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Abstract. Query evaluation in monadic second-order logic (MSO) is
tractable on trees and treelike instances, even though it is hard for arbi-
trary instances. This tractability result has been extended to several
tasks related to query evaluation, such as counting query results [2] or
performing query evaluation on probabilistic trees [8]. These are two
examples of the more general problem of computing augmented query
output, that is referred to as provenance. This article presents a prove-
nance framework for trees and treelike instances, by describing a linear-
time construction of a circuit provenance representation for MSO queries.
We show how this provenance can be connected to the usual definitions of
semiring provenance on relational instances [17], even though we compute
it in an unusual way, using tree automata; we do so via intrinsic defini-
tions of provenance for general semirings, independent of the operational
details of query evaluation. We show applications of this provenance to
capture existing counting and probabilistic results on trees and treelike
instances, and give novel consequences for probability evaluation.

1 Introduction

A celebrated result by Courcelle [9] has shown that evaluating a fixed monadic
second-order (MSO) query on relational instances, while generally hard in the
input instance, can be performed in linear time on input instances of bounded
treewidth (or treelike instances), by encoding the query to an automaton on tree
encodings of instances. This idea has been extended more recently to monadic
Datalog [14]. In addition to query evaluation, it is also possible to count in linear
time the number of query answers over treelike instances [2,22].

However, query evaluation and counting are special cases of the more gen-
eral problem of capturing provenance information [7,17] of query results, which
describes the link between input and output tuples. Provenance information can
be expressed through various formalisms, such as provenance semirings [17] or
Boolean formulae [26]. Besides counting, provenance can be exploited for practi-
cally important tasks such as answering queries in incomplete databases, main-
taining access rights, or computing query probability [26]. To our knowledge,
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no previous work has looked at the general question of efficient evaluation of
expressive queries on treelike instances while keeping track of provenance.

Indeed, no proper definition of provenance for queries evaluated via tree
automata has been put forward. The first contribution of this work (Section 3)
is thus to introduce a general notion of provenance circuit [11] for tree automata,
which provides an efficiently computable representation of all possible results of
an automaton over a tree with uncertain annotations. Of course, we are interested
in the provenance of queries rather than automata; however, in this setting, the
provenance that we compute has an intrinsic definition, so it does not depend
on which automaton we use to compute the query.

We then extend these results in Section 4 to the provenance of queries on
treelike relational instances. We propose again an intrinsic definition of prove-
nance capturing the subinstances that satisfy the query. We then show that, in
the same way that queries can be evaluated by compiling them to an automaton
on tree encodings, we can compute a provenance circuit for the query by com-
piling it to an automaton, computing a tree decomposition of the instance, and
performing the previous construction, in linear time overall in the input instance.
Our intrinsic definition of provenance ensures the provenance only depends on
the logical query, not on the choice of query plan, of automaton, or of tree
decomposition.

Our next contribution in Section 5 is to extend such definitions of prove-
nance from Boolean formulae to N[X], the universal provenance semiring [17].
This poses several challenges. First, as semirings cannot deal satisfactorily with
negation [1], we must restrict to monotone queries, to obtain monotone prove-
nance circuits. Second, we must keep track of the multiplicity of facts, as well
as the multiplicity of matches. For this reason, we restrict to unions of conjunc-
tive queries (UCQ) in that section, as richer languages do not directly provide
notions of multiplicity for matched facts. We generalize our notion of provenance
circuits for automata to instances with unknown multiplicity annotations, using
arithmetic circuits. We show that, for UCQs, the standard provenance for the
universal semiring [17] matches the one defined via the automaton, and that a
provenance circuit for it can be computed in linear time for treelike instances.

Returning to the non-monotone Boolean provenance, we show in Section 6 how
the tractability of provenance computation on treelike instances implies that of two
important problems: determining the probability of a query, and counting query
matches. We show that probability evaluation of fixed MSO queries is tractable
on probabilistic XML models with local uncertainty, a result already known in [8],
and extend it to trees with event annotations that satisfy a condition of having
bounded scopes. We also show that MSO query evaluation is tractable on tree-
like block-independent-disjoint (BID) relational instances [26]. These tractability
results for provenance are achieved by applying message passing [20] on our prove-
nance circuits. Last, we show the tractability of counting query matches, using a
reduction to the probabilistic setting, capturing a result of [2].
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2 Preliminaries

We introduce basic notions related to trees, tree automata, and Boolean circuits.

