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Abstract. Population protocols are networks of finite-state agents,
interacting randomly, and updating their states using simple rules.
Despite their extreme simplicity, these systems have been shown to coop-
eratively perform complex computational tasks, such as simulating regis-
ter machines to compute standard arithmetic functions. The election of a
unique leader agent is a key requirement in such computational construc-
tions. Yet, the fastest currently known population protocol for electing a
leader only has linear convergence time, and it has recently been shown
that no population protocol using a constant number of states per node
may overcome this linear bound.

In this paper, we give the first population protocol for leader election
with polylogarithmic convergence time, using polylogarithmic memory
states per node. The protocol structure is quite simple: each node has
an associated value, and is either a leader (still in contention) or a min-
ion (following some leader). A leader keeps incrementing its value and
“defeats” other leaders in one-to-one interactions, and will drop from
contention and become a minion if it meets a leader with higher value.
Importantly, a leader also drops out if it meets a minion with higher
absolute value. While these rules are quite simple, the proof that this
algorithm achieves polylogarithmic convergence time is non-trivial. In
particular, the argument combines careful use of concentration inequal-
ities with anti-concentration bounds, showing that the leaders’ values
become spread apart as the execution progresses, which in turn implies
that straggling leaders get quickly eliminated. We complement our analy-
sis with empirical results, showing that our protocol converges extremely
fast, even for large network sizes.

1 Introduction

Recently, there has been significant interest in modeling and analyzing interac-
tions arising in biological or bio-chemical systems through an algorithmic lens.
In particular, the population protocol model [AAD+06], which is the focus of
this paper, consists of a set of n finite-state nodes interacting in pairs, where
each interaction may update the states of both participants. The goal is to
have all nodes converge on an output value, which represents the result of the
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M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 479–491, 2015.
DOI: 10.1007/978-3-662-47666-6 38



480 D. Alistarh and R. Gelashvili

computation, usually a predicate on the initial state of the nodes. The set of
interactions occurring at each step is assumed to be decided by an adversar-
ial scheduler, which is usually subject to some fairness conditions. The stan-
dard scheduler when computing convergence bounds is the probabilistic (uniform
random) scheduler, e.g., [AAE08b,PVV09,DV12], which picks the next pair to
interact uniformly at random in each step. We adopt this probabilistic scheduler
model in this paper. (Some references refer to this model as the probabilistic
population model.) The fundamental measure of convergence is parallel time,
defined as the number of scheduler steps until convergence, divided by n.1

The class of predicates computable by population protocols is now well-
understood [AAD+06,AAE06,AAER07] to consist precisely of semilinear predi-
cates, i.e. predicates definable in first-order Presburger arithmetic. The first such
construction was given in [AAD+06], and later improved in terms of convergence
time in [AAE06]. A parallel line of research studied the computability of deter-
ministic functions in chemical reaction networks, which are also instances of
population protocols [CDS14]. All three constructions fundamentally rely on the
election of a single initial leader node, which co-ordinates phases of computation.

Reference [AAD+06] gives a simple protocol for electing a leader from a uni-
form population, based on the natural idea of having leaders eliminate each other
directly through symmetry breaking. Unfortunately, this strategy takes at least
linear parallel time in the number of nodes n: for instance, once this algorithm
reaches two surviving leaders, it will require Ω(n2) additional interactions for
these two leaders to meet. Reference [AAE08a] proposes a significantly more
complex protocol, conjectured to be sub-linear, and whose convergence is only
studied experimentally. This reference posits the existence of a sublinear-time
population protocol for leader election as a “pressing” open problem. In fact,
the existence of a poly-logarithmic leader election protocol would imply that
any semilinear predicate is computable in poly-logarithmic time by a uniform
population [AAE06].

Recently, Doty and Soloveichik [DS15] showed that Ω(n2) expected inter-
actions are necessary for electing a leader in the classic probabilistic protocol
model in which each node only has constant number of memory states (with
respect to n). This negative result implies that computing semilinear predicates
in leader-based frameworks is subject to the same lower bound. In turn, this
motivates the question of whether faster computation is possible if the amount
of memory per node is allowed to be a function of n.

