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Abstract. We consider Rabin’s Monadic Second Order logic (MSO) of
the full binary tree extended with Harvey Friedman’s “for almost all”
second-order quantifier (∀∗) with semantics given in terms of Baire Cat-
egory. In Theorem 1 we prove that the new quantifier can be eliminated
(MSO+∀∗ =MSO). We then apply this result to prove in Theorem 2 that
the finite–SAT problem for the qualitative fragment of the probabilis-
tic temporal logic pCTL* is decidable. This extends a previous result of
Brázdil, Forejt, Křet́ınský and Kučera valid for qualitative pCTL.
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1 Introduction

The main motivation of this paper is purely logical. We investigate the extension
of Rabin’s Monadic Second Order Theory of the Full Binary Tree [14], hence-
forth simply shortened as MSO, with an additional “for almost all” second-order
quantifier ∀∗ whose set-theoretic semantics is defined as:

∀∗X.φ(X, �Y ) def=
{
�Y | {X | ¬φ(X, �Y ) holds} is “topologically small”

}

where topologically small is interpreted as of Baire first category (or meager)
in the standard topology on subsets of the full binary tree. Thus, for example,
the closed formula ∀∗X.φ(X) is valid if φ holds on all but a meager collection of
X’s. To the best of our knowledge, the quantifier ∀∗ has been first introduced
and investigated, in the general context of First Order Logic, by H. Friedman in
unpublished manuscripts in 1978–79 (see [17] for an overview of this research).

Another extension of MSO with a large cardinality quantifier ∀ℵ0 , defined by
replacing “is topologically small” with “has cardinality ≤ ℵ0” in the equation
defining ∀∗, has been recently investigated in [3] where it is proved that for every
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MSO+∀ℵ0 formula ψ there exists an equivalent MSO (without ∀ℵ0) formula ψ̂

such that ψ and ψ̂ denote the same set, that is the quantifier ∀ℵ0 can be expressed
(i.e., eliminated) in ordinary MSO. This implies that the theory MSO+∀ℵ0 is
decidable. We prove a similar result for MSO+∀∗.

Theorem 1. For every MSO+∀∗ formula ψ there exists an equivalent MSO
(without ∀∗) formula ψ̂ such that ψ and ψ̂ denote the same set.

Corollary 1. The theory of MSO+∀∗ is decidable.

Our proof uses the fact, first proved in [11, Theorem 6.6], that every MSO–
definable set of trees satisfies the Baire property (another, somewhat more ele-
mentary argument, can be deduced from Kolmogorov’s theory of R-sets, see [4,
Theorem 3.8] and [9]). As a consequence, the Baire category of regular sets of
trees can be determined using the well-known Banach–Mazur game (see, e.g., [12,
§8]). Our main observation is that the game itself can be “implemented” via an
alternating tree automaton (see Figure 4) which, while technically involved, is
conceptually simple. For this reason our proof is radically different from that
of [3] which is based on Shelah’s composition method and does not involve
automata constructions. An interesting topic for future research is to verify
if, with techniques similar to those used in this work, the quantifier elimina-
tion theorem for MSO + ∀ℵ0 of [3] can be proved using purely automata based
methods. Further topics of future research and related work are discussed at the
end of Section 3. The investigation of sets definable by formulas ∀∗X.φ(X, �Y ),
with φ specifying Borel, analytic or R–sets, instead of regular sets, has been
an active area of research in descriptive set theory with contributions from
R. Barua, J. P. Burgess, D. Miller, P. S. Novikov and R. Vaught among others.
Our Theorem 1 can be considered an effective, automata–theoretic counterpart
of set-theoretic results such as [20, Corollary1.10], [12, Theorem 29.22] and [4,
Theorem 6.3].

An application to the theory of pCTL*. We apply our result on MSO+∀∗ to
the satisfiability problem of probabilistic temporal logics of programs (modeled
as Markov chains) such as pCTL* [10] (see also [2, §10.4]). The work of Brázdil,
Forejt, Křet́ınský and Kučera [6] is a main source of results in this area of
research. A pCTL* formula can generally be satisfiable but only by infinite
models, that is, by infinite Markov chains. Thus we distinguish between the
SAT problem and the finite–SAT problem which, more restrictively, asks about
the existence of finite models. In [6] the authors proved that both the SAT and
the finite–SAT problems for the qualitative fragment of pCTL are decidable. We
extend the second of these results to pCTL*.

