
Magnús M. Halldórsson
Kazuo Iwama
Naoki Kobayashi
Bettina Speckmann (Eds.)

 123

42nd International Colloquium, ICALP 2015
Kyoto, Japan, July 6–10, 2015
Proceedings, Part II

Automata, Languages,
and ProgrammingLN

CS
 9

13
5

AR
Co

SS

Lecture Notes in Computer Science 9135

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
John C. Mitchell, USA
Bernhard Steffen, Germany
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Takeo Kanade, USA
Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland
Moni Naor, Israel
C. Pandu Rangan, India
Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Magnús M. Halldórsson • Kazuo Iwama
Naoki Kobayashi • Bettina Speckmann (Eds.)

Automata, Languages,
and Programming
42nd International Colloquium, ICALP 2015
Kyoto, Japan, July 6–10, 2015
Proceedings, Part II

123

Editors
Magnús M. Halldórsson
Reykjavik University
Reykjavik
Iceland

Kazuo Iwama
Kyoto University
Kyoto
Japan

Naoki Kobayashi
The University of Tokyo
Tokyo
Japan

Bettina Speckmann
Technische Universiteit Eindhoven
Eindhoven
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-47665-9 ISBN 978-3-662-47666-6 (eBook)
DOI 10.1007/978-3-662-47666-6

Library of Congress Control Number: 2015941869

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

ICALP 2015, the 42nd edition of the International Colloquium on Automata, Lan-
guages and Programming, was held in Kyoto, Japan during July 6–10, 2015. ICALP is
a series of annual conferences of the European Association for Theoretical Computer
Science (EATCS), which first took place in 1972. This year, the ICALP program
consisted of the established track A (focusing on algorithms, automata, complexity, and
games) and track B (focusing on logic, semantics, and theory of programming), and
of the recently introduced track C (focusing on foundations of networking).

In response to the call for papers, the Program Committee received 507 submissions,
the highest ever: 327 for track A, 115 for track B, and 65 for track C. Out of these, 143
papers were selected for inclusion in the scientific program: 89 papers for Track A, 34
for Track B, and 20 for Track C. The selection was made by the Program Committees
based on originality, quality, and relevance to theoretical computer science. The quality
of the manuscripts was very high indeed, and many deserving papers could not be
selected.

The EATCS sponsored awards for both a best paper and a best student paper for
each of the three tracks, selected by the Program Committees. The best paper awards
were given to the following papers:

– Track A: Aaron Bernstein and Clifford Stein. “Fully Dynamic Matching in Bipartite
Graphs”

– Track B: Jarkko Kari and Michal Szabados. “An Algebraic Geometric Approach to
Nivat’s Conjecture”

– Track C: Yiannis Giannakopoulos and Elias Koutsoupias. “Selling Two Goods
optimally”

The best student paper awards, for papers that are solely authored by students, were
given to the following papers:

– Track A: Huacheng Yu. “An Improved Combinatorial Algorithm for Boolean
Matrix Multiplication”

– Track A: Radu Curticapean. “Block Interpolation: A Framework for Tight Expo-
nential-Time Counting Complexity”

– Track B: Georg Zetzsche. “An Approach to Computing Downward Closures”

Track A gave out two student paper awards this year because of the very high
quality of the two winning papers.

The conference was co-located with LICS 2015, the 30th ACM/IEEE Symposium
on Logic in Computer Science.

Apart from the contributed talks, ICALP 2015 included invited presentations by
Ken-ichi Kawarabayashi, Valerie King, Thomas Moscibroda, Anca Muscholl, Peter
O’Hearn, of which the latter two were joint with LICS. Additionally, it contained
tutorial sessions by Piotr Indyk, Andrew Pitts, and Geoffrey Smith, all joint with LICS,

and a masterclass on games by Ryuhei Uehara. Abstracts of their talks are included in
these proceedings as well. The program of ICALP 2015 also included presentation
of the EATCS Award 2015 to Christos Papadimitriou.

This volume of the proceedings contains all contributed papers presented at the
conference in Track A. A companion volume contains all contributed papers presented
in Track B and Track C together with the papers and abstracts of the invited speakers.
The following workshops were held as satellite events of ICALP/LICS 2015:
HOPA 2015 — Workshop on the Verification of Higher-Order Programs
LCC 2015 — 16th International Workshop on Logic and Computational Complexity
NLCS 2015 — Third Workshop on Natural Language and Computer Science
LOLA 2015 — Workshop on Syntax and Semantics for Low-Level Languages
QCC 2015 — Workshop on Quantum Computational Complexity
WRAWN 2015 — 6th Workshop on Realistic Models for Algorithms in Wireless

Networks
YR-ICALP 2015 — Young Researchers Forum on Automata, Languages and

Programming

We wish to thank all authors who submitted extended abstracts for consideration,
the Program Committees for their scholarly effort, and all referees who assisted the
Program Committees in the evaluation process.

We thank the sponsors (ERATO Kawarabayashi Large Graph Project; MEXT
Grant-in-Aid for Scientific Research on Innovative Areas “Exploring the Limits of
Computation”; Research Institute for Mathematical Sciences, Kyoto University; and
Tateisi Science and Technology Foundation) for their support.

We are also grateful to all members of the Organizing Committee and to their
support staff.

Thanks to Andrei Voronkov and Shai Halevi for writing the conference manage-
ment systems EasyChair andWeb-Submission-and-Review software, which were used
in handling the submissions and the electronic Program Committee meeting, as well as
in assisting in the assembly of the proceedings.

Last but not least, we would like to thank Luca Aceto, the president of EATCS, for
his generous advice on the organization of the conference.

May 2015 Magnús M. Halldórsson
Kazuo Iwama

Naoki Kobayashi
Bettina Speckmann

VI Preface

Organization

Program Committee

Track A

Peyman Afshani Aarhus University, Denmark
Hee-Kap Ahn POSTECH, South Korea
Hans Bodlaender Utrecht University, The Netherlands
Karl Bringmann Max-Planck Institut für Informatik, Germany
Sergio Cabello University of Ljubljana, Slovenia
Ken Clarkson IBM Almaden Research Center, USA
Éric Colin de Verdière École Normale Supérieure Paris, France
Stefan Dziembowski University of Warsaw, Poland
David Eppstein University of California at Irvine, USA
Dimitris Fotakis National Technical University of Athens, Greece
Paul Goldberg University of Oxford, UK
MohammadTaghi

Hajiaghayi
University of Maryland at College Park, USA

Jesper Jansson Kyoto University, Japan
Andrei Krokhin Durham University, UK
Asaf Levin Technion, Israel
Inge Li Gørtz Technical University of Denmark, Denmark
Pinyan Lu Microsoft Research Asia, China
Frédéric Magniez Université Paris Diderot, France
Kazuhisa Makino Kyoto University, Japan
Elvira Mayordomo Universidad de Zaragoza, Spain
Ulrich Meyer Goethe University Frankfurt am Main, Germany
Wolfgang Mulzer Free University Berlin, Germany
Viswanath Nagarajan University of Michigan, USA
Vicky Papadopoulou European University Cyprus, Cyprus
Michał Pilipczuk University of Bergen, Norway
Liam Roditty Bar-Ilan University, Israel
Ignaz Rutter Karlsruhe Institute of Technology, Germany
Rocco Servedio Columbia University, USA
Jens Schmidt TU Ilmenau, Germany
Bettina Speckmann TU Eindhoven, The Netherlands
Csaba D. Tóth California State University Northridge, USA
Takeaki Uno National Institute of Informatics, Japan
Erik Jan van Leeuwen Max-Planck Institut für Informatik, Germany
Rob van Stee University of Leicester, UK
Ivan Visconti University of Salerno, Italy

Track B

Andreas Abel Chalmers and Gothenburg University, Sweden
Albert Atserias Universitat Politècnica de Catalunya, Spain
Christel Baier TU Dresden, Germany
Lars Birkedal Aarhus University, Denmark
Luís Caires Universidade Nova de Lisboa, Portugal
James Cheney University of Edinburgh, UK
Wei Ngan Chin National University of Singapore, Singapore
Ugo Dal Lago University of Bologna, Italy
Thomas Ehrhard CNRS and Université Paris Diderot, France
Zoltán Ésik University of Szeged, Hungary
Xinyu Feng University of Science and Technology of China, China
Wan Fokkink VU University Amsterdam, The Netherlands
Shin-ya Katsumata Kyoto University, Japan
Naoki Kobayashi The University of Tokyo, Japan
Eric Koskinen New York University, USA
Antonín Kučera Masaryk University, Czech Republic
Orna Kupferman Hebrew University, Israel
Annabelle Mclver Macquarie University, Australia
Dale Miller Inria Saclay, France
Markus Müller-Olm University of Münster, Germany
Andrzej Murawski University of Warwick, UK
Joel Ouaknine University of Oxford, UK
Prakash Panangaden McGill University, Canada
Pawel Parys University of Warsaw, Poland
Reinhard Pichler TU Vienna, Austria
Simona Ronchi Della Rocca University of Turin, Italy
Jeremy Siek Indiana University, USA

Track C

Ioannis Caragiannis University of Patras, Greece
Katarina Cechlarova Pavol Jozef Safarik University, Slovakia
Shiri Chechik Tel Aviv University, Israel
Yuval Emek Technion, Israel
Sándor Fekete TU Braunschweig, Germany
Pierre Fraigniaud CNRS, Université Paris Diderot, France
Leszek Gąsieniec University of Liverpool, UK
Aristides Gionis Aalto University, Finland
Magnús M. Halldórsson Reykjavik University, Iceland
Monika Henzinger Universität Wien, Austria
Bhaskar Krishnamachari University of Southern California, USA
Fabian Kuhn University of Freiburg, Germany
Michael Mitzenmacher Harvard University, USA
Massimo Merro University of Verona, Italy

VIII Organization

Gopal Pandurangan University of Houston, USA
Pino Persiano University of Salerno, Italy
R. Ravi Carnegie Mellon University, USA
Ymir Vigfusson Emory University, USA
Roger Wattenhofer ETH Zürich, Switzerland
Masafumi Yamashita Kyushu University, Japan

Organizing Committee

Masahito Hasegawa Kyoto University, Japan
Atushi Igarashi Kyoto University, Japan
Kazuo Iwama Kyoto University, Japan
Kazuhisa Makino Kyoto University, Japan

Financial Sponsors

ERATO Kawarabayashi Large Graph Project
MEXT Grant-in-Aid for Scientific Research on Innovative Areas: “Exploring the
Limits of Computation”
Research Institute for Mathematical Sciences, Kyoto University
Tateisi Science and Technology Foundation

Additional Reviewers

Abboud, Amir
Abdulla, Parosh
Abed, Fidaa
Abraham, Ittai
Ailon, Nir
Ajwani, Deepak
Albers, Susanne
Almeida, Jorge
Alt, Helmut
Alur, Rajeev
Alvarez, Victor
Alvarez-Jarreta, Jorge
Ambainis, Andris
Aminof, Benjamin
Anagnostopoulos, Aris
Andoni, Alexandr
Angelidakis, Haris
Anshelevich, Elliot
Antoniadis, Antonios

Arai, Hiromi
Aronov, Boris
Asada, Kazuyuki
Aspnes, James
Aubert, Clément
Augustine, John
Auletta, Vincenzo
Austrin, Per
Avin, Chen
Avni, Guy
Baelde, David
Baillot, Patrick
Bansal, Nikhil
Banyassady, Bahareh
Barnat, Jiri
Barth, Stephan
Barto, Libor
Basavaraju, Manu
Bassily, Raef

Organization IX

Baswana, Surender
Bateni, Mohammadhossein
Batu, Tugkan
Baum, Moritz
Béal, Marie-Pierre
Beigi, Salman
Beimel, Amos
Ben-Amran, Amr
Berenbrink, Petra
Bernáth, Attila
Berthé, Valérie
Bes, Alexis
Besser, Bert
Bevern, René Van
Bi, Jingguo
Bienstock, Daniel
Bille, Philip
Bilò, Vittorio
Bizjak, Ales
Björklund, Henrik
Blais, Eric
Bläsius, Thomas
Blömer, Johannes
Bogdanov, Andrej
Bojanczyk, Mikolaj
Bollig, Benedikt
Bonfante, Guillaume
Bonnet, Edouard
Bourhis, Pierre
Bousquet, Nicolas
Boyar, Joan
Bozzelli, Laura
Bradfield, Julian
Brandes, Philipp
Brandt, Sebastian
Braverman, Vladimir
Bresolin, Davide
Brzuska, Christina
Brânzei, Simina
Bucciarelli, Antonio
Buchbinder, Niv
Buchin, Kevin
Bulatov, Andrei
Cai, Jin-Yi
Cai, Zhuohong
Canonne, Clement

Cao, Yixin
Carayol, Arnaud
Carmi, Paz
Caron, Pascal
Caskurlu, Bugra
Cassez, Franck
Castagnos, Guilhem
Castellani, Ilaria
Castelli Aleardi, Luca
Cenzer, Douglas
Chakrabarty, Deeparnab
Chalermsook, Parinya
Chan, T.-H. Hubert
Chan, Timothy M.
Chattopadhyay, Arkadev
Chekuri, Chandra
Chen, Ho-Lin
Chen, Wei
Chen, Xi
Chen, Xujin
Chitnis, Rajesh
Chlamtac, Eden
Chlebikova, Janka
Cho, Dae-Hyeong
Chonev, Ventsislav
Christodoulou, George
Cicalese, Ferdinando
Cimini, Matteo
Clairambault, Pierre
Claude, Francisco
Clemente, Lorenzo
Cleve, Richard
Cloostermans, Bouke
Cohen-Addad, Vincent
Columbus, Tobias
Cording, Patrick Hagge
Coretti, Sandro
Cormode, Graham
Cornelsen, Sabine
Cosentino, Alessandro
Coudron, Matthew
Crouch, Michael
Cygan, Marek
Czerwiński, Wojciech
Czumaj, Artur
Dachman-Soled, Dana

X Organization

Dahlgaard, Søren
Dalmau, Victor
Dantchev, Stefan
Daruki, Samira
Das, Anupam
Dasler, Philip
Datta, Samir
Daum, Sebastian
Dawar, Anuj
De Bonis, Annalisa
De Caro, Angelo
De, Anindya
Dehghani, Sina
Deligkas, Argyrios
Dell, Holger
Demangeon, Romain
Demri, Stéphane
Denzumi, Shuhei
Diakonikolas, Ilias
Dibbelt, Julian
Dietzfelbinger, Martin
Dinsdale-Young, Thomas
Dinur, Itai
Disser, Yann
Dobrev, Stefan
Doerr, Carola
Döttling, Nico
Dotu, Ivan
Doty, David
Dräger, Klaus
Drucker, Andrew
Duan, Ran
Dubslaff, Clemens
Duetting, Paul
van Duijn, Ingo
Duncan, Ross
Durand, Arnaud
Durand-Lose, Jérôme
Dürr, Christoph
Dvorák, Wolfgang
Dyer, Martin
Efthymiou, Charilaos
Eirinakis, Pavlos
Elbassioni, Khaled
Elmasry, Amr
Emanuele, Viola

Emmi, Michael
Emura, Keita
Englert, Matthias
Epelman, Marina
Epstein, Leah
Ergun, Funda
Erickson, Alejandro
Esfandiari, Hossein
Fahrenberg, Uli
Farinelli, Alessandro
Faust, Sebastian
Fawzi, Omar
Fefferman, Bill
Feldman, Moran
Feldmann, Andreas Emil
Feng, Yuan
Fernique, Thomas
Ferraioli, Diodato
Fijavz, Gasper
Filinski, Andrzej
Filmus, Yuval
Filos-Ratsikas, Aris
Find, Magnus Gausdal
Firsov, Denis
Fleiner, Tamas
Foerster, Klaus-Tycho
Fomin, Fedor
Fontes, Lila
Forbes, Michael A.
Forejt, Vojtech
Formenti, Enrico
François, Nathanaël
Fränzle, Martin
Frascaria, Dario
Friedrich, Tobias
Fu, Hongfei
Fuchs, Fabian
Fuchsbauer, Georg
Fukunaga, Takuro
Fuller, Benjamin
Funk, Daryl
Fürer, Martin
Gabizon, Ariel
Gaboardi, Marco
Gacs, Peter
Gaertner, Bernd

Organization XI

Galanis, Andreas
Galčík, František
Ganguly, Sumit
Ganor, Anat
Ganty, Pierre
Garg, Naveen
Gaspers, Serge
Gawrychowski, Pawel
Gazda, Maciej
Gehrke, Mai
Gemsa, Andreas
Georgiadis, Loukas
Gerhold, Marcus
van Glabbeek, Rob
Göller, Stefan
Goncharov, Sergey
Göös, Mika
Gopalan, Parikshit
Gorbunov, Sergey
Gouveia, João
Grandjean, Etienne
Grandoni, Fabrizio
Green Larsen, Kasper
Grigoriev, Alexander
Grohe, Martin
Groote, Jan Friso
Grossi, Roberto
Grunert, Romain
Guessarian, Irène
Guiraud, Yves
Guo, Heng
Gupta, Anupam
Hadfield, Stuart
Hague, Matthew
Hahn, Ernst Moritz
Haitner, Iftach
Halevi, Shai
Hamann, Michael
Hampkins, Joel
Hansen, Kristoffer Arnsfelt
Har-Peled, Sariel
Harrow, Aram
Hastad, Johan
Hatano, Kohei
Haverkort, Herman
He, Meng

Heindel, Tobias
Hendriks, Dimitri
Henze, Matthias
Hermelin, Danny
Herranz, Javier
Heunen, Chris
Heydrich, Sandy
Hlineny, Petr
Hoffmann, Frank
Hoffmann, Jan
Hofheinz, Dennis
Hofman, Piotr
Holm, Jacob
Holmgren, Justin
Hong, Seok-Hee
Houle, Michael E.
Høyer, Peter
Hsu, Justin
Huang, Shenwei
Huang, Zengfeng
Huang, Zhiyi
Hwang, Yoonho
van Iersel, Leo
Im, Sungjin
Immerman, Neil
Inaba, Kazuhiro
Iovino, Vincenzo
Ishii, Toshimasa
Italiano, Giuseppe F.
Ito, Takehiro
Ivan, Szabolcs
Iwata, Yoichi
Izumi, Taisuke
Jaberi, Raed
Jaiswal, Ragesh
Jancar, Petr
Janin, David
Jansen, Bart M.P.
Jansen, Klaus
Jayram, T.S.
Jeavons, Peter
Jeffery, Stacey
Jerrum, Mark
Jeż, Łukasz
Jhanwar, Mahabir Prasad
Johnson, Matthew

XII Organization

Johnson, Matthew P.
Jones, Mark
Jones, Neil
Jordan, Charles
Jørgensen, Allan Grønlund
Jovanovic, Aleksandra
Jukna, Stasys
Kakimura, Naonori
Kalaitzis, Christos
Kamiyama, Naoyuki
Kanade, Varun
Kanazawa, Makoto
Kane, Daniel
Kanellopoulos, Panagiotis
Kantor, Erez
Kanté, Mamadou Moustapha
Kaplan, Haim
Karhumaki, Juhani
Kari, Jarkko
Kärkkäinen, Juha
Kashefi, Elham
Katajainen, Jyrki
Katz, Matthew
Kawachi, Akinori
Kazana, Tomasz
Kelk, Steven
Keller, Barbara
Keller, Orgad
Kenter, Sebastian
Kerenidis, Iordanis
Khan, Maleq
Khani, Reza
Khoussainov, Bakhadyr
Kida, Takuya
Kiefer, Stefan
Kijima, Shuji
Kim, Eun Jung
Kim, Heuna
Kim, Min-Gyu
Kim, Ringi
Kim, Sang-Sub
Kishida, Kohei
Kiyomi, Masashi
Klauck, Hartmut
Klavík, Pavel
Klima, Ondrej

Klin, Bartek
Knauer, Christian
Kobayashi, Yusuke
Kollias, Konstantinos
Kolmogorov, Vladimir
Komusiewicz, Christian
König, Barbara
König, Michael
Konrad, Christian
Kontogiannis, Spyros
Kopczynski, Eryk
Kopelowitz, Tsvi
Kopparty, Swastik
Korman, Matias
Kortsarz, Guy
Korula, Nitish
Kostitsyna, Irina
Kotek, Tomer
Kothari, Robin
Kovacs, Annamaria
Kozen, Dexter
Kraehmann, Daniel
Kral, Daniel
Kralovic, Rastislav
Kratsch, Dieter
Kratsch, Stefan
Krcal, Jan
Krenn, Stephan
Kretinsky, Jan
Kreutzer, Stephan
van Kreveld, Marc
Kriegel, Klaus
Krinninger, Sebastian
Krishna, Shankara Narayanan
Krishnaswamy, Ravishankar
Krizanc, Danny
Krumke, Sven
Krysta, Piotr
Kulkarni, Raghav
Kumar, Amit
Kumar, Mrinal
Künnemann, Marvin
Kuperberg, Greg
Kuroda, Satoru
Kurz, Alexander
Kyropoulou, Maria

Organization XIII

Labourel, Arnaud
Lachish, Oded
Łącki, Jakub
Lagerqvist, Victor
Lamani, Anissa
Lammich, Peter
Lampis, Michael
Lanese, Ivan
Lange, Martin
Lasota, Sławomir
Laudahn, Moritz
Laura, Luigi
Laurent, Monique
Lauriere, Mathieu
Lavi, Ron
Lazic, Ranko
Le Gall, Francois
Le, Quang Loc
Le, Ton Chanh
Lecerf, Gregoire
Lee, James
Lee, Troy
Lengler, Johannes
Leonardos, Nikos
Leung, Hing
Levy, Paul Blain
Lewenstein, Moshe
Lewis, Andrew E.M.
Li, Guoqiang
Li, Jian
Li, Liang
Li, Yi
Li, Yuan
Li, Zhentao
Liaghat, Vahid
Lianeas, Thanasis
Liang, Hongjin
Liu, Jingcheng
Liu, Shengli
Liu, Zhengyang
Livnat, Adi
Lodi, Andrea
Löding, Christof
Loff, Bruno
Löffler, Maarten
Lohrey, Markus

Lokshtanov, Daniel
Lopez-Ortiz, Alejandro
Lovett, Shachar
Lucier, Brendan
Luxen, Dennis
Mahabadi, Sepideh
Mahmoody, Mohammad
Makarychev, Konstantin
Makarychev, Yury
Maneth, Sebastian
Manlove, David
Manokaran, Rajsekar
Manthey, Bodo
Manuel, Amaldev
Mardare, Radu
Martens, Wim
Masuzawa, Toshimitsu
Matsuda, Takahiro
Matulef, Kevin
Matuschke, Jannik
May, Alexander
Mayr, Richard
McGregor, Andrew
Megow, Nicole
Meier, Florian
Meir, Or
Mertzios, George
de Mesmay, Arnaud
Mestre, Julian
Michail, Othon
Michalewski, Henryk
Mignosi, Filippo
Mihalák, Matúš
Misra, Neeldhara
Mitsou, Valia
Mnich, Matthias
Mogelberg, Rasmus
Mohar, Bojan
Moitra, Ankur
Monemizadeh, Morteza
Montanaro, Ashley
Morihata, Akimasa
Morin, Pat
Morizumi, Hiroki
Moruz, Gabriel
Moseley, Benjamin

XIV Organization

Mousset, Frank
Mucha, Marcin
Mueller, Tobias
Müller, David
Müller-Hannemann, Matthias
Murakami, Keisuke
Murano, Aniello
Musco, Christopher
Mustafa, Nabil
Nadathur, Gopalan
Nagano, Kiyohito
Nakazawa, Koji
Nanongkai, Danupon
Narayanan, Hariharan
Navarra, Alfredo
Navarro, Gonzalo
Nayyeri, Amir
Nederhof, Mark-Jan
Nederlof, Jesper
Newman, Alantha
Nguyen, Huy
Nguyen, Kim Thang
Nguyen, Viet Hung
Niazadeh, Rad
Nicholson, Patrick K.
Niedermann, Benjamin
Nielsen, Jesper Buus
Nielsen, Jesper Sindahl
Nies, André
Nikolov, Aleksandar
Nishimura, Harumichi
Nitaj, Abderrahmane
Nöllenburg, Martin
Nordhoff, Benedikt
Novotný, Petr
Obremski, Maciej
Ochremiak, Joanna
Oh, Eunjin
Okamoto, Yoshio
Oliveira, Igor
Onak, Krzysztof
Ordóñez Pereira, Alberto
Oren, Sigal
Orlandi, Claudio
Otachi, Yota
Ott, Sebastian

Otto, Martin
Oveis Gharan, Shayan
Ozeki, Kenta
Ozols, Maris
Padro, Carles
Pagani, Michele
Pagh, Rasmus
Paluch, Katarzyna
Panagiotou, Konstantinos
Panigrahi, Debmalya
Paolini, Luca
Parter, Merav
Pasquale, Francesco
Paul, Christophe
Pedersen, Christian Nørgaard Storm
Pelc, Andrzej
Penna, Paolo
Perdrix, Simon
Perelli, Giuseppe
Persiano, Giuseppe
Pettie, Seth
Peva, Blanchard
Philip, Geevarghese
Phillips, Jeff
Piccolo, Mauro
Pietrzak, Krzysztof
Pilaud, Vincent
Piliouras, Georgios
Pilipczuk, Marcin
Pinto, Joao Sousa
Piterman, Nir
Place, Thomas
Poelstra, Andrew
Pokutta, Sebastian
Polak, Libor
Polishchuk, Valentin
Pountourakis, Emmanouil
Prencipe, Giuseppe
Pruhs, Kirk
Prutkin, Roman
Qin, Shengchao
Quas, Anthony
Rabehaja, Tahiry
Räcke, Harald
Raghavendra, Prasad
Raghothaman, Mukund

Organization XV

Raman, Rajiv
Raskin, Jean-Francois
Razenshteyn, Ilya
Regev, Oded
Rehak, Vojtech
Reis, Giselle
van Renssen, André
Reshef, Yakir
Reyzin, Leonid
Reyzin, Lev
Riba, Colin
Richerby, David
Riely, James
Riveros, Cristian
Robere, Robert
Robinson, Peter
Roeloffzen, Marcel
Röglin, Heiko
Rote, Günter
Rotenberg, Eva
Roth, Aaron
Rothvoss, Thomas
de Rougemont, Michel
Rümmele, Stefan
Sabel, David
Sabok, Marcin
Sacchini, Jorge Luis
Sach, Benjamin
Saha, Ankan
Saha, Chandan
Saitoh, Toshiki
Sakavalas, Dimitris
Salvati, Sylvain
Sanchez Villaamil, Fernando
Sangnier, Arnaud
Sankowski, Piotr
Sankur, Ocan
Saptharishi, Ramprasad
Saraswat, Vijay
Satti, Srinivasa Rao
Saurabh, Saket
Sawant, Anshul
Scharf, Ludmila
Schieber, Baruch
Schlotter, Ildikó
Schneider, Stefan

Schnitger, Georg
Schoenebeck, Grant
Schrijvers, Okke
Schweitzer, Pascal
Schweller, Robert
Schwitter, Rolf
Schöpp, Ulrich
Scquizzato, Michele
Seddighin, Saeed
Segev, Danny
Seidel, Jochen
Seiferth, Paul
Sekar, Shreyas
Sen, Siddhartha
Senizergues, Geraud
Serre, Olivier
Seshadhri, C.
Seto, Kazuhisa
Seurin, Yannick
Shepherd, Bruce
Sherstov, Alexander
Shi, Yaoyun
Shinkar, Igor
Shioura, Akiyoshi
Siebertz, Sebastian
Singh, Mohit
Sitters, Rene
Sivignon, Isabelle
Skorski, Maciej
Skrzypczak, Michał
Skutella, Martin
Smith, Adam
Soares Barbosa, Rui
Sobocinski, Pawel
Solan, Eilon
Sommer, Christian
Son, Wanbin
Sorensen, Tyler
Sorge, Manuel
Sottile, Frank
Spalek, Robert
Spoerhase, Joachim
Srba, Jiri
Srivastava, Piyush
Staals, Frank
Stampoulis, Antonis

XVI Organization

Staton, Sam
Stefankovic, Daniel
Stein, Clifford
Stein, Yannik
Stenman, Jari
Stephan, Frank
Stirling, Colin
Stokes, Klara
Stolz, David
Strasser, Ben
Streicher, Thomas
Sun, He
Sun, Xiaorui
Suomela, Jukka
Svendsen, Kasper
Sviridenko, Maxim
Swamy, Chaitanya
Takahashi, Yasuhiro
Takazawa, Kenjiro
Talebanfard, Navid
Tamaki, Suguru
Tan, Li-Yang
Tan, Tony
Tang, Bo
Tanigawa, Shin-Ichi
Tasson, Christine
Tavenas, Sébastien
Teillaud, Monique
Telelis, Orestis
Thaler, Justin
Thapper, Johan
Thomas, Rekha
Ting, Hingfung
Tiwary, Hans
Torán, Jacobo
Tov, Roei
Tovey, Craig
Treinen, Ralf
Triandopoulos, Nikos
Trung, Ta Quang
Tsukada, Takeshi
Tulsiani, Madhur
Tuosto, Emilio
Tzamos, Christos
Uchizawa, Kei
Ueno, Shuichi

Uitto, Jara
Ullman, Jon
Ullman, Jonathan
Umboh, Seeun
Unno, Hiroshi
Uno, Yushi
Uramoto, Takeo
Urrutia, Florent
Vagvolgyi, Sandor
Vahlis, Yevgeniy
Valiron, Benoît
Vanden Boom, Michael
Vdovina, Alina
Veith, David
Venkatasubramanian, Suresh
Venkitasubramaniam,

Muthuramakrishnan
Ventre, Carmine
Vereshchagin, Nikolay
Vidick, Thomas
Vijayaraghavan, Aravindan
Vildhøj, Hjalte Wedel
Vinayagamurthy, Dhinakaran
Vishnoi, Nisheeth
Vitanyi, Paul
Vivek, Srinivas
Vondrak, Jan
Voudouris, Alexandros
Wahlström, Magnus
Walter, Tobias
Walukiewicz, Igor
Wasa, Kunihiro
Watanabe, Osamu
Wee, Hoeteck
Wegner, Franziska
Wei, Zhewei
Weichert, Volker
Weinberg, S. Matthew
Weinstein, Omri
Wenner, Alexander
Werneck, Renato
Wexler, Tom
White, Colin
Wichs, Daniel
Wiese, Andreas
Willard, Ross

Organization XVII

Williams, Ryan
Williamson, David
Wilson, David
Wimmer, Karl
Winslow, Andrew
Woeginger, Gerhard J.
Wojtczak, Dominik
de Wolf, Ronald
Wolff, Alexander
Wong, Prudence W.H.
Woodruff, David
Wootters, Mary
Worrell, James
Wrochna, Marcin
Wu, Xiaodi
Wu, Zhilin
Xiao, Tao
Xie, Ning
Xu, Jinhui
Yamakami, Tomoyuki
Yamamoto, Masaki
Yamauchi, Yukiko
Yang, Kuan

Yaroslavtsev, Grigory
Yehudayoff, Amir
Yodpinyanee, Anak
Yogev, Eylon
Yoon, Sang-Duk
Yoshida, Yuichi
Yun, Aaram
Yuster, Raphael
Zampetakis, Emmanouil
Zanuttini, Bruno
Zemor, Gilles
Zhang, Chihao
Zhang, Jialin
Zhang, Qin
Zhang, Shengyu
Zhou, Gelin
Zhou, Yuan
Živný, Stanislav
Zois, Georgios
Zorzi, Margherita
van Zwam, Stefan
Zwick, Uri

XVIII Organization

Towards the Graph Minor Theorems
for Directed Graphs

Ken-ichi Kawarabayashi1(B) and Stephan Kreutzer2

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
k keniti@nii.ac.jp

2 Technical University Berlin, Sekr TEL 7-3, Ernst-Reuter Platz 7, 10587
Berlin, Germany

stephan.kreutzer@tu-berlin.de

Abstract. Two key results of Robertson and Seymour’s graph minor
theory are:
1. a structure theorem stating that all graphs excluding some fixed

graph as a minor have a tree decomposition into pieces that are
almost embeddable in a fixed surface.

2. the k-disjoint paths problem is tractable when k is a fixed constant:
given a graph G and k pairs (s1, t1), . . . , (sk, tk) of vertices of G,
decide whether there are k mutually vertex disjoint paths of G, the
ith path linking si and ti for i = 1, . . . , k.

In this talk, we shall try to look at the corresponding problems for
digraphs.

Concerning the first point, the grid theorem, originally proved in 1986
by Robertson and Seymour in Graph Minors V, is the basis (even for the
whole graph minor project). In the mid-90s, Reed and Johnson, Robert-
son, Seymour and Thomas (see [13,26]), independently, conjectured an
analogous theorem for directed graphs, i.e. the existence of a function
f : N → N such that every digraph of directed treewidth at least f(k)
contains a directed grid of order k. In an unpublished manuscript from
2001, Johnson, Robertson, Seymour and Thomas give a proof of this
conjecture for planar digraphs. But for over a decade, this was the most
general case proved for the conjecture.

We are finally able to confirm the Reed, Johnson, Robertson, Sey-
mour and Thomas conjecture in full generality. As a consequence of our
results we are able to improve results in Reed et al. in 1996 [27] to disjoint
cycles of length at least l. This would be the first but a significant step
toward the structural goals for digraphs (hence towards the first point).

Concerning the second point, in [19] we contribute to the disjoint
paths problem using the directed grid theorem. We show that the fol-
lowing can be done in polynomial time:

K.-I. Kawarabayashi—This work was supported by JST ERATO Kawarabayashi
Large Graph Project and by Mitsubishi Foundation.
S. Kreutzer—This project has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation programme
(grant agreement No 648527).

XX K.-i. Kawarabayashi and S. Kreutzer

Suppose that we are given a digraph G and k terminal pairs
(s1, t1), (s2, t2), . . . , (sk, tk), where k is a fixed constant. In polynomial
time, either
– we can find k paths P1, . . . , Pk such that Pi is from si to ti for

i = 1, . . . , k and every vertex in G is in at most four of the paths, or
– we can conclude that G does not contain disjoint paths P1, . . . , Pk

such that Pi is from si to ti for i = 1, . . . , k.
To the best of our knowledge, this is the first positive result for the
general directed disjoint paths problem (and hence for the second point).
Note that the directed disjoint paths problem is NP-hard even for k = 2.
Therefore, this kind of results is the best one can hope for.

We also report some progress on the above two points.

Dynamic Graphs: Time, Space
and Communication

Valerie King(B)

University of Victoria, Victoria, Canada
val@uvic.ca

Abstract. A dynamic graph is a graph which experiences a sequence
of local updates, typically in the form of edge insertions and deletions.
A dynamic graph algorithm for a graph property is a data structure
which processes a sequence of updates while answering queries about a
property. The concern of dynamic graph algorithms is primarily time, to
minimize the update and query time. A graph streaming algorithm is a
one-time computation of a graph property, where the input is reported
one edge or one node and adjacent edges at a time. The concern of a
streaming algorithm is space, to use memory nearly linear in the number
of nodes and sublinear in the number of edges. In distributed comput-
ing, each node in a graph has only local information about the graph
structure. Each must make a decision which may affect a global prop-
erty of the graph, based on this information and messages received from
its neighbors. The concern is communication, to minimize the number of
bits communicated and time in terms of the number of communication
rounds.

This talk will report on a convergence of these approaches, resulting
in a dynamic data structure for answering connectivity queries in a graph
in worst case update and query time polylogarithmic in the size of the
graph and sublinear space, and the first distributed algorithm to build
a spanning forest which requires substantially less communication than
edges in the graph. The talk will also discuss future directions for work
in this area.

Automated Synthesis of Distributed Controllers

Anca Muscholl(B)

LaBRI, University of Bordeaux, Bordeaux, France
anca@labri.fr

Abstract. Synthesis is a particularly challenging problem for concur-
rent programs. At the same time it is a very promising approach, since
concurrent programs are difficult to get right, or to analyze with tra-
ditional verification techniques. This paper gives an introduction to
distributed synthesis in the setting of Mazurkiewicz traces, and its appli-
cations to decentralized runtime monitoring.

Incentive Networks

Thomas Moscibroda(B)

Microsoft Research and Tsinghua University, Beijing, China
moscitho@microsoft.com

1 Extended Abstract

Crowdsourcing and human-computing systems that mobilize people’s work have
become the method of choice to quickly and efficiently solve many tasks. Com-
mercial offerings such as Gigwalk or Amazon’s Mechanical Turk allow users
to recruit people to complete tasks. Crowdsourcing is commonly used to obtain
large-scale user data, such as environmental data, application traces, to generate
maps, or for labelling. A key challenge in successfully deploying any such system
is how to incentivize people to participate and contribute as much as possible. In
fact, this challenge is very common in systems that rely on user contributions.
For instance, social forums, file-sharing services, public computing projects (e.g.
SETI@Home), or collaborative reference works often suffer from the well-known
bootstrapping problem. These systems can become self-sustaining once the scale
of participation exceeds a certain threshold, but below this threshold, they may
not by themselves provide sufficient inherent benefit for users.

In my talk, I will discuss the algorithmic foundations of two types of network-
based incentive structures that can be used to encourage users to participate in
and contribute to a system: Incentive Trees [1,4] and Incentive Networks [5].

Incentive Trees. Incentive Trees are tree-based mechanisms in which (i) each
participant is rewarded for contributing to the system, and (ii) a participant can
make referrals and thereby solicit new participants to also join the system and
contribute to it. The mechanism incentivizes solicitations by making a solici-
tor’s reward depend on the contributions (and recursively also on their further
solicitations, etc) made by such solicitees. An Incentive Tree mechanism is an
algorithm that determines how much reward each participant receives based on
all the participants’ contributions as well as the structure of the solicitation tree.
Incentive Trees have been widely used in various domains and under different
names, e.g., in referral trees, multi-level marketing schemes [2], affiliate market-
ing, MIT’s winning strategy in the Red Balloon Challenge [6], and even in the
form of the infamous illegal Pyramid Schemes.

Using an axiomatic approach, we seek to understand the possibilities and
limitations of incentive trees. Our goal is to characterize what desirable prop-
erties are achievable; and to design incentive tree mechanisms that achieve a
best possible set of such properties. The key challenge is to find mechanisms
that simultaneously guarantee contribution and solicitation incentive, while also
preventing strategic attacks, such as multi-identity attacks. As it turns out, the
set of desirable properties that are mutually satisfiable is robust with regard to a
wide set of modeling assumptions. For the two most basic models, I will present

XXIV T. Moscibroda

key impossibility results, as well as mechanisms that are “optimal” in the sense
that they achieve a maximally satisfiable subset of desirable properties. Interest-
ingly, the algorithmic structure of these optimal solutions is unusual and reveals
new insights into the structure of incentive trees.

Incentive Networks. Incentive Networks are a different concept: They can be
used to maximize the users’ contribution when participation has already been
established. Consider a basic economic incentive system, in which each partici-
pant receives a reward according to his own contribution to the system. Examples
of such basic systems are endless: Jobs with hourly wages, membership savings
rewards (buy 10 coffee, get one free), loyalty or airplane mileage programs, etc.
In each of these systems, a user receives a reward based on his own contribution.

In this talk, I will discuss an alternative to the above basic economic system:
Incentive Networks. In an incentive network, a participant’s reward depends not
only on his own contribution; but also in part on the contributions made by
his social contacts or friends. The concept is exceedingly natural and practical:
Instead of receiving pay only for your own work, in an incentive network you
are rewarded for your own work plus your friend’s work. So, for example, each
worker is paid per hour of his own work, plus an additional amount for each
hour of his friends’ work. Or, in a membership rewards program, a coffee shop
offers rewards to a customer whenever she consumes a cup of coffee, as well as
whenever one of her designated friends does.

I will show that the key parameter effecting the efficiency of such an Incentive
Network-based reward system depends on the participant?s directed altruism [3].
Directed altruism is the extent to which someone is willing to work if his work
results in a payment to his friend, rather than to himself. Specifically, we char-
acterize the condition under which an Incentive Network-based economy is more
efficient than the basic “pay-for-your-contribution” economy, and we quantify the
savings when using incentive networks. I will discuss the impact of the network
topology and exogenous parameters on the efficiency of incentive networks. The
results suggest that in many real-world practical settings, Incentive Network-
based reward systems or compensation structures could be more efficient than
the ubiquitous “pay-for-your-contribution” schemes.

References

1. Douceur, J., Moscibroda, T.: Lottery Trees: motivational deployment of networked
systems. In: Proc. of SIGCOMM (2007)

2. Emek, Y., Karidi, R., Tennenholtz, M., Zohar, A.: Mechanisms for multi-level mar-
keting. In: Proc. of 12th ACM Conference on Electronic Commerce (EC) (2011)

3. Leider, S., Mobius, M., Rosenblat, T., Do, Q.: Directed altruism and enforced reci-
procity in social networks. The Quarterly Journal of Economics (2009)

4. Lv, Y., Moscibroda, T.: Fair and resilient incentive tree mechanisms. In: Proc. of
32nd ACM Symposium on Principles of Distributed Computing (PODC) (2013)

5. Lv, Y., Moscibroda, T.: Incentive networks. In: Proc. of 29th AAAI Conference on
Artificial Intelligence (AAAI) (2014)

6. Pickard, G., Pan, W., Rahwan, I., Cebrian, M., Crane, R., Madan, A., Pentland, A.:
Time Critical Social Mobilization. Science (2011)

Fast Algorithms for Structured Sparsity

Piotr Indyk(B)

Massachusetts Institute of Technology, Cambridge, USA
indyk@mit.edu

Abstract. Sparse representations of signals (i.e., representations that
have only few non-zero or large coefficients) have emerged as power-
ful tools in signal processing theory, algorithms, machine learning and
other applications. However, real-world signals often exhibit rich struc-
ture beyondmere sparsity. For example, a natural image, once represented
in the wavelet domain, often has the property that its large coefficients
occupy a subtree of the wavelet hierarchy, as opposed to arbitrary posi-
tions. A general approach to capturing this type of additional structure
is to model the support of the signal of interest (i.e., the set of indices of
large coefficients) as belonging to a particular family of sets. Computing
a sparse representation of the signal then corresponds to the problem of
finding the support from the family that maximizes the sum of the squares
of the selected coefficients. Such a modeling approach has proved to be
beneficial in a number of applications including compression, de-noising,
compressive sensing and machine learning. However, the resulting opti-
mization problem is often computationally difficult or intractable, which
is undesirable in many applications where large signals and datasets are
commonplace.

In this talk, I will outline some of the past and more recent algorithms
for finding structured sparse representations of signals, including piece-
wise constant approximations, tree-sparse approximations and graph-
sparse approximations. The algorithms borrow several techniques from
combinatorial optimization (e.g., dynamic programming), graph theory,
and approximation algorithms. For many problems the algorithms often
run in (nearly) linear time, which makes them applicable to very large
datasets.

Computational Complexity of Puzzles
and Games

Ryuhei Uehara(B)

School of Information Science, Japan Advanced Institute of Science and Technology,
Asahidai 1-1, Nomi, Ishikawa, Japan

uehara@jaist.ac.jp

Abstract. A computation consists of algorithm of basic operations.
When you consider an algorithm, you assume, say, the standard RAM
model, that has “usual” arithmetic operations. On the other hand, when
you consider an algorithm on a DNA computer, your basic operations
are duplication and inversion on a string. Then you need to consider
completely different algorithms, and their computational complexity also
changes. That is, when we discuss computational complexity of a prob-
lem, it strongly depends on the set of basic operations you use. When
you enjoy a puzzle, you have to find an algorithm by combining reason-
able basic operations to its goal. (Some puzzles require to find the basic
operations themselves, but we do not consider such puzzles in this talk.)
From the viewpoint of theoretical computer science, puzzles give us some
insight to computation and computational complexity classes in various
way.

Some puzzles and games give reasonable characterizations to com-
putational complexity classes. For example, “pebble game” is a classic
model that gives some complexity classes in a natural way, and “con-
straint logic” is recent model that succeeds to solve a long standing open
problem due to Martin Gardner that asks the computational complexity
of sliding block puzzles. Such puzzles gives us “typical” and characteri-
zation and “intuitive” understanding for some computational complexity
classes.

On the other hand, there are some puzzles and games that give non-
trivial interesting aspects of computational complexity classes. For exam-
ple, consider ”14-15 puzzle” which is classic well known sliding puzzle.
By parity, we can determine if one arrangement can be slid to the other
in linear time. Moreover, we can always find a way for sliding between
them in quadratic time. However, interestingly, finding the optimal solu-
tion is NP-complete in general. I also introduce a relatively new notion of
the reconfiguration problem. This series of new problems will give some
new notion of computational complexity classes.

Contents – Part II

Invited Talks

Towards the Graph Minor Theorems for Directed Graphs 3
Ken-Ichi Kawarabayashi and Stephan Kreutzer

Automated Synthesis of Distributed Controllers . 11
Anca Muscholl

Track B: Logic, Semantics, Automata and Theory of Programming

Games for Dependent Types . 31
Samson Abramsky, Radha Jagadeesan, and Matthijs Vákár

Short Proofs of the Kneser-Lovász Coloring Principle. 44
James Aisenberg, Maria Luisa Bonet, Sam Buss, Adrian Crãciun,
and Gabriel Istrate

Provenance Circuits for Trees and Treelike Instances 56
Antoine Amarilli, Pierre Bourhis, and Pierre Senellart

Language Emptiness of Continuous-Time Parametric Timed Automata 69
Nikola Beneš, Peter Bezděk, Kim G. Larsen, and Jiří Srba

Analysis of Probabilistic Systems via Generating Functions and Padé
Approximation . 82

Michele Boreale

On Reducing Linearizability to State Reachability 95
Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

The Complexity of Synthesis from Probabilistic Components. 108
Krishnendu Chatterjee, Laurent Doyen, and Moshe Y. Vardi

Edit Distance for Pushdown Automata . 121
Krishnendu Chatterjee, Thomas A. Henzinger, Rasmus Ibsen-Jensen,
and Jan Otop

Solution Sets for Equations over Free Groups Are EDT0L Languages 134
Laura Ciobanu, Volker Diekert, and Murray Elder

Limited Set quantifiers over Countable Linear Orderings. 146
Thomas Colcombet and A.V. Sreejith

Reachability Is in DynFO . 159
Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick,
and Thomas Zeume

Natural Homology . 171
Jérémy Dubut, Éric Goubault, and Jean Goubault-Larrecq

Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations,
and Reachability for Branching Markov Decision Processes 184

Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis

Trading Bounds for Memory in Games with Counters. 197
Nathanaël Fijalkow, Florian Horn, Denis Kuperberg,
and Michał Skrzypczak

Decision Problems of Tree Transducers with Origin 209
Emmanuel Filiot, Sebastian Maneth, Pierre-Alain Reynier,
and Jean-Marc Talbot

Incompleteness Theorems, Large Cardinals, and Automata
over Infinite Words. 222

Olivier Finkel

The Odds of Staying on Budget . 234
Christoph Haase and Stefan Kiefer

From Sequential Specifications to Eventual Consistency 247
Radha Jagadeesan and James Riely

Fixed-Dimensional Energy Games Are in Pseudo-Polynomial Time 260
Marcin Jurdziński, Ranko Lazić, and Sylvain Schmitz

An Algebraic Geometric Approach to Nivat’s Conjecture 273
Jarkko Kari and Michal Szabados

Nominal Kleene Coalgebra . 286
Dexter Kozen, Konstantinos Mamouras, Daniela Petris�an,
and Alexandra Silva

On Determinisation of Good-for-Games Automata 299
Denis Kuperberg and Michał Skrzypczak

Owicki-Gries Reasoning for Weak Memory Models 311
Ori Lahav and Viktor Vafeiadis

On the Coverability Problem for Pushdown Vector Addition Systems
in One Dimension. 324

Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

XXVIII Contents – Part II

Compressed Tree Canonization. 337
Markus Lohrey, Sebastian Maneth, and Fabian Peternek

Parsimonious Types and Non-uniform Computation 350
Damiano Mazza and Kazushige Terui

Baire Category Quantifier in Monadic Second Order Logic 362
Henryk Michalewski and Matteo Mio

Liveness of Parameterized Timed Networks. 375
Benjamin Aminof, Sasha Rubin, Florian Zuleger, and Francesco Spegni

Symmetric Strategy Improvement . 388
Sven Schewe, Ashutosh Trivedi, and Thomas Varghese

Effect Algebras, Presheaves, Non-locality and Contextuality 401
Sam Staton and Sander Uijlen

On the Complexity of Intersecting Regular, Context-Free,
and Tree Languages . 414

Joseph Swernofsky and Michael Wehar

Containment of Monadic Datalog Programs via Bounded Clique-Width 427
Mikołaj Bojańczyk, Filip Murlak, and Adam Witkowski

An Approach to Computing Downward Closures . 440
Georg Zetzsche

How Much Lookahead Is Needed to Win Infinite Games?. 452
Felix Klein and Martin Zimmermann

Track C: Foundations of Networked Computation: Models,
Algorithms and Information Management

Symmetric Graph Properties Have Independent Edges 467
Dimitris Achlioptas and Paris Siminelakis

Polylogarithmic-Time Leader Election in Population Protocols 479
Dan Alistarh and Rati Gelashvili

Core Size and Densification in Preferential Attachment Networks 492
Chen Avin, Zvi Lotker, Yinon Nahum, and David Peleg

Maintaining Near-Popular Matchings . 504
Sayan Bhattacharya, Martin Hoefer, Chien-Chung Huang,
Telikepalli Kavitha, and Lisa Wagner

Contents – Part II XXIX

Ultra-Fast Load Balancing on Scale-Free Networks 516
Karl Bringmann, Tobias Friedrich, Martin Hoefer, Ralf Rothenberger,
and Thomas Sauerwald

Approximate Consensus in Highly Dynamic Networks: The Role
of Averaging Algorithms . 528

Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak

The Range of Topological Effects on Communication. 540
Arkadev Chattopadhyay and Atri Rudra

Secretary Markets with Local Information . 552
Ning Chen, Martin Hoefer, Marvin Künnemann, Chengyu Lin,
and Peihan Miao

A Simple and Optimal Ancestry Labeling Scheme for Trees 564
Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Noy Rotbart

Interactive Communication with Unknown Noise Rate 575
Varsha Dani, Mahnush Movahedi, Jared Saia, and Maxwell Young

Fixed Parameter Approximations for k-Center Problems in Low Highway
Dimension Graphs . 588

Andreas Emil Feldmann

A Unified Framework for Strong Price of Anarchy in Clustering Games. . . . 601
Michal Feldman and Ophir Friedler

On the Diameter of Hyperbolic Random Graphs. 614
Tobias Friedrich and Anton Krohmer

Tight Bounds for Cost-Sharing in Weighted Congestion Games 626
Martin Gairing, Konstantinos Kollias, and Grammateia Kotsialou

Distributed Broadcast Revisited: Towards Universal Optimality 638
Mohsen Ghaffari

Selling Two Goods Optimally . 650
Yiannis Giannakopoulos and Elias Koutsoupias

Adaptively Secure Coin-Flipping, Revisited . 663
Shafi Goldwasser, Yael Tauman Kalai, and Sunoo Park

Optimal Competitiveness for the Rectilinear Steiner Arborescence
Problem. 675

Erez Kantor and Shay Kutten

XXX Contents – Part II

Normalization Phenomena in Asynchronous Networks 688
Amin Karbasi, Johannes Lengler, and Angelika Steger

Broadcast from Minicast Secure Against General Adversaries 701
Pavel Raykov

Author Index . 713

Contents – Part II XXXI

Contents – Part I

Track A: Algorithms, Complexity and Games

Statistical Randomized Encodings: A Complexity Theoretic View 1
Shweta Agrawal, Yuval Ishai, Dakshita Khurana,
and Anat Paskin-Cherniavsky

Tighter Fourier Transform Lower Bounds . 14
Nir Ailon

Quantifying Competitiveness in Paging with Locality of Reference 26
Susanne Albers and Dario Frascaria

Approximation Algorithms for Computing Maximin Share Allocations 39
Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad,
and Amin Saberi

Envy-Free Pricing in Large Markets: Approximating Revenue
and Welfare . 52

Elliot Anshelevich, Koushik Kar, and Shreyas Sekar

Batched Point Location in SINR Diagrams via Algebraic Tools 65
Boris Aronov and Matthew J. Katz

On the Randomized Competitive Ratio of Reordering Buffer Management
with Non-uniform Costs . 78

Noa Avigdor-Elgrabli, Sungjin Im, Benjamin Moseley, and Yuval Rabani

Serving in the Dark Should Be Done Non-uniformly 91
Yossi Azar and Ilan Reuven Cohen

Finding the Median (Obliviously) with Bounded Space 103
Paul Beame, Vincent Liew, and Mihai Pǎtras�cu

Approximation Algorithms for Min-Sum k-Clustering
and Balanced k-Median . 116

Babak Behsaz, Zachary Friggstad, Mohammad R. Salavatipour,
and Rohit Sivakumar

Solving Linear Programming with Constraints Unknown 129
Xiaohui Bei, Ning Chen, and Shengyu Zhang

Deterministic Randomness Extraction from Generalized and Distributed
Santha-Vazirani Sources . 143

Salman Beigi, Omid Etesami, and Amin Gohari

Limitations of Algebraic Approaches to Graph Isomorphism Testing 155
Christoph Berkholz and Martin Grohe

Fully Dynamic Matching in Bipartite Graphs . 167
Aaron Bernstein and Cliff Stein

Feasible Interpolation for QBF Resolution Calculi 180
Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla

Simultaneous Approximation of Constraint Satisfaction Problems. 193
Amey Bhangale, Swastik Kopparty, and Sushant Sachdeva

Design of Dynamic Algorithms via Primal-Dual Method. 206
Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano

What Percentage of Programs Halt? . 219
Laurent Bienvenu, Damien Desfontaines, and Alexander Shen

The Parity of Set Systems Under Random Restrictions with Applications
to Exponential Time Problems . 231

Andreas Björklund, Holger Dell, and Thore Husfeldt

Spotting Trees with Few Leaves . 243
Andreas Björklund, Vikram Kamat, Łukasz Kowalik, and Meirav Zehavi

Constraint Satisfaction Problems over the Integers with Successor 256
Manuel Bodirsky, Barnaby Martin, and Antoine Mottet

Hardness Amplification and the Approximate Degree
of Constant-Depth Circuits. 268

Mark Bun and Justin Thaler

Algorithms and Complexity for Turaev-Viro Invariants 281
Benjamin A. Burton, Clément Maria, and Jonathan Spreer

Big Data on the Rise? – Testing Monotonicity of Distributions 294
Clément L. Canonne

Unit Interval Editing Is Fixed-Parameter Tractable 306
Yixin Cao

Streaming Algorithms for Submodular Function Maximization. 318
Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud

XXXIV Contents – Part I

Multilinear Pseudorandom Functions. 331
Aloni Cohen and Justin Holmgren

Zero-Fixing Extractors for Sub-Logarithmic Entropy. 343
Gil Cohen and Igor Shinkar

Interactive Proofs with Approximately Commuting Provers 355
Matthew Coudron and Thomas Vidick

Popular Matchings with Two-Sided Preferences and One-Sided Ties 367
Ágnes Cseh, Chien-Chung Huang, and Telikepalli Kavitha

Block Interpolation: A Framework for Tight Exponential-Time
Counting Complexity . 380

Radu Curticapean

On Convergence and Threshold Properties of Discrete Lotka-Volterra
Population Protocols . 393

Jurek Czyzowicz, Leszek Ga�sieniec, Adrian Kosowski,
Evangelos Kranakis, Paul G. Spirakis, and Przemysław Uznański

Scheduling Bidirectional Traffic on a Path. 406
Yann Disser, Max Klimm, and Elisabeth Lübbecke

On the Problem of Approximating the Eigenvalues of Undirected Graphs
in Probabilistic Logspace . 419

Dean Doron and Amnon Ta-Shma

On Planar Boolean CSP. 432
Zdeněk Dvořák and Martin Kupec

On Temporal Graph Exploration. 444
Thomas Erlebach, Michael Hoffmann, and Frank Kammer

Mind Your Coins: Fully Leakage-Resilient Signatures
with Graceful Degradation . 456

Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi

A (1+e)-Embedding of Low Highway Dimension Graphs into Bounded
Treewidth Graphs . 469

Andreas Emil Feldmann, Wai Shing Fung, Jochen Könemann,
and Ian Post

Lower Bounds for the Graph Homomorphism Problem 481
Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov,
and Ivan Mihajlin

Contents – Part I XXXV

Parameterized Single-Exponential Time Polynomial Space Algorithm
for Steiner Tree . 494

Fedor V. Fomin, Petteri Kaski, Daniel Lokshtanov, Fahad Panolan,
and Saket Saurabh

Relative Discrepancy Does not Separate Information
and Communication Complexity. 506

Lila Fontes, Rahul Jain, Iordanis Kerenidis, Sophie Laplante,
Mathieu Laurière, and Jérémie Roland

A Galois Connection for Valued Constraint Languages of Infinite Size. 517
Peter Fulla and Stanislav Živný

Approximately Counting H-Colourings Is #BIS-Hard 529
Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum

Taylor Polynomial Estimator for Estimating Frequency Moments. 542
Sumit Ganguly

ETR-Completeness for Decision Versions of Multi-player (Symmetric)
Nash Equilibria. 554

Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod

Separate, Measure and Conquer: Faster Polynomial-Space Algorithms
for Max 2-CSP and Counting Dominating Sets . 567

Serge Gaspers and Gregory B. Sorkin

Submatrix Maximum Queries in Monge Matrices Are Equivalent
to Predecessor Search . 580

Paweł Gawrychowski, Shay Mozes, and Oren Weimann

Optimal Encodings for Range Top-k, Selection, and Min-Max 593
Paweł Gawrychowski and Patrick K. Nicholson

2-Vertex Connectivity in Directed Graphs . 605
Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura,
and Nikos Parotsidis

Ground State Connectivity of Local Hamiltonians 617
Sevag Gharibian and Jamie Sikora

Uniform Kernelization Complexity of Hitting Forbidden Minors 629
Archontia C. Giannopoulou, Bart M.P. Jansen, Daniel Lokshtanov,
and Saket Saurabh

Counting Homomorphisms to Square-Free Graphs, Modulo 2 642
Andreas Göbel, Leslie Ann Goldberg, and David Richerby

XXXVI Contents – Part I

Approximately Counting Locally-Optimal Structures 654
Leslie Ann Goldberg, Rob Gysel, and John Lapinskas

Proofs of Proximity for Context-Free Languages and Read-Once
Branching Programs (Extended Abstract). 666

Oded Goldreich, Tom Gur, and Ron D. Rothblum

Fast Algorithms for Diameter-Optimally Augmenting Paths. 678
Ulrike Große, Joachim Gudmundsson, Christian Knauer,
Michiel Smid, and Fabian Stehn

Hollow Heaps . 689
Thomas Dueholm Hansen, Haim Kaplan, Robert E. Tarjan,
and Uri Zwick

Linear-Time List Recovery of High-Rate Expander Codes. 701
Brett Hemenway and Mary Wootters

Finding 2-Edge and 2-Vertex Strongly Connected Components
in Quadratic Time. 713

Monika Henzinger, Sebastian Krinninger, and Veronika Loitzenbauer

Improved Algorithms for Decremental Single-Source Reachability
on Directed Graphs . 725

Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai

Weighted Reordering Buffer Improved via Variants of Knapsack
Covering Inequalities . 737

Sungjin Im and Benjamin Moseley

Local Reductions . 749
Hamid Jahanjou, Eric Miles, and Emanuele Viola

Query Complexity in Expectation . 761
Jedrzej Kaniewski, Troy Lee, and Ronald de Wolf

Near-Linear Query Complexity for Graph Inference 773
Sampath Kannan, Claire Mathieu, and Hang Zhou

A QPTAS for the Base of the Number of Crossing-Free Structures
on a Planar Point Set. 785

Marek Karpinski, Andrzej Lingas, and Dzmitry Sledneu

Finding a Path in Group-Labeled Graphs with Two Labels Forbidden. 797
Yasushi Kawase, Yusuke Kobayashi, and Yutaro Yamaguchi

Lower Bounds for Sums of Powers of Low Degree Univariates 810
Neeraj Kayal, Pascal Koiran, Timothée Pecatte, and Chandan Saha

Contents – Part I XXXVII

Approximating CSPs Using LP Relaxation . 822
Subhash Khot and Rishi Saket

Comparator Circuits over Finite Bounded Posets . 834
Balagopal Komarath, Jayalal Sarma, and K.S. Sunil

Algebraic Properties of Valued Constraint Satisfaction Problem 846
Marcin Kozik and Joanna Ochremiak

Towards Understanding the Smoothed Approximation Ratio
of the 2-Opt Heuristic . 859

Marvin Künnemann and Bodo Manthey

On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy 872
Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli

Replacing Mark Bits with Randomness in Fibonacci Heaps 886
Jerry Li and John Peebles

A PTAS for the Weighted Unit Disk Cover Problem 898
Jian Li and Yifei Jin

Approximating the Expected Values for Combinatorial Optimization
Problems Over Stochastic Points . 910

Lingxiao Huang and Jian Li

Deterministic Truncation of Linear Matroids . 922
Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan,
and Saket Saurabh

Linear Time Parameterized Algorithms for Subset Feedback Vertex Set 935
Daniel Lokshtanov, M.S. Ramanujan, and Saket Saurabh

An Optimal Algorithm for Minimum-Link Rectilinear Paths
in Triangulated Rectilinear Domains . 947

Joseph S.B. Mitchell, Valentin Polishchuk, Mikko Sysikaski,
and Haitao Wang

Amplification of One-Way Information Complexity via Codes
and Noise Sensitivity. 960

Marco Molinaro, David P. Woodruff, and Grigory Yaroslavtsev

A (2+e)-Approximation Algorithm for the Storage Allocation Problem 973
Tobias Mömke and Andreas Wiese

Shortest Reconfiguration Paths in the Solution Space
of Boolean Formulas . 985

Amer E. Mouawad, Naomi Nishimura, Vinayak Pathak,
and Venkatesh Raman

XXXVIII Contents – Part I

Computing the Fréchet Distance Between Polygons with Holes 997
Amir Nayyeri and Anastasios Sidiropoulos

An Improved Private Mechanism for Small Databases 1010
Aleksandar Nikolov

Binary Pattern Tile Set Synthesis Is NP-Hard. 1022
Lila Kari, Steffen Kopecki, Pierre-Étienne Meunier, Matthew J. Patitz,
and Shinnosuke Seki

Near-Optimal Upper Bound on Fourier Dimension of Boolean Functions
in Terms of Fourier Sparsity . 1035

Swagato Sanyal

Condensed Unpredictability . 1046
Maciej Skórski, Alexander Golovnev, and Krzysztof Pietrzak

Sherali-Adams Relaxations for Valued CSPs . 1058
Johan Thapper and Stanislav Živný

Two-Sided Online Bipartite Matching and Vertex Cover: Beating
the Greedy Algorithm . 1070

Yajun Wang and Sam Chiu-wai Wong

The Simultaneous Communication of Disjointness with Applications
to Data Streams . 1082

Omri Weinstein and David P. Woodruff

An Improved Combinatorial Algorithm for Boolean Matrix Multiplication. . . . 1094
Huacheng Yu

Author Index . 1107

Contents – Part I XXXIX

Invited Talks

Towards the Graph Minor Theorems
for Directed Graphs

Ken-Ichi Kawarabayashi1(B) and Stephan Kreutzer2

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
k_keniti@nii.ac.jp

2 Technical University Berlin, Sekr TEL 7-3, Ernst-Reuter Platz 7, 10587 Berlin, Germany
stephan.kreutzer@tu-berlin.de

Abstract. Two key results of Robertson and Seymour’s graph minor theory are:
1. a structure theorem stating that all graphs excluding some fixed graph as a

minor have a tree decomposition into pieces that are almost embeddable in a
fixed surface.

2. the k-disjoint paths problem is tractable when k is a fixed constant: given a
graph G and k pairs (s1, t1), …, (sk , tk) of vertices of G, decide whether
there are k mutually vertex disjoint paths of G, the i th path linking si and ti
for i = 1, . . . , k.

In this talk, we shall try to look at the corresponding problems for digraphs.
Concerning the first point, the grid theorem, originally proved in 1986 by

Robertson and Seymour in Graph Minors V, is the basis (even for the whole
graph minor project). In the mid-90s, Reed and Johnson, Robertson, Seymour
and Thomas (see [13,26]), independently, conjectured an analogous theorem for
directed graphs, i.e. the existence of a function f : N → N such that every digraph
of directed treewidth at least f (k) contains a directed grid of order k. In an unpub-
lished manuscript from 2001, Johnson, Robertson, Seymour and Thomas give a
proof of this conjecture for planar digraphs. But for over a decade, this was the
most general case proved for the conjecture.

We are finally able to confirm the Reed, Johnson, Robertson, Seymour and
Thomas conjecture in full generality. As a consequence of our results we are able
to improve results in Reed et al. in 1996 [27] to disjoint cycles of length at least
l. This would be the first but a significant step toward the structural goals for
digraphs (hence towards the first point).

Concerning the second point, in [19] we contribute to the disjoint paths prob-
lem using the directed grid theorem. We show that the following can be done in
polynomial time:

Suppose that we are given a digraph G and k terminal pairs
(s1, t1), (s2, t2), . . . , (sk , tk), where k is a fixed constant. In polynomial time,
either
– we can find k paths P1, . . . , Pk such that Pi is from si to ti for i = 1, . . . , k

and every vertex in G is in at most four of the paths, or

K.-I. Kawarabayashi—This work was supported by JST ERATO Kawarabayashi Large Graph
Project and by Mitsubishi Foundation.
S. Kreutzer—This project has received funding from the European Research Council (ERC)
under the EuropeanUnionsHorizon 2020 research and innovation programme (grant agreement
No 648527).

© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 3–10, 2015.
DOI: 10.1007/978-3-662-47666-6_1

4 K.-I. Kawarabayashi and S. Kreutzer

– we can conclude that G does not contain disjoint paths P1, . . . , Pk such that
Pi is from si to ti for i = 1, . . . , k.

To the best of our knowledge, this is the first positive result for the general directed
disjoint paths problem (and hence for the second point). Note that the directed
disjoint paths problem is NP-hard even for k = 2. Therefore, this kind of results
is the best one can hope for.

We also report some progress on the above two points.

Keywords: Directed graphs · Grid minor · The directed disjoint paths problem

1 Introduction

One of the deepest and the most far-reaching theories of the recent 20 years in discrete
mathematics (and theoretical computer science as well) is Graph Minor Theory devel-
oped by Robertson and Seymour in a series of over 20 papers spanning the last 20 years
[28]. Their theory leads to “structural graph theory”, which has proved to be a powerful
tool for coping with computational intractability. It provides a host of results that can be
used to design efficient (approximation or exact) algorithms for many NP-hard problems
on specific classes of graphs that occurs naturally in applications.

Two key results of Robertson and Seymour’s graph minor theory are:

1. a structure theorem stating that all graphs excluding some fixed graph as a minor
have a tree decomposition into pieces that are almost embeddable in a fixed surface.

2. the k-disjoint paths problem is tractable when k is a fixed constant: given a graph G
and k pairs (s1, t1), …, (sk, tk) of vertices of G, decide whether there are k mutually
vertex disjoint paths of G, the i th path linking si and ti for i = 1, . . . , k.

In order to solve these two problems, of particular importance is the concept of
treewidth, introduced by Robertson and Seymour. Treewidth has gained immense atten-
tion ever since, especially because many NP-hard problems can be handled efficiently
on graphs of bounded treewidth [1]. In fact, all problems that can be defined in monadic
second-order logic are solvable on graphs of bounded treewidth [4].

A keystone in the proof of the above two results (and many other theorems) is a grid
theorem [29]: any graph of treewidth at least some f (r) is guaranteed to have the r × r
grid graph as a minor. This gird theorem played a key role in the k-disjoint paths problem
[17,30]. It also played a key role for some other deep applications (e.g., [12,21,22]).

This grid theorem has also played a key role for many algorithmic applications,
in particular via bidimensionality theory (e.g., [6–8]), including many approximation
algorithms, PTASs, and fixed-parameter algorithms. These include feedback vertex set,
vertex cover, minimummaximal matching, face cover, a series of vertex-removal param-
eters, dominating set, edge dominating set, R-dominating set, connected dominating set,
connected edge dominating set, connected R-dominating set, and unweighted TSP tour.

The grid theorem of [29] has been extended, improved, and re-proved by Robertson,
Seymour, and Thomas [31], Reed [25], Diestel, Jensen, Gorbunov, and Thomassen [10],
Kawarabayashi and Kobayashi [16] and Leaf and Seymour [23]. Very recently, this has
been improved to be polynomial [3]. On the other side, the best known lower bound is
Ω(r2 log r).

Towards the Graph Minor Theorems for Directed Graphs 5

A linear upper bound has been shown for planar graphs [31] and for bounded genus
graphs [7]. Recently this min-max relation is also established for graphs excluding any
fixed minor H : every H -minor-free graph of treewidth at least cH r has an r × r grid
minor for some constant cH [9]. The bound is now explicitly described as |H ||H | [16]
This bound leads to many powerful algorithmic results on H -minor-free graphs [7,9]
that are previously not known.

2 What about Digraphs?

The structural techniques discussed in graphminor theory all relate to undirected graphs.
What about directed graphs? Given the enormous success for problems of width param-
eters (c.f., treewidth) defined on undirected graphs, it is quite natural to ask whether
they can also be extended to analyze the structure of digraphs. In principle by ignoring
the direction of edges, it is possible to apply many techniques for undirected graphs to
directed graphs. However, we would have an information loss and might fail to prop-
erly distinguish between simple and hard input instances. For example, the k-disjoint
paths problem for digraphs is NP-complete even when we consider the fixed value
k = 2 (Fortune, Hopcroft and Wylie [11]), but it is polynomially solvable for all fixed k
for undirected graphs [15,30]. Hence, for computational problems whose instances are
directed graphs, many methods for undirected graphs may be less useful.

As a first step (but also a significant step) towards overcoming such a difficulty,
Reed in 1999 and Johnson, Robertson, Seymour and Thomas [13] proposed a concept of
directed treewidth and showed that the k-disjoint paths problem is solvable in polynomial
time for any fixed k on any class of graphs of bounded directed treewidth [13]. Reed and
Johnson et al. also conjectured a directed analogue of the grid theorem.

Conjecture 1 (Reed; Johnson, Robertson, Seymour, Thomas [13]). There is a function
f : N → N such that every digraph of directed treewidth at least f (k) contains a
cylindrical grid of order k as a butterfly minor.

Actually, according to [13], this conjecture was formulated by Robertson, Seymour and
Thomas, together with Alon and Reed at a conference in Annecy, France in 1995. Here,
a cylindrical grid consists of k concentric directed cycles and 2k paths connecting the
cycles in alternating directions. A butterfly minor of a digraph G is a digraph obtained
from a subgraph of G by contracting edges which are either the only outgoing edge of
their tail or the only incoming edge of their head. All details for these notations can be
found in appendix.

Let us now report progress on the conjecture. In an unpublished manuscript, Johnson
et al. [14] proved the conjecture for planar digraphs. In [18], this result was generalised
to all classes of directed graphs excluding a fixed undirected graph as an undirected
minor. For instance, this includes classes of digraphs of bounded genus. Another related
result was established in [19], where a half-integral grid theorem was proved (for the
definition of a “half-integral directed grid”, we refer the reader to [19]).

Very recently, we finally confirm this conjecture [20]. We believe that this is a first
but an important step towards a more general structure theory for directed graphs based
on directed treewidth, similar to the grid theorem for undirected graphs being the basis
of more general structure theorems (including the main graph minor structure theorem).

6 K.-I. Kawarabayashi and S. Kreutzer

3 Algorithmic Contributions

Our main algorithmic interest is the directed k-disjoint paths problem. Recall that for
undirected graphs the problem is solvable in polynomial time for any fixed number k.
For directed graphs, the situation is much worse since the problem is NP-complete even
for only two such pairs.

Theorem 1 (Fortune, Hopcroft, and Wyllie [11]). The following problem is NP-
complete even for k = 2:

Directed Disjoint Paths
Input: A digraph G and terminals s1, t1, s2, t2, . . . , sk, tk .

Problem: Find k (vertex) disjoint paths P1, . . . , Pk such that Pi is from si to ti for
i = 1, . . . , k.

Therefore much work has gone into finding polynomial time algorithms for solving
this problem on restricted classes of digraphs. See e.g. [5,32] for work in this direction.

In this talk, we are not so much interested in solving disjoint paths problems on
special classes of digraphs, but rather in obtaining algorithms working on all directed
graphs. We therefore have to relax some of the conditions. Indeed, we allow each vertex
of the graph to be contained in small number of paths linking the source/terminal pairs.

Using the directed grid minor, the following is shown in [19].

Theorem 2. For every fixed k ≥ 1 there is a polynomial time algorithm for deciding
the following problem.

Quarter- Integral Disjoint Paths
Input: A digraph G and terminals s1, t1, s2, t2, . . . , sk, tk .

Problem:
– Find k paths P1, . . . , Pk such that Pi is from si to ti for i = 1, . . . , k

and every vertex in G is in at most four of the paths, or
– conclude that G does not contain disjoint paths P1, . . . , Pk such that

Pi is from si to ti for i = 1, . . . , k.

As far as we are aware, this is the first result that establishes a positive result, and
gives a polynomial time algorithm for the variant of the disjoint paths problems on the
class of all digraphs. Note that this result is best possible in a sense. Indeed, Slivkins [33]
proved that the directed disjoint paths problem is W[1]-hard already on acyclic digraphs
and it is not hard to extend this result to the half- or quarter-integral case. Hence in
terms of running time our algorithm is optimal in the sense that it cannot be improved
to O(f (k)nc) for any fixed constant c.

As we said, the key is to use a cylindrical grid. The following theorem tells us why
a “directed” grid minor is important.

Theorem 3. Let s1, . . . , sk, t1, . . . , tk be (not necessarily distinct) 2k vertices in a
digraph G. Suppose that G has a cylindrical grid W of order 8k3. Let S = {s1, . . . , sk}
and T = {t1, . . . , tk}. Suppose furthermore that

Towards the Graph Minor Theorems for Directed Graphs 7

1. there is no separation (A1, B1) of order at most k such that A1 contains S and B1
contains all but at most k vertices Q1 of in-degree or out-degree at least two in W ,
and there is no path from S to Q1 in G − (A1 ∩ B1), and

2. there is no separation (A′
1, B ′

1) of order at most k such that A′
1 contains T and B ′

1
contains all but at most k vertices Q2 of in-degree or out-degree at least two in W ,
and there is no path from Q2 to T in G − (A′

1 ∩ B ′
1).

Then in polynomial time, we can find k paths P1, . . . , Pk in G such that endpoints
of Pi are si , ti for i = 1, . . . , k, and moreover each vertex in G is used in at most two of
these paths.

Using Theorem 3, we are currently working on the following conjecture.

Conjecture 2. For a fixed constant k, there is a polynomial time algorithm for the fol-
lowing problem:

Directed Half- Disjoint Paths
Input: A digraph G and terminals s1, t1, s2, t2, . . . , sk, tk .

Problem: Find k paths P1, . . . , Pk such that Pi connects from si to ti for i =
1, . . . , k and every vertex in G is in at most two of the paths.

As pointed out above, this is the best we can hope.

4 Additional Notations

An r × r grid is a graph which is isomorphic to the graph Wr obtained from Cartesian
product of paths of length r −1,with vertex set V (Wr) = {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r}
in which two vertices (i, j) and (i ′, j ′) are adjacent if and only if |i − i ′| + | j − j ′| = 1.

The (4× 5)-grid, as well as the (8× 5)-wall (which can be defined in a similar way)
are shown in Figure 1.

Fig. 1. The (4 × 5)-grid and the (8 × 5)-wall

A tree decomposition of a graph G is a pair (T,W), where T is a tree and W is
a family {Wt | t ∈ V (T)} of vertex sets Wt ⊆ V (G), such that the following two
properties hold:

(1)
⋃

t∈V (T) Wt = V (G), and every edge of G has both ends in some Wt .

8 K.-I. Kawarabayashi and S. Kreutzer

(2) If t, t ′, t ′′ ∈ V (T) and t ′ lies on the path in T between t and t ′′, then Wt ∩Wt ′′ ⊆ Wt ′ .

The width of a tree decomposition (T,W) is maxt∈V (T) |Wt | − 1. The treewidth of a
graph G is the minimum width over all possible tree decompositions of G.

Robertson and Seymour developed the first polynomial time algorithm for construct-
ing a tree decomposition of a graph of bounded width [30], and eventually came up with
an algorithm which runs in O(n2) time, for this problem. Reed [24] developed an algo-
rithm for the problemwhich runs in O(n log n) time, and then Bodlaender [2] developed
a linear time algorithm.

Directed Treewidth We briefly recall the definition of directed treewidth from [13].

Fig. 2. Cylindrical grid G4.

By an arborescence we
mean a directed graph R
such that R has a vertex r0,
called the root of R, with
the property that for every
vertex r ∈ V (R) there is
a unique directed path from
r0 to r . Thus every arbores-
cence arises from a tree by
selecting a root and direct-
ing all edges away from the
root. If r, r ′ ∈ V (R) we
write r ′ > r if r ′ 	= r and
there exists a directed path
in R with initial vertex r and
terminal vertex r ′. If e ∈ E(R) we write r ′ > e if either r ′ = r or r ′ > r , where r is the
head of e. Let G be a digraph, and let Z ⊆ V (G). We say that a set S ⊆ (V (G) − Z)

is Z-normal if there is no directed walk in G − Z with the first and the last vertex in S
that uses a vertex of G − (Z ∪ S). It follows that every Z -normal set is the union of the
vertex-sets of strong components of G − Z . As one readily checks, a set S is Z -normal
if and only if the vertex-sets of the strong components of G − Z can be numbered
S1, S2, . . . , Sd in such a way that
1. if 1 ≤ i < j ≤ d, then no edge of G has head in Si and tail in S j , and
2. either S = ∅, or S = Si ∪ Si+1 ∪· · ·∪ S j for some integers i, j with 1 ≤ i ≤ j ≤ d.

Definition 1. A directed tree-decomposition of a digraph G is a triple (R, X, W), where
R is an arborescence, and X = (Xe : e ∈ E(R)) and W = (Wr : r ∈ V (R)) are sets
of vertices of G that satisfy
1. (Wr : r ∈ V (R)) is a partition of V (G) into nonempty sets, and
2. if e ∈ E(R), then

⋃
(Wr : r ∈ V (R), r > e) is Xe-normal.

Thewidth of (R, X, W) is the least integer w such that for all r ∈ V (R), |Wr ∪⋃
e Xe| ≤

w + 1, where e is taken over all edges incident to r . The directed treewidth of G is the
least integer w such that G has a directed tree-decomposition of width w.

Sometimes, we call Wr or Xe a bag for r ∈ V (R) and e ∈ E(R). It is easy to see that
the directed tree-width of a subdigraph of G is at most the tree-width of G.

Towards the Graph Minor Theorems for Directed Graphs 9

References

1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to
partial k-trees. Discrete Appl. Math. 23, 11–24 (1989)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decomposition of small treewidth.
SIAM J. Comput. 25, 1305–1317 (1996)

3. Chekuri, C., Chuzhoy, J.: Polynomial bounds for the grid-minor theorem. In: Symp. on
Theory of Computing (STOC), pp. 60–69 (2014)

4. Courcelle, B.: Graph rewriting:An algebraic and logic approach, inHandbook of Theoretical
Computer Science 2, pp. 194–242. Elsevier (1990)

5. Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M.: The planar directed k-vertex-disjoint
paths problem is fixed-parameter tractable. In: 54th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 197–206 (2013)

6. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidimensional parameters and
local treewidth. SIAM J. Discrete Mathematics 18, 501–511 (2004)

7. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized
algorithms on graphs of bounded genus and H -minor-free graphs. J. ACM 52, 866–893
(2005)

8. Demaine, E.D.,Hajiaghayi,M.:Bidimensionality: newconnections betweenFPTalgorithms
andPTASs. In: Proc. 16thAnnualACM-SIAMSymposiumonDiscreteAlgorithms (SODA),
pp. 590–601 (2005)

9. Demaine, E.D., Hajiaghayi, M.: Linearity of grid minors in treewidth with applications
through bidimensionality. Combinatorica 28, 19–36 (2008)

10. Diestel, R., Gorbunov, K.Y., Jensen, T.R., Thomassen, C.: Highly connected sets and the
excluded grid theorem. J. Combin. Theory Ser. B 75, 61–73 (1999)

11. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem.
Theor. Comput. Sci. 10, 111–121 (1980)

12. Grohe,M., Kawarabayashi, K.,Marx, D.,Wollan, P.: Finding topological subgraphs is fixed-
parameter tractable. In: The 43rd ACM Symposium on Theory of Computing (STOC 2011),
pp. 479–488

13. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J. Comb. The-
ory, Ser. B 82(1), 138–154 (2001)

14. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Excluding a grid minor in digraphs
(2001). (unpublished manuscript)

15. Kawarabayashi, K., Wollan, P.: A shorter proof of the graph minors algorithm - the
unique linkage theorem. In: Proc. 42nd ACM Symposium on Theory of Computing (STOC
2010), pp. 687–694 (2010). A full version of this paper http://research.nii.ac.jp/~k_keniti/
uniquelink.pdf

16. Kawarabayashi, K., Kobayashi, Y.: Linear min-max relation between the treewidth of h-
minor-free graphs and its largest grid. In: Dürr, C., Wilke, T. (eds.) STACS, volume 14 of
LIPIcs, pp. 278–289. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

17. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in quadratic time.
J. Combin. Theory Ser. B. 102, 424–435 (2012)

18. Kawarabayashi, K., Kreutzer, S.: An excluded grid theorem for digraphs with forbidden
minors. In: ACM/SIAM Symposium on Discrete Algorithms (SODA) (2014)

19. Kawarabayashi, K., Kobayashi, Y., Kreutzer, S.: An excluded half-integral grid theorem
for digraphs and the directed disjoint paths problem. In: Proc. of the ACM Symposium on
Theory of Computing (STOC), pp. 70–78 (2014)

20. Kawarabayashi, K., Kreutzer, S.: The directed excluded grid theorem. In: STOC 2015.
arXiv:1411.5681 [cs.DM]

http://research.nii.ac.jp/~k_keniti/uniquelink.pdf
http://research.nii.ac.jp/~k_keniti/uniquelink.pdf
http://arxiv.org/abs/1411.5681

10 K.-I. Kawarabayashi and S. Kreutzer

21. Kawarabayashi, K., Reed, B.: A nearly linear time algorithm for the half-integral dis-
joint paths packing. In: ACM-SIAM Symposium on Discrete Algorithms (SODA 2008),
pp. 446–454

22. Kleinberg, J.: Decision algorithms for unsplittable flows and the half-disjoint paths problem.
In: Proc. 30th ACM Symposium on Theory of Computing (STOC), pp. 530–539 (1998)

23. Leaf, A., Seymour, P.: Treewidth and planar minors (2012)
24. Reed, B.: Finding approximate separators and computing tree width quickly. In: The 24th

ACM Symposium on Theory of Computing (STOC 1992)
25. Reed, B.: Tree width and tangles: a new connectivity measure and some applications, in

Surveys inCombinatorics, LondonMath. Soc.LectureNoteSer. 241, pp. 87–162.Cambridge
Univ. Press, Cambridge (1997)

26. Reed, B.: Introducing directed tree-width. Electronic Notes in Discrete Mathematics 3,
222–229 (1999)

27. Reed, B.A., Robertson, N., Seymour, P.D., Thomas, R.: Packing directed circuits. Combi-
natorica 16(4), 535–554 (1996)

28. Robertson, N., Seymour, P.D.: Graph minors I - XXIII, 1982–2010. Appearing in Journal
of Combinatorial Theory, Series B from 1982 till 2010

29. Robertson,N., Seymour, P.D.:Graphminors.V. Excluding a planar graph. J. Combin. Theory
Ser. B 41, 92–114 (1986)

30. Robertson, N., Seymour, P.: Graph minors XIII. The disjoint paths problem. Journal of
Combinatorial Theory, Series B 63, 65–110 (1995)

31. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. Combin.
Theory Ser. B 62, 323–348 (1994)

32. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM Jornal on Computing
23(4), 780–788 (1994)

33. Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic graphs.
In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 482–493. Springer,
Heidelberg (2003)

Automated Synthesis of Distributed Controllers

Anca Muscholl(B)

LaBRI, University of Bordeaux, Bordeaux, France
anca@labri.fr

Abstract. Synthesis is a particularly challenging problem for concur-
rent programs. At the same time it is a very promising approach, since
concurrent programs are difficult to get right, or to analyze with tra-
ditional verification techniques. This paper gives an introduction to
distributed synthesis in the setting of Mazurkiewicz traces, and its appli-
cations to decentralized runtime monitoring.

1 Context

Modern computing systems are increasingly distributed and heterogeneous. Soft-
ware needs to be able to exploit these advances, providing means for applications
to be more performant. Traditional concurrent programming paradigms, as in
Java, are based on threads, shared-memory, and locking mechanisms that guard
access to common data. More recent paradigms like the reactive programming
model of Erlang [4] and Scala [34,35] replace shared memory by asynchronous
message passing, where sending a message is non-blocking.

In all these concurrent frameworks, writing reliable software is a serious chal-
lenge. Programmers tend to think about code mostly in a sequential way, and
it is hard to grasp all possible schedulings of events in a concurrent execution.
For similar reasons, verification and analysis of concurrent programs is a difficult
task. Testing, which is still the main method for error detection in software, has
low coverage for concurrent programs. The reason is that bugs in such programs
are difficult to reproduce: they may happen under very specific thread schedules
and the likelihood of taking such corner-case schedules is very low. Automated
verification, such as model-checking and other traditional exploration techniques,
can handle very limited instances of concurrent programs, mostly because of the
very large number of possible states and of possible interleavings of executions.

Formal analysis of programs requires as a pre-requisite a clean mathematical
model for programs. Verification of sequential programs starts usually with an
abstraction step – reducing the value domains of variables to finite domains,
viewing conditional branching as non-determinism, etc. Another major simpli-
fication consists in disallowing recursion. This leads to a very robust compu-
tational model, namely finite-state automata and regular languages. Regular
languages of words (and trees) are particularly well understood notions. The
deep connections between logic and automata revealed by the foundational
work of Büchi, Rabin, and others, are the main ingredients in automata-based
verification.
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 11–27, 2015.
DOI: 10.1007/978-3-662-47666-6 2

12 A. Muscholl

In program synthesis, the task is to turn a specification into a program that
is guaranteed to satisfy it. Synthesis can therefore provide solutions that are
correct by construction. It is thus particularly attractive for designing concur-
rent programs, that are often difficult to get right or to analyze by traditional
methods. In distributed synthesis, we are given in addition an architecture, and
the task is to turn the specification into a distributed implementation over this
architecture.

Distributed synthesis proves to be a real challenge, and there are at least
two reasons for this. First, there is no canonical model for concurrent systems,
simply because there are very different kinds of interactions between processes.
Compare, for example, multi-threaded shared memory Java programs, to Erlang
or Scala programs with asynchronous function calls. This issue is connected
with another, more fundamental reason: techniques for distributed synthesis are
rather rare, and decidability results are conditioned by the right match between
the given concurrency model and the kind of questions that we ask.

Mazurkiewicz traces were introduced in the late seventies by A. Mazurkiewicz
[31] as a simple model for concurrency inspired by Petri nets. Within this theory,
Zielonka’s theorem [45] is a prime example of a result on distributed synthesis.

This paper gives a brief introduction to Mazurkiewicz traces and to Zielonka’s
theorem, and describes how this theory can be used in the verification and the
design of concurrent programs. We focus on the synthesis of concurrent programs
and its application to decentralized runtime monitoring.

Monitoring is a more lightweight alternative to model-checking and synthe-
sis. The task is to observe the execution of a program in order to detect pos-
sible violations of safety requirements. Monitoring is a prerequisite for control,
because it can gather information about things that went wrong and about com-
ponents that require repair actions. In programming, monitoring takes the form
of assertions: an invalidation of an assertion is the first sign that something has
gone wrong in the system. However, concurrent programs often require asser-
tions concerning several components. A straightforward but impractical way to
verify such an assertion at runtime is to synchronize the concerned components
and to inquire about their states. A much better way to do this is to write
a distributed monitor that deduces the required information by recording and
exchanging suitable information using the available communication in the pro-
gram. Mazurkiewicz trace theory and Zielonka’s theorem can provide a general,
and yet practical method for synthesizing distributed monitors.

Overview of the paper. Section 2 sets the stage by describing some classical
correctness issues for concurrent programs. Section 3 introduces Mazurkiewicz
traces, and Section 4 presents some applications to decentralized monitoring.

2 Distributed Models: Some Motivation

Concurrent programming models usually consist of entities, like processes or
threads, that evolve in an asynchronous manner and synchronize on joint events,

Automated Synthesis of Distributed Controllers 13

such as access to shared variables, or communication. We start with some illus-
trating examples from multi-threaded programming, and with some typical cor-
rectness properties. This will allow us to present the type of questions that we
want to address.

A multi-threaded program consists of an arbitrary number of concurrently
executing threads. We will assume that there is a fixed set T of threads. There is
no global clock, so threads progress asynchronously. Threads can either perform
local actions or access the global memory, consisting of shared variables from
a fixed set X. Possible actions of a thread T ∈ T include reads r(T, x, v) and
writes w(T, x, v) on a shared variable x ∈ X (for some value v) and acquiring
acq(T,L), resp. releasing rel(T,L) a lock L. More complex forms of access to the
shared memory, such as compare-and-set (CAS), are commonly used in lock-free
programming. We will not use CAS in the remaining of this section, but come
back to it in Section 3.

Partial orders are a classical abstraction for reasoning about executions of
multi-threaded programs. The computation on each thread is abstracted out
by a set of events, and the multi-threaded execution is abstracted in form of a
partial order on these events. An early example is Lamport’s happens-before rela-
tion [27], originally described for communicating systems. This relation orders
the events on each thread, and the sending of a message before its receive. In
multi-threaded programs with shared memory, where locks guard the access to
shared variables, the happens-before relation orders two events if they are per-
formed by the same thread or they use the same lock.

A more formal, general definition of the happens-before relation for programs
goes as follows. Let Σ be the set of actions in a program. We will assume through-
out the paper that Σ is finite. Depending on the problem that we consider, we
will assume that there is a binary conflict relation D ⊆ Σ × Σ between the
actions of the program. For example, we will have a D b if a and b are per-
formed by the same thread. Starting with a linear execution a1 · · · an ∈ Σ∗ of a
program, the happens-before relation is the partial order on positions defined as
the reflexive-transitive closure of the relation {i ≺ j | i < j and ai D aj}. As we
will see in Section 3, if the conflict relation is symmetric, this partial order is a
Mazurkiewicz trace.

In the remaining of this section we outline two frequently considered correct-
ness issues for concurrent programs, that will be used as examples for decentral-
ized monitoring in Section 4.

2.1 Race Detection

Race detection is one of the widely studied problems of concurrent software.
Informally, a race occurs whenever there are conflicting accesses to the same
variable without proper synchronization. Detecting races is important since exe-
cutions with races may yield unexpected behaviors, caused by the outcome of
the computation depending on the schedule of threads.

In order to define races for multi-threaded programs with lock synchroniza-
tion we need to introduce the happens-before relation for such programs. Let Σ

14 A. Muscholl

be the set of actions in a program, for instance:

Σ = {w(T, x), r(T, x), acq(T,L), rel(T,L) | T, x, L} .

Two actions from Σ are in conflict if

– they are performed by the same thread, or
– they acquire or release the same lock.

A race occurs in an execution if there are two accesses to the same shared
variable such that

– they are unordered in the happens-before relation, and
– at least one of them is a write.

Example 1. Figure 1 illustrates a race problem due to locking that is too fine-
grained. Two threads have access to a list pointed to by head. Thread 1 adds
an element to the head of the list, while Thread 2 deletes the head element. The
two instructions protected by the lock are ordered in the happens-before relation.
However, t1.next = head and head = head.next are unordered. Since the first
instruction is a read, and the second a write, this situation is a race condition.

type list {int data; list *next}

list *head

Thread 1

1: t1 = new(list);

2: t1.data = 42;

3: t1.next = head;

4: ack(lock)

5: head = t1

6: rel(lock)

Thread 2

7: t2 = head;

8: ack(lock)

9: head = head.next

10: rel(lock)

Fig. 1. A race condition in the execution 1, 2, 3, 7, 8, 9: events 3 and 9 are unordered in
the happens-before relation

2.2 Atomicity

Atomicity, or conflict serializability, is a high-level correctness notion for con-
current programs that has its origins in database transactions. A transaction
consists of a block of operations, such as reads and writes to shared memory
variables, that is marked as atomic. An execution of the transaction system
is serial if transactions are scheduled one after the other, without interleaving
them. A serial execution reflects the intuition of the programmer, about parts
of the code marked as transactions as being executed atomically.

In order to define when a multi-threaded program is conflict-serializable, we
need first the notion of equivalent executions. Two executions are equivalent if
they define the same happens-before relation w.r.t. the following conflict relation:
Two actions from Σ = {w(T, x), r(T, x) | T, x} are in conflict if

Automated Synthesis of Distributed Controllers 15

– they are performed by the same thread, or
– they access to the same variable, and at least one of them is a write.

The above conflict relation has a different purpose than the one used for the
race problem: here, we are interested in the values that threads compute. Two
executions are considered to be equivalent if all threads end up with the same
values of (local and global) variables. Since a write w(T, x) potentially modifies
the value of x, its order w.r.t. any other access to x should be preserved. This
guarantees that the values of x are the same in two equivalent executions.

A program is called conflict-serializable (or atomic) if every execution is
equivalent to a serial one. As we will explain in Section 3 this means that every
execution can be reordered into an equivalent one where no transaction is inter-
rupted.

Example 2. Figure 2 shows a simple program with two threads that is not
conflict-serializable. The interleaved execution where Thread 2 writes after the
read and before the write of Thread 1, is not equivalent to any serial execution.

Thread 1

1: atomic {

2: read(x);

3: write(x)

4: }

Thread 2

5: atomic {

6: write(x);

7: }

Fig. 2. A program that is not conflict-serializable: the execution 1, 2, 5, 6, 7, 3, 4 is not
equivalent to any serial execution

3 Mazurkiewicz Traces and Zielonka’s Theorem

This section introduces Mazurkiewicz traces [31], one of the simplest formalisms
able to describe concurrency. We will see that traces are perfectly suited to
describe dependency and the happens-before relation. The notion of conflicting
actions and the happens-before relation seen in the previous section are instances
of this more abstract approach.

The definition of traces starts with an alphabet of actions Σ and a depen-
dence relation D ⊆ Σ × Σ on actions, that is reflexive and symmetric. The
idea behind this relation is that two dependent actions are always ordered, for
instance because the outcome of one action affects the other action. For example,
the actions of acquiring or releasing the same lock are ordered, since a thread
has to wait for a lock to be released before acquiring it.

Example 3. Coming back to the problems introduced in Sections 2.1 and 2.2,
note that the conflict relations defined there are both symmetric. For example, we
can define the dependence relation D over the alphabet Σ = {r(T, x), w(T, x) |
T ∈ T , x ∈ X} of Section 2.2, by letting a D b if a, b are in conflict.

16 A. Muscholl

While the dependence relation coincides with the conflict relation, the
happens-before relation is the Mazurkiewicz trace order. A Mazurkiewicz trace
is the labelled partial order T (w) = 〈E,�〉 obtained from a word w = a1 . . . an ∈
Σ∗ in the following way:

– E = {e1, . . . , en} is the set of events, in one-to-one correspondence with the
positions of w, where event ei has label ai,

– � is the reflexive-transitive closure of {(ei, ej) | i < j, ai D aj}.

From a language-theoretical viewpoint, traces are almost as attractive as
words, and several results from automata and logics generalize from finite and
infinite words to traces, see e.g. the handbook [10]. One of the cornerstone results
in Mazurkiewicz trace theory is based on an elegant notion of finite-state dis-
tributed automata, Zielonka automata, that we present in the remaining of the
section.

Informally, a Zielonka automaton [45] is a finite-state automaton with control
distributed over several processes that synchronize on shared actions. Synchro-
nization is modeled through a distributed action alphabet. There is no global
clock: for instance between two synchronizations, two processes can do a differ-
ent number of actions. Because of this, Zielonka automata are also known as
asynchronous automata.

A distributed action alphabet on a finite set P of processes is a pair (Σ, dom),
where Σ is a finite set of actions and dom : Σ → (2P \ ∅) is a domain function.
The domain dom(b) of action b comprises all processes that synchronize in order
to perform b. The domain function induces a natural dependence relation D over
Σ by setting a D b if dom(a)∩dom(b) �= ∅. The idea behind is that executions of
two dependent actions affect at least one common process, so their order matters.
By contrast, two independent actions a, b, i.e., where dom(a) ∩ dom(b) = ∅, can
be executed either as ab or as ba, the order is immaterial.

Example 4. We reconsider Example 3. The dependence relation D defined there
can be realized by a distributed alphabet (Σ, dom) on the following set of pro-
cesses:

P = T ∪ {〈T, x〉 | T ∈ T , x ∈ X} .

Informally, each thread T ∈ T represents a process; in addition, there is a
process for each pair 〈T, x〉. The process 〈T, x〉 stands for the cached value of x
in thread T .

The domain function defined below satisfies a D b iff dom(a) ∩ dom(b) �= ∅:

dom(a) =

{
{T, 〈T, x〉} if a = r(T, x)
{T, 〈T ′, x〉 | T ′ ∈ T } if a = w(T, x) .

The intuition behind dom(a) is as follows. A read r(T, x) depends both on the
internal state of thread T and the cached value of x, and will affect the state of
T . A write w(T, x) depends on the internal state of thread T and will affect not
only the state of T , but also the cached values of x on other threads using x,
since the new value will be written into these caches.

Automated Synthesis of Distributed Controllers 17

A Zielonka automaton A = 〈(Sp)p∈P, (sinitp)p∈P, δ〉 over (Σ, dom) consists of:

– a finite set Sp of (local) states with an initial state sinitp ∈ Sp, for every
process p ∈ P,

– a transition relation δ ⊆
⋃

a∈Σ

(∏
p∈dom(a) Sp × {a} ×

∏
p∈dom(a) Sp

)
.

For convenience, we abbreviate a tuple (sp)p∈P of local states by sP . An
automaton is called deterministic if the transition relation is a partial function.

Before explaining the semantics of Zielonka automata, let us comment the
idea behind the transitions and illustrate it through an example. The reader may
be more familiar with synchronous products of finite automata, where a joint
action means that every automaton having this action in its alphabet executes it
according to its transition relation. Joint transitions in Zielonka automata follow
a rendez-vous paradigm, meaning that processes having action b in their alphabet
can exchange information via the execution of b: a transition on b depends on the
states of all processes executing b. The following example illustrates this effect:

Example 5. The CAS (compare-and-swap) operation is available as atomic oper-
ation in the JAVA package java.util.concurrent.atomic, and supported by many
architectures. It takes as parameters the thread identifier T , the variable
name x, and two values, old and new. The effect of the instruction y =
CAS(T,x,old,new) is conditional: the value of x is replaced by new if it is equal
to old, otherwise it does not change. The method returns true if the value
changed, and false otherwise.

A CAS instruction can be seen as a synchronization between two processes:
PT associated with the thread T , and Px associated with the variable x. The
states of PT are valuations of the local variables of T . The states of Px are the
values x can take. An instruction of the form y = CAS(T,x,old,new) becomes a
synchronization action between PT and Px with the two transitions of Figure 3
(represented for convenience as Petri net transitions).

s

PT Px

old

y = CAS(T,x,old,new)

s′ new

s

PT Px

v

y = CAS(T,x,old,new)

s′′ v

Fig. 3. CAS as transitions of a Zielonka automaton. On the left side of the figure we
have the case when the value of x is old; on the right side v is different from old.
Notice that in state s′ the value of y is true, whereas in s′′, it is false.

