pdf

Separate, Measure and Conquer: Faster
Polynomial-Space Algorithms for Max 2-CSP

and Counting Dominating Sets

Serge Gaspers1(B) and Gregory B. Sorkin2

1 UNSW Australia and NICTA, Sydney, Australia
sergeg@cse.unsw.edu.au

2 London School of Economics, London, UK
g.b.sorkin@lse.ac.uk

Abstract. We show a method resulting in the improvement of several
polynomial-space, exponential-time algorithms. The method capitalizes
on the existence of small balanced separators for sparse graphs, which
can be exploited for branching to disconnect an instance into independent
components. For this algorithm design paradigm, the challenge to date
has been to obtain improvements in worst-case analyses of algorithms,
compared with algorithms that are analyzed with advanced methods,
such as Measure and Conquer. Our contribution is the design of a gen-
eral method to integrate the advantage from the separator-branching
into Measure and Conquer, for an improved running time analysis.

We illustrate the method with improved algorithms for Max (r, 2)-
CSP and #Dominating Set. For Max (r, 2)-CSP instances with
domain size r and m constraints, the running time improves from
rm/6 to rm/7.5 for cubic instances and from r0.19·m to r0.18·m for gen-
eral instances, omitting subexponential factors. For #Dominating Set
instances with n vertices, the running time improves from 1.4143n to
1.2458n for cubic instances and from 1.5673n to 1.5183n for general
instances. It is likely that other algorithms relying on local transfor-
mations can be improved using our method, which exploits a non-local
property of graphs.

1 Introduction

Graph separators have been used for divide-and-conquer algorithms since the
70s [21]. For classes of instances with sublinear separators, e.g., planar graphs,
this often gives subexponential- or polynomial-time algorithms. It is natural to
design a branching strategy that strives to disconnect an instance into compo-
nents, even when no sublinear separators are known. While this has successfully
been done experimentally [3,4,11,17,20], we are not aware of worst-case analy-
ses of branching algorithms that are based on linear separators. Our algorithms
exploit small separators, specifically, balanced separators of size about n/6 for
cubic graphs of order n. Their existence is known since 2001, they have been used

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 567–579, 2015.
DOI: 10.1007/978-3-662-47672-7 46

568 S. Gaspers and G.B. Sorkin

in pathwidth-based algorithms using exponential time and exponential space,
and it is natural to try to exploit them for polynomial-space algorithms.

We now introduce the main separation results. We use standard graph nota-
tion from [5]. In a graph G = (V,E), the contraction of an edge uv ∈ E is an
operation replacing u and v by one new vertex cuv that is adjacent to NG({u, v}).
The graph G is cubic or 3-regular if each vertex has degree 3 and subcubic if
each vertex has degree at most 3.

Let (L, S,R) be a partition of the vertex set of a graph G such that there is
no edge in G with one endpoint in L and the other endpoint in R. We say that
(L, S,R) is a separation of G, and that S is a separator of G, separating L and
R. The following lemma follows from results in [9,22].

Lemma 1. For any subcubic graph G with n vertices, a separation (L, S,R)
with |S| ≤ n

6 + o(n) and |L| , |R| ≤ n−|S|+1
2 can be computed in polynomial time.

A direct application of branching on the vertices in such a separator yields
algorithms inferior to existing Measure and Conquer ones. Our improvements
have their origin in a simple observation: if an algorithm can always branch on
vertices in the separator, then the usual measure of improvement is achieved at
each step, and the splitting of the graph into two parts when the separator is
emptied is a bonus. We get the best of both. The technical challenges are to
amortize this bonus over the previous branches to prove a better running time,
and to control the balance of the separation as the algorithm proceeds so that
the bonus is significant.

We illustrate for cubic Max 2-CSP. We will be optimistic in this sketch,
doing the analysis rigorously in Section 2. The problem class will also be defined
there, but for now one may think of Max Cut, with domain size r = 2. Let
us “pivot” on a vertex v ∈ S, i.e., sequentially assign it each possible value,
eliminate it and its incident edges (see rule R3 below), and solve each case
recursively. It is possible that v has neighbors within S, but this is a favorable
case, reducing the number of subsequent branches needed. So, suppose that v
has neighbors only in L and R. If all neighbors were in one part, the separator
could be made smaller, so let us skip over this case as well. The cases of interest,
then, are when v has two neighbors in L and one in R, or vice-versa. Suppose
that these cases occur equally often; this is the bit of optimism that will require
more care to get right. In that case, after all |S| branchings, the sizes of L and
R are each reduced by 3

2 |S|, since degree-2 vertices get contracted away. This
would lead to a running time bound t(n) satisfying the recurrence

t(n) = rn/6 · 2t(5
12n − 3

2 · 1
6n),

leading to a solution with t(n) = O�(rn/5). This conjectured bound would
improve on the best previous time bound of O�(rn/4), and Section 2 establishes
that the bound is true, modulo a subexponential factor in the running time.

Our algorithms exploit a global graph structure, the separator, while execut-
ing an algorithm based on local simplification and branching rules. The use of
global structure may also make it possible to circumvent lower bounds for classes
of algorithms restricted to local information [1,2].

Separate, Measure and Conquer: Faster Polynomial-Space Algorithms 569

Results. Section 2 gives a first analysis of a separator-based algorithm. It solves
cubic instances of Max 2-CSP in time r(1/5+o(1))n, where n is the number of
vertices, improving on the previously fastest O�(rn/4) time polynomial-space
algorithm [25]. By [25, Theorem22], this cubic result allows solution of general
instances of Max 2-CSP in time r(9/50+o(1))m, improving on the previously
fastest O�(r(19/100)m) polynomial-space algorithm [25]. The latter improvement
holds also for Max Cut, an important special case of Max 2-CSP, and for
Polynomial and Ring CSP, generalizations encompassing graph bisection, the
Ising model, and counting problems (see [26]).

While Max 2-CSP is a central problem in exponential-time algorithms, the
analysis of its branching algorithms is typically easier than for other problems,
largely because the branching creates isomorphic subinstances. In Section 3,
we develop the Separate, Measure and Conquer method in full generality, and
use this in Section 4 to design faster polynomial-space algorithms for counting
dominating sets. For graphs with maximum degree 3, we obtain an algorithm
with a time bound of 3(1/5+o(1))n = O(1.2458n), improving on the previous best
O�(2(1/2)n) = O(1.4143n) [19]. For general graphs, we obtain a different algo-
rithm, with time bound O(1.5183n), improving on the previous best O(1.5673n)
[27]. For details and proofs omitted from this conference version, see [14].

2 Max 2-CSP

Using the notation from [25], an instance (G,S) of Max 2-CSP (also called
Max (r, 2)-CSP) is given by a constraint graph G = (V,E) and a set S of
score functions. Writing [r] = {1, ..., r} for the set of available vertex colors, we
have a dyadic score function se : [r]2 → R for each edge e ∈ E, a monadic
score function sv : [r] → R for each vertex v ∈ V , and a single niladic score
“function” s∅ : [r]0 → R which is just a constant convenient for bookkeeping. A
candidate solution is a function φ : V → [r] assigning colors to the vertices (φ is
an assignment or coloring), and its score is

s(φ) := s∅ +
∑

v∈V

sv(φ(v)) +
∑

uv∈E

suv(φ(u), φ(v)).

An optimal solution φ is one which maximizes s(φ).
Let us recall the reductions from [25]. R0–R2 are simplification rules, creating

one subinstance, and R3 is a branching rule, creating r subinstances. An optimal
solution for (G,S) can be found in polynomial time from optimal solutions of
the subinstances.

R0 If d(y) = 0, then set s∅ = s∅ + maxC∈[r] sy(C) and delete y from G.
R1 If N(y) = {x}, then replace the instance with (G′, S′) where G′ =

(V ′, E′) = G − y and S′ is the restriction of S to V ′ and E′ except that
for all C ∈ [r] we set

s′
x(C) = sx(C) + max

D∈[r]
{sxy(C,D) + sy(D)}.

570 S. Gaspers and G.B. Sorkin

R2 If N(y) = {x, z}, then replace the instance with (G′, S′) where G′ =
(V ′, E′) = (V − y, (E \ {xy, yz}) ∪ {xz}) and S′ is the restriction of S to V ′

and E′, except that for C,D ∈ [r] we set

s′
xz(C,D) = sxz(C,D) + max

F∈[r]
{sxy(C,F) + syz(F,D) + sy(F)}

if there was already an edge xz, discarding the first term sxz(C,D) otherwise.
R3 Let y be a vertex of degree at least 3. There is one subinstance (G′, sC) for

each color C ∈ [r], where G′ = (V ′, E′) = G − y and sC is the restriction of
s to V ′ and E′, except that we set

(sC)∅ = s∅ + sy(C), and (sC)x(D) = sx(D) + sxy(D,C)

for every neighbor x of y and every D ∈ [r].

We will now describe a new separator-based algorithm for cubic Max 2-CSP,
outperforming the algorithm from [25]. Using it as a subroutine in the algorithm
for general instances [25] also gives a faster running time for Max 2-CSP.

2.1 Background

For a cubic instance of Max 2-CSP, an instance whose constraint graph G is
3-regular, the fastest known polynomial-space algorithm makes simple use of the
reductions above. The algorithm branches on a vertex v of degree 3, giving r
instances with a common constraint graph G′, where v has been deleted. In G′,
the three G-neighbors of v each have degree 2. Simplification rules are applied
to rid G′ of degree-2 vertices, and further vertices of degree 0, 1, or 2 that may
result, until the constraint graph becomes another cubic graph G′′. This results in
r instances with the common constraint graph G′′, to which the same algorithm
is applied recursively. The running time of the algorithm is exponential in the
number of branchings, and since each branching destroys 4 degree-3 vertices (the
pivot vertex v and its three neighbors), the running time is bounded by O�(rn/4);
details may be found in [24].

Here, we break this rn/4 barrier by selecting pivot vertices using global prop-
erties of the graph. Our algorithm pivots only on vertices in a separator; when
the separator is exhausted, G has been split into components L and R which can
be solved independently. The efficiency gain comes from the component splitting:
if the time to solve an instance with n vertices is O�(rcn), the time to solve an
instance consisting of components L and R is O�(rc|L|) + O�(rc|R|), which (for
L and R of comparable sizes) is hugely less than the time bound O�(rc(|L|+|R|))
for a single component of the same total order. This efficiency gain comes at no
cost: until the separator is exhausted, branching on vertices in the separator is
just as efficient as branching on any other vertex.

2.2 Analysis

To analyze the algorithm, we use the Measure and Conquer method. Our measure
associates a non-negative real to each instance. As in [13], we use penalty terms in

Separate, Measure and Conquer: Faster Polynomial-Space Algorithms 571

the measure to treat tricky cases. We also take from [25] and [13] the treatment
of vertices of degrees 1 and 2 within the Measure and Conquer framework.

Recall [8,12,13] that the Measure and Conquer analysis applies to an algo-
rithm which polynomially transforms an instance I to one or more instances
I1, . . . , Ik, solves those instances recursively, and obtains a solution to I in poly-
nomial time from the solutions of I1, . . . , Ik. The measure μ(I) of an instance I
should satisfy that for any instance,

μ(I) ≥ 0, (1)

and for any transformation of I into I1, . . . , Ik,

rμ(I1) + · · · + rμ(Ik) ≤ rμ(I). (2)

Given these hypotheses, the algorithm solves any instance I in time O�(rμ(I))
if the number of recursive calls from the root to a leaf of the search tree is
polynomial.

Here, we present an instance of Max 2-CSP in terms of a separation (L, S,R)
of its constraint graph G = (V,E). We write L3, S3, and R3 for the subsets of
degree-3 vertices of L, S, and R, respectively, and we will always assume that
|L3| ≤ |R3|, if necessary swapping the roles of L and R to make it so. We
write |S2| for the number of degree-2 vertices in S. We define the measure of an
instance as

μ(L, S,R) = ws|S3| + ws,2|S2| + wr|R3| + wb1(|R3| = |L3|)
+ wc1(|R3| = |L3| + 1) + wd log3/2(|R3| + |S3|), (3)

where the values ws, ws,2, wr, wb, wc, and wd are constants to be determined
and the indicator function 1(event) takes the value 1 if the event is true and 0
otherwise. For the constraint (1) that μ ≥ 0, it suffices to constrain each of the
constants to be nonnegative:

ws, ws,2, wr, wb, wc, wd ≥ 0. (4)

Intuitively, the terms wb and wc are the only representations of the size of L
in μ, and account for the greater time needed when the left side is as large (or
nearly as large) as the right. The logarithmic term offsets increases in penalty
terms that may result when a new separator is computed, where the instance
may go from imbalanced to balanced.

Concretely, from (2), each reduction imposes a constraint on the measure. We
treat the reductions in their order of priority: when presenting one reduction, we
assume that no previous reduction can be applied. Denote by μ the value of the
measure before the reduction is applied and by μ′ its value after the reduction.

Degree 0. If the instance contains a vertex v of degree 0, then perform R0 on
v. Removing v has no effect on the measure and Condition (2) is satisfied.

572 S. Gaspers and G.B. Sorkin

Half-edge deletion. A half-edge deletion occurs when the degree of a vertex v
decreases. We will require that a degree decrease does not increase the measure,
which will validate R1, the collapse of parallel edges, and R2 for vertices in L∪R.
If d(v) ≤ 2, Condition (2) is satisfied since ws,2 ≥ 0 by (4), and v only affects
the measure if v ∈ S and d(v) = 2. Now, assume d(v) = 3. Taking into account
changes in imbalance, and separately analyzing the cases where v is in L, S, and
R, we obtain the constraints:

−wb + wc ≤ 0 (5)
−ws + ws,2 ≤ 0 (6)

−wr + wc ≤ 0 (7)
and − wr + wb − wc ≤ 0. (8)

Separation. This reduction is the only one special to separation, and its con-
straint looks quite different from those in previous works. The reduction applies
when S = ∅, which arises in two cases. One is at the beginning of the algorithm,
when the instance has not been separated, and may be represented by the trivial
separation (∅, ∅, V). The second is when reductions on separated instances have
exhausted the separator, so that S is empty but L and R are nonempty, and the
instance is solved by solving the instances on L and R independently, via a new
separation (L′, S′, R′) for R and another such separation (L′′, S′′, R′′) for L. The
reduction is applied to a graph G = (V,E) that is cubic and can be assumed
to be of at least some constant order, |V | ≥ k, since a smaller instance can be
solved in constant time. By Lemma 1 we know that, for any constant ε > 0,
there is a size k = k(ε) such that any cubic graph G of order at least k has a
separation (L, S,R) with |S| ≤ (16 + ε)|V | , |S|, |R| ≤ 5

12 |V |. From (2), making
worst-case assumptions about balance, it suffices to constrain that

rws|S′
3|+wr|R′

3|+wb+wd log(|R′
3|+|S′

3|)+rws|S′′
3 |+wr|R′′

3 |+wb+wd log(|R′′
3 |+|S′′

3 |)

≤ rwr|R3|+wd log(|R3|).

From the separator properties, this in turn is implied by

2 · rws(1/6+ε)|R3|+wr(5/12·|R3|)+wb+wd log(8/12·|R3|) ≤ rwr|R3|+wd log(|R3|),

where we have estimated |L′
3|, |R′

3| ≤ 5
12 |R3| and |S′

3| ≤ (16 + ε)|R3| ≤ 3
12 |R3| in

the log term on the left hand side. Since r ≥ 2, it suffices to constrain that

1 + ws(16 + ε)|R3| + wr(5
12 |R3|) + wb + wd log(8

12 |R3|) ≤ wr|R3| + wd log(|R3|).

Taking 3
2 = 12

8 to be the logarithm’s base and setting wd = wb +1, the left term
wd log(8

12 |R3|) is equal to −(wb + 1) + (wb + 1) log(|R3|), and it suffices to have

(16 + ε)ws + 5
12wr ≤ wr. (9)

Degree 2 in S. If the instance has a vertex s ∈ S of degree 2, then perform R2
on s. Let N(s) = {u1, u2}. The vertex s is removed and the edge u1u2 is added
if it was not present already. If L or R contain no neighbor of s, Condition (2)
is implied by the constraints of the half-edge deletions. If u1 ∈ L and u2 ∈ R (or

Separate, Measure and Conquer: Faster Polynomial-Space Algorithms 573

the symmetric case), then S is not a separator any more. The algorithm removes
u2 from R and adds it to S. If d(u2) = 2, we have that μ′ − μ ≤ 0. Otherwise,
d(u2) = 3 and μ′ − μ ≤ −ws,2 + ws − wr + max(0, wc, wb − wc). Since wc ≥ 0 by
(4) it suffices to constrain

−ws,2 + ws − wr + wc ≤ 0 (10) and − ws,2 + ws − wr + wb − wc ≤ 0. (11)

No neighbor in L. If the separation (L, S,R) has a vertex v ∈ S with no
neighbor in L, “drag” v into R, i.e., transform the instance by changing the
separation to (L′, S′, R′) := (L, S \ {v}, R ∪ {v}). It is easily checked that this
is a valid separation, and with |L′

3| ≤ |R′
3| implied by |L3| ≤ |R3|. Indeed the

new instance is no more balanced than the old, so that the difference between
the new and old measures is μ′ − μ ≤ −ws + wr, and to satisfy condition (2) it
suffices that

−ws + wr ≤ 0, (12)

since by (4) and (5) an increase in imbalance does not increase the measure.

No neighbor in R. A vertex v ∈ S with no neighbor in R is dragged into L.
The case where |R3| = |L3| is covered by the previous case, reversing the roles
of L and R. Otherwise, |R3| ≥ |L3|+1, and μ′ −μ ≤ −ws +max(0, wc, wb −wc).
We constrain that

−ws + wc ≤ 0 (13) and − ws + wb − wc ≤ 0. (14)
With the above cases covered, we may assume that the pivot vertex s ∈ S
has degree 3 and at least one neighbor in each of L and R.

One neighbor in each of L, S, and R. To branch on a vertex s ∈ S with one
neighbor in each of L, S, and R, perform R3 on s, deleting it from the constraint
graph. Since both L and R lose a degree-3 vertex, there is no change in balance
and the constraint is

1 − 2ws + ws,2 − wr ≤ 0. (15)

The form and the initial 1 come from the reduction’s generating r instances with
common measure μ′, so the constraint is r·rμ′ ≤ rμ, or equivalently 1+μ′−μ ≤ 0.
The value of μ′ − μ comes from S losing two degree-3 vertices but gaining a
degree-2 vertex, and R losing a degree-3 vertex.

Two neighbors in L. If s ∈ S has two neighbors in L and one neighbor in
R, applying R3 removes s, reduces the degree of a degree-3 vertex in R, and
increases the imbalance by one. The algorithm performs R3 if |R3| ≤ |L3| + 1,
where μ′ − μ ≤ −ws − wr + max(−wb + wc,−wc). Thus, we constrain

1 − ws − wr − wb + wc ≤ 0 (16) and 1 − ws − wr − wc ≤ 0. (17)
If, instead, |R3| ≥ |L3| + 2, then the algorithm drags s into L and its neigh-
bor r ∈ R into S, replacing (L, S,R) by (L ∪ {s}, (S \ {s}) ∪ {r}, R \ {r}). We

574 S. Gaspers and G.B. Sorkin

need to ensure that −wr + max(wb, wc) ≤ 0, which, since wc ≤ wb by (5), is
satisfied if we constrain

−wr + wb ≤ 0. (18)

Two neighbors in R. If s ∈ S has two neighbors in R and one neighbor
in L, the algorithm performs R3, which removes s, reduces the degree of two
degree-3 vertices in R, and decreases the imbalance by one. For the case where
|R3| = |L3|, we refer to (16) since L and R are swapped after the reduction. For
the other cases, we constrain

1 − ws − 2wr − wc + wb ≤ 0 (19) and 1 − ws − 2wr + wc ≤ 0. (20)
This describes all the constraints on the measure. To minimize the running time
proven by the analysis, we minimize wr, obtaining the following optimal, feasible
weights:

wr = 0.2 + ε ws = 0.7 ws,2 = 0.6 wb = 0.2 wc = 0.1.

All constraints are satisfied and μ ≤ (0.2 + ε)n = (1/5 + o(1))n.
It only remains to verify that the depth of the search trees is polynomial.

Since not every reduction removes a vertex (some only modify the separation
(L, S,R)), it is crucial to guarantee some kind of progress for each reduc-
tion. Since each reduction decreases another polynomially-bounded measure
η(L, S,R,E) := 3|S3| + 2|R3| + |L3| + 2|E|, by at least one, the depth of the
search trees is indeed polynomial.

Theorem 1. On input of a Max 2-CSP instance on a constraint graph G with
n vertices and m edges, the described algorithm solves G in time rn/5+o(n) =
r2m/15+o(m) if G is cubic, time r7m/40+o(m) if G has maximum degree 4, and
time r9m/50+o(m) in general, using polynomial space.

This improves on the previous best running times [25] of O�(rm/6), O�(r3m/16),
and O�(r19m/100). The same improvements also hold for Max Cut, an important
special case of Max (2, 2)-CSP. Theorem 1 extends instantly to Polynomial
CSP and Ring CSP, where the scores are multivariate formal polynomials, or
take values in an arbitrary ring. The setting is precisely defined in [26], and the
extensions follow immediately from the fact that the algorithm here depends
only on R0–R3. Plugging our algorithm into the analysis of [16] also improves
that running time from O�(rn·(1− 3

d+1)) to rn·(1− 3.3
d+1)+o(n) for any Max 2-CSP

instance with n vertices and average degree d ≥ 5.

3 The Separate, Measure and Conquer Technique

Our Max 2-CSP algorithm illustrates that one can exploit separator-based
branching to design a more efficient exponential-time algorithm. However, Max
2-CSP algorithms have certain features that make the analysis simpler than for

Separate, Measure and Conquer: Faster Polynomial-Space Algorithms 575

other problems. First, R3 produces instances with the same constraint graph,
and therefore the same measure. Second, the measure of R depends only on the
number of degree-3 vertices in R. This implies a discretized change in the measure
for R whenever L and R are swapped. In general the change in measure when
swapping L and R could take values dense within a continuous domain. Our
measure for the Max 2-CSP algorithm also implies that the initial separator
only needs to balance the number of vertices in L and R instead of the measure
of L and R, which is what is needed more generally. Finally, a general method is
needed to combine the separator-based branching, which would typically be done
for sparse instances, with the general case, where vertex degrees are arbitrary.

Our general method of analysis resolves all the complications mentioned.
It applies to recursive algorithms that label vertices of a graph, and where an
instance can be decomposed into two independent subinstances when all the
vertices of a separator have been labeled in a certain way. Let G = (V,E) be
a graph and � : V → L be a labeling of its vertices by labels in the finite set
L. For a subset of vertices W ⊆ V , denote by μr(W) and μs(W) two measures
for the vertices in W in the graph G labeled by �. The measure μr is used for
the vertices on the right hand side of the separator and μs for the vertices in
the separator. Let (L, S,R) be a separation of G. Initially, we use the separation
(L, S,R) = (∅, ∅, V). We define the measure

μ(L, S,R) = μs(S) + μr(R) + max
(

0, B − μr(R) − μr(L)
2

)

+ (1 + B) · log1+ε(μr(R) + μs(S)), (21)

where ε > 0 is a constant that will be chosen small enough to satisfy constraint
(24) below, and B is an arbitrary constant greater than the maximum change in
imbalance in each transformation in the analysis, except the Separation trans-
formation. The imbalance of an instance is μr(R) − μr(L), and we assume, as
previously, that

μr(R) ≥ μr(L). (22)

To make sure a balanced separator can be computed efficiently, we will assume
that adding a vertex to R changes μr(R) by at most B (adjusting B if necessary):

|μr(R ∪ {v}) − μr(R)| ≤ B for each R ⊆ V and v ∈ V. (23)

We also assume that μr(R) can be computed in time polynomial in |V | for each
R ⊆ V .

Let us now look more closely at the measure (21). The terms μs(S) and μr(R)
naturally define measures for the vertices in S and R. No term of the measure
directly accounts for the vertices in L; we merely enforce that μr(R) ≥ μr(L).
The term max

(
0, B − μr(R)−μr(L)

2

)
is a penalty term based on how balanced

the instance is: the more balanced the instance, the larger the penalty term. The
penalty term has become continuous, varying from 0 to B. The final logarithmic

576 S. Gaspers and G.B. Sorkin

term amortizes the increase in measure of at most B due to the balance terms
each time the instance is separated.

Let us now formulate some generic constraints that the measure should obey.

Separation. We assume that an instance with a separation (L, S,R) can be
separated into two independent subinstances (L, S, ∅) and (∅, S,R) when the
labeling of S allows it; specifically, when all vertices in S have been labeled by
a subset Ls ⊆ L. This arises in two cases. The first is at the beginning of the
algorithm when the graph has not been separated, which is represented by the
trivial separation (∅, ∅, V). The second is when our reductions have produced a
separable instance.

Let (L, S,R) be such that �(s) ∈ Ls for each s ∈ S. The algorithm recur-
sively solves the subinstances (L, S, ∅) and (∅, S,R). Let us focus on the instance
(∅, S,R); the treatment of the other instance is symmetric. After a cleanup phase,
where simplification rules are applied, the next step is to compute a new separa-
tor of S∪R. This can be done in various ways, depending on the graph class. For
example, polynomial-time computable balanced separators can be derived from
upper bounds on the pathwidth of graphs with bounded maximum or average
degree [6,7,12]. After a balanced separator (L′, S′, R′) has been computed for
S∪R, the instance is solved recursively, and so is the instance L∪S, separated into
(L′′, S′′, R′′). Both solutions are then combined into a solution for the instance
L ∪ S ∪ R. Without loss of generality, assume μ(L′, S′, R′) ≥ μ(L′′, S′′, R′′).
Assuming that the separation and combination are done in polynomial time, the
imposed constraint on the measure is

2 · 2μr(R
′)+μs(S

′)+B+(1+B)·log1+ε(μr(R
′)+μs(S

′))

≤ 2μr(R)+μs(S)+(1+B)·log1+ε(μr(R)+μs(S)).

To satisfy the constraint, it suffices to constrain that

μr(R) + μs(S) ≥ (1 + ε)(μr(R′) + μs(S′)). (24)

This is the only constraint involving the size of a separation. It constrains that
separating (∅, S,R) to (L′, S′, R′) should reduce μr(R) + μs(S) by a constant
factor, namely 1 + ε.

Branching. Suppose a transformation taking (L, S,R, �) to (L′, S′, R′, �′)
decreases μr(R)+μr(L) by d. Since the measure includes roughly (and at least)
half of μr(R) + μr(L), ideally μr(R) + max

(
0, B − μr(R)−μr(L)

2

)
decreases by

d/2. One can show that this is indeed the case for our measure if the the following
condition holds:

If μr(R) − μr(L) > B, then μr(R) − μr(R′) ≥ μr(L) − μr(L′) . (25)

Condition (25) is very natural, expressing that, if the instance is imbalanced or
risks becoming imbalanced we would like to make more progress on the large
side. Thus, if Condition (25) holds, then the analysis is at least as good as a
non-separator based analysis, but with the additional improvement due to the
separator branching.

Separate, Measure and Conquer: Faster Polynomial-Space Algorithms 577

Integration into a standard Measure and Conquer analysis. The Sepa-
rate, Measure and Conquer analysis will typically be used when the instance has
become sufficiently sparse that one can guarantee that a small separator exists.
We can view the part played by the Separate, Measure and Conquer analysis
as a subroutine with measure μ′, and integrate it into any other Measure and
Conquer analysis with different measure μ. We only need guarantee that the
measure of an instance does not increase when transitioning to the subroutine,
by constraining that μ′(I) ≤ μ(I) for all instances I [12].

4 Counting Dominating Sets

The #DS problem is to compute, for a given graph G, the function d such
that d(k) is the number of dominating sets of G of size k. Its current fastest
polynomial-space algorithm runs in time O(1.5673n) [27]. While many algo-
rithms for domination problems rely on a transformation to Set Cover, the
current fastest polynomial-space algorithm for subcubic graphs works directly
on the input graph and runs in time O�(2n/2) [19]. We can apply the Separate,
Measure and Conquer method to design and analyze faster algorithms for #DS
for subcubic graphs and, separately, for general graphs.

Theorem 2. #DS can be solved in time 3n/5+o(n) on subcubic graphs and in
time O(1.5183n) on general graphs, using only polynomial space.

Our algorithm for subcubic graphs uses a new 3-way branching inspired by the
inclusion/exclusion branching of [28]. The algorithm of [19] had running time
O�(4n/4). Our 3-way branching improves its running time bound to O�(3n/4) =
O(1.3161n). Using separation improves it further to 3n/5+o(n) = O(1.2458n).
Our algorithm for general graphs essentially just adds separation to [27].

5 Conclusions

We have presented a new method to analyze separator-based branching algo-
rithms within the Measure and Conquer framework. It uses a novel kind of
measure that amortizes the sudden large gain when an instance decomposes into
independent subinstances. The key feature needed to apply the method is that
an algorithm eventually reaches instances where small balanced separators can
be computed efficiently. This is so for algorithms that reach sparse graphs in
their final stages, but could also include cases where the treewidth of the graph
is bounded, or where a graph with small treewidth can be reached by branching
on a few vertices [10,15,18].

There are problems for which traditional algorithms are already so fast that
branching on separators does not seem to offer an advantage. For example, the
current fastest algorithm for Maximum Independent Set on subcubic graphs
runs in O(1.0836n) time [29], and merely branching on the vertices of the sepa-
rator would take 2n/6+o(n) = Ω(1.1225n) time. A second limitation is that Sepa-
rate, Measure and Conquer subroutines can often be replaced by treewidth-based

578 S. Gaspers and G.B. Sorkin

dynamic programming subroutines [7], leading to the same or smaller running
times; for example, #DS can be solved in time O(1.5002n) [23]. However, such
algorithms use exponential space.

We believe that the Separate, Measure and Conquer method is widely appli-
cable, but poses fresh challenges, as it presents more choices in the design of
algorithms and more complications in the analysis. It also provides impetus to
looking for other global properties that may be exploited to derive efficient algo-
rithms.

Acknowledgments. The research was supported in part by the DIMACS 2006–
2010 Special Focus on Discrete Random Systems, NSF grant DMS-0602942. Serge
Gaspers is the recipient of an Australian Research Council Discovery Early Career
Researcher Award (project number DE120101761) and a Future Fellowship (project
number FT140100048). NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research Council through the ICT
Centre of Excellence Program. The research was done in part at Dagstuhl Seminars
10441 (Exact Complexity of NP-hard problems, 2010) and 13331 (Exponential Algo-
rithms: Algorithms and Complexity Beyond Polynomial Time, 2013), and was pre-
sented at the latter.

References

1. Achlioptas, D., Sorkin, G.B.: Optimal myopic algorithms for random 3-SAT. In:
Proc. FOCS 2000, pp. 590–600 (2000)

2. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. J. Autom. Reasoning
35(1–3), 51–72 (2005)

3. Biere, A., Sinz, C.: Decomposing SAT problems into connected components. JSAT
2(1–4), 201–208 (2006)

4. Dechter, R., Mateescu, R.: And/or search spaces for graphical models. Artif. Intell.
171(2–3), 73–106 (2007)

5. Diestel, R.: Graph Theory. Springer (2010)
6. Edwards, K., McDermid, E.: A general reduction theorem with applications to

pathwidth and the complexity of MAX 2-CSP. Algorithmica. (to appear)
7. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of com-

bining branching and treewidth. Algorithmica 54(2), 181–207 (2009)
8. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the

analysis of exact algorithms. J. ACM 56(5) (2009)
9. Fomin, F.V.: Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inform.

Process. Lett. 97(5), 191–196 (2006)
10. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: approx-

imation, kernelization and optimal FPT algorithms. In: Proc. FOCS 2012,
pp. 470–479 (2012)

11. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in con-
straint satisfaction problems. In: Proc. IJCAI 1985, pp. 1076–1078 (1985)

12. Gaspers, S.: Exponential Time Algorithms - Structures, Measures, and Bounds.
VDM (2010)

13. Gaspers, S., Sorkin, G.B.: A universally fastest algorithm for Max 2-Sat, Max
2-CSP, and everything in between. J. Comput. System Sci. 78(1), 305–335 (2012)

Separate, Measure and Conquer: Faster Polynomial-Space Algorithms 579

14. Gaspers, S., Sorkin, G.B.: Separate, Measure and Conquer: Faster algorithms for
Max 2-CSP and counting dominating sets (2014). arXiv:1404.0753 [cs.DS]

15. Gaspers, S., Szeider, S.: Strong backdoors to bounded treewidth SAT. In: Proc.
FOCS 2013, pp. 489–498 (2013)

16. Golovnev, A., Kutzkov, K.: New exact algorithms for the 2-constraint satisfaction
problem. Theor. Comput. Sci. 526, 18–27 (2014)

17. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artif. Intell. 124(2), 243–282 (2000)

18. Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.:
Linear kernels and single-exponential algorithms via protrusion decompositions.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part I. LNCS, vol. 7965, pp. 613–624. Springer, Heidelberg (2013)

19. Kneis, Joachim, Mölle, Daniel, Richter, Stefan, Rossmanith, Peter: Algorithms
based on the treewidth of sparse graphs. In: Kratsch, Dieter (ed.) WG 2005. LNCS,
vol. 3787, pp. 385–396. Springer, Heidelberg (2005)

20. Li, W., van Beek, P.: Guiding real-world SAT solving with dynamic hypergraph
separator decomposition. In: Proc. ICTAI 2004, pp. 542–548 (2004)

21. Lipton, R.J., Tarjan, R.E.: Application of a planar separator theorem. In: Proc.
FOCS 1977, pp. 162–170 (1977)

22. Monien, B., Preis, R.: Upper bounds on the bisection width of 3- and 4-regular
graphs. J. Discrete Algorithms 4(3), 475–498 (2006)

23. Nederlof, J., van Rooij, J.M.M., van Dijk, T.C.: Inclusion/exclusion meets measure
and conquer. Algorithmica 69(3), 685–740 (2014)

24. Scott, A.D., Sorkin, G.B.: Solving sparse random instances of Max Cut and Max
2-CSP in linear expected time. Comb. Probab. Comput. 15(1–2), 281–315 (2006)

25. Scott, A.D., Sorkin, G.B.: Linear-programming design and analysis of fast algo-
rithms for Max 2-CSP. Discrete Optim. 4(3–4), 260–287 (2007)

26. Scott, A.D., Sorkin, G.B.: Polynomial constraint satisfaction problems, graph bisec-
tion, and the Ising partition function. ACM Trans. Algorithms 5(4), Art. 45, 27
(2009)

27. van Rooij, J.M.M.: Polynomial space algorithms for counting dominating sets
and the domatic number. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS,
vol. 6078, pp. 73–84. Springer, Heidelberg (2010)

28. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets mea-
sure and conquer. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757,
pp. 554–565. Springer, Heidelberg (2009)

29. Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: A simple
maximum independent set algorithm in degree-3 graphs. Theor. Comput. Sci. 469,
92–104 (2013)

http://arxiv.org/abs/1404.0753

Submatrix Maximum Queries in Monge
Matrices Are Equivalent to Predecessor Search

Pawe�l Gawrychowski1(B), Shay Mozes2, and Oren Weimann3

1 University of Warsaw, Warsaw, Poland
gawry@mimuw.edu.pl

2 IDC Herzliya, Herzliya, Israel
smozes@idc.ac.il

3 University of Haifa, Haifa, Israel
oren@cs.haifa.ac.il

Abstract. We present an optimal data structure for submatrix maxi-
mum queries in n×n Monge matrices. Our result is a two-way reduction
showing that the problem is equivalent to the classical predecessor prob-
lem in a universe of polynomial size. This gives a data structure of O(n)
space that answers submatrix maximum queries in O(log log n) time, as
well as a matching lower bound, showing that O(log log n) query-time is
optimal for any data structure of size O(n polylog(n)). Our result settles
the problem, improving on the O(log2 n) query-time in SODA’12, and
on the O(log n) query-time in ICALP’14.

In addition, we show that partial Monge matrices can be handled in
the same bounds as full Monge matrices. In both previous results, partial
Monge matrices incurred additional inverse-Ackerman factors.

1 Introduction

Data structures for range queries and for predecessor queries are among the
most studied data structures in computer science. Given an n × n matrix M ,
a range maximum (also called submatrix maximum) data structure can report
the maximum entry in any query submatrix (a set of consecutive rows and a
set of consecutive columns) of M . Given a set S ⊆ [0, U) of n integers from a
polynomial universe U , a predecessor data structure can report the predecessor
(and successor) in S of any query integer x ∈ [0, U). In this paper, we prove that
these two seemingly unrelated problems are in fact equivalent when the matrix
M is a Monge matrix.

A full version of this paper can be found as Arxiv preprint arXiv:1502.07663.
P. Gawrychowski, S. Mozes, and O. Weimann—PG is currently holding a post-
doctoral position at Warsaw Center of Mathematics and Computer Science. SM and
OW partially supported by Israel Science Foundation grant 794/13. SM partially
supported by the Israeli ministry of absorption.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 580–592, 2015.
DOI: 10.1007/978-3-662-47672-7 47

Submatrix Maximum Queries in Monge Matrices 581

Range Maximum Queries. A long line of research over the last three decades
including [3,9,10,13,20] achieved range maximum data structures of Õ(n2) space
and Õ(1) query time1, culminating with the O(n2)-space O(1)-query data struc-
ture of Yuan and Atallah [20]. In general matrices, this is optimal since rep-
resenting the input matrix already requires Θ(n2) space. In fact, reducing the
additional space to O(n2/c) is known to incur an Ω(c) query-time [5] and such
tradeoffs can indeed be achieved for any value of c [4,5].

However, in many applications, the matrix M is not stored explicitly but any
entry of M can be computed when needed in O(1) time. One such case is when
M is a sparse matrix with N = o(n2) nonzero entries. In this case the problem is
known in computational geometry as the orthogonal range searching problem on
the n×n grid. Various data structures with Õ(N)-space and Õ(1)-query appear
in a long history of results including [2,7,8,11,13]. For a survey on orthogonal
range searching see [18]. Another case where the additional space can be made
o(n2) (and in fact even O(n)) is when the matrix is a Monge matrix.

Range Maximum Queries in Monge Matrices. A matrix M is Monge if
for any pair of rows i < j and columns k < � we have that M [i, k] + M [j, �] ≥
M [i, �] + M [j, k]. Submatrix maximum queries on Monge matrices have various
important applications in combinatorial optimization and computational geome-
try such as problems involving distances in the plane, and in problems on convex
n-gons. See [6] for a survey on Monge matrices and their uses in combinatorial
optimization. Submatrix maximum queries on Monge matrices are used in algo-
rithms that efficiently find the largest empty rectangle containing a query point,
in dynamic distance oracles for planar graphs, and in algorithms for maximum
flow in planar graphs. See [15] for more details.

Given an n×n Monge matrix M it is possible to obtain compact data struc-
tures of only Õ(n) space that can answer submatrix maximum queries in Õ(1)
time. The first such data structure was given by Kaplan, Mozes, Nussbaum and
Sharir [15]. They presented an O(n log n)-space data structure with O(log2 n)
query time. This was improved in [14] to O(n) space and O(log n) query time.

Breakpoints and Partial Monge Matrices. Given an m × n Monge matrix
M , let r(c) be the row containing the maximum element in the c-th column of
M . It is easy to verify that the r(·) values are monotone, i.e., r(1) ≤ r(2) ≤
. . . ≤ r(n). Columns c such that r(c − 1) < r(c) are called the breakpoints of M .
A Monge matrix consisting of m < n rows has O(m) breakpoints, which can be
found in O(n) time using the SMAWK algorithm [1].

Some applications involve partial Monge matrices rather than full Monge
matrices. A partial Monge matrix is a Monge matrix where some of the entries
are undefined, but the defined entries in each row and in each column are contigu-
ous. The total number of breakpoints in a partial Monge matrix is still O(m) [14],
and they can be found in O(n · α(n)) time2 using an algorithm of Klawe and

1 The Õ(·) notation hides polylogarithmic factors in n.
2 Here α(n) is the inverse-Ackerman function.

582 P. Gawrychowski et al.

Kleitman [16]. This was used in [14,15] to extend their solutions to partial Monge
matrices at the cost of an additional α(n) factor to the query time.3

Our Results. In this paper, we fully resolve the submatrix maximum query
problem in n × n Monge matrices by presenting a data structure of O(n) space
and O(log log n) query time. Consequently, we obtain an improved query time
for other applications such as finding the largest empty rectangle containing a
query point. We compliment our upper bound with a matching lower bound,
showing that O(log log n) query-time is optimal for any data structure of size
O(n polylog(n)). In fact, implicit in our upper and lower bound is an equiva-
lence between the predecessor problem in a universe of polynomial size and the
range maximum query problem in Monge matrices. The upper bound essentially
reduces a submatrix query to a predecessor problem, and vice versa, the lower
bound reduces the predecessor problem to a submatrix query problem.

Finally, we extend our result to partial Monge matrices with the exact same
bounds (i.e., O(n) space and O(log log n) query time). Our result is the first to
achieve such extension with no overhead.

Techniques. Let M be an n × n Monge matrix4. Consider a full binary tree T
whose leaves are the rows of M . Let Mu be the submatrix of M composed of all
rows (i.e., leaves) in the subtree of a node u in T . Both existing data structures for
submatrix maximum queries [14,15] store, for each node u in T a data structure
Du. The goal of Du is to answer submatrix maximum queries for queries that
include an arbitrary interval of columns and exactly all rows of Mu. This way, an
arbitrary query is covered in [14,15] by querying the Du structures of O(log n)
canonical nodes of T . An Ω(log n) bound is thus inherent for any solution that
examines the canonical nodes. We overcome this obstacle by designing a stronger
data structure Du. Namely, one that supports queries that include an arbitrary
interval of columns and a prefix of rows or a suffix of rows of Mu. This way, an
arbitrary query can be covered by just two Dus. The idea behind the new design
is to efficiently encode the changes in column maxima as we add rows to Mu one
by one. Retrieving this information is done using weighted ancestor search and
range maximum queries on trees. This is a novel use of these techniques.

For our lower bound, we show that for any set of n integers S ⊆ [0, n2) there
exists an n × n Monge matrix M such that the predecessor of x in S can be
found with submatrix minimum queries on M . The predecessor lower bound
of Pǎtraşcu and Thorup [19] then implies that O(n polylog(n)) space requires
Ω(log log n) query time. We overcome two technical difficulties here: First, M
should be Monge. Second, there must be an O(n polylog(n))-size representation
of M which can retrieve any entry M [i, j] in O(1) time.

Finally, for handling partial Monge matrices, and unlike previous solutions
for this case, we do not directly adapt the solution for the full Monge case to
partial Monge matrices. Instead we decompose the partial Monge matrix into
many full Monge matrices, that can be preprocessed to be queried cumulatively
3 In [15], there was also an additional log n factor to the space.
4 We consider m × n matrices, but for simplicity we sometimes state the results for

n × n matrices.

Submatrix Maximum Queries in Monge Matrices 583

in an efficient way. This requires significant technical work and careful use of the
structure of the decomposition.

Roadmap. In Sect. 2 we present an O(n log n)-space data structure for Monge
matrices that answers submatrix maximum queries in O(log log n) time. In
Sect. 3 we reduce the space to O(n). Our lower bound is given in Sect. 4. The
extension to partial Monge matrices, that we believe is a significant contribution
of our paper, is deferred to the full version due to lack of space.

2 Data Structure for Monge Matrices

Our goal in this section is to construct, for a given m × n Monge matrix M , a
data structure of size O(m log n) that answers submatrix maximum queries in
O(log log n) time. In Sect. 3 we show how to reduce the space from O(n log n)
to O(n) when m = n. We will actually show a stronger result, namely the
structure allows us to reduce in O(1) time a submatrix maximum query into O(1)
predecessor queries on a set consisting of n integers from a polynomial universe.

We denote by pred(m,n) the complexity of a predecessor query on a set of
m integers from a universe {0, . . . , n − 1}. It is well known that there are O(m)
data structures achieving pred(m,n) = min{O(log m), O(log log n)}.

Recall that a submatrix maximum query returns the maximum M [i, j] over
all i ∈ [i0, i1] and j ∈ [j0, j1] for a given i0 ≤ i1 and j0 ≤ j1. We start by answer-
ing the easier subcolumn maximum queries within these space and time bounds.
That is, finding the maximum M [i, j] over all i ∈ [i0, i1] for a given i0 ≤ i1 and j.

We construct a full binary tree T over the rows of M . Every leaf of the tree
corresponds to a single row of M , and every inner node corresponds to the range
of rows in its subtree. To find the maximum M [i, j] over all i ∈ [i0, i1] for a
given i0 ≤ i1 and j, we first locate the lowest common ancestor (lca) u of the
leaves corresponding to i0 and i1 in the tree. Then we decompose the query
into two parts: one fully within the range of rows M� of the left child of u, and
one fully within the range of rows Mr of the right child of u. The former ends
at the last row of M� and the latter starts at the first row of Mr. We equip
every node with two data structures allowing us to answer such simpler subcol-
umn maximum queries. Because of symmetry (if M is Monge, so is M ′, where
M ′[i, j] = M [n+1− i, n+1− j]) it is enough to show how to answer subcolumn
maximum queries starting at the first row.

Lemma 1. Given an m×n Monge matrix M , a data structure of size O(m) can
be constructed in O(m log n) time to answer in O(pred(m,n)) time subcolumn
maximum queries starting at the first row of M .

Proof. Consider queries spanning an entire column c of M . To answer such a
query, we only need to find the corresponding r(c). If we store the breakpoints of
M in a predecessor structure, where every breakpoint c links to its corresponding
value of r(c), a query can be answered with a single predecessor search. More pre-
cisely, to determine the maximum in the c-th column of M , we locate the largest

584 P. Gawrychowski et al.

breakpoint c′ ≤ c, and set r(c) = r(c′). Hence we can construct a data structure
of size O(m) to answer entire column maximum queries in O(pred(m,n)) time.

Let Mi be a Monge matrix consisting of the first i rows of M . By applying the
above reasoning to every Mi separately, we immediately get a structure of size
O(m2) answering subcolumn maximum queries starting at the first row of M in
O(pred(m,n)) time. We want to improve on this by utilizing the dependency of
the structures constructed for different i’s. Namely it can be observed that the
list of breakpoints of Mi+1 is a prefix of the list of breakpoints of Mi to which we
append at most one new element. In other words, if the breakpoints of Mi are
stored on a stack, we need to pop zero or more elements and push at most one new
element to represent the breakpoints of Mi+1. Consequently, instead of storing
a separate list for every Mi, we can succinctly describe the content of all stacks
with a single tree T on at most m+1 nodes. For every i, we store a pointer to a
node s(i) ∈ T , such that the ancestors of s(i) (except for the root) are exactly the
breakpoints of Mi. Whenever we pop an element from the current stack, we move
to the parent of the current node, and whenever we push an element, we create
a new node and make it a child of the current node. Initially, the tree consists of
just the root. Every node is labelled with a column number and by construction
these numbers are strictly increasing on any path starting at the root (the root is
labelled with −∞). Therefore, a predecessor search for j among the breakpoints
of Mi reduces to finding the leafmost ancestor of s(i) whose label is at most j.
This is known as the weighted ancestor problem. Weighted ancestor queries on
a tree of size O(m) are equivalent to predecessor searching on a number of sets
of O(m) total size [17]5, achieving the claimed space and query time bounds.

To finish the proof, we need to bound the construction time. The bottleneck
is constructing the tree T . Let c1 < c2 < . . . < ck for some k ≤ i be the break-
points of Mi. As long as M [i + 1, ck] ≥ M [r(ck), ck] we decrease k by one, i.e.,
remove the last breakpoint. This process is repeated O(m) times in total. If k = 0
we create a new breakpoint c1 = 1. If k ≥ 1 and M [i + 1, ck] < M [r(ck), ck], we
check if M [i + 1, n] ≥ M [r(ck), n]. If so, we need to create a new breakpoint. To
this end, we need to find the smallest j such that M [i+1, j] ≥ M [r(ck), j]. This
can be done in O(log n) using binary search. Consequently, T can be constructed
in O(m log n) time. Then augmenting it with a weighted ancestor structure takes
O(m) time. ��

We apply Lemma 1 twice to every node of the full version tree T . Once for
subcolumn maximum queries starting at the first row and once for queries end-
ing at the last row. Since the total size of all structures at the same level of the
tree is O(m), the total size of our subcolumn maximum data structure becomes
O(m log m), and it can be constructed in O(m log m log n) time to answer queries
in O(pred(m,n)) time. Hence we have proved the following.

Theorem 1. Given an m × n Monge matrix M , a data structure of size
O(m log m) can be constructed in O(m log m log n) time to answer subcolumn
maximum queries in O(pred(m,n)) time.
5 Technically, the reduction adds O(log∗ m) to the query time, but this can be avoided.

Submatrix Maximum Queries in Monge Matrices 585

By symmetry (a transpose of a Monge matrix is Monge) we can answer sub-
row maximum queries (where the query is a single row and a range of columns)
in O(pred(n,m)) time. We are now ready to tackle general submatrix maximum
queries.

At a high level, the idea is identical to the one used for subcolumn maximum
queries: we construct a full binary tree T over the rows of M , where every node
corresponds to a range of rows. To find maximum M [i, j] over all i ∈ [i0, i1]
and j ∈ [j0, j1] for a given i0 ≤ i1 and j0 ≤ j1, we locate the lowest common
ancestor of the leaves corresponding to i0 and i1 and decompose the query into
two parts, the former ending at the last row of M� and the latter starting at the
first row of Mr. Every node is equipped with two data structures allowing us to
answer submatrix maximum queries starting at the first row or ending at the
last row. As before, it is enough to show how to answer submatrix maximum
queries starting at the first row.

Lemma 2. Given an m × n Monge matrix M , and a data structure that
answers subrow maximum queries on M in O(pred(n,m)) time, one can con-
struct in O(m log m) time a data structure consuming O(m) additional space,
that answers submatrix maximum queries starting at the first row of M in
O(pred(m,n) + pred(n,m)) time.

Proof. We extend the proof of Lemma 1. Let c1 < c2 < . . . < ck be the break-
points of M stored in a predecessor structure. For every i ≥ 2 we precompute and
store the value mi = maxj∈[ci−1,ci) M [r(ci−1), j]. These values are augmented
with a (one dimensional) range maximum query data structure. To begin with,
consider a submatrix maximum query starting at the first row of M and ending
at the last row of M , i.e., we need to calculate the maximum M [i, j] over all
i ∈ [1,m] and j ∈ [j0, j1]. We find in O(pred(m,n)) the successor of j0, denoted
ci, and the predecessor of j1, denoted ci′ . There are three possibilities:

1. The maximum is reached for j ∈ [j0, ci),
2. The maximum is reached for j ∈ [ci, ci′),
3. The maximum is reached for j ∈ [ci′ , j1).

The first and the third possibilities can be calculated with subrow maximum
queries in O(pred(n,m)), because both ranges span an interval of columns and a
single row. The second possibility can be calculated with a range maximum query
on the range (i, i′]. Consequently, we can construct a data structure of size O(m)
to answer such submatrix maximum queries in O(pred(m,n)+pred(n,m)) time.

The above solution can be generalized to queries that start at the first row of
M but do not necessarily end at the last row of M . This is done by considering
the Monge matrices Mi consisting of the first i rows of M . For every such matrix,
we need a predecessor structure storing all of its breakpoints, and additionally
a range maximum structure over their associated values. Hence now we need to
construct a similar tree T as in Lemma 1 on O(m) nodes, but now every node has
both a weight and a value. The weight of a node is the column number of the cor-
responding breakpoint ck, and the value is its mk (or undefined if k = 1). As in
Lemma 1, the breakpoints of Mi are exactly the ancestors of the node s(i). Note

586 P. Gawrychowski et al.

that every mk is defined in terms of ck−1 and ck, but this is not a problem because
the predecessor of a breakpoint does not change during the whole construction.
We maintain a weighted ancestor structure using the weights (in order to find
ci and ci′ in O(pred(m,n)) time), and a generalized range maximum structure
using the values. A generalized range maximum structure of a tree T , given two
query nodes u and v, returns the maximum value on the unique u-to-v path in
T . It can be implemented in O(m) space and O(1) query time after O(m log m)
preprocessing [10] once we have the values. The values can be computed with
subrow maximum queries in O(m · pred(n,m)) = O(m log m) total time. ��

By applying Lemma 2 twice to every node of the full binary tree T , we
construct in O(m log2 m) time a data structure of size O(m log m) to answer
submatrix maximum queries in O(pred(m,n) + pred(n,m)) time. In order to
apply Lemma 2 to a node of T we need a subrow maximum query data struc-
ture for the corresponding rows of the matrix M . Note, however, that a single
subrow maximum query data structure for M can be used for all nodes of T .

Theorem 2. Given an m × n Monge matrix M , and a data structure answer-
ing subrow maximum queries on M in O(pred(n,m)) time, one can construct
in O(m log2 m) time a data structure taking O(m log m) additional space, that
answers submatrix maximum queries on M in O(pred(m,n)+pred(n,m)) time.

By combining Theorem 1 with Theorem 2, given an n × n Monge matrix
M , a data structure of size O(n log n) can be constructed in O(n log2 n) time to
answer submatrix maximum queries in O(pred(n, n)) time.

3 Obtaining Linear Space

In this section we show how to decrease the space of the data structure presented
in Sect. 2 to be linear. We extend the idea developed in our previous paper [14].
The previous linear space solution was based on partitioning the matrix M into
n/x matrices M1,M2, . . . , Mn/x, where each Mi is a slice of M consisting of
x = log n consecutive rows. Then, instead of working with the matrix M , we
worked with the (n/x) × n matrix M ′, where M ′[i, j] is the maximum entry in
the j-th column of Mi.

SubcolumnQueries. Consider a subcolumn query. Suppose the query is entirely
contained in some Mi. This means it spans less than x = log n rows. In [14], since
the desired query time was O(log n), a query simply inspected all elements of the
subcolumn. In our case however, since the desired query time is only O(log log n),
we apply the above partitioning scheme twice. We explain this now.

We start with the following lemma, that provides an efficient data structure
for queries consisting of a single column and all rows in rectangular matrices.
The statement of the lemma was taken almost verbatim from the previous solu-
tion [14]. Its query time was originally stated in terms of query to a predecessor
structure, but here we prefer to directly plug in the bounds implied by atomic
heaps [12] (which support predecessor searches in constant time provided x is
O(log n)). This requires only an additional O(n) time and space preprocessing.

Submatrix Maximum Queries in Monge Matrices 587

Lemma 3 ([14]). Given an x × n Monge matrix, a data structure of size O(x)
can be constructed in O(x log n) time to answer entire-column maximum queries
in O(1) time, if x = O(log n).

Our new subcolumn data structure is summarized in the following theorem. It
uses the above lemma and two applications of the partitioning scheme.

Theorem 3. Given an m × n Monge matrix M , a data structure of size O(m)
can be constructed in O(m log n) time to answer subcolumn maximum queries in
O(log log(n + m)) time.

Proof. We first partition M into n/x matrices M1,M2, . . . , Mn/x, where x =
log m. Every Mi is a slice of M consisting of x consecutive rows. Next, we par-
tition every Mi into x/x′ matrices Mi,1,Mi,2, . . . , Mi,x′ , where x′ = log log m.
Every Mi,j is a slice of Mi consisting of x′ consecutive rows (without loss of
generality, assume that x divides m and x′ divides x). Now we define a new
(m/x) × n matrix M ′, where M ′[i, j] is the maximum entry in the j-th column
of Mi. Similarly, for every Mi we define a new (x/x′) × n matrix M ′

i , where
M ′

i [j, k] is the maximum entry in the k-th column of Mi,j .
We apply Lemma 3 on every Mi and Mi,j in O(m log n) total time and

O(m) total space, so that any M ′[i, j] or M ′
i [j, k] can be retrieved O(1) time.

Furthermore, it can be easily verified that M ′ and all M ′
is are also Monge.

Therefore, we can apply Theorem 1 on M ′ and every M ′
i . The total construc-

tion time is O((m/x) log(m/x) log n+(m/x)(x/x′) log(x/x′) log n) = O(m log n),
and the total size of all structures constructed so far is O((m/x) log(m/x) +
(m/x)(x/x′) log(x/x′)) = O(m).

Now consider a subcolumn maximum query. If the range of rows is fully
within a single Mi,j , the query can be answered naively in O(x′) = O(log log m)
time. Otherwise, if the range of rows is fully within a single Mi, the query can
be decomposed into a prefix fully within some Mi,j , an infix corresponding to a
range of rows in M ′

i , and a suffix fully within some Mi,j′ . The maximum in the
prefix and the suffix can be computed naively in O(x′) = O(log log m) time, and
the maximum in the infix can be computed in O(log log n) time using the struc-
ture constructed for M ′

i . Finally, if the range of rows starts inside some Mi and
ends inside another Mi′ , the query can be decomposed into two queries fully
within Mi and Mi′ , respectively, which can be processed in O(log log n) time
as explained before, and an infix corresponding to a range of rows of M ′. The
maximum in the infix can be computed in O(log log n) time using the structure
constructed for M ′. ��

Submatrix Queries. We are ready to present the final version of our data
structure. It is based on two applications of the partitioning scheme, and an
additional trick of transposing the matrix.

Theorem 4. Given an n × n Monge matrix M , a data structure of size O(n)
can be constructed in O(n log n) time to answer submatrix maximum queries in
O(log log n) time.

588 P. Gawrychowski et al.

Proof. We partition M as described in the proof of Theorem 3, i.e., M is par-
titioned into n/x matrices M1,M2, . . . , Mn/x, where x = log n, and every Mi is
then partitioned into x/x′ matrices Mi,1,Mi,2, . . . , Mi,x′ , where x′ = log log n.
Then we define smaller Monge matrices M ′ and M ′

i , and provide O(1) time
access to their entries with Lemma 3. We apply Theorem 3 to the transpose of
M ′ to get a subrow maximum query data structure for M ′. This takes O(n) space
and O(n log n) time. With this data structure we can apply Theorem 2 on M ′,
which takes an additional O(n

log n log n
log n) = O(n) space and O(n log n) time.

We would have liked to apply Theorem 3 to the transpose of all M ′
i as well, but

this would require O(n) space for each matrix, which we cannot afford. Since we
do not have subrow maximum query data structure for the M ′

is, we cannot apply
Theorem 2 to them directly. However, note that the subrow maximum query data
structure is used in Theorem 2 in two ways (see the proof of Lemma 2). The first
use is in directly finding the subrow maximum in cases 1 and 3 in the proof of
Lemma 2. In the absence of the subrow structure, we can still report the two rows
containing the candidate maximum, although not the maximum itself. The sec-
ond use is in computing the values for the generalized range maximum structure
required to handle case 2 in that proof. In this case, we do not really need the fast
query of the data structure of Theorem 3, and can use instead the slower linear
space data structure from [14, Lemma 2] to compute the values in O(n log n)
time. Thus, we can apply Theorem 2 to each M ′

i , and get at most two candidate
rows of M ′

i (from cases 1 and 3), and one candidate entry of M ′
i (from case 2),

with the guarantee that the submatrix maximum is among these candidates.
We repeat the above preprocessing on the transpose of M . Now consider a

submatrix maximum query. If the range of rows starts inside some Mi and ends
inside another Mi′ , the query can be decomposed into two queries fully within
Mi and Mi′ , respectively, and an infix corresponding to a range of rows of M ′.
The maximum in the infix can be computed in O(log log n) time using the struc-
ture constructed for M ′. Consequently, it is enough to show how to answer a
query in O(log log n) time when the range of rows is fully within a single Mi. In
such case, if the range of rows starts inside some Mi,j and ends inside another
Mi,j′ , the query can be decomposed into a prefix fully within Mi,j , an infix cor-
responding to a range of rows in M ′

i and a suffix fully within some Mi,j′ . As
we explained above, even though we cannot locate the maximum in the infix
exactly, we can isolate at most 2 rows (plus a single entry) of M ′

i , such that the
maximum lies in one of these rows. Each row of M ′

i corresponds to a range of
rows fully inside some Mi,j . Consequently, we reduced the query in O(log log n)
time to a constant number of queries such that the range of rows in each query is
fully within a single Mi,j . Since each Mi,j consists of O(log log n) rows of M , we
have identified, in O(log log n) time, a set of O(log log n) rows of M that contain
the desired submatrix maximum.

Now we repeat the same procedure on the transpose of M to identify a set of
O(log log n) columns of M that contain the desired submatrix maximum. Since
a submatrix of a Monge matrix is also Monge, the submatrix of M correspond-
ing to these sets of candidate rows and columns is an O(log log n) × O(log log n)

Submatrix Maximum Queries in Monge Matrices 589

Monge matrix. By running the SMAWK algorithm [1] in O(log log n) time on
this small Monge matrix, we can finally determine the answer. ��

4 Lower Bound

A predecessor structure stores a set of n integers S ⊆ [0, U), so that given x we
can determine the largest y ∈ S such that y ≤ x. As shown by Pǎtraşcu and
Thorup [19], for U = n2 any predecessor structure consisting of O(n polylog(n))
words needs Ω(log log n) time to answer queries, assuming that the word size is
Θ(log n). We will use their result to prove that our structure is in fact optimal.

Given a set of n integers S ⊆ [0, n2) we want to construct n × n Monge
matrix M such that the predecessor of any x in S can be found using one sub-
matrix minimum query on M and O(1) additional time (to decide which query
to ask and then return the final answer). Then, assuming that for any n × n
Monge matrix there exists a data structure of size O(n polylog(n)) answering
submatrix minimum queries in o(log log n) time, we can construct a predecessor
structure of size O(n polylog(n)) answering queries in o(log log n) time, which is
not possible. The technical difficulty here is twofolds. First, M should be Monge.
Second, we are working in the indexing model, i.e., the data structure for sub-
matrix minimum queries can access the matrix. Therefore, for the lower bound
to carry over, M should have the following property: there is a data structure
of size O(n polylog(n)) which retrieves any M [i, j] in O(1) time. Guaranteeing
that both properties hold simultaneously is not trivial.

Before we proceed, let us comment on the condition S ⊆ [0, n2). While
quadratic universe is enough to invoke the Ω(log log n) lower bound for struc-
tures of size O(n polylog(n)), our reduction actually implies that even for larger
polynomially bounded universes, i.e., S ⊆ [0, nc), for any fixed c, it is possible
to construct n × n Monge matrix M such that the predecessor of x in S can be
found with O(1) submatrix minimum queries on M and O(1) additional time
(and, as previously, any M [i, j] can be retrieved in O(1) time with a structure
of size O(n)). This is because any predecessor queries on a set of n integers
S ⊆ [0, nc) can be reduced in O(1) time to O(1) predecessor queries on a set of n
integers S′ ⊆ [0, n2) with a structure of size O(n). See full version of this paper.

The following propositions are easy to verify:

Proposition 1. A matrix M is Monge iff M [i, j] + M [i + 1, j + 1] ≤ M [i +
1, j] + M [i, j + 1] for all i, j such that all these entries are defined.

Proposition 2. If a matrix M is Monge, then for any vector H the matrix M ′,
where M ′[i, j] = M [i, j] + H[j] for all i, j, is also Monge.

Theorem 5. For any set of n integers S ⊆ [0, n2), there exists a data structure
of size O(n) returning any M [i, j] in O(1) time, where M is a Monge matrix
such that the predecessor of x can be found using O(1) time and one submatrix
minimum query on M .

590 P. Gawrychowski et al.

Proof. We partition the universe [0, n2) into n parts [0, n), [n, 2n), The i-th
part [i ·n, (i+1) ·n) defines a Monge matrix Mi consisting of |S ∩ [i ·n, (i+1) ·n)|
rows and n columns. The idea is to encode the predecessor of x ∈ [0, n2) by the
minimum element in the (x mod n + 1)-th column of M�x/n�. We first describe
how these matrices are defined, and then show how to stack them together.

Consider any 0 ≤ i < n. Every element in S∩[i·n, (i+1)·n) = {a1, a2, . . . , ak}
has a unique corresponding row in Mi. Let aj = i · n + a′

j , so that a′
1 < a′

2 <
. . . < a′

k and a′
j ∈ [0, n) for all j, and also define a′

k+1 = n. We describe an
incremental construction of Mi. For technical reasons, we start with an artifi-
cial top row containing 1, 2, 3, . . . , n. Then we add the rows corresponding to
a′
1, a

′
2, . . . , a

′
k. The row corresponding to a′

j consists of three parts. The middle
part starts at the (a′

j + 1)-th column, ends at the a′
j+1-th column, and contains

only 1’s. The elements in the left part decrease by 1 and end with 2 at the
a′

j-th column, similarly the elements in the right part (if any) start with 2 at
the (a′

j+1 + 1)-th column and increase by 1. Formally, the k-th element of the
(j + 1)-th row, denoted Mi[j + 1, k], is defined as follows.

Mi[j + 1, k] =

⎧
⎪⎨

⎪⎩

a′
j − k + 2 if k ∈ [1, a′

j]
1 if k ∈ [a′

j + 1, a′
j+1]

k − a′
j+1 + 1 if k ∈ [a′

j+1 + 1, n]
(1)

Finally, we end with an artificial bottom row containing n, n − 1, . . . , 1. We
need to argue that every Mi is Monge. By Proposition 1, it is enough to consider
every pair of adjacent rows r1, r2 there. Define r′

1[j] = r1[j] − r1[j − 1] and sim-
ilarly r′

2[j] = r2[j] − r2[j − 1]. To prove that Mi is Monge, it is enough to argue
that r′

2[j] ≥ r′
1[j] for all j ≥ 2. By construction, both r′

1 and r′
2 are of the form

−1,−1, . . . ,−1, 0, 0, . . . , 0, 1, 1, . . . , 1, and all 0’s in r′
2 are on the right of all 0’s

in r′
1. Therefore, Mi is Monge.
Now one can observe that the predecessor of x ∈ [0, n2) can be found by look-

ing at the (x mod n+1)-th column of M�x/n�. We check if x < a1, and if so return
the predecessor of a1 in the whole S. This can be done in O(1) time and O(n)
additional space by explicitly storing a1 and its predecessor for every i. Other-
wise we know that the predecessor of x is aj such that x mod n ∈ [a′

j , a
′
j+1), and,

by construction, we only need to find j ∈ [1, k] such that the (x mod n + 1)-th
element of row j + 1 in Mi is 1. This is exactly a subcolumn minimum query.

We cannot simply concatenate all Mi’s to form a larger Monge matrix. We use
Proposition 2 instead. Initially, we set M = M0. Then we consider every other Mi

one-by-one maintaining invariant that the current M is Monge and its last row
is n, n−1, . . . , 1. In every step we add the vector H = [−n+1,−n+3, . . . , n−1]
to the current matrix M , obtaining a matrix M ′ whose last row is 1, 2, . . . , n. By
Proposition 2, M ′ is Monge. Then we can construct the new M by appending
Mi without its first row to M ′. Because the first row of Mi is also 1, 2, . . . , n,
the new M is also Monge. Furthermore, because we add the same value to all
elements in the same column of Mi, answering subcolumn minimum queries on
Mi can be done with subcolumn minimum queries on the final M .

Submatrix Maximum Queries in Monge Matrices 591

We need to argue that elements of M can be accessed in O(1) using a data
structure of size O(1). To retrieve M [j, k], first we lookup in O(1) time the
appropriate Mi from which it originates. This can be preprocessed and stored
for every j in O(n) total space and allows us to reduce the question to retrieving
Mi[j′, k]. Because Proposition 2 is applied exactly n−1−i times after appending
Mi to the current M , then we can return Mi[j′, k] + (n − 1 − i)H[k]. To find
Mi[j′, k], we just directly use Eq. 1, which requires only storing a′

1, a
′
2, . . . , a

′
n in

O(n) total space. ��

References

1. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric
applications of a matrix-searching algorithm. Algorithmica 2(1), 195–208 (1987)

2. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range
searching. In: 41st FOCS, pp. 198–207 (2000)

3. Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries.
In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer,
Heidelberg (2007)

4. Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Srinivasa Rao, S.:
Two dimensional range minimum queries and Fibonacci lattices. In: Epstein, L.,
Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 217–228. Springer, Heidelberg
(2012)

5. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range
minimum data structures. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II.
LNCS, vol. 6347, pp. 171–182. Springer, Heidelberg (2010)

6. Burkard, R.E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in
optimization. Discrete Appl. Math. 70, 95–161 (1996)

7. Chan, T.M., Larsen, K.G., Pǎtraşcu, M.: Orthogonal range searching on the
RAM, revisited. In: 27th SOCG, pp. 354–363 (2011)

8. Chazelle, B.: A functional approach to data structures and its use in multidi-
mensional searching. SIAM Journal on Computing 17, 427–462 (1988)

9. Chazelle, B., Rosenberg, B.: Computing partial sums in multidimensional arrays.
In: 5th SOCG, pp. 131–139 (1989)

10. Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian trees and range
minimum queries. Algorithmica 68(3), 610–625 (2014)

11. Farzan, A., Munro, J.I., Raman, R.: Succinct indices for range queries with
applications to orthogonal range maxima. In: Czumaj, A., Mehlhorn, K., Pitts,
A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 327–338.
Springer, Heidelberg (2012)

12. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)

13. Gabow, H., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for
geometry problems. In: 16th STOC, pp. 135–143 (1984)

14. Gawrychowski, P., Mozes, S., Weimann, O.: Improved submatrix maximum
queries in monge matrices. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsou-
pias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 525–537. Springer, Heidelberg
(2014)

592 P. Gawrychowski et al.

15. Kaplan, H., Mozes, S., Nussbaum, Y., Sharir, M.: Submatrix maximum queries
in Monge matrices and Monge partial matrices, and their applications. In: 23rd
SODA, pp. 338–355 (2012)

16. Klawe, M.M., Kleitman, D.J.: An almost linear time algorithm for generalized
matrix searching. SIAM Journal Discret. Math. 3(1), 81–97 (1990)

17. Kopelowitz, T., Lewenstein, M.: Dynamic weighted ancestors. In: 18th SODA,
pp. 565–574 (2007)

18. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space.
Comput. Geom. 42(4), 342–351 (2009)

19. Pǎtraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: 38th
STOC, pp. 232–240 (2006)

20. Yuan, H., Atallah, M.J.: Data structures for range minimum queries in
multidimensional arrays. In: 21st SODA, pp. 150–160 (2010)

Optimal Encodings for Range Top-k, Selection,
and Min-Max

Pawe�l Gawrychowski1 and Patrick K. Nicholson2(B)

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

pnichols@mpi-inf.mpg.de

Abstract. We consider encoding problems for range queries on arrays.
In these problems the goal is to store a structure capable of recovering the
answer to all queries that occupies the information theoretic minimum
space possible, to within lower order terms. As input, we are given an
array A[1..n], and a fixed parameter k ∈ [1, n]. A range top-k query on an
arbitrary range [i, j] ⊆ [1, n] asks us to return the ordered set of indices
{�1, ..., �k} such that A[�m] is the m-th largest element in A[i..j], for
1 ≤ m ≤ k. A range selection query for an arbitrary range [i, j] ⊆ [1, n]
and query parameter k′ ∈ [1, k] asks us to return the index of the k′-th
largest element in A[i..j]. We completely resolve the space complexity of
both of these heavily studied problems—to within lower order terms—for
all k = o(n). Previously, the constant factor in the space complexity was
known only for k = 1. We also resolve the space complexity of another
problem, that we call range min-max, in which the goal is to return the
indices of both the minimum and maximum elements in a range.

1 Introduction

Many important algorithms make use of range queries over arrays of values
as subroutines [14,17]. As a prime example, text indexes that support pattern
matching queries often maintain an array storing the lengths of the longest
common prefixes between consecutive suffixes of the text. During a search for
a pattern this array is queried in order to find the position of the minimum
value in a given range. That is, a subroutine is needed that can preprocess an
array A in order to answer range minimum queries. Formally, as input to such
a query we are given a range [i, j] ⊆ [1, n], and wish to return the index k =
arg mini≤�≤j A[�]. In text indexing applications memory is often the constraining
factor, so the question of how many bits are needed to answer range minimum
queries has been heavily studied. After a long line of research (see [2,16]), it has
been determined that such queries can be answered in constant time, by storing
a data structure of size 2n + o(n) bits [7]. Furthermore, this space bound is
optimal to within lower order terms (see [7, Sec. 1.1.2]). The interesting thing is
that the space does not depend on the number of bits required to store individual

P. Gawrychowski—Currently holding a post-doctoral position at Warsaw Center of
Mathematics and Computer Science.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 593–604, 2015.
DOI: 10.1007/978-3-662-47672-7 48

594 P. Gawrychowski and P.K. Nicholson

elements of the array A. After constructing the data structure we can discard
the array A, while still retaining the ability to answer range minimum queries.

Results of this kind, where it is shown that the solutions to all queries can
be stored using less space than is required to store the original array, fall into
the category of encodings, and, more generally, succinct data structures [11].
Specifically, given a set of combinatorial objects χ we wish to represent an arbi-
trary member of χ using lg |χ| + o(lg |χ|) bits1, while still supporting queries, if
possible. If queries can be supported by the representation then we refer to it
as a data structure, but if not, then we refer to it as an encoding. For the case
of range minimum queries or range maximum queries, the set χ turns out to
be Cartesian trees, which were introduced by Vuillemin [18]. For a given array
A, the Cartesian tree encodes the solution to all range minimum queries, and
similarly, if two arrays have the same solutions to all range minimum queries,
then their Cartesian trees are identical [7].

Recently, there has been a lot of interest the following two problems, that
generalize range maximum queries in two different ways. The input to each of
the following problems is an array A[1..n], that we wish to preprocess into an
encoding occupying as few bits as possible, such that the answers to all queries
are still recoverable. We assume a value k ≥ 1 is fixed at preprocessing time.

– Range top-k: Given an arbitrary query range [i, j] ⊆ [1, n] and k′ ∈ [1, k],
return the indices of the k′ largest values in [i, j]. This problem is the natural
generalization of range maximum queries and has been the focus of a several
papers, leading to asymptotically optimal lower and upper space bounds of
Ω(n lg k) and O(n lg k) bits, proved by Grossi et al. [10] and Navarro, Raman,
and Rao [15], respectively. The latter upper bound is a data structure that
can answer range top-k′ queries in optimal O(k′) time.

– Range k-selection: Given an arbitrary query range [i, j] ⊆ [1, n] and k′ ≤ k,
return the index of the k′-th largest value in [i, j]. This problem was studied
in a series of recent papers (see [8] and [3] for further references), culminating
in data structures that occupy a linear number of words, and can answer
queries in O(lg k′/ lg lg n + 1) time [4]. This query time matches a cell-probe
lower bound for near-linear space data structures [12]. It is straightforward
to see that any encoding of range top-k queries is also an encoding for range
k-selection queries, though the question of how much time is required during
a query remains unclear [15]. Very recently, Navarro, Raman, and Rao [15]
described a data structure that can be used to answer range k-selection
queries in optimal O(lg k′/ lg lg n + 1) time [15], and, like the range top-k
data structure, occupies O(n lg k) bits of space.

Our Results. We present the first space-optimal encodings to range top-k—
and therefore range selection also—as well as a new problem that we call range
min-max, in which the goal is to return the indices of both the minimum and
maximum element in the array. We emphasize that, on their own, the encodings

1 We use lg x to denote log2 x.

Optimal Encodings for Range Top-k, Selection, and Min-Max 595

Table 1. Old and new results. Both upper and lower bounds are expressed in bits.
Our bounds make use of the binary entropy function H(x) = x lg(1

x
)+ (1−x) lg(1

1−x
).

For the entry marked with a † the claimed bound holds when k = o(n).

Ref. Query Lower Bound Upper Bound Query Time

[7] max 2n − Θ(lg n) 2n + o(n) O(1)
[10,15] top-k Ω(n lg k) O(n lg k) O(k′)
[5] top-2 2.656n − Θ(lg n) 3.272n + o(n) O(1)

Thm. 1, 2 min-max 3n − Θ(lg(n)) 3n + o(n) O(1)
Thm. 3, 4 top-2 3nH(1

3
) − Θ(polylog(n)) 3nH(1

3
) + o(n) —

Thm. 3, 4 top-k (k + 1)nH(1
k+1

)(1 − o(1))† (k + 1)nH(1
k+1

) + o(n) —

for range top-k and selection do not support queries efficiently: they merely
store the solutions to all queries in a compressed form. However, our encoding
for range min-max can be augmented with o(n) additional bits of data to create
a data structure that supports queries in O(1) time. Furthermore, even without
query support, our encodings for range top-k and selection address a problem
posed in the papers of Grossi et al. [10] and Navarro et al. [15].

In Table 1 we present a summary of previous and new results. Prior to this
work, the only value for which the exact coefficient of n was known was the
case in which k = 1 (i.e., range maximum queries). For even k = 2 the best
previous estimate was that the coefficient of n is between 2.656 and 3.272 [5]. The
lower bound of 2.656 was derived using generating functions and an extensive
computational search [5]. In contrast, our method is purely combinatorial and
gives the exact coefficient for all k = o(n). For k = 2, 3, 4 the coefficients are
(rounding up) 2.755, 3.245, and 3.610, respectively.

As mentioned above, a negative aspect of our encodings is that they appear
to be somewhat difficult to use as the basis for a data structure. However, in the
full version [9], we present a data structure based on our encoding that nearly
matches the optimal space bound. Explicitly, we can achieve a space bound
of (k + 1.5)nH(1.5

k+1.5) + o(n lg k) bits with query time O(poly(k lg n)). Thus,
our data structure achieves space much closer to the optimal bound than the
previous best result [15], but the query time is worse. We leave the following data
structure problem open: how can range top-k and selection queries be supported
with optimal query time using space matching our encodings (to within lower
order terms)?

Finally, we wish to point out that although our formulation of the range top-
k problem returns the indices in sorted order, the constant factor in our lower
bound also holds for the unsorted version, in which we return the indices in an
arbitrary order, provided k = o(n). This follows since any encoding strategy
for unsorted range top-k can be used to construct a sorted top-k encoding, by
padding the end of the input array with k − 1 values larger than any other.
The unsorted encoding of this padded array can be used to infer the solution
to an arbitrary sorted top-k query [i, j] by examining the solutions to queries
[i, j], [i, j + 1], ..., [i, n + k − 1]: see the full version for details [9].

596 P. Gawrychowski and P.K. Nicholson

Discussion of Techniques and Road Map. Prior work for top-k, for
k ≥ 2, focused on encoding a decomposition of the array, called a shallow cut-
ting [10,15]. Since shallow cuttings are a general technique used to solve many
other range searching problems [12,13], these previous works [10,15] required
additional information beyond storing the shallow cutting in order to recover
the answers to top-k queries. Furthermore, in these works the exact constant
factor is not disclosed, though we estimate it to be at least twice as large as
the bounds we present. For the specific case of range top-2 queries a different
encoding has been proposed based on extended Cartesian trees [5]. In contrast
to both of the previous approaches, our encoding is based the approach of Fis-
cher and Heun [7], who describe what is called a 2D min-heap (resp. max-heap)
in order to encode range minimum queries (resp. range maximum queries). We
begin in Section 2 by showing how to generalize their technique to simultane-
ously answer both range minimum and range maximum queries. Our encoding
provides the answer to both using 3n+ o(n) bits in total, compared to 4n+ o(n)
bits using the trivial approach of constructing both encodings separately. We
then show this bound is optimal by proving that any encoding for range min-
max queries can be used to distinguish a certain class of permutations. We move
on in Section 3 to generalize Fischer and Heun’s technique in a clean and natural
way to larger values of k. Indeed, the encoding we present—like that of Fischer
and Heun—is simple enough to implement. The main difficulty is proving that
the bound achieved by our technique is optimal. For this we enumerate a partic-
ular class of walks, via an application of the so-called cycle lemma of Dvoretzky
and Motzkin [6].

Due to lack of space we focus primarily on space lower bounds for encod-
ings. However, in the full version of this paper [9] we show our encoding can be
used as the basis for a range top-k data structure. Though the resultant space
bound and query time are suboptimal, we note that interesting challenges had
to be overcome to design a data structure based on our encoding. Concisely, we
required the ability to decompose the encoding into smaller blocks in order to
support queries efficiently. To do this we, in some sense, generalized the pioneers
approach of Jacobson [11] via a non-trivial decomposition theorem. Since bal-
anced parentheses representations appear in many succinct data structures, we
believe this will likely be of independent interest.

2 Optimal Encodings of Range Min-Max Queries

In this section we describe our encoding for range min-max queries. We use
RMinMax(A[i..j]) to denote a range min-max query on a subarray A[i..j].
The solution to the query is the ordered set of indices {�1, �2} such that
�1 = arg max�∈[i,j] A[�] and �2 = arg min�∈[i,j] A[�].

2.1 Review of Fischer and Heun’s Technique

We review the algorithm of Fischer and Heun [7] for constructing the encoding
of range minimum (resp. maximum) queries.

Optimal Encodings for Range Top-k, Selection, and Min-Max 597

Consider an array A[1..n] storing n numbers. Without loss of generality we
can alter the values of the numbers so that they are a permutation, breaking ties
in favour of the leftmost element. To construct the encoding for range minimum
queries we sweep the array from left to right2, while maintaining a stack. A string
of bits Tmin (resp. Tmax) will be emitted in reverse order as we scan the array.
Whenever we push an element onto the stack, we emit a one bit, and whenever
we pop we emit a zero bit. Initially the stack is empty, so we push the position
of the first element we encounter on the stack, in this case, 1. Each time we
increment the current position, i, we compare the value of A[i] to that of the
element in the position t, that is stored on the top of the stack. While A[t] is not
less than (resp. not greater than) A[i], we pop the stack. Once A[t] is less than
(resp. greater than) the current element or the stack becomes empty, we push i
onto the stack. When we reach the end of the array, we pop all the elements on
the stack, emitting a zero bit for each element popped, followed by a one bit.

Fischer and Heun showed that the string of bits output by this process can
be used to encode a rooted ordinal tree in terms of its depth first unary degree
sequence or DFUDS [7]. To extract the tree from a sequence, suppose we read
d zero bits until we hit the first one bit. Based on this, we create a node v
of degree d, and continue building first child of v recursively. Since there are
at most 2n stack operations, the tree is therefore represented using 2n bits.
We omit the technical details of how a query is answered, but the basic idea
is to augment this tree representation with succinct data structures supporting
navigation operations.

2.2 Upper Bound for Range Min-Max Queries

We propose the following encoding for a simultaneous representation of Tmin and
Tmax. Scan the array from left to right and maintain two stacks: a min-stack for
range minimum queries, and a max-stack for range maximum queries. Notice
that in each step except for the first and last, we are popping an element from
exactly one of the two stacks. This crucial observation allows us to save space. We
describe our encoding in terms of the min-stack and the max-stack maintained
as above. Unlike before however, we maintain two separate bit strings, T and U .
If the new element causes δ ≥ 1 elements on the min-stack to be popped, then
we prepend 0δ−11 to the string T , and prepend 0 to the string U . Otherwise, if
the new element causes δ elements on the max-stack to be popped, we prepend
0δ−11 to the string T , and 1 to the string U . Since exactly 2n elements are
popped during n push operations, the bit string T has length 2n, and the bit
string U has length n, for a total of 3n bits.

In the full version [9] we show that by using techniques from succinct data
structures it is possible to also support queries on this encoding in O(1) time.

Theorem 1. There is a data structure that occupies 3n + o(n) bits of space,
such that any query RMinMax(A[i..j]) can be answered in O(1) time.
2 In the original paper the sweeping process moves from right to left, but either direc-

tion yields a correct algorithm by symmetry.

598 P. Gawrychowski and P.K. Nicholson

2.3 Lower Bound for Range Min-Max Queries

Given a permutation π = (p1, ..., pn), we say π contains the permutation pattern
s1-s2-...-sm if there exists a subsequence of π whose elements have the same
relative ordering as the elements in the pattern. That is, there exist some x1 <
x2 < ... < xm ∈ [1, n] such that for all i, j ∈ [1,m] we have that π(xi) < π(xj)
if and only if si < sj . For example, if π = (1, 4, 2, 5, 3) then π contains the
permutation pattern 1-3-4-2: we use this hyphen notation to emphasize that the
indices need not be consecutive. In this case, the series of indices in π matching
the pattern are x1 = 1, x2 = 2, x3 = 4 and x4 = 5. If no hyphen is present
between elements si and si+1 in the permutation pattern, then the indices xi

and xi+1 must be consecutive: i.e., xi+1 = xi + 1. In terms of the example, π
does not contain the permutation pattern 1-34-2.

A permutation π = (p1, ..., pn) is a Baxter permutation if there exist no
indices 1 ≤ i < j < k ≤ n such that π(j + 1) < π(i) < π(k) < π(j) or π(j) <
π(k) < π(i) < π(j+1). Thus, Baxter permutations are those that do not contain
2-41-3 and 3-14-2. Permutations with less than 4 elements are trivially Baxter
permutations, and for permutations on 4 elements the non-Baxter permutations
are exactly (2, 4, 1, 3) and (3, 1, 4, 2). Baxter permutations are well studied, and
their asymptotic behaviour is known (see, e.g., OEIS A001181 [1]).

We have the following lemma:

Lemma 1. Suppose π is a Baxter permutation, stored in an array A[1..n] such
that A[i] = π(i). If an encoding that can recover all range minimum and maxi-
mum queries is constructed on A, then π can be recovered from the encoding.

Proof. In order to recover the permutation, it suffices to show that we can per-
form pairwise comparisons on any two elements in A using range minimum and
range maximum queries. The proof follows by induction on n.

For the base case, for n = 1 there is exactly one permutation, so there is
nothing to recover. Thus, let us assume that the lemma holds for all permutations
on less than n ≥ 2 elements. For a permutation on n elements, consider the sub-
permutation induced by the array prefix A[1..(n − 1)] and suffix A[2..n]. These
subpermutations must be Baxter permutations, since deleting elements from
the prefix or suffix of a Baxter permutation cannot create a 2-41-3 or a 3-14-2.
Thus, it suffices to show that we can compare A[1] and A[n], as all the remaining
pairwise comparisons can be performed by the induction hypothesis.

Let x = RMin(A[1..n]) and y = RMax(A[1..n]) be the indices of the mini-
mum and maximum elements in the array, respectively. If x ∈ {1, n} or y ∈ {1, n}
we can compare A[1] and A[n], so assume x, y ∈ [2, n − 1]. Without loss of gen-
erality we consider the case where x < y: the opposite case is symmetric (i.e.,
replacing 3-14-2 with 2-41-3), and x �= y because n ≥ 2. Consider an arbitrary
index i ∈ [x, ..., y], and the result of comparing A[1] to A[i] and A[i] to A[n]
(that can be done by the induction hypothesis, as i ∈ [2, n − 1]). The result is a
partial order on three elements, and is either:

1. One of the two chains A[1] < A[i] < A[n] or A[n] < A[i] < A[1], in which
case we are done since A[1] and A[n] can be compared; or

Optimal Encodings for Range Top-k, Selection, and Min-Max 599

2. A partial order in which A[i] is the minimum or maximum element, and A[1]
is incomparable with A[n].

If we are in the latter case for all i ∈ [x, y], then let f(i) = 0 if A[i] is the
minimum element in this partial order, and f(i) = 1 otherwise. Because of how
x and y were chosen, f(x) = 0 and f(y) = 1. If we consider the values of f(i)
for all i ∈ [x, y], there must exist two indices i, i + 1 ∈ [x, y] such that f(i) = 0
and f(i + 1) = 1. Therefore, the indices 1, i, i + 1, n form the forbidden pattern
3-14-2, unless A[1] < A[n]. ��
Theorem 2. Any data structure encoding range minimum and maximum queries
simultaneously must occupy 3n − Θ(log n) bits, for sufficiently large values of n.

Proof. Let L(n) be the number of Baxter permutations on n elements. It is
known (cf. [1]) that limn→∞

L(n)π
√
3n4

23n+5 = 1. Since we can encode and recover
each one by the procedure discussed in Lemma 1, our encoding data structure
must occupy at least lg L(n) = 3n − Θ(log n) bits, if n is sufficiently large. ��

3 Optimal Encodings for Top-k Queries

In this section we use RTopK(A[i..j]) to denote a range top-k query on the sub-
array A[i..j]. The solution to such a query is an ordered list of indices {�1, ..., �k}
such that A[�m] is the m-th largest element in A[i..j].

3.1 Upper Bound for Encoding Top-k Queries

Like the encoding for range min-max queries, our encoding for range top-k
queries is based on representing the changes to a certain structure as we scan
through the array A. Each prefix in the array will correspond to a different
structure. We denote the structure, that we will soon describe, for prefix A[1..j]
as Sk(j), for all 1 ≤ j ≤ n. The structure Sk(j) will allow us to answer
RTopK(A[i..j]) for any i ∈ [1, j]. Our encoding will store the differences between
Sk(j) and Sk(j+1) for all j ∈ [1, n−1]. Let us begin by defining a single instance
for an arbitrary j.

We first define the directed graph Gj = (V,E) with vertices labelled {1, ..., j},
and where an edge (i′, j′) ∈ E iff both i′ < j′ and A[i′] < A[j′] for all 1 ≤ i′ <
j′ ≤ j. We call Gj the dominance graph of A[1..j], and say j′ dominates i′, or
i′ is dominated by j′, if (i′, j′) ∈ E. Next consider the out-degree dj(�) of the
vertex labelled � ∈ [1, j] in Gj . We define an array S[1..j], where S[�] = dj(�)
for 1 ≤ � ≤ j. The structure Sk(j) is defined as follows: take the array S[1..j],
and for each entry � ∈ [1, j] such that S[�] > k, replace S[�] with k. We use the
notation Sk(j, �) to refer to the �-th array entry in the structure Sk(j). We refer
to an index � to be active iff Sk(j, �) < k, and as inactive otherwise. We note
that Sk(n) is reminiscent of the one-sided top-k structure of Grossi et al. [10].

Lemma 2. The total ordering of elements A[i1], ..., A[ij′], where {i1, ..., ij′} are
the active indices in Sk(j), can be recovered by examining only Sk(j).

600 P. Gawrychowski and P.K. Nicholson

Fig. 1. Geometric interpretation of how the structure Sk(j) is updated to Sk(j +1). In
the example k = 2, and the value of each active element in the array is represented by
its height. Black circles denote 0 values in the array S2(j), whereas crosses represent 1
values, and 2 values (inactive elements) are not depicted. When the new point (empty
circle) is inserted to the structure on the left, it increments the counters of the smallest
10 active elements, resulting in the picture on the right representing S2(j + 1).

Proof. We scan the structure Sk(j) from index j down to 1, maintaining a total
ordering on the active elements seen so far. Initially, we have an empty total
ordering. At each active location � the value Sk(j, �) indicates how many active
elements in locations [�+1, j] are larger than A[�]. This follows since an inactive
element cannot dominate an active element in the graph Gj . Thus, we can insert
A[�] into the current total ordering of active elements. ��

We define the size of Sk(j) as follows: |Sk(j)| =
∑j

�=1(k − Sk(j, �)). The key
observation is that the structure Sk(j + 1) can be constructed from Sk(j) using
the following procedure:

1. Compute the value δj = |Sk(j)|−|Sk(j+1)|+k. This quantity is always non-
negative, as we add one new element to the large staircase, which increases
the size by at most k.

2. Find the δj indices among the active elements in Sk(j) such that their values
in A are the smallest via Lemma 2. Denote this set of indices as I.

3. For each � ∈ [1, j], set Sk(j + 1, �) = Sk(j, �) + 1 iff � ∈ I, and Sk(j + 1, �) =
Sk(j, �) otherwise.

4. Add the new element at the end of the array, setting Sk(j + 1, j + 1) = 0.

Thus, to construct Sk(j + 1) all that is needed is Sk(j) and the value δj : see
Figure 1. This implies that by storing δj for j ∈ [1, n−1] we can build any Sk(j).

Theorem 3. Solutions to all queries RTopK(A[i..j]) can be encoded in at most
(k + 1)nH(1

k+1) bits of space.

Proof. Suppose we store the bitvector 0δ110δ21 . . . 0δn−11. This bitvector contains
no more than kn zero bits. This follows since each active counter can be incre-
mented k times before it becomes inactive. Thus, storing the bitvector requires
no more than lg

(
(k+1)n

n

) ≤ (k + 1)nH(1
k+1) bits.

Optimal Encodings for Range Top-k, Selection, and Min-Max 601

Next we prove that this is all we need to answer a query RTopK(A[i..j]). We
use the encoding to construct Sk(j). We know that for every element at inactive
index � in Sk(j) there are at least k elements with larger value in A[� + 1..j].
Consequently, these elements need not be returned in the solution, and it is
enough to recover the indices of the top-k values among the elements at active
indices at least i. We apply Lemma 2 on Sk(j) to recover these indices and return
them as the solution. ��

3.2 Lower Bound for Encoding Top-k Queries

The goal of this section is to show that the encoding from Section 3.1 is, in fact,
optimal. The first observation is that all structures Sk(j) for j ∈ [1, n] can be
reconstructed with RTopK queries.

Lemma 3. Any Sk(j) can be reconstructed with RTopK queries.

Proof. To reconstruct Sk(j), we execute the query RTopK(A[�..j]) for each � ∈
[1, j]. If index � is returned as the k′-th largest element in [�, j], then by definition
there are exactly k′ − 1 elements in locations A[� + 1..j] with value larger than
A[�]. Thus, � is an active location and Sk(j, �) = k′ − 1. If � is not returned by
the query, then it is inactive and we set Sk(j, �) = k. ��

Recall that we encode all structures by specifying δ1, δ2, . . . , δn−1. We call an
(n − 1)-tuple of nonnegative integers (δ1, δ2, . . . , δn−1) valid if it encodes some
Sk(1), Sk(2), . . . , Sk(n), i.e., if there exists at least one array A[1..n] consisting
of distinct integers such that the structure constructed for A[1..j] is exactly the
encoded Sk(j), for every j = 1, 2, . . . , n. Then the number of bits required by
the encoding is at least the logarithm of the number of valid (n − 1)-tuples
(δ1, δ2, . . . , δn−1). Our encoding from Section 3.1 shows this number is at most(
(k+1)n

n

)
, but we need to argue in the other direction, which is far more involved.

Recall that the size of a particular Sk(j) is |Sk(j)| =
∑j

i=1(k − Sk(j, i)). We
would like to argue that there are many valid (n − 1)-tuples (δ1, δ2, . . . , δn−1).
This will be proven in a series of transformations.

Lemma 4. If (δ1, δ2, . . . , δn−1) is valid, then for any δn ∈ {0, 1, . . . ,
⌈

M
k

⌉} where
M =

∑n−1
i=1 (k − δi), the tuple (δ1, δ2, . . . , δn−1, δn) is also valid.

Proof. Let A[1..n] be an array such that the structure constructed for A[1..j]
is exactly Sk(j), for every j = 1, 2, . . . , n. By definition of δj , we have that
M =

∑n−1
i=1 (k − δi) < |Sk(n)|. Denote the number of active elements in Sk(j)

with the corresponding entry set to α as mα for α ∈ [0, k − 1]. For any s ∈
{0, 1, . . . ,

∑k−1
α=0 mα}, we can adjust A[n+1] so that it is larger than exactly the s

smallest active elements in Sk(n). Thus, choosing any δn ∈ {0, 1, . . . ,
∑k

α=1 mα}
results in a valid (δ1, δ2, . . . , δn). Since |Sk(n)| =

∑k−1
α=0(k−α)mα ≤ k

∑k−1
α=0 mα,

we have
∑k−1

α=0 mα ≥
⌈

|Sk(n)|
k

⌉
, proving the claim. ��

602 P. Gawrychowski and P.K. Nicholson

Every valid (n − 1)-tuple (a1, a2, . . . , an−1) corresponds in a natural way to
a walk of length n − 1 in a plane, where we start at (0, 0) and perform steps of
the form (1, ai), for i = 1, 2, . . . , n − 1. We consider a subset of all such walks.
Denoting the current position by (xi, yi), we require that ai is an integer from
[k − ⌈

yi

k

⌉
, k]. Under such conditions, any walk corresponds to a valid (n − 1)-

tuple (δ1, δ2, . . . , δn−1), because we can choose δi = k − ai and apply Lemma 4.
Therefore, we can focus on counting such walks.

The condition [k − ⌈
yi

k

⌉
, k] is not easy to work with, though. We will count

more restricted walks instead. A Y -restricted nonnegative walk of length n
starts at (0, 0) and consists of n steps of the form (1, ai), where ai ∈ Y for
i = 1, 2, . . . , n, such that the current y-coordinate is always nonnegative. Y is an
arbitrary set of integers.

Lemma 5. The number of valid (n−1)-tuples is at least as large as the number
of [k − Δ, k]-restricted nonnegative walks of length n − 1 − Δ.

Proof. We have already observed that the number of valid (n − 1)-tuples is at
least as large as the number of walks consisting of n−1 steps of the form (1, ai),
where ai ∈ [k − ⌈

yi

k

⌉
, k] for i = 1, 2, . . . , n − 1. We distinguish a subset of such

walks, where the first Δ steps are of the form (1, k), and then we always stay
above (or on) the line y = kΔ. Under such restrictions, ai ∈ [k − Δ, k] implies
ai ∈ [k − ⌈

yi

k

⌉
, k], so counting [k − Δ, k]-restricted nonnegative walks gives us a

lower bound on the number of valid (n − 1)-tuples. ��
We move to counting Y -restricted nonnegative walks of length n. Again,

counting them directly is non-trivial, so we introduce a notion of Y -restricted
returning walk of length n, where we ignore the condition that the current y-
coordinate should be always nonnegative, but require the walk ends at (n, 0).

(0, 0) (0, 0)

rotate here

Fig. 2. Left: a Y -restricted walk ending at (n, 0). Right: a cyclic rotation of the walk
on the left such that the walk is always nonnegative.

Lemma 6. The number of Y -restricted nonnegative walks of length n is at least
as large as the number of Y -restricted returning walks of length n divided by n.

Proof. This follows from the so-called cycle lemma [6], but we prefer to provide
a simple direct proof. We consider only Y -restricted nonnegative walks of length

Optimal Encodings for Range Top-k, Selection, and Min-Max 603

n ending at (n, 0), and denote their set by W1. The set of Y -restricted returning
walks of length n is denoted by W2. The crucial observation is that a cyclic
rotation of any walk in W2 is also a walk in W2. Moreover, there is always at
least one such cyclic rotation which results in the walk becoming nonnegative
(see Figure 2). Therefore, we can define a total function f : W2 → W1, that
takes a walk w and rotates it cyclically as to make it nonnegative. Because there
are just n cyclic rotations of a walk of length n, any element of W1 is the image
of at most n elements of W2 through f . Therefore, |W1| ≥ |W2|

n as claimed. ��
The only remaining step is to count [k − Δ, k]-restricted returning walks of

length n−1−Δ. This is equivalent to counting ordered partitions of k(n−1−Δ)
into parts a1, a2, . . . , an−1−Δ, where ai ∈ [0,Δ] for every i = 1, 2, . . . , n − 1 − Δ.
This follows since a partition of size � corresponds to a step of size k − �.

Lemma 7. The number of ordered partitions of N into g parts, where every
part is from [0, B], is at least

(
N−2g′+g−1

g−g′−1

)
, where g′ =

⌊
N
B

⌋
.

Proof. The number of ordered partitions of N into g parts, where there are no
restrictions on the sizes of the parts, is simply

(
N+g−1

g−1

)
. To take the restrictions

into the account, we first split N into blocks of length B (except for the last
block, which might be shorter). This creates g′ +1 blocks. Then, we additionally
split the blocks into smaller parts, which ensures that all parts are from [0, B].
We restrict the smaller parts, so that the first and the last smaller part in every
block is strictly positive. This ensures that given the resulting partition into
parts, we can uniquely reconstruct the blocks. Therefore, we only need to count
the number of ways we can split the blocks into such smaller parts, and by
standard reasoning this is at least

(
N−2g′+g−1

g−g′−1

)
. This follows by conceptually

merging the last element in block i with the first element in block i + 1, so that
no further partitioning can happen between them, and then partitioning the
remaining set into g − g′ pieces. Every such partition corresponds to a distinct
restricted partition obtained by splitting between the merged elements, which
creates g′ additional blocks. ��

We are ready to combine all the ingredients. Setting N = k(n − 1 − Δ),
g = n − 1 − Δ, g′ =

⌊
k(n−1−Δ)

Δ

⌋
=

⌊
k(n−1)

Δ

⌋
− k and substituting, the number

of bits required by the encoding is:

lg
(

N − 2g′ + g − 1
g − g′ − 1

)
> lg

(
(k + 1)(n − 2 − Δ − g′)

n − 2 − Δ − g′

)
.

Using the entropy function as a lower bound, this is at least (k + 1)n′H(1
k+1) −

Θ(log n′), where n′ = n− 2−Δ− g′ ≥ n(1− k
Δ)+ k

Δ + k − 2−Δ. Thus, we have
the following theorem:

Theorem 4. For sufficiently large values of n, any data structure that encodes
range top-k queries must occupy (k+1)n′H(1

k+1)−Θ(log n′) bits of space, where
n′ ≥ n(1 − k

Δ) + k
Δ + k − 2 − Δ, and Δ ≥ 1 can be selected to be any positive

integer. If k = o(n), then Δ can be chosen such that Δ = ω(k) and Δ = o(n),
yielding that the lower bound is (k + 1)nH(1

k+1)(1 − o(1)) bits.

604 P. Gawrychowski and P.K. Nicholson

References

1. OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, Number
of Baxter permutations of length n (2011). http://oeis.org/A001181 (Accessed 24
September 2014)

2. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and directed acyclic graphs. Journal of Algorithms
57(2), 75–94 (2005)

3. Brodal, G.S., Gfeller, B., Jørgensen, A.G., Sanders, P.: Towards optimal range
medians. Theoretical Computer Science 412(24), 2588–2601 (2011)

4. Chan, T.M., Wilkinson, B.T.: Adaptive and approximate orthogonal range count-
ing. In: Proc. of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 241–251. SIAM (2013)

5. Davoodi, P., Navarro, G., Raman, R., Rao, S.: Encoding Range Minima and Range
Top-2 Queries. Phil. Trans. R. Soc. A 372(2016), 1471–2962 (2014)

6. Dvoretzky, A., Motzkin, T.: A problem of arrangements. Duke Mathematical Jour-
nal 14(2), 305–313 (1947)

7. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

8. Gagie, T., Puglisi, S.J., Turpin, A.: Range quantile queries: another virtue of
wavelet trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 1–6. Springer, Heidelberg (2009)

9. Gawrychowski, P., Nicholson, P.K.: Optimal Encodings for Range Min-Max and
Top-k. CoRR abs/1411.6581 (2014). http://arxiv.org/abs/1411.6581

10. Grossi, R., Iacono, J., Navarro, G., Raman, R., Rao, S.S.: Encodings for range selec-
tion and top-k queries. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS,
vol. 8125, pp. 553–564. Springer, Heidelberg (2013)

11. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. of the 30th Annual
Symposium on Foundations of Computer Science, pp. 549–554. IEEE (1989)

12. Jørgensen, A.G., Larsen, K.G.: Range selection and median: tight cell probe lower
bounds and adaptive data structures. In: Proc. of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 805–813. SIAM
(2011)

13. Matoušek, J.: Reporting points in halfspaces. Computational Geometry 2(3),
169–186 (1992)

14. Navarro, G.: Spaces, trees, and colors: The algorithmic landscape of document
retrieval on sequences. ACM Comput. Surv. 46(4), 52 (2013)

15. Navarro, G., Raman, R., Satti, S.R.: asymptotically optimal encodings for range
selection. In: Proc. 34th International Conference on Foundation of Software Tech-
nology and Theoretical Computer Science (FSTTCS). LIPIcs, vol. 29, pp. 291–301.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

16. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms 5(1), 12–22 (2007)

17. Skala, M.: Array range queries. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola,
A. (eds.) Ianfest-66. LNCS, vol. 8066, pp. 333–350. Springer, Heidelberg (2013)

18. Vuillemin, J.: A unifying look at data structures. Communications of the ACM
23(4), 229–239 (1980)

http://oeis.org/A001181
http://arxiv.org/abs/http://arxiv.org/abs/1411.6581

2-Vertex Connectivity in Directed Graphs

Loukas Georgiadis1, Giuseppe F. Italiano2, Luigi Laura3(B),
and Nikos Parotsidis1

1 University of Ioannina, Ioannina, Greece
{loukas,nparotsi}@cs.uoi.gr

2 Università di Roma “Tor Vergata”, Rome, Italy
giuseppe.italiano@uniroma2.it

3 “Sapienza” Università di Roma, Roma, Italy
laura@dis.uniroma1.it

Abstract. Given a directed graph, two vertices v and w are 2-vertex-
connected if there are two internally vertex-disjoint paths from v to w
and two internally vertex-disjoint paths from w to v. In this paper, we
show how to compute this relation in O(m + n) time, where n is the
number of vertices and m is the number of edges of the graph. As a side
result, we show how to build in linear time an O(n)-space data structure,
which can answer in constant time queries on whether any two vertices
are 2-vertex-connected. Additionally, when two query vertices v and w
are not 2-vertex-connected, our data structure can produce in constant
time a “witness” of this property, by exhibiting a vertex or an edge that
is contained in all paths from v to w or in all paths from w to v. We
are also able to compute in linear time a sparse certificate for 2-vertex
connectivity, i.e., a subgraph of the input graph that has O(n) edges and
maintains the same 2-vertex connectivity properties as the input graph.

1 Introduction

Let G = (V,E) be a directed graph (digraph), with m edges and n vertices.
G is strongly connected if there is a directed path from each vertex to every
other vertex. The strongly connected components of G are its maximal strongly
connected subgraphs. Two vertices u, v ∈ V are strongly connected if they belong
to the same strongly connected component of G. A vertex (resp., an edge) of G
is a strong articulation point (resp., a strong bridge) if its removal increases the
number of strongly connected components. A digraph G is 2-vertex-connected
if it has at least three vertices and no strong articulation points; G is 2-edge-
connected if it has no strong bridges. The 2-vertex- (resp., 2-edge-) connected
components of G are its maximal 2-vertex- (resp., 2-edge-) connected subgraphs.

Differently from undirected graphs, in digraphs 2-vertex and 2-edge connec-
tivity have a much richer and more complicated structure. To see an example

Giuseppe F. Italiano—Partially supported by the Italian Ministry of Education, Uni-
versity and Research (MIUR) under Project AMANDA (Algorithmics for MAssive
and Networked DAta).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 605–616, 2015.
DOI: 10.1007/978-3-662-47672-7 49

606 L. Georgiadis et al.

A B

C D

E F

H I

J L

A B

C D

E F

H I

J L

A B

C D

E F

H I

J L

A B

C D

E F

H I

J L

A B

C D

E F

H I

J L

(a) G (b) 2VCC (G) (c) 2VCB(G) (d) 2ECC (G) (e) 2ECB(G)

Fig. 1. (a) A strongly connected digraph G, with strong articulation points and strong
bridges shown in red (better viewed in color). (b) The 2-vertex-connected components
of G. (c) The 2-vertex-connected blocks of G. (d) The 2-edge-connected components
of G. (e) The 2-edge-connected blocks of G.

of this, let v and w be two distinct vertices and consider the following natural
2-vertex and 2-edge connectivity relations, defined in [3,7,11]. Vertices v and w
are said to be 2-vertex-connected (resp., 2-edge-connected), and we denote this
relation by v ↔2v w (resp., v ↔2e w), if there are two internally vertex-disjoint
(resp., two edge-disjoint) directed paths from v to w and two internally vertex-
disjoint (resp., two edge-disjoint) directed paths from w to v (note that a path
from v to w and a path from w to v need not be edge- or vertex-disjoint). A
2-vertex-connected block (resp., 2-edge-connected block) of a digraph G = (V,E)
is defined as a maximal subset B ⊆ V such that u ↔2v v (resp., u ↔2e v)
for all u, v ∈ B. In undirected graphs, the 2-vertex- (resp., 2-edge-) connected
blocks are identical to the 2-vertex- (resp., 2-edge-) connected components. As
shown in Figure 1, this is not the case for digraphs. Put in other words, differ-
ently from the undirected case, in digraphs 2-vertex- (resp., 2-edge-) connected
components do not encompass the notion of pairwise 2-vertex (resp., 2-edge)
connectivity among its vertices. We note that pairwise 2-connectivity may be
relevant in several applications, where one is interested in local properties, e.g.,
checking whether two vertices are 2-connected, rather than in global properties.

It is thus not surprising that 2-connectivity problems on directed graphs
appear to be more difficult than on undirected graphs. For undirected graphs it
has been known for over 40 years how to compute all bridges, articulation points,
2-edge- and 2-vertex-connected components in linear time, by simply using depth
first search [12]. In the case of digraphs, however, the very same problems have
been much more challenging. Indeed, it has been shown only few years ago that
all strong bridges and strong articulation points of a digraph can be computed in
linear time [6]. Furthermore, the best current bound for computing the 2-edge-
and the 2-vertex-connected components in digraphs is not even linear, but it is
O(n2), and it was achieved only very recently by Henzinger et al. [5], improving

2-Vertex Connectivity in Directed Graphs 607

previous O(mn) time bounds [8,10]. Finally, it was shown also very recently how
to compute the 2-edge-connected blocks of digraphs in linear time [3].

In this paper, we complete the picture on 2-connectivity for digraphs by
presenting the first algorithm for computing the 2-vertex-connected blocks in
O(m + n) time. Our bound is asymptotically optimal and it improves sharply
over a previous O(mn) time bound by Jaberi [7]. As a side result, our algorithm
constructs an O(n)-space data structure that reports in constant time if two
vertices are 2-vertex-connected. Additionally, when two query vertices v and w
are not 2-vertex-connected, our data structure can produce, in constant time,
a “witness” by exhibiting a vertex (i.e., a strong articulation point) or an edge
(i.e., a strong bridge) that separates them. We are also able to compute in
linear time a sparse certificate for 2-vertex connectivity, i.e., a subgraph of the
input graph that has O(n) edges and maintains the same 2-vertex connectivity
properties. Our algorithm follows the high-level approach of [3] for computing
the 2-edge-connected blocks. However, the algorithm for computing the 2-vertex-
connected blocks is much more involved and requires several novel ideas and
non-trivial techniques to achieve the claimed bounds. In particular, the main
technical difficulties that need to be tackled when following the approach of [3]
are the following.

First, the algorithm in [3] maintains a partition of the vertices into approx-
imate blocks, and refines this partition as the algorithm progresses. Unlike 2-
edge-connected blocks, however, 2-vertex-connected blocks do not partition the
vertices of a digraph, and therefore it is harder to maintain approximate blocks
throughout the algorithm’s execution. To cope with this problem, we show that
these blocks can be maintained using a more complicated forest representation,
and we define a set of suitable operations on this representation in order to
refine and split blocks. We believe that our forest representation of the 2-vertex-
connected blocks of a digraph can be of independent interest.

Second, in [3] we used a properly defined canonical decomposition of the
input digraph G, in order to obtain smaller auxiliary digraphs (not necessarily
subgraphs of G) that maintain the original 2-edge-connected blocks of G. A key
property of this decomposition was the fact that any vertex in an auxiliary graph
Gr is reachable from a vertex outside Gr only through a single strong bridge.
In the computation of the 2-vertex-connected blocks, we have to decompose the
graph according to strong articulation points, and so the above crucial property
is completely lost. To overcome this problematic issue, we need to design and to
implement efficiently a different and more sophisticated decomposition.

Third, differently from 2-edge connectivity, 2-vertex connectivity in digraphs
is plagued with several degenerate special cases, which are not only more tedious
but also more cumbersome to deal with. For instance, the algorithm in [3] exploits
implicitly the property that two vertices v and w are 2-edge-connected if and
only if the removal of any edge leaves v and w in the same strongly connected
component. Unfortunately, this property no longer holds for 2-vertex connectiv-
ity, as for instance two mutually adjacent vertices are always left in the same
strongly connected component by the removal of any other vertex, but they are

608 L. Georgiadis et al.

not necessarily 2-vertex-connected. To handle this more complicated situation,
we introduce the notion of vertex-resilient blocks and prove some useful proper-
ties about the vertex-resilient and 2-vertex-connected blocks of a digraph.

Another difference with [3] is that now we are able to provide a witness
for two vertices not being 2-vertex-connected. This approach can be applied to
provide a witness for two vertices not being 2-edge-connected, thus extending
the result in [3]. For lack of space, proofs and some details are omitted from this
extended abstract.

2 Flow Graphs, Dominators, and Bridges

In this section we introduce some terminology that will be useful throughout
the paper. A flow graph is a digraph such that every vertex is reachable from
a distinguished start vertex. Let G = (V,E) be the input digraph, which we
assume to be strongly connected. (If not, we simply treat each strongly connected
component separately.) For any vertex s ∈ V , we denote by G(s) = (V,E, s) the
corresponding flow graph with start vertex s; all vertices in V are reachable
from s since G is strongly connected. The dominator relation in G(s) is defined
as follows: A vertex u is a dominator of a vertex w (u dominates w) if every
path from s to w contains u; u is a proper dominator of w if u dominates w and
u �= w. The dominator relation is reflexive and transitive. Its transitive reduction
is a rooted tree, the dominator tree D(s): u dominates w if and only if u is an
ancestor of w in D(s). If w �= s, d(w), the parent of w in D(s), is the immediate
dominator of w: it is the unique proper dominator of w that is dominated by
all proper dominators of w. The dominator tree D(s) has the following parent
property [4]: For all (v, w) ∈ E, v is a descendant of d(w) in D(s). An edge (u,w)
is a bridge in G(s) if all paths from s to w include (u,w). The dominator tree
of a flow graph can be computed in linear time, see, e.g., [1,2]. Italiano et al.
[6] showed that the strong articulation points of G can be computed from the
dominator trees of G(s) and GR(s), where s is an arbitrary start vertex and GR

is the digraph that results from G after reversing edge directions; similarly, the
strong bridges of G correspond to the bridges of G(s) and GR(s).

3 Vertex-resilient Blocks and 2-vertex-connected Blocks

Let v and w be two distinct vertices in a digraph. By Menger’s Theorem [9],
v ↔2e w if and only if the removal of any edge leaves v and w in the same
strongly connected component, i.e., two vertices are 2-edge-connected if and only
if they are resilient to the deletion of a single edge. The situation for 2-vertex
connectivity is more complicated. Indeed, two mutually adjacent vertices are left
in the same strongly connected component by the removal of any other vertex,
although they are not necessarily 2-vertex-connected. To handle this situation,
we use the following notation, which was also considered in [7]. Vertices v and w
are said to be vertex-resilient, denoted by v ↔vr w if the removal of any vertex
different from v and w leaves v and w in the same strongly connected component.

2-Vertex Connectivity in Directed Graphs 609

We define a vertex-resilient block of a digraph G = (V,E) as a maximal subset
B ⊆ V such that u ↔vr v for all u, v ∈ B. Note that, as a (degenerate) special
case, a vertex-resilient block might consist of a singleton vertex only: we denote
this as a trivial vertex-resilient block. In the following, we will consider only non-
trivial vertex-resilient blocks. Since there is no danger of ambiguity, we will call
them simply vertex-resilient blocks. We remark that two vertices v and w that
are vertex-resilient are not necessarily 2-vertex-connected: this is indeed the case
for vertices H and F in the digraph of Figure 1(a). If, however, v and w are not
adjacent then v ↔2v w if and only if v ↔vr w.

We next provide some basic properties of vertex-resilient and 2-vertex-
connected blocks. Denote by VRB(u) the vertex-resilient blocks that contain
u. Define the block graph F = (VF , EF) of G as follows. The vertex set VF con-
sists of the vertices in V and also contains one block node for each vertex-resilient
block of G. The edge set EF consists of the edges {u,B} where B ∈ VRB(u).

Lemma 1. Graph F is acyclic.

Lemma 2. The number of vertex-resilient blocks in a digraph G is at most n−1.

Lemma 3. The total number of vertices in all vertex-resilient blocks is at most
2n − 2.

Lemma 4. Let u and v be any vertices that are not vertex-resilient but are
connected by a path P in F . Then, for any vertex w ∈ V \ {u, v} on P , u and v
are not strongly connected in digraph G \ w.

We consider F as a forest of rooted trees by choosing an arbitrary vertex as
the root of each tree. Then u ↔vr w if and only if u and w are siblings or one is
the grandparent of the other. We can perform both tests in constant time simply
by storing the parent of each vertex in F . Thus, we can test in constant time
if two vertices are vertex-resilient. Note that we cannot always apply Lemma
4 to find a strong articulation point that separates two vertices u and w that
are not vertex-resilient. Indeed, two vertices that are strongly connected but not
vertex-resilient may not even be connected by a path in the forest F . So if we
wish to return a witness that u and w are not vertex-resilient, we cannot rely on
F . We deal with this problem in Section 4.

Now we turn to 2-vertex-connected blocks. Menger’s Theorem [9] implies
that if v and w are not adjacent then v ↔2v w if and only if v ↔vr w. If, on the
other hand, v ↔vr w but v and w are not 2-vertex-connected, then at least one
of the edges (v, w) and (w, v) exists in G and it must be a strong bridge.

Lemma 5. Let v and w be two distinct vertices of G such that v ↔vr w. Then,
v and w are not 2-vertex connected if and only if at least one of the edges (v, w)
and (w, v) is a strong bridge in G.

The following corollary, which relates 2-vertex-connected, 2-edge-connected
and vertex-resilient blocks, is an immediate consequence of Lemma 5.

Corollary 6. For any two distinct vertices v and w, v ↔2v w if and only if
v ↔vr w and v ↔2e w.

610 L. Georgiadis et al.

By Corollary 6 we have that the 2-vertex-connected blocks are refinements
of the vertex-resilient blocks, formed by the intersections of the vertex-resilient
blocks and the 2-edge-connected blocks of the digraph G. Since the 2-edge-
connected blocks are a partition of the vertices of G, these intersections partition
each vertex-resilient block. From this property we conclude that Lemmas 1, 2,
and 3 also hold for the 2-vertex-connected blocks.

4 Computing the Vertex-resilient Blocks

In this section we present new algorithms for computing the vertex-resilient
blocks of a digraph G. We can assume that G is strongly connected, so m ≥ n.
If not, then we process each strongly connected component separately; if u ↔vr

v then u and v are in the same strongly connected component S of G, and
moreover, any vertex on a path from u to v or from v to u also belongs in
S. We begin with a simple algorithm that removes a single strong articulation
point at a time. In order to get a more efficient solution, we need to consider
simultaneously how different strong articulation points divide the vertices into
blocks, which we do with the help of dominator trees. We achieve linear running
time by combining the simple algorithm with the dominator-tree-based division,
and by applying suitable operations on the block forest structure.

A Simple Algorithm. A simple way to compute the vertex-resilient blocks is
by removing the strong articulation points of G one at a time. Let u and v be two
distinct vertices. We say that a strong articulation point x separates u from v if
all paths from u to v contain x. In this case u and v belong to different strongly
connected components of G \ x. This observation implies that we can compute
the vertex-resilient blocks by computing the strongly connected components of
G \ x for every strong articulation point x. To do this efficiently we define an
operation that refines the currently computed blocks. Let B be a set of blocks,
let S be a partition of a set U ⊆ V , and let x be a vertex not in U .

refine(B,S, x): For each block B ∈ B, substitute B by the sets B ∩ (S ∪ {x}) of
size at least two, for all S ∈ S.

In Section 5, where we will compute the 2-vertex-connected blocks from the
vertex-resilient blocks and the 2-edge-connected blocks, we will use the notation
refine(B,S) as a shorthand for refine(B,S, x) with x = null .

Lemma 7. Let N be the total number of elements in all sets of B (N =∑
B∈B |B|), and let K be the number of elements in U . Then, the operation

refine(B,S, x) can be executed in O(N + K) time.

In our simple algorithm, that we refer to as SimpleVRB, we initialize the cur-
rent set of blocks as B = {V }, i.e., we begin from the trivial set containing only
one block. Then we compute the strong articulation points of G, and perform
the following computations for each strong articulation point x. We compute the
strongly connected components S1, . . . , Sk of G \ x, and let S be the partition

2-Vertex Connectivity in Directed Graphs 611

of V \ x defined by the strongly connected components Si. Then, we execute
refine(B,S, x).

Lemma 8. Algorithm SimpleVRB runs in O(mp∗) time, where p∗ is the number
of strong articulation points of G. This is O(mn) in the worst case.

Auxiliary Graphs. We will show how to obtain a faster algorithm by apply-
ing the framework developed in [3] for the computation of the 2-edge-connected
blocks, namely by using dominator trees and auxiliary graphs. As already men-
tioned, auxiliary graphs need to be defined in a substantially different way, which
complicates several technical details.

As a warm up, first consider the computation of VRB(v), i.e., the vertex-
resilient blocks that contain a specific vertex v. Consider the flow graph G(v) with
start vertex v and its reverse GR(v), obtained after reversing edge directions.
Let w be a vertex other than v. Clearly, v and w are vertex-resilient if and only
if v is the only proper dominator of w in both G(v) and GR(v), i.e., d(w) = v
and dR(w) = v. Now let u be a sibling of w in both D(v) and DR(v). The fact
that dR(w) = v and d(u) = v implies that for any vertex x ∈ V \ {v, w, u} there
is a path from w to u through v that avoids x. So w and u are in a common
vertex-resilient block that contains v if and only if they lie in the same strongly
connected component of G\v. This observation implies the following linear-time
algorithm to compute the vertex-resilient blocks that contain v. Compute the
dominator trees D(v) and DR(v) of G(v) and GR(v) respectively. Let C(v) (resp.,
CR(v)) be the set of children of v in D(v) (resp., DR(v)). Set U = C(v)∩CR(v)
and initialize the set of blocks B = {U}. Compute the strongly connected blocks
S1, S2, . . . , Sk of G \ v. Let S be the set that contains the nonempty restrictions
of the Si sets to U , i.e., S contains the nonempty sets Si ∩ U . Finally, execute
refine(B,S, v).

Note that all the vertex-resilient blocks can be computed in O(mn) time by
applying the above algorithm to all vertices v. To avoid the repeated applications
of this algorithm we develop a new concept of auxiliary graphs for 2-vertex
connectivity. Before doing that, we state two properties regarding information
that a dominator tree can provide about vertex-resilient blocks and paths. The
proof of Lemma 9 is immediate.

Lemma 9. Let G = (V,E) be a strongly connected graph, and let s ∈ V be an
arbitrary start vertex. Any two vertices x and y are vertex-resilient only if they
are siblings in D(s) or one is the immediate dominator of the other in G(s).

Lemma 10. Let r be a vertex, and let v be any vertex that is not a descendant
of r in D(s). Then there is a path from v to r that does not contain any proper
descendants of r in D(s). Moreover, all simple paths from v to any descendant
of r in D(s) contain r.

As in [3], auxiliary graphs are a key concept in our algorithm that provides
a decomposition of the input digraph G into smaller digraphs (not necessar-
ily subgraphs of G) that maintain the original vertex-resilient blocks. In [3] we

612 L. Georgiadis et al.

used a canonical decomposition of the input digraph, in order to obtain auxil-
iary graphs that maintain the 2-edge-connected blocks. A key property of this
decomposition was the fact that any vertex in an auxiliary graph Gr is reachable
from a vertex outside Gr only though a single strong bridge. In the computa-
tion of the vertex-resilient blocks, however, we have to decompose the input
digraph according to strong articulation points, and thus the above property is
completely lost. To overcome this critical issue, we apply a different and more
involved decomposition.

Let s be an arbitrarily chosen start vertex in G. Recall that we denote by
G(s) the flow graph with start vertex s, by GR(s) the flow graph obtained from
G(s) after reversing edge directions, by D(s) and DR(s) the dominator trees of
G(s) and GR(s) respectively, and by C(v) and CR(v) the set of children of v
in D(s) and DR(s) respectively. For each vertex r, let Ck(r) denote the level k
descendants of r, i.e., C0(r) = {r}, C1(r) = C(r), etc. For each vertex r �= s that
is not a leaf in D(s) we build the auxiliary graph Gr = (Vr, Er) of r as follows.
The vertex set of Gr is Vr = ∪3

k=0C
k(r) and it is partitioned into a set of ordinary

vertices V o
r = C1(r) ∪ C2(r) and a set of auxiliary vertices V a

r = C0(r) ∪ C3(r).
The auxiliary graph Gr results from G by contracting the vertices in V \ Vr as
follows. All vertices that are not descendants of r in D(s) are contracted into
r. For each vertex w ∈ C3(r), we contract all descendants of w in D(s) into w.
See Figure 2. We use the same definition for the auxiliary graph Gs of s, with
the only difference that we let s be an ordinary vertex. Also note that when we
form Gs from G, no vertex is contracted into s. In order to bound the size of all
auxiliary graphs, we eliminate parallel edges during those contractions.

Lemma 11. The auxiliary graphs Gr have at most 4n vertices and 4m+n edges
in total.

The following lemmas show that the auxiliary graphs are strongly connected
and maintain the vertex-resilient relation of the original digraph.

Lemma 12. Each auxiliary graph Gr is strongly connected.

Lemma 13. Let v and w be any two distinct vertices of G. Then v and w are
vertex-resilient in G if and only if they are both ordinary vertices in an auxiliary
graph Gr and they are vertex-resilient in Gr.

Now we specify how to compute all the auxiliary graphs Gr = (Vr, Er) in
O(m + n) time. Observe that the edge set Er contains all edges in G = (V,E)
induced by the vertices in Vr (i.e., edges (u, v) ∈ E such that u ∈ Vr and v ∈ Vr).
We also add in Er the following types of shortcut edges that correspond to paths
in G. (a) If G contains an edge (u, v) such that u �∈ Vr is a descendant of r in
D(s) and v ∈ Vr then we add the shortcut edge (z, v) where z is the ancestor of
u in D(s) such that z ∈ C3(r). (b) If G contains an edge (u, v) such that u but
not v is a descendant of r in D(s) then we add the shortcut edge (z, r) where
z is the nearest ancestor of u in D(s) such that z ∈ Vr (z = u if u ∈ Vr). We
note that we do not keep multiple (parallel) shortcut edges. See Figure 2. We
also note that Gs does not contain type-(b) shortcut edges.

2-Vertex Connectivity in Directed Graphs 613

c

g

n

w

h

o

i

p

x

q

j k

t

y

d e

u v

z

l m

f

s

a r b

c

g

n

w

h

o

i

p

x

q

j k

t

y

d e

u v

z

l m

f

s

a r b

G D(s)

c

g

n

h

o

i

p q

j k

t

d e

u v

l m

f

r

c
g

n
h

o
ip

q
j

k
t

d

e

u
v

l

mf

r

H = Gr DR
H(r)

Fig. 2. A strongly connected graph G, the dominator tree D(s) of flow graph G(s),
the auxiliary graph H = Gr and the dominator tree DR

H(r) of the flow graph HR(r).
(The edges of the dominator tree DR

H(r) are shown directed from child to parent.) The
auxiliary vertices of H are shown gray.

To construct the auxiliary graphs Gr = (Vr, Er) we need to specify how to
compute the shortcut edges of type (a) and (b). To do this efficiently we need to
test ancestor-descendant relations in D(s), which can be done in O(1)-time after
O(n)-time preprocessing [13], e.g., we number the vertices of D(s) in preorder
and compute the number of descendants of each vertex. Suppose (u, v) is an edge
of type (a). We need to find the ancestor z of u in D(s) such that z ∈ C3(r). We
process all such arcs of Gr as follows. We create a list Br that contains the edges
(u, v) of type (a), and sort Br in increasing preorder of u. We create a second
list B′

r that contains the vertices in C3(r), and sort B′
r in increasing preorder.

Then, the shortcut edge of (u, v) is (z, v), where z is the last vertex in the sorted
list B′

r such that pre(z) ≤ pre(u), where pre(v) is the preorder number of v in
D(s). Thus the shortcut edges of type (a) can be computed in linear time by
bucket sorting and merging. Now we consider the edges of type (b). For each
vertex w ∈ C3(r) we need to test if there is an edge (u, v) in G such that u is
a proper descendant of w and v is not a descendant of r in D(s). In this case,
we add in Gr the edge (w, r). To do this test efficiently, we assign to each edge
(u, v) a tag t(u, v) which we set equal to the preorder number of the nearest
common ancestor of u and v in D(s). We can do this easily by using the parent
property of D(s) and the O(1)-time test of the ancestor-descendant relation as
follows: t(u, v) = pre(u) if u is an ancestor of v in D(s), t(u, v) = pre(v) if v
is an ancestor of u in D(s), and t(u, v) = pre(d(v)) otherwise. At each node
w �= s in D(s) we store a label �(w) which is the minimum tag of among the
edges (w, v). Using these labels we compute for each w �= s in D(s) the values
low(w) = min{�(v) | v is a descendant of w in D(s)}. These computations can
be done in O(m) time by processing the tree D(s) in a bottom-up order. Now

614 L. Georgiadis et al.

consider the auxiliary graph Gr. We process the vertices in C3(r). For each such
vertex w we add the shortcut edge (w, r) if low(w) < pre(r).

Lemma 14. We can compute all auxiliary graphs Gr in O(m + n) time.

The Linear-time Algorithm. Our linear-time algorithm FastVRB is illustrated
in Figure 3. It uses two levels of auxiliary graphs and applies one iteration of
Algorithm SimpleVRB for each auxiliary graph of the second level. The algorithm
uses different dominator trees, and applies Lemma 9 in order to identify the
vertex-resilient blocks. Since different dominator trees may define different blocks
(which by Lemma 9 are supersets of the vertex-resilient blocks), we will use an
operation that we call split to combine the different blocks.

We begin by computing the dominator tree D(s) for an arbitrary start vertex
s. For any vertex v, we let Ĉ(v) denote the set containing v and the children
of v in D(s), i.e., Ĉ(v) = C(v) ∪ {v}. Lemma 9 gives an initial division of the
vertices into blocks that are supersets of the vertex-resilient blocks. Specifically,
the vertex-resilient blocks that contain v are subsets of Ĉ(v) or Ĉ(d(v)) (for
v �= s). During the course of the algorithm, each vertex v becomes associated
with a set of blocks B(v) that contain v, which are subsets of Ĉ(v) and Ĉ(d(v))
if v �= s. The blocks are refined by applying the operation refine, defined above,
and operation split that we define next, and at the end of the algorithm each set
of blocks B(v) will be equal to VRB(v). Let B be a block and T be a tree with
vertex set V (T) ⊇ B. For any vertex v ∈ V (T), let ĈT (v) be the set containing
v and the children of v in T .
split(B, T): Return the set that consists of the blocks B ∩ ĈT (v) of size at least

two, for all v ∈ V (T).

Lemma 15. Let N be the number of vertices in V (T). Then, the operation
split(B, T) can be executed in O(N) time.

At a high level, the algorithm begins with a “coarse” block tree, induced by
the Ĉ(v) sets of D(s), which is then refined by the blocks defined from the dom-
inator trees of the auxiliary graphs. The final vertex-resilient block forest is then
computed by considering the strongly connected components of the second level
auxiliary graphs, after removing their designated start vertex. The algorithm
needs to keep track of the blocks that contain a specific vertex, and, conversely,
of the vertices that are contained in a specific block. To facilitate this search we
explicitly store the adjacency lists of the current block forest F . Recall that F
is bipartite, so the adjacency list of a vertex v stores the blocks that contain
v, and the adjacency list of a block node B stores the vertices in B. Initially F
contains one block for each set Ĉ(v), for all vertices v that are not leaves in D(s).
These blocks are later refined by executing the split and refine operations, which
maintain the invariant that F is a forest, and that any two distinct blocks have
at most two vertices in common. When we execute a split or a refine operation
we can update the adjacency lists of F , while maintaining the bounds given in
Lemmas 7 and 15. During the execution of the algorithm the number of blocks
in F remains at most n − 1. blocks at any given time. This fact implies that
Lemma 3 holds, so the total number of vertices and edges in F is O(n).

2-Vertex Connectivity in Directed Graphs 615

Algorithm FastVRB: Linear-time computation of the vertex-resilient
blocks of a strongly connected digraph G = (V,E)

Step 1: Choose an arbitrary vertex s ∈ V as a start vertex. Compute the dom-
inator tree D(s). For any vertex v, let Ĉ(v) be the set containing v and the
children of v in D(s). For every vertex v that is not a leaf in D(s), associate
block Ĉ(v) with every vertex w ∈ Ĉ(v).

Step 2: Compute the auxiliary graphs Gr for all vertices r that are not leaves in
D(s).

Step 3: Process the vertices of D(s) in bottom-up order. For each auxiliary graph
H = Gr with r not a leaf in D(s) do:
Step 3.1: Compute the dominator tree T = DR

H(r).
Step 3.2: Compute the set B of blocks that contain vertices in C(r).
Step 3.3: For each block B ∈ B execute split(B, T).
Step 3.4: Compute the auxiliary graphs HR

q for all vertices q that are not
leaves in T .

Step 3.5: For each auxiliary graph HR
q with q not a leaf do:

Step 3.5.1: Compute the set Bq of blocks that contain at least two ordinary
vertices in HR

q .
Step 3.5.2: Compute the set S of the strongly connected components of
HR

q \ q.
Step 3.5.3: Refine the blocks in Bq by executing refine(Bq,S, q).

Fig. 3. Algorithm FastVRB

Theorem 16. Algorithm FastVRB is correct and runs in O(m + n) time.

Queries. Algorithm FastVRB computes the vertex-resilient blocks of the input
digraph G and stores them in the block forest F of Section 3, which makes it
straightforward to test in constant time if two query vertices v and w are vertex-
resilient. Here we show that if v and w are not vertex-resilient, then we can report
a witness of this fact, that is, a strong articulation point x such that v and w are
not in the same strongly connected component of G \ x. Using this witness, it is
straightforward to verify in O(m) time that v and w are not vertex-resilient; it
suffices to check that v is not reachable from w in G \ x or vice versa.

To obtain our witness, we would like to apply Lemma 4, but this requires v
and w to be in the same tree of the block forest. Fortunately, we can find the
witness fast by applying Lemmas 9 and 10. To that end, it suffices to store the
dominator tree D(s) of G(s), and the dominator trees DR

H(r) of all auxiliary
graphs HR = GR

r . The space required for these data structures is O(n) by
Lemma 11. The details are provided in the full version.

Theorem 17. Let G be a digraph with n vertices and m edges. We can compute
the vertex-resilient blocks of G in O(m + n) time and store them in a data
structure of O(n) space. Given this data structure, we can test in O(1) time
if any two vertices are vertex-resilient. Moreover, if the two vertices are not
vertex-resilient, then we can report in O(1) time a strong articulation point that
separates them.

616 L. Georgiadis et al.

5 Computing the 2-vertex-connected Blocks

We can compute the 2-vertex-connected blocks of the input digraph G = (V,E)
by applying Corollary 6 as follows. Given the vertex-resilient blocks B and the
2-edge-connected blocks S of G, we simply execute refine(B,S). This takes O(n)
time by Lemma 7. Also, since the 2-vertex-connected blocks have a block forest
representation, we can test if two given vertices are 2-vertex-connected in O(1)
time as described in Section 3. If we only wish to answer queries of whether
two vertices v and w are 2-vertex-connected, without computing explicitly the
2-vertex and the 2-edge-connected blocks, then we can use a simpler alternative,
as suggested by Lemma 5. This way we can also obtain a strong bridge that
separates a pair of vertices that are vertex-resilient but not 2-vertex-connected.
Theorem 18. Let G be a digraph with n vertices and m edges. We can compute
the 2-vertex-connected blocks of G in O(m + n) time and store them in a data
structure of O(n) space. Given this data structure, we can test in O(1) time if
any two vertices are 2-vertex-connected. Moreover, if the two vertices are not
2-vertex-connected, then we can report in O(1) time a strong articulation point
or a strong bridge that separates them.

References

1. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time.
SIAM Journal on Computing 28(6), 2117–32 (1999)

2. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook,
J.R.: Linear-time algorithms for dominators and other path-evaluation problems.
SIAM Journal on Computing 38(4), 1533–1573 (2008)

3. Georgiadis, L., Italiano, G.F., Laura, L., Parotsidis, N.: 2-edge connectivity
in directed graphs. In: Proc. 26th ACM-SIAM Symp. on Discrete Algorithms,
pp. 1988–2005 (2015)

4. Georgiadis, L., Tarjan, R.E.: Dominator tree certification and independent span-
ning trees (2012). CoRR, abs/1210.8303

5. Henzinger, M., Krinninger, S., Loitzenbauer, V.: Finding 2-edge and 2-vertex
strongly connected components in quadratic time. In: Proc. 42nd International
Colloquium on Automata, Languages, and Programming (ICALP 2015) (2015)

6. Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong articu-
lation points in linear time. Theoretical Computer Science 447, 74–84 (2012)

7. Jaberi, R.: Computing the 2-blocks of directed graphs (2014). CoRR,
abs/1407.6178

8. Jaberi, R.: On computing the 2-vertex-connected components of directed graphs
(2014) CoRR, abs/1401.6000

9. Menger, K.: Zur allgemeinen kurventheorie. Fund. Math. 10, 96–115 (1927)
10. Nagamochi, H., Watanabe, T.: Computing k-edge-connected components of a

multigraph. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences E76A(4), 513–517 (1993)

11. Reif, J.H., Spirakis, P.G.: Strong k-connectivity in digraphs and random digraphs.
Technical Report TR-25-81, Harvard University (1981)

12. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1(2), 146–160 (1972)

13. Tarjan, R.E.: Finding dominators in directed graphs. SIAM Journal on Computing
3(1), 62–89 (1974)

Ground State Connectivity of Local
Hamiltonians

Sevag Gharibian1 and Jamie Sikora2(B)

1 Department of Computer Science,
Virginia Commonwealth University, Richmond, USA

2 Centre for Quantum Technologies and MajuLab, CNRS-UNS-NUS-NTU
International Joint Research Unit, UMI 3654, National University of Singapore,

Singapore, Singapore
cqtjwjs@nus.edu.sg

Abstract. The study of ground state energies of local Hamiltonians has
played a fundamental role in quantum complexity theory. In this paper,
we take a new direction by introducing the physically motivated notion
of “ground state connectivity” of local Hamiltonians, which captures
problems in areas ranging from quantum stabilizer codes to quantum
memories. We show that determining how “connected” the ground space
of a local Hamiltonian is can range from QCMA-complete to PSPACE-
complete, as well as NEXP-complete for an appropriately defined
“succinct” version of the problem. As a result, we obtain a natural
QCMA-complete problem, a goal which has generally proven difficult
since the conception of QCMA over a decade ago. Our proofs rely on
a new technical tool, the Traversal Lemma, which analyzes the Hilbert
space a local unitary evolution must traverse under certain conditions.
We show that this lemma is essentially tight with respect to the length
of the unitary evolution in question.

1 Introduction

Over the last fifteen years, the merging of condensed matter physics and compu-
tational complexity theory has given rise to a new field of study known as quan-
tum Hamiltonian complexity. The cornerstone of this field is arguably Kitaev’s [1]
quantum version of the Cook-Levin theorem [2,3], which says that the problem
of estimating the ground state energy of a local Hamiltonian is complete for
the class Quantum Merlin Arthur (QMA), where QMA is a natural generaliza-
tion of NP. Here, a k-local Hamiltonian is an operator H =

∑
i Hi acting on

n qubits, such that each local Hermitian constraint Hi acts non-trivially on k
qubits. The ground state energy of H is simply the smallest eigenvalue of H, and
the corresponding eigenspace is known as the ground space of H.

Kitaev’s result spurred a long line of subsequent works on variants of the
ground energy estimation problem, known as the k-local Hamiltonian prob-
lem (k-LH). For example, Oliveira and Terhal showed that LH remains QMA-
complete in the physically motivated case of qubits arranged on a 2D lattice [4].
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 617–628, 2015.
DOI: 10.1007/978-3-662-47672-7 50

618 S. Gharibian and J. Sikora

Bravyi and Vyalyi proved [5] that the commuting variant of 2-LH is in NP.
More recently, the complexity of the version of 2-LH in which large positive
and negative weights on local terms are allowed1 was characterized by Cubitt
and Montanaro [7] in a manner analogous to Schaeffer’s dichotomy theorem for
Boolean satisfiability [8]. Thus, k-LH has served as an excellent “benchmark”
problem for delving into the complexity of problems encountered in the study of
local Hamiltonians. Yet, one can also ask about the properties of the ground space
itself. For example, is it topologically ordered? Can we evaluate local observables
against it (e.g. for non-degenerate ground state |ψ〉 and 2-local observable O, can
one estimate 〈ψ| I ⊗ O |ψ〉)? It is this direction which we pursue in this paper.

Specifically, in this paper we define a notion of connectivity of the ground
space of H, which roughly asks: Given ground states |ψ〉 and |φ〉 of H as input,
are they “connected” through the ground space of H? Somewhat more formally,
we have (see Section 2 for a formal definition):

Definition 1 (Ground State Connectivity (GSCON) (informal)). Given
as input a local Hamiltonian H and ground states |ψ〉 and |φ〉 of H (specified via
quantum circuits), as well as parameters m and l, does there exist a sequence of
l-qubit unitaries (Ui)m

i=1 such that:

1. (|ψ〉 mapped to |φ〉) Um · · · U1 |ψ〉 ≈ |φ〉, and
2. (intermediate states in ground space) ∀ i ∈ [m], Ui · · · U1 |ψ〉 is in the ground

space of H?

In other words, GSCON asks whether there exists a sequence of m unitaries,
each acting on (at most) l qubits, mapping the initial state |ψ〉 to the final state
|φ〉 through the ground space of H. We stress that the parameters m (i.e. number
of unitaries) and l (i.e. the locality of each unitary) are key; as we discuss shortly,
depending on their setting, the complexity of GSCON can vary greatly.

Physics Motivation. The original inspiration for this work came from the clas-
sical study of reconfiguration problems (see Previous work below for details). For
example, the reconfiguration problem for 3SAT asks: Given a 3SAT formula φ
and satisfying assignments x and y for φ, does there exist a sequence of bit flips
mapping x to y, such that each intermediate assignment encountered is also a
satisfying assignment for φ? Although classically, reconfiguration problems are
arguably mostly interesting from a theoretical perspective, their quantum vari-
ant (i.e. GSCON) turns out to be physically relevant. To illustrate, we now
discuss connections to quantum memories and stabilizer codes.

Quantum Memories. A key challenge in building quantum computers is the
implementation of long-lived qubit systems. In low-temperature systems, one
approach is to encode a qubit in the ground state of a gapped Hamiltonian with

1 Note that certain physically motivated local Hamiltonian models, such as the Heisen-
berg anti-ferromagnet (see, e.g., [6] for a definition), require unit weights on all
constraints, and are thus not captured by the dichotomy theorem of [7].

Ground State Connectivity of Local Hamiltonians 619

a degenerate ground space. Here, the degeneracy ensures the ground space has
at least two basis states, logical |0̃〉 and |1̃〉, and the gap ensures that external
noise does not (easily) take a ground state out of the ground space. However,
this is not sufficient — although environmental noise may not take the state out
of the ground space, it can still alter the state within the ground space (e.g.
inadvertently map |0̃〉 to |1̃〉). Thus, making the typical assumption that errors
act locally, it should ideally not be possible for |0̃〉 to be mapped to |1̃〉 through
the ground space via a sequence of local operations. This is precisely the prin-
ciple behind Kitaev’s toy chain model [9], and the motivation behind the toric
code [10] (see also [11]). This notion of how “robust” a quantum memory is can
thus be phrased as an instance of GSCON: Given a gapped Hamiltonian H, a
ground state |ψ〉 to which the quantum memory is initialized, and an undesired
ground state |φ〉, is there a sequence of local errors mapping the state of our
quantum memory through the ground space from |ψ〉 to |φ〉?

Stabilizer Codes. Roughly, a stabilizer code is a quantum error-correcting code
defined by a set of commuting Hermitian operators, S = {G1, . . . , Gk }, such
that Gi �= −I and ‖Gi‖∞ ≤ 1 for all Gi ∈ S. The codespace for S is the set of
all |ψ〉 satisfying Gi |ψ〉 = |ψ〉 for all i ∈ [k]. In other words, defining G+

i as the
projection onto the +1 eigenspace of Gi, the codespace is the ground space of
the positive semidefinite Hamiltonian H :=

∑k
i=1(I − G+

i). Typically, errors are
assumed to occur on a small number of qubits at a time; with this assumption
in place, the following is a special case of GSCON: Given H and codewords
|ψ〉 and |φ〉, does there exist a sequence of at most m local errors mapping |ψ〉
to |φ〉, such that the entire error process is undetectable, i.e. each intermediate
state remains in the codespace?

Results. Having motivated GSCON, we now informally state our results.

Theorem 1 (Informal, see Theorem 5 for a formal statement). GSCON
for polynomially large m (i.e. for polynomially many local unitaries U) and l = 2
(i.e. 2-qubit unitaries) is QCMA-complete.

Here, QCMA is QMA except with a classical prover [12]. See Section 2 for
a formal definition. Theorem 1 says that determining whether there exists a
polynomial-size quantum circuit mapping |ψ〉 to |φ〉 through the ground space
of H is QCMA-complete.

Theorem 2 (Informal, see full version [13] for a formal statement).
GSCON for exponentially large m (i.e. for exponentially many local unitaries
U) and l = 1 (i.e. 1-qubit unitaries) is PSPACE-complete.

Theorem 2 says that determining whether there exists an exponential length
sequence of 1-qubit unitaries mapping |ψ〉 to |φ〉 through the ground space of H
is PSPACE-complete.

Finally, in the full version we define a succinct variant of GSCON, called
SUCCINCT GSCON, in which the Hamiltonian H has a succinct circuit

620 S. Gharibian and J. Sikora

description, and the initial and final states |ψ〉 and |φ〉 are product states. We
show:

Theorem 3 (Informal, see full version [13] for a formal statement). The
problem SUCCINCT GSCON for exponentially large m (i.e. for exponentially
many local unitaries U) and l = 1 (i.e. 1-qubit unitaries) is NEXP-complete.

We remark that the choices of m and l above are key to our results. For
example, Theorem 1 holds for any constant l ≥ 2 (see remarks after its proof);
however, for l ∈ ω(log N) (for N the input size) the problem is likely no longer
in QCMA, as the prover cannot send a classical description of each local unitary.
Similarly, attempting to extend Theorem 2 by setting l = 2 appears problem-
atic, as then any intermediate state in the unitary evolution seems to require
exponential space to represent. This latter problem is, however, in NEXP. We
thus conjecture that it is actually NEXP-complete.

Proof Techniques. Our results rely on a new technical lemma called the
Traversal Lemma, as well as the use of ε-nets and ε-pseudo-nets (also known
as improper covering sets). We now outline the proof techniques behind Theo-
rem 5 (QCMA-completeness) in more detail; using similar ideas, we have that
Theorems 2 (PSPACE-completeness) and 3 (NEXP-completeness) follow analo-
gously.

Specifically, we outline both QCMA-hardness and containment in QCMA.
Beginning with the former, the central idea behind the construction is as follows.
Let V be an arbitrary QCMA verification circuit, and let H ′ be the local Hamil-
tonian obtained from V via Kitaev’s circuit-to-Hamiltonian construction [1].
Then, we design the input Hamiltonian H to GSCON so that “traversing its
ground space” is equivalent to simulating the following protocol: Starting from
the all-zeroes state, prepare the ground state of H ′ (which can be done efficiently
since V is a QCMA circuit), and subsequently flip a set of special qubits called
GO qubits. This latter step “activates” the check Hamiltonian H, which now
“verifies” that the ground state prepared is indeed correct. Finally, uncompute
the ground state to arrive at a target state of all-zeroes except in the GO register,
which is now set to all ones.

To prove correctness of this construction, our main technical tool is a new
lemma we call the Traversal Lemma, which analyzes the Hilbert space a local uni-
tary evolution must traverse in certain settings. Specifically, define two states |ψ〉
and |φ〉 as k-orthogonal if for any k-local unitary U , we have 〈φ| U |ψ〉 = 0. In
other words, any application of a k-local unitary leaves |ψ〉 and |φ〉 orthogonal.
Then, the Traversal Lemma roughly says that for k-orthogonal states |ψ〉 and |φ〉,
if we wish to map |ψ〉 to |φ〉 via a sequence of k-local unitaries, then at some step in
this evolution we must leave the space spanned by |ψ〉 and |φ〉, i.e. we must have
“large” inner product with I − |ψ〉〈ψ| − |φ〉〈φ|. (Here, “large” means the inner
product scales at least as Ω(1/m2), for m the number of k-local unitaries applied.)
To prove the Traversal Lemma, we use a combination of the Gentle Measurement
Lemma of Winter [14] and an idea inspired by the quantum Zeno effect.

Ground State Connectivity of Local Hamiltonians 621

As the Traversal Lemma is a key technical contribution of this paper, we
also study its properties further (i.e. independently of its application to our
complexity theoretic results). For example, we show the lemma is tight up to
a polynomial factor in the number of unitaries, m. To do so, we give a pair of
2-orthogonal states |ψ〉, |φ〉 with the following property: For any 0 < Δ < 1/2,
we construct a carefully selected sequence of O(1/Δ2) 2-local unitaries mapping
|ψ〉 to |φ〉, such that at any point in this mapping, the inner product with
I − |ψ〉〈ψ| − |φ〉〈φ| is at most Δ. We also delve further into the study of k-
orthogonality, including giving an intuitive characterization of the notion.

Finally, containment of GSCON in QCMA is shown via a simple and nat-
ural verification procedure, wherein the prover sends a classical description of
the local unitaries {Ui }, and the verifier prepares many copies of the starting,
final, and all intermediate states and checks that all required properties hold.
To make this rigorous, we construct an ε-pseudo-net, which allows us to eas-
ily discretize the space of d-dimensional unitary operators for any d ≥ 2. Such
pseudo-nets come with a tradeoff: On the negative side, they contain non-unitary
operators. On the positive side, they are not only straightforward to construct,
but more importantly, they have the following property: Given any element A
in the pseudo-net, there are efficient explicit protocols for checking if A is close
to unitary, and if so, for “rounding” it to such a unitary.

Previous Work. To the best of our knowledge, our work is the first to study
reconfiguration in the quantum setting. In the classical setting, the inspiration
for our work came from the paper of Gopalan, Kolaitis, Maneva, and Papadim-
itriou [15], which shows that determining whether two solutions x and y of a
Boolean formula are connected through the solution space is either in P or is
PSPACE-complete, depending on the constraint types allowed in the formula.
Recently, Mouawad, Nishimura, Pathak and Raman [16] studied the variant of
this problem in which one seeks the shortest possible Boolean reconfiguration
path; they show this problem is either in P, NP-complete, or PSPACE-complete.
In this sense, our definition of GSCON can be thought of as a quantum gener-
alization of the problem studied in [16]. More generally, since the work of [15],
a flurry of papers have appeared studying reconfiguration for problems ranging
from Boolean satisfiability to vertex cover to graph coloring (e.g. [17–20]).

Significance to Complexity Theory. We now discuss the significance of our
results from a complexity theoretic perspective. We begin by focusing on QCMA,
which is a natural class satisfying MA ⊆ QCMA ⊆ QMA. Although QCMA was
introduced over a decade ago by Aharonov and Naveh [12], we still have an
unfortunately small number of complete problems for it. In particular, to the
best of our knowledge, the following is an exhaustive list at the time of writing:

• Does a given local Hamiltonian have an efficiently preparable ground
state [21]?

• Does a given quantum circuit act almost as the identity on computational
basis states [21]?

622 S. Gharibian and J. Sikora

• Given a braid, can it be conjugated by another braid from a given class such
that the Jones polynomial of its plat closure is nearly maximal [22]?

• Given a continuous-time classical random walk on a restricted class of graphs,
and time T , do there exist vertices i and j such that the difference of the
probabilities of being at i and j is at least c · exp(−μT) [23]?

• Given a quantum circuit C accepting a non-empty monotone set, what is
the smallest Hamming weight string accepted by C [24]?

In this regard, the pursuit of natural complete problems for QCMA has arguably
proven rather difficult. Our results add a new, physically-motivated problem (i.e.
GSCON) to the short list of QCMA-complete problems.

Second, a common focus in quantum complexity theory has been the problem
of estimating the ground state energy of a given local Hamiltonian. However, less
attention has been given to the complexity of determining other properties of
local Hamiltonians. For example, Brown, Flammia, and Schuch showed [25] that
computing the ground state degeneracy and density of states for a local Hamil-
tonian is #BQP-complete. Gharibian and Kempe showed [24] that determin-
ing the smallest subset of interaction terms of a given local Hamiltonian which
yields a high energy ground space is cq-Σ2-complete. Ambainis has shown [26]
(among other results) that evaluating local observables against a local Hamil-
tonian is PQMA[log n]-complete, and that determining the spectral gap of a local
Hamiltonian is in PQMA[log n]. Continuing in this vein, our work initiates a new
direction of study regarding properties of local Hamiltonians beyond estimating
the ground state energy, namely the study of ground state connectivity.

Finally, regarding the use of our proof techniques in the study of quantum
algorithms and verification procedures, we hope the Traversal Lemma may prove
useful in its own right. For example, in quantum adiabatic algorithms, it is often
notoriously difficult to understand how a quantum state evolves in time from an
easy-to-prepare initial state to some desired final state. The Traversal Lemma
gives us a tool for studying the behaviour of such evolutions, playing a crucial role
in our analysis here. We remark, however, that in quantum adiabatic evolution,
the Hamiltonian itself changes with time, whereas here our Hamiltonian is fixed
and we apply local unitary gates to our quantum state.

Organization. This paper is organized as follows. In Section 2, we state
notation, definitions, and known results. Section 3 introduces the notion of k-
orthogonality and the Traversal Lemma, and states our result regarding the lat-
ter’s tightness. QCMA-hardness of GSCON via the Traversal Lemma is sketched
in Section 4. The definition of the succinct version of GSCON, as well as all
omitted technical details (e.g. full proofs of Theorems 5, 2, and 3 and our further
study of k-orthogonality) can be found in the full version [13].

2 Preliminaries

We now state definitions and known tools useful to this work; an expanded such
section, as required for our technical proofs, is given in the full version [13].

Ground State Connectivity of Local Hamiltonians 623

Notation. For x ∈ { 0, 1 }n, |x〉 ∈ (C2)⊗n denotes the computational basis
state labeled by x. For complex Euclidean space X , let L (X), Herm (X) and
U (X) denote the sets of linear, Hermitian and unitary operators acting on X ,
respectively. Define matrix norms: ‖A‖max := maxij |A(i, j)|, the spectral norm
‖A‖∞ := max{‖A |v〉‖2 : ‖|v〉‖2 = 1}, and trace norm ‖A‖tr := Tr

√
A†A. We

treat the local dimension d of quantum systems as a constant.

Definitions and Tools. We now formally define the problem studied in this
paper. (To ease parsing, the input parameters are highlighted in maroon online.)

Definition 2 (Ground State Connectivity (GSCON)).
• Input parameters:

1. k-local Hamiltonian H =
∑

i Hi acting on n qubits with Hermitian Hi

satisfying ‖Hi‖∞ ≤ 1.
2. η1, η2, η3, η4,Δ ∈ R, and integer m ≥ 0, such that η2 − η1 ≥ Δ and

η4 − η3 ≥ Δ.
3. Polynomial size quantum circuits Uψ and Uφ generating “starting” and

“target” states |ψ〉 and |φ〉 (starting from |0〉⊗n), respectively, satisfying
〈ψ| H |ψ〉 ≤ η1 and 〈φ| H |φ〉 ≤ η1.

• Output:
1. If there exists a sequence of l-local unitaries (Ui)m

i=1 ∈ U
(
C

2
)×m s.t.:

(a) (Intermediate states remain in low energy space) For all i ∈ [m] and
intermediate states |ψi〉 := Ui · · · U2U1 |ψ〉, one has 〈ψi| H |ψi〉 ≤ η1,
and

(b) (Final state close to target state) ‖Um · · · U1 |ψ〉 − |φ〉‖2 ≤ η3,
then output YES.

2. If for all l-local sequences of unitaries (Ui)m
i=1 ∈ U

(
C

2
)×m, either:

(a) (Intermediate state obtains high energy) There exists i ∈ [m] and
intermediate state |ψi〉 := Ui · · · U2U1 |ψ〉, s.t. 〈ψi| H |ψi〉 ≥ η2, or

(b) (Final state far from target state) ‖Um · · · U1 |ψ〉 − |φ〉‖2 ≥ η4,
then output NO.

A few remarks are in order. First, in the Hamiltonian complexity literature the
gap size Δ for energy levels of local Hamiltonians is often taken to be inverse
polynomial. Some of our results require this gap to be exponentially small. Allow-
ing Δ to be specified as input thus allows us to precisely formulate such results.
Second, the circuits Uψ and Uφ are assumed to be given in terms of 1 and 2-qubit
unitary gates. Third, all input parameters are specified with rational entries, each
using O(poly(n)) bits of precision.

Next, let us recall the definition of the complexity class QCMA [12].

Definition 3 (QCMA). A promise problem A = (Ayes, Ano) is in QCMA if
and only if there exist polynomials p, q and a polynomial-time uniform family of
quantum circuits {Qn }, where Qn takes as input a string x ∈ Σ∗ with |x| = n,
a classical proof y ∈ { 0, 1 }⊗p(n), and q(n) ancilla qubits in state |0〉⊗q(n), s.t.:

624 S. Gharibian and J. Sikora

– (Completeness) If x ∈ Ayes, then there exists a proof y ∈ { 0, 1 }⊗p(n) such
that Qn accepts (x, y) with probability at least 2/3.

– (Soundness) If x ∈ Ano, then for all proofs y ∈ { 0, 1 }⊗p(n), Qn accepts
(x, y) with probability at most 1/3.

We next state a lemma regarding the 3-local circuit-to-Hamiltonian construc-
tion of Kempe and Regev [27].

Lemma 1 (Kempe and Regev [27]). Kempe and Regev’s construction maps
a quantum circuit V to a 3-local Hamiltonian H with parameters α and β s.t.:

• If there exists a proof |ψ〉 accepted by V with probability at least 1 − ε, then
there exists a state |ψhist〉 achieving Tr(H |ψhist〉〈ψhist|) ≤ α := ε/(L + 1).

• If V rejects all proofs |ψ〉 with probability at least 1 − ε, then the smallest
eigenvalue of H is at least β ∈ Ω

(
1

L3

)
.

3 k-Orthogonality and the Traversal Lemma

The key technical tool for proving our hardness results is the Traversal Lemma
(Lemma 2). In this section, we state this lemma and study its tightness. All
technical proofs, as well as a further study on the notion of k-orthogonality,
are deferred to the full version [13]. We begin by introducing the notions of
k-orthogonal states and k-orthogonal subspaces.

Definition 4 (k-orthogonal states and subspaces). For k ≥ 1, a pair of
states |v〉 , |w〉 ∈ (Cd)⊗n is k-orthogonal if for all k-qudit unitaries U , we have
〈w| U |v〉 = 0. We call subspaces S, T ⊆ (Cd)⊗n k-orthogonal if any pair of
vectors |v〉 ∈ S and |w〉 ∈ T are k-orthogonal.

Remarks on k-orthogonality: First, k-orthogonality implies orthogonality, but
not vice versa. For example, |000〉 and |111〉 are 2-orthogonal and hence orthog-
onal. In contrast, |000〉 and |100〉 are orthogonal but not k-orthogonal for any
k ≥ 1 (i.e. simply apply Pauli X to qubit 1 to map |000〉 to |100〉). Similarly,
letting S and T denote the +1 eigenspaces of I ⊗ |000〉〈000| and I ⊗ |111〉〈111|,
respectively, we have that S and T are 2-orthogonal subspaces.

We now state the Traversal Lemma, which says: For any two k-orthogonal
subspaces S and T with |v〉 ∈ S and |w〉 ∈ T , any sequence of m k-qudit unitaries
mapping |v〉 to |w〉 must induce an evolution which has “large” overlap with the
orthogonal complement of both S and T at some time step i ∈ [m].

Lemma 2 (Traversal Lemma). Let S, T ⊆ (Cd)⊗n be k-orthogonal subspaces.
Fix arbitrary states |v〉 ∈ S and |w〉 ∈ T , and consider a sequence of k-qudit
unitaries (Ui)m

i=1 such that ‖|w〉 − Um · · · U1 |v〉‖2 ≤ ε for some 0 ≤ ε < 1/2.
Define |vi〉 := Ui · · · U1 |v〉 and P := I − ΠS − ΠT . Then, there exists an i ∈ [m]
such that 〈vi| P |vi〉 ≥ (

1−2ε
2m

)2
.

Ground State Connectivity of Local Hamiltonians 625

Proof. We sketch the proof here. We proceed by contradiction. Suppose that for
all i ∈ [m], we have that 〈vi| P |vi〉 is “small”. Then, imagine that after each
unitary Ui is applied, we measure our state |vi〉 with operators (P, I − P) and
postselect onto outcome I − P . Since our overlap with P is “always small”,
the Gentle Measurement Lemma implies that each post-selected state must be
“close” to the corresponding pre-measurement state. Based on this idea, one can
show that even if we measure after each step i, the resulting final state we get
is “close” to the target state |w〉.

However, since |v〉 ∈ S and since S and T are k-orthogonal subspaces, we
have that each time we postselect onto I − P after a (k − 1)-local unitary is
applied, we are “snapped” back to subspace S with certainty. In other words,
measuring after each unitary is applied results in a final state which lies in S. But
any state in S is orthogonal to the target state |w〉, yielding the contradiction.

We next ask whether the Traversal Lemma is tight in the following sense: In
Lemma 2, the lower bound on 〈vi| P |vi〉 scales as Θ(1/m2) (for m the number of
unitaries and for fixed ε). This intuitively suggests that one can better “avoid”
the subspace P projects onto if one uses a longer sequence of local unitaries. Is
such behavior possible? Or can the lower bound in Lemma 2 be improved to a
constant independent of m? Our next result shows that a dependence on m in
Lemma 2 is indeed necessary.

Theorem 4. Assume the notation of Lemma 2. Fix any 0 < Δ < 1/2, and
consider 2-orthogonal states |v〉 = |000〉 and |w〉 = |111〉, with P := I − |v〉〈v| −
|w〉〈w|. Then, there exists a sequence of m 2-local unitary operations mapping
|v〉 to |w〉 through intermediate states |vi〉, each of which satisfy 〈vi| P |vi〉 ≤ Δ,
and where m ∈ O(1/Δ2).

The idea behind the proof is based on the following rough analogy: Suppose
one wishes to map the point (1, 1) (corresponding to |000〉) in the 2D Euclidean
plane to (−1,−1) (corresponding to |111〉) via a sequence of moves with the
following two restrictions: (1) For each current point (x, y), the next move must
leave precisely one of x or y invariant (analogous to 2-local unitaries acting on
a 3-qubit state), and (2) the Euclidean distance between (x, y) and the line
through (1, 1) and (−1,−1) never exceeds Δ (analogous to the overlap with P
not exceeding Δ). In other words, we wish to stay close to a diagonal line while
making only horizontal and vertical moves. This can be achieved by making
a sequence of “small” moves resembling a “staircase”. The smaller the size of
each “step” in the staircase, the better we approximate the line, at the expense
of requiring more moves (analogous to increasing the number of unitaries, m).
Although the idea in this analogy is appealing in its simplicity, applying it to
the setting of the Traversal Lemma is non-trivial, requiring a careful selection of
2-local unitary operations. A full proof is given in the full version [13].

4 QCMA-completeness

We now prove one of the main results of this paper.

626 S. Gharibian and J. Sikora

Theorem 5. There exists a polynomial p such that GSCON is QCMA-
complete for m ∈ O(p(n)), Δ ∈ Θ(1/m5), l = 2, and k ≥ 5, where n denotes the
number of qubits H acts on.

Intuitively, this says that GSCON is QCMA-complete when the unitaries Ui

are at most 2-local, the number of unitaries scales polynomially, and the gap
Δ scales inverse polynomially. We now show QCMA-hardness. Containment in
QCMA goes via an argument utilizing pseudo-ε-nets, and is given in the full
version [13].

Lemma 3. There exists a polynomial p such that GSCON is QCMA-hard for
m ∈ O(p(n)), Δ ∈ O(1/m5), l = 2, and k ≥ 5, where n denotes the number of
qubits H acts on.

Proof. We sketch the proof here. At a high level, our approach is as follows.
Given a QCMA verification circuit V , let H ′ be the 3-local Hamiltonian output
by Kempe and Regev’s circuit-to-Hamiltonian construction. Then, our aim is to
construct another Hamiltonian H such that “traversing the ground space of H”
forces one to simulate the following protocol — starting with an initial state of
all zeroes:

1. Apply a sequence of 2-qubit gates to prepare a ground state |ψH′〉 of H ′.
2. Flip a first “GO” qubit to initiate a “check” that |ψH′〉 is indeed a ground

state of H ′.
3. Flip a second and third “GO” qubit to end the “check”.
4. Uncompute |ψH′〉 to obtain a target state which is all zeroes, except for the

“GO” qubits, which are set to all ones.

More formally, let Π ′ be an instance of a QCMA problem with verification
circuit V ′ acting on a classical proof register p and ancilla register a. Define V
as a new circuit which first measures the proof register in the computational
basis, and then runs V ′. We then define our Hamiltonian H based on V as
follows. Let H ′ denote the 3-local Hamiltonian obtained from V using Kempe
and Regev’s circuit-to-Hamiltonian construction [27]. Then, we define H to act
on a Hamiltonian register denoted h and GO register denoted G, such that
H := H ′

h ⊗ PG for P := I − |000〉〈000| − |111〉〈111|. Since it is possible to re-
write P 2-locally, we have that H is 5-local. We define our initial and final states
as |ψ〉 := |0 · · · 0〉h ⊗ |000〉G and |ψ〉 := |0 · · · 0〉h ⊗ |111〉G.

We now sketch correctness of this construction. First, suppose there exists
a proof x ∈ { 0, 1 }np accepted by V . The following unitary evolution maps |ψ〉
to |φ〉 while remaining in the low-energy space of H (where recall in Kempe
and Regev’s construction that the Hamiltonian register h is itself composed of
three sub-registers h1, h2, and h3, corresponding to the proof, ancilla, and clock
registers for H, respectively):

1. Prepare classical proof x in register h1 using Pauli X gates.
2. In register h, prepare the history state |histx〉 of H ′.
3. Apply (X ⊗ X ⊗ I)G to “initiate” checking of |histx〉.

Ground State Connectivity of Local Hamiltonians 627

4. Apply (I ⊗ I ⊗ X)G to “complete” checking of |histx〉.
5. In register h, uncompute the history state |histx〉 of H ′.
6. Uncompute the classical proof x in register h1 using Pauli X gates.

To see that this works, note first that Steps 2 and 5 can be carried out efficiently
since V ′ is a QCMA verifier. Second, after Step 6, we have successfully mapped
to state |φ〉. Third, every intermediate state encountered is in the null space of
H except for possibly after Step 3. As for after Step 3, let |a3〉 denote our state
at this point. Then, since a valid history state |histx〉 obtains low energy against
H ′, we have that 〈a3| H |a3〉 will also be “small”, as desired.

Conversely, suppose Π ′ is a NO instance, i.e., for all x ∈ { 0, 1 }np , V rejects
with high probability. Then, by Lemma 1, H ′ has no “small” eigenvalues. Now,
let S and T denote the +1 eigenspaces of projections Ih ⊗ |000〉〈000|G and
Ih ⊗|111〉〈111|G, respectively. Observe that S and T are 2-orthogonal subspaces,
and that |ψ〉 ∈ S and |φ〉 ∈ T . Thus, for any sequence of two-qubit unitaries
mapping start state |ψ〉 to |ψm〉, either ‖|ψm〉 − |φ〉‖2 is “large” (in which case we
have a NO instance of GSCON and we are done), or we can apply the Traversal
Lemma to conclude there exists an i ∈ [m] such that 〈ψi| P ′ |ψi〉 is large, where
we define |ψi〉 := Ui · · · U1 |ψ〉 and P ′ = I − ΠS − ΠT . Since P ′ = Ih ⊗ P , it
now follows that 〈ψi| H |ψi〉 = 〈ψi| H ′ ⊗ P |ψi〉 ≥ β 〈ψi| Ih ⊗ P |ψi〉 is also large,
where we have used the fact that β is “large” given by Lemma 1, and where the
inequality follows since H ′ � βI.

Acknowledgments. We thank Joel Klassen, Barbara Terhal, Roberto Oliveira,
Sarvagya Upadhyay, Damian Markham, Eleni Diamanti, Attila Pereszlenyi, Amer
Mouawad, Vinayak Pathak, and David Gosset for insightful discussions, and anony-
mous referees for helpful feedback. SG acknowledges support from an NSERC Banting
Postdoctoral Fellowship and the Simons Institute for the Theory of Computing at
UC Berkeley. JS acknowledges support from an NSERC Postdoctoral Fellowship, the
French National Research Agency (ANR-09-JCJC-0067-01), the European Union (ERC
project QCC 306537), the Singapore Ministry of Education and National Research
Foundation (MOE2012-T3-1-009).

References

1. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. American
Mathematical Society (2002)

2. Cook, S.: The complexity of theorem proving procedures. In: Proceedings of the
3rd ACM Symposium on Theory of Computing (STOC 1972), pp. 151–158 (1972)

3. Levin, L.: Universal search problems. Problems of Information Transmission 9(3),
265–266 (1973)

4. Oliveira, R., Terhal, B.M.: The complexity of quantum spin systems on a
two-dimensional square lattice. Quantum Information & Computation 8(10),
0900–0924 (2008)

5. Bravyi, S., Vyalyi, M.: Commutative version of the local Hamiltonian problem
and common eigenspace problem. Quantum Information & Computation 5(3),
187–215 (2005)

6. Gharibian, S., Huang, Y., Landau, Z., Shin, S.W.: Quantum Hamiltonian
complexity (2014). arXiv.org e-Print quant-ph/1401.3916v1

628 S. Gharibian and J. Sikora

7. Cubitt, T., Montanaro, A.: Complexity classification of local hamiltonian
problems (2013). arXiv.org e-Print quant-ph/1311.3161

8. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
10th Symposium on Theory of computing, pp. 216–226 (1978)

9. Kitaev, A.: Unpaired majorana fermions in quantum wires. Physics-Uspekhi 44,
131 (2001)

10. Kitaev, A.: Fault-tolerant quantum computation by anyons. Annals of Physics
303(1), 2–30 (2003)

11. Kitaev, A., Laumann, C.: Topological phases and quantum computation (2009).
arXiv.org e-Print quant-ph/0904.2771

12. Aharonov, D., Naveh, T.: Quantum NP - A survey (2002). arXiv.org e-Print
quant-ph/0210077v1

13. Gharibian, S., Sikora, J.: Ground state connectivity of local hamiltonians (2014).
arXiv.org e-Print quant-ph/1409.3182

14. Winter, A.: Coding theorem and strong converse for quantum channels, 45(7),
2481–2485 (1999)

15. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.: The connectivity
of boolean satisfiability: computational and structural dichotomies. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051,
pp. 346–357. Springer, Heidelberg (2006)

16. Mouawad, A., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfigura-
tion paths in the solution space of Boolean formulas (2014). arXiv.org e-Print
cs.CC/1404.3801v2

17. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of
vertex-colorings. Discrete Mathematics 308(56), 913–919 (2008)

18. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science
410(50), 5215–5226 (2009)

19. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings.
Journal of Graph Theory 67(1), 69–82 (2011)

20. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a
graph. Discrete Applied Mathematics 160(15), 2199–2207 (2012)

21. Wocjan, P., Janzing, D., Beth, T.: Two QCMA-complete problems. Quantum
Information & Computation 3(6), 635–643 (2003)

22. Wocjan, P., Yard, J.: The Jones polynomial: quantum algorithms and applica-
tions in quantum complexity theory. Quantum Information & Computation 8(1),
147–180 (2008)

23. Janzing, D., Wocjan, P.: BQP-complete problems concerning mixing prop-
erties of classical random walks on sparse graphs (2006). arXiv.org e-Print
quant-ph/0610235v2

24. Gharibian, S., Kempe, J.: Hardness of approximation for quantum problems. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part
I. LNCS, vol. 7391, pp. 387–398. Springer, Heidelberg (2012)

25. Brown, B., Flammia, S., Schuch, N.: Computational difficulty of computing the
density of states. Physical Review Letters 104, 040501 (2011)

26. Ambainis, A.: On physical problems that are slightly more difficult than QMA.
In: Proceedings of 29th IEEE Conference on Computational Complexity (CCC
2014), pp. 32–43 (2014)

27. Kempe, J., Regev, O.: 3-local Hamiltonian is QMA-complete. Quantum Informa-
tion & Computation 3(3), 258–264 (2003)

http://arxiv.org/abs/quant-ph/0210077v1
http://arxiv.org/abs/quant-ph/0610235v2

Uniform Kernelization Complexity
of Hitting Forbidden Minors

Archontia C. Giannopoulou1, Bart M.P. Jansen2(B), Daniel Lokshtanov3,
and Saket Saurabh4

1 University of Warsaw, Warsaw, Poland
archontia.giannopoulou@gmail.com

2 Eindhoven University of Technology, Eindhoven, The Netherlands
b.m.p.jansen@tue.nl

3 University of Bergen, Bergen, Norway
daniello@ii.uib.no

4 Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

Abstract. The F-Minor-Free Deletion problem asks, for a fixed
set F and an input consisting of a graph G and integer k, whether k
vertices can be removed from G such that the resulting graph does not
contain any member of F as a minor. Fomin et al. (FOCS 2012) showed
that the special case when F contains at least one planar graph has a ker-
nel of size f(F)·kg(F) for some functions f and g. They left open whether
this Planar F-Minor-Free Deletion problem has kernels whose size
is uniformly polynomial, of the form f(F) · kc for some universal con-
stant c. We prove that some Planar F-Minor-Free Deletion prob-
lems do not have uniformly polynomial kernels (unless NP ⊆ coNP/poly),
not even when parameterized by the vertex cover number. On the posi-
tive side, we consider the problem of determining whether k vertices can
be removed to obtain a graph of treedepth at most η. We prove that
this problem admits uniformly polynomial kernels with O(k6) vertices
for every fixed η.

Keywords: Kernelization · Treedepth · Minor-free deletion

1 Introduction

Kernelization is the subfield of parameterized and multivariate algorithmics that
investigates the power of provably effective preprocessing procedures for hard
combinatorial problems. In kernelization we study parameterized problems: deci-
sion problems where every instance x is associated with a parameter k that

Supported by ERC Grant 267959 and the Warsaw Center of Mathematics and Com-
puter Science (A.G.), NWO Veni grant “Frontiers in Parameterized Preprocessing”
and NWO Gravity grant “Networks” (B.M.P.J.), Bergen Research Foundation grant
BeHard (D.L.), and ERC Starting Grant “Parameterized Approximation” (S.S.).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 629–641, 2015.
DOI: 10.1007/978-3-662-47672-7 51

630 A.C. Giannopoulou et al.

measures some aspect of its structure. A parameterized problem is said to admit
a kernel of size f : N → N if every instance (x, k) can be reduced in polyno-
mial time to an equivalent instance with both size and parameter value bounded
by f(k). For practical and theoretical reasons we are primarily interested in
kernels whose size is polynomial, so-called polynomial kernels.

One of the fundamental challenges in the area is the possibility of character-
izing general classes of parameterized problems possessing a kernel of polynomial
size. In other words, to obtain “kernelization meta-theorems”. In general, algo-
rithmic meta-theorems have the following form: problems definable in a certain
logic admit a certain kind of algorithms on certain inputs. A typical example
of a meta-theorem is Courcelle’s celebrated theorem which states that all graph
properties definable in monadic second order logic can be decided in linear time
on graphs of bounded treewidth. It seems very difficult to find a fragment of
logic for which every problem expressible in this logic admits a polynomial ker-
nel on all undirected graphs. The main obstacle in obtaining such results stems
from the fact that even a simplest form of logic can formalize problems that
are not even fixed parameter tractable (FPT). In graph theory, one can define
a general family of problems as follows. Let F be a family of graphs. Given an
undirected graph G and a positive integer k, is it possible to do at most k edits
of G such that the resulting graph does not contain a graph from F? Here one
can define edits as either vertex/edge deletions, edge additions, or edge contrac-
tion. Similarly, one may consider containment as a subgraph, induced subgraph,
or a minor. The topic of this paper is one such generic problem, namely, the
F-Minor-Free Deletion problem. It asks, for a fixed set of graphs F and an
input consisting of a graph G and integer k, whether k vertices can be removed
from G such that the resulting graph does not contain any member of F as a
minor. The problem can also be viewed as finding a set of k vertices that hit all
the minor models of H ∈ F in G, which explains the title. The parameterized
complexity of this general problem is well understood: for every k there is an
algorithm solving the problem in time f(k)·n3 [1,20]. Thus, the F-Minor-Free
Deletion problem is an interesting subject from the kernelization perspective:
For which sets F does F-Minor-Free Deletion admit a polynomial kernel?

Fomin et al. [11] studied the special case where F contains at least one planar
graph, known as Planar F-Minor-Free Deletion. It is much more restricted
than F-Minor-Free Deletion, but still generalizes problems such as Vertex
Cover and FeedbackVertex Set. These problems are essentially about delet-
ing k vertices to get a graph of constant treewidth: graphs that exclude a pla-
nar graph H as a minor have treewidth at most |V (H)|O(1) [4]. Fomin et al. [11]
exploited the properties of graphs of bounded treewidth and obtained a constant
factor approximation algorithm, a 2O(k log k) · n time parameterized algorithm,
and—most importantly, from our perspective—a polynomial sized kernel for every
Planar F-Minor-Free Deletion problem. More precisely, they showed that
Planar F-Minor-Free Deletion admits a kernel of size f(F) ·kg(F) for some
functions f and g. The degree g of the polynomial in the kernel size grows very

Uniform Kernelization Complexity of Hitting Forbidden Minors 631

quickly; it is not even known to be computable. This result is the starting point
of our research.

Does Planar F-Minor-Free Deletion have kernels whose size is
uniformly polynomial, of the form f(F) · kc for a universal constant c
that does not depend on F?

We prove that some families of Planar F-Minor-Free Deletion problems do
not have uniformly polynomial kernels (unless NP ⊆ coNP/poly). Since a graph
class has bounded treewidth if and only if it excludes a planar graph as a minor, a
canonical Planar F-Minor-Free Deletion problem is Treewidth-η Dele-
tion: can k vertices be removed to obtain a graph of treewidth at most η? We
denote by Kd and Pd a clique and path on d vertices, respectively. Our first
theorem is the following lower bound result.

Theorem 1. Let d ≥ 3 be a fixed integer and ε > 0. If the parameterization by
solution size k of one of the problems

1. {Kd+1}-Minor-Free Deletion,
2. {Kd+1, P4d}-Minor-Free Deletion, and
3. Treewidth-(d − 1) Deletion

admits a compression of bitsize O(k
d
2 −ε), or a kernel with O(k

d
4 −ε) vertices, then

NP ⊆ coNP/poly. In fact, even if the parameterization by the size x of a vertex
cover of the input graph admits a compression of bitsize O(x

d
2 −ε) or a kernel

with O(x
d
4 −ε) vertices, then NP ⊆ coNP/poly.

Theorem 1 shows that the kernelization result of Fomin et al. [11] is tight in the
following sense: the degree g of the polynomial in the kernel sizes for Planar
F-Minor-Free Deletion must depend on the family F . In fact, the theorem
gives the stronger result that even parameterized by the vertex cover number of
the graph (a larger parameter), the Treewidth-η Deletion problem does not
admit uniformly polynomial kernels unless NP ⊆ coNP/poly. This resolves an
open problem of Cygan et al. [5].

A graph class has bounded treewidth if and only if it excludes a planar graph
as a minor. Thus, by restricting the F-Minor-Free Deletion problem to those
F that contain a planar graph, one exploits the properties of graphs of bounded
treewidth to design polynomial kernels for Planar F-Minor-Free Deletion.
It is a natural question whether further restrictions on F lead to uniformly
polynomial kernels. However, the second item of Theorem 1 shows that even
when F contains a path, the degree of the polynomial must, in general, depend
on the set F . This raises the question whether there are any general families of
F-Minor-Free Deletion problems that admit uniformly polynomial kernels.

Excluding planar minors results in graphs of bounded treewidth [19]; exclud-
ing forest minors results in graphs of bounded pathwidth [18]; and excluding path
minors results in graphs of bounded treedepth [16]. A canonical F-Minor-Free
Deletion problem when F contains a path is therefore:

632 A.C. Giannopoulou et al.

Treedepth-η Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset Z ⊆ V (G) of size at most k such that
td(G − Z) ≤ η?

Here td(G) denotes the treedepth of a graph G. The set Z is called a treedepth-η
modulator of G. Surprisingly, we show that Treedepth-η Deletion admits
uniformly polynomial kernels. More precisely, we obtain the following theorem.

Theorem 2. Treedepth-η Deletion admits a kernel with 2O(η2)k6 vertices.

We prove several new results about the structure of optimal treedepth
decompositions and exploit this to obtain the desired kernel for Treedepth-η
Deletion. Unlike the kernelization algorithm of Fomin et al. [11], our kernel
is completely explicit. It does not use the machinery of protrusion replacement,
which was introduced to the context of kernelization by Bodlaender et al. [2]
and has subsequently been applied in various scenarios [8,10,12,15]. Using pro-
trusion replacement one can prove that kernelization algorithms exist, but the
technique generally does not explicitly give the algorithm nor a concrete size
bound for the resulting kernel.

Techniques. The kernelization lower bound of Theorem 1 is obtained by reduc-
tion from Exact d-Uniform Set Cover, parameterized by the number of sets
in the solution. Existing lower bounds exist for these problems due to Dell and
Marx [6] and Hermelin and Wu [14], showing that the degree of the kernel size
must grow linearly with the cardinality d of the sets in the input. While the
construction that proves Theorem 1 is relatively simple in hindsight, the fact
that the construction applies to all three mentioned problems, and also applies
to the parameterization by vertex cover number, makes it interesting.

Our main technical contribution lies in the kernelization algorithm for Tree-
depth-η Deletion. Our algorithm starts by enriching the graph G by adding
edges between vertices that are connected by many internally vertex-disjoint
paths. Like in prior work on Treewidth-η Deletion [5], adding such edges
does not change the answer to the problem. We then apply an algorithm by Reidl
et al. [17] to compute an approximate treedepth-η modulator S of the resulting
graph. The remainder of the algorithm strongly exploits the structure of the
bounded-treedepth graph G − S. By combining separators for vertices that are
not linked through many disjoint paths, we compute a small set Y such that
all the bounded-treedepth connected components of G − (S ∪ Y) have a special
structure: their neighborhood in S forms a clique, while they have less than η
neighbors in Y . For such components C we can prove that optimal treedepth-η
modulators contain at most 2η vertices from C. This important fact allows us to
infer that optimal solutions cannot disturb the structure of the graph G[C] too
much. While it is relatively easy to bound the number of connected components
of G−(S∪Y), the main work consists of reducing the size of each such component.

Uniform Kernelization Complexity of Hitting Forbidden Minors 633

We formulate three lemmata that analyze under which circumstances the
structure of optimal treedepth-η modulators is preserved when adding edges,
removing edges, and removing vertices of the graph. By exploiting the fact that
the solution size within a particular part C of the graph is constant, these lem-
mata ensure that even after deleting an optimal modulator from C, the remain-
der of C forces a structure of treedepth decompositions of the remaining graph
that is compatible with the graph modifications. Of particular interest is the
lemma showing that if v dominates the neighborhood of component C, then
edges of v into the component may be safely discarded if certain other technical
conditions are met.

The three described lemmata are the main tool in the reduction algorithm.
To shrink components of G−(S∪Y) we have to add some edges, while removing
other edges, to create settings where vertices can be removed from the instance
without changing its answer. The fact that we have to combine edge additions
and removals makes our reduction algorithm quite delicate: we cannot simply
formulate reduction rules for adding and removing edges and apply them exhaus-
tively, as they would work against each other. We therefore present a recursive
algorithm that processes a treedepth-η decomposition of G−S from top to bot-
tom, making suitable transformations that bound the degree of the modulator S
into the remainder of the component C. Using a careful measure expressed in
terms of this degree, we can then prove that our algorithm achieves the desired
size reduction.