Theorem 2. The finite–SAT problem for qualitative pCTL* is decidable.

Our proof method is based on a reduction of the finite–SAT problem to the
satisfiability of MSO+∀∗ which is decidable by Corollary 1. This proof technique
is of general applicability and an equivalent of Theorem 2 can be proved even for
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more expressive probabilistic logics1. In contrast, the results of [6] provide much
tighter algorithmic information, but the proof methods are specifically tailored
to the logic pCTL and their applicability to other logics is not clear and requires
a separate study.

The semantics of qualitative pCTL* is based on the (measure-theoretic) prob-
abilistic concepts of null set, set of positive measure and set of measure 1. To
reduce it to MSO+∀∗, which can express the concept of Baire category, we apply
a remarkable result of Ludwig Staiger ([16, Theorem 4]) which says that a reg-
ular set L ⊆ Σω of infinite words is comeager if and only if μ(L) = 1, where μ
is the standard Lebesgue measure. This result is also used in [21] to develop a
theory of fairness for concurrent systems. Using Staiger’s theorem we prove that
pCTL* with its standard probabilistic semantics and pCTL* with an alternative
“Baire-categorical” semantics, where the state-formula P=1φ is interpreted as:
“s |= P=1φ ⇔ the set of paths starting from s and satisfying the path–formula φ
is comeager”, agree on all finite models. This kind of observation is not new and
has been already made (with respect to another logic) in the recent literature [1].
A proof of Theorem 2 is then obtained by combining these facts and by showing
that the Baire–categorical semantics of pCTL* can be interpreted in MSO+∀∗.

2 Background in Topology, Logic and Automata

Topology. Our exposition of topological and set–theoretical notions follows [12].
Given a topological space X, a set A ⊆ X is nowhere dense if the interior of
its closure is the empty set, that is (int(cl(A)) = ∅. A set A ⊆ X is of (Baire)
first category (or meager) if A can be expressed as countable union of nowhere
dense sets. A set A ⊆ X which is not meager is of the second (Baire) category.
The complement of a meager set is called comeager. A set B ⊆X has the Baire
property if B =U�M , for some open set U ⊆X and meager set M ⊆X, where
� is the operation of symmetric difference U�M =(U ∪ M) \ (U ∩ M).

The set of natural numbers is denoted by ω. A topological space X is Polish
if it is separable and completely metrizable. A main example of Polish space is
the Cantor space {0, 1}ω of infinite sequences of bits endowed with the product
topology. The Cantor space is zero-dimensional, i.e., it has a basis of clopen
(both open and closed) sets. We now describe the well-known Banach–Mazur
game (see [12, 8.H] for a detailed overview) which characterizes Baire category.

Definition 1 (Banach–Mazur Game). Let X be a zero–dimensional Polish
space. For a given payoff set A ⊆ X the infinite duration game BM(X,A) is
played by Player I and Player II by sequentially choosing non-empty clopen sets

Player I U0 U2 . . .
Player II U1 U3 . . .

1 E.g., Theorem 2 can be proved for the, easily conceivable but to our knowledge
never appeared in published work, probabilistic version of the non–probabilistic logic
ECTL* (see, e.g., [18] for an introduction to non–probabilistic ECTL*).
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with Un+1�Un. Player I wins if
⋂

n∈ω

Un ∩ A �= ∅ and Player II wins otherwise.

Theorem 3. Let X be a zero–dimensional Polish space. If A⊆X has the Baire
property, then BM(X,A) is determined and Player II wins iff A is meager.

Monadic Second Order Logic. We assume familiarity of the reader with exposi-
tion of monadic second order logic (MSO). A standard reference is [19].

