
Owicki-Gries Reasoning for Weak Memory Models

Ori Lahav(B) and Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
orilahav@mpi-sws.org

Abstract. Weshow that even in the absence of auxiliary variables, thewell-known
Owicki-Gries method for verifying concurrent programs is unsound for weak
memory models. By strengthening its non-interference check, however, we obtain
OGRA, a program logic that is sound for reasoning about programs in the release-
acquire fragment of the C11memorymodel.We demonstrate the usefulness of this
logic by applying it to several challenging examples, ranging from small litmus
tests to an implementation of the RCU synchronization primitives.

1 Introduction

In 1976, Owicki andGries [10] introduced a proof system for reasoning about concurrent
programs, which formed the basis of rely/guarantee reasoning. Their system includes
the usual Hoare logic rules for sequential programs, a rule for introducing auxiliary
variables, and the following parallel composition rule:

{P1} c1 {Q1} {P2} c2 {Q2} the two proofs are non-interfering

{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}
This rule allows one to compose two verified programs into a verified concurrent program
that assumes both preconditions and ensures both postconditions. The soundness of this
rule requires that the two proofs are non-interfering, namely that every assertion R in
the one proof is stable under any {P}x := e (guarded) assignment in the other and vice
versa; i.e., for every such pair, R ∧ P � R[e/x].

The Owicki-Gries system (OG) assumes a fairly simple but unrealistic concurrency
model: sequential consistency (SC) [7]. This is essential: OG is complete for verifying
concurrent programs under SC [12], and is therefore unsound under a weakly consistent
memory semantics, such as TSO [9]. Auxiliary variables are instrumental in achieving
completeness—without them, OG is blatantly incomplete; e.g., it cannot verify that

{x = 0} x
at:= x + 1 ‖ x

at:= x + 1 {x = 2} (where “ at:=” denotes atomic assignment).
Nevertheless, many useful OG proofs do not use auxiliary variables, and one might

wonder whether such proofs are sound under weak memory models. This is sadly not
the case. Figure 1 presents an OG proof that a certain program cannot return a = b = 0
whereas under all known weak memory models it can in fact do so. Intuitively speaking,
the proof is invalid underweakmemory because the two threadsmay have different views

Due to space limits, supplementary material including full proofs and further examples is
available at: http://plv.mpi-sws.org/ogra/.

© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 311–323, 2015.
DOI: 10.1007/978-3-662-47666-6_25

http://plv.mpi-sws.org/ogra/

312 O. Lahav and V. Vafeiadis

{
x = 0 ∧ y = 0 ∧ a �= 0

}
{
a �= 0

}

x := 1;{
x �= 0

}

a := y{
x �= 0

}

{�}

y := 1;{
y �= 0

}

b := x{
y �= 0 ∧ (a �= 0 ∨ b = x)

}
{
a �= 0 ∨ b �= 0

}

Non-interference checks are trivial. For example,

y �= 0 ∧ (a �= 0 ∨ b = x) ∧ a �= 0
� y �= 0 ∧ (a �= 0 ∨ b = 1)

and y �= 0 ∧ (a �= 0 ∨ b = x) ∧ x �= 0
� y �= 0 ∧ (y �= 0 ∨ b = x)

show stability of the last assertion of thread II
under {a �= 0}x := 1 and {x �= 0}a := y.

Fig. 1. OG proof that the “store buffering” program cannot return a = b = 0. This can also
be proved in the restricted OG system with one (stable) global invariant [11]. Note that OG’s
“indivisible assignments” condition (3.1) is met: assignmentsmention at most one shared location.

of memory before executing each command. Thus, when the second thread terminates,
the first threadmay perform a := y reading y = 0 and storing 0 in a, thereby invalidating
the second thread’s last assertion. We note that y = 0 was also readable by the second
thread, albeit at an earlier point (before the y := 1 assignment). This is no accident, and
this observation is essential for soundness of our proposed alternative.

In this paper we identify a stronger non-interference criterion that does not assume
SC semantics. Thus, while considering the effect of an assignment {P}x := y in thread
I on the validity of an assertion R in thread II, one does not get to assume that R holds
for the view of thread I while reading y. In fact, in some executions, the value read
for y might even be inconsistent with R. Instead, the only allowed assumption is that
some assertion that held not later than R in thread II was true while reading y. Thus our
condition for checking stability of R under {P}x := y is that R ∧ P � R[v/x] for every
value v of y that is consistent with P and some non-later assertion of thread II.

We show that OG with our stronger non-interference criterion is sound under the
release-acquire (RA) fragment of the C11 memory model [6], which exhibits a good
balance between performance and mathematical sanity (see, e.g., [16,17]). Soundness
under TSO follows, as TSO behaviors are all observable under RA (see [1]). Formalizing
the aforementioned intuitions into a soundness proof forRAexecutions is far from trivial.
Indeed, RA is defined axiomatically without an operational semantics and without the
notion of a state. As a basis for the soundness proof, we introduce such a notion and
study the properties of sequences of states observed by different threads.

We believe that the results of this paper may provide new insights for understanding
weak memory models, as well as a simple and useful method for proving partial correct-
ness of concurrent programs. We demonstrate the applicability of our logic (which we
call OGRA) with several challenging examples, ranging from small litmus tests to an
implementation of the read-copy-update (RCU) synchronization primitives [3]. We also
provide support for fence instructions by implementing them as RMWs to an otherwise
unused location and for a simple class of auxiliary variables, namely ghost values.

