
Analysis of Probabilistic Systems via Generating
Functions and Padé Approximation

Michele Boreale(B)

Università di Firenze, Firenze, Italy
michele.boreale@unifi.it

Abstract. We investigate the use of generating functions in the analysis of dis-
crete Markov chains. Generating functions are introduced as power series whose
coefficients are certain hitting probabilities. Being able to compute such func-
tions implies that the calculation of a number of quantities of interest, including
absorption probabilities, expected hitting time and number of visits, and variances
thereof, becomes straightforward. We show that it is often possible to recover this
information, either exactly or within excellent approximation, via the construc-
tion of Padé approximations of the involved generating function. The presented
algorithms are based on projective methods from linear algebra, which can be
made to work with limited computational resources. In particular, only a black-
box, on-the-fly access to the transition function is presupposed, and the necessity
of storing the whole model is eliminated. A few numerical experiments conducted
with this technique give encouraging results.

1 Introduction

Our goal is to understand if the concept of generating function [9] can play a useful
role in the analysis of Markov chains. In the present paper, we focus on the reachability
properties of time-homogeneous, finite Markov chains. The generating function of such
a system is a power series in the variable z, g(z) =

∑
j≥0 a jz j, whose coefficients, or

moments, a j are just the probabilities of hitting a state of interest exactly at time j =
0, 1, 2, · · · . With g(z), a whole host of information about the system is packed into a
single mathematical object, including: the probability of the event itself - which is of
course g(1) - and various statistics, such as the expected hitting time and its variance.
We will demonstrate that, by building a rational representation of g(z), in a number of
interesting situations it is possible to extract this information, either exactly or within
excellent approximation, using limited computational resources. These limitations are
mainly the fact that one can access the system’s transition relation only in a black-box,
on-the-fly1 fashion, and can only store a small portion of its state space at time. We give
a more detailed account of our approach and of our paper below.

Author’s address: Michele Boreale, Università di Firenze, Dipartimento di Statistica, Infor-
matica, Applicazioni (DiSIA) “G. Parenti”, Viale Morgagni 65, I-50134 Firenze, Italy. E-mail:
michele.boreale@unifi.it. Work partially supported by MIUR funded project cina.

1 That is, via a function that given a state returns the list of its successors together with their
probabilities.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 82–94, 2015.
DOI: 10.1007/978-3-662-47666-6 7

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 83

We first introduce and motivate the system’s generating function g(z), then establish
some of its important properties, like its radius convergence and its rationality (Section
2). We then show (Section 3) that, via Padé approximants [3], an exact rational repre-
sentation of g(z) can be recovered from the knowledge of its first 2N moments, where N
is the number of system’s states. These moments can in principle be computed relying
solely on a black-box, on-the-fly access to the transition relation, and do not require
storing the entire model. Yet, limited resources imply that one is often forced to con-
sider approximations. We argue (Section 4) that polynomial approximations, derived
from truncating g(z), may not be a good idea, and that rational ones should rather be
preferred. This is especially true in the presence of clusters of states that are nearly
uncoupled with other states in the chain. We then discuss a method to compute one
such approximation effectively (Section 5). The basic idea here is to view the matrix
P that represents the transition relation as a linear application on R

N ; then to take its
projection P̂ onto a small, m-dimensional subspace Km, with m � N. The generating
function of the projected application, ĝ(z), is a rational Padé-type approximation of the
original g(z). Accuracy is often very good already for small m: this somewhat surpris-
ing effectiveness is a consequence of the tendency of P̂’s eigenvalues to be excellent
approximations of P’s ones. We show that the Arnoldi algorithm [2,8] can be used to
effectively compute ĝ(z), in a way that is compatible with an on-the-fly access to the
transition relation and with limited computational resources. Notably, transitions need
not be stored at all with this method. Error control and steady-state distributions are
discussed in the full version [4]. We then present a few numerical experiments that have
been conducted with a preliminary Matlab implementation of this idea (Section 6), and
which give very encouraging results. For comparison, the results obtained on the same
systems with a state-of-the-art probabilistic model checker are also reported. We con-
clude the paper with a discussion of future venues of research and related work (Section
7). All the proofs, some numerical examples and additional technical material can be
found in the full version available online [4].

2 The System Generating Function g(z)

Consider a time-homogeneous Markov chain {Xj} j≥0 over a finite set of states S =
{1, ...,N} with N > 0 and initial state X0 = 1. To avoid uninteresting special cases,
we will assume that all states of the chain are reachable from 1 (but need not assume
the vice-versa, so the chain might well be reducible.) We want to study the event cor-
responding to reaching a (typically, ‘bad’) state sbad = N, that is Reach

�
= {Xj =

N for some j ≥ 0} and denote by preach
�
= Pr(Reach) the probability of this event.