Contribution. In this paper, we solve this problem by proposing a new popula-
tion protocol for leader election, which converges in O(log3 n) expected parallel
time, using O(log3 n) memory states per node. Our protocol, called LM for
Leader-Minion, roughly works as follows. Throughout the execution, each node
is either a leader, meaning that it can still win, or a minion, following some
leader. Each node state is associated to some absolute value, which is a positive

1 An alternative definition is when reactions occur in parallel according to a Poisson
process [PVV09,DV12].
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integer, and with a sign, positive if the node is still in contention, and negative
if the node has become a minion.

If two leaders meet, the one with the larger absolute value survives, and
increments its value, while the other drops out, becoming a minion, and adopting
the other node’s value, but with a negative sign. (If both leaders have the same
value, they both increment it and continue.) If a leader meets a minion with
smaller absolute value than its own, it increments its value, while the minion
simply adopts the leader’s value, but keeps the negative sign. Conversely, if a
leader meets a minion with larger absolute value than its own, then the leader
drops out of contention, adopting the minion’s value, with negative sign. Finally,
if two minions meet, they update their values to the maximum absolute value
between them, but with a negative sign.

These rules ensure that, eventually, a single leader survives. While the
protocol is relatively simple, the proof of poly-logarithmic time convergence is
non-trivial. In particular, the efficiency of the algorithm hinges on the minion
mechanism, which ensures that a leader with high absolute value can eliminate
other contenders in the system, without having to directly interact with them.

Roughly, the argument is based on two technical insights. First, consider two
leaders at a given time T , whose (positive) values are at least Θ(log n) apart.
Then, we show that, within O(log n) parallel time from T , the node holding
the smaller value has become a minion, with constant probability. Intuitively,
this holds since 1) this node will probably meet either the other leader or one
of its minions within this time interval, and 2) it cannot increase its count fast
enough to avoid defeat. For the second part of the argument, we show via anti-
concentration that, after parallel time Θ(log2 n) in the execution, the values
corresponding to an arbitrary pair of nodes will be separated by at least Ω(log n).

We ensure that the values of nodes cannot grow beyond a certain threshold,
and set the threshold in such a way that the total number of states is Θ(log3 n).
We show that with high probability the leader will be elected before the values of
the nodes reach the threshold. In the other case, remaining leaders with thresh-
old values engage in a backup dynamics where minions are irrelevant and leaders
defeat each other when they meet based on random binary indicators which are
set using the randomness of the scheduler. This process is slower but determinis-
tically correct, and only happens with very low probability, allowing to conclude
that the algorithm converges to a single leader within O(log3 n) parallel time,
both with high probability and in expectation, using O(log3 n) states.

In population protocols, in every interaction, one node is said to be the initia-
tor, the other is the responder, and the state update rules can use this distinction.
In our protocol, this would allow a leader (the initiator in the interaction) to
defeat another leader with the same value (the responder), and could also sim-
plify the backup dynamics of our algorithm. However, our algorithm has the
nice property that the state update rules can be made completely symmetric
with regards to the initiator and responder roles. (For this reason, LM works for
n > 2 nodes, because to elect a leader among two nodes it is necessary to rely
on the initiator-responder role distinction.)
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Summing up, we give the first poly-logarithmic time protocol for electing a
leader from a uniform population. We note that Ω(n log n) interactions seem
intuitively necessary for leader election, as this number is required to allow each
node to interact at least once. However, this idea fails to cover all possible reac-
tion strategies if nodes are allowed to have arbitrarily many states.

We complement our analysis with empirical data, suggesting that the conver-
gence time of our protocol is close to logarithmic, and that in fact the asymptotic
constants are small, both in the convergence bound, and in the upper bound on
the number of states the protocol employs.

Related Work. We restrict our attention to work in the population model.
The framework of population protocols was formally introduced in refer-
ence [AAD+06], to model interactions arising in biological, chemical, or sensor
networks. It sparked research into its computational power [AAD+06,AAE06,
AAER07], and into the time complexity of fundamental tasks such as major-
ity [AAE08b,PVV09,DV12], and leader election [AAD+06,AAE08a].2 Refer-
ences interested in computability consider an adversarial scheduler which is
restricted to be fair, e.g., where each agent interacts with every other agent
infinitely many times. For complexity bounds, the standard scheduler is uni-
form, scheduling each pair uniformly at random at each step, e.g., [AAE08b,
PVV09,DV12]. This model is also known as the probabilistic population model.