The set {L,R}∗ of finite words over the alphabet {L,R} is called the full
binary tree and each w∈{L,R}∗ is referred to as a vertex. The functions SuccL

(w 
→ w.L) and SuccR (w 
→ w.R) are called successor operations. Given a finite
alphabet Σ the function space ({L,R}∗ → Σ) is denoted by TΣ and an element
t ∈ TΣ is called a Σ-labeled tree, or just a Σ-tree. We identify {0, 1}-labeled
trees, seen as characteristic functions, with sets of vertices. A tree t ∈ TΣ is
called regular if it has only finitely many subtrees up-to isomorphism. The space
TΣ has a natural topology homeomorphic to the Cantor space. A basis for the
topology consists of clopen sets of Σ-trees extending a given finite prefix.

The language of MSO consists of first order variables x, y (ranging over ver-
tices w ∈ {L,R}∗), second order variables X,Y (ranging over sets of vertices
t ∈ T0,1), the set-theoretic membership relation x ∈ X (interpreted as usual),
the operations SuccL and SuccR (with interpretation given as above), the usual
Boolean connectives (∨, ∧, ¬), first order quantifiers (∀x.φ, ∃x.φ) and the sec-
ond order quantifiers (∀X.φ, ∃X.φ). In the rest of this paper we will consider
MSO formulas whose free variables are all second order. This is not a significant
restriction since it is well known (see, e.g., [19]) how to present MSO as a purely
second order (i.e., without first order variables and quantifiers) theory. For a
vector �Y =(Y1, . . . , Yn) and a variable X we write φ(X, �Y ) to denote that φ has
precisely n+1 free variables X,Y1, . . . , Yn. The set theoretic semantics of φ(X, �Y )
is the collection of n + 1-tuples of {0, 1}-trees 〈t0, t1, . . . , tn〉 satisfying the for-
mula φ. Equivalently, φ(X, �Y ) defines a collection of Σ-trees with Σ ={0, 1}n+1.
A subset A ⊆ TΣ is regular if it is definable by a MSO formula. Given a for-
mula φ(X, �Y ) and a tuple �t=〈t1, . . . , tn〉 of {0, 1}-trees, the formula φ(X,�t) with
parameters �t denotes the section {t0 | 〈t0, t1, . . . , tn〉∈φ(X, �Y )}⊆T0,1. Note that
φ(X,�t) needs not be regular, but is regular when �t is a regular tree.

Alternating Tree Automata. The importance of MSO stems from the fact that
the theory is decidable. An approach to the proof of decidability taken in [13] is
based on alternating tree automata. We include a brief exposition of alternating
automata which follows the presentation in [13, Appendix C].

Definition 2 (Alternating automaton). Given a finite set X, we denote
with DL(X) the set of expressions e generated by the grammar e ::= x ∈ X |
e ∧ e | e ∨ e. An alternating tree automaton over a finite alphabet Σ is a tuple
A = 〈Σ,Q, q0, δ,F) where Q is a finite set of states, q0 ∈ Q is the initial state,
δ : Q × Σ → DL({L,R} × Q) is the alternating transition function, F ⊆P(Q)
is a set of subsets of Q called the Muller condition. The Muller condition F is
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called a parity condition if there exists a parity assignment π :Q→ ω such that:
F ={F ⊆Q | (maxq∈F π(q)) is even}.

An alternating automaton A over the alphabet Σ defines, or “accepts”, a set
of Σ-trees. The acceptance of a tree t∈TΣ is defined via a two-player (∃ and ∀)
game of infinite duration denoted as A(t). Game states of A(t) are of the form
〈�x, q〉 or 〈�x, e〉 with �x∈{L,R}∗, q∈Q and e∈DL({L,R} × Q).

