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Abstract. Delay games are two-player games of infinite duration in
which one player may delay her moves to obtain a lookahead on her
opponent’s moves. For ω-regular winning conditions it is known that
such games can be solved in doubly-exponential time and that doubly-
exponential lookahead is sufficient.

We improve upon both results by giving an exponential time algo-
rithm and an exponential upper bound on the necessary lookahead. This
is complemented by showing ExpTime-hardness of the solution problem
and tight exponential lower bounds on the lookahead. Both lower bounds
already hold for safety conditions. Furthermore, solving delay games with
reachability conditions is shown to be PSpace-complete.

1 Introduction

Many of today’s problems in computer science are no longer concerned with
programs that transform data and then terminate, but with non-terminating
reactive systems which have to interact with a possibly antagonistic environment
for an unbounded amount of time. The framework of infinite two-player games is
a powerful and flexible tool to verify and synthesize such systems. The seminal
theorem of Büchi and Landweber [1] states that the winner of an infinite game
on a finite arena with an ω-regular winning condition can be determined and a
corresponding finite-state winning strategy can be constructed effectively.

Delay Games. In this work, we consider an extension of the classical framework:
in a delay game, one player can postpone her moves for some time to obtain a
lookahead on her opponent’s moves. This allows her to win some games which
she would loose without lookahead, e.g., if her first move depends on the third
move of her opponent. Nevertheless, there are winning conditions that cannot
be won with any finite lookahead, e.g., if her first move depends on every move
of her opponent. Delay arises naturally if transmission of data in networks or
components equipped with buffers are modeled.

From a more theoretical point of view, uniformization of relations by con-
tinuous functions [14,15] can be expressed and analyzed using delay games.
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We consider games in which two players pick letters from alphabets ΣI and ΣO,
respectively, thereby producing two infinite sequences α and β. Thus, a strategy
for the second player induces a mapping τ : Σω

I → Σω
O. It is winning for her if

(α, τ(α)) is contained in the winning condition L ⊆ Σω
I ×Σω

O for every α. If this
is the case, we say that τ uniformizes L. In the classical setting, in which the
players pick letters in alternation, the n-th letter of τ(α) depends only on the
first n letters of α. A strategy with bounded lookahead, i.e., only finitely many
moves are postponed, induces a Lipschitz-continuous function τ (in the Cantor
topology on Σω) and a strategy with unbounded lookahead induces a continuous
function (equivalently, a uniformly continuous function, as Σω is compact).

Related Work. Hosch and Landweber proved that it is decidable whether a
delay game with an ω-regular winning condition can be won with bounded
lookahead [8]. Later, Holtmann, Kaiser, and Thomas revisited the problem and
showed that if the delaying player wins such a game with unbounded lookahead,
then she already wins it with doubly-exponential bounded lookahead, and gave
a streamlined decidability proof yielding an algorithm with doubly-exponential
running time [7]. Thus, the delaying player does not gain additional power from
having unbounded lookahead, bounded lookahead is sufficient.

Going beyond ω-regularity by considering context-free conditions leads to
undecidability and non-elementary lower bounds on the necessary lookahead,
even for very weak fragments [5]. Nevertheless, there is another extension of the
ω-regular conditions where one can prove the analogue of the Hosch-Landweber
Theorem: it is decidable whether the delaying player wins a delay game with
bounded lookahead, if the winning condition is definable in weak mondadic
second order logic with the unbounding quantifier (WMSO+U) [16]. Further-
more, doubly-exponential lookahead is sufficient for such conditions, provided
the delaying player wins with bounded lookahead at all. However, bounded
lookahead is not always sufficient to win such games, i.e., the analogue of the
Holtmann-Kaiser-Thomas Theorem does not hold for WMSO+U conditions.
Finally, all delay games with Borel winning conditions are determined [11].