Related Results. Planar F-Minor-Free Deletion has received considerable
attention [11,15] resulting in approximation, kernelization, and FPT algorithms.
Cygan et al. [5] studied Treewidth-η Deletion parameterized by the vertex
cover number of a graph and obtained a kernel of size kO(η). In a later paper,
Fomin et al. [9] studied F-Minor-Free Deletion parameterized by the vertex
cover number of the graph. They obtained kernels of size kO(Δ(F)), where Δ(F)
is an upper bound on the maximum degree of any graph in F . Notable work
involving the parameter treedepth includes the 2O(t2) ·n-time algorithm for test-
ing treedepth by Reidl et al. [17] and the kernelization meta-theorems for prob-
lems parameterized by a treedepth-η modulator by Gajarský et al. [12].

2 Preliminaries

Notation not defined here is standard. All graphs we consider are finite, undi-
rected, and simple. We write H ⊆ G if H is a subgraph of G. Given two distinct
vertices u and v we define λG(u, v) as the maximum cardinality of a set of pair-
wise internally vertex-disjoint uv-paths in the graph G.

Treedepth. A rooted tree T is a tree with one distinguished vertex r ∈ V (T),
called the root of T . A rooted forest is a disjoint union of rooted trees. The
roots introduce natural parent-child and ancestor-descendant relations between
vertices in forest. A vertex x is a proper ancestor (proper descendant) of a
vertex y if x is an ancestor (descendant) of y and x �= y. We denote by ancF (x)

634 A.C. Giannopoulou et al.

the proper ancestors of x; this set is empty if x is a root. We denote by π(x) the
parent of x in F . The parent of the root of the tree is ⊥. For a rooted forest F
and a vertex v ∈ V (F), we denote by Fv the subtree rooted at v that contains
all v’s descendants, including v itself. The depth of a vertex x in a rooted forest F
is the number of vertices on the unique simple path from x to the root of the tree
to which x belongs; it is denoted depth(x, F). The height of v is the maximum
number of vertices on a simple path from v to a leaf in Fv. The height of F is
the maximum height of a vertex of F and is denoted height(F). Two vertices x
and y are in ancestor-descendant relation if x is an ancestor of y or vice versa.

Definition 1 (Treedepth) A treedepth decomposition of a graph G is a rooted
forest F on the vertex set V (G) (i.e., V (G) = V (F)) such that for every
edge {u, v} of G, the endpoints u and v are in ancestor-descendant relation.
The treedepth of G, denoted td(G), is the least d ∈ N such that there exists a
treedepth decomposition F of G with height(F) = d.

The following properties follow from this definition. The treedepth of a dis-
connected graph is the maximum treedepth of its connected components. If F is
a treedepth decomposition of G and S ⊆ V (G) induces a clique in G, then there
is one root-to-leaf path in F containing all vertices of S. If H is a connected
subgraph of G, then all vertices of H belong to the same tree in any treedepth
decomposition. If u, v ∈ V (H) are not in ancestor-descendant relation in T , then
some vertex of H is a common ancestor of u and v.

We will work with the notion of a nice treedepth decomposition. A treedepth
decomposition F of a graph G is a nice treedepth decomposition if, for every v ∈
V (F), the subgraph of G induced by the vertices in Fv is connected. The following
lemma shows that any graph has a minimum-height treedepth decomposition
that is also nice.

Lemma 1 ([17]). For every fixed η there is a polynomial-time algorithm that,
given a graph G, either determines that td(G) > η or computes a nice treedepth
decomposition F of G of depth td(G).

Lemma 2 ([12, Lemma 2]). Fix η ∈ N. Given a graph G, one can in polyno-
mial time compute a subset S ⊆ V (G) such that td(G − S) ≤ η and |S| is at
most 2η times the size of a minimum treedepth-η modulator of G.

3 Kernelization Lower Bounds

We turn our attention to kernelization and compression lower bounds. To prove
that F-Minor-Free Deletion does not have uniformly polynomial kernels
for suitable families F , we give a polynomial-parameter transformation from a
problem for which a compression lower bound is known. The following problem
is the starting point for our transformation.

Uniform Kernelization Complexity of Hitting Forbidden Minors 635

Exact d-Uniform Set Cover Parameter: The universe size n.
Input: A finite set U of size n, an integer k, and a set family F ⊆ 2U of
size-d subsets of U .
Question: Is there a subfamily F ′ ⊆ F consisting of at most k sets such that
every element of U is contained in exactly one subset of F ′?

Observe that since all subsets in F have size exactly d, the require-
ment that each universe element is contained in exactly one subset in F ′

implies that a set F ′ can only be a solution if it consists of n/d subsets. This
implies that k = n/d for all nontrivial instances of the problem. Hermelin
and Wu [14] obtained a compression lower bound for Exact d-Uniform Set
Cover. The same problem was also studied by Dell and Marx [6] under the
name Perfect d-Set Matching. They obtained a slightly stronger compres-
sion lower bound, which forms the starting point for our reduction.

Theorem 3 ([6, Theorem 1.2]). For every fixed d ≥ 3 and ε > 0, there
is no compression of size O(kd−ε) for Exact d-Uniform Set Cover unless
NP ⊆ coNP/poly.

We remark that, while Dell and Marx stated their main theorem in terms of
kernelizations, the same lower bounds indeed hold for compressions. We present
the construction that will be used to prove Theorem 1.

Lemma 3. For every fixed d there is a polynomial-time algorithm that, given a
set U of size n, an integer k, and a d-uniform set family F ⊆ (

U
d

)
, computes a

graph G′ with vertex cover number O(k2) and an integer k′ ∈ O(k2), such that:

1. If there is a set S′ ⊆ V (G′) of size at most k′ such that G′ − S′ is Kd+1-
minor-free, then there is an exact set cover of U consisting of k sets from F .

2. If there is an exact set cover of U consisting of k sets from F , then there is a
set S′ ⊆ V (G′) of size at most k′ such that G′ −S′ is Kd+1-minor-free, P4d-
minor-free, and has treewidth at most d − 1.

Proof. Given U of size n, the integer k, and the d-uniform set family F , the
algorithm proceeds as follows. If k �= n/d then no exact set cover with k sets
exists; we output G′ := Kd+1 and k′ := 0. We focus on the case that k = n/d.
The main idea behind the construction is to create an n × k matrix with one
vertex per cell. Each one of the k columns contains n vertices that correspond
to the n universe elements. By turning columns into cliques and adding small
gadgets, we will ensure that solutions to the vertex deletion problem must take
the following form: they delete all vertices of the matrix except for exactly d
per column. By enforcing that from each row, all vertices but one are deleted,
and that the d surviving vertices in a column form a subset in F , we relate the
minor-free deletion sets to solutions of the exact covering problem. The formal
construction proceeds as follows. Without loss of generality we can assume that
the universe U consists of [n] = {1, 2, . . . , n}, which simplifies the exposition.

636 A.C. Giannopoulou et al.

1. Initialize G′ as the graph consisting of n×k vertices vi,j for i ∈ [n] and j ∈ [k].
For each column index j ∈ [k] turn the vertex set {vi,j | i ∈ [n]} into a clique.
We refer to M := {vi,j | i ∈ [n], j ∈ [k]} as the matrix vertices.

2. For every row index i ∈ [n] add a dummy clique Di consisting of d−1 vertices
to G′. Make all vertices in Di adjacent to vertices {vi,j | j ∈ [k]} of the i-th
row.

3. As the last step we encode the set family F into the graph. For every set X ∈(
U
d

)\F , which is a size-d subset of [n] that is not in the set family F , we do the
following. For each column index j ∈ [k], we create an enforcer vertex fj,X

for the set X into column j. The neighborhood of fj,X consists of the d
vertices {vi,j | i ∈ X}, i.e., the vertices in column j corresponding to set X.

Observation 3.1. M ∪ (
⋃

i∈n Di) is a vertex cover of G′ of size n(k + d) ∈
O(k2).

This concludes the construction of G′. It is easy to see that it can be per-
formed in polynomial time for fixed d, since G′ has O(nd+1) vertices. Define k′ :=
k(n − d). Since d is fixed we may absorb it into the O-notation. As n = kd this
implies k′ ∈ O(k2). The proof that the construction satisfies the desired proper-
ties is deferred to the full version.
�

The proof of Theorem 1 follows by combining Lemma 3 with standard kernel-
ization lower bound tools and Theorem 3. It can be found in the full version [13].

4 Uniformly Polynomial Kernelization for Treedepth-η
Deletion

In this section we discuss the kernelization procedure for Treedepth-η Dele-
tion. As this material spans twenty pages, space limitations prohibit us from
giving full details here. For this extended abstract we have therefore chosen to
give an intuitive high-level overview of the exploited structure and the prepro-
cessing algorithm; details can be found in the full version [13]. As described
in the introduction, the two main ingredients are a decomposition algorithm
and a reduction algorithm, to be applied to each piece of the decomposition.
Throughout this section, the reader should be aware of the two uses for the
word decomposition employed here: on the one hand we are decomposing the
input instance (G, k) of the deletion problem into several subgraphs that have a
certain structure, while on the other hand the deletion problem we are solving
asks for a set S ⊆ V (G) whose removal ensures that G−S has a bounded-height
treedepth decomposition.

4.1 Structural Decomposition of the Input Graph

The first step of the decomposition phase enriches the input instance (G, k) with
extra edges. In an analogue of previous work on Treewidth-η Deletion [5], we
show that when there are non-adjacent vertices u and v in G such that λG(u, v) ≥

Uniform Kernelization Complexity of Hitting Forbidden Minors 637

(a) Graph G, modulator S. (b) Decomposition of G − S.

Fig. 1. Schematic illustration of an instance that has been decomposed. 1(a) The result-
ing graph G and the suboptimal treedepth-4 modulator S in G used when decomposing.
Graph G − S has four connected components, of which the third is drawn in detail.
1(b) Illustration of the treedepth-4 decomposition F of G − S. The forest F contains
four decomposition trees T1, . . . , T4, one for each component of G−S. By the properties
of a treedepth decomposition, for any vertex v ∈ V (G) \ S, each neighbor u ∈ NG(v)
is an ancestor of v in F , descendant of v in F , or contained in S. The decomposition
ensures that for each connected component C of G − (S ∪ Y), the set NG(C) ∩ S is a
clique. This is illustrated for the connected component consisting of {e, g, h, i}, whose
neighbors among S are {x, y}, a 2-clique. As the set Y is closed under taking ancestors,
it consists of the top parts of decomposition trees in F .

k + η, then adding the edge {u, v} does not change the answer to the instance.
After exhaustively adding connecting pairs for which this condition is satisfied,
we are guaranteed that for any remaining non-adjacent pair of vertices {u, v}
in G we have λG(u, v) < k + η. By Menger’s theorem, this implies that there is
a uv-vertex separator of size less than k + η.

After enriching the graph, we use the polynomial-time approximation algo-
rithm for Treedepth-η Deletion of Lemma 2 to find a suboptimal treedepth-η
modulator S in the input instance (G, k) of size O(k). We use the structure that
this modulator reveals in the bounded-treedepth subgraph G − S to guide fur-
ther processing, and compute a treedepth-η decomposition F of G − S using
Lemma 1. For every pair {u, v} of remaining non-adjacent vertices in S, we
compute a minimum uv-separator Yuv and add Yuv \ S to a set Y . Since there
are O(k2) pairs of vertices among S, by the earlier bound this yields a set Y of
size O(k2(k + η)). We then add all F -ancestors of vertices in Y to the set Y .
Since each vertex has less than η ancestors in a treedepth-η decomposition, the
size of Y increases by at most a factor η and remains O(k3).

The resulting sets S and Y decompose the graph in a useful way. For every
connected component C of G − (S ∪ Y), we know that NG(C) ∩ S is a clique,
since Y contains separators for all pairs of non-adjacent vertices in S. In addition,
for every such component C we have |NG(C) ∩ Y | < η since all such neighbors
are contained on one root-to-leaf path of the height-η decomposition F . All such
components C are therefore what we call η-nearly clique separated : there is a

638 A.C. Giannopoulou et al.

Algorithm 1 Reduce(Graph G, treedepth-η modulator S, treedepth-η decom-
position F of G − S, node v of F , k ∈ N)

1: Let T be the tree in F containing v
2: while ∃p, q ∈ NG(Tv) ∪ {v} with {p, q} �∈ E(G) and λG[{p,q}∪Tv](p, q) ≥ 3η do
3: Add the edge {p, q} to G
4: while ∃ distinct children c0, c1, . . . , c3η of v s.t. c0 has a neighbor s ∈ S, NG(Tc0) ⊆

NG[s], and for i ∈ [3η] we have td(G[Tci]) ≥ td(G[Tc0]) and s ∈ NG(Tci) do
5: Remove the edges between s and members of Tc0 from graph G
6: while ∃ a child c∗ of v such that NG(Tc∗) is a clique, and for every w ∈ NG(Tc∗)

there are 3η distinct children cw
1 , . . . , cw

3η �= c∗ of v such that for all i ∈ [3η] we
have td(G[Tcwi

]) ≥ td(G[Tc∗]) and w ∈ NG(Tcwi
) do

7: Remove the vertices in Tc∗ from F and from G
8: for each remaining child c of v in T do
9: Reduce(G, S, F , c, k)

clique in G containing all but η vertices of NG(C). We prove that minimum
treedepth-η modulators contain at most 2η vertices of such components.1

The fact that minimum solutions delete at most 2η vertices (a constant inde-
pendent of k) from components C of G − (S ∪ Y) will be extremely useful
later on. The last part of the decomposition phase bounds the number of con-
nected components of G − (S ∪ Y). The number of non-simplicial components
(components whose S-neighborhood is not a clique) is already O(k2(k + η)),
since each component provides a path between non-adjacent vertices {u, v} ∈(
S
2

)
for which λG(u, v) < η + k. To bound the simplicial components (those

with NG(C)∩S a clique) requires more work. We give a structural lemma show-
ing how to find a simplicial component whose deletion does not change the
answer to the problem, in the case that there are many of such components.
This step is inspired by earlier work [3, Rule 6] on Pathwidth. The resulting
reduced graph is given as the output of the decomposition phase, together with
the suboptimal modulator S and the treedepth-η decomposition F of G−S. See
Fig. 1 for a schematic illustration.

4.2 Reduction Algorithm

After the decomposition phase, the goal of the reduction phase is to shrink the
size of the connected components of G − (S ∪ Y); since S and Y have size O(k)
and O(k3), respectively, and the number of components of G − (S ∪ Y) is also
bounded uniformly polynomially in k, bounding the size of each such component
suffices to bound the size of G. Using the notion of a nice treedepth decomposi-
tion, we can ensure that the connected components of G− (S ∪Y) correspond to
1 If a solution S contains more than 2η vertices from C, then one would get a smaller
solution by leaving C untouched and instead deleting the at most η vertices of NG(C)
that are not part of the clique, and the vertices of the clique in NG(C) that are not
deleted by S; there are at most η of the latter since treedepth-η graphs contain
no η + 1-cliques.

Uniform Kernelization Complexity of Hitting Forbidden Minors 639

the vertex sets of subtrees of the decomposition forest F rooted at vertices that
are not in Y , but whose parent is in Y . Observe that if we could ensure that the
maximum degree in the decomposition forest F is bounded by some function of η
(but independent of k), then we would immediately get a size bound as desired:
any subtree of maximum degree f(η) has at most f(η)η vertices, since its height
is at most η. Such a degree reduction is therefore our goal. However, we are not
able to bound the degree by a function that is independent of k. Instead, by a
top-down reduction algorithm on the decomposition forest F we can guarantee
that the degree of a node v in the decomposition forest F , is bounded linearly
in |NG(Fv)∩S|, which is the number of vertices of S that are adjacent to a node
in the subtree of F rooted at v. This fact alone is not sufficient to bound the
sizes of components C of G−(S∪Y) by a polynomial of degree independent of η,
for it does not rule out the possibility of a complete degree-|S| tree of height η,
containing Ω(kη) nodes.

The main challenge in obtaining uniformly polynomial kernels is to overcome
this obstacle. To do so, we go through the decomposition trees from top to
bottom, at every stage reducing the degree of the current node v using three
new structural insights on treedepth. We ensure that every vertex s ∈ S that has
neighbors in any subtree rooted at a child of v, has a neighbor in at most 2η · 3η
subtrees rooted at children of v. If this is violated, then we can first introduce
new edges from s to ancestors of v and other members of S using an edge addition
lemma, and afterward discard edges from s to descendants of v using an edge
deletion lemma. Then we reduce the number of children whose subtrees contain
no neighbors of S to constant, using a vertex deletion lemma. The procedure
achieving this is given as the Reduce algorithm; its initial call is for the node v
for which Fv contains the nodes of the component C we are shrinking. A careful
induction reveals that this process is successful in reducing the total number of
nodes in a connected component C of G − (S ∪ Y) to f(η) · k. This achieves the
desired total size reduction and yields a proof of Theorem 2.

5 Conclusion

In this paper we (re-)studied the Planar F-Minor-Free Deletion prob-
lem from the perspective of (uniform) kernelization. We answered the ques-
tion whether all Planar F-Minor-Free Deletion problems have uniformly
polynomial kernels negatively, but showed that the special case Treedepth-η
Deletion (which is a Planar F-Minor-Free Deletion problem for every η,
where every F contains a path) has uniformly polynomial kernels.

The distinction between uniformly versus non-uniformly polynomial ker-
nels is similar to the distinction between algorithms whose parameter depen-
dence is fixed-parameter tractable (FPT) versus slicewise-polynomial (XP), and
opens up a similarly broad area of investigation. The kernelization complexity of
F-Minor-Free Deletion is still wide open. Some notable open problems in
this direction are: (1) Does F-Minor-Free Deletion admit a polynomial ker-
nel for any fixed set F , even when F contains no planar graphs? Even for the

640 A.C. Giannopoulou et al.

special case of deleting k vertices to get a planar graph (Vertex Planariza-
tion), we do not know the answer. (2) Is it possible to obtain a dichotomy the-
orem, characterizing the families F for which Planar F-Minor-Free Dele-
tion admits uniformly polynomial kernels? These questions are part of a large
research program into the complexity of F-Minor-Free Deletion problems,
whose importance was recognized by its listing in the Research Horizons section
of the recent textbook by Downey and Fellows [7, Chapter 33.2].

References

1. Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Proceedings of
the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008),
pp. 641–650. ACM-SIAM (2008)

2. Bodlaender, H., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos,
D.M.: (Meta) Kernelization. In: Proc. 50th FOCS, pp. 629–638. IEEE (2009)

3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for structural
parameterizations of pathwidth. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012.
LNCS, vol. 7357, pp. 352–363. Springer, Heidelberg (2012)

4. Chekuri, C., Chuzhoy, J.: Polynomial bounds for the grid-minor theorem. In:
Proc. 46th STOC, pp. 60–69 (2014)

5. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the
hardness of losing width. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS,
vol. 7112, pp. 159–168. Springer, Heidelberg (2012)

6. Dell, H., Marx, D.: Kernelization of packing problems. In: Proc. 23rd SODA, pp.
68–81 (2012)

7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer (2013)

8. Fomin, F., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: Proc. 21st SODA, pp. 503–510 (2010)

9. Fomin, F.V., Jansen, B.M.P., Pilipczuk, M.: Preprocessing subgraph and minor
problems: When does a small vertex cover help? J. Comput. System Sci. 80(2),
468–495 (2014)

10. Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbidden
minors: approximation and kernelization. In: Proc. 28th STACS, pp. 189–200
(2011)

11. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-Deletion: approx-
imation, kernelization and optimal FPT algorithms. In: Proc. 53rd FOCS,
pp. 470–479 (2012)

12. Gajarský, J., Hliněný, P., Obdržálek, J., Ordyniak, S., Reidl, F., Rossmanith,
P., Sánchez Villaamil, F., Sikdar, S.: Kernelization using structural parameters
on sparse graph classes. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013.
LNCS, vol. 8125, pp. 529–540. Springer, Heidelberg (2013)

13. Giannopoulou, A.C., Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: Uniform ker-
nelization complexity of hitting forbidden minors (2015). CoRR, abs/1502.03965

14. Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial
lower bounds for kernelization. In: Proc. 23rd SODA, pp. 104–113 (2012)

15. Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.:
Linear kernels and single-exponential algorithms via protrusion decompositions.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part I. LNCS, vol. 7965, pp. 613–624. Springer, Heidelberg (2013)

Uniform Kernelization Complexity of Hitting Forbidden Minors 641

16. Nesetril, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and homomor-
phism bounds. Eur. J. Comb. 27(6), 1022–1041 (2006)

17. Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S.: A faster parameterized
algorithm for treedepth. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 931–942. Springer,
Heidelberg (2014)

18. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb.
Theory, Ser. B 35(1), 39–61 (1983)

19. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J.
Combin. Theory Ser. B 41(1), 92–114 (1986)

20. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem.
J. Combin. Theory Ser. B 63(1), 65–110 (1995)

Counting Homomorphisms to Square-Free
Graphs, Modulo 2

Andreas Göbel, Leslie Ann Goldberg, and David Richerby(B)

Department of Computer Science, University of Oxford, Oxford, UK
davidr@cs.ox.ac.uk

Abstract. We study the problem ⊕HomsToH of counting, modulo 2,
the homomorphisms from an input graph to a fixed undirected graph H.
A characteristic feature of modular counting is that cancellations make
wider classes of instances tractable than is the case for exact (non-
modular) counting, so subtle dichotomy theorems can arise. We show the
following dichotomy: for any H that contains no 4-cycles, ⊕HomsToH
is either in polynomial time or is ⊕P-complete. This partially confirms a
conjecture of Faben and Jerrum that was previously only known to hold
for trees and for a restricted class of tree-width-2 graphs called cactus
graphs. We confirm the conjecture for a rich class of graphs including
graphs of unbounded tree-width. In particular, we focus on square-free
graphs, which are graphs without 4-cycles. These graphs arise frequently
in combinatorics, for example in connection with the strong perfect graph
theorem and in certain graph algorithms. Previous dichotomy theorems
required the graph to be tree-like so that tree-like decompositions could
be exploited in the proof. We prove the conjecture for a much richer class
of graphs by adopting a much more general approach.

1 Introduction

A homomorphism from a graph G to a graph H is a function from V (G) to V (H)
that preserves edges, in the sense of mapping every edge of G to an edge of H;
non-edges of G may be mapped to edges or non-edges of H. Many structures
arising in graph theory can be represented naturally as homomorphisms. For
example, the proper q-colourings of a graph G correspond to the homomor-
phisms from G to a q-clique. For this reason, homomorphisms from G to a
graph H are often called “H-colourings” of G. Independent sets of G correspond
to the homomorphisms from G to the connected graph with two vertices and
one self-loop (vertices of G which are mapped to the self-loop are out of the

Theorem numbering in this extended abstract matches matches the full version:
ArXiv, CoRR, abs/1501.07539. The research leading to these results has received
funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007–2013) ERC grant agreement no. 334828. The
paper reflects only the authors’ views and not the views of the ERC or the European
Commission. The European Union is not liable for any use that may be made of the
information contained therein.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 642–653, 2015.
DOI: 10.1007/978-3-662-47672-7 52

Counting Homomorphisms to Square-Free Graphs, Modulo 2 643

H1: H2:

∗

Fig. 1. Theorem 1.2 shows that ⊕HomsToH1 is ⊕P-complete, whereas ⊕HomsToH2

is in P. The role of the starred vertex is explained later in this section.

corresponding independent set; vertices which are mapped to the other vertex
are in it). Homomorphism problems can also be seen as constraint satisfaction
problems (CSPs) in which the constraint language consists of a single symmetric
binary relation. Partition functions in statistical physics such as the Ising, Potts
and hard-core models arise naturally as weighted sums of homomorphisms [2,8].

In this paper, we study the complexity of counting homomorphisms modulo 2.
For graphs G and H, Hom(G → H) denotes the set of homomorphisms from G
to H. For each fixed H, we study the computational problem ⊕HomsToH,
which is the problem of computing |Hom(G → H)| mod 2, for an input graph G.

The structure of H strongly influences the complexity of ⊕HomsToH. For
example, consider the graphs H1 and H2 in Figure 1. Our result (Theorem 1.2)
shows that ⊕HomsToH1 is ⊕P-complete, whereas ⊕HomsToH2 is in P.

The aim of research in this area is to understand for which graphs H the
problem ⊕HomsToH is in P, for which graphs H the problem is ⊕P-complete,
and to prove that, for all graphs H, one or the other is true. Note that it isn’t
obvious, a priori, that there are no graphs H for which ⊕HomsToH has inter-
mediate complexity – proving that there are no such graphs H is the main work
of a so-called dichotomy theorem.

This line of work was introduced by Faben and Jerrum [6]. They made the
following important conjecture (which requires a few definitions to state). An
involution of a graph is an automorphism of order 2, i.e., an automorphism ρ
that is not the identity but for which ρ2 is the identity. Given a graph H and an
involution ρ, Hρ denotes the subgraph of H induced by the fixed points of ρ. We
write H ⇒ H ′ if there is an involution ρ of H such that Hρ = H ′ and we write
H ⇒∗ H ′ if either H is isomorphic to H ′ (written H ∼= H ′) or, for some positive
integer k, there are graphs H1, . . . , Hk such that H ∼= H1, H1 ⇒ · · · ⇒ Hk, and
Hk

∼= H ′. Faben and Jerrum showed [6, Theorem 3.7] that for every graph H
there is (up to isomorphism) exactly one involution-free graph H∗ such that
H ⇒∗ H∗. This graph H∗ is called the involution-free reduction of H.

Conjecture 1.1. (Faben and Jerrum [6]) Let H be a graph. If its involution-free
reduction H∗ has at most one vertex, then ⊕HomsToH is in P; otherwise,
⊕HomsToH is ⊕P-complete.

644 A. Göbel et al.

Note that our claim in Figure 1 is consistent with Conjecture 1.1. H1 is
involution-free, so it is its own involution-free reduction, but the involution-free
reduction of H2 is the single vertex marked ∗ in the figure.

Faben and Jerrum [6, Theorem 3.8] proved Conjecture 1.1 for the case in
which H is a tree. Subsequently, the present authors [7, Theorem 1.6] proved
the conjecture for a well-studied class of tree-width-2 graphs, namely cactus
graphs, which are graphs in which each edge belongs to at most one cycle.

The main result of this paper is to prove the conjecture for a much richer
class of graphs. In particular, we prove the conjecture for every graph H whose
involution-free reduction has no 4-cycle. Graphs without 4-cycles are called
“square-free” graphs. These graphs arise frequently in combinatorics, for exam-
ple in connection with the strong perfect graph theorem [4] and certain graph
algorithms [1]. Our main theorem is the following.

Theorem 1.2. Let H be a graph whose involution-free reduction H∗ is square-
free. ⊕HomsToH is in P if H∗ has at most one vertex; otherwise, ⊕HomsToH
is ⊕P-complete.

If H is square-free, then so is every induced subgraph, including its involution-
free reduction H∗. Thus, we have the following corollary.

Corollary 1.3. Let H be a square-free graph. If its involution-free reduction H∗

has at most one vertex, then ⊕HomsToH is in P; otherwise, ⊕HomsToH is
⊕P-complete.

In Section 1.3 we will discuss the reasons that we require H∗ to be square-free
in the proof of Theorem 1.2. First, in Section 1.1, we will describe the background
to counting modulo 2. In Section 1.2, we will explain why Conjecture 1.1 is so
much more difficult to prove for graphs with unbounded tree-width. Very briefly,
in order to prove that ⊕HomsToH is ⊕P-hard without having a bound on the
tree-width of H, it is necessary to take a much more abstract approach. Since it
is not possible to decompose H using a tree-like decomposition as we did in [7,
Theorem 1.6], we have instead come up with an abstract characterisation of
graph-theoretic structures in H which lead to ⊕P-hardness. As we shall see, the
proof that such structures always exist in square-free graphs involves interesting
non-constructive elements, leading to a more abstract, and less technical (graph-
theoretic) proof than [7], while applying to a substantially richer set of graphs H,
including graphs with unbounded tree width.

1.1 Counting Modulo 2

Although counting modulo 2 produces a one-bit answer, the complexity of such
problems has a rather different flavour from the complexity of decision problems.
The complexity class ⊕P was first studied by Papadimitriou and Zachos [13]
and by Goldschlager and Parberry [10]. ⊕P consists of all problems of the form
“compute f(x) mod 2” where computing f(x) is a problem in #P. Toda [15]
has shown that there is a randomised polynomial-time reduction from every

Counting Homomorphisms to Square-Free Graphs, Modulo 2 645

problem in the polynomial hierarchy to some problem in ⊕P. As such, ⊕P is a
large complexity class and ⊕P-completeness seems to represent a high degree of
intractability.

The unique flavour of modular counting is exhibited by Valiant’s famous
restricted version of 3-SAT [16] for which counting solutions is #P-complete [17],
counting solutions modulo 7 is in polynomial-time but counting solutions mod-
ulo 2 is ⊕P-complete [16]. The seemingly mysterious number 7 was subsequently
explained by Cai and Lu [3], who showed that the k-SAT version of Valiant’s
problem is tractable modulo any prime factor of 2k − 1.

Counting modulo 2 closely resembles ordinary, non-modular counting, but is
still very different. Clearly, if a counting problem can be solved in polynomial
time, the corresponding decision and parity problems are also tractable, but the
converse does not necessarily hold. A characteristic feature of modular counting
is cancellations, which can make the modular versions of hard counting problems
tractable. For example, consider not-all-equal SAT, the problem of assigning
values to Boolean variables such that each of a given set of clauses contains both
true and false literals. The number of solutions is always even, since solutions
can be paired up by negating every variable in one solution to obtain a second
solution. This makes counting modulo 2 trivial, while determining the exact
number of solutions is #P-complete [9] and even deciding whether a solution
exists is NP-complete [14].

We use cancellations extensively in this paper. For example, if we wish to
compute the size of a set S modulo 2 then, for any even-cardinality subset X ⊆ S,
we have |S| ≡ |S \ X| mod 2. This means that we can ignore the elements of X.
It is also helpful to partition the set S into disjoint subsets S1, . . . , S� exploiting
the fact that |S| is congruent modulo 2 to the number of odd-cardinality Si. We
use this idea frequently.

1.2 Going Beyond Bounded Tree-Width

Trees. All known hardness results for counting homomorphisms modulo 2 start
with the following basic “pinning” approach. Let p be a function from V (G)
to 2V (H). A homomorphism f ∈ Hom(G → H) respects the pinning function p
if, for every v ∈ V (G), f(v) is in the set p(v). Let PinHom(G,H, p) be the
set of homomorphisms from G to H that respect the pinning function p and
let ⊕PinnedHomsToH be the problem of counting, modulo 2, the number of
homomorphisms in PinHom(G,H, p), given an input graph G and a pinning
function p.

Faben and Jerrum [6, Corollary 4.18] give a polynomial-time Turing reduction
from the problem ⊕PinnedHomsToH to the problem ⊕HomsToH for the
special case in which the pinning function pins only two vertices of G, and these
are both pinned to entire orbits of the automorphism group of H. The reduction
relies on a result of Lovász [12].

In order to use the reduction, it is necessary to show that the special
case of the problem ⊕PinnedHomsToH is itself ⊕P-hard. Faben and Jerrum
restrict their attention to the case in which H is a tree, and this is helpful.

646 A. Göbel et al.

Every involution-free tree is asymmetric (so the orbit of every vertex is triv-
ial), so the pinning function p is actually able to pin two vertices of G to any
two particular vertices of H. The reduction that they used to prove hardness
of ⊕PinnedHomsToH is from ⊕IS, the problem of counting independent sets
modulo 2, which was shown to be ⊕P-complete by Valiant [16].

We first give an informal description of a general reduction from ⊕IS to the
problem ⊕PinnedHomsToH. (The general description is actually based on our
current approach in this paper, but we can also present past approaches in this
context.) The vertices and edges of an input G of ⊕IS are replaced by gadgets
to give a graph J . In J , the gadget corresponding to the vertex v of G has a
vertex yv. We also choose an appropriate vertex i in H. Any homomorphism σ
from J to the target graph H defines a set I(σ) = {v ∈ V (G) | σ(yv) = i}
(mnemonic: “i” means “in” because σ(yv) is i exactly when v is in I(σ)). The
configuration of the gadgets ensures that a set I ⊆ V (G) has an odd number
of homomorphisms σ with I(σ) = I if and only if I is an independent set of G.
Next, the homomorphisms σ ∈ Hom(J → H) can be partitioned according to the
value of I(σ). By the partitioning argument mentioned at the end of Section 1.1,
the number of independent sets in G is equivalent to |Hom(J → H)|, modulo 2.

The gadgets are chosen according to the structure and properties of H. Since
Faben and Jerrum were working with trees, they were able to use gadgets with
very simple structure: their gadgets are essentially paths and they exploit the
fact that any non-trivial involution-free tree has at least two even-degree vertices
and, of course, these have a unique path between them (which turns out to be
useful).

Cactus Graphs. The situation for cactus graphs is much more complicated.
Non-trivial involution-free cactus graphs still contain even-degree vertices but
the presence of cycles means that paths, even shortest paths, are no longer
guaranteed to be unique. Our solution in [7] was to use more complicated gadgets.
They are still (loosely) based on paths, since they are defined in terms of numbers
of walks between vertices of H. However, rather than requiring appropriate even-
degree vertices (which might not exist), we used a second, and more complicated,
gadget to “select” an even-cardinality subset of a vertex’s neighbours. To find
such gadgets in H, we used tree-like decompositions. Given a decomposition
that breaks H into independent fragments, we inductively found gadgets (or,
sometimes, partial gadgets) in the fragments, carefully putting them together
across the join of the decomposition. All of this led to a very technical, very
graph-theoretic solution, and also to a solution that does not generalise to graphs
without tree-like decompositions.

The proof is complicated by the fact that there are involution-free graphs
(even involution-free cactus graphs!) that have non-trivial automorphisms, unlike
the situation for trees. Thus, the fact that the pinning function pins vertices
to entire orbits (rather than to particular vertices) causes complications. The
solution in [7, Section 8] relies on special properties of cactus graphs, and it is
not clear how it could be generalised.

Counting Homomorphisms to Square-Free Graphs, Modulo 2 647

Unbounded Tree-Width. Since they are based around a tree-like decompo-
sition, the techniques of [7] are not suitable for graphs with unbounded tree-
width. To prove Conjecture 1.1 for a richer class of graphs, we adopt a much
more abstract approach. Since we do not have tree-like decompositions, we
instead mostly use structural properties of the whole graph to find gadgets.
The structural properties do not always require technical detail – as we will
see below, re-examining a result of Lovász [12] even allows us to demonstrate
non-constructively the existence of some of the gadgets that we use.

In order to support our more general approach, we first have to generalise
the pinning problem ⊕PinnedHomsToH. We use the following important
definitions, which will be used later. For any graph H, a partially H-labelled
graph J = (G, τ) consists of an underlying graph G and a pinning function τ ,
which in this paper is a partial function from V (G) to V (H). Thus, every vertex
v in the domain of τ is pinned to a particular vertex of H and not to a subset such
as an orbit. A homomorphism from a partially labelled graph J = (G, τ) to H
is a homomorphism σ : G → H such that, for all vertices v ∈ dom(τ), σ(v) =
τ(v). The intermediate problem that we study then is ⊕PartLabHomsToH,
the problem of computing |Hom(J → H)| mod 2, given a partially H-labelled
graph J . In Section 3, we generalise the application of Lovász’s theorem to show
(Theorem 3.1) that ⊕PartLabHomsToH ≤ ⊕HomsToH.

Armed with a stronger pinning technique, we then abstract away most of the
complications that arose for graphs with small tree-width by instead using more
general gadgets, defined in Section 4. Because they are not based on paths, they
do not rely on uniqueness of any path in H. Instead, the gadgets have three main
parts. Our new reduction from ⊕IS to ⊕HomsToH can be seen informally as
assigning colours to both the vertices and the edges of G, where each “colour” is
a vertex of H. One part of the gadget controls which colours can be assigned to
each vertex, one controls which colours can be assigned to each edge and a third
part determines how many homomorphisms there are from G to H, given the
choice of colours for the vertices and edges. In addition to all of this, we identify
two special vertices of H, one of which is the vertex i mentioned above.

The much more general nature of our gadgets compared to those used pre-
viously makes them much easier to find and, in some cases, allows us to find
the parts of them non-constructively. We no longer need to find unique shortest
paths in H or, indeed, any paths at all. In fact, all the gadgets that we construct
in this paper use a “caterpillar gadget” (Definition 4.3) which allows us to use
any specified path in the graph H instead of relying on a unique shortest path.
Rather than finding hardness gadgets in components in some decomposition
of H, we mostly find gadgets “in situ”.

When a graph has two even-degree vertices, we can directly use those vertices
and a caterpillar gadget to produce a hardness gadget (see Lemma 5.3). This
already provides a self-contained proof of Faben and Jerrum’s dichotomy for
trees. Next, for graphs with only one even-degree vertex, we show (Corollary 5.5)
that deleting an appropriate set of vertices leaves a component with two even-
degree vertices and show (Lemma 5.7) how to simulate that vertex deletion

648 A. Göbel et al.

with gadgets. This leaves only graphs in which every vertex has odd degree. In
such a graph, we are able to use any shortest odd-length cycle to construct a
gadget (Lemma 5.13). If there are no odd cycles, the graph is bipartite. In this
interesting case (Lemma 5.15) we use our version of Lovász’s result to find a
gadget non-constructively.

1.3 Squares and Related Work

It is natural to ask why the involution-free reduction H∗ in Theorem 1.2 is required
to be square-free. We do not believe that the restriction to square-free graphs
is fundamental, since our results on pinning apply to all involution-free graphs
(Section 3) and neither our definition of hardness gadgets (Definition 4.1) nor our
proof that the existence of a hardness gadget for H implies that ⊕HomsToH is
⊕P-complete (Theorem 4.2) requires H to be square-free. However, all the actual
hardness gadgets that we find for graphs do rely on the absence of 4-cycles, as
discussed in the full version, and removing this restriction seems technically chal-
lenging. We note that dealing with 4-cycles also caused significant difficulties in
cactus graphs [7].

We have already mentioned earlier work on counting graph homomorphisms
modulo 2. The problem of counting graph homomorphisms (exactly, rather than
modulo a fixed constant) was previously studied by Dyer and Greenhill [5]. They
showed the problem of counting homomorphisms to a fixed graph H is solvable
in polynomial time if every connected component of H is a complete graph with
a self-loop on every vertex or a complete bipartite graph with no self-loops,
and is #P-complete, otherwise. Their work builds on an earlier dichotomy by
Hell and Nešetřil [11] for the complexity of the graph homomorphism decision
problem (the problem of distinguishing between the case where there are no
homomorphisms and the case where there is at least one).

Note that much of the notation that we use below has been defined in the
introduction. In addition, we write [n] = {1, . . . , n} and, for a set S and an
element x, we often write S − x for S \ {x}.

3 Partially Labelled Graphs and Pinning

It is often convenient to regard a graph as having some distinguished vertices
x1, . . . , xr and we denote such a graph by (G, x1, . . . , xr). The distinguished
vertices need not be distinct. A homomorphism from a graph (G, x1, . . . , xr)
to (H, y1, . . . , yr) is a homomorphism σ from G to H with the property that
σ(xi) = yi for each i ∈ [r]. Isomorphisms of these graphs are defined similarly.
In the full version, we generalise a result of Lovász [12] to prove the following.

Lemma 3.6. Let (H, ȳ) and (H ′, ȳ′) be involution-free graphs, each with r dis-
tinguished vertices. (H, ȳ) ∼= (H ′, ȳ′) if and only if, for all (not necessarily con-
nected) graphs (G, x̄) with r distinguished vertices, |Hom((G, x̄) → (H, ȳ))| ≡
|Hom((G, x̄) → (H ′, ȳ′))| (mod 2).

Counting Homomorphisms to Square-Free Graphs, Modulo 2 649

Recall that ⊕PartLabHomsToH is the problem of computing |Hom(J →
H)| mod 2, given a partially H-labelled graph J . Using Lemma 3.6, and the
implementation technique of Faben and Jerrum [6], we prove the following.

Theorem 3.1. ⊕PartLabHomsToH ≤ ⊕HomsToH for any involution-free
graph H.

The difference between Lemma 3.6 and similar previous lemmas is the inclu-
sion of the distinguished vertices. This is necessary both for our more general
pinning technique (Theorem 3.1) and because we will use Lemma 3.6 to non-
constructively find hardness gadgets in Section 4.

4 Hardness Gadgets

In this section, we define the gadgets that we will use to prove ⊕P-completeness
of ⊕HomsToH problems, by reduction from the parity independent set problem
⊕IS, i.e., the problem of computing the number of independent sets in an input
graph, modulo 2. ⊕IS was shown to be ⊕P-complete by Valiant [16].

The gadgets that we use are considerably more general than the ones we
defined for cactus graphs in [7]. This allows us to quickly prove hardness for
large classes of square-free graphs and even to find gadgets non-constructively.

In the discussion that follows, we will choose a set Ωy ⊆ V (H) and a vertex
i ∈ Ωy. Given a graph G whose independent sets we wish to count modulo 2,
we will construct a partially H-labelled graph J = (G(J), τ(J)) and consider
homomorphisms from J to H. G(J) will contain a copy of V (G) and we will be
interested in homomorphisms that map every vertex in this copy to Ωy. Vertices
mapped to i will be in the independent set under consideration; vertices mapped
to Ωy − i will not be in the independent set.

Given a partially labelled graph J = (G(J), τ(J)) and vertices x1, . . . , xr of
G(J) that are not in dom(τ(J)) and given vertices y1, . . . , yr of H, a homomor-
phism from (J, x1, . . . , xr) to (H, y1, . . . , yr) is a homomorphism from J to H
which maps each xi to yi (for i ∈ {1, . . . , r}).

Definition 4.1. A hardness gadget (i, s, (J1, y), (J2, z), (J3, y, z)) for a graph H
consists of vertices i and s of H together with three connected, partially H-labelled
graphs with distinguished vertices that satisfy the following properties. Let

Ωy = {a ∈ V (H) | |Hom((J1, y) → (H, a))| is odd}
Ωz = {b ∈ V (H) | |Hom((J2, z) → (H, b))| is odd}

Σa,b = Hom((J3, y, z) → (H, a, b)) .

The properties that we require are that, for each o ∈ Ωy − i and each x ∈ Ωz − s,
(1) |Ωy| is even and i ∈ Ωy, (2) |Ωz| is even and s ∈ Ωz, (3) |Σo,x| is even, and
(4) |Σo,s|, |Σi,x| and |Σi,s| are odd.

The following theorem shows that the presence of a hardness gadget implies
that ⊕HomsToH is ⊕P-complete.

650 A. Göbel et al.

u

e

v

f

w

G

Je,u
3

Je,v
3

Jf,v
3

Jf,w
3

yu

yv

yw

ze

zf

K

Je,u
3

Je,v
3

Jf,v
3

Jf,w
3

yu

yv

yw

Ju
1

Jv
1

Je
1

ze

zf

Je
2

Jf
2

J

Fig. 2. The construction of the partially labelled graphs K and J from an example
graph G, as in the proof of Theorem 4.2

Theorem 4.2. ⊕HomsToH is ⊕P-complete for any involution-free graph H
that has a hardness gadget.

The proof of Theorem 4.2 consists of a reduction from the ⊕P-complete prob-
lem ⊕IS to ⊕PartLabHomsToH together with Theorem 3.1. The reduction
from ⊕IS to ⊕PartLabHomsToH is illustrated in Figure 2.

Given an input graph G to ⊕IS, we first construct the partially H-labelled
graph K from G by replacing every edge of G with two disjoint copies of J3,
as shown in the figure. To construct the partially H-labelled graph J , we then
take K and add a disjoint copy of J1 for every vertex v ∈ G and a disjoint copy
of J2 for every edge e ∈ G as shown in the figure. In the full version, we calculate
the number of homomorphisms from J to H and show that |Hom(J → H)| is
equivalent modulo 2 to the number of independent sets in G. Intuitively, the
role of Ju

1 is to cancel all homomorphisms, apart from those in which the vertex
yu is mapped to a vertex in Ωy. Similarly, Je

2 cancels all homomorphisms, apart
from those in which the vertex ze is mapped to Ωz. Then the four properties
in the definition of hardness gadget and the connections using J3 cancel all
homomorphisms apart from those in which the set of vertices yu that are mapped
to the special vertex “i” form an independent set of G.

In the paper, we use a particular gadget called a “caterpillar gadget” as the
partially H-labelled graph J3.

Definition 4.3. Given a path P = v0 . . . vk in H of length at least 1, define
the caterpillar gadget JP = (G, τ) with distinguished vertices y and z as fol-
lows. V (G) = {u1, . . . , uk−1, w1, . . . , wk−1, y, z} and G is the path yu1 . . . uk−1z
together with edges (uj , wj) for 1 ≤ j ≤ k−1. τ = {w1 �→ v1, . . . , wk−1 �→ vk−1}.
(See Figure 3).

Counting Homomorphisms to Square-Free Graphs, Modulo 2 651

y u1 u2 uk−2 uk−1 z

v1

w1

v2

w2

vk−2

wk−2

vk−1

wk−1

Fig. 3. The caterpillar gadget corresponding to a path v0 . . . vk. The vertices
w1, . . . , wk−1 in the gadget are pinned to vertices v1, . . . , vk−1 in H, respectively. A
label next to a vertex indicates its identity; a label inside a white circle indicates what
that vertex is pinned to.

The following lemma explains why we use caterpillar gadgets as the J3 gad-
gets that appear in hardness gadgets. The point is that the properties guaranteed
here coincide with the ones required in the definition of hardness gadgets (Defi-
nition 4.2). We write ΓH(v) for the neighbourhood of a vertex v in a graph H.

Lemma 4.5. Let H be a square-free graph. Let k > 0 and let P = v0 . . . vk be
a path in H with degH(vj) odd for all j ∈ {1, . . . , k − 1}. Let Ωy ⊆ ΓH(v0) and
Ωz ⊆ ΓH(vk), with i = v1 ∈ Ωy and s = vk−1 ∈ Ωz. For each o ∈ Ωy−i and each
x ∈ Ωz − s the following properties hold. (1) |Hom((JP , y, z) → (H, o, x))| = 0,
(2) |Hom((JP , y, z) → (H, o, s))| = 1, (3) |Hom((JP , y, z) → (H, i, x))| = 1, and
(4) |Hom((JP , y, z) → (H, i, s))| is odd.

The proof of Lemma 4.5 relies on the fact that H is square-free. It can
be found in the full version. The point is that, even if the proof is a little bit
technical — it is sufficiently general that it applies to every square-free graph H.
As long as H is square-free, any caterpillar gadget has the desired properties, so
J3 can always be taken to be a caterpillar, without requiring a detailed structural
analysis of H.

5 Finding Hardness Gadgets

In this section we show how to identify hardness gadgets in different graphs. If
H has two or more even-degree vertices, we can directly use them to construct a
hardness gadget. In this case, the partially H-labelled graphs J1 and J2 will just
be edges. In each of these, exactly one vertex is pinned, and it is pinned to an
even-degree vertex of H. This is captured in the following lemma, which already
provides a self-contained proof of Faben and Jerrum’s dichotomy for trees.

Lemma 5.3. Let H be a connected, square-free graph with at least two even-
degree vertices. Then H has a hardness gadget.

If H has exactly one even-degree vertex, we first show that deleting an appro-
priate set of vertices leaves a component with two even-degree vertices.

652 A. Göbel et al.

Corollary 5.5. Let H be an involution-free graph that has exactly one vertex v
of positive, even degree. For some r, the graph formed from H by deleting the
ball at distance r around v has an involution-free component H∗ that does not
contain v but does contain at least two even-degree vertices.

Corollary 5.5 allows us to construct a hardness gadget for H by attaching
a path to the gadget already constructed in Lemma 5.3. We prove in the full
version that the additional path essentially simulates the vertex deletion from
Corollary 5.5. After calculations we are able to prove the following.

Lemma 5.7. Any involution-free, square-free graph H that has exactly one ver-
tex v of positive, even degree has a hardness gadget.

This leaves only graphs H in which every vertex has odd degree. If such a
graph has an odd-length cycle then we can use it to construct an appropriate
hardness gadget. In the full version, we prove the following lemma.

Lemma 5.13. Let H be a square-free graph in which every vertex has odd
degree. If H contains an odd cycle, then it has a hardness gadget.

The most interesting case, and the only one left, is the case in which H is
a bipartite graph in which every vertex has odd degree. We use the following
definition.

Definition 5.14. An even gadget for a bipartite graph H is a connected bipar-
tite graph G with a distinguished edge (w, x) such that |Hom((G,w, x) →
(H, a, b))| is even, for some edge (a, b) in H.

Using our extended version of Lovász’s result (Lemma 3.6) we are able to
prove the following. The key point is that every bipartite (G,w, x) has exactly one
homomorphism to the single edge (a, b). Since H is not a single edge, Lemma 3.6
says there is a (G,w, x) with an even number of homomorphisms to (H, a, b).
This is not necessarily an even gadget but it allows us to construct one.

Lemma 5.15. Every connected, bipartite graph except K2 has an even gadget.

An even gadget turns out to be useful for the following reason. If G and H
are bipartite, then there is always at least one homomorphism from (G,w, x)
to (H, a, b), since the whole of G can be mapped to the edge (a, b). Thus, the
definition of even gadget implies that |Hom((G,w, x) → (H, a, b))| is even and
positive. Using this fact, and the additional fact that H is square-free, we are
able to apply some additional pinning to the even gadget that is guaranteed to
exist, in order to obtain a hardness gadget, so we obtain the following.

Lemma 5.16. Let H be a connected, bipartite, square-free graph in which every
vertex has odd degree. H has a hardness gadget.

Counting Homomorphisms to Square-Free Graphs, Modulo 2 653

6 Main Theorem

Theorem 1.2 follows rather directly from Lemma 5.3, Lemma 5.7, Lemma 5.13
and Lemma 5.16. A technical issue arises concerning the connectivity of the
involution-free reduction. This is dealt with in the full version.

References

1. Arends, F., Ouaknine, J., Wampler, C.W.: On searching for small Kochen-Specker
vector systems. In: Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986,
pp. 23–34. Springer, Heidelberg (2011)

2. Bulatov, A.A., Grohe, M.: The complexity of partition functions. Theor. Comput.
Sci. 348(2–3), 148–186 (2005)

3. Cai, J.-Y., Lu, P.: Holographic algorithms: From art to science. J. Comput. Syst.
Sci. 77(1), 41–61 (2011)

4. Conforti, M., Cornuéjols, G., Vušković, K.: Square-free perfect graphs. J. Combin.
Theory Ser. B 90(2), 257–307 (2004)

5. Dyer, M.E., Greenhill, C.S.: The complexity of counting graph homomorphisms.
Random Struct. Algorithms 17(3–4), 260–289 (2000)

6. Faben, J., Jerrum, M.: The complexity of parity graph homomorphism: an initial
investigation. Theor. Comput. 11, 35–57 (2015)

7. Göbel, A., Goldberg, L.A., Richerby, D.: The complexity of counting homomor-
phisms to cactus graphs modulo 2. ACM T. Comput. Theory, 6(4), article 17
(2014)

8. Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for
partition functions with mixed signs. SIAM J. Comput. 39(7), 3336–3402 (2010)

9. Goldberg, L.A., Gysel, R., Lapinskas, J.: Approximately counting locally-optimal
structures. CoRR, abs/1411.6829 (2014)

10. Goldschlager, L.M., Parberry, I.: On the construction of parallel computers from
various bases of Boolean functions. Theor. Comput. Sci. 43, 43–58 (1986)

11. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory, Ser. B
48(1), 92–110 (1990)

12. Lovász, L.: Operations with structures. Acta Math. Acad. Sci. Hungar. 18(3–4),
321–328 (1967)

13. Papadimitriou, C.H., Zachos, S.: Two remarks on the power of counting. In:
Cremers, A.B., Kriegel, H.-P. (eds.) Theoretical Computer Science. LNCS,
vol. 145, pp. 269–275. Springer, Heidelberg (1982)

14. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. 10th Annual
ACM Symposium on Theory of Computing (STOC 1978), pp. 216–226. ACM Press
(1978)

15. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),
865–877 (1991)

16. Valiant, L.G.: Accidental algorithms. In: Proc. 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2006), pp. 509–517. IEEE (2006)

17. Xia, M., Zhang, P., Zhao, W.: Computational complexity of counting problems on
3-regular planar graphs. Theoret. Comput. Sci. 384(1), 111–125 (2007)

Approximately Counting Locally-Optimal
Structures

Leslie Ann Goldberg1, Rob Gysel2, and John Lapinskas1(B)

1 Department of Computer Science, University of Oxford, Oxford, UK
lapinskas@cs.ox.ac.uk

2 Department of Computer Science, University of California, Davis, USA

Abstract. A locally-optimal structure is a combinatorial structure that
cannot be improved by certain (greedy) local moves, even though it may
not be globally optimal. An example is a maximal independent set in a
graph. It is trivial to construct an independent set in a graph. It is easy
to (greedily) construct a maximal independent set. However, it is NP-
hard to construct a globally-optimal (maximum) independent set.This
situation is typical. Constructing a locally-optimal structure is somewhat
more difficult than constructing an arbitrary structure, and constructing
a globally-optimal structure is more difficult than constructing a locally-
optimal structure. The same situation arises with listing. The differences
between the problems become obscured when we move from listing to
counting because nearly everything is #P-complete. However, we high-
light an interesting phenomenon that arises in approximate counting,
where approximately counting locally-optimal structures is apparently
more difficult than approximately counting globally-optimal structures.
Specifically, we show that counting maximal independent sets is complete
for #P with respect to approximation-preserving reductions, whereas
counting all independent sets, or counting maximum independent sets is
complete for an apparently smaller class, #RHΠ1 which has a prominent
role in the complexity of approximate counting. Motivated by the diffi-
culty of approximately counting maximal independent sets in bipartite
graphs, we also study counting problems involving minimal separators
and minimal edge separators (which are also locally-optimal structures).
Minimal separators have applications via fixed-parameter-tractable algo-
rithms for constructing triangulations and phylogenetic trees. Although
exact (exponential-time) algorithms exist for listing these structures, we
show that the counting problems are as hard as they could possibly be. All
of the exact counting problems are #P-complete, and all of the approx-
imation problems are complete for #P with respect to approximation-
preserving reductions. A full version [14] containing detailed proofs is
available at http://arxiv.org/abs/1411.6829. Theorem-numbering here
matches the full version.

L.A. Goldberg and J. Lapinskas—The research leading to these results has received
funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007–2013) ERC grant agreement no. 334828. The
paper reflects only the authors’ views and not the views of the ERC or the European
Commission. The European Union is not liable for any use that may be made of the
information contained therein.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 654–665, 2015.
DOI: 10.1007/978-3-662-47672-7 53

http://arxiv.org/abs/1411.6829

Approximately Counting Locally-Optimal Structures 655

1 Introduction

A locally-optimal structure is a combinatorial structure that cannot be improved
by certain (greedy) local moves, even though it may not be globally optimal. An
example is a maximal independent set in a graph. It is trivial to construct an
independent set in a graph (for example, the singleton set containing any vertex
is an independent set). It is easy to construct a maximal independent set (the
greedy algorithm can do this). However, it is NP-hard to construct a globally-
optimal independent set, which in this case means a maximum independent
set. In the setting in which we work, this situation is typical. Constructing a
locally-optimal structure is somewhat more difficult than constructing an arbi-
trary structure, and constructing a globally-optimal structure is more difficult
than constructing a locally-optimal structure. For example, in bipartite graphs,
it is trivial to construct an independent set, easy to (greedily) construct a maxi-
mal independent set, and more difficult to construct a maximum independent set
(even though this can be done in polynomial time). This general phenomenon has
been well-studied. In 1987, Johnson, Papadimitriou and Yannakakis [19] defined
the complexity class PLS (for “polynomial-time local search”) that captures local
optimisation problems where one iteration of the local search algorithm takes
polynomial time. As the authors point out, practically all empirical evidence
leads to the conclusion that finding locally-optimal solutions is much easier than
solving NP-hard problems, and this is supported by complexity-theoretic evi-
dence, since a problem in PLS cannot be NP-hard unless NP=co-NP. An exam-
ple that illustrates this point is the graph partitioning problem. For this problem
it is trivial to find a valid partition, and it is NP-hard to find a globally-optimal
(minimum weight) partition but Schäffer and Yannakakis [23] showed that find-
ing a locally-optimal solution (with respect to a particular swapping-dynamics)
is PLS-complete, so is presumably of intermediate complexity.

For listing combinatorial structures, a similar pattern emerges. Self-
reducibility gives a nearly-trivial polynomial-space polynomial-delay algorithm
for listing the independent sets of a graph [13]. A polynomial-space polynomial-
delay algorithm for listing the maximal independent sets exists, due to
Tsukiyama et al. [26], but it is more complicated. On the other hand, there is no
polynomial-space polynomial-delay algorithm for listing the maximum indepen-
dent sets unless P=NP. There is a polynomial-space polynomial-delay algorithm
for listing the maximum independent sets of a bipartite graph [20], but this is
substantially more complicated than any of the previous algorithms.

When we move from constructing and listing to counting, these differences
become obscured because nearly everything is #P-complete. For example, count-
ing independent sets, maximal independent sets, and maximum independent sets
of a graph are all #P-complete problems, even if the graph is bipartite [27]. Fur-
thermore, even approximately counting independent sets, maximal independent
sets, and maximum independent sets of a graph are all #P-complete with respect
to approximation-preserving reductions [8].

The purpose of this paper is to highlight an interesting situation that arises
in approximate counting where, contrary to the situations that we have just

656 L.A. Goldberg et al.

discussed, approximately counting locally-optimal structures is apparently more
difficult than counting globally-optimal structures.

In order to explain the result, we first briefly summarise what is known about
the complexity of approximate counting within #P. This will be explained in
more detail in Sect. 2. There are three relevant complexity classes — the class
containing problems which admit a fully-polynomial randomised approximation
scheme (FPRAS), the class #RHΠ1, and #P itself. Dyer et al. [8] showed that
#BIS, the problem of counting independent sets in a bipartite graph, is com-
plete for #RHΠ1 with respect to approximation-preserving (AP) reductions
and that #IS, the problem of counting independent sets in a (general) graph
is #P-complete with respect to AP-reductions. It is generally believed that the
#RHΠ1-complete problems are not FPRASable, but that they are of interme-
diate complexity, and are not as difficult to approximate as the problems which
are #P-complete with respect to AP-reductions. Many problems have subse-
quently been shown to be #RHΠ1-complete and #P-complete with respect to
AP-reductions. More examples will be given in Sect. 2.

We can now describe the interesting situation which emerges with respect to
independent sets in bipartite graphs. Dyer et al. [8] showed that approximately
counting independent sets and approximately counting maximum independent
sets are both #RHΠ1-complete with respect to AP-reductions. Thus, the pattern
outlined above would suggest that approximately counting maximal independent
sets in bipartite graphs ought to also be #RHΠ1-complete. However, we show
(Theorem 1, below) that approximately counting maximal independent sets in
bipartite graphs is actually #P-complete with respect to AP-reductions. Thus,
either #RHΠ1 and #P are equivalent in approximation complexity (contrary to
the picture that has been emerging in earlier papers), or this is a scenario where
approximately counting locally-optimal structures is actually more difficult than
approximately counting globally-optimal ones.

Motivated by the difficulty of approximately counting maximal independent
sets in bipartite graphs, we also study the problem of approximately counting
other locally-optimal structures that arise in algorithmic applications. The prob-
lem of counting the minimal separators of a graph arises in diverse applications
from triangulation theory to phylogeny construction in computational biology. A
minimal separator is a particular type of vertex separator. Definitions are given in
Sect. 1.1. Algorithmic applications arise because fixed-parameter-tractable algo-
rithms are known whose running time is polynomial in the number of minimal
separators of a graph. These algorithms were originally developed by Bouchitté
and Todinca [5,6] (and improved in [9]) to exactly solve the so-called treewidth
and minimum-fill problems; the former is widely studied due to its applicability
to a number of other NP-complete problems [4]. The technique has recently been
generalized [12] to cover problems including treecost [2] and treelength [22]. The
algorithm can also be used to find a minimum-width tree-decomposition of a
graph, a key data structure that is used to solve a variety of NP-complete prob-
lems in polynomial time when the width of the tree-decomposition is fixed [4]. In
recent years, much research has been dedicated to exact-exponential algorithms

Approximately Counting Locally-Optimal Structures 657

for treewidth [3], the fastest of which [10] has running time closely connected to
the number of minimal separators in the graph. Indeed, there exist polynomials
pL and pU such that if the graph has n vertices and M minimal separators, then
the running time is at least pL(n)M and at most pU (n)M2.

Bouchitté and Todinca’s approach has also recently been applied to solve the
perfect phylogeny problem and two of its variants [18]. In this problem, the input
is a set of phylogenetic characters, each of which may be viewed as a partition
of a subset of species. The goal is to find a phylogenetic tree such that every
character is convex on that tree — that is, the parts of each partition form
connected subtrees that do not overlap. Such a tree is called a perfect phylogeny.

In all of these applications, it would be useful to count the minimal separators
of a graph, since this would give an a priori bound on the algorithms’ running
times. Thus, we consider the difficulty of this problem, whose complexity was
previously unresolved, even in terms of exact computation. Theorem 2 shows
that counting minimal separators is #P-complete, both with respect to Turing
reductions (for exact computation) and with respect to AP-reductions. Thus,
this problem is as difficult to approximate as any problem in #P.

Motivated by applications to treewidth [9] and phylogeny [17,18], we also
consider various heuristic approximations to the minimal separator problem.
The number of inclusion-minimal separators is a natural choice for a lower bound
on the number of minimal separators. Conversely, the number of (s, t)-minimal
separators, taken over all vertices s and t, is a natural choice for an upper bound
on the number of minimal separators. Theorem 2 shows that both of these bounds
are difficult to compute, either exactly or approximately. Finally, the number
and structure of 2-component minimal separators is important in computational
biology. These separators arise naturally in the problem of determining whether
a subset of “quartet phylogenies” can be assembled uniquely [17]. Thus, we study
the problem of counting such minimal separators. Theorem 2 shows that they
are complete for #P with respect to exact and approximate computation.

Our new results about counting minimal vertex separators are obtained by
first considering the problem of counting minimal edge separators. These locally-
optimal structures are also known as bonds or minimal cuts, and are well-studied
in other contexts — see e.g. Diestel [7]. Theorem 3 gives the first hardness result
for counting these structures, either exactly or approximately.

1.1 Detailed Results

We now give formal definitions of the problems that we study, and state our
results precisely. Our first result is that counting maximal independent sets in a
bipartite graph is #P-complete with respect to Approximation-Preserving (AP)
reductions (even though counting maximum independent sets in bipartite graphs
is only #RHΠ1-complete with respect to these reductions). (AP-reductions are
discussed in Sect. 2.)

Definition 1. Let G be a graph. We say that an independent set X ⊆ V (G)
of G is maximal if no proper superset of X is an independent set of G.

658 L.A. Goldberg et al.

Problem 1. #MaximalBIS.
Input: A bipartite graph G.
Output: The number of maximal independent sets of G.

The following theorem is proved in Sect. 3.

Theorem 1. #MaximalBIS ≡AP #SAT.

Next we state our results relating to counting minimal separators.

Definition 2. Let G = (V,E) be a graph, and let X ⊆ V . For distinct s, t ∈ V ,
we say X is an (s, t)-separator of G if s and t lie in different components of
G−X. If, in addition, no proper subset of X is an (s, t)-separator of G, then we
say that X is a minimal (s, t)-separator of G. We say X is a minimal separator
of G if X is a minimal (a, b)-separator of G for some a, b ∈ V .

For example, let V = {1, 2, 3, 4, 5}, let E = {{1, 2}, {2, 3}, {3, 4}, {4, 1},
{1, 5}}, and let G be the graph (V,E). G is a four-edge cycle with a pendant vertex.
Then {1, 3} is a minimal separator of G since it is a minimal (2, 4)-separator.

We have already seen that algorithms for counting and approximately count-
ing minimal separators are useful in algorithmic applications. There is also lots
of existing work on listing minimal separators. Given a graph G, let n be the
number of vertices and let m be the number of edges. Kloks and Kratsch, and
independently, Sheng and Liang, showed how to compute all (s, t)-minimal sepa-
rators in O(n3) time per (s, t)-minimal separator [21,24]. Computing all minimal
separators by computing (s, t)-minimal separators for each possible vertex pair in
this way leads to an O(n5) time per minimal separator listing algorithm. Berry,
Bordat, and Cogis [1] improved this approach, computing all minimal separators
in O(n3) time per minimal separator. Each of these algorithms require storing
minimal separators in an adequate data structure. Takata’s algorithm [25] gen-
erates the set of minimal separators in O(n3m) time per minimal separator
but linear space. A graph has at most O(1.6181n) minimal separators [11]. We
study the following computational problems, based on our desire to count and
to approximately count minimal separators.

Problem 2. #(s, t)-BiMinimalSeps.
Input: A bipartite graph G and two vertices s, t ∈ V (G).
Output: The number of minimal (s, t)-separators of G, denoted by MS(G, s, t).

Problem 3. #BiMinimalSeps.
Input: A bipartite graph G.
Output: The number of minimal separators of G, denoted by MS(G).

Theorem 2 below shows that both problems are #P-complete to solve exactly
and are complete for #P with respect to approximation-preserving reductions.

Motivated by considerations in phylogeny [17] we also consider various heuris-
tic approximations to the minimal separator problem. We start by defining the
notion of an inclusion-minimal separator, since the number of these is a natural
lower bound for the number of minimal separators.

Approximately Counting Locally-Optimal Structures 659

Definition 4. Let G be a graph. A minimal separator X of G is said to be an
inclusion-minimal separator if no proper subset of X is a minimal separator.

In the five-vertex example above, the minimal separator {1, 3} is not an
inclusion-minimal separator since {1} ⊂ {1, 3} is a minimal (5, 4)-separator.
However {1} is an inclusion-minimal separator. We consider the following com-
putational problem.

Problem 4. #BiInclusionMinimalSeps.
Input: A bipartite graph G.
Output: The number of inclusion-minimal separators of G, denoted by IMS(G).

We also consider the problem of counting 2-component minimal separators
since these arise in phylogenetic assembly.

Problem 5. #(s, t)-BiConnMinimalSeps.
Input: A bipartite graph G and two vertices s, t ∈ V (G).
Output: The number of minimal (s, t)-separators X of G such that G − X has
exactly two connected components.

Problem 6. #BiConnMinimalSeps.
Input: A bipartite graph G.
Output: The number of minimal separators X of G such that G−X has exactly
two connected components.

Our main theorem about minimal separators shows that all of these problems
are #P-complete and are also complete for #P with respect to AP-reductions.

Theorem 2. The problems #(s, t)-BiMinimalSeps, #BiMinimalSeps, #(s, t)-
BiConnMinimalSeps, #BiConnMinimalSeps and #BiInclusionMinimalSeps are
#P-complete and are equivalent to #SAT under AP-reduction.

In order to prove Theorem 2, we first study algorithmic problems related to
other natural locally-optimal structures, namely minimal edge-separators. These
problems are also interesting for their own sake.

Definition 5. Let G = (V,E) be a graph, and let F ⊆ E. For distinct s, t ∈ V ,
we say F is an (s, t)-edge separator of G if s and t lie in different components of
G − F . If in addition no proper subset of F is an (s, t)-edge separator of G then
we say that F is a minimal (s, t)-edge separator of G. We say F is a minimal
edge separator of G if it is a minimal (a, b)-edge separator for some a, b ∈ V .

There is no need to define inclusion-minimal edge separators, since these turn
out to be the same as minimal edge separators (unlike the situation for vertex
separators). We show that both of the following problems are #P-complete with
respect to AP-reductions, and that both are #P-complete to compute exactly.

Problem 7. #(s, t)-BiMinimalEdgeSeps.
Input: A bipartite graph G and two vertices s, t ∈ V (G).
Output: The number of minimal (s, t)-edge separators of G, denoted by
MES(G, s, t).

660 L.A. Goldberg et al.

Problem 8. #BiMinimalEdgeSeps.
Input: A bipartite graph G.
Output: The number of minimal edge separators of G, denoted MES(G).

Theorem 3. The problems #BiMinimalEdgeSeps and #(s, t)-
BiMinimalEdgeSeps are #P-complete and are equivalent to #SAT under
AP-reduction.

In [14] we also study two other locally-optimal structures related to maximal
independent sets in bipartite graphs. Theorem 4 shows that counting dominating
sets in bipartite graphs is also #P-hard with respect to AP-reductions. Also,
maximal independent sets in bipartite graphs can be represented as unions of
sets, so (Theorems 5 and 6) a set union problem is also #P-hard with respect
to AP-reductions, and so is its inverse.

2 Preliminaries

Most of our notation is standard, and we therefore defer it to Sect. 2 of [14]. The
notions of a fully polynomial randomised approximation scheme (or FPRAS)
and an approximation-preserving reduction (or AP-reduction) are standard in
the field. If there is an AP-reduction from f to g, we write f ≤AP g.

Dyer et al. [8] studied counting problems in #P and identified three classes of
counting problems that are interreducible under AP-reductions. The first class,
containing the problems that have an FPRAS, are trivially equivalent under
AP-reduction since all the work can be embedded into the reduction (which
declines to use the oracle). The second class is the equivalence class of #SAT,
the problem of counting satisfying assignments to a Boolean formula in CNF,
under AP-reduction. These problems are complete for #P with respect to AP-
reductions. Zuckerman [29] has shown that #SAT cannot have an FPRAS unless
RP = NP, so the same is true of any problem to which #SAT is AP-reducible.

The third class appears to be of intermediate complexity. It contains all of
the counting problems expressible in a certain logically-defined complexity class,
#RHΠ1. Typical complete problems include counting the downsets in a partially
ordered set [8], computing the partition function of the ferromagnetic Ising model
with local external magnetic fields [15], and counting the independent sets in a
bipartite graph, which is formally defined as follows.

Problem 12. #BIS.
Input: A bipartite graph G.
Output: The number of independent sets in G, denoted by IS(G).

In [8] it was shown that #BIS is complete for the logically-defined complexity
class #RHΠ1 with respect to AP-reductions. Goldberg and Jerrum [16] have
conjectured that there is no FPRAS for #BIS. Early indications point to the
fact that it may be of intermediate complexity, between the FPRASable problems
and those that are complete for #P with respect to AP-reductions.

Approximately Counting Locally-Optimal Structures 661

3 Hardness of #MaximalBIS

We first prove that #MaximalBIS is complete for #P with respect to AP-
reductions. We reduce from the well-known problem of counting independent
sets in an arbitrary graph.

Problem 13. #IS.
Input: A graph G.
Output: The number of independent sets in G.

Dyer et al. [8, Theorem3] shows that #IS is complete for #P with respect to
AP-reductions. Using this we can now prove Theorem 1.

Proof. Since #MaximalBIS is in #P, #MaximalBIS ≤AP #SAT follows from
[8]. To go the other direction, we will show #IS ≤AP #MaximalBIS. Let MIS(G)
denote the number of maximal independent sets in a graph G. Let G = (V,E) be
an instance of #IS. Without loss of generality let V = [n] for some n ∈ N, let m =
|E|, and let t = n + 2. We shall construct an instance G′ of #MaximalBIS with
the property that IS(G) ≤ MIS(G′)/2tm ≤ IS(G) + 1

4 , which will be sufficient
for the reduction. See Fig. 1 for an example.

Fig. 1. An example of the reduction from an instance G of #IS to an instance G′ of
#MaximalBIS used in the proof of Theorem 1. The boxes around vertices indicate a
non-maximal independent set in G and one of its maximal counterparts in G′. Note
that the presence of v4 ensures that vertex 4 has an occupied neighbour in G′.

Informally, we obtain a bipartite graph G′ (an instance of #MaximalBIS)
from G by first t-thickening and then 4-stretching each of G’s edges and by
also adding a bristle to each of G’s vertices. Formally, we define G′ as follows.
For each e ∈ E let Xe, Ye and Ze be sets of t vertices. We require all of these
sets to be disjoint from each other and from [n]. Write Xe = {xk

e | k ∈ [t]},

662 L.A. Goldberg et al.

Ye = {yk
e | k ∈ [t]}, and Ze = {zke | k ∈ [t]}. Also, let W =

⋃
e∈E Xe ∪ Ye ∪ Ze.

Let V ∗ = {v1, . . . , vn} be a set of distinct vertices which is disjoint from [n]∪W .
Then we define V (G′) = [n] ∪ V ∗ ∪ W and

E(G′) = {{i, vi} | i ∈ [n]} ∪
⋃

e={i,j}∈E
i<j
k∈[t]

{{i, xk
e}, {xk

e , y
k
e}, {yk

e , zke }, {zke , j}} .

Let S ⊆ [n] be arbitrary. We shall determine the number MISS(G′) of maxi-
mal independent sets T ⊆ V (G′) with T ∩ [n] = S, and thereby bound MIS(G′).

First, note that for every S ⊆ [n], the set S ∪ {vi ∈ V ∗ | i 	∈ S} ∪ ⋃
e Ye

is a maximal independent set of G′, so MISS(G′) is non-zero. Also, if T is a
maximal independent set of G′ and T ∩ [n] = S then T ∩V ∗ = {vi ∈ V ∗ | i 	∈ S}.
In particular, this implies that every unoccupied vertex in [n] has an occupied
neighbour in V ∗.

Consider an edge e = {i, j} ∈ E, where i < j, and a value k ∈ [t]. If T is a
maximal independent set of G′ containing both i and j then T ∩ {xk

e , y
k
e , zke } =

{yk
e}. However, if T is a maximal independent set of G′ containing i but not j

then T ∩ {xk
e , y

k
e , zke } can either be {yk

e} or {zke }. This choice can be made inde-
pendently for each k ∈ [t]. Similarly, if T is a maximal independent set of G′

containing neither i nor j then T ∩ {xk
e , y

k
e , zke } can either be {xk

e , z
k
e }, or {yk

e}.
Given S ⊆ [n], let μ(S) be the number of edges of G with both endpoints

in S. We conclude from the previous observations that MISS(G′) = 2(m−µ(S))t so
MIS(G′) =

∑
S⊆[n] 2

(m−µ(S))t. Since each independent set S of G has μ(S) = 0,
MIS(G′) ≥ IS(G)2mt. Furthermore, since there are at most 2n sets S ⊆ [n] that
are not independent sets of G, and each of these has μ(S) ≥ 1, we have

IS(G) ≤ MIS(G′)
2tm

≤ IS(G) + 2n2−t = IS(G) +
1
4

. (1)

Equation (1) implies that there is an AP-reduction from #IS to #MaximalBIS.
The details of the reduction showing how to tune the accuracy parameter in
the oracle call for approximating MIS(G′) in order to get a sufficiently good
approximation to IS(G) are exactly as in the proof of Theorem 3 of [8]. ��

4 Minimal Separator Problems

The definition of minimal edge separator generalises naturally to multigraphs
(see [14]). In order to prove Theorems 2 and 3 we consider two intermediate
problems related to counting maximum minimal edge separators.

Problem 14. #LargeMinimalEdgeSeps.
Input: A multigraph G and the maximum cardinality x of any minimal edge
separator in G.
Output: The number of minimal edge separators of G with maximum cardinality,
denoted by LMES(G).

Approximately Counting Locally-Optimal Structures 663

Problem 15. #(s, t)-LargeMinimalEdgeSeps.
Input: A multigraph G, two distinct vertices s, t ∈ V , and the maximum cardi-
nality y of any minimal (s, t)-edge separator in G.
Output: The number of minimal (s, t)-edge separators of G with maximum car-
dinality, which we denote by LMES(G, s, t).

The following proposition, due to Whitney [28], implies that minimal edge
separators can be expressed in terms of vertex cuts.

Proposition 12. Let G = (V,E) be a connected multigraph. Then a multiset
F ⊆ E is a minimal edge separator of G if and only if G − F has exactly two
non-empty components, and F is the multiset of edges between them. ��

Since MAX-CUT is an intractable optimisation problem, we can show (see
Lemma 16 of [14]) that the problems #LargeMinimalEdgeSeps and #(s, t)-
LargeMinimalEdgeSeps are #SAT-hard to approximate and are #P-complete.
In order to prove Theorem 3 it is then necessary to relate these problems to
#BiMinimalEdgeSeps and #(s, t)-BiMinimalEdgeSeps. This is achieved by the
following technical lemma, which is the heart of the proof.

Lemma 17. Let G = (V,E) be a connected multigraph, writing n = |V | and
m = |E|. Suppose (G, x) is an instance of #LargeMinimalEdgeSeps, and
(G, s, t, y) is an instance of #(s, t)-LargeMinimalEdgeSeps. Let k = m +
log2(m) + 10�. Then there exists a graph G′ such that the following properties
hold.

(i) G′ is bipartite, V ⊆ V (G′), and |V (G′)| ≤ |E|k + |V |.
(ii) LMES(G) ≤ MES(G′)/2kx ≤ LMES(G) + 1

4 .
(iii) LMES(G, s, t) ≤ MES(G′, s, t)/2ky ≤ LMES(G, s, t) + 1

4 .

The bipartite graph G′ is constructed from G by first k-thickening and then 2-
stretching each edge of G. The construction works because almost every minimal
edge separator of G′ has the following properties: (a) it contains at most one
of the edges of a 2-path corresponding to an edge of G, and (b) if there is an
intersection, then it intersects every such 2-path (so can be viewed as cutting
the edge of G). It turns out that any minimal edge separator F of G corresponds
to precisely 2k|F | such minimal edge separators of G′, and there aren’t too many
other minimal edge separators of G′, so the construction goes through.

In order to prove Theorem 2, which is about vertex separators and not about
edge separators, we need a similar, but more difficult, lemma.

Lemma 18. Let G = (V,E) be a connected multigraph, writing n = |V | and
m = |E|. Suppose (G, x) is an instance of #LargeMinimalEdgeSeps, and
(G, s, t, y) is an instance of #(s, t)-LargeMinimalEdgeSeps. Let k = m + n +
log3(n2) + 16�. Then there exists a graph G′ such that the following properties
hold.

664 L.A. Goldberg et al.

(i) G′ is bipartite, V ⊆ V (G′), and |V (G′)| ≤ 3|E|k + |V |.
(ii) LMES(G) ≤ MS(G′)/3kx ≤ LMES(G) + 1

4 .
(iii) LMES(G, s, t) ≤ MS(G′, s, t)/3ky ≤ LMES(G, s, t) + 1

4 .
(iv) LMES(G) ≤ IMS(G′)/3kx ≤ LMES(G) + 1

4 .

The construction of the bipartite graph G′ is similar to the earlier one —
G′ is constructed from G by first k-thickening and then 4-stretching each edge
of G. We are able to associate minimal (vertex) separators of G′ with minimal
edge separators of G in a similar way to the proof of Lemma 17, but the corre-
spondence is significantly messier since a minimal separator of G′ may contain
vertices of V . Indeed, there may be exponentially many such separators (as a
function of k)!

We define our correspondence as follows. If X is a minimal (vertex) separator
of G′ we define π(X), the corresponding edge-separator of G, to be the set of
edges e of G such that X contains some new vertex in the stretched thickening
of e. The point is to identify a set of “good” minimal separators of G′ so that
every minimal edge separator F of G corresponds to exactly 3k|F | good minimal
separators of G′, and not too many minimal separators of G′ are not good. The
details are somewhat complicated, and the notion of “good” needs to be refined.
For z ∈ N, we say that X is z-good, if it satisfies the following conditions: (a) it
intersects at most one of the edges of a 4-path corresponding to an edge of G,
(b) if there is an intersection, then it intersects every such 4-path (so it cuts
the edge of G), (c) X contains no vertices of G, (d) |π(X)| = z. The key to
the proof is showing that all but at most 3kx/4 minimal separators of G′ are
x-good, and all but at most 3ky/4 minimal (s, t)-separators of G′ are y-good.
The argument involves several steps. First, we show that there are at most
25mk minimal separators in G′ which are not minimal (b, c)-separators for some
vertices b, c of G. Then we consider a ∈ N and distinct vertices b and c of G. We
show that there are at most 2m+n3k(a−1) minimal (b, c)-separators X of G′ with
|π(X)| < a. Finally, we consider distinct vertices b and c of G and let z be the
maximum cardinality of any minimal (b, c)-edge separator G. We show that, if
X is a minimal (b, c)-separator of G′ with |π(X)| ≥ z, then X is z-good. This is
the most difficult step. The details are included in [14].

Acknowledgements. We thank Luca Manzoni and Yuri Pirola.

References

1. Berry, A., Bordat, J.P., Cogis, O.: Generating all the minimal separators of a graph.
International Journal of Foundations of Computer Science 11(3), 397–403 (2000)

2. Bodlaender, H.L., Fomin, F.V.: Tree decompositions with small cost. Discrete
Applied Mathematics 145(2), 143–154 (2005)

3. Bodlaender, H.L., Fomin, F.V., Koster, A.M., Kratsch, D., Thilikos, D.M.: On
exact algorithms for treewidth. ACM Trans. Algorithms 9(1), 12:1–12:23 (2012)

4. Bodlaender, H.L., Koster, A.M.: Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal 51(3), 255–269 (2008)

Approximately Counting Locally-Optimal Structures 665

5. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal
separators. SIAM Journal on Computing 31(1), 212–232 (2001)

6. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph.
Theoretical Computer Science 276(1–2), 17–32 (2002)

7. Diestel, R.: Graph Theory, 4th Edition. Graduate texts in mathematics, vol. 173.
Springer (2012)

8. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: The relative complexity of
approximate counting problems. Algorithmica 38(3), 471–500 (2004)

9. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth
and minimum fill-in. SIAM Journal on Computing 38(3), 1058–1079 (2008)

10. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: 27th STACS, pp. 383–394 (2010)

11. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics.
Combinatorica 32(3), 289–308 (2012)

12. Furuse, M., Yamazaki, K.: A revisit of the scheme for computing treewidth and
minimum fill-in. Theoretical Computer Science 531(0), 66–76 (2014)

13. Goldberg, L.A.: Efficient Algorithms for Listing Combinatorial Structures.
Cambridge University Press (1993). Cambridge Books Online

14. Goldberg, L.A., Gysel, R., Lapinskas, J.: Approximately counting locally-optimal
structures. CoRR abs/1411.6829 (2014)

15. Goldberg, L.A., Jerrum, M.: The complexity of ferromagnetic Ising with local fields.
Combin. Probab. Comput. 16(1), 43–61 (2007)

16. Goldberg, L.A., Jerrum, M.: Approximating the partition function of the ferro-
magnetic Potts model. J. ACM 59(5), 31 (2012). Art. 25

17. Gysel, R.: Unique perfect phylogeny characterizations via uniquely representable
chordal graphs. CoRR abs/1305.1375 (2013)

18. Gysel, R.: Minimal triangulation algorithms for perfect phylogeny problems. In:
Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 421–432. Springer, Heidelberg (2014)

19. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J.
Comput. Syst. Sci. 37(1), 79–100 (1988)

20. Kashiwabara, T., Masuda, S., Nakajima, K., Fujisawa, T.: Generation of maximum
independent sets of a bipartite graph and maximum cliques of a circular-arc graph.
J. Algorithms 13(1), 161–174 (1992)

21. Kloks, T., Kratsch, D.: Listing all minimal separators of a graph. SIAM Journal
on Computing 27, 605–613 (1998)

22. Lokshtanov, D.: On the complexity of computing treelength. Discrete Applied
Mathematics 158(7), 820–827 (2010)

23. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve.
SIAM J. Comput. 20(1), 56–87 (1991)

24. Shen, H., Liang, W.: Efficient enumeration of all minimal separators in a graph.
Theoretical Computer Science 180(1–2), 169–180 (1997)

25. Takata, K.: Space-optimal, backtracking algorithms to list the minimal vertex
separators of a graph. Discrete Appl. Math. 158(15), 1660–1667 (2010)

26. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

27. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs.
SIAM J. Comput. 31(2), 398–427 (2001)

28. Whitney, H.: Planar graphs. Fundamenta Mathematicae 21(1), 73–84 (1933)
29. Zuckerman, D.: On unapproximable versions of NP-complete problems. SIAM J.

Comput. 25(6), 1293–1304 (1996)

Proofs of Proximity for Context-Free Languages
and Read-Once Branching Programs

(Extended Abstract)

Oded Goldreich, Tom Gur(B), and Ron D. Rothblum

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, 76100 Rehovot, Israel

{oded.goldreich,tom.gur,ron.rothblum}@weizmann.ac.il

Abstract. Proofs of proximity are probabilistic proof systems in which
the verifier only queries a sub-linear number of input bits, and soundness
only means that, with high probability, the input is close to an accepting
input. In their minimal form, called Merlin-Arthur proofs of proximity
(MAP), the verifier receives, in addition to query access to the input,
also free access to an explicitly given short (sub-linear) proof. A more
general notion is that of an interactive proof of proximity (IPP), in which
the verifier is allowed to interact with an all-powerful, yet untrusted,
prover. MAPs and IPPs may be thought of as the N P and IP ana-
logues of property testing, respectively.

In this work we construct proofs of proximity for two natural classes
of properties: (1) context-free languages, and (2) languages accepted by
small read-once branching programs. Our main results are:
1. MAPs for these two classes, in which, for inputs of length n, both

the verifier’s query complexity and the length of the MAP proof are
Õ(

√
n).

2. IPPs for the same two classes with constant query complexity, poly-
logarithmic communication complexity, and logarithmically many
rounds of interaction.

1 Introduction

The field of property testing, initiated by Rubinfeld and Sudan [RS96] and Gol-
dreich, Goldwasser and Ron [GGR98], studies a computational model that con-
sists of probabilistic algorithms, called testers, that need to decide whether a
given object has a certain global property or is far (say, in Hamming distance)
from all objects that have the property, based only on a local view of the object.

A line of work [EKR04,BSGH+06,DR06,RVW13,GR15,FGL14,KR14] has
considered the question of designing proof systems within the property testing
model. The minimal type of such a proof system, which was recently studied

Full version can be found in ECCC TR15-024 [GGR15].
This research was partially supported by the Israel Science Foundation (grant
No. 671/13).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 666–677, 2015.
DOI: 10.1007/978-3-662-47672-7 54

Proofs of Proximity for Context-Free Languages 667

by Gur and Rothblum [GR15], augments the property testing framework by
replacing the tester with a verifier that receives, in addition to oracle access to
the input, also free access to an explicitly given short (i.e., sub-linear length)
proof. The guarantee is that for inputs that have the property there exists a
proof that makes the verifier accept with high probability, whereas, for inputs
that are far from the property, the verifier will reject every alleged proof with
high probability. These proof systems can be thought of as the N P (or more
accurately MA) analogue of property testing, and are called Merlin-Arthur proofs
of proximity (MAP).1

A more general notion was considered by Rothblum, Vadhan and Wigderson
[RVW13] (prior to [GR15]). Their proof system, which can be thought of as the
IP analogue of property testing, consists of an all powerful (but untrusted) prover
who interacts with a verifier that only has oracle access to the input x. The prover
tries to convince the verifier that x has a particular property Π. Here, the guaran-
tee is that for inputs in Π, there exists a prover strategy that will make the verifier
accept with high probability, whereas for inputs that are far from Π, the verifier
will reject with high probability no matter what prover strategy is employed. The
latter proof systems are known as interactive proofs of proximity (IPPs).2

The focus of this paper is identifying natural classes of properties that are
known to be hard to test, but become easy to verify using the power of a proof
(MAP) or interaction with a prover (IPP).

1.1 Our Results

One well-known class of properties that is hard to test is the class of context-
free languages. Alon et al. [AKNS00] showed that there exists a context-free
language that requires Ω (

√
n) queries to test (where here and throughout this

work, n denotes the size of the input) and a context-free language that requires
Ω(n) queries to test with one-sided error. Furthermore, there are no known
(non-trivial) testers for general context-free languages.

Another interesting class is the class of languages that are accepted by small
read-once branching programs (ROBPs). Newman [New02] showed that the set of
strings accepted by any small width ROBP can be efficiently tested.3 More specif-
ically, Newman showed that width w ROBPs can be tested using (2w/ε)O(w)

queries, where ε is the proximity parameter. Bollig [Bol05] showed that New-
man’s result cannot be extended to polynomial-sized ROBPs, by exhibiting an
O(n2)-sized ROBP that requires Ω(

√
n) queries to test. No (non-trivial) testers

for general ROBPs are known for width Ω(
√

log n).
1 A related notion is that of a probabilistically checkable proof of proximity (PCPP)

[BSGH+06,DR06]. PCPPs differ from MAPs in that the verifier is only given query
(i.e., oracle) access to the proof, whereas in MAPs, the verifier has free (explicit)
access to the proof. Hence, PCPPs are a PCP analogue of property testing.

2 Indeed, MAPs can be thought of as a restricted case of IPPs, in which the interaction
is limited to a single message sent from the prover to the verifier.

3 The result in [New02] is stated only for oblivious ROBPs but in [Bol05, Section1.3]
it is stated that Newman’s result holds also for general non-oblivious ROBPs.

668 O. Goldreich et al.

In this work we consider the question of constructing efficient MAPs and
IPPs for these two classes.4 Here, by “efficient”, we mean that both the query
complexity (i.e., the number of queries performed by the verifier to the input)
and the proof complexity (i.e., the length of the MAP proof) or communication
complexity (i.e., the amount of communication with the IPP prover) are small
and, in particular, sub-linear5.

Our first pair of results are efficient MAPs for context-free languages and
for ROBPs. These MAPs offer a multiplicative trade-off between the query and
proof complexities. Here and throughout this work, n ∈ N specifies the length
of the main input and ε ∈ (0, 1) denotes the proximity parameter.

Theorem 1. For every context-free language L and every k = k(n) such that
2 ≤ k ≤ n, there exists an MAP for L that uses a proof of length O(k ·log n) and
has query complexity O

(
n
k · ε−1)

. Furthermore, the MAP has one-sided error.

Theorem 2. If a language L is recognized by a size s = s(n) ROBP, then for
every k = k(n) such that 2 ≤ k ≤ n, there exists an MAP for L that uses a
proof of length O(k · log s) and has query complexity O

(
n
k · ε−1)

. Furthermore,
the MAP has one-sided error.

Hence, by setting k =
√

n, every context-free language and every language
accepted by an ROBP of size at most 2polylog(n), has an MAP in which both the
proof and query complexity are Õ (

√
n) (w.r.t. constant proximity parameter).

Next, we ask whether the query and proof complexity in Theorems 1 and 2
can be significantly reduced by allowing more extensive interaction between the
verifier and the prover (i.e., arbitrary interactive communication rather than just
a fixed non-interactive proof). Very relevant to this question is a recent result of
[RVW13] by which, loosely speaking, every language in N C (which contains all
context-free languages [Ruz81] and languages accepted by small ROBPs6) has an
IPP with Õ(

√
n) query and communication complexities. While the [RVW13]

result is more general, for context-free languages and ROBPs it achieves roughly
the same query and communication complexities as the MAPs in Theorems 1
and 2, but uses much more interaction (i.e., at least logarithmically many rounds
of interaction compared to just a single message in our MAPs).

4 To see that these two classes do not contain each other, observe that the language
{0i1j2i3j : i, j ≥ 1}, which is not a context-free language [HMU06, Example7.20],
has a poly(n)-width ROBP (which simply counts the number of repeated occurrences
of 0, 1, 2 and 3). On the other hand, Kriegal and Waack [KW88] showed that every
ROBP for the Dyck2 language, which is a context-free language, has size 2Ω(n).

5 As pointed out in [GR15], if we do not restrict the length of the proof, then every
property Π can be verified trivially using only a constant amount of queries, by
considering an MAP proof that contains a full description of the input.

6 See the full version [GGR15] for a discussion on why languages accepted by ROBPs
can be computed in small depth.

Proofs of Proximity for Context-Free Languages 669

Using cryptographic assumptions7, Kalai and Rothblum [KR14] recently
showed that there exists a language in N C1 for which every IPP requires that
either the query or communication complexity be Ω(

√
n). Hence, we cannot hope

to improve the [RVW13] result in general. Still, for the special case of context-free
languages and ROBPs, we show that we can actually extend the MAP protocols
in Theorems 1 and 2 into highly efficient IPPs with only poly-logarithmic com-
plexity (using a sub-logarithmic number of rounds). More generally, our IPPs
offer a trade-off between the number of rounds of interaction and the query and
communication complexities.

Theorem 3. For every context-free language L, every k = k(n) ≥ 2 and
r = r(n) ≥ 1 such that kr ≤ n, there exists an r-round IPP for L with com-
munication complexity O

(
(rk log n) · ε−1)

and query complexity O
(

n
kr · ε−1)

.
Furthermore, the IPP is public-coin and has one-sided error.

Theorem 4. If a language L is recognized by a size s = s(n) ROBP, then for
every k = k(n) ≥ 2 and r = r(n) ≥ 1 such that kr ≤ n, there exists an r-round
IPP for L with communication complexity O

(
(rk log s)·ε−1)

and query complexity
O

(
n
kr · ε−1)

. Furthermore, the IPP is public-coin and has one-sided error.

(Interestingly, and in contrast to Theorems 1 and 2, here the communication
complexity also depends on the proximity parameter ε.) In particular, by set-
ting k = log n and r = log n

log log n , we obtain IPPs for context-free languages
and size 2polylog(n) ROBPs, with a sub-logarithmic number of rounds, constant
query complexity, and poly-logarithmic communication complexity (w.r.t. con-
stant proximity parameter).

A Remark on Computational Complexity. Following the property testing litera-
ture, we view the query complexity and the proof complexity (resp., communi-
cation complexity) as the primary resources of an MAP (resp., IPP). Still, the
running time of the verifier and of the prover are also important resources. The
proofs/provers in our MAPs and IPPs are indeed efficient; that is, polynomial
in the main input x (and in the case of ROBPs also in the size of the ROBP).

As for our verifiers, those in Theorems 1 and 3 run in polynomial time (i.e.,
poly(|x|) time) rather than in sub-linear time as one might hope. However, by
increasing the round complexity in Theorem 3 by a poly-logarithmic factor, we
can obtain an IPP with sub-linear time verification. Constructing an MAP for
context-free languages with sub-linear time verification remains an interesting
open question. The verifiers in Theorems 2 and 4 run in sub-linear time if they

7 A sufficient assumption for [KR14] is the existence of (length-doubling) PRGs that
can be computed in N C1 and whose output cannot be distinguished from random
by circuits of size 2o(n).

670 O. Goldreich et al.

are given a suitable (natural) representation of the ROBP.8 See the full version
[GGR15] for further details.

Improved Results for Specific Languages. The paradigm used for the general
results in Theorems 1-4 can be extended to yield better results for specific lan-
guages. A notable class of languages for which we obtain such an improvement
is the class of languages of balanced parentheses expressions (a.k.a the Dyck
languages), which are context-free languages, for which Parnas et al. [PRR01]
showed a lower bound of Ω̃(n1/11) for ordinary testers. Using special properties
of the Dyck languages, we can improve on the general result in Theorem 1 in this
special case and obtain a somewhat more efficient MAP for the Dyck languages.
See details in the full version [GGR15].

A Remark on LOGCFL. The well studied complexity class LOGCFL con-
sists of all languages that are logspace reducible to a context-free language (see
[Coo71]).9 We stress that, while Theorems 1 and 3 hold for every context-free
language, they do not necessarily extend to all languages in LOGCFL, since the
reductions may not preserve the classes MAP and IPP. In fact, by the afore-
mentioned lower bound of Kalai and Rothblum [KR14], assuming sufficiently
strong cryptographic PRGs, there exists a language in N C1 ⊆ LOGCFL for
which every IPP must have complexity Ω(

√
n). Hence, an extension of Theo-

rem 3 to LOGCFL is not likely to hold.

1.2 Proof Overview

The proofs of Theorems 1 and 2 (i.e., the MAP results) will follow (roughly) as
special cases of the proofs of Theorems 3 and 4 (i.e., the IPP results), respec-
tively. Hence, in this overview we focus on the proofs of Theorems 3 and 4, while
explaining how to derive Theorems 1 and 2 as special cases.

The proofs of Theorems 3 and 4 share a common theme: For L that is either
a context-free language or is accepted by a ROBP, we show that every input
x ∈ L can be broken-down into k sub-problems (related to L) such that the
following holds:

1. On the one hand, if x ∈ L, then there exists (1) a partition of [n] into sets
S1, . . . , Sk (each of size roughly n/k); and (2) languages L1, . . . , Lk such that
both (1) and (2) have a concise representation, and, for every i ∈ [k], the
projection of x on Si, denoted x[Si], is in the language Li. Furthermore, if L
is a context-free language (resp., accepted by an ROBP), then the languages

8 Indeed, the running time of the verifier crucially relies on the specific representation
of the ROBP. We remark that there are other natural representations of ROBPs than
the one we use, and for some of these representations obtaining sub-linear running
time may not be feasible.

9 Note that LOGCFL contains languages that are not context-free (e.g., the language
{anbncn : n ∈ N} is not context-free [HMU06, Example7.19] but is computable in
logspace (and hence also in LOGCFL)).

Proofs of Proximity for Context-Free Languages 671

L1, . . . , Lk are all “variants” of context-free languages10 (resp., accepted by
ROBPs).

2. On the other hand, if x is “far” from L, then for every concise representation
of a partition S1, . . . , Sk of [n] and languages L1, . . . , Lk (of the type used in
1), for an average i ∈ [k], it holds that x[Si] is proportionally “far” from Li.

By design, the partition S1, . . . , Sk as well as the corresponding languages
L1, . . . , Lk depend on the entire input x, and so the verifier (who only has query
access to x) cannot generate them by itself. Instead, the concise representation
of S1, . . . , Sk and L1, . . . , Lk will be specified by the prover (as a single message
in the case of an IPP, or as the entire proof string in the case of an MAP).

Given the latter, we construct an MAP as follows. The MAP verifier selects
at random a small subset I ⊆ [k] and, for every i ∈ I, reads all of x[Si] (which is
of length roughly n/k) and checks that x[Si] ∈ Li. Indeed, by the two foregoing
conditions, if x ∈ L, then x[Si] ∈ Li for every i ∈ [k], whereas if x is “far”
from L, then, by an averaging argument, for many i ∈ [k], it holds that x[Si] is
proportionally “far” from Li (and in particular x[Si] �∈ Li), and the verifier will
reject.

A natural approach for extending the foregoing MAP to an IPP is to have
the verifier send the set I (where I is chosen at random as in the MAP) to the
prover, and then recursively run |I| IPP protocols to check that x[Si] is close to
Li, for every i ∈ I. In each recursive call the input shrinks by (roughly) a factor
of k. After the recursion reaches depth r, where r is a predetermined bound on
the number of rounds, the verifier can simply read its entire current input (of
length O(n/kr)) and decide whether to accept or reject.

The foregoing approach indeed works, but because there is more than one
recursive call in each round, the complexity of the resulting IPP depends expo-
nentially on the number of rounds r. Instead, we use a more economical app-
roach, which avoids the exponential dependence on r, based on the notion of a
proximity oblivious tester [GR11]. Recall that a proximity oblivious tester for a
property Π is a tester that does not receive the proximity parameter ε as input
and is only required to reject inputs that are ε-far from Π with probability
proportional to ε (rather than probability 2/3). To present a more economical
recursion, the IPP that we design is similarly “proximity oblivious”. The idea
is to have the verifier select at random only a single index i ∈ [k], send i to
the prover, and then have the two parties recursively run an IPP protocol for
verifying that x[Si] is close to Li. Indeed, if x ∈ L then x[Si] ∈ Li, whereas
if x is ε-far from L, then, since i was chosen at random, on the average x[Si]
is ε-far from Li, and therefore, by inductive reasoning, the verifier will reject
with probability ε. To obtain constant soundness we can just repeat11 the entire
proximity oblivious protocol O(1/ε) times in parallel.
10 If L is a context-free language, then the languages L1, . . . , Lk will be variants of context-

free languages, which we call “partial derivation languages”. However, if L is accepted
by an ROBP, then the languages L1, . . . , Lk are also accepted by (different) ROBPs.

11 As expected, parallel repetition reduces the soundness error of IPPs at an expo-
nential rate. See the full version [GGR15] for details.

672 O. Goldreich et al.

This concludes the high-level description of our MAPs and IPPs. Of course,
the way in which the partition is generated is quite different in the case of
context-free languages and in the case of ROBP, and different technical prob-
lems arise in each case. In the following subsections we discuss the specific
details. In Section 1.2 we give an overview of how to partition read-once branch-
ing programs. Partitioning context-free languages is more involved, and so, in
Section 1.2, as a warm-up, we first consider partitioning into two parts (i.e.,
k = 2). Then, in Section 1.2 we show how to extend the technique to multiple
parts (i.e., general k ≥ 2).

Partitioning ROBPs. Recall that a branching program on n variables is a
directed acyclic graph with a unique source vertex with in-degree 0 and (possibly)
multiple sink vertices with out-degree 0. Each sink vertex is labeled with either 0
(i.e., reject) or 1 (i.e., accept). Each non-sink vertex is labeled by an index i ∈ [n]
and has exactly 2 outgoing edges, which are labeled by 0 and 1. The output of
the branching program B on input x ∈ {0, 1}n, denoted B(x), is computed in a
natural way by starting at the source vertex and taking a walk such that at a
vertex labeled by i ∈ [n], we traverse the outgoing edge labeled by xi. Once a
sink is reached, we output its label. The branching program is read-once (ROBP
for short) if along every path from source to sink, every index (i ∈ [n]) appears
at most once. The size of a branching program B, denoted |B|, is the number
of vertices in it.

For any fixed ROBP B, we construct an IPP (and an MAP, which is a
special case of the IPP) for the language accepted by B, denoted LB

def= {x ∈
{0, 1}n : B(x) = 1}. In this overview, we make a simplifying assumption that
B is both layered and ordered (a.k.a., an ordered binary decision diagram or
OBDD). That is, we assume that the vertices of B are partitioned into n + 1
layers such that, for every i ∈ [n], edges only go from layer i to layer i + 1; and
vertices in layer i are labeled by the index i (i.e., the ROBP reads its input “in
order”).

The key idea, which enables the IPP verifier to generate the aforementioned
partition S1, . . . , Sk (together with the corresponding languages), is to have the
prover specify k evenly-spaced vertices along the accepting path corresponding
to the input x ∈ LB . More specifically, observe that x induces a path ϕ0
ϕ1 · · · ϕn from the start vertex ϕ0 to some accepting sink ϕn. The prover
sends to the verifier a subsequence of this walk, specifically the subsequence
ϕn/k, . . . , ϕi·n/k, . . . , ϕn.

Given the subsequence, we can reduce the problem of verifying that there
exists a path of length n from ϕ0 to ϕn to verifying that there exists a
path of length n/k between each pair of consecutive vertices in the sequence
ϕ0, ϕn/k, . . . , ϕi·n/k, . . . , ϕn. In other words, for every i ∈ [k] we consider the
ROBP Bi that consists only of layers (i − 1) · n/k up to i · n/k of B, with
the starting state ϕ(i−1)·n/k and the (only) accepting state ϕi·n/k. Verify-
ing that x ∈ LB can be reduced to verifying that x[Si] ∈ LBi

, for every
i ∈ [k], where Si ⊆ [n] is the set of coordinates of x that are read by Bi and

Proofs of Proximity for Context-Free Languages 673

LBi

def= {z ∈ {0, 1}n/k : Bi(z) = 1}. Moreover, since S1, . . . , Sk is a partition
of [n], if x is ε-far from LB , then x[Si] is ε-far from LBi

, for an average i ∈ [k].
Hence, we can follow the high-level outline that was suggested in Section 1.2;
that is, the IPP verifier selects i ∈ [k] at random, sends i to the prover, and
then the two parties recursively run an IPP protocol to verify that x[Si] is close
to the LBi

.
The foregoing intuition almost works but there is a subtle problem: What

if the message sent by a cheating prover is such that LBi
∗ is empty, for some

i∗ ∈ [k]. This corresponds to a situation in which the branching program B
contains no path from ϕ(i∗−1)·n/k to ϕi∗·n/k. In such case, with high probability
(i.e., if the verifier chooses i such that i �= i∗) the verifier, as described so far,
will not notice this fact and may accept inputs that are far from LB .

We overcome this difficulty by observing that when the verifier interacts
with the honest prover, it holds that x[Si] ∈ LBi

for every i ∈ [k], and therefore
LBi

�= ∅. Hence, we can have the verifier explicitly check that LBi
�= ∅ for every

i ∈ [k] (i.e., that there exists some input that leads from ϕ(i−1)·n/k to ϕi·n/k

in B). This check requires direct and full access to the branching program B
(which is fixed) but does not require any queries to the input x, and so we can
perform it for every12 i ∈ [k].

Given this additional check, we can show that the foregoing IPP works. To
do so, we argue by induction on the number of rounds that if the input x is ε-far
from L then the verifier rejects with probability at least ε. Indeed, if x is ε-far
from LB , then in the first round we have that:

Pr
[
Verifier for LB rejects x

]
= E

i

[
Pr

[
Verifier for LBi

rejects x[Si]
]]

≥ E
i

[
εi

]
≥ ε,

where εi denotes the relative distance of x[Si] from LBi
, for every i ∈ [k], and

the first inequality follows from the induction hypothesis.
We remark that when dealing with general ROBPs, rather than OBDDs,

there are several additional technical difficulties. In particular, since B is not
layered, we have to modify our definition of Bi (which previously consisted of
layers (i−1) ·n/k to i ·n/k of B). A natural approach is to define Bi to consist of
all paths (in B) of length n/k starting at ϕ(i−1)·n/k.13 The difficulty is that Bi

may depend on many, possibly even all, of the bits of x (since different paths may
look at different bits), rather than just n/k bits (as was the case for OBDDs).
Hence, the input does not necessarily shrink in the recursive step. Nevertheless,

12 However, this check does increase the running time of the verifier (which we view as
a secondary resource) to poly(|B|). This computation can be minimized by using a
pre-processing step in which we compute a |B| × |B|-sized table whose (v, u)th entry
says whether the vertices v and u are connected in B.

13 The actual definition of Bi that we use is different; see the full version [GGR15] for
details.

674 O. Goldreich et al.

we resolve this issue by showing that the effective length of the input, which
is the number of bits that need to be read in order to determine whether the
ROBP accepts, does shrink, and this suffices to make progress in the recursion.
For further details, see the full version [GGR15].

Partitioning Context-Free Languages into Two Parts. Recall that a
context-free grammar is a tuple G = (V, Σ, R, Astart), where V = {A1, A2, . . . }
denotes a (finite) set of variables, Σ = {σ1, σ2, . . . } denotes a (finite) set of ter-
minal symbols (i.e., the alphabet), R is a set of production rules (e.g., rules of
the form A7 → σ5A3A9σ8A2) and Astart ∈ V denotes a special “start” variable.
We say that a string α ∈ (Σ ∪ V)∗ is derived from a variable Aj , denoted by
Aj

∗⇒ α, if α can be obtained from Aj by iteratively applying production rules in
R. Each such derivation can be described by a derivation tree, which is a rooted,
directed, ordered, and labeled tree (with edges oriented away from the root),
where the root is labeled by Aj , the leaves are labeled by the symbols of α (in
order), and the children of each vertex in the tree correspond to an application
of a production rule in G. The language L ⊆ Σ∗ generated by G consists of all
strings that can be derived from Astart using the production rules in R.

Let L be a context-free language and let G = (V, Σ, R, Astart) be the context-
free grammar that generates L. In this section we show how to partition x ∈ L
into two parts. Next, in Section 1.2, we show how to extend this technique to
multiple parts.

For x ∈ L (i.e., Astart
∗⇒ x), there exists a derivation tree T correspond-

ing to the derivation Astart
∗⇒ x. For simplicity, let us assume that T is a

binary tree. The root of T is labeled by Astart and the leaves are labeled, in
order, by x1, . . . , xn, where n

def= |x|. Recall that the Lewis-Stearns-Hartmanis
Lemma [LSH65] states that every binary tree on n leaves has a subtree14 with a
number of leaves between n/3 and 2n/3. Applying this lemma to T , we can find
such a subtree T ′ of T . Observe that T ′ induces a partition of [n] into two parts
S1, S2 ⊆ [n], where S1 (which is actually an interval) contains all the leaves of
T that belong to T ′ and S2

def= [n]\S1 contains all other leaves. The IPP prover
finds T ′ and sends S1 and A1 to the verifier, where A1 is the label of the root of
T ′. Since S1 is an interval, the latter requires only O(log n) communication.

Given (S1, A1), the verifier can construct the partition and the corresponding
languages, where the partition is simply (S1, S2) and the languages are

L1
def=

{
w ∈ Σ|S1| : A1

∗⇒ w
}

and

L2
def=

{
w ∈ Σ|S2| : A2

∗⇒ w[1, . . . , s − 1] ◦ A1 ◦ w[s, . . . , |S2|]
}

,

where A2
def= Astart and s ∈ [n] is the starting position of the interval S1 in [n].

14 Here and throughout this work, by a subtree, we mean a node of the tree together
with all of its descendants.

Proofs of Proximity for Context-Free Languages 675

Note that L2 is not quite a context-free language (although L1 is). Rather,
L2 consists of strings that correspond to partial derivations (i.e., derivation pro-
cesses that end before all symbols are terminals) starting from Astart that pro-
duce strings that have the variable A1 in their sth coordinate. We refer to such
languages, which we view as generalization of context-free languages, as partial
derivation languages, and for the recursion to go through, we actually design
the original protocol to handle not only context-free languages but also partial
derivation languages.

Observe that if x ∈ L, then clearly x[S1] ∈ L1 and x[S2] ∈ L2. On the other
hand, suppose that x[S1] is ε1-close to a string z1 ∈ L1 and x[S2] is ε2-close to
a string z2 ∈ L2. If we choose i ∈ {1, 2} at random, such that Pr[i = 1] = |S1|/n
and Pr[i = 2] = |S2|/n, then x is Ei[εi]-close to the string z = z2[1, . . . , s − 1] ◦
z1 ◦ z2[s, |S2|]. Since A1

∗⇒ z1 and Astart
∗⇒ z2[1, . . . , s − 1] ◦ A1 ◦ z2[s, . . . , |S2|]

(because z1 ∈ L1 and z2 ∈ L2), we deduce that Astart
∗⇒ z, and therefore z ∈ L.

Hence, x is Ei[εi]-close to L.
Given the above, we can design an IPP for L similarly to the IPP for ROBP

that was described in Section 1.2. Specifically, given (S1, A1), the verifier chooses
at random i ∈ {1, 2} according to the distribution above, sends i to the prover,
and both parties run the protocol recursively, with respect to the language Li

and the input x[Si].

Partitioning Context-Free Languages into Multiple Parts. The first step
in partitioning context-free languages into multiple parts is a generalization of the
Lewis-Stearns-Hartmanis lemma that shows that, for every desired parameter
t ∈ [n], every (constant degree) tree T with n leaves has a subtree with roughly
t leaves. The precise statement of the lemma and its proof are given in the full
version [GGR15].

Using the generalized Lewis-Stearns-Hartmanis lemma, we can partition an
input x ∈ L into k parts of (roughly) the same size in the following way. As
before, we construct a derivation tree T corresponding to the derivation Astart

∗⇒
x. However, this time we use the generalized Lewis-Stearns-Hartmanis lemma
to find a subtree T1 with roughly n/k leaves. The coordinates of the leaves of
T1 constitute the first part of the partition (denoted by S1). To find the second
subtree, we remove the entire subtree T1 from T , except for its root. We obtain a
new tree T ′ with (roughly) n − n

k leaves, where one of the leaves of T ′ is labeled
by a variable rather than a terminal. By applying the generalized Lewis-Stearns-
Hartmanis lemma again on the new tree T ′, we can find a subtree T2 of T ′ with
roughly n/k leaves. The second part (denoted by S2) of our partition will consist
of the coordinates of all the leaves of T2 that are labeled by terminals (i.e., are
also leaves of the original tree T). We stress that S2 may not be an interval (but
rather two intervals separated by S1).

We proceed similarly, where in each iteration we remove the subtree that was
found in the previous iteration (except for its root) and find a new subtree Ti of
T with roughly n/k leaves. The subtrees T1, T2, . . . , Tk induce a partition of [n]
where the ith part, denoted Si (of size roughly n/k), consists of all leaves of Ti

676 O. Goldreich et al.

that are labeled by terminals (i.e., are leaves of the original tree T) but do not
belong to S1 ∪ · · · ∪ Si−1.

While the representation of a general partition of [n] into k parts requires
n · log2(k) bits, we show that the partition S1, . . . , S� actually has a concise
representation. Indeed, each subtree Ti induces an interval Ii ⊆ [n], which con-
tains all of its leaves (but potentially also coordinates of other parts in the
partition). Given I1, . . . , I�, the partition S1, . . . , S� is uniquely determined (by
setting Si = Ii\(I1 ∪ · · · ∪ Ii−1)). We remark that each pair of intervals can be
either disjoint or nested (i.e., either Ii ∩ Ij = ∅ or Ii � Ij).

In light of the foregoing discussion, the prover can send to the verifier the
intervals I1, . . . , Ik and the variables A1, . . . , A� of the roots of the subtrees
T1, . . . , Tk (respectively). Note that the root of the last subtree Tk is in fact
the root of the original derivation tree T (and thus Ak = Astart) and that its
corresponding interval Ik is [n].

Let Ii1 , . . . , Iik be the ordered (from left to right) maximal intervals of Ik =
[n]. That is, the (disjoint) intervals that are contained in Ik but are not contained
in any of the other intervals. Observe that if the intervals were generated as
prescribed, then Astart yields a string x′ (composed of terminals and variables)
that results from x by replacing the substring x[Iij] with the variable Aij , for
every j ∈ [k]. Denote the language that contains all such strings by Lk. Similarly,
for any interval Iij ∈ {Ii1 , . . . , Iik}, observe that Aij yields the string that results
from x[Iij] by replacing coordinates in the maximal intervals that Iij contains
with the corresponding variables. Denote the language of all such strings by Lij .
We show that by applying this idea iteratively we obtain languages L1, . . . , Lk

such that (1) if x ∈ L, then x[Si] ∈ Li for every i ∈ [k]; and (2) if x is ε-far
from L, then x[Si] is ε-far from Li, for an average i ∈ [k], where the average is
weighted proportionally to the sizes of S1, . . . , Sk.

Given the partition above, verifying that x ∈ L is reduced to testing that
the sub-input x[Si] is close to Li, for i ∈ [k] distributed as above. Hence, as
before, the verifier chooses i at random, sends i to the prover and the two parties
recursively run an IPP for verifying that x[Si] is ε-close to Li.

We emphasize that, as was the case for k = 2, the languages L1, . . . , Lk

are not necessarily context-free languages but are rather “partial derivation lan-
guages”. Indeed, for the recursion to go through, we design the IPP to work for
such languages (rather than just context-free languages).

Acknowledgments. We thank Moni Naor and Avi Wigderson for pointing out the
connection to LOGCFL.

References

[AKNS00] Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages
are testable with a constant number of queries. SIAM J. Comput. 30(6),
1842–1862 (2000)

Proofs of Proximity for Context-Free Languages 677

[Bol05] Bollig, B.: Property testing and the branching program size of boolean
functions. In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol.
3623, pp. 258–269. Springer, Heidelberg (2005)

[BSGH+06] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.:
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM
J. Comput. 36(4), 889–974 (2006)

[Coo71] Cook, S.A.: The complexity of theorem-proving procedures. In: Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing,
pp. 151–158. ACM (1971)

[DR06] Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof
of the PCP theorem. SIAM J. Comput. 36(4), 975–1024 (2006)

[EKR04] Ergün, F., Kumar, R., Rubinfeld, R.: Fast approximate probabilistically
checkable proofs. Inf. Comput. 189(2), 135–159 (2004)

[FGL14] Fischer, E., Goldhirsh, Y., Lachish, O.: Partial tests, universal tests and
decomposability. In: Innovations in Theoretical Computer Science, ITCS
2014, Princeton, NJ, USA, January 12–14, pp. 483–500 (2014)

[GGR98] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connec-
tion to learning and approximation. Journal of the ACM (JACM) 45(4),
653–750 (1998)

[GGR15] Goldreich, O., Gur, T., Rothblum, R.D.: Proofs of proximity for context-
free languages and read-once branching programs. Electronic Colloquium
on Computational Complexity (ECCC) 22, 24 (2015)

[GR11] Goldreich, O., Ron, D.: On proximity-oblivious testing. SIAM Journal on
Computing 40(2), 534–566 (2011)

[GR15] Gur, T., Rothblum, R.D.: Non-interactive proofs of proximity. In: Pro-
ceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ITCS 2015, Rehovot, Israel, January 11-13, pp. 133–142. ACM
(2015)

[HMU06] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata
Theory, Languages, and Computation, 3rd edn. Addison-Wesley Longman
Publishing Co. Inc., Boston (2006)

[KR14] Tauman Kalai, Y., Rothblum, R.D.: Arguments of proximity (2014)
(manuscript)

[KW88] Kriegel, K., Waack, S.: Lower bounds on the complexity of real-time
branching programs. ITA 22(4), 447–459 (1988)

[LSH65] Lewis, P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition
of context-free and context-sensitive languages. In: SWCT (FOCS), pp.
191–202 (1965)

[New02] Newman, I.: Testing membership in languages that have small width
branching programs. SIAM Journal on Computing 31(5), 1557–1570 (2002)

[PRR01] Parnas, M., Ron, D., Rubinfeld, R.: Testing parenthesis languages. In:
Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM-
APPROX 2001. LNCS, vol. 2129, pp. 261–272. Springer, Heidelberg (2001)

[RS96] Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

[Ruz81] Ruzzo, W.L.: On uniform circuit complexity. J. Comput. Syst. Sci. 22(3),
365–383 (1981)

[RVW13] Rothblum, G.N., Vadhan, S., Wigderson, A.: Interactive proofs of proxim-
ity: Delegating computation in sublinear time. In: Proceedings of the 45th
Annual ACM Symposium on Theory of Computing (STOC) (2013)

Fast Algorithms for Diameter-Optimally
Augmenting Paths

Ulrike Große1, Joachim Gudmundsson2, Christian Knauer1,
Michiel Smid3, and Fabian Stehn1(B)

1 Institut für Angewandte Informatik, Universität Bayreuth, Bayreuth, Germany
fabian.stehn@uni-bayreuth.de

2 School of Information Technology, University of Sydney, Sydney, Australia
3 School of Computer Science, Carleton University, Ottawa, Canada

Abstract. We consider the problem of augmenting a graph with n ver-
tices embedded in a metric space, by inserting one additional edge in
order to minimize the diameter of the resulting graph. We present an
exact algorithm for the cases when the input graph is a path that runs
in O(n log3 n) time. We also present an algorithm that computes a (1+ε)-
approximation in O(n+1/ε3) time for paths in R

d, where d is a constant.

1 Introduction

Let G = (V,E) be a graph in which each edge has a positive weight. The weight
(or length) of a path is the sum of the weights of the edges on this path. For any
two vertices x and y in V , we denote by δG(x, y) their shortest-path distance,
i.e., the minimum weight of any path in G between x and y. The diameter of G
is defined as max{δG(x, y) : x, y ∈ V }.

Assume that we are also given weights for the non-edges of the graph G. In
the Diameter-Optimal k-Augmentation Problem, doap(k), we have to compute
a set F of k edges in (V ×V) \E for which the diameter of the graph (V,E ∪F)
is minimum.

In this paper, we assume that the given graph is a path embedded in a metric
space, and the weight of any edge and non-edge is equal to the distance between
its vertices. We consider the case when k = 1; thus, we want to compute one
non-edge which, when added to the graph, results in an augmented graph of
minimum diameter. Surprisingly, no non-trivial results were known even for this
restricted case.

Throughout the rest of the paper, we assume that (V, | · |) is a metric space,
consisting of a set V of n elements (called points). The distance between any
two points x and y is denoted by |xy|. We assume that an oracle is available that
returns the distance between any pair of points in O(1) time. Our contribution
is as follows:

The research on this topic has been initiated during the Korean Workshop on Com-
putational Geometry 2014 (KW2014).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 678–688, 2015.
DOI: 10.1007/978-3-662-47672-7 55

Fast Algorithms for Diameter-Optimally Augmenting Paths 679

1. If G is a path, we solve problem doap(1) in O(n log3 n) time.
2. If G is a path and the metric space is Rd, where d is a constant, we compute

a (1 + ε)-approximation for doap(1) in O(n + 1/ε3) time.

1.1 Related Work

The Diameter-Optimal k-Augmentation Problem for edge-weighted graphs, and
many of its variants, have been shown to be NP-hard [16], or even W [2]-hard [9,
10]. Because of this, several special classes of graphs have been considered. Chung
and Gary [5] and Alon et al. [1] considered paths and cycles with unit edge
weights and gave upper and lower bounds on the diameter that can be achieved.
Ishii [11] gave a constant factor approximation algorithm (approximating both
k and the diameter) for the case when the input graph is outerplanar. Erdős et
al. [7] investigated upper and lower bounds for the case when the augmented
graph must be triangle-free.

The general problem: The Diameter-Optimal Augmentation Problem can be
seen as a bicriteria optimization problem: In addition to the weight, each edge
and non-edge has a cost associated with it. Then the two optimization criteria
are (1) the total cost of the edges added to the graph and (2) the diameter
of the augmented graph. We say that an algorithm is an (α, β)-approximation
algorithm for the doap problem, with α, β ≥ 1, if it computes a set F of non-
edges of total cost at most α · B such that the diameter of G′ = (V,E ∪ F) is at
most β · DB

opt, where DB
opt is the diameter of an optimal solution that augments

the graph with edges of total cost at most B.
For the restricted version when all costs and all weights are identical [2,

4,6,12,13], Bilò et al. [2] showed that, unless P=NP, there does not exist a
(c log n, δ < 1 + 1/DB

opt)-approximation algorithm for doap if DB
opt ≥ 2. For the

case in which DB
opt ≥ 6, they proved that, again unless P=NP, there does not

exist a (c log n, δ < 5
3 − 7−(DB

opt+1) mod 3

3DB
opt

)-approximation algorithm.

Li et al. [13] showed a (1, 4+2/DB
opt)-approximation algorithm. The analysis

of the algorithm was later improved by Bilò et al. [2], who showed that it gives a
(1, 2+2/DB

opt)-approximation. In the same paper they also gave an (O(log n), 1)-
approximation algorithm.

For general costs and weights, Dodis and Khanna [6] gave an O(n log DB
opt, 1)-

approximation algorithm. Their result is based on a multi-commodity flow
formulation of the problem. Frati et al. [9] recently considered the doap prob-
lem with arbitrary integer costs and weights. Their main result is a (1, 4)-
approximation algorithm with running time O((3BB3 + n + log(Bn))Bn2).

Geometric graphs: In the geometric setting, when the input is a geometric graph
embedded in the Euclidean plane, there are very few results on graph augmenta-
tion in general. Rutter and Wolff [15] proved that the k-connectivity and k-edge-
connectivity augmentation problems are NP-hard on plane geometric graphs, for
k = 2, 3, 4, and 5; the problem is infeasible for k ≥ 6 because every planar graph

680 U. Große et al.

has a vertex of degree at most 5. Currently, there are no known approximation
algorithms for this problem. Farshi et al. [8] gave approximation algorithms for
the problem of adding one edge to a geometric graph while minimizing the dila-
tion. There were several follow-up papers [14,17], but there is still no non-trivial
result known for the case when k > 1.

2 Augmenting a Path with One Edge

We are given a path P = (p1, . . . , pn) on n vertices in a metric space and assume
that it is stored in an array P [1, . . . , n]. To simplify notation, we associate a
vertex with its index, that is pk = P [k] is also referred to as k for 1 ≤ k ≤ n.
This allows us to extend the total order of the indices to the vertex set of P . We
denote the start vertex of P by s and the end vertex of P by e.

For 1 ≤ k < l ≤ n, we denote the subpath (pk, . . . , pl) of P by P [k, l], the
cycle we get by adding the edge pkpl to P [k, l] by C[k, l], and the (unicyclic)
graph we get by adding the edge pkpl as a shortcut to P by P [k, l]; the length
of X ∈ {P, P [k, l], C[k, l]} is denoted by |X|. We will consider the functions
pk,l := δP [k,l] and ck,l := δC[k,l], where δG is the length of the shortest path
between two vertices in G. For 1 ≤ k < l ≤ n, we let

M(k, l) := max
1≤x<y≤n

pk,l(x, y)

denote the diameter of the graph P [k, l].
Our goal is to compute a shortcut pkpl for P that minimizes the diameter of

the resulting unicyclic graph, i.e., we want to compute

m(P) := min
1≤k<l≤n

M(k, l).

We will prove the following result:

Theorem 1. Given a path P on n vertices in a metric space, we can compute
m(P), and a shortcut realizing that diameter, in O(n log3 n) time.

The algorithm consists of two parts. We first describe a sequential algorithm
for the decision problem. Given P and a threshold parameter λ > 0, decide if
m(P) ≤ λ (see Lemma 1 a) below). In a second step, we argue that the sequential
algorithm can be implemented in a parallel fashion (see Lemma 1 b) below), thus
enabling us to use the parametric search paradigm of Megiddo.

Lemma 1. Given a path P on n vertices in a metric space and a real parameter
λ > 0, we can decide in

a) O(n log n) time, or in
b) O(log n) parallel time using n processors

whether m(P) ≤ λ; the algorithms also produce a feasible shortcut if it exists.

Fast Algorithms for Diameter-Optimally Augmenting Paths 681

s

e

k

l

s′

e′

U(k, l) C(k, l)

S(k, l)

E(k, l)

(a)

s

e

k

l

x

x+
x

x − 1

λ
M

K

L

(b)

Fig. 1. (a) Illustration of the four distances that define the diameter of a shortcut pkpl:
U(k, l) is the length of the shortest path connecting s and e; O(k, l) is the length of the
longest shortest path between any two points in C[k, l]; S(k, l) (E(k, l)) is the length
of the longest shortest path from s (e) to any vertex in C(k, l). (b) Illustration of the
computation of O(k, l).

To prove this lemma, observe that

m(P) ≤ λ iff
∨

1≤k<l≤n

M(k, l) ≤ λ.

The algorithm checks, for each 1 ≤ k < n, whether there is some k < l ≤ n
such that M(k, l) ≤ λ. If one such index k is found, we know that m(P) ≤ λ;
otherwise m(P) > λ. Clearly this approach also produces a feasible shortcut if
it exists.

We decompose the function M(k, l) into four monotone parts. This will facil-
itate our search for a feasible shortcut and enable us to do (essentially) binary
search: For 1 ≤ k < l ≤ n, we let

S(k, l) := max
k≤x≤l

pk,l(s, x), E(k, l) := max
k≤x≤l

pk,l(x, e),

U(k, l) := pk,l(s, e), O(k, l) := max
k≤x<y≤l

ck,l(x, y).

Then we have M(k, l) = max{S(k, l), E(k, l), U(k, l), O(k, l)}. The triangle
inequality implies that

S(k, l) ≤ S(k, l + 1), E(k, l) ≥ E(k, l + 1),
U(k, l) ≥ U(k, l + 1), O(k, l) ≤ O(k, l + 1).

The function U is easy to evaluate once we have the array D[1, . . . , n] of the
prefix-sums of the edge lengths: D[i] :=

∑
1≤j<i |pjpj+1|. These sums can be

computed in O(n) time sequentially or in O(log n) time using n processors. If in
addition to D, the vertices s′ = max{v | δP (s, v) ≤ λ} and e′ = min{v | δP (v, e) ≤
λ} are computed for a fixed λ in O(log n) time (via binary search on D), the
following decision problems can be answered in constant time:

S(k, l) ≤ λ, E(k, l) ≤ λ, U(k, l) ≤ λ.

682 U. Große et al.

We denote the maximum of these three functions by

N(k, l) = max(S(k, l), E(k, l), U(k, l)).

Now clearly
M(k, l) = max(N(k, l), O(k, l))

and, consequently

M(k, l) ≤ λ iff N(k, l) ≤ λ and O(k, l) ≤ λ.

For fixed 1 ≤ k < n, the algorithm will first check whether there is some k < l ≤
n with N(k, l) ≤ λ. If no such l exists, we can conclude that M(k, l) > λ for all
k < l ≤ n. The monotonicity of S, E, and U implies that, for fixed 1 ≤ k < n,
the set

Nk := {k < l ≤ n | N(k, l) ≤ λ}
is an interval. This interval can be computed (using binary search in P and in
D as described above) in O(log n) time. If Nk = ∅ we can conclude that for the
1 ≤ k < n under consideration and for all k < l ≤ n, we have that M(k, l) > λ.

If Nk is non-empty, the monotonicity of O implies that it is sufficient to check
for lk = min Nk (i.e. the starting point of the interval) whether O(k, lk) ≤ λ:

∃k < l ≤ n : O(k, l) ≤ λ iff O(k, lk) ≤ λ.

Note that in this case we know that N(k, lk) ≤ λ.

Deciding the diameter of small cycles: We now describe how to decide for a
given shortcut 1 ≤ k < l ≤ n if O(k, l) ≤ λ, given that we already know that
N(k, l) ≤ λ. To this end, consider the following sets of vertices from C[k, l]:
K := {k ≤ x ≤ l | δP (k, x) ≤ λ}, L := {k ≤ x ≤ l | δP (x, l) ≤ λ}, M := K ∩ L,
K ′ := K \ L, L′ := L \ K.

These sets are intervals and can be computed in O(log n) time by binary
search. Since N(k, l) ≤ λ, we can conclude the following:

– the set of vertices of C[k, l] is K ∪ L
– ck,l(x, y) ≤ λ for all x, y ∈ K
– ck,l(x, y) ≤ λ for all x, y ∈ L
– ck,l(x, y) ≤ λ for all x ∈ M , y ∈ C[k, l]

Consequently, if ck,l(x, y) > λ for x, y ∈ C[k, l], we can conclude that x ∈ K ′ and
y ∈ L′. In order to establish that O(k, l) ≤ λ, it therefore suffices to verify that

∧

x∈K′,y∈L′
ck,l(x, y) ≤ λ.

Note that on P any vertex x of K ′ is at least λ away from the vertex l, i.e.,
δP (x, l) > λ. Let x+ be point on (a vertex or an edge of) P that is closer (along
P) by a distance of λ to l than to x, i.e., x+ is the unique point on P such that

δP (x+, l) < δP (x, l) and δP (x, x+) = λ.

Fast Algorithms for Diameter-Optimally Augmenting Paths 683

The next (in the direction of l) vertex of P will be denoted by x′, i.e., x < x′ ≤ l
is the unique vertex of P such that

δP (x, x′ − 1) ≤ λ and δP (x, x′) > λ.

Since x is a vertex of K ′, x′ is a vertex of L′. For the following discussion we
denote the distance achieved in C[k, l] by using the shortcut by c+k,l and the
distance achieved by travelling along P only by c−

k,l, i.e.,

c−
k,l(x, y) := δP (x, y) and c+k,l(x, y) := δP (x, k) + |pkpl| + δP (l, y).

Clearly

ck,l(x, y) = min(c+k,l(x, y), c−
k,l(x, y)), and |C[k, l]| = c+k,l(x, y) + c−

k,l(x, y).

For every vertex y < x′ on L′ we have that ck,l(x, y) ≤ c−
k,l(x, y) ≤ λ, so if there

is some vertex x′ 	= y ∈ L′ such that ck,l(x, y) > λ, we know that x′ < y ≤ l; in
that case we have that c+k,l(x, y) ≤ c+k,l(x, x′). Since we assume that ck,l(x, y) > λ,
we also know that c+k,l(x, y) > λ and we can conclude that c+k,l(x, x′) > λ, and
consequently that ck,l(x, x′) > λ, i.e., for all x ∈ K ′ we have that

∧

y∈L′
ck,l(x, y) ≤ λ iff ck,l(x, x′) ≤ λ.

The distance between (the point) x+ and (the vertex) x′ on P is called the
defect of x and is denoted by Δ(x), i.e., Δ(x) = δP (x+, x′).

Lemma 2.
ck,l(x, x′) ≤ λ iff |C[k, l]| ≤ Δ(x) + 2λ

Proof. Observe that

|C[k, l]| = δP (x, k) + |pkpl| + δP (l, x′) + δP (x′, x+) + δP (x+, x)
= δP (x, k) + |pkpl| + δP (l, x′) + Δ(x) + λ

= c+k,l(x, x′) + Δ(x) + λ.

Since c−
k,l(x, x′) > λ, we have that ck,l(x, x′) ≤ λ iff c+k,l(x, x′) ≤ λ; the claim

follows.
�
To summarize the above discussion we have the following chain of equiva-

lences (here Δk,l := |C[k, l]| − 2λ):

O(k, l) ≤ λ ⇔
∧

x∈K′
ck,l(x, x′) ≤ λ ⇔

∧

x∈K′
Δk,l ≤ Δ(x) ⇔ min

x∈K′
Δ(x) ≥ Δk,l.

Since K ′ is an interval, the last condition can be tested easily after some prepro-
cessing: To this end we compute a 1d-range tree on D and associate with each

684 U. Große et al.

vertex in the tree the minimum Δ-value of the corresponding canonical subset.
For every vertex x of P that is at least λ away from the end vertex of P we can
compute Δ(x) in O(log n) time by binary search in D. With these values the
range tree can be built in O(n) time. A query for an interval K ′ then gives us
μ := minx∈K′ Δ(x) in O(log n) time and we can check the above condition in
O(1) time.

We describe the algorithm in pseudocode; see Algorithm 1.

Algorithm 1. Algorithm for deciding if m(P) ≤ λ

DecisionAlgorithm(P, λ) ; // Decide if m(P) ≤ λ
begin1

global D ← ComputePrefixSums(P);
global s′ ← max{v | δP (s, v) ≤ λ};
global e′ ← min{v | δP (v, e) ≤ λ};
global T ← ComputeRangeTree(P, λ);
for 1 ≤ k < n do

Nk ← ComputeFeasibleIntervalForN(k, λ);
if Nk �= ∅ and CheckOForShortcut(k, min(Nk), λ) then

return True

return False
end

CheckOForShortcut(k, l, λ) ; // Decide if O(k, l) ≤ λ
begin2

K′ ← {k ≤ x ≤ l | δP (k, x) ≤ λ ∧ δP (x, l) > λ}; // Compute the interval

by binary search

μ ← minx∈K′ Δ(x) ; // Query the range tree T
return (μ ≥ |C[k, l]| − 2λ)

end

The correctness of the algorithm follows from the previous discussion. Com-
putePrefixSums runs in O(n) time, ComputeRangeTree runs in O(n log n)
time, ComputeFeasibleIntervalForN runs in O(log n) time, a call to
CheckOForShortcut requires O(log n) time. The total runtime is therefore
O(n log n). It is easy to see that with n processors, the steps ComputePrefix-
Sums and ComputeRangeTree can be realized in O(log n) parallel time and
that with this number of processors, all calls to CheckOForShortcut can be
handled in parallel. Therefore, the entire algorithm can be parallelized and has a
parallel runtime of O(log n), as stated in Lemma 1 b). This concludes the proof
of Lemma 1.

When we plug this result into the parametric search technique of Megiddo,
we get the algorithm for the optimization problem as claimed in Theorem 1.

From the above discussion, we note that, since there are only four possible
distances to compute to determine the diameter of a path augmented with one
shortcut edge, the following corollary follows immediately.

Fast Algorithms for Diameter-Optimally Augmenting Paths 685

Corollary 1. Given a path P on n vertices in a metric space and a shortcut
(u, v), the diameter of P ∪ (u, v) can be computed in O(n) time.

3 An Approximation Algorithm in Euclidean Space

In Section 2, we presented an O(n log3 n)-time algorithm for the problem when
the input graph is a path in a metric space. Here we show a simple (1 + ε)-
approximation algorithm with running time O(n + 1/ε3) for the case when the
input graph is a path in R

d, where d is a constant. The algorithm will use two
ideas: clustering and the well-separated pair decomposition (WSPD) as intro-
duced by Callahan and Kosaraju [3].

Definition 1 ([3]). Let s > 0 be a real number, and let A and B be two finite
sets of points in R

d. We say that A and B are well-separated with respect to s,
if there are two disjoint d-dimensional balls CA and CB, having the same radius,
such that (i) CA contains A, (i) CB contains B, and (ii) the minimum distance
between CA and CB is at least s times the radius of CA.

The parameter s will be referred to as the separation constant. The next
lemma follows easily from Definition 1.

Lemma 3 ([3]). Let A and B be two finite sets of points that are well-separated
w.r.t. s, let x and p be points of A, and let y and q be points of B. Then (i)
|xy| ≤ (1 + 4/s) · |pq|, and (ii) |px| ≤ (2/s) · |pq|.
Definition 2 ([3]). Let S be a set of n points in R

d, and let s > 0 be a real
number. A well-separated pair decomposition (WSPD) for S with respect to s
is a sequence of pairs of non-empty subsets of S, (A1, B1), . . . , (Am, Bm), such
that

1. Ai ∩ Bi = ∅, for all i = 1, . . . , m,
2. for any two distinct points p and q of S, there is exactly one pair (Ai, Bi) in

the sequence, such that (i) p ∈ Ai and q ∈ Bi, or (ii) q ∈ Ai and p ∈ Bi,
3. Ai and Bi are well-separated w.r.t. s, for 1 ≤ i ≤ m.

The integer m is called the size of the WSPD.

Callahan and Kosaraju showed that a WSPD of size m = O(sdn) can
be computed in O(sdn + n log n) time.

Algorithm. We are given a polygonal path P on n vertices in R
d. We assume

without loss of generality that the total length of P is 1. Partition P into m =
1/ε1 subpaths P1, . . . , Pm, each of length ε1, for some constant 0 < ε1 < 1 to
be defined later. Note that a subpath may have one (or both) endpoint in the
interior of an edge. For each subpath Pi, 1 ≤ i ≤ m, select an arbitrary vertex ri

along Pi as a representative vertex, if it exists. The set of representative vertices
is denoted RP ; note that the size of this set is at most m = 1/ε1. Let P (R)

686 U. Große et al.

be the path consisting of the vertices of RP , in the order in which they appear
along the path P . We give each edge (u, v) of P (R) a weight equal to δP (u, v).
the interior of an edge of P , then δP (u, v) is defined in the natural way.)

Imagine that we “straighten” the path P (R), so that it is contained on a line.
In this way, the vertices of this path form a point set in R

1; we compute a well-
separated pair decomposition W for the one-dimensional set RP , with separation
constant 1/ε2, with 0 < ε2 < 1/4 to be defined later. Then, we go through
all pairs {A,B} in W and compute the diameter of P (R) ∪ {(rep(A), rep(B)},
where rep(A) and rep(B) are representative points of A and B, respectively,
which are arbitrarily chosen from their sets. Note that the number of pairs in
W is O(1/ε1ε2). Finally the algorithm outputs the best shortcut.

Analysis. We first discuss the running time and then turn our attention to the
approximation factor of the algorithm.

The clustering takes O(n) time, and constructing the WSPD of RP takes
O(1

ε1ε2
+ 1

ε1
log 1

ε1
) time. For each of the O(1/ε1ε2) well-separated pairs in W,

computing the diameter takes, by Corollary 1, time linear in the size of the
uni-cyclic graph, that is, O(1

ε2
1ε2

) time in total.

Lemma 4. The running time of the algorithm is O(n + 1
ε2
1ε2

).

Before we consider the approximation bound, we need to define some nota-
tion. Consider any vertex p in P . Let r(p) denote the representative vertex of
the subpath of P containing p. For any two vertices p and q in P , let {A,B}
be the well-separated pair such that r(p) ∈ A and r(q) ∈ B. The representative
points of A and B will be denoted w(p) and w(q), respectively.

Lemma 5. For any shortcut e = (p, q) and for any two vertices x, y ∈ P , we
have

(1 − 4ε2) · δG(x, y) − 6ε1 ≤ δH(w(x), w(y)) ≤ (
1

1 − 4ε2
) · δG(x, y) + 6ε1,

where G = P ∪ (p, q) and H = P (R) ∪ (w(p), w(q)).

Proof. We only prove the second inequality, because the proof of the first inequal-
ity is almost identical.

Consider two arbitrary vertices x, y in P , and consider a shortest path in G
between x and y. We have two cases:
Case 1: If δG(x, y) = δP (x, y), then δH(r(x), r(y)) ≤ δP (x, y) + 2ε1.
Case 2: If δG(x, y) < δP (x, y), then the shortest path in G between x and
y must traverse (p, q). Assume that the path is x � p → q � t, thus
δG(x, y) = δP (x, p) + |pq| + δP (q, y). Consider the following three observations:

(1) |pq| ≥ |r(p)r(q)| − 2ε1 and |w(p)w(q)| ≤ (1 + 4ε2) · |r(p)r(q)|. Consequently,
|w(p)w(q)| ≤ (1 + 4ε2) · (|pq| + 2ε1).

Fast Algorithms for Diameter-Optimally Augmenting Paths 687

(2) We have

δP (x, p) ≥ δP (w(x), w(p)) − δP (w(x), x) − δP (w(p), p)
≥ δP (w(x), w(p)) − (ε1 + δP (w(x), r(x))) − (ε1 + δP (w(y), r(y)))
≥ δP (w(x), w(p)) − (ε1 + 2ε2δP (w(x), w(p))) − (ε1 + 2ε2δP (w(x), w(p)))
= (1 − 4ε2) · δP (w(x), w(p)) − 2ε1

≥ (1 − 4ε2) · δH(w(x), w(p)) − 2ε1

That is, δH(w(x), w(p)) ≤ 1
1−4ε2

· δP (x, p) + 2ε1.

(3) We have, δH(w(y), w(q)) ≤ 1
1−4ε2

· δP (y, q) + 2ε1, following the same argu-
ments as in (2).

Putting together the three observations we get:

δH(w(x), w(y)) ≤ δH(w(x), w(p)) + |w(p)w(q)| + δH(w(q), w(y))

≤ (
1

1 − 4ε2
) · δP (x, p) + 2ε1) + ((1 + 4ε2) · (|pq| + 2ε1))

+(
1

1 − 4ε2
) · δP (y, q) + 2ε1)

< (
1

1 − 4ε2
) · δG(x, y) + 6ε1,

where the last inequality follows from the fact that 0 < ε2 < 1/4. This concludes
the proof of the lemma.
�

By setting ε1 = ε/60 and ε2 = ε/32 and using the fact that the diameter of
H is at least 1/2, we obtain the following theorem that summarizes this section.

Theorem 2. Given a path P with n vertices in R
d and a real number ε > 0,

we can compute a shortcut to P in O(n + 1/ε3) time such that the resulting
uni-cyclic graph has diameter at most (1 + ε) · dopt, where dopt is the diameter
of an optimal solution.

References

1. Alon, N., Gyárfás, A., Ruszinkó, M.: Decreasing the diameter of bounded degree
graphs. Journal of Graph Theory 35, 161–172 (1999)

2. Bilò, D., Gualà, L., Proietti, G.: Improved approximability and non-approximability
results for graph diameter decreasing problems. Theoretical Computer Science 417,
12–22 (2012)

3. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of
the ACM 42, 67–90 (1995)

688 U. Große et al.

4. Chepoi, V., Vaxès, Y.: Augmenting trees to meet biconnectivity and diameter
constraints. Algorithmica 33(2), 243–262 (2002)

5. Chung, F.R.K., Garey, M.R.: Diameter bounds for altered graphs. Journal of Graph
Theory 8(4), 511–534 (1984)

6. Dodis, Y., Khanna, S.: Designing networks with bounded pairwise distance. In:
Proceedings of the 31st Annual ACM Symposium on Theory of Computing
(STOC), pp. 750–759 (1999)

7. Erdős, P., Gyárfás, A., Ruszinkó, M.: How to decrease the diameter of triangle-free
graphs. Combinatorica 18(4), 493–501 (1998)

8. Farshi, M., Giannopoulos, P., Gudmundsson, J.: Improving the stretch factor of
a geometric network by edge augmentation. SIAM Journal on Computing 38(1),
226–240 (2005)

9. Frati, F., Gaspers, S., Gudmundsson, J., Mathieson, L.: Augmenting graphs to
minimize the diameter. Algorithmica, 1–16 (2014)

10. Gao, Y., Hare, D.R., Nastos, J.: The parametric complexity of graph diameter
augmentation. Discrete Applied Mathematics 161(10–11), 1626–1631 (2013)

11. Ishii, T.: Augmenting outerplanar graphs to meet diameter requirements. Journal
of Graph Theory 74, 392–416 (2013)

12. Kapoor, S., Sarwat, M.: Bounded-diameter minimum-cost graph problems. Theory
of Computing Systems 41(4), 779–794 (2007)

13. Li, C.-L., McCormick, S.T., Simchi-Levi, D.: On the minimum-cardinality-
bounded-diameter and the bounded-cardinality-minimum-diameter edge addition
problems. Operations Research Letters 11(5), 303–308 (1992)

14. Luo, J., Wulff-Nilsen, C.: Computing best and worst shortcuts of graphs embedded
in metric spaces. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008.
LNCS, vol. 5369, pp. 764–775. Springer, Heidelberg (2008)

15. Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs.
Journal of Graph Algorithms and Applications 16(2), 599–628 (2012)

16. Schoone, A.A., Bodlaender, H.L., van Leeuwen, J.: Diameter increase caused by
edge deletion. Journal of Graph Theory 11, 409–427 (1997)

17. Wulff-Nilsen, C.: Computing the dilation of edge-augmented graphs in metric
spaces. Computational Geometry - Theory and Applications 43(2), 68–72 (2010)

Hollow Heaps

Thomas Dueholm Hansen1, Haim Kaplan2(B),
Robert E. Tarjan3,4, and Uri Zwick2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
tdh@cs.au.dk

2 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv-Yafo, Israel
zwick@tau.ac.il, haimk@post.tau.ac.il

3 Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
4 Intertrust Technologies, Sunnyvale, CA 94085, USA

ret@CS.Princeton.EDU

Abstract. We introduce the hollow heap, a very simple data structure
with the same amortized efficiency as the classical Fibonacci heap. All
heap operations except delete and delete-min take O(1) time, worst case
as well as amortized; delete and delete-min take O(log n) amortized time.
Hollow heaps are by far the simplest structure to achieve this. Hollow
heaps combine two novel ideas: the use of lazy deletion and re-insertion to
do decrease-key operations, and the use of a dag (directed acyclic graph)
instead of a tree or set of trees to represent a heap. Lazy deletion produces
hollow nodes (nodes without items), giving the data structure its name.

1 Introduction

A heap is a data structure consisting of a set of items, each with a key selected
from a totally ordered universe. Heaps support the following operations:

make-heap(): Return a new, empty heap.
find-min(h) : Return an item of minimum key in heap h, or null if h is empty.
insert(e, k, h): Return a heap formed from heap h by inserting item e, with key k.

Item e must be in no heap.
delete-min(h): Return a heap formed from non-empty heap h by deleting the

item returned by find-min(h).
meld(h1, h2): Return a heap containing all items in item-disjoint heaps h1 and h2.
decrease-key(e, k, h): Given that e is an item in heap h with key greater than k,

return a heap formed from h by changing the key of e to k.
delete(e, h) : Return a heap formed by deleting e, assumed to be in h, from h.

The original heap h passed to insert, delete-min, decrease-key, and delete,
and the heaps h1 and h2 passed to meld, are destroyed by the operations. Heaps
do not support search by key; operations decrease-key and delete are given the
location of item e in heap h. The parameter h can be omitted from decrease-key
and delete, but then to make decrease-key operations efficient if there are inter-
mixed meld operations, a separate disjoint set data structure is needed to keep
track of the partition of items into heaps. (See the discussion in [12].)
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 689–700, 2015.
DOI: 10.1007/978-3-662-47672-7 56

690 T.D. Hansen et al.

Fredman and Tarjan [8] invented the Fibonacci heap, an implementation of
heaps that supports delete-min and delete on an n-item heap in O(log n) amor-
tized time and each of the other operations in O(1) amortized time. Applica-
tions of Fibonacci heaps include a fast implementation of Dijkstra’s shortest
path algorithm [4,8] and fast algorithms for undirected and directed minimum
spanning trees [6,9]. Since the invention of Fibonacci heaps, a number of other
heap implementations with the same amortized time bounds have been pro-
posed [1–3,7,10,11,13,16,18]. Notably, Brodal [1] invented a very complicated
heap implementation that achieves the time bounds of Fibonacci heaps in the
worst case. Brodal et al. [2] later simplified this data structure, but it is still sig-
nificantly more complicated than any of the amortized-efficient structures. For
further discussion of these and related results, see [10]. We focus here on the
amortized efficiency of heaps.

In spite of its many competitors, Fibonacci heaps remain one of the simplest
heap implementations to describe and code, and are taught in numerous under-
graduate and graduate data structures courses. We present hollow heaps, a data
structure that we believe surpasses Fibonacci heaps in its simplicity. Our data
structure has two novelties: it uses lazy deletion to do decrease-key operations in
a simple and natural way, avoiding the cascading cut process used by Fibonacci
heaps, and it represents a heap by a dag (directed acyclic graph) instead of a
tree or a set of trees. The amortized analysis of hollow heaps is simple, yet non-
trivial. We believe that simplifying fundamental data structures, while retaining
their performance, is an important endeavor.

In a Fibonacci heap, a decrease-key produces a heap-order violation if the new
key is less than that of the parent node. This causes a cut of the violating node
and its subtree from its parent. Such cuts can eventually destroy the “balance”
of the data structure. To maintain balance, each such cut may trigger a cascade
of cuts at ancestors of the originally cut node. The cutting process results in
loss of information about the outcomes of previous comparisons. It also makes
the worst-case time of a decrease-key operation Θ(n) (although modifying the
data structure reduces this to Θ(log n); see e.g., [14]). In a hollow heap, the item
whose key decreases is merely moved to a new node, preserving the existing
structure. Doing such lazy deletions carefully is what makes hollow heaps simple
but efficient.

The remainder of this paper consists of six sections. Section 2 describes hollow
heaps at a high level. Section 3 analyzes them. Section 4 presents an alternative
version of hollow heaps that uses a tree representation instead of a dag represen-
tation. Section 5 describes a rebuilding process that can be used to improve the
time and space efficiency of hollow heaps. Section 6 gives implementation details
for the data structure in Section 2. The full version of this paper also contains
implementation details of the data structure in Section 4 and further explores
the design space of the data structures, identifying variants that are efficient and
variants that are not.

Hollow Heaps 691

2 Hollow Heaps

Our data structure extends and refines a well-known generic representation of
heaps. The structure is exogenous rather than endogenous [19]: nodes hold items
rather than being items. Moving items among nodes precludes the possibility of
making the data structure endogenous.

Many previous heap implementations, including Fibonacci heaps, represent
a heap by a set of heap-ordered trees: each node holds an item, with each child
holding an item having key no less than that of the item in its parent. We
extend this idea from trees to dags, and to dags whose nodes may or may not
hold items. Since the data structure is an extension of a tree, we extend standard
tree terminology to describe it. If (u, v) is a dag arc, we say u is a parent of v
and v is a child of u. A node that is not a child of any other node is a root.

We represent a non-empty heap by a dag whose nodes hold the heap items,
at most one per node. If e is an item, e.node is the node holding e. We call a
node full if it holds an item and hollow if not. If u is a full node, u.item is the
item u holds. Thus if e is an item, e.node.item = e. A node is full when created
but can later become hollow, by having its item moved to a newly created node
or deleted. A hollow node remains hollow until it is destroyed. Each node, full or
hollow, has a key. The key of a full node is the key of the item it holds. The key
of a hollow node is the key of the item it once held, just before that item was
moved to another node or deleted. A full node is a child of at most one other
node; a hollow node is a child of at most two other nodes.

The dag is topologically ordered by key: if u is a parent of v, then u.key ≤
v.key. Henceforth we call this heap order. Except in the middle of a delete oper-
ation, the dag has one full root and no hollow roots. Heap order guarantees that
the root holds an item of minimum key. We access the dag via its root. We call
the item in the root the root item.

We do the heap operations with the help of the link primitive. Given two
full roots v and w, link(v, w) compares the keys of v and w and makes the root
of larger key a child of the other; if the keys are equal, it makes v a child of
w. The new child is the loser of the link, its new parent is the winner. Linking
eliminates one full root, preserves heap order, and gives the loser a parent, its
first parent.

To make a heap, return an empty dag. To do find-min, return the item in the
root. To meld two heaps, if one is empty return the other; if both are non-empty,
link the roots of their dags and return the winner. To insert an item into a heap,
create a new node, store the item in it (making the node full), and meld the
resulting one-node heap with the existing heap.

We do decrease-key and delete operations using lazy deletion. To decrease the
key of item e in heap h to k, let u = e.node. If u = h (u is the root of the dag),
merely set u.key = k. Otherwise (u is a child), proceed as follows. Create a new
node v; move e from u to v, making u hollow; set v.key = k; do link(h, v); and,
if v is the loser of this link, make u a child of v. If u becomes a child of v, then v
is the second parent of u, in contrast to its first parent, previously acquired via a

692 T.D. Hansen et al.

link with a full node. A node only becomes hollow once, so it acquires a second
parent at most once.

Remark. The arc (v, u) added to the dag by decrease-key represents the inequal-
ity v.key < u.key. If such arcs are not added, the resulting algorithm does not
have the desired efficiency, as we show in the full version of this paper.

To do a delete-min, do a find-min followed by a deletion of the returned item.
To delete an item e, remove e from the node holding it, say u, making u hollow.
A node u made hollow in this way never acquires a second parent. If u is not the
root of the dag, the deletion is complete. Otherwise, repeatedly destroy hollow
roots and link full roots until there are no hollow roots and at most one full root.
The proof of the following theorem is immediate.

Theorem 1. The hollow heap operations perform the heap operations correctly
and maintain the invariants that the graph representing a heap is a heap-ordered
dag; each full node has at most one parent; each hollow node has at most two
parents; and, except in the middle of a delete operation, the dag representing a
heap has no hollow roots and at most one full root.

The only flexibility in this implementation is the choice of which links to do in
deletions of root items. To keep the number of links small, we give each node u a
non-negative integer rank u.rank. We use ranks in a special kind of link called a
ranked link. A ranked link of two roots is allowed only if they have the same rank;
it links them and increases the rank of the winner (the remaining root) by 1.
In contrast to a ranked link, an unranked link links any two roots and changes
no ranks. We call a child ranked or unranked if it most recently acquired a first
parent via a ranked or unranked link, respectively.

When linking two roots of equal rank, we can do either a ranked or an
unranked link. We do ranked links only when needed to guarantee efficiency.
Specifically, links in meld and decrease-key are unranked. Each delete-min oper-
ation destroys hollow roots and does ranked links until none are possible (there
are no hollow roots and all full roots have different ranks); then it does unranked
links until there is at most one root.

The last design choice is the initial node ranks. We give a node created by
an insert a rank of 0. In a decrease-key that moves an item from a node u to a
new node v, we give v a rank of max{0, u.rank − 2}. The latter choice is what
makes hollow heaps efficient.

We conclude this section by mentioning some benefits of using hollow nodes
and a dag representation. Hollow nodes allow us to treat decrease-key as a special
kind of insertion, allowing us to avoid cutting subtrees as in Fibonacci heaps. As a
consequence, decrease-key takes O(1) time worst case: there are no cascading cuts
as in [8], no cascading rank changes as in [10,14], and no restructuring steps to
eliminate heap-order violations as in [2,5,13]. The dag representation explicitly
maintains all key comparisons between undeleted items, allowing us to avoid
restructuring altogether: links are cut only when hollow roots are destroyed.

Hollow Heaps 693

0

4 13 12 6 3 10 8 5

9 11

14

33

4 5 102 1

6 13 8 9 111

12 14

1

33

4 5 102 1

6 13 8 9 111

12 14

(a) (b) (c)

1

7 21

33

4 5 102 1

6 13 8 9 111

12 14

7

21

33

4 5 102 1

6 13 8 9 111

12 14

43

7 6 132 1

9 10 8 121

11

14

(d) (e) (f)

Fig. 1. Operations on a hollow heap. Numbers in nodes are keys; black nodes are
hollow. Bold gray, solid, and dashed lines denote ranked links, unranked links, and
second parents, respectively. Numbers next to nodes are non-zero ranks. (a) Successive
insertions of items with keys 14, 11, 5, 9, 0, 8, 10, 3, 6, 12, 13, 4 into an initially empty
heap. (b) After a delete-min operation. All links during the delete-min are ranked. (c)
After a decrease of key 5 to 1. (d) After a decrease of key 3 to 2 followed by a decrease
of key 8 to 7. The two new hollow nodes both have two parents. (e) After a second
delete-min. The only hollow node that becomes a root is the original root. One unranked
link, between the nodes holding keys 2 and 7 occurs. (f) After a third delete-min. Two
hollow nodes become roots; the other loses one parent. All links are ranked.

3 Analysis

The most mysterious detail of hollow heaps is the way ranks are updated in
decrease-key operations. Our analysis reveals the reason for this choice. We need
to show that the rank of a heap node is at most logarithmic in the number
of nodes in the dag representing the heap, and that the amortized number of
ranked children per node is also at most logarithmic.

To do both, we assign virtual parents to certain nodes. We use virtual par-
ents in the analysis only; they are not part of the data structure in Section 2.
(Section 4 presents a version of hollow heaps that does use them.)

A node may acquire a virtual parent, have its virtual parent changed, or
lose its virtual parent. As we shall see, virtual parents define a virtual forest. In
particular, each node has at most one virtual parent at a time. If v is the virtual
parent of u, we say that u is a virtual child of v. A node u is a virtual descendant
of a node v if there is a path from v to u via virtual children.

694 T.D. Hansen et al.

When a node is created, it has no virtual parent. When a root u loses a
link to a node v, v becomes the virtual parent of u (as well as its first parent).
If u already has a virtual parent, v replaces it. (By Lemma 1 below, a root
cannot have a virtual parent, so such a replacement never happens.) When a
decrease-key moves an item from a node u to a new node v, if u has more than
two ranked virtual children, two of its ranked virtual children of highest ranks
remain virtual children of u, and the rest of its virtual children become virtual
children of v. (By Lemma 2 below, the ranked virtual children of a node have
distinct ranks, so the two that remain virtual children of u are uniquely defined.)
If the virtual parent of a node u is destroyed, u loses its virtual parent. If u is
full it can subsequently acquire a new virtual parent by losing a link.

Lemma 1. If w is a virtual child of u, there is a path in the dag from u to w.

Proof. We prove the lemma for a given node w by induction on time. When w
is created it has no virtual parent. It may acquire a virtual parent only by losing
a link to a node u, which then becomes both its parent and its virtual parent,
so the lemma holds after the link. Suppose that u is currently the virtual parent
of w. By the induction hypothesis, there is a path from u to w in the dag, so w
is not a root and cannot participate in link operations. The virtual parent of w
can change only as a result of a decrease-key operation on the item e = u.item.
If u �= h, such a decrease-key operation creates a new node v, moves e to v, and
then links v and h. The operation may also make v the new virtual parent of w.
If v wins the link, it becomes the unique root, so there is a path from v to w in
the dag. If v loses the link, the arc (v, u) is added to the dag, making v the second
parent of u. Since there was a path in the dag from u to w, there is now also a path
from v to w. Finally, note that dag arcs are only destroyed when hollow roots are
destroyed. Thus a path to w from its virtual parent u in the dag, present when u
becomes the virtual parent of w, cannot be destroyed unless u is destroyed, in
which case w loses its virtual parent, so the lemma holds vacuously. ��
Corollary 1. Virtual parents define a forest. If w is a root of the dag, it has no
virtual parent. If w is a virtual child of u, then w stops being a virtual child of u
only when u is destroyed or when a decrease-key operation is applied to the item
residing in u.

Lemma 2. Let u be a node of rank r. If u is full, or u is a node made hollow
by a delete, u has exactly one ranked virtual child of each rank from 0 to r − 1
inclusive, and none of rank r or greater. If u was made hollow by a decrease-key
and r > 1, u has exactly two ranked virtual children, of ranks r − 1 and r − 2.
If u was made hollow by a decrease-key and r = 1, u has exactly one ranked
virtual child, of rank 0. If u was made hollow by a decrease-key and r = 0, u has
no ranked virtual children.

Proof. The proof is by induction on the number of operations. The lemma is
immediate for nodes created by insertions. Both ranked and unranked links
preserve the truth of the lemma, as does the removal of an item from a node

Hollow Heaps 695

by a delete. By Corollary 1, a node loses virtual children only as a result of
a decrease-key operation. Suppose the lemma is true before a decrease-key on
the item in a node u of rank r. By the induction hypothesis, u has exactly one
ranked virtual child of rank i for 0 ≤ i < r, and none of rank r or greater. If
the decrease-key makes u hollow, the new node v created by the decrease-key has
rank max{0, u.rank − 2}, and v acquires all the virtual children of u except the
two ranked virtual children of ranks r − 1 and r − 2 if r > 1, or the one ranked
virtual child of rank 0 if r = 1. Thus the lemma holds after the decrease-key. ��
Recall the definition of the Fibonacci numbers: F0 = 0, F1 = 1, Fi = Fi−1+Fi−2

for i ≥ 2. These numbers satisfy Fi+2 ≥ φi, where φ = (1 +
√

5)/2 is the golden
ratio [15].

Corollary 2. A node of rank r has at least Fr+3 − 1 virtual descendants.

Proof. The proof is by induction on r using Lemma 2. The corollary is immediate
for r = 0 and r = 1. If r > 1, the virtual descendants of a node u of rank r
include itself and all virtual descendants of its virtual children v and w of ranks
r − 1 and r − 2, which it has by Lemma 2. By Corollary 1, virtual parents
define a forest, so the sets of virtual descendants of v and w are disjoint. By the
induction hypothesis, u has at least 1 + Fr+2 − 1 + Fr+1 − 1 = Fr+3 − 1 virtual
descendants. ��
Theorem 2. The maximum rank of a node in a hollow heap of N nodes is at
most logφ N .

Proof. Immediate from Corollary 2 since Fr+3 − 1 ≥ Fr+2 ≥ φr for r ≥ 0. ��
To complete our analysis, we need to bound the time of an arbitrary sequence of
heap operations that starts with no heaps. It is straightforward to implement the
operations so that the worst-case time per operation other than delete-min and
delete is O(1), and that of a delete on a heap of N nodes is O(1) plus O(1) per
hollow node that loses a parent plus O(1) per link plus O(log N). In Section 6
we give an implementation that satisfies these bounds and is space-efficient. We
shall show that the amortized time for a delete on a heap of N nodes is O(log N)
by charging the parent losses of hollow nodes and some of the links to other
operations, O(1) per operation.

Suppose a hollow node u loses a parent in a delete. This either makes u a
root, in which case u is destroyed by the same delete, or it reduces the number
of parents of u from two to one. We charge the former case to the insert or
decrease-key that created u, and the latter case to the decrease-key that gave u
its second parent. Since an insert or decrease-key can create at most one node,
and a decrease-key can give at most one node a second parent, the total charge,
and hence the total number of parent losses of hollow nodes, is at most 1 per
insert and 2 per decrease-key.

A delete does unranked links only once there is at most one root per rank.
Thus the number of unranked links is at most the maximum node rank, which
is at most logφ N by Theorem 2. To bound the number of ranked links, we use a

696 T.D. Hansen et al.

potential argument. We give each root and each unranked child a potential of 1.
We give a ranked child a potential of 0 if it has a full virtual parent, 1 otherwise
(its virtual parent is hollow or has been deleted). We define the potential of a
set of dags to be the sum of the potentials of their nodes. With this definition
the initial potential is 0 (there are no nodes), and the potential is always non-
negative. Each ranked link reduces the potential by 1: a root becomes a ranked
child of a full node. It follows that the total number of ranked links over a
sequence of operations is at most the sum of the increases in potential produced
by the operations.

An unranked link does not change the potential: a root becomes an unranked
child. An insert increases the potential by 1: it creates a new root (+1) and does
an unranked link (+0). A decrease-key increases the potential by at most 3: it
creates a new root (+1), it creates a hollow node that has at most two ranked
virtual children by Lemma 2 (+2), and it does an unranked link (+0). Removing
the item in a node u during a delete increases the potential by u.rank, also by
Lemma 2: each of the u.rank ranked virtual children of u gains 1 in potential. By
Theorem 2, u.rank = O(log N). We conclude that the total number of ranked
links is at most 1 per insert plus 3 per decrease-key plus O(log N) per delete on
a heap with N nodes. Combining our bounds gives the following theorem:

Theorem 3. The amortized time per hollow heap operation is O(1) for each
operation other than a delete, and O(log N) per delete on a heap of N nodes.

4 Eager Hollow Heaps

It is natural to ask whether there is a way to represent a hollow heap by a tree
instead of a dag. The answer is yes: we maintain the structure defined by the
virtual parents instead of that defined by the parents. We call this the eager
version of hollow heaps: it moves children among nodes, which the lazy version
in Section 2 does not do. As a result it can do different links than the lazy
version, but it has the same amortized efficiency.

To obtain eager hollow heaps, we modify decrease-key as follows: When a new
node v is created to hold the item previously in a node u, if u.rank > 2, make v
the parent of all but the two ranked children of u of highest ranks; optionally,
make v the parent of some or all of the unranked children of u. Do not make u
a child of v.

In an eager hollow heap, each node has at most one parent. Thus each heap
is represented by a tree, accessed via its root. The analysis of eager hollow heaps
differs from that of lazy hollow heaps only in using parents instead of virtual
parents. Only the parents of ranked children matter in the analysis.

The proofs of the following results are essentially identical to the proofs of
the results in Section 2, with the word “virtual” deleted.

Lemma 3. Let u be a node of rank r in an eager hollow heap. If u is full, or u
is a node made hollow by a delete, u has exactly one ranked child of each rank
from 0 to r − 1 inclusive, and none of rank r or greater. If u was made hollow

Hollow Heaps 697

by a decrease-key and r > 1, u has exactly two ranked children, of ranks r − 1
and r − 2. If u was made hollow by a decrease-key and r = 1, u has exactly one
ranked child, of rank 0. If u was made hollow by a decrease-key and r = 0, u has
no ranked children.

Corollary 3. A node of rank r in an eager hollow heap has at least Fr+3 − 1
descendants.

Theorem 4. The maximum rank of a node in an eager hollow heap of N nodes
is at most logφ N .

Theorem 5. The amortized time per eager hollow heap operation is O(1) for
each operation other than a delete, and O(log N) per delete on an N -node heap.

An alternative way to think about eager hollow heaps is as a variant of Fibonacci
heaps. In a Fibonacci heap, the cascading cuts that occur during a decrease-key
prune the tree in a way that guarantees that ranks remain logarithmic in subtree
sizes. Eager hollow heaps guarantee logarithmic ranks by leaving (at least) two
children and a hollow node behind at the site of the cut. This avoids the need
for cascading cuts or rank changes, and makes the decrease-key operation O(1)
time in the worst case.

5 Rebuilding

The number of nodes N in a heap is at most the number of items n plus the
number of decrease-key operations on items that were ever in the heap or in
heaps melded into it. If the number of decrease-key operations is polynomial in
the number of insertions, log N = O(log n), so the amortized time per delete is
O(log n), the same as for Fibonacci heaps. In applications in which the storage
required for the problem input is at least linear in the number of heap opera-
tions, the extra space needed for hollow nodes is linear in the problem size. Both
of these conditions hold for the heaps used in many graph algorithms, including
Dijkstra’s shortest path algorithm [4,8], various minimum spanning tree algo-
rithms [4,8,9,17], and Edmonds’ optimum branching algorithm [6,9]. In these
applications there is at most one insert per vertex and one or two decrease-key
operations per edge or arc, and the number of edges or arcs is at most quadratic
in the number of vertices. In such applications hollow heaps are asymptotically
as efficient as Fibonacci heaps.

For applications in which the number of decrease-key operations is huge
compared to the heap sizes, we can use periodic rebuilding to guarantee that
N = O(n) for every heap. To do this, keep track of N and n for every heap.
When N > cn for a suitable constant c > 1, rebuild. We offer two ways to do
the rebuilding. The first is to completely disassemble the dag and reinsert all its
items into a new, initially empty heap. A second method that does no key com-
parisons is to convert the dag into a tree containing only full nodes, as follows:
For each node that has two parents, eliminate the second parent, making the dag
a tree. Give each full child a rank of 0 and a parent equal to its nearest full proper

698 T.D. Hansen et al.

ancestor. Delete all the hollow nodes. To extend the analysis in Sections 3 and
4 to cover the second rebuilding method, we define every child to be unranked
after rebuilding. Either way of rebuilding can be done in a single traversal of the
dag, taking O(N) time. Since N > cn and c > 1, O(N) = O(N − n). That is,
the rebuilding time is O(1) per hollow node. By charging the rebuilding time to
the decrease-key and delete operations that created the hollow nodes, O(1) per
operation, we obtain the following theorem:

Theorem 6. With rebuilding, the amortized time per hollow heap operation is
O(1) for each operation other than a delete-min or delete, and O(log n) per
delete-min or delete on a heap of n items. These bounds hold for both lazy and
eager hollow heaps.

By making c sufficiently large, we can arbitrarily reduce the rebuilding overhead,
at a constant factor cost in space and an additive constant cost in the amortized
time of delete. Whether rebuilding is actually a good idea in any particular
application is a question to be answered by experiments.

6 Implementation of Hollow Heaps

In this section we develop an implementation of the data structure in Section
2 that satisfies the time bounds in Section 3 and that is tuned to save space.
We store each set of children in a list. Each new child of a node v is added to
the front of the list of children of v. Since hollow nodes can be in two lists of
children, it might seem that we need to make the lists of children exogenous. But
we can make them endogenous by observing that only hollow nodes can have
two parents, and a hollow node with two parents is last on the list of children of
its second parent (since it is the earliest child, and later children are added to
the front of the list). This allows us to use two pointers per node u to represent
lists of children: u.child is the first child of u, null if u has no children; u.next is
the next sibling of u on the list of children of its first parent.

With this representation, given a child u of a node v, we need ways to answer
three questions: (i) Is u last on the list of children of v? (ii) Does u have two
parents? (iii) Is v the first or the second parent of u? If u has only one par-
ent, the first question is easy to answer: u is the last child of v if and only if
u.next = null. There are several ways to answer the second two questions in
O(1) time. We develop a detailed implementation using one method, and we
discuss alternatives in the full version of the paper.

Each node u stores a pointer u.item to the item it holds if it is full; if u is
hollow, u.item = null. Each hollow node u stores a pointer to its second parent
u.sp; if u is hollow but has at most one parent, u.sp = null. A decrease-key
operation makes a newly hollow node u a child of a new node v by setting
v.child = u but not changing u.next: u.next is the next sibling of u on the list of
children of the first parent of u. We answer the three questions as follows: (i) A
child u of v is last on the list of children of v if and only if u.next = null (u is last
on any list of children containing it) or u.sp = v (u is hollow with two parents

Hollow Heaps 699

and v is its second parent); (ii) u has two parents if and only if u.sp �= null; (iii)
v is the second parent of u if and only if u.sp = v.

Each node u also stores its key and rank, and each item e stores the node
e.node holding it. The total space needed is four pointers, a key and a rank per
node, and one pointer per item. Ranks are small integers, requiring lg lg N +O(1)
bits each.

Implementation of delete requires keeping track of roots as they are deleted
and linked. To do this, we maintain a list L of hollow roots, singly linked by
next pointers. We also maintain an array A of full roots, indexed by rank, at
most one per rank. When a delete makes a root hollow, do the following. First,
initialize L to contain the hollow root and A to be empty. Second, repeat the
following until L is empty: Delete a node x from L, apply the appropriate one
of the following cases to each child u of x, and then destroy x:

(i) u is hollow and v is its only parent: Add u to L: deletion of x makes u a root.
(ii) u has two parents and v is the second: Set u.sp = null and stop processing

children of x: u is the last child of x. Since u still has its first parent, it
does not become a root.

(iii) u has two parents and v is the first: Set u.sp = null and u.next = null.
(iv) u is full: Add u to A unless A contains a root of the same rank. If it does,

link u with this root via a ranked link and repeat this with the winner until
A does not contain a root of the same rank; then add the final winner to A.

Third and finally (once L is empty), empty A and link full roots via unranked
links until there is at most one.

With this implementation, the worst-case time per operation is O(1) except
for delete operations that remove root items. A delete that removes a root item
takes O(1) time plus O(1) time per hollow node that loses a parent plus O(1)
time per link plus O(logφ N) time, where N is the number of nodes in the tree
just before the delete, since max -rank = O(logφ N) by Theorem 2. These are the
bounds claimed in Section 3.

Acknowledgement. Thomas Dueholm Hansen is supported by The Danish Council
for Independent Research | Natural Sciences (grant no. 12-126512); and the Sino-Danish
Center for the Theory of Interactive Computation, funded by the Danish National
Research Foundation and the National Science Foundation of China (under the grant
61061130540). Haim Kaplan is supported by the Israel Science Foundation grants no.
822-10 and 1841/14, the German-Israeli Foundation for Scientific Research and Devel-
opment (GIF) grant no. 1161/2011, and the Israeli Centers of Research Excellence
(I-CORE) program (Center No. 4/11). Uri Zwick is supported by BSF grant no.
2012338 and by The Israeli Centers of Research Excellence (I-CORE) program (Center
No. 4/11).

References

1. Brodal, G.S.: Worst-case efficient priority queues. In: Proceedings of the 7th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 52–58 (1996)

700 T.D. Hansen et al.

2. Brodal, G.S., Lagogiannis, G., Tarjan, R.E.: Strict Fibonacci heaps. In: Proc. of
the 44th ACM STOC, pp. 1177–1184 (2012)

3. Chan, T.M.: Quake heaps: a simple alternative to fibonacci heaps. In: Brodnik,
A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures,
Streams, and Algorithms. LNCS, vol. 8066, pp. 27–32. Springer, Heidelberg (2013)

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

5. Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed heaps: an alter-
native to Fibonacci heaps with applications to parallel computation. Communica-
tions of the ACM 31(11), 1343–1354 (1988)

6. Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Standards 71B, 233–240
(1967)

7. Elmasry, A.: The violation heap: a relaxed Fibonacci-like heap. Discrete Math.,
Alg. and Appl., 2(4), 493–504 (2010)

8. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM 34(3), 596–615 (1987)

9. Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algorithms for find-
ing minimum spanning trees in undirected and directed graphs. Combinatorica 6,
109–122 (1986)

10. Haeupler, B., Sen, S., Tarjan, R.E.: Rank-pairing heaps. SIAM Journal on Com-
puting 40(6), 1463–1485 (2011)

11. Høyer, P.: A general technique for implementation of efficient priority queues. In:
Proceedings of the 3rd Israeli Symposium on the Theory of Computing and Systems
(ISTCS), pp. 57–66 (1995)

12. Kaplan, H., Shafrir, N., Tarjan, R.E.: Meldable heaps and boolean union-find. In:
Proc. of the 34th ACM STOC, pp. 573–582 (2002)

13. Kaplan, H., Tarjan, R.E.: Thin heaps, thick heaps. ACM Transactions on Algo-
rithms 4(1), 1–14 (2008)

14. Kaplan, H., Tarjan, R.E., Zwick, U.: Fibonacci heaps revisited. CoRR,
abs/1407.5750 (2014)

15. Knuth, D.E.: Sorting and searching. The art of computer programming, vol. 3, 2nd
edn. Addison-Wesley (1998)

16. Peterson, G.L.: A balanced tree scheme for meldable heaps with updates. Techni-
cal Report GIT-ICS-87-23, School of Informatics and Computer Science, Georgia
Institute of Technology, Atlanta, GA (1987)

17. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technical Journal 36, 1389–1401 (1957)

18. Takaoka, T.: Theory of 2–3 heaps. Discrete Appl. Math. 126(1), 115–128 (2003)
19. Tarjan, R.E.: Data structures and network algorithms. SIAM (1983)

Linear-Time List Recovery of High-Rate
Expander Codes

Brett Hemenway1(B) and Mary Wootters2

1 University of Pennsylvania, Philadelphia, USA
fbrett@cis.upenn.edu

2 Carnegie Mellon University, Pittsburgh, USA
marykw@cs.cmu.edu

Abstract. We show that expander codes, when properly instantiated,
are high-rate list recoverable codes with linear-time list recovery algo-
rithms. List recoverable codes have been useful recently in constructing
efficiently list-decodable codes, as well as explicit constructions of matri-
ces for compressive sensing and group testing. Previous list recoverable
codes with linear-time decoding algorithms have all had rate at most 1/2;
in contrast, our codes can have rate 1 − ε for any ε > 0. We can plug
our high-rate codes into a framework of Alon and Luby (1996) and Meir
(2014) to obtain linear-time list recoverable codes of arbitrary rates R,
which approach the optimal trade-off between the number of non-trivial
lists provided and the rate of the code.

While list-recovery is interesting on its own, our primary motivation
is applications to list-decoding. A slight strengthening of our result would
imply linear-time and optimally list-decodable codes for all rates. Thus,
our result is a step in the direction of solving this important problem.

1 Introduction

In the theory of error correcting codes, one seeks a code C ⊂ F
n so that it

is possible to recover any codeword c ∈ C given a corrupted version of that
codeword. The most standard model of corruption is from errors: some constant
fraction of the symbols of a codeword might be adversarially changed. Another
model of corruption is that there is some uncertainty: in each position i ∈ [n],
there is some small list Si ⊂ F of possible symbols. In this model of corruption,
we cannot hope to recover c exactly; indeed, suppose that Si = {ci, c

′
i} for some

codewords c, c′ ∈ C. However, we can hope to recover a short list of codewords
that contains c. Such a guarantee is called list recoverability.

While this model is interesting on its own—there are several settings in which
this sort of uncertainty may arise—one of our main motivations for studying list-
recovery is list-decoding. We elaborate on this more in Section 1.1 below.

We study the list recoverability of expander codes. These codes—introduced
by Sipser and Spielman in [29]—are formed from an expander graph and an

M. Wootters–Research funded by NSF MSPRF grant DMS-1400558.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 701–712, 2015.
DOI: 10.1007/978-3-662-47672-7 57

702 B. Hemenway and M. Wootters

inner code C0. One way to think about expander codes is that they preserve
some property of C0, but have some additional useful structure. For example,
[29] showed that if C0 has good distance, then so does the the expander code; the
additional structure of the expander allows for a linear-time decoding algorithm.
In [20], it was shown that if C0 has some good (but not great) locality properties,
then the larger expander code is a good locally correctable code. In this work,
we extend this list of useful properties to include list recoverability. We show
that if C0 is a list recoverable code, then the resulting expander code is again
list recoverable, but with a linear-time list recovery algorithm.

1.1 List Recovery

List recoverable codes were first studied in the context of list-decoding and soft-
decoding: a list recovery algorithm is at the heart of the celebrated Guruswami-
Sudan list-decoder for Reed-Solomon codes [17] and for related codes [16].
Guruswami and Indyk showed how to use list recoverable codes to obtain good
list- and uniquely-decodable codes [12–14]. More recently, list recoverable codes
have been studied as interesting objects in their own right, and have found sev-
eral algorithmic applications, in areas such as compressed sensing and group
testing [7,23,28].

We consider list recovery from erasures, which was also studied in [8,14]. That
is, some fraction of symbols may have no information; equivalently, Si = F for
a constant fraction of i ∈ [n]. Another, stronger guarantee is list recovery from
errors. That is, ci �∈ Si for a constant fraction of i ∈ [n]. We do not consider this
stronger guarantee here, and it is an interesting question to extend our results
for erasures to errors. It should be noted that the problem of list recovery is
interesting even when there are neither errors nor erasures. In that case, the
problem is: given Si ⊂ F, find all the codewords c ∈ C so that ci ∈ Si for all i.

There are two parameters of interest. First, the rate R := logq(|C|)/n of the
code: ideally, we would like the rate to be close to 1. Second, the efficiency of the
recovery algorithm: ideally, we would be able to perform list-recovery in time
linear in n. We survey the relevant results on list recoverable codes in Figure 1.
While there are several known constructions of list recoverable codes with high
rate, and there are several known constructions of list recoverable codes with
linear-time decoders, there are no known prior constructions of codes which
achieve both at once.

In this work, we obtain the best of both worlds, and give constructions of
high-rate, linear-time list recoverable codes. Additionally, our codes have con-
stant (independent of n) list size and alphabet size. As mentioned above, our
codes are actually expander codes—in particular, they retain the many nice
properties of expander codes: they are explicit linear codes which are efficiently
(uniquely) decodable from a constant fraction of errors.

We can use these codes, along with a construction of Alon and Luby [1],
recently highlighted by Meir [26], to obtain linear-time list recoverable codes of
any rate R, which obtain the optimal trade-off between the fraction 1 − α of
erasures and the rate R. More precisely, for any R ∈ [? ?], � ∈ N, and η > 0,

Linear-Time List Recovery of High-Rate Expander Codes 703

there is some L = L(η, �) so that we can construct rate R codes which are
(R + η, �, L)-list recoverable in linear time. The fact that our codes from the
previous paragraph have rate approaching 1 is necessary for this construction.
To the best of our knowledge, linear-time list-decodable codes obtaining this
trade-off were also not known.

It is worth noting that if our construction worked for list recovery from
errors, rather than erasures, then the reduction above would obtain linear-time
list decodable codes, of rate R and tolerating 1 − R − η errors. (In fact, it would
yield codes that are list-recoverable from errors, which is a strictly stronger
notion). So far, all efficiently list-decodable codes in this regime have polynomial-
time decoding algorithms. In this sense, our work is a step in the direction of
linear-time optimal list decoding, which is an important open problem in coding
theory.1

1.2 Expander Codes

Our list recoverable codes are actually properly instantiated expander codes.
Expander codes are formed from a d-regular expander graph, and an inner code
C0 of length d, and are notable for their extremely fast decoding algorithms. We
give the details of the construction below in Section 2. The idea of using a graph
to create an error correcting code was first used by Gallager [6], and the addition
of an inner code was suggested by Tanner [30]. Sipser and Spielman introduced
the use of an expander graph in [29]. There have been several improvements over
the years by Barg and Zemor [2–4,31].

Recently, Hemenway, Ostrovsky and Wootters [20] showed that expander
codes can also be locally corrected, matching the best-known constructions in
the high-rate, high-query regime for locally-correctable codes. That work showed
that as long as the inner code exhibits suitable locality, then the overall expander
code does as well. This raised a question: what other properties of the inner code
does an expander code preserve? In this work, we show that as long as the inner
code is list recoverable (even without an efficient algorithm), then the expander
code itself is list recoverable, but with an extremely fast decoding algorithm.

It should be noted that the works of Guruswami and Indyk cited above
on linear-time list recovery are also based on expander graphs. However, that
construction is different from the expander codes of Sipser and Spielman. In
particular, it does not seem that the Guruswami-Indyk construction can achieve
a high rate while maintaining list recoverability.

1 In fact, adapting our construction to handle errors, even if we allow polynomial-time
decoding, is interesting. First, it would give a new family of efficiently-decodable,
optimally list-decodable codes, very different from the existing algebraic construc-
tions. Secondly, there are no known uniformly constructive explicit codes (that is,
constructible in time poly(n) · Cη) with both constant list-size and constant alpha-
bet size—adapting our construction to handle errors, even with polynomial-time
recovery, could resolve this.

704 B. Hemenway and M. Wootters

1.3 Our Contributions

We summarize our contributions below:

1. The first construction of linear-time list-recoverable codes with
rate approaching 1. As shown in Figure 1, existing constructions have
either low rate or substantially super-linear recovery time. The fact that our
codes have rate approaching 1 allows us to plug them into a construction
of [26], to achieve the next bullet point:

2. The first construction of linear-time list-recoverable codes with
optimal rate/erasure trade-off. We will show in Section 3.2 that our
high-rate codes can be used to construct list-recoverable codes of arbitrary
rates R, where we are given information about only an R + ε fraction of
the symbols. As shown in Figure 1, existing constructions which achieve this
trade-off have substantially super-linear recovery time.

3. A step towards linear-time, optimally list decodable codes. Our
results above are for list-recovery from erasures. While this has been studied
before [14], it is a weaker model than a standard model which considers
errors. As mentioned above, a solution in this more difficult model would
lead to algorithmic improvements in list decoding (as well as potentially in
compressed sensing, group testing, and related areas). It is our hope that
understanding the erasure model will lead to a better understanding of the
error model, and that our results will lead to improved list decodable codes.

4. New tricks for expander codes. One take-away of our work is that
expander codes are extremely flexible. This gives a third example (after
unique- and local- decoding) of the expander-code construction taking
an inner code with some property and making that property efficiently
exploitable. We think that this take-away is an important observation, wor-
thy of its own bullet point. It is a very interesting question what other
properties this may work for.