To the best of our knowledge, no population protocol for electing a leader with
sub-linear convergence time was known before our work. References [AAD+06,
AAE06,CDS14] present leader-based frameworks for population computations,
assuming the existence of such a node. The existence of such a sub-linear protocol
is stated as an open problem in [AAD+06,AAE08a]. Reference [DH13] proposes
a leader-less framework for population computation.

Recent work by Doty and Soloveichik [DS15] showed an Ω(n2) lower bound
on the number of interactions necessary for electing a leader in the classic proba-
bilistic protocol model in which each node only has constant number of memory
states with respect to the number of nodes n [AAER07]. The proof of this result
is quite complex, and makes use of the limitation that the number of states
remains constant even as the number of nodes n is taken to tend to infinity.

Thus, our algorithm provides a complexity separation between population
protocols which may only use constant memory per node, and protocols where
the number of states is allowed to be a function of n. We note that, historically,
the classic population protocol model [AAD+06] only allowed a constant number
of states per node, while later references relaxed this assumption.

A parallel line of research studied self-stabilizing population protocols, e.g.,
[AAFJ06,FJ06,SNY+10], that is, protocols which can converge to a correct solu-
tion from an arbitrary initial state. It is known that stable leader election is
impossible from an arbitrary initial state [AAFJ06]. References [FJ06,SNY+10]
circumvent this impossibility by relaxing the problem semantics. Our algorithm
is not affected by this impossiblity result since it is not self-stabilizing.

2 Leader election and majority are complementary tasks, and no complexity-preserving
transformations exist, to our knowledge.



Polylogarithmic-Time Leader Election in Population Protocols 483

2 Preliminaries

Population Protocols. We assume a population consisting of n agents, or
nodes, each executing as a deterministic state machine with states from a finite
set Q, with a finite set of input symbols X ⊆ Q, a finite set of output symbols
Y , a transition function δ : Q × Q → Q × Q, and an output function γ : Q → Y .
Initially, each agent starts with an input from the set X, and proceeds to update
its state following interactions with other agents, according to the transition
function δ. For simplicity of exposition, we assume that agents have identifiers
from the set V = {1, 2, . . . , n}, although these identifiers are not known to agents,
and not used by the protocol.

The agents’ interactions proceed according to a directed interaction graph
G without self-loops, whose edges indicate possible agent interactions. Usually,
the graph G is considered to be the complete directed graph on n vertices, a
convention we also adopt in this paper.

The execution proceeds in steps, or rounds, where in each step a new edge
(u,w) is chosen uniformly at random from the set of edges of G. Each of the two
chosen agents updates its state according to function δ.

Parallel Time. The above setup considers sequential interactions; however, in
general, interactions between pairs of distinct agents are independent, and are
usually considered as occurring in parallel. In particular, it is customary to define
one unit of parallel time as n consecutive steps of the protocol.

The Leader Election Problem. In the leader election problem, all agents
start in the same initial state A, i.e. the only state in the input set X = {A}.
The output set is Y = {Win,Lose}.

A population protocol solves leader election within � steps with probability
1 − φ, if it holds with probability 1 − φ that for any configuration c : V → Q
reachable by the protocol after ≥ � steps, there exists a unique agent i such that,
(1) for the agent i, γ(c(i)) = Win, and, (2) for any agent j �= i, γ(c(j)) = Lose.

3 The Leader Election Algorithm

In this section, we describe the LM leader election algorithm. The algorithm has
an integer parameter m > 0, which we set to Θ(log3 n). Each state corresponds
to an integer value from the set {−m,−m+1, . . . ,−2,−1, 1, 2,m−1,m,m+1}.
Respectively, there are 2m+1 different states. We will refer to states and values
interchangeably. All nodes start in the same state corresponding to value 1.

The algorithm, specified in Figure 1, consists of a set of simple deterministic
update rules for the node state. In the pseudocode, the node states before an
interaction are denoted by x and y, while their new states are given by x′ and y′.
All nodes start with value 1 and continue to interact according to these simple
rules. We prove that all nodes except one will converge to negative values, and
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Parameters:
m, an integer > 0, set to Θ(log3 n)
State Space:
LeaderStates = {1, 2, . . . , m − 1, m, m + 1},
MinionStates = {−1, −2, . . . , −m + 1, −m},
Input: States of two nodes, x and y
Output: Updated states x′ and y′

Auxiliary Procedures:

is-contender(x) =

{
true if x ∈ LeaderStates;
false otherwise.

contend-priority(x, y) =

{
m if max(|x|, |y|) = m + 1;
max(|x|, |y|) + 1 otherwise.

minion-priority(x, y) =

{−m if max(|x|, |y|) = m + 1;
−max(|x|, |y|) otherwise.