Stated in terms of uniformization, Hosch and Landweber proved decidability
of the uniformization problem for ω-regular relations by Lipschitz-continuous
functions and Holtmann et al. proved the equivalence of the existence of a
continuous uniformization function and the existence of a Lipschitz-continuous
uniformization function for ω-regular relations. Furthermore, uniformization of
context-free relations is undecidable, even with respect to Lipschitz-continuous
functions, but uniformization of WMSO+U relations by Lipschitz-continuous
functions is decidable.

Furthermore, Carayol and Löding considered the case of finite words [3],
and Löding and Winter [12] considered the case of finite trees, which are both
decidable. However, the non-existence of MSO-definable choice functions on the
infinite binary tree [2,6] implies that uniformization fails for such trees.

Although several extensions of ω-regular winning conditions for delay games
have been considered, many problems remain open even for ω-regular condi-
tions: there are no non-trivial lower bounds on the necessary lookahead and on
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the complexity of solving such games. Furthermore, only deterministic parity
automata were used to specify winning conditions, and the necessary lookahead
and the solution complexity is measured in their size. Thus, it is possible that
considering weaker automata models like reachability or safety automata leads
to smaller lookahead requirements and faster algorithms.

Our Contribution. We answer all these questions and improve upon both results
of Holtmann et al. by determining the exact complexity of ω-regular delay games
and by giving tight bounds on the necessary lookahead.

First, we present an exponential time algorithm for solving delay games
with ω-regular winning conditions, an exponential improvement over the origi-
nal doubly-exponential time algorithm. Both algorithms share some similarities:
given a deterministic parity automaton A recognizing the winning condition of
the game, a parity game is constructed that is won by by the delaying player
if and only if she wins the delay game with winning condition L(A). Further-
more, both parity games are induced by equivalence relations that capture the
behavior of A. However, our parity game is of exponential size while the one of
Holtmann et al. is doubly-exponential. Also, they need an intermediate game,
the so-called block game, to prove the equivalence of the delay game and the
parity game, while our equivalence proof is direct. Thus, our algorithm and its
correctness proof are even simpler than the ones of Holtmann et al.

Second, we show that solving delay games is ExpTime-complete by proving
the first non-trivial lower bound on the complexity of ω-regular delay games. The
lower bound is proved by a reduction from the acceptance problem for alternat-
ing polynomial space Turing machines [4], which results in delay games with
safety conditions. Thus, solving delay games with safety conditions is already
ExpTime-hard. Our reduction is inspired by the ExpTime-hardness proof for
continuous simulation games [9], a simulation game on Büchi automata where
Duplicator is able to postpone her moves to obtain a lookahead on Spoiler’s
moves. However, this reduction is from a two-player tiling problem while we
directly reduce from alternating Turing machines.

Third, we determine the exact amount of lookahead necessary to win delay
games with ω-regular conditions. From our algorithm we derive an exponential
upper bound, which is again an exponential improvement. This upper bound is
complemented by the first non-trivial lower bound on the necessary lookahead:
there are reachability and safety conditions that are winning for the delaying
player, but only with exponential lookahead, i.e., our upper bound is tight.

Fourth, we present the first results for fragments of ω-regular conditions. As
already mentioned above, our lower bounds on complexity and necessary looka-
head already hold for safety conditions, i.e., safety is already as hard as parity.
Thus, the complexity of the problems manifests itself in the transition structure
of the automaton, not in the acceptance condition. For reachability conditions,
the situation is different: we show that solving delay games with reachability con-
ditions is equivalent to universality of non-deterministic reachability automata
and therefore PSpace-complete.

Omitted proofs can be found in the full version [10].
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2 Preliminaries

The non-negative integers are denoted by N. An alphabet Σ is a non-empty
finite set, Σ∗ the set of finite words over Σ, Σn the set of words of length n, and
Σω the set of infinite words. The empty word is denoted by ε and the length of
a finite word w by |w|. For w ∈ Σ∗ ∪ Σω we write w(n) for the n-th letter of w.