Without loss of generality, we will assume that state N is absorbing that is Pr(Xj+1 =

N|Xj = N) = 1. Later on in this section we will also consider another type of statistics,
concerning the number of visits, where we will not assume N is absorbing. We will
also be interested in statistics concerning the hitting time random variable, defined as:
T
�
= inf{ j ≥ 0 : Xj = N}. Let us define the j-th (j ≥ 0) moment of the system as the

probability of hitting state N for the first time exactly at time j, that is

84 M. Boreale

a j
�
= Pr(Xj = N and Xi � N for i < j) . (1)

Clearly, the probability of eventually reaching N is just the sum of the moments: preach =∑
j≥0 a j. Our main object of study is defined below.

Definition 1 (Generating function). The generating function of the system is the

power series, in the complex variable z, g(z)
�
=
∑

j≥0 a jz j.

Note that the g(z)/preach is just the probability generating function of the random vari-
able T conditioned on the event Reach. As such, with g(z) a whole host of information
about T and its moments is packed into a single mathematical object. For instance,
indicating with g′, g′′, ... the derivatives of g, easy calculations show that (provided the
mentioned quantities are all defined).

preach = g(1) E[T |Reach] = g′(1)/g(1) var[T |Reach] = (g′′(1) + g′(1)) /g(1)−
(g′(1)/g(1))2 . (2)

More generally, information on higher moments of T can be extracted using the identity
E[X(X − 1) · · · (X − k)|Reach] = g(k+1)(1)/g(1), although usually the first two moments
are enough for a satisfactory analysis of the system. In practice, we will be able to
extract this information only provided we are able to build an efficient representation of
g(z). As a first step towards this, we shall see in a moment that g(z) can be represented
as a rational function, that is, as the ratio of two polynomials in z. At this point it is
convenient to introduce some notation.

Notation In the rest of the paper, some basic knowledge of linear algebra is presup-
posed. We let P denote the N × N stochastic matrix that defines the transition function
of the chain. Departing from the usual convention, we will work with column-stochastic
matrices, that is we let the element of row i and column j of P, denoted by pi j, be
Pr(Xt+1 = i|Xt = j). In what follows, vectors are considered as column-vectors; in par-
ticular, ei denotes the i-th canonical column vector of RN . So the vector Pie1 is just the
probability distribution of the variable Xi of the chain. A vector is stochastic if its com-
ponents are nonnegative and sum to 1. For a matrix or vector A, we let AT denote its
transpose. Ik will denote the k×k identity matrix; the index k will be omitted when clear
from the context. A rational function in z of type [h, k], for k ≥ 0 and h ≥ 0 or h = −∞,
is a ratio of two polynomials in z, r(z)/t(z), such that deg(r) ≤ h and deg(t) ≤ k. We will
let z range over complex numbers and x on reals.

In the rest of the paper, we let ẽ1
�
= (P − I)e1. Note that eT

N Pje1 is just the probability
of being in state N at time j. Exploiting the fact that N is absorbing, it is easy to see
that, for j ≥ 1, a j = eT

N Pje1 − eT
N Pj−1e1 = eT

N Pj−1ẽ1. Ignoring for a moment issues
of convergence and singularity, we can then reason as follows. We first note that the
following equality can be readily checked.

(I − zP)(I + zP1 + z2P2 + · · ·) = I

which implies that (I − zP)−1 = (I + zP1 + z2P2 + · · ·). We then can write

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 85

g(z)= a0 +
∑

j≥1

a jz
j = a0 +

∑

j≥1

eT
Nz jP j−1ẽ1

= a0 + z · eT
N(
∑

j≥0

z jP j)ẽ1 = a0 + z · eT
N(I − zP)−1ẽ1

= a0 +
z · eT

NAdj(I − zP)ẽ1

det(I − zP)
(3)

where, in the last step, we have exploited Cramer’s rule for the computation of the
inverse (recall that Adj(A) denotes the adjoint matrix of a matrix A.) In the last expres-
sion, the denominator and numerator of the fraction are polynomials in z. This shows
that g(z) is a rational function. This informal reasoning can be made into a rigorous
proof – a nontrivial point of which is related to the singularity of the matrix (I − zP) at
z = 1. Another important point is where the power series g(z) is defined, that is, what is
its radius of convergence. The the next theorem records these facts about g(z).