Given a fixed alphabet I', we define a I'-tree T = (V,L,R,)\) as a set of
nodes V', two partial mappings L, R : V — V that associate an internal node
with its left and right child, and a labeling function A : V' — I'. Unless stated
otherwise, the trees that we consider are rooted, directed, ordered, binary, and
full (each node has either zero or two children). We write n € T to mean n € V.
We say that two trees 17 and Ts are isomorphic if there is a bijection between
their node sets preserving children and labels (we simply write it 77 = T5); they
have same skeleton if they are isomorphic except for labels.

A bottom-up nondeterministic tree automaton on I'-trees, or I'-bNTA, is a
tuple A = (Q, F,¢,0) of a set Q of states, a subset F' C Q of accepting states, an
initial relation v : I' — 29 giving possible states for leaves from their label, and
a transition relation § : Q> x I’ — 29 determining possible states for internal
nodes from their label and the states of their children. A run of A on a I'-tree
T = (V,L,R,\) is a function p : V' — @ such that for each leaf n we have p(n) €
t(A(n)), and for every internal node n we have p(n) € §(p(L(n)), p(R(n)), A(n)).
A run is accepting if, for the root n, of T, p(n,) € F; and A accepts T (written
T = A) if there is some accepting run of A on 7T'. Tree automata capture usual
query languages on trees, such as MSO [27].

A Boolean circuit is a directed acyclic graph C = (G, W, go, ) where G is a set
of gates, W C G x G is aset of wires (edges), go € G is a distinguished output
gate, and p associates each gate g € G with a type p(g) that can be inp (input gate,
with no incoming wire in W), = (NOT-gate, with exactly one incoming wire in W),
A (AND-gate) or V (OR-gate). A valuation of the input gates Cinp of C'is a function
v : Cpnp — {0,1}; it defines inductively a unique evaluation v’ : C — {0,1}
as follows: 1/ (g) isv(g)if g € Cinp (ie., u(g) = inp);itis—/(¢') if u(g) = -
(with (¢',g9) € W);otherwise it is (D, ,yen ¥/(9') where ® is 1u(g) (hence, A or
V). Note that this implies that AND- and OR-gates with no inputs always evaluate
to 1 and 0 respectively. We will abuse notation and use valuations and evaluations
interchangeably, and we write v(C') to mean v(gg). The function captured by C'is
the one that maps any valuation v of Cj, to v(C).

3 Provenance Circuits for Tree Automata

We start by studying a notion of provenance on trees, defined in an uncertain tree
framework. Fixing a finite alphabet I" throughout this section, we view a I'-tree T’
as an uncertain tree, where each node carries an unknown Boolean annotation
in {0,1}, and consider all possible valuations that choose an annotation for each
node of T, calling I" the alphabet of annotated trees:

Definition 3.1. We write I := I’ x {0,1}. For any I'-tree T = (V,L, R, \)
and valuation v : V. — {0,1}, v(T) is the I'-tree with same skeleton where each
node n is given the label (A(n),v(n)).
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We consider automata on annotated trees, namely, I-bNTAs, and define their
provenance on a I'-tree T as a Boolean function that describes which valuations
of T are accepted by the automaton. Intuitively, provenance keeps track of the
dependence between Boolean annotations and acceptance or rejection of the tree.

Definition 3.2. The provenance of a I'-bNTA A on a I'-tree T = (V, L, R, \)
is the function Prov(A,T) mapping any valuation v : V. — {0,1} to 1 or 0
depending on whether v(T) = A.

We now define a provenance circuit of A on a I'-tree T as a circuit that
captures the provenance of A on T, Prov(A,T). Formally:

Definition 3.3. Let A be a -bNTA and T = (V, L, R, \) be a I'-tree. A prove-
nance circuit of A on T is a Boolean circuit C with Cinp = V' that captures the
function Prov(A,T).

An important result is that provenance circuits can be tractably constructed:

Proposition 3.1. A provenance circuit of a I-bNTA A on a I'-tree T can be
constructed in time O(|A| - |T)).

The proof is by creating one gate in C per state of A per node of T, and
writing out in C' all possible transitions of A at each node n of T', depending on
the input gate that indicates the annotation of n. In fact, we can show that C'
is treelike for fixed A; we use this in Section 6 to show the tractability of tree
automaton evaluation on probabilistic XML trees from PrXML™>"¢ [19].