Automata. We use automata of the form A = (Q,Σ, qI ,Δ, ϕ) where Δ : Q×Σ →
2Q \ {∅} is a a non-deterministic transition function and where the acceptance
condition ϕ is either a set F ⊆ Q of accepting states or a coloring Ω : Q → N.
An automaton is deterministic, if |Δ(q, a)| = 1 for every q and a. In this case, we
denote Δ by a function δ : Q×Σ → Q. A state q of A is a sink, if Δ(q, a) = {q} for
every a ∈ Σ. Finite and infinite runs are defined as usual. Given an automaton A
over Σ with some set F of accepting states or with some coloring Ω, we consider
the following acceptance modes:

Finite: L∗(A) ⊆ Σ∗ denotes the set of finite words accepted by A, i.e., the set
of words that have a run ending in F .

Reachability: L∃(A) ⊆ Σω denotes the set of infinite words that have a run
visiting an accepting state at least once. We have L∃(A) = L∗(A) · Σω.

Safety: Dually, L∀(A) ⊆ Σω denotes the set of infinite words that have a run
only visiting accepting states.

Parity: Lp(A) ⊆ Σω denotes the set of infinite words that have a run such that
the maximal color visited infinitely often during this run is even.

Note that we require automata to be complete. For safety and parity accep-
tance this is no restriction, since we can always add a fresh rejecting sink and
lead all missing transitions to this sink. However, incomplete automata with
reachability acceptance are strictly stronger than complete ones, as incomplete-
ness can be used to check safety properties. We impose this restriction since we
are interested in pure reachability conditions.

Given a language L ⊆ (ΣI × ΣO)ω we denote by prI(L) its projection to the
first component. Similarly, given an automaton A over ΣI × ΣO, we denote by
prI(A) the automaton obtained by projecting each letter to its first component.

Remark 1. Let acc ∈ {∗,∃,∀, p}, then prI(Lacc(A)) = Lacc(prI(A)).

Games with Delay. A delay function is a mapping f : N → N\{0}, which is said to
be constant, if f(i) = 1 for every i > 0. Given an ω-language L ⊆ (ΣI × ΣO)ω

and a delay function f , the game Γf (L) is played by two players, the input
player “Player I” and the output player “Player O” in rounds i = 0, 1, 2, . . . as
follows: in round i, Player I picks a word ui ∈ Σ

f(i)
I , then Player O picks one

letter vi ∈ ΣO. We refer to the sequence (u0, v0), (u1, v1), (u2, v2), . . . as a play
of Γf (L), which yields two infinite words α = u0u1u2 · · · and β = v0v1v2 · · · .
Player O wins the play if the outcome

(
α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

) · · · is in L, otherwise
Player I wins.
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Given a delay function f , a strategy for Player I is a mapping τI : Σ∗
O → Σ∗

I

where |τI(w)| = f(|w|), and a strategy for Player O is a mapping τO : Σ∗
I → ΣO.

Consider a play (u0, v0), (u1, v1), (u2, v2), . . . of Γf (L). Such a play is consistent
with τI , if ui = τI(v0 · · · vi−1) for every i ∈ N. It is consistent with τO, if
vi = τO(u0 · · · ui) for every i ∈ N. A strategy τ for Player p ∈ {I,O} is winning,
if every play that is consistent with τ is winning for Player p. We say that a
player wins Γf (L), if she has a winning strategy.

Example 1. Consider L over {a, b, c} × {b, c} with
(
α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

) · · · ∈ L, if
α(n) = a for every n ∈ N or if β(0) = α(n), where n is the smallest position with
α(n) 
= a. Intuitively, Player O wins, if the letter she picks in the first round is
equal to the first letter other than a that Player I picks. Also, Player O wins, if
there is no such letter. Note that L can be accepted by a safety automaton.