Theorem 1 (convergence and rationality of g). There is a real R > 1 such that the
power series g(z) in Definition 1 converges for all |z| < R. Moreover, there is a rational
function r(z)/t(z) such that for all such z’s

(a) t(z) � 0 (b) deg(r), deg(t) ≤ N − 1 (c) g(z) = r(z)/t(z) . (4)

The proof of the above theorem provides us also with an explicit expression for g(z),
that is (3). In what follows, (I − zP)−1 will be used as an abbreviation for the matrix of
rational expressions Adj(I−zP)

det(I−zP) , where it is understood that common factors are canceled
out. Concerning this expression, note that det(I − zP) = zN det((1/z)I − P) is just the
characteristic polynomial of P with coefficients reversed. That is, the relation between
the characteristic polynomial and our det(I − zP) is as follows:

det(zI − P) = βNzN + βN−1zN−1 + · · · + β0 and
det(I − zP) = βN + βN−1z + · · · + β0zN

(In passing, note that βN = 1 and β0 = − det(P).) In particular, from det(I − zP) =
zN det((1/z)I − P) it is clear that the roots of the polynomial det(I − zP) are just the
reciprocals of the nonzero roots of P: that is, the reciprocals of the nonzero eigenvalues
of P. This fact can be exploited to give more precise information about R. We record
these facts below.

Corollary 1. There is R > 1 such that for |z| < R and for ẽ1 = (P − I)e1

g(z) = a0 + z · eT
N(I − zP)−1ẽ1 . (5)

In particular, g(z) has a radius of convergence either R = |1/λ| for some eigenvalue
0 < |λ| < 1 of P, or R = +∞.

Let us now drop the assumption that N is absorbing. We are interested in counting
the visits to state N, starting from X0 = 1. To this purpose we introduce a different
generating function: f (z)

�
=
∑

j≥0 c jz j, where c j
�
= Pr(Xj = N) = eT

N Pje1. By definition,

86 M. Boreale

f (1) is the expected number of visits of the chain to state N. Recall that f (1) < +∞ iff N
is transient. By paralleling the above development for g(z), we can prove the following.

Theorem 2. Let N be transient. The power series f (z) has radius of convergence R > 1.
Moreover, for |z| < R, one has f (z) = eT

N(I − zP)−1e1. The expression on the right of
the last equality gives rise to a rational function r(z)/t(z) of type [N − 1,N] such that
t(z) � 0 for |z| < R.

From now on, we will consider g(z) only; statements and proofs for f (z) can be
obtained by obvious modifications. All the quantities of interest about the system, (2),
will be easy to compute, provided we can recover the rational representation r(z)/t(z)
of g(z) promised by Theorem 1. The expression provided by Corollary 1 can be useful
for small values of N and provided one knows P explicitly. Here is a small example to
illustrate.

Example 1. We consider a chain with N ≥ 3 states 1,2,..., N, where, for 1 ≤ i ≤ N − 3
and a (small) 0 < δ < 1, there is a transition from i to 1 with probability 1 − δ/i, and to
each of i+ 1,N − 1,N with probability δ/3i; for i = N − 2, there is a transition from i to
1 with probability 1−δ/i, and to each of N−1,N with probability δ/2i; N−1 and N are
absorbing. For reasons that will become evident later on, we call this chain Nasty(N, δ).

The transition matrix P of Nasty(6, δ)
is given on the right (recall that we work
with column-stochastic matrices.) From
symmetry considerations, it is clear that
the probability of reaching either of the
two absorbing states is 1/2, thus preach =
1/2. Let us check this out via g(z). With
the help of a computer algebra system,
we apply (5) and, taking into account that
a0 = 0, find:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − δ 1 − δ/2 1 − δ/3 1 − δ/4 0 0

δ/3 0 0 0 0 0

0 δ/6 0 0 0 0

0 0 δ/9 0 0 0

δ/3 δ/6 δ/9 δ/8 1 0

δ/3 δ/6 δ/9 δ/8 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

g(z)=
1
2

δ4z4 + 8δ3z3 + 72δ2z2 + 432δz
(δ4 − 4δ3)z4+(12δ3 − 36δ2)z3+(108δ2 − 216δ)z2+648(δ − 1)z+648

.

When evaluating this at z = 1 we get g(1) = preach = 1/2. By differentiat-
ing the above expression of g(z) and then evaluating the result at z = 1, we get
g′(1) = 2

(
δ3 + 9δ2 + 54δ + 162

)
/
(
δ4 + 8δ3 + 72δ2 + 432δ

)
, which can be evaluated

for instance at δ = 10−3 to compute E[T |Reach] = g(1)−1g′(1) ≈ 1500.25.