18 A. Muscholl

A Zielonka automaton can be seen as a usual finite-state automaton, whose
set of states S =

∏
p∈P

Sp is given by the global states, and transitions s
a−→

s′ if (sdom(a), a, s′
dom(a)) ∈ δ, and sP\dom(a) = s′

P\dom(a). Thus states of this
automaton are tuples of states of the processes of the Zielonka automaton. As
a language acceptor, a Zielonka automaton A accepts a trace-closed language
L(A), that is, a language closed under commuting adjacent independent symbols.
Formally, a language L is trace-closed when uabv ∈ L if and only if ubav ∈ L,
for all u, v ∈ Σ∗ and all independent actions a, b.

A cornerstone result in the theory of Mazurkiewicz traces is a construction
transforming a sequential automaton into an equivalent deterministic Zielonka
automaton. This beautiful result is one of the rare examples of distributed syn-
thesis with broader scope.

Theorem 1. [45] Given a distributed alphabet (Σ, dom), and a regular trace-
closed language L ⊆ Σ∗ over (Σ, dom). A deterministic Zielonka automaton A
such that L(A) = L can be effectively constructed.

The only assumption of the theorem above is that the language of the
automaton is trace-closed, but this is unavoidable. Moreover, trace closure can
be checked easily, e.g. on the minimal DFA of the given language.

The construction behind Theorem 1 is technically involved, but also very
fascinating. The crux is to show how to put together distributed information
using additional memory that is finite1. Many researchers contributed to sim-
plify the construction and to improve its complexity, see [8,16,19,33] and refer-
ences therein. The most recent construction [16] produces deterministic Zielonka
automata of size that is exponential in the number of processes (and polynomial
in the size of a DFA for L). The exponential dependence on the number of pro-
cesses is necessary, modulo a technical assumption (that is actually required for
monitoring).

Theorem 2 ([16]). There is an algorithm that takes as input a distributed
alphabet (Σ, dom) over n processes and a DFA A accepting a trace-closed
language over (Σ, dom), and computes an equivalent deterministic Zielonka
automaton B with at most 4n4 · |A|n2

states per process. Moreover, the algo-
rithm computes the transitions of B on-the-fly in polynomial time.

4 Distributed Monitoring

The construction of deterministic Zielonka automata opens interesting perspec-
tives for monitoring concurrent programs. In order to monitor a concurrent pro-
gram at runtime, the monitor has to be distributed (or decentralized). This
means that there is a local monitor on each thread, and these local monitors
can exchange information. The exchange can be implemented by allowing local

1 Vector clocks [30] are a similar notion in distributed computing, but they do not
require a finite domain of values.

Automated Synthesis of Distributed Controllers 19

monitors to initiate extra communication, or, more conservatively, by using the
available communication in the program in order to share monitoring-relevant
information. We follow the latter setting here, since adding communication can
reduce the concurrency, and it is very difficult to quantify how much performance
is lost by adding communication.

Apart from detecting violations of safety properties at runtime, the infor-
mation gathered by such monitors can be also used to recover from an unsafe
state. Of course, this can be done only at runtime, and not offline, by inspecting
sequential executions a posteriori.

Our general approach for this kind of distributed monitoring is simple: we
have some trace-closed, regular property φ that should be satisfied by every
execution of a given program or system. To detect possible violations of φ at
runtime, we construct a monitor for φ and run it in parallel with the program.
Consider the scenario where the program P is modeled by a Zielonka automaton
AP . If a monitor is also a Zielonka automaton AM , then running the monitor
M in parallel to P amounts to build the usual product automaton between AP

and AM process-wise.
Interestingly, many properties one is interested to monitor on concurrent pro-

grams can be expressed in terms of the happens-before relation between specific
events, as the following example illustrates.

Example 6. Consider the race detection problem from Section 2.1. A race occurs
when two conflicting accesses to the same variable are unordered in the happens-
before relation. Therefore, a violation of the “no-race” property is monitored by
looking for two unordered accesses to the same variable, at least one of them
being a write.

Monitoring a violation of atomicity (recall Section 2.2) is done by checking
for every transaction on some thread T , that no action c of some thread T ′ �= T
happened after the beginning a = beg(T) of the transaction on T (cf. instruction
1 of Example 2) and before its matching end b = end(T) (cf. instruction 4). In
other words, the monitor looks for events c on T ′ �= T satisfying a ≺ c ≺ b in
the happens-before relation.

Determining the partial ordering between specific events is closely related
to the kernel of all available constructions behind Zielonka’s theorem. This is
known as the gossip automaton [33], and the name reflects its rôle: it computes
what a process knows about the knowledge of other processes. Using finite-
state gossiping, processes can put together information that is distributed in the
system, hence reconstruct the execution of the given DFA.

The gossip automaton is already responsible for the exponential complexity of
Zielonka automata, in all available constructions. A natural question is whether
the construction of the gossip automaton can be avoided, or at least simplified.
Perhaps unsurprisingly, the theorem below shows that gossiping is not needed
when the communication structure is acyclic.

The communication graph of a distributed alphabet (Σ, dom) with unary or
binary action domains is the undirected graph where vertices are the processes,

20 A. Muscholl

and edges relate processes p �= q if there is some action a ∈ Σ such that
dom(a) = {p, q}.

Theorem 3 ([23]). Let (Σ, dom) be a distributed alphabet with acyclic commu-
nication graph. Every regular, trace-closed language L over Σ can be accepted
by a deterministic Zielonka automaton with O(s2) states per process, where s is
the size of the minimal DFA for L.

The theorem above can be useful to monitor programs with acyclic com-
munication if we can start from a small DFA for the trace-closed language L
representing the monitoring property. However, in some cases the DFA is neces-
sarily large because it needs to take into account many interleavings. For exam-
ple, monitoring for some unordered occurrences of b and c, requires a DFA to
remember sets of actions. In this case it is more efficient to start with a descrip-
tion of L by partial orders. We discuss a solution for this setting in Section 4.1
below.

We need to emphasize that using Zielonka automata for monitoring proper-
ties in practice does not depend only on the efficiency of the constructions from
the above theorems. In addition to determinism, further properties are desirable
when building monitoring automata. The first requirement is that a violation of
the property to monitor should be detectable locally. The reason for this is that
a thread that knows about the failure can start some recovery actions or inform
other threads about the failure. Zielonka automata satisfying this property are
called locally rejecting [16]. More formally, each process p has a subset of states
Rp ⊆ Sp; an execution leads a process p into a state from Rp if and only if p
knows already that the execution cannot be extended to a trace in L(A). The
second important requirement is that the monitoring automaton AM should
not block the monitored system. This can be achieved by asking that in every
global state of AM such that no process is in a rejecting state, every action is
enabled. A related discussion on desirable properties of Zielonka automata and
on implementating the construction of [16] is reported in [2].

4.1 Gossip in Trees

In this section we describe a setting where we can compute efficiently the
happens-before relation for selected actions of a concurrent program. We will
first illustrate the idea on the simple example of Section 2.2. The program there
has two threads, T1 and T2, and one shared variable x. For clarity we add actions
beg(Ti), end(Ti) denoting the begin/end of the atomic section on Ti. Thus, the
alphabet of actions is:

Σ = {beg(T1), end(T1), w(T1, x), r(T1, x), beg(T2), end(T2), w(T2, x)} .

The dependence relation D includes all pairs of actions of the same thread, as
well as the pairs (r(T1, x), w(T2, x)) and (w(T1, x), w(T2, x)). Following Exam-
ple 4, the Zielonka automaton has processes P = {T1, T2, 〈T1, x〉, 〈T2, x〉} and the
domains of actions are:

Automated Synthesis of Distributed Controllers 21

dom(beg(Ti)) = dom(end(Ti)) = {Ti},

dom(r(Ti, x)) = {Ti, 〈Ti, x〉}
dom(w(Ti, x)) = {Ti, 〈Ti, x〉, 〈T3−i, x〉}

Note that we can represent these four processes as a (line) tree in which the
domain of each action spans a connected part of the tree, see Figure 4.

T1 〈T1, x〉 〈T2, x〉 T2

Fig. 4. A tree of processes T . The dashed part is the domain of the read action, whereas
the dotted parts are the domains of the two writes.

The Mazurkiewicz trace in Figure 5, represented as a partial order, shows a
violation of conflict-serializability: event c at step 6 satisfies a ≺ c ≺ b, where
a represents step 1, and b step 4. The happens-before relation can be com-
puted piecewise by a Zielonka automaton, by exchanging information via the
synchronization actions. Figure 6 illustrates how processes update their knowl-
edge about the partial order. Note how the two partial orders represented by
thick lines, are combined together with the action w(T2, x) of step 6, in order to
produce the partial orders of processes 〈T1, x〉, 〈T2, x〉 and T2 in the last column.
Thus, after step 6 these processes know that action w(T2, x) happened after
beg(T1). Executing then steps 3 and 4 will inform process T1 about the violation
of conflict-serializability.

1 2

beg(T1) r(T1, x)

5 6

beg(T2) w(T2, x)

3 4

w(T1, x) end(T1)

Fig. 5. Violation of conflict-serializability (partial order)

Gossiping in trees of processes works more generally as follows. We call a
distributed alphabet (Σ, dom) over process set P tree-like, if there exists some
tree T with P as set of vertices, such that the domain of each action is a connected
part of T .

Note that the tree T is uniquely defined by action domains in the special
case where the actions have at most binary domains. Otherwise, there can be

22 A. Muscholl

several trees as above, but we will assume that the distributed alphabet comes
with a suitable tree representation.

We are also given a set of monitoring actions Γ ⊆ Σ. The task is to compute
for each process p ∈ P the happens-before relation w.r.t. Γ , in other words the
happens-before relation between the most recent occurrences of actions from Γ
that are known to process p. This information is a DAG where the set of nodes
is a subset of Γ . Figure 6 below gives an example of such a computation.

Theorem 4. Given a tree-like distributed alphabet (Σ, dom) with tree T , and
a set Γ ⊆ Σ of actions. The happens-before relation w.r.t. Γ can be computed
by a Zielonka automaton where every process p maintains two DAGs of size
|Γ |+out(p), with out(p) the out-degree of p in T . Each update of the DAGs can
be done in linear time in their size.

Theorem 4 provides a rather simple way of reconstructing the happens-before
relation with finite additional memory, and in a distributed way. Each synchro-
nization action b will update the DAGs maintained by the processes executing b,
by combining these DAGs and selecting the most recent knowledge about actions
of Γ . As an example, suppose that processes p and q are neighbors in the tree,
say, q is the father of p. As long as there is no synchronization involving both p
and q, process p has the most recent knowledge about occurrences of Γ -actions
belonging to processes in the subtree of p. As soon as some action synchronizes
p and q, process q will be able to include p’s knowledge regarding these actions,
in its own knowledge.

Fig. 6. Computing the partial order. Numbers in the first line stand for the program
lines in Example 2. Dots mean that the information does not change.

Automated Synthesis of Distributed Controllers 23

5 Related Work

This brief overview aimed at presenting the motivation behind distributed syn-
thesis and how Mazurkiewicz trace theory can be used for monitoring concurrent
programs. To conclude we point out some further related results.

Our discussion turned around distributed synthesis in a simple case where
the program evolves without external actions from an environment. Synthesis
of open systems, i.e., systems with an environment, is a more complex prob-
lem. Synthesis started as a problem in logics, with Church’s problem asking for
an algorithm to construct devices that transform sequences of input bits into
sequences of output bits, so that the interaction conforms to a given logical
formula [7]. Later, Ramadge and Wonham proposed the supervisory control for-
mulation [42], where a plant and a specification are given; a controller should be
designed such that its product with the plant satisfies the specification, no mat-
ter what the environment does. Synthesis is a particular case of control where
the plant allows for every possible behavior. Rabin’s result on the decidability
of monadic second-order logic over infinite trees answered Church’s question for
MSO specifications [41].

Synthesis without environment. The problem of distributed synthesis without
environment was first raised in the context of Petri nets. The task there is to
decide whether an automaton, viewed as a graph, is isomorphic to the marking
graph of a net. Ehrenfeucht and Rozenberg introduced the notion of regions,
that determines how to decompose a graph for obtaining a net [11].

Zielonka’s algorithm has been applied to solve the synthesis problem for
models that go beyond Mazurkiewicz traces. One example is synthesis of com-
municating automata from graphical specifications known as message sequence
charts. Communicating automata are distributed finite-state automata com-
municating over point-to-point FIFO channels. As such, the model is Turing
powerful. However, if the communication channels are bounded, there is a
tight link between execution sequences of the communicating automaton and
Mazurkiewicz traces [22]. Actually we can handle even the case where the
assumption about bounded channels is relaxed by asking that they are bounded
for at least one scheduling of message receptions [18]. Producer-consumer behav-
iors are captured by this relaxed requirement.

Multiply nested words with various kinds of bounds on stack access [25,26,
40], are an attractive model for concurrent programs with recursion, because of
decidability properties and expressiveness. In [5] the model is extended to nested
Mazurkiewicz traces and Zielonka’s construction is lifted to this setting.

For runtime monitoring, a similar approach as ours is advocated in [43],
that proposes an epistemic temporal logic for describing safety properties. A
distributed implementation of a monitor for such properties is obtained, based
on a variant of vector clocks.

Synthesis with environment. One way to lift Church’s problem to the distributed
setting was proposed by Pnueli and Rosner [39]. They showed that synthesis

24 A. Muscholl

is decidable for very restricted architectures, namely pipelines. General unde-
cidability was already known from the framework on multi-player games [38].
Subsequently, [28] showed that pipelines are essentially the only decidable case.
Some interesting extensions of Pnueli and Rosner’s setting have been considered
in [13,15,24].

Alternatively, a distributed formulation of Church’s problem can be for-
mulated in Ramadge and Wonham’s supervisory control setting. This prob-
lem, when plants and controllers are Zielonka automata, has been considered
in [14,17,29,34]. In this formulation, local controllers exchange information when
synchronizing on shared actions. In this way, the arguments for undecidability
based on hidden information, as in [38,39], do not apply. Decidability of dis-
tributed control for Zielonka automata is still open. It is known though that this
formulation admits more decidable architectures: the control problem for local
parity specifications is decidable over acyclic architectures [34], thus in cases
where Pnueli and Rosner’s model is undecidable.

Yet another distributed version of Ramadge and Wonham’s problem is con-
sidered in [9], this time for Petri nets. The problem is to compute local controllers
that guarantee basic properties like e.g. deadlock avoidance. The limitation of
this approach is that the algorithm may fail to find local controllers, although
they exist.

Game semantics and asynchronous games played on event structures are
introduced in [32]. Such games are investigated in [21] from a game-theoretical
viewpoint, showing a Borel determinacy result under some restrictions.

Verification. As we already mentioned, automated verification of concurrent
systems encounters major problems due to state explosion. One particularly effi-
cient technique able to addresses this problem is known as partial order reduction
(POR) [20,37,44]. It consists of restricting the exploration of the state space by
avoiding the execution of similar, or equivalent runs. The notion of equivalence
of runs used by POR is based on Mazurkiewicz traces. The efficiency of POR
methods depends of course on the precise equivalence notion between execu-
tions. Recent variants, such as dynamic POR, work without storing explored
states explicitly and aim at improving the precision by computing additional
information about (non)-equivalent executions [1].

There are other contexts in verification where analysis gets more efficient
using equivalences based on Mazurkiewicz traces. One such setting is counter-
example generation based on partial (Mazurkiewicz) traces instead of linear
executions [6]. Previous work connecting concurrency issues and Mazurkiewicz
trace theory concerns atomicity violations [12], non-linearizability and sequential
inconsistency [3].

Acknowledgments. Very special thanks to Jérôme Leroux, Gabriele Puppis and Igor
Walukiewicz for numerous comments on previous versions of this paper.

Automated Synthesis of Distributed Controllers 25

References

1. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. In: POPL 2014, pp. 373–384. ACM (2014)

2. Akshay, S., Dinca, I., Genest, B., Stefanescu, A.: Implementing realistic asyn-
chronous automata. In: FSTTCS 2013, LIPIcs, pp. 213–224. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2013)

3. Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for
concurrent objects. In: LICS 1996, pp. 219–228. IEEE (1996)

4. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

5. Bollig, B., Grindei, M.-L., Habermehl, P.: Realizability of concurrent recursive
programs. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 410–424.
Springer, Heidelberg (2009)

6. Černý, P., Henzinger, T.A., Radhakrishna, A., Ryzhyk, L., Tarrach, T.: Efficient
synthesis for concurrency by semantics-preserving transformations. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 951–967. Springer, Heidelberg
(2013)

7. Church, A.: Logic, arithmetics, and automata. In: Proceedings of the International
Congress of Mathematicians (1962)

8. Cori, R., Métivier, Y., Zielonka, W.: Asynchronous mappings and asynchronous
cellular automata. Information and Computation 106, 159–202 (1993)

9. Darondeau, P., Ricker, L.: Distributed control of discrete-event systems: A first
step. Transactions on Petri Nets and Other Models of Concurrency 6, 24–45 (2012)

10. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore
(1995)

11. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures: Parts i and ii. Acta
Informatica 27(4), 315–368 (1989)

12. Farzan, A., Madhusudan, P.: Monitoring atomicity in concurrent programs. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer,
Heidelberg (2008)

13. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS 2005,
pp. 321–330. IEEE (2005)

14. Gastin, P., Lerman, B., Zeitoun, M.: Distributed games with causal memory are
decidable for series-parallel systems. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS
2004. LNCS, vol. 3328, pp. 275–286. Springer, Heidelberg (2004)

15. Gastin, P., Sznajder, N.: Fair synthesis for asynchronous distributed systems. ACM
Transactions on Computational Logic 14(2), 9 (2013)

16. Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Optimal Zielonka-type
construction of deterministic asynchronous automata. In: Abramsky, S., Gavoille,
C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6199, pp. 52–63. Springer, Heidelberg (2010)

17. Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Asynchronous games over
tree architectures. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part II. LNCS, vol. 7966, pp. 275–286. Springer, Heidelberg (2013)

18. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Inf. Comput. 204(6),
920–956 (2006)

19. Genest, B., Muscholl, A.: Constructing exponential-size deterministic Zielonka
automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 565–576. Springer, Heidelberg (2006)

26 A. Muscholl

20. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of
deadlock freedom and safety properties. Formal Methods in System Design 2(2),
149–164 (1993)

21. Gutierrez, J., Winskel, G.: On the determinacy of concurrent games on event struc-
tures with infinite winning sets. J. Comput. Syst. Sci. 80(6), 1119–1137 (2014)

22. Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M., Thiagarajan, P.S.: A
Theory of Regular MSC Languages. Inf. Comput. 202(1), 1–38 (2005)

23. Krishna, S., Muscholl, A.: A quadratic construction for Zielonka automata with
acyclic communication structure. Theoretical Computer Science 503, 109–114
(2013)

24. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: LICS 2001,
pp. 389–398. IEEE (2001)

25. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS 2007, pp. 161–170. IEEE (2007)

26. La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: fixed-
point, sequentialization, and tree-width. In: FSTTCS 2012, LIPIcs, pp. 173–184.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

27. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Operating Systems 21(7), 558–565 (1978)

28. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local speci-
fications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 396–407. Springer, Heidelberg (2001)

29. Madhusudan, P., Thiagarajan, P.S., Yang, S.: The MSO theory of connectedly
communicating processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS,
vol. 3821, pp. 201–212. Springer, Heidelberg (2005)

30. Mattern, F.: Virtual time and global states of distributed systems. In: International
Workshop on Parallel and Distributed Algorithms, pp. 215–226. Elsevier (1989)

31. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Rep. PB 78, Aarhus University, Aarhus (1977)

32. Melliès, P.-A.: Asynchronous games 2: The true concurrency of innocence. TCS
358(2–3), 200–228 (2006)

33. Mukund, M., Sohoni, M.A.: Keeping track of the latest gossip in a distributed
system. Distributed Computing 10(3), 137–148 (1997)

34. Muscholl, A., Walukiewicz, I.: Distributed synthesis for acyclic architectures. In:
FSTTCS 2014, LIPIcs, pp. 639–651. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2014)

35. Odersky, M., Rompf, T.: Unifying functional and object-oriented programming
with Scala. Communications of the ACM 57(4), 76–86 (2014)

36. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima (2010)
37. Peled, D.: All from one, one for all: on model checking using representatives.

In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993)

38. Peterson, G.L., Reif, J.H.: Multi-person alternation. In: FOCS 1979, pp. 348–363.
IEEE (1979)

39. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS 1990. IEEE (1990)

40. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

41. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. American
Mathematical Society, Providence (1972)

Automated Synthesis of Distributed Controllers 27

42. Ramadge, P., Wonham, W.: The control of discrete event systems. Proceedings of
the IEEE 77(2), 81–98 (1989)

43. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Decentralized runtime analysis of multi-
threaded applications. In: International Parallel and Distributed Processing Sym-
posium (IPDPS 2006). IEEE (2006)

44. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg,
G. (ed.) Advances in Petri Nets 1990. LNCS, vol. 483, pp. 491–515. Springer,
Heidelberg (1991)

45. Zielonka, W.: Notes on finite asynchronous automata. RAIRO-Theoretical Infor-
matics and Applications 21, 99–135 (1987)

Track B: Logic, Semantics, Automata
and Theory of Programming

Games for Dependent Types

Samson Abramsky1, Radha Jagadeesan2, and Matthijs Vákár1(B)

1 University of Oxford, Oxford, UK
Matthijsvakar@gmail.com

2 DePaul University, Chicago, USA

Abstract. We present a game semantics for dependent type theory
(DTT) with Π-, Σ-, intensional Id-types and finite inductive type fami-
lies. The model satisfies Streicher’s criteria of intensionality and refutes
function extensionality. The principle of uniqueness of identity proofs is
satisfied.

The model is fully and faithfully complete at the type hierarchy built
without Id-types. Although definability for the hierarchy with Id-types
remains to be investigated, the notions of propositional equality in syntax
and semantics do coincide for (open) terms of the Id-free type hierarchy.

1 Introduction

Dependent Type theory (DTT) can be seen as the extension of the simple λ-
calculus along the Curry-Howard correspondence from a proof calculus for (intu-
itionistic) propositional logic to one for predicate logic. It forms the basis of many
proof assistants, like NuPRL, LEGO and Coq, and is increasingly being consid-
ered as a more expressive type system for programming, as implemented in e.g.
ATS, Cayenne, Epigram, Agda and Idris. [1] A recent source of enthusiasm in
this field is homotopy type theory (HoTT), which refers to an interpretation of
DTT into abstract homotopy theory [2] or, conversely, an extension of DTT that
is sufficient to reproduce significant results of homotopy theory [3]. In practice,
the latter means DTT with Σ-, Π-, Id-types, a universe satisfying the uni-
valence axiom, and certain higher inductive types. The univalence axiom is
an extensionality principle which implies, in particular, the axiom of function
extensionality [3].

Game semantics provides a unified framework for intensional, computational
semantics of various type theories, ranging from pure logics [4] to programming
languages [5–7] with a variety of features (e.g. non-local control [8], state [9],
dynamically generated local names [10]) and evaluation strategies [11]. A game
semantics for DTT has, surprisingly, so far been absent. Our hope is that such
a semantics will provide an alternative analysis of the implications of the subtle
shades of intensionality that arise in the analysis of DTT [12,13]. Moreover, the
game semantics of DTT is based on very different, one might say orthogonal
intuitions to those of the homotopical models: temporal rather than spatial, and
directly reflecting the structure of computational processes. One goal, to which
we hope this work will be a stepping stone, is a game semantics of HoTT doing
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 31–43, 2015.
DOI: 10.1007/978-3-662-47666-6 3

32 S. Abramsky et al.

justice to both the spacial and temporal aspects of identity types. Indeed, such an
investigation might even lead to a computational interpretation of the univalence
axiom which has long been missing, although a significant step in this direction
was recently taken by the constructive cubical sets model of HoTT [14].

Our game theoretic model of DTT is inspired in part by the domain model
of DTT [15]. This model views a type family as a continuous function to a
domain of domains, a witness of a Π-type Πx:AB as a continuous (set theoretic)
dependent function and interprets identity types via a kind of intersection. We
follow this recipe for modelling type families and identity types. We adapt the
viewpoint of the game semantics of system F [7] to describe the Π-type to
capture the intuitive idea that the specialisation of a term at type Πx:AB to a
specific instance B[a/x] is the responsibility solely of the context that provides
the argument a of type A; in contrast, any valid term of Πx:AB has to operate
within the constraints enforced by the context. Our definition draws its power
from the fact that, in a game semantics, these constraints are enforced not only
on completed computations, but also on the incomplete computations that arise
when a term interacts with its context. Thus, while we follow the formal recipes
of [15], the temporal character of game semantics results in strikingly different
properties of the resulting model.

In the rest of this paper, we describe a game theoretic model of DTT with
Σ-, Π- and Id-types, where AJM-games interpret types and history-free winning
strategies interpret terms. Our model has the following key properties.

– The place of the Id-types in the intensionality spectrum compares as follows
with the domain semantics and with HoTT.

Domains HoTT Games
Failure of Equality Reflection ✓ ✓ ✓
Streicher Intensionality Criteria (I1) and (I2) ✓ ✓ ✓
Streicher Intensionality Criterion (I3) ✗ ✗ ✓
Failure of Function Extensionality (FunExt) ✗ ✗ ✓
Failure of Uniqueness of Identity Proofs (UIP) ✗ ✓ ✗

– We show that the model satisfies a full and faithful completeness result with
respect to the terms of a version of DTT with Σ-, Π- and Id-types and finite
inductive type families, at the type hierarchy built without Id. In contrast,
the domain theoretic model of [15] is not (fully) complete or faithful.

– The notions of propositional equality of these (open) terms coincide in syntax
and semantics.

2 A Category of Games

The idea behind game semantics is to model a computation by an alternating
sequence of interactions (the play) between a program (Player) and its envi-
ronment (Opponent), following some rules specified by its datatype (the game).
In this translation, programs become Player strategies, while termination corre-
sponds to a strategy being winning or beating all Opponents. The charm of this

Games for Dependent Types 33

interpretation is that it not only fully captures the intensional aspects of a pro-
gram but that it combines this with the structural clarity of a categorical model,
thus interpolating between traditional operational and denotational semantics.

We assume the reader has some familiarity with the basics of categories
of AJM-games and strategies, as described in [16], and only briefly recall the
definitions. We define a category Game which has as objects AJM-games.

Definition 1 (Game). A game A is a tuple (MA, λA, PA,≈A,WA), where

– MA is a countable set of moves;

– MA
λA = 〈λOP

A , λQA
A 〉� {O,P} × {Q,A} is a function which indicates if a move

is made by Opponent (O) or Player (P) and if it is a Question (Q) or
an Answer (A), for which we write O = P , P = O and MO

A := λOP
A

−1(O),

MP
A := λOP

A
−1(P), MQ

A := λQA
A

−1
(Q) and MA

A := λQA
A

−1
(A);

– PA ⊆ M�
A is a non-empty prefix-closed set of plays, where M�

A is the set of
finite sequences of uniquely occurring moves, with the properties

(p1) s = at ⇒ a ∈ MO
A ;

(p2) ∀iλ
OP
A (si+1) = λOP

A (si), where we write si for the i-th move in s;
(p3) ∀t≤s|t �MA

A
| ≤ |t �MQ

A
|.

Here, ≤ denotes the prefix order and |s| the length of a sequence. Write
jA,s(m) for the last unanswered question preceding an answer m in a play s,
which we say m answers. jA,s will be used to enforce stack discipline.

– ≈A is an equivalence relation on PA, satisfying
(e1) s ≈A t ⇒ λ∗

A(s) = λ∗
A(t);

(e2) s ≈A t ∧ s′ ≤ s ∧ t′ ≤ t ∧ |s′| = |t′| ⇒ s′ ≈A t′;
(e3) s ≈A t ∧ sa ∈ PA ⇒ ∃bsa ≈A tb.
Here, λ∗

A is the extension of λA to sequences.
– WA ⊆ P∞

A is a set of winning plays, where P∞
A is the set of infinite plays,

i.e. infinite sequences of moves such that all their finite prefixes are in PA,
such that WA is closed under ≈A in the sense that

(s ∈ WA ∧ t /∈ WA) ⇒ ∃s0≤s,t0≤t|s0| = |t0| ∧ s0
≈A t0.

Our notion of morphism will be defined in terms of strategies on games.

Definition 2 (Strategy). A strategy on A is a subset σ ⊆ P even
A satisfying

(Causal Consistency): sab ∈ σ ⇒ s ∈ σ;
(Representation Independence): s ∈ σ ∧ s ≈A t ⇒ t ∈ σ;
(Determinacy): sab, ta′b′ ∈ σ ∧ sa ≈A ta′ ⇒ sab ≈A ta′b′.

We write str(A) for the set of strategies on A. We sometimes identify σ with
the subset of PA that is obtained as its prefix closure. In fact, we restrict to
history-free strategies, as we are modelling computation without mutable state.

Definition 3 (History-Free Strategy). We call a strategy σ ∈ str(A)
history-free, if there exists a non-empty causally consistent subset φ ⊆ σ (called
a history-free skeleton) such that

34 S. Abramsky et al.

(Uniformization): ∀sab∈σs ∈ φ ⇒ ∃!b′sab′ ∈ φ;
(History-Freeness 1): sab, tac ∈ φ ⇒ b = c;
(History-Freeness 2): (sab, t ∈ φ ∧ ta ∈ PA) ⇒ tab ∈ φ.

Then, φ is induced by a partial function on moves and σ = {t | ∃s∈φt ≈A s}.

From now on, we assume strategies to be history-free. Winning conditions give
rise to the notion of a winning strategy, the semantic equivalent of a normalising
or total term. A winning strategy always has a response to any valid O-move.
Furthermore, if the result of the interaction between a strategy and Opponent
is an infinite play, then this is a member of the set of winning plays.

Definition 4 (Winning Strategy). A strategy σ ∈ str(A) is winning if it
satisfies

(Finite Wins): If s is ≤-maximal in σ, then s is ≤-maximal in PA.
(Infinite Wins): If s0 ≤ s1 ≤ . . . is an infinite chain in σ, then

⋃
i si ∈ WA.

We write wstr(A) for the set of winning strategies on A. Next, we define some
constructions on games, starting with their symmetric monoidal closed structure.

Definition 5 (Tensor Unit). We define the game I := (∅, ∅, {ε}, {(ε, ε)}, ∅).

Definition 6 (Tensor). For games A,B, we define
A ⊗ B := (MA + MB = Σi∈{A,B}Mi, [λA, λB], PA⊗B ,≈A⊗B ,WA⊗B) with

– PA⊗B = {s | s �A∈ PA ∧ s �B∈ PB ∧ fst∗(j∗A⊗B,s(s �MA
A⊗B

)) = fst∗(s �MA
A⊗B

)};
– s ≈A⊗B t := s �A≈A t �A ∧ s �B≈B t �B ∧ ∀1≤i≤|s|si ∈ MA ⇔ ti ∈ MA;
– WA⊗B := {s ∈ P∞

A⊗B | (s �A∈ P∞
A ⇒ s �A∈ WA) ∧ (s �B∈ P∞

B ⇒ s �B∈ WB)}.

Definition 7 (Linear Implication). For games A,B, we define
A � B := (MA + MB = Σi∈{A,B}Mi, [λA, λB], PA�B ,≈A�B ,WA�B) with

– PA�B = {s | s �A∈ PA ∧ s �B∈ PB ∧ fst∗(j∗A�B,s(s �MA
A�B

)) = fst∗(s �MA
A�B

)};
– s ≈A�B t := s �A≈A t �A ∧ s �B≈B t �B ∧ ∀1≤i≤|s|si ∈ MA ⇔ ti ∈ MA;
– WA�B := {s ∈ P∞

A�B | s �A∈ WA ⇒ s �B∈ WB}.

Note that the definitions of λ− imply that in A ⊗ B only Opponent can switch
between A and B, while in A � B only Player can. These definitions on objects
extend to strategies, e.g. for (winning) strategies σ ∈ str(A), τ ∈ str(B), we
can define a (winning) strategy σ ⊗ τ = {s ∈ P even

A⊗B | s �A∈ σ ∧ s �B∈ τ} ∈
str(A⊗B). This gives us a model of multiplicative intuitionistic linear logic, with
all structural morphisms consisting of appropriate variants of copycat strategies.

Theorem 1 (Linear Category of Games). We define a category Game by

– ob(Game) := {A | A is an AJM-game};
– Game(A,B) := wstr(A � B);
– idA := {s ∈ PA�A | s �A(1)≈A s �A(2)}, the copycat strategy on A;

Games for Dependent Types 35

– for A
σ−→ B

τ−→ C, the composition (or interaction) A
σ;τ−→ C is defined

from parallel composition σ||τ := {s ∈ M�
(A�B)�C | s �A,B ∈ σ ∧ s �B,C ∈

τ} plus hiding: σ; τ := {s �A,C | s ∈ σ||τ}.

Then, (Game, I,⊗,�) is, in fact, a symmetric monoidal closed category.

To make this into a model of intuitionistic logic, a Cartesian closed category
(ccc), through the (first) Girard translation, we need two more constructions on
games, to interpret the additive conjunction and exponential, respectively.

Definition 8 (With). We define the game
A&B := (MA + MB , [λA, λB], PA + PB,≈A + ≈B ,WA + WB).

Definition 9 (Bang). We define !A := (N × MA, λA ◦ snd, P!A,≈!A,W!A) with

– P!A = {s | ∀i∈Ns �i∈ PA ∧ fst∗(j∗!A,s(s �MA
!A

)) = fst∗(s �MA
!A

)};
– s ≈!A t := ∃π∈S(N)∀i∈Ns �i≈A t �π(i) ∧ (π ◦ fst)∗(s) = fst∗(t);
– W!A := {s ∈ P∞

!A | ∀is �i∈ P∞
A ⇒ s �i∈ WA}.

Next, we note that ! can be made into a co-monad by defining, for A
σ−→ B,

!σ := {s ∈ P even
!A�!B | ∃π∈S(N)∀i∈Ns �(π(i),A),(i,B)∈ σ},

and natural transformations

!A derA−→ A := {s ∈ P even
!A�A | ∃i∈Ns �!A�i≈A s �A} and

!A δA−→!!A := {s ∈ P even
!A�!!A | ∃p:N×N↪→N∀i,j∈Ns �!A�p(i,j)≈A s �!!A�i�j}.

This allows us to define the co-Kleisli category Game!, which has the same
objects as Game, while Game!(A,B) := Game(!A,B). We have a composition
(f, g) �→ f†; g, where we write f† := δdom(f); !(f), for which the strategies derA
serve as identities. We can define finite products in Game! by I and & and write

diagA := {s ∈ P even
!A�(A&A) | ∃i∈N(s �!A�i≈A s �A(1)
= ε) ∨ (s �!A�i≈A s �A(2)
= ε)}

for the diagonal !A −→ A&A. Moreover, we have Seely-isomophisms !I ∼= I
and !(A&B) ∼=!A⊗!B, so we obtain a linear-non-linear adjunction Game �
Game!, hence a model of multiplicative exponential intuitionistic linear logic.
In particular, by defining A ⇒ B :=!A � B, we get a ccc. We write compA,B,C

for the internal composition ((A ⇒ B) & (B ⇒ C)) −→ A ⇒ C in Game!.

Theorem 2 (Intuitionist Category of Games). (Game!, I,&,⇒) is a ccc.

Note that WA = ∅ for the hierarchy of intuitionistic types A that are formed
by operations I, & and ⇒ from finite games, so winning strategies are the total
strategies - strategies which respond to any O-move - for which infinite chattering
does not occur in any interaction.

36 S. Abramsky et al.

3 Dependent Games

The previous section sketched how Game! models simple intuitionistic type
theory. Next, we show how it comes equipped with a notion of dependent type.
This leads to an indexed ccc DGame! of dependent games and strategies.

We define a poset Game� of games with A � B := (MA = MB) ∧ (λB |MA
=

λA) ∧ (PA ⊆ PB) ∧ (s ≈A t ⇔ s ∈ PA ∧ s ≈B t) ∧ (WA = WB ∩ P∞
A).

Given a game C, we define the cpo Sub(C) as the poset of its �-subgames. We
note that, for A,B ∈ Sub(C), A � B ⇔ PA ⊆ PB .

For a game A, we define the set ob(DGame!(A)) of games with depen-

dency on A as the set of continuous functions str(A) B−→ Sub(
⋃

B) for some
other game

⋃
B. In practice, when defining a dependent game, we often leave⋃

B implicit as
⋃

σ∈str(A) B(σ). Define I, !, ⊗, � and & pointwise on depen-
dent games B, also performing the operation on

⋃
B. Writing s �→ s for the

function P!A −→ P(PA) inductively defined on the empty play, Opponent
moves and Player moves, respectively, as ε �→ ∅, s(i, a) �→ s, s(i, a)(i, b) �→
s(i, a) ∪ {t | ∃s′∈st ≈A s′ab}, we define the dependent function space as follows.

Definition 10 (Π-Game). Given B ∈ ob(DGame!(A)), we define a sub-
game Π!AB � !A �

⋃
B of dependent functions from A to B, by

PΠ!AB := {ε}
⋃

{sa | s ∈ P even
Π!AB ∧ ((∃τ⊇sa�!A τ ∈ wstr(A)) ⇒ ∃sa�!A⊆τ∈wstr(A)sa �⋃

B∈ PB(τ))}
⋃

{sab | sa ∈ P odd
Π!AB ∧ ∀sab�!A⊆τ∈wstr(A)sa �⋃

B∈ PB(τ) ⇒ sab �⋃
B∈ PB(τ)}.

Following the mantra of game semantics for quantifiers [7], in Π!AB, Opponent
can choose a winning strategy τ on A while Player has to play in a way that
is compatible with all choices of τ that have not yet been excluded. Similarly
to the approach taken in the game semantics for polymorphism [7], we do not
specify all of τ in one go, as this would violate “Scott’s axiom” of continuity of
computation. Instead, τ is gradually revealed, explicitly so by playing in !A and
implicitly by playing in B. That is, unless the play in !A is such that it does not
extend to define a winning strategy on A. Then, any further play in !A �

⋃
B is

permitted. This can occur in two scenarios: either Opponent has not played along
(!σ for) a (partial) strategy σ on A, or the play in !A defines a strategy on A but
none of its extensions are winning. The latter, for instance, occurs when A models
an uninhabited type, like the propositions 0 or IdThings(Jelly beans,Marsupials).

For an example, let days(n) := {m | there are > m days in the year n}
and define d̃ays∗(⊥) = ∅̃∗, d̃ays∗(n) := ˜days(n)∗ to obtain a game depending
on Ñ∗ (with d̃ays(n) = Ñ<365∗ or Ñ<366∗). Here, X̃∗ signifies the game with
P

X̃∗
= {ε, ∗}∪{∗x |x ∈ X} and ≈X= idX Then, the following are valid strategies.

The fourth example is especially important, as it generalises to a (derelicted) B-
copycat on Π!A(!B � B) for arbitrary B, denoted v[A],[B] in section 4. This moti-
vates why Opponent can narrow down the fibre of B freely, while Player can only

Games for Dependent Types 37

!Ñ∗ d̃ays∗
∗

364

!Ñ∗ d̃ays∗
∗

(i, ∗)
(i, 1984)

365

!Ñ∗ d̃ays∗
∗

(i, ∗)
(i, 1984)
(i + 1, ∗)

(i + 1, 1985)
365

!Ñ∗ !d̃ays∗ d̃ays∗
∗

(i, ∗)
(i, m)

m

O
P
O
P
O
P

Fig. 1. Three strategies on Π!Ñ∗ d̃ays∗ and one on Π!Ñ∗ !d̃ays∗ � d̃ays∗. The first as all
years have > 364 days, the second as 1984 was (among other things) a leap year, the

third as Player can play any move in
⋃

d̃ays∗ = Ñ<366∗ after Opponent has not played

along a strategy on Ñ∗ and the fourth as Opponent makes the move m first, after which
Player can safely copy it. In the paired moves, Player chooses an (irrelevant) index i.

play without narrowing down the fibre further. To see that Player should not be
able to narrow down the fibre of B, note that we do not want f := {ε, ∗365} to

define a strategy on Π
!Ñ∗

d̃ays∗, as 1983; f = {ε, ∗365} /∈ str(˜days∗(1983)).

Theorem 3. We obtain a strict indexed ccc Gameop
!

(DGame!, −{−})� Cat

of dependent games, if we define

– fibrewise hom-sets DGame!(A)(B,C) := wstr(Π!A(!B � C));
– fibrewise identities derB := {s ∈ PΠ!A(!B�B) | ∃is �!B�i≈B s �B};
– if B

τ−→ C
τ ′

−→ D ∈ DGame!(A), τ †;A τ ′ := diag†
A; τ † ⊗

τ ′; comp⋃
B,

⋃
C,

⋃
D

1;
– given f ∈ Game!(A′, A), we define B{f} ∈ ob(DGame!(A′))

by B{f}(σ) := B(!(σ); f) and
⋃

B{f} :=
⋃

B and τ{f} :=
f†; τ |Π!A′ (!B{f}�C{f}), where we write (−)|X for the restriction of (the plays
of) a strategy to PX

2.

Seeing that Game! additionally has a terminal object I to interpret the
empty context, we are well on our way to producing a model of dependent
type theory [17]: we only need to interpret context extension. This takes the
form of the comprehension axiom for DGame!, which states that for each A ∈
ob(Game!) and B ∈ ob(DGame!(A)) the following functor is representable

x �→ DGame!(dom(x))(I,B{x}) : (Game!/A)op −→ Set.

Unfortunately, this fails, as Game! does not yield a sound interpretation depen-
dent contexts. Essentially, the problem is that we do not have additive Σ-types,
appropriate generalisations Σ&

AB of & to interpret dependent context extension
in Game!.
1 To be precise, we can interpret τ and τ ′ as partial (history-sensitive) strategies on
!A � (!

⋃
B � ⋃

C) and !A � (!
⋃

C � ⋃
D), respectively, and note that τ †;A τ ′

defines a winning (history-free) strategy on Π!A(!B � D). Similarly for τ{f}.
2 In fact, we can note that, we only need to restrict O-moves to Π!A′(!B{f} � C{f}),
in which case P -moves automatically respect the rules of the game.

38 S. Abramsky et al.

Theorem 4. DGame! does not satisfy the comprehension axiom.

4 A Category with Families of Context Games

All is not lost, however. In fact, we have almost translated the structural core of
the syntax of DTT into the world of games and strategies. The remaining gen-
eralisation, necessitated by the lack of additive Σ-types, is to dependent games
depending on multiple (mutually dependent) games. We can produce a categori-
cal model of DTT out of the resulting structure by applying a so-called category
of contexts (Ctxt) construction, which is precisely how one builds a categor-
ical model from the syntax of dependent type theory [13,18]. Alternatively, this
construction can be seen as a universal way of making our indexed category
satisfy the comprehension axiom, extending its base category by (inductively)
adjoining strong Σ-types formally, analogous to the Fam-construction of [11]
which adds formal co-products.

The problem which needs to be addressed is how to interpret dependent
functions of more variables. For this purpose, we define a context game to
be a finite list [Xi]1≤i≤n where Xi is a game with dependency on [Xj]j<i, i.e.

a continuous function Σ(str(X1), . . . , str(Xi−1))
Xi−→ Game� , where we write

Σ(. . .) for the usual iterated Σ-type of domains [15], i.e. the set-theoretic Σ-
typed induced with the product order. For a game Xn+1 depending on [Xi]i≤n,
we define Π!Xn

Xn+1 depending on [Xi]i≤n−1 by Π!Xn
Xn+1(σ1, . . . , σn−1) :=

Π!Xn(σ1,...,σn−1)Xn+1(σ1, . . . , σn−1,−) and
⋃

Π!Xn
Xn+1 :=!(

⋃
Xn) �

⋃
Xn+1.

For illustration, define a game R̃A∗ depending on the context game [Ñ∗, d̃ays∗]
by RA(n,m) := {Rick Astley lyrics from songs released before day m of year n}.
Then, the following two strategies illustrate that a dependent function may query
its arguments in unexpected order or may not query some at all.

!Ñ∗ !̃days∗ R̃A∗
∗

(i, ∗)
(i, m > 206)

(j, ∗)
(j, 1987)

Never Gonna Give You Up

!Ñ∗ !̃days∗ R̃A∗
∗

(i, ∗)
(i, n > 1987)

Never Gonna Let You Down

O
P
O
P
O
P

Fig. 2. Two examples of (partial) strategies on the iterated Π-game Π!Ñ∗Π
!d̃ays∗

R̃A∗

We define a category Ctxt(DGame!) with objects context games and mor-
phisms which are defined inductively as (dependent) lists of winning strategies
on appropriate Π-games. We show that this has the structure of a category with
families (CwF) [13], a canonical notion of model of DTT. This gives a more con-
cise presentation of the resulting indexed category with comprehension, where
we also add formal Σ-types in the fibres.

Games for Dependent Types 39

Definition 11 (CwF). A CwF is a category C with a terminal object ·, for all

objects Γ a set Ty(Γ), for all A ∈ Ty(Γ) a set Tm(Γ,A), for all Γ ′ f−→ Γ

in C functions Ty(Γ)
−{f}−→ Ty(Γ ′) and Tm(Γ,A)

−{f}−→ Tm(Γ ′, A{f}), such that
A{idΓ } = A (Ty-Id) A{g ◦ f} = A{g}{f} (Ty-Comp)
t{idΓ } = A (Tm-Id) t{g ◦ f} = t{g}{f} (Tm-Comp),

for A ∈ Ty(Γ) a morphism Γ.A
pΓ,A−→ Γ of C and vΓ,A ∈ Tm(Γ.A,A{pΓ,A})

and, finally, for all t ∈ Tm(Γ ′, A{f}) a morphism Γ ′ 〈f,t〉−→ Γ.A such that
pΓ,A ◦ 〈f, t〉 = f (Cons-L) vΓ,A{〈f, t〉} = t (Cons-R)
〈pΓ,A,vΓ,A〉 = idΓ.A (Cons-Id) 〈f, t〉 ◦ g = 〈f ◦ g, t{g}〉 (Cons-Nat).

Theorem 5. We have a CwF (Ctxt(DGame!),Ty,Tm,p,v,−.−, 〈−,−〉).

We define the required structures. All equations follow trivially from the def-
initions and the two lemmas stated. We define Ty([Xi]i) as the set of con-
text games with dependency on [Xi]i: [Yj]j ∈ Ty([Xi]i) iff [Xi]i.[Yj]j :=
[X1, . . . , Xn, Y1, . . . , Ym] is a context game, while · := [] is the terminal object.

Next, mor(C) and −{−}Ty (and a special case of −{−}Tm) are defined
through a mutual induction, where, in the last clause, we consider 〈σ1, . . . , σn〉
as a partial (history-sensitive) strategy on !I �

⋃
X1& . . . &

⋃
Xn

∼= I �⋃
X1& . . . &

⋃
Xn:

Ctxt(DGame!)([Xi]i≤n, [Yj]j≤m) := {[fj]j≤m | fj ∈ wstr(Π!X1 . . . Π!Xn
Yj{[fk]k<j})}

Yj{[fk]k<j}(σ1, . . . , σn) := Yj(f1{[σi]i≤n}, . . . , fj−1{[σi]i≤n}),
⋃

Yj{[fk]k<j} =
⋃

Yj

fk{[σi]i≤n} := (〈σ1, . . . , σn〉†; fk)|Yk{[fl]l<k}(σ1,...,σn).

The identities are defined as lists of derelicted copycats. Let us define a
strategy der[Xj]j ,Xi

which plays the derelicted copycat on the whole image of
Xi: der[Xj]j ,Xi

:= {s ∈ PΠ!X1 ...Π!XnXi
| ∃ks �!Xi

�k≈⋃
Xi

s �Xi
}. We then

define id[Xi]i := [der[Xj]j ,Xi
]i and p[Xi]i,[Yj]j := [der[Xi]i.[Yj]j ,Xk

]k. Let us define

Tm([Xi]i≤n, [Yj]j≤m) := {[fj]j | [Xi]i
[der[Xi]i,X1 , . . . , der[Xi]i,Xn

, f1, . . . , fm]� [Xi]i.[Yj]j}.

Then, we can define v[Xi]i,[Yj]j := [der[Xi]i.[Yj]j ,Yk
]k. Note that these are well-

defined because of the following lemma.

Lemma 1. der[Xj]j ,Xi
∈ wstr(Π!X1 · · · Π!Xn

Xi{[der[Xj]j ,Xk
]k≤i−1}).

We define 〈[fj]j≤m, [gk]k≤l〉 := [f1, . . . , fm, g1, . . . , gl]. We inductively define the

composition of [Xi]i≤n
[fj]j−→ [Yj]j≤m

[gk]k−→ [Zk]k in Ctxt(DGame!) as follows

[fj]j ; [gk]k := [〈f1, . . . , fm〉†; gk|Π!X1 ···Π!XnZk{[fj]j ;[gk′]k′<k}]k,

where fj are considered as partial (history-sensitive) strategies on
!(
⋃

X1& · · · &
⋃

Xn) �
⋃

Yj .

Lemma 2. [fj]j ; [gk]k is a list of winning strategies if [gk]k and [fj]j are.

40 S. Abramsky et al.

Note that for [Xi]i
[fj]j−→ [Yj]j and [gk]k ∈ Tm([Yj]j , [Zk]k),

[fj]j ; 〈[der[Yj′]j′ ,Yj
]j , [gk]k〉 = 〈[fj]j , [hk]k〉,

for some [hk]k. We use this to define −{−}Tm: [gk]k{[fj]j} := [hk]k.

Remark 1. Note that, in Ctxt(DGame!), [A,B] ∼= [A&B] if A and B are games
(without mutual dependency) and [] ∼= [I].

5 Semantic Type Formers

We show that our CwF supports Σ-, Π-, and Id-types. We characterise some of
the properties of the Id-types, marking their place in the intensionality spectrum.

Theorem 6. Our CwF supports Σ- and Π-type with their β- and η-rules.

Σ-types are just interpreted by concatenation of lists. We define a Σ-type
Σ[Yj]j [Zk]k ∈ Ty([Xi]i≤n) as [Yj]j .[Zk]k for [Zk]k≤l ∈ Ty([Xi]i≤n.[Yj]j≤m).

We have already seen Π-types Π[Xi]i≤n
[Y] := [Π!X1 · · · Π!Xn

Y] of dependent
games. What remains to be defined are Π-types Π[Xi]i [Yj]j of general depen-
dent context games, which can now be reduced to the former, as we have that
Σf :Πx:ABΠx:AC[f(x)/y] satisfies the rules for Πx:AΣy:BC.

Corollary 1. Note that this means that Ctxt(DGame!) is in particular a ccc.

We turn to identity types next, which are essentially defined as those of the
domain semantics of DTT [15]. Interestingly, due to the more intensional nature
of game semantics, they acquire a more intensional character, refuting FunExt.

Let us define [Xi]i≤n � [Yi]i≤n for context games if Xi{[σj]j<i} � Yi{[σj]j≤i}
for all 1 ≤ i ≤ n and [σj]j<i ∈ Σ(str(X1), . . . , str(Xi−1)). For [Yj]j ∈ Ty([Xi]i),
define Id[Yj]j ∈ Ty([Xi]i.[Yj]j .[Yj′]j′) through the intersection of subgames3

Id[Yj]j ([σi]i, [τj]j , [τ ′
j]j) := [τj ∩ τ ′

j]j � [Yj]j{[σi]i}.

Theorem 7. This definition satisfies the I-, E- and β-rules for Id-types.

For Id-I, x : A � reflt : IdB(t, t) can be interpreted as the list of strategies [[t]]
but at Π[[A]] Id[[B]]([[t]], [[t]]) � Π[[A]] [[B]], where we write [[−]] for the interpretation
of DTT in our model. We can interpret Id-E such that the interpretation of its
conclusion does not depend on the particular proof of identity4.

In addition to being non-extensional (i.e. refuting the principle of equality
reflection), these identity types can be said to be intensional in a positive sense.

Theorem 8. Streicher’s Criteria of Intensionality [12] are satisfied, i.e.

3 Here, we identify a strategy σ on X with the subgame {s ∈ PX | ∃t∈σs ≤ t} � X.
4 In fact, we need this rule in the syntax for a faithful interpretation in the model.

Games for Dependent Types 41

(I1) there exist � A type such that x, y : A, z : IdA(x, y)
� x ≡ y : A;
(I2) there exist � A type and x : A � B type such that x, y : A, z : IdA(x, y)
�

B ≡ B[y/x] type;
(I3) for all � A type, � p : IdA(t, s) implies � t ≡ s : A.

(I1) relies on the interpretation of terms carrying intensionality. For instance,
we can take [[A]] = B̃∗, where B := {tt,ff}, and evaluate the first and second
projections on [[x]] = [[z]] = ⊥ and [[y]] = tt. (I2) relies on semantic types having
intensional features. We can use [[B]] := (⊥,ff �→ I, tt �→ B̃∗) on the data of (I1).
(I3) follows as [pi]i ∈ Ctxt(DGame!)([], Id[Xi]i([fi]i, [gi]i) := [fi ∩ gi]i) implies
that pi = fi = gi for all i, as winning strategies are maximal.

The proofs of (I1) and (I2) also work for the domain model of DTT. (I3)
relies on the crucial difference between the domain and games models in their
interpretation of identity types of open terms. Indeed, FunExt is seen to fail in
the games model: note that for strict and non-strict constantly tt functions f

and g, we have [f] ∈ Tm([B̃∗], Id[B̃∗]
([f], [g])), while Tm([], Id

Π[B̃∗][B̃∗]
([f], [g]) = ∅.

Theorem 9. FunExt is refuted: for � f, g : Πx:AB, we do not generally have
z : Πx:AIdB(f(x), g(x)) � FunExtf,g : IdΠx:AB(f, g).

On the other hand, it turns out that we have the principle of uniqueness of
identity proofs UIP, by playing copycats between (the first) [[A]] and IdId[[A]] .

Theorem 10. We have x, y : A, p, q : IdA(x, y) � UIPA : IdIdA(x,y)(p, q).

6 Ground Types and Completeness Results

We illustrate how our model of dependent games and winning strategies satisfies
a completeness result with respect to the syntax of DTT with Σ-, Π- and Id-
types and finite inductive type families, at the Id-free hierarchy of types.

We describe a scheme for inductively defining finite type families. Let A be a
type. Then, we specify a finite inductive definition of a type family x : A � B type
by specifying finitely many closed terms a1, . . . , an : A and distinct symbols bij ,
1 ≤ i ≤ n, 1 ≤ j ≤ mi. The idea is that B is a type family, such that B[ai/x]
contains precisely the distinct closed terms bi,1, . . . , bi,mi

. These type families are
more limited than general inductive definitions as they are freely generated by
(finitely many) closed terms, while one would allow open terms in the general
case. This means that we precisely get the inductive type families that have
finitely many non-empty fibres which are all finite types.

We interpret such a definition as specifying I- and E-rules for B:
B-Ii,j� bi,j : B[ai/x]

x : A, y : B � C type
B-E.� caseB : Πx:A,y:B,z11:C[a1/x,b1,1/y],...,znmn :C[an/x,bn,mn/y]C

,

together with the β- and η-rules, commutative conversions and a rule5 defining
a falsum eliminator from IdB(bi,j , bi′,j′) for distinct constructors bi,j , bi′,j′ of B.

5 Note that this rule is derivable in presence of a universe.

42 S. Abramsky et al.

Let Ctxt(DGame!)finΣΠ be the full subcategory of Ctxt(DGame!) on the
hierarchy generated by Σ- and Π-types and finite inductive dependent games
(and substitution), as below. Then we have the following results.

Theorem 11 (Finite Inductive Dependent Games). Finite inductive type
families B over a type A, where B(ai) is generated by {bij | j}, have a sound
interpretation in Ctxt(DGame!)finΣΠ : [[B]] : [[ai]] � [˜{bij | j}∗], else � [∅̃∗].

Theorem 12 (Full and Faithful Completeness). All morphisms in
Ctxt(DGame!)finΣΠ are faithfully definable in DTT with Σ-, Π- and Id-types
with an identity proof irrelevant eliminator and finite inductive type families.

By embedding our fragment of DTT in finitary PCF, where we allow larger types
at the cost of non-termination, faithfulness follows from the corresponding result
for PCF [6]. Definability is proved along the lines of the template of [19] and
hinges on the decomposition lemma for PCF-games.

Although the completeness properties of the model at the hierarchy with
Id-types remain to be studied in detail, we do have the following.

Theorem 13. The semantic propositional equality of (open) terms of the Id-type
free hierarchy does agree with that of the syntax.

If p ∈ Tm([[A]], Id[[B]]([[f]], [[g]])), it follows that [[f]](a′) = [[g]](a′) for all a′ ∈
Ctxt(DGame!)finΣΠ([], [[A]]). Because of theorem 12, this implies that f(a) =
g(a) for all � a : A. As there are only finitely many such a, we can perform a
case analysis on these to construct x : A � ‘case’(a,

−−−−→
reflf(a)) : IdB(f, g).

7 Future Work

Ultimately, the main goal is a thorough intensional, computational analysis of
HoTT [3]. Obvious concrete directions for future work are the following:

– modifying the model to break UIP, perhaps through nominal games;
– examining the phenomena of function extensionality and univalence;
– study of universes and a more intensional notion of type family;
– study of (higher) inductive type families and their definability results;
– establishing completeness results for the type hierarchy with Id-types;
– constructing models of DTT with side effects;
– synthesising strategies from a dependently typed specification;
– study of a possible embedding of the model in the co-Eilenberg-Moore cat-

egory Game!, which might simplify its presentation.

Acknowledgments. Samson Abramsky was supported by the EPSRC, AFOSR and
the John Templeton Foundation. Radha Jagadeesan acknowledges support from the
NSF. Matthijs Vákár was supported by the EPSRC and the Clarendon Fund.

Games for Dependent Types 43

References

1. Altenkirch, T., McBride, C., McKinna, J.: Why dependent types matter.
Manuscript, 235 (2005). http://www.cs.nott.ac.uk/txa/publ/ydtm.pdf

2. Awodey, S., Warren, M.A.: Homotopy theoretic models of identity types. Mathe-
matical Proceedings of the Cambridge Philosophical Society 146(01), 45–55 (2009)

3. HoTTbaki, U.: Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study (2013). http://homotopytypetheory.org/book

4. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative lin-
ear logic. The Journal of Symbolic Logic 59(02), 543–574 (1994)

5. Hyland, J.M.E., Ong, C.H.: On full abstraction for PCF: I, II, and III. Information
and Computation 163(2), 285–408 (2000)

6. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information
and Computation 163(2), 409–470 (2000)

7. Abramsky, S., Jagadeesan, R.: A game semantics for generic polymorphism. Annals
of Pure and Applied Logic 133(1), 3–37 (2005)

8. Laird, J.: Full abstraction for functional languages with control. In: Proceedings
of the 12th Annual IEEE Symposium on Logic in Computer Science, LICS 1997,
pp. 58–67. IEEE (1997)

9. Abramsky, S., Honda, K., McCusker, G.: A fully abstract game semantics for gen-
eral references. In: Proceedings of the Thirteenth Annual IEEE Symposium on
Logic in Computer Science, pp. 334–344. IEEE (1998)

10. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.H., Stark, I.D.: Nominal games
and full abstraction for the nu-calculus. In: Proceedings of the 19th Annual IEEE
Symposium on Logic in Computer Science, pp. 150–159. IEEE (2004)

11. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M., Thomas, W.
(eds.) Computer Science Logic. Lecture Notes in Computer Science, vol. 1414,
pp. 1–17. Springer, Berlin Heidelberg (1998)

12. Streicher, T.: Investigations into intensional type theory (1993). http://www.
mathematik.tu-darmstadt.de/streicher/HabilStreicher.pdf

13. Hofmann, M.: Syntax and semantics of dependent types. In: Extensional Con-
structs in Intensional Type Theory, pp. 13–54. Springer (1997)

14. Bezem, M., Coquand, T., Huber, S.: A model of type theory in cubical sets. In:
19th International Conference on Types for Proofs and Programs, TYPES 2013,
vol. 26, pp. 107–128 (2014)

15. Palmgren, E., Stoltenberg-Hansen, V.: Domain interpretations of Martin-Löf’s par-
tial type theory. Annals of Pure and Applied Logic 48(2), 135–196 (1990)

16. Abramsky, S., Jagadeesan, R.: Game semantics for access control. Electronic Notes
in Theoretical Computer Science 249, 135–156 (2009)

17. Vákár, M.: A categorical semantics for linear logical frameworks. In: Pitts, A. (ed.)
FOSSACS 2015. LNCS, vol. 9034, pp. 102–116. Springer, Heidelberg (2015)

18. Pitts, A.M.: Categorical logic. In: Abramsky, S., Gabbay, D., Maibaum, T., (eds.)
Handbook of Logic in Computer Science, vol. 5, pp. 39–128. OUP (2000)

19. Abramsky, S.: Axioms for definability and full completeness. In: Proof, Language
and Interaction: Essays in Honour of Robin, pp. 55–75. MIT Press (2000)

http://www.cs.nott.ac.uk/txa/publ/ydtm.pdf
http://homotopytypetheory.org/book
http://www.mathematik.tu-darmstadt.de/streicher/HabilStreicher.pdf
http://www.mathematik.tu-darmstadt.de/streicher/HabilStreicher.pdf

Short Proofs of the Kneser-Lovász
Coloring Principle

James Aisenberg1, Maria Luisa Bonet2, Sam Buss1(B),
Adrian Crãciun3, and Gabriel Istrate3

1 Department of Mathematics, University of California, San Diego,
La Jolla, CA 92093-0112, USA

jaisenberg@math.ucsd.edu, sbuss@ucsd.edu
2 Computer Science Department, Universidad Politécnica de Cataluña,

Barcelona, Spain
bonet@cs.upc.edu

3 West University of Timişoara, and the e-Austria Research Institute,
300223 Timişoara, Romania

acraciun@ieat.ro, gabrielistrate@acm.org

Abstract. We prove that the propositional translations of the Kneser-
Lovász theorem have polynomial size extended Frege proofs and quasi-
polynomial size Frege proofs. We present a new counting-based
combinatorial proof of the Kneser-Lovász theorem that avoids the topo-
logical arguments of prior proofs for all but finitely many cases for each k.
We introduce a miniaturization of the octahedral Tucker lemma, called
the truncated Tucker lemma: it is open whether its propositional trans-
lations have (quasi-)polynomial size Frege or extended Frege proofs.

1 Introduction

This paper discusses proofs of Lovász’s theorem about the chromatic number
of Kneser graphs, and the proof complexity of propositional translations of the
Kneser-Lovász theorem. We give a new proof of the Kneser-Lovász theorem that
uses a simple counting argument instead of the topological arguments used in
prior proofs, for all but finitely many cases. Our arguments can be formalized
in propositional logic to give polynomial size extended Frege proofs and quasi-
polynomial size Frege proofs.

Frege systems are sound and complete proof systems for propositional logic
with a finite schema of axioms and inference rules. The typical example is a
“textbook style” propositional proof system using modus ponens as its only

J. Aisenberg—Supported in part by NSF grants DMS-1101228 and CCF-1213151.
M.L. Bonet—Supported in part by grant TIN2013-48031-C4-1.
S. Buss—Supported in part by NSF grants DMS-1101228 and CCF-1213151, and
Simons Foundation award 306202.
A. Crãciun and G. Istrate—Supported in part by IDEI grant PN-II-ID-PCE-2011-3-
0981“Structure and computational difficulty in combinatorial optimization: an inter-
disciplinary approach”.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 44–55, 2015.
DOI: 10.1007/978-3-662-47666-6 4

Short Proofs of the Kneser-Lovász Coloring Principle 45

rule of inference, and all Frege systems are polynomially equivalent to this sys-
tem [7]. Extended Frege systems are Frege systems augmented with the exten-
sion rule, which allows variables to abbreviate complex formulas. The size of a
Frege or extended Frege proof is measured by counting the number of symbols
in the proof [7]. Frege proofs are able to reason using Boolean formulas; whereas
extended Frege proofs can reason using Boolean circuits (see [9]). Boolean for-
mulas are conjectured to require exponential size to simulate Boolean circuits;
there is no known direct connection, but by analogy, it is generally conjectured
that there is an exponential separation between the sizes of Frege proofs and
extended Frege proofs. This is one of the important open questions in proof
complexity; for more on proof complexity see e.g. [2,4,5,7,10,13].

As discussed by Bonet, Buss and Pitassi [2] and more recently by [1,6],
we have hardly any examples of combinatorial tautologies, apart from con-
sistency statements, that are conjectured to exponentially separate Frege and
extended Frege proof size. These prior works discussed a number of combinato-
rial principles, including the pigeonhole principle and Frankl’s theorem. Istrate
and Crãciun [8] recently proposed the Kneser-Lovász principle as a candidate for
exponentially separating Frege and extended Frege proof size. In this paper we
give quasi-polynomial size Frege proofs of the propositional translations of the
Kneser-Lovász theorem for all fixed k. Thus they do not provide an exponential
separation of Frege and extended Frege proof size.

Our proof is also interesting because it gives a new method of proving the
Kneser-Lovász theorem. Prior proofs use (at least implicitly) a topological fixed-
point lemma. The most combinatorial proof is by Matoušek [12] and is inspired
by the octahedral Tucker lemma; see also Ziegler [14]. Our new proofs mostly
avoid topological arguments and use a counting argument instead. These count-
ing arguments can be formalized with Frege proofs. Indeed, one of the impor-
tant strengths of Frege proofs is that they can reason about integer arithmetic.
These techniques originated in polynomial size Frege proofs of the pigeonhole
principle [3] which used carry-save-addition representations for vector addition
and multiplication in order to express and prove properties about integer opera-
tions in polynomial size. For the Kneser-Lovász theorem, the counting arguments
reduce the general case to “small” instances of size n ≤ 2k4. For fixed k, there
are only finitely many small instances, and they can be verified by exhaustive
enumeration. As we shall see, this leads to polynomial size extended Frege proofs,
and quasi-polynomial size Frege proofs, for the Kneser-Lovász principles.

It is surprising that the topological arguments can be largely eliminated from
the proof of the Kneser-Lovász theorem. The only remaining use of topological
arguments is to establish the “small instances”. It would be interesting to give
an additional argument that avoids having to prove the small instances sepa-
rately. One possibility for this would be to adapt the proof based on the octa-
hedral Tucker lemma to quasi-polynomial size Frege proofs. The first difficulty
with this is that the octahedral Tucker lemma has exponentially large propo-
sitional translations. To circumvent this, we present a miniaturized version of
the octahedral Tucker lemma called the truncated Tucker lemma. The truncated
Tucker lemma has polynomial size propositional translations. We prove that the

46 J. Aisenberg et al.

Kneser-Lovász tautologies have polynomial size constant depth Frege proofs if
the propositional formulas for the truncated Tucker lemma are given as addi-
tional hypotheses. However, it remains open whether these truncated Tucker
lemma principles have (quasi-)polynomial size Frege or extended Frege proofs.

The (n, k)-Kneser graph is defined to be the undirected graph whose vertices
are the k-subsets of {1, . . . , n}; there is an edge between two vertices iff those
vertices have empty intersection. The Kneser-Lovász theorem states that Kneser
graphs have a large chromatic number:

Theorem 1 (Lovász [11]). Let n ≥ 2k > 1. The (n, k)-Kneser graph has no
coloring with n − 2k + 1 colors.

It is well-known that the (n, k)-Kneser graph has a coloring with n − 2k + 2
colors (see e.g. the appendix to the arXiv version of this paper), so the bound
n−2k+1 is optimal. For k = 1, the Kneser-Lovász theorem is just the pigeonhole
principle.

Istrate and Crãciun [8] noted that, for fixed values of k, the propositional
translations of the Kneser-Lovász theorem have polynomial size in n. They pre-
sented arguments that can be formalized by polynomial size Frege proofs for
k = 2, and by polynomial size extended Frege proofs for k = 3. This left open
the possibility that the k = 3 case could exponentially separate the Frege and
extended Frege systems. It was also left open whether the k > 3 case of the
Kneser-Lovász theorem gave tautologies that require exponential size extended
Frege proofs. As discussed above, the present paper refutes these possibilities.
Theorems 4 and 5 summarize these results.

Let [n] be the set {1, . . . , n}; members of [n] are called nodes. We identify(
n
k

)
with the set of k-subsets of [n], the vertices of the (n, k)-Kneser graph.

Definition 2. An m-coloring of the (n, k)-Kneser graph is a map c from
(
n
k

)
to [m], such that for S, T ∈

(
n
k

)
, if S ∩ T = ∅, then c(S) �= c(T). If � ∈ [m], then

the color class P� is the set of vertices assigned the color � by c.

The formulas Knesern
k are the natural propositional translations of the state-

ment that there is no (n − 2k + 1)-coloring of the (n, k)-Kneser graph:

Definition 3. Let n ≥ 2k > 1, and m = n−2k+1. For S ∈
(
n
k

)
and i ∈ [m], the

propositional variable pS,i has the intended meaning that vertex S of the Kneser
graph is assigned the color i. The formula Knesern

k is∧
S∈(n

k)

∨
i∈[m]

pS,i →
∨

S,T∈(n
k)

S∩T=∅

∨
i∈[m]

(pS,i ∧ pT,i) .

Theorem 4. For fixed parameter k ≥ 1, the propositional translations Knesern
k

of the Kneser-Lovász theorem have polynomial size extended Frege proofs.

Theorem 5. For fixed parameter k ≥ 1, the propositional translations Knesern
k

of the Kneser-Lovász theorem have quasi-polynomial size Frege proofs.

Short Proofs of the Kneser-Lovász Coloring Principle 47

When both k and n are allowed to vary, it is open whether the Knesern
k

tautologies have quasi-polynomial size (extended) Frege proofs, or equivalently,
have proofs with size quasi-polynomially bounded in terms of nk.

2 Mathematical Arguments

Section 2.1 gives the new proof of the Kneser-Lovász theorem; this is later shown
to be formalizable with polynomial size extended Frege proofs. Section 2.2 gives a
slightly more complicated but more efficient proof, later shown to be formalizable
with quasi-polynomial size Frege proofs. The next definition and lemma are
crucial for Sects. 2.1 and 2.2.

Any two vertices in a color class P� have non-empty intersection. One way
this can happen is for the color class to be “star-shaped”:

Definition 6. A color class P� is star-shaped if
⋂

P� is non-empty. If P� is
star-shaped, then any i ∈

⋂
P� is called a central element of P�.

The next lemma bounds the size of color classes that are not star-shaped. It
will be used in our proof of the Kneser-Lovász theorem to establish the existence
of star-shaped color classes. The idea is that non-star-shaped color classes are
too small to cover all

(
n
k

)
vertices.

Lemma 7. Let c be a coloring of
(
n
k

)
. If P� is not star-shaped, then

|P�| ≤ k2

(
n − 2
k − 2

)
.

Proof. Suppose P� is not star-shaped. If P� is empty, the claim is trivial. So
suppose P� �= ∅, and let S0 = {a1, . . . , ak} be some element of P�. Since P� is not
star-shaped, there must be sets S1, . . . , Sk ∈ P� with ai /∈ Si for i = 1, . . . , k.

To specify an arbitrary element S of P�, we do the following. Since S and
S0 have the same color, S ∩ S0 is non-empty. We first specify some ai ∈ S ∩ S0.
Likewise, S ∩Si is non-empty; we second specify some aj ∈ S ∩Si. By construc-
tion, ai �= aj , so S is fully specified by the k possible values for ai, the k possible
values for aj , and the

(
n−2
k−2

)
possible values for the remaining members of S.

Therefore, |P�| ≤ k2
(
n−2
k−2

)
.
�

2.1 Argument for Extended Frege Proofs

Let k > 1 be fixed. We prove the Kneser-Lovász theorem by induction on n. The
base cases for the induction are n = 2k, . . . , N(k) where N(k) is the constant
depending on k specified in Lemma 8. We shall show that N(k) is no greater
than k4. Since k is fixed, there are only finitely many base cases. Since the
Kneser-Lovász theorem is true, these base cases can all be proved by a fixed
Frege proof of finite size (depending on k). Therefore, in our proof below, we
only show the induction step.

48 J. Aisenberg et al.

Lemma 8. Fix k > 1. There is an N(k) so that, for n > N(k), any (n−2k+1)-
coloring of

(
n
k

)
has at least one star-shaped color class.

Proof. Suppose that a coloring c has no star-shaped color class. Since there are
n − 2k + 1 many color classes, Lemma 7 implies that

(n − 2k + 1) · k2

(
n − 2
k − 2

)
≥

(
n

k

)
. (1)

For fixed k, the left-hand side of (1) is Θ(nk−1) and the right-hand side is Θ(nk).
Thus, there exists an N(k) such that (1) fails for all n > N(k). Hence for
n > N(k), there must be at least one star-shaped color class.
�

To obtain an upper bound on the value of N(k), note that (1) is equivalent to

(n − 2k + 1)k3(k − 1) ≥ n(n − 1). (2)

Since 2k − 1 ≥ 1, (2) implies that (n − 1)k4 > n(n − 1) and thus that n < k4.
Thus, (1) will be false if n ≥ k4; so N(k) < k4.

We are now ready to give our first proof of the Kneser-Lovász theorem.

Proof (of Theorem 1, except for base cases). Fix k > 1. By Lemma 8, there is
some N(k) such that for n > N(k), any (n − 2k + 1)-coloring c of

(
n
k

)
has a

star-shaped color class. As discussed above, the cases of n ≤ N(k) cases are
handled by exhaustive search and the truth of the Kneser-Lovász theorem. For
n > N(k), we prove the claim by infinite descent. In other words, we show
that if c is an (n − 2k + 1)-coloring of

(
n
k

)
, then there is some c′ which is an

((n − 1) − 2k + 1)-coloring of
(
n−1

k

)
.

By Lemma 8, the coloring c has some star-shaped color class P� with central
element i. Without loss of generality, i = n and � = n − 2k + 1. Let

c′ = c �
(
n−1

k

)
be the restriction of c to the domain

(
n−1

k

)
. This discards the central element n

of P�, and thus all vertices with color �. Therefore, c′ is an ((n − 1) − 2k + 1)-
coloring of

(
n−1

k

)
. This completes the proof.
�

2.2 Argument for Frege Proofs

We now give a second proof of the Kneser-Lovász theorem. The proof above
required n − N(k) rounds of infinite descent to transform a Kneser graph on n
nodes to one on N(k) nodes. Our second proof replaces this with only O(log n)
many rounds, and this efficiency will be key for formalizing this proof with quasi-
polynomial size Frege proofs in Sect. 3.2.

We refine Lemma 8 to show that for n sufficiently large, there are many (i.e.,
a constant fraction) star-shaped color classes. The idea is to combine the upper
bound of Lemma 7 on the size of non-star-shaped color classes with the trivial
upper bound of

(
n−1
k−1

)
on the size of star-shaped color classes.

Short Proofs of the Kneser-Lovász Coloring Principle 49

Lemma 9. Fix k > 1 and 0 < β < 1. Then there exists an N(k, β) such that
for n > N(k, β), if c is an (n − 2k + 1)-coloring of

(
n
k

)
, then c has at least n

k β
many star-shaped color classes.

Proof. The value of N(k, β) can be set equal to k3(k−β)
1−β . Let n > k3(k−β)

1−β , and
suppose c is an (n − 2k + 1)-coloring of

(
n
k

)
. Let α be the number of star-shaped

color classes of c. It is clear that an upper bound on the size of each star-shaped
color class is

(
n−1
k−1

)
. There are n − α − 2k + 1 many non-star-shaped classes, and

Lemma 7 bounds their size by k2
(
n−2
k−2

)
. This implies that

(
n − 1
k − 1

)
α + k2

(
n − 2
k − 2

)
(n − α − 2k + 1) ≥

(
n

k

)
. (3)

Assume for a contradiction that α < n
k β. Since n > k3(k−β)

1−β , 0 < β < 1, and
k ≥ 2, we have n − 1 > k3(k − 1) > k2(k − 1). Therefore,

(
n−1
k−1

)
> k2

(
n−2
k−2

)
, and

if α is replaced by the larger value n
k β, the left hand side of (3) increases. Thus,(

n − 1
k − 1

)
n

k
β + k2

(
n − 2
k − 2

)(
n − n

k
β − 2k + 1

)
>

(
n

k

)
.

Since
(
n−1
k−1

)
n
k =

(
n
k

)
and n − n

k β − 2k + 1 = k−β
k n − 2k + 1,

k2

(
n − 2
k − 2

)(k − β

k
n − 2k + 1

)
> (1 − β)

(
n

k

)
. (4)

We have k−β
k (n − 1) > k−β

k n − 2k + 1. Therefore, (4) gives

k3(k − 1)
k − β

k
(n − 1) > (1 − β)n(n − 1).

Dividing by n − 1 gives k3(k − β) > (1 − β)n, contradicting n > k3(k−β)
1−β .
�

We now give our second proof of the Kneser-Lovász theorem.

Proof (of Theorem 1, except for base cases). Fix k > 1. By Lemma 9 with
β = 1/2, if n > N(k, 1/2) and c is an (n − 2k + 1)-coloring of

(
n
k

)
, then c has at

least n/2k many star-shaped color classes. We prove the Kneser-Lovász theorem
by induction on n. The base cases are for 2k ≤ n ≤ N(k, 1/2), and there are
only finitely of these, so they can be exhaustively proven. For n > N(k, 1/2),
we structure the induction proof as an infinite descent. In other words, we show
that if c is an (n − 2k + 1)-coloring of

(
n
k

)
, then there is some c′ that is an

((n − n
2k) − 2k + 1)-coloring of

(n− n
2k

k

)
. For simplicity of notation, we assume n

2k
is an integer. If this is not the case, we really mean to round up to the nearest
integer � n

2k .
By permuting the color classes and the nodes, we can assume w.l.o.g. that

the n
2k color classes P� for � = n − n

2k − 2k + 2, . . . , n − 2k + 1 are star-shaped,

50 J. Aisenberg et al.

and each such P� has central element � + 2k − 1. That is, the last n
2k many color

classes are star-shaped and their central elements are the last n
2k nodes in [n].

(It is possible that some star-shaped color classes share central nodes; in this
case, additional nodes can be discarded so that n/2k are discarded in all.)

Define c′ to be the coloring of
(
n−n/2k

k

)
which assigns the same colors as c.

The map c′ is a (2k−1
2k n − 2k + 1)-coloring of

(2k−1
2k n

k

)
, since n − n

2k = 2k−1
2k n.

This completes the proof of the induction step.
�

When formalizing the above argument with quasi-polynomial size Frege
proofs, it will be important to know how many iterations of the procedure are
required to reach the base cases, so let us calculate this.

After s iterations of this procedure, we have a ((2k−1
2k)sn − 2k + 1)-coloring

of
(

(2k−1
2k)sn

k

)
. We pick s large enough so that (2k−1

2k)sn is less than N(k, 1/2).

In other words, since k is constant,

s = log 2k
2k−1

(n

k3(2k − 1)

)
= O(log n)

will suffice, and only O(log n) many rounds of the procedure are required.
We do not know if the bound in Lemma 9 is optimal or close to optimal. An

appendix in the arXiv version of this paper will discuss the best examples we
know of colorings with large numbers of non-star-shaped color classes.

3 Formalization in Propositional Logic

3.1 Polynomial Size Extended Frege Proofs

We sketch the formalization of the argument in Sect. 2.1 as a polynomial size
extended Frege proof, establishing Theorem 4. We concentrate on showing how
to express concepts such as “star-shaped color class” with polynomial size propo-
sitional formulas. For space reasons, we omit the straightforward details of how
(extended) Frege proofs can prove properties of these concepts.

Fix values for k and n with n > N(k). We describe an extended Frege proof
of Knesern

k . We have variables pS,j (recall Definition 3), collectively denoted just
�p . The proof assumes Knesern

k (�p) is false, and proceeds by contradiction. The
main step is to define new variables �p ′ and prove that Knesern−1

k (�p ′) fails. This
will be repeated until reaching a Kneser graph over only N(k) nodes.

For this, let Star(i, �) be a formula that is true when i ∈ [n] is a central
element of the color class P�; namely,

Star(i, �) :=
∧

S∈(n
k), i/∈S

¬pS,�.

We use Star(�) :=
∨

i Star(i, �) to express that P� is star-shaped.

Short Proofs of the Kneser-Lovász Coloring Principle 51

The extended Frege proof defines the instance of the Kneser-Lovasz principle
Knesern−1

k by discarding one node and one color. The first star-shaped color
class P� is discarded; accordingly, we let

DiscardColor(�) := Star(�) ∧
∧
�′<�

¬Star(�′).

The node to be discarded is the least central element of the discarded P�:

DiscardNode(i) :=
∨
�

[
DiscardColor(�) ∧ Star(i, �) ∧

∧
i′<i

¬Star(i′, �)
]
.

After discarding the node i and color class P�, the remaining nodes and colors
are renumbered to the ranges [n − 1] and [n − 2k], respectively. In particular,
the “new” color j (in the instance of Knesern−1

k) corresponds to the “old” color
j−� (in the instance of Knesern

k) where

j−� =

{
j if j < �

j + 1 if j ≥ �.

And, if S = {i1, . . . , ik} ∈
(
n−1

k

)
is a “new” vertex (for the Knesern−1

k instance),
then it corresponds to the “old” vertex S−i ∈

(
n
k

)
(for the instance of Knesern

k),
where S−i = {i′1, i

′
2, . . . , i

′
k} with

i′t =

{
it if it < i

it + 1 if it ≥ i.

For each S ∈
(
n−1

k

)
and j ∈ [n − 1], the extended Frege proof uses the extension

rule to introduce a new variable p′
S,j defined as follows

p′
S,j ≡

∨
i,�

(
DiscardNode(i) ∧ DiscardColor(�) ∧ pS−i,j−�

)
.

As seen in the definition by extension, p′
S,j is defined by cases, one for each

possible pair i, � of nodes and colors such that the node i is the least central
element of the P� color class, where P� is the first star-shaped color class. The
extended Frege proof then shows that ¬Knesern

k (�p) implies ¬Knesern−1
k (�p ′), i.e.,

that if the variables pS,j define a coloring, then the variables p′
S,j also define a

coloring. For this, it is necessary to show that there is at least one star-shaped
color class; this is provable with a polynomial size extended Frege proof (even
a Frege proof) using the construction of Lemma 8 and the counting techniques
of [3].

The extended Frege proof iterates this process of removing one node and one
color until it is shown that there is a coloring of

(
N(k)

k

)
. This is then refuted by

exhaustively considering all graphs with ≤ N(k) nodes.
�

52 J. Aisenberg et al.

3.2 Quasi-Polynomial Size Frege Proofs

This section discusses some of the details of the formalization of the argument
in Sect. 2.2 as quasi-polynomial size Frege proofs, establishing Theorem 5. First
we will form an extended Frege proof, then modify it to become a Frege proof.
As before, the proof starts with the assumption that Knesern

k (�p) is false. As we
describe next, the extended Frege proof then introduces variables �p ′ by extension
so that Knesern−n/2k

k is false. This process will be repeated O(log n) times. The
final Frege proof is obtained by unwinding the definitions by extension.

For a set X of formulas and t > 0, let “|X| < t” denote a formula that is
true when the number of true formulas in X is less than t. “|X| < t” can be
expressed by a formula of size polynomially bounded by the total size of the
formulas in X, using the construction in [3]. “|X| = t” is defined similarly.

The formulas Star(i, �) and Star(�) are the same as in Sect. 3.1. A color � is
now discarded if it is among the least n/2k star-shaped color classes.

DiscardColor(�) := Star(�) ∧ (|{Star(�′) : �′ ≤ �}| ≤ n/2k)

The discarded nodes are the least central elements of the discarded color classes.

DiscardNode(i) :=
∨
�

[
DiscardColor(�) ∧ Star(i, �) ∧

∧
i′<i

¬Star(i′, �)
]
.

The remaining, non-discarded colors and nodes are renumbered to form an
instance of Knesern−n/2k

k . For this, the formula RenumNode(i′, i) is true when
the node i′ is the ith node that is not discarded; similarly RenumColor(j′, j) is
true when the color j′ is the jth color that is not discarded.

RenumNode(i′, i):= (|{¬DiscardNode(i′′) : i′′<i′}| = i−1) ∧ ¬DiscardNode(i′)

RenumColor(j′, j):= (|{¬DiscardColor(j′′) : j′′<j′}| = j−1) ∧ ¬DiscardColor(j′)

For each S = {i1, . . . , ik} ∈
(
n−n/2k

k

)
and j ∈ [(n−n/2k)− 2k +1], we define

by extension

p′
S,j ≡

∨
i′
1,...i′

k,j′

(
k∧

t=1

(RenumNode(i′t, it)) ∧ RenumColor(j′, j) ∧ p{i′
1,...,i′

k},j′

)
.

The Frege proof then argues that if the variables pS,j define a coloring, then
the variables p′

S,j define a coloring, i.e., that ¬Knesern
k (�p) → ¬Knesern−n/2k

k (�p ′).
The main step for this is proving there are at least n/2k star-shaped color classes
by formalizing the proof of Lemma 9; this can be done with polynomial size Frege
proofs using the counting techniques from [3]. After that, it is straightforward to
prove that, for each S ∈

(
n−n/2k

k

)
and j ∈ [(n − n/2k) − 2k + 1], the variable p′

S,j

is well-defined; and that the �p ′ collectively falsify Knesern−n/2k
k .

This is iterated O(log n) times until fewer than N(k, 1/2) nodes remain. The
proof concludes with a hard-coded proof that there are no such colorings of the
finitely many small Kneser graphs.

Short Proofs of the Kneser-Lovász Coloring Principle 53

To form the quasi-polynomial size Frege proof, we unwind the definitions by
extension. Each definition by extension was polynomial size; they are nested to
a depth of O(log n). So the resulting Frege proof is quasi-polynomial size.
�

4 The Truncated Tucker Lemma

This section introduces the truncated Tucker lemma. The usual (octahedral)
Tucker lemma implies the truncated Tucker lemma and the truncated Tucker
lemma implies the Kneser-Lovász theorem. The truncated Tucker lemma is of
particular interest, since its propositional translations are only polynomial size;
in contrast, the propositional translations of the usual Tucker lemma are of
exponential size. Additionally, there are polynomial size constant depth Frege
proofs of the Kneser-Lovász tautologies from the truncated Tucker tautologies.

Our definition and proof of the truncated Tucker lemma borrows techniques
and notation from Matoušek [12].

Definition 10. Let n ≥ 1. The octahedral ball Bn is:

Bn := {(A,B) : A,B ⊆ [n] and A ∩ B = ∅}.

Let 1 ≤ k ≤ n. The truncated octahedral ball Bn
k is:

Bn
k :=

{
(A,B) : A,B ∈

(
n

k

)
∪ {∅}, A ∩ B = ∅, and (A,B) �= (∅, ∅)

}
.

Definition 11. Let n > 1. A mapping λ : Bn → {1,±2, . . . ,±n} is antipodal if
λ(∅, ∅) = 1, and for all other pairs (A,B) ∈ Bn, λ(A,B) = −λ(B,A).

Let n ≥ 2k > 1. A mapping λ : Bn
k → {±2k, . . . ,±n} is antipodal if for all

(A,B) ∈ Bn
k , λ(A,B) = −λ(B,A).

Note that −1 is not in the range of λ, and (∅, ∅) is the only member of Bn that
is mapped to 1 by λ.

For A ⊆ [n], let A≤k denote the least k elements of A. By convention ∅≤k = ∅,
but otherwise the notation is used only when |A| ≥ k.

The Tucker lemma uses the subset relation ⊆ on [n], but the truncated Tucker
lemma uses instead a stronger partial order � on

(
n
k

)
.

Definition 12. Let � be the partial order on sets in
(
n
k

)
∪{∅} defined by A1 � A2

iff (A1 ∪ A2)≤k = A2.

Lemma 13. The relation � is a partial order with ∅ its least element.

Proof. It is clearly reflexive. For anti-symmetry, A1 � A2 and A2 � A1 imply
that A1 = (A1 ∪ A2)≤k = (A2 ∪ A1)≤k = A2. For transitivity: Suppose A1 � A2

and A2 � A3. Then (A1 ∪A2)≤k = A2 and (A2 ∪A3)≤k = A3. This implies that

A3 = (A2∪A3)≤k = ((A1∪A2)≤k∪A3)≤k = (A1∪(A2∪A3)≤k)≤k = (A1∪A3)≤k.

Therefore A1 � A3. That ∅ is the least element is clear from the definition.
�

54 J. Aisenberg et al.

Definition 14. Two pairs (A1, B1) and (A2, B2) in Bn are complementary w.r.t.
an antipodal map λ on Bn if A1 ⊆ A2, B1 ⊆ B2 and λ(A1, B1) = −λ(A2, B2).

For (A1, B1) and (A2, B2) in Bn
k , write (A1, B1) � (A2, B2) when A1 � A2,

B1 � B2, and Ai ∩ Bj = ∅ for i, j ∈ {1, 2}. The pairs (A1, B1) and (A2, B2) are
k-complementary w.r.t. an antipodal map λ on Bn

k if (A1, B1) � (A2, B2) and
λ(A1, B1) = −λ(A2, B2).

Theorem 15 (Tucker lemma). If λ : Bn → {1,±2, . . . ,±n} is antipodal, then
there are two elements in Bn that are complementary.

Theorem 16 (Truncated Tucker). Let n ≥ 2k > 1. If λ : Bn
k → {±2k . . . ,±n}

is antipodal, then there are two elements in Bn
k that are k-complementary.

For a proof of Theorem 15, see [12]. An appendix to the arXiv version of this
paper proves Theorem 16 from Theorem 15.

The truncated Tucker lemma has polynomial size propositional translations.
For each (A,B) ∈ Bn

k , and for each i ∈ {±2k, . . . ,±n}, let pA,B,i be a proposi-
tional variable with the intended meaning that pA,B,i is true when λ(A,B) = i.
The following formula Ant(�p) states that the map is total and antipodal:∧

(A,B)∈Bn
k

∨
i∈{±2k,...,±n}

(pA,B,i ∧ pB,A,−i).

The following formula Comp(�p) states that there exists two elements in Bn
k that

are k-complementary: ∨
(A1,B1),(A2,B2)∈Bn

k ,
(A1,B1)�(A2,B2)
i∈{±2k,...,±n}

(pA1,B1,i ∧ pA2,B2,−i) .

The truncated Tucker tautologies are defined to be Ant(�p) → Comp(�p). (We
could add an additional hypothesis, that for each A,B there is at most one i such
that pA,B,i, but this is not needed for the Tucker tautologies to be valid.) There
are < n2k members (A,B) in Bn

k . Hence, for fixed k, there are only polynomially
many variables pA,B,i, and the truncated Tucker tautologies have size polyno-
mially bounded by n. On the other hand, the propositional translation of the
usual Tucker lemma requires an exponential number of propositional variables
in n, since the cardinality of Bn is exponential in n.

Proof (Theorem 1 from the truncated Tucker lemma). Let c :
(
n
k

)
→ {2k, . . . , n}

be a (n−2k+1)-coloring of
(
n
k

)
. We show that this implies the existence of an

antipodal map λ on Bn
k that has no k-complementary pairs. Let ≤ be a total order

on
(
n
k

)
∪{∅} that refines the partial order �. Define λ(A,B) to be c(A) if A > B

and −c(B) if B > A. We argue that there are no k-complementary pairs in Bn
k

with respect to λ. Suppose there are, say (A1, B1) and (A2, B2). Since λ must
assign these opposite signs, either A1 < B1 ≤ B2 < A2 or B1 < A1 ≤ A2 < B2.
In the former case it must be that, c(B1) = c(A2) and in the latter case that
c(A1) = c(B2). Since B1 ∩ A2 and A1 ∩ B2 are empty in either case we have a
contradiction, since c was assumed to be a coloring.
�

Short Proofs of the Kneser-Lovász Coloring Principle 55

The above proof of the Kneser-Lovász theorem from the truncated Tucker
lemma can be readily translated into polynomial size constant depth Frege
proofs.

Question 17. Do the propositional translations of the Truncated Tucker lemma
have short (extended) Frege proofs?

References

1. Aisenberg, J., Bonet, M.L., Buss, S.R.: Quasi-polynomial size Frege proofs of
Frankl’s theorem on the trace of finite sets (201?) (to appear in Journal of Symbolic
Logic)

2. Bonet, M.L., Buss, S.R., Pitassi, T.: Are there hard examples for Frege systems?
In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 30–56. Birkhäuser,
Boston (1995)

3. Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. Journal
of Symbolic Logic 52, 916–927 (1987)

4. Buss, S.R.: Propositional proof complexity: An introduction. In: Berger, U.,
Schwichtenberg, H. (eds.) Computational Logic, pp. 127–178. Springer, Berlin
(1999)

5. Buss, S.R.: Towards NP-P via proof complexity and proof search. Annals of Pure
and Applied Logic 163(9), 1163–1182 (2012)

6. Buss, S.R.: Quasipolynomial size proofs of the propositional pigeonhole principle
(2014) (submitted for publication)

7. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
Journal of Symbolic Logic 44, 36–50 (1979)

8. Istrate, G., Crãciun, A.: Proof complexity and the Kneser-Lovász theorem. In: Sinz,
C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 138–153. Springer, Heidelberg
(2014)

9. Jeřábek, E.: Dual weak pigeonhole principle, boolean complexity, and derandom-
ization. Annals of Pure and Applied Logic 124, 1–37 (2004)

10. Kraj́ıček, J.: Bounded Arithmetic. Propositional Calculus and Complexity Theory.
Cambridge University Press, Heidelberg (1995)

11. Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. Journal of Com-
binatorial Theory, Series A 25(3), 319–324 (1978)

12. Matoušek, J.: A combinatorial proof of Kneser’s conjecture. Combinatorica 24(1),
163–170 (2004)

13. Segerlind, N.: The complexity of propositional proofs. Bulletin of Symbolic Logic
13(4), 417–481 (2007)

14. Ziegler, G.M.: Generalized Kneser coloring theorems with combinatorial proofs.
Inventiones Mathematicae 147(3), 671–691 (2002)

Provenance Circuits
for Trees and Treelike Instances

Antoine Amarilli1(B), Pierre Bourhis2, and Pierre Senellart1,3

1 Institut Mines-Télécom, Télécom ParisTech, CNRS LTCI, Paris, France
antoine.amarilli@telecom-paristech.fr

2 CNRS CRIStAL, Université Lille 1, INRIA Lille, Lille, France
pierre.bourhis@univ-lille1.fr

3 National University of Singapore, CNRS IPAL, Singapore, Singapore
pierre.senellart@telecom-paristech.fr

Abstract. Query evaluation in monadic second-order logic (MSO) is
tractable on trees and treelike instances, even though it is hard for arbi-
trary instances. This tractability result has been extended to several
tasks related to query evaluation, such as counting query results [2] or
performing query evaluation on probabilistic trees [8]. These are two
examples of the more general problem of computing augmented query
output, that is referred to as provenance. This article presents a prove-
nance framework for trees and treelike instances, by describing a linear-
time construction of a circuit provenance representation for MSO queries.
We show how this provenance can be connected to the usual definitions of
semiring provenance on relational instances [17], even though we compute
it in an unusual way, using tree automata; we do so via intrinsic defini-
tions of provenance for general semirings, independent of the operational
details of query evaluation. We show applications of this provenance to
capture existing counting and probabilistic results on trees and treelike
instances, and give novel consequences for probability evaluation.

1 Introduction

A celebrated result by Courcelle [9] has shown that evaluating a fixed monadic
second-order (MSO) query on relational instances, while generally hard in the
input instance, can be performed in linear time on input instances of bounded
treewidth (or treelike instances), by encoding the query to an automaton on tree
encodings of instances. This idea has been extended more recently to monadic
Datalog [14]. In addition to query evaluation, it is also possible to count in linear
time the number of query answers over treelike instances [2,22].

However, query evaluation and counting are special cases of the more gen-
eral problem of capturing provenance information [7,17] of query results, which
describes the link between input and output tuples. Provenance information can
be expressed through various formalisms, such as provenance semirings [17] or
Boolean formulae [26]. Besides counting, provenance can be exploited for practi-
cally important tasks such as answering queries in incomplete databases, main-
taining access rights, or computing query probability [26]. To our knowledge,
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 56–68, 2015.
DOI: 10.1007/978-3-662-47666-6 5

Provenance Circuits for Trees and Treelike Instances 57

no previous work has looked at the general question of efficient evaluation of
expressive queries on treelike instances while keeping track of provenance.

Indeed, no proper definition of provenance for queries evaluated via tree
automata has been put forward. The first contribution of this work (Section 3)
is thus to introduce a general notion of provenance circuit [11] for tree automata,
which provides an efficiently computable representation of all possible results of
an automaton over a tree with uncertain annotations. Of course, we are interested
in the provenance of queries rather than automata; however, in this setting, the
provenance that we compute has an intrinsic definition, so it does not depend
on which automaton we use to compute the query.

We then extend these results in Section 4 to the provenance of queries on
treelike relational instances. We propose again an intrinsic definition of prove-
nance capturing the subinstances that satisfy the query. We then show that, in
the same way that queries can be evaluated by compiling them to an automaton
on tree encodings, we can compute a provenance circuit for the query by com-
piling it to an automaton, computing a tree decomposition of the instance, and
performing the previous construction, in linear time overall in the input instance.
Our intrinsic definition of provenance ensures the provenance only depends on
the logical query, not on the choice of query plan, of automaton, or of tree
decomposition.

Our next contribution in Section 5 is to extend such definitions of prove-
nance from Boolean formulae to N[X], the universal provenance semiring [17].
This poses several challenges. First, as semirings cannot deal satisfactorily with
negation [1], we must restrict to monotone queries, to obtain monotone prove-
nance circuits. Second, we must keep track of the multiplicity of facts, as well
as the multiplicity of matches. For this reason, we restrict to unions of conjunc-
tive queries (UCQ) in that section, as richer languages do not directly provide
notions of multiplicity for matched facts. We generalize our notion of provenance
circuits for automata to instances with unknown multiplicity annotations, using
arithmetic circuits. We show that, for UCQs, the standard provenance for the
universal semiring [17] matches the one defined via the automaton, and that a
provenance circuit for it can be computed in linear time for treelike instances.

Returning to the non-monotone Boolean provenance, we show in Section 6 how
the tractability of provenance computation on treelike instances implies that of two
important problems: determining the probability of a query, and counting query
matches. We show that probability evaluation of fixed MSO queries is tractable
on probabilistic XML models with local uncertainty, a result already known in [8],
and extend it to trees with event annotations that satisfy a condition of having
bounded scopes. We also show that MSO query evaluation is tractable on tree-
like block-independent-disjoint (BID) relational instances [26]. These tractability
results for provenance are achieved by applying message passing [20] on our prove-
nance circuits. Last, we show the tractability of counting query matches, using a
reduction to the probabilistic setting, capturing a result of [2].

58 A. Amarilli et al.

2 Preliminaries

We introduce basic notions related to trees, tree automata, and Boolean circuits.
Given a fixed alphabet Γ , we define a Γ -tree T = (V,L,R, λ) as a set of

nodes V , two partial mappings L,R : V → V that associate an internal node
with its left and right child, and a labeling function λ : V → Γ . Unless stated
otherwise, the trees that we consider are rooted, directed, ordered, binary, and
full (each node has either zero or two children). We write n ∈ T to mean n ∈ V .
We say that two trees T1 and T2 are isomorphic if there is a bijection between
their node sets preserving children and labels (we simply write it T1 = T2); they
have same skeleton if they are isomorphic except for labels.

A bottom-up nondeterministic tree automaton on Γ -trees, or Γ -bNTA, is a
tuple A = (Q,F, ι, δ) of a set Q of states, a subset F ⊆ Q of accepting states, an
initial relation ι : Γ → 2Q giving possible states for leaves from their label, and
a transition relation δ : Q2 × Γ → 2Q determining possible states for internal
nodes from their label and the states of their children. A run of A on a Γ -tree
T = (V,L,R, λ) is a function ρ : V → Q such that for each leaf n we have ρ(n) ∈
ι(λ(n)), and for every internal node n we have ρ(n) ∈ δ(ρ(L(n)), ρ(R(n)), λ(n)).
A run is accepting if, for the root nr of T , ρ(nr) ∈ F ; and A accepts T (written
T |= A) if there is some accepting run of A on T . Tree automata capture usual
query languages on trees, such as MSO [27].