1 procedure update〈x, y〉
2 if is-contender(x) and |x| ≥ |y| then
3 x′ ← contend-priority(x, y)
4 else x′ ← minion-priority(x, y)
5 if is-contender(y) and |y| ≥ |x| then
6 y′ ← contend-priority(x, y)
7 else y′ ← minion-priority(x, y)

Fig. 1. The state update rules for the LM algorithm

that convergence is fast with high probability. This solves the leader election
problem since we can define γ as mapping only positive states to Win (a leader).3

Since positive states translate to being a leader according to γ, we call a node
a contender if it has a positive value, and a minion otherwise. We present the
algorithm in detail below.

The state updates (i.e. the transition function δ) of the LM algorithm are
completely symmetric, that is, the new state x′ depends on x and y (lines 2-4)
exactly as y′ depends on y and x (lines 5-7).

If a node is a contender and has absolute value not less than the absolute
value of the interaction partner, then the node remains a contender and updates
its value using the contend-priority function (lines 3 and 6). The new value will
be one larger than the previous value except when the previous value was m+1,
in which case the new value will be m.

If a node had a smaller absolute value than its interaction partner, or was a
minion already, then the node will be a minion after the interaction. It will set
its value using the minion-priority function, to either −max(|x|, |y|), or −m if
the maximum was m + 1 (lines 4 and 7).

Values m+1 and m are treated the same way if the node is a minion (essen-
tially corresponding to −m). These values serve as a binary tie-breaker among
the contenders that reach the value m, as will become clear from the analysis.

3 Alternatively, γ that maps states with values m and m+1 to WIN would also work,
but we will work with positive “leader” states for the simplicity of presentation.
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4 Analysis

In this section, we provide a complete analysis of our leader election algorithm.

Notation. Throughout this proof, we denote the set of n nodes executing the
protocol by V . We measure execution time in discrete steps (rounds), where
each step corresponds to an interaction. The configuration at a given time t is
a function c : V → Q, where c(v) is the state of the node v at time t. (We omit
time t when clear from the context.) We call a node contender when the value
associated with its state is positive, and a minion when the value is negative. As
previously discussed, we assume n > 2. Also, for presentation purposes, consider
n to be a power of two. We first prove that the algorithm never eliminates all
contenders and that having a single contender means that a leader is elected.

Lemma 1. There is always at least one contender in the system. After an exe-
cution reaches a configuration with only a single node v being a contender, then
from this point, v will have c(v) > 0 (mapped to WIN by γ) in every reachable
future configuration c, and there may never be another contender.

Proof. By the structure of the algorithm, a node starts as a contender and
may become a minion during an execution, but a minion may never become
a contender. Moreover, an absolute value associated with the state of a minion
node can only increase to an absolute value of an interaction partner. Finally,
an absolute value may never decrease except from m + 1 to m.

Let us assume for contradiction that an execution reaches a configuration
where all nodes are minions. Consider such a time point T0 and let the maximum
absolute value of the nodes at T0 be u. Because the minions cannot increase the
maximum absolute value in the system, there must have been a contender node v
and a time T1 < T such that v had value u at time T1. In order for this contender
to have become a minion by time T0, it must have interacted with another node
with an absolute value strictly larger than u, after time T1. However, the absolute
value of a node never decreases except from m+1 to m, and despite the existence
of an absolute value larger than u before time T0, u is the largest absolute value
at time T0. The only way this can occur is if u = m and the node v interacted
with a node v′ with value m + 1. But after such an interaction the node v′

remains a contender with value m. In order for v′ to become a minion by time
T0, it must have interacted with yet another node v′′ of value m + 1 at some
time T2 between T1 and T0. But then this node v′′ is left as a contender with
value m, and the same reasoning applies to it. By infinite descent, we obtain a
contradiction with the initial assumption that all nodes are minions.

Consequently, whenever there is a single contender in the system, it must
have the largest absolute value. Otherwise, it could interact with a node with
a larger absolute value and become a minion itself, contradicting the invariant
that not all nodes can be minions at the same time.