2 Definitions and Notation

An error correcting code is (α, �, L) list recoverable (from errors) if given lists of
� possible symbols at every index, there are at most L codewords whose symbols
lie in a α fraction of the lists. We will use a slightly different definition of list
recoverability, matching the definition of [14]; to distinguish it from list recovery
from errors, we will call it list recoverability from erasures.

Definition 1 (List recoverability from erasures). An error correcting code
C ⊂ F

n
q is (α, �, L)-list recoverable from erasures if the following holds. Fix any

sets S1, . . . , Sn with Si ⊂ Fq, so that |Si| ≤ � for at least αn of the i’s and
Si = Fq for all remaining i. Then there are most L codewords c ∈ C so that
c ∈ S1 × S2 × · · · × Sn.

Linear-Time List Recovery of High-Rate Expander Codes 705

Source Rate List size Alphabet Agreement Recovery Explicit
L size α time Linear

Random code 1− γ O(�/γ) �O(1/γ) 1− O(γ)
Random

pseudolinear code
[11]

1− γ O
(

� log(�)

γ2

)
�O(1/γ) 1− O(γ)

Random linear
code [9] 1− γ �O(�/γ2) �O(1/γ) 1− O(γ) L

Folded
Reed-Solomon

codes [16]
1− γ nO(log(�)/γ) nO(log(�)/γ2) 1− O(γ) nO(log(�)/γ2) EL

Folded RS
subcodes:

evaluation points
in an explicit

subspace-evasive
set [5]

1− γ (1/γ)O(�/γ) nO(�/γ2) 1− O(γ) nO(�/γ2) E

Folded RS
subcodes:

evaluation points
in a non-explicit
subspace-evasive

set [10]

1− γ O
(

�
γ2

)
nO(�/γ2) 1− O(γ) nO(�/γ2)

(Folded) AG
subcode [18,19]

1 - γ O(�/γ) exp(Õ(�/γ2)) 1− O(γ) C�,γnO(1)

[13] 2−2O(�)
� 22

2O(�)

1− 2−2�O(1)

O(n) E

[14] �−O(1) � 2�O(1)
.999 (�) O(n) E

This work 1− γ �γ−4��C�/γ2

�O(1/γ) 1− O(γ3) (�) O(n) EL

Fig. 1. Results on high-rate list recoverable codes and on linear-time decodable list
recoverable codes. Above, n is the block length of the (α, �, L)-list recoverable code,
and γ > 0 is sufficiently small and independent of n. Agreement rates marked (�) are
for erasures, and all others are from errors. An empty “recovery time” field means that
there are no known efficient algorithms. We remark that [19], along with the explicit
subspace designs of [15], also give explicit constructions of high-rate AG subcodes with
polynomial time list-recovery and somewhat complicated parameters; the list-size L
becomes super-constant.

The results listed above of [5,10,16,18,19] also apply for any rate R and agree-
ment R + γ. In Section 3.2, we show how to achieve the same trade-off (for erasures)
in linear time using our codes.

Our construction will be based on expander graphs. We say a d-regular graph
H is a spectral expander with parameter λ, if λ is the second-largest eigenvalue

706 B. Hemenway and M. Wootters

of the normalized adjacency matrix of H. Intuitively, the smaller λ is, the better
connected H is—see [22] for a survey of expanders and their applications. We
will take H to be a Ramanujan graph, that is, so that λ ≤ 2

√
d−1
d ; explicit

constructions of Ramanujan graphs are known [24,25,27] for arbitrarily large
values of d. For a graph H with vertices V (H) and edges E(H), we use the
following notation. For a set S ⊂ V (H), we use Γ (S) to denote the neighborhood

Γ (S) = {v : ∃u ∈ S, (u, v) ∈ E(H)} .

For a set of edges F ⊂ E(H), we use ΓF (S) to denote the neighborhood restricted
to F :

ΓF (S) = {v : ∃u ∈ S, (u, v) ∈ F} .

Given a d-regular H and an inner code C0, we define the Tanner code C(H, C0)
as follows.

Definition 2 (Tanner code [30]). If H is a d-regular graph on n vertices and
C0 is a linear code of block length d, then the Tanner code created from C0 and
H is the linear code C ⊂ F

E(H)
q , where each edge H is assigned a symbol in Fq

and the edges adjacent to each vertex form a codeword in C0.

C = {c ∈ F
E(H)
q : ∀v ∈ V (H), c|Γ (v) ∈ C0}

Because codewords in C0 are ordered collections of symbols whereas edges adja-
cent to a vertex in H may be unordered, creating a Tanner code requires choos-
ing an ordering of the edges at each vertex of the graph. Although different
orderings lead to different codes, our results (like all previous results on Tanner
codes) work for all orderings. As our constructions work with any ordering of
the edges adjacent to each vertex, we assume that some arbitrary ordering has
been assigned, and do not discuss it further.

When the underlying graph H is an expander graph,2 we call the resulting
Tanner code an expander code. Sipser and Spielman showed that expander codes
are efficiently uniquely decodable from about a δ20 fraction of errors. We will only
need unique decoding from erasures; the same bound of δ20 obviously holds for
erasures as well, but for completeness we state the following lemma, which we
prove in the full version [21].

Lemma 1. If C0 is a linear code of block length d that can recover from an
δ0d number of erasures, and H is a d-regular expander with normalized second
eigenvalue λ, then the expander code C can be recovered from a δ0

k fraction of
erasures in linear time whenever λ < δ0 − 2

k .

Throughout this work, C0 ⊂ F
d
q will be (α0, �, L)-list recoverable from erasures,

and the distance of C0 is δ0. We choose H to be a Ramanujan graph, and C =
C(H, C0) will be the expander code formed from H and C0.

2 Although many expander codes rely on bipartite expander graphs (e.g. [31]), we find
it notationally simpler to use the non-bipartite version.

Linear-Time List Recovery of High-Rate Expander Codes 707

3 Results and Constructions

In this section, we give an overview of our constructions and state our results. Our
main result (Theorem 1) is that list recoverable inner codes imply list recoverable
expander codes. We then instantiate this construction to obtain the high-rate
list recoverable codes claimed in Figure 1. Next, in Theorem 3 we show how
to combine our codes with a construction of Meir [26] to obtain linear-time list
recoverable codes which approach the optimal trade-off between α and R.

3.1 High-Rate Linear-Time List Recoverable Codes

Our main theorem is that list recoverable codes imply list recoverable expander
codes:

Theorem 1. Suppose that C0 is (α0, �, L)-list recoverable from erasures, of rate
R0, length d, and distance δ0, and suppose that H is a d-regular expander graph
with normalized second eigenvalue λ, if

λ <
δ20

12�L

Then the expander code C formed from C0 and H has rate at least 2R0 − 1 and
is (α, �, L′)-list recoverable from erasures, where

L′ ≤ exp�

(
72 �2L

δ20(δ0 − λ)2

)

and α satisfies

1 − α ≥ (1 − α0)
(

δ0(δ0 − λ)
6

)
.

Further, the running time of the list recovery algorithm is OL,�,δ0,d(n).

Above, the notation exp�(·) means �(·). Before we discuss the proof of Theorem
1 and the recovery algorithm, we show how to instantiate these codes to give
the parameters claimed in Figure 1.

We will use a random linear code as the inner code. A probabilistic argument
shows that there exist inner codes with R0 = 1 − γ, distance δ0 = γ(1 + O(γ))
that are (α0, �, L)-list recoverable, over an alphabet of size qO(1/γ). (See the full
version of this paper [21]). Plugging all this into Theorem 1, we get explicit codes
of rate 1 − 2γ which are (α, �, L′)-list recoverable in linear time, for

L′ = exp�

(
γ−4 exp�

(
exp�

(
C�/γ2

)))

and for α = 1 − C ′γ3 for some constants C,C ′. This recovers the parameters
claimed in Figure 1. Above, we can choose d = O

(
�2L

γ4

)
so that the Ramanujan

graph would have parameter λ obeying the conditions of Theorem 1. Thus,
when �, γ are constant, so is the degree d, and the running time of the recovery
algorithm is linear in n, and thus in the block length nd of the expander code.
By Lemma 1, because the distance of the inner code is δ0 = γ(1 + O(γ)), the
distance of our construction is δ = Ω(γ2).

708 B. Hemenway and M. Wootters

Remark 1. Both the alphabet size and the list size L′ are constant, if � and γ are
constant. However, L′ depends rather badly on �, even compared to the other
high-rate constructions in Figure 1. This is because the bound on random linear
codes that we use for our inner code is likely not tight; it would be interesting to
either improve this bound or to give an inner code with better list size L. The
key restrictions for such an inner code are that (a) the rate of the code must be
close to 1; (b) the list size L must be constant, and (c) the code must be linear.
Notice that (b) and (c) prevent the use of either Folded Reed-Solomon codes or
their restriction to a subspace evasive set, respectively.

3.2 List Recoverable Codes Approaching Capacity

We can use our list recoverable codes, along with a construction of Alon and
Luby [1] (which has also been used for similar purposes by Guruswami and
Indyk [12], and was recently used and highlighted by Meir [26]), to construct
codes which approach the optimal trade-off between the rate R and the agree-
ment α. To quantify this, we state the following analog of the list-decoding
capacity theorem.

Theorem 2 (List recovery capacity theorem). For every R > 0, and L ≥ �,
there is some code C of rate R over Fq which is (R+η(�, L), �, L)-list recoverable
from erasures, for any

η(�, L) ≥ 4�

L
and q ≥ �2/η.

Further, for any constant R > 0, any integer �, and any sufficiently small η > 0,
any code of rate R which is (R−η, �, L)-list recoverable from erasures must have
L = qΩ(n).

The proof is a straightforward probabilistic argument and is given in the full
version [21]. Although Theorem 2 ensures the existence of certain list-recoverable
codes, the proof of Theorem 2 is probabilistic, and does not provide a means of
efficiently identifying (or list recovering) these codes. Using the approach of [26]
we can turn our construction of linear-time list recoverable codes into linear-time
list recoverable codes approaching capacity.

Theorem 3. For any R > 0, � > 0, and for all sufficiently small η > 0, there
is some L, depending only on � and η, and some constant d, depending only
on η, so that whenever q ≥ �6/η there is a family of (α, �, L)-list recoverable
codes C ⊂ F

n
qd with rate at least R, for α = R + η. Further, these codes can be

list-recovered in linear time.

We follow the approach of [26], which adapts a construction of [1] to take advan-
tage of high-rate codes with a desirable property. Informally, the takeaway of [26]
is that, given a family of codes with any nice property and rate approaching 1,
one can make a family of codes with the same nice property that acheives the
Singleton bound. The proof of Theorem 3, as well as the construction, can be
found in the full version [21].

Linear-Time List Recovery of High-Rate Expander Codes 709

4 Recovery Procedure and Proof of Theorem 1

In this section, we outline at a high level the ideas and techniques in our list
recovery algorithm. A detailed description of the recovery algorithm and the
proof of correctness can be found in the full version [21]. The complete list
recovery algorithm is presented in the full version. The algorithm proceeds in
three steps, which we describe below. Due to space constraints, we omit the
details of these steps, which can be found in the full version of the paper [21].

1. First, we list recover locally at each vertex, using the list recoverability of
the inner code.
This step yields a list of L codewords at each vertex.

2. Next, we choose an edge, and one of the � possible symbols on that edge.
The crux of the decoding algorithm is identifying how this choice propagates
through the graph.
This propagation will cover a constant fraction of the edges in the graph.
We repeat this propagation for each of the � choices of symbol for the chosen
edge. This yields a collection of � possible partial codewords.

3. Step 2 yields partial assignments (that assign values to a constant fraction
of the symbols in the expander code). To turn these partial assignments into
full assignments, we repeat Step 2 a constant number of times until we have
partial assignments that cover essentially the entire graph. We stop once
we have covered enough edges, and we use the minimum distance of the
expander code to uniquely fill in the unknown edges. Since each iteration of
Step 2 yields � possible partial assignments (all to the same set of edges), if
we repeat Step 2 t times, we can stitch them together to obtain �t possible
assignments.

The difficulty in analyzing this algorithm comes from determining how a
choice of a symbol in Step 2 propagates through the graph. We sketch the intu-
ition below; the formal discussion can be found in [21].

For simplicity, suppose there are no erasures—our final algorithm can recover
from a constant fraction of erasures, but the intuition is cleaner if there are no
erasures—and suppose that each edge of H holds a list of � possible symbols.
Suppose (v, u) is the edge chosen at Step 2. We might hope that a choice of
a symbol on this edge (or even the choice of a codeword at vertex u) would
determine the codeword at v. This is unfortunately not likely to be true because
L > �: a choice of one of � symbols on (v, u) is not sufficient to uniquely determine
one of the L codewords on vertex v. Instead of analyzing propagation at a vertex
level, we focus on propagation at the edge level.

To do this, we introduce the notion of equivalence classes of edges. Suppose
that the neighbors of v are u1, . . . , ud. There are L possible codewords at v, and
there are � possible choices of symbol at (v, ui); thus there are at most �L possible
maps from codeword at v to symbol at (v, ui). If d 	 �L, then by the pigeonhole
principle some of these maps must be identical. We call edges (v, ui) and (v, uj)
equivalent with respect to v if their maps are identical. In particular, this means

710 B. Hemenway and M. Wootters

that a choice of symbol of (v, ui) defines the choice of symbol on (v, uj). Thus a
choice of symbol on (v, u1) (say), will determine symbols of (v, ui) for all (v, ui)
in the same equivalence class as (v, u1).

We can then repeat this logic at each of these vertices ui: the choice of symbol
on (ui, v) will determine symbols on edges (ui, w) that are equivalent to (ui, v)
with respect to ui. In this way, the choice of a single symbol propagates through
a large portion of the graph. We use the expansion of the graph to show that
this propagation ends up covering a constant fraction of the graph. Thus, after
making a constant number of choices (and using the distance of the expander
code to take care of the small fraction of untouched edges), we will have recovered
every assignment of symbols which is consistent with the given lists.

There are several details omitted from the sketch above. For example, we
argued above that some equivalence classes are large. Of course, some may also
be small. What if (v, u) belongs to a small equivalence class and our choice does
not propagate? We show in the appendix that there is a large subgraph H ′ of
H so that every equivalence class in H ′ is large. The full details, and a complete
description of the recovery algorithm, can be found in the full version of the
paper [21].

5 Conclusion and Open Questions

We have shown that expander codes, properly instantiated, are high-rate list
recoverable codes with constant list size and constant alphabet size, which can
be list recovered in linear time. To the best of our knowledge, no such con-
struction was known. Our work leaves several open questions. Most notably, our
algorithm can handle erasures, but it seems much more difficult to handle errors.
As mentioned above, handling list recovery from errors would open the door for
many of the applications of list recoverable codes, to list-decoding and other
areas. Extending our results to errors with linear-time recovery would be most
interesting, as it would immediately lead to optimal linear-time list-decodable
codes. However, even polynomial-time recovery would be interesting: in addition
to given a new, very different family of efficient locally-decodable codes, this
could lead to explicit (uniformly constructive), efficiently list-decodable codes
with constant list size and constant alphabet size, which is (to the best of our
knowledge) currently an open problem. Second, the parameters of our construc-
tion could be improved: our choice of inner code (a random linear code), and its
analysis, is clearly suboptimal. Our construction would have better performance
with a better inner code. As mentioned in Remark 1, we would need a high-rate
linear code which is list recoverable with constant list-size (the reason that this
is not begging the question is that this inner code need not have a fast recovery
algorithm). We are not aware of any such constructions.

Acknowledgments. We thank Venkat Guruswami for raising the question of obtain-
ing high-rate linear-time list-recoverable codes, and for very helpful conversations. We
also thank Or Meir for pointing out [26].

Linear-Time List Recovery of High-Rate Expander Codes 711

References

1. Alon, N., Luby, M.: A linear time erasure-resilient code with nearly optimal recov-
ery. IEEE Transactions on Information Theory 42(6), 1732–1736 (1996)

2. Barg, A., Zemor, G.: Error exponents of expander codes. IEEE Transactions on
Information Theory 48(6), 1725–1729 (2002)

3. Barg, A., Zemor, G.: Concatenated codes: serial and parallel. IEEE Transactions
on Information Theory 51(5), 1625–1634 (2005)

4. Barg, A., Zemor, G.: Distance properties of expander codes. IEEE Transactions
on Information Theory 52(1), 78–90 (2006)

5. Dvir, Z., Lovett, S.: Subspace evasive sets. In: Proceedings of the 44th Annual
ACM Symposium on Theory of Computing (STOC), pp. 351–358. ACM (2012)

6. Gallager, R.G.: Low Density Parity-Check Codes. Technical report. MIT (1963)
7. Gilbert, A.C., Ngo, H.Q., Porat, E., Rudra, A., Strauss, M.J.: �2/�2-foreach sparse

recovery with low risk. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D.
(eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 461–472. Springer, Heidelberg
(2013)

8. Guruswami, V.: List decoding from erasures: Bounds and code constructions. IEEE
Transactions on Information Theory 49(11), 2826–2833 (2003)

9. Guruswami, V.: List decoding of error-correcting codes. LNCS, vol. 3282. Springer,
Heidelberg (2004)

10. Guruswami, V.: Linear-algebraic list decoding of folded reed-solomon codes. In:
Proceedings of the 26th Annual Conference on Computational Complexity (CCC),
pp. 77–85. IEEE (2011)

11. Guruswami, V., Indyk, P:. Expander-based constructions of efficiently decodable
codes. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 658–667. IEEE (October 2001)

12. Guruswami, V., Indyk, P.: Near-optimal linear-time codes for unique decoding
and new list-decodable codes over smaller alphabets. In: Proceedings of the 34th
Annual ACM Aymposium on Theory of computing (STOC), pp. 812–821. ACM
(2002)

13. Guruswami, V., Indyk, P.: Linear time encodable and list decodable codes. In: Pro-
ceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC),
pp. 126–135. ACM, New York (2003)

14. Guruswami, V., Indyk, P.: Linear-time list decoding in error-free settings. In: Dı́az,
J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 695–707. Springer, Heidelberg (2004)

15. Guruswami, V., Kopparty, S.: Explicit subspace designs. In: Proceedings of
the 54th Annual IEEE Symposium on Foundations of Computing (FOCS),
pp. 608–617. IEEE (2013)

16. Guruswami, V., Rudra, A.: Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on Information Theory
54(1), 135–150 (2008)

17. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory 45(6) (1999)

18. Guruswami, V., Xing, C.: Folded codes from function field towers and improved
optimal rate list decoding. In: Proceedings of the 44th Annual ACM Symposium
on Theory of Computing (STOC), pp. 339–350. ACM (2012)

19. Guruswami, V., Xing, C.: List decoding reed-solomon, algebraic-geometric, and
gabidulin subcodes up to the singleton bound. In: Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC), pp. 843–852. ACM (2013)

712 B. Hemenway and M. Wootters

20. Hemenway, B., Ostrovsky, R., Wootters, M.: Local correctability of expander codes.
Information and Computation (2014)

21. Hemenway, B., Wootters, M.: Linear-time list recovery of high-rate expander codes.
ArXiv preprint 1503.01955 (2015)

22. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bul-
letin of the American Mathematical Society 43(4), 439–561 (2006)

23. Indyk, P., Ngo, H.Q., Rudra, A.: Efficiently decodable non-adaptive group testing.
In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1126–1142. Society for Industrial and Applied Mathematics (2010)

24. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3),
261–277 (1988)

25. Margulis, G.A.: Explicit Group-Theoretical Constructions of Combinatorial
Schemes and Their Application to the Design of Expanders and Concentrators.
Probl. Peredachi Inf. 24(1), 51–60 (1988)

26. Meir, O.: Locally correctable and testable codes approaching the singleton bound,
ECCC Report TR14-107 (2014)

27. Morgenstern, M.: Existence and Explicit Constructions of q + 1 Regular Ramanu-
jan Graphs for Every Prime Power q. Journal of Combinatorial Theory, Series B
62(1), 44–62 (1994)

28. Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable compressed sensing by list-
recoverable codes and recursion. In: Proceedings of the Symposium on Theoretical
Aspects of Computer Science (STACS), vol. 14, pp. 230–241 (2012)

29. Sipser, M., Spielman, D.A.: Expander codes. IEEE Transactions in Information
Theory 42(6) (1996)

30. Tanner, R.: A recursive approach to low complexity codes. IEEE Transactions on
Information Theory 27(5), 533–547 (1981)

31. Zemor, G.: On expander codes. IEEE Transactions on Information Theory 47(2),
835–837 (2001)

Finding 2-Edge and 2-Vertex Strongly
Connected Components in Quadratic Time

Monika Henzinger, Sebastian Krinninger, and Veronika Loitzenbauer(B)

Faculty of Computer Science, University of Vienna, Vienna, Austria
veronika.loitzenbauer@univie.ac.at

Abstract. We present faster algorithms for computing the 2-edge and
2-vertex strongly connected components of a directed graph. While in
undirected graphs the 2-edge and 2-vertex connected components can
be found in linear time, in directed graphs with m edges and n ver-
tices only rather simple O(mn)-time algorithms were known. We use
a hierarchical sparsification technique to obtain algorithms that run in
time O(n2). For 2-edge strongly connected components our algorithm
gives the first running time improvement in 20 years. Additionally we
present an O(m2/ log n)-time algorithm for 2-edge strongly connected
components, and thus improve over the O(mn) running time also when
m = O(n). Our approach extends to k-edge and k-vertex strongly con-
nected components for any constant k with a running time of O(n2 log n)
for k-edge-connectivity and O(n3) for k-vertex-connectivity.

1 Introduction

Problem Description. In a directed graph G two vertices u and v are 2-
edge strongly connected if from u to v and from v to u, respectively, there are
two paths that have no common edge. A 2-edge strongly connected component
(2eSCC) of G is a maximal subgraph of G such that in the subgraph every pair of
distinct vertices is 2-edge strongly connected. Two vertices u and v are 2-vertex
strongly connected in G if they remain strongly connected after the removal of
any single vertex except u and v from G. A 2-vertex strongly connected component
(2vSCC) of G is a maximal subgraph of G such that in the subgraph every pair
of distinct vertices is 2-vertex strongly connected. Edge and vertex connectivity
are central properties of graphs and have many applications [1,24], for example
in the construction of reliable communication networks [2] and in the analysis
of the structure of networks [26].

Our Results. In this work we present algorithms that compute the 2eSCCs
and the 2vSCCs of a directed graph in O(n2) time. For 2eSCCs we additionally
provide an algorithm that runs in O(m2/ log n) time, which is faster than O(n2)
if m = O(n). Thus we significantly improve upon the previous O(mn)-time algo-
rithms for both 2eSCCs [14,25] and 2vSCCs [21]. For 2eSCCs the previous upper

Full version available at http://arxiv.org/abs/1412.6466

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 713–724, 2015.
DOI: 10.1007/978-3-662-47672-7 58

http://arxiv.org/abs/1412.6466

714 M. Henzinger et al.

bound stood for 20 years. Our approach immediately generalizes to computing
the k-edge strongly connected components (keSCCs) and the k-vertex strongly
connected components (kvSCCs). We give algorithms that, for any integral con-
stant k > 2, compute (1) the keSCCs in time O(n2 log n) (improving upon the
previous upper bound of O(mn) [25]) and (2) the kvSCCs in time O(n3) (improv-
ing upon the previous upper bound of O(mn2) [22]).

Related Work. The 2-edge and 2-vertex connected components of an undi-
rected graph can be determined in linear time [19,27]. In directed graphs several
related problems can be solved in linear time: Testing whether a graph is 2-
edge or 2-vertex strongly connected [10,13,28], finding all strong bridges and
strong articulation points [20], and determining the 2-edge and 2-vertex strongly
connected blocks [14,15]. An edge is a strong bridge and a vertex is a strong
articulation point, respectively, if its removal from the graph increases the num-
ber of strongly connected components (SCCs) of the graph. Note the difference
between ‘blocks’ and ‘components’ in directed graphs: In a 2-edge strongly con-
nected block every pair of distinct vertices is 2-edge strongly connected; however,
as opposed to a 2eSCC, the paths to connect the vertices in a block might use
vertices that are not in the same block. Each 2eSCC is completely contained in
one 2-edge strongly connected block, i.e., the 2eSCCs refine the 2-edge strongly
connected blocks. In the full version of this paper we provide a construction
that shows that knowing the 2-edge strongly connected blocks of a graph does
not help in finding its 2eSCCs. The relation between blocks and components for
vertex connectivity is analogous.

Georgiadis et al. [14] and Jaberi [21] described simple algorithms to compute
the 2eSCCs and 2vSCCs in O(mn)-time, respectively, and posed as an open
problem whether this can be improved to linear time as well. An O(mn) run-
ning time for computing the 2eSCCs was already achieved by Nagamochi and
Watanabe in 1993 [25], which in fact solved the more general problem of com-
puting the keSCCs. To the best of our knowledge, the fastest known algorithm
for computing the kvSCCs is by Makino [22] and has a running time of O(mn2)
(when combined with an O(mn)-time algorithm for finding minimum vertex-
separators [7,9,11,18]; combined with [13] and [16] it also gives an O(mn)-time
algorithm for 2vSCCs). In undirected graphs there are linear-time algorithms for
computing both the 3-edge [12] and the 3-vertex [19] connected components. The
k-edge connected components of an undirected graph can be computed in time
O(n2) [25]. The runtime of Makino’s algorithm can for k-vertex connected com-
ponents in undirected graphs be reduced to O(n3) by a preprocessing step [23].
Thus, to the best of our knowledge, our algorithms for keSCCs and kvSCCs
match the runtimes for undirected graphs for k > 3 (up to a logarithmic factor).

Techniques. We use a hierarchical graph sparsification that was introduced by
Henzinger et al. [17] for undirected graphs and extended to directed graphs and
game graphs in [4,5]. Roughly speaking, this sparsification technique allows us to
replace the ‘m’ in the O(mn) running time by an ‘n’, yielding O(n2). Our main
technical contribution is to find structural properties of connectivity in directed

2-Strongly Connected Components in Quadratic Time 715

graphs that allow us to apply this technique. Note that while various ways of
sparsification are used in algorithms for undirected graphs, such approaches are
rarely found for directed graphs.

We briefly present the main ideas behind our algorithm for 2-vertex connectiv-
ity. The approach for edge connectivity is similar. The fastest known asymptotic
running time of O(mn) for computing 2vSCCs can be achieved with the follow-
ing approach: Assume that the graph is strongly connected. First find a strong
articulation point of the graph, i.e., a vertex whose removal increases the number
of SCCs. Then remove the strong articulation point and compute the SCCs. For
each SCC, recurse on the subgraph it induces together with the strong artic-
ulation point. The recursion stops when no strong articulation point is found
anymore. The SCCs remaining in the end are the 2vSCCs. We now explain in
which way our algorithm deviates from this scheme.

Let for 2-vertex connectivity a 2-isolated set S be a set of vertices that (a)
cannot be reached by the vertices of V \ S or (b) that can be reached from V \ S
only through one vertex v. We show that every 2vSCC of G contains either only
vertices of S ∪ {v} or only vertices of V \ S. Thus the algorithm can recurse on
the subgraphs induced by S ∪ {v} and V \ S, respectively. The difference to the
straightforward approach is thus the following: Instead of repeatedly identifying
strong articulation points, we focus on separating 2-isolated sets of vertices. To
see why this is useful, note that the incoming edges of the vertices of a 2-isolated
set S consist of the incoming vertices from other vertices of S and edges from at
most one vertex of V \ S to S. Thus the number of incoming edges of each vertex
in S is bounded by the number of vertices in S. We use this insight as follows:
When searching for a 2-isolated set, we start the search in a subgraph of G that
includes all vertices but only the first incoming edge of each vertex. If no 2-isolated
set is found, we repeatedly double the number of incoming edges per vertex in
the subgraph until the search is successful. In this way the search will take time
O(n) per vertex in the 2-isolated set. This will allow us to bound the total runtime
by O(n2). Note that to achieve this running time we cannot afford to compute
all SCCs in each recursive call because the recursion depth might be Θ(n); we
therefore do not assume that the input graph is strongly connected.

To correctly identify 2-isolated sets by a search in a proper subgraph of G,
the algorithm finds vertex-dominators in slightly modified flow graphs. A flow
graph is a directed graph with a designated root where all vertices are reachable
from the root. A vertex is a vertex-dominator in a flow graph if some other
vertex can be reached from the root only through this vertex. Our algorithms
use the linear-time algorithms for finding dominators [3,10,16,28] and SCCs [27]
as subroutines.

In the O(m2/ log n)-algorithm for 2eSCCs we search for 2-(edge-)isolated sets
in subgraphs that are obtained by local breadth-first searches from vertices that
lost edges in the previous iteration of the algorithm. Such local breadth-first
searches were first used for Büchi games by Chatterjee et al. [6].

Outline. In Section 2 the main definitions and the notation are introduced. In
Section 3 we show when and how we can identify a 2-isolated set in a proper

716 M. Henzinger et al.

subgraph of G. In Section 4 we present the O(n2)-algorithm for 2vSCCs. In
Section 5 we outline how the results from Sections 3 and 4 extend to keSCCs
and kvSCCs. The proofs are given in the full version of this paper.

2 Preliminaries

Let G = (V,E) be a directed graph with m = |E| edges and n = |V | vertices.
Except when mentioned explicitly, we only consider simple graphs, i.e., graphs
without parallel edges. The reverse graph Rev(G) of G is equal to (V,ER) where
ER is the set containing for each edge (u, v) ∈ E its reverse (v, u). We use S ⊆ V
to denote a subset S of V and S � V to denote a proper subset S of V . For
any set S ⊆ V we denote by G[S] the subgraph of G induced by the vertices
in S, i.e., the graph (S,E ∩ (S × S)). We call edges from some u ∈ V \ S to
some v ∈ S the incoming edges of S. The incoming edges of a vertex v in G are
denoted by InG(v), the number of incoming edges by IndegG(v); analogously we
use OutG(v) and OutdegG(v) for outgoing edges. We denote by G\V ′ the graph
G[V \ V ′] and by G \ E′ the graph (V,E \ E′) for an arbitrary set of vertices
V ′ ⊆ V and an arbitrary set of edges E′ ⊆ E.

Strong Connectivity. A subgraph G[S] induced by some set of vertices S
is strongly connected if for every pair of distinct vertices u and v in S there
exists a path from u to v and a path from v to u in G[S]. A single vertex is
considered strongly connected. The strongly connected components (SCCs) of
G are its maximal strongly connected subgraphs and form a partition of V . A
strongly connected subgraph with no outgoing edges is a bottom SCC (bSCC),
a strongly connected subgraph with no incoming edges is a top SCC (tSCC). By
definition, bSCCs and tSCCs are maximal. Every graph G contains at least one
bSCC and at least one tSCC. If G is not strongly connected, then there exist
both a bSCC and a tSCC that are disjoint and thus one of them contains at
most half of the vertices of G. Note that a bSCC in G is a tSCC in Rev(G) and
vice versa. We further use that when a set of vertices S cannot be reached by
any vertex of V \ S in G, then G[S] contains a tSCC of G.

Strong 2-Vertex Connectivity. A vertex v ∈ V is a strong articulation point
if the removal of v from G increases the number of SCCs in G. Two (simple)
paths are internally vertex-disjoint if they do not share a vertex except possibly
their endpoints. Two distinct vertices u and v are 2-vertex strongly connected
in G if they are strongly connected and remain strongly connected after the
removal of any vertex except u and v from G. If there is no edge between u and
v, then it holds that u and v are 2-vertex strongly connected if and only if there
exists two internally vertex-disjoint paths from u to v and two internally vertex-
disjoint paths from v to u [14]. A subgraph G[S] induced by some set of vertices
S is 2-vertex strongly connected if every pair of distinct vertices u and v in S is 2-
vertex strongly connected in G[S]. The 2-vertex strongly connected components1

1 Our definitions follow [14], while [15,21] use slightly different definitions. The 2vSCCs
of [15,21] can be determined in O(n) time from the 2vSCCs defined here.

2-Strongly Connected Components in Quadratic Time 717

(2vSCCs) of a graph are its maximal 2-vertex strongly connected subgraphs.
Equivalently, the 2vSCCs are the maximal strongly connected subgraphs such
that none of the subgraphs contains a strong articulation point. This definition
of 2vSCCs allows for degenerate 2vSCCs with less than three vertices. While the
2eSCCs form a partition of the vertices of the graph, the 2vSCCs form a partition
of a subset of the edges. In the remainder of the paper we omit “strong(ly)” from
the above definitions whenever it is clear from the context.

Flow Graphs. We define the flow graph G(r) to be the graph G with a vertex
r ∈ V designated as the root and with all vertices not reachable from r removed.
A vertex-dominator in G(r) is a vertex v ∈ V \ {r} for which there exists a
vertex u ∈ V \ {r, v} such that u is reachable from r and every path from r
to u contains v. We say that v dominates u in G(r). Note that in contrast to
articulation points the removal of a vertex-dominator from G might not increase
the number of SCCs but instead might remove edges between SCCs.

3 New Top SCCs and Dominators in Subgraphs

Let an isolated set S w.r.t. 2-vertex-connectivity (2-isolated set) be a set of
vertices with (1) incoming edges from at most one vertex and for which (2)
there exist vertices without edges to S in G. 2-isolated sets can be used to
design a divide-and-conquer based algorithm for the following reason: Let T be
the vertex set of a 2vSCC. The 2vSCC G[T] is (1) strongly connected and (2)
for any proper subset S of T such that there exists a set of vertices U in T that
has no edge to any vertex of S, there are at least two vertices in T \ (S ∪U) that
connect U with the vertices in S. Thus if we detect a set of vertices S that (a)

S U

cannot be reached by the vertices of V \S or (b) that can be reached from V \S
only through one vertex v, then we know that each 2vSCC of G contains either
only vertices of S ∪ {v} or only vertices of V \ S. A 2-isolated set satisfies (a) or
(b). Our algorithm repeatedly identifies specific 2-isolated sets S and recurses on
the subgraphs induced by S∪{v} and V \S, respectively. As the recursion depth
can be Θ(n), to achieve an o(mn) running time, we cannot afford to look at all
edges in each level of recursion. Thus our algorithms are based on the following
question: Can we identify 2-isolated sets by searching in a proper subgraph of G?
Note that whenever an articulation point v is removed from a strongly connected
graph G, then there exist both a tSCC and a bSCC in G\{v} that were adjacent
to v in G and are disjoint. Let T be the vertices in the tSCC in G\{v}. Observe
that T is a 2-isolated set in G. Further, if T contains only a few vertices, then
each vertex in T has a low in-degree in G because all incoming edges to vertices
in T in G come from v or other vertices of T . In our algorithm we search for
such “almost tSCCs” G[T] in the subgraph of G induced by vertices with low

718 M. Henzinger et al.

in-degree, which only takes time linear in the number of edges in this subgraph.
We do the same on Rev(G) to detect small almost bSCCs.

Definition 1. A set of vertices T induces an almost tSCC in G with respect to
a vertex v if G[T] is a tSCC in G \ {v} but has incoming edges from v in G.

Given a vertex v such that an almost tSCC induced by T w.r.t. v exists, the
top SCC G[T] can be identified in a subgraph of G \ {v} in time linear in the
number of edges in the subgraph as long as it is contained in the subgraph. But
how can we identify the vertex v without looking at the whole graph? Assume
there exists a vertex r �= v that is not in T but can reach v. Since G[T] is a tSCC
in G \ {v}, it follows that v dominates every vertex of T in the flow graph G(r).
This still holds in any subgraph of G as long as r can reach T in the subgraph. If
additionally all incoming edges of the vertices in T are present in the subgraph,
we can identify v and T in time linear in the number of edges in the subgraph
by finding the vertex-dominator v in the flow graph with root r and the tSCC
G[T] in the subgraph with v removed. Thus, instead of finding the right v, we
only have to find the right r. As edges are missing in the subgraph, it is not a-
priori clear how to choose r, but, as shown below, we can use an artificial vertex
as root r. Hence our approach is to first search for vertex-dominators v in a
subgraph with an additional artificial root and then for a tSCC in the subgraph
with v removed. When the search is successful, we recurse separately on the
almost tSCC and the remaining graph.

In our algorithm we cannot afford to identify all SCCs in the current graph G
as we only want to spend time proportional to the edges in a proper subgraph
of G; thus we cannot assume that the graph we are considering is strongly
connected. This means that, in contrast to strongly connected graphs [20], when
we identify a vertex-dominator v in G(r), the vertex v might not necessarily be
an articulation point in G. However, for an almost tSCC w.r.t. v we still know
that the set of vertices T in the almost tSCC is a 2-isolated set, i.e., all vertices
of V \ (T ∪ {v}) that can reach T in G can reach T only through v. Thus there
cannot be two internally vertex-disjoint paths from any vertex of G \ (T ∪ {v})
to any vertex of T . This intuition about almost tSCCs is summarized in the
following lemma, which we use to show the correctness of our approach.

Lemma 2. Let v be a vertex such that some set of vertices T induces an almost
tSCC with respect to v in G. Let W = V \ (T ∪ {v}). If W �= ∅, then there
do not exist two internally vertex-disjoint paths from any vertex of W to any
vertex of T in G, i.e., no vertex of W is 2-vertex-connected to any vertex of T .
Additionally, the vertex v is a vertex-dominator in G(r) for every r ∈ W that
can reach v in G.

Let Gh = (Vh, Eh) be a subgraph of a directed graph G = (V,E), i.e., Vh ⊆ V
and Eh ⊆ G[Vh]. We use the index h to identify specific subgraphs. In the
remainder of this section we want to characterize which almost tSCCs in G we
can identify in Gh. Let v be a vertex such that an almost tSCC w.r.t. v exists
in G. To identify v as a vertex-dominator in a flow graph, we define below a
graph created from Gh with an auxiliary root. Let the white vertices AG,h ⊆ VG

2-Strongly Connected Components in Quadratic Time 719

be the set of vertices for which we have the guarantee that for each vertex in
AG,h its incoming edges in Gh are the same as in G. Let BG,h = Vh \AG,h be the
blue vertices, which might miss incoming edges in Gh compared to G. We show
that as long as the vertices in the almost tSCC are white, i.e., are not missing
incoming edges in Gh, an almost tSCC w.r.t. a vertex v in Gh is an almost tSCC
w.r.t. v in G and vice versa. In contrast, no conclusions can be drawn from an
almost tSCC in Gh that includes blue vertices.

Definition 3. For a given subgraph Gh = (Vh, Eh) of a directed graph G =
(V,E) and a set of blue vertices BG,h that contains all vertices that have fewer
incoming edges in Gh than in G, we define the flow graph FG,h(rG,h) as follows.
If |BG,h| ≥ 2, let FG,h be the graph Gh with an additional vertex rG,h and an
additional edge from rG,h to each vertex in BG,h. If BG,h contains a single vertex,
we name it rG,h and let FG,h = Gh.

In the following consider a subgraph Gh and a set of vertices Vh partitioned into
BG,h and AG,h as above; the statements for FG,h hold whenever FG,h is defined.

Lemma 4. A set of white vertices T ⊆ AG,h induces a tSCC in Gh and FG,h,
respectively, if and only if it induces a tSCC in G.

If white vertices T induce an almost tSCC G[T] with respect to v, all incoming
edges, and thus v, are present in Gh. This implies the following corollary.

Corollary 5. A set of white vertices T ⊆ AG,h induces an almost tSCC with
respect to a vertex v ∈ V in Gh and FG,h, respectively, if and only if it induces
an almost tSCC with respect to v in G.

The following lemma specifies which almost tSCCs w.r.t. a vertex v in G
we can identify by searching for vertex-dominators in FG,h(rG,h) based on the
reachability of v from the vertices in BG,h.

Lemma 6. Assume BG,h �= ∅, let T ⊆ AG,h be a set of white vertices, and let
v ∈ V be such that there exists an almost tSCC G[T] with respect to v in G. If v
is either not in BG,h and can be reached from a vertex of BG,h or v is in BG,h

and |BG,h| ≥ 2, then v is a dominator in FG,h(rG,h).

In the following section we define specific subgraphs Gh that allow us to
identify an almost tSCC in G that has at most a certain size by searching for
vertex-dominators v in FG,h(rG,h) and tSCCs in Gh \ {v}. We additionally have
to consider one special case, namely if v is the only vertex in BG,h and an almost
tSCC w.r.t. v exists. In this case we have rG,h = v. We explicitly identify almost
tSCCs with respect to this vertex.

4 2vSCCs in O(n2) time

In this section we provide some intuition for the algorithm and outline its analysis.
To find vertex-dominators, articulation points, and SCCs the known linear time
algorithms are used (see Section 1).

720 M. Henzinger et al.

Let G = (V,E) be a simple directed graph. We consider for i ∈ N the
subgraphs Gi = (V,Ei) of G where Ei contains for each vertex of V its first
2i incoming edges in E (for some arbitrary but fixed ordering of the incoming
edges of each vertex). Note that when i ≥ log(maxv∈V IndegG(v)), then Gi = G.
Let γ be the minimum of maxv∈V IndegG(v) and maxv∈V OutdegG(v). Following
Definition 3, the set BG,i contains all vertices with in-degree more than 2i in G.

Procedure 2vSCC(G)

1 for i ← 1 to �log γ� − 1 do
2 (S, Z) ← 2IsolatedSetLevel(G, i)

/* Z contains v if G[S] is almost top or bottom SCC w.r.t. v */

3 if S �= ∅ then
4 return 2vSCC(G[S ∪ Z]) ∪ 2vSCC(G[V \ S])

5 (S, Z) ← 2IsolatedSet(G)
/* Z contains v if G[S] is almost top SCC w.r.t. v */

6 if S �= ∅ then
7 return 2vSCC(G[S ∪ Z]) ∪ 2vSCC(G[V \ S])
8 else
9 return {G}

Let S be a set of at most 2i vertices that induces a strongly connected
subgraph G[S] of G such that G[S] is a top SCC or an almost top SCC with
respect to some vertex v. Since the only edges from vertices of V \ S to S are
from v, the in-degree of each vertex in S can be at most 2i. By applying the
results from the previous section, we show that we can detect such a set S by
searching for SCCs and vertex-dominators in the graphs FG,i constructed from
Gi with the artificial root rG,i as in Definition 3.

Lemma 7. If a set of vertices S with |S| ≤ 2i induces a tSCC or an almost
tSCC in G with respect to some vertex v, then S ⊆ V \ BG,i.

To find bSCCs and almost bSCCs we also search for top SCCs in Rev(G). The
search for both top and bottom SCCs ensures that whenever an (almost) tSCC
and a disjoint (almost) bSCC exist in G, we only spend time proportional to
the smaller one. This search is performed in Procedure 2IsolatedSetLevel, which
fulfills the following guarantee.

Lemma 8. If for some integer 1 ≤ i < log γ and G ∈ {G,Rev(G)} there exists
a set of vertices T ⊆ V \ BG,i that induces in G a tSCC or an almost tSCC
with respect to some vertex v with T � V \ {v}, then 2IsolatedSetLevel(G, i)
returns a non-empty set S.

In Procedure 2vSCC we start the search for (almost) top SCCs at i = 1.
Whenever the search is not successful, we increase i by one, until we have Gi =
G or Rev(G)i = Rev(G). For the search the Procedure 2IsolatedSetLevel is
used as long as 2i < γ, i.e., both BG,i and BRev(G),i are non-empty, and the
Procedure 2IsolatedSet afterwards. Procedure 2IsolatedSet identifies an (almost)
top SCC in G if one exists by using the known procedures for finding SCCs and

2-Strongly Connected Components in Quadratic Time 721

articulation points. In this way we can show that whenever we had to go up
to i∗ or had to use Procedure 2IsolatedSet to identify an (almost) top or bottom
SCC in G, the identified subgraph contains Ω(2i

∗
) vertices, where i∗ =
log γ�

for Procedure 2IsolatedSet. This will imply that the search in Gi and Rev(G)i
for i up to i∗ takes time O(n · 2i

∗
) which is O(n · min{|S|, |V \ S|}). This will

allow us to bound the total running time by O(n2).

Procedure 2IsolatedSetLevel(G, i)

1 foreach G ∈ {G,Rev(G)} do
/* 2i < maxv∈V IndegG(v) =⇒ BG,i �= ∅ */

2 construct Gi = (V, Ei) with Ei = ∪v∈V {first 2i edges in InG(v)}
3 BG,i = {v | IndegG(v) > 2i}
4 S ← TopSCCWithout(Gi, BG,i)
5 if S �= ∅ then
6 return (S, ∅)

7 construct flow graph FG,i(rG,i) /* see Definition 3 */

8 if exists vertex-dominator v in FG,i(rG,i) then
9 S ← TopSCCWithout(Gi \ {v}, BG,i)

10 return (S, {v})

11 else if |BG,i| = 1 and ∃ tSCC � V \ {rG,i} in Gi \ {rG,i} then
12 S ← TopSCC(Gi \ {rG,i})
13 return (S, {rG,i})

14 return (∅, ∅)

Let Gi ∈ {Gi,Rev(G)i}. The Procedure 2IsolatedSetLevel first searches for
a tSCC in Gi that does not contain a vertex of BG,i. If no such tSCC is found,
the flow graph FG,i(rG,i) is constructed and searched for vertex-dominators. If a
vertex-dominator v is found, a tSCC in Gi \{v} that does not contain a vertex of
BG,i is found; one can show that such a tSCC always exists. We additionally have
to consider the special case when |BG,i| = 1. In this case we have BG,i = {rG,i}
and we want to detect when there exists an almost tSCC G[T] induced by some
set of vertices T with respect to rG,i in Gi such that V \ (T ∪{rG,i}) is not empty.
We use Procedure TopSCCWithout(H,B) to denote the search for a tSCC induced
by vertices S in a graph H such that S does not contain a vertex of B. Such a
tSCC can simply be found by marking tSCCs in a standard SCC algorithm. We
let all procedures that search for an SCC return the set of vertices S in the SCC
instead of the subgraph G[S].

If no call to Procedure 2IsolatedSetLevel could identify an (almost) top or bot-
tom SCC, we check in Procedure 2IsolatedSet whether the graph is strongly con-
nected and either make progress by separating strongly connected components
from each other or by finding an articulation point in the strongly connected graph.
If an articulation point v is found, disjoint top and bottom SCCs exist after the
removal of the articulation point v. Procedure 2IsolatedSet returns a top SCC in
G \ {v} in this case. If the graph G is strongly connected and does not contain

722 M. Henzinger et al.

Procedure 2IsolatedSet(G)

1 S ← TopSCC(G)
2 if S � V then
3 return (S, ∅)

4 if exists articulation point v in G then
5 S ← TopSCC(G \ {v})
6 return (S, {v})

7 return (∅, ∅)

an articulation point, then G is a 2vSCC. In this case the Procedure 2IsolatedSet
returns the empty set, the recursion stops, and 2vSCC(G) returns G.

Whenever the algorithm identifies an (almost) top or bottom SCC induced
by a set of vertices S, it recursively calls itself on G[S ∪ Z] and G[V \ S] for
Z = ∅ or Z = {v}, respectively. We use Lemma 2 to show that in this case every
2vSCC of G is completely contained in either G[S ∪ Z] or G[V \ S], which will
imply the correctness of the algorithm.

Theorem 9 (Correctness). Let G be a simple directed graph. 2vSCC(G) com-
putes the 2vSCCs of G.

By stopping the recursion when the number of vertices is a small constant
and distinguishing between the number of vertices n′ at the current level of the
recursion and the total number of vertices n, we can show that the runtime of
O(n′ · min{|S|, |V \ S|}) without recursion leads to a total runtime of O(n2).

Theorem 10 (Runtime). Procedure 2vSCC can be implemented in time O(n2).

5 Extension to kSCCs

For any integral constant k > 2 the presented algorithm extends to computing
the k-edge and the k-vertex strongly connected components. In this section we
outline the necessary changes, see the full version for more details.

Let an element of a graph G denote an edge when keSCCs are searched
for and a vertex when kvSCCs are searched for. We first extend the concepts
of bridges, articulation points, and dominators from a single element to sets of
elements with size less than k. A separator w.r.t. k-connectivity (k-separator) is
a minimal set of elements such that the set contains less than k elements and its
removal from the graph increases the number of SCCs in the graph. Two distinct
vertices u and v are k-(strongly-)connected if they are strongly connected and
they remain strongly connected after the removal of any less than k elements
different from u and v from G. The k-strongly connected components (kSCCs)
of a graph G are its maximal subgraphs G[S] such that every pair of distinct
vertices u and v in S is k-connected in G[S].

In a flow graph G(r) a dominator Z w.r.t. k-connectivity (k-dominator) is a
minimal set of less than k elements in G(r) \ {r} such that there exists a vertex
u ∈ G(r) \ ({r} ∪ Z) such that u is reachable from r and every path from r to u

2-Strongly Connected Components in Quadratic Time 723

contains an element of Z. A k-dominator in a flow graph G(r) and a k-separator
in a graph G can for edge-connectivity be found in time O(m log n) [8] and for
vertex-connectivity in time O(mn) [7,9,11,18].

A set of vertices T induces an almost tSCC w.r.t. k-connectivity (k-almost
tSCC) in G with respect to a set of elements Z with |Z| < k if G[T] is a tSCC in
G \ Z but has, for vertex-connectivity, incoming edges from each of the vertices
in Z, or, for edge-connectivity, all the edges in Z as incoming edges in G.

We adapt our algorithm as follows. For edge-connectivity we use different
flow graphs: (1) We contract all vertices in BG,i to a single vertex, while keeping
all edges between the vertices in BG,i and the remaining vertices as parallel edges.
(2) We take the new contracted vertex as the root of the flow graph. With these
definitions it is rather straightforward to extend the algorithm to keSCCs.

The extension to k > 2 is more complicated for vertex-connectivity. In par-
ticular, we have to deal with the case 0 < |BG,i| < k. Note that in this case we
cannot use an additional vertex that we connect to the vertices of BG,i as the
root in the flow graph because the vertices of BG,i would be a k-dominator in
this flow graph independent of the underlying graph G. To be able to identify a
set Z ∩ BG,i �= ∅ with |Z| < k for which a k-almost tSCC exists in G, we use
|BG,i| < k different flow graphs. If the search in the |BG,i| flow graphs is not
successful, we additionally search for a (k −|BG,i|)-separator in Gi \BG,i. These
changes give the following result.

Theorem 11. For any integral constant k > 2 keSCCs can be computed in time
O(n2 log n) and kvSCCs in time O(n3). 2eSCCs can be computed in time O(n2).

Acknowledgements. We would like to thank Giuseppe Italiano for suggesting the
problem and Slobodan Mitrović for helpful discussions. V. L. would like to thank Chris-
tian Tschabuschnig for his help in improving the readability of the algorithms. This
work was supported by the Austrian Science Fund (FWF): P23499-N23. Additionally,
the research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013)
/ ERC Grant Agreement no. 340506.

References

1. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, algorithms and applications.
Springer Monographs in Mathematics, 2nd edn. Springer, London (2009)

2. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan, London
(1976)

3. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook,
J.R.: Linear-time algorithms for dominators and other path-evaluation problems.
SIAM J. Comput. 38(4), 1533–1573 (2008)

4. Chatterjee, K., Henzinger, M.: Efficient and Dynamic Algorithms for Alternat-
ing Büchi Games and Maximal End-component Decomposition. J. ACM 61(3),
15:1–15:40 (2014). Announced at SODA 2011 and SODA 2012

5. Chatterjee, K., Henzinger, M., Loitzenbauer, V.: Improved algorithms for one-pair
and k-pair Streett objectives. In: LICS (2015, to appear)

724 M. Henzinger et al.

6. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Simple stochastic parity games.
In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113.
Springer, Heidelberg (2003)

7. Even, S.: An Algorithm for Determining Whether the Connectivity of a Graph is
at Least k. SIAM J. Comput. 4(3), 393–396 (1975)

8. Gabow, H.N.: A matroid approach to finding edge connectivity and packing
arborescences. J. Comput. Syst. Sci. 50(2), 259–273 (1995). Announced at STOC
1991

9. Gabow, H.N.: Using expander graphs to find vertex connectivity. J. ACM 53(5),
800–844 (2006). Announced at FOCS 2000

10. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. In: STOC, pp. 246–251 (1983)

11. Galil, Z.: Finding the vertex connectivity of graphs. SIAM J. Comput. 9(1), 197–
199 (1980)

12. Galil, Z., Italiano, G.F.: Reducing edge connectivity to vertex connectivity. ACM
SIGACT News 22(1), 57–61 (1991)

13. Georgiadis, L.: Testing 2-vertex connectivity and computing pairs of vertex-disjoint
s-t paths in digraphs. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 738–749.
Springer, Heidelberg (2010)

14. Georgiadis, L., Italiano, G.F., Laura, L., Parotsidis, N.: 2-Edge connectivity in
directed graphs. In: SODA, pp. 1988–2005 (2015)

15. Georgiadis, L., Italiano, G.F., Laura, L., Parotsidis, N.: 2-Vertex connectivity in
directed graphs. In: ICALP (2015). arXiv:1409.6277 (to appear)

16. Georgiadis, L., Tarjan, R.E.: Finding dominators revisited. In: SODA, pp. 862–871
(2004)

17. Henzinger, M., King, V., Warnow, T.: Constructing a Tree from Homeomorphic
Subtrees, with Applications to Computational Evolutionary Biology. Algorithmica
24(1), 1–13 (1999). Announced at SODA 1996

18. Henzinger, M.R., Rao, S., Gabow, H.N.: Computing Vertex Connectivity: New
Bounds from Old Techniques. Journal of Algorithms 34(2), 222–250 (2000).
Announced at FOCS 1996

19. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM
J. Comput. 2(3), 135–158 (1973)

20. Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong articu-
lation points in linear time. Theor. Comput. Sci. 447, 74–84 (2012)

21. Jaberi, R.: On computing the 2-vertex-connected components of directed graphs,
January 2014. arXiv:1401.6000v1

22. Makino, S.: An algorithm for finding all the k-components of a digraph. Interna-
tional Journal of Computer Mathematics 24(3–4), 213–221 (1988)

23. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 583–596
(1992)

24. Nagamochi, H., Ibaraki, T.: Algorithmic aspects of graph connectivity. Cambridge
University Press, New York (2008)

25. Nagamochi, H., Watanabe, T.: Computing k-edge-connected components of a
multigraph. IEICE TRANSACTIONS on Fundamentals of Electronics, Commu-
nications and Computer Sciences E76–A(4), 513–517 (1993)

26. Newman, M.E.J.: Networks: An Introduction. Oxford University Press (2010)
27. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.

1(2), 146–160 (1972)
28. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Inf. 6(2),

171–185 (1976)

http://arxiv.org/abs/1409.6277
http://arxiv.org/abs/1401.6000v1

Improved Algorithms for Decremental
Single-Source Reachability on Directed Graphs

Monika Henzinger1, Sebastian Krinninger1(B), and Danupon Nanongkai2

1 Faculty of Computer Science, University of Vienna, Vienna, Austria
sebastian.krinninger@univie.ac.at

2 KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. Recently we presented the first algorithm for maintaining the
set of nodes reachable from a source node in a directed graph that is modi-
fied by edge deletions with o(mn) total update time, where m is the number
of edges and n is the number of nodes in the graph [Henzinger et al. STOC
2014]. The algorithm is a combination of several different algorithms, each
for a different m vs. n trade-off. For the case of m = Θ(n1.5) the running
time is O(n2.47), just barely below mn = Θ(n2.5). In this paper we sim-
plify the previous algorithm using new algorithmic ideas and achieve an
improved running time of Õ(min(m7/6n2/3, m3/4n5/4+o(1), m2/3n4/3+o(1)+
m3/7n12/7+o(1))). This gives, e.g., O(n2.36) for the notorious case m =
Θ(n1.5). We obtain the same upper bounds for the problem of maintain-
ing the strongly connected components of a directed graph undergoing edge
deletions. Our algorithms are correct with high probabililty against an
oblivious adversary.

Keywords: Dynamic graph algorithms · Reachability

1 Introduction
In this paper we study the decremental reachability problem. Given a directed
graph G with n nodes and m edges and a source node s in G a decremental
single-source reachability algorithm maintains the set of nodes reachable from s
(i.e., all nodes v for which there is a path from s to v in the current version of G)
during a sequence of edge deletions. The goal is to minimize the total update time,
i.e., the total time needed to process all deletions such that reachability queries
can be answered in constant time. A decremental s-t reachability algorithm is
given a graph G undergoing edge deletions, a source node s, and a sink node t
and it determines after every deletion in G whether s can still reach t.

A full version combining the findings of this paper and its predecessor [4] is available
at http://arxiv.org/abs/1504.07959.
M. Henzinger and S. Krinninger—Supported by the Austrian Science Fund (FWF):
P23499-N23 and the University of Vienna (IK I049-N). The research leading to
these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement no. 340506.
D. Nanongkai—Work partially done while at University of Vienna, Faculty of Com-
puter Science, Austria.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 725–736, 2015.
DOI: 10.1007/978-3-662-47672-7_59

http://arxiv.org/abs/1504.07959

726 M. Henzinger et al.

Related Work. The incremental version of the single-source reachability prob-
lem, in which edges are inserted into the graph, can be solved with a total update
time of O(m) by performing an incremental graph search, where m is the final
number of edges. Italiano [6] showed that in directed acyclic graphs the decre-
mental problem can be solved in time O(m) as well. In general directed graphs
however, the problem could for a long time only be solved in time O(mn) using
the more general decremental single-source shortest paths algorithm of Even and
Shiloach [2,3,7], which maintains a breadth-first search tree rooted at s, called
ES-tree. This upper bound of O(mn) is also achieved for the seemingly more
complex decremental all-pairs reachability problem (also known as transitive
closure) [9,13]. In the fully dynamic version of single-source reachability both
insertions and deletions of edges are possible. The matrix-multiplication based
transitive closure algorithms of Sankowski [10] give fully dynamic algorithms for
single-source reachability and s-t reachability with worst-case running times of
O(n1.575) and O(n1.495) per update, respectively.

These upper bounds have recently been complemented by Abboud and Vas-
silevska Williams [1] as follows. For the decremental s-t reachability problem, a
combinatorial algorithm with a worst-case running time of O(n2−δ) (for some
δ > 0) per update or query implies a faster combinatorial algorithm for Boolean
matrix multiplication and, as has been shown by Vassilevska Williams and
Williams [12], for other problems as well. (For non-combinatorial algorithms,
Henzinger et al. [5] showed that there is no algorithm with worst-case O(n1−δ)
update and O(n2−δ) query time, assuming the so-called Online Matrix-Vector
Multiplication conjecture.) Furthermore, for the problem of maintaining the num-
ber of nodes reachable from a source under deletions (which our algorithms can
do) a worst-case running time of O(m1−δ) (for some δ > 0) per update or query
falsifies the strong exponential time hypothesis. Thus, amortization is indeed
necessary to bypass these bounds.

In [4] we recently improved upon the long-standing upper bound of O(mn)
for decremental single-source reachability in directed graphs. In particular, we
developed several algorithms whose combined expected running time is polyno-
mially faster than O(mn) for all values of m (i.e., for all possible densities of the
initial graph). By a reduction from single-source reachability, our results in [4]
immediately give an o(mn) algorithm for maintaining strongly connected com-
ponents under edge deletions. Previously, the fastest decremental algorithms for
this problem had a total update time of O(mn) as well [8,9,13].

Our Results. In this paper we improve upon the upper bounds provided in [4].
Furthermore, the running times achieved in this paper are arguably more natural
than those in [4]. Although we previously broke the O(mn) barrier for all values
of m, we barely did so, giving a bound of O(n2.47), when m = Θ(n1.5). In this
paper we also get a better improvement, namely O(n2.36) in this notorious case.
In general, we can combine the algorithms of this paper to obtain a running time
of O(mn0.9+o(1)), whereas in [4] we obtained Õ(mn0.984).

In [4] the starting point was to solve the decremental s-t reachability prob-
lem, which is also the case here. For this problem we obtain two algorithms with

Improved Algorithms for Decremental Single-Source Reachability 727

total update times of Õ(min(m5/4n1/2, m2/3n4/3+o(1))) and O(m2/3n4/3+o(1) +
m3/7n12/7+o(1)), respectively. Just as in [4], extensions of these algorithms solve
the decremental single-source reachability problem with total update times of
Õ(min(m7/6n2/3, m3/4n5/4+o(1))) and O(m2/3n4/3+o(1)+m3/7n12/7+o(1)), respec-
tively. Furthermore, it follows from a reduction [4,9] that there are algorithms for
the decremental strongly connected components problem whose running times
are the same up to a logarithmic factor. We compare these new results to the
ones of [4] in Figure 1. All our algorithms are correct with high probability who
fixes its sequence of updates and queries before the algorithm is initialized and
their running time bounds hold in expectation. Due to space constraints this
paper only contains an overview of the algorithm that has a total update time
of O(m2/3n4/3+o(1) + m3/7n12/7+o(1)) and is thus the current fastest for dense
graphs. The other algorithm and all omitted proofs can be found in the full
version of this paper.

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 1.2 1.4 1.6 1.8 2

R
un

ni
ng

tim
e

β

Graph density α

Comparison of running times for decremental single-source reachability

Even-Shiloach [2,3]
Previous paper [4]

This paper

Fig. 1. Running times of decremental single-source reachability algorithms dependent
on the density of the initial graph. A point (α, β) in this diagram means that for a
graph with m = Θ(nα) the algorithm has a running time of O(nβ+o(1)).

Techniques. There are two novel technical contributions: (1) The algorithm
of [4] uses two kinds of randomly selected nodes, called hubs and centers, each
fulfilling a different purpose. Maintaining an ES-tree for each hub up to depth
h, it quickly tests for every pair of centers (x, y) whether there is a path of
length at most 2h from x to y going through a hub. If there is no such path, we
build a special graph, called path union graph, for the pair (x, y) that contains
all paths of length O(h) from x to y. Since there no longer is a path from x
to y through a hub of length at most h, we know that their path union graph

728 M. Henzinger et al.

is “smaller” than the original graph. In this paper we show how to extend this
approach multiple layers of path unions graphs. Hubs and centers of the previous
algorithms become level k, resp. k − 1 centers in the new approach. Level k − 1
centers serve as hubs for the level k−2 centers, and more generally level i centers
serve as hubs for level i − 1 centers. To do this efficiently we build the ES-tree
for a level i center x inside the path-union graph of x and another, potentially
higher-level center. The fact that we use the smaller path-union graph instead of
the original graph for these ES-trees (together with an improved data structure
for computing path-union graphs, see (2) below) gives the improvement in the
running time.

(2) In [4] we maintain for each center x an approximate path union data
structure that computes a superset of the path union of x and any other cen-
ter y. This superset is an approximation of the path union graph for (x, y) as
it might contain paths between the two centers of length O(h log n) (and not as
desired O(h)), but no longer. The total time spent in this data structure for x
is (a) the size of the constructed path union graph and (b) a one-time “global
charge” for using this data structure of O(n2). It is based on a hierarchical graph
decomposition technique. Here we present a much simpler data structure that
also constructs an approximate path union graph, but that does not require any
hierarchical graph decomposition. This reduces the global charge per center from
O(n2) to O(m). We believe that this data structure is of independent interest.

Outline. In Section 2 we give the preliminaries. In Section 3 we present our new
path union data structure. Finally, in Section 4 we show how to combine this
idea with the multi-layer path union approach to obtain a faster decremental
single-source reachability algorithm for dense graphs.

2 Preliminaries

In this section we review some notions and basic facts that we will use in the
rest of this paper. We use the following notation: We consider a directed graph
G = (V, E) undergoing edge deletions, where V is the set of nodes of G and E
is the set of edges of G. We denote by n the number of nodes of G and by m
the number of edges of G before the first edge deletion. For every pair of nodes
u and v we denote the distance from u to v in G by dG(u, v). For every subset
of nodes U ⊆ V , we define E(U) = E ∩ U2 and denote by G[U] = (U, E[U]) the
subgraph of G induced by U . For sets of nodes U ⊆ V and U ′ ⊆ V we define
E(U, U ′) = E ∩ (U × U ′), i.e., E(U, U ′) is the set of edges (u, v) ∈ E such that
u ∈ U and v ∈ U ′. We write Ô(T (m, n)) as an abbreviation for O(T (m, n)·no(1)).

Like many decremental shortest paths and reachability algorithms, our algo-
rithms internally use a data structure for maintaining a shortest paths tree up
to a relatively small depth.

Theorem 1 (Even-Shiloach tree [2,3,7]). There is a decremental algorithm,
called Even-Shiloach tree (short: ES-tree), that, given a directed graph G under-
going edge deletions, a source node s, and a parameter h ≥ 1, maintains a

Improved Algorithms for Decremental Single-Source Reachability 729

shortest paths tree from s and the corresponding distances up to depth h with
total update time O(mh), i.e., the algorithm maintains dG(s, v) and the parent
of v in the shortest paths tree for every node v such that dG(s, v) ≤ h. By revers-
ing the edges of G it can also maintain the distance from v to s for every node
v in the same time.

The central concept in the algorithmic framework introduced in [4] is the
notion of the path union of a pair of nodes.
Definition 1. For every directed graph G, every h ≥ 1, and all pairs of nodes
x and y of G, the path union P(x, y, h, G) ⊆ V is the set containing all nodes
that lie on some path π from x to y in G of weight at most h.
The path union has a simple characterization and can be computed efficiently.
Lemma 1 ([4]). For every directed graph G, every h ≥ 1 and all pairs of nodes
x and y of G, we have P(x, y, h, G) = {v ∈ V | dG(x, v)+dG(v, y) ≤ h}. We can
compute this set in time O(m).

Our algorithms use randomization in the following way: by sampling a set of
nodes with a sufficiently large probability we can guarantee that certain sets of
nodes contain at least one of the sampled nodes with high probability. To the
best of our knowledge, the first use of this technique in graph algorithms goes
back to Ullman and Yannakakis [11].

Lemma 2. Let T be a set of size t and let S1, S2, . . . , Sk be subsets of T of size
at least q. Let U be a subset of T that was obtained by choosing each element of T
independently with probability p = (a ln (kt))/q, for some parameter a. Then, for
every 1 ≤ i ≤ k, the set Si contains a node of U with high probability (whp), i.e.,
probability at least 1 − 1/ta, and the size of U is O((t log (kt))/q) in expectation.

3 Approximate Path Union Data Structure

In this section we present a data structure for a graph G undergoing edge dele-
tions, a fixed node x, and a parameter h. Given a node y, it computes an “approx-
imation” of the path union P(x, y, h, G). Using a simple static algorithm the path
union can be computed in time O(m) for each pair (x, y). We give an (almost)
output-sensitive data structure for this problem, i.e., using our data structure the
time will be proportional to the size of the approximate path union which might
be o(m). Additionally, we have to pay a global cost of O(m) that is amortized
over all approximate path union computations for the node x and all nodes y.
This will be useful because in our reachability algorithm we can use probabilistic
arguments to bound the size of the approximate path unions.

Proposition 1. There is a data structure that, given a graph G undergoing
edge deletions, a fixed node x, and a parameter h, provides a procedure Approx-
imatePathUnion such that, given sequence of nodes y1, . . . , yk, this procedure
computes sets F1, . . . Fk guaranteeing P(x, y, h, G) ⊆ Fi ⊆ P(x, y, (log m+3)h, G)
for all 1 ≤ i ≤ k. The total running time is O(

∑
1≤i≤k |Fi| + m).

730 M. Henzinger et al.

3.1 Algorithm Description

Internally, the data structure maintains a set R(x) of nodes, initialized with
R(x) = V , such that the following invariant is fulfilled at any time: all nodes
that can be reached from x by a path of length at most h are contained in R(x)
(but R(x) might contain other nodes as well). Observe that thus R(x) contains
the path union P(x, y, h, G) for every node y.

To gain some intuition for our approach consider the following way of com-
puting an approximation of the path union P(x, y, h, G) for some node y. First,
compute B1 = {v ∈ R(x) | dG[R(x)](v, y) ≤ h} using a backward breadth-first
search (BFS) to y in G[R(x)], the subgraph of G induced by R(x). Second, com-
pute F = {v ∈ R(x) | dG[B1](x, v) ≤ h} using a forward BFS from x in G[B1].
It can be shown that P(x, y, h, G) ⊆ F ⊆ P(x, y, 2h, G).1 Given B1, we could
charge the time for computing F to the set F itself, but we do not know how to
pay for computing B1 as B1 \ F might be much larger than F .

Our idea is to additionally identify a set of nodes X ⊆ {v ∈ V | dG(x, v) > h}
and remove it from R(x). Consider a second approach where we first compute
B1 as above and then compute B2 = {v ∈ R(x) | dG[R(x)](v, y) ≤ 2h} and
F = {v ∈ R(x) | dG[B2](x, v) ≤ h}. It can be shown that P(x, y, h, G) ⊆ F ⊆
P(x, y, 3h, G). Additionally, all nodes in X = B1 \F are at distance more than h
from x and therefore we can remove X from R(x). Thus, we can charge the work
for computing B1 and F to X and F , respectively.2 However, we now have a
similar problem as before as we do not know whom to charge for computing B2.

We resolve this issue by simply computing Bi = {v ∈ R(x) | dG[R(x)](v, y) ≤
ih} for increasing values of i until we arrive at some i∗ such that the size of
Bi∗ is at most double the size of Bi∗−1. We then return F = {v ∈ R(x) |
dG[Bi](x, v) ≤ h} and charge the time for computing Bi to X = Bi−1 \ F
and F , respectively. As the size of Bi can double at most O(log n) times we have
P(x, y, h, G) ⊆ F ⊆ P(x, y, O(h log n), G), as we show below. Procedure 1 shows
the pseudocode of this algorithm. Note that in the special case that x cannot
reach y the algorithm returns the empty set. In the analysis below, let i∗ denotes
the final value of i before Procedure 1 terminates.

3.2 Correctness

We first prove Invariant (I): the set R(x) always contains all nodes that are at
distance at most h from x in G. This is true initially as we initialize R(x) to be
V and we now show that it continues to hold because we only remove nodes at
distance more than h from x.

Lemma 3. If R(x) ⊆ {v ∈ V | dG(x, v) ≤ h}, then for every node v ∈ X
removed from R(x), we have dG(x, v) > h.
1 Indeed, F might contain some node v with dG(x, v) = h and dG(v, y) = h, but it

will not contain any node w with either dG(x, w) > h or dG(w, y) > h.
2 Note that in our first approach removing B1 \ F would not have been correct as F

was computed w.r.t to G[B1] and not w.r.t. G[B2].

Improved Algorithms for Decremental Single-Source Reachability 731

Procedure 1: ApproximatePathUnion(y)
// All calls of ApproximatePathUnion(y) use fixed x and h.

1 Compute B1 = {v ∈ R(x) | dG[R(x)](v, y) ≤ h} // backward BFS to y in
subgraph induced by R(x)

2 for i = 2 to �log m� + 1 do
3 Compute Bi = {v ∈ R(x) | dG[R(x)](v, y) ≤ ih} // backward BFS to y in

subgraph induced by R(x)
4 if |E(Bi)| ≤ 2|E(Bi−1)| then
5 Compute F = {v ∈ Bi | dG[Bi](x, v) ≤ h} // forward BFS from x in

subgraph induced by Bi

6 X ← Bi−1 \ F , R(x) ← R(x) \ X
7 return F

Proof. Let v ∈ X = Bi∗−1 \ F and assume by contradiction that dG(x, v) ≤ h.
Since v ∈ Bi∗−1 we have dG[R(x)](v, y) ≤ (i∗ − 1)h. Now consider the shortest
path π from x to v in G, which has length at most h. By the assumption, every
node on π is contained in G[R(x)]. Therefore, for every node v′ on π, we have
dG[R(x)](v′, v) ≤ h and thus

dG[R(x)](v′, y) ≤ dG[R(x)](v′, v) + dG[R(x)](v, y) ≤ h + (i∗ − 1)h ≤ i∗h

which implies that v′ ∈ Bi∗ . Thus, every node on π is contained in Bi∗ . As π is a
path from x to v of length at most h it follows that dG[Bi∗](x, v) ≤ h. Therefore
v ∈ F , which contradicts the assumption v ∈ X. ��

We now complete the correctness proof by showing that the set of nodes
returned by the algorithm approximates the path union.

Lemma 4. Procedure 1 returns a set of nodes F such that P(x, y, h, G) ⊆ F ⊆
P(x, y, (log m + 3)h, G).

Proof. We first argue that the algorithm actually returns some set of nodes F .
Note that in Line 1 of the algorithm we always have |E(Bi)| ≥ |E(Bi−1)| as
Bi−1 ⊆ Bi. As E(Bi) is a set of edges and the total number of edges is at most
m, the condition |E(Bi)| ≤ |E(Bi−1)| therefore must eventually be fulfilled for
some 2 ≤ i ≤ 	log m
 + 1.

We now show that P(x, y, h, G) ⊆ F . Let v ∈ P(x, y, h, G), which implies
that v lies on a path π from x to y of length at most h. For every node v′ on
π we have dG(x, v′) ≤ h, which by Invariant (I) implies v′ ∈ R(x). Thus, the
whole path π is contained in G[R(x)]. Therefore dG[R(x)](v′, y) ≤ h for every
node v′ on π which implies that π is contained in G[Bi∗]. Then clearly we also
have dG[Bi∗](x, v) ≤ h which implies v ∈ F .

Finally we show that F ⊆ P(x, y, (log m + 3)h, G) by proving that dG(x, v) +
dG(v, y) ≤ (log m + 3)h for every node v ∈ F . As G[Bi∗] is a subgraph of G,
we have dG(x, v) ≤ dG[Bi∗](x, v) and dG(v, y) ≤ dG[Bi∗](v, y). By the defini-
tion of F we have dG[Bi∗](x, v) ≤ h. As F ⊆ Bi∗ we also have dG[Bi∗](v, y) ≤

732 M. Henzinger et al.

i∗h ≤ (log m
 + 1)h ≤ (log m + 2)h. It follows that dG(x, v) + dG(v, y) ≤
h + (log m + 2)h = (log m + 3)h. ��

3.3 Running Time Analysis

To bound the total running time we prove that each call of Procedure 1 takes
time proportional to the number of edges in the returned approximation of the
path union plus the number of edges incident to the nodes removed from R(x).
As each node is removed from R(x) at most once, the time spent on all calls
of Procedure 1 is then O(m) plus the sizes of the subgraphs induced by the
approximate path unions returned in each call.

Lemma 5. The running time of Procedure 1 is O(|E(F)|+|E(X, R(x))|+|E(R(x),
X)|) where F is the set of nodes returned by the algorithm, and X is the set of
nodes the algorithm removes from R(x).

Proof. The running time in iteration 2 ≤ j ≤ i∗ − 1 is O(|E(Bj)|) as this is the
cost of the breadth-first-search performed to compute Bj . In the last iteration i∗,
the algorithm additionally has to compute F and X and remove X from R(x).
As F is computed by a BFS in G[Bi∗] and X ⊆ Bi∗−1 ⊆ Bi∗ , these steps take
time O(|E(Bi∗)|). Thus the total running time is O(

∑
1≤j≤i∗ |E(Bj)|).

By checking the size bound in Line 4 of Procedure 1 we have |E(Bj)| >
2|E(Bj−1)| for all 1 ≤ j ≤ i∗ − 1 and |E(Bi∗)| ≤ 2|E(Bi∗−1)|. By repeatedly
applying the first inequality it follows that

∑
1≤j≤i∗−1 |E(Bj)| ≤ 2|E(Bi∗−1)|.

Therefore we get
∑

1≤j≤i∗
|E(Bj)| =

∑
1≤j≤i∗−1

|E(Bj)| + |E(Bi∗)|

≤ 2|E(Bi∗−1)| + 2|E(Bi∗−1)| = 4|E(Bi∗−1)|
and thus the running time is O(|E(Bi∗−1)|). Now observe that by X = Bi∗−1 \F
we have Bi∗−1 ⊆ X ∪ F and thus

E(Bi∗−1) ⊆ E(F) ∪ E(X) ∪ E(X, F) ∪ E(F, X)
⊆ E(F) ∪ E(X, R(x)) ∪ E(R(x), X) .

Therefore the running time is O(|E(F)| + |E(X, R(x))| + |E(R(x), X)|). ��

4 Reachability via Center Graph

We now show how to combine the approximate path union data structure with
a hierarchical approach to get an improved decremental reachability algorithm
for dense graphs. The algorithm has a parameter 1 ≤ k ≤ log n and for each
1 ≤ i ≤ k a parameter ci ≤ n. We determine suitable choices of these parameters
in Section 4.2. For each 1 ≤ i ≤ k − 1, our choice will satisfy ci ≥ ci+1 and
ci = Ô(ci+1). Furthermore, we set hi = (3 + log m)i−1n/c1 for 1 ≤ i ≤ k. At the

Improved Algorithms for Decremental Single-Source Reachability 733

initialization, the algorithm determines sets of nodes C1 ⊇ C2 ⊇ · · · ⊇ Ck such
that s, t ∈ C1 as follows. For each 1 ≤ i ≤ k, we sample each node of the graph
with probability aci ln n/n (for a large enough constant a), where the value of ci

will be determined later. The set Ci then consists of the sampled nodes, and
if i ≤ k − 1, it additionally contains the nodes in Ci+1. For every 1 ≤ i ≤ k
we call the nodes in Ci i-centers. In the following we describe an algorithm for
maintaining pairwise reachability between all 1-centers.

4.1 Algorithm Description

Data Structures. The algorithm uses the following data structures:

– For every i-center x and every i ≤ j ≤ k an approximate path union data
structure (see Proposition 1) with parameter hj .

– For every k-center x an incoming and an outgoing ES-tree of depth hk in G.
– For every pair of an i-center x and a j-center y such that l := max(i, j) ≤

k − 1, a set of nodes Q(x, y, l) ⊆ V . Initially, Q(x, y, l) is empty and at some
point the algorithm might compute Q(x, y, l) using the approximate path
union data structure of x.

– For every pair of an i-center x and a j-center y such that l := max(i, j) ≤ k−1
an ES-tree of depth hl from x in Q(x, y, l).

– For every pair of an i-center x and a j-center y such that l := max(i, j) ≤ k−1
a set of (l + 1)-centers certifying that x can reach y.

Certified Reachability Between Centers (Links). The algorithm main-
tains the following limited path information between centers, called links, in
a top-down fashion. Let x be a k-center and let y be an i-center for some
1 ≤ i ≤ k − 1. The algorithm links x to y if and only if y is contained in
the outgoing ES-tree of depth hk of x. Similarly the algorithm links y to x if
and only if y is contained in the incoming ES-tree of depth hk of x. Let x be
an i-center and let y be a j-center such that l := max(i, j) ≤ k − 1. If there is
an (l + 1)-center z such that x is linked to z and z is linked to y, the algorithm
links x to y (we also say that z links x to y). Otherwise, the algorithm computes
Q(x, y, l) using the approximate path union data structure of x and starts to
maintain an ES-tree from x up to depth hl in G[Q(x, y, l)]. It links x to y if and
only if y is contained in the ES-tree of x. Using a list of centers z certifying that
x can reach y, maintaining the links between centers is straightforward.

Center Graph. The algorithm maintains a graph called center graph. Its nodes
are the 1-centers and it contains the edge (x, y) if and only if x is linked to y. The
algorithm maintains the transitive closure of the center graph. A query asking
whether a center y is reachable from a center x in G is answered by checking
the reachability in the center graph. As s and t are 1-centers this answers s-t
reachability queries.

734 M. Henzinger et al.

Correctness. For the algorithm to be correct we have to show that there is a
path from s to t in the center graph if and only if there is a path from s to t
in G. We can in fact show more generally that this is the case for any pair of
1-centers.

Lemma 6. For every pair of 1-centers x and y, there is a path from x to y in
the center graph if and only if there is a path from x to y in G.

4.2 Running Time Analysis

The key to the efficiency of the algorithm is to bound the size of the graphs
Q(x, y, l).

Lemma 7. Let x be an i-center and let y be a j-center such that l := max(i, j) ≤
k −1. If x is not linked to y by an (l + 1)-center, then Q(x, y, l) contains at most
n/cl+1 nodes with high probability.

With the help of this lemma we first analyze the running time of each part of
the algorithm and argue that our choice of parameters gives the desired total
update time.

Parameter Choice. We carry out the running time analysis with regard to two
parameters 1 ≤ b ≤ c ≤ n which we will set at the end of the analysis. We set
k = 	(log (c/b))/(

√
log n · log log n)
 + 1, ck = b and ci = 2

√
log n·log log nci+1 =

Ô(ci+1) for 1 ≤ i ≤ k − 1. Note that the number of i-centers is Õ(ci) in expec-
tation. Observe that

(3 + log m)k−1 = O((log n)k) ≤ O((log n)
√

log n/ log log n)

= O(2
√

log n·log log n) = O(n
√

log log n/ log n) = O(no(1)) .

Furthermore we have

c1 =
(

2
√

log n·log log n
)k−1

ck ≥ 2log (c/b)b = c

b
· b = c

and by setting k′ = (log (c/b))/(
√

log n · log log n) we have k ≤ k′ + 2 and thus

c1 =
(

2
√

log n·log log n
)k−1

ck ≤
(

2
√

log n·log log n
)k′+1

ck = 2
√

log n·log log nc = Ô(c) .

Remember that hi = (3 + log m)i−1n/c1 for 1 ≤ i ≤ k. Therefore we have
hi = Ô(n/c1) = Ô(n/c).

Maintaining ES-Trees. For every k-center we maintain an incoming and an
outgoing ES-tree of depth hk, which takes time O(mhk). As there are Õ(ck)
k-centers, maintaining all these trees takes time Õ(ckmhk) = Ô(bmn/c).

For every i-center x and every j-center y such that l := max(i, j) ≤ k −1, we
maintain an ES-tree up to depth hl in G[Q(x, y, l)]. By Lemma 7 Q(x, y, l) has

Improved Algorithms for Decremental Single-Source Reachability 735

at most n/cl+1 nodes and thus G[Q(x, y, l)] has at most n2/c2l+1 edges. Main-
taining this ES-tree therefore takes time O((n2/c2l+1) ·hl) = Ô(n2/c2l+1(n/c1)) =
Ô(n3/(c1c2l+1)). In total, maintaining all these trees takes time

Ô

⎛
⎝ ∑

1≤i≤k−1

∑
1≤j≤i

cicj
n3

c1c2i+1

⎞
⎠ = Ô

⎛
⎝ ∑

1≤i≤k−1

∑
1≤j≤i

cic1n3

ci+1c1ck

⎞
⎠

= Ô

⎛
⎝ ∑

1≤i≤k−1

∑
1≤j≤i

n3

ck

⎞
⎠ = Ô

(
k2 n3

ck

)
= Ô

(
n3

b

)
.

Computing Approximate Path Unions. For every i-center x and every
i ≤ j ≤ k we maintain an approximate path union data structure with parameter
hj . By Proposition 1 this data structures has a total running time of O(m) and
an additional cost of O(|E(Q(x, y, j))|) each time the approximate path union
Q(x, y, j) is computed for some j-center y. By Lemma 7 the number of nodes of
Q(x, y, j) is n/cj+1 with high probability and thus its number of edges is n2/c2j+1.
Therefore, computing all approximate path unions takes time

Õ

⎛
⎝ ∑

1≤i≤k−1

∑
i≤j≤k

(
cim + cicj

n2

c2j+1

)⎞
⎠= Õ

⎛
⎝ ∑

1≤i≤k−1

∑
i≤j≤k

(
c1m + c1cjn2

cj+1ck

)⎞
⎠

= Ô

⎛
⎝ ∑

1≤i≤k−1

∑
i≤j≤k

(
c1m + c1n2

ck

)⎞
⎠= Ô(k2c1m+k2c1n2/ck)= Ô(cm+cn2/b) .

Maintaining Links Between Centers. For each pair of an i-center x and a
j-center y there are at most Õ(cl+1) (l + 1)-centers that can possibly link x to y.
Each such (l + 1)-center is added to and removed from the list of (l + 1)-centers
linking x to y at most once. Thus, the total time needed for maintaining all these
links is Õ(

∑
1≤i≤k−1

∑
1≤j≤i cicjci+1) = Õ(k2c31) = Õ(c3).

Maintaining Transitive Closure in Center Graph. The center graph has
Õ(c1) nodes and thus Õ(c21) edges. During the algorithm edges are only deleted
from the center graph and never inserted. Thus we can use known O(mn)-time
decremental algorithms for maintaining the transitive closure [9,13] in the center
graph in time Õ(c31) = Õ(c3).

Total Running Time. Since the term cn2/b is dominated by the term n3/b,
we obtain a total running time of Ô

(
bmn/c + n3/b + cm + c3

)
. By setting b =

n5/3/m2/3 and c = n4/3/m1/3 the running time is Ô(m2/3n4/3 + n4/m) and by
setting b = n9/7/m3/7 and c = m1/7n4/7 the running time is Ô(m3/7n12/7 +
m8/7n4/7).

736 M. Henzinger et al.

4.3 Decremental Single-Source Reachability
The algorithm above works for a set of randomly chosen centers. Note that the
algorithm stays correct if we add any number of nodes to C1, thus increasing
the number of 1-centers for which the algorithm maintains pairwise reachability.
If the number of additional centers does not exceed the expected number of ran-
domly chosen centers, then the same running time bounds still apply. Using the
reductions of [4] this immediately implies decremental algorithms for maintain-
ing single-source reachability and strongly connected components.
Theorem 2. There are decremental algorithms for maintaining single-source
reachability and strongly connected components with constant query time and
expected total update time Ô(m2/3n4/3 + m3/7n12/7) that are correct with high
probability against an oblivious adversary.

References
1. Abboud, A., Vassilevska Williams, V.: Popular conjectures imply strong lower

bounds for dynamic problems. In: Symposium on Foundations of Computer Science
(FOCS), pp. 434–443 (2014)

2. Even, S., Shiloach, Y.: An on-line edge-deletion problem. Journal of the ACM
28(1), 1–4 (1981)

3. Henzinger, M., King, V.: Fully dynamic biconnectivity and transitive closure. In:
Symposium on Foundations of Computer Science (FOCS), pp. 664–672 (1995)

4. Henzinger, M., Krinninger, S., Nanongkai, D.: Sublinear-time decremental algo-
rithms for single-source reachability and shortest paths on directed graphs. In:
Symposium on Theory of Computing (STOC), pp. 674–683 (2014)

5. Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and
strengthening hardness for dynamic problems via the online matrix-vector mul-
tiplication conjecture. In: Symposium on Theory of Computing (STOC) (2015)

6. Italiano, G.F.: Finding paths and deleting edges in directed acyclic graphs. Infor-
mation Processing Letters 28(1), 5–11 (1988)

7. King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In: Symposium on Foundations of Computer Science
(FOCS), pp. 81–91 (1999)

8. Roditty, L.: Decremental maintenance of strongly connected components. In: Sym-
posium on Discrete Algorithms (SODA), pp. 1143–1150 (2013)

9. Roditty, L., Zwick, U.: Improved dynamic reachability algorithms for directed
graphs. SIAM Journal on Computing 37(5), 1455–1471 (2008). announced at
FOCS 2002

10. Sankowski, P.: Dynamic transitive closure via dynamic matrix inverse. In: Sympo-
sium on Foundations of Computer Science (FOCS), pp. 509–517 (2004)

11. Ullman, J.D., Yannakakis, M.: High-probability parallel transitive-closure algo-
rithms. SIAM Journal on Computing 20(1), 100–125 (1991). announced at SPAA
1990

12. Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path,
matrix and triangle problems. In: Symposium on Foundations of Computer Sci-
ence (FOCS), pp. 645–654 (2010)

13. Łącki, J.: Improved deterministic algorithms for decremental reachability and
strongly connected components. ACM Transactions on Algorithms 9(3), 27 (2013).
announced at SODA 2011

Weighted Reordering Buffer Improved via
Variants of Knapsack Covering Inequalities

Sungjin Im1 and Benjamin Moseley2(B)

1 Department of Electrical Engineering and Computer Science,
University of California, Merced, CA 95344, USA

sim3@ucmerced.edu
2 Washington University in St. Louis, St. Louis, MO 63130, USA

bmoseley@wustl.edu

Abstract. We consider the weighted Reordering Buffer Management
problem. In this problem a set of n elements arrive over time one at a
time and the elements can be stored in a buffer of size k. When the buffer
becomes full, an element must be output. Elements are colored and if two
elements are output consecutively and they have different colors then a
switching cost is incurred. If the new color output is c, the cost is wc. The
objective is to reorder the elements to minimize the total switching cost in
the output sequence.

In this paper, we give an improved randomized O(log log log kγ)-
approximation for this problem where γ is the ratio of the maximum to
minimumweight of a color, improvingupon theprevious bestO(log log kγ)-
approximation. Our improvement builds on strengthening the standard
linear program for the problem with non-standard knapsack covering
inequalities. In particular, by leveraging the structure of these inequalities,
our algorithmmanages to render several randomproceduresmore powerful
and combine them effectively, thereby giving an exponential improvement
upon the previous work.

1 Introduction

Buffer management theory focuses on studying how a buffer, typically of limited
size, can be used to support an application. Due to the numerous applications
of buffers, such as in networking and memory management, a rich and diverse
theory has been developed. One well studied problem is the Reordering Buffer
Management problem. In this problem, there is a set of n elements that arrive
over time and the elements are colored. It is assumed that one element arrives at
each time from 1 to n. There is a buffer of size k where the arriving elements can
be stored in, and when the buffer becomes full an element must be output. If an
element is output that has the same color as the previous element output, then
there is no cost for outputting the element. Otherwise when the color changes,
if the element output has color c then a cost of wc is incurred. The goal is to
reorder elements in the buffer to minimize the total cost incurred. Note that if

S. Im—Supported in part by NSF grant CCF-1409130.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 737–748, 2015.
DOI: 10.1007/978-3-662-47672-7 60

738 S. Im and B. Moseley

wc = 1 for all colors c, then the goal is just to minimize the number of times the
color changes in the output sequence.

The Reordering Buffer Management problem, which was elegantly formulated
in [20], seeks to understand the fundamental tradeoff between the limited buffer
size and the context switching cost. This simple, yet powerful, model captures
several practical problems seen in paint shops, graphics rendering, as well as
network buffering. For example, consider a server that forwards messages to
clients. When switching from sending messages from one client to another, a cost
is paid representing the overhead of the context switch. One may desire to limit
the number of times the server switches between clients by buffering messages
and reordering them to minimize the context switches. See [3,10,19,20] for more
applications of this model. Besides the practical importance of the model, the
model has been well studied theoretically. The main theoretical interest comes
from the simplicity of the model and the fact that, yet being simple, the model
is algorithmically challenging. Indeed, the model has been extensively studied
both online and offline [1,2,4,6–8,12,13,20]. However, even though this problem
has been rigorously studied for over a decade, the complexity of the problem is
not well understood.

The challenges of the model emerge even when the weights of the colors are
uniform. The uniform weight problem is known to be NP-Hard [4,12]. Further,
algorithms that initially would seem to be ideal candidates for the problem fail to
have a small approximation ratio. For example, simple algorithms such as Largest
Color First, which outputs color that has the largest number of elements in the
buffer, First-In First-Out and Least Recently Used all have strong lower bounds
on their approximation ratios [20]. Due to this, previous work has focused on
developing more sophisticated algorithms for the problem.

Initially an O(log2 k)-approximation was shown for the problem when the
weights are all uniform [20]. This been improved through a sequence of woks
[2,6,8,13]. Recently, the complexity of the unweighted case has been resolved
up to constant factors and O(1)-approximation algorithms are known [7,16]. For
the weighted version of the problem, the currently best known approximation
is a randomized O(log log kγ)-approximation where here γ is the ratio of the
maximum to minimum weight of a color [16]. Several algorithms are known which
use resource augmentation where the algorithm is given a larger buffer than the
optimal solution [12,20]. A key open question in the area is determining the right
approximation ratio for the non-uniform weight version of the problem.

Results: In this work we improve upon the best known approximation ratio for
the non-uniformweightedReorderingBufferManagement problem.Wedevelop an
algorithmthat exponentially improves upon thebest previously knownalgorithm’s
approximation guarantee of O(log log kγ). Our main result is the following.

Theorem 1. There exists a randomized O(log log log kγ)-approximation algo-
rithm for the weighted Reordering Buffer Management problem where γ is the
ratio of the maximum to minimum weight of a color.

Weighted Reordering Buffer Improved via Variants 739

For the online version of the problem, an Ω(log log k) lower bound is known on
randomized algorithms as well as an O((log log kγ)2) upper bound [2,5]. This is
the first case where the offline problem has been shown to have an approximation
ratio better than the best possible competitive ratio. To show the main result,
we introduce new linear program rounding techniques. In particular, we add
knapsack covering inequalities to the standard linear program for the problem.
See [11] for details on knapsack covering inequalities. We extend the definition
of traditional knapsack covering inequalities by adding additional parameters
to the inequalities, which prove to be very useful. By leveraging the structural
properties given to us by these inequalities, we can circumvent barriers faced
in previous rounding techniques. The inequalities were used in the context of
unweighted reordering buffer in the authors’ previous work [16]. However, they
were only able to use the inequalities to give a small constant factor improvement
for the unweighted case, but did not know how to use them for the weighted case.
In this work, we demonstrate the power of our variants of knapsack covering
inequalities by giving an exponential improvement for the weighted case. The
inequalities will be further discussed in Section 2 and 3. We will give an overview
of our algorithm and analysis in Section 3 together with the discussion on how
this work is differentiated from the previous work.

Related Work: Besides the mentioned work on the offline buffer reordering
problem, the problem has also been considered online. It is known that in the
online setting that there is lower bound of Ω(

√
log k

log log k) on the competitive
ratio of deterministic schedulers and Ω(log log k) on randomized schedulers [2].
The work of [2] gave the first O(

√
log k)-competitive deterministic online sched-

uler, essentially resolving the deterministic case when colors are unweighted. The
recent work of [8] has resolved the randomized case when colors are unweighted
by giving an O(log log k)-competitive online algorithm. For the weighted ver-
sion of the problem, previous the best known online algorithm is a determin-
istic O(

√
log kγ)-competitive algorithm, which has recently been improved to

O((log log kγ)2) randomized algorithm [5]. The problem has also been consid-
ered in the stochastic setting [14].

The Reordering Buffer Management problem has been generalized and been
studied in several other settings. Most generalizations consider extending the
definition of the cost function when switching colors. The work of [15,17] con-
siders when the cost of switching between two colors forms a line metric and
[9,18] considers when the costs form a general metric.

Organization: The paper is organized as follows. In Section 2 we start by intro-
ducing the linear programming relaxation we will consider throughout the paper
as well as some useful lemmas and a simple randomized sampling procedure. In
Section 3 we give a high-level sketch of our algorithm and analysis to show the
intuition guiding our work. In Section 4 we formally introduce our algorithm
and finally in Section 5 we give the formal proof of the algorithm’s guarantees.

740 S. Im and B. Moseley

2 Preliminaries

In this section, we introduce our linear program, a few useful lemmas as well as a
simple sampling scheme that our algorithm will utilize. We begin by introducing
our linear program. We call a continuous sequence of elements of the same color
in the output sequence a color block. We require elements for a color are output
in first-in first-out order without loss of generality. Each color block (or simply
block) b is a triple (i, t, �) specifying the first element in the color block ei, the
time the block is scheduled t and the length of the sequence �. Note that one can
deduce all � elements that are output in the block from the triple, and we let
(i′, t′) ∈ b if element ei′ is output at time t′ in the color block. Let B be the set
of all possible color blocks in the output sequence. Note that B is polynomial in
n. Let E denote the set of all elements.

Below is an integer programming formulation for the problem. The variable
xb specifies if the color block b is in the output sequence. The variable yi,t specifies
if element ei is output at time t and βi,t specifies if the element ei was output
at or before time t. We use the notation Eb,≤t to denote all the elements in the
color block b which were output in b at or before time t. For a color block b let
c(b) be the color of the elements in b and, likewise, let c(ei) denote the color
of the element ei. Let p(i) to denote the element for color c(ei) which is the
previous element of this color that arrives before ei – that is, the latest arriving
element for color c(ei) that arrives before ei.

min
∑
b∈B

wc(b)xb (IP)

s.t. yi,t =
∑

(i,t)∈b

xb ∀i, t (1)

∑
i∈[n]

yi,t = 1 ∀t ≥ k + 1 (2)

∑
t∈[k+1,k+n]

yi,t = 1 ∀i ∈ [n] (3)

βi,t =
∑
i,t′≤t

yi,t′ ∀i ∈ [n], t ∈ [k + 1, k + n] (4)

βp(i),t−1 ≥ βi,t ∀i ∈ [n], t ≥ k + 1 (5)
∑

b∈B\B′
(|Eb,≤t \ E′|)xb ≥ (t − k − |E′|)(1 −

∑
b∈B′

xb) ∀t ∈ [k + 1, k + n], B′ ⊆B, E′ ⊆E

(6)

xb ∈ {0, 1} ∀b ∈ B (7)

Constraint (2) ensures that at most one element is output at each time.
Constraint (3) ensures that each element is output at some time. Constraints
(1) and (4) set the y and β variables according to the x variables. Constraint (5)
ensures that elements are output in first-in-first-out order. Finally, the knapsack

Weighted Reordering Buffer Improved via Variants 741

covering inequality is given in Constraint (6). We obtain an LP relaxation by
replacing (7) with xb ∈ [0, 1].

Variants of Knapsack Covering Inequalities: The key constraints (6) deserve
special attentions. The constraints are over all B′ ⊆ B and E′ ⊆ E; therefore,
there are exponentially many such constraints. To get a feel of the constraints,
consider the simplest case that B′ = ∅ and E′ = ∅ with a fixed time t. Then the
left-hand-side is simply the total number of elements output by time t, where
each color block counts the number of elements it outputs by time t, and adds it
to the summation. The right-hand-side is t−k, hence (6) states that at least t−k
elements must be output by time t due to the space limit of k for the buffer. Now
consider an arbitrary E′ with B′ = ∅. Then, (6) lower bounds the total number
of elements that has to be output in individual blocks by time t with the elements
in E′ excluded. In fact, (6) is a standard knapsack covering inequality if B′ = ∅.
Intuitively, this prevents the LP from cheating with elements.

In contrast, the power of having B′ does not seem immediate – if there
is a b ∈ B′ where xb = 1, then the inequality is trivially satisfied, otherwise
it becomes a standard knapsack inequality. However, having B′ turns out to
be very useful in randomized rounding. Recall that in the Reordering Buffer
Problem the costs are determined by color blocks output, hence the complexity
cannot be understood well without having a good control over blocks. In the
fractional LP solution, we will be able to exclude some fractional color blocks
and focus on “good” fractional blocks to derive nice probabilistic properties. The
overall analysis is done with carefully chosen E′ and B′.

To see why having B′ �= ∅ is useful, consider adding a color block b which
has k2 elements in it output by time t, but xb = 1

k in an LP solution. From
this color block, a total ‘volume’ of elements output is k. However, the color
block is chosen by very little in the LP. By adding b to B′, the right hand side
decreases by a multiplicative factor of 1 − 1

k while the left hand side decreases
by an additive factor of k. This strengthens the LP. For instance, in the case
that E′ is chosen such that, t − k − |E′| ≤ k, then the right hand side only
decreases by an additive k · 1

k = 1, while the left hand side decreases by k. The
added power is that the LP cannot output a large volume of elements using color
blocks with many elements, but only choosing those color blocks themselves by
a small amount.

Finally, we discuss the separation oracle regarding the constraints (6). Unfor-
tunately, we do not know if there is a polynomial-time separation oracle when
the constraint is defined over all B′ ⊆ B,E′ ⊆ E. However, there is a very easy
separation oracle if either B′ or E′ is fixed. It turns out that we only need to
consider polynomially many different E′ for our analysis. That is, even though
such a collection of E′ is determined by {xb}, we only need to look at polynomi-
ally many E′, and this will allow us to solve the LP in polynomial time to the
extent of our need. We defer the proof of solving the LP in polynomial time to
a full version of this paper.

Useful Lemmas and Observations: Now we show some lemmas that will be
useful throughout the paper. We will refer to xb as the height of the color block

742 S. Im and B. Moseley

b in the LP solution. The following lemma will allow our algorithm to output a
color at time t if the elements in the algorithm’s buffer for the color at time t
have been processed by a set of color blocks of substantial height in the LP by
time t. This is similar to lemmas used in [2,16] and is standard for the problem.
The proof is omitted.

Lemma 1. Consider any color block b output by our algorithm A which starts
at time t and ends at time t′′. Let t′ ≥ k + 1 be the earliest time before t such
that A scheduled no element of color c(b) during [t′, t). Suppose that the LP has
a set of color blocks S of total height at least ε (i.e.

∑
b′∈S xb′ ≥ ε) that each

have processed at least one element in b by time t – in particular, such a set S
exists if the first element ei in b is processed by at least ε by time t in the LP.
Then there is a set of color blocks of total height at least ε for color c(ei) in the
LP’s solution that end during (t′, t′′].

The following proposition follows from constraint (1) in the LP.

Proposition 1. Suppose that the LP has a set I of color c color blocks of color
c and total height at least h, all starting no later than some time t. Further, sup-
pose that each of blocks scheduled after time step t at least � (possibly different)
elements that entered the buffer no later than time step t. Then it is the case
that LP has at least a total volume of h� of elements of color c in its buffer at
time t.

Next we state a lemma that will allow us to compare against an LP with
a slightly smaller buffer size. In particular, we will solve the LP with a buffer
of size k′ = k − k

log kγ . This can be done by losing only an O(1) factor in the
approximation ratio as the lemma shows. The following lemma was shown in [5]
and similar lemmas are known for the unweighted version of the problem. The
proof of the lemma is omitted.

Lemma 2. For any input sequence and k′ < k, respectively, OPTk′ ≤ O(1) ·
(k

k′ +(k−k′) log k′γ
k′)OPTk, where OPTs denotes the cost of the optimal solution

using a buffer of size s.

Finally we introduce a sampling scheme which was originally used in [5] which
is independent rounding coupled with a threshold rounding. We refer to a color
block as maximal in the algorithm’s output sequence if when the color block
ends there are no more elements of the same color in the buffer at that time. In
the sampling we will sample a color block b in the LP solution with probability
1
αxb if 1

αxb < 1 and with probability 1 if 1
αxb ≥ 1. We call this the α-sampling.

Let Bag denote the pool of color blocks sampled. Let tαi denote the earliest time
that a color block in Bag schedules the element ei and if no such color block
exists set tαi = ∞. We say that element ei is α-ready at time tαi or at any time
later. The proof of the following lemma is an extension of a proof found in [5].
The proof is deferred to a full version of this paper. For any set of color blocks
A, let xi,A(t) denote the amount by which the element ei is processed by color
blocks in A by time t.

Weighted Reordering Buffer Improved via Variants 743

Lemma 3. For any constant 0 < α < 1, the α-sampling satisfies the following
properties :

• For any set of blocks A, the element ei is α ready by time t with probability
at least (1− 1/e)min{xi,A(t)/α, 1}. For any distinct elements ei and ej that
are not processed by the same blocks in A by time t, the events that they
become α ready by sampling color blocks from A are independent.

• The previous property implies that that for any element ei and time step t
such that βi,t ≤ α, Pr[tαi ≤ t] ≥ (1−1/e)βi,t/α. This probability occurs inde-
pendently for two elements if they are not processed by the same color blocks
ever by time t. In particular, this is always true for elements of different
colors.

• Consider any collection B′ of disjoint maximal color blocks where each block
b′ ∈ B′ schedules at least one element i at time t ≥ tαi . The expected total
cost of the blocks in B′ is at most (1/α)CostLP.

The properties of the sampling scheme will be very useful for our analysis.
The first property ensures that an element ei can be scheduled by time t with
probability proportional to amount it has been processed by the LP at time t,
βi,t. The second property ensures that the sampling is independent for elements
of different colors or for elements where we can identify a set of color blocks
that do not process both of them. The third property shows that the cost of
outputting elements after their α-ready time can be charged to the LP.

3 Algorithm and Analysis Overview

In this section we give an outline of our algorithm and the analysis. Due to
space constraints, the main analysis is deferred to a full version of this paper.
The actual analysis is more involved but our goal here is to give the underlying
intuition while ignoring lower level details.

Our algorithm begins by solving the linear program for the problem where the
buffer size is set to be k′ = k − k

log kγ . The solution to the linear program is used
to guide the algorithm on how elements should be output. The algorithm itself,
works like an online algorithm that outputs elements sequentially from time k+1
to time n + k. At any time t where there is an element in the algorithm’s buffer
B(t) that has the same color as the previous element output, the algorithm will
output such an element. Otherwise, the algorithm needs to choose a color to
switch to. At these points in time, the algorithm will use a set of rules to decide
which color to switch to. These rules on the color to switch to are guided by the
LP solution.

We now discuss the rules that the algorithm uses to decide the color to switch
to. These rules are inspired by the previous work of [16] on the Buffer Reordering
Management problem. The first set of rules are simple and similar to previous
work. The algorithm is free to switch to any color c where (1) the elements in
B(t) for color c have been processed by color blocks in the LP of total height at
least ε (2) there is a an element for color c in B(t) that is α-ready or (3) there

744 S. Im and B. Moseley

are more than k/10 elements in B(t) for color c. The cost of execution rule (1) is
easily charged to the LP using Lemma 1 and the same is holds for rule (2) using
Lemma 3. The cost of rule (3) can by charged to the LP using observations used
in [16]. Intuitively, a color cannot be output many times if it occupies Θ(k) space
in the buffer without the LP also needing to output the color. This is because
the LP would need to store all of these elements, contradicting its buffer size
and, therefore, we can charge to the LP.

The first three simple rules are used to give structural properties on the
algorithm and LP’s status when these rules cannot be applied. The interesting
rules are the final two rules to be mentioned soon. Recall that the LP solution
has buffer of smaller size than the algorithm. This implies that at any time t, the
LP must have processed the elements in B(t) by a k

log kγ aggregate amount. The
final two rules are based on whether this aggregate amount of work is focused
mostly on elements for colors which occupy a large portion of the algorithm’s
buffer or a smaller portion of the buffer.

Let Cs(t) be the set of colors where the algorithm has less than k
log3 kγ

ele-
ments for each of these colors in its buffer and let Cb(t) be the remaining colors
where the algorithm has more than k

log3 kγ
elements for these colors. In [16] it was

shown that if a constant fraction of the work the LP has done on elements in
B(t) are for colors in Cs(t) then we should have sampled an element in B(t) for
a colors in Cs(t) with probability at least 1 − 1

k2 . Intuitively, a large volume of
work was focused on these colors. Further, knowing that color blocks for colors
in Cs(t) can only include k

log3 kγ
elements from B(t), one can use concentration

inequalities to show that we should have sampled such an element. Since we fail
to sample an element with low probability, it can be shown that there is some
color we can switch to such that the expected cost of switch to this color is small
compared to the LP’s cost. This will be rule (4).

The final rule and analysis of this rule is where our work differs from [16] and
is where the knapsack covering inequalities proves to very useful. The algorithm
will only perform this rule so long as the previous rules do not apply. In partic-
ular, since we do not execute rule (4), we know that a constant fraction of the
work the LP has done by time t on the elements in B(t) are on elements that
have colors in Cb(t). Let nA

c (t) denote the number of elements for color c in B(t).
Let nO

c (t) be the number of elements in the LP at time t for color c that have
been processed by at most 1/2+2ε. The first step is showing that there is a color
c ∈ Cb(t) where nA

c (t) ≥ 3
5nO

c (t). This will follow from the fact that if it were not
true, then the LP has many elements the algorithm does not have for colors in
Cb(t). But then, we also know that no element in B(t) is processed by ε, since we
did not use rule (1). Thus, the LP must have all elements in B(t) and these extra
elements in its buffer, but this will cause a contradiction to the LP’s buffer size.
Rule (5) will allow the algorithm to switch to a color c where nA

c (t) ≥ 3
5nO

c (t).
Then we will show that we can execute this rule at most O(log log kγ) times
for a fixed color before the LP must output this color, allowing us to charge
to this point in time in the LP. The argument follows by observing that if we
output a color with at least k

log3 kγ
elements and nA

c (t) ≥ 3
5nO

c (t) more than

Weighted Reordering Buffer Improved via Variants 745

O(log log kγ) times and the LP does not do this color, then the LP must have
(k
log3 kγ

)(1 + 3
5)O(log log kγ) > Ω(k) elements for this color in its buffer at some

time. This will draw a contradiction and therefore we can only output a color
O(log log kγ) times using this rule before we can find a time to charge to in the
LP solution.

Naively, rule (5) will show our algorithm is a O(log log kγ)-approximation.
However, we can improve this by showing that, in fact, we only perform rule (5)
with low probability. Say with probability at most 1

log log kγ . This will allow us
to show that in expectation we only need to charge O(1) to the LP. Showing
this event happens with low probability will follow from the knapsack covering
inequalities and by bosting the probability a block is randomly sampled in the LP
by a Θ(log log log kγ) factor. We note that these knapsack inequalities were not
used in [16] to show a O(log log kγ)-approximation and this is how we circumvent
hurdles faced in the analysis of [16]. In particular, it seems perfectly plausible
using the standard LP that we could output a color O(log log kγ) in this step with
good probability. To see why this event happens with low probability, consider
the knapsack covering inequality for time t.

∑

b∈B\B′
(|Eb,≤t \ E′|)xb ≥ (t − k′ − |E′|)(1 −

∑

b∈B′
xb) ∀B′ ⊆ B,E′ ⊆ E

Our goal is to show that there is Ω(1) height of color blocks the LP has
scheduled on elements in B(t) if we execute rule (5). We will use this coupled
with setting α < 1

Θ(1) log log log kγ for the sample. If we can find such a height on
color blocks in the LP, then the probability no element in B(t) is α-ready is at
most 2−Θ(log log log kγ) = 1

(log log kγ)Θ(1) by Lemma 3. Further, if we did sample
such an interval then an element in B(t) would be α ready at time t. Thus, we
will have the desired probability and here one can see why we required that
we boosted the probabilities in the sampling by a factor of Θ(log log log kγ).
To see why such a such a height exists, consider setting E′ to be all elements
that arrived by time t except those B(t) and B′ to be the height of color block
including that process at least one element in B(t) before time t. The left hand
side must be 0, but (t − k′ − |E′|) = k

log kγ since |E′| = t − k. Thus, it must be
the case that

∑
b∈B′ xb = 1.

This is the intuition on how we can show that the cost accumulated by the
algorithm by rule (5) is at most O(1) multiplied by the cost of the LP in expec-
tation. Unfortunately, the actual proof is much more involved. In particular,
there is a dependency at different times on whether or not elements are α-ready.
The proof needs to deal with these dependencies delicately. We handle this by
showing that, in fact, a very large number of elements will become α-ready with
good probability. Then using this we can group time steps together in such a
way that if we succeed at a particular time, we will succeed at the later times
where there are significant dependencies. This will then allow us to bound the
cost of rule (5).

746 S. Im and B. Moseley

4 Algorithm

We require some notation to define formally the algorithm. Let ε be
Θ(1

log log log kγ) and α at most ε. We will later set ε = 1
220 log log log kγ and α = ε.

Let B(t) denote (the set of elements in) the algorithm’s buffer at time t. Let
nA

c (t) denote the number of elements for color c in B(t). Let nO
c (t) be the num-

ber of elements in the LP at time t for color c that have been processed by at
most 1/2 + 2ε. Intuitively, one should think of these elements as the ones not
done by the LP. Let Cs(t) contain all colors c where 0 < nA

c (t) ≤ k
log3 kγ

and
Cb(t) contain all colors c where nA

c (t) > k
log3 kγ

. Let EO(t) be the set of elements
that have been processed by at most 1/2 + 2ε in the LP at time t that are not
in B(t), i.e. EO(t) := {ei |ei �∈ B(t), i ≤ t, βi,t ≤ 1/2 + 2ε}. Let c∗(t) be the
color such that color blocks in the LP for color c∗(t) that intersect time t have
height greater than 1/2, if it exists. Note that there can only be one such color.
Let vO

c,t =
∑

i,c(ei)=c 1 − βi,t denote the remaining volume of elements for color
c in the LP at time t.

Let tc,1 be the first time the LP accumulates cost εwc for color c. That is,
there exists a set of color blocks for color c of height at least ε which start
at time tc,1 or earlier. Assuming tc,i−1 is defined, let tc,i be the earliest time
that the LP accumulates cost εwc for color c since time tc,i−1. That is, during
(tc,i−1, tc,i] there exists a set of color blocks for color c of total height at least ε
that start during (tc,i−1, tc,i] . Let Tc be the set of such times for color c. With
these definitions in place, the algorithm can be defined as follows. The algorithm
attempts to execute the rules in the order presented.

Algorithm:

Rule (i) If there is a set of color blocks S in the LP of total aggregate height
ε (i.e.

∑
b∈S xb ≥ ε) that each processes at least one element in B(t) for color

c by time t then output color c. In particular, in a special case, if there is an
element in ei ∈ B(t) processed by ε in the LP, then switch to color c(ei).

Rule (ii) If there is an element ei ∈ B(t) that is α ready at time t then switch
to color c(ei).

Rule (iii) If there is a color c where nA
c (t) ≥ k/10, switch to color c.

Rule (iv) If the LP has processed elements in B(t) corresponding to colors
in Cs(t) by a total of at least (|EO(t)| + k

log kγ)/10 by time t then switch to a
color c ∈ Cs(t) such that earliest time t′ ∈ Tc after t is also the earliest time in
∪c′∈Cs(t)Tc′ after t.

Rule (v) We perform this rule if none of the others apply. Let L be the set of
colors c ∈ Cb(t) such that nA

c (t) ≥ 3
5nO

c (t). The algorithm switches to a color
c ∈ L such that the earliest time t′ in Tc after t is also the earliest time in
∪c′∈LTc′ after t. We will show that L �= ∅ if the earlier rules cannot be used.

Weighted Reordering Buffer Improved via Variants 747

5 Analysis

In this section our goal is to prove Theorem 1 by analyzing the algorithm given
in the previous section. Recall that we solve the LP with a buffer size k′ :=
k − k

log k and our algorithm has a buffer of size k. Throughout the proof, we
will let LP denote the cost of the LP solution. To prove the approximation
ratio of our algorithm, we bound the cost of each of the rules in the algorithm
separately. First consider Rule (i). The following lemma is immediately implied
by Lemma 1.

Lemma 4. The total cost accumulated by the algorithm due to executing Rule
(i) is at most O(1ε)LP.

Next consider the cost accumulated by Rule (ii). By applying Lemma 3, we
have the following lemma.

Lemma 5. The total expected cost incurred when the algorithm executes Rule
(ii) is at most O(1

α)LP.

Next we consider the cost accumulated by Rule (iii) and Rule (iv). In this
case, we appeal to the proofs shown in [16]. We note that this proof relies on
structural properties in the elements in B(t) have since the algorithm did not use
Rule (i) or Rule (ii). These structural properties are sufficient for the proofs
shown in [16].

Lemma 6 ([16]). The total cost incurred when the algorithm executes Rule
(iii) is at most O(1ε)LP.

Lemma 7 ([16]). The total expected cost incurred when the algorithm executes
Rule (iv) is at most O(1ε)LP.

We now focus on bounding the expected number of times an element can be
output due to Rule (v). The main analysis focuses on proving the following
lemma.

Lemma 8. Consider any time t1 ∈ T and let t2 be the next time in T after
t1. The expected number of times we execute Rule (v) is at most O(1) during
[t1, t2).

Once we have this lemma, combining it and the previous four lemmas proves
Theorem 1. This is because between any two times t1 and t2 in Tc the LP
accumulates a cost of at least εwc and we can charge to this cost to bound
the expected cost of executing Rule (v) by O(1)LP. Showing this lemma will
complete the analysis. Due to space constraints, the proof is deferred.

References

1. Aboud, A.: Correlation clustering with penalties and approximating the reordering
buffer management problem. Masters thesis, Computer Science Department, The
Technion - Israel Institute of Technology (2008)

748 S. Im and B. Moseley

2. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: Almost tight bounds for
reordering buffer management. In: STOC, pp. 607–616 (2011)

3. Alborzi, H., Torng, E., Uthaisombut, P., Wagner, S.: The k-client problem. J.
Algorithms 41(2), 115–173 (2001)

4. Asahiro, Y., Kawahara, K., Miyano, E.: Np-hardness of the sorting buffer prob-
lem on the uniform metric. Discrete Applied Mathematics 160(10–11), 1453–1464
(2012)

5. Avigdor-Elgrabli, N., Im, S., Moseley, B., Rabani, Y.: On the randomized compet-
itive ratio of reordering buffer management with non-uniform costs. Manuscript
(2014)

6. Avigdor-Elgrabli, N., Rabani, Y.: An improved competitive algorithm for reorder-
ing buffer management. In: SODA, pp. 13–21 (2010)

7. Avigdor-Elgrabli, N., Rabani, Y.: A constant factor approximation algorithm for
reordering buffer management. In: SODA (2013)

8. Avigdor-Elgrabli, N., Rabani, Y.: An improved competitive algorithm for reorder-
ing buffer management. In: 54th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS, October 26–29, 2013, Berkeley, CA, USA, pp. 1–10 (2013)

9. Bar-Yehuda, R., Laserson, J.: Exploiting locality: approximating sorting buffers.
J. Discrete Algorithms 5(4), 729–738 (2007)

10. Blandford, D.K., Blelloch, G.E.: Index compression through document reordering.
In: DCC, pp. 342–351 (2002)

11. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integral-
ity gaps for capacitated network design and covering problems. In: Proceedings of
the eleventh annual ACM-SIAM symposium on Discrete algorithms, SODA 2000,
Philadelphia, PA, USA, pp. 106–115. Society for Industrial and Applied Mathe-
matics (2000)

12. Chan, H.-L., Megow, N., Sitters, R., van Stee, R.: A note on sorting buffers offline.
Theor. Comput. Sci. 423, 11–18 (2012)

13. Englert, M., Westermann, M.: Reordering buffer management for non-uniform cost
models. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 627–638. Springer, Heidelberg (2005)

14. Esfandiari, H., Hajiaghayi, M.T., Khani, M.R., Liaghat, V., Mahini, H., Räcke,
H.: Online stochastic reordering buffer scheduling. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 465–476.
Springer, Heidelberg (2014)

15. Gamzu, I., Segev, D.: Improved online algorithms for the sorting buffer problem
on line metrics. ACM Transactions on Algorithms, 6(1) (2009)

16. Im, S., Moseley, B.: New approximations for reordering buffer management. In:
SODA, pp. 1093–1111 (2014)

17. Khandekar, R., Pandit, V.: Online sorting buffers on line. In: Durand, B., Thomas,
W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 584–595. Springer, Heidelberg (2006)

18. Kohrt, J.S., Pruhs, K.R.: A constant approximation algorithm for sorting buffers.
In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 193–202. Springer,
Heidelberg (2004)

19. Krokowski, J., Räcke, H., Sohler, C., Westermann, M.: Reducing state changes
with a pipeline buffer. In: VMV, pp. 217 (2004)

20. Räcke, H., Sohler, C., Westermann, M.: Online Scheduling for Sorting Buffers.
In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 820–832.
Springer, Heidelberg (2002)

Local Reductions

Hamid Jahanjou1, Eric Miles2(B), and Emanuele Viola1

1 Northeastern University, Boston, MA, USA
{hamid,viola}@ccs.neu.edu

2 UCLA, Los Angeles, CA, USA
enmiles@cs.ucla.edu

Abstract. We reduce non-deterministic time T ≥ 2n to a 3SAT instance
φ of quasilinear size |φ| = T ·logO(1) T such that there is an explicit circuit
C that on input an index i of log |φ| bits outputs the ith clause, and each
output bit of C depends on O(1) input bits. The previous best result was
C in NC1. Even in the simpler setting of polynomial size |φ| = poly(T)
the previous best result was C in AC0.

More generally, for any time T ≥ n and parameter r ≤ n we obtain
log2 |φ| = max(log T, n/r) + O(log n) + O(log log T) and each output bit
of C is a decision tree of depth O(log r).

As an application, we tighten Williams’ connection between satisfia-
bility algorithms and circuit lower bounds (STOC 2010; SIAM J. Com-
put. 2013).

1 Introduction

The efficient reduction of arbitrary non-deterministic computation to 3SAT is a
fundamental result with widespread applications. For many of these, two aspects
of the efficiency of the reduction are at a premium. The first is the length of the
3SAT instance. A sequence of works shows how to reduce non-deterministic
time-T computation to a 3SAT instance φ of quasilinear size |φ| = Õ(T) :=
T logO(1) T [HS66,Sch78,PF79,Coo88,GS89,Rob91]. This has been extended to
PCP reductions [BGH+05,Mie09,BCGT13,BCGT12].

The second aspect is the computational complexity of producing the 3SAT
instance φ given a machine M , an input x ∈ {0, 1}n, and a time bound T =
T (n) ≥ n. It is well-known and easy to verify that a φ of size poly(T) is com-
putable even by circuits from the restricted class NC0. More generally, Agrawal,
Allender, Impagliazzo, Pitassi, and Rudich show [AAI+01] that such NC0 reduc-
tions exist whenever AC0 reductions do.

A stronger requirement on the complexity of producing φ is critical for many
applications. The requirement may be called clause-explicitness. It demands that
the ith clause of φ be computable, given i ≤ |φ| and x ∈ {0, 1}n, with resources
poly(|i|) = poly log |φ| = poly log T . In the case |φ| = poly(T), this is known to
be possible by an unrestricted circuit D of size poly(|i|). (The circuit has either

Supported by NSF grants CCF-0845003, CCF-1319206.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 749–760, 2015.
DOI: 10.1007/978-3-662-47672-7 61

750 H. Jahanjou et al.

random access to x, or, if T ≥ 2n, it may have x hardwired.) As a corollary, so-
called succinct versions of NP-complete problems are complete for NEXP. Arora,
Steurer, and Wigderson [ASW09] note that the circuit D may be taken from the
restricted class AC0. They use this to argue that, unless EXP = NEXP, standard
NP-complete graph problems cannot be solved in time poly(2n) on graphs of size
2n that are described by AC0 circuits of size poly(n).

Interestingly, applications to unconditional complexity lower bounds rely on
reductions that are clause-explicit and simultaneously optimize the length of
the 3SAT instance φ and the complexity of the circuit D computing clauses. For
example, the time-space tradeoffs for SAT need to reduce non-deterministic time
T to a 3SAT instance φ of quasilinear size Õ(T) such that the ith clause is com-
putable in time poly(|i|) = poly log |φ| and space O(log |φ|), see e.g. [FLvMV05]
or Van Melkebeek’s survey [vM06]. More recently, the importance of optimizing
both aspects of the reduction is brought to the forefront by Williams’ approach
to obtain lower bounds by satisfiability algorithms that improve over brute-force
search by a super-polynomial factor [Wil13a,Wil11b,Wil11a,SW12,Wil13b]. To
obtain lower bounds against a circuit class C using this technique, one needs
a reduction of non-deterministic time T = 2n to a 3SAT instance of size Õ(T)
whose clauses are computable by a circuit D of size poly(n) that belongs to the
class C. For example, for the ACC0 lower bounds [Wil11b,Wil13b] one needs
to compute them in ACC0. However it has seemed “hard (perhaps impossible)”
[Wil11b] to compute the clauses with such restricted resources.

Two workarounds have been devised [Wil11b,SW12]. Both exploit the fact
that, under an assumption such as P ⊆ ACC0, non-constructively there does exist
such an efficient circuit computing clauses; the only problem is constructing it.
They accomplish the latter using either nondeterminism [Wil11b] or brute-force
[SW12] (cf. [AK10]). The overhead in these arguments limits the consequences
of satisfiability algorithms: before this work, for a number of well-studied cir-
cuit classes C (discussed later) a lower bound against C did not follow from a
satisfiability algorithm for circuits in C.

2 Our Results

We show that, in fact, it is possible to reduce non-deterministic computation
of time T ≥ 2n to a 3SAT formula φ of quasilinear size |φ| = Õ(T) such that
given an index of � = log |φ| bits to a clause, one can compute (each bit of)
the clause by looking at a constant number of bits of the index. Such maps are
also known as local, NC0, or junta. More generally our results give a trade-off
between decision-tree depth and |φ|. The results apply to any time bound T ,
paying an inevitable loss in |x| = n for T close to n.

Theorem 1 (Local reductions). Let M be an algorithm running in time
T = T (n) ≥ n on inputs of the form (x, y) where |x| = n. Given x ∈ {0, 1}n one
can output a circuit D : {0, 1}� → {0, 1}3v+3 in time poly(n, log T) mapping an
index to a clause of a 3CNF φ in v-bit variables, for v = Θ(�), such that

Local Reductions 751

1. φ is satisfiable iff there is y ∈ {0, 1}T such that M(x, y) = 1, and
2. for any r ≤ n we can have � = max(log T, n/r)+O(log n)+O(log log T) and

each output bit of D is a decision tree of depth O(log r).

Note that for T = 2Ω(n) we get that D is in NC0 and φ has size 2� =
T · logO(1) T , by setting r := n/ log T . We also point out that the only place
where locality O(log r) (as opposed to O(1)) is needed in D is to index bits of
the string x.

The previous best result was D in NC1 [BGH+05]. Even in the simpler setting
of |φ| = poly(T) the previous best result was D in AC0 [ASW09].

Tighter connections between satisfiability and lower bounds. The quest for
non-trivial satisfiability algorithms has seen significant progress recently, see
e.g. [Wil11b,Her11,IMP12,BIS12,IPS13,CKS13]. Our results lower the bar for
obtaining new circuit lower bounds from such algorithms. Previously, a lower
bound for circuits of depth d and size s was implied by a satisfiability algorithm
for depth c · d and size sc for a constant c > 1 (for typical settings of s and d).
With our proof it suffices to have a satisfiability algorithm for depth d+c and size
c ·s for a constant c. This can be extended and optimized for several well-studied
circuit classes. In particular we obtain the following new connections.

Corollary 1. For each of the following classes C, if the satisfiability of circuits
in C can be solved in time 2n/nω(1) then there is a problem f ∈ ENP that is not
solvable by circuits in C:

(1) linear-size circuits,
(2) linear-size series-parallel circuits,
(3) linear-size log-depth circuits,
(4) quasi-polynomial-size SYM-AND circuits.

Recall that available size lower bounds for unrestricted circuits are between
3n − o(n) and 5n − o(n), depending on the basis [Blu84,LR01,IM02]. Although
Corollary 1 and Corollary 2 below are stated in terms of linear-size circuits, the
proofs provide a close correspondence between the running time for satisfiability
and the parameters of the circuit class. In particular, the constant hidden by
the circuit size in class (1) can be optimized, as discussed in the paragraph
“Subsequent work” below. At the moment this approach does not match known
lower bounds, due to the (in)efficiency of known satisfiability algorithms.

In 1977 Valiant [Val77] focused attention on classes (2) and (3). (Some miss-
ing details about series-parallel graphs are provided in [Cal08].) The class (4)
contains ACC [Yao90,BT94], and can be simulated by number-on-forehead pro-
tocols with a polylogarithmic number of players and communication [HG91].
Williams [Wil11b] gives a quasilinear-time algorithm to evaluate a SYM-AND
circuit on all inputs.

For class (4) one can in fact obtain f ∈ NE using the seminal work by
Impagliazzo, Kabanets, and Wigderson [IKW01] and its extension by Williams
[Wil13a,Wil11b]. But to do so for classes (1)-(3), one would need a strengthening
of [IKW01] to linear-size circuits, which we raise as an open problem.

752 H. Jahanjou et al.

It has long been known that the satisfiability of classes (1)-(3) in Corollary 1
can be linked to kSAT. Using Corollary 1, we can link kSAT to circuit lower
bounds. (In the following, a kSAT instance has n variables and O(n)k clauses.)

Corollary 2.
(1) Assume that the exponential time hypothesis (ETH) is false [IP01]; i.e.,

for every ε > 0, 3SAT is in time 2εn. Then there is a problem f ∈ ENP that is
not solvable by linear-size circuits.

(2) Assume that the strong exponential time hypothesis (SETH) is false [IP01];
i.e., there is ε < 1 such that for every k, kSAT is in time 2εn. Then there is a
problem f ∈ ENP that is not solvable by linear-size series-parallel circuits.

(3) Assume that there is α > 0 such that nα-SAT is in time 2n−ω(n/ log log n).
Then there is a problem f ∈ ENP that is not solvable by linear-size log-depth circuits.

In Corollary 2, only (1) was known [Wil13a, Theorem 6.1]. Our proof is
different: we obtain it immediately from (1) in Corollary 1 by the Cook-Levin
theorem.

For context, the best algorithms for kSAT run in time 2n(1−O(1/k)) [DGH+02,
PPSZ05].

Finally, we consider the class of polynomial-size depth-d circuits of thresh-
old gates, which may have unbounded or bounded weights. (The latter case
corresponds to Majority.) Recall that anything computed by a poly-size depth-
d circuit with unbounded weights can be computed by a depth d + 1 circuit
with bounded weights [HMP+93,GHR92], and that it is not known if EXPNP

has poly-size unbounded-weight circuits of depth d = 2. For these classes (and
others) we show that a lower bound for depth d follows from a satisfiability
algorithm for depth d + 2.

Corollary 3. Consider unbounded fan-in circuits consisting of threshold gates
(either bounded- or unbounded-weight). Let d be an integer.

Suppose that for every c, given a circuit of depth d+2 and size nc on n input
bits one can decide its satisfiability in time 2n/nω(1).

Then NE does not have circuits of polynomial size and depth d.

A diagram of some of the classes mentioned above, and their relative power,
can be found in [Vio13].

Our results have a few other consequences. For example they imply that
the so-called succinct version of various NP-complete problems remain NEXP-
complete even if described by an NC0 circuit. In particular we obtain this for
3SAT and 3Coloring. Our techniques are also relevant to the notion of circuit
uniformity. A standard notion of uniformity is log-space uniformity, requiring
that the circuit is computable in logarithmic space or, equivalently, that given
an index to a gate in the circuit one can compute its type and its children in
linear space. Equivalences with various other uniformity conditions are given
by Ruzzo [Ruz81], see also [Vol99]. We consider another uniformity condition
which is stronger than previously considered ones in some respects. Specifically,

Local Reductions 753

we describe the circuit by showing how to compute children by an NC0 circuit,
i.e. a function with constant locality.

Theorem 2 (L-uniform ⇔ local-uniform). Let f : {0, 1}∗ → {0, 1} be a
function computable by a family of log-space uniform polynomial-size circuits. Then
f is computable by a family of polynomial-size circuits C = {Cn : {0, 1}n →
{0, 1}}n such that there is a Turing machine that on input n (in binary) runs in
time O(poly log n) and outputs a circuit D : {0, 1}O(log n) →{0, 1}O(log n) such that
(i) D has constant locality: every output bit depends on O(1) input bits, and
(ii) on input a label g of a gate in Cn, D outputs the type of g and labels for
each child.

Does this paper simplify the proof that NEXP is not in ACC?. Recall that the
proof [Wil11b] that NEXP is not in ACC uses as a black-box a result like Theo-
rem 1 but with the requirement on the efficiency of D relaxed to polynomial-size
circuits. If one instead uses as a black-box Theorem 1, one obtains a simpler
proof, reported for completeness in the full version of this paper.

In fact, to obtain the separation of NEXP from ACC it suffices to prove a
weaker version of Theorem 1 where D is, say, in AC0. This weaker version has a
simpler proof, as explained in §3. Independently of our work, Kowalski and Van
Melkebeek proved this AC0 result (personal communication).

Subsequent work. The announcement of our results as (ECCC Technical Report
13-099, July 2013) contained the same results as above except it did not men-
tion Corollary 2 and items (2) and (4) in Corollary 1. After that announcement
several related works have appeared. Oliveira’s survey [Oli13] contains an alter-
native connection between satisfiability and circuit lower bounds, which yields a
different proof of our Corollary 3 establishing a depth-2 overhead in that connec-
tion. Williams [Wil14] shows that the ability to count the number of satisfying
assignments to circuits faster than brute-force search yields lower bounds against
related circuits. His connection preserves the type of the gates in the input layer,
a feature which is used to obtain some new lower bounds.

The work [BV14] builds on our results and is concurrent with [Wil14]. It gives
a connection between derandomization and lower bounds that also preserves the
type of the gates in the input layer. Thus, derandomization (or satisfiability), as
opposed to counting, is sufficient for the lower bounds in [Wil14]. [BV14] also
improves the depth loss of 2 in Corollary 3 to 1. Finally, they make a step in the
direction we suggested of optimizing the constants in Item (1) of Corollary 1. In
combination with the standard Cook-Levin reduction to 3SAT, they obtain that
if 3SAT is in deterministic time cn for any c < 21/10 = 1.07 . . . then ENP does
not have circuits of size 3n over the standard, full basis. Note that such a lower
bound does not easily follow from diagonalization because the description length
of a circuit of size 3n is superlinear. (Also recall the available lower bounds have
the form 3n − o(n)). The current record for solving 3SAT deterministically has
c = 1.33 . . . [MTY11], cf. [Her11].

As a corollary to [BV14], in this revision we show that even a somewhat
more modest improvement to 3SAT algorithms would imply new lower bounds

754 H. Jahanjou et al.

for non-boolean functions with range m = 2 bits. Such lower bounds do not seem
known for any m = o(n), cf. [KMM12].

Corollary 4 (Corollary to [BV14]). If 3SAT is in time cn for any c < 21/7 =
1.10 . . ., then there exists a (non-Boolean) function f : {0, 1}n → {0, 1}2 in ENP

such that any circuit over the full basis computing it requires at least 3n (non-
input) gates.

3 Techniques

Proofs of the theorems and corollaries above are omitted due to space constraints,
but they can be found in the full version of this paper at the authors’ websites.
We now give an overview of the techniques used.

Background: Reducing non-deterministic time T to size-Õ(T) 3SAT. Our start-
ing point is the reduction of non-deterministic time-T computation to 3SAT
instances of quasilinear size T ′ = Õ(T). The classical proof of this result
[HS66,Sch78,PF79,Coo88,GS89,Rob91] hinges on the oblivious Turing machine
simulation by Pippenger and Fischer [PF79]. However computing connections
in the circuit induced by the oblivious TM is a somewhat complicated recursive
procedure, and we have not been able to use this construction for our results.

Instead, we use a proof by Van Melkebeek [vM06, §2.3.1] which replaces this
simulation by coupling an argument due to Gurevich and Shelah [GS89] with
sorting circuits. We note that the idea of using sorting is already in [GS89], but
if one follows their paper one ends up using again the oblivious simulation. Van
Melkebeek’s observation is that essentially all that needs to be done obliviously
is sorting, and so one can use a sorting network, a more familiar construction
than the oblivious simulation. Specifically, Van Melkebeek uses Batcher’s odd-
even mergesort networks [Bat68]. This proof was rediscovered by a superset of
the authors as a class project [VN12]. We now recall it in more detail.

Consider any general model of (non-deterministic) computation, such as
RAM or random-access Turing machines. (One nice feature of this proof is that
it directly handles models with random-access, aka direct-access, capabilities.)
The proof reduces computation to the satisfiability of a circuit C. The latter
is then reduced to 3SAT via the textbook reduction. Only the first reduction
to circuit satisfiability is problematic and we will focus on that one here. Con-
sider a non-deterministic time-T computation. The proof constructs a circuit
of size Õ(T) whose inputs are (non-deterministic guesses of) T configurations
of the machine. Each configuration has size O(log T) and contains the state of
the machine, all registers, and the content of the memory locations indexed by
the registers. This computation is then verified in two steps. First, one verifies
that every configuration Ci yields configuration Ci+1 assuming that all bits read
from memory are correct. This is a simple check of adjacent configurations. Then
to verify correctness of read/write operations in memory, one sorts the config-
urations by memory indices, and within memory indices by timestamp. Now

Local Reductions 755

verification is again a simple check of adjacent configurations. The resulting cir-
cuit is outlined in Figure 1 (for a 2k-tape random-access Turing machine). Using
a sorting network of quasilinear size Õ(T) results in a circuit of size Õ(T).

Making low-space computation local. We employ a general technique that we call
spreading computation. This shows that any circuit C whose connections can be
computed in space linear in the description of a gate (i.e., space log |C|) has an
equivalent circuit C ′ of size |C ′| = poly|C| whose connections can be computed
with constant locality.

The main idea in the proof is simply to let the gates of C ′ represent configu-
rations of the low-space algorithm computing children in C. Then computing a
child amounts to performing one step of the low-space algorithm, (each bit of)
which can be done with constant locality in a standard Turing machine model.

We note that the technique of labeling gates by configurations goes back at
least to the work of Ruzzo [Ruz81] who uses it to show the equivalence of some
uniformity conditions involving alternating Turing machines that are simultane-
ously time and space restricted. However, [Ruz81] does not show how to compute
gate connections with small locality, which is our aim here. We note that this
task is non-trivial. For example, with constant locality one cannot even check the
validity of a configuration. This means that the circuit C ′ has many invalid gates,
i.e., gates that do not correspond to the computation of the low-space algorithm
on a label of C. These gates could induce loops that do not correspond to compu-
tation, and make the final 3SAT instance always unsatisfiable. We avoid cycles
by augmenting the low-space algorithm with a preliminary check for the validity
of the configuration, and by including a clock in the configurations. These allow
us to ensure that each invalid gate leads to a sink.

We apply spreading computation to the various sub-circuits checking con-
sistency of configurations, corresponding to the triangles in Figure 1. These
sub-circuits operate on configurations of size O(log T) and have size poly log T .
Hence, we can tolerate the polynomial increase in their complexity given by the
spreading computation technique.

There remain however tasks for which we cannot use spreading computation.
One is the sorting sub-circuit. Since it has size > T we cannot afford a polynomial
increase. Another task is indexing adjacent configurations. We now discuss these
two in turn.

Sorting. We first mention a natural approach that gets us close but not quite
to our main theorem. The approach is to define an appropriate labeling of the
sorting network so that its connections can be computed very efficiently. We are
able to define a labeling of bit-length t + O(log t) = log Õ(T) for comparators in
the odd-even mergesort network of size Õ(2t) (and depth t2) that sorts T = 2t

elements such that given a label one can compute the labels of its children
by a decision tree of depth logarithmic in the length of the label, i.e. depth
log log Õ(T). With a similar labeling we can get linear size circuits. Or we can
get constant locality at the price of making the 3SAT instance of size T 1+ε. The
details appear in the separate work [JMV14].

756 H. Jahanjou et al.

c1 � � �

sort by Ram1 head position

head positions,
bounded-register tapes

check state,

c2 cT

head positions,
bounded-register tapes

check state,
head positions,

bounded-register tapes

check state,

c1 � � �

check Ram1 contents

c87 c42

check Ram1 contents check Ram1 contents

sort by Ram2 head position

c1 � � �

check Ram2 contents

c19 c71

check Ram2 contents check Ram2 contents

sort by Regk head position

c1 � � �

check Regk contents

c5 c99

check Regk contents check Regk contents

�
�

�

AND

� � �

Fig. 1. Each of the T configurations has size O(log T). The checking circuits have size
poly log T . The sorting circuits have size Õ(T). k is a constant. Hence overall circuit
has size Õ(T).

Local Reductions 757

To obtain constant locality we use a variant by Ben-Sasson, Chiesa, Genkin,
and Tromer [BCGT13]. They replace sorting networks with routing networks
based on De Bruijn graphs. We note that routing networks have been used
extensively in the PCP literature starting, to our knowledge, with the work of
Polishchuk and Spielman [PS94]. They have been used mostly for their algebraic
properties, whereas we exploit the small locality of these networks. Specifically,
the connections of these networks involve computing bit-shift, bit-xor, and addi-
tion by 1. The first two operations can easily be computed with constant local-
ity, but the latter cannot in the standard binary representation. However, this
addition by 1 is only on O(log log T) bits. Hence we can afford an alternative,
redundant representation which gives us an equivalent network where all the
operations can be computed with constant locality. This representation again
introduces invalid labels; those are handled in a manner similar to our spreading
computation technique.

Plus one. Regardless of whether we are using sorting or routing networks,
another issue that comes up in all previous proofs is addition by 1 on strings
of > log T bits. This is needed to index adjacent configurations Ci and Ci+1

for the pairwise checks in Figure 1. As mentioned before, this operation cannot
be performed with constant locality in the standard representation. Also, we
cannot afford a redundant representation (since strings of length c log T would
correspond to an overall circuit of size > T c).

For context, we point out an alternative approach to compute addition by
1 with constant locality which however cannot be used because it requires an
inefficient pre-processing. The approach is to use primitive polynomials over
GF(2)log T . These are polynomials modulo which x has order 2log T −1. Addition
by 1 can then be replaced by multiplication by x, which can be shown to be
local. This is similar to linear feedback registers. However, it is not known how
to construct such polynomials efficiently w.r.t. their degrees, see [Sho92].

To solve this problem we use routing networks in a different way from previous
works. Instead of letting the network output an array C1, C2, . . . representing the
sorted configurations, we use the network to represent the “next configuration”
map Ci → Ci+1. Viewing the network as a matrix whose first column is the
input and the last column is the output, we then perform the pairwise checks
on every pair of input and output configurations that are in the same row. The
bits of these configurations will be in the same positions in the final label, thus
circumventing addition by one.

As we mentioned earlier, for a result such as NEXP not in ACC [Wil11b]
it suffices to prove a weaker version of our Theorem 1 where the reduction is
computed by, say, an AC0 circuit. For the latter, it essentially suffices to show
that either the sorting or the routing network’s connections are in that class.

Acknowledgments. We are very grateful to Eli Ben-Sasson for a discussion on rout-
ing networks which led us to improving our main result, cf. §3. We also thank Ryan
Williams for feedback on the write-up.

758 H. Jahanjou et al.

References

[AAI+01] Agrawal, M., Allender, E., Impagliazzo, R., Pitassi, T., Rudich, S.: Reduc-
ing the complexity of reductions. Computational Complexity 10(2), 117–
138 (2001)

[AK10] Allender, E., Koucký, M.: Amplifying lower bounds by means of self-
reducibility. J. of the ACM, 57(3) (2010)

[ASW09] Arora, S., Steurer, D., Wigderson, A.: Towards a study of low-complexity
graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 119–131.
Springer, Heidelberg (2009)

[Bat68] Batcher, K.E.: Sorting networks and their applications. AFIPS Spring
Joint Computing Conference 32, 307–314 (1968)

[BCGT12] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete-
efficiency threshold of probabilistically-checkable proofs. Electronic Collo-
quium on Computational Complexity (ECCC) 19, 45 (2012)

[BCGT13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from
RAMs to delegatable succinct constraint satisfaction problems. In: ACM
Innovations in Theoretical Computer Science Conf. (ITCS), pp. 401–414
(2013)

[BGH+05] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short
PCPs verifiable in polylogarithmic time. In: IEEE Conf. on Computational
Complexity (CCC), pp. 120–134 (2005)

[BIS12] Beame, P., Impagliazzo, R., Srinivasan, S.: Approximating AC0 by small
height decision trees and a deterministic algorithm for #AC0sat. In: IEEE
Conf. on Computational Complexity (CCC), pp. 117–125 (2012)

[Blu84] Blum, N.: A boolean function requiring 3n network size. Theoretical Com-
puter Science 28, 337–345 (1984)

[BT94] Beigel, R., Tarui, J.: On ACC. Computational Complexity 4(4), 350–366
(1994)

[BV14] Ben-Sasson, E., Viola, E.: Short PCPs with projection queries (2014).
http://www.ccs.neu.edu/home/viola/

[Cal08] Calabro, C.: A lower bound on the size of series-parallel graphs dense in
long paths. Electronic Colloquium on Computational Complexity (ECCC),
15(110) (2008)

[CKS13] Chen, R., Kabanets, V., Saurabh, N.: An improved deterministic #SAT
algorithm for small De Morgan formulas. Technical Report TR13-150,
Electronic Colloquium on Computational Complexity (2013). http://www.
eccc.uni-trier.de/

[Coo88] Cook, S.A.: Short propositional formulas represent nondeterministic com-
putations. Information Processing Letters 26(5), 269–270 (1988)

[DGH+02] Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J.,
Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic
(2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical
Computer Science 289(1), 69–83 (2002)

[FLvMV05] Fortnow, L., Lipton, R., van Melkebeek, D., Viglas, A.: Time-space lower
bounds for satisfiability. J. of the ACM 52(6), 835–865 (2005)

[GHR92] Goldmann, M., H̊astad, J., Razborov, A.A.: Majority gates vs.
general weighted threshold gates. Computational Complexity 2,
277–300 (1992)

http://www.ccs.neu.edu/home/viola/
http://www.eccc.uni-trier.de/
http://www.eccc.uni-trier.de/

Local Reductions 759

[GS89] Gurevich, Y., Shelah, S.: Nearly linear time. In: Logic at Botik, Symposium
on Logical Foundations of Computer Science, pp. 108–118 (1989)

[Her11] Hertli, T.: 3-SAT faster and simpler - unique-SAT bounds for PPSZ hold
in general. In: IEEE Symp. on Foundations of Computer Science (FOCS),
pp. 277–284 (2011)

[HG91] H̊astad, J., Goldmann, M.: On the power of small-depth threshold circuits.
Comput. Complexity 1(2), 113–129 (1991)

[HMP+93] Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold cir-
cuits of bounded depth. J. of Computer and System Sciences 46(2), 129–154
(1993)

[HS66] Hennie, F., Stearns, R.: Two-tape simulation of multitape turing machines.
J. of the ACM 13, 533–546 (1966)

[IKW01] Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy wit-
ness: Exponential time vs. probabilistic polynomial time. In: IEEE Conf.
on Computational Complexity (CCC) (2001)

[IM02] Iwama, K., Morizumi, H.: An explicit lower bound of 5n− o(n) for boolean
circuits. In: Symp. on Math. Foundations of Computer Science (MFCS),
pp. 353–364 (2002)

[IMP12] Impagliazzo, R., Matthews, W., Paturi, R.: A satisfiability algorithm for
AC0. In: ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 961–972
(2012)

[IP01] Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. of Computer
and System Sciences 62(2), 367–375 (2001)

[IPS13] Impagliazzo, R., Paturi, R., Schneider, S.: A satisfiability algorithm for
sparse depth-2 threshold circuits. IEEE Symp. on Foundations of Computer
Science (FOCS) (2013)

[JMV14] Jahanjou, H., Miles, E., Viola, E.: Succinct and explicit circuits for sorting
and connectivity (2014). http://www.ccs.neu.edu/home/viola/

[KMM12] Kulikov, A.S., Melanich, O., Mihajlin, I.: A 5n − o(n) lower bound on the
circuit size over U 2 of a linear boolean function. In: Cooper, S.B., Dawar,
A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 432–439. Springer, Hei-
delberg (2012)

[LR01] Lachish, O., Raz, R.: Explicit lower bound of 4.5n - o(n) for boolena circuits.
In: ACM Symp. on the Theory of Computing (STOC), pp. 399–408 (2001)

[Mie09] Mie, T.: Short pcpps verifiable in polylogarithmic time with o(1) queries.
Ann. Math. Artif. Intell. 56(3–4), 313–338 (2009)

[MTY11] Makino, K., Tamaki, S., Yamamoto, M.: Derandomizing HSSW algorithm
for 3-SAT (2011). CoRR, abs/1102.3766

[Oli13] Oliveira, I.C.: Algorithms versus circuit lower bounds (2013). CoRR,
abs/1309.0249

[PF79] Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. of
the ACM 26(2), 361–381 (1979)

[PPSZ05] Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time
algorithm for k-sat. J. of the ACM 52(3), 337–364 (2005)

[PS94] Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In:
ACM Symp. on the Theory of Computing (STOC), pp. 194–203 (1994)

[Rob91] Robson, J.M.: An O(T log T) reduction from RAM computations to satis-
fiability. Theoretical Computer Science 82(1), 141–149 (1991)

[Ruz81] Ruzzo, W.L.: On uniform circuit complexity. J. of Computer and System
Sciences 22(3), 365–383 (1981)

http://www.ccs.neu.edu/home/viola/

760 H. Jahanjou et al.

[Sch78] Schnorr, C.-P.: Satisfiability is quasilinear complete in NQL. J. of the ACM
25(1), 136–145 (1978)

[Sho92] Shoup, V.: Searching for primitive roots in finite fields. Math. Comp. 58,
369–380 (1992)

[SW12] Santhanam, R., Williams, R.: Uniform circuits, lower bounds, and qbf algo-
rithms. Electronic Colloquium on Computational Complexity (ECCC) 19,
59 (2012)

[Val77] Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In:
Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Hei-
delberg (1977)

[Vio13] Viola, E.: Challenges in computational lower bounds (2013). http://www.
ccs.neu.edu/home/viola/

[vM06] van Melkebeek, D.: A survey of lower bounds for satisfiability and related
problems. Foundations and Trends in Theoretical Computer Science 2(3),
197–303 (2006)

[VN12] Viola, E., NEU. From RAM to SAT (2012). http://www.ccs.neu.edu/
home/viola/

[Vol99] Vollmer, H.: Introduction to circuit complexity. Springer-Verlag, Berlin
(1999)

[Wil11a] Williams, R.: Guest column: a casual tour around a circuit complexity
bound. SIGACT News 42(3), 54–76 (2011)

[Wil11b] Williams, R.: Non-uniform ACC circuit lower bounds. In: IEEE Conf. on
Computational Complexity (CCC), pp. 115–125 (2011)

[Wil13a] Williams, R.: Improving exhaustive search implies superpolynomial lower
bounds. SIAM J. on Computing 42(3), 1218–1244 (2013)

[Wil13b] Williams, R.: Natural proofs versus derandomization. In: ACM Symp. on
the Theory of Computing (STOC) (2013)

[Wil14] Williams, R.: New algorithms and lower bounds for circuits with linear
threshold gates (2014)

[Yao90] Yao, A.C.-C.: On ACC and threshold circuits. In: IEEE Symp. on Founda-
tions of Computer Science (FOCS), pp. 619–627 (1990)

http://www.ccs.neu.edu/home/viola/
http://www.ccs.neu.edu/home/viola/
http://www.ccs.neu.edu/home/viola/
http://www.ccs.neu.edu/home/viola/

Query Complexity in Expectation

Jedrzej Kaniewski1,2, Troy Lee1,3, and Ronald de Wolf4,5(B)

1 Centre for Quantum Technologies,
National University of Singapore, Singapore, Singapore

2 QuTech, Delft University of Technology, Delft, The Netherlands
3 School of Physical and Mathematical Sciences, NTU, Singapore, Singapore

4 Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
5 University of Amsterdam, Amsterdam, The Netherlands

j.kaniewski@nus.edu.sg, troyjlee@gmail.com, rdewolf@cwi.nl

Abstract. We study the query complexity of computing a function
f : {0, 1}n → R+ in expectation. This requires the algorithm on input x
to output a nonnegative random variable whose expectation equals f(x),
using as few queries to the input x as possible. We exactly characterize
both the randomized and the quantum query complexity by two poly-
nomial degrees, the nonnegative literal degree and the sum-of-squares
degree, respectively. We observe that the quantum complexity can be
unboundedly smaller than the classical complexity for some functions,
but can be at most polynomially smaller for Boolean functions. These
query complexities relate to (and are motivated by) the extension com-
plexity of polytopes. The linear extension complexity of a polytope is
characterized by the randomized communication complexity of comput-
ing its slack matrix in expectation, and the semidefinite (psd) exten-
sion complexity is characterized by the analogous quantum model. Since
query complexity can be used to upper bound communication complex-
ity of related functions, we can derive some upper bounds on psd exten-
sion complexity by constructing efficient quantum query algorithms. As
an example we give an exponentially-close entrywise approximation of
the slack matrix of the perfect matching polytope with psd-rank only

2n1/2+ε

. Finally, we show randomized and quantum query complexity in
expectation corresponds to the Sherali-Adams and Lasserre hierarchies,
respectively.

1 Introduction

We study the complexity of computing a function f : {0, 1}n → R+ in
expectation, where our algorithm on input x should output a nonnegative real
number whose expectation (over the algorithm’s internal randomness) exactly
equals f(x). Getting the expectation right is easier than computing the func-
tion value f(x) itself, and suffices in some applications. Suppose we want to
approximate F (x) =

∑m
i=1 fi(x) that depends on x ∈ {0, 1}n. Then we can just

compute each fi(x) in expectation and output the sum of the results. By linearity
of expectation, the output will have expectation F (x), and it will be tightly con-
centrated around its expectation if the random variables are not too wild (so the
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 761–772, 2015.
DOI: 10.1007/978-3-662-47672-7 62

762 J. Kaniewski et al.

Central Limit Theorem applies). It is not necessary to compute or even approxi-
mate any of the values fi(x) themselves for this. This illustrates that computing
functions in expectation is an interesting model in its own right. Additionally,
it is motivated by connections with the extension complexity of polytopes that
are used in combinatorial optimization (roughly: the minimal size of linear or
semidefinite programs for optimizing over such a polytope), as described below.

The complexity of computing f can be measured in different ways, and here
we will focus on query complexity. We measure the complexity of computing a
function in expectation by the (worst-case) number of queries to the input x ∈
{0, 1}n that the best algorithm uses. We study both randomized and quantum
versions of this model and show that both of these query complexities can be
exactly characterized by natural notions of polynomial degree. In Section 3 we
show that the randomized query complexity of computing f in expectation equals
the “nonnegative literal degree” of f , which is the minimal d such that f can
be written as a nonnegative linear combination of products of up to d variables
or negations of variables. In Section 4 we show that the quantum complexity
equals the “sum-of-squares degree”, which is the minimal d such that there exist
polynomials pi of degree at most d satisfying f(x) =

∑
i pi(x)2 for all x ∈ {0, 1}n.

In Section 5 we observe that quantum and classical query complexities (equiv-
alently: the above two types of polynomial degree) can be arbitrarily far apart.
For example, the function f(x) = (

∑n
i=1 xi −1)2 is the square of a degree-1 poly-

nomial and hence computable in expectation with only 1 quantum query, while
randomized algorithms need n queries to get this expectation right. In contrast,
we show that for functions with range {0, 1} the gap can be at most cubic.

Lower bounds on the quantum query complexity can be obtained from lower
bounding the sum-of-squares degree of the function at hand, which is often
non-trivial. Using techniques from approximation theory, we prove that f(x) =
(
∑n

i=1 xi − 1)(
∑n

i=1 xi − 2) has sum-of-squares degree Ω(
√

n). Hence quantum
algorithms require Ω(

√
n) queries to compute this function in expectation.

Our main motivation for studying query complexity in expectation comes
from combinatorial optimization, in particular from linear and semidefinite pro-
grams. Many optimization problems can be formulated as maximizing or mini-
mizing a linear function over a polytope. For example, in the Traveling Salesman
Problem on n-vertex undirected graphs, one wants to minimize a linear function
(the length of the tour) over the polytope P ⊆ R

(n
2) that is the convex hull of all

Hamiltonian cycles in the complete n-vertex graph Kn. Representing this poly-
tope as the feasible region of a small linear or semidefinite program would allow
us to efficiently solve the problem using the ellipsoid or interior-point methods.

Informally, the linear extension complexity of a polytope P ⊆ R
d is the

minimum number of linear inequalities (over the d variables of P and possi-
bly auxiliary variables) whose feasible region projects down to P . Small linear
extension complexity means there is a small linear program to optimize over P .

Motivated by erroneous claims [33] that the TSP polytope had polynomial
linear extension complexity (implying P = NP), Yannakakis [36] showed that
“symmetric” linear extensions of the Traveling Salesman Polytope need 2Ω(n)

Query Complexity in Expectation 763

linear inequalities. He showed the same for the perfect matching polytope (which
is spanned by all perfect matchings in Kn), despite the fact that finding a maxi-
mum matching can be done efficiently! For a long time, generalizing these lower
bounds to arbitrary (possibly non-symmetric) linear extensions was an open
question. However, recently Fiorini et al. [15] proved a 2Ω(n1/2) lower bound on
the linear extension complexity of the TSP polytope. Subsequently Rothvoß [30]
proved a 2Ω(n) lower bound for the perfect matching polytope, which via a reduc-
tion implies the same bound for TSP. Chan et al. [10] obtained lower bounds
on linear extension complexity for constraint satisfaction problems via a dif-
ferent route: roughly put, they showed that arbitrary linear extensions are not
much more powerful than the specific linear extensions produced by the “Sherali-
Adams Hierarchy”; hence they could obtain lower bounds on linear extension
complexity from known bounds on the Sherali-Adams hierarchy.

The positive semidefinite (psd) extension complexity of polytope P ,
which replaces the linear programs by potentially more powerful semidefinite
programs, is the minimal dimension of a semidefinite program whose feasible
region projects down to P . In contrast to the case of linear extension complexity,
very few lower bounds on psd extension complexity are known. Until recently,
there were only a few lower bounds for “symmetric” psd extensions [14,24].
However, in a very recent breakthrough, Lee et al. [23] generalized the approach
of [10] to show that arbitrary psd extensions are not much more powerful than
the specific psd extensions produced by the “Lasserre Hierarchy”. In particular
they showed that the TSP polytope has psd extension complexity 2Ω(n1/13).

Surprisingly, there is a very close connection between these extension com-
plexities and the model of computing functions in expectation, albeit for the
communication complexity of computing a 2-input function. More precisely, sup-
pose Alice receives input x, Bob receives input y, and they want to compute some
function g(x, y) (which may also be viewed as a matrix). In the usual setting
of communication complexity [20], one of the parties (let’s say Bob) has to out-
put this value g(x, y) exactly, either with probability 1 or with high probability.
However, we may also consider how much communication they need to compute
g(x, y) in expectation, i.e., now Bob needs to output a nonnegative random vari-
able whose expected value equals g(x, y). Faenza et al. [13] showed that the loga-
rithm of the linear extension complexity of a polytope P equals the randomized
communication complexity of computing (in expectation) a matrix associated
with P , known as the slack matrix. Lifting this result to the quantum/psd case,
Fiorini et al. [15] showed that the logarithm of the psd extension complexity
equals the one-way quantum communication complexity of computing the slack
matrix of P in expectation; in this model Alice sends a single quantum mes-
sage to Bob. These connections show that studying (linear and psd) extension
complexity of a polytope P is equivalent to studying (randomized and one-way
quantum) communication complexity in expectation, of the slack matrix of P .

How is the query complexity of computing a function in expectation related
to this communication complexity? Many functions of interest in communica-
tion complexity are of the form g(x, y) = f(x ∧ y) for some Boolean function

764 J. Kaniewski et al.

f : {0, 1}n → {0, 1}, where the AND-connective is applied bitwise. Functions
of this form also arise as (submatrices of) slack matrices of interesting polytopes,
e.g. the correlation polytope. Quite generally across the usual models of worst-case
complexity (deterministic, randomized or quantum) upper bounds on the query
complexity of f imply upper bounds on the communication complexity of g. In
Section 7 we show that this also holds for the randomized and quantum models
of computing a function in expectation. As this leads to multi-round communica-
tion protocols, it implies that the one-way and two-way quantum communication
complexity of computing a function in expectation are equal.

In Section 7.1 we give an application of the connection between query algo-
rithms and communication complexity (equivalently, psd rank), by deriving an
exponentially-close entrywise approximation of the slack matrix S of the perfect
matching polytope with psd rank 2n1/2+ε

. This psd rank is surprisingly low in view
of the fact that Rothvoß [30] showed that the nonnegative rank of S is 2Ω(n), and
Braun and Pokutta [5] showed that any S̃ that is O(1/n)-close to S still needs non-
negative rank 2Ω(n). This result about approximating the slack matrix for match-
ing in low psd rank, fits in a recent line of non-quantum results derived using tools
and techniques from quantum information theory (see [11]).

Communication protocols derived from query algorithms have a specific struc-
ture. In spirit, this is somewhat similar to looking at linear/psd extensions derived
from hierarchies of specific linear or semidefinite programs like the Sherali-Adams
and Lasserre hierarchies. In Section 2.3 we show these two relaxations actually cor-
respond in a precise sense: just as the linear and psd extension complexities are
characterized by models of communication complexity in expectation, the Sherali-
Adams and Lasserre hierarchies are characterized by randomized and quantum
models of query complexity in expectation, respectively. This follows from known
characterizations of these hierarchies in terms of polynomial degrees that exactly
correspond to the ones considered here.

Remark: Due to space limitations, many of the proofs have been omitted from
this version. These can be found in the longer version at arXiv:1411.7280.

2 Preliminaries

2.1 Polytopes and Extension Complexity

While most of this paper is about query complexity in expectation, much of it
is motivated by (the hope to port our results to) communication complexity in
expectation and its consequences for linear and semidefinite extension complexity
of polytopes. Hence we start with the latter. A polytope P ⊆ R

d has both an inner
description as the convex hull of a set V ⊆ R

d of points, P = conv(V); and an
outer description as the intersection of halfspaces, P = {x ∈ R

d : Ax ≤ b}. A
slack matrix integrates information from these two descriptions:

Definition 1. Let P = conv(V) = {x : Ax ≤ b} be a polytope. The slack matrix
M of P has columns labeled by v ∈ V and rows labeled by constraints Aix ≤ bi,
with entries M(i, v) = bi − Aiv.

Query Complexity in Expectation 765

Definition 2. Let M be a nonnegative matrix. A nonnegative factorization of M
of size d consists of two sets of d-dimensional nonnegative vectors {ax}, {by} such
that M(x, y) = aT

x by for all x, y. The nonnegative rank of M , denoted rk+(M), is
the minimal size among all nonnegative factorizations of M . Equivalently, it is the
minimum number of nonnegative rank-one matrices whose sum is M .

Definition 3. Let M be a nonnegative matrix. A psd factorization of M of size
d consists of two sets of d-by-d psd matrices {Ax}, {By} such that M(x, y) =
Tr(AxBy) for all x, y. The psd rank of M , denoted rkpsd(M), is the minimal size
among all psd factorizations of M .

A nonnegative factorization is a psd factorization by diagonal matrices.
The linear extension complexity of a polytope P is the minimum number of

facets of a (higher-dimensional) polytope which projects to P . The semidefinite
(psd) extension complexity of P is the minimum d such that an affine slice of the
cone of d-by-d positive semidefinite matrices projects to P . These complexity mea-
sures can be captured in terms of the above notions of rank of a slack matrix:

Theorem 1 ([16,36]). The linear extension complexity of a polytope P is the
nonnegative rank of a slack matrix of P . The semidefinite (psd) extension com-
plexity of P is the psd rank of a slack matrix of P .

A polytope may have different slack matrices associated with it, depending on
which inner and outer description are used. By Theorem 1 these slack matrices all
have the same nonnegative and psd rank.

One of our targets is the correlation polytope: CORn = {xxT : x ∈ {0, 1}n}.
Fiorini et al. [15] showed that lower bounds on the linear/semidefinite extension
complexity of the correlation polytope imply lower bounds on several other poly-
topes of interest, including the Traveling Salesman Polytope. The next lemma
from [28] gives a family of submatrices of the slack matrix of CORn.

Lemma 1. Let p(z) = a + bz + cz2 be a single-variate degree-2 polynomial non-
negative on {0, 1, . . . , n}. The matrix M(x, y) = p(|x ∧ y|) for (x, y) ∈ {0, 1}n is a
submatrix of a slack matrix for the correlation polytope CORn.

In Section 6 we consider the matrix M(x, y) = (|x ∧ y| − 1)(|x ∧ y| − 2) and its
associated query problem f(x) = (|x|− 1)(|x|− 2), where |x| is Hamming weight.

2.2 Polynomials

We will study two types of polynomials that are obviously nonnegative on the
Boolean cube: nonnegative literal polynomials and sum-of-squares polynomials.

Definition 4 (nonnegative literal degree). A nonnegative literal polynomial
is a nonnegative linear combination of products of variables and negations of vari-
ables, i.e., it can be written as

p(x) =
∑

S⊆[n]

∑

b∈{0,1}|S|

αS,b

∏

i∈S

((−1)bixi + bi) (1)

766 J. Kaniewski et al.

where each αS,b ≥ 0. Its degree is max{|S| : αS,b 	= 0}. The nonnegative literal
degree of f : {0, 1}n → R+, denoted ldeg+(f), is the minimum degree of a nonneg-
ative literal polynomial p that equals f on {0, 1}n.

This measure has also been called the nonnegative junta certificate degree [23].

Definition 5 (sum-of-squares degree). Let d be a natural number. A sum-of-
squares polynomial of degree d is a polynomial p that can be written in the form
p(x) =

∑
i∈P pi(x)2, where P is a finite index set and the pi are polynomials

of degree ≤ d. The sum-of-squares (sos) degree of f : {0, 1}n → R+, denoted
degsos(f), is the minimum d for which such a p equals f on {0, 1}n.

Note that a sum-of-squares polynomial of degree d is actually a polynomial of
degree 2d; we allow this slight abuse of notation in order to give a clean charac-
terization in Theorem 3 below.

2.3 The Sherali-Adams and Lasserre Hierarchies

Consider the optimization problem

α(f) = max
x∈{0,1}n

f(x) (2)

where f is given by a multilinear polynomial. Many important optimization prob-
lems can be cast in this framework, including NP-hard ones. For example find-
ing the maximum cut in a graph G = (V,E) with n vertices corresponds to the
quadratic function f(x) =

∑
{i,j}∈E xi(1 − xj) + xj(1 − xi).

If c ≥ α(f), then c − f is nonnegative on {0, 1}n. One way we can witness
this is by expressing c − f as a polynomial which is obviously nonnegative for all
x ∈ {0, 1}n. The Sherali-Adams hierarchy [31] looks for a witness in the form of
a nonnegative literal polynomial. The sum-of-squares or Lasserre hierarchy looks
for a witness in the form of a sum-of-squares polynomial [21,29,32].

If we can find a nonnegative literal polynomial p of degree d such that c−f(x) =
p(x), then this witnesses that the optimal value is upper bounded as α(f) ≤ c.
Moreover, determining if the nonnegative literal polynomial degree of c − f(x)
is at most d can be formulated as a linear program of size nO(d). The value of
the d-round Sherali-Adams relaxation for (2) is the smallest value of c such that
c−f(x) is a degree-d nonnegative literal polynomial. Thus the smallest d for which
a Sherali-Adams relaxation certifies an optimal upper bound, is exactly the non-
negative literal degree ldeg+(α(f) − f) of the function α(f) − f .

Similarly, if we can find pi : {0, 1}n → R of degree at most d, such that
c − f(x) =

∑
i pi(x)2, then this witnesses that α(f) ≤ c. Searching for such poly-

nomials pi can be expressed as a semidefinite program of size nO(d). The smallest
value of c such that c − f is degree-d sum-of-squares is known to be equivalent to
the relaxation of (2) given by the dth level of the Lasserre hierarchy. The level of
the Lasserre hierarchy required to exactly capture (2) is thus degsos(α(f) − f).

Query Complexity in Expectation 767

3 Randomized Query Complexity in Expectation

In this section we define and characterize classical randomized query complex-
ity in expectation, characterize it by the nonnegative literal degree, and relate it
to the Sherali-Adams hierarchy. A randomized decision tree is a probability dis-
tribution μ over deterministic decision trees. We consider deterministic decision
trees with leaves labeled by nonnegative real numbers. A randomized decision tree
computes a function f : {0, 1}n → R+ in expectation if for every x ∈ {0, 1}n the
expected output of the tree on input x is f(x). The cost of such a tree is, as usual,
the maximum cost, that is the length of a longest path from the root to a leaf, of
a deterministic decision tree that has nonzero μ-probability.

Definition 6. The randomized query complexity of computing f in expectation,
denotedRE(f), is the minimum cost among all randomized decision trees that com-
pute f in expectation.

Theorem 2. Let f : {0, 1}n → R+. Then RE(f) = ldeg+(f).

Referring back to Section 2.3, this gives a connection between randomized query
complexity in expectation and the Sherali-Adams hierarchy: the smallest d such
that the d-round Sherali-Adams relaxation certifies the optimal upper bound α(f)
on the maximization problem (2), is exactly RE(α(f) − f).

4 QuantumQuery Complexity in Expectation

Here we study quantum query complexity in expectation, characterize it by sum-
of-squares degree, and relate it to the Lasserre hierarchy. We assume familiarity
with quantum computing [27] and query complexity [9].

We define the quantum query complexity of computing a function f :
{0, 1}n → R+ in expectation. A T -query algorithm is described by unitaries
U0, . . . , UT and a final POVM measurement {Eθ}θ∈Θ, where each Eθ is a psd
matrix labeled by nonnegative real θ, and

∑
θ∈Θ Eθ = I. As usual, on input x

the query algorithm proceeds from the initial state |0̄〉 by alternately applying a
unitary and the query oracle Ox (which maps |i, b〉 �→ |i, b ⊕ xi〉), so that the
final state of the algorithm after T queries is |ψT

x 〉 = UT Ox . . . OxU1OxU0|0̄〉.
Let E =

∑
θ∈Θ θEθ. As the probability of output θ upon measuring |ψT

x 〉 is
Tr(Eθ|ψT

x 〉〈ψT
x |), the expected value of the output is Tr(E|ψT

x 〉〈ψT
x |). The algo-

rithm computes f in expectation if f(x) = Tr(E|ψT
x 〉〈ψT

x |) for every x ∈ {0, 1}n.

Definition 7. The quantum query complexity of computing f in expectation,
denoted QE(f), is the minimum T for which there is a T -query quantum algorithm
computing f in expectation.

Theorem 3. Let f : {0, 1}n → R+. Then QE(f) = degsos(f).

768 J. Kaniewski et al.

Proof. QE(f) ≥ degsos(f). Say there is a T -query algorithm to compute f in
expectation. Let |ψT

x 〉 denote its state on input x after T queries. By the poly-
nomial method [2], the amplitude of each basis state in |ψT

x 〉 is an n-variate mul-
tilinear polynomial in x of degree ≤ T . We have f(x) =

∑
θ θ〈ψT

x |Eθ|ψT
x 〉. Let

Eθ =
∑

i λi|ei
θ〉〈ei

θ| be the eigenvalue decomposition of Eθ, where each λi ≥ 0.
Then 〈ψT

x |Eθ|ψT
x 〉 =

∑
i λi|〈ψT

x |ei
θ〉|2. Since 〈ψT

x |ei
θ〉 is a linear combination of

amplitudes of |ψT
x 〉, it is a degree ≤ T polynomial in x. Since the coefficients θ and

λi are nonnegative, this gives a representation of 〈ψT
x |Eθ|ψT

x 〉 as a sum-of-squares
polynomial of degree ≤ T .

QE(f) ≤ degsos(f). Let d = degsos(f). We first exhibit a quantum algorithm
for the special case where f = p2 for some degree-d polynomial p. This is inspired
by the proof of [35, Theorem 2.3]. Let p =

∑
s p̂(s)(−1)x·s be the Fourier represen-

tation of p, where s ranges over {0, 1}n. Because p has degree d, we have p̂(s) 	= 0
only if |s| ≤ d. The algorithm is as follows:

1. Prepare n-qubit state c
∑

s p̂(s)|s〉, where c = 1/
√∑

s p̂(s)2 is a constant.
2. Apply a unitary that maps |s〉 �→ (−1)x·s|s〉 for all s of weight |s| ≤ d; one can

show that this can be implemented using d queries.
3. Apply the n-qubit Hadamard transform to the state.
4. Measure the state and output 2n/c2 if the result was 0n, otherwise output 0.

Note that the amplitude of the basis state |0n〉 after step 3 is c√
2n

∑
s p̂(s)(−1)x·s =

c√
2n

p(x). Hence the probability that the final measurement results in outcome 0n is
(c√

2n
p(x))2, and the expected value of the output is (c√

2n
p(x))2 · 2n/c2 = p(x)2 =

f(x), as desired. Now consider the general case where f =
∑

i∈P p2i . The algorithm
chooses one i ∈ P uniformly at random and runs the above algorithm to produce
an output with expected value pi(x)2. It finally outputs that output multiplied by
|P|. Clearly, this uses at most d queries to x, and the expected value of its final
output is 1

|P|
∑

i pi(x)2|P| =
∑

i pi(x)2 = f(x). ��
This connects quantum query complexity in expectation and the Lasserre hierar-
chy: the smallest level d of the Lasserre hierarchy that certifies the optimal upper
bound α(f) on the maximization problem (2), is exactly QE(α(f) − f).

5 Gaps and Relations between RE(f) and QE(f)

For some f : {0, 1}n → R+, the quantum query complexity in expectation QE(f)
can be much smaller than its classical counterpart RE(f). An extreme example
is the n-bit function f(x) = (|x| − 1)2, where QE(f) = 1 by Theorem 3, but
RE(f) = n. The latter holds because on the all-0 input the algorithm needs to
produce a nonzero output with positive probability, but on weight-1 inputs it can
never output anything nonzero, hence a classical algorithm needs n queries on the
all-0 input. In contrast, if the range of f is Boolean, then we can show that QE(f)
is at most polynomially smaller than RE(f):

Theorem 4. For every f : {0, 1}n → {0, 1} we have RE(f) ≤ 16QE(f)3.

Query Complexity in Expectation 769

The main reason this query complexity result is interesting is that the analo-
gous statement for communication complexity is equivalent to the longstanding
log-rank conjecture! The communication version of Theorem 4 would say that for
all Boolean matrices M , the quantum and classical communication complexity of
computing M in expectation are at most polynomially far apart. As noted by Fior-
ini et al. [15], this is equivalent to log rk+(M) ≤ polylog(rkpsd(M)), which in turn
is equivalent to the log-rank conjecture. Presumably such a communication ver-
sion will be substantially harder to prove than the above query version. However,
in many cases results in query complexity “mirror” (often much harder) results in
communication complexity, so our Theorem 4 may be viewed as (weak) evidence
for the log-rank conjecture.

6 A QuantumQuery Complexity Lower Bound

Here we show that the n-bit function f(x) = (|x|−1)(|x|−2) has QE(f) = Ω(
√

n).
This result is motivated by the fact that a strong lower bound on the psd rank of
the closely related matrix M(x, y) = (|x∧y|−1)(|x∧y|−2) would have important
consequences for the correlation polytope (M is a submatrix of the slack matrix for
the correlation polytope, see Lemma 1). We hope that the methods of this section
may in the future help lower bound this psd rank as well.

We prove our query complexity lower bound by showing the corresponding
lower bound on the sum-of-squares degree of f . As is common in query complexity
lower bounds by the polynomial method [2], we will use a symmetrization argu-
ment to define a single-variate polynomial Q : R → R that behaves well on [n],
and then use Markov’s lemma from approximation theory to bound the degree
of Q. A new complication in our setting is the following. If f(x) =

∑
i pi(x)2

then we would like to define a “symmetrized” polynomial g : [n] → R where
g(k) = Ex:|x|=k

[∑
i pi(x)2

]
. However, we do not know how to prove that g remains

a nonnegative polynomial. To get around this, we define symmetrized polynomials
qi(k) = Ex:|x|=k [pi(x)] for each pi individually, then recombine the symmetrized
polynomials as Q(k) =

∑
i qi(k)2. We are then able to bound the sum-of-squares

degree of Q.

Theorem 5. If f(x) = (|x| − 1)(|x| − 2) for x ∈ {0, 1}n, degsos(f) ≥
√

n/48.

7 Psd Rank and Query Complexity in Expectation

Fiorini et al. [15] defined a one-way model of quantum communication to com-
pute a matrix in expectation, and showed that this complexity is characterized
by the logarithm of the psd rank. We show below that this characterization still
holds for the more general two-way communication model, which allows multiple
rounds of communication. Hence one-way and two-way quantum communication
complexity are the same for computation in expectation.

We will not formally define the model of two-way quantum communication
complexity (see [34] for more technical details), instead just highlighting the

770 J. Kaniewski et al.

differences of the model of computing a function in expectation to the normal
model. As usual, Alice and Bob each start with their own input, x and y respec-
tively, and then the protocol specifies whose turn it is to speak and what message
they send to the other party. At the end of the protocol Bob must output a non-
negative number, which is a random variable z that depends on the inputs x and
y as well as on the internal randomness of the protocol.

The major difference with the usual model is the notion of when a protocol is
correct. Let M be a matrix with nonnegative real entries whose rows are indexed
by Alice’s possible inputs, and whose columns are indexed by Bob’s inputs. We
say a protocol computes the matrix M in expectation if, for every (x, y), M(x, y)
equals the expected value of the output z on input (x, y). As usual, the cost of the
protocol is the worst-case number of qubits communicated (over all rounds).

Definition 8. The quantum communication complexity of computing a matrix M
in expectation, denoted QCE(M), is the minimum q such that there exists a quan-
tum protocol of cost q that computes M in expectation. The minimum q when we
restrict to one-way protocols is denoted QCE1(M).

It turns out that two-way quantum communication complexity is not more pow-
erful than its one-way cousin: both correspond to the psd rank.

Theorem 6. log rkpsd(M) ≤ QCE(M) ≤ QCE1(f) ≤ �log(rkpsd(M) + 1)�.

7.1 Upper Bounds on psd Rank from Quantum Algorithms

We can show that efficient quantum query algorithms for computing functions
f : {0, 1}n → R+ in expectation give rise to an efficient quantum communication
protocol to compute the matrix Mf (x, y) = f(x∧ y) in expectation, and hence to
a low-rank psd factorization of Mf . We state it more generally:

Theorem 7. Let Y be a finite set. For every y ∈ Y , let fy : {0, 1}n → R+ satisfy
QE(fy) ≤ T . Define a 2n × |Y | matrix M by M(x, y) = fy(x). Then QCE(M) ≤
2T (log(n) + 1), and hence rkpsd(M) ≤ (2n)2T .

Lee et al. [23] independently proved a similar upper bound on psd rank in terms
of the sos-degree of fy rather than quantum query complexity.

As an application we will derive an exponentially-close entrywise approxima-
tion of the slack matrix S of the perfect matching polytope, by a matrix with psd
rank not much bigger than 2

√
n. This shows a big difference to the case of non-

negative rank: Braun and Pokutta [5] show that any S̃ that is O(1/n)-close to S
needs nonnegative rank 2Ω(n).

Edmonds gave a complete description of the facets of the perfect matching
polytope for the complete n-vertex graph Kn [12]. The key are the odd-set inequal-
ities: for a perfect matching M , viewed as a vector M ∈ {0, 1}(n

2) of weight m =
n/2, and an odd-sized set U ⊆ [n], the associated inequality says |δ(U) ∩ M | ≥ 1,
where δ(U) ∈ {0, 1}(n

2) denotes the cut induced by U . In addition, there are O(n2)
degree and nonnegativity constraints. Thus the corresponding slack matrix S has

Query Complexity in Expectation 771

columns indexed by all perfect matchings M in Kn and rows indexed by odd-sized
sets U with entries SUM = |δ(U) ∩ M | − 1. There are O(n2) additional rows for
the degree and nonnegativity constraints.

In the full version of this paper we show that the m-bit function g(z) =
|z|−1 can be approximated (in expectation) up to exponentially small error with
quantum query complexity O(m1/2+ε log m). Define fM (x) = g(xM), where xM

denotes the restriction of n-bit string x to the m positions in the support of M .
Applying Theorem 7 and adding O(n2) rows for the other constraints gives:

Theorem 8. ∀ε > 0 there is a matrix S̃ of psd rank 2O(n1/2+ε(log n)2) s.t.

1. SUM − 2−(n/2)2ε ≤ S̃UM ≤ SUM for the entries where |δ(U) ∩ M | > (n/2)2ε;
2. S̃xy = Sxy for all other entries.

Acknowledgments. We thank Srinivasan Arunachalam, David Steurer, Mario
Szegedy and Henry Yuen for useful discussions, Sebastian Pokutta for useful discus-
sions and for pointing us to [5], and James Lee for sending us a version of [23]. Troy Lee
is supported in part by the Singapore National Research Foundation under NRF RF
Award No. NRF-NRFF2013-13. Ronald de Wolf is partially supported by a Vidi grant
from the Netherlands Organization for Scientific Research (NWO) which ended in 2013,
ERC Consolidator Grant QPROGRESS, and by the European Commission IST STREP
project QALGO 600700.

References

1. Arunachalam, S., Yuen, H., de Wolf, R.: Unpublished manuscript, August 2014
2. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds

by polynomials. Journal of the ACM 48(4), 778–797 (2001)
3. Blekherman, G., Gouveia, J., Pfeiffer, J.: Sums of squares on the hypercube, Febru-

ary 18, 2014. arXiv/1402.4199
4. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and

estimation. In: Quantum Computation and Quantum Information: A Millennium
Volume, AMS Contemporary Mathematics Series, vol. 305, pp. 53–74 (2002)

5. Braun, G., Pokutta, S.: The matching polytope does not admit fully-polynomial size
relaxation schemes. In: Proc. of 26th SODA, pp. 837–846 (2015)

6. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and
computation. In: Proc. of 30th ACM STOC, pp. 63–68 (1998)

7. Buhrman, H., Cleve, R., de Wolf, R., Zalka, C.: Bounds for small-error and zero-error
quantum algorithms. In: Proc. of 40th IEEE FOCS, pp. 358–368 (1999)

8. Buhrman, H., de Wolf, R.: Communication complexity lower bounds by polynomi-
als. In: Proc. of 16th IEEE Complexity (CCC), pp. 120–130 (2001)

9. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: A
survey. Theoretical Computer Science 288(1), 21–43 (2002)

10. Chan, S.O., Lee, J.R., Raghavendra, P., Steurer, D.: Approximate constraint sat-
isfaction requires large LP relaxations. In: Proc. of 54th IEEE FOCS, pp. 350–359
(2013)

11. Drucker, A., de Wolf, R.: Quantum proofs for classical theorems. Theory of Com-
puting (2011). ToC Library, Graduate Surveys 2

772 J. Kaniewski et al.

12. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. Journal of
research of the National Bureau of Standards-B 69B(1,2), 125–130 (1965)

13. Faenza, Y., Fiorini, S., Grappe, R., Tiwary, H.R.: Extended formulations, non-
negative factorizations, and randomized communication protocols. In: Mahjoub,
A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS, vol. 7422, pp.
129–140. Springer, Heidelberg (2012)

14. Fawzi, H., Saunderson, J., Parrilo, P.: Equivariant semidefinite lifts and sum-of-
squares hierarchies, December 23, 2013. arXiv:1312.6662

15. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite
extended formulations: exponential separation and strong lower bounds. In: Proc.
of 44th ACM STOC, pp. 95–106 (2012)

16. Gouveia, J., Parrilo, P., Thomas, R.: Lifts of convex sets and cone factorizations.
Mathematics of Operations Research 38(2), 248–264 (2013). arXiv:1111.3164

17. Grigoriev, D.: Complexity of Positivstellensatz proofs for the knapsack. Computa-
tional Complexity 10, 139–154 (2001)

18. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc.
of 28th ACM STOC, pp. 212–219 (1996). quant-ph/9605043

19. Kremer, I.: Quantum Communication. MSc thesis, Hebrew University (1995)
20. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge UP (1997)
21. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.