A Boolean circuit is a directed acyclic graph C = (G,W, g0, μ) where G is a set
of gates, W ⊆ G × G is a set of wires (edges), g0 ∈ G is a distinguished output
gate, and μ associates each gate g ∈ G with a type μ(g) that can be inp (input gate,
with no incoming wire in W), ¬ (NOT-gate, with exactly one incoming wire in W),
∧ (AND-gate) or ∨ (OR-gate). A valuation of the input gates Cinp of C is a function
ν : Cinp → {0, 1}; it defines inductively a unique evaluation ν′ : C → {0, 1}
as follows: ν′(g) is ν(g) if g ∈ Cinp (i.e., μ(g) = inp); it is ¬ν′(g′) if μ(g) = ¬
(with (g′, g) ∈ W); otherwise it is

⊙
(g′,g)∈W ν′(g′) where � is μ(g) (hence, ∧ or

∨). Note that this implies that AND- and OR-gates with no inputs always evaluate
to 1 and 0 respectively. We will abuse notation and use valuations and evaluations
interchangeably, and we write ν(C) to mean ν(g0). The function captured by C is
the one that maps any valuation ν of Cinp to ν(C).

3 Provenance Circuits for Tree Automata

We start by studying a notion of provenance on trees, defined in an uncertain tree
framework. Fixing a finite alphabet Γ throughout this section, we view a Γ -tree T
as an uncertain tree, where each node carries an unknown Boolean annotation
in {0, 1}, and consider all possible valuations that choose an annotation for each
node of T , calling Γ the alphabet of annotated trees:

Definition 3.1. We write Γ ··= Γ × {0, 1}. For any Γ -tree T = (V,L,R, λ)
and valuation ν : V → {0, 1}, ν(T) is the Γ -tree with same skeleton where each
node n is given the label (λ(n), ν(n)).

Provenance Circuits for Trees and Treelike Instances 59

We consider automata on annotated trees, namely, Γ -bNTAs, and define their
provenance on a Γ -tree T as a Boolean function that describes which valuations
of T are accepted by the automaton. Intuitively, provenance keeps track of the
dependence between Boolean annotations and acceptance or rejection of the tree.

Definition 3.2. The provenance of a Γ -bNTA A on a Γ -tree T = (V,L,R, λ)
is the function Prov(A, T) mapping any valuation ν : V → {0, 1} to 1 or 0
depending on whether ν(T) |= A.

We now define a provenance circuit of A on a Γ -tree T as a circuit that
captures the provenance of A on T , Prov(A, T). Formally:

Definition 3.3. Let A be a Γ -bNTA and T = (V,L,R, λ) be a Γ -tree. A prove-
nance circuit of A on T is a Boolean circuit C with Cinp = V that captures the
function Prov(A, T).

An important result is that provenance circuits can be tractably constructed:

Proposition 3.1. A provenance circuit of a Γ -bNTA A on a Γ -tree T can be
constructed in time O(|A| · |T |).

The proof is by creating one gate in C per state of A per node of T , and
writing out in C all possible transitions of A at each node n of T , depending on
the input gate that indicates the annotation of n. In fact, we can show that C
is treelike for fixed A; we use this in Section 6 to show the tractability of tree
automaton evaluation on probabilistic XML trees from PrXMLmux,ind [19].

It is not hard to see that this construction gives us a way to capture the
provenance of any query on trees that can be expressed as an automaton, no
matter the choice of automaton. A query q is any logical sentence on Γ -trees
which a Γ -tree T can satisfy (written T |= q) or violate (T �|= q). An automaton
Aq tests query q if for any Γ -tree T , we have T |= Aq iff T |= q. We define
Prov(q, T) for a Γ -tree T as in Definition 3.2, and run circuits for queries as in
Definition 3.3. It is immediate that Proposition 3.1 implies:

Proposition 3.2. For any fixed query q on Γ -trees for which we can compute
an automaton Aq that tests it, a provenance circuit of q on a Γ -tree T can be
constructed in time O(|T |).

Note that provenance does not depend on the automaton used to test the query.

4 Provenance on Tree Encodings

We lift the previous results to the setting of relational instances.
A signature σ is a finite set of relation names (e.g., R) with associated

arity arity(R) � 1. Fixing a countable domain D = {ak | k � 0}, a relational
instance I over σ (or σ-instance) is a finite set I of ground facts of the form R(a)
with R ∈ σ, where a is a tuple of arity(R) elements of D. The active domain
dom(I) ⊆ D of I is the finite set of elements of D used in I. Two instances I

60 A. Amarilli et al.

and I ′ are isomorphic if there is a bijection ϕ from dom(I) to dom(I ′) such that
ϕ(I) = I ′. We say that an instance I ′ is a subinstance of I, written I ′ ⊆ I, if it
is a subset of the facts of I, which implies dom(I ′) ⊆ dom(I).

A query q is a logical formula in (function-free) first- or second-order logic
on σ, without free second-order variables; a σ-instance I can satisfy it (I |=
q) or violate it (I �|= q). For simplicity, unless stated otherwise, we restrict
to Boolean queries, that is, queries with no free variables, that are constant-
free. This limitation is inessential for data complexity, namely complexity for a
fixed query: we can handle non-Boolean queries by building a provenance circuit
for each possible output result (there are polynomially many), and we encode
constants by extending the signature with fresh unary predicates for them.

As before, we consider unknown Boolean annotations on the facts of an
instance. However, rather than annotating the facts, it is more natural to say
that a fact annotated by 1 is kept, and a fact annotated by 0 is deleted. Formally,
given an instance σ, a valuation ν is a function from the facts of I to {0, 1}, and
we define ν(I) as the subinstance {F ∈ I | ν(F) = 1} of I. We then define:

Definition 4.1. The provenance of a query q on a σ-instance I is the function
Prov(q, I) mapping any valuation ν : I → {0, 1} to 1 or 0 depending on whether
ν(I) |= q. A provenance circuit of q on I is a Boolean circuit C with Cinp = I
that captures Prov(q, I).

We study provenance for treelike instances (i.e., bounded-treewidth
instances), encoding queries to automata on tree encodings. Let us first define
this. The treewidth w(I) of an instance I is a standard measure [23] of how close
I is to a tree: the treewidth of a tree is 1, that of a cycle is 2, and that of a
k-clique or k-grid is k − 1; further, we have w(I ′) � w(I) for any I ′ ⊆ I. It is
known [9,12] that for any fixed k ∈ N, there is a finite alphabet Γ k

σ such that
any σ-instance I of treewidth � k can be encoded in linear time [4] to a Γ k

σ -tree
TI , called the tree encoding, which can be decoded back to I up to isomorphism
(i.e., up to the identity of constants). Each fact in I is encoded in a node for this
fact in the tree encoding, where the node label describes the fact.

The point of tree encodings is that queries in monadic second-order logic,
the extension of first-order logic with second-order quantification on sets, can be
encoded to automata which are then evaluated on tree encodings. Formally:

Definition 4.2. For k ∈ N, we say that a Γ k
σ -bNTA Ak

q tests a query q for
treewidth k if, for any Γ k

σ -tree T , we have T |= Ak
q iff T decodes to an instance

I such that I |= q.

Theorem 4.1 [9]. For any k ∈ N, for any MSO query q, one can compute a
Γ k

σ -bNTA Ak
q that tests q for treewidth � k.

Our results apply to any query language that can be rewritten to tree automata
under a bound on instance treewidth. Beyond MSO, this is also the case of guarded
second-order logic (GSO). GSO extends first-order logic with second-order quan-
tification on arbitrary-arity relations, with a semantic restriction to guarded tuples

Provenance Circuits for Trees and Treelike Instances 61

(already co-occurring in some instance fact); it captures MSO (it has the same
expressive power on treelike instances [16]) and many common database query lan-
guages, e.g., frontier-guarded Datalog [3]. We use GSO in the sequel as our choice
of query language that can be rewritten to automata. Combining the result above
with the results of the previous section, we claim that provenance for GSO queries
on treelike instances can be tractably computed, and that the resulting provenance
circuit has treewidth independent on the instance.

Theorem 4.2. For any fixed k ∈ N and GSO query q, for any σ-instance I
such that w(I) � k, one can construct a provenance circuit C of q on I in time
O(|I|). The treewidth of C only depends on k and q (not on I).

The proof is by encoding the instance I to its tree encoding TI in linear time,
and compiling the query q to an automaton Aq that tests it, in constant time
in the instance. Now, Section 3 worked with Γ k

σ -bNTAs rather than Γ k
σ -bNTAs,

but the difference is inessential: we can easily map any Γ k
σ -tree T to a Γ k

σ -tree
ε(T) where any node label (τ, 1) is replaced by τ , and any label (τ, 0) is replaced
by a dummy label indicating the absence of a fact; and we straightforwardly
translate A to a Γ k

σ -bNTA A′ such that T |= A′ iff ε(T) |= A for any Γ k
σ -tree T .

The key point is then that, for any valuation ν : T → {0, 1}, ε(ν(T)) is a tree
encoding of ν(I) (defined in the expected way), so we conclude by applying
Proposition 3.1 to A′ and T . As in Section 3, our definition of provenance is
intrinsic to the query and does not depend on its formulation, on the choice of
tree decomposition, or on the choice of automaton to evaluate the query on tree
encodings.

Note that tractability holds only in data complexity. For combined com-
plexity, we incur the cost of compiling the query to an automaton, which is
nonelementary in general [21]. However, for some restricted query classes, such
as unions of conjunctive queries (UCQs), the compilation phase has lower cost.

5 General Semirings

In this section we connect our previous results to the existing definitions of
semiring provenance on arbitrary relational instances [17]:

Definition 5.1. A commutative semiring (K,⊕,⊗, 0K , 1K) is a set K with
binary operations ⊕ and ⊗ and distinguished elements 0K and 1K , such that
(K,⊕) and (K,⊗) are commutative monoids with identity element 0K and 1K ,
⊗ distributes over ⊕, and 0K ⊗ a = 0K for all a ∈ K.

Provenance for semiring K is defined on instances where each fact is anno-
tated with an element of K. The provenance of a query on such an instance is
an element of K obtained by combining fact annotations following the seman-
tics of the query, intuitively describing how the query output depends on the
annotations (see exact definitions in [17]). This general setting has many specific
applications:

62 A. Amarilli et al.

Example 5.1. For any variable set X, the monotone Boolean functions over X
form a semiring (PosBool[X],∨,∧, 0, 1). On instances where each fact is anno-
tated by its own variable in X, the PosBool[X]-provenance of a query q is a
monotone Boolean function on X describing which subinstances satisfy q. As we
will see, this is what we defined in Section 4, using circuits as compact represen-
tations.

The natural numbers N with the usual + and × form a semiring. On instances
where facts are annotated with an element of N representing a multiplicity, the
provenance of a query describes its number of matches under the bag semantics.

The tropical semiring [11] is (N � {∞},min,+,∞, 0). Fact annotations are
costs, and the tropical provenance of a query is the minimal cost of the facts
required to satisfy it, with multiple uses of a fact being charged multiple times.

For any set of variables X, the polynomial semiring N[X] is the semiring of
polynomials with variables in X and coefficients in N, with the usual sum and
product over polynomials, and with 0, 1 ∈ N.

Semiring provenance does not support negation well [1] and is therefore only
defined for monotone queries: a query q is monotone if, for any instances I ⊆ I ′,
if I |= q then I ′ |= q. Provenance circuits for semiring provenance are monotone
circuits [11]: they do not feature NOT-gates. We can show that, adapting the
constructions of Section 3 to work with a notion of monotone bNTAs, Theo-
rem 4.2 applied to monotone queries yields a monotone provenance circuit:

Theorem 5.1. For any fixed k ∈ N and monotone GSO query q, for any σ-
instance I such that w(I) � k, one can construct in time O(|I|) a monotone prove-
nance circuit of q on I whose treewidth only depends on k and q (not on I).

Hence, for monotone GSO queries for which [17] defines a notion of semiring
provenance (e.g., those that can be encoded to Datalog, a recursive query lan-
guage that subsumes UCQs), our provenance Prov(q, I) is easily seen to match
the provenance of [17], specialized to the semiring PosBool[X] of monotone
Boolean functions. Indeed, both provenances obey the same intrinsic definition:
they are the function that maps to 1 exactly the valuations corresponding to
subinstances accepted by the query. Hence, we can understand Theorem 5.1
as a tractability result for PosBool[X]-provenance (represented as a circuit) on
treelike instances.

Of course, the definitions of [17] go beyond PosBool[X] and extend to arbi-
trary commutative semirings. We now turn to this more general question.

N[X]-provenance for UCQs. First, we note that, as shown by [17], the provenance
of Datalog queries for any semiring K can be computed in the semiring N[X],
on instances where each fact is annotated by its own variable in X. Indeed,
the provenance can then be specialized to K, and the actual fact annotations
in K, once known, can be used to replace the variables in the result, thanks
to a commutation with homomorphisms property. Hence, we restrict to N[X]-
provenance and to instances of this form, which covers all the examples above.

Provenance Circuits for Trees and Treelike Instances 63

Second, in our setting of treelike instances, we evaluate queries using tree
automata, which are compiled from logical formulae with no prescribed execution
plan. For the semiring N[X], this is hard to connect to the general definitions
of provenance in [17], which are mainly designed for positive relational algebra
operators or Datalog queries. Hence, to generalize our constructions to N[X]-
provenance, we now restrict our query language to UCQs, assuming without loss
of generality that they contain no equality atoms, We comment at the end of
this section on the difficulties arising for richer query languages.

We formally define the N[X]-provenance of UCQs on relational instances by
encoding them straightforwardly to Datalog and using the Datalog provenance
definition of [17]. The resulting provenance can be rephrased as follows:

Definition 5.2. The N[X]-provenance of a UCQ q =
∨n

i=1 ∃xi qi(xi) (where qi

is a conjunction of atoms with free variables xi) on an instance I is defined as:
ProvN[X](q, I) ··=

⊕n
i=1

⊕
f :xi→dom(I) such that I|=qi(f(xi))

⊗
A(xi)∈qi

A(f(xi)).
In other words, we sum over each disjunct, and over each match of the disjunct;
for each match, we take the product, over the atoms of the disjunct, of their
image fact in I, identifying each fact to the one variable in X that annotates it.

We know that ProvN[X](q, I) enjoys all the usual properties of provenance:
it can be specialized to PosBool[X], yielding back the previous definition; it can
be evaluated in the N semiring to count the number of matches of a query; etc.

Example 5.2. Consider the instance I = {F1 ··= R(a, a), F2 ··= R(b, c), F3 ··=
R(c, b)} and the CQ q : ∃xy R(x, y)R(y, x). We have ProvN[X](q, I) = F 2

1 +2F2F3

and Prov(q, I) = F1∨(F2∧F3). Unlike PosBool[X]-provenance, N[X]-provenance
can describe that multiple atoms of the query map to the same fact, and that
the same subinstance is obtained with two different query matches. Evaluating
in the semiring N with facts annotated by 1, q has 12 + 2 × 1 × 1 = 3 matches.

Provenance circuits for trees. Guided by this definition of N[X]-provenance, we
generalize the construction of Section 3 of provenance on trees to a more expressive
provenance construction, before we extend it to treelike instances as in Section 4.

Instead of considering Γ -trees, we consider Γ
p
-trees for p ∈ N, whose label set

is Γ ×{0, . . . , p} rather than Γ ×{0, 1}. Intuitively, rather than uncertainty about
whether facts are present or missing, we represent uncertainty about the number
of available copies of facts, as UCQ matches may include the same fact multiple
times. We impose on Γ the partial order < defined by (τ, i) < (τ, j) for all τ ∈ Γ
and i < j in {0, . . . , p}, and call a Γ

p
-bNTA A = (Q,F, ι, δ) monotone if for

every τ < τ ′ in Γ
p
, we have ι(τ) ⊆ ι(τ ′) and δ(q1, q2, τ) ⊆ δ(q1, q2, τ ′) for every

q1, q2 ∈ Q. We write Valp(T) for the set of all p-valuations ν : V → {0, . . . , p} of
a Γ -tree T . We write |aruns(A, T)| for a Γ

p
-tree T and Γ

p
-bNTA A to denote

the number of accepting runs of A on T . We can now define:

Definition 5.3. The N[X]-provenance of a Γ
p
-bNTA A on a Γ -tree T is

ProvN[X](A, T) ··=
⊕

ν∈Valp(T) |aruns(A, ν(T))|
⊗

n∈T nν(n)

where each node n ∈ T is identified with its own variable in X. Intuitively, we

64 A. Amarilli et al.

sum over all valuations ν of T to {0, . . . , p}, and take the product of the tree
nodes to the power of their valuation in ν, with the number of accepting runs
of A on ν(T) as coefficient; in particular, the term for ν is 0 if A rejects ν(T).

This definition specializes in PosBool[X] to our earlier definition of Prov(A, T),
but extends it with the two features of N[X]: multiple copies of the same nodes
(represented as nν(n)) and multiple derivations (represented as |aruns(A, ν(T))|).
To construct this general provenance, we need arithmetic circuits:

Definition 5.4. A K-circuit for semiring (K,⊕,⊗, 0K , 1K) is a circuit with ⊕-
and ⊗-gates instead of OR- and AND-gates (and no analogue of NOT-gates),
whose input gates stand for elements of K. As before, the constants 0K and 1K

can be written as ⊕- and ⊗-gates with no inputs. The element of K captured by
a K-circuit is the element captured by its distinguished gate, under the recursive
definition that ⊕- and ⊗-gates capture the sum and product of the elements
captured by their operands, and input gates capture their own value.

We now show an efficient construction for such provenance circuits, generaliz-
ing the monotone analogue of Proposition 3.1. The proof technique is to replace
AND- and OR-gates by ⊗- and ⊕-gates, and to consider possible annotations in
{0, . . . , p} instead of {0, 1}. The correctness is proved by induction via a general
identity relating the provenance on a tree to that of its left and right subtrees.

Theorem 5.2. For any fixed p ∈ N, for a Γ
p
-bNTA A and a Γ -tree T , a N[X]-

circuit capturing ProvN[X](A, T) can be constructed in time O(|A| · |T |).

Provenance circuit for instances. Moving back to provenance for UCQs on
bounded-treewidth instances, we obtain a linear-time provenance construction:

Theorem 5.3. For any fixed k ∈ N and UCQ q, for any σ-instance I such
that w(I) � k, one can construct a N[X]-circuit that captures ProvN[X](q, I) in
time O(|I|).

The proof technique is to construct for each disjunct q′ of q a Γ
p
-bNTA Aq′ ,

where Γ ··= Γ k
σ is the alphabet for tree encodings of width k, and p is the

maximum number of atoms in a disjunct of q. We want Aq′ to test q′ on tree
encodings over Γ , while preserving multiplicities: this is done by enumerating all
possible self-homomorphisms of q′, changing σ to make the multiplicity of atoms
part of the relation name, encoding the resulting queries to automata as usual [9]
and going back to the original σ. We then apply a variant of Theorem 5.2 to
construct a N[X]-circuit capturing the provenance of Aq′ on a tree encoding
of I but for valuations that sum to the number of atoms of q′; this restricts
to bag-subinstances corresponding exactly to matches of q′. We obtain a N[X]-
circuit that captures ProvN[X](q, I) by combining the circuits for each disjunct,
the distinguished gate of the overall circuit being a ⊕-gate of that of each circuit.

Remember that an N[X]-circuit can then be specialized to a circuit for an arbi-
trary semiring (in particular, if the semiring has no variable, the circuit can be used
for evaluation); thus, this provides provenance for q on I for any semiring.

Provenance Circuits for Trees and Treelike Instances 65

Going beyond UCQs. To compute N[X]-provenance beyond UCQs (e.g., for
monotone GSO queries or their intersection with Datalog), the main issue is
fact multiplicity: multiple uses of facts are easy to describe for UCQs (Defini-
tion 5.2), but for more expressive languages we do not know how to define them
and connect them to automata.

In fact, we can build a query P , in guarded Datalog [15], such that the
smallest number of occurrences of a fact in a derivation tree for P cannot be
bounded independently from the instance. We thus cannot rewrite P to a fixed
finite bNTA testing multiplicities on all input instances. However, as guarded
Datalog is monotone and GSO-expressible, we can compute the PosBool[X]-
provenance of P with Theorem 4.2, hinting at a difference between PosBool[X]
and N[X]-provenance computation for queries beyond UCQs.

6 Applications

In Section 5 we have shown a N[X]-provenance circuit construction for UCQs
on treelike instances. This construction can be specialized to any provenance
semiring, yielding various applications: counting query results by evaluating in N,
computing the cost of a query in the tropical semiring, etc. By contrast, Section 4
presented a provenance construction for arbitrary GSO queries, but only for a
Boolean representation of provenance, which does not capture multiplicities of
facts or derivations. The results of both sections are thus incomparable. In this
section we show applications of our constructions to two important problems:
probability evaluation, determining the probability that a query holds on an
uncertain instance, and counting, counting the number of answers to a given
query. These results are consequences of the construction of Section 4.

Probabilistic XML. We start with the problem of probabilistic query evaluation,
beginning with the setting of trees. We use the framework of probabilistic XML,
denoted PrXMLfie, to represent probabilistic trees as trees annotated by propo-
sitional formulas over independent probabilistic events (see [19] for the formal
definitions), and consider the data complexity of the query evaluation problem
for a MSO query q on such trees (i.e., computing the probability that q holds).

This problem is intractable in general, which is not surprising: it is harder than
determining the probability of a single propositional annotation. However, for the
less expressive local PrXML model, PrXMLmux,ind, query evaluation has tractable
data complexity [8]; this model restricts edges to be annotated by only one event
literal that is only used on that edge (plus a form of mutual exclusivity).

We can use the provenance circuits of Section 4 to justify that query evalu-
ation is tractable for PrXMLmux,ind and capture the data complexity tractability
result of [8]. We say that an algorithm runs in ra-linear time if it runs in linear
time assuming that arithmetic operations over rational numbers take constant
time and rationals are stored in constant space, and runs in polynomial time
without this assumption. We can show:

66 A. Amarilli et al.

Theorem 6.1 [8]. MSO query evaluation on PrXMLmux,ind has ra-linear data
complexity.

We can also show extensions of this result. For instance, on PrXMLfie, defining
the scope of event e in a document D as the smallest subtree in the left-child-right-
sibling encoding of D covering nodes whose parent edge mentions e, and the scope
size of a node n as the number of events with n in their scope, we show:

Proposition 6.1. For any fixed k ∈ N, MSO query evaluation on PrXMLfie

documents with scopes assumed to have size � k has ra-linear data complexity.

BID instances. We move from trees to relational instances, and show another
bounded-width tractability result for block-independent disjoint (BID) instances
(see [26]). We define the treewidth of a BID instance as that of its underlying
relational instance, and claim the following (remember that query evaluation on
a probabilistic instance means determining the probability that the query holds):

Theorem 6.2. For any fixed k ∈ N, MSO query evaluation on an input BID
instance of treewidth � k has ra-linear data complexity.

All probabilistic results are proven by rewriting to a formalism of relational
instances with a circuit annotation, such that instance and circuit have a bounded-
width joint decomposition. We compute a treelike provenance circuit for the
instance using Theorem 4.2, combine it with the annotation circuit, and apply
existing message passing techniques [20] to compute the probability of the circuit.

Counting. We turn to the problem of counting query results, and reduce it in
ra-linear time to query evaluation on treelike instances, capturing a result of [2]:

Theorem 6.3 [2]. For any fixed MSO query q(x) with free first-order variables
and k ∈ N, the number of matching assignments to x on an input instance I of
width � k can be computed in ra-linear data complexity.

7 Related Work

From the original results [9,12] on the linear-time data complexity of MSO eval-
uation on treelike structures, works such as [2] have investigated counting prob-
lems, including applications to probability computation (on graphs). A recent
paper [5] also shows the linear-time data complexity of evaluating an MSO query
on a treelike probabilistic network (analogous to a circuit). Such works, however,
do not decouple the computation of a treelike provenance of the query and the
application of probabilistic inference on this provenance, as we do. We also note
results from another approach [22] on treelike structures, based on monadic
Datalog (and not on MSO as the other works), that are limited to counting.

The intensional approach [26] to query evaluation on probabilistic databases
is to compute a lineage of the query and evaluate its probability via general pur-
pose methods; tree-like lineages allow for tractable probabilistic query evaluation

Provenance Circuits for Trees and Treelike Instances 67

[18]. Many works in this field provide sufficient conditions for lineage tractabil-
ity, only a few based on the data [24,25] but most based on the query [10,18].
For treelike instances, as we show, we can always compute treelike lineages, and
we can do so for expressive queries (beyond UCQs considered in these works),
or alternatively generalize Boolean lineages to connect them to more expressive
semirings.

Our provenance study is inspired by the usual definitions of semiring prove-
nance for the relational algebra and Datalog [17]. Another notion of provenance,
for XQuery queries on trees, has been introduced in [13]. Both [17] and [13] pro-
vide operational definitions of provenance, which cannot be directly connected
to tree automata. A different relevant work on provenance is [11], which intro-
duces provenance circuits, but uses them for Datalog and only on absorptive
semirings. Last, other works study provenance for transducers [6], but with no
clear connections to semiring provenance or provenance for Boolean queries.

8 Conclusion

We have shown that two provenance constructions can be computed in linear
time on trees and treelike instances: one for UCQs on arbitrary semirings, the
other for arbitrary GSO queries as non-monotone Boolean expressions. A draw-
back of our results is their high combined complexity, as they rely on non-
elementary encoding of the query to an automaton. One approach to fix this
is monadic Datalog [14,22]; this requires defining and computing provenance in
this setting.

Acknowledgments. This work was partly supported by a financial contribution from
the Fondation Campus Paris-Saclay and the French ANR Aggreg project.

References

1. Amsterdamer, Y., Deutch, D., Tannen, V.: On the limitations of provenance for
queries with difference. In: TaPP (2011)

2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2) (1991)

3. Baget, J., Leclère, M., Mugnier, M.: Walking the decidability line for rules with
existential variables. In: KR (2010)

4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6) (1996)

5. Bodlaender, H.L.: Probabilistic inference and monadic second order logic. In:
Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp.
43–56. Springer, Heidelberg (2012)

6. Bojańczyk, M.: Transducers with origin information. In: Esparza, J., Fraigniaud,
P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp.
26–37. Springer, Heidelberg (2014)

7. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and
where. Foundations and Trends in Databases 1(4) (2009)

68 A. Amarilli et al.

8. Cohen, S., Kimelfeld, B., Sagiv, Y.: Running tree automata on probabilistic XML.
In: PODS (2009)

9. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1) (1990)

10. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDBJ
16(4) (2007)

11. Deutch, D., Milo, T., Roy, S., Tannen, V.: Circuits for Datalog provenance. In:
ICDT (2014)

12. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM
49(6) (2002)

13. Foster, J.N., Green, T.J., Tannen, V.: Annotated XML: queries and provenance.
In: PODS (2008)

14. Gottlob, G., Pichler, R., Wei, F.: Monadic Datalog over finite structures of bounded
treewidth. TOCL 12(1) (2010)

15. Grädel, E.: Efficient evaluation methods for guarded logics and Datalog LITE. In:
LPAR (2000)

16. Grädel, E., Hirsch, C., Otto, M.: Back and forth between guarded and modal logics.
TOCL 3(3) (2002)

17. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS
(2007)

18. Jha, A.K., Suciu, D.: On the tractability of query compilation and bounded tree-
width. In: ICDT (2012)

19. Kimelfeld, B., Senellart, P.: Probabilistic XML: models and complexity. In: Ma,
Z., Yan, L. (eds.) Advances in Probabilistic Databases. STUDFUZZ, vol. 304, pp.
39–66. Springer, Heidelberg (2013)

20. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. J. Royal Statistical
Society, Series B (1988)

21. Meyer, A.R.: Weak monadic second order theory of succesor is not elementary-
recursive. In: Logic Colloquium (1975)

22. Pichler, R., Rümmele, S., Woltran, S.: Counting and enumeration problems with
bounded treewidth. Artificial Intelligence, and Reasoning, In Logic for Program-
ming (2010)

23. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7(3) (1986)

24. Roy, S., Perduca, V., Tannen, V.: Faster query answering in probabilistic databases
using read-once functions. In: ICDT (2011)

25. Sen, P., Deshpande, A., Getoor, L.: Read-once functions and query evaluation in
probabilistic databases. PVLDB 3(1–2) (2010)

26. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Morgan & Clay-
pool (2011)

27. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an applica-
tion to a decision problem of second-order logic. Math. systems theory 2(1) (1968)

Language Emptiness of Continuous-Time
Parametric Timed Automata

Nikola Beneš1(B), Peter Bezděk1, Kim G. Larsen2, and Jǐŕı Srba2

1 Faculty of Informatics, Masaryk University Brno, Brno, Czech Republic
xbenes3@fi.muni.cz

2 Department of Computer Science, Aalborg University, Aalborg, Denmark

Abstract. Parametric timed automata extend the standard timed
automata with the possibility to use parameters in the clock guards.
In general, if the parameters are real-valued, the problem of language
emptiness of such automata is undecidable even for various restricted
subclasses. We thus focus on the case where parameters are assumed
to be integer-valued, while the time still remains continuous. On the
one hand, we show that the problem remains undecidable for paramet-
ric timed automata with three clocks and one parameter. On the other
hand, for the case with arbitrary many clocks where only one of these
clocks is compared with (an arbitrary number of) parameters, we show
that the parametric language emptiness is decidable. The undecidabil-
ity result tightens the bounds of a previous result which assumed six
parameters, while the decidability result extends the existing approaches
that deal with discrete-time semantics only. To the best of our knowl-
edge, this is the first positive result in the case of continuous-time and
unbounded integer parameters, except for the rather simple case of single-
clock automata.

1 Introduction

Timed automata [2] are a popular formalism used for modelling of real-time
systems. In the classical definition, the clocks in guards are compared to fixed
constants and one of the key problems, decidable in PSPACE [1], is the question
of language emptiness. More than 20 years ago, Alur, Henzinger and Vardi [3]
introduced a parametric variant of the language emptiness problem where clocks
in timed automata can be additionally compared to a number of parameters.
A clock is nonparametric if it is never compared with any of the parameters,
otherwise the clock is parametric. The parametric language emptiness problem
asks whether the parameters in the system can be replaced by constants so that
the language of the resulting timed automaton becomes nonempty.

Nikola Beneš has been supported by the Czech Science Foundation grant project
no. GA15-11089S.
Peter Bezděk has been supported by the Czech Science Foundation grant project
no. GA15-08772S.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 69–81, 2015.
DOI: 10.1007/978-3-662-47666-6 6

70 N. Beneš et al.

Table 1. Decidability of the language (non)emptiness problems

discrete time continuous time continuous time

integer parameters integer parameters real parameters

n clocks, m parameters
decidable [3] decidable undecidable [17]

1 parametric clock only

3 clocks, 1 parameter undecidable undecidable undecidable [17]

3 clocks, 6 parameters undecidable [3] undecidable [3] undecidable [3]

Unfortunately, the parametric language emptiness problem is undecidable for
timed automata with three parametric clocks [3]. Yet Alur, Henzinger and Vardi
established a positive decidability result in the case of a single parametric clock.
This decidability result was recently extended by Bundala and Ouaknine [10] to
the case with two parametric clocks and an arbitrary number of nonparametric
clocks. Both positive results are restricted to the discrete-time semantics with
only integer delays. The problem of decidability of integer parametric language
emptiness in the continuous-time semantics has been open for over 20 years.
The parametric language emptiness problem has two variants, which we call
reachability (existence of a parameter valuation s.t. the language is nonempty)
and safety (existence of a parameter valuation s.t. the language is empty).

Our main contributions, summarised in Table 1, are: (i) undecidability of the
reachability and safety problems (in discrete and continuous-time semantics) for
three parametric clocks, no additional nonparametric clocks and one integer
parameter and (ii) decidability of the reachability and safety problems in the
continuous-time semantics for one parametric clock with an arbitrary number of
integer parameters and an unlimited number of additional nonparametric clocks.
For reachability the problem is further decidable in NEXPTIME.

Related work. Our undecidability result holds both for discrete and continuous
time semantics and it uses only a single parameter with three parametric clocks,
hence strengthening the result from [3] where six parameters were necessary for
the reduction. In [10] the authors established NEXPTIME-completeness of the
parametric reachability problem for the case of a single parametric clock but
only for the discrete-time semantics. Parametric TCTL model checking of timed
automata, in the discrete-time setting, was also studied in [9,19]. Our decision
procedure for one parametric clock is, to the best of our knowledge, the first one
that deals with continuous-time semantics without any restriction on the usage
of parameters and without bounding the range of the parameters.

Reachability for parametric timed automata was shown decidable for certain
(strict) subclasses of parametric timed automata, either by bounding the range of
parameters [15] or by imposing syntactic restrictions on the use of parameters as
in L/U automata [8,14]. The study of parametric timed automata in continuous
time with parameters ranging over the rational or real numbers showed undecid-
ability already for one parametric clock [17], or for two parametric clocks with

Language Emptiness of Continuous-Time Parametric Timed Automata 71

exclusively strict guards [12]. We thus focus solely on integer-valued parameters
in this paper.

Parametric reachability problems for interrupt timed automata were inves-
tigated by Bérard, Haddad, Jovanović and Lime [11] with a number of positive
decidability results although their model is incomparable with the formalism
of timed automata studied in this paper. Other approaches include the inverse
method of [4] where the authors describe a procedure for deriving constrains on
parameters in order to satisfy that timed automata remain time-abstract equiv-
alent, however, the termination of the procedure is in general not guaranteed.

2 Definitions

We shall now introduce parametric timed automata, the studied problems and
give an example of a parametric system for alarm sensor coordination.

Let N0 denote the set of nonnegative integers and R≥0 the set of nonnegative
real numbers. Let C be a finite set of clocks and let P be a finite set of parameters.
A simple clock constraint is an expression of the form x �� c where x ∈ C,
c ∈ N0 ∪ P and �� ∈ {<,≤,=,≥, >}. A guard is a conjunction of simple clock
constraints, we denote the set of all guards by G. A conjunction of simple clock
constraints that contain only upper bounds on clocks, i.e. �� ∈ {<,≤}, is called
an invariant and the set of all invariants is denoted by I.

A clock valuation is a function ν : C → R≥0 that assigns to each clock
its nonnegative real-time age and parameter valuation is a function γ : P →
N0 that assigns to each parameter its nonnegative integer value. Given a clock
valuation ν, a parameter valuation γ and a guard (or invariant) g ∈ G, we write
ν, γ |= g if the guard expression g, after the substitution of all clocks x ∈ C with
ν(x) and all parameters p ∈ P with γ(p), is true. By ν0 we denote the initial
clock valuation where ν0(x) = 0 for all x ∈ C. For a clock valuation ν and a
delay d ∈ R≥0, we define the clock valuation ν + d by (ν + d)(x) = ν(x) + d for
all x ∈ C.

Definition 1 (Parametric Timed Automaton). A parametric timed
automaton (PTA) over the set of clocks C and parameters P is a tuple A =
(Σ,L, �0, F, I,−→) where Σ is a finite input alphabet, L is a finite set of loca-
tions, �0 ∈ L is the initial location, F ⊆ L is the set of final (accepting) loca-
tions, I : L → I is an invariant function assigning invariants to locations, and
−→⊆ L×G ×Σ × 2C ×L is the set of transitions, written as �

g,a,R−−−→ �′ whenever
(�, g, a,R, �′) ∈−→.

For the rest of this section, let A = (Σ,L, �0, F, I,−→) be a fixed PTA. We say that
a clock x ∈ C is a parametric clock in A if there is a simple clock constraint of the
form x �� p with p ∈ P that appears in a guard or an invariant of A. Otherwise,
if the clock x is never compared to any parameter, we call it a nonparametric
clock.

A configuration of A is a pair (�, ν) where � ∈ L is the current location and
ν is the current clock valuation. For every parameter valuation γ we define the

72 N. Beneš et al.

corresponding timed transition system Tγ(A) where states are all configurations
(�, ν) of A that satisfy the location invariants, i.e. ν, γ |= I(�), and the transition
relation is defined as follows:

– (�, ν) d−→ (�, ν + d) where d ∈ R≥0 if ν + d, γ |= I(�);

– (�, ν) a−→ (�′, ν′) where a ∈ Σ if there is a transition �
g,a,R−−−→ �′ in A such that

ν, γ |= g and ν′, γ |= I(�′) where for all x ∈ C we define ν′(x) = 0 if x ∈ R
and ν′(x) = ν(x) otherwise.

A timed language of A under a parameter valuation γ, denoted by Lγ(A), is
the collection of all accepted timed words of the form (a0, d0)(a1, d1) . . . (an, dn) ∈
(Σ × R≥0)∗ such that in the transition system Tγ(A) there is a computa-

tion (�0, ν0)
d0−→ (�′

0, ν
′
0)

a0−→ (�1, ν1)
d1−→ · · · an−1−−−→ (�n, νn) dn−→ (�′

n, ν′
n) an−−→

(�n+1, νn+1) where �n+1 ∈ F .
We can now define two problems for parametric timed automata, namely the

reachability problem (reaching desirable locations) and safety problem (avoiding
undesirable locations). Note that the problems are not completely dual, as the
safety problem contains a hidden alternation of quantifiers.

Problem 1 (Reachability Problem for PTA). Given a PTA A, is there a parameter
valuation γ such that Lγ(A) �= ∅ ?

Problem 2 (Safety Problem for PTA). Given a PTA A, is there a parameter
valuation γ such that Lγ(A) = ∅ ?

We shall now present a small case study of a wireless fire alarm system [13]
modelled as a parametric timed automaton. In the alarm setup, a number of
wireless sensors communicate with the alarm controller over a limited number
of communication channels (in our simplified example we assume just a single
channel). The wireless alarm system uses a variant of Time Division Multiple
Access (TDMA) protocol in order to guarantee a safe communication of multiple
sensors over a shared communication channel. In TDMA the data stream is
divided into frames and each frame consists of a number of time slots allocated
for exclusive use by the present wireless sensors. Each sensor is assigned a single
slot in each frame where it can transmit on the shared channel.

We model each sensor as a timed automaton with two locations as shown
in Figure 1a and 1b. The sensor in Figure 1a waits in its initial location until
it receives a wakeup1 message from the controller. After this, it takes strictly
between 2 to 3 seconds to gather the current status of the sensor and transmit it
as result1 message back to the controller. Any subsequent wakeup signals during
the transmission phase are ignored and after the transmission phase is finished,
the sensor is ready to receive another wakeup signal. The sensor in Figure 1b
has a more complex behaviour as transmitting the answer result2 can take either
strictly between 2 to 3 seconds, or 16 to 17 seconds.

The controller presented in Figure 1c is responsible for synchronising the two
sensors and for assigning them their time slots so that no transmissions interfere.
The parametric clock x of the controller determines the size of the time slots.

Language Emptiness of Continuous-Time Parametric Timed Automata 73

x1 < 3

wakeup1?
x1 := 0

2 < x1 < 3
result1 !

wakeup1?

(a) Sensor 1

x2 < 17

wakeup2?
x2 := 0

2 < x2 < 3
result2!

16 < x2 < 17
result2!

wakeup2?

(b) Sensor 2

x ≤ p2

y ≤ 20

x < 2
y ≤ 20

x < 2
y ≤ 20

x ≤ p1

y ≤ 20

fail

timeout

x < 2
wakeup1!

x < p1 result1? x := 0

x = p1 x := 0

x < 2
wakeup2!

x < p2 x := 0 y := 0

x < p2 result2? x := 0 y := 0

res
ult

1
?

res
ult

2
?

result
2?

result
1?

res
ult

2
?

res
ult

1
?

y = 20

y = 20

y = 20

y = 20

(c) Controller with parameters p1 and p2

Fig. 1. Wireless Fire Alarm System

First, it takes at most 2 seconds for the controller to wake up the first sensor
after which it waits until the elapsed time reaches the value of the parameter p1.
If it receives the result of the reading of the first sensor in this time slot, it moves
immediately into the next location where it performs the wakeup of the second
sensor. If the first sensor does not deliver any result and the clock x reaches
the value p1, it also moves to the next location. Now a symmetric control is
performed for the second sensor. If any of the two sensors transmit during the
time the controller transmits the wakeup signals, we enter the location fail . The
fail location is also reached if result2 is received in the time slot of the first sensor
and vice versa. The second clock y is used to simply measure the duration of
the whole frame; whenever the duration of the frame reaches 20 seconds, the
controller enters the timeout location.

We assume a standard handshake synchronisation of the controller and the
two sensors running in parallel that results in a flat product timed automaton
with two parameters p1 and p2. Note that x is the only parametric clock in our
example. Now, our task is to find suitable values of the parameters that guide
the duration of the time slots for the two sensors so that there is no behaviour
of the protocol where it fails or timeouts. This question is equivalent to the
safety problem on the constructed PTA where we mark fail and timeout as the
accepting (undesirable) locations.

The obvious parameter valuation where γ(p1) = 5 and γ(p2) = 19 guarantees
that the location fail is unreachable but it is not an acceptable solution as
the duration of the frame becomes 24 and we reach timeout . However, there is
another parameter valuation where γ(p1) = 5 and γ(p2) = 9 that guarantees
that there is no possibility to fail or timeout. This is due to the fact that if the
response time of the second sensor is too long, it skips one slot and the answer
fits into an appropriate slot in the next frame.

74 N. Beneš et al.

In Section 4 we provide an algorithmic solution for finding such a parameter
valuation that guarantees a given safety/reachability criterion. Note that as we
are concerned with language (non)emptiness only, we employ two simplifications
in the rest of the paper: First, we assume that the considered PTA have no
invariants, as moving all invariants to guards preserves the language. Second, we
assume that the alphabet is a singleton set as renaming all actions into a single
action preserves language (non)emptiness.

3 Undecidability for Three Parametric Clocks

We shall now provide a reduction from the halting/boundedness problems of two
counter Minsky machine to the reachability/safety problems on PTA. A Min-
sky machine with two nonnegative counters c1 and c2 is a sequence of labelled
instructions 1 : inst1; 2 : inst2; . . . , n : instn where instn = HALT and each
inst i, 1 ≤ i < n, is of one of the following forms (for r ∈ {1, 2} and 1 ≤ j, k ≤ n):

– (Increment) i: cr++; goto j
– (Test and Decrement) i: if cr=0 then goto k else (cr--; goto j)

A configuration is a triple (i, v1, v2) where i is the current instruction and
v1, v2 ∈ N0 are the values of the counters c1 and c2, respectively. A computation
step between configurations is defined in the natural way. If starting from the
initial configuration (1, 0, 0) the machine reaches the instruction HALT (note
that the computation is deterministic) then we say it halts, otherwise it loops.
The problem whether a given Minsky machine halts is undecidable [18]. The
boundedness problem, i.e. the question whether there is a constant K such that
v1 + v2 ≤ K for any configuration (i, v1, v2) reachable from (1, 0, 0), is also
undecidable [16].

The reduction from a two counter Minsky machine to PTA with a single
parameter p and three parametric clocks x1, x2 and z is depicted in Figure 2. The
reduction rules are shown only for the instructions handling the first counter. The
rules for the second counter are symmetric. We also omit the transition labels
as they are not relevant for the emptiness problem. The reduction preserves the
property that whenever we are in a configuration (�i, ν) where ν(z) = 0 then
ν(x1) and ν(x2) represent the exact values of the counters c1 resp. c2, and the
next instruction to be executed is the one with label i. Note also that there are
no invariants used in the constructed automaton.

Lemma 1. Let M be a Minsky machine. Let A be the PTA built according to
the rules in Figures 2a and 2b (without the transitions for safety) and where �1
is the initial location and �n is the only accepting location. The Minsky machine
M halts iff there is a parameter valuation γ such that Lγ(A) �= ∅.

Proof (Sketch). We only sketch a part of the proof to show the basic idea. We
argue that from the configuration (�i, ν) where ν(z) = 0 and where ν(x1) and
ν(x2) represent the counter values, there is a unique way to move from �i to �j

Language Emptiness of Continuous-Time Parametric Timed Automata 75

�i �1i

�2i �3i

�4i

�5i �6i

�j
z = 1 z := 0

x1 = p

x1 := 0

x2 = p x2 := 0

x2 = 1

x2 := 0

z = p z := 0

x2 = p

x2 := 0

x2 = 1 x2 := 0

x1 = p

x1 := 0

(a) Increment i: c1++; goto j

�i �1i

�2i �3i

�4i

�5i �6i

�j

�k

x1 = 0

z = 0, x1 > 0

x1 = p

x1 := 0

x1 = 1 x1 := 0

x2 = p

x2 := 0

z = p z := 0

x2 = p

x2 := 0

x1 = p x1 := 0

x1 = 1

x1 := 0

(b) Test and decrement i: if c1=0 then goto k else (c1--; goto j)

(c) For safety, add this for every instruction i: c1++; goto j

Fig. 2. Encoding of Minsky Machine as PTA with a single parameter p

(or possibly also to �k in the case of the test and decrement instruction) where
again ν(z) = 0 and the counter values are updated accordingly. As there are
no invariants in the automaton, we can always delay long enough so that we
get stuck in a given location, but this behaviour will not influence the language
emptiness problem we are interested in.

Consider the automaton for the increment instruction from Figure 2a and
assume we are in a configuration (�i, ν) where ν(z) = 0, ν(x1) = v1 and ν(x2) =
v2. First note that if v1 ≥ p then there is no execution ending in �k due to the
forced delay of one time unit on the transition from �i to �1i and the guard x1 = p
tested in both the upper and lower branch in the automaton. Assume thus that
v1 < p. If v1 ≥ v2 then we can perform the following execution with uniquely
determined time delays: (�i, [x1
→ v1, x2
→ v2, z
→ 0]) 1−→ (�1i , [x1
→ v1+1, x2
→
v2 + 1, z
→ 0])

p−v1−1−−−−−→ (�2i , [x1
→ 0, x2
→ p − v1 + v2, z
→ p − v1 − 1]) v1−v2−−−−→

76 N. Beneš et al.

(�3i , [x1
→ v1 − v2, x2
→ 0, z
→ p− v2 − 1]) 1−→ (�4i , [x1
→ v1 − v2 +1, x2
→ 0, z
→
p − v2])

v2−→ (�j , [x1
→ v1 + 1, x2
→ v2, z
→ 0]). In this case where v1 ≥ v2,
executing the lower branch of the automaton will result in getting stuck in the
location �6i as here necessarily ν(x1) > p. Clearly, there is a unique way of getting
to �j in which the clock valuation of x1 was incremented by one, hence faithfully
simulating the increment instruction of the Minsky machine. The other cases
and instructions are dealt with similarly, see [6]. ��

Lemma 2. Let M be a Minsky machine. Let A be the PTA built according to the
rules in Figures 2a, 2b and 2c (including the transitions for safety) and where �1
is the initial location and �acc is the only accepting location. The Minsky machine
M is bounded iff there is a parameter valuation γ such that Lγ(A) = ∅.

Proof. If the computation of the Minsky machine is unbounded then clearly, for
any parameter value of p, the Minsky machine will eventually try to make one of
the counters larger or equal than p (using the increment instruction). Necessarily,
we will then have ν(x1) = p or ν(x2) = p in the location �j where we end after
performing the increment instruction i, implying that we can reach the accepting
location �acc due to the transition added in Figure 2c and hence the language
is nonempty. On the other hand, if the parameter p is large enough and the
computation bounded (note that the boundedness condition ∃K. v1 + v2 ≤ K is
equivalent to ∃K. max{v1, v2} ≤ K), we will not be able to enter the accepting
location �acc and the language is empty. ��

We now conclude with the main theorem of this section, tightening the previ-
ously known undecidability result that used six parameters and three parametric
clocks [3]. The theorem is valid for both the continuous-time and the discrete-
time semantics due to the exact guards in all transitions of the constructed PTA
that allow to take transitions only after integer delays.

Theorem 1. The reachability and safety problems are undecidable for PTA with
one integer parameter, three parametric clocks and no further nonparametric
clocks in the continuous-time as well as the discrete-time semantics.

4 Decidability for One Parametric Clock

In this section, we show that both the reachability and safety problems for PTA
with a single parametric clock are decidable. Our general strategy is similar to
that of [3], i.e. reducing the original PTA (which has continuous-time semantics
in our case) into a so-called parametric 0/1-timed automaton with just a single
clock. It is shown in [3] that the set of parameter valuations that ensure language
nonemptiness of a given parametric 0/1-timed automaton with single clock is
effectively computable. Moreover, in [10] the authors show that the reachability
problem for parametric 0/1-timed automata is polynomial-time reducible to the
halting problem of parametric bounded one-counter machines, which is in NP.
As the parametric 0/1-timed automaton is going to be exponential in the size

Language Emptiness of Continuous-Time Parametric Timed Automata 77

of the original PTA, this makes the reachability problem for PTA with a single
parametric clock belong to the NEXPTIME complexity class.

A 0/1-timed automaton is a timed automaton with discrete time, in which all
the delays are explicitly encoded via two kinds of delay transitions: 0-transitions
and 1-transitions. Formally, we enrich the syntax of a timed automaton with two
transition relations 0−→, 1−→ ⊆ L × L and modify the semantics so that (�, ν) 0−→
(�′, ν) iff �

0−→ �′ and (�, ν) 1−→ (�′, ν + 1) iff �
1−→ �′; other delays in the timed

transition system are no longer possible.

Corner-Point Abstraction. As we are concerned with continuous time, our reduc-
tion to 0/1-timed automata is more convoluted than that of [3], in which the non-
parametric clocks were eliminated by moving their integer values into locations.
In our setting, using region abstraction to eliminate nonparametric clocks will
not allow us to correctly identify the 0/1 delays. We thus choose to use corner-
point abstraction [5] that is finer than the region-based one. In this abstraction,
each region is associated with a set of its corner points. Note that the original
definition only deals with timed automata that are bounded, while we want to
be more general here. For this reason, we extend the original definition with
extra corner points for unbounded regions.

We first define the region equivalence [2]. Let M ∈ N0 be the largest constant
appearing in the constraints of a given timed automaton. Note that in the original
definition the largest constant is considered for each clock independently. For the
sake of readability, we consider M to be a common upper bound for each clock.
Let ν, ν′ be clock valuations. Let further fr(t) be the fractional part of t and �t�
be the integral part of t. We define an equivalence relation ≡ on clock valuations
by ν ≡ ν′ if and only if the following three conditions are satisfied:

– for all x ∈ C either ν(x) ≥ M and ν′(x) ≥ M or �ν(x)� = �ν′(x)�;
– for all x, y ∈ C such that ν(x) ≤ M and ν(y) ≤ M , fr(ν(x)) ≤ fr(ν(y)) if

and only if fr(ν′(x)) ≤ fr(ν′(y));
– for all x ∈ C such that ν(x) ≤ M , fr(ν(x)) = 0 if and only if fr(ν′(x)) = 0.

We define a region as an equivalence class of clock valuations induced by ≡.
A region r′ is a time successor of a region r if for all ν ∈ r there exists d ∈ R>0

such that ν + d ∈ r′ and for all d′, 0 ≤ d′ ≤ d, we have ν + d′ ∈ r ∪ r′. As the
time successor is unique if it exists, we use succ(r) to denote the time successor
of r. Moreover, if no time successor of r exists, we let succ(r) = r.

An (M+1)-corner point α : C −→ N0∩ [0,M +1] is a function which assigns an
integer value from the interval [0,M + 1] to each clock. We define the successor
of the M+1-corner point α, denoted by succ(α), as follows:

for each x ∈ C, succ(α)(x) =

{
α(x) + 1 α(x) ≤ M

M + 1 otherwise .

For R ⊆ C, we define the reset of the corner point α, denoted by α[R], as follows:

for each x ∈ C, α[R](x) =

{
α(x) x �∈ R

0 x ∈ R .

78 N. Beneš et al.

y

x0 1 2 3

1

2

3

(a) Corner points where
M = 2 and C = {x, y}

0 0 1

y := 0

0 1

0

0 1

1

(b) Fragment of an evolution of a region with a corner
point (locations are omitted for simplicity)

Fig. 3. Corner point abstraction

We say α is a corner point of a region r whenever α is in the topological closure
of r. The construction of the corner-point abstraction is illustrated in Figure 3.
Notice the corner points in unbounded regions.

Construction of the Parametric 0/1-Timed Automaton. Now we show how to
construct for a given PTA with one parametric clock an equivalent 0/1-PTA
with just one clock. Let A = (Σ,L, �0, F, I,−→) be the original PTA over the set
of clocks C and parameters P. Let xp denote the only parametric clock.

We first modify the automaton by adding a fresh clock z as follows: every

transition �
g,a,R−−−→ �′ is changed into �

g∧z<1,a,R′
−−−−−−−→ �′ where R′ = R if xp �∈ R,

and R′ = R ∪ {z} otherwise. To every location � we then add a new self-loop

transition �
z=1,a,{z}−−−−−−→ �. Intuitively, the new clock z will always contain the

fractional part of xp. We call this new automaton A′. Clearly, this modification
preserves the language (non)emptiness of the original automaton A.

In the second step, we use the corner-point abstraction of A′ with respect to
all clocks except for xp to create the 0/1-timed automaton with a single clock.
Let Ĉ = (C ∪ {z}) \ {xp} and let M be the largest constant appearing in the
guards concerning the clocks in Ĉ. In the following, we consider regions and
corner-points with respect to clocks in Ĉ and the bound M . Let Reg denote the
set of all such regions and let Cp denote the set of all corresponding corner-
points, i.e. Cp = (N0 ∩ [0,M + 1])Ĉ .

We use the following auxiliary notation. Let r ∈ Reg and α ∈ Cp.

ι(r, α) =

⎧⎪⎨
⎪⎩

LESS α(z) = 1 and r �|= z = 1
MORE α(z) = 0 and r �|= z = 0
EXACT otherwise

The 0/1-timed automaton over the singleton set of clocks {x̂p} is Â = (Σ,L×
Reg × Cp, (�0, r0, α0), F × Reg × Cp, I,−→) where r0 is the initial region and
α0(x) = 0 for all x ∈ Ĉ is the initial corner-point. The transition relation is
defined as follows:

Language Emptiness of Continuous-Time Parametric Timed Automata 79

– zero delay: (�, r, α) 0−→ (�, r′, α) if r′ = succ(r) and α is a corner-point of both
r and r′;

– unit delay: (�, r, α) 1−→ (�, r, α′) if α′ = succ(α) and both α and α′ are corner-
points of r;

– action: whenever �
g,a,R−−−→ �′ in A′ then let g1, . . . , gk be all the simple clock

constraints appearing in g comparing clocks from Ĉ and let h1, . . . , hn be
the remaining simple clock constraints, i.e. those that consider xp. For every
(�, r, α) that satisfies (1) r |= g1 ∧ · · · ∧ gk and (2) if ι(r, α) �= EXACT then

no hi contains equality (=), we set (�, r, α)
ĥ1∧···∧ĥn,R̂−−−−−−−−→ (�′, r[R\{xp}], α[R\

{xp}]), where R̂ = {x̂p} if xp ∈ R and R̂ = ∅ otherwise. The constraints ĥi

are created as follows: all xp are changed into x̂p; if ι(r, α) = LESS , all <
are changed into ≤ and all ≥ are changed into >; if ι(r, α) = MORE , all ≤
are changed into < and all > are changed into ≥.

Theorem 2. The reachability and safety problems for parametric timed
automata over integer parameters with one parametric clock in the continuous-
time semantics are decidable. Moreover, the reachability problem is in NEXP-
TIME.

Proof (Idea). Due to space constraints, the complete proof can be found in [6].
As mentioned above, the modification from A to A′ preserves the language
(non)emptiness. The idea of the proof is to show that for every given parameter
valuation, every run of A′ has a corresponding run in Â and vice versa. This
shows that the reachability and safety problems for parametric timed automata
with one parametric clock reduce to the reachability and safety problems for
parametric 0/1-timed automata. These problems were shown decidable in [3].
The complexity argument is discussed in the beginning of this section. ��

5 Conclusion

We have shown that for three parametric clocks with a single integer parame-
ter, both the reachability and safety problems are undecidable in the discrete
as well as the continuous semantics. This improves the previously known unde-
cidability result by Alur, Henzinger and Vardi [3] where six parameters were
needed. For the case with a single parametric clock with an unrestricted num-
ber of integer parameters and with any number of additional nonparametric
clocks, we contributed to the solution of an open problem stated more than 20
years ago by proving a decidability result for reachability and safety problems
in the continuous semantics, extending the previously known decidability result
for the discrete-time semantics [3]. To achieve this result, we used the corner-
point abstraction technique that had to be modified to handle also corner-points
in unbounded regions, contrary to the use of the technique in [5]. Not surpris-
ingly, the decidability of the problem in case of two parametric clocks in the
continuous-time setting remains open, as it is the case also for a number of
other problems over timed automata with two real-time clocks [7]. On the other

80 N. Beneš et al.

hand, as demonstrated by our wireless fire alarm case study, the parameter syn-
thesis problem for one parametric clock and an unlimited number of parameters
is sufficiently expressive in order to describe nontrivial scheduling problems. As
a next step, we will consider moving from corner-point regions into zones and
provide an efficient implementation of the presented techniques.

Acknowledgments. We acknowledge a funding from the EU FP7 grant agreement
nr. 318490 (SENSATION) and grant agreement nr. 601148 (CASSTING) and from the
Sino-Danish Basic Research Center IDEA4CPS.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: LICS
1990. pp. 414–425. IEEE (1990)

2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

3. Alur, R., Henzinger, T., Vardi, M.: Parametric real-time reasoning. In: Proceedings
of 25th Annual Symposium on Theory of Computing (STOC 1993), pp. 592–601.
ACM Press (1993)

4. André, É., Chatain, T., Fribourg, L., Encrenaz, E.: An inverse method for para-
metric timed automata. ENTCS 223, 29–46 (2008)

5. Behrmann, Gerd, Fehnker, Ansgar, Hune, Thomas, Larsen, Kim Guldstrand,
Pettersson, Paul, Romijn, Judi M.T., Vaandrager, Frits W.: Minimum-cost
reachability for priced timed automata. In: Di Benedetto, Maria Domenica,
Sangiovanni-Vincentelli, Alberto L. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001)

6. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata (2015). CoRR abs/1504.07838

7. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted
timed automata. Inform. Proc. Letters 98(5), 188–194 (2006)

8. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods in Syst. Design 35(2), 121–151 (2009)

9. Bruyère, Véronique, Raskin, Jean-François: Real-time model-checking: parameters
everywhere. In: Pandya, Paritosh K., Radhakrishnan, Jaikumar (eds.) FSTTCS
2003. LNCS, vol. 2914, pp. 100–111. Springer, Heidelberg (2003)

10. Bundala, Daniel, Ouaknine, Joël: Advances in parametric real-time reasoning. In:
Csuhaj-Varjú, Erzsébet, Dietzfelbinger, Martin, Ésik, Zoltán (eds.) MFCS 2014,
Part I. LNCS, vol. 8634, pp. 123–134. Springer, Heidelberg (2014)

11. Bérard, Beatrice, Haddad, Serge, Jovanović, Aleksandra, Lime, Didier: Parametric
interrupt timed automata. In: Abdulla, Parosh Aziz, Potapov, Igor (eds.) RP 2013.
LNCS, vol. 8169, pp. 59–69. Springer, Heidelberg (2013)

12. Doyen, L.: Robust parametric reachability for timed automata. Information Pro-
cessing Letters 102(5), 208–213 (2007)

13. Feo-Arenis, Sergio, Westphal, Bernd, Dietsch, Daniel, Muñiz, Marco, Andisha,
Ahmad Siyar: The wireless fire alarm system: ensuring conformance to industrial
standards through formal verification. In: Jones, Cliff, Pihlajasaari, Pekka, Sun,
Jun (eds.) FM 2014. LNCS, vol. 8442, pp. 658–672. Springer, Heidelberg (2014)

Language Emptiness of Continuous-Time Parametric Timed Automata 81

14. Hune, Thomas, Romijn, Judi M.T., Stoelinga, Mariëlle, Vaandrager, Frits W.:
Linear parametric model checking of timed automata. In: Margaria, Tiziana, Yi,
W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 189–203. Springer, Heidelberg (2001)

15. Jovanović, Aleksandra, Lime, Didier, Roux, Olivier H.: Integer parameter synthe-
sis for timed automata. In: Piterman, Nir, Smolka, Scott A. (eds.) TACAS 2013
(ETAPS 2013). LNCS, vol. 7795, pp. 401–415. Springer, Heidelberg (2013)

16. Kuzmin, E., Chalyy, D.: Decidability of boundedness problems for Minsky counter
machines. Automatic Control and Computer Sciences 44(7), 387–397 (2010)

17. Miller, Joseph S.: Decidability and complexity results for timed automata and
semi-linear hybrid automata. In: Lynch, Nancy A., Krogh, Bruce H. (eds.) HSCC
2000. LNCS, vol. 1790, pp. 296–310. Springer, Heidelberg (2000)

18. Minsky, M.: Computation: Finite and Infinite Machines. Prentice (1967)
19. Wang, F.: Parametric timing analysis for real-time systems. Information and

Computation 130(2), 131–150 (1996)

Analysis of Probabilistic Systems via Generating
Functions and Padé Approximation

Michele Boreale(B)

Università di Firenze, Firenze, Italy
michele.boreale@unifi.it

Abstract. We investigate the use of generating functions in the analysis of dis-
crete Markov chains. Generating functions are introduced as power series whose
coefficients are certain hitting probabilities. Being able to compute such func-
tions implies that the calculation of a number of quantities of interest, including
absorption probabilities, expected hitting time and number of visits, and variances
thereof, becomes straightforward. We show that it is often possible to recover this
information, either exactly or within excellent approximation, via the construc-
tion of Padé approximations of the involved generating function. The presented
algorithms are based on projective methods from linear algebra, which can be
made to work with limited computational resources. In particular, only a black-
box, on-the-fly access to the transition function is presupposed, and the necessity
of storing the whole model is eliminated. A few numerical experiments conducted
with this technique give encouraging results.

1 Introduction

Our goal is to understand if the concept of generating function [9] can play a useful
role in the analysis of Markov chains. In the present paper, we focus on the reachability
properties of time-homogeneous, finite Markov chains. The generating function of such
a system is a power series in the variable z, g(z) =

∑
j≥0 a jz j, whose coefficients, or

moments, a j are just the probabilities of hitting a state of interest exactly at time j =
0, 1, 2, · · · . With g(z), a whole host of information about the system is packed into a
single mathematical object, including: the probability of the event itself - which is of
course g(1) - and various statistics, such as the expected hitting time and its variance.
We will demonstrate that, by building a rational representation of g(z), in a number of
interesting situations it is possible to extract this information, either exactly or within
excellent approximation, using limited computational resources. These limitations are
mainly the fact that one can access the system’s transition relation only in a black-box,
on-the-fly1 fashion, and can only store a small portion of its state space at time. We give
a more detailed account of our approach and of our paper below.

Author’s address: Michele Boreale, Università di Firenze, Dipartimento di Statistica, Infor-
matica, Applicazioni (DiSIA) “G. Parenti”, Viale Morgagni 65, I-50134 Firenze, Italy. E-mail:
michele.boreale@unifi.it. Work partially supported by MIUR funded project cina.

1 That is, via a function that given a state returns the list of its successors together with their
probabilities.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 82–94, 2015.
DOI: 10.1007/978-3-662-47666-6 7

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 83

We first introduce and motivate the system’s generating function g(z), then establish
some of its important properties, like its radius convergence and its rationality (Section
2). We then show (Section 3) that, via Padé approximants [3], an exact rational repre-
sentation of g(z) can be recovered from the knowledge of its first 2N moments, where N
is the number of system’s states. These moments can in principle be computed relying
solely on a black-box, on-the-fly access to the transition relation, and do not require
storing the entire model. Yet, limited resources imply that one is often forced to con-
sider approximations. We argue (Section 4) that polynomial approximations, derived
from truncating g(z), may not be a good idea, and that rational ones should rather be
preferred. This is especially true in the presence of clusters of states that are nearly
uncoupled with other states in the chain. We then discuss a method to compute one
such approximation effectively (Section 5). The basic idea here is to view the matrix
P that represents the transition relation as a linear application on R

N ; then to take its
projection P̂ onto a small, m-dimensional subspace Km, with m � N. The generating
function of the projected application, ĝ(z), is a rational Padé-type approximation of the
original g(z). Accuracy is often very good already for small m: this somewhat surpris-
ing effectiveness is a consequence of the tendency of P̂’s eigenvalues to be excellent
approximations of P’s ones. We show that the Arnoldi algorithm [2,8] can be used to
effectively compute ĝ(z), in a way that is compatible with an on-the-fly access to the
transition relation and with limited computational resources. Notably, transitions need
not be stored at all with this method. Error control and steady-state distributions are
discussed in the full version [4]. We then present a few numerical experiments that have
been conducted with a preliminary Matlab implementation of this idea (Section 6), and
which give very encouraging results. For comparison, the results obtained on the same
systems with a state-of-the-art probabilistic model checker are also reported. We con-
clude the paper with a discussion of future venues of research and related work (Section
7). All the proofs, some numerical examples and additional technical material can be
found in the full version available online [4].

2 The System Generating Function g(z)

Consider a time-homogeneous Markov chain {Xj} j≥0 over a finite set of states S =
{1, ...,N} with N > 0 and initial state X0 = 1. To avoid uninteresting special cases,
we will assume that all states of the chain are reachable from 1 (but need not assume
the vice-versa, so the chain might well be reducible.) We want to study the event cor-
responding to reaching a (typically, ‘bad’) state sbad = N, that is Reach

�
= {Xj =

N for some j ≥ 0} and denote by preach
�
= Pr(Reach) the probability of this event.

Without loss of generality, we will assume that state N is absorbing that is Pr(Xj+1 =

N|Xj = N) = 1. Later on in this section we will also consider another type of statistics,
concerning the number of visits, where we will not assume N is absorbing. We will
also be interested in statistics concerning the hitting time random variable, defined as:
T
�
= inf{ j ≥ 0 : Xj = N}. Let us define the j-th (j ≥ 0) moment of the system as the

probability of hitting state N for the first time exactly at time j, that is

84 M. Boreale

a j
�
= Pr(Xj = N and Xi � N for i < j) . (1)

Clearly, the probability of eventually reaching N is just the sum of the moments: preach =∑
j≥0 a j. Our main object of study is defined below.

Definition 1 (Generating function). The generating function of the system is the

power series, in the complex variable z, g(z)
�
=
∑

j≥0 a jz j.

Note that the g(z)/preach is just the probability generating function of the random vari-
able T conditioned on the event Reach. As such, with g(z) a whole host of information
about T and its moments is packed into a single mathematical object. For instance,
indicating with g′, g′′, ... the derivatives of g, easy calculations show that (provided the
mentioned quantities are all defined).

preach = g(1) E[T |Reach] = g′(1)/g(1) var[T |Reach] = (g′′(1) + g′(1)) /g(1)−
(g′(1)/g(1))2 . (2)

More generally, information on higher moments of T can be extracted using the identity
E[X(X − 1) · · · (X − k)|Reach] = g(k+1)(1)/g(1), although usually the first two moments
are enough for a satisfactory analysis of the system. In practice, we will be able to
extract this information only provided we are able to build an efficient representation of
g(z). As a first step towards this, we shall see in a moment that g(z) can be represented
as a rational function, that is, as the ratio of two polynomials in z. At this point it is
convenient to introduce some notation.

Notation In the rest of the paper, some basic knowledge of linear algebra is presup-
posed. We let P denote the N × N stochastic matrix that defines the transition function
of the chain. Departing from the usual convention, we will work with column-stochastic
matrices, that is we let the element of row i and column j of P, denoted by pi j, be
Pr(Xt+1 = i|Xt = j). In what follows, vectors are considered as column-vectors; in par-
ticular, ei denotes the i-th canonical column vector of RN . So the vector Pie1 is just the
probability distribution of the variable Xi of the chain. A vector is stochastic if its com-
ponents are nonnegative and sum to 1. For a matrix or vector A, we let AT denote its
transpose. Ik will denote the k×k identity matrix; the index k will be omitted when clear
from the context. A rational function in z of type [h, k], for k ≥ 0 and h ≥ 0 or h = −∞,
is a ratio of two polynomials in z, r(z)/t(z), such that deg(r) ≤ h and deg(t) ≤ k. We will
let z range over complex numbers and x on reals.

In the rest of the paper, we let ẽ1
�
= (P − I)e1. Note that eT

N Pje1 is just the probability
of being in state N at time j. Exploiting the fact that N is absorbing, it is easy to see
that, for j ≥ 1, a j = eT

N Pje1 − eT
N Pj−1e1 = eT

N Pj−1ẽ1. Ignoring for a moment issues
of convergence and singularity, we can then reason as follows. We first note that the
following equality can be readily checked.

(I − zP)(I + zP1 + z2P2 + · · ·) = I

which implies that (I − zP)−1 = (I + zP1 + z2P2 + · · ·). We then can write

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 85

g(z)= a0 +
∑

j≥1

a jz
j = a0 +

∑

j≥1

eT
Nz jP j−1ẽ1

= a0 + z · eT
N(
∑

j≥0

z jP j)ẽ1 = a0 + z · eT
N(I − zP)−1ẽ1

= a0 +
z · eT

NAdj(I − zP)ẽ1

det(I − zP)
(3)

where, in the last step, we have exploited Cramer’s rule for the computation of the
inverse (recall that Adj(A) denotes the adjoint matrix of a matrix A.) In the last expres-
sion, the denominator and numerator of the fraction are polynomials in z. This shows
that g(z) is a rational function. This informal reasoning can be made into a rigorous
proof – a nontrivial point of which is related to the singularity of the matrix (I − zP) at
z = 1. Another important point is where the power series g(z) is defined, that is, what is
its radius of convergence. The the next theorem records these facts about g(z).

Theorem 1 (convergence and rationality of g). There is a real R > 1 such that the
power series g(z) in Definition 1 converges for all |z| < R. Moreover, there is a rational
function r(z)/t(z) such that for all such z’s

(a) t(z) � 0 (b) deg(r), deg(t) ≤ N − 1 (c) g(z) = r(z)/t(z) . (4)

The proof of the above theorem provides us also with an explicit expression for g(z),
that is (3). In what follows, (I − zP)−1 will be used as an abbreviation for the matrix of
rational expressions Adj(I−zP)

det(I−zP) , where it is understood that common factors are canceled
out. Concerning this expression, note that det(I − zP) = zN det((1/z)I − P) is just the
characteristic polynomial of P with coefficients reversed. That is, the relation between
the characteristic polynomial and our det(I − zP) is as follows:

det(zI − P) = βNzN + βN−1zN−1 + · · · + β0 and
det(I − zP) = βN + βN−1z + · · · + β0zN

(In passing, note that βN = 1 and β0 = − det(P).) In particular, from det(I − zP) =
zN det((1/z)I − P) it is clear that the roots of the polynomial det(I − zP) are just the
reciprocals of the nonzero roots of P: that is, the reciprocals of the nonzero eigenvalues
of P. This fact can be exploited to give more precise information about R. We record
these facts below.

Corollary 1. There is R > 1 such that for |z| < R and for ẽ1 = (P − I)e1

g(z) = a0 + z · eT
N(I − zP)−1ẽ1 . (5)

In particular, g(z) has a radius of convergence either R = |1/λ| for some eigenvalue
0 < |λ| < 1 of P, or R = +∞.

Let us now drop the assumption that N is absorbing. We are interested in counting
the visits to state N, starting from X0 = 1. To this purpose we introduce a different
generating function: f (z)

�
=
∑

j≥0 c jz j, where c j
�
= Pr(Xj = N) = eT

N Pje1. By definition,

86 M. Boreale

f (1) is the expected number of visits of the chain to state N. Recall that f (1) < +∞ iff N
is transient. By paralleling the above development for g(z), we can prove the following.

Theorem 2. Let N be transient. The power series f (z) has radius of convergence R > 1.
Moreover, for |z| < R, one has f (z) = eT

N(I − zP)−1e1. The expression on the right of
the last equality gives rise to a rational function r(z)/t(z) of type [N − 1,N] such that
t(z) � 0 for |z| < R.

From now on, we will consider g(z) only; statements and proofs for f (z) can be
obtained by obvious modifications. All the quantities of interest about the system, (2),
will be easy to compute, provided we can recover the rational representation r(z)/t(z)
of g(z) promised by Theorem 1. The expression provided by Corollary 1 can be useful
for small values of N and provided one knows P explicitly. Here is a small example to
illustrate.

Example 1. We consider a chain with N ≥ 3 states 1,2,..., N, where, for 1 ≤ i ≤ N − 3
and a (small) 0 < δ < 1, there is a transition from i to 1 with probability 1 − δ/i, and to
each of i+ 1,N − 1,N with probability δ/3i; for i = N − 2, there is a transition from i to
1 with probability 1−δ/i, and to each of N−1,N with probability δ/2i; N−1 and N are
absorbing. For reasons that will become evident later on, we call this chain Nasty(N, δ).

The transition matrix P of Nasty(6, δ)
is given on the right (recall that we work
with column-stochastic matrices.) From
symmetry considerations, it is clear that
the probability of reaching either of the
two absorbing states is 1/2, thus preach =
1/2. Let us check this out via g(z). With
the help of a computer algebra system,
we apply (5) and, taking into account that
a0 = 0, find:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − δ 1 − δ/2 1 − δ/3 1 − δ/4 0 0

δ/3 0 0 0 0 0

0 δ/6 0 0 0 0

0 0 δ/9 0 0 0

δ/3 δ/6 δ/9 δ/8 1 0

δ/3 δ/6 δ/9 δ/8 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

g(z)=
1
2

δ4z4 + 8δ3z3 + 72δ2z2 + 432δz
(δ4 − 4δ3)z4+(12δ3 − 36δ2)z3+(108δ2 − 216δ)z2+648(δ − 1)z+648

.

When evaluating this at z = 1 we get g(1) = preach = 1/2. By differentiat-
ing the above expression of g(z) and then evaluating the result at z = 1, we get
g′(1) = 2

(
δ3 + 9δ2 + 54δ + 162

)
/
(
δ4 + 8δ3 + 72δ2 + 432δ

)
, which can be evaluated

for instance at δ = 10−3 to compute E[T |Reach] = g(1)−1g′(1) ≈ 1500.25.

Computing an expression for g(z) based on a direct application of Corollary 1 requires
the explicit knowledge of the matrix P. Moreover, the computation relies on costly
symbolic operations involving matrices whose entries are rational functions in z, rather
than scalars. For these reasons, this method can only be practical for small values of N.
The next section explains how to numerically calculate a rational representation of g(z)
out of the first 2N moments of the system, without having to know P explicitly.

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 87

3 Exact Reconstruction of g(z)

We first review Padé approximants and then explain how to employ them to exactly
reconstruct g(z). The exposition of Padé approximants in this section is standard. For
an in depth treatment, see e.g. [3]. Let f (z) =

∑
i≥0 cizi be a generic a power series in

the complex variable z, with a nonzero radius of convergence. For any n ≥ 0, we let
the truncation of f at the n-th term be the polynomial fn(z)

�
=
∑n

i=0 cizi. Let us indicate
by o(zk) a generic power series divisible by zk. Given two power series f (z) and d(z)
we write f (z) = d(z) mod zn+1 iff fn = dn, or, in other words, if f (z) − d(z) = o(zn+1).
Polynomials are of course considered as power series with only finitely many nonzero
coefficients.

Definition 2 (Padé approximants). Let f (z) =
∑

i≥0 cizi be a power series in the com-
plex variable z with a nonzero radius of convergence. Given integers h, k ≥ 0, we say a
pair of polynomials in z, say (r, t), is a [h, k]-Padé approximant of f (z) if the following
holds true, where n = h + k.

(a) z
 |t(z) (b) deg(r) ≤ h, deg(t) ≤ k (c) f (z)t(z) = r(z) mod zn+1 . (6)

Seen as a real function r(x)/t(x), a Padé approximant is a rational approximation of the
function f (x), up to and including the term of degree n of its Taylor of expansion. To see
this, first note that equation (6)(c) is equivalent to saying that there exists a power series
k(x) such that f (x)t(x) = r(x) + k(x)xn+1. As t(0) � 0, the last equation is equivalent
to saying that, in a neighborhood of 0: f (x) = r(x)/t(x) + xn+1k(x)/t(x). This equation
is equivalent to saying that the Taylor expansion of r(x)/t(x) from x = 0, truncated at
the n-th term, coincides with2 fn(x), that is: r(x)/t(x) =

∑n
i=0 cixi + o(xn+1). In case f is

itself a rational function, Padé approximants provide us with a method to actually find
an exact representation of it, given only sufficiently many coefficients ci, as we will see
shortly. We first state a result about uniqueness of Padé approximants; its proof follows
from easy manipulations on rational functions (or see [3, Th.1.1].)

Proposition 1. Let (r, t) and (p, q) be two [h, k]-Padé approximants of f . Then they are
the same as a function, in the sense that r(z)/t(z) = p(z)/q(z).

Given any power series f (z), it is possible to compute a [h, k]-Padé approximant of it as
follows. Here we assume for simplicity that h ≤ k; the case h > k does not interest us,
and can be anyway treated with minor notational changes. Also, in view of condition
(6)(a) of the definition of Padé approximant, without loss of generality we will restrict
ourselves to the case where t(0) = 1, that is, the constant coefficient of t is always taken
to be 1. Assume n + 1 (n = h + k) coefficients c0, c1, ..., cn of f are given. Arrange
the coefficients from h through h+k−1 = n−1 to form a k×k matrix C as described next,

2 To see this, observe that, for 0 ≤ j ≤ n, by equating the j-th derivatives of the left and right
hand side of (6)(c), one obtains that f (j)(x) = (r(x)/t(x))(j) + o(xn− j+1), so that c j = f (j)(0)/ j! =
(1/ j!)(r(0)/t(0))(j). Also note that the Taylor expansion of r(x)/t(x) at x = 0 exists, as t(0) � 0.

88 M. Boreale

where cl
�
= 0 for indices l < 0. Let r(z) =

αhzh + · · · + α0 and t(z) = βkzk + · · · + β1z + 1 be
two polynomials, for generic vectors of coefficients
α = (α0, ..., αh)T and β = (β1, ..., βk)T . Assume (r, t)
is a [h, k]-Padé approximant of f . Then we can equate
coefficients of like powers on the left- and right-hand
side of (6)(c).

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ch ch−1 · · · ch−k+1

ch+1 ch · · · ch−k+2

...

ch+k−1 ch+k−2 · · · ch

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In particular, coefficients from h+1 through n = h+k are 0 on the right, thus coefficients
on the left must satisfy the following, for γ

�
= (−ch+1, ...,−ch+k)T :

Cβ = γ . (7)

On the other hand, assume (7), seen as a system of equations in the unknowns β, has a
solution. Then by taking α given by:

α = C̃β′ (8)

where β′ = (1, β1, ..., βh)T and C̃ is the (h+1)× (h+1) lower-
triangular matrix C̃ given on the right. We see that (6)(c) is
satisfied by (r, t).

C̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

c1 c0

...

ch ch−1 · · · c1 c0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Of course also (6)(a) and (6)(b) are satisfied. Therefore (r, t), as given by α and β, is
a [h, k]-Padé approximant of f . In other words, we have shown the following.

Proposition 2. A [h, k]-Padé approximant for f exists if and only if the system of equa-
tions (7) in the unknowns β has a solution. If it exists, the coefficients β and α for t and
r are given, respectively, by a solution of (7) and by (8).

Note that the procedure outlined above to reconstruct a [h, k]-Padé approximant takes
O(k3 + h2) = O(n3) operations and O(n2) storage. Let us now come back to our Markov
chain. Theorem 1 and Proposition 1 ensure that g(z) coincides, as a function, with its
[N −1,N −1]-Padé approximant. Using the above outlined method, one can reconstruct
the rational form of g(z), provided one knows (an upper bound on) N and the coefficients
a0, ..., a2N−2. The latter can in principle be computed by a power iteration method: a0 =

eT
Ne1 and ai = eT

N Pi−1ẽ1 for i ≥ 1. For this, it is sufficient to obtain a black-box access
to the function u �→ Pu, which is compatible with an on-the-fly implementation. A
numerical example illustrating the method is reported in the full paper [4].

While dispensing with symbolic computations and the explicit knowledge of P, the
method described in this section still suffers from drawbacks that confine its application
to small-to-moderate values of N. Indeed, the solution of the linear system (7) has a time
complexity of O(N3). Although this can be improved using known techniques from
numerical linear algebra (see [4]), the real problem here is that the explicit computation
of 2N moments a j is in practice very costly and numerically instable, and should be
avoided. Moreover, it is clear that a consistent gain in efficiency can only be obtained
by accepting some degree of approximation in the computed solution.

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 89

4 Discussion: Approximating g(z)

Fig. 1. Plots of g10(x) (dotted), of g100(x) (dash-dotted),
of the [1, 1]-Padé approximant ĝ(x) = 2x/(−5995x +
6000) (dashed) and of g(x) (solid), for Nasty(6, 10−3),
near x = 1. Here g(z) has a pole at z = 1/λ with λ ≈
0.9993.

Suppose that, possibly due to lim-
ited computational resources, we
have access only to a limited num-
ber, say m + 1, of g’s moments
ai. Or, more generally, we can
access the transition relation of
the Markov chain - the mapping
u �→ Pu - only a limited num-
ber m of times. Typically, we can
only afford m � N. The resulting
information may be not sufficient
to recover an exact representation
of g(z). Then the problem becomes
finding a a good approximating
function ĝ(z) of g(z). “Good” here
means at least that g(z) − ĝ(z) =
o(zm+1); but, even more than that,
ĝ(z) should approximate well g(z)
near z = 1, as we are mainly inter-
ested in evaluating g(1), g′(1) and so on, see (2). The first, obvious attempt is to consider
a polynomial approximation: ĝ(z) = gm(z) =

∑m
i=0 aizi. This is the truncation of g(z) at

the term of degree m.
Unfortunately, such a ĝ(z) might be a very bad approximation of g(z). The reason

is that the rational representation r(z)/t(z) of g(z) may have a pole near3 z = 1: that
is, there can be a z0 ∈ C such that |z0 − 1| ≈ 0 and limz→z0 |r(z)/t(z)| = +∞. Then, as
z approaches 1 from its convergence zone, g(z) becomes extremely fast growing, and
essentially impossible to approximate by means of a polynomial function, as polyno-
mials have no finite poles.

As stated by Corollary 1, the pole of smallest modulus of g(z), which determines
its radius of convergence R, is of the form z0 = 1/λ, for some subdominant eigenvalue
λ of P, that is an eigenvalue with |λ| < 1. If 1 is “badly separated” from λ, that is
if |λ − 1| ≈ 0, the truncated sums

∑
i≤m ai will converge very slowly to preach, as m

grows. In this respect, a rational approximation ĝ(z) = r̂(z)
t̂(z) can perform much better.

Indeed, t̂(z) can be chosen so as to have a root near z0. This in essence is what Padé
approximation achieves. When building a [h, k]-Padé approximant with h + k ≤ m, the
same amount of information used to build the polynomial gm(z) above - the first m + 1
moments of g(z) - is used to “guess” an approximation of z0, that becomes a root of
t̂(z) (this aspect will be further discussed in the next section, see Remark 1.) The benefit
of rational over polynomial approximation is qualitatively illustrated by the plots in
Fig. 1.

3 Note that the rational function r(z)/t(z), while coinciding with g(z) within the disk |z| < R, will
also be defined outside this disk.

90 M. Boreale

It is well-known [5] that that the bad separation phenomenon (subdominant eigen-
values close to 1) occurs if there is a cluster of states that are strongly coupled with
one another, but nearly uncoupled with other states in the chain, like 1, ..., n − 2 in
Nasty(n, δ) (see [4].) In the next section we explore an effective way of building ratio-
nal approximations ĝ(z) = r̂(z)/t̂(z).

5 Approximation of g(z) via a Projection Method

The general idea of a projection method is as follows. Consider P as a linear map
acting on the N-dimensional space RN . We identify a m-dimensional subspace,Km, and
then consider the projection of P onto this space, say P̂: this is our low-dimensional
approximation of the original system. Here, m � N: practically m will be of the order
of tens or hundreds. Formally, consider an integer m ≥ 1 and the Krylov subspace of
R

N

Km(P, ẽ1)
�
= span{ẽ1, Pẽ1, P

2ẽ1, ..., P
m−1ẽ1}

abbreviated as Km in what follows. Now take any orthonormal basis of Km and arrange
the corresponding column vectors into a N × m matrix, Vm = [v1, ..., vm]. Note that
orthonormality means that VT

mVm = Im. We can consider the projection of P, seen as an
application R

N → R
N , ontoKm. The representation of this application restricted toKm,

in the basis Vm, is given by the m × m matrix

Hm = VT
m PVm . (9)

(The matrix Hm will play the role played by P̂ in the above informal description.) Note
that if m is large enough then Km will be a P-invariant subspace of RN , that is PKm ⊆
Km

4.

Theorem 3. Let m ≥ 1. Consider the function, defined in a neighborhood of the origin
ĝ(z)

�
= a0 + z · (eT

NVm)(Im − zHm)−1(VT
mẽ1) . (10)

Then ĝ(z) is a rational function of type [m,m] and g(z) − ĝ(z) = o(zm+1). Moreover, if 1
is not an eigenvalue of Hm, then ĝ(z) is defined in a neighborhood of z = 1. Finally, if
Km is P-invariant, then g(z) = ĝ(z).

Remark 1. Note from (10) that, while ĝ(z) is a rational function of type [m,m], it is not
guaranteed that g(z)− ĝ(z) = o(z2m+1). Thus ĝ(z) is not, in general, a Padé approximant,
but only a weaker Padé-type approximant. Comparing (5) and (10), we further see that
how well ĝ(z) approximates g(z) depends on how well the polynomial det(Im − zHm)
approximates the polynomial det(I − zP). We have already noted that the roots of these
polynomials are the reciprocals of nonzero eigenvalues of Hm and P, respectively. It is
known for general matrices P that, already for small values of m, Hm’s eigenvalues -
known as Ritz values in the literature - tend to be excellent approximations of the eigen-
values of P that are at the extreme of the spectrum, that is, those of either large or small
modulus. The details and nature of such approximation are not yet fully understood,

4 In particular, it is sufficient to take any m ≥ ν, where ν ≤ N is the degree of the minimal
polynomial of P, that is, the monic polynomial p of minimal degree such that p(P) = 0N×N :
this is a consequence of the Cayley-Hamilton theorem.

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 91

Algorithm 1. Arnoldi based calculation of ĝ(z)
Input: m ≥ 1; a black-box mechanism for computing the function u �→ Pu
Output: a triple (a0,Vm,Hm)

1: a0 = eT
Ne1

2: v1 = ẽ1/||ẽ1||2
3: for j = 1, 2, ...,m do
4: for i = 1, 2, ..., j do hi j = (Pvj, vi)
5: wj = Pvj −∑ j

i=1 hi jvi

6: h j+1, j = ||wj||2
7: if (h j+1, j = 0) ∨ (j = m) then break else v j+1 = wj/h j+1, j

8: m = j
9: Vm = [v1, ..., vm]

10: return (a0,Vm,Hm)

but in the specialized literature there is abundant experimental and theoretical evidence
about it, see e.g. [8]. In any case, this fact retrospectively sheds light on the somewhat
surprising effectiveness of Padé approximation.

Formulae for the derivatives ĝ(j)(x) = d j

dx j ĝ(x) follow from (10) by the familiar rules
of derivation, see [4]. We now show that the matrices Vm and Hm can be computed
via an effective and numerically stable procedure known as the Arnoldi process [2,8].
Arnoldi does not require knowledge of the full matrix P, but only a black-box access
to the matrix-vector multiplication function u �→ Pu, which makes it compatible with
an on-the-fly approach. Algorithm 1 works incrementally and, for j = 1, ...,m, builds
an orthormal basis ofK j, Vj = [v1, ..., v j], and the corresponding projected version of P
onto K j, Hj. The next vector v j+1 is built by orthonormalizing Pvj against the available
basis Vj (lines 4–7, which are essentially the Gram-Schmidt orthonormalization.) If
this process results in the null vector (h j+1, j = 0), then Pvj is linearly dependent from
vectors in Vj, thus the space K j is P-invariant, and the main iteration stops.

The algorithm makes use of the following variables, for j = 1, ...,m: the scalars
a0, a j ∈ R; vectors v j,wj ∈ RN ; the matrix Hm ∈ Rm×m whose nonzero elements are the
reals hl,l′ for 1 ≤ l ≤ l′ + 1 and l ≤ l′ ≤ m; the matrix Vm ∈ RN×m. In line 4, (·, ·) denotes
inner product. Of course, Pvj needs to be computed only once per each j-iteration.
Nesting of blocks is defined by indentation. The algorithm can take advantage of a
sparse storage scheme. In what follows, we let W be the maximal number of nonzero
elements in Pjẽ1, for any 0 ≤ j ≤ m, and B the maximal number of outgoing transitions
from any state. Note that W · B is upper bounded by the overall number of transitions.
Recall that a square matrix is in upper Hessenberg form if all its entries below the main
subdiagonal are 0.

Theorem 4. Let m ≥ 1 and let (a0,Vm,Hm) be the output returned by Algorithm 1. Then
Vm is an orthonormal basis of Km and (9) is satisfied. As a consequence, ĝ(z) satisfies
(10) given this choice of a0,Vm,Hm. Moreover, Hm is in upper Hessenberg form and if
hm+1,m = 0 then ĝ(z) = g(z). Assuming u �→ Pu can be computed in O(WB) operations

92 M. Boreale

and O(W) storage, the algorithm takes O(mWB) operations and O(mW) storage to
complete.

A numerical example illustrating Algorithm 1 is reported in the full version [4]. Note
that in principle we can calculate ĝ(1), and more generally ĝ(x) whenever defined for
x, directly using the definition (10). However, it is computationally much better to pro-
ceed as follows: ĝ(x) = a0 + eT

NVmy, where y is the (unique) solution of the system
(Im − xHm)y = VT

mẽ1 = e(m)
1 · ||ẽ1||2 (here e(m)

1 is the first canonical vector of R
m.)

Since (Im − xHm) is still quasi-triangular (upper Hessenberg), the system above can be
solved with O(m2). The derivatives of g can be computed similarly, see [4]. In the end,
via the Arnoldi algorithm 1 (cost O(mWB)), we have reduced the computation of all
the important properties of the system to the resolution of small quasi-triangular sys-
tems, which cost approximately O(m2), for a small, “affordable” m. Computation of
steady-state probabilities and of error control is also discussed in [4].

6 Experiments

We have put an on-the-fly implementation (in Matlab) of Algorithm 1 at work on a few
simple probabilistic systems. With two exceptions, the chosen systems are relatively
small, but, due to the presence of nearly uncoupled strongly connected components,
they exhibit the bad separation phenomenon discussed in Section 4. In each case, the
reachability probability of interest is easy to compute analytically, due to the symmetry
of the system. The Matlab implementation, as well as the Matlab and Prism specifi-
cations of the considered examples, are available at [4]. We give below an informal
description of these systems.

The Nasty(n, δ) systems have been introduced in Example 1; here we have fixed
δ = 10−3 and considered n = 105, 106. A Queue(n) system consists of n queueing pro-
cesses, each of capacity four, running in parallel. At each time, either an enqueue (prob.
0.1) or a dequeue (prob. 0.9) request arrives, and is served by any process that is able
to serve it. In case of global overflow, each process chooses either of two indeterminate
error states, and remains there forever. This gives rise to 2n possible overflow configu-
rations, which are absorbing. The event of interest is that the system eventually reaches
one specific such configuration; here the cases n = 2, 3 are considered. An Ising(n)
system consists of n particles, each of which can take on, at each time, either the up or
the down spin value, with a probability depending on how many up’s are in system and
on a temperature parameter. The all-up and all-down configurations are absorbing, and
the event of interest is that all-up is eventually reached, starting from the equilibrium
configuration with n/2 particles down and n/2 up; here, the cases n = 6, 8 are consid-
ered. In Chemical(n), a solution is initially composed by n/2 reactant pairs of type 1
and n/2 reactant pairs of type 2. A reactant pair of one type can get transformed into
a pair of the other type, according to a chemical rule obeying the law of mass action –
the probability that the reaction occurs depends on the concentration of the reactants.
A solution consisting of reactants pairs all of the same type is absorbing. The proba-
bility of eventually reaching one specific such solution is seeked for; here, the cases
n = 24, 26 are considered.

Analysis of Probabilistic Systems via Generating Functions and Padé Approximation 93

Table 1. Results of some experiments. N = number of states; preach = exact reachability probabil-
ity. p̂reach = probability returned by the algorithms, truncated at the 4-th digit after decimal point;
%error = 100 × |preach − p̂reach|/preach is the relative error percentage; m = number of iterations;
time = time in seconds. For Prism, default options have been employed except that for m (tweak-
ing other options did not lead to significant improvements); model building time is included in
time.

Table 1 displays the outcomes of these experiments. In all the considered cases,
Algorithm 1 returned, in reasonable time, quite accurate results in terms of relative
error. For comparison, results obtained with Prism, a state-of-the-art probabilistic model
checker [6], are also included. Results provided by Prism were reasonably accurate
only in three out of eight cases. In one case (Nasty with 106 states), Prism was not
able to build the model after about one hour. In five out of eight cases, the Matlab
implementation of Algorithm 1 run anyway faster than Prism.

7 Conclusion, Further and Related Work

We have demonstrated that, in the analysis of Markov chains, generating functions pro-
vide a bridge toward Padé approximation theory that is useful both at a conceptual
and at a technical level. Direct extensions of the method to full temporal logics, such
as LTL, seem worth studying, as well as extensions to richer models, like continuous
Markov chains or Markov Decision Processes. Another potential field of application is
the time-bounded analysis of infinite-state system.

Methods and tools based on a symbolic representations of the entire state-space,
such as Prism [6], can take great advantage of the presence of system regularities, as
e.g. induced by massive interleaving: in those cases, an on-the-fly approach cannot be
expected to match the performance of these tools. Nevertheless, as indicated by our
small-scale experiment, the presented methodology turns out to be helpful in situations
of bad eigenvalues separation, and/or when, for whatever reason, building the entire sys-
tem’s model turns out to be not feasible. In numerical linear algebra, numerous worksare

94 M. Boreale

devoted to the experimental evaluation of projective methods applied to Markov chains,
see e.g. [7] and references therein. These works focus on the calculation of steady-state
probabilities and no connection to generating functions is made. Further discussion on
related work, including use of Padé approximation in Engineering [1], can be found
in [4].

References

1. Antoulas, A.C.: Approximation of Large-scale Dynamical Systems. SIAM (2005)
2. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue

problem. Quarterly of Applied Mathematics 9, 17–29 (1951)
3. Baker Jr., G.: Essentials of Padé Approximants. Academic Press (1975)
4. Boreale, M.: Full version of the present paper, Matlab and Prism code. http://rap.dsi.unifi.it/
∼boreale/papers/GFviaKrylov.rar

5. Hartfiel, D.J., Meyer, C.D.: On the structure of stochastic matrices with a subdominant eigen-
value near 1. Linear Algebra Appl. 272, 193–203 (1998)

6. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011)

7. Philippe, B., Saad, Y., Stewart, W.J.: Numerical Methods in Markov Chain Modelling. Oper-
ations Research 40, 1156–1179 (1996)

8. Saad, Y.: Iterative methods for sparse linear systems. SIAM (2003)
9. Wilf, H.S.: Generatingfunctionology, 2/e. Academic Press (1994)

http://rap.dsi.unifi.it/~boreale/papers/GFviaKrylov.rar
http://rap.dsi.unifi.it/~boreale/papers/GFviaKrylov.rar

On Reducing Linearizability to State Reachability

Ahmed Bouajjani1, Michael Emmi2, Constantin Enea1, and Jad Hamza1(B)

1 LIAFA, Université Paris Diderot, Paris, France
2 IMDEA Software Institute, Madrid, Spain

jhamza@liafa.univ-paris-diderot.fr

Abstract. Efficient implementations of atomic objects such as concurrent stacks
and queues are especially susceptible to programming errors, and necessitate
automatic verification. Unfortunately their correctness criteria — linearizability
with respect to given ADT specifications — are hard to verify. Even on classes
of implementations where the usual temporal safety properties like control-state
reachability are decidable, linearizability is undecidable.

In this work we demonstrate that verifying linearizability for certain fixed
ADT specifications is reducible to control-state reachability, despite being harder
for arbitrary ADTs. We effectuate this reduction for several of the most popular
atomic objects. This reduction yields the first decidability results for verification
without bounding the number of concurrent threads. Furthermore, it enables the
application of existing safety-verification tools to linearizability verification.

1 Introduction

Efficient implementations of atomic objects such as concurrent queues and stacks are
difficult to get right. Their complexity arises from the conflicting design requirements
of maximizing efficiency/concurrency with preserving the appearance of atomic behav-
ior. Their correctness is captured by observational refinement, which assures that all
behaviors of programs using these efficient implementations would also be possible
were the atomic reference implementations used instead. Linearizability [12], being an
equivalent property [5,8], is the predominant proof technique: one shows that each con-
current execution has a linearization which is a valid sequential execution according to
a specification, given by an abstract data type (ADT) or reference implementation.

Verifying automatically1 that all executions of a given implementation are lineariz-
able with respect to a given ADT is an undecidable problem [3], even on the typical
classes of implementations for which the usual temporal safety properties are decidable,
e.g., on finite-shared-memory programs where each thread is a finite-state machine.
What makes linearization harder than typical temporal safety properties like control-
state reachability is the existential quantification of a valid linearization per execution.

In this work we demonstrate that verifying linearizability for certain fixed ADTs
is reducible to control-state reachability, despite being harder for arbitrary ADTs. We
believe that fixing the ADT parameter of the verification problem is justified, since in

This work is supported in part by the VECOLIB project (ANR-14-CE28-0018).
1 Without programmer annotation — see Section 6 for further discussion.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 95–107, 2015.
DOI: 10.1007/978-3-662-47666-6 8

96 A. Bouajjani et al.

practice, there are few ADTs for which specialized concurrent implementations have
been developed. We provide a methodology for carrying out this reduction, and instan-
tiate it on four ADTs: the atomic queue, stack, register, and mutex.

Our reduction to control-state reachability holds on any class of implementations
which is closed under intersection with regular languages2 and which is data indepen-
dent — informally, that implementations can perform only read and write operations on
the data values passed as method arguments. From the ADT in question, our approach
relies on expressing its violations as a finite union of regular languages.

In our methodology, we express the atomic object specifications using inductive
rules to facilitate the incremental construction of valid executions. For instance in our
atomic queue specification, one rule specifies that a dequeue operation returning empty
can be inserted in any execution, so long as each preceding enqueue has a correspond-
ing dequeue, also preceding the inserted empty-dequeue. This form of inductive rule
enables a locality to the reasoning of linearizability violations.

Intuitively, first we prove that a sequential execution is invalid if and only if some
subsequence could not have been produced by one of the rules. Under certain condi-
tions this result extends to concurrent executions: an execution is not linearizable if and
only if some projection of its operations cannot be linearized to a sequence produced
by one of the rules. We thus correlate the finite set of inductive rules with a finite set
of classes of non-linearizable concurrent executions. We then demonstrate that each
of these classes of non-linearizable executions is regular, which characterizes the viola-
tions of a given ADT as a finite union of regular languages. The fact that these classes of
non-linearizable executions can be encoded as regular languages is somewhat surpris-
ing since the number of data values, and thus alphabet symbols, is, a priori, unbounded.
Our encoding thus relies on the aforementioned data independence property.

To complete the reduction to control-state reachability, we show that linearizability
is equivalent to the emptiness of the language intersection between the implementa-
tion and finite union of regular violations. When the implementation is a finite-shared-
memory program with finite-state threads, this reduces to the coverability problem for
Petri nets, which is decidable, and EXPSPACE-complete.