It is not hard to see that this construction gives us a way to capture the
provenance of any query on trees that can be expressed as an automaton, no
matter the choice of automaton. A query q is any logical sentence on I'-trees
which a I'-tree T can satisfy (written T |= q) or wiolate (T [~ q). An automaton
A, tests query q if for any I'-tree T, we have T' |= A, iff T | ¢q. We define
Prov(q,T) for a I'-tree T as in Definition 3.2, and run circuits for queries as in
Definition 3.3. It is immediate that Proposition 3.1 implies:

Proposition 3.2. For any fized query g on I -trees for which we can compute
an automaton A that tests it, a provenance circuit of ¢ on a I'-tree T' can be
constructed in time O(|T)).

Note that provenance does not depend on the automaton used to test the query.

4 Provenance on Tree Encodings

We lift the previous results to the setting of relational instances.

A signature o is a finite set of relation names (e.g., R) with associated
arity arity(R) > 1. Fixing a countable domain D = {ay, | k > 0}, a relational
instance I over o (or o-instance) is a finite set I of ground facts of the form R(a)
with R € o, where a is a tuple of arity(R) elements of D. The active domain
dom(I) C D of I is the finite set of elements of D used in I. Two instances I
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and I’ are isomorphic if there is a bijection ¢ from dom(I) to dom(I”) such that
o(I) = I'. We say that an instance I’ is a subinstance of I, written I' C I, if it
is a subset of the facts of I, which implies dom(I’) C dom([).

A query ¢ is a logical formula in (function-free) first- or second-order logic
on o, without free second-order variables; a o-instance I can satisfy it (I =
q) or wviolate it (I £~ q). For simplicity, unless stated otherwise, we restrict
to Boolean queries, that is, queries with no free variables, that are constant-
free. This limitation is inessential for data complezity, namely complexity for a
fixed query: we can handle non-Boolean queries by building a provenance circuit
for each possible output result (there are polynomially many), and we encode
constants by extending the signature with fresh unary predicates for them.

As before, we consider unknown Boolean annotations on the facts of an
instance. However, rather than annotating the facts, it is more natural to say
that a fact annotated by 1 is kept, and a fact annotated by 0 is deleted. Formally,
given an instance o, a valuation v is a function from the facts of I to {0,1}, and
we define v(I) as the subinstance {F € I | v(F) = 1} of I. We then define:

Definition 4.1. The provenance of a query q on a o-instance I is the function
Prov(q, I) mapping any valuation v : I — {0,1} to 1 or 0 depending on whether
v(I) |= q. A provenance circuit of ¢ on I is a Boolean circuit C with Cinp = I
that captures Prov(q, I).

We study provenance for treelike instances (i.e., bounded-treewidth
instances), encoding queries to automata on tree encodings. Let us first define
this. The treewidth w(I) of an instance I is a standard measure [23] of how close
I is to a tree: the treewidth of a tree is 1, that of a cycle is 2, and that of a
k-clique or k-grid is k — 1; further, we have w(I') < w(I) for any I' C I. It is
known [9,12] that for any fixed k € N, there is a finite alphabet I'* such that
any o-instance I of treewidth < k can be encoded in linear time [4] to a I'*-tree
T7, called the tree encoding, which can be decoded back to I up to isomorphism
(i.e., up to the identity of constants). Each fact in I is encoded in a node for this
fact in the tree encoding, where the node label describes the fact.

The point of tree encodings is that queries in monadic second-order logic,
the extension of first-order logic with second-order quantification on sets, can be
encoded to automata which are then evaluated on tree encodings. Formally:

Definition 4.2. For k € N, we say that a ['*-bNTA A’; tests a query q for

treewidth k if, for any I'*-tree T, we have T |= A’; iff T decodes to an instance
I such that I = q.

Theorem 4.1 [9]. For any k € N, for any MSO query q, one can compute a
Fj-bNTA A’; that tests q for trecwidth < k.

Our results apply to any query language that can be rewritten to tree automata
under a bound on instance treewidth. Beyond MSO, this is also the case of guarded
second-order logic (GSO). GSO extends first-order logic with second-order quan-
tification on arbitrary-arity relations, with a semantic restriction to guarded tuples
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(already co-occurring in some instance fact); it captures MSO (it has the same
expressive power on treelike instances [16]) and many common database query lan-
guages, e.g., frontier-guarded Datalog [3]. We use GSO in the sequel as our choice
of query language that can be rewritten to automata. Combining the result above
with the results of the previous section, we claim that provenance for GSO queries
on treelike instances can be tractably computed, and that the resulting provenance
circuit has treewidth independent on the instance.

