
From Sequential Specifications to Eventual Consistency

Radha Jagadeesan and James Riely(B)

DePaul University, Chicago, USA
jriely@gmail.com

Abstract. We address a fundamental issue of interfaces that arises in the con-
text of cloud computing. We define what it means for a replicated and distributed
implementation satisfy the standard sequential specification of the data structure.
Several extant implementations of replicated data structures already satisfy the
constraints of our definition. We describe how the algorithms discussed in a recent
survey of convergent or commutative replicated datatypes [17] satisfy our defini-
tion. We show that our definition simplifies the programmer task significantly for
a class of clients who conform to the CALM principle [10].

1 Introduction

An example serves to motivate the problem addressed in this paper. Consider an inte-
ger set interface with mutator methods add and remove and a single, boolean-valued
accessor method get. We will assume that mutators do not return values (have return
type Unit or void) and that accessors do not alter the state of the object. The sequen-
tial behavior of such a set can be defined as a set of strings such as ✗0 +0 ✓0 ✗1
and +0 +1 ✓0 ✓1 -1 ✓0 ✗1, where +k represents a call to add with argument k, -k
represents remove(k), ✓k represents get(k) returning true and ✗k represents get(k)
returning false. Since accessor methods do not alter the state of the object, the interface
is closed under commutation of accessors: if (s ✓0 ✗1) is a valid traces in the interface,
for some s, then so is (s ✗1 ✓0).

Consider the implementation of such a set as a cloud service that is implemented
by replication of the data structure (eg. see [17]). In this distributed setting, we assume
intra-node atomicity and sequencing of state transitions, whereas temporal relations
between two computers that are distributed is only induced by the receipt of messages
over the network. In this distributed context, there are two impediments to requiring the
replicas to achieve consensus on a global total order [13] on the operations on the data
structure. Firstly, the associated serialization bottleneck negatively affects performance
and scalability (eg, see [6]). Secondly, the CAP theorem [8] imposes a tradeoff between
consistency and partition-tolerance.

This has led to the emergence of alternative approaches based on eventual con-
sistency and optimistic replication [16,19]. In such approaches, a replica may execute
an operation without synchronizing with other replicas. The other replicas are updated
asynchronously with the update operation. However, due to the vagaries of the net-
work, even if every replica eventually receives and applies all updates, it could happen
in possibly different orders. So, there has to be some mechanism to reconcile conflicting

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 247–259, 2015.
DOI: 10.1007/978-3-662-47666-6 20

248 R. Jagadeesan and J. Riely

updates (for illustrative examples, see [17,18]). Thus, such approaches address the issue
of efficiency (since any query to the state of the data structure at a replica is answered
locally at the replica without any consensus overhead) and data remains available even
in the presence of network partitions.

The literature on convergent or commutative replicated datatypes (CRDTs) (see [17]
for a survey) provides a systematic attempt to design such datastructures. Consider the
following diagram, in the style of [17].

+0 ✓0 ✗1 ✓0 ✓1

+1 ✓1 ✗0 ✓0 ✓1

(1)

In this sample execution, the mutators +0 and +1 are executed at distinct replicas. The
actions in each replica are temporally ordered from left to right, as indicated by the hor-
izontal arrows. We assume the local updates are atomic. After a local update, the replica
forwards messages to the other replicas; in the diagram, the diagonal arrows between
replicas indicate messages that propagate such local updates, with the interpretation that
the operation is guaranteed to be finished at the recipient at the point the arrow appears
on the recipients timeline. The accessors are executed locally and atomically at each
replica. Of course, there is a consistent global state, testified by ✓0 and ✓1 at both repli-
cas, after both messages have been delivered. Thus, the literature (eg. see [17] for a
precise formalization) deems this implementation to be eventually consistent, since the
states of all the replicas eventually converge at quiescent points, when all the messages
have been delivered. This view is adequate for examples where we are interested only
in the final state of the data structure.

Since eventual consistency only speaks about the quiescent points of the system,
it does not address correctness of intermediate states in the evolution of the system.
For example, all of the following implementation traces of a putative replicated set are
deemed to be eventually consistent, even though we see very problematic behavior.

+0 ✓1 ✗1

+1
✓0 +0 ✓0

+0 ✗0 +0 ✓0

-0 ✓0 ✓0
(2) (3) (4)

In figure (2), the accessor results regresses from ✓1 to ✗1 even though there is no
remove invocation in the system; in figure (3), the initial accessor ✓0 is not justified; in
figure (4), the replicas conflict in their ordering of concurrent add/remove updates.

This problem is addressed by the seminal papers of [2,3]. [3] defines a notion of
eventual consistency for transactions intuitively as compatibility with a serialization of
them. In contrast, [2] views the interface of a replicated data structure as a concurrent
specification that determines the valid result of an accessor from the context of a prior
concurrent history. [1] extends this approach to allow for bounded rollbacks. In this
style, the above examples are declared invalid; for example in figure (2), the result ✗1
is deemed invalid in the context of its prior history.