To summarize, our contributions are:

– a generic reduction from linearizability to control-state reachability,
– its application to the atomic queue, stack, register, and mutex ADTs,
– the methodology enabling this reduction, which can be reused on other ADTs, and
– the first decidability results for linearizability without bounding the number of con-

current threads.

Besides yielding novel decidability results, our reduction paves the way for the appli-
cation of existing safety-verification tools to linearizability verification.

Section 2 outlines basic definitions. Section 3 describes a methodology for induc-
tive definitions of data structure specifications. In Section 4 we identify conditions under
which linearizability can be reduced to control-state reachability, and demonstrate that

2 We consider languages of well-formed method call and return actions, e.g., for which each
return has a matching call.

On Reducing Linearizability to State Reachability 97

typical atomic objects satisfy these conditions. Finally, we prove decidability of lin-
earizability for finite-shared-memory programs with finite-state threads in Section 5.
Proofs to technical results appear in the appendix.

2 Linearizability

We fix a (possibly infinite) set D of data values, and a finite set M of methods. We
consider that methods have exactly one argument, or one return value. Return values
are transformed into argument values for uniformity.3 In order to differentiate methods
taking an argument (e.g., the Enq method which inserts a value into a queue) from
the other methods, we identify a subset Min ⊆ M of input methods which do take an
argument. A method event is composed of a method m ∈ M and a data value x ∈ D,
and is denoted m(x). We define the concatenation of method-event sequences u · v in
the usual way, and ε denotes the empty sequence.

Definition 1. A sequential execution is a sequence of method events,

The projection u|D of a sequential execution u to a subset D ⊆ D of data values is
obtained from u by erasing all method events with a data value not in D. The set of
projections of u is denoted proj(u). We write u � x for the projection u|D\{x}.

Example 1. The projection Enq(1)Enq(2)Deq(1)Enq(3)Deq(2)Deq(3)� 1 is equal
to Enq(2)Enq(3)Deq(2)Deq(3).

We also fix an arbitrary infinite set O of operation (identifiers). A call action is com-
posed of a method m ∈ M, a data value x ∈ D, an operation o ∈ O, and is denoted
callo m(x). Similarly, a return action is denoted reto m(x). The operation o is used
to match return actions to their call actions.

Definition 2. A (concurrent) execution e is a sequence of call and return actions which
satisfy a well-formedness property: every return has a call action before it in e, using
the same tuple m,x, o, and an operation o can be used only twice in e, once in a call
action, and once in a return action.

Example 2. The sequence callo1 Enq(7) · callo2 Enq(4) · reto1 Enq(7) ·
reto2 Enq(4) is an execution, while callo1 Enq(7) · callo2 Enq(4) · reto1 Enq(7) ·
reto1 Enq(4) and callo1 Enq(7) · reto1 Enq(7) · reto2 Enq(4) are not.

Definition 3. An implementation I is a set of (concurrent) executions.

Implementations represent libraries whose methods are called by external programs,
giving rise to the following closure properties [5]. In the following, c denotes a call
action, r denotes a return action, a denotes any action, and e, e′ denote executions.

3 Method return values are guessed nondeterministically, and validated at return points. This
can be handled using the assume statements of typical formal specification languages, which
only admit executions satisfying a given predicate. The argument value for methods without
argument or return values, or with fixed argument/return values, is ignored.

98 A. Bouajjani et al.

– Programs can call library methods at any point in time:
e · e′ ∈ I implies e · c · e′ ∈ I so long as e · c · e′ is well formed.

– Calls can be made earlier:
e · a · c · e′ ∈ I implies e · c · a · e′ ∈ I.

– Returns been made later:
e · r · a · e′ ∈ I implies e · a · r · e′ ∈ I.

Intuitively, these properties hold because call and return actions are not visible to the
other threads which are running in parallel.

For the remainder of this work, we consider only completed executions, where each
call action has a corresponding return action. This simplification is sound when imple-
mentation methods can always make progress in isolation [11]: formally, for any exe-
cution e with pending operations, there exists an execution e′ obtained by extending e
only with the return actions of the pending operations of e. Intuitively this means that
methods can always return without any help from outside threads, avoiding deadlock.

We simply reasoning on executions by abstracting them into histories.

Definition 4. A history is a labeled partial order (O,<, l) with O ⊆ O and l : O →
M × D.

The order < is called the happens-before relation, and we say that o1 happens before
o2 when o1 < o2. Since histories arise from executions, their happens-before relations
are interval orders [5]: for distinct o1, o2, o3, o4, if o1 < o2 and o3 < o4 then either
o1 < o4, or o3 < o2. Intuitively, this comes from the fact that concurrent threads share
a notion of global time. Dh ⊆ D denotes the set of data values appearing in h.

The history of an execution e is defined as (O,<, l) where:

– O is the set of operations which appear in e,
– o1 < o2 iff the return action of o1 is before the call action of o2 in e,
– an operation o occurring in a call action callo m(x) is labeled by m(x).

Example 3. The history of the execution callo1 Enq(7) · callo2 Enq(4) ·
reto1 Enq(7) · reto2 Enq(4) is ({o1, o2}, <, l) with l(o1) = Enq(7), l(o2) =
Enq(4), and with < being the empty order relation, since o1 and o2 overlap.

Let h = (O,<, l) be a history and u a sequential execution of length n. We say
that h is linearizable with respect to u, denoted h � u, if there is a bijection
f : O → {1, . . . , n} s.t.

– if o1 < o2 then f(o1) < f(o2),
– the method event at position f(o) in u is l(o).

Definition 5. A history h is linearizable with respect to a set S of sequential executions,
denoted h � S, if there exists u ∈ S such that h � u.

A set of histories H is linearizable with respect to S, denoted H � S if h � S for all
h ∈ H . We extend these definitions to executions according to their histories.

A sequential execution u is said to be differentiated if, for all input methods m ∈
Min, and every x ∈ D, there is at most one method event m(x) in u. The subset of

On Reducing Linearizability to State Reachability 99

differentiated sequential executions of a set S is denoted by S� =. The definition extends
to (sets of) executions and histories. For instance, an execution is differentiated if for all
input methods m ∈ Min and every x ∈ D, there is at most one call action callo m(x).

Example 4. callo1 Enq(7) ·callo2 Enq(7) ·reto1 Enq(7) ·reto2 Enq(7) is not dif-
ferentiated, as there are two call actions with the same input method (Enq) and the same
data value.

A renaming r is a function from D to D. Given a sequential execution (resp., exe-
cution or history) u, we denote by r(u) the sequential execution (resp., execution or
history) obtained from u by replacing every data value x by r(x).

Definition 6. The set of sequential executions (resp., executions or histories) S is data
independent if:

– for all u ∈ S, there exists u′ ∈ S� =, and a renaming r such that u = r(u′),
– for all u ∈ S and for all renaming r, r(u) ∈ S.

When checking that a data-independent implementation I is linearizable with
respect to a data-independent specification S, it is enough to do so for differentiated
executions [1]. Thus, in the remainder of the paper, we focus on characterizing lineariz-
ability for differentiated executions, rather than arbitrary ones.

Lemma 1 (Abdulla et al. [1]). A data-independent implementation I is linearizable
with respect to a data-independent specification S, if and only if I� = is linearizable
with respect to S� =.

3 Inductively-Defined Data Structures

A data structure S is given syntactically as an ordered sequence of rules R1, . . . , Rn,
each of the form u1 · u2 · · · uk ∈ S ∧ Guard(u1, . . . , uk) ⇒ Expr(u1, . . . , uk) ∈ S,
where the variables ui are interpreted over method-event sequences, and

– Guard(u1, . . . , uk) is a conjunction of conditions on u1, . . . , uk with atoms
• ui ∈ M∗ (M ⊆ M)
• matched(m,ui)

– Expr(u1, . . . , uk) is an expression E = a1 · a2 · · · al where
• u1, . . . , uk appear in that order, exactly once, in E,
• each ai is either some uj , a method m, or a Kleene closure m∗ (m ∈ M),
• a method m ∈ M appears at most once in E.

We allow k to be 0 for base rules, such as ε ∈ S.
A condition ui ∈ M∗ (M ⊆ M) is satisfied when the methods used in ui are all in

M . The predicate matched(m,ui) is satisfied when, for every method event m(x) in
ui, there exists another method event in ui with the same data value x.

Given a sequential execution u = u1 · . . . · uk and an expression E =
Expr(u1, . . . , uk), we define �E� as the set of sequential executions which can be
obtained from E by replacing the methods m by a method event m(x) and the Kleene

100 A. Bouajjani et al.

closures m∗ by 0 or more method events m(x). All method events must use the same
data value x ∈ D.

A rule R ≡ u1 · u2 · · · uk ∈ S ∧ Guard(u1, . . . , uk) ⇒ Expr(u1, . . . , uk) ∈ S
is applied to a sequential execution w to obtain a new sequential execution w′ from the
set: ⋃

w=w1·w2···wk∧
Guard(w1,...,wk)

�Expr(w1, . . . , wk)�

We denote this w
R−→ w′. The set of sequential executions �S� = �R1, . . . , Rn� is

then defined as the set of sequential executions w which can be derived from the empty
word:

ε = w0

Ri1−−→ w1

Ri2−−→ w2 . . .
Rip−−→ wp = w,

where i1, . . . , ip is a non-decreasing sequence of integers from {1 . . . , n}. This means
that the rules must be applied in order, and each rule can be applied 0 or several times.

Below we give inductive definitions for the atomic queue and stack data structures.
Other data structures such as atomic registers and mutexes also have inductive defini-
tions, as demonstrated in the appendix.

Example 5. The queue has a method Enq to add an element to the data structure, and
a method Deq to remove the elements in a FIFO order. The method DeqEmpty can
only return when the queue is empty (its parameter is not used). The only input method
is Enq. Formally, Queue is defined by the rules R0, REnq, REnqDeq and RDeqEmpty.

R0 ≡ ε ∈ Queue

REnq ≡ u ∈ Queue ∧ u ∈ Enq∗ ⇒ u · Enq ∈ Queue

REnqDeq ≡ u · v ∈ Queue ∧ u ∈ Enq∗ ∧ v ∈ {Enq, Deq}∗ ⇒ Enq · u · Deq · v ∈ Queue

RDeqEmpty ≡ u · v ∈ Queue ∧ matched(Enq, u) ⇒ u · DeqEmpty · v ∈ Queue

One derivation for Queue is:

ε ∈ Queue
REnqDeq−−−−−−→ Enq(1) · Deq(1) ∈ Queue

REnqDeq−−−−−−→ Enq(2) · Enq(1) · Deq(2) · Deq(1) ∈ Queue

REnqDeq−−−−−−→ Enq(3) · Deq(3) · Enq(2) · Enq(1) · Deq(2) · Deq(1) ∈ Queue

RDeqEmpty−−−−−−−−→ Enq(3) · Deq(3) · DeqEmpty · Enq(2) · Enq(1) · Deq(2) · Deq(1) ∈ Queue

Similarly, Stack is composed of the rules R0, RPushPop, RPush, RPopEmpty.

R0 ≡ ε ∈ Stack

RPushPop ≡ u · v ∈ Stack ∧ matched(Push, u) ∧ matched(Push, v) ∧ u, v ∈ {Push, Pop}∗

⇒ Push · u · Pop · v ∈ Stack

RPush ≡ u · v ∈ Stack ∧ matched(Push, u) ∧ u, v ∈ {Push, Pop}∗ ⇒ u · Push · v ∈ Stack

RPopEmpty ≡ u · v ∈ Stack ∧ matched(Push, u) ⇒ u · PopEmpty · v ∈ Stack

On Reducing Linearizability to State Reachability 101

We assume that the rules defining a data structure S satisfy a non-ambiguity prop-
erty stating that the last step in deriving a sequential execution in �S� is unique and it can
be effectively determined. Since we are interested in characterizing the linearizations of
a history and its projections, this property is extended to permutations of projections of
sequential executions which are admitted by S. Thus, we assume that the rules defining
a data structure are non-ambiguous, that is:

– for all u ∈ �S�, there exists a unique rule, denoted by last(u), that can be used as
the last step to derive u, i.e., for every sequence of rules Ri1 , . . . , Rin leading to u,
Rin = last(u). For u 	∈ �S�, last(u) is also defined but can be arbitrary, as there
is no derivation for u.

– if last(u) = Ri, then for every permutation u′ ∈ �S� of a projection of u,
last(u′) = Rj with j ≤ i. If u′ is a permutation of u, then last(u′) = Ri.

Given a (completed) history h, all the u such that h � u are permutations of one
another. The last condition of non-ambiguity thus enables us to extend the function
last to histories: last(h) is defined as last(u) where u is any sequential execution
such that h � u. We say that last(h) is the rule corresponding to h.

Example 6. For Queue, we define last for a sequential execution u as follows:

– if u contains a DeqEmpty operation, last(u) = RDeqEmpty,
– else if u contains a Deq operation, last(u) = REnqDeq,
– else if u contains only Enq’s, last(u) = REnq,
– else (if u is empty), last(u) = R0.

Since the conditions we use to define last are closed under permutations, we get that
for any permutation u2 of u, last(u) = last(u2), and last can be extended to histo-
ries. Therefore, the rules R0, REnqDeq, RDeqEmpty are non-ambiguous.

4 Reducing Linearizability to State Reachability

Our end goal for this section is to show that for any data-independent implementation
I, and any specification S satisfying several conditions defined in the following, there
exists a computable finite-state automaton A (over call and return actions) such that:

I � S ⇐⇒ I ∩ A = ∅

Then, given a model of I, the linearizability of I is reduced to checking emptiness of
the synchronized product between the model of I and A. The automaton A represents
(a subset of the) executions which are not linearizable with respect to S.

The first step in proving our result is to show that, under some conditions, we can
partition the concurrent executions which are not linearizable with respect to S into a
finite number of classes. Intuitively, each non-linearizable execution must correspond
to a violation for one of the rules in the definition of S.

We identify a property, which we call step-by-step linearizability, which is suffi-
cient to obtain this characterization. Intuitively, step-by-step linearizability enables us

102 A. Bouajjani et al.

to build a linearization for an execution e incrementally, using linearizations of projec-
tions of e.

The second step is to show that, for each class of violations (i.e., with respect to a
specific rule Ri), we can build a regular automaton Ai such that: a) when restricted to
well-formed executions, Ai recognizes a subset of this class; b) each non-linearizable
execution has a corresponding execution, obtained by data independence, accepted by
Ai. If such an automaton exists, we say that Ri is co-regular (formally defined later in
this section).

We prove that, provided these two properties hold, we have the equivalence men-
tioned above, by defining A as the union of the Ai’s built for each rule Ri.

4.1 Reduction to a Finite Number of Classes of Violations

Our goal here is to give a characterization of the sequential executions which belong to
a data structure, as well as to give a characterization of the concurrent executions which
are linearizable with respect to the data structure. This characterization enables us to
classify the linearization violations into a finite number of classes.

Our characterization relies heavily on the fact that the data structures we consider
are closed under projection, i.e., for all u ∈ S,D ⊆ D, we have u|D ∈ S. The reason
for this is that the guards used in the inductive rules are closed under projection.

Lemma 2. Any data structure S defined in our framework is closed under projection.

A sequential execution u is said to match a rule R with conditions Guard if there
exist a data value x and sequential executions u1, . . . , uk such that u can be written as
�Expr(u1, . . . , uk)�, where x is the data value used for the method events, and such
that Guard(u1, . . . , uk) holds. We call x the witness of the decomposition. We denote
by MR the set of sequential executions which match R, and we call it the matching set
of R.

Example 7. MREnqDeq is the set of sequential executions of the form Enq(x) · u ·
Deq(x) · v for some x ∈ D, and with u ∈ Enq∗.

Lemma 3. Let S = R1, . . . , Rn be a data structure and u a differentiated sequential
execution. Then,

u ∈ S ⇐⇒ proj(u) ⊆
⋃

i∈{1,...,n}
MRi

This characterization enables us to get rid of the recursion, so that we only have to
check non-recursive properties. We want a similar lemma to characterize e � S for an
execution e. This is where we introduce the notion of step-by-step linearizability, as the
lemma will hold under this condition.

Definition 7. A data structure S = R1, . . . , Rn is said be to step-by-step linearizable
if for any differentiated execution e, if e is linearizable w.r.t. MRi with witness x, we
have:

e � x � �R1, . . . , Ri� =⇒ e � �R1, . . . , Ri�

On Reducing Linearizability to State Reachability 103

This notion applies to the usual data structures, as shown by the following lemma.
The generic schema we use is the following: we let u′ ∈ �R1, . . . , Ri� be a sequential
execution such that e � x � u′ and build a graph G from u′, whose acyclicity implies
that e � �R1, . . . , Ri�. Then, we show that we can always choose u′ so that G is acyclic.

Lemma 4. Queue, Stack, Register, and Mutex are step-by-step linearizable.

Intuitively, step-by-step linearizability will help us prove the right-to-left direction
of Lemma 5 by allowing us to build a linearization for e incrementally, from the lin-
earizations of projections of e.

Lemma 5. Let S be a data structure with rules R1, . . . , Rn. Let e be a differentiated
execution. If S is step-by-step linearizable, we have (for any j):

e � �R1, . . . , Rj� ⇐⇒ proj(e) �
⋃
i≤j

MRi

Thanks to Lemma 5, if we’re looking for an execution e which is not linearizable
w.r.t. some data-structure S, we must prove that proj(e) 	�

⋃
i MRi, i.e., we must find

a projection e′ ∈ proj(e) which is not linearizable with respect to any MRi (e′ 	�⋃
i MRi).

This is challenging as it is difficult to check that an execution is not linearizable
w.r.t. a union of sets simultaneously. Using non-ambiguity, we simplify this check by
making it more modular, so that we only have to check one set MRi at a time.

Lemma 6. Let S be a data structure with rules R1, . . . , Rn. Let e be a differentiated
execution. If S is step-by-step linearizable, we have:

e � S ⇐⇒ ∀e′ ∈ proj(e). e′ � MR where R = last(e′)

Lemma 6 gives us the finite kind of violations that we mentioned in the beginning
of the section. More precisely, if we negate both sides of the equivalence, we have:
e 	� S ⇐⇒ ∃e′ ∈ proj(e). e′ 	� MR. This means that whenever an execution is
not linearizable w.r.t. S, there can be only finitely reasons, namely there must exist a
projection which is not linearizable w.r.t. the matching set of its corresponding rule.

4.2 Regularity of Each Class of Violations

Our goal is now to construct, for each R, an automaton A which recognizes (a subset
of) the executions e, which have a projection e′ such that e′ 	� MR. More precisely, we
want the following property.

Definition 8. A rule R is said to be co-regular if we can build an automaton A such
that, for any data-independent implementation I, we have:

A ∩ I 	= ∅ ⇐⇒ ∃e ∈ I� =, e′ ∈ proj(e). last(e′) = R ∧ e′ 	� MR

A data structure S is co-regular if all of its rules are co-regular.

104 A. Bouajjani et al.

Fig. 1. A four-pair RDeqEmpty vio-
lation. The extended version of this
paper demonstrates that this pattern
with arbitrarily-many pairs is regular.

Fig. 2. An automaton recognizing RDeqEmpty viola-
tions, for which the queue is non-empty, with data
value 1, for the span of DeqEmpty. We assume all
call Enq(1) actions occur initially without loss of
generality due to implementations’ closure properties.

Formally, the alphabet of A is {call m(x) | m ∈ M, x ∈ D}∪{ret m(x) | m ∈}
M, x ∈ D for a finite subset D ⊆ D. The automaton doesn’t read operation identifiers,
thus, when taking the intersection with I, we ignore them.

Lemma 7. Queue, Stack, Register, and Mutex are co-regular.

Proof. To illustrate this lemma, we sketch the proof for the rule RDeqEmpty of Queue.
The complete proof of the lemma can be found in the extended version of this paper.

We prove in the extended version that a history has a projection such that
last(h′) = RDeqEmpty and h′ 	� MRDeqEmpty if and only if it has a DeqEmpty
operation which is covered by other operations, as depicted in Fig. 1. The automaton
ARDeqEmpty

in Fig. 2 recognizes such violations.
Let I be any data-independent implementation. We show that

ARDeqEmpty
∩I 	= ∅ ⇐⇒ ∃e ∈ I� =, e′ ∈ proj(e). last(e′) = RDeqEmpty∧e′ 	� MRDeqEmpty

(⇒) Let e ∈ I be an execution which is accepted by ARDeqEmpty
. By data indepen-

dence, let e� =∈ I and r a renaming such that e = r(e� =). Let d1, . . . , dm be the data
values which are mapped to value 1 by r.

Let d be the data value which is mapped to value 2 by r. Let o the DeqEmpty
operation with data value d. By construction of the automaton we can prove that o is
covered by d1, . . . , dm, and conclude that h has a projection such that last(h′) =
RDeqEmpty and h′ 	� MRDeqEmpty.

(⇐) Let e� =∈ I� = such that there is a projection e′ such that last(e′) =
RDeqEmpty and e′ 	� MRDeqEmpty. Let d1, . . . , dm be the data values given by the
RDeqEmpty-characterization in the full version of this paper, and let d be the data value
corresponding to the DeqEmpty operation.

Without loss of generality, we can always choose the cycle so that Enq(di) doesn’t
happen before Deq(di−2) (if it does, drop di−1).

Let r be the renaming which maps d1, . . . , dm to 1, d to 2, and all other values to
3. Let e = r(e� =). The execution e can be recognized by automaton ARDeqEmpty

, and
belongs to I by data independence.

On Reducing Linearizability to State Reachability 105

When we have a data structure which is both step-by-step linearizable and co-
regular, we can make a linear time reduction from the verification of linearizability
with respect to S to a reachability problem, as illustrated in Theorem 1.

Theorem 1. Let S be a step-by-step linearizable and co-regular data structure and let
I be a data-independent implementation. There exists a regular automaton A such that:

I � S ⇐⇒ I ∩ A = ∅

5 Decidability and Complexity of Linearizability

Theorem 1 implies that the linearizability problem with respect to any step-by-step lin-
earizable and co-regular specification is decidable for any data-independent implemen-
tation for which checking the emptiness of the intersection with finite-state automata is
decidable. Here, we give a class C of data-independent implementations for which the
latter problem, and thus linearizability, is decidable.

Each method of an implementation in C manipulates a finite number of local
variables which store Boolean values, or data values from D. Methods communicate
through a finite number of shared variables that also store Boolean values, or data val-
ues from D. Data values may be assigned, but never used in program predicates (e.g.,
in the conditions of if and while statements) so as to ensure data independence. This
class captures typical implementations, or finite-state abstractions thereof, e.g., obtained
via predicate abstraction.

Let I be an implementation from class C. The automata A constructed in the proof
of Lemma 7 use only data values 1, 2, and 3. Checking emptiness of I ∩ A is thus
equivalent to checking emptiness of I3 ∩A with the three-valued implementation I3 =
{e ∈ I | e = e|{1,2,3}}. The set I3 can be represented by a Petri net since bounding
data values allows us to represent each thread with a finite-state machine. Intuitively,
each token in the Petri net represents another thread. The number of threads can be
unbounded since the number of tokens can. Places count the number of threads in each
control location, which includes a local-variable valuation. Each shared variable also
has one place per value to store its current valuation.

Emptiness of the intersection with regular automata reduces to the EXPSPACE-
complete coverability problem for Petri nets. Limiting verification to a bounded number
of threads lowers the complexity of coverability to PSPACE [7]. The hardness part
of Theorem 2 comes from the hardness of state reachability in finite-state concurrent
programs.

Theorem 2. Verifying linearizability of an implementation in C with respect to a step-
by-step linearizable and co-regular specification is PSPACE-complete for a fixed num-
ber of threads, and EXPSPACE-complete otherwise.

6 Related Work

Several works investigate the theoretical limits of linearizability verification. Verifying
a single execution against an arbitrary ADT specification is NP-complete [9]. Verify-

106 A. Bouajjani et al.

ing all executions of a finite-state implementation against an arbitrary ADT specifica-
tion (given as a regular language) is EXPSPACE-complete when program threads are
bounded [2,10], and undecidable otherwise [3].

Existing automated methods for proving linearizability of an atomic object imple-
mentation are also based on reductions to safety verification [1,11,13]. Vafeiadis [13]
considers implementations where operation’s linearization points are fixed to particular
source-code locations. Essentially, this approach instruments the implementation with
ghost variables simulating the ADT specification at linearization points. This approach
is incomplete since not all implementations have fixed linearization points. Aspect-
oriented proofs [11] reduce linearizability to the verification of four simpler safety prop-
erties. However, this approach has only been applied to queues, and has not produced a
fully automated and complete proof technique. Dodds et al. [6] prove linearizability of
stack implementations with an automated proof assistant. Their approach does not lead
to full automation however, e.g., by reduction to safety verification.

7 Conclusion

We have demonstrated a linear-time reduction from linearizability for fixed ADT spec-
ifications to control-state reachability, and the application of this reduction to atomic
queues, stacks, registers, and mutexes. Besides yielding novel decidability results, our
reduction enables the use of existing safety-verification tools for linearizability. While
this work only applies the reduction to these four objects, our methodology also applies
to other typical atomic objects including semaphores and sets. Although this method-
ology currently does not capture priority queues, which are not data independent, we
believe our approach can be extended to include them. We leave this for future work.

References

1. Abdulla, P.A., Haziza, F., Holı́k, L., Jonsson, B., Rezine, A.: An integrated specification and
verification technique for highly concurrent data structures. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 324–338. Springer, Heidelberg
(2013)

2. Alur, R., McMillan, K.L., Peled, D.: Model-checking of correctness conditions for concur-
rent objects. Inf. Comput. 160(1–2) (2000)

3. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs against
sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 290–309. Springer, Heidelberg (2013)

5. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable refinement checking for concurrent
objects. In: POPL 2015. ACM (2015)

5. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to state reachabil-
ity. CoRR, abs/1502.06882 (2015). arxiv.org/abs/1502.06882

6. Dodds, M., Haas, A., Kirsch, C.M.: A scalable, correct time-stamped stack. In: POPL 2015.
ACM (2015)

7. Esparza, J.: Decidability and complexity of petri net problems—an introduction. Lectures on
Petri Nets I: Basic Models. Springer, Heidelberg (1998)

8. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent objects.
Theor. Comput. Sci. 411(51–52) (2010)

http://arxiv.org/abs/1502.06882

On Reducing Linearizability to State Reachability 107

9. Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput. 26(4) (1997)
10. Hamza, J.: On the complexity of linearizability. CoRR, abs/1410.5000 (2014).

arxiv.org/abs/1410.5000
11. Henzinger, T.A., Sezgin, A., Vafeiadis, V.: Aspect-oriented linearizability proofs. In:

D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol.
8052, pp. 242–256. Springer, Heidelberg (2013)

12. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12(3) (1990)

13. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg (2010)

http://arxiv.org/abs/1410.5000

The Complexity of Synthesis from Probabilistic
Components

Krishnendu Chatterjee1(B), Laurent Doyen2, and Moshe Y. Vardi3

1 IST Austria, Klosterneuburg, Austria
krish.chat@gmail.com

2 CNRS and LSV, ENS Cachan, Cachan, France
3 Rice University, Houston, USA

Abstract. The synthesis problem asks for the automatic construction
of a system from its specification. In the traditional setting, the system is
“constructed from scratch” rather than composed from reusable compo-
nents. However, this is rare in practice, and almost every non-trivial soft-
ware system relies heavily on the use of libraries of reusable components.
Recently, Lustig and Vardi introduced dataflow and controlflow synthesis
from libraries of reusable components. They proved that dataflow syn-
thesis is undecidable, while controlflow synthesis is decidable. The prob-
lem of controlflow synthesis from libraries of probabilistic components
was considered by Nain, Lustig and Vardi, and was shown to be decid-
able for qualitative analysis (that asks that the specification be satisfied
with probability 1). Our main contribution for controlflow synthesis from
probabilistic components is to establish better complexity bounds for the
qualitative analysis problem, and to show that the more general quanti-
tative problem is undecidable. For the qualitative analysis, we show that
the problem (i) is EXPTIME-complete when the specification is given as
a deterministic parity word automaton, improving the previously known
2EXPTIME upper bound; and (ii) belongs to UP ∩ coUP and is parity-
games hard, when the specification is given directly as a parity condition
on the components, improving the previously known EXPTIME upper
bound.

1 Introduction

Synthesis from existing components. Reactive systems (hardware or software)
are rarely built from scratch, but are mostly developed based on existing com-
ponents. A component might be used in the design of multiple systems, e.g.,
function libraries, web APIs, and ASICs. The construction of systems from exist-
ing reusable components is an active research direction, with several important

This research was supported by Austrian Science Fund (FWF) Grant No P23499-
N23, FWF NFN Grant No S11407-N23 (SHiNE), ERC Start grant (279307: Graph
Games), EU FP7 Project Cassting, NSF grants CNS 1049862 and CCF-1139011,
by NSF Expeditions in Computing project “ExCAPE: Expeditions in Computer
Augmented Program Engineering”, by BSF grant 9800096, and by gift from Intel.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 108–120, 2015.
DOI: 10.1007/978-3-662-47666-6 9

The Complexity of Synthesis from Probabilistic Components 109

works, such as component-based construction [17], interface-based design [11].
The synthesis problem asks for the automated construction of a system given a
logical specification. For example, in LTL (linear-time temporal logic) synthesis,
the specification is given in LTL and the reactive system to be constructed is a
finite-state transducer [16]. In the traditional LTL synthesis setting, the system is
“constructed from scratch” rather than “composed” from existing components.
Recently, Lustig and Vardi introduced the study of synthesis from reusable or
existing components [13].
The model and types of composition. The precise mathematical model for the
components and their composition is an important concern (and we refer the
reader to [13,14] for a detailed discussion). As a basic model for a component,
following [13], we abstract away the precise details of the component and model
a component as a transducer, i.e., a finite-state machine with outputs. Trans-
ducers constitute a canonical model for reactive components, abstracting away
internal architecture and focusing on modeling input/output behavior. In [13],
two models of composition were studied, namely, dataflow composition, where
the output of one component becomes an input to another component, and con-
trolflow composition, where at every point of time the control resides within a
single component. The synthesis problem for dataflow composition was shown
to be undecidable, and the controlflow composition to be decidable [13].
Synthesis for probabilistic components. While [13] considered synthesis for non-
probabilistic components which was extended to non-probabilistic recursive state
components in [10], the study of synthesis for controlflow composition for prob-
abilistic components was considered in [14]. Probabilistic components are trans-
ducers with a probabilistic transition function, that corresponds to modeling
systems where there is probabilistic uncertainty about the effect of input actions.
Thus the controlflow composition for probabilistic transducers aims at the con-
struction of reliable systems from unreliable components. There is a rich litera-
ture about verification and analysis of such systems, cf. [3,9,12,18,19].
Qualitative and quantitative analysis. There are two probabilistic notions of cor-
rectness, namely, the qualitative criterion that requires the satisfaction of the
specification with probability 1, and the more general quantitative criterion that
requires the satisfaction of the specification with probability at least η, given
0 < η ≤ 1.
The synthesis questions and previous results. In the synthesis problem for con-
trolflow composition, the input is a library L of probabilistic components, and
we consider specifications given as parity conditions (that allow us to consider all
ω-regular properties, which can express all commonly used specifications in verifi-
cation). The qualitative (resp., quantitative) realizability and synthesis problems
ask whether there exists a finite system S built from the components in L, such
that, regardless of the input provided by the external environment, the traces
generated by the system S satisfy the specification with probability 1 (resp.,
probability at least η). Each component in the library can be instantiated an
arbitrary number of times in the construction and there is no a-priori bound on
the size of the system obtained. The way the specification is provided gives rise

110 K. Chatterjee et al.

Table 1. Computational complexity of synthesis from probabilistic components

Qualitative Quantitative

Our Results Previous Results Our Results Previous Results

Embedded Parity UP ∩ coUP EXPTIME UP ∩ coUP Open
(Parity-games hard) (Parity-games hard)

DPW Specifications EXPTIME-c 2EXPTIME Undecidable Open

to two different problems: (i) embedded parity realizability, where the specifica-
tion is given in the form of a parity index on the states of the components; and
(ii) DPW realizability, where the specification is given as a separate deterministic
parity word automaton (DPW). The results of [14] established the decidability
of the qualitative realizability problem, namely, in EXPTIME for the embedded
parity realizability problem and 2EXPTIME for the DPW realizability prob-
lem. The exact complexity of the qualitative problem and the decidability and
complexity of the quantitative problem were left open, which we solve.
Our contributions. Our main contributions are (summarized in Table 1):

1. We show that both the qualitative and quantitative realizability problems
for embedded parity lie in UP ∩ coUP, and even the qualitative problem is
at least parity-games hard.

2. We show that the qualitative realizability problem for DPW specifications is
EXPTIME-complete (an exponential improvement over the previous 2EXP-
TIME result). Finally, we show that the quantitative realizability problem
for DPW specifications is undecidable.

Technical contributions. Our two main technical contributions are as follows.
First, for the realizability of embedded parity specifications, while the most nat-
ural interpretation of the problem is as a partial-observation stochastic game
(as also considered in [14]), we show that the problem can be reduced in poly-
nomial time to a perfect-information stochastic game. Second, for the realiz-
ability of DPW specifications, we consider partial-observation stochastic games
where the strategies correspond to a correct composition that defines, given an
exit state of a component, to which component the control should be trans-
ferred. Since we aim at a finite-state system, we need to consider strategies
with finite memory, and since the control flow is deterministic, we need to con-
sider pure (non-randomized) strategies. Moreover, since the composition must
be independent of the internal executions of the components, we need to consider
strategies with stuttering invariance. We present polynomial-time reductions for
stutter-invariant strategies to games with standard observation-based strate-
gies. Our results establish optimal complexity results for qualitative analysis of
partial-observation stochastic games with finite-memory stutter-invariant strate-
gies, which are of independent interest. Finally, we present a polynomial reduc-
tion of the qualitative realizability for DPW specifications to partial-observation
stochastic games with stutter-invariant strategies and obtain the EXPTIME-
complete result. Detailed proofs are available in [6].

The Complexity of Synthesis from Probabilistic Components 111

2 Definitions

Transducers. In this section we present the definitions of deterministic and
probabilistic transducers, and strategies for them.
Deterministic transducers. A deterministic transducer is a tuple B =
〈ΣI , ΣO, Q, q0, δ, L〉, where: ΣI is a finite input alphabet, ΣO is a finite out-
put alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, L : Q → ΣO

is an output function labeling states with output letters, and δ : Q × ΣI → Q is
a transition function.
Probabilistic transducers. Let D(X) denote the set of all probability distributions
on set X. A probabilistic transducer is a tuple T = 〈ΣI , ΣO, Q, q0, δ, F, L〉, where:
ΣI is a finite input alphabet, ΣO is a finite output alphabet, Q is a finite set
of states, q0 ∈ Q is an initial state, δ : (Q \ F) × ΣI → D(Q) is a probabilistic
transition function, F ⊆ Q is a set of exit states, and L : Q → ΣO is an output
function labeling states with output letters. Note that there are no transitions out
of an exit state. If F is empty, we say T is a probabilistic transducer without
exits. Note that deterministic transducers can be viewed as a special case of
probabilistic transducers.
Strategies for transducers, and probability measure. Given a probabilistic trans-
ducer M = 〈ΣI , ΣO, Q, q0, δ, F, L〉, a strategy for M is a function f : Q+ →
D(ΣI) that probabilistically chooses an input for each finite sequence of states.
We denote by F the set of all strategies. A strategy is memoryless if the choice
depends only on the last state in the sequence. A memoryless strategy can be
written as a function g : Q → D(ΣI). A strategy is pure if the choice is deter-
ministic. A pure strategy is a function h : Q+ → ΣI , and a memoryless and
pure strategy is a function h : Q → ΣI . A strategy f along with a probabilistic
transducer M , with set of states Q, induces a probability distribution on Qω,
denoted μf (see [6] for detailed definition).
Library of Components. A library is a finite set of probabilistic transducers
that share the same input and output alphabets. Each transducer in the library
is called a component type. Given a finite set of directions D, we say a library L
has width D, if each component type in the library has exactly |D| exit states.
Since we can always add dummy unreachable exit states to any component, we
assume, w.l.o.g., that all libraries have an associated width, usually denoted D.
In the context of a particular component type, we often refer to elements of D
as exits, and subsets of D as sets of exits.
Controlflow Composition from Libraries. We first informally describe the
notion of controlflow composition of components from a library as defined in [14].
The components in the composition take turns interacting with the environment,
and at each point in time, exactly one component is active. When the active
component reaches an exit state, control is transferred to some other component.
Thus, to define a controlflow composition, it suffices to name the components
used and describe how control should be transferred between them. We use a
deterministic transducer to define the transfer of control. Each library component
can be used multiple times in a composition, and we treat these occurrences as

112 K. Chatterjee et al.

distinct component instances. We emphasize that the composition can contain
potentially arbitrarily many instances of each component type inside it. Thus,
the size of the composition, a priori, is not bounded. Note that our notion of
composition is static, where the components called are determined before run
time, rather than dynamic, where the calls are determined during run time.

Let L be a library of width D. A composer over L is a deterministic transducer
C = 〈D,L,M,M0,Δ, λ〉. Here M is an arbitrary finite set of states. There
is no bound on the size of M. Each Mi ∈ M is a component from L and
λ(Mi) ∈ L is the type of Mi. We use the following notational convention for
component instances and names: the upright letter M always denotes component
names (i.e., states of a composer) and the italicized letter M always denotes the
corresponding component instances (i.e., elements of L). Further, for notational
convenience we often write Mi directly instead of λ(Mi). Note that while each
Mi is distinct, the corresponding components Mi need not be distinct. Each
composer defines a unique composition over components from L. The current
state of the composer corresponds to the component that is in control. The
transition function Δ describes how to transfer control between components:
Δ(M, i) = M′ denotes that when the composition is in the ith final state of
component M it moves to the start state of component M ′. A composer can be
viewed as an implicit representation of a composition. An explicit definition is
presented in the full version of the paper. Note that the composition, denoted
TC , is a probabilistic transducer without exits. When the composition TC is in a
state 〈q, i〉 corresponding to a non-exit state q of component Mi, it behaves like
Mi. When the composition is in a state 〈qf , i〉 corresponding to an exit state qf of
component Mi, the control is transferred to the start state of another component
as determined by the transition function of the composer. Thus, at each point
in time, only one component is active and interacting with the environment.
Parity objectives and values. An index function for a transducer is a function that
assigns a natural number, called a priority index, to each state of the transducer.
An index function α defines a parity objective Φα that is the subset of Qω

consisting of the set of infinite sequence of states such that the largest priority
that is visited infinitely often is even. Given a probabilistic transducer T and
a parity objective Φ, the value of the probabilistic transducer for the objective,
denoted as val(T , Φ), is inff∈F μf (Φ), i.e., it is the minimal probability with
which the parity objective is satisfied over all strategies in the transducer.
The Synthesis Questions. We consider two types of synthesis questions for
controlflow composition. In the first problem (synthesis for embedded parity)
the parity objective is specified directly on the state space of the library compo-
nents, and in the second problem (synthesis from DPW specifications) the parity
objective is specified by a separate deterministic parity automaton.
Synthesis for Embedded Parity. We first consider an index function that
associates to each state of the components in the library a priority, and a speci-
fication defined as a parity condition over the sequence of visited states.
Exit Control Relation. Given a library L of width D, an exit control relation is
a set R ⊆ D ×L. We say that a composer C = 〈D,L,M,M0,Δ, λ〉 is compatible

The Complexity of Synthesis from Probabilistic Components 113

with R, if the following holds: for all M,M′ ∈ M and i ∈ D, if Δ(M, i) = M′

then 〈i,M ′〉 ∈ R. Thus, each element of R can be viewed as a constraint on how
the composer is allowed to connect components. An exit control relation is non-
blocking if for every i ∈ D there exists a component M ∈ L such that 〈i,M〉 ∈ R
(i.e., every exit has at least one possible component for the next choice). For
technical convenience we only consider non-blocking exit control relations.

Definition 1 (Embedded Parity Realizability and Synthesis). Consider
a library L of width D, an exit control relation R for L, and an index function
α for the components in L that defines the parity objective Φα. The qualita-
tive (resp., quantitative) realizability problem for controlflow composition with
embedded parity is to decide whether there exists a composer C over L, such
that C is compatible with R, and val(TC , Φα) = 1 (resp., val(TC , Φα) ≥ η, given
rational η ∈ (0, 1)). A witness composer for the qualitative (resp., quantitative)
problem is called an almost-sure (resp., η-optimal) composer. The corresponding
embedded parity synthesis problems are to find such a composer C if it exists.

Synthesis for DPW specifications. A deterministic parity word automaton
(DPW) is a deterministic transducer where the labeling function is an index
function that defines a parity objective. Given a DPW A, every word (infinite
sequence of input letters) induces a run of the automaton, which is an infinite
sequence of states, and the word is accepted if the run satisfies the parity objec-
tive. The language LA of a DPW A is the set of words accepted by A. Let A
be a deterministic parity automaton (DPW), M be a probabilistic transducer
and L be a library of components. We say A is a monitor for M (resp. L) if
the input alphabet of A is the same as the output alphabet of M (resp. L). Let
A be a monitor for M and let LA be the language accepted by A. The value
of M for A, denoted as val(M,A), is inff∈F μf (λ−1(LA)). The compatibility of
the composer with an exit control relation can be encoded in the DPW (w.l.o.g.,
two distinct exit states do not have the same output).

Definition 2 (DPW realizability and synthesis). Consider a library L and
a DPW A that is a monitor for L. The qualitative (resp., quantitative) realiz-
ability problem for controlflow composition with DPW specifications is to decide
whether there exists a composer C over L, such that val(TC , A) = 1 (resp.,
val(TC , A) ≥ η, given rational η ∈ (0, 1)). A witness composer for the quali-
tative (resp., quantitative) problem is called an almost-sure (resp., η-optimal)
composer. The corresponding DPW probabilistic synthesis problems are to find
such a composer C if it exists.

Remark 1. The realizability problem for libraries with components can be
viewed as a 2-player partial-observation stochastic parity game [14]. Informally,
the game can be described as follows: the two players are the composer C and
the environment E. The C player chooses components and the E player chooses
sequence of inputs in the components chosen by C. However, C cannot see the
inputs of E or even the length of the time inside a component. At the start C
chooses a component M from the library L. The turn passes to E, who chooses a

114 K. Chatterjee et al.

sequence of inputs, inducing a probability distribution over paths in M from its
start state to some exit x in D. The turn then passes to C, which must choose
some component M ′ in L and pass the turn to E and so on. As C cannot see
the moves made by E inside M , the choice of C cannot be based on the run in
M , but only on the exit induced by the inputs selected by E and previous moves
made by C. So C must choose the same next component M ′ for different runs
that reach the same exit of M .

3 Realizability with Embedded Parity

We establish the results for the complexity of realizability with embedded parity.
While the natural interpretation of the embedded parity problem is a partial-
observation game, we show how the problem can be interpreted as a perfect-
information stochastic game.

3.1 Perfect-Information Stochastic Parity Games

Perfect-Information Stochastic Games. A perfect-information stochastic
game consists of a tuple G = 〈S, S1, S2, A1, A2, δ

G〉, where S is a finite set of
states partitioned into player-1 states (namely, S1) and player-2 states (namely
S2), A1 (resp., A2) is the set of actions for player 1 (resp., player 2), and δG :
(S1 × A1) ∪ (S2 × A2) → D(S) is a probabilistic transition function that given a
player-1 state and player-1 action, or a player-2 state and a player-2 action gives
a probability distribution over the successor states. If the transition function is
deterministic (that is the codomain of δG is S instead of D(S)), then the game
is a perfect-information deterministic game.
Plays and Strategies. A play is an infinite sequence of state-action pairs
〈s0a0s1a1 . . .〉 such that for all j ≥ 0 we have that if sj ∈ Si for i ∈ {1, 2}, then
aj ∈ Ai and δG(sj , aj)(sj+1) > 0. A strategy is a recipe for a player to choose
actions to extend finite prefixes of plays. Formally, a strategy π for player 1 is a
function π : S∗ · S1 → D(A1) that given a finite sequence of visited states gives
a probability distribution over the actions (to be chosen next). A pure strategy
chooses a deterministic action, i.e., is a function π : S∗ ·S1 → A1. A pure memo-
ryless strategy is a pure strategy that does not depend on the finite prefix of the
play but only on the current state, i.e., is a function π : S1 → A1. The definitions
for player-2 strategies τ are analogous. We denote by Π (resp., ΠPM) the set of
all (resp., all pure memoryless) strategies for player 1, and analogously Γ (resp.,
ΓPM for player 2). Given strategies π ∈ Π and τ ∈ Γ , and a starting state s,
there is a unique probability measure over events (i.e., measurable subsets of
Sω), denoted by P

π,τ
s (·).

Finite-Memory Strategies. A pure player-1 strategy uses finite-memory if it can
be encoded by a transducer 〈M,m0, πu, πn〉 where M is a finite set (the memory
of the strategy), m0 ∈ M is the initial memory value, πu : M × S → M is the
memory-update function, and πn : M → A1 is the next-action function. Note
that a finite-memory strategy is a deterministic transducer with input alphabet

The Complexity of Synthesis from Probabilistic Components 115

S, output alphabet A1, where πu is the deterministic transition function, and πn

is the output labeling function. Formally, 〈M,m0, πu, πn〉 defines the strategy π
such that π(ρ) = πn(π̂u(m0, ρ)) for all ρ ∈ S+, where π̂u extends πu to sequences
of states as expected.
Parity Objectives, Almost-Sure, and Value Problem. Given a perfect-
information stochastic game, a parity objective is defined by an index function
α on the state space. Given a strategy π, the value of the strategy in a state
s of the game G with parity objective Φα, denoted by valG(π, Φα)(s), is the
infimum of the probabilities among all player-2 strategies, i.e., valG(π, Φα)(s) =
infτ∈Γ P

π,τ
s (Φα). The value of the game is valG(Φα)(s) = supπ∈Π valG(π, Φα)(s).

A strategy π is almost-sure winning from s if valG(π, Φα)(s) = 1. Theorem 1
summarizes results about perfect-information games.

Theorem 1. The following assertions hold [1,4,7,8]: (1) (Complexity). The
quantitative decision problem (of whether valG(Φα) ≥ η, given rational η ∈ (0, 1])
for perfect-information stochastic parity games lies in UP ∩ coUP. (2) (Mem-
oryless determinacy). We have valG(Φα)(s) = supπ∈ΠPM infτ∈Γ P

π,τ
s (Φα) =

infτ∈ΓPM supπ∈Π P
π,τ
s (Φα) (i.e., the quantification over the strategies can be

restricted to π ∈ ΠPM and τ ∈ ΓPM).

3.2 Complexity Results

The Upper-Bound Reduction. Consider a library L of width D, an exit
control relation R for L, and an index function α for L that defines the par-
ity objective Φα. Let the number of components be k + 1, and let Mi =
〈ΣI , ΣO, Qi, q

i
0, δi, Fi, Li〉 for 0 ≤ i ≤ k, where Fi = {qi

x : x ∈ D}. Let
[k] = {0, 1, 2, . . . , k}. We define a perfect-information stochastic game GL =
〈S, S1, S2, A1, A2, δ

G
L 〉 with an index function αG as follows: S =

⋃k
i=0(Qi ×

{i}) ∪ {⊥}, S1 =
⋃k

i=0(Fi × {i}), S2 = S \ S1, A1 = [k], and A2 = ΣI . The state
⊥ is a losing absorbing state (i.e., a state with self-loop as the only outgoing
transition and assigned odd priority by the index function αG), and the other
transitions defined by the function δG

L are as follows: (i) for s = 〈q, i〉 ∈ S2, and
σ ∈ A2, we have δG

L (〈q, i〉, σ)(〈q′, j〉) = δi(q, σ)(q′) if i = j, and 0 otherwise;
and (ii) for s = 〈qi

x, i〉 ∈ S1 and j ∈ [k], we have that if 〈x,Mj〉 ∈ R, then
δG
L (〈qi

x, i〉, j)(〈qj
0, j〉) = 1, else δG

L (〈qi
x, i〉, j)(⊥) = 1. The intuitive description of

the transitions is as follows: (1) given a player-2 state that is a non-exit state
q in a component Mi, and an action for player 2 that is an input letter, the
transition function δG

L mimics the transition δi of Mi; and (2) given a player-1
state that is an exit state qi

x in component i, and an action for player 1 that is
the choice of a component j, if 〈x,Mj〉 is allowed by R, then the next state is the
starting state of component j, and if the choice 〈x,Mj〉 is invalid (not allowed
by R), then the next state is the losing absorbing state ⊥. For all 〈q, i〉 ∈ S \{⊥}
define αG(〈q, i〉) = α(q), and let ΦαG

be the parity objective in GL.

Lemma 1. Consider a library L of width D, an exit control relation R for L,
and an index function α for L that defines the parity objective Φα. Let GL be

116 K. Chatterjee et al.

the corresponding perfect-information stochastic game with parity objective ΦαG
.

There exists an almost-sure composer if and only if there exists an almost-sure
winning strategy in GL from 〈q00 , 0〉, and there exists an η-optimal composer if
and only if the value in GL at 〈q00 , 0〉 is at least η.

Proof Sketch. There are two steps to establish correctness of the reduction.
The first step is given a composer over L to construct a finite-memory strategy
for player 1 in GL. Intuitively, this is simple as a composer represents a strategy
for a partial-observation game (Remark 1), whereas in GL we have perfect infor-
mation. However, not every strategy in GL can be converted to a composer. But
we show that a pure memoryless strategy in GL can be converted to a composer.
Valid Pure Memoryless Strategies in GL. A pure memoryless strategy π in GL is
valid if the following condition holds: for all states 〈qi

x, i〉 ∈ S1 if π(〈qi
x, i〉) = j,

then 〈x,Mj〉 ∈ R, i.e., the choices of the pure memoryless strategies respect the
exit control relation.
Valid Pure Memoryless Strategies to Composers. Given a valid pure memoryless
strategy π in GL we define a composer Cπ = 〈D,L,M,M0,Δ, λ〉 as follows:
M = [k], M0 = 0, λ(i) = Mi, and for 0 ≤ i ≤ k and x ∈ D we have that
Δ(i, x) = j where π(〈qi

x, i〉) = j for qi
x ∈ Fi. In other words, for the composer

there is a state for every component, and given a component and an exit state, the
composer plays as the pure memoryless strategy. Since π is valid, the composer
obtained from π is compatible with the relation R. Note that the composer
mimics the pure memoryless strategy, and there is a one-to-one correspondence
between strategies of player 2 in GL and strategies of the environment in TCπ

.

Theorem 2 (Complexity of Embedded Parity Realizability). The qual-
itative and quantitative realizability problems for controlflow composition with
embedded parity belong to UP ∩ coUP, and are at least as hard as the (almost-
sure) decision problem for perfect-information deterministic parity games.

4 Realizability with DPW Specifications

In this section we present three results. First, we present a new result for partial-
observation stochastic parity games. Second, we show that the qualitative real-
izability problem for DPW specifications can be reduced to our solution for
partial-observation stochastic games yielding an EXPTIME-complete result for
the problem. Finally, we show that the quantitative realizability problem for
DPW specifications is undecidable.

4.1 Partial-Observation Stochastic Parity Games

We consider partial-observation games with restrictions on strategies that corre-
spond to the qualitative realizability problem, and present a new result to solve
such games.

The Complexity of Synthesis from Probabilistic Components 117

Partial-Observation Stochastic Games. In a stochastic game with partial
observation, some states are not distinguishable for player 1. We say that they
have the same observation for player 1. Formally, a partial-observation stochastic
game consists of a stochastic game G = 〈S, S1, S2, A1, A2, δ

G〉, a finite set O of
observations, and a mapping obs : S → O that assigns to each state s of the
game an observation obs(s) for player 1.
Observational Equivalence and Strategies. The observation mapping
induces indistinguishability of play prefixes for player 1, and therefore we need
to consider only the player-1 strategies that play in the same way after two
indistinguishable play prefixes. We consider two classes of strategies depending
on the indistinguishability of play prefixes for player 1 and they are as follows:
(i) the play prefixes have the same observation sequence; and (ii) the play pre-
fixes have the same sequence of distinct observations, that is they have the same
observation sequence up to repetition (stuttering).
Classes of Strategies. The observation sequence of a sequence ρ = s0s1 . . . sn

is the sequence obs(ρ) = obs(s0) . . . obs(sn) of state observations; the collapsed
stuttering of ρ is the sequence obs(ρ) = o0o1o2 . . . of distinct observations defined
as follows: o0 = obs(s0) and for all i ≥ 1 we have oi = obs(si) if obs(si) �=
obs(si−1), and oi = ε otherwise (where ε is the empty sequence). We consider
two types of strategies. A strategy π for player 1 is

– observation-based if for all sequences ρ, ρ′ ∈ S+ such that last(ρ) ∈ S1 and
last(ρ′) ∈ S1, if obs(ρ) = obs(ρ′) then π(ρ) = π(ρ′);

– collapsed-stutter-invariant if for all sequences ρ, ρ′ ∈ S+ such that last(ρ) ∈
S1 and last(ρ′) ∈ S1, if obs(ρ) = obs(ρ′), then π(ρ) = π(ρ′).

We now present a polynomial-time reduction for deciding the existence
of finite-memory almost-sure winning collapsed-stutter-invariant strategies to
observation-based strategies, which is EXPTIME-complete [5].
Reduction of Collapsed-Stutter-Invariant Problem to Observation-
Based Problem. There are two main ideas of the reduction. (1) First, whenever
player 1 plays an action a, the action a is stored in the state space as long as
the observation of the state remains the same. This allows to check that player 1
plays always the same action along a sequence of identical observations. (2) Sec-
ond, whenever a transition is executed, player 2 is allowed to loop arbitrarily
many times through the new state. This ensures that player 1 cannot rely on the
number of times he sees an observation, thus that player 1 is collapsed-stutter-
invariant. However, it should be forbidden for player 2 to loop forever in a state,
which can be ensured by assigning priority 0 to the loop. Hence player 1 wins the
parity objective if the loop is taken forever by player 2, and otherwise, visiting
priority 0 infinitely often does not change the winner of the game.
The Formal Reduction. Given a partial-observation stochastic game G =
〈S, S1, S2, A1, A2, δ

G〉 with observation mapping obs : S → O, we construct a
game G′ = 〈S′, S′

1, S
′
2, A1, A

′
2, δ

G′〉 as follows:
– S′ = S × (A1 ∪ A1 ∪ {0, 0}) ∪ {⊥} where A1 = {a | a ∈ A1}, assuming that

0 �∈ A1. The states 〈s, 0〉 are a copy of the state space of the original game,

118 K. Chatterjee et al.

and in the states 〈s, a〉 with s ∈ S1 and a ∈ A1, player 1 is required to play
action a; in the states 〈s, 0〉 and 〈s, a〉, player 2 can stay for arbitrarily many
steps. The state ⊥ is absorbing and losing for player 1.

– S′
1 = S1 × (A1 ∪ {0}) ∪ {⊥}; S′

2 = S′ \ S′
1; and A′

2 = A2 ∪ {�}, assuming
� �∈ A2.

– The probabilistic transition function δG′
is defined as follows: for all player-1

states 〈s, x〉 ∈ S′
1 and actions a ∈ A1:

• if x ∈ A1 \ {a}, then let δG′
(〈s, x〉, a))(⊥) = 1, that is player 1 loses the

game if he does not play the stored action;
• if x = a or x = 0, then for all s′ ∈ S let

δG′
(〈s, x〉, a))(〈s′, a〉) = δG(s, a)(s′) if obs(s′) = obs(s), and let

δG′
(〈s, x〉, a))(〈s′, 0〉) = δG(s, a)(s′) if obs(s′) �= obs(s); thus we store the

action a as long as the state observation does not change;
• All other probabilities δG′

(〈s, x〉, a))(·) are set to 0, for example
δG′

(〈s, 0〉, a))(〈s′, y〉) = 0 for all y �= a;
and for all player-2 states 〈s, x〉 ∈ S′

2, and actions a ∈ A2:
• if x ∈ A1 ∪ {0}, then for all s′ ∈ S let

δG′
(〈s, x〉, a))(〈s′, x〉) = δG(s, a)(s′) if obs(s′) = obs(s), and let

δG′
(〈s, x〉, a))(〈s′, 0〉) = δG(s, a)(s′) if obs(s′) �= obs(s); thus all actions

are available to player 2 as in the original game, and the stored action x
of player 1 is maintained if the state observation does not change;

• if x = b for some b ∈ A1 ∪ {0}, then let
δG′

(〈s, b〉, �))(〈s, b〉) = 1, and
δG′

(〈s, b〉, a))(〈s, b〉) = 1 if a �= �; thus player 2 can decide to stay arbi-
trarily long in 〈s, b〉 before going back to 〈s, b〉;

• All other probabilities δG′
(〈s, x〉, a))(·) and δG′

(〈s, x〉, �))(·) are set to 0.

The observation mapping obs′ is defined according to the first component of the
state: obs′(〈s, x〉) = obs(s). Given an index function α for G, define the index
function α′ for G′ as follows: α′(〈s, x〉) = α(s) and α′(〈s, x〉) = 0 for all s ∈ S
and x ∈ A1 ∪ {0}, and α′(⊥) = 1. Hence, the state ⊥ is losing for player 1, and
the player-2 states 〈s, x〉 are winning for player 1 if player 2 stays there forever.

Lemma 2. Given a partial-observation stochastic game G with observation
mapping obs and parity objective Φα defined by the index function α, a game
G′ with observation mapping obs′ and parity objective Φα′ defined by the index
function α′ can be constructed in polynomial time such that the following state-
ments are equivalent:
– there exists a finite-memory almost-sure winning collapsed-stutter-invariant

strategy π for player 1 in G from s0 for the parity objective Φα;
– there exists a finite-memory almost-sure winning observation-based strategy

π′ for player 1 in G′ from 〈s0, 0〉 for the parity objective Φα′ .

Theorem 3. The qualitative problem of deciding the existence of a finite-
memory almost-sure winning collapsed-stutter-invariant strategy in partial-
observation stochastic games with parity objectives is EXPTIME-complete.

The Complexity of Synthesis from Probabilistic Components 119

4.2 Qualitative and Quantitative Realizability

We present a polynomial reduction for the qualitative realizability problem with
DPW specifications to the existence of finite-memory collapsed-stutter-invariant
almost-sure winning strategies, and thus show that the problem can be solved
in EXPTIME. An EXPTIME lower bound is known for this problem [2].

Theorem 4. The qualitative realizability problem for controlflow composition
with DPW specifications is EXPTIME-complete.

Finally, we establish undecidability of the quantitative realizability problem
by a reduction from the quantitative decision problem for probabilistic automata
(which is undecidable [15]).

Theorem 5. The quantitative realizability problem for controlflow composition
with DPW specifications is undecidable.

References

1. Andersson, D., Miltersen, P.B.: The Complexity of Solving Stochastic Games on
Graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 112–121. Springer, Heidelberg (2009)

2. Avni, G., Kupferman, O.: Synthesis from Component Libraries with Costs. In: Bal-
dan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 156–172. Springer,
Heidelberg (2014)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

4. Chatterjee, K.: Stochastic ω-regular Games. PhD thesis, UC Berkeley (2007)
5. Chatterjee, K., Doyen, L., Nain, S., Vardi, M.Y.: The Complexity of Partial-

Observation Stochastic Parity Games with Finite-Memory Strategies. In: Muscholl,
A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 242–257. Springer, Hei-
delberg (2014)

6. Chatterjee, K., Doyen, L., Vardi. M. Y.: The complexity of synthesis from proba-
bilistic components. CoRR, abs/1502.04844 (2015)

7. Chatterjee, K., Henzinger, T.A.: Reduction of stochastic parity to stochastic mean-
payoff games. IPL 106(1), 1–7 (2008)

8. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity
games. In: SODA 2004, pp. 114–123 (2004)

9. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

10. De Crescenzo, I., La Torre, S.: Modular Synthesis with Open Components. In:
Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 96–108. Springer,
Heidelberg (2013)

11. de Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp.
148–165. Springer, Heidelberg (2001)

12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

120 K. Chatterjee et al.

13. Lustig, Y., Vardi, M.Y.: Synthesis from Component Libraries. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009)

14. Nain, S., Lustig, Y., Vardi, M.Y.: Synthesis from probabilistic components. LMCS
10(2) (2014)

15. Paz, A.: Introduction to probabilistic automata. Academic Press Inc. (1971)
16. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL,

pp. 179–190. ACM Press (1989)
17. Sifakis, J.: A framework for component-based construction extended abstract. In:

SFEM 2005, pp. 293–300 (2005)
18. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state systems.

In: FOCS 1985, pp. 327–338 (1985)
19. Vardi, M.Y.: Probabilistic Linear-Time Model Checking: An Overview of the

Automata-Theoretic Approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS
1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 265–276. Springer, Heidelberg
(1999)

Edit Distance for Pushdown Automata

Krishnendu Chatterjee(B), Thomas A. Henzinger, Rasmus Ibsen-Jensen,
and Jan Otop

IST Austria, Wien-Umgebung, Austria
krish.chat@gmail.com

Abstract. The edit distance between two words w1, w2 is the minimal
number of word operations (letter insertions, deletions, and substitu-
tions) necessary to transform w1 to w2. The edit distance generalizes to
languages L1,L2, where the edit distance is the minimal number k such
that for every word from L1 there exists a word in L2 with edit distance
at most k. We study the edit distance computation problem between
pushdown automata and their subclasses. The problem of computing
edit distance to pushdown automata is undecidable, and in practice, the
interesting question is to compute the edit distance from a pushdown
automaton (the implementation, a standard model for programs with
recursion) to a regular language (the specification). In this work, we
present a complete picture of decidability and complexity for deciding
whether, for a given threshold k, the edit distance from a pushdown
automaton to a finite automaton is at most k.

1 Introduction

Edit distance. The edit distance [13] between two words is a well-studied metric,
which is the minimum number of edit operations (insertion, deletion, or substi-
tution of one letter by another) that transforms one word to another. The edit
distance between a word w to a language L is the minimal edit distance between
w and words in L. The edit distance between two languages L1 and L2 is the
supremum over all words w in L1 of the edit distance between w and L2.
Significance of edit distance. The notion of edit distance provides a quantitative
measure of “how far apart” are (a) two words, (b) words from a language, and
(c) two languages. It forms the basis for quantitatively comparing sequences,
a problem that arises in many different areas, such as error-correcting codes,
natural language processing, and computational biology. The notion of edit dis-
tance between languages forms the foundations of a quantitative approach to
verification. The traditional qualitative verification (model checking) question
is the language inclusion problem: given an implementation (source language)

This research was funded in part by the European Research Council (ERC) under
grant agreement 267989 (QUAREM), by the Austrian Science Fund (FWF) projects
S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award), FWF Grant No P23499-
N23, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph
Games), and MSR faculty fellows award.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 121–133, 2015.
DOI: 10.1007/978-3-662-47666-6 10

122 K. Chatterjee et al.

defined by an automaton AI and a specification (target language) defined by
an automaton AS , decide whether the language L(AI) is included in the lan-
guage L(AS) (i.e., L(AI) ⊆ L(AS)). The threshold edit distance (TED) problem
is a generalization of the language inclusion problem, which for a given integer
threshold k ≥ 0 asks whether every word in the source language L(AI) has
edit distance at most k to the target language L(AS) (with k = 0 we have the
traditional language inclusion problem). For example, in simulation-based ver-
ification of an implementation against a specification, the measured trace may
differ slightly from the specification due to inaccuracies in the implementation.
Thus, a trace of the implementation may not be in the specification. However,
instead of rejecting the implementation, one can quantify the distance between
a measured trace and the specification. Among all implementations that violate
a specification, the closer the implementation traces are to the specification, the
better [5,7,10]. The edit distance problem is also the basis for repairing specifi-
cations [2,3].
Our models. In this work we consider the edit distance computation problem
between two automata A1 and A2, where A1 and A2 can be (non)deterministic
finite automata or pushdown automata. Pushdown automata are the standard
models for programs with recursion, and regular languages are canonical to
express the basic properties of systems that arise in verification. We denote by
DPDA (resp., PDA) deterministic (resp., nondeterministic) pushdown automata,
and DFA (resp., NFA) deterministic (resp., nondeterministic) finite automata.
We consider source and target languages defined by DFA, NFA, DPDA, and
PDA. We first present the known results and then our contributions.
Previous results. The main results for the classical language inclusion problem
are as follows [11]: (i) if the target language is a DFA, then it can be solved in
polynomial time; (ii) if either the target language is a PDA or both source and
target languages are DPDA, then it is undecidable; (iii) if the target language
is an NFA, then (a) if the source language is a DFA or NFA, then it is PSpace-
complete, and (b) if the source language is a DPDA or PDA, then it is PSpace-
hard and can be solved in ExpTime (to the best of our knowledge, there is
a complexity gap where the upper bound is ExpTime and the lower bound is
PSpace). The TED problem was studied for DFA and NFA, and it is PSpace-
complete, when the source and target languages are given by DFA or NFA [2,3].
Our contributions. Our main contributions are as follows.
1. We show that the TED problem is ExpTime-complete, when the source lan-

guage is given by a DPDA or a PDA, and the target language is given by
a DFA or NFA. We present a hardness result which shows that the TED
problem is ExpTime-hard for source languages given as DPDA and target
languages given as DFA. We present a matching upper bound by showing
that for source languages given as PDA and target languages given as NFA
the problem can be solved in ExpTime. As a consequence of our lower bound
we obtain that the language inclusion problem for source languages given by
DPDA (or PDA) and target languages given by NFA is ExpTime-complete.
Thus we present a complete picture of the complexity of the TED problem,

Edit Distance for Pushdown Automata 123

Table 1. Complexity of the language inclusion problem from C1 to C2. Our results are
boldfaced.

C2 = DFA C2 = NFA C2 = DPDA C2 = PDA

C1 ∈ {DFA,NFA}
PTime

PSpace-c PTime
C1 ∈ {DPDA,PDA} ExpTime-c (Th. 2) undecidable

Table 2. Complexity of FED(C1, C2). Our results are boldfaced. See Conjecture 14 for
the open complexity problem of C1 ∈ {DPDA,PDA} and C2 = DFA.

C2 = DFA C2 = NFA C2 = DPDA C2 = PDA

C1 ∈ {DFA,NFA} coNP-c [3] PSpace-c [3] open (Conj. 18)

C1 ∈ {DPDA,PDA} coNP-hard [3] ExpTime-c
undecidable (Prop. 15)

in ExpTime (Th. 8) (Th. 8)

Table 3. Complexity of TED(C1, C2). Our results are boldfaced.

C2 = DFA C2 = NFA C2 = DPDA C2 = PDA

C1 ∈ {DFA,NFA} PSpace-c [2] undecidable (Prop. 17)
C1 ∈ {DPDA,PDA} ExpTime-c (Th. 2 (1)) undecidable

and in addition we close a complexity gap in the classical language inclu-
sion problem. In contrast, if the target language is given by a DPDA, then
the TED problem is undecidable even for source languages given as DFA.
Note that the interesting verification question is when the implementation
(source language) is a DPDA (or PDA) and the specification (target lan-
guage) is given as DFA (or NFA), for which we present decidability results
with optimal complexity.

2. We also consider the finite edit distance (FED) problem, which asks whether
there exists k ≥ 0 such that the answer to the TED problem with threshold
k is YES. For finite automata, it was shown in [2,3] that if the answer to
the FED problem is YES, then a polynomial bound on k exists. In contrast,
the edit distance can be exponential between DPDA and DFA. We present
a matching exponential upper bound on k for the FED problem from PDA
to NFA. Finally, we show that the FED problem is ExpTime-complete when
the source language is given as a DPDA or PDA, and the target language
as an NFA.

Our results are summarized in Tables 1, 2 and 3. Due to space constraints we
omit some technical proofs, which are presented in the full version [6].
Related work. Algorithms for edit distance have been studied extensively for
words [1,12,13,15–17]. The edit distance between regular languages was studied
in [2,3], between timed automata in [8], and between straight line programs
in [9,14]. A near-linear time algorithm to approximate the edit distance for a
word to a Dyck language has been presented in [18].

124 K. Chatterjee et al.

2 Preliminaries

2.1 Words, Languages and Automata

Words. Given a finite alphabet Σ of letters, a word w is a finite sequence of
letters. For a word w, we define w[i] as the i-th letter of w and |w| as its length.
We denote the set of all words over Σ by Σ∗. We use ε to denote the empty
word.

Pushdown Automata. A (non-deterministic) pushdown automaton (PDA) is
a tuple (Σ,Γ,Q, S, δ, F), where Σ is the input alphabet, Γ is a finite stack
alphabet, Q is a finite set of states, S ⊆ Q is a set of initial states, δ ⊆ Q ×
Σ × (Γ ∪ {⊥}) × Q × Γ ∗ is a finite transition relation and F ⊆ Q is a set of
final (accepting) states. A PDA (Σ,Γ,Q, S, δ, F) is a deterministic pushdown
automaton (DPDA) if |S| = 1 and δ is a function from Q × Σ × (Γ ∪ {⊥}) to
Q × Γ ∗. We denote the class of all PDA (resp., DPDA) by PDA (resp., DPDA).
We define the size of a PDA A = (Σ,Γ,Q, S, δ, F), denoted by |A|, as |Q| + |δ|.
Runs of Pushdown Automata. Given a PDA A and a word w = w[1] . . . w[k]
over Σ, a run π of A on w is a sequence of elements from Q×Γ ∗ of length k +1
such that π[0] ∈ S × {ε} and for every i ∈ {1, . . . , k} either (1) π[i − 1] = (q, ε),
π[i] = (q′, u′) and (q, w[i],⊥, q′, u′) ∈ δ, or (2) π[i − 1] = (q, ua), π[i] = (q′, uu′)
and (q, w[i], a, q′, u′) ∈ δ. A run π of length k+1 is accepting if π[k+1] ∈ F ×{ε},
i.e., the automaton is in an accepting state and the stack is empty. The language
recognized (or accepted) by A, denoted L(A), is the set of words that have an
accepting run.

Context Free Grammar (CFG). A context free grammar in Chomsky normal
form (CFG) is a tuple (Σ,V, s, P), where Σ is the alphabet, V is a set of non-
terminals, s ∈ V is a start symbol and P is a set of production rules. A production
rule p has one of the following forms: (1) p : v → zu, where v, z, u ∈ V ; or
(2) p : v → α, where v ∈ V and α ∈ Σ; or (3) p : s → ε.

Languages Generated by CFGs. Fix a CFG G = (Σ,V, s, P). We define
derivation →G as a relation on (Σ ∪ V)∗ × (Σ ∪ V)∗ as follows: w →G w′ iff
w = w1vw2, with v ∈ V , and w′ = w1uw2 for some u ∈ (Σ ∪ V)∗ such that
v → u is a production from G. We define →∗

G as the transitive closure of →G.
The language generated by G, denoted by L(G) = {w ∈ Σ∗ | s →∗

G w} is the
set of words that can be derived from s. CFGs and PDAs are language-wise
polynomially equivalent [11] (i.e., there is a polynomial-time procedure that,
given a PDA, outputs a CFG of the same language and vice versa).

Finite Automata. A non-deterministic finite automaton (NFA) is a PDA with
empty stack alphabet. We will omit Γ while referring to NFA, i.e., we will con-

Edit Distance for Pushdown Automata 125

sider them as tuples (Σ,Q, S, δ, F). We denote the class of all NFA by NFA.
Analogously to DPDA we define deterministic finite automata (DFA).

Language Inclusion. Let C1, C2 be subclasses of PDA. The inclusion problem
from C1 in C2 asks, given A1 ∈ C1, A2 ∈ C2, whether L(A1) ⊆ L(A2).

Edit Distance between Words. Given two words w1, w2, the edit distance
between w1, w2, denoted by ed(w1, w2), is the minimal number of single letter
operations: insertions, deletions, and substitutions, necessary to transform w1

into w2.

Edit Distance between Languages. Let L1,L2 be languages. We
define the edit distance from L1 to L2, denoted ed(L1,L2), as supw1∈L1

infw2∈L2 ed(w1, w2). The edit distance between languages is not a distance func-
tion. In particular, it is not symmetric.

2.2 Problem Statement

In this section we define the problems of interest. Then, we recall the previous
results and succinctly state our results.

Definition 1. For C1, C2 ∈ {DFA,NFA,DPDA,PDA} we define the following
questions:
1. The threshold edit distance problem from C1 to C2 (denoted TED(C1, C2)):

Given automata A1 ∈ C1, A2 ∈ C2 and an integer threshold k ≥ 0, decide
whether ed(L(A1),L(A2)) ≤ k.

2. The finite edit distance problem from C1 to C2 (denoted FED(C1, C2)): Given
automata A1 ∈ C1, A2 ∈ C2, decide whether ed(L(A1),L(A2)) < ∞.

3. Computation of edit distance from C1 to C2: Given automata A1 ∈ C1, A2 ∈
C2, compute ed(L(A1),L(A2)).

We establish the complete complexity picture for the TED problem for all com-
binations of source and target languages given by DFA,NFA,DPDA and PDA:
1. TED for regular languages has been studied in [2], where PSpace-

completeness of TED(C1, C2) for C1, C2 ∈ {DFA,NFA} has been established.
2. In Section 3, we study the TED problem for source languages given by

pushdown automata and target languages given by finite automata. We
establish ExpTime-completeness of TED(C1, C2) for C1 ∈ {DPDA,PDA} and
C2 ∈ {DFA,NFA}.

3. In Section 5, we study the TED problem for target languages given by
pushdown automata. We show that TED(C1, C2) is undecidable for C1 ∈
{DFA,NFA,DPDA,PDA} and C2 ∈ {DPDA,PDA}.

We study the FED problem for all combinations of source and target languages
given by DFA,NFA,DPDA and PDA and obtain the following results:
1. FED for regular languages has been studied in [3]. It has been shown that

for C1 ∈ {DFA,NFA}, the problem FED(C1,DFA) is coNP-complete, while the
problem FED(C1,NFA) is PSpace-complete.

126 K. Chatterjee et al.

2. We show in Section 4 that for C1 ∈ {DPDA,PDA}, the problem FED(C1,NFA)
is ExpTime-complete.

3. We show in Section 5 that (1) for C1 ∈ {DFA,NFA,DPDA,PDA}, the problem
FED(C1,PDA) is undecidable, and (2) the problem FED(DPDA,DPDA) is
undecidable.

3 Threshold Edit Distance from Pushdown to Regular
Languages

In this section we establish the complexity of the TED problem from pushdown
to finite automata.

Theorem 2. (1) For C1 ∈ {DPDA,PDA} and C2 ∈ {DFA,NFA}, the
TED(C1, C2) problem is ExpTime-complete. (2) For C1 ∈ {DPDA,PDA}, the lan-
guage inclusion problem from C1 in NFA is ExpTime-complete.

We establish the above theorem as follows: In Section 3.1, we present an
exponential-time algorithm for TED(PDA,NFA) (for the upper bound of (1)).
Then, in Section 3.2 we show (2), in a slightly stronger form, and reduce it (that
stronger problem) to TED(DPDA,DFA), which shows the ExpTime-hardness part
of (1).

3.1 Upper Bound

We present an ExpTime algorithm that, given (1) a PDA AP ; (2) an NFA AN ;
and (3) a threshold t given in binary, decides whether the edit distance from AP

to AN is above t. The algorithm extends a construction for NFA by Benedikt et
al. [2].

Intuition. The construction uses the idea that for a given word w and an NFA
AN the following are equivalent: (i) ed(w,AN) > t, and (ii) for each accepting
state s of AN and for every word w′, if AN can reach s from some initial state
upon reading w′, then ed(w,w′) > t. We construct a PDA AI which simulates
the PDA AP and stores in its states all states of the NFA AN reachable with
at most t edits. More precisely, the PDA AI remembers in its states, for every
state s of the NFA AN , the minimal number of edit operations necessary to
transform the currently read prefix wp of the input word into a word w′

p, upon
which AN can reach s from some initial state. If for some state the number
of edit operations exceeds t, then we associate with this state a special symbol
to denote this. Then, we show that a word w accepted by the PDA AP has
ed(w,AN) > t iff the automaton AI has a run on w that ends (1) in an accepting
state of simulated AP , (2) with the simulated stack of AP empty, and (3) the
symbol # is associated with every accepting state of AN .

Lemma 3. (1) Given (i) a PDA AP ; (ii) an NFA AN ; and (iii) a thresh-
old t given in binary, the decision problem of whether ed(AP ,AN) ≤ t can
be reduced to the emptiness problem for a PDA of size O(|AP | · (t + 2)|AN |).
(2) TED(PDA,NFA) is in ExpTime.

Edit Distance for Pushdown Automata 127

3.2 Lower Bound

Our ExpTime-hardness proof of TED(DPDA,DFA) extends the idea from [2] that
shows PSpace-hardness of the edit distance for DFA. The standard proof of
PSpace-hardness of the universality problem for NFA [11] is by reduction to the
halting problem of a fixed Turing machine M working on a bounded tape. The
Turing machine M is the one that simulates other Turing machines (such a
machine is called universal). The input to that problem is the initial configu-
ration C1 and the tape is bounded by its size |C1|. In the reduction, the NFA
recognizes the language of all words that do not encode valid computation of
M starting from the initial configuration C1, i.e., it checks the following four
conditions: (1) the given word is a sequence of configurations, (2) the state of
the Turing machine and the adjunct letters follow from transitions of M , (3) the
first configuration is not C1 and (4) the tape’s cells are changed only by M ,
i.e., they do not change values spontaneously. While conditions (1), (2) and (3)
can be checked by a DFA of polynomial size, condition (4) can be encoded by a
polynomial-size NFA but not a polynomial-size DFA. However, to check (4) the
automaton has to make only a single non-deterministic choice to pick a position
in the encoding of the computation, which violates (4), i.e., the value at that
position is different from the value |C1|+1 letters further, which corresponds to
the same memory cell in the successive configuration, and the head of M does
not change it. We can transform a non-deterministic automaton AN checking
(4) into a deterministic automaton AD by encoding such a non-deterministic
pick using an external letter. Since we need only one external symbol, we have
L(AN) = Σ∗ iff ed(Σ∗,L(AD)) = 1. This suggests the following definition:

Definition 4. An NFA A = (Σ,Q, S, δ, F) is nearly-deterministic if |S| = 1
and δ = δ1∪δ2, where δ1 is a function and in every accepting run the automaton
takes a transition from δ2 exactly once.

Lemma 5. There exists a DPDA AP such that the problem, given a nearly-
deterministic NFA AN , decide whether L(AP) ⊆ L(AN), is ExpTime-hard.

Proof. Consider the linear-space halting problem for a (fixed) alternating Turing
machine (ATM) M : given an input word w over an alphabet Σ, decide whether
M halts on w with the tape bounded by |w|. There exists an ATM MU , such
that the linear-space halting problem for MU is ExpTime-complete [4]. We show
the ExpTime-hardness of the problem from the lemma statement by reduction
from the linear-space halting problem for MU .

We w.l.o.g. assume that existential and universal transitions of MU alternate.
Fix an input of length n. The main idea is to construct the language L of words
that encode valid terminating computation trees of MU on the given input.
Observe that the language L depends on the given input. We encode a single
configuration of MU as a word of length n + 1 of the form ΣiqΣn−i, where
q is a state of MU . Recall that a computation of an ATM is a tree, where
every node of the tree is a configuration of MU , and it is accepting if every leaf
node is an accepting configuration. We encode computation trees T of MU by

128 K. Chatterjee et al.

traversing T preorder and executing the following: if the current node has only
one successor, then write down the current configuration C, terminate it with #
and move down to the successor node in T . Otherwise, if the current node has
two successors s, t in the tree, then write down in order (1) the reversed current
configuration CR; and (2) the results of traversals on s and t, each surrounded
by parentheses (and), i.e., CR (us) (ut) , where us (resp., ut) is the result of
the traversal of the subtree of T rooted at s (resp., t). Finally, if the current node
is a leaf, write down the corresponding configuration and terminate with $. For
example, consider a computation with the initial configuration C1, from which
an existential transition leads to C2, which in turn has a universal transition to
C3 and C4. Such a computation tree is encoded as follows:

C1 #CR
2 (C3 . . . $) (C4 . . . $) .

We define automata AN and AP over the alphabet Σ ∪ {#, $, (,)}. The
automaton AN is a nearly deterministic NFA that recognizes only (but not all)
words not encoding valid computation trees of MU . More precisely, AN accepts
in four cases: (1) The word does not encode a tree (except that the parentheses
may not match as the automaton cannot check that) of computation as pre-
sented above. (2) The initial configuration is different from the one given as
the input. (3) The successive configurations, i.e., those that result from exis-
tential transitions or left-branch universal transitions (like C2 to C3), are valid.
The right-branch universal transitions, which are preceded by the word “)(”, are
not checked by AN . For example, the consistency of the transition C2 to C4 is
not checked by AN . Finally, (4) AN accepts words in which at least one final
configuration, which is a configuration followed by $, is not final for MU .

Next, we define AP as a DPDA that accepts words in which parentheses
match and right-branch universal transitions are consistent, e.g., it checks con-
sistency of a transition from C2 to C4. The automaton AP pushes configura-
tions on even levels of the computation tree (e.g., CR

2), which are reversed, on
the stack and pops these configurations from the stack to compare them with
the following configuration in the right subtree (e.g., C4). In the example this
means that, while the automaton processes the subword (C3 . . . $), it can use its
stack to check consistency of universal transitions in that subword. We assumed
that MU does not have consecutive universal transitions. This means that, for
example, AP does not need to check the consistency of C4 with its successive
configuration. By construction, we have L = L(AP) ∩ L(AN)c (recall that L is
the language of encodings of computations of MU on the given input) and MU

halts on the given input if and only if L(AP) ⊆ L(AN) fails. Observe that AP is
fixed for all inputs, since it only depends on the fixed Turing machine MU . ��

Now, the following lemma, which is (2) of Theorem 2, follows from Lemma 5.

Lemma 6. The inclusion problem of DPDA in NFA is ExpTime-complete.

Proof. The ExpTime upper bound is immediate (basically, an exponential deter-
minization of the NFA, followed by complementation, product construction with

Edit Distance for Pushdown Automata 129

the PDA, and the emptiness check of the product PDA in polynomial time
in the size of the product). ExpTime-hardness of the problem follows from
Lemma 5. ��

Now, we show that the inclusion problem of DPDA in nearly-deterministic NFA,
which is ExpTime-complete by Lemma 5, reduces to TED(DPDA,DFA). In the
reduction, we transform a nearly-deterministic NFA AN over the alphabet Σ
into a DFA AD by encoding a single non-deterministic choice by auxiliary let-
ters. More precisely, for the transition relation δ = δ1 ∪ δ2 of AN , we transform
every transition (q, a, q′) ∈ δ2 into (q, b(q,a,q′), q′), where b(q,a,q′) is a fresh aux-
iliary letter. Now, consider a DPDA AP over the alphabet Σ. As every word
in L(AD) contains a single auxiliary letter ed(L(AP),L(AD)) ≥ 1. Conversely,
for every word w ∈ Σ∗ we have ed(w,L(AD)) ≤ 1 implies w ∈ AN . Therefore,
ed(L(AP),L(AD)) ≤ 1 if and only if L(AP) ⊆ L(AN).

Lemma 7. TED(DPDA,DFA) is ExpTime-hard.

4 Finite Edit Distance from Pushdown to Regular
Languages

In this section we study the complexity of the FED problem from pushdown
automata to finite automata.

Theorem 8. (1) For C1 ∈ {DPDA,PDA} and C2 ∈ {DFA,NFA} we have the
following dichotomy: for all A1 ∈ C1,A2 ∈ C2 either ed(L(A1),L(A2)) is expo-
nentially bounded in |A1|+ |A2| or ed(L(A1),L(A2)) is infinite. Conversely, for
every n there exist a DPDA AP and a DFA AD, both of the size O(n), such
that ed(L(AP),L(AD)) is finite and exponential in n (i.e., the dichotomy is
asymptotically tight). (2) For C1 ∈ {DPDA,PDA} the FED(C1,NFA) problem is
ExpTime-complete. (3) Given a PDA AP and an NFA AN , we can compute the
edit distance ed(L(AP),L(AN)) in time exponential in |AP | + |AN |.

First, we show in Section 4.1 the exponential upper bound for (1), which together
with Theorem 2, implies the ExpTime upper bound for (2). Next, in Section 4.2,
we show that FED(DPDA,NFA) is ExpTime-hard. We also present the exponen-
tial lower bound for (1). Finally, (1), (2), and Theorem 2 imply (3) (by iteratively
testing with increasing thresholds up to exponential bounds along with the deci-
sion procedure from Theorem 2).

4.1 Upper Bound

In this section we consider the problem of deciding whether the edit distance
from a PDA to an NFA is finite. We start with a reduction of the problem. Given
a language L, we define L = {u : u is a prefix of some word from L}. We call an
automaton A safety if every state of A is accepting. Note that an automaton is
not necessarily total, i.e., some states might not have an outgoing transition for

130 K. Chatterjee et al.

some input symbols, and thus a safety automaton does not necessarily accept all
words. Note that for every NFA AN , the language L(AN) is the language of a
safety NFA. We show that FED(PDA,NFA) reduces to FED from PDA to safety
NFA.

Lemma 9. Let AP be a PDA and AN an NFA. The following inequalities hold:

ed(L(AP),L(AN)) ≥ ed(L(AP),L(AN)) ≥ ed(L(AP),L(AN)) − |AN |

The following definition and lemma can be seen as a reverse version of the
pumping lemma for context free grammars (in that we ensure that the part
which can not be pumped is small).
Compact G-decomposition. Given a CFG G = (Σ,V, s, P), where T =
|V |, and a word w ∈ L(G) we define compact G-decomposition of w as w =
(siui)k

i=1sk+1, where si and ui are subwords of w for all i, such that
1. for all �, the word w(�) := (siu

�
i)

k
i=1sk+1 is in L(G); and

2. |w(0)| =
∑k+1

i=1 |si| ≤ 2T and k ≤ 2T+1 − 2.

Lemma 10. For every CFG G = (Σ,V, s, P), every word w ∈ L(G) admits a
compact G-decomposition.

Intuition. The proof follows by repeated application of the principle behind the
pumping lemma, until the part which is not pump-able is small.
Reachability Sets. Fix an NFA. Given a state q in the NFA and a word w, let
Qw

q be the set of states reachable upon reading w, starting in q. The set of states
R(w, q) is then the set of states reachable from Qw

q upon reading any word. For
a set Q′ and word w, the set R(w,Q′) is

⋃
q∈Q′ R(w, q).

We have the following property of reachability sets: Fix a word u, a
number �, an NFA and a set of states Q′ of the NFA, where Q′ is closed under
reachablity, i.e., for all q ∈ Q′ and a ∈ Σ we have δ(q, a) ⊆ Q′. Let u′ be a word
with � non-overlapping occurrences of u (e.g. u�). Consider any word w with edit
distance strictly less than � from u′. Any run on w, starting in some state of Q′,
reaches a state of R(u,Q′). This is because u must be a sub-word of w.

Lemma 11. Let G be a CFG with a set of non-terminals of size T and let AN be
a safety NFA with state set Q of size n. The following conditions are equivalent:

(i) the edit distance ed(L(G),L(AN)) is infinite,
(ii) the edit distance ed(L(G),L(AN)) exceeds B := (2T+1 − 2) · n + 2T , and
(iii) there exists a word w ∈ L(G), with compact G-decomposition w =

(siui)k
i=1sk+1, such that R(uk, R(uk−1, R(uk−2, . . . R(u1, Q) . . .))) = ∅.

Intuition behind the proof: Whenever we consider a word w, the compact G-
representation of it is w = (siui)k

i=1sk+1. Let

R(w, j) = R(uj , R(uj−1, R(uj−2, . . . R(u1, Q) . . .)))

Edit Distance for Pushdown Automata 131

for all j and words w. Observe that (i) ⇒ (ii) is trivial. Intuitively, the proof for
(ii) ⇒ (iii) is by contradiction: Consider a word w in L(G) with edit distance
above B from L(AN). Assume towards contradiction that R(w, k) is not empty.
Then there is a word w′ = (s′

iui)k
i=1 in L(AN) where each s′

i has length at most
n. But ed(w,w′) ≤ B by definition of compact G-representation (i.e. edit each
s′

i to si separately), which is a contradiction. To show (iii) ⇒ (i) we consider
a word w where R(w, k) is empty and we show that w(�) (from compact G-
representation) requires at least � edits to L(AN). Inductively in j, there must
be either at least � edits on (siu

�
i)

j
i=1 or R(w, j) has been reached, by the property

of reachability sets. Since R(w, k) is empty, there must be � edits on w(�).
The equivalence of (i) and (ii) of Lemma 11 gives a bound on the maximum

finite edit distance. The following lemma follows from Lemmas 9 and 11, and
Theorem 2 for testing given thresholds.

Lemma 12. For all C1 ∈ {DPDA,PDA}, C2 ∈ {DFA,NFA} the FED(C1, C2) prob-
lem is in ExpTime.

4.2 Lower Bound

We have shown the exponential upper bound on the edit distance if it is finite.
It is easy to define a family of CFGs only accepting an exponential length word,
using repeated doubling and thus the edit distance can be exponential between
DPDA and DFA. We also show that the inclusion problem reduces to the finite
edit distance problem FED(DPDA,NFA) and get the following lemma.

Lemma 13. FED(DPDA,NFA) is ExpTime-hard.

We conjecture that, as for the case of language inclusion, for the finite edit
distance problem the complexity of the DPDA/PDA to DFA problem matches
the one for NFA/DFA to DFA.

Conjecture 14. FED(PDA,DFA) is coNP-complete.

5 Edit Distance to PDA

Observe that the threshold distance problem from DFA to PDA with the fixed
threshold 0 and a fixed DFA recognizing Σ∗ coincides with the universality
problem for PDA. Hence, the universality problem for PDA, which is undecid-
able, reduces to TED(DFA,PDA). The universality problem for PDA reduces to
FED(DFA,PDA) as well by the same argument as in Lemma 13. Finally, we can
reduce the inclusion problem from DPDA in DPDA, which is undecidable, to
TED(DPDA,DPDA) (resp., FED(DPDA,DPDA)). Again, we can use the same
construction as in Lemma 13. In conclusion, we have the following proposition.

Proposition 15. (1) For every class C ∈ {DFA,NFA,DPDA,PDA}, the prob-
lems TED(C,PDA) and FED(C,PDA) are undecidable. (2) For every class C ∈
{DPDA,PDA}, the problem FED(C,DPDA) is undecidable.

132 K. Chatterjee et al.

The results in (1) of Proposition 15 are obtained by reduction from the universal-
ity problem for PDA. However, the universality problem for DPDA is decidable.
Still we show that TED(DFA,DPDA) is undecidable. The overall argument is
similar to the one in Section 3.2. First, we define a pushdown counterpart of
nearly-deterministic NFA. A PDA A = (Σ,Γ,Q, S, δ, F) is nearly-deterministic
if |S| = 1 and δ = δ1 ∪ δ2, where δ1 is a function and for every accepting run,
the automaton takes a transition from δ2 exactly once.

By carefully reviewing the standard reduction of the halting problem for
Turing machines to the universality problem for pushdown automata [11], we
observe that the PDA that appear in the reduction are nearly-deterministic.

Lemma 16. The problem, given a nearly-deterministic PDA AP , decide
whether L(AP) = Σ∗, is undecidable.

Using the same construction as in Lemma 7 we show a reduction of the univer-
sality problem for nearly-deterministic PDA to TED(DFA,DPDA).

Proposition 17. For every class C ∈ {DFA,NFA,DPDA,PDA}, the problem
TED(C,DPDA) is undecidable.

We presented the complete decidability picture for the problems TED(C1, C2), for
C1 ∈ {DFA,NFA,DPDA,PDA} and C2 ∈ {DPDA,PDA}. To complete the char-
acterization of the problems FED(C1, C2), with respect to their decidability, we
still need to settle the decidability (and complexity) status of FED(DFA,DPDA).
We leave it as an open problem, but conjecture that it is coNP-complete.

Conjecture 18. FED(DFA,DPDA) is coNP-complete.

References

1. Aho, A., Peterson, T.: A minimum distance error-correcting parser for context-free
languages. SIAM J. of Computing 1, 305–312 (1972)

2. Benedikt, M., Puppis, G., Riveros, C.: Regular repair of specifications. In: LICS
2011, pp. 335–344 (2011)

3. Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages.
J. Comput. Syst. Sci. 79(8), 1302–1321 (2013)

4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1),
114–133 (1981). http://doi.acm.org/10.1145/322234.322243

5. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4) (2010)

6. Chatterjee, K., Henzinger, T.A., Ibsen-Jensen, R., Otop, J.: Edit distance for push-
down automata. CoRR abs/1504.08259 (2015). http://arxiv.org/abs/1504.08259

7. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. CoRR
abs/1504.06117 (2015). http://arxiv.org/abs/1504.06117 (to appear at LICS 2015)

8. Chatterjee, K., Ibsen-Jensen, R., Majumdar, R.: Edit distance for timed automata.
In: HSCC 2014, pp. 303–312 (2014)

http://doi.acm.org/10.1145/322234.322243
http://arxiv.org/abs/http://arxiv.org/abs/1504.08259
http://arxiv.org/abs/http://arxiv.org/abs/1504.06117

Edit Distance for Pushdown Automata 133

9. Gawrychowski, P.: Faster algorithm for computing the edit distance between SLP-
compressed strings. In: Calderón-Benavides, L., González-Caro, C., Chávez, E.,
Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 229–236. Springer, Heidelberg
(2012)

10. Henzinger, T.A., Otop, J.: From model checking to model measuring. In:
D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory.
LNCS, vol. 8052, pp. 273–287. Springer, Heidelberg (2013)

11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Adison-Wesley Publishing Company, Reading (1979)

12. Karp, R.: Mapping the genome: some combinatorial problems arising in molecular
biology. In: STOC 93, pp. 278–285. ACM (1993)

13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet physics doklady. 10, 707–710 (1966)

14. Lifshits, Y.: Processing compressed texts: a tractability border. In: Ma, B., Zhang,
K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

15. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms.
Intl. J. of Foundations of Comp. Sci. 14, 957–982 (2003)

16. Okuda, T., Tanaka, E., Kasai, T.: A method for the correction of garbled words
based on the levenshtein metric. IEEE Trans. Comput. 25, 172–178 (1976)

17. Pighizzini, G.: How hard is computing the edit distance? Information and Com-
putation 165, 1–13 (2001)

18. Saha, B.: The dyck language edit distance problem in near-linear time. In: FOCS
2014, pp. 611–620 (2014)

Solution Sets for Equations over Free Groups
are EDT0L Languages

Laura Ciobanu1, Volker Diekert2(B), and Murray Elder3

1 Institut de Mathématiques, Université de Neuchâtel, Neuchâtel, Switzerland
2 Institut für Formale Methoden der Informatik, Universität Stuttgart,

Stuttgart, Germany
diekert@fmi.uni-stuttgart.de

3 School of Mathematical and Physical Sciences, The University of Newcastle,
Callaghan, Australia

Dedicated to Manfred Kudlek (1940–2012)

Abstract. We show that, given a word equation over a finitely gener-
ated free group, the set of all solutions in reduced words forms an EDT0L
language. In particular, it is an indexed language in the sense of Aho.
The question of whether a description of solution sets in reduced words
as an indexed language is possible has been open for some years [9,10],
apparently without much hope that a positive answer could hold. Never-
theless, our answer goes far beyond: they are EDT0L, which is a proper
subclass of indexed languages. We can additionally handle the existential
theory of equations with rational constraints in free products �1≤i≤sFi,
where each Fi is either a free or finite group, or a free monoid with involu-
tion. In all cases the result is the same: the set of all solutions in reduced
words is EDT0L. This was known only for quadratic word equations by
[8], which is a very restricted case. Our general result became possible
due to the recent recompression technique of Jeż. In this paper we use a
new method to integrate solutions of linear Diophantine equations into
the process and obtain more general results than in the related paper
[5]. For example, we improve the complexity from quadratic nondeter-
ministic space in [5] to quasi-linear nondeterministic space here. This
implies an improved complexity for deciding the existential theory of
non-abelian free groups: NSPACE(n log n). The conjectured complexity
is NP, however, we believe that our results are optimal with respect to
space complexity, independent of the conjectured NP.

Research supported by the Australian Research Council FT110100178 and the Uni-
versity of Newcastle G1301377. The first author was supported by a Swiss National
Science Foundation Professorship FN PP00P2-144681/1. The first and third authors
were supported by a University of Neuchâtel Overhead grant in 2013.
Manfred Kudlek has the distinction of being the only person to have attended all
ICALP conferences during his lifetime. He worked on Lindenmayer systems, visited
Kyoto several times, and taught the second author that bikes are the best means of
transport inside Kyoto.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 134–145, 2015.
DOI: 10.1007/978-3-662-47666-6 11

Solution Sets for Equations over Free Groups are EDT0L Languages 135

Introduction

The first algorithmic description of all solutions to a given equation over a free
group is due to Razborov [17,18]. His description became known as a Makanin-
Razborov diagram. This concept plays a major role in the positive solution of
Tarski’s conjectures about the elementary theory in free groups [12,21].

It was however unknown that there is an amazingly simple formal language
description for the set of all solutions of an equation over free groups in reduced
words: they are EDT0L. An EDT0L language L is given by a nondeterministic
finite automaton (NFA), where transitions are labeled by endomorphisms in a
free monoid which contains a symbol #. Such an NFA defines a rational language
R of endomorphisms, and the condition on L is that L = {h(#) | h ∈ R}. The
NFA we need for our result can be computed effectively in nondeterministic
quasi-linear space, i.e., by some NSPACE(n log n) algorithm. As a consequence,
the automaton has singly exponential size 2O(n log n) in the input size n.

A description of solution sets as EDT0L languages was known before only
for quadratic word equations by [8]; the recent paper [5] did not aim at giving
such a structural result. There is also a description of all solutions for a word
equation by Plandowski in [14]. His description is given by some graph which
can computed in singly exponential time, but without the aim to give any formal
language characterization. Plandowski claimed in [14] that his method applies
also to free groups with rational constraints, but he found a gap [15].

The technical results are as follows. Let F(A+) be the free group over a finite
generating set A+ of (positive) letters. We let A± = A+ ∪ {

a−1 ∣
∣ a ∈ A+

} ⊆
F(A+). We view A± as a finite alphabet (of constants) with the involution a =
a−1. The involution is extended to the free monoid A∗

± by a1 · · · ak = ak · · · a1.
We let π : A∗

± → F(A+) be the canonical morphism. As a set, we identify F(A+)
with the rational (i.e., regular) subset of reduced words inside A∗

±. A word is
reduced if it does not contain any factor aa where a ∈ A±. Thus, w ∈ A∗

±
is reduced if and only if π(w) = w. We emphasize that F(A+) is realized as
a subset of A∗

±. Let Ω be a set of variables with involution. An equation over
F(A+) is given as a pair (U, V), where U, V ∈ (A±∪Ω)∗ are words over constants
and variables. A solution of (U, V) is a mapping σ : Ω → A∗

± which respects the
involution such that πσ(U) = πσ(V) holds in F(A+). As usual, σ is extended
to a morphism σ : (A± ∪ Ω)∗ → A∗

± by leaving constants invariant. Throughout
we let # denote a special symbol, whose main purpose is to encode a tuple of
words (w1, . . . , wk) as a single word w1# · · · #wk.

Theorem 1. Let (U, V) be an equation over F(A+) and {X1, . . . , Xk} be any
specified subset of variables. Then the solution set Sol(U, V) is EDT0L where
Sol(U, V) = {σ(X1)# · · · #σ(Xk) | σ solves (U, V) in reduced words}.

Moreover, there is a nondeterministic algorithm which takes (U, V) as input
and computes an NFA A such that Sol(U, V) = {ϕ(#) | ϕ ∈ L(A)} in quasi-
linear space.

The statement of Theorem 1 shifts the perspective on how to solve equations.
Instead of solving an equation, we focus on an effective construction of some

136 L. Ciobanu et al.

NFA producing the EDT0L set. Once the NFA is constructed, the existence of
a solution, or whether the number of solutions is zero, finite or infinite, become
graph properties of the NFA.