Now we turn our attention to the convergence speed of the LM algorithm.
Our goal is bound the number of rounds necessary to eliminate all except a
single contender. In order for a contender to get eliminated, it must come across
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a larger value of another contender, the value possibly conducted through a chain
of multiple minions via multiple interactions.

We first show by a rumor spreading argument that if the difference between
the values of two contenders is large enough, then the contender with the smaller
value will become a minion within the next O(n log n) rounds, with constant
probability. Then using anti-concentration bounds we establish that for any two
contenders, if no absolute value in the system reaches m, after O(n log2 n) rounds
the difference between their values is large enough with constant probability.

Lemma 2. Consider two contender nodes with values u1 and u2, where u1 −
u2 ≥ 4ξ log n at time T for ξ ≥ 8. Then, after ξn log n rounds from T , the node
that initially held the value u2 will be a minion with probability at least 1/24,
independent of the history of previous interactions.

Proof. Call a node that has an absolute value of at least u1 an up-to-date
node, and out-of-date otherwise. At time T , at least one node is up-to-date.
Before an arbitrary round where we have x up-to-date nodes, the probabil-
ity that an out-of-date node interacts with an up-to-date node, increasing the
number of up-to-date nodes to x + 1, is 2x(n−x)

n(n−1) . By a Coupon Collector argu-
ment, the expected number of rounds until every node is up-to-date is then
∑n−1

x=1
n(n−1)
2x(n−x) ≤ (n−1)

2

∑n−1
x=1

(
1
x + 1

n−x

)
≤ 2n log n.

By Markov’s inequality, the probability that not all nodes are up-to-date
after ξn log n communication rounds is at most 2/ξ. Let Y denote the number
of up-to-date nodes at some given time after T . It follows that, after ξn log n

rounds, E[Y ] ≥ n(ξ−2)
ξ . Let q be the probability of having at least n

3 + 1 nodes
after ξn log n communication rounds. Then we have qn+(1−q)(n

3 +1) ≥ E[Y ] ≥
n(ξ−2)

ξ , which implies that q ≥ 1
4 for n > 2 and ξ ≥ 8.

Hence, with probability at least 1/4, at least n/3 + 1 are nodes are up to
date after ξn log n rounds. By symmetry, the n/3 up-to-date nodes except the
original node are uniformly random among the other n−1 nodes. Therefore, any
given node, in particular the node that had value u2 at time T , has probability
at least 1/4 · 1/3 = 1/12 to be up-to-date after ξn log n rounds from T .

Let v2 be the node that had value u2 at time T . We now wish to bound the
probability that v2 is still a contender once it becomes up-to-date. The only way
in which this can happen is if it increments its value at least 4ξ log n times (so
that its value can reach u1) during the first ξn log n rounds after T . We will show
that the probability of this event is at most 1/24.

In each round, the probability to select node v2 is 2/n (selecting n− 1 out of
n(n − 1)/2 possible pairs). Let us describe the number of times it is selected in
ξn log n rounds by considering a random variable Z ∼ Bin(ξn log n, 2/n). By a
Chernoff Bound, the probability of being selected at least 4ξ log n times in these
rounds is at most Pr [Z ≥ 4ξ log n] ≤ exp (−2ξ log n/3) ≤ 1/n2ξ/3 ≤ 1/24.

The next Lemma shows that, after Θ(n log2 n) rounds, the difference between
the values of any two given contenders is high, with reasonable probability.
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Lemma 3. Fix an arbitrary time T , and a constant ξ ≥ 1. Consider any two
contender nodes at time T , and time T1 which is 32ξ2n log2 n rounds after T .

If no absolute value of any node reaches m at any time until T1, then, with
probability at least 1

24 − 1
n8ξ , at time T1, either at least one of the two nodes has

become a minion, or the absolute value of the difference of the two nodes’ values
is at least 4ξ log n.

Proof. We will assume that no absolute value reaches m at any point until time
T1 and that the two nodes are still contenders at T1. We should now prove that
the difference of values is large enough.