In addition to capturing the properties of replicated implementations much more
precisely than the traditional definitions of eventual consistency, this line of work has
also lead to useful tools and techniques to aid the programmer: [3] provides general

From Sequential Specifications to Eventual Consistency 249

control flows sturctures that are guaranteed to yield eventually consistent implementa-
tions of transactions; [9] proves abstraction and composition theorems, applying it in
particular to the replicated implementation of a graph data structure; [1] develops model
checking techniques to reason about implementations relative to these specifications.

In these approaches, replicated data structures are specified directly, without any
formal comparison to the sequential data structures that they are meant to approximate.
This approach is (intentionally) agnostic to the design of the specifications themselves.
For example, whereas the result ✗1 in figure (2) is not valid, the result ✗1 in figure (1) is
valid. The justification for the different decisions about ✗1 in figures (1) and (2) is the
traditional sequential specification of Set; namely, if there are no remove operations, ✓1
is acceptable iff there is a preceding +1.

In this paper, building on [3], we provide a definition of eventual consistency that
develops precisely such a connection with the sequential specification. (As can be seen
from figure (1), traditional criteria, such as linearizability [11] and quiescent consis-
tency [5,12], do not apply here.) We show the utility of our definition by showing that
clients satisfying the CALM principle (see [10] for a survey) can in fact abstract away
completely from the distributed and replicated implementation and program against the
sequential specification realized by the implementation.

Our work complements the research program of [1–3,9]. Our methods aim to pro-
vide a way to justify the interfaces described in this approach. In future work, we hope
to use our methods to show that CALM clients of their interfaces can also be protected
from details of distribution and replication. We also hope to adopt their methods to
support a more general class of clients and to develop reasoning methods to show that
implementations satisfy their specification.

An Informal Outline of our Approach. In a replicated data structure, a mutator m is
visible to an event a if m executes at a’s replica before a executes. We say that an imple-
mentation trace (such as those in the figures above) satisfies a sequential specification
if for each event a, we can associate a string of events t(a) that satisfies the following.

Mutator closed: t(a) includes a as well as the mutator events that are visible to a
Validity: t(a) is a valid sequential trace that ends in a
History consistency: For any events d and e, t(d) and t(e) agree on the ordering
of mutator events that are visible to both d and e.

Figure (2) does not satisfy validity at the event ✗1 in the top replica since neither
+0 +1 ✗1 nor +1 +0 ✗1 is a valid trace of a set. Figure (3) does not satisfy validity at
the initial event ✓0 since the trace ✓0 is not a valid trace of a set. In Figure (4), to satisfy
validity, we have to associate the trace -0 +0 at the ✓0 event in the top replica and the
trace +0 -0 at the ✗0 event in the bottom replica, thus violating history-consistency.

For a positive example, in figure (1), the traces associated to the event ✗1 in the top
replica is +0 and the trace associated to the event ✗0 in the bottom replica is +1. There
is a choice for the trace associated with the events ✓1 in the top replica and ✓0 in the
bottom replica. By consistency, they need to be the same, but they can both be chosen
to be either +0 +1 or +0 +1.

250 R. Jagadeesan and J. Riely

Our definition is flexible enough to accommodate the data structures discussed
in [17], a recent survey of the literature on CRDTs. For several of these data structures,
the implementations unambiguously and categorically satisfy our definitions. There are
particular subtleties that arise when we match some SET implementations (the OR-set
and the 2P-set) against the sequential set specification that we discuss in the technical
sections that follow.

Such data structures provide a particularly simple programming view for clients
located at a replica. In a logically monotone execution, the arrival time of a concur-
rent mutator does not alter the evolution of the system (Our formalization of logically
monotone executions is inspired by ideas in [14,15].) We formalize a weaker mono-
tonicity property: that there is some ordering of concurrent mutators that does not alter
the evolution of a system. Under this weak monotonicity assumption (that is satisfied by
all CALM executions), we prove abstraction [7] and composition [11] theorems. This is
particularly relevant because it simplifies the programmer perspective for a large class
of programs that includes those written in languages that realize the CALM principle,
such as Bloom [4].

2 Bracketed Partial Orders and Labeled Visibility Relations

In this section, we define bracketed partial orders (BPOs). BPOs provide a formalization
of diagrams such as those given in the introduction. BPOs are labelled partial orders,
enriched with replicas and bracketing. Bracketing relates the remote execution of a
mutator to the initial call of the mutator. Consider the following example.