Theorem 1 is a special case of a more general result involving the existential
theory with rational constraints over free products. The generalization is done
in several directions. First, we can replace F(A+) by any finitely generated free
product F = �1≤i≤sFi where each Fi is either a free or finite group, or a free
monoid with arbitrary involutions (including the identity). Thus, for example
we may have F = {a, b}∗

� Z � PSL(2, Z) = {a, b}∗
� Z � (Z/3Z) � (Z/2Z) where

a = a and b = b. Second, we allow arbitrary rational constraints. We consider
Boolean formulae Φ, where each atomic formula is either an equation or a rational
constraint, written as X ∈ L, where L ⊆ F is a rational subset.

Theorem 2. Let F be a free product as above, Φ a Boolean formula over equa-
tions and rational constraints, and {X1, . . . , Xk} any subset of variables. Then
Sol(Φ) = {σ(X1)# · · · #σ(Xk) | σ solves Φ in reduced words} is EDT0L.

Moreover, there is an algorithm which takes Φ as input and produces an NFA
A such that Sol(Φ) = {ϕ(#) | ϕ ∈ L(A)}. The algorithm is nondeterministic
and uses quasi-linear space in the input size ‖Φ‖.
For lack of space we present the main steps used to show Theorem 1, only. How-
ever, this covers the essential ideas to prove the more general result in Theorem 2
as well. All missing proofs and details are in our paper on the arXiv.

Preliminaries

The notion of a rational set is defined in any monoid, and a rational set can be
specified by some NFA with arcs labeled by monoid elements, see [7]. Tradition-
ally, rational sets in finitely generated free monoids are also called regular. If M
is a monoid and u, v ∈ M , then we write u ≤ v if u is a factor of v, which means
we can write v = xuy for some x, y ∈ M . We denote the neutral element in M
by 1, thus, the empty word is also 1. The length of word w is denoted by |w|,
and |w|a counts how often a letter a appears in w. An involution of a set A is a
mapping x �→ x such that x = x for all x ∈ A. For example, the identity map is
an involution. A morphism between sets with involution is a mapping respecting
the involution. A monoid with involution has to additionally satisfy xy = y x. A
morphism between monoids with involution is a homomorphism ϕ : M → N such
that ϕ(x) = ϕ(x). It is a Δ-morphism if ϕ(x) = x for all x ∈ Δ where Δ ⊆ M .
In this article, whenever the term “morphism” is used it refers to a mapping
which respects the underlying structure including the involution. All groups are
monoids with involution given by x = x−1, and all group-homomorphisms are
morphisms. Any involution on a set A extends to A∗: for a word w = a1 · · · am

we let w = am · · · a1. If a = a for all a ∈ A then w is simply the word w read
from right-to-left. The monoid A∗ is called a free monoid with involution.

The notion of an EDT0L system refers to Extended, Deterministic, Table,
0 interaction, and Lindenmayer. There is a vast literature on Lindenmayer sys-
tems, see [19], with various acronyms such as D0L, DT0L, ET0L, and HDT0L.

Solution Sets for Equations over Free Groups are EDT0L Languages 137

The subclass EDT0L is equal to HDT0L (see e.g. [20, Thm. 2.6]), and has
received particular attention. We content ourselves to define EDT0L through a
characterization (using rational control) due to Asveld [2]. The class of EDT0L
languages is a proper subclass of indexed languages in the sense of [1], see [6].
For more background we refer to [20].

Definition 1. Let A be an alphabet and L ⊆ A∗. We say that L is EDT0L
if there is an alphabet C with A ⊆ C, a rational set of endomorphisms R ⊆
End(C∗), and a symbol # ∈ C such that L = {ϕ(#) | ϕ ∈ R} .

Note that for a set R of endomorphisms of C∗ we have {ϕ(#) | ϕ ∈ R} ⊆ C∗,
in general. Our definition implies that R must guarantee that ϕ(#) ∈ A∗ for all
ϕ ∈ R. The set R is the rational control, and C is the extended alphabet.

Example 1. Let A = {a, b} and C = {a, b, #, $}. We let H be the set of
four endomorphisms f, ga, gb, h satisfing f(#) = $$, ga($) = $a, gb($) = $b,
and h($) = 1, and on all other letters the f, ga, gb, h behave like the iden-
tity. Consider the rational language R ⊆ H∗ defined by R = h {ga, gb}∗

f
(where endomorphisms are applied right-to-left). A simple inspection shows that
{ϕ(#) | ϕ ∈ R} = {vv | v ∈ A∗}, which is not context-free.

Proof of Theorem 1

Preprocessing. We start by adding the special symbol # to the alphabet A±, and
define A = A± ∪ {#}. We let # = #; this will be the only self-involuting letter
in this article. We must make sure that no solution uses # and every solution
is in reduced words. We do so by introducing a finite monoid N with involution
which plays the role of (a specific) rational constraint. Let N = {1, 0}∪A± ×A±.
We define a multiplication on N by 1 · x = x · 1 = x, 0 · x = x · 0 = 0, and

(a, b) · (c, d) =
{

(a, d) if b 	= c
0 otherwise.

The monoid N has an involution by 1 = 1, 0 = 0, and (a, b) = (b, a). Consider
the morphism μ0 : A∗ → N given by μ0(#) = 0 and μ0(a) = (a, a) for a ∈ A±.
It is clear that μ0 respects the involution and μ0(w) = 0 if and only if either w
contains # or w is not reduced. If, on the other hand, 1 	= w ∈ A∗

± is reduced,
then μ0(w) = (a, b), where a is the first and b the last letter of w. Thus, if σ
is a solution in reduced words, then for each variable X ∈ Ω there exists some
element μ(X) ∈ N with 0 	= μ(X) = μ(X) ∈ N and μ(X) = μ0σ(X). Note that
while rational constraints are not explicitly mentioned in Theorem 1, they play
an essential role in ensuring that solutions are in reduced words.

Since EDT0L is closed under finite union, and since there are only finitely
many choices for μ(X), we may assume that our input equation is specified
together with a fixed morphism μ : Ω −→ N . A solution σ is now given by a
mapping σ : Ω → A∗ satisfying three properties: πσ(U) = πσ(V) (the equation
holds in F(A+)), σ(X) = σ(X), (σ respects the involution), and μ(X) = μ0σ(X)
for all X ∈ Ω.

138 L. Ciobanu et al.

The next steps are standard, see [4]. With the help of additional variables we
produce a system of equations (Xi, Vi), 1 ≤ i ≤ s, such that each Xi is a variable
and each Vi is a word of length 2. (The number s of equations is in O(|UV |) after
this transformation.) Thus, we obtain a triangular system of equations. We may
still assume that each variable X comes with a value 0 	= μ(X) = μ(X) and we
extend μ to a morphism μinit by μinit(X) = μ(X) for X ∈ Ω and μinit(a) = μ0(a)
for each a ∈ A. Next, by the following lemma, we switch to free monoids with
involution. Lemma 1 is well-known and easy to see. Its geometric interpretation
is the fact that the Cayley graph of a free group is a tree.

Lemma 1. Let x, y, z be reduced words in A∗
±. Then x = yz in the group F(A+)

if and only if there are reduced words P, Q, R in A∗
± such that x = PR, y = PQ,

and z = QR hold in the free monoid A∗
±.

By Lemma 1 we content ourselves to prove the analogue of Theorem 1 for
free monoids with involution, systems of equations (Ui, Vi)1≤i≤s, and a morphism
μinit : (A∪Ω)∗ → N such that 0 	= μinit(X) for all X ∈ Ω, where Ω is an enlarged
set of variables. We return to a single equation (U ′, V ′) over A ∪ Ω by letting
U ′ = U1# · · · #Us and V ′ = V1# · · · #Vs. Notice that μinit(X) 	= 0 for all X and
|Ui|# = |Vi|# = 0 for all i. A solution σ : Ω → A∗

± must satisfy σ(U ′) = σ(V ′),
σ(X) = σ(X), and μinit(X) = μ0σ(X) for all X ∈ Ω. The set of variables
{X1, . . . , Xk}, specified in Theorem 1, is a subset of Ω, and the original solution
set is a finite union of solution sets with respect to different choices for μinit.
In order to achieve our result we protect each variable Xi by defining a factor
#Xi# as follows. We assume A± ∪ Ω = {x1, . . . , x�} with xi = Xi for 1 ≤ i ≤ k
where {X1 . . . , Xk} is the specified subset in the statement of Theorem 1. The
word Winit over (A ∪ Ω)∗ is then defined as:

Winit = #x1# . . . #x�#U ′#V ′#U ′#V ′#x�# . . . #x1#.

Observe that Winit is longer than (but still linear in) |A| + |Ω| + |UV |. The
number of #’s in Winit is odd; and if σ : (A ∪ Ω)∗ → A∗ is a morphism with
σ(X) reduced for all X ∈ Ω, then: πσ(U) = πσ(V) ⇐⇒ σ(U ′) = σ(V ′) ⇐⇒
σ(Winit) = σ(Winit). Here (U, V) is the equation in Theorem 1 and (U ′, V ′) is
the intermediate word equation over A ∪ Ω. Therefore Theorem 1 follows by
showing that the following language is EDT0L:
{

σ(X1)# · · · #σ(Xk)
∣
∣
∣ σ(Winit)=σ(Winit) ∧ μinit = μ0σ ∧ ∀X : σ(X) = σ(X)

}
.

Partial Commutation and Extended Equations. Partial commutation is
an important concept in our proof. It pops up where traditionally the unary
case (solving a linear Diophantine equation) is used as a black box, as is done in
[5]. At first glance it might seem like an unneccesary complication, but in fact
the contrary holds. Using partial commutation allows us to encode all solutions
completely in the edges of a graph, which we can construct in quasi-linear space,
and is one of the major differences to [5]. As a (less important) side effect,

Solution Sets for Equations over Free Groups are EDT0L Languages 139

results on linear Diophantine equations come for free as this is the special case
F(A+) = Z: solving linear Diophantine equations becomes part of a more general
process.

We fix n = ninit = |Winit| and some κ ∈ N large enough, say k = 100. We
let C be an alphabet with involution (of constants) such that |C| = κn and
A ⊆ C. We define Σ = C ∪ Ω and assume that # is the only self-involuting
symbol of Σ. In the following x, y, z, . . . refer to words in Σ∗ and X, Y, Z, . . .
to variables in Ω. Throughout we let B, B′ and X , X ′ denote subsets which are
closed under involution and satisfy X ′ ⊆ X ⊆ Ω and either A ⊆ B ⊆ B′ ⊆ C or
A ⊆ B′ ⊆ B ⊆ C. In particular, B and B′ are always comparable.

We encode partial commutation by types. Let θ ⊆ (B ∪ X) × B denote an
irreflexive and antisymmetric relation. It is called a type if (x, y) ∈ θ implies:

– (x, y) ∈ θ,
– x, y /∈ A,
– |θ(x)| ≤ 1, where θ(x) = {y ∈ B∗ | (x, y) ∈ θ}.

The type relation θ can be stored in quasi-linear space. Given θ and μ : B ∪X →
N such that μ(xy) = μ(yx) for all (x, y) ∈ θ, we define a free partially commuta-
tive monoid with involution by M(B, X , θ, μ) = (B∪X)∗/ {xy = yx | (x, y) ∈ θ}
with a morphism μ : M(B, X , θ, μ) → N . By M(B, θ, μ) we denote the sub-
monoid generated by B with the corresponding restrictions of θ and μ. Note
that M(A, θ, μ) = M(A, ∅, μ0) is the free monoid A∗.

If w is a factor of W ∈ M(B, X , θ, μ), then w is called a proper factor if
1 	= w 	= W and |w|# = 0. The numbers |u| and |u|a are well defined for every
u ∈ M(B, X , θ, μ) since if two words represent the same monoid element then
the number of occurences of each letter is the same. Typically we represent w, W
by words w, W ∈ (B ∪ X)∗, but their interpretation is always in M(B, X , θ, μ).

Definition 2. We call W ∈ M(B, X , θ, μ) well-formed if |W | ≤ κn, |W |# =
|Winit|#, and every proper factor x of W and every x ∈ B ∪X satisfies μ(x) 	= 0.
In addition, if x is a proper factor then x is also a proper factor and for each
a ∈ A± there must be a factor #a# in W .

An extended equation is a tuple V = (W, B, X , θ, μ) where W ∈
M(B, X , θ, μ) is well-formed. A B-solution of V is a B-morphism σ :
M(B, X , θ, μ) → M(B, θ, μ) such that σ(W) = σ(W) and σ(X) ∈ y∗ when-
ever (X, y) ∈ θ. A solution of V is a pair (α, σ) such that α : M(B, θ, μ) → A∗

is an A-morphism satisfying μ0α = μ and σ is a B-solution.

W = equation, where the solution is a “palindrome” σ(W) = σ(W) ∈ A∗.
B = alphabet of constants with # ∈ A ⊆ B = B ⊆ C.
X = variables appearing in W . Hence, X = X ⊆ Ω.
μ = morphism to control the constraint that the solution is reduced.
θ = partial commutation.

During the process of finding a solution, we change these parameters, and we
describe the process in terms of a diagram (directed graph) of states and arcs
between them.

140 L. Ciobanu et al.

The Directed Labeled Graph G. We are now ready to define the directed
labeled graph G which will be the core of the NFA defining the EDT0L language
Sol(U, V) = {σ(X1)# · · · #σ(Xk) | σ solves (U, V) in reduced words}.

Define the vertex set for G to be the set of all extended equations V =
(W, B, X , θ, μ). The initial vertices are of the form (Winit, A, Ω, ∅, μinit). Due
to the different possible choices for μinit there are exponentially many initial
vertices. We define the set of final vertices by

{
(W, B, ∅, ∅, μ)

∣
∣ W = W

}
. By

definition every final vertex trivially has a B-solution σ = idB . (Note that in
a final vertex there are no variables.) The arcs in G are labeled and are of the
form (W, B, X , θ, μ) h−→ (W ′, B′, X ′, θ′, μ′). Here h : C∗ → C∗ is an endomor-
phism given by a morphism h : B′ → B∗ such that h induces a well-defined
morphism h : M(B′ ∪ X ′, θ′, μ′) → M(B ∪ X , θ, μ). Note that the direction
of the morphism is opposite to the direction of the arc. There will be fur-
ther restrictions on arcs. For example, we will have |h(b′)| ≤ 2 for all b′. The
main idea is as follows. Suppose (W, B, X , θ, μ) h−→ (W ′, B′, X ′, θ′, μ′) is an arc,
α : M(B, θ, μ) → M(A, ∅, μ0) is an A-morphism, and (W ′, B′, X ′, θ′, μ′) has a
B′-solution σ′; then there exists a solution (α, σ) of the vertex (W, B, X , θ, μ).
Moreover, for the other direction if (α, σ) solves V = (W, B, X , θ, μ) and V is
not final then we can follow an outgoing arc and recover (α, σ) from a solution
at the target node. We will make this more precise below.

Compression Arcs. These arcs transform the sets of constants. Let V =
(W, B, X , θ, μ) and V ′ = (W ′, B′, X , θ′, μ′) be two vertices in G. The compres-
sion arcs have the form V

h−→ V ′, where either h = idC∗ is the identity on C∗

and we write h = ε in this case, or h is defined by a mapping c �→ h(c) where
c ∈ B′. Recall that if a morphism h is defined by h(c) = u for some letter c
then, automatically, h(c) = u and h(x) = x for all x ∈ Σ which are different
from c and c. We assume 0 	= μ′(c) = μ(h(c)) 	= 1 and μ(x) = μ′(x) for all
x ∈ (B ∩ B′) ∪ X (if not explicitly stated otherwise).

We define compression arcs (h(W ′), B, X , θ, μ) h−→ (W ′, B′, X , θ′, μ′) of the
following three types.

1. (Renaming.) The morphism h is defined by h(c) = a such that B ⊆ B′ =
B ∪ {c, c}, and θ ⊆ θ′. Thus, possibly, θ � θ′.

2. (Compression.) We have h(c) = u with 1 	= |u| ≤ 2 and either B = B′ and
θ′ = θ or B � B′ = B ∪ {c, c} and θ = θ′ = ∅.

3. (Alphabet Reduction.) We have B′
� B, θ′ = ∅, and h is induced by the

inclusion B′ ⊆ B which leads to an arc label h = ε = idC∗ .

For the proof of Theorem 1 it is enough to compress words of length at most
2 into a single letter. For Theorem 2 we need additionally arcs of type 2 where
u = aac with either a = c (and a = c) or (aa, cc) ∈ θ. In particular, the type
relation has to be defined in slightly more complicated way. The purpose of arcs
of type 3 is to remove letters in B that do not appear in the word W . This allows
us to reduce the size of B and also to “kill” partial commutation.

Solution Sets for Equations over Free Groups are EDT0L Languages 141

Lemma 2. Let (W, B, X , θ, μ) h−→ (W ′, B′, X ′, θ′, μ′) be a compression arc with
W = h(W ′). Let α : M(B, θ, μ) → M(A, ∅, μ0) be an A-morphism at the vertex
V = (h(W ′), B, X , θ, μ) and let σ′ be a B′-solution to V ′ = (W ′, B′, X ′, θ′, μ′).
Define a B-morphism σ : M(B, X , θ, μ) → M(B, θ, μ) by σ(X) = hσ′(X). Then
(α, σ) is a solution at V , (αh, σ′) is a solution at V ′ and ασ(W) = αhσ′(W ′).

Substitution Arcs. These arcs transform variables. Let V = (W, B, X , θ, μ)
and V ′ = (W ′, B, X ′, θ′, μ′) be vertices in G and X ∈ X . We assume that X =
X ′∪{

X, X
}

and μ(x) = μ′(x), as well as θ(x) = θ′(x) for all x ∈ (B∪X)\{
X, X

}
.

The set of constants is the same on both sides, but X ′ might have fewer variables.
Substitution arcs are defined by a morphism τ : {X} → BX ∪ {1} such that
we obtain a B-morphism τ : M(B, X , θ, μ) → M(B, X ′, θ′, μ′). We let ε = idC∗

as before. We define substitution arcs (W, B, X , θ, μ) ε−→ (τ(W), B, X ′, θ′, μ′) if
one of the following conditions apply.
4. (Removing a Variable.) Let X ′ = X \ {

X, X
}

. The B-morphism τ :
M(B, X , θ, μ) → M(B, X ′, θ′, μ′) is defined by τ(X) = 1.

5. (Variable Typing.) The purpose of this arc is to introduce some type
for variables without changing anything else, so X ′ = X and μ′ = μ.
Suppose that θ(X) = ∅ and c ∈ B is a letter with μ(Xc) = μ(cX) and
such that θ′ = θ ∪ {

(X, c), (X, c)
}

. The B-morphism τ : M(B, X , θ, μ) →
M(B, X , θ′, μ) is defined by the identity on B ∪ X . Note that the condition
μ(Xc) = μ(cX) implies that if μ : M(B, X , θ, μ) → N is well-defined, then
μ : M(B, X , θ′, μ) → N is well-defined, too. The other direction is trivial.

6. (Substitution of a Variable.) We have (B, X , θ) = (B′, X ′, θ′). Let a ∈ B
be such that θ(X) ⊆ {a}. (For θ(X) = ∅ this is true for any a ∈ B.) We
suppose that μ(X) = μ(a)μ′(X) (hence, automatically μ(X) = μ′(X)μ(a))
and that τ(X) = aX defines a morphism τ : M(B, X , θ, μ) → M(B, X , θ, μ′).

Lemma 3. Let V = (W, B, X , θ, μ) ε−→ (W ′, B, X ′, θ′, μ′) = V ′ with ε = idC∗

be a substitution arc with W ′ = τ(W). Let α : M(B, θ, μ) → M(A, ∅, μ0) be an
A-morphism at vertex V and σ′ be a B-solution to V ′. Define a B-morphism
σ : M(B, X , θ, μ) → M(B, θ, μ) by σ(X) = σ′τ(X). Then (α, σ) is a solution at
V and (α, σ′) is a solution at V ′. Moreover, ασ(W) = αhσ′(W ′) where h = ε is
viewed as the identity on idM(B,θ,μ).

Proof. Since σ′ is a B-solution to V ′ we have σ(W) = σ′(τ(W)) = σ′(τ(W)) =
σ′τ(W) = σ(W). Hence, (α, σ) is a solution at V . Since M(B, θ, μ) =
M(B, θ′, μ′) (a possible change in μ or θ concerns variables, only), (α, σ′) is
a solution at V ′. The assertion ασ(W) = αhσ′(W ′) is trivial since W ′ = τ(W),
σ = σ′τ , and h = ε induces the identity on M(B, θ, μ). ��
Proposition 1. Let V0

h1−→ V1 · · · ht−→ Vt be a path in G of length t, where
V0 = (Winit, A, Ω, ∅, μinit) is an initial and Vt = (W ′, B, ∅, ∅, μ) is a final vertex.
Then V0 has a solution (idA, σ) with σ(Winit) = h1 · · · ht(W ′). Moreover, we
have W ′ ∈ #u1# · · · #uk#B∗ such that |ui|# = 0 and we can write:

h1 · · · ht(u1# · · · #uk) = σ(X1)# · · · #σ(Xk), (1)

142 L. Ciobanu et al.

Proof. By definition of final vertices we have W ′ = W ′ and no variables occur in
W ′. Hence, idB∗ defines the (unique) B-solution of W ′. By definition of the arcs,
h = h1 · · · ht : M(B, ∅, μ) → A∗ = M(A, ∅, μinit) is an A-morphism which shows
that (h, idB∗) solves W ′. There is only one A-morphism at V0, namely idA∗ .
Using Lemma 2 and Lemma 3 we see first that V0 has some solution (idA∗ , σ)
and second, that

idA∗σ(Winit) = idA∗h1 · · · htidB∗(W ′) = h1 · · · ht(W ′). (2)

Finally, for 1 ≤ j ≤ t we have hj(#) = # and |hj(x)|# = 0 for all other symbols.
Hence the claim h1 · · · ht(u1# · · · #uk) = σ(X1)# · · · #σ(Xk). ��

Compression1. Consider an initial vertex V0 = (Winit, A, Ω, ∅, μinit) with a
solution (α, σ). We will show below that G contains a path V0

h1−→ V1 · · · ht−→ Vt

to some final vertex Vt = (W ′, B, ∅, ∅, μ) such that σ(Winit) = h1 · · · ht(W ′),
and so G contains all solutions to Winit. Let us show why then, indeed, we are
almost done with Theorem 1. We augment the graph G by one more vertex which
is just the symbol #. Recall that {X1, . . . , Xk} is the set of specified variables.
Every final vertex (W ′, B, ∅, ∅, μ) has a unique factorization W ′ = #w′#w′′ with
|w′|# = k. Let us add arcs (W ′, B, ∅, ∅, μ) gw′−→ # where gw′ : C∗ → C∗ is the
homomorphism (not necessarily respecting the involution) defined by gw′(#) =
w′. If we define the NFA A as G with this augmentation and if we let # be
the exclusive accepting vertex, then by Proposition 1 we obtain Theorem 1. The
construction of A can easily be implemented by an NSPACE(n log n) procedure
in such a way that the NFA A becomes trim. This means that every vertex is
on some path from an initial to a final vertex. Trimming is important to derive
the complexity bounds announced in the abstract2.

We show the existence of the path corresponding to the solution (α, σ) using
an alternation between “block compression” and “pair compression”, repeated
until we reach a final vertex. The procedures use knowledge of the solution being
aimed for. We proceed along arcs in G of the form V = (W, B, X , θ, μ) h−→ V ′ =
(W ′, B′, X ′, θ′, μ′) thereby transforming a solution (α, σ) to V into a solution
(α′, σ′) to V ′. However, this is not allowed to be arbitrary: we must keep the
invariant ασ(W) = α′hσ′(W ′). For example, consider the alphabet reduction
where B′

� B and W = W ′ ∈ (B′ ∪ X)∗. In this case we have h = idC∗ ,
which induces the inclusion ε : M(B′, ∅, μ′) → M(B, θ, μ). If σ does not use
letters outside B′ there is no obstacle. In the other case, fortunately, we will
need alphabet reduction only when the type relation is empty on both sides.
Then we can define β(b) = α(b) ∈ A∗ for b ∈ B \ B′ and β(b) = b for b ∈ B′.
We let σ′(X) = βσ(X). This defines a B′-solution at V ′. In some sense this is a
huge “decompression”.
1 Compression became a main tool for solving word equations thanks to [16].
2 The possibility to trim A in NSPACE(n log n) uses the result of Immerman and

Szelepcsényi that nondeterministic space complexity classes are closed under com-
plementation. For a proof of the Immerman-Szelepcsényi Theorem, see e.g. [13].

Solution Sets for Equations over Free Groups are EDT0L Languages 143

A word w ∈ Σ∗ is a sequence of positions, say 1, 2, . . . , |w|, and each position
is labeled by a letter from Σ. If W = u0x1u1 · · · xmum, with ui ∈ C∗ and xi ∈ Ω,
then σ(W) = u0σ(x1)u1 · · · σ(xm)um and the positions in σ(W) corresponding
to the ui’s are henceforth called visible.

Block compression. Let V = (W, B, X , ∅, μ) be some current non-final vertex
with an empty type relation and a solution (α, σ). We start a block compression
only if B ≤ |W | ≤ 29n. Since |C| = 100n, there will be sufficiently many “fresh”
letters in C \ B at our disposal.

1. Follow substitution arcs to remove all variables with |σ(X)| ≤ 2. If V became
final, we are done and we stop. Otherwise, for each X we have σ(X) = bw
for some b ∈ B and w ∈ B+. Following a substitution arc we replace X
by bX. Of course, we also replace X by X b, changing μ(X) to μ(X) =
μ(X) = μ(w) (from now on we will do this without comment). If bX ≤ W
and b′X ≤ W are factors with b, b′ ∈ B, then # 	= b = b′ due to the previous
substitution X �→ bX. For each b ∈ B \ {#} define sets Λb ⊆ N which
contain those λ ≥ 2 such that there is an occurrence of a factor dbλe in
σ(W) with d 	= b 	= e, where at least one of the b’s is visible. We also let
Xb = {X ∈ X | bX ≤ W ∧ σ(X) ∈ bB∗}. Note that

∑
b |Λb| + |Xb| ≤ |W |.

2. Since W is well-formed we have Λb = Λb. Fix some subset B+ ⊆ B such that
for each # 	= b ∈ B we have b ∈ B+ ⇐⇒ b 	= B+. For each b ∈ B+, where
Λb 	= ∅, run the following b-compression:

3. b-compression. (This step removes all factors b� and b
�, � ≥ 2, from W .)

(a) Introduce fresh letters cb, cb with μ(cb) = μ(b). In addition, for each λ ∈
Λb introduce fresh letters cλ,b, cλ,b with μ(cλ,b) = μ(b). We abbreviate
c = cb, c = cb, cλ = cλ,b, and cλ = cλ,b. We let h(cλ) = h(c) = b and we
introduce a type by letting θ = {(cλ, c) | λ ∈ Λb}. Renaming arcs (type
1) realize this transformation.
So far we did not change W , but we enlarged the alphabet B to B′, and
introduced partial commutation between the fresh letters cλ and c. The
next steps change W and its solution.

(b) Replace in σ(W) ∈ B∗ every factor dbλe (resp. db
λ
e), where d 	= b 	= e

and λ ∈ Λb, by dcλe (resp. dcλe). This yields a new word W ′ ∈ B′∗,
which was obtained via the renaming arc h(c) = b. Recall that for every
X ∈ Xb we had bX ≤ W and for some positive � we had σ(X) = b�w with
w /∈ bB∗. In the new word W ′ we have cX ≤ W ′ and for the new solution
σ′ we have σ′(X) = c�w′ with w′ /∈ cB′∗. We rename W ′, B′, α′ = αh, σ′

as W, B, α, σ.
(c) Enlarge θ by {(X, c) | X ∈ Xb ∧ σ(X) ∈ c∗} using a substitution arc.
(d) The solution σ(W) is still a word σ(W) ∈ B∗. Scan this word from left to

right. Stop at each factor dcλe with d 	= c 	= e and λ ∈ Λb. If in this factor
some position of the c’s is visible then choose exactly one of these visible
positions and replace that c by cλ. If no c is visible, they are all inside
some σ(X); then choose any c and replace it by cλ. Recall that c and

144 L. Ciobanu et al.

cλ commute, hence dcλe became dcλcλ−1e = dc�1cλc�2e ∈ M(B, θ, μ) for
all �1 + �2 = λ − 1. In parallel we run the same steps for c. The whole
transformation can be realized by renaming arcs defined by h(cλ) = c.
There is a crucial observation: if X ∈ Xb and we had σ(X) = c�w with
w /∈ cB∗ before the transformation then now still σ′(X) = c�w′. It is not
clear which position has been occupied by cλ, but due to commutation
cλσ′(X) is a factor in σ′(W ′) ∈ M(B, θ, μ).

(e) Rename W ′, B′, α′ = αh, σ′ as W, B, α, σ. Perform the following loop
3(e)i – 3(e)iv until no c and no X ∈ Xb with σ(X) ∈ c∗ occurs in W .

i. If X ∈ Xb and if the maximal � is odd where σ(X) ∈ c�B∗, then
follow a substitution arc X �→ cX. Do the same for c.

ii. For all λ where there is some odd � with dcλc�e ≤ σ′(W ′) follow a
compression arc defined by h(cλ) = ccλ. This is possible since for
each such factor dcλc�e either none of the positions in cλc� is visible
or cλc is visible. Thus, dcλc�e ≤ σ′(W ′) implies that � is even.

iii. Follow a compression arc defined by h(c) = c2, after which |W ′|c and
|W ′|c are divided by 2. We obtain a new W ′′ with solution σ′′.

iv. Remove all X with σ′′(X) = 1 by following a substitution arc (type
4); rename all parameters back to W, B, X , θ, μ, α, σ.

(f) Let B′ = B \ {c, c} and μ′ be induced by μ. Observe that no letter
c or c appears in σ(W): they have all been consumed by cλ. Thus,
the type relation is empty again. Hence we can follow an alphabet
reduction arc (W, B, X , θ, μ) ε−→ (W, B′, X , ∅, μ′). The new solution to
(W, B′, X ′, ∅, μ′) is the pair (α′, σ) where α′ = αε is defined by the
restriction of α to M(B′, ∅, μ′).

Having performed b-compressions for all b ∈ B+, we have increased the length of
W . But it is not difficult to see that the total increase can be bounded in O(n).
Actually, we have |W | ≤ 31n at the end because we started with |W | ≤ 29n and
step 1 of block compression increases |W | by at most 2n. Now we use alphabet
reduction in a final step of block compression in order to reduce the alphabet B
such that |B| ≤ |W |. We end up at a vertex again named V = (W, B, X , ∅, μ),
which has a solution (α, σ). The new situation is that no proper factor b2 appears
in W anymore. The price is |B| ≤ |W | ≤ 31n.

We now run Jeż’s procedure pair compression, which brings us back to |B| ≤
|W | ≤ 29n and allows us to start another block compression. This keeps the
length in O(n). Since our pair compression is very close to Jeż’s presentation as
published in [11] we content ourselves with the basic idea. For pair compression
we begin with a partition B \ {#} = L ∪ R such that b ∈ L ⇐⇒ b ∈ R.
In general, there are many such partitions, but we choose with care a “good”
partition, see below. Next, for all X, if b ∈ R and σ(X) ∈ bB∗ then replace X by
bX and X by X b. After that, no factor ab ∈ LR is “crossing”, i.e., is consisting of
a visible and invisible letter, anymore. Moreover, ab ∈ LR ⇐⇒ ba ∈ LR. Thus,
we can follow compression arcs labeled by h(c) = ab, where c is a fresh letter. Let
s(i) denote the length of W after the i-th iteration of pair-compression. For at
least one partition B \ {#} = L ∪ R, the “good” partition, it can be guaranteed

Solution Sets for Equations over Free Groups are EDT0L Languages 145

that s(i + 1) ∈ 5s(i)
6 + O(n), see [11]. Together with s(1) ∈ O(n) this shows

s(i) ∈ O(n) for all i. Another fact is crucial. We restricted ourselves to solutions
in reduced words, which implies that whenever ab is a proper factor of σ(W),
then b 	= a.

References

1. Aho, A.V.: Indexed grammars–an extension of context-free grammars. J. Assoc.
Comput. Mach. 15, 647–671 (1968)

2. Asveld, P.R.: Controlled iteration grammars and full hyper-AFL’s. Information
and Control 34(3), 248–269 (1977)

3. Benois, M.: Parties rationelles du groupe libre. C. R. Acad. Sci. Paris, Sér. A 269,
1188–1190 (1969)

4. Diekert, V., Gutiérrez, C., Hagenah, Ch.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Information and Compu-
tation, 202, 105–140 (2005). Conference version in STACS 2001

5. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É.,
Vereshchagin, N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 1–15. Springer, Heidel-
berg (2014)

6. Ehrenfeucht, A., Rozenberg, G.: On some context free languages that are not deter-
ministic ET0L languages. RAIRO Theor. Inform. Appl. 11, 273–291 (1977)

7. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Acad Press (1974)
8. Ferté, J., Marin, N., Sénizergues, G.: Word-mappings of level 2. Theory Comput.

Syst. 54, 111–148 (2014)
9. Gilman, R.H.: Personal communication (2012)

10. Jain, S., Miasnikov, A., Stephan, F.: The complexity of verbal languages over
groups. In: Proc. LICS 2012, pp. 405–414. IEEE Computer Society (2012)

11. Jeż, A.: Recompression: a simple and powerful technique for word equations. In:
Proc. STACS. LIPIcs, 20:233–244 (2013). Journal version to appear in JACM

12. Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups.
J. of Algebra 302, 451–552 (2006)

13. Papadimitriou, C.H.: Computational Complexity. Addison Wesley (1994)
14. Plandowski, W.: An efficient algorithm for solving word equations. Proc. STOC

2006, pp. 467–476. ACM Press (2006)
15. Plandowski, W.: Personal communication (2014)
16. Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to the solution

of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998)

17. Razborov, A.A.: On Systems of Equations in Free Groups. Ph.D thesis (1987)
18. Razborov, A.A.: On systems of equations in free groups. In: Combinatorial and

Geometric Group Theory, pp. 269–283. Cambridge University Press (1994)
19. Rozenberg, G., Salomaa, A.: The Book of L. Springer (1986)
20. Rozenberg, G., et al. (Eds.): Handbook of Formal Languages, vol 1. Springer (1997)
21. Sela, Z.: Diophantine geometry over groups VIII: Stability. Annals of Math. 177,

787–868 (2013)

Limited Set Quantifiers over Countable Linear
Orderings

Thomas Colcombet and A.V. Sreejith(B)

LIAFA, Université Paris-Diderot, Paris, France
{thomas.colcombet,sreejith}@liafa.univ-paris-diderot.fr

Abstract. In this paper, we study several sublogics of monadic second-
order logic over countable linear orderings, such as first-order logic, first-
order logic on cuts, weak monadic second-order logic, weak monadic
second-order logic with cuts, as well as fragments of monadic second-
order logic in which sets have to be well ordered or scattered. We give
decidable algebraic characterizations of all these logics and compare their
respective expressive power.

Keywords: Linear orderings ·Algebraic characterization ·Monadic sec-
ond order logic

1 Introduction

Monadic second-order logic (i.e., first-order logic extended with set quantifiers)
is a concise and expressive logic that retains good decidability properties (though
with a bad complexity). In particular, since the seminal works of Büchi [3], Rabin
[11] and Shelah [13], it is known to be decidable over infinite linear orderings
with countably many elements, such as (Q, <) [5,7]. A breakthrough result of
Shelah (also in [13]) states that over general linear orderings (i.e., not necessarily
countable), or simply over (R, <), this logic is not decidable anymore. There is
also a long line of research focusing on the analysis of the expressive power and
decidability status of temporal logics, which, for most of them are equivalent in
expressiveness to first-order logic (but much more tractable), and can be decided
on some non-countable linear orderings.

Such studies are interesting for themselves, i.e., for the techniques involved
in their resolution and the understanding of the logics it requires for doing so.
Such studies are also interesting since infinite linear orderings offer a natural
model of continuous linear time.

Recently, another step in our understanding of monadic second-order logic
over countable linear orderings has been made. An algebraic model, ◦-monoids,
was proposed [4], yielding among other results the first known quantifier collapse
of monadic second-order logic (to the one alternation fragment over set quanti-
fiers), the resolution of a conjecture of Gurevich and Rabinovich [8] concerning

The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 259454.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 146–158, 2015.
DOI: 10.1007/978-3-662-47666-6 12

Limited Set Quantifiers over Countable Linear Orderings 147

the use of cuts “in the background” [6]. Algebraic recognizers give us a much
deeper understanding of the expressive power of monadic second-order logic.

The next natural step is to follow the footprints of Schützenberger, who
characterized algebraically first-order logic over finite words as languages that
are recognized by aperiodic monoids [12] (in fact, the first-order logic terminology
is in combination with McNaughton and Papert [10]) as these languages that are
recognized by aperiodic monoids. Now that a suitable algebraic model is known
for understanding monadic second-order logic, a similar study can be performed
in this more general context. There exist already results of this kind, but these
are so far restricted to the case of scattered linear orderings (i.e., without any
dense sub-ordering). In this context, first-order logic and first-order logic on cuts
have been algebraically characterized [1], as well as weak monadic second-order
logic [2]. Simple decision procedures are derived in all these situations.

In this paper, we perform a systematic analysis of sublogics of monadic
second-order logic on countable linear orderings depending on the kind of sets
over which set quantifiers range. If such sets are just singletons, we have exactly
first-order logic (FO). If such sets are Dedekind cuts, we obtain first-order logic
on cuts (FO[cut]). If finite sets only are allowed, this is weak monadic second-
order logic (WMSO). If it is possible to quantify over both finite sets and cuts,
we obtain weak monadic second-order on cuts (MSO[finite,cut]). We consider
also MSO[ordinal] in which quantified sets need to be well-ordered. Finally
MSO[scattered] corresponds to the case where quantified sets are required to
be scattered. Our contribution is to compare the expressive power of all these
logics (all are distinct but for MSO[finite,cut] which coincide with MSO[ordinal]),
and characterize each of them by decidable algebraic means.

Structure of the Paper. In Section 2, we introduce linear orderings, words,
and the logics we are interested in. In Section 3 we provide sufficient material
concerning the algebraic framework of ◦-monoids, state the main characteriza-
tion theorem, Theorem 2, and show the separation result, Theorem 3. Section 4
is devoted to the description of some ideas concerning one direction of the proof
of Theorem 2. Section 5 concludes the paper.

2 Preliminaries

In this preliminary section, we introduce the notion of linear order-
ings (Section 2.1), (countable) words (Section 2.2) and the studied logics
(Section 2.3).

2.1 Linear Orderings

A linear ordering α = (X,<) is a non-empty set X equipped with a total order
<. A linear ordering α is dense if it contains at least two elements and for all
x < y ∈ α, there exists a z such that x < z < y. It is scattered if no subset of
X induces a dense ordering. A well ordering is a linear ordering such that every

148 T. Colcombet and A.V. Sreejith

non-empty subset has a minimal element. A subset of a linear ordering is well
ordered (resp. scattered) if the linear ordering restricted to it is a well ordering
(resp. scattered).

Given an element x, its successor (resp. predecessor) (if it exists) is the only
y > x (resp. y < x) such that there is no z such that x < z < y (resp. y < z < x).
A subset I ⊆ α of a linear ordering is convex if whenever x, y ∈ I and x < z < y,
z ∈ I. A condensation of a linear ordering is an equivalence relation ∼ such that
all equivalence classes are convex. For a linear ordering α and a condensation ∼,
we denote by α/∼, the condensed linear ordering : its elements are the equivalence
classes for ∼, and the ordering is obtained by projection of the original ordering.
Two convex subsets I, J of a linear ordering are consecutive if I and J are disjoint
and their union is convex. Using the notations for elements, if I < J , then I is
the predecessor of J , while J is the successor of I.

Given linear orderings (βi)i∈α (assumed disjoint up to isomorphism) indexed
with a linear ordering α, their generalized sum

∑
i∈α βi is the linear ordering

over the (disjoint) union of the sets of the βi’s, with the order defined by x < y
if either x ∈ βi and y ∈ βj with i < j, or x, y ∈ βi for some i, and x < y in βi.

Given elements x, y, we denote by [x, y) the set {z | x ≤ z < y}, and similarly
[x, y], (x, y] and (x, y). We also denote as (−∞, x), (−∞, x], (x,+∞) and [x,+∞)
the intervals that are unlimited to the left or to the right. Usually Dedekind cuts
are defined as ordered pairs of sets (L,R) such that L < R. Here, we define a
Dedekind cut (or simply a cut) as a left-closed subset X of a linear ordering,
i.e., for all x < y with y ∈ X, then x ∈ X.

2.2 Infinite Words

Given a linear ordering α and a finite alphabet A, a word over A of domain α is
a mapping w : α → A. The domain of a word is denoted dom(w). In this work,
all words are assumed of countable domain. The set of all words of countable
domain is denoted by A◦. A language is a subset of A◦.

Given a convex set X ⊆ dom(w) of word w, wX denotes the word w restricted
to X, i.e., the word of domain X that coincides with w over X. A factor of a
word w is any restriction of w to one of the convex subsets of its domain.

Given two words u : α → A and v : β → A (where α and β are disjoint),
we denote by uv the word over domain α + β such that each position x ∈ α
(similarly x ∈ β) is labelled by u(x) (by v(x)). The generalized concatenation of
the words wi (supposed of disjoint domain) indexed by a linear ordering α is∏

i∈α

wi ,

and denotes the word of domain
∑

i dom(wi) which coincides with each wi over
dom(wi) for all i ∈ α.

Some words will play an important role in the paper. The empty word ε, which
is the only word of empty domain. The words denoted “aaa . . . ” and “. . . aaa”
are the words over the single letter a, and of respective domain ω = (N, <) and

Limited Set Quantifiers over Countable Linear Orderings 149

ω∗ = (N, >). Finally, perfectshuffle(A) for A, a non-empty finite set of letters, is
a word of domain (Q, <) in which all non-empty intervals (x, y) contain at least
once each letter of A. This word is unique up to isomorphism.

2.3 First-Order Logic, Monadic Second-Order Logic, and Between

We use logics for expressing properties of linear orderings or words. All of the
several logics we study are all restrictions of monadic second-order logic (MSO).
We very succinctly recall the basics of this logic here. The reader can refer to
many other works on the subject, e.g., [14]. We only consider word models.

Monadic second-order logic (MSO for short) is a logic with the following
characteristics. It is possible to use first-order variables x, y, z, . . . , ranging over
positions of the word, and quantify over them thanks to ∃x or ∀y. It is possible
to use monadic variables X,Y, . . . (traditionally typeset in capital letters), that
range over sets of positions of the word, and quantify over them using ∃X, ∀Y .
Three atomic predicates can be used. The predicate a(x), for a a letter, and
x a position, holds if the letter carried at position x in the word is an a. The
predicate x < y for x, y, first-order variables denotes the order of the domain
of the word. The membership predicate x ∈ Y tests the membership of (the
valuation of) a first-order variable x in (the valuation of) a monadic variable Y .
All the Boolean connectives are also allowed. First-order logic (FO of short) is
the fragment of this logic in which monadic variables, as well as quantifiers over
them, are not allowed.

In this study, we are interested in the expressive power of logics weaker
than MSO. There is a long tradition of such researches, initiated by the semi-
nal work of Sch?tzenberger. For instance, it is classical to study first-order logic
and its fragments when the quantifier alternation or the number of variables
are restricted. In our case, our goal is to investigate the intricate relationship
between the expressive power of the logic, and the infinite/dense nature of the
linear orderings/words under study. The only parameter that we use for mod-
ifying the power of the logic is to change the range of monadic variables. By
default, such variables range over any set of positions. We introduce now sev-
eral restricted set quantifiers and the corresponding logics. Our simplest logic is
first-order logic. The logic obtained by allowing monadic quantifiers restricted to
Dedekind cuts is denoted FO[cut] . Another situation is when monadic second-
order variables range over finite set, yielding weak monadic second-order logic
(WMSO for short). We are also interested in the fragment in which it is pos-
sible to quantify both over finite sets and Dedekind cuts. We denote this logic
MSO[finite,cut] . Then come logics in which monadic variables range over “infi-
nite but small”, sets of positions. We consider the case in which it is possible
to quantify over well ordered sets, or scattered sets. We denote these logics
MSO[ordinal] and MSO[scattered] .

150 T. Colcombet and A.V. Sreejith

We formally denote these restricted quantifiers as ∃V and ∀V , where V ⊆
{∈, �∈}◦. A set belongs to the range of the quantifier ∃V or ∀V if its characteristic
map (as a labelling of the domain by ∈, �∈) is in V .

Given one of the above logics L, a formula ϕ ∈ L and a countable word w
we denote by w |= ϕ, the fact that the formula is true over w. We say that w is
a model of ϕ. A language L ⊆ A◦ is definable in L if there exists a formula ϕ in
L such that for all words w ∈ A◦, w ∈ L if and only if w |= ϕ.

Remark 1. Some dependencies between these logics are simple to establish:

Indeed, FO[cut] is an extension of FO. Also WMSO extend FO since “being a
singleton” is definable in WMSO. Similarly, MSO[finite,cut] is clearly an exten-
sion of both WMSO and FO[cut]. MSO[ordinal] can express finiteness, and
represent cuts (as the left closure of a well ordered subset), and hence con-
tains MSO[finite,cut]. In the same way, since being well ordered is expressible
in MSO[scattered], MSO[scattered] contains MSO[ordinal]. Similarly, scattered-
ness being expressible in MSO, MSO[scattered] is a sublogic of MSO. In fact, all
these logics are separated (Theorem 3), but for MSO[finite,cut] and MSO[ordinal]
which happen to coincide (see Theorem 2).

The goal of this paper is to compare the expressive power of all these logics
and be able to characterize them effectively.

3 The Algebraic Presentation: ◦-monoids

We now introduce the equivalent algebraic presentation of definable languages.
We first describe the ◦-monoids in Section 3.1, and then the derived operations
in Section 3.2, before presenting the theorems of characterization and separation
in Section 3.3.

3.1 ◦-monoids, Syntactic ◦-monoids and Recognizability

As in the seminal work of Sch?tzenberger, we use algebraic acceptors for describ-
ing regular languages of countable words: ◦-monoids. A ◦-monoid is a set M
equipped with an operation π, called the product , from M◦ to M , that satisfies
π(a) = a for all a ∈ M , and the generalized associativity property: for every
words ui over M◦ with i ranging over a countable linear ordering α,

π

(∏
i∈α

ui

)
= π

(∏
i∈α

π(ui)

)
.

Limited Set Quantifiers over Countable Linear Orderings 151

Of course, an instance of ◦-monoids is the set of words over some alphabet A
equipped with the generalized concatenation

∏
, i.e., (A◦,

∏
). It is even the free

◦-monoid generated by A. A ◦-monoid morphism from M to N (◦-monoids) is
a map γ from M to N such that γ(

∏
i∈α ai) = π(

∏
i∈α γ(ai)).

Example 1. Sing= ({1, s, 0}, π) where π is defined for all u ∈ {1, s, 0}◦ as:

π(u) =

⎧⎪⎨
⎪⎩

1 if u ∈ {1}◦,
s otherwise if u contains no 0, and exactly one s,
0 otherwise,

is a ◦-monoid (checking generalized associativity requires a case by case study).
By slightly modifying the example, we obtain the ◦-monoid Fin in which

the second line in the definition of π is changed into “s if u contains no 0, and
finitely many s’s”. The ◦-monoid Ord is when π(u) evaluates to “s if u contains
no 0, and a well ordered set of s’s”. Finally, the ◦-monoid Scat is when π(u)
evaluates to “s if u contains no 0, and a scattered set of s’s”. Once more, checking
generalized associativity is by case analysis.

The element π(ε) is called the unit , and it is customary to denote it 1 as done
above. A zero (that does not necessarily exist) is an absorbing element, i.e., an
element such that π(u0v) = 0 whatever are u and v. It is denoted by convention
0 as in the above examples. An idempotent is an element e such that π(ee) = e.

A ◦-monoid can be used to recognize languages as follows. Consider a ◦-
monoid M = (M,π), a map h from an alphabet A to M and a set F ⊆ M ,
then (M, h, F) recognizes the language L = {u ∈ A◦ | π(h(u)) ∈ F} (where h
has been extended implicitly into a map from A◦ to M◦). Said differently, L
is the inverse image of F under the ◦-monoid morphism π ◦ h. From [4], being
recognizable by a ◦-monoid is equivalent to be definable in MSO.

Furthermore, when a language is recognizable by a finite ◦-monoid, then there
is a minimal one called the syntactic ◦-monoid . It is minimal in the algebraic
sense: all ◦-monoids that would recognize this language can be trimmed and
quotiented yielding the syntactic one. We do not develop this aspect more in
this short abstract.

Example 2. Coming back to the above examples, with h(∈) = s and h(�∈) =
1, then (Sing, h, {s}) recognizes the language LSing over the alphabet {∈, �∈}
of words that contain exactly one occurrence of ∈. Similarly, (Fin, h, {1, s}),
(Ord, h, {1, s}), and (Scat, h, {1, s}) recognize the languages LFinite, LOrd and
LScat respectively, of words that contain “finitely many ∈’s”, “a well ordered set
of ∈’s”, and “a scattered set of ∈’s” respectively.

Let us note that these languages are the one used in the restricted quantifiers
∃V and ∀V for defining the logics (cuts are omitted for space considerations).

152 T. Colcombet and A.V. Sreejith

3.2 The Derived Operations

The product operation π is infinite, even in a finite ◦-monoid M = (M,π).
Hence, π is a priori not representable in finite space (it has uncountably many
possible inputs). This problems is resolved using derived operations.

The operations derived from π are the following:

– 1 is the unit constant π(ε),
– · : M × M → M is defined for a, b ∈ M as a · b = π(ab),
– ω: M → M is defined for all a ∈ M as aω= π(aaa . . .),
– ω∗: M → M is defined for all a ∈ M as aω∗= π(. . . aaa),
– η: P(M) \ {∅} → M is defined as Eη = π(perfectshuffle(E)) for E ⊆ M

non-empty.

Note that from the definitions, using generalized associativity, the unit element
satisfies 1 · 1 = 1ω = 1ω∗ = {1}η = 1, a · 1 = 1 · a = a, and (E ∪ {1})η = Eη

for all a ∈ M and all non-empty E ⊆ M . Similarly, if there is a zero 0 then it
satisfies 0 · a = a · 0 = 0ω = 0ω∗ = (E ∪ {0})η = 0 for all a ∈ M and E ⊆ M .
This is why we usually do not mention these elements when describing derived
operations.

Example 3. The derived operation of the above examples are entirely determined
by the following table:

s · s sω sω∗ {s}η

Sing 0 0 0 0
Fin s 0 0 0
Ord s s 0 0
Scat s s s 0

Though not essential in this short abstract, let us emphasize that the derived
operations determine entirely the product π, as shown now.

Theorem 1. There exists a set of equalities (A) involving the derived opera-
tions1, such that:

– The operations derived from a ◦-monoid satisfy all the equations from (A).
– If 1, ·, ω, ω∗, η are maps of correct type over a finite set M that satisfy the

equalities of (A), then there exists one and only one product over M from
which 1, ·, ω, ω∗, η are derived.

3.3 The Core Theorem

We state in this section our main results, Theorem 2 and 3. All ◦-monoids are
assumed finite from now. We first refine our understanding of idempotents:

1 These are variants of associativity, such as x · (y · z) = (x · y) · z, 1 · x = x · 1 = x,
(an)ω = aω, and so on. A complete list is known [4], but of no use here.

Limited Set Quantifiers over Countable Linear Orderings 153

– A gap insensitive idempotent e is an idempotent such that eω · eω∗ = e.
– An ordinal idempotent e is an idempotent such that eω = e. The name comes

from the fact that in such a case, all words u ∈ {e}◦ that have a well ordered
(i.e., isomorphic to an ordinal) non-empty domain satisfy π(u) = e.

– Symmetrically, an ordinal* idempotent e is an idempotent such that eω∗ = e.
– A scattered idempotent e is an idempotent which is at the same time an

ordinal and an ordinal* idempotent. For such idempotents, all words u ∈
{e}◦ that have a scattered non-empty domain satisfy π(u) = e.

– A shuffle idempotent e is an idempotent such that {e}η = e.
– A shuffle idempotent e is shuffle simple if for all K ⊆ M such that e ·a ·e = e

for all a ∈ K, ({e} ∪ K)η = e.

Note that since in every ◦-monoid ({e}η)ω = ({e}η)ω∗ = {e}η, every shuffle
idempotent is a scattered idempotent. Note also that every scattered idempotent
is by definition an ordinal idempotent and an ordinal* idempotent. Also, every
scattered idempotent is obviously gap insensitive.

We define now the following properties of a ◦-monoid M = (M,π):

– aperiodic if for all a ∈ M there exists n such that an = an+1,
– i→gi if all idempotents are gap insensitive,
– oi→gi if all ordinal idempotents are gap insensitive,
– o∗i→gi if all ordinal* idempotents are gap insensitive,
– sc→sh if all scattered idempotents are shuffle idempotent,
– sh→ss if all shuffle idempotents are shuffle simple.

It is clear by definition that oi→gi (as well as o∗i→gi) imply i→gi. There is
in fact another, slightly less direct, implication to mention:

Lemma 1. i→gi implies aperiodic.

Proof. Let a be an element of a finite ◦-monoid M . There exists n such that an

is idempotent. We compute an = (an)ω · (an)ω∗ = a · (an)ω · (an)ω∗ = an+1. ��

We are now ready to state our core theorem.

Theorem 2. Let M be the syntactic ◦-monoid of a language L ⊆ A◦, then:

– L is definable in FO iff M satisfies i→gi, sc→sh and sh→ss.
– L is definable in FO[cut] iff M satisfies aperiodic, sc→sh and sh→ss.
– L is definable in WMSO iff M satisfies oi→gi, o∗i→gi, sc→sh and

sh→ss.
– L is definable in MSO[finite,cut] iff it is definable in MSO[ordinal] iff M

satisfies sc→sh and sh→ss.
– L is definable in MSO[scattered] iff M satisfies sh→ss.

And as a consequence, these classes are decidable.

154 T. Colcombet and A.V. Sreejith

Example 4. Let us apply these characterizations to the ◦-monoids of Example 3:

aper. i→gi oi→gi o∗i→gi sc→sh sh→ss definable in

Sing yes yes yes yes yes yes FO
Fin yes no yes yes yes yes WMSO, FO[cut], not FO
Ord yes no no yes yes yes FO[cut], not WMSO
Scat yes yes yes yes no yes MSO[scattered], not MSO[ordinal]

Remark 2. One aspect of Theorem 2 is that MSO[finite,cut] and MSO[ordinal]
are equivalent. If we apply this fact to the domain ω, then cuts can be eliminated
easily, and MSO[finite,cut] coincide with WMSO. Still over ω, MSO[ordinal] obvi-
ously coincide with MSO. Hence Theorem 2 implies that WMSO and MSO coin-
cide over ω (in fact, the same argument is valid over any well ordered countable
word). This non-trivial fact is usually established using the deep result of deter-
minization of McNaughton [9] (other proofs involve weak alternating automata
or algebra).

Theorem 3. There are languages separating all situations not covered by The-
orem 2.

Proof (sketch). In fact, two among the five separating languages were given in
Example 4: LOrd ∈FO[cut]\WMSO and LScat ∈MSO[scattered]\MSO[ordinal].

WMSO\FO[cut]�= ∅: The witnessing language is “the domain is of even finite
length”. It is the classical example of non-aperiodicity over finite words, and it
works as well in this case.

MSO[ordinal]\(FO[cut]∪WMSO) �= ∅: For this, it is sufficient to take
the disjoint union (for instance using disjoint alphabets) of a language in
WMSO\FO[cut] and a language in FO[cut]\WMSO.

MSO\MSO[scattered]�= ∅: Call a set X perfectly dense if all elements x < y <
z with y ∈ X are such that (x, y) and (y, z) both intersect X. Said differently,
all elements in X are limits from the left of elements from X, and symmetrically
from the right. The language “there exists a set X of a-labelled positions which
is perfectly dense” is obviously definable in MSO. Computing its syntactic ◦-
monoid would yield four elements 1, a, b, 0 with derived operations defined by
a ·a = aω = aω∗ = b ·b = b ·a = a ·b = bω = bω∗ = {b}η = b and {a}η = {a, b}η =
0. The morphism sends a to a and b to b, and the accepting set is {0}. However,
this language is not definable in MSO[scattered]: b is a shuffle idempotent which
is not shuffle simple since {b}η = b = b · a · b and {a, b}η �= b. ��

4 From Logics to ◦-monoids

In this section, we show some of the results of the form “if a language L ⊆ A◦

is definable in logic L, then its syntactic ◦-monoid satisfies property P” for
suitable choices of L and P . The standard approach for such results is to use
the technique of Ehrenfeucht-Fra?ss? games. We adopt a different presentation
here, making use of our fine understanding of ◦-monoids.

Limited Set Quantifiers over Countable Linear Orderings 155

Let us first recall that all the logics we work with differ by their use of
restricted set quantifiers. These restricted quantifiers are parameterized by a
language V ⊆ {∈, �∈}◦. The quantifier ∃V X signifies “there exists a set of posi-
tions X which, when written as a labelling of the linear ordering yields a word
in V ”. We have seen the language LSing, LFinite, LOrd, LScat that correspond to
the quantifiers over singletons, finite sets, well ordered sets, and scattered sets.

Thus, the core step in each of these proofs consists in showing that the
operation of restricted set quantifier preserves the property we are interested in
when done at the level of ◦-monoids. Essentially, this looks as follows: “assume
that Lφ is recognized by a ◦-monoid that has property P ’ then L∃V Xφ also has
property P”. Thus, we start by describing how ∃V behaves.

Let us just mention here that the existential quantifier is the crux of the prob-
lem, and that the other constructions involved (atomic predicates and boolean
connectives) have also to be treated, but do not involve interesting arguments.
We also have to verify the closure of the properties we are interested in under
quotient of ◦-monoids. This last step is usually not necessary, but, since we did
not choose to present the properties as identities, it has to be done explicitly.

4.1 Restricted Quantifiers over ◦-monoids

Let us first recall how the existential set quantifier is implemented, from a lan-
guage and algebraic theoretic point of view, and then refine this for restricted
set quantifier.

Consider a language L ∈ (A × {∈, �∈})◦. A word over this alphabet can be
seen as a usual word over the alphabet A, enriched with the characteristic map
of some set X: if a position belongs to X, then the second component is ∈,
otherwise it is �∈. The operation equivalent to existential set quantifier over such
languages is Proj (L) defined as:

Proj (L) =
{
u|1 ∈ A◦ | u ∈ L

}
,

where u|1 denotes the word obtained by projecting each letter of u to its first
component (similarly for u|2). If furthermore L is recognized by some M =
((M,π), h, F), we define the new ◦-monoid P(M) to be (P(M), π), where

for all U ∈ (P(M))◦, π(U) = {π(u) | u ∈ U} ,

in which u ∈ U holds if dom(u) = dom(U) and for all i ∈ dom(u), u(i) ∈ U(i).
This construction is known to (1) produce a valid ◦-monoid, and (2) be

such that (P(M), h′, F ′) recognizes Proj (L) for h′(a) = {h(a,∈), h(a, �∈)} and
F ′ = {X ⊆ M | X ∩ F �= ∅}.

We present now a refinement of this construction, which furthermore restricts
the range of the projection. Given a language V ⊆ {∈, �∈}◦ that represents the
range of a restricted set quantifier, we define the restricted projection of L as:

Proj V (L) =
{
u|1 ∈ A◦ | for some u ∈ L such that u|2 ∈ V

}
.

156 T. Colcombet and A.V. Sreejith

This operation is the language theoretic counterpart to the logical restricted
quantifier ∃V . Let us assume furthermore that V is recognized by some (V, g, E).
We assume (and this will always be the case) that V has a zero 0, and that 0 �∈ E.
We define the new ◦-monoid PV(M) to be (N,π), where

for all U ∈ (P(M × V))◦, π(U) = {(π(u|1), π(u|2)) | u ∈ U} \ (M × {0}) ,

and N = {π(U) | U ∈ {{(h(a,∈), g(∈)), (h(a, �∈), g(�∈))} | a ∈ A}◦} .

We can recognize in this construction the above powerset construction, applied
to the ◦-monoid M×V, from which all occurrences of the zero of V are removed
as well all all non-reachable elements.

Lemma 2. PV(M) is a ◦-monoid.
If L is recognized by (M, h, F), then Proj V (L) is recognized by (PV(M), h′, F ′)
where h′(a) = {(h(a,∈), g(∈)), (h(a, �∈), g(�∈))} and F ′ = {A | A ∩ (F × E) �= ∅}.

4.2 Establishing Invariants

The core result in the translation from logics to ◦-monoids is the following.

Lemma 3. Let M be a ◦-monoid.

1. If M satisfies i→gi then PSing(M) satisfies i→gi.
2. If M satisfies aperiodic then PCut(M) satisfies aperiodic2.
3. If M satisfies oi→gi then PFin(M) satisfies oi→gi (resp. o∗i→gi).
4. If M satisfies sc→sh then POrd(M) satisfies sc→sh.
5. If M satisfies sh→ss then PScat(M) satisfies sh→ss.

Let us give some ideas about its proof. Let N be PV(M) where V is one of
Sing, Fin, Ord or Scat (unfortunately, Cut having a different structure, it has
to be treated separately).

Lemma 4. There exists a ◦-monoid morphism ρ from N to M such that for all
A ∈ N , (x, 1) ∈ A if and only if x = ρ(A).

Proof. Essentially, the point is to prove that for all A ∈ N , there is one and only
one ρ(A) such that (ρ(A), 1) ∈ A. The fact that this ρ is a ◦-monoid morphism is
then straightforward. For proving it, it is sufficient to do it for the neutral element
{(1, 1)}, the image of each letter ‘a’ which happens to be {(h(a), 1), (h(a), s)},
and then show the preservation of the property under ·, ω, ω∗ and η. ��

Let us show the simplest case of Lemma 3, the one for PSing(M):

Lemma 5. If a ◦-monoid M satisfies i→gi then PSing(M) also does.

2 Cut is a ◦-monoid recognizing “cuts” that we omitted here for space reasons.

Limited Set Quantifiers over Countable Linear Orderings 157

Proof. Let E be an idempotent in N = PSing(M). Our goal is to show that it
is gap insensitive.

Let (x, y) ∈ E. Since E = E · E, there exists (x1, y1), (x2, y2) ∈ E such that
x1 · x2 = x and y1 · y2 = y. Since y �= 0, at least one among y1, y2 is equal to
1. Without loss of generality, let us assume it is y1. In this case, according to
Lemma 4, x1 = ρ(E). In particular, since ρ is a morphism, this means that x1

is an idempotent. Thus we can use the assumption that M satisfies i→gi on it,
and get that xω

1 · xω∗
1 = x1. It follows that the word

of domain ω︷ ︸︸ ︷
(x1, 1)(x1, 1) . . .

of domain ω∗︷ ︸︸ ︷
. . . (x1, 1)(x1, 1)(x2, y2)

has also value (x, y) under π (componentwise), and as a consequence (x, y) ∈
Eω · Eω∗. We have proved E ⊆ Eω · Eω∗.

Conversely, consider some (x, y) ∈ Eω · Eω∗. This means that there exists a
word u of the form

of domain ω︷ ︸︸ ︷
(x1, y1)(x2, y2) . . .

of domain ω∗︷ ︸︸ ︷
. . . (x′

2, y
′
2)(x

′
1, y

′
1)

which evaluates (componentwise) to (x, y), with (xi, yi) and (x′
i, y

′
i) ∈ E for all

i ∈ N. If all y = 1, then its clear. Otherwise, there is at most one among the yi’s
and the y′

i’s which is not equal to 1. Without loss of generality (by symmetry), we
can assume that it is yj . According to Lemma 4, xi = ρ(E) for all i �= j and x′

i =
ρ(E) for all i. Since ρ is a morphism, ρ(E) is also an idempotent. Thus we can use
the assumption that M satisfies i→gi. We obtain that ρ(E)ω · ρ(E)ω∗ = ρ(E).
Thus, u evaluates to (ρ(E), 1) ·(xj , yj) ·(ρ(E), 1) ∈ E3 = E. Hence Eω ·Eω∗ ⊆ E.

This terminates the proof that N satisfies i→gi. ��

5 Conclusion

In this paper we have characterized algebraically and effectively several natu-
ral sublogics of MSO. Unfortunately the most involved arguments, namely the
translation from algebra to logic, were not addressed in this short abstract. These
can be found in the appendix.

References

1. Bès, A., Carton, O.: Algebraic characterization of FO for scattered linear order-
ings. In: CSL. LIPIcs, vol. 12, pp. 67–81. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2011)

2. Bès, A., Carton,O.: Algebraic characterization of WMSO for scattered linear order-
ings. Personal communication (2014)

3. Richard Büchi, J.: On a decision method in restricted second order arithmetic. In:
Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pp.
1–11. Stanford Univ. Press, Stanford (1962)

158 T. Colcombet and A.V. Sreejith

4. Carton, O., Colcombet, T., Puppis, G.: Regular languages of words over countable
linear orderings. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part
II. LNCS, vol. 6756, pp. 125–136. Springer, Heidelberg (2011)

5. Chloé, R., Carton, O.: An algebraic theory for regular languages of finite and
infinite words. Int. J. of Foundations of Comp. Sc. 16(04), 767–786 (2005)

6. Colcombet, T.: Monadic second-order logic and cuts in the backgrounds. In: CSR,
page Invited Paper (2013)

7. Rosenstein, J.G.: Linear Orderings. Academic Press (1982)
8. Gurevich, Y., Rabinovich, A.M.: Definability and undefinability with real order at

the background. J. Symb. Log. 65(2), 946–958 (2000)
9. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.

Information and Control 9, 521–530 (1966)
10. McNaughton, R., Papert, S.: Counter-free Automata. MIT Press (1971)
11. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.

Trans. Amer. Math. Soc. 141, 1–35 (1969)
12. Schützenberger, M.-P.: On finite monoids having only trivial subgroups. Informa-

tion and Control 8, 190–194 (1965)
13. Shelah, S.: The monadic theory of order. Ann. of Math. (2) 102(3), 379–419 (1975)
14. Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A.,

(eds.) Handbook of Formal Languages, vol. 3, chapter 7, pp. 389–455. Springer
(1997)

Reachability is in DynFO

Samir Datta1, Raghav Kulkarni2, Anish Mukherjee1, Thomas Schwentick3,
and Thomas Zeume3(B)

1 Chennai Mathematical Institute, Chennai, India
sdatta@cmi.ac.in

2 Center for Quantum Technologies, Singapore, Singapore
kulraghav@gmail.com

3 TU Dortmund University, Dortmund, Germany
{thomas.schwentick,thomas.zeume}@tu-dortmund.de

Abstract. We consider the dynamic complexity of some central graph
problems such as Reachability and Matching and linear algebraic prob-
lems such as Rank and Inverse. As elementary change operations we
allow insertion and deletion of edges of a graph and the modification of
a single entry in a matrix, and we are interested in the complexity of
maintaining a property or query. Our main results are as follows:
1. Reachability is in DynFO;
2. Rank of a matrix is in DynFO(+,×);
3. Maximum Matching (decision) is in non-uniform DynFO.

Here, DynFO allows updates of the auxiliary data structure defined
in first-order logic, DynFO(+,×) additionally has arithmetics at ini-
tialization time and non-uniform DynFO allows arbitrary auxiliary
data at initialization time. Alternatively, DynFO(+,×) and non-uniform
DynFO allow updates by uniform and non-uniform families of poly-size,
bounded-depth circuits, respectively.

The first result confirms a two decade old conjecture of Patnaik and
Immerman [16]. The proofs rely mainly on elementary Linear Algebra.
The second result can also be concluded from [7].

1 Introduction

Dynamic Complexity Theory studies dynamic problems from the point of view of
Descriptive Complexity (see [13]). It has its roots in theoretical investigations of
the view update problem for relational databases. In a nutshell, it investigates the
logical complexity of updating the result of a query under deletion or insertion
of tuples into a database.

As an example, the Reachability query asks whether in a directed graph
there is a path from a distinguished node s to a node t. The correct result of this
query (i.e., whether such a path exists in the current graph) can be maintained
for acyclic graphs with the help of an auxiliary binary relation that is updated by
a first-order formula after each insertion or deletion of an edge. In fact, one can
simply maintain the transitive closure of the edge relation. In terms of Dynamic
Complexity, we get that Acyclic Reachability is in DynFO. In this setting, a
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 159–170, 2015.
DOI: 10.1007/978-3-662-47666-6 13

160 S. Datta et al.

sequence of change operations is applied to a graph with a fixed set of nodes
whose edge set is initially empty [16].

Studying first-order logic as an update language in a dynamic setting is
interesting for (at least) two reasons. In the context of relational databases, first-
order logic is a natural update language as such updates can also be expressed
in SQL. On the other hand, first-order logic also corresponds to circuit-based
low level complexity classes; and therefore queries maintainable by first-order
updates can be evaluated in a highly parallel fashion in dynamic contexts.

We also consider two extensions, DynFO(+,×) and non-uniform DynFO, whose
programs can assume at initialization time multiplication and addition relations
on the underlying universe of the graph, and arbitrarily pre-computed auxiliary
relations, respectively. These two classes contain those problems that can be
maintained by uniform and non-uniform families of poly-size, bounded-depth
circuits, respectively.

The Reachability query is of particular interest here, as it is one of the sim-
plest queries that can not be expressed (statically) in first-order logic, but rather
requires recursion. Actually, it is in a sense prototypical due to its correspon-
dence to transitive closure logic. The question whether the Reachability query
can be maintained by first-order update formulas has been considered as one of
the central open questions in Dynamic Complexity. It has been studied for sev-
eral restricted graph classes and variants of DynFO [3,5,8,9,16,20]. In this paper,
we confirm the conjecture of Patnaik and Immerman [16] that the Reachability
query for general directed graphs is indeed in DynFO.

Theorem 1. Directed Reachability is in DynFO.

Our main tool is an update program (i.e., a collection of update formulas) for
maintaining the rank of a matrix over finite fields Zp against updates to indi-
vidual entries of the matrix. The underlying algorithm works for matrix entries
from arbitrary integer ranges, however, the corresponding DynFO update pro-
gram assumes that only small numbers occur.1

Theorem 2. Rank of a matrix is in DynFO(+,×).

Theorem 1 follows from Theorem 2 by a simple reduction. Whether there is a
path from s to t can be reduced to the question whether some (i, j)-entry of the
inverse of a certain matrix has a non-zero value, which in turn can be reduced to
a question about the rank of some matrix. This reduction (and similarly those
mentioned below) is very restricted in the sense that a single change in the
graph induces only a bounded number of changes in the matrix. We further use
the observation that for domain independent queries as the Reachability query,
DynFO is as powerful as DynFO(+,×). The combination of these ideas resolves
the Patnaik-Immerman conjecture in a surprisingly elementary way.

By reductions to Reachability it further follows that Satisfiability of 2-CNF
formulas and regular path queries for graph databases can be maintained in
1 More precisely, it allows only integers whose absolute value is at most the possible
number of rows and columns of the matrix.

Reachability Is in DynFO 161

DynFO. By another reduction to the matrix rank problem, we show that the
existence of a perfect matching and the size of a maximum matching can be
maintained in non-uniform DynFO.

Theorem 3. PerfectMatching and MaxMatching are in non-uniform
DynFO.

Related work Partial progress on the Patnaik-Immerman conjecture was achieved
by Hesse [9], who showed that directed reachability can be maintained with
first-order updates augmented with counting quantifiers, i.e., logical versions of
uniform TC0. More recently, Datta, Hesse and Kulkarni [3] studied the problem
in the non-uniform setting and showed that it can in fact be maintained in
non-uniform AC0[⊕], i.e., non-uniform DynFO extended by parity quantifiers.

Dynamic algorithms for algebraic problems have been studied in [17–19].
The usefulness of matrix rank for graph problems in a logical framework has
been demonstrated in [14]. Both [14,18] contain reductions from Reachability to
matrix rank (different from ours). A dynamic algorithm for matrix rank, based
on maintaining a reduced row echelon form, is presented in [7]. This algorithm
can also be used to show that matrix rank is in DynFO(+,×). More details are
discussed in Section 3.1.

In [18,19] a reduction from maximum matching to matrix rank has been
used to construct a dynamic algorithm for maximum matching. While in this
construction the inverse of the input matrix is maintained using Schwartz Zippel
Lemma, we use the Isolation Lemma of Mulmuley, Vazirani and Vazirani’s [15]
to construct non-uniform dynamic circuits for maximum matching.

The question whether Reachability can be maintained by formulas from first-
order logic has also been asked in the slightly different framework of First-Order
Incremental Evaluation Systems (FOIES) [4]. It is possible to adapt our update
programs to show that Reachability can be maintained by FOIES.

Organization After some preliminaries in Section 2, we describe in Section 3
dynamic algorithms for matrix rank and Reachability, independent of a par-
ticular dynamic formalism. In Section 4 we show how these algorithms can be
implemented as DynFO programs. Section 5 contains open ends.

2 Preliminaries

We refer the reader to any standard text for an introduction to linear algebraic
concepts (see, e.g., [2]). We briefly survey some relevant ones here. Apart from
the concept of vector space use its basis i.e. a linearly independent set of vectors
whose linear combination spans the entire vector space and its dimension i.e. the
cardinality of any basis. We will use matrices as linear transformations. Thus an
n×m matrix M over a field F yields a transformation TM : Fm → F

n defined by
TM : x �→ Mx. We will abuse notation to write M for both the matrix and the
transformation TM . The kernel of M is the subspace of Fm consisting of vectors

162 S. Datta et al.

x satisfying Mx = 0 where 0 ∈ F
n is the vector of all zeroes. In this paper we

mainly study the following algorithmic problems.

MatrixRank
Given: Integer matrix A
Output: rank(A) over Q

Reach
Given: Directed graph G, nodes s, t
Question: Is there a path from s to t in G?

PerfectMatching
Given: Undirected graph G
Question: Is there a perfect matching in G?

MaxMatching
Given: Undirected graph G
Output: Maximum size of a matching in G

For each natural number n, [n] denotes {1, . . . , n}.

3 Dynamic Algorithms for Rank, Reachability and
Others

In this section, we present dynamic algorithms in an informal algorithmic frame-
work. Their implementation as dynamic programs in the sense of Dynamic Com-
plexity will be discussed in the next section. However, the reader will easily verify
that these algorithms are highly parallelizable (in the sense of constant time par-
allel RAMs or the complexity class AC0). We first describe how to maintain the
rank of a matrix. Then we describe how to maintain an entry of the inverse of a
matrix by a reduction to the rank of a matrix, and show that this immediately
yields an algorithm for Reachability in directed graphs.

Theorem 3 uses the algorithm for rank in combination with the Isolation
Lemma [15], more specifically its use described in [1], and a reduction from
maximum matching to rank [11].

3.1 Maintaining the Rank of a Matrix

In this subsection we show that the rank of a matrix A can be maintained dynam-
ically in a highly parallel fashion. We describe the algorithm for integer matrices,
but it can be easily adapted for matrices with rational entries. At initialization
time, the algorithm gets a number n of rows, a number m of columns, and a
bound N for the absolute value of entries of the matrix A. Initially, all entries
aij have value 0. Each change operation changes one entry of the matrix.

First, we argue that for maintaining the rank of A it suffices to main-
tain the rank of the matrix (A mod p) for polynomially many primes of size
O(max(n, log N)3). To this end recall that A has rank at least k if and only if
A has a k × k-submatrix A′ whose determinant is non-zero. The value of this
determinant is bounded by n!Nn, an integer with O(n(log n + log N)) many
bits. Therefore, it is divisible by at most O(n(log n + log N)) many primes.
By the Prime Number Theorem, there are ∼ max(n,log N)3

logmax(n,log N)3 many primes in
[max(n, log N)3]. Hence for n large enough, the determinant of A′ is non-zero if
and only if there is a prime p ∈ [max(n, log N)3] such that the determinant of
(A′ mod p) is non-zero. Hence the rank of A is at least k if and only if there is a
prime p such that the rank of (A mod p) is at least k. Thus in order to compute

Reachability Is in DynFO 163

Fig. 1. A basis A with an A-good basis B. The first three (column) vectors of B are
in the kernel K. The principal components of the two other vectors are marked in red.

the rank of A it suffices to compute the rank of (A mod p) in parallel for the
primes in [max(n, log N)3], and to take maximum over all such ranks.

Now we show how to maintain the rank of a n × m matrix A over Zp. The
idea is to maintain a basis of the column space that contains a basis of the kernel
of A. The number of non-kernel vectors in the basis determines the rank of A.

By K we denote the kernel of A, i.e., the vector space of vectors v with
Av = 0. For a vector v in Z

m
p , we write S(v) for the set of non-zero coordinates

of Av, that is, the set of all i, for which (Av)i �= 0.
As auxiliary data structure, we maintain a basis B of Zm

p with the following
additional property, called A-good. A vector v ∈ B is i-unique with respect to
B and A, for some i ∈ [n], if i ∈ S(v) but i �∈ S(w), for every other w ∈ B. We
omit A when it is clear from the context. A basis B of Zm

p is A-good if every
v ∈ B − K is i-unique with respect to B and A, for some i. For v ∈ B − K in
an A-good basis B, the minimum i for which v is i-unique is called the principal
component of v, denoted by pc(v). Figure 1 illustrates an A-good basis.

The following proposition shows that it suffices to maintain A-good bases in
order to maintain matrix rank modulo p.

Proposition 1. Let A be an n × m matrix over Zp and B an A-good basis of
Z

m
p . Then rank(A) = n − |B ∩ K|.

We now show how to maintain A-good bases modulo a prime p. Initially, the
matrix A is all zero and every basis B of Z

m
p is A-good, as all its vectors are

in K. Besides B, the algorithm also maintains the vector Av, for every v ∈ B,
which is easy to do, as each change affects only one entry of A.

It is sufficient to describe how the basis can be adapted when one matrix
entry aij of A is changed. We denote the new matrix by A′, its entries by a′

ij , its
kernel by K ′ and, for a vector v, the set of non-zero coordinates of A′v by S′(v).
Clearly, for every vector v, Av and A′v can only differ in the i-th coordinate as
the only difference between A and A′ is that aij �= a′

ij . Therefore, if the A-good
basis B is not A′-good, this can be only due to changes of the sets S′(v) with
respect to i. More specifically,

(a) there might be more than one vector v ∈ B with i ∈ S′(v), and
(b) there might be a vector u ∈ B such that pc(u) = i but i �∈ S′(u).

164 S. Datta et al.

Algorithm 1 Computation of B′ from B.
(0) Copy all vectors from B to B′

(1) If U ∪ V �= ∅ then:
(a) Choose v̂ as follows:

(i) If V �= ∅, let v̂ be the minimal element in V (with respect to the lexico-
graphic order obtained from the order on V).

(ii) If V = ∅ and U �= ∅, let v̂ def
= u.

(b) Make v̂ i-unique by the following replacements in B′:
(i) Replace each element w ∈ W by w − (A′w)i(A

′v̂)−1
i v̂.

(ii) If v̂ ∈ V , replace each element v ∈ V , v �= v̂, by v − (A′v)i(A′v̂)−1
i v̂.

(iii) If v̂ ∈ V and U �= ∅, replace u by û
def
= u − (A′u)i(A′v̂)−1

i v̂.
(c) If u exists and i /∈ S′(u) (note: U = ∅) then let û

def
= u.

(2) If û has been defined (note: i /∈ S′(û)) and S′(û) �= ∅ then:
(a) Choose k minimal in S′(û).
(b) Make û k-unique by replacing every vector v ∈ B′ with k ∈ S′(v) by v −

(A′v)k(A′û)−1
k û.

(3) Compute A′v, for every v ∈ B′ (with the help of the vectors Au, for u ∈ B)

When constructing an A′-good basis B′ from the A-good basis B, those two
issues have to be dealt with. To state the algorithm, the following definitions
are useful. Let u denote the unique vector from B with pc(u) = i, if such a
vector exists. The set of vectors v ∈ B with i ∈ S′(v) can be partioned into
three sets U , V and W where

– U = {u} if i ∈ S′(u), otherwise U = ∅.
– V is the set of vectors v ∈ B ∩ K with i ∈ S′(v); and
– W is the set of vectors w ∈ B − K, with i ∈ S′(w) but w �= u (thus, in

particular pc(w) �= i).

For vectors v ∈ V , only i is a candidate for being the principal component
since S′(v) = {i} for such v because Av = 0 and the vectors Av and A′v may
only differ in the i-th component.

The idea for the construction of the basis B′ is to apply modifications to
B in two phases. In the first phase, when U ∪ V �= ∅, a vector v̂ ∈ U ∪ V is
chosen as the new vector with principal component i. The i-uniqueness of v̂ is
ensured by replacing all other vectors x with i ∈ S′(x) by x − (A′x)i(A′v̂)−1

i v̂,
where (A′v̂)−1

i denotes the inverse of the i-th entry of A′v̂. The second phase
assigns, when necessary, a new principal component k to the vector u or to its
replacement from the first phase. Furthermore it ensures the k-uniqueness of this
vector. The detailed construction of B′ from B is spelled out in Algorithm 1.

Proposition 2. Let A and A′ be n × m matrices such that A′ only differs from
A in one entry a′

ij �= aij. If B is an A-good basis of Zm
p and B′ is constructed

according to Algorithm 1 then B′ is an A′-good basis of Zm
p .

An anonymous referee pointed out that the above stated algorithm for matrix
rank (modulo p) is very similar to a dynamic algorithm for matrix rank presented

Reachability Is in DynFO 165

as Algorithm 1 in [7] in a context where parallel complexity was not considered.
Indeed, both algorithms essentially maintain Gaussian elimination, but the algo-
rithm in [7] maintains a stronger normal form (reduced row echelon form) that
differs by multiplication by a permutation matrix from our form. However, Algo-
rithm 1 in [7], restricted to single entry changes and integers modulo p, can be
turned into an AC0 algorithm by observing that the sorting step 12 only requires
moving two rows to the appropriate places.

3.2 Maintaining Reachability

Next, we give a dynamic algorithm for Reachability. To this end, we first show
how to reduce Reachability to the test whether an entry of the inverse of an
invertible matrix equals some small number. Testing such a property will in
turn be reduced to matrix rank.

We remind the reader, that for Reachability the number n of nodes is fixed
at initialization time and the edge set is initially empty. Afterwards in each step
one edge can be deleted or inserted. For simplicity, we assume that two nodes
s and t are fixed at initialization time and we are always interested in whether
there is a path from s to t. To maintain Reachability for arbitrary pairs, the
algorithm can be run in parallel, for each pair of nodes.

For a given directed graph G = (V,E) with |V | = n, we define its adjacency
matrix A = AG, where Au,v = 1 if u �= v and there is a directed edge (u, v) ∈ E,
and otherwise Au,v = 0.

The matrix I − 1
nA is strictly diagonally dominant, therefore it is invertible

(see e.g. [12, Theorem6.1.10.]) and its inverse can be expressed by its Neumann
series as (I − 1

nA)−1 = I +
∑∞

i=1 (1
nA)i. The crucial observation is that the

(s, t)-entry of the matrix on the right-hand side is non-zero if and only if there
is a directed path from s to t. Therefore it suffices to maintain (I − 1

nA)−1 in
order to maintain Reachability. To be able to work with integers, we consider
the matrix B

def= nI − A rather than I − 1
nA. Clearly, the (s, t)-entry in B−1 is

non-zero if and only if it is in (I − 1
nA)−1. Thus, for maintaining reachability it

is sufficient to test whether the (s, t) entry of B−1 is non-zero.
More generally we show how to test whether the (i, j)-entry of the inverse

B−1 of an invertible matrix B equals a number a ≤ n using matrix rank. A
similar reduction has been used in [14, p.99]. Let b be the column vector with
bj = 1 and all other entries are 0. For every l ≤ n, the lth entry of the vector B−1b
is equal to the (l, j)-entry (B−1)l,j of B−1. In particular, the unique solution of
the equation Bx = b has (B−1)i,j as ith entry. Now let B′ be the matrix resulting
from B by adding an additional row with 1 in the i-column and otherwise zero.
Let further b′ be b extended by another entry a. The equation B′x = b′ now
corresponds to the equations Bx = b and xi = a and, by the above, this system
is feasible if and only if the (i, j)-entry of B−1 is equal to a. On the other hand,
B′x = b′ is feasible if and only if rank(B′) = rank(B′|b′), where (B′|b′) is the
(n + 1) × (n + 1) matrix obtained by appending the column b′ to B′. As B is
invertible, rank(B′) = rank(B) = n and therefore, we get the following result.

166 S. Datta et al.

Proposition 3. Let B be an invertible matrix, a ≤ n a number, and B′ and
b′ as just defined. Then, the (i, j)-entry of B−1 is equal to a if and only if
rank(B′|b′) = n.

Thus, to maintain a small entry of the inverse of a matrix it suffices to maintain
the rank of the matrix B′|b′ and to test, whether this rank is n (or, otherwise
n + 1). As every change in B yields only one change in B′|b′, Algorithm 1 can
be easily adapted for this purpose.

By choosing a = 0, the following corollary immediately follows from the
observation made above, that the (s, t)-entry of the matrix (nI − A)−1 is non-
zero if and only if there is a directed path from s to t. It implies that also
reachability can be maintained.

Corollary 1. Let G be a directed graph with n vertices, A its adjacency matrix,
B = nI − A, a = 0, and B′ and b′ as defined above (with s and t instead
of i and j). Then, there is a path from node s to node t in G if and only if
rank(B′|b′) = n + 1.

4 Matrix Rank and Reachability in DynFO

In this section we show Theorems 1 and 2. The proofs are based on the algorithms
presented in Section 3. The proof for Theorem 3 is given in the full version of the
paper. We first give the basic definitions for dynamic complexity, and show that,
for domain-independent queries, DynFO programs with empty initialization are
as powerful as DynFO programs with (+,×)-initialization. Then we give proof
sketches for the two theorems.

4.1 Dynamic Complexity

We basically adopt the original dynamic complexity setting from [16], although
our notation is mainly from [20].

In a nutshell, inputs are represented as relational logical structures consist-
ing of a universe, relations over this universe, and possibly some constant ele-
ments. For any change sequence, the universe is fixed from the beginning, but
the relations in the initial structure are empty. This initially empty structure
is then modified by a sequence of insertions and deletions of tuples. The goal
of a dynamic program is to answer a given query after each prefix of a change
sequence. To this end, the program can use some data structures, represented
by auxiliary relations. Depending on the exact setting, these auxiliary relations
might be initially empty or might contain some precomputed tuples.

We say that a dynamic program maintains a query q if it has a desig-
nated auxiliary relation that always coincides with the query result for the cur-
rent database. An update program basically consists of two update formulas
φR
insS (x;y) and φR

delS (x;y) for each auxiliary relation R, and each input rela-
tion S; one for updates of R after insertions of S-tuples and one for deletions
of S-tuples. Intuitively, when modifying the tuple x with the operation δ, then

Reachability Is in DynFO 167

all tuples y satisfying φR
δ (x;y) will be contained in the updated relation R.

Besides that, a program might have functions that define the initial values of
the auxiliary relations.

Example 1. The transitive closure of an acyclic graph can be maintained by an
update program with one binary auxiliary relation T which is intended to store
the transitive closure [4,16]. After inserting an edge (u, v) there is a path from x
to y if, before the insertion, there has been a path from x to y or there have been
paths from x to u and from v to y. Thus, T can be maintained for insertions by
the formula φT

insE (u, v;x, y) def= T (x, y) ∨
(
T (x, u) ∧ T (v, y)

)
. The formula for

deletions is slightly more complicated.

Here, we concentrate on the following three dynamic complexity classes:

– DynFO is the class of all dynamic queries that can be maintained by
dynamic programs with formulas from first-order logic starting from an
empty database and empty auxiliary relations.

– DynFO(+,×) is defined as DynFO, but the programs have three particular
auxiliary relations that are initialized as a linear order and the correspond-
ing addition and multiplication relations. There might be further auxiliary
relations, but they are initially empty.

– Non-uniform DynFO is defined as DynFO, but the auxiliary relations may
be initialized by arbitrary functions.

4.2 DynFO and DynFO(+,×) Coincide for Domain Independent
Queries

Next, we show that DynFO and DynFO(+,×) coincide for queries that are invari-
ant under insertion and deletion of isolated elements. More precisely, a query q is
domain independent, if q(D1) = q(D2) for all databases D1 and D2 that coincide
in all relations and constants (but possibly differ in the underlying domain). As
an example, the Boolean Reachability query is domain independent, as its result
is not affected by the presence of isolated nodes (besides s and t).

Theorem 4. For every domain-independent query q,
q ∈ DynFO(+,×) if and only if q ∈ DynFO.

The proof idea is to simulate several computations. The DynFO program P ′

simulates several “runs” of the DynFO(+,×) program P, one for each m ≤ √
n,

where n is the domain size. Such a simulation starts as soon as m elements
become “active” and serves to answer the query for the period when at least (m−
1)2 but less than m2 elements are active. More details about this construction
can be found in the full paper.

Remark 1. Kousha Etessami already observed that arithmetic can be defined
incrementally, so that at any point there are relations <ad, +ad and ×ad that
represent a linear order on the activated domain, and the ternary addition and
multiplication relations [6].

168 S. Datta et al.

4.3 Matrix Rank in DynFO(+,×)
To the best of our knowledge, computational linear algebra problems like matrix
rank and matrix inverse have not been studied before in dynamic complexity
(with the notable exception of Boolean matrix multiplication in [10]). Therefore,
there is no standard way of representing the matrix rank problem in the dynamic
complexity framework. The key question is how to represent the numbers that
appear in a matrix, as their size can grow arbitrarily compared to the dimensions
of the matrix. We use a representation that does not allow matrices with large
numbers but suffices for our applications in which matrix entries are not larger
than the number of rows in the matrix.

More precisely, an input database for the matrix rank query MatrixRank
consists of two ternary relations M+,M− and a linear order <. In the following,
we identify the k-th element with respect to < with the number k (and the
minimal element represents 1). That the matrix has value a > 0 at position (i, j)
is represented by a triple (i, j, a) in M+. Likewise, aij = a < 0 is represented
by a triple (i, j,−a) in M−. For each i, j, at most one triple (i, j, a) can be
present in M+ ∪ M−. If, for some i, j there is no triple (i, j, a) then ai,j = 0. In
this way, we can represent n × n-matrices over {−n, . . . , n} by databases with
domain {1, . . . , n}. Non-square matrices can be represented as n×n-matrices in
a straightforward manner with the help of zero-rows or zero-columns.

Change operations might insert a triple (i, j, a) to M+ or M− (in case, no
(i, j, b) is there), or delete a triple, but we do not allow change operations on <.
That is, basically, single matrix entries can be set to 0 or from 0 to some other
value. Initially, M+ and M− are empty, that is the matrix is the all-zero matrix,
but < is a complete linear order. The query MatrixRank maps a database D
representing a matrix A in this way to the set {rank(A)}, in case rank(A) > 0
and to ∅ otherwise.

Theorem 5. MatrixRank is in DynFO(+,×).

There is a subtle technical point in the interpretation of the statement
“MatrixRank is in DynFO(+,×)”. The database representing the input matrix
A comes with a linear order <A and there is the linear order < initially given to
a DynFO(+,×) program. We require here that these orders are identical (as they
are in our applications).

Proof. Algorithm 1 can be extended and translated into a dynamic program
for MatrixRank in a straightforward manner. Let dom be a given domain. In
our setting, we have N = n, therefore it is sufficient to consider prime numbers
p ≤ n2. Such prime numbers and arithmetics in Zp can be expressed with the
help of pairs over dom, via the bijection (u1, u2) �→ (u1 − 1) × n + u2. ��

Remark 2. Due to the initial linear order, MatrixRank does not fit into the
domain independence framework of Theorem 4. To maintain matrix rank in
DynFO, we would need to build < incrementally when entries are inserted to the
matrix. However, when we use MatrixRank to maintain a domain independent
query, Theorem 4 yields a DynFO upper bound.

Reachability Is in DynFO 169

4.4 Reachability in DynFO

As described at the beginning of this section, the reachability query Reach has
a straightforward, and standard formalization in the dynamic complexity frame-
work. Now we can sketch the proof of the main result of this paper.

Theorem 1 (restated). Reach is in DynFO.

Proof. It is straightforward to transform the approach of Proposition 3 into
a dynamic program with arithmetic. The edge relation E can be viewed as an
adjacency matrix A for the graph, and nI−A and then B′|b′ can be easily defined
in first-order logic. We note that each change of one pair in E only changes one
entry in B′|b′. It thus suffices to maintain rank(B′|b′) by the program of Theorem
5 to maintain reachability from s to t. This shows Reach ∈ DynFO(+,×). As the
reachability query is domain independent, Theorem 4 yields the theorem. ��

Remark 3. In the DynFO-framework considered here, elements cannot be
removed from the domain. Removal of nodes is allowed in the FOIES-framework
of Dong, Su and Topor: when a node is not used in any edge, then it is removed
from the domain. The proof above can be adapted to this framework.

By simple reductions we obtain the following further results.

Theorem 6. (a) Regular path queries in directed labeled graphs can be main-
tained in DynFO. (b) Conjunctions of regular path queries in directed labeled
graphs can be maintained in DynFO. (c) 2-SAT is in DynFO.

5 Conclusion

The main technical contribution of the paper is that maintaining the rank of a
matrix is in DynFO(+,×). From this we derive that Reachability can be main-
tained in DynFO improving on both the complexity and uniformity of previous
results [3,9]. In the case of matching, we are able to prove only a non-uniform
bound. As exemplified by regular path queries and 2-SAT, the fact that Reach-
ability is in DynFO may help to show that many other queries and problems can
be maintained in DynFO. However, the DynFO bound obtained here does not
extend to all of NL, simply because DynFO is not known to be closed under even
unbounded first order projection reductions. We believe that also the approach
through Linear Algebra might yield further insights.

It is an interesting open question whether a Reachability witness can be
maintained in DynFO and whether a Shortest Path witness can be maintained
in DynTC0. Some further reflections on our results can be found in the full
version of the paper.

Acknowledgments. We would like to thank William Hesse for stimulating and illu-
minating discussions. We are grateful to the anonymous referee who brought [7] to our
attention. Further we thank Nils Vortmeier for proofreading. The first and the third

170 S. Datta et al.

authors were partially funded by a grant from Infosys Foundation. The second author
is supported by the Singapore National Research Foundation under NRF RF Award
No. NRF-NRFF2013-13. The last two authors acknowledge the financial support by
DFG grant SCHW 678/6-1.

References

1. Allender, E., Reinhardt, K., Zhou, S.: Isolation, matching, and counting uniform
and nonuniform upper bounds. J. Comput. Syst. Sci. 59(2), 164–181 (1999)

2. Artin, M.: Algebra. Featured Titles for Abstract Algebra. Pearson (2010)
3. Datta, S., Hesse, W., Kulkarni, R.: Dynamic Complexity of Directed Reachability

and Other Problems. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E.
(eds.) ICALP 2014. LNCS, vol. 8572, pp. 356–367. Springer, Heidelberg (2014)

4. Dong, G., Jianwen, S.: Incremental and decremental evaluation of transitive closure
by first-order queries. Information and Computation 120(1), 101–106 (1995)

5. Dong, G., Jianwen, S.: Arity bounds in first-order incremental evaluation and def-
inition of polynomial time database queries. J. Comput. Syst. Sci. 57(3), 289–308
(1998)

6. Etessami, K.: Dynamic tree isomorphism via first-order updates. In: PODS, pp.
235–243 (1998)

7. Gudmund Skovbjerg Frandsen and Peter Frands Frandsen: Dynamic matrix rank.
Theor. Comput. Sci. 410(41), 4085–4093 (2009)

8. Grädel, E., Siebertz, S.: Dynamic definability. In: ICDT, pp. 236–248 (2012)
9. Hesse, W.: The dynamic complexity of transitive closure is in DynTC0. Theor.

Comput. Sci. 296(3), 473–485 (2003)
10. Hesse, W., Immerman, N.: Complete problems for dynamic complexity classes. In:

LICS, p. 313 (2002)
11. Hoang, T.M.: On the matching problem for special graph classes. In: IEEE Con-

ference on Computational Complexity, pp. 139–150 (2010)
12. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press (2012)
13. Immerman, N.: Descriptive complexity. Graduate texts in computer science.

Springer (1999)
14. Laubner, B.: The structure of graphs and new logics for the characterization of

Polynomial Time. PhD thesis, Humboldt University of Berlin (2011)
15. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-

sion. Combinatorica 7(1), 105–113 (1987)
16. Patnaik, S., Immerman, N.: Dyn-FO: A parallel, dynamic complexityclass. Journal

of Computer and System Sciences 55(2), 199–209 (1997)
17. Reif, J.H., Tate, S.R.: On dynamic algorithms for algebraic problems. J. Algorithms

22(2), 347–371 (1997)
18. Sankowski, P.: Dynamic transitive closure via dynamic matrix inverse (extended

abstract). In: FOCS, pp. 509–517 (2004)
19. Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: SODA, pp.

118–126 (2007)
20. Zeume, T., Schwentick, T.: On the quantifier-free dynamic complexity of reacha-

bility. Inf. Comput. 240, 108–129 (2015)

Natural Homology

Jérémy Dubut1,2, Éric Goubault1, and Jean Goubault-Larrecq2(B)

1 LIX, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
2 LSV, ENS Cachan, F-94230 Cachan, France

goubault@lsv.ens-cachan.fr

Abstract. We propose a notion of homology for directed algebraic
topology, based on so-called natural systems of abelian groups, and which
we call natural homology. As we show, natural homology has many desir-
able properties: it is invariant under isomorphisms of directed spaces, it is
invariant under refinement (subdivision), and it is computable on cubical
complexes.

Keywords: Directed algebraic topology · Homology · Path space · Geo-
metric semantics · Persistent homology · Natural system

1 Introduction

The purpose of this paper is to introduce a satisfactory notion of homology for
directed algebraic topology. Let us clarify.

From a mathematical point of view, algebraic topology is a well-established,
and rich domain. Its purpose is to classify shapes (topological spaces), disre-
garding differences in shapes that can be obtained from each other by contin-
uous deformations (homotopy equivalence). A particularly useful notion there
is homology, which is a sound abstraction of homotopy equivalence. Soundness
means, notably, that if two spaces are not homologous, then one cannot deform
one into the other continuously, in whichever way we attempt this. Homology
is also computable [14,21] on finitely presented shapes (simplicial, resp. cubical
sets), in sharp contrast with homotopy.

Directed algebraic topology is a variant of algebraic topology where the spaces
also have a direction of time [12], and deformations must not only be continuous
but also preserve the direction of time. Directed algebraic topology was born out
of the so-called geometric semantics of concurrent processes (progress graphs [3],
generally attributed to E. W. Dijkstra), and the higher-dimensional automaton
model of true concurrency [18]. Imagine n concurrent processes, each with a
local time ti ∈ [0, 1]. A configuration is a point in [0, 1]n, and a trajectory is a
continuous and monotonic map from [0, 1] to [0, 1]n: monotonicity (a.k.a., direct-
edness) reflects the fact that no process can go back in time. One can arguably
consider as equivalent any two trajectories that are dihomotopic, namely that
can be deformed into each other continuously, while respecting monotonicity at
all times. This not only yields a geometric semantics for concurrency, but also
one that is at the root of fast algorithms for state-space reduction, deadlock and
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 171–183, 2015.
DOI: 10.1007/978-3-662-47666-6 14

172 J. Dubut et al.

unreachable states detection, and verification of coordination properties, as in
e.g. [6,8–10].