The game A(t) starts at state 〈ε, q0〉. Game states of the form 〈�x, q〉, including
the initial state, have only one successor state, to which the game progresses
automatically. The successor state is 〈�x, e〉 with e=δ(q, a), where a= t(�x) is the
labeling of the vertex �x given by t. The dynamics of the game at states 〈�x, e〉
depends on the possibly nested shape of e. If e = e1 ∨ e2, then Player ∃ moves
either to 〈�x, e1〉 or 〈�x, e2〉. If e=e1 ∧ e2, then Player ∀ moves either to 〈�x, e1〉 or
〈�x, e2〉. If e=(L, q) then the game progresses automatically to the state 〈�x.L, q〉.
Lastly, if e=(R, q) the game progresses automatically to the state 〈�x.R, q〉. Thus
a play in the game A(t) is a sequence Π of game–states, that looks like: Π =
(〈ε, q0〉, . . . , 〈L, q1〉, . . . , 〈LR, q2〉, . . . , 〈LRL, q3〉, . . . , 〈LRLL, q4〉, . . . ), where the
dots represent part of the play in game–states of the form 〈�x, e〉. Let ∞(Π) be
the set of automata states q∈Q occurring infinitely often in configurations 〈�x, q〉
of Π. We then say that the play Π of A(t) is winning for ∃, if ∞(Π)∈F . The
play Π is winning for ∀ otherwise. The set (or “language”) of Σ-trees defined
by A is the collection {t∈TΣ | ∃ has a winning strategy in the game A(t)}.

Definition 3. An alternating automaton A is called non-deterministic if for all
q ∈ Q and a ∈ Σ, the expression δ(q, a) is n-ary disjunction e1 ∨ · · · ∨ en where
each disjunct ei is a binary conjunction of the form 〈L, q1〉 ∧ 〈R, q2〉 with q1, q2
not necessarily distinct.

Fig. 1. A non–deterministic automa-
ton A with states Q

We will visualize alternating automata
by diagrammatic pictures with the con-
vention that ♦-shaped and �-shaped posi-
tions mark decisions of Player ∃ and
Player ∀, respectively. For example,
Figure 1 illustrates the shape of a non-
deterministic automaton.

The following theorem is of fundamen-
tal importance and states that alternating
and nondeterministic automata have the
same expressive power.

Theorem 4. [13] For every alternating automaton A there exists a non–
deterministic parity automaton B defining the same set as A.

3 The Quantifier ∀∗ in MSO

In this section we introduce the extension of MSO with Friedman’s “for almost
all” quantifier interpreted using the concept of Baire category.
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Definition 4 (MSO + ∀∗). The syntax of MSO + ∀∗ extends that of MSO with
the new second-order quantifier ∀∗ whose set-theoretic semantics is defined as:

∀∗X.φ(X, �Y ) def=
{
�t | ¬φ(X,�t)⊆T0,1 is of first category

}

The dual quantifier ∃∗X.φ, derivable as ∃∗X.φ = ¬∀∗X.(¬φ) denotes the set
∃∗X.φ(X, �Y )=

{
�t | φ(X,�t)⊆T0,1 is of second category

}
.

Fig. 2. Large section interpreta-
tion of Friedman’s quantifier ∀∗.
The large sections selected by
quantifier ∀∗ are marked with
lines.

The set denoted by ∀∗X.φ(X, �Y ) can be
illustrated as in Figure 2, as the collection
of trees �t having a large (comeager) section
φ(X,�t). Informally, 〈t1, . . . , tn〉∈∀∗X.φ(X, �Y )
if, “for almost all” t0 ∈ T0,1, the tuple
〈t0, t1, . . . , tn〉 satisfies φ.

Clearly, other kinds of “large section”
quantifiers can be considered. Among others,
the two quantifiers ∀ℵ0 and ∀=1 obtained by
replacing “is of first category” with “has cardi-
nality ≤ ℵ0” and “has Lebesgue measure 0”,
are particularly natural since the σ-ideals of
countable sets and of Lebesgue null sets are
important set-theoretic notions of smallness.
As already mentioned in the Introduction, the
theory MSO+∀ℵ0 has been first studied in [3]. Instead, to the best of our knowl-
edge, the theories MSO+∀∗ and MSO+∀=1 have never been investigated before.