+0 +1
✓1 ✗0 ✓0

(5)

This is formalized as a BPO with seven events. There are two replicas: one for each hori-
zontal line. The partial order is given by the arrows. Two events are labelled as mutators:
+0 and +1. Three events are labelled as accessors: ✓1, ✗0 and ✓0. The remaining two
events (shown without labels in the diagram) are bracketing events. In the formalism,
bracketing events are labelled with the name of the preceding mutator event. Generally
one is interested in the isomorphism class of labelled partial orders (the pomset), and
therefore the event names themselves are uninteresting.

A BPO is causal if the order of mutator and bracketing events at each replica respects
the partial order of the mutator events themselves. All of the figures in the introduction
are causal. Figure (5) is not causal, however, since the mutator order is +0 +1 but the
order at the bottom replica is +1 +0.

BPOs directly capture the notion of an operation-based CRDT (see [17]). State-based
CRDTs can be considered a special case of causal BPOs that communicate multiple
brackets with a single communication (modelled as an uninterrupted sequence of brack-
eted events at the receiving replica).

Let A and M be disjoint sets of accessor labels and mutator labels, respectively,
and let L =A ∪M be a set of labels. We use metavariables s–v to range over various
types of relations with labels in L , which we generically refer to as “traces”.

Example 2.1. In this paper we consider four implementations of an integer set datatype:
the G-set, U-set, OR-set, and 2P-set. See [17] for implementation details.

From Sequential Specifications to Eventual Consistency 251

A G-set has mutator labels of the form +k, where k is an integer, and accessor labels
of the form ✓k and ✗k. A G-set is grow only; thus, once ✓k has been observed for a
particular k, it is impossible to subsequently observe ✗k. It is straightforward to specify
the replicated implementation and, therefore, the corresponding BPO.

A U-set adds mutators of the form -k to the labels of a G-set, denoting removal. A
U-set requires that for every k, +k may appear at most once in each execution—each
+k is unique. In addition, a -k may only occur when +k is visible. These requirements
are imposed on the client of the U-set; it is not ensured by the U-set itself. The imple-
mentation is again straightforward. The client can guarantee uniqueness using various
techniques; for example, take k = 2c ·3n where c is a globally unique client thread iden-
tifier and n is a monotone thread-local counter.

An OR-set (observed-remove set) has the same labels as a U-set, but does not require
that +k actions are unique. The implementation uses an underlying U-set and a map
from the elements of the U-set to the elements of the OR-set. Consider the following
BPO, from [17].

+0 -0 ✓0
+0

✓0
(6)

This BPO is not a valid execution of a G-set (because of the -0) or a U-set (because of
the two +0’s). However, this is a valid execution of an OR-set. The +0 in the middle
replica is concurrent with the -0 of the top replica. Since they are working on top of an
underlying U-set, the -0 only removes the +0 added by the top replica; the middle +0 is
not affected and eventually prevails.

A 2P-set is implemented using two grow sets; one representing additions and one
representing tombstones for removed elements, in the obvious way. Like a U-set, a 2P-
set also constrains the behaviour of clients. A client must ensure that no element that
is removed is subsequently re-added. The BPO in figure (6) is a valid 2P-set BPO if the
events labeled ✓0 are re-labeled to ✗0. In a OR-set, an add “wins” over a concurrent
remove, whereas in a 2P-set, the remove wins. Thus these two examples represent dif-
ferent specializations of the set API. The OR-set resolves figure (6) to the sequential
specification +0 -0 +0 ✓0 ✓0, whereas the 2P-set resolves it to +0 +0 -0 ✗0 ✗0.

The constraints on the clients of U-set and 2P-set are required for correct functioning
as a set. The definition of correctness is given informally in [17]. The main contribution
of this paper is to provide a formalization, which we do in Section 3. Under our defi-
nition, all executions of the G-set will be considered correct, and all causal executions
of U-set will be considered correct, but only a subset of executions of the OR-set and
2P-set will be considered correct. ��
Definition 2.2. A (replicated) bracketed partial order (BPO) is a octuple 〈EA, EM, EB,
L, R, λ, ρ, ⇒〉 where R is a set of replicas, and the following hold.

(a) sets EA, EM andEB are disjoint, L ⊆ L , and 〈EA ∪EM ∪EB, ⇒〉 is a partial order,
(b) ρ ∈ (EA ∪EM ∪EB)
→ R and λ ∈ (EA
→ L∩A)∪ (EM
→ L∩M)∪ (EB
→ EM),
(c) ∀e ∈ EB. λ(e) ⇒ e and ρ(λ(e)) �= ρ(e)
(d) ∀d, e ∈ EB. if λ(d) = λ(e) then either d = e or ρ(d) �= ρ(e)
(e) ∀d, e ∈ E. if ρ(d) = ρ(e) then either d ⇒ e or e ⇒ d.