Computing an expression for g(z) based on a direct application of Corollary 1 requires
the explicit knowledge of the matrix P. Moreover, the computation relies on costly
symbolic operations involving matrices whose entries are rational functions in z, rather
than scalars. For these reasons, this method can only be practical for small values of N.
The next section explains how to numerically calculate a rational representation of g(z)
out of the first 2N moments of the system, without having to know P explicitly.

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 87

3 Exact Reconstruction of g(z)

We first review Padé approximants and then explain how to employ them to exactly
reconstruct g(z). The exposition of Padé approximants in this section is standard. For
an in depth treatment, see e.g. [3]. Let f (z) =

∑
i≥0 cizi be a generic a power series in

the complex variable z, with a nonzero radius of convergence. For any n ≥ 0, we let
the truncation of f at the n-th term be the polynomial fn(z)

�
=
∑n

i=0 cizi. Let us indicate
by o(zk) a generic power series divisible by zk. Given two power series f (z) and d(z)
we write f (z) = d(z) mod zn+1 iff fn = dn, or, in other words, if f (z) − d(z) = o(zn+1).
Polynomials are of course considered as power series with only finitely many nonzero
coefficients.

Definition 2 (Padé approximants). Let f (z) =
∑

i≥0 cizi be a power series in the com-
plex variable z with a nonzero radius of convergence. Given integers h, k ≥ 0, we say a
pair of polynomials in z, say (r, t), is a [h, k]-Padé approximant of f (z) if the following
holds true, where n = h + k.

(a) z
 |t(z) (b) deg(r) ≤ h, deg(t) ≤ k (c) f (z)t(z) = r(z) mod zn+1 . (6)

Seen as a real function r(x)/t(x), a Padé approximant is a rational approximation of the
function f (x), up to and including the term of degree n of its Taylor of expansion. To see
this, first note that equation (6)(c) is equivalent to saying that there exists a power series
k(x) such that f (x)t(x) = r(x) + k(x)xn+1. As t(0) � 0, the last equation is equivalent
to saying that, in a neighborhood of 0: f (x) = r(x)/t(x) + xn+1k(x)/t(x). This equation
is equivalent to saying that the Taylor expansion of r(x)/t(x) from x = 0, truncated at
the n-th term, coincides with2 fn(x), that is: r(x)/t(x) =

∑n
i=0 cixi + o(xn+1). In case f is

itself a rational function, Padé approximants provide us with a method to actually find
an exact representation of it, given only sufficiently many coefficients ci, as we will see
shortly. We first state a result about uniqueness of Padé approximants; its proof follows
from easy manipulations on rational functions (or see [3, Th.1.1].)

Proposition 1. Let (r, t) and (p, q) be two [h, k]-Padé approximants of f . Then they are
the same as a function, in the sense that r(z)/t(z) = p(z)/q(z).

Given any power series f (z), it is possible to compute a [h, k]-Padé approximant of it as
follows. Here we assume for simplicity that h ≤ k; the case h > k does not interest us,
and can be anyway treated with minor notational changes. Also, in view of condition
(6)(a) of the definition of Padé approximant, without loss of generality we will restrict
ourselves to the case where t(0) = 1, that is, the constant coefficient of t is always taken
to be 1. Assume n + 1 (n = h + k) coefficients c0, c1, ..., cn of f are given. Arrange
the coefficients from h through h+k−1 = n−1 to form a k×k matrix C as described next,

2 To see this, observe that, for 0 ≤ j ≤ n, by equating the j-th derivatives of the left and right
hand side of (6)(c), one obtains that f (j)(x) = (r(x)/t(x))(j) + o(xn− j+1), so that c j = f (j)(0)/ j! =
(1/ j!)(r(0)/t(0))(j). Also note that the Taylor expansion of r(x)/t(x) at x = 0 exists, as t(0) � 0.

88 M. Boreale

where cl
�
= 0 for indices l < 0. Let r(z) =

αhzh + · · · + α0 and t(z) = βkzk + · · · + β1z + 1 be
two polynomials, for generic vectors of coefficients
α = (α0, ..., αh)T and β = (β1, ..., βk)T . Assume (r, t)
is a [h, k]-Padé approximant of f . Then we can equate
coefficients of like powers on the left- and right-hand
side of (6)(c).