Related and Future Work. The study of the system MSO+∀=1 appears to be an
interesting topic of future research, especially in connection with investigations
on probabilistic logics of programs. In this direction a relevant work is the recent
paper of Carayol, Haddad and Serre [7] where the authors have developed a the-
ory of nondeterministic tree automata with the usual acceptance condition on
runs “every path must be accepting” replaced by “the set of accepting paths is of
measure 1”2. Languages definable by such automata are called in [7] qualitative
tree languages. Furthermore, Olivier Serre has explored in his habilitation thesis
[15] and in a recent paper with Carayol [8], similar types of automata and lan-
guages obtained by replacing “measure 1” with “comeager” and “uncountable”
in the acceptance condition.

The automata-based work of [7] and the approach based on extensions of
MSO with large section quantifiers, followed in this paper and in [3], are to some
extend similar, however the resulting theories diverge. Qualitative tree languages
are not closed under complementation [7, Proposition 15], hence a comparison
with a logic with negation such as MSO+∀=1 may be problematic.

2 Other acceptance conditions based on measure are also investigated in [7].
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4 Elimination of ∀∗ from MSO+∀∗

This section is devoted to the proof of Theorem 1. The proof is by induction on
the structure of the MSO + ∀∗ formula ψ(�Y ) and consists in the construction of
an alternating tree automaton Aψ accepting the language defined by ψ. From the
automaton Aψ, by Theorem 4 and by Rabin’s theorem [14], one can effectively
construct a purely MSO formula ψ̂(�Y ). The crucial step in the proof is asso-
ciated with the case of ψ(�Y ) having the form ψ = ∃∗X.φ(X, �Y ). By definition,
∃∗X.φ(X, �Y ) defines the set of n-tuples �t of trees {�t | φ(X,�t) is not meager

}
.

The dual case of ψ(�Y )=∀∗X.φ(X, �Y ) follows by complementation of automata.
By induction hypothesis, we can assume that the sub-formula φ is an ordinary

MSO formula. So let A be a nondeterministic and parity automaton, schemati-
cally representable as in Figure 1, accepting the set of (n+1)-tuples of {0, 1}-trees
defined by φ. Equivalently, the automaton A accepts Σ-trees with Σ = {0, 1}n+1.
We identify elements of Σ with sequences of bits 〈b0, b1 . . . bn〉 of length n+1.
We now describe the well-known construction of automata A∃ and A∀ recogniz-
ing respectively the languages ∃X.φ(X, �Y ) and ∀X.φ(X, �Y ) over the restricted
alphabet Σ′ = {0, 1}n. See [19] for a standard exposition.

Definition 5. Let A=(Σ,Q, q0, δ,Fπ) be the nondeterministic parity automa-
ton (with parity assignment π :Q→ω) accepting the language over the alphabet
Σ = {0, 1}n+1 defined by φ. The automaton A∃, over the restricted alphabet
Σ′ = {0, 1}n, is defined as A∃ =(Σ′, Q, q0, δ

∃,Fπ) where δ∃ is defined as
δ∃(q,�b) = e0 ∨ e1 ⇔

(
δ(q, 0.�b) = e0 and δ(q, 1.�b) = e1

)

and �b=〈b1, . . . , bn〉. Similarly, A∀ is defined as: A∀(Σ′, Q, q0, δ
∀,Fπ) where

δ∀(q,�b) = e0 ∧ e1 ⇔
(
δ(q, 0.�b) = e0 and δ(q, 1.�b) = e1

)
.

Fig. 3. Automaton A∃ constructed from A

The three automata A
(schematically depicted in
Figure 1), A∃ (Figure 3)
and A∀ have the same set
of states Q and parity con-
dition Fπ with π : Q → ω.
Note that A and A∃ are
non-deterministic while A∀

is not. The following is a
standard result.

Proposition 1. [13,19] The automata A∃ and A∀ accept the languages defined
by the formulas ∃X.φ(X, �Y ) and ∀X.φ(X, �Y ), respectively.

We now introduce some convenient terminology. In the automaton A∃, if the
current state is q and the automata reads the letter �b the transition e0 ∨ e1 is
reached. Here Player ∃ has two options:
Either choose the expression e0, thus simulating the transition of A at q reading

the letter 〈0,�b〉. Then we say that “∃ chooses to label X with 0”,
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Or choose the expression e1, thus simulating the transition of A at q reading
the letter 〈1,�b〉. Then we say that “∃ chooses to label X with 1”.