252 R. Jagadeesan and J. Riely

For a BPO s, we write EA(s) for the accessor events of s, EM(s) for the mutator events
and EB(s) for the bracketing events. We also define EAM(s)

�= EA(s)∪EM(s). ��
Condition (b) establishes the interpretation of the labelling function: The elements

of EA denote local events (accessors), the elements of EM denote the origination of a
global event (mutators), and the elements of EB denote the remote reception of a global
event (brackets). Events m ∈ EM and b ∈ EB are a bracketed pair when λ(b) = m.
Condition (c) establishes that in a bracketed pair, the beginning must precede the end
and occur at a separate replica. Condition (d) establishes that each mutator is bracketed
at most once per replica. Thus, each mutator event has one “beginning” and as many
as

∣
∣R

∣
∣ − 1 “endings”. Condition (e) establishes that events are totally ordered at each

replica; concurrency within a replica can be handled via standard means.

Definition 2.3 (Causal). Let s be an BPO. Define remotes(e)
�= {b ∈ EB(s) | λs(b) = e}.

The BPO s is causal when ∀d, e ∈ EM(s). ∀d′ ∈ remotes(d). ∀e′ ∈ remotes(e). if d ⇒s e
and ρs(d′) = ρs(e′) then d′ ⇒s e′. ��

BPOs have a clear operational intuition. We now provide an abstract view of BPOs
which is sufficient to define correctness. The relations we need are weaker than labeled
partial orders. In particular, we do not require transitivity. We refer to these potentially
intransitive relations as labeled visibility relations (LVRs). For example, starting with
the BPO given in figures (5) and (6), we derive the following LVRs.

+0 +1
✓1 ✗0 ✓0

+0 -0 ✓0
+0

✓0
In these diagrams, we use � to represent an intransitive edge and → to represent a
“transitive” edge. Thus, in the left diagram, the event ✗0 sees +1 and ✓1, but not +0,
whereas ✓0 sees all four prior events. Recall from figure (5) that the replica that gen-
erates ✗0 sees +1 before +0, even though these are initiated in the reverse order. A
causal BPO generates a transitive LVR, as in the right diagram above. Formally, LVRs
are defined with a single visibility relation, which may or may not be transitive. We
include replica identifiers to define liveness properties; we ignore them except when
important.

Definition 2.4. Let s = 〈E, L, R, λ, ρ, �〉 be a sextuple such that E is a finite set of
events, L is a set of labels, R is a set of replicas, λ ∈ (E
→ L), ρ ∈ (E
→ R) and � ⊆
(E×E). We say that s is a labeled visibility relation (LVR) if � is reflexive and acyclic.
We say that s is a labeled partial order (LPO) if � is a partial order. We say that s is a
labeled total order (LTO) if � is a total order.

Given an LVR s, we write E(s) for the event set of s, L(s) for the label set, λs for
the labeling function and �s for the visibility relation. Define EA(s)

�= {e ∈ E(s) | λ
(e) ∈ A } and EM(s)

�= {e ∈ E(s) | λ(e) ∈ M }. ��
Below, we define the translation from BPOs to LVRs. For a BPO s, the relation local==⇒s

is the union of the local orders at each replica. Whenever d local==⇒s e, we have that d �s e.
For mutators m and accessors a, we have that m � a if m has been received at a’s
replica. Otherwise, events d and e at different replicas are ordered when they are ordered

From Sequential Specifications to Eventual Consistency 253

by ⇒s and every mutator visible to d is also visible to e. The BPO m a n
b

translates to the LVR m a n
b, which we draw as m → a → n → b. The BPO

m a n
b translates to the LVR m → a → n � b.

For a BPO s, we have that ∀m ∈ EM(s). ∀a, b ∈ EA(s). if m �s a �s b then m �s b.

Definition 2.5. For any sets C ⊆ A and relation R ⊆ A×A, define R\C
�= R∩ (C ×C).

Similarly, for R ⊆ A×B and C ⊆ A, define R\C
�= R∩ (C ×B).

Let s be a BPO. Define (d local==⇒s e) �= (d ⇒s e) and (ρs(d) = ρs(e)). Recall Def-
inition 2.3 of remote. Define visMs(e)

�= {m ∈ EM(s) | m local==⇒s e or ∃b ∈ remotes

(m). b local==⇒s e}. Then we define the LVR derived from s as follows: lvr(s) �= 〈EAM(s),
L(s), R(s), ρs, λs \EAM(s), �〉 where ∀d, e ∈ EAM(s). d � e iff d ∈ visMs(e) or d ⇒s e
and visMs(d) ⊆ visMs(e). We write �s for the visibility relation of lvr(s). ��

In a strongly distributed BPO, events at different replicas are only ordered via brack-
eted pairs; this disallows synchronization between replicas outside of the data structure
formalized by the BPO.