Related Work. Aiming to understand and verify high-performance realistic concurrent
programs, program logics for weak memory models have recently received a lot of
attention (see, e.g., [4,13,14,16,18]). Most of these logics concern the TSO memory
model. Only two—RSL [18] and GPS [16]—can handle RA, but have a fairly com-
plex foundation being based on separation logic. The most advanced of the two logics,
GPS, has been used (with considerable ingenuity) to verify the RCU synchronization

Owicki-Gries Reasoning for Weak Memory Models 313

primitives [15], but simpler examples such as “read-read coherence” seem to be beyond
its power (see Fig. 8). Finally, Cohen [2] studies an alternative memory model under
which OG reasoning can be performed at the execution level.

2 Preliminaries

In this section, we present a simplified programming language, whose semantics adheres
to that of the release-acquire fragment of C11’s memory model [1]. We assume a finite
set of locations Loc = {ν1, ... , νM }, a finite set Val of values with a distinguished value
0 ∈ Val, and any standard interpreted language for expressions containing at least all
locations and values. We use x, y, z as metavariables for locations, v for values, e for
expressions, and denote by e(x1, ... , xn) an expression in which x1, ... , xn are the only
mentioned locations. The language’s commands are given by the following grammar:

c ::= skip | if e(x) then c else c | while e(x) do c | c ; c | c ‖ c |
x := v | x := e(y) | x

y,z:= e(y, z) | x
at:= e(x)

To keep the presentation simple, expressions in assignments are limited to mention at
most two locations, and those in conditionals and loops mention one location. Assign-
ments of expression mentioning two locations also specify the order in which these
locations should be read (if one of them is local, this has no observable effect). The com-

mand x
at:= e(x) is an atomic assignment corresponding to a primitive read-modify-write

(RMW) instruction and, as such, mentions only one location.1

Now, as in the C11 formalization, the semantics of a program is defined to be its set
of consistent executions [1]. An execution G is a triple 〈A, L , E〉 where:
• A ⊆ N is a finite set of nodes. We identify G with this set, e.g., when writing a ∈ G.
• L is a function assigning a label to each node, where a label is either 〈S〉 (“Skip”), a
triple of the form 〈R, x, vr 〉 (“Read”), a triple of the form 〈W, x, vw〉 (“Write”), or a
quadruple of the form 〈U, x, vr , vw〉 (“Update”). For T ∈ {S,R,W,U}, we denote by
G.T the set of nodes a ∈ A for which T is the first entry of L(a), while G.Tx denotes
the set of a ∈ G.T for which x is the second entry of L(a). In addition, L induces the
partial functions G.loc : A → Loc, G.valr : A → Val, and G.valw : A → Val that
respectively return (when applicable) the x , vr and vw components of a node.

• E ⊆ (A × A) ∪ (A × A × Loc) is a set of edges, such that for every triple 〈a, b, x〉 ∈
E (reads-from edge) we have a ∈ G.Wx ∪ G.Ux , b ∈ G.S ∪ G.Rx ∪ G.Ux , and
G.valw(a) = G.valr (b) whenever b �∈ G.S.2 The subset E ∩ (A × A) is denoted
by G.po (program order), and G.Ex denotes the set {〈a, b〉 ∈ A × A | 〈a, b, x〉 ∈ E}
(x-reads-from) for every x ∈ Loc. Finally, G.Eall denotes the set G.po∪⋃

x∈Loc Ex .
For all these notations, we often omit the “G.” prefix when it is clear from the context.
Given an execution G = 〈A, L , E〉 and a set E ′ of edges we write G ∪ E ′ for the triple
〈A, L , E ∪ E ′〉 and G \ E ′ for 〈A, L , E \ E ′〉.
1 Unlike usual OG [10], our assignments can mention more than one shared variable. In fact, our
formal development does not differentiate between local and shared variables.

2 Reads-from edges 〈a, b, x〉 with b ∈ G.S are used for defining visible states (see Definition 7).

314 O. Lahav and V. Vafeiadis

�skip� = SG
�if e(x) then c1 else c2� = ⋃{RG(x, v); �ci � | v ∈ Val, i ∈ {1, 2}, �e�(v) = 0 iff i = 2}
�while e(x) do c� = ⋃

n≥0(
⋃{RG(x, v) | v ∈ Val, �e�(v) �= 0}; �c�)n;⋃{RG(x, v) | v ∈ Val, �e�(v) = 0}

�c1; c2� = �c1� ; �c2�
�c1 ‖ c2� = SG; (�c1� ‖ �c2�);SG
�x := v� = WG(x, v)

�x := e(y)� = ⋃{RG(y, v);WG(x, �e�(v)) | v ∈ Val}
�x

y,z:= e(y, z)� = ⋃{RG(y, vy);RG(z, vz);WG(x, �e�(vy , vz)) | vy , vz ∈ Val}
�x

at:= e(x)� = ⋃{UG(x, v, �e�(v)) | v ∈ Val}
Fig. 2. Mapping of commands to sets of executions

Definition 1. A node a in an execution G is initial (terminal) in G if 〈b, a〉 �∈ Eall

(〈a, b〉 �∈ Eall) for every b ∈ G. An edge 〈a, b〉 ∈ po is initial (terminal) in G if a is
initial (b is terminal) in G.