Similarly, in the automaton A∀, at the expression e0∧e1, we say that “∀ chooses
to label X with 0” if Player ∀ moves to e0 and that “∀ chooses to label X with
1” if Player ∀ moves to e1.

The alternating automaton Aψ we are going to construct, recognizing the lan-
guage of ψ=∃∗X.φ(X, �Y ), is obtained by combining together the two automata
A∃ and A∀. In what follows, to avoid confusion, we rename every state q ∈ Q
of the automaton A∀ to q′ so that A∀ =(Q′, q′

0, δ
∀,F ′

π), where π (and therefore
F ′

π) and δ∀ are defined over Q′ as they were formerly defined over Q.
Before proceeding with the formal definition of Aψ we describe informally

the main ideas. The automaton A∃ can be understood as a modified copy of A
where player ∃ can choose (or “guess”) labels of X, i.e., the {0, 1}-labeled tree
associated with the variable X in φ(X, �Y ). Similarly, in A∀ choices related to X
are made by Player ∀. In the automaton Aψ we will implement the dynamics
occurring in the Banach–Mazur game (see Definition 1) where Player I (as Player
∃) and Player II (as Player ∀) take turns in choosing how to label the tree
associated with X. We will do so by defining Aψ as an automaton consisting
of two disjoint components A∃ and A∀ with special transitions allowing moving
back and forth between these components. An appropriate Muller condition will
be defined on Aψ to enforce infinitely many alternations between components.

Definition 6. Aψ = (Σ′, Q ∪ Q′, q0, δψ,Fψ) where q0 ∈ Q is the initial state of
A∃ and, for �q=〈q1, . . . , qn〉∈Σ′, the transition function δψ is defined as:

δψ(q,�b) = e∃ ∨ e∀ ⇐⇒
(
δ∃(q,�b)=e∃ and δ∀(q′,�b)=e∀

)
,

δψ(q′,�b) = e∃ ∧ e∀ ⇐⇒
(
δ∃(q,�b)=e∃ and δ∀(q′,�b)=e∀

)
,

and Fψ = {S ⊆ P(Q ∪ Q′) | the condition A ∨ (B ∧ C) holds}, where A =
“S does not contain any q∈Q”,B=“S contains some q′ ∈ Q′” and, lastly, C =
“proj(S) = {q ∈ Q | q ∈ S ∨ q′ ∈ S}∈Fπ”.

See Figure 4 for a graphical exposition of Definition 6. Some explanations are
in order. The automaton Aψ starts at the state q0 which belongs to ∃-component.
This is because the Banach–Mazur game starts with a move of Player I. When
reading the letter �b of the (root of the) input tree, the transition is of the form
δψ(q0,�b) = e∃ ∨ e∀ meaning that player ∃ has two options:
guess move: choose condition e∃, i.e., the same transition as in the automaton

A∃. Once transition e∃ is chosen, the first move associated with the expres-
sion e∃ will correspond to the choice of ∃ with regard to the labeling of X
(∃ should choose between 0 and 1). Note that the next state to be visited
will be again in the A∃ component because e∃ ∈DL({0, 1} × Q}.

skip move: choose condition e∀ as in the automaton A∀. Once transition e∀ is
chosen, the first move associated with the expression e∀ will correspond to
the choice of ∀ with regard to the labeling of X (∀ should choose between 0
and 1). Note that the next visited state is, this time, in the A∀ component,
because e∀ ∈DL({0, 1} × Q′}.
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q′
e∃ ∧ e∀

e∀

e′
0

q′
1

...

e′
1

...

q′
n

guess X=1

guess X=0

e∃

e0

q1

...

e1
...

qn

guess X=1

guess X=0

skip

choose

q e∃ ∨ e∀

e∃

e1

qn

...

e0 ...

q1

guess X=0

guess X=1

e∀

e′
1

q′
n

...

e′
0

...

q′
1

guess X=0

guess X=1

skip

choose

Q

Q’

Fig. 4. Automaton Aψ with states Q ∪ Q′ and transitions depicted in this figure; ♦-
shaped positions mark decisionss of player ∃ and �-shaped positions mark decisions of
player ∀.
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Guess and skip moves are marked in Figure 4. In a similar way, on states q′

when reading the letter �b the transition is of the form δψ(q′,�b) = e∃ ∧ e∀, hence
Player ∀ can either make a guess move by picking e∀, “choose the labeling of
X” and then remain in the ∀-component, or a skip move by picking e∃, thus
allowing ∃ to “choose the labeling of X” and move to the ∃-component.