However intuitive the geometric semantics of processes may be, previous
attempts at defining notions of homology suited to directed algebraic topology
were somehow disappointing. We discuss them in Section 2. Our contribution
is: 1. a new notion of directed homology, based on so-called natural systems of
abelian groups, and which we call natural homology, and 2. the proofs of its basic
properties, the most important probably being invariance under refinement—
a central property of truly concurrent semantics [22]. We define and motivate
natural systems (on pospaces) in Section 3, and the requirement for a notion of
bisimilarity between them in Section 4. Finite cubical complexes provide finite
presentations of pospaces, as explained in Section 5. We adapt the notion of
natural homology to cubical complexes, and we prove the properties mentioned
above in Section 6. We conclude in Section 7.

2 Related Work

Homology is a classical concept in (undirected) algebraic topology, and we shall
only discuss the notions that various authors have proposed to fit the directed
case. Non-abelian homology [17] may seem promising; so far, we are only aware
of work by Krishnan in this direction [16]. All the other attempts we know
[4,7,11,15] have the same weakness: they are not precise enough.

By this we mean, first, that directed homology should not be invariant under
(undirected) homotopy. If it were, it would be blind to the essential feature of
directed algebraic topology: that directions are important. In that case, we may
as well use classical homology theories, which are already homotopy invariants.
This is the bane of early directed homology theories [7].

Second, the Hurewicz theorems in classical algebraic topology state that the
loss of information we must pay when replacing homotopy groups by homology
groups is limited. One trivial consequence of these results is that a space X whose
first homotopy group is non-trivial (different from 0) also has a non-trivial first
homology group H1(X). Similarly, we would like any dihomotopically non-trivial
shape to have non-trivial directed homology. This fails in any of the remaining
proposals [4,11,15], as we explain now.
Consider the matchbox example,
due to Fahrenberg [4], shown on
the right. The exploded view is on
the left, the finished product on the
right. Note that this is not a cube:
the bottom face and the interior are
missing. The matchbox is meant to
stand on its tip (vertex s), and time
goes up, that is, a point is before
another one if and only if its alti-
tude is smaller.

C

d
c

b
a

s′

t′

v′
u′

v

u

t

s

A
B

E
D

a
b

d
c

Fig. 1. Fahrenberg’s matchbox example

Natural Homology 173

Look at the edges a, b, c, d. The concatenation a � c of a and c is a directed
path from s to t, and b�d is another one. A dihomotopy between these two would
be a continuous map h from [0, 1] to the space of directed paths from s to t such
that h(0) = a � c and h(1) = b � d. If h existed, then for some α, h(α) would
be a directed path going through t′, and then down to t: this is impossible,
since h(α) must remain directed for all values of α. Indeed, a � c and b � d
are not dihomotopic. In particular, the matchbox has non-trivial dihomotopy.
This contrasts with the undirected view: the matchbox is contractible, and in
particular all its classical homotopy and homology groups are trivial (equal to
0). We now examine why this example is not dealt properly by the existing
proposals for directed homology.

Grandis [11] defined a notion of directed homology by enriching the classical
homology groups of the space at hand with a partial order. The idea is that the
generators of homology groups are holes, and the partial order serves to remem-
ber which holes come before which others. Since the classical homology groups of
the matchbox are trivial, so is the ordered homology group that Grandis defines.
However, the matchbox is dihomotopically non-trivial.

Kahl’s homology graphs [15], which are defined, similarly, as homology groups
with extra relations, suffer from the same problem.

Finally, the matchbox was produced by Fahrenberg to show that his own
notion of directed homology [4] is unsatisfactory. The problem is common to
any notion of directed homology that is based on homology groups, or even on
cancellative monoids (an assumption used in [17]). Let e be the directed edge
from t to t′. The directed paths a�c�e and b�d�e are dihomotopic, hence must
be in the same equivalence class of (directed) homology. Cancellation of e then
implies that a�c and b�d must be equivalent with respect to directed homology.

Our solution avoids cancellation by working with so-called natural systems
of abelian groups, and builds upon several prior strands of research. The natural
systems themselves arise from Baues and Wirsching’s work on the cohomology of
small categories [1]. The view of directed homotopy (resp., homology) as being
based on classical homotopy (resp., homology) of spaces of traces can be traced
to Raussen [19], and the carrier morphism we use near the end has its origin in
work by Fajstrup [5]. The idea of using natural systems, indexed by so-called
traces, to organize information on several topological objects together is also
present in [19], although Raussen did not apply this to homology.

The notion of bisimulation of such natural systems, which we define to forget
about irrelevant differences between them, is novel. We shall see later why this
is needed. To make the argument short, a natural system of homology groups is
an immense picture of homology groups, indexed by traces, but we do not care
about the whole picture, rather about the patterns of change we see in groups
as we extend the traces. This is a very similar concern as in persistent homology
(of undirected spaces) [2]. However, the latter uses a very simple, linear ordering
of the indices, and we must deal with a much more complex situation.

174 J. Dubut et al.

3 Natural Homology of Pospaces, and Natural Systems

Let X be a pospace, i.e., a topological space X with a partial order ≤ whose
graph is closed in X2. A fundamental example is I, the interval [0, 1] with the
usual ordering. A path from a to b in X is a continuous map π : I → X such that
π(0) = a and π(1) = b. It is a dipath (short for directed path) if and only if it is
also monotonic. Following Raussen [19], a (directed) trace is the equivalence class
〈π〉 of a dipath π modulo reparametrization: a reparametrization is a monotonic
continuous onto map ϕ from I to I, and π and π′ are equivalent if and only
if there are two reparametrizations ϕ, ψ such that π ◦ ϕ = π′ ◦ ψ. Traces are
dipaths, up to the speed at which we travel from time t = 0 to time t = 1, which
is considered irrelevant. Given two (di)paths π from a to b and π′ from b to c,
the concatenation π � π′ maps t ∈ [0, 1/2] to π(2t) and t ∈ [1/2, 1] to π′(2t − 1).
This induces an associative operation � on the quotient space of traces.

A standard notion of classical algebraic topology is homotopy. Consider the
n-cube In, and write ∂In for its boundary. Given a path-connected space Y , and
fixing a so-called base point y ∈ Y , an n-loop in Y is a continuous map from
In to Y that maps ∂In to y. In particular, for n = 1, a 1-loop is just a path
from y to itself. A homotopy h between two n-loops λ, λ′ is a continuous map
from I × In to Y such that h(0,) = λ, h(1,) = λ′, and, for each α, h(α,)
maps ∂In to the base point y. If such a homotopy exists, then one says that λ
and λ′ are homotopic—we can deform one continuously into the other. We let
πn(Y) denote the set of equivalence classes of n-loops of Y modulo homotopy.
It is useful to visualize the case n = 1, where loops modulo homotopy form a
group π1(Y) under concatenation.

One can define dihomotopy and dihomology similarly, but one should be
careful. For example, directed n-loops in a pospace are trivial. Instead, Raussen
[19] proposes to consider (n − 1)-loops in the space Y = Tr(X; a, b) of traces
from a to b in X. For example, for n = 1, the points of Y are the traces from a
to b, and any path between two such points 〈π〉 and 〈π′〉 is easily seen to be (up
to reparametrization of π and π′) a homotopy between π and π′ that fixes the
two endpoints a and b: a continuous map h : I × I → X such that h(0,) = π,
h(1,) = π′, h(, 0) = a, h(, 1) = b, and, for every value of the deformation
parameter α, h(α,) is a dipath from a to b. The zeroth homology group H0(Y)
of Y is of the form Z

k with k the number of equivalence classes of traces from a to
b up to dihomotopy. In general, we may define the n-th directed homology group−→
Hn(X; a, b) as the ordinary (n − 1)st singular homology group of Tr(X; a, b).

While this looks like a perfect definition of directed homology, this is still
unsatisfactory. Consider the following two pospaces. In each, time goes from left
to right and from bottom to top, starting at 0 and ending at 1. The leftmost
pospace is the geometric semantics of a PV-program [3] extended with global
synchronization (written “•”), namely (PaVa‖PaVa) • (PaVaPbVb‖PbVbPaVa).

Natural Homology 175

The rightmost pospace is the geo-
metric semantics of the PV-program
PaVaPaVa ‖ PaVaPaVa. The four
squares we carved out are those
regions of space where the two pro-
cesses would have acquired the lock
a—which is impossible. 0

1

PaVa

Pa
Va PaVaPbVb

Pb
Vb
Pa
Va

0

1

PaVaPaVa

Pa
Va
Pa
Va

It is natural to compare pospaces X with two distinguished endpoints 0 and
1 by determining their dihomology groups

−→
Hn(X;0,1). For n = 1, the two

pospaces above both have exactly six traces up to dihomotopy, shown as thick
lines: the two pospaces have the same dihomology group for n = 1, namely Z

6.
For n ≥ 2, they also have the same dihomology groups

−→
Hn(X;0,1), because the

path-connected components of their trace spaces are contractible. Therefore, the−→
Hn(;0,1) construction does not distinguish the two pospaces, although they
visibly have very different behaviors.

However, when we zoom in, and look at different pairs of end-
points, the situation changes. Consider the (PaVa‖PaVa) •
(PaVaPbVb‖PbVbPaVa) pospace again, but look at its diho-
mology group

−→
H 1(X;0, t), where t is shown on the right: this

is equal to Z
4. However, no trace space of the other pospace

(PaVaPaVa‖PaVaPaVa) has exactly four connected compo-
nents, so Z

4 cannot be a dihomology group of the latter. This
detects an essential difference between the two pospaces.

•

•

0

t

Given a trace 〈π〉, with π a dipath of X from a to b, we define
−→
Hn(X; 〈π〉) =−→

Hn(X; a, b). The family of groups
−→
Hn(X; 〈π〉), when 〈π〉 varies over traces, has

extra structure: if α is a dipath from a′ to a and β is a dipath from b to b′,
we obtain a continuous map from Tr(X; a, b) to Tr(X; a′, b′), which maps every
trace 〈π′〉 to 〈α � π′ � β〉. We call extensions the pairs (〈α〉, 〈β〉). Applying the
Hn−1 functor to the map 〈π′〉
→ 〈α � π′ � β〉, we obtain a morphism of groups−→
Hn(X; 〈π〉) to

−→
Hn(X; 〈α � π � β〉), which we denote by 〈α � � β〉. This keeps

track of how the homology picture formed by the traces from a to b inserts into
the larger picture formed by the traces from the lower point a′ to the higher
point b′.

We are ready to give formal definitions. Let X be a pospace, and FcX be
the small category whose objects are traces of X, and whose morphisms are
extensions. This is the factorization category [1] of the small category whose
objects are points of X, and whose morphisms are traces. A natural system (of
abelian groups) is by definition a functor from the factorization category of a
small category (e.g. FcX) to the category Ab of abelian groups.

Definition 1 (Natural homology). The natural homology of X is the natural
system

−→
Hn(X) that, as a functor, maps every trace 〈π〉 to −→

Hn(X; 〈π〉), and every
extension (〈α〉, 〈β〉) to 〈α � � β〉.

Figure 2 shows a few simple examples of natural homology systems
−→
H 1. On top,

we consider the pospace I itself. The middle diagram pictures the full subcat-

176 J. Dubut et al.

0 1

x y

0 1x y

[0, x] [y, 1][x, y]

[0, y][x, 1]

[0, 1]

Z ZZ Z

Z ZZ

Z Z

Z

0 1

a

b

x y

x′ y′

0 x y

[0, x] [y, 1][x, y]

[0, y] [x, 1]

a

1x′ y′

[0, x′] [y′, 1][x′, y′]

[0, y′][x′, 1]

b

Z Z Z

Z ZZ

Z Z

Z
2

ZZ Z

Z ZZ

Z Z

Z
2

Fig. 2. Natural homology of two simple pospaces

egory of the (uncountable) category FcI whose objects are traces, which are
identified to segments [s, t] with s, t ∈ {0, 1, x, y} and s ≤ t (x and y are shown
on the left). [s, s] simplifies to s. The rightmost diagram pictures the collection
of dihomology groups above each object of FcI . The bottom row is similar, and
applies to two copies of I glued at 0 and 1.

4 Bisimilarity of Natural Systems

The natural homology
−→
Hn(X) of a pospace X is very fine-grained: it not only

records local homology groups
−→
Hn(X; 〈π〉), but also for which traces they occur.

If we wish to compare the natural homology of two pospaces, the latter should be
unimportant. Just as with persistent homology [2], it is the patterns of change,
between groups

−→
Hn(X; 〈π〉) when 〈π〉 is changed into 〈α � π � β〉 by extension,

that count, not the values of the trace 〈π〉.
We introduce a notion of bisimulation of natural systems, and more generally

of Ab-valued functors, that smoothes this out. Given two small categories X,
Y and two functors F : X −→ Ab and G : Y −→ Ab, we call bisimulation
between F and G any set R of triples (x, η, y) with x an object of X, y an object
of Y and η an isomorphism of groups from Fx to Gy such that:

1. for every object x of X, R contains some triple of the form (x, η, y), and
similarly for every object y of Y ;

2. for every triple (x, η, y) ∈ R and every morphism i : x −→ x′ in X, there
is a triple (x′, η′, y′) ∈ R (hence η′ is an isomorphism) and a morphism
j : y −→ y′ in Y such that η′ ◦ Fi = Gj ◦ η, and symmetrically,

for every (x, η, y) ∈ R and every morphism j :
y −→ y′ of Y there is a triple (x′, η′, y′) ∈ R and
a morphism i : x −→ x′ such that η′◦Fi = Gj◦η. x′

x

Fx′

Fx

Gy′

Gy

y′

y

i jF i Gj

η

η′

Natural Homology 177

We say that F and G are bisimilar if and only if there is a bisimulation R
between them. This is an equivalence relation.

A practical way of showing that two functors are bisimilar is by exhibiting
an open map from one to the other. This arises from the theory of Joyal et al.
[13]; we omit the details here. The open maps from a functor F : E −→ Ab to a
functor G : X −→ Ab are the pairs (Φ, σ) where Φ is a fibration from E to X,
and σ is a natural isomorphism from F to G ◦ Φ. We say that Φ : E −→ X is a
fibration if and only if: (1) Φ is surjective on objects, i.e., for every object x of
X there is an object e of E such that Φ(e) = x, and (2) for every object e of E,
every morphism f : Φ(e) −→ x′ in X lifts to a morphism h : e −→ e′ in E such
that Φ(h) = f (in particular, Φ(e′) = x′).

Proposition 1. Two functors F : X −→ Ab and G : Y −→ Ab are bisimilar
if and only if they are related by a span of open maps.

We shall apply this to compare our natural homology of pospaces to a similar
notion of natural homology of cubical complexes. We can think of the latter as a
form of syntax for the latter. Their semantics is given by geometric realization,
as we now explain.

5 Cubical Complexes and Their Geometric Realization

A cubical complex is a finite union of certain cubes of side-length 1 parallel to
the axes in R

d, whose vertices have integer coordinates [14]. Formally, let us
define a (d-dimensional) cubical complex K as a finite set of cubes (D,x), where
D ⊆ {1, 2, · · · , d} and x ∈ Z

d, which is closed under taking past and future
faces (to be defined shortly). The cardinality |D| of D is the dimension of the
cube (D,x). Let 1k be the d-tuple whose kth component is 1, all others being 0.
Each cube (D,x) is realized as the geometric cube ρ(D,x) = I1 × I2 × · · · × Id

where Ik = [xk, xk +1] if k ∈ D, Ik = [xk, xk] otherwise, matching the definition
of [14].

When |D| = n, we write D[i] for the ith element of D. For example, if
D = {3, 4, 7}, then D[1] = 3, D[2] = 4, D[3] = 7. We also write ∂iD for D
minus D[i]. Every n-dimensional cube (D,x) has n past faces ∂0

i (D,x), defined
as (∂iD,x), and n future faces ∂1

i (D,x), defined as (∂iD,x + 1D[i]), 1 ≤ i ≤ n.
Together with these face operators, K exhibits the structure of a so-called

precubical set, in the sense that the precubical equations ∂α
i ∂β

j = ∂β
j−1∂

α
i (1 ≤

i < j, α, β ∈ {0, 1}) are satisfied. Precubical sets are a natural representation
for truly concurrent processes, and occur as the main ingredient in the definition
of higher-dimensional automata (HDA; see [18]). Cubical complexes are very
particular precubical sets. Notably, they are non-looping in the sense of Fajstrup
[5]. They are however enough for most purposes, including the definition of
geometric semantics of finite PV-programs.

The geometric realization
−−−→
Geom(K) of a precubical set K is obtained, infor-

mally, by drawing it. For example, Fahrenberg’s matchbox (Fig. 1) is really

178 J. Dubut et al.

obtained by drawing a finite precubical set (a cubical complex, really) with 2-
dimensional cubes A, B, C, D, and E, defined so that ∂0

1A = ∂0
1B (the lower

dashed connection in the exploded view), ∂0
2A = a, ∂0

2B = b, ∂0
1a = ∂0

1b = s, and
so on. Formally, let

−→
I n be the standard oriented cube [0, 1]n, with the pointwise

ordering. Form the coproduct A =
∑

e∈K

−→
I ne where ne is the dimension of e,

i.e., the disjoint union of as many copies of
−→
I n as there are n-dimensional cubes

e, for n ∈ N; the elements of A are pairs (e,a) where e is an n-dimensional
cube in K and a ∈ [0, 1]n, for some n. For convenience, for a = (a1, a2, · · · , an),
we write δα

i a for (a1, a2, · · · , ai−1, α, ai, · · · , an). Finally, we glue all these cubes
together, by defining

−−−→
Geom(K) as A/≡, where ≡ is the smallest equivalence rela-

tion such that (∂α
i e,a) ≡ (e, δα

i a). We shall write [e,a] for the point obtained
as the equivalence class of (e,a).

For a cubical complex K, the element [(D,x),a] (with D ⊆ {1, 2, · · · , d},
|D| = n, x ∈ Z

d, a ∈ [0, 1]n) of
−−−→
Geom(K) defines a point ε([(D,x),a]) =

x+
∑n

i=1 ai1D[i]. One checks easily that ε is a pospace isomorphism of
−−−→
Geom(K)

onto the union of the cubes ρ(D,x), (D,x) ∈ K. This observation is needed to
relate the notions of geometric realization of precubical sets (as used, say, in [5])
and of cubical complexes (as used in [14]).

6 Discrete Natural Homology of Cubical Complexes

Paralleling the notion of trace in a pospace, for example as in [5], there is a
notion of discrete trace in a precubical set K. Given a, b ∈ K, say that a is a
past boundary of b if and only if a = ∂0

i0
∂0

i1
· · · ∂0

ik
b for some k ≥ 0, i0, i1, . . . , ik.

For example, the edge a, the edge from s to s′, and s, are past boundaries of A
in the matchbox. Future boundaries are defined similarly, using the superscript
1 instead of 0: so the edge from u to u′, the edge from s′ to u′, and u′ itself, are
future boundaries of A. We write a b if and only if a is a past boundary of b
or b is a future boundary of a. (Beware that this is not a transitive relation; we
write ∗ for its reflexive transitive closure.) A discrete trace from a to b in K is
then a sequence c0 = a c1 c2 · · · cn = b, n ∈ N.

Abusing the FcX notation we used earlier for pospaces, let FcK be the
small category whose objects are discrete traces. Its morphisms from a discrete
trace from a to b to a discrete trace from a′ to b′ are the discrete extensions,
namely pairs of discrete traces α from a′ to a and β from b to b′. This is the
factorization category of the small category whose objects are elements of K,
and whose morphisms are discrete traces.

Note that we are not restricting a, b to be points, namely, of dimension 0;
however, it is helpful to imagine, geometrically, that a full cube a stands for the
point at its center. The construction is again due to Fajstrup [5]. Formally, for
a = (D,x), n = |D|, let â be the point [a, •] in

−−−→
Geom(K), where • = (12 , 1

2 , · · · , 1
2)

is the center of the standard cube
−→
I n. Through the ε isomorphism, â is the point

x +
∑n

i=1
1
21D[i] in R

d, the center of the cube ρ(D,x).

Natural Homology 179

A

s s′

t t′

a

b c

d

a

b c

d

A

s s′

t t′

a

b c

d

A

s s′

t t′

Fig. 3. From discrete traces to traces and vice versa

Every discrete trace α from a to b, say of the form c0 = a c1 c2 · · ·
cn = b, defines a trace α̂ from â to b̂, obtained by concatenating the n straight
lines ĉ0c1, ĉ1c2, . . . , ĉn−1cn. For a simple example, consider the cubical complex
whose geometric realization is shown on Figure 3, left. There is a discrete trace
α equal to b A t′, since b = ∂0

1A is a past boundary of A and t′ = ∂1
2∂1

1A
is a future boundary of A. The corresponding trace α̂ is shown on the same
figure, middle. Formally, if ci−1 is a past boundary ∂0

i1
∂0

i2
· · · ∂0

ik
ci of ci, then

ĉi−1 = [∂0
i1

∂0
i2

· · · ∂0
ik

ci, •] = [ci,a] where a = δ0ik
· · · δ0i2δ0i1•; define the dipath π

by π(t) = [ci, (1 − t)a + t•] for t ∈ [0, 1], and the trace ĉi−1ci as 〈π〉. Similarly
for future boundaries.

This allows us to transfer cubes a to points â ∈ −−−→
Geom(K), discrete traces α

to traces α̂ in
−−−→
Geom(K), and also discrete extensions (α, β) to extensions (α̂, β̂).

We can now mimic the natural homology of a pospace in the discrete setting of
a cubical complex K: given a discrete trace γ from a to b, let

−→
h n(K; γ) be the

(n − 1)st singular homology group of Tr(
−−−→
Geom(K); â, b̂). This defines another

natural system
−→
h n(K), this time from FcK instead of FcX , to Ab: the discrete

traces γ are mapped to
−→
h n(K; γ), and discrete extensions (α, β) are mapped to

Hn−1(〈α̂ � � β̂〉), mimicking the definition of
−→
Hn.

For finite K, Raussen [20] shows that singular homology groups of trace
spaces such as Tr(

−−−→
Geom(K); â, b̂) are computable, by computing a finite presen-

tation of the trace spaces (a so-called prod-simplicial complex) from which we
can compute homology using Smith normal form of matrices. As a consequence:

Proposition 2. For a cubical complex K, for every n ≥ 1, for all discrete trace
γ of K, the nth discrete natural homology groups

−→
h n(K; γ) are computable.

By construction, the discrete natural homology group
−→
h n(K; γ) is equal to the

geometric homology group
−→
Hn(

−−−→
Geom(K); γ̂). However (for finite K) the dis-

crete natural homology functor
−→
h n(K) only lists those for the finitely many

discrete traces, while
−→
Hn(

−−−→
Geom(K)) lists one group for each of the uncountably

many traces in
−−−→
Geom(K). The discrete functor

−→
h n(K) also has to cater for

finitely many discrete extension morphisms, whereas
−→
Hn(

−−−→
Geom(K)) has to map

uncountably many extension morphisms to group homomorphisms. This makes
quite a difference—but not one up to bisimilarity:

180 J. Dubut et al.

Theorem 1 (Discrete Nat. Homology≡Geometric Nat. Homology).
For every cubical complex K, there is an open map from the natural system−→
Hn(

−−−→
Geom(K)) to the discrete natural system

−→
h n(K). In particular, they are

bisimilar.

Before we describe the construction, notice that there is no open map in the other
direction: remember that the open maps we consider have a fibration component,
which must be surjective.

Proof. We need to define an open map (C, σ) from
−→
Hn(X), where X =−−−→

Geom(K), to
−→
h n(K). We start by building C, which must be a fibration from

FcX to FcK .
This is based on the notion of carrier sequence due to Fajstrup [5]. For a

point s in
−−−→
Geom(K), there is a unique cube e ∈ K of minimal dimension m

such that s can be written as [e,a], a ∈ −→
I m. Write C(s) for this cube e, and

call it the carrier of s. Every trace 〈π〉 in X gives rise to an ordered sequence of
cubes C(〈π〉) obtained as the carriers of π(t), t ∈ [0, 1], and removing consecutive
duplicates. This is formally defined in [5]. By a compactness argument C(〈π〉) is
a finite sequence, in fact a discrete trace, called the carrier sequence of 〈π〉. For
example, the carrier sequence of the trace on the right of Figure 3 is b A t′.

We use this to define our functor C, on objects by letting C(〈π〉) be defined
as above, and on morphisms by letting C(〈α〉, 〈β〉) = (C(〈α〉), C(〈β〉)) for every
extension (〈α〉, 〈β〉). This is surjective on objects since C(γ̂) = γ for every discrete
trace γ. We now claim that C is a fibration, and this amounts to show that: given
any trace 〈π〉 of

−−−→
Geom(K), with carrier sequence c0 · · · ck, if the latter

extends to a discrete trace c−p · · · c−1 c0
· · · ck ck+1 · · · ck+q in K, then 〈π〉 extends to
some trace 〈α � π � β〉 such that C(〈α � π � β〉) = c−p
· · · c−1 c0 · · · ck ck+1 · · · ck+q. By
induction, the cases (p, q) = (1, 0) and (p, q) = (0, 1)
suffice to establish the property. Some care has to be
taken: the extension paths are not concatenations of
simple straight lines joining the extra points ĉj , j ≥ k
or j ≤ 0. As the picture on the right shows (for
(p, q) = (0, 2)), the dipath β does not—and cannot—go
through ĉ3.

〈π〉
C

c0

c1

c2

ext

c0

c1

c2

c3 c4

ext

〈π〉

〈β〉 C

We now need to build a natural isomorphism σ :
−→
Hn(X) −→ −→

h n(K) ◦ C.
In other words, we need to build group isomorphisms σ〈π〉 :

−→
Hn(X; 〈π〉) −→

−→
h n(K; C(〈π〉)) that are natural, in the sense that, for every extension (〈α〉, 〈β〉)
of 〈π〉, and for (γ, δ) = C(〈α〉, 〈β〉) the associated discrete extension, the following
square commutes:

Natural Homology 181

−→
Hn(X; 〈α � π � β〉)

−→
Hn(X; 〈π〉)

−→
h n(K; C(〈α � π � β〉))

−→
h n(K; C(〈π〉))

〈α � � β〉 〈γ̂ � � δ̂〉

σ〈π〉

σ〈α�π�β〉

Let π be from s to t. Every cube Ik has a lattice structure
whose meet ∧ is pointwise min and whose join ∨ is pointwise
max. Write s as [C(s),a], and let s− = [C(s),a∧ •]. Recall that
• = (12 , · · · , 1

2), and that Ĉ(s) = [C(s), •]. Similarly, let Ĉ(t) =
[C(t), •], and we define t+ = [C(t), b∨•], where t = [C(t), b]. The
situation is illustrated in the two gray boxes to the right.
There are obvious dipaths ηs, λs, μt, ρt as displayed there,
too. Those induce continuous maps between trace spaces by
concatenation.

•t+•t
•̂C(t)
μt

ρt

•
s−

• s

• ̂C(s)λs

ηs

For example, there is a continuous map η∗
s : Tr(X; s, t) −→ Tr(X; s−, t) that

sends each trace 〈π′〉 to 〈ηs � π′〉. Similarly, λ∗
s(〈π′〉) = 〈λs � π′〉, and symmet-

rically, ∗μt(〈π′〉) = 〈π′ � μt〉, ∗ρt(〈π′〉) = 〈π′ � ρt〉. Each of these four maps is
a homotopy equivalence (proof omitted), and therefore induce isomorphisms in
homology. It remains to define σ〈π〉 as the composition Hn−1(∗μt)−1◦Hn−1(∗ρt)◦
Hn−1(λ∗

s)
−1 ◦ Hn−1(η∗

s) of those four isomorphisms. Naturality is, as usual,
tedious but mechanical. ��

The potential problem mentioned at the beginning of Section 4 is then solved:
the uncountable natural homology of

−−−→
Geom(K) is reduced, through bisimilarity,

to the finite, discrete natural homology of K.
A dihomeomorphism is a continuous monotonic bijection between pospaces

whose inverse is also continuous and monotonic.

Corollary 1 (Invariance under dihomeomorphism). For any cubical com-
plexes K, K ′ whose geometric realizations are dihomeomorphic,

−→
Hn(

−−−→
Geom(K))

and
−→
Hn(

−−−→
Geom(K ′)) are isomorphic, and

−→
h n(K) and

−→
h n(K ′) are bisimilar.

Of particular importance to the field of true concurrency is invariance under
refinement [22]. In our case, this means that if we replace certain n-cubes in K
by unions of 2n smaller cubes with all dimensions halved, then the result should
have the same natural homology. Indeed, such a process is called subdivision
in the literature, and it is well-known that if K ′ is a subdivision of K, then−−−→
Geom(K) and

−−−→
Geom(K ′) are dihomeomorphic. Hence:

Corollary 2 (Invariance under subdivision). Let K be a cubical complex,
and K ′ be a subdivision of K. Then

−→
h n(K), and

−→
h n(K ′) are bisimilar.

7 Conclusion

We have defined a promising notion of homology for directed algebraic topology.
We have shown that our natural systems of homology are computable on cubical

182 J. Dubut et al.

complexes. We have also introduced a notion of bisimilarity with respect to which
those natural systems should be compared. Importantly, natural homology is
invariant under subdivision. We showed this as a special case of a more general
result: that the natural homology of a cubical complex is bisimilar to that of its
geometric realization.

As a litmus test, does our natural homology pass the criteria we set forth in
Section 2? Look again at Fahrenberg’s matchbox (Fig. 1). Its discrete natural
homology would be too big to fit on a page, however its

−→
H 1 at the trace a � c

is equal to Z
2. In particular, it has non-trivial natural homology, in the strong

sense that its natural homology is not bisimilar to any natural system consisting
only of copies of Z (e.g., the natural homology of a filled-out cube). This is the
first proposal that distinguishes the matchbox from a trivial pospace.

References

1. Baues, H.-J., Wirsching, G.: Cohomology of small categories. Journal of Pure and
Applied Algebra 38(2–3), 187–211 (1985)

2. Carlsson, G.: Topology and data. AMS. Bulletin 46(2), 255–308 (2009)
3. Coffman, E.G., Elphick, M.J., Shoshani, A.: System deadlocks. Computing Surveys

3(2), 67–78 (1971)
4. Fahrenberg, U.: Directed homology. Electronic Notes in Theoretical Computer Sci-

ence 100, 111–125 (2004)
5. Fajstrup, L.: Dipaths and dihomotopies in a cubical complex. Advances in Applied

Mathematics 35(2), 188–206 (2005)
6. Fajstrup, L., Goubault, E., Haucourt, E., Mimram, S., Raussen, M.: Trace Spaces:

An Efficient New Technique for State-Space Reduction. In: Seidl, H. (ed.) Program-
ming Languages and Systems. LNCS, vol. 7211, pp. 274–294. Springer, Heidelberg
(2012)

7. Goubault, E.: Géométrie du parallélisme. PhD thesis, Ecole Polytechnique (1995)
8. Goubault, E.: Geometry and concurrency: A user’s guide. Mathematical Structures

in Computer Science 10(4), 411–425 (2000)
9. Goubault, E., Haucourt, E.: A Practical Application of Geometric Semantics to

Static Analysis of Concurrent Programs. In: Abadi, M., de Alfaro, L. (eds.) CON-
CUR 2005. LNCS, vol. 3653, pp. 503–517. Springer, Heidelberg (2005)

10. Goubault, E., Heindel, T., Mimram, S.: A geometric view of partial order reduction.
Electronic Notes in Theoretical Computer Science, 298 (2013)

11. Grandis, M.: Inequilogical spaces, directed homology and noncommutative geom-
etry. Homology, Homotopy and Applications 6, 413–437 (2004)

12. Grandis, M.: Directed Algebraic Topology. Models of non-reversible worlds. Cam-
bridge University Press (2009)

13. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information and
Computation 127(2), 164–185 (1996)

14. T. Kaczynski, K. Mischaikow, and M. Mrozek. Computing homology. Homology,
Homotopy and Applications 5(2), 233–256 (2003)

15. Kahl, T.: The homology graph of a HDA (2013). arXiv:1307.7994
16. Krishnan, S.: Flow-cut dualities for sheaves on graphs (2014). arXiv:1409.6712
17. Patchkoria, A.: On exactness of long sequences of homology semimodules. Journal

of Homotopy and Related Structures 1(1), 229–243 (2006)

http://arxiv.org/abs/1307.7994
http://arxiv.org/abs/1409.6712

Natural Homology 183

18. Pratt, V.R.: Modeling Concurrency with Geometry. In: Wise, D.S. (ed.) 18th Ann.
ACM Symp. Principles of Programming Languages, pp. 311–322 (1991)

19. Raussen, M.: Invariants of directed spaces. Applied Categorical Structures, 15
(2007)

20. Raussen, M.: Simplicial models for trace spaces II: General higher dimensional
automata. Algebraic and Geometric Topology 12(3), 1741–1762 (2012)

21. Sergeraert, F: The computability problem in algebraic topology. Advances in Math-
ematics, pp. 1–29 (1994)

22. van Glabeek, R.: Comparative concurrency semantics and refinement of actions.
PhD thesis, Centrum voor Wiskunder en Informatica (1990)

Greatest Fixed Points of Probabilistic Min/Max
Polynomial Equations, and Reachability
for Branching Markov Decision Processes

Kousha Etessami1(B), Alistair Stewart1, and Mihalis Yannakakis2

1 School of Informatics, University of Edinburgh, Edinburgh, UK
kousha@inf.ed.ac.uk, stewart.al@gmail.com

2 Department of Computer Science, Columbia University, New York, USA
mihalis@cs.columbia.edu

Abstract. We give polynomial time algorithms for quantitative (and
qualitative) reachability analysis for Branching Markov Decision Pro-
cesses (BMDPs). Specifically, given a BMDP, and given an initial pop-
ulation, where the objective of the controller is to maximize (or mini-
mize) the probability of eventually reaching a population that contains
an object of a desired (or undesired) type, we give algorithms for approx-
imating the supremum (infimum) reachability probability, within desired
precision ε > 0, in time polynomial in the encoding size of the BMDP
and in log(1/ε). We furthermore give P-time algorithms for computing
ε-optimal strategies for both maximization and minimization of reacha-
bility probabilities. We also give P-time algorithms for all associated qual-
itative analysis problems, namely: deciding whether the optimal (supre-
mum or infimum) reachability probabilities are 0 or 1. Prior to this paper,
approximation of optimal reachability probabilities for BMDPs was not
even known to be decidable.

Our algorithms exploit the following basic fact: we show that for any
BMDP, its maximum (minimum) non-reachability probabilities are given
by the greatest fixed point (GFP) solution g∗ ∈ [0, 1]n of a correspond-
ing monotone max (min) Probabilistic Polynomial System of equations
(max/min-PPS), x = P (x), which are the Bellman optimality equations
for a BMDP with non-reachability objectives. We show how to compute
the GFP of max/min PPSs to desired precision in P-time.

1 Introduction

Multi-type branching processes (BPs) are infinite-state purely stochastic pro-
cesses that model the stochastic evolution of a population of entities of distinct
types. The BP specifies for every type a probability distribution for the off-
spring of entities of this type. Starting from an initial population, the process
evolves from each generation to the next according to the probabilistic offspring

The full version of this paper is available at arxiv.org/abs/1502.05533. Research
partially supported by the Royal Society and by NSF Grant CCF-1320654. Alistair
Stewart’s research supported by I. Diakonikolas’s EPSRC grant EP/L021749/1.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 184–196, 2015.
DOI: 10.1007/978-3-662-47666-6 15

http://arxiv.org/abs/1502.05533

Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations 185

rules. Branching processes are a fundamental stochastic model with applications
in many areas: physics, biology, population genetics, medicine etc. Branching
Markov Decision Processes (BMDPs) provide a natural extension of BPs where
the evolution is not purely stochastic but can be partially influenced or con-
trolled: a controller can take actions which affect the probability distribution for
the set of offspring of the entities of each type. The goal is to design a policy for
choosing the actions in order to optimize a desired objective.

In recent years there has been great progress in resolving algorithmic prob-
lems for BMDPs with the objective of maximizing or minimizing the extinction
probability, i.e., the probability that the population eventually becomes extinct.
Polynomial time algorithms were developed for both maximizing and minimizing
BMDPs for qualitative analysis, i.e. to determine whether the optimal extinction
probability is 0, 1 or in-between [12], and for quantitative analysis, to compute
optimal extinction probabilities to any desired precision [9]. However, key prob-
lems for optimizing BMDP reachability probability (probability that the popu-
lation eventually includes an entity with a target type) have remained open.

Reachability objectives are very natural. Some types may be undesirable,
in which case we want to avoid them to the extent possible. Or conversely, we
may want to guide the process to reach certain desirable types. For example,
branching processes have been used recently to model cancer tumor progression
and multiple drug resistance of tumors due to multiple mutations ([1,15]). It
could be fruitful to model the introduction of multiple drugs (each of which
controls/influences cells with a different type of mutation) via a “controller” that
controls the offspring of different types, thus extending the current models (and
associated software tools) which are based on BPs only, to controlled models
based on BMDPs. A natural question one could ask then is to compute the
minimum probability of reaching a bad (malignant) cell type, and compute a
drug introduction strategy that achieves (approximately) minimum probability.
Doing this efficiently (in P-time) would avoid the combinatorial explosion of
trying all possible combinations of drug therapies.

In this paper we provide the first polynomial time algorithms for quantitative
(and also qualitative) reachability analysis for BMDPs. Specifically, we provide
algorithms for ε-approximating the supremum probability, as well as the infimum
probability, of reaching a given type (or a set of types) starting from an initial
type (or an initial population of types), up to any desired additive error ε > 0.
We also give algorithms for computing ε-optimal strategies which achieve such
ε-optimal values. The running time of these algorithms (in the standard Turing
model of computation) is polynomial in both the encoding size of the BMDP
and in log(1ε). We also give P-time algorithms for the qualitative problems: we
determine whether the supremum or infimum probability is 1 (or 0), and if so
we actually compute an optimal strategy that achieves 1 (0, respectively).

In prior work [12], we studied optimization of extinction (a.k.a. termination)
probabilities for BMDPs, and showed that optimal extinction probabilities are
captured by the least fixed point (LFP) solution q∗ ∈ [0, 1]n of a correspond-
ing system of monotone probabilistic max (min) polynomial equations called

186 K. Etessami et al.

maxPPSs (respectively minPPSs), which form the Bellman optimality equations
for termination of a BMDP. A maxPPS is a system of equations x = P (x) over
a vector x of variables, where the right-hand-side of each equation is of the form
maxj{pj(x)}, where each pj(x) is a polynomial with non-negative coefficients
(including the constant term) that sum to at most 1 (such a polynomial is called
probabilistic). A minPPS is defined similarly. In [9], we introduced an algorithm,
called Generalized Newton’s Method (GNM), for the solution of maxPPSs and
minPPSs, and showed that it computes the LFP of maxPPSs and minPPSs (and
hence also the optimal termination probabilities for BMDPs) to desired precision
in P-time. GNM is an iterative algorithm (like Newton’s) which in each iteration
solves a suitable linear program (a different one for the max and min versions).

In this paper we first model the reachability problem for a BMDP by an
appropriate system of equations: We show that the optimal non-reachability
probabilities for a given BMDP are captured by the greatest fixed point (GFP),
g∗ ∈ [0, 1]n of a corresponding maxPPS (or minPPS) system of Bellman equa-
tions. We then show that one can approximate the GFP solution g∗ ∈ [0, 1]n of
a maxPPS (or minPPS), x = P (x), in time polynomial in both the encoding size
|P | of the system of equations and in log(1/ε), where ε > 0 is the desired additive
error bound of the solution. (The model of computation is the standard Turing
machine model.) We also show that the qualitative analysis of determining the
coordinates of the GFP that are 0 and 1, can be done in P-time (and hence the
same holds for the optimal reachability probabilities of BMDPs).

Our algorithms for computing the GFP of minPPS and maxPPS make use of
(a variant of) Generalized Newton Method adapted for the computation of GFP,
with a key important difference in the preprocessing step before applying GNM.
We first identify and remove only the variables that have value 1 in the GFP g∗

(we do not remove the variables with value 0, unlike the LFP case). We show
that for maxPPSs, once these variables are removed, the remaining system with
GFP g∗ < 1 has a unique fixed point in [0, 1]n, hence the GFP is equal to the
LFP; applying GNM from the 0 initial vector converges quickly (in P-time, with
suitable rounding) to the GFP (by [9]). For minPPSs, even after the removal
of the variables xi with g∗

i = 1, the remaining system may have multiple fixed
points, and we can have LFP < GFP. Nevertheless, we show that with the subtle
change in the preprocessing step, GNM, starting at the all-0 vector, remarkably
“skips over” the LFP and converges to the GFP solution g∗, in P-time.

Comparing the properties of the LFP and GFP of max/minPPS, we note
that one difference for the qualitative problems is that for the GFP, both the
value=0 and the value=1 question depend only on the structure of the model
and not on its probabilities (the values of the coefficients), whereas in the LFP
case the value=1 question depends on the probabilities (see [12,13]).

We also note some important differences regarding existence of optimal
strategies between extinction (termination) and reachability objectives for
BMDPs. We observe that, unlike optimization of termination probabilities for
BMDPs, for which there always exists a static deterministic optimal strategy
([12]), there need not exist any optimal strategy at all for maximizing reachabil-

Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations 187

ity probability in a BMDP, i.e. the supremum probability may not be attainable.
If the supremum probability is 1 however, we show that there exists a strategy
that achieves it (albeit, not necessarily a static one). For the min reachability
objective there always exists an optimal deterministic and static strategy. In all
cases, we show that we can compute in P-time an ε-optimal static (possibly ran-
domized) policy, for both maximizing and minimizing reachability probability in
a BMDP.

Related Work: BMDPs have been previously studied in both operations
research (e.g., [14,16]) and computer science (e.g., [6,11,12]). We have already
mentioned the results in [9,12] concerning the computation of the extinction
probabilities of BMDPs and the computation of the LFP of max/minPPS.
BPs are closely connected to stochastic context-free grammars, 1-exit Recur-
sive Markov chains (1-RMC) [13], and the corresponding stateless probabilistic
pushdown processes, pBPA [7]; their extinction or termination probabilities are
interreducible, and they are all captured by the LFP of PPSs. The same is true
for their controlled extensions, for example the extinction probability of BMDPs
and the termination probabilities of 1-exit Recursive Markov Decision processes
(1-RMDP) [12], are both captured by the LFP of maxPPS or minPPS. A differ-
ent type of objective of optimizing the total expected reward for 1-RMDPs (and
equivalently BMDPs) in a setting with positive rewards was studied in [11]; in
this case the optimal values are rational and can be computed exactly in P-time.

The equivalence between BMDPs and 1-RMDPs however does not carry
over to the reachability objective. The qualitative reachability problem for 1-
RMDPs (equivalently BPA MDPs) and the extension to simple 2-person games
1-RSSGs (BPA games) were studied in [4] and [3] by Brazdil et al. It is shown in
[4] that qualitative almost-sure reachability for 1-RMDPs can be decided in P-
time (both for maximizing and minimizing 1-RMDPs). However, for maximizing
reachability probability, almost-sure and limit-sure reachability are not the same:
in other words, the supremum reachability probability can be 1, but it may not
be achieved by any strategy for the 1-RMDP. By contrast, for BMDPs we show
that if the supremum reachability probability is 1, then there is a strategy that
achieves it. This is one illustration of the fact that the equivalence between
1-RMDP and BMDP does not hold for the reachability objective. The papers
[3,4] do not address the limit-sure reachability problem, and in fact even the
decidability of limit-sure reachability for 1-RMDPs remains open.

Chen et. al. [5] studied model checking of branching processes with respect to
properties expressed by deterministic parity tree automata and showed that the
qualitative problem is in P (hence this holds in particular for reachability prob-
ability in BPs), and that the quantitative problem of comparing the probability
with a rational is in PSPACE. Although not explicitly stated there, one can
use Lemma 20 of [5] and our algorithm from [8] to show that the reachability
probabilities of BPs can be approximated in P-time. Bonnet et. al. [2] stud-
ied a model of “probabilistic Basic Parallel Processes”, which are syntactically
close to Branching processes, except reproduction is asynchronous and the entity
that reproduces in each step is chosen randomly (or by a scheduler/controller).

188 K. Etessami et al.

None of the previous results have direct bearing on the reachability problems for
BMDPs.

Due to space limits, most proofs are omitted. See the full version [10].

2 Definitions and Background

We provide unified definitions of multi-type Branching processes (BPs), Branch-
ing MDPs (BMDPs), and Branching Simple Stochastic Games (BSSGs), by first
defining BSSGs, and then specializing them to obtain BMDPs and BPs.

A Branching Simple Stochastic Game (BSSG), consists of a finite set V =
{T1, . . . , Tn} of types, a finite non-empty set Ai ⊆ Σ of actions for each type
(Σ is some finite action alphabet), and a finite set R(Ti, a) of probabilistic rules
associated with each pair (Ti, a), i ∈ [n], where a ∈ Ai. Each rule r ∈ R(Ti, a) is
a triple (Ti, pr, αr), which we denote by Ti

pr→ αr, where αr ⊆ N
n is a n-vector

of natural numbers that denotes a finite multi-set over the set V , and where
pr ∈ (0, 1] is the probability of the rule r, where

∑
r∈R(Ti,a)

pr = 1 for all i ∈ [n]
and a ∈ Ai. For BSSGs, the types are partitioned into two sets: V = Vmax∪Vmin,
Vmax∩Vmin = ∅, where Vmax contains those types “belonging” to player max, and
Vmin containing those belonging to player min. A Branching Markov Decision
Process (BMDP) is a BSSG where one of the two sets Vmax or Vmin is empty.
Intuitively, a BMDP (BSSG) describes the stochastic evolution of a population
of entities of different types in the presence of a controller (or two players) that
can influence the evolution. A multi-type Branching Process (BP), is a BSSG
where all action sets Ai are singleton sets; hence in a BP players have no choices
and thus don’t exist: a BP defines a purely stochastic process.

A play (or trajectory) of a BSSG operates as follows: starting from an initial
population (i.e., set of entities of given types) X0 at time (generation) 0, a
sequence of populations X1,X2, . . . is generated, where Xk+1 is obtained from
Xk as follows. Player max (min) selects for each entity e in set Xk that belongs
to max (to min, respectively) an available action a ∈ Ai for the type Ti of entity
e; then for each such entity e in Xk a rule r ∈ R(Ti, a) is chosen randomly
and independently according to the rule probabilities pr, where a ∈ Ai is the
action selected for that particular entity e. Every entity is then replaced by a
set of entities with the types specified by the right-hand side multiset αr of that
chosen rule r. The process is repeated as long as the current population Xk is
nonempty, and it is said to terminate (or become extinct) if there is some k ≥ 0
such that Xk = ∅. When there are n types, we can view a population Xi as a
vector Xi ∈ N

n, specifying the number of objects of each type. We say that the
process reaches a type Tj , if there is some k ≥ 0 such that (Xk)j > 0.

A player can base her decisions at each stage k on the entire past history,
and may choose different actions for entities of the same type.1 The decision
1 We remark that, for optimizing termination and reachability probability, we could
alternatively define the players’ strategic role in BSSGs in various other ways, includ-
ing asynchronous choice of (randomized) actions, as long as actions must eventually
be chosen for all objects, without altering any of our results.

Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations 189

may be randomized (i.e. a probability distribution on the tuples of actions for
the entities of the types controlled by the player) or deterministic (see the full
version [10] for the formal definitions). Let Ψ1, Ψ2 be the set of all (randomized)
strategies of the two players. We say that a strategy is static if for each type Ti

controlled by that player the strategy always chooses the same action ai, or the
same probability distribution on actions, for all entities of type Ti in all histories.

We can consider different objectives by the players. Here we consider the
reachability objective, where the goal of the two players, starting from a given
population, is to maximize/minimize the probability of reaching a population
which contains at least one entity of a given special type, Tf∗ . It will follow from
our results that a BSSG game with a reachability objective has a value.

Suppose that player 1 wants to maximize the probability of not reaching
Tf∗ and player 2 wants to minimize it. For strategies σ ∈ Ψ1, τ ∈ Ψ2, and
a given initial population μ ∈ N

n, with (μ)f∗ = 0, we denote by g∗,σ,τ (μ) the
probability that (Xd)f∗ = 0 for all d ≥ 0. The value of the non-reachability game
for the initial population μ is g∗(μ) = supσ∈Ψ1

infτ∈Ψ2 g∗,σ,τ (μ). We will show
that determinacy holds for these games, i.e., g∗(μ) = supσ∈Ψ1

infτ∈Ψ2 g∗,σ,τ (μ) =
infτ∈Ψ2 sup∗,σ∈Ψ1

g∗,σ,τ (μ). However, unlike the case for extinction probabilities
([12]), it does not hold that both players have optimal static strategies.

If μ has a single entity of type Ti, we will write g∗
i instead of g∗(μ). Given

a BMDP (or BSSG), the goal is to compute the vector g∗ of the g∗
i ’s, i.e. the

vector of non-reachability values of the different types. From the g∗
i ’s, we can

compute the value g∗(μ) for any initial population μ: g∗(μ) = Πi(g∗
i)μi .

We will associate a system of min/max probabilistic polynomial Bellman
equations, x = P (x), to each given BMDP or BSSG. A polynomial p(x) is
called probabilistic if all coefficients are nonnegative and sum to at most 1. A
probabilistic polynomial system (PPS) is a system x = P (x) where all Pi(x) are
probabilistic polynomials. A max-min PPS is a system x = P (x) where each
Pi(x) is either: a Max-polynomial: Pi(x) = max{qi,j(x) : j ∈ {1, ...,mi}}, or a
Min-polynomial: Pi(x) = min{qi,j(x) : j ∈ {1, ...,mi}} , where each qi,j(x) is a
probabilistic polynomial, for every j ∈ {1, . . . , mi}. We shall call such a system
a maxPPS (respectively, a minPPS) if for every i ∈ {1, . . . , n}, Pi(x) is a Max-
polynomial (respectively, a Min-polynomial). We use max/minPPS to refer to a
system of equations, x = P (x), that is either a maxPPS or a minPPS.

For computational purposes we assume that all coefficients are rational, and
that the polynomials are given in sparse form, i.e., by listing only the nonzero
terms, with the coefficient and the nonzero exponents of each term given in
binary. We let |P | denote the total bit encoding length of a system x = P (x)
under this representation.

Any max-minPPS, x = P (x), has a least fixed point (LFP) solution, q∗ ∈
[0, 1]n, i.e., q∗ = P (q∗) and if q = P (q) for some q ∈ [0, 1]n then q∗ ≤ q
(coordinate-wise inequality). As observed in [12,13], q∗ may in general contain
irrational values, even in the case of pure PPSs. In this paper, we exploit the
fact that every max-minPPS, x = P (x), also has a greatest fixed point (GFP)
solution, g∗ ∈ [0, 1]n, i.e., such that g∗ = P (g∗) and if q = P (q) for some

190 K. Etessami et al.

q ∈ [0, 1]n then q ≤ g∗. Again, g∗ may contain irrational coordinates, so we in
general want to approximate its coordinates.

We can consider a max-minPPS as a game between two players that con-
trol respectively the variables xi where Pi is a max or a min polynomial. A
(possibly randomized) policy σ for a player maps each of its variables xi to
a probability distribution σ(i) over the indices {1, . . . , mi} of the polynomi-
als in Pi. A policy σ of the max player induces a minPPS x = Pσ(x), where
(Pσ)i(x) =

∑
a∈Ai

σ(i)(a) · qi,a. Let q∗
σ and g∗

σ denote the LFP and GFP of the
min-PPS x = Pσ(x). We say that σ is an optimal policy for the max player for
the LFP (resp., the GFP) if q∗

σ∗ = q∗ (resp., g∗
σ∗ = g∗). The policy σ is ε-optimal

for the LFP (resp. GFP) , if ||q∗
σ′ − q∗||∞ ≤ ε (resp., ||g∗

σ′ − g∗||∞ ≤ ε). These
concepts can be defined similarly for the min player and its policies.

It is convenient to put max-minPPSs in the following simple form.

Definition 1. A max-minPPS, x = P (x) in n variables is in simple normal
form (SNF) if each Pi(x), for all i ∈ [n], is in one of the following three forms:

Form L: P (x)i = ai,0 +
∑n

j=1 ai,jxj, where ai,j ≥ 0 for all j, &∑n
j=0 ai,j ≤ 1.

Form Q: P (x)i = xjxk for some j, k.
Form M: P (x)i = max{xj , xk} or P (x)i = min{xj , xk}, for some j, k.

We define SNF form for max/minPPSs analogously. Every max-minPPS, x =
P (x), can be transformed in P-time (as in [8,13]) to a suitably “equivalent”
max-minPPS in SNF form (see the full version [10] for a formal statement and
proof), where in particular both the LFP and GFP of the original system are
projections of the LFP and GFP of the transformed systems. Thus we may (and
do) assume, wlog, that all max/minPPSs are in SNF normal form.

The dependency graph of a max-minPPS x = P (x) is a directed graph with
one node for each variable xi, and contains edge (xi, xj) iff xj appears in Pi(x).

For a max/minPPS, x = P (x), with n variables (in SNF form), the lin-
earization of P (x) at a point y ∈ R

n, is a system of max/min linear functions
denoted by P y(x), which has the following form: if P (x)i has form L or M, then
P y

i (x) = Pi(x), and if P (x)i has form Q, i.e., P (x)i = xjxk for some j, k, then
P y

i (x) = yjxk + xjyk − yjyk. We now recall and adapt from [9] the definition of
distinct iteration operators for maxPPSs and minPPSs, both of which we shall
refer to with the overloaded notation I(x). These operators serve as the basis for
Generalized Newton’s Method (GNM) to be applied to maxPPSs and minPPSs,
respectively. We need to slightly adapt the definition of operator I(x), specifying
the conditions on the GFP g∗ under which the operator is well-defined:

Definition 2. For a maxPPS, x = P (x), with GFP g∗, with 0 ≤ g∗ < 1, and for
0 ≤ y ≤ g∗, define the operator I(y) to be the unique optimal solution, a ∈ R

n, to
the following mathematical program: Minimize:

∑
i ai ; Subject to: P y(a) ≤ a.

For a minPPS, x = P (x), with GFP g∗, with 0 ≤ g∗ < 1, and for 0 ≤ y ≤ g∗,
define the operator I(y) to be the unique optimal solution a ∈ R

n to the following
mathematical program: Maximize:

∑
i ai ; Subject to: P y(a) ≥ a.

Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations 191

These mathematical programs can be solved using Linear Programming. A pri-
ori, it is unclear whether the programs have a unique solution, i.e., whether the
“definitions” of I(x) for maxPPSs and minPPSs are well-defined. We show they
are. We require rounded GNM, defined as follows ([9]).
GNM, with rounding parameter h: Starting at x(0) := 0, For k ≥ 0, com-
pute x(k+1) from x(k) as follows: first calculate I(x(k)), then for every coordinate
i, set x

(k+1)
i to be the maximum multiple of 2−h which is ≤ max{0, I(x(k))i}.

3 Greatest Fixed Points Capture Non-reachability Values

For any given BSSG, G, with a specified special type Tf∗ , we will construct a
max-minPPS, x = P (x), and show that the vector g∗ of non-reachability values
for (G, Tf∗) is precisely the greatest fixed point g∗ ∈ [0, 1]n of x = P (x).

The system x = P (x) has one variable xi and one equation xi = Pi(x), for
each type Ti
= Tf∗ . For each i
= f∗, the min/max probabilistic polynomial Pi(x)
is constructed as follows. For all j ∈ Ai, let R′(Ti, j) := {r ∈ R(Ti, j) : (αr)f∗ =
0} denote the set of rules for type Ti and action j that generate a multiset
αr not containing any element of type Tf∗ . Pi(x) contains one probabilistic
polynomial qi,j(x) for each action j ∈ Ai, with qi,j(x) =

∑
r∈R′(Ti,j)

prx
αr .

Note that we do not include, in the sum defining qi,j(x), any monomial pr′xαr′

associated with a rule r′ which generates an object of the special type Tf∗ . Then,
if type Ti belongs to player max, who aims to minimize the probability of not
reaching an object of type Tf∗ , we define Pi(x) ≡ minj∈Ai

qi,j(x). Likewise, if Ti

belongs to min, whose aim is to maximize the probability of not reaching Tf∗ , we
define Pi(x) ≡ maxj∈Ai

qi,j(x). Note the swapped roles of max and min in the
equations, versus the corresponding player’s goal for the reachability objective.
The following theorem is analogous to one in [12] for LFPs of max-minPPSs.

Theorem 1. The value vector g∗ ∈ [0, 1]n of a BSSG is the GFP of the corre-
sponding operator P (·) in [0, 1]n. Thus, g∗ = P (g∗), and ∀g′ ∈ [0, 1]n, g′ = P (g′)
implies g′ ≤ g∗. Also, for any initial population μ, the non-reachability val-
ues satisfy g∗(μ) = supσ∈Ψ1

infτ∈Ψ2 g∗,σ,τ (μ) = infτ∈Ψ2 supσ∈Ψ1
g∗,σ,τ (μ) =

Πi(g∗
i)μi . So, such games are determined.

A direct corollary of the proof of Theorem 1 (see the full version [10]) is that
the player maximizing non-reachability probability in a BSSG always has an
optimal deterministic static strategy. The same is not true for the player trying
to minimize this non-reachability probability (i.e. the player trying to maximize
the reachability probability). We give two examples illustrating this (see [10]
for details). The first example has types A, B, and C, start type A and target
type B, only A is controlled; B is purely probabilistic. The rules are: A → AA,

A → B, B
1/2→ C, B

1/2→ ∅. There is no randomized static optimal strategy for
maximizing the reachability probability in this BMDP, although the supremum
probability is 1. We show later however that for any BMDP, if the supremum
reachability value is 1, then the player maximizing the reachability probability
has a, not necessarily static, optimal strategy that achieves value 1. The second

192 K. Etessami et al.

example shows that this is not the case if the value is strictly between 0 and 1.
Consider the BMDP with types A, B, C, and D, start type A and target type

D, with rules: A
2/3→ BB, A

1/3→ ∅, B → A, B → C, C
1/3→ D, C

2/3→ ∅. There is
no optimal strategy for maximizing the reachability probability in this BMDP
(i.e., the supremum, which is 1/2, is not achievable by any strategy), see [10].

Qualitative = 1 non-reachability analysis for BSSGs & max-minPPSs.
There are (easy) P-time algorithms to compute for a given max-minPPS the
variables that have value 1 in the GFP, and thus also for deciding, for a given
BSSG (or BMDP), whether g∗

i = 1 (i.e., whether the non-reachability value is
1). The easy algorithm boils down to AND-OR graph reachability.

Proposition 1. There is a P-time algorithm that given a max-min-PPS, x =
P (x), with n variables, and with GFP g∗ ∈ [0, 1]n, and given i ∈ [n], decides
whether g∗

i = 1, or g∗
i < 1; Moreover, when g∗

i = 1 the algorithm outputs a
deterministic policy (i.e., deterministic static strategy for the BSSG) σ, for the
max player which forces g∗

i = 1, Likewise, if g∗
i < 1, it outputs a deterministic

static policy τ for the min player which forces g∗
i < 1.

We consider detection of g∗
i = 0 for maxPPS and minPPS later; the minPPS

case in particular is substantially more complicated.

4 maxPPSs

We first determine and remove the variables with value 1 in the GFP, after which
we know g∗ < 1. To analyze maxPPSs, we first perform a thorough structural
analysis of PPSs (without max) and derive several properties that are useful in
handling maxPPSs (and minPPSs). Building on these properties, we show:

Lemma 1. For any maxPPS, x = P (x), if GFP g∗ < 1 then g∗ is the unique
fixed point of x = P (x) in [0, 1]n. So g∗ = q∗, where q∗ is the LFP of x = P (x).

Thus, applying the algorithms from [9] for LFP computation of maxPPSs, yields:

Theorem 2. Given a maxPPS, x = P (x), with GFP g∗,
1. There is a P-time algorithm that determines, for i ∈ [n], whether g∗

i = 0,
and if g∗

i > 0 computes a deterministic static policy that achieves this.
2. Given any integer j > 0, there is an algorithm that computes a rational

vector v with ‖g∗ − v‖∞ ≤ 2−j, and also computes a deterministic static
policy σ, such that ‖g∗ − g∗

σ‖ ≤ 2−j, both in time polynomial in |P | and j.

Similar results follow for the maximization of nonreachability in BMDPs.

5 minPPSs

Theorem 3. Given a minPPS, x = P (x) with g∗ < 1. If we use GNM with
rounding parameter h = j + 2 + 4|P |, then after h iterations, we have ‖g∗ −
x(h)‖∞ ≤ 2−j. This ε-approximates g∗ in time polynomial in |P | and log(1ε).

Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations 193

The minPPS case is much more involved. In order to prove this theorem, we
need some structural lemmas about GFPs of minPPSs, and their relationship
to static policies. There need not exist any policies σ with g∗

σ = g∗, so we need
policies that can, in some sense, act as “surrogates” for it. We say that a PPS
x = P (x) is linear degenerate (LD) if every Pi(x) is a convex combination of
variables: Pi(x) ≡

∑n
j=1 pijxj where

∑
j pij = 1. A PPS is linear degenerate free

(LDF) if there is no bottom strongly connected component S of its dependency
graph, whose induced subsystem xS = PS(xS) is linear degenerate. A policy
σ for a max/minPPS, x = P (x), is called linear degenerate free (LDF) if its
associated PPS x = Pσ(x) is an LDF PPS. It turns out there is an LDF policy
σ∗ whose associated LFP is the GFP of the minPPS, and we can get an ε-optimal
policy by following σ∗ with high probability and with low probability following
some policy that can reach the target from anywhere.

Lemma 2. If a minPPS x = P (x) has g∗ < 1 then:
1. There is an LDF policy σ with g∗

σ < 1,
2. g∗ ≤ q∗

τ , for any LDF policy τ , and
3. There is an LDF policy σ∗ whose associated LFP, q∗

σ∗ , has g∗ = q∗
σ∗ .

Note that the policy σ∗ is not necessarily optimal because even though g∗ =
q∗
σ∗ , there may be an i with g∗

i = (q∗
σ∗)i < (g∗

σ∗)i = 1. Next we show that
Generalised Newton’s Method (GNM) is well-defined. We use Nσ below to denote
the standard Newton iteration operator applied to the PPS x = Pσ(x) (see [10]).

Lemma 3. Given a minPPS, x = P (x), with GFP g∗ < 1, and given y with
0 ≤ y ≤ g∗, there exists an LDF policy σ with P y(Nσ(y)) = Nσ(y), the GNM
operator I(x) is defined at y, and for this policy σ, I(y) = Nσ(y).

Using this, we can show a result for GFPs similar to one in [9] for LFPs:

Lemma 4. Let x = P (x) be a minPPS with GFP g∗ < 1. For any 0 ≤ x ≤ g∗

and λ > 0, I(x) ≤ g∗, and if g∗ − x ≤ λ(1 − g∗) then g∗ − I(x) ≤ λ
2 (1 − g∗).

Theorem 3 follows by using Lemma 4 and Lemma 2(3.), and applying a
similar inductive argument as in ([9], Section 3.5).

P-time detection of zeros in the GFP of a minPPS: g∗
i

?= 0.

We give a P-time algorithm for deciding whether the supremum reachability
probability in a BMDP equals 1, in which case we show the supremum probability
is achieved by a (memoryful but deterministic) strategy which we can compute
in P-time (thus limit-sure and almost-sure reachability are the same). Let X be
the set of all variables xi in minPPS x = P (x) in SNF form, with GFP g∗ < 1.

1. Initialize S := { xi ∈ X | Pi(0) > 0, i.e., Pi(x) contains a constant term }.
2. Repeat the following until neither are applicable:

(a) If a variable xi is of form L and Pi(x) has a term whose variable is already
in S, then add xi to S.

194 K. Etessami et al.

(b) If a variable xi is of form Q or M and both variables in Pi(x) are already
in S, then add xi to S.

3. Let F := { xi ∈ X − S | Pi(1) < 1, or Pi(x) has form Q }.
4. Repeat the following until no more variables can be added:

– If a variable xi ∈ X − S is of form L or M and Pi contains a term whose
variable is in F , then add xi to F .

5. If X = S ∪ F , then terminate and output F .
6. Otherwise set S := X − F and return to step 2.

Theorem 4. Given a minPPS x = P (x) with g∗ < 1, this algorithm terminates
and outputs precisely the variables xi with g∗

i = 0, in time polynomial in |P |.

Theorem 5. There is a non-static deterministic optimal strategy for maximiz-
ing the probability of reaching a target type in a BMDP with probability 1, if the
supremum probability of reaching the target is 1.

We outline the non-static policy. The proof of Theorem 4 constructs a LDF
policy σ with the property that g∗

i = 0 iff (q∗
σ)i = 0. Let Z denote the set of

variables with g∗
i = 0 = (q∗

σ)i. From Proposition 1, we can also compute in
P-time an LDF policy τ with g∗

τ < 1. We combine σ and τ in the following
non-static policy: We designate one member of our initial population with type
in Z to be the queen. The rest of the population are workers. We use policy
σ for the queen and τ for the workers. In following generations, if we have not
reached an object of the target type, we choose one of the children in Z of the
last generation’s queen (which we show must exist) to be the new queen. Again,
all other members of the population are workers.

Computing ε-optimal strategies for minPPSs in P-time:
We first use the following algorithm to find an LDF policy σ with ‖g∗ −

q∗
σ‖∞ ≤ 1

2ε. We then use that policy to construct ε-optimal policies.

1. Compute, using GNM, a 0 ≤ y ≤ g∗ with ‖g∗ − y‖∞ ≤ 2−14|P |−3ε;
2. Let k := 0, and let σ0 be a policy that has Pσ0(y) = P (y) (i.e., σ0 chooses

the action with highest probability of reaching the target according to y).
3. Compute Fσk

, the set of variables that, in the dependency graph of x =
Pσk

(x), either are or depend on a variable xi which either has form Q or else
Pi(1) < 1 or Pi(0) > 0. Let Dσk

be the complement of Fσk
.

4. if Dσk
is empty, we are done, and we output σk.

5. Find a variable2 xi of type M in Dσk
, which has a choice xj in Fσk

(which
isn’t its current choice) such that |yi − yj | ≤ 2−14|P |−2ε; Let policy σk+1

choose xj at xi, & otherwise agree with σk. Let k := k + 1; return to step 3.

Lemma 5. The above algorithm terminates in P-time and outputs an LDF pol-
icy σ with ‖Pσ(y) − y‖∞ ≤ 2−14|P |−2ε.

2 We show that such a variable xi always exists whenever we reach this step.

Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations 195

We define a randomized static policy υ as follows. With probability 2−28|P |−4ε
we follow a (necessarily LDF) deterministic policy τ that satisfies g∗

τ < 1. We can
compute such a τ in P-time by Proposition 1. With the remaining probability
1 − 2−28|P |−4ε, we follow the static deterministic policy σ that is output by the
algorithm above. We can then show (see [10] for the involved proof):

Theorem 6. The output policy σ of the algorithm satisfies ‖g∗ − q∗
σ‖∞ ≤ 1

2ε.
Moreover, υ satisfies ‖g∗ − g∗

υ‖∞ ≤ ε, i.e., it is ε-optimal.

Theorem 7. For a BMDP with minPPS x = P (x), and minimum non-
reachability probabilities given by the GFP g∗ < 1, the following deterministic
non-static non-memoryless strategy α is also ε-optimal starting with one object
of any type:
Use the policy σ output by the algorithm, until the population is at least 24|P |+1

ε
for the first time, thereafter use a deterministic static policy τ such that g∗

τ < 1.

Corollary 1. For maximizing BMDP reachability probability, we can compute
in P-time a randomized static (or deterministic non-static) ε-optimal policy.

References

1. Bozic, I., et al.: Evolutionary dynamics of cancer in response to targeted combina-
tion therapy. Elife 2, e00747 (2013)

2. Bonnet, R., Kiefer, S., Lin, A.W.: Analysis of probabilistic basic parallel processes.
In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 43–57.
Springer, Heidelberg (2014)

3. Brázdil, T., Brozek, V., Kucera, A., Obdrzálek, J.: Qualitative reachability in
stochastic BPA games. Inf. Comput. 209(8), 1160–1183 (2011)

4. Brázdil, T., Brozek, V., Forejt, V., Kucera, A.: Reachability in recursive Markov
decision processes. Inf. Comput. 206(5), 520–537 (2008)

5. Chen, T., Dräger, K., Kiefer, S.: Model checking stochastic branching processes.
In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp.
271–282. Springer, Heidelberg (2012)

6. Esparza, J., Gawlitza, T., Kiefer, S., Seidl, H.: Approximative methods for mono-
tone systems of min-max-polynomial equations. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part I. LNCS, vol. 5125, pp. 698–710. Springer, Heidelberg (2008)

7. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown
automata. Logical Methods in Computer Science 2(1), 1–31 (2006)

8. Etessami, K., Stewart, A., Yannakakis, M.: Polynomial-time algorithms for multi-
type branching processes and stochastic context-free grammars. In: Proc. 44th
ACM Symposium on Theory of Computing (STOC) (2012)

9. Etessami, K., Stewart, A., Yannakakis, M.: Polynomial time algorithms for branch-
ing markov decision processes and probabilistic min(max) polynomial bellman
equations. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012, Part I. LNCS, vol. 7391, pp. 314–326. Springer, Heidelberg (2012)

10. Full preprint of this paper (2015). arXiv:1502.05533

http://arxiv.org/abs/1502.05533

196 K. Etessami et al.

11. Etessami, K., Wojtczak, D., Yannakakis, M.: Recursive stochastic games with pos-
itive rewards. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 711–723. Springer, Heidelberg (2008)

12. Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive
stochastic games. Journal of the ACM (2015)

13. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. Journal of the ACM 56(1) (2009)

14. Pliska, S.: Optimization of multitype branching processes. Management Sci., 23(2),
117–124 (1976/1977)

15. Reiter, J.G., Bozic, I., Chatterjee, K., Nowak, M.A.: TTP: tool for tumor progres-
sion. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 101–106.
Springer, Heidelberg (2013)

16. Rothblum, U., Whittle, P.: Growth optimality for branching Markov decision
chains. Math. Oper. Res. 7(4), 582–601 (1982)

Trading Bounds for Memory in Games
with Counters

Nathanaël Fijalkow1,2(B), Florian Horn1, Denis Kuperberg2,3,
and Micha�l Skrzypczak1,2

1 LIAFA, Université Paris 7, Paris, France
nath@liafa.univ-paris-diderot.fr

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
3 Onera/DTIM, Toulouse and IRIT, University of Toulouse, Toulouse, France

Abstract. We study two-player games with counters, where the objec-
tive of the first player is that the counter values remain bounded. We
investigate the existence of a trade-off between the size of the memory
and the bound achieved on the counters, which has been conjectured
by Colcombet and Löding. We show that unfortunately this conjecture
does not hold: there is no trade-off between bounds and memory, even for
finite arenas. On the positive side, we prove the existence of a trade-off
for the special case of thin tree arenas.

1 Introduction

This paper studies finite-memory determinacy for games with counters. The
motivation for this investigation comes from the theory of regular cost functions,
which we discuss now.

Regular Cost Functions. The theory of regular cost functions is a quantitative
extension of the notion of regular languages, over various structures (words and
trees). More precisely, it expresses boundedness questions. A typical example of
a boundedness question is: given a regular language L ⊆ {a, b}∗, does there exist
a bound N such that all words from L contain at most N occurences of a?

This line of work already has a long history: it started in the 80s, when
Hashiguchi, and then later Leung, Simon and Kirsten solved the star-height
problem by reducing it to boundedness questions [10,11,13,15]. Both the logics
MSO+U and later cost MSO (as part of the theory of regular cost functions)
emerged in this context [3,4,6,8], as quantitative extensions of the notion of
regular languages that can express boundedness questions.

Consequently, developing the theory of regular cost functions comes in two
flavours: the first is using it to reduce various problems to boundedness questions,
and the second is obtaining decidability results for the boundedness problem for
cost MSO over various structures.

The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement 259454
(GALE).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 197–208, 2015.
DOI: 10.1007/978-3-662-47666-6 16

198 N. Fijalkow et al.

For the first point, many problems have been reduced to boundedness ques-
tions. The first example is the star-height problem over words [11] and over
trees [8], followed for instance by the boundedness question for fixed points of
monadic formulae over finite and infinite words and trees [2]. The most impor-
tant problem that has been reduced to a boundedness question is to decide the
Mostowski hierarchy for infinite trees [7].

For the second point, it has been shown that over finite words and trees, a
significant part of the theory of regular languages can successfully be extended
to the theory of regular cost functions, yielding notions of regular expressions,
automata, semigroups and logics that all have the same expressive power, and
that extend the standard notions. In both cases, algorithms have been con-
structed to answer boundedness questions.

However, extending the theory of regular cost functions to infinite trees seems
to be much harder, and the major open problem there is the decidability of cost
MSO over infinite trees.

LoCo Conjecture. Colcombet and Löding pointed out that the only missing
point to obtain the decidability of cost MSO is a finite-memory determinacy
result for games with counters. More precisely, they conjectured that there exists
a trade-off between the size of the memory and the bound achieved on the
counters [5]. So far, this conjecture resisted both proofs and refutations, and one
of the only non-trivial positive case known is due to Vanden Boom [16], which
implied the decidability of the weak variant of cost MSO over infinite trees, later
generalized to quasi-weak cost MSO in [1]. Unfortunately, Quasi-Weak cost MSO
is strictly weaker than cost MSO, and this leaves open the question whether cost
MSO is decidable.

Contributions. In this paper, we present two contributions:

– There is no trade-off, even for finite arenas, which disproves the conjecture,
– There is a trade-off for the special case of thin tree arenas.

Our first contribution does not imply the undecidability of cost MSO, it rather
shows that proving the decidability will involve subtle combinatorial arguments
that are yet to be understood.

Structure of This Document. The definitions are given in Section 2. We state
the conjecture in Section 3. Section 4 disproves the conjecture. Section 5 proves
that the conjecture holds for the special case of thin tree arenas.

2 Definitions

Arenas. The games we consider are played by two players, Eve and Adam,
over potentially infinite graphs called arenas1. Formally, an arena G consists of a

1 We refer to [9] for an introduction to games.

Trading Bounds for Memory in Games with Counters 199

directed graph (V,E) whose vertex set is divided into vertices controlled by Eve
(VE) and vertices controlled by Adam (VA). A token is initially placed on a given
initial vertex v0, and the player who controls this vertex pushes the token along
an edge, reaching a new vertex; the player who controls this new vertex takes
over, and this interaction goes on forever, describing an infinite path called a
play. Finite or infinite plays are paths in the graphs, seen as sequences of edges,
typically denoted π. In its most general form, a strategy for Eve is a mapping
σ : E∗ · VE → E, which given the history played so far and the current vertex
picks the next edge. We say that a play π = e0e1e2 . . . is consistent with σ if
en+1 = σ(e0 · · · en · vn) for every n with vn ∈ VE .

Winning Conditions. A winning condition for an arena is a set of a plays for
Eve, which are called the winning plays for Eve (the other plays are winning
for Adam). A game consists of an arena G and a winning condition W for this
arena, it is usually denoted (G,W).

A strategy for Eve is winning for a condition, or ensures this condition, if all
plays consistent with the strategy belong to the condition. For a game (G,W),
we denote WE(G,W) the winning region of Eve, i.e. the set of vertices from
which Eve has a winning strategy.

Here we will consider the classical parity condition as well as quantitative
bounding conditions.

The parity condition is specified by a colouring function Ω : V → {0, . . . , d},
requiring that the maximum color seen infinitely often is even. The special case
where Ω : V → {1, 2} corresponds to Büchi conditions, denoted Büchi(F) where
F = {v ∈ V | Ω(v) = 2}, and Ω : V → {0, 1} corresponds to CoBüchi conditions,
denoted CoBüchi(F) where F = {v ∈ V | Ω(v) = 1}. We will also consider the
simpler conditions Safe(F) and Reach(F), for F ⊆ V : the first requires to avoid
F forever, and the second to visit a vertex from F at least once.

The bounding condition B is actually a family of winning conditions with an
integer parameter B = {B(N)}N∈N. We call it a quantitative condition because
it is monotone: if N < N ′, all the plays in B(N) also belong to B(N ′).

The counter actions are specified by a function c : E → {ε, i, r}k, where k is
the number of counters: each counter can be incremented (i), reset (r), or left
unchanged (ε). The value of a play π, denoted val(π), is the supremum of the
value of all counters along the play. It can be infinite if one counter is unbounded.
The condition B(N) is defined as the set of plays whose value is less than N .

In this paper, we study the condition B-parity, where the winning condition
is the intersection of a bounding condition and a parity condition. The value of
a play that satisfies the parity condition is its value according to the bounding
condition. The value of a play which does not respect the parity condition is
∞. We often consider the special case of B-reachability conditions, denoted
B Until F . In such cases, we assume that the game stops when it reaches F .

Given an initial vertex v0, the value val(v0) is:

inf
σ

sup
π

{val(π) | π consistent with σ starting from v0} .

200 N. Fijalkow et al.

Finite-Memory Strategies. A memory structure M for the arena G consists
of a set M of memory states, an initial memory state m0 ∈ M and an update
function μ : M × E → M . The update function takes as input the current
memory state and the chosen edge to compute the next memory state, in a
deterministic way. It can be extended to a function μ : E∗ · V → M by defining
μ∗(v) = m0 and μ∗(π · (v, v′)) = μ(μ∗(π · v), (v, v′)).

Given a memory structure M, a strategy is induced by a next-move function
σ : VE ×M → E, by σ(π ·v) = σ(v, μ∗(π ·v)). Note that we denote both the next-
move function and the induced strategy σ. A strategy with memory structure
M has finite memory if M is a finite set. It is memoryless, or positional if M is
a singleton: it only depends on the current vertex. Hence a memoryless strategy
can be described as a function σ : VE → E.

An arena G and a memory structure M for G induce the expanded arena
G × M where the current memory state is stored explicitly together with the
current vertex: the vertex set is V × M , the edge set is E × μ, defined by:
((v,m), (v′,m′)) ∈ E′ if (v, v′) ∈ E and μ(m, (v, v′)) = m′. There is a natural
one-to-one correspondence between strategies in G × M using M′ as memory
structure and strategies in G using M × M′ as memory structure.

3 The Conjecture

In this section, we state the conjecture [5], and explain how positive cases of this
conjecture imply the decidability of cost MSO.

3.1 Statement of the Conjecture

There exists mem : N2 → N and α : N3 → N such that
for every B-parity game with k counters, d + 1 colors and initial vertex v0,

there exists a strategy σ using mem(d, k) memory states, ensuring
B(α(d, k, val(v0))) ∩ Parity(Ω).

The function α is called a trade-off function: if there exists a strategy ensuring
B(N) ∩ Parity(Ω), then there exists a strategy with small memory that ensures
B(α(d, k,N)) ∩ Parity(Ω). So, at the price of increasing the bound from N to
α(d, k,N), one can use a strategy using a small memory structure.

To get a better understanding of this conjecture, we show three simple facts:

1. why reducing memory requires to increase the bound,
2. why the memory bound mem depends on the number of counters k,
3. why a weaker version of the conjecture holds, where mem depends on the

value.

For the first point, we present a simple game, represented in Figure 1. It involves
one counter and the condition B Until F . Starting from v0, the game moves to v
and sets the value of the counter to N . The objective of Eve is to take the edge
to the right to F . However, this costs N increments, so if she wants the counter

Trading Bounds for Memory in Games with Counters 201

v0 v

uN

uN−1 . . . u2

u1

F
iN iN

r iN−1

i

r

iN−2
iN−2 r

i
iN−1

r

Fig. 1. A trade-off is necessary

value to remain smaller than N she has to set its value to 0 before taking this
edge. She has N options: for � ∈ {1, . . . , N}, the �th option consists in going to
u�, involving the following actions:

– first, take N − � increments,
– then, reset the counter,
– then, take � − 1 increments, setting the value to � − 1.

It follows that there is a strategy for Eve to ensure B(N) Until F , which consists
in going successively through uN , uN−1, and so on, until u1, and finally to F .
Hence to ensure that the bound is always smaller than N , Eve needs N + 1
memory states.

However, if we consider the bound 2N rather than N , then Eve has a very
simple strategy, which consists in going directly to F , using no memory at all.
This is a simple example of a trade-off: to ensure the bound N , Eve needs N +1
memory states, but to ensure the worse bound 2N , she has a positional strategy.

For the second point, consider the following game with k counters (numbered
cyclically) and only one vertex, controlled by Eve. There are k self-loops, each
incrementing a counter and resetting the previous one. Eve has a simple strategy
to ensure B(1), which consists in cycling through the loops, and uses k memory
states. Any strategy using less than k memory states ensures no bound at all,
as one counter would be incremented infinitely many times but never reset. It
follows that the memory bound mem in the conjecture has to depend on k.

For the third point, we give an easy result that shows the existence of finite
memory strategies whose size depends on the value, even without losing anything
on the bound.

Lemma 1. For every B-parity game with k counters and initial vertex v0, there
exists a strategy σ ensuring B(val(v0)) ∩ Parity(Ω) with (val(v0) + 1)k memory
states.

The proof consists in composing the B-parity game with a memory structure
that keeps track of the counter values up to the value, reducing the B-condition
to a safety condition.

202 N. Fijalkow et al.

3.2 The Interplay with Cost MSO

The aim of the conjecture stated above is the following: if true, it implies the
decidability of cost MSO over infinite trees. More precisely, the technical dif-
ficulty to develop the theory of regular cost functions over infinite trees is to
obtain effective constructions between variants of automata with counters, and
this is what this conjecture is about.

In the qualitative case (without counters), to obtain the decidability of MSO
over infinite trees, known as Rabin’s theorem [14], one transforms MSO formu-
lae into equivalent automata. The complementation construction is the technical
cornerstone of this procedure. The key ingredient for this is games, and specifi-
cally positional determinacy for parity games. Similarly, other classical construc-
tions, to simulate either two-way or alternating automata by non-deterministic
ones, make a crucial use of positional determinacy for parity games.

In the quantitative case now, Colcombet and Löding [8] showed that to extend
these constructions, one needs a similar result on parity games with counters,
which is the conjecture we stated above.

So far, there is only one positive instance of this conjecture, which is the
special case of B-Büchi games over chronological arenas2.

Theorem 1 ([16]). For every B-Büchi game played over a chronological arena
with k counters and initial vertex v0, Eve has a strategy ensuring B(kk ·
val(v0)2k) ∩ Büchi(F) with 2 · k! memory states.

This was the key ingredient in proving the decidability of weak cost MSO over
infinite trees.

4 No Trade-off Over Finite Arenas

In this section, we show that the conjecture does not hold, even for finite arenas.

Theorem 2. For all K, for all N , there exists a B-reachability game played
over a finite arena GK,N with one counter and an initial vertex such that:

– there exists a 3K memory states strategy ensuring B(K(K + 3)) Until F ,
– no K + 1 memory states strategy ensure B(N) Until F .

We proceed in two steps. The first is an example giving a lower bound of 3,
and the second is a nesting of this first example.

4.1 A First Lower Bound of 3

The game G1 giving a lower bound of 3 is represented in Figure 2. The condition
is B Until F , with only one counter. In this game, Eve is torn between going to
the right to reach F , which implies incrementing the counter, and going to the
left, to reset the counter. The actions of Eve from the vertex un are:
2 The definition of chronological arenas is given in Section 5.

Trading Bounds for Memory in Games with Counters 203

– increment, and go one step to the right, to vn−1,
– reset, and go two steps to the left, to vn+2.

The actions of Adam from the vertex vn are:

– play, and go down to un,
– skip, and go to vn−1.

v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 F

u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

i i i i i i i i i i

r r r r r r r r

Fig. 2. Part of the game G1, where Eve needs 3 memory states. The colors on the
vertices are used to construct a 3 memory states strategy.

Theorem 3. In G1, from vN :

– Eve has a 4 memory states strategy ensuring B(3) Until F ,
– Eve has a 3 memory states strategy ensuring B(4) Until F ,
– For all N , no 2 memory states strategy ensures B(N) Until F .

The first item follows from Lemma 1. However, to illustrate the properties
of the game G1 we will provide a concrete strategy with 4 memory states that
ensures B(3) Until F . The memory states are i1, i2, i3 and r, linearly ordered by
i1 < i2 < i3 < r. With the memory states i1, i2 and i3, the strategy chooses to
increment, and updates its memory state to the next memory state. With the
memory state r, the strategy chooses to reset, and updates its memory state to
i1. This strategy satisfies a simple invariant: it always resets to the right of the
previous reset, if any.

We show how to save one memory state, at the price of increasing the bound
by one: we construct a 3 memory states strategy ensuring B(4) Until F . The
idea, as represented in Figure 2, is to color every second vertex and to use this
information to track progress. The 3 memory states are called i, j and r. The
update is as follows: the memory state is unchanged in uncoloured (white) states,
and switches from i and j and from j to r on gray states. The strategy is as
follows: in the two memory states i and j, Eve chooses to increment, and in r
she chooses to reset. As for the previous strategy, this strategy ensures that it
always resets to the right of the previous reset, if any.

4.2 General Lower Bound

We now push the example above further. A first approach is to modify G1 by
increasing the length of the resets, going � steps to the left rather than only 2.

204 N. Fijalkow et al.

v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 F

u0,9 u0,8 u0,7 u0,6 u0,5 u0,4 u0,3 u0,2 u0,1 u0,0

u1,10 u1,8 u1,6 u1,4 u1,2 u1,0

i i i i i i i i i i

i i i i i i

r r r r r r r r

r r r

Fig. 3. The game with two levels.

However, this does not give a better lower bound: there exists a 3 memory states
strategy in this modified game that ensures twice the value, following the same
ideas as presented above.

We construct GK,N , a nesting of the game G1 with K levels. In Figure 3,
we represented the interaction between two levels. Roughly speaking, the two
levels are independent, so we play both games at the same time. Those two
games use different timeline. For instance, in Figure 3, the bottom level is based
on (+1,−2) (an increment goes one step to the right, a reset two steps to the
left), and the top level is based on (+2,−4). This difference in timeline ensures
that a strategy for Eve needs to take care somehow independently of each level,
ensuring that the number of memory states depends on the number of levels.

Theorem 4. In GK,N , from some initial vertex:

– Eve has a 3K memory states strategy ensuring B(K(K + 3)) Until F ,
– No K + 1 memory states strategy ensures B(N) Until F .

5 Existence of a Trade-off for Thin Tree Arenas

In this section, we prove that the conjecture holds for the special case of thin
tree arenas3.

Theorem 5. There exist two functions mem : N2 → N and α : N4 → N such
that for every B-parity game played over a thin tree arena of width W with k
counters, d + 1 colors and initial vertex v0, Eve has a strategy to ensure B(kk ·
val(v0)2k ·α(d, k,W +2, val(v0)))∩Parity(Ω), with W ·3k ·2k!·mem(d, k) memory
states.

The functions α and mem are defined inductively. Since the proof will work by
induction on the number of colors, removing the least important color, we define
four functions:
3 The definitions of word and thin tree arenas are given in Subsection 5.1.

Trading Bounds for Memory in Games with Counters 205

– α0 and mem0 when the set of colors is {0, . . . , d},
– α1 and mem1 when the set of colors is {1, . . . , d}:

α0(d, k,W,N) = α1(d − 1, k + 1, 3W,W · (N + 1)k),

α1(d, k,W,N) =

{
kk · N2k if d = 2,

α0(d, k, 2W,N) otherwise,

mem0(d, k) = 2 · mem1(d − 1, k + 1),

mem1(d, k) =

{
2 · k! if d = 1,

2 · mem0(d, k) otherwise.

Note that the functions α and mem depend on the width parameter; this
is sufficient for the intended applications of the LoCo conjecture, as the width
corresponds to the size of the automaton.

We focus in this extended abstract on the intermediate result for the special
case of word arenas.

Theorem 6. There exists two functions mem : N
2 → N and α : N

4 → N

such that for every B-parity game played over a word arena of width W with
k counters, d + 1 colors and initial vertex v0, Eve has a strategy to ensure
B(α(d,W, k, val(v0))) ∩ Parity(Ω), with mem(d, k) memory states.

5.1 Word and Thin Tree Arenas

A (non-labelled binary) tree is a subset T ⊆ {0, 1}∗ which is prefix-closed and
non-empty. The elements of T are called nodes, and we use the natural terminol-
ogy: for n ∈ {0, 1}∗ and � ∈ {0, 1}, the node n ·� is a child of n, and a descendant
of n if � ∈ {0, 1}∗.

A (finite or infinite) branch π is a word in {0, 1}∗ or {0, 1}ω. We say that π
is a branch of the tree T if π ⊆ T (or every prefix of π belongs to T when π is
infinite) and π is maximal satisfying this property. A tree is called thin if it has
only countably many branches. For example, the full binary tree T = {0, 1}∗ has
uncountably many branches, therefore it is not thin.

Definition 1. An arena is:

– chronological if there exists a function r : V → N which increases by one on
every edge: for all (v, v′) ∈ E, r(v′) = r(v) + 1.

– a word arena of width W if it is chronological, and for all i ∈ N, the set
{v ∈ V | r(v) = i} has cardinal at most W .

– a tree arena of width W if there exists a function R : V → {0, 1}∗ such that
1. for all n ∈ {0, 1}∗, the set {v ∈ V | R(v) = n} has cardinal at most W .
2. for all (v, v′) ∈ E, we have R(v′) = R(v) · � for some � ∈ {0, 1}.
It is a thin tree arena if R(V) is a thin tree.

The notions of word and tree arenas naturally appear in the study of
automata over infinite words and trees. Indeed, the acceptance games of such
automata, which are used to define their semantics, are played on word or tree
arenas. Furthermore, the width corresponds to the size of the automaton.

206 N. Fijalkow et al.

5.2 Existence of a Trade-off for Word Arenas

We prove Theorem 6 by induction on the colors in the parity condition. Consider
a B-parity game G with k counters and d + 1 colors over a word arena of width
W with initial vertex v0. We examine two cases, depending whether the least
important color (i.e the smallest) that appears is odd or even:

– if the set of colors is {1, . . . , d}, then we construct a B-parity game G′ using
{2, . . . , d} as colors,

– if the set of colors is {0, . . . , d}, then we construct a B-parity game G′ using
{1, . . . , d} as colors.

In both cases, we obtain from the induction hypothesis a winning strategy using
few memory states in G′, which we use to construct a winning strategy using
few memory states in G. The base case is given by Büchi conditions, and follows
from Theorem 1.

Removing the Least Important Color: the Odd Case The first case we
consider is when the least important color is 1. The technical core of the con-
struction is motivated by the technique used in [16]. It consists in slicing the
game horizontally, such that in each slice the strategy σ ensures to see a vertex
of color greater than 1. This way, the combination of a memory structure of size
2 and a safety condition expresses that some color greater than 1 should be seen
infinitely often, allowing us to remove the color 1.

Removing the Least Important Color: the Even Case The second case
we consider is when the least important color is 0.

We explain the intuition for the case of CoBüchi conditions, i.e if there are
only colors 0 and 1. Let F = {v | Ω(v) = 1}. Define X0 = Y0 = ∅, and for i ≥ 1:{

Xi+1 = WE(Safe(F) WeakUntil Yi)
Yi+1 = WE(Reach(Xi+1))

The condition Safe(F) WeakUntil Yi is satisfied by plays that do not visit F
before Yi: they may never reach Yi, in which case they never reach F , or they
reach Yi, in which case they did not reach F before that.

We have
⋃

i Yi = WE(CoBüchi(F)). A winning strategy based on these sets
has two aims: in Xi it avoids F (“Safe” mode) and in Yi it attracts to the next
Xi (“Attractor” mode). The key property is that since the arena is a word arena
of width W where Eve can bound the counters by N , she only needs to alternate
between modes a number of times bounded by a function of N and W . In other
words, the sequence (Yi)i∈N stabilizes after a number of steps bounded by a
function of N and W . A remote variant of this bounded-alternation fact can be
found in [12]. Hence the CoBüchi condition can be checked using a new counter
and a Büchi condition, as follows.

There are two modes: “Safe” and “Attractor”. The Büchi condition ensures
that the “Safe” mode is visited infinitely often. In the “Safe” mode, only vertices

Trading Bounds for Memory in Games with Counters 207

of color 0 are accepted; visiting a vertex of color 1 leads to the “Attractor” mode
and increments the new counter. At any time, she can reset the mode to “Safe”.
The counter is never reset, so to ensure that it is bounded, Eve must change
modes finitely often. Furthermore, the Büchi condition ensures that the final
mode is “Safe”, implying that the CoBüchi condition is satisfied.

For the more general case of parity conditions, the same idea is used, but as
soon as a vertex of color greater than 1 is visited, then the counter is reset.

Define G′:

V ′ =

{
V ′

E = VE × {A,S} ∪ V

V ′
A = VA × {A,S} .

After each edge followed, Eve is left the choice to set the flag to S. The set of
choice vertices is denoted V . We define E′ and the counter actions.

E′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v,A)
c(v,v′),ε−−−−−−→ v′ if (v, v′) ∈ E,

(v, S)
c(v,v′),ε−−−−−−→ (v′, S) if (v, v′) ∈ E and Ω(v′) = 0,

(v, S)
c(v,v′),i−−−−−−→ (v′, A) if (v, v′) ∈ E and Ω(v′) = 1,

(v, S)
c(v,v′),r−−−−−−→ (v′, S) if (v, v′) ∈ E and Ω(v′) > 1,

v
ε−−→ (v,A) and v

ε−−→ (v, S)

Equip the arena G′ with the colouring function Ω′ defined by

Ω′(v,m) =

⎧⎪⎨
⎪⎩

1 if m = A,

2 if Ω(v) = 0 and m = S,

Ω(v) otherwise.

Remark that Ω′ uses one less color than Ω, since no vertices have color 0 for Ω′.
Before stating the equivalence between G and G′, we formalise the prop-

erty mentioned above, that in word arenas Eve does not need to alternate an
unbounded number of times between the modes “Safe” and “Attractor”.

Lemma 2. Let G be a word arena of width W , and a subset F of vertices such
that every path in G contains finitely many vertices in F . Define the following
sequence of subsets of vertices X0 = ∅, and for i ≥ 0⎧⎪⎨

⎪⎩
X2i+1 =

{
v

∣∣∣∣all paths from v contain no vertices in F
before the first vertex in X2i, if any

}
,

X2i+2 =
{
v

∣∣all paths from v are finite or lead to X2i+1

}
.

We have X0 ⊆ X1 ⊆ X2 ⊆ · · · , and X2W covers the whole arena.

Denote N = val(v0).

Lemma 3.

1. There exists a strategy σ′ in G′ that ensures B(W · (N + 1)k) ∩ Parity(Ω′).
2. Let σ′ be a strategy in G′ ensuring B(N ′)∩Parity(Ω′) with K memory states,

then there exists σ a strategy in G that ensures B(N ′) ∩ Parity(Ω) with 2K
memory states.

208 N. Fijalkow et al.

Conclusion

We studied the existence of a trade-off between bounds and memory in games
with counters, such as conjectured by Colcombet and Löding. We proved that
there is no such trade-off in general, but that under some structural restrictions,
as thin tree arenas, the conjecture holds.

We believe that the conjecture holds for all tree arenas, which would imply the
decidability of cost MSO over infinite trees. A proof of this result would probably
involve advanced combinatorial arguments, and require a deep understanding of
the structure of tree arenas.

Acknowledgments. The unbounded number of fruitful discussions we had with
Thomas Colcombet and Miko�laj Bojańczyk made this paper possible.

References

1. Blumensath, A., Colcombet, T., Kuperberg, D., Parys, P., Boom, M.V.: Two-way
cost automata and cost logics over infinite trees. In: CSL-LICS, pp. 16–26 (2014)

2. Blumensath, A., Otto, M., Weyer, M.: Decidability results for the boundedness
problem. Logical Methods in Computer Science 10(3) (2014)

3. Bojańczyk, M.: A bounding quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.)
CSL 2004. LNCS, vol. 3210, pp. 41–55. Springer, Heidelberg (2004)

4. Bojańczyk, M., Colcombet, T.: Bounds in ω-regularity. In: LICS, pp. 285–296
(2006)

5. Colcombet, T.: Fonctions régulières de coût. Habilitation Thesis (2013)
6. Colcombet, T.: Regular cost functions, part I: logic and algebra over words. Logical

Methods in Computer Science 9(3) (2013)
7. Colcombet, T., Löding, C.: The non-deterministic mostowski hierarchy and

distance-parity automata. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol.
5126, pp. 398–409. Springer, Heidelberg (2008)

8. Colcombet, T., Löding, C.: Regular cost functions over finite trees. In: LICS, pp.
70–79 (2010)

9. Farwer, B.: 1 omega-automata. In: Grädel, E., Thomas, W., Wilke, T. (eds.)
Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 3–21. Springer, Hei-
delberg (2002)

10. Hashiguchi, K.: Improved limitedness theorems on finite automata with distance
functions. Theoretical Computer Science 72(1), 27–38 (1990)

11. Kirsten, D.: Distance desert automata and the star height problem. ITA 39(3),
455–509 (2005)

12. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. In:
5th Israeli Symposium on Theory of Computing and Systems, pp. 147–158. IEEE
Computer Society Press (1997)

13. Leung, H.: Limitedness theorem on finite automata with distance functions: An
algebraic proof. Theoretical Computuer Science 81(1), 137–145 (1991)

14. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the AMS 141, 1–23 (1969)

15. Simon, I.: On semigroups of matrices over the tropical semiring. ITA 28(3–4),
277–294 (1994)

16. Boom, M.V.: Weak cost monadic logic over infinite trees. In: Murlak, F., Sankowski,
P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 580–591. Springer, Heidelberg (2011)

Decision Problems of Tree Transducers
with Origin

Emmanuel Filiot1, Sebastian Maneth2, Pierre-Alain Reynier3,
and Jean-Marc Talbot3(B)

1 Université Libre de Bruxelles, Brussels, Belgium
2 University of Edinburgh, Edinburgh, Scotland

3 Aix-Marseille Université and CNRS, Marseille, France
jean-marc.talbot@lif.univ-mrs.fr

Abstract. A tree transducer with origin translates an input tree into
a pair of output tree and origin info. The origin info maps each node
in the output tree to the unique input node that created it. In this
way, the implementation of the transducer becomes part of its semantics.
We show that the landscape of decidable properties changes drastically
when origin info is added. For instance, equivalence of nondeterministic
top-down and MSO transducers with origin is decidable. Both problems
are undecidable without origin. The equivalence of deterministic top-
down tree-to-string transducers is decidable with origin, while without
origin it is a long standing open problem. With origin, we can decide if
a deterministic macro tree transducer can be realized by a deterministic
top-down tree transducer; without origin this is an open problem.

Tree transducers were invented in the early 1970’s as a formal model for
compilers and linguistics [23,24]. They are being applied in many fields of com-
puter science, such as syntax-directed translation [13], databases [15,22], linguis-
tics [4,19], programming languages [21,27], and security analysis [16]. The most
essential feature of tree transducers is their good balance between expressive
power and decidability.

Bojańczyk [3] introduces (string) transducers with origin. For “regular”
string-to-string transducers with origin he presents a machine independent char-
acterization which admits Angluin-style learning and the decidability of natural
subclasses. These results indicate that classes of translations with origin are
mathematically better behaved than their origin-less counter parts.

We initiate a rigorous study of tree transducers with origin by investigating
the decidability of equivalence, injectivity and query determinacy on the follow-
ing models: top-down tree-to-tree transducers [23,24], top-down tree-to-string

The authors are grateful to Joost Engelfriet for his remarks for improvement and cor-
rection on an earlier version of this paper. This work has been carried out thanks to
the support of the ARCHIMEDE Labex (ANR-11-LABX-0033) and the A*MIDEX
project (ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French
Government program, managed by the French National Research Agency (ANR)
and by the PEPS project “Synthesis of Stream Processors” funded by CNRS.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 209–221, 2015.
DOI: 10.1007/978-3-662-47666-6 17

210 E. Filiot et al.

Table 1. Decidability of equivalence

top-down tree-to-tree top-down tree-to-string mso tree-to-string
det nd det nd det nd

+ [12] − [14] ? − [14] + [10] −
with origin + + + − + +

transducers [11], and mso definable tree-to-string transducers (see, e.g., [10]).
Unlike the string transducers of Bojańczyk [3], we will see that equivalent mod-
els of tree-to-string transducers do not remain equivalent in the presence of
origin. This motivates the study of subclass definability problems (definability of
a transduction from a class in a subclass) when considering the origin semantics.