Definition 2. Let G = 〈A, L , E〉 and G ′ = 〈A′, L ′, E ′〉 be two executions with disjoint
sets of nodes.
• The execution G ‖ G ′ is given by 〈A ∪ A′, E ∪ E ′, L ∪ L ′〉.
• The execution G; G ′ is given by (G ‖ G ′) ∪ (O × I), where O is the set of terminal
nodes of G, and I is the set of initial nodes of G ′.

• Given n ≥ 0, Gn is inductively defined by G0 = 〈∅,∅,∅〉 and Gn+1 = Gn; G.
The above operations are extended to sets of executions in the obvious way (e.g.,G;G′ =
{G; G ′ | G ∈ G, G ′ ∈ G′, G; G ′ is defined}).
Definition 3. Given x ∈ Loc and v ∈ Val, an 〈x, v〉-read gadget is any execution of
the form 〈{a}, {a �→ 〈R, x, v〉},∅〉. 〈x, v〉-write gadgets, 〈x, vr , vw〉-update gadgets and
skip gadgets are defined similarly.RG(x, v),WG(x, v), UG(x, vr , vw) and SG denote,
respectively, the sets of all 〈x, v〉-read gadgets, all 〈x, v〉-write gadgets, all 〈x, vr , vw〉-
update gadgets, and all skip gadgets.

Using these definitions, the mapping of commands to (sets of) executions is given in
Fig. 2. Note that every execution G ∈ �c� for some command c satisfies G.Eall = G.po,
and has a unique initial node that can reach any node, and a unique terminal node that
can be reached from any node. We refer to such executions as plain. However, many of
these executions are nonsensical as they can, for instance, read values never written in
the program. We restrict our attention to consistent executions, as defined next.

Definition 4. A relation R is called a modification order for a location x ∈ Loc in
an execution G if the following hold: (i) R is a total strict order on Wx ∪ Ux ; (i i) if
〈a, b〉 ∈ E∗

all then 〈b, a〉 �∈ R; (i i i) if 〈a, b〉 ∈ E+
all and 〈c, b〉 ∈ Ex then 〈c, a〉 �∈ R;

and (iv) if 〈a, b〉, 〈b, c〉 ∈ R and c ∈ U then 〈a, c〉 �∈ Ex .

Definition 5. An execution G = 〈A, L , E〉 is called:
• complete if for every b ∈ R ∪ U, we have 〈a, b〉 ∈ Eloc(b) for some a ∈ W ∪ U.
• coherent if Eall is acyclic, and there is a modification order in G for each x ∈ Loc.

Owicki-Gries Reasoning for Weak Memory Models 315

Fig. 3. Ignoring the dashed edges, this graph G
is an initialized execution of the “store buffer-
ing” program (i.e., G ∈ WG(�); �c�, Def. 8).
G is consistent as it can be extended with the
set E ′ of the two dashed reads-from edges.

Fig. 4. Ignoring the dashed edges, we have the
snapshot of G∪E ′ of Fig. 3 at 〈p, q〉with respect
to {r}. Adding the dashed edges results in a coher-
ent execution; so the state {x �→ 1, y �→ 1,
a �→ 1, b �→ 1} is visible at 〈p, q〉 in G ∪ E ′.

• consistent if G ∪ E ′ is complete and coherent for some E ′ ⊆ A × A × Loc.

To illustrate these definitions, Fig. 3 depicts a consistent non-SC execution of the
“store buffering” program of Fig. 1 together with the implicit variable initializations.

While our notations are slightly different, the axiomatic semantics presented above
corresponds to the semantics of C11 programs (see [1]) in which all locations are atomic,
reads are acquire reads, writes are releasewrites, and updates are acquire-release RMWs.
In addition, we do not allow reads from uninitialized locations. C11’s “happens-before”
relation corresponds to our E+

all .

3 An Owicki-Gries Proof System for Release-Acquire

In this section, we present OGRA—our logic for reasoning about concurrent programs
under release-acquire. As usual, the basic constructs are Hoare triples of the form
{P} c {Q}, where P and Q are assertions and c is a command. To define validity of
such a triple (in the absence of usual operational semantics), we formalize the notion of
a visible state, taken to be a function from Loc to Val.

Definition 6. A snapshot of an execution G = 〈A, L , E〉 at an edge 〈a, b〉 ∈ po
with respect to a set B ⊆ A of nodes, denoted by S(G, 〈a, b〉, B), is the execution
〈A′ � {b}, L|A′ ∪ {b �→ 〈S〉}, E |A′ ∪ {〈a, b〉}〉, where:
• A′ = {a′ ∈ A \ {b} | ∃c ∈ B ∪ {a}. 〈a′, c〉 ∈ E∗

all} and• E |A′ = E ∩ ((A′ × A′) ∪ (A′ × A′ × Loc)).

Definition 7. Let G be an execution, and let 〈a, b〉 ∈ po.
• A function D : Loc → N is called a 〈G, 〈a, b〉〉-reader of a state σ : Loc → Val
if D(x) ∈ Wx ∪ Ux and valw(D(x)) = σ(x) for every x ∈ Loc, and the execution
S(G, 〈a, b〉, D[Loc]) ∪ {〈D(x), b, x〉 | x ∈ Loc} is coherent.