SIAM Journal on Optimization 11(3), 796–817 (2001)
22. Laurent, M.: Lower bound for the number of iterations in semidefinite hierarchies

for the cut polytope. Mathematics of operations research 28(4), 871–883 (2003)
23. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidef-

inite programming relaxations, November 24, 2014. To appear in STOC 2015.
arXiv:1411.6317

24. Lee, J.R., Raghavendra, P., Steurer, D., Tan, N.: On the power of symmetric LP and
SDP relaxations. In: Proc. of 29th IEEE Complexity (CCC), pp. 13–21 (2014)

25. Midrijanis, G.: Exact quantum query complexity for total Boolean functions, March
23, 2004. quant-ph/0403168

26. Minsky, M., Papert, S.: Perceptrons. MIT Press (1987)
27. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.

Cambridge University Press (2000)
28. Padberg, M.: The boolean quadric polytope. Math. prog. 45, 139–172 (1989)
29. Parrilo, P.: Structured semidefinite programs and semialgebraic geometry methods

in robustness and optimization. Ph.D. thesis, Caltech (2000)
30. Rothvoß, T.: The matching polytope has exponential extension complexity. In: Proc.

of 46th ACM STOC, pp. 263–272 (2014)
31. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming. SIAM Journal on Discrete
Mathematics 3, 411–430 (1990)

32. Shor, N.Z.: An approach to obtaining global extremums in polynomial mathematical
programming problems. Cybernetics 23, 695–700 (1987)

33. Swart, T.: P = NP. Tech. rep., University of Guelph (1986), revision 1987
34. de Wolf, R.: Quantum communication and complexity. Theoretical Computer Sci-

ence 287(1), 337–353 (2002)
35. de Wolf, R.: Nondeterministic quantum query and quantum communication com-

plexities. SIAM Journal on Computing 32(3), 681–699 (2003)
36. Yannakakis, M.: Expressing combinatorial optimization problems by linear pro-

grams. Journal of Computer and System Sciences 43(3), 441–466 (1991)
37. Yao, A.C.C.: Quantum circuit complexity. In: Proc. of 34th IEEE FOCS,

pp. 352–360 (1993)

http://arxiv.org/abs/1312.6662
http://arxiv.org/abs/1111.3164
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/1411.6317
http://arxiv.org/abs/quant-ph/0403168

Near-Linear Query Complexity
for Graph Inference

Sampath Kannan1, Claire Mathieu2, and Hang Zhou2(B)

1 Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA, USA

kannan@cis.upenn.edu
2 Département d’Informatique UMR CNRS 8548,

École Normale Supérieure, Paris, France
{cmathieu,hangzhou}@di.ens.fr

Abstract. How efficiently can we find an unknown graph using distance
or shortest path queries between its vertices? Let G = (V, E) be a con-
nected, undirected, and unweighted graph of bounded degree. The edge
set E is initially unknown, and the graph can be accessed using a distance
oracle, which receives a pair of vertices (u, v) and returns the distance
between u and v. In the verification problem, we are given a hypothetical
graph Ĝ = (V, Ê) and want to check whether G is equal to Ĝ. We ana-
lyze a natural greedy algorithm and prove that it uses n1+o(1) distance
queries. In the more difficult reconstruction problem, Ĝ is not given, and
the goal is to find the graph G. If the graph can be accessed using a short-
est path oracle, which returns not just the distance but an actual shortest
path between u and v, we show that extending the idea of greedy gives a
reconstruction algorithm that uses n1+o(1) shortest path queries. When
the graph has bounded treewidth, we further bound the query complex-
ity of the greedy algorithms for both problems by Õ(n). When the graph
is chordal, we provide a randomized algorithm for reconstruction using
Õ(n) distance queries.

1 Introduction

How efficiently can we find an unknown graph using distance or shortest path
queries between its vertices? This is a natural theoretical question from the
standpoint of recovery of hidden information. This question is related to the
reconstruction of Internet networks. Discovering the topology of the Internet
is a crucial step for building accurate network models and designing efficient
algorithms for Internet applications. Yet, this topology can be extremely difficult
to find, due to the dynamic structure of the network and to the lack of centralized
control. The network reconstruction problem has been studied extensively [1,2,
5,6,10,12]. Sometimes we have some idea of what the network should be like,
based perhaps on its state at some past time, and we want to check whether our
image of the network is correct. This is network verification and has received

The full version of the paper is available on the authors’ websites.
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 773–784, 2015.
DOI: 10.1007/978-3-662-47672-7_63

774 S. Kannan et al.

attention recently [2,3,6]. This is an important task for routing, error detection,
or ensuring service-level agreement (SLA) compliance, etc. For example, Internet
service providers (ISPs) offer their customers services that require quality of
service (QoS) guarantees, such as voice over IP services, and thus need to check
regularly whether the networks are correct.

The topology of Internet networks can be investigated at the router and
autonomous system (AS) level, where the set of routers (ASs) and their physical
connections (peering relations) are the vertices and edges of a graph, respectively.
Traditionally, we use tools such as traceroute and mtrace to infer the network
topology. These tools generate path information between a pair of vertices. It
is a common and reasonably accurate assumption that the generated path is
the shortest one, i.e., minimizes the hop distance between that pair. In our
first theoretical model, we assume that we have access to any pair of vertices
and get in return their shortest path in the graph. Sometimes routers block
traceroute and mtrace requests (e.g., due to privacy and security concerns), thus
the inference of topology can only rely on delay information. In our second
theoretical model, we assume that we get in return the hop distance between a
pair of vertices. The second model was introduced in [10].

Graph inference using queries that reveal partial information has been stud-
ied extensively in different contexts, independently stemming from a number of
applications. Beerliova et al. [2] studied network verification and reconstruction
using an oracle, which, upon receiving a node q, returns all shortest paths from q
to all other nodes, instead of one shortest path between a pair of nodes as in our
first model. Erlebach et al. [6] studied network verification and reconstruction
using an oracle which, upon receiving a node q, returns the distances from q to
all other nodes in the graph, instead of the distance between a pair of nodes as
in our second model. They showed that minimizing the number of queries for
verification is NP-hard and admits an O(log n)-approximation algorithm. In the
network realization problem, we are given the distances between certain pairs
of vertices and asked to determine the sparsest graph (in the unweighted case)
or the graph of least total weight that realizes these distances. This problem
was shown to be NP-hard [4]. In evolutionary biology, a well-studied problem
is reconstructing evolutionary trees, thus the hidden graph has a tree structure.
See for example [7,9,11]. One may query a pair of species and get in return the
distance between them in the (unknown) tree. In our reconstruction problem, we
allow the hidden graph to have an arbitrarily connected topology, not necessarily
a tree structure.

1.1 The Problem

Let G = (V, E) be a hidden graph that is connected, undirected, and unweighted,
where |V | = n. We consider two query oracles. A shortest path oracle receives a
pair (u, v) ∈ V 2 and returns a shortest path between u and v.1 A distance oracle

1 If there are several shortest paths between u and u, the oracle returns an arbitrary
one.

Near-Linear Query Complexity for Graph Inference 775

receives a pair (u, v) ∈ V 2 and returns the number of edges on a shortest path
between u and v.

In the graph reconstruction problem, we are given the vertex set V and have
access to either a distance oracle or a shortest path oracle. The goal is to find
every edge in E.

In the graph verification problem, again we are given V and have access to
either oracle. In addition, we are given a connected, undirected, and unweighted
graph Ĝ = (V, Ê). The goal is to check whether Ĝ is correct, that is, whether
Ĝ = G.

The efficiency of an algorithm is measured by its query complexity2, i.e., the
number of queries to an oracle. We focus on query complexity, while all our
algorithms are of polynomial time and space. We note that O(n2) queries are
enough for both reconstruction and verification via a distance oracle or a shortest
path oracle: we only need to query every pair of vertices.

Let Δ denote the maximum degree of any vertex in the graph G. Unless
otherwise stated, we assume that Δ is bounded, which is reasonable for real
networks that we want to reconstruct or verify. Indeed, when Δ is Ω(n), both
reconstruction and verification require Ω(n2) distance or shortest path queries.

Let us focus on bounded degree graphs. It is not hard to see that Ω(n) dis-
tance or shortest path queries are required. The central question in this line
of work is therefore: Is the query complexity linear, quadratic, or some-
where in between? In [10], Mathieu and Zhou provide a first answer: the query
complexity for reconstruction via a distance oracle is subquadratic: Õ(n3/2). In
this paper, we show that the query complexity for reconstruction via a short-
est path oracle or verification via either oracle is near-linear: n1+o(1). It is open
whether there is an algorithm for reconstruction using a near-linear number of
distance queries.

1.2 Our Results

Verification

Theorem 1. For graph verification using a distance oracle, there is a determin-
istic algorithm (Algorithm 1) with query complexity n

1+O
(√

(log log n+log Δ)/ log n
)
,

which is n1+o(1) when the maximum degree Δ = no(1). If the graph has treewidth
w, the query complexity can be further bounded by O(Δ(Δ + w log n)n log2 n),
which is Õ(n) when Δ and w are O(polylog n).

The main task for verification is to confirm the non-edges of the graph.
Algorithm 1 is greedy: every time it makes a query that confirms the largest
number of non-edges that are not yet confirmed. To analyze the algorithm, first,
we show that its query complexity is roughly ln n times the optimal number of
queries OPT for verification. This is based on a reduction to the Set-Cover
problem, see Section 3.1. It only remains to bound OPT .

2 Expected query complexity in the case of randomized algorithms.

776 S. Kannan et al.

Table 1. Results (for bounded degree graphs). New results are in bold.
Objective Query complexity

verification via either oracle n1+o(1)

bounded treewidth: Õ(n)
(Thm 1, Cor 2, and Thm 3)reconstruction via a shortest path oracle

reconstruction via a distance oracle

Õ(n3/2) [10]
Ω(n log n/ log log n) (Thm 5)
outerplanar: Õ(n) [10]
chordal: Õ(n) (Thm 4)

To bound OPT and get the first statement in Theorem 1, it is enough to
prove the desired bound for a different verification algorithm. This algorithm
is a more sophisticated recursive version of the algorithm in [10]. Recursion is
a challenge because, when we query a pair (u, v) in a recursive subgraph, the
oracle returns the distance between u and v in the entire graph, not just within
the subgraph. Thus new ideas are introduced for the algorithmic design. See
Section 3.3.

To show the second statement in Theorem 1, similarly, we design another
recursive verification algorithm with query complexity Õ(n) for graphs of
bounded treewidth. The algorithm uses some bag of a tree decomposition to
separate the graph into balanced subgraphs, and then recursively verifies each
subgraph. The same obstacle to recursion occurs. Our approach here is to add
a few weighted edges to each subgraph in order to preserve the distance metric.
The complete proof is in the full version of the paper.

We note that each query to a distance oracle can be simulated by the same
query to a shortest path oracle. So from Theorem 1, we have:

Corollary 2. For graph verification using a shortest path oracle, Algorithm 1
achieves the same query complexity as in Theorem 1.

Reconstruction

Theorem 3. For graph reconstruction using a shortest path oracle, there is a
deterministic algorithm (Algorithm 4) that achieves the same query complexity
as in Theorem 1.

The key is to formulate this problem as a problem of verification using a
distance oracle, so that we get the same query complexity as in Theorem 1.
We extend the idea of greedy in Algorithm 1, and we show that each query to
a shortest path oracle makes as much progress for reconstruction as the corre-
sponding query to a distance oracle would have made for verifying a given graph.
The main realization here is that reconstruction can be viewed as the verification
of a dynamically changing graph. See Section 4.

Near-Linear Query Complexity for Graph Inference 777

Theorem 4. For reconstruction of chordal graphs using a distance oracle, there
is a randomized algorithm with query complexity O

(
Δ32Δ · n(2Δ + log2 n) log n

)
,

which is Õ(n) when the maximum degree Δ is O(log log n).

The algorithm in Theorem 4 first finds a separator using random sampling
and statistical estimates, as in [10]. Then it partitions the graph into subgraphs
with respect to this separator and recurses on each subgraph. However, the
separator here is a clique instead of an edge in [10] for outerplanar graphs. Thus
the main difficulty is to design and analyze a more general tool for partitioning
the graph. The proof of the theorem is in the full version of the paper.

Lower Bounds. For graphs of bounded degree, both reconstruction and ver-
ification require Ω(n) distance or shortest path queries. In addition, there is a
slightly better lower bound for reconstruction using a distance oracle, as in the
following theorem.

Theorem 5. For graph reconstruction using a distance oracle, assuming the
maximum degree Δ ≥ 3 is such that Δ = o

(
n1/2)

, any algorithm has query
complexity Ω(Δn log n/ log log n).

The proof of Theorem 5 is in the full version of the paper.

2 Notation

Let δ be the distance metric of G. For a subset of vertices S ⊆ V and a vertex
v ∈ V , define δ(S, v) to be mins∈S δ(s, v). For v ∈ V , let N(v) = {u ∈ V :
δ(u, v) ≤ 1} and let N2(v) = {u ∈ V : δ(u, v) ≤ 2}. We define δ̂, N̂ , and N̂2
similarly with respect to the graph Ĝ.

For a graph G = (V, E), a distinct pair of vertices uv ∈ V 2 is an edge of G if
uv ∈ E, and is a non-edge of G if uv /∈ E.

For a subset of vertices S ⊆ V , let G[S] be the subgraph induced by S. For a
subset of edges H ⊆ E, we identify H with the subgraph induced by the edges
of H. Let δH denote the distance metric of the subgraph H.

For a vertex s ∈ V and a subset T ⊆ V , define Query(s, T) as Query(s, t)
for every t ∈ T . For subsets S, T ⊆ V , define Query(S, T) as Query(s, t) for
every (s, t) ∈ S × T .

In the verification problem, an algorithm performs a set of queries, and its
output is no if some query gives the wrong distance (or shortest path), and is
yes if all queries give the right distances (or shortest paths).

3 Proof of Theorem 1

3.1 Greedy Algorithm

The task of verification comprises verifying that every edge of Ĝ is an edge of G,
and verifying that every non-edge of Ĝ is a non-edge of G. The second part is

778 S. Kannan et al.

called non-edge verification. In the second part, we assume that the first part is
already done, which guarantees that Ê ⊆ E. For graphs of bounded degree, the
first part requires only O(Δn) queries, thus the focus is on non-edge verification.

Theorem 6. For graph verification using a distance oracle, there is a deter-
ministic greedy algorithm (Algorithm 1) that uses at most Δn + (ln n + 1) ·OPT
queries, where OPT is the optimal number of queries for non-edge verification.

Now we prove Theorem 6. Let N̂E be the set of the non-edges of Ĝ. For each
pair of vertices (u, v) ∈ V 2, we define Su,v ⊆N̂E as follows:

Su,v =
{

ab ∈N̂E : δ̂(u, a) + δ̂(b, v) + 1 < δ̂(u, v)
}

. (1)

The following two lemmas relate the sets Su,v with non-edge verification.

Lemma 7. Assume that Ê ⊆ E. For every (u, v) ∈ V 2, if δ(u, v) = δ̂(u, v), then
every pair ab ∈ Su,v is a non-edge of G.

Proof. Consider any pair ab ∈ Su,v. By the triangle inequality, δ(u, a)+ δ(a, b)+
δ(b, v) ≥ δ(u, v) = δ̂(u, v). By the definition of Su,v and using Ê ⊆ E, we have
δ̂(u, v) > δ̂(u, a) + δ̂(b, v) + 1 ≥ δ(u, a) + δ(b, v) + 1. Thus δ(a, b) > 1, i.e., ab is
a non-edge of G. ��
Lemma 8. If a set of queries T verifies that every non-edge of Ĝ is a non-edge
of G, then

⋃
(u,v)∈T Su,v =N̂E.

Proof. Assume, for a contradiction, that some ab ∈ N̂E does not belong to any
Su,v for (u, v) ∈ T . Consider adding ab to the set of edges of Ê: this will not
create a shorter path between u and v, for any (u, v) ∈ T . Thus including ab
in Ê is consistent with the answers of all queries in T . This contradicts the
assumption that T verifies that ab is a non-edge of G. ��

From Lemmas 7 and 8, the non-edge verification is equivalent to the Set-
Cover problem with the universeN̂E and the sets {Su,v : (u, v) ∈ V 2}. The Set-
Cover instance can be solved using the well-known greedy algorithm [8], which
gives a (ln n + 1)-approximation. Hence our greedy algorithm for verification
(Algorithm 1). For the query complexity, first, verifying that Ê ⊆ E takes at
most Δn queries, since the graph has maximum degree Δ. The part of non-edge
verification uses a number of queries that is at most (ln n + 1) times the optimal
number of queries. This proves Theorem 6.

3.2 Bounding OPT to Prove Theorem 1

From Theorems 6, in order to prove Theorem 1, we only need to bound OPT ,
as in the following two theorems.

Theorem 9. For graph verification using a distance oracle, the optimal number
of queries OPT for non-edge verification is n

1+O
(√

(log log n+log Δ)/ log n
)
.

Near-Linear Query Complexity for Graph Inference 779

Algorithm 1. Greedy Verification
1: procedure Verify(Ĝ)
2: for uv ∈ Ê do Query(u, v)
3: Y ← ∅
4: while Ê ∪ Y does not cover all vertex pairs do
5: choose (u, v) that maximizes |Su,v \ Y | � Su,v defined in Equation (1)
6: Query(u, v)
7: Y ← Y ∪ Su,v

Theorem 10. For graph verification using a distance oracle, if the graph has
treewidth w, then the optimal number of queries OPT for non-edge verification
is O(Δ(Δ + w log n)n log n).

Theorem 1 follows trivially from Theorems 6, 9, and 10, by noting that both
Δ and log n are smaller than n

√
(log log n+log Δ)/ log n. The proof of Theorem 9 is

in Section 3.3, and the proof of Theorem 10 is in the full version of the paper.

3.3 Proof of Theorem 9

To show Theorem 9, we provide a recursive algorithm for non-edge verifica-
tion with the query complexity in the theorem statement. As in [10], the algo-
rithm selects a set of centers partitioning V into Voronoi cells and expands them
slightly so as to cover all edges of G. But unlike [10], instead of using exhaustive
search inside each cell, the algorithm verifies each cell recursively. The recur-
sion is a challenge because the distance oracle returns the distance in the entire
graph, not in the cell. Straightforward attempts to use recursion lead either to
subcells that do not cover all edges of the cell, or to excessively large subcells.
Our approach is to allow selection of centers outside the cell, while still limiting
the subcells to being contained inside the cell (Figure 1). This simple but subtle
setup is one novelty of the algorithmic design.

The verification algorithm uses the function Subset-Centers (Algo-
rithm 2), which takes as input a graph Ĝ = (V, Ê), a subset of vertices
U ⊆ V , and an integer s ∈ [1, n], and outputs a set of centers A ⊆ V
such that in the graph Ĝ, the vertices of the subset U are roughly equipar-
titioned into the Voronoi cells centered at vertices in A. This algorithm is
a generalization of the Center algorithm by Thorup and Zwick [13]: when
the subset U equals V , the Subset-Centers algorithm becomes their Cen-
ter algorithm. For every w ∈ V , we define w’s cluster in the graph G as
CA(w) = {v ∈ V : δ(w, v) < δ(A, v)}. We note that if w ∈ A, then CA(w) = ∅,
since δ(w, v) ≥ δ(A, v), for every v ∈ V . Similarly, we define w’s cluster in the
graph Ĝ as ĈA(w) = {v ∈ V : δ̂(w, v) < δ̂(A, v)}. The subscript A is omitted
when clear from the context.

The following lemma is a straightforward extension of Theorem 3.1 in [13].

780 S. Kannan et al.

Algorithm 2. Finding Centers for a Subset
1: function Subset-Centers(Ĝ, U, s)
2: A ← ∅
3: while there exists w ∈ V such that |Ĉ(w) ∩ U | > 4|U |/s do
4: W ← {w ∈ V : |Ĉ(w) ∩ U | > 4|U |/s}
5: Add each element of W to A with probability min (s/|W |, 1)
6: return A

Lemma 11. The function Subset-Centers (Algorithm 2) outputs a set A ⊆
V , such that, with probability at least 1/2, we have |A| ≤ 4s log n and |Ĉ(w) ∩
U | ≤ 4|U |/s for every w ∈ V . It uses no queries and its running time is polyno-
mial.

Next, we design a recursive algorithm for non-edge verification. Let U ⊆ V
represent the set of vertices for which we are currently verifying the induced sub-
graph. Verifying that every non-edge of Ĝ[U] is a non-edge of G[U] is equivalent
to verifying that every edge of G[U] is an edge of Ĝ[U].

Let A be a set of centers computed by Subset-Centers. We define, for each
a ∈ A, its extended Voronoi cell Da as

Da =
(⋃

{C(b) : b ∈ N2(a)} ∪ N2(a)
)

∩ U. (2)

Similarly, with respect to the graph Ĝ, we define

D̂a =
(⋃ {

Ĉ(b) : b ∈ N̂2(a)
}

∪ N̂2(a)
)

∩ U. (3)

The following lemma is a trivial extension of Lemma 3 in [10].
Lemma 12.

⋃
a∈A G[Da] covers every edge of G[U].

From Lemma 12, in order to verify that every edge of G[U] is an edge of
Ĝ[U], we only need to verify that every edge of G[Da] is an edge of Ĝ[Da], for
every a ∈ A. So we can apply recursion on each Da.

The main difficulty is: How to obtain Da efficiently? If we compute Da

from its definition, we first need to compute N2(a), which requires Ω(n) queries
since N2(a) may contain nodes outside U . Instead, a careful analysis shows that
we can check whether Da = D̂a without even knowing N2(a), whereas D̂a can
be inferred from the graph Ĝ with no queries. This is shown in Lemma 13, which
is the main novelty of the algorithmic design.

Lemma 13. Assume that Ê ⊆ E. If δ(u, v) = δ̂(u, v) for every pair (u, v) from⋃
a∈A N̂2(a) × U , then Da = D̂a for all a ∈ A.

Proof. The proof is delicate but elementary. For every b ∈ ⋃
a∈A N̂2(a), we have

Ĉ(b) ∩ U = C(b) ∩ U , because δ̂(b, u) = δ(b, u) and δ̂(A, u) = δ(A, u) for every
u ∈ U . Therefore, D̂a can be rewritten as

D̂a =
(⋃ {

C(b) : b ∈ N̂2(a)
}

∪ N̂2(a)
)

∩ U.

Near-Linear Query Complexity for Graph Inference 781

Algorithm 3. Recursive Verification
1: procedure Verify-Subgraph(Ĝ, U)
2: if |U | > n0 then
3: repeat
4: A ← Subset-Centers(Ĝ, U, s)
5: until |A| ≤ 4s log n and |Ĉ(w) ∩ U | ≤ 4|U |/s for every w ∈ V
6: for a ∈ A do
7: Query(N̂2(a), U)
8: Verify-Subgraph(Ĝ, D̂a) � D̂a defined in Equation (3)
9: else

10: Query(U, U)

Since Ê ⊆ E, we have N̂2(a) ⊆ N2(a). Therefore D̂a ⊆ Da.
On the other hand, we have N2(a)∩U ⊆ N̂2(a)∩U , because δ̂(a, u) = δ(a, u)

for every u ∈ N2(a) ∩ U . To prove Da ⊆ D̂a, it only remains to show that, for
any vertex u /∈ N2(a) such that u ∈ C(b) ∩ U for some b ∈ N2(a), we have
u ∈ C(x) ∩ U for some x ∈ N̂2(a). We choose x to be the vertex at distance 2
from a on a shortest a-to-u path in Ĝ. By the assumption and the definition of
x, we have:

δ(x, u) = δ̂(x, u) = δ̂(a, u) − 2 = δ(a, u) − 2.

By the triangle inequality, and using b ∈ N2(a) and u ∈ C(b), we have:

δ(a, u) ≤ δ(a, b) + δ(b, u) ≤ 2 + δ(b, u) < 2 + δ(A, u).

Therefore δ(x, u) < δ(A, u). Thus u ∈ C(x) ∩ U . ��
The recursive algorithm for non-edge verification is in Algorithm 3. It queries

every (u, v) ∈ ⋃
a∈A N̂2(a) × U and then recurses on each extended Voronoi cell

D̂a. See Figure 1. The parameters n0 and s are defined later. Correctness of the
algorithm follows from Lemmas 12 and 13.

Now we bound the query complexity of Verify-Subgraph(Ĝ, V). To pro-
vide intuition, we analyze an algorithm of 4 recursive levels, and show that its
query complexity is Õ(n4/3). The complete proof of the complexity stated in
Theorem 9 is in the full version of the paper.

To simplify the presentation, we assume Δ = O(1). Let s = n1/3 and
let n0 be some well-chosen constant. Consider any recursive call Verify-
Subgraph(Ĝ, U) where |U | > n0. Let A ⊆ V be the centers at the end of
the repeat loop. By Lemma 11, the expected number of repeat loops is con-
stant. For every a ∈ A, N̂2(a) has constant size, since the graph has bounded
degree. Every Ĉ(w) ∩ U has size O(|U |/n1/3), so every D̂a has size O(|U |/n1/3).
Since |A| = Õ(n1/3), the number of recursive calls on the next level is Õ(n1/3).
Therefore during the recursion, on the second level, there are Õ(n1/3) recursive
calls, where every subset has size O(n2/3); on the third level, there are Õ(n2/3)
recursive calls, where every subset has size O(n1/3); and on the fourth level, there
are Õ(n) recursive calls, where every subset has size O(1). Every recursive call

782 S. Kannan et al.

a

D̂a

a′
D̂′

a′

Fig. 1. Two levels of recursive calls of Verify-Subgraph(Ĝ, V): The solid points are
top-level centers returned by Subset-Centers(Ĝ, V, s). The dotted lines indicate the
partition of V into Voronoi cells by those centers. The region inside the outer curve rep-
resents the extended Voronoi cell D̂a of a center a. On the second level of the recursive
call for D̂a, the hollow points are the centers returned by Subset-Centers(Ĝ, D̂a, s).
Observe that some of those centers lie outside D̂a. The dashed lines indicate the par-
tition of D̂a into Voronoi cells by those centers. The region inside the inner curve
represents the extended Voronoi cell D̂′

a′ of a second-level center a′.

with subset U uses Õ(n1/3 · |U |) queries. Therefore, the overall query complexity
is Õ(n4/3).

Remark. The recursive algorithm (Algorithm 3) can be used for verification by
itself. However, we only use its query complexity to provide guarantee for the
greedy algorithm (Algorithm 1), because the greedy algorithm is much simpler.

4 Proof of Theorems 3

The algorithm (Algorithm 4) constructs an increasing set X of edges so that
in the end X = E. At any time, the candidate graph is X.3 Initially, X is the
union of the shortest paths given as answers by n − 1 queries, so that X is a
connected subgraph spanning V . At each subsequent step, the algorithm makes
a query that leads either to the confirmation of many non-edges of G, or to the
discovery of an edge of G.

Formally, we define, for every pair (u, v) ∈ V 2,

SX
u,v =

{
ab ∈ non-edges of X : δX(u, a) + δX(b, v) + 1 < δX(u, v)

}
. (4)

3 We identify X with the subgraph induced by the edges of X.

Near-Linear Query Complexity for Graph Inference 783

Algorithm 4. Greedy Reconstruction
1: procedure Reconstruct(V)
2: u0 ← an arbitrary vertex
3: for u ∈ V \ {u0} do Query(u, u0) to get a shortest u-to-u0 path
4: X ← the union of the above paths, Y ← ∅
5: while X ∪ Y does not cover all vertex pairs do
6: choose (u, v) that maximizes |SX

u,v \ Y | � SX
u,v defined in Equation (4)

7: Query(u, v) to get a shortest u-to-v path
8: if δG(u, v) = δX(u, v) then
9: Y ← Y ∪ SX

u,v

10: else
11: e ← some edge of the above u-to-v path that is not in X
12: X ← X ∪ {e}
13: return X

This is similar to Su,v defined in Equation (1). From Lemma 7, the pairs in SX
u,v

can be confirmed as non-edges of G if δG(u, v) = δX(u, v). At each step, the
algorithm queries a pair (u, v) that maximizes the size of the set SX

u,v \ Y . As
a consequence, either all pairs in SX

u,v \ Y are confirmed as non-edges of G, or
δG(u, v) �= δX(u, v), and in that case, the query reveals an edge along a shortest
u-to-v path in G that is not in X; we then add this edge to X.

To see the correctness, we note that the algorithm maintains the invariant
that the pairs in X are confirmed edges of G, and that the pairs in Y are
confirmed non-edges of G. Thus when X ∪ Y covers all vertex pairs, we have
X = E.

For the query complexity, first, consider the queries that lead to δG(u, v) �=
δX(u, v). For each such query, an edge is added to X. This can happen at most
|E| ≤ Δn times, because the graph has maximum degree Δ.

Next, consider the queries that lead to δG(u, v) = δX(u, v). Define R to be
the set of vertex pairs that are not in X ∪ Y . We analyze the size of R during
the algorithm. For each such query, the size of R decreases by |SX

u,v \ Y |. To
lower bound |SX

u,v \ Y |, we consider the problem of non-edge verification using
a distance oracle on the input graph X, and let T be an (unknown) optimal set
of queries. By Theorem 9, |T | is at most f(n, Δ) = n

1+O
(√

(log log n+log Δ)/ log n
)
.

By Lemma 8, the sets SX
u,v for all pairs (u, v) ∈ T together cover R ∪ Y , hence

R. Therefore, at least one of these pairs satisfies

|SX
u,v \ Y | ≥ |R|/|T | ≥ |R|/f(n, Δ).

Initially, |R| ≤ n(n − 1)/2, and right before the last query, |R| ≥ 1, thus the
number of queries with δG(u, v) = δX(u, v) is O(log n) · f(n, Δ).

Therefore, the overall query complexity is O(Δn + log n · f(n, Δ)). Thus we
obtained the same query bound as in the first statement of Theorem 1. To prove
the query bound for graphs of treewidth w as in the second statement, the

784 S. Kannan et al.

analysis is identical as above, except that f(n, Δ) = O(Δ(Δ + w log n)n log n),
which comes from Theorem 10.
Remark. Note that the above proof depends crucially on the fact that f(n, Δ) is
a uniform bound on the number of distance queries for the non-edge verification
of any n-vertex graph of maximum degree Δ. Thus, even though the graph X
changes during the course of the algorithm because of queries (u, v) such that
δG(u, v) �= δX(u, v), each query for which the distance in G and the current X
are equal confirms 1/f(n, Δ) fraction of non-edges.

Acknowledgments. We thank Uri Zwick for Theorem 5. We thank Fabrice Ben-
hamouda, Mathias Bæk Tejs Knudsen, Mikkel Thorup, and Jacob Holm for discus-
sions. The first author was partially supported by NSF Grant NRI 1317788. The last
two authors were partially supported by the French Agence Nationale de la Recherche
under reference ANR-12-BS02-005 (RDAM project).

References
1. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of traceroute

sampling: or, power-law degree distributions in regular graphs. Journal of the ACM
(JACM) 56(4), 21 (2009)

2. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihaľák, M.,
Shankar Ram, L.: Network discovery and verification. In: Kratsch, D. (ed.) WG
2005. LNCS, vol. 3787, pp. 127–138. Springer, Heidelberg (2005)

3. Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B.: Network tomography: recent
developments. Statistical Science 19, 499–517 (2004)

4. Chung, F., Garrett, M., Graham, R., Shallcross, D.: Distance realization prob-
lems with applications to internet tomography. Journal of Computer and System
Sciences 63, 432–448 (2001)

5. Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vázquez, A., Vespignani, A.: Explor-
ing networks with traceroute-like probes: Theory and simulations. Theoretical
Computer Science 355(1), 6–24 (2006)

6. Erlebach, T., Hall, A., Hoffmann, M., Mihaľák, M.: Network discovery and verifi-
cation with distance queries. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.)
CIAC 2006. LNCS, vol. 3998, pp. 69–80. Springer, Heidelberg (2006)

7. Hein, J.J.: An optimal algorithm to reconstruct trees from additive distance data.
Bulletin of Mathematical Biology 51(5), 597–603 (1989)

8. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
computer and system sciences 9(3), 256–278 (1974)

9. King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based evolutionary
tree reconstruction. In: SODA, pp. 444–453. SIAM (2003)

10. Mathieu, C., Zhou, H.: Graph reconstruction via distance oracles. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol.
7965, pp. 733–744. Springer, Heidelberg (2013)

11. Reyzin, L., Srivastava, N.: On the longest path algorithm for reconstructing trees
from distance matrices. Information processing letters 101(3), 98–100 (2007)

12. Tarissan, F., Latapy, M., Prieur, C.: Efficient measurement of complex networks
using link queries. In: INFOCOM Workshops, pp. 254–259. IEEE (2009)

13. Thorup, M., Zwick, U.: Compact routing schemes. In: Symposium on Parallel Algo-
rithms and Architectures, pp. 1–10. ACM (2001)

A QPTAS for the Base of the Number of
Crossing-Free Structures on a Planar Point Set

Marek Karpinski1, Andrzej Lingas 2(B), and Dzmitry Sledneu3

1 Department of Computer Science, University of Bonn, Bonn, Germany
marek@cs.uni-bonn.de

2 Department of Computer Science, Lund University, Lund, Sweden
andrzej.lingas@cs.lth.se

3 Centre for Mathematical Sciences, Lund University, Lund, Sweden
dzmitry@maths.lth.se

Abstract. The number of triangulations of a planar n point set S is
known to be cn, where the base c lies between 2.43 and 30. Similarly,
the number of spanning trees on S is known to be dn, where the base d
lies between 6.75 and 141.07. The fastest known algorithm for counting
triangulations of S runs in O∗(2n) time while that for counting span-
ning trees runs in O∗(7.125n) time. The fastest known arbitrarily close
approximation algorithms for the base of the number of triangulations
of S and the base of the number of spanning trees of S, respectively,
run in time subexponential in n. We present the first quasi-polynomial
approximation schemes for the base of the number of triangulations of S
and the base of the number of spanning trees on S, respectively.

1 Introduction

By a crossing-free structure in the Euclidean plane, we mean a planar straight-
line graph (PSLG), i.e., a plane graph whose edges {v, u} are represented by
properly non-intersecting straight-line segments with endpoints v, u, respectively.
Triangulations and spanning trees on finite planar point sets are the two most
basic examples of crossing-free structures in the plane, i.e., PSLGs. The problems
of counting the number of such structures for a given planar n-point set belong
to the most intriguing in Computational Geometry [2,4–6,8,10,11].

Counting Triangulations. A triangulation of a set S of n points in the
Euclidean plane is a PSLG on S with a maximum number of edges. Let Ft(S)
stand for the set of all triangulations of S.

The problem of computing the number of triangulations of S, i.e., |Ft(S)|, is
easy when S is convex. Simply, by a straightforward recurrence, |Ft(S)| = Cn−2,
where Ck is the k-th Catalan number, in this special case. However, in the general
case, the problem of computing the number of triangulations of S is neither known
to be #P -hard nor known to admit a polynomial-time counting algorithm.

Marek Karpinski—Research partially supported by DFG grants and the Hausdorff
Center grant.
Andrzej Lingas—Research supported in part by VR grant 621-2011-6179.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 785–796, 2015.
DOI: 10.1007/978-3-662-47672-7_64

786 M. Karpinski et al.

It is known that |Ft(S)| lies between Ω(2.43n) [11] and O(30n) [10]. Since
the so called flip graph whose nodes are triangulations of S is connected [12], all
triangulations of S can be listed in exponential time by a standard traversal of
this graph. When the number of the so called onion layers of the input point set
is constant, the number of triangulations and other crossing-free structures can
be determined in polynomial time [3]. Only recently, Alvarez and Seidel have
presented an elegant algorithm for the number of triangulations of S running in
O∗(2n) time [4] which is substantially below the aforementioned lower bound on
|F (S)| (the O∗ notation suppresses polynomial in n factors).

Also recently, Alvarez, Bringmann, Ray, and Seidel [2] have presented an
approximation algorithm for the number of triangulations of S based on a recur-
sive application of the planar simple cycle separator [9]. Their algorithm runs in
subexponential 2O(

√
n log n) time and over-counts the number of triangulations

by at most a subexponential 2O(n
3
4
√

log n) factor. It also yields a subexponential-
time approximation scheme for the base of the number of triangulations of
S, i.e., for |Ft(S)| 1

n . The authors of [2] observe also that just the inequalities
Ω(8.65n) ≤ |Ft(S)| ≤ O(30n) yield the large exponential approximation factor
O(

√
30/8.65n) for |Ft(S)| trivially computable in polynomial time.

Counting Spanning Trees. A spanning tree U on a set S of n points in the
Euclidean plane is a connected PSLG on S that is cycle-free, equivalently, that
has n − 1 edges. Let Fs(S) stand for the set of all spanning trees on S.

It is known that |Fs(S)| lies between Ω(6.75n) [6] and O(141.07n) [8]. The
fastest known algorithms for computing |Fs(S)| runs in O∗(7.125n) time [13].

The aforementioned approximation algorithm for |Ft(S)| due to Alvarez,
Bringmann, Ray, and Seidel can be adapted to compute |Fs(S)| in the same
asymptotic subexponential 2O(

√
n log n) time within the same asymptotic subex-

ponential 2O(n
3
4
√

log n) approximation factor [2]. The adaption also yields a
subexponential-time approximation scheme for the base of the number of span-
ning trees on S, i.e., for |Fs(S)| 1

n .

Our Contributions. We take a similar approximation approach to the prob-
lems of counting triangulations of S and counting spanning trees on S as Alvarez,
Bringmann, Ray, and Seidel in [2]. However, importantly, instead of using recur-
sively the planar simple cycle separator [9], we shall apply recursively the so
called balanced α-cheap l-cuts of maximum independent sets of triangles within a
dynamic programming framework developed by Adamaszek and Wiese in [1]. By
using the aforementioned techniques, the authors of [1] designed the first quasi-
polynomial time approximation scheme for the maximum weight independent
set of polygons belonging to the input set of polygons with poly-logarithmically
many edges.

Observe that a triangulation of S can be viewed as a maximum independent
set of triangles drawn from the set of all triangles with vertices in S that are free
from other points in S (triangles, or in general polygons, are identified with their
open interiors). Also, a spanning tree on S can be easily complemented to a full
triangulation on S. These simple observations enable us to use the aforementioned

A QPTAS for the Base of the Number of Crossing-Free Structures 787

balanced α-cheap l-cuts recursively in order to bound an approximation factor of
our approximation algorithm. The parameter α specifies the maximum fraction of
an independent set of triangles that can be destroyed by the l-cut, which is a polygon
with at most l vertices in a specially constructed set of points of polynomial size.

Similarly as the approximation algorithm from [2], our algorithm may over-
count the true number of triangulations or spanning trees because the same
triangulation or spanning tree, respectively, can be partitioned recursively in
many different ways. In contrast with the approximation algorithm in [2], our
algorithm may also under-count the number of triangulations of S or spanning
trees on S, since our partitions generally destroy a fraction of edges in a trian-
gulation or a spanning tree on S.

Our approximation algorithm for the number of triangulations of (or, the
number of spanning trees on, respectively) a set S of n points with integer
coordinates in the plane runs in n(log(n)/ε)O(1) time. For ε > 0, it returns a
number at most 2εn times smaller and at most 2εn times larger than the number
of triangulations of S (or, the number of spanning trees on S, respectively). Note
that even for ε = (log n)−O(1), the running time is still quasi-polynomial.

As a corollary, we obtain quasi-polynomial approximation schemes for the
base of the number of triangulations of S, i.e., for |Ft(S)| 1

n , and the base of
the number of spanning trees on S, i.e., for |Fs(S)| 1

n , respectively. This implies
that the problems of approximating |Ft(S)| 1

n and |Fs(S)| 1
n cannot be APX-hard

(under standard complexity theoretical assumptions).

Organization of the Paper. In Preliminaries, we introduce basic concepts
of the dynamic programming framework from [1]. In the following section, we
present five properties of an abstract family of (crossing-free) structures on which
the analysis of our approximation algorithm relies. Section 4 presents our approx-
imation counting algorithm for the number of such structures on S and its time-
complexity analysis. In Sections 5, upper bounds on the under-counting and the
over-counting of the algorithm are derived, respectively. In Section 6, we obtain
our main results by showing that planar triangulations and spanning trees satisfy
these five properties.

2 Preliminaries

The Maximum Weight Independent Set of Polygons Problem (MWISP) is
defined as follows [1]. We are given a set Q of n polygons in the Euclidean
plane. Each polygon has at most k vertices, each of the vertices has integer
coordinates. Next, each polygon P in Q is considered as an open set, i.e., it is
identified with the set of points forming its interior. Also, each polygon P ∈ Q
has weight w(P) > 0 associated with it. The task is to find a maximum weight
independent set of polygons in Q, i.e., a maximum weight set Q′ ⊆ Q such that
for all pairs Pi, Pj of polygons in Q′, if Pi �= Pj then it holds Pi ∩ Pj = ∅.

The bounding box of Q is the smallest axis aligned rectangle containing all
polygons in Q.

788 M. Karpinski et al.

Note that in particular if Q consists of all triangles with vertices in a finite
planar point set S such that no other point in S lies inside them or on their
perimeter, each having weight 1, then the set of all maximum independent sets
of polygons in Q is just the set of all triangulations of S. Recall that the latter
set is denoted by Ft(S) while the set of all spanning trees on S is denoted by
Fs(S).

Adamaszek and Wiese have shown that if k = poly(log n) then MWISP
admits a QPTAS [1].

Fact 1 ([1]). Let k be a positive integer. There exists a (1 + ε)-approximation
algorithm with a running time of (nk)(k

ε log n)O(1) for the Maximum Weight Inde-
pendent Set of Polygons Problem provided that each polygon has at most k
vertices.

Recently, Har-Peled generalized Fact 1 to include arbitrary polygons [7].
We need the following tool from [1].

Definition 1. Let l ∈ N and α ∈ R where 0 < α < 1. Let T be a set of pairwise
non-touching triangles. A polygon Γ is a balanced α-cheap l-cut of T if

– Γ has at most l edges,
– the total weight of all triangles in T that intersect Γ does not exceed an α

fraction of the total weight of triangles in T ,
– the total weight of the triangles in T contained in Γ does not exceed two

thirds of the total weight of triangles in T ,
– the total weight of the triangles in T outside Γ does not exceed two thirds of

the total weight of triangles in T .

For a set of triangles T in the plane, a DP-point is a basic DP-point or an
additional DP-point. The set of basic DP-points contains the four vertices of the
bounding box of T and each intersection of a vertical line passing through a
corner of a triangle in T with any edge of a triangle in T or a horizontal edge of
the bounding box. The set of additional DP-points consists of all intersections of
pairs of straight-line segments whose endpoints are basic DP-points. The authors
of [1] observe that the total number of DP-points is O(n4).

Fact 2 (Lemma 3.6 in [1]). Let δ > 0 and let T be a set of pairwise non-
touching triangles in the plane such that the weight of no triangle in T exceeds
one third of the weight of T . Then there exists a balanced O(δ)-cheap (1

δ)O(1)-cut
with vertices at basic DP-points.

3 An Abstract Crossing-Free Structure

Triangulations and spanning trees are special cases of planar straight-line graphs
(PSLGs). We shall consider an abstract family Fa of finite PSLGs having five
properties (satisfied by triangulations and spanning trees as shown in Section 6)
presented later in this page.

A QPTAS for the Base of the Number of Crossing-Free Structures 789

We shall use the following conventions in order to specify these properties
and design an approximation algorithm for counting the number of PSLGs in
Fa whose vertex set is an n-point planar point set S. We shall denote the latter
set by Fa(S).

We shall call a member in Fa a (crossing-free) structure, and a member
in Fa(S) a structure on S. Next, we shall call any subgraph of a structure a
substructure.

Let P be a polygon with holes. The restriction of a structure G to P is the
substructure consisting of all edges and vertices of G within P . (E.g., if G is a
triangulation then the restriction is a partial triangulation, and if G is a spanning
tree then the restriction is a forest, in general).

We say that a substructure is within P if all its vertices and all its edges are
within P . Next, we shall call a substructure H = (VH , EH) within P maximal
if there is no other substructure H ′ = (VH′ , EH′) within P , where VH = VH′ ,
and EH � EH′ . (E.g., if H is a partial triangulation within P then it cannot be
extended to any larger partial triangulation by adding more edges, similarly, if
H is a forest within P then it cannot be extended to any larger forest within P
by adding more edges.)

We shall assume that the family Fa has the following properties.

1. One can decide if a PSLG with at most n vertices is a structure, i.e., belongs
to Fa, in at most 2O(n log n) time.

2. If a structure has n vertices then it has Ω(n) edges. Two structures with the
same set of vertices have the same number of edges.

3. Any substructure is in particular a substructure of a structure on the vertex
set of the substructure.

4. Any extension of the restriction of a structure G to a simple polygon P with
holes to a maximal substructure on the vertices of G within P uses at most
O(l) additional edges, where l is the number of edges of G with endpoints
in P crossed by the boundaries of P .

5. Suppose that polygons P1, P2 with holes form a partition of a polygon P
with holes. The union of a substructure within P1 with a substructure within
P2 is a substructure.

By the definitions, Fa has also the following properties.

Lemma 1. (Property 6) A maximal substructure H within the bounding box of
the structure that H is a subgraph is a structure.

Lemma 2. (Property 7). Suppose that for j = 1, . . . , k′, Rj is a maximal sub-
structure within the polygon Pj with holes, and the polygons P1 through Pk′ are
pairwise non-overlapping and their union forms a polygon P with holes. Let
R′

1, . . . , R′
k′ be another sequence of maximal substructures within P1, . . . , Pk′ ,

respectively, where Rj and R′
j have the same vertex set for j = 1, . . . , k′. If

Ri �= R′
i for some i ∈ {1, . . . , k′}, each edge extension of

⋃k′

j=1 Rj to a maxi-
mal substructure within P is different from any edge extension of

⋃k′

j=1 R′
j to a

maximal substructure within P .

790 M. Karpinski et al.

Proof. The proof is by contradiction. The joint edge extension of both sequences
would contain Rj ∪Rj′ within Pj which would contradict the maximality of both
Rj and Rj′ within Pj .
�

4 Dynamic Programming

Our dynamic programming approximation algorithm for |Fa(S)| is termed
Algorithm 1 and it is depicted in Fig. 1.

Input: A set S of n points with integer coordinates in the Euclidean plane and natural
number parameters k and Δ.

Output: An approximate number of structures on the vertex set S, i.e., an approxi-
mate |Fa(S)|.

1: T ← the set of all triangles with vertices in S that do not contain any other point
in S;

2: P ← a list of polygons (possibly with holes) with at most k vertices in total at DP
points induced by T , topologically sorted with respect to geometric containment;

3: for each polygon Q ∈ P containing at most Δ points in S do
4: as(Q) ← exact number of maximal substructures on the vertex set S ∩ Q within

Q;
5: end for
6: for each polygon set Q ∈ P containing more than Δ points in S do
7: as(Q) ← 0;
8: for each partition of Q into polygons Q1, . . . , Qk′ ∈ P, where k′ ≤ k, no Qj

contains more than two thirds of points in S ∩ Q, and as(Q1) through as(Qk′)
are defined do

9: as(Q) ← as(Q) +
∏k′

j=1 as(Qj);
10: end for
11: end for
12: Output as(B), where B is the bounding box of T .

Fig. 1. Algorithm 1 for approximately counting structures on a finite planar point set

Time Complexity. The cardinality of T does not exceed n3. Then, by the
analogy with the dynamic programming algorithm of Adamaszek and Wiese
for nearly maximum independent set of triangles [1], we call a polygon in the
list P in Algorithm 1 a DP cell and observe that the number of DP cells is
(3n3)O(k) = nO(k) (see Proposition 2.1 in [1]). Consequently, the number of
possible partitions of a DP cell into at most k DP cells is O(

(
nO(k)

k

)
), i.e., nO(k2).

It follows that if we neglect the cost of computing the exact number of maxi-
mal substructures contained within a DP cell including at most Δ input points,
then Algorithm 1 runs in nO(k2) time.

We can compute the exact number of maximal substructures contained
within a DP cell with at most Δ input points in 2O(Δ log Δ) time as follows.
By enumerating all PSLGs on the subset of S contained in the DP cell, and
using Property 1 and the fact that the number of PSLGs on at most Δ vertices

A QPTAS for the Base of the Number of Crossing-Free Structures 791

is 2O(Δ log Δ), we can list all structures on this subset in 2O(Δ log Δ) × 2O(Δ log Δ)

= 2O(Δ log Δ) time. Hence, by Property 3, we can exactly count all maximal
substructures (on this subset) within the cell by pruning the aforementioned
structures and checking maximality also in 2O(Δ log Δ) time. We conclude with
the following lemma.

Lemma 3. Algorithm 1 runs in nO(k2)2O(Δ log Δ) time.

5 Approximation Factor

Under-Counting. The potential under-counting stems from the fact that when a
DP cell is partitioned into at most k smaller DP cells then the possible combinations
of structure edges crossing the boundaries of the cells are not counted. Furthermore,
in the leaf DP cells, i.e., those including at most Δ points from S, we count only
maximal substructures while the restriction of a structure on S to a DP cell does
not have to be a maximal substructure within the cell. See Q5 in Fig. 2.

Q1

Q2

Q3

Q4

Q5

Fig. 2. An example of a maximal partial triangulation within a DP cell and a par-
tition of the DP cell into smaller DP cells Q1, . . . , Q5 crossing some triangles in the
triangulation

Intuitively, the general idea of the proof of our upper bound on under-
counting is as follows. For each structure W ∈ Fa(S), there is a substructure
counted by Algorithm 1 that can be obtained by removing O(εn) edges from
W and augmenting the resulting substructure with O(εn) other edges. The final
substructure is a union of maximal substructures contained in leaf DP cells.

Lemma 4. Let S be a set of n points in the plane and let ε > 0. For each
W ∈ Fa(S), there is a substructure W ∗ ⊆ W on S containing at least a 1 − O(ε)
fraction of the edges of W and a substructure M(W ∗) on S which is an extension
of W ∗ by O(εn) edges such that the estimation returned by Algorithm 1 with k

set to logO(1)(n)/εO(1) is not less than | ⋃
W ∈F (S){M(W ∗)}|.

Proof. Let W ∈ Fa(S) and let T (W) be any triangulation of S that is an exten-
sion of W . By adapting the idea of the proof of the approximation ratio of the

792 M. Karpinski et al.

QPTAS in [1], consider the following tree U of DP cells obtained by recursive
applications of balanced α-cheap l-cuts.

At the root of U , there is the bounding box. By Fact 2, there is a balanced
α-cheap l-cut, where l = α−O(1), that splits the box into at most k children DP
cells such that only α fraction of the triangular faces of T (W) is crossed by the
cut. The construction of U proceeds recursively in children DP cells and stops
in DP cells that contain at most Δ points in S.

Note that the height of U is not greater than log3/2 n.
For a node u of U , let Wu be the substructure that is the restriction of W

to the vertices and edges of W contained in the DP cell Qu associated with u.
Analogously, let T (W)u be the partial triangulation of the points in S ∩ Qu that
is the restriction of T (W) to (the vertices and edges of T (W) contained in) Qu.
Clearly, Wu is a subgraph of T (W)u. Next, let W ∗

u be the substructure that
is the union of Wt over the the leaves t of the subtree of U rooted at u. Note
that W ∗

u is a subgraph of Wu. Analogously, let T (W)∗
u denote the restriction of

T (W)u to the union of T (W)t over the the leaves t of the subtree of U rooted
at u. Clearly, W ∗

u is a subgraph of T (W)∗
u.

By induction on the height h(u) of u in U , we obtain that the partial tri-
angulation T (W)∗

u ⊆ T (W)u contains a (1 − α)h(u) fraction of triangular faces
of T (W)u. Set α to O(ε)

log(n/ε) . It follows in particular that for the root r of U ,
T (W)∗

r ⊆ T (W) contains at least a (1 − α)log3/2 n/ε ≥ 1 − O(ε) fraction of tri-
angular faces in T (W). Set T (W)∗ to T (W)∗

r and W ∗ to W ∗
r . By Property 2

ensuring that W has Ω(n) edges and the fact that each triangular face has three
edges, we conclude that analogously W ∗ contains a 1−O(ε) fraction of the edges
of W . Thus, the number of edges in W missing in W ∗ is O(εn).

For a leaf t of U , let M(Wt) be an (edge) extension of Wt to a maximal sub-
structure within the leaf cell Qt. By Property 4, the number of edges extending
Wt to M(Wt) is bounded by a constant times the number of edges in W crossing
the boundary of Qt and having an endpoint within Qt.

For a node u of U , let M(W ∗
u) be a substructure within Qu that is the

union of M(Wt) over the leaves t of the subtree of U rooted at u. We have also
M(W ∗) = M(W ∗

r) by W ∗ = W ∗
r . It follows that the number of edges extending

W ∗ to M(W ∗) is bounded by a constant times the number of edges of W missing
in W ∗, i.e., O(εn).

We shall show by induction on h(u) that Algorithm 1 counts at least the
number of M(W ∗

u) while computing an estimation for Qu.
If h(u) = 0, i.e., u is a leaf in U then W ∗

u = Wu and consequently in particular
M(W ∗

u) = M(Wu) is counted by Algorithm 1.
Suppose in turn that u is an internal node in U with k′ children u1, . . . , uk′ .

When the estimation for Qu is computed by Algorithm 1, the sum of products
of estimations yielded by different partitions of Qu into at most k DP cells is
computed. In particular, the partition into Qu1 , . . . , Quk′ is considered. By the
induction hypothesis, the estimation for Quj

includes M(W ∗
uj

) for j = 1, . . . , k′.
Hence, the product of these estimations counts also M(W ∗

u) =
⋃k′

j=1 M(W ∗
uj

).

A QPTAS for the Base of the Number of Crossing-Free Structures 793

By M(W ∗) = M(W ∗
r), to obtain the lemma it remains to show that the

bound logO(1)(n/ε)/εO(1) on k is sufficiently large. Following the proof of Lemma
2.1 in [1], observe that each DP cell Qu at each level of U is an intersection of
at most O(log(n/ε)) polygons, each with at most l edges and vertices at basic
DP points. Hence, by α = O(ε)

log(n/ε) and l = α−O(1), the resulting polygons have
at most O(l2 log2(n/ε)) = logO(1)(n/ε)/εO(1) edges and vertices at basic and
additional DP points.
�
Theorem 1. The under-counting factor of Algorithm 1 with k set to
logO(1)(n/ε)/εO(1) is at most 2O(εn log n).

Proof. Consider any structure W ∈ Fa(S). By Lemma 4, the number of edges of
W that are missing in the substructure W ∗ ⊆ W is O(εn). Since all structures
in Fa(S) have the same number of edges by Property 2, the number of edges
completing W ∗ to any structure is O(εn). It follows that the number of ways
of completing W ∗ to a structure in Fa(S) is not greater than the number of
subsets of at most O(εn) edges of the complete Euclidean graph on S, which is
2O(εn log n).

By Lemma 4, the estimation returned by Algorithm 1 with k set to
logO(1)(n/ε)/εO(1) is not less than | ⋃

W ∈F (S){M(W ∗)}|.
Now it remains to show that the maximum number of substructures (W ′)∗,

W ′ ∈ Fa(S), for which M((W ′)∗) = M(W ∗) is at most 2O(εn log n). By Lemma 4,
the number of edges extending (W ′)∗ to M((W ′)∗) is at most O(εn). Conse-
quently, the maximum number of such substructures (W ′)∗ is upper bounded
by the number of subsets of at most O(εn) edges of M(W ∗) (whose removal may
form a substructure (W ′)∗ satisfying M((W ′)∗) = M(W ∗)). The latter number
is 2O(εn log n).

We conclude that for W ∈ F (S), the number of other structures W ′ ∈ F (S)
for which M((W ′)∗) = M(W ∗) is at most 2O(εn log n)2O(εn log n) = 2O(εn log n).
Now, the theorem follows from Lemma 4.
�

Over-Counting. The reason for over-counting in the estimation returned by
our algorithm is as follows. The same structure or more generally substructure
within a DP cell may be cut in the number of ways proportional to the number of
considered partitions of the DP cell into at most k smaller DP cells. This reason
is similar to that for over-counting of the approximation triangulation counting
algorithm of Alvarez, Bringmann, Ray, and Seidel [2] based on the planar simple
cycle separator theorem. Therefore, our initial recurrences and calculations are
similar to those derived in the analysis of the over-counting from [2].

Lemma 5. Let Q be an arbitrary DP cell processed by Algorithm 1 which con-
tains more than Δ input points. Recall the calculation of the estimation for Q by
summing the products of estimations for smaller DP cells Q1, . . . , Ql over nO(k2)

partitions of Q into Q1, . . . , Ql, l ≤ k. Substitute the true value of the number
of maximal substructures (on input points) within each such smaller cell Qi for
the estimated one in the calculation. Let r be the resulting value. The number of
maximal substructures (on input points) within Q is at least r/nO(k2).

794 M. Karpinski et al.

Proof. Note that r is the sum of the number of different combinations of max-
imal structures within smaller DP cells Q1, . . . , Ql over nO(k2) partitions of Q
into smaller cells Q1, . . . , Ql, l ≤ k. Importantly, each such combination can be
completed to some maximal substructure within Q (Property 5) but no two dif-
ferent combinations coming from the same partition Q1, . . . , Ql can be extended
to the same maximal substructure within Q by Property 7 (Lemma 2).

Let M be the set of maximal substructures W within Q for which there is
a partition into smaller DP cells Q1, . . . , Ql, l ≤ k, such that for i = 1, . . . , l,
W constrained to Qi is a maximal substructure within Qi. Note that for each
W ∈ M , the number of the combinations that can be completed to W cannot
exceed that of the considered partitions, i.e., nO(k2), as each of the combinations
has to come from a distinct partition Q1, . . . , Ql.

Thus, there is a binary relationship between maximal substructures within
Q that belong to M and the aforementioned combinations. It is defined on all
the maximal substructures in M and on all the combinations, and a maximal
substructures in M is in relation with at most nO(k2) combinations. This yields
the lemma.
�

By Lemma 5, we can express the over-counting factor L(Q, Δ) of Algorithm 1
for a DP cell Q by the following recurrence:

L(Q, Δ) =
∑

(Q1,...,Qk′)

k′∏
j=1

L(Qj , Δ) ≤ nO(k2)
k∗∏

j=1
L(Q∗

j , Δ)

where the summation is over all partitions of Q into DP cells Q1, . . . , Qk′ ,
such that k′ ≤ k, and Q∗

1, . . . , Q∗
k∗ is a partition that maximizes the term∏k′

j=1 L(Qj , Δ). When Q contains at most Δ input points, Algorithm 1 com-
putes the exact number of maximal substructures on these points within Q.
Thus, we have L(Q, Δ) = 1 in this case.

Following [2], it will be more convenient to transform our recurrence by taking
logarithm of both sides. For any DP cell P , let L′(P, Δ) = log L(P, Δ). We obtain
now:

L′(Q, Δ) ≤ O(k2 log n) +
k∗∑

j=1
L′(Q∗

j , Δ)

Lemma 6. Let B be a bounding box for a set S of n points in the plane. The
equality L′(B, Δ) = O(k2Δ−1n log2 n) holds.

Proof. Let U be the recurrence tree and let D be the set of non-leaf nodes whose
all children are leaves in U . For each node d ∈ D, the corresponding DP cell
includes at least Δ + 1 points in S. It follows that |D| ≤ n/Δ. Any node in D
has depth O(log n) in U . Hence, more generally, non-leaf nodes of U are placed
on O(log n) height levels of U , where each level includes at most n/Δ nodes.
Each subproblem corresponding to a non-leaf node of U contributes at most
O(k2 log n) to L′(B, Δ). Consequently, the total contribution of non-leaf nodes

A QPTAS for the Base of the Number of Crossing-Free Structures 795

of U to L′(B, Δ) is O(k2 log n×(n/Δ) log n). Finally, recall that the subproblems
corresponding to leaves of U do not contribute to the estimation.
�
Lemma 6 and Property 6 (Lemma 1) immediately yield the following corollary.

Theorem 2. Let B be a bounding box for a set of n points in the plane. Set
the parameter k in Algorithm 1 as in Theorem 1. If for ε > 0 the parameter
Δ in Algorithm 1 is set to c

ε k2 log2 n for sufficiently large constant c then the
over-counting factor is at most 2εn.

6 Main Results

Lemma 7. Triangulations and spanning trees on finite planar point sets satisfy
the five properties of Fa.

Proof. Properties 1, 2, 3 and 5 are clearly satisfied by triangulations and span-
ning trees.

To show that Property 4 holds for triangulations, consider an extension of the
restriction of a triangulation G to a simple polygon P with holes to a maximal
partial triangulation on the vertices of G within P . All the edges within P
added by the extension have to be incident to vertices of triangular faces of
G with at least one edge crossed by the boundary of P . Observe, that such a
triangular face has to have at least one vertex within P that is an endpoint of
an edge of G crossed by the boundaries of P . Let l be the number of edges of G
with an endpoint within P crossed by the boundaries of P . It follows that the
number of aforementioned triangles is at most 2l and consequently the number
of the endpoints of the edges within P added by the extension does not exceed
3 × 2l = O(l). Hence, the total number of the added edges is also O(l).

To show in turn that Property 4 holds for spanning trees, consider the forest
which is the restriction of a spanning tree G to a simple polygon P with holes.
Let t be the number of connected components of the forest. It follows that the
number l of edges of the spanning tree G with at least one endpoint within P
crossed by the boundaries of P is at least t − 1. On the other hand, any edge
extension of the forest to a maximal forest within P may add at most t − 1 ≤ l
edges to the forest.
�

By combining Lemmata 7 and 3 with Theorems 1, 2 with ε set to ε/ log n,
we obtain our main result.

Theorem 3. There exists an approximation algorithm for the number of tri-
angulations of (or, the number of spanning trees on) a set S of n points with
integer coordinates in the plane with a running time of at most n(log(n)/ε)O(1)

that returns a number at most 2εn times smaller and at most 2εn times larger
than the number of triangulations of (or, spanning trees on, respectively) S.

Corollary 1. There exists a (1 + ε)-approximation algorithm with a running
time of at most n(log(n)/ε)O(1) for the base of the number of triangulations of (or,
spanning trees on) a set of n points with integer coordinates in the plane.

796 M. Karpinski et al.

Proof. Let cn be the number of triangulations of (or, the number of spanning
trees on) the input n point set, and let Λ be the number returned by the algorithm
from Theorem 3. We have max{ cn

Λ , Λ
cn } ≤ 2εn by Theorem 3. By taking the n-th

root on both sides, we obtain max{ c

Λ
1
n

, Λ
1
n

c } ≤ 2ε. Now it is sufficient to observe
that 2ε < 1 + ε for ε < 1

2 .
�

Final Remark. The other popular crossing-free structures like perfect match-
ings and cycle covers do not satisfy all the five properties of Fa. It is an intrigu-
ing open problem if they admit similar quasi-polynomial time approximation
algorithms.

Acknowledgments. We are very grateful to unknown referees for many valuable
comments.

References

1. Adamaszek, A., Wiese, A.: A QPTAS for maximum weight independent set of
polygons with polylogarithmically many vertices. In: SODA 2014

2. Alvarez, V., Bringmann, K., Ray, S., Seidel, R.: Counting triangulations and other
crossing-free structures approximately. Comput. Geom. 48(5), 386–397 (2015)

3. Alvarez, V., Bringmann, K., Curticapean, R., Ray, S.: Counting crossing-free struc-
tures. In: SoCG 2012

4. Alvarez, V., Seidel, R.: A simple aggregative algorithm for counting triangulations
of planar point sets and related problems. In: SoCG 2013

5. Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C.D.: Bounds on the maximum
multiplicity of some common geometric graphs. SIAM J. Discrete Math. 27(2),
802–826 (2013)

6. Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Dis-
crete Mathematics 204(1–3), 203–229 (1999)

7. Har-Peled, S.: Quasi-polynomial time approximation scheme for sparse subsets of
polygons. In: SoCG 2014

8. Hoffmann, M., Sharir, M., Sheffer, A., Tóth, C.D., Welzl, E.: Counting plane
graphs: flippability and its applications. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.)
WADS 2011. LNCS, vol. 6844, pp. 524–535. Springer, Heidelberg (2011)

9. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs.
J. Comput. Syst. Sci. 32(3), 265–279 (1986)

10. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electr. J.
Comb. 18(1) (2011)

11. Sharir, M., Sheffer, A., Welzl, E.: On degrees in random triangulations of point
sets. J. Comb. Theory, Ser. A 118(7), 1979–1999 (2011)

12. Sibson, R.: Locally equiangular triangulations. Comput. J. 21(3), 243–245 (1978)
13. Wettstein, M.: Counting and enumerating crossing-free geometric graphs. In: SoCG

2014

Finding a Path in Group-Labeled Graphs
with Two Labels Forbidden

Yasushi Kawase1, Yusuke Kobayashi2, and Yutaro Yamaguchi3(B)

1 Tokyo Institute of Technology, Tokyo, Japan
kawase.y.ab@m.titech.ac.jp

2 University of Tsukuba, Tsukuba, Japan
kobayashi@sk.tsukuba.ac.jp

3 University of Tokyo, Tokyo, Japan
yutaro yamaguchi@mist.i.u-tokyo.ac.jp

Abstract. The parity of the length of paths and cycles is a classical
and well-studied topic in graph theory and theoretical computer science.
The parity constraints can be extended to the label constraints in a
group-labeled graph, which is a directed graph with a group label on
each arc. Recently, paths and cycles in group-labeled graphs have been
investigated, such as finding non-zero disjoint paths and cycles.

In this paper, we present a solution to finding an s–t path in a group-
labeled graph with two labels forbidden. This also leads to an elementary
solution to finding a zero path in a Z3-labeled graph, which is the first
nontrivial case of finding a zero path. This situation in fact generalizes
the 2-disjoint paths problem in undirected graphs, which also motivates
us to consider that setting. More precisely, we provide a polynomial-time
algorithm for testing whether there are at most two possible labels of s–t
paths in a group-labeled graph or not, and finding s–t paths attaining at
least three distinct labels if exist. We also give a necessary and sufficient
condition for a group-labeled graph to have exactly two possible labels
of s–t paths, and our algorithm is based on this characterization.

1 Introduction

1.1 Background

The parity of the length of paths and cycles in a graph is a classical and well-
studied topic in graph theory and theoretical computer science. As the simplest
example, one can easily check the bipartiteness of a given undirected graph, i.e.,
we can determine whether it contains a cycle of odd length or not. This can be
done in polynomial time also in the directed case by using the ear decomposition.
It is also an important problem to test whether a given directed graph contains

Y. Kawase—Supported by JSPS KAKENHI Grant Number 26887014.
Y. Kobayashi—Supported by JST, ERATO, Kawarabayashi Large Graph Project,
and by JSPS KAKENHI Grant Number 24106002, 24700004.
Y. Yamaguchi—Supported by JSPS Fellowship for Young Scientists.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 797–809, 2015.
DOI: 10.1007/978-3-662-47672-7 65

798 Y. Kawase et al.

a directed cycle of even length or not, which is known to be equivalent to Pólya’s
permanent problem [13] (see, e.g., [12]). A polynomial-time algorithm for this
problem was devised by Robertson, Seymour, and Thomas [14].

In this paper, we focus on paths connecting two specified vertices s and t. It
is easy to test whether a given undirected graph contains an s–t path of odd (or
even) length or not, whereas the same problem is NP-complete in the directed
case [11] (follows from [5]). A natural generalization of this problem is to consider
paths of length p modulo q. One can easily see that, when q = 2, both of the
following problems generalize the problem of finding an odd (or even) s–t path
in an undirected graph:

– finding an s–t path of length p modulo q in an undirected graph, and
– finding an s–t path whose length is NOT p modulo q in an undirected graph,

which is equivalent to determining whether all s–t paths are of length p
modulo q or not.

Although these two generalizations are similar to each other, they are essentially
different in the case of q ≥ 3. In fact, a linear-time algorithm for the second
generalization was given by Arkin, Papadimitriou, and Yannakakis [1] for any q,
whereas not so much was known about the first generalization.

Recently, as another generalization of the parity constraints, paths and cycles
in a group-labeled graph have been investigated, where a group-labeled graph is
a directed graph with each arc labeled by a group element. In a group-labeled
graph, the label of a walk is defined as the sum (or the ordered product when the
underlying group is non-abelian) of the labels of the traversed arcs, where each
arc can be traversed in the converse direction and then the label is inversed (see
Section 2.1 for the precise definition). Analogously to paths of length p modulo
q, it is natural to consider the following two problems: for a given element α,

(I) finding an s–t path of label α in a group-labeled graph, and
(II) finding an s–t path whose label is NOT α in a group-labeled graph, which

is equivalent to determining whether all s–t paths are of label α or not.

Note that, when we consider Problem (I) or (II), by changing uniformly the
labels of the arcs incident to s if necessary, we may assume that α is the identity
of the underlying group. Hence, each problem is equivalent to finding a zero
path or a non-zero path in a group-labeled graph. In what follows, we assume
the black-box access to the underlying group, i.e., we can perform elementary
operations for it in constant time (see Section 2.1 for the precise assumption).

If the underlying group is Z2 = Z/2Z = ({0, 1},+) and the label of each
arc is 1, then the label of a path corresponds to the parity of its length because
−1 = 1 in Z2. This shows that both of these two problems generalize the problem
of finding an odd (or even) s–t path in an undirected graph. We note that, in
a Z2-labeled graph, finding an s–t path of label α ∈ Z2 is equivalent to finding
an s–t path whose label is not α + 1 ∈ Z2, but such equivalence cannot hold for
any other nontrivial group.

Finding a Path in Group-Labeled Graphs with Two Labels Forbidden 799

As shown in Section 2.2, Problem (II) can be reduced to testing whether a
group-labeled graph contains a non-zero cycle, whose label is not the identity.
With this observation, Problem (II) can be easily solved in polynomial time for
any underlying group. We mention that there are several results for packing
non-zero paths [2,3,18,20] and non-zero cycles [9,19] with some conditions.

On the other hand, the difficulty of Problem (I) is heavily dependent on the
underlying group Γ . When Γ � Z2, since Problems (I) and (II) are equivalent
as discussed above, it can be easily solved in polynomial time. When Γ = Z,
Problem (I) is NP-complete since the directed s–t Hamiltonian path problem
reduces to this problem by labeling each arc with 1 ∈ Z and letting α := n−1 ∈
Z, where n denotes the number of vertices. Huynh [8] showed the polynomial-
time solvability of Problem (I) for any fixed finite abelian group, which is deeply
dependent on the graph minor theory.

To investigate the gap between Problems (I) and (II), we make a new app-
roach to these problems by generalizing Problem (II) so that multiple labels are
forbidden. In this paper, we provide a solution to the case when two labels are
forbidden. Our result also leads to an elementary solution to the first nontrivial
case of Problem (I), i.e., when Γ � Z3 = Z/3Z = ({0,±1},+).

1.2 2-disjoint Paths Problem

Problem (I) in a Z3-labeled graph in fact generalizes the 2-disjoint paths problem,
which also motivates us to consider the situation when two labels are forbidden.
The 2-disjoint paths problem is to determine whether there exist two vertex-
disjoint paths such that one is from s1 to t1 and the other from s2 to t2 for
distinct vertices s1, s2, t1, t2 in a given undirected graph. We can reduce the 2-
disjoint paths problem to Problem (I) in a Z3-labeled graph as follows: let s := s1
and t := t2, replace every edge in the given graph with an arc with label 0, add
one arc from t1 to s2 with label 1, and ask whether the constructed Z3-labeled
graph contains an s–t path of label 1 or not. If the answer is YES, then there
exist desired two disjoint paths, and otherwise there do not.

The 2-disjoint paths problem can be solved in polynomial time [15–17], and
the following theorem characterizes the existence of two disjoint paths.

Theorem 1 (Seymour [16]). Let G = (V,E) be an undirected graph and
s1, t1, s2, t2 ∈ V distinct vertices. Then, there exist two vertex-disjoint paths
Pi connecting si and ti (i = 1, 2) if and only if there is no family of disjoint
vertex sets X1,X2, . . . , Xk ⊆ V \ {s1, t1, s2, t2} such that

1. NG(Xi) ∩ Xj = ∅ for distinct i, j ∈ {1, 2, . . . , k},
2. |NG(Xi)| ≤ 3 for i = 1, 2, . . . , k, and
3. if G′ is the graph obtained from G by deleting Xi and adding a new edge

joining each pair of distinct vertices in NG(Xi) for each i ∈ {1, 2, . . . , k},
then G′ can be embedded on a plane so that s1, s2, t1, t2 are on the outer
boundary in this order.

Our characterization (Theorem 12) of group-labeled graphs with exactly two
possible labels of s–t paths is inspired by Theorem 1, which is used in the proof.

800 Y. Kawase et al.

1.3 Our Contribution

Let Γ be an arbitrary group. For a Γ -labeled graph G and two distinct vertices
s and t, let l(G; s, t) be the set of all possible labels of s–t paths in G. Our
first contribution is to give a characterization of Γ -labeled graphs G with two
specified vertices s, t such that l(G; s, t) = {α, β}, where α and β are distinct
elements in Γ . Roughly speaking, we show that l(G; s, t) = {α, β} if and only if
G is obtained from “nice” planar graphs (and some trivial graphs) by “gluing”
them together (see Section 3.3). It is interesting that the planarity, which is a
topological condition, appears in the characterization.

There exists an easy characterization of triplets (G, s, t) with |l(G; s, t)| = 1,
which is used to solve Problem (II) (see Section 2.2 for details). Our characteri-
zation leads to the first nontrivial classification of Γ -labeled graphs in terms of
the possible labels of s–t paths, and the classification is complete when Γ � Z3.

We also show an algorithmic result, which is our second contribution. Based
on the fact that our characterization can be tested in polynomial time, we present
a polynomial-time algorithm for testing whether |l(G; s, t)| ≤ 2 or not and finding
at least three s–t paths whose labels are distinct if exist (see Theorem 9). In
particular, our algorithm leads to an elementary solution to Problem (I) when
Γ � Z3, i.e., for each α ∈ Z3, we can test whether α ∈ l(G; s, t) or not, and find
an s–t path of label α if exists.

Note again that our results are not dependent on Γ , which can be non-abelian
or infinite (as long as we can efficiently perform elementary operations for Γ).

The rest of this paper is organized as follows. In Section 2, we define several
terms, notations, and operations, and describe well-known results. Section 3 is
devoted to presenting our results: the efficient solvability of the problem to find
an s–t path with two labels forbidden, and a characterization of Γ -labeled graphs
with exactly two possible labels of s–t paths. Their verifications are sketched in
Sections 4 and 5, and the complete proofs are left to the full version [10].

2 Preliminaries

2.1 Terms and Notations

Throughout this paper, let Γ be a group (which can be non-abelian or infinite),
for which we usually use multiplicative notation with denoting the identity by 1Γ

(we sometimes use additive notation with denoting the identity by 0, e.g., when
Γ � Z3). We assume that elementary operations for Γ can be performed, i.e.,
the following procedures can be done in constant time for any α, β ∈ Γ : getting
the inverse element α−1 ∈ Γ , computing the product αβ ∈ Γ , and testing the
identification α = β. A directed graph G = (V,E) with a mapping ψG : E → Γ
(called a label function) is called a Γ -labeled graph.

Graphs. Let G = (V,E) be a directed graph. For vertices v0, v1, . . . , vl ∈ V
and arcs e1, e2, . . . , el ∈ E with ei = vi−1vi or ei = vivi−1 (i = 1, 2, . . . , l), a
sequence W = (v0, e1, v1, e2, v2, . . . , el, vl) is called a walk in G. A walk W is
called a path (in particular, a v0–vl path) if v0, v1, . . . , vl are distinct, and a cycle

Finding a Path in Group-Labeled Graphs with Two Labels Forbidden 801

if v0, v1, . . . , vl−1 are distinct and v0 = vl. We call v0 and vl (which may coincide)
the end vertices of W , and each vi (1 ≤ i ≤ l − 1) an inner vertex on W . Let W̄
denote the reversed walk of W , i.e., W̄ = (vl, el, . . . , v1, e1, v0).

Let X ⊆ V be a vertex set. We denote by δG(X) the set of arcs between
X and V \ X in G and by NG(X) the set of vertices adjacent to X in G, i.e.,
δG(X) := { e = xy ∈ E | |{x, y} ∩ X| = 1 } and NG(X) := { y ∈ V \ X |
δG(X) ∩ δG({y})
= ∅ }. We denote a singleton {x} by its element x when it
makes no confusion.

Let G[X] := (X,E(X)) denote the subgraph of G induced by X, where
E(X) := { e = xy ∈ E | {x, y} ⊆ X }. We denote by G − X the subgraph of G
obtained by removing all vertices in X, i.e., G − X = G[V \ X]. For an arc set
F ⊆ E, we also denote by G − F the subgraph of G obtained by removing all
arcs in F , i.e., G−F = (V,E \F). Define G[[X]] := G[X ∪NG(X)]−E(NG(X)).

For an integer k ≥ 0 and a vertex set X � V with |X| = k, we call X a k-cut
in G if G−X is not connected. A directed graph is called k-connected if it contains
more than k vertices and no k′-cut for every k′ < k. A k-connected component
of G is a maximal k-connected induced subgraph G[X] (X ⊆ V with |X| ≥ k).

Suppose that G is embedded on a plane. We call a unique unbounded face
of G the outer face of G, and any other face an inner face. For a face F of
G, let bd(F) denote the closed walk (whose end vertices coincide with each
other) obtained by walking the boundary of F in an arbitrary direction from an
arbitrary vertex on it.

Labels. Let G = (V,E) be a Γ -labeled graph with a label function ψG, and
W = (v0, e1, v1, . . . , el, vl) a walk in G. The label ψG(W) of W is defined as the
ordered product ψG(el, vl) · · · ψG(e2, v2) · ψG(e1, v1), where ψG(ei, vi) := ψG(ei)
if ei = vi−1vi and ψG(ei, vi) := ψG(ei)−1 if ei = vivi−1. Note that, for the
reversed walk W̄ of W , we have ψG(W̄) = ψG(W)−1. In particular, since an arc
uv with label α and an arc vu with label α−1 are equivalent, we identify such two
arcs. We say that W is balanced (or a zero walk) if ψG(W) = 1Γ and unbalanced
(or a non-zero walk) otherwise, and also that G is balanced if G contains no
unbalanced cycle. Note that whether a cycle is balanced or not does not depend
on the choices of the direction and the end vertex, since ψG(C̄) = ψG(C)−1 and
ψG(C ′) = ψG(e1) · ψG(C) · ψG(e1)−1, where C = (v0, e1, v1, . . . , el, vl = v0) and
C ′ = (v1, e2, v2, . . . , el, vl = v0, e1, v1). Hence, when we consider whether a cycle
is balanced or not, we can choose the direction and the end vertex arbitrarily.

For distinct vertices s, t ∈ V , let l(G; s, t) be the set of all possible labels
of s–t paths in G. When l(G; s, t) = {α} for some α ∈ Γ , we also denote the
element α itself by l(G; s, t). Without loss of generality, we may assume that
there is no vertex v ∈ V that is not contained in any s–t path, since such a
vertex does not make any effect on l(G; s, t). To consider only such cases, let D
be the set of all triplets (G′, s, t) such that G′ is a Γ -labeled graph with two
specified vertices s, t ∈ V (G′) in which every vertex is contained in some s–t
path. The following lemma guarantees that one can efficiently obtain a maximal
induced subgraph G′ of G such that (G′, s, t) ∈ D and l(G′; s, t) = l(G; s, t) by
computing a 2-connected component of a graph (e.g., by [6]).

802 Y. Kawase et al.

Lemma 2. For a Γ -labeled graph G = (V,E) and distinct vertices s, t ∈ V ,
(G, s, t) ∈ D if and only if the graph obtained from G by adding a new node
r
∈ V and two arcs from r to s and from r to t is 2-connected.

2.2 Finding a Non-zero Path

In this section, we show that a non-zero s–t path can be found (i.e., Problem
(II) can be solved) efficiently by using well-known properties of Γ -labeled graphs.
The following techniques are often utilized in dealing with Γ -labeled graphs (see,
e.g., [2,3,18]).

Definition 3 (Shifting). Let G = (V,E) be a Γ -labeled graph. For a vertex
v ∈ V and an element α ∈ Γ , shifting (a label function ψG) by α at v means the
following operation: update ψG to ψ′

G defined as, for each e ∈ E,

ψ′
G(e) :=

⎧
⎪⎨

⎪⎩

ψG(e) · α−1 (e ∈ δG(v) leaves v),
α · ψG(e) (e ∈ δG(v) enters v),
ψG(e) (otherwise).

Shifting at v ∈ V does not change the label of any walk whose end vertices
are not v, and neither that of any cycle C whose end vertex is v up to conjugate,
i.e., ψ′

G(C) = α · ψG(C) · α−1. Furthermore, when we apply shifting multiple
times, the order of applications does not make any effect on the resulting label
function, since each arc is affected only by shifting at its head or tail, which does
not interfere with each other. We say that two Γ -labeled graphs G1 and G2 are
(s, t)-equivalent if G2 is obtained from G1 by shifting by some αv ∈ Γ at each
v ∈ V \ {s, t} (and then G1 is obtained from G2 by shifting by α−1

v at each v).
Note that l(G1; s, t) = l(G2; s, t) if G1 and G2 are (s, t)-equivalent.

Lemma 4. For a connected and balanced Γ -labeled graph G = (V,E) and dis-
tinct vertices s, t ∈ V , one can find in polynomial time a Γ -labeled graph G′

which is (s, t)-equivalent to G such that

ψG′(e) =

⎧
⎪⎨

⎪⎩

α (e ∈ δG(s) leaves s),
α−1 (e ∈ δG(s) enters s),
1Γ (otherwise),

for every arc e ∈ E(G′) = E and for some α ∈ Γ (in fact, α = l(G; s, t)).

Lemma 5. For any (G, s, t) ∈ D, |l(G; s, t)| = 1 if and only if G is balanced.

Lemmas 2, 4, and 5 lead to the following proposition.

Proposition 6. Let G = (V,E) be a Γ -labeled graph with a label function ψG

and two specified vertices s, t ∈ V . Then, for any α ∈ Γ , one can test whether
l(G; s, t) ⊆ {α} or not in polynomial time. Furthermore, if l(G; s, t)
⊆ {α}, then
one can find an s–t path P with ψG(P)
= α in polynomial time.

Finding a Path in Group-Labeled Graphs with Two Labels Forbidden 803

Fig. 1. 2-contraction

Fig. 2. 3-contraction

2.3 New Operations

For our characterization of triplets (G, s, t) ∈ D with |l(G; s, t)| = 2, we introduce
a few new operations which do not change l(G; s, t). Let (G = (V,E), s, t) ∈ D,
and recall that G[[X]] := G[X ∪ NG(X)] − E(NG(X)) for a vertex set X ⊆ V .

Definition 7 (2-contraction). For a vertex set X ⊆ V \ {s, t} such that
NG(X) = {x, y} for some distinct x, y ∈ V and G[[X]] is connected, the 2-
contraction of X is the following operation (see Fig. 1):

– remove all vertices in X, and
– add a new arc from x to y with label α for each α ∈ l(G[[X]];x, y) if there is

no such arc.

The resulting graph is denoted by G/2X. A vertex set X ⊆ V \ {s, t} is said to
be 2-contractible in G if the 2-contraction of X can be performed in G and in
particular G[[X]]
= G.

Definition 8 (3-contraction). For a vertex set X ⊆ V \ {s, t} such that
|NG(X)| = 3, G[X] is connected, and G[[X]] is balanced, the 3-contraction of
X is the following operation (see Fig. 2):

– remove all vertices in X, and
– add a new arc from x to y with label l(G[[X]];x, y) (which consists of a single

element by Lemma 5) for each pair of x, y ∈ NG(X) if there is no such arc.

The resulting graph is denoted by G/3X. A vertex set X ⊆ V \ {s, t} is said to
be 3-contractible in G if the 3-contraction of X can be performed in G.

804 Y. Kawase et al.

The 2-contraction and the 3-contraction are analogous to the operation which
is performed in Condition 3 in Theorem 1, and we use the same term “contrac-
tion” to refer to each of them. Any contraction does not change l(G; s, t), since
each s–t path cannot enter G[[X]] after leaving it once (i.e., cannot traverse arcs
in G[[X]] intermittently). Moreover, we also have (G′, s, t) ∈ D for the resulting
graph G′ after any contraction.

3 Main Results

3.1 Algorithmic Results

As described in Section 2.2, Problem (II) can be solved efficiently, i.e., one can
find a non-zero s–t path in polynomial time (Proposition 6). The following the-
orem, one of our main results, is the first nontrivial extension of this property,
which claims that not only one label but also another can be forbidden simulta-
neously.

Theorem 9. Let G = (V,E) be a Γ -labeled graph with a label function ψG

and two specified vertices s, t ∈ V . Then, for any distinct α, β ∈ Γ , one can test
whether l(G; s, t) ⊆ {α, β} or not in polynomial time. Furthermore, if l(G; s, t)
⊆
{α, β}, then one can find an s–t path P with ψG(P)
∈ {α, β} in polynomial time.

Such an algorithm is constructed based on characterizations of Γ -labeled
graphs with exactly two possible labels of s–t paths, which are shown in
Section 3.2. We refer the readers to the full version [10] for our algorithm and a
proof of this theorem, whose outline is shown in Section 4. It should be mentioned
that this theorem leads to a solution to Problem (I) for Γ � Z3.

Corollary 10. Let G = (V,E) be a Z3-labeled graph with a label function ψG

and two specified vertices s, t ∈ V . Then one can compute l(G; s, t) in polynomial
time. Furthermore, for each α ∈ l(G; s, t), one can find an s–t path P with
ψG(P) = α in polynomial time.

3.2 Characterizations

Recall that D denotes the set of all triplets (G, s, t) such that G is a Γ -labeled
graph with s, t ∈ V (G) in which every vertex is contained in some s–t path. In
this section, we provide a complete characterization of triplets (G, s, t) ∈ D with
l(G; s, t) = {α, β} for some distinct α, β ∈ Γ . We consider two cases separately:
when αβ−1 = βα−1 and when αβ−1
= βα−1.

First, we give a characterization in the easier case: when αβ−1 = βα−1.
Note that this case does not appear when Γ � Z3. The following proposition
holds analogously to Lemmas 4 and 5 in Section 2.2, which characterize triplets
(G, s, t) ∈ D with |l(G; s, t)| = 1. A proof is left to the full version [10].

Finding a Path in Group-Labeled Graphs with Two Labels Forbidden 805

Proposition 11. Let α and β be distinct elements in Γ with αβ−1 = βα−1.
For any (G, s, t) ∈ D, l(G; s, t) = {α, β} if and only if G is not balanced and
there exists a Γ -labeled graph G′ which is (s, t)-equivalent to G such that

ψG′(e) =

⎧
⎪⎨

⎪⎩

α or β (e ∈ δG(s) leaves s),
α−1 or β−1 (e ∈ δG(s) enters s),
1Γ or αβ−1 (otherwise),

for every arc e ∈ E(G′) = E(G). Moreover, one can find such G′ in polynomial
time if exists.

We next discuss the main case, which is much more difficult: when αβ−1
=
βα−1. The following theorem, one of our main results, completes a characteriza-
tion of triplets (G, s, t) ∈ D with l(G; s, t) = {α, β} for some distinct α, β ∈ Γ .
The definition of the set Dα,β ⊆ D, which appears in the theorem, is shown
later through Definitions 13–15 in Section 3.3. In short, (G, s, t) ∈ Dα,β if G
is constructed by “gluing” together “nice” planar Γ -labeled graphs (and some
trivial Γ -labeled graphs) and their derivations.

Theorem 12. Let α and β be distinct elements in Γ with αβ−1
= βα−1. For
any (G, s, t) ∈ D, l(G; s, t) = {α, β} if and only if (G, s, t) ∈ Dα,β.

Recall that |l(G; s, t)| = 1 if and only if G is balanced by Lemma 5, which
can be easily tested by Lemma 4. Hence, these characterizations lead to the first
nontrivial classification of Γ -labeled graphs in terms of the number of possible
labels of s–t paths, and the classification is also complete when Γ � Z3.

3.3 Definition of Dα,β

Fix distinct elements α, β ∈ Γ with αβ−1
= βα−1. To characterize triplets
(G, s, t) ∈ D with l(G; s, t) = {α, β}, let us define several sets of triplets
(G, s, t) ∈ D for which it is easy to see that l(G; s, t) = {α, β}. Theorem 12
claims that any triplet (G, s, t) ∈ D with l(G; s, t) = {α, β} is in fact contained
in one of them.

Definition 13. For distinct α, β ∈ Γ with αβ−1
= βα−1, let D0
α,β be the set of

all triplets (G, s, t) ∈ D satisfying one of the following conditions.

(A) There exists a Γ -labeled graph G′ which is not balanced and is (s, t)-
equivalent to G such that either
• the label of every arc in G′ − s is 1Γ and in δG′(s) is α or β, where all

arcs in δG′(s) are assumed to leave s (see Fig. 3), or
• the label of every arc in G′ − t is 1Γ and in δG′(t) is α or β, where all

arcs in δG′(t) are assumed to enter t (see Fig. 4).

806 Y. Kawase et al.

(B) G is (s, t)-equivalent to the Γ -labeled graph which consists of six vertices
s, v1, v2, v3, v4, t, six arcs sv1, sv2, v1v2, v3v4, v3t, v4t with label 1Γ , and two
pairs of two parallel arcs from vi to vi+2 (i = 1, 2) whose labels are both α
and β (see Fig. 5).

(C) G can be embedded on a plane with the face set F satisfying the following
conditions (see Fig. 6):
• both s and t are on the boundary of the outer face F0 ∈ F ,
• one s–t path along bd(F0) is of label α and the other is of β, and
• there exists a unique inner face F1 whose boundary is unbalanced, i.e.,

ψG(bd(F1))
= 1Γ and ψG(bd(F)) = 1Γ for any F ∈ F \ {F0, F1}.

Fig. 3. The former of Case (A) Fig. 4. The latter of Case (A)

Fig. 5. Case (B) Fig. 6. Case (C)

It is not difficult to see that l(G; s, t) = {α, β} for any triplet (G, s, t) ∈ D0
α,β .

For the following definitions, recall the operations called the “contractions,”
which are defined in Section 2.3 (see Definitions 7 and 8).

Definition 14. For distinct α, β ∈ Γ with αβ−1
= βα−1, we define D1
α,β as the

minimal set of triplets (G, s, t) ∈ D with the following conditions:

– D0
α,β ⊆ D1

α,β , and

– if (G/3X, s, t) ∈ D1
α,β for some 3-contractible X ⊆ V \ {s, t}, then (G, s, t) ∈

D1
α,β .

We are now ready to define Dα,β .

Definition 15. For distinct α, β ∈ Γ with αβ−1
= βα−1, we define Dα,β as the
minimal set of triplets (G, s, t) ∈ D with the following conditions:

– D1
α,β ⊆ Dα,β , and

Finding a Path in Group-Labeled Graphs with Two Labels Forbidden 807

– if (G/2X, s, t) ∈ Dα,β for some X ⊆ V \ {s, t} such that either G[[X]] is
balanced or (G[[X]], x, y) ∈ D1

α′,β′ , where NG(X) = {x, y}, and α′, β′ ∈ Γ

satisfy α′β′−1
= β′α′−1, then (G, s, t) ∈ Dα,β .

Note that the first condition can be replaced with (G0, s, t) ∈ Dα,β , where
G0 consists of two parallel arcs from s to t whose labels are α and β.

It is easy to see that l(G; s, t) = {α, β} for any triplet (G, s, t) ∈ Dα,β since
any contraction does not change l(G; s, t). A proof of the nontrivial direction
(“only if” part of Theorem 12) is left to the full version [10] and its sketch is
shown in Section 5.

4 Outline of Algorithm

In this section, we present an outline of an algorithm to test whether |l(G; s, t)| ≤
2 or not for a given Γ -labeled graph G = (V,E) with s, t ∈ V . The complete
description and the correctness are left to the full version [10], which also contains
those of an algorithm to find three s–t paths whose labels are distinct when it
has turned out that |l(G; s, t)| ≥ 3. Note that, when Γ � Z3, these algorithms
can compute l(G; s, t) itself and find s–t paths which attain all labels in l(G; s, t).

– We may assume that (G, s, t) ∈ D by Lemma 2.
– Test whether |l(G; s, t)| = 1 or not by Lemmas 4 and 5.
– If |l(G; s, t)| ≥ 2, then G contains an unbalanced cycle, which makes it

possible to construct two s–t paths whose labels are distinct, say α, β ∈ Γ .
– If αβ−1 = βα−1, test whether l(G; s, t) = {α, β} or not by Proposition 11.

Otherwise, add an arc from s to t with label α if there is no such arc.
– Reduce G repeatedly as long as possible by 2-contraction (check all possible

2-cuts in G and solve subproblems recursively) or 3-contraction (check all
possible 3-cuts in G). Note that if there exists a 2-contractible vertex set
X ⊆ V \{s, t} with NG(X) = {x, y} in G such that |l(G[[X]];x, y)| ≥ 3, then
|l(G; s, t)| ≥ 3 since (G, s, t) ∈ D.

– Check whether (G, s, t) ∈ D0
α,β or not. This can be done easily for Cases

(A) and (B) in Definition 13, and, for Case (C), by testing the planarity and
computing an embedding (e.g., by [7]), which is almost unique due to the
3-connectivity of G (see, e.g., [4]).

5 Proof Sketch of Necessity Part of Theorem 12

In this section, we give a sketch of a proof of the necessity part of Theorem 12,
whose proof is completed in the full version [10].

To derive a contradiction, assume that there exist distinct α, β ∈ Γ and a
triplet (G, s, t) ∈ D such that αβ−1
= βα−1, l(G; s, t) = {α, β}, and (G, s, t)
∈
Dα,β . We choose such α, β ∈ Γ and (G, s, t) ∈ D so that G is as small as possible.

808 Y. Kawase et al.

Fix an arbitrary arc e0 in G leaving s, and consider the graph G′ := G − e0.
By using the minimality of G, we can show that (G′, s, t) ∈ Dα,β . We consider
the following two cases separately: when (G′, s, t) ∈ D1

α,β and when not.
In both cases, we can embed a graph G̃ obtained from G′ (or G−s) by at most

one 3-contraction on a plane so that the conditions of Case (C) in Definition 13
are satisfied (or derive a contradiction). By expanding a vertex set and adding
e0 (or s and δG(s)), we try to extend the planar embedding of G̃ to G. Then,
we have one of the following cases.

– Such an extension is possible, i.e., G can be embedded on a plane with the
conditions of Case (C) in Definition 13. This contradicts that (G, s, t)
∈ Dα,β .

– G contains a contractible vertex set, which contradicts that G is a minimal
counterexample.

– We can construct an s–t path of label γ ∈ Γ \ {α, β} in G by using e0 and
some arcs in G′, which contradicts that l(G; s, t) = {α, β}.

In each case, we have a contradiction, which completes the proof. We note that
Theorem 1 plays an important role in this case analysis.

References

1. Arkin, E.M., Papadimitriou, C.H., Yannakakis, M.: Modularity of cycles and paths
in graphs. Journal of the ACM 38, 255–274 (1991)

2. Chudnovsky, M., Geelen, J., Gerards, B., Goddyn, L., Lohman, M., Seymour, P.D.:
Packing non-zero A-paths in group-labelled graphs. Combinatorica 26, 521–532
(2006)

3. Chudnovsky, M., Cunningham, W., Geelen, J.: An algorithm for packing non-zero
A-paths in group-labelled graphs. Combinatorica 28, 145–161 (2008)

4. Diestel, R.: Graph Theory, 4th edn. Springer-Verlag, Heidelberg (2010)
5. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-

lem. Theoretical Computer Science 10, 111–121 (1980)
6. Hopcroft, J., Tarjan, R.: Efficient algorithm for graph manipulation. Communica-

tions of the ACM 16, 372–378 (1973)
7. Hopcroft, J., Tarjan, R.: Efficient planarity testing. Journal of the ACM 21, 549–

568 (1974)
8. Huynh, T.: The Linkage Problem for Group-Labelled Graphs, Ph.D. Thesis,

Department of Combinatorics and Optimization, University of Waterloo, Ontario
(2009)

9. Kawarabayashi, K., Wollan, P.: Non-zero disjoint cycles in highly connected group
labelled graphs. Journal of Combinatorial Theory, Ser. B 96, 296–301 (2006)

10. Kawase, Y., Kobayashi, Y., Yamaguchi, Y.: Finding a path in group-labeled graphs
with two labels forbidden (the full version is in preparation)

11. LaPaugh, A.S., Papadimitriou, C.H.: The even-path problem for graphs and
digraphs. Networks 14, 507–513 (1984)

12. McCuaig, W.: Pólya’s permanent problem. The Electronic Journal of Combina-
torics 11, R79 (2004)

13. Pólya, G.: Aufgabe 424. Arch. Math. Phys. 20, 271 (1913)
14. Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orientations, and

even directed circuits. Annals of Mathematics 150, 929–975 (1999)

Finding a Path in Group-Labeled Graphs with Two Labels Forbidden 809

15. Shiloach, Y.: A polynomial solution to the undirected two paths problem. Journal
of the ACM 27, 445–456 (1980)

16. Seymour, P.D.: Disjoint paths in graphs. Discrete Mathematics 29, 293–309 (1980)
17. Thomassen, C.: 2-linked graphs. European Journal of Combinatorics 1, 371–378

(1980)
18. Tanigawa, S., Yamaguchi, Y.: Packing non-zero A-paths via matroid matching,

Mathematical Engineering Technical Reports, METR 2013–08, University of Tokyo
(2013)

19. Wollan, P.: Packing cycles with modularity constraint. Combinatorica 31, 95–126
(2011)

20. Yamaguchi, Y.: Packing A-paths in group-labelled graphs via linear matroid par-
ity. In: Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2014), pp. 562–569 (2014)

Lower Bounds for Sums of Powers
of Low Degree Univariates

Neeraj Kayal1, Pascal Koiran2, Timothée Pecatte2, and Chandan Saha3(B)

1 Microsoft Research India, Bengaluru, India
2 Ecole Normale Supérieure de Lyon, Lyon, France

3 Indian Institute of Science, Bengaluru, India
ch.saha@gmail.com

Abstract. We consider the problem of representing a univariate poly-
nomial f(x) as a sum of powers of low degree polynomials. We prove

a lower bound of Ω

(√
d
t

)
for writing an explicit univariate degree-d

polynomial f(x) as a sum of powers of degree-t polynomials.

Keywords: Arithmetic circuits · Lower bounds · Sums of powers ·
Wronskian · Shifted derivatives

1 Introduction

Valiant [22], defined the classes VP and VNP as the algebraic analogs of the
classes P and NP. Informally, VP consists of (families of) efficiently com-
putable (low-degree, multivariate) polynomials while VNP consists of (families
of) explicit (low-degree, multivariate) polynomials. The problem of separating
VNP from VP has since been one of the most important open problems in arith-
metic complexity. Another basic question in complexity in general is whether
computation can be efficiently parallelized. A seminal work by [23] showed that
computation of low degree polynomials can indeed be efficiently parallelized - any
small arithmetic circuit C computing a low degree multivariate polynomial f(x)
can be transformed to obtain another circuit C ′ of low depth and whose size is
not too large computing the same polynomial f(x). Subsequent refinements and
improvements were obtained in a series of works [1,2,8,15,21]. This line of work
in particular yields the following depth reduction result which shows that if a
polynomial can be efficiently computed then it has a not too large representation
as a sum of powers of low degree polynomials. Specifically:

Proposition 1 (Implicit in [21] and [8]). Let {fn(x) : n ≥ 1} be a family
of n-variate polynomials of degree d = d(n) over an underlying field F which is
algebraically closed and has characteristic zero. If this family is in VP then fn(x)
admits a representation of the form

fn(x) =
s∑

i=1

Qi(x)ei where deg(Qi) ≤
√

d (1)

and where the number of summands s is at most nO(
√

d).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 810–821, 2015.
DOI: 10.1007/978-3-662-47672-7 66

Lower Bounds for Sums of Powers of Low Degree Univariates 811

StrongEnoughLowerBounds for SumsofPowers ImplyGeneralCircuit
Lower Bounds. These depth reduction results also provide a potential approach
towards the VP versus VNP problem – via proving strong enough lower bounds for
low depth circuits. In particular, the contrapositive version of Proposition 1 means
that a strong enough (at least nω(

√
d)) lower bound for representing an explicit

family of polynomials {fn(x) : n ≥ 1} in the form (1) above will imply that this
family is not in VP, thereby separating VP and VNP. Promising progress along
this direction has recently been obtained. [9] considered representations of the
form (1) above and introduced a complexity measure called dimension of shifted
partials and obtained a 2Ω(

√
d) lower bound for representations of the form (1)

above. Follow-up work [7,12] obtained an nΩ(
√

d) lower bound for such represen-
tations, thereby coming tantalizingly close to the threshold required for obtaining
superpolynomial lower bounds for general circuits. Since then, these techniques
have been intensely investigated and followup work by [5,11,17] have used these
techniques to obtain optimality of the known depth reduction results in many
interesting cases. Some of these works also suggest that the dimension of shifted
partials in itself might not be strong enough to separate VP from VNP. Further
work [10,11,18] has suitably adapted and generalized the complexity measure to
obtain lower bounds for more subclasses of arithmetic circuits.

Univariate Sums of Powers. Motivated by proposition 1, we introduce and
study the problem of representing a univariate polynomial as a sum of powers
of low-degree polynomials.

Definition 1. Let t ≥ 1 be an integer. For a polynomial f(x) ∈ F[x], define the
sum of degree-t-powers complexity of f , denoted st(f), as the smallest integer s
such that f can be written as

f(x) =
s∑

i=1

αi · Qi(x)ei , where ∀i : αi ∈ F,deg(Qi) ≤ t.

We remark here that if the underlying field F is algebraically closed, we can
assume without loss of generality that each scalar αi = 1. We seek to exhibit
explicit polynomials f(x) for which st(f) is as large as possible. The motiva-
tion for this study is that univariate polynomials being much more well-known
and easier to study than multivariate polynomials one can first try to develop
proof techniques that yield improved lower bounds for the univariate case. In
particular, the invariant theory of binary forms (aka univariate polynomials) is
much better understood as compared to multivariate polynomials. One could
also hope to apply some of the proof ideas from real/complex analysis or from
the vast literature on Waring’s problem1 to obtain improved lower bounds on
1 Waring’s problem asks whether each natural number k has an associated positive

integer s(k) such that every natural number is the sum of at most s k-th powers of
natural numbers. For example, every natural number is the sum of at most 4 squares,
9 cubes. Many variants of Waring’s problem for algebraic integers and polynomials
have also been studied.

812 N. Kayal et al.

st(f). Our underlying hope is that some such improved proof technique or proof
idea might admit a suitable generalization to the multivariate case as well. This
could be one potential way to attack the VP versus VNP problem. We also note
that there are formal results essentially following from the work of Koiran [14]
which imply that seemingly mild lower bounds for a slight variant of the model
being considered here directly implies a separation of VP from VNP.

Proposition 2. [Implicit in [14]]. If there is an explicit family of univari-
ate polynomials {fd(x) : d ≥ 1} over an underlying algebraically closed field
F of characteristic zero such that any representation of the form fd(x) =∑s

i=1 Qi(x)ei , where Sparsity(Qi) ≤ t, requires the number of summands s to be

at least
(

d
t

)Ω(1)
then VP �= VNP.

This means that proving relatively mild lower bounds on a similar model (but
with the degree bound replaced by the corresponding sparsity bound) already
implies that VP is different from VNP.

Our results. In describing our results, we avoid floor/ceil notations for ease of
presentation. Throughout this paper, the underlying field F will be of character-
istic zero. We first note that a standard dimension counting argument implies
that for a random polynomial f(x) of degree d it is almost surely the case that
st(f) ≥ d+1

t+1 . In comparison to this benchmark, we prove a lower bound of

st(f) ≥ Ω

(√
d
t

)
for an explicit family of polynomials of degree d.

Theorem 1. Let d, t ≥ 2 be integers. Let a1, . . . , a2t be any 2t distinct ele-
ments of the underlying field F. Assume F is of characteristic zero. Let g

def
=∏2t

k=1 (x − ak). Define the univariate polynomial,

f(x)
def
= g(x)

d
2t . (2)

Then st(f) ≥ Ω

(√
d
t

)
.

Our proof here employs the Wronskian2 and is therefore quite different from the
proof technique used in the recent works on homogeneous depth four circuits [7,
9,12]. These works employ a complexity measure called the dimension of shifted
partials to obtain lower bounds for a similar multivariate model. We also show
that a suitable variant of shifted partials does yield a similar lower bound albeit
for a different target polynomial. Specifically, we have:

2 The Wronskian has been employed in arithmetic complexity previously in [16] to
obtain nontrivial (but rather weak) lower bounds for writing a polynomial as a sum
of powers of sparse polynomials. Indeed, [16] manage to prove something stronger -
they obtain weak (but still nontrivial and interesting) bounds on the number of real
roots of sums of powers of sparse polynomials.

Lower Bounds for Sums of Powers of Low Degree Univariates 813

Theorem 2. Let d, t ≥ 2 be integers such that t < d
4 . Let the polynomial f(x) =

∑m
i=1(x − ai)d, with distinct ai’s and let m =

⌊√
d
t

⌋
. Then st(f) ≥ Ω

(√
d
t

)
.

Remark 1. 1. Optimality of the lower bound. The polynomial f(x) in the-
orem 2 has the nice feature that it can also be expressed as a sum of O(

√
d/t)

summands, each of which is a power of a polynomial of degree at most t. So,
in this sense theorem 2 gives an optimal lower bound. The target polynomial
in theorem 1 does not seem to have this property.

2. Methods. In the proof of theorem 2, we show that the dimension of shifted
derivatives of the polynomial f(x) is the maximum possible (for the appropri-
ate choice of parameters). Since the polynomial f(x) of theorem 2 also satis-

fies st(f) ≤ O

(√
d
t

)
, it indicates that a lower bound better than Ω

(√
d
t

)

probably cannot be obtained via shifted derivatives. It is currently conceiv-
able that the Wronskian-based proof could yield better lower bounds. A more
detailed discussion on this may be found in Pecatte’s internship report [19].

3. On replacing the degree bound by the corresponding sparsity
bound. We also note that for multivariate polynomials, recent work by
[10] successfully replaced the bound on the degrees of the Qi’s by the cor-
responding bound on the sparsity of the Qi’s. We note in passing that by
proposition 2, if we could prove an analogous result as the one above but
with the degree bound on the Qi’s replaced by a bound on their sparsities,
then we would obtain a separation of VP from VNP. In this sparse setting,
the best lower bound that is currently known is Ω

(√
log d
log t

)
. It applies to

any polynomial of degree d that has d distinct real roots [16].
4. Upper bounds. While the focus of this paper is on lower bounds, it is

also natural to ask about upper bounds on st(f). As mentioned above, the
lower bound st(f) ≥ d+1

t+1 follows from a simple dimension counting argu-
ment. Recent work on the Waring problem for polynomials [6] shows that
this bound is tight for a generic polynomial of degree d when t + 1 divides
d + 1. Moreover, a general result on “maximum rank versus generic rank”
(Theorem 1 in [3]) shows that moving from a generic polynomial to a worst-
case polynomial at most doubles st(f). We conclude that the upper bound
st(f) ≤ 2 · d+1

t+1 applies to any polynomial of degree d when t+1 divides d+1.
Note that this upper boud is nonconstructive. A simple explicit construction
shows that st(f) = O((d/t)2) for all f .

2 Preliminaries

2.1 The Wronskian

The Wronskian is a mathematical tool mainly used in the study of differential
equations to show that a set of solutions is linearly independent.

814 N. Kayal et al.

Definition 2. [Wronskian]. For n real functions f1, . . . , fn, which are n − 1
times differentiable, the Wronskian W (f1, . . . , fn) is defined by

W (f1, . . . , fn) (x) =

∣∣∣∣∣∣∣∣∣

f1(x) f2(x) . . . fn(x)
f ′
1(x) f ′

2(x) . . . f ′
n(x)

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣

.

We will use the following fact about the Wronskian whose proofs can be found
in [20] (and which are known since the 19th century).

Proposition 3. For any f1, . . . , fk which are k−1 times differentiable, if f1 is a
perfect power say if f1 = Qe where e ≥ k then Qe−k+1 divides W (Qe, f2, . . . , fk).

Also, the Wronskian captures linear dependence of polynomials in F[x].

Proposition 4. [4] Let F be a field of characteristic zero. For univariate polyno-
mials f1, . . . , fn ∈ F[x], they are linearly dependent if and only if the Wronskian
W (f1, . . . , fn) vanishes everywhere.

We will also use another result from [24] which gives a bound on the multiplicity
of a root depending on the Wronskian. For a field element α ∈ F, and a poly-
nomial g(x) ∈ F[x], let Nα (g) denote the multiplicity of g at α, i.e. the highest
power of (x − α) which divides g(x).

Lemma 1. Let F be a field of characteristic zero. Let Q1, . . . , Qm be some lin-
early independent polynomial and α ∈ F, and let F (x) =

∑m
i=1 Qi(x). Then:

Nα (F) ≤ m − 1 + Nα (W (Q1, . . . , Qm)), where Nα (W (Q1, . . . , Qm)) is finite
since W (Q1, . . . , Qm) �≡ 0.

2.2 The Space of Shifted Derivatives

In Section 4 we give an alternate lower bound proof via a slight variant of a com-
plexity measure first defined in [9]: the space of shifted partial derivatives. Using
this complexity measure, [9] obtained exponential lower bounds on a similar mul-
tivariate model. The key intuition follows from the following simple observation:
derivatives of Qe of order ≤ k all share a large common factor, namely Qe−k.
We try to capture this property with the following complexity measure:

Definition 3 (Shifted derivatives space). Let f(x) ∈ F[x] be a polynomial.
The span of the l-shifted k-th order derivatives of f, denoted by

〈
x≤i+l · f (i)

〉
i≤k

,
is defined as:

〈
x≤i+l · f (i)

〉

i≤k

def
= F-span

{
xj · f (i)(x) : i ≤ k, j ≤ i + l

}
.

〈
x≤i+l · f (i)

〉
i≤k

forms an F-vector space and we denote by dim
〈
x≤i+l · f (i)

〉
i≤k

the dimension of this space.

Lower Bounds for Sums of Powers of Low Degree Univariates 815

Remark 2. We have two trivial upper bounds on the dimension of the shifted
derivatives space. First, for any polynomial f of degree d, the degree of any
polynomial in

〈
x≤i+l · f (i)

〉
i≤k

is less than d + l, hence dim
〈
x≤i+l · f (i)

〉
i≤k

≤
d+l+1. Second, the dimension is less or equal than the cardinality of a generating
family, thus dim

〈
x≤i+l · f (i)

〉
i≤k

≤ ∑k
i=0(l + i + 1). Thus, we have:

dim
〈
x≤i+l · f (i)

〉

i≤k
≤ min

(
d + l + 1, (k + 1)l +

(
k + 2

2

))
.

We will see later some polynomials that achieve the above bounds and have
full shifted derivative space. Since

〈
x≤i+l · (f + g)(i)

〉
i≤k

⊆ 〈
x≤i+l · f (i)

〉
i≤k

+
〈
x≤i+l · g(i)

〉
i≤k

, the measure we defined is sub-additive.

3 Proof of Theorem 1

Suppose f =
∑s

i=1 αi · Qei
i . Since degree of every Qi is bounded by t and

deg(f) = d, ei ≥ d
t for some i ∈ [s]. Without loss of generality, let e1 ≥ d

t .
Also, we can assume that Qe1

1 , . . . , Qes
s are F-linearly independent - if not, we

work with a basis and a smaller value for s. By taking derivatives of both sides
of the equation f =

∑s
i=1 αi · Qei

i with respect to x for j times we have,

s∑

i=1

αi · [Qei
i](j) = f (j), for every j ∈ {0, . . . , s − 1} ,

where [Qei
i](j) and f (j) are the j-th derivatives of Qei

i and f , respectively,
with respect to x. The above equation defines a system of linear equations in
α1, . . . , αs. By applying Cramer’s rule,

α1 =
W (f,Qe2

2 , . . . , Qes
s)

W (Qe1
1 , Qe2

2 , . . . , Qes
s)

, (3)

where W (g1, . . . , gs) is the Wronskian determinant of the polynomials g1, . . . , gs.
Since Qe1

1 , Qe2
2 , . . . , Qes

s are F-linearly independent, W (Qe1
1 , Qe2

2 , . . . , Qes
s) �=

0. Observe that unless s = Ω
(

d
t

)
, Q

e1−(s−1)
1 divides W (Qe1

1 , Qe2
2 , . . . , Qes

s)

and g
d
2t−(s−1) divides W (f,Qe2

2 , . . . , Qes
s). Let Δ

def= {i | ei ≥ s and 2 ≤
i ≤ s}. Then,

∏
i∈Δ Q

ei−(s−1)
i divides both W (Qe1

1 , Qe2
2 , . . . , Qes

s) and
W (f,Qe2

2 , . . . , Qes
s). Thus, by analyzing the factors coming out common from

the Wronskian determinants, we can express α1 as

α1 =
g

d
2t−(s−1) · ∏

i∈Δ Q
ei−(s−1)
i · W1

Q
e1−(s−1)
1 · ∏

i∈Δ Q
ei−(s−1)
i · W2

=
g

d
2t−(s−1) · W1

Q
e1−(s−1)
1 · W2

. (4)

Now observe that after taking Q
e1−(s−1)
1 and

∏
i∈Δ Q

ei−(s−1)
i common from

W (Qe1
1 , Qe2

2 , . . . , Qes
s), every polynomial in the r-th row of the Wronskian matrix

816 N. Kayal et al.

of Qe1
1 , Qe2

2 , . . . , Qes
s has degree upper bounded by (s − 1)t − (r − 1). Hence,

deg(W2) ≤ s(s − 1)t − ∑s
r=1 (r − 1) ≤ s2t. Since α1 is a field element, g

d
2t−(s−1)

must divide Q
e1−(s−1)
1 ·W2 (by Eq. 4). Polynomial g has 2t distinct roots, whereas

polynomial Q1 has at most t roots. Therefore, there are t distinct roots of g
such that each of these roots divide W2 with multiplicity d

2t − (s − 1). Since
deg(W2) ≤ s2t,

s2t ≥ t ·
[

d

2t
− (s − 1)

]
⇒ s ≥ 1√

2
·
√

d

t
− 1

2
.

The t=1 case. The argument can be strengthened to show the following when
t = 1: if xd+xd−1 is expressed as a sum of s-many d-th powers of linear polynomi-
als then s ≥ d+1. This optimum bound also follows from a work on representing
homogeneous (multivariate) polynomials as sums of linear forms by Kleppe [13].

4 An Alternative Proof Using Shifted Partials

In this section, we will give a proof of theorem 2 using shifted derivatives. The
proof will consist in first giving an upper bound on the dimension of shifted
partials of a sum of powers of low degree polynomials. Thereafter, we give a
lower bound on the dimension of shifted derivatives space of the polynomials of
the form f(x) =

∑m
i=1(x − ai)d. To do so, we will show that f does not satisfy

a particular kind of differential equations, under some conditions.

4.1 Upper Bounding the Dimension of Shifted Partial Derivatives

We first show that in our model, polynomials have a small complexity according
to the shifted partial dimension measure defined in Section 2:

Proposition 5. For any polynomial f of degree d of the form f =
∑s

i=1 αiQ
ei
i ,

with deg(Qi) ≤ t we have: dim
〈
x≤i+l · f (i)

〉
i≤k

≤ s · (l + kt + 1).

Proof. Since the measure is sub-additive, we only have to show that for
a simple building block f of the form Qe, with deg Q ≤ t, we have
dim

〈
x≤i+l · Qe(i)

〉

i≤k
≤ l + kt + 1. Now note that any g ∈

〈
x≤i+l · Qe(i)

〉

i≤k

is of the form g = Qe−k · R. Moreover deg(R) ≤ l + kt (since deg g ≤ e · t + l).
This directly gives the bound on the dimension.

4.2 Lower Bounding the Dimension of Shifted Derivatives for an
Explicit Polynomial

Definition 4. Shifted Differential Equations (SDE) are a kind of differential

equations of the form
k∑

i=0

Pi(x)f (i)(x) = 0, for some polynomials Pi ∈ F[x], not

all zero, with deg(Pi) ≤ i + l. Here, k is called the order and l the shift.

Lower Bounds for Sums of Powers of Low Degree Univariates 817

This kind of differential equations is linked with the notion of shifted derivatives:

Proposition 6. For any h(x) ∈ F[x], if h does not satisfy any SDE of order k
and of shift l, then

〈
x≤i+l · h(i)

〉
i≤k

is full, i.e. :

dim
〈
x≤i+l · h(i)

〉

i≤k
=

k∑

i=0

(l + i + 1) = (k + 1)l +
(

k + 2
2

)
.

In order to prove some conditions on the SDE satisfied by our target explicit
polynomial f(x), we first need to prove that the polynomials (x− a1)d, . . . , (x−
am)d cannot satisfy simultaneously a SDE if the order is not big enough:

Lemma 2. For any d,m ≤ d, for any distinct (a1, a2, . . . , am) ∈ F
m, the fol-

lowing property holds for the family S = {(x − a1)d, . . . , (x − am)d}: if a SDE is
satisfied by every polynomial h ∈ S, then the order of the SDE must be greater
than or equal to m.

Proof. Assume that each polynomial in S = {(x − a1)d, . . . , (x − am)d} satisfies
the following SDE, with k < m:

k∑

i=0

Pi(x)h(i)(x) = 0 ∀h ∈ S. (5)

For all j ∈ [m], we can factor out (x−aj)d−k from the above equation to obtain
a new SDE satisfied by the family S

′
= {(x − a1)k, . . . , (x − am)k}. i.e.:

k∑

i=0

Ri(x)h(i)(x) = 0 ∀h ∈ S
′
, (6)

with Ri(x) def= d!
k!

(k−i)!
(d−i)!Pi(x).

Since k < m, the family S
′

generate Fk[x] (the vector space of polynomials
of degree at most k), and thus this implies that every polynomial of degree
≤ k should satisfy the SDE (6). We obtain the contradiction by plugging in
h(x) = xi0 in SDE (6), where i0 is the smallest integer such that Ri0(x) �≡ 0.

We can now prove the lower bound on the parameters of a SDE that f could
satisfy, which will directly give the result.

Lemma 3. For any d,m ≤ d, for any m distinct elements a1, a2, . . . , am ∈ F,

if the polynomial f(x) =
m∑

i=1

(x − ai)d satisfies a SDE of parameters k, l then at

least one of the two following conditions holds:

i) k ≥ m, or,
ii) l > d

m − 3
2 · m .

818 N. Kayal et al.

Proof. We will prove the result by showing that if f satisfies a SDE and i)
doesn’t hold, then ii) must hold. Assume that f satisfies a differential equation
of the following form:

k∑

i=0

Pi(x)f (i)(x) = 0, (7)

with k < m and deg(Pi) ≤ i + l.
For every j ∈ [m], we denote by Rj the unique polynomial such that:

k∑

i=0

Pi(x)
(
(x − aj)d

)(i)
(x) = Rj(x)(x − aj)d−k.

Notice that Rj is of degree at most k + l. By lemma 2, since k < m, not all
Rj ’s can be 0, without loss of generality we have R1 �≡ 0. For j ∈ [m], we
set fj(x) = Rj(x)(x − aj)d−k and, using linearity of differentiation, we rewrite

differential equation (7) as: −f1(x) =
m∑

j=2

fj(x).

Using Lemma 1, for a certain subset J = {j1, . . . , jp} ⊆ [2..m], we obtain

d − k ≤ Na1 (f1) ≤ p − 1 + Na1 (W ((fj)j∈J)) . (8)

We can factorize the Wronskian by (x − aj)d−k−(p−1) for any j ∈ J :

Na1 (W ((fj)j∈J)) = Na1

∣∣∣∣∣∣∣

R1,1 . . . R1,p

...
. . .

...
Rp,1 · · · Rp,p

∣∣∣∣∣∣∣
,

with deg(Ri,j) ≤ l + k + p − i. The determinant has degree ≤ p(l + k) +
(
p
2

)
.

Hence, inequality (8) becomes: d−k ≤ p− 1+p(l +k)+
(
p
2

)
. Using the fact that

p ≤ m−1, we obtain: d ≤ (m−1) · l+m ·k + (m−2)(m+1)
2 . Divide by m and drop

negative terms to obtain: d
m ≤ l + k + m

2 . Using the hypothesis that k < m, we
finally have: l > d

m − 3
2m.

4.3 Putting Things Together

We are now ready to give a proof of theorem 2.

Proof. We take k and l small enough to ensure that f does not satisfy any SDE
of parameters k and l. Using lemma 3, it is enough to take:

– k = m − 1 =
⌊√

d
t

⌋
− 1 so that k < m ,

– l =
⌊√

dt − 3
2

√
d
t

⌋
so that l ≤ d

m − 3
2m .

Lower Bounds for Sums of Powers of Low Degree Univariates 819

Using proposition 6, we thus establish a lower bound on the dimension of the
shifted derivatives space:

dim
〈
x≤i+l · f (i)

〉

i≤k
= (k + 1)l +

(
k + 2

2

)

≥
(√

d

t
− 1

) (√
dt − 3

2

√
d

t
− 1

)
+

1
2

(√
d

t

)2

= d

(
1 − 1

t
−

√
t

d
+

1
2
√

dt
+

1
d

)

≥ d

(
1 − 1

t
−

√
t

d

)
.

Now, assume that f =
∑s

i=1 αiQ
ei
i , for some Qi’s with deg Qi ≤ t. Proposition

5 gives the following upper bound on the dimension:

dim
〈
x≤i+l · f (i)

〉

i≤k
≤ s · (l + kt + 1) ≤ s · 2

√
dt.

Hence:

s ≥
1 − 1

t −
√

t
d

2
· d√

dt
.

Now, since t < d
4 , we have

√
t
d < 1

2 and thus: s = Ω

(√
d
t

)
.

5 Discussion

In this work, we introduce the model of sums of powers of univariates and gave a
new proof technique (via the Wronskian) to prove a lower bound in this model.
Even though the existing technique of shifted partials also yields a similar lower
bound in this model, our proof (via the Wronskian) could nevertheless be inter-
esting for it is different and perhaps some suitable generalization of it might yield
improved lower bounds for some classes of multivariate circuits. In any case, we
feel that the sum of powers of univariates model is easier to analyze and may
serve as a testbed for other candidate techniques or complexity measures aiming
to obtain improved circuit lower bounds. We conclude by mentioning a few open
problems that are implicit in remark 1.

– Obtain a lower bound for sums of powers of t-sparse polynomials which is
better than Ω(

√
log d
log t).

– Obtain a dO(1)-time algorithm for expressing a given degree d polynomial as
a sum of O(d

t)-many powers of degree-t polynomials.

– Improve the Ω(
√

d
t) lower bound shown in this work.

820 N. Kayal et al.

References

1. Agrawal, M., Vinay, V.: Arithmetic circuits: a chasm at depth four. In: Founda-
tions of Computer Science FOCS, pp. 67–75 (2008)

2. Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-Commutative Arith-
metic Circuits: Depth Reduction and Size Lower Bounds. Theor. Comput. Sci.
209(1–2), 47–86 (1998)

3. Blekherman, G., Teitler, Z.: On maximum, typical and generic ranks. Mathema-
tische Annalen, pp. 1–11 (2014)

4. Bocher, M.: The theory of linear dependence. Annals of Mathematics 2(1/4),
81–96 (1900–1901)

5. Fournier, H., Limaye, N., Malod, G., Srinivasan, S.: Lower bounds for depth 4
formulas computing iterated matrix multiplication. In: Symposium on Theory of
Computing, STOC 2014, pp. 128–135 (2014)

6. Fröberg, R., Ottaviani, G., Shapiro, B.: On the Waring problem for polyno-
mial rings. Proceedings of the National Academy of Sciences 109(15), 5600–5602
(2012)

7. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Approaching the chasm at
depth four. In: Conference on Computational Complexity (CCC), pp. 65–73
(2013)

8. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits: a chasm
at depth three. In: Foundations of Computer Science (FOCS), pp. 578–587 (2013)

9. Kayal, N.: An exponential lower bound for the sum of powers of bounded degree
polynomials. Electronic Colloquium on Computational Complexity (ECCC) 19,
81 (2012)

10. Kayal, N., Limaye, N., Saha, C., Srinivasan, S.: An exponential lower bound for
homogeneous depth four arithmetic formulas. In: 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pp. 61–70 (2014)

11. Kayal, N., Saha, C.: Lower bounds for depth three arithmetic circuits with small
bottom fanin. Electronic Colloquium on Computational Complexity (ECCC) 21,
89 (2014)

12. Kayal, N., Saha, C., Saptharishi, R.: A super-polynomial lower bound for regu-
lar arithmetic formulas. In: Symposium on Theory of Computing, STOC 2014,
pp. 146–153 (2014)

13. Kleppe, J.: Representing a Homogenous Polynomial as a Sum of Powers of Lin-
ear Forms. Thesis for the degree of Candidatus Scientiarum (University of Oslo)
(1999). http://folk.uio.no/johannkl/kleppe-master.pdf

14. Koiran, P.: Shallow circuits with high-powered inputs. In: Proceedings of the
Innovations in Computer Science - ICS 2010, pp. 309–320. Tsinghua University,
Beijing, 7–9 January 2011

15. Koiran, P.: Arithmetic circuits: The chasm at depth four gets wider. Theoretical
Computer Science 448, 56–65 (2012)

16. Koiran, P., Portier, N., Tavenas, S.: A Wronskian approach to the real
τ -conjecture. J. Symb. Comput. 68, 195–214 (2015)

17. Kumar, M., Saraf, S.: The limits of depth reduction for arithmetic formulas: it’s
all about the top fan-in. In: Symposium on Theory of Computing, STOC, pp.
136–145 (2014)

18. Kumar, M., Saraf, S.: On the power of homogeneous depth 4 arithmetic circuits.
In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pp. 364–373 (2014)

http://folk.uio.no/johannkl/kleppe-master.pdf

Lower Bounds for Sums of Powers of Low Degree Univariates 821

19. Pecatte, T.: Lower bounds for univariate polynomials: a Wronskian approach.
M2 Internship Report (Ecole Normale Supérieure de Lyon) (2014). http://perso.
ens-lyon.fr/pascal.koiran/timothee pecatte master2report.pdf

20. Polya, G., Szego, G.: Problems and Theorems in Analysis, vol. II. Springer (1976)
21. Tavenas, S.: Improved bounds for reduction to depth 4 and depth 3. In:

Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 813–824.
Springer, Heidelberg (2013)

22. Valiant, L.G.: Completeness classes in algebra. In: Symposium on Theory of Com-
puting STOC, pp. 249–261 (1979)

23. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of
polynomials using few processors. SIAM Journal on Computing 12(4), 641–644
(1983)

24. Voorhoeve, M., Van Der Pooerten, A.J.: Wronskian determinants and the zeros
of certain functions. Indagationes Mathematicae 78(5), 417–424 (1975)

http://perso.ens-lyon.fr/pascal.koiran/timothee_pecatte_master2report.pdf
http://perso.ens-lyon.fr/pascal.koiran/timothee_pecatte_master2report.pdf

Approximating CSPs Using LP Relaxation

Subhash Khot1 and Rishi Saket2(B)

1 Computer Science Department, New York University, New York, USA
khot@cims.nyu.edu

2 IBM Research, Bangalore, Karnataka, India
rissaket@in.ibm.com

Abstract. This paper studies how well the standard LP relaxation
approximates a k-ary constraint satisfaction problem (CSP) on label set
[L]. We show that, assuming the Unique Games Conjecture, it achieves
an approximation within O(k3 · log L) of the optimal approximation fac-
tor. In particular we prove the following hardness result: let I be a k-ary
CSP on label set [L] with constraints from a constraint class C, such that
it is a (c, s)-integrality gap for the standard LP relaxation. Then, given
an instance H with constraints from C, it is NP-hard to decide whether,

opt(H) ≥ Ω

(
c

k3 log L

)
, or opt(H) ≤ 4 · s,

assuming the Unique Games Conjecture. We also show the existence of
an efficient LP rounding algorithm Round such that given an instance H
from a permutation invariant constraint class C which is a (c, s)-rounding
gap for Round, it is NP-hard to decide whether,

opt(H) ≥ Ω

(
c

k3 log L

)
, or opt(H) ≤ O

(
(log L)k

)
· s,

assuming the Unique Games Conjecture.

1 Introduction

A k-ary constraint satisfaction problem (CSP) over label set [L] consists of a
set of vertices and a set of k-uniform ordered hyperedges. For each hyperedge
there is a constraint specifying the k-tuples of labels to the vertices in it that
satisfy the hyperedge. The goal is to efficiently compute an assignment that sat-
isfies the maximum number of hyperedges. This general definition includes many
problems studied in computer science and combinatorial optimization such as
Maximum Cut, Max-k-SAT and Max-k-LIN[q]. Investigating the approxima-
bility of these problems has motivated a significant body of research.

One of the well studied methods of approximating a CSP is via the Linear
Programming (LP) relaxation of the corresponding integer program1. For exam-
ple, in its most basic formulation the LP relaxation gives a 2-approximation for

S. Khot—Research supported by NSF grants CCF 1422159, 1061938, 0832795 and
Simons Collaboration on Algorithms and Geometry grant.

1 We conveniently think of the problem as computing the value of the optimal labeling.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 822–833, 2015.
DOI: 10.1007/978-3-662-47672-7 67

Approximating CSPs Using LP Relaxation 823

Maximum Cut and can do no better. On the other hand the seminal work of
Goemans and Williamson [6] gave a 1.13823-approximation for Maximum Cut
using a semi-definite programming (SDP) relaxation. A matching integrality gap
for this relaxation and its strengthening was shown by Feige and Schechtman [5],
and Khot and Vishnoi [10] respectively. Moreover, this approximation factor was
shown to be tight by Khot, Kindler, Mossel, and O’Donnell [8]2, assuming Khot’s
Unique Games Conjecture (UGC) [7]. A similar UGC-tight approximation via
an SDP relaxation for the Unique Games problem itself was given by Charikar,
Makarychev and Makarychev [2]. Greatly generalizing these results, Raghaven-
dra [17] proved that a certain SDP relaxation achieves an approximation factor
arbitrarily close to the optimal for any CSP, assuming the UGC. Raghaven-
dra [17] formalized the connection between an integrality gap of the SDP relax-
ation and the corresponding UGC based hardness factor for a given CSP. For
a general k-ary CSP over label set [L], SDP relaxation yields a O

(
Lk

/
Lk

)
-

approximation [14], and a corresponding hardness of approximation was recently
shown by Chan [1].

While the above line of research underscores the theoretical importance of
SDP relaxations, linear programs are usually more efficient in practice and are far
more widely used as optimization tools. Thus, it is worthwhile to study how well
LP relaxations perform for general classes of problems. In the first such result,
Kumar, Manokaran, Tulsiani, and Vishnoi [12] showed a certain LP relaxation to
be optimal for a large class of covering and packing problems, assuming the UGC.
Dalmau and Krokhini [4] and Kun, O’Donnell, Tamaki, Yoshida, and Zhou [13]
independently showed that width-1 (see for e.g. [13] for a formal definition) CSPs
are robustly decided by LP relaxation, i.e. it satisfies almost all hyperedges on an
almost satisfiable instance. In recent work, Dalmau, Krokhin, and Manokaran [3]
have, assuming the UGC, classified CSPs for which the minimization version3

admits a constant factor approximation via the LP relaxation.
In this work we study the linear programming analogue of the problem stud-

ied by Raghavendra [17], i.e. how well the standard LP relaxation approximates
a CSP. We prove the following results.

1.1 Our Results

Let C be a class of constraints and let CSP-[C, k, L] be the k-ary constraint
satisfaction problems over label set [L] where each constraint is from the class
C. An instance I of CSP-[C, k, L] is a (c, s)-integrality gap instance if there is a
solution to the LP relaxation LP(I) given in Fig. 1 with objective value at least
c, and the optimum of I is at most s. The main result of this paper is as follows.

2 [8] also assumed the Majority is Stablest conjecture which was later proved by Mossel,
O’Donnell, and Oleszkiewicz [16].

3 The goal in the minimization version of a CSP is to compute a labeling with the
minimum number of unsatisfied constraints.

824 S. Khot and R. Saket

Theorem 1. If I is a (c, s)-integrality gap instance of CSP-[C, k, L], then,
assuming the Unique Games Conjecture it is NP-hard to distinguish whether
a given instance H of CSP-[C, k, L] has

opt(H) ≥ Ω

(
c

k3 log L

)
, or opt(H) ≤ 4 · s.

The LP relaxation in Fig. 1 is given by a straightforward relaxation of the inte-
ger program for the CSP. The above theorem implies that this basic LP relax-
ation achieves an approximation factor within a multiplicative O

(
k3 · log L

)
of

the optimal for any CSP-[C, k, L], assuming UGC. Note that Raghavendra [17]
proved a stronger result: a transformation from a (c, s)-integrality gap for a
certain SDP relaxation into a (c − ε, s + ε)-UGC hardness gap, which implies
that the SDP relaxation essentially achieves the optimal approximation. We
show that the LP relaxation is nearly as good, i.e. up to a multiplicative loss of
O

(
k3 · log L

)
in the approximation. Before this work, the best known bound of

Lk−1 was implied by the results of Serna, Trevisan, and Xhafa [18]. In particular,
[18] showed an Lk−1-approximation for any CSP-[C, k, L] obtained by the basic
LP relaxation, generalizing a previous 2k−1-approximation by Trevisan [19] for
the boolean case.

Theorem 1 has tight dependence on L: for the Unique Games problem (which
is a 2-CSP) on label set [L], the standard LP relaxation has Ω(L) integrality
gap (see Appendix I of [9]), whereas a very recent result of Kindler, Kolla, and
Trevisan [11] gives an O(L/ log L)-approximate SDP rounding algorithm for any
2-CSP over label set [L]. The latter improves on a previous O(L log log L/ log L)-
approximate SDP rounding algorithm for Unique Games given in [2].

Our second result pertains to CSPs with a permutation invariant set of con-
straints. Roughly speaking, a set of constraints is permutation invariant if it is
closed under the permutation of labels on any of the vertices in the hyperedge.
Most of the boolean CSPs such as Max-k-SAT, Max-k-AND, Max-k-XOR etc.
are permutation invariant by definition. On larger label sets, Unique Games and
Label Cover are well known examples of permutation invariant CSPs. We show
that there is a simple randomized LP rounding algorithm such that a weaker
version of Theorem 1 holds for a corresponding (c, s)-rounding gap, which is
an instance of a permutation invariant CSP with an LP solution of value c on
which the rounding algorithm has an expected payoff at most s. Our rounding
algorithm independently rounds each vertex based only on the LP values asso-
ciated with it. Thus, a single constraint suffices to capture its rounding gap. In
particular, we prove the following theorem.

Theorem 2. Let Ĩ be a single k-ary hyperedge ẽ with a constraint Cẽ as an
instance of a permutation invariant CSP-[C, k, L], which is a (c, s)-rounding
gap for the algorithm Round given in Fig. 2. Then, assuming the Unique Games
Conjecture it is NP-hard to distinguish whether a given instance H of CSP-
[C, k, L] has

opt(H) ≥ Ω

(
c

k3 log L

)
, or opt(H) ≤ O

(
(log L)k

) · s.

Approximating CSPs Using LP Relaxation 825

1.2 Our Techniques

For proving Theorem 1, we follow the approach used in earlier works ([17], [12]) of
converting an integrality gap instance for the LP relaxation into a UGC-hardness
result, which translates the integrality gap into the hardness factor. This reduc-
tion essentially involves the construction of a dictatorship gadget, which is a toy
instance of the CSP-[C, k, L] distinguishing between “dictator” labelings and
“far from dictator” labelings. The construction is illustrated with the following
simple example.

Consider an integrality gap instance consisting of just one edge e = (u, v)
over label set [L], with the constraint given by the set Ce ⊆ [L]× [L] of satisfying
assignments to (u, v). Let (x, y) be a solution to the corresponding LP relaxation
given in Fig. 1. It is easy to see that the x variables corresponding to u (v)
describe a distribution μu (μv) on [L], and y describes a distribution νe on
[L] × [L]. Furthermore, the marginals of νe are μu and μv. Let ν̃e = ρνe + (1 −
ρ)(μu × μv), for some parameter ρ. Clearly, the marginals of ν̃e are also μu and
μv.

The vertices of the dictatorship gadget are {u, v} × [L]R where R is some
large enough parameter. The weighted edges are formed as follows. Add an edge
between (u, r) and (v, s) with weight ν̃R

e (r, s) with the constraint Ce. Here ν̃R
e

is the R-wise product distribution of ν̃e, i.e. the measure defined by choosing
r = (r1, . . . , rR) and s = (s1, . . . , sR) such that (ri, si) is sampled independently
from ν̃e, for i = 1, . . . , R.

It is easy to see that for any i∗ = 1, . . . , R, over the choice of r and s above,
(ri∗ , si∗) ∈ Ce with probability at least,

ρ
∑

�∈Ce

ye�. (1)

Therefore, the above is the fraction of edges in the dictatorship gadget satisfied
by labeling each (u, (r1, . . . , rR)) with ri∗ and each (v, (s1, . . . , sR)) with si∗ .
More formally, the expression in (1) is the completeness of the dictatorship
gadget. Note that this is simply ρ times the objective value of the solution
(x, y) to LP(I).

On the other hand, consider a labeling σ to the vertices of the dictatorship
gadget. Define functions,

fj(r) := 1{σ((u, r)) = j}, gj(s) := 1{σ((v, s)) = j}, (2)

for j = 1, . . . , L, where 1{A} denotes the indicator of the event A. We assume
that the labeling σ is “far from dictator”, i.e. each of the functions fj and gj are
far from dictators. Estimating the weighted fraction of edges of the dictatorship
gadget satisfied by σ entails analyzing expectations of the form,

Eν̃R
e

[fj(r)gj′(s)] , (3)

for 1 ≤ j, j′ ≤ L. In the reduction of Raghavendra [17], such expressions essen-
tially correspond to the payoff yielded by a randomized Gaussian rounding of

826 S. Khot and R. Saket

the SDP solution, under the assumption that σ is far from a dictator. This is
obtained by an application of the Invariance Principle developed by Mossel [15].
The parameter ρ is required to be set to only slightly less than 1 in [17] for the
application of the Invariance Principle.

In our case the expectation in (3) does not a priori correspond to the payoff of
any rounding of (x, y). However, we show that setting ρ ≈ (1/ log L) is sufficient
to ensure,

Eν̃e
[fjgj′] ≈ E[fj]E[gj′], (4)

when both E[fj] and E[gj′] are non-negligible. The RHS of the above corresponds
to the payoff obtained by assigning u the label j with probability E[fj], and
independently assigning v label j with probability E[gj], j = 1, . . . , L. Thus, the
fraction of edges of the dictatorship gadget satisfied by σ, i.e its soundness, is
essentially bounded by the optimum of the integrality gap instance. There is a
O(log L) loss in the hardness factor, as the completeness decreases due to the
setting of ρ.

The proof of Theorem 2 proceeds by using a (c, s)-rounding gap Ĩ for the
algorithm Round given in Fig. 2 to construct a CSP instance, with constraints
being permutations of Ĩ, which is a

(
c/4, O

(
(log L)k

) · s
)
-integrality gap for the

corresponding LP relaxation. A subsequent application of Theorem 1 with this
integrality gap instance proves Theorem 2.

Organization of the Paper. Theorem 1 is restated in Sect. 3 as Theorem 3
which states a hardness reduction from Unique Games. Theorem 4 gives the
transformation from a rounding gap to an integrality gap instance, and along
with Theorem 3 proves Theorem 2. Due to lack of space, the proofs of Theorems
3 and 4 are omitted. The authors refer the reader to the full version of this
paper [9] for all the missing proofs.

In the next section we define the constraint satisfaction problem and describe
their LP relaxation that we study. The notion of correlated spaces and Gaussian
stability bounds used in our reduction and analysis are also described.

2 Preliminaries

We begin by formally defining a constraint satisfaction problem and then
describe the LP relaxation that we consider.

2.1 k-ary CSP over Label Set [L]

Let k ≥ 2 and L ≥ 2 be positive integers. We say that C ⊆ [L]k, C �= ∅, is a
constraint. A collection of such constraints C is a (k, L)-constraint class, i.e.

C ⊆
(
2[L]k \ {∅}

)
.

We denote by CSP-[C, k, L] as the class of k-ary constraint satisfaction prob-
lems over label set [L], where each constraint is from the class C. Formally, an

Approximating CSPs Using LP Relaxation 827

instance of I of CSP-[C, k, L] consists of a finite set of vertices VI , a set of
k-uniform ordered hyperedges EI ⊆ V k

I and constraints {Ce ∈ C | e ∈ E}.
In addition, the hyperedges have normalized weights {we ≥ 0}e∈EI satisfying∑

e∈EI we = 1. A labeling σ : VI 	→ [L] satisfies the hyperedge e = (v1, . . . , vk)
if (σ(v1), . . . , σ(vk)) ∈ Ce.

As an example, 3-SAT is a constraint satisfaction problem with k = 3 over
the boolean domain, i.e. L = 2. The SAT predicate is over 3 variables. Allowing
for negations of the boolean variables yields a constraint class C3−SAT consisting
of 8 constraints. Each constraint, being an OR over 3 literals, has 7 satisfying
assignments (labelings).

Let us denote the weighted fraction of constraints satisfied by any labeling σ
by val(I, σ). The optimum value of the instance is given by,

opt(I) := max
σ:V �→[L]

val(I, σ).

Permutation Invariant Constraints. Let πj : [L] 	→ [L], j = 1, . . . , k, be
k permutations. For a constraint C ⊆ [L]k, define the [π1, . . . , πk]-permuted
constraint as:

[π1, . . . , πk]C := {(π1(j1), . . . , πk(jk)) | (j1, . . . , jk) ∈ C}. (5)

A (k, L)-constraint class C is said to be permutation invariant if for every k
permutations πj : [L] 	→ [L] (1 ≤ j ≤ k), C ∈ C implies [π1, . . . , πk]C ∈ C. As
mentioned earlier, boolean constraint classes such as k-SAT, k-AND and k-XOR
are permutation invariant by definition since they are closed under negation
of variables. For general L, Unique Games and Label Cover are well studied
permutation invariant constraint classes.

2.2 LP Relaxation for CSP-[C, k, L]

The standard linear programming relaxation for an instance I (as defined above)
of CSP-[C, k, L] is obtained as follows. There is a variable xv� for each vertex
v ∈ VI and label � ∈ [L]. For each constraint Ce corresponding to hyperedge
e = (v1, . . . , vk), and tuple � = (�1, . . . , �k) ∈ [L]k of labels, there is a variable ye�.
In the integral solution these variables are {0, 1}-valued denoting the selection
the particular label or tuple of labels for the corresponding vertex or hyperedge
respectively. To ensure consistency they are appropriately constrained. Allowing
the variables to take values in [0, 1], we obtain the LP relaxation denoted by
LP(I) and given in Fig. 1.

For a given instance I, let

(x, y) = ({xv�}v∈VI ,�∈[L], {ye�}e∈EI ,�∈[L]k),

be a valid solution to LP(I). On this solution, the objective value of the LP is
denoted by lpval(I, (x, y)). The integrality gap, i.e. how well the LP relaxation

828 S. Khot and R. Saket

max
∑

e∈EI

we ·
∑

�∈Ce

ye� (6)

subject to,

∀v ∈ VI ,
∑

�∈[L]

xv� = 1 (7)

∀v ∈ VI and,

e = (v1, . . . , vi−1, v, vi+1, . . . , vk) ∈ EI and,

�∗ ∈ [L],
∑

�∈[L]i−1×{�∗}×[L]k−i

ye� = xv�∗(8)

∀v ∈ VI , � ∈ [L], xv� ≥ 0. (9)
∀e ∈ EI , � ∈ [L]k, ye� ≥ 0. (10)

Fig. 1. LP Relaxation LP(I) for instance I of CSP-[C, k, L]

approximates the integral optimum on I, is given by,

intgap(I) :=
lpsup(I)
opt(I)

, (11)

where,
lpsup(I) := sup

(x,y)

lpval(I, (x, y)). (12)

A smaller integrality gap – which is always at least 1 – indicates tightness of the
LP relaxation. We say that I is a (c, s)-integrality gap instance if,

lpsup(I) ≥ c, and opt(I) ≤ s. (13)

Smooth LP Solutions. The following shows that the integrality gap is nearly
attained by a solution to the LP relaxation which is discrete in the following
sense.

Definition 1. Given an instance I of CSP-[C, k, L], a solution (x, y) to LP(I)
is δ-smooth if each variable xv� is at least δL−1 and each variable ye� is at least
δL−k, for any δ > 0.

Due to lack of space we omit the proof of the following.

Lemma 1. Given an instance I of CSP-[C, k, L], for any δ > 0 and solution
(x∗, y∗) to LP(I), there is an (efficiently computable) δ-smooth solution (x, y) to
LP(I) such that,

lpval(I, (x, y)) ≥ (1 − δ)lpval(I, (x∗, y∗)). (14)

Approximating CSPs Using LP Relaxation 829

In particular, there is a δ-smooth solution (x, y) to LP(I) such that,

lpval(I, (x, y))
opt(I)

≥ (1 − δ)intgap(I). (15)

2.3 A Rounding Algorithm for LP

Given an instance I of CSP-[C, k, L] and a solution (x∗, y∗) to LP(I), the round-
ing algorithm Round is described in Fig. 2. The performance of the algorithm is

Round(I, (x∗, y∗)):

1. Using Lemma 1 compute a 0.1-smooth solution (x̂, ŷ) corresponding to
(x∗, y∗) satisfying Equation (14).

2. For each vertex v ∈ VI :
a. Partition [L] into subsets {Sv

t }T
t=1, where Sv

i = {� ∈ [L] | (1/2t) <
x̂v� ≤ (1/2t−1)}. Note: T = O(log L), by 0.1-smoothness of (x̂, ŷ).

b. Choose u.a.r t∗
v from {t | Sv

t �= ∅}.
c. Label v with �∗ chosen u.a.r from Sv

t∗
v
.

Fig. 2. Rounding Algorithm for LP(I) on instance I of CSP-[C, k, L]

the expected (weighted) fraction of constraints satisfied by this labeling, and is
denoted by Roundval(I, (x∗, y∗)). The rounding gap for I and (x∗, y∗) is given
by the following ratio.

RoundGap(I, (x∗, y∗)) :=
lpval(I, (x∗, y∗))

Roundval(I, (x∗, y∗))
. (16)

2.4 Gaussian Stability

We require the following notion of Gaussian stability in our analysis.

Definition 2. Let Φ : R 	→ [0, 1] be the cumulative distribution function of the
standard Gaussian. For a parameter ρ, define,

Γρ(μ, ν) = Pr[X ≤ Φ−1(μ), Y ≤ Φ−1(ν)], (17)

where X and Y are two standard Gaussian random variables with covariance
matrix

(1 ρ
ρ 1

)
. For k ≥ 3, (ρ1, . . . , ρk−1) ∈ [0, 1]k−1, and (μ1, . . . , μk) ∈ [0, 1]k,

inductively define,

Γρ1,...,ρk−1(μ1, . . . , μk) = Γρ1(μ1, Γρ2,...,ρk−1(μ2, . . . , μk)). (18)

Due the lack of space we omit the proof of the following key lemma.

830 S. Khot and R. Saket

Lemma 2. Let k ≥ 2 be an integer and T ≥ 2 such that 1 ≥ μi ≥ (1/T) for
i = 1, . . . , k. Then, there exists a universal constant C > 0 such that for any
ε ∈ (0, 1/2],

ρ =
ε

C(k − 1)(log T + log(1/ε))
, (19)

implies,

Γρk−1
(μ1, . . . , μk) ≤ (1 + ε)k−1

k∏

i=1

μi,

where ρk−1 = (ρ, . . . , ρ), is a (k − 1)-tuple with each entry ρ.

2.5 Correlated Spaces

The correlation between two correlated probability spaces is defined as follows.

Definition 3. Suppose (Ω(1) × Ω(2), μ) is a finite correlated probability space
with the marginal probability spaces (Ω(1), μ) and (Ω(2), μ). The correlation
between these spaces is,

ρ(Ω(1), Ω(2);μ) = sup
{

|Eμ[fg]| | f ∈ L2(Ω(1), μ), g ∈ L2(Ω(2), μ),

E[f] = E[g] = 0;E[f2],E[g2] ≤ 1
}

.

Let (Ω(1)
i × Ω

(2)
i , μi)n

i=1 be a sequence of correlated spaces. Then,

ρ(
n∏

i=1

Ω
(1)
i ,

n∏

i=1

Ω
(2)
i ;

n∏

i=1

μi) ≤ max
i

ρ(Ω(1)
i , Ω

(2)
i ;μi).

Further, the correlation of k correlated spaces (
∏k

j=1 Ω(j), μ) is defined as follows:

ρ(Ω(1), Ω(2), . . . , Ω(k);μ) := max
1≤i≤k

ρ

⎛

⎝
i−1∏

j=1

Ω(j) ×
k∏

j=i+1

Ω(j), Ω(i);μ

⎞

⎠ .

The Bonami-Beckner operator is defined as follows.

Definition 4. Given a probability space (Ω,μ) and ρ ≥ 0, consider the space
(Ω × Ω,μ′) where μ′(x, y) = (1 − ρ)μ(x)μ(y) + ρ1{x = y}μ(x), where 1{x =
y} = 1 if x = y and 0 otherwise. The Bonami-Beckner operator Tρ is defined by,

(Tρf)(x) = E(X,Y)←μ′ [f(Y) | X = x] .

For product spaces (
∏n

i=1 Ωi,
∏n

i=1 μi), the Bonami-Beckner operator Tρ =
⊗n

i=1T
i
ρ, where T i

ρ is the operator for the ith space (Ωi, μi).

The influence of a function on a product space is defined as follows.

Approximating CSPs Using LP Relaxation 831

Definition 5. Let f be a function on (
∏n

i=1 Ωi,
∏n

i=1 μi). The influence of the
ith coordinate on f is:

Infi(f) = E{xj |j
=i} [Varxi
[f(x1, x2, . . . , xi, . . . , xn)]] .

The following is a folklore upper bound on the sum of influences of smoothed
functions, and is proved as Lemma 1.13 in [20].

Lemma 3. Let f be a function on (
∏n

i=1 Ωi,
∏n

i=1 μi) which takes values in
[−1, 1]. Then,

n∑

i=1

Infi(T1−γf) ≤ γ−1, (20)

for any γ ∈ (0, 1].

The analysis used in our results also requires invariance theorems along with
bounds on the correlation of functions based on Mossel’s work [15]. Due to lack
of space we omit their statements.

2.6 Unique Games Conjecture

UniqueGames is the following constraint satisfaction problem.

Definition 6. A UniqueGames instance U consists of a graph GU = (VU , EU),
a label set [R] and a set of bijections {πe : [R] 	→ [R] | e ∈ EU}. A labeling
σ : VU 	→ [R] satisfies an edge e = (u, v) if πe(σ(v)) = σ(u). The instance is
called d-regular if GU is d-regular.

The UniqueGames problem is: given an instance of UniqueGames, find an
assignment which satisfies the maximum fraction of edges. It is easy to see that
if there exists an assignment that satisfies all edges, such an assignment can be
efficiently obtained. In other words, the UniqueGames is easy on satisfiable
instances. This is not known to be true for almost satisfiable instances, and the
following conjecture on the hardness of UniqueGames on such instances was
proposed by Khot [7].

Conjecture 1. For any constant ζ > 0, there is an integer R > 0, such that
it is NP-hard, given a regular instance U of UniqueGames on label set [R], to
decide whether,
YES Case. There is a labeling to the vertices of U which satisfies (1−ζ) fraction
of its edges.
NO Case. Any labeling satisfies at most ζ fraction of the edges.

3 Our Results Restated

The following is a restatement of Theorem 1 as a hardness reduction from
UniqueGames.

832 S. Khot and R. Saket

Theorem 3. Let k ≥ 2 and L ≥ 2 be positive integers. Let I be a (c, s)-
integrality gap instance of CSP-[C, k, L]. Then, there is a reduction from an
instance U of UniqueGames given by Conjecture 1 with a small enough param-
eter ζ, to an instance H of CSP-[C, k, L] such that,

YES Case. If U is a YES instance, then

opt(H) ≥ Ω

(
c

k3 log L

)
.

NO Case. If U is a NO instance, then,

opt(H) ≤ 4 · s.

Theorem 3 is obtained by combining a dictatorship gadget with the hard instance
of UniqueGames. As the name suggests, this gadget distinguishes between
labelings defined by a dictator and those which are not. The dictatorship gad-
get illustrates the main ideas of the hardness reduction and is derived from the
integrality gap instance I of CSP-[C, k, L], and is also a CSP-[C, k, L] instance.
This notion is the same as defined by Raghavendra [17] and can be converted
into a hardness reduction from UniqueGames using techniques from Sect. 6 of
[17]. However, to avoid describing the framework of [17] in detail, the proof of
Theorem 3 is via a direct hardness reduction from UniqueGames.

Our second result Theorem 2 is implied by the following theorem and an
application of Theorem 3.

Theorem 4. Let k ≥ 2 and L ≥ 2 be positive integers. Let Ĩ be an instance of
CSP-[C, k, L] consisting of one hyperedge ẽ and its constraint Cẽ, and (x∗, y∗)
be a solution to LP(Ĩ) such that,

lpval(Ĩ, (x∗, y∗)) ≥ Roundval(Ĩ, (x∗, y∗)). (21)

Then, there exists an instance I whose size depends only on L and k with con-
straints which are permutations of Cẽ, and a solution (x, y) to LP(I) such that,

lpval(I, (x, y)) ≥ lpval(Ĩ, (x∗, y∗))
4

, (22)

and,
opt(I) ≤ O

(
(log L)k

)
Roundval(Ĩ, (x∗, y∗)). (23)

Acknowledgments. The authors thank Elchanan Mossel for helpful discussion on
Gaussian stability bounds.

Approximating CSPs Using LP Relaxation 833

References

1. Chan, S.O.: Approximation resistance from pairwise independent subgroups. In:
Proc. STOC, pp. 447–456 (2013)

2. Charikar, M., Makarychev, K., Makarychev, Y.: Near-optimal algorithms for
unique games. In: Proc. STOC, pp. 205–214 (2006)

3. Dalmau, V., Krokhin, A.A., Manokaran, R.: Towards a characterization of
constant-factor approximable min CSPs. In: Proc. SODA, pp. 847–857 (2015)

4. Dinur, I., Kol, G.: Covering CSPs. In: Proc. CCC, pp. 207–218 (2013)
5. Feige, U., Schechtman, G.: On the optimality of the random hyperplane rounding

technique for MAX CUT. Random Struct. Algorithms 20(3), 403–440 (2002)
6. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. Journal of
the ACM 42(6), 1115–1145 (1995)

7. Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. STOC,
pp. 767–775 (2002)

8. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs? SIAM Journal of Computing 37(1),
319–357 (2007)

9. Khot, S., Saket, R.: Approximating CSPs using LP relaxation (2015). http://
researcher.ibm.com/researcher/files/in-rissaket/KS-icalp-full.pdf

10. Khot, S., Vishnoi, N.K.: The unique games conjecture, integrality gap for cut
problems and embeddability of negative type metrics into �1. In: Proc. FOCS,
pp. 53–62 (2005)

11. Kindler, G., Kolla, A., Trevisan, L.: Approximation of non-boolean 2CSP (2015).
CoRR, abs/1504.00681. http://arxiv.org/pdf/1504.00681.pdf

12. Kumar, A., Manokaran, R., Tulsiani, M., Vishnoi, N.K.: On LP-based approxima-
bility for strict CSPs. In: Proc. SODA, pp. 1560–1573 (2011)

13. Kun, G., O’Donnell, R., Tamaki, S., Yoshida, Y., Zhou, Y.: Linear programming,
width-1 CSPs, and robust satisfaction. In: Proc. ITCS, pp. 484–495 (2012)

14. Makarychev, K., Makarychev, Y.: Approximation algorithm for non-boolean Max-
k-CSP. Theory of Computing 10, 341–358 (2014)

15. Mossel, E.: Gaussian bounds for noise correlation of functions. GAFA 19,
1713–1756 (2010)

16. Mossel, E., O’Donnell, R., Oleszkiewicz, K.: Noise stability of functions with low
influences: invariance and optimality. Annals of Mathematics 171(1), 295–341
(2010)

17. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP?
In: Proc. STOC, pp. 245–254 (2008)

18. Serna, M.J., Trevisan, L., Xhafa, F.: The (parallel) approximability of non-boolean
satisfiability problems and restricted integer programming. In: Meinel, C., Morvan,
M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 488–498. Springer, Heidelberg (1998)

19. Trevisan, L.: Parallel approximation algorithms by positive linear programming.
Algorithmica 21(1), 72–88 (1998)

20. Wenner, C.: Circumventing d-to-1 for approximation resistance of satisfiable pred-
icates strictly containing parity of width at least four. Theory of Computing 9,
703–757 (2013)

http://researcher.ibm.com/researcher/files/in-rissaket/KS-icalp-full.pdf
http://researcher.ibm.com/researcher/files/in-rissaket/KS-icalp-full.pdf
http://arxiv.org/abs/http://arxiv.org/pdf/1504.00681.pdf

Comparator Circuits over Finite Bounded Posets

Balagopal Komarath, Jayalal Sarma(B), and K.S. Sunil

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

{baluks,jayalal,sunil}@cse.iitm.ac.in

Abstract. Comparator circuit model was originally introduced in [4]
(and further studied in [2]) to capture problems which are not known to
be P-complete but still not known to admit efficient parallel algorithms.
The class CC is the complexity class of problems many-one logspace
reducible to the Comparator Circuit Value Problem and we know that
NLOG ⊆ CC ⊆ P. Cook et al [2] showed that CC is also the class of
languages decided by polynomial size comparator circuits.

We study generalizations of the comparator circuit model that work
over fixed finite bounded posets. We observe that there are universal com-
parator circuits even over arbitrary fixed finite bounded posets. Building
on this, we show that general (resp. skew) comparator circuits of poly-
nomial size over fixed finite distributive lattices characterizes CC (resp.
LOG). Complementing this, we show that general comparator circuits of
polynomial size over arbitrary fixed finite lattices exactly characterizes P
and that when the comparator circuit is skew they characterize NLOG. In
addition, we show a characterization of the class NP by a family of poly-
nomial sized comparator circuits over fixed finite bounded posets. These
results generalize the results in [2] regarding the power of comparator
circuits. As an aside, we consider generalizations of Boolean formulae
over arbitrary lattices. We show that Spira’s theorem[5] can be extended
to this setting as well and show that polynomial sized Boolean formulae
over finite fixed lattices capture exactly NC1.

Our techniques involve design of comparator circuits and finite posets.
We then use known results from lattice theory to show that the posets
that we obtain can be embedded into appropriate lattices. Our results
gives new methods to establish CC upper bound for problems also indi-
cate potential new approaches towards the problems P vs CC and NLOG
vs LOG using lattice theoretic methods.

1 Introduction

Completeness for the class P for a problem, is usually considered to be an evi-
dence that it is hard to design an efficient parallel algorithm for the problem.
However, there are many computational problems in the class P, which are not
known to be P-complete, yet designing efficient parallel algorithms for them

B. Komarath—Supported by TCS PhD Fellowship.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 834–845, 2015.
DOI: 10.1007/978-3-662-47672-7 68

Comparator Circuits over Finite Bounded Posets 835

has remained elusive. Some of the classical examples of such problems include
lex-least maximal matching problem and stable marriage problem [4].

Attempting to capture the exact bottleneck of computation in these problems
using a variant of Boolean circuit model, Mayr and Subramanian [4] (see also
[2]) studied the comparator circuit model.

•

•

•a

b

c

Fig. 1. A Comparator Circuit

A comparator circuit is a sorting network
working over the values 0 and 1. A compara-
tor gate has 2 inputs and 2 outputs. The first
output is the AND of the two inputs and the
second output is the OR of the two inputs. A
comparator circuit is a circuit that has only comparator gates. In particular,
fan-out gates are not allowed. We can assume wlog that NOT gates are used
only at the input level. A graphical representation of a comparator circuit is
shown in Figure 1. In this representation, we draw a set of parallel lines. Each
line carries a logical value which is updated by gates incident on that line. Each
gate is represented by a directed arrow from one line (Say i) to another (Say
j) and the gate updates the values of lines as follows. The value of line i (j) is
set to the OR (resp. AND) of values previously on lines i and j. The gates are
evaluated from left to right. The output of the circuit is the final value of a line
designated as the output line. We define the model formally in section 2.

In order to study the complexity theoretic significance of comparator circuits,
the corresponding circuit value problem was explored in [4]. That is, given a
comparator circuit and an input, test if the output wire carries a 1 or not.
The class CC is defined in [4] as the class of languages that are logspace many-
one reducible to the comparator circuit value problem. They also observed that
the class CC is contained in P. Feder’s algorithm (described in [7]) for directed
reachability proves that the class CC contains NLOG as a subclass. These are the
best containments currently known about the complexity class CC.

There has been a recent spurt of activity in the characterization of CC. Cook
et al. [2] showed that the class CC is robust even if the complexity of the many-
one reduction to the comparator circuit value problem is varied from AC0 to
NLOG. They also gave a characterization of the class CC in terms of a com-
putational model (comparator circuit families). Their main contribution in this
regard is the introduction of a universal comparator circuit that can simulate
the computation of a comparator circuit given as input (to the universal cir-
cuit). Comparison of CC with the class NC has interesting implications to the
corresponding computational restrictions. For example, hardness for the class
CC is conjectured to be evidence that the problem is not efficiently paralleliz-
able. This intuition was further strengthened by Cook et al. [2] by showing that
there are oracle sets relative to which CC and NC are incomparable (NC is the
class of all languages efficiently solvable by parallel algorithms). In addition, it
is conjectured in [2] that the classes NC, SC and CC are pairwise incomparable.

Our Results & Techniques: In this paper, we study the computational power
of comparator circuits working over arbitrary fixed finite bounded posets (and
sub-families of the family of all finite bounded posets). Informally, instead of 0

836 B. Komarath et al.

and 1, the values used while computation could be any element from the poset
and the AND and OR gates compute (non-deterministically) maximal lower
bounds and minimal upper bounds over the poset respectively. We define this
model formally in section 3. We obtain the following results:

– There exist Universal Comparator Circuits for comparator circuits irrespec-
tive of the underlying bounded poset. (Proposition 2, Section 3)

– Comparator circuits of polynomial size over fixed finite distributive lattices
capture the class CC. (Theorem 4, Section 4). This leads to a new way to show
that a problem is in the class CC. That is, by designing a comparator circuit
over a fixed finite lattice and then showing that the lattice is distributive
(An application of this method to design CC algorithms for Stable Matching
can be found in [4], See also Section 6.2 in [2]). There are lattice theoretic
techniques known (cf. M3-N5 Theorem [3]) for showing that a lattice is
distributive, this generalization might be independent interest.

– Going beyond distributivity, we show that comparator circuits of polynomial
size over fixed finite lattices characterize the class P. (Theorem 5, Section 4).
In particular, we design a fixed finite poset P over which, for any language
L ∈ P, there is a polynomial size comparator circuit family over P computing
L. During computation, we only use lubs and glbs that exist in the poset
P . This enables us to use Dedekind-MacNeille completion (DM completion)
theorem to construct a fixed finite lattice completing the poset P while
preserving the lubs and glbs of all pairs of elements and that lattice can be
used to perform all computations in P. A potential drawback of the lattice
thus obtained is that the complexity class captured by comparator circuits
over it may vary depending on the element in the lattice used as the accepting
element. By using standard tools from lattice theory, we derive that there
is a fixed constant i ≥ 3, such that comparator circuit over Πi (where Πi is
the ith partition lattice - see section 2 for a definition) with polynomial size
can compute all functions in P. Moreover, we show that comparator circuits
over the lattice Πi captures P irrespective of the accepting element used.

However, both partition lattice for i ≥ 3 and the lattice given by DM
completion are non-distributive. Exploring the possibility of another comple-
tion of the poset P into a distributive lattice that preserves existing lubs and
glbs (which will show P = CC), we arrive at the following negative result : the
poset P cannot be completed into any distributive lattice while preserving
all existing lubs and glbs. (Theorem 6).

It is conceivable that the class P could be captured by a family of dis-
tributive lattices, while no finite fixed lattice capturing P can be distributive.
Motivated by this, we also present an alternative proof of the main theorem
using growing posets of much simpler structure (See Appendix A in the full
paper[8]). However, we argue that this poset family also cannot be com-
pleted into a family of distributive lattices while preserving all existing lubs
and glbs.

– Going beyond lattice structure, we show that comparator circuits over fixed
finite bounded posets capture the class NP. (Theorem 7, Section 5). Here, we

Comparator Circuits over Finite Bounded Posets 837

crucially use the fact that posets that are not lattices could have elements
that does not have unique minimal upper bounds. Hence, any completion of
this poset into a lattice will fail to capture NP, unless P = NP.

– Restricting the structure of the comparator circuit, we obtain an exact char-
acterization of the class LOG using skew comparator circuits (Theorem 8).
Noting that the polynomial sized skew Boolean circuits characterize exactly
the class NLOG, this leads to a comparison between CC vs P and LOG vs
NLOG problem : both problems address the power of polynomial size Boolean
circuits vs comparator circuits in general and skew circuits respectively.

– We further study generalizations of skew comparator circuits to arbitrary
lattices. When the lattice is distributive, it follows that the circuits cap-
ture exactly LOG. Complementing this, we show that are fixed finite fixed
lattices P over which, the skew comparator circuits characterize exactly
NLOG.(Theorem 9). This brings in a second comparison between CC vs P
and NLOG vs LOG problems - both problems address the power of polynomial
size comparator circuits over arbitrary lattices vs distributive lattices in the
general and skew comparator circuits case respectively.

– We study generalizations of Boolean formulas to arbitrary lattices where the
AND and OR gates compute the ∧ and ∨ of the lattices. We generalize
Spira’s theorem[5] to this setting and show that polynomial sized Boolean
formulae over finite fixed lattices capture exactly NC1 (Theorem 10).

Thus, we observe that as the comparator circuit is allowed to compute over
progressively general structures (From distributive lattices to arbitrary lattices
to posets), the model captures classes of problems that are progressively harder
to parallelize (From CC to P to NP).

The main technical contribution in our proofs is the design of posets and the
corresponding comparator circuits for capturing complexity classes. We then use
known ideas from lattice and order theory in order to derive lattices to which
the constructed posets can be embedded.

2 Preliminaries

The standard definitions in complexity theory used in this paper can be found in
standard textbooks [1]. All reductions in this paper are computable in logspace.
In this section, we define comparator circuits, certain restrictions on comparator
circuits and complexity classes based on those restrictions.

A comparator circuit has a set of n lines {w1, . . . , wn} and an ordered list of
gates (wi, wj). Each line can be fed as input a value that is either (Boolean) 0 or
1. We define val(wi) to be the value of the line wi. Each gate (wi, wj) updates
the val(wi) to val(wi)∧val(wj) and val(wj) to val(wi)∨val(wj) in order. After
all gates have updated the values, the value of the line w1 is the output of the
circuit.

The Comparator Circuit Value problem is given (C, x) as input find
the output of the comparator circuit C when fed x as input. We can think of

838 B. Komarath et al.

C being encoded according to the above definition of comparator circuits. We
call this the ordered list representation as the gates are presented as an ordered
list. Mayr and Subramanian [4] defined the complexity class CC as the set of all
languages logspace reducible to the Comparator Circuit Value problem. Cook et
al. [2] characterized the class CC as languages computed by AC0-uniform families
of annotated comparator circuits. In an annotated comparator circuit the initial
value of a line could be an input variable xi or its complement xi. In a family
of annotated comparator circuits for a language L, the nth comparator circuit in
the family has exactly n input variables (x1, . . . , xn) and the circuit computes
L ∩ {0, 1}n.

Skew Comparator Circuits: We now define skewness in comparator circuits.
To begin with, we present an alternate definition of comparator circuits that
is closer to the definition of standard Boolean circuits. A comparator gate is
a 2-input, 2-output gate that takes a and b as inputs and outputs a ∧ b and
a ∨ b. Then the comparator circuit is simply a circuit (in the usual sense) that
consists of only comparator gates (In particular, fan-out gates are not allowed).
Using this definition, we can encode comparator circuits by using DAGs as we
encode standard Boolean circuits. It is easy to see that given a comparator
circuit encoded as an ordered list of gates, we can obtain the DAG encoding the
comparator circuit in logspace. Using this definition, we can talk about wires in
the comparator circuit.

We say that an AND gate in a comparator gate is used if the AND output
wire of that comparator gate is used in the circuit. An AND gate in the circuit
is called skew if and only if at least one input to the gate is the constant 0 or the
constant 1 or (in the case of annotated circuits) an input bit xi or xi for some i.

A comparator circuit is called a skew comparator circuit if and only if all used
AND gates in the circuit are skew. The complexity class SkewCC consists of all
languages that can be decided by poly-size skew comparator circuits. We define
SkewCCVP to be the circuit evaluation problem for skew comparator circuits.
Note that given the ordered list representation of a comparator circuit, it is easy
to check whether an AND gate is used or not. For ex., if the ith gate is (w1, w2),
then the AND output of this gate is unused iff there is no element in the list of
gates with w1 as a member at a position greater that i in the list.

The circuit family is LOG-uniform if and only if there exists a TM M that
outputs the nth circuit in the family in O(log(n)) space given 1n as input. All
circuits in this paper are LOG-uniform.

Preliminaries from Lattice and Order Theory: Basic definitions and ter-
minology from standard lattice and order theory that are required later in the
paper can be found in the full paper (See Section 2, [8]). A more detailed treat-
ment can be found in standard textbooks [3]. We will now state some technical
theorems from the theory which we crucially use. The following theorem shows
that given a poset one can find a lattice that contains the poset.

Comparator Circuits over Finite Bounded Posets 839

Theorem 1 (Dedekind-Macneille Completion[3]). For any poset P , there
always exist a smallest lattice L that order embeds P . This lattice L is called the
Dedekind-MacNeille completion of P .

One crucial property of Dedekind-MacNeille completion is that it preserves
all meets and joins that exist in the poset. i.e., if a and b are two elements in
the poset and a ∨ b = x in the poset, then we have f(a) ∨ f(b) = f(x) in the
Dedekind-MacNeille completion of the poset, where f is the embedding function
that maps elements in P to elements in L.

Theorem 2 (Birkhoff’s Representation Theorem[3]). The elements of
any finite distributive lattice can be represented as finite sets, in such a way
that the join and meet operations over the finite distributive lattice correspond
to unions and intersections of the finite sets used to represent those elements.

The nth partition lattice for n ≥ 2, denoted Πn, is the lattice where ele-
ments are partitions of the set {1, . . . , n} ordered by refinement. Equivalently,
the elements are equivalence relations on the set {1, . . . , n} where the glb is the
intersection and lub is the transitive closure of the union.

Theorem 3 (Pudlák, Tůma[6]). For any finite lattice L, there exists an i
such that L can be embedded as a sublattice in Πi.

We can describe elements of the partition lattice Πn by using undi-
rected graphs on the vertex set {1, . . . , n}. Given an undirected graph G =
({1, . . . , n}, E), the corresponding element AG ∈ Πn is the equivalence relation
AG = {(i, j) : j is reachable from i in G}. The following proposition holds for
partition lattices. A proof can be found in the full paper (See Proposition 2, [8]).
Proposition 1. For any A ∈ Πi, there exists a formula (over join, meet and
arbitrary constants from the lattice) GE′

A(x) that evaluates to 1 if x ≥ A and
GE′

A(x) evaluates to 0 otherwise.

3 Generalization to Finite Bounded Posets and Universal
Circuits

In this section, we consider comparator circuit models over arbitrary fixed finite
bounded posets instead of the Boolean lattice on 2 elements. We then prove the
existence of universal circuits for these models. The existence of these generalized
universal comparator circuits imply that the classes characterized by comparator
circuit families over fixed finite bounded posets also have canonical complete
problems – The comparator circuit evaluation problem over the same fixed finite
bounded poset.

Definition 1 (Comparator Circuits over Fixed Finite Bounded
Posets). A comparator circuit family over a finite bounded poset P with an
accepting element a ∈ P is a family of circuits C = {Cn}n≥0 where Cn =

840 B. Komarath et al.

(W,G, f) where f : W �→ (P ∪{(i, g) : 1 ≤ i ≤ n and g : Σ �→ P}) is a compara-
tor circuit. Here W = {w1, . . . , wm} is a set of lines and G is an ordered list of
gates (wi, wj).

On input x ∈ Σn, we define the output of the comparator circuit Cn as
follows. Each line is initially assigned a value according to f as follows. We
denote the value of the line wi by val(wi). If f(w) ∈ P , then the value is the
element f(w). Otherwise f(w) = (i, g) and the initial value is given by g(xi).
A gate (wi, wj) (non-deterministically) updates the value of the line wi into
val(wi)∧ val(wj) and the value of the line wj into val(wi)∨ val(wj). The values
of lines are updated by each gate in G in order and the circuit accepts x if and
only if val(w1) = a at the end of the computation for some sequence of non-
deterministic choices.

Let Σ be any finite alphabet. A comparator circuit family C over a bounded
poset P with an accepting element a ∈ P decides L ⊆ Σ∗ if ∀x ∈ Σ∗, C|x|(x) =
a ⇐⇒ x ∈ L.

Note that we can generalize any circuit model that uses only AND and OR
gates to work over arbitrary bounded posets. We first prove that a universal com-
parator circuit exists even for comparator circuit model working over arbitrary
finite fixed posets.

Proposition 2. For any bounded poset P , there exists a universal comparator
circuit Un,m over P that when given (C, x) as input, where C is a comparator
circuit over P with n lines and m gates, simulates the computation of C. That is,
Un,m has a sequence of non-deterministic choices that outputs a ∈ P if and only
if C has such a path, for any a ∈ P . Moreover, the size of Un,m is poly(n,m).

Proof. We simply observe that the construction for a universal circuit for the
class CC in [2] generalizes to arbitrary bounded posets. The gadget shown in
Figure 2 enables/disables the gate g = (y, x) depending on the “enable” input e.
Now to simulate a single gate in the circuit C, the universal circuit uses n(n−1)
such gadgets where n is the number of lines in C. The inputs e and e for each
gadget is set according to C. The circuit C can be simulated using n(n − 1)m
gates where m is the number of gates in C. ��
Definition 2. We define the complexity class (P, a)–CC as the set of all lan-
guages accepted by comparator circuit families over the finite bounded poset P
with accepting element a ∈ P where |Cn| ≤ poly(n). If the complexity class does
not change with the accepting element, we simply write P–CC.

• •

•

•e

x

y

e

Fig. 2. Conditional Gadget

We note that for any bounded poset P
with at least 2 elements, we can simulate
a Boolean lattice by using 0 (least element)
and some a > 0 in P . Therefore, we have
CC ⊆ (P, a)–CC.

Definition 3. For any finite bounded poset P
and any a ∈ P , the comparator circuit evalu-
ation problem (P, a)–CCVP is defined as the set of all tuples (C, x) such that C

Comparator Circuits over Finite Bounded Posets 841

on input x has a sequence of non-deterministic choices where it outputs a ∈ P
where C is a comparator circuit over P .

The following proposition is a generalization of the corresponding theorem
for Boolean comparator circuits in [2]. A proof can be found in the full version
of this paper (See Prop. 4, [8]).

Proposition 3. The language (P, a)–CCVP is complete for (P, a)–CC for all
finite bounded posets P and any a ∈ P .

4 Comparator Circuits over Lattices

First, we show that comparator circuits over distributive lattices is exactly the
class CC.

Theorem 4. Let L be any finite distributive lattice and a ∈ L be an arbitrary
element. Then CC = (L, a)–CC.

Proof. By Birkhoff’s representation theorem, every finite distributive lattice of
k elements is isomorphic to a lattice where each element is some subset of [k]
(ordered by inclusion) and the join and meet operations in the original finite
distributive lattice correspond to set union and set intersection operations in
the new lattice. We will use this to simulate a circuit over an arbitrary finite
distributive lattice L of size k using a circuit over the 0–1 lattice. Each line w in
the original circuit is replaced by k lines w1, . . . , wk. The invariant maintained
is that whenever a line in the original circuit carries a ∈ L, these k lines carry
the characteristic vector of the set corresponding to the element a. Now a gate
(w, x) in the original circuit is replaced by k gates (w1, x1), . . . , (wk, xk) in the
new circuit. The correctness follows from the fact that meet and join operations
in the original circuit correspond to set union and set intersection which in turn
correspond to AND and OR operations of the characteristic vectors. ��

p 0′′ 0′◦ z

0

1′′

x

1 0′ 1′◦

0◦ 0′◦◦

1◦ w 1′ y 1′◦◦

Fig. 3. Poset for simulating P

The following lemma describes a fixed
finite lattice over which comparator circuits
capture P. In Theorem 5, we use this lemma
to show that there exists a lattice that cap-
tures P irrespective of the accepting element.
Figures 5 and 6 referred to in the following
lemma can be found in the full paper.

Lemma 1. Let L be the lattice in Figure 5.
Then P = (L, 1)–CC (Note that 1 is not the
maximum element in the lattice).

Proof. We will reduce the problem MCVP
(Monotone Circuit Value Problem: Given (C, x) where C is a Boolean circuit
where only AND and OR gates are allowed with inputs x1, x̄1, · · · xn, xn, decide

842 B. Komarath et al.

if C(x) = 1) which is complete for P to the comparator circuit value problem
over the finite lattice given in Figure 5. Let (C, x) be the input to MCVP. For
each wire in C, we add a line to our comparator circuit. The initial value of the
lines that correspond to the input wires of C are set to 0 or 1 of the poset shown
in Figure 3 according to whether they are 0 or 1 in x. The comparator circuit
simulates C in a level by level fashion maintaining the invariant that the lines
carry 0 or 1 depending on whether they carry 0 or 1 in C. We will show how
our comparator circuit simulates a level 1 OR gate of fan-out 2. The proof then
follows by an easy induction.

Since 0 ≤P 1 an AND (OR) gate in C can be simulated by a meet
(join) operation in P . The gadget shown in Figure 6 is used to implement the
fan-out operation. The idea is that the first gate in the gadget implements the
AND/OR operation and the rest of the gates in this gadget “copies” the result of
this operation into the lines o1 and o2 that correspond to the two output wires of
the gate. The reader can verify that the elements of P satisfy the following meet
and join identities. Figure 6 shows how one could use the following identities to
copy the output of a ∨ b into two lines (labelled o1 and o2).

The identity 0∨1 = 1 is used to implement the Boolean AND/OR operation.
This is used by the first gate in Figure 6. We then add a gate between the line
carrying the result of the AND/OR operation and a line with value x. As the
following identities show, this makes two “copies” of the result of the Boolean
operation. 0 ∨ x = 0′, 1 ∨ x = 1′, 0 ∧ x = 0′′, 1 ∧ x = 1′′

Now, the following identities can be used to convert the first copy (0′ or
1′) into the original value (0 or 1). 0′ ∧ y = 0′◦, 1′ ∧ y = 1′◦, 0′◦ ∨ z = 0′◦◦,
1′◦ ∨ z = 1′◦◦, 0′◦◦ ∧ w = 0, 1′◦◦ ∧ w = 1

Similarly, the following identities can be used to convert the second copy (0′′

or 1′′) into the original value (0 or 1). 0′′ ∨ p = 0◦, 1′′ ∨ p = 1◦, 0◦ ∧ w = 0,
1◦ ∧ w = 1

The lattice in Figure 5 in the full paper is simply the Dedekind-MacNeille
completion of P . Since the Dedekind-MacNeille completion preserves all existing
meets and joins, the same computation can also be performed by this lattice.

To see that for any lattice L and any a ∈ L, (L, a)–CC is in P, observe that
in poly-time we can evaluate the nth comparator circuit from the comparator
circuit family for the language in (L, a)–CC. ��

Lemma 1 shows that the complexity class captured by the comparator circuit
could change (Assuming CC �= P) depending on the underlying lattice and the
accepting element. In the following theorem, we show that if we consider any
partition lattice, say Πi embedding the lattice L in Lemma 1, then the com-
plexity class captured by comparator circuits over Πi is also P irrespective of
the accepting element from the lattice. Note that the universality of partition
lattices only implies that there exists an element in Πi such that comparator
circuits with Πi with that accepting element captures P. We crucially use the
fact that comparator circuits in Lemma 1 outputs only the elements 0 or 1 in L
to show the following theorem.

Theorem 5. There exists a constant i such that Πi–CC = P.

Comparator Circuits over Finite Bounded Posets 843

Proof. We know that there exists a finite lattice L and an a, b ∈ L such that for
any language M ∈ P there exists a comparator circuit family over L that decides
M by using a to accept and b to reject. Also b < a. By Pudlak’s theorem [6], we
know that there exists a constant i such that L can be embedded in Πi. It remains
to show that the accepting element used does not change the complexity. In fact,
we will show that for any X, Y ∈ Πi where X �= Y , we can design a comparator
circuit family over Πi that accepts M using X and rejects using Y . Let A and B
be the elements in Πi that a and b gets mapped to by this embedding (B < A).
Then there exists a circuit family C over Πi ,deciding M, that accepts using
A and rejects using B. We will construct a circuit family C ′ over Πi from C
such that C ′ uses 1 to accept and 0 to reject. Here 1 and 0 are the maximum
and minimum elements in Πi. Now if we let x be the output of a circuit in the
circuit family C, we can construct C ′ by computing GE′

A(x). Similarly, we can
construct a circuit family C ′′ that accepts using 0 and rejects using 1 by reducing
the language M to MCVP and then applying the construction in Lemma 1 and
then computing GE′

A(x) on the output of this circuit. The required circuit family
is then the one computing (X ∧ C ′) ∨ (Y ∧ C ′′). ��

If we can show that there exists a finite distributive lattice such that the
poset in Figure 3 can be embedded in that lattice while preserving all existing
meets and joins, then P = CC. In the following theorem, we show that such an
embedding is not possible. For a proof see full paper [8](Theorem 6).

Theorem 6. The poset in Figure 3 cannot be embedded into any distributive
lattice while preserving all meets and joins.

5 Comparator Circuits over Bounded Posets

In this section, we consider the most general form of comparator circuits. i.e.,
we consider comparator circuits over fixed finite bounded posets. We show that
the resulting complexity class is exactly the class NP.

Theorem 7. Let P be any poset and let a ∈ P be an arbitrary element in P ,
then (P, a)–CC ⊆ NP. Also, there exists a finite poset P and an a ∈ P such that
NP = (P, a)–CC.

Proof (Sketch). The first part follows from observing that an NTM can evaluate
a comparator circuit over any bounded poset by non-deterministically guessing
one of the minimal upper bounds and maximal lower bounds at each gate.

For the second part, we reduce SAT (A well-known NP-complete problem) to
the comparator circuit value problem over P with a as acceptor. The key idea
behind the reduction is the same as that in the proof of Theorem 5. The only
difference is we could have an input wire labelled with an xi or an xi for some
i. In this case, we cannot initialize the corresponding line with an element from
the lattice used in Theorem 5. Instead, we non-deterministically generate a 0 or
a 1 as the initial value of that line by using the fact that in a poset two elements
could have multiple minimal upper bounds. A proof can be found in the full
paper (See Theorem 7, [8]). ��

844 B. Komarath et al.

6 Skew Comparator Circuits

In this section, we study the skew comparator circuits defined in the preliminar-
ies. We show that SkewCC is exactly the class LOG. Recall that the class NLOG
can be characterized as the set of all languages computed by logspace-uniform
Boolean circuits with skewed AND gates. So the result in this section draws a
parallel between the P vs CC problem and the NLOG vs LOG problem. It follows
that SkewCC over distributive lattices also characterizes exactly LOG.

We begin by considering a canonical complete problem for the class LOG. The
language DGAP1 consists of all tuples (G, s, t) where G = (V,E) is a directed
graph where each vertex has out-degree at most one and s, t ∈ V and there is
a directed path from s to t. We use a variant of DGAP1 problem in our setting.
The variant (called DGAP1′) is that the out-degree constraint is not applied to
s. It is easy to see that DGAP1′ is also in LOG. Indeed, for each neighbour u of
s, run the DGAP1 algorithm to check whether t is reachable from u.

Theorem 8. SkewCC = LOG

Proof. (⊆) Let L ∈ SkewCC. We will prove that L ∈ LOG by reducing L to
DGAP1′. The reduction is as follows. Observe that we can reduce the language
L to SkewCCVP by a logspace reduction (Using the uniformity algorithm). Then
we reduce SkewCCVP to DGAP1′. The details of the proof can be found in the
full paper (See Theorem 8, [8]).

(⊇) Let L ∈ LOG and let B be a poly-sized layered branching program
deciding L. We will design a skew comparator circuit C to simulate B. Let s be
a state in B reading xi and let the edge labelled 1 be directed towards a state
t and let the edge labelled 0 be directed towards a state u. We design a gadget
that simulates this part of the BP B and this reduction can be implemented in
NC1. A detailed proof can be found in the full paper (See Theorem 8, [8]). ��
Since the construction in Theorem 4 preserves skewness of the circuit, we have
the following corollary.

Corollary 1. Let L be any distributive lattice and let a be any element in L,
then (L, a)–SkewCC = LOG.

We now turn to skew comparator circuits working over arbitrary fixed finite
lattices. We show that, over the partition lattice, there is a comparator circuit
family of polynomial size that captures NLOG.

Theorem 9. There exists1 a constant i such that Πi–SkewCC = NLOG

Proof. NLOG ⊆ Πi–SkewCC follows directly from the reduction in Theorem 5 and
from NLOG=co-NLOG. We also use the fact that he reduction in Theorem 5 pre-
serves the skewness of the circuit. To show that Πi–SkewCC ⊆ NLOG, we describe
an NLOG evaluation algorithm for the circuit value problem Πi–SkewCCVP.