We claim that Player I wins Γf (L) for every delay function f : Player I
picks af(0) in the first round and assume Player O picks b afterwards (the case
where she picks c is dual). Then, Player I picks a word starting with c in the
second round. The resulting play is winning for Player I no matter how it is
continued. Thus, Player I has a winning strategy in Γf (L).

Note that if a language L is recognizable by a (deterministic) parity automa-
ton, then Γf (L) is determined, as a delay game with parity condition can be
expressed as an explicit parity game in a countable arena.

Also, note that universality of prI(L) is a necessary condition for Player O
to win Γf (L). Otherwise, Player I could pick a word from Σω

I \ prI(L), which is
winning for him, no matter how Player O responds.

Proposition 1. If Player O wins Γf (L), then prI(L) is universal.

3 Lower Bounds on the Lookahead

In this section, we prove lower bounds on the necessary lookahead for Player O
to win delay games with reachability or safety conditions. Thus, the same bounds
hold for more expressive conditions like Büchi, co-Büchi, and parity. They are
complemented by an exponential upper bound for parity conditions in the next
section. Note that both lower bounds already hold for deterministic automata.

Theorem 1. For every n > 1 there is a language Ln such that

– Ln = L∃(An) for some deterministic automaton An with |An| ∈ O(n),
– Player O wins Γf (Ln) for some constant delay function f , but
– Player I wins Γf (Ln) for every delay function f with f(0) ≤ 2n.

Proof. Let ΣI = ΣO = {1, . . . , n}. We say that w in Σ∗
I contains a bad j-pair,

for j ∈ ΣI , if there are two occurrences of j in w such that no j′ > j occurs in
between. The automaton Bj , depicted in Figure 1(a), accepts exactly the words
with a bad j-pair. Now, consider the language L over ΣI defined by

L =
⋂

1≤j≤n

{w ∈ Σ∗
I | w contains no bad j-pair}.
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ΣI \ {j}
j

<j

>j

j

ΣI

B1[a\(a∗
)
]

Bn[a\(a∗
)
]

...

(∗
1

)

(∗
n

)

(a) (b)

Fig. 1. (a) Automaton Bj for j ∈ ΣI . (b) Construction of An.

Straightforward inductions show that every w ∈ L satisfies |w| < 2n and that
there is a word wn ∈ L with |wn| = 2n − 1.

The winning condition Ln is defined as follows:
(
α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

) · · · is in Ln

if α(1)α(2) · · · contains a bad β(0)-pair, i.e., with her first move, Player O has to
pick a j such that Player I has produced a bad j-pair. For technical reasons, the
first letter picked by Player I is ignored. The construction of an automaton An

recognizing Ln is sketched in Figure 1(b). Here, Bj [a\(
a
∗
)
] denotes Bj , where for

each a ∈ ΣI every transition labeled by a is replaced by transitions labeled by(
a
b

)
for every b ∈ ΣO. Clearly, we have An ∈ O(n).
Player O wins Γf (Ln) for every delay function with f(0) > 2n. In the first

round, Player I has to pick a word u0 such that u0 without its first letter is not
in L. This allows Player O to find a bad j-pair for some j, i.e., she wins the play
no matter how it is continued.

However, for f with f(0) ≤ 2n, Player I has a winning strategy by picking
the prefix of 1wn of length f(0) in the first round. Player O has to answer with
some j ∈ ΣO. In this situation, Player I can continue by finishing wn and then
playing some j′ 
= j ad infinitum, which ensures that the resulting sequence does
not contain a bad j-pair. Thus, the play is winning for Player I. �

Using a similar construction, one can show exponential lower bounds for
safety conditions as well.

Theorem 2. For every n > 1 there is a language L′
n such that

– L′
n = L∀(A′

n) for some deterministic automaton A′
n with |A′

n| ∈ O(n),
– Player O wins Γf (L′

n) for some constant delay function f , but
– Player I wins Γf (L′

n) for every delay function f with f(0) ≤ 2n.