Definition 2.6. A BPO is strongly distributed if ∀d, e ∈ EA ∪ EM ∪ EB. if ρ(d) �= ρ(e)
and d ⇒ e then ∃d′ ∈ EM, e′ ∈ EB. λ(e′) = d′ and d ⇒ d′ ⇒ e′ ⇒ e ��
Lemma 2.7. Let s be a strongly distributed BPO. Then the following three statements
are equivalent: (a) s is causal, (b) (�s) is transitive, and (c) (�s) = (⇒s\EAM(s)). ��

3 Eventual Consistency

Definitions of eventual consistency (EC) traditionally include both safety and liveness
properties. Liveness is purely a property of implementations. It can be expressed as a
simple closure property over sets of LVRs, which we call eventual delivery1.

To define safety, we must first define specifications (Definition 3.1) and give some
basic vocabulary for permutations, order extensions and the like (Definition 3.2).

Specifications of sequential structures are typically given as sets of strings of labels.
To simplify the definitions, we use isomorphism closed sets of LTOs: the event set iden-
tifies a bijection between an implementation LVR and its specification as an LTO. Spec-
ification sets are closed with respect to renaming of events and arbitrary replacement
of the replica function (replicas don’t matter in specifications). In addition, we ask that
specification sets be prefix closed, accessor enabled (an specification string can always
be extended by some accessor) and closed under reordering of adjacent accessors (if
there is no intervening mutator, then accessors commute).

Definition 3.1. Strings may be regarded as labeled total orders (LTOs) up to replica-
insensitive isomorphism. LTOs s and t are replica-insensitive isomorphic if L(s) = L(t)
and there exists a bijection α : E(s) → E(t) such that ∀e ∈ E(s). λs(e) = λt(α(e)) and
∀d, e ∈ E(s). (d �s e) iff (α(d) �t α(e)).

1 See Definition 3.2 of the extension of a partial order (notation ⊆). A set S of LVRs satisfies
eventual delivery if each mutator is eventually seen at every replica: ∀s ∈ S. ∀m ∈ EM(s). ∀p ∈
R(s). ∃t ∈ S. s ⊆ t and ∃a ∈ EA(t). m �t a.

254 R. Jagadeesan and J. Riely

The following closure properties, defined on sets of strings, lift to isomorphism
closed sets of LTOs. For strings s, t ∈ L ∗, let “st” denote concatenation. Let T ⊆ L ∗
be a set of strings. We say that T is prefix closed when st ∈ T implies s ∈ T. We say that
T is accessor enabled when s ∈ T implies ∃a ∈ A . sa ∈ T. We say that T is accessor
closed when ∀a, b ∈ A . {ta, tb} ⊆ T implies {tab, tba} ⊆ T.

A specification is a set of total orders (LTOs) that is replica-insensitive isomorphism
closed, prefix closed, accessor enabled and accessor closed. ��
A specification, as given by Definition 3.1, is “sequential” because the orders are total.

Definition 3.2. We write =π for permutation equivalence; if s ≤π t then t may contain
additional events that are not matched in s. If s � t, then t is an visibility-extension of s,
with the same events and greater visibility. (For an LPO this is an order-extension.) If s ⊆
t, then t is an extension of s, with both more events and greater visibility. (s\D) denotes
the restriction of s to the events in D. Define

�
M

s e
�= s\({e}∪{d ∈ EM(s) | d � e}) and

�Ms e
�= s\ ({e}∪{d ∈ EM(s) | e �� d}). ��
For trace s and e ∈ E(s),

�
M

s e denotes the restriction of s to the mutator events visible
to e, and �Ms e denotes the restriction to the mutator events that are either visible to or
“concurrent with” e. Both

�
M

s e and �Ms e include at most one accessor: e itself.
To establish eventual consistency of s with respect to T , we must exhibit a function t

that maps each event in E(s) to a specification trace in T . The choice of t is constrained
by two conditions.

Fix an event e and let t(e) = t. The first condition requires that t include only events
visible to or concurrent with e, and that t respect the order of those events in s. The
requirement E(

�
M

s e) ⊆ E(t) establishes that t includes e, as well as all of the mutators
visible to e. The requirement E(t) ⊆ E(�Ms e) establishes that t only includes mutators
that are either visible to or concurrent with e. Finally, the requirement that (s\E(t))� t
establishes that t must respect the order of events in s.

Fix events d and e. The second condition requires that t(d) and t(e) agree on the
order of mutator events in their intersection.

Definition 3.3. We say that t refines s at e if E(
�
M

s e) ⊆ E(t) ⊆ E(�Ms e) and (s\E(t)) � t.
We write s ≈M t when ∀m, n ∈ EM(s)∩EM(t). m �s n iff m �t n.

An LVR s is eventually consistent (EC) with a specification T (notation s �ec T)
when there exists a map t : E(s) → T such that (a) ∀e ∈ E(s). t(e) refines s at e, and (b)
∀d, e ∈ E(s). t(d) ≈M t(e).