• A state σ is called visible at 〈a, b〉 in G if there is a 〈G, 〈a, b〉〉-reader of σ .
• An assertion P holds at 〈a, b〉 in G if σ |� P for every state σ visible at 〈a, b〉 in G.

316 O. Lahav and V. Vafeiadis

In essence, the snapshot restricts the execution to the edge 〈a, b〉, all nodes in B, and
all prior nodes and edges, and replaces the label of b by a skip. For a state to be visible
at 〈a, b〉, additional reads-from edges should be added. For an example, see Fig. 4.

Definition 8. For a state σ , letWG(σ) beWG(ν1, σ (ν1)) ‖ ... ‖ WG(νM , σ (νM)), the
set of all σ -initializations. Given an assertion P , WG(P) = ⋃{WG(σ) | σ |� P}.
An execution G is called initialized if G = (G1; G2) ∪ E for some G1 ∈ WG(�),
plain execution G2, and set E ⊆ A1 × A2 × Loc of edges. It can be shown that if G is
coherent and initialized, then at least one state is visible at every program order edge.

Definition 9. AHoare triple {P} c {Q} is valid if Q holds at the terminal edge ofG∪E ′ in
G∪E ′ for every executionG = 〈A, L , E〉 inWG(P); �c�;SG and set E ′ ⊆ A×A×Loc,
such that G ∪ E ′ is a complete and coherent execution.

OG-style reasoning is often judged as non-compositional because it refers to non-
interference of proof outlines that cannot be checked based solely on the two input
Hoare triples. A straightforward remedy is to use a rely/guarantee-style presentation
of OG, that permits compositional reasoning. In this case, the rely component, denoted
by R, consists of a set of assertions that are assumed to be stable under assignments
performed by other threads. In turn, the guarantee component, denoted by G, is a set of
guarded assignments, that is assignments together with their immediate preconditions.
Roughly speaking, a validity of an OG judgmentR;G � {P} c {Q} amounts to: “every
terminating run of c starting from a state in P ends in a state in Q, and performs only
assignments in G, where each of which is performed while satisfying its guard; and
moreover, the above holds in parallel to any run of a program c′, provided that the
assertions inR are stable under each of the assignments performed by c′.”

Now, as demonstrated in the introduction, reasoning under RA requires a richer rely
condition, as stability of an assertion in thread I under a guarded assignment of the
form {P}x := e(y) in thread II should be checked for all values readable for y in some

non-later point of thread I. Similarly, stability under {P}x
y,z:= e(y, z) should cover all

values readable for y and z in two non-later points. Hence, we takeR to consist of pairs
of assertions, where the first component of each pair describes the current state and the
second summarizes all non-later states. This leads us to the following definitions.

Definition 10. An OG judgment R;G � {P} c {Q} extends a Hoare triple with two
extra components:
• A finite setR of pairs of the form R�C , where R and C are assertions. We writeRR

for
∨{R | R�_ ∈ R} and RC for

∧{C | _�C ∈ R}. We also writeR ≤ R′ for such
sets if for every R�C ∈ R there exists C ′ such that R�C ′ ∈ R′ and C � C ′.

• A finite set G of guarded assignments, i.e., pairs of the form {R}c, where R is an
assertion and c is an assignment command. We write G ≤ G′ for such sets if for every
{R}c ∈ G there exists R′ such that {R′}c ∈ G′ and R � R′.

Definition 11. A pair R�C is stable under {P}c if one of the following holds:
• c has the form x := v and R ∧ P � R[v/x];
• c has the form x := e(y) and R ∧ P � R[�e�(vy)/x] for every vy ∈ Val such that

C ∧ P �� y �= vy (i.e., for every vy ∈ Val such that C ∧ P ∧ y = vy is satisfiable);

Owicki-Gries Reasoning for Weak Memory Models 317

(conseq)

R;G � {P} c {Q}
P ′ � P Q � Q′ R ≤ R′ G ≤ G′

R′;G′ � {
P ′} c

{
Q′} (seq)