The aforementioned constructions also work for constant-size alphabets, if
we encode every j ∈ {1, . . . , n} in binary, resulting in automata An and A′

n

whose sizes are in O(n log n). It is open whether linear-sized automata and a
constant-sized alphabet can be achieved simultaneously.

4 Computational Complexity of Delay Games

In this section, we determine the computational complexity of solving delay
games. First, we consider the special case of reachability conditions and prove



458 F. Klein and M. Zimmermann

such games to be PSpace-complete. Then, we show that games with safety con-
ditions are ExpTime-hard. The latter bound is complemented by an ExpTime-
algorithm for solving delay games with parity conditions. From this algorithm,
we also deduce an exponential upper bound on the necessary lookahead for
Player O, which matches the lower bounds given in the previous section.

4.1 Reachability Conditions

Recall that universality of the projection to the first component of the winning
condition is a necessary condition for Player O for having a winning strategy in a
delay game. Our first result in this section states that universality is also sufficient
in the case of reachability conditions. Thus, solving delay games with reachability
conditions is equivalent, via linear time reductions, to the universality problem
for non-deterministic reachability automata, which is PSpace-complete. Also,
our proof yields an exponential upper bound on the necessary lookahead.

Theorem 3. Let L = L∃(A), where A is a non-deterministic reachability
automaton. The following are equivalent:

1. Player O wins Γf (L) for some delay function f .
2. Player O wins Γf (L) for some constant delay function f with f(0) ≤ 2|A|.
3. prI(L) is universal.

Proof. To show the equivalence, it only remains to prove 3. ⇒ 2.
We assume w.l.o.g. that the accepting states of A are sinks, which implies

that L∗(prI(A)) is suffix-closed, i.e., w ∈ L∗(prI(A)) implies ww′ ∈ L∗(prI(A))
for every w′ ∈ Σ∗

I . Furthermore, let Ac be an automaton recognizing the com-
plement of L∗(prI(A)), which is prefix-closed, as it is the complement of a suffix-
closed language. We can choose Ac such that |Ac| ≤ 2|A|.

We claim that L∗(Ac) is finite. Assume it is infinite. Then, by König’s Lemma
there is an infinite word α whose prefixes are all in L∗(Ac). Due to universality,
we have α ∈ L∃(prI(A)), i.e., there is a prefix of α in L∗(prI(A)). Thus, the
prefix is in L∗(prI(A)) and in the complement L∗(Ac) yielding the desired con-
tradiction. An automaton with n states with a finite language accepts words of
length at most n − 1. Thus, w ∈ L∗(prI(A)) for every w ∈ Σ∗

I with |w| ≥ 2|A|.
Using this, we show that Player O wins Γf (L) if f(0) = 2|A|. Player I has to

pick f(0) letters with his first move, say u0 = α(0) · · · α(f(0)−1). As f(0) is large
enough, we have u0 ∈ L∗(prI(A)). Hence, there is a word β(0) · · · β(f(0) − 1) ∈
Σ∗

O such that
(
α(0)
β(0)

) · · · (α(f(0)−1)
β(f(0)−1)

) ∈ L∗(A). By picking β(0), . . . , β(f(0) − 1) in
the first f(0) rounds, Player O wins the play, no matter how it is continued.
Hence, she has a winning strategy. �

As universality for non-deterministic reachability automata is PSpace-com-
plete (see, e.g., [10]), we obtain the following consequence of Theorem 3.

Corollary 1. The following problem is PSpace-complete: Given a non-deter-
ministic reachability automaton A, does Player O win Γf (L∃(A)) for some f?

The upper bounds on complexity and necessary lookahead hold for non-
deterministic automata while the lower bounds hold for deterministic ones [10].
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4.2 Safety Conditions

Unsurprisingly, Example 1 shows that Theorem 3 does not hold for safety con-
ditions: the projection prI(L) is universal, but Player O has no winning strategy
for any delay function. It turns out that safety conditions are even harder than
reachability conditions (unless PSpace equals ExpTime).