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ch ch−1 · · · ch−k+1

ch+1 ch · · · ch−k+2

...

ch+k−1 ch+k−2 · · · ch

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In particular, coefficients from h+1 through n = h+k are 0 on the right, thus coefficients
on the left must satisfy the following, for γ

�
= (−ch+1, ...,−ch+k)T :

Cβ = γ . (7)

On the other hand, assume (7), seen as a system of equations in the unknowns β, has a
solution. Then by taking α given by:

α = C̃β′ (8)

where β′ = (1, β1, ..., βh)T and C̃ is the (h+1)× (h+1) lower-
triangular matrix C̃ given on the right. We see that (6)(c) is
satisfied by (r, t).

C̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

c1 c0

...

ch ch−1 · · · c1 c0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Of course also (6)(a) and (6)(b) are satisfied. Therefore (r, t), as given by α and β, is
a [h, k]-Padé approximant of f . In other words, we have shown the following.

Proposition 2. A [h, k]-Padé approximant for f exists if and only if the system of equa-
tions (7) in the unknowns β has a solution. If it exists, the coefficients β and α for t and
r are given, respectively, by a solution of (7) and by (8).

Note that the procedure outlined above to reconstruct a [h, k]-Padé approximant takes
O(k3 + h2) = O(n3) operations and O(n2) storage. Let us now come back to our Markov
chain. Theorem 1 and Proposition 1 ensure that g(z) coincides, as a function, with its
[N −1,N −1]-Padé approximant. Using the above outlined method, one can reconstruct
the rational form of g(z), provided one knows (an upper bound on) N and the coefficients
a0, ..., a2N−2. The latter can in principle be computed by a power iteration method: a0 =

eT
Ne1 and ai = eT

N Pi−1ẽ1 for i ≥ 1. For this, it is sufficient to obtain a black-box access
to the function u �→ Pu, which is compatible with an on-the-fly implementation. A
numerical example illustrating the method is reported in the full paper [4].

While dispensing with symbolic computations and the explicit knowledge of P, the
method described in this section still suffers from drawbacks that confine its application
to small-to-moderate values of N. Indeed, the solution of the linear system (7) has a time
complexity of O(N3). Although this can be improved using known techniques from
numerical linear algebra (see [4]), the real problem here is that the explicit computation
of 2N moments a j is in practice very costly and numerically instable, and should be
avoided. Moreover, it is clear that a consistent gain in efficiency can only be obtained
by accepting some degree of approximation in the computed solution.

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 89

4 Discussion: Approximating g(z)

Fig. 1. Plots of g10(x) (dotted), of g100(x) (dash-dotted),
of the [1, 1]-Padé approximant ĝ(x) = 2x/(−5995x +
6000) (dashed) and of g(x) (solid), for Nasty(6, 10−3),
near x = 1. Here g(z) has a pole at z = 1/λ with λ ≈
0.9993.

Suppose that, possibly due to lim-
ited computational resources, we
have access only to a limited num-
ber, say m + 1, of g’s moments
ai. Or, more generally, we can
access the transition relation of
the Markov chain - the mapping
u �→ Pu - only a limited num-
ber m of times. Typically, we can
only afford m � N. The resulting
information may be not sufficient
to recover an exact representation
of g(z). Then the problem becomes
finding a a good approximating
function ĝ(z) of g(z). “Good” here
means at least that g(z) − ĝ(z) =
o(zm+1); but, even more than that,
ĝ(z) should approximate well g(z)
near z = 1, as we are mainly inter-
ested in evaluating g(1), g′(1) and so on, see (2). The first, obvious attempt is to consider
a polynomial approximation: ĝ(z) = gm(z) =

∑m
i=0 aizi. This is the truncation of g(z) at

the term of degree m.
Unfortunately, such a ĝ(z) might be a very bad approximation of g(z). The reason

is that the rational representation r(z)/t(z) of g(z) may have a pole near3 z = 1: that
is, there can be a z0 ∈ C such that |z0 − 1| ≈ 0 and limz→z0 |r(z)/t(z)| = +∞. Then, as
z approaches 1 from its convergence zone, g(z) becomes extremely fast growing, and
essentially impossible to approximate by means of a polynomial function, as polyno-
mials have no finite poles.

As stated by Corollary 1, the pole of smallest modulus of g(z), which determines
its radius of convergence R, is of the form z0 = 1/λ, for some subdominant eigenvalue
λ of P, that is an eigenvalue with |λ| < 1. If 1 is “badly separated” from λ, that is
if |λ − 1| ≈ 0, the truncated sums

∑
i≤m ai will converge very slowly to preach, as m

grows. In this respect, a rational approximation ĝ(z) = r̂(z)
t̂(z) can perform much better.