Consider 32ξ2n log2 n rounds following time T . If a round involves an inter-
action with exactly one of the two fixed nodes we call it a spreading round. A
round is spreading with probability 4(n−2)

n(n−1) , which for n > 2 is at least 2/n. So,
we can describe the number of spreading rounds among the 32ξ2n log2 n rounds
by a random variable X ∼ Bin(32ξ2n log2 n, 2/n). Then, by Chernoff Bound, the
probability of having at most 32ξ2 log2 n spreading rounds is at most

Pr
[
X ≤ 32ξ2 log2 n

] ≤ exp
(

−64ξ2 log2 n

22 · 2

)

≤ 2−8ξ2 log2 n <
1

n8ξ
,

Let us from now on focus on the high probability event that there are at least
32ξ2 log2 n spreading rounds between times T and T1, and prove that the desired
difference will be large enough with probability 1

24 . This implies the claim by
Union Bound with the above event (note that for n > 2, 1

n8ξ < 1
24 holds).

We assumed that both nodes remain contenders during the whole time, hence
in each spreading round, a value of exactly one of them, with probability 1/2
each, increases by one. Without loss of generality assume that at time T , the
value of the first node was larger than or equal to the value of the second node.
Let us now focus on the sum S of k independent uniformly distributed ±1
Bernoulli trials xi where 1 ≤ i ≤ k, where each trial corresponds to a spreading
round and outcome +1 means that the value of the first node increased, while
−1 means that the value of the second node increased. In this terminology, we
are done if we show that Pr[S ≥ 4ξ log n] ≥ 1

24 for k ≥ 32ξ2 log2 n trials.
However, we have that:

Pr[S ≥ 4ξ log n] ≥ Pr[|S| ≥ 4ξ log n]/2 = Pr[|S2| ≥ 16ξ2 log2 n]/2 (1)

≥ Pr[|S2| ≥ k/2]/2 = Pr[|S2| ≥ E[S2]/2]/2 (2)

≥ 1
22 · 2

E[S2]2

E[S4]
≥ 1/24 (3)

where (1) follows from the symmetry of the sum with regards to the sign. For (2)
we have used that k ≥ 32ξ2 log2 n and E[S2] = k. Finally, to get (3) we use
the Paley-Zygmund inequality and the fact that E[S4] = 3k(k − 1) + k ≤ 3k2.
Evaluating E[S2] and E[S4] is simple by using the definition of S and the linearity
of expectation. The expectation of each term then is either 0 or 1 and it suffices
to count the number of terms with expectation 1, which are exactly the terms
where each multiplier is raised to an even power.
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Now we are ready to prove the bound on convergence speed.

Theorem 1. There exists a constant α, such that for any constant β ≥ 3 follow-
ing holds: If we set m = αβ log3 n = Θ(log3 n), the algorithm elects a leader (i.e.
reaches a configuration with a single contender) in at most O(n log3 n) rounds
(i.e. parallel time O(log3 n)) with probability at least 1 − 1/nβ.

Proof. Let us fix constants 0 < p < 1 and ξ ≥ 8 large enough such that

1/24 · (
1/24 − 1/n8ξ

) ≥ p. (4)

Let β be any constant ≥ 3 and take α = 16(33ξ2)/p. We set m = αβ log3 n
and consider the first αβn log3 n/4 rounds of the algorithm’s execution. For a
fixed node, the probability that it interacts in each round is 2/n. Let us describe
the number of times a given node interacts within the first αβn log3 n/4 rounds
by a random variable B ∼ Bin(αβn log3 n/4, 2/n). By the Chernoff Bound, the
probability of being selected more than m times during these rounds is at most:

Pr [B ≥ m] ≤ exp
(−αβ log3 n/6

) ≤ 2− αβ
6 log3 n ≤ 1/nαβ/6.

Taking the Union Bound over all n nodes, with probability at least 1−(n/nαβ/6),
all nodes interact strictly less than m times during the first αβn log3 n/4 rounds.

