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Abstract. Two key results of Robertson and Seymour’s graph minor theory are:
1. a structure theorem stating that all graphs excluding some fixed graph as a

minor have a tree decomposition into pieces that are almost embeddable in a
fixed surface.

2. the k-disjoint paths problem is tractable when k is a fixed constant: given a
graph G and k pairs (s1, t1), …, (sk , tk) of vertices of G, decide whether
there are k mutually vertex disjoint paths of G, the i th path linking si and ti
for i = 1, . . . , k.

In this talk, we shall try to look at the corresponding problems for digraphs.
Concerning the first point, the grid theorem, originally proved in 1986 by

Robertson and Seymour in Graph Minors V, is the basis (even for the whole
graph minor project). In the mid-90s, Reed and Johnson, Robertson, Seymour
and Thomas (see [13,26]), independently, conjectured an analogous theorem for
directed graphs, i.e. the existence of a function f : N → N such that every digraph
of directed treewidth at least f (k) contains a directed grid of order k. In an unpub-
lished manuscript from 2001, Johnson, Robertson, Seymour and Thomas give a
proof of this conjecture for planar digraphs. But for over a decade, this was the
most general case proved for the conjecture.

We are finally able to confirm the Reed, Johnson, Robertson, Seymour and
Thomas conjecture in full generality. As a consequence of our results we are able
to improve results in Reed et al. in 1996 [27] to disjoint cycles of length at least
l. This would be the first but a significant step toward the structural goals for
digraphs (hence towards the first point).

Concerning the second point, in [19] we contribute to the disjoint paths prob-
lem using the directed grid theorem. We show that the following can be done in
polynomial time:

Suppose that we are given a digraph G and k terminal pairs
(s1, t1), (s2, t2), . . . , (sk , tk), where k is a fixed constant. In polynomial time,
either
– we can find k paths P1, . . . , Pk such that Pi is from si to ti for i = 1, . . . , k

and every vertex in G is in at most four of the paths, or
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– we can conclude that G does not contain disjoint paths P1, . . . , Pk such that
Pi is from si to ti for i = 1, . . . , k.

To the best of our knowledge, this is the first positive result for the general directed
disjoint paths problem (and hence for the second point). Note that the directed
disjoint paths problem is NP-hard even for k = 2. Therefore, this kind of results
is the best one can hope for.

We also report some progress on the above two points.

Keywords: Directed graphs · Grid minor · The directed disjoint paths problem

1 Introduction

One of the deepest and the most far-reaching theories of the recent 20 years in discrete
mathematics (and theoretical computer science as well) is Graph Minor Theory devel-
oped by Robertson and Seymour in a series of over 20 papers spanning the last 20 years
[28]. Their theory leads to “structural graph theory”, which has proved to be a powerful
tool for coping with computational intractability. It provides a host of results that can be
used to design efficient (approximation or exact) algorithms for many NP-hard problems
on specific classes of graphs that occurs naturally in applications.

Two key results of Robertson and Seymour’s graph minor theory are:

1. a structure theorem stating that all graphs excluding some fixed graph as a minor
have a tree decomposition into pieces that are almost embeddable in a fixed surface.

2. the k-disjoint paths problem is tractable when k is a fixed constant: given a graph G
and k pairs (s1, t1), …, (sk, tk) of vertices of G, decide whether there are k mutually
vertex disjoint paths of G, the i th path linking si and ti for i = 1, . . . , k.

In order to solve these two problems, of particular importance is the concept of
treewidth, introduced by Robertson and Seymour. Treewidth has gained immense atten-
tion ever since, especially because many NP-hard problems can be handled efficiently
on graphs of bounded treewidth [1]. In fact, all problems that can be defined in monadic
second-order logic are solvable on graphs of bounded treewidth [4].

A keystone in the proof of the above two results (and many other theorems) is a grid
theorem [29]: any graph of treewidth at least some f (r) is guaranteed to have the r × r
grid graph as a minor. This gird theorem played a key role in the k-disjoint paths problem
[17,30]. It also played a key role for some other deep applications (e.g., [12,21,22]).

This grid theorem has also played a key role for many algorithmic applications,
in particular via bidimensionality theory (e.g., [6–8]), including many approximation
algorithms, PTASs, and fixed-parameter algorithms. These include feedback vertex set,
vertex cover, minimummaximal matching, face cover, a series of vertex-removal param-
eters, dominating set, edge dominating set, R-dominating set, connected dominating set,
connected edge dominating set, connected R-dominating set, and unweighted TSP tour.

The grid theorem of [29] has been extended, improved, and re-proved by Robertson,
Seymour, and Thomas [31], Reed [25], Diestel, Jensen, Gorbunov, and Thomassen [10],
Kawarabayashi and Kobayashi [16] and Leaf and Seymour [23]. Very recently, this has
been improved to be polynomial [3]. On the other side, the best known lower bound is
Ω(r2 log r).
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A linear upper bound has been shown for planar graphs [31] and for bounded genus
graphs [7]. Recently this min-max relation is also established for graphs excluding any
fixed minor H : every H -minor-free graph of treewidth at least cH r has an r × r grid
minor for some constant cH [9]. The bound is now explicitly described as |H ||H | [16]
This bound leads to many powerful algorithmic results on H -minor-free graphs [7,9]
that are previously not known.