The Muller condition Fψ captures the following aspects of the gameplay on
the game tree Aψ(�t), where �t=〈t1, . . . , tn〉 with ti ∈T0,1:
A) a branch in Aψ(�t) is winning for ∃ if the ∃-component was visited only

finitely many times. This intuitively means that, at some point, Player ∀
played “unfairly”, never giving back the control to ∃.

B) if ∀ was “fair” and ∃ played unfairly, then ∃ loses and ∀ wins.
C) else, if both players played “fairly” alternating infinitely often between ∃

and ∀ components, then a branch in the game Aψ(�t) is winning for ∃ if and
only if the sequence of visited states (ignoring the distinction between q and
its copy q′) is winning under the parity condition Fπ (note that the parity
assignment π is identical in all A, A∃ and A∀).

Thus the automaton Aψ implements the policy of infinite alternation between
∃ and ∀ in “guessing” the set X. Due to space limitations, a detailed proof of
the fact that Aψ accepts the set defined by ψ=∃∗X.φ(X, �Y ) is not included and
will appear in an extended version of this paper.

5 Applications to Probabilistic Logics

In this section we consider the qualitative fragment of the probabilistic logic CTL*
(pCTL*), as introduced in [10], which can express useful properties of Markov
chains. We refer to the book [2, §10.4] for a detailed introduction.

Definition 7 (Markov Chain). A Markov chain is a triple (V,E, p), where
(V,E) is a directed graph and p :E → [0, 1] is a function assigning probabilities to
each edge in such a way that the sum of the probabilities of edges leaving every
vertex v is 1. A Markov chain is finite if V is finite and p(e) is a rational number
for all e∈E. A Markov chain is simple if every vertex has exactly two outgoing
edges both labeled with probability 1

2 .

Definition 8 (Syntax of Qualitative pCTL*). Given a finite set of atomic
predicates a1, . . . , an, qualitative pCTL* formulas are generated by the following
two-sorted grammar: state formulas Φ, Ψ ::= ai | ¬Φ | Ψ ∨ Φ | φ | P=1φ, and
path formulas φ, ψ ::= Φ | ¬φ | φ ∨ ψ | ◦φ | φ U ψ, where ◦ and U are the usual
Next and Until operators of linear time logic.

Definition 9 (Semantics of Qualitative pCTL*). Given a Markov chain
M = (V,E, p) and interpretations of the atomic predicates ||ai||M ⊆ V , state
formulas Φ are interpreted as sets ||Φ||M ⊆V of vertices and path formulas φ are
interpreted as sets ||φ||M of paths in the graph (V,E). The inductive definition
is the same as that of CTL* (see [2, Definition 6.81]) with the addition of:
v∈||P=1φ||M ⇔ “||φ||M has measure 1 in the set of paths starting at v”, where



372 H. Michalewski and M. Mio

the measure on paths is defined in the standard way (see, e.g., [2, §10.4]) inferred
from probabilities on the edges of M .

Definition 10 (Finite Satisfiability). We say that a formula Φ is finite sat-
isfiable (finite–SAT) if there exists a finite Markov chain M = (V,E, p) with
interpretations ||a||M of the atomic predicates such that ||Φ||M �=∅.

It has been observed in [5] that the finite–SAT problem can be restricted to
finite–and–simple Markov chains. The observation follows from the fact, that one
can transform any finite Markov chain into a finite and simple one, at the cost of
introducing auxiliary “dummy states”, by first simulating states with n outgoing
edges by a sequence of binary choices and then simulating binary choices having
arbitrary rational probabilities with a finite (cyclic) system of binary 1

2 -weighted
choices. Furthermore, for every pCTL* formula Φ one can construct a formula
Φ̂ (with an additional predicate for “dummy states”) such that Φ is finite–SAT
if and only if Φ̂ is satisfied by a finite and simple Markov chain. Thanks to this
observation we can replace “finite” with “finite and simple” in Definition 10.