Theorem 4.2. For any fired k € N and GSO query q, for any o-instance I
such that w(I) < k, one can construct a provenance circuit C of ¢ on I in time
O(|I]). The treewidth of C only depends on k and q (not on I).

The proof is by encoding the instance I to its tree encoding 77 in linear time,
and compiling the query ¢ to an automaton A, that tests it, in constant time
in the instance. Now, Section 3 worked with I’*-bNTAs rather than I'’*-bNTAs,
but the difference is inessential: we can easily map any I'*-tree T to a I'*-tree
€(T) where any node label (7, 1) is replaced by 7, and any label (7,0) is replaced
by a dummy label indicating the absence of a fact; and we straightforwardly
translate A to a I'*-bNTA A’ such that T |= A’ iff ¢(T) = A for any I'k-tree T.
The key point is then that, for any valuation v : T — {0,1}, e(v(T)) is a tree
encoding of v(I) (defined in the expected way), so we conclude by applying
Proposition 3.1 to A" and T. As in Section 3, our definition of provenance is
intrinsic to the query and does not depend on its formulation, on the choice of
tree decomposition, or on the choice of automaton to evaluate the query on tree
encodings.

Note that tractability holds only in data complexity. For combined com-
plexity, we incur the cost of compiling the query to an automaton, which is
nonelementary in general [21]. However, for some restricted query classes, such
as unions of conjunctive queries (UCQs), the compilation phase has lower cost.

5 General Semirings

In this section we connect our previous results to the existing definitions of
semiring provenance on arbitrary relational instances [17]:

Definition 5.1. A commutative semiring (K,®,®,0x,1x) is a set K with
binary operations @& and ® and distinguished elements Ox and 1k, such that
(K,®) and (K,®) are commutative monoids with identity element O and 1k,
® distributes over &, and 0g ® a = 0k for all a € K.

Provenance for semiring K is defined on instances where each fact is anno-
tated with an element of K. The provenance of a query on such an instance is
an element of K obtained by combining fact annotations following the seman-
tics of the query, intuitively describing how the query output depends on the
annotations (see exact definitions in [17]). This general setting has many specific
applications:
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Ezxample 5.1. For any variable set X, the monotone Boolean functions over X
form a semiring (PosBool[X],V,A,0,1). On instances where each fact is anno-
tated by its own variable in X, the PosBool[X]-provenance of a query ¢ is a
monotone Boolean function on X describing which subinstances satisfy ¢q. As we
will see, this is what we defined in Section 4, using circuits as compact represen-
tations.

The natural numbers N with the usual + and x form a semiring. On instances
where facts are annotated with an element of N representing a multiplicity, the
provenance of a query describes its number of matches under the bag semantics.

The tropical semiring [11] is (N U {oo}, min, +, 00,0). Fact annotations are
costs, and the tropical provenance of a query is the minimal cost of the facts
required to satisfy it, with multiple uses of a fact being charged multiple times.

For any set of variables X, the polynomial semiring N[X] is the semiring of
polynomials with variables in X and coefficients in N, with the usual sum and
product over polynomials, and with 0,1 € N.

Semiring provenance does not support negation well [1] and is therefore only
defined for monotone queries: a query g is monotone if, for any instances I C I’,
if I = q then I’ |= q. Provenance circuits for semiring provenance are monotone
circuits [11]: they do not feature NOT-gates. We can show that, adapting the
constructions of Section 3 to work with a notion of monotone bNTAs, Theo-
rem 4.2 applied to monotone queries yields a monotone provenance circuit:

Theorem 5.1. For any fired k € N and monotone GSO query q, for any o-
instance I such thatw(I) < k, one can construct in time O(|I|) a monotone prove-
nance circuit of g on I whose treewidth only depends on k and g (not on I).

Hence, for monotone GSO queries for which [17] defines a notion of semiring
provenance (e.g., those that can be encoded to Datalog, a recursive query lan-
guage that subsumes UCQs), our provenance Prov(g, I) is easily seen to match
the provenance of [17], specialized to the semiring PosBool[X] of monotone
Boolean functions. Indeed, both provenances obey the same intrinsic definition:
they are the function that maps to 1 exactly the valuations corresponding to
subinstances accepted by the query. Hence, we can understand Theorem 5.1
as a tractability result for PosBool[X]-provenance (represented as a circuit) on
treelike instances.