2 What about Digraphs?

The structural techniques discussed in graphminor theory all relate to undirected graphs.
What about directed graphs? Given the enormous success for problems of width param-
eters (c.f., treewidth) defined on undirected graphs, it is quite natural to ask whether
they can also be extended to analyze the structure of digraphs. In principle by ignoring
the direction of edges, it is possible to apply many techniques for undirected graphs to
directed graphs. However, we would have an information loss and might fail to prop-
erly distinguish between simple and hard input instances. For example, the k-disjoint
paths problem for digraphs is NP-complete even when we consider the fixed value
k = 2 (Fortune, Hopcroft and Wylie [11]), but it is polynomially solvable for all fixed k
for undirected graphs [15,30]. Hence, for computational problems whose instances are
directed graphs, many methods for undirected graphs may be less useful.

As a first step (but also a significant step) towards overcoming such a difficulty,
Reed in 1999 and Johnson, Robertson, Seymour and Thomas [13] proposed a concept of
directed treewidth and showed that the k-disjoint paths problem is solvable in polynomial
time for any fixed k on any class of graphs of bounded directed treewidth [13]. Reed and
Johnson et al. also conjectured a directed analogue of the grid theorem.

Conjecture 1 (Reed; Johnson, Robertson, Seymour, Thomas [13]). There is a function
f : N → N such that every digraph of directed treewidth at least f (k) contains a
cylindrical grid of order k as a butterfly minor.

Actually, according to [13], this conjecture was formulated by Robertson, Seymour and
Thomas, together with Alon and Reed at a conference in Annecy, France in 1995. Here,
a cylindrical grid consists of k concentric directed cycles and 2k paths connecting the
cycles in alternating directions. A butterfly minor of a digraph G is a digraph obtained
from a subgraph of G by contracting edges which are either the only outgoing edge of
their tail or the only incoming edge of their head. All details for these notations can be
found in appendix.

Let us now report progress on the conjecture. In an unpublished manuscript, Johnson
et al. [14] proved the conjecture for planar digraphs. In [18], this result was generalised
to all classes of directed graphs excluding a fixed undirected graph as an undirected
minor. For instance, this includes classes of digraphs of bounded genus. Another related
result was established in [19], where a half-integral grid theorem was proved (for the
definition of a “half-integral directed grid”, we refer the reader to [19]).

Very recently, we finally confirm this conjecture [20]. We believe that this is a first
but an important step towards a more general structure theory for directed graphs based
on directed treewidth, similar to the grid theorem for undirected graphs being the basis
of more general structure theorems (including the main graph minor structure theorem).
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3 Algorithmic Contributions

Our main algorithmic interest is the directed k-disjoint paths problem. Recall that for
undirected graphs the problem is solvable in polynomial time for any fixed number k.
For directed graphs, the situation is much worse since the problem is NP-complete even
for only two such pairs.

Theorem 1 (Fortune, Hopcroft, and Wyllie [11]). The following problem is NP-
complete even for k = 2:

Directed Disjoint Paths
Input: A digraph G and terminals s1, t1, s2, t2, . . . , sk, tk .

Problem: Find k (vertex) disjoint paths P1, . . . , Pk such that Pi is from si to ti for
i = 1, . . . , k.

Therefore much work has gone into finding polynomial time algorithms for solving
this problem on restricted classes of digraphs. See e.g. [5,32] for work in this direction.

In this talk, we are not so much interested in solving disjoint paths problems on
special classes of digraphs, but rather in obtaining algorithms working on all directed
graphs. We therefore have to relax some of the conditions. Indeed, we allow each vertex
of the graph to be contained in small number of paths linking the source/terminal pairs.

Using the directed grid minor, the following is shown in [19].

Theorem 2. For every fixed k ≥ 1 there is a polynomial time algorithm for deciding
the following problem.

Quarter- Integral Disjoint Paths
Input: A digraph G and terminals s1, t1, s2, t2, . . . , sk, tk .

Problem:
– Find k paths P1, . . . , Pk such that Pi is from si to ti for i = 1, . . . , k

and every vertex in G is in at most four of the paths, or
– conclude that G does not contain disjoint paths P1, . . . , Pk such that

Pi is from si to ti for i = 1, . . . , k.

As far as we are aware, this is the first result that establishes a positive result, and
gives a polynomial time algorithm for the variant of the disjoint paths problems on the
class of all digraphs. Note that this result is best possible in a sense. Indeed, Slivkins [33]
proved that the directed disjoint paths problem is W[1]-hard already on acyclic digraphs
and it is not hard to extend this result to the half- or quarter-integral case. Hence in
terms of running time our algorithm is optimal in the sense that it cannot be improved
to O( f (k)nc) for any fixed constant c.

As we said, the key is to use a cylindrical grid. The following theorem tells us why
a “directed” grid minor is important.