1 Here the constant i is the same as in Theorem 5

Comparator Circuits over Finite Bounded Posets 845

This algorithm is a generalization of the NLOG evaluation algorithm for skew
(Boolean) circuits. The crucial idea in case of skew Boolean circuits is that the
evaluation algorithm can use a depth first search without storing any backtrack-
ing information. In order to verify that the output of an OR gate is 1, the
NLOG algorithm can non-deterministically guess one of the input gates and ver-
ify whether it is 1. This does not require storing any backtracking information
as the output of the OR gate is 1 even if one of the inputs is 1. This is not
true for computation over arbitrary lattices. For example, the output of an OR
gate could be 1 (Maximum element) even if both its inputs are less than 1 (This
could happen if inputs have values a and b and the lub of a and b is 1). So
verifying that the output of an OR gate is 1 requires verifying values of both its
inputs and the straightforward evaluation algorithm cannot do this in logspace.
We overcome this difficulty by using certain properties of partition lattices. A
proof can be found in the full paper (See Theorem 9, [8]). ��

7 Formulae over Lattices

It is well known that poly-size formulae capture the class NC1. We can mod-
ify Definition 1 to define formulae over finite bounded posets. We denote by
(L, a)–Formulae, where L is a lattice and a ∈ L, the class of all languages decided
by a poly-size formula family over L using a as the accepting element. In this
section, we show that poly-sized formulae over any fixed finite lattice is the class
NC1. The proof for the Boolean case is by [5] and it works by depth reducing an
arbitrary formula of poly size to a Boolean formula of poly size and log depth.
We show that a similar argument can be extended to the case of finite lattices
as well. A proof can be found in the full paper (See Theorem 10, [8]).

Theorem 10. Let L be any finite lattice and let a be an arbitrary element in
L. We have (L, a)–Formulae = NC1.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press (2009)

2. Cook, S.A., Filmus, Y., Lê, D.T.M.: The complexity of the comparator circuit value
problem. ACM Trans. Comput. Theory 6(4), 15:1–15:44 (2014)

3. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge
University Press, Cambridge (1990)

4. Mayr, E.W., Subramanian, A.: The complexity of circuit value and
network stability. J. Comput. Syst. Sci. 44(2), 302–323 (1992)

5. Spira, P.M.: On time-hardware complexity tradeoffs for boolean functions. In:
Proceedings of 4th Hawaii Symp. on System Sciences, pp. 525–527 (1971)

6. Pudlák, P., Tůma, J.: Every finite lattice can be embedded in a finite partition
lattice. algebra universalis 10(1), 74–95 (1980)

7. Subramanian, A.: The Computational Complexity of the Circuit Value and
Network Stability Problems. PhD thesis, Stanford, CA, USA (1990). AAI9102356

8. Sunil, K.S., Komarath, B., Sarma, J.: Comparator circuits over finite bounded
posets. Electronic Colloquium on Computational Complexity (ECCC) 22, 35 (2015)

Algebraic Properties of Valued Constraint
Satisfaction Problem

Marcin Kozik1 and Joanna Ochremiak2(B)

1 Jagiellonian University, Kraków, Poland
marcin.kozik@tcs.uj.edu.pl

2 University of Warsaw, Warsaw, Poland
ochremiak@mimuw.edu.pl

Abstract. The paper presents an algebraic framework for optimization
problems expressible as Valued Constraint Satisfaction Problems. Our
results generalize the algebraic framework for the decision version (CSPs)
provided by Bulatov et al. [SICOMP 2005].

We introduce the notions of weighted algebras and varieties, and
use the Galois connection due to Cohen et al. [SICOMP 2013] to link
VCSP languages to weighted algebras. We show that the difficulty of
VCSP depends only on the weighted variety generated by the associated
weighted algebra.

Paralleling the results for CSPs we exhibit a reduction to cores and
rigid cores which allows us to focus on idempotent weighted varieties.
Further, we propose an analogue of the Algebraic CSP Dichotomy Con-
jecture; prove the hardness direction and verify that it agrees with known
results for VCSPs on two-element sets [Cohen et al. 2006], finite-valued
VCSPs [Thapper and Živný 2013], and conservative VCSPs [Kolmogorov
and Živný 2013].

1 Introduction

An instance of the Constraint Satisfaction Problem (CSP) consists of vari-
ables (to be evaluated in a domain) and constraints restricting the evaluations.
The aim is to find an evaluation satisfying all the constraints or satisfying the
maximal possible number of constraints or approximating the maximal possible
number of satisfied constraints etc. depending on the version of the problem.
Further one can divide constraint satisfaction problems with respect to the size
of the domain, the allowed constraints or the shape of the instances.

A particularly interesting version of the CSP was proposed in a seminal paper
of Feder and Vardi [11]. In this version the CSP is defined by a language which
consists of relations over a finite set. An instance of such a CSP is allowed if all
the constraint relations are from this set. The goal is to determine whether an
instance has a solution satisfying all the constraints.

The first author was supported by the Polish National Science Centre (NCN) grant
2011/01/B/ST6/01006; the second author was supported by the Polish National
Science Centre (NCN) grant 2012/07/B/ST6/01497.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 846–858, 2015.
DOI: 10.1007/978-3-662-47672-7 69

Algebraic Properties of Valued Constraint Satisfaction Problem 847

Each language clearly defines a problem in NP; the whole family of problems
is interesting for another reason: it is robust enough to include some well stud-
ied computational problems, e.g. 2-colorability, 3-SAT, solving systems of linear
equations over Zp, and still is conjectured [11] not to contain problems of interme-
diate complexity. This conjecture (which holds for languages on two-element sets
by the result of Schaefer [18]) is known as the Constraint Satisfaction Dichotomy
Conjecture of Feder and Vardi. Confirming this conjecture would establish CSPs
as one of the largest natural subclasses of NP without problems of intermediate
complexity.

The conjecture always attracted a lot of attention, but the first results, even
very interesting ones, were usually very specialized (e.g. [12]). A major break-
through appeared with a series of papers establishing the algebraic approach to
CSP [3,7,14]. This deep connection with an independently developed branch of
mathematics introduced a new viewpoint and provided tools necessary to tackle
wide classes of CSP languages at once. At the heart of this approach lies a
Galois connection between languages and clones of operations called polymor-
phisms (which completely determine the complexity of the language).

Results obtained using these new methods include a full complexity clas-
sifications for CSPs on three-element sets [5] and those containing all unary
relations [4,6]. Moreover, the algebraic approach to CSP allowed to propose
a boundary between the tractable and NP-complete problems: this conjecture
is known as the Algebraic Dichotomy Conjecture. Unfortunately, despite many
efforts (e.g. [5]), both conjectures remain open.

The Valued Constraint Satisfaction Problem (VCSP) further extends the
approach proposed by Feder and Vardi. The role of constraints is played by cost
functions describing the price of choosing particular values for variables as a
part of the solution. This generalization allows to construct languages modeling
standard optimization problems, for example MAX-CUT. Moreover, by allowing
∞ as a cost of a tuple, a VCSP language can additionally model every problem
that CSP can model, as well as hybrid problems like MIN-VERTEX-COVER.
This makes the extended framework even more general (compare the survey [15]).

A number of classes of VCSPs have been thoroughly investigated. The under-
lying structure suggested capturing the properties of languages of cost functions
using an amalgamation of algebraic and numerical techniques [10,20]. The first
approach which provides a Galois correspondence (mirroring the Galois corre-
spondence for CSPs) was proposed by Cohen et al. [9]. A weighted clone defined
in this paper fully captures the complexity of a VCSP language.

The present paper builds on that correspondence imitating the line of research
for CSPs [7]. It is organized in the following way: Section 2 contains preliminaries
and basic definitions. In Section 3 we present a reduction to cores and rigid cores.
Section 4 introduces a concept of a weighted algebra and a weighted variety, and
shows that those notions are well behaved in the context of the Galois connec-
tion for VCSP. Reductions developed in Section 3 together with definitions from
Section 4 allow us to focus on idempotent varieties. Section 5 states a conjec-
ture postulating (for idempotent varieties) the division between the tractable

848 M. Kozik and J. Ochremiak

and NP-hard cases of VCSP. The conjecture is clearly a strengthening of the
Algebraic Dichotomy Conjecture [7]. Section 5 contains additionally the proof
of the hardness direction of the conjecture as well as the reasoning showing that
the conjecture agrees with complexity classifications for VCSPs on two-element
sets [10], with finite-valued cost functions [20], and with conservative cost func-
tions [16].

2 Preliminaries

2.1 The Valued Constraint Satisfaction Problem

Throughout the paper, let Q = Q ∪ {∞}. We assume that x + ∞ = ∞ and
y · ∞ = ∞ for y ≥ 0. An r-ary relation on a set D is a subset of Dr, a cost
function on D of arity r is a function from Dr to Q. We denote by ΦD the set of
all cost functions on D. A cost function which takes only finite values is called
finite-valued. A {0,∞}-valued cost function is called crisp and can be viewed as
a relation.

Definition 1. An instance of the valued constraint satisfaction problem (VCSP)
is a triple I = (V,D, C) with V a finite set of variables, D a finite domain and
C a finite multi-set of constraints. Each constraint is a pair C = (σ, �) with σ a
tuple of variables of length r and � a cost function on D of arity r.

An assignment for I is a mapping s : V → D. The cost of an assignment
s is given by CostI(s) =

∑
(σ,�)∈C �(s(σ)) (where s is applied component-wise).

To solve I is to find an assignment with a minimal cost, called an optimal
assignment.

Any set Γ ⊆ ΦD is called a valued constraint language over D, or simply a
language. If all cost functions from Γ are {0,∞}-valued or finite-valued, we call
it a crisp or finite-valued language, respectively.

By VCSP(Γ) we denote the class of all VSCP instances in which all cost func-
tions in all constraints belong to Γ . VCSP(Γcrisp), where Γcrisp is the language
consisting of all crisp cost functions on some fixed set D, is equivalent to the
classical CSP. For an instance I ∈ VCSP(Γ) we denote by OptΓ (I) the cost of
an optimal assignment. We say that a language Γ is tractable if, for every finite
subset Γ ′ ⊆ Γ , there exists an algorithm solving any instance I ∈ VCSP(Γ ′)
in polynomial time, and we say that Γ is NP-hard if VCSP(Γ ′) is NP-hard for
some finite Γ ′ ⊆ Γ .
Weighted Relational Clones. We follow the exposition of [9] and define a
closure operator on valued constraint languages that preserves tractability.

Definition 2. A cost function � is expressible over a valued constraint language
Γ ⊆ ΦD if there exists an instance I� ∈ VCSP(Γ) and a list (v1, . . . , vr) of
variables of I�, such that

�(x1, . . . , xr) = min
{s : V →D | s(vi)=xi}

CostI�
(s).

Algebraic Properties of Valued Constraint Satisfaction Problem 849

Note that the list of variables (v1, . . . , vr) in the definition above might con-
tain repeated entries. Hence, it is possible that there are no assignments s such
that s(vi) = xi for all i. We define the minimum over the empty set to be ∞.

Definition 3. A set Γ ⊆ ΦD is a weighted relational clone if it is closed under
expressibility, scaling by non-negative rational constants, and addition of rational
constants. We define wRelClo(Γ) to be the smallest weighted relational clone
containing Γ .

If �(x1, . . . , xr) = �1(y1, . . . , ys)+�2(z1, . . . , zt) for some fixed choice of argu-
ments y1, . . . , ys, z1, . . . , zt from amongst x1, . . . , xr then the cost function � is
said to be obtained by addition from the cost functions �1 and �2. It is easy to
see that a weighted relational clone is closed under addition, and minimisation
over arbitrary arguments.

The following result shows that we can restrict our attention to languages
which are weighted relational clones.

Theorem 4 (Cohen et al. [9]). A valued constraint language Γ is tractable if
and only if wRelClo(Γ) is tractable, and it is NP-hard if and only if wRelClo(Γ)
is NP-hard.

Weighted Polymorphisms. A k-ary operation on D is a function f : Dk → D.
We denote by OD the set of all finitary operations on D and by O(k)

D the set of all
k-ary operations on D. The k-ary projections, defined for all i ∈ {1, . . . , k}, are
the operations π

(k)
i such that π

(k)
i (x1, . . . , xk) = xi. Let f ∈ O(k)

D and g1, . . . , gk ∈
O(l)

D . The l-ary operation f [g1, . . . , gk] defined by f [g1, . . . , gk](x1, . . . , xl) =
f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl)) is called the superposition of f and g1, . . . , gk.

A set C ⊆ OD is a clone of operations (or simply a clone) if it contains all
projections on D and is closed under superposition. The set of k-ary operations
in a clone C is denoted C(k). The smallest possible clone of operations over a
fixed set D is the set of all projections on D, which we denote ΠD.

Following [9] we define a k-ary weighting of a clone C to be a function
ω : C(k) → Q such that

∑
f∈C(k) ω(f) = 0, and if ω(f) < 0 then f is a pro-

jection. The set of operations to which a weighting ω assigns positive weights is
called the support of ω and denoted supp(ω).

A new weighting of the same clone can be obtained by scaling a weighting
by a non-negative rational, adding two weightings of the same arity and by the
following operation called superposition.

Definition 5. Let ω be a k-ary weighting of a clone C and let g1, . . . , gk ∈
C(l). A superposition of ω and g1, . . . , gk is a function ω[g1, . . . , gk] : C(l) → Q

defined by
ω[g1, . . . , gk](f ′) =

∑

{f∈C(k) | f [g1,...,gk]=f ′}
ω(f).

The sum of weights that any superposition ω[g1, . . . , gk] assigns to the opera-
tions in C(l) is equal to zero, however, it may happen that a superposition assigns

850 M. Kozik and J. Ochremiak

a negative value to an operation that is not a projection. A superposition is said
to be proper if the result is a valid weighting.

A non-empty set of weightings over a fixed clone C is called a weighted clone
if it is closed under non-negative scaling, addition of weightings of equal arity
and proper superposition with operations from C. For any clone of operations C,
the set of all weightings over C and the set of all zero-valued weightings of C
are weighted clones.

We say that an r-ary relation R on D is compatible with an operation
f : Dk → D if, for any list of r-tuples x1, . . . ,xk ∈ R we have f(x1, . . . ,xk) ∈ R
(where f is applied coordinate-wise). Let � : Dr → Q be a cost function. We
define Feas(�) = {x ∈ Dr | �(x) is finite} to be the feasibility relation of �.
We call an operation f : Dk → D a polymorphism of � if the relation Feas(�)
is compatible with it. For a valued constraint language Γ we denote by Pol(Γ)
the set of operations which are polymorphisms of all cost functions � ∈ Γ . It is
easy to verify that Pol(Γ) is a clone. The set of m-ary operations in Pol(Γ) is
denoted Polm(Γ).

For crisp cost functions (relations) this notion of polymorphism corresponds
precisely to the standard notion of polymorphism which has played a crucial role
in the complexity analysis for the CSP [3,14].

Definition 6. Take � to be a cost function of arity r on D, and let C ⊆ Pol({�})
be a clone of operations. A weighting ω : C(k) → Q is called a weighted poly-
morphism of � if, for any list of r-tuples x1, . . . ,xk ∈ Feas(�), we have

∑

f∈C(k)

ω(f) · �(f(x1, . . . ,xk)) ≤ 0.

For a valued constraint language Γ we denote by wPol(Γ) the set of those
weightings of the clone Pol(Γ) that are weighted polymorphisms of all cost func-
tions � ∈ Γ . The set of weightings wPol(Γ) is a weighted clone [9].

An operation f is idempotent if f(x, ..., x) = x. A weighted polymorphism is
called idempotent if all operations in its support are idempotent. An operation
f ∈ O(k)

D is cyclic if for every x1, . . . , xk ∈ D we have that f(x1, x2, . . . , xk) =
f(x2, . . . , xk, x1). A weighted polymorphism is called cyclic if its support is non-
empty and contains cyclic operations only.

A cost function � is said to be improved by a weighting ω if ω is a weighted
polymorphism of �. For any set W of weightings over a fixed clone C ⊆ OD

we denote by Imp(W) the set of cost functions on D which are improved by all
weightings ω ∈ W .

By the result of Cohen et al. [9] for any finite valued constraint language Γ ,
we have Imp(wPol(Γ)) = wRelClo(Γ). This fact, together with Theorem 4,
implies that tractable valued constraint languages can be characterized by their
weighted polymorphisms.

Algebraic Properties of Valued Constraint Satisfaction Problem 851

2.2 Algebras and Varieties

An algebraic signature is a set of function symbols together with (finite) arities.
An algebra A over a fixed signature Σ, has a universe A, and a set of basic
operations that correspond to the symbols in the signature, i.e., if the signature
contains a k-ary symbol f then the algebra has a basic operation fA, which is
a function fA : Ak → A.

A subset B of the universe of an algebra A is a subuniverse of A if it is
closed under all operations of A. An algebra B is a subalgebra of A if B is a
subuniverse of A and the operations of B are restrictions of all the operations
of A to B. Let (Ai)i∈I be a family of algebras (over the same signature). Their
product Πi∈IAi is an algebra with the universe equal to the cartesian product
of the Ai’s and operations computed coordinate-wise. For two algebras A and B
(over the same signature), a homomorphism from A to B is a function h : A → B
that preserves all operations. It is easy to see, that an image of an algebra under
a homomorphism h : A → B is a subalgebra of B.

Let K be a class of algebras over a fixed signature Σ. We denote by S(K)
the class of all subalgebras of algebras in K, by P(K) the class of all products of
algebras in K, by Pfin(K) the class of all finite products, and by H(K) the class
of all homomorphic images of algebras in K. If K = {A} we write S(A), P(A),
and H(A) instead of S({A}), P({A}), and H({A}), respectively.

A variety V(K) is the smallest class of algebras closed under all three oper-
ations. For an algebra A the variety V({A}) (denoted V(A)) is the variety
generated by A, and Vfin(A) is the class of finite algebras in V(A). Due to a
result of Tarski [19] we know that for any finite algebra A, we have

V(A) = HSP(A) and Vfin(A) = HSPfin(A).

We say that an equivalence relation ∼ on A is a congruence of A if it is a
subalgebra of A2. Every congruence ∼ of A determines a quotient algebra A/∼.

A term t in a signature Σ is a formal expression built from variables and
symbols in Σ that syntactically describes the composition of basic operations.
For an algebra A over Σ a term operation tA is an operation obtained by com-
posing the basic operations of A according to t. Let s and t be a pair of terms
in a signature Σ. We say that A satisfies the identity s ≈ t if the term opera-
tions sA and tA are equal. We say that a class of algebras V over Σ satisfies the
identity s ≈ t if every algebra in V does.

It follows from Birkhoff’s theorem [2] that the variety V(A) is the class of
algebras that satisfy all the identities satisfied by A. An algebra A is finitely
generated if there exists a finite subset F of its domain such that the only
subalgebra of A containing F is A. If A is finite then V(A) is locally finite, i.e.,
every finitely generated algebra in V(A) is finite.

3 Core Valued Constraint Languages

For each valued constraint language Γ there is an associated algebra. It has uni-
verse D and the set of operations Pol(Γ). If all operations of any given algebra

852 M. Kozik and J. Ochremiak

satisfy the identity f(x, . . . , x) ≈ x (i.e. are idempotent) then we call the algebra
idempotent. In this section we prove that every valued constraint language which
is finite has a computationally equivalent valued constraint language whose asso-
ciated algebra is idempotent.
Positive Clone. Those polymorphisms of a given language Γ which are assigned
a positive weight by some weighted polymorphisms ω ∈ wPol(Γ) are of special
interest in the rest of the paper. We begin this section by proving that they form
a clone.

Let C be a weighted clone over a set D. The following proposition shows that
the set

⋃
ω∈C supp(ω), together with the set of projections ΠD, is a clone. We

call it the positive clone of C and denote by C+ (if C is wPol(Γ) then C+ is
denoted by Pol+(Γ)).

Proposition 7. If C is a weighted clone then C+ is a clone.

Cores. Let Γ be a valued constraint language with a domain D. For S ⊆ D
we denote by Γ [S] the valued constraint language defined on a domain S and
containing the restriction of every cost function � ∈ Γ to S.

By generalizing the arguments for finite-valued languages given in [13,20],
we show that Γ has a computationally equivalent valued constraint language Γ ′

such that Pol+1 (Γ ′) contains only bijective operations. Such a language is called
a core. Moreover, Γ ′ can be chosen to be equal to Γ [S] for some S ⊆ D.

Proposition 8. For every valued constraint language Γ there exists a core lan-
guage Γ ′, such that the valued constraint language Γ is tractable if and only if
Γ ′ is tractable, and it is NP-hard if and only if Γ ′ is NP-hard.

For core languages we characterize the set of unary weighted polymorphisms
as consisting of all weightings that assign positive weights only to bijective oper-
ations preserving all cost functions.

The proposition below witnesses the importance of the positive clone and
is used to prove further results in the subsequent sections. Let Γ be a valued
constraint language over a domain D which is finite and a core. For each arity
m we fix an enumeration of all the elements of Dm. This allows us to treat every
m-ary operation f ∈ O(m)

D as a |Dm|-tuple. We define a |Dm|-ary cost function
in wRelClo(Γ) that precisely distinguishes the m-ary operations in the positive
clone from all the other m-ary polymorphisms.

Proposition 9. Let Γ be a valued constraint language over a domain D which
is finite and a core. For every m there exists a cost function � : O(m)

D → Q

in wRelClo(Γ), and a rational number P , such that for every f ∈ O(m)
D the

following conditions are satisfied:

1. �(f) ≥ P ,
2. �(f) < ∞ if and only if f ∈ Pol(Γ),
3. �(f) = P if and only if f ∈ Pol+(Γ).

Algebraic Properties of Valued Constraint Satisfaction Problem 853

Rigid Cores. We further reduce the class of languages that we need to con-
sider. Let Γ be a valued constraint language over an n-element domain D =
{d1, . . . , dn} which is finite and a core. For each i ∈ {1, . . . , n}, let

Ni(x) =

{
0 if x = di,

∞ otherwise,

and let Γc denote the valued constraint language obtained from Γ by adding
all cost functions Ni. Observe that Pol(Γc) = IdPol(Γ), where by IdPol(Γ) we
denote the set of idempotent polymorphisms of the language Γ . Hence, the only
unary polymorphism of Γc is the identity, which also means that there is only one
unary weighted polymorphism of Γc – the zero-valued weighted polymorphism.

A valued constraint language Γ is a rigid core if there is exactly one unary
polymorphism of Γ , which is the identity. This notion corresponds to the clas-
sical notion of a rigid core considered in CSP [7]. The following proposition,
together with Proposition 8, implies that for each finite language Γ , there is a
computationally equivalent language that is a rigid core.

Proposition 10. Let Γ be a valued constraint language which is finite and a
core. The valued constraint language Γc is a rigid core. Moreover, Γ is tractable
if and only if Γc is tractable, and Γ is NP-hard if and only if Γc is NP-hard.

If Γ is a core language then the positive clone of Γc contains precisely the
idempotent operations from the positive clone of Γ .

4 Weighted Varieties

One of the fundamental results of the algebraic approach to CSP [3,7,17] says
that the complexity of a crisp language Γ depends only on the variety generated
by the algebra (D,Pol(Γ)). We generalize this fact to VCSP.

A k-ary weighting ω of an algebra A is a function that assigns rational weights
to all k-ary term operations of A in such a way, that the sum of all weights is 0,
and if ω(f) < 0 then f is a projection. A (proper) superposition ω[g1, . . . , gk] of
a weighting ω with a list of l-ary term operations g1, . . . , gk from A is defined
the same way as for clones (see Definition 5). An algebra A together with a set
of weightings closed under non-negative scaling, addition of weightings of equal
arity and proper superposition with term operations from A is called a weighted
algebra.

For a variety V over a signature Σ and a term t we denote by [t]V the
equivalence class of t under the relation ≈V such that t ≈V s if and only if the
variety V satisfies the identity t ≈ s (we skip the subscript, writing [t] instead of
[t]V , whenever the variety is clear from the context). Observe that if the variety
is locally finite then there are finitely many equivalence classes of terms of a
fixed arity [8].

854 M. Kozik and J. Ochremiak

Definition 11. Let V be a locally finite variety over a signature Σ. A k-ary
weighting ω of V is a function that assigns rational weights to all equivalence
classes of k-ary terms over Σ in such a way, that the sum of all weights is 0,
and if ω([t]) < 0 then V satisfies the identity t(x1, . . . , xk) ≈ xi for some i ∈
{1, . . . , k}. The variety V together with a nonempty set of weightings is called a
weighted variety.

Take any finite algebra B ∈ V. A k-ary weighting ω of V induces a weighting
ωB of B in a natural way:

ωB(f) =
∑

{[t] | tB=f}
ω([t]).

If ω([t]) < 0 then the term operation tB is a projection, and hence the weighting
ωB is proper. For a weighted variety V, by B ∈ V we mean the algebra B
together with the set of weightings induced by V.

For every weighting ω of a finite weighted algebra A there is a corresponding
weighting ω of the variety V(A) defined by ω([t]) = ω(tA). It follows from
Birkhoff’s theorem that it is well defined. A weighted variety V(A) generated
by a weighted algebra A is the variety V(A) together with the set of weightings
corresponding to the weightings of A.

We prove that every finite algebra B ∈ V(A) together with the set of weight-
ings induced by V(A) is a weighted algebra. The only non-trivial part is to show
that B is closed under proper superpositions.

Proposition 12. For a finite weighted algebra A over a fixed signature Σ and a
finite algebra B ∈ V(A) let ωB be a k-ary weighting of B induced by the weighted
variety V(A). If for some list fB

1 , . . . , fB
k of l-ary term operations from B the

composition ωB[fB
1 , . . . , fB

k] is proper then it is induced by some valid weighting
of V(A).

For a finite weighted algebra A let Imp(A) denote the set of those cost
functions on A that are improved by all weightings of A. We prove that for each
finite weighted algebra B ∈ V(A) the valued constraint language Imp(B) is not
harder then Imp(A) i.e.:

Lemma 13. Let A be a finite weighted algebra and let

B ∈ Pfin(A) or B ∈ S(A) or B ∈ H(A) or finally B ∈ V(A)

then a VCSP defined by any finite subset of Imp(B) reduces in polynomial-time
to a VCSP for some finite subset of Imp(A).

Therefore the complexity of Γ depends only on the weighted variety gener-
ated by the weighted algebra (D,wPol(Γ)).

Algebraic Properties of Valued Constraint Satisfaction Problem 855

5 Dichotomy Conjecture

An operation t of arity k is called a Taylor operation of an algebra (or a variety),
if t is idempotent and for every j ≤ k it satisfies an identity of the form

t(�1,�2, . . . ,�k) ≈ t(�1,�2, . . . ,�k),

where all �is and �is are substituted with either x or y, but �j is x whenever
�j is y. In this section we prove the following theorem:

Theorem 14. Let Γ be a finite core valued constraint language. If Pol+(Γ) does
not have a Taylor operation, then Γ is NP-hard.

We conjecture1 that these are the only cases of finite core languages which
give rise to NP-hard VCSPs.

Conjecture. Let Γ be a finite core valued constraint language. If Pol+(Γ) does
not have a Taylor operation, then Γ is NP-hard. Otherwise it is tractable.

For crisp languages Pol+(Γ) = Pol(Γ). Therefore Theorem 14 generalizes the
well-known result of Bulatov, Jeavons and Krokhin [3,7] concerning crisp core
languages. Similarly the above conjecture is a generalization of The Algebraic
Dichotomy Conjecture for CSP. Later on we show that it is supported by all
known partial results on the complexity of VCSPs.

To prove Theorem 14 we use Proposition 9 and argue that any relation com-
patible with Pol+(Γ) can be found as a set of tuples with minimal costs for some
cost function improved by wPol(Γ). It is easy to notice that if Pol+(Γ) does not
have a Taylor operation, then such a relation with NP-complete CSP can be
constructed.

As the Taylor operation is difficult to work with, in the reminder of the
section we use a characterization of Taylor algebras as the algebras possessing
a cyclic term. If Γ is a finite core constraint language then (D, IdPol+(Γ)) is a
finite idempotent algebra. It follows that IdPol+(Γ), and hence also Pol+(Γ),
has a Taylor operation if and only if it has an idempotent cyclic operation [1].

5.1 Two-Element Domain

A complete complexity classification for valued constraint languages over a two-
element domain was established in [10]. All tractable languages have been defined
via multimorphisms, which are a more restricted form of weighted polymor-
phisms. A k-ary multimorphism of a language Γ , specified as a k-tuple 〈f1, . . . , fk〉
of k-ary operations on D, is a k-ary weighted polymorphism ω of Γ such that
for each i ∈ {1, . . . , k}, we have that ω(πi) = − 1

k , and ω(fi) = l
k , where l is the

number of times the operation fi appears in the tuple.
1 The conjecture was suggested in a conversation by Libor Barto, however it might

have appeared independently earlier.

856 M. Kozik and J. Ochremiak

An operation f ∈ O(3)
D is called a majority operation if for every x, y ∈ D

we have that f(x, x, y) = f(x, y, x) = f(y, x, x) = x. Similarly, an operation f ∈
O(3)

D is called a minority operation if for every x, y ∈ D it satisfies f(x, x, y) =
f(x, y, x) = f(y, x, x) = y. We show the following proposition:

Proposition 15. Let Γ be a finite core valued constraint language on D = {0, 1}.
Then Pol+(Γ) has an idempotent cyclic operation if and only if Γ admits at least
one of the following six multimorphisms: 〈min,min〉, 〈max,max〉, 〈min,max〉,
〈Mjrty,Mjrty,Mjrty〉, 〈Mnrty,Mnrty,Mnrty〉, 〈Mjrty,Mjrty,Mnrty〉.

The proposition fully agrees with the classification of VCSP languages on
two-element domain in [10].

5.2 Finite-Valued Languages

Theorem 16 (Thapper and Živný [20]). Let Γ be a finite-valued constraint
language which is a core. If Γ admits an idempotent cyclic weighted polymor-
phism of some arity m > 1, then Γ is tractable. Otherwise it is NP-hard.

To show that our conjecture agrees with the above complexity classification
we prove the following result (which holds for general-valued languages):

Proposition 17. Let Γ be a core valued constraint language. Then Γ admits
an idempotent cyclic weighted polymorphism of some arity m > 1 if and only if
Pol+(Γ) contains an idempotent cyclic operation of the same arity.

5.3 Conservative Languages

A valued constraint language Γ over a domain D is called conservative if it con-
tains all {0, 1}-valued unary cost functions on D. An operation f ∈ O(k)

D is con-
servative if for every x1, . . . , xk ∈ D we have that f(x1, . . . , xk) ∈ {x1, . . . , xk},
and a weighted polymorphism is conservative if its support contains conservative
operations only.

A Symmetric Tournament Pair (STP) is a conservative binary multimor-
phism 〈�,�〉, where both operations are commutative, i.e., �(x, y) = �(y, x)
and �(x, y) = �(y, x) for all x, y ∈ D, and moreover �(x, y) �= �(x, y) for all
x �= y. A MJN is a ternary conservative multimorphism 〈Mj1,Mj2,Mn3〉, such
that Mj1,Mj2 are majority operations, and Mn3 is a minority operation.

Theorem 18 (Kolmogorov and Živný [16]). Let Γ be a conservative con-
straint language over a domain D. If Γ admits a conservative binary multimor-
phism 〈�,�〉 and a conservative ternary multimorphism 〈Mj1,Mj2,Mn3〉, and
there is a family M of two-element subsets of D, such that:

– for every {x, y} ∈ M , 〈�,�〉 restricted to {x, y} is an STP,
– for every {x, y} �∈ M , 〈Mj1,Mj2,Mn3〉 restricted to {x, y} is an MJN,

then Γ is tractable. Otherwise it is NP-hard.

Algebraic Properties of Valued Constraint Satisfaction Problem 857

In this case, as well as in the others, it can be shown that the existence of an
idempotent cyclic polymorphism in Pol+(Γ) is equivalent (for conservative Γ)
to the tractability conditions from the theorem above.

Acknowledgments. We are grateful to Libor Barto and Jakub Bulin for inspiring
discussions on VCSP.

References

1. Barto, L., Kozik, M.: Absorbing subalgebras, cyclic terms, and the constraint
satisfaction problem. Logical Methods in Computer Science 8(1) (2012)

2. Birkhoff, G.: On the structure of abstract algebras. Proceedings of the Cambridge
Philosophical Society 31, 433–454 (1935)

3. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34, 720–742 (2005)

4. Bulatov, A.A.: Tractable conservative constraint satisfaction problems. In: Proc.
of the 18th Symposium on Logic in Computer Science, p. 321 (2003)

5. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a
3-element set. J. ACM 53(1), 66–120 (2006)

6. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Logic 12(4), 24:1–24:66 (2011)

7. Bulatov, A.A., Krokhin, A.A., Jeavons, P.G.: Constraint satisfaction problems and
finite algebras. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000.
LNCS, vol. 1853, pp. 272–282. Springer, Heidelberg (2000)

8. Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate texts in
mathematics. Springer (1981)

9. Cohen, D.A., Cooper, M.C., Creed, P., Jeavons, P.G., Živný, S.: An alge-
braic theory of complexity for discrete optimization. SIAM J. Comput. 42(5),
1915–1939 (2013)

10. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The complexity of soft
constraint satisfaction. Artif. Intell. 170(11), 983–1016 (2006)

11. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1999)

12. Hell, P., Nešetřil, J.: On the complexity of h-coloring. Journal of Combinatorial
Theory, Series B 48(1), 92–110 (1990)

13. Huber, A., Krokhin, A., Powell, R.: Skew bisubmodularity and valued CSPs. In:
Proc. SODA 2013, pp. 1296–1305. SIAM (2013)

14. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. ACM
44(4), 527–548 (1997)

15. Jeavons, P., Krokhin, A., Živný, S.: The complexity of valued constraint satisfac-
tion. Bulletin of the EATCS 113, 21–55 (2014)

16. Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs. J. ACM
60(2), 10:1–10:38 (2013)

17. Larose, B., Tesson, P.: Universal algebra and hardness results for constraint
satisfaction problems. Theor. Comput. Sci. 410, 1629–1647 (2009)

858 M. Kozik and J. Ochremiak

18. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. of the 10th ACM
Symp. on Theory of Computing, STOC 1978, pp. 216–226 (1978)

19. Tarski, A.: A remark on functionally free algebras. Annals of Mathematics 47(1),
163–166 (1946)

20. Thapper, J., Živný, S.: The complexity of finite-valued CSPs. In: Proc. of the 45th
ACM Symp. on Theory of Computing, STOC 2013, pp. 695–704 (2013)

Towards Understanding the Smoothed
Approximation Ratio of the 2-Opt Heuristic

Marvin Künnemann1(B) and Bodo Manthey2

1 Saarbrücken Graduate School of Computer Science,
Max Planck Institute for Informatics, Saarbrücken, Germany

marvin@mpi-inf.mpg.de
2 University of Twente, Enschede, The Netherlands

b.manthey@utwente.nl

Abstract. The 2-Opt heuristic is a very simple, easy-to-implement local
search heuristic for the traveling salesman problem. While it usually
provides good approximations to the optimal tour in experiments, its
worst-case performance is poor.

In an attempt to explain the approximation performance of 2-Opt, we
analyze the smoothed approximation ratio of 2-Opt. We obtain a bound
of O(log(1/σ)) for the smoothed approximation ratio of 2-Opt. As a lower
bound, we prove that the worst-case lower bound of Ω(logn

log logn
) for the

approximation ratio holds for σ = O(1/
√

n).
Our main technical novelty is that, different from existing smoothed

analyses, we do not separately analyze objective values of the global and
the local optimum on all inputs, but simultaneously bound them on the
same input.

1 2-Opt and Smoothed Analysis

The traveling salesman problem (TSP) is one of the best-studied combinatorial
optimization problems. Euclidean TSP is the following variant: given points
X ⊆ [0, 1]d, find the shortest Hamiltonian cycle that visits all points in X (also
called a tour). Even this restricted variant is NP-hard for d ≥ 2 [17].

While Euclidean TSP admits a polynomial-time approximation scheme [1,
16], heuristics that are simpler and easier to implement are often used in practice.
A very simple and popular heuristic for finding near-optimal tours quickly is the
2-Opt heuristic: starting from an initial tour, we iteratively replace two edges by
two other edges to obtain a shorter tour until we have found a local optimum.
Experiments indicate that 2-Opt converges to near-optimal solutions quickly and
produces solutions that are within a few percent of the optimal solution [10,11].
In contrast to its success on practical instances, 2-Opt performs poorly in the
worst case: the worst-case running-time is exponential even for d = 2 [8] and its
worst-case approximation ratio of O(log n) has an almost matching lower bound
of Ω(log n/ log log n) for Euclidean instances [6].

In order to explain the performance of algorithms whose worst-case perfor-
mance guarantee does not reflect the observed performance, smoothed analysis
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 859–871, 2015.
DOI: 10.1007/978-3-662-47672-7 70

860 M. Künnemann and B. Manthey

has been introduced [19], which is a hybrid of worst-case analysis (which is
often too pessimistic) and average-case analysis (which is often dominated by
completely random instances that have special properties not shared by typ-
ical instances). In smoothed analysis, an adversary specifies an instance, and
then this instance is slightly randomly perturbed. The smoothed performance is
the expected performance, where the expected value is taken over the random
perturbation. The motivating assumption of smoothed analysis is that practi-
cal instances are often subjected to a small amount of random noise that can,
e.g., come from measurement errors or numerical imprecision. Smoothed analysis
often allows more realistic conclusions about the performance of an algorithm
than mere worst-case or average-case analysis.

Smoothed analysis has been applied successfully to explain the running time
of the 2-Opt heuristic [8,15] as well as other local search algorithms [2,3,14]. We
refer to two surveys for an overview of smoothed analysis [13,20].

Much less is known about the smoothed approximation performance of algo-
rithms. Karger and Onak have shown that multi-dimensional bin packing can
be approximated arbitrarily well for smoothed instances [12] and there are
frameworks to approximate Euclidean optimization problems such as TSP for
smoothed instances [4,7]. However, these approaches mostly consider algorithms
tailored to solving smoothed instances.

With respect to concrete algorithms, we are only aware of analyses of
the jump and lex-jump heuristics for scheduling [5,9] and an upper bound of
O(φ1/d) for the smoothed approximation ratio of 2-Opt in the so-called one-step
model [8]. Here, φ is an upper bound on the density functions according to which
the points are drawn. Translated to Gaussian perturbation, we would obtain an
upper bound of O(1/σ) if we truncate the Gaussian distribution such that all
points lie in a hypercube of constant sidelength.

In order to explain the practical approximation performance of 2-Opt, we
provide an improved smoothed analysis of its approximation ratio. More pre-
cisely, we provide bounds on the quality of the worst local optimum, when the n
data points from [0, 1]d are perturbed by Gaussian distributions of standard devi-
ation σ. Our bound of O(log(1/σ)) improves significantly upon the direct trans-
lation of the bound of Englert et al. [8] to Gaussian perturbations (see Section 3
for how to translate the bound to Gaussian perturbations). It smoothly interpo-
lates between the average-case constant approximation ratio and the worst-case
bound of O(log n).

In order to obtain our improved bound for the smoothed approximation ratio,
we take into account the origins of the points, i.e., their unperturbed positions.
Although this information is not available to the algorithm, it can be exploited in
the analysis. The smoothed analyses of approximation ratios so far [4,5,7–9,12]
essentially ignored this information. While this simplifies the analysis, being
oblivious to the unperturbed positions seems to be too pessimistic. In fact, we
see that the bound of Englert et al. [8] cannot be improved beyond O(1/σ) by
ignoring the positions of the points (Section 3). The reason for this limitation
is that the lower bound for the global optimum is obtained if all points have

Towards Understanding the Smoothed Approximation Ratio 861

the same origin, which corresponds to an average-case rather than a smoothed
analysis. On the other hand, the upper bound for the local optimum has to
hold for all choices of the unperturbed points, most of which yield higher costs
for the global optimum than the average-case analysis. Taking this into account
carefully yields our bound of O(log(1/σ)) (Section 4).

To complement our upper bound, we show that the lower bound by Chandra
et al. [6] remains true for σ = O(1/

√
n) (Section 5). We conclude our paper by

discussing our results and pointing out open questions (Section 6). Due to lack
of space some proofs had to be omitted, which we defer to a full version of this
article.

2 Preliminaries

Throughout the paper, we consider input in the Euclidean space [0, 1]d and
assume the dimension d to be a fixed constant. Given a sequence of points
X = (X1, . . . , Xn) in R

d, we call a collection T ⊆ [n] × [n] of edges a tour, if T
is connected and every i ∈ [n] = {1, . . . , n} has in- and outdegree exactly one
in T . (Note that we consider directed tours, which is useful in the analysis, but
our distances are always symmetric.) Given any collection of edges S, its length
is denoted by L(S) =

∑
(u,v)∈S d(u, v), where d(u, v) denotes the Euclidean

distance between points Xu and Xv. We call a tour T 2-optimal, if d(u, v) +
d(w, z) ≤ d(u,w) + d(v, z) for all edge pairs (u, v), (w, z) ∈ T . Equivalently, it is
not possible to obtain a shorter tour by replacing (u, v) and (w, z) in a 2-optimal
tour T by two new edges. The 2-Opt heuristic replaces a pair of edges (u, v) and
(w, z) by (u,w) and (v, z) if this decreases the tour length while this is possible.
Thus, it terminates with a 2-optimal tour.

We call a collection T ⊆ [n]2 a partial 2-optimal tour if T is a subset of a tour
and d(u, v)+d(w, z) ≤ d(u,w)+d(v, z) for all edges (u, v), (w, z) ∈ T . Our main
interests are the traveling salesman functional TSP(X) := mintour T L(T) and
the following functional mapping the point set X to the length of the longest
2-optimal tour through X: 2OPT(X) := max2-optimal tour T L(T).

We note that the results in Section 3 hold for metrics induced by arbitrary
norms in R

d (Lemma 2 and 3) or typical �p norms (Lemma 4 and 5), not only
for the Euclidean metric. We conjecture that also the upper bound in Section 4
holds for more general metrics, while the lower bound in Section 5 is probably
specific for the Euclidean metric. Still, we think that the construction can be
adapted to work for most natural metrics.

Perturbation models. In the Gaussian perturbation model (also called two-step
model) for smoothed analysis, an adversary specifies points x1, . . . , xn in [0, 1]d

that serve as unperturbed origins. Each such point xi is perturbed indepen-
dently by adding a normally distributed random variable of mean 0 and standard
deviation σ independently to each coordinate. Equivalently, we draw n random
noise vectors Zi ∼ N (0, σ2), where by abuse of notation N (0, σ2) refers to the
multivariate normal distribution with covariance matrix diag(σ2), to obtain the

862 M. Künnemann and B. Manthey

perturbed input X1 = x1 + Z1, . . . , Xn = xn + Zn. For compactness, we denote
the set of unperturbed points by X = {x1, . . . , xn} and the set of perturbed
points by X = {X1, . . . , Xn}. We write X ← pertσ(X) to make explicit from
which point set X the points in X are obtained.

Note that we may assume σ ≤ 1 without loss of generality. If σ > 1, we
can rescale the instance to be contained in [0, 1/σ]d and perturb the points by
Gaussians with standard deviation 1 instead, which gives an equivalent instance.
Thus, every upper bound for σ = 1 carries over to larger values of σ.

The φ-bounded perturbation model (also called one-step model) lets the
adversary directly specify (not necessarily identical) distributions by choosing
probability density functions f1, . . . , fn : [0, 1]d → [0, φ]. The perturbed input is
then generated by independently sampling X1 ∼ f1, . . . , Xn ∼ fn. Note that the
resulting input is always contained in [0, 1]d and with higher φ, the adversary can
concentrate points to smaller regions of the input space. Roughly speaking, when
translating Gaussian perturbations to the one-step model, φ is proportional to
σ−d for fixed d.

The following technical lemma provides a convenient way to bound the devi-
ation of a perturbed point from its mean in the two-step model.

Lemma 1 (Chi-square bound [19, Cor. 2.19]). Let x be a Gaussian random
vector in R

d of standard deviation σ centered at the origin. Then, for t ≥ 3, we
have Pr

[‖x‖ ≥ σ3
√

d ln t
] ≤ t−2.9d.

3 Length of 2-optimal Tours Under Perturbations

In this section, we provide an upper bound for the length of any 2-optimal tour
and a lower bound for the length of any global optimum. These two results yield
an upper bound of O(1/σ) for the approximation ratio.

Chandra et al. [6] proved a bound on the worst-case length of 2-optimal tours
that, in fact, already holds for the more general notion of partial 2-optimal tours.
For an intuition why this is true, let us point out that their proof strategy is to
argue that not too many long arcs in a tour may have similar directions due to
the 2-optimality of the edges, while short edges do not contribute much to the
length. The claim then follows from a packing argument. It can be verified that
it is never required that the collection of edges is closed or connected.

Lemma 2. Let d ≥ 2. There exists a constant cd such that for every sequence X
of n points in [0, 1]d, any partial 2-optimal tour has length less than cd · n1−1/d.

While this bound directly applies to any perturbed instance under the
one-step model, Gaussian perturbations fail to satisfy the premise of bounded
support in [0, 1]d. However, Gaussian tails are sufficiently light to enable us to
translate the result to the two-step model by carefully taking care of outliers.

Lemma 3. Let d ≥ 2. There exists a constant bd such that for any σ ≤ 1 the
following statement holds. The probability that any partial 2-optimal tour on X

Towards Understanding the Smoothed Approximation Ratio 863

has length greater than bd · n1−1/d, i.e., 2OPT(X) ≥ bd · n1−1/d, is bounded by
exp(−Ω(

√
n)). Furthermore,

EX←pertσ(X)

[
2OPT(X)

] ≤ bd · n1−1/d.

We complement the bound above by a lower bound on tour lengths of per-
turbed inputs, making use of the following result by Englert et al. [8] for the
one-step model.

Lemma 4. Let X1, . . . , Xn be a φ-perturbed instance. Then with probability 1−
exp(−Ω(n)), any tour on X1, . . . , Xn has length at least Ω(n1−1/d/ d

√
φ).

It also follows from their results that this bound translates to the two-step
model consistently with the intuitive correspondence of φ ∼ σ−d between the
one-step and the two-step model.

Lemma 5. Let X1, . . . , Xn be an instance of points in the unit cube perturbed
by Gaussians of standard deviation σ ≤ 1. Then with probability 1−exp(−Ω(n))
any tour on X1, . . . , Xn has length at least Ω(σn1−1/d).

Note that Lemmas 3 and 5 almost immediately yield the following bound on
the approximation performance for the two-step model.1

Observation 1. Let X1, . . . , Xn be an instance of points in the unit cube per-
turbed by Gaussians of standard deviation σ ≤ 1. Then the approximation per-
formance of 2-Opt is bounded by O(1/σ) in expectation and with probability
1 − exp(−Ω(

√
n)).

We remark that this bound is best possible for an analysis of perturbed
instances that separately bounds the lengths of any 2-optimal tour from above
and gives a lower bound on any optimal tour.

4 Upper Bound on the Approximation Performance

In this section, we establish an upper bound on the approximation performance
of 2-Opt under Gaussian perturbations. We achieve a bound of O(log 1/σ). Due
to the lower bound presented in Section 5, we cannot expect an approximation
ratio of o(log(1/σ)/ log log(1/σ)). Thus, our bound is almost tight.

As noted in the previous section, to beat O(1/σ) it is essential to exploit the
structure of the unperturbed input. This will be achieved by classifying edges
of a tour into long and short edges and bounding the length of long edges by a
(worst-case) global argument and short edges locally against the partial optimal
tour on subinstances (by a reduction to an (almost-)average case). The local
arguments for short edges will exploit how many unperturbed origins lie in the
vicinity of a given region.

The global argument bounding long edges follows from the worst-case
O(log n) bound on the worst-case approximation performance [6] that we
rephrase here for our purposes.
1 To show the expected approximation ratio, we additionally make use of Lemma 6.

864 M. Künnemann and B. Manthey

Lemma 6. Let T be a 2-optimal tour and OPT denote the length of the optimal
traveling salesman tour TOPT. Let Ti contain the set of all edges in T whose
length is in [OPT/2i,OPT/2i−1]. Then L(Ti) = O(OPT). In particular, it fol-
lows that L(T) = O(log n) · OPT.

In the proof of our bound of O(log 1/σ), the above lemma accounts for all
edges of length [Ω(σ), O(1)]. A central idea to bound all shorter edges is to
apply the one-step model result to small parts of the input space. In particular,
we will condition sets of points to be perturbed into cubes of side length σ. The
following technical lemma helps to capture what values of φ suffice to express
the conditional density function of these points depending on the distance of
their unperturbed origins to the cube. This allows for appealing to the one-step
model result of Lemma 4.

Lemma 7. Let c ∈ [0, σ]d and k = (k1, . . . , kd) ∈ N
d
0. Let Y be the random vari-

able X ∼ N (c, σ2) conditioned on X ∈ Q := [k1σ, (k1+1)σ]×· · ·×[kdσ, (kd+1)σ]
and fY be the corresponding probability density function. Then fY is bounded
from above by exp(‖k‖1 + (3/2)d)σ−d.

The main result of this section is the following theorem.

Theorem 2. Let X = (X1, . . . , Xn) be an instance of points in [0, 1]d perturbed
by Gaussians of standard deviation σ ≤ 1. With probability 1−exp(−Ω(n1/2−ε))
for any constant ε > 0, we have 2OPT(X) ≤ O(log(1/σ))·TSP(X). Furthermore,
E

[
2OPT(X)
TSP(X)

]
= O(log(1/σ)).

Since the approximation performance of 2-Opt is bounded by O(log n) in the
worst-case, we may assume that 1/σ = O(nε) for all ε > 0, since otherwise our
smoothed result is superseded by Lemma 6. In what follows, let TOPT and T be
any optimal and 2-optimal, respectively, traveling salesman tour on X1, . . . , Xn.

4.1 Outliers and Long Edges

We will first show that the contribution of almost all points outside [0, 1]d is
bounded by O(σn1−1/d) with high probability and in expectation, similar to
Lemma 3. For this, we subdivide C into growing cubes Ai := [−ai, 1 + ai]d.
Here, we set ai := 3σ

√
di ln(3/σ) for i ≥ 1 and A0 = [0, 1]d. Let ni be the

number of points not contained in Ai−1. For every point Xj , Lemma 1 with
t := (3/σ)i bounds Pr[Xj /∈ Ai] ≤ (σ/3)2.9d(i−1) (note that we have chosen the
ai such that t ≥ 3). Thus, E[ni] ≤ n(σ/3)2.9d(i−1). For any tour T , we define Ei

as the set of edges of T contained in Ai with at least one endpoint in Ai \ Ai−1.
We first bound the contribution of the Ei with i ≥ 2.

Lemma 8. With probability 1 − exp(−Ω(n1/2−ε)) for any constant ε > 0, we
have

∑∞
i=2 L(Ei) = O(σn1−1/d). Additionally, E[

∑∞
i=2 L(Ei)] = O(σn1−1/d).

Towards Understanding the Smoothed Approximation Ratio 865

In the remainder of the proof, we bound the total length of edges inside A1.
Define C := A1 and note that all edges in C have bounded length

√
d(1 + a1) =

O(1). Recall that for any 2-optimal tour T , Ti contains the set of all edges in
T whose length is in [OPT/2i,OPT/2i−1]. Let k1 be such that

√
d(1 + a1) ∈

[OPT/2k1 ,OPT/2k1−1]. Then L(Tk) = 0 for all k < k1, since no longer edges
exist. Let k2 be such that σ ∈ [OPT/2k2 ,OPT/2k2−1]. Then

∑k2
k=k1

L(Tk) =
O((k2 − k1) · OPT) = O(log(1/σ)OPT) by Lemma 6. This argument bounds
the contribution of long edges, i.e., edges longer than σ, in the worst case, after
observing the perturbation of the input points.

4.2 Short Edges

To account for the length of the remaining edges, we take a different route: Call
an edge that is shorter than σ a short edge and partition the bounding box C into
a grid of (σ×· · ·×σ)-cubes C1, . . . , CM with M = Θ((σ/(1+a1))−d) = Θ(σ−d),
which we call cells. All edges in Tk for k ≥ k2, i.e., short edges, are completely
contained in a single cell or run from some cell Ci to one of its 3d −1 neighboring
cells. For a given tour T , let ECi

(T) denote the short edges of T for which at
least one of the endpoints lies in Ci.

We aim to relate the length of the edges ECi
(T) for any 2-optimal tour T to

the length of the edges ECi
(TOPT) of the optimal tour TOPT. This local approach

is justified by the following property.

Lemma 9. For any tour T , the contribution L(ECi
(T)) of cell Ci is lower

bounded by TSP(X ∩ Ci) − O(σ|X ∩ Ci|
d−2
d−1).

Intuitively, a cell Ci is of one of two kinds: either few points are expected
to be perturbed into it and hence it cannot contribute much to the length of
any 2-optimal tour (a sparse cell), or many unperturbed origins are close to the
cell (a heavy cell). In the latter case, either the conditional densities of points
perturbed into Ci are small, hence any optimal tour inside Ci has a large value
by Lemma 4, or we find another cell close to Ci that has a very large contribution
to the length of any tour.

To formalize this intuition, fix a cell Ci and let ni be the expected number of
points Xj with Xj ∈ Ci. Assume for convenience that a1/σ and (1 + a1)/σ
are integer. We describe the position of a cube Ci canonically by indices
pos(Ci) ∈ {−ai

σ , . . . , 1+ai

σ }d. For two cubes Ci and Cj , we define their distance
as dist(Ci, Cj) = ‖pos(Ci) − pos(Cj)‖1. For k ≥ 0, let Dk denote all cells of
distance k to Ci and let n(Dk) denote the cardinality of unperturbed origins
located in a cell in Dk. We call a perturbed point X� ∈ Ci with unperturbed
origin x� ∈ Cj , for some Cj ∈ Dk, a k-successful point. Let Sk denote the set of
all k-successful points. Then ni =

∑∞
k=0 E[|Sk|].

Lemma 10. Let K ≥ 0 and define S≤K := S0 ∪ · · · ∪ SK as the set of k-
successful points for k ≤ K. Let μ := E[|S≤K |]. If K = o(log μ), then with
probability 1 − exp(μ), we have

866 M. Künnemann and B. Manthey

L(ECi
(TOPT)) ≥ σμ1−1/d

exp(O(K + 1))
.

Proof (Sketch). The claim follows from Lemma 9 and by regarding S≤K as a
φ-perturbed instance. For this, Lemma 7 bounds the maximum density of the
distributions and Lemma 4 bounds the optimal tour length from below. �
Lemma 11. Let α := M

d
d−1 , k1 := γ log log(1/σ) and k2 := (1/γ′)

√
log 1/σ for

sufficiently small constants γ, γ′. Then we can classify each cell Ci with ni ≥ n
α

into one of the following two types.

(T1) With probability 1 − exp(−Ω(n1/2−ε)) for any constant ε > 0, we have

L(ECi
(T)) = O(log 1/σ)L(ECi

(TOPT)).

(T2) There is some Cj ∈ Dk1 ∪ · · · ∪ Dk2 such that for any f(1/σ) =
polylog(1/σ), we have

L(ECi
(T)) =

L(ECj
(TOPT))

f(1/σ)
,

with probability 1 − exp(−Ω(n1/2−ε)) for any constant ε > 0.

Proof (Sketch). By Lemma 2, we can bound L(ECi
(T)) = O(σn

1−1/d
i). If we

have E[|S≤k1 |] = Ω(ni), then Lemma 10 already proves Ci to have type T1.
Otherwise, by tail bounds for the Gaussian distribution, we argue that some cell
Cj in a cell of distance at most k2 contains at least ni exp(Ω((log log n)2)) unper-
turbed origins. These are sufficiently many to let Cj contribute f(1/σ)σn

1−1/d
i ,

for any f(1/σ) = polylog(1/σ), to the optimal tour length. �

4.3 The Total Length of 2-optimal Tours

To bound the total length of short edges, consider first sparse cells Ci, i.e.,
ni ≤ n/α. For each such cell, Chernoff bounds yield that with probability
1 − exp(−Ω(n/α)), at most 2n/α points are contained in Ci, since each point is
perturbed independently. By union bound, no sparse cell contains more than
2n/α points with probability at least 1 − M exp(−Ω(n/α)). In this event,
Lemma 2 allows for bounding the contribution of sparse cells by

∑

i:ni≤n/α

L(ECi
(T)) ≤ M(3σ)cd

(
6n

α

)1− 1
d

= O

(
Mσn1− 1

d

α1− 1
d

)
= O(σn1− 1

d). (1)

For bounding the length in the remaining cells, the heavy cells, let T1 :=
{i | Ci has type T1} and T2 := {i | Ci has type T2}. We observe that with
probability at least 1 − M exp(−Ω(n1−ε)) = 1 − exp(−Ω(n1−ε)), all type-T1
cells Ci satisfy L(ECi

(T)) = O(log 1/σ)L(ECi
(TOPT)). Thus,

∑

i∈T1

L(ECi
(T)) ≤

∑

i∈T1

O(log 1/σ)L(ECi
(TOPT)) ≤ O(log 1/σ)OPT, (2)

Towards Understanding the Smoothed Approximation Ratio 867

where the last inequality follows from
∑M

i=1 LCi
(TOPT) ≤ 2 · OPT, which holds

since every edge in OPT (inside C) is counted twice on the left-hand side.
Let A : T2 → {1, . . . , M} be any function that assigns to each type-T2 cell

Ci a corresponding cell CA(i) ∈ Dk1 ∪ · · · ∪ Dk2 satisfying the condition in (T2).
We say that Ci charges CA(i). We can choose any f(1/σ) = polylog(1/σ) and
have with probability at least 1 − M exp(−Ω(n1−ε)) = 1 − exp(−Ω(n1−ε)) that

L(ECi
(T)) =

L(ECA(i) (TOPT))

f(1/σ) for all i ∈ T2. Assume that this event occurs. Since
every cell Ci can only be charged by cells in distance k1 ≤ k ≤ k2, each cell can
only be charged

∑k2
k=k1

|Dk| = O(kd
2) times. Hence,

∑

i∈T2

L(ECA(i)(TOPT)) ≤ O(kd
2)

M∑

i=1

L(ECi
(TOPT)) = O(kd

2)OPT.

Since kd
2 = polylog(1/σ), choosing f(1/σ) = polylog(1/σ) sufficiently large yields

∑

i∈T2

L(ECi
(T)) ≤

∑

i∈T2

L(ECA(i)(TOPT))
f(1/σ)

≤ O(kd
2)OPT

f(1/σ)
= O(OPT). (3)

Proof (of Theorem 2). By a union bound, we can bound by 1−exp(−Ω(n1/2−ε)),
for any constant ε > 0, the probability that (i) OPT = Ω(σn1−1/d) (by
Lemma 5), (ii) all edges outside C contribute O(σn1−1/d) = O(OPT) (by
Lemma 8), (iii) all sparse cells contribute O(σn1−1/d) = O(OPT) (by (1)), (iv)
the type-T1 cells Ci induce a cost of O(log 1/σ)OPT (by (2)), and (v) the type-2
cells induce a cost of O(OPT) (by (3)). Since the remaining edges are long edges
and contribute only O(log(1/σ) ·OPT), we obtain that every 2-optimal tour has
a length of at most O(log 1/σ)OPT with probability 1 − exp(−Ω(n1/2−ε)).

Since a 2-optimal tour always constitutes a O(log n)-approximation to the
optimal tour length by Lemma 6, we also obtain that the expected cost of the
worst 2-optimal tour is bounded by

O(log 1/σ) · OPT + exp(−Ω(n1/2−ε)) · O(log n) · OPT = O(log 1/σ) · OPT.

�

5 Lower Bound on the Approximation Ratio

We complement our upper bound on the approximation performance by the
following lower bound: for σ = O(1/

√
n), the worst-case lower bound is robust

against perturbations. For this, we face the technical difficulty that in general, a
single outlier might destroy the 2-optimality of a desired long tour, potentially
cascading into a series of 2-Opt iterations that result in a substantially different
or even optimal tour.

Theorem 3. Let σ = O(1/
√

n). For infinitely many n, there is an instance X of
points in R

2 perturbed by normally distributed noise of standard deviation σ such

868 M. Künnemann and B. Manthey

Fig. 1. Parts V1 and V3 of the lower bound instance. Each point is contained in a
corresponding small container (depicted as brown circle) with high probability. The
black lines indicate the constructed 2-optimal tour, which on V2 runs analogously.

that with probability 1 − O(n−s) for any constant s > 0, we have 2OPT(X) =
Ω(log n/ log log n) · TSP(X). This also yields

E
[
2OPT(X)
TSP(X)

]
= Ω

(
log n

log log n

)
.

We remark that our result transfers naturally to the one-step model with φ =
Ω(n) and interestingly, holds with probability 1 over the random perturbations.

Furthermore, even when we initialize the tour using the nearest neighbor
heuristic, 2-Opt might, with probability O(1), return a 2-optimal tour of length
Ω(log n/ log log n)·TSP(X) on perturbed inputs. For space reasons, the necessary
changes to the construction below are deferred to a full version of this article.

Proof of Theorem 3. We alter the construction of Chandra et al. [6] to strengthen
it against Gaussian perturbations with standard deviation σ = O(1/

√
n) (see

Figure 1). Let p ≥ 3 be an odd integer and P := 3p2p. The original instance
of [6] is a subset of the (P × P)-grid, which we embed into [0, 1]2 by scaling by
1/P , and consists of three parts V1, V2 and V3. The vertices in V1 are partitioned
into the layers L0, . . . , Lp. Layer i consists of p2i +1 equidistant vertices, each of
which has a vertical distance of ci = p2p−2i−1/P to the point above it in Layer
i + 1 and a horizontal distance of ai = p2p−2i/P to the nearest neighbor(s) in
the same layer. The set V2 is a copy of V1 shifted to the right by a distance of
2/3. The remaining part V3 consists of a copy of Layer p of V1 shifted to the
right by 1/3 to connect V1 and V2 by a path of points. We regard Li as the set
of Layer-i points in V1 ∪ V2 ∪ V3.

As in the original construction, we will construct an instance of n = Θ(p2p)
points, which implies p = Θ(log n/ log log n). Let 0 ≤ t ≤ p be the largest
odd integer such that p2t+1 ≤ (3σ)−1. In our construction, we drop all Layers
t + 1, . . . , p in both V1 and V2, as well as Layer p in V3. Instead, we connect V1

and V2 already in Layer t by an altered copy of Layer t of V1 shifted to the right
by 1/3. Let C be an arbitrary point of our construction, for convenience we will
use the central point of Layer t in V3. We introduce p2p − 1 additional copies
of this point C. These surplus points serve as a “padding” of the instance to
ensure n = Θ(p2p). Note that the resulting instance has t + 1 layers L0, . . . , Lt.

Towards Understanding the Smoothed Approximation Ratio 869

We chose t such that the magnitude of perturbation is negligible compared to
the pairwise distances of all non-padding points. Furthermore, the restriction
on σ ensures that incorporating the padding points increases the optimal tour
length only by a constant.

Lemma 12. With probability 1 − O(n−s) for any constant s > 0, the optimal
tour has length O(1).

We find a long 2-optimal tour on all non-padding points analogously to the
original construction by taking a shortcut of the original 2-optimal tour, which
connects V1 and V2 already in Layer t (see Figure 1).

Consider the padding points, which are yet to be connected. Let C� denote
the nearest point in Layer t of V3 that is to the left of C. Symmetrically, Cr is
the nearest point to the right of C. Let T p be any 2-optimal path from C� to Cr

that passes through all the padding points (including C). We replace the edges
(C�, C) and (C,Cr) by the path T p, completing the construction of our tour T .

Lemma 13. Let s > 0 be arbitrary. With probability 1−O(n−s), T is 2-optimal
and has a length of Ω(log n/ log log n).

By Lemmas 12 and 13, Theorem 3 follows.

6 Discussions and Open Problems

We have proved an upper bound of O(log 1/σ) for the smoothed approximation
ratio of 2-Opt. Furthermore, we have proved that the lower bound of Chandra
et al. [6] remains robust even for σ = O(1/

√
n) and even if it is initialized with

the nearest-neighbor heuristic. We leave as an open problem to generalize our
upper bounds to the one-step model to improve the current bound of O(d

√
φ) [8],

but conjecture that this might be difficult.
While our bound significantly improves the previously known bound for the

smoothed approximation ratio of 2-Opt, we readily admit that it still does not
explain the performance observed in practice. A possible explanation is that
when the initial tour is not picked by an adversary or the nearest neighbor
heuristic, but using a construction heuristic such as the spanning tree heuristic
or an insertion heuristic, an approximation factor of 2 is guaranteed even before
2-OPT has begun to improve the tour [18]. However, a smoothed analysis of the
approximation ratio of 2-Opt initialized with a good heuristic might be difficult:
even in the average-case, it is only known that the length of an optimal TSP is
concentrated around γd · n

d−1
d for some constant γd > 0. But the precise value

of γd is unknown [21]. Since experiments suggest that 2-Opt even with good
initialization does not achieve an approximation ratio of 1 + o(1) [10,11], one
has to deal with the precise constants, which seems challenging.

Finally, we conjecture that many examples for showing lower bounds for
the approximation ratio of concrete algorithms for Euclidean optimization such
as the TSP remain stable under perturbation for σ = O(1/

√
n). The question

870 M. Künnemann and B. Manthey

remains whether such small values of σ, although they often suffice to prove poly-
nomial smoothed running-time, are essential to explain practical approximation
ratios or if already slower decreasing σ provide a sufficient explanation.

References

1. Arora, S.: Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)

2. Arthur, D., Manthey, B., Röglin, H.: Smoothed analysis of the k-means method.
Journal of the ACM 58(5) (2011)

3. Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algo-
rithm, with an application to the k-means method. SIAM J. Comp. 39(2), 766–782
(2009)

4. Bläser, M., Manthey, B., Rao, B.V.R.: Smoothed analysis of partitioning algo-
rithms for Euclidean functionals. Algorithmica 66(2), 397–418 (2013)

5. Brunsch, T., Röglin, H., Rutten, C., Vredeveld, T.: Smoothed performance guar-
antees for local search. Mathematical Programming 146(1–2), 185–218 (2014)

6. Chandra, B., Karloff, H., Tovey, C.: New results on the old k-opt algorithm for the
traveling salesman problem. SIAM J. Comp. 28(6), 1998–2029 (1999)

7. Curticapean, R., Künnemann, M.: A quantization framework for smoothed analysis
of euclidean optimization problems. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA
2013. LNCS, vol. 8125, pp. 349–360. Springer, Heidelberg (2013)

8. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the
2-Opt algorithm for the TSP. Algorithmica 68(1), 190–264 (2014)

9. Etscheid, M.: Performance guarantees for scheduling algorithms under perturbed
machine speeds. Discrete Applied Mathematics (to appear)

10. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study. In:
Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, chap.
8. John Wiley & Sons (1997)

11. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP.
In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and its Vari-
ations, chap. 9. Kluwer Academic Publishers (2002)

12. Karger, D., Onak, K.: Polynomial approximation schemes for smoothed and ran-
dom instances of multidimensional packing problems. In: Proc. of the 18th Ann.
ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 1207–1216. SIAM (2007)

13. Manthey, B., Röglin, H.: Smoothed analysis: Analysis of algorithms beyond worst
case. It - Information Technology 53(6), 280–286 (2011)

14. Manthey, B., Röglin, H.: Worst-case and smoothed analysis of k-means clustering
with Bregman divergences. J. of Comp. Geom. 4(1), 94–132 (2013)

15. Manthey, B., Veenstra, R.: Smoothed analysis of the 2-Opt heuristic for the TSP:
Polynomial bounds for Gaussian noise. In: Cai, L., Cheng, S.-W., Lam, T.-W.
(eds.) ISAAC 2013. LNCS, vol. 8283, pp. 579–589. Springer, Heidelberg (2013)

16. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for Geometric TSP, k-MST, and
related problems. SIAM J. Comp. 28(4), 1298–1309 (1999)

Towards Understanding the Smoothed Approximation Ratio 871

17. Papadimitriou, C.H.: The Euclidean traveling salesman problem is NP-complete.
Theoretical Computer Science 4(3), 237–244 (1977)

18. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics
for the traveling salesman problem. SIAM J. Comp. 6(3), 563–581 (1977)

19. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM 51(3), 385–463
(2004)

20. Spielman, D.A., Teng, S.H.: Smoothed analysis: An attempt to explain the behavior
of algorithms in practice. Communications of the ACM 52(10), 76–84 (2009)

21. Yukich, J.E.: Probability Theory of Classical Euclidean Optimization Problems.
Lecture Notes in Mathematics, vol. 1675. Springer (1998)

On the Hardest Problem Formulations
for the 0/1 Lasserre Hierarchy

Adam Kurpisz(B), Samuli Leppänen, and Monaldo Mastrolilli

IDSIA, 6928 Manno, Switzerland
{adam,samuli,monaldo}@idsia.ch

Abstract. The Lasserre/Sum-of-Squares (SoS) hierarchy is a system-
atic procedure for constructing a sequence of increasingly tight semidef-
inite relaxations. It is known that the hierarchy converges to the 0/1
polytope in n levels and captures the convex relaxations used in the best
available approximation algorithms for a wide variety of optimization
problems.

In this paper we characterize the set of 0/1 integer linear problems
and unconstrained 0/1 polynomial optimization problems that can still
have an integrality gap at level n − 1. These problems are the hardest
for the Lasserre hierarchy in this sense.

1 Introduction

The Sum of Squares (SoS) proof system introduced by Grigoriev and Vorob-
jov [20] is a proof system based on the Positivstellensatz. Shor [37], Nesterov [30],
Parrilo [33] and Lasserre [24] show that it can be efficiently automatized using
semidefinite programming (SDP) such that any n-variable degree-d proof can
be found in time nO(d). The SDP, often called the Lasserre/SoS1 hierarchy, is
the dual of the SoS proof system, meaning that the Lasserre hierarchy value at
“level d/2” of an optimization problem is equal to the best provable bound using
a degree-d SoS proof (see the monograph by Laurent [26]). For a brief history
of the different formulations from [20], [24], [33] and the relations between them
and results in real algebraic geometry we refer the reader to [32].

The Lasserre hierarchy can be seen as a systematic procedure to strengthen a
relaxation of an optimization problem by constructing a sequence of increasingly
tight SDP relaxations. The tightness of the relaxation is parametrized by its level
or round, which corresponds to the degree of the proof in the proof system. More-
over, it captures the convex relaxations used in the best available approximation
algorithms for a wide variety of optimization problems. For example, the first
round of the hierarchy for the Independent Set problem implies the Lovász
θ-function [28] and for the Max Cut problem it gives the Goemans-Williamson

This work replaces and improves an early version of the paper titled “The Lasserre
hierarchy in almost diagonal form” appeared in arXiv.

1 For brevity, we will interchange Lasserre hierarchy with SoS hierarchy since they are
essentially the same in our context.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 872–885, 2015.
DOI: 10.1007/978-3-662-47672-7 71

On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy 873

relaxation [15]. The ARV relaxation of the Sparsest Cut [2] problem is no
stronger than the relaxation given in the third round of the Lasserre hierarchy,
and the subexponential time algorithm for Unique Games [1] is implied by a
sublinear number of rounds [5,21]. More recently, it has been shown that O(1)
levels of the Lasserre hierarchy is equivalent in power to any polynomial size SDP
extended formulation in approximating maximum constraint satisfaction prob-
lems [27]. Other approximation guarantees that arise from the first O(1) levels of
the Lasserre (or weaker) hierarchy can be found in [5,6,9,10,12,13,21,29,34]. For
a more detailed overview on the use of hierarchies in approximation algorithms,
see the surveys [11,25,26].

The limitations of the Lasserre hierarchy have also been studied. Most of the
known lower bounds for the hierarchy originated in the works of Grigoriev [17,18]
(also independently rediscovered later by Schoenebeck [36]). In [18] it is shown
that random 3XOR or 3SAT instances cannot be solved by even Ω(n) rounds of
SoS hierarchy. Lower bounds, such as those of [7,38] rely on [18,36] plus gadget
reductions. For a different technique to obtain lower bounds, see the recent paper
[4].

A particular weakness of the hierarchy revolves around the fact that it has
hard time reasoning about terms of the form x1 + ... + xn using the fact that all
xi’s are 0/1. Grigoriev [17] showed that �n/2� levels of Lasserre are needed to
prove that the polytope {x ∈ [0, 1]n|∑n

i=1 xi = �n/2�+1/2} contains no integer
point. A simplified proof can be found in [19].

In [8] Cheung considered a simple instance of the Min Knapsack problem,
i.e. the minimization of

∑n
i=1 xi for 0/1 variables such that

∑n
i=1 xi ≥ δ(n), for

some δ(n) < 1 that depends on n. Cheung proved that the Lasserre hierarchy
requires n levels to converge to the integral polytope. This is shown by providing
a feasible solution at level n − 1 of value n

n+1 , whereas the smallest integral
solution has value 1. This gives an integrality gap2 of 1+ 1

n that vanishes with n.
We emphasize that the main interest in the work of Cheung revolves around

understanding how fast the Lasserre hierarchy converges to the integral poly-
tope and not how fast the integrality gap reduces, therefore not ruling out the
possibility that the integrality gap might decrease slowly with the number of
levels. This is conceptually an important difference. For the Max Knapsack
(or Min Knapsack) problem the presence of an integrality gap at some “large”
level t(n), that depends on n, is promptly implied by P �= NP , whereas the
existence of a “large” integrality gap at some “large” level t(n) is not immedi-
ately clear (since both Max Knapsack and Min Knapsack problems admit
an FPTAS). With this regard, note that Cheung’s result also implies that for
the Max Knapsack the Lasserre hierarchy requires n levels to converge to the
integral polytope. However, in [23] it is shown that only O(1/ε) levels are needed
to obtain an integrality gap of 1 − ε, for any arbitrarily small constant ε > 0. It
is also worth pointing out that currently the Cheung knapsack result [8] is the

2 The integrality gap is defined to be the measure of the quality of the relaxation
described by the ratio between the optimal integral value and the relaxed optimal
value. If this ratio is different from 1 we will say that “there is an integrality gap”.

874 A. Kurpisz et al.

only known integrality gap result for Lasserre/Sum-of-Squares hierarchy at level
n − 1.

Our results. With n variables, the n-th level of the Lasserre hierarchy is suffi-
cient to obtain the 0/1 polytope, where the only feasible solutions are convex
combinations of feasible integral solutions [24]. This can be proved by using the
canonical lifting lemma (see Laurent [25]), where the feasibility of a solution to
the Lasserre relaxation at level n reduces to showing that a certain diagonal
matrix is positive semidefinite (PSD).

The main challenge in analyzing integrality gap instances at level smaller
than n is showing that a candidate solution satisfies the positive semidefinite
constraints. In this paper, we first show that the feasibility of a solution to the
Lasserre relaxation at level n − 1 reduces to showing that a matrix differing
from a diagonal matrix by a rank one matrix (almost diagonal form) is PSD.
We analyze the eigenvalues of the almost diagonal matrices and obtain compact
necessary and sufficient conditions for the existence of an integrality gap of the
Lasserre relaxation at level n − 1. This result can be seen as the opposite of [16]
where they consider the case when the first order Lasserre relaxation is exact.

Interestingly, for 0/1 integer linear programs the existence of a gap at level
n−1 implies that the problem formulation contains only constraints of the form
we call Single Vertex Cutting (SVC). An SVC constraint only excludes one vertex
of the {0, 1}n hypercube. It can thus be seen as the most generic non-trivial form
of constraint, since the feasible set of any integer linear program can be modeled
using only constraints of this form.

This characterization allows us to show that n levels of Lasserre are needed
to prove that a polytope defined by (exponentially many) SVC constraints con-
tains no integer point. No other example of this kind was known at level n (the
previously known example in [17] requires �n/2� levels).

One problem where SVC constraints can arise naturally is the Knapsack
problem. By applying the computed conditions, we improve the Cheung [8] Min
Knapsack integrality gap of the Lasserre relaxation at level n− 1 from 1+1/n
to any arbitrary large number. This shows a substantial difference between the
Min Knapsack and the Max Knapsack when we take into consideration the
integrality gap size of the Lasserre relaxation.

Furthermore, we show that a similar result holds beyond the class of integer
linear programs. More precisely, we show that any unconstrained 0/1 polyno-
mial optimization problem exhibiting an integrality gap at level n − 1 of the
Lasserre relaxation has necessarily an objective function given by a polynomial
of degree n. This rules out the existence of any integrality gap at level n − 1
for any k-ary boolean constraint satisfaction problem with k < n. Finally, we
provide an example of an unconstrained 0/1 polynomial optimization problem
with an integrality gap at level n − 1 of the Lasserre hierarchy, and discuss why
the problem can be seen as a constraint satisfaction version of an SVC con-
straint. Our result complements the recent paper [14] where it is shown that the
Lasserre relaxation does not have any gap at level �n

2 � when optimizing n-variate
0/1 polynomials of degree 2.

On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy 875

2 The Lasserre Hierarchy

In this section we provide a definition of the Lasserre hierarchy [24]. For the
applications that we have in mind, we restrict our discussion to optimization
problems with 0/1-variables and linear constraints. More precisely, we consider
the following general optimization problem P: Given a multilinear polynomial
f : {0, 1}n → R

P : min{f(x)|x ∈ {0, 1}n, g�(x) ≥ 0 for � ∈ [m]} (1)

where {g�(x) : � ∈ [m]} are linear functions of x.
Many basic optimization problems are special cases of P. For example, any

k-ary boolean constraint satisfaction problem, such as Max Cut, is captured
by (1) where a degree k function f(x) counts the number of satisfied constraints,
and no linear constraints g�(x) ≥ 0 are present. Also any 0/1 integer linear
program is a special case of (1), where f(x) is a linear function.

Lasserre [24] proposed a hierarchy of SDP relaxations for increasing δ,

min{L(f)|L : R[X]2δ → R, L(1) = 1, and L(u2), L(u2g�) ≥ 0, ∀ polynomial u} (2)

where L : R[X]2δ → R is a linear map with R[X]2δ denoting the ring R[X]
restricted to polynomials of degree at most 2δ.3 In particular for 0/1 problems
L vanishes on the truncated ideal generated by x2

i − xi. Note that (2) is a
relaxation since one can take L to be the evaluation map f → f(x∗) for any
optimal solution x∗.

Relaxation (2) canbe equivalently formulated in termsofmomentmatrices [24].
In the context of this paper, this matrix point of view is more convenient to use and
it is described below. In our notation we mainly follow the survey of Laurent [25]
(see also [35]).

Variables and Moment Matrix. Throughout this paper, vectors are written as
columns. Let N denote the set {1, . . . , n}. The collection of all subsets of N
is denoted by P(N). For any integer t ≥ 0, let Pt(N) denote the collection of
subsets of N having cardinality at most t. Let y ∈ R

P(N). For any nonnegative
integer t ≤ n, let Mt(y) denote the matrix with (I, J)-entry yI∪J for all I, J ∈
Pt(N). Matrix Mt(y) is termed in the following as the t-moment matrix of y.
For a linear function g(x) =

∑n
i=1 gi · xi + g0, we define g ∗ y as a vector, often

called shift operator, where the I-th entry is (g ∗ y)I =
∑n

i=1 giyI∪{i} + g0yI . Let
f denote the vector of coefficients of polynomial f(x) (where fI is the coefficient
of monomial Πi∈Ixi in f(x)).

Definition 1. The Lasserre relaxation of problem (1) at the t-th level, denoted
as Last(P), is the following

3 In [3], L(p) is written Ẽ[p] and called the “pseudo-expectation” of p.

876 A. Kurpisz et al.

Last(P) : min

⎧
⎨

⎩
∑

I⊆N

fIyI |y ∈ R
P2t+2d(N) and y ∈ M

⎫
⎬

⎭ (3)

where M is the set of vectors y ∈ R
P2t+2d(N) that satisfy the following PSD

conditions

y∅ = 1 (4)
Mt+d(y) � 0 (5)

Mt(g� ∗ y) � 0 � ∈ [m] (6)

where d = 0 if m = 0 (no linear constraints) otherwise d = 1.

We will use the following known facts (see e.g. [25,35]). Consider any vector
w ∈ R

P(N) (vector w is intended to be either the vector y ∈ R
P(N) of variables

or the shifted vector g ∗ y for any g ∈ R
P(N)). For any I ∈ P(N), variables

{wN
I : I ⊆ N} are defined as follows:

wN
I :=

∑

H⊆N\I

(−1)|H|wH∪I

Note that wI =
∑

I⊆J wN
J (by using inclusion-exclusion principle, see [35]). The

latter with y∅ = 1 implies that
∑

J⊆N yN
J = 1, and that the objective function

can be rewritten as follows:
∑

I⊆N

fIyI =
∑

I⊆N

f(xI)yN
I

where f(xI) denotes the value of f(x) when xi = 1 for i ∈ I and xi = 0 for i �∈ I.
Congruent transformations are known not to change the sign of the eigen-

values (see e.g. [22]). It follows that in studying the positive-semidefiniteness
of matrices we can focus on congruent matrices without loss of generality. Let
Dt(w) denote the diagonal matrix in R

Pt(N)×Pt(N) with (I, I)-entry equal to wN
I

for all I ∈ Pt(N).

Lemma 1. [25] Matrix Mn(w) is congruent to the diagonal matrix Dn(w).

By Lemma 1, Mn(y) � 0 implies that the variables in {yN
I : I ⊆ N} can be

interpreted as a probability distribution (see [25,35]), where yN
I is the probability

that the variables with index in I are set to one and the remaining to zero.

Lemma 2. [25] For any polynomial g of degree at most one, y ∈ R
P(N) and

z = g ∗ y we have zN
I = g(xI) · yN

I where g(xI) =
∑

i∈I ai + b.

Note that, by using Lemma 1 and Lemma 2, it can be easily shown the well
known fact that at level n any solution can be written as a convex combination
of feasible integral solutions. The latter implies that any integrality gap vanishes
at level n.

On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy 877

3 The (n − 1)-Moment Matrix

In the following we show that Mn−1(w) is congruent to the diagonal matrix
Dn−1(w) perturbed by a rank one matrix, and analyze its eigenvalues. For ease
of notation, we will use D to denote Dn−1(w) throughout this section.

Lemma 3. Matrix Mn−1(w) is congruent to the matrix D + wN
N · vv�, where v

is a |Pn−1(N)|-dimensional vector with vI = (−1)n+1−|I| for any I ∈ Pn−1(N).

3.1 Positive Semidefiniteness of Mn−1(y)

In this section we derive the necessary and sufficient conditions for Mn−1(w) � 0.
From Lemma 3 we have that Mn−1(y) � 0 ⇔ D + wN

N vv� � 0, where vv� is a
rank one matrix with entries ±1.

Lemma 4. If wN
N �= 0 then, for any I ⊆ N , λ = wN

I is an eigenvalue of the
matrix D+wN

N vv� if and only if there is another J �= I with wN
I = wN

J , J ⊆ N ;
The remaining eigenvalues are the solutions λ of the following equation

∑

N 	=I⊆N

1
λ − wN

I

=
1

wN
N

(7)

Proof. Consider the zeroes λ of the characteristic polynomial of D + wN
N vv�:

det(λI − (D + wN
N vv�)) = det(Dλ − wN

N vv�) = 0 (8)

where Dλ = λI − D. Applying Cauchy’s formula for the determinant of a rank-
one pertubation [22, p. 26] we can write this as

det(Dλ) − wN
N v� adj(Dλ)v = 0 (9)

Consider a solution λ to (9). Exactly one of the following three cases must hold:

1. Dλ is nonsingular, meaning that λ �= wN
I for all N �= I ⊆ N . Then adj(Dλ) =

(det Dλ)D−1
λ and the above becomes

det(Dλ)(1 − wN
N v�D−1

λ v) = 0

which simplifies to (7).
2. Dλ is singular, and λ = wN

I for exactly one N �= I ⊆ N . Then adj(Dλ) =
αeIe

�
I for some nonzero α [22, p. 22-23], where (eI)J = 1 if I = J and

(eI)J = 0 otherwise. Now (9) simplifies to

wN
N v�(αeIe

�
I)v = 0

which can only hold if wN
N = 0. Hence such λ cannot be a solution to (8).

3. Dλ is singular and there are more than one N �= I ⊆ N such that λ = wN
I .

Then adj(Dλ) = 0 [22, p. 22] and λ is a solution to (8).
��

878 A. Kurpisz et al.

Lemma 5. Matrix D + wN
N vv� is positive-semidefinite if and only if either

wN
I ≥ 0 for all I ⊆ N , or the following holds

wN
K < 0, for exactly one K ⊆ N, (10)

wN
J > 0, for all K �= J ⊆ N, (11)

∑

I⊆N

1
wN

I

≤ 0 (12)

Proof. If wN
I ≥ 0 for all I ⊆ N then D + wN

N vv� � 0 since it is the sum of two
PSD matrices. Otherwise, there exists I ⊆ N with wN

I < 0 and we distinguish
between the following complementary cases.

If there are two different sets N �= I, J ⊆ N such that wN
I = wN

J < 0, then by
Lemma 4 the matrix D + wN

N vv� has a negative eigenvalue. Therefore we may
assume that all the negative entries of D are different from each other. Then
by Lemma 4, any potentially negative eigenvalue is given by (7). With this in
mind, let f(λ) =

∑
N 	=I⊆N

1
λ−wN

I

and study the points λ where f(λ) intersects

the line given by 1
wN

N

.
There are three cases:

1. For two sets N �= I, J ⊆ N we have wN
I < wN

J ≤ 0. Then since the function
f(λ) has vertical asymptotes at the points wN

I and wN
J , there must be a

point λ < 0 such that f(λ) = 1
wN

N

regardless of the value of wN
N (see Figure

1 (i)).
2. For exactly one N �= I ⊆ N we have wN

I ≤ 0 and wN
N < 0. Then f(λ) has

one vertical asymptote in (−∞, 0] and thus the line 1
wN

N

crosses the graph of
f(λ) at least in one λ < 0 (see Figure 1 (ii)).

3. For exactly one I ⊆ N we have wN
I < 0 and the rest are strictly positive.

Then we note that there can be at most one λ < 0 such that f(λ) = 1
wN

N

.
Inspecting the form of the graph shows that there is no intersection in the
negative half-plane if and only if f(0) ≥ 1

wN
N

(see Figure 1 (iii) and (iv) for
the case I = N).

��

4 Integrality Gaps of Lasserre Hierarchy at Level n − 1

In this section we characterize the set of problems P of the form (1) that can
have an integrality gap at level n−1 of the Lasserre relaxation. In particular, we
prove that in order to exhibit an integrality gap, a constrained problem can only
have constraints each of which rule out only one point of the {0, 1}n hypercube.
We fully characterize what this means in the case where the constraints are
linear. We also discuss two examples of problems with such constraints, and in
particular, we exhibit a simple instance of the Min Knapsack problem that
has an unbounded integrality gap. Finally, we show that if P is an unconstrained
problem that has an integrality gap at level n − 1, then the objective function
of P must be a polynomial of degree n.

On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy 879

Fig. 1. A conceptual plot of different relevant arrangements of the graph of f(λ) and
the graph of 1

wN
N

(dotted lines)

4.1 Problems with Linear Constraints

In this subsection we focus on 0/1-integer linear programs P of the form (1). We
will assume, w.l.o.g., that if constraint g(x) ≥ 0 is satisfied by all integral points
then it is redundant and no one of these redundant constraints is present.

Theorem 1. Let P be a 0/1-integer linear program of the form (1). The Lasserre
relaxation Lasn−1(P) has an integrality gap if and only if there exists a solution
{yN

I |I ⊆ N} that satisfies the following conditions:

yN
I > 0 for all I ⊆ N, (13)

∑

I⊆N

yN
I = 1 (14)

g�(xK�
)yN

K�
< 0 for exactly one K� ⊆ N for each � ∈ [m], (15)

g�(xJ)yN
J > 0 for all � ∈ [m], for all K� �= J ⊆ N, (16)

∑

I⊆N

1
g�(xI)yN

I

≤ 0 for all � ∈ [m], (17)

∑

I⊆N

yN
I f(xI) < f(xI∗) (18)

where f(xI∗) is a minimal integral feasible solution.

880 A. Kurpisz et al.

Definition 2. We call g(x) ≥ 0 a Single Vertex Cutting (SVC) constraint if
there exists only one I ⊆ N such that g(xI) < 0 and for every other I �= J ⊆ N
it holds g(xJ) > 0.

Corollary 1. Let f(xI∗) denote the integral optimum of (1). If there is an
integrality gap, i.e., y ∈ Lasn−1(P) such that

∑
I⊆N yN

I f(xI) < f(xI∗), then the
constraints in (1) are SVC.

We are considering only problems with linear constraints over {0, 1}n, so it
is straightforward to characterize the SVC constraints.

Lemma 6. Let g(x) =
∑n

i=1 aixi−b ≥ 0 be a linear SVC constraint. Then b �= 0
and ai �= 0 for all i, and if P is the set of indices such that ai < 0 ⇔ i ∈ P ,
then

∑
i∈P ai < b, but

∑
i∈Q ai > b for all P �= Q ⊆ N .

4.2 Example Problems with SVC Constraints at Level n − 1

As proved in Corollary 1, SVC constraints are in some sense the most difficult
constraints to handle for the Lasserre hierarchy. Each such constraint excludes
only one point of the {0, 1}n hypercube, and thus the feasible set of any integer
linear program can be modeled using only these constraints. It follows that if
modeled in this way, any integer linear program can potentially have an inte-
grality gap at level n − 1 of the Lasserre hierarchy. In this section we give two
examples of problems where the Lasserre hierarchy does not converge to the
integer polytope even at level n − 1.

Unbounded Integrality Gap for the Min Knapsack. One problem where
the SVC constraint naturally arises is the Knapsack problem. We show that the
minimization version of the problem has an unbounded integrality gap at level
n− 1 of the Lasserre hierarchy. Indeed, consider the following simple instance of
the Min-Knapsack:

(GapKnap)min{∑n
i=1 xi|

∑n
i=1 xi ≥ 1/P, xi ∈ {0, 1} for i ∈ [n]} (19)

Notice that the optimal integral value of (GapKnap) is one. The optimal value
of the linear programming relaxation of (GapKnap) is 1/P , so the integrality
gap of the LP is P and can be arbitrarily large.

By using Theorem 1 we prove the following dichotomy-type result. If we
allow a “large” P (exponential in the number of variables n), then the Lasserre
hierarchy is of no help to limit the unbounded integrality gap of (GapKnap),
even at level (n − 1). This analysis is tight since Lasn(GapKnap) admits an
optimal integral solution with n variables. We also show that the requirement
that P is exponential in n is necessary for having a “large” gap at level (n − 1).

Corollary 2. (Integrality Gap Bounds for Min-Knapsack) The integrality gap
of Lasn−1(GapKnap) is k, for any k ≥ 2 if and only if P = Θ(k) · 22n.

On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy 881

Remark 1. We observe that the instance (19) can be easily ruled out by requir-
ing that each coefficient of any variable must be not larger than the constant
term in the knapsack constraint. However, even with this pruning step, the
integrality gap can be made unbounded up to the last but two levels of the
Lasserre hierarchy: add an additional variable xn+1 only in the constraint (not
in the objective function) and increase the constant term to 1 + 1/P . Any solu-
tion for Lasn−1(GapKnap) can be easily turned into a feasible solution for
the augmented instance by setting the new variables y′

I = yI\{n+1} for any
I ∈ P2t+2([n+1]) and observing that any principal submatrix of the new moment
matrices has either determinant equal to zero or it is a principal submatrix in
the moment matrix of the reduced problem.

Undetected Empty Integer Hull. As discussed at the beginning of this
section, any integer linear problem can be modeled using SVC constraints. For-
mulating the problem in this “pathological” way can potentially hinder the con-
vergence of the Lasserre hierarchy. We demonstrate this by showing an extreme
example, where the Lasserre hierarchy cannot detect that the integer hull is
empty even at level n − 1.

Consider the feasible set given by (exponentially many) inequalities of the
form ∑

i∈P

(1 − xi) +
∑

i∈N\P

xi ≥ b (20)

for each P ⊆ N . Clearly, any integral assignment I such that xi = 1 if i ∈ I and
xi = 0 otherwise, cannot satisfy all of the inequalities when b is positive. However,
there exists an assignment of the variables yN

I that satisfies the conditions of
Theorem 1, and is hence a feasible solution to the Lasserre relaxation of the
polytope described above at level n − 1, as shown below.

Consider a symmetric solution yN
I = 1

2n for every I ⊆ N and some constraint
of the form (20) corresponding to a given set P ⊆ N . Now the variables zN

I =
g(xI)yN

I satisfy (15) and (16), and we need to check that it is possible to satisfy
(17):

∑

I⊆N

1
zN

I

=
1
2n

∑

I⊆N

1
|P \ I| + |I \ P | − b

≤ 0 ⇔
∑

∅ 	=I⊆N

1
|I| − b

≤ 1
b

When 0 < b < 1
2 , the above is implied by

∑
∅ 	=I⊆N 2 ≤ 1

b , so choosing b = 1
2n+1

makes (17) satisfied.

4.3 Unconstrained Problems at Level n − 1

Let f : {0, 1}n → R be an objective function of a polynomial minimization
problem normalized such that minx∈{0,1}n f(x) = 0 and maxx∈{0,1}n f(x) = 1.
We start with the conditions that an unconstrained polynomial optimization
problem has to satisfy in order do admit a gap at level n − 1.

882 A. Kurpisz et al.

Theorem 2. Let P denote an unconstrained polynomial optimization problem
of the form (1). The Lasserre relaxation Lasn−1(P) has an integrality gap if and
only if there exists a solution {yN

I |I ⊆ N} that satisfies (18) and the following
conditions:

∑

I⊆N

yN
I = 1 (21)

yN
K < 0 for exactly one K ⊆ N, (22)

yN
J > 0 for all K �= J ⊆ N, (23)

∑

I⊆N

1
yN

I

≤ 0 (24)

We note that f can always be represented as a multivariate polynomial of
degree at most n. The main result of this section is Theorem 3.

Theorem 3. If f is a function such that f has an integrality gap at level n− 1,
then f is a multivariate polynomial of degree n.

Proof. We will use some elementary Fourier analysis of boolean functions (see
e.g. [31, Ch.1]). To follow an established convention, we switch from studying
the function f : {0, 1}n → R to h : {−1, 1}n → R via the bijective transform
f(x) = h(1 − 2x). Observe that f is of degree t if and only if h is of degree t,
and for any S ⊆ N we have f(xS) = h(wS), where wi = −1 if i ∈ S and wi = 1
otherwise.

Assume as before that for some I1 ⊆ N , h(wI1) = 1 and 0 ≤ h(wI) ≤ 1. We
assume that |I1| is even and let I2 ⊆ N be some fixed set such that |I2| is odd
(the case where |I1| is odd is symmetric). We assume that h has an integrality
gap, so by Lemma 7 (see below) necessarily

∑
I⊆N h(wI) < 2, which we rewrite

in a more convenient form (using h(wI1) = 1)

h(wI2) < 1 −
∑

I1 	=I 	=I2

h(wI) (25)

Assume now that h has a degree smaller than n, or in other words, its Fourier
coefficient ĥ(N) is 0:

ĥ(N) = 2−n
∑

S⊆N

h(wS)(−1)|S| = 0

Removing the normalizing constant and reordering the sum the above implies
(using the assumptions on the parity of |I1|, |I2|)

∑

S 	=I1
|S| even

h(wS) −
∑

S 	=I2
|S| odd

h(wS) = −1 + h(wI2) < −
∑

I1 	=I 	=I2

h(wI)

by (25). Moving all the h terms to the left hand side yields

2
∑

S 	=I1
|S| even

h(wS) < 0

On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy 883

which contradicts the assumption that h(w) ≥ 0. ��
Lemma 7. Let f(xI1) = 1 and 0 ≤ f(x) ≤ 1 for every x ∈ {0, 1}n. If f is such
that

∑
I⊆N f(xI) ≥ 2 then there is no gap at level n − 1.

We point out that there exists a function of degree n that exhibits an inte-
grality gap at level n − 1. Consider the function given by

f(x) = 1 −
∑

∅ 	=I⊆N

(−1)|I| ∏

i∈I

xi

This function has the value 1 when all the variables are 0, and 0 elsewhere.
It is a straightforward application of Theorem 2 to show that f(x) exhibits an
integrality gap at level n − 1. We remark that f(x) can be seen as a constraint
satisfaction version of an SVC constraint.

Acknowledgments. Research supported by the Swiss National Science Foundation
project 200020 144491/1. We thank Ola Svensson and the anonymous reviewers for
helpful comments.

References

1. Arora, S., Barak, B., Steurer, D.: Subexponential algorithms for unique games and
related problems. In: FOCS, pp. 563–572 (2010)

2. Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and
graph partitioning. Journal of the ACM 56(2) (2009)

3. Barak, B., Brandão, F.G.S.L., Harrow, A.W., Kelner, J.A., Steurer, D., Zhou, Y.:
Hypercontractivity, sum-of-squares proofs, and their applications. In: STOC, pp.
307–326 (2012)

4. Barak, B., Chan, S.O., Kothari, P.: Sum of squares lower bounds from pairwise
independence. In: STOC (2015)

5. Barak, B., Raghavendra, P., Steurer, D.: Rounding semidefinite programming hier-
archies via global correlation. In: FOCS, pp. 472–481 (2011)

6. Bateni, M., Charikar, M., Guruswami, V.: Maxmin allocation via degree lower-
bounded arborescences. In: STOC, pp. 543–552 (2009)

7. Bhaskara, A., Charikar, M., Vijayaraghavan, A., Guruswami, V., Zhou, Y.: Polyno-
mial integrality gaps for strong sdp relaxations of densest k-subgraph. In: SODA,
pp. 388–405 (2012)

8. Cheung, K.K.H.: Computation of the Lasserre ranks of some polytopes. Mathe-
matics of Operations Research 32(1), 88–94 (2007)

9. Chlamtac, E.: Approximation algorithms using hierarchies of semidefinite program-
ming relaxations. In: FOCS, pp. 691–701 (2007)

10. Chlamtac, E., Singh, G.: Improved approximation guarantees through higher lev-
els of SDP hierarchies. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.)
APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 49–62. Springer, Heidelberg
(2008)

11. Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos, M.F.,
Lasserre, J.B. (eds.) Handbook on semidefinite, conic and polynomial optimization.
International Series in Operations Research & Management Science, vol. 166, pp.
139–169. Springer, Heidelberg (2012)

884 A. Kurpisz et al.

12. Cygan, M., Grandoni, F., Mastrolilli, M.: How to sell hyperedges: the hypermatching
assignment problem. In: SODA, pp. 342–351 (2013)

13. de la Vega, W.F., Kenyon-Mathieu, C.: Linear programming relaxations of maxcut.
In: SODA, pp. 53–61 (2007)

14. Fawzi, H., Saunderson, J., Parrilo, P.: Sparse sum-of-squares certificates on finite
abelian groups (2015). CoRR, abs/1503.01207

15. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. Journal of the
ACM 42(6), 1115–1145 (1995)

16. Gouveia, J., Parrilo, P.A., Thomas, R.R.: Theta bodies for polynomial ideals. SIAM
Journal on Optimization 20(4), 2097–2118 (2010)

17. Grigoriev, D.: Complexity of positivstellensatz proofs for the knapsack. Computa-
tional Complexity 10(2), 139–154 (2001)

18. Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs for
the parity. Theoretical Computer Science 259(1–2), 613–622 (2001)

19. Grigoriev,D.,Hirsch,E.A., Pasechnik,D.V.:Complexity of semi-algebraic proofs. In:
Alt,H., Ferreira,A. (eds.) STACS2002. LNCS, vol. 2285, p. 419. Springer,Heidelberg
(2002)

20. Grigoriev, D., Vorobjov, N.: Complexity of null-and positivstellensatz proofs. Annals
of Pure and Applied Logic 113(1–3), 153–160 (2001)

21. Guruswami, V., Sinop, A.K.: Lasserre hierarchy, higher eigenvalues, and approxi-
mation schemes for graph partitioning and quadratic integer programming with psd
objectives. In: FOCS, pp. 482–491 (2011)

22. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press (2013)
23. Karlin, A.R., Mathieu, C., Nguyen, C.T.: Integrality gaps of linear and semi-definite

programming relaxations for knapsack. In: Günlük, O., Woeginger, G.J. (eds.) IPCO
2011. LNCS, vol. 6655, pp. 301–314. Springer, Heidelberg (2011)

24. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM Journal on Optimization 11(3), 796–817 (2001)

25. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre
relaxations for 0–1 programming. Mathematics of Operations Research 28(3),
470–496 (2003)

26. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials.
Emerging Applications of Algebraic Geometry 149, 157–270 (2009)

27. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite
programming relaxations. In: STOC (to appear, 2015)

28. Lovász, L.: On the shannon capacity of a graph. IEEE Transactions on Information
Theory 25, 1–7 (1979)

29. Magen, A., Moharrami, M.: Robust algorithms for on minor-free graphs based on the
Sherali-Adams hierarchy. In: APPROX-RANDOM, pp. 258–271 (2009)

30. Nesterov, Y.: Global quadratic optimization via conic relaxation, pp. 363–384.
Kluwer Academic Publishers (2000)

31. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press (2014)
32. O’Donnell, R., Zhou, Y.: Approximability and proof complexity. In: SODA,

pp. 1537–1556 (2013)
33. Parrilo, P.: Structured Semidefinite Programs and Semialgebraic Geometry Meth-

ods in Robustness and Optimization. PhD thesis, California Institute of Technology
(2000)

On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy 885

34. Raghavendra, P., Tan, N.: Approximating csps with global cardinality constraints
using sdp hierarchies. In: SODA, pp. 373–387 (2012)

35. Rothvoß, T.: The lasserre hierarchy in approximation algorithms. Lecture Notes for
the MAPSP 2013 - Tutorial, June 2013

36. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-csps. In: FOCS, pp.
593–602 (2008)

37. Shor, N.: Class of global minimum bounds of polynomial functions. Cybernetics
23(6), 731–734 (1987)

38. Tulsiani, M.: Csp gaps and reductions in the Lasserre hierarchy. In: STOC, pp. 303–
312 (2009)

Replacing Mark Bits with Randomness
in Fibonacci Heaps

Jerry Li(B) and John Peebles

MIT, Cambridge, MA, USA
{jerryzli,jpeebles}@mit.edu

Abstract. A Fibonacci heap is a deterministic data structure imple-
menting a priority queue with optimal amortized operation costs. An
unfortunate aspect of Fibonacci heaps is that they must maintain a
“mark bit” which serves only to ensure efficiency of heap operations, not
correctness. Karger proposed a simple randomized variant of Fibonacci
heaps in which mark bits are replaced by coin flips. This variant still
has expected amortized cost O(1) for insert, decrease-key, and merge.
Karger conjectured that this data structure has expected amortized cost
O(log s) for delete-min, where s is the number of heap operations.

We give a tight analysis of Karger’s randomized Fibonacci heaps,
resolving Karger’s conjecture. Specifically, we obtain matching upper
and lower bounds of Θ(log2 s/ log log s) for the runtime of delete-min.
We also prove a tight lower bound of Ω(

√
n) on delete-min in terms of

the number of heap elements n. The request sequence used to prove this
bound also solves an open problem of Fredman on whether cascading cuts
are necessary. Finally, we give a simple additional modification to these
heaps which yields a tight runtime O(log2 n/ log log n) for delete-min.

1 Introduction

It is natural to explore the space of possible designs for common data structures.
Doing so allows one to consider simpler alternative designs and gain more insight
into whether particular features of a design are necessary or extraneous.

A natural class of data structures that is amenable to this sort of study is
those that store additional information whose sole purpose is to ensure efficiency
rather than correctness. The defining characteristic of such extraneous data is
that the data structure still functions correctly—but perhaps more slowly—if
the extraneous data is corrupted.

There are numerous data structures that posses extraneous data. For exam-
ple, in red-black trees [GS78], the color of a node is extraneous data because even
if we adversarially change it, the tree will still answers queries correctly—though
perhaps more slowly. The balance factor of nodes in AVL trees and the mark
bits of nodes in Fibonacci heaps are also extraneous data [AVL62,FT87].

In this paper, we characterize the extent to which the extraneous “mark bit”
data contributes to the performance of Fibonacci heaps. More specifically, we

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 886–897, 2015.
DOI: 10.1007/978-3-662-47672-7 72

Replacing Mark Bits with Randomness in Fibonacci Heaps 887

give a tight analysis of what happens to asymptotic performance if one replaces
the mark bits with random bits (see Section 2 for details).

This is interesting for three reasons. First, replacing mark bits with random
bits simplifies the design of Fibonacci heaps because there is no longer a need to
store any mark bits. Second, our results can also be interpreted as an analysis
of the performance of Fibonacci heaps under random corruption of mark bits.
Third, our results solve an open problem of Fredman on whether cascading cuts
are necessary in Fibonacci heaps [Fre05].

1.1 Related Work

The randomized variant of Fibonacci heaps studied in this paper was first pro-
posed by Karger in unpublished work in 2000 [Kar00]. However, Karger’s anal-
ysis of the performance of these Fibonacci heaps—which we’ll call randomized
Fibonacci heaps—was not tight. Specifically, Karger proved an upper bound
of O(log2 s) on the expected amortized cost of delete-min where s is the total
number of Fibonacci heap operations performed so far. (It is easy to see that
the expected amortized cost of all other operations is O(1).) In terms of lower
bounds, none better than the trivial sorting lower bound was known.

Following Karger’s initial work, the analysis of Karger’s randomized
Fibonacci heaps has a somewhat amusing history. Hoping to encourage some-
body to obtain a tight analysis of delete-min, Karger added this as a recurring
bonus problem in MIT’s annual graduate algorithms course [Kar13]. As a result,
virtually every graduate student to go through MIT’s theory group in the past
15 years has at least seen this problem, and many have actively worked on it.

Despite this attention, relatively little progress was made. We initially
thought there had been none at all. After posting this paper, however, we were
informed of two unpublished results by Price [Pri09] that had never been posted
anywhere. These consist of two bounds in terms of s: a “lower bound” weaker
than ours and an upper bound that is essentially the same as ours. Price gives
an adversary that queries the randomized Fibonacci heap such that it must use
Ω(log2 s/ log log s) expected amortized time per delete-min. However, Price’s
“lower bound” cheats by allowing the adversary’s request sequence to change
depending on the random choices made by the randomized Fibonacci heap. To
the best of our knowledge, all algorithms that employ Fibonacci heaps don’t
need to inspect their private state. Thus, in all settings we are aware of, Price’s
lower bound does not apply. Indeed, such results are not typically described as
“lower bounds” in the data structures literature. Moreover, Price does not give
any results in terms of n, the number of elements in the randomized Fibonacci
heap.

Shortly after this paper was posted, Kaplan, Tarjan, and Zwick posted a
paper which analyzes different variants of Fibonacci heaps [KTZ14]. Their work
independently solved Fredman’s open problem regarding the necessity of cascad-
ing cuts using similar techniques to ours.

More broadly, there are several data structures that have been studied which
implement priority queues and achieve the same asymptotic performance as

888 J. Li and J. Peebles

Fibonacci heaps. These include [Pet87], [DGST88], [Høy95], [Tak03], [KT08],
[Elm10], [HST11], [Cha13]. Additionally, there are many other works that deal
with pairing heaps and their variants; eg., [FSST86], [Pet05], [Elm09]. Pairing
heaps offer slightly worse asymptotic performance than Fibonacci heaps but are
often faster in practice.

1.2 Terminology

We will differentiate between Fibonacci heaps as defined in [FT87] and Karger’s
randomized F-heaps by referring to the former as standard Fibonacci heaps and
the latter as randomized Fibonacci heaps. However, when the data structure we
are referring to is clear from context, we may simply call it an F-heap.

For variables, s will always refer to the number of operations that have been
executed on an F-heap, and n will refer to the number of elements in the F-heap.

1.3 Our Contributions

We fully resolve Karger’s question, giving a tight analysis of randomized
F-heaps. We give a lower bound of Ω(log2 s/ log log s) on the worst-case expected
amortized runtime of delete-min. We also obtain a matching upper bound of
O(log2 s/ log log s). Importantly, our lower bounds employ only non-adaptive
request sequences which do not depend on the random outcomes of F-heap oper-
ations. Thus, in contrast to Price’s work, our results truly are a lower bound on
the amortized runtime of Karger’s F-heaps.

The above two bounds are in terms of the number of F-heap operations s.
In terms of the F-heap size n, we give a lower bound of Ω(

√
n). (Previous work

on pairing F-heaps implies a matching upper bound [FSST86].) The request
sequence used to prove this lower bound gives an affirmative answer to the
open question posed by Fredman on whether cascading cuts are necessary for
performance in F-heaps.

Finally, we give a simple modification that improves the expected amortized
performance to Θ(log2 n/ log log n) by periodically rebuilding the F-heap.

1.4 Roadmap

In Section 2, we review the basic properties of standard F-heaps and define
randomized F-heaps. In Section 3, we prove the tight O(log2 s/ log log s) upper
bound on the expected amortized cost of delete-min in randomized F-heaps,
where s is the number of F-heap operations. In Section 4, we give a tight lower
bound of Ω(

√
n), where n is the F-heap size. This bound serves as a warmup

to our more challenging lower bound in the next section. In Section 5, we give
a lower bound of Ω(log s/ log log s) on the cost of delete-min. In Section 6, we
give a simple modification to Karger’s randomized F-heaps which improves the
performance of delete-min to O(log2 n/ log log n), replacing the s in the runtime
with an n. We also show how to extend our work in Section 4 to yield a matching

Replacing Mark Bits with Randomness in Fibonacci Heaps 889

lower bound. In Section 7, we conclude and give possible directions for future
work.

The full version of our paper [LP14] includes additional content which we
omitted here for space considerations. In the full version, we explain how we
resolve Fredman’s open question. We also include proofs and large figures that
could not be included in the main paper due to space considerations.

2 Background

A standard Fibonacci heap is a data structure that implements a priority queue
and supports the operations insert, merge (or meld), decrease-key, and delete-
min. The amortized runtimes of the first three operations is O(1) and the amor-
tized runtime of delete-min is O(log n) where n is the F-heap size.

We will consider time bounds which depend on the number of operations
which have been performed on the F-heap so far, as well as the nukmer of
elements in the F-heap. To reason formally about the average time complexity
of our data structure, we require a slight extension of the usual definition of
amortized runtime.

Definition 1. We say a data structure has amortized runtime O(f(n, s)) if
there is some constant C > 0 so that for any sequence of k operations on the
data structure, the total runtime of the k operations is at most C

∑k
i=1 f(ni, i)

where ni is the number of elements in the F-heap at the ith operation.

We will generally assume that the reader is familiar with the basic design
and analysis of F-heaps. Those wishing to review this information may refer to
the original paper [FT87] or any typical algorithms textbook.

Recall that each node in an F-heap allocates one bit of data called a mark
bit. The only operation that uses the mark bit is the decrease-key operation.
Specifically, the decrease-key operation starts by updating the key of the desired
node and promoting it into the root list. Then, it starts from the node’s former
parent and walks up the tree, promoting nodes to the root list until it encounters
a node with an unset mark bit. It then sets this node’s mark bit and clears the
mark bits of all nodes it promoted.

Karger defined randomized F-heaps as follows. A randomized F-heap behaves
exactly like an F-heap with one exception: how it decides to stop promoting nodes
in the decrease key operation. Recall that standard F-heaps look at the mark
bit to determine whether to stop walking up the tree. In contrast, randomized
F-heaps flip a coin to make this decision. Equivalently, one can think of a ran-
domized F-heap as a simulation of a standard F-heap which intercepts queries
to mark bits and returns random bits instead.

We also remark that the manner in which the root list of an F-heap is man-
aged may depend on the specific implementation of the F-heap. However, neither
our upper bounds nor our lower bounds depend on any ordering properties of
the root list.

890 J. Li and J. Peebles

3 An O(log2 s/ log log s) Upper Bound

In this section, we upper bound the expected amortized cost of the operations
of randomized F-heaps.

Theorem 1. The expected amortized costs for a randomized F-heap’s operations
are O (log s log n/ log log s) ≤ O

(
log2 s/ log log s

)
for delete-min and O(1) for

everything else.

We use a simplified version of the potential function introduced in [FT87]:
if F is an F-heap, then we let Φ(F) be the number of root nodes in F . With
this amortization, it is easy to see that insert, merge, and decrease-key all run
in expected constant time. Thus it suffices to demonstrate that delete-min runs
in expected time O(log s log n/ log log s).

Recall the specification for delete-min: we (1) remove the minimum element
from the list of roots, (2) add all of its children to the root list, then (3) perform
consolidation by rank. If k was the number of roots before the delete-min and r
was the maximum rank1 of any root node in the F-heap before performing step
(3) above, then the real work performed is O(k + r). The change in potential is
O(log n − k), so with the correct scaling, the amortized cost of this operation
is O(r + log n). Thus it suffices to show that r ≤ O(log s log n/ log log s) in
expectation.

We first upper-bound the probability that a node has lost many of its children
since the last time it was in the root list. We say a non-root node v in an F-heap
is missing a child if the child was removed from v and v has not been in the root
list since that time.

Lemma 1. Suppose we have an empty randomized F-heap and we intend to
perform s operations on it which will result in an F-heap of size n. Then the
probability that every non-root node in the resulting F-heap is missing at most k
children is at least 1 − ns2−k.

The proof is given in the full paper. As a corollary, we get the following:

Corollary 1. With probability at least 1− 1/n, no node in the F-heap described
in the above lemma is missing more than k = 2 log n + log s ≤ 3 log s children.

For any integer k ≥ 2, let fk(x) = xk − xk−1 − 1. It is not hard to see that
fk(x) is increasing for x ≥ 1, has a unique positive root λk, and that λk > 1. By
by a more involved version of the analysis in the proof of Corollary 1 in [FT87]
one can obtain the following result, whose proof we defer to the full paper.

Lemma 2. Fix k sufficiently large. Suppose a tree in an F-heap with n nodes has
the property that no non-root node in the tree is missing more than k children.
Then the root has rank O(logλk

n).

1 Recall that the rank of a node in an F-heap is the number of children it has.

Replacing Mark Bits with Randomness in Fibonacci Heaps 891

We also need a technical lemma about the behavior of λk, whose proof we
defer to the full paper.

Lemma 3. For k sufficiently large, 1/ log λk ≤ 2k/ log k.

Proof (of Theorem 1). Insert, merge, and decrease-key are obviously O(1) so we
focus our attention to demonstrating the bound for delete-min. The expected
amortized cost of delete-min is at most the maximum rank r of any root node. By
Lemma 2, r ≤ O(logλk

n) where k is a bound on how many children are missing
from any non-root node in the tree. We can break up E[r] into two terms and
bound them separately. We have,

E[r] = Pr[k ≥ 3 log s] · E[r|k ≥ 3 log s] + Pr[k < 3 log s] · E[r|k < 3 log s].

The first term is bounded by nPr[k ≥ 3 log s] ≤ 1 by Corollary 1. The second is
bounded by

E[r|k < 3 log s] ≤ log n/ log λ3 log s = O(log s log n/ log log s)

by Lemma 3. Thus, the total expected amortized cost of delete-min is
O(log s log n/ log log s).

4 An Ω(
√

n) Lower Bound

This section is dedicated to the proof of the following lower bound:

Theorem 2. There exists a request sequence for randomized F-heaps whose
expected cost is Ω(

√
n) per operation on average, where n is the size of the

F-heap.

Our proof also shows that so-called “cascading cuts” are necessary in F-heaps,
solving an open problem of Fredman. See the full paper for details.

It is worth clarifying what we mean when we say “Ω(
√

n) per operation on
average” since the F-heap size can change from operation to operation. Formally,
this means the sum of the square roots of the F-heap sizes before each operation
divided by the number of operations.

Note that the analysis used in Section 2 of [FSST86] proves a matching upper
bound. In fact, their upper bound applies for a more general class of pairing-heap-
like structures. We also remark that while the expected cost of each operation in
the request sequence is Ω(

√
n) on average per operation, the request sequence

has exponential length. We rectify this and obtain a tight bound for the expected
amortized cost in terms of s in Section 5.

Notice that the theorem is equivalent to saying that there is a request
sequence such that—no matter how one tries to amortize the cost of the
operations—there will always be an operation with cost Ω(

√
n).2

2 To see this, let the average per operation cost be c1 and the maximum amortized
cost of an operation be c2. Then for the total cost c0 of all operations in a request
sequence of length s, we have c1s = c0 ≤ c2s. Thus, c1 ≤ c2.

892 J. Li and J. Peebles

While it is easy to slightly modify randomized F-heaps to “get around” this
lower bound, we include this construction for three reasons. First, it applies
to Karger’s randomized F-heaps as they were originally formulated. Second, it
is a good warm-up to the more complicated construction in Section 5, which
is extended in Section 6 to apply even to these modified F-heaps—where s is
replaced with n in the statement of the bound. Finally, the request sequence we
construct solves Fredman’s open question about the necessity of cascading cuts;
see the full paper for more details.

The main idea is that by using a very large number of requests, we can force
the F-heap into a very bad configuration with high probability. In particular, we
exhibit a configuration which we call the bad state shown in Figure 1 below.

Formally, the bad state of rank
√

n is an F-heap with trees of rank i for all i
from 0 through

√
n where all trees have height 1, except the rank 0 tree which

has height 0. For simplicity, we assume
√

n is integral. Notice that the total
number of F-heap elements is Θ(n).

. . .

. . .

√
n children

Fig. 1. The bad state of rank
√

n

The bad state has the following two key properties, which we encapsulate in
the following two lemmas:

Lemma 4. There exists a constant length sequence of operations which—when
applied to an F-heap in the bad state of rank

√
n—returns the F-heap to the bad

state and takes Ω(
√

n) time to execute.

Lemma 5. There exists a finite length request sequence which, when applied to
an empty F-heap, results in an F-heap in the bad state of rank

√
n with probability

at least 1/2.

Together, these properties imply Theorem 2.

Proof (of Theorem 2 assuming Lemma 4 and Lemma 5). Fix an n. Construct
a request sequence as follows. First, use Lemma 5 to construct the first part of
the request sequence. With probability at least 1/2, this result in an F-heap in
the bad state of rank

√
n. Moreover, this takes S operations to execute, where

S is finite, known, and depends only on n. Then, follow it with S copies of the
request sequence guaranteed by Lemma 4. Conditioning on the event that the

Replacing Mark Bits with Randomness in Fibonacci Heaps 893

first part of the request sequence resulted in an F-heap in the bad state of rank√
n, by Lemma 4, each copy takes O(

√
n) time to execute. Thus we execute O(S)

operations on the F-heap, and with probability at least 1/2, the operations take
at least O(S

√
n) time. Therefore the expected average cost of executing this

request sequence is Ω(
√

n) per step on average.

Thus, all that is left is to prove Lemma 4 and Lemma 5 which we do in the
following two subsections, respectively.

4.1 Proof of Lemma 4

From the bad state, it is straightforward to force the F-heap to spend Ω(
√

n)
time on a delete-min. In this subsection, we prove this fact.

Proof (of Lemma 4). Consider the following request sequence:

1. Add two elements t1, t2 less than every element in the F-heap with t1 < t2.
2. Delete-min twice.

Applying this procedure to an F-heap in the bad state of rank
√

n yields the
cycle of states shown in a figure in the full paperdeterministically. Notice that
the state of the F-heap after applying these operations is unchanged. Moreover,
it is clear that the last delete-min operation in the procedure takes Θ(

√
n) time.

4.2 Proof of Lemma 5

Call a tree of height 1 where the root has c children the c-star, so that the bad
state consists of one c-star, for each 0 ≤ c ≤ √

n.
We will show how to force the F-heap to construct the bad state by forc-

ing it to construct each c-star in the bad state in order from large c to small.
Specifically, we will use the following lemma

Lemma 6. For every c and ε > 0, there exists a sequence of operations which
(starting from an empty F-heap) results in an F-heap which is a c-star with
probability at least 1− ε, and which at no point ever constructs a node with rank
> c.

We first explain why Lemma 6 implies Lemma 5.

Proof (of Lemma 5 assuming Lemma 6). Our request sequence is obtained by
taking the sequences obtained from Lemma 6 for each c from 0 through

√
n with

ε sufficiently small, then concatenating the sequences in order from largest c to
smallest c. It is easy to see that this sequence results in the desired F-heap.

Proof (of Lemma 6). We proceed by induction on c. For c = 0, simply start
with an empty F-heap and insert u. This results in the desired F-heap with
probability 1. Inductively, suppose the statement is true for c = k. Fix ε > 0. By
induction, there is a request sequence which produces a k-star with probability

894 J. Li and J. Peebles

at least
√

1 − ε. Below, we describe a request sequence which constructs a (k+1)-
star from a k-star with probability at least

√
1 − ε. Then by concatenating this

request sequence to the one obtained via induction, we produce the desired
request sequence. In particular, this request sequence gives rise to the desired
F-heap with probability at least (

√
1 − ε)(

√
1 − ε) = 1 − ε as desired.

Assume the F-heap is a k-star rooted at u. Now insert a node v with v > u.
This results in the F-heap shown below.

Heap H

u

. . .

k children

v

Consider the following procedure which we will apply a large number of times.

1. Add 2k − 1 nodes s1, . . . , s2k−1 such that u < v < s1 < s2 < . . . < s2k−1.
2. Add a node t smaller than all other nodes in the F-heap and perform a

delete-min. (This removes t and consolidates the rest of the nodes.)
3. For all 1 ≤ i ≤ 2k − 1, decrease the key of si to be minimum in the F-heap

and delete-min, removing it. The order is arbitrary.

Given an F-heap H as shown in Figure 2, if we apply this procedure over and
over again, the state of H after any particular application of the procedure is
given by the Markov process shown by the flowchart in Figure 2. A more detailed
step-by-step version of the flowchart is given in a figurein the full paper.

Heap H initially

u

. . .

k children

v
u

. . . v

k nodes

prob. 1
probability � 0 (large)

probability > 0 (small)

Fig. 2. High-Level description of how one iteration of our procedure works. Each box
represents a state of the F-heap and each arrow represents the probability of going
from one state to the other after applying steps 1–3 once. After a large number of
applications, we will get stuck in the state on the right with high probability.

Notice that H always has a positive probability of gaining a single extra
child (and no extra descendants), resulting in the F-heap we are trying to create.

Replacing Mark Bits with Randomness in Fibonacci Heaps 895

Furthermore, once H enters this state, it will never leave. Notice additionally that
in none of these possible transitions do we ever produce a tree with rank greater
than k + 1. As such, if we apply the procedure a sufficiently large number of
times—and provided H had the structure shown in Figure 2—we can construct
a sequence of operations that gives the desired resulting H with probability
arbitrarily high. By repeating this request sequence sufficiently many times such
that this probability is at least

√
1 − ε, we are done.

5 The Ω(log2 s/ log log s) Lower Bound

This section is devoted to proving the following theorem:

Theorem 3. There exists a request sequence for randomized F-heaps whose
expected cost is Ω(log2 s/ log log s) per operation on average, where s is the num-
ber of F-heap operations.

Our approach to this bound has the similar structure to Theorem 2: get the
F-heap into a “bad” state then have it perform a costly operation repeatedly.
However, to prove that bound, we constructed an exponentially long request
sequence. The challenge in proving the present bound is that we now need a
subexponential length request sequence.

For this bound, the “bad” state we will force the F-heap into is defined as a
generalized bad state of rank m and is shown in Figure 3.3 Formally, an F-heap
is in a generalized bad state of rank m if it has m + 1 root nodes, where the ith
root node has rank i, for 0 ≤ i ≤ m. Once we get the F-heap into a state of
this form, we will use an analog of Lemma 4 to make the F-heap perform costly
operations, just as in the proof of Theorem 2.

Fig. 3. A generalized bad state

The analogs of Lemma 4 and Lemma 5 we will use are the following:
3 More specifically, we will force the F-heap into a specific known state which is of the

form shown in the figure.

896 J. Li and J. Peebles

Lemma 7. There exists a constant length sequence of operations which—when
applied to an F-heap in a generalized bad state of rank m—returns the F-heap
to a generalized bad state of rank m and takes Ω(m) time to execute.

Proof. The sequence of operations and proof is exactly the same as in Lemma 4.

Lemma 8. There exists a request sequence of length 2O(
√

m log m) which, when
applied to an empty F-heap, results in an F-heap in a generalized bad state of
rank m with probability at least 1/2.

Proof (Proof of Theorem 3 assuming Lemma 7 and Lemma 8). Fix an m. Con-
struct a request sequence as follows: use Lemma 8 to construct the first part
of the request sequence with length �(m) = 2O(

√
m log m). Follow it with �(m)

copies of the constant length request sequence given by Lemma 7. This request
sequence makes Θ(�(m)) requests and takes Ω(�(m)m) time, thus the average
time per request is Ω(m). Letting s = �(m) so that m = �−1(s), we see that
executing s operations takes Ω(m) = Ω(�−1(s)) time per operation on average.
Since �−1(s) = Ω(log2 s/ log log s), this completes the proof.

The proof of Lemma 8 is given in the full paper.

6 Going from Θ(log2 s/ log log s) to Θ(log2 n/ log logn)

In this section, we eliminate the dependence on s in the runtime of randomized
F-heaps via a simple change. Specifically, after every operation, we rebuild the
F-heap with probability 1/n. Rebuilding is done as follows: Create a new ran-
domized F-heap, and insert all elements from the old F-heap into the new F-heap.
We refer to these self-rebuilding F-heaps as augmented randomized F-heaps.

Theorem 4. The augmented randomized F-heap has worst-case expected amor-
tized runtime O(log2 n/ log log n) for delete-min and O(1) for everything else.

Theorem 5. There exists a request sequence for augmented randomized F-heaps
whose expected cost is Ω(log2 n/ log log n) per operation on average, where n is
the number of F-heap elements.

Theorem 4 can be proven by using the same techniques as Theorem 1, so we
omit it. Theorem 5 is proven in the full paper.

7 Conclusion and Acknowledgments

This work gave the first tight analysis of randomized F-heaps, resolving a 15 year
old question of Karger and a 10 year old open problem of Fredman. We showed
that replacing the extraneous mark bit data in F-heaps hurts performance, but
only by roughly a log factor. A natural question for further work is whether
replacing extraneous data with randomness in other data structures like red-
black trees and AVL trees also hurts their performance.

Replacing Mark Bits with Randomness in Fibonacci Heaps 897

Acknowledgments. We thank David Karger for informing us of this problem and
for pointing out that our upper bound was tighter than originally thought.

J.L. was supported by NSF Award # CCF-1217921 and DOE Award # DE-
SC0008923 and an Akamai Presidential Fellowship.

J.P.: This material is based upon work supported by the National Science Founda-
tion Graduate Research Fellowship under Grant No. 1122374. An Akamai Presidential
Fellowship also supported this work.

References

[AVL62] Adelson-Velskii, G.M., Landis, E.M.: An algorithm for the organization of
information. Dokl. Akad. Nauk SSSR 3, 263–266 (1962)

[Cha13] Chan, T.M.: Quake heaps: a simple alternative to fibonacci heaps. In:
Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Ianfest-66. LNCS,
vol. 8066, pp. 27–32. Springer, Heidelberg (2013)

[DGST88] Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed heaps:
An alternative to Fibonacci heaps with applications to parallel computa-
tion. Commun. ACM 31(11), 1343–1354 (1988)

[Elm09] Elmasry, A.: Pairing heaps with o(log log n) decrease cost. In: Claire Math-
ieu, editor, SODA, pp. 471–476. SIAM (2009)

[Elm10] Elmasry, A.: The violation heap: a relaxed Fibonacci-like heap. Discrete
Math., Alg. and Appl. 2(4), 493–504 (2010)

[Fre05] Fredman, M.L.: Binomial, Fibonacci, and pairing heaps. In: Mehta, D.P.,
Sahni, S. (eds.) Handbook of data structures and applications. Chapman &
Hall/CRC, Boca Raton (2005)

[FSST86] Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The pairing
heap: A new form of self-adjusting heap. Algorithmica 1(1), 111–129 (1986)

[FT87] Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM 34(3), 596–615 (1987)

[GS78] Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees.
FOCS 1978, 8–21 (1978)

[Høy95] Høyer, P.: A general technique for implementation of efficient priority
queues. In: ISTCS 1995, ISTCS 1995, p. 57-, Washington, DC, IEEE Com-
puter Society (1995)

[HST11] Haeupler, B., Sen, S., Tarjan, R.E.: Rank-pairing heaps. SIAM J. Comput.
40(6), 1463–1485 (2011)

[Kar00] Karger, D.: untitled manuscript. unpublished (2000)
[Kar13] Karger, D.: personal communication (2013)
[KT08] Kaplan, H., Tarjan, R.E.: Thin heaps, thick heaps. ACM Trans. Algorithms

4(1), 3:1–3:14 (2008)
[KTZ14] Kaplan, H., Tarjan, R.E., Zwick, U.: Fibonacci heaps revisited (2014).

CoRR, abs/1407.5750
[LP14] Li, J., Peebles, J.: Replacing mark bits with randomness in fibonacci heaps

(2014). CoRR, abs/1407.2569
[Pet87] Peterson, G.: A balanced tree scheme for meldable heaps with updates.

Technical Report GIT-ICS-87-23, Georgia Institute of Technology (1987)
[Pet05] Pettie, S.: Towards a final analysis of pairing heaps. FOCS 2005, 174–183

(2005)
[Pri09] Price, E.: Randomized Fibonacci heaps. unpublished (2009)
[Tak03] Takaoka, T.: Theory of 2–3 heaps. Discrete Appl. Math. 126(1), 115–128

(2003)

http://arxiv.org/abs/1407.5750
http://arxiv.org/abs/1407.2569

A PTAS for the Weighted Unit Disk Cover Problem

Jian Li and Yifei Jin(B)

IIIS, Tsinghua University, Beijing, China
lijian83@mail.tsinghua.edu.cn, jin-yf13@mails.tsinghua.edu.cn

Abstract. Weare given a set ofweighted unit disks and a set of points inEuclidean
plane. The minimum weight unit disk cover (WUDC) problem asks for a subset
of disks of minimum total weight that covers all given points. WUDC is one of
the geometric set cover problems, which have been studied extensively for the
past two decades (for many different geometric range spaces, such as (unit) disks,
halfspaces, rectangles, triangles). It is known that the unweightedWUDC problem
is NP-hard and admits a polynomial-time approximation scheme (PTAS). For the
weighted WUDC problem, several constant approximations have been developed.
However, whether the problem admits a PTAS has been an open question. In this
paper, we answer this question affirmatively by presenting the first PTAS for
WUDC. Our result implies the first PTAS for the minimum weight dominating
set problem in unit disk graphs. Combining with existing ideas, our result can also
be used to obtain the first PTAS for the maxmimum lifetime coverage problem
and an improved constant approximation ratio for the connected dominating set
problem in unit disk graphs.

1 Introduction

The set cover (SC) problem is a central problem in theoretical computer science and
combinatorial optimziation. In the problem, we are given a ground set U and collection
S of subsets of U . Each set S ∈ S has a non-nagative weight wS . The goal is to find a
subcollection C ⊆ S of minimum total weight such that

⋃ C covers all elements of U .
The approximibility of the generalSC problem is ratherwell understood: it iswell known
that the greedy algorithm is an Hn-approximation (Hn = ∑n

i=1 1/ i) and obtaining a
(1− ε) ln n-approximation for any constant ε > 0 is NP-hard [12,19]. In the geometric
set cover problem, U is a set of points in some Euclidean space R

d , and S consists
of geometric objects (e.g., disks, squares, triangles), In such geometric setting, we can
hope for better-than-logarithmic approximations due to the special structure of S. Most
geometric set cover problems are NP-hard, even for the very simple classes of objects
such as unit disks [8,24] (see [6,22] for more examples and exceptions). Approximation
algorithms for geometric set cover have been studied extensively for the past twodecades,
not only because of the importance of the problem per se, but also its rich connections
to other important notions and problems, such as VC-dimension [4,9,18], ε-net, union
complexity [7,32,33], planar separators [20,29], evenmachine scheduling problems [3].

In this work, we study the geometric set cover problemwith one of the simplest class
of objects, unit disks. The formal definition of our problem is as follows:

Research supported in part by the National Basic Research Program of China Grant
2015CB358700, 2011CBA00300, 2011CBA00301, the National Natural Science Foundation
of China Grant 61202009, 61033001, 61361136003.

© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 898–909, 2015.
DOI: 10.1007/978-3-662-47672-7_73

A PTAS for the Weighted Unit Disk Cover Problem 899

Definition 1. Weighted Unit Disk Cover (WUDC): Given a set D = {D1, . . . , Dn} of
n unit disks and a set P = {P1, . . . , Pm} of m points in Euclidean plane R

2. Each disk
Di has a weight w(Di). Our goal is to choose a subset of disks to cover all points in P ,
and the total weight of the chosen disks is minimized.

We note that WUDC is the general version of minimum weight dominating set
problem in unit disk graphs (UDG). In fact, several previous results on WUDC were
stated in the context of the dominating set problem.

1.1 Previous Results and Our Contribution
We first recall that a polynomial time approximation scheme (PTAS) for a minimization
problem is an algorithm A that takes an input instance, a constant ε > 0, returns a
solution SOL such that SOL ≤ (1 + ε)OPT, where OPT is the optimal value, and the
running time of A is polynomially in the size of the input for any fixed constant ε.

WUDC is NP-hard, even for the unweighted version (i.e., w(Di) = 1) [8]. For
unweighted dominating set in unit disk graphs, Hunt et al. [26] obtained the first PTAS
in unit disk graphs. For the more general disk graphs, based on the connection between
geometric set cover problem and ε-nets, developed in [4,9,18], and the existence of
ε-net of size O(1/ε) for halfspaces in R

3 [30] (see also [21]), it is possible to achieve
a constant factor approximation. As estimated in [29], these constants are at best 20
(A recent result [5] shows that the constant is at most 13). Moreover, there exists a
PTAS for unweighted disk cover and minimum dominating set via the local search
technique [20,29].

For the general weighted WUDC problem, the story is longer. Ambühl et al. [2]
obtained the first approximation for WUDC with a concrete constant 72, without using
the ε-net machinery. Applying the shifting techique of [23], Huang et al. [25] obtained
a (6 + ε)-approximation algorithm for WUDC. The approximation factor was later
improved to (5+ ε) [10], and to (4+ ε) by several groups [11,16,34]. The current best
ratio is 3.63. 1 Besides, the quasi-uniform sampling method [7,33] provides another
approach to achieve a constant factor approximation for WUDC (even in disk graphs).
However, the constant depends on several other constants from rounding LPs and the size
of the union complexity. Very recently, based on the separator framework of Adamaszek
and Wiese [1], Mustafa and Raman [28] obtained a QPTAS (Quasi-polynomial time
approximation scheme) for weighted disks in R

2 (in fact, weighted halfspaces in R
3),

thus ruling out the APX-hardness of WUDC.
Another closely related work is by Erlebach and van Leeuwen [17], who obtained

a PTAS for set cover on weighted unit squares, which is the first PTAS for weighted
geometric set cover on any planar objects (except those poly-time solvable cases [6,22]).
Although it may seem that their result is quite close to a PTAS for weighted WUDC,
as admitted in their paper, their technique is insufficient for handling unit disks and
“completely different insight is required”.

In light of all the aforementioned results, it seems that we should expect a PTAS for
WUDC, but it remains to be an open question (explicitly mentioned as an open problem

1 The algorithm can be found in Du and Wan [14], who attributed the result to a manuscript by
Willson et al.

900 J. Li and Y. Jin

in a number of previous papers, e.g., [2,14–17,31]). Our main contribution in this paper
is to settle this question affirmatively by presenting the first PTAS for WUDC.

Theorem 1. There is a polynomial time approximation scheme for the WUDC problem.
The running time is nO(1/ε9).

Due to the equivalence between WUDC and minimumweight dominating set in unit
disk graphs, we immediately have the following corollary.

Corollary 1. There is a polynomial time approximation scheme for the minimum weight
dominating set problem in unit disk graphs.

We note that the running time npoly(1/ε) is nearly optimal in light of the negative
result byMarx [27], who showed that an EPTAS (i.e., Efficient PTAS, with running time
f (1/ε)poly(n)) even for the unweighted dominating set in UDG would contradict the
exponential time hypothesis.

Finally, we show that our PTAS for WUDC can be used to obtain improved approxi-
mation algorithms for two important problems inwireless sensor networks, the connected
dominating set problem and the maximum lifetime coverage problem in UDG.

2 Our Approach - A High Level Overview

By the standard shifting technique[13], it suffices to provide a PTAS for WUDC when
all disks are located in a square of constant size (we call it a block, and the constant
depends on 1/ε). This idea is formalized in Huang et al. [25], as follows.

Lemma 1 (Huang ta al. [25]). Suppose there exists a ρ-approximation for WUDC
in a fixed L × L block, with running time f (L). Then there exists a (ρ + O(1/L))-
approximation with running time O(L · n · f (L)) for WUDC. In particular, setting L =
1/ε, there exists a (ρ+ε)-approximation for WUDC, with running time O

(1
ε

· L · f (1
ε
)
)
.

In fact, almost all previous constant factor approximation algorithms for WUDC
were obtained by developing constant approximations for a single block of a constant
size (which is the main difficulty). The main contribution of the paper is to improve on
the previous work [2,10,16,25] for a single block, as in the following lemma.

Lemma 2. There exists a PTAS for WUDC in a fixed block of size L × L for L = 1/ε.
The running time of the PTAS is nO(1/ε9)

From now on, the approximation error guarantee ε > 0 is a fixed constant.Whenever
we say a quantity is a constant, the constant may depend on ε. We use OPT to repre-
sent the optimal solution (and the optimal value) in this block. We use capital letters
A, B, C, . . . to denote points, and small letters a, b, c, . . . to denote arcs. For two points
A and B, we use |AB| to denote the line segment connecting A and B (and its length).
We use Di to denote a disk and Di to denote its center. For a point A and a real r > 0,
let D(A, r) be the disk centered at A with radius r . For a disk Di , we use ∂Di to denote
its boundary. We call a segment of ∂Di an arc.

A PTAS for the Weighted Unit Disk Cover Problem 901

First, we guess thatwhetherOPT containsmore thanC disks or not for some constant
C . If OPT contains no more than C disks, we enumerate all possible combinations
and choose the one which covers all points and has the minimum weight. This takes

O
(∑C

i=1

(n
i

)) = O(nC) time, which is polynomial.

The more challenging case is whether OPT contains more than C disks. In this case,
we guess (i.e., enumerate all possibilities) the set G of the C most expensive disks in
OPT. There are at most a polynomial number (i.e., O(nC)) possible guesses. Suppose
our guess is correct. Then, we delete all disks in G and all points that are covered by
G. Let Dt (with weight wt) be the cheapest disk in G. We can see that OPT ≥ Cwt .
Moreover, we can also safely ignore all disks with weight larger than wt (assuming that
our guess is correct). Now, our task is to cover the remaining points with the remaining
disks, each having weight at most wt . We useD′ = D \G and P ′ = P \P(G) to denote
the set of the remaining disks and the set of remaining points respectively, where P(G)

denote the set of points covered by some disk in G.
Next, we carefully choose to include in our solution a set H ⊆ D′ of at most εC

disks. The purpose ofH is to break the whole instance into many (still a constant) small
pieces (substructures), such that each substructure can be solved optimally, via dynamic
programming. 2 One difficulty is that the substructures are not independent and may
interact with each other (i.e., a disk may appear in more than one substructure). In order
to apply the dynamic programming technique to all substructures simultaneously, we
have to ensure the orders of the disks in different substructures are consistent with each
other. Choosing H to ensure a globally consistent order of disks is in fact the main
technical challenge of the paper.

Suppose we have a set H which suits our need (i.e., the remaining instance (D′ \
H,P ′ \P(H)) can be solved optimally in polynomial time by dynamic programming).
Let S be the optimal solution of the remaining instance. Our final solution is SOL =
G ∪ H ∪ S. First, we can see that w(S) ≤ w(OPT − G − H) ≤ OPT − w(G), since
OPT − G − H is a feasible solution for the instance (D′ \ H,P ′ \ P(H)). Hence, we
have that SOL = w(G) + w(H) + w(S) ≤ OPT + εCwt ≤ (1 + ε)OPT, where the
2nd to last inequality holds because |H| ≤ εC , and the last inequality uses the fact that
OPT ≥ w(G) ≥ Cwt .

Constructing H: Now, we provide a high level sketch for how to construct H ⊆ D′.
First, we partition the block into small squares of side length μ = O(ε) such that any
disk centered in a square can cover the whole square and the disks in the same square are
close enough. Let the set of small squares be Ξ = {Γi j }1≤i, j≤K where K = L/μ. For a
small square Γ , let DsΓ ∈ Γ and DtΓ ∈ Γ be the furthest pair of disks (i.e., |DsΓ DtΓ | is
maximized). We include the pair DsΓ and DtΓ inH, for every small square Γ ∈ Ξ , and
call the pair the square gadget for Γ . We only need to focus on covering the remaining
points in the uncovered region U(H).

We consider all disks in a small square Γ . The uncovered portion of those disks
defined two disjoint connected regions We call such a region, together with all relevant
arcs, a substructure (formal definition in Section 4). In fact, we can solve the disk cov-
ering problem for a single substructure optimally using dynamic programming (which

2 An individual substructure can be solved using a dynamic program similar to [2,22].

902 J. Li and Y. Jin

is similar to the dynamic program in[2,22]). It appears that we are almost done, since
(“intuitively”) all square gadgets have already covered much area of the entire block,
and we should be able to use similar dynamic program to handle all such substructures
as well. However, the situation is more complicated (than we initially expected) since
the arcs are dependent. See Figure 1 for a “not-so-complicated” example. Firstly, there
may exist two arcs (sibling arcs) which belong to the same disk when the disk is centered
in the core-center area). The dynamic program has to make decisions for two sibling
arcs, which belong to two different substructures (called R-correlated substructures),
together. Second, in order to carry out dynamic program, we need a suitable order of all
arcs. To ensure such an order exists, we need all substructures interact with each other
“nicely".

In particular, besides all square gadgets, we need to add into H a constant number
of extra disks. This is done by a series of “cut" operations. A cut can either break a
cycle, or break one substructure into two substructures. To capture how substructures
interact, we define an auxiliary graph, call substructure relation graphS, in which each
substructure is a node. The aforementioned R-correlations define a set of blue edges, and
geometrically overlapping relation define a set of red edges. Though the cut operations,
we can make blue edges form a matching, and red edges also form a matching, and
S acyclic (we call S an acyclic 2-matching). The special structure of S allows us to
define an ordering of all arcs easily. Together with some other simple properties, we can
generalize the dynamic program for one substructure to all substructures.

3 Square Gadgets

We discuss the structure of a square gadget Gg(Γ) associated with the small square
Γ . Recall that the square gadget Gg(Γ) = Ds ∪ Dt , where Ds and Dt are the furthest
pair of disks in Γ . We can see that for any disk Di in Γ , there are either one or two
arcs of ∂Di which are not covered by Gg(Γ). Without loss of generality, assume that
Ds Dt is horizontal. The line Ds Dt divides the whole plane into two half-planes which
are denoted by H+ (the upper half-plane) and H− (the lower half-plane). ∂Ds and ∂Dt

intersect at two points P and Q. We need a few definitions which are useful throughout
the paper.

1. (Center Area andCore-center Area) Define the center area ofGg(Γ) as the intersec-
tion of the two disksD(Ds, rst) andD(Dt , rst) in the squareΓ , where rst = |Ds Dt |.
We use C to denote it. Since Ds and Dt are the furthest pair, we can see that every
other disk in Γ is centered in the center area C.

We define the core-center area ofGg(Γ) is the intersection of two unit disks cen-
tered at P, Q respectively. Essentially, any unit disk centered in the core-center area
has four intersections with the boundary of gadget. Let us denote the area by Co.

2. (Active Region) Consider the regions
(⋃

Di ∈Co
Di − (Ds ∪ Dt)

)
∩ H+ and

(⋃
Di ∈Co

Di − (Ds ∪ Dt)
)

∩ H−. We call each of them an active region associated

with square Γ . An active region can be covered by disks in the core-center area. We
use Ar to denote an active region.

A PTAS for the Weighted Unit Disk Cover Problem 903

Fig. 1. The general picture of the substructures in a block. The red points are the grid points of
squares. Dash green disks are what we have selected in H. There are five substructures in the
block.

4 Substructures

Initially, H includes all square gadgets. In Section 7, we will include in H a constant
number of extra disks. For a set S of disk, we use R(S) to denote the region covered
by disks in S (i.e., ∪Di ∈SDi). Assuming a fixed H, we now describe the basic structure
of the uncovered region R(D′) − R(H). 3 For ease of notation, we use U(H) to denote
the uncovered region R(D′)−R(H). Figure 1 shows an example. Intuitively, the region
consists of several “strips” along the boundary of H. Now, we define some notions to
describe the structure of those strips.

1. (Baseline) We use ∂H to denote to be the boundary ofH. Consider an arc a whose
endpoints P1, P2 are on ∂H. We say the arc a cover a point P ∈ ∂H, if P lies in the
segment between P1 and P2 along ∂H. We say a point P ∈ ∂H can be covered if
some arc in D′ covers P . A baseline is a consecutive maximal segment of ∂H that
can be covered. We usually use b to denote a baseline.

2. (Substructure) A substructure St(b,A) consists of a baseline b and the collection
A of arcs which can cover some point in b. The two endpoints of each arc a ∈ A
are on b and 	 (a) is less than π . Note that every point of b is covered by some arc
in A. Figure 2 illustrates the components of an substructure.

Arc Order: Now we switch our attention to the order of the arcs in a substructure
St(b,A). Suppose the baseline b starts at point Qs and ends up at point Qt . Consider
any two points P1 and P2 on the baseline b. If P1 is more close to Qs than P2 along the
baseline b, we say that P1 appears earlier than P2 (denoted as P1 ≺ P2). Consider any
two arcs a and c inA. The endpoints of arc a are A and B and the endpoints of arc c are
C and D. All of points A, B, C, D are on the baseline b. Without loss any generality,

3 Recall that D′ = D \ G where G is the C most expensive disks in OPT.

904 J. Li and Y. Jin

Fig. 2. A substructure. The baseline b consists of the red arcs which are the part of consecutive
boundary of ∂H. Qs , Qt are the endpoints of b. The black arcs are in the uncovered region. The
arc a ≺ c since A ≺ C and B ≺ D. The bold black arcs form the envelope.

we assume that A ≺ B, C ≺ D and A ≺ C . If B ≺ D, We say arc a appears earlier
than arc c (denoted as a ≺ c). Otherwise, we say a and c are incomparable. See Figure 2
for an example. It is easy to see that ≺ defines a partial order.

Adjacency:Consider two arcs a (with endpoints A ≺ B) and c (with endpointsC ≺ D).
If a ≺ c and C ≺ B, we say that a and b are adjacent (we can see they must intersect
exactly once), and c is the adjacent successor of a. Similarly, we can define the adjacent
successor of subarc a[P1, P2]. If c is the adjacent successor of a, meanwhile c intersects
with subarc a[P1, P2], we say that c is the adjacent successor of subarc a[P1, P2].
Among all adjacent successors of a[P1, P2], we call the one whose intersection with
a[P1, P2] is closest to P1 the first adjacent successor of a[P1, P2].

5 Simplifying the Problem

The substructures may overlap in a variety of ways. As we mentioned in Section 2,
we need to include in H more disks in order to make the substructures amenable to
the dynamic programming technique. However, this step is somewhat involved and we
decide to postpone it to the end of the paper (Section 7). Instead, we present in this
section what is the organization of the substructures after including more disks inH and
what properties we need for the final dynamic program.

Self-Intersections: In a substructure St, suppose there are two arcs a and c in A with
endpoints A, B and C, D respectively. If A ≺ B ≺ C ≺ D and a and c cover at least
one and the same point in P , we say the substructure is self-intersecting. So we will
eliminate all self-intersections in Section 7. In the rest of the section, we assume all
substructures are non-self-intersecting and discuss their properties.

Order Consistency:There are two types of relations between substructures which affect
how the orientations should be done. One is the overlapping relation and the other is
Remote-Correlation. See Figure 1 for some examples.

Definition 2 (Remotely correlation). Consider two substructures Stu and Stl which
are not overlapping. They contain different related active regions of the same gadget.
We say that they are remotely correlated or R-correlated.

There are two possible baseline orientations for each substructure (clockwise or
anticlockwise around the center of the arc), which gives rise to four possible ways to

A PTAS for the Weighted Unit Disk Cover Problem 905

orient both Stu and Stl . However, there are only two (out of four) of them are consistent
(thus we can do dynamic programming on them). More formally, we need the following
definition:

As different substructures may interact with each other, we need a dynamic program
which can run over all substructures simultaneously. Hence, we need to define a globally
consistent ordering of all arcs.

Definition 3 (Global Order Consistency). We have global order consistency if there is
a way to orient the baseline of each substructure, such that the partial orders of the disks
for all substructures are consistent in the following sense: It can not happen that ai ≺ bi

in substructure Sti (bi ,Ai) but a j ≺ b j in St j (b j ,A j), where ai , a j ∈ ∂Da, bi , b j ∈
∂Db and ai , bi ∈ Ai , a j , b j ∈ A j .

Substructure Relation Graph S: we construct an auxiliary graph S, called the sub-
structure relation graph, to capture all R-correlations and Overlapping relations. Each
node inS represents a substructure. If two substructures are R-correlated, we add a blue
edge between the two substructures. If two substructure overlap, we add a red edge.

Definition 4 (Acyclic 2-Matching). We say the substructure relation graph S is an
acyclic 2-matching, if S is acyclic and is composed by a blue matching and a red
matching. In other words, S contains only paths,and the red edges and blue edges
appear alternately in each path.

Definition 5 (Point Order Consistency). Suppose a setPco of points is covered by both
of two overlapping substructures St1(b1,A1) and St2(b2,A2). Consider any two points
P1, P2 ∈ Pco and four arcs a1, a2 ∈ A1, b1, b2 ∈ A2. Suppose P1 ∈ R(a1)∩R(b1) and
P2 ∈ R(a2) ∩R(b2). But P1 /∈ R(a2) ∪R(b2) and P2 /∈ R(a1) ∪R(b1). We say P1 and
P2 are point-order consistent if a1 ≺ a2 in St1 and b1 ≺ b2 in St2. We say the points in
Pco satisfy point order consistency if all pair of points in Pco are point-order consistent.

All introducing all relevant concepts, we can finally state the set of properties we
need for the dynamic program.

Lemma 3. After choosing H, we can ensure the following properties holds:

P1. (Active Region Uniqueness) Each substructure contains at most one active region.
P2. (Non-self-intersection) Every substructure is non-self-intersecting.
P3. (Acyclic 2-Matching) The substructure relation graph S is an acyclic 2-matching,

i.e., S consists of only paths. In each path, red edges and blue edges appear alter-
nately.

P4. (Point Order Consistency) Any point is covered by at most two substructures. The
points satisfy the point order consistency.

How to ensure all these properties will be discussed in details in Section 7. Now,
everything is in place to describe the dynamic program.

906 J. Li and Y. Jin

6 Dynamic Programming

Suppose we have already constructed the setH such that Lemma 3 holds (along with an
orientation for each substructure). Without loss any generality, we can assume that the
remaining disks can cover all remaining points (otherwise, either the original instance is
infeasible or our guess iswrong). In fact, our dynamic program is inspired, and somewhat
similar to those in [2,16,22].

We can see that we only need to handle each path in S separately (since different
paths have no interaction at all). Hence, from now on, we simply assume that S is a
path. Suppose the substructures are {Stk(bk,Ak)}k∈[m]. We use Ak and Bk to denote
two endpoints of bk . Generalizing the previous section, a state for the general DP is
, = {Pk}k∈[m], where Pk is an intersection point in substructure Stk . Let bP k and tP k
be the two arcs intersecting at Pk . Suppose bP k ≺ tP k . We call arc bP k base-arc and tP k
top-arc for point ¶k . Denote the endpoints of bP k by Ck, C ′

k and the endpoints of tP k by
Dk, D′

k . Suppose bP k(P, C ′
k] intersects its first successor at Pb (called base-adjacent

point) and tP (P, D′
k] intersects its first successor at Pt (called top-adjacent point). For

each k ∈ [m], we define St[Pk]
k (bk[Pk],Ak[Pk]) as follows.

– bk[Pk] is the concatenation of subarc bP [P, C ′
k] and the original baseline segment

b1[C ′
k, Pt]. All arcs in b[P]

1 have cost zero.
– Ak[Pk] consists of all arcs a′ ∈ Ak such that bPk ≺ a′ (of course, with the portion
covered by bk[P] subtracted). The cost each such arc is the same as its original cost.

We use P(a) (or P(A)) to denote the points can be covered by arc a (or arc set A).
Let P [{Pk}k∈[m]

]
be the point set we need to cover in the subproblem: P [{Pk}k∈[m]

] =⋃
k∈[m] P(Ak[Pk]) − ⋃

k∈[m] P(bP k). The subproblem OPT({Pk}k∈[m]) is to find, for
each substructure Stk , a valid path from Pk to Bk , such that all points in P[{Pk}k∈[m]]
can be covered and the total cost is minimized.

The additional challenge for the general case is caused by R-correlations. If two arcs
(in two different substructures) belong to the same disk, we say that they are siblings
of each other. If we processed each substructure independently, some disks would be
counted twice. In order to avoid double-counting, we should consider both siblings
together, i.e., select them together and pay the disk only once in the DP.

In order to implement the above idea, we need a few more notations. We construct
an auxiliary bipartite graph B. The nodes on one side are all disks in D′ \ H, and the
node on the other side are substructures. If disk Di has an arc in the substructure St j , we
add an edge between Di and St j . Besides, for each arc of baselines, we add a node to
represent it and add an edge between the node and the substructure which contains the
arc. Because the weight of any arc of baselines is zero, it shall not induce contradiction
that regard them as independent arcs. In fact, there is a 1-1 mapping between the edges
inB and all arcs.

Fix a state , = {Pk}k∈[m]. For any arc a in Stk (with intersection point Pk and base-
arc bP k), a has three possible positions: (1) a ≺ bP k : we label its corresponding edge
with “unprocessed”; (2) a = bP k : we label its corresponding edgewith “processing”; (3)
Others: we label its corresponding edge with “done”. As mentioned before, we need to
avoid the situation where one arc becomes the base-arc first (i.e., being added in solution

A PTAS for the Weighted Unit Disk Cover Problem 907

and paid once), and its sibling becomes the base-arc in a later step (hence being paid
twice). With the above labeling, we can see that all we need to do is to avoid the states
in which one arc is “processing” and its sibling is “unprocessed”. If disk D is incident
on at least one “processing” edge and not incident on any “unprocessed” edge, we say
the D is ready. LetR be the set of ready disks. For each ready disk D, we use Np(D) to
denote the set of neighbors (i.e., substructures) of D connected by “processing” edges.
We should consider all substructures in Np(D) together.

We need in our DP indicator variables to tell us whether a certain transition is
feasible: Formally, if P[{Pk}k∈[m]] = P[[Pk][Pb

i]{i}], let Ii = 0. Otherwise, let Ii = 1.
For ease of notation, for a set {ek}k∈[m] and S ⊆ [m], we write [ek][e′

i]S = {ek}k∈[m]\S ∪
{e′

i }i∈S .Hence, [Pk][Pb
i]{i} = {Pk}k∈[m]\i ∪ Pb

i and [Pk][Pt
i]Np(D) = {Pk}k∈[m]\Np(D) ∪

{Pt
i }i∈Np(D). Then we have the dynamic program as follows:

OPT
({Pk}k∈[m]

) = min

{
mini∈[m]

{
OPT

([Pk][Pb
i]{i}

) + Ii · ∞}
, add no disk

minD∈R
{
OPT

(
[Pk][Pt

i]Np(D)

)
+ wD

}
, add disk D

Note that in the second line, the arc(s) in Np(D) are base-arcs (w.r.t. state , ({Pk}k∈[m]).

7 Constructing H
In this section, we describe how to construct the set H in details. We first include in H
all square gadgets. The boundary of H consists of several closed curves, as shown in
Figure 1. H and all arcs in the uncovered region U(H) define a set of substructures.

First, we note that there may exist a closed curve that all points on the curve are
covered by some arcs (or informally, we have a cyclic substructure, with the baseline
being a cycle). We need to break all such baseline cycles by including a constant number
of extra arcs intoH. This is easy after we introduce the label-cut operation, and we will
spell out all details then. Note that we cannot choose some arbitrary envelope cycle since
it may ruin some good properties we want to maintain.

From now on, we assume that all baselines are simple paths. Now, each closed curve
contains one or more baselines. So, we have an initial set of well defined substructures.
The main purpose of this section is to cut these initial substructures such that Lemma 3
holds.

We will execute a series of operations for constructingH. We first provide below an
high level sketch of our algorithm, and outline how the substructures and the substructure
relation graph S evolve along with the operations.

– First, we deal with active regions. Sometimes, two active region may overlap signif-
icantly and become inseparable (formally defined later), they essentially need to be
dealt as a single active region. In this case, we merge the two active regions together
(we do not need to do anything, but just to pretend that there is only one active
region). We can also show that one active region can be merged with at most one
other active region. For the rest of cases, two overlapping active region are separable,
and we can cut them into at most two non-overlapping active regions, by adding a
small number of extra disks in H. After the merging and cutting operations, each

908 J. Li and Y. Jin

substructure contains at most one active region. Hence, the substructures satisfy the
property (P1) in Lemma 3. Moreover, we show that if any substructure contains an
active region, the substructure is limited in a small region.

– We ensure that each substructure is non-self-intersecting, using a simple greedy
algorithm. After this step, (P2) is satisfied.

– In this step, we ensure that substructure relation graph S is an acyclic 2-matching
(P3). The step has three stages. First, we prove that the set of blue edges forms a
matching. Second, we give an algorithm for cutting the substructures which overlap
with two or more other substructures. After the cut, each substructure overlaps with
no more than one other substructure. So after the first two stages, we can see thatS
is composed of a blue matching and a red matching. At last, we prove that the blue
edges and red edges cannot form a cycle, establishing S is acyclic.

– The goal of this step is to ensure the point-order consistency (P4). We first show
there does not exist a point covered by more than two substructures, when S is
an acyclic 2-matching. Hence, we only need to handle the case of two overlapping
substructures. We show it is enough to break all cycles in a certain planar directed
graph. Again, we can add a few more disks to cut all such cycles.

– Lastly, we show that the number of disks added in H in the above four steps is
O(K 2).

References

1. Adamaszek, A., Wiese, A.: Approximation schemes for maximum weight independent set of
rectangles. In: FOC, pp. 400–409. IEEE (2013)

2. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-Factor Approximation for
Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs. In: Díaz, J., Jansen, K.,
Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp.
3–14. Springer, Heidelberg (2006)

3. Bansal, N., Pruhs, K.: The geometry of scheduling. SICOMP 43(5), 1684–1698 (2014)
4. Brönnimann, H., Goodrich,M.: Almost optimal set covers in finite vc-dimension. DCG 14(1),

463–479 (1995)
5. Bus, N., Garg, S., Mustafa, N. H., Ray, S.: Tighter estimates for epsilon-nets for disks. arXiv

preprint (2015). arXiv:1501.03246
6. Chan, T.M., Grant, E.: Exact algorithms and apx-hardness results for geometric packing and

covering problems. In: CGTA 47, 2, Part A, pp. 112–124 (2014)
7. Chan, T.M., Grant, E., Könemann, J., Sharpe,M.:Weighted capacitated, priority, and geomet-

ric set cover via improved quasi-uniform sampling. In: SODA, pp. 1576–1585. SIAM (2012)
8. Clark,B.N.,Colbourn,C.J., Johnson,D.S.:Unit disk graphs.DiscreteMath.86(1–3), 165–177

(1991)
9. Clarkson, K.L., Varadarajan, K.: Improved approximation algorithms for geometric set cover.

DCG 37(1), 43–58 (2007)
10. Dai, D., Yu, C.: A 5 + ε-approximation algorithm for minimum weighted dominating set in

unit disk graph. TCS 410(8), 756–765 (2009)
11. Ding, L., Wu,W.,Willson, J., Wu, L., Lu, Z., Lee,W.: Constant-approximation for target cov-

erage problem in wireless sensor networks. In: INFOCOM, pp. 1584–1592. IEEE (2012)
12. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC, pp. 624–633. ACM

(2014)

http://arxiv.org/abs/1501.0324

A PTAS for the Weighted Unit Disk Cover Problem 909

13. Du,D.-Z.,Ko,K.,Hu,X.:Design andAnalysis ofApproximationAlgorithms. Springer (2011)
14. Du, D.-Z., Wan, P.-J.: Connected Dominating Set: Theory and Applications, vol. 77. Springer

Science & Business Media (2012)
15. Erlebach, T., Grant, T., Kammer, F.: Maximising lifetime for fault-tolerant target coverage in

sensor networks. In: SPAA, pp. 187–196. ACM (2011)
16. Erlebach, T.,Mihalák,M.:A (4 + ε)-Approximation for theMinimum-WeightDominating Set

Problem inUnit DiskGraphs. In: Bampis, E., Jansen,K. (eds.)WAOA2009. LNCS, vol. 5893,
pp. 135–146. Springer, Heidelberg (2010)

17. Erlebach, T., van Leeuwen, E.: Ptas for weighted set cover on unit squares. In: Serna, M.,
Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX. LNCS, vol. 6302, pp. 166–177. Springer,
Heidelberg (2010)

18. Even, G., Rawitz, D., Shahar, S.M.: Hitting sets when the vc-dimension is small. Information
Processing Letters 95(2), 358–362 (2005)

19. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM (JACM) 45(4),
634–652 (1998)

20. Gibson, M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: breaking the logn
barrier. In: ESA, pp. 243–254. Springer (2010)

21. Har-Peled, S., Kaplan, H., Sharir, M., Smorodinsky, S.: Epsilon-nets for halfspaces revisited
(2014). arXiv preprint arXiv:1410.3154

22. Har-Peled, S., Lee, M.: Weighted geometric set cover problems revisited. JoCG 3(1), 65–85
(2012)

23. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in
image processing and vlsi. JACM 32(1), 130–136 (1985)

24. Hochbaum, D.S., Maass, W.: Fast approximation algorithms for a nonconvex covering prob-
lem. Journal of Algorithms 8(3), 305–323 (1987)

25. Huang, Y., Gao, X., Zhang, Z., Wu, W.: A better constant-factor approximation for weighted
dominating set in unit disk graph. JCO 18(2), 179–194 (2009)

26. Hunt, H.B., III, Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns,
R.E.: NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric
Graphs (1997)

27. Marx, D.: On the optimality of planar and geometric approximation schemes. In: FOCS, pp.
338–348. IEEE (2007)

28. Mustafa, N.H., Raman, R., Ray, S.: Qptas for geometric set-cover problems via optimal sepa-
rators (2014). arXiv preprint arXiv:1403.0835

29. Mustafa, N.H., Ray, S.: Ptas for geometric hitting set problems via local search. In: SOCG, pp.
17–22. ACM (2009)

30. Pyrga, E., Ray, S.: New existence proofs ε-nets. In: SOCG, pp. 199–207. ACM (2008)
31. vanLeeuwen, E.J.: Optimization and approximation on systems of geometric objects. Phd the-

sis
32. Varadarajan, K.: Epsilon nets and union complexity. In: SOCG, SCG 2009, pp. 11–16. ACM

(2009)
33. Varadarajan, K.: Weighted geometric set cover via quasi-uniform sampling. In: SOCG, pp.

641–648. ACM (2010)
34. Zou, F., Wang, Y., Xu, X.-H., Li, X., Du, H., Wan, P., Wu, W.: New approximations for

minimum-weighted dominating sets and minimum-weighted connected dominating sets on
unit disk graphs. TCS 412(3), 198–208 (2011)

http://arxiv.org/abs/1410.3154
http://arxiv.org/abs/1403.0835

Approximating the Expected Values for Combinatorial
Optimization Problems over Stochastic Points

Lingxiao Huang(B) and Jian Li

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
huanglingxiao1990@126.com

Abstract. We consider the stochastic geometry model where the location of each
node is a random point in a given metric space, or the existence of each node is
uncertain. We study the problems of computing the expected lengths of several
combinatorial or geometric optimization problems over stochastic points, includ-
ing closest pair, minimum spanning tree, k-clustering, minimum perfect matching,
and minimum cycle cover. We also consider the problem of estimating the prob-
ability that the length of closest pair, or the diameter, is at most, or at least, a
given threshold. Most of the above problems are known to be #P-hard. We obtain
FPRAS (Fully Polynomial RandomizedApproximation Scheme) formost of them
in both the existential and locational uncertainty models. Our result for stochas-
tic minimum spanning trees in the locational uncertain model improves upon the
previously known constant factor approximation algorithm. Our results for other
problems are the first known to the best of our knowledge.

1 Introduction

Background: Uncertain or imprecise data are pervasive in applications like sensor mon-
itoring, location based services, data collection and integration [12,14,33]. Consider a
temperature monitoring system which collects measures of humidity and wind speed.
Since we do not have the perfect sensing instruments, the data obtained are often con-
taminated with noises[13]. For another example, the locational data collected by the
Global-Positioning Systems (GPS) often contains measurement errors [29]. Moreover,
many machine learning and prediction algorithms also produce a variety of stochastic
models and a large volume of probabilistic data. Thus, managing, analyzing and solving
optimization problems over stochasticmodels and data have recently attracted significant
attentions in several research communities (see e.g., [30,33,34]).

In this paper, we study two stochastic geometry models, the locational uncertainty
model and the existential uncertaintymodel, both of which have been studied extensively
in recent years (see e.g., [2–4,7,20,21,24–26],some of which will be discussed in the
related work section). In fact, a special case of the locational uncertainty model where
all points follow the same distribution is a classic topic in stochastic geometry literature
(see e.g., [8–10,22,31]). The main interest there has been to derive asymptotics for the

Research supported in part by the National Basic Research Program of China Grant
2015CB358700, 2011CBA00300, 2011CBA00301, the National Natural Science Foun- dation
of China Grant 61202009, 61033001, 61361136003.

© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 910–921, 2015.
DOI: 10.1007/978-3-662-47672-7_74

Approximating the Expected Values for Combinatorial Optimization Problems 911

expected values of certain combinatorial problems (e.g., minimum spanning tree). The
stochastic geometry model is also of fundamental interest in the area of wireless net-
works. In many applications, we only have some prior information about the locations
of the transmission nodes (e.g., some sensors that will be deployed randomly in a desig-
nated area by an aircraft). Such a stochastic wireless network can be captured precisely
by this model. See the recent survey [19] and more references therein.

Stochastic Geometry Models: In this paper, we focus on two stochastic geometry
models, the locational uncertainty model and existential uncertainty model.

1. (Locational Uncertainty Model) We are given a metric space P . The location of
each node v ∈ V is a random point in the metric space P and the probability
distribution is given as the input. Formally, we use the term nodes to refer to the
vertices of the graph, points to describe the locations of the nodes in the metric
space. We denote the set of nodes as V = {v1, . . . , vn} and the set of points as
P = {s1, . . . , sm}, where n = |V| and m = |P|. A realization r can be represented
by an n-dimensional vector (r1, . . . , rn) ∈ Pn where point ri is the location of node
vi for 1 ≤ i ≤ n. LetR denote the set of all possible realizations.We assume that the
distributions of the locations of nodes in the metric space P are independent, thus r
occurs with probability Pr[r] = ∏

i∈[n] pvi ri , where pvs represents the probability
that the location of node v is point s ∈ P . The model is also termed as the locational
uncertainty model in [20].

2. (ExistentialUncertaintyModel)Aclosely relatedmodel is the existential uncertainty
model where the location of a node is a fixed point in the given metric space, but
the existence of the node is probabilistic. In this model, we use pi to denote the
probability that node vi exists (if exists, its location is si). A realization r can be
represented by a subset S ⊂ P and Pr[r] = ∏

si ∈S pi
∏

si /∈S(1 − pi).

Problem Formulation: We are interested in following natural problem in the above
models: estimating the expected values of certain statistics of combinatorial objects. In
this paper, we study several combinatorial or geometry problems in these two models:
the closest pair problem, minimum spanning tree, minimum perfect matching (assuming
an even number of nodes), k-clustering andminimum cycle cover. We take the minimum
spanning tree problem for example. Let MST be the length of the minimum spanning
tree (which is a random variable) and MST(r) be the length of the minimum spanning
tree spanning all points in the realization r. We would like to estimate the following
quantity:

E[MST] =
∑

r∈R
Pr[r] · MST(r).

However, the above formula does not give us an efficient way to estimate the expectation
since it involves an exponential number of terms. In fact, computing the exact expected
value (for the problems considered in this paper) are either NP-hard or #P-hard. Follow-
ing many of the theoretical computer science literatures on approximate counting and
estimation, our goal is to obtain fully polynomial randomized approximation schemes
for computing the expected values.

912 L. Huang and J. Li

Table 1. Our results for some problems in different stochastic models

Problems Existential Locational

Closest Pair (§2)
E[C] FPRAS FPRAS

Pr[C ≤ 1] FPRAS FPRAS
Pr[C ≥ 1] Inapprox Inapprox

Diameter (§2)
E[D] FPRAS FPRAS

Pr[D ≤ 1] Inapprox Inapprox
Pr[D ≥ 1] FPRAS FPRAS

Minimum Spanning Tree (§3) E[MST] FPRAS[20] FPRAS
k-Clustering E[kCL] FPRAS Open

Perfect Matching (§4) E[PM] N.A. FPRAS
kth Closest Pair E[kC] FPRAS Open
Cycle Cover E[CC] FPRAS FPRAS

kth Longest m-Nearest Neighbor E[kmNN] FPRAS Open

1.1 Our Contributions

We recall that a fully polynomial randomized approximation scheme (FPRAS) for a
problem f is a randomized algorithm A that takes an input instance x , a real number
ε > 0, returns A(x) such that Pr[(1−ε) f (x) ≤ A(x) ≤ (1+ε) f (x)] ≥ 3

4 and its running
time is polynomial in both the size of the input n and 1/ε. Our main contributions can
be summarized in Table 1. We need to explain some entries in the table in more details.

1. Closest Pair: We use C to denote the minimum distance of any pair of two nodes.
If a realization has less than two nodes, C is zero. Computing Pr[C ≤ 1] exactly in
the existential model is known to be #P-hard even in an Euclidean plane [21], but no
nontrivial algorithmic result is known before. So is computing Pr[C ≥ 1]. In fact, it
is not hard to show that computing Pr[C ≥ 1] is imapproximable within any factor
in a metric space.
We also consider the problem of computing expected distance E[C] between the
closest pair in the same model. We prove that the problem is #P-hard and give the
first known FPRAS in Section 2. Note that an FPRAS for computing Pr[C ≤ 1]
does not imply an FPRAS for computing E[C] 1.

2. Diameter: The problem of computing the expected length of the diameter can be
reduced to the closest pair problem as follows. Assume that the longest distance
between two points in P is W . We construct the new instance P ′ as follows: for any
two points u, v ∈ P , let their distance be 2W − d(u, v) in P ′. The new instance is
still a metric. The sum of the distance of closest pair in P and the diameter in P ′
is exactly 2W (if there are at least two realized points). Hence, the answer for the
diameter can be easily derived from the answer for closest pair in P ′.

3. Minimum Spanning Tree: Computing E[MST] exactly in both uncertainty models
is known to be #P-hard [20]. Kamousi, Chan, and Suri [20] developed an FPRAS

1 To the contrary, an FPRAS for computing Pr[C ≥ 1] or Pr[C = 1] would imply an FPRAS
for computing E[C] since E[C] = ∑

(si ,s j)
Pr[C = d(si , s j)]d(si , s j) = ∫

Pr[C ≥ t]dt =
∑

(si ,s j)
Pr[C ≥ d(si , s j)](d(si , s j) − d(s′

i , s′
j)).

Approximating the Expected Values for Combinatorial Optimization Problems 913

for estimating E[MST] in the existential uncertainty model and a constant factor
approximation algorithm in the locational uncertainty model.
Estimating E[MST] is amendable to several techniques. We obtain an FPRAS for
estimating E[MST] in the locational uncertainty model using the stoch-core tech-
inque in Section 3. In fact, the idea in [20] can also be extended to give an alternative
FPRAS. It is not clear how to extend their idea to other problems.

4. Clustering (k-clustering): In the deterministic k-clustering problem, we want to
partition all points into k disjoint subsets such that the spacing of the partition is
maximized, where the spacing is defined to be the minimum of any d(u, v) with
u, v in different subsets [23]. In fact, the optimal cost of the problem is the length
of the (k − 1)th most expensive edge in the minimum spanning tree [23]. We show
how to estimate E[kCL] using the HPF (hierarchical partition family) technique.

5. Perfect Matching: We assume that there are even number of nodes to ensure that
a perfect matching always exists. Therefore, only the locational uncertainty model
is relevant here. We give the first FPRAS for approximating the expected length
of minimum perfect matching in Section 4 using a more complicated stoch-core
technique.

All of our algorithms run inpolynomial time.However,wehavenot attempted tooptimize
the exact running time.

Our techniques: Perhaps the simplest and the most commonly used technique for esti-
mating the expectation of a random variable is the Monte Carlo method, that is to use
the sample average as the estimate. However, the method is only efficient (i.e., runs
in polynomial time) if the variance of the random variable is small (See Lemma 1).
To circumvent the difficulty caused by the high variance, a general methodology is to
decompose the expectation of the random variable into a convex combination of con-
ditional expectations using the law of total expectation: E[X] = EY

[
E[X | Y]] =∑

y Pr[Y = y] E[X | Y = y]. Hopefully, Pr[Y = y] can be estimated (or calculated
exactly) efficiently, and the random variable X conditioning on each event y has a low
variance. However, choosing the events Y to condition on can be tricky.

We develop two new techniques for choosing such events, each being capable of
solving a subset of aforementioned problems. In the first technique, we first identify a
setH of points, called the stoch-core of the problem, such that (1): with high probability,
all nodes realize inH and (2): conditioning on event (1), the variance is small. Then, we
choose Y to be the number of nodes realized to points not inH. We compute the (1± ε)-
estimates for Y = 0, 1 using Monte Carlo by (1) and (2). The problematic part is when
Y is large, i.e., many nodes realize to points outside H. Even though the probability
of such events is very small, the value of X under such events may be considerably
large, thus contributing nontrivially. However, we can show that the contribution of such
events is dominated by the first few events and thus can be safely ignored. Choosing
appropriate stoch-core is easy for some problems, such as closest pair and minimum
spanning tree, while it may require additional idea for other problems such as minimum
perfect matching.

Our second technique utilizes a notion called Hierarchical Partition Family (HPF).
The HPF has m levels, each representing a clustering of all points. For a combinatorial
problem, for which the solution is a set of edges, we define Y to be the highest level

914 L. Huang and J. Li

such that some edge in the solution is an inter-cluster edge. Informally, conditioning
on the information of Y , we can essentially bound the variance of X (hence use the
Monte Carlo method). To implement Monte Carlo, we need to be able to take samples
efficiently conditioning on Y . We show that such sampling problems can be reduced to,
or have connections to, classical approximate counting and sampling problems, such as
approximating permanent, counting knapsack.

Due to space constraints, we omitmany details, which can be found in the full version
of this paper2.

1.2 Related Work

Several geometric properties of a set of stochastic points have been studied extensively in
the literature under the term stochastic geometry. For instance, Bearwood et al. [8] shows
that if there are n points uniformly and independently distributed in [0, 1]2, the minimal
traveling salesman tour visiting them has an expected lengthΩ(

√
n). Asymptotic results

for minimum spanning trees and minimum matchings on n points uniformly distributed
in unit balls are established by Bertsimas and van Ryzin [10]. Similar results can be
found in e.g., [9,22,31]. Compared with results in stochastic geometry, we focus on the
efficient computation of the statistics, instead of giving explicit mathematical formulas.

Recently, a number of researchers have begun to explore geometric computing under
uncertainty and many classical computational geometry problems have been studied in
different stochastic/uncertainty models. Agarwal, Cheng, Tao and Yi [4] studied the
problem of indexing probabilistic points with continuous distributions for range queries
on a line. Agarwal, Efrat, Sankararaman, and Zhang [5] also studied the same problem
in the locational uncertainty model under Euclideanmetric. Themost probable k-nearest
neighbor problem and its variants have attracted a lot of attentions in the database
community (See e.g., [11]). Several other problems have also been considered recently,
such as computing the expected volume of a set of probabilistic rectangles in a Euclidean
space [36], convex hulls [2], skylines (Pareto curves) over probabilistic points [1,7], and
shape fitting [27].

Kamousi, Chan and Suri [20] initiated the study of estimating the expected length of
combinatorial objects in this model. They showed that computing the expected length
of the nearest neighbor (NN) graph, the Gabriel graph (GG), the relative neighborhood
graph (RNG), and the Delaunay triangulation (DT) can be solved exactly in polyno-
mial time, while computing E[MST] is #P-hard and there exists a simple FPRAS for
approximating E[MST] in the existential model. They also gave a deterministic PTAS
for approximating E[MST] in an Euclidean plane. In another paper [21], they studied
the closest pair and (approximate) nearest neighbor problems (i.e., finding the point with
the smallest expected distance from the query point) in the same model.

The randomly weighted graph model where the edge weights are independent non-
negative variables has also been studied extensively. Frieze [16] and Steele [32] showed
that the expected value of the minimum spanning tree on such a graph with identically
and independently distributed edges is ζ(3)/D where ζ(3) = ∑∞

j=1 1/j3 and D is the
derivative of the distribution at 0. Alexopoulos and Jacobson [6] developed algorithms

2 http://arxiv.org/abs/1209.5828

http://arxiv.org/abs/1209.5828

Approximating the Expected Values for Combinatorial Optimization Problems 915

that compute the distribution of MST and the probability that a particular edge belongs
to MST when edge lengths follow discrete distributions. However, the running times of
their algorithms may be exponential in the worst cases. Recently, Emek, Korman and
Shavitt [15] showed that computing the kth moment of a class of properties, including
the diameter, radius and minimum spanning tree, admits an FPRAS for each fixed k.
Our model differs from their model in that the edge lengths are not independent.

The computational/algorithmic aspects of stochastic geometry have also gained a lot
of attention in recent years from the area of wireless networking. In many application
scenarios, it is common to assume that the nodes (e.g., sensors) are deployed randomly
across a certain area, thereby forming a stochastic network. It is of central importance to
study various properties in this network, such as connectivity [17], transmission capac-
ity [18]. We refer interested reader to a recent survey [19] for more references.

1.3 Preliminaries

Before describing our main results, we first consider the straightforward Monte Carlo
strategy, which is an important building block in our later developments. Suppose we
want to estimate E[X]. In each Monte Carlo iteration, we take a sample (a realization of
all nodes), and compute the value of X for the sample. At the end, we output the average
over all samples. The number of samples required by this algorithm is suggested by the
following standard Chernoff bound.

Lemma 1. (Chernoff Bound) Let random variables X1, X2, . . . , X N be independent
random variables taking on values between 0 and U. Let X = 1

N

∑N
i=1 Xi and μ be the

expectation of X, for any ε > 0,

Pr [X ∈ [(1 − ε)μ, (1 + ε)μ]] ≥ 1 − 2e−N μ
U ε2/4.

Therefore, for any ε > 0, in order to get an (1 ± ε)-approximation with probability
1− 1

poly(n)
, the number of samples needs to be O(U

με2
log n). If U

μ
, the ratio between the

maximumpossible value of X and the expected valueE[X], is bounded by poly(m, n, 1
ε
),

we can use the above Monte Carlo method to estimate E[X] with a polynomial number
of samples. Since we use this condition often, we devote a separate definition to it.

Definition 1. We call a random variable X poly-bounded if the ratio between the max-
imum possible value of X and the expected value E[X] is bounded by poly(m, n, 1

ε
).

2 The Closest Pair Problem

2.1 Estimating Pr[C ≤ 1]
As a warmup, we first demonstrate how to use the stoch-core technique for the closest
pair problem in the existential uncertainty model. Given a set of pointsP = {s1, . . . , sm}
in the metric space, where each point si ∈ P is present with probability pi . We use C
to denote the distance between the closest pair of vertices in the realized graph. If the

916 L. Huang and J. Li

realized graph has less than two points, C is zero. The goal is to compute the probability
Pr[C ≤ 1].

For a set H of points and a subset S ⊆ H , we use H〈S〉 to denote the event that among
all points in H , all and only points in S are present. For any nonnegative integer i , let H〈i〉
denote the event

∨
S⊆H :|S|=i H〈S〉, i.e., the event that exactly i points are present in H .

The stoch-core of the closest pair problem is simply defined to be H ={
si | pi ≥ ε

m2

}
. Let F = P \ H. We consider the decomposition

Pr[C ≤ 1] =
|F |∑

i=0

Pr[F〈i〉 ∧ C ≤ 1] =
|F |∑

i=0

Pr[F〈i〉] · Pr[C ≤ 1 | F〈i〉].

Our algorithm is very simple: estimate the first three terms (i.e., i = 0, 1, 2) and use
their sum as our final answer.

We can see that H satisfies the two properties of a stoch-core mentioned in the
introduction:

1. The probability that all nodes are realized in H, i.e., Pr[F〈0〉], is at least
1 − m · ε

m2 = 1 − ε
m ;

2. If there exist two points si , s j ∈ H such that d(si , s j) ≤ 1, we have Pr[C ≤ 1 |
F〈0〉] ≥ ε2

m4 ; otherwise, Pr[C ≤ 1 | F〈0〉] = Pr[H〈0〉 | F〈0〉] + Pr[H〈1〉 | F〈0〉].
Note that we can compute Pr[H〈0〉 | F〈0〉] and Pr[H〈1〉 | F〈0〉] in polynomial
time. We do not consider this case in the following analysis.

Both properties guarantee that the random variable I (C ≤ 1), conditioned on F〈0〉, is
poly-bounded, hence we can easily get a (1± ε)-estimation for Pr[F〈0〉 ∧ C ≤ 1] with
polynomial many samples with high probability. Similarly, Pr[F〈i〉 ∧ C ≤ 1] can also
be estimated with polynomial number of samples for i = 1, 2. The algorithm can be
found in Algorithm 1.

Algorithm 1. Estimating Pr[C ≤ 1]
1 Estimate Pr[F〈0〉 ∧ C ≤ 1]: Take N0 = O

(
(m/ε)4 lnm

)
independent samples. Suppose

M0 is the number of samples satisfying C ≤ 1 and F〈0〉. T0 ← M0
N0

.

2 Estimate Pr[F〈1〉 ∧ C ≤ 1]: For each point si ∈ F , take N1 = O((m/ε)4 lnm)

independent samples conditioning on the event F〈{si }〉. Suppose there are Mi samples
satisfying C ≤ 1. T1 ← ∑

si ∈F pi Mi /N1.

3 Estimate Pr[F〈2〉 ∧ C ≤ 1]: For each point pair si , s j ∈ F , take N2 = O((m/ε)4 lnm)

independent samples conditioning on the event F〈{si , s j }〉. Suppose there are Mi j
samples satisfying C ≤ 1. T2 ← ∑

si ,s j ∈F pi p j Mi j /N2.

4 Output: T0 + T1 + T2

Lemma 2. Steps 1,2,3 in Algorithm 1 provide (1±ε)-approximations for Pr[F〈i〉∧C ≤
1] for i = 0, 1, 2 respectively, with high probability.

Approximating the Expected Values for Combinatorial Optimization Problems 917

Theorem 1. There is an FPRAS for estimating the probability of the distance between
the closest pair of nodes is at most 1 in the existential uncertainty model.

Proof. We only need to show that the contribution from the rest of terms (where more
than two points outside stoch-core H are present) is negligible compared to the third
term. Suppose S is the set of all present points such that C ≤ 1 and there are at least 3
points not inH. Suppose si , s j are the closest pair in S. We associate S with a smaller set
S′ ⊂ S by making 1 present point in (S ∩ F) \ {si , s j } absent (if there are several such
S′, we choose an arbitrary one). We denote it as S ∼ S′. We use the notation S ∈ Fi to
denote that the realization S satisfies (F〈i〉 ∧ C ≤ 1). Then, we can see that for i ≥ 3,

Pr[F〈i〉 ∧ C ≤ 1] =
∑

S:S∈Fi

Pr[S] ≤
∑

S′:S′∈Fi−1

∑

S:S∼S′
Pr[S].