Of course, the definitions of [17] go beyond PosBool[X] and extend to arbi-
trary commutative semirings. We now turn to this more general question.

N[X]-provenance for UCQs. First, we note that, as shown by [17], the provenance
of Datalog queries for any semiring K can be computed in the semiring N[X],
on instances where each fact is annotated by its own variable in X. Indeed,
the provenance can then be specialized to K, and the actual fact annotations
in K, once known, can be used to replace the variables in the result, thanks
to a commutation with homomorphisms property. Hence, we restrict to N[X]-
provenance and to instances of this form, which covers all the examples above.



Provenance Circuits for Trees and Treelike Instances 63

Second, in our setting of treelike instances, we evaluate queries using tree
automata, which are compiled from logical formulae with no prescribed execution
plan. For the semiring N[X], this is hard to connect to the general definitions
of provenance in [17], which are mainly designed for positive relational algebra
operators or Datalog queries. Hence, to generalize our constructions to N[X]-
provenance, we now restrict our query language to UCQs, assuming without loss
of generality that they contain no equality atoms, We comment at the end of
this section on the difficulties arising for richer query languages.

We formally define the N[X|-provenance of UCQs on relational instances by
encoding them straightforwardly to Datalog and using the Datalog provenance
definition of [17]. The resulting provenance can be rephrased as follows:

Definition 5.2. The N[X]-provenance of a UCQ q = /!, 3x; ¢i(x;) (where g;
is a conjunction of atoms with free variables x;) on an instance I is defined as:
PIOVN[X]((L I) = @?:1 @f:xiﬁdom(l) such that I'=q;(f(x;)) ®A(xi)€qi A(f(xl))
In other words, we sum over each disjunct, and over each match of the disjunct;
for each match, we take the product, over the atoms of the disjunct, of their
image fact in I, identifying each fact to the one variable in X that annotates it.

We know that Provyix)(q,I) enjoys all the usual properties of provenance:
it can be specialized to PosBool[X], yielding back the previous definition; it can
be evaluated in the N semiring to count the number of matches of a query; etc.

Ezample 5.2. Consider the instance I = {F := R(a,a),Fy := R(b,c), F3 :=
R(c,b)} and the CQ ¢ : Jzy R(z,y)R(y, ). We have Provyx(q, 1) = F{+2F,F3
and Prov(q, I) = FyV(F3AF3). Unlike PosBool[X]-provenance, N[ X]-provenance
can describe that multiple atoms of the query map to the same fact, and that
the same subinstance is obtained with two different query matches. Evaluating
in the semiring N with facts annotated by 1, ¢ has 12 4+ 2 x 1 x 1 = 3 matches.

Provenance circuits for trees. Guided by this definition of N[X]-provenance, we
generalize the construction of Section 3 of provenance on trees to a more expressive
provenance construction, before we extend it to treelike instances as in Section 4.

Instead of considering I'-trees, we consider T"-trees for p € N, whose label set
is I'x{0,...,p} rather than I"x {0, 1}. Intuitively, rather than uncertainty about
whether facts are present or missing, we represent uncertainty about the number
of available copies of facts, as UCQ matches may include the same fact multiple
times. We impose on I the partial order < defined by (7,7) < (7,7) forall 7 € I"
and @ < j in {0,...,p}, and call a T"-bNTA A = (Q, F,t,6) monotone if for
every 7 < 7' in I, we have «(7) C (') and 8(q1,qa,7) C 8(qu, g2, 7) for every
q1,q2 € Q. We write Val?(T) for the set of all p-valuations v: V — {0,...,p} of
a I-tree T. We write |aruns(A,T)| for a T"-tree T and T"-bNTA A to denote
the number of accepting runs of A on 7. We can now define:

Definition 5.3. The N[X|-provenance of a I" -bNTA A on a I'-tree T is

Provypx)(A.T) = @), cyuis(ry [armns(A, (1) | @, n"™)
where each node n € T is identified with its own variable in X. Intuitively, we
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sum over all valuations v of T to {0,...,p}, and take the product of the tree
nodes to the power of their valuation in v, with the number of accepting runs
of A on v(T) as coefficient; in particular, the term for v is 0 if A rejects v(T).