Next, let us focus on the high probability event above, meaning that all abso-
lute values are strictly less than m during the first αβn log3 n

4 = 4β
p (33ξ2)n log3 n

rounds. For a fixed pair of nodes, this allows us to apply Lemma 3 followed
by Lemma 2 (with parameter ξ) 4β(33ξ2)n log3 n

p(32ξ2n log2 n+ξn log n)
≥ 4β log n

p times. Each time,

by Lemma 3, after 32ξ2n log2 n rounds with probability at least 1/24 − 1/n8ξ

the nodes get values at least 4ξ log n apart. Then, after the next ξn log n rounds,
by Lemma 2, one of the nodes becomes a minion with probability at least 1/24.
Since Lemma 2 is independent from the interactions that precede it, by (4),
each of the 4β log n

p times if both nodes are contenders, we get probability at
least p that one of the nodes becomes a minion. Consider a random variable
W ∼ Bin (4β log n/p, p). By Chernoff bound the probability that both nodes in
a given pair are still contenders after αβn log3 n

4 rounds is at most:

Pr [W ≤ 0] = Pr [W ≤ 4β log n (1 − 1)] ≤ exp
(

−4β log n

2

)

≤ 2−2β log n <
1

n2β
,

By a Union Bound over all < n2 pairs, for every pair of nodes, one of them is a
minion after αβn log3 n

4 communication rounds with probability at least 1 − n2

n2β .
Hence, with this probability, there will be only one contender.

Finally, combining with the conditioned event that none of the nodes interact
m or more times gives that after the first αβn log3 n

4 = O(n log3 n) rounds there
must be a single contender with probability at least 1 − n2

n2β − n
nαβ/6 ≥ 1 − 1

nβ

for β ≥ 3. A single contender means that leader is elected by Lemma 1.

Finally, we can prove the expected convergence bound.
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Fig. 2. The performance of the LM protocol. Both axes are logarithmic. The dots
represent the results of individual experiments (100 for each network size), while the
solid line represents the mean value for each network size.

Theorem 2. There is a setting of parameter m of the algorithm such that m =
Θ(log3 n), and the algorithm elects the leader in expected O(n log3 n) rounds of
communication (i.e. parallel time O(log3 n)).

Proof. Let us prove that from any configuration, the algorithm elects a leader
in expected O(n log3 n) rounds. By Lemma 1, there is always a contender in the
system and if there is only a single contender, then a leader is already elected.
Now in a configuration with at least two contenders consider any two of them.
If their values differ, then with probability at least 1/n2 these two contenders
will interact in the next round and the one with the lower value will become a
minion (after which it may never be a contender again). If the values are the
same, then with probability at least 1/n, one of these nodes will interact with
one of the other nodes in the next round, leading to a configuration where the
values of our two nodes differ4, from where in the next round, independently,
with probability at least 1/n2 these nodes meet and one of them again becomes
a minion. Hence, unless a leader is already elected, in any case, in every two
rounds, with probability at least 1/n3 the number of contenders decreases by 1.

Thus the expected number of rounds until the number of contenders decreases
by 1 is at most 2n3. In any configuration there can be at most n contenders,
thus the expected number of rounds until reaching a configuration with only a
single contender is at most 2(n − 1)n3 ≤ 2n4 from any configuration.

Now using Theorem 1 with β = 4 we get that with probability at least
1−1/n4 the algorithm converges after O(n log3 n) rounds. Otherwise, with prob-
ability at most 1/n4 it ends up in some configuration from where it takes at most
2n4 expected rounds to elect a leader. The total expected number of rounds is
therefore also O(n log3 n) + O(1) = O(n log3 n), i.e. parallel time O(log3 n).

4 This is always true, even when the new value is not larger, for instance when the
values were equal to m + 1, the new value of one of the nodes will be m �= m + 1.
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5 Experiments and Discussion

Empirical Data. We have also measured the convergence time of our protocol
for different network sizes. (Figure 2 presents the results in the form of a log-log
plot.) The protocol converges to a single leader quite fast, e.g., in less than 100
units of parallel time for a network of size 105. This suggests that the constants
hidden in the asymptotic analysis are small. The shape of the curve confirms the
poly-logarithmic behavior of the protocol.

Discussion. We have given the first population protocol to solve leader elec-
tion in poly-logarithmic time, using a poly-logarithmic number of states per
node. Together with [AAE06], the existence of our protocol implies that pop-
ulation protocols can compute any semi-linear predicate on their input in
time O(n log5 n), with high probability, as long as memory per node is poly-
logarithmic.

Our result opens several avenues for future research. The first concerns lower
bounds. We conjecture that the lower bound for leader election in population
protocols is Ω(log n), irrespective of the number of states. Further, empirical data
suggests that the analysis of our algorithm can be tightened, cutting logarithmic
factors. It would also be interesting to prove a tight a trade-off between the
amount of memory available per node and the running time of the protocol.
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