For a fixed S′, there are at mostm different sets S such that S ∼ S′ and Pr[S] ≤ 2ε
m2 Pr[S′]

for any such S. Hence, we have that
∑

S:S∼S′ Pr[S] ≤ 2ε
m Pr[S′]. Therefore,

Pr[F〈i〉 ∧ C ≤ 1] ≤ 2ε

m
·

∑

S′:S′∈Fi−1

Pr[S′] = 2ε

m
· Pr[F〈i − 1〉 ∧ C ≤ 1].

Hence, overall we have
∑

i≥3 Pr[F〈i〉 ∧ C ≤ 1] ≤ εPr[F〈2〉 ∧ C ≤ 1]. This finishes
the analysis.

��

2.2 Estimating E[C]
In this section, we consider the problem of estimating E[C], where C is the distance of
the closest pair of present points, in the existential uncertainty model. Now, we introduce
our second main technique, the hierarchical partition family (HPF) technique, to solve
this problem. An HPF is a family Ψ of partitions of P , formally defined as follows.

Definition 2. (Hierarchical Partition Family (HPF)) Let T be any minimum spanning
tree spanning all points of P . Suppose that the edges of T are e1, . . . , em−1 with d(e1) ≥
d(e2) ≥ . . . ≥ d(em−1). Let Ei = {ei , ei+1, . . . , em−1}. The HPF Ψ (P) consists of m
partitions Γ1, . . . , Γm. Γ1 is the entire point set P . Γi consists of i disjoint subsets of
P , each corresponding to a connected component of Gi = G(P, Ei). Γm consists of all
singleton points inP . It is easy to see that Γ j is a refinement of Γi for j > i . Consider two
consecutive partitions Γi and Γi+1. Note that Gi contains exactly one more edge (i.e.,
ei) than Gi+1. Let μ′

i+1 and μ′′
i+1 be the two components (called the split components)

in Γi+1, each containing an endpoint of ei . Let νi ∈ Γi be the connected component of
Gi that contains ei . We call νi the special component in Γi . Let Γ ′

i = Γi \ νi .

We observe two properties of Ψ (P) that are useful later.

P1. Consider a component C ∈ Γi . Let s1, s2 be two arbitrary points in C . Then
d(s1, s2) ≤ (m − 1)d(ei) (this is because s1 and s2 are connected in Gi , and ei

is the longest edge in Gi).

918 L. Huang and J. Li

P2. Consider two different components C1 and C2 in Γi . Let s1 ∈ C1 and s2 ∈ C2
be two arbitrary points. Then d(s1, s2) ≥ d(ei−1) (this is because the minimum
inter-component distance is d(ei−1) in Gi).

Let the random variable Y be smallest integer i such that there is at most one present
point in each component of Γi+1. Note that if Y = i then each component of Γi contains
at most one point, except that the special component νi contains exactly two present
points. The following lemma is a simple consequence of P1 and P2.

Lemma 3. Conditioning on Y = i , it holds that d(ei) ≤ C ≤ md(ei) (hence, C is
poly-bounded).

Consider the following expansion of E[C]: E[C] = ∑m−1
i=1 Pr[Y = i]E[C | Y = i].

For a fixed i , Pr[Y = i] can be estimated as follows: For a component C ⊂ P , we use
C〈 j〉 to denote the event that exactly j points in C are present, C〈s〉 the event that only
s is present in C and C〈≤ j〉 the event that no more than j points in C are present. Let
μ′

i and μ′′
i be the two split components in Γi . Note that

Pr[Y = i] = Pr[μ′
i+1〈1〉] · Pr[μ′′

i+1〈1〉] ·
∏

C∈Γ ′
i

Pr[C〈≤ 1〉].

The remaining is to show how to estimate E[C | Y = i]. Since C is poly-bounded,
it suffices to give an efficient algorithm to take samples conditioning on Y = i .
This is again not difficult: We take exactly one point s ∈ μ′

i+1 with probability
Pr[μ′

i+1〈s〉]/Pr[μ′
i+1〈1〉]. Same for μ′′

i+1. For each C ∈ Γ ′
i , take no point from C

with probability Pr[C〈0〉]/Pr[C〈≤ 1〉]; otherwise, take exactly one point s ∈ C with
probability Pr[C〈s〉]/Pr[C〈≤ 1〉]. This finishes the description of the FPRAS in the
existential uncertainty model.

Theorem 2. There is an FPRAS for estimating the expected distance between the closest
pair of nodes in the existential uncertainty models.

3 Minimum Spanning Trees

We consider the problem of estimating the expected size of minimum spanning tree in
the locational uncertainty model. In this section, we briefly sketch how to solve it using
our stoch-core method. Recall that the term nodes refers to the vertices V of the spanning
tree and points describes the locations in P . For ease of exposition, we assume that for
each point, there is only one node that may realize at this point.

Recall that we use the notation v � s to denote the event that node v is present at point
s. Let pvs = Pr[v � s]. Since node v is realized with certainty, we have

∑
s∈P pvs = 1.

For each point s ∈ P , we let p(s) denote the probability that point s is present. For a
set H of points, let p(H) = ∑

s∈H p(s), i.e., the expected number of points present in
H . For a set H of points and a set S of nodes, we use H〈S〉 to denote the event that
all and only nodes in S are realized to some points in H . If S only contains one node,
say v, we use the notation H〈v〉 as the shorthand for H〈{v}〉. Let H〈i〉 denote the event

Approximating the Expected Values for Combinatorial Optimization Problems 919

∨
S:|S|=i H〈S〉, i.e., the event that exactly i nodes are in H . We use diam(H), called the

diameter of H , to denote maxs,t∈H d(s, t). Let d(p, H) be the closest distance between
point p and any point in H .

Finding stoch-core: We find the stoch-core H ← B(s, d(s, t)) = {s′ ∈ P | d(s′, s) ≤
d(s, t)}, where points s and t are the furthest two points among all points r with p(r) ≥

ε
16m .

Lemma 4. The stoch-core H satisfies the following properties:

Q1. p(H) ≥ n − ε
16 = n − O(ε)

Q2. E[MST | H〈n〉] = Ω
(
diam(H) ε2

m2

)
.

Furthermore, the algorithm runs in linear time.

Estimating E[MST]:LetF = P\H. By the lawof total expectation, the expected length
of the minimum spanning tree can be expanded as follows: E[MST] = ∑

i≥0 E[MST |
F〈i〉] · Pr[F〈i〉]. We only estimate the first two terms E[MST | F〈0〉] · Pr[F〈0〉] and
E[MST | F〈1〉] · Pr[F〈1〉] and use their sum as our final estimation. Using Properties
Q1 and Q2, we can estimate the two terms in polynomial time.
Theorem 3. There is an FPRAS for estimating the expected length of the minimum
spanning tree in the locational uncertainty model.

4 Minimum Perfect Matchings

In this section, we consider the minimum perfect matching (PM) problem. We use the
stoch-core method.
Finding stoch-core: First, we show how to find in poly-time the stoch-coreH. See the
Pseudo-code in Algorithm 2 for details.

Algorithm 2. Constructing stoch-core H for Estimating E[PM]
1 Initially, t ← 0 and each point s ∈ P is a component H{s} = B(s, t) by itself.
2 Gradually increase t ; If two different components HS1 andHS2 intersect (where
HS := ∪s∈SB(s, t)); Merge them into a new component HS1∪S2 .

3 Stop increasing t while the first time the following two conditions are satisfied by
components at t :
Q1. For each node v, there is a unique component H j such that

pv(H j) ≥ 1 − O(ε
nm3). We callH j the stoch-core of node v, denoted as H(v).

Q2. For all j , |{v ∈ V | H(v) = H j }| is even.
4 Output the stopping time T and the components H1, . . . ,Hk .

Estimating E[PM]:We useH〈n〉 to denote the event that for each node v, v � H(v). We
denote the event that there are exactly i nodes which are realized out of their stoch-cores
by F〈i〉. Again, we only need to estimate two terms: E[PM | F〈0〉]] · Pr[F〈0〉] and
E[PM | F〈1〉] · Pr[F〈1〉]. Using Properties Q1 and Q2, we can estimate these terms in
polynomial time. Our final estimation is simply the sum of the first two terms.

920 L. Huang and J. Li

Theorem 4. Assuming the locational uncertainty model and that the number of nodes
is even, there is an FPRAS for estimating the expected length of the minimum perfect
matching.

References

1. Afshani, P., Agarwal, P.K., Arge, L., Larsen, K.G., Phillips, J.M.: (Approximate) Uncer-
tain skylines. In: Proceedings of the 14th International Conference on Database Theory,
pp. 186–196. ACM (2011)

2. Agarwal, P.K., Har-Peled, S., Suri, S., Yıldız, H., Zhang, W.: Convex Hulls under Uncer-
tainty. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 37–48. Springer,
Heidelberg (2014)

3. Agarwal, P.K., Cheng, S.-W., Yi, K.: Range searching on uncertain data. ACM Transactions
on Algorithms (TALG) 8(4), 43 (2012)

4. Agarwal, P.K., Cheng, S.W., Tao, Y., Yi, K.: Indexing uncertain data. In: Proceedings of the
Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pp. 137–146. ACM (2009)

5. Agarwal, P.K., Efrat, A., Sankararaman, S., Zhang, W.: Nearest-neighbor searching under
uncertainty. In: Proceedings of the 31st Symposium on Principles of Database Systems,
pp. 225–236. ACM (2012)

6. Alexopoulos, C., Jacobson, J.A.: State space partition algorithms for stochastic systems with
applications to minimum spanning trees. Networks 35(2), 118–138 (2000)

7. Atallah, M.J., Qi, Y., Yuan, H.: Asymptotically efficient algorithms for skyline probabilities
of uncertain data. ACM Trans. Datab. Syst 32(2), 12 (2011)

8. Beardwood, J., Halton, J.H., Hammersley, J.M.: The shortest path through many points. Proc.
Cambridge Philos. Soc. 55, 299–327 (1959)

9. Bern,M.W., Eppstein,D.:Worst-case bounds for suadditive geometric graphs. In: Symposium
on Computational Geometry, pp. 183–188 (1993)

10. Bertsimas, D.J., van Ryzin, G.: An asymptotic determination of the minimum spanning tree
and minimum matching constants in geometrical probability. Operations Research Letters
9(4), 223–231 (1990)

11. Cheng, R., Chen, J., Mokbel, M., Chow, C.: Probabilistic verifiers: Evaluating constrained
nearest-neighbor queries over uncertain data. In: ICDE (2008)

12. Cheng, R., Chen, J., Xie, X.: Cleaning uncertain data with quality guarantees. Proceedings
of the VLDB Endowment 1(1), 722–735 (2008)

13. Deshpande, A., Guestrin, C., Madden, S.R., Hellerstein, J.M., Hong, W.: Model-driven data
acquisition in sensor networks. In: Proceedings of the Thirtieth International Conference on
Very Large Data Bases, vol. 30, pp. 588–599. VLDB Endowment (2004)

14. Dong, X., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: Proceedings of the 33rd
International Conference on Very Large Data Bases, pp. 687–698. VLDB Endowment (2007)

15. Emek, Y., Korman, A., Shavitt, Y.: Approximating the statistics of various properties in ran-
domly weighted graphs. In: Proceedings of the Twenty-Second Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1455–1467. SIAM (2011)

16. Frieze, A.M.: On the value of a random minimum spanning tree problem. Discrete Applied
Mathematics 10(1), 47–56 (1985)

17. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity. In: Proceedings of the
37th IEEE Conference on Decision and Control, vol. 1, pp. 1106–1110. IEEE (1998)

18. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on Information
Theory 46(2), 388–404 (2000)

Approximating the Expected Values for Combinatorial Optimization Problems 921

19. Haenggi, M., Andrews, J.G., Baccelli, F., Dousse, O., Franceschetti, M.: Stochastic geometry
and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected
Areas in Communications 27(7), 1029–1046 (2009)

20. Kamousi, P., Chan, T.M., Suri, S.: Stochastic minimum spanning trees in euclidean spaces. In:
Proceedings of the 27th Annual ACM Symposium on Computational Geometry, pp. 65–74.
ACM (2011)

21. Kamousi, P., Chan, T.M., Suri, S.: Closest pair and the post office problem for stochastic
points. Computational Geometry 47(2), 214–223 (2014)

22. Karloff, H.J.: How long can a euclidean traveling salesman tour be? In: J. Discrete Math.,
p. 2(1). SIAM (1989)

23. Kleinberg, J., Eva, T.: Algorithm design. Pearson Education India (2006)
24. Li, J., Deshpande, A.: Ranking continuous probabilistic datasets. Proceedings of the VLDB

Endowment 3(1–2), 638–649 (2010)
25. Li, J., Phillips, J.M., Wang, H.: ε-kernel coresets for stochastic points. arXiv preprint

arXiv:1411.0194 (2014)
26. Li, J., Wang, H.: Range Queries on Uncertain Data. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC

2014. LNCS, vol. 8889, pp. 326–337. Springer, Heidelberg (2014)
27. Löffler, M., Phillips, J.M.: Shape Fitting on Point Sets with Probability Distributions. In: Fiat,

A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 313–324. Springer, Heidelberg (2009)
28. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.:Wireless sensor networks

for habitat monitoring. In: Proceedings of the 1st ACM International Workshop on Wireless
Sensor Networks and Applications, pp. 88–97. ACM (2002)

29. Pfoser, D., Jensen, C.S.: Capturing the Uncertainty of Moving-Object Representations. In:
Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 111–131.
Springer, Heidelberg (1999)

30. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on stochastic programming: modeling
and theory, vol. 16. SIAM (2014)

31. Snyder, T.L., Steele, J. M.: A priori bounds on the cuclidean traveling salesman. J. Comput.,
p. 24(3) (1995)

32. Steele, J.M.: On Frieze’s ζ (3) limit for lengths of minimal spanning trees. Discrete Applied
Mathematics 18(1), 99–103 (1987)

33. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic databases. Synthesis Lectures on Data
Management 3(2), 1–180 (2011)

34. Swamy, C., Shmoys, D.B.: Approximation algorithms for 2-stage stochastic optimization
problems 37(1), 33–46 (2006)

35. Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., Estrin, D.: Habitat
monitoring with sensor networks. Communications of the ACM 47(6), 34–40 (2004)

36. Yıldız, H., Foschini, L., Hershberger, J., Suri, S.: The Union of Probabilistic Boxes: Main-
taining the Volume. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
vol. 6942, pp. 591–602. Springer, Heidelberg (2011)

http://arxiv.org/abs/1411.0194

Deterministic Truncation of Linear Matroids

Daniel Lokshtanov1, Pranabendu Misra2(B),
Fahad Panolan1,2, and Saket Saurabh1,2

1 University of Bergen, Bergen, Norway
daniello@ii.uib.no

2 Institute of Mathematical Sciences, Chennai, India
{pranabendu,fahad,saket}@imsc.res.in

Abstract. Let M = (E, I) be a matroid. A k-truncation of M is a
matroid M ′ = (E, I′) such that for any A ⊆ E, A ∈ I′ if and only
if |A| ≤ k and A ∈ I. Given a linear representation of M we consider
the problem of finding a linear representation of the k-truncation of this
matroid. This problem can be expressed as the following problem on
matrices. Let M be a n × m matrix over a field F. A rank k-truncation
of the matrix M is a k × m matrix Mk (over F or a related field) such
that for every subset I ⊆ {1, . . . , m} of size at most k, the set of columns
corresponding to I in M has rank |I| if and only if the corresponding
set of columns in Mk has rank |I|. A common way to compute a rank k-
truncation of a n×m matrix is to multiply the matrix with a random k×n
matrix (with the entries from a field of an exponential size), yielding a
simple randomized algorithm. So a natural question is whether it possible
to obtain a rank k-truncation of a matrix, deterministically. In this paper
we settle this question for matrices over any field in which the field
operations can be done efficiently. This includes any finite field and the
field of rationals (Q).

Our algorithms are based on the properties of the classical Wron-
skian determinant, and the folded Wronskian determinant, which was
recently introduced by Guruswami and Kopparty [FOCS, 2013], and
was implicitly present in the work of Forbes and Shpilka [STOC, 2012].
These were used in the context of subspace designs, and reducing ran-
domness for polynomial identity testing and other related problems. Our
main conceptual contribution in this paper is to show that the Wronskian
determinant can also be used to obtain a representation of the truncation
of a linear matroid in deterministic polynomial time. Finally, we use our
results to derandomize several parameterized algorithms, including an
algorithm for computing �-Matroid Parity, to which several problems
like �-Matroid Intersection can be reduced.

D. Lokshtanov is supported by the “BeHard” grant under the recruitment pro-
gramme of the of Bergen Research Foundation. F. Panolan is supported by the Euro-
pean Research Council under the European Unions Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement no. 267959. S. Saurabh is supported by
“PARAPPROX” ERC starting grant no. 306992.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 922–934, 2015.
DOI: 10.1007/978-3-662-47672-7 75

Deterministic Truncation of Linear Matroids 923

1 Introduction

A rank k-truncation of a n × m matrix M , is a k × m matrix Mk such that for
every subset I ⊆ {1, . . . , m} of size at most k, the set of columns corresponding
to I in Mk has rank |I| if and only if the corresponding set of columns in M
has rank |I|. We can think of finding a rank k-truncation of a matrix as a
dimension reduction problem such that linear independence among all sets of
columns of size at most k is preserved. This problem is a variant of the more
general dimensionality reduction problem, which is a basic problem in many areas
of computer science such as machine learning, data compression, information
processing and others. In dimensionality reduction, we are given a collection of
points (vectors) in a high dimensional space, and the objective is to map these
points to points in a space of small dimension while preserving some property of
the original collection of points. For an example, one could consider the problem
of reducing the dimension of the space, while preserving the pairwise distance,
for a given collection of points. Using the Johnson-Lindenstrauss Lemma this
can be done approximately for any collection of m points, while reducing the
dimension of the space to O(log m) [4,22]. In this work, we study dimensionality
reduction under the constraint that linear independence of any sub-collection
of size up to k of the given set of vectors is preserved. The motivation for this
problem comes from Matroid theory and its algorithmic applications. For any
matroid M = (E, I), a k-truncation of M is a matroid M ′ = (E, I ′) such that
for any A ⊆ E, A ∈ I ′ if and only if |A| ≤ k and A ∈ I. Given a linear
representation of a matroid M = (E, I) of rank n over a ground set of size m
(which has a representation matrix M of dimension n × m), we want to find a
linear representation of the k-truncation of the matroid M . In other words, we
want to map the set of column vectors of M (which lie in a space of dimension
n) to vectors in a space of dimension k such that, any set S of column vectors
of M with |S| ≤ k are linearly independent if and only if the corresponding set
of vectors in the k-dimensional vector space are linearly independent.

A common way to obtain a rank k-truncation of a matrix M , is to left-
multiply M by a random matrix of dimension k × n (with entries from a field of
an exponential size). Then using the Schwartz-Zippel Lemma one can show that,
the product matrix is a k-truncation of the matrix M with high probability [26].
This raises a natural question of whether there is a deterministic algorithm
for computing k-truncation of a matrix. In this paper we settle this question
by giving a polynomial time deterministic algorithm to solve this problem. In
particular we have the following theorem.

Theorem 1. Let M be a n×m matrix over a field F of rank n. Given a number
k ≤ n, we can compute a matrix Mk over the field F(X) such that it is a
representation of the k-truncation of M , in O(mnk) field operations over F.
Furthermore, given Mk, we can test whether a given set of � columns in Mk are
linearly independent in O(n2k3) field operations over F.

Observe that, using Theorem 1 we can obtain a deterministic truncation of
a matrix over any field where the field operations can be done efficiently.

924 D. Lokshtanov et al.

This includes any finite field (Fp�) or field of rationals Q. In particular our
result implies that we can find deterministic truncation for important classes of
matroids such as graphic matroids, co-graphic matroids, partition matroids and
others. We note that for many fields, the k-truncation matrix can be represented
over a finite degree extension of F, which is useful in algorithmic applications.

A related notion is the �-elongation of a matroid, where � > rank(M). It is
defined as the matriod M ′ = (E, I ′) such that S ⊆ E is a basis of M ′ if and
only if, it contains a basis of M and |S| = �. Note that the rank of the matroid
M ′ is �. We have the following observation and it’s corollary.

Observation 2 ([28], page 75). Let M be a matroid of rank n over a ground
set of size m. Let M∗, T (M,k) and E(M, �) denote the dual matroid, the k-
truncation and the �-elongation of the matroid M , respectively. Then E(M, �) =
{T (M∗,m−�)}∗, i.e. the �-elongation of M is the dual of the (m−�)-truncation
of the dual of M .

Corollary 1. Let M be a linear matroid of rank n, over a ground set of size m,
which is representable over a field F. Given a number � ≥ n, we can compute
a representation of the �-elongation of M , over the field F(X) in O(mn�) field
operations over F.

Tools and Techniqies. The main tool used in this work, is the Wronskian deter-
minant and its characterization of the linear independence of a set of polynomi-
als. Given a polynomial Pj(X) and a number �, define Y �

j = (Pj(X), P (1)
j (X),

. . . , P
(�−1)
j (X))T . Here, P

(i)
j (X) is the i-th formal derivative of Pj(X). Formally,

the Wronskian matrix of a set of polynomials P1(X), . . . , Pk(X) is defined as the
k × k matrix W (P1, . . . , Pk) = [Y k

1 , . . . , Y k
k]. Recall that to get a k-truncation of

a linear matroid, we need to map a set of vectors from F
n to K

k such that linear
independence of any subset of the given vectors of size at most k is preserved.
We associate with each vector, a polynomial whose coefficients are the entries
of the vector. A known mathematical result states that a set of polynomials
P1(X), . . . , Pk(X) ∈ F[X] are linearly independent over F if and only if the cor-
responding Wronskian determinant det(W (P1, . . . , Pk)) �≡ 0 in F[X] [2,17,27].
However, this requires that the underlying field be Q (or R, C), or that it is a
finite field whose characteristic is strictly larger than the maximum degree of
P1(X), . . . , Pk(X).

For fields of small characteristic, we use the notion of α-folded Wronskian,
which was introduced by Guruswami and Kopparty [21] in the context of sub-
space designs, with applications in coding theory. It was also implicitly present
in the works of Forbes and Shpilka [12], who used it in reducing randomness
for polynomial identity testing and related problems. Let F be a finite field
and α be an element of F. Given a polynomial Pj(X) ∈ F[X] and a number
�, define Z�

j = (Pj(X), Pj(αX), . . . , Pj(α�−1X))T . Formally, the α-folded Wron-
skian matrix of a family of polynomials P1(X), . . . , Pk(X) is defined as the k×k
matrix Wα(P1, . . . , Pk) = [Zk

1 , . . . , Zk
k]. Let P1(X), . . . , Pk(X) be a family of

polynomials of degree at most n−1. From, the results of Forbes and Shpilka [12]

Deterministic Truncation of Linear Matroids 925

one can derive that if α is an element of the field F, of order at least n then
P1(X), . . . , Pk(X) are linearly independent over F if and only if the α-folded
Wronskian determinant det(Wα(P1, . . . , Pk)) �≡ 0 in F[X].

Having introduced the tools, we continue to the description of our algorithm.
Given a n×m matrix M over F and a positive integer k our algorithm for finding
a k-truncation of M proceeds as follows. To a column Ci of M we associate
a polynomial Pi(X) whose coefficients are the entries of Ci. That is, if Ci =
(c1i, . . . , cni)T then Pi(X) =

∑n
j=1 cjix

j−1. If the characteristic of the field F

is strictly larger than n or F = Q then we return Mk = [Y k
1 , . . . , Y k

m] as the
required k-truncation of M . In other cases we first compute an α ∈ F of order
at least n and then return Mk = [Zk

1 , . . . , Zk
m]. We then use the properties of

Wronskian determinant and α-folded Wronskian, to prove the correctness of our
algorithm. Observe that when M is a representation of a linear matroid then Mk

is a representation of it’s k-truncation. Further, each entry of Mk is a polynomial
of degree at most n−1 in F[X]. Thus, testing whether a set of columns of size at
most k is independent, reduces to testing whether a determinant polynomial of
degree at most (n−1)k is identically zero or not. This is easily done by evaluating
the determinant at (n − 1)k + 1 points in F and testing if it is zero at all those
points.

Our main conceptual contribution in this paper is to show the connection
between the Wronskian matrices and the truncation of a linear matroids, which
can be used obtain a representation of the truncation in deterministic polyno-
mial time. These matrices are related to the notion of “rank extractors” which
have important applications in polynomial identity testing and in the construc-
tion of randomness extractors [11,12,14,15]. We believe that these and other
related tools could be useful in obtaining other parameterized algorithms, apart
from those mentioned in this paper. We note that, one can obtain a different
construction of matrix truncation via an earlier result of Gabizon and Raz [15],
which was used in construction of randomness extractors.

Applications. Matroid theory has found many algorithmic applications, start-
ing from the characterization of greedy algorithms, to designing fixed parameter
tractable (FPT) algorithms and kernelization algorithms. Recently the notion of
representative families over linear matroids was used in designing fast FPT, as
well as kernelization algorithm for several problems [8,10,19,23,24,26,29]. Let
us introduce this notion more formally. Let M = (E, I) be a matroid and let
S = {S1, . . . , St} be a family of subsets of E of size p. A subfamily Ŝ ⊆ S is
q-representative for S if for every set Y ⊆ E of size at most q, if there is a set
X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from
Y and X̂ ∪ Y ∈ I. In other words, if a set Y of size at most q can be extended
to an independent set of size |Y |+ p by adding a subset from S, then it also can
be extended to an independent set of size |Y | + p by adding a subset from Ŝ as
well. The Two-Families Theorem of Bollobás [1] for extremal set systems and its
generalization to subspaces of a vector space of Lovász [25] (see also [13]) imply
that every family of sets of size p has a q-representative family with at most

926 D. Lokshtanov et al.

(
p+q

p

)
sets. Recently, Fomin et. al. [10] gave an efficient randomized algorithm

to compute a representative family of size
(
p+q

p

)
in a linear matroid of rank

n > p + q. This algorithm starts by computing a randomized (p + q)-truncation
of the given linear matroid and then computes a q-representative family over the
truncated matroid deterministically. Therefore one of our motivations to study
the k-truncation problem was to find an efficient deterministic computation of
a representative family in a linear matroid. Formally, we have

Theorem 3. Let M = (E, I) be a linear matroid of rank n and let S be a p-family
of independent sets of size t. Let A be a n× |E| matrix representing M over a field
F, and let ω be the exponent of matrix multiplication. Then there are deterministic
algorithms computing Ŝ ⊆q

rep S as follows.

1. A family Ŝ of size
(
p+q

p

)
in O

((
p+q

p

)2
tp3n2 + t

(
p+q

q

)ω
np

)
+ (n + |E|)O(1),

operations over F.
2. A family Ŝ of size np

(
p+q

p

)
in O

((
p+q

p

)
tp3n2 + t

(
p+q

q

)ω−1
(pn)ω−1

)
+ (n +

|E|)O(1) operations over F.

As a corollary of the above theorem, we obtain a deterministic FPT algo-
rithm for �-Matroid Parity, derandomizing the main algorithm of Marx [26],
to which all other problems are reduced in [26]. In particular this implies a deter-
ministic FPT algorithm for �-Matroid Intersection, certain packing prob-
lems and Feedback Edge Set with Budget Vectors. Using our results
one can compute, in deterministic polynomial time, the k-truncation of graphic
and co-graphic matroids, which has important applications in graph algorithms.
Recently, the truncation for co-graphic matroid has been used to obtain deter-
ministic parameterized algorithms, running in time 2O(k)nO(1) time, for problems
where we need to delete k edges that keeps the graph connected and maintain
certain parity conditions [20]. These problems include Undirected Eulerian
Edge Deletion, Directed Eulerian Edge Deletion and Undirected
Connected Odd Edge Deletion [3,6,7,20].

2 Preliminaries

In this section we give various definitions and notions which we make use of in
the paper. We use the following notations: [n] = {1, . . . , n} and

(
[n]
i

)
= {X | X ⊆

[n], |X| = i}.

Fields and Polynomials. In this section we review some definitions and prop-
erties of fields. We refer to any graduate text on algebra for more details. The
cardinality or the size of a field is called its order. For every prime number p
and a positive integer �, there exists a finite field of order p�. Let F be a finite
field and then F[X] denotes the ring of polynomials in X over F. For the ring

Due to space constraints, proofs of some lemmas and some standard definitions have
been omitted. These will appear in the full version of the paper.

Deterministic Truncation of Linear Matroids 927

F[X], we use F(X) to denote the field of fractions of F[X]. We will use F[X]<n

to denote the set the polynomials in F[X] of degree < n. The characteristic
of a field, denoted by char(F), is defined as least positive integer m such that∑m

i=1 1 = 0, and is 0 when no such m exists. For a finite field F, F∗ = F \ {0} is
cyclic group under multiplication. We say that an element β ∈ F has order r, if
r is the least integer such that βr = 1. All finite fields are obtained as extensions
of prime fields, and for any prime p and positive integer � there is exactly one
finite field of order p� up to isomorphism.

Vector and Matrices. A collection of vectors {v1, v2, . . . , vk} are said to be
linearly dependent if there exist values a1, a2, . . . , ak, not all zero, from F such
that

∑k
i=1 aivi = 0. Otherwise these vectors are called linearly independent. For

a matrix A (or a vector v) by AT (or vT) we denoted its transpose. The rank
of a matrix is the cardinality of the maximum sized collection of columns which
are linearly independent. Equivalently, the rank of a matrix is the maximum
number k such that there is a k × k submatrix whose determinant is non-zero.
The determinant of a n × n matrix A is denoted by det(A). Throughout the
paper we use ω to denote the matrix multiplication exponent. The current best
known bound on ω < 2.373 [16,30].

Derivatives. Recall the definition of the formal derivative d
dx of a function

over R. We denote the k-th formal derivative of a function f by f (k). We can
extend this notion to finite fields. Let F be a finite field and let F[X] be the
ring of polynomials in X over F. Let P ∈ F[X] be a polynomial of degree
n − 1, i.e. P =

∑n−1
i=0 aiX

i where ai ∈ F. Then we define the formal derivative
of as P ′ =

∑n−1
i=1 iaiX

i−1. We can extend this definition to the k-th formal
derivative of P as P (k) = (P (k−1))′. For a polynomial P (X) ∈ F[X], the i-th
Hasse derivative Di(P) is defined as the coefficient of Zi in P (X + Z). Here,
P (X + Z) =

∑∞
i=0 Di(P (X))Zi. We note that Hasse derivatives differ from

formal derivatives by a multiplicative factor. We refer to [5] and [18] for details.

3 Matroid Truncation

In this section we give the main result of this work. We start by defining
the tools required for our algorithm. Let F be a field. The set of polynomi-
als P1(X), P2(X), . . . , Pk(X) in F[X] are said to be linearly independent over F

if there don’t exist a1, a2, . . . , ak ∈ F, not all zeros such that
∑k

i=1 aiPi(X) ≡ 0.
Otherwise they are said to be linearly dependent.

Definition 1. Let P (X) be a polynomial of degree at most n − 1 in F[X]. We
define the vector v corresponding to the polynomial P (X) as follows: v[j] =
cj where P (X) =

∑n
j=1 cjx

j−1. Similarly given a vector v of length n over F,
we define the polynomial P (X) in F[X] corresponding to the vector v as follows:
P (X) =

∑n
j=1 v[j]xj−1.

928 D. Lokshtanov et al.

Lemma 1. Let v1, . . . , vk be vectors of length n over F and let P1(X), . . . , Pk(X)
be the corresponding polynomials respectively. Then P1(X), . . . , Pk(X) are
linearly independent over F if and only if v1, . . . , vk are linearly independent
over F.

Wronskian. Let F be a field with characteristic at least n. Consider a collection
of polynomials P1(X), . . . , Pk(X) from F[X] of degree at most n − 1. We define
the following matrix, called the Wronskian, of P1(X), . . . , Pk(X) as follows.

W (P1, . . . , Pk) =

⎛

⎜⎜⎜⎝

P1(X) P2(X) . . . Pk(X)
P

(1)
1 (X) P

(1)
2 (X) . . . P

(1)
k (X)

...
...

. . .
...

P
(k−1)
1 (X) P

(k−1)
2 (X) . . . P

(k−1)
k (X)

⎞

⎟⎟⎟⎠

k×k

Note that, the determinant of the above matrix actually yields a polynomial.
For our purpose we will need the following well known result.

Theorem 4 ([2,17,27]). Let F be a field and P1(X), . . . , Pk(X) be a set of
polynomials from F[X]<n and let char(F) > n or F = Q. Then P1(X), . . . , Pk(X)
are linearly independent over F if and only if det(W (P1, . . . , Pk)) �≡ 0 in F[X].

The notion of Wronskian dates back to 1812 [27]. We refer to [2,17] for some
recent variations and proofs. The switch between usual derivatives and Hasse
derivatives multiplies the Wronskian determinant by a constant, which is non-
zero as long as n < char(F), and thus this criterion works with both notions.
Observe that the Wronskian determinant is a polynomial of degree at most nk
in F[X]. Thus to test if such a polynomial is identically zero, we only need to
evaluate it at nk + 1 arbitrary points of the field F, and check if it is zero at all
those points.

Folded Wronskian. The above definition of Wronskian requires us to compute
derivatives of degree (n − 1) polynomials, which are well defined only if the
underlying field has characteristic greater than n − 1. For matrices over fields of
small characteristic, we have the notion of Folded Wronskian, which is defined
as follows. Consider a collection of polynomials P1(X), . . . , Pk(X) from F[X]
of degree at most (n − 1). Further, let F be of order at least n + 1, and α be
an element of F

∗. We define the α-folded Wronskian, of P1(X), . . . , Pk(X) as
follows.

Wα(P1, . . . , Pk) =

⎛

⎜⎜⎜⎝

P1(X) P2(X) . . . Pk(X)
P1(αX) P2(αX) . . . Pk(αX)

...
...

. . .
...

P1(αk−1X) P2(αk−1X) . . . Pk(αk−1X)

⎞

⎟⎟⎟⎠

k×k

Deterministic Truncation of Linear Matroids 929

As before, the determinant of the above matrix is a polynomial of degree at
most nk in F[X]. The following theorem by Forbes and Shpilka [12] shows that
the above determinant characterizes the linear independence of the collection of
polynomials.

Theorem 5 ([12], Theorem 4.1). 1 Let F be a field, α be an element of F of
order ≥ n and let P1(X), . . . , Pk(X) be a set of polynomials from F[X]<n. Then
P1(X), . . . , Pk(X) are linearly independent over F if and only if the α-folded
Wronskian determinant det(Wα(P1, . . . , Pk)) �≡ 0 in F[X].

3.1 Deterministic Truncation of Matrices

In this section we look at algorithms for computing k-truncation of matrices.
We are given as input a matrix M of over the set of rational numbers Q or over
some finite field F. The following lemma gives us an algorithm to compute the
truncation of a matrix using the classical wronskian, over an appropriate field.
We shall refer to this as the classical wronskian method of truncation.

Lemma 2. Let M be a n×m matrix of rank n over a field F, where F is either
Q or char(F) > n. Then we can compute a k × m matrix Mk of rank k over the
field F(X) which is a k-truncation of the matrix M in O(mnk) operations in F.

Proof. Let F[X] be the ring of polynomials in X over F and let F(X) be the cor-
responding field of fractions. Let C1, . . . , Cm denote the columns of M . Observe
that we have a polynomial Pi(X) corresponding to the column Ci of degree at
most n − 1, and by Lemma 1 we have that Ci1 , . . . , Ci�

are linearly indepen-
dent over F if and only if Pi1(X), . . . , Pi�

(X) are linearly independent over F.
Further note that Pi lies in F[X] and thus also in F(X). Let Di be the vector
(Pi(X), P (1)

i (X), . . . , P (k−1)
i (X)) of length k with entries from F[X] (and also in

F(X)). Note that the entries of Di are polynomials of degree at most n − 1. Let
us define the matrix Mk to be the (k × m) matrix whose columns are DT

i , and
note that Mk is a matrix with entries from F[X]. We will show that indeed Mk

is a k-truncation of the matrix M .
Let I ⊆ {1, . . . , m} such that |I| = � ≤ k. Let Ci1 , . . . , Ci�

be a linearly
independent set of columns of the matrix M over F, where I = {i1, . . . , i�}. We
will show that the columns DT

i1
, . . . , DT

i�
are linearly independent in Mk over

F(X). Consider the k × � matrix MI whose column are the vectors DT
i1

, . . . , DT
i�

.
We shall show that MI has rank � by showing that there is a � × � subma-
trix whose determinant is a non-zero polynomial. Let Pi1(X), . . . , Pi�

(X) be the
polynomials corresponding to the vectors Ci1 , . . . , Ci�

. By Lemma 1 we have that
Pi1(X), . . . , Pi�

(X) are linearly independent over F. Then by Theorem 4, the
(�× �) matrix formed by the column vectors (Pij

(X), P (1)
ij

(X), . . . , P (�−1)
ij

(X))T ,

1 We would like to thank the anonymous reviewers, who pointed out the results of
Forbes and Shpilka [12], which we were unaware of. In an earlier version of the
paper we claimed a new proof of this theorem, which has been removed.

930 D. Lokshtanov et al.

ij ∈ I, is a non-zero determinant in F[X]. But note that this matrix is a subma-
trix of MI . Therefore MI has rank � in F(X). Therefore the vectors DT

i1
, . . . , DT

i�

are linearly independent in F(X). This completes the proof of the forward
direction.

Let I ⊆ {1, . . . , m} such that |I| = � ≤ k and let DT
i1

, . . . , DT
i�

be linearly
independent in Mk over F(X), where I = {i1, . . . , i�}. We will show that the
corresponding set of columns Ci1 , . . . , Ci�

are also linearly independent over F.
For a contradiction assume that Ci1 , . . . , Ci�

are linearly dependent over F. Let
Pi1(X), . . . , Pi�

(X) be the polynomials in F[X] corresponding to these vectors.
Then by Lemma 1 we have that Pi1(X), . . . , Pi�

(X) are linearly dependent over
F. So there is a tuple ai1 , . . . , ai�

of values of F such that
∑�

j=1 aij
Pij

(X) = 0.

Therefore, for any d ∈ {1, . . . , � − 1}, we have that
∑�

j=1 aij
P

(d)
ij

(X) = 0. Now
let DT

i1
, . . . , DT

i�
be the column vectors of Mk corresponding to Ci1 , . . . , Ci�

. Note
that F is a subfield of F(X) and by the above, we have that

∑�
j=1 aij

Dij
= 0.

Thus DT
i1

, . . . , DT
i�

are linearly dependent in Mk over F(X), a contradiction to
our assumption.

Thus we have shown that for any {i1, . . . , i�} ⊆ {1, . . . , m} such that � ≤ k,
Ci1 , . . . , Ci�

are linearly independent over F if and only if Di1 , . . . , Di�
are linearly

independent over F(X). To estimate the running time, observe that for each Ci

we can compute Di in O(kn) field operations and thus we can compute Mk in
O(mnk) field operations.

This completes the proof of this lemma. 	

Lemma 2 is useful in obtaining k-truncation of matrices which entries are

either from the field of large characteristic or from Q. Using Theorem 5, we
obtain the following lemma, which allows us to find truncations in fields of small
characteristic which have large order. We however require an element of high
order of such a field to compute the truncation. In the next lemma we demand
a lower bound on the size of the field as we need an element of certain order.
We will later see how to remove this requirement from the statement of the next
lemma.

Lemma 3. Let F be a finite field and α be an element of F of order at least n.
Let M be a (n × m) matrix of rank n over a field F. Then we can compute a
(k × m) matrix Mk of rank k over the field F(X) which is a k-truncation of the
matrix M in O(mnk) field operations over F.

In Lemma 3 we require that α be an element of order at least n. This implies
that the order of the field F must be at least n+1. We can ensure these require-
ments by preprocessing the input before invoking the Lemma 3. Formally, we
show the following lemma.

Lemma 4. Let M be a matrix of dimension n × m over a finite field F, and
of rank n. Let F = Fp� where p < n. Then in polynomial time we can find an
extension field K of order at least n + 1 and an element α of K of order at
least n + 1, such that M is a matrix over K with the same linear independence
relationships between its columns as before.

Deterministic Truncation of Linear Matroids 931

The next result is useful in finding basis of matrices with entries from F[X].

Lemma 5. Let M be a m × t matrix with entries from F[X]<n and let m ≤ t.
Let w : C(M) → R

+ be a weight function. Then we can compute a minimum
weight column basis of M in O(m2n2t + mωnt) field operations over F.

Finally, we combine Lemma 2, Lemma 4, Lemma 3 and Lemma 5 to obtain
the proof of our main theorem (namely, Theorem 1).

Observe that, using Theorem 1 we can obtain a deterministic truncation of
a matrix over any field where the field operations can be done efficiently. This
includes any finite field (Fp�) or field of rationals Q. We also remark that, in
many instances we can view the truncation as over a finite degree extension of
F, which can be computed efficiently. This is useful in algorithmic applications.

4 Application: Computing Representative Families

In this section we give deterministic algorithms to compute representative fam-
ilies of a linear matroid, given its representation matrix.

Definition 1 (q-Representative Family). Given a matroid M = (E, I) and
a family S of subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative
for S if the following holds: for every set Y ⊆ E of size at most q, if there is a
set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint
from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is q-representative for S we write Ŝ ⊆q

rep S.
We say that a family S = {S1, . . . , St} of sets is a p-family if each set in S is

of size p. In [10] the following theorem is proved. See [9, Theorem 4].

Theorem 6 ([9,10]). Let M = (E, I) be a linear matroid and let S be a
p-family of independent sets of size t. Then there exists Ŝ ⊆q

rep S of size
(
p+q

p

)
.

Furthermore, given a representation AM of M over a field F, there is a ran-
domized algorithm computing Ŝ ⊆q

rep S in O
((

p+q
p

)
tpω + t

(
p+q

q

)ω−1
)

operations
over F.

Fomin et al. [10, Theorem3.1] first gave a deterministic algorithm for com-
puting q-representative of a p-family of independent sets if the rank of the cor-
responding matroid is p+ q. To prove Theorem 6 we first compute a randomized
k-truncation of M = (E, I) [26], and then compute the representative sets. By
using Theorem 1, we may instead obtain a deterministic truncation. Observe
that the representation given by Theorem 1 is over F(X). However, determin-
istic algorithms to compute basis of matrices over F[X] are slower compared to
the standard algorithms. Therefore, we first show a lemma that allows us to find
a set of columns, which contains a basis of the matrix over F[X], quickly; though
the size of the set given by the lemma could be slightly larger than the size of a
basis of the matrix. This result together with Theorem 1 imply our Theorem 3.
We note that, one can in fact prove Theorem 6 for a “weighted notion of rep-
resentative family”. And as before, by using Theorem 1, we can also obtain a
deterministic version of this theorem.

932 D. Lokshtanov et al.

Applications. Marx [26] gave algorithms for several problems based on matroid
optimization. The main theorem in his work is Theorem 1.1 [26] on which most
applications of [26] are based. This theorem gives a randomized FPT algorithm
for the �-Matroid Parity problem.

�-Matroid Parity Parameter: k, �
Input: Let M = (E, I) be a linear matroid where the ground set is parti-
tioned into blocks of size � and let AM be a linear representation M .
Question: is there an independent set that is the union of k blocks?

The proof of the theorem uses an algorithm to find representative sets as a
black box. Applying our algorithm (Theorem 3 of this paper) instead gives a
deterministic version of Theorem 1.1 of [26].

Proposition 1. Let M = (E, I) be a linear matroid where the ground set is
partitioned into blocks of size �. Given a linear representation AM of M , it can
be determined in O(2ωk�||AM ||O(1)) time whether there is an independent set
that is the union of k blocks. (||AM || denotes the length of AM in the input.)

We mention an application from [26] which we believe could be useful to
obtain single exponential time parameterized and exact algorithms.

�-Matroid Intersection Parameter: k
Input: Let M1 = (E, I1), . . . , M1 = (E, I�) be matroids on the same ground
set E given by their representations AM1 , . . . , AM�

over the same field F and
a positive integer k.
Question: Does there exist k element set that is independent in each Mi

(X ∈ I1 ∩ . . . ∩ I�)?

Proposition 2. �-Matroid Intersection can be solved in O(2ωk�||AM ||O(1))
time.

References

1. Bollobás, B.: On generalized graphs. Acta Math. Acad. Sci. Hungar 16, 447–452
(1965)

2. Bostan, A., Dumas, P.: Wronskians and linear independence. The American Math-
ematical Monthly 117(8), 722–727 (2010)

3. Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., Schlotter, I.: Parameterized
complexity of eulerian deletion problems. Algorithmica 68(1), 41–61 (2014)

4. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of John-
son and Lindenstrauss. Random Struct. Algorithms 22(1), 60–65 (2003).
http://dx.doi.org/10.1002/rsa.10073

http://dx.doi.org/10.1002/rsa.10073

Deterministic Truncation of Linear Matroids 933

5. Dvir, Z., Kopparty, S., Saraf, S., Sudan, M.: Extensions to the method of mul-
tiplicities, with applications to kakeya sets and mergers. In: FOCS, pp. 181–190.
IEEE (2009)

6. Fomin, F.V., Golovach, P.A.: Long circuits and large euler subgraphs. In: Bodlaen-
der, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 493–504. Springer,
Heidelberg (2013)

7. Fomin, F.V., Golovach, P.A.: Parameterized complexity of connected even/odd
subgraph problems. J. Comput. Syst. Sci. 80(1), 157–179 (2014)

8. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of
product families. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737,
pp. 443–454. Springer, Heidelberg (2014)

9. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representa-
tive sets with applications in parameterized and exact algorithms (2013). CoRR
abs/1304.4626

10. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative
sets with applications in parameterized and exact algorithms. In: SODA, pp. 142–
151 (2014)

11. Forbes, M.A., Saptharishi, R., Shpilka, A.: Hitting sets for multilinear read-once
algebraic branching programs, in any order. In: Shmoys, D.B. (ed.) STOC, pp.
867–875. ACM (2014)

12. Forbes, M.A., Shpilka, A.: On identity testing of tensors, low-rank recovery and
compressed sensing. In: STOC, pp. 163–172. ACM (2012)

13. Frankl, P.: An extremal problem for two families of sets. European J. Combin.
3(2), 125–127 (1982)

14. Gabizon, A.: Deterministic Extraction from Weak Random Sources. Monographs
in Theoretical Computer Science. An EATCS Series. Springer (2011)

15. Gabizon, A., Raz, R.: Deterministic extractors for affine sources over large fields.
Combinatorica 28(4), 415–440 (2008)

16. Gall, F.L.: Powers of tensors and fast matrix multiplication. In: Nabeshima, K.,
Nagasaka, K., Winkler, F., Szántó, Á. (eds.) ISSAC, pp. 296–303. ACM (2014)

17. Garcia, A., Voloch, J.F.: Wronskians and linear independence in fields of prime
characteristic. Manuscripta Mathematica 59(4), 457–469 (1987)

18. Goldschmidt, D.: Algebraic functions and projective curves, vol. 215. Springer
(2003)

19. Goyal, P., Misra, N., Panolan, F.: Faster deterministic algorithms for r-dimensional
matching using representative sets. In: FSTTCS, pp. 237–248 (2013)

20. Goyal, P., Misra, P., Panolan, F., Philip, G., Saurabh, S.: Finding even subgraphs
even faster (2014). CoRR abs/1409.4935

21. Guruswami, V., Kopparty, S.: Explicit subspace designs. In: FOCS, pp. 608–617
(2013)

22. Johnson, W.B., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert
space. In: Conference in modern analysis and probability, 1982), Contemp. Math.,
Amer. Math. Soc. vol. 26, pp. 189–206 (1984). http://dx.doi.org/10.1090/conm/
026/737400

23. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial
kernel for odd cycle transversal. In: SODA, pp. 94–103. SIAM (2012)

24. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: New tools
for kernelization. In: FOCS 2012, pp. 450–459. IEEE (2012)

25. Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial surveys
(Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham), pp. 45–
86. Academic Press, London (1977)

http://dx.doi.org/10.1090/conm/026/737400
http://dx.doi.org/10.1090/conm/026/737400

934 D. Lokshtanov et al.

26. Marx, D.: A parameterized view on matroid optimization problems. Theor. Com-
put. Sci. 410(44), 4471–4479 (2009)

27. Muir, T.: A Treatise on the Theory of Determinants. Dover Publications (1882)
28. Murota, K.: Matrices and matroids for systems analysis, vol. 20. Springer (2000)
29. Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based app-

roach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797.
Springer, Heidelberg (2014)

30. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In:
STOC 2012, pp. 887–898. ACM (2012)

Linear Time Parameterized Algorithms
for Subset Feedback Vertex Set

Daniel Lokshtanov1, M.S. Ramanujan1(B), and Saket Saurabh1,2

1 University of Bergen, Bergen, Norway
{daniello,Ramanujan.Sridharan}@ii.uib.no

2 The Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

Abstract. In the Subset Feedback Vertex Set (Subset FVS)
problem, the input is a graph G on n vertices and m edges, a subset
of vertices T , referred to as terminals, and an integer k. The objective
is to determine whether there exists a set of at most k vertices inter-
secting every cycle that contains a terminal. The study of parameter-
ized algorithms for this generalization of the Feedback Vertex Set
problem has received significant attention over the last few years. In
fact the parameterized complexity of this problem was open until 2011,
when two groups independently showed that the problem is fixed param-
eter tractable (FPT). Using tools from graph minors Kawarabayashi
and Kobayashi obtained an algorithm for Subset FVS running in
time O(f(k) · n2m) [SODA 2012, JCTB 2012]. Independently, Cygan et
al. [ICALP 2011, SIDMA 2013] designed an algorithm for Subset FVS
running in time 2O(k log k) ·nO(1). More recently, Wahlström obtained the
first single exponential time algorithm for Subset FVS, running in time
4k · nO(1) [SODA 2014]. While the 2O(k) dependence on the parameter
k is optimal under the Exponential Time Hypothesis (ETH), the depen-
dence of this algorithm as well as those preceding it, on the input size is
far from linear.

In this paper we design the first linear time parameterized algorithms
for Subset FVS. More precisely, we obtain two new algorithms for Sub-
set FVS.

– A randomized algorithm for Subset FVS running in time
O(25.6kkO(1)(n + m)).

– A deterministic algorithm for Subset FVS running in time
2O(k log k)(n + m).

In particular, the first algorithm obtains the best possible dependence
on both the parameter as well as the input size, up to the constant in
the exponent. Both of our algorithms are based on “cut centrality”, in
the sense that solution vertices are likely to show up in minimum size
cuts between vertices sampled from carefully chosen distributions.

1 Introduction

Feedback Set problems constitute one of the most important topics of research
in parameterized algorithms [3,4,6–8,10,16,26,27,32,36]. Typically, in these
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 935–946, 2015.
DOI: 10.1007/978-3-662-47672-7 76

936 D. Lokshtanov et al.

problems, we are given an undirected graph G (or a directed graph) and a pos-
itive integer k, and the objective is to “hit” all cycles of the input graph using
at most k vertices (or edges or arcs). Recently, there has been a lot of study
on the subset variant of Feedback Set problems. In these problems, the input
also includes a terminal subset T ⊆ V (G) and the goal is to detect the presence
of a set, referred to as a subset feedback vertex set, that hits all T -cycles, that
is cycles whose intersection with T is non-empty. In this paper we consider the
following problem.

Subset Feedback Vertex Set (Subset FVS)
Instance: A graph G on n vertices and m edges, a vertex subset T ,

and a positive integer k.
Parameter: k
Question: Is there a set of k vertices that intersects every T -cycle?

Subset FVS generalizes Feedback Vertex Set as well as the well known
Multiway Cut problem. In this paper we explore parameterized algorithms
for Subset FVS. In parameterized complexity each problem instance has an
associated parameter k and a central notion in parameterized complexity is fixed
parameter tractability (FPT). This means, for a given instance (x, k), solvability
in time τ(k) · |x|O(1), where τ is an arbitrary function of k.

The study of parameterized algorithms for the Subset FVS problem has
received significant attention in the last few years. The existence of an FPT
algorithm for Subset FVS was shown only in 2011, when two groups inde-
pendently gave FPT algorithms for the problem. Using tools from graph minors
Kawarabayashi and Kobayashi obtained an algorithm for Subset FVS with run-
ning time O(f(k) · n2m) [16] (also see [26]). Independently, Cygan et al. [9,10],
combining iterative compression [31] with Gallai’s theorem [11] designed an algo-
rithm for Subset FVS with running time 2O(k log k) · nO(1). Cygan et al. asked
whether it is possible to obtain an algorithm for Subset FVS running in time
2O(k) · nO(1). Wahlström [36] resolved this question in the affirmative by giving
an algorithm for Subset FVS, with running time 4k · nO(1). It is easy to show
that the 2O(k) dependence on the parameter k is optimal under the Exponential
Time Hypothesis (ETH) [22]. That is, assuming the ETH, Subset FVS does
not admit an algorithm with running time 2o(k) · nO(1).

The focus of this paper is the second component of the running time of
parameterized algorithms, that is, the running time dependence on the input
size n. This direction of research is as old as the existence of parameterized
algorithms, with classic results, such as Bodlaender’s linear time algorithm for
treewidth [1] and the cubic time algorithm of Robertson and Seymour for the
disjoint paths problem [35]. A more recent phenomenon is that one strives for
linear time parameterized algorithms that do not compromise too much on the
dependence of the running time on the parameter k. The gold standard for these
results are algorithms with linear dependence on input size as well as provably
optimal (under ETH) dependence on the parameter. New results in this direction

Linear Time Parameterized Algorithms for Subset Feedback Vertex Set 937

include parameterized algorithms for problems such as Odd Cycle Transver-
sal [23,33], Subgraph Isomorphism [12], Planarization [15,25] as well as a
single-exponential and linear time parameterized constant factor approximation
algorithm for Treewidth [2]. Other recent results include parameterized algo-
rithms with improved dependence on input size for a host of problems [13,17–21].

The running time dependence on the input size for all the previous algorithms
for Subset FVS is quite far from being linear. Recently, the methods behind
the 4k ·nO(1) time algorithm of Wahlström have been applied to give linear time
FPT algorithms [24] for several problems, including the edge-deletion variant of
Unique Label Cover. Interestingly, this approach does not seem to extend
to a linear time algorithm for Subset FVS. In this paper we design the first
linear time parameterized algorithms for Subset FVS. The first algorithm is
randomized with one-sided error, and obtains linear dependence on n as well as
single exponential dependence on k.

Theorem 1. There is an algorithm that, given an instance (G,T, k) of Subset
FVS runs in time 25.6kkO(1)(m+n) and either returns a subset feedback vertex
set of size at most k or concludes correctly with probability at least 1− 1

e that no
such set exists, where m = |E(G)| and n = |V (G)| and e is Euler’s number.

The single exponential dependence on k in the running time of Theorem 1 is
optimal under the ETH. The second algorithm is deterministic at the cost of a
slightly worse dependence on the parameter k.

Theorem 2. There is an algorithm that given an instance (G,T, k) of Subset
FVS runs in time O(2O(k log k)(m + n)) and either returns a subset feedback
vertex set of size at most k, or correctly concludes that no such set exists.

Methodology. Both algorithms begin by applying simple pre-processing rules to
ensure that no vertex or edge is irrelevant, and that every vertex is sufficiently
connected to the terminals. While the pre-processing rules are quite easy to
state, it is surprisingly tricky to apply the rules exhaustively in linear time.
We achieve this by using a classic algorithm of Hopcroft and Tarjan [14] to
decompose a graph into its 3-connected pieces.

At this point the randomized algorithm of Theorem 1 exploits the following
structural insight. Consider a graph G that does have a subset feedback vertex
set S of size at most k. G − S has no T -cycles, and a graph without any T -
cycles is essentially a forest where some of the terminal-free regions have been
replaced by arbitrary graphs. The terminal-free regions may only interact with
neighboring regions via single edges. Since a forest has average degree at most
2, at least half the regions interact with at most two other regions in this way.
Any such “degree two” region can be separated from the terminals by removing
the solution S, as well as the two edges leaving the region in G − S. On the
other hand the pre-processing rules ensure that every vertex has sufficient flow
to the terminals, in particular the rules ensure that each “degree two” region
must have at least one neighbor in the solution. From this we infer that the
vertices of S appear very frequently in small cuts between vertices in “degree

938 D. Lokshtanov et al.

two regions” and terminal vertices. Our algorithm is based on a random process
which is likely to produce a vertex v which is in a “degree two region”. The
algorithm then samples a small set A such that A separates v from the terminal,
and with good probability A has a large intersection with the solution S. At this
point the algorithm guesses the intersection of the set A with the solution S,
removes A∩S from the graph and starts again. The difficult part of the analysis
is to show that whenever the algorithm guesses that a set X is a subset of the
solution, the algorithm is correct with probability at least 1

2O(|X|) .
The deterministic algorithm of Theorem 2 is based on the same ideas as the

randomized algorithm, but is quite far from being a “direct derandomization”.
An attempt at a “direct derandomization” of the algorithm of Theorem 1 could
look like this. The randomized algorithm essentially selects a vertex and claims
that this vertex is a part of the solution. The analysis basically shows that for
any optimal solution S of size at most k, the probability that the randomized
algorithm selects a vertex in S is at least 1/25.6. Suppose that we could compute
deterministically for each vertex v, the probability p(v) with which v is selected.
We know that

∑
v∈S p(v) ≥ 1

25.6 . Thus there must be a vertex in v ∈ S such
that p(v) ≥ 1

25.6k . But
∑

v∈V (G) p(v) = 1, so the number of vertices v such that
p(v) ≥ 1

25.6k is at most 25.6k. This gives us a candidate set of size 25.6k of
which a vertex must be in the solution. We can now guess which vertex this is,
decrease k by 1, and re-start. The main problem with this approach is that we
are unaware of an algorithm to compute p(v) for all vertices v in linear time.
The engine behind the algorithm of Theorem 2 is a different random process
which also ensures that solution vertices are picked with high probability, but
for which the probabilities p(v) are efficiently computable.

2 Preliminaries

The open neighborhood of a vertex v in graph G contains the vertices adjacent
to v, and is written as NG(v). A separation of a graph G is a pair (L,R) of
subsets of V (G) such that L ∪ R = V (G) and there are no edges between L \ R
and R\L in G. The intersection L∩R is called the center of the separation, and
the size |L ∩ R| is the order of the separation. If P is a path from a vertex in
X to a vertex in Y , we say that P is a X-Y path. If X contains a single vertex
x, we say that P is a x-Y path. Two paths that do not share any vertices are
called vertex disjoint. A cycle which intersects T is called a T -cycle. A subset
feedback vertex set of a graph G and terminal set T ⊆ V (G) is a set S ⊆ V (G)
such that G−S does not contain any T -cycles. Contracting an edge uv amounts
to removing the vertices u and v from the graph and making a new vertex w
which is adjacent to all vertices in N(u) ∪ N(v).

Important Separators. We review important separators, as well as some related
results. Let G be a graph, let X,S ⊆ V (G) be vertex subsets. We denote by
RG(X,S) the set of vertices of G reachable from X in the graph G − S and we
denote by NRG(X,S) the set of vertices of G − S which are not reachable from

Linear Time Parameterized Algorithms for Subset Feedback Vertex Set 939

X in the graph G − S. We drop the subscript G if it is clear from the context.
Let G be a graph and let X,Y ⊂ V (G) be two disjoint vertex sets. A subset
S ⊆ V (G) \ (X ∪ Y) is called a X-Y separator in G if RG(X,S) ∩ Y = ∅ or in
other words there is no path from X to Y in the graph G − S. We denote by
λG(X,Y) the size of the smallest X-Y separator in G. If G is clear from context
we omit the subscript.

A X-Y separator S1 is said to cover a X-Y separator S if R(X,S1) ⊃
R(X,S). Note that the definition of covering is asymmetric; the reachability set
is taken from X and not from Y . We say that a X-Y separator S1 dominates
another X-Y separator S if S1 covers S and |S1| ≤ |S|. We call a X-Y sepa-
rator S, important if it is minimal and no other X-Y separator dominates it.
Important separators were first defined by Marx [29], and have found numer-
ous applications since then [6,28,30,34]. The main reason is that there are not
too many important X-Y separators of small size. We now prove a “sampling”
version of the algorithm to enumerate important separators given in [5,30].

Lemma 1 (�1). There is a randomized algorithm SampleImp that given as input
a graph G, disjoint and non-adjacent vertex sets X and Y integer k, and rational
deletion probability 0 < p < 1, runs in time O(kO(1)(m+n)) and outputs a X-Y
separator S of size at most k or fail. For each important X-Y separator A of
size at most k, the probability that S = A is at least p|A|(1 − p)|A|−λ(X,Y).

3 Preprocessing

In this section we describe a linear time preprocessing routine which returns an
equivalent instance with certain structural properties.

Lemma 2 (�). There exists a O(k(n + m)) time algorithm reduce that given
as input an instance (G,T, k), returns an equivalent instance (G′, T ′, k′) with the
following properties.

– |V (G′)| ≤ |V (G)|, |E(G′)| ≤ |E(G)| and k′ ≤ k.
– Every non-terminal vertex has degree at least 3.
– Every terminal vertex has degree at least 2.
– Every terminal vertex of degree 2 has only non-terminal neighbors.
– Every vertex is in a T -cycle.
– For every non-terminal v, either v is adjacent to a terminal or there are at

least three internally vertex disjoint paths to T .
– Between any pair of vertices there are at most two edges.
– Between any pair of non-terminals there is at most one edge.

We will refer to instances satisfying the conclusions of Lemma 2 as reduced
instances. Even though reduced instances may contain double edges, these are
always incident to a terminal and constitute T -cycles all by themselves. Since
every subset feedback vertex set must contain at least one of the two endpoints
1 Proofs of results labelled with � may be found in the appended full version.

940 D. Lokshtanov et al.

of such a double edge, our algorithms will quickly get rid of double edges by
branching. We start by inspecting the structure of instances that do not contain
any T -cycles.

Lemma 3 (�). Let G be a graph and T ⊆ V (G) be a set such that G has no
T -cycles. Then (a) G[T] is a forest, (b) for every connected component C of
G−T and connected component CT of G[T] there is at most one edge between C
and CT , and (c) contracting all edges with both endpoints non-terminals yields
a forest.

Let G be a graph T be a subset of V (G) such that G does not contain a T -
cycle. Next we define the notion of a terminal forest. While the definition might
look technical at a first glance, a terminal forest is just the forest obtained from
G by contracting all the edges with both endpoints non-terminals, rooting the
trees in the forest at arbitrary roots and providing a function χ that maps each
vertex v of the forest to the vertex set in G which was contracted into v.

Definition 1. Let G be a graph T be a subset of V (G) such that G does not
contain a T -cycle. A terminal forest of G is a pair (F, χ), where F is a forest
of rooted trees and χ : V (F) → T ∪ 2V (G)\T is a function with the following
properties:

(a) Each tree Ti in F can be associated to a unique connected component Ci

in G; for each b ∈ V (Ti), χ(b) ⊆ Ci.
(b) ∪b∈V (F)χ(b) = V (G) and for any pair of vertices b, b′ ∈ V (F), χ(b)∩χ(b′) =

∅. That is, χ partitions the vertex set V (G).
(c) For every b ∈ V (F), χ(b) �= ∅ and the graph G[χ(b)] is connected.
(d) For every edge uv ∈ E(G) such that u, v /∈ T there exists b ∈ V (F) such that

uv ∈ χ(b).
(e) For every edge tv ∈ E(G) such that t ∈ T and v ∈ V (G) there exists a

bt ∈ V (F) and bv ∈ V (F) such that χ(bt) = t, v ∈ χ(bv) and btbv ∈ E(F).

From Lemma 3 it follows directly that every graph G that does not have
a T -cycle has a terminal forest. For a terminal forest (F, χ) of G we define
the function χ− : V (G) → V (F) so that χ−(u) is the unique node b ∈ V (F)
so that u ∈ χ(b). We extend χ− to vertex sets of G in the following manner:
χ−(S) =

⋃
u∈S χ−(u).

In Definition 1 we misuse notation - χ can output either vertex sets (non-
terminals) or single vertices (terminals). When χ(b) outputs a terminal t it is
sometimes convenient to treat it as the set {t} containing the terminal. In the
forest F the child-parent and descendant-ancestor relations are well defined. We
can extend these relations to vertices in G in the natural way. We will refer to
the nodes b of F such that χ(b) ∈ T as terminal nodes, and to the other nodes
as non-terminal nodes.

Definition 2. Let G be a graph and T ⊆ V (G) be such that G has no T -cycles.
We say that a terminal t′ ∈ T is an effective descendant of t ∈ T \ {t′} if, in
the terminal forest (F, χ) of G we have that χ−(t) is a descendant of χ−(t′) and

Linear Time Parameterized Algorithms for Subset Feedback Vertex Set 941

there is a path from χ−(t) to χ−(t′) in F with internal vertices disjoint from
χ−(T).

To better understand the definition of effective descendants it is helpful to
construct the effective descendant graph. This is a directed graph with vertex set
T . Each vertex in T it has arcs to all of its effective descendants. It is easy to
see that the effective descendant graph is obtained from F by contracting, for
all terminals t, all edges to t’s non-terminal children, and then orienting edges
from parents to descendants in F . Furthermore, the effective descendant graph
is a forest of rooted trees. Finally, in a graph with no T -cycles, we call a terminal
good if t has at most one effective descendant. Since any rooted tree has at least
as many leaves as vertices with at least two children, we conclude that in a graph
with no T -cycles, at least |T |/2 terminals are good. We now prove a lemma about
the structure of reduced instances, and how a potential subset feedback vertex
set interacts with the rest of the graph.

Lemma 4 (�). Let (G,T, k) be a reduced instance and S be a subset fedback
vertex set of G. Let (F, χ) be the terminal forest of G \ S then the following
holds.

– For every leaf b of F , χ(b) has at least one neighbor in S.
– For every non-terminal leaf b in F such that χ(b) has exactly one neighbor

in S, this neighbor is a terminal.
– For every non-terminal node b ∈ V (F) that has degree 2 in F , χ(b) has at

least one neighbor in S.

4 A Randomized Linear Time Algorithm for Subset FVS

Having proved the required structural properties, we now describe the random-
ized algorithm for Subset FVS. The algorithm, called SolveSFVS, is given in
Algorithm 1. The algorithm runs in kO(1)(n + m) time and has one-sided error.
Except for applying Lemma 2, whenever the algorithm decreases k by x it also
removes x vertices from the graph. Thus, whenever the algorithm outputs suc-
cess, the input instance is a “yes” instance. The difficult part is to show that if
the instance is a “yes” instance then the algorithm returns success with proba-
bility at least γk, for a constant γ = 1

25.6 . The remaining part of the analysis is
essentially devoted to the proof of Lemma 5. The algorithm SolveSFVS makes
use of some probability constants, 0 < αt, αv, β, p < 1. These constants are later
set so as to maximize the success probability of the algorithm.

Lemma 5. If (G,T, k) is a “yes” instance, then Algorithm SolveSFVS outputs
success on (G,T, k) with probability at least γk for γ = 1

25.6 .

The proof of Lemma 5 is by induction on k. A key ingredient of the proof are
three pushing lemmata that we show here. Having Lemma 5 at hand, proving
Theorem 1 is routine.

942 D. Lokshtanov et al.

Input : An instance (G, T, k) of Subset FVS.
Output: success if the algorithm has found a subset feedback vertex set in G of

size at most k, or fail.

1 (G, T, k) ← reduce(G, T, k)
2 if G has no T -cycles then return success;
3 if k ≤ 0 then return fail;
4 if there exists a double edge uv then
5 pick x from {u, v} uniformly at random.
6 return SolveSFVS(G − x, T \ {x}, k − 1)

7 pick t from T uniformly at random.
8 with probability (1 − αt):
9 return SolveSFVS(G − t, T \ {t}, k − 1)

10 if |N(t) ∩ T | ≥ 2 then
11 with probability 1

2
:

12 pick z from N(t) ∩ T uniformly at random.
13 return SolveSFVS(G − z, T \ {z}, k − 1)

14 if N(t) \ T = ∅ then return fail;

15 pick v from N(t) \ T uniformly at random.
16 with probability (1 − αv):
17 return SolveSFVS(G − v, T \ {v}, k − 1)
18 let T̄ = {t}
19 insert each z ∈ T \ {t} with probability 1 − β.
20 let G′ = G − {vt ∈ E(G) | t ∈ T̄} + (τ, {τt | t ∈ T})
21 A� ← SampleImp(G′, v, T̄ ∩ {τ}, k + 1, p)
22 if |N(v) ∩ T̄ | ≥ 2 or A� \ T = ∅ or |A�| = 1 then
23 return SolveSFVS(G − A�, T \ A�, k − |A�|)
24 pick y� from A� \ T uniformly at random.
25 return SolveSFVS(G − (A� \ {y�}), T \ (A� \ {y�}), k − |A| + 1)

Algorithm 4.1. Algorithm SolveSFVS for Subset FVS

We now prove a series of lemmas about how one can modify a solution
by “pushing” the solution vertices towards the terminals. In the following two
lemma statements, G is a graph, T is a set of terminals and S is a subset feedback
vertex set of G. Further, (F, χ) is the terminal forest of G − S, b is a terminal
node in F and b′ is a non-terminal child of b in F . Also, t = χ(b) and v is the
unique neighbor of t in χ(b′) (assuming the existence of b and b′, the existence
and uniqueness of v follows). Furthermore A = N(χ(b′)) ∩ S and T̄ ⊆ T is a set
of terminals such that t ∈ T̄ and T̄ ∩ A = ∅. Finally, G′ is the graph obtained
from G by adding a new vertex τ , making τ adjacent to all vertices of T , and
removing all edges between v and vertices in T̄ .

Lemma 6. If b′ is a leaf node of F , then A is a v-τ separator in G′. Further, for
any v-τ separator A′ (in G′) that dominates A, (S \ A) ∪ A′ is a subset feedback
vertex set of G.

Linear Time Parameterized Algorithms for Subset Feedback Vertex Set 943

Proof. To see that A is a v-τ separator in G′ observe that NG′(χ(b′)) = A and
that χ(b′)∩T = ∅. We now move to the second statement, namely that (S\A)∪A′

is a subset feedback vertex set of G.
Suppose not. Then G − ((S \ A) ∪ A′) contains a T -cycle C. Let L′ be the

set of vertices reachable from v in G′ − A′, plus A′. Let R′ = (V (G′) \ L′) ∪ A′.
(L′, R′) is a separation in G′, since L′ \ R′ are exactly the vertices reachable
from v, while R′ \ L′ are the vertices not reachable from v in G′ − A′. A key
observation is that since A′ dominates A, we have that χ(b′) ⊆ L′ \ R′ and that
A \ A′ ⊆ L′ \ R′.

All edges of G that are not in G′ are incident to v. Let L = L′ ∪ {v} and
R = R′ ∪ {v}, it follows that (L,R) is a separation in G. Since G − S has no
T -cycles it follows that C must contain some vertex of A \ A′. We know that
A \ A′ ⊆ L′ \ R′ and v /∈ A. Therefore, A \ A′ ⊆ L \ R. Furthermore, C is a
T -cycle, so C must contain a terminal z. Since A′ separates v from τ it follows
that L′ ∩ T ⊆ A′. Since v is not a terminal it follows that L ∩ T ⊆ A′. Since C
is disjoint from A′ this means that z /∈ L, so z ∈ R \ L. But then C contains a
vertex in L \ R and a vertex in R \ L, so |C ∩ L ∩ R| ≥ 2. However, the only
vertex in L ∩ R which is not in A′ is v, contradicting that C ∩ A′ = ∅. �
Lemma 7. If t has a unique effective descendant t′, b′ is adjacent to χ−(t′) (in
F), v is adjacent to t′ and t′ is in T̄ , we conclude the following. A is a v-τ
separator in G′. Further, for any v-τ separator A′ (in G′) that dominates A,
(S \ A) ∪ A′ is a subset feedback vertex set of G.

The proof of Lemma 7 is identical (word by word!) to the proof of Lemma 6,
and therefore omitted. For the last lemma statement we need to change the
definition of A. Suppose t has a unique effective descendant t′, b′ is adjacent
to χ−(t′) (in F), v is non-adjacent to t′. Let y be the unique neighbor of t′ in
χ(b′). We define Q to be the set of vertices reachable from v (including v) in
G − (S ∪ {y, t}), and define A = N(Q) \ {y, t}. Just as before, T̄ ⊆ T is a set
of terminals such that t ∈ T̄ and T̄ ∩ A = ∅. Finally, G′ is the graph obtained
from G by adding a new vertex τ , making τ adjacent to all vertices of T , and
removing all edges between v and vertices in T̄ .

Lemma 8. A ∪ {y} is a v-τ separator in G′. Further, for any v-τ separator A′

(in G′) that dominates A∪{y}, if A′ ∩ T̄ = ∅ then y ∈ A′ and (S \A)∪ (A′ \{y})
is a subset feedback vertex set of G.

Proof. To see that A∪{y} is a v-τ separator in G′ observe that the set of vertices
reachable from v in G′ \ (A ∪ {y}) is exactly Q and that Q ∩ T = ∅. We now
show that y ∈ A′. We have that G′[Q] is connected, and contains a neighbor of
y, since G′[χ(b′)] is connected. Since A′ dominates A ∪ {y}, all vertices in Q are
reachable from v in G − A′. Since t′ ∈ T̄ we have that t′ /∈ A′. If y /∈ A′ then
there is a path from v to τ in G′ − A′; via Q to y, then to t′ by the edge yt′

and finally to τ . This contradicts that A′ separates v from τ . We conclude that
y ∈ A′, and proceed to the last statement, namely that (S \ A) ∪ (A′ \ {y}) is a
subset feedback vertex set of G.

944 D. Lokshtanov et al.

Suppose not. Then G−((S\A)∪(A′\{y})) contains a T -cycle C. Let L′ be the
set of vertices reachable from v in G′ − A′, plus A′. Let R′ = (V (G′) \ L′) ∪ A′.
(L′, R′) is a separation in G′, since L′ \ R′ are exactly the vertices reachable
from v, while R′ \ L′ are the vertices not reachable from v in G′ − A′. A key
observation is that since A′ dominates A ∪ {y}, we have that Q ⊆ L′ \ R′ and
that A \ A′ ⊆ L′ \ R′.

All edges of G that are not in G′ are incident to v. Let L = L′ ∪ {v} and
R = R′ ∪ {v}, it follows that (L,R) is a separation in G. Since G − S has no
T -cycles it follows that C must contain some vertex of A \ (A′ \ {y}) = A \ A′.
We know that A\A′ ⊆ L′ \R′ and v is disjoint from A. Therefore, A\A′ ⊆ L\R.
Furthermore, C is a T -cycle, so C must contain a terminal z. Since A′ separates
v from τ in G′ it follows that L′ ∩ T ⊆ A′. Since v is not a terminal it follows
that L ∩ T ⊆ A′. Since C is disjoint from A′ \ {y} and y is not a terminal, this
means that z /∈ L, so z ∈ R \ L. Thus C contains a vertex in L \ R and a vertex
in R \ L, so |C ∩ L ∩ R| ≥ 2. However, the only two vertices in L ∩ R which are
not in A′ \ {y} are v and y. Thus C ∩ L ∩ R = {v, y}.

It follows that C contains path P from v to y with at least one internal vertex,
and all of its internal vertices in R \ L. The internal vertices of P are disjoint
from S \ A and disjoint from A \ A′, since A \ A′ ⊆ L. Thus P is disjoint from
S. However, all paths between v and y in G \ S with at least one internal vertex
must intersect Q \ {v}. But Q ⊆ L, contradicting that the internal vertices of P
are disjoint from L. �

Due to lack of space the deterministic algorithm is omitted in this extended
abstract, and may be found in the full version.

References

1. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

2. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: An O(ckn) 5-approximation algorithm for treewidth. In: FOCS,
pp. 499–508 (2013)

3. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures.
In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg
(2010)

4. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for
feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

5. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum
node multiway cut problem. Algorithmica 55(1), 1–13 (2009)

6. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5) (2008)

7. Chitnis, R., Cygan, M., Hajiaghayi, M., Marx, D.: Directed subset feedback ver-
tex set is fixed-parameter tractable. In: Czumaj, A., Mehlhorn, K., Pitts, A.,
Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 230–241. Springer,
Heidelberg (2012)

Linear Time Parameterized Algorithms for Subset Feedback Vertex Set 945

8. Cygan, M., Nederlof, J., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.:
Solving connectivity problems parameterized by treewidth in single exponential
time. In: FOCS, pp. 150–159 (2011)

9. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex
set is fixed-parameter tractable. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 449–461. Springer, Heidelberg (2011)

10. Cygan, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed-parameter
tractable. SIAM J. Discrete Math. 27(1), 290–309 (2013)

11. Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)
12. Dorn, F.: Planar subgraph isomorphism revisited. In: STACS, pp. 263–274 (2010)
13. Grohe, M., Kawarabayashi, K.-I., Reed, B.A.: A simple algorithm for the graph

minor decomposition - logic meets structural graph theory. In: SODA, pp. 414–431
(2013)

14. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM
J. Comput. 2(3), 135–158 (1973)

15. Kawarabayashi, K.-I.: Planarity allowing few error vertices in linear time. In:
FOCS, pp. 639–648 (2009)

16. Kawarabayashi, K.-I., Kobayashi, Y.: Fixed-parameter tractability for the subset
feedback set problem and the s-cycle packing problem. J. Comb. Theory, Ser. B
102(4), 1020–1034 (2012)

17. Kawarabayashi, K.-I., Kobayashi, Y., Reed, B.A.: The disjoint paths problem in
quadratic time. J. Comb. Theory, Ser. B 102(2), 424–435 (2012)

18. Kawarabayashi, K.-I., Mohar, B.: Graph and map isomorphism and all polyhedral
embeddings in linear time. In: STOC, pp. 471–480 (2008)

19. Kawarabayashi, K.-I., Mohar, B., Reed, B.A.: A simpler linear time algorithm for
embedding graphs into an arbitrary surface and the genus of graphs of bounded
tree-width. In: FOCS, pp. 771–780 (2008)

20. Kawarabayashi, K.-I., Reed, B.A.: A nearly linear time algorithm for the half
integral parity disjoint paths packing problem. In: SODA, pp. 1183–1192 (2009)

21. Kawarabayashi, K.-I., Reed, B.A.: An (almost) linear time algorithm for odd cycles
transversal. In: SODA, pp. 365–378 (2010)

22. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

23. Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow. In:
SODA, pp. 1749–1761 (2014)

24. Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching and FPT
algorithms (2013). CoRR, abs/1310.2841

25. Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: A near-optimal planarization algo-
rithm. In: SODA, pp. 1802–1811 (2014)

26. Kakimura, N., Kawarabayashi, K.-I., Kobayashi, Y.: Erdös-Pósa property and its
algorithmic applications: parity constraints, subset feedback set, and subset pack-
ing. In: SODA, pp. 1726–1736 (2012)

27. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf.
Process. Lett. 114(10), 556–560 (2014)

28. Lokshtanov, D., Ramanujan, M.S.: Parameterized tractability of multiway cut with
parity constraints. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part I. LNCS, vol. 7391, pp. 750–761. Springer, Heidelberg (2012)

29. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci.
351(3), 394–406 (2006)

30. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. SIAM J. Comput. 43(2), 355–388 (2014)

946 D. Lokshtanov et al.

31. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford
(2006)

32. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable
algorithms for finding feedback vertex sets. ACM Transactions on Algorithms 2(3),
403–415 (2006)

33. Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms via skew-
symmetric multicuts. In: SODA pp. 1739–1748 (2014)

34. Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable. J. Comput.
Syst. Sci. 75(8), 435–450 (2009)

35. Robertson, N., Seymour, P.D.: Graph minors. xiii. the disjoint paths problem. J.
Comb. Theory, Ser. B 63(1), 65–110 (1995)

36. Wahlström, M.: Half-integrality, LP-branching and FPT algorithms. In: SODA,
pp. 1762–1781 (2014)

An Optimal Algorithm for Minimum-Link
Rectilinear Paths in Triangulated

Rectilinear Domains

Joseph S.B. Mitchell1, Valentin Polishchuk2, Mikko Sysikaski3,
and Haitao Wang4(B)

1 Stony Brook University, Stony Brook, NY 11794, USA
jsbm@ams.stonybrook.edu

2 Linköping University, Linköping, Sweden
valentin.polishchuk@liu.se
3 Google, Zurich, Switzerland
mikko.sysikaski@gmail.com

4 Utah State University, Logan, UT 84322, USA
haitao.wang@usu.edu

Abstract. We present a new algorithm for finding minimum-link recti-
linear paths among h rectilinear obstacles with a total of n vertices in
the plane. After the plane is triangulated, for any point s, our algorithm
builds an O(n)-size data structure in O(n+h log h) time, such that given
any query point t, we can compute a minimum-link rectilinear path from
s to t in O(log n + k) time, where k is the number of edges of the path,
and the query time is O(log n) if we only want to know the value k. The
previously best algorithm solves the problem in O(n logn) time.

1 Introduction

A polygon (or path) is rectilinear if all its edges are axis-parallel. Let P be a
set of h disjoint rectilinear obstacles with a total of n vertices in the plane. The
plane minus the interior of all obstacles is called the free space. The link distance
of a path is defined to be the number of edges (also called links) in the path.
A minimum-link (or min-link) rectilinear path between two points s and t is a
rectilinear path from s to t in the free space with the minimum link distance.
Our goal is to construct a data structure (called link distance map) with respect
to a given source point s, such that for any query point t, a min-link rectilinear
path from s to t can be quickly computed. In the following, we say a link distance
map has the standard query performance if given any t, the link distance of a
min-link s-t path can be computed in O(log n) time and the actual path can be
output in additional time linear in the link distance of the path.

Previous Work. Linear-time algorithms have been given for finding min-link
(general polygonal) paths in simple polygons [8,9,20–22]. The link distance map
can also be built in linear time [20–22] for simple polygons, with the standard
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 947–959, 2015.
DOI: 10.1007/978-3-662-47672-7 77

948 J.S.B. Mitchell et al.

query performance. For polygonal domains, the problem becomes much more
difficult. Mitchell, Rote, and Woeginger [16] gave an O(n2α(n) log2 n) time algo-
rithm for finding min-link paths, where α(n) is the inverse Ackermann function;
a link distance map with slightly larger construction time is also given in [16].
As shown in [14], finding min-link paths in polygonal domains is 3SUM-hard.

The rectilinear min-link path problems have also been studied. For simple
rectilinear polygons, de Berg [2] presented an algorithm that can build an O(n)-
size link distance map in O(n log n) time and O(n) space, with the standard
query performance. The construction time was later reduced to O(n) time by
Lingas, Maheshwari, and Sack [12], and by Schuierer [19].

For rectilinear polygonal domains, Imai and Asano [10] presented an
O(n log n) time and space algorithm for finding min-link rectilinear paths. Later,
Das and Narasimhan [6] described an improved algorithm of O(n log n) time and
O(n) space; Sato, Sakanaka, and Ohtsuki [18] gave a similar algorithm with the
same performance. Recently, Mitchell, Polishchuk, and Sysikaski [14] presented
a simpler algorithm of O(n log n) time and O(n) space. Link distance maps of
O(n)-size can also be built in O(n log n) time and O(n) space [6,14]. As shown in
[6,13], the problem has an Ω(n+h log h) time lower bound. Thus, the algorithms
in [6,14,18] are optimal only when h = Θ(n). However, since the value h can be
substantially smaller than n, it is desirable to have an algorithm whose running
time is bounded by O(n + f(h)), where f(h) is a function of h.

Our Results. We consider the rectilinear min-link paths in a rectilinear domain
P. After the free space of P is triangulated, our algorithm builds a link distance
map in O(n+h log h) time and O(n) space, with the standard query performance.
The triangulation can be done in O(n log n) time or O(n + h log1+ε h) time for
any ε > 0 [1]. Hence, our result improves the previous O(n log n) time algorithms
[6,14,18], especially when h is substantially smaller than n.

Our Techniques. Our idea is to combine Das and Narasimhan’s algorithmic
scheme [6] and a corridor structure of polygonal domains [4,5,11,17]. The corri-
dor structure partitions the free space of P into O(h) corridors and O(h) “junc-
tion” rectangles that connect all corridors. The algorithm in [6] (which we call
the DN algorithm) sweeps the free space, from the source point s, to build the
map. The sweep is controlled in a global way so that the time is bounded by
O(n log n). This global sweeping on the entire free space restricts the DN algo-
rithm from being implemented in O(n + h log h) time because each operation
takes O(log n) time and there are O(n) operations. Using the corridor struc-
ture, our algorithm avoids the global sweeping on the entire free space. When
the sweep is in junction rectangles, we control the sweep in a global way as in
the DN algorithm. However, when the sweep enters a corridor, we process the
corridor independently and “locally” without considering the space outside the
corridor. Since a corridor is a simple polygon, we are able to design a faster
algorithm for processing the sweep in it. When we finish processing a corridor,
we arrive at a junction rectangle. Next, we pick an unprocessed junction rect-
angle that currently has the smallest link distance to s to “resume” the sweep.

An Optimal Algorithm for Minimum-Link Rectilinear Paths 949

This is somewhat similar to Dijkstra’s shortest path algorithm. In this way, there
are only O(h) operations that need to be performed in logarithmic time each.

We first define notation and review the DN algorithm [6] in Section 2. Our
algorithm is presented in Section 3. Due to the space limit, many details are
omitted but can be found in the full paper [15].

2 Preliminaries

For simplicity of discussion, let R be a large rectangle that contains all obstacles
of P and let F denote the free space of P in R (our algorithm can also handle
the case where R is an arbitrary rectilinear polygon). We assume F has been
triangulated. Let s be any point in F . For ease of exposition, we make a general
position assumption that no three vertices of P ∪ {s} have the same x- or y-
coordinate. In the following, “paths” always refer to rectilinear paths in F .

Consider any point t ∈ F . An s-t path (i.e., a path from s to t) π is called a
horizontal-start-vertical-end path (or h-v-path for short) if the first link of π (i.e.,
the edge incident to s) is horizontal and the last link of (i.e., the edge incident
to t) is vertical. The h-h-paths, v-h-paths, and v-v-paths are defined analogously.
To make it consistent, if π is an h-h-path of k links, we also consider it to be an
h-v-path of k + 1 links (i.e., we enforce an additional edge of zero length at the
end of the path), and similarly, it is also considered to be an v-h-path of k + 1
links and a v-v-path of k+2 links. A min-link h-v-path from s to t is an h-v-path
from s to t with the minimum number of links. The min-link h-h-paths, v-h-paths,
and v-v-paths are defined similarly. To find a min-link s-t path, we will find the
four s-t paths: a min-link h-v-path, a min-link h-h-path, a min-link v-v-path,
and a min-link v-h-path, and return the one with minimum link distance.

We will compute four link distance maps of O(n) size each: an h-h-map,
an h-v-map, a v-h-map, and a v-v-map, defined as follows. The h-h-map is a
decomposition of F into regions such that for any region R, the link distances of
the min-link h-h-paths from s to all points in R are the same. The other three
maps are defined analogously. Using point location data structures [7], for any
query point t, we determine the region containing t in each map and the one
with the smallest link distance gives our sought min-link s-t path distance.

The vertical visibility decomposition of F , denoted by VD(F), is obtained
by extending each vertical edge of the obstacles in P until it hits either another
obstacle or the boundary of R (e.g., see Fig. 4). We call the above edge extensions
the diagonals. We consider the point s as a special obstacle and extend a vertical
diagonal through s. Since F has been triangulated, VD(F) can be obtained in
O(n) time [1,3]. In VD(F), F is decomposed into rectangles, also called cells.
Due to our general position assumption, each vertical side of a cell can contain
at most two diagonals. The horizontal visibility decomposition of F , denoted by
HD(F), is defined similarly by extending the horizontal edges of P.

Our v-v-map is on VD(F), i.e., for each diagonal d (resp., cell C) of VD(F),
the link distances of the min-link v-v-paths from s to all points in d (resp., in C
that are not on diagonals) are the same and we denote this distance by disvv(d)

950 J.S.B. Mitchell et al.

s
1 3

5

3
3

3

3

333

3
3

5

55

5
5

5

5 5

Fig. 1. Illustrating the algorithm: all diagonals are
labeled. Note that the three thick dash-dotted diag-
onals (labeled 5) are swept twice in the 2nd phase.

d

d̂

C

Fig. 2. Illustrating a cell C
where d is on the left side of C.

(resp., disvv(C)). In fact, disvv(d) = min{disvv(Cl), disvv(Cr)}, where Cl and
Cr are the two cells on the left and right of d, respectively. Our goal is to compute
disvv(C) for each cell C and dis(d) for each diagonal d of VD(F). We also need
to maintain some path information to retrieve an actual path for each query.

Similarly, our h-v-map is also on VD(F), but the h-h-map and the v-h-map
are both on HD(F). Next we review the DN algorithm [6], but we discuss it in
a way that will be helpful for us to introduce our algorithm later in Section 3.

An O(n logn) Time Algorithm (the DN Algorithm). We compute the
v-v-map on VD(F) first. The goal is to compute disvv(d) for every diagonal d
of VD(F). To simplify the notation, we use dis(·) to refer to disvv(·). Initially,
all diagonals have distance value ∞ except dis(ds) = 1, where ds is the diagonal
through s. Note that if a diagonal d is on a side e of a cell, then whenever dis(d)
is updated, dis(e) is automatically set to dis(d).

The algorithm has many phases. In the i-th phase for i ≥ 0, the algorithm
determines the set Vi of diagonals d whose distances dis(d) are equal to 2i + 1,
and these diagonals are then “labeled” with distance 2i + 1 (e.g., see Fig. 1).
Initially, i = 0, and V0 consists of the diagonal ds only. As discussed in [6], if we
put light sources on the diagonals in Vi−1, then Vi consists of all new diagonals
that will get illuminated with light emanating horizontally from the light sources.

Consider a general i-th phase for i ≥ 1. We assume Vi−1 has been deter-
mined. There are two procedures: right-sweep and left-sweep. In the right-sweep
(resp., left-sweep), we illuminate the diagonals in the rightward (resp., leftward)
direction. The right-sweep procedure starts from the locally-rightmost diagonals
of Vi−1, defined as follows. Consider any diagonal d in Vi−1. Let C be the cell
of VD(F) on the right of d, i.e., d is on the left side of C. Let er be the right
side of C. If dis(er) �= 2i − 1 then d is a locally-rightmost diagonal of Vi−1.
Similarly, the left-sweep starts from the locally-leftmost diagonals of Vi−1. Both
locally-leftmost and locally-rightmost diagonals are referred to as locally-outmost
diagonals. Below, we first discuss the right-sweep.

For each locally-rightmost diagonal d, we put a rightward “light beam” on d,
and let B(d) denote the set of the beam. Initially we insert all locally-rightmost
diagonals into a min-heap HR prioritized by their x-coordinates (i.e., the leftmost

An Optimal Algorithm for Minimum-Link Rectilinear Paths 951

(a) (b) (c)

Fig. 3. Illustrating some beam operations in a right-sweep procedure: In (a) and (b),
beams are split, and some beams are “narrowed” and some beams “terminate” at
obstacle edges; in (c), beams are merged.

diagonal is at the root). By using HR, the diagonals involved in the right-sweep
will be processed from left to right. If HR �= ∅, we repeatedly do the following.

We obtain the leftmost diagonal d of HR and remove it from HR. Let C be
the cell on the right of d (e.g., see Fig. 2). We process d in the following way.
Intuitively we want to propagate the beams of B(d) to other diagonals in C. Let
el and er denote the left and right sides of C, respectively. Note that d is on el.

Recall that each cell side has at most two diagonals. If el has another diagonal
d̂ (e.g., see Fig. 2) and d̂ has not been labeled (i.e., dis(d̂) = ∞), we set dis(d̂) =
2i+1. The beam set B(d̂) of d̂ is set to ∅ since no beam from B(d) illuminates d̂.
Further, although B(d̂) = ∅, we associate the leftward direction with it, because
d̂ may be a locally-leftmost diagonal of Vi and generate a leftward beam in the
next phase. We mark d̂ as a locally-leftmost diagonal. If d̂ has been labeled, we
can show that dis(d̂) must be 2i + 1. In this case, we do nothing on d̂.

Next, we consider the diagonals on the right side er of C. Depending on the
values of dis(er), there are several cases. Since we are at the i-th phase, either
dis(er) = ∞ or dis(er) ≤ 2i + 1. If dis(er) < 2i + 1, then we do nothing on er.

If dis(er) = ∞, we set dis(er) = 2i + 1. If er does not have any diagonals,
we are done. Otherwise, for each diagonal d′ on er, we determine the portions
of beams of B(d) that can illuminate d′, which are the rightward projections of
B(d) on d′ (beams of B(d) may be “narrowed” or “split”; see Fig. 3). We use
B(d) ∩ d′ to denote the above portions of B(d). If B(d) ∩ d′ = ∅, we mark d′

as a locally-rightmost diagonal and set B(d′) = ∅ with the rightward direction;
otherwise, we set B(d′) = B(d) ∩ d′ and insert d′ to HR.

If dis(er) = 2i + 1, this case happens because er was illuminated by beams
from another diagonal d̂ on el. Hence, each diagonal d′ on er may already have a
non-empty B(d′). But d′ may receive more beams from B(d). We first determine
B(d) ∩ d′ and then do a “merge” operation by merging B(d) ∩ d′ with B(d′).
Finally, we set B(d′) to the above merged set of beams (with the rightward
direction). If B(d′) was empty before the merge and now becomes non-empty,
then we insert d′ into HR. If B(d′) is still empty after the merge, then we mark d′

as a locally-rightmost diagonal. If B(d′) was non-empty before the merge, then
d′ is already in HR, so we do not need to insert it into HR again.

The above finishes processing d. The right-sweep is done once HR becomes
empty. We use balanced binary search trees to maintain the beams in B(d) such
that “merge” and “split” operations can be performed in logarithmic time each.

952 J.S.B. Mitchell et al.

s

Fig. 4. Illustrating the vertical visibility
decomposition (the dashed segments are
diagonals) and its dual graph Gvtd

yD

s

x

c

b

d

y

Dx

a
Pi

Pj

Fig. 5. Illustrating the graph G, and the
corridor (shaded by slashes) bounded by
Pi and Pj

The left-sweep procedure is similar. There is one subtle thing. If the sweep
illuminates a diagonal d that has been labeled by the right-sweep, then this is
ignored and we proceed as if d were not labeled. As discussed in [6], the reason
for this is that the left-sweep may reach more cells than the right-sweep (e.g.,
see Fig. 1). In this way, each diagonal can be processed at most twice in a
phase. But no diagonal can be processed in more than one phase. Also, suppose
a diagonal d was marked as a locally-outmost diagonal during the right-sweep;
if d is illuminated again in the left-sweep but d is not marked locally-outmost in
the left-sweep, then we clear the previous mark on d. After the left-sweep, the
remaining locally-outmost diagonals will be used in the next phase.

The above describes the i-th phase of the algorithm. The algorithm is done
after all diagonals are labeled. We have only labeled diagonals. We can label cells
by an easy adaption of the algorithm. We also need to maintain path information
to retrieve a path for each query. The above computes the v-v-map, and the other
three maps can be computed similarly. All these details are in [15].

3 Our Improved Algorithm

We first introduce the corridor structure in rectilinear domains, which is similar
to that in general polygonal domains [11]. Let Gvtd be the dual graph of the
vertical visibility decomposition VD(F) (see Fig. 4). Based on Gvtd, we obtain a
corridor graph G as follows (see Fig. 5). First, we remove every degree-one node
from Gvtd along with its incident edge; repeat this process until no degree-one
node exists. Second, remove every degree-two node from Gvtd and replace its
two incident edges by a single edge; repeat this process until no degree-two node
exists. The remaining graph is G. The cells in VD(F) corresponding to the nodes
in G are called junction cells (see Fig. 5). We consider the diagonal through s as
a degenerate junction cell. As in the general polygonal domains [11], the graph
G has O(h) nodes and O(h) edges. The removal of all junction cells from VD(F)
results in O(h) corridors, each of which corresponds to an edge of G.

The boundary of any corridor C consists of four parts (see Fig. 5): (1) The
boundary portion of an obstacle Pi, from a point a to a point b; (2) a diagonal
bc; (3) the boundary portion of an obstacle Pj from c to a point d; (4) a diagonal
da. bc and ad are called the doors of C, which is a simple rectilinear polygon.

An Optimal Algorithm for Minimum-Link Rectilinear Paths 953

We focus on computing the v-v-map on VD(F); other three maps can be
computed similarly. Our goal is to label d for each diagonal d, i.e., compute the
distance value dis(d) = disvv(d) (the same algorithm can be used to label cells
as well). As before, each diagonal d will maintain a beam set B(d).

We first discuss the main idea. In the DN algorithm, a sweep procedure
will enter each corridor though one of its two doors, and the procedure will
either sweep the entire corridor and leave the corridor through the other door,
or terminate inside the corridor (in which case the sweep “hits” another sweep
that entered the corridor through the other door and both sweeps terminate after
“collision”). This means that if we can determine the beams and the distance
values at the doors of a corridor, then we can process the corridor independently
in a more efficient way since the corridor is a simple rectilinear polygon.

In our algorithm, the sweep in the junction cells is still processed and con-
trolled in a global manner in each phase. However, whenever the sweep enters a
corridor through one of its doors, the corridor will be processed independently by
using our more efficient corridor-processing algorithm (i.e., the sweep “jumps”
from one junction cell to another through the corridor connecting them). Note
that since in the DN algorithm a diagonal may be processed twice in the two
sweep procedures in the same phase, here correspondingly an entire corridor may
be processed twice in the same phase (this happens only if the beams on a door
can illuminate the other door directly, and vice versa).

The running time of our algorithm is O(n + h log h). More specifically, since
there are O(h) junction cells, the time spent on processing the diagonals in all
junction cells is O(h log h), and the processing on all corridors takes O(n+h log h)
time because the number of vertices of all corridors is O(n), in addition to another
O(h log h) time spent on maintaining the beams on all diagonals.

3.1 The Algorithm

We only sketch our algorithm; the details are omitted but can be found in [15].
Initially, we set dis(d) to ∞ and B(d) = ∅ for each diagonal d except that

dis(ds) = 1 and B(ds) = {ds}, where ds is the diagonal through s.
We use a min-heap H to store the diagonals in all junction cells, where the

“keys” are the distance values the diagonals currently have (and these values
may not be set correctly), with the smallest key at the root of H. Since there
are O(h) junction cells, the size of H is O(h). Each diagonal d in H is also
associated with its beam set B(d) (along with its direction). It is possible that
B(d) is empty, in which case d might be a locally-outmost diagonal.

If some diagonals of H have the same keys, we break the ties by the following
rules. Consider two diagonals d1 and d2 in H with dis(d1) = dis(d2). If B(d1)
and B(d2) are both empty or both non-empty, then we break ties arbitrarily.
Otherwise, assume B(d1) �= ∅ but B(d2) = ∅. Then, we consider the key of d1
smaller than that of d2. The reason is as follows. Since B(d1) �= ∅ and B(d2) = ∅,
the current sweep procedure should be over before processing d2 while the sweep
should continue after processing d1, and thus, we should process d1 before d2.
Therefore, our way of resolving ties in H is crucial and consistent with the DN

954 J.S.B. Mitchell et al.

algorithm. In the following, for any diagonal d, even if d is not in H, we consider
dis(d) along with B(d) as the global-key of d, and whenever we compare the
global-keys of diagonals, we follow the above rules to break ties.

Consider any corridor C with two doors d and d′. Suppose the beams of B(d)
are going inside C, and we want to process C (i.e., compute the v-v-map in C)
using the beams of B(d). We say the above way of processing C is in the direction
from d to d′. As will be seen later, a corridor may be processed twice: once from
d to d′ and the other from d′ to d. Due to the special geometric structure of the
corridor, we have the following observation.

Observation 1. Suppose d and d′ are the two doors of a corridor C, and the
direction of the beams of B(d) is towards the inside of C. Then after C is processed
by using B(d), the beam set of d′ is not empty.

Proof. Let VD(C) denote the vertical visibility decomposition of the corridor C.
Consider the cell C of VD(C) that contains d′. Without loss of generality, assume
d′ is on the right side of C. Denote by er the right side of C.

First, due to the structure of the corridor, it can be seen that d′ is the entire
right side of C, i.e., d′ is er (we omit the detailed proof). Further, note that we
obtain the beam set of d′ from the rightward beams of the diagonals on the left
side of C. Now that d′ is the entire right side of C, d′ will receive all beams of any
diagonal on the left side of C. Hence, the beam set of d′ cannot be empty.
�

Our algorithm is consistent with the DN algorithm in the sense that after
the algorithm finishes, each diagonal in any junction cell is correctly labeled,
i.e., both its distance value and its beam set are the same as those in the DN
algorithm. Let d∗ be the diagonal in the root of H. Our algorithm will maintain
the following three invariants.

1. The diagonal d∗ is correctly labeled. Further, for any other diagonal d in a
junction cell, if the global-key of d is no larger than that of d∗, then d has
been correctly labeled.

2. For any diagonal d in a junction cell, if dis(d) �= ∞ and the global-key of d
is larger than that of d∗, then d is in H.

3. For any corridor C with two doors d and d′, if C is processed in the direction
from d to d′, then C will never be processed from d to d′ again in the algorithm
(although C may be processed later in the other direction from d′ to d).

Initially H = ∅. Recall that dis(ds) = 1 and B(d) = {ds}. We consider the
diagonal ds through s as a degenerate junction cell. Specifically, we consider ds

as two duplicate diagonals with one generating a rightward beam and the other
generating a leftward beam from the entire ds. We insert these two diagonals
into H. As long as H is not empty, we repeatedly do the following.

Let d∗ be the diagonal of H with the smallest global-key. We assume
dis(d∗) = 2i+1 for some integer i. If we were running the DN algorithm, we are
currently working on the i-th phase. Let S be the set of all diagonals in H that
have the same global-key as d∗. The diagonals of S can be found by continuing
the extract-min operations on H in O(|S| log |H|) time, and after that, diagonals
of S are removed from H. There are two cases depending on whether B(d∗) = ∅.

An Optimal Algorithm for Minimum-Link Rectilinear Paths 955

B(d∗) �= ∅. In this case, all diagonals of S have non-empty beam sets. Due to
our corridor structure, the sweeps of the i-th phase “paused” at the diagonals
in S. To continue the i-th phase, we “resume” the sweeps from these diagonals.
Unlike the DN algorithm where we complete the right-sweep before we start the
left-sweep, here, before the pause, we may have already done some left-sweep
and right-sweep. Hence, the two sweeps may be somehow “interleaved” and our
algorithm will need to take care of this situation.

Let SR (resp., SL) be the subset of the diagonals of S whose beams are
rightward (resp., leftward). Intuitively, the right-sweep (resp., left-sweep) paused
at the diagonals in SR (resp., SL), and thus, we resume it from the diagonals in
SR (resp., SL). Below we focus on the right-sweep.

We build another min-heap HR by inserting the diagonals of SR, and the
“keys” of diagonals in HR are their x-coordinates such that the leftmost diagonal
is at the root. (Similarly, we build a min-heap HL on SL for the left-sweep.)

The algorithm essentially performs the i-th phase as the DN algorithm. But
since here the right-sweep and left-sweep may be interleaved, some diagonals
may have two sets of beams with opposite directions. However, our algorithm
makes sure that if a diagonal d has two sets of beams with opposite directions,
it will not be in H (i.e., it has been removed from H), but in both HR and HL

if d has not been processed yet. To differentiate the two sets of beams, we use
Br(d) (resp., Bl(d)) to denote the beam set of any diagonal d in HR (resp., HL),
meaning that the direction of the beams is rightward (resp., leftward).

During the right-sweep, if we find a new diagonal d that has the same global-
key as d∗, then d will be inserted to HR and d will be removed from H if it is
already in H. Hence, all diagonals of HR have the same global-key as d∗.

As long as HR is not empty, we repeatedly do the following.
We obtain the leftmost diagonal d of HR and remove it from HR. The beams

of Br(d) may enter a junction cell or a corridor. If it is the former case, our way
of processing d is similar to the DN algorithm, although we need to take care of
the situation that the left and right sweeps are interleaved. We skip the details.

Next, we consider the case where beams of Br(d) enter a corridor C. We pro-
cess C using the beams of Br(d). One may assume we still use the DN algorithm
to process C, and later we will replace it by our corridor-processing algorithm.
Let δ be the distance value labeled on the other door d′ of C by the above pro-
cessing and let B′ denote the corresponding beam set on d′. Let dis(d′) and
B(d′) be the original distance value and beam set at d′ before processing C. By
the third algorithm invariant, this is the first time C is processed in the direction
from d to d′. Hence, if dis(d′) �= ∞, the value dis(d′) must be obtained by the
sweep from outside C, i.e., beams in B(d′) are towards the inside of C.

Due to the above processing of C, we have obtained another distance value δ
and beam set B′ for d′. We need to update the label of d′ and possibly insert d′

to some heap. Depending on the value of dis(d′), there are several cases.

1. If dis(d′) is ∞, then we set dis(d′) = δ and B(d′) = B′.
If δ > 2i + 1, then we insert d′ into H.

956 J.S.B. Mitchell et al.

If δ = 2i + 1, since dis(d) = 2i + 1, d′ must be illuminated directly by the
beams in Br(d) and the beams of B(d′) are still towards right. By Obser-
vation 1, B′ �= ∅. Hence we obtain Br(d′) = B′ �= ∅ (we set Br(d′) to B′

because the beams of B′ are rightward). Finally, we insert d′ into HR.
2. If dis(d′) < 2i+1, then the global-key of d′ is smaller than that of d∗ because

dis(d∗) = 2i + 1. By the first algorithm invariant, d′ has been correctly
labeled. Recall that the direction of B(d′) is towards the inside of C. Also
by the first algorithm invariant, d is correctly labeled, and the direction of
Br(d) is towards the inside of C. This means that we have computed complete
information on the two doors of C for the min-link v-v-paths from s to the
points inside C. Then, we can do a “post-processing” step (to be discussed
later) to compute the v-v-map in C by using the beams of Br(d) and B(d′).

3. If dis(d′) = 2i + 1, then d′ has been labeled in the current phase.
If B(d′) �= ∅, then the global-key of d′ is the same as that of d∗. By the first
algorithm invariant, d′ has been correctly labeled. As above, since both d
and d′ have been correctly labeled, we do a “post-processing” to compute
the v-v-map in C using Br(d) and B(d′).
If B(d′) = ∅, then the global-key of d′ is strictly larger than that of d∗.
By the second algorithm invariant, d′ is already in H. If δ > 2i + 1, we do
nothing. If δ = 2i+1, then as in the above first case, we set Br(d′) = B′ �= ∅;
finally, we insert d′ into HR and remove d′ from H.

4. The remaining case is when dis(d′) �= ∞ and dis(d′) > 2i + 1. It can be
shown that this case cannot happen.

The above finishes the processing of the diagonal d. The right-sweep procedure
is done after the heap HR becomes empty. Afterwards we do the left-sweep from
the diagonals of SL using the heap HL in the symmetric way.

B(d∗) = ∅. In this case, according to our way of comparing global-keys, all
diagonals of S have empty beam sets. If we were running the DN algorithm, the
diagonals of S would be locally-outmost and we would be about to start the
(i + 1)-th phase (not the i-th phase). As in the previous case, we run the two
sweep procedures starting from the diagonals of S. Let SR (resp., SL) be the
subset of diagonals of S whose beam directions are rightward (resp., leftward).
We build a min-heap HR (resp., HL) on the diagonals of SR (resp., SL). Below,
we only discuss the right-sweep since the left-sweep is similar.

Since we are doing the right-sweep in the (i+1)-th phase, each diagonal of SR

will generate a beam from the entire diagonal, and all new diagonals illuminated
in the right-sweep will get distance value 2i+3 instead of 2i+1. From now on, we
associate each diagonal of SR with the beam, i.e., for each d ∈ SR, Br(d) = {d}.
Since each diagonal of SR originally got an empty beam set (at the end of the
i-th phase), by Observation 1, the beam of Br(d) cannot be towards a junction
cell and thus it must be towards the inside of a corridor.

As long as HR is not empty, we repeatedly do the following.

An Optimal Algorithm for Minimum-Link Rectilinear Paths 957

We obtain the leftmost diagonal d of HR (which is at the root) and remove it
from HR. Let C denote the corridor that the beams of Br(d) enter. We process the
corridor C using the beams of Br(d), by using our corridor processing algorithm.

Let δ be the distance on the other door d′ obtained by the above processing
and let B′ be the corresponding beam set. Let dis(d′) and B(d′) be the original
distance value and beam set at d′. Again, by the third algorithm invariant,
this is the the first time C is processed in the direction from d to d′; hence, if
dis(d′) �= ∞, then d′ must be labeled by a sweep from outside C and the beams
of B(d′) must enter C. Depending on the value of dis(d′), we may need to update
the label of d′ in several cases.

1. If dis(d′) = ∞, we set dis(d′) = δ and B(d′) = B′. Note that δ ≥ 2i +
3. Hence, the global-key of d′ is strictly larger than that of d∗, which has
distance value 2i + 1. We insert d′ into H (not HR).

2. If dis(d′) ≤ 2i + 1, then since B(d∗) = ∅, the global-key of d′ is no larger
than that of d∗ regardless of whether B(d′) is empty or not. By the first
algorithm invariant, d′ has been correctly labeled. We do a “post-processing”
to compute the v-v-map in C by using the beams of Br(d) and B(d′).

3. The remaining case is when dis(d′) �= ∞ and dis(d′) > 2i + 1. We can show
that this case cannot happen.

The above describes the right-sweep procedure. The left-sweep is similar.
This finishes our discussion in the case in which B(d∗) is empty.
The algorithm finishes after all three heaps H, HL, and HR become empty.

After that, for each diagonal d in a junction cell, dis(d) and B(d) have been
correctly computed. During the algorithm some corridors have been labeled cor-
rectly while others are left for post-processing. Specifically, consider any corridor
C and let d1 and d2 be its two doors with their beam sets B(d1) and B(d2). If
C is not left for a post-processing, then C has been processed either from d1 to
d2 or from d2 to d1 and the v-v-map in C has been computed after the process-
ing. Suppose the above processing is from d1 and d2. Then, C is processed using
the beams of B(d1), and B(d2) is obtained after the processing. Our corridor-
processing algorithm on C runs in O(m + (h1 − h2 + 1) log h1) time, where m
is the number of vertices of C, h1 = |B(d1)|, and h2 = |B(d2)|. If C is left for
a post-processing, i.e., to compute the v-v-map in C by using B(d1) and B(d2),
our corridor-post-processing algorithm runs in O(m+h1 log h1 +h2 log h2) time.
Refer to [15] for the details of these two algorithms. These efforts together lead
to an algorithm that can compute the v-v-map on VD(F) in O(n+h log h) time.

The other three maps can be computed similarly. For computing the h-v-
map on VD(F), one difference is on the initial steps. Initially, we let s generate
two beams that are two horizontal rays towards right and left, respectively. We
set the distance value of ds to 0, where ds is the vertical diagonal through s.
Then, we consider ds as two duplicate diagonals associated with the above two
beams respectively, and insert the two duplicate diagonals into the heap H. The
remaining algorithm is the same as before except that we replace the distance

958 J.S.B. Mitchell et al.

values 2i+1 and 2i+3 in the algorithm description with 2i and 2i+2, respectively.
The h-h-map and v-h-map on HD(F) can be computed similarly.

Acknowledgments. J. Mitchell is partially supported by grants from Sandia National
Labs, the National Science Foundation (CCF-1018388), and the US-Israel Binational
Science Foundation (award 2010074). V. Polishchuk is supported by grant 2014-03476
from the Sweden’s innovation agency VINNOVA. H. Wang is supported in part by NSF
under Grant CCF-1317143.

References

1. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. International
Journal of Computational Geometry and Applications 4(4), 475–481 (1994)

2. de Berg, M.: On rectilinear link distance. Computational Geometry: Theory and
Applications 1, 13–34 (1991)

3. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete and
Computational Geometry 6, 485–524 (1991)

4. Chen, D., Inkulu, R., Wang, H.: Two-point L1 shortest path queries in the plane.
In: Proc. of the 30th Annual Symposium on Computational Geometry (SoCG),
pp. 406–415 (2014)

5. Chen, Danny Z., Wang, Haitao: A Nearly Optimal Algorithm for Finding L1

Shortest Paths among Polygonal Obstacles in the Plane. In: Demetrescu, Camil,
Halldórsson, Magnús M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 481–492. Springer,
Heidelberg (2011)

6. Das, G., Narasimhan, G.: Geometric searching and link distance. In: Proc. of the
2nd Workshop of Algorithms and Data Structures (WADS), pp. 261–272 (1991)

7. Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal point location in a monotone
subdivision. SIAM Journal on Computing 15(2), 317–340 (1986)

8. Ghosh, S.: Computing the visibility polygon from a convex set and related
problems. Journal of Algorithms 12, 75–95 (1991)

9. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given
homotopy class. Computational Geometry: Theory and Applications 4, 63–97
(1994)

10. Imai, H., Asano, T.: Efficient algorithms for geometric graph search problems.
SIAM Journal on Computing 15(2), 478–494 (1986)

11. Kapoor, S., Maheshwari, S., Mitchell, J.: An efficient algorithm for Euclidean short-
est paths among polygonal obstacles in the plane. Discrete and Computational
Geometry 18(4), 377–383 (1997)

12. Lingas, A., Maheshwari, A., Sack, J.R.: Parallel algorithms for rectilinear link
distance problems. Algorithmica 14, 261–289 (1995)

13. Maheshwari, A., Sack, J.R., Djidjev, H.: Link distance problems. In: Sack, J.-R.,
Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 519–558. Elsevier,
Amsterdam (2000)

14. Mitchell, J., Polishchuk, V., Sysikaski, M.: Minimum-link paths revisited. Compu-
tational Geometry: Theory and Applications 47, 651–667 (2014)

15. Mitchell, J., Polishchuk, V., Sysikaski, M., Wang, H.: An optimal algorithm
for minimum-link rectilinear paths in triangulated rectilinear domains (2015).
arXiv:1504.06842

http://arxiv.org/abs/1504.0684

An Optimal Algorithm for Minimum-Link Rectilinear Paths 959

16. Mitchell, J., Rote, G., Woeginger, G.: Minimum-link paths among obstacles in the
plane. Algorithmica 8, 431–459 (1992)

17. Mitchell, J., Suri, S.: Separation and approximation of polyhedral objects.
Computational Geometry: Theory and Applications 5, 95–114 (1995)

18. Sato, M., Sakanaka, J., Ohtsuki, T.: A fast line-search method based on a tile
plane. In: Proc. of the IEEE International Symposium on Circuits and Systems,
pp. 588–597 (1987)

19. Schuierer, S.: An optimal data structure for shortest rectilinear path queries in
a simple rectilinear polygon. International Journal of Compututational Geometry
and Applications 6, 205–226 (1996)

20. Suri, S.: A linear time algorithm with minimum link paths inside a simple polygon.
Computer Vision, Graphics, and Image Processing 35(1), 99–110 (1986)

21. Suri, S.: Minimum link paths in polygons and related problems. Ph.D. thesis, Johns
Hopkins University, Baltimore, MD (1987)

22. Suri, S.: On some link distance problems in a simple polygon. IEEE Transactions
on Robotics and Automation 6, 108–113 (1990)

Amplification of One-Way Information
Complexity via Codes and Noise Sensitivity

Marco Molinaro1(B), David P. Woodruff2, and Grigory Yaroslavtsev3

1 Delft University of Technology, Delft, The Netherlands
m.molinaro@tudelft.nl

2 IBM Almaden Research Center, San Jose, USA
dpwoodru@us.ibm.com

3 University of Pennsylvania, Philadelphia, PA, USA
grigory@grigory.us

Abstract. We show a new connection between the information com-
plexity of one-way communication problems under product distributions
and a relaxed notion of list-decodable codes. As a consequence, we obtain
a characterization of the information complexity of one-way problems
under product distributions for any error rate based on covering num-
bers. This generalizes the characterization via VC dimension for con-
stant error rates given by Kremer, Nisan, and Ron (CCC, 1999). It also
provides an exponential improvement in the error rate, yielding tight
bounds for a number of problems. In addition, our framework gives a new
technique for analyzing the complexity of composition (e.g., XOR and
OR) of one-way communication problems, connecting the difficulty of
these problems to the noise sensitivity of the composing function. Using
this connection, we strengthen the lower bounds obtained by Molinaro,
Woodruff and Yaroslavtsev (SODA, 2013) for several problems in the
distributed and streaming models, obtaining optimal lower bounds for
finding the approximate closest pair of a set of points and the approxi-
mate largest entry in a matrix product. Finally, to illustrate the utility
and simplicity of our framework, we show how it unifies proofs of existing
1-way lower bounds for sparse set disjointness, the indexing problem, the
greater than function under product distributions, and the gap-Hamming
problem under the uniform distribution.

1 Introduction

We consider the two-party one-way communication complexity model where
Alice and Bob want to jointly compute a function f : X × Y → {0, 1}. More
precisely, Alice holds an input x ∈ X , Bob holds an input y ∈ Y, and they have
access to common random bits; Alice sends a (random) message to Bob, who
then tries to output the value f(x, y). The cost of a protocol is the maximum
(over the inputs and the randomness) number of bits sent by Alice. The goal
is to find a randomized protocol of minimum cost that for all inputs computes
f(x, y) with probability at least 1 − α; this minimum cost is denoted by R(f)→

α .

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 960–972, 2015.
DOI: 10.1007/978-3-662-47672-7 78

Amplification of One-Way Information Complexity via Codes 961

The one-way communication model has been studied in a number of works,
including Yao [23], Papadimitriou and Sipser [19], Ablayev [1], Newman and
Szegedy [16], and Kremer et al. [10]. It is particularly relevant to the data stream
model in which an algorithm sees a stream of elements one at a time, and tries
to compute a relation of these elements using as little space (in bits) as possible
[15]. One way of lower-bounding the space complexity of data stream algorithms
is to set up a one-way communication protocol in which Alice’s message consists
of the state of the streaming algorithm run on a stream created by Alice. Bob
then continues the execution of the streaming algorithm on a stream he creates,
and if from the output the players can solve a communication problem f , then
the space complexity of the streaming algorithm must be at least the one-way
communication complexity of f .

We will consider a distributional version of one-way communication com-
plexity, in which Alice and Bob have inputs (x, y) ∼ μ × ν, where μ × ν is
a product distribution on domains X and Y. That is, Alice’s input is drawn
from μ, while Bob’s input is drawn from ν, and the inputs are independent.
We define R(f)→,[]

α to be the maximum, over product distributions μ × ν, of
D(f)→

μ×ν,α, where D(f)→
μ×ν,α is the minimum cost over deterministic protocols

which compute f with error probability at most α when the input is drawn
from μ × ν. Kremer, Nisan, and Ron [10] show that for constant α and Boolean
functions f , R(f)→,[]

α = Θ(V C), where V C is the VC-dimension of the class
{fx : Y → {0, 1} | x ∈ X} obtained by seeing the rows of the communica-
tion matrix of f as functions. Equivalently, V C is the dimension of the largest
hypercube which is a submatrix of the communication matrix.

Unfortunately, a characterization for constant α does not suffice for stream-
ing applications. This was the focus of work by Jayram and Woodruff [9], who
showed that for a number of streaming problems, such as estimating the empiri-
cal entropy and Euclidean norm (and more generally the �p-norm for p ≤ 2), the
problem requires an extra multiplicative log(1/δ) in the space complexity if the
algorithm succeeds with probability at least 1−δ. This was shown using one-way
communication under a product distribution, and so obtaining the extra log(1/δ)
factor had to be shown by ways other than resorting to the VC-dimension, since
we do not have a general characterization of problems showing how their com-
munication cost scales with the error probability.

Besides single-shot problems, the gap in our understanding of the dependence
on the error probability also manifests itself for solving a composition of many
copies of a problem simultaneously with constant probability. The authors [13]
previously showed that for several streaming problems, the communication cost
of solving n copies of a problem simultaneously with probability 2/3 scales as n
times the cost of solving each copy with probability 1 − 1/n. This composition
theorem critically uses that a protocol must obtain a correct output for each of
the n instances, and it is unknown if such a statement holds for other composition
functions, such as the OR or XOR functions. This has led to log n factor gaps
in the upper and lower bounds for streaming problems such as

962 M. Molinaro et al.

– ClosestPair: Alice has n points p1, . . . , pn in R
d, Bob has n points q1, . . . , qn

in R
d, and they would like to find a pair pi, qj for which ‖pi − qj‖2 ≤ (1 +

ε)mini′,j′ ‖pi′ − qj′‖2, and
– MatrixProduct: Alice has an n×d matrix A with rows of unit norm, Bob has

a d × n matrix B with columns of unit norm. They want to approximate
maxi,j |AB|i,j up to an additive ε.

Our Contributions: We introduce the notion of an (α, β)-code and use it to
capture the distance between rows of a communication matrix of a function
f : X × Y → {0, 1}. Informally speaking, this notion says that under Alice’s
distribution μ, with probability at most β, two independently sampled rows
have relative Hamming distance at most α when weighted with respect to Bob’s
input distribution ν. This notion thus captures the (pairwise) correlation of rows
of a communication matrix, with respect to distributions μ and ν. We show that
the one-way information cost of protocols under distribution μ × ν with error
probability α is Ω(log 1/β). This result is based on a Fano’s inequality for list-
decoding that may be of independent interest. This gives a surprisingly generic
way of characterizing lower bounds in terms of the error probability.

Characterization Theorem: We use our characterization in terms of codes to
obtain a characterization of 1-way communication complexity in terms of pack-
ing numbers. Here, given a pseudo-metric space (X , d), the α-packing number
is the largest set of points in X with pairwise distance at least α. We show
that maxν Ω(log p8α,ν) ≤ R(f)→,[]

α ≤ maxν O(log pα,ν), where pα,ν is the pack-
ing number of the pseudo-metric space ({f(x)}x∈X , ‖ · ‖ν), where {f(x)}x∈X
is the family of functions corresponding to rows of the communication matrix,
and ‖ · ‖ν is the weighted relative Hamming distance according to ν. This gives
a strengthening of the result of Kremer, Nisan, and Ron [10] since it gives a
tight characterization in terms of the error probability α (up to the distinction
of α in the upper bound and 8α in the lower bound). We need to resort to
packing numbers, since as observed by Jayram and Woodruff [9], there is no
characterization possible in terms of the VC-dimension (as used by [10]). How-
ever, by relating packing numbers to VC-dimension, we considerably strengthen
the result of [10] which states that (1 − H(α))V C ≤ R(f)→,[]

α ≤ O(V C 1
α log 1

α),
where V C denotes the VC-dimension of f . We obtain the stronger result that
(1 − H(α))V C ≤ R(f)→,[]

α ≤ O(V C log(1
α)). As an example, we use this to show

that R→,[]
α (GT) = Θ(log 1

α) where GT is the greater-than function. This is an
exponential improvement over the result based on VC-dimension.

Composition Theorem: Next we introduce the notion of noise sensitivity, which
captures how a communication problem f whose rows form an (α, β)-code
behaves under composition. There is a line of work on understanding how prim-
itive problems behave under composition [3,11,12,17,21]; our work adds to this
by characterizing the composition in terms of codes. The noise sensitivity of
a composing function g on k inputs with respect to an input distribution μk

intuitively captures how likely two independent samples of inputs to g from μk

Amplification of One-Way Information Complexity via Codes 963

result in differing outputs of g. We show that if f is an (α, β)-code with respect
to μ × ν, then g ◦ f is an (α′, β′)-code with respect to μk × νk for certain α′ and
β′ related to the noise sensitivity of g, as well as to α and β.

Streaming Applications: As the main application of our composition theorem,
we consider the primitive problem f in which Alice holds a string x ∈ [k]m, Bob
has an � ∈ [k] and an index j ∈ [m], and Bob would like to know if xj = �.
We show that f is an (α, β)-code for sufficiently good α and β, and we lower
bound the noise sensitivity of the OR function. These results imply that solving
the OR of k copies of f , denoted ORk ◦ f , with constant probability has one-
way communication complexity Ω(km log k). For our streaming applications, we
further consider an augmented version of this problem, in which Alice has t
independent instances of ORk ◦ f , and Bob would like to solve one of these t
instances i chosen uniformly at random. Bob is also given Alice’s input for the
first i − 1 instances. For this we show an Ω(tkm log k) one-way communication
lower bound for constant probability protocols. These results greatly strengthen
the results in [13], which could only show this if ORk ◦ f were replaced with
ALLCOPIES k ◦ f , the latter requiring a correct output to all k instances of f
rather than just an OR of the k instances. Note that the output of ORk ◦ f
is only a single bit, whereas the output of ALLCOPIES k ◦ f consists of k bits,
making the latter a significantly easier problem. Our result directly improves
the streaming application lower bounds in [13], leading to the first tight one-way
lower bounds for ClosestPair and MatrixProduct. The details are in Section 6.

Unified Lower Bounds: To illustrate the power of the framework developed, we
recover in a unified way several 1-way lower bounds from the literature, including
sparse set disjointness [4,6,20] and indexing [9] under product distributions, and
the gap-Hamming problem under the uniform distribution [22].

2 Preliminaries

Information Theory. We use the following notions from information theory (see
[5] for more details). Given random variables X,Y and Z on a common proba-
bility space, we use H(X) to denote the binary entropy of X and H(X | Y) its
conditional entropy given Y . The mutual information between X and Y is then
defined as I(X;Y) = H(X)−H(X | Y), and the conditional mutual information
given Z is I(X;Y | Z) = H(X | Z) − H(X | (Y,Z)). We will need the data
processing inequality : for any arbitrary functions g, h, I(X;Y) ≥ I(g(X);h(Y)).

Distributional and Information Complexity. Consider a function f : X × Y →
{0, 1} and a distribution μ over X × Y. The one-way distributional complexity
of f with respect to μ, denoted D(f)→

μ,α, is the smallest communication cost of
a one-way deterministic protocol that outputs f(x, y) on all but an α fraction
of inputs weighted according to μ. The one-way distributional complexity of
f , denoted D(f)→

α , is the supremum of D(f)→
μ,α over all distributions μ. The

964 M. Molinaro et al.

classic Yao’s Minimax Theorem [23] shows that randomized and distributional
complexity are the same: R(f)→

α = D(f)→
α . Motivated by this observation, define

the product distribution complexity R(f)→,[]
α as the supremum of D(f)→

μ×ν,α over
all distributions μ for X and ν for Y.

Now we define information complexity. Again we are given a distribution μ
over X ×Y. Given a randomized one-way protocol for computing f , with A(x, r)
denoting the message sent by Alice on input x and private randomness r, the
information cost of this protocol is defined as I(A(X,R);X | Y), where the pair
(X,Y) is sampled from μ (and R is Alice’s randomness, which is independent
from X,Y). The information complexity with respect to μ, denoted IC(f)→

μ,α,
is the smallest information cost of a randomized one-way protocol computing
f(X,Y) with probability at least 1 − α (with respect to (X,Y) ∼ μ and the
private randomness of Alce and Bob). Finally the information complexity IC(f)→

α

is the supremum of IC(f)→
μ,α over all distributions μ. Similarly, the information

complexity over product distributions IC(f)→,[]
α is the supremum of IC(f)→

μ×ν,α

over all distributions μ on X and ν on Y. Notice that under a product distribution
(X,Y) ∼ μ × ν the information cost of a protocol becomes I(A(X,R);X).

We have the following known relationship between information and dis-
tributional complexity (which follows from the entropy span bound and non-
negativity of entropy): R(f)→,[]

α ≥ IC(f)→,[]
α .

Notation. Given a function f : X × Y → {0, 1} and x ∈ X , we use f(x) : Y →
{0, 1} to denote the function f(x)(y) = f(x, y). We say that f(x) is a row of f
(i.e., when f is seen as a matrix with rows indexed by X and columns indexed
by Y). Given a distribution ν over a set Y and a function v : Y → R, we define
the semi-norm ‖v‖ν = EY ∼ν [v(Y)]. We also use ‖v‖0 to denote the number of
non-zero entries of v. Finally, given a pseudo-metric space (X , d) and x ∈ X , we
use B(x, α) to denote the set of points in X at distance at most α from x.

3 Information Complexity and Relaxed Codes

Definition 3.1. Consider a pseudo-metric space (X , d). A subset C is an
(α, β)-code w.r.t. a distribution μ supported on C if for C,C ′ chosen indepen-
dently from μ

Pr
C,C′

(d(C,C ′) ≤ α) ≤ β.

The following is the main result of this section which gives a lower bound on
the information complexity of communication problems based on (α, β)-codes.

Theorem 3.1. Consider a communication problem f : S×L → {0, 1}. Consider
distributions μ (over S) and ν (over L) and suppose that the rows {f(s)}s∈S form
an (α, β)-code with respect to μ and the distance ‖.‖ν . Then

IC(f)→
(μ×ν), α

8
≥ 1

4
log

1
4β

− 1.

Amplification of One-Way Information Complexity via Codes 965

The intuition is that if the rows of the communication problem are quite
distinct from each other, a low error protocol allows Bob to recover the identity
of the row that Alice’s input is indexing, leading to a high information cost.

To make this intuition formal, we start by developing a list-decoding variant
of Fano’s inequality where a predictor outputs a prediction set, which might be
of independent interest; the proof is deferred to the full version of the paper.

Lemma 3.1. Consider a finite set X and an arbitrary set R, and let μ and
λ be distributions over X and R respectively. Also consider a (predictor) func-
tion g : X × R → 2X such that for some β ∈ (0, 1) we have PrX∼μ,R∼λ(X ∈
g(X,R) and μ(g(X,R)) ≤ β) ≥ p. Then I(X; g(X,R)) ≥ p log 1

β − 1.

The next theorem connects this list-decoding version of Fano’s inequality
with (α, β)-codes; the mapping M next can be thought as an approximate
decoder.

Theorem 3.2. Consider a finite pseudo-metric space (X , d). Let C ⊆ X be an
(α, β)-code with respect to a distribution μ over C. Consider an arbitrary space R
with distribution λ. Consider the random variables C ∼ μ, R ∼ λ and a mapping
M : C × R → X satisfying PrC,R(d(M(C,R), C) ≥ α

2) ≤ 1
4 . Then

I(C;M(C,R)) ≥ 1
2

log
1
4β

− 1.

Proof. We employ Lemma 3.1 to the space C × R. Construct the predictor g :
C × R → 2C given by g(c, r) = B

(
M(c, r), α

2

)
; notice that g(c, r) only depends

on M(c, r). We claim that

Pr
C∼μ,R∼λ

(C ∈ g(C,R) and μ(g(C,R)) ≤ 4β) ≥ 1
2
. (1)

Let E denote the event {C ∈ g(C,R) and μ(g(C,R)) ≤ 4β}, and change the sec-
ond term to define the event E ′ = {d(M(C,R), C) ≤ α

2 and μ(B(C,α)) ≤ 4β}
(notice that C ∈ g(C,R) is equivalent to d(M(C,R), C) ≤ α

2). We claim that
E ′ implies E : if E ′ holds then using its first part and the triangle inequal-
ity we get B(M(C,R), α

2) ⊆ B(C,α), so its second part gives μ(g(C,R)) =
μ(B(M(C,R), α

2) ≤ μ(B(C,α)) ≤ 4β, proving the claim. So to prove inequality
(1) it suffices to show Pr(E ′) ≥ 1

2 .
Directly from the guarantees of M we have Pr(d(M(C,R), C) ≤ α

2) ≥ 3
4 . For

μ(B(C,α) ≤ 4β, notice that for a random variable C ′ ∼ μ independent of C we
have PrC′(d(c, C ′) ≤ α) = μ(B(c, α)) for all c ∈ C, and since C is an (α, β)-code,
β ≥ PrC,C′(d(C,C ′) ≤ α) = EC [μ(B(C,α))] . Then from Markov’s inequality
we get that PrC(μ(B(C,α)) ≥ 4β) ≤ 1

4 . Taking a union bound, E ′ holds with
probability at least 1

2 , thus proving inequality (1).
Then we can apply Lemma 3.1 with p = 1

2 and 4β to get that I(C; g(C,R)) ≥
1
2 log 1

4β − 1. Since M(C,R) determines g(C,R), the data processing inequality
implies that I(C;M(C,R)) ≥ I(C; g(C,R)), thus completing the proof.
�

966 M. Molinaro et al.

Proof of Theorem 3.1: Consider random variables (S,L) ∼ μ × ν and a random-
ized one-way protocol for f(S,L) with error probability (with respect to S,L and
private randomness) at most α

8 . Let A(s, rA) be the message that Alice sends on
this protocol over input s and her private randomness rA, and let B(m, �, rB)
be the output of Bob when he has input �, private randomness rB and receives
message m from Alice. We want to show I(S;A(S,RA)) ≥ 1

4 log 1
4β − 1.

For that, define M(f(s), rA, rB) : L → {0, 1} by setting M(f(s), rA, rB)(�) =
B(A(s, rA), �, rB) for all s ∈ S and � ∈ L. Given the guarantees of the protocol,
we have

ES∼μ,RA,RB
[‖M(f(S), RA, RB) − f(S)‖ν]

= Pr
S∼μ,L∼ν,RA,RB

(M(f(S), RA, RB)(L) �= f(S,L)) ≤ α

8
.

By Markov’s inequality, PrS∼μ,RA,RB

(
‖M(f(S), RA, RB) − f(S)‖ν ≥ α

2

)
≤ 1

4 .

Then we can employ Theorem 3.2 with C set to {f(s)}s∈S to obtain that
I(f(S);M(f(S), RA, RB)) ≥ 1

4 log 1
4β −1. But the random variable S determines

the row f(S) and (A(S,RA), RB) determines the vector M(f(S), RA, RB), so
by the data processing inequality we get I(S;A(S,RA), RB) ≥ 1

4 log 1
4β − 1.

Finally, since RB is independent from S and RA, we have I(S;A(S,RA), RB) =
I(S;A(S,RA)). This concludes the proof of the theorem.
�

In the full version of the paper, we show how we can use relaxed codes to
recover the lower bounds for k-sparse set disjointness of Dasgupta et al. [6] and
for the indexing problem of Jayram and Woodruff [9].

4 Characterization via Packing Numbers

We now show how the lower bounds from the previous section lead to our main
characterization theorem of the one-way information complexity under product
distributions in terms of packing numbers. Given a pseudo-metric space (X , d),
its α-packing number is the size of the largest set of points in X with pairwise dis-
tances at least α; we denote this by P(X , d, α). The base of the characterization
is a new connection between relaxed codes and packing numbers.

Lemma 4.1. Consider a pseudo-metric space (C, d) and an α ∈ (0, 1]. Then C
is an

(
α, 1

P(C,d,α)

)
-code with respect to some distribution μ over C.

Proof. Let C′ ⊆ C be a set of size P(C, d, α) such that distinct points in
C′ have distance at least α. Let μ be the uniform distribution on C′. Then
PrC,C′∼μ(d(C,C ′) ≤ α) = PrC,C′∼μ(C = C ′) = 1

|C′| = 1
P(C,d,α) , and hence C

is an
(
α, 1

P(C,d,α)

)
-code with respect to μ.
�

Amplification of One-Way Information Complexity via Codes 967

Theorem 4.1. Consider a communication problem f : S × L → {0, 1} and let
ν be a distribution over L. Let pα,ν denote the α-packing number of the pseudo-
metric space ({f(s)}s∈S , ‖.‖ν). Then for every α ∈ (0, 1],

max
μ

IC(f)→
(μ×ν), α

8
≥ 1

4
log

pα,ν

4
− 1 (2)

max
μ

D(f)→
(μ×ν),α ≤ log pα,ν + 1, (3)

where the maxμ range over all distributions over S. In particular, letting p∗
α

denote the maximum pα,ν over all ν, we have for α ∈ (0, 1
8]

Ω(log p∗
8α) ≤ R(f)→,[]

α ≤ log p∗
α + 1. (4)

Proof. Inequality (2) follows directly from Theorem 3.1 and Lemma 4.1.
For inequality (3), let S ′ ⊆ S be a set of size pα,ν such that ‖f(s)−f(s′)‖ν ≥

α for all distinct s, s′ ∈ S ′. The maximality of S ′ implies that the balls
{B(f(s), α)}s∈S′ cover all of {f(s)}s∈S . Then Alice and Bob, on inputs s and
� respectively, can do the following: Alice uses log pα,ν� bits to send Bob the
index of a point ψ(s) in S ′ such that ‖f(s) − f(ψ(s))‖ν ≤ α; Bob then outputs
f(ψ(s), �). For any distribution μ, the distributional error of this protocol with
respect to μ × ν is at most α: for any s ∈ S, PrL∼ν(f(ψ(s), L) �= f(s, L)) =
‖f(ψ(s)) − f(s)‖ν ≤ α. This concludes the proof of inequality (3).

Inequality (4) follows directly by taking a maximum over ν on inequalities
(2) and (3) and using the bound R(f)→,[]

α ≥ IC(f)→,[]
α .
�

Notice that this characterization implies that Theorem 3.1 is tight up to
constants (and up to constants in the error rate) given the right distribu-
tions μ and ν.

4.1 Relationship with VC Dimension

We recall the characterization of distributional complexity for constant error
rate α in terms of VC-Dimension given by [10] and [2]. The VC-dimension of a
subset C ⊆ {0, 1}n is the largest set of indices I ⊆ [n] such that the projection
onto I given by {(xi)i∈I : x ∈ C} equals the whole of {0, 1}|I|.

Theorem 4.2 ([2,10]). Consider a communication problem f : S ×L → {0, 1}
and α ∈ (0, 1

4]. Then, if V C denotes the VC-dimension of the rows {f(s)}s∈S ,

(1 − H(α))V C ≤ R(f)→,[]
α ≤ O

(
V C · 1

α
log

1
α

)
. (5)

Notice that, for constant error α, this characterizes the distributional com-
plexity up to constant factors. Known bounds on the relationship between VC-
dimension and packing numbers allow us to directly recover this characterization
from Theorem 4.1. First, we need the dual of packing numbers: Given a pseudo-
metric space (X , d), its α-covering number is the smallest number of balls B(x, α)

968 M. Molinaro et al.

of radius α needed to cover X ; we denote this by N (X , d, α). It is well-known
that packing and covering numbers are closely related: for all α > 0,

N (X , d, α) ≤ P(X , d, α) ≤ N (X , d, α/2). (6)

We have the following relationships between VC-dimension and pack-
ing/covering numbers (for completeness we provide a proof of the first one in
the appendix).

Lemma 4.2. Let C be a subset of {0, 1}n and let V C denote its VC-dimension.
Then for every α ∈ (0, 1

2],

max
ν

log N (C, ‖.‖ν , α) ≥ (1 − H(α))V C,

where the maximum is taken over all distributions on [n] and H(α) = α log 1
α +

(1 − α) log 1
1−α denotes the binary entropy.

Lemma 4.3 ([7,8]). Let C be a subset of {0, 1}n and let V C be its VC-
dimension. Then for every distribution ν over [n] and α ∈ (0, 1], we have

log P(C, ‖.‖ν , α) ≤ V C · log
(

5
α

log
10
α

)
.

Using these two lemmas and inequality (6), we get that for α ∈ (0, 1
4]

(1 − H(α)) · V C ≤ max
ν

log P(C, ‖.‖ν , α) ≤ V C · log
(

5
α

log
10
α

)
.

Using these bounds on Theorem 4.1 recovers the VC-dimension characterization
from Theorem 4.2; in fact, it gives the improved dependence O(log 1

ε) on ε.

Corollary 4.1. Consider a communication problem f : S × L → {0, 1} and
α ∈ (0, 1

16]. Then, letting V C denote the VC-dimension of the rows {f(s)}s∈S ,

(1 − H(8α)) · Ω(V C) ≤ R(f)→,[]
α ≤ O

(
V C · log

1
α

)
. (7)

The greater-than function illustrates the difference between the characteriza-
tions in terms of VC-dimension and packing numbers (full version of the paper).

5 Composition of Communication Problems and Noise
Sensitivity

In this section we are interested in compositions of communication problems.
More precisely, given a communication problem f : X × Y → {0, 1} and a
composition function g : {0, 1}k → {0, 1}, we use g�f to denote the composition
g(f(x1, y1), . . . , f(xk, yk)) (so it is a function mapping (X × Y)k → {0, 1}). We
will used relaxed codes to understand how the composed communication problem
g�f amplifies the hardness of the base problem f . We will see that the hardness
amplification is governed by a generalization of the noise sensitivity [18] of g.

Amplification of One-Way Information Complexity via Codes 969

Definition 5.1 ((t, γ)-correlation). Given γ ∈ [0, 1], we say that two random
variables Z,Z ′ are γ-correlated if Pr(Z = Z ′) ≤ γ. Given t ∈ [k], we say that
two random vectors (Z1, . . . , Zk) and (Z ′

1, . . . , Z
′
k) are (t, γ)-correlated if there

is a subset I ⊆ [k] of size t such that for all i ∈ I, Zi and Z ′
i are γ-correlated.

Definition 5.2 ((t, γ)-Noise sensitivity). Consider a function g : {0, 1}k →
{0, 1} and fix t ∈ [k] and γ ∈ [0, 1]. Let D be a family of distributions over {0, 1}k

such that there are (t, γ)-correlated random vectors Z,Z′ with distributions in
D. Then the (t, γ)-noise sensitivity of g with respect to D is given by

NSt
γ,D(g) � min

Z,Z′
Pr(g(Z) �= g(Z′)),

where the minimum is taken over all (t, γ)-correlated random vectors Z,Z′ with
distributions in D.

Now we try to give some intuition why noise sensitivity captures how a
composition function amplifies the relaxed code of a base function. Consider a
communication problem f : X × Y → {0, 1}, with a “hard” distribution μ × ν,
and a composition function g : {0, 1}k → {0, 1}. To understand the information
complexity of g � f under (μ × ν)k, we want to check if it forms an (α, β)-code,
which informally means that for “typical” x,x′ ∈ X k, PrY ∼νk(g�f(x,Y) �= g�
f(x′,Y)) ≥ α. Expanding the left-hand side shows that it is related to the (t, γ)-
sensitivity of g, where the noise level γ is given by PrY ∼ν(f(x, Y) = f(x′, Y)),
again for “typical” x, x′ ∈ X ; this noise level is in turn related to how good a
relaxed code the rows {f(x)}x∈X are with respect to μ and ‖.‖ν . Formally:

Theorem 5.1. Consider a communication problem f : X × Y → {0, 1}. Let μ
and ν be distributions over X and Y, respectively, such that {f(x)}x∈X forms an
(α, β)-code with respect to μ and the distance ‖.‖ν . Let D be the set of distribu-
tions of the random vectors (f(x1, Y1), . . . , f(xk, Yk)) with x1, . . . , xk ∈ X , where
Y1, . . . , Yk are independently sampled from ν. Consider a function g : {0, 1}k →
{0, 1}. Then for w ∈ (0, 1 − β], the rows {g � f(x)}x∈X k form an (αw, βw)-code
with respect to μk and the distance ‖.‖νk , where

αw = NSk(1−β−w)
1−α,D (g)

βw =
(

ew

(1 + w/β)β+w

)k

≤
(

eβ

w

)wk

.

Proof. It suffices to show that for a 1 − βw fraction of the independent ran-
dom vectors X,X ′ ∼ μk, we have PrY ∼νk (g � f(X,Y) �= g � f(X ′,Y)) ≥
NSk(1−β−w)

1−α,D (g).
Let Ω ⊆ X 2 be the set of pairs (x, x′) such that ‖f(x)−f(x′)‖ν > α, namely

PrY ∼ν

(
f(x, Y) �= f(x′, Y)

)
> α. For two vectors x,x′ in X k, let #(x,x′) denote

the number of coordinates i such that (xi, x
′
i) belongs to Ω.

Fix any two x,x′ in X k. For Y = (Y1, . . . , Yk) sampled from νk, define Zi =
f(xi, Yi) and Z ′

i = f(x′
i, Yi). Then by definition of Ω, x and x′, we have that the

970 M. Molinaro et al.

vectors Z = (Z1, . . . , Zk) and Z′ = (Z ′
1, . . . , Z

′
k) are (#(x,x′), 1 − α)-correlated

with distributions in D. Then by the definition of (t, γ)-noise sensitivity,

Pr
Y

(g � f(x,Y) �= g � f(x′,Y)) = Pr
Z

(
g(Z) �= g(Z′)

) ≥ NS#(x,x′)
1−α,D (g).

To show that Pr
(
#(X,X ′) ≥ k(1−β−w)

)
is at least 1−βw, we observe the

following. Since f forms an (α, β)-code, we know that Pr
(
(X,X ′) ∈ Ω

)
> 1−β,

and thus E[#(X,X ′)] ≥ k(1−β). By a multiplicative Chernoff bound (Theorem
4.1 of [14]), we have that the event k − #(X,X ′) > (1 + w/β)kβ happens with
probability at most (ew

(1+w/β)β+w)k = βw, and hence with probability at least
1 − βw we have #(X,X ′) ≥ k(1 − β − w).

To conclude the proof, we show that βw ≤ (eβ/w)wk. First, by reducing the

denominator we have βw ≤
(

e
1+w/β

)wk

. But this quantity is at most
(

eβ
w

)wk

,
which can be shown using concavity of the map β �→ e

1+w/β , and the fact that
its derivative at 0 is e

w . This concludes the proof.
�
Together with the lower bound of Theorem 3.1 based on relaxed codes, this

amplification theorem gives a powerful tool for constructing lower bounds.

5.1 Example: Stronger Direct Sum for XOR

Let XORk : {0, 1}k → {0, 1} denote the k-ary XOR function, namely it maps
(z1, . . . , zk) �→ ∑

i zi mod 2. The following lower bound on the (t, γ)-Noise sen-
sitivity of XORk is proved in the full version of the paper.

Lemma 5.1. Let prod denote the set of all product distributions over {0, 1}k.
Then NSt

1−α,prod(XOR
k) ≥ 1

2 − 1
2 (1 − 2α)t.

Theorem 5.1 and the above lemma (together with Lemma 4.1 and Theorem
3.1) give a stronger direct sum theorem for XOR (notice the error probability 1

k
on the right-hand side); details are presented in the full version of the paper.

Corollary 5.1. For any communication problem f : X × Y → {0, 1},
IC(XORk � f)→,[]

1
4

≥ k

8
·
(
R(f)→,[]

1
k

− 8
)

.

6 Streaming Applications

We have the following tight bounds for streaming 1.

1 Matching upper bounds can be achieved by using n sketches each corresponding
to a Johnson-Lindenstrauss transform of dimension O(1/ε2 log n/δ) with arithmetic
precision of O(log d+log M) bits for closest pair and O(log n+log M) for the largest
entry in matrix product.

Amplification of One-Way Information Complexity via Codes 971

Approximate Closest Pair. This problem is described as follows: Alice has n
vectors v1,v2, . . . ,vn ∈ [±M]d, Bob has n vectors u1,u2, . . . ,un ∈ [±M]d and
a threshold value θ, and his goal is to distinguish (with prob. 1 − δ) the cases:

1. For all i ∈ [n] it holds that ‖ui − vi‖p
p ≥ (1 + ε)θ.

2. There exists i such that ‖ui − vi‖p
p ≤ (1 − ε)θ.

Let �p(n, d,M, ε, θ) denote this problem.

Theorem 6.1. Assume n is at least a sufficiently large constant and ε is at most
a sufficiently small constant. Assume there is a constant γ > 0 such that d1−γ ≥
1
ε2 log n

δ . Then R→
δ (�p(n, d,M, ε, θ)) ≥ Ω

(
n
ε2 log n

δ (log d + log M))
)

for p ∈
{1, 2}.

Approximating Largest Entry in Matrix Product by Sketching. Given
a matrix A, let Ai denote its i-th row and use Aj to denote its j-th column.
The goal is to compute a (possibly randomized) n × d matrix S that has an
estimation procedure fθ satisfying: for every pair of matrices A,B ∈ [±M]n×n,
with probability at least 1 − δ over the randomness in the choice of S:

1. fθ(AS,B) = 1 if (AB)i,j ≥ (1 + ε)θ for some i, j ∈ [n].
2. fθ(AS,B) = 1 if (AB)i,j ≤ θ for all i, j ∈ [n].

Theorem 6.2. Assume n is a sufficiently large constant and ε is at most a
sufficiently small constant. Assume there is a constant γ > 0 such that n1−γ ≥
1
ε2 log n

δ . Let S be a (possibly randomized) n × d matrix that has an estimation
procedure fθ satisfying the properties above. Then the number of bits to specify
AS is at least Ω(n 1

ε2 log n
δ (log n + log M)).

References

1. Ablayev, F.M.: Lower bounds for one-way probabilistic communication complexity
and their application to space complexity. Theor. Comput. Sci. 157(2), 139–159
(1996)

2. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci.
68(4), 702–732 (2004)

3. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds
by polynomials. J. ACM 48(4), 778–797 (2001)

4. Buhrman, H., Garćıa-Soriano, D., Matsliah, A., de Wolf, R.: The non-adaptive
query complexity of testing k-parities. Chicago J. Theor. Comput. Sci. (2013)

5. Cover, T.M., Thomas, J.A.: Elements of information theory (2. ed.). Wiley (2006)
6. Dasgupta, Anirban, Kumar, Ravi, Sivakumar, D.: Sparse and lopsided set dis-

jointness via information theory. In: Gupta, Anupam, Jansen, Klaus, Rolim, José,
Servedio, Rocco (eds.) APPROX 2012 and RANDOM 2012. LNCS, vol. 7408,
pp. 517–528. Springer, Heidelberg (2012)

7. Dudley, R.M.: Central limit theorems for empirical measures. The Annals of Prob-
ability 6(6), 899–929 (1978)

972 M. Molinaro et al.

8. Haussler, D.: Decision theoretic generalizations of the PAC model for neural net
and other learning applications. Inform. Comput. 100(1), 78–150 (1992)

9. Jayram, T.S., Woodruff, D.P.: Optimal bounds for johnson-lindenstrauss trans-
forms and streaming problems with sub-constant error. In: SODA (2011)

10. Kremer, I., Nisan, N., Ron, D.: On randomized one-round communication com-
plexity. Computational Complexity, pp. 21–49 (1999)

11. Lee, T., Shraibman, A.: Lower bounds in communication complexity. Foundations
and Trends in Theoretical Computer Science 3(4), 263–399 (2009)

12. Lee, T., Zhang, S.: Composition theorem in communication complexity. In: ICALP
(2010)

13. Molinaro, M., Woodruff, D.P., Yaroslavtsev, G.: Beating the direct sum theorem
in communication complexity with implications for sketching. In: SODA (2013)

14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

15. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends
Theor. Comput. Sci. 1(2), 117–236 (2005)

16. Newman, I., Szegedy, M.: Public vs. private coin flips in one round communication
games (extended abstract). In: STOC (1996)

17. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials.
Computational Complexity 4, 301–313 (1994)

18. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press (2014)
19. Papadimitriou, C.H., Sipser, M.: Communication complexity. J. Comput. Syst. Sci.

28(2), 260–269 (1984)
20. Saglam, M., Tardos, G.: On the communication complexity of sparse set disjoint-

ness and exists-equal problems. In: FOCS (2013)
21. Sherstov, A.: The pattern matrix method. SIAM J. Comput. 40(6), 1969–2000

(2011)
22. Woodruff, D.P.: The average-case complexity of counting distinct elements. In:

ICDT (2009)
23. Yao, A.C.: Lower bounds by probabilistic arguments (extended abstract). In: FOCS

(1983)

A (2 + ε)-Approximation Algorithm
for the Storage Allocation Problem

Tobias Mömke1 and Andreas Wiese2(B)

1 Saarland University, Saarbrücken, Germany
moemke@cs.uni-saarland.de

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
awiese@mpi-inf.mpg.de

Abstract. Packing problems are a fundamental class of problems stud-
ied in combinatorial optimization. Three particularly important and well-
studied questions in this domain are the Unsplittable Flow on a Path
problem (UFP), the Maximum Weight Independent Set of Rectangles
problem (MWISR), and the 2-dimensional geometric knapsack problem.
In this paper, we study the Storage Allocation Problem (SAP) which is a
natural combination of those three questions. Given is a path with edge
capacities and a set of tasks that are specified by start and end vertices,
demands, and profits. The goal is to select a subset of the tasks that can
be drawn as non-overlapping rectangles underneath the capacity profile,
the height of a rectangles corresponding to the demand of the respective
task. This problem arises naturally in settings where a certain available
bandwidth has to be allocated contiguously to selected requests.

While for 2D-knapsack and UFP there are polynomial time (2 +
ε)-approximation algorithms known [Jansen and Zhang, SODA 2004]
[Anagnostopoulos et al., SODA 2014] the best known approximation fac-
tor for SAP is 9+ε [Bar-Yehuda, SPAA 2013]. In this paper, we level the
understanding of SAP and the other two problems above by presenting
a polynomial time (2 + ε)-approximation algorithm for SAP. A typically
difficult special case of UFP and its variations arises if all input tasks
are relatively large compared to the capacity of the smallest edge they
are using. For that case, we even obtain a pseudopolynomial time exact
algorithm for SAP.

1 Introduction

Packing problems belong to the most fundamental problems in combinatorial
optimization and approximation algorithms. One very prominent packing prob-
lem is the well-known Knapsack problem: given is a knapsack with a certain
capacity and a set of items I, where each item i is specified by a demand di and
a profit wi. The task is to select a subset of the given items I ′ ⊆ I such that
their total demand is bounded by the capacity of the knapsack, the objective
being to maximize the obtained profit w(I ′) :=

∑
i∈I′ wi.

Research partially funded by by the Indo-German Max Planck Center for Computer
Science (IMPECS) and Deutsche Forschungsgemeinschaft grant BL511/10-1.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 973–984, 2015.
DOI: 10.1007/978-3-662-47672-7 79

974 T. Mömke and A. Wiese

There are several natural generalizations of this basic setting. One is to add
a second dimension to the problem such that each item i is represented by an
axis-parallel rectangle. The problem is then to select a set of items and place
their corresponding rectangles non-overlappingly into a rectangular box. This
yields the 2-dimensional geometric knapsack problem.

Another natural extension of knapsack is to add a temporal component such
that each item i has additionally a start time s(i) and an end time t(i) which
specify when it is active, modelling that it stays in the knapsack only during
[si, ti). We call the input items tasks in this setting. Typically, one models the
time horizon by a path where each edge represents a discrete time point and the
values s(i) and t(i) represent vertices of the path. Each edge e is equipped with
a capacity ue, modelling the available knapsack capacity at this time (which
can differ from edge to edge). For each edge e we denote by Te the input tasks
whose s(i)-t(i)-path P (i) uses e. For a computed set T ′ we then require that
d(Te ∩ T ′) ≤ ue for each edge e. This yields the well-studied Unsplittable Flow
on a Path problem (UFP).

In this paper, we study the Storage Allocation Problem (SAP) which is a
natural combination of UFP and 2-dimensional knapsack: Given the same input
as for UFP, the goal is to select a subset T ′ of the input set T and we want to
compute a vertical position h(i) for each task i ∈ T ′ such that we can represent
the selected tasks by non-overlapping rectangles underneath the capacity profile,
the rectangle for each task i ∈ T ′ is drawn at height level h(i) and has a width
of di (see Figure 1(e)). Formally, we require that (i) h(i) + di ≤ ue for each
task i ∈ T ′ and each edge e ∈ P (i) and (ii) for any two tasks i, i′ ∈ T ′ if
P (i) ∩ P (i′) �= ∅ then [h(i), h(i) + di) ∩ [h(i′), h(i′) + di′) = ∅. Observe that
any solution satifying conditions (i) and (ii) also satisfies that d(T ′ ∩ Te) ≤ ue,
for each edge e. SAP is particularly motivated by settings where tasks need a
contiguous portion of an available resource, i.e., a consecutive portion of the
computer memory or a frequency bandwidth.

Seen from a different perspective, SAP is an intermediate problem between 2-
dimensional knapsack and the Maximum Weight Independent Set of Rectangles
problem (MWISR) in which we are also given a set of items in the form of axis-
parallel rectangles that we want to select a non-overlapping subset from, but
for each rectangle its placement is predetermined. In 2-dimensional knapsack we
are allowed to translate the input rectangles in both dimensions, in SAP we can
translate them only up and down, and in MWISR they are completely fixed.
Also, SAP is related to the Dynamic Storage Allocation problem (DSA) we are
given a set of tasks as above and we want to draw their respective rectangles so
that the maximum height maxi∈T h(i) + di is minimized.

A lot of progress has been made on the packing problems listed above. Specif-
ically, we now have polynomial time (2 + ε)-approximation algorithms for 2-
dimensional knapsack [28], UFP [4], and DSA [15] and quasi-polynomial time
(1 + ε)-approximation algorithms for UFP [6], MWISR [1], and 2-dimensional
knapsack [2]. The state of the art for SAP is a (9 + ε)-approximation in poly-
nomial time [10] which is a best-of-three algorithm. It classifies a task i to be

A (2 + ε)-Approximation Algorithm for the Storage Allocation Problem 975

δ-small if di ≤ δ · b(i) where b(i) denotes the bottleneck capacity of i which
is the minimum capacity of an edge used by i. Similarly, a task i is δ-large if
di > δ · b(i). Intuitively, the value δ denote the relative size of the tasks. The
mentioned algorithm provides a (4+ε)-approximation for δ-small tasks (for some
small value δ depending on ε), a 3-approximation for 1

2 -large tasks and finally a
(2 + ε)-approximation for the remaining tasks.

1.1 Our Contribution

In this paper, we level our understanding of SAP and the other packing problems
mentioned above in terms of polynomial time approximation algorithms. We
present a (2 + ε)-approximation algorithm for SAP whose ratio matches the
factors of the respective best known polynomial time algorithms for UFP, DSA,
and 2D-knapsack. It is a best-of-two algorithm which improves all components of
the so far best known (9 + ε)-approximation algorithm [10]. First, we show that
if tasks are sufficiently small, we can get a (1 + ε)-approximation by rounding
a suitably defined new LP-relaxation. While such a result is known for UFP
[21, Corollary 3.4], it is not clear how to transfer it to SAP, in particular, since
the optimal value of the canonical LP for UFP can differ from the best SAP-
solution for a given instance by up to a factor 2, even if all input tasks are
arbitrarily small. Our key technical contribution here is that we present a way
to reduce the overall problem to assigning tasks to rectangular strips underneath
the capacity profile. Since tasks are small, at negligible loss we we can ignore the
aspect that they are supposed to be drawn as non-overlapping rectangles and
we ensure only that the load of each strip is bounded by its capacity. This yields
our new LP-formulation for the problem. With a suitable rounding method, we
prove that for any ε > 0 there exists a δ > 0 such that for SAP-instances with
only δ-small tasks we obtain a (1 + ε)-approximation algorithm.

Then we study the converse setting where we assume that we are given
a constant δ > 0 and a SAP-instance with only δ-large tasks. In the related
UFP problem, this is a rather difficult setting and the known PTAS for it [4] is
very complex and involved. In this paper we present a very clean and elegant
dynamic program for this setting for SAP. In particular, rather than computing
an approximation, we solve the problem even exactly in pseudopolynomial time.
In our DP we guess the tasks in the optimal solution step by step, ordered by their
vertical positions in OPT. We prove that by using this order we need to remember
only few information from the previous guesses. The pseudopolynomial running
time stems from the fact that there are a pseudopolynomial number of possible
vertical positions for each task and there are densely packed optimal solutions
in which it is not sufficient to allow only fewer values e.g., only powers of 1 + ε.
However, using a result by Knipe [32] about trimming graphs with bounded
treewidth, together with an argument by Erlebach et al. [23], we show that
there are (1 + ε)-approximative solutions in which the task positions come only
from a polynomial size subset. This yields a PTAS for δ-large tasks.

We round up our results by showing that any feasible solution for UFP, (i.e.,
any set of tasks satisfying the edge capacities) can be partitioned into O(1)

976 T. Mömke and A. Wiese

subsets such that each of them is a feasible solution to SAP. In a sense, this
bounds the “price of contiguousness”. Moreover, we can also show that if we
increase the capacity of each edge by a constant factor, any UFP-solution also
yields a SAP solution. This connects well with a result by Gergov [26] which
proves an upper bound of 3 for the special case for uniform edge capacities,
improving on several earlier results [25,30,31].

1.2 Related Work

For the special case of SAP that all edges have the same capacities, a local
ratio 7-approximation algorithm is presented by Bar-Noy et al. [8], using an
algorithm by Gergov for DSA [26]. This is improved by Bar-Yehuda to a ran-
domized (2 + ε)-approximation algorithm and a deterministic 2e−1

e−1 + ε ≈ 2.582-
approximation for the same special case [9]. In fact, there is a close connection
between unsplittable flow and dynamic storage allocation in the case of uniform
edge capacities and if all tasks are sufficiently small. A result by Buchsbaum
et al. [15] implies that then, if a set of tasks is feasible for UFP then a (1 − ε)-
fraction of it yields a feasible solution for SAP. However, this connection breaks
if edges have different capacities. Chen et al. [22] provide an exact dynamic pro-
gramming algorithm running in time O(n(Kn)K) assuming that all demands
are integral multiples of 1/K and an (e

e−1 + ε)-approximation if all demands
have size O(1/K). As mentioned above, Bar-Yehuda, Beder, and Rawitz [10]
present a (9 + ε)-approximation algorithm for general SAP with arbitrary edge
capacities which is the best known result for this case. For UFP, after a long
line of work on the special cases of uniform edge capacities [8,16,34], the no-
bottleneck-assumption [17,21] and the general case [4,6,14,20?] the best known
results are now are quasi-PTASs due to Bansal et al. [6] and Batra et al. [11] and
a polynomial time (2+ε)-approximation algorithm by Anagnostopoulos et al. [4].
Recently, Batra et al. [11] presented PTASs for two special cases.

The two-dimensional geometric knapsack problem admits a (2 + ε)-approx-
imation algorithm due to Jansen and Zhang [28]. PTASs are known if the size
of the knapsack can be increased by a factor (1 + ε) in both dimensions [24]
or even only in one of them [27] while the compared optimum has to use the
original knapsack. Also, there is a PTAS if the profit of each item equals its
area [5]. For MWISR, there are many polynomial time O(log n)-approximations
algorithms known [3,12,29,33], and the best known result is a O(log n/ log log n)-
approximation by Chan and Har-Peled [19]. For the unweighted case, there is
also a O(log log n)-approximation by Chalermsook and Chuzhoy [18]. Recently, a
quasi-PTAS (for the weighted case) was found [1]. As mentioned above, a result
by Buchsbaum et al. [15] for DSA states that if all tasks are sufficiently small
then they can be drawn within a height of at most (1 + ε) · L where L denotes
the maximum total demand of tasks crossing any edge. Combined with a DP for
the other tasks, this yields a (2 + ε)-approximation algorithm. For bounding the
needed height as a function of L the best known bound is from Gergov [26] who
shows an upper bound of 3 · L, improving on previous results [25,30,31].

A (2 + ε)-Approximation Algorithm for the Storage Allocation Problem 977

(a) (b)

↓

↑

→←

(c) (d) (e)

h(i)
i

P (i)

d(i)

Fig. 1. (a) Knapsack problem, (b) two-dimensional knapsack problem, (c) independent
set of rectangles, (d) unsplittable flow on a path (UFP), (e) storage allocation problem
(SAP)

2 Approximating Small Tasks up to a Factor 1 + ε

In this section, we prove that for any ε > 0 there is a δ > 0 such that for δ-small
tasks we can construct a (1 + ε)-approximation algorithm. First, we show this
result for the special case that the edge capacities are in a constant range. Then,
we show how to reduce the general case to this special case.

2.1 Edge Capacities in Constant Range

Let ε > 0. Assume that the edge capacities lie in a constant range, i. e., assume
that there is a constant U such that maxe ue ≤ U ·mine ue. Assume for simplicity
that U ∈ N and 1/ε ∈ N. We draw a set of strips in the area underneath
the capacity profile. A strip is specified by a tuple (k, v�, vr) which intuitively
represents the rectangle [v�, vr] × {k · ε · mine ue, (k + 1) · ε · mine ue} where the
vertices of the graph are interpreted as integers. Let S denote the set of all
maximally long strips whose respective rectangles fit underneath the capacity
profile. Formally, a strip (k, v�, vr) is contained in S if each edge between v� and
vr has a capacity of at least (k + 1) · ε · mine ue and the edges on the left of
v� and on the right of vr have a capacity of less than (k + 1) · ε · mine ue or do
not exist because v�/vr are the left/right-most vertices of the path. For a strip
S = (k, v�, vr) denote by P (S) the set of edges between v� and vr.

Instead of aiming directly at selecting a set of tasks T ′ and finding a non-
overlapping drawing of them, we compute a set T ′ ⊆ T and an assignment
f : T ′ → S of them to the strips. We require that for each strip S ∈ S that
(i) each task i ∈ f−1(S) fits into S, meaning that P (i) ⊆ P (S), and (ii) the total
demand of the tasks in each strip S does not exceed the capacity of S on any
edge e ∈ P (S), i. e., d(f−1(S) ∩ Te) ≤ ε · mine ue for each edge e ∈ P (S).

We call a pair (T ′, f) satisfying the above a strip assignment. It is not true
that for any feasible solution (T ′, h) we can find a strip assignment (T ′, f) with
the same set of tasks T ′, already because the total capacity of the strips using

978 T. Mömke and A. Wiese

some edge e might be smaller than ue. The converse statement is also false,
since the second property above is only a relaxation of the requirement that
tasks should be drawn as non-overlapping rectangles. Nevertheless, we can show
that if tasks are very small compared to the capacity of each strip, then the two
notions are equivalent up to a factor 1+ε. Key to show this is that the unavailable
edge capacity is small compared to the total capacity and we assume all tasks
to be very small. Also, based on a result by Buchsbaum et al. [15], Bar-Yehuda
et al. [9] showed that if the two properties are true for some strip S, then a
(1 − ε)-fraction of the tasks in f−1(S) can be in fact drawn as non-overlapping
rectangles. Using this intuition, we can prove the following lemma.

Lemma 1. For any ε > 0 there is a δ1 > 0 with the following property.
Assume we are given an instance in which every task is δ1/U -small. Then for
any feasible solution (T ′, h) there is a strip assignment (T ′′, f ′) with w(T ′′) ≥
(1−O(ε))w(T ′). Conversely, for any strip assignment (T ′′, f ′) there is a feasible
solution (T ′, h) with w(T ′) ≥ (1 − O(ε))w(T ′′).

Knowing that it is sufficient to compute a good strip assignment, we present
now an LP-rounding algorithm for the latter goal. We formulate the problem as
an integer program whose LP-relaxation (STRIP-LP) is given below.

max
∑

i,S

wi · xi,S

s.t.
∑

i∈Te
xi,S · di ≤ ε · mine ue ∀S ∈ S, (2.1)

∀e ∈ P (S)∑
S xi,S ≤ 1 ∀i ∈ T

xi,S ≥ 0 ∀i ∈ T ∀S ∈ S
s. t. P (i) ⊆ P (S)

We compute the optimal feasible solution to the above LP. By losing only a
factor (1 + ε), we round it to a strip assignment via randomized rounding with
alteration as introduced by Calinescu et al. [16]. Important for this to work is
that the demand of each input task is sufficiently small compared to the capacity
of each strip. In the rounding, we first sample a preliminary integral solution y
such that Pr[yi,S = 1] = (1 − ε)xi,S and Pr[yi,S = 1 ∧ yi,S′ = 1] = 0 for any
task i and for any two strips S, S′ ∈ S. Such a distribution can easily be obtained
via dependant rounding similar to Bertsimas et al. [13]. Then, intuitively, in an
alteration phase for each strip, we consider the tasks in the order of their start
vertices and drop a task if it causes a capacity constraint (2.1) to be violated.
We can show that the probability that a task is dropped in this alteration phase
is bounded by O(ε). In contrast to the method of Calinescu et al. [16] we work
with dependent rounding. However, for any pair of tasks the outcomes of the
random experiment are still independent and thus the argumentation from [16]
still works.

Lemma 2. For any ε > 0 there is a δ2 > 0 such that given any instance with
only δ2/U -small tasks and a solution x∗ to (STRIP-LP), there is a polynomial

A (2 + ε)-Approximation Algorithm for the Storage Allocation Problem 979

time algorithm computing a strip assignment (T ′, f) with w(T ′) ≥ (1−ε)
∑

i,S wi·
x∗

i,S.

Together with Lemma 1, we thus obtain a (1 + O(ε))-approximation for
instances with only δ/U -small tasks where δ := min{δ1, δ2}. Next, we give a
reduction of the general case to this special case.

2.2 Arbitrary Edge Capacities

The key idea is to use some shifting arguments to remove tasks with small
total cost from the optimal solution and move some other tasks up into the
resulting empty space. As a result, afterwards each task i is drawn at a position
h(i) ∈ Ωε(b(i)), i.e., not too far below its bottleneck edge. As a result, we can
split the problem into independent subproblems, each having a bounded range
of edge capacities.

Lemma 3. Let ε > 0 such that 1/ε is an integer. There is a δ > 0 such that for
any instance I with only δ-small tasks there is an integer value � with 0 ≤ � < 1/ε
and a solution (T̄ , h̄) to I where

1. w(T̄) ≥ (1 − 2ε)OPT(I),
2. for each task i ∈ T̄ with b(i) ≥ 2�+1+r/ε it holds that h̄(i) ≥ 2�+r/ε, and
3. for each task i ∈ T̄ with b(i) < 2�+1+r/ε it holds that h̄(i) + di ≤ 2�+r/ε

for any r ∈ N0.

Proof sketch. Given the optimal solution (T ∗, h∗) of the δ-small tasks, we
assign the tasks into groups according to the position at which they are drawn.
Denote by T ∗

k ⊆ T ∗ all tasks from T ∗ whose rectangles have non-empty inter-
section with the horizontal strip [0, |V |] × [2k, 2k+1).

Formally, we define T ∗
k := {i ∈ T ∗|[h∗(i), h∗(i) + di) ∩ [2k, 2k+1) �= ∅}. Note

that a task might appear in several of these sets. Let k̄ denote the largest index
k such that T ∗

k �= ∅ and consider the sets T ∗̄
k−1/ε+1

, T ∗̄
k−1/ε+2

, ..., T ∗̄
k
. If δ is

sufficiently small then each task appears in at most two of these groups. We
select one set T ∗

k′ ∈ {T ∗̄
k−1/ε

, T ∗̄
k−1/ε+1

, ..., T ∗̄
k
} uniformly at random and remove

all its tasks. In expectation we lose at most an 2ε-fraction of w(
⋃k̄

k=k̄−1/ε+1 T ∗
k).

Then, we take all tasks i ∈ T ∗ with b(i) ≥ 2k′+1 and h(i) + di ≤ 2k′
and move

them up by 2k′
units, i.e., we define h̄∗(i) := h∗(i) + 2k′

for them. As a result,
we obtain the property that for each task i ∈ T ∗ \ T ∗

k′ with b(i) ≥ 2k′+1 it holds
that h̄∗(i) ≥ 2k′

and for each task i′ ∈ T ∗ \ T ∗
k′ with b(i′) < 2k′+1 it holds

that h̄∗(i) + di < 2k′
. Iterating the above argument over multiple levels then

completes the proof. �
Observe that Lemma 3 decouples the instance into separate subinstances.

For each r ∈ N0 we have one subinstance consisting of the tasks T r := {i ∈
T : 2�+1+r/ε ≤ b(i) < 2�+1+(r+1)/ε} for which we are looking for a solution with
2�+r/ε ≤ h̄(i) and h̄(i) + di ≤ 2�+(r+1)/ε for each selected task i ∈ T r. Thus, we

980 T. Mömke and A. Wiese

can treat each group T r independently as an instance where the edge capacities
are in a range of [2�+r/ε, 2�+1+(r+1)/ε − 2�+r/ε).

We define a constant δ′ ∈ Oε(1) such that the algorithm from the previous
section gives us a (1 + ε)-approximation for the δ′-small tasks in each group T r.
This yields a (1+ ε)-approximation algorithm for instances with only min{δ, δ′}-
small tasks where δ is the constant due to Lemma 3.

Theorem 1. For each ε > 0 there is a δ > 0 such that there is a (1 + ε)-
approximation algorithm for the storage allocation problem if the input consists
of δ-small tasks only.

3 Large Tasks

In this section we present a pseudo-polynomial time exact algorithm for the
storage allocation problem for δ-large tasks, for any δ > 0. Subsequently, we
show how to turn it into a polynomial time (1 + ε)-approximation algorithm.
Together with Theorem 1 this yields a polynomial time (2 + ε)-approximation
algorithm for SAP.

Since all input data are integers we can assume w.l.o.g. that all position
values h(i) in the optimal solution are integers: for any optimal solution without
this property we can apply “gravity”, i. e., decrease the vertical position of all
tasks as much as we can. In the resulting solution each arising position of a task
is either zero or the sum of the demands of some other tasks and thus an integer.

Our algorithm is a dynamic program. Denote by (OPT, h∗) the optimal solu-
tion. In the first step, we guess the task i0 ∈ OPT with smallest position h∗(i0)
and all tasks from OPT using its bottleneck edge e(i0). Denote them by OPT0.
Since all tasks are δ-large, there can be only 1/δ of them. More precisely, we
guess these tasks as well as their positions according to h∗. The whole problem
splits then into two disjoint subproblems given by the subpath on the left of e(i0)
and the subpath on the right of e(i0). We recurse on both sides. Consider the left
side and let OPTL ⊆ OPT denote the tasks from OPT whose path is completely
contained in the subpath on the left of e(i0). Note that OPTL ∩ OPT0 = ∅. We
guess the task i1 ∈ OPTL with smallest position h∗(i1). Naively, one would
like to guess all tasks using e(i1) and then recurse again. The problem is that
e(i1) might be used by all up to 1/δ tasks in OPT0 and another 1/δ tasks from
OPTL. Thus, in each recursive step the number of tasks to be remembered would
increase by 1/δ while the recursion depth could be even linear. Thus, we could
not bound the number of DP-cells by a polynomial. Instead, we first show that
the number of tasks i ∈ OPT (not only OPTL!) using e(i1) with h(i) ≥ h∗(i1)
is bounded by 1/δ2 as the following lemma implies.

Lemma 4. Consider any solution (T ′, h′) and a task i ∈ T ′. There are at most
1/δ2 tasks i′ ∈ T ′ such that e(i) ∈ P (i′) and h(i′) ≥ h(i).

Proof. For any task i′ with h(i′) ≥ h(i) and e(i) ∈ P (i′), we have that di ≤
h(i′) ≤ b(i′)−di′ . Thus, using that i and i′ are δ-large, di′/δ ≥ b(i′) ≥ δ ·b(i)+di′

and thus di′ ≥ δ2 · b(i)/(1 − δ) > δ2 · b(i). �

A (2 + ε)-Approximation Algorithm for the Storage Allocation Problem 981

When recursing on the subpath on the left of e(i1), we specify the subproblem by
its subpath, by the at most 1/δ2 tasks i ∈ OPT using e(i1) with h(i) ≥ h∗(i1),
and the information that each task in the desired solution to this subproblem
has to have a height of at least h∗(i1).

When continuing with this recursion, each arising subproblem can be char-
acterized by two edges eL, eR, by at most 1/δ2 tasks TL using eL together with
a placement h(i) for each task i ∈ TL, at most 1/δ2 tasks TR using eR together
with a placement h(i) for each task i ∈ TR, and an integer hmin. For each such
combination we introduce a DP-cell (eL, eR, TL, TR, h, hmin). Formally, it models
the following subproblem: assume that we committed to selecting tasks TL and
TR and assigning heights to them as given by the function h. Now we ask for
the maximum profit we can obtain by selecting additional tasks whose paths are
contained in the path strictly between eL and eR (so excluding eL and eR) and
assigning heights to them such that h(i) ≥ hmin for each selected task i.

For a given DP-cell C = (eL, eR, TL, TR, h, hmin) we denote by (OPTC , h∗
C)

its optimal solution. Observe that OPTC ∩TL = ∅ = OPTC ∩TR. Let î ∈ OPTC

be the task in OPTC with minimum height h∗
C (̂i). To compute (OPTC , h∗

C) we
guess î ∈ OPTC and h∗

C (̂i). According to Lemma 4 there can be at most 1/δ2

tasks i ∈ OPTC ∪ TL ∪ TR using e(̂i) such that h∗
C(i) ≥ h∗

C (̂i). We also guess
all those tasks (the tasks from TL and TR among them are of course already
given) together with their respective heights according to h∗

C . Denote them by
T̄ . We can then show that OPTC consists of the tasks in T̄ together with the
tasks in the optimal solutions to the DP-cells C ′ := (eL, e(̂i), TL, T̄ , h′, h∗

C (̂i)) and
C ′′ := (e(̂i), eR, T̄ , TR, h′′, h∗

C (̂i)) where the assignments h′ and h′′ are obtained
by inheriting from h the values for the tasks in TL and TR, respectively, and
taking the guessed values for the tasks in T̄ . Conversely, we can easily show that
we obtain a feasible solution to the original cell C if we combine two arbitrary
feasible solutions for C ′ and C ′′, respectively, with T̄ . This proves the correctness
of our DP. Since the total number of DP-cells is bounded by (n · maxi di)O(1/δ2)

we obtain an exact pseudopolynomial time algorithm.

Theorem 2. Let δ > 0. There is an exact algorithm for instances of SAP with
only δ-large tasks whose running time is (n ·maxi di)O(1/δ2) where n denotes the
number of tasks.

In order to still obtain a PTAS, our strategy is to bound the number of
candidate values for the height h(i) of each task i. We will show that there is a
set of such candidates of polynomial size such that there is a (1+ε)-approximative
solution in which each selected task is assigned a height from this set. By allowing
only these heights in the above DP computation we then obtain a PTAS.

Our first step is to introduce a polynomial number of heights which we call
anchors lines. Those are the capacities of the input edges and all powers of 1+δ
between 1 and maxe ue. Denote by H0 this set of values. W.l.o.g. from now on we
restrictly ourselves to solutions in which for each task the height of its top edge
equals the height of an anchor line or its top edge touches the bottom edge of
some other task. We call such solutions top-aligned solutions. In a given solution,

982 T. Mömke and A. Wiese

we say that a task is in level 1 if the height of its top edge equals an anchor line.
Recursively, a task i is in level � + 1 if its top edge touches the bottom edge of a
task in level � and i is not in level any level �′ < �. Our goal is to show that there
is a (1 + ε)-approximative solution in which each task has a level of at most c(ε)
for some constant c(ε) that holds universally for any input instance. Observe
that for the heights of the tasks in level � there are only |H0| · n� possible values
that are obtained by recursively defining Hk+1 := Hk ∪ {h − di|h ∈ Hk, i ∈ T}
for each k.

To this end, consider an optimal solution (T ∗, h∗). We construct the follow-
ing directed graph D(T ∗, h∗). For each task i ∈ T ∗ we introduce a vertex in
D(T ∗, h∗). There is an edge from the vertex for i to the vertex for i′ if and only
if the following three conditions are satisfied: P (i)∩P (i′) �= ∅; h∗(i)+di ≤ h∗(i′);
there is no anchor line strictly between h∗(i)+di and h∗(i′). Using that the tasks
are δ-large, we can show that each tasks rectangle is crossed by some anchor line
which implies that D(T ∗, h∗) is planar. Moreover, the second condition implies
that D(T ∗, h∗) is acyclic.
Proposition 1. If the length of the longest chain in D(T ∗, h∗) is bounded by
some value �, then h∗(i) ∈ H� for each i ∈ T ∗.
Unfortunately, the length of the longest chain in D(T ∗, h∗) might be Ω(n), e.g.,
when all tasks are tightly stacked on top of each other. To construct a solution
where the latter is bounded, we apply the following theorem to D(T ∗, h∗). It can
be proven by combining a result from Knipe [32] on trimming weighted graphs
with bounded treewidth with the argumentation used in Corollary 2.3 in [23]
(see also the discussion in Section 4 in the latter paper).

Theorem 3 ([23,32]). Let ε > 0. There exists a constant c(ε) ∈ N such that for
any planar graph G = (V,E) with vertex weights given by a function w : V → R

there is a set of vertices V ′ ⊆ V such that w(V ′) ≥ (1 − ε)w(V) and the length
of the longest simple path in G[V ′] is bounded from above by c(ε).

The above theorem yields a subset of the vertices in D(T ∗, h∗) and thus a set of
tasks T̄ ∗ ⊆ T ∗ with w(T̄ ∗) ≥ (1−ε)w(T ∗). Starting from their heights according
to the function h∗ we construct a top-aligned solution (T ∗ \ T ′, h′) by pushing
up each task until the height of its top edge either equals the height of an anchor
line or the height of the bottom edge of some other task. Since the length of the
longest chain in D(T ∗ \ T ′, h′) is bounded by c(ε) the same upper bound holds
for the maximum level of a task. This shows that there is a (1−ε)-approximative
solution (T ∗ \ T ′, h′) in which h′(i) ∈ Hc(ε) for each i ∈ T ∗ \ T ′. By restricting
our DP from the previous section to use only heights in Hc(ε) for the tasks we
obtain our theorem below.

Theorem 4. Let ε > 0 and δ > 0. There is a polynomial time (1 + ε)-
approximation algorithm for instances of SAP with only δ-large tasks.

In order to obtain our overall (2+ ε)-approximation algorithm, for any given
ε > 0 we first choose δ > 0 according to Theorem 1. Then we compute a (1+ ε)-
approximations for the δ-small and the δ-large tasks using Theorems 1 and 4.
Selecting the best of these two solutions yields a (2 + ε)-approximation overall.

A (2 + ε)-Approximation Algorithm for the Storage Allocation Problem 983

Theorem 5. Let ε > 0. There is a polynomial time (2 + ε)-approximation algo-
rithm for SAP.

Acknowledgments. We would like to thank Naveen Garg, Amit Kumar, and Jatin
Batra for helpful discussions.