This definition specializes in PosBool[ X ] to our earlier definition of Prov(A, T'),
but extends it with the two features of N[X]: multiple copies of the same nodes
(represented as n”(™)) and multiple derivations (represented as |aruns(A, v(T))|).
To construct this general provenance, we need arithmetic circuits:

Definition 5.4. A K-circuit for semiring (K, ®,®,0x,1x) is a circuit with &-
and ®-gates instead of OR- and AND-gates (and no analogue of NOT-gates),
whose input gates stand for elements of K. As before, the constants O and 1g
can be written as - and Q-gates with no inputs. The element of K captured by
a K -circuit is the element captured by its distinguished gate, under the recursive
definition that ®- and ®-gates capture the sum and product of the elements
captured by their operands, and input gates capture their own value.

We now show an efficient construction for such provenance circuits, generaliz-
ing the monotone analogue of Proposition 3.1. The proof technique is to replace
AND- and OR-gates by ®- and @-gates, and to consider possible annotations in
{0,...,p} instead of {0,1}. The correctness is proved by induction via a general
identity relating the provenance on a tree to that of its left and right subtrees.

Theorem 5.2. For any fized p € N, for a T'-bNTA A and a I'-tree T, a N[X]-
circuit capturing Provyx)(A,T) can be constructed in time O(|A| - [TY).

Provenance circuit for instances. Moving back to provenance for UCQs on
bounded-treewidth instances, we obtain a linear-time provenance construction:

Theorem 5.3. For any fired k € N and UCQ q, for any o-instance I such

that w(I) < k, one can construct a N[X]-circuit that captures Provyxi(q, 1) in
time O(|I]).

The proof technique is to construct for each disjunct ¢’ of g a T"-bNTA Ay,
where I' := I'* is the alphabet for tree encodings of width k, and p is the
maximum number of atoms in a disjunct of ¢. We want A, to test ¢’ on tree
encodings over I, while preserving multiplicities: this is done by enumerating all
possible self-homomorphisms of ¢/, changing o to make the multiplicity of atoms
part of the relation name, encoding the resulting queries to automata as usual [9]
and going back to the original o. We then apply a variant of Theorem 5.2 to
construct a N[X]-circuit capturing the provenance of A, on a tree encoding
of I but for valuations that sum to the number of atoms of ¢’; this restricts
to bag-subinstances corresponding exactly to matches of ¢’. We obtain a N[X]-
circuit that captures Provyx)(g, I) by combining the circuits for each disjunct,
the distinguished gate of the overall circuit being a &-gate of that of each circuit.

Remember that an N[X]-circuit can then be specialized to a circuit for an arbi-
trary semiring (in particular, if the semiring has no variable, the circuit can be used
for evaluation); thus, this provides provenance for ¢ on I for any semiring.
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Going beyond UCQs. To compute N[X]-provenance beyond UCQs (e.g., for
monotone GSO queries or their intersection with Datalog), the main issue is
fact multiplicity: multiple uses of facts are easy to describe for UCQs (Defini-
tion 5.2), but for more expressive languages we do not know how to define them
and connect them to automata.

In fact, we can build a query P, in guarded Datalog [15], such that the
smallest number of occurrences of a fact in a derivation tree for P cannot be
bounded independently from the instance. We thus cannot rewrite P to a fixed
finite bNTA testing multiplicities on all input instances. However, as guarded
Datalog is monotone and GSO-expressible, we can compute the PosBool[X]-
provenance of P with Theorem 4.2, hinting at a difference between PosBool[X]
and N[X]-provenance computation for queries beyond UCQs.

6 Applications

In Section 5 we have shown a N[X]-provenance circuit construction for UCQs
on treelike instances. This construction can be specialized to any provenance
semiring, yielding various applications: counting query results by evaluating in N,
computing the cost of a query in the tropical semiring, etc. By contrast, Section 4
presented a provenance construction for arbitrary GSO queries, but only for a
Boolean representation of provenance, which does not capture multiplicities of
facts or derivations. The results of both sections are thus incomparable. In this
section we show applications of our constructions to two important problems:
probability evaluation, determining the probability that a query holds on an
uncertain instance, and counting, counting the number of answers to a given
query. These results are consequences of the construction of Section 4.

Probabilistic XML. We start with the problem of probabilistic query evaluation,
beginning with the setting of trees. We use the framework of probabilistic XML,
denoted PrXM Lf'e, to represent probabilistic trees as trees annotated by propo-
sitional formulas over independent probabilistic events (see [19] for the formal
definitions), and consider the data complezity of the query evaluation problem
for a MSO query ¢ on such trees (i.e., computing the probability that ¢ holds).