Indeed, t̂(z) can be chosen so as to have a root near z0. This in essence is what Padé
approximation achieves. When building a [h, k]-Padé approximant with h + k ≤ m, the
same amount of information used to build the polynomial gm(z) above - the first m + 1
moments of g(z) - is used to “guess” an approximation of z0, that becomes a root of
t̂(z) (this aspect will be further discussed in the next section, see Remark 1.) The benefit
of rational over polynomial approximation is qualitatively illustrated by the plots in
Fig. 1.

3 Note that the rational function r(z)/t(z), while coinciding with g(z) within the disk |z| < R, will
also be defined outside this disk.

90 M. Boreale

It is well-known [5] that that the bad separation phenomenon (subdominant eigen-
values close to 1) occurs if there is a cluster of states that are strongly coupled with
one another, but nearly uncoupled with other states in the chain, like 1, ..., n − 2 in
Nasty(n, δ) (see [4].) In the next section we explore an effective way of building ratio-
nal approximations ĝ(z) = r̂(z)/t̂(z).

5 Approximation of g(z) via a Projection Method

The general idea of a projection method is as follows. Consider P as a linear map
acting on the N-dimensional space RN . We identify a m-dimensional subspace,Km, and
then consider the projection of P onto this space, say P̂: this is our low-dimensional
approximation of the original system. Here, m � N: practically m will be of the order
of tens or hundreds. Formally, consider an integer m ≥ 1 and the Krylov subspace of
R

N

Km(P, ẽ1)
�
= span{ẽ1, Pẽ1, P

2ẽ1, ..., P
m−1ẽ1}

abbreviated as Km in what follows. Now take any orthonormal basis of Km and arrange
the corresponding column vectors into a N × m matrix, Vm = [v1, ..., vm]. Note that
orthonormality means that VT

mVm = Im. We can consider the projection of P, seen as an
application R

N → R
N , ontoKm. The representation of this application restricted toKm,

in the basis Vm, is given by the m × m matrix

Hm = VT
m PVm . (9)

(The matrix Hm will play the role played by P̂ in the above informal description.) Note
that if m is large enough then Km will be a P-invariant subspace of RN , that is PKm ⊆
Km

4.

Theorem 3. Let m ≥ 1. Consider the function, defined in a neighborhood of the origin
ĝ(z)

�
= a0 + z · (eT

NVm)(Im − zHm)−1(VT
mẽ1) . (10)

Then ĝ(z) is a rational function of type [m,m] and g(z) − ĝ(z) = o(zm+1). Moreover, if 1
is not an eigenvalue of Hm, then ĝ(z) is defined in a neighborhood of z = 1. Finally, if
Km is P-invariant, then g(z) = ĝ(z).

Remark 1. Note from (10) that, while ĝ(z) is a rational function of type [m,m], it is not
guaranteed that g(z)− ĝ(z) = o(z2m+1). Thus ĝ(z) is not, in general, a Padé approximant,
but only a weaker Padé-type approximant. Comparing (5) and (10), we further see that
how well ĝ(z) approximates g(z) depends on how well the polynomial det(Im − zHm)
approximates the polynomial det(I − zP). We have already noted that the roots of these
polynomials are the reciprocals of nonzero eigenvalues of Hm and P, respectively. It is
known for general matrices P that, already for small values of m, Hm’s eigenvalues -
known as Ritz values in the literature - tend to be excellent approximations of the eigen-
values of P that are at the extreme of the spectrum, that is, those of either large or small
modulus. The details and nature of such approximation are not yet fully understood,

4 In particular, it is sufficient to take any m ≥ ν, where ν ≤ N is the degree of the minimal
polynomial of P, that is, the monic polynomial p of minimal degree such that p(P) = 0N×N :
this is a consequence of the Cayley-Hamilton theorem.

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 91

Algorithm 1. Arnoldi based calculation of ĝ(z)
Input: m ≥ 1; a black-box mechanism for computing the function u �→ Pu
Output: a triple (a0,Vm,Hm)

1: a0 = eT
Ne1

2: v1 = ẽ1/||ẽ1||2
3: for j = 1, 2, ...,m do
4: for i = 1, 2, ..., j do hi j = (Pvj, vi)
5: wj = Pvj −∑ j

i=1 hi jvi

6: h j+1, j = ||wj||2
7: if (h j+1, j = 0) ∨ (j = m) then break else v j+1 = wj/h j+1, j

8: m = j
9: Vm = [v1, ..., vm]

10: return (a0,Vm,Hm)

but in the specialized literature there is abundant experimental and theoretical evidence
about it, see e.g. [8]. In any case, this fact retrospectively sheds light on the somewhat
surprising effectiveness of Padé approximation.