R1;G1 � {P} c1 {R}
R2;G2 � {R} c2 {Q} RR

1 � RC
2

R1 ∪ R2;G1 ∪ G2 � {P} c1; c2 {Q}

(skip)
{P�P} ≤ R

R; ∅ � {P}skip {P}

(par)
R1;G1 � {P1} c1 {Q1} R2;G2 � {P2} c2 {Q2}

Q1 ∧ Q2 � Q R1;G1 and R2;G2 are non-interfering

R1 ∪ R2 ∪ {Q�(RR
1 ∨ RR

2 ∨ Q)};G1 ∪ G2 � {P1 ∧ P2} c1 ‖ c2 {Q}

(assn0)
P � Q[v/x] {P�P, Q�(P ∨ Q)} ≤ R

R; {{P}x := v} � {P} x := v {Q}

(assn1)
P � Q[e(y)/x] {P�P, Q�(P ∨ Q)} ≤ R
R; {{P}x := e(y)} � {P} x := e(y) {Q}

(assn2)
P � Q[e(y, z)/x] {P�P, Q�(P ∨ Q)} ≤ R

{(P ∧ (y = v))�P | v ∈ Val} ≤ R
R; {{P}x

y,z:= e(y, z)} � {P} x
y,z:= e(y, z) {Q}

(assnat)
P � Q[e(x)/x] {P�P, Q�(P ∨ Q)} ≤ R
R; {{P}x

at:= e(x)} � {P} x
at:= e(x) {Q}

(ite)
{P�P} ≤ R P � RC

R;G � {P ∧ (e(x) �= 0)} c1 {Q}
R;G � {P ∧ (e(x) = 0)} c2 {Q}

R;G � {P}if e(x) then c1 else c2 {Q}

(while)
P�_ ∈ R RR � RC P ∧ (e(x) = 0) � Q

R;G � {P ∧ (e(x) �= 0)} c {P}
R ∪ {Q�(RR ∨ Q)};G � {P}while e(x) do c {Q}

Fig. 5. Owicki-Gries proof system for release-acquire.

• c has the form x
y,z:= e(y, z) and R ∧ P � R[�e�(vy, vz)/x] for every vy, vz ∈ Val,

such that C ∧ P �� y �= vy and C ∧ P �� z �= vz ; or

• c has the form x
at:= e(x) and R ∧ P � R[e/x].

The proof system for deriving OGRA’s judgments is given in Fig. 5. The rules
are essentially those of Owicki and Gries [10] with minor adjustments due to our
rely/guarantee style presentation and the more complex form of the R component. (To
assist the reader, the supplementary material includes a similar presentation of usual
OG.) Typically, we require the preconditions and postconditions to be included in R,
and make sure their second components keep track of (at least) all non-later assertions:
for example, all the assignment rules require {P�P, Q�(P ∨ Q)} ≤ R.

The rule for parallel composition (par) allows composing non-interfering judgments.
Its precondition is the conjunction of the preconditions of the threads, while its postcon-
dition, Q, is any stable assertion implied by the conjunction of the thread postconditions.
(The asymmetry is because of the second components of theR entries: the states prior to
the end of the parallel compositions are the union of those of each thread, and hence the
stability of Q does not necessarily follow from that of Q1 and Q2.) Non-interference is
checked for every rely condition of one thread and guarded assignment in the guarantee
component of the other:

Definition 12. R1;G1 and R2;G2 are non-interfering if every R�C ∈ Ri is stable
under every {P}c ∈ G j for i �= j .

318 O. Lahav and V. Vafeiadis

{
x = 0

}
{�}

m := 42;{
m = 42

}

x := 1{�}

{
x �= 0 → m = 42

}

while x = 0 do skip;{
m = 42

}

a := m{
a = 42

}
{
a = 42

}

Fig. 6. Proof outline for a simple
message passing idiom

{
f = 0

}
{

f ∈ {0, 2}}
x := 1;{

f ∈ {0, 2} ∧ x = 1
}

f
at:= 10 f + 1;{

f ∈ {1, 12, 21} ∧ x = 1
}

a := y{
f ∈ {1, 12, 21} ∧ x = 1 ∧
(f = 21 → a = y)

}

{
f ∈ {0, 1}}

y := 1;{
f ∈ {0, 1} ∧ y = 1

}

f
at:= 10 f + 2;{

f ∈ {2, 12, 21} ∧ y = 1
}

b := x{
f ∈ {2, 12, 21} ∧ y = 1 ∧
(f = 12 → b = x)

}

{
a = 1 ∨ b = 1

}

Fig. 7. Proof outline for “store buffering” with fences

{
x = a = c = 0

}

{
(x �= 1 ∧ a �= 1)

� x �= 1

}

x := 1{�}

{
(x �= 2 ∧ c �= 2)

� x �= 2

}

x := 2{�}

{�}

a := x;{�}

b := x{
a = 1 ∧ b = 2 → x = 2

}

{�}

c := x;{�}

d := x{
c = 2 ∧ d = 1 → x = 1

}
{
a = 1 ∧ b = 2 ∧ c = 2 → d �= 1

}

Fig. 8. Proof outline for read-read coherence test (example CoRR2 in [8])

The consequence rule (conseq) allows strengthening the precondition (P ′ � P),
weakening the postcondition (Q � Q′), increasing the set of assertions required to be
stable (R ≤ R′), and increasing the set of allowed guarded assignments (G ≤ G′).

The sequential composition rule (seq) collects the assertions and allowed assign-
ments of both commands, and checks thatRR

1 � RC
2 . This ensures that stability of c2’s

assertions would take into account all the states of c1, that now become previous states.
The next interesting rule is assn2 concerning assignments with expressions reading

two variables. The rule requires that the value of the first variable being read (y) is stable
assuming P also holds. This check is needed because of the way we interpret assertions
as snapshot reads differs from the way that programs read the variables (one at a time):
the stability check ensures that the difference is not observable. Note that the stability
of y is trivial in case that there are no assignments to it in other threads.

Finally, the rules for conditionals and while-loops are standard: as with the seq rule,
we require that the second component ofR has taken into account all earlier states, and
include the initial precondition in the set of stable assertions.

We can now state our main theorem, namely the soundness of OGRA.

Theorem 1. If R;G � {P} c {Q} is derivable, then {P} c {Q} is valid.

Before proving this theorem, we provide a few example derivations. The derivations
are presented in a proof outline fashion. For each thread, the set R consists of all the
assertions in its proof outline, with the second component being � (all values are possi-
ble) unless mentioned otherwise. The set G consists of all the assignments in the proof
outline guarded by their immediate preconditions.