Write S �ec T when ∀s ∈ S. s �ec T. ��
We call this “eventual consistency” because the definition ensures that at quiescent

points the same accessors at all the replicas are mapped to the same sequential trace of
visible mutator events. Given eventual delivery, then all replicas must eventually agree
on the order of all mutators. In the case that specifications are mutator enabled, eventual
consistency can be defined in terms of a global order on mutators (u in the proposition
below) that all replicas must agree to.

Definition 3.4. A specification T is mutator enabled if ∀s ∈ T. ∀m ∈ M . sm ∈ T. ��

From Sequential Specifications to Eventual Consistency 255

Proposition 3.5. Suppose T is mutator enabled specification. Then s �ec T iff there
exists a total order u =π s\M such that ∀e ∈ E(s). ∃te ∈ T. te refines s at e and te ≈M u.

��
Example 3.6. Any G-set execution s satisfies our definition. To see this, we follow the
characterization from Proposition 3.5. Choose u to be any linearization of the mutators
in s consistent with the execution. For any accessor (✓k or ✗k), choose t to be the
subsequence of the prefix of u that contains only the adds that precede the accessor in s.

Any causal execution s of a U-set satisfies our definition. Again, we follow the char-
acterization from Proposition 3.5. For any query, choose t to be the subsequence of the
prefix of u that contains only the mutators (adds and removes) that precede the accessor
in s. Causality, as assumed in [17], is necessary for the U-set to satisfy the specifcation.
Without causality, the following execution +0 -0 ✗0

✓0 is possible.
In this execution, the initial remove does nothing to the state of the bottom replica’s
local copy of the set, leaving the two replicas out of sync.

We now turn to the OR-set and 2P-set. First a positive example. Consider figure
(6) from Example 2.1. What are acceptable return values for the get actions? The top
replica sees the actions +0 -0 +0 whereas the bottom replica sees +0 +0 -0. They
see the same actions, but in different orders. In the 2P-set implementation, both gets
return false (remove has priority over add). In the OR-set implementation, both gets
return true (add has priority over remove). Both executions are EC. For the 2P-set, let
u be +0 +0 -0. For the OR-set, let u be +0 -0 +0. An implementation which returns
different values for the gets is not EC because there is no t that satisfies the requirements.
Since the gets see the same mutators, the traces chosen by t must agree on their order.

As a negative example, consider the following OR-set execution.
+0 +1 -1

+1 +0 -0
✓0 ✓1

In an OR-set, removes only affect the adds that are visible. In this execution, the top -1
does not affect the bottom +1, and symmetrically, the bottom -0 does not affect the top
+0; thus, the execution is possible. However, this execution is not EC with respect to
any set trace: since the final mutators are both removes, at least one of ?0 and ?1 must
return false in any sequential trace.

To guarantee EC executions of an OR-set, it is sufficient to require that every -k
action be ordered before any concurrent +k of the same value. If the resulting enriched
BPO is acyclic, then the OR-set execution is EC. The example above fails this test since
we would have a cycle involving all of the mutators: +0 +1 -1 +1 +0 -0 +0.

The analysis of the 2P-set is symmetric. ��
We end this section with the following simple fact about eventual consistency. The

proof uses the fact that we allow events that are concurrent with e to be included in t(e).

Lemma 3.7. If v �ec T and s � v then s �ec T . ��

4 Results

We define a language of clients and define interaction between a client and data struc-
ture. We then define monotonicity and state the abstraction and composition results.

256 R. Jagadeesan and J. Riely

Clients. We consider a simple language for clients: parallel composition of sequential
processes, which include method call, sequencing and conditional. Let tt and ff repre-
sent the boolean constants. Let k range over values, which include tt and ff. Let o range
over objects, m over mutator methods, and a over accessor methods. Then programs
(P), configurations (C) and labels (�) are defined as follows.

P ::= stop | o.m(k);P | if o.a(k)thenP | if o.a(k)thenP1 elseP2

C ::= P1|| · · ·||Pn

� ::= o.m(k) | o.a(k):tt | o.a(k):ff

For the most part, we elide occurrences of stop and explicit object references, writing
o.a(k);stop as “a(k)”. We also write if a(k)thenPelseP as “a(k);P”. In our running
example, we have been writing the label add(k) as “+k”, remove(k) as “-k”, get(k):tt
as “✓k” and get(k):ff as “✗k”.

Let �·� be a semantic function mapping configurations to sets of LVRs. The defini-
tion is the obvious one. For example, let C be the configuration add(0);get(1)||add
(1);get(0);get(1). Then �C� is a set of the following eight LVRs (up to isomorphism).