Formulae for the derivatives ĝ(j)(x) = d j

dx j ĝ(x) follow from (10) by the familiar rules
of derivation, see [4]. We now show that the matrices Vm and Hm can be computed
via an effective and numerically stable procedure known as the Arnoldi process [2,8].
Arnoldi does not require knowledge of the full matrix P, but only a black-box access
to the matrix-vector multiplication function u �→ Pu, which makes it compatible with
an on-the-fly approach. Algorithm 1 works incrementally and, for j = 1, ...,m, builds
an orthormal basis ofK j, Vj = [v1, ..., v j], and the corresponding projected version of P
onto K j, Hj. The next vector v j+1 is built by orthonormalizing Pvj against the available
basis Vj (lines 4–7, which are essentially the Gram-Schmidt orthonormalization.) If
this process results in the null vector (h j+1, j = 0), then Pvj is linearly dependent from
vectors in Vj, thus the space K j is P-invariant, and the main iteration stops.

The algorithm makes use of the following variables, for j = 1, ...,m: the scalars
a0, a j ∈ R; vectors v j,wj ∈ RN ; the matrix Hm ∈ Rm×m whose nonzero elements are the
reals hl,l′ for 1 ≤ l ≤ l′ + 1 and l ≤ l′ ≤ m; the matrix Vm ∈ RN×m. In line 4, (·, ·) denotes
inner product. Of course, Pvj needs to be computed only once per each j-iteration.
Nesting of blocks is defined by indentation. The algorithm can take advantage of a
sparse storage scheme. In what follows, we let W be the maximal number of nonzero
elements in Pjẽ1, for any 0 ≤ j ≤ m, and B the maximal number of outgoing transitions
from any state. Note that W · B is upper bounded by the overall number of transitions.
Recall that a square matrix is in upper Hessenberg form if all its entries below the main
subdiagonal are 0.

Theorem 4. Let m ≥ 1 and let (a0,Vm,Hm) be the output returned by Algorithm 1. Then
Vm is an orthonormal basis of Km and (9) is satisfied. As a consequence, ĝ(z) satisfies
(10) given this choice of a0,Vm,Hm. Moreover, Hm is in upper Hessenberg form and if
hm+1,m = 0 then ĝ(z) = g(z). Assuming u �→ Pu can be computed in O(WB) operations

92 M. Boreale

and O(W) storage, the algorithm takes O(mWB) operations and O(mW) storage to
complete.

A numerical example illustrating Algorithm 1 is reported in the full version [4]. Note
that in principle we can calculate ĝ(1), and more generally ĝ(x) whenever defined for
x, directly using the definition (10). However, it is computationally much better to pro-
ceed as follows: ĝ(x) = a0 + eT

NVmy, where y is the (unique) solution of the system
(Im − xHm)y = VT

mẽ1 = e(m)
1 · ||ẽ1||2 (here e(m)

1 is the first canonical vector of R
m.)

Since (Im − xHm) is still quasi-triangular (upper Hessenberg), the system above can be
solved with O(m2). The derivatives of g can be computed similarly, see [4]. In the end,
via the Arnoldi algorithm 1 (cost O(mWB)), we have reduced the computation of all
the important properties of the system to the resolution of small quasi-triangular sys-
tems, which cost approximately O(m2), for a small, “affordable” m. Computation of
steady-state probabilities and of error control is also discussed in [4].

6 Experiments

We have put an on-the-fly implementation (in Matlab) of Algorithm 1 at work on a few
simple probabilistic systems. With two exceptions, the chosen systems are relatively
small, but, due to the presence of nearly uncoupled strongly connected components,
they exhibit the bad separation phenomenon discussed in Section 4. In each case, the
reachability probability of interest is easy to compute analytically, due to the symmetry
of the system. The Matlab implementation, as well as the Matlab and Prism specifi-
cations of the considered examples, are available at [4]. We give below an informal
description of these systems.