Our first example, shown in Fig. 6, is a simple message passing idiom. Thread I
initializes a message m to 42 and then raises a flag x ; thread II waits for x to have a

Owicki-Gries Reasoning for Weak Memory Models 319

non-zero value and then reads m, which should have value 42. To prove this, thread II
assumes the invariant x �= 0 → m = 42 that holds initially and is stable.

Our next example, shown in Fig. 7, is a variant of the “store buffering” program (see
Fig. 1) that uses fences to restore sequential consistency. Fence instructions are imple-
mented as RMWs to a distinguished location f . The RA semantics enforces the corre-
sponding update nodes to be linearly ordered by E∗

all , so this implementation imposes a
synchronization between every pair of fences. These fences are stronger than C11’s SC
fences, as they restore full SC when placed between every pair of consecutive instruc-
tions. While any atomic assignment to f will have this effect, we choose commands that
record the exact order in which the fences are linearized. By referring to this order in
the proof, we can easily show that the outcome a = b = 0 is not possible.

Our third example, shown in Fig. 8, is a coherence test, demonstrating that threads
cannot observe writes to the same location happen in different orders. The program
consists of two independent writes to x and two readers: the goal is to prove that the first
reader cannot read the one write and then the other, while the second reads them in the
reverse order. The key to showing this are the assertions at the end of the reader threads
saying that the value of x cannot change after both assignments have been observed. For
these assertions to be stable, the writers correspondingly assert that the assignments to
x happen before the corresponding reader observes x to have that value. Formally, the
precondition of the x := 1 assignment is (x �= 1 ∧ a �= 1)�x �= 1. This is stable under
the a := x assignment because 1 is not a readable value for x (we have: x �= 1 �� x �= v

iff v �= 1).

3.1 Soundness Proof

We present the main steps in the proof of Fig. 1. Annotations play a crucial role. An
annotation is a function that assigns an assertion to every pair in N × N. An annotation
Θ is valid for an execution G if Θ(〈a, b〉) holds at 〈a, b〉 in G for every 〈a, b〉 ∈ po.

The proof consists of two parts. First, we show that derivability of a judgmentR;G �
{P} c {Q} allows us to construct annotations of executions of c, that are locally valid
and stable, as defined below. Then, we prove that such annotations, for complete and
coherent executions, must also be valid. Theorem 1 is obtained as a corollary.

Definition 13. An annotationΘ is locally valid for an execution G if the following hold
for every 〈a, b〉 ∈ po, where P = ∧

〈a′,a〉∈po Θ(〈a′, a〉) and Q = Θ(〈a, b〉):
• If L(a) = 〈S〉 and a is not initial then P � Q.
• If L(a) = 〈R, x, v〉 then P ∧ (x = v) � Q.
• If L(a) = 〈W, x, v〉 then either P � Q[v/x], or there is a unique node a′ such that

〈a′, a〉 ∈ po, and we have a′ ∈ R and P ∧ (loc(a′) = valr (a′)) � Q[v/x].
• If L(a) = 〈U, x, vr , vw〉 then P ∧ (x = vr) � Q[vw/x].
Definition 14. Let G be an execution. An edge 〈b1, b2〉 ∈ po is called G-before an edge
〈a1, a2〉 ∈ po if either 〈b1, b2〉 = 〈a1, a2〉 or 〈b2, a1〉 ∈ po∗.

Definition 15. Let G be an execution. A node c ∈ G interferes with 〈a, b〉 ∈ po in G
for an annotation Θ if the following hold:

320 O. Lahav and V. Vafeiadis

• 〈c, a〉 �∈ po∗ and 〈b, c〉 �∈ po∗ (c is parallel to 〈a, b〉 in G).
• For all c′ ∈ Rwith 〈c′, c〉 ∈ po and 〈c′, a〉 �∈ po∗, we haveΘ(〈a′, b′〉)∧Θ(〈c′, c〉) ��

loc(c′) �= valr (c′) for some 〈a′, b′〉 ∈ po such that 〈a′, b′〉 is G-before 〈a, b〉 and
〈b′, c′〉 �∈ po∗.

Definition 16. An annotation Θ is stable for an execution G if the following hold for
every 〈a, b〉 ∈ po and node c ∈ W ∪ U that interferes with 〈a, b〉 in G for Θ , where
R = Θ(〈a, b〉) and P = ∧

〈c′,c〉∈po Θ(〈c′, c〉):
• If L(c) = 〈W, x, v〉 then P ∧ R � R[v/x].
• If L(c) = 〈U, x, vr , vw〉 then P ∧ (x = vr) ∧ R � R[vw/x].
Definition 17. A Hoare triple {P} c {Q} is safe if for every G ∈ SG; �c�;SG, there is
an annotation Θ that is locally valid and stable for G, and assigns some assertion P ′,
such that P � P ′, to the initial edge of G, and some assertion Q′, such that Q′ � Q, to
its terminal edge.

Theorem 2. If R;G � {P} c {Q} is derivable for some R,G, then {P} c {Q} is safe.