Theorem 4. The following problem is ExpTime-hard: Given a deterministic
safety automaton A, does Player O win Γf (L∀(A)) for some f?

The proof proceeds by a reduction from the non-acceptance problem for alter-
nating polynomial space Turing machines, which is sufficient due to APSpace =
ExpTime [4] being closed under complement. Fix such a machine M, an input x,
and a polynomial p that bounds the space consumption of M. We construct a
safety automaton A of polynomial size in |M| + p(|x|) such that M rejects
x if and only if Player O wins Γf (L∀(A)) for some f . To this end, we give
Player I control over the existential states while Player O controls the universal
ones. Additionally, Player I is in charge of producing all configurations with his
moves. He can copy configurations in order to wait for Player O’s decisions of
successors for universal transitions, which are delayed due to the lookahead.

More formally, the input alphabet ΣI consists of the alphabet and the set
of states of M and of two separators N and C while the output alphabet ΣO

consists of the transition relation of M and of two signals ✗ and ✓. Intuitively,
Player I produces configurations of M of length p(|x|) preceded by either C or N
to denote whether the configuration is a copy of the previous one or a new one.
Copying configurations is necessary to bridge the lookahead while waiting for
Player O to determine the transition that is applied to a universal configuration.
Player I could copy a configuration ad infinitum, but this will be losing for him,
unless it is an accepting one. Player O chooses universal transitions at every
separator1 N by picking a transition of M. At every other position, she has
to pick a signal: ✗ allows her to claim an error in the configurations picked by
Player O while ✓ means that she does not claim an error at the current position.

The automaton A checks that Player I produces only legal configurations,
that he starts with the initial one, that Player O always picks a transition at the
separators, and that the first error claimed by Player O is indeed an error. If it
is one, then A goes to an accepting sink, otherwise to a rejecting sink. Finally, if
Player I produces an accepting configuration without Player O correctly claiming
an error in a preceding configuration, then A goes to a rejecting sink.

These properties can be checked by a deterministic safety automaton of poly-
nomial size, as the configuations of M are of polynomial size. A detailed descrip-
tion of A and a proof that M rejects x if and only if Player O wins Γf (L∀(A))
for some f can be found in the full version [10].

It is noteworthy that the ExpTime lower bound does not require the full
exponential lookahead that might be necessary to win delay games with safety

1 If the following configuration is existential or the separator is a C, then her choice
is ignored.
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conditions: Player O wins the game constructed above with constant lookahead
that is smaller than |A|, if she wins at all.

4.3 Parity Conditions

Now, we complement the ExpTime lower bound shown in the previous sub-
section with an exponential time algorithm for solving delay games with parity
conditions. Thus, delay games with safety or parity conditions are ExpTime-
complete. Also, we derive an exponential upper bound on the necessary looka-
head from the algorithm. All results only hold for deterministic automata.

Theorem 5. The following problem is in ExpTime: Given a deterministic par-
ity automaton A, does Player O win Γf (Lp(A)) for some delay function f?

We begin by constructing an exponentially-sized, delay-free parity game with
the same number of colors as A, which is won by Player O if and only if she
wins Γf (Lp(A)) for some delay function f .

Let A = (Q,ΣI × ΣO, qI , δ, Ω) with Ω : Q → N. First, we adapt A to
keep track of the maximal color visited during a run. To this end, we define
the automaton C = (QC , ΣI × ΣO, qC

I , δC , ΩC) where QC = Q × Ω(Q), qC
I =

(qI , Ω(qI)),
δC((q, c), a) = (δ(q, a),max{c,Ω(δ(q, a))}),

and ΩC(q, c) = c. We denote the size of C by n. Note that C does not recognize
Lp(A). However, we are only interested in runs on finite play infixes.