+0 ✗1
+1 ✗0 ✓1

+0 ✗1
+1 ✓0 ✓1

+0 ✓1
+1 ✗0 ✓1

+0 ✓1
+1 ✓0 ✓1

+0 ✗1
+1 ✗0 ✗1

+0 ✗1
+1 ✓0 ✗1

+0 ✓1
+1 ✗0 ✗1

+0 ✓1
+1 ✓0 ✗1

(7)

Under what circumstances can such a client interact with a 2P-set or OR-set and
expect that the observed behaviour if compatible with a sequential set? This question is
addressed in our first result, known as abstraction : when is the actual implementation
of a data structure a safe substitute for its “abstract” specification?

We must first define what it means for a client and a data structure to interact.

Interaction. From figure (7) it is clear that the data structure must be able to filter out
executions of the client. The set datatype does not include any traces that are compatible
with the four LPOs on the second line of figure (7).

From figure (7) it is equally clear that the data structure must be able to introduce
visibility that is not found in the client. For example, to achieve the results on the first
line, one must introduce visibility between the client programs, as follows.

+0 ✗1
+1 ✗0 ✓1

+0 ✗1
+1 ✓0 ✓1

+0 ✓1
+1 ✗0 ✓1

+0 ✓1
+1 ✓0 ✓1

It is safe for the data structure to add visibility (and therefore order) to the client;
however, the reverse is not true. A client can only introduce order that is compatible
with the data structure specification. Consider the sequential client add(0);get(0);get
(0). If this client communicates to separate replicas in a G-set, the execution +0 ✓0 ✗0
is possible, via the BPO +0 ✓0

✗0 . To avoid such anomalies, it is sufficient to
require that sequential clients alway move forward in the visibility relation. This can
be achieved by restricting each client program to communicate with a single replica, or
by other means. We include this requirement in our definition of composition, without
specifying how it is fulfilled.

Definition 4.1. Let S be a set of LVRs. �C�(S) �= {s ∈ S | ∃s′ ∈ �C�. s′ � s} ��

From Sequential Specifications to Eventual Consistency 257

One reading of the asymmetry in this definition is that a data structure may introduce
order, but not its clients. A more generous reading is that clients may require order that
is compatible with the data structure (that the data structure could have), but may not
introduce incompatible order.

Monotonicity and Abstraction. Even with this definition of the semantics, abstrac-
tion fails in general. Consider the client add(0);get(1)||add(1);get(0). The BPO

+0 ✗1
+1 ✗0 has order agreeing with the client and is an EC execution of a set, but

this behaviour is not observable by a client interacting with a sequential set. Abstraction
holds for clients that ensure monotone access to the data structure.

A set V is monotone if whenever V contains a trace u with a mutator m that is
concurrent with another event e, then V also contains a visibility extension v that orders
m and e. Since v is an visibility extension of u, it must contain the same labels.

Definition 4.2. A set V of LVRs is monotone when ∀u ∈ V. ∀m ∈ EM(u). ∀e ∈ E(u).
if (m ��u e and e ��u m) then ∃v ∈ V. u � v and (m �u e or e �u m) ��
Theorem 4.3. Let S be a set of LVRs and let T be a specification such that S �ec T . Let
C be a client such that �C�(S) is monotone. Then ∀s ∈ �C�(S). ∃t ∈ �C�(T). s � t. ��

The theorem states that if there is an execution s in �C�(S), then is a corresponding
execution t in �C�(T) that has exactly the same labels, and potentially more order. This
says that any client behaviour possible with the implementation S is also possible using
the sequential specification T .

Example 4.4. The G-set trace +0 ✗1
+1 can be allowed in a monotone subset of

G-set executions, since we can order ✗1 before +1 and still have a set execution; the
events +1 and +0 can be ordered arbitrarily. The G-set trace +0 ✗1

+1 ✗0 , however,
cannot be allowed in a monotone subset of G-set executions. In this case, if we order
+1 before ✗1, then the result is clearly not a set execution: 1 has been added, but is not
reported present. If we choose the reverse order, we have +0 before ✗0, and again the
result fails to be a valid set execution. Example 4.7 below gives an example of a specific
G-set client that satisfies monotonicity, under given assumptions. To design a general
class of context-independent monotone clients for a given data structure, it is necessary
to limit client programs, as done in languages in the CALM framework [10].

For example, in order to create a monotone subset of G-set traces, it is sound to
restrict clients to disallow the two-armed if-then-else. The semantics of the one-armed
if-then is blocking—the client must wait until the condition is true. The theorem estab-
lishes that such clients can safely us a G-set as though it were a sequential set.

The theorem provides guidance about how to design safe clients. In order to allow
a two-armed conditional with the G-set, we must ensure that events occurring concur-
rently with a negative response cannot invalidate that response. One way to achieve this,
following [10], is for the G-set to insert a barrier before returning a negative response.

��

258 R. Jagadeesan and J. Riely

Composition of Data Structures. We now turn our attention to reasoning about com-
pound data structures.