Proof (Outline). Call a judgment R;G � {P} c {Q} good if for every execution
G ∈ SG; �c�;SG, there exists an annotation Θ that satisfies the conditions given in
Definition 17, as well as the following ones:
• R covers Θ for G, i.e., for every 〈a1, a2〉 ∈ po, there exist P1�C1, ... , Pn�Cn ∈ R
such that

∧
Pi �� Θ(〈a1, a2〉) and Θ(〈b1, b2〉) � ∧

Ci for every 〈b1, b2〉 ∈ po that
is G-before 〈a1, a2〉 (in particular, for 〈b1, b2〉 = 〈a1, a2〉).

• G covers Θ for G, i.e., for every a2 ∈ W∪U, there exist an edge 〈a1, a2〉 ∈ po and an
assertion P ′, such that Θ(〈a1, a2〉) � P ′, and one of the following holds:
- L(a2) = 〈W, x, v〉 and {P ′}x := v ∈ G.
- L(a2) = 〈W, x, v〉, L(a1) = 〈R, y, vy〉, and {P ′}x := e(y) ∈ G for some expression

e(y) such that �e�(vy) = v.
- L(a2) = 〈W, x, v〉, L(a1) = 〈R, z, vz〉, Θ(〈a1, a2〉) � y = vy for some vy ∈ Val,

and {P ′}x
y,z:= e(y, z) ∈ G for some expression e(y, z) such that �e�(vy, vz) = v.

- L(a2) = 〈U, x, vr , vw〉 and {P ′}x
at:= e(x) ∈ G for some expression e(x) such that

�e�(vr) = vw.
Next, by induction on the derivation, one shows that every derivable judgment R;G �
{P} c {Q} is good, and so {P} c {Q} is safe. The non-interference condition is needed
for showing that two annotations of executions G1 and G2 can be joined to a stable
annotation of the parallel composition of G1 and G2. ��

It remains to establish the link from safety of a Hoare triple to its validity.

Theorem 3. Let G be a complete coherent initialized execution. If an annotation Θ is
locally valid and stable for G, then it is valid for G.

The proof (given in the full version of this paper) requires analyzing the relations between
states that are visible on consecutive edges and parallel edges in the RAmemory model.
An alternative equivalent formulation of coherence, based on a new “write-before” rela-
tion, is particularly useful for this task.

Owicki-Gries Reasoning for Weak Memory Models 321

{
r = 0

}

{�}

w := 1;{�}

while r �= 1 do
skip{

r = 1
}

{
r = 0

}

r := w;{
r = 1 → w = 1

}

r := w

{
w = 1 for 1

r �= 1 otherwise{�}
{
r = 1

}

Main non-interference checks:
r = 1 under {r = 0}r := w

r = 1 under {w = 1}r := w

r = 1 under {r �= 1}r := w

r = 1 → w = 1 under {�}w := 1
w = 1 under {�}w := 1

All the checks are trivial.

Fig. 9. Simplified RCU example illustrating the use of the stronger assignment rule

{�}

x := 2;
y := 1

y := 2;
x := 1{

x �= 2 ∨ y �= 2
}

Fig. 10. Auxiliary variables are
necessary under SC

{
x = 〈0, 0〉}{

x ∈ {〈0, 0〉, 〈1, 2〉}}

x
at:= 〈xfst + 1, xsnd + 1〉{

x ∈ {〈1, 1〉, 〈2, 3〉}}

{
x ∈ {〈0, 0〉, 〈1, 1〉}}

x
at:= 〈xfst + 1, xsnd + 2〉{

x ∈ {〈1, 2〉, 〈2, 3〉}}{
x = 〈2, 3〉}

Fig. 11. Verification of the parallel increment example

3.2 A Stronger Assignment Rule

Consider the program shown in Fig. 9, which contains an idiom found in the RCU
implementation (verified in the supplementary material). Thread II reads w and writes
its value to r twice, while thread I sets w to 1 and then waits for r to become 1. The
challenge is to show that after thread I reads r = 1, the value of r does not change; i.e.
that r = 1 is stable under the r := w assignments. For the first r := w assignment, this
is easy because its precondition is inconsistent with r = 1. For the second assignment,
however, there is not much we can do. Stability requires us to consider any value for
w readable at some point by thread I. Our idea is to do a case split on the value that w

reads. If w reads the value 1, then it writes r := 1, and so r = 1 is unaffected. If w reads
a different value, then from the assignment’s precondition, we can derive r �= 1, which
contradicts the r = 1 assertion.

To support such case splits, we provide the following stronger assignment rule. For
simplicity, we consider only assignments of the form x := e(y).

(assn′
1)

P � Q[e(y)/x] {P�P, Q�(P ∨ Q)} ≤ R
For every v ∈ Val: P ∧ (y = v) � Pv {Pv�P} ≤ R

R; {{Pv}x := e(y) | v ∈ Val} � {P} x := e(y) {Q}
The previous assignment rule is an instance of this rule by taking Pv = P for all v.

4 Discussion and Further Research

While OGRA’s non-interference condition appears to be restrictive, we note that it is
unsound for weaker memory models, such as C11’s relaxed accesses because it can

322 O. Lahav and V. Vafeiadis

prove, e.g., message passing, see Fig. 6. We also observe that OGRA’s non-interference
check coincides with the standard OG one for assignments of values (x := v) and

atomic assignments (x
at:= e(x)). Moreover, the non-interference check is irrelevant

for assignments to variables that do not occur in the proof outlines of other threads.
Therefore, standard OG (without auxiliary variables) is sound under RA provided that

all x := e(y) and x
y,z:= e(y, z) assignments write to variables that do not appear in the

proof outlines of other threads. Fig. 6 and 7 provide two such cases in point. In addition,
this entails, for instance, that the program in Fig. 10 cannot be verified in standard OG
without auxiliary variables, as x = 2 ∧ y = 2 is a possible outcome for this program
under RA.