Remark 2. Let w ∈ (ΣI × ΣO)∗ and let (q0, c0)(q1, c1) · · · (q|w|, c|w|) be the run
of C on w from some state (q0, c0) ∈ {(q,Ω(q)) | q ∈ Q}. Then, q0q1 · · · q|w| is
the run of A on w starting in q0 and c|w| = max{Ω(qj) | 0 ≤ j ≤ |w|}.

In the following, we work with partial functions from QC to 2QC , where we
denote the domain of such a function r by dom(r). Intuitively, we use r to
capture the information encoded in the lookahead provided by Player I. Assume
Player I has picked α(0) · · · α(j) and Player O has picked β(0) · · · β(i) for i < j
such that the lookahead is w = α(i + 1) · · · α(j). Then, we can determine the
state q that C reaches after processing

(
α(0)
β(0)

) · · · (α(i)
β(i)

)
, but the automaton cannot

process w, since Player O has not yet picked β(i + 1) · · · β(j). However, we can
determine the states Player O can enforce by picking an appropriate completion,
which will be the ones contained in r(q). Note that the function r depends on
the lookahead w picked by Player I.

To formalize the functions capturing the lookahead picked by Player I, we
define δP : 2QC × ΣI → 2QC via δP(S, a) =

⋃
q∈S

⋃
b∈ΣO

δC(q,
(
a
b

)
), i.e., δP is the

transition function of the powerset automaton of prI(C). As usual, we extend δP
to δ∗

P : 2QC × Σ∗
I → 2QC via δ∗

P(S, ε) = S and δ∗
P(S,wa) = δP(δ∗

P(S,w), a).
Let D ⊆ QC be non-empty and let w ∈ Σ∗

I . We define the function rD
w with

domain D as follows: for every (q, c) ∈ D, we have

rD
w (q, c) = δ∗

P({(q,Ω(q))}, w).
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Note that we apply δP to {(q,Ω(q))}, i.e., the second argument is the color of
q and not the color c from the argument to rD

w . If (q′, c′) ∈ rD
w (q, c), then there

is a word w′ whose projection is w and such that the run of A on w′ leads from
q to q′ and has maximal color c′. Thus, if Player I has picked the lookahead w,
then Player O could pick an answer such that the combined word leads A from
q to q′ with minimal color c′.

We call w a witness for a partial function r : QC → 2QC , if we have r = r
dom(r)
w .

Thus, we obtain a language Wr ⊆ Σ∗
I of witnesses for each such function r. We

define R = {r | dom(r) 
= ∅ and Wr is infinite}.

Remark 3. Let R be defined as above.

1. Let r ∈ R. Then, r(q) 
= ∅ for every q ∈ dom(r).
2. Let r be a partial function from QC to 2QC . Then, Wr is recognized by a

deterministic finite automaton with 2n2
states.

3. Let D ⊆ QC be non-empty and let w be such that |w| ≥ 2n2
. Then, there

exists some r ∈ R with dom(r) = D and w ∈ Wr.

Now, we can define an abstract game G(A) which is played between Player I
and Player O in rounds i = 0, 1, 2, . . . as follows: in each round, Player I
picks a function from R and Player O answers by a state of C subject to the
following constraints. In the first round, Player I has to pick r0 ∈ R such
that dom(r0) = {qC

I } (C1) and Player O has to answer by picking a state
q0 ∈ dom(r0), which implies q0 = qC

I . Now, consider round i > 0: Player I has
picked functions r0, r1, . . . , ri−1 and Player O has picked states q0, q1, . . . , qi−1.
Now, Player I has to pick a function ri ∈ R such that dom(ri) = ri−1(qi−1) (C2).
Then, Player O picks some state qi ∈ dom(ri).