Table 1 summarizes our results on equivalence; non-/deterministic are abbre-
viated by nd/det and decidable/undecidable by +/−. The “?” marks a long-
standing open problem, already mentioned by Engelfriet [7]. The first change
from − to + is the equivalence of nondeterministic top-down tree transducers.
In the non-origin case this problem is already undecidable for restricted string-
to-string transducers [14]. In the presence of origin it becomes decidable for tree
transducers, because origin implies that any connected region of output nodes
with the same origin is generated by one single rule. Hence, the problem reduces
to letter-to-letter transducers [1]. What about nondeterministic top-down tree-
to-string transducers (column four in Table 1)? Here output patterns cannot be
treated as letters. By deferring output generation to a leaf they can simulate
non-origin translations with undecidable equivalence [14]. Finally, we discuss
column three. Here the origin information induces a structure on the output
strings: recursive calls of origin-equivalent transducers must occur in similar
“blocks”, so that the same children of the current input node are visited in the
same order (but possibly with differing numbers of recursive calls). This block
structure allows to reason over single input paths, and to reduce the problem to
deterministic tree-to-string transducers with monadic input. The latter can be
reduced [20] to the famous hdt0l sequence equivalence problem.

Injectivity for deterministic transducers is undecidable for all origin-free mod-
els of Table 1. With origin, we prove undecidability in the tree-to-string case and
decidability in the mso and top-down tree cases. The latter is again due to the
rigid structure implied by origins. We can track if two different inputs, over the
same input nodes, produce the same output tree. We use the convenient frame-
work of recognizable relations to show that the set of trees for which a transducer
with origin produces the same output can be recognized by a tree automaton.

Motivation. Clearly, the more information we include in a transforma-
tion, the more properties become decidable. Consider invertability: on the one
extreme, if all reads and writes are recorded (under acid), then any computation
becomes invertible. The question then arises, how much information needs to be
included in order to be invertible. This problem has recently deserved much
attention in the programming language community (see, e.g., [26]). Our work
here was inspired by the very similar view/query determinacy problem. This

Decision Problems of Tree Transducers with Origin 211

problem asks for a given view and query, whether the query can be answered
on the output of the view. It was shown decidable in [2] for views that are
linear extended tree transducers, and queries that are deterministic mso or top-
down transducers. For views that include copying, the problem quickly becomes
undecidable [2]. Our results show that such views can be supported, if origin is
included. Consider for instance a view that regroups a list of publications into
sublists of books, articles, etc. A tree transducer realizing this view needs copy-
ing (i.e., needs to process the original list multiple times). Without origin, we
do not know a procedure that decides determinacy for such a view. With origin,
we prove that determinacy is decidable. As expected: the world becomes safer
with origin, but more restrictive (e.g., the query “is book X before article Y in
the original list?” becomes determined when origin is added to the above view).

The tracking of origin information was studied in the programming language
community, see [25]. As a technical tool it was used in [9] to characterize the MSO
definable macro tree translations, and, in [17] to give a Myhill-Nerode theorem
for deterministic top-down tree transducers. From a linguistic point of view, ori-
gin mappings on their own are subject of interest and are called “dependencies”
or “links”. Maletti [18] shows that dependencies (i.e., origins) give “surprising
insights” into the structure of tree transformations: many separation results con-
cerning expressive power can be obtained on the level of dependencies.

1 Preliminaries

For a nonnegative integer k we denote by [k] the set {1, . . . , k}. For an alphabet
A, we denote by A∗ the set of strings over A, and by ε the empty string. Let
w ∈ A∗ be a string of length k. Its length is denoted by |w| = k, and its set of
positions by V (w) = [k]. For j ∈ [k], w[j] denotes the j-th symbol of the string w.
A ranked alphabet Σ is a finite set of symbols σ each with an associated natural
k called its rank. We write σ(k) to denote that σ has rank k, and denote by Σ(k)

the set of all symbols in Σ of rank k. The set TΣ of trees over Σ is the smallest
set T so that if k ≥ 0, t1, . . . , tk ∈ T , and σ ∈ Σ(k), then σ(t1, . . . , tk) ∈ T .
For the tree σ() we simply write σ. The set V (t) of nodes of tree t ∈ TΣ is the
subset of N

∗ defined as {ε} ∪ {iu | i ∈ [k], u ∈ V (ti)} if t = σ(t1, . . . , tk). Thus
ε denotes the root node, and ui denotes the i-th child of a node u. For a tree t
and u ∈ V (t) we denote by t[u] the label of node u in t, and by t/u the subtree
of t rooted at u. For a tree t′, we denote by t[u ← t′] the tree obtained from t
by replacing the subtree rooted in position u by the tree t′. Given a tree t ∈ TΣ

and Δ ⊆ Σ, VΔ(t) denotes the set of nodes u ∈ V (t) such that t[u] ∈ Δ.

Translations. Let Σ,Δ be two ranked alphabets. A tree translation (from
TΣ to TΔ) is a relation R ⊆ TΣ × TΔ. Let A be an alphabet. A tree-to-string
translation is a relation R ⊆ TΣ × A∗. The domain of a translation R, denoted
dom(R), is defined as the projection of R on its first component. A translation
R is functional if R is a function.

Origin Translations. Let s1, s2 be two structures (strings or trees). An origin
mapping of s2 in s1 is a mapping o : V (s2) → V (s1). An origin translation is

212 E. Filiot et al.

a set of pairs (s1, (s2, o)) such that o is an origin mapping of s2 in s1. Given
v ∈ V (s2) and u ∈ V (s1), if o(v) = u then we say that “v has origin u” or that
“the origin of v is u”.

2 Tree Translations with Origin

Top-down Transducers. A top-down tree transducer (top for short) is a
rule-based finite-state machine that translates trees over a ranked alphabet Σ
to trees over a ranked alphabet Δ. Rules are of the form q(σ(x1, . . . , xk)) → ζ,
where q is a state, σ ∈ Σ(k) a symbol of rank k, and ζ is a tree over Δ of which
the leaves may also be labeled with symbols of the form q′(xi), for some state
q′ and i ∈ [k]. Applying this rule to a tree s = σ(s1, . . . , sk) produces, on the
output, a tree t obtained by replacing in ζ all symbols q′(xi) by a tree over Δ,
itself obtained as a result of evaluating si in state q′. The origin of all the nodes
of ζ labeled in Δ is precisely the root node of s.

As an example, consider a top M1 over Σ = {h(1), a(0)} and Δ = {f (2), a(0)}
with single state q and rules q(h(x1)) → f(q(x1), q(x1)) and q(a) → a. It trans-
lates a monadic input tree of height n into a full binary tree of height n. Thus,
the origin of any output node u is the input node 1|u|.As another example,
consider M2 with states q0 and q and the rules q0(h(x1)) → f(q0(x1), q(x1)),
q(h(x1)) → h(q(x1)) and q0(a) → a, q(a) → a. This transducer translates a
monadic input tree of height n into a left-comb of monadic subtrees of decreas-
ing height. Thus, h(h(h(a))) is translated into f(f(f(a, a), h(a)), h(h(a))). Again,
the origin of node u is 1|u|.

Formally, a top-down tree transducer M is a tuple (Q,Σ,Δ, q0, R) where Q
is a finite set of states, q0 ∈ Q is the initial state, and R is a set of rules of
the form q(σ(x1, . . . , xk)) → ζ, where ζ is a tree over Δ ∪ {q′(xi) | q′ ∈ Q, i ∈
[k]}, where each symbol q′(xi) has rank 0. Every state q ∈ Q realizes an origin
translation �q�o defined recursively as follows. Let s = σ(s1, . . . , sk) and ζ such
that q(σ(x1, . . . , xk)) → ζ is a rule of M . Let V = V (ζ)\VΔ(ζ). For every v ∈ V ,
let (siv

, (tv, ov)) ∈ �qv�o where qv ∈ Q and iv ∈ [k] such that ζ[v] = qv(xiv
). Then

(s, (t, o)) ∈ �q�o with

– t = ζ[v ← tv | v ∈ V],
– o(v′) = ε for v′ ∈ VΔ(ζ) and o(vv′) = ivov(v′) for v ∈ V and v′ ∈ V (tv).

The translation realized by q is defined as �q� = {(s, t) | ∃o : (s, (t, o)) ∈ �q�o}.
The origin (tree) translation realized by M is �M�o = �q0�o, and the (tree)
translation realized by M is �M� = �q0�.

Note that tops are forced to produce at least one symbol when they read
the leaf of an input tree. To inspect parts of the input tree without producing
output, a top can be equipped with regular look-ahead, leading to the class
of top-down tree transducers with regular look-ahead (topR). This is done by
changing the rules so that each left-hand side is of the form q(σ(x1, . . . , xk) : L)
where L is a regular tree language. Such a rule can be applied only if the input

Decision Problems of Tree Transducers with Origin 213

tree σ(s1, . . . , sk) is in L. Alternatively, instead of L a state p of some given
finite tree automaton can be used. A topR M is deterministic if for any two
rules with left-hand sides q(σ(x1, . . . , xk) : L1) and q(σ(x1, . . . , xk) : L2), we
have L1∩L2 = ∅. Note that any top M can be transformed into a topR MR by
adding universal look-ahead languages. M is deterministic if MR is. The classes
of deterministic top-down tree transducers without and with regular look-ahead
are respectively denoted by dtop and dtopR. Note that dtop and dtopR

realize only functional translations (and functional origin translations).

MSO Transducers. Deterministic MSO tree transducers (dmsot for short)
are logic-based tree transducers defined over monadic second-order logic (MSO).
Any tree s over a ranked alphabet Σ of maximal rank k is seen as a logi-
cal structure of domain V (s) over the node label predicates σ(x), σ ∈ Σ, and
successor predicates i(x, y), 1 ≤ i ≤ k, that relate a node x to its i-th child
y. By MSO[Σ] we denote all monadic second-order formulas over this signa-
ture, and write s |= φ whenever a tree s satisfies a formula φ ∈ MSO[Σ].
Let Δ be a ranked alphabet of maximal rank �. To define the output tree
t ∈ TΔ of an input tree s ∈ TΣ , a dmsot uses MSO[Σ] formulas with one
or two free variables, interpreted over a fixed number of copies of s, to define
the predicates of t over Δ. Formally, a dmsot from TΣ to TΔ is a tuple
M = (C, φdom, (φc

n(x))c∈C , (φc
δ(x))δ∈Δ,c∈C , (φc,c′

i (x, y))i∈[�],c,c′∈C) such that C is
a finite set of copy indices, φdom is an MSO[Σ]-sentence which defines whether
the input tree s is in the domain, φc

n, φc
δ are MSO[Σ]-formulas with one free vari-

able x which respectively define the nodes V (t) in the output tree t and their
labels, and φc,c′

i are MSO[Σ]-formulas with two free variables x and y which
define the edge relations between the nodes in V (t).

Given a tree s ∈ TΣ , �M�o(s) is defined if s |= φdom, and it is then equal to
(t, o) where t is the structure whose domain is D = {(u, c) | s |= φc

n(u)} (each
node (u, c) is denoted hereafter by uc), and for all uc ∈ D, uc is labeled by
δ ∈ Δ if s |= φc

δ(u), and a node uc2
2 ∈ D is the i-th child of a node uc1

1 ∈ D
if s |= φc1,c2

i (u1, u2). The origin mapping o is defined by o(uc) = u (hence, for
any input node u, there are at most |C| nodes in the output with u as origin).
Additionally, for M to be an MSO tree transducer, it is required that t ∈ TΔ.

For example, let Σ = {f (2), a(0), b(0)} and Δ = {a(1), b(1), e(0)}. The yield of
a tree s ∈ TΣ is the monadic tree in TΔ obtained from its leaves, in preorder.
E.g., the yield of f(f(a, b), b) is a(b(b(e))). The yield translation is not in dtopR

but in dmsot. The preorder relation � on tree nodes obtained from the preorder
traversal of the tree is known to be MSO[Σ]-definable. To realize the yield in
dmsot, we only need one copy (C = 1). The domain formula is true and all
internal nodes are filtered out by φ1

n(x) = leaf(x), where leaf(x) holds true if x
is a leaf. Labels are unchanged: φ1

σ(x) = σ(x) for all σ ∈ Σ, and the first-child
relation is defined by φ1,1

1 (x, y), which expresses that x and y are leaves, and
that x � y ∧ ¬(∃z.x � z ∧ z � y).

dmsot can be extended with non-determinism, leading to the class of MSO
tree transducers (msot). All formulas φdom, φc

δ and φc,c′
i can use a fixed addi-

tional finite set of free second-order variables X. Once an assignment ν of each

214 E. Filiot et al.

variable of X by a set of nodes of an input tree s is fixed, the previous formulas
can be interpreted as before with respect to this assignment, thus defining an
output pair (tν , oν) (if the domain formula holds true). The set of outputs asso-
ciated with s is the set of all such pairs (tν , oν), for all assignments ν of X. In the
previous example, using a free variable X, one could also associate all scattered
substrings (seen as monadic trees) of the yield. Only leaves in X are kept, by
letting φ1

n(x) = x ∈ X ∧ leaf(x), and φ1,1
1 (x, y) also requires that x, y ∈ X.

Origin-Equivalence Problem. Given two tree transducers M1,M2 which
are either both in topR or both in msot, decide whether �M1�o = �M2�o.

Theorem 1. Origin-equivalence is decidable for mso tree transducers and top-
down tree transducers with regular look-ahead.

Sketch of Proof. Given a tree transducer M , we simply write dom(M) for
dom(�M�). Inequality of the domains implies inequivalence. As a first step, for
both classes of transducers, an equality test of the domains is performed. This
is obviously decidable due to the effective regularity of these sets. Then, for
topR, by modifying the output alphabet of M1 and M2 and their rules, we show
how to turn them into non-deleting 1 non-erasing 2 top without look-ahead,
while preserving origin-equivalence. Let us notice then that the constraint that
origins should be the same is strong: for all input trees s ∈ dom(M1), for all
(t, o) ∈ �M1�o(s), M2 must produce, in a successful execution, the symbols of
t exactly at the same moment as M1, and conversely for all (t, o) ∈ �M2�o(s).
When considering non-erasing top, this property has a nice consequence: both
M1 and M2 can be seen as symbol-to-symbol transducers, which means that
each right-hand side of a rule contains exactly one node with a label from Δ.
To be precise, the Δ-part of any right-hand side ζ of a rule of M1 or M2, with
n leaves labeled by some q(xi), can be seen as a single symbol of rank n. For
instance, if ζ = f(q1(x1), h(q2(x1)), q3(x2)), then f(., h(.), .) is seen as a single
symbol of arity 3. M ′

1 and M ′
2, two non-deleting non-erasing top without look-

ahead, can be built from M1 and M2 respectively such that �M1�o = �M2�o iff
�M ′

1� = �M ′
2�. Finally, it leads to solve an equivalence problem for (nondetermin-

istic) non-deleting symbol-to-symbol top-down tree transducers which is known
to be decidable [1].

For msot, we show that the equality set E(�M1�o, �M2�o) of �M1�o and
�M2�o, defined as the set of trees s ∈ dom(M1) such that �M1�o(s) = �M2�o(s),
is effectively regular. Without origins, even simple msot translations yield a non-
regular set: e.g., the translations R1 : f(s1, s2) �→ s1 and R2 : f(s1, s2) �→ s2
are both msot definable but their (origin-free) equality set {f(s, s) | s ∈ TΣ},
is not regular. To show that the set E(�M1�o, �M2�o) is regular, we construct
an MSO formula that defines it. This formula expresses for instance that any

1 Non-deleting means that every xi occurring in the left-hand side of a rule also occurs
in its right-hand side.

2 Non-erasing means that the right-hand side of each rule contains at least one symbol
from Δ.

Decision Problems of Tree Transducers with Origin 215

sequence of input nodes u1, . . . , un that are connected with successor formulas
φc,c′

i (x, y) by M1 are also connected with successor formulas of M2 with the same
sequence of indices i, and conversely. It also expresses that the sequence of label
formulas φc

δ(x) of M1 and M2 that hold on u1, . . . , un respectively, carry the same
respective output symbols δ. As a consequence, to check origin-equivalence of
M1 and M2, it suffices to check that dom(M1) = dom(M2) = E(�M1�o, �M2�o),
which is decidable since all these sets are effectively regular. ��

Origin-Injectivity Problem. Given a tree transducer M from TΣ to TΔ

either in dmsot or in dtopR, decide whether the function �M�o is injective.

Theorem 2. Origin-injectivity is decidable for deterministic mso tree transduc-
ers and deterministic top-down tree transducers with regular look-ahead.

Sketch of Proof. Let us denote by R(�M�o) the set of pairs of trees (s1, s2) ∈
dom(M)2 such that �M�o(s1) = �M�o(s2). Clearly, �M�o is injective iff
R(�M�o)∩ (�=TΣ

) = ∅, where �=TΣ
is the difference relation over TΣ . Take a pair

(s1, s2) ∈ R(�M�o). We can define its top- and left-most overlap s1 ⊗ s2 that
aligns the same nodes of s1 and s2 (recall that a node is a string over N). Nodes in
V (s1)∩V (s2) are labeled, in s1⊗s2, by the pair of their respective labels in s1 and
s2. Nodes in V (s1)\V (s2) or V (s2)\V (s1) are labeled by pairs (σ,⊥) or (⊥, σ), for
a special padding symbol ⊥. Interestingly, �M�o(s1) = �M�o(s2) if M produces
the same output symbols when processing a node in V (s1)∩V (s2), and does not
produce anything when processing a node in V (s2) \ V (s1) ∪ V (s1) \ V (s2).

When M ∈ dtopR, this last observation allows us to construct a dtopR M ′

reading trees s1 ⊗ s2 ∈ TΣ ⊗ TΣ , that simulates in parallel two executions of
M on s1 and s2 respectively, and checks that M produces the same symbols at
the same moment, for the common nodes of s1 and s2, and nothing elsewhere.
Then, dom(M ′) equals the set of trees s1 ⊗ s2 such that (s1, s2) ∈ R(�M�o)
and is regular, as dtopR have regular domains. In other words, the relation
R(�M�o) is recognizable [5]. It is easily shown that �=TΣ

is, as well, recognizable.
Since recognizable relations are closed under intersection, one gets decidability
of injectivity for origin-translations of dtopR.

When M ∈ dmsot, R(�M�o) is also a recognizable relation. To prove that,
we first transform M into two transducers M1,M2 ∈ dmsot that run on trees in
TΣ⊗TΣ . While processing trees s1⊗s2, Mi simulates M on si, so that �Mi�o(s1⊗
s2) = �M�o(si). Then, {s1 ⊗ s2 | (s1, s2) ∈ R(�M�o)} = E(�M1�o, �M2�o), and
the result follows since E(�M1�o, �M2�o) is regular for M1,M2 ∈ dmsot. ��

Application to Query Determinacy. Let Q (resp. V) be a functional tree
translation (resp. origin tree translation) from TΣ to TΔ, called the query (resp.
the view). We say that Q is determined by V if for all trees s1, s2 ∈ dom(V),
if V (s1) = V (s2) then Q(s1) = Q(s2). This generalizes the injectivity problem:
the identity tree translation is determined by a view V iff V is injective.

Corollary 3. Let Q (resp. V) be a tree translation (resp. an origin tree trans-
lation) defined by either a dtopR or a dmsot. It is decidable whether Q is
determined by V .

216 E. Filiot et al.

Proof. Let Q1, Q2 be tree translations from TΣ ⊗ TΣ to TΔ defined by Qi(s1 ⊗
s2) = Q(si), for all s1, s2 ∈ TΣ . Note that the Qi are definable by dtopR (resp.
dmsot) if Q is. Let r(V) be the set of trees s1⊗s2 such that s1, s2 ∈ dom(V) and
V (s1) = V (s2). Q is determined by V iff Q1(s) = Q2(s) for all s in r(V), iff Q1

and Q2 are equivalent on r(V). As seen before to solve the injectivity problem, we
show that the pairs (s1, s2) such that V (s1) = V (s2) is a recognizable relation,
for transducers in dtopR or dmsot. So, r(V) is regular. The result follows as
equivalence of dtopR or dmsot is decidable on regular languages [20]. ��

3 Tree-to-String Translations with Origin

A top-down tree-to-string transducer (ytop for short) M is a tuple
(Q,Σ,Δ, q0, R) where Q, q0, Σ are defined as for top-down tree transducers, Δ
is an alphabet, and every rule is of the form q(σ(x1, . . . , xk)) → ζ, where ζ is a
string over Δ and the symbols q′(xi), with q′ ∈ Q and i ∈ [k]. The definition of
�q�o is as for top-down tree transducers, only that t and tv are strings over Δ.
In this way we obtain �M�o and �M�. ytop generalize top, as right-hand sides
of rules of top can be encoded as well-bracketed strings. The converse is false:
even considering strings as monadic trees, a ytop can for instance easily imple-
ment string reversal, which is impossible using top. As for top, we can equip
this model with regular look-ahead, and consider deterministic machines. This
defines the classes of deterministic top-down tree-to-string transducers (with
regular look-ahead): ydtop (ydtopR).

We give a ydtop M implementing string reversal. It takes as input monadic
trees over the alphabet Σ = {a(1), b(1), e(0)} and produces output strings over
the alphabet Δ = {a, b}. It has states q, qa, qb and rules q(σ(x1)) → q(x1)qσ(x1)
and qσ(σ′(x1)) → qσ(x1) for σ, σ′ ∈ Σ(1), and leaf rules q(e) → ε and qσ(e) → σ
for σ ∈ Σ(1). Clearly, for s = a(a(b(e))) �M�(s) = baa = w. Note that the origin
of each letter of w is the leaf of s (here, 111). Hence, the origin translation �M�o
is not mso definable: there may be unboundedly many letters having such a leaf
as origin (by contrast, the translation �M� is mso definable, as tree-to-string mso
transducers are equivalent to ydtopR of linear size increase [8,9]). In Sec. 4 we
show how to decide whether the origin translation of a ydtopR is mso definable.

Undecidability Results. By a construction similar to the above string rever-
sal example, any string-to-string rational relation can be shown to be imple-
mentable as a ytop such that the origin of every output symbol is the unique
leaf of the input monadic tree. This ”erasing” of origin info shows that origin-
equivalence of ytop is harder than equivalence of string-to-string rational rela-
tions known to be undecidable [14]. A similar technique can be used to show
that origin-injectivity of ydtop is also undecidable, by an encoding of the Post
Correspondence Problem. This contrasts with the positive results presented in
Sec. 2. There, origin-equivalence of msot relied on the regularity of the set
E(�M1�o, �M2�o), and one can easily come up with two ydtop M1,M2 such
that this set is not regular. E.g., take the transducer M1 = M for string
reversal of before, and M2 the identity with rules q(σ(x1)) → qσ(x1)q(x1)

Decision Problems of Tree Transducers with Origin 217

and qσ(σ′(x1)) → qσ(x1) for σ, σ′ ∈ Σ(1), and leaf rules as for M . Now
E(�M1�o, �M2�o) is the set of palindromes on Δ∗ (seen as monadic trees), which
is not regular.

Equivalence of ydtopR. Though it is not possible to obtain decidability
results by regular sets (or recognizable relations), we manage to prove, using
more involved techniques, that origin-equivalence of ydtopR is decidable.

Theorem 4. Origin-equivalence is decidable for deterministic top-down tree-to-
string transducers with regular look-ahead.

Sketch of Proof. Let M1,M2 be two ydtopR. We first check whether M1 and M2

have the same domain D. If not we output “not equivalent”. Otherwise, we build
ydtop transducers without look-ahead M ′

1, M ′
2, and a regular tree language D′

such that �M1�o = �M2�o iff M ′
1 and M ′

2 are origin-equivalent on D′.
Secondly, we transform the two ydtop into end-marked leaf-producing

ydtop such that origin-equivalence is preserved: the leaf-producing property
requires that transducers produce only at the leaves. The end-marked prop-
erty means that every output string has a final end-marker. Both properties are
obtained by modifying the input alphabet and the rules. For the last one, only
the initial rules of the transducers are concerned. We still denote them (M ′

i)i=1,2.
Last, we reduce the origin-equivalence problem of these ydtop to the equiv-

alence problem of monadic ydtop, where ‘monadic’ means that every input
symbol has rank 0 or 1. This is done by only considering partial output strings
produced on root-to-leaf paths of the input tree. We give now some details on
this last part. Let s be a tree, w = a1 . . . an ∈ Δ∗ a string with ai ∈ Δ for all
i, and o : V (w) → V (s) an origin mapping. Let U = {u1, . . . , uk} ⊆ V (s) be a
set of (distinct) nodes (in this order). We define Πu1,...,uk

(w, o) as the string in
(Δ × [k])∗ obtained from w by erasing ai if o(i) �∈ {u1, . . . , uk}, and changing
ai into (ai, j) if o(i) = uj . We give a key result which allows one to reduce our
origin-equivalence problem of ydtop to two instances of the equivalence problem
of monadic ydtop: for s ∈ dom(M ′

1)∩dom(M ′
2), M ′

1(s) = M ′
2(s) iff the following

two conditions are satisfied: (1) Πu(M ′
1(s)) = Πu(M ′

2(s)) for every u ∈ VΣ(0)(s),
(2) Πu1,u2(M

′
1(s)) = Πu1,u2(M

′
2(s)) for every u1 �= u2 ∈ VΣ(0)(s).

4 Subclass Definability Problems

Deterministic MSO tree-to-string transducers (dmsots for short) can be defined
as a particular case of dmsot transducers (their origin-equivalence is decidable
by Theorem 1). While dmsots are equivalent to ydtopR of linear size increase [8,
9], this is not true in the presence of origin; there are such ydtopR for which
no origin-equivalent dmsots exists (e.g. the string reversal example of Sec. 3).
However, every dmsots effectively has an origin-equivalent ydtopR (obtained
by following the respective constructions for origin-less transducers). Can we
decide for a given ydtopR whether its origin translation is dmsots definable?

218 E. Filiot et al.

Theorem 5. For a given ydtopR M , it is decidable whether or not there exists
an origin-equivalent dmsots. If so, then such a dmsots can be constructed.

Sketch of Proof. It relies on the notion of bounded origin: an origin translation τ
is of bounded origin if there exists a number k such that for every (s, (w, o)) ∈ τ
and u ∈ V (s): |{v ∈ V (w) | o(v) = u}| ≤ k, ie every input node can be
the origin of only a bounded number of output positions. By their definition,
origin translations of mso transducers have bounded origin. The bounded origin
property can be decided for a ydtopR M : we transform M into a ydtopR

transducer M ′ that takes input trees of M , but with one node u marked. The
transducer M ′ produces output only on the marked node. Thus, the length of its
output equals the number of positions that have u as origin. Decidability follows
from that of finiteness of ranges [6]. The proof then builds an origin-equivalent
dmsots following the constructions in the literature. ��
Macro Tree Transducers. At last we consider a more powerful type of
transducer: the macro tree transducer (mac). For simplicity, we only look at
total deterministic such transducers. A mac extends a top-down tree trans-
ducer by nesting of recursive state calls. Thus, a state q is now of rank m + 1
and takes, besides the input tree, m arguments of type output trees. In the
rules, these arguments are denoted by parameters y1, . . . , ym. Thus, a rule is
of the form q(σ(x1, . . . , xk), y1, . . . , ym) → ζ, where ζ is a tree over (nested)
states, output symbols, and the parameters which may occur at leaves. As
example, consider a mac with initial rule q0(h(x1)) → q(x1, a) and these rules:
q(h(x1), y1) → q(x1, q(x1, y1)) and q(a, y1) → b(y1, y1). For a monadic input tree
h(. . . h(a) . . .) of height n + 1, it produces a full binary tree of height 2n. Thus,
macs can have double-exponential size increase; all models discussed so far have
at most exponential size increase. A total deterministic macro tree transducer
(mac) is a tuple M = (Q,Σ,Δ, q0, R) where Σ, Δ are as before, Q is a ranked
alphabet with Q(0) = ∅, q0 ∈ Q(1), and R contains for every q ∈ Q(m+1), m ≥ 0,
σ ∈ Σ(k), and k ≥ 0, a rule q(σ(x1, . . . , xk), y1, . . . , ym) → ζ, where ζ is a tree
over Q ∪ Δ ∪ {x1, . . . , xk, y1, . . . , ym} such that xi occurs in ζ at a node u if
and only if u is the first child of a Q-labeled node (and symbols yj are of rank
zero). We denote ζ by rhs(q, σ). Every state q ∈ Q(m+1) of M induces a func-
tion �q� : TΣ × Tm

Δ → TΔ. Let s = σ(s1, . . . , sk) ∈ TΣ and t1, . . . , tm ∈ TΔ.
Then �q�(s, t1, . . . , tm) = [ζ] where ζ = rhs(q, σ) and [ζ] is defined recursively
as follows. If ζ = yj then [ζ] = tj . If ζ = d(ζ1, . . . , ζ�) with d ∈ Δ(�), then
[ζ] = d([ζ1], . . . , [ζ�]). If ζ = q′(xi, ζ1, . . . , ζ�) with q′ ∈ Q(�+1) and i ∈ [k], then
[ζ] = �q′�(si, [ζ1], . . . , [ζ�]).

Origin Semantics. We define the origin semantics of M using the mac Ms

and the decorated version dec(s) of an input tree s (see Definition 4.15 of [9]). Let
s be an input tree of M . Then dec(s) is obtained from s by relabeling every node u
by 〈s[u], u〉. For a state q and input symbol 〈σ, u〉 the mac Ms applies the (q, σ)-
rule of M , but with every output symbol d replaced by 〈d, u〉. The origin of an
output node then simply is the second component of the label of that node. Intu-
itively, when a mac applies a rule at input node u and generates output inside of

Decision Problems of Tree Transducers with Origin 219

parameter positions, then all these outputs have origin u. Note that such nodes
may be duplicated later and appear unboundedly often (at arbitrary positions
of the output tree). Let us see an example of an origin translation that cannot
be defined by the previous models (but for which the non-origin translation can
be defined): in fact we consider the identity on trees s over {f (2), a(0)}. The mac
M has these rules for q0: q0(a) → a and q0(f(x1, x2)) → f(q(x1, a), q(x2, a)),
and these rules for q: q(f(x1, x2), y1) → f(q(x1, y1), q(x2, y1)) and q(a, y1) → y1.
Thus, �M�o(s) = (s, o) where o(u) = u if u is an internal node, and o(u) = ε
if u is a leaf. Thus, all leaves have the root node as origin. Clearly, none of our
previous models can realize such an origin translation.

Deciding whether the translation of a mac can be defined by a dtopR is a
difficult open problem: a mac can use its parameters in complex ways, but still
be definable by a dtopR. However, with origin, we are able to prove decidability.

Theorem 6. For a given mac M , it is decidable whether or not there exists an
origin-equivalent dtopR. If so, then such a dtopR can be constructed.

Sketch of Proof. First, if τ is the origin translation of a dtopR, and v, v′ are
nodes in τ(s) for some tree s such that v′ is a descendant of v, then the origin of
v′ must be a descendant of the origin of v (see [17]). We call this property of an
origin translation order-preserving. Consider now a mac with order-preserving
origin translation. Is it definable by a dtopR? To see this is not true, consider
this mac for the identity: q0(a) → a and q0(f(x1, x2)) → q(x1, q0(x1), q0(x2)),
plus the rules q(f(x1, x2), y1, y2) → q(x1, y1, y2) and q(a, y1, y2) → f(y1, y2). For
the input tree f(f(· · · f(a, a) · · ·), a) that is a left-comb, the origin of each f -node
is its left-most descendant leaf. Not the order is the problem, but, there are too
many connected output nodes with the same origin. Intuitively, the connected
output nodes of a dtopR can only span the size of a right-hand side. We say that
an origin translation τ is path-wise bounded-origin if there exists a number k such
that are at most k output nodes with the same origin on each path of the output
tree. Both the order-preserving and path-wise bounded-origin properties can
decided. For a mac with these two properties, and nondeleting and nonerasing
in its parameters (which can both be obtained by regular look-ahead), the depth
of nested state calls on the same input node is bounded. An origin-equivalent
dtopR can be constructed by introducing one state for each of these finitely
many different nestings of state calls. ��
Conclusions and Future Work. We have shown that several important deci-
sion problems for tree transducers become decidable in the presence of origin
information. Some problems remain open, such as the decidability of equiva-
lence of macs with origin. In the future we would like to study other notions
of origin such as unique identifiers instead of Dewey nodes, or, sets of nodes
(one of which is guaranteed to be origin) instead of one node. A lot of work
remains to be done on determinacy; for instance, we would like to show that a
query determined by a view with origin can be rewritten into a tractable class
of queries.

220 E. Filiot et al.

References

1. Andre, Y., Bossut, F.: On the equivalence problem for letter-to-letter top-down
tree transducers. Theor. Comput. Sci. 205(1–2), 207–229 (1998)

2. Benedikt, M., Engelfriet, J., Maneth, S.: Determinacy and rewriting of top-down
and MSO tree transformations. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 146–158. Springer, Heidelberg (2013)

3. Bojańczyk, M.: Transducers with origin information. In: Esparza, J., Fraigniaud,
P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp.
26–37. Springer, Heidelberg (2014)

4. Braune, F., Seemann, N., Quernheim, D., Maletti, A.: Shallow local multi-bottom-
up tree transducers in statistical machine translation. In: ACL, pp. 811–821 (2013)

5. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2007)

6. Drewes, F., Engelfriet, J.: Decidability of the finiteness of ranges of tree transduc-
tions. Inf. Comput. 145(1), 1–50 (1998)

7. Engelfriet, J.: Some open questions and recent results on tree transducers and
tree languages. In: Book, R. (ed.) Formal language theory; perspectives and open
problems. Academic Press, New York (1980)

8. Engelfriet, J., Maneth, S.: Macro tree transducers, attribute grammars, and MSO
definable tree translations. Inf. Comput. 154(1), 34–91 (1999)

9. Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase are MSO
definable. SIAM J. Comput. 32(4), 950–1006 (2003)

10. Engelfriet, J., Maneth, S.: The equivalence problem for deterministic MSO tree
transducers is decidable. Inf. Process. Lett. 100(5), 206–212 (2006)

11. Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-way
machines. J. Comput. Syst. Sci. 20(2), 150–202 (1980)

12. Ésik, Z.: Decidability results concerning tree transducers I. Acta Cybern. 5(1),
1–20 (1980)

13. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics - Formal Models Based on Tree
Transducers. Springer, Monographs in Theoretical Computer Science. An EATCS
Series (1998)

14. Griffiths, T.V.: The unsolvability of the equivalence problem for lambda-free non-
deterministic generalized machines. J. ACM 15(3), 409–413 (1968)

15. Hakuta, S., Maneth, S., Nakano, K., Iwasaki, H.: Xquery streaming by forest trans-
ducers. In: ICDE, pp. 952–963 (2014)

16. Küsters, R., Wilke, T.: Transducer-based analysis of cryptographic protocols. Inf.
Comput. 205(12), 1741–1776 (2007)

17. A. Lemay, S. Maneth, and J. Niehren. A learning algorithm for top-down XML
transformations. In: PODS, pp. 285–296 (2010)

18. Maletti, A.: Tree transformations and dependencies. In: MOL, pp. 1–20 (2011)
19. Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down

tree transducers. SIAM J. Comput. 39(2), 410–430 (2009)
20. Maneth, S.: Equivalence problems for tree transducers (survey). In: AFL, pp. 74–93

(2014)
21. Matsuda, K., Inaba, K., Nakano, K.: Polynomial-time inverse computation for

accumulative functions with multiple data traversals. In: PEPM, pp. 5–14 (2012)
22. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. J. Comput.

Syst. Sci. 66(1), 66–97 (2003)

Decision Problems of Tree Transducers with Origin 221

23. Rounds, W.C.: Mappings and grammars on trees. Math. Syst. Th. 4(3), 257–287
(1970)

24. Thatcher, J.W.: Generalized sequential machine maps. JCSS 4(4), 339–367 (1970)
25. van Deursen, A., Klint, P., Tip, F.: Origin tracking. J. Symb. Comput. 15(5/6),

523–545 (1993)
26. Voigtländer, J., Hu, Z., Matsuda, K., Wang, M.: Enhancing semantic bidirection-

alization via shape bidirectionalizer plug-ins. J. Funct. Program. 23(5), 515–551
(2013)

27. Voigtländer, J., Kühnemann, A.: Composition of functions with accumulating
parameters. J. Funct. Program. 14(3), 317–363 (2004)

Incompleteness Theorems, Large Cardinals,
and Automata over Infinite Words

Olivier Finkel(B)

Institut de Mathématiques de Jussieu - Paris Rive Gauche,
CNRS et Université Paris 7, Paris, France

Olivier.Finkel@math.univ-paris-diderot.fr

Abstract. Weprove that there exist some 1-counter Büchi automataAn for which
some elementary properties are independent of theories like Tn =: ZFC + “There
exist (at least) n inaccessible cardinals”, for integers n ≥ 1. In particular, if Tn is
consistent, then “L(An) is Borel”, “L(An) is arithmetical”, “L(An) isω-regular”,
“L(An) is deterministic”, and “L(An) is unambiguous” are provable from ZFC
+ “There exist (at least) n + 1 inaccessible cardinals” but not from ZFC + “There
exist (at least) n inaccessible cardinals”. We prove similar results for infinitary
rational relations accepted by 2-tape Büchi automata.

Keywords: Automata and formal languages · Logic in computer science ·
Infinite words · 1-counter Büchi automaton · 2-tape Büchi automaton · Models
of set theory · Incompleteness theorems · Large cardinals · Inaccessible cardi-
nals · Independence from the axiomatic system “ZFC + there exist n inaccessible
cardinals”

1 Introduction

The theory of automata reading infinite words, which is closely related to infinite games,
is nowa rich theorywhich is used for the specification and verification of non-terminating
systems, see [GTW02,PP04].

As noticed in [Fin11], some connections between Automata Theory and Set Theory
had arosen in the study of monadic theories of well orders, but this was related to
automata reading much longer transfinite words than words of length ω or even than
words of length a countable ordinal.

Then one usually thought that the finite or infinite computations appearing in Com-
puter Science are “well defined” in the axiomatic framework of mathematics, and thus
that a property on automata is either true or false and that one has not to take care of
the different models of Set Theory (except perhaps for the Continuum Hypothesis CH
which is known to be independent from ZFC). And the connections between Automata
Theory and Set Theory seemed very far from the practical aspects of Computer Science.

In [Fin09] we recently proved a surprising result: the topological complexity of
an ω-language accepted by a 1-counter Büchi automaton, or of an infinitary rational
relation accepted by a 2-tape Büchi automaton, is not determined by the axiomatic
system ZFC. In particular, there is a 1-counter Büchi automaton A (respectively, a 2-
tape Büchi automaton B) and two models V1 and V2 of ZFC such that the ω-language
© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 222–233, 2015.
DOI: 10.1007/978-3-662-47666-6_18

Incompleteness Theorems, Large Cardinals, and Automata over Infinite Words 223

L(A) (respectively, the infinitary rational relation L(B)) is Borel in V1 but not in V2. We
have proved in [Fin11] other independence results, showing that some basic cardinality
questions on automata reading infinite words actually depend on the models ofZFC (see
also [Fin10] for similar results for Büchi-recognizable languages of infinite pictures).

The next step in this research project was to determine which properties of automata
actually depend on the models of ZFC, and to achieve a more complete investigation of
these properties.

We obtain in this paper some more independence results which are more general and
are related to the consistency of theories which are recursive extensions of the theory
ZFC (while in the two papers [Fin09,Fin11] the independence results depended on
the value of the ordinal ωL

1 which plays the role of the first uncountable ordinal in the
constructible universe L).

Recall that a large cardinal in a model of set theory is a cardinal which is in some
sense much larger than the smaller ones. This may be seen as a generalization of the
fact that ω is much larger than all finite cardinals. The inaccessible cardinals are the
simplest such large cardinals. Notice that it cannot be proved in ZFC that there exists
an inaccessible cardinal, but one usually believes that the existence of such cardinals is
consistent with the axiomatic theoryZFC. The assumed existence of large cardinals have
many consequences in Set Theory as well as in many other branches of Mathematics
like Algebra, Topology or Analysis, see [Jec02].

We prove that there exist some 1-counter Büchi automata An for which some ele-
mentary properties are independent of theories like Tn =: ZFC + “There exist (at least)
n inaccessible cardinals”, for integers n ≥ 1. We first prove that “L(An) is Borel”,
“L(An) is arithmetical”, “L(An) is ω-regular”, “L(An) is deterministic”, and “L(An)

is unambiguous” are equivalent to the consistency of the theory Tn . This implies that,
if Tn is consistent, all these statements are provable from ZFC + “There exist (at least)
n + 1 inaccessible cardinals” but not from ZFC + “There exist (at least) n inaccessible
cardinals”. We prove similar results for infinitary rational relations accepted by 2-tape
Büchi automata. Notice that the same reults can be proved for other large cardinals
like hyperinaccessible or Mahlo cardinals, see [Jec02] for a precise definition of these
cardinals.

The paper is organized as follows.We recall the notion of counter automata in Section
2. We expose some results of Set Theory in Section 3, and we prove our main results
about 1-counterω-languages in Section 4.We prove similar results for infinitary rational
relations in Section 5. Concluding remarks are given in Section 6.

2 Counter Automata

We assume the reader to be familiar with the theory of formal (ω-)languages [Tho90,
Sta97]. We recall the usual notations of formal language theory.

IfΣ is a finite alphabet, a non-empty finite word overΣ is any sequence x = a1 . . . ak ,
where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length of x is k, denoted
by |x |. The empty word has no letter and is denoted by λ; its length is 0. Σ� is the set of
finite words (including the empty word) over Σ .

224 O. Finkel

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ . When σ = a1 . . . an . . . is an ω-word over Σ , we
write σ(n) = an , σ [n] = σ(1)σ (2) . . . σ (n) for all n ≥ 1 and σ [0] = λ.

The usual concatenation product of two finite words u and v is denoted u.v (and
sometimes just uv). This product is extended to the product of a finite word u and an
ω-word v: the infinite word u.v is then the ω-word such that:

(u.v)(k) = u(k) if k ≤ |u| , and (u.v)(k) = v(k − |u|) if k > |u|.
The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language V over

an alphabet Σ is a subset of Σω, and its complement (in Σω) is Σω − V , denoted V −.
Let k be an integer≥ 1.A k-countermachine has k counters, eachofwhich containing

a non-negative integer. The machine can test whether the content of a given counter is
zero or not. And transitions depend on the letter read by the machine, the current state
of the finite control, and the tests about the values of the counters. Notice that in this
model some λ-transitions are allowed.

Formally a k-counter machine is a 4-tuple M=(K ,Σ, Δ, q0), where K is a finite
set of states, Σ is a finite input alphabet, q0 ∈ K is the initial state, and Δ ⊆ K × (Σ ∪
{λ}) × {0, 1}k × K × {0, 1,−1}k is the transition relation. The k-counter machine M
is said to be real time iff: Δ ⊆ K × Σ × {0, 1}k × K × {0, 1,−1}k , i.e. iff there are no
λ-transitions.

If the machine M is in state q and ci ∈ N is the content of the i th counter Ci then
the configuration (or global state) ofM is the (k + 1)-tuple (q, c1, . . . , ck).

For a ∈ Σ ∪ {λ}, q, q ′ ∈ K and (c1, . . . , ck) ∈ Nk such that c j = 0 for j ∈ E ⊆
{1, . . . , k} and c j > 0 for j /∈ E , if (q, a, i1, . . . , ik, q ′, j1, . . . , jk) ∈ Δ where i j = 0
for j ∈ E and i j = 1 for j /∈ E , then we write:

a : (q, c1, . . . , ck) �→M (q ′, c1 + j1, . . . , ck + jk).
Thus the transition relation must obviously satisfy:

if (q, a, i1, . . . , ik, q ′, j1, . . . , jk) ∈ Δ and im = 0 for somem ∈ {1, . . . , k} then jm = 0
or jm = 1 (but jm may not be equal to −1).

Let σ = a1a2 . . . an . . . be an ω-word over Σ . An ω-sequence of configurations
r = (qi , ci

1, . . . ci
k)i≥1 is called a run of M on σ , iff:

(1) (q1, c11, . . . c1k) = (q0, 0, . . . , 0)
(2) for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi , ci

1, . . . ci
k) �→M

(qi+1, ci+1
1 , . . . ci+1

k) and such that a1a2 . . . an . . . = b1b2 . . . bn . . .

For every such run r , In(r) is the set of all states entered infinitely often during r .

Definition 1. A Büchi k-counter automaton is a 5-tuple M=(K ,Σ,Δ, q0, F), where
M′=(K ,Σ,Δ, q0) is a k-counter machine and F ⊆ K is the set of accepting states.
The ω-language accepted by M is:

L(M)= {σ ∈ Σω | there exists a run r of M on σ such that In(r) ∩ F �= ∅}
Theclass ofω-languages acceptedbyBüchi k-counter automata is denotedBCL(k)ω.

The class ofω-languages accepted by real timeBüchi k-counter automatawill be denoted
r-BCL(k)ω.

We now recall the definition of classes of the arithmetical hierarchy of ω-languages,
see [Sta97]. Let X be a finite alphabet. An ω-language L ⊆ Xω belongs to the class Σn

if and only if there exists a recursive relation RL ⊆ (N)n−1 × X� such that:

Incompleteness Theorems, Large Cardinals, and Automata over Infinite Words 225

L = {σ ∈ Xω | ∃a1 . . . Qnan (a1, . . . , an−1, σ [an + 1]) ∈ RL},
where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An
ω-language L ⊆ Xω belongs to the class Πn if and only if its complement Xω − L
belongs to the class Σn . The class Σ1

1 is the class of effective analytic sets which are
obtained by projection of arithmetical sets. An ω-language L ⊆ Xω belongs to the class
Σ1

1 if and only if there exists a recursive relation RL ⊆ N × {0, 1}� × X� such that:
L = {σ ∈ Xω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ [m]) ∈ RL))}.

Then an ω-language L ⊆ Xω is in the class Σ1
1 iff it is the projection of an ω-

language over the alphabet X ×{0, 1}which is in the classΠ2. The classΠ1
1 of effective

co-analytic sets is simply the class of complements of effective analytic sets.
Recall that aBüchiTuringmachine is just aTuringmachineworkingon infinite inputs

with a Büchi-like acceptance condition, and that the class of ω-languages accepted by
Büchi Turing machines is the class Σ1

1 of effective analytic sets [Sta97]. On the oher
hand, one can construct, using a classical construction (see for instance [HMU01]),
from a Büchi Turing machine T , a 2-counter Büchi automaton A accepting the same
ω-language. Thus one can state the following proposition.

Proposition 2. An ω-language L ⊆ Xω is in the class Σ1
1 iff it is accepted by a non

deterministic Büchi Turing machine, hence iff it is in the class BCL(2)ω.

3 Some Results of Set Theory

We now recall some basic notions of set theory which will be useful in the sequel, and
which are exposed in any textbook on set theory, like [Kun80,Jec02].

The usual axiomatic system ZFC is Zermelo-Fraenkel system ZF plus the axiom of
choice AC. The axioms of ZFC express some natural facts that we consider to hold in
the universe of sets. For instance a natural fact is that two sets x and y are equal iff they
have the same elements. This is expressed by the Axiom of Extensionality:

∀x∀y [x = y ↔ ∀z(z ∈ x ↔ z ∈ y)].
Another natural axiom is the Pairing Axiom which states that for all sets x and y there
exists a set z = {x, y} whose elements are x and y:

∀x∀y [∃z(∀w(w ∈ z ↔ (w = x ∨ w = y)))]
Similarly the Powerset Axiom states the existence of the set P(x) of subsets of a set x .
Notice that these axioms are first-order sentences in the usual logical language of set
theory whose only non logical symbol is the membership binary relation symbol ∈. We
refer the reader to any textbook on set theory for an exposition of the other axioms of
ZFC.

A model (V, ∈) of an arbitrary set of axioms A is a collection V of sets, equipped
with the membership relation ∈, where “x ∈ y” means that the set x is an element of
the set y, which satisfies the axioms of A. We often say “ the model V” instead of “ the
model (V, ∈)”.

We say that two sets A and B have same cardinality iff there is a bijection from A
onto B and we denote this by A ≈ B. The relation ≈ is an equivalence relation. Using

226 O. Finkel

the axiom of choice AC, one can prove that any set A can be well-ordered so there is
an ordinal γ such that A ≈ γ . In set theory the cardinal of the set A is then formally
defined as the smallest such ordinal γ .

The infinite cardinals are usually denoted by ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . . The cardinal
ℵα is also denoted by ωα , when it is considered as an ordinal. The first infinite ordinal
is ω and it is the smallest ordinal which is countably infinite so ℵ0 = ω (which could be
written ω0). The first uncountable ordinal is ω1, and formally ℵ1 = ω1.

Let ON be the class of all ordinals. Recall that an ordinal α is said to be a successor
ordinal iff there exists an ordinal β such that α = β + 1; otherwise the ordinal α is said
to be a limit ordinal and in this case α = sup{β ∈ ON | β < α}.

We recall now the notions of cofinality of an ordinal and of regular cardinal which
may be found for instance in [Jec02]. Let α be a limit ordinal, the cofinality of α, denoted
cof (α), is the least ordinal β such that there exists a strictly increasing sequence of
ordinals (αi)i<β , of length β, such that ∀i < β αi < α and supi<β αi = α. This
definition is usually extended to 0 and to the successor ordinals: co f (0) = 0 and cof (α+
1) = 1 for every ordinal α. The cofinality of a limit ordinal is always a limit ordinal
satisfying: ω ≤ cof (α) ≤ α. Moreover cof (α) is in fact a cardinal. A cardinal κ is said
to be regular iff cof (κ) = κ . Otherwise cof (κ) < κ and the cardinal κ is said to be
singular.

A cardinal κ is said to be a (strongly) inaccessible cardinal iff κ > ω, κ is regular,
and for all cardinals λ < κ it holds that 2λ < κ , where 2λ is the cardinal of P(λ).

Recall that the class of sets in a model V of ZF may be stratified in a transfinite
hierarchy, called the Cumulative Hierarchy, which is defined by V = ⋃

α∈ON Vα , where
the sets Vα are constructed by induction as follows:

(1). V0 = ∅
(2). Vα+1 = P(Vα) is the set of subsets of Vα , and
(3). Vα = ⋃

β<α Vβ , for α a limit ordinal.
It is well known that if V is a model of ZFC and κ is an inaccessible cardinal in

V then Vκ is also a model of ZFC. If there exist in V at least n inaccessible cardinals,
where n ≥ 1 is an integer, and if κ is the n-th inaccessible cardinal, then Vκ is also a
model of ZFC + “There exist exactly n − 1 inaccessible cardinals” . This implies that
one cannot prove in ZFC that there exists an inaccessible cardinal, because if κ is the
first inaccessible cardinal in V then Vκ is a model of ZFC + “There exist no inaccessible
cardinals”.

We assume the reader to be familiar with basic notions of topology which may be
found in [Mos80,LT94,Sta97,PP04]. There is a natural metric on the set Σω of infinite
words over a finite alphabet Σ containing at least two letters which is called the prefix
metric and is defined as follows. For u, v ∈ Σω and u �= v let δ(u, v) = 2−lpref(u,v)

where lpref(u,v) is the first integer n such that the (n + 1)st letter of u is different from
the (n + 1)st letter of v. This metric induces on Σω the usual Cantor topology in which
the open subsets of Σω are of the form W.Σω, for W ⊆ Σ�.

Define now the Borel Hierarchy of subsets of Σω:

Definition 3. For a non-null countable ordinal α, the classes �0
α and �0

α of the Borel
Hierarchy on the topological space Σω are defined as follows:
�0

1 is the class of open subsets of Σω, �0
1 is the class of closed subsets of Σω,

Incompleteness Theorems, Large Cardinals, and Automata over Infinite Words 227

and for any countable ordinal α ≥ 2:
�0

α is the class of countable unions of subsets of Σω in
⋃

γ<α �0
γ .

�0
α is the class of countable intersections of subsets of Σω in

⋃
γ<α �0

γ .

The class of Borel sets is �1
1 :=⋃

ξ<ω1
�0

ξ =⋃
ξ<ω1

�0
ξ , where ω1 is the first uncount-

able ordinal. The class of Borel subsets of Σω is strictly included into the class �1
1 of

analytic sets which are obtained by projection of Borel sets.
We now define completeness with regard to reduction by continuous functions. For

a countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a �0
α (respectively, �0

α , �1
1)-

complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ �0
α (respectively,

E ∈ �0
α , E ∈ �1

1) iff there exists a continuous function f : Y ω → Σω such that
E = f −1(F).

4 Incompleteness Results for 1-counter ω-languages

We first recall that a (first-order) theory T in the language of set theory is a set of (first-
order) sentences, called the axioms of the theory. If T is a theory and ϕ is a sentence
then we write T � ϕ iff there is a formal proof of ϕ from T ; this means that there is a
finite sequence of sentences ϕ j , 1 ≤ j ≤ n, such that ϕ1 � ϕ2 � . . . ϕn , where ϕn is
the sentence ϕ and for each j ∈ [1, n], either ϕ j is in T or ϕ j is a logical axiom or ϕ j

follows from ϕ1, ϕ2, . . . ϕ j−1 by usual rules of inference which can be defined purely
syntactically. A theory is said to be consistent iff for no (first-order) sentence ϕ does
T � ϕ and T � ¬ϕ. If T is inconsistent, then for every sentence ϕ it holds that T � ϕ.
We shall denote Cons(T) the sentence “the theory T is consistent”.

Recall that one can code in a recursive manner the sentences in the language of
set theory by finite sequences over a finite alphabet, and then simply over the alphabet
{0, 1}, by using a classical Gödel numbering of the sentences. We say that the theory T
is recursive iff the set of codes of axioms in T is a recursive set of words over {0, 1}. In
that case one can also code formal proofs from axioms of a recursive theory T and then
Cons(T) is an arithmetical statement.

The theory ZFC is recursive and so are the theories Tn =: ZFC + “There exist (at
least) n inaccessible cardinals”, for any integer n ≥ 1.

We now recall Gödel’s Second Incompleteness Theorem.

Theorem 4 (Gödel 1931). Let T be a consistent recursive extension of ZF. Then T �

Cons(T).

228 O. Finkel

We now state the following lemmas.

Lemma 5. Let T be a recursive theory in the language of set theory. Then there exists a
Büchi Turing machineMT , reading words over a finite alphabet Σ , such that L(MT) =
Σω iff T is consistent and L(MT) = ∅ iff T is inconsistent. And there exists a Büchi
Turing machineM′

T , reading words over the finite alphabet Σ , such that L(M′
T) = Σω

iff T is inconsistent and L(M′
T) = ∅ iff T is consistent.

Proof. We first describe informally the behaviour of the machine MT . The machine
reads the input word but this does not affect the acceptance or non-acceptance of the
word. Essentially the machine works as a program which enumerates all the formal
proofs from T and enters each time in an accepting state iff the last sentence of the proof
is not the sentence “∃x(x �= x)”. If the theory T is consistent the machine will enter
infinitely often in an accepting state q f and thus the input ω-word will be accepted since
the Büchi acceptance condition will be fulfilled. But if the theory is inconsistent then at
some point of the computation the machine sees a proof whose last sentence is actually
“∃x(x �= x)”. In that case the machine enters in a rejecting state and stays forever in that
state, and thus the input ω-word will be rejected.

The machine M′
T also works as a program which enumerates all the formal proofs

from T . But this time it enters in an accepting state onlywhen it sees a formal proofwhose
last sentence is actually “∃x(x �= x)”, and then the machineM′

T stays in this accepting
state forever. Thus the machine accepts all ω-words if the theory T is inconsistent and
accepts not any ω-word if the theory T is consistent. �

Lemma 6. Let T be a recursive theory in the language of set theory. Then there exists a
Büchi Turing machineMT , reading words over a finite alphabet Σ , such that L(MT) =
Σω iff T is consistent and L(MT) is �1

1-complete iff T is inconsistent. And there exists
a Büchi Turing machine M′

T , reading words over the finite alphabet Σ , such that
L(M′

T) = Σω iff T is inconsistent and L(M′
T) is �1

1-complete iff T is consistent.

Proof. This follows from the above Lemma 5, from the fact that there exists a �1
1-

complete ω-language accepted by a Büchi Turing machine (and even by a 1-counter
Büchi automaton, see [Fin03]), and from the closure under finite union of the class of
ω-languages accepted by non-deterministic Büchi Turing machines. �

We now state the following result.

Theorem 7. Let T be a recursive theory in the language of set theory. Then there exists
a real-time 1-counter Büchi automaton AT reading words over a finite alphabet � such
that L(AT) = Γ ω iff T is consistent and L(AT) is �1

1-complete iff T is inconsistent.
And there exists a real-time 1-counter Büchi automatonA′

T reading words over the finite
alphabet �, such that L(A′

T) = Γ ω iff T is inconsistent and L(A′
T) is �1

1-complete iff
T is consistent.

Proof. Let T be a recursive theory in the language of set theory, and MT be the Büchi
Turing machine, reading words over a finite alphabet Σ , which is given by Lemma 6.
There exists a 2-counter Büchi automaton CT , such that L(MT) = L(CT), and which
can be effectively constructed from the machine MT .

Incompleteness Theorems, Large Cardinals, and Automata over Infinite Words 229

We now use some constructions which were used in a previous paper [Fin06a] to
study the topological properties of context-free ω-languages.

Let E be a new letter not in Σ , S be an integer ≥ 1, and θS : Σω → (Σ ∪ {E})ω be
the function defined, for all x ∈ Σω, by:

θS(x) = x(1).E S .x(2).E S2 .x(3).E S3 .x(4) . . . x(n).E Sn
.x(n + 1).E Sn+1

. . .

We proved in [Fin06a] that if L ⊆ Σω is an ω-language in the class BCL(2)ω and
k = cardinal(Σ) + 2, S = (3k)3, then one can effectively construct from a Büchi
2-counter automaton CT accepting L a real time Büchi 8-counter automaton DT such
that L(DT) = θS(L).

On the other hand, it is easy to see that θS(Σω)− = (Σ∪{E})ω−θS(Σω) is accepted
by a real time Büchi 1-counter automaton. The class r-BCL(8)ω is closed under finite
union in an effective way and thus θS(L) ∪ θS(Σω)− is accepted by a real time Büchi
8-counter automaton ET which can be effectively constructed from DT .

Let now K = 2× 3× 5× 7× 11× 13× 17× 19 = 9699690 be the product of the
eight first prime numbers. Let Γ ′ = Σ ∪ {E}. An ω-word x ∈ (Γ ′)ω is coded by the
ω-word hK (x) = A.C K .x(1).B.C K 2

.A.C K 2
.x(2).B . . . B.C K n

.A.C K n
.x(n).B . . .

over the alphabetΓ ′′ = Γ ′∪{A, B, C}, where A, B, C are letters not inΓ ′.We proved in
[Fin06a] that, from a real timeBüchi 8-counter automaton ET accepting L(ET) ⊆ (Γ ′)ω,
one can effectively construct a Büchi 1-counter automaton GT accepting the ω-language
hK (L(ET))∪hK ((Γ ′)ω)−.

Consider now the mapping φK : (Γ ′ ∪ {A, B, C})ω → (Γ ′ ∪ {A, B, C, F})ω which
is defined by: for all x ∈ (Γ ′ ∪ {A, B, C})ω,

φK (x) = F K−1.x(1).F K−1.x(2) . . . F K−1.x(n).F K−1.x(n + 1).F K−1 . . .

Then the ω-language φK (L(GT)) = φK (hK (L(ET))∪hK ((Γ ′)ω)−) is accepted by a
real time Büchi 1-counter automatonHT which can be effectively constructed from the
Büchi 1-counter automaton GT , [Fin06a]. And we set Γ = Γ ′ ∪ {A, B, C, F}.

On the other hand, the ω-language (Γ ′ ∪ {A, B, C, F})ω − φK ((Γ ′ ∪ {A, B, C})ω)

is ω-regular and we can construct a (1-counter) Büchi automaton accepting it. Then one
can effectively construct fromHT a real time Büchi 1-counter automatonAT accepting
the ω-language φK (hK (L(ET))∪hK ((Γ ′)ω)−) ∪ φK ((Γ ∪ {A, B, C})ω)−.

It suffices now to see that we have the two following cases:
If L(MT) = L(CT) = Σω, then we have successively the following equalities:
L(ET) = (Σ ∪ {E})ω = (Γ ′)ω, L(GT) = (Γ ′ ∪ {A, B, C})ω, L(AT) = (Γ ′ ∪

{A, B, C, F})ω = Γ ω,
And if L(MT) = L(CT) is �1

1-complete, then L(AT) is also �1
1-complete. This

follows from the fact that the mapping Ψ : Σω → (Γ ′ ∪ {A, B, C, F})ω defined by
Ψ (x) = φK (hK (θS(x))) is continuous and satisfies:

∀x ∈ Σω [x ∈ L(MT) ⇐⇒ Ψ (x) ∈ L(AT)]
Finally the construction of the automaton A′

T is very similar except we start from
the machine M′

T instead of the machine MT . �
We now briefly recall a few definitions and facts about automata and ω-languages

they accept.
An ω-language L ⊆ Γ ω in BCL(1)ω is said to be unambiguous iff there exists a

1-counter Büchi automaton A such that L = L(A) and every ω-word x ∈ Γ ω has at
most one accepting run by A. In the other case the ω-language is said to be inherently

230 O. Finkel

ambiguous. An ω-language L accepted by a 1-counter Büchi automaton (respectively,
a Büchi Turing machine) is said to have the maximum degree of ambiguity if for every
1-counter Büchi automaton (respectively, Büchi Turingmachine)A such that L = L(A)

there exist 2ℵ0 ω-words having 2ℵ0 accepting runs by A. Notice that this notion may
depend on the accepting device which is used.

An ω-language accepted by a deterministic 1-counter Büchi (respectively, Muller)
automaton is a Borel �0

2-set (respectively, Δ
0
3-set); the Muller acceptance condition is

stronger than the Büchi acceptance condition. The same result is true for any kinds of
automata and in particular for Turing machines, see [Tho90,Sta97,PP04].

We now state the following result.

Theorem 8. Let T be a recursive theory in the language of set theory. Then there exist
two real-time1-counter Büchi automataAT andA′

T , reading words over a finite alphabet
Γ , such that Cons(T) is equivalent to each of the following items:
(1) L(AT) = Γ ω; (2) L(AT) isω-regular; (3) L(AT) is deterministic; (4) L(AT)

is Borel; (5) L(AT) is in the Borel class �0
α (for a non-null countable ordinal α);

(6) L(AT) is in the Borel class�0
α (for a non-null countable ordinal α); (7) L(AT) is

unambiguous; (8) L(AT) is an arithmetical set; (9) L(AT) is an hyperarithmetical
set, i.e. an effective Δ1

1-set; (10) L(AT) is in the arithmetical class Σn (for n ≥ 1);
(11) L(AT) is in the arithmetical class Πn (for n ≥ 1);

and also to each of the following items:
(1’) L(A′

T) �= Γ ω; (2’) L(A′
T) is not ω-regular; (3’) L(A′

T) is not
deterministic; (4’) L(A′

T) is �1
1-complete; (5’) L(A′

T) is not Borel; (6’) L(A′
T)

is not in the Borel class �0
α (for a non-null countable ordinal α); (7’) L(A′

T) is not
in the Borel class �0

α (for a non-null countable ordinal α); (8’) L(A′
T) is inherently

ambiguous; (9’) L(A′
T) has the maximum degree of ambiguity (for acceptance by

1-counter automata or by Turing machines); (10’) L(A′
T) is not an arithmetical set;

(11’) L(A′
T) is not an hyperarithmetical set; (12’) L(A′

T) is not in the arithmetical
class Σn (for n ≥ 1); (13’) L(A′

T) is not in the arithmetical class Πn (for n ≥ 1);

Proof. The real-time 1-counter Büchi automataAT andA′
T are constructed in the proof

of the preceding Theorem 7. It is straightforward to check that the ω-language Γ ω is
ω-regular, and even accepted by a deterministic Büchi automaton. Moreover it is in
every Borel class and in every arithmetical class. It is also clearly unambiguous since
it is deterministic. On the other hand a �1

1-complete ω-language is not arithmetical,
not hyperarithmetical, and not Borel. It cannot be ω-regular since ω-regular languages
are Borel Δ0

3-sets. Similarly it is not deterministic since it is not a Δ0
3-set. Moreover

any �1
1-complete ω-language accepted by a 1-counter Büchi automaton (respectively, a

Büchi Turing machine) has the maximum degree of ambiguity, see [Fin14]. �
Recall that we denote Tn the theory ZFC + “There exist (at least) n inaccessible

cardinals”, for an integer n ≥ 0. We can apply the preceding theorem to the theories
Tn which are recursive, and get the real-time 1-counter Büchi automata ATn and A′

Tn
,

which will be simply denoted An and A′
n in the sequel.

Theorem 9. For every integer n ≥ 0, there exist two real-time 1-counter Büchi automata
An and A′

n, reading words over a finite alphabet �, such that Cons(Tn) is equivalent to

Incompleteness Theorems, Large Cardinals, and Automata over Infinite Words 231

each of the items (1)-(11) and (1’)-(13’) of the preceding theorem where AT and A′
T

are replaced byAn andA′
n . In particular, if ZFC + “There exist (at least) n inaccessible

cardinals” is consistent, then each of the properties of An and A′
n given by these items

(1)-(11) and (1’)-(13’) is provable from ZFC + “There exist (at least) n + 1 inaccessible
cardinals” but not from ZFC + “There exist (at least) n inaccessible cardinals”.

Proof. The automata An and A′
n are given by the preceding theorem applied to the

theoriesTn . Recall that one canprove fromZFC+“There exist (at least)n+1 inaccessible
cardinals” that if κ is the n +1-th inaccessible cardinal, then the set Vκ of the cumulative
hierarchy is also a model of ZFC + “There exist n inaccessible cardinals”. This implies
that the theory ZFC + “There exist n inaccessible cardinals” is consistent and thus this
implies also the properties of An and A′

n given by the items (1)-(11) and (1’)-(13’).
On the other hand if Tn is consistent, then these properties are not provable from Tn .
Indeed Tn is then a consistent recursive extension of ZFC and thus by Gödel’s Second
Incompleteness Theorem we know that Tn � Cons(Tn). �

5 Incompleteness Results for Infinitary Rational Relations

We now consider acceptance of binary relations over infinite words by 2-tape Büchi
automata, firstly considered by Gire and Nivat in [GN84]. A 2-tape automaton is an
automaton having two tapes and two reading heads, one for each tape, which can move
asynchronously, and a finite control as in the case of a (1-tape) automaton. The automaton
reads a pair of (infinite) words (u, v) where u is on the first tape and v is on the second
tape, so that a 2-tape Büchi automaton B accepts an infinitary rational relation L(B) ⊆
Σω

1 × Σω
2 , where Σ1 and Σ2 are two finite alphabets. Notice that L(B) ⊆ Σω

1 × Σω
2

may be seen as an ω-language over the product alphabet Σ1 × Σ2.
We now use a coding we have defined in a previous paper [Fin06b] to study the

topological complexity of infinitary rational relations. We first recall a coding of an ω-
word over the finite alphabet Ω = Σ ∪ {A, B, C, E, F}, where 0 is assumed to be a
letter of Σ , by an ω-word over the alphabet Ω ′ = Ω ∪ {D}, where D is an additionnal
letter not in Ω . For x ∈ Ωω the ω-word h(x) is defined by :

h(x) = D.0.x(1).D.02.x(2).D.03.x(3).D . . . D.0n .x(n).D.0n+1.x(n + 1).D . . .

It is easy to see that the mapping h from Ωω into (Ω ∪ {D})ω is injective. Let now α be
the ω-word over the alphabet Ω ′ which is simply defined by:

α = D.0.D.02.D.03.D.04.D . . . D.0n .D.0n+1.D . . .

The following result was proved in [Fin06b].

Proposition 10 ([Fin06b]). Let L ⊆ Ωω be in r-BCL(1)ω and L = h(L)∪ (h(Ωω))−.
Then R = L × {α} ⋃

(Ω ′)ω × ((Ω ′)ω − {α}) is an infinitary rational relation.
Moreover one can effectively construct from a real time 1-counter Büchi automaton A
accepting L a 2-tape Büchi automaton B accepting the infinitary relation R.

Using this Proposition 10 and Theorem 7 and a very similar reasoning as in the
proofs of Theorems 8 and 9, we can now prove the following results.

232 O. Finkel

Theorem 11. For every integer n ≥ 0, there exist two 2-tape Büchi automata Bn and
B′

n, reading words over a finite alphabet Ω ′ × Ω ′, such that Cons(Tn) is equivalent to
each of the following items (1)-(11) and (1’)-(13’)
(1) L(Bn) = (Ω ′)ω × (Ω ′)ω; (2) L(Bn) is ω-regular; (3) L(Bn) is deterministic;
(4) L(Bn) is Borel; (5) L(Bn) is in the Borel class �0

α (for a non-null countable
ordinal α); (6) L(Bn) is in the Borel class �0

α (for a non-null countable ordinal α);
(7) L(Bn) is unambiguous; (8) L(Bn) is an arithmetical set; (9) L(Bn) is an
hyperarithmetical set, i.e. an effective Δ1

1-set; (10) L(Bn) is in the arithmetical class
Σn (for n ≥ 1); (11) L(Bn) is in the arithmetical class Πn (for n ≥ 1);

(1’) L(B′
n) �= (Ω ′)ω × (Ω ′)ω; (2’) L(B′

n) is not ω-regular; (3’) L(B′
n) is not

deterministic; (4’) L(B′
n) is �1

1-complete; (5’) L(B′
n) is not Borel; (6’) L(B′

n)

is not in the Borel class �0
α (for a non-null countable ordinal α); (7’) L(B′

n) is not
in the Borel class �0

α (for a non-null countable ordinal α); (8’) L(B′
n) is inherently

ambiguous; (9’) L(B′
n) has the maximum degree of ambiguity (for acceptance by

2-tape automata or by Turing machines); (10’) L(B′
n) is not an arithmetical set;

(11’) L(B′
n) is not an hyperarithmetical set; (12’) L(B′

n) is not in the arithmetical
class Σn (for n ≥ 1); (13’) L(B′

n) is not in the arithmetical class Πn (for n ≥ 1);
In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is consistent,

then each of the properties of Bn and B′
n given by these items (1)-(11) and (1’)-(13’) is

provable from ZFC + “There exist (at least) n + 1 inaccessible cardinals” but not from
ZFC + “There exist (at least) n inaccessible cardinals”.

6 Concluding Remarks

Using similar methods as above in this paper, we can construct, for a given theory T in
the language of set theory and a given first-order sentenceΦ in the language of set theory,
a 1-counter Büchi automaton (or a 2-tape Büchi automaton) A1 (respectively, A2, A3)
such that L(A1) (respectively, L(A2), L(A3)) is Borel (and deterministic, ω-regular,
unambiguous, …) if and only if the sentence Φ is provable from T , (respectively, ¬Φ

is provable from T , Φ is independent from T).
As an example recall that a famous open problem in Complexity Theory is the

following question: “ Is P equal to NP?” , see [HMU01]. Notice that “P= NP” can be
expressed by afirst-order sentenceΨ in the language of set theory. Thus one can construct
a 2-tape Büchi automaton A1 (respectively, A2, A3) such that L(A1) (respectively,
L(A2), L(A3)) is Borel if and only if the sentence Ψ is provable from T , (respectively,
¬Ψ is provable from T , Ψ is independent from T). Since the “P= NP?” problem is
one of the millennium problems for the solution of which one million dollars is offered
by the Clay Institute, this is the sum one can win by proving that the infinitary rational
relation L(A1) (or L(A2) or L(A3)) is Borel !

On the other hand, the results of this paper are true for other large cardinals than
inaccessible ones. For instance we can replace inaccessible cardinals by hyperinacces-
sible, Mahlo, hyperMahlo, measurable, …(see [Jec02]) and still other ones and obtain
similar results.

Finally we mention that in an extended version of this paper we prove similar inde-
pendence results for timed automata reading timed words.

Incompleteness Theorems, Large Cardinals, and Automata over Infinite Words 233

References

[Fin03] Finkel, O.: Borel hierarchy and omega context free languages. Theoretical Computer
Science 290(3), 1385–1405 (2003)

[Fin06a] Finkel, O.: Borel ranks and Wadge degrees of omega context free languages. Mathe-
matical Structures in Computer Science 16(5), 813–840 (2006)

[Fin06b] Finkel, O.: On the accepting power of 2-tape büchi automata. In: Durand, B., Thomas,
W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 301–312. Springer, Heidelberg (2006)

[Fin09] Finkel, O.: The complexity of infinite computations in models of set theory. Logical
Methods in Computer Science 5(4:4), 1–19 (2009)

[Fin10] Finkel, O.: Decision problems for recognizable languages of infinite pictures. In:
Studies in Weak Arithmetics, Proceedings of the International Conference 28th Weak
Arithmetic Days, June 17–19, vol. 196. Publications of the Center for the Study of
Language and Information. LectureNotes, pages 127–151. StanfordUniversity (2010)

[Fin11] Finkel, O.: Some problems in automata theory which depend on the models of set
theory. RAIRO - Theoretical Informatics and Applications 45(4), 383–397 (2011)

[Fin14] Finkel, O.: Ambiguity of ω-languages of Turing machines. Logical Methods in Com-
puter Science 10(3:12), 1–18 (2014)

[GN84] Gire, F., Nivat, M.: Relations rationnelles infinitaires. Calcolo, pp. 91–125 (1984)
[GTW02] Grädel, E., Thomas, W., Wilke, W. (eds.): Automata, Logics, and Infinite Games: A

Guide to Current Research, vol. 2500. LNCS. Springer, Heidelberg (2002)
[HMU01] Hopcroft, J.E.,Motwani, R., Ullman, J.D.: Introduction to automata theory, languages,

and computation. Addison-Wesley Series in Computer Science. Addison-Wesley Pub-
lishing Co., Reading (2001)

[Jec02] Jech, T.: Set theory, 3rd edn., Springer (2002)
[Kun80] Kunen, K.: Set theory. Studies in Logic and the Foundations of Mathematics, vol. 102.

An introduction to independence proofs. North-Holland Publishing Co., Amsterdam
(1980)

[LT94] Lescow,H., Thomas,W.:Logical specifications of infinite computations. In: deBakker,
J.W., deRoever,Willem-Paul, Rozenberg,Grzegorz (eds.) REX1993. LNCS, vol. 803,
pp. 583–621. Springer, Heidelberg (1994)

[Mos80] Moschovakis, Y.N.: Descriptive set theory. North-Holland PublishingCo., Amsterdam
(1980)

[PP04] Perrin, D., Pin, J.-E.: Infinite words, automata, semigroups, logic and games. Pure and
Applied Mathematics, vol. 141. Elsevier (2004)

[Sta97] Staiger, L.: ω-languages. In: Handbook of Formal Languages, vol. 3, pp. 339–387.
Springer, Berlin (1997)

[Tho90] Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, volume B, Formal models and semantics, pp. 135–
191. Elsevier (1990)

The Odds of Staying on Budget

Christoph Haase1(B) and Stefan Kiefer2

1 Laboratoire Spécification et Vérification (LSV),
CNRS and ENS de Cachan, Cachan Cedex, France

haase@lsv.ens-cachan.fr
2 Department of Computer Science, University of Oxford, Oxford, UK

Abstract. Given Markov chains and Markov decision processes (MDPs)
whose transitions are labelled with non-negative integer costs, we study
the computational complexity of deciding whether the probability of
paths whose accumulated cost satisfies a Boolean combination of inequal-
ities exceeds a given threshold. For acyclic Markov chains, we show that
this problem is PP-complete, whereas it is hard for the PosSLP problem
and in PSpace for general Markov chains. Moreover, for acyclic and gen-
eral MDPs, we prove PSpace- and EXP-completeness, respectively. Our
results have direct implications on the complexity of computing reward
quantiles in succinctly represented stochastic systems.

1 Introduction

Computing the shortest path from s to t in a directed graph is a ubiquitous prob-
lem in computer science, so shortest-path algorithms such as Dijkstra’s algorithm
are a staple for every computer scientist. These algorithms work in polynomial
time even if the edges are weighted, so it is easy to answer questions like:

(I) Is it possible to travel from Copenhagen to Kyoto in less than 15 hours?

The shortest-path problem becomes more intricate as soon as uncertainties are
taken into account. For example, additional information such as “there might
be congestion in Singapore, so the Singapore route will, with probability 10%,
trigger a delay of 1 hour” leads to questions of the following kind:

(II) Is there a travel plan avoiding trips longer than 15 hours with probability
at least 0.9?

Markov decision processes (MDPs) are the established model to formalise prob-
lems such as (II). We consider MDPs where each transition is equipped with
a non-negative “weight”. The weight could be interpreted as time, distance,
reward, or—as in this paper—as cost. For another example, imagine the plan
of a research project whose workflow can be modelled by a directed weighted
graph. In each project state the investigators can hire a programmer, travel to
collaborators, acquire new equipment, etc., but each action costs money, and the
result (i.e., the next project state) is probabilistic. The objective is to meet the
goals of the project before exceeding its budget for the total accumulated cost.

C. Haase—Supported by Labex Digicosme, Univ. Paris-Saclay, project VERI-
CONISS.
S. Kiefer—Supported by a Royal Society University Research Fellowship.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 234–246, 2015.
DOI: 10.1007/978-3-662-47666-6 19

The Odds of Staying on Budget 235

(III) Is there a strategy to stay on budget with probability ≥ 0.85?

MDP problems like (II) and (III) become even more challenging when each
transition is equipped with both a cost and a utility. Such cost-utility trade-offs
have recently been studied in [2].

The problems (II) and (III) may become easier in Markov chains, which have
no non-determinism, i.e., there are no actions. Referring to the project example
above, the activities may be completely planned out, but their effects (i.e. cost
and next state) may still be probabilistic, yielding problems of the kind:

(IV) Will the budget be kept with probability ≥ 0.85?

Closely related to the aforementioned decision problems is the following opti-
misation problem, referred to as the quantile query in [2,19]. A quantile query
asked by a funding body, for instance, could be the following:

(V) Given a probability threshold τ , compute the smallest budget that suffices
with probability at least τ .

Non-stochastic problems like (I) are well understood. The purpose of this
paper is to investigate the complexity of MDP problems such as (II) and (III),
of Markov-chain problems such as (IV), and of quantile queries like (V). More
formally, the models we consider are Markov chains and MDPs with non-negative
integer costs, and the main focus of this paper is on the cost problem for those
models: Given a budget constraint ϕ represented as a Boolean combination of
linear inequalities and a probability threshold τ , we study the complexity of
determining whether the probability of paths reaching a designated target state
with cost consistent with ϕ is at least τ .

In order to highlight some issues, let us briefly discuss two approaches that
do not, at least not in an obvious way, resolve the core challenges. First, one
approach to answer the MDP problems could be to compute a strategy that
minimises the expected total cost, which is a classical problem in the MDP lit-
erature, solvable in polynomial time using linear programming methods [13].
However, minimising the expectation may not be optimal: if you don’t want to
be late, it may be better to walk than to wait for the bus, even if the bus saves
you time in average. The second approach with shortcomings is to phrase prob-
lems (II), (III) and (IV) as MDP or Markov-chain reachability problems, which
are also known to be solvable in polynomial time. This, however, ignores the fact
that numbers representing cost are commonly represented in their natural suc-
cinct binary encoding. Augmenting each state with possible accumulated costs
leads to an exponential blow-up of the state space.

Our Contribution. The goal of this paper is to comprehensively investigate
under which circumstances and to what extent the complexity of the cost prob-
lem and of quantile queries may be below EXP. We also significantly strengthen
the NP lower bound derivable from [12]. We distinguish between acyclic and
general control graphs. In short, we show the following for the cost problem:
(1) for acyclic Markov chains it is PP-complete, (2) for general Markov chains

236 C. Haase and S. Kiefer

it is hard for the PosSLP problem and in PSpace, (3) for acyclic MDPs it is
PSpace-complete, and (4) for general MDPs it is EXP-complete. Due to space
constraints, full details have been moved to a technical report [9].

Related Work. The motivation for this paper comes from the work on quantile
queries in [2,19] mentioned above and on model checking so-called durational
probabilistic systems [12] with a probabilistic timed extension of CTL. While the
focus of [19] is mainly on “qualitative” problems where the probability thresh-
old is either 0 or 1, an iterative linear-programming-based approach for solving
quantile queries has been suggested in [2]. The authors report satisfying exper-
imental results, the worst-case complexity however remains exponential time.
Settling the complexity of quantile queries has been identified as one of the
current challenges in the conclusion of [2].

Recently, there has been considerable interest in models of stochastic systems
that extend weighted graphs or counter systems, see e.g. the survey [15]. Multi-
dimensional percentile queries for various payoff functions are studied in [14]. The
work by Bruyère et al. [6] has also been motivated by the fact that minimising
the expected total cost is not always adequate. For instance, they consider the
problem of computing a scheduler in an MDP with positive integer weights that
ensures that both the expected and the maximum incurred cost remain below
a given values. Other recent work also investigated MDPs with a single counter
ranging over the non-negative integers, see e.g. [5]. However, in that work updates
to the counter can be both positive and negative. For that reason, the analysis
focuses on questions about reaching the counter value zero.

2 Preliminaries

We write N = {0, 1, 2, . . .}. For a countable set X we write dist(X) for the
set of probability distributions over X; i.e., dist(X) consists of those functions
f : X → [0, 1] such that

∑
x∈X f(x) = 1.

Markov Chains. A Markov chain is a triple M = (S, s0, δ), where S is a count-
able (finite or infinite) set of states, s0 ∈ S is an initial state, and δ : S → dist(S)
is a probabilistic transition function that maps a state to a probability distri-
bution over the successor states. Given a Markov chain we also write s

p−→ t
or s −→ t to indicate that p = δ(s)(t) > 0. A run is an infinite sequence
s0s1 · · · ∈ {s0}Sω with si −→ si+1 for i ∈ N. We write Run(s0 · · · sk) for the
set of runs that start with s0 · · · sk. To M we associate the standard probability
space (Run(s0),F ,P) where F is the σ-field generated by all basic cylinders
Run(s0 · · · sk) with s0 · · · sk ∈ {s0}S∗, and P : F → [0, 1] is the unique proba-
bility measure such that P(Run(s0 · · · sk)) =

∏k
i=1 δ(si−1)(si).

Markov Decision Processes. A Markov decision process (MDP) is a tuple
D = (S, s0, A,En, δ), where S is a countable set of states, s0 ∈ S is the initial
state, A is a finite set of actions, En : S → 2A \ ∅ is an action enabledness
function that assigns to each state s the set En(s) of actions enabled in s, and

The Odds of Staying on Budget 237

δ : S × A → dist(S) is a probabilistic transition function that maps a state s
and an action a ∈ En(s) enabled in s to a probability distribution over the
successor states. A (deterministic, memoryless) scheduler for D is a function
σ : S → A with σ(s) ∈ En(s) for all s ∈ S. A scheduler σ induces a Markov
chain Mσ = (S, s0, δσ) with δσ(s) = δ(s, σ(s)) for all s ∈ S. We write Pσ for the
corresponding probability measure of Mσ.

Cost Processes. A cost process is a tuple C = (Q, q0, t, A,En,Δ), where Q is
a finite set of control states, q0 ∈ Q is the initial control state, t is the target
control state, A is a finite set of actions, En : Q → 2A\∅ is an action enabledness
function that assigns to each control state q the set En(q) of actions enabled in q,
and Δ : Q × A → dist(Q × N) is a probabilistic transition function. Here, for
q, q′ ∈ Q, a ∈ En(q) and k ∈ N, the value Δ(q, a)(q′, k) ∈ [0, 1] is the probability
that, if action a is taken in control state q, the cost process transitions to control
state q′ and cost k is incurred. For the complexity results we define the size of C
as the size of a succinct description, i.e., the costs are encoded in binary, the
probabilities are encoded as fractions of integers in binary (so the probabilities
are rational), and for each q ∈ Q and a ∈ En(q), the distribution Δ(q, a) is
described by the list of triples (q′, k, p) with Δ(q, a)(q′, k) = p > 0 (so we assume
this list to be finite). Consider the directed graph G = (Q,E) with

E := {(q, q′) ∈ (Q \ {t}) × Q : ∃a ∈ En(q) ∃k ∈ N. Δ(q, a)(q′, k) > 0} .

We call C acyclic if G is acyclic (which can be determined in linear time).
A cost process C induces an MDP DC = (Q × N, (q0, 0), A,En ′, δ) with

En ′(q, c) = En(q) for all q ∈ Q and c ∈ N, and δ((q, c), a)(q′, c′) = Δ(q, a)(q′, c′−
c) for all q, q′ ∈ Q and c, c′ ∈ N and a ∈ A. For a state (q, c) ∈ Q × N in DC
we view q as the current control state and c as the current cost, i.e., the cost
accumulated thus far. We refer to C as a cost chain if |En(q)| = 1 holds for all
q ∈ Q. In this case one can view DC as the Markov chain induced by the unique
scheduler of DC . For cost chains, actions are not relevant, so we describe cost
chains just by the tuple C = (Q, q0, t,Δ).

Recall that we restrict schedulers to be deterministic and memoryless, as
such schedulers will be sufficient for the objectives in this paper. Note, however,
that our definition allows schedulers to depend on the current cost, i.e., we may
have schedulers σ with σ(q, c) �= σ(q, c′).

The Accumulated Cost K. In this paper we will be interested in the cost
accumulated during a run before reaching the target state t. For this cost to
be a well-defined random variable, we make two assumptions on the system:
(i) We assume that En(t) = {a} holds for some a ∈ A and Δ(t, a)(t, 0) = 1.
Hence, runs that visit t will not leave t and accumulate only a finite cost. (ii) We
assume that for all schedulers the target state t is almost surely reached, i.e., for
all schedulers the probability of eventually visiting a state (t, c) with c ∈ N is
equal to one. The latter condition can be verified by graph algorithms in time
quadratic in the input size, e.g., by computing the maximal end components of
the MDP obtained from C by ignoring the cost, see e.g. [3, Alg. 47].

238 C. Haase and S. Kiefer

Given a cost process C we define a random variable KC : Run((q0, 0)) → N

such that KC((q0, 0) (q1, c1) · · ·) = c if there exists i ∈ N with (qi, ci) = (t, c).
We often drop the subscript from KC if the cost process C is clear from the
context. We view K(w) as the accumulated cost of a run w.

From the above-mentioned assumptions on t, it follows that for any scheduler
the random variable K is almost surely defined. Dropping assumption (i) would
allow the same run to visit states (t, c1) and (t, c2) for two different c1, c2 ∈ N.
There would still be reasonable ways to define a cost K, but no apparently
best way. If assumption (ii) were dropped, we would have to deal with runs
that do not visit the target state t. In that case one could study the random
variable K as above conditioned under the event that t is visited. For Markov
chains, [4, Sec. 3] describes a transformation that preserves the distribution
of the conditional cost K, but t is almost surely reached in the transformed
Markov chain. In this sense, our assumption (ii) is without loss of generality for
cost chains. For general cost processes the transformations of [4] do not work.
In fact, a scheduler that “optimises” K conditioned under reaching t might try
to avoid reaching t once the accumulated cost has grown unfavourably. Hence,
dropping assumption (ii) in favour of conditional costs would give our problems
an aspect of multi-objective optimisation, which is not the focus of this paper.

The Cost Problem. Let x be a fixed variable. An atomic cost formula is an
inequality of the form x ≤ B where B ∈ N is encoded in binary. A cost formula
is an arbitrary Boolean combination of atomic cost formulas. A number n ∈ N

satisfies a cost formula ϕ, in symbols n |= ϕ, if ϕ is true when x is replaced by n.
This paper mainly deals with the following decision problem: given a cost

process C, a cost formula ϕ, and a probability threshold τ ∈ [0, 1], the cost
problem asks whether there exists a scheduler σ with Pσ(KC |= ϕ) ≥ τ . The
case of an atomic cost formula ϕ is an important special case. Clearly, for cost
chains C the cost problem simply asks whether P(KC |= ϕ) ≥ τ holds. One can
assume τ = 1/2 without loss of generality, thanks to a simple construction, see
[9]. Moreover, with an oracle for the cost problem at hand, one can use binary
search over τ to approximate Pσ(K |= ϕ): i oracle queries suffice to approximate
Pσ(K |= ϕ) within an absolute error of 2−i.

By our definition, the MDP DC is in general infinite as there is no upper
bound on the accumulated cost. However, when solving the cost problem, there is
no need to keep track of costs above B, where B is the largest number appearing
in ϕ. So one can solve the cost problem in so-called pseudo-polynomial time (i.e.,
polynomial in B, not in the size of the encoding of B) by computing an explicit
representation of a restriction, say D̂C , of DC to costs up to B, and then applying
classical linear-programming techniques [13] to compute the optimal scheduler
for the finite MDP D̂C . Since we consider reachability objectives, the optimal
scheduler is deterministic and memoryless. This shows that our restriction to
deterministic memoryless schedulers is without loss of generality. In terms of
our succinct representation we have:

Proposition 1. The cost problem is in EXP.

The Odds of Staying on Budget 239

The subject of this paper is to investigate to what extent the EXP complexity
is optimal.

3 Quantile Queries

In this section we consider the following function problem, referred to as quantile
query in [2,19]. Given a cost chain C and a probability threshold τ , a quantile
query asks for the smallest budget B such that Pσ(KC ≤ B) ≥ τ . We show that
polynomially many oracle queries to the cost problem for atomic cost formulas
“x ≤ B” suffice to answer a quantile query. This can be done using binary
search over the budget B. The following proposition provides a suitable general
upper bound on this binary search, by exhibiting a concrete sufficient budget,
computable in polynomial time:

Proposition 2. Suppose 0 ≤ τ < 1. Let pmin be the smallest non-zero proba-
bility and kmax be the largest cost in the description of the cost process. Then
Pσ(K ≤ B) ≥ τ holds for all schedulers σ, where

B := kmax ·
⌈
|Q| ·

(
− ln(1 − τ)/p

|Q|
min + 1

)⌉
.

The case τ = 1 is covered by [19, Thm. 6], where it is shown that one can compute
in polynomial time the smallest B with Pσ(K ≤ B) = 1 for all schedulers σ,
if such B exists. We conclude that quantile queries are polynomial-time inter-
reducible with the cost problem for atomic cost formulas.

4 Cost Chains

In this section we consider the cost problems for acyclic and general cost chains.
Even in the general case we obtain PSpace membership, avoiding the EXP
upper bound from Prop. 1.

Acyclic Cost Chains. The complexity class PP [8] can be defined as the
class of languages L that have a probabilistic polynomial-time bounded Turing
machine ML such that for all words x one has x ∈ L if and only if ML accepts x
with probability at least 1/2. The class PP includes NP [8], and Toda’s theorem
states that PPP contains the polynomial-time hierarchy [17]. We show that the
cost problem for acyclic cost chains is PP-complete.

Theorem 3. The cost problem for acyclic cost chains is in PP. It is PP-hard
under polynomial-time Turing reductions, even for atomic cost formulas.

Proof (sketch). To show membership in PP, we construct a probabilistic Turing
machine that simulates the acyclic cost chain, and keeps track of the currently
accumulated cost on the tape. For the lower bound, it follows from [12, Prop. 4]
that an instance of the Kth largest subset problem can be reduced to a
cost problem for acyclic cost chains with atomic cost formulas. This problem is
PP-hard under polynomial-time Turing reductions [10, Thm. 3]. 	

240 C. Haase and S. Kiefer

PP-hardness strengthens the NP-hardness result from [12] substantially: by
Toda’s theorem it follows that any problem in the polynomial-time hierarchy
can be solved by a deterministic polynomial-time bounded Turing machine that
has oracle access to the cost problem for acyclic cost chains.

General Cost Chains. For the PP upper bound in Thm. 3, the absence of
cycles in the control graph seems essential. Indeed, we can use cycles to show
hardness for the PosSLP problem, suggesting that the acyclic and the general
case have different complexity. PosSLP is a fundamental problem for numerical
computation [1]. Given an arithmetic circuit with operators +, −, ∗, inputs 0
and 1, and a designated output gate, the PosSLP problem asks whether the
circuit outputs a positive integer. PosSLP is in PSpace; in fact, it lies in the
4th level of the counting hierarchy (CH) [1], an analogue to the polynomial-time
hierarchy for classes like PP. We have the following theorem:

Theorem 4. The cost problem for cost chains is in PSpace and hard for
PosSLP.

The remainder of this section is devoted to a proof sketch of this theorem. Show-
ing membership in PSpace requires non-trivial results. There is no agreed-upon
definition of probabilistic PSpace in the literature, but we can define it in anal-
ogy to PP as follows: Probabilistic PSpace is the class of languages L that have
a probabilistic polynomial-space bounded Turing machine ML such that for all
words x one has x ∈ L if and only if ML accepts x with probability at least 1/2.
The cost problem for cost chains is in this class, as can be shown by adapting
the argument from the beginning of the proof sketch for Thm. 3, replacing PP
with probabilistic PSpace. It was first proved in [16] that probabilistic PSpace
equals PSpace, hence the cost problem for cost chains is in PSpace.

For the PosSLP-hardness proof one can assume the following normal form,
see the proof of [7, Thm.5.2]: there are only + and ∗ operators, the corresponding
gates alternate, and all gates except those on the bottom level have exactly two
incoming edges, cf. the top of Fig. 1. We write val(g) for the value output
by gate g. Then PosSLP asks: given an arithmetic circuit (in normal form)
including gates g1, g2, is val(g1) ≥ val(g2)?

As an intermediate step of independent interest, we show PosSLP-hardness
of a problem about deterministic finite automata (DFAs). Let Σ be a finite
alphabet and call a function f : Σ → N a Parikh function. The Parikh image
of a word w ∈ Σ∗ is the Parikh function f such that f(a) is the number of
occurrences of a in w. We show:

Proposition 5. Given an arithmetic circuit including gate g, one can compute
in logarithmic space a Parikh function f (in binary encoding) and a DFA A such
that val(g) equals the number of accepting computations in A that are labelled
with words that have Parikh image f .

The construction is illustrated in Fig. 1. It is by induction on the levels of the
arithmetic circuit. A gate labelled with “+” is simulated by branching into the
inductively constructed gadgets corresponding to the gates this gate connects

The Odds of Staying on Budget 241

Fig. 1. Top: an arithmetic circuit in normal form. Bottom: a DFA (omitting input
letters) corresponding to the construction of Prop. 5. Identical colours indicate a cor-
respondence between gates and states.

to. Likewise, a gate labelled with “∗” is simulated by sequentially composing the
gadgets corresponding to the gates this gate connects to. It is the latter case that
may introduce cycles in the structure of the DFA. Building on this construction,
by encoding alphabet letters in natural numbers encoded in binary, we then
show:

Proposition 6. Given an arithmetic circuit including gate g on odd level �, one
can compute in logarithmic space a cost process C and T ∈ N with P(KC = T) =
val(g)/m, where m = exp2(2(�−1)/2+1 − 1) · expd(2(�−1)/2+1 − 3).

Towards the PosSLP lower bound from Thm. 4, given an arithmetic cir-
cuit including gates g1, g2, we use Prop. 6 to construct two cost chains C1 =
(Q, q1, t,Δ) and C2 = (Q, q2, t,Δ) and T1, T2 ∈ N such that P(KCi

= Ti) =
val(gi)/m holds for i ∈ {1, 2} and for m ∈ N as in Prop. 6. Then we compute a
number H ≥ T2 such that P(KC2 > H) < 1/m. The representation of m from
Prop. 6 is of exponential size. However, using Prop. 2, H depends only logarith-
mically on m + 1. We combine C1 and C2 to a cost chain C = (Q � {q0}, q0, t, Δ̃),
where Δ̃ extends Δ by Δ̃(q0)(q1,H + 1) = 1/2 and Δ̃(q0)(q2, 0) = 1/2. By this
construction, the new cost chain C initially either incurs cost H + 1 and then
emulates C1, or incurs cost 0 and then emulates C2. Those possibilities have
probability 1/2 each.

Finally, we compute a suitable cost formula ϕ such that we have val(g1) ≥
val(g2) if and only if P(KC |= ϕ) ≥ 1/2, completing the logspace reduction.
We remark that the structure of the formula ϕ, in particular the number of
inequalities, is fixed. Only the involved numbers depend on the concrete instance.

5 Cost Processes

Acyclic Cost Processes. We now prove that the cost problem for acyclic cost
processes is PSpace-complete. The challenging part is to show that PSpace-
hardness even holds for atomic cost formulas. For our lower bound, we reduce

242 C. Haase and S. Kiefer

from a generalisation of the classical SubsetSum problem: Given a tuple
(k1, . . . , kn, T) of natural numbers with n even, the QSubsetSum problem asks
whether the following formula is true:

∃x1 ∈ {0, 1} ∀x2 ∈ {0, 1} · · · ∃xn−1 ∈ {0, 1} ∀xn ∈ {0, 1} :
∑

1≤i≤n

xiki = T

Here, the quantifiers ∃ and ∀ occur in strict alternation. It is shown in [18, Lem. 4]
that QSubsetSum is PSpace-complete. One can think of such a formula as
a turn-based game, the QSubsetSum game, played between Player Odd and
Player Even. If i ∈ {1, . . . , n} is odd (even), then turn i is Player Odd’s (Player
Even’s) turn, respectively. In turn i the respective player decides to either take ki

by setting xi = 1, or not to take ki by setting xi = 0. Player Odd’s objective is
to make the sum of the taken numbers equal T , and Player Even tries to prevent
that. If Player Even is replaced by a random player, then Player Odd has a
strategy to win with probability 1 if and only if the given instance is a “yes”
instance for QSubsetSum. This gives a PSpace-hardness proof for the cost
problem with non-atomic cost formulas ϕ ≡ (x = T). In order to strengthen the
lower bound to atomic cost formulas ϕ ≡ (x ≤ B) we have to give Player Odd
an incentive to take numbers ki, although she is only interested in not exceeding
the budget B. This challenge is addressed in our PSpace-hardness proof.

The PSpace-hardness result reflects the fact that the optimal strategy must
take the current cost into account, not only the control state, even for atomic cost
formulas. This may be somewhat counter-intuitive, as a good strategy should
always “prefer small cost”. But if there always existed a strategy depending only
on the control state, one could guess this strategy in NP and invoke the PP-result
of Sec. 4 in order to obtain an NPPP algorithm, implying NPPP = PSpace and
hence a collapse of the counting hierarchy.

Indeed, for a concrete example, consider the acyclic cost process with Q =
{q0, q1, t}, and En(q0) = {a} and En(q1) = {a1, a2}, and Δ(q0, a)(q1,+1) = 1

2
and Δ(q0, a)(q1,+3) = 1

2 and Δ(q1, a1)(t,+3) = 1 and Δ(q1, a2)(t,+6) = 1
2

and Δ(q1, a2)(t,+1) = 1
2 . Consider the atomic cost formula ϕ ≡ (x ≤ 5). An

optimal scheduler σ plays a1 in (q1, 1) and a2 in (q1, 3), because additional cost 3,
incurred by a1, is fine in the former but not in the latter configuration. For this
scheduler σ we have Pσ(K |= ϕ) = 3

4 .

Theorem 7. The cost problem for acyclic cost processes is in PSpace. It is
PSpace-hard, even for atomic cost formulas.

Proof (sketch). To prove membership in PSpace, we consider a procedure Opt
that, given (q, c) ∈ Q × N as input, computes the optimal (i.e., maximised over
all schedulers) probability pq,c that starting from (q, c) one reaches (t, d) with
d |= ϕ. The following procedure characterisation of pq,c for q �= t is crucial for
Opt(q, c):

pq,c = max
a∈En(q)

∑
q′∈Q

∑
k∈N

Δ(q, a)(q′, k) · pq′,c+k

The Odds of Staying on Budget 243

So Opt(q, c) loops over all a ∈ En(q) and all (q′, k) ∈ Q×N with Δ(q, a)(q′, k) >
0 and recursively computes pq′,c+k. Since the cost process is acyclic, the height
of the recursion stack is at most |Q|. The representation size of the probabil-
ities that occur in that computation is polynomial. To see this, consider the
product D of the denominators of the probabilities occurring in the description
of Δ. The encoding size of D is polynomial. All probabilities occurring during
the computation are integer multiples of 1/D. Hence computing Opt(q0, 0) and
comparing the result with τ gives a PSpace procedure.