The Nasty(n, δ) systems have been introduced in Example 1; here we have fixed
δ = 10−3 and considered n = 105, 106. A Queue(n) system consists of n queueing pro-
cesses, each of capacity four, running in parallel. At each time, either an enqueue (prob.
0.1) or a dequeue (prob. 0.9) request arrives, and is served by any process that is able
to serve it. In case of global overflow, each process chooses either of two indeterminate
error states, and remains there forever. This gives rise to 2n possible overflow configu-
rations, which are absorbing. The event of interest is that the system eventually reaches
one specific such configuration; here the cases n = 2, 3 are considered. An Ising(n)
system consists of n particles, each of which can take on, at each time, either the up or
the down spin value, with a probability depending on how many up’s are in system and
on a temperature parameter. The all-up and all-down configurations are absorbing, and
the event of interest is that all-up is eventually reached, starting from the equilibrium
configuration with n/2 particles down and n/2 up; here, the cases n = 6, 8 are consid-
ered. In Chemical(n), a solution is initially composed by n/2 reactant pairs of type 1
and n/2 reactant pairs of type 2. A reactant pair of one type can get transformed into
a pair of the other type, according to a chemical rule obeying the law of mass action –
the probability that the reaction occurs depends on the concentration of the reactants.
A solution consisting of reactants pairs all of the same type is absorbing. The proba-
bility of eventually reaching one specific such solution is seeked for; here, the cases
n = 24, 26 are considered.

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 93

Table 1. Results of some experiments. N = number of states; preach = exact reachability probabil-
ity. p̂reach = probability returned by the algorithms, truncated at the 4-th digit after decimal point;
%error = 100 × |preach − p̂reach|/preach is the relative error percentage; m = number of iterations;
time = time in seconds. For Prism, default options have been employed except that for m (tweak-
ing other options did not lead to significant improvements); model building time is included in
time.

Table 1 displays the outcomes of these experiments. In all the considered cases,
Algorithm 1 returned, in reasonable time, quite accurate results in terms of relative
error. For comparison, results obtained with Prism, a state-of-the-art probabilistic model
checker [6], are also included. Results provided by Prism were reasonably accurate
only in three out of eight cases. In one case (Nasty with 106 states), Prism was not
able to build the model after about one hour. In five out of eight cases, the Matlab
implementation of Algorithm 1 run anyway faster than Prism.

7 Conclusion, Further and Related Work

We have demonstrated that, in the analysis of Markov chains, generating functions pro-
vide a bridge toward Padé approximation theory that is useful both at a conceptual
and at a technical level. Direct extensions of the method to full temporal logics, such
as LTL, seem worth studying, as well as extensions to richer models, like continuous
Markov chains or Markov Decision Processes. Another potential field of application is
the time-bounded analysis of infinite-state system.

Methods and tools based on a symbolic representations of the entire state-space,
such as Prism [6], can take great advantage of the presence of system regularities, as
e.g. induced by massive interleaving: in those cases, an on-the-fly approach cannot be
expected to match the performance of these tools. Nevertheless, as indicated by our
small-scale experiment, the presented methodology turns out to be helpful in situations
of bad eigenvalues separation, and/or when, for whatever reason, building the entire sys-
tem’s model turns out to be not feasible. In numerical linear algebra, numerous worksare

94 M. Boreale

devoted to the experimental evaluation of projective methods applied to Markov chains,
see e.g. [7] and references therein. These works focus on the calculation of steady-state
probabilities and no connection to generating functions is made. Further discussion on
related work, including use of Padé approximation in Engineering [1], can be found
in [4].

References

1. Antoulas, A.C.: Approximation of Large-scale Dynamical Systems. SIAM (2005)
2. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue

problem. Quarterly of Applied Mathematics 9, 17–29 (1951)
3. Baker Jr., G.: Essentials of Padé Approximants. Academic Press (1975)
4. Boreale, M.: Full version of the present paper, Matlab and Prism code. http://rap.dsi.unifi.it/
∼boreale/papers/GFviaKrylov.rar

5. Hartfiel, D.J., Meyer, C.D.: On the structure of stochastic matrices with a subdominant eigen-
value near 1. Linear Algebra Appl. 272, 193–203 (1998)

6. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011)

7. Philippe, B., Saad, Y., Stewart, W.J.: Numerical Methods in Markov Chain Modelling. Oper-
ations Research 40, 1156–1179 (1996)

8. Saad, Y.: Iterative methods for sparse linear systems. SIAM (2003)
9. Wilf, H.S.: Generatingfunctionology, 2/e. Academic Press (1994)

http://rap.dsi.unifi.it/~boreale/papers/GFviaKrylov.rar
http://rap.dsi.unifi.it/~boreale/papers/GFviaKrylov.rar

	Analysis of Probabilistic Systems via Generating Functions and Padé Approximation
	1 Introduction
	2 The System Generating Function g(z)
	3 Exact Reconstruction of g(z)
	4 Discussion: Approximating g(z)
	5 Approximation of g(z) via a Projection Method
	6 Experiments
	7 Conclusion, Further and Related Work
	References