References

1. Adamaszek, A., Wiese, A.: Approximation schemes for maximum weight indepen-
dent set of rectangles. In: 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 400–409. IEEE (2013)

2. Adamaszek, A., Wiese, A.: A quasi-PTAS for the two-dimensional geometric knap-
sack problem. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2015, pp. 1491–1505 (2015)

3. Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum indepen-
dent set in rectangles. Computational Geometry 11, 209–218 (1998)

4. Anagnostopoulos, A., Grandoni, F., Leonardi, S., Wiese, A.: A mazing 2+ε approx-
imation for unsplittable flow on a path. In: Proceedings of the 25th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2014) (2014)

5. Bansal, N., Caprara, A., Jansen, K., Prädel, L., Sviridenko, M.: A structural lemma
in 2-dimensional packing, and its implications on approximability. In: Dong, Y.,
Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 77–86. Springer,
Heidelberg (2009)

6. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplit-
table flow on line graphs. In: STOC, pp. 721–729. ACM (2006)

7. Bansal, N., Friggstad, Z., Khandekar, R., Salavatipour, R.: A logarithmic approx-
imation for unsplittable flow on line graphs. In: SODA, pp. 702–709 (2009)

8. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach
to approximating resource allocation and scheduling. Journal of the ACM (JACM)
48(5), 1069–1090 (2001)

9. Bar-Yehuda, R., Beder, M., Cohen, Y., Rawitz, D.: Resource allocation in bounded
degree trees. Algorithmica 54(1), 89–106 (2009)

10. Bar-Yehuda, R., Beder, M., Rawitz, D.: A constant factor approximation algorithm
for the storage allocation problem. In: Proceedings of the 25th ACM symposium
on Parallelism in Algorithms and Architectures, pp. 204–213. ACM (2013)

11. Batra, J., Garg, N., Kumar, A., Mömke, T., Wiese, A.: New approximation schemes
for unsplittable flow on a path. In: SODA, pp. 47–58 (2015)

12. Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Improved approx-
imation algorithms for rectangle tiling and packing. In: Proceedings of the Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 427–436. Society for
Industrial and Applied Mathematics (2001)

13. Bertsimas, D., Teo, C.-P., Vohra, R.: On dependent randomized rounding algo-
rithms. Oper. Res. Lett. 24(3), 105–114 (1999)

14. Bonsma, P., Schulz, J., Wiese, A.: A constant-factor approximation algorithm for
unsplittable flow on paths. SIAM Journal on Computing 43, 767–799 (2014)

15. Buchsbaum, A.L., Karloff, H., Kenyon, C., Reingold, N., Thorup, M.: Opt versus
load in dynamic storage allocation. SIAM Journal on Computing 33(3), 632–646
(2004)

984 T. Mömke and A. Wiese

16. Călinescu, G., Chakrabarti, A., Karloff, H.J., Rabani, Y.: An improved approx-
imation algorithm for resource allocation. ACM Transactions on Algorithms 7,
48:1–48:7 (2011)

17. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms
for the unsplittable flow problem. Algorithmica 47, 53–78 (2007)

18. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Pro-
ceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2009), pp. 892–901. SIAM (2009)

19. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. Discrete & Computational Geometry 48(2), 373–392 (2012)

20. Chekuri, C., Ene, A., Korula, N.: Unsplittable flow in paths and trees and column-
restricted packing integer programs. In: APPROX-RANDOM, pp. 42–55 (2009)

21. Chekuri, C., Mydlarz, M., Shepherd, F.: Multicommodity demand flow in a tree
and packing integer programs. ACM Transactions on Algorithms 3, (2007)

22. Chen, B., Hassin, R., Tzur, M.: Allocation of bandwidth and storage. IIE Trans-
actions 34(5), 501–507 (2002)

23. Erlebach, T., Hagerup, T., Jansen, K., Minzlaff, M., Wolff, A.: Trimming of graphs,
with application to point labeling. Theory of Computing Systems 47(3), 613–636
(2010)

24. Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: Packing weighted rectangles
into a square. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol.
3618, pp. 352–363. Springer, Heidelberg (2005)

25. Gergov, J.: Approximation algorithms for dynamic storage allocation. In: Dı́az, J.
(ed.) ESA 1996. LNCS, vol. 1136, pp. 52–61. Springer, Heidelberg (1996)

26. Gergov, J.: Algorithms for compile-time memory optimization. In: Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 907–908.
Society for Industrial and Applied Mathematics (1999)

27. Jansen, K., Solis-Oba, R.: New approximability results for 2-dimensional packing
problems. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp.
103–114. Springer, Heidelberg (2007)

28. Jansen, K., Zhang, G.: On rectangle packing: maximizing benefits. In: Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 204–
213. Society for Industrial and Applied Mathematics (2004)

29. Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling
and packing. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 1998), pp. 384–393. SIAM (1998)

30. Kierstead, H.A.: The linearity of first-fit coloring of interval graphs. SIAM Journal
on Discrete Mathematics 1(4), 526–530 (1988)

31. Kierstead, H.A.: A polynomial time approximation algorithm for dynamic storage
allocation. Discrete Mathematics 88(2), 231–237 (1991)

32. Knipe, D.: Trimming weighted graphs of bounded treewidth. Discrete Applied
Mathematics 160(6), 902–912 (2012)

33. Nielsen, F.: Fast stabbing of boxes in high dimensions. Theor. Comp. Sc. 246,
53–72 (2000)

34. Phillips, C.A., Uma, R.N., Wein, J.: Off-line admission control for general schedul-
ing problems. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2000), pp. 879–888. ACM (2000)

Shortest Reconfiguration Paths in the Solution
Space of Boolean Formulas

Amer E. Mouawad1, Naomi Nishimura1, Vinayak Pathak1(B),
and Venkatesh Raman2

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada

{aabdomou,nishi,vpathak}@uwaterloo.ca
2 The Institute of Mathematical Sciences, Chennai, India

vraman@imsc.res.in

Abstract. Given a Boolean formula and a satisfying assignment, a flip
is an operation that changes the value of a variable in the assignment so
that the resulting assignment remains satisfying. We study the problem
of computing the shortest sequence of flips (if one exists) that transforms
a given satisfying assignment s to another satisfying assignment t of the
Boolean formula. Earlier work characterized the complexity of deciding
the existence of a sequence of flips between two given satisfying assign-
ments using Schaefer’s framework for classification of Boolean formulas.
We build on it to provide a trichotomy for the complexity of finding the
shortest sequence of flips and show that it is either in P, NP-complete,
or PSPACE-complete. Our result adds to the small set of complexity
results known for shortest reconfiguration sequence problems by provid-
ing an example where the shortest sequence can be found in polynomial
time even though the path flips variables that have the same value in
both s and t. This is in contrast to all reconfiguration problems stud-
ied so far, where polynomial time algorithms for computing the shortest
path were known only for cases where the path modified the symmetric
difference only. Our proof uses Birkhoff’s representation theorem on a
set system that we show to be a distributive lattice. The technique is
insightful and can perhaps be used for other reconfiguration problems as
well.

1 Introduction

1.1 Background and Motivation

Reconfiguration problems are motivated by practical situations where one wants
to move from one solution of an optimization problem to another while main-
taining feasibility in between [12,14,17]. Each step of the move is dictated by a
reconfiguration step, which specifies how one solution can be transformed into

A.E. Mouawad and N. Nishimura—Research supported by the Natural Science and
Engineering Research Council of Canada.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 985–996, 2015.
DOI: 10.1007/978-3-662-47672-7 80

986 A.E. Mouawad et al.

another (for example, in case of a graph problem, by adding or deleting a ver-
tex/edge). Hence reconfiguration problems can be stated concisely in terms of a
graph—the reconfiguration graph—that has a node for each feasible solution and
an undirected edge between two solutions if one can be formed from the other by
a single reconfiguration step. Given the motivation mentioned above, reconfig-
uration problems typically study the complexity of finding a path between two
nodes in the reconfiguration graph [4,6,10,12,13]. Most reconfiguration versions
of NP-complete decision problems are PSPACE-complete [12] (e.g. maximum
independent set) and hence motivated by this, there exists recent work address-
ing the problems under the framework of parameterized complexity [16,17].

For the problem of satisfiability of Boolean formulas, one defines a recon-
figuration step to be a flip operation, that changes the value of a variable in a
satisfying assignment such that the resulting assignment is also satisfying. Thus
in the reconfiguration graph of satisfiability [11], there is a node for each sat-
isfying assignment and an edge whenever the Hamming distance between the
two assignments, i.e. the number of variables for which the two assignments
differ in value, is exactly one. In one of the earliest works on reconfiguration,
Gopalan et al. [11] and Schwerdtfeger [19], using Schaefer’s [18] framework to
classify Boolean formulas, characterized the complexity of determining whether
there exists a path between s and t (the st-connectivity problem) in the recon-
figuration graph. They define a class of formulas called tight and show that
st-connectivity is in P for tight formulas and PSPACE-complete otherwise.

1.2 Our Results and Related Work

We study the complexity of computing the shortest flip sequence between two sat-
isfying assignments. Since st-connectivity is PSPACE-complete for non-tight for-
mulas, finding the shortest reconfiguration sequence is also PSPACE-complete.
We show that the class of tight formulas can be further subdivided into navigable
formulas, where the shortest reconfiguration sequence can be found in polyno-
mial time, and tight but non-navigable formulas, where it is NP-complete.

Not many results are known for computing the shortest reconfiguration path
except for the cases where the algorithm for st-connectivity returns the shortest
path itself [11,12,16]. Moreover, the only polynomial-time algorithms known
for finding the shortest reconfiguration path have the property that they make
no changes to parts of the solution common to s and t. For trees and cactus
graphs, the shortest path between maximum independent sets s and t never
removes vertices in s ∩ t [16]. In the sequence of flips for 2CNF formulas (the
only class for which a polynomial-time algorithm for shortest reconfiguration
path of satisfiability was previously known), the only variables flipped are those
whose values are different in s and t [11].

The problem of computing the shortest reconfiguration sequence of triangu-
lations of a convex polygon is an example where this complexity has been open
for more than 40 years [8] while the problem of determining the existence of a
reconfiguration sequence is trivially solvable as it is known that one can always

Shortest Reconfiguration Paths in the Solution Space of Boolean Formulas 987

transform one triangulation of a polygon to another [15]; here the flip opera-
tion replaces one diagonal of the given convex polygon with another. There is
a lot of work on determining the complexity of finding the shortest reconfigura-
tion sequence for this problem, and it has been settled for some special cases of
polygons and point sets [1,5].

Interestingly, one distinction between the triangulations of convex polygons,
for which computing the shortest reconfiguration sequence is open, and of simple
polygons, where it is NP-complete, is that the former but not the latter has the
property that the shortest flip sequence never flips a diagonal shared by s and t.
Insights from our results may lead to a better understanding of the role of the
symmetric difference in computing shortest reconfiguration paths.

2 Preliminaries and Definitions

We use terminology originally introduced by Schaefer [18] and adapted to recon-
figuration by Gopalan et al. [11] and Schwerdtfeger [19].

A k-ary Boolean logical relation (or relation for short) R is defined as a subset
of {0, 1}k, where k ≥ 1. Each i ∈ {1, . . . , k} can be interpreted as a variable of
R such that R specifies exactly which assignments of values to the variables are
to be considered satisfying.

For any k-ary relation R and positive integer k′ ≤ k, we define a k′-ary
restriction of R to be any k′-ary relation R′ that can be obtained from R by
substitution with constants and identification of variables. More precisely, let
X : {1, . . . , k} → {1, . . . , k′} ∪ {c0, c1} be a mapping from the variables of R to
the variables of R′ and the constants 0 and 1. Any such X defines a mapping
fX : {0, 1}k′ → {0, 1}k as follows. For r ∈ {0, 1}k′

, let fX(r) be the k-bit vector
whose ith bit is 0 if X(i) = c0, 1 if X(i) = c1 and equal to the X(i)th bit of r
otherwise. We say that a k′-ary relation R′ is a restriction of R with respect to
X : {1, . . . , k} → {1, . . . , k′} ∪ {c0, c1} if r ∈ R′ ⇔ fX(r) ∈ R.

A Boolean formula φ over a set {x1, . . . , xn} of variables defines a relation
Rφ as follows. For any n-bit vector v ∈ {0, 1}n, we interpret v as the assignment
to the variables of φ where xi is set to be equal to the ith bit of v. We then say
that v ∈ Rφ if and only if v is a satisfying assignment.

A CNF formula is a Boolean formula of the form C1 ∧ . . . ∧ Cm, where each
Ci, 1 ≤ i ≤ m, is a clause consisting of a finite disjunction of literals (variables
or negated variables). A kCNF formula, k ≥ 1, is a CNF formula where each
clause has at most k literals. A CNF formula is Horn (dual Horn) if each clause
has at most one positive (negative) literal.

For a finite set of relations S, a CNF(S) formula over a set of n variables
{x1, . . . , xn} is a finite collection {C1, . . . , Cm} of clauses. Each Ci, 1 ≤ i ≤
m, is defined by a tuple (Ri,Xi), where Ri is a ki-ary relation in S and Xi :
{1, . . . , ki} → {1, . . . , n} ∪ {c0, c1} is a function. Each Xi defines a mapping
fXi

: {0, 1}n → {0, 1}ki and we say that an assignment v to the variables satisfies
φ if and only if for all i ∈ {1, . . . , m}, fXi

(v) ∈ Ri. For any variable xj , we say
that xj appears in clause Ci if Xi(q) = j for some q ∈ {1, . . . , ki} and for any

988 A.E. Mouawad et al.

assignment v to the variables of φ, we say that fXi
(v) is the assignment induced

by v on Ri.
For example, to represent the class 3CNF in Schaefer’s framework, we specify

S as follows. Let R0 = {0, 1}3\{000}, R1 = {0, 1}3\{100}, R2 = {0, 1}3\{110},
R3 = {0, 1}3\{111}, and S = {R0, R1, R2, R3}. Since Ri can be used to represent
all 3-clauses with exactly i negative literals (regardless of the positions in which
they appear in a clause), clearly CNF(S) is exactly the class of 3CNF formulas.

Below we define some classes of relations used in the literature and rele-
vant to our work. Note that componentwise bijunctive, OR-free and NAND-
free were first defined by Gopalan et al. [11]. Schwerdtfeger [19] later modified
them slightly and defined safely component-wise bijunctive, safely OR-free and
safely NAND-free. We reuse the names componentwise bijunctive, OR-free and
NAND-free for Schwerdtfeger’s safely component-wise bijunctive, safely OR-free
and safely NAND-free respectively.

Definition 1. For a k-ary relation R:

– R is bijunctive if it is the set of satisfying assignments of a 2CNF formula.
– R is Horn (dual Horn) if it is the set of satisfying assignments of a Horn

(dual Horn) formula.
– R is affine if it is the set of satisfying assignments of a formula xi1⊕. . .⊕xih⊕

c, with i1, . . . , ih ∈ {1, . . . , k} and c ∈ {0, 1}. Here ⊕ denote the exclusive
OR operation which evaluates to 1 when exactly one of the values it operates
on is 1 and evaluates to 0 otherwise.

– R is componentwise bijunctive if every connected component of the reconfig-
uration graph of R and of the reconfiguration graph of every restriction R′

of R induces a bijunctive relation.
– R is OR-free (NAND-free) if there does not exist a restriction R′ of R such

that R′ = {01, 10, 11} (R′ = {01, 10, 00}).
Using his framework, Schaefer showed that SAT(S)—the problem of deciding

if a CNF(S) formula has a satisfying assignment—is in P if every relation in S is
bijunctive, Horn, dual Horn, or affine, and is NP-complete otherwise. The result
is remarkable because it divides a large set of problems into two equivalence
classes based on their computational complexity, which is the opposite of what
one might expect due to Ladner’s theorem [2].

Since Schaefer’s original paper, a myriad of problems about Boolean formulas
have been analyzed, and similar divisions into equivalence classes obtained [7].
Gopalan et al.’s work [11], with corrections presented by Schwerdtfeger [19],
shows a dichotomy for the problem of deciding whether a reconfiguration path
exists between two satisfying assignments of a CNF(S) formula. They call a
set S of relations tight if all relations in S are componentwise bijunctive, or all
relations in S are OR-free, or all relations in S are NAND-free. They showed
that the st-connectivity problem on CNF(S) formulas is in P if S is tight and
PSPACE-complete otherwise.

Our trichotomy relies on a new class of formulas that subdivides the tight
classes into those for which computing the shortest reconfiguration path can be
done in polynomial time and those for which it is NP-complete.

Shortest Reconfiguration Paths in the Solution Space of Boolean Formulas 989

Definition 2. For a k-ary relation R:

– R is Horn-free if there does not exist a restriction R′ of R such that R′ =
{0, 1}3 \ {011}, or equivalently, R′ is the set of all satisfying assignments of
the clause (x ∨ y ∨ z) for some three variables x, y, and z.

– R is dual-Horn-free if there does not exist a restriction R′ of R such that
R′ = {0, 1}3\{100}, or equivalently, R′ is the set of all satisfying assignments
of the clause (x ∨ y ∨ z) for some three variables x, y, and z.

Due to space limitations some proofs have been omitted from the current
version of the paper. The corresponding lemmas and theorems have been marked
with a star.

Definition 3. We call a set S of relations navigable if one of the following
holds:

(1) All relations in S are OR-free and Horn-free.
(2) All relations in S are NAND-free and dual-Horn-free.
(3) All relations in S are component-wise bijunctive.

It is clear that if S is navigable, then it is also tight. Our main result is the
following trichotomy.

Theorem 1. For a CNF(S) formula φ and two satisfying assignments s and t,
the problem of computing the shortest reconfiguration path between s and t is in
P if S is navigable, NP-complete if S is tight but not navigable, and PSPACE-
complete otherwise.

In the next section, we establish the hardness results; the rest of the paper
focuses on our polynomial-time algorithm for navigable formulas. Interestingly,
unlike previous classification results, while the NP-completeness result in our
case turns out to be relatively easy, the polynomial-time algorithm is quite
involved.

3 The Hard Cases

Gopalan et al. [11] showed that if S is not tight, then st-connectivity is PSPACE-
complete for CNF(S) formulas. This implies that finding the shortest reconfig-
uration path is also PSPACE-complete for such classes of formulas.

Theorem 2 (*). If S is tight but not navigable, then finding the shortest recon-
figuration path on CNF(S) formulas is NP-complete.

Proof (Sketch). The problem is in NP because the diameter of the reconfigura-
tion graph is polynomial for all tight formulas, as shown by Gopalan et al. [11].
We now prove that it is, in fact, NP-complete.

As S is tight but not navigable, all relations in S are OR-free or all relations
in S are NAND-free. Let us first assume that all relations in S are NAND-free.
Then, as S is not navigable, there exists a relation which is dual-Horn.

990 A.E. Mouawad et al.

We show a reduction from Vertex Cover to such a CNF(S) formula (we
prove the other case by a reduction from Independent Set). Given an instance
(G = (V,E), k) of Vertex Cover, we create a variable xv for each v ∈ V . For
each edge e = (u, v) ∈ E, we create two new variables ye and ze and the clauses
(ye ∨ ze ∨ xu) and (ze ∨ ye ∨ xv). The resulting formula F (G) has |V | + 2|E|
variables and 2|E| clauses.

It is easy to see that all the relations of F (G) are NAND-free (as we cannot
set the values of all but two of their variables to get a NAND relation R =
{01, 10, 00}), however none of them is dual-Horn-free (as each clause is a dual-
Horn clause with one negative literal). Hence the formula F (G) is tight but not
navigable.

Let s be the satisfying assignment for the formula with all variables set to 0,
and let t be the satisfying assignment with all the variables xv, v ∈ V set to 0
and the rest set to 1. If G has a vertex cover S of size at most k, then we can form
a reconfiguration sequence of length at most 2|E| + 2k from s to t by flipping
each xv, v ∈ S from 0 to 1, flipping the ye and ze variables, and then flipping
each xv, v ∈ S back from 1 to 0. To show that such a reconfiguration sequence
exists only if there exists such a vertex cover, we observe that if neither xu nor
xv has been flipped to 1, neither ye nor ze can be flipped to 1 while keeping the
formula satisfied at the intermediate steps. �

4 The Polynomial-time Algorithm for Navigable
Formulas

Gopalan et al. gave a polynomial-time algorithm for finding the shortest recon-
figuration path in component-wise bijunctive formulas. The path, in this case,
flips only variables that have different values in s and t. The NP-completeness
proof from the previous section crucially relies on the fact that we need to flip
variables with common values; in fact, the hardness lies in deciding precisely
which common variables need to be flipped. Thus it is tempting to conjecture
that hardness for shortest reconfiguration path is caused by relations where the
shortest distance is not always equal to the Hamming distance. This is not the
case. The reconfiguration graph for the relation P4 = {000, 001, 101, 111, 110}
is a path of length four, where for 000 and 110 the shortest path is of length four
but the Hamming distance is two. However, we can find the shortest reconfigu-
ration paths in formulas built out of P4 in polynomial time, the exact reason for
which will become clear in our general description of the algorithm. The intuitive
reason is that there are very few candidates for shortest paths; if we restrict our
attention to a single clause built out of P4, then there exists a unique path to
follow. It then suffices to determine whether there exist two clauses for which
the prescribed paths are in conflict. In general, our proof relies on showing that
even if there does not exist a unique path, the set of all possible paths between
two satisfying assignments of a navigable formula is not diverse enough to make
the problem computationally hard. We show that the set of all possible paths
can be characterized using a partial order on the set of flips.

Shortest Reconfiguration Paths in the Solution Space of Boolean Formulas 991

4.1 Notation

Our results make use of two different views of the problem (graph-theoretic and
algebraic), and hence two sets of notation.

The graph-theoretic view consists of the reconfiguration graph GR that has a
node for each Boolean string s ∈ R and an edge whenever the Hamming distance
between the two strings is exactly one. We call a path from s to t monotonically
increasing if the Hamming weights of the vertices on the path increase monoton-
ically as we go from s to t, and define a monotonically decreasing path similarly.
A path is canonical if it consists of a monotonically increasing path followed by
a monotonically decreasing path.

The algebraic view consists of a token system [9] consisting of a set S of
states and a set τ of tokens. The tokens specify the rules of transition between
states. Each token t ∈ τ is a function that maps S to itself. Given a k-ary
relation R, we define a token system as follows. The set S of states consists of
all the elements of R and a special state s∗ called the invalid state that captures
all the unsatisfying assignments of the formula. The set τ of tokens is the set
{x+

1 , . . . , x+
k } ∪ {x−

1 , . . . , x−
k }, where x+

i denotes a flip of variable xi from 0 to 1,
which we call a positive flip, and denote the sign of the flip as positive, and x−

i

denotes a flip of variable xi from 1 to 0, which we call a negative flip and denote
the sign of the flip as negative.

To complete the description of the token system, we need to specify the
function to which each token corresponds. For x+

i ∈ τ and s ∈ S , x+
i (s∗) = s∗,

x+
i (s) = s′ if the value of variable xi in s is 0 and the bit string s′ obtained on

flipping it to 1 lies in R, and x+
i (s) = s∗ if the value of variable xi in s is 1 or

the value of variable xi in s is 0 and the bit string s′ obtained on flipping it to
1 does not lie in R. The function x−

i is defined analogously. In the rest of this
article, we will use the word “flip” instead of “token”, and we will use the words
“state,” “vertex,” and “satisfying assignment” interchangeably.

A sequence of flips also defines a function, that is, the composition of all the
functions in the sequence. We call a flip sequence invalid at a given state s if the
sequence applied to s results in invalid state s∗, and valid otherwise. Two flip
sequences are equivalent if they result in the same final state when applied to
the same starting state. Finally, we call a flip sequence canonical if all positive
flips in it occur before all the negative flips. That is, the path from its first state
(node) to the last is a canonical path. Note that in any canonical flip sequence,
each flip occurs at most once. Given two states s, t ∈ S , we say that a set C of
flips transforms s to t if the elements of C can be arranged in some order such
that the resulting flip sequence transforms s to t. For a given state s and flip set
C , we say C is valid if the elements of C can be arranged in some order such
that the resulting flip sequence applied to s results in a valid state.

We describe a flip sequence simply by listing the flips in order. The flip
sequence formed by removing flip f from F is denoted F \ f . The flip sequence
obtained by reversing F is F−1, and by performing F1 followed by F2 is F1 ·F2.
We use C (F) to denote the set of flips that appear in F . A flip sequence (set)
consisting of only positive flips will be called a positive flip sequence (set). We

992 A.E. Mouawad et al.

use F0 to denote an empty flip sequence and, by convention, define it to be valid.
For a flip sequence F , if f ∈ F appears before f ′ ∈ F in the sequence, then we
say f <F f ′. For a tuple t = (xi1 , . . . , xid) of variables and a state s, we use st

to denote the string of values restricted to xi1 , . . . , xid .

4.2 Overview of the Algorithm

Consider, once again, the relation P4 = {000, 001, 101, 111, 110} from Section 4,
which we claimed to be navigable. A satisfying assignment to the formula
induces, on each clause, a boolean string that consists of the values of the vari-
ables appearing in that clause. Similarly, a flip sequence F induces a flip sequence
for each clause C, which is the subsequence of F that flips a variable that appears
in C. Note that F is valid if and only if the sequence induced on each clause is
valid. The relation P4 satisfies two nice properties:

1. Any valid flip sequence of P4 is canonical.
2. Let x, y, z be the three variables that represent the three bits of P4, then

there is a total order, namely, z+ < x+ < y+, such that any valid positive
flip sequence must satisfy this order.

With this observation, formulating an algorithm is easy. Given two satisfying
assignments s and t of the formula, find the Boolean string induced on each
clause. The shortest flip sequence inside each clause can be computed in constant
time. Each clause prescribes a unique order in which the flips of its corresponding
flip sequence must be performed. If no two clauses prescribe conflicting orders,
then their sequences can be combined into a sequence for the entire formula. If
there is a conflict, then we know that no path exists. In general, for navigable
formulas, we show, in Lemma 2, that any flip sequence can be transformed into
an equivalent canonical flip sequence by rearranging the flips, and, in Lemma 9,
that each clause prescribes a partial order instead of a total order. The task of
combining the partial orders prescribed by each clause becomes more involved,
but can still be done efficiently, as shown in Lemma 11.

We will only consider properties of NAND-free and dual-Horn-free relations,
as our algorithm for NAND-free and dual-Horn-free relations can easily be mod-
ified to handle OR-free and Horn-free relations (by “reversing” the roles of pos-
itive and negative flips).

4.3 The Token System of NAND-free Relations

We begin by proving some useful properties of the token system formed by
NAND-free relations.

Lemma 1 (*). For R a NAND-free relation and F = f1 . . . fq a valid flip
sequence at s ∈ R, if there exists i ∈ {1, . . . , q − 1} such that fi = x− is a
negative flip and fi+1 = y+ is a positive flip, with x �= y, then the sequence F ′ =
f1 . . . fi−1fi+1fi . . . fq is also valid at s and is equivalent to F , i.e., swapping fi

and fi+1 results in an equivalent flip sequence.

Shortest Reconfiguration Paths in the Solution Space of Boolean Formulas 993

Lemma 2 (first proved by Gopalan et al. [11]) shows that any valid flip
sequence can be made canonical. Lemma 3 shows that the union of two valid
positive flips sets is also a valid flip set.

Lemma 2 (*). For R a NAND-free relation, if F is a valid sequence at s ∈
R, then there exists a valid canonical sequence F ′ equivalent to F such that
C (F ′) ⊆ C (F) and, for any two flips f1, f2 ∈ F ′ of the same sign, if f1 <F ′ f2
then f1 <F f2, i.e., the relative order among flips of the same sign is preserved.

Lemma 3. For R a NAND-free relation, if C1 and C2 are two positive flip sets
that are valid at s ∈ R, then C1 ∪ C2 is also a valid flip set at s.

Proof. Let u = F1(s) and v = F2(s), where F1 and F2 are valid flip sequences
such that C (F1) = C1 and C (F2) = C2. Clearly, F−1

1 · F2 is a valid flip sequence
from u to v. Thus, we can apply Lemma 2 to the sequence F−1

1 ·F2 to transform
it into the canonical sequence F . Let F+ denote the prefix of F that contains
all the positive flips. It is clear that F1 · F+ is a valid flip sequence at s and
C (F1 · F+) = C1 ∪ C2. �

Later, we prove a similar lemma for the intersection of two flip sets, but for
dual-Horn-free relations. We conclude this subsection with a lemma that shows
that if two disjoint flips sets are valid at a state, we can, in some sense, perform
the two sets of flips one after the other in either order.

Lemma 4 (*). For R a NAND-free relation and F1 and F2 two positive flip
sequences that are valid at s ∈ R, if C (F1) ∩ C (F2) = ∅, then F1 is valid at
F2(s) and F2 is valid at F1(s).

4.4 The Token System of NAND-free and Dual-Horn-free Relations

In this section, we establish stronger properties with the assumption that R
is not only NAND-free, but is also dual-Horn-free. We begin by establishing a
simple property of relations that are NAND-free and dual-Horn-free.

Lemma 5. Let R be a NAND-free and dual-Horn-free relation and s, t1, t2 ∈ R
be three distinct states such that the flip sequence F1 = x+

k x+
i transforms s to t1,

the flip sequence F2 = x+
j x+

i transforms s to t2, and xk �= xj. Then the sequence
F ′

1 = x+
i x+

k also transforms s to t1 and the sequence F ′
2 = x+

i x+
j also transforms

s to t2, i.e., we can swap the flips in both F1 and F2.

Proof. For u1 = x+
k (s) and u2 = x+

j (s), the sequence x−
j x+

k transforms u2 to u1.
We can reorder the sequence to obtain x+

k x−
j , using Lemma 1. For v = x+

k (u2),
we can use a similar argument to show that x+

i is a valid flip at v; we let
w = x+

i (v). The values of variables xi, xj , and xk at states s, u1, u2, t1, t2, v,
and w form exactly the seven satisfying assignments {000, 001, 010, 101, 110,
011, 111} of the dual-Horn clause (xi ∨ xj ∨ xk). But since R is dual-Horn-free,
there must also exist the state v′ for which xi = 1, xj = 0, xk = 0. The path
s → v′ → t1 gives the sequence x+

i x+
k and the path s → v′ → t2 gives the

sequence x+
i x+

j . �

994 A.E. Mouawad et al.

The seemingly innocuous lemma above turns out to be very powerful. In
the following sequence of lemmas, we build on top of it to eventually prove
that the set of all positive valid flip sets starting from an assignment s forms a
distributive lattice. The lattice structure then helps us formulate a polynomial-
time algorithm for computing the shortest reconfiguration path.

Lemma 6 (*). Let R be a NAND-free and dual-Horn-free relation and s, t ∈ R
be two satisfying assignments such that x+y+ is a valid flip sequence at s and
y+ is a valid flip at t. Furthermore, let F be a positive flip sequence such that
F(s) = t and x+ �∈ C (F). Then, the sequence y+x+ must also be valid at s.

Lemma 7 (*). For R a NAND-free and dual-Horn-free relation, if F1 · x+ · y+

and F2 · y+ are both valid positive flip sequences at s ∈ R such that x+ �∈ C (F2)
then F1 · y+ · x+ is also valid at s.

Next, we show that the set of valid flip sets is closed under intersection.

Lemma 8 (*). For R a NAND-free and dual-Horn-free relation, if C1 and C2

are two positive flip sets that are valid at s ∈ R, then C1 ∩C2 is also a valid flip
set at s.

The above lemma, combined with Lemma 3, shows that the set of valid flip
sets starting at s forms a distributive lattice [3]. Using Birkhoff’s representation
theorem [3] on it directly implies the next lemma. However, for clarity, we also
provide an independent proof. Let ≺ be a partial order defined on a set C of flips.
We say a set C ′ ⊆ C is downward closed if for every x, y ∈ C , (y ∈ C ′) ∧ (x ≺
y) =⇒ x ∈ C ′. We say that an ordering F of a subset of elements in C obeys
the partial order ≺ if (i) C (F) is downward closed and (ii) for every x, y ∈ F ,
x ≺ y =⇒ x <F y.

Lemma 9 (*). Let R be a NAND-free and dual-Horn-free relation and s be an
element of R. Let P = {x+ | x+ ∈ C for a positive valid flip set C at s}.
Then there exists a partial order ≺ on P such that any positive flip sequence F
consisting of a subset of P is a valid flip sequence at s if and only if it obeys ≺.

4.5 The Polynomial Time Algorithm

Let φ be a CNF(S) formula where every relation in S is NAND-free and dual-
Horn-free, {x1, . . . , xn} be the set of variables, and {C1, . . . , Cm} be the set of
clauses in φ. We wish to compute the shortest reconfiguration path between s
and t in Gφ for s, t ∈ Rφ. Let Ps and Pt be the sets of positive flips that occur
in any positive flip set valid at s and t, respectively.

In Lemma 10, we generalize Lemma 2 from a single relation to Rφ and show
that if there exists a valid sequence which transforms s to t, then it can be
made canonical. Similarly, Lemma 11 shows that the property of any valid flip
sequence for a NAND-free and dual-Horn-free relation being describable by a
partial order, as proved in Lemma 9, also applies to CNF(S) formulas where
every relation in S is NAND-free and dual-Horn-free.

Shortest Reconfiguration Paths in the Solution Space of Boolean Formulas 995

Lemma 10 (*). Let φ be a CNF(S) formula where every relation in S is
NAND-free. For any s, t ∈ Rφ, if F is a valid sequence which transforms s
to t, then there exists a valid canonical sequence F ′ equivalent to F such that
C (F ′) ⊆ C (F).

Lemma 11 (*). Let φ be a CNF(S) formula where every relation in S is
NAND-free and dual-Horn-free. For any s, t ∈ Rφ, there exists a partial order
≺s on Ps and a partial order ≺t on Pt such that any positive flip sequence Fs

consisting of a subset of Ps is a valid flip sequence at s if and only if it obeys the
partial order ≺s and any positive flip sequence Ft consisting of a subset of Pt

is a valid flip sequence at t if and only if it obeys the partial order ≺t. Moreover,
Ps, ≺s, Pt, and ≺t can be computed in polynomial time.

For a set P, a partial order ≺ on P, and a subset A ⊆ P, the smallest lower
set of A is the smallest superset of A that is downward closed. Such a lower set
can be constructed in polynomial time by starting with A and including any
element f ′ not in A such that f ′ ≺ f for some f ∈ A. It is clear that any valid
flip set that contains A must also contain the smallest lower set of A.

Now the algorithm for finding the shortest reconfiguration path is clear. We
start from s and let S be the set of positive flips on the variables that are set
to 1 in t and to 0 in s. Then we compute the smallest lower set S′ containing
S and perform the flips in S′ as prescribed by the partial order ≺s (on Ps) to
reach s′ ∈ Rφ. We perform a similar set of flips starting from t to reach t′ ∈ Rφ.
If s′ = t′, we are done. Otherwise, we recursively find the shortest path between
s′ and t′. The complete algorithm is described in Algorithm 1.

Algorithm 1. ShortestPath(s,t)

Input: A CNF(S) formula φ where all relations in S are NAND-free and dual-Horn-
free; two satisfying assignments s and t.

Output: Shortest reconfiguration path between s and t.
1: if (s = t)
2: return F0 {the empty flip sequence}
3: Let S be the set of positive flips that flip variables assigned 0 in s and 1 in t.
4: Let T be the set of positive flips that flip variables assigned 0 in t and 1 in s.
5: if S contains an element not in Ps or if T contains an element not in Pt

6: return Not connected.
7: Compute the smallest lower set S′ of S in Ps with respect to ≺s.
8: Compute the smallest lower set T ′ of T in Pt with respect to ≺t.
9: Let Fs and Ft be orderings of S′ and T ′ that obey ≺s and ≺t, respectively.

10: Let s′ = Fs(s) and t′ = Ft(t).
11: Let F = ShortestPath(s′,t′).
12: return Fs · F · F−1

t .

We are now ready to prove the following theorem.

996 A.E. Mouawad et al.

Theorem 3 (*). Let S be a navigable set of relations, φ be a CNF(S) formula,
and s and t be two satisfying assignments of φ. We can compute the shortest
reconfiguration path between s and t in polynomial time.

References

1. Aichholzer, O., Mulzer, W., Pilz, A.: Flip distance between triangulations of a
simple polygon is NP-complete. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA
2013. LNCS, vol. 8125, pp. 13–24. Springer, Heidelberg (2013)

2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn.
Cambridge University Press, New York, NY, USA (2009)

3. Birkhoff, G.: Rings of sets. Duke Mathematical Journal 3(3), 443–454 (1937)
4. Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs. In: Proceed-

ings of the 7th Latin-American Algorithms, Graphs, and Optimization Symposium
(LAGOS) (2013)

5. Bose, P., Lubiw, A., Pathak, V., Verdonschot, S.: Flipping edge-labelled triangu-
lations (2013). CoRR, abs/1310.1166

6. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of
vertex-colourings. Discrete Mathematics 308(56), 913–919 (2008)

7. Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of boolean con-
straint satisfaction problems. SIAM (2001)

8. Culik II, K., Wood, D.: A note on some tree similarity measures. Inform. Process.
Lett. 15(1), 39–42 (1982)

9. Eppstein, D., Falmagne, J.-C., Ovchinnikov, S.: Media theory - interdisciplinary
applied mathematics. Springer (2008)

10. Fricke, G., Hedetniemi, S.M., Hedetniemi, S.T., Hutson, K.R.: γ-Graphs of Graphs.
Discussiones Mathematicae Graph Theory 31(3), 517–531 (2011)

11. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity
of boolean satisfiability: computational and structural dichotomies. SIAM Journal
on Computing 38(6), 2330–2355 (2009)

12. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R.,
Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer Sci-
ence 412(12–14), 1054–1065 (2011)

13. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a
graph. Discrete Applied Mathematics 160(15), 2199–2207 (2012)

14. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfig-
urability problems. Theor. Comput. Sci. 439, 9–15 (2012)

15. Lawson, C.L.: Transforming triangulations. Discrete Mathematics 3(4), 365–372
(1972)

16. A. E. Mouawad, N. Nishimura, and V. Raman. Vertex cover reconfiguration and
beyond, 2014. arXiv:1402.4926

17. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parame-
terized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC
2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

18. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978,
pp. 216–226. New York, NY, ACM (1978)

19. Schwerdtfeger, K.W.: A computational trichotomy for connectivity of boolean satis-
fiability (2013). CoRR, abs/1312.4524

http://arxiv.org/abs/1310.1166
http://arxiv.org/abs/1402.4926
http://arxiv.org/abs/1312.4524

Computing the Fréchet Distance
Between Polygons with Holes

Amir Nayyeri1 and Anastasios Sidiropoulos2(B)

1 School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, USA

nayyeria@eecs.oregonstate.edu
2 Department of Computer Science & Engineering and Department of Mathematics,

The Ohio State University, Columbus, USA
sidiropoulos.1@osu.edu

Abstract. We study the problem of computing the Fréchet distance
between subsets of Euclidean space. Even though the problem has been
studied extensively for 1-dimensional curves, very little is known for d-
dimensional spaces, for any d ≥ 2. For general polygons in R

2, it has
been shown to be NP-hard, and the best known polynomial-time algo-
rithm works only for polygons with at most a single puncture [Buchin et
al., 2010]. Generalizing [Buchin et al., 2008] we give a polynomial-time
algorithm for the case of arbitrary polygons with a constant number of
punctures. Moreover, we show that approximating the Fréchet distance
between polyhedral domains in R

3 to within a factor of n1/ log logn is
NP-hard.

1 Introduction

Computing the similarity between two geometric objects is a fundamental prob-
lem that arises in several application scenarios, such as computer vision, and
graphics (see [8,12,17,24] and the references therein for a more detail account
of the various applications). A classical way for estimating such a similarity is
the Hausdorff distance between two subsets of a metric space. However, when
the objects under consideration are endowed with topological information, it is
desirable to use a similarity function that takes this additional structure into
account.

One of the most well-studied similarity functions that combines topological
and geometric information is the Fréchet distance, which we define here for
subsets of Euclidean space. Let X ⊂ R

d be a parameter space, for some d ≥ 1,
and let hP : X → R

d, hQ : X → R
d be embeddings1. Let P = hP (X), and

A. Nayyeri—Part of this work was done while the author was a postdoctoral fellow
at CMU. Research supported in part by the NSF grants CCF 1065106 and CCF
09-15519.
A. Sidiropoulos—Research supported in part by the NSF grants CCF 1423230 and
CAREER 1453472.

1 In the most general setting, the parameterizations hP , and hQ may not be required
to be embeddings. However, we restrict our attention here to simple polygons with
holes, in which case the maps hP and hQ are embeddings.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 997–1009, 2015.
DOI: 10.1007/978-3-662-47672-7 81

998 A. Nayyeri and A. Sidiropoulos

Q = hQ(X). Then, for a homeomorphism f : P → Q, we define its Fréchet length
to be δF (f) = supx∈P ‖x− f(x)‖2, and δF (P,Q) = inff δF (f), where f : P → Q
ranges over all orientation-preserving homeomorphisms2. We remark that the
Fréchet distance can also be defined for more general ambient spaces, e.g. for
surfaces (see, e.g. [19]), but we will restrict our attention to Euclidean space.

1.1 Previous Work on Computing Fréchet Distance

Most of the work on computing the Fréchet distance between two subsets P
and Q of some ambient space has been focused on the case where P and Q
are one-dimensional curves [1,3,4,7,9,14,15,19]. In contrast, very little is known
for computing the Fréchet distance between two-dimensional spaces P and Q.
Buchin et al. [6] describe the first polynomial-time algorithm to compute the
Fréchet distance between two simple polygons in R

2. Buchin et al. [5] prove
that the problem becomes NP-hard for arbitrary polygons in R

2, and they give
a polynomial-time algorithm for polygons with a single puncture. They also
prove that computing the Fréchet distance between two terrains in R

3 is NP-
hard. It has also been shown by Godau [18] that computing the Fréchet distance
between two surfaces is NP-hard, and it is known that this problem is upper
semi-computable [2]. Finally, Cook et al. [10] gave exact and approximation
algorithms for special classes of simply-connected 2-dimensional polygons in R

3.

1.2 Our Contribution

We focus on the problems of computing and approximating the Fréchet distance
between two subsets of d-dimensional Euclidean space, and we obtain both upper
and lower bounds. Our main contributions are described below.

We present a polynomial-time algorithm for computing the Fréchet distance
between two polygons P,Q ⊂ R

2, with a constant number of punctures. This
answers a question of Buchin et al. [5], and resolves the main open problem from
their paper. Our algorithm uses tools and ideas developed in the context of com-
puting shortest non-crossing walks in the plane [16]. The following summarizes
our algorithm for arbitrary polygons in R

2.

Theorem 1 (Exact algorithm for polygonal domains in R
2). Let P and

Q be simple polygons in R
2, with h punctures.There exists a 2O(h2)nO(h) time

algorithm for computing δF (P,Q). Moreover, the algorithm outputs a piecewise
linear orientation-preserving homeomorphism of minimum Fréchet length.

The NP-hardness result of [5] leaves open the possibility of an approximation
algorithm for the problem. We show that such a result is unlikely in R

3. The
formal statement of our result follows.
2 More generally, one can consider homeomorphisms g : X → X, i.e. from the param-

eter space into itself, and define their Fréchet length to be δF (g) = supx∈X ‖hP (x)−
g(hQ(x))‖2. However, we are dealing with simple polygonal/polyhedral domains,
and therefore the maps hP , and hQ are homeomorphisms, which implies that our
simpler definition is equivalent.

Computing the Fréchet Distance Between Polygons with Holes 999

Theorem 2 (Inapproximability for polyhedral domains in R
3). Approx-

imating the Fréchet distance between two polyhedral domains in R
3 within a

factor of n1/ log log n is NP-hard.

We remark that it is not known if there always exists an optimal (or even near-
optimal) piecewise linear homeomorphism of polynomial complexity. In fact, it
is not known whether any of the problems considered is in NP. The proof of
[5] only shows that computing the Fréchet distance between polygons in R

2 is
NP-hard, and it is open whether it is in NP.

1.3 Our Techniques

The Exact Algorithm in R
2. Our exact algorithm for computing the

Fréchet distance between two polygonal domains starts by picking a small set
of diagonals in P and guessing their image in Q. Then, our algorithm cuts P
along these diagonals, and Q along their maps, thus reducing the problem to
computing the Fréchet distance between two simple polygons. In order to bound
the number of possible images of a diagonal, we need to bound the number of
possible choices for its endpoints and its homotopy class. To achieve the former,
we look into the refined free space diagram [3] and prove that there is a quadratic
number of possibilities for each endpoint. For the latter purpose, we exploit ideas
from the problem of computing non-crossing walks in a planar arrangement [16].
More specifically, we consider a collection of segments that cut Q into a topolog-
ical disk. We observe that if the number of crossings of the diagonal maps with
any of these segments is sufficiently large, then one of the diagonal maps can
be shortcut along a straight line segment without introducing crossings among
diagonal maps. Following Buchin et al. [6], we observe that such a shortcutting
does not increase the Fréchet distance between the diagonals of P and their
maps in Q. This shows that the number of homotopy classes is bounded by a
function of the number of punctures, and by the above discussion, implies the
algorithm.

Inapproximability in R
3. Our inapproximability result is obtained by reduc-

ing the Closest Vector Problem under �∞ norm (CVP∞) to the problem of
computing the Fréchet distance between two polyhedral domains in R

3. Our
inapproximability factor follows by a result due to Dinur [13] who showed that
CVP∞ is NP-hard to approximate within a factor of n1/ log log n.

1.4 Organization

The rest of the paper is organized as follows. Section 2 introduces background
and notation. Section 3 introduces skeleton maps and explains their use in the
computation of Fréchet distance. Section 4 presents the exact algorithm for R

2.
The inapproximability result for R

3 is given in the full version of this paper.

1000 A. Nayyeri and A. Sidiropoulos

2 Background and Notation

Given two points p, q ∈ R
2, we use (p, q) to refer to the line segment with

endpoints p and q. We say that a path with endpoints p and q is a (p, q)-path.
In particular, (p, q) is a (p, q)-path. For a simple path p ∈ R

2 and for points
x, y ∈ p, we use p[x, y] to refer to the subpath of p with endpoints x and y. We
say that two paths p and q cross if for any path p′ that is obtained from p by
an infinitesimal perturbation, we have p′ ∩ q �= ∅.

Free space diagrams. Let us recall the notion of a free space diagram, introduced
by Alt and Godau [3]. Let p, q be two closed curves in R

2, and let δ > 0.
The double free space diagram Fδ (also denoted as F when δ is clear from the
context), is a data structure that is represented by a [0, 2|p|] × [0, |q|] rectangle,
where | · | denotes the curve length. Each point of the double free space diagram
corresponds to a pair (x, y) where x ∈ p and y ∈ q. A pair (x, y) is feasible if
and only if ‖x − y‖2 ≤ δ. The collection of all feasible pairs is called the feasible
subspace of the free space diagram. An orientation preserving homeomorphism
f : p → q corresponds to a monotonically increasing path ρ in F that has
endpoints (x0, 0) and (x0 + |p|, |q|), for some x0 ∈ [0, |p|]. The homeomorphism
f has Fréchet length at most δ if it resides within the feasible subspace of F .

Suppose that p and q are piecewise linear curves, and let p0, . . . , pn, and
q1, . . . , qm be the vertices of p and q, respectively. The vertical lines with x-
coordinates corresponding to pi’s and the horizontal lines with y-coordinates
corresponding to qi’s partition F into a collection of cells. A cell represents all
the pairs of points from a specific pair of segments of p and q. The feasible subset
of a cell is the intersection of a certain ellipse with the cell, and so it is convex [3].

Consider all points on the vertical segments of F that are also on the bound-
ary of the feasible region and add horizontal lines with their y-coordinates to
further refine F . By the convexity of the feasible region inside a cell, it follows
that there are at most four such points in each cell and so O(nm) such points
overall. Perform the same refinement by adding similar vertical lines as well to
obtain a O(nm) × O(nm) refined grid. Following Alt and Godau we call this
diagram the refined free space diagram and we denote it by Fδ (or just F when
δ is clear from the context). We refer to the cells and segments of this refined
diagram as refined cells and refined segments, respectively. Each vertical refined
segment of F at a vertex of P and each horizontal refined segment of F at a
vertex of Q is either completely feasible or completely infeasible (see Figure 1).

3 Skeletons and Skeleton Maps

Let us now briefly describe the algorithm of [6] for computing the Fréchet dis-
tance between two simple polygons in R

2. They first show that a map fs between
the boundaries of a convex polygon and a simple polygon can be extended to a
map between the polygons with Fréchet length arbitrarily close to δF (fs).

Computing the Fréchet Distance Between Polygons with Holes 1001

Fig. 1. A path in a refined free space diagram

Lemma 1 (Buchin et al. [6]). Let P be a convex polygon, let Q be a simple
polygon in R

2, and let fs : ∂P → ∂Q be a homeomorphism. Then, for any
ε > 0, there exists a homeomorphism f : P → Q, extending fs, and such that
δF (f) ≤ δF (fs) + ε.

Given two simple polygons P,Q ⊂ R
2, Buchin et al. partition P into convex

regions. They also obtain a combinatorially equivalent partition of Q into simple
regions. Then, they use Lemma 1 to find a collection of maps from each convex
region of P to its corresponding simple region of Q. This collection induces
the desired homeomorphism between P and Q. Following their idea, we define
skeletons and skeleton maps for polygonal domains.

3.1 Skeletons

Let P and Q be polygonal domains with boundaries ∂P = b0∪· · ·∪bh and ∂Q =
c0 ∪ . . .∪ ch, respectively, where each bi, cj is a closed polygonal curve. Suppose,
without loss of generality, that b0 and c0 are the outer boundary components.

Let Σ = {σ1, σ2, . . . , σk} be any set of pairwise interior-disjoint straight line
segments that partitions P into convex polygons, and let si, ti be the endpoints
of σi. Σ, in particular, can be the set of diagonals of any triangulation of P .
To simplify the exposition, we assume that the endpoints of the diagonals are
disjoint. This assumption can be enforced by spreading identical endpoints apart
infinitesimally. We refer to the segments σi as diagonals. We refer to S(P) =
∂P ∪ ⋃

σ∈Σ σ as the skeleton of P (see Figure 2).
A continuous map fs : S(P) → Q is called a skeleton map. For each i ∈

{1, . . . , k}, let γi = fs(σi). We refer to the paths γ1, . . . , γk as the diagonals of
Q. We also refer to S(Q) = fs(S(P)) as the skeleton of Q (w.r.to fs). A skeleton
map fs is called admissible if the following conditions hold:

(A1) There exists a permutation π : {0, . . . , h} → {0, . . . , h}, with π(0) = 0, and
such that for any i ∈ {0, . . . , h}, the map fs|bi is an orientation-preserving
homeomorphism between the cycles bi and cπ(i).

(A2) For each i ∈ {1, . . . , k}, we have that fs|σi is a homeomorphism between σi

and γi. Moreover, the collection of paths γ1, . . . , γk is pairwise non-crossing.

1002 A. Nayyeri and A. Sidiropoulos

(A3) Intuitively, we require that fs induces a combinatorially equivalent draw-
ing of the planar map corresponding to S(P). Formally, let i ∈ {1, . . . , k},
and let v ∈ {si, ti} be an endpoint of σi. Note that the neighborhood of
v in P intersects two segments from some boundary component bj , and at
least one segment from the diagonals of P . Let �1, . . . , �t be these segments.
Then, the circular ordering of �1, . . . , �t around v is the same as the circular
ordering of fs(�1), . . . , fs(�t) around fs(v) (see Figure 2).

Fig. 2. P and Q, with their diagonals Σ and Γ (left), and the segments that cut Q
into a disk drawn in red (right)

The following lemma, which is similar in spirit to Lemma 1, guarantees
that a skeleton map of small Fréchet length implies an actual map of small
Fréchet length.

Lemma 2. Let fs : S(P) → S(Q) be an admissible skeleton map, and δF (fs) be
its Fréchet length. Then, for any ε > 0, there exists a homeomorphism f : P →
Q, such that δF (f) ≤ δF (fs) + ε.

3.2 Shortcutting Diagonals

Buchin et al. [6] observe that when P and Q are simply-connected polygons,
without loss of generality, each diagonal of P can be mapped to a shortest
geodesic path within Q. Unfortunately, this is not true in the case of punctured
polygons. We now derive a generalization of this property in our setting that
takes into account the homotopy class of the diagonals and their images. We
first recall the following auxiliary lemma from Buchin et al.[6].

Definition 1 (Shortcutting). Let γ : [0, 1] → R
2 be a path, and let 0 ≤ t1 <

t2 ≤ 1. Let γ′ be the path obtained from γ by replacing γ[t1, t2] with the line
segment (γ(t1), γ(t2)). That is, γ′ = γ[0, t1] ◦ (γ(t1), γ(t2)) ◦ γ[t2, 1], where ◦
denotes path composition. Then, we say that γ′ is obtained from γ via a short-
cutting operation.

Lemma 3 (Buchin et al. [6]). Let � ⊂ R
2 be any line segment, and let γ, γ′

be paths, such that γ′ is obtained from γ via a shortcutting operation. Then, we
have δF (�, γ′) ≤ δF (�, γ).

Computing the Fréchet Distance Between Polygons with Holes 1003

We will use the following result, implicit in the work of Colin de Verdière
and Erickson [11], which in turn follows by a result of Scott and Hass [20].

Lemma 4 (Colin de Verdière and Erickson [11], Scott and Hass [20]).
Let γ1, γ2 be simple non-homotopic paths in Q. For any i ∈ {1, 2}, let γ′

i be a
shortest path in the homotopy class of γi. If γ1 and γ2 do not cross, then γ′

1 and
γ′
2 do not cross, either.

Let γ, γ′ be two homotopic simple paths. Recall that two homotopic paths
have common endpoints. A component of R2 \ (γ ∪ γ′) is called a bigon if it is
simply connected and its boundary is composed by one subpath of γ and one
subpath of γ′. The following lemma is a special case of Lemma 3.1 of Hass and
Scott [20].

Lemma 5 (Hass and Scott [20], Lemma 3.1). Let γ and γ′ be distinct
homotopic simple paths in a polygonal domain Q. Then, one of the connected
components of R2 \ (γ ∪ γ′) is a bigon.

We use Lemma 5 and Lemma 3 to obtain the following result, which allows us
to assume w.l.o.g. that the diagonals of P are mapped into shortest homotopic
paths in Q. The high-level technique is similar to the proof of Lemma 4 of Buchin
et al. [6].

Lemma 6. Let γ′ be a simple path in Q, and let γ be a shortest path in the
homotopy class of γ′. Then, there exists a sequence of paths γ0, . . . , γt, with
γ0 = γ′, γt = γ, such that:

(1) For any i ∈ {0, . . . , t}, γi is homotopic to γ′.
(2) For any i ∈ {0, . . . , t − 1}, γi+1 is obtained from γi via a shortcutting

operation.

Corollary 1. Let � ⊂ R
2 be any line segment, and let γ, γ′ be paths, such that

γ′ is the shortest path in the homotopy class of γ. Then, we have δF (�, γ′) ≤
δF (�, γ).

Proof. Follows by Lemma 3 and induction on the sequence given by Lemma 6.

Lemma 7. If there exists an admissible skeleton map gs : S(P) → Q, then
there exists an admissible skeleton map g′

s : S(P) → Q satisfying the following
conditions.

(1) δF (g′
s) ≤ δF (gs).

(2) For any i ∈ {1, . . . , k}, gs(σi) and g′
s(σi) are in the same homotopy class.

Further, g′
s(σi) is a shortest path in its homotopy class.

1004 A. Nayyeri and A. Sidiropoulos

3.3 Bounding the Number of Possible Homotopy Classes of a
Diagonal

By the preceding discussion we may restrict our attention to skeleton maps that
map every diagonal of P onto some shortest homotopic path in Q. Therefore, in
order to determine the image of a diagonal it suffices to guess the endpoints and
the homotopy class of its image. In a simply connected polygon, the endpoints
of a curve completely determine its homotopy class. Unfortunately, there are
infinitely many homotopy classes of curves with the same pair of endpoints in a
non-simply connected polygonal domain.

We now derive a bound on the number of possible homotopy classes for
images of diagonals of P . Our argument uses tools from the work of Erickson and
Nayyeri [16] on computing non-crossing walks in a planar polygonal arrangement
(for similar ideas on crossing patterns see Schaefer et al. [22,23]).

Let {r1, r2, . . . , rh} be a set of disjoint line segments that cut Q into a topo-
logical disk (see Figure 2). The following lemma is implicit in [16].

Lemma 8 (Erickson and Nayyeri [16]). Let {γ1, . . . , γk} be a collection of
pairwise non-crossing paths in Q with endpoints on ∂Q. Then, there exists a
collection of paths {γ′

1, . . . , γ
′
k} satisfying the following conditions.

(1) For any i ∈ {1, . . . , k}, the path γ′
i is obtained from γi via a sequence of

zero or more shortcutting operations.
(2) The collection of paths {γ′

1, . . . , γ
′
k} is pairwise non-crossing.

(3) For any i ∈ {1, . . . , k} and j ∈ {1, . . . , h}, γ′
i crosses rj at most 22h−2

times.

We next show that we can shortcut the images of the diagonals without
violating admissibility.

Lemma 9. Let σ1, . . . , σk be the diagonals of P . Let gs be an admissible skeleton
map. For any i ∈ {1, . . . , k}, let γ′

i be a path in Q that is obtained by performing a
sequence of zero or more shortcutting operations on γi = gs(σi). Suppose further
that the collection of paths {γ′

1, . . . , γ
′
k} is pairwise non-crossing. Then, there

exists an admissible skeleton map g′
s : S(P) → ∂Q ∪ (

⋃k
i=1 γ′

i), with δF (g′
s) ≤

δF (gs), and such that for every i ∈ {1, . . . , k}, g′
s|σi

is a homeomorphism between
σi and γ′

i.

Lemma 10. Let σ1, . . . , σk be the diagonals of P . If there exists an admissible
skeleton map gs, then there exists an admissible skeleton map g′

s, with δF (g′
s) ≤

δF (gs), such that for each i ∈ {1, . . . , k} and j ∈ {1, . . . , h} the path g′
s(σi)

crosses rj at most 22h−2 times.

We next derive an upper bound on the number of possible homotopy classes.
The proof of the following lemma uses an argument from Erickson and Nayyeri
[16].

Computing the Fréchet Distance Between Polygons with Holes 1005

Lemma 11. Let σι1 , . . . , σιh ∈ Σ be a collection of diagonals of P that cut P
into a disk. Let gs be an admissible skeleton map. Then, there exists an efficiently
computable set of h-tuples X = {〈χi,1, . . . , χi,h〉}i∈I , with |I| = 2O(h2), where
each χi,j is a homotopy class of paths in Q, satisfying the following. There exists
i ∈ I and an admissible skeleton map g′

s, such that for each j ∈ {1, . . . , h} the
path g′

s(σιj) is in the homotopy class χi,j, and δF (g′
s) ≤ δF (gs).

3.4 Bounding the Number of Possible Endpoints of a Diagonal

Lemma 7 implies that the image of a diagonal can be computed if its homo-
topy class and its endpoints are known. Lemma 10 bounds the possibilities for
the homotopy class of a diagonal image. The following discretization technique
bounds the number of possibilities for each endpoint of a diagonal image.

Lemma 12. Let fs : S(P) → Q be an admissible skeleton map, and let π :
{0, 1, . . . , h} → {0, 1, . . . , h} be the permutation such that for any i ∈ {0, . . . , h},
the map fs induces a homeomorphism between bi and cπ(i). Then, there exists
an admissible skeleton map f ′

s satisfying the following conditions.

(1) δF (f ′
s) ≤ δF (fs).

(2) For any i ∈ {0, . . . , h}, the map f ′
s induces a homeomorphism between bi

and cπ(i).
(3) For any i ∈ {0, . . . , h}, let F i be the refined free space diagram for bi and

cπ(i), and let ρ′
i be the path in F i corresponding to the homeomorphism f ′

s|bi .
Then for any vertex x ∈ bi, ρ′

i(x) is an endpoint of a refined vertical segment
in F i.

4 An Exact Algorithm for Polygonal Domains in R
2

In this section we describe an exact polynomial time algorithm to compute the
Fréchet distance between two polygonal domains in R

2 with a constant number of
boundary components. The proof of the following lemma is essentially identical
to the proof for the case of simply connected polygons given by Buchin et al. [6],
so it is omitted. In light of Lemma 13, for the remainder of this section, we focus
on obtaining an algorithm for the decision version of the problem.

Lemma 13. Let P and Q be polygonal domains in R
2. There is a polynomial

size set S of real numbers that contains the value δF (P,Q). Moreover, S can be
computed in polynomial time.

4.1 An Auxiliary Algorithm

We now present an auxiliary algorithm that will be used as a subroutine in
our exact algorithm for arbitrary polygons. The input is two simply connected
polygons P̃ , Q̃ ⊂ R

2, and a partial homeomorphism between their boundaries.
The goal is to compute an orientation preserving homeomorphism between P̃

1006 A. Nayyeri and A. Sidiropoulos

and Q̃ of minimum Fréchet length that extends the given partial homeomorphism
of their boundaries.

Let F the refined free space diagram of ∂P̃ and ∂Q̃ (for a fixed δ > 0). Recall
that any homeomorphism between ∂P̃ and ∂Q̃ corresponds to a path ρ in F .
We assume that if there is a homeomorphism of Fréchet length δ then there is
one with Fréchet length at most δ whose corresponding path in F contains the
(equivalent) points (0, 0) and (|∂Q̃|, |∂P̃ |). To enforce this property we pick an
arbitrary vertex v0 ∈ ∂P̃ and guess its image under such a homeomorphism, and
we shift F accordingly; Lemma 12 implies that it is enough to consider O(n2)
possibilities for the image of v0.

Thus, we focus on the first half of F that is [0, |∂P̃ |] × [0, |∂Q̃|], which we
denote by F�. Each point p ∈ ∂P̃ (resp. q ∈ ∂Q̃) corresponds to exactly one point
in [0, |∂P̃ |) (resp. [0, |∂Q̃|)). In order to simplify the notation, we use p (resp. q)
to refer both to a point on ∂P̃ (resp. ∂Q̃) and a horizontal (resp. vertical)
coordinate in F�. Similarly, we use ρ(p) to refer to a vertical coordinate in F� as
well as the image of p, which is a point on ∂Q̃. For a pair of points p, p′ ∈ ∂P̃ ,
we write p ≤ p′ if (p, 0) is closer than (p′, 0) to (0, 0) in F�.

We are now ready to obtain our auxiliary algorithm. We note that Theorem
15 of Buchin et al. [6] can be extended to obtain the same result. The precise
statement follows.

Lemma 14. Let P̃ , Q̃ ⊂ R
2 be simply connected polygons, and let Σ =

{σ1, . . . , σk} be a set of diagonals of P̃ that partition it into convex regions. Let
α1, . . . , αt ⊂ ∂P̃ be pairwise disjoint subpaths of ∂P̃ that appear in this order in
a clockwise traversal of ∂P̃ , and that are internally disjoint from the endpoints
of the diagonals in Σ. Similarly, let β1, . . . , βt ⊂ ∂Q̃ be pairwise disjoint sub-
paths of ∂Q̃ that appear in this order in a clockwise traversal of ∂Q̃. For any
i ∈ {1, . . . , t}, let φi : αi → βi be an orientation-preserving homeomorphism
(where every path is considered to be oriented according to a clockwise traver-
sal of ∂P̃ and ∂Q̃ respectively). Then, there exists a polynomial-time algorithm
which given δ > 0 decides whether there exists an orientation-preserving home-
omorphism f : P̃ → Q̃ with δF (f) ≤ δ, subject to the constraint that for any
i ∈ {1, . . . , t}, we have f |αi

= φi. Moreover, if such a homeomorphism exists,
the algorithm outputs a homeomorphism f ′ with δF (f ′) ≤ δ + ε, for any ε > 0.

4.2 The Main Algorithm

Proof (Proof of Theorem 1). By Lemma 13 it suffices to obtain an algorithm
which given some δ ≥ 0 decides whether δF (P,Q) ≤ δ. Let f : P → Q be a
homeomorphism with δF (f) = δF (P,Q). Let fs be the admissible skeleton map
obtained by restricting f on the skeleton S(P) = ∂P ∪ (

⋃
σ∈Σ σ). There exists a

permutation π : {0, . . . , h} → {0, . . . , h}, such that f induces a homeomorphism
between bi and ci. We guess the permutation π. That is, we run the following
procedure for every possible permutation π, and output the best solution found,
which results in a multiplicative factor of O(h!) = 2O(h log h) in the running time.

Computing the Fréchet Distance Between Polygons with Holes 1007

By Lemma 12 there exists an admissible skeleton map f ′
s with δF (f ′

s) ≤
δF (fs), and such that for any i ∈ {1, . . . , h}, for every endpoint x of σi, with
x ∈ bj for some j ∈ {1, . . . , h}, we have that f ′

s(σi) is a vertex in the refined free
space diagram Fj that corresponds to the pair of boundary components bj and
cj . We guess all the endpoints of f ′

s(σi) for all i ∈ {1, . . . , h}. There is a total of
at most nO(h) possibilities.

Let Σ′ be a subset of segments in Σ that cut P into a topological disc,
with |Σ′| = h. We can compute Σ′ by greedily cutting P along diagonals with
endpoints on different boundary components (and updating the set of boundary
components after each cut). We may assume, after permuting the indices, and
without loss of generality, that Σ′ = {σ1, σ2, . . . , σh}.

By Lemma 11 there exists a collection X = {〈χi,1, . . . , χi,h〉}i∈I of efficiently
computable h-tuples of homotopy classes of paths in Q, with |I| = 2O(h2), and
an admissible skeleton map f ′′

s satisfying all the above conditions as f ′
s, and such

that there exists i ∈ I, such that for every j ∈ {1, . . . , h}, the path f ′′
s (σj) is

in the homotopy class χi,j . We compute the set X , and we try all of the 2O(h2)

tuples in X , and return the best solution found.
By Lemma 7 there exists a skeleton map f ′′′

s satisfying all the above condi-
tions as f ′′

s , and such that for every i ∈ {1, . . . , h}, the path γ′′′
i = f ′′′

s (σi) is short-
est in its homotopy class. We compute each path γ′′′

i in linear time, using the algo-
rithm of Hershberger and Snoeyink [21]. After computing Γ ′′′ = {γ′′′

1 , . . . , γ′′′
h }

we check whether the paths in Γ ′′′ are pairwise non-crossing, and whether cut-
ting Q along Γ ′′′ results in more than one connected component. In either of
these cases the algorithm disregards Γ ′′′, and proceeds to the next choice of
homotopy classes.

If Γ ′′′ passes the above test, then we compute the homeomorphism f ′′′
s |σi

between σi and γ′′′
i , using the algorithm of Alt and Godau [3] for the Fréchet dis-

tance between polygonal curves.
Let P̃ , Q̃ be the simply connected polygons obtained by cutting P along

σ1, . . . , σh, and along γ′′′
1 , . . . , γ′′′

h respectively. The paths σ1, . . . , σh correspond
to pairwise disjoint paths α1, . . . , α2h ⊂ ∂P̃ . Similarly, the paths γ′′′

1 , . . . , γ′′′
h

correspond to pairwise disjoint paths β1, . . . , β2h ⊂ ∂Q̃. Moreover, the maps
f ′′′

s |σ1 , . . . , f
′′′
s |σh

induce a collection of homeomoprhisms φ1 : α1 → β1, . . . , φ2h :
α2h → β2h. By Lemma 14 we can compute in polynomial time a homeomorphism
f̃ : P̃ → Q̃ of minimum Fréchet length. By the above discussion, for the right
choice of the permutation π, and the endpoints and homotopy classes of the
paths γ′′′

1 , . . . , γ′′′
h , we have δF (f̃) ≤ δF (P̃ , Q̃) ≤ δF (P,Q) + ε, for any ε > 0. By

the construction of P̃ and Q̃ the map f̃ induces a homeomorphism f : P → Q,
with δF (f) ≤ δF (f̃), which completes the description of the algorithm. The total
running time for all the above steps 2O(h log h)nO(h)2O(h2)nO(1) = 2O(h2)nO(h),
concluding the proof.

1008 A. Nayyeri and A. Sidiropoulos

References

1. Agarwal, P.K., Avraham, R.B, Kaplan, H., Sharir, M.: Computing the discrete
Fréchet distance in subquadratic time. In: SODA 2013, pp. 156–167. SIAM (2013)

2. Alt, H., Buchin, M.: Semi-computability of the Fréchet distance between surfaces.
In: EWCG 2005, Eindhoven, Netherlands, pp. 45–48

3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves.
Int. J. Comput. Geometry Appl. 5, 75–91 (1995)

4. Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Fréchet distance for
curves, revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
52–63. Springer, Heidelberg (2006)

5. Buchin, K., Buchin, M., Schulz, A.: Fréchet distance of surfaces: some simple hard
cases. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347,
pp. 63–74. Springer, Heidelberg (2010)

6. Buchin, K., Buchin, M., Wenk, C.: Computing the Fréchet distance between simple
polygons. Comp. Geom. Theo. Appl. 41(1–2), 2–20 (2008)

7. Chambers, E.W., de Verdière, E.C., Erickson, J., Lazard, S., Lazarus, F., Thite, S.:
Homotopic Fréchet distance between curves or, walking your dog in the woods in
polynomial time. Comput. Geom. Theory Appl. 43(3), 295–311 (2010)

8. Chazal, F., Lieutier, A., Rossignac, J., Whited, B.: Ball-map: Homeomorphism
between compatible surfaces. Int. J. Comput. Geometry Appl. 20(3), 285–306
(2010)

9. Chen, D., Driemel, A., Guibas, L.J., Nguyen, A., Wenk, C.: Approximate map
matching with respect to the Fréchet distance. In: ALENEX 2011, pp. 75–83 (2011)

10. Cook IV, A.F., Driemel, A., Har-Peled, S., Sherette, J., Wenk, C.: Computing the
Fréchet distance between folded polygons. In: Dehne, F., Iacono, J., Sack, J.-R.
(eds.) WADS 2011. LNCS, vol. 6844, pp. 267–278. Springer, Heidelberg (2011)

11. Éric Colin de Verdière and Jeff Erickson: Tightening non-simple paths and cycles
on surfaces. SIAM J. Comput. 39(8), 3784–3813 (2010)

12. Dey, T.K., Ranjan, P., Wang, Y.: Convergence, stability, and discrete approxima-
tion of laplace spectra. In: SODA 2010, pp. 650–663 (2010)

13. Dinur, I.: Approximating svpinfinity to within almost-polynomial factors is np-hard.
Theor. Comput. Sci. 285(1), 55–71 (2002)

14. Driemel, A., Har-Peled, S.: Jaywalking your dog: computing the Fréchet distance
with shortcuts. In: SODA 2012, pp. 318–337. SIAM (2012)

15. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for
realistic curves in near linear time. Discrete & Computational Geometry 48(1),
94–127 (2012)

16. Erickson, J., Nayyeri, A.: Shortest non-crossing walks in the plane. In: SODA 2011,
pp. 297–308. SIAM (2011)

17. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In:
Advances in Multiresolution for Geometric Modelling, Mathematics and Visual-
ization, pp. 157–186. Springer, Heidelberg (2005)

18. Godau, M.: On the Complexity of Measuring the Similarity Between Geometric
Objects in Higher Dimensions. Ph.D thesis, Freie Universität Berlin (1998)

19. Har-Peled, S., Nayyeri, A., Salavatipour, M., Sidiropoulos, A.: How to walk your
dog in the mountains with no magic leash. In: SoCG 2012, pp. 121–130. ACM,
New York (2012)

20. Hass, J., Scott, P.: Intersections of curves on surfaces. Israel Journal of Mathematics
51(1–2), 90–120 (1985)

Computing the Fréchet Distance Between Polygons with Holes 1009

21. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homo-
topy class. Comput. Geom. Theory Appl. 4(2), 63–97 (1994)

22. Schaefer, M., Sedgwick, E., Štefankovič, D.: Spiraling and folding: The word view.
Algorithmica (2009) (in press)

23. Schaefer, M., Štefankovič, D.: Decidability of string graphs. J. Comput. Syst. Sci.
68(2), 319–334 (2004)

24. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape corre-
spondence. Computer Graphics Forum 30(6), 1681–1707 (2011)

An Improved Private Mechanism for Small
Databases

Aleksandar Nikolov(B)

Microsoft Research, Redmond, WA 98052, USA
alenik@microsoft.com

Abstract. We study the problem of answering a workload of linear
queries Q, on a database of size at most n = o(|Q|) drawn from a
universe U under the constraint of (approximate) differential privacy.
Nikolov, Talwar, and Zhang [NTZ13] proposed an efficient mechanism
that, for any given Q and n, answers the queries with average error
that is at most a factor polynomial in log |Q| and log |U| worse than the
best possible. Here we improve on this guarantee and give a mechanism
whose competitiveness ratio is at most polynomial in log n and log |U|,
and has no dependence on |Q|. Our mechanism is based on the projection
mechanism of [NTZ13], but in place of an ad-hoc noise distribution, we
use a distribution which is in a sense optimal for the projection mecha-
nism, and analyze it using convex duality and the restricted invertibility
principle.

Keywords: Differential privacy · Convex optimization · Competitive
analysis

1 Introduction

The central problem of private data analysis is to characterize to what extent
it is possible to compute useful information from statistical data without com-
promising the privacy of the individuals represented in the dataset. In order to
formulate this problem precisely, we need a database model and a definition of
what it means to preserve privacy. Following prior work, we model a database
as a multiset D of n elements from a universe U , with each database element
specifying the data of a single individual. Defining privacy is more subtle. A def-
inition which has received considerable attention in recent years is differential
privacy, which postulates that a randomized algorithm preserves privacy if its
distribution on outputs is almost the same (in an appropriate metric) on any two
input databases D and D′ that differ in the data of at most a single individual.
The formal definition is as follows:

Definition 1 ([DMNS06]). Two databases D and D′ are neighboring if the
size of their symmetric difference is at most one. A randomized algorithm M
satisfies (ε, δ)-differential privacy if for any two neighboring databases D and D′

and any measurable event S in the range of M,

P[M(D) ∈ S] ≤ eε
P[M(D′) ∈ S] + δ.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 1010–1021, 2015.
DOI: 10.1007/978-3-662-47672-7 82

An Improved Private Mechanism for Small Databases 1011

Differential privacy has a number of desirable properties: it is invariant under
post-processing, the privacy loss degrades smoothly under (possibly adaptive)
composition, and the privacy guarantees hold in the face of arbitrary side infor-
mation. We will adopt it as our definition of choice in this paper. We will work
in the regime δ > 0, which is often called approximate differential privacy, to
distinguish it from pure differential privacy, which is the case δ = 0. Approxi-
mate differential privacy provides strong semantic guarantees when δ is n−ω(1):
roughly speaking, it implies that with probability at least 1 − O(n

√
δ), an arbi-

trarily informed adversary cannot guess from the output of the algorithm if any
particular user is represented in the database. See [GKS08] for a precise formu-
lation of this semantic guarantee.

We then turn to the question of understanding the constraints imposed by
privacy on the kinds of computation we can perform. We focus on computing
answers to a fundamental class of database queries: the linear queries, which
generalize counting queries. A counting query counts the number of database
elements that satisfy a given predicate; a linear query is more general and
allows for weighted counts. Formally, a linear query is specified by a function
q : U → R (q : U → {0, 1} in the case of counting queries); slightly abusing
notation, we define the value of the query as q(D) �

∑
e∈D q(e) (elements of

D are counted with multiplicity). We call a set Q of linear queries a work-
load, and an algorithm that answers a query workload a mechanism. Since the
work of Dinur and Nissim [DN03], it has been known that answering queries
too accurately can lead to very dramatic privacy breaches, and this is true
even for counting queries. For example, in [DN03,DMT07] it was shown that
answering Ω(n) random counting queries with error per query o(

√
n) allows

an adversary to reconstruct a very accurate representation of a database of
size n, which contradicts any reasonable privacy notion. On the other hand, a
simple mechanism that adds independent Gaussian noise to each query answer
achieves (ε, δ)-differential privacy and answers any set Q of counting queries
with average error O(

√|Q|) [DN03,DN04,DMNS06].1 While this is a useful
guarantee for a small number of queries, it quickly loses value when |Q| is
much larger than the database size, and becomes trivial for ω(n2) queries.
Nevetheless, since the seminal paper of Blum, Ligett and Roth [BLR08], a
long line of work [DNR09,DRV10,RR10,HR10,GHRU11,HLM12,GRU12] has
shown that even when |Q| = ω(n), more sophisticated private mechanisms
can achieve error not much larger than O(

√
n). For instance, there exist (ε, δ)-

differentially private mechanisms for linear queries that acheive average error
O(

√
n log1/4 |U|) [GRU12]. There are sets of counting queries for which this

bound is tight up to factors polylogarithmic in the size of the database [BUV13].
Specific query workloads allow for error which is much better than the worst-

case bounds. Some natural examples are queries counting the number of points in
a line interval or d-dimensional axis-aligned box [DNPR10,CSS10,XWG10], or
a d-dimensional halfspace [MN12]. It is, therefore, desirable to have mechanisms

1 Here and in the remainder of the introduction we ignore dependence of the error on
ε and δ.

1012 A. Nikolov

whose error bounds adapt both to the query workload and to the database size.
In particular, if opt(n,Q) is the best possible average error2 achievable under
differential privacy for the workload Q on databases of size at most n, we would
like to have a mechanism with error at most a small factor larger than opt(n,Q)
for any n and Q. The first result of this type is due to Nikolov, Talwar, and
Zhang [NTZ13], who presented a mechanism running in time polynomial in |U|,
|Q|, and n, with error at most polylog(|Q|, |U|) · opt(n,Q).

Here we improve the results from [NTZ13]:

Theorem 1 (Informal). There exists a mechanism that, given a database of
size n drawn from a universe U , and a workload Q of linear queries, runs in
time polynomial in |U|, |Q| and n, and has average error per query at most
polylog(n, |U|) · opt(n,Q).

Notice that the competitiveness ratio in Theorem 1 is independent of the num-
ber of queries, which can be significantly larger than both n and |U|. This type
of guarantee is easier to prove when n = Ω(|Q|), in which case there exist nearly
optimal mechanisms that are oblivious of the database size [NTZ13]. Therefore,
we focus on the more challenging regime of small databases, i.e. n = o(|Q|).

It is worth making a couple of remarks about the strength of Theorem 1.
First, in many applications the query set Q is represented compactly and |U|
is exponentially large in the size of a natural representation of the input. In
such cases running time polynomial in |U| may be prohibitive. Nevertheless,
our work still gives interesting information theoretic bounds on the optimal
error, and, moreover, our mechanism can be a starting point for developing more
efficient variants. Moreover, under a plausible complexity theoretic hypothesis,
our running time guarantee is the best one can hope for without making further
assumptions on Q [Ull13]. A second remark is that our optimal error guarantees
are in terms of average error, while many papers in the literature consider worst-
case error. Proving a result analogous to Theorem 1 for worst-case error remains
an interesting open problem.

Another interesting problem is to remove the dependence on the universe
size in the competitiveness ratio. It is plausible that this can be done with
the projection mechanism and a well-chosen Gaussian noise distribution, but
we would need tighter lower bounds, possibly based on fingerprinting codes as
in [BUV13].

Techniques. Following the ideas of [NTZ13], our starting point is a generalization
of the well-known Gaussian noise mechanism, which adds appropriately scaled
correlated Gaussian noise to the queries. By itself, this mechanism is sufficient to
guarantee privacy, but its error is too large when n = o(|Q|). The main insight
of [NTZ13] was to use the knowledge that the database is small to reduce the
error via a post-processing step. The post-processing is a form of regression:
we find the vector of answers that is closest to the noisy answers while still
consistent with the database size bound. (In fact the estimator is slightly more

2 We give a formal definition later.

An Improved Private Mechanism for Small Databases 1013

complicated and related to the hybrid estimator of Zhang [Zha13]). Intuitively,
when n is small compared to the number of queries, this regression step cancels
a significant fraction of the error.

Our first novel contribution is to analyze the error of this mechanism for arbi-
trary noise distributions and formulate it as a convex function of the covariance
matrix of the noise. Then we write a convex program that captures the problem
of finding the covariance matrix for which the performance of the mechanism is
optimized on the given query workload and database size bound. We use Gaus-
sian noise with this optimal covariance in place of the recursively constructed
ad-hoc noise distribution3 from [NTZ13]. Finally, we relate the dual of the convex
program to a spectral lower bound on opt(n,Q) via the restricted invertibility
principle of Bourgain and Tzafriri [BT87]. We stress that while the restricted
invertibility principle was used in [NTZ13] as well, here we need a new argument
which works for the optimal covariance matrix we compute and gives a smaller
competitiveness ratio.

In addition to the improvement in the competitiveness ratio, we believe our
approach here is more direct and more natural and brings a better understanding
of the performance of the regression-based mechanism for small databases.

2 Preliminaries

We use capital letters for matrices and lower-case letters for vectors and scalars.
We use 〈·, ·〉 for the standard inner product between vectors in R

n. For a matrix
M ∈ R

m×n and a set S ⊆ [n], we use MS for the submatrix consisting of
the columns of A indexed by elements of S. We use the notation M 	 0 to
denote that M is a positive definite matrix, and M
 0 to denote that it is
positive semidefinite. We use σmin(M) for the smallest singular value of M ,
i.e. σmin(M) � minx ‖Mx‖2/‖x‖2. We use tr(·) for the trace operator, and ‖M‖2
for the �2 → �2 operator norm of M , i.e. ‖M‖2 � maxx ‖Mx‖2/‖x‖2.

The distribution of a multivariate Gaussian with mean μ and covariance Σ
is denoted N(μ,Σ).

2.1 Histograms, the Query Matrix, and the Sensitivity Polytope

It will be convenient to encode the problem of releasing answers to linear queries
using linear-algebraic notation. A common and very useful representation of
a database D is the histogram representation: the histogram of D is a vector
x ∈ R

U such that for any e ∈ U , xe is equal to the number of copies of e in D.
Notice that ‖x‖1 = n and also that if x and x′ are respectively the histograms of
two neighboring databases D and D′, then ‖x − x′‖1 ≤ 1 (here ‖x‖1 =

∑
e |xe|

is the standard �1 norm). Linear queries are a linear transformation of x. More
concretely, let us define the query matrix A ∈ R

Q×U associated with a set of

3 The distribution in [NTZ13] is independent of the database size bound. This could
be a reason why their guarantees scale with log |Q| rather than log n.

1014 A. Nikolov

linear queries Q by aq,e = q(e). Then it is easy to see that the vector Ax gives
the answers to the queries Q on a database D with histogram x.

Since this does not lead to any loss in generality, for the remainder of this
chapter we will assume that databases are given to mechanisms as histograms,
and workloads of linear queries are given as query matrices. We will identify the
space of size-n databases with histograms in the scaled �1 ball nBU

1 � {x ∈ R
U :

‖x‖1 ≤ n}, and we will identify neighboring databases with histograms x, x′ such
that ‖x − x′‖1 ≤ 1.

The sensitivity polytope KA of a query matrix A ∈ R
Q×U is the convex

hull of the columns of A and the columns of −A. Equivalently, KA � ABU
1 ,

i.e. the image of the unit �1 ball in R
U under multiplication by A. Notice that

nKA = {Ax : ‖x‖1 ≤ n} is the symmetric convex hull4 of the possible vectors of
query answers to the queries in Q on databases of size at most n.

2.2 Measures of Error and the Spectral Lower Bound

As our basic notion of error we will consider mean squared error. For a mechanism
M and a subset X ⊆ R

U , let us define the error with respect to the query matrix
A ∈ R

Q×U as

err(M,X,A) � sup
x∈X

(
E

1
|Q|‖Ax − M(A, x)‖22

)1/2

.

where the expectation is taken over the random coins of M. We also write
err(M, nBU

1 , A) as err(M, n,A). The optimal error achievable by any (ε, δ)-
differentially private mechanism for the query matrix A and databases of size
up to n is

optε,δ(n,A) � inf
M

err(M, n,A),

where the infimum is taken over all (ε, δ)-differentially private mechanisms M.
Arguing directly about optε,δ(n,A) appears difficult. For this reason we use

the following spectral lower bound from [NTZ13]. This lower bound was implicit
in previous papers, for example [KRSU10].

Theorem 2 ([NTZ13]). There exists a constant c such that for any query
matrix A ∈ R

Q×U , any small enough ε, and any δ small enough with respect to
ε, optε,δ(n,A) ≥ (c/ε) SpecLB(εn,A), where

SpecLB(k,A) � max
S⊆U
|S|≤k

√
k/|Q| σmin(AS).

4 The symmetric convex hull of a set of points v1, . . . , vN is equal to the convex hull
of ±v1, . . . , ±vN .

An Improved Private Mechanism for Small Databases 1015

2.3 Composition and the Gaussian Mechanism

An important basic property of differential privacy is that the privacy guarantees
degrade smoothly under composition and are not affected by post-processing.

Lemma 1 ([DMNS06,DKM06]). Let M1(·) satisfy (ε1, δ1)-differential pri-
vacy, and M2(x, ·) satisfy (ε2, δ2)-differential privacy for any fixed x. Then the
mechanism M2(M1(D),D) satisfies (ε1 + ε2, δ1 + δ2)-differential privacy.

A basic method to achieve (ε, δ)-differential privacy is the Gaussian mecha-
nism. We use the following generalized variant, introduced in [NTZ13].

Theorem 3 ([DN03,DN04,DMNS06,NTZ13]). Let Q be a set of queries
with query matrix A, and let Σ ∈ R

Q×Q, Σ 	 0, be such that aT
e Σ−1ae ≤ 1

for all columns ae of A. Then the mechanism MΣ(A, x) = Ax + w where w ∼
N(0, c2ε,δΣ) and cε,δ � 0.5

√
ε+

√
2 ln(1/δ)

ε satisfies (ε, δ)-differential privacy.

3 The Projection Mechanism

A key element in our mechanism is the use of least squares estimation to reduce
error on small databases. In this section we introduce and analyze a mechanism
based on least squares estimation, similar to the hybrid estimator of [Zha13].
Essentially the same mechanism was used in [NTZ13], but the definition and
analysis were tied to a particular noise distribution.

Algorithm 1.. Projection Mechanism Mproj
Σ

Input: (Public) Query matrix A ∈ R
Q×U ; matrix Σ � 0 such that aᵀ

eΣ−1ae ≤ for all
columns ae of A.

Input: (Private) Histogram x of a database of size ‖x‖1 ≤ n.
1: Run the generalized Gaussian mechanism (Theorem 3) to compute ỹ � MΣ(A, x);
2: Let Π be the orthogonal projection operator onto the span of the eigenvectors

corresponding to the �εn� largest eigenvalues of Σ
3: Compute ȳ ∈ n(I − Π)KA, where KA is the sensitivity polytope of A, and ȳ is

ȳ = arg min{‖z − (I − Π)ỹ‖2
2 : z ∈ n(I − Π)KA}.

Output: Vector of answers Πỹ + ȳ.

As shown in [NTZ13,DNT14], Algorithm 1 can be efficiently implemented
using the ellipsoid algorithm or the Frank-Wolfe algorithm.

The next lemma, which we prove in the full version of the paper, gives our
analysis of the error of the Projection Mechanism.

1016 A. Nikolov

Lemma 2. Assume Σ 	 0 is such that aᵀ
eΣ−1ae ≤ 1 for all columns ae of

A. Then the Projection Mechanism Mproj
Σ in Algorithm 1 is (ε, δ)-differentially

private. Moreover, for ε = O(1),

err(Mproj
Σ , n,A) = O

((
1 +

√
log |U|√
log 1/δ

)1/2
)

·
(c2ε,δ

|Q|
∑

i≤εn

σi

)1/2

,

where σ1 ≥ σ2 ≥ . . . ≥ σ|Q| are the eigenvalues of Σ.

Let us give some intuition for the proof of the lemma. The privacy guarantee
is almost immediate from Theorem 3, since the output of algprojΣ (A, x) is just a
post-processing of MΣ(A, x). To analyze the error of the mechanism, we split
the error into two terms: E‖Πỹ −ΠAx‖22 and E‖ȳ − (I −Π)Ax‖22. We prove the
following bounds:

E‖Πỹ − Πy‖22 = c2ε,δ

k∑

i=1

σi, (1)

E‖ȳ − (I − Π)y‖22 = O

(√
log |U|√
log 1/δ

)
c2ε,δ

k∑

i=1

σi. (2)

(1) is a direct calculation; (2) is more challenging and uses an analysis of the
least squares estimator which was appeared in the context of differential privacy
for the first time in [NTZ13]. The details are similar to the analysis of the small
database mechanism in [NTZ13].

4 Optimality of the Projection Mechanism

In this section we show that we can choose a covariance matrix Σ so that Mproj
Σ

has nearly optimal error:

Theorem 4. Let ε be a small enough constant and let δ = |U|o(1) be small
enough with respect to ε. For any query matrix A ∈ R

Q×U , and any database
size bound n, there exists a covariance matrix Σ 	 0 such that the Projection
Mechanism Mproj

Σ in Algorithm 1 is (ε, δ)-differentially private and has error

err(M, n,A) = O((log n)(log 1/δ)1/4(log |U|)1/4) · 1
ε

SpecLB(εn,A)

= O((log n)(log 1/δ)1/4(log |U|)1/4) · optε,δ(n,A)

Moreover, Σ can be computed in time polynomial in |Q|.
Theorem 4 is the formal statement of Theorem 1. (Recall again that Algo-

rithm 1 can be implemented in time polynomial in n, |Q| and |U|, as shown
in [NTZ13,DNT14].)

To prove the theorem, we optimize over the choices of Σ that ensure (ε, δ)-
differential privacy, and use convex duality and the restricted invertibility prin-
ciple to relate the optimal covariance to the spectral lower bound.

An Improved Private Mechanism for Small Databases 1017

4.1 Minimizing the Ky Fan Norm

Recall that for an m×m matrix Σ 	 0 with eigenvalues σ1 ≥ . . . ≥ . . . ≥ σm, and
a positive integer k ≤ m, the Ky Fan k-norm is defined as ‖Σ‖(k) � σ1+ . . .+σk.
The covariance matrix Σ we use in the projection mechanism will be the one
achieving min{‖Σ‖(k) : aᵀ

eΣ−1ae ≤ 1 ∀e ∈ U}, where ae is the column of the
query matrix A associated with the universe element e. This choice is directly
motivated by Lemma 2. We can write this optimization problem in the following
way.

Minimize ‖X−1‖(k) s.t. (3)
X 	 0 (4)
∀e ∈ U : aᵀ

eXae ≤ 1. (5)

The program above has a geometric meaning. For a positive definite matrix X,
the set E(X) � {v ∈ R

Q : vᵀXv} is an ellipsoid centered at the origin. The
constraint (5) means that E(X) has to contain all columns of the query matrix
A. The objective function (3) is equal to the sum of squared lengths of the k
longest major axes of E(X). Therefore, we are looking for the smallest ellipsoid
centered at the origin that contains the columns of A, where the “size” of the
ellipsoid is the sum of squared lengths of the k longest major axes. We will not
use this geometric interpretation in the rest of the paper.

The following lemma is proved in the full version.

Lemma 3. The objective function (3) and constraints (5) are convex over
X 	 0.

Since the program (3)–(5) is convex, its optimal solution can be approximated
in polynomial time within any given degree of accuracy using the ellipsoid algo-
rithm [GLS81].

4.2 The Dual of the Ky Fan Norm Minimization Problem

Our next goal is derive a dual characterization of (3)–(5), which we will then
relate to the spectral lower bound SpecLB(k,A). It is useful to work with the
dual, because it is a maximization problem, so to prove optimality we just need
to show that any feasible solution of the dual gives a lower bound on the optimal
error under differential privacy.

To define the dual, we first need to introduce a somewhat complicated func-
tion of the singular values of a matrix. The next lemma is needed to argue that
this function is well-defined. The lemma was proved in [Nik15].

Lemma 4 ([Nik15]). Let σ1 ≥ . . . σm ≥ 0 be non-negative reals, and let k ≤ m
be a positive integer. There exists a unique integer t, 0 ≤ t ≤ k − 1, such that

σt >

∑
i>t σi

k − t
≥ σt+1, (6)

with the convention σ0 = ∞.

1018 A. Nikolov

We now introduce a function which will be used in formulating a dual char-
acterization of (3)–(5).

Definition 2. Let Σ
 0 be an m×m positive semidefinite matrix with singular
values σ1 ≥ . . . ≥ σm, and let k ≤ m be a positive integer. The function hk(Σ)
is defined as

hk(Σ) �
t∑

i=1

σ
1/2
i +

√
k − t

(
∑

i>t

σi

)1/2

,

where t is the unique integer such that σt >
∑

i>t σi

k−t ≥ σt+1.

Lemma 4 guarantees that hk(Σ) is a well-defined real-valued function. The
next theorem gives a dual characterization of the optimal value of (3)–(5) in
terms of hk. The theorem is proved in the full version of the paper.

Theorem 5. Let A = (ae)e∈U ∈ R
Q×U be a rank |Q| matrix, and let μ be the

optimal value of (3)–(5). Then,

μ2 = max hk(AQAᵀ)2 s.t. (7)
Q
 0, diagonal, tr(Q) = 1 (8)

4.3 Proof of Theorem 4

Our strategy will be to use the dual formulation in Theorem 5 and the restricted
invertibility principle to give a lower bound on SpecLB(k,A). First we state the
restricted invertiblity principle and a consequence of it proved in [NT15].

Theorem 6 ([BT87,SS10]). Let ε ∈ (0, 1), let M be an m × n real matrix,
and let W be an n×n diagonal matrix such that W
 0 and tr(W) = 1. For any
integer k such that k ≤ ε2tr(MWMᵀ)/‖MWMᵀ‖2 there exists a subset S ⊆ [n]
of size |S| = k such that σmin(MS)2 ≥ (1 − ε)2tr(MWMᵀ).

For the following lemma, which is a consequence of Theorem 6, we need to
recall the definition of the trace (nuclear) norm of a matrix M : ‖M‖tr is equal
to the sum of singular values of M .

Lemma 5 ([NT15]). Let M be an m by n real matrix of rank r, and let W
 0
be a diagonal matrix such that tr(W) = 1. Then there exists a submatrix MS of
M , |S| ≤ r, such that |S|σmin(MS)2 ≥ c2‖MW 1/2‖2tr/(log r)2, for a universal
constant c > 0.

Proof (of Theorem 4). Given a database size n and a query matrix A, we com-
pute the covariance matrix Σ as follows. We compute a matrix X which gives an
(approximately) optimal solution to (3)–(5) for k � �εn�, and we set Σ � X−1.
Since (3)–(5) is a convex optimization problem, it can be solved in time poly-
nomial in |Q| to any degree of accuracy using the ellipsoid algorithm [GLS81]

An Improved Private Mechanism for Small Databases 1019

(or the algorithm of Overton and Womersley [OW93]). By Lemma 2 and the
constraints (5), Mproj

Σ is (ε, δ)-differentially private with this choice of Σ.
By Lemma 2,

err(Mproj
Σ , n,A) = O

((
1 +

√
log |U |√
log 1/δ

)1/2
)

· cε,δ√|Q|‖Σ‖(k). (9)

By Theorem 5, the optimal solution Q of (7)–(8) satisfies

‖Σ‖(k) = hk(AQAᵀ) =
t∑

i=1

λ
1/2
i +

√
k − t

(
∑

i>t

λi

)1/2

,

where λ1 ≥ . . . ≥ λm are the eigenvalues of AQAᵀ and t, 0 ≤ t < k, is an integer
such that (k − t)λt >

∑
i>t λi ≥ (k − t)λt+1. At least one of

∑t
i=1 λ

1/2
i and√

k − t
(∑

i>t λi

)1/2 must be bounded from below by 1
2‖Σ‖(k). Next we consider

these two cases separately.
Assume first that

∑t
i=1 λ

1/2
i ≥ 1

2‖Σ‖(k). Let Π be the orthogonal pro-
jection operator onto the eigenspace of AQAᵀ corresponding to λ1, . . . , λt.
Then, because λ1 ≥ . . . ≥ λt are the nonzero singular values of ΠAQ1/2,
we have ‖ΠAQ1/2‖tr =

∑t
i=1 λ

1/2
i ≥ 1

2‖Σ‖(k). By Lemma 5 applied to the
matrices M = ΠA and W = Q, there exists a set S ⊆ U of size at most
|S| ≤ rank ΠA = t < εn, such that

SpecLB(εn,A) ≥
√

|S|
|Q| λmin(AS)

≥
√

|S|
|Q| λmin(ΠAS) ≥ c‖ΠAQ1/2‖tr

(log εn)
√|Q| ≥ c‖Σ‖(k)

2(log εn)
√|Q| (10)

for an absolute constant c.
For the second case, assume that

√
k − t

(∑
i>t λi

)1/2 ≥ 1
2‖Σ‖(k). Let Π now

be an orthogonal projection operator onto the eigenspace of AQAᵀ corresponding
to λt+1, . . . , λm. By the choice of t, we have

tr(ΠAQAΠ)
‖ΠAQAΠ‖2 =

∑
i>t λi

λt+1
≥ k − t.

By Theorem 6, applied with M = ΠA, W = Q, and ε = 1
2 , there exists a set

S ⊆ U of size 1
4 (k − t) < k ≤ εn so that

SpecLB2(εn,A) ≥
√

|S|
|Q|λmin(AS)

≥
√

|S|
|Q|λmin(ΠAS) ≥

√
k − t

(∑
i>t λi

)1/2

4
√|Q| ≥ ‖Σ‖(k)

8
√|Q| . (11)

The theorem follows from (9), the fact that at least one of (10) or (11) holds,
and Theorem 2. ��

1020 A. Nikolov

Acknowledgments. The author would like to thank the anonymous reviewers for
helpful comments.

References

[BLR08] Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-
interactive database privacy. In: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, STOC 2008, pp. 609–618. ACM,
New York (2008)

[BT87] Bourgain, J., Tzafriri, L.: Invertibility of large submatrices with appli-
cations to the geometry of banach spaces and harmonic analysis. Israel
journal of mathematics 57(2), 137–224 (1987)

[BUV13] Bun, M., Ullman, J., Vadhan, S.: Fingerprinting codes and the price of
approximate differential privacy (2013). arXiv preprint arXiv:1311.3158

[CSS10] Hubert Chan, T.-H., Shi, E., Song, D.: Private and continual release of
statistics. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 405–
417. Springer, Heidelberg (2010)

[DKM06] Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our
data, ourselves: Privacy via distributed noise generation 4004, 486–503
(2006)

[DMNS06] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sen-
sitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

[DMT07] Dwork, C., McSherry, F., Talwar, K.: The price of privacy and the limits
of lp decoding. In: STOC, pp. 85–94 (2007)

[DN03] Dinur, I., Nissim, K.: Revealing information while preserving privacy, pp.
202–210 (2003)

[DN04] Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically parti-
tioned databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 528–544. Springer, Heidelberg (2004)

[DNPR10] Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy
under continual observation. In: Schulman, L.J. (eds.) STOC, pp. 715–
724. ACM (2010)

[DNR09] Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the
complexity of differentially private data release: efficient algorithms and
hardness results. In: Proceedings of the 41st Annual ACM Symposium on
Theory of computing, pp. 381–390. ACM (2009)

[DNT14] Dwork, C., Nikolov, A., Talwar, K.: Using convex relaxations for effi-
ciently and privately releasing marginals. In: Cheng, S.-W., Devillers, O.
(eds.) 30th Annual Symposium on Computational Geometry, SOCG 2014,
Kyoto, Japan, June 08–11, 2014, pp. 261. ACM (2014)

[DRV10] Dwork, C., Rothblum, G.N., Vadhan, S.: Boosting and differential privacy.
In: Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, FOCS 2010, pp. 51–60. IEEE Computer Society,
Washington (2010)

[GHRU11] Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunc-
tions and the statistical query barrier. In: STOC, pp. 803–812 (2011)

http://arxiv.org/abs/1311.3158

An Improved Private Mechanism for Small Databases 1021

[GKS08] Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and
auxiliary information in data privacy. In: Li, Y., Liu, B., Sarawagi, S.
(eds.) Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August
24–27, 2008, pp. 265–273. ACM (2008)

[GLS81] Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica 1(2), 169–197
(1981)

[GRU12] Gupta, A., Roth, A., Ullman, J.: Iterative constructions and private data
release. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 339–356.
Springer, Heidelberg (2012)

[HLM12] Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for
differentially private data release. In: NIPS (2012, to appear)

[HR10] Hardt, M., Rothblum, G.: A multiplicative weights mechanism for privacy-
preserving data analysis. In: Proc. 51st Foundations of Computer Science
(FOCS). IEEE (2010)

[KRSU10] Kasiviswanathan, S.P., Rudelson, M., Smith, A., Ullman, J.: The price of
privately releasing contingency tables and the spectra of random matrices
with correlated rows. In: Proceedings of the 42nd ACM Symposium on
Theory of Computing, pp. 775–784. ACM (2010)

[MN12] Muthukrishnan, S., Nikolov, A.: Optimal private halfspace counting via
discrepancy. In: Karloff, H.J., Pitassi, T. (eds.) Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19–22, 2012, pp. 1285–1292. ACM (2012)

[Nik15] Nikolov, A.: Randomized rounding for the largest j-simplex problem. In:
STOC 2015 (2015, to appear)

[NT15] Nikolov, A., Talwar, K.: Approximating hereditary discrepancy via small
width ellipsoids. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4–6, 2015, pp. 324–336. SIAM (2015)

[NTZ13] Nikolov, A., Talwar, K., Zhang, L.: The geometry of differential privacy:
the sparse and approximate cases. In: Boneh, D., Roughgarden, T., Feigen-
baum, J. (eds.) Symposium on Theory of Computing Conference, STOC
2013, Palo Alto, CA, USA, June 1–4, 2013, pp. 351–360. ACM (2013)

[OW93] Overton, M.L., Womersley, R.S.: Optimality conditions and duality theory
for minimizing sums of the largest eigenvalues of symmetric matrices.
Math. Programming 62(2, Ser. B), 321–357 (1993)

[RR10] Roth, A., Roughgarden, T.: Interactive privacy via the median mecha-
nism. In: Proceedings of the 42nd ACM Symposium on Theory of Com-
puting, STOC 2010, pp. 765–774. ACM, New York (2010)

[SS10] Spielman, D.A., Srivastava, N.: An elementary proof of the restricted
invertibility theorem. Israel Journal of Mathematics, 1–9 (2010)

[Ull13] Ullman, J.: Answering n2+o(1) counting queries with differential privacy
is hard. In: STOC (2013)

[XWG10] Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet trans-
forms. In: ICDE, pp. 225–236 (2010)

[Zha13] Zhang, L.: Nearly optimal minimax estimator for high dimensional sparse
linear regression. Annals of Statistics (2013, to appear)

Binary Pattern Tile Set Synthesis Is NP-hard

Lila Kari1, Steffen Kopecki1, Pierre-Étienne Meunier2,
Matthew J. Patitz3(B), and Shinnosuke Seki2,4

1 Department of Computer Science, University of Western Ontario,
London, ON N6A 1Z8, Canada
{lila,steffen}@csd.uwo.ca

2 Department of Computer Science, Aalto University,
P.O.Box 15400, 00076 Aalto, Finland
pierre-etienne.meunier@aalto.fi

3 Department of Computer Science and Computer Engineering,
University of Arkansas, Fayetteville, AR, USA

mpatitz@self-assembly.net
4 Helsinki Institute for Information Technology (HIIT), Espoo, Finland

s.seki@uec.ac.jp

Abstract. We solve an open problem, stated in 2008, about the fea-
sibility of designing efficient algorithmic self-assembling systems which
produce 2-dimensional colored patterns. More precisely, we show that
the problem of finding the smallest tile assembly system which will self-
assemble an input pattern with 2 colors (i.e., 2-Pats) is NP-hard. One
crucial lemma makes use of a computer-assisted proof, which is a rela-
tively novel but increasingly utilized paradigm for deriving proofs for
complex mathematical problems. This tool is especially powerful for
attacking combinatorial problems, as exemplified by the proof for the
four color theorem and the recent important advance on the Erdős dis-
crepancy problem using computer programs. In this paper, these tech-
niques will be brought to a new order of magnitude, computational tasks
corresponding to one CPU-year. We massively parallelize our program,
and provide a full proof of its correctness. Its source code is freely avail-
able online.

1 Introduction

The traditional way for mankind to modify the physical world has been via
a top-down process of crafting things with tools, in which matter is directly
manipulated and shaped by those tools. In this work, we are interested in another
crafting paradigm called self-assembly, a model of building structures from the

We thank Manuel Bertrand for his infinite patience and helpful assistance with set-
ting up the server and helping debug our network and system problems, and Cécile
Barbier, Eric Fede and Kai Poutrain for their assistance with software setup.
S. Kopecki—Supported by the NSERC Discovery Grant R2824A01 and UWO Fac-
ulty of Science grant to L.K.
P.-É. Meunier—Supported in part by NSF Grant CCF-1219274.
M.J. Patitz—Supported in part by NSF Grants CCF-1117672 and CCF-1422152.
S. Seki—Supported in part by Academy of Finland, Grant 13266670/T30606.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 1022–1034, 2015.
DOI: 10.1007/978-3-662-47672-7 83

Binary Pattern Tile Set Synthesis Is NP-hard 1023

bottom up. Via self-assembly, it is possible to design molecular systems so that
their components autonomously combine to form structures with nanoscale, even
atomic, precision. At this scale, tools are no longer the easiest way to build
things, and programming the assembly of matter becomes at the same time
easier, cheaper, and more powerful.

Using this paradigm, researchers have already built a number of things, such
as logic circuits [19,24], DNA tweezers [32], and molecular robots[16], just to
name a few. Such examples demonstrate that self-assembly can be used to man-
ufacture specialized geometrical, mechanical, and computational objects at the
nanoscale. Potential future applications of nanoscale self-assembly include the
production of new materials with specifically tailored properties (electronic, pho-
tonic, etc.) and medical technologies which are capable of diagnosing and even
treating diseases in vivo, at the cellular level. Furthermore, studying the pro-
cesses occurring in self-assembling systems yields precious insights about what
is physically, even theoretically, possible in these molecular systems. Questions
such as “what is the smallest program capable of performing a given task?” arise
naturally in these systems, either from experimental applications, or from more
fundamental research on the capabilities of natural systems.

The abstract Tile Assembly Model (aTAM) was introduced by Winfree [30]
to study the possibilities brought by molecular components built by Seeman [25]
using DNA. This model is essentially an asynchronous nondeterministic cellular
automaton, and can also be seen as a dynamical variant of Wang tiling [29].
In the aTAM, the basic components are translatable but un-rotatable square
tiles whose sides are labeled with glues, each with an integer strength. Growth
proceeds from a seed assembly, one tile at a time, and at each time step a tile
can attach to an existing assembly if the sum of the strengths of the glues on its
sides, whose types match the existing assembly, is equal to at least a parameter
of the model called the temperature.

The problem we study in this paper is the optimization of the design of tile
assembly systems in the aTAM which self-assemble to form colored input pat-
terns. DNA tiles can be equipped with proteins [31] and nanoparticles such as
gold (Au) [33]. Assemblies of normal tiles as well as tiles thus modified can be
considered a colored pattern, as a periodic placement of Au nanoparticles on a
2D nanogrid [33] can be considered a 2-colored (i.e., binary) rectangular pattern
on which the two colors specify the presence/absence of an Au nanoparticle at
the position. Various designs of pattern assemblers have been proposed theoret-
ically and experimentally, see, e.g., [4,6,22,33]. The input for this problem is
a rectangular pattern consisting of k colors, and the output is a tile set in the
aTAM which self-assembles the pattern. Essentially, each type of tile is assigned
a “color”, and the goal is to design a system consisting of the minimal number
of tile types such that they deterministically self-assemble to form a rectangu-
lar assembly in which each tile is assigned the same color as the corresponding
location in the pattern. This problem was introduced in [17], and has since then
been extensively studied [7,9,11,12,26]. The interest is both theoretical, to deter-
mine the computational complexity of designing efficient tile assembly systems,

1024 L. Kari et al.

and practical, as the goal of self-assembling patterned substrates onto which a
potentially wide variety of molecular components could be attached is a major
experimental goal. Known as k-Pats, where k is the number of unique colors
in the input pattern, previous work has steadily decreased the value of k for
which k-Pats has been shown to be NP-hard, from unbounded [7] to 11 [12].
(Additionally, in a variant of k-Pats where the number of tile types of certain
colors is restricted, is has been proven to be NP-hard for 3 colors [14].) However,
the foundational conjecture has been that for k = 2, i.e. 2-Pats, the problem is
also NP-hard. This is our main result, which is thus the terminus of this line of
research and a fundamental result in algorithmic self-assembly.

Computer-assisted proofs. In one of its parts (a portion of one direction of
the NP reduction), our proof of the 2-Pats conjecture requires the solution of
a massive combinatorial problem, meaning that one of the lemmas upon which
it relies needs a massive exploration of more than 6 · 1013 cases via a computer
program. While this is not a traditional component of mathematical proofs, and
may not provide the same level of insight into why something is true that a
standard proof may, modern hardware and software have now given us the tools
to attack combinatorially formidable problems whose proofs, if not augmented
by computer programs, would often be impossible or as lacking in their ability
to elucidate the reasons for their truth due to explosive case analyses as verifi-
cation by brute force analysis of a computer program. Indeed, computer science
has at the same time introduced combinatorial arguments indicating that most
theorems do not have simple proofs, and possible ways to produce certain facts
anyway, by heavy algorithmic processes. Moreover, the “natural proofs” line of
research [1,5,20,23] suggests that understanding “why” complexity classes are
separated may be out of reach, and that therefore, the study of these kinds of
proofs, and methods to ensure their correctness, are a fundamental direction
in computer science today. Asserting the correctness of biological and chemical
programs is also an important problem, where “why” questions are really not
as important as the “whether” ones, for instance for therapeutic applications.
Computationally intensive proofs are therefore likely to become common in these
areas of science.

Historically, Appel and Haken [2,3] were the first to prove a result – the four
color theorem – with this kind of method, in 1976. This proof was later simplified
in [21]. Since then, important problems in various fields have been solved (fully
or partially) with the assistance of computers: the discovery of Mersenne primes
[28], the NP-hardness of minimum-weight triangulation [18], a special case of
Erdős’ discrepancy conjecture [15], and the ternary Goldbach conjecture [10],
among others. (Over the years, exhaustive exploration and massively parallel
programs have also been commonly used in physics, or in combinatorial problems
such as solving the Rubik’s cube.) However, none of these programs was proven
formally, and confidence in the validity of these results thus relies on our trust
in the programmers.

Proofs of computer programs. The first rigorous proof of a massive software
exploration was for the four colors theorem, recently done in the Coq proof

Binary Pattern Tile Set Synthesis Is NP-hard 1025

assistant by Gonthier et al. [8]. The order of magnitude of their proof is close
to the limits of Coq, and is not comparable with our result, which needs a
massively parallel exploration requiring about one CPU-year on very modern,
high-end machines (as a sum total over several hundred distributed cores) to
complete and verify the correctness of the lemma.

A large parallel cluster was hence employed, which poses a number of new
challenges. Indeed, in a sequential program, we often implicitly use the fact that
function calls return the output of their computations, which becomes more
complicated when using several computers: without using unrealistic hypothe-
ses on the correction of the network and of operating systems, return values
could potentially be lost, duplicated or corrupted. Since our program ran for
a long time, we cannot make such strong hypotheses, which is why we need to
assert the authenticity of messages received by the server by using cryptographic
signatures.

Another feature of our proof is the use of a functional programming language,
OCaml. The conciseness of its code and the proximity of its syntax to mathe-
matical proofs brought us a rigorous proof of the correctness of our program.

The whole framework for carrying out the programmatic part of our proof is
reusable for the same kind of tasks in the future.

1.1 Main Result

Our result solves an open problem in the field of DNA self-assembly, the so-
called binary pattern tile set synthesis (2-Pats) problem [17,26], stated first in
2008. In the general k-Pats for k ≥ 2, given a placement of k different kinds
of nanoparticles, represented in the model as a k-colored rectangular pattern,
we are asked to design an optimally small tileset and an L-shaped seed that
self-assembles the pattern (see Fig. 1 for an example).

2-Pats has been conjectured to be NP-hard since 20081. In [26], Seki proved
for the first time the NP-hardness of 60-Pats, whose input pattern is allowed
to have 60 colors, and the result has since been strengthened to that of 29-Pats
[11], and further to 11-Pats [12].

Our main theorem closes this line of research by lowering the number of
colors allowed for input patterns to only two. We state the main result of this
paper here, although some terms may not formally be defined yet:

Theorem 1. The 2-Pats optimization problem of finding, given a 2 colored
rectangular pattern P , the minimal colored tileset (together with an L-shaped
seed) that produces a single terminal assembly where the color arrangement is
exactly the same as in P , is NP-hard.

The main idea of our proof is similar to the strategies adopted by [11,12,26]. We
embed the computation of a verifier of solutions for an NP-complete problem
(in our case, a variant of Sat, which we call M-Sat) in an assembly, which is
1 This problem was claimed to be NP-hard in a subsequent paper by the authors of

[17] but what they proved was the NP-hardness of a different problem (see [27]).

1026 L. Kari et al.

relatively straightforward in Winfree’s aTAM. One can indeed engineer a tile
assembly system (TAS) in this model, with colored tiles, implementing a verifier
of solutions of the variant of Sat, in which a formula F and a variable assignment
φ ∈ {0, 1}n are encoded in the seed assembly, and a tile of a special color appears
after some time if and only if F (φ) = 1. In our actual proof, reported in Sect. 3,
we design a set T of 13 tile types and a reduction of a given instance φ of M-Sat
to a rectangular pattern PF such that

Property 1. A TAS using tile types in T self-assembles PF iff F is satisfiable.
Property 2. Any TAS of at most 13 tile types that self-assembles PF is isomor-

phic to T .

Therefore, F is solvable if and only if PF can be self-assembled using at most 13
tile types. In previous works [11,12,26], significant portions of the proofs were
dedicated to ensuring their analog of Property 2, and many colors were “wasted”
to make the property “manually” checkable (for reference, 33 out of 60 colors
just served this purpose for the proof of NP-hardness of 60-Pats [26] and 2 out
of 11 did that for 11-Pats [12]). Cutting this “waste” causes a combinatorial
explosion of cases to test and motivates us to use a computer program to do the
verification instead.

Apart from the verification of Property 2 (in Lemma 1), the rest of our proof
can be verified as done in traditional mathematical proofs; our proof is in Sect. 3.
The verification of Property 2 is done by an algorithm (omitted due to space
constraints but described, along with all other proof details, in [13]), which, given
a pattern and an integer n, searches for all possible sets of n tile types that self-
assemble the pattern. The correctness of the algorithm is proven, and both the
(unproven, efficient) C++ code, and the (slower but formally proven) OCaml
code implementing the algorithm are freely available online2. Both versions were
implemented independently and neither is the conversion of the code of the
other implementation. The full statistics of the runs are available on demand,
and summarized by the Parry user interface: http://pats.lif.univ-mrs.fr.

2 Preliminaries

LetN be the set of nonnegative integers, and for n ∈ N, let [n] = {0, 1, 2, . . . , n−1}.
For k ≥ 1, a k-colored pattern is a partial function from N

2 to the set of (color)
indices [k], and a k-colored rectangular pattern (of width w and height h) is a pat-
tern whose domain is [w] × [h].

Let Σ be a glue alphabet. A (colored) tile type t is a tuple (gN, gW, gS, gE, c),
where gN, gW, gS, gE ∈ Σ represent the respective north, west, south, and east glue
of t, and c ∈ N is a color (index) of t. For instance, the right black tile type in
Fig. 1 (Left) is (1, 1, 0, 0, black). We refer to gN, gW, gS, gE as t(N), t(W), t(S), t(E),

2 http://self-assembly.net/wiki/index.php?title=2PATS-tileset-search (C++ version)
and http://self-assembly.net/wiki/index.php?title=2PATS-search-ocaml (OCaml
version)

http://pats.lif.univ-mrs.fr
http://self-assembly.net/wiki/index.php?title=2PATS-tileset-search
http://self-assembly.net/wiki/index.php?title=2PATS-search-ocaml

Binary Pattern Tile Set Synthesis Is NP-hard 1027

Fig. 1. (Left) Four tile types implement the half-adder with two inputs A, B from the
west and south, the output S to the north, and the carryout C to the east. (Right)
Copies of the half-adder tiles turn the L-shape seed into the binary counter pattern.

respectively, and by c(t) we denote the color of t. For a set T of tile types, an
assembly α over T is a partial function from N

2 to T . Its pattern, denoted by
P (α), is such that dom(P (α)) = dom(α) and P (α)(x, y) = c(α(x, y)) for any
(x, y) ∈ dom(α). Given another assembly β, we say α is a subassembly of β if
dom(α) ⊆ dom(β) and, for any (x, y) ∈ dom(α), β(x, y) = α(x, y).

A rectilinear tile assembly system (RTAS) is a pair T = (T, σL) of a set T of
tile types and an L-shape seed σL, which is an assembly over another set of tile
types disjoint from T such that dom(σ)L = {(−1,−1)}∪ ([w]×{−1})∪ ({−1}×
[h]) for some w, h ∈ N. The size of T is measured by the number of tile types
employed, that is, |T |. According to the following general rule that all RTASs
obey, it tiles the first quadrant delimited by the seed:

RTAS Tiling Rule: Tile t ∈ T can attach to an assembly α at position (x, y)
if
1. α(x, y) is undefined,
2. both α(x−1, y) and α(x, y−1) are defined,
3. t(W) = α(x−1, y)[E] and t(S) = α(x, y−1)[N].

The attachment results in a larger assembly β whose domain is dom(α)∪{(x, y)}
such that for any (x′, y′) ∈ dom(α), β(x′, y′) = α(x, y), and β(x, y) = t. When
this attachment takes place in the RTAS T , we write α →T

1 β. Informally speak-
ing, the tile t can attach to the assembly α at (x, y) if on α, both (x−1, y) and
(x, y−1) are tiled while (x, y) is not yet, and the west and south glues of t match
the east glue of the tile at (x−1, y) and the north glue of the tile at (x, y−1),
respectively. This implies that, at the outset, (0, 0) is the sole position where a
tile may attach.

Example 1. See Fig. 1 for an RTAS with 4 tile types that self-assembles the
binary counter pattern. To its L-shape seed shown there, a black tile of type
(1, 1, 0, 0, black) can attach at (0, 0), while no tile of other types can due
to glue mismatches. The attachment makes the two positions (0, 1) and (1,

1028 L. Kari et al.

0) attachable. Tiling in RTASs thus proceeds from south-west to north-east
rectilinearly until no attachable position is left.

The set A[T] of producible assemblies by T is defined recursively as follows:
(1) σL ∈ A[T], and (2) for α ∈ A[T], if α →T

1 β, then β ∈ A[T]. A producible
assembly α ∈ A[T] is called terminal if there is no assembly β such that α →T

1 β.
The set of terminal assemblies is denoted by A�[T]. Note that the domain of
any producible assembly is a subset of ({−1}∪ [w])× ({−1}∪ [h]), starting from
the seed σL whose domain is {(−1,−1)} ∪ ([w] × {−1}) ∪ ({−1} × [h]).

A tile set T is directed if for any distinct tile types t1, t2 ∈ T , t1(W) �= t2(W) or
t1(S) �= t2(S) holds. An RTAS T = (T, σL) is directed if its tile set T is directed
(the directedness of RTAS was originally defined in a different but equivalent
way). It is clear from the RTAS tiling rule that if T is directed, then it has
exactly one terminal assembly, which we call γ. Let γ′ be the subassembly of
the terminal assembly such that dom(γ′) ⊆ N

2, that is, the tiles on γ′ did not
originate from the seed σL but were tiled by the RTAS. Then we say that T
uniquely self-assembles the pattern P (γ′).

The pattern self-assembly tile set synthesis (Pats), proposed by Ma and Lom-
bardi [17], aims at computing the minimum size directed RTAS that uniquely
self-assembles a given rectangular pattern. The solution to Pats is required to
be directed here, but not originally. However, in [9], it was proved that among all
the RTASs that uniquely self-assemble the pattern, the minimum one is directed.

To study the algorithmic complexity of this problem on “real size” particle
placement problems, a first restriction that can be placed is on the number of
colors allowed for the input patterns, thereby defining the k-Pats problem:

k-colored Pats (k-Pats)
Given: a k-colored pattern P
Find: a smallest directed RTAS that uniquely self-assembles P

The NP-hardness of this optimization problem follows from that of its decision
variant, which decides, given also an integer m, if such an RTAS is implementable
using at most m tile types or not. In the rest of this paper, we use the terminology
k-Pats to refer to this decision problem, unless otherwise noted.

3 2-Pats Is NP-hard

We will prove that Pats is NP-hard for binary patterns (2-colored patterns).
Our proof is a polynomial-time reduction from monotone satisfiability with few
true variables (M-Sat) to (the decision variant of) 2-Pats. In M-Sat, we con-
sider a number k and a boolean formula F in conjunctive normal form without
negations and ask whether or not F can be satisfied by only allowing k variables
to be true; the NP-hardness of M-Sat is proven in [13]. Given an instance of
M-Sat we reduce it to a binary pattern Pk,F such that a directed RTAS with
13 or less tile types self-assembles Pk,F if and only if the answer to the M-Sat
instance is yes, i.e., F can be satisfied with exactly k true variables.

Binary Pattern Tile Set Synthesis Is NP-hard 1029

We design the pattern Pk,F so as to incorporate, as a subpattern, a gadget
pattern G shown in Fig. 3. As formally stated in Lemma 1 below, the gadget
pattern G has the property that among all the tilesets of size at most 13, exactly
one (up to isomorphism) can be employed in a directed RTAS to assemble G,
and thus any pattern with G as a subpattern has the same property. Let T be
this tileset, shown in Fig. 2. Lemma 1 is verified by an exhaustive search by a
computer program whose proof of correctness is omitted due to space constraints
(all the other parts of our proof of Theorem 1 are manually checkable).

Lemma 1. If a directed RTAS whose tileset consists of 13 or less tile types
self-assembles the gadget pattern G in Fig. 3, then its tileset is isomorphic to T .

Due to this property of G, in order to decide the reduced 2-Pats instance
(Pk,F , 13), it suffices to decide whether a directed RTAS with tileset T self-
assembles Pk,F or not. This is equivalent to finding an L-shape seed σL such
that the directed RTAS (T, σL) self-assembles Pk,F . A subtlety of our proof
comes from the fact that neither F nor k influence the optimal number of tile
types that can assemble Pk,F if F is satisfiable.

The tileset T works as an M-Sat verifier, when being used by a directed
RTAS. It contains 11 white tile types and 2 black ones.

u u
◦

◦
u u u u

◦

◦

◦

◦

◦

◦
◦◦

◦
◦ ◦ ◦

◦

◦
◦

Fig. 2. The tileset T , where the background depicts the color of each tile type and the
labels and signals depict the glues (i.e. the glue on a side is equivalent to the label or
signal on that side, and the colored signals don’t actually appear on the tiles). We refer
to the tile types with a gray background as the black tile types. (For better visibility in
printouts, the red signals are dotted; blue and green signals can easily be distinguished
as blue signals run only horizontally while green signals run only vertically.)

Let us first explain how the RTAS verifies a given M-Sat instance and present
its verification visually on its resulting assembly. It does so by “propagating
signals” of three kinds (red, green, and blue) via glues from bottom-left to top-
right (as the tiles attach in that ordering) and letting them interact with each
other. An important fact, that justifies the “signal” vocabulary, is that these
signals never fork, i.e. in all the tile types of T , if a signal of type s appears on
a west or south glue of a tile t ∈ T , it appears on at most one other side, which
is either the east or the north side of t.

We interpret the glues in tile set T as follows. Ten of the white tile types (first
and second rows in Fig. 2) simulate three types of signals and their interactions.

1030 L. Kari et al.

Recall that in the RTAS, growth begins from an L-shaped seed and proceeds
strictly up and to the right. Therefore, as tiles are added by matching the signals
on their bottom and/or left sides, we can think of them as passing the signals
to their output (i.e. top and/or right) sides, as indicated by the colored lines
showing the signals across each tile. These signals can necessarily, due to the
ordering of growth of the assembly and the definitions of the tile types, move
only up, right, up and right, or terminate. The signals propagate as follows:

1. blue signals propagate left to right,
2. green signals propagate from bottom to top, and
3. red signals propagate diagonally, bottom left to top right in a wavelike line.

u ���������������������
u ���������������������

���������������������
u ���������������������
u ���������������������
◦ ���������������������
u ���������������������
u ���������������������

���������������������
u ���������������������
u ���������������������
u ���������������������
u ���������������������

���������������������
u ���������������������
u ���������������������
u ���������������������
u ���������������������

���������������������
u ���������������������
u ���������������������
◦ ���������������������
u ���������������������
u ���������������������

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Fig. 3. Binary gadget pattern G, which can
only be self-assembled by ≤ 13 tile types by
using the tile set T (or one isomorphic to it).
To self-assemble G using T one has to use
the glues on the L-shaped seed as indicated
on the bottom and left. For performance pur-
poses, the bottom row in the pattern was not
included in the computerized search; however,
because uncovering rows appear in pairs, we
add the bottom row here for clarity.

When any two of the signals
meet, they simply cross over each
other, while the red signal is dis-
placed upwards or rightwards when
crossing a blue or green signal,
respectively. However when a blue
signal crosses a green signal imme-
diately before encountering a red
signal, the red signal is destroyed.
In order to recognize this config-
uration, the blue signal is tagged
when it crosses a green signal; in
Fig. 2, the tagging is displayed by
the fork in the blue signal. Let us
stress that the signals are encoded
in the glues of the tiles, and not (at
least directly) in their colors.

The other three tile types, all
with horizontal glues of type u, are
used to start rows called “uncover-
ing rows”. A major challenge of the
reduction is that we cannot force
our signals to appear directly in
the pattern, because we have only
two colors. Instead, we start these
“uncovering rows”, and make the
signals appear in the pattern by
their effects on these rows. More
specifically, rows with horizontal u
glues are always used in pairs:

1. one black tile is above another when no signal is received from below,
2. a white tile is below a black when a green signal is received,
3. a black tile is below a white when a red signal is received.

Binary Pattern Tile Set Synthesis Is NP-hard 1031

u u
◦

◦
u u u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦
u u

◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦
u u u u

◦

◦
u u

◦

◦
u u

◦

◦

u u
◦

◦
u u u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦
u u

◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦
u u u u

◦

◦
u u

◦

◦
u u

◦

◦

◦
◦◦

◦
◦

◦

◦
◦ ◦ ◦

◦
◦◦

◦

◦
◦◦

◦

◦
◦◦

◦
◦

◦

◦
◦ ◦ ◦

◦
◦◦

◦
◦ ◦

◦
◦◦

◦

◦
◦◦

◦
◦

◦

◦
◦

◦
◦◦

◦

◦
◦◦

◦
◦

◦◦
◦

◦
◦◦

◦
◦ ◦ ◦

◦

◦
◦

◦
◦◦

◦

◦
◦◦

◦

◦
◦◦

◦
◦

◦

◦
◦ ◦ ◦

◦
◦◦

◦

◦
◦◦

◦

◦
◦◦

◦
◦

◦

◦
◦

◦
◦◦

◦

◦

◦

◦

◦

◦

◦

◦ ◦

◦

◦

◦

◦

◦

◦

◦

◦ ◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
◦◦

◦

◦
◦◦

◦
◦ ◦

◦
◦◦

◦
◦ ◦

◦
◦◦

◦

◦
◦◦

◦

◦
◦◦

◦

◦
◦◦

◦

◦
◦◦

◦
◦ ◦

◦
◦◦

◦
◦ ◦

◦
◦◦

◦

◦
◦◦

◦

◦
◦◦

◦

◦
◦◦

◦
◦

◦

◦
◦

u u
◦

◦
u u

◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦
u u

◦

◦
u u

◦

◦
u u

◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦
u u

◦

◦
u u

◦

◦
u u

◦

◦
u u

u u
◦

◦
u u

◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦
u u

◦

◦
u u

◦

◦
u u

◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦
u u

◦

◦
u u

◦

◦
u u

◦

◦
u u

c0

ct

blue signal counter (here, k = 1)(x ∨ y) (y ∨ z)

Fig. 4. Subpattern of Pk,F for the formula F = (x ∨ y) ∧ (y ∨ z) with k = 1. The
position of the blue signal represents the satisfying variable assignment φ(y) = 1. Only
the subpattern which encodes F is shown, the gadget pattern and the areas needed to
initialize the gadget pattern are omitted here. The different subpatterns shown here
are explained in the proof of Theorem 1.

Note that by the definition of the tile set, it’s impossible for both signals to be
received in the same column. Moreover, blue signals are not “uncovered”, since
they never reach these rows. Green (resp. red) signals switch to red (resp. green)
in the first uncover row, but they switch back to their original state in the second
uncover row. This allows the enforcement of the encoding of the three possible
values of signals (no signal, green signal, or red signal) with exactly two colors.
In our construction, uncovering rows always appear in pairs in order to ensure
that the original state of each signal is reestablished after passing through a pair
of uncovering rows. In our reduction, we’ll use this property to “initialize” a
gadget area, above the M-Sat verifier in the pattern, forcing use of tileset T .

An example subassembly which represents the formula F = (x ∨ y) ∧ (y ∨ z)
(without the gadget part) is shown in Fig. 4. A more extensive example of a tile
assembly with tileset T can be found in Appendix C of [13] which shows the
subpattern of Pk,F used for initializing and including the gadget pattern G.

The intuition of the construction of the pattern Pk,F and its assembly is that
on the vertical arm of the L-shaped seed (i.e., the east border of the upward arm
of the seed), variables x0, x1, . . . , xn−1 are encoded successively, by the presence
of a blue signal if the corresponding variable is set to 1, and a tile with no signal
else. Each clause of F is, on the other hand, encoded on the horizontal arm of the
L-shape seed as a red signal followed by precisely spaced green signals (intervals
between these signals specify which variables are in the clause).

For instance, in Fig. 5, the red signal on the left makes it through (i.e., it is
not stopped by a tagged blue signal) and appears in the top uncovering rows,
while the one on the right does not. The reason for the red signal being stopped
on the right, is that the horizontal spacing between the red and the green signal is

1032 L. Kari et al.

u u
◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦

u u
◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦

◦
◦◦

◦
◦

◦

◦
◦ ◦ ◦

◦
◦◦

◦

◦
◦◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
◦◦

◦

◦
◦◦

◦
◦

◦

◦
◦

◦
◦◦

◦

u u
◦

◦
u u

◦

◦
u u

◦

◦
u u u u u u

◦

◦

u u
◦

◦
u u

◦

◦
u u

◦

◦
u u u u u u

◦

◦

u u
◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦

u u
◦

◦
u u u u

◦

◦
u u u u

◦

◦
u u

◦

◦

◦
◦◦

◦
◦

◦

◦
◦ ◦ ◦

◦
◦◦

◦

◦
◦◦

◦
◦

◦◦
◦

◦
◦◦

◦
◦

◦

◦
◦

◦
◦◦

◦

◦

◦

◦

◦

◦

◦

◦ ◦

◦

u u
◦

◦
u u

◦

◦
u u

◦

◦
u u u u

◦

◦
u u

◦

◦

u u
◦

◦
u u

◦

◦
u u

◦

◦
u u u u

◦

◦
u u

◦

◦

Fig. 5. Example interactions of the signals in the tile set T with uncovering of the
configurations: on the left side the red signal can pass through the pattern while the
red signal on the right side is destroyed. Note that the position of the blue signal, which
is hidden in the horizontal glues, controls whether or not the red signal is destroyed.

“compatible” with the vertical location of blue signal. This compatibility of blue,
green, and red signals corresponds to a variable in a clause, represented by the
red and green signal, which is set true in the variable assignment, represented by
the blue signal. More generally, the absence of red signals on the top uncovering
rows ct means that all the clauses have been satisfied, and the presence of a red
signal means that at least one clause could not be satisfied by the assignment.
Additionally, note that the positions of blue signals, encoding which variables
are set to true in a variable assignment of the M-Sat instance, are not encoded
in the pattern, since they travel only through white tiles.

Finally, the part of Fig. 4 which is labeled the “blue signal counter” specifies
the number k of true variables in a satisfying variable assignment for F . Note that
by the horizontal movement of the red signal from rows c0 to rows ct determines
the number of blue signals that appear in the white rows in between c0 and ct;
indeed, the red signal travels one tile to the right in a row without signal, but
remains horizontally stationary when passing a row with a blue signal.

References

1. Allender, E., Koucký, M.: Amplifying lower bounds by means of self-reducibility.
J. ACM 57(3), 14:1–14:36 (2010)

2. Appel, K., Haken, W.: Every planar map is four colorable. Part I. discharging.
Illinois J. Math. 21, 429–490 (1977)

3. Appel, K., Haken, W.: Every planar map is four colorable. Part II. reducibility.
Illinois J. Math. 21, 491–567 (1977)

4. Barish, R., Rothemund, P.W.K., Winfree, E.: Two computational primitives for
algorithmic self-assembly: Copying and counting. Nano. Lett. 5(12), 2586–2592
(2005)

5. Chow, T.Y.: Almost-natural proofs. J. Comput. Syst. Sci. 77(4), 728–737 (2011)

Binary Pattern Tile Set Synthesis Is NP-hard 1033

6. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In:
Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer,
Heidelberg (2004)

7. Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the
framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37 (2013)

8. Gonthier, G.: Formal proof - the four-color theorem. Not. Am. Math. Soc. 55(11),
1382–1393 (2008)

9. Göös, M., Lempiäinen, T., Czeizler, E., Orponen, P.: Search methods for tile sets
in patterned DNA self-assembly. J. Comput. Syst. Sci. 80, 297–319 (2014)

10. Helfgott, H.A.: The ternary Goldbach conjecture is true. arXiv:1312.7748 (2013)
11. Johnsen, A.C., Kao, M.-Y., Seki, S.: Computing minimum tile sets to self-assemble

color patterns. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Com-
putation. LNCS, vol. 8283, pp. 699–710. Springer, Heidelberg (2013)

12. Johnsen, A., Kao, M.Y., Seki, S.: A manually-checkable proof for the NP-hardness
of 11-colored patterned self-assembly of tile set synthesis. arXiv:1409.1619 (2014)

13. Kari, L., Kopecki, S., Meunier, P.E., Patitz, M.J., Seki, S.: Binary pattern tile set
synthesis is NP-hard. arXiv:1404.0967 (2014)

14. Kari, L., Kopecki, S., Seki, S.: 3-color bounded patterned self-assembly. Nat. Comp.
(2014) (in Press)

15. Konev, B., Lisitsa, A.: A SAT attack on the Erdös discrepancy conjecture.
arXiv: 1402.2184 (2014)

16. Lund, K., Manzo, A.T., Dabby, N., Micholotti, N., Johnson-Buck, A., Nangreave,
J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molec-
ular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)

17. Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE T. Com-
put. Aid. D. 27(5), 963–967 (2008)

18. Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM 55(2),
Article No. 11 (2008)

19. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332(6034), 1196 (2011)

20. Razborov, A.A., Rudich, S.: Natural proofs. In: Proc. STOC 1994, pp. 204–213.
ACM, New York (1994)

21. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: A new proof of the four-
colour theorem. Electron. Res. Announc. AMS. 2(1), 17–25 (1996)

22. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA
Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)

23. Rudich, S.: Super-bits, demi-bits, and NP/qpoly-natural proofs. J. Comput. Syst.
Sci. 55, 204–213 (1997)

24. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314(5805), 1585–1588 (2006)

25. Seeman, N.C.: Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247
(1982)

26. Seki, S.: Combinatorial optimization in pattern assembly. In: Mauri, G., Dennunzio,
A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 220–231.
Springer, Heidelberg (2013)

27. Sterling, A.: https://nanoexplanations.wordpress.com/2011/08/13/
dna-self-assembly-of-multicolored-rectangles/

28. Tuckerman, B.: The 24th Mersenne prime. Proc. Nat. Acad. Sci. USA 68,
2319–2320 (1971)

29. Wang, H.: Proving theorems by pattern recognition - II. AT&T Tech. J. XL(1),
1–41 (1961)

http://arxiv.org/abs/1312.7748
http://arxiv.org/abs/1409.1619
http://arxiv.org/abs/1404.0967
http://arxiv.org/abs/1402.2184
https://nanoexplanations.wordpress.com/2011/08/13/dna-self-assembly-of-multicolored-rectangles/
https://nanoexplanations.wordpress.com/2011/08/13/dna-self-assembly-of-multicolored-rectangles/

1034 L. Kari et al.

30. Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute
of Technology, June 1998

31. Yan, H., Park, S.H., Finkelson, G., Reif, J.H., LaBean, T.H.: DNA-templated
self-assembly of protein arrays and highly conductive nanowires. Science 301,
1882–1884 (2003)

32. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-
fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

33. Zhang, J., Liu, Y., Ke, Y., Yan, H.: Periodic square-like gold nanoparticle arrays
templated by self-assembled 2D DNA nanogrids on a surface. Nano Letters 6(2),
248–251 (2006)

Near-Optimal Upper Bound on Fourier
Dimension of Boolean Functions
in Terms of Fourier Sparsity

Swagato Sanyal(B)

School of Technology and Computer Science,
Tata Institute of Fundamental Research, Mumbai, India

swagatos@tcs.tifr.res.in

Abstract. We prove that the Fourier dimension of any Boolean function
with Fourier sparsity s is at most O (

√
s log s). This bound is tight up to a

factor of O(log s) as the Fourier dimension and sparsity of the addressing
function are quadratically related. We obtain our result by bounding
the non-adaptive parity decision tree complexity, which is known to be
equivalent to the Fourier dimension. A consequence of our result is that
XOR functions have a one way deterministic communication protocol
of communication complexity O(

√
r log r), where r is the rank of its

communication matrix.

1 Introduction

The study of Boolean functions involves studying various properties of Boolean
functions and their inter-relationships. Two such properties, which we investigate
in this article, are the Fourier dimension and the Fourier sparsity. These two
properties were studied by Gopalan et al. [2] in the context of property testing.
Given a Boolean function f : F

n
2 → {1,−1} with Fourier expansion

f(x) =
∑

γ∈̂Fn
2

f̂(γ)χγ(x),

Fourier dimension and Fourier sparsity are defined as follows.

Definition 1 (Fourier dimension and sparsity). For a Boolean function
f : F

n
2 → {1,−1} with Fourier expansion

f(x) =
∑

γ∈̂Fn
2

f̂(γ)χγ(x),

the Fourier support of f , denoted by supp(f̂), is defined as

supp(f̂) := {γ ∈ F̂

n
2 : f̂(γ) �= 0}.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 1035–1045, 2015.
DOI: 10.1007/978-3-662-47672-7 84

1036 S. Sanyal

The Fourier sparsity of f , denoted by sparsity(f̂), is defined as the size of the
Fourier support of f , i.e.,

sparsity(f̂) := | supp(f̂)|,

while the Fourier dimension dim(f̂) of f is defined as the dimension of the span
of supp(f̂).

The following inequalities easily follow from the definition of Fourier sparsity
and dimension.

log2 sparsity(f̂) ≤ dim(f̂) ≤ sparsity(f̂). (1)

There are functions (e.g., indicator functions of subspaces) for which the first
inequality is tight (i.e. holds with equality). For the second inequality, to the best
of our knowledge the function having the closest gap between Fourier dimension
and sparsity is the addressing function Adds : {0, 1} 1

2 log s+
√

s → {0, 1}, defined
as

Adds(x, y1, y2, . . . , y√
s) := yx, x ∈ {0, 1} 1

2 log s, yi ∈ {0, 1}.

In other words, at any input (x, y), Adds(x, y) is the value of the addresee input
bit yx indexed by the addressing variables x. The addressing function1 has spar-
sity s and dimension at least

√
s. We prove that that this is the tight upper

bound for dim(f̂) in terms of sparsity(f̂), up to a factor of O(log s).2.
Our main result is the following:

Theorem 2. Let f be a Boolean function with sparsity(f̂) = s. Then,

dim(f̂) = O
(√

s log s
)
.

Prior to this work, Gavinsky et al. [1] had proved that the sparsity of any Boolean
function with full Fourier dimension n is Ω(n log n).

Theorem 2 is proved using a lemma of Tsang et al. [6] bounding the co-
dimension of an affine subspace restricted to which the function reduces to a
constant, in terms of Fourier sparsity of the function.

Lemma 3 (Corollary of [6, Lemma 28]). Let f : F

n
2 → {1,−1} be a Boolean

function with Fourier sparsity s. Then there is an affine subspace V of F

n
2 of co-

dimension O(
√

s) such that f is constant on V .

1 To be precise, we should consider the ±1 valued version of the addressing func-
tion described here, where the 0 and 1 in the range are interpreted as +1 and −1
respectively.

2 This is one of the conjectures presented in the open problem session at the Simons
workshop on Real Analysis in Testing, Learning and Inapproximability, 2013

Near-Optimal Upper Bound on Fourier Dimension of Boolean Functions 1037

Proof idea of Theorem 2: We begin by a simple but crucial observation made by
Gopalan et al. [2], that the Fourier dimension of a Boolean function is equivalent
to its non-adaptive parity decision tree complexity (see Proposition 11). This
offers us a potential approach towards upper bounding the Fourier dimension of
a Boolean function: exhibiting a shallow non-adaptive parity decision tree of the
function.

Towards this end, we first recall the construction of the (adaptive) parity
decision tree of Tsang et al. [6], which in turn improves on an earlier construc-
tion due to Shpilka et al. [5, Theorem 1.1]. The broad idea of their construction
is as follows: At any point in time, a partial tree is maintained whose leaves are
functions which are restrictions of the original function on different affine sub-
spaces. Then a non-constant leaf is picked arbitrarily, and a small set of linear
restrictions is obtained by invoking Lemma 3, such that the restricted function
at that leaf becomes constant. The next step is observing that if the same func-
tion is restricted to all the affine subspaces obtained by setting the same set of
parities in all possible ways, the sparsity of each of the corresponding restricted
functions is at most half of that of the original function. This is because, in the
former restriction, since the function becomes constant, the Fourier coefficients
corresponding to non-constant characters must disappear in the restricted space.
This can only happen if every non-constant parity gets identified with at least
one other parity. This identification leads to halving of the support. Proceeding
in this way, a parity decision tree of depth O(

√
s) is obtained.

Note that the choice of parities depends on the leaf (function) chosen, and
hence on the outcomes of the preceding queries. Thus the constructed tree is an
adaptive one. In this article, we make this tree non-adaptive, at the cost of a
logarithmic increase in depth. At each step, we choose an appropriate function
(leaf), invoke Lemma 3, and obtain restrictions which make it constant. Then
we query the same set of parities at every leaf. Then we argue that this leads to
a significant reduction of sparsity. Let s(i) be the Fourier sparsity of the function
(leaf) chosen at the i-th step. It can be shown that, in the next step, the size l(i) of
the union of the supports of all the leaves falls roughly by s(i)/4. From Lemma 3,
the number of queries spent in the i-th step is O(

√
s(i)). Using the Uncertainty

Principle (Theorem 8) one can show that s(i) ≥ (
l(i)

)2
/s. With all these facts

it is easy to show that continuing in this fashion, in a small number of steps and
making at most O(

√
s log s) queries, the size of the union of the Fourier supports

of all the leaves becomes so small that we can query all of them, thereby turning
all the leaves into constants. The details of the construction of the non-adaptive
parity decision tree, and its analysis, is given in Section 3.

Connections to communication complexity and log-rank conjecture: The log-rank
conjecture is a long standing and important conjecture in communication com-
plexity. The statement of the conjecture is that the deterministic communication
complexity of a Boolean function is asymptotically bounded above by some fixed
poly-logarithm of the rank of its communication matrix. The best known upper
bound of deterministic communication complexity of a function in terms of the

1038 S. Sanyal

rank is O(
√

rank log rank) due to Lovett [3]. For the special case of XOR func-
tions this result also follows from the work of Tsang et al. [6]3 which improves
on the work of Shpilka et al. [5]. A Boolean function f(x, y) on two n bit inputs
is an XOR function if there exists a Boolean function F on n bits such that
f(x, y) = F (x ⊕ y). The rank of the communication matrix of such a func-
tion f is known to be equal to the Fourier sparsity s of F . A consequence of
Theorem 2 is that XOR functions admit a deterministic one-way protocol of
complexity O(

√
rank log rank) = O(

√
s log s)4. We note that both the earlier

protocols [3,6] are two-way. The one-way protocol is as follows. Alice and Bob
apriori agree on a set of O(

√
s log s) monomials S that span the Fourier sup-

port of f(x, y) = F (x ⊕ y). The existence of S is guaranteed by Theorem 2.
Each such monomial M is a product of a monomial Mx in variables in x and a
monomial My in variables in y. Upon recieving an input x, Alice computes the
values of Mx for each M ∈ S, and sends the evaluations to Bob. Bob then, with
the help of his input y, can evaluate each monomial M ∈ S. Since every other
monomial in supp(̂f(x, y)) is in the span of S, Bob can compute the values of all
those monomials. Finally, Bob evaluates f(x, y) from its Fourier expansion and
outputs it.

Some remarks about Lemma 3: Lemma 3 is not believed to be tight. Tsang et
al. [6] investigated this question while studying the log-rank conjecture for XOR
functions. Tsang et al. [6] suggested a direction towards proving log-rank con-
jecture for XOR functions. In particular, the authors propose a protocol for such
an f based on a parity decision tree of f and show that the communication com-
plexity of the proposed protocol is polylogarithmic in rank of the communication
matrix if the following related conjecture is true.

Conjecture 4 ([6, Conjecture 27]). There exists a constant c > 0 such that for
every Boolean function f with Fourier sparsity s, there exists an affine subspace
of co-dimension O (logc s) on which f is constant.

Tsang et al. proved the above conjecture for certain classes of functions, which
include functions with constant F2 degree, and prove Lemma 3 for general
functions.

We remark that with our proof technique and analysis, any improvement to
Lemma 3 (in particular a positive resolution of Conjecture 4), does not yield a
better than logarithmic improvement to Theorem 2. If this had not been the
case (i.e, our proof actually yielded a super-logarithmic improvement assum-
ing Conjecture 4), then this would have refuted the above conjecture since the
addressing function satisfies dim = Θ(

√
sparsity). For further discussion on this

topic, the reader is referred to Section 3.

3 For XOR functions, the communication complexity upper bound is in fact O(
√

rank)
which is better than O(

√
rank log rank) by a logarithmic factor.

4 We thank the anonymous referee for pointing this out.

Near-Optimal Upper Bound on Fourier Dimension of Boolean Functions 1039

2 Preliminaries

Let f : F

n
2 → {+1,−1} be a Boolean function. We think of the range {+1,−1}

as a subset of R. The inputs to f are n variables x1, . . . , xn which take values
in F2. We identify the additive group in F2 with the group {+1,−1} under real
number multiplication, and think of the variables as taking +1 and −1 values,
where 0 and 1 of F2 get mapped to +1 and −1 respectively. We denote this
group isomorphism by (−1)(·), i.e., (−1)0 is 1 and (−1)1 is −1. When the xi’s
are ±1, it is well known that every Boolean function f(x) (where x stands for
(x1, . . . , xn)) can be uniquely written as

f(x) =
∑

S⊆[n]

f̂(S)
∏

i∈S

xi.

Thus, when the variables are ±1, f can be written as a multilinear real polyno-
mial. For every S ⊆ [n], the product

∏
i∈S xi is the logical XOR of the bits in

S, and f̂(S) is a real number. These products are exactly the characters of F

n
2 ,

which are ±1 valued versions of the linear forms belonging to the dual vector
space F̂

n
2 of F

n
2 . We adopt the following notation in this paper:

f(x) =
∑

γ∈̂Fn
2

f̂(γ)χγ(x).

Here, each γ ∈ F̂

n
2 is a linear function from F

n
2 to F2, and χγ(·) is (−1)γ(·).

We recall some standard definitions and facts about the Fourier coefficients.

Definition 5. Let f(x) =
∑

γ∈̂Fn
2

f̂(γ)χγ(x) be a Boolean function. The p-th

spectral norm ‖f̂‖p of f is defined as:

‖f̂‖p =

⎛

⎝
∑

γ∈̂Fn
2

∣∣∣f̂(γ)
∣∣∣
p

⎞

⎠
1/p

.

Lemma 6 (Parseval’s identity). For a Boolean function f , ‖f̂‖2 = 1.

The 1st spectral norm of a Boolean function can be bounded in terms of sparsity
as follows.

Claim 7. For a Boolean function f with Fourier sparsity s, ‖f̂‖1 ≤ √
s.

Proof.

‖f̂‖1 ≤ ‖f̂‖2 · √
s =

√
s.

The first inequality follows due to Cauchy-Schwarz inequality while the second
equality follows from Parseval’s identity. ��

1040 S. Sanyal

For proving our results, we shall use the following version of the Uncertainty
Principle. For a proof, the reader is referred to the exercises of chapter 3 of
Analysis of Boolean functions by O’Donnell [4] where it is given as a hinted
exercise.

Theorem 8 (Uncertainty Principle). Let p : R

n → R be a real multilinear
non-zero n-variate polynomial with sparsity s (i.e, it has s monomials with non-
zero coefficients). Let Un denote the uniform distribution on {+1,−1}n. Then

Pr
x∼Un

[p(x) �= 0] ≥ 1
s
.

As stated in the introduction, we need the following theorem due to Tsang et al. [6].

Theorem 9 ([6, Lemma28]). let f : F

n
2 → {1,−1} be such that ‖f̂‖1 = A.

Then there is an affine subspace V of F

n
2 of co-dimension O(A) such that f is

constant on V .

Lemma 3 is a simple corollary of this theorem via Claim 7.
For the sake of completion, we provide a proof of an observation made by

Gopalan et al. [2] connecting the non-adaptive parity decision tree complexity
of a function (defined below) and Fourier dimension, that we crucially use in our
proofs.

Definition 10 (non-adaptive parity decision tree complexity). Let f be
a Boolean function. The non-adaptive parity decision tree complexity of f ,
(denoted by naDT⊕(f)), is defined as the minimum integer t such that there
exist t linear forms γ1, . . . , γt ∈ F̂

n
2 such that f is a junta of γ1, . . . , γt. In other

words, on every input, specifying the outputs of the γi’s specifies the output of f .

Proposition 11 ([2]). For a Boolean function f , naDT⊕(f) = dim(f̂).

Proof. If the outputs of a basis of span of supp(f̂) are specified, then that clearly
specifies the outputs of all characters in supp(f̂), and hence it specifies the out-
put of the function. Thus naDT⊕(f) ≤ dim(f̂).

Now, Let naDT⊕(f) = t. Let the outputs of γ1, . . . , γt specify the output of
f . These linear forms are linearly independent as vectors in F̂

n
2 (else a smaller

number of them would decide the output of f). Arbitrarily extend γ1, . . . , γt to a
basis γ1, . . . , γn of F̂

n
2 . For x = (x1, . . . , xn) ∈ F

n
2 , let L(x) = (γ1(x), . . . , γn(x)).

L is easily seen to be an invertible linear transformation from F

n
2 onto itself.

Now, ∀x ∈ F

n
2 ,∀i = 1, . . . , n, γi(x) = (L(x))i. Replacing x by L−1(x) we have

γi(L−1(x)) = xi. Now consider the Boolean function g(x) = f(L−1(x)) =∑
γ∈̂Fn

2
f̂(γ)(−1)γ(L−1(x)). Clearly dim(ĝ) = dim(f̂) as L is a full-rank linear

transformation. Also, g is completely specified by the outputs of γi(L−1(x))’s
for i = 1, . . . , t. Since γi(L−1(x)) = xi, we have that g is a junta of x1, . . . , xt.

Near-Optimal Upper Bound on Fourier Dimension of Boolean Functions 1041

Thus all the monomials in supp(ĝ) contain only the variables x1, . . . , xt. Thus
dim(f̂) = dim(ĝ) ≤ t = naDT⊕(f).

The proposition follows by combining the two inequalities. ��

3 Upper Bounding Parity Decision Tree Complexity

In this section, we upper bound the non-adaptive parity decision tree complexity
of a Boolean function f with Fourier sparsity s. Consider the following proce-
dure, parametrized by a parameter τ ∈ N, that constructs a non-adaptive parity
decision tree of f .5

naDT⊕-procedureτ (f)
Input: Boolean function f : F

n
2 → {+1,−1}; Parameter: τ ∈ N

1. Set Γ ← ∅, S ← supp(f̂) and F ← {f}.
2. While |S| > τ , do

(a) Let g be a function in F with the largest Fourier sparsity. Let A
be a largest affine subspace on which g is constant (breaking ties
arbitrarily). Let γ1, . . . , γng

be linear functions and b1, . . . , bng
∈ F2

be such that A = {x ∈ F

n
2 : γ1(x) = b1, . . . , γng

(x) = bng
}. Query

γ1, . . . , γng
.

(b) Set Γ ← Γ ∪ {γ1, . . . , γng
}.

(c) For each b = (bγ)γ∈Γ ∈ F

|Γ |
2 , let Vb be the affine subspace {x ∈ F

n
2 :

∀γ ∈ Γ, γ(x) = bγ}. Set F ← ⋃
b∈F

|Γ |
2

{f |Vb
}.

(d) S ← ⋃
h∈F supp(ĥ).

3. Query all the parities in S.

Notation: After each iteration of the while loop in the procedure, Γ is the
set of parities that have been queried so far, F is the set of all restrictions of f
to the affine subspaces obtained by different assignments to parities in Γ , and
S the union of the Fourier supports of functions in F . Let Γ (i),F (i) and S(i)

denote Γ,F and S resepectively at the end of the i-th iteration of the while loop.
Let Γ (0) = ∅, F (0) = {f} and S(0) = supp(f̂).

For each i, let b = (bγ)γ∈Γ (i) ∈ F

|Γ (i)|
2 and let Vb be the affine subspace defined

by linear constraints {γ(x) = bγ : γ ∈ Γ (i)}. In Vb, more than one linear functions
of the original space may get identified as same.6 More specifically, δ1 and δ2
get identified as same in Vb if and only if δ1 + δ2 ∈ spanΓ (i), i.e. they belong
to the same coset of the subspace span Γ (i). Thus, supp(f̂) gets partitioned into

equivalence classes, such that for each class, for every b ∈ F

|Γ (i)|
2 , the linear

functions belonging to that class are identified as same in Vb.

5 We will set τ to Θ(
√

s) to obtain our results.
6 By ‘same’ we also include their being negations of each other as the smaller subspace

is an affine space and not always a vector space.

1042 S. Sanyal

Let l(i) denote the number of cosets of the subspace span Γ (i) with which
supp(f̂) has non-empty intersection. For j = 1, . . . , l(i), let β

(i)
j be some rep-

resentative element in supp(f̂) of the j-th coset of span Γ (i) having non-empty
intersection with supp(f̂). For each j, let β

(i)
j + α

(i)
j,1, . . . , β

(i)
j + α

(i)
j,kj

be the

k
(i)
j (≥ 1) elements in supp(f̂) which are in the same coset of span Γ (i) as β

(i)
j .

For each i, j, define the polynomials P
(i)
j (x) :=

kj∑

l=1

f̂
(
β
(i)
j + α

(i)
j,l

)
χ

α
(i)
j,l

(x). Note

that the polynomials P
(i)
j , j = 1, . . . , l(i), are non-zero.

Given this notation, we can then write the Fourier expansion of f in the
following form:

f(x) =
l(i)∑

j=1

P
(i)
j (x)χ

β
(i)
j

(x).

Notice that each P
(i)
j is actually a polynomial in variables in b = (bγ)γ∈Γ (i) ∈

F

|Γ (i)|
2 . Thus the value of each P

(i)
j is fixed as b is fixed. In other words, each

P
(i)
j is a constant function in each Vb.

Observation 12. ∀i,

l(i)∑

j=1

k
(i)
j = s.

Proposition 13. |S(i)| = l(i).

Proof. Clearly |S(i)| ≤ l(i). Now, for j = 1, . . . , l(i), since the polynomial P
(i)
j

is non-zero, there exists an assignment b to the parities in Γ (i) on which P
(i)
j

evaluates to a non-zero value. Thus the coefficient of β
(i)
j is non-zero in the

restriction of f to the affine subspace obtained by assigning b to the parities
in Γ (i). Thus for j = 1, . . . , l(i), β

(i)
j ∈ S(i) which, together with |S(i)| ≤ l(i),

implies |S(i)| = l(i). ��
We now argue that after every iteration of the while loop, there exists a function
h ∈ F (i) which has large Fourier support.

Lemma 14. After i-th iteration, there exists a h ∈ F (i) such that | supp(ĥ)| is
at least

(
l(i)

)2
/s.

Proof. Consider any function f |Vb
∈ F (i). The Fourier decomposition of f |Vb

is

given by f |Vb
=

∑l(i)

j=1 P
(i)
j (b)χ

β
(i)
j

(x). Thus, | supp(f̂ |Vb
)| is exactly the number

of polynomials P
(i)
j , j = 1, . . . , l(i) such that P

(i)
j (b) is non-zero. We analyze

this quantity as follows. Pick a b ∈ F

|Γ (i)|
2 uniformly at random. For each j,

Near-Optimal Upper Bound on Fourier Dimension of Boolean Functions 1043

j = 1, . . . , l(i), by Theorem 8, Prb[P
(i)
j (b) �= 0] ≥ 1

k
(i)
j

(since each P
(i)
j is a non-

zero polynomial). Thus,

Eb

[
| supp(f̂ |Vb

)|
]

≥
l(i)∑

j=1

1

k
(i)
j

≥ l(i) · 1(∑l(i)

j=1 k
(i)
j

)
/l(i)

[By convexity of 1/x]

=

(
l(i)

)2

s
[By Observation 12].

Hence, there exists a h ∈ F (i) such that | supp(ĥ)| is at least
(
l(i)

)2
/s. ��

Let g(i) be the function chosen in step 2a of the i-th iteration of
naDT⊕-procedure. Let sparsity(ĝ(i)) = s(i), and Δl(i) = l(i−1) − l(i) for i ≥ 1.
The next Lemma proves that, if a function with large Fourier support is picked
in step 2a, then that leads to a large reduction in size of S.

Lemma 15. Assume that naDT⊕-procedureτ (f) is run with τ ≥ √
2s.

Assume that it runs for t iterations. Then for i = 1, . . . , t, Δl(i) ≥ s(i)

4 .

Proof. Let γ1, . . . , γn
g(i) be the parities queried in iteration i. Hence there is

b = (b1, . . . , bn
g(i)) ∈ (F2)

n
g(i) such that g(i) is constant on the affine subspace

Vb obtained by setting each γj to bj for j = 1, . . . , ng(i) . Since g(i) is constant
on Vb, each non-zero parity in it’s Fourier support must disappear in Vb. Thus,
for every b′ = (b′)j ∈ (F2)

n
g(i) , in the affine space Vb′ obtained by restricting

each γj to b′
j , every non-zero parity in supp(ĝ(i)) is matched to some other

parity in supp(ĝ(i)). Since supp(ĝ(i)) ⊆ S(i−1), it follows that |S(i)| is at least
| supp(ĝ(i))|−1

2 less than |S(i−1)|. By Proposition 13 this implies Δl(i) ≥ s(i)−1
2 .

Now, τ ≥ √
2s implies that for each i, i = 1, . . . , t, l(i−1) ≥ √

2s. From Lemma 14,

we have that s(i) ≥ (l(i−1))2
s ≥ 2. Thus Δl(i) ≥ s(i)−1

2 ≥ s(i)

4 . ��
Now we are ready to prove Theorem 2.

Proof (Theorem 2). Run naDT⊕-procedure with parameter τ = �√2s�.
We first prove that the total number of queries made in the while loop of
the procedure is O(

√
s log s). Assume that the while loop runs for t itera-

tions. Let the number of queries made in step 2a in i-th iteration of the pro-
cedure be Δq(i). By Lemma 3, Δq(i) = O(

√
s(i)). By Lemma 15, Δl(i) ≥ s(i)

4 .

Hence, Δq(i)

Δl(i) = 1

Ω(
√

s(i))
. From Lemma 14 we have s(i) ≥ (

l(i−1)
)2

/s. Hence

Δq(i) =
√

s · O (
Δl(i)/l(i−1)

)
. Thus the total number of queries made within the

while loop of the procedure is

1044 S. Sanyal

t∑

i=1

Δq(i) =
√

s ·
t∑

i=1

O

(
Δl(i)

l(i−1)

)
=

√
s ·

t∑

i=1

O

⎛

⎜⎜⎜⎜⎜⎝

Δl(i)

s −
i−1∑

j=1

Δl(j)

⎞

⎟⎟⎟⎟⎟⎠

≤ √
s ·

t∑

i=1

O

⎛

⎜⎜⎜⎜⎜⎝

1

s −
i−1∑

j=1

Δl(j)

+
1

s −
i−1∑

j=1

Δl(j) − 1

+ . . .

. . . +
1

s −
i−1∑

j=1

Δl(j) − (Δl(i) − 1)

⎞

⎟⎟⎟⎟⎟⎠

≤ √
s ·

s∑

	=1

O

(
1
�

)
= O(

√
s log s).

Finally, the number of queries made in step 3 of the procedure is O(
√

s) as
τ = O(

√
s). From Proposition 11 it follows that dim(f̂) = O(

√
s log s). ��

Discussion: As mentioned in the Introduction, a natural approach towards dis-
proving Conjecture 4 is to assume it to be true, and prove that it implies a o(

√
s)

upper bound on Fourier dimention. This will refute the conjecture, since, for

addressing function (see Section 1), dim(̂Adds) = Θ(
√

sparsity(̂Adds)) . How-
ever, we cannot disprove the conjecture by an analysis of naDT⊕-procedure,
assuming the conjecture. To see this let us consider the execution of the proce-
dure on the addressing function. Recall that Adds(x, y1, y2, . . . , y√

s) = yx, x ∈
{0, 1} 1

2 log s, yi ∈ {0, 1}. One easily sees that a largest affine subspace V on which
the function is constant is the one defined by the constraints x = x′, yx′ = b
where x′ ∈ {0, 1} 1

2 log s and b ∈ {0, 1}. The function takes the value b every-
where in V . Also, if the addressing bits x and the bit yx′ are set to other values
than x′ and b, the restricted functions in the respective affine subspaces are all
constants (if x is set to x′) or dictators (on addressee bits). This constitutes
the first step of naDT⊕-procedure. Since the size of the union of supports of
all restricted functions already drops to

√
s, the subsequent steps are querying

different dictators on the addresee bits.
The addressing function clearly satisfies Conjecture 4, and all the interme-

diate functions that are given rise to by naDT⊕-procedure are dictators,
which also trivially satisfy the conjecture. Thus this rules out the possibility

Near-Optimal Upper Bound on Fourier Dimension of Boolean Functions 1045

of refuting Conjecture 4 by analysing naDT⊕-procedure assuming the conjec-
ture. We notice, however, that if we assume the conjecture, we can improve the
upper bound by a factor of O(log s), to the optimal O(

√
s). The complexity of

naDT⊕-procedure will then be dominated by the complexity of step 3 which
is O(

√
s).

Acknowledgements. The author is grateful to Avishay Tal for noticing a weakness
in an earlier analysis of naDT⊕-procedure which proved a O(s2/3) upper bound,
observing that the analysis can be tightened to obtain O(

√
s log s) upper bound, and

bringing it to the author’s notice. The author would like to thank the anonymous
referee for pointing out that Theorem 2 implies existence of one-way communication
protocols of complexity O(

√
rank log rank) for XOR functions. The author would like

to thank Arkadev Chattopadhyay and Prahladh Harsha for many helpful discussions.
The author is thankful to Prahladh Harsha for his help in improving the presentation
of this article significantly.

References

1. Gavinsky, D., Kirshner, N., de Wolf, R., Samorodnitsky, A.: Private Communication
2. Gopalan, P., O’Donnell, R., Servedio, R.A., Shpilka, A., Wimmer, K.: Testing fourier

dimensionality and sparsity. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 500–
512. Springer, Heidelberg (2009)

3. Lovett, S.: Communication is bounded by root of rank. In: Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31 – June 03, 2014, pp. 842–846
(2014)

4. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press
(2014). http://www.cambridge.org/de/academic/subjects/computer-science/
algorithmics-complexity-computer-algebra-and-computational-g/
analysis-boolean-functions

5. Shpilka, A., Tal, A., lee Volk, B..: On the structure of boolean functions with small
spectral norm. In: Innovations in Theoretical Computer Science, ITCS 2014, Prince-
ton, NJ, USA, January 12–14, pp. 37–48 (2014). arxiv.org/abs/1304.0371

6. Tsang, H.Y., Wong, C.H., Xie, N., Zhang, S.: Fourier sparsity, spectral norm, and the
log-rank conjecture. In: 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26–29 October, 2013, Berkeley, CA, USA, pp. 658–667 (2013)

http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://arxiv.org/abs/abs/1304.0371

Condensed Unpredictability

Maciej Skórski1, Alexander Golovnev2(B), and Krzysztof Pietrzak3

1 University of Warsaw, Warszawa, Poland
maciej.skorski@gmail.com

2 New York University, New York, USA
alexgolovnev@gmail.com

3 IST Austria, Klosterneuburg, Austria
pietrzak@ist.ac.at

Abstract. We consider the task of deriving a key with high HILL
entropy (i.e., being computationally indistinguishable from a key with
high min-entropy) from an unpredictable source.

Previous to this work, the only known way to transform unpredictabil-
ity into a key that was ε indistinguishable from having min-entropy was via
pseudorandomness, for example by Goldreich-Levin (GL) hardcore bits.
This approach has the inherent limitation that from a source with k bits
of unpredictability entropy one can derive a key of length (and thus HILL
entropy) at most k − 2 log(1/ε) bits. In many settings, e.g. when dealing
with biometric data, such a 2 log(1/ε) bit entropy loss in not an option.
Our main technical contribution is a theorem that states that in the high
entropy regime, unpredictability implies HILL entropy. Concretely, any
variable K with |K| − d bits of unpredictability entropy has the same
amount of so called metric entropy (against real-valued, deterministic dis-
tinguishers), which is known to imply the same amount of HILL entropy.
The loss in circuit size in this argument is exponential in the entropy gap
d, and thus this result only applies for small d (i.e., where the size of dis-
tinguishers considered is exponential in d).

To overcome the above restriction, we investigate if it’s possible to first
“condense” unpredictability entropy and make the entropy gap small. We
show that any source with k bits of unpredictability can be condensed into
a source of length k with k − 3 bits of unpredictability entropy. Our con-
denser simply “abuses” the GL construction and derives a k bit key from
a source with k bits of unpredicatibily. The original GL theorem implies
nothing when extracting that many bits, but we show that in this regime,
GL still behaves like a “condenser” for unpredictability. This result comes
with two caveats (1) the loss in circuit size is exponential in k and (2) we
require that the source we start with has no HILL entropy (equivalently,
one can efficiently check if a guess is correct). We leave it as an intriguing
open problem to overcome these restrictions or to prove they’re inherent.

The full version of the paper is available at http://eprint.iacr.org/2015/384
M. Skórski—Research supported by the WELCOME/2010-4/2 grant.
K. Pietrzak—Research supported by ERC starting grant (259668-PSPC).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 1046–1057, 2015.
DOI: 10.1007/978-3-662-47672-7 85

http://eprint.iacr.org/2015/384

Condensed Unpredictability 1047

1 Introduction

Key-derivation considers the following fundamental problem: Given a joint dis-
tribution (X,Z) where X|Z (which is short for “X conditioned on Z”) is guar-
anteed to have some kind of entropy, derive a “good” key K = h(X,S) from
X by means of some efficient key-derivation function h, possibly using public
randomness S.

In practice, one often uses a cryptographic hash function like SHA3 as the
key derivation function h(.) [6,17], and then simply assumes that h(.) behaves
like a random oracle [2].

In this paper we continue the investigation of key-derivation with provable
security guarantees, where we don’t make any computational assumption about
h(.). This problem is fairly well understood for sources X|Z that have high
min-entropy (we’ll formally define all the entropy notions used in 2 below), or
are computationally indistinguishable from having so (in this case, we say X|Z
has high HILL entropy). In the case where X|Z has k bits of min-entropy, we
can either use a strong extractor to derive a k − 2 log ε−1 key that is ε-close to
uniform, or a condenser to get a k bit key which is ε-close to a variable with
k − log log ε−1 bits of min-entropy. Using extractors/condensers like this also
works for HILL entropy, except that now we only get computational guarantees
(pseudorandom/high HILL entropy) on the derived key.

Often one has to derive a key from a source X|Z which has no HILL entropy
at all. The weakest assumption we can make on X|Z for any kind of key-
derivation to be possible, is that X is hard to predict given Z. This has been
formalized in [15] by saying that X|Z has k bits of unpredictability entropy,
denoted Hunp

s (X|Z) � k, if no circuit of size s can predict X given Z with
advantage � 2−k (to be more general, we allow an additional parameter δ � 0,
and Hunp

δ,s (X|Z) � k holds if (X,Z) is δ-close to some distribution (Y,Z) with
Hunp

s (Y |Z) � k). We will also consider a more restricted notion, where we say
that X|Z has k bits of list-unpredictability entropy, denoted H∗unp

s (X|Z) � k,
if it has k bits of unpredictability entropy relative to an oracle Eq which can be
used to verify the correct guess (Eq outputs 1 on input X, and 0 otherwise).1

We’ll discuss this notion in more detail below. For now, let us just mention that
for the important special case where it’s easy to verify if a guess for X is cor-
rect (say, because we condition on Z = f(X) for some one-way function2 f),
the oracle Eq does not help, and thus unpredictability and list-unpredictability
coincide. The results proven in this paper imply that from a source X|Z with
k bits of list-unpredictability entropy, it’s possible to extract a k bit key with
k − 3 bits of HILL entropy
1 We chose this name as having access to Eq is equivalent to being allowed to output

a list of guesses. This is very similar to the well known concept of list-decoding.
2 To be precise, this only holds for injective one-way functions. One can generalise

list-unpredictability and let Eq output 1 on some set X , and the adversary wins if
she outputs any X ∈ X . Our results (in particular Theorem 1) also hold for this more
general notion, which captures general one-way functions by letting X = f−1(f(X))
be the set of all preimages of Z = f(X).

1048 M. Skórski et al.

Proposition 1. Consider a joint distribution (X,Z) over {0, 1}n × {0, 1}m

where
H∗unp

s,γ (X|Z) � k (1)

Let S ∈ {0, 1}n×k be uniformly random and K = XT S ∈ {0, 1}k, then the
unpredictability entropy of K is

Hunp
s/22kpoly(m,n),γ

(K|Z, S) � k − 3 (2)

and the HILL entropy of K is

HHILL
t,ε+γ(K|Z, S) � k − 3 (3)

with3 t = s · ε7

22kpoly(m,n)
.

Proposition 1 follows from two results we prove in this paper.
First, in Section 4 we prove Theorem 1 which shows how to “abuse”

Goldreich-Levin hardcore bits by generating a k bit key K = XT S from a
source X|Z with k bits of list-unpredictability. The Goldreich-Levin theorem [12]
implies nothing about the pseudorandomness of K|(Z, S) when extracting that
many bits. Instead, we prove that GL is a good “condenser” for unpredictability
entropy: if X|Z has k bits of list-unpredictability entropy, then K|(Z, S) has k−3
bits of unpredictability entropy (note that we start with list-unpredictability, but
only end up with “normal” unpredictability entropy). This result is used in the
first step in Proposition 1, showing that (1) implies (2).

Second, in Section 5 we prove our main result, Theorem 2 which states that
any source X|Z which has |X|−d bits of unpredictability entropy, has the same
amount of HILL entropy (technically, we show that it implies the same amount
of metric entropy against deterministic real-valued distinguishers. This notion
implies the same amount of HILL entropy as shown by Barak et al. [1]). The
security loss in this argument is exponential in the entropy gap d. Thus, if d is
very large, this argument is useless, but if we first condense unpredictability as
just explained, we have a gap of only d = 3. This result is used in the second
step in Proposition 1, showing that (2) implies (3). In the two sections below
we discuss two shortcomings of Theorem 1 which we hope can be overcome in
future work.4

3 We denote with poly(m, n) some fixed polynomial in (n, m), but it can denote dif-
ferent polynomial throughout the paper. In particular, the poly here is not the same
as in (2) as it hides several extra terms.

4 After announcing this result at a workshop, we learned that Colin Jia Zheng proved
a weaker version of this result. Theorem 4.18 in this PhD thesis, which is available via
http://dash.harvard.edu/handle/1/11745716 also states that k bits of unpredictabil-
ity imply k bits of HILL entropy. Like in our case, the loss in circuit size in his proof
is polynomial in ε−1, but it’s also exponential in n (the length of X), whereas our
loss is only exponential in the entropy gap Δ = n − k.

http://dash.harvard.edu/handle/1/11745716

Condensed Unpredictability 1049

On the Dependency on 2k in Theorem 1. As outlined above, our first
result is Theorem 1, which shows how to condense a source with k bits of list-
unpredictability into a k bit key having k − 3 bits of unpredictability entropy.
The loss in circuit size is 22kpoly(m,n), and it’s not clear if the dependency on 2k

is necessary here, or if one can replace the dependency on 2k with a dependency
on poly(ε−1) at the price of an extra ε term in the distinguishing advantage. In
many settings log(ε−1) is in the order of k, in which case the above difference
is not too important. This is for example the case when considering a k bit key
for a symmetric primitive like a block-cipher, where one typically assumes the
hardness of the cipher to be exponential in the key-length (and thus, if we want
ε to be in the same order, we have log(ε−1) = Θ(k)). In other settings, k can be
superlinear in log(ε−1), e.g., if the the high entropy string is used to generate an
RSA key.

List vs. Normal Unpredictability. Our Theorem 1 shows how to condense
a source where X|Z has k bits of list-unpredictability entropy into a k bit string
with k−3 bits unpredictability entropy. It’s an open question to which extent it’s
necessary to assume list-unpredictability here, maybe “normal” unpredictability
is already sufficient? Note that list-unpredictability is a lower bound for unpre-
dictability as one always can ignore the Eq oracle, i.e., Hunp

ε,s (X|Z) � H∗unp
ε,s (X|Z),

and in general, list-unpredictability can be much smaller than unpredictability
entropy.5 Interestingly, we can derive a k bit key with almost k bits of HILL
entropy from a source X|Z which k bits unpredictability entropy Hunp

ε,s (X|Z) � k
in two extreme cases, namely, if either
1. if X|Z has basically no HILL entropy (even against small circuits).
2. or when X|Z has (almost) k bits of (high quality) HILL entropy.

In case 1. we observe that if HHILL
ε,t (X|Z) ≈ 0 for some t � s, or equivalently,

given Z we can efficiently distinguish X from any X ′ �= X, then the Eq oracle
used in the definition of list-unpredictability can be efficiently emulated, which
means it’s redundant, and thus X|Z has the same amount of list-unpredictability
and unpredictability entropy, Hunp

s,ε (X|Z) ≈ H∗unp
s′,ε′ (X|Z) for (ε′, s′) ≈ (ε, s).

Thus, we can use Theorem 1 to derive a k bit key with k − O(1) bits of HILL
entropy in this case. In case 2., we can simply use any condenser for min-entropy
to get a key with HILL entropy k − log log ε−1p As condensing almost all the
unpredictability entropy into HILL entropy is possible in the two extreme cases
where X|Z has either no or a lot of HILL entropy, it seems conceivable that
it’s also possible in all the in-between cases (i.e., without making any additional
assumptions about X|Z at all).

GL vs. Condensing. Let us stress as this point that, because of the two
issues discussed above, our result does not always allow to generate more bits

5 E.g., let X by uniform over {0, 1}n and Z arbitrary, but independent of X, then for
s = exp(n) we have Hunp

s (X|Z) = n but H∗unp
s (X|Z) = 0 as we can simply invoke

Eq on all {0, 1}n until X is found.

1050 M. Skórski et al.

with high HILL entropy than just using the Goldreich-Levin theorem. Assuming
k bits of unpredictability we get k − 3 of HILL, whereas GL will only give
k − 2 log(1/ε). But as currently our reduction has a quantitatively larger loss in
circuit size than the GL theorem, in order to get HILL entropy of the same quality
(i.e., secure against (s, δ) adversaries for some fixed (s, δ)) we must consider the
unpredictability entropy of the source X|Z against more powerful adversaries
than if we’re about to use GL. And in general, the amount of unpredictability
(or any other computational) entropy of X|Z can decrease as we consider more
powerful adversaries.

2 Entropy Notions

In this section we formally define the different entropy notions considered in this
paper. We denote with Drand,{0,1}

s the set of all probabilistic circuits of size s

with boolean output, and Drand,[0,1]
s denotes the set of all probabilistic circuits

with real-valued output in the range [0, 1]. The analogous deterministic circuits
are denoted Ddet,{0,1}

s and Ddet,[0,1]
s . We use X ∼ε,s Y to denote computational

indistinguishability of variables X and Y , formally6

X ∼ε,s Y ⇐⇒ ∀C ∈ Drand,{0,1}
s : |Pr[C(X) = 1] − Pr[C(Y) = 1]| � ε (4)

X ∼ε Y denotes that X and Y have statistical distance ε, i.e., X ∼ε,∞ Y , and
with X ∼ Y we denote that they’re identically distributed. With Un we denote
the uniform distribution over {0, 1}n.

Definition 1. The min-entropy of a random variable X with support X is

H∞(X) = − log2 max
x∈X

Pr[X = x]

For a pair (X,Z) of random variables, the average min-entropy of X condi-
tioned on Z is

H̃∞(X|Z) = − log2 E
z←Z

max
x

Pr[X = x|Z = z] = − log2 E
z←Z

2−H∞(X|Z=z)

HILL entropy is a computational variant of min-entropy, where X (conditioned
on Z) has k bits of HILL entropy, if it cannot be distinguished from some Y that
(conditioned on Z) has k bits of min-entropy, formally

Definition 2 ([14],[15]). A random variable X has HILL entropy k, denoted
by HHILL

ε,s (X) ≥ k, if there exists a distribution Y satisfying H∞(Y) ≥ k and
X ∼ε,s Y .

Let (X,Z) be a joint distribution of random variables. Then X has conditional
HILL entropy k conditioned on Z, denoted by HHILL

ε,s (X|Z) ≥ k, if there exists a
joint distribution (Y,Z) such that H̃∞(Y |Z) ≥ k and (X,Z) ∼ε,s (Y,Z).
6 Let us mention that the choice of the distinguisher class in (4) irrelevant (up to a

small additive difference in circuit size), we can replace Drand,{0,1}
s with any of the

three other distinguisher classes.

Condensed Unpredictability 1051

Barak, Sahaltiel and Wigderson [1] define the notion of metric entropy, which is
defined like HILL, but the quantifiers are exchanged. That is, instead of asking
for a single distribution (Y,Z) that fools all distinguishers, we only ask that for
every distinguisher D, there exists such a distribution. For reasons discussed in
Section 2, in the definition below we make the class of distinguishers considered
explicit.

Definition 3 ([1],[10]). Let (X,Z) be a joint distribution of random vari-
ables. Then X has conditional metric entropy k conditioned on Z (against
probabilistic boolean distinguishers), denoted by H

Metric,rand,{0,1}
ε,s (X|Z) ≥ k, if

for every D ∈ Drand,{0,1}
s there exists a joint distribution (Y,Z) such that

H̃∞(Y |Z) ≥ k and

|Pr[D(X,Z) = 1] − Pr[D(Y,Z) = 1]| � ε

More generally, for class ∈ {rand, det}, range ∈ {[0, 1], {0, 1}},
HMetric,class,range

ε,s (X|Z) ≥ k if for every D ∈ Dclass,range
s such a (Y,Z) exists.

Like HILL entropy, also unpredictability entropy, which we’ll define next, can be
seen as a computational variant of min-entropy. Here we don’t require indistin-
guishability as for HILL entropy, but only that the variable is hard to predict.

Definition 4 ([15]). X has unpredictability entropy k conditioned on Z,
denoted by Hunp

ε,s (X|Z) ≥ k, if (X,Z) is (ε, s) indistinguishable from some (Y,Z),
where no probabilistic circuit of size s can predict Y given Z with probability
better than 2−k, i.e., Hunp

s,ε (X|Z) ≥ k if and only if

∃(Y,Z), (X,Z) ∼ε,s (Y,Z) ∀C, |C| � s : Pr
(y,z)←(Y,Z)

[C(z) = y] � 2−k (5)

We also define a notion called “list-unpredictability”, denoted H∗unp
ε,s (X|Z) ≥ k,

which holds if Hunp
ε,s (X|Z) ≥ k as in (5), but where C additionally gets oracle

access to a function Eq(.) which outputs 1 on input y and 0 otherwise. So, C can
efficiently test if some candidate guess for y is correct.7

Remark 1 (The ε parameter). The ε parameter in the definition above is not
really necessary, following [16], we added it so we can have a “smooth” notion,
which is easier to compare to HILL or smooth min-entropy. If ε = 0, we’ll simply
omit it, then the definition simplifies to

Hunp
s (X|Z) ≥ k ⇐⇒ Pr

(x,z)←(X,Z)
[C(z) = x] � 2−k

Let us also mention that unpredictability entropy is only interesting if the condi-
tional part Z is not empty as (already for s that is linear in the length of X) we have
Hunp

s (X) = H∞(X) which can be seen by considering the circuit C (that gets no
input as Z is empty) which simply outputs the constant x maximizing Pr[X = x].
7 We name this notion ”list-unpredictability” as we get the same notion when instead

of giving C oracle access to Eq(.), we allow C(z) to output a list of guesses for y,
not just one value, and require that Pr(y,z)←(Y,Z)[y ∈ C(z)] � 2−k. This notion is
inspired by the well known notion of list-decoding.

1052 M. Skórski et al.

Metric vs. HILL. We will use a lemma which states that deterministic real-
valued metric entropy implies the same amount of HILL entropy (albeit, with
some loss in quality). This lemma has been proven by [1] for the unconditional
case, i.e., when Z in the lemma below is empty, it has been observed by [4,10]
that the proof also holds in the conditional case as stated below

Lemma 1 ([1,4,10]). For any joint distribution (X,Z) ∈ {0, 1}n×{0, 1}m and
any ε, δ, k, s

HMetric,det,[0,1]
ε,s (X|Z) � k ⇒ HHILL

ε+δ,s·δ2/(m+n)(X|Z) � k

Note that in Definition 2 of HILL entropy, we only consider security against
probabilistic boolean distinguishers (as ∼ε,s was defined this way), whereas in
Definiton 3 of metric entropy we make the class of distinguishers explicit. The
reason for this is that in the definition of HILL entropy the class of distinguishers
considered is irrelevant (except for a small additive degradation in circuit size,
cf. [10, Lemma2.1]).8 Unlike for HILL, for metric entropy the choice of the dis-
tinguisher class does matter. In particular, deterministic boolean metric entropy
H

Metric,det,{0,1}
ε,s (X|Y) � k is only known to imply deterministic real-valued met-

ric entropy H
Metric,det,[0,1]
ε+δ,s (X|Y) � k − log(δ−1), i.e., we must allow for a δ > 0

loss in distinguishing advantage, and this will at the same time result in a loss
of log(δ−1) in the amount of entropy. For this reason, it is crucial that in The-
orem 2 we show that unpredictability entropy implies deterministic real-valued
metric entropy, so we can then apply Lemma 1 to get the same amount of HILL
entropy. Dealing with real-valued distinguishers is the main source of technical
difficulty in the proof of the Theorem 2, proving the analogous statement for
deterministic boolean distinguishers is much simpler.

3 Known Results on Provably Secure Key-Derivation

We say that a cryptographic scheme has security α, if no adversary (from some
class of adversaries like all polynomial size circuits) can win some security game
with advantage � α if the scheme is instantiated with a uniformly random
string.9 Below we will distinguish between unpredictability applications, where
the advantage bounds the probability of winning some security game (a typical
example are digital signature schemes, where the game captures the existential
unforgeability under chosen message attacks), and indistinguishability applica-
tions, where the advantage bounds the distinguishing advantage from some ideal
object (a typical example is the security definition of pseudorandom generators
or functions).
8 This easily follows from the fact that in the definition (4) of computational indistin-

guishability the choice of the distinguisher class is irrelevant.
9 We’ll call this string “key”. Though in many settings (in particular when keys are

not simply uniform random strings, like in public-key crypto) this string is not used
as a key directly, but one rather should think of it as the randomness used to sample
the actual keys.

Condensed Unpredictability 1053

3.1 Key-Derivation from Min-Entropy

Strong Extractors. Let (X,Z) be a source where H̃∞(X|Z) � k, or equivalently,
no adversary can guess X given Z with probability better than 2−k (cf. Def. 1).
Consider the case where we want to derive a key K = h(X,S) that is statistically
close to uniform given (Z, S). For example, X could be some physical source
(like statistics from keystrokes) from which we want to generate almost uniform
randomness. Here Z models potential side-information the adversary might have
on X. This setting is very well understood, and such a key can be derived using
a strong extractor as defined below.

Definition 5 ([18],[5]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}� is an
average-case (k, ε)-strong extractor if for every distribution (X,Z) over {0, 1}n×
{0, 1}m with H̃∞(X|Z) � k and S ∼ Ud, the distribution (Ext(X,S), S, Z) has
statistical distance ε to (U�, S, Z).

Extractors Ext as above exist with � = k−2 log(1/ε) [14]. Thus, from any (X,Z)
where H̃∞(X|Z) � k we can extract a key K = Ext(X,S) of length k−2 log(1/ε)
that is ε close to uniform [14]. The entropy gap 2 log(1/ε) is optimal by the so
called “RT-bound” [19], even if we assume the source is efficiently samplable [7].

If instead of using a uniform � bit key for an α secure scheme, we use a key
that is ε close to uniform, the scheme will still be at least β = α + ε secure. In
order to get security β that is of the same order as α, we thus must set ε ≈ α.
When the available amount k of min-entropy is small, for example when dealing
with biometric data [3,5], a loss of 2 log(1/ε) bits (that’s 160 bits for a typical
security level ε = 2−80) is often unacceptable.