Definition 4.5. Given disjoint LTOs t1 and t2 (that is, E(t1)∩E(t2) = /0), let t1|||t2 denote
the set of their interleavings. This notion lifts to sets as follows: (T1|||T2)

�= {t ∈
(t1|||t2) | t1 ∈ T1 and t2 ∈ T2 and (E(t1)∩E(t2) = /0)}.

Given an LVR s and L ⊆ L(s), write s \ L for the LVR that results by restricting s to
events with labels in L. This notation lifts to sets in the obvious way: S\L

�=
⋃

s∈S s\L.
��

Theorem 4.6. Let �C�(S) be a monotone set of LVRs. Let L1 and L2 be disjoint subsets
of L . For i ∈ {1,2}, let Ti be a specification with labels chosen from Li. If (�C�(S) \
L1) �ec T1 and (�C�(S)\L2) �ec T2 then �C�(S) �ec (T1|||T2). ��
Example 4.7. The following definitions implement a 2P-set p, using two G-sets, a for
“added” and t for “tombstone”: p.add(k)

�= a.add(k), p.remove(k)
�= t.add(k), and

p.get(k)
�= a.get(k)∧¬t.get(k). If we can establish the necessary monotonicity prop-

erties, then we can reason with the sequential specifications of a and t in proving p
correct. An execution of a grow set g is monotone so long as for any g.✗k, there is no
concurrent g.+k. We must show that both a and t are accessed monotonically, so long as
p is accessed monotonically. An execution of a 2P-set p is monotone so long as (1) for
any p.✓k, there is no concurrent p.-k, and (2) for any p.✗k, there is no concurrent p.+k.

The conditions for monotonicity of p are sufficient to establish monotonicity of a
and t. There are two cases: (1) Suppose p.✓k. By monotonicity, we know there is no
concurrent p.-k, therefore no concurrent t.+k. By definition of p.get, we must have a.✓k
and t.✗k. Monotonicity imposes no constraints on a.✓k; to satisfy t.✗k, we must have no
concurrent t.+k, but this is exactly guaranteed by monotonicity of p. (2) Suppose p.✗k.
Then we know there is no concurrent p.+k, therefore no concurrent a.+k. By definition
of p.get, we must have either a.✗k or t.✓k. The argument is as before. ��

References

1. Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic replication
systems. In POPL 2014, pp. 285–296 (2014)

2. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: specification,
verification, optimality. In: POPL 2014, pp. 271–284 (2014)

3. Burckhardt, S., Leijen, D., Fähndrich, M., Sagiv, M.: Eventually consistent transactions. In:
Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211, pp. 67–86. Springer,
Heidelberg (2012)

4. Conway, N., Marczak, W.R. et al.: Logic and lattices for distributed programming. In: ACM
Symposium on Cloud Computing, pp. 1:1–1:14 (2012)

5. Derrick, J., Dongol, B., et al.: Quiescent consistency: defining and verifying relaxed lineariz-
ability. In: Formal, Methods, pp. 200–214 (2014)

6. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. ACM SIGMOD Record
18(2), 399–407 (1989)

7. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. The-
oretical Comp. Sci. 411, 4379–4398 (2010)

From Sequential Specifications to Eventual Consistency 259

8. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, pp. 51–59 (2002)

9. Gotsman, A., Yang, H.: Composite replicated data types. In: Vitek, J. (ed.) ESOP 2015.
LNCS, vol. 9032, pp. 585–609. Springer, Heidelberg (2015)

10. Hellerstein, J.M.: The declarative imperative: Experiences and conjectures in distributed
logic. SIGMOD Rec. 39(1), 5–19 (2010)

11. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM TOPLAS 12(3), 463–492 (1990)

12. Jagadeesan, R., Riely, J.: Between linearizability and quiescent consistency. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573,
pp. 220–231. Springer, Heidelberg (2014)

13. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

14. Panangaden, P., Shanbhogue, V., Stark, E.W.: Stability and sequentiality in dataflow net-
works. In: ICALP 1990, pp. 308–321 (1990)

15. Panangaden, P., Stark, E.W.: Computations, residuals, and the power of indeterminacy. In:
ICALP 1988, pp. 439–454 (1988)

16. Saito, Y., Shapiro, M.: Optimistic replication. Comput. Surv. 37(1), 42–81 (2005)
17. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of Convergent

and Commutative Replicated Data Types. TR 7506, Inria (2011)
18. Terry, D.B., Theimer, M.M. et al.: Managing update conflicts in bayou, a weakly connected

replicated storage system. In: SOSP (1995)
19. Vogels, W.: Eventually consistent. Communications of the ACM 52(1), 40–44 (2009)

	From Sequential Specifications to Eventual Consistency
	1 Introduction
	2 Bracketed Partial Orders and Labeled Visibility Relations
	3 Eventual Consistency
	4 Results
	References