Definition 11 (Categorical Semantics of Qualitative pCTL*). Given a
Markov chain M =(V,E, p), the categorical semantics of a given state formula Φ
is a set �Φ�M ⊆V , defined as in the standard semantics ||Φ||M (Definition 9) on
all connectives and on all path formulas except for P=1 which is instead defined
as follows: v ∈ �P=1φ�M ⇔ “||φ||M is comeager in the set of paths starting at
v”.

Theorem 5. Let M =(V,E, p) be a finite and simple Markov chain and assume
||ai||M = �ai�M , for all atomic predicates ai. Then ||Φ||M = �Φ�M for every
qualitative pCTL* formula Φ.

Proof. The proof goes by induction on the structure of Φ with the only non-trivial
case being Φ=P=1φ. Assume that φ is build from state formulas Ψ0, . . . , Ψn. By
inductive hypothesis ||Ψi||M =�Ψi�M , for 0≤ i≤n. It follows that ||φ||M =�φ�M .
By standard arguments, ||φ||M denotes a regular set of paths in the graph (V,E).
We only prove ||Φ||M ⊆ �Φ�M as the case �Φ�M ⊆ ||Φ||M is similar. Assume, by
contradiction, that v ∈ ||Φ||M and v �∈ �Φ�M . This means that the regular set
||φ|| has measure 1 in the set of paths starting from v. By Staiger’s theorem
[16, Theorem 4] (see also [21, Theorem 9.8] for a convenient graph–theoretical
formulation) this implies that ||φ||M is comeager in the set of paths starting from
v. It then follows that v∈�Φ�M and thus we have the desired contradiction.

Theorem 2 in the Introduction, that is the decidability of the finite–SAT
problem for qualitative pCTL*, follows from the theorem below along with the
decidability of MSO+∀∗ (Corollary 1 of Theorem 1 in this paper).

Theorem 6. To each qualitative pCTL* formula Φ with atomic predicates
a1. . .an one can effectively associate a MSO+∀∗ formula FΦ(x,Xa0 , . . . , Xan

),
such that “Φ is finite–SAT” ⇔ “FΦ is satisfiable.”
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Proof. As discussed above, we can restrict attention to simple Markov chains
M . The full binary tree {L,R}∗ can be viewed as a simple (infinite) Markov
chain by labeling each edge with 1

2 . Furthermore, since pCTL* is invariant under
bisimulation [2, Theorem 10.67], each Markov chain M (which is a binary graph
since the probabilistic information is implicit) can be replaced by its unraveling
{L,R}∗. Each interpretation ||ai||M of the atomic predicates can then by identi-
fied with a corresponding ti ∈T0,1. Hence simple (finite) Markov chains M with
interpretations �ai�M of the atomic predicates can be identified with (regular)
Σ-trees with Σ = {0, 1}n. The proof goes by induction on the structure of state
formulas Φ by defining formulas FΦ(x, �Xai

) with the following property. An arbi-
trary Σ-tree �t = 〈t0, . . . , tn〉 with vertex w ∈ {L,R}∗ satisfies FΦ iff w ∈ �FΦ�M

with interpretation of the atomic predicates as �ai�= ti. The construction of FΦ

follows the standard method (see, e.g., [18]) for interpreting CTL* into MSO.
The only non-standard step is for Φ = P=1φ. The encoding in MSO+∀∗ is not
entirely trivial and will appear in an extended version of this paper. By Rabin’s
theorem [14], the formula FΦ is satisfiable iff it satisfiable by a regular Σ-tree
which can be interpreted as a finite-and-simple Markov chain Mt satisfying Φ.
The desired result then follows by Theorem 5.
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3. Bárány, V., Kaiser, �L., Rabinovich, A.: Cardinality quantifiers in MLO over trees.
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