OG’s auxiliary variables, in general, are unsound under weak memory because they
can be used to record the exact thread interleavings and establish completeness under
SC [12]. A simple form of auxiliary state, which we call ghost values, however, is
sound. The idea is as follows: given a program c, one may choose a domain G of
“ghost” values, together with a function α : G → Val, and obtain a program c′ by
substituting each expression e(x1, ... , xn) in c by an expression e′(x1, ... , xn) such that
α(�e′�(g1, ... , gn)) = �e�(α(g1), ... , α(gn)) for all g1, ... , gn ∈ G. The validity of{

P ′} c′ {Q′} entails the validity of {P} c {Q}, provided that the following hold:
• If a state satisfies P then some corresponding ghost state satisfies P ′;
• If a state does not satisfy Q then any corresponding ghost state does not satisfy Q′;
where a ghost state σ ′ : Loc → G corresponds to a state σ : Loc → Val iff α(σ ′(x)) =
σ(x) for every x ∈ Loc. This solution suffices, for instance, to reason about the parallel
increment example, as shown in Fig. 11. There we took G = Val ×N, with α being the
first projection mapping. The second component tracks which of the assignments has
already happened (0: none, 1: the first thread, 2: the second thread, otherwise: both). As

a result, we obtain the validity of {x = 0} x
at:= x + 1 ‖ x

at:= x + 1 {x = 2}.
Analyzing soundness of other restricted forms of auxiliary variables is left for future

work. Such extensions seem to be a prerequisite for obtaining a program logic that is
both sound and complete under RA. Automation of proof search is another future goal.
Our initial experiments show that, at least for the examples in this paper, HSF [5] is
successful in automatically finding proofs in OGRA.

Acknowledgments. We would like to thank the ICALP’15 reviewers for their feedback. This
work was supported by EC FET project ADVENT (308830).

References

1. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ concurrency. In:
POPL 2011, pp. 55–66. ACM (2011)

2. Cohen, E.: Coherent causal memory (2014). CoRR abs/1404.2187
3. Desnoyers, M., McKenney, P.E., Stern, A.S., Dagenais, M.R., Walpole, J.: User-level imple-

mentations of read-copy update. IEEE Trans. Parallel Distrib. Syst. 23(2), 375–382 (2012)
4. Ferreira, R., Feng, X., Shao, Z.: Parameterized memory models and concurrent separation

logic. In:Gordon,A.D. (ed.) ESOP2010. LNCS, vol. 6012, pp. 267–286. Springer,Heidelberg
(2010)

Owicki-Gries Reasoning for Weak Memory Models 323

5. Grebenshchikov, S., Lopes,N.P., Popeea,C.,Rybalchenko,A.: Synthesizing software verifiers
from proof rules. In: PLDI 2012, pp. 405–416. ACM (2012)

6. ISO/IEC 14882:2011: Programming language C++ (2011)
7. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Computers 28(9), 690–691 (1979)
8. Maranget, L., Sarkar, S., Sewell, P.: A tutorial introduction to the ARM and POWER relaxed

memory models (2012). http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
9. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Berghofer, S.,

Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407.
Springer, Heidelberg (2009)

10. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta Informatica
6(4), 319–340 (1976)

11. Owicki, S., Gries, D.: Verifying properties of parallel programs: An axiomatic approach.
Commun. ACM 19(5), 279–285 (1976)

12. Owicki, S.S.: Axiomatic Proof Techniques for Parallel Programs. Ph.D. thesis, Cornell Uni-
versity, Ithaca, NY, USA (1975)

13. Ridge, T.: A rely-guarantee proof system for x86-TSO. In: Leavens, G.T., O’Hearn, P.,
Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 55–70. Springer, Heidelberg (2010)

14. Sieczkowski, F., Svendsen, K., Birkedal, L., Pichon-Pharabod, J.: A separation logic for
fictional sequential consistency. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 736–761.
Springer, Heidelberg (2015)

15. Tassarotti, J., Dreyer, D., Vafeiadis, V.: Verifying read-copy-update in a logic for weak mem-
ory. In: PLDI 2015. ACM (2015)

16. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: Navigating weak memory with ghosts, protocols,
and separation. In: OOPSLA 2014, pp. 691–707. ACM (2014)

17. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Nardelli, F.Z.: Common compiler
optimisations are invalid in the C11 memory model and what we can do about it. In: POPL
2015, pp. 209–220. ACM (2015)

18. Vafeiadis, V., Narayan, C.: Relaxed separation logic: A program logic for C11 concurrency.
In: OOPSLA 2013, pp. 867–884. ACM (2013)

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

	Owicki-Gries Reasoning for Weak Memory Models
	1 Introduction
	2 Preliminaries
	3 An Owicki-Gries Proof System for Release-Acquire
	3.1 Soundness Proof
	3.2 A Stronger Assignment Rule

	4 Discussion and Further Research
	References