Condensers. The above bound is basically tight for many indistinguishability
applications like pseudorandom generators or pseudorandom functions.10 Fortu-
nately, for many applications a close to uniform key is not necessary, and a key
|K| with min-entropy |K|−Δ for some small Δ is basically as good as a uniform
one. This is the case for all unpredictability applications, which includes OWFs,
digital-signatures and MACs.11 It’s not hard to show that if the scheme is α
secure with a uniform key it remains at least β = α2Δ secure (against the

10 For example, consider a pseudorandom function F : {0, 1}k × {0, 1}a → {0, 1} and a
key K that is uniform over all keys where F(K, 0) = 0, this distribution is ε ≈ 1/2
close to uniform and has min-entropy ≈ |K| − 1, but the security breaks completely
as one can distinguish F(Uk, .) from F(K, .) with advantage β ≈ 1/2 (by quering on
input 0, and outputting 1 iff the output is 0).

11 [8] identify an interesting class of applications called “square-friendly”, this class
contains all unpredictability applications, and some indistinguishability applications
like weak PRFs (which are PRFs that can only be queried on random inputs). This
class of applications remains somewhat secure even for a small entropy gap Δ: For
Δ = 1 the security is β ≈ √

α. This is worse that the β = 2α for unpredictability
applications, but much better than the complete loss of security β ≈ 1/2 required
for some indistinguishability apps like (standard) PRFs.

1054 M. Skórski et al.

same class of attackers) if instantiated with any key K that has |K| − Δ bits of
min-entropy.12 Thus, for unpredictability applications we don’t have to extract
an almost uniform key, but “condensing” X into a key with |K| − Δ bits of
min-entropy for some small Δ is enough.

[7] show that a (log ε + 1)-wise independent hash function Cond : {0, 1}n ×
{0, 1}d → {0, 1}� is a condenser with the following parameters. For any (X,Z)
where H̃∞(X|Z) � �, for a random seed S (used to sample a (log ε+1)-wise inde-
pendent hash function), the distribution (Cond(X,S), S) is ε close to a distribu-
tion (Y, S) where H̃∞(Y |Z) � �−log log(1/ε). Using such an � bit key (condensed
from a source with � bits min-entropy) for an unpredictability application that is
α secure (when using a uniform � bit key), we get security β � α2log log(1/ε) + ε,
which setting ε = α gives β � α(1 + log(1/α)) security, thus, security degrades
only by a logarithmic factor.

3.2 Key-Derivation from Computational Entropy

HILL Entropy. As already discussed in the introduction, often we want to derive
a key from a distribution (X,Z) where there’s no “real” min-entropy at all
H̃∞(X|Z) = 0. This is for example the case when Z is the transcript (that can
be observed by an adversary) of a key-exchange protocol like Diffie-Hellman,
where the agreed value X = gab is determined by the transcript Z = (ga, gb)
[11,17]. Another setting where this can be the case is in the context of side-
channel attacks, where the leakage Z from a device can completely determine
its internal state X. If X|Z has k bits of HILL entropy, i.e., is computation-
ally indistinguishable from having min-entropy k (cf. Def. 2) we can derive keys
exactly as described above assuming X|Z had k bits of min-entropy. In partic-
ular, if X|Z has |K| + 2 log(1/ε) bits of HILL entropy for some negligible ε, we
can derive a key K that is pseudorandom, and if X|Z has |K|+log log(1/ε) bits
of HILL entropy, we can derive a key that is almost as good as a uniform one
for any unpredictability application.

Unpredictability Entropy. Clearly, the minimal assumption we must make on a
distribution (X,Z) ∈ {0, 1}n×{0, 1}m for any key derivation to be possible at all
is that X is hard to compute given Z, that is, X|Z must have some unpredictabil-
ity entropy as in Definition 4. Goldreich and Levin [12] show how to generate
pseudorandom bits from such a source. In particular, the Goldreich-Levin theo-
rem implies that if X|Z has at least 2 log ε−1 bits of list-unpredictability, then
the inner product RT X of X with a random vector R is ε indistinguishable from
uniformly random (the loss in circuit size is poly(n,m)/ε4). Using the chain rule

12 Assume some adversary breaks the scheme, say, forges a signature, with advantage β
if the key comes from the distribution K. If we sample a uniform key instead, it will
have the same distribution as K conditioned on an event that holds with probability
2−Δ, and thus this adversary will still break the scheme with probability β/2Δ.

Condensed Unpredictability 1055

for unpredictability entropy,13 we can generate an � = k − 2 log ε−1 bit long
pseudorandom string that is �ε indistinguishable (the extra � factor comes from
taking the union bound over all bits) from uniform.

Thus, we can turn k bits of list-unpredictability into k − 2 log ε−1 bits
of pseudorandom bits (and thus also that much HILL entropy) with quality
roughly ε. The question whether it’s possible to generate significantly more than
k − 2 log ε−1 of HILL entropy from a source with k bits of (list-)unpredictability
seems to have never been addressed in the literature before. The reason might be
that one usually is interested in generating pseudorandom bits (not just HILL
entropy), and for this, the 2 log ε−1 entropy loss is inherent. The observation
that for many applications high HILL entropy is basically as good as pseudoran-
domness is more recent, and recently gained attention by its usefulness in the
context of leakage-resilient cryptography [8,9].

In this paper we prove that it’s in fact possible to turn almost all list-
unpredictability into HILL entropy.

4 Condensing Unpredictability

Let X|Z have k bits of list-unpredictability, and assume we start extracting
Goldreich-Levin hardcore bits A1, A2, . . . by taking inner products Ai = RT

i X
for random Ri. The first extracted bits A1, A2, . . . will be pseudorandom (given
the Ri and Z), but with every extracted bit, the list-unpredictability can also
decrease by one bit. As the GL theorem requires at least 2 log ε−1 bits of list-
unpredictability to extract an ε secure pseudorandom bit, we must stop after
k − 2 log ε−1 bits. In particular, the more we extract, the worse the pseudoran-
domness of the extracted string becomes. Unlike the original GL theorem, in
our Theorem 1 we only argue about the unpredictability of the extracted string,
and unpredictability entropy has the nice property that it can never decrease,
i.e., predicting A1, . . . , Ai+1 is always at least as hard as predicting A1, . . . , Ai.
Thus, despite the fact that once i approaches k it becomes easier and easier to
predict Ai (given A1, . . . , Ai−1, Z and the Ri’s)14 this hardness will still add up
to k − O(1) bits of unpredictability entropy.

The proof is by contradiction, we assume that A1, . . . , Ak can be predicted
with advantage 2−k+3 (i.e., does not have k−3 bits of unpredictability), and then
use such a predictor to predict X with advantage > 2−k, contradicting the k bit
list-unpredictability of X|Z. If A1, . . . , Ak can be predicted as above, then there
must be an index j s.t. Aj can be predicted with good probability conditioned
on A1, . . . , Aj−1 being correctly predicted. We then can use the Goldreich-Levin

13 Which states that if X|Z has k bits of list-unpredictability, then for any
(A, R) where R is independent of (X, Z), X|(Z, A, R) has k − |A| bits of list-
unpredictability entropy. In particular, extracting � inner product bits, decreases
the list-unpredictability by at most �.

14 The only thing we know about the last extracted bit Ak is that it cannot be predicted
with advantage � 0.75, more generally, Ak−j cannot be predicted with advantage
1/2 + 1/2j+2.

1056 M. Skórski et al.

theorem, which tells us how to find X given such a predictor. Unfortunately,
j can be close to k, and to apply the GL theorem, we first need to find the
right values for A1, . . . , Aj−1 on which we condition, and also can only use the
predictor’s guess for Aj if it was correct on the first j −1 bits. We have no better
strategy for this than trying all possible values, and this is the reason why the
loss in circuit size in Theorem 1 depends on 2k.

In our proof, instead of using the Goldreich-Levin theorem, we will actually
use a more fine-grained variant due to Hast which allows to distinguish between
errors and erasures, this will give a much better quantitative bound.

Theorem 1 (Condensing Upredictability Entropy). Consider any distri-
bution (X,Z) over {0, 1}n × {0, 1}m where

H∗unp
ε,s (X|Z) � k

then for a random R ← {0, 1}k×n

Hunp
ε,t (R.X|Z,R) � k − Δ

where15 t = s
22k poly(m,n)

, Δ = 3

5 High Unpredictability Implies Metric Entropy

In this section we state our main results, showing that k bits of unpredictability
entropy imply the same amount of HILL entropy, with a loss exponential in the
“entropy gap”.

Theorem 2 (Unpredictability Entropy Implies HILL Entropy). For any
distribution (X,Z) over {0, 1}n × {0, 1}m, if X|Z has unpredictability entropy

Hunp
γ,s (X|Z) � k (6)

then, with Δ = n − k denoting the entropy gap, X|Z has (real valued, determin-
istic) metric entropy

H
Metric,det,[0,1]
ε+γ,t (X|Z) � k for t = Ω

(
s · ε5

25Δ log2 (2Δε−1)

)
(7)

By Lemma 1 this further implies that X|Z has, for any δ > 0, HILL entropy

HHILL
ε+δ+γ,Ω(tδ2/(n+m))(X|Z) � k

which for ε = δ = γ is HHILL
3ε,Ω(s·ε7/25Δ(n+m) log2(2Δε−1))

(X|Z) � k

15 We can set Δ to be any constant > 1 here, but choosing a smaller Δ would imply a
smaller t.

Condensed Unpredictability 1057

References

1. Barak, B., Shaltiel, R., Wigderson, A.: Computational Analogues of Entropy.
In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and
APPROX 2003. LNCS, vol. 2764, pp. 200–215. Springer, Heidelberg (2003)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

3. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure Remote Authen-
tication Using Biometric Data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005)

4. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory Delegation. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

5. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing
38(1), 97–139 (2008)

6. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness Extrac-
tion and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

7. Dodis, Y., Pietrzak, K., Wichs, D.: Key Derivation without Entropy Waste.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 93–110. Springer, Heidelberg (2014)

8. Dodis, Y., Yu, Y.: Overcoming Weak Expectations. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 1–22. Springer, Heidelberg (2013)

9. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp.
293–302. IEEE Computer Society Press, October2008

10. Fuller, B., Reyzin, L.: Computational entropy and information leakage. Cryptology
ePrint Archive, Report 2012/466 (2012). http://eprint.iacr.org/

11. Gennaro, R., Krawczyk, H., Rabin, T.: Secure Hashed Diffie-Hellman over Non-
DDH Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 361–381. Springer, Heidelberg (2004)

12. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC. pp. 25–32. ACM Press, May 1989

13. Hast, G.: Nearly one-sided tests and the Goldreich-Levin predicate. In: Biham,
E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 195–210. Springer, Heidelberg
(2003)

14. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

15. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional Computational Entropy, or Toward
Separating Pseudoentropy from Compressibility. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007)

16. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional Computational Entropy, or Toward
Separating Pseudoentropy from Compressibility. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007)

17. Krawczyk, H.: Cryptographic Extraction and Key Derivation: The HKDF Scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer,
Heidelberg (2010)

18. Nisan, N., Zuckerman, D.: More deterministic simulation in logspace. In: 25th ACM
STOC, pp. 235–244. ACM Press, May 1993

19. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two
superconcentrators. SIAM J. Discrete Math. 13(1), 2–24 (2000)

http://eprint.iacr.org/

Sherali-Adams Relaxations for Valued CSPs

Johan Thapper1 and Stanislav Živný2(B)

1 Université Paris-Est, Marne-la-Vallée, France
thapper@u-pem.fr

2 Department of Computer Science, University of Oxford, Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract. We consider Sherali-Adams linear programming relaxations
for solving valued constraint satisfaction problems to optimality. The util-
ity of linear programming relaxations in this context have previously been
demonstrated using the lowest possible level of this hierarchy under the
name of the basic linear programming relaxation (BLP). It has been shown
that valued constraint languages containing only finite-valued weighted
relations are tractable if, and only if, the integrality gap of the BLP is
1. In this paper, we demonstrate that almost all of the known tractable
languages with arbitrary weighted relations have an integrality gap 1 for
the Sherali-Adams relaxation with parameters (2, 3). The result is closely
connected to the notion of bounded relational width for the ordinary con-
straint satisfaction problem and its recent characterisation.

1 Introduction

The constraint satisfaction problem provides a common framework for many
theoretical and practical problems in computer science. An instance of the con-
straint satisfaction problem (CSP) consists of a collection of variables that must
be assigned labels from a given domain subject to specified constraints. The
CSP is NP-complete in general, but tractable fragments can be studied by, fol-
lowing Feder and Vardi [13], restricting the constraint relations allowed in the
instances to a fixed, finite set, called the constraint language. The most success-
ful approach to classifying the language-restricted CSP is the so-called algebraic
approach [3,5].

An important type of algorithms for CSPs are consistency methods. A con-
straint language is of bounded relational width if any CSP instance over this
language can be solved by establishing (k, �)-minimality for some fixed integers
1 ≤ k ≤ � [1]. The power of consistency methods for constraint languages has
recently been fully characterised [3,21] and it has been shown that any con-
straint language that is of bounded relational width is of relational width at
most (2, 3)[1].

The CSP deals with only feasibility issues: Is there a solution satisfying cer-
tain constraints? In this work we are interested in problems that capture both

The authors were supported by London Mathematical Society Grant 41355. Stanislav
Živný was supported by a Royal Society University Research Fellowship.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 1058–1069, 2015.
DOI: 10.1007/978-3-662-47672-7 86

Sherali-Adams Relaxations for Valued CSPs 1059

feasibility and optimisation issues: What is the best solution satisfying certain
constraints? Problems of this form can be cast as valued constraint satisfaction
problems [16].

An instance of the valued constraint satisfaction problem (VCSP) is given
by a collection of variables that is assigned labels from a given domain with the
goal to minimise an objective function given by a sum of weighted relations,
each depending on some subset of the variables [8]. The weighted relations can
take on finite rational values and positive infinity. The CSP corresponds to the
special case of the VCSP when the codomain of all weighted relations is {0,∞}.

Like the CSP, the VCSP is NP-hard in general and thus we are interested
in the restrictions which give rise to tractable classes of problems. We restrict
the valued constraint language; that is, all weighted relations in a given instance
must belong to a fixed set of weighted relations on the domain. Languages that
give rise to classes of problems solvable in polynomial time are called tractable,
and languages that give rise to classes of problem that are NP-hard are called
intractable. The computational complexity of Boolean (on a 2-element domain)
valued constraint languages [8] and conservative (containing all {0, 1}-valued
unary weighted relations) valued constraint languages [18] have been completely
classified with respect to exact solvability.

Every VCSP problem has a natural linear programming (LP) relaxation,
proposed independently by a number of authors, e.g. [6], and referred to as the
basic LP relaxation (BLP) of the VCSP. It is the first level in the Sheralli-
Adams hierarchy [24], which provides successively tighter LP relaxations of an
integer LP. The BLP has been considered in the context of CSPs for robust
approximability [10,20] and constant-factor approximation [9,12]. Higher lev-
els of Sheral-Adams hierarchy have been considered for (in)approximability of
CSPs [11,30] but we are not aware of any results related to exact solvability of
(valued) CSPs. Semidefinite programming relaxations have also been considered
in the context of CSPs for approximability [23] and robust approximability [2].

Consistency methods, and in particular strong 3-consistency has played an
important role as a preprocessing step in establishing tractability of valued con-
straint languages. Cohen et al. proved the tractability of valued constraint lan-
guages improved by a symmetric tournament pair (STP) multimorphism via
strong 3-consistency preprocessing, and an involved reduction to submodular
function minimisation [7]. They also showed that the tractability of any valued
constraint language improved by a tournament pair multimorphism via a prepro-
cessing using results on constraint languages invariant under a 2-semilattice poly-
morphism, which relies on (3, 3)-minimality, and then reducing to the STP case.
The only tractable conservative valued constraint languages are those admit-
ting a pair of fractional polymorphisms called STP and MJN [18]; again, the
tractability of such languages is proved via a 3-consistency preprocessing reduc-
ing to the STP case. It is natural to ask whether this nested use of consistency
methods are necessary.

Contributions. In [17,26], the authors showed that the BLP of the VCSP can be
used to solve the problem for many valued constraint languages. In [27], it was

1060 J. Thapper and S. Živný

then shown that for VCSPs with weighted relations taking only finite values, the
BLP precisely characterises the tractable (finite-)valued constraint languages;
i.e., if BLP fails to solve any instance of some valued constraint language of this
type, then this language is NP-hard.

In this paper, we show that a higher-level Sherali-Adams linear program-
ming relaxation [24] suffices to solve most of the previously known tractable
valued constraint languages with arbitrary weighted relations, and in particu-
lar, all known valued constraint languages that involve some optimisation (and
thus do not reduce to constraint languages containing only relations) except for
valued constraint languages of generalised weak tournament pair type [29]; such
languages are known to be tractable [29] but we do not know whether they are
tractable by our linear programming relaxation.

Our main result, Theorem 4, shows that if the support clone of a valued
constraint language Γ of finite size contains weak near-unanimity operations of
all but finitely many arities, then Γ is tractable via the Sherali-Adams relax-
ation with parameters (2, 3). This tractability condition is precisely the bounded
relational width condition for constraint languages of finite size containing all
constants [3,21], and our proof fundamentally relies on the results of Barto and
Kozik [3] and Barto [1].

It is folklore that the kth level of Sherali-Adams hierarchy establishes
k-consistency for CSPs. We demonstrate that one linear programming relax-
ation is powerful enough to establish consistency as well as solving an optimi-
sation problem in one go without the need of nested applications of consistency
methods. For example, valued constraint languages having a tournament pair
multimorphism were previously known to be tractable using ingenious applica-
tion of various consistency techniques, advanced analysis of constraint networks
using modular decompositions, and submodular function minimisation [7]. Here,
we show that an even less restrictive condition (having a binary conservative
commutative operation in some fractional polymorphism) ensures that the
Sherali-Adams relaxation solves all instances to optimum.

Finally, we also give a short proof of the dichotomy theorem for conservative
valued constraint languages [18], which previously needed lengthy arguments
(although we still rely on Takhanov [25] for a part of the proof).

2 Preliminaries

Valued CSPs. Throughout the paper, let D be a fixed finite set of size at least
two. We call D the domain, the elements of D labels and say that weighted
relations take values. Let Q = Q∪ {∞} denote the set of rational numbers with
(positive) infinity.

Definition 1. An m-ary relation over D is any mapping φ : Dm → {c,∞} for
some c ∈ Q. We denote by RD the set of all relations on D.

Definition 2. An m-ary weighted relation over D is any mapping φ : Dm → Q.
We write ar(φ) = m for the arity of φ. We denote by ΦD the set of all weighted
relations on D.

Sherali-Adams Relaxations for Valued CSPs 1061

For any m-ary weighted relation φ ∈ ΦD, we denote by Feas(φ) = {x ∈
Dm |φ(x) < ∞} ∈ RD the underlying m-ary feasibility relation, and by Opt(φ) =
{x ∈ Feas(φ) | ∀y ∈ Dm : φ(x) ≤ φ(y)} ∈ RD the m-ary optimality relation,
which contains the tuples on which φ is minimised. A weighted relation φ :
Dm → Q is called finite-valued if Feas(φ) = Dm.

Definition 3. Let V = {x1, . . . , xn} be a set of variables. A valued constraint
over V is an expression of the form φ(x) where φ ∈ ΦD and x ∈ V ar(φ). The
number m is called the arity of the constraint, the weighted relation φ is called
the constraint weighted relation, and the tuple x the scope of the constraint.

Definition 4. An instance of the valued constraint satisfaction problem, VCSP,
is specified by a finite set V = {x1, . . . , xn} of variables, a finite set D of labels,
and an objective function I expressed as follows: I(x1, . . . , xn) =

∑q
i=1 φi(xi),

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint over V . Each constraint can
appear multiple times in I. The goal is to find an assignment (or solution) of
labels to the variables minimising I.

A solution is called feasible (or satisfying) if it is of finite value. A VCSP
instance I is called satisfiable if there is a feasible solution to I. CSPs are a
special case of VCSPs with (unweighted) relations with the goal to determine
the existence of a feasible solution.

Example 1. In the Min-UnCut problem the goal is to find a partition of the
vertices of a given graph into two parts so that the number of edges inside
the two partitions is minimised. For a graph (V,E) with V = {x1, . . . , xn},
this NP-hard problem can be expressed as the VCSP instance I(x1, . . . , xn) =∑

(i,j)∈E φxor(xi, xj) over the Boolean domain D = {0, 1}, where φxor : {0, 1}2 →
Q is defined by φxor(x, y) = 1 if x = y and φxor(x, y) = 0 if x �= y.

Definition 5. Any set Δ ⊆ RD is called a constraint language over D. Any set
Γ ⊆ ΦD is called a valued constraint language over D. We denote by VCSP(Γ)
the class of all VCSP instances in which the constraint weighted relations are
all contained in Γ . For a constraint language Δ, we denote by CSP(Δ) the class
VCSP(Δ) to emphasise the fact that there is no optimisation involved.

Definition 6. A valued constraint language Γ is called tractable if VCSP(Γ ′)
can be solved (to optimality) in polynomial time for every finite subset Γ ′ ⊆ Γ ,
and Γ is called intractable if VCSP(Γ ′) is NP-hard for some finite Γ ′ ⊆ Γ .

Operations and Clones. We recall some basic terminology from universal algebra.
Given an m-tuple x ∈ Dm, we denote its ith entry by x[i] for 1 ≤ i ≤ m. Any
mapping f : Dk → D is called a k-ary operation; f is called conservative if
f(x1, . . . , xk) ∈ {x1, . . . , xk} and idempotent if f(x, . . . , x) = x. We will apply a
k-ary operation f to k m-tuples x1, . . . ,xk ∈ Dm coordinatewise, that is,

f(x1, . . . ,xk) = (f(x1[1], . . . ,xk[1]), . . . , f(x1[m], . . . ,xk[m])) . (1)

1062 J. Thapper and S. Živný

Definition 7. Let φ be an m-ary weighted relation on D. A k-ary operation f
on D is a polymorphism of φ if, for any x1, . . . ,xk ∈ Dm with xi ∈ Feas(φ) for
all 1 ≤ i ≤ k, we have that f(x1, . . . ,xk) ∈ Feas(φ).

For any valued constraint language Γ over a set D, we denote by Pol(Γ)
the set of all operations on D which are polymorphisms of all φ ∈ Γ . We write
Pol(φ) for Pol({φ}).

A k-ary projection is an operation of the form π
(k)
i (x1, . . . , xk) = xi for some

1 ≤ i ≤ k. Projections are polymorphisms of all valued constraint languages.
The composition of a k-ary operation f : Dk → D with k �-ary operations

gi : D� → D for 1 ≤ i ≤ k is the �-ary operation f [g1, . . . , gk] : D� → D defined
by f [g1, . . . , gk](x1, . . . , x�) = f(g1(x1, . . . , x�), . . . , gk(x1, . . . , x�)) .

We denote by OD the set of all finitary operations on D and by O(k)
D the

k-ary operations in OD. A clone of operations, C ⊆ OD, is a set of operations
on D that contains all projections and is closed under composition. It is easy to
show that Pol(Γ) is a clone for any valued constraint language Γ .

Definition 8. A k-ary fractional operation ω is a probability distribution over
O(k)

D . We define supp(ω) = {f ∈ O(k)
D | ω(f) > 0}.

Definition 9. Let φ be an m-ary weighted relation on D and let ω be a k-ary
fractional operation on D. We call ω a fractional polymorphism of φ (and say
that φ is improved by ω) if supp(ω) ⊆ Pol(φ) and for any x1, . . . ,xk ∈ Dm with
xi ∈ Feas(φ) for all 1 ≤ i ≤ k, we have

E
f∼ω

[φ(f(x1, . . . ,xk))] ≤ avg{φ(x1), . . . , φ(xk)} . (2)

Definition 10. For any valued constraint language Γ ⊆ ΦD, we define fPol(Γ)
to be the set of all fractional operations that are fractional polymorphisms of all
weighted relations φ ∈ Γ . We write fPol(φ) for fPol({φ}).

Example 2. A valued constraint language on domain {0, 1} is called submodular
if it has the fractional polymorphism ω defined by ω(min) = ω(max) = 1

2 , where
min and max are the two binary operations that return the smaller and larger
of its two arguments respectively with respect to the usual order 0 < 1.

For a valued constraint language Γ we define supp(Γ) =
⋃

ω∈fPol(Γ) supp(ω) .

Lemma 1. For any valued constraint language Γ , supp(Γ) is a clone.

We note that Lemma 1 has also been observed in [22] and in [14].
A special case of the following lemma has been observed, in the context of

Min-Sol problems [29], by Hannes Uppman.1

Lemma 2. Let Γ be a valued constraint language of finite size on a domain D
and let f ∈ Pol(Γ). Then, f ∈ supp(Γ) if, and only if, f ∈ Pol(Opt(I)) for all
instances I of VCSP(Γ).
1 Private communication.

Sherali-Adams Relaxations for Valued CSPs 1063

Cores and Constants. Let CD = {{(d)} | d ∈ D} be the set of constant unary
relations on D.

Definition 11. Let Γ be a valued constraint language with domain D and let
S ⊆ D. The sub-language Γ [S] of Γ induced by S is the valued constraint
language defined on domain S and containing the restriction of every weighted
relation φ ∈ Γ onto S.

Definition 12. A valued constraint language Γ is a core if all unary operations
in supp(Γ) are bijections. A valued constraint language Γ ′ is a core of Γ if Γ ′

is a core and Γ ′ = Γ [f(D)] for some f ∈ supp(ω) with ω a unary fractional
polymorphism of Γ .

Lemma 3. Let Γ be a valued constraint language and Γ ′ a core of Γ . Then, for
all instances I of VCSP(Γ) and I ′ of VCSP(Γ ′), where I ′ is obtained from I by
substituting each function in Γ for its restriction in Γ ′, the optimum of I and
I ′ coincide.

Lemma 4 ([22]). Let Γ be a core valued constraint language. The problems
VCSP(Γ) and VCSP(Γ ∪ CD) are polynomial-time equivalent.

A special case of Lemma 4 for finite-valued constraint languages was proved
by the authors in [27], building on [15], and Lemma 4 can be proved similarly.

3 Sherali-Adams and Valued Relational Width

In this section, we state and prove our main result on the applicability of Sherali-
Adams relaxations to VCSPs. First, we define some notions concerning bounded
relational width which is the basis for our proof.

We write (S,C) for (valued) constraints that involve (unweighted) relations,
where S is the scope and C is the constraint relation. For a tuple x ∈ DS , we
denote by πS′(x) its projection onto S′ ⊆ S. For a constraint (S,C), we define
πS′(C) = {πS′(x) | x ∈ C}.

Let 1 ≤ k ≤ � be integers. The following definition is equivalent2 to the
definition of (k, �)-minimality for CSP instances given in [1].

Definition 13. A CSP-instance J = (V,D, {(Si, Ci)}q
i=1) is said to be (k, �)-

minimal if:

– For every S ⊆ V , |S| ≤ �, there exists 1 ≤ i ≤ q such that S = Si.
– For every i, j ∈ [q] such that |Sj | ≤ k and Sj ⊆ Si, Cj = πSj

(Ci).

There is a straightforward polynomial-time algorithm for finding an equiva-
lent (k, �)-minimal instance [1]. This leads to the notion of relational width:

2 The two requirements in [1] are: for every S ⊆ V with |S| ≤ � we have S ⊆ Si for
some 1 ≤ i ≤ q; and for every set W ⊆ V with |W | ≤ k and every 1 ≤ i, j ≤ q with
W ⊆ Si and W ⊆ Sj we have πW (Ci) = πW (Cj).

1064 J. Thapper and S. Živný

Definition 14. A constraint language Δ has relational width (k, �) if, for every
instance J ∈ CSP(Δ), an equivalent (k, �)-minimal instance is non-empty if,
and only if, J has a solution.

A k-ary idempotent operation f : Dk → D is called a weak near-unanimity
(WNU) operation if, for all x, y ∈ D, f(y, x, x, . . . , x) = f(x, y, x, x, . . . , x) =
f(x, x, . . . , x, y).

Definition 15. We say that a clone of operations satisfies the bounded width
condition (BWC) if it contains WNU operations of all but finitely many arities.

Theorem 1 ([3,21]). Let Δ be a constraint language of finite size containing
all constant unary relations. Then, Δ has bounded relational width if, and only
if, Pol(Δ) satisfies the BWC.

Theorem 2 ([1]). Let Δ be a constraint language. If Δ has bounded relational
width, then it has relational width (2, 3).

Let I(x1, . . . , xn) =
∑q

i=1 φi(Si) be an instance of the VCSP, where Si ⊆
V = {x1, . . . , xn} and φi : D|Si| → Q. First, we make sure that every non-empty
S ⊆ V with |S| ≤ � appears in some term φi(S), possibly by adding constant-0
weighted relations. The Sherali-Adams [24] linear programming relaxation with
parameters (k, �) is defined as follows. The variables are λi(s) for every i ∈ [q]
and tuple s ∈ DSi .

min
q∑

i=1

∑

s∈Feas(φi)

λi(s)φi(s)

λj(t) =
∑

s∈DSi ,πSj
(s)=t

λi(s) ∀i, j ∈ [q] : Sj ⊆ Si, |Sj | ≤ k, t ∈ DSj

∑

s∈DSi

λi(s) = 1 ∀i ∈ [q]

λi(s) = 0 ∀i ∈ [q] , s �∈ Feas(φi)

λi(s) ≥ 0 ∀i ∈ [q] , s ∈ DSi

The SA(k, �) optimum is always less than or equal to the VCSP optimum,
hence the program is a relaxation. In anticipation of our main theorem, we make
the following definition.

Definition 16. A valued constraint language Γ has valued relational width
(k, �) if, for every instance I of VCSP(Γ), if the SA(k, �)-relaxation of I has
a feasible solution, then its optimum coincides with the optimum of I.

For a feasible solution λ of SA(k, �), let supp(λi) = {s ∈ DSi | λi(s) > 0}.

Lemma 5. Let I be an instance of VCSP(Γ). Assume that SA(k, �) for I is
feasible. Then, there exists an optimal solution λ∗ to SA(k, �) such that, for
every i, supp(λ∗

i) is closed under every operation in supp(Γ).

Sherali-Adams Relaxations for Valued CSPs 1065

Theorem 3. Let Γ be a valued constraint language of finite size containing
all constant unary relations. If supp(Γ) satisfies the BWC, then Γ has valued
relational width (2, 3).

Proof. Let I be an instance of VCSP(Γ). The dual of the SA(k, �) relaxation can
be written in the following form, with variables zi for i ∈ [q] and yj,t,i for i, j ∈ [q]
such that Sj ⊆ Si, |Sj | ≤ k, and t ∈ DSj . The dual variables corresponding to
λi(s) = 0 are eliminated together with the dual inequalities for i, s �∈ Feas(φi).

max
q∑

i=1

zi

zi ≤ φi(s) +
∑

j∈[q],Sj⊆Si

yj,πSj
(s),i −

∑

j∈[q],Si⊆Sj

yi,s,j ∀i ∈ [q] , |Si| ≤ k, s ∈ Feas(φi)

zi ≤ φi(s) +
∑

j∈[q],Sj⊆Si

|Sj |≤k

yj,πSj
(s),i ∀i ∈ [q] , |Si| > k, s ∈ Feas(φi)

It is clear that if I has a feasible solution, then so does the SA(k, �) primal.
Assume that the SA(2, 3)-relaxation has a feasible solution. By Lemma 5, there
exists an optimal primal solution λ∗ such that, for every i ∈ [q], supp(λ∗

i) is
closed under supp(Γ). Let y∗, z∗ be an optimal dual solution.

Let Δ = {Ci}q
i=1 ∪ {CD}, where Ci = supp(λ∗

i), and consider the instance
J = (V,D, {(Si, Ci)}q

i=1) of CSP(Δ). We make the following observations:
1. By construction of λ∗, supp(Γ) ⊆ Pol(Δ), so Δ contains all constant unary

relations and satisfies the BWC. By Theorems 1 and 2, the language Δ has
relational width (2, 3).

2. The first set of constraints in the primal say that if i, j ∈ [q], |Sj | ≤ 2 and
Sj ⊆ Si, then λ∗

j (t) > 0 (i.e., t ∈ Cj) iff
∑

s∈DSi ,πSj
(s)=t λ∗

i (s) > 0 (i.e.,
t ∈ πSj

(Ci)). In other words, J is (2, 3)-minimal.

These two observations imply that J has a satisfying assignment σ : V → D.
By complementary slackness, since λ∗

i (σ(Si)) > 0 for every i ∈ [q], we must have
equality in the corresponding rows in the dual indexed by i and σ(Si). Hence,

q∑

i=1

z∗
i =

q∑

i=1

φi(σ(Si)) + (
q∑

i=1

∑

j∈[q],Sj⊆Si

|Sj |≤2

y∗
j,πSj

(σ(Si)),i
−

∑

i∈[q]
|Si|≤2

∑

j∈[q]
Si⊆Sj

y∗
i,σ(Si),j

)

(3)
By noting that πSj

(σ(Si)) = σ(Sj), we can rewrite the expression in paren-
thesis on the right-hand side of (3) as:

∑

i,j∈[q],Sj⊆Si

|Sj |≤2

y∗
j,σ(Sj),i

−
∑

i,j∈[q],Si⊆Sj

|Si|≤2

y∗
i,σ(Si),j

= 0. (4)

Therefore,
∑q

i=1

∑
s∈Feas(φi)

λ∗
i (s)φi(s) =

∑q
i=1 z∗

i =
∑q

i=1 φi(σ(Si)), where
the first equality follows by strong LP-duality, and the second by (3) and (4).
Since I was an arbitrary instance of VCSP(Γ), the theorem follows.

1066 J. Thapper and S. Živný

4 Generalisations of Known Tractable Languages

In this section, we give some applications of Theorem 3. Firstly, we show that the
BWC is preserved by going to a core and the addition of constant unary relations.
Hence the BWC guarantees valued relational width (2, 3) also for languages not
necessarily containing constant unary relations, as required by Theorem 3.

Lemma 6. Let Γ be a valued constraint language of finite size on domain D
and Γ ′ a core of Γ on domain D′ ⊆ D. Then, supp(Γ) satisfies the BWC if,
and only if, supp(Γ ′ ∪ CD′) satisfies the BWC.

Theorem 4. Let Γ be a valued constraint language of finite size. If supp(Γ)
satisfies the BWC, then Γ has valued relational width (2, 3).

Secondly, we show that for any VCSP instance over a language of valued
relational width (2, 3) we can not only compute the value of an optimal solution
but we can also find an optimal assignment in polynomial time.

Proposition 1. Let Γ be a valued constraint language of finite size and I an
instance of VCSP(Γ). If supp(Γ) satisfies the BWC, then an optimal assignment
to I can be found in polynomial time.

Finally, we show that testing for the BWC is a decidable problem.

Proposition 2. Testing whether a valued constraint language of finite size sat-
isfies the BWC is decidable.

Tractable Languages. Here we give some examples of previously studied valued
constraint languages and show that they all have valued relational width (2, 3).

Example 3. Let ω be a ternary fractional operation defined by ω(f) = ω(g) =
ω(h) = 1

3 for some (not necessarily distinct) majority operations f , g, and h.
Cohen et al. proved the tractability of any language improved by ω by a reduction
to CSPs with a majority polymorphism [8].

Example 4. Let ω be a ternary fractional operation defined by ω(f) = 2
3 and

ω(g) = 1
3 , where f : {0, 1}3 → {0, 1} is the Boolean majority operation and

g : {0, 1}3 → {0, 1} is the Boolean minority operation. Cohen et al. proved the
tractability of any language improved by ω by a simple propagation algorithm [8].

Example 5. Generalising Example 4 from Boolean to arbitrary domains, let ω be
a ternary fractional operation such that ω(f) = 1

3 , ω(g) = 1
3 , and ω(h) = 1

3 for
some (not necessarily distinct) conservative majority operations f and g, and a
conservative minority operation h; such an ω is called an MJN. Kolmogorov and
Živný proved the tractability of any language improved by ω by a 3-consistency
algorithm and a reduction, via Example 6, to submodular function minimisa-
tion [18].

Sherali-Adams Relaxations for Valued CSPs 1067

Corollary 1. Let Γ be a valued constraint language of finite size such that
supp(Γ) contains a majority operation. Then, Γ has valued relational width (2, 3).

Example 6. Let ω be a binary fractional operation defined by ω(f) = ω(g) =
1
2 , where f and g are conservative and commutative operations and f(x, y) �=
g(x, y) for every x and y; such an ω is called a symmetric tournament pair
(STP). Cohen et al. proved the tractability of any language improved by ω by
a 3-consistency algorithm and an ingenious reduction to submodular function
minimisation [7]. Such languages were shown to be the only tractable languages
among conservative finite-valued constraint languages [18].

Corollary 2. Let Γ be a valued constraint language of finite size such that
supp(Γ) contains two symmetric tournament operations (that is, binary oper-
ations f and g that are both conservative and commutative and f(x, y) �= g(x, y)
for every x and y). Then, Γ has valued relational width (2, 3).

Example 7. Generalising Example 6, let ω be a binary fractional operation
defined by ω(f) = ω(g) = 1

2 , where f and g are conservative and commuta-
tive operations; such an ω is called a tournament pair. Cohen et al. proved the
tractability of any language improved by ω by a consistency-reduction relying
on Bulatov’s result [4], which in turn relies on 3-consistency, to the STP case
from Example 6 [7].

Corollary 3. Let Γ be a valued constraint language of finite size such that
supp(Γ) contains a tournament operation (that is, a binary conservative and
commutative operation). Then, Γ has valued relational width (2, 3).

Example 8. In this example we denote by {{. . .}} a multiset. Let ω be a binary
fractional operation on D defined by ω(f) = ω(g) = 1

2 and let μ be a
ternary fractional operation on D defined by μ(h1) = μ(h2) = μ(h3) = 1

3 .
Moreover, assume that {{f(x, y), g(x, y)}} = {{x, y}} for every x and y and
{{h1(x, y, z), h2(x, y, z), h3(x, y, z)}} = {{x, y, z}} for every x, y, and z. Let Γ be a
language on D such that for every two-element subset {a, b} ⊆ D, either ω|{a,b}
is an STP or μ|{a,b} is an MJN. Kolmogorov and Živný proved the tractability of
Γ by a 3-consistency algorithm and a reduction, via Example 6, to submodular
function minimisation [18]. Such languages were shown to be the only tractable
languages among conservative valued constraint languages [18].

Corollary 4. Let Γ be a valued constraint language of finite size with fractional
polymorphisms ω and μ as described in Example 8. Then, Γ has valued relational
width (2, 3).

Dichotomy for Conservative Valued Constraint Languages. A valued constraint
language Γ is called conservative if Γ contains all unary {0, 1}-valued weighted
relations. Kolmogorov and Živný gave a dichotomy theorem for such languages,
showing that they are either NP-hard, or tractable, cf. Example 8. Here we prove
this dichotomy using the SA(2, 3)-relaxation as the algorithmic tool.

1068 J. Thapper and S. Živný

Lemma 7. Let Γ be a valued constraint language and I be any instance of
VCSP(Γ). Then, VCSP(Γ ∪ {Opt(I)}) polynomial-time reduces to VCSP(Γ).

The following theorem was proved by Takhanov [25] with a reduction, essen-
tially amounting to Lemma 7, added in [18].

Theorem 5 ([18,25]). Let Γ be a conservative valued constraint language. If
Pol(Γ) does not contain a majority polymorphism, then Γ is NP-hard.

Theorem 6. Let Γ be a conservative valued constraint language. Either Γ is
NP-hard, or Γ has valued relational width (2, 3).

Proof. Let F be the set of majority operations in Pol(Γ)\supp(Γ). By Lemma 2,
for each f ∈ F , there is an instance If of VCSP(Γ) such that f �∈ Pol(Opt(If)).
Let Γ ′ = Γ ∪ {Opt(If) | f ∈ F}. Assume that Pol(Γ ′) contains a majority
polymorphism f . Then, f �∈ F , so f ∈ supp(Γ). From Corollary 1, it follows
that Γ has valued relational width (2, 3). If Pol(Γ ′) does not contain a majority
polymorphism, then, since Γ is conservative, so is Γ ′, and hence Γ ′ is NP-hard
by Theorem 5. Therefore, Γ is NP-hard by Lemma 7.

5 Conclusions

We have shown that most previously studied tractable valued constraint lan-
guages that are not purely relational fall into the cases covered by Theorem 4.
In the full version of this paper, we will prove the converse of Theorem 4, thus
giving a precise characterisation of the power of valued relational width (2, 3),
as well as some computational complexity consequences.

References

1. Barto, L.: The collapse of the bounded width hierarchy. Journal of Logic and
Computation (2014)

2. Barto, L., Kozik, M.: Robust Satisfiability of Constraint Satisfaction Problems. In:
Proc. STOC 2012, pp. 931–940. ACM (2012)

3. Barto, L., Kozik, M.: Constraint Satisfaction Problems Solvable by Local Consis-
tency Methods. Journal of the ACM 61(1), Article No. 3 (2014)

4. Bulatov, A.: Combinatorial problems raised from 2-semilattices. Journal of Algebra
298, 321–339 (2006)

5. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the Complexity of Constraints
using Finite Algebras. SIAM Journal on Computing 34(3), 720–742 (2005)

6. Chekuri, C., Khanna, S., Naor, J., Zosin, L.: A linear programming formulation and
approximation algorithms for the metric labeling problem. SIAM J. on Discrete
Mathematics 18(3), 608–625 (2004)

7. Cohen, D.A., Cooper, M.C., Jeavons, P.G.: Generalising submodularity and Horn
clauses: Tractable optimization problems defined by tournament pair multimor-
phisms. Theoretical Computer Science 401(1–3), 36–51 (2008)

8. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The Complexity of Soft
Constraint Satisfaction. Artif. Intell. 170, 983–1016 (2006)

Sherali-Adams Relaxations for Valued CSPs 1069

9. Dalmau, V., Krokhin, A., Manokaran, R.: Towards a characterization of constant-
factor approximable Min CSPs. In: Proc. SODA 2015 (2015)

10. Dalmau, V., Krokhin, A.A.: Robust Satisfiability for CSPs: Hardness and Algo-
rithmic Results. ACM ToCT 5(4), Article No. 15 (2013)

11. de la Vega, W. F., Kenyon-Mathieu, C.: Linear programming relaxations of maxcut.
In: Proc. SODA 2007, pp. 53–61. SIAM (2007)

12. Ene, A., Vondrák, J., Wu, Y.: Local distribution and the symmetry gap: Approx-
imability of multiway partitioning problems. In: SODA 2013, pp. 306–325 (2013)

13. Feder, T., Vardi, M.Y.: The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM
Journal on Computing 28(1), 57–104 (1998)

14. Fulla, P., Živný, S.: A Galois Connection for Valued Constraint Lan-guages of
Infinite Size. In: Proc. ICALP 2015. Springer (2015)

15. Huber, A., Krokhin, A., Powell, R.: Skew bisubmodularity and valued CSPs. SIAM
Journal on Computing 43(3), 1064–1084 (2014)

16. Jeavons, P., Krokhin, A., Živný, S.: The complexity of valued constraint satisfac-
tion. Bulletin of the EATCS 113, 21–55 (2014)

17. Kolmogorov, V., Thapper, J., Živný, S.: The power of linear programming for
general-valued CSPs. SIAM Journal on Computing 44(1), 1–36 (2015)

18. Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs. Journal
of the ACM 60(2), Article No. 10 (2013)

19. Kozik, M., Krokhin, A., Valeriote, M., Willard, R.: Characterizations of several
Maltsev Conditions. Algebra Universalis (2014) (to appear)

20. Kun, G., O’Donnell, R., Tamaki, S., Yoshida, Y., Zhou, Y.: Linear programming,
width-1 CSPs, and robust satisfaction. In: ITCS 2012, p. 484–495 (2012)

21. Larose, B., Zádori, L.: Bounded width problems and algebras. Algebra Universalis
56, 439–466 (2007)

22. Kozik, M., Ochremiak, J.: Algebraic Properties of Valued Constraint Satisfaction
Problem. In: Proc. ICALP 2015. Springer (2015)

23. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP?
In: Proc. STOC 2008, pp. 245–254. ACM (2008)

24. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal of
Discrete Mathematics 3(3), 411–430 (1990)

25. Takhanov, R.: A Dichotomy Theorem for the General Minimum Cost Homomor-
phism Problem. In: Proc. STACS 2010, pp. 657–668 (2010)

26. Thapper, J., Živný, S.: The power of linear programming for valued CSPs. In:
Proc. FOCS 2012, pp. 669–678. IEEE (2012)

27. Thapper, J., Živný, S.: The complexity of finite-valued CSPs. In: Proc. STOC
2013, pp. 695–704. ACM (2013) (February 2015). Full version arXiv:1210.2977v3

28. Thapper, J., ZŽivný, S.: Necessary Conditions on Tractability of Valued Constraint
Languages. Technical report, February 2015. arXiv:1502.03482

29. Uppman, H.: The Complexity of Three-Element Min-Sol and Conservative Min-
Cost-Hom. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part I. LNCS, vol. 7965, pp. 804–815. Springer, Heidelberg (2013)

30. Yoshida, Y., Zhou, Y.: Approximation schemes via Sherali-Adams hierarchy for
dense constraint satisfaction problems and assignment problems. In: Proc. ITCS
2014, pp. 423–438. ACM (2014)

http://arxiv.org/abs/1210.2977v3
http://arxiv.org/abs/1502.03482

Two-sided Online Bipartite Matching and
Vertex Cover: Beating the Greedy Algorithm

Yajun Wang1 and Sam Chiu-wai Wong2(B)

1 Microsoft Research Asia, Beijing, China
2 University of California, Berkeley, USA

samcwong@berkeley.edu

Abstract. We consider the generalizations of two classical problems,
online bipartite matching and ski rental, in the field of online algorithms,
and establish a novel connection between them.

In the original setting of online bipartite matching, vertices from only
one side of the bipartite graph are online. Motivated by market clearing
applications where both buyers and sellers are online, we study the gener-
alization, called two-sided online bipartite matching, in which all vertices
can be online. An algorithm for it should maintain a b-matching and try
to maximize its size. We show that this problem can be attacked by con-
sidering the complementary “dual” problem, two-sided online bipartite
vertex cover, which in fact is a generalization of ski rental.

As the greedy algorithm is 1/2-competitive for both problems, the
challenge is to beat the ratio of 1/2. In this paper, we present new
0.526-competitive algorithms for both problems under the large budget
assumption. A key technical ingredient of our results is a charging-based
framework for the design and analysis of water-filling type algorithms.
This allows us to systematically establish approximation bounds for var-
ious water-filling algorithms.

On the hardness side, we show that no online randomized algorithm
achieves a competitive ratio better than 0.570 and 0.625 respectively for
these two problems. Our bounds show that the one-sided optimal ratio
of 1 − 1/e ≈ 0.632 is indeed unattainable.

1 Introduction

The classical online bipartite matching problem (OBM) studies algorithms which
incrementally construct a matching in the presence of online vertex arrival. Infor-
mally, while one side of the input bipartite graph is known (offline) initially, ver-
tices on the other side are revealed one after another along with their incident
edges. The goal is to maintain a large monotone matching from which no edge
is ever removed. The optimal competitive ratio for OBM is 1 − 1/e.

As observed in [3,4], most of the OBM variants studied in the literature share
the common feature that vertices of only one side of the bipartite graph arrive

S.C-W. Wong—This research was supported by NSF grants CCF0964033 and
CCF1408635, and by Templeton Foundation grant 3966.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 1070–1081, 2015.
DOI: 10.1007/978-3-662-47672-7 87

Two-sided Online Bipartite Matching and Vertex Cover 1071

online. While this property indeed holds in many applications, it does not nec-
essarily reflect the reality in general. For example, in the online market clearing
problem [4], buyers and sellers in a commodity market are represented by the two
bipartitions. An edge between a buyer and a seller indicates that the price that
the buyer is willing to offer is higher than the seller’s valuation. The objective
is to maximize the number of trades, or the size of the matching. Here both the
buyers and sellers arrive and leave online.

In this paper, this limitation is addressed by allowing all vertices to be online.
We introduce the two-sided online bipartite b-matching problem (TOBM) which
requires maintaining a large b-matching in an online manner when vertices arrive
one at a time. At each step an adversarially chosen vertex v is revealed with
its edges incident to the previously arrived neighbors. An algorithm must then
decide how many copies of each edge should be added to the current b-matching
x, while ensuring that the total number of edge copies incident to each vertex u
does not exceed its budget bu. The objective is to maximize the size of x.

As with most other problems in the field, it is clear that the Greedy algo-
rithm, which maintains a maximal b-matching, is 1/2-competitive. Thus the
central challenge here is to beat Greedy. One of our two main results is a
0.526-competitive algorithm for TOBM.

New charging framework. Interestingly, departing from previous approaches to
OBM-type problems, we attack the problem by first studying its dual. This new
approach carries two benefits. Firstly, the structure of the dual suggests a simple
class of algorithms analysable under an elegant charging framework, thus cir-
cumventing the previous delicate mapping-based argument and the primal-dual
method which must simultaneously update both the primal and dual variables.
Secondly, the charging-based analysis can be cast back into the primal-dual
framework naturally (section 3). In short, our new approach can be viewed as a
recipe to systematically engineer primal-dual analyses for OBM-type problems.

Connection to ski rental. As a bonus, the duals of OBM and TOBM, online bipartite
vertex cover, are interesting problems in their own right since they generalize the
classical ski rental problem. In fact, online bipartite vertex cover can be inter-
preted as the combinatorial version of ski rental. Thus in a way, our results estab-
lish a strong connection between online bipartite matching and ski rental, two
of the most well-studied online problems. This connection is somewhat unusual
as they do not generalize ski rental but are the dual of its generalization.

Main results. As mentioned above, Greedy achieves an approximation factor
of 1/2 for just about any online matching and vertex cover type problems. Our
main results are 0.526-competitive algorithms for two-sided online bipartite b-
matching (under the large budget assumption1) and vertex cover. To our knowl-
edge, this is the first successful attempt in breaking the barrier of 1/2 attained
by Greedy. Our results are also improvements over special cases of the online
edge-selection problem [4] and the online edge-arrival problem [24], both of which

1 More precisely, the assumption is needed for only TOBM but not TOBVC.

1072 Y. Wang and S.C.-w. Wong

currently have best competitive ratio 1/2. Furthermore, our algorithms are also
optimal with respect to the charging framework described above.

1.1 Preliminaries
As usual, we begin with the definitions of our problems. Let G = (L ∪ R,E)
be a bipartite graph with left vertices L and right vertices R. Thus L ∩ R = ∅
and E ⊆ L × R. Let V = L ∪ R. Each v ∈ V also has a budget/weight bv ≥ 0.
We denote by N(v) the neighbors of v. Recall that x ∈ N

E
≥0 is a b-matching if∑

u∈N(v) xuv ≤ bv∀v ∈ V ; xe is the number of copies of e in the b-matching.
Online Bipartite b-Matching and Vertex Cover (OBM & OBVC) Initially, we are
given L and their capacity bu, u ∈ L. At each step a vertex v ∈ R is revealed
with bv and its incident edges. An algorithm for OBM maintains a b-matching x,
and must irrevocably decide at each step on the values of xe for each new edge
e. The objective is to maximize the size of x.

Similarly, for OBVC we are required to maintain a vertex cover C at all time
by only inserting vertices into C, i.e. no vertex removal is allowed. Thus at each
step the task is essentially deciding if v or N(v) should be inserted to C. The
objective is to minimize the weight of C, b(C) :=

∑
v∈C bv.

Two-sided Online Bipartite b-Matching and Vertex Cover (TOBM & TOBVC) The
two-sided version relaxes the constraint that only the right vertices R are online.
In this setting, the graph is initially empty and at each step, a new vertex
v ∈ V arrives along with bv and the edges incident to v and its already arrived
neighbors. Analogous to OBM & OBVC, an algorithm for TOBM (resp. TOBVC) main-
tains a b-matching x (resp. vertex cover) from which no edge (resp. vertex) is
ever removed. Furthermore, xe never changes once initialized. The objectives are
exactly the same as before.

Model. We measure the performance of online algorithms via the standard com-
petitive analysis and oblivious adversary model. Roughly speaking, this means
that the adversary chooses the input before the algorithm executes, and a ran-
domized algorithm is c-competitive if the (expected) quality of its solution is
within a multiplicative factor of c from optimum.

Fractional vertex cover and b-matching. We will use the LP relaxations for bipar-
tite b-matching and vertex cover extensively. The dual variable yv is called the
potential of v.

Primal (b-Matching): Dual (Vertex Cover):
max

∑
e∈E xe min

∑
v∈V bvyv

s.t. xv :=
∑

u∈N(v) xuv ≤ bv, ∀v ∈ V s.t. yu + yv ≥ 1, ∀(u, v) ∈ E

x ≥ 0 y ≥ 0

1.2 Our Contributions and Techniques

Our main results are 0.526-competitive algorithms for TOBM4 and TOBVC, and
an optimal 1 − 1/e-competitive algorithm for OBVC, beating the baseline 1/2-
competitive Greedy and improving over special cases of the online edge-
selection problem [4] and the online edge-arrival problem [24]. These results also

Two-sided Online Bipartite Matching and Vertex Cover 1073

generalize the classical online bipartite matching and ski rental problems, thus
establishing a connection between them. This suggests that there are perhaps
more connections of the other work on these two problems in the literature, and
understanding them may lead to new insights into some of the open problems.

Tables 1 and 2 summarize our contributions (in bold) and the existing state-
of-the-art results, for both our problems and their close relatives in the literature.
In Table 1, the last three problems are generalizations of the first, whereas in
Table 2, the (n + 1)-th problem generalizes the n-th.

Table 1. Results for online matching type problems

online bipartite
b-matching

adwords online bipartite
weighted b-matching

two-sided online
bipartite b-matching

Comp. ratios 1 − 1/e ≈ 0.632 1 − 1/e 2 1 − 1/e 4 0.532 4

Hardness 1 − 1/e 1 − 1/e 1 − 1/e 0.625

References [1,19],[14]4 [23] [7,11] this paper

Table 2. Results for ski rental type problems

ski rental multislope
ski rental

online bipartite
vertex cover

two-sided online
bipartite vertex cover

Comp. ratios 1 − 1/e 1 − 1/e 1 − 1/e 0.532

Hardness 1 − 1/e 1 − 1/e 1 − 1/e 0.570

References [18] [20] this paper3 this paper

A key technical ingredient of our results is a novel charging-based framework
for the design and analysis of water-filling type algorithms, first used in [14].
This allows us to systematically establish approximation bounds for different
variants of water-filling algorithms.

To give a glimpse into how our charging scheme works, consider the OBVC
problem. Upon the arrival of a new v ∈ R, we are to add v or N(v) to the
current vertex cover C in order to maintain feasibility. On the other hand, by
the definition of vertex cover we know that v or N(v) must be in the optimal
solution. Our scheme will charge the increment in the cost of the algorithm’s
solution to either v or N(v) depending on which of the two are in the optimum.

At a very high level, the elegance of the charging framework relies on the
simplicity of deciding between only two choices to process an online vertex. This
is also the beauty of starting from the simpler dual problem of vertex cover.

Finally, the optimality of our algorithm under the charging-based framework
follows from the solution to a minimax optimization problem, which may be of
independent interest.

2 Under the large budget assumption: the ratio converges to the said value as
minv∈V bv → ∞.

3 With some work this result can be implied by an earlier paper [5]. See the next
section for a discussion.

1074 Y. Wang and S.C.-w. Wong

1.3 Related Work

There are two lines of research related to our work.

Online matching. The online bipartite matching problem was first studied in
the seminal paper by Karp et al. [19]. They gave an optimal 1−1/e-competitive
algorithm. Subsequent works studied its variants such as b-matching [14], vertex
weighted version [1,9], adwords [1,5,8–10,13,23] and online market clearing [4].
Water-filling algorithms have been used for a few variants of the online bipartite
matching problem (e.g. [5,14]). Another line of research studies the problem
under more relaxed models by assuming certain randomness inherent to the
input [12,15,21,22]. Online matching for general graphs have been studied under
similar stochastic models [2]. To our knowledge, there is no result on this problem
in the more restricted adversarial models other than the naive greedy algorithm,
even for just bipartite graphs with vertices from both sides online [4].

Ski rental. The ski rental problem was first studied in [18]. Karlin et al. gave
an optimal 1

1−1/e -competitive algorithm [17]. There are many generalizations
of ski rental. Of particular relevance are multislope ski rental [20] and TCP
acknowledgment [16], where the competitive ratio 1

1−1/e is still achievable. The
OBVC problem presented in this paper is also of this nature and, in fact, further
generalizes multislope ski rental, as shown in the full version of the paper.

Finally, online vertex cover was studied by Demange et al. [6] in a substan-
tially different model. Their competitive ratios are characterized by maxv deg(v).

2 One-sided and Two-sided Online Bipartite Vertex Cover

In this section, we study online vertex cover which is the “dual” of online match-
ing. Our results are an optimal 1−1/e-competitive algorithm for Online Bipartite
Vertex Cover (OBVC) and a 0.526-competitive algorithm for Two-sided Online
Bipartite Vertex Cover (TOBVC). Both problems generalize the well-known ski
rental problem, which has an optimal competitive ratio 1 − 1/e [17].

We first argue that it suffices to work exclusively with the fractional version.
That is, an algorithm can just maintain a fractional VC y in a way that yv never
decreases for v ∈ V . This is the consequence of a simple rounding scheme which
randomly rounds a fractional VC to an integral VC in an online fashion.

Lemma 1. (Lossless rounding) Any deterministic algorithm for fractional OBVC
can be converted to a randomized algorithm for integral OBVC with the same
competitive ratio.

Our algorithm for TOBVC in fact even applies to online fractional VC in general
graphs but this would not imply the same result for integral VC since Lemma 1
holds only for bipartite graphs.

Two-sided Online Bipartite Matching and Vertex Cover 1075

2.1 (One-sided) Online Bipartite Vertex Cover

We present an optimal algorithm for OBVC. We note that with some work, the
primal-dual analysis of a water-level algorithm for online fractional matching [5]
implies another optimal algorithm for our problem. Our algorithm applies the
water level paradigm on vertex cover instead of matching. This difference may
appear trivial but it actually has profound consequences as discussed earlier. In
particular, because of the structure of vertex cover, our charging-based analysis
is considerably simpler and more amenable to generalizations.

For each vertex v, Algorithm 1 maintains a non-decreasing cover potential yv.
When an online vertex v arrives, to cover the new edges between v and N(v) are
revealed, we must initialize the potential yv of v and possibly also increase the
potentials of its neighbors. Suppose we set yv = 1 − y for some y. To maintain
a feasible vertex cover, any yu < y for u ∈ N(v) should be increased to y.

The crux lies in how y is determined. We consider a simple scheme in which
y is related to the total potential increment of N(v). More precisely, we require
that the total potential increment bv(1 − y) +

∑
u∈N(v):yu<y bu(y − yu) be at

most bv/(1 − 1/e). Such an update rule arises from the need to balance the
possibilities whether v or N(v) is in the optimal vertex cover. Intuitively, if v is
in the optimum we do not wish to spend more than bv/(1 − 1/e), which is the
“fair” amount of resources v should is entitled to. If, on the other hand, N(v)
is in the optimum we should then charge bvyv to N(v). The charging analysis
below will quantify these statements.

Algorithm 1. Water-filling algorithm for OBVC

Input: L and bu, u ∈ L
Initialize for each u ∈ L, yu = 0;
for each online vertex v ∈ R do

Maximize y ≤ 1, s.t., bv(1 − y) +
∑

u∈N(v) bu max{y − yu, 0} ≤ bv/(1 − 1/e);

For each u ∈ N(v), yu ← max{yu, y};
yv ← 1 − y;

end

Analysis. Let C∗ be a minimum vertex cover of G. Our strategy is to charge the
potential increment to vertices of C∗ in such a way that each vertex of v ∈ C∗

is charged at most bv/(1 − 1/e).
Let v be the current online vertex. Our algorithm sets yv = 1 − y for some

y. Let yu be the potential of u ∈ N(v). We consider two cases.
Case 1: v ∈ C∗. We charge the potential increment in N(v) and v to v, which is
at most bv/(1 − 1/e).
Case 2: v /∈ C∗. Notice that we must have N(v) ⊆ C∗. In this case, vertices of
N(v) should be responsible for the potential yv = 1 − y. We describe how to
charge bv(1 − y) to N(v).

Let g(y) = 1
e−1 +y. Rewrite bv(1−y)+

∑
u∈N(v) bu max{y−yu, 0} ≤ bv/(1−

1/e) as
∑

u∈N(v)

bu max{y − yu, 0} ≤ bv

(
1

e − 1
+ y

)
= bvg(y). (1)

1076 Y. Wang and S.C.-w. Wong

Intuitively, if
∑

u∈N(v) bu(y − yu) = bvg(y), the most fair scheme should

charge 1−y
g(y)bu(y − yu) to u ∈ N(v) since the fair “unit charge” is bv(1−y)

bvg(y) = 1−y
g(y) .

Since 1−t
g(t) is decreasing, 1−y

g(y)bu(y − yu) can be upper bounded by bu

∫ y

yu

1−t
g(t)dt.

This observation motivates the next lemma which constitutes the basis of the
major results in this paper.

Lemma 2. Let f : [0, 1] −→ R+ be continuous s.t. 1−t
f(t) is decreasing, and

F (x) =
∫ x

0
1−t
f(t)dt. If

∑
u∈X bu(y − yu) = bvf(y) for some set X and y ≥ yu

for u ∈ X, then
bv(1 − y) ≤

∑

u∈X

bu (F (y) − F (yu)) .

Proof. We have the following

∑

u∈X

bu (F (y) − F (yu)) =
∑

u∈X

bu

∫ y

yu

1 − t

f(t)
dt ≥

∑

u∈X

bu(y − yu)
1 − y

f(y)
= bv(1 − y).

where the inequality above holds as 1−t
f(t) is decreasing.

Theorem 1. Algorithm 1 is 1 − 1/e-competitive and hence optimal for OBVC.

Proof. We charge the potentials used to the vertices of the minimum cover C∗.
Let v be an online vertex. The case v ∈ C∗ is trivial as explained before.

Now consider the case v /∈ C∗. We charge the potential spent on u ∈ N(v) ⊆
C∗ to u itself. The potential spent on v is bvyv = bv(1−y) where y is the potential
after processing v. Let X = {u ∈ N(v) | yu < y} be the set of vertices whose
potentials increased when processing v. If y = 1, we are done as no charging is
necessary. If y < 1, then we have equality in (1), i.e.,

∑
u∈X bu(y − yu) = bvg(y)

because otherwise y can be bigger without violating the inequality. We charge
each u ∈ X by G(y) − G(yu), where G(x) =

∫ x

0
1−t
g(t)dt. By Lemma 2, bv(1 − y) ≤∑

u∈X bu(G(y) − G(yu)), which is sufficient to account for bv(1 − y).
In summary, each right vertex v ∈ C∗ is responsible for bv/(1−1/e) potential.

On the other hand, each left vertex u ∈ C∗ is responsible for itself (which
contributes at most bu) as well as the incoming charges from its online neighbors.
The sum of these charges can be at most bu(G(1) − G(0)) as the sum bu(G(y) −
G(yu)), taken over the iterations in which yu increases, telescopes. Therefore the
amount of potential charged to a left vertex is bounded by bu(1+G(1)−G(0)) =
bu/(1 − 1/e) as 1 + G(1) − G(0) = 1/(1 − 1/e).

The total cost of the algorithm is then bounded by b(C∗)/(1 − 1/e), and
optimality follows from the fact that OBVC generalizes ski rental (see appendix),
which has an optimal ratio of 1 − 1/e. Finally by Lemma 1, Algorithm 1 can be
converted to give a random integral vertex cover with the same performance.

The reader may wonder how 1 − 1/e arises from our charging scheme. By
replacing 1/(1 − 1/e) by c in our analysis, one can readily establish a ratio of

Two-sided Online Bipartite Matching and Vertex Cover 1077

b(R ∩ C∗)
b(C∗)

c +
b(L ∩ C∗)

b(C∗)

(
1 +

∫ 1

0

1 − t

t + c − 1
dt

)
≤ max{c, 1 +

∫ 1

0

1 − t

t + c − 1
dt}.

Setting the two quantities equal will give c = 1/(1 − /e).

2.2 Two-sided Online Bipartite Vertex Cover

In this section we present a 0.526-competitive algorithm for TOBVC, beating the
baseline 1/2-competitive Greedy and improving over special cases of the online
edge-selection problem [4] and the online edge-arrival problem [24]. Algorithm 2
extends Algorithm 1 in the last section by replacing g(t) = 1/(e − 1) + t by any
continuous function f : [0, 1] −→ R+ for which 1−t

f(t) is decreasing (see Lemma 2).
In other words, in fact we study a class of algorithms parameterized by f .

We must carefully design the function f to obtain a non-trivial competitive
ratio. Before getting into the details, we revisit the analysis in the last section to
gain some insights. In our charging argument, each vertex in L∩C∗ is responsible
for the charges from its neighbors. On the other hand, a vertex in R∩C∗ is only
responsible for the potential increment for processing itself. Now if both L and
R are online, an online vertex v ∈ C∗ should be responsible for the potential
used to process itself when it arrives and the charges from future neighbors.

Algorithm 2. Water-filling algorithm for TOBVC

Let T be the set of arrived vertices. Initially T = ∅;
for each online vertex v do

Maximize y ≤ 1, s.t.,
∑

u∈N(v)∩T bu max{y − yu, 0} ≤ bvf(y);

For each u ∈ N(v) ∩ T , yu ← max{yu, y};
yv ← 1 − y;
T ← T ∪ {v};

end

Informally, the algorithm initializes and updates the potentials yv in this
manner. Upon the arrival of v, if y < 1 we spend resources of bvf(y) on v’s
neighbors and 1 − y on v itself. The previous charging scheme suggests that v
is responsible for bvf(y) if it is in the optimum. However, unlike the one-sided
version, there can be future vertices which are neighbors of v. A natural fix is
that v be charged by them as well. By Lemma 2, v will take charges at most
bv

∫ 1

1−y
1−t
f(t)dt. Setting z = 1 − y, the total charges to each v ∈ C∗ are at most

bvβ(f), where β(f) := max
z∈[0,1]

1 + f(1 − z) +
∫ 1

z

1 − t

f(t)
dt.

We show how to compute the optimal function f(·) in section 2.2. Now we first
formally prove that Algorithm 2 is 1/β(f)-competitive for TOBVC.

Lemma 3. Let f : [0, 1] −→ R+ be continuous such that 1−t
f(t) is decreasing. We

have in Algorithm 2 either y = 1 or
∑

u∈N(v)∩T bu max{y − yu, 0} = bvf(y).

1078 Y. Wang and S.C.-w. Wong

Theorem 2. Suppose f : [0, 1] −→ R+ is continuous and 1−t
f(t) is decreasing. Let

β = maxz∈[0,1] 1 + f(1 − z) +
∫ 1

z
1−t
f(t)dt and F (x) =

∫ x

0
1−t
f(t)dt. Then Algorithm 2

is 1/β(f)-competitive for TOBVC.

Computing the Optimal f . Our challenge now boils down to finding a f(y) to
get a small β. In essence, the goal is to solve the following optimization problem

inf
f∈F

max
z∈[0,1]

1 + f(1 − z) +
∫ 1

z

1 − t

f(t)
dt, (2)

where F is the class of positive continuous functions on [0, 1] such that 1−t
f(t) is

decreasing for f ∈ F . To our knowledge, there is no systematic approach to
tackle a minimax optimization problem of this form. A natural way is to express
the optimal z in terms of f and use calculus of variation to compute the best f .
Unfortunately, in general there is no closed form expression for the optimal z.

To overcome this hurdle, we first disregard the requirement that 1−t
f(t) be

decreasing. We show that such a relaxation of the optimization problem admits
a nice optimality condition: there exists some optimal f such that 1+f(1− z)+∫ 1

z
1−t
f(t)dt is constant for all z. This property is characterized as follows.

Lemma 4. Let r : [0, 1] −→ R+ be a continuous function such that for ∀p ∈
[0, 1], r(p) +

∫ 1

1−p
1−x
r(x)dx ≤ γ for some γ > 0. Then there exists a continuous

function f : [0, 1] −→ R+ such that ∀p ∈ [0, 1], f(p) +
∫ 1

1−p
1−x
f(x)dx ≡ γ.

It is therefore sufficient to consider functions f that satisfy this optimality
condition. Consequently, f(1 − z) = β − 1 − ∫ 1

z
1−t
f(t)dt is actually differentiable.

Differentiating 1 + f(1 − z) +
∫ 1

z
1−t
f(t)dt yields −f ′(1 − z) − 1−z

f(z) = 0, i.e.,

f(z)f ′(1 − z) = z − 1.

Although this differential equation is atypical as f(z) and f ′(1 − z) are not
taken at the same point, surprisingly it has closed form solutions, as given below.

Lemma 5. Let r be a non-negative differentiable function on [0, 1] and
r(z)r′(1 − z) = z − 1. Then

r(z) =
(

1 + k

2
− z

) 1+k
2k

(
z +

k − 1
2

) k−1
2k

,

where k ≥ 1. Moreover, 1−t
r(t) is decreasing for t ∈ [0, 1].

The final step is just to select the best f from the family of solutions. Since
1+f(1−z)+

∫ 1

z
1−t
f(t)dt is constant, it suffices to find the smallest 1+f(0), which

corresponds to k ≈ 1.1997.

Theorem 3. Let f(z) =
(
1+k
2 − z

) 1+k
2k

(
z + k−1

2

) k−1
2k , where k ≈ 1.1997. Algo-

rithm 2 is then 0.526-competitive for TOBVC.

Remark: Our algorithm can be viewed as a generalization of Greedy because
the solution f(z) = 1 − z (with k = 1) is equivalent to some variant of it.

Two-sided Online Bipartite Matching and Vertex Cover 1079

3 Two-sided Online Bipartite b-Matching

We give a primal-dual analysis of a variant of the algorithm given in the last
section. A by-product of this new analysis is a 0.526-competitive algorithm for
TOBM under the large budget assumption, i.e. the competitive ratio tends to 0.526
as b := minv∈V bv → ∞. It is known that it suffices to maintain fractional xuv

under such an assumption [5,7].
Let β ≈ 1.901 and f(z) be the same as in Theorem 3. Our primal-dual

analysis is inspired by the one for online bipartite fractional matching [5]. Algo-
rithm 3 applies to both TOBM and TOBVC. It is very similar to Algorithm 2 when
restricted to the dual. To analyze the performance, we claim that the following
two invariants hold throughout the execution of the algorithm.

Algorithm 3. Water-filling algorithm for TOBM; β and f as in Theorem 3
Let T be the set of arrived vertices. Initially T = ∅;
for each online vertex v do

Maximize y ≤ 1, s.t.,
∑

u∈N(v)∩T bu max{y − yu, 0} ≤ bvf(y);

Let X = {u ∈ N(v) ∩ T | yu < y};
for each u ∈ X do

yu ← y;

xuv ←− bu(y−yu)
β

(
1 + 1−y

f(y)

)
;

end
For each u ∈ (N(v) ∩ T) \ X, xuv ←− 0;
yv ← 1 − y, T ← T ∪ {v};

end

Invariant 1: bu ·
yu + f(1 − zu) +

∫ yu

zu

1−t
f(t)dt

β
≥ xu

Here zu is the potential of u set upon its arrival, yu is the current potential of
u and xu =

∑
v∈N(u) xuv is the total number of copies of edges incident to u.

Since LHS ≤ bu (see last section), the primal is feasible if the invariant holds.

Invariant 2:
∑

u∈T

buyu = β
∑

(u,v)∈E∩T 2

xuv

Invariant 2 guarantees that the primal and dual objective values are always
within a factor of β from each other. By weak duality, the algorithm is then
simultaneously 1/β-competitive for TOBM and TOBVC.

Lemmas 6 and 7 show that both invariants, which trivially hold initially, are
preserved. As the dual is clearly feasible and the primal is feasible since Invariant
1 ensures xv ≤ bv as discussed earlier. Combining all yields Theorem 4.

Lemma 6 (Invariant 2). In each iteration of the algorithm, the increase in
the dual objective value is exactly β times that of the primal.

Lemma 7 (Invariant 1). After processing online vertex v, we have xv ≤ bv ·
yv+f(1−yv)

β and xu ≤ bu · y+f(1−zu)+
∫ y
zu

1−t
f(t)dt

β for u ∈ X.

1080 Y. Wang and S.C.-w. Wong

Theorem 4. Our algorithm is 1/β ≈ 0.526-competitive for TOBM and TOBVC.

As our primal-dual analysis implies the result for TOBVC, it makes sense to
question the usefulness of the charging analysis. One advantage is its appealing
and intuitive nature which directly explains why the algorithm is competitive.
But there are also technical advantages. Recall that we have shown towards the
end of section 2.1 that for c ∈ [0, 1], one can obtain for OBVC a ratio of

b(R ∩ C∗)
b(C∗)

c +
b(L ∩ C∗)

b(C∗)
.

Such a bound is 1 − 1/e in the worst case. Nevertheless in situations where
certain information (e.g. stochastic) about b(R∩C∗)

b(C∗) is available, we can optimize
the L.H.S. w.r.t. c and do strictly better than 1 − 1/e. On the other hand, we
can show in a strong sense that no primal-dual analysis exists for such a result.

4 Discussion and Open Problems

We presented the first nontrivial algorithm for two-sided online bipartite
b-matching and vertex cover. A natural question is whether our competitive
ratios 0.526 is optimal. As a first step, the bounds below show that the one-
sided optimal ratio of 1 − 1/e ≈ 0.632 is indeed unattainable for the two-sided
version.

Theorem 5. No algorithm has a competitive ratio better than 0.570 for TOBVC

and 0.625 for TOBM.
Another interesting problem is to beat the greedy algorithm for TOBM with-

out the large budget assumption. Recently, a connection between the optimal
algorithms for integral and fractional OBM was established via the randomized
primal-dual method [9]. This is promising as their techniques may be applicable
here. Finally, our results are on the oblivious adversary model. One may consider
weaker models, e.g. stochastic [12,22], random arrival [15,21]. This was done for
online matching and should also be possible for online vertex cover.

References

1. Aggarwal, G., Goel, G., Karande, C., Mehta, A.: Online vertex-weighted bipar-
tite matching and single-bid budgeted allocations. In: Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM (2011)

2. Bansal, N., Gupta, A., Li, J., Mestre, J., Nagarajan, V., Rudra, A.: When LP is
the cure for your matching woes: improved bounds for stochastic matchings. In:
de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 218–229.
Springer, Heidelberg (2010)

3. Birnbaum, B., Mathieu, C.: On-line bipartite matching made simple. ACM
SIGACT News 39(1), 80–87 (2008)

4. Blum, A., Sandholm, T., Zinkevich, M.: Online algorithms for market clearing.
Journal of the ACM (JACM) 53(5), 845–879 (2006)

5. Buchbinder, N., Jain, K., Naor, J.S.: Online primal-dual algorithms for maximizing
ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 253–264. Springer, Heidelberg (2007)

Two-sided Online Bipartite Matching and Vertex Cover 1081

6. Demange, M., Paschos, V.T.: On-line vertex-covering. Theoretical Computer Sci-
ence 332(1), 83–108 (2005)

7. Devanur, N.R., Huang, Z., Korula, N., Mirrokni, V.S., Yan, Q.: Whole-page opti-
mization and submodular welfare maximization with online bidders. In: Proceed-
ings of the Fourteenth ACM Conference on Electronic Commerce, pp. 305–322.
ACM (2013)

8. Devanur, N.R., Jain, K.: Online matching with concave returns. In: Proceedings
of the 44th Symposium on Theory of Computing, pp. 137–144. ACM (2012)

9. Devanur, N.R., Jain, K., Kleinberg, R.D.: Randomized primal-dual analysis of
ranking for online bipartite matching. In: SODA 2013: Proceedings of the Thir-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms (to appear, 2013)

10. Devenur, N.R., Hayes, T.P.: The adwords problem: online keyword matching with
budgeted bidders under random permutations. In: EC 2009: Proceedings of the
Tenth ACM Conference on Electronic Commerce, pp. 71–78. ACM, New York (2009)

11. Feldman, J., Korula, N., Mirrokni, V., Muthukrishnan, S., Pál, M.: Online ad assign-
ment with free disposal. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp.
374–385. Springer, Heidelberg (2009)

12. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic match-
ing: Beating 1–1/e. In: 50th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2009, pp. 117–126. IEEE (2009)

13. Goel, G., Mehta, A.: Online budgeted matching in random input models with appli-
cations to adwords. In: SODA, vol. 8, pp. 982–991 (2008)

14. Kalyanasundaram, B., Pruhs, K.R.: An optimal deterministic algorithm for online
b-matching. Theoretical Computer Science 233(1), 319–325 (2000)

15. Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown dis-
tributions. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Com-
puting, pp. 587–596. ACM (2011)

16. Karlin, A.R., Kenyon, C., Randall, D.: Dynamic tcp acknowledgement and other
stories about e/(e-1). In: Proceedings of the Thirty-Third Annual ACM Symposium
on Theory of Computing, pp. 502–509. ACM (2001)

17. Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.: Competitive randomized
algorithms for nonuniform problems. Algorithmica 11(6), 542–571 (1994)

18. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy
caching. Algorithmica 3(1), 79–119 (1988)

19. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipar-
tite matching. In: Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, pp. 352–358. ACM(1990)

20. Lotker, Z., Patt-Shamir, B., Rawitz, D., Albers, S.: Rent, lease or buy: Randomized
algorithms for multislope ski rental. In: 25th International Symposium on Theoret-
ical Aspects of Computer Science (STACS 2008), vol. 1 (2008)

21. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an approach
based on strongly factor-revealing lps. In: Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing, pp. 597–606. ACM (2011)

22. Manshadi, V.H., Gharan, S.O., Saberi, A.: Online stochastic matching: Online
actions based on offline statistics. In: Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1285–1294. SIAM (2011)

23. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. Journal of the ACM (JACM) 54(5), 22 (2007)

24. Mehta, A.: Online matching and ad allocation. Theoretical Computer Science 8(4),
265–368 (2012)

The Simultaneous Communication
of Disjointness with Applications

to Data Streams

Omri Weinstein1(B) and David P. Woodruff2

1 Princeton University, Princeton, NJ 08544, USA
oweinste@cs.princeton.edu

2 IBM Research, Almaden, San Jose, CA, USA
dpwoodru@us.ibm.com

Abstract. We study k-party number-in-hand set disjointness in the
simultaneous message-passing model, and show that even if each ele-
ment i ∈ [n] is guaranteed to either belong to all k parties or to
at most O(1) parties in expectation (and to at most O(log n) parties
with high probability), then Ω(n min(log 1/δ, log k)/k) communication is
required by any δ-error communication protocol for this problem (assum-
ing k = Ω(log n)).

We use the strong promise of our lower bound, together with a recent
characterization of turnstile streaming algorithms as linear sketches, to
obtain new lower bounds for the well-studied problem in data streams of
approximating the frequency moments. We obtain a space lower bound
of Ω(n1−2/pε−2 log M log 1/δ) bits for any algorithm giving a (1 + ε)-
approximation to the p-th moment

∑n
i=1 |xi|p of an n-dimensional vec-

tor x ∈ {±M}n with probability 1 − δ, for any δ ≥ 2−o(n1/p). Our lower
bound improves upon a prior Ω(n1−2/pε−2 log M) lower bound which
did not capture the dependence on δ, and our bound is optimal when-
ever ε ≤ 1/poly(log n). This is the first example of a lower bound in
data streams which uses a characterization in terms of linear sketches to
obtain stronger lower bounds than obtainable via the one-way communi-
cation model; indeed, our set disjointness lower bound provably cannot
hold in the one-way model.

Keywords: Multiparty communication complexity · Information com-
plexity · Frequency moments · Information theory

1 Introduction

Set disjointness is one of the cornerstones of complexity theory. Throughout the
years, this communication problem has played a key role in obtaining uncondi-
tional lower bounds in many models of computation, including proof complexity,

O. Weinstein and D.P. Woodruff—Research supported by a Simons Fellowship in
Theoretical Computer Science and NSF Award CCF-1215990.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 1082–1093, 2015.
DOI: 10.1007/978-3-662-47672-7 88

The Simultaneous Communication of Disjointness 1083

data streams, data structures and algorithmic game theory (see [CP10] and ref-
erences therein). Many variants of this problem were studied, starting with the
standard two-party model (e.g., [KS92]) and recently in several multiparty com-
munication models (e.g., [She14,BO15]).

Motivated by streaming applications, we study a promise version of number-
in-hand multiparty disjointness in the public-coin simultaneous message passing
model of communication (SMP). In this setting, there are k players each with
a bit string xi ∈ {0, 1}n, i ∈ [k] = {1, 2, . . . , k}, who are promised that their
inputs satisfy one of the following cases:

– (NO instance) for all j ∈ [n], the number of i ∈ [k] for which xi
j = 1 is

distributed as Bin(k, 1/k), or
– (YES instance) there is a unique j∗ ∈ [n] for which xi

j∗ = 1 for all i ∈ [k],
and for all j �= j∗, the number of i ∈ [n] for which xi

j = 1 is distributed as
Bin(k, 1/k).

The players simultaneously send a message M i(xi, R) to a referee, where R
is a public-coin that the players share. The referee then outputs a function
f(M1(x1, R), . . . , Mk(xk, R), R), which should equal 1 if the inputs form a YES
instance, and equal 0 otherwise. Notice that if X ∼ Bin(k, 1/k), then Pr[X >
�] ≤ (e/�)�, and so by a union bound for all coordinates j in a NO instance,
the number of i ∈ [k] for which Xi

j = 1 is O(log n/ log log n). Thus, for k =
Ω(log n/ log log n), and in fact k = nΩ(1) in our context below, NO and YES
instances are distinguishable.

Our First Contribution. We show an Ω(n min(log 1/δ, log k)/k) total commu-
nication lower bound for any protocol which succeeds with probability at least
1 − δ in solving this promise problem in the public-coin SMP model. This lower
bound is optimal up to constant factors whenever δ ≈ 1/k (and k = poly(n)),
since in this case the entropy of the input of each player is n·H(1/k) = Θ(n· log k

k);
Therefore, if the first O(1) players send their entire inputs to the referee (using
standard compression), this yields an O(n · log k

k) total communication proto-
col with error at most δ for the above promise problem (since in the NO case,
the probability that there is an i ∈ [n] for which t players received a “1” is
k−t < 1/nk for large enough constant t by our assumption on the relationship
between k and n, hence a union bound finishes the argument).

We then show how this result can be used to obtain strong space lower bounds
in the turnstile data stream model. In this model, an integer vector x is initialized
to 0n and undergoes a long sequence of additive updates to its coordinates. The
t-th update in the stream has the form xi ← xi + δt, where δt is an arbitrary
(positive or negative) integer. At the end of the stream we are promised that
x ∈ {−M,−M + 1, . . . , M}n for some bound M which is typically assumed to
be at least n (and which we assume here).

Approximating the frequency moments Fp =
∑n

i=1 |xi|p is one of the most
fundamental problems in data streams, starting with the seminal work of Alon,
Matias, and Szegedy [AMS99]. The goal is to output a number F̂p ∈ [(1 −
ε)Fp, (1 + ε)Fp] with probability at least 1 − δ using as little memory in bits as

1084 O. Weinstein and D.P. Woodruff

possible. It is known that for 0 < p ≤ 2, Θ(ε−1 log(M) log 1/δ) bits of space is
necessary and sufficient [KNW10,JW13]. Ideas here have been the basis of many
other streaming algorithms and lower bounds, with connections to linear algebra
[SW11,CDM+13] and information complexity [CKW12,BGPW13].

Perhaps surprisingly, for p > 2 a polynomial (in n) amount of space is
required [SS02,BYJKS04,CKS03]. The best known upper bound is due to Gan-
guly and achieves space

O(n1−2/pε−2 log n · log(M) log(1/δ))/min(log n, ε4/p−2))).

In the case that ε ≤ 1/poly(log n), this simplifies to O(n1−2/pε−2 log M log(1/δ)).
On the other hand, if ε is a constant, this simplifies to O(n1−2/p log n
log M log(1/δ)). The latter complexity is also achieved by algorithms of
[AKO10,And]. The lower bound, on the other hand, for any ε, δ is only
Ω(n1−2/pε−2 log M) [LW13]. A natural question is whether there are algo-
rithms using less space and achieving a high success probability, that is, if
one can do better than just repeating the constant probability data structure
and taking a median of Θ(log 1/δ) independent estimates. While there is some
work on tightening the bounds in the context of linear sketches over the reals
[ANPW13,LW13], these lower bounds do not yield lower bounds in the streaming
setting; for more discussion on this, see below.

Our Second Contribution. We prove the following lower bound on the space
complexity of the p-th frequency moments problem:

Theorem 1 (Improved Space Lower Bound for Frequency Moments).
For any constant p > 2, there exists an absolute constant α > 1 such that
for any ε > n−Ω(1) and δ ≥ 2−o(n1/p), any randomized streaming algorithm that
obtains a (1+ε)-approximation to Fp in the turnstile streaming model for a vector
x ∈ [−M,M]n where M = Ω(nα/p), requires Ω

(
ε−2 · n1−2/p(log M) log 1/δ

)
bits

of space.

Our lower bound is optimal for any ε ≤ 1/poly(log n). As argued in [LW13],
this is an important regime of parameters. Namely, if ε = 1%, we have that
for, e.g., n = 232, ε−1 ≥ log n. Our result is a direct strengthening of the
Ω(n1−2/pε−2 log M) lower bound of [LW13] which cannot be made sensitive to the
error probability δ. Moreover, even for constant ε, our lower bound of Ω(n1−2/p log
M log(1/δ)) bits improves prior work by a log(1/δ) factor. We note that for con-
stant ε, the upper bounds still have space O(n1−2/k log n log M log(1/δ)) bits, so
while we obtain an improvement, there is still a gap in this case.

While the ultimate goal in this line of research is to obtain tight space bounds
simultaneously for any ε, δ ∈ (0, 1) and p > 2, our result is the first to obtain tight
bounds simultaneously in ε and δ for a wide range of parameters. Our proof tech-
nique is also quite different than previous work, and the first to bypass the limita-
tions of one-way communication complexity. This is necessary since the problem
considered in [LW13] has a protocol with information cost O(n1−2/pε−2 log M)
with 0 error probability, which can be compressed to a protocol with this amount

The Simultaneous Communication of Disjointness 1085

of communication and exponentially small error probability. A description of this
protocol can be found in the full version of this paper, including an explanation
for why it implies the problem considered in [LW13] does not give stronger lower
bounds.

Our Techniques. The key ingredient of our result is proving the aforementioned
simultaneous communication lower bound on the promise version of k-party
set disjointness. To do so, we use the information complexity paradigm, which
allows one to reduce the problem, via a direct sum argument, to the δ-error
SMP complexity of a primitive problem – the k-party AND function with the
aforementioned promise. We lower bound the information complexity of AND
under the NO distribution (an independent bit ∼ Ber(1/k)), by asking how
many independent messages (over her private randomness) the player would
need to send in order to convince one that her input is 0 or 1. We use the
product structure of Hellinger distance, and relate this quantity to the amount
of information a single message of the player reveals via the Maximum Likelihood
Estimation principle. To obtain our stronger bound of Ω(n log(1/δ)/k) for any
δ ≥ 2−o(n1/p), we restrict all players to have the same (randomized) message
function. This assumption turns out to be possible in our application, as we
observe that linear sketches can in fact be simulated by symmetric SMP protocols
(see below).

A Reduction to Streaming: To lower bound the space complexity of a streaming
algorithm we need a way of relating it to the communication cost of a protocol
for this disjointness problem. We use a recent result of Li, Nguyen, and Woodruff
[LNW14] showing there is a near-optimal streaming algorithm for any problem
in the turnstile model which can be implemented by maintaining A · x in the
stream, where A is a matrix with poly(n)-bounded integer entries, and A is
sampled from a fixed set of O(n log m) hardwired matrices. In [LNW14] near-
optimal meant up to an O(log n) multiplicative factor in space, which would not
suffice here. However, their proof shows if one maintains A · x mod q, where q
is a vector of integers one for each coordinate (which depends on A but not on
x), then this is optimal up to a constant factor (a formal proof can be found in
the full version of this paper). Notice that this need not be optimal for a specific
family of streams, such as those arising in our communication game, though we
use the fact that by results in [LNW14] an algorithm which succeeds with good
probability for any fixed stream has this form, and therefore we can assume this
form in our reduction. This implies a public-coin simultaneous protocol since the
players can use the public coin to choose an (A, q) pair, then each communicate
A · xi mod q to the referee, who can combine these (using linearity) to obtain
A · (

∑k
i=1 xi) mod q. This simulation also implies all players have the same

message function, even conditioned on the public coin.
We stress that the use of a public-coin simultaneous communication model is

essential for our result, as there is an O(n/k) total communication upper bound
with exponentially small error probability in the one-way communication model
(for a formal proof of this argument see the full version of this paper).

1086 O. Weinstein and D.P. Woodruff

Given this reduction, one of the player’s messages must be Ω(n log(1/δ)/k2)
bits long, which lower bounds the space complexity of the streaming algorithm.
By setting k = εn1/p, and by having the referee add n1/pej∗ to the stream, where
ej∗ is the standard unit vector in direction j∗, one can show with probability
1−δ, YES and NO instances differ by a (1+ε)-factor in Fp(x). This is true even
given our relaxed definition of disjointness, in which we allow some coordinates
to be as large as Θ(log n/ log log n), provided the average of the k-th powers of
these coordinates is Θ(1). We are not done though, as we seek an extra log M
factor in the lower bound, and for this we superimpose Θ(log M) independent
copies of this problem at different scales, in a similar fashion to the work of
[LW13], and ask the referee to solve a random scaling. There are some technical
differences needed to execute this approach in the high (1−δ) probability regime.

Related Work: We summarize the previous work on the frequency moments
problem in Table 1. For a more thorough discussion of related works, in other
streaming models, see the full version of this paper. Regarding our communi-
cation result, it is noteworthy to mention that Braverman and Oshman [BO15]
recently obtained a tight Ω(n log k + k) lower bound on the unbounded-round
number-in-hand communication complexity of the k-party set disjointness func-
tion. Of course, this lower bound applies in particular to simultaneous protocols
and is much stronger than the one proven in this paper (Ω (n · log(1/δ)/k)).
However, this stronger lower bound holds only for distributions which (vastly)
violate the promise required for our streaming application, and therefore their
lower bound is useless in our context.

Organization. Due to space constraints, this version contains only the proof of
our communication lower bound for set disjointness in the SMP model (Section
2). The rest of our results, including the reduction to frequency moments and
the proof of Theorem 1, appear in the full version of this paper.

2 Multiparty SMP Complexity of Set-Disjointness

In this section we prove our lower bound on the SMP communication complexity
of the k-party Set-Disjointness function. A broader overview of the definitions,
tools and properties used below can be found in the Preliminaries section of the
full version of this paper.

In what follows, Rδ(f) denotes the communication cost of the cheapest ran-
domized SMP protocol which solves the k-party function f with error at most
δ over all inputs (x1, . . . , xk) ∈ X k, and ICδ

μ(f) denotes the minimal (external)
information cost of an SMP protocol solving f under μ with error at most δ (for
a broader overview of the formal definitions and notations used throughout this
paper, see the full version of this paper).

We will be interested in a special class of SMP protocols, in which players are
restricted to use the same function when sending their messages to the referee.
This class will be relevant to our main streaming application (Theorem 1).

The Simultaneous Communication of Disjointness 1087

Table 1. All results are stated for constant success probability, and can be made
to achieve 1 − δ success probability by repeating the data structure independently
O(log 1/δ) times and taking the median of estimates; this blows up the space by a
multiplicative O(log 1/δ) factor. Here, g(p, n) = minc constant gc(n), where g1(n) =
log n, gc(n) = log(gc−1(n))/(1 − 2/p). We start the upper bound timeline with [IW05],
since that is the first work which achieved an exponent of 1 − 2/p for n. For earlier
works which achieved worse exponents for n, see [AMS99,CK04,Gan04a,Gan04b]. We
note that [AMS99] initiated the problem and obtained an O(n1−1/pε−2 log(M)) bound
in the insertion-only model (see also [BO12,BKSV14] for work in the insertion model).

Fp Algorithm Space Complexity

[IW05] O(n1−2/pε−O(1) logO(1) n log(M))

[BGKS06] O(n1−2/pε−2−4/p log n log2(M))

[MW10] O(n1−2/pε−O(1) logO(1) n log(M))

[AKO10] O(n1−2/pε−2−6/p log n log(M))

[BO10] O(n1−2/pε−2−4/p log n · g(p, n) log(M))

[And] O(n1−2/p log n log(M)ε−O(1))

[Gan11], Best upper bound O(n1−2/pε−2 log n · log(M)/ min(log n, ε4/p−2)))

[AMS99] Ω(n1−5/p)
[Woo04] Ω(ε−2)

[BYJKS04] Ω(n1−2/p−γε−2/p), any constant γ > 0

[CKS03] Ω(n1−2/pε−2/p)

[WZ12] Ω(n1−2/pε−4/p/ logO(1) n)

[Gan12] Ω(n1−2/pε−2/ log n)

[LW13] Ω(n1−2/pε−2 log(M))

Definition 1 (Symmetric SMP protocols). A k-party SMP protocol π is
called symmetric if for any fixed input X = x and fixing of the public ran-
domness R = r,

M1(x, r) = M2(x, r) = . . . = Mk(x, r).

For a function f , we denote the randomized public-coin communication complex-
ity of f with respect to symmetric SMP protocols by by RSYM

δ (f). Similarly, we
denote by ICSYM,δ

μ (f) the (external) information complexity of f with respect to
symmetric SMP protocols (for the formal definition of information cost see the
Preliminaries section of the full version).

We use the following distance measures in our arguments.

Definition 2 (Total Variation distance and Hellinger distance). The
Total Variation distance between two probability distributions P,Q over the same
universe U is Δ(P,Q) := supA |P (A) − Q(A)|, where A ranges over all measur-
able events in the probability space.

1088 O. Weinstein and D.P. Woodruff

The (squared) Hellinger distance between P and Q is denoted as

h2(P,Q) = 1 −
∑

x∈U

√
P (x)Q(x) =

1
2

·
∑

x∈U

(√
P (x) −

√
Q(x)

)2

.

By a slight abuse of notation, we sometimes use the above distance measures
with random variables instead of their underlying distributions. For example,
if A,B are two random variables in the joint probability space p(a, b), then
Δ(A,B) = Δ(p(a), p(b)), and h(A,B) = h(p(a), p(b)).

We will prove the following theorem.

Theorem 2 (SMP complexity of multiparty Set-Disjointness). For any
δ ≥ n · 2−k,

Rδ(Disjnk) ≥ Ω

(
n · min{log(1/δ), log k}

k

)
.

RSYM
δ (Disjnk) ≥ Ω

(
n · min

{
log(1/δ)

k
, log k

})
.

Recall the k-party Set-Disjointness problem is defined as follows:

Definition 3 (Disjnk). Denote by Disjnk the multiparty Set-Disjointness problem
in which k players each receive an n-dimensional input vector Xj = {Xj,i}n

i=1

(where Xj,i ∈ {0, 1}). By the end of the protocol, the referee needs to distinguish
between the following cases:

– (The “NO” case) ∀ i ∈ [n],
∑

j Xj,i < k, or
– (The “YES” case) ∃ i ∈ [n] for which

∑
j Xj,i = k.

Denote ANDk(x1, x2, . . . , xk) :=
∧k

j=1 xj. Note that

Disjnk (X1, . . . ,Xk) =
n∨

i=1

ANDk (X1,i, . . . ,Xk,i) .

We start by defining a “hard” distribution for Disjnk which still satisfies the
promise (gap) required for our streaming application. Consider the distribution
η on n-bit string inputs, defined by the following process.

The Distribution η:

– For each i ∈ [n], j ∈ [k] set Xj,i ∼ B(1/k), independently at random.
– Pick a uniformly random coordinate I ∈R [n].
– Pick Z ∈R {0, 1}. If Z = 1, set all the values Xj,I to 1, for all j ∈ [k]

(If Z = 0, keep all coordinates as before.).
– The referee receives the index I (this feature will only be used in the stream-

ing application (proof of Theorem 1)).

The Simultaneous Communication of Disjointness 1089

Denote by η0 the distribution of η | “Z = 0”, and by μ0 the projection
of η0 on a single coordinate (this is well defined since the distribution over all
coordinates is i.i.d). In particular, notice that η0 = μn

0 is a product distribution,
and for every i ∈ [n], Prμ0 [Xi,j = 1 for all j ∈ [k]] = (1/k)k. Thus, by a union
bound over all n coordinates and our assumption on δ,

Pr
μn
0

[Disjnk (X1, . . . ,Xk)] ≤ n · (1/k)k ≤ n · 2−k ≤ δ. (1)

Remark 1. Notice that the “NO” distribution η0 contains (w.h.p) coordinates i ∈
[n] for which � 1 players (in fact, Ω(log n) of them) possess the i’th coordinate.
This feature is a by-product of the product structure of η0, which will be crucial
to our construction and analysis. To best of our knowledge, this is the first paper
to show that distributions with such property (where disjoint instances in the
support have ω(1) overlapping items in a coordinate, instead of just 1) are still
powerful enough to prove lower bounds on the frequency moments problem.

2.1 Direct Sum and the SMP Complexity of ANDk

To prove Theorem 2, we first use a direct sum argument, asserting that under
product distributions, solving set disjointness is essentially equivalent to solving
n copies of the 1-bit ANDk function. The following direct sum argument is well
known (See e.g., [BYJKS04]):

Lemma 1 (Direct sum for Disjnk). ∀ δ ≥ n·2−k, ICδ
η0

(Disjnk) ≥ n·IC2δ
μ0

(ANDk).

We defer the proof of this claim to the full version of this paper. With Claim
1 in hand, it suffices to prove that any (randomized) SMP protocol solving ANDk

with error at most δ, must have a large information cost under μ0 . This is the
content of the next theorem, which is one of our central technical contributions.

Theorem 3. For every δ > 0,

ICδ
μ0

(ANDk) ≥ Ω

(
min

{
log 1/δ

k
,
log k

k

})

ICSYM,δ
μ0

(ANDk) ≥ Ω

(
min

{
log 1/δ

k
, log k

})
.

Proof. Let π be a (randomized) SMP protocol which solves ANDk(X1, . . . ,Xk)
for all inputs in {0, 1}k with success probability at least 1−δ. For the rest of the
analysis, we fix the public randomness of the protocol. Indeed, proving the lower
bound for every fixing of the tape suffices as the chain rule for mutual information
implies ICμ0(π) = ER[ICμ0(πR)]. For each player j ∈ [k], let Mj denote the
transcript of player j’s message, and let M j

0 := Mj |“Xj = 0”, M j
1 := Mj |“Xj =

1” (note that if π is further a symmetric protocol, then M j
0 and M j

1 are the same
for every player j ∈ [k]). Since the Xj ’s are independent under μ0, and therefore

1090 O. Weinstein and D.P. Woodruff

so are the messages Mj , the chain rule implies that ICμ0(π) =
∑k

j=1 I(Mj ;Xj).

We shall argue that
∑k

j=1 I(Mj ;Xj) ≥ Ω
(

log 1/δ
k , log k

k

)
, and if π is further a

symmetric protocol, then
∑k

j=1 I(Mj ;Xj) ≥ Ω
(

log 1/δ
k , log k

)
. To this end, let

us denote by
h2(M j

1 ,M j
0) := 1 − zj

the (squared) Hellinger distance between player j’s message distributions in both
cases.There are two cases: if there is a player j forwhich zj = 0, thenh2(M j

1 ,M j
0) =

1, which means that I(Mj ;Xj) = H(Xj) = H(1/k) = Ω(log(k)/k) and thus
ICδ

μ0
(ANDk) ≥ Ω(log(k)/k). Furthermore, if π is symmetric, then z1 = z2 = . . . =

zj , which in this case implies by the same reasoning that I(Mj ;Xj) = Ω(log(k)/k)
for all players j ∈ [k], and thus ICSYM,δ

μ0
(ANDk) ≥ Ω(log k), as desired.

We may henceforth assume that all zj ’s are non-zero, and the rest of the
analysis applies for general (not necessarily symmetric) SMP protocols. To this
end, let us introduce one final notation: For a fixed input Xj , let M⊕t

j denote (the
concatenation of) t independent copies of Mj |Xj (so M⊕t

j = (M j
0)t whenever

Xj = 0 and M⊕t
j = (M j

1)t whenever Xj = 1). By the conditional independence
of the t copies of Mj (conditioned on Xj) and the product structure of the
Hellinger distance (Fact 4 in the full version of this paper), we have that for
each j ∈ [k], the total variation distance between the t-fold message copies in
the “YES” and “NO” cases is at least

Δ

(
(M j

1)t, (M j
0)t

)
≥ h2

(
(M j

1)t, (M j
0)t

)
= 1 − (zj)t, (2)

where the first inequality follows from the fact that Total Vriation distance upper
bounds the (squared) Hellinger distance (see the Preliminaries section of the full
version for the formal statement). Set tj = O(log k/ log(1/zj)) (note that this is
well defined as we assumed zj �= 0). Thus, for each player j ∈ [k],

Δ

(
(M j

1)tj , (M j
0)t

)
≥ 1 − 1

10k
. (3)

Equation (3) implies that the error probability of the MLE predictor1 for pre-
dicting Xj given M

⊕tj
j is at most ε := 1/(10k). Therefore, Fano’s inequality

(Lemma 5 in the full version of the paper) and the data processing inequality
together imply that

∀ j ∈ [k], I(M⊕tj
j ;Xj)≥H(Xj) − H(ε)≥H

(
1
k

)
− H

(
1

10k

)
≥ Ω

(
log k

k

)
,

(4)

1 That is, the predictor which given M⊕t
j = m, outputs Y :=

argmaxx∈{0,1} Pr[(M j
x)t = m].

The Simultaneous Communication of Disjointness 1091

since Xj ∼ B(1/k) under μ0, and H(1/(10k)) ≤ 2
10k log(10k) ≤ 4

5k log(k) (where
the first inequality follows since ∀p ∈ [0, 1/2], it holds that H(p) ≤ p log(e/p) ≤
2p log(1/p)). Now, by the chain rule for mutual information, we have

I(M⊕tj
j ;Xj) =

tj∑

s=1

I((Mj)s;Xj |(Mj)<s) ≤
tj∑

s=1

I((Mj)s;Xj), (5)

where the last inequality follows from the fact that I(A;D|C) = 0 ⇒ I(A;B|C) ≤
I(A;B|CD) (see Fact 6 in the full version of this paper), as the messages (Mj)s

and (Mj)<s are independent conditioned on Xi (by construction). Notice that
(Mj)s ∼ Mj for all s ∈ [t], as all the messages are equally distributed conditioned
on Xj . Combining equations (4) and (5) therefore implies

I(Mj ;Xj) ≥ Ω

(
log k

k · tj

)
≥ Ω

(
log(1/zj)

k

)
, (6)

recalling that tj = O(log k/ log(1/zj)). Since (6) holds for any player j ∈ [k], we
have

k∑

j=1

I(Mj ;Xj) ≥ Ω

⎛

⎝1
k

·
k∑

j=1

log
(

1
zj

)⎞

⎠ . (7)

We finish the proof by showing that

k∑

j=1

log
(

1
zj

)
≥ Ω(log(1/δ)). (8)

To this end, we first claim that the correctness of π implies that the total vari-
ation distance between the transcript distributions of π on the input 0k and on
the input 1k must be large (notice that below we crucially use the fact that
our information complexity definition requires the protocol to be correct on all
inputs, so in particular, a δ-error protocol must distinguish with comparable
error, between “YES” and “NO” inputs):

Proposition 1. Δ(π(0k), π(1k)) ≥ 1 − 2δ.

Proof. Let Y be the set of transcripts τ for which π(τ) = ANDk(1k) = 1. By the
correctness assumption, Pr[π(1k) ∈ Y] ≥ 1 − δ, and Pr[π(0k) ∈ Y] ≤ δ, so the
above follows by definition of the total variation distance.

Since μ0 is a product distribution (the Xj ’s are i.i.d), it holds that π(0k) =
×k

j=1M
j
0 , and π(1k) = ×k

j=1M
j
1 . Therefore, recalling that zj := 1−h2(M j

0 ,M j
1),

the product structure of the Hellinger distance (Fact 4 in the full version) implies

1 − Πk
j=1 zj = 1 − Πk

j=1(1 − h2(M j
0 ,M j

1)) = h2(π(0k), π(1k)) ≥ 1 − 4
√

δ (9)

1092 O. Weinstein and D.P. Woodruff

where the last transition follows from the combination of Proposition 1 with
Corollary 2.4 in full version of the paper (taken with α = 2δ). Rearranging
(9), we get Πk

j=1 zj ≤ 4
√

δ, or equivalently,
∑k

j=1 log
(

1
zj

)
≥ 1

2 log
(
1
δ

) − 2 =
Ω (log 1/δ), as desired. Combining equations (8) and (7), we conclude that
ICμ0(π) ≥ Ω

(
log 1/δ

k

)
, which completes the proof of Theorem 3.

Since communication is always lower bounded by information (Fact 8 in the
full version), combining Theorem 3 and Claim 1 directly implies Theorem 2:

Corollary 1. For any δ ≥ n · 2−k,

Rδ(Disjnk) ≥ Ω

(
n · min

{
log 1/δ

k
,
log k

k

})
,

RSYM
δ (Disjnk) ≥ Ω

(
n · min

{
log 1/δ

k
, log k

})
.

References

[AKO10] Andoni, A., Krauthgamer, R., Onak, K.: Streaming algorithms from pre-
cision sampling. CoRR, abs/1011.1263 (2010)

[AMS99] Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating
the frequency moments. JCSS 58(1), 137–147 (1999)

[And] Andoni, A.: High frequency moment via max stability. http://web.mit.
edu/andoni/www/papers/fkStable.pdf

[ANPW13] Andoni, A., Nguyên, H.L., Polyanskiy, Y., Wu, Y.: Tight lower bound for
linear sketches of moments. In: Fomin, F.V., Freivalds, R., Kwiatkowska,
M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 25–32.
Springer, Heidelberg (2013)

[BGKS06] Bhuvanagiri, L., Ganguly, S., Kesh, D., Saha, C.: Simpler algorithm for
estimating frequency moments of data streams. In: SODA, pp. 708–713
(2006)

[BGPW13] Braverman, M., Garg, A., Pankratov, D., Weinstein, O.: Information lower
bounds via self-reducibility. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013.
LNCS, vol. 7913, pp. 183–194. Springer, Heidelberg (2013)

[BKSV14] Braverman, V., Katzman, J., Seidell, C., Vorsanger, G.: An optimal algo-
rithm for large frequency moments using bits. In: APPROX/RANDOM
(2014)

[BO10] Braverman, V., Ostrovsky, R.: Recursive sketching for frequency moments.
CoRR, abs/1011.2571 (2010)

[BO12] Braverman, V., Ostrovsky, R.: Approximating large frequency moments
with pick-and-drop sampling. CoRR, abs/1212.0202 (2012)

[BO15] Braverman, M., Oshman, R.: The communication complexity of number-
in-hand set disjointness with no promise. Electronic Colloquium on Com-
putational Complexity (ECCC) 22(2) (2015)

[BYJKS04] Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information
statistics approach to data stream and communication complexity. Journal
of Computer and System Sciences 68(4), 702–732 (2004)

http://web.mit.edu/andoni/www/papers/fkStable.pdf
http://web.mit.edu/andoni/www/papers/fkStable.pdf

The Simultaneous Communication of Disjointness 1093

[CDM+13] Clarkson, K.L., Drineas, P., Magdon-Ismail, M., Mahoney, M.W., Meng,
X., Woodruff, D.P.: The fast cauchy transform and faster robust linear
regression. In: SODA (2013)

[CK04] Coppersmith, D., Kumar, R.: An improved data stream algorithm for fre-
quency moments. In: SODA (2004)

[CKS03] Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the
multi-party communication complexity of set disjointness. In: CCC, pp.
107–117 (2003)

[CKW12] Chakrabarti, A., Kondapally, R., Wang, Z.: Information complexity versus
corruption and applications to orthogonality and gap-hamming. In: Gupta,
A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RAN-
DOM 2012. LNCS, vol. 7408, pp. 483–494. Springer, Heidelberg (2012)

[CP10] Chattopadhyay, A., Pitassi, T.: The story of set disjointness. SIGACT
News 41(3), 59–85 (2010)

[Gan04a] Ganguly, S.: Estimating frequency moments of data streams using random
linear combinations. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D.
(eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 369–380.
Springer, Heidelberg (2004)

[Gan04b] Ganguly, S.: A hybrid algorithm for estimating frequency moments of data
streams, Manuscript (2004)

[Gan11] Ganguly, S.: Polynomial estimators for high frequency moments. CoRR,
abs/1104.4552 (2011)

[Gan12] Ganguly, S.: A lower bound for estimating high moments of a data stream.
CoRR, abs/1201.0253 (2012)

[IW05] Indyk, P., Woodruff, D.: Optimal approximations of the frequency
moments of data streams. In: STOC. ACM (2005)

[JW13] Jayram, T.S., Woodruff, D.P.: Optimal bounds for johnson-lindenstrauss
transforms and streaming problems with subconstant error. ACM Trans-
actions on Algorithms 9(3), 26 (2013)

[KNW10] Kane, D.M., Nelson, J., Woodruff, D.P.: On the exact space complexity of
sketching and streaming small norms. In: SODA, pp. 1161–1178 (2010)

[KS92] Kalyanasundaram, B., Schnitger, G.: The probabilistic communication
complexity of set intersection. SIAM Journal on Discrete Mathematics
5(4), 545–557 (1992)

[LNW14] Li, Y., Nguyen, H.L., Woodruff, D.P.: Turnstile streaming algorithms
might as well be linear sketches. In: STOC, pp. 174–183 (2014)

[LW13] Li, Y., Woodruff, D.P.: A tight lower bound for high frequency moment
estimation with small error. In: Raghavendra, P., Raskhodnikova, S.,
Jansen, K., Rolim, J.D.P. (eds.) RANDOM 2013 and APPROX 2013.
LNCS, vol. 8096, pp. 623–638. Springer, Heidelberg (2013)

[MW10] Monemizadeh, M., Woodruff, D.P.: 1-pass relative-error lp-sampling with
applications. In: SODA (2010)

[She14] Sherstov, A.A.: Communication lower bounds using directional derivatives.
J. ACM 61(6), 34 (2014)

[SS02] Saks, M., Sun, X.: Space lower bounds for distance approximation in the
data stream model. In: STOC (2002)

[SW11] Sohler, C., Woodruff, D.P.: Subspace embeddings for the l1-norm with
applications. In: STOC, pp. 755–764 (2011)

[Woo04] Woodruff, D.P.: Optimal space lower bounds for all frequency moments.
In: SODA, pp. 167–175 (2004)

[WZ12] Woodruff, D.P., Zhang, Q.: Tight bounds for distributed functional moni-
toring. In: STOC, pp. 941–960 (2012)

An Improved Combinatorial Algorithm
for Boolean Matrix Multiplication

Huacheng Yu(B)

Stanford University, Stanford, USA
yuhch123@gmail.com

Abstract. We present a new combinatorial algorithm for triangle find-
ing and Boolean matrix multiplication that runs in Ô(n3/ log4 n) time,
where the Ô notation suppresses poly(loglog) factors. This improves
the previous best combinatorial algorithm by Chan [4] that runs in
Ô(n3/ log3 n) time. Our algorithm generalizes the divide-and-conquer
strategy of Chan’s algorithm.

Moreover, we propose a general framework for detecting triangles in
graphs and computing Boolean matrix multiplication. Roughly speak-
ing, if we can find the “easy parts” of a given instance efficiently, we can
solve the whole problem faster than n3.

1 Introduction

Boolean matrix multiplication (BMM) is one of the most fundamental problems
in computer science. It has many applications to triangle finding, transitive clo-
sure, context-free grammar parsing, etc [7], [10], [5], [11]. One way to multiply
two Boolean matrices is to treat them as integer matrices, and apply a fast matrix
multiplication algorithm over the integers. Matrix multiplication over fields can
be computed in “truly subcubic time”, i.e., computing the product of two n × n
matrices can be done in O(n3−ε) additions and multiplication over the field.
For example, the latest generation of such algorithms run in O(n2.373) opera-
tions [12], [9]. These algorithms are “algebraic”, as they rely on the structure of
the field, and in general the ring structure of matrices over the field.

There is a different group of BMM algorithms, often called “combinatorial”
algorithms. They usually reduce the redundancy in computation by exploiting
some combinatorial structure in the Boolean matrices. The “Four Russians”
algorithm by Arlazarov, Dinic, Kronrod, and Faradzhev [1] is the most well-
known combinatorial algorithm for BMM. On the RAM model with word size
w = Θ(log n), “Four Russians” algorithm can be implemented in O(n3/ log2 n)
time. About 40 years later, this result was improved by Bansal and Williams. In
their FOCS’09 [2] paper, they presented an O(n3(log log n)2/ log9/4 n) time com-
binatorial algorithm for Boolean matrix multiplication, using the weak regularity
lemma for graphs. Recently, Chan presented an O(n3 (log log n)3 / log3 n) time
algorithm in his SODA’15 paper [4], improving the running time even further.

H. Yu—Supported in part by NSF CCF-1212372.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 1094–1105, 2015.
DOI: 10.1007/978-3-662-47672-7 89

An Improved Combinatorial Algorithm for Boolean Matrix Multiplication 1095

Although these combinatorial algorithms have worse running times than the
algebraic ones, they generally have some nice properties. Combinatorial algo-
rithms usually can be generalized in ways that the algebraic ones cannot be.
For example, Chan’s algorithm partly extends an idea of divide-and-conquer in
an algorithm for the offline dominance range reporting problem by Impagliazzo,
Lovett, Paturi, and Schneider [8]; the algebraic structure of dominance reporting
is completely different from BMM’s. Moreover, in practice, these combinatorial
algorithms are usually fast and easy to implement, while in contrast, most the-
oretically fast matrix multiplication algorithms are impractical to implement.
Finding a matrix multiplication algorithm that is both “good” in theory and
practice is still an important open goal of the area.

In this paper, we generalize the ideas of Impagliazzo et al. [8] and Chan [4], to
present a faster combinatorial algorithm for triangle detection: given an n-node
graph, does it contain a triangle?

Theorem 1. Given a tripartite graph G on n vertices, we can detect if there
is a triangle in G using a combinatorial algorithm in Ô

(
n3/ log4 n

)
time on a

word RAM with word size w ≥ Ω(log n). 1

Vassilevska Williams and Williams [13] proved that triangle detection and
Boolean matrix multiplication are “subcubic equivalent” in the following sense:
if there is a O(n3/g(n)) time algorithm for triangle detection on n-node graphs,
then we can use it to solve BMM on n × n matrices in O(n3/g(n1/3)) time.
Together with Theorem 1, this gives a fast combinatorial algorithm for Boolean
matrix multiplication.

Theorem 2. There is a combinatorial algorithm to multiply two n × n Boolean
matrices in Ô

(
n3/ log4 n

)
time.

Moreover, we generalize the algorithm, and propose a general framework for
solving triangle detection combinatorially.

Definition 1. The large subgraph triangle detection problem with parameters
α, β, and γ is: given a tripartite graph G = (A∪B ∪C,E), output a pair (G′, b),
where

– G′ is a subgraph with at least an α-fraction of vertices from A, β-fraction of
vertices from B, and γ-fraction of vertices from C, and

– b = 1 if G′ is triangle-free, and b = 0 if G′ contains a triangle.

That is, the large subgraph triangle detection problem is to identify a large
subgraph G′ of G for which we can conclude whether G′ is triangle-free or not.
This problem is interesting when we can solve it quickly – faster than what
is known for standard triangle detection. Additionally, we can show that fast
algorithms for large subgraph triangle detection imply fast algorithms for triangle
detection in general:

1 We use Ô(f(n)) to suppress poly(log log f(n)) factors in the running time.

1096 H. Yu

Theorem 3. Let n be an integer, 0 < α, β, γ, c ≤ 1, and G be any tripartite
graph on vertex sets A,B,C with at least

√
n vertices in each part. If there is an

algorithm L for large subgraph triangle detection on every such G that runs in
O(cαβγ|A||B||C|) time, then we can solve triangle detection on n-node graphs
in O(cn3 + n3−ε/2) time for any ε > 0 such that αβ > 10ε(1 + log 1

γ) and
α > 10ε(1 + log 1

β).

That is, to derive an efficient algorithm for triangle finding, it is sufficient
to find and solve an “easy part” of the input. This opens a new direction for
attacking this problem.

Related Work. In the work by Bansal and Williams [2], they used the weak
regularity lemma of Frieze and Kannan [6] to discover and exploit small sub-
structures in the graph. Generally speaking, a regularity lemma partitions the
vertex set of a graph into disjoint sets, so that the edge distribution between
any two sets is “close to random.” Bansal and Williams enumerate every triple
of sets in the partition: if the subgraph induced by the triple is sparse, finding
a triangle in this triple is easy. Otherwise, since the induced subgraph is dense
and “close to random”, the regularity lemma guarantees that it is impossible to
check many pairs of vertices without finding an edge between them. Integrating
the method of Four Russians with the above approach yields an Ô(n3/ log9/4 n)
time algorithm for triangle detection.

Chan [4] used a very different approach for triangle detection which we
now outline briefly2. Consider a tripartite graph on vertex sets (A,B,C) such
that |A| ≤ polylog(|B| + |C|) (if this is not the case, partition the set A into
polylog(|B| + |C|)-size subsets, and solve them independently). If the edge set
between A and B is sparse, triangle detection is easy. Otherwise, there is some
node v ∈ A with many neighbors in B. Then the algorithm manually checks
every pair of neighbors of v and does two recursive calls. One is on A \ {v}, B
and the non-neighbors of v in C, and the other is on A \ {v}, non-neighbors of
v in B and neighbors in C. On one hand, this recursive procedure never puts
any pairs of neighbors of v in the branch. This guarantees that the algorithm
only manually checks every pair in B × C at most once. On the other hand,
the procedure may copy the set of non-neighbors in B when doing a recursive
call, which increases the total input size. However, since we have a lower bound
on the degree of vertex v to B, the procedure does not copy too many vertices
each time. A careful analysis shows that the overhead of the recursion is actually
rather tiny.

In Section 2, we show how to extend the idea of divide-and-conquer in Chan’s
algorithm to get an even faster algorithm for triangle detection (and hence for
Boolean matrix multiplication). We give a more intuitive proof of the recursion
involving less calculation. In Section 3, we propose a general framework for
solving triangle detection, as a starting point for future work in this area.
2 To keep consistency, the following description will be in the language of triangle

finding, although his paper originally presented the algorithm in the language of
Boolean matrix multiplication.

An Improved Combinatorial Algorithm for Boolean Matrix Multiplication 1097

2 Triangle Detection

Preliminaries and Notations. We shall use the fact that the triangle detection
problem in general undirected graphs is time-equivalent to the problem restricted
to tripartite graphs, up to a constant factor. (The proof is straightforward.)
Henceforth, we will assume the input graph is tripartite, and the tri-partition of
its vertices is given to us.

For a graph G = (V,E), a vertex v ∈ V and a subset of vertices S ⊆ V , we
denote d(v, S) = |E ∩ ({v} × S)|, which we call the degree of v to S.

Main Results. In what follows, we present an Ô(n3/ log4 n) time combinatorial
algorithm for triangle detection.

Suppose we are given a tripartite graph G on vertex sets A,B,C. One (naive)
approach to detect if there is a triangle in the graph is: for vertex v ∈ A, and
all pairs (u,w) of v’s neighbors, check if there is an edge between u and w.
The amount of work we do for vertex v is proportional to the number of edges
between v and B (the degree of v to B) times the number of edges between v
and C (the degree of v to C). This approach is efficient whenever the product of
these two degrees is low on average. However, if this is not the case, there must
be a vertex v ∈ A with a large product of degrees. If the enumeration reports
no edge between any pair of v’s neighbors, we know there has to be a large
“non-edge area” between B and C, i.e. between v’s neighbors. In the rest of the
algorithm, there is no need to look again at any pair of vertices in that area. We
implement this idea by recursion: find disjoint subsets of B × C which together
cover all pairs outside the non-edge area, and recurse on them. We show this
recursion is actually efficient.

Before stating and proving the efficiency of our main algorithm, we first show
that the naive approach proposed above is “Four-Russianizable” as expected.
That is, we can apply the Method of Four Russians to speed up the sparse case
by a factor of roughly log2 n.

The following algorithm is a generalization of an algorithm of Bansal and
Williams [2].

Lemma 1. Let G = (V,E) be tripartite on vertex sets A,B,C of sizes k,m, n
respectively. If d(vi, B)d(vi, C) ≤ nm

Δ2 holds for some Δ and all vi ∈ A
simultaneously, then we can detect if there is a triangle in G combinatori-
ally in O(mnΔ6Δ + kmn

Δ4 + k(m + n)) time, on word RAM with word size
w ≥ Ω(Δ log Δ + log kmn).

Proof. First, partition the vertices in B(resp. C) into groups {Bi}(resp. {Ci})
of sizes Δ3 arbitrarily, e.g. put (iΔ3 +1)-th to (i+1)Δ3-th vertex of B(resp. C)
in Bi(resp. Ci). Let SB = {S : |S| ≤ Δ,S ⊆ Bi for some Bi}, SC = {S : |S| ≤
Δ,S ⊆ Ci for some Ci} be collections of subsets within the same group of B or
C with at most Δ vertices. For every S ∈ SB , S′ ∈ SC , we determine if there is
at least one edge between them, and store all the results in a lookup table. This
preprocessing takes

1098 H. Yu

O

(
mn

Δ6

(
Δ3

Δ

)2

· Δ2 · Δ2

)
≤ O(mnΔ6Δ)

time. Note that we can index a subset using O(Δ log Δ+log max{m,n}) = O(w)
bits. This table can be stored in the memory so that one table lookup takes
constant time.

With the help of this table, we can check if there is a triangle in G efficiently.
We go over all vertices vi ∈ A, and partition its neighborhood into a minimum
number of sets in SB ,SC . That is, for every group of vertices, we arbitrarily
partition vi’s neighborhood in this group into sets of size exactly Δ and (possibly)
one more set of size at most Δ. This generates at most m

Δ3 + d(vi,B)
Δ sets from SB

and at most n
Δ3 + d(vi,C)

Δ sets from SC . Using the lookup table, we can detect
if there is an edge between any pair of sets from SB and SC in constant time.
Going over all vi ∈ A takes

O

(
k∑

i=1

(
m

Δ3
+

d(vi, B)
Δ

) (
n

Δ3
+

d(vi, C)
Δ

)
+ k(m + n)

)

≤ O

(
kmn

Δ6
+

k∑

i=1

m

Δ3
· n

Δ
+

k∑

i=1

m

Δ
· n

Δ3
+

k∑

i=1

mn

Δ4
+ k(m + n)

)

≤ O

(
kmn

Δ4
+ k(m + n)

)

time. The total running time is at most O
(
mnΔ6Δ + kmn

Δ4 + k(m + n)
)

as we
stated.

	

Using this algorithm for the sparse case as a subroutine, we give a fast com-

binatorial algorithm for triangle detection.

Theorem 1. Given a tripartite graph G on n vertices, we can detect if there
is a triangle in G using a combinatorial algorithm in Ô

(
n3/ log4 n

)
time on a

word RAM with word size w ≥ Ω(log n).

Proof. Set parameter Δ = log n
100(log log n)2

. It will remain fixed as we do the recur-
sion, even if the instance size shrinks. The following algorithm detects if there is
a triangle in a tripartite graph with vertex sets A,B,C:

Step 0: If |B| < Δ6 or |C| < Δ6, solve the instance by exhaustive search
and return the answer.

Step 1: If for all vertices vi ∈ A, d(vi, B)d(vi, C) ≤ |B|·|C|
Δ2 , we solve the

instance by the algorithm in Lemma 1.
Step 2: Otherwise, find a vertex that violates the condition. Without loss of

generality, assume v1 does, d(v1, B)d(v1, C) > |B|·|C|
Δ2 .

An Improved Combinatorial Algorithm for Boolean Matrix Multiplication 1099

Step 3: Let B1(resp. C1) be v1’s neighborhood in B(resp. C).
If |B1|

|B| > |C1|
|C| , then recurse on (A\{v1}, B,C \C1) and (A\{v1}, B \

B1, C1), else recurse on (A\{v1}, B\B1, C) and (A\{v1}, B1, C\C1).
Return YES if either of the two recursions returned YES.

Step 4: Check all pairs of vertices in B1 × C1 for an edge.
Return YES if there is an edge, NO otherwise.

Analysis of the running time.
In each node of the recursion tree, only some of the following four subproce-

dures are executed:

1. If either |B| or |C| is small, we do exhaustive search, which takes O(|A||B||C|)
time.

2. We spend O (|A|(|B| + |C|)) time to check whether there is a high degree
vertex and generate the inputs for two recursive calls.

3. If A has no high degree nodes, we invoke the algorithm in Lemma 1 which
takes

O

(
|B||C|Δ6Δ +

|A||B||C|
Δ4

+ |A|(|B| + |C|)
)

= Ô
(
|B||C|no(1) + |A||B||C|/ log4 n + |A|(|B| + |C|)

)

time.
4. For every pair of neighbors of v1 in B and C, we check if they have an edge.

This step takes O(|B1||C1|) time.

To analyse the total running time, we are going to bound the time we spend
on the small-graph case (Subprocedure 1) and the time we spend on the large-
graph case (Subprocedure 2,3,4) in the entire execution of the algorithm (the
whole recursion tree) separately, and sum up these two cases.

For the case when |B| ≥ Δ6 and |C| ≥ Δ6, Subprocedure 2 is cheap compared
to the other steps, taking time O(|A|(|B| + |C|)) ≤ Ô

(
n|B||C|/ log6 n

)
. In this

case, we mentally charge all the running time to the pairs of vertices in B × C,
then sum up over all pairs the cost they need to pay. If A has no high degree
vertices, we will run Subprocedure 2 and 3, which takes at most Ô(|B||C|no(1) +
|A||B||C|/ log4 n + |A|(|B| + |C|)) ≤ Ô

(
n|B||C|/ log4 n

)
time. We charge this

running time to all pairs of vertices in B × C evenly; that is, every pair of
vertices gets charged Ô

(
n/ log4 n

)
. If A has a high degree vertex, we will run

Subprocedure 2 and 4, which takes at most

O (|A|(|B| + |C|) + |B1||C1|)
≤ Ô

(
Δ2|B1||C1|n/ log6 n + |B1||C1|

)

≤ Ô
(
n|B1||C1|/ log4 n

)

time. We charge this running time to the pairs in B1 × C1 evenly, so every pair
gets charged Ô

(
n/ log4 n

)
.

1100 H. Yu

Claim. Every pair of vertices is charged at most once, over the entire execution
of the algorithm.

The proof of this claim follows from inspection of the algorithm: the above
argument only charges pairs of vertices that are not going into the same recursive
branch.

There are n2 pairs at the very beginning. Every pair gets charged at most
Ô

(
n/ log4 n

)
. Therefore the running time for the large-graph case is at most

Ô
(
n3/ log4 n

)
.

Next we bound the total running time of Subprocedure 1. This running time
is proportional to the number of triples we enumerated in Step 0. Let T (S) be
the maximum possible of this number of triples, if we start our recursion from
vertex sets A,B,C with |B||C| ≤ S.

Claim. T (S) ≤ nS. Moreover, for S > nΔ6, then

T (S) ≤ max
t>1/Δ,t′>1/Δ2

{T ((1 − t′)S) + T (t′(1 − t)S)}

Proof. T (S) ≤ nS is trivial, since we never enumerate any triple more than
once. If S > nΔ6, we have |B|, |C| > Δ6. That is, we must be starting the
recursion from a large-graph case. There is nothing to prove if there is no high
degree vertex in A, as we will do no enumeration in Step 0. Otherwise, let
t = max

{
|B1|
|B| , |C1|

|C|
}

, t′ = min
{

|B1|
|B| , |C1|

|C|
}

, then by the algorithm, we have

tt′ > 1/Δ2, in particular, t > 1/Δ, t′ > 1/Δ2. In the two recursive calls, we have
|B||C| values (1− t′)S and t′(1− t)S respectively. By the definition of T , we will
enumerate at most T ((1 − t′)S) + T (t′(1 − t)S) triples. This proves the claim.

	

We can upper bound T (S) using this recurrence. Consider the recursion tree

R for T (S). The root has value S. Its left child has value (1 − t′)S and right
child has value t′(1− t)S, where t and t′ maximize T ((1 − t′)S)+T (t′(1 − t)S).
We recursively construct the tree for the left child and right child. For a node
with value x, we always put (1 − t′)x in its left child and t′(1 − t)x in its right
child, for x’s optimal parameter t′ and t. We expand the tree from nodes with
value at least n1.5(> nΔ6) recursively. Therefore, we will get a tree with leaf
values at most n1.5. This tree demonstrates how T (S) is computed according to
the recurrence, before we reach n1.5. The sum of values of all leaves multiplied
by n is an upper bound for T (S), since T (x) ≤ nx.

We calculate this sum in two cases. For every leaf, there is a unique path from
the root to it, in which we follow the left child in some steps, follow the right
child in the rest. Consider all leaves such that the unique path from the root to
it takes at most 10Δ log Δ(≈ log n

10 log log n) right-child-moves. Since t′ > 1/Δ2, the
depth of the tree is at most Δ2 log n. Therefore, there are at most

(
Δ2 log n

10Δ log Δ

)
· 10Δ log Δ ≤ 23Δ log2 Δ ≤ n0.4

An Improved Combinatorial Algorithm for Boolean Matrix Multiplication 1101

such leaves. By construction, each leaf has value at most n1.5, so the sum over
all leaves is at most n1.9.

For those leaves such that the path from the root takes more than 10Δ log Δ
right-child-moves, consider a tree R′ with identical structure as R, but we set the
values of nodes in a different way. We set all ts to 0 but leave all t′s unchanged,
then calculate the corresponding values. That is, the root still has value S, its
left child still has value (1 − t′)S, and its right child now has value t′S. For any
node with value x in R′, its left child has value (1−t′)x and right child has value
t′x, for the same ratio t′ as the corresponding node in R, although the value x
may have changed. Also, leaves now may have values greater than n1.5 by the
construction of R′. The tree R′ has the following two properties:

1. The sum of values in all leaves is exactly S.
2. For any node such that the path from root to it takes at least k right-child-

moves, its value is at least 1/(1−1/Δ)k times the value of the corresponding
node in R.

The first property can be proved by induction, since the sum of values of
two children is exactly the value of the parent. For the second property, since we
require t > 1/Δ in R, and keep t′ unchanged, set t to 0, we will gain a factor of
1/(1 − t) > 1/(1 − 1/Δ) for every right-child-move.

By property 2 above, for all leaves that the path from root takes more
than 10Δ log Δ right-child-moves, their values in R′ must be at least 1/(1 −
1/Δ)10Δ log Δ ≥ Δ10 times the corresponding values in R. However, the sum
of these values in R′ is at most S by property 1. Therefore, the sum of
values in R is at most S/Δ10. Summing these two cases up, we prove that
T (S) ≤ nS/Δ10 + n2.9. In particular, T (n2) ≤ n3/Δ10 + n2.9 = Ô(n3/ log10 n).

Finally, we sum up the small-graph and large-graph cases, proving that the
algorithm runs in Ô(n3/ log4 n) time.

	

Remark. In Lemma 1, we can preprocess for all subsets of size at most
O(log k/ log log k) instead of O(Δ). This improves the running time of Theo-
rem 1 from O

(
n3(log log n)8

log4 n

)
to O

(
n3(log log n)6

log4 n

)
.

Combining the above algorithm with the reduction by Vassilevska Williams
and Williams [13], we get an efficient combinatorial algorithm for BMM.

Theorem 4 (Vassilevska Williams and Williams’10). For any constant c,
if we can solve triangle detection on n-node graphs in O(n3/ logc n) time, we can
also solve Boolean matrix multiplication on n × n matrices in the same running
time.

Theorem 2. There is a combinatorial algorithm to multiply two n × n Boolean
matrices in Ô

(
n3/ log4 n

)
time.

1102 H. Yu

3 A General Approach

In this section, we propose a more general approach for triangle finding, which
may lead to an even faster combinatorial algorithm.

In the algorithm presented in Section 2, finding a high degree vertex v ∈
A and its neighborhood B1, C1 can be viewed as finding a large easy part of
the input. That is, for the subgraph induced by vertices A,B1, C1, there is a
2-path for every pair in B1 × C1. Thus, we only have to spend O(|B1||C1|) time
to determine if there is a triangle in it, which is O(1/|A|) time on average for
every triple of vertices. After solving this part of the input, we do two recursive
calls which together exactly cover the rest of the triples. The high-degree of v
guarantees that the easy part we find each time cannot be too small. We will have
saved enough time before reaching the case where B or C is close to constant
size (in which we basically have no way to beat the exhaustive search). However,
if all vertices have low degree, then that instance itself is easy (via Lemma 1).
The following theorem generalizes this idea of reducing the triangle detection
problem to finding a large subgraph on which triangle detection is easy.

Theorem 3. Let n be an integer, 0 < α, β, γ, c ≤ 1, and G be any tripartite
graph on vertex sets A,B,C with at least

√
n vertices in each part. If there is an

algorithm L for large subgraph triangle detection on every such G that runs in
O(cαβγ|A||B||C|) time, then we can solve triangle detection on n-node graphs
in O(cn3 + n3−ε/2) time for any ε > 0 such that αβ > 10ε(1 + log 1

γ) and
α > 10ε(1 + log 1

β).

Proof. (sketch)
We will prove that the following divide-and-conquer algorithm is efficient:

Step 0. If |A||B||C| < n2.5, do exhaustive search on all triples and return
the answer.

Step 1. Run L on A ∪ B ∪ C.
Let G′ on A′ ∪ B′ ∪ C ′ be the subgraph L outputs.
Return YES if G′ contains a triangle.

Step 2. Recurse on vertex sets (A,B,C \C ′), (A,B \B′, C ′), (A\A′, B′, C ′).
Return whether any of the three recursive calls returned YES.

For the large-graph case, a similar “charging argument” works here as in the
proof of Theorem 1. Note that the input A∪B ∪C we fed to L in Step 1 always
has at least

√
n vertices in each part. By our assumption, Step 1 will run in

O(cαβγ|A||B||C|) ≤ O(c|A′||B′||C ′|) time. In Step 2, the algorithm generates
the input for recursive calls, which takes only linear time. We charge the running
time of Step 1 and Step 2 to the triples in A′ ×B′ ×C ′. On average, each triple is
charged O(c) time. Same as the proof of Theorem 1, every triple in A′ ×B′ ×C ′

An Improved Combinatorial Algorithm for Boolean Matrix Multiplication 1103

will not go into the same recursive branch together. Therefore, every triple is
charged only once in this argument. There are n3 triples. In total, they are
charged O(cn3) time. This proves that Step 1 and Step 2 take at most O(cn3)
time in the entire algorithm.

For the small-graph case, the time we spent on Step 0 is proportional to
the number of triples we enumerated. Let T (S) be the maximum possible value
of this number, if we start our recursion with |A||B||C| = S. On one hand,
we have T (S) ≤ S, as every triple will be manually checked at most once.
Moreover, for S ≥ n2.5, by the way that the algorithm does recursive calls, we
have T (S) ≤ T ((1 − γ) S) + T (γ(1 − β)S) + T (βγ(1 − α)S).

We are going to prove T (S) ≤ n2.5
(

S
n2.5

)1−ε
by induction on S. For S ≤ n2.5,

the new upper bound automatically holds, since T (S) ≤ S ≤ n2.5
(

S
n2.5

)1−ε
.

Otherwise, by the recurrence and induction hypothesis,

T (S) ≤ n2.5

((
(1 − γ) S

n2.5

)1−ε

+
(

γ(1 − β)S
n2.5

)1−ε

+
(

βγ(1 − α)S
n2.5

)1−ε
)

≤ n2.5

(
S

n2.5

)1−ε (
(1 − γ)1−ε + (γ(1 − β))1−ε + (βγ(1 − α))1−ε

)
.

The value of (1 − γ)1−ε+(γ(1 − β))1−ε +(βγ(1 − α))1−ε is always less than 1:

(1 − γ)1−ε + (γ(1 − β))1−ε + (βγ(1 − α))1−ε

≤ (1 − (1 − ε)γ) + γ1−ε (1 − (1 − ε)β) + (βγ)1−ε (1 − (1 − ε)α)
(by (1 − x)c ≤ 1 − cx when 0 < c, x < 1)

= 1 + γ
(−(1 − ε) + γ−ε

(
1 + β

(−(1 − ε) + β−ε (1 − (1 − ε)α)
)))

≤ 1 + γ

(
−(1 − ε) + γ−ε

(
1 + β

(
−(1 − ε) + (1 + 2ε log

1
β

)(1 − 2α

3
)
)))

(by ε log 1
β < 1/10 and ε < 1/10)

≤ 1 + γ

(
−(1 − ε) + γ−ε

(
1 + β

(
ε + 2ε log

1
β

− 2α

3

)))

≤ 1 + γ

(
−(1 − ε) + (1 + 2ε log

1
γ

)(1 − αβ

3
)
)

(by ε log 1
γ < 1/10 and ε(1 + log 1

β) < α/10)

≤ 1 + γ

(
ε + 2ε log

1
γ

− αβ

3

)

≤ 1 − αβγ

10
< 1. (by ε(1 + log 1

γ) < αβ/10)

1104 H. Yu

This proves T (S) ≤ n2.5
(

S
n2.5

)1−ε
, in particular, T (n3) ≤ n3−ε/2. Therefore

the total running time of the algorithm is at most O(cn3 + n3−ε/2).
	

Remark. Note that we do not have to restrict ourselves to find an α-fraction
of A, β-fraction of B and γ-fraction of C. As long as we can find one part
with α-fraction, one with β-fraction and the third with γ-fraction, and adjust
the inputs for recursive calls correspondingly, we will be able to solve triangle
detection efficiently. In this sense, the algorithm in Section 2 has parameters
c = 1

Δ4 , α = 1, β = 1
Δ , γ = 1

Δ2 , ε = Θ(1
Δ log Δ), while G′ is the subgraph induced

by (A,B1, C1) or the entire graph if all vertices in A have low degree.

4 Conclusion

We have shown how to generalize the idea of divide-and-conquer in Chan’s algo-
rithm, and have provided a more intuitive proof of the recursion. The way of
analysing the “sublinear” recurrence in Theorem 1, i.e., our T (S) and its anal-
ysis, should be able to extend to other problems. We would like to see more
applications of this method in proving the efficiency of other combinatorial algo-
rithms that are based on divide-and-conquer.

Also, we would hope to have an O(n2) time algorithm for triangle detection
on tripartite graphs with vertex set sizes n, n, and Ô(log4 n). We call this the
“lopsided” triangle detection problem, where one side of vertices is very small
compared to the others. An argument similar to the reduction by Vassilevska
Williams and Williams [13] shows that this would yield an O(n2) time algorithm
for multiplying n × n and n × Ô(log4 n) Boolean matrices, improving the maxi-
mum outer dimension d that n×n and n×d Boolean matrices can be multiplied
in O(n2) time, in both the combinatorial and the algebraic world. The current
record of d is Ô(log3 n) by Chan’s algorithm (Chan gave an O(n2) time algorithm
for multiplying n × d and d × n matrices, which implies an O(n2) time triangle
finding algorithm), while the record in the algebraic world is merely O(log n) [3].

Finally, we provide one type of instance for the lopsided triangle detection
problem which seems hard to solve in O(n2) time with our current techniques:
a graph G on vertex sets A,B,C with |A| = |B| = n and |C| = Ô(log4 n), with
roughly 1/ log n fraction of edges between A and C, 1/ log n fraction of edges
between B and C, and constant fraction of edges between A and B. The main
difficulty is that the size of C is too small. If we try to do recursion, its size will
reach a constant too soon. Once it becomes of constant size, we basically have
no way to save anything from exhaustive search.

Acknowledgments. The author would like to thank Ryan Williams for helpful dis-
cussions on results and writing of the paper, and the anonymous reviewers for their
valuable comments.

An Improved Combinatorial Algorithm for Boolean Matrix Multiplication 1105

References

1. Arlazarov, V.Z., Dinic, E.A., Kronrod, M.A., Faradzhev, I.A.: On economical con-
struction of the transitive closure of a directed graph. Soviet Mathematics Doklady
11(5), 1209–1210 (1970)

2. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. In:
50th Annual IEEE Symposium on Foundations of Computer Science, pp. 745–754
(2009)

3. Brockett, R.W., Dobkin, D.: On the number of multiplications required for matrix
multiplication. SIAM Journal on Computing 5, 624–628 (1976)

4. Chan, T.M.: Speeding up the four russians algorithm by about one more logarith-
mic factor. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 212–217 (2015)

5. Fischer, M.J., Meyer, A.R.: Boolean matrix multiplication and transitive closure.
In: 12th Annual Symposium on Switching and Automata Theory, pp. 129–131
(1971)

6. Frieze, A.M., Kannan, R.: Quick approximation to matrices and applications. Com-
binatorica 19(2), 175–220 (1999)

7. Furman, M.E.: Application of a method of fast multiplication of matrices in the
problem of finding the transitive closure of a graph. Soviet Mathematics Doklady
11(5), 1252 (1970)

8. Impagliazzo, R., Lovett, S., Paturi, R., Schneider, S.: 0–1 integer linear program-
ming with a linear number of constraints. CoRR abs/1401.5512 (2014)

9. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: International
Symposium on Symbolic and Algebraic Computation, pp. 296–303 (2014)

10. Munro, I.: Efficient determination of the transitive closure of a directed graph.
Information Processing Letters 1(2), 56–58 (1971)

11. Valiant, L.G.: General context-free recognition in less than cubic time. Journal of
Computer and System Sciences 10(2), 308–315 (1975)

12. Vassilevska Williams, V.: Multiplying matrices faster than coppersmith-winograd.
In: Proceedings of the 44th Symposium on Theory of Computing Conference, pp.
887–898 (2012)

13. Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path,
matrix and triangle problems. In: 51th Annual IEEE Symposium on Foundations
of Computer Science, pp. 645–654 (2010)

Author Index

Abramsky, Samson II-31
Achlioptas, Dimitris II-467
Agrawal, Shweta I-1
Ailon, Nir I-14
Aisenberg, James II-44
Albers, Susanne I-26
Alistarh, Dan II-479
Amanatidis, Georgios I-39
Amarilli, Antoine II-56
Aminof, Benjamin II-375
Anshelevich, Elliot I-52
Aronov, Boris I-65
Avigdor-Elgrabli, Noa I-78
Avin, Chen II-492
Azar, Yossi I-91

Beame, Paul I-103
Behsaz, Babak I-116
Bei, Xiaohui I-129
Beigi, Salman I-143
Beneš, Nikola II-69
Berkholz, Christoph I-155
Bernstein, Aaron I-167
Beyersdorff, Olaf I-180
Bezděk, Peter II-69
Bhangale, Amey I-193
Bhattacharya, Sayan I-206, II-504
Bienvenu, Laurent I-219
Björklund, Andreas I-231, I-243
Bodirsky, Manuel I-256
Bojańczyk, Mikołaj II-427
Bonet, Maria Luisa II-44
Boreale, Michele II-82
Bouajjani, Ahmed II-95
Bourhis, Pierre II-56
Bringmann, Karl II-516
Bun, Mark I-268
Burton, Benjamin A. I-281
Buss, Sam II-44

Canonne, Clément L. I-294
Cao, Yixin I-306
Charron-Bost, Bernadette II-528

Chatterjee, Krishnendu II-108, II-121
Chattopadhyay, Arkadev II-540
Chekuri, Chandra I-318
Chen, Ning I-129, II-552
Chew, Leroy I-180
Ciobanu, Laura II-134
Cohen, Aloni I-331
Cohen, Gil I-343
Cohen, Ilan Reuven I-91
Colcombet, Thomas II-146
Coudron, Matthew I-355
Crãciun, Adrian II-44
Cseh, Ágnes I-367
Curticapean, Radu I-380
Czyzowicz, Jurek I-393

Dahlgaard, Søren II-564
Dani, Varsha II-575
Datta, Samir II-159
Dell, Holger I-231
Desfontaines, Damien I-219
Diekert, Volker II-134
Disser, Yann I-406
Doron, Dean I-419
Doyen, Laurent II-108
Dubut, Jérémy II-171
Dvořák, Zdeněk I-432

Elder, Murray II-134
Emmi, Michael II-95
Enea, Constantin II-95
Erlebach, Thomas I-444
Etesami, Omid I-143
Etessami, Kousha II-184

Faonio, Antonio I-456
Feldman, Michal II-601
Feldmann, Andreas Emil I-469, II-588
Fijalkow, Nathanaël II-197
Filiot, Emmanuel II-209
Finkel, Olivier II-222
Fomin, Fedor V. I-481, I-494
Fontes, Lila I-506

Frascaria, Dario I-26
Friedler, Ophir II-601
Friedrich, Tobias II-516, II-614
Friggstad, Zachary I-116
Függer, Matthias II-528
Fulla, Peter I-517
Fung, Wai Shing I-469

Gairing, Martin II-626
Galanis, Andreas I-529
Ganguly, Sumit I-542
Garg, Jugal I-554
Ga�sieniec, Leszek I-393
Gaspers, Serge I-567
Gawrychowski, Paweł I-580, I-593
Gelashvili, Rati II-479
Georgiadis, Loukas I-605
Ghaffari, Mohsen II-638
Gharibian, Sevag I-617
Giannakopoulos, Yiannis II-650
Giannopoulou, Archontia C. I-629
Göbel, Andreas I-642
Gohari, Amin I-143
Goldberg, Leslie Ann I-529, I-642, I-654
Goldreich, Oded I-666
Goldwasser, Shafi II-663
Golovnev, Alexander I-481, I-1046
Goubault, Éric II-171
Goubault-Larrecq, Jean II-171
Grohe, Martin I-155
Große, Ulrike I-678
Gudmundsson, Joachim I-678
Gupta, Shalmoli I-318
Gur, Tom I-666
Gysel, Rob I-654

Haase, Christoph II-234
Hamza, Jad II-95
Hansen, Thomas Dueholm I-689
Hemenway, Brett I-701
Henzinger, Monika I-206, I-713, I-725
Henzinger, Thomas A. II-121
Hoefer, Martin II-504, II-516, II-552
Hoffmann, Michael I-444
Holmgren, Justin I-331
Horn, Florian II-197
Huang, Chien-Chung I-367, II-504
Huang, Lingxiao I-910
Husfeldt, Thore I-231

Ibsen-Jensen, Rasmus II-121
Im, Sungjin I-78, I-737
Ishai, Yuval I-1
Istrate, Gabriel II-44
Italiano, Giuseppe F. I-206, I-605

Jagadeesan, Radha II-31, II-247
Jahanjou, Hamid I-749
Jain, Rahul I-506
Jansen, Bart M.P. I-629
Jerrum, Mark I-529
Jin, Yifei I-898
Jurdziński, Marcin II-260

Kalai, Yael Tauman II-663
Kamat, Vikram I-243
Kammer, Frank I-444
Kaniewski, Jedrzej I-761
Kannan, Sampath I-773
Kantor, Erez II-675
Kaplan, Haim I-689
Kar, Koushik I-52
Karbasi, Amin II-688
Kari, Jarkko II-273
Kari, Lila I-1022
Karpinski, Marek I-785
Kaski, Petteri I-494
Katz, Matthew J. I-65
Kavitha, Telikepalli I-367, II-504
Kawarabayashi, Ken-ichi II-3
Kawase, Yasushi I-797
Kayal, Neeraj I-810
Kerenidis, Iordanis I-506
Khot, Subhash I-822
Khurana, Dakshita I-1
Kiefer, Stefan II-234
Klein, Felix II-452
Klimm, Max I-406
Knauer, Christian I-678
Knudsen, Mathias Bæk Tejs II-564
Kobayashi, Yusuke I-797
Koiran, Pascal I-810
Kollias, Konstantinos II-626
Komarath, Balagopal I-834
Könemann, Jochen I-469
Kopecki, Steffen I-1022
Kopparty, Swastik I-193
Kosowski, Adrian I-393
Kotsialou, Grammateia II-626

1108 Author Index

Koutsoupias, Elias II-650
Kowalik, Łukasz I-243
Kozen, Dexter II-286
Kozik, Marcin I-846
Kranakis, Evangelos I-393
Kreutzer, Stephan II-3
Krinninger, Sebastian I-713, I-725
Krohmer, Anton II-614
Kulikov, Alexander S. I-481
Kulkarni, Raghav II-159
Künnemann, Marvin I-859, II-552
Kupec, Martin I-432
Kuperberg, Denis II-197, II-299
Kurpisz, Adam I-872
Kutten, Shay II-675

Lahav, Ori II-311
Lapinskas, John I-654
Laplante, Sophie I-506
Larsen, Kim G. II-69
Laura, Luigi I-605
Laurière, Mathieu I-506
Lazić, Ranko II-260
Lee, Troy I-761
Lengler, Johannes II-688
Leppänen, Samuli I-872
Leroux, Jérôme II-324
Li, Jerry I-886
Li, Jian I-898, I-910
Liew, Vincent I-103
Lin, Chengyu II-552
Lingas, Andrzej I-785
Lohrey, Markus II-337
Loitzenbauer, Veronika I-713
Lokshtanov, Daniel I-494, I-629,

I-922, I-935
Lotker, Zvi II-492
Lübbecke, Elisabeth I-406

Mahajan, Meena I-180
Mamouras, Konstantinos II-286
Maneth, Sebastian II-209, II-337
Manthey, Bodo I-859
Maria, Clément I-281
Markakis, Evangelos I-39
Martin, Barnaby I-256
Mastrolilli, Monaldo I-872
Mathieu, Claire I-773
Mazza, Damiano II-350
Mehta, Ruta I-554

Meunier, Pierre-Étienne I-1022
Miao, Peihan II-552
Michalewski, Henryk II-362
Mihajlin, Ivan I-481
Miles, Eric I-749
Mio, Matteo II-362
Misra, Pranabendu I-922
Mitchell, Joseph S.B. I-947
Molinaro, Marco I-960
Mömke, Tobias I-973
Moseley, Benjamin I-78, I-737
Mottet, Antoine I-256
Mouawad, Amer E. I-985
Movahedi, Mahnush II-575
Mozes, Shay I-580
Mukherjee, Anish II-159
Murlak, Filip II-427
Muscholl, Anca II-11

Nahum, Yinon II-492
Nanongkai, Danupon I-725
Nayyeri, Amir I-997
Nicholson, Patrick K. I-593
Nielsen, Jesper Buus I-456
Nikolov, Aleksandar I-1010
Nikzad, Afshin I-39
Nishimura, Naomi I-985
Nowak, Thomas II-528

Ochremiak, Joanna I-846
Otop, Jan II-121

Panolan, Fahad I-494, I-922
Park, Sunoo II-663
Parotsidis, Nikos I-605
Paskin-Cherniavsky, Anat I-1
Pathak, Vinayak I-985
Patitz, Matthew J. I-1022
Pǎtras�cu, Mihai I-103
Pecatte, Timothée I-810
Peebles, John I-886
Peleg, David II-492
Peternek, Fabian II-337
Petris�an, Daniela II-286
Pietrzak, Krzysztof I-1046
Polishchuk, Valentin I-947
Post, Ian I-469

Quanrud, Kent I-318

Author Index 1109

Rabani, Yuval I-78
Raman, Venkatesh I-985
Ramanujan, M.S. I-935
Raykov, Pavel II-701
Reynier, Pierre-Alain II-209
Richerby, David I-642
Riely, James II-247
Roland, Jérémie I-506
Rotbart, Noy II-564
Rothblum, Ron D. I-666
Rothenberger, Ralf II-516
Rubin, Sasha II-375
Rudra, Atri II-540

Saberi, Amin I-39
Sachdeva, Sushant I-193
Saha, Chandan I-810
Saia, Jared II-575
Saket, Rishi I-822
Salavatipour, Mohammad R. I-116
Sanyal, Swagato I-1035
Sarma, Jayalal I-834
Sauerwald, Thomas II-516
Saurabh, Saket I-494, I-629, I-922, I-935
Schewe, Sven II-388
Schmitz, Sylvain II-260
Schwentick, Thomas II-159
Sekar, Shreyas I-52
Seki, Shinnosuke I-1022
Senellart, Pierre II-56
Shen, Alexander I-219
Shinkar, Igor I-343
Shukla, Anil I-180
Sidiropoulos, Anastasios I-997
Sikora, Jamie I-617
Silva, Alexandra II-286
Siminelakis, Paris II-467
Sivakumar, Rohit I-116
Skórski, Maciej I-1046
Skrzypczak, Michał II-197, II-299
Sledneu, Dzmitry I-785
Smid, Michiel I-678
Sorkin, Gregory B. I-567
Spegni, Francesco II-375
Spirakis, Paul G. I-393
Spreer, Jonathan I-281
Srba, Jiří II-69
Sreejith, A.V. II-146
Staton, Sam II-401
Steger, Angelika II-688

Stehn, Fabian I-678
Stein, Cliff I-167
Stewart, Alistair II-184
Sunil, K.S. I-834
Sutre, Grégoire II-324
Swernofsky, Joseph II-414
Sysikaski, Mikko I-947
Szabados, Michal II-273

Talbot, Jean-Marc II-209
Tarjan, Robert E. I-689
Ta-Shma, Amnon I-419
Terui, Kazushige II-350
Thaler, Justin I-268
Thapper, Johan I-1058
Totzke, Patrick II-324
Trivedi, Ashutosh II-388

Uijlen, Sander II-401
Uznański, Przemysław I-393

Vafeiadis, Viktor II-311
Vákár, Matthijs II-31
Vardi, Moshe Y. II-108
Varghese, Thomas II-388
Vazirani, Vijay V. I-554
Venturi, Daniele I-456
Vidick, Thomas I-355
Viola, Emanuele I-749

Wagner, Lisa II-504
Wang, Haitao I-947
Wang, Yajun I-1070
Wehar, Michael II-414
Weimann, Oren I-580
Weinstein, Omri I-1082
Wiese, Andreas I-973
Witkowski, Adam II-427
de Wolf, Ronald I-761
Wong, Sam Chiu-wai I-1070
Woodruff, David P. I-960, I-1082
Wootters, Mary I-701

Yamaguchi, Yutaro I-797
Yannakakis, Mihalis II-184
Yaroslavtsev, Grigory I-960
Yazdanbod, Sadra I-554
Young, Maxwell II-575
Yu, Huacheng I-1094

1110 Author Index

Zehavi, Meirav I-243
Zetzsche, Georg II-440
Zeume, Thomas II-159
Zhang, Shengyu I-129
Zhou, Hang I-773

Zimmermann, Martin II-452

Zuleger, Florian II-375

Zwick, Uri I-689

Živný, Stanislav I-517, I-1058

Author Index 1111

	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Statistical Randomized Encodings: A Complexity Theoretic View
	1 Introduction
	1.1 Our Results
	1.2 Overview of Main Techniques
	1.3 Related Work

	2 Preliminaries
	3 Separating SRE from Efficient Computation
	3.1 Learning with Errors (LWE)-based Promise Problem

	4 Oracle Separation Between SRE and SZK
	5 Conclusion and Open Problems
	References

	Tighter Fourier Transform Lower Bounds
	1 Introduction
	1.1 Our Contribution

	2 Computational Model
	2.1 Numerical Architecture

	3 The Matrix Quasi-Entropy Function
	4 Generalized Ill Conditioned Bottleneck from Speedup
	5 Many Independent Ill Conditioned Bottlenecks
	6 Main Technical Lemma
	7 Future Work
	References

	Quantifying Competitiveness in Paging with Locality of Reference
	1 Introduction
	2 Analysis of opt
	2.1 A lower Bound
	2.2 Tightness of the Lower Bound

	3 The Competitiveness of lru
	4 Separating lru from fifo and fwf
	5 Experiments
	References

	Approximation Algorithms for Computing Maximin Share Allocations
	1 Introduction
	2 Definitions and Notation
	3 Warmup: A Polynomial Time 1/2-approximation
	4 A Polynomial Time (to.23-)to.-approximation
	5 The Case of n=3 Agents
	6 A Probabilistic Analysis
	7 Conclusions
	References

	Envy-Free Pricing in Large Markets: Approximating Revenue and Welfare
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Model and Preliminaries
	3 Large Markets with Uniform Peak Valuations
	3.1 Approximating Revenue and Social Welfare Simultaneously

	4 Relaxing the Uniform Peak Valuation Assumption
	References

	Batched Point Location in SINR Diagrams via Algebraic Tools
	1 Introduction
	1.1 Related Work
	1.2 Our Tools and Goals
	1.3 Our Results

	2 Batched Point Location on the Line
	2.1 Uniform Power
	2.2 Arbitrary Power

	3 Batched Point Location in the Plane
	3.1 General Discussion
	3.2 Approximating the General Case

	4 Concluding Remarks
	References

	On the Randomized Competitive Ratio of Reordering Buffer Management with Non-Uniform Costs
	1 Introduction
	2 Preliminaries
	3 Solving the LP Online
	3.1 The Algorithm
	3.2 Competitive Analysis

	4 Rounding the LP Online
	4.1 Online Rounding Algorithm

	References

	Serving in the Dark should be done Non-Uniformly
	1 Introduction
	1.1 Our Results
	1.2 Our Approach and Techniques
	1.3 Further Related Work

	2 The Model
	3 Deterministic Serving Algorithms
	4 Randomized Algorithms and their Analysis
	4.1 Time-Order Based Randomized Algorithms
	4.2 Grouping Bins Together
	4.3 Fractional Deterministic Algorithms
	4.4 Analyzing the Fractional Algorithm versus the Optimal Algorithm
	4.5 Analysis of the Randomized Algorithm versus the Fractional One

	References

	Finding the Median (Obliviously) with Bounded Space
	1 Introduction
	2 Preliminaries
	3 Round Elimination
	4 The Bounded-Round Communication Complexity of (the Least-Significant Bit of) the Median
	5 Oblivious Branching Programs and the Median
	6 Beyond Oblivious Branching Programs
	References

	Approximation Algorithms for Min-Sum k-Clustering and Balanced k-Median
	1 Introduction
	1.1 Related Work
	1.2 Results and Techniques

	2 An O(logn)-Approximation for General BkM
	3 Dynamic Programming for BkM in 2-HSTs
	3.1 The Special Case of Full Binary Trees

	4 QPTAS for Doubling Metrics
	4.1 A QPTAS for Tree Metrics

	5 Conclusion
	References

	Solving Linear Programming with Constraints Unknown
	1 Introduction
	1.1 Model and Results

	2 Preliminaries
	3 Furthest Oracle
	3.1 Algorithm Solving Ax>0

	4 Worst-Case Oracle
	5 Concluding Remarks
	References

	Deterministic Randomness Extraction from Generalized and Distributed Santha-Vazirani Sources
	1 Introduction
	2 Randomness Extraction from Generalized SV Sources
	2.1 A Sufficient Condition for the Existence of Randomness Extractors
	2.2 A Necessary Condition for the Existence of Randomness Extractors

	3 Distributed SV Sources
	3.1 Common Data
	3.2 Common Random Bit Extraction from Distributed SV Sources

	4 Future Work
	References

	Limitations of Algebraic Approaches to Graph Isomorphism Testing
	1 Introduction
	2 Algebraic Proof Systems
	2.1 Low-Degree Reductions
	2.2 Linearisation
	2.3 Linear and Semidefinite-Programming Approaches

	3 Equations for Graph Isomorphism
	4 Weisfeiler-Lehman Is Located Between Nullstellensatz and Polynomial Calculus
	5 Groups CSPs and Tseitin Polynomials
	5.1 From Group CSPs to Graph Isomorphism
	5.2 Low-Degree Reduction From Tseitin to Isomorphism

	6 Lower Bounds
	7 Concluding Remarks
	References

	Fully Dynamic Matching in Bipartite Graphs
	1 Introduction
	1.1 Previous Work
	1.2 Results
	1.3 Techniques

	2 Preliminaries
	3 The Framework
	3.1 General Bipartite Graphs
	3.2 Small Arboricity Graphs

	4 An EDCS Contains an Approximate Matching
	5 Maintaining an Edge Degree Constrained Subgraph
	6 Conclusion
	References

	Feasible Interpolation for QBF Resolution Calculi
	1 Introduction
	2 Preliminaries
	3 Feasible (Monotone) Interpolation
	3.1 The Setting
	3.2 Interpolants from LQU+- Res Proofs
	3.3 Interpolants from IRM-calc Proofs
	3.4 Monotone Interpolation

	4 New Lower Bounds for IRM-calc and LQU+- Res
	5 Feasible Interpolation Vs Strategy Extraction
	References

	Simultaneous Approximation of Constraint Satisfaction Problems
	1 Introduction
	1.1 Observations About Simultaneous Approximation
	1.2 Results
	1.3 Complementary Results
	1.4 Techniques
	1.5 Discussion
	1.6 Related Work

	References

	Design of Dynamic Algorithms via Primal-Dual Method
	1 Introduction
	2 Maintaining a Set-Cover in a Dynamic Setting
	3 Maintaining a b-Matching in a Dynamic Setting
	References

	What Percentage of Programs Halt?
	1 Introduction
	1.1 Motivation
	1.2 Definitions and Notation

	2 Counting How Many Programs Halt
	2.1 The Complexity of Hn
	2.2 Limit Points of Un

	3 Approximating the Halting Problem
	3.1 Generic and Coarse Computability
	3.2 Allowing a Small Density of Errors and `Infinitely Often'-Success
	3.3 The Probabilistic Case

	References

	The Parity of Set Systems Under Random Restrictions with Applications to Exponential Time Problems
	1 Introduction
	1.1 Set Systems Under Random Reductions
	1.2 Consequences for Directed Hamiltonicity
	1.3 Consequences for Set Cover and Hitting Set
	1.4 Consequences for W[1]

	2 Proof of the Main Lemma
	References

	Spotting Trees with Few Leaves
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Finding Trees on k Vertices with l Leaves
	3 Colored Graphs
	References

	Constraint Satisfaction Problems over the Integers with Successor
	1 Introduction
	2 Distance CSPs
	3 The Algebraic Approach
	4 Statement of Results
	5 Definability of Successor
	5.1 Degrees
	5.2 Petrus
	5.3 Boundedness and Rank

	6 Algorithms
	7 The Classification
	8 Discussion
	References

	Hardness Amplification and the Approximate Degree of Constant-Depth Circuits
	1 Introduction
	2 Hardness Amplification
	3 Lower Bounds For AC0
	3.1 A New One-Sided Approximate Degree Lower Bound for AC0
	3.2 Accuracy-Degree Tradeoff Lower Bounds for AC0
	3.3 Discrepancy Upper Bound
	3.4 Threshold Weight Lower Bound

	4 Approximate Degree Lower Bounds for AND-OR Trees
	5 Lower Bounds for Read-Once DNFs and CNFs
	5.1 Extending Servedio et al.'s Lower Bound to Read-Once DNFs
	5.2 Extending Beigel's Lower Bound to Read-Once DNFs

	6 Discussion
	References

	Algorithms and Complexity for Turaev-Viro Invariants
	1 Introduction
	2 Preliminaries
	2.1 The Turaev-Viro Invariants
	2.2 Treewidth and Parameterised Complexity

	3 Algorithms for Computing Turaev-Viro Invariants
	3.1 The Backtracking Algorithm for Computing TVr,q
	3.2 A Polynomial-Time Algorithm for r=3
	3.3 #P-Hardness of TV4,1

	4 A Fixed-Parameter Tractable Algorithm
	5 Implementation and Experimentation
	6 An Alternate Geometric Interpretation
	References

	Big Data on the Rise?
	1 Introduction
	2 Preliminaries
	3 Previous Work: Standard Model
	4 With Conditional Samples
	4.1 A poly(log n,1/eps)-Query Tester for INTCOND
	4.2 A poly(1/eps)-Query Tester for COND

	References

	Unit Interval Editing Is Fixed-Parameter Tractable
	1 Introduction
	2 {Claw, net, tent, C4}-free Graphs
	3 Vertex Deletion
	4 Edge Deletion
	5 General Editing
	References

	Streaming Algorithms for Submodular Function Maximization
	1 Introduction
	2 Preliminaries
	3 Streaming Greedy
	4 Randomized Streaming Greedy
	4.1 Simpler Algorithm and Better Bound for Cardinality Constraint

	References

	Multilinear Pseudorandom Functions
	1 Introduction
	2 Preliminaries
	2.1 Linear Maps
	2.2 Tensor Products of Vector Spaces
	2.3 Decisional Diffie-Hellman Assumption

	3 Definition
	4 Construction
	4.1 Proof of Security

	5 Applications
	6 Extensions
	References

	Zero-Fixing Extractors for Sub-Logarithmic Entropy
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Proof Overviews
	3.1 Proof Overview for Theorem 1
	3.2 Proof Overview for Theorem 2

	4 Conclusion and Open Problems
	References

	Interactive Proofs with Approximately Commuting Provers
	1 Introduction
	2 A Rounding Scheme for the QCSDP Hierarchy
	3 Interactive Proofs with Approximately Commuting Provers
	4 Discussion
	4.1 Commuting Approximants: Some Results, Limits, and Possibilities
	4.2 Device-Independent Randomness Expansion and Weak Cross-Talk

	References

	Popular Matchings with Two-Sided Preferences and One-Sided Ties
	1 Introduction
	2 Preliminaries
	3 Finding Popular Matchings in a 2-sided Voting Model
	References

	Block Interpolation: A Framework for Tight Exponential-Time Counting Complexity
	1 Introduction
	2 Preliminaries
	3 The Block Interpolation Framework
	3.1 Admissible Graph Polynomials
	3.2 First Reduction Step: Multivariate Interpolation
	3.3 Second Reduction Step: Weight Simulation by Gadgets

	4 Applications of the Framework
	4.1 The Unweighted Permanent
	4.2 The Matching and Independent Set Polynomials
	4.3 The Tutte Polynomial

	References

	On Convergence and Threshold Properties of Discrete Lotka-Volterra Population Protocols
	1 Introduction
	2 Convergence of Discrete LV-type Protocols
	3 The Wolves-and-Sheep (WS) Protocol
	4 The Rock-Paper-Scissors (RPS) Protocol
	References

	Scheduling Bidirectional Traffic on a Path
	1 Introduction
	2 Preliminaries
	3 Hardness of Bidirectional Scheduling
	4 A PTAS for Bidirectional Scheduling
	5 Hardness of Custom Compatibilities
	6 Dynamic Programs for Restricted Compatibilities
	References

	On the Problem of Approximating the Eigenvalues of Undirected Graphs in Probabilistic Logspace
	1 Introduction
	1.1 The Bigger Picture
	1.2 On the Problem of Approximating Arbitrary Eigenvalues of Undirected Graphs in BPL
	1.3 Our Technique
	1.4 A Short Discussion

	2 Preliminaries
	3 Approximating Eigenvalues with Constant Accuracy
	3.1 Using the Symmetric Threshold Functions
	3.2 The Limitation of the Technique

	References
	A Simulatable Matrices

	On Planar Boolean CSP
	1 Introduction
	2 Non-Self-Complementary Templates
	3 Self-Complementary Templates and Binary CSP
	4 NP-Hardness of the Non--Matroid Case
	5 Matching-Realizability of Even -Matroids of Arity at Most 5
	References

	On Temporal Graph Exploration
	1 Introduction
	2 Preliminaries
	3 Lower Bounds for General Temporal Graphs
	4 Restricted Underlying Graphs
	4.1 Lower Bound for Planar Bounded-Degree Graphs
	4.2 Underlying Graphs with Bounded Treewidth
	4.3 Cycles and Cycles with Chords
	4.4 The 2n Grid

	5 Temporal Graphs with Regularly Present Edges
	6 Conclusion
	References

	Mind Your Coins: Fully Leakage-Resilient Signatures with Graceful Degradation
	1 Introduction
	2 Preliminaries
	3 Fully-Leakage One-More Unforgeability
	4 The Signature Scheme
	4.1 Secret Sharing Hybrid Commitment
	4.2 Scheme Description

	References

	A (1+)-Embedding of Low Highway Dimension Graphs into Bounded Treewidth Graphs
	1 Introduction
	1.1 Our Techniques

	2 Embeddings for Low Doubling Dimension Metrics
	3 Properties of Low Highway Dimension Graphs
	4 Constructing the Embedding
	References

	Lower Bounds for the Graph Homomorphism Problem
	1 Introduction
	2 Preliminaries
	3 Reductions
	4 Lower Bounds for the Graph Homomorphism Problem
	References

	Parameterized Single-Exponential Time Polynomial Space Algorithm for Steiner Tree
	1 Introduction
	2 Preliminaries
	3 Algorithm
	References

	Relative Discrepancy Does not Separate Information and Communication Complexity
	1 Introduction
	2 Preliminaries
	2.1 Information and Communication Complexity
	2.2 Lower Bound Techniques

	3 Relative Discrepancy Is Bounded by Relaxed Partition
	4 The Distributional Case
	5 Adaptive Relative Discrepancy Is Equivalent to the Public Coin Partition
	References

	A Galois Connection for Valued Constraint Languages of Infinite Size
	1 Introduction
	2 Background
	2.1 Valued CSPs
	2.2 Weighted Relational Clones
	2.3 Weighted Clones

	3 Results
	4 New Galois Connection
	References

	Approximately Counting H-Colourings is #BIS-Hard
	1 Introduction
	2 Reductions for Sampling versus Reductions for Counting
	3 Proof Outline
	4 Overview of Proof of Lemma 4
	References

	Taylor Polynomial Estimator for Estimating Frequency Moments
	1 Introduction
	2 Taylor Polynomial Estimator
	3 Algorithm
	4 Analysis
	References

	ETR-Completeness for Decision Versions of Multi-player (Symmetric) Nash Equilibria
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 (Symmetric) k-Nash
	2.2 Existential Theory of Reals (ETR)
	2.3 The Class FIXP and Its Variant FIXPa

	3 k-Nash: ETR-completeness for Decision Problems
	3.1 InBox to Metapost, Subset and Superset

	4 Symmetric 3-Nash: ETR and FIXPa Completeness
	References

	Separate, Measure and Conquer: Faster Polynomial-Space Algorithms for Max 2-CSP and Counting Dominating Sets
	1 Introduction
	2 Max 2-CSP
	2.1 Background
	2.2 Analysis

	3 The Separate, Measure and Conquer Technique
	4 Counting Dominating Sets
	5 Conclusions
	References

	Submatrix Maximum Queries in Monge Matrices Are Equivalent to Predecessor Search
	1 Introduction
	2 Data Structure for Monge Matrices
	3 Obtaining Linear Space
	4 Lower Bound
	References

	Optimal Encodings for Range Top-k, Selection, and Min-Max
	1 Introduction
	2 Optimal Encodings of Range Min-Max Queries
	2.1 Review of Fischer and Heun's Technique
	2.2 Upper Bound for Range Min-Max Queries
	2.3 Lower Bound for Range Min-Max Queries

	3 Optimal Encodings for Top-k Queries
	3.1 Upper Bound for Encoding Top-k Queries
	3.2 Lower Bound for Encoding Top-k Queries

	References

	2-Vertex Connectivity in Directed Graphs
	1 Introduction
	2 Flow Graphs, Dominators, and Bridges
	3 Vertex-resilient Blocks and 2-vertex-connected Blocks
	4 Computing the Vertex-resilient Blocks
	5 Computing the 2-vertex-connected Blocks
	References

	Ground State Connectivity of Local Hamiltonians
	1 Introduction
	2 Preliminaries
	3 k-Orthogonality and the Traversal Lemma
	4 QCMA-completeness
	References

	Uniform Kernelization Complexity of Hitting Forbidden Minors
	1 Introduction
	2 Preliminaries
	3 Kernelization Lower Bounds
	4 Uniformly Polynomial Kernelization for Treedepth-eta Deletion
	4.1 Structural Decomposition of the Input Graph
	4.2 Reduction Algorithm

	5 Conclusion
	References

	Counting Homomorphisms to Square-Free Graphs, Modulo 2
	1 Introduction
	1.1 Counting Modulo 2
	1.2 Going Beyond Bounded Tree-Width
	1.3 Squares and Related Work

	3 Partially Labelled Graphs and Pinning
	4 Hardness Gadgets
	5 Finding Hardness Gadgets
	6 Main Theorem
	References

	Approximately Counting Locally-Optimal Structures
	1 Introduction
	1.1 Detailed Results

	2 Preliminaries
	3 Hardness of #MaximalBIS
	4 Minimal Separator Problems
	References

	Proofs of Proximity for Context-Free Languages and Read-Once Branching Programs
	1 Introduction
	1.1 Our Results
	1.2 Proof Overview

	References

	Fast Algorithms for Diameter-Optimally Augmenting Paths
	1 Introduction
	1.1 Related Work

	2 Augmenting a Path with One Edge
	3 An Approximation Algorithm in Euclidean Space
	References

	Hollow Heaps
	1 Introduction
	2 Hollow Heaps
	3 Analysis
	4 Eager Hollow Heaps
	5 Rebuilding
	6 Implementation of Hollow Heaps
	References

	Linear-Time List Recovery of High-Rate Expander Codes
	1 Introduction
	1.1 List Recovery
	1.2 Expander Codes
	1.3 Our Contributions

	2 Definitions and Notation
	3 Results and Constructions
	3.1 High-Rate Linear-Time List Recoverable Codes
	3.2 List Recoverable Codes Approaching Capacity

	4 Recovery Procedure and Proof of Theorem 1
	5 Conclusion and Open Questions
	References

	Finding 2-Edge and 2-Vertex Strongly Connected Components in Quadratic Time
	1 Introduction
	2 Preliminaries
	3 New Top SCCs and Dominators in Subgraphs
	4 2vSCCs in O(n2) time
	5 Extension to kSCCs
	References

	Improved Algorithms for Decremental Single-Source Reachability on Directed Graphs
	1 Introduction
	2 Preliminaries
	3 Approximate Path Union Data Structure
	3.1 Algorithm Description
	3.2 Correctness
	3.3 Running Time Analysis

	4 Reachability via Center Graph
	4.1 Algorithm Description
	4.2 Running Time Analysis
	4.3 Decremental Single-Source Reachability

	References

	Weighted Reordering Buffer Improved via Variants of Knapsack Covering Inequalities
	1 Introduction
	2 Preliminaries
	3 Algorithm and Analysis Overview
	4 Algorithm
	5 Analysis
	References

	Local Reductions
	1 Introduction
	2 Our Results
	3 Techniques

	Query Complexity in Expectation
	1 Introduction
	2 Preliminaries
	2.1 Polytopes and Extension Complexity
	2.2 Polynomials
	2.3 The Sherali-Adams and Lasserre Hierarchies

	3 Randomized Query Complexity in Expectation
	4 Quantum Query Complexity in Expectation
	5 Gaps and Relations between RE(f) and QE(f)
	6 A Quantum Query Complexity Lower Bound
	7 Psd Rank and Query Complexity in Expectation
	7.1 Upper Bounds on psd Rank from Quantum Algorithms

	References

	Near-Linear Query Complexity for Graph Inference
	1 Introduction
	1.1 The Problem
	1.2 Our Results

	2 Notation
	3 Proof of Theorem 1
	3.1 Greedy Algorithm
	3.2 Bounding OPT to Prove Theorem 1
	3.3 Proof of Theorem 9

	4 Proof of Theorems 3
	References

	A QPTAS for the Base of the Number of Crossing-Free Structures on a Planar Point Set
	1 Introduction
	2 Preliminaries
	3 An Abstract Crossing-Free Structure
	4 Dynamic Programming
	5 Approximation Factor
	6 Main Results
	References

	Finding a Path in Group-Labeled Graphs with Two Labels Forbidden
	1 Introduction
	1.1 Background
	1.2 2-disjoint Paths Problem
	1.3 Our Contribution

	2 Preliminaries
	2.1 Terms and Notations
	2.2 Finding a Non-zero Path
	2.3 New Operations

	3 Main Results
	3.1 Algorithmic Results
	3.2 Characterizations
	3.3 Definition of D,

	4 Outline of Algorithm
	5 Proof Sketch of Necessity Part of Theorem 12
	References

	Lower Bounds for Sums of Powers of Low Degree Univariates
	1 Introduction
	2 Preliminaries
	2.1 The Wronskian
	2.2 The Space of Shifted Derivatives

	3 Proof of Theorem 1
	4 An Alternative Proof Using Shifted Partials
	4.1 Upper Bounding the Dimension of Shifted Partial Derivatives
	4.2 Lower Bounding the Dimension of Shifted Derivatives for an Explicit Polynomial
	4.3 Putting Things Together

	5 Discussion
	References

	Approximating CSPs Using LP Relaxation
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	2.1 k-ary CSP over Label Set [L]
	2.2 LP Relaxation for CSP-[C,k,L]
	2.3 A Rounding Algorithm for LP
	2.4 Gaussian Stability
	2.5 Correlated Spaces
	2.6 Unique Games Conjecture

	3 Our Results Restated
	References

	Comparator Circuits over Finite Bounded Posets
	1 Introduction
	2 Preliminaries
	3 Generalization to Finite Bounded Posets and Universal Circuits
	4 Comparator Circuits over Lattices
	5 Comparator Circuits over Bounded Posets
	6 Skew Comparator Circuits
	7 Formulae over Lattices
	References

	Algebraic Properties of Valued Constraint Satisfaction Problem
	1 Introduction
	2 Preliminaries
	2.1 The Valued Constraint Satisfaction Problem
	2.2 Algebras and Varieties

	3 Core Valued Constraint Languages
	4 Weighted Varieties
	5 Dichotomy Conjecture
	5.1 Two-Element Domain
	5.2 Finite-Valued Languages
	5.3 Conservative Languages

	References

	Towards Understanding the Smoothed Approximation Ratio of the 2-Opt Heuristic
	1 2-Opt and Smoothed Analysis
	2 Preliminaries
	3 Length of 2-optimal Tours Under Perturbations
	4 Upper Bound on the Approximation Performance
	4.1 Outliers and Long Edges
	4.2 Short Edges
	4.3 The Total Length of 2-optimal Tours

	5 Lower Bound on the Approximation Ratio
	6 Discussions and Open Problems
	References

	On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy
	1 Introduction
	2 The Lasserre Hierarchy
	3 The (n-1)-Moment Matrix
	3.1 Positive Semidefiniteness of Mn-1(y)

	4 Integrality Gaps of Lasserre Hierarchy at Level n-1
	4.1 Problems with Linear Constraints
	4.2 Example Problems with SVC Constraints at Level n-1
	4.3 Unconstrained Problems at Level n-1

	References

	Replacing Mark Bits with Randomness in Fibonacci Heaps
	1 Introduction
	1.1 Related Work
	1.2 Terminology
	1.3 Our Contributions
	1.4 Roadmap

	2 Background
	3 An O(log^2 s / log log s) Upper Bound
	4 An Omega(sqrt(n)) Lower Bound
	4.1 Proof of Lemma 4
	4.2 Proof of Lemma 5

	5 The Omega(log^2 s / log log s) Lower Bound
	6 Going from Theta(log^2 s / log log s) to Theta(log^2 n / log log n)
	7 Conclusion and Acknowledgments
	References

	A PTAS for the Weighted Unit Disk Cover Problem
	1 Introduction
	1.1 Previous Results and Our Contribution

	2 Our Approach - A High Level Overview
	3 Square Gadgets
	4 Substructures
	5 Simplifying the Problem
	6 Dynamic Programming
	7 Constructing H
	References

	Approximating the Expected Values for Combinatorial Optimization Problems over Stochastic Points
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Preliminaries

	2 The Closest Pair Problem
	2.1 Estimating Pr[C1]
	2.2 Estimating E[C]

	3 Minimum Spanning Trees
	4 Minimum Perfect Matchings
	References

	Deterministic Truncation of Linear Matroids
	1 Introduction
	2 Preliminaries
	3 Matroid Truncation
	3.1 Deterministic Truncation of Matrices

	4 Application: Computing Representative Families
	References

	Linear Time Parameterized Algorithms for Subset Feedback Vertex Set
	1 Introduction
	2 Preliminaries
	3 Preprocessing
	4 A Randomized Linear Time Algorithm for Subset FVS
	References

	An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains
	1 Introduction
	2 Preliminaries
	3 Our Improved Algorithm
	3.1 The Algorithm

	References

	Amplification of One-Way Information Complexity via Codes and Noise Sensitivity
	1 Introduction
	2 Preliminaries
	3 Information Complexity and Relaxed Codes
	4 Characterization via Packing Numbers
	4.1 Relationship with VC Dimension

	5 Composition of Communication Problems and Noise Sensitivity
	5.1 Example: Stronger Direct Sum for XOR

	6 Streaming Applications
	References

	A (2+)-Approximation Algorithm for the Storage Allocation Problem
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Approximating Small Tasks up to a Factor 1+
	2.1 Edge Capacities in Constant Range
	2.2 Arbitrary Edge Capacities

	3 Large Tasks
	References

	Shortest Reconfiguration Paths in the Solution Space of Boolean Formulas
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Results and Related Work

	2 Preliminaries and Definitions
	3 The Hard Cases
	4 The Polynomial-time Algorithm for Navigable Formulas
	4.1 Notation
	4.2 Overview of the Algorithm
	4.3 The Token System of NAND-free Relations
	4.4 The Token System of NAND-free and Dual-Horn-free Relations
	4.5 The Polynomial Time Algorithm

	References

	Computing the Fréchet Distance Between Polygons with Holes
	1 Introduction
	1.1 Previous Work on Computing Fréchet Distance
	1.2 Our Contribution
	1.3 Our Techniques
	1.4 Organization

	2 Background and Notation
	3 Skeletons and Skeleton Maps
	3.1 Skeletons
	3.2 Shortcutting Diagonals
	3.3 Bounding the Number of Possible Homotopy Classes of a Diagonal
	3.4 Bounding the Number of Possible Endpoints of a Diagonal

	4 An Exact Algorithm for Polygonal Domains in R2
	4.1 An Auxiliary Algorithm
	4.2 The Main Algorithm

	References

	An Improved Private Mechanism for Small Databases
	1 Introduction
	2 Preliminaries
	2.1 Histograms, the Query Matrix, and the Sensitivity Polytope
	2.2 Measures of Error and the Spectral Lower Bound
	2.3 Composition and the Gaussian Mechanism

	3 The Projection Mechanism
	4 Optimality of the Projection Mechanism
	4.1 Minimizing the Ky Fan Norm
	4.2 The Dual of the Ky Fan Norm Minimization Problem
	4.3 Proof of Theorem 4

	References

	Binary Pattern Tile Set Synthesis Is NP-hard
	1 Introduction
	1.1 Main Result

	2 Preliminaries
	3 2-Pats Is NP-hard
	References

	Near-Optimal Upper Bound on Fourier Dimension of Boolean Functions in Terms of Fourier Sparsity
	1 Introduction
	2 Preliminaries
	3 Upper Bounding Parity Decision Tree Complexity
	References

	Condensed Unpredictability
	1 Introduction
	2 Entropy Notions
	3 Known Results on Provably Secure Key-Derivation
	3.1 Key-Derivation from Min-Entropy
	3.2 Key-Derivation from Computational Entropy

	4 Condensing Unpredictability
	5 High Unpredictability Implies Metric Entropy
	References

	Sherali-Adams Relaxations for Valued CSPs
	1 Introduction
	2 Preliminaries
	3 Sherali-Adams and Valued Relational Width
	4 Generalisations of Known Tractable Languages
	5 Conclusions
	References

	Two-sided Online Bipartite Matching and Vertex Cover: Beating the Greedy Algorithm
	1 Introduction
	1.1 Preliminaries
	1.2 Our Contributions and Techniques
	1.3 Related Work

	2 =.24em plus .1em minus .1em One-sided and Two-sided Online Bipartite Vertex Cover
	2.1 (One-sided) Online Bipartite Vertex Cover
	2.2 Two-sided Online Bipartite Vertex Cover

	3 Two-sided Online Bipartite b-Matching
	4 Discussion and Open Problems
	References

	The Simultaneous Communication of Disjointness with Applications to Data Streams
	1 Introduction
	2 Multiparty SMP Complexity of Set-Disjointness
	2.1 Direct Sum and the SMP Complexity of ANDk

	References

	An Improved Combinatorial Algorithm for Boolean Matrix Multiplication
	1 Introduction
	2 Triangle Detection
	3 A General Approach
	4 Conclusion
	References

	Author Index