Theorem 3. Let s1, . . . , sk, t1, . . . , tk be (not necessarily distinct) 2k vertices in a
digraph G. Suppose that G has a cylindrical grid W of order 8k3. Let S = {s1, . . . , sk}
and T = {t1, . . . , tk}. Suppose furthermore that
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1. there is no separation (A1, B1) of order at most k such that A1 contains S and B1
contains all but at most k vertices Q1 of in-degree or out-degree at least two in W ,
and there is no path from S to Q1 in G − (A1 ∩ B1), and

2. there is no separation (A′
1, B ′

1) of order at most k such that A′
1 contains T and B ′

1
contains all but at most k vertices Q2 of in-degree or out-degree at least two in W ,
and there is no path from Q2 to T in G − (A′

1 ∩ B ′
1).

Then in polynomial time, we can find k paths P1, . . . , Pk in G such that endpoints
of Pi are si , ti for i = 1, . . . , k, and moreover each vertex in G is used in at most two of
these paths.

Using Theorem 3, we are currently working on the following conjecture.

Conjecture 2. For a fixed constant k, there is a polynomial time algorithm for the fol-
lowing problem:

Directed Half- Disjoint Paths
Input: A digraph G and terminals s1, t1, s2, t2, . . . , sk, tk .

Problem: Find k paths P1, . . . , Pk such that Pi connects from si to ti for i =
1, . . . , k and every vertex in G is in at most two of the paths.

As pointed out above, this is the best we can hope.

4 Additional Notations

An r × r grid is a graph which is isomorphic to the graph Wr obtained from Cartesian
product of paths of length r −1,with vertex set V (Wr ) = {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r}
in which two vertices (i, j) and (i ′, j ′) are adjacent if and only if |i − i ′| + | j − j ′| = 1.

The (4× 5)-grid, as well as the (8× 5)-wall (which can be defined in a similar way)
are shown in Figure 1.

Fig. 1. The (4 × 5)-grid and the (8 × 5)-wall

A tree decomposition of a graph G is a pair (T,W), where T is a tree and W is
a family {Wt | t ∈ V (T )} of vertex sets Wt ⊆ V (G), such that the following two
properties hold:

(1)
⋃

t∈V (T ) Wt = V (G), and every edge of G has both ends in some Wt .
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(2) If t, t ′, t ′′ ∈ V (T ) and t ′ lies on the path in T between t and t ′′, then Wt ∩Wt ′′ ⊆ Wt ′ .

The width of a tree decomposition (T,W) is maxt∈V (T ) |Wt | − 1. The treewidth of a
graph G is the minimum width over all possible tree decompositions of G.

Robertson and Seymour developed the first polynomial time algorithm for construct-
ing a tree decomposition of a graph of bounded width [30], and eventually came up with
an algorithm which runs in O(n2) time, for this problem. Reed [24] developed an algo-
rithm for the problemwhich runs in O(n log n) time, and then Bodlaender [2] developed
a linear time algorithm.

Directed Treewidth We briefly recall the definition of directed treewidth from [13].

Fig. 2. Cylindrical grid G4.

By an arborescence we
mean a directed graph R
such that R has a vertex r0,
called the root of R, with
the property that for every
vertex r ∈ V (R) there is
a unique directed path from
r0 to r . Thus every arbores-
cence arises from a tree by
selecting a root and direct-
ing all edges away from the
root. If r, r ′ ∈ V (R) we
write r ′ > r if r ′ 	= r and
there exists a directed path
in R with initial vertex r and
terminal vertex r ′. If e ∈ E(R) we write r ′ > e if either r ′ = r or r ′ > r , where r is the
head of e. Let G be a digraph, and let Z ⊆ V (G). We say that a set S ⊆ (V (G) − Z)

is Z-normal if there is no directed walk in G − Z with the first and the last vertex in S
that uses a vertex of G − (Z ∪ S). It follows that every Z -normal set is the union of the
vertex-sets of strong components of G − Z . As one readily checks, a set S is Z -normal
if and only if the vertex-sets of the strong components of G − Z can be numbered
S1, S2, . . . , Sd in such a way that
1. if 1 ≤ i < j ≤ d, then no edge of G has head in Si and tail in S j , and
2. either S = ∅, or S = Si ∪ Si+1 ∪· · ·∪ S j for some integers i, j with 1 ≤ i ≤ j ≤ d.

Definition 1. A directed tree-decomposition of a digraph G is a triple (R, X, W ), where
R is an arborescence, and X = (Xe : e ∈ E(R)) and W = (Wr : r ∈ V (R)) are sets
of vertices of G that satisfy
1. (Wr : r ∈ V (R)) is a partition of V (G) into nonempty sets, and
2. if e ∈ E(R), then

⋃
(Wr : r ∈ V (R), r > e) is Xe-normal.

Thewidth of (R, X, W ) is the least integer w such that for all r ∈ V (R), |Wr ∪⋃
e Xe| ≤

w + 1, where e is taken over all edges incident to r . The directed treewidth of G is the
least integer w such that G has a directed tree-decomposition of width w.

Sometimes, we call Wr or Xe a bag for r ∈ V (R) and e ∈ E(R). It is easy to see that
the directed tree-width of a subdigraph of G is at most the tree-width of G.
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