This problem is intractable in general, which is not surprising;: it is harder than
determining the probability of a single propositional annotation. However, for the
less expressive local PrXML model, PrXML™>"  query evaluation has tractable
data complexity [8]; this model restricts edges to be annotated by only one event
literal that is only used on that edge (plus a form of mutual exclusivity).

We can use the provenance circuits of Section 4 to justify that query evalu-
ation is tractable for PPXML™>" and capture the data complexity tractability
result of [8]. We say that an algorithm runs in ra-linear time if it runs in linear
time assuming that arithmetic operations over rational numbers take constant
time and rationals are stored in constant space, and runs in polynomial time
without this assumption. We can show:
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Theorem 6.1 [8]. MSO query evaluation on PrXML™™ "™ has ra-linear data
complezity.

We can also show extensions of this result. For instance, on PrXM Lﬁe7 defining
the scope of event e in a document D as the smallest subtree in the left-child-right-
sibling encoding of D covering nodes whose parent edge mentions e, and the scope
size of a node n as the number of events with n in their scope, we show:

Proposition 6.1. For any fixred k € N, MSO query evaluation on PrxmLfe
documents with scopes assumed to have size < k has ra-linear data complezity.

BID instances. We move from trees to relational instances, and show another
bounded-width tractability result for block-independent disjoint (BID) instances
(see [26]). We define the treewidth of a BID instance as that of its underlying
relational instance, and claim the following (remember that query evaluation on
a probabilistic instance means determining the probability that the query holds):

Theorem 6.2. For any fired k € N, MSO query evaluation on an input BID
instance of treewidth < k has ra-linear data complexity.

All probabilistic results are proven by rewriting to a formalism of relational
instances with a circuit annotation, such that instance and circuit have a bounded-
width joint decomposition. We compute a treelike provenance circuit for the
instance using Theorem 4.2, combine it with the annotation circuit, and apply
existing message passing techniques [20] to compute the probability of the circuit.

Counting. We turn to the problem of counting query results, and reduce it in
ra-linear time to query evaluation on treelike instances, capturing a result of [2]:

Theorem 6.3 [2]. For any fized MSO query q(x) with free first-order variables
and k € N, the number of matching assignments to x on an input instance I of
width < k can be computed in ra-linear data complexity.

7 Related Work

From the original results [9,12] on the linear-time data complexity of MSO eval-
uation on treelike structures, works such as [2] have investigated counting prob-
lems, including applications to probability computation (on graphs). A recent
paper [5] also shows the linear-time data complexity of evaluating an MSO query
on a treelike probabilistic network (analogous to a circuit). Such works, however,
do not decouple the computation of a treelike provenance of the query and the
application of probabilistic inference on this provenance, as we do. We also note
results from another approach [22] on treelike structures, based on monadic
Datalog (and not on MSO as the other works), that are limited to counting.
The intensional approach [26] to query evaluation on probabilistic databases
is to compute a lineage of the query and evaluate its probability via general pur-
pose methods; tree-like lineages allow for tractable probabilistic query evaluation
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[18]. Many works in this field provide sufficient conditions for lineage tractabil-
ity, only a few based on the data [24,25] but most based on the query [10,18].
For treelike instances, as we show, we can always compute treelike lineages, and
we can do so for expressive queries (beyond UCQs considered in these works),
or alternatively generalize Boolean lineages to connect them to more expressive
semirings.

Our provenance study is inspired by the usual definitions of semiring prove-
nance for the relational algebra and Datalog [17]. Another notion of provenance,
for XQuery queries on trees, has been introduced in [13]. Both [17] and [13] pro-
vide operational definitions of provenance, which cannot be directly connected
to tree automata. A different relevant work on provenance is [11], which intro-
duces provenance circuits, but uses them for Datalog and only on absorptive
semirings. Last, other works study provenance for transducers [6], but with no
clear connections to semiring provenance or provenance for Boolean queries.

8 Conclusion

We have shown that two provenance constructions can be computed in linear
time on trees and treelike instances: one for UCQs on arbitrary semirings, the
other for arbitrary GSO queries as non-monotone Boolean expressions. A draw-
back of our results is their high combined complexity, as they rely on non-
elementary encoding of the query to an automaton. One approach to fix this
is monadic Datalog [14,22]; this requires defining and computing provenance in
this setting.
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