Both players can always move: Player I can move, as ri−1(qi−1) is always
non-empty (Remark 3.1) and thus the domain of some r ∈ R (Remark 3.3), and
Player O can move, as the domain of every r ∈ R is non-empty by construction.
The resulting play of G(A) is the sequence r0q0r1q1r2q2 · · · . It is won by Player O
if the maximal color occurring infinitely often in ΩC(q0)ΩC(q1)ΩC(q2) · · · is even.
Otherwise, Player I wins.

A strategy for Player I is a function τ ′
I mapping the empty play prefix to a

function r0 satisfying (C1) and mapping a non-empty prefix r0q0 · · · ri−1qi−1

to a function ri satisfying (C2). A strategy for Player O maps a play pre-
fix r0q0 · · · ri to a state qi ∈ dom(ri). A play r0q0r1q1r2q2 · · · is consistent with
τ ′
I , if ri = τ ′

I(r0q0 · · · ri−1qi−1) for every i ∈ N and it is consistent with τ ′
O, if

qi = τ ′
O(r0q0 · · · ri) for every i ∈ N. A strategy τ ′ for Player p ∈ {I,O} is win-

ning, if every play that is consistent with τ ′ is winning for Player p. As usual,
we say that a player wins G(A), if she has a winning strategy.

Lemma 1. Player O wins Γf (Lp(A)) for some delay function f if and only if
Player O wins G(A).

Now, we can prove Theorem 5. Due to Lemma 1, we just have to show that
we can construct and solve an explicit version of G(A) in exponential time.
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Proof. First, we argue that R can be constructed in exponential time: to this
end, one constructs for every partial function r from QC to 2QC the automaton
of Remark 3.2 recognizing Wr and tests it for recognizing an infinite language.
There are exponentially many functions and each automaton is of exponential
size, which yields the desired result. To conclude, we encode G(A) as a graph-
based parity game of exponential size with the same number of colors as A. Such
a game can be solved in exponential time in the size of A [13]. �

The proof of Lemma 1 yields the exponential upper bound 2(|A|k)2+1 on the
necessary lookahead, where k is the number of colors of A. However, this can be
improved by using a direct pumping argument.

Theorem 6. Let L = Lp(A) where A is a deterministic parity automaton with
k colors. The following are equivalent:

1. Player O wins Γf (L) for some delay function f .
2. Player O wins Γf (L) for some constant delay function f with

f(0) ≤ 22|A|k+2 + 2.

5 Conclusion

We gave the first algorithm that solves ω-regular delay games in exponen-
tial time, which is an exponential improvement over the previously known
algorithms. We complemented this by showing the problem to be ExpTime-
complete, even for safety conditions. Also, we determined the exact amount of
lookahead that is necessary to win ω-regular delay games by proving tight expo-
nential bounds, which already hold for safety and reachability conditions. Finally,
we showed solving games with reachability conditions to be PSpace-complete.
To the best of our knowledge, all lower bounds are the first non-trivial ones for
delay games.

Our lower bounds already hold for deterministic automata while our upper
bounds (but the ones for reachability) only hold for deterministic automata. One
can obviously obtain upper bounds for non-deterministic automata via deter-
minization, but this incurs an exponential blowup, which might not be optimal.
We leave the study of this problem for future work. Another open question con-
cerns the influence of using different deterministic automata models that recog-
nize the class of ω-regular conditions, e.g., Rabin, Streett, and Muller automata,
on the necessary lookahead and the solution complexity, again measured in the
size of the automata. Indeed, our construction used to prove Theorem 5 can be
adapted to deal with these acceptance conditions, e.g., for conditions given by
Muller automata, C keeps track of the vertices visited on a run and G(A) is a
Muller game. This yields upper bounds, but it is open whether these are optimal.

Finally, we also considered winning conditions that are both reachability and
safety conditions. Here, polynomial lookahead suffices and the problem is in ΠP

2 ,
i.e., in the second level of the polynomial hierarchy. Again, both results only hold
for deterministic automata and are presented in the full version [10]. In future
work, we aim to find lower bounds.
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