For the lower bound we reduce the QSubsetSum problem, defined above,
to the cost problem for an atomic cost formula x ≤ B. Given an instance
(k1, . . . , kn, T) with n is even of the QSubsetSum problem, we construct
an acyclic cost process C = (Q, q0, t, A,En,Δ) as follows. We take Q =
{q0, q2, . . . , qn−2, qn, t}. Those control states reflect pairs of subsequent turns
that the QSubsetSum game can be in. The transition rules Δ will be set up so
that probably the control states q0, q2, . . . , qn, t will be visited in that order, with
the (improbable) possibility of shortcuts to t. For even i with 0 ≤ i ≤ n−2 we set
En(qi) = {a0, a1}. These actions correspond to Player Odd’s possible decisions
of not taking, respectively taking ki+1. Player Even’s response is modelled by
the random choice of not taking, respectively taking ki+2 (with probability 1/2
each). In the cost process, taking a number ki corresponds to incurring cost ki.
We also add an additional cost � in each transition.1 Therefore we define our
cost problem to have the atomic formula x ≤ B with B := (n/2) · � + T . For
some large number M ∈ N, formally defined in [9], we set for all even i ≤ n−2
and for j ∈ {0, 1}:

Δ(qi, aj)(qi+2, � + j · ki+1) = (1/2) · (1 − (� + j · ki+1)/M)
Δ(qi, aj)(t, � + j · ki+1) = (1/2) · (� + j · ki+1)/M

Δ(qi, aj)(qi+2, � + j · ki+1 + ki+2) = (1/2) · (1 − (� + j · ki+1 + ki+2)/M)
Δ(qi, aj)(t, � + j · ki+1 + ki+2) = (1/2) · (� + j · ki+1 + ki+2)/M

So with high probability the MDP transitions from qi to qi+2, and cost �, �+ki+1,
� + ki+2, � + ki+1 + ki+2 is incurred, depending on the scheduler’s (i.e., Player
Odd’s) actions and on the random (Player Even) outcome. But with a small
probability, which is proportional to the incurred cost, the MDP transitions
to t, which is a “win” for the scheduler as long as the accumulated cost is within
budget B. We make sure that the scheduler loses if qn is reached:

Δ(qn, a)(t, B+1) = 1 with En(qn) = {a}

The MDP is designed so that the scheduler probably “loses” (i.e., exceeds the
budget B); but whenever cost k is incurred, a winning opportunity with prob-
ability k/M arises. Since 1/M is small, the overall probability of winning is
approximately C/M if total cost C ≤ B is incurred. In order to maximise this

1 This is for technical reasons. Roughly speaking, this prevents the possibility of reach-
ing the full budget B before an action in control state qn−2 is played.

244 C. Haase and S. Kiefer

chance, the scheduler wants to maximise the total cost without exceeding B, so
the optimal scheduler will target B as total cost.

The values for �, M and τ need to be chosen carefully, as the overall prob-
ability of winning is not exactly the sum of the probabilities of the individual
winning opportunities. By the “union bound”, this sum is only an upper bound,
and one needs to show that the sum approximates the real probability closely
enough. 	

General Cost Processes. We show the following theorem:

Theorem 8. The cost problem is EXP-complete.

The EXP upper bound was stated in Prop. 1. The lower bound is based on a
reduction from countdown games [11].

The Cost-Utility Problem. MDPs with two non-negative and non-decreasing
integer counters, viewed as cost and utility, respectively, were considered e.g.
in [2]. Specifically, those works consider problems such as computing the minimal
cost C such that the probability of gaining at least a given utility U is at least τ .
Possibly the most fundamental of those problems is the following: the cost-utility
problem asks, given an MDP with both cost and utility, and numbers C,U ∈ N,
whether one can, with probability 1, gain utility at least U using cost at most C.
Using essentially the proof of Thm. 8 we show:

Corollary 9. The cost-utility problem is EXP-complete.

The Universal Cost Problem. We defined the cost problem so that it asks
whether there exists a scheduler σ with Pσ(KC |= ϕ) ≥ τ . A variant is the univer-
sal cost problem, which asks whether Pσ(KC |= ϕ) ≥ τ holds for all schedulers σ.
Here the scheduler is viewed as an adversary which tries to prevent the satisfac-
tion of ϕ. For cost chains the cost problem and the universal cost problem are
equivalent. Thms. 7 and 8 hold analogously in the universal case:

Theorem 10. The universal cost problem for acyclic cost processes is in
PSpace. It is PSpace-hard, even for atomic cost formulas. The universal cost
problem is EXP-complete.

6 Conclusions and Open Problems

In this paper we have studied the complexity of analysing succinctly represented
stochastic systems with a single non-negative and only increasing integer counter.
We have improved the known complexity bounds significantly. Among other
results, we have shown that the cost problem for Markov chains is in PSpace and
both hard for PP and the PosSLP problem. Can one prove PSpace-hardness
or membership in the counting hierarchy?

Regarding acyclic and general MDPs, we have proved PSpace-completeness
and EXP-completeness, respectively. Our results leave open the possibility that

The Odds of Staying on Budget 245

the cost problem for atomic cost formulas is not EXP-hard and even in PSpace.
The technique described in the proof sketch of Thm. 7 cannot be applied to
general cost processes, because there we have to deal with paths of exponen-
tial length, which, informally speaking, have double-exponentially small prob-
abilities. Proving hardness in an analogous way would thus require probability
thresholds τ of exponential representation size.

Acknowledgments. The authors would like to thank Andreas Göbel for valuable
hints, Christel Baier and Sascha Klüppelholz for thoughtful feedback on an earlier
version of this paper, and anonymous referees for their helpful comments.

References

1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Bro, P.: Miltersen. On the
complexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)

2. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: Proc. CSL-LICS, pp. 1:1–1:10. ACM (2014)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
4. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabil-

ities in markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014)

5. Brázdil, T., Brožek, V., Etessami, K., Kučera, A., Wojtczak, D.: One-counter
Markov decision processes. In: Proc. SODA, pp. 863–874. SIAM (2010)

6. Bruyère, V., Filiot, E., Randour, M., Raskin, J.-F.: Meet your expectations with
guarantees: beyond worst-case synthesis in quantitative games. In: Proc. STACS,
LIPIcs, vol. 25, pp. 199–213 (2014)

7. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. J. ACM 56(1), 1:1–1:66 (2009)

8. Gill, J.: Computational complexity of probabilistic Turing machines. SIAM J. Com-
put. 6(4), 675–695 (1977)

9. Haase, C., Kiefer, S.: The odds of staying on budget (2014). Technical Report at
http://arxiv.org/abs/1409.8228

10. Haase, C., Kiefer, S.: The complexity of the Kth largest subset problem and related
problems (2015). Technical Report at http://arxiv.org/abs/1501.06729

11. Jurdziński, M., Sproston, J., Laroussinie, F.: Model checking probabilistic timed
automata with one or two clocks. Log. Meth. Comput. Sci. 4(3), 12 (2008)

12. Laroussinie, F., Sproston, J.: Model checking durational probabilistic systems. In:
Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 140–154. Springer, Heidel-
berg (2005)

13. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons (2008)

14. Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional
Markov decision processes. In: Proc. CAV, LNCS (2015)

15. Randour, M., Raskin, J.-F., Sankur, O.: Variations on the stochastic shortest
path problem. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS,
vol. 8931, pp. 1–18. Springer, Heidelberg (2015)

http://arxiv.org/abs/http://arxiv.org/abs/1409.8228
http://arxiv.org/abs/http://arxiv.org/abs/1501.06729

246 C. Haase and S. Kiefer

16. Simon, J.: On the difference between one and many. In: Salomaa, A., Steinby, M.
(eds.) ICALP 1977. LNCS, vol. 52, pp. 480–491. Springer, Heidelberg (1977)

17. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),
865–877 (1991)

18. Travers, S.: The complexity of membership problems for circuits over sets of inte-
gers. Theor. Comput. Sci. 369(1–3), 211–229 (2006)

19. Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: Pfen-
ning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 353–368.
Springer, Heidelberg (2013)

From Sequential Specifications to Eventual Consistency

Radha Jagadeesan and James Riely(B)

DePaul University, Chicago, USA
jriely@gmail.com

Abstract. We address a fundamental issue of interfaces that arises in the con-
text of cloud computing. We define what it means for a replicated and distributed
implementation satisfy the standard sequential specification of the data structure.
Several extant implementations of replicated data structures already satisfy the
constraints of our definition. We describe how the algorithms discussed in a recent
survey of convergent or commutative replicated datatypes [17] satisfy our defini-
tion. We show that our definition simplifies the programmer task significantly for
a class of clients who conform to the CALM principle [10].

1 Introduction

An example serves to motivate the problem addressed in this paper. Consider an inte-
ger set interface with mutator methods add and remove and a single, boolean-valued
accessor method get. We will assume that mutators do not return values (have return
type Unit or void) and that accessors do not alter the state of the object. The sequen-
tial behavior of such a set can be defined as a set of strings such as ✗0 +0 ✓0 ✗1
and +0 +1 ✓0 ✓1 -1 ✓0 ✗1, where +k represents a call to add with argument k, -k
represents remove(k), ✓k represents get(k) returning true and ✗k represents get(k)
returning false. Since accessor methods do not alter the state of the object, the interface
is closed under commutation of accessors: if (s ✓0 ✗1) is a valid traces in the interface,
for some s, then so is (s ✗1 ✓0).

Consider the implementation of such a set as a cloud service that is implemented
by replication of the data structure (eg. see [17]). In this distributed setting, we assume
intra-node atomicity and sequencing of state transitions, whereas temporal relations
between two computers that are distributed is only induced by the receipt of messages
over the network. In this distributed context, there are two impediments to requiring the
replicas to achieve consensus on a global total order [13] on the operations on the data
structure. Firstly, the associated serialization bottleneck negatively affects performance
and scalability (eg, see [6]). Secondly, the CAP theorem [8] imposes a tradeoff between
consistency and partition-tolerance.

This has led to the emergence of alternative approaches based on eventual con-
sistency and optimistic replication [16,19]. In such approaches, a replica may execute
an operation without synchronizing with other replicas. The other replicas are updated
asynchronously with the update operation. However, due to the vagaries of the net-
work, even if every replica eventually receives and applies all updates, it could happen
in possibly different orders. So, there has to be some mechanism to reconcile conflicting

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 247–259, 2015.
DOI: 10.1007/978-3-662-47666-6 20

248 R. Jagadeesan and J. Riely

updates (for illustrative examples, see [17,18]). Thus, such approaches address the issue
of efficiency (since any query to the state of the data structure at a replica is answered
locally at the replica without any consensus overhead) and data remains available even
in the presence of network partitions.

The literature on convergent or commutative replicated datatypes (CRDTs) (see [17]
for a survey) provides a systematic attempt to design such datastructures. Consider the
following diagram, in the style of [17].

+0 ✓0 ✗1 ✓0 ✓1

+1 ✓1 ✗0 ✓0 ✓1

(1)

In this sample execution, the mutators +0 and +1 are executed at distinct replicas. The
actions in each replica are temporally ordered from left to right, as indicated by the hor-
izontal arrows. We assume the local updates are atomic. After a local update, the replica
forwards messages to the other replicas; in the diagram, the diagonal arrows between
replicas indicate messages that propagate such local updates, with the interpretation that
the operation is guaranteed to be finished at the recipient at the point the arrow appears
on the recipients timeline. The accessors are executed locally and atomically at each
replica. Of course, there is a consistent global state, testified by ✓0 and ✓1 at both repli-
cas, after both messages have been delivered. Thus, the literature (eg. see [17] for a
precise formalization) deems this implementation to be eventually consistent, since the
states of all the replicas eventually converge at quiescent points, when all the messages
have been delivered. This view is adequate for examples where we are interested only
in the final state of the data structure.

Since eventual consistency only speaks about the quiescent points of the system,
it does not address correctness of intermediate states in the evolution of the system.
For example, all of the following implementation traces of a putative replicated set are
deemed to be eventually consistent, even though we see very problematic behavior.

+0 ✓1 ✗1

+1
✓0 +0 ✓0

+0 ✗0 +0 ✓0

-0 ✓0 ✓0
(2) (3) (4)

In figure (2), the accessor results regresses from ✓1 to ✗1 even though there is no
remove invocation in the system; in figure (3), the initial accessor ✓0 is not justified; in
figure (4), the replicas conflict in their ordering of concurrent add/remove updates.

This problem is addressed by the seminal papers of [2,3]. [3] defines a notion of
eventual consistency for transactions intuitively as compatibility with a serialization of
them. In contrast, [2] views the interface of a replicated data structure as a concurrent
specification that determines the valid result of an accessor from the context of a prior
concurrent history. [1] extends this approach to allow for bounded rollbacks. In this
style, the above examples are declared invalid; for example in figure (2), the result ✗1
is deemed invalid in the context of its prior history.

In addition to capturing the properties of replicated implementations much more
precisely than the traditional definitions of eventual consistency, this line of work has
also lead to useful tools and techniques to aid the programmer: [3] provides general

From Sequential Specifications to Eventual Consistency 249

control flows sturctures that are guaranteed to yield eventually consistent implementa-
tions of transactions; [9] proves abstraction and composition theorems, applying it in
particular to the replicated implementation of a graph data structure; [1] develops model
checking techniques to reason about implementations relative to these specifications.

In these approaches, replicated data structures are specified directly, without any
formal comparison to the sequential data structures that they are meant to approximate.
This approach is (intentionally) agnostic to the design of the specifications themselves.
For example, whereas the result ✗1 in figure (2) is not valid, the result ✗1 in figure (1) is
valid. The justification for the different decisions about ✗1 in figures (1) and (2) is the
traditional sequential specification of Set; namely, if there are no remove operations, ✓1
is acceptable iff there is a preceding +1.

In this paper, building on [3], we provide a definition of eventual consistency that
develops precisely such a connection with the sequential specification. (As can be seen
from figure (1), traditional criteria, such as linearizability [11] and quiescent consis-
tency [5,12], do not apply here.) We show the utility of our definition by showing that
clients satisfying the CALM principle (see [10] for a survey) can in fact abstract away
completely from the distributed and replicated implementation and program against the
sequential specification realized by the implementation.

Our work complements the research program of [1–3,9]. Our methods aim to pro-
vide a way to justify the interfaces described in this approach. In future work, we hope
to use our methods to show that CALM clients of their interfaces can also be protected
from details of distribution and replication. We also hope to adopt their methods to
support a more general class of clients and to develop reasoning methods to show that
implementations satisfy their specification.

An Informal Outline of our Approach. In a replicated data structure, a mutator m is
visible to an event a if m executes at a’s replica before a executes. We say that an imple-
mentation trace (such as those in the figures above) satisfies a sequential specification
if for each event a, we can associate a string of events t(a) that satisfies the following.

Mutator closed: t(a) includes a as well as the mutator events that are visible to a
Validity: t(a) is a valid sequential trace that ends in a
History consistency: For any events d and e, t(d) and t(e) agree on the ordering
of mutator events that are visible to both d and e.

Figure (2) does not satisfy validity at the event ✗1 in the top replica since neither
+0 +1 ✗1 nor +1 +0 ✗1 is a valid trace of a set. Figure (3) does not satisfy validity at
the initial event ✓0 since the trace ✓0 is not a valid trace of a set. In Figure (4), to satisfy
validity, we have to associate the trace -0 +0 at the ✓0 event in the top replica and the
trace +0 -0 at the ✗0 event in the bottom replica, thus violating history-consistency.

For a positive example, in figure (1), the traces associated to the event ✗1 in the top
replica is +0 and the trace associated to the event ✗0 in the bottom replica is +1. There
is a choice for the trace associated with the events ✓1 in the top replica and ✓0 in the
bottom replica. By consistency, they need to be the same, but they can both be chosen
to be either +0 +1 or +0 +1.

250 R. Jagadeesan and J. Riely

Our definition is flexible enough to accommodate the data structures discussed
in [17], a recent survey of the literature on CRDTs. For several of these data structures,
the implementations unambiguously and categorically satisfy our definitions. There are
particular subtleties that arise when we match some SET implementations (the OR-set
and the 2P-set) against the sequential set specification that we discuss in the technical
sections that follow.

Such data structures provide a particularly simple programming view for clients
located at a replica. In a logically monotone execution, the arrival time of a concur-
rent mutator does not alter the evolution of the system (Our formalization of logically
monotone executions is inspired by ideas in [14,15].) We formalize a weaker mono-
tonicity property: that there is some ordering of concurrent mutators that does not alter
the evolution of a system. Under this weak monotonicity assumption (that is satisfied by
all CALM executions), we prove abstraction [7] and composition [11] theorems. This is
particularly relevant because it simplifies the programmer perspective for a large class
of programs that includes those written in languages that realize the CALM principle,
such as Bloom [4].

2 Bracketed Partial Orders and Labeled Visibility Relations

In this section, we define bracketed partial orders (BPOs). BPOs provide a formalization
of diagrams such as those given in the introduction. BPOs are labelled partial orders,
enriched with replicas and bracketing. Bracketing relates the remote execution of a
mutator to the initial call of the mutator. Consider the following example.

+0 +1
✓1 ✗0 ✓0

(5)

This is formalized as a BPO with seven events. There are two replicas: one for each hori-
zontal line. The partial order is given by the arrows. Two events are labelled as mutators:
+0 and +1. Three events are labelled as accessors: ✓1, ✗0 and ✓0. The remaining two
events (shown without labels in the diagram) are bracketing events. In the formalism,
bracketing events are labelled with the name of the preceding mutator event. Generally
one is interested in the isomorphism class of labelled partial orders (the pomset), and
therefore the event names themselves are uninteresting.

A BPO is causal if the order of mutator and bracketing events at each replica respects
the partial order of the mutator events themselves. All of the figures in the introduction
are causal. Figure (5) is not causal, however, since the mutator order is +0 +1 but the
order at the bottom replica is +1 +0.

BPOs directly capture the notion of an operation-based CRDT (see [17]). State-based
CRDTs can be considered a special case of causal BPOs that communicate multiple
brackets with a single communication (modelled as an uninterrupted sequence of brack-
eted events at the receiving replica).

Let A and M be disjoint sets of accessor labels and mutator labels, respectively,
and let L =A ∪M be a set of labels. We use metavariables s–v to range over various
types of relations with labels in L , which we generically refer to as “traces”.

Example 2.1. In this paper we consider four implementations of an integer set datatype:
the G-set, U-set, OR-set, and 2P-set. See [17] for implementation details.

From Sequential Specifications to Eventual Consistency 251

A G-set has mutator labels of the form +k, where k is an integer, and accessor labels
of the form ✓k and ✗k. A G-set is grow only; thus, once ✓k has been observed for a
particular k, it is impossible to subsequently observe ✗k. It is straightforward to specify
the replicated implementation and, therefore, the corresponding BPO.

A U-set adds mutators of the form -k to the labels of a G-set, denoting removal. A
U-set requires that for every k, +k may appear at most once in each execution—each
+k is unique. In addition, a -k may only occur when +k is visible. These requirements
are imposed on the client of the U-set; it is not ensured by the U-set itself. The imple-
mentation is again straightforward. The client can guarantee uniqueness using various
techniques; for example, take k = 2c ·3n where c is a globally unique client thread iden-
tifier and n is a monotone thread-local counter.

An OR-set (observed-remove set) has the same labels as a U-set, but does not require
that +k actions are unique. The implementation uses an underlying U-set and a map
from the elements of the U-set to the elements of the OR-set. Consider the following
BPO, from [17].

+0 -0 ✓0
+0

✓0
(6)

This BPO is not a valid execution of a G-set (because of the -0) or a U-set (because of
the two +0’s). However, this is a valid execution of an OR-set. The +0 in the middle
replica is concurrent with the -0 of the top replica. Since they are working on top of an
underlying U-set, the -0 only removes the +0 added by the top replica; the middle +0 is
not affected and eventually prevails.

A 2P-set is implemented using two grow sets; one representing additions and one
representing tombstones for removed elements, in the obvious way. Like a U-set, a 2P-
set also constrains the behaviour of clients. A client must ensure that no element that
is removed is subsequently re-added. The BPO in figure (6) is a valid 2P-set BPO if the
events labeled ✓0 are re-labeled to ✗0. In a OR-set, an add “wins” over a concurrent
remove, whereas in a 2P-set, the remove wins. Thus these two examples represent dif-
ferent specializations of the set API. The OR-set resolves figure (6) to the sequential
specification +0 -0 +0 ✓0 ✓0, whereas the 2P-set resolves it to +0 +0 -0 ✗0 ✗0.

The constraints on the clients of U-set and 2P-set are required for correct functioning
as a set. The definition of correctness is given informally in [17]. The main contribution
of this paper is to provide a formalization, which we do in Section 3. Under our defi-
nition, all executions of the G-set will be considered correct, and all causal executions
of U-set will be considered correct, but only a subset of executions of the OR-set and
2P-set will be considered correct. ��

Definition 2.2. A (replicated) bracketed partial order (BPO) is a octuple 〈EA, EM, EB,
L, R, λ, ρ, ⇒〉 where R is a set of replicas, and the following hold.

(a) sets EA, EM andEB are disjoint, L ⊆ L , and 〈EA ∪EM ∪EB, ⇒〉 is a partial order,
(b) ρ ∈ (EA ∪EM ∪EB)
→ R and λ ∈ (EA
→ L∩A)∪ (EM
→ L∩M)∪ (EB
→ EM),
(c) ∀e ∈ EB. λ(e) ⇒ e and ρ(λ(e)) �= ρ(e)
(d) ∀d, e ∈ EB. if λ(d) = λ(e) then either d = e or ρ(d) �= ρ(e)
(e) ∀d, e ∈ E. if ρ(d) = ρ(e) then either d ⇒ e or e ⇒ d.

252 R. Jagadeesan and J. Riely

For a BPO s, we write EA(s) for the accessor events of s, EM(s) for the mutator events
and EB(s) for the bracketing events. We also define EAM(s)

�= EA(s)∪EM(s). ��

Condition (b) establishes the interpretation of the labelling function: The elements
of EA denote local events (accessors), the elements of EM denote the origination of a
global event (mutators), and the elements of EB denote the remote reception of a global
event (brackets). Events m ∈ EM and b ∈ EB are a bracketed pair when λ(b) = m.
Condition (c) establishes that in a bracketed pair, the beginning must precede the end
and occur at a separate replica. Condition (d) establishes that each mutator is bracketed
at most once per replica. Thus, each mutator event has one “beginning” and as many
as

∣∣R∣∣ − 1 “endings”. Condition (e) establishes that events are totally ordered at each
replica; concurrency within a replica can be handled via standard means.

Definition 2.3 (Causal). Let s be an BPO. Define remotes(e)
�= {b ∈ EB(s) | λs(b) = e}.

The BPO s is causal when ∀d, e ∈ EM(s). ∀d′ ∈ remotes(d). ∀e′ ∈ remotes(e). if d ⇒s e
and ρs(d′) = ρs(e′) then d′ ⇒s e′. ��

BPOs have a clear operational intuition. We now provide an abstract view of BPOs
which is sufficient to define correctness. The relations we need are weaker than labeled
partial orders. In particular, we do not require transitivity. We refer to these potentially
intransitive relations as labeled visibility relations (LVRs). For example, starting with
the BPO given in figures (5) and (6), we derive the following LVRs.

+0 +1
✓1 ✗0 ✓0

+0 -0 ✓0
+0

✓0
In these diagrams, we use � to represent an intransitive edge and → to represent a
“transitive” edge. Thus, in the left diagram, the event ✗0 sees +1 and ✓1, but not +0,
whereas ✓0 sees all four prior events. Recall from figure (5) that the replica that gen-
erates ✗0 sees +1 before +0, even though these are initiated in the reverse order. A
causal BPO generates a transitive LVR, as in the right diagram above. Formally, LVRs
are defined with a single visibility relation, which may or may not be transitive. We
include replica identifiers to define liveness properties; we ignore them except when
important.

Definition 2.4. Let s = 〈E, L, R, λ, ρ, �〉 be a sextuple such that E is a finite set of
events, L is a set of labels, R is a set of replicas, λ ∈ (E
→ L), ρ ∈ (E
→ R) and � ⊆
(E×E). We say that s is a labeled visibility relation (LVR) if � is reflexive and acyclic.
We say that s is a labeled partial order (LPO) if � is a partial order. We say that s is a
labeled total order (LTO) if � is a total order.

Given an LVR s, we write E(s) for the event set of s, L(s) for the label set, λs for
the labeling function and �s for the visibility relation. Define EA(s)

�= {e ∈ E(s) | λ
(e) ∈ A } and EM(s)

�= {e ∈ E(s) | λ(e) ∈ M }. ��

Below, we define the translation from BPOs to LVRs. For a BPO s, the relation local==⇒s

is the union of the local orders at each replica. Whenever d local==⇒s e, we have that d �s e.
For mutators m and accessors a, we have that m � a if m has been received at a’s
replica. Otherwise, events d and e at different replicas are ordered when they are ordered

From Sequential Specifications to Eventual Consistency 253

by ⇒s and every mutator visible to d is also visible to e. The BPO m a n
b

translates to the LVR m a n
b, which we draw as m → a → n → b. The BPO

m a n
b translates to the LVR m → a → n � b.

For a BPO s, we have that ∀m ∈ EM(s). ∀a, b ∈ EA(s). if m �s a �s b then m �s b.

Definition 2.5. For any sets C ⊆ A and relation R ⊆ A×A, define R\C
�= R∩ (C ×C).

Similarly, for R ⊆ A×B and C ⊆ A, define R\C
�= R∩ (C ×B).

Let s be a BPO. Define (d local==⇒s e) �= (d ⇒s e) and (ρs(d) = ρs(e)). Recall Def-
inition 2.3 of remote. Define visMs(e)

�= {m ∈ EM(s) | m local==⇒s e or ∃b ∈ remotes

(m). b local==⇒s e}. Then we define the LVR derived from s as follows: lvr(s) �= 〈EAM(s),
L(s), R(s), ρs, λs \EAM(s), �〉 where ∀d, e ∈ EAM(s). d � e iff d ∈ visMs(e) or d ⇒s e
and visMs(d) ⊆ visMs(e). We write �s for the visibility relation of lvr(s). ��

In a strongly distributed BPO, events at different replicas are only ordered via brack-
eted pairs; this disallows synchronization between replicas outside of the data structure
formalized by the BPO.

Definition 2.6. A BPO is strongly distributed if ∀d, e ∈ EA ∪ EM ∪ EB. if ρ(d) �= ρ(e)
and d ⇒ e then ∃d′ ∈ EM, e′ ∈ EB. λ(e′) = d′ and d ⇒ d′ ⇒ e′ ⇒ e ��

Lemma 2.7. Let s be a strongly distributed BPO. Then the following three statements
are equivalent: (a) s is causal, (b) (�s) is transitive, and (c) (�s) = (⇒s\EAM(s)). ��

3 Eventual Consistency

Definitions of eventual consistency (EC) traditionally include both safety and liveness
properties. Liveness is purely a property of implementations. It can be expressed as a
simple closure property over sets of LVRs, which we call eventual delivery1.

To define safety, we must first define specifications (Definition 3.1) and give some
basic vocabulary for permutations, order extensions and the like (Definition 3.2).

Specifications of sequential structures are typically given as sets of strings of labels.
To simplify the definitions, we use isomorphism closed sets of LTOs: the event set iden-
tifies a bijection between an implementation LVR and its specification as an LTO. Spec-
ification sets are closed with respect to renaming of events and arbitrary replacement
of the replica function (replicas don’t matter in specifications). In addition, we ask that
specification sets be prefix closed, accessor enabled (an specification string can always
be extended by some accessor) and closed under reordering of adjacent accessors (if
there is no intervening mutator, then accessors commute).

Definition 3.1. Strings may be regarded as labeled total orders (LTOs) up to replica-
insensitive isomorphism. LTOs s and t are replica-insensitive isomorphic if L(s) = L(t)
and there exists a bijection α : E(s) → E(t) such that ∀e ∈ E(s). λs(e) = λt(α(e)) and
∀d, e ∈ E(s). (d �s e) iff (α(d) �t α(e)).

1 See Definition 3.2 of the extension of a partial order (notation ⊆). A set S of LVRs satisfies
eventual delivery if each mutator is eventually seen at every replica: ∀s ∈ S. ∀m ∈ EM(s). ∀p ∈
R(s). ∃t ∈ S. s ⊆ t and ∃a ∈ EA(t). m �t a.

254 R. Jagadeesan and J. Riely

The following closure properties, defined on sets of strings, lift to isomorphism
closed sets of LTOs. For strings s, t ∈ L ∗, let “st” denote concatenation. Let T ⊆ L ∗

be a set of strings. We say that T is prefix closed when st ∈ T implies s ∈ T. We say that
T is accessor enabled when s ∈ T implies ∃a ∈ A . sa ∈ T. We say that T is accessor
closed when ∀a, b ∈ A . {ta, tb} ⊆ T implies {tab, tba} ⊆ T.

A specification is a set of total orders (LTOs) that is replica-insensitive isomorphism
closed, prefix closed, accessor enabled and accessor closed. ��

A specification, as given by Definition 3.1, is “sequential” because the orders are total.

Definition 3.2. We write =π for permutation equivalence; if s ≤π t then t may contain
additional events that are not matched in s. If s � t, then t is an visibility-extension of s,
with the same events and greater visibility. (For an LPO this is an order-extension.) If s ⊆
t, then t is an extension of s, with both more events and greater visibility. (s\D) denotes
the restriction of s to the events in D. Define

�
M

s e
�= s\

(
{e}∪{d ∈ EM(s) | d � e}

)
and

�Ms e
�= s\

(
{e}∪{d ∈ EM(s) | e �� d}

)
. ��

For trace s and e ∈ E(s),
�
M

s e denotes the restriction of s to the mutator events visible
to e, and �Ms e denotes the restriction to the mutator events that are either visible to or
“concurrent with” e. Both

�
M

s e and �Ms e include at most one accessor: e itself.
To establish eventual consistency of s with respect to T , we must exhibit a function t

that maps each event in E(s) to a specification trace in T . The choice of t is constrained
by two conditions.

Fix an event e and let t(e) = t. The first condition requires that t include only events
visible to or concurrent with e, and that t respect the order of those events in s. The
requirement E(

�
M

s e) ⊆ E(t) establishes that t includes e, as well as all of the mutators
visible to e. The requirement E(t) ⊆ E(�Ms e) establishes that t only includes mutators
that are either visible to or concurrent with e. Finally, the requirement that (s\E(t))� t
establishes that t must respect the order of events in s.

Fix events d and e. The second condition requires that t(d) and t(e) agree on the
order of mutator events in their intersection.

Definition 3.3. We say that t refines s at e if E(
�
M

s e) ⊆ E(t) ⊆ E(�Ms e) and (s\E(t)) � t.
We write s ≈M t when ∀m, n ∈ EM(s)∩EM(t). m �s n iff m �t n.

An LVR s is eventually consistent (EC) with a specification T (notation s �ec T)
when there exists a map t : E(s) → T such that (a) ∀e ∈ E(s). t(e) refines s at e, and (b)
∀d, e ∈ E(s). t(d) ≈M t(e).

Write S �ec T when ∀s ∈ S. s �ec T. ��

We call this “eventual consistency” because the definition ensures that at quiescent
points the same accessors at all the replicas are mapped to the same sequential trace of
visible mutator events. Given eventual delivery, then all replicas must eventually agree
on the order of all mutators. In the case that specifications are mutator enabled, eventual
consistency can be defined in terms of a global order on mutators (u in the proposition
below) that all replicas must agree to.

Definition 3.4. A specification T is mutator enabled if ∀s ∈ T. ∀m ∈ M . sm ∈ T. ��

From Sequential Specifications to Eventual Consistency 255

Proposition 3.5. Suppose T is mutator enabled specification. Then s �ec T iff there
exists a total order u =π s\M such that ∀e ∈ E(s). ∃te ∈ T. te refines s at e and te ≈M u.

��

Example 3.6. Any G-set execution s satisfies our definition. To see this, we follow the
characterization from Proposition 3.5. Choose u to be any linearization of the mutators
in s consistent with the execution. For any accessor (✓k or ✗k), choose t to be the
subsequence of the prefix of u that contains only the adds that precede the accessor in s.

Any causal execution s of a U-set satisfies our definition. Again, we follow the char-
acterization from Proposition 3.5. For any query, choose t to be the subsequence of the
prefix of u that contains only the mutators (adds and removes) that precede the accessor
in s. Causality, as assumed in [17], is necessary for the U-set to satisfy the specifcation.
Without causality, the following execution +0 -0 ✗0

✓0 is possible.
In this execution, the initial remove does nothing to the state of the bottom replica’s
local copy of the set, leaving the two replicas out of sync.

We now turn to the OR-set and 2P-set. First a positive example. Consider figure
(6) from Example 2.1. What are acceptable return values for the get actions? The top
replica sees the actions +0 -0 +0 whereas the bottom replica sees +0 +0 -0. They
see the same actions, but in different orders. In the 2P-set implementation, both gets
return false (remove has priority over add). In the OR-set implementation, both gets
return true (add has priority over remove). Both executions are EC. For the 2P-set, let
u be +0 +0 -0. For the OR-set, let u be +0 -0 +0. An implementation which returns
different values for the gets is not EC because there is no t that satisfies the requirements.
Since the gets see the same mutators, the traces chosen by t must agree on their order.

As a negative example, consider the following OR-set execution.
+0 +1 -1

+1 +0 -0
✓0 ✓1

In an OR-set, removes only affect the adds that are visible. In this execution, the top -1
does not affect the bottom +1, and symmetrically, the bottom -0 does not affect the top
+0; thus, the execution is possible. However, this execution is not EC with respect to
any set trace: since the final mutators are both removes, at least one of ?0 and ?1 must
return false in any sequential trace.

To guarantee EC executions of an OR-set, it is sufficient to require that every -k
action be ordered before any concurrent +k of the same value. If the resulting enriched
BPO is acyclic, then the OR-set execution is EC. The example above fails this test since
we would have a cycle involving all of the mutators: +0 +1 -1 +1 +0 -0 +0.

The analysis of the 2P-set is symmetric. ��

We end this section with the following simple fact about eventual consistency. The
proof uses the fact that we allow events that are concurrent with e to be included in t(e).

Lemma 3.7. If v �ec T and s � v then s �ec T . ��

4 Results

We define a language of clients and define interaction between a client and data struc-
ture. We then define monotonicity and state the abstraction and composition results.

256 R. Jagadeesan and J. Riely

Clients. We consider a simple language for clients: parallel composition of sequential
processes, which include method call, sequencing and conditional. Let tt and ff repre-
sent the boolean constants. Let k range over values, which include tt and ff. Let o range
over objects, m over mutator methods, and a over accessor methods. Then programs
(P), configurations (C) and labels (�) are defined as follows.

P ::= stop | o.m(k);P | if o.a(k)thenP | if o.a(k)thenP1 elseP2

C ::= P1|| · · ·||Pn

� ::= o.m(k) | o.a(k):tt | o.a(k):ff

For the most part, we elide occurrences of stop and explicit object references, writing
o.a(k);stop as “a(k)”. We also write if a(k)thenPelseP as “a(k);P”. In our running
example, we have been writing the label add(k) as “+k”, remove(k) as “-k”, get(k):tt
as “✓k” and get(k):ff as “✗k”.

Let �·� be a semantic function mapping configurations to sets of LVRs. The defini-
tion is the obvious one. For example, let C be the configuration add(0);get(1)||add
(1);get(0);get(1). Then �C� is a set of the following eight LVRs (up to isomorphism).

+0 ✗1
+1 ✗0 ✓1

+0 ✗1
+1 ✓0 ✓1

+0 ✓1
+1 ✗0 ✓1

+0 ✓1
+1 ✓0 ✓1

+0 ✗1
+1 ✗0 ✗1

+0 ✗1
+1 ✓0 ✗1

+0 ✓1
+1 ✗0 ✗1

+0 ✓1
+1 ✓0 ✗1

(7)

Under what circumstances can such a client interact with a 2P-set or OR-set and
expect that the observed behaviour if compatible with a sequential set? This question is
addressed in our first result, known as abstraction : when is the actual implementation
of a data structure a safe substitute for its “abstract” specification?

We must first define what it means for a client and a data structure to interact.

Interaction. From figure (7) it is clear that the data structure must be able to filter out
executions of the client. The set datatype does not include any traces that are compatible
with the four LPOs on the second line of figure (7).

From figure (7) it is equally clear that the data structure must be able to introduce
visibility that is not found in the client. For example, to achieve the results on the first
line, one must introduce visibility between the client programs, as follows.

+0 ✗1
+1 ✗0 ✓1

+0 ✗1
+1 ✓0 ✓1

+0 ✓1
+1 ✗0 ✓1

+0 ✓1
+1 ✓0 ✓1

It is safe for the data structure to add visibility (and therefore order) to the client;
however, the reverse is not true. A client can only introduce order that is compatible
with the data structure specification. Consider the sequential client add(0);get(0);get
(0). If this client communicates to separate replicas in a G-set, the execution +0 ✓0 ✗0
is possible, via the BPO +0 ✓0

✗0 . To avoid such anomalies, it is sufficient to
require that sequential clients alway move forward in the visibility relation. This can
be achieved by restricting each client program to communicate with a single replica, or
by other means. We include this requirement in our definition of composition, without
specifying how it is fulfilled.

Definition 4.1. Let S be a set of LVRs. �C�(S) �= {s ∈ S | ∃s′ ∈ �C�. s′ � s} ��

From Sequential Specifications to Eventual Consistency 257

One reading of the asymmetry in this definition is that a data structure may introduce
order, but not its clients. A more generous reading is that clients may require order that
is compatible with the data structure (that the data structure could have), but may not
introduce incompatible order.

Monotonicity and Abstraction. Even with this definition of the semantics, abstrac-
tion fails in general. Consider the client add(0);get(1)||add(1);get(0). The BPO

+0 ✗1
+1 ✗0 has order agreeing with the client and is an EC execution of a set, but

this behaviour is not observable by a client interacting with a sequential set. Abstraction
holds for clients that ensure monotone access to the data structure.

A set V is monotone if whenever V contains a trace u with a mutator m that is
concurrent with another event e, then V also contains a visibility extension v that orders
m and e. Since v is an visibility extension of u, it must contain the same labels.

Definition 4.2. A set V of LVRs is monotone when ∀u ∈ V. ∀m ∈ EM(u). ∀e ∈ E(u).
if (m ��u e and e ��u m) then ∃v ∈ V. u � v and (m �u e or e �u m) ��

Theorem 4.3. Let S be a set of LVRs and let T be a specification such that S �ec T . Let
C be a client such that �C�(S) is monotone. Then ∀s ∈ �C�(S). ∃t ∈ �C�(T). s � t. ��

The theorem states that if there is an execution s in �C�(S), then is a corresponding
execution t in �C�(T) that has exactly the same labels, and potentially more order. This
says that any client behaviour possible with the implementation S is also possible using
the sequential specification T .

Example 4.4. The G-set trace +0 ✗1
+1 can be allowed in a monotone subset of

G-set executions, since we can order ✗1 before +1 and still have a set execution; the
events +1 and +0 can be ordered arbitrarily. The G-set trace +0 ✗1

+1 ✗0 , however,
cannot be allowed in a monotone subset of G-set executions. In this case, if we order
+1 before ✗1, then the result is clearly not a set execution: 1 has been added, but is not
reported present. If we choose the reverse order, we have +0 before ✗0, and again the
result fails to be a valid set execution. Example 4.7 below gives an example of a specific
G-set client that satisfies monotonicity, under given assumptions. To design a general
class of context-independent monotone clients for a given data structure, it is necessary
to limit client programs, as done in languages in the CALM framework [10].

For example, in order to create a monotone subset of G-set traces, it is sound to
restrict clients to disallow the two-armed if-then-else. The semantics of the one-armed
if-then is blocking—the client must wait until the condition is true. The theorem estab-
lishes that such clients can safely us a G-set as though it were a sequential set.

The theorem provides guidance about how to design safe clients. In order to allow
a two-armed conditional with the G-set, we must ensure that events occurring concur-
rently with a negative response cannot invalidate that response. One way to achieve this,
following [10], is for the G-set to insert a barrier before returning a negative response.

��

258 R. Jagadeesan and J. Riely

Composition of Data Structures. We now turn our attention to reasoning about com-
pound data structures.

Definition 4.5. Given disjoint LTOs t1 and t2 (that is, E(t1)∩E(t2) = /0), let t1|||t2 denote
the set of their interleavings. This notion lifts to sets as follows: (T1|||T2)

�= {t ∈
(t1|||t2) | t1 ∈ T1 and t2 ∈ T2 and (E(t1)∩E(t2) = /0)}.

Given an LVR s and L ⊆ L(s), write s \ L for the LVR that results by restricting s to
events with labels in L. This notation lifts to sets in the obvious way: S\L

�=
⋃

s∈S s\L.
��

Theorem 4.6. Let �C�(S) be a monotone set of LVRs. Let L1 and L2 be disjoint subsets
of L . For i ∈ {1,2}, let Ti be a specification with labels chosen from Li. If (�C�(S) \
L1) �ec T1 and (�C�(S)\L2) �ec T2 then �C�(S) �ec (T1|||T2). ��

Example 4.7. The following definitions implement a 2P-set p, using two G-sets, a for
“added” and t for “tombstone”: p.add(k)

�= a.add(k), p.remove(k)
�= t.add(k), and

p.get(k)
�= a.get(k)∧¬t.get(k). If we can establish the necessary monotonicity prop-

erties, then we can reason with the sequential specifications of a and t in proving p
correct. An execution of a grow set g is monotone so long as for any g.✗k, there is no
concurrent g.+k. We must show that both a and t are accessed monotonically, so long as
p is accessed monotonically. An execution of a 2P-set p is monotone so long as (1) for
any p.✓k, there is no concurrent p.-k, and (2) for any p.✗k, there is no concurrent p.+k.

The conditions for monotonicity of p are sufficient to establish monotonicity of a
and t. There are two cases: (1) Suppose p.✓k. By monotonicity, we know there is no
concurrent p.-k, therefore no concurrent t.+k. By definition of p.get, we must have a.✓k
and t.✗k. Monotonicity imposes no constraints on a.✓k; to satisfy t.✗k, we must have no
concurrent t.+k, but this is exactly guaranteed by monotonicity of p. (2) Suppose p.✗k.
Then we know there is no concurrent p.+k, therefore no concurrent a.+k. By definition
of p.get, we must have either a.✗k or t.✓k. The argument is as before. ��

References

1. Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic replication
systems. In POPL 2014, pp. 285–296 (2014)

2. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: specification,
verification, optimality. In: POPL 2014, pp. 271–284 (2014)

3. Burckhardt, S., Leijen, D., Fähndrich, M., Sagiv, M.: Eventually consistent transactions. In:
Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211, pp. 67–86. Springer,
Heidelberg (2012)

4. Conway, N., Marczak, W.R. et al.: Logic and lattices for distributed programming. In: ACM
Symposium on Cloud Computing, pp. 1:1–1:14 (2012)

5. Derrick, J., Dongol, B., et al.: Quiescent consistency: defining and verifying relaxed lineariz-
ability. In: Formal, Methods, pp. 200–214 (2014)

6. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. ACM SIGMOD Record
18(2), 399–407 (1989)

7. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. The-
oretical Comp. Sci. 411, 4379–4398 (2010)

From Sequential Specifications to Eventual Consistency 259

8. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, pp. 51–59 (2002)

9. Gotsman, A., Yang, H.: Composite replicated data types. In: Vitek, J. (ed.) ESOP 2015.
LNCS, vol. 9032, pp. 585–609. Springer, Heidelberg (2015)

10. Hellerstein, J.M.: The declarative imperative: Experiences and conjectures in distributed
logic. SIGMOD Rec. 39(1), 5–19 (2010)

11. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM TOPLAS 12(3), 463–492 (1990)

12. Jagadeesan, R., Riely, J.: Between linearizability and quiescent consistency. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573,
pp. 220–231. Springer, Heidelberg (2014)

13. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

14. Panangaden, P., Shanbhogue, V., Stark, E.W.: Stability and sequentiality in dataflow net-
works. In: ICALP 1990, pp. 308–321 (1990)

15. Panangaden, P., Stark, E.W.: Computations, residuals, and the power of indeterminacy. In:
ICALP 1988, pp. 439–454 (1988)

16. Saito, Y., Shapiro, M.: Optimistic replication. Comput. Surv. 37(1), 42–81 (2005)
17. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of Convergent

and Commutative Replicated Data Types. TR 7506, Inria (2011)
18. Terry, D.B., Theimer, M.M. et al.: Managing update conflicts in bayou, a weakly connected

replicated storage system. In: SOSP (1995)
19. Vogels, W.: Eventually consistent. Communications of the ACM 52(1), 40–44 (2009)

Fixed-Dimensional Energy Games
are in Pseudo-Polynomial Time

Marcin Jurdziński1, Ranko Lazić1, and Sylvain Schmitz1,2(B)

1 DIMAP, Department of Computer Science, University of Warwick, Coventry, UK
2 LSV, ENS Cachan & CNRS & INRIA, Cachan Cedex, France

schmitz@lsv.ens-cachan.fr

Abstract. We generalise the hyperplane separation technique (Chat-
terjee and Velner, 2013) from multi-dimensional mean-payoff to energy
games, and achieve an algorithm for solving the latter whose running
time is exponential only in the dimension, but not in the number of ver-
tices of the game graph. This answers an open question whether energy
games with arbitrary initial credit can be solved in pseudo-polynomial
time for fixed dimensions 3 or larger (Chaloupka, 2013). It also improves
the complexity of solving multi-dimensional energy games with given ini-
tial credit from non-elementary (Brázdil, Jančar, and Kučera, 2010) to
2EXPTIME, thus establishing their 2EXPTIME-completeness.

1 Introduction

Multi-Dimensional Energy Games are played turn-by-turn by two players on a
finite multi-weighted game graph, whose edges are labelled with integer vectors
modelling discrete energy consumption and refuelling. Player 1’s objective is to
keep the accumulated energy non-negative in every component along infinite
plays. This setting is relevant to the synthesis of resource-sensitive controllers
balancing the usage of various resources like fuel, time, money, or items in stock,
and finding optimal trade-offs; see [3,4,10,11] for some examples. Maybe more
importantly, energy games are the key ingredient in the study of several related
resource-conscious games, notably multi-dimensional mean-payoff games [6] and
games played on vector addition systems with states (VASS) [2,4,9].

The main open problem about these games has been to pinpoint the com-
plexity of deciding whether Player 1 has a winning strategy when starting from a
particular vertex and given an initial energy vector as part of the input. This par-
ticular given initial credit variant of energy games is also known as Z-reachability
VASS games [4,5]. The problem is also equivalent via logarithmic-space reduc-
tions to deciding single-sided VASS games with a non-termination objective [2],
and to deciding whether a given VASS (or, equivalently, a Petri net) simulates
a given finite state system [1,9]. As shown by Brázdil, Jančar, and Kučera [4],
all these problems can be solved in (d − 1)EXPTIME where d ≥ 2 is the number

Work funded in part by the ANR grant 11-BS02-001-01 ReacHard, the Leverhulme
Trust Visiting Professorship VP1-2014-041, and the EPSRC grant EP/M011801/1.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 260–272, 2015.
DOI: 10.1007/978-3-662-47666-6 21

Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time 261

of energy components, i.e. a TOWER of exponentials when d is part of the input.
The best known lower bound for this problem is 2EXPTIME-hardness [9], leaving
a substantial complexity gap. So far, the only tight complexity bounds are for
the case d = 2: Chaloupka [5] shows the problem to be PTIME-complete when
using unit updates, i.e. when the energy levels can only vary by −1, 0, or 1.
However, quoting Chaloupka ‘since the presented results about 2-dimensional
VASS are relatively complicated, we suspect this [general] problem is difficult.’

When inspecting the upper bound proof of Brázdil et al. [4], it turns out
that the main obstacle to closing the gap and proving 2EXPTIME-completeness
lies in the complexity upper bounds for energy games with an arbitrary initial
credit—which is actually the variant commonly assumed when talking about
energy games. Given a multi-weighted game graph and an initial vertex v, we
now wish to decide whether there exists an initial energy vector b such that
Player 1 has a winning strategy starting from the pair (v,b). As shown by
Chatterjee, Doyen, Henzinger, and Raskin [6], this variant is simpler: it is coNP-
complete. However, the parameterised complexity bounds in the literature [4,7]
for this simpler problem involve an exponential dependency on the number |V |
of vertices in the input game graph, which translates into a tower of exponentials
when solving the given initial credit variant.

Contributions. We show in this paper that the arbitrary initial credit problem for
d-dimensional energy games can be solved in time O(|V | · ‖E‖)O(d4) where |V | is
the number of vertices of the input multi-weighted game graph and ‖E‖ the max-
imal value that labels its edges, i.e. in pseudo-polynomial time (see Thm. 3.3). We
then deduce that the given initial credit problem for general multi-dimensional
energy games is 2EXPTIME-complete, and also in pseudo-polynomial time when
the dimension is fixed (see Thm. 3.5), thus closing the gap left open in [4,9].
Our parameterised bounds are of practical interest because typical instances of
energy games would have small dimension but might have a large number of ver-
tices. By the results of Chatterjee et al. [6], another consequence is that we can
decide the existence of a finite-memory winning strategy for fixed-dimensional
mean-payoff games in pseudo-polynomial time. The existence of a finite-memory
winning strategy is the most relevant problem for controller synthesis, but until
now, solving fixed-dimensional mean-payoff games in pseudo-polynomial time
required infinite memory strategies [8].

Overview. We prove our upper bounds on the complexity of the arbitrary initial
credit problem for d-dimensional energy games by reducing them to bounding
games, where Player 1 additionally seeks to prevent arbitrarily high energy levels
(Sec. 2.3). We further show these games to be equivalent to first-cycle bounding
games in Sec. 5, where the total effect of the first simple cycle defined by the two
players determines the winner. More precisely, first-cycle bounding games rely
on a hierarchically-defined colouring of the game graph by perfect half-spaces
(see Sec. 4), and the two players strive respectively to avoid or produce cycles in
those perfect half-spaces.

First-cycle bounding games coloured with perfect half-spaces can be seen as
generalising quite significantly both the ‘local strategy’ approach of Chaloupka

262 M. Jurdziński et al.

v0vL vR
(0, 0) (0, 0)

(−2, 2)

(−1, 3)

(2,−1)

(3,−3)

Fig. 1. A 2-dimensional multi-weighted game graph.

[5] for 2-dimensional energy games, and the ‘separating hyperplane technique’
of Chatterjee and Velner [8] for multi-dimensional mean-payoff games.

The reduction to first-cycle bounding games has several important corollaries:
the determinacy of bounding games, and the existence of a small hypercube
property, which in turn allow to derive the announced complexity bounds on
energy games (see Sec. 3). In fact, we found with first-cycle bounding games a
highly versatile tool, which we use extensively in our proofs on energy games.

We start by presenting the necessary background on energy and bounding
games in Sec. 2. Some omitted material can be found in the full paper available
from http://arxiv.org/abs/1502.06875.

2 Multi-Weighted Games

We define in this section the various games we consider in this work. We start
by defining multi-weighted game graphs, which provide a finite representation
for the infinite arenas over which our games are played. We then define energy
games in Sec. 2.2, and their generalisation as bounding games in Sec. 2.3.

2.1 Multi-Weighted Game Graphs

We consider game graphs whose edges are labelled by vectors of integers. They
are tuples of the form (V,E, d), where d is the dimension in N, V

def= V1 � V2 is a
finite set of vertices, which is partitioned into Player 1 vertices (V1) and Player 2
vertices (V2), and E is a finite set of edges included in V ×Z

d ×V , and such that
every vertex has at least one outgoing edge; we call the labels in Z

d ‘weights’.

Example 2.1. Figure 1 shows on its left-hand-side an example of a 2-dimensional
multi-weighted game graph. Throughout this paper, Player 1 vertices are
depicted as triangles and Player 2 vertices as squares.

Norms. For a vector a, we denote the maximum absolute value of its entries by
‖a‖ def= max1≤i≤d |a(i)|, and we call it the norm of a. By extension, for a set of
edges E, we let ‖E‖ def= max(v,u,v′)∈E ‖u‖. We assume, without loss of generality,
that ‖E‖ > 0 in our multi-weighted game graphs. Regarding complexity, we
encode vectors of integers in binary, hence ‖E‖ may be exponential in the size
of the multi-weighted game graph.

Paths and Cycles. Given a multi-weighted game graph (V,E, d), a configuration
is a pair (v,a) with v in V and a in Z

d. A path is a finite sequence of configurations

http://arxiv.org/abs/1502.06875

Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time 263

π = (v0,a0)(v1,a1) · · · (vn,an) in (V × Z
d)∗ such that for every 0 ≤ j < n

there exists an edge (vj ,aj+1 − aj , vj+1) in E (where addition is performed
componentwise). The total weight of such a path π is w(π) def=

∑
0≤j<n aj+1−aj =

an − a0. A cycle is a path (v0,a0)(v1,a1) · · · (vn,an) with v0 = vn. Such a cycle
is simple if vj = vk for some 0 ≤ j < k ≤ n implies j = 0 and k = n. We assume,
without loss of generality, that every cycle contains at least one Player 1 vertex.
We often identify simple cycles with their respective weights; the weights of the
four simple cycles of the game graph in Fig. 1 are displayed on its right-hand-side.

Proposition 2.2. In any game graph (V,E, d), the total weight of any simple
cycle has norm at most |V | · ‖E‖.

Plays and Strategies. Let v0 be a vertex from V . A play from v0 is an infinite
configuration sequence ρ = (v0,a0)(v1,a1) · · · such that a0 = 0 is the null vector
and every finite prefix ρ|n def= (v0,a0) · · · (vn,an) is a path. Note that, because
a0 = 0, the total weight of this prefix is w(ρ|n) = an. We define the norm of
a play ρ as the supremum of the norms of total weights of its prefixes: ‖ρ‖ def=
supn ‖w(ρ|n)‖. A strategy for Player p, p ∈ {1, 2}, is a function σp taking as input
a non-empty path π · (v,a) ending in a Player p vertex v ∈ Vp, and returning
an edge σp(π · (v,a)) = (v,u, v′) from E. We employ the usual notions of plays
consistent with strategies, and given some winning condition on plays, of winning
strategies for a player.
Example 2.1 (continued). For instance, in the game graph depicted in Fig. 1, a
strategy for Player 1 could be to move to vL whenever the current energy level
on the first coordinate is non-negative, and to vR otherwise—note that this is
an infinite-memory strategy—:

σ1(π · (v0,a)) def=

{
(v0, (0, 0) , vL) if a(1) ≥ 0,
(v0, (0, 0) , vR) otherwise,

(1)

and one for Player 2 could be to always select one particular edge in every vertex,
regardless of the current energy vector—this is called a counterless strategy [4]—:

σ2(π · (v,a)) def=

{
(vL, (−2, 2) , v0) if v = vL

(vR, (2,−1) , v0) otherwise.
(2)

2.2 Multi-Dimensional Energy Games

Suppose (V,E, d) is a multi-weighted game graph, v0 an initial vertex, and b is
a vector from N

d. A play ρ from v0 is winning for Player 1 in the energy game
Δb(V,E, d) with initial credit b if, for all n, b + w(ρ|n) ≥ 0, using the product
ordering over Z

d. Otherwise, Player 2 wins the play. An immediate property of
energy games is monotonicity : if σ1 is winning for Player 1 with some initial
credit b, and b′ ≥ b, then it is also winning for Player 1 with initial credit b′.
Example 2.1 (continued). For example, one may observe that the strategy (1)
for Player 1 is winning for the game graph of Fig. 1 with initial credit (2, 2) (or
larger). A geometric intuition comes from the directions of the total weights of

264 M. Jurdziński et al.

simple cycles in Fig. 1: by choosing alternatively edges to vL or vR, Player 1 is
able to balance the energy levels above the ‘x + y = 0’ line.

2.3 Multi-Dimensional Bounding Games

A generalisation of energy games sometimes considered in the literature is to
further impose a maximal capacity c ∈ N

d (also called an upper bound) on
the energy levels during the play [10,11]. Player 1 then wins a play ρ if 0 ≤
b + w(ρ|n) ≤ c for all n.

In the spirit of the arbitrary initial credit variant of energy games, we also
quantify c existentially. This defines the bounding game Γ (V,E, d) over a multi-
weighted game graph (V,E, d), where a play ρ is winning for Player 1 if its norm
‖ρ‖ is finite, i.e. if the set {‖w(ρ|n)‖ : n ∈ N} of norms of total weights of all
finite prefixes of ρ is bounded, and Player 2 wins otherwise, if it is unbounded.
In other words, Player 1 strives to contain the current vector within some d-
dimensional hypercube, while Player 2 attempts to escape.

Example 2.1 (continued). Note that Player 2 is now winning the bounding game
defined by the game graph of Fig. 1 from any of the three vertices, for example
using the strategy (2). Indeed, this strategy ensures that the only simple cycles
that can be played have weights (−2, 2) and (2,−1). Because these vectors belong
to an open half-plane, the total energy will drift deeper and deeper inside that
open half-plane and its norm will grow unbounded.

Lossy Game Graphs. If Player 1 wins the bounding game, then there exists
some initial credit for which she also wins the energy game. For a converse,
let lossy(V,E, d) denote the lossy multi-weighted game graph obtained from
(V,E, d) by inserting, at each Player 1 vertex and for each 1 ≤ i ≤ d, a self-loop
labelled by the negative unit vector −ei. In a bounding game played over a lossy
game graph, it turns out that Player 1 can always bound the current vector from
above by playing these unit decrements, hence she only has to ensure that the
current vector remains bounded from below, i.e. she has to win the energy game
for some initial credit. Formally (see the full paper for a proof):

Proposition 2.2. From any vertex in any multi-weighted game graph (V,E, d):
1. Player 1 wins the energy game Δb(V,E, d) for some b ∈ N

d if and only if
Player 1 wins the bounding game Γ (lossy(V,E, d)).

2. Player 2 wins the energy game Δb(V,E, d) for all b ∈ N
d if and only if

Player 2 wins the bounding game Γ (lossy(V,E, d)).

Our task in the following will be therefore to prove an upper bound on the
time complexity required to solve bounding games.

Example 2.3. By Prop. 2.2, because she was winning the energy game of Fig. 1
with initial credit (2, 2), Player 1 is now winning the bounding game played on
the lossy version of the multi-weighted game graph of Fig. 1.

Example 2.4. As a rather different example, consider the multi-weighted game
graph of Fig. 2. Although Player 2 does not control any vertex, and Player 1
controls the ‘direction of divergence’, Player 2 wins the associated bounding

Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time 265

vL vR

(−1, 0)

(0,−1)

(1,−1) (−1, 1)

Fig. 2. A 2-dimensional game graph with only Player 1 vertices

game. Indeed, Player 1 can either eventually stay forever at one of the two
vertices, or visit both vertices infinitely often. In any case, she loses.

3 Complexity Upper Bounds

Our main results are new parameterised complexity upper bounds for deciding
whether Player 1 has a winning strategy in a given energy game. In turn, we
rely for these results on a small hypercube property of bounding games, which
we introduce next, and which will be a consequence of the study of first-cycle
bounding games in Sec. 5.

3.1 Small Hypercube Property

In a bounding game, if Player 1 is winning, then by definition she has a winning
strategy σ1 such that for all plays ρ consistent with σ1 there exists some bound
Bρ with ‖ρ‖ ≤ Bρ. We considerably strengthen this statement in Sec. 5 where we
construct an explicit winning strategy, which yields an explicit uniform bound B
for all consistent plays:
Lemma 3.1. Let (V,E, d) be a multi-weighted game graph. If Player 1 wins
the bounding game Γ (V,E, d), then she has a winning strategy which ensures
‖ρ‖ ≤ (4|V | · ‖E‖)2(d+2)3 for all consistent plays ρ.

Note that our bound is polynomial in |V | the number of vertices, unlike
the bounds found in comparable statements by Brázdil et al. [4, Lem. 7] and
Chatterjee et al. [7, Lem. 3], which incur an exponential dependence on |V |.
This entails pseudo polynomial complexity bounds when d is fixed:

Corollary 3.2. Bounding games on multi-weighted graphs (V,E, d) are solvable
in time (|V | · ‖E‖)O(d4).

Proof. By Lem. 3.1, the bounding game is equivalent to a reachability game
where Player 2 attempts to see the norm of the total weight exceed B

def= (4|V | ·
‖E‖)2(d+2)3 . This can be played within a finite arena of size (2B+1)d and solved
in time linear in that size using the usual attractor computation algorithm.

3.2 Energy Games with Arbitrary Initial Credit

The arbitrary initial credit problem for energy games takes as input a multi-
weighted game graph and an initial vertex v0 and asks whether there exists a
vector b in N

d such that Player 1 wins Δb(V,E, d) from v0:

266 M. Jurdziński et al.

Theorem 3.3. The arbitrary initial credit problem for energy games on multi-
weighted game graphs (V,E, d) is solvable in time (|V | · ‖E‖)O(d4).
Proof. This follows from Prop. 2.2, and Cor. 3.2 applied to the game graph
Γ (lossy(V,E, d)).

3.3 Energy Games with Given Initial Credit

The given initial credit problem for energy games takes as input a multi-weighted
game graph (V,E, d), an initial vertex v0, and a credit b in N

d and asks whether
Player 1 wins the energy game Δb(V,E, d) from v0. Thanks to Lem. 3.1, a proof
of the upcoming Thm. 3.5 could be obtained using the work of Brázdil et al.
[4], and more generally the techniques of Rackoff [12]. As usual in this work, we
rather proceed by transferring that setting to that of bounding games (and thus
to that of first-cycle bounding games). Our key lemma shows that any energy
game with a given initial credit played over some multi-weighted game graph
is equivalent to some bounding game played over a double-exponentially larger
game graph:
Lemma 3.4. Let b ∈ N

d, (V,E, d) be a multi-weighted game graph, and v ∈ V .
One can construct in time O(|V ′| · |E|+d · log ‖b‖) a multi-weighted game graph
(V ′, E′, d) and a vertex vb in V ′ with |V ′| ≤ (4|V |·‖E‖)2

d(d+3)3d and ‖E′‖ = ‖E‖
s.t., for all p ∈ {1, 2}, Player p wins the energy game Δb(V,E, d) from v iff
Player p wins the bounding game Γ (V ′, E′, d) from vb.

By applying Cor. 3.2 to the game graph (V ′, E′, d) and since |E| ≤ |V |2·‖E‖d,
we obtain a 2EXPTIME upper bound on the given initial credit problem, which
is again pseudo-polynomial when d is fixed:
Theorem 3.5. The given initial credit problem with credit b for energy games
on multi-weighted game graphs (V,E, d) is solvable in time O(|V |·‖E‖)2

O(d·log d)
+

O(d · log ‖b‖).
This matches the 2EXPTIME lower bound from [9], and encompasses Chaloupka’s
PTIME upper bound in dimension d = 2 with unit updates, i.e. with ‖E‖ = 1.
Because the given initial credit problem for energy games of fixed dimension
d ≥ 4 is EXPTIME-hard [9], the bound in terms of ‖E‖ in Thm. 3.5 cannot be
improved.

4 Perfect Half-Spaces

We recall in this section the definition of subsets of Qd called perfect half-spaces.
They will be used next in Sec. 5 to define a condition for Player 2 to win bounding
games, which relies on Player 2’s ability to force cycles inside perfect half-spaces.
This can be understood as a generalisation of Chatterjee and Velner’s approach
for solving multi-dimensional mean-payoff games [8], which as we recall in the
full paper relies on a similar ability to force cycles inside open half-spaces. We
employ perfect half-spaces in Sec. 5 to colour the edges in first-cycle bounding
games, which determine the winner using both the colours and the weight of the
first cycle formed along a play.

Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time 267

4.1 Definitions from Linear Algebra

Given a subset A of Qd, we write span(A) (resp., cone(A)) for the vector space
(resp., the cone) generated by A, i.e., the closure of A under addition and under
multiplication by all (resp., nonnegative) rationals. A k-perfect half-space of Qd,
where k ∈ {1, 2, . . . , d}, is a (necessarily disjoint) union Hd ∪ · · · ∪ Hk such that:

– Hd is an open half-space of Qd;
– for all j ∈ {k, . . . , d − 1}, Hj ⊆ Q

d is an open half-space of the boundary
of Hj+1.

Whenever we write a k-perfect half-space in form Hd ∪ · · · ∪Hk, we assume that
each Hj is j-dimensional. We additionally define the (d + 1)-perfect half-space
as the empty set; a partially-perfect half-space is then a k-perfect half-space for
some k in {1, . . . , d + 1}. A perfect half-space is a 1-perfect half-space.

4.2 Generated Perfect Half-Spaces

In order to pursue effective and parsimonious strategy constructions, we consider
perfect half-spaces generated by particular sets of vectors, which will correspond
to the total weights of simple cycles in multi-weighted game graphs. Given a
norm M in N, we say that an open half-space H is M -generated if its boundary
equals span(B) for some set B of vectors of norm at most M . By extension,
a partially-perfect half-space is M -generated if each of its open half-spaces is
M -generated.
Proposition 4.1. Any k-dimensional vector space of Q

d has at most L(k) def=
2(2M + 1)d(k−1) open half-spaces that are M -generated.

Example 4.2. In the game graph of Fig. 2, there are three 1-generated open
half-spaces of interest: the half-plane H2

def= {(x, y) : x + y < 0} with bound-
ary span((−1, 1), (1,−1)) and containing (−1,−1), and the two half-lines H1

def=
{(x, y) : x+ y = 0∧x < 0} and H ′

1
def= {(x, y) : x+ y = 0∧x > 0} with boundary

span(0) and containing, respectively, (−1, 1) and (1,−1). Those open half-spaces
define two perfect half-spaces: H2 ∪ H1 and H2 ∪ H ′

1.

4.3 Hierarchy of Perfect Half-Spaces

Finally, we fix a ranked tree-like structure on all M -generated partially-perfect
half-spaces, which provide a scaffolding on which we will build strategies in multi-
dimensional bounding games. Observe that an M -generated partially-perfect
half-space Hd ∪· · ·∪Hk for k > 1 can be extended using any of the M -generated
open half-spaces H of the boundary of Hk; note that this boundary then equals
span(H). In Example 4.2, H2 can be extended using H1 or H ′

1, and span(H1) =
span(H ′

1) = {(x, y) : x + y = 0}.
The set of M -generated perfect half-spaces can be totally ordered by positing

a linear ordering < between all M -generated open half-spaces. We write ≺ for
the lexicographically induced linear ordering between all M -generated perfect
half-spaces of Q

d: if H = Hd ∪ · · · ∪ H1 and H′ = H ′
d ∪ · · · ∪ H ′

1, we define
H ≺ H′ to hold iff Hj = H ′

j for all j ∈ {k + 1, . . . , d} and Hk < H ′
k for some

k ∈ {1, 2, . . . , d}.

268 M. Jurdziński et al.

5 First-Cycle Bounding Games

We define in this section first-cycle bounding games, which provide the key tech-
nical arguments for most of our results. Such games end as soon as a cycle is
formed along a play, and the weight of this cycle determines the winner, along
with a colouring information chosen by Player 2. In sections 5.2 and 5.3, we
are going to show that first-cycle bounding games and infinite bounding games
are equivalent, by translating winning strategies for each Player p, p ∈ {2, 1},
from first-cycle bounding games to bounding games. This yields in particular
the small hypercube property of Lem. 3.1.

5.1 Definition

We define the first-cycle bounding game G(V,E, d) on a multi-weighted game
graph (V,E, d):

– at any Player-1 vertex, Player 2 chooses a |V | · ‖E‖-generated perfect half-
space H of Qd, and then Player 1 chooses an outgoing edge, whose occurrence
in the play becomes coloured by H;

– at any Player-2 vertex, he chooses an outgoing edge;
– the game finishes as soon as a vertex is visited twice, which produces a simple

cycle C with coloured Player-1 edges;
– Player 2 wins if w(C), the total weight of the cycle, is in the largest partially-

perfect half-space of Qd that is contained in all the colours in C, i.e. the least
common ancestor of all the colours in C; Player 1 wins otherwise.

Example 5.1. Player 2 wins the first-cycle bounding game played in Fig. 1 (but
loses in its lossy version). For example, strategy (2) is winning for Player 2 if
he colours the edges outgoing from v0 by the perfect half-space H ′

2 ∪ H1 where
H ′

2
def= {(x, y) : x + y > 0} and H1

def= {(x, y) : x + y = 0 ∧ x < 0}.
Example 5.2. Player 2 wins the first-cycle bounding game played in Fig. 2.
Indeed, he can choose the colour H2 ∪ H1 in vL and the colour H2 ∪ H ′

1 in
vR. Then Player 1 cannot avoid forming a simple cycle in either H2 ∪ H1 (if
cycling on vL), in H2 ∪ H ′

1 (if cycling on vR), or in H2 (if cycling between vL

and vR).
Observe that first-cycle bounding games are finite perfect information games,

and are thus determined : from any vertex, either Player 1 wins or Player 2 wins.

5.2 Winning Strategies for Player 2

Suppose σ is a strategy of Player 2 from a vertex v0 in a first-cycle bounding game
G(V,E, d). Let σ̃ be the following strategy of Player 2 in the infinite bounding
game Γ (V,E, d):

– at any Player-2 vertex, σ̃ chooses the edge specified by σ;
– whenever a cycle is formed, σ̃ cuts it out of its memory, and continues playing

according to σ.

Lemma 5.3. If σ is winning for Player 2 in G(V,E, d) from some vertex v0,
then σ̃ is winning for Player 2 in Γ (V,E, d) from the same vertex v0.

Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time 269

Proof idea. Consider any infinite play ρ̃ consistent with σ̃, and let:
– ρ be obtained from ρ̃ by colouring all Player 1’s edges with the |V | · ‖E‖-

generated perfect half-spaces of Qd as specified by σ;
– C1, C2, . . . be the cycle decomposition of ρ, and for each n, ρn be the simple

path that remains after removing Cn;
– Hn be the largest partially-perfect half-space of Qd that is contained in all

the colours in Cn, for each n.

Since σ is winning for Player 2 in the first-cycle game, each cycle weight w(Cn)
belongs to the partially-perfect half-space Hn. The bulk of the proof consists in
extracting a ‘direction of divergence’ of the total energy, notwithstanding that
the Hn’s may keep varying.

In short, by distinguishing those n’s for which the length of the simple path ρn

is the smallest one that occurs infinitely often, we are able to show that the set of
Hn’s that occur infinitely often has a unique smallest element H = Hd ∪· · ·∪Hk

with respect to inclusion. Further linear-algebraic reasoning then shows that
one of the component half-spaces Hk′ of H provides the desired direction of
divergence: after some N > 0, all the sums of cycle weights w(CN)+w(CN+1)+
· · · + w(Cn) belong to the topological closure Hk′ and their distances from the
boundary of Hk′ diverge. See the full paper for details.

5.3 Winning Strategies for Player 1

If there is no winning strategy for Player 2 in the first-cycle bounding game
G(V,E, d) from a vertex v0, then by determinacy of first-cycle bounding games,
there is a winning strategy σ for Player 1 in G(V,E, d) from v0.

Example 5.4. Consider the lossy version of the game graph in Fig. 1. Because
Player 1 wins the energy game with initial credit (2, 2), by Prop. 2.2 and Lem.
5.3, she wins the first-cycle bounding game. One winning strategy, whose moves
depend only on the latest visited vertex (here only v0) and colour H chosen by
Player 2 in v0, is as follows:
(i) if (−2, 2) and (−1, 3) are both outside H, move to vL, and
(ii) if (2,−1) and (3,−3) are both outside H, move to vR, and
(iii) otherwise perform the self-loop labelled (−1, 0).

Observe that the first two cases (i) and (ii) are disjoint. Since there is no per-
fect half-space that contains (−1, 0) and intersects both {(−2, 2), (−1, 3)} and
{(2,−1), (3,−3)}, this strategy is indeed winning for Player 1—the same would
apply if she were to choose the other self-loop (0,−1) instead.

The proof of our main result consists in constructing from σ a finite-memory
winning strategy σ̃ for Player 1 in the infinite bounding game Γ (V,E, d) from v0,
which ensures the small hypercube property stated in Lem. 3.1. Let us outline
this construction. The memory of σ̃ consists of:
a simple path γ from the initial vertex v0 to the current vertex v, in which

Player 1’s edges are coloured by |V | ·‖E‖-generated perfect half-spaces of Qd

(this can be represented concretely by a sequence of coloured edges from E);

270 M. Jurdziński et al.

a colour i.e. a |V | · ‖E‖-generated perfect half-space H = Hd ∪ · · · ∪ H1 of Qd

(initially the ≺-minimal one);
counters c(k,W) for every k ∈ {1, 2, . . . , d} and for every nonzero total weight

W of a simple cycle, which are natural numbers (initially 0).

Strategy σ̃ copies its moves from strategy σ for the first-cycle bounding game,
based on the coloured simple path and the colour it has in its memory. Whenever
a cycle is formed it is removed from the simple path, and provided its weight W
is nonzero, all the counters c(k,W) are incremented.

Together with the current path, the counters provide the current energy level,
which equals w(γ)+

∑
W c(d,W) ·W throughout the play, where W ranges over

all simple cycle weights. To keep the counters and thus the total energy bounded,
σ̃ may perform one of the following operations after a counter increment:

– a k-shift to H ′
k > Hk changes the current colour H to the ≺-minimal perfect

half-space of the form Hd ∪ · · · ∪ Hk+1 ∪ H ′
k ∪ · · · ∪ H ′

1, and resets to 0 all
the counters c(k′,W) with k′ < k;

– a k-cancellation changes the current colour H to the ≺-minimal perfect
half-space of the form Hd ∪ · · · ∪ Hk+1 ∪ H ′

k ∪ · · · ∪ H ′
1. Simultaneously,

given some simple cycle weights W1, . . . ,Wn and a positive integral solu-
tion x to

∑n
i=1 x(i)Wi = 0, it subtracts x · u(k) where u(k) def= (4|V | ·

‖E‖)(2k−1)(d+2)2 from all the tuples (c(k′,W1), . . . , c(k′,Wn)) with k′ ≥ k,
and resets to 0 all the counters c(k′,W) with k′ < k.

These operations allow to maintain two main invariants, from which the small
hypercube property of Lem. 5.5 is derived. For all 1 ≤ k ≤ d and simple path
weights W in the span of Hk:

– initially, after any >k-shift, and after any ≥k-cancellation, c(k,W) < U(k) def=
(4|V | · ‖E‖)2k(d+2)2 , the so-called k-soft bound ;

– at all times, c(k,W) < U(k) + u(k), the so-called k-hard bound.

To ensure those invariants, strategy σ̃ further maintains that, whenever
c(k,W) ≥ U(k) and W is in span(Hk), then W is in Hk. When this new invariant
cannot be preserved by any k-shift, then a version of the Farkas-Minkowski-Weyl
Theorem implies that it can be enforced through a k-cancellation, in which a
small positive integral solution can be found for the associated system of equa-
tions where W1, . . . ,Wn are the offending cycle weights.

This strategy shows a statement dual to Lem. 5.3, and thereby entails both
the equivalence of infinite bounding games with first-cycle bounding games and
the small hypercube property of Lem. 3.1 (see the full paper for a proof):
Lemma 5.5. If σ is winning for Player 1 in G(V,E, d) from some vertex v0,
then σ̃ is winning for Player 1 in Γ (V,W, d) from v0, and ensures energy levels
of norm at most (4|V | · ‖E‖)2(d+2)3 .

6 Concluding Remarks

In this paper, we have shown in Thm. 3.3 and Thm. 3.5 that fixed-dimensional
energy games can be solved in pseudo-polynomial time, regardless of whether

Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time 271

the initial credit is arbitrary or fixed. For the variant with given initial credit,
this closes a large complexity gap between the TOWER upper bounds of Brázdil,
Jančar, and Kučera [4] and the lower bounds of Courtois and Schmitz [9], and
also settles the complexity of simulation problems between VASS and finite state
systems [9]:

Corollary 6.1. The given initial credit problem for energy games is 2EXPTIME-
complete, and EXPTIME-complete in fixed dimension d ≥ 4.

The main direction for extending these results is to consider a parity con-
dition on top of the energy condition. Abdulla, Mayr, Sangnier, and Sproston
[2] show that multi-dimensional energy parity games with given initial credit
are decidable. They do not provide any complexity upper bounds—although
one might be able to show TOWER upper bounds from the memory bounds on
winning strategies shown by Chatterjee et al. [7, Lem.3]—, leaving a large com-
plexity gap with 2EXPTIME-hardness. This gap also impacts the complexity of
weak simulation games between VASS and finite state systems [2].

Acknowledgments. The authors thank Dmitry Chistikov for his assistance in prov-
ing Lem. 5.3, the anonymous reviewers for their insightful comments, and Christoph
Haase, Jérôme Leroux, and Claudine Picaronny for helpful discussions on linear alge-
bra.

References

1. Abdulla, P.A., Atig, M.F., Hofman, P., Mayr, R., Kumar, K.N., Totzke, P.:
Infinite-state energy games. In: CSL-LICS 2014. ACM (2014)

2. Abdulla, P.A., Mayr, R., Sangnier, A., Sproston, J.: Solving parity games on
integer vectors. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 –
Concurrency Theory. LNCS, vol. 8052, pp. 106–120. Springer, Heidelberg (2013)

3. Brázdil, T., Chatterjee, K., Kučera, A., Novotný, P.: Efficient controller synthesis
for consumption games with multiple resource types. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 23–38. Springer, Heidelberg (2012)

4. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addi-
tion systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010)

5. Chaloupka, J.: Z-reachability problem for games on 2-dimensional vector addition
systems with states is in P. Fund. Inform. 123(1), 15–42 (2013)

6. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized mean-payoff
and energy games. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 505–516. LZI (2010)

7. Chatterjee, K., Randour, M., Raskin, J.F.: Strategy synthesis for
multi-dimensional quantitative objectives. Acta Inf. 51(3–4), 129–163 (2014)

8. Chatterjee, K., Velner, Y.: Hyperplane separation technique for multidimensional
mean-payoff games. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 –
Concurrency Theory. LNCS, vol. 8052, pp. 500–515. Springer, Heidelberg (2013)

9. Courtois, J.-B., Schmitz, S.: Alternating vector addition systems with states. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS,
vol. 8634, pp. 220–231. Springer, Heidelberg (2014)

272 M. Jurdziński et al.

10. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted
automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,
pp. 95–115. Springer, Heidelberg (2011)

11. Juhl, L., Guldstrand Larsen, K., Raskin, J.-F.: Optimal bounds for multiweighted
and parametrised energy games. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories
of Programming and Formal Methods. LNCS, vol. 8051, pp. 244–255. Springer,
Heidelberg (2013)

12. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6(2), 223–231 (1978)

An Algebraic Geometric Approach to Nivat’s
Conjecture

Jarkko Kari(B) and Michal Szabados

Department of Mathematics and Statistics,
University of Turku, 20014 Turku, Finland

{jkari,micsza}@utu.fi

Abstract. We study multidimensional configurations (infinite words)
and subshifts of low pattern complexity using tools of algebraic geome-
try. We express the configuration as a multivariate formal power series
over integers and investigate the setup when there is a non-trivial annihi-
lating polynomial: a non-zero polynomial whose formal product with the
power series is zero. Such annihilator exists, for example, if the number
of distinct patterns of some finite shape D in the configuration is at most
the size |D| of the shape. This is our low pattern complexity assumption.
We prove that the configuration must be a sum of periodic configurations
over integers, possibly with unbounded values. As a specific application
of the method we obtain an asymptotic version of the well-known Nivat’s
conjecture: we prove that any two-dimensional, non-periodic configura-
tion can satisfy the low pattern complexity assumption with respect to
only finitely many distinct rectangular shapes D.

1 Introduction

Consider configuration c ∈ AZ
d

, a d-dimensional infinite array filled by symbols
from finite alphabet A. Suppose that for some finite observation window D ⊆ Z

d,
the number of distinct patterns of shape D that exist in c is small, at most the
cardinality |D| of D. We investigate global regularities and structures in c that
are enforced by such local complexity assumption.

Let us be more precise on the involved concepts. As usual, we denote by
cv ∈ A the symbol in c in position v ∈ Z

d. For u ∈ Z
d, we say that c is u-

periodic if cv = cv+u holds for all v ∈ Z
d, and c is periodic if it is u-periodic for

some u �= 0. For a finite domain D ⊆ Z
d, the elements of AD are D-patterns.

For a fixed D, we denote by cv+D the D-pattern in c in position v, that is, the
pattern u �→ cv+u for all u ∈ D. The number of distinct D-patterns in c is the
D-pattern complexity Pc(D) of c. Our assumption of low local complexity is

Pc(D) ≤ |D|, (1)

for some finite D.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 273–285, 2015.
DOI: 10.1007/978-3-662-47666-6 22

274 J. Kari and M. Szabados

Nivat’s Conjecture

There are specific examples in the literature of open problems in this frame-
work. Nivat’s conjecture (proposed by M. Nivat in his keynote address in ICALP
1997 [Niv97]) claims that in the two-dimensional case d = 2, the low complex-
ity assumption (1) for a rectangle D implies that c is periodic. The conjecture is a
natural generalization of the one-dimensional Morse-Hedlund theorem that states
that if a bi-infinite word contains at most n distinct subwords of length n then the
word must be periodic [MH38]. In the two-dimensional setting for m,n ∈ N we
denote by Pc(m,n) the complexity Pc(D) for the m × n rectangle D.

Conjecture 1 (Nivat’s conjecture). If for some m,n we have Pc(m,n) ≤ mn then
c is periodic.

The conjecture has recently raised wide interest, but it remains unsolved.
In [EKM03] it was shown Pc(m,n) ≤ mn/144 is enough to guarantee the peri-
odicity of c. This bound was improved to Pc(m,n) ≤ mn/16 in [QZ04], and
recently to Pc(m,n) ≤ mn/2 in [CK13b]. Also the cases of narrow rectangles
have been investigated: it was shown in [ST02] and recently in [CK13a] that
Pc(2, n) ≤ 2n and Pc(3, n) ≤ 3n, respectively, imply that c is periodic.

The analogous conjecture in the higher dimensional setups d ≥ 3 is
false [ST00]. The following example recalls a simple counter example for d = 3.

Example 1. Fix n ≥ 3, and consider the following c ∈ {0, 1}Z3
consisting of two

perpendicular lines of 1’s on a 0-background, at distance n from each other:
c(i, 0, 0) = c(0, i, n) = 1 for all i ∈ Z, and c(i, j, k) = 0 otherwise. For D equal
to the n × n × n cube we have Pc(D) = 2n2 + 1 since the D-patterns in c have
at most a single 1-line piercing a face of the cube. Clearly c is not periodic
although Pc(D) = 2n2 + 1 < n3 = |D|. Notice that c is a “sum” of two periodic
components (the lines of 1’s). Our results imply that any counter example must
decompose into a sum of periodic components. 	

Periodic Tiling Problem

Another related open problem is the periodic (cluster) tiling problem by Lagarias
and Wang [LW96]. A (cluster) tile is a finite D ⊂ Z

d. Its co-tiler is any subset
C ⊆ Z

d such that
D ⊕ C = Z

d. (2)

The co-tiler can be interpreted as the set of positions where copies of D are
placed so that they together cover the entire Z

d without overlaps. Note that the
tile D does not need to be connected – hence the term “cluster tile” is sometimes
used. The tiling is by translations of D only: the tiles may not be rotated.

It is natural to interpret any C ⊆ Z
d as the binary configuration c ∈ {0, 1}Zd

with cv = 1 if and only if v ∈ C. Then the tiling condition (2) states that C is a
co-tiler for D if and only if the (−D)-patterns in the corresponding configuration
c contain exactly a single 1 in the background of 0’s. In fact, as co-tilers of D
and −D coincide [Sze98], this is equivalent to all D-patterns having a single 1.

An Algebraic Geometric Approach to Nivat’s Conjecture 275

We see that the set C of all co-tiler configurations for D is a subshift of
finite type [LM95]. We also see that the low local complexity assumption (1) is
satisfied. We even have PC(D) ≤ |D| where we denote by PC(D) the number of
distinct D-patterns found in the elements of the subshift C.

Conjecture 2 (Periodic Tiling Problem). If tile D has a co-tiler then it has a
periodic co-tiler.

This conjecture was first formulated in [LW96]. In the one-dimensional case
it is easily seen true, but already for d = 2 it is open. Interestingly, it is known
that if |D| is a prime number then every co-tiler of D is periodic [Sze98] (see also
our Example 2). The same is true if D is connected, that is, a polyomino [BN91].

Our Contributions

We approach these problems using tools of algebraic geometry. Assuming alpha-
bet A ⊆ Z, we express configuration c as a formal power series over d variables
and with coefficients in A. The complexity assumption (1) implies that there is a
non-trivial polynomial that annihilates the power series under formal multiplica-
tion (Lemma 1). This naturally leads to the study of the annihilator ideal of the
power series, containing all the polynomials that annihilate it. Using Hilbert’s
Nullstellensatz we prove that the ideal contains polynomials of particularly sim-
ple form (Theorem 1). In particular, this implies that c = c1 + · · · + cm for
some periodic c1, . . . , cm (Theorem 2). This decomposition result is already an
interesting global structure on c, but to prove periodicity we would need m = 1.

We study the structure of the annihilator ideal in the two-dimensional setup,
and prove that it is always a radical (Lemma 5). This leads to a stronger decom-
position theorem (Theorem 3). In the case of Nivat’s conjecture we then provide
an asymptotic result (Theorem 4): for any non-periodic configuration c there are
only finitely many pairs m,n ∈ N such that Pc(m,n) ≤ mn.

Due to the page limit the proofs in the latter part of the paper are omitted.

2 Basic Concepts and Notation

For a domain R – which will usually be the whole numbers Z or complex numbers
C – denote by R[x1, . . . , xd] the set of polynomials over R in d variables. We
adopt the usual simplified notation: for a d-tuple of non-negative integers v =
(v1, . . . , vd) set Xv = xv1

1 . . . xvd

d , then we write

R[X] = R[x1, . . . , xd]

and a general polynomial f ∈ R[X] can be expressed as f =
∑

avXv, where
av ∈ R and the sum goes over finitely many d-tuples of non-negative integers v.
If we allow v to contain also negative integers we obtain Laurent polynomials,

276 J. Kari and M. Szabados

which are denoted by R[X±1]. Finally, by relaxing the requirement to have only
finitely many av �= 0 we get formal power series:

R[[X±1]] =
{ ∑

avXv
∣∣ v ∈ Z

d, av ∈ R
}
.

Note that we allow negative exponents in formal power series.
Let d be a positive integer. Let us define a d-dimensional configuration to be

any formal power series c ∈ C[[X±1]]:

c =
∑
v∈Zd

cvXv.

A configuration is integral if all coefficients cv are integers, and it is finitary if
there are only finitely many distinct coefficients cv. In the case the coefficients
are not given explicitly we denote the coefficient at position v by a subscript.

Classically in symbolic dynamics configurations are understood as elements
of AZ

d

. Because the actual names of the symbols in the alphabet A do not matter,
they can be chosen to be integers. Then such a “classical” configuration can be
identified with a finitary integral configuration by simply setting the coefficient
cv to be the symbol at position v.

The first advantage of using formal power series is that a multiplication by a
Laurent polynomial is well defined and results again in formal power series. For
example, Xvc is a translation of c by the vector v. Another important example is
that c is periodic if and only if there is a non-zero v ∈ Z

d such that (Xv−1)c = 0.
Here the right side is understood as a constant zero configuration.

For a polynomial f(X) =
∑

avXv and a positive integer n define f(Xn) =∑
avXnv. The following example, and the proof of Lemma 2, use the well known

fact that for any integral polynomial f and prime number p, we have fp(X) ≡
f(Xp) (mod p).

Example 2. Our first example concerns the periodic tiling problem. We provide
a short proof of the fact – originally proved in [Sze98] – that if the size p = |D|
of tile D is a prime number then all co-tilers C are periodic. When the tile D
is represented as the Laurent polynomial f(X) =

∑
v∈D Xv and the co-tiler

C as the power series c(X) =
∑

v∈C Xv, the tiling condition (2) states that
f(X)c(X) =

∑
v∈Zd Xv. Multiplying both sides by fp−1(X), we get

fp(X)c(X) =
∑
v∈Zd

pp−1Xv ≡ 0 (mod p).

On the other hand, since p is a prime, fp(X) ≡ f(Xp) (mod p) so that

f(Xp)c(X) ≡ 0 (mod p).

Let v ∈ D and w ∈ C be arbitrary. We have

0 ≡ [f(Xp)c(X)]w+pv =
∑
u∈D

c(X)w+pv−pu (mod p).

An Algebraic Geometric Approach to Nivat’s Conjecture 277

The last sum is a sum of p numbers, each 0 or 1, among which there is at least
one 1 (corresponding to u = v). The only way for the sum to be divisible by
p is by having each summand equal to 1. We have that w + p(v − u) is in C
for all u,v ∈ D and w ∈ C, which means that C is p(v − u)-periodic for all
u,v ∈ D. 	

The next lemma grants us that for low complexity configurations there exists
at least one Laurent polynomial that annihilates the configuration by formal
multiplication.

Lemma 1. Let c be a configuration and D ⊂ Z
d a finite domain such that

Pc(D) ≤ |D|. Then there exists a non-zero Laurent polynomial f ∈ C[X±1] such
that fc = 0.

Proof. Denote D = {u1, . . . ,un} and consider the set

{ (1, cu1+v, . . . , cun+v) | v ∈ Z
d }.

It is a set of complex vectors of dimension n+1, and because c has low complexity
there is at most n = |D| of them. Therefore there exists a common orthogonal
vector (a0, . . . , an). Let g(X) = a1X

−u1 + · · · + anX−un , then the coefficient of
gc at position v is

(gc)v = a1cu1+v + · · · + ancun+v = −a0,

that is, gc is a constant configuration. Now it suffices to set f = (Xv − 1)g for
arbitrary non-zero vector v ∈ Z

d. 	

3 Annihilating Polynomials and Decomposition Theorem

Lemma 1 motivates the following definitions. Let c be a configuration. We say
that a Laurent polynomial f annihilates (or is an annihilator of) the configura-
tion if fc = 0. Define

Ann(c) =
{

f ∈ C[X]
∣∣ fc = 0

}
.

It is the set of all annihilators of c. Clearly it is an ideal of C[X]. The zero
polynomial annihilates every configuration; let us call an annihilator non-trivial
if it is non-zero. Note that the configuration is periodic if and only if Xv − 1 ∈
Ann(c) for some non-zero v ∈ Z

d.
We defined Ann(c) to consist of complex polynomials, so that we can later

use Hilbert’s Nullstellensatz directly, as it requires polynomial ideals over alge-
braically closed field. We shall however occasionally work with integer coefficients
and Laurent polynomials when it is more convenient.

Recall that in the case of Nivat’s conjecture and Periodic tiling problem
we study finitary integral configurations, which by Lemma 1 have a non-trivial
annihilator. Moreover there is an integer annihilating polynomial – actually for
integral configurations Ann(c) is always generated by integer polynomials.

278 J. Kari and M. Szabados

If Z = (z1, . . . , zd) ∈ C
d is a complex vector then it can be plugged into a

polynomial. Plugging it into a monomial Xv results in Zv = zv1
1 · · · zvd

d .

Lemma 2. Let c(X) be a finitary integral configuration and f(X) ∈ Ann(c) a
non-zero integer polynomial. Then there exists an integer r such that for every
positive integer n relatively prime to r we have f(Xn) ∈ Ann(c).

Proof. Denote f(X) =
∑

avXv. First we prove the claim for the case when n is
a large enough prime.

Let p be a prime, then we have fp(X) ≡ f(Xp) (mod p). Because f annihi-
lates c, multiplying both sides by c(X) results in

0 ≡ f(Xp)c(X) (mod p).

The coefficients in f(Xp)c(X) are bounded in absolute value by

s = cmax

∑
|av|,

where cmax is the maximum absolute value of coefficients in c. Therefore if p > s
we have f(Xp)c(X) = 0.

For the general case, set r = s!. Now every n relatively prime to r is of the
form p1 · · · pk where each pi is a prime greater than s. Note that we can repeat
the argument with the same bound s also for polynomials f(Xm) for arbitrary
m – the bound s depends only on c and the (multi)set of coefficients av, which
is the same for all f(Xm). Thus we have f(Xp1···pk) ∈ Ann(c). 	

Lemma 3. Let c be a finitary integral configuration and f =
∑

avXv a non-
trivial integer polynomial annihilator. Let S = {v ∈ Z

d | av �= 0 } and define

g(X) = x1 · · · xd

∏
v∈S
v �=v0

(Xrv − Xrv0)

where r is the integer from Lemma 2 and v0 ∈ S arbitrary. Then g(Z) = 0 for
any common root Z ∈ C

d of Ann(c).

Proof. Fix Z. If any of its complex coordinates is zero then clearly g(Z) = 0.
Assume therefore that all coordinates of Z are non-zero.

Let us define for α ∈ C

Sα =
{
v ∈ S

∣∣ Zrv = α
}
,

fα(X) =
∑
v∈Sα

avXv.

Because S is finite, there are only finitely many non-empty sets Sα1 , . . . , Sαm

and they form a partitioning of S. In particular we have f = fα1 + · · · + fαm
.

An Algebraic Geometric Approach to Nivat’s Conjecture 279

Numbers of the form 1 + ir are relatively prime to r for all non-negative
integers i, therefore by Lemma 2, f(X1+ir) ∈ Ann(c). Plugging in Z we obtain
f(Z1+ir) = 0. Now compute:

fα(Z1+ir) =
∑
v∈Sα

avZ(1+ir)v =
∑
v∈Sα

avZvαi = fα(Z)αi

Summing over α = α1, . . . , αm gives

0 = f(Z1+ir) = fα1(Z)αi
1 + · · · + fαm

(Z)αi
m.

Let us rewrite the last equation as a statement about orthogonality of two vectors
in C

m:

(fα1(Z), . . . , fαm
(Z)) ⊥ (αi

1, . . . , α
i
m)

By Vandermode determinant, for i ∈ {0, . . . , m − 1} the vectors on the right
side span the whole C

m. Therefore the left side must be the zero vector, and
especially for α such that v0 ∈ Sα we have

0 = fα(Z) =
∑
v∈Sα

avZv.

Because Z does not have zero coordinates, each term on the right hand side is
non-zero. But the sum is zero, therefore there are at least two vectors v0,v ∈ Sα.
From the definition of Sα we have Zrv = Zrv0 = α, so Z is a root of Xrv−Xrv0 .

	

Theorem 1. Let c be a finitary integral configuration with a non-trivial annihi-
lator. Then there are non-zero v1, . . . ,vm ∈ Z

d such that the Laurent polynomial

(Xv1 − 1) · · · (Xvm − 1)

annihilates c.

Proof. This is an easy corollary of Lemma 3. The polynomial g(X) vanishes on
all common roots of Ann(c), therefore by Hilbert’s Nullstellensatz there is n
such that gn(X) ∈ Ann(c). Note that any monomial multiple of an annihilator
is again an annihilator. Therefore also

gn(X)
xn
1 · · · xn

dXnrv0(|S|−1)

is, and it is a Laurent polynomial of the desired form. 	

Multiplying a configuration by (Xv−1) can be seen as a ”difference operator”
on the configuration. Theorem 1 then says, that there is a sequence of difference
operators which annihilates the configuration. We can reverse the process: let us
start by the zero configuration and step by step ”integrate” until we obtain the
original configuration. This idea gives the Decomposition theorem:

280 J. Kari and M. Szabados

Theorem 2 (Decomposition Theorem). Let c be a finitary integral config-
uration with a non-trivial annihilator. Then there exist periodic integral config-
urations c1, . . . , cm such that c = c1 + · · · + cm.

Example 3. Recall the 3D counter example in Example 1. It is the sum c1 + c2
where c1(i, 0, 0) = 1 and c2(0, i, n) = 1 for all i ∈ Z, and all other entries are 0.
Configurations c1 and c2 are (1, 0, 0)- and (0, 1, 0)-periodic, respectively, so that
(X(1,0,0) − 1)(X(0,1,0) − 1) annihilates c = c1 + c2. 	

Example 4. The periodic configurations c1, . . . , cm in Theorem 2 may, for some
configurations c, be necessarily non-finitary. Let α ∈ R be irrational, and define
three periodic two-dimensional configurations c1, c2 and c3 by

c1(i, j) = �iα�, c2(i, j) = �jα�, c3(i, j) = �(i + j)α�.

Then c = c3 − c1 − c2 is a finitary integral configuration (over alphabet {0, 1}),
annihilated by the polynomial (X(1,0)−1)(X(0,1)−1)(X(1,−1)−1), but it cannot
be expressed as a sum of finitary periodic configurations. 	

4 Structure of the Annihilator Ideal

In the rest of the paper we focus on two-dimensional configurations. We analyze
Ann(c) using tools of algebraic geometry and provide a description of a polyno-
mial φ which divides every annihilator. Moreover we show a theoretical result
that Ann(c) is a radical ideal, which allows us to provide a stricter version of
the Decomposition theorem for two-dimensional configurations.

The key ingredient needed for further analysis is the concept of a line poly-
nomial. Let the support of a Laurent polynomial f =

∑
avXv be defined as

supp(f) = {v ∈ Z
d | av �= 0 }.

We say that f is a line Laurent polynomial if the support contains at least two
points and all the points lie on a single line. Let us call a vector v ∈ Z

d primitive
if its coordinates don’t have a common non-trivial integer factor. Then every
line Laurent polynomial can be expressed as

f(X) = Xv′
(anXnv + · · · + a1X

v + a0)

for some ai ∈ C, n ≥ 1, an �= 0 �= a0, v′,v ∈ Z
d, v primitive. Moreover, the

vector v is determined uniquely up to the sign. We define the direction of a line
Laurent polynomial to be the vector space 〈v〉 ⊂ Q

d.
To simplify the notation, we prefer to write C[x, y] in the place of C[x1, x2].

We begin by a sequence of lemmas with a result from algebra. Recall that an
ideal A is prime whenever ab ∈ A implies a ∈ A or b ∈ A. An ideal is radical if
an ∈ A implies a ∈ A.

An Algebraic Geometric Approach to Nivat’s Conjecture 281

Lemma 4.

1. Prime ideals in C[x, y] are maximal ideals, principal ideals generated by irre-
ducible polynomials, and the zero ideal.

2. Every radical ideal A ≤ C[x, y] can be uniquely written as a finite intersection
of prime ideals P1, . . . , Pk where Pi �⊂ Pj for i �= j. Moreover

A =
k⋂

i=1

Pi =
k∏

i=1

Pi.

Lemma 5. Let c be a two-dimensional, finitary and integral configuration with
a non-trivial annihilator. Then Ann(c) is radical.

Our proof of Lemma 5 relies on the decomposition of two-dimensional radical
ideals into a product of primes from Lemma 4, which fails in higher dimensions.
However, we conjecture that Lemma 5 is true for higher dimensions as well.

Lemma 6. Let c be as in Lemma 5. Then there exist polynomials φ1, . . . , φm

and an ideal H ≤ C[x, y] such that

Ann(c) = φ1 · · · φmH

where φi are line polynomials in pairwise distinct directions, and H is either an
intersection of finitely many maximal ideals or H = C[x, y].

Moreover H is determined uniquely and φi are determined uniquely up to the
order and multiplication by a constant.

Note that H = C[x, y] is not really a special case – it covers the case when H is
the empty intersection. Let us denote the number m from Lemma 6 by ord(c). It
is an important invariant of the configuration which provides information about
its periodicity. A two-dimensional configuration is doubly periodic if there are
two linearly independent vectors in which it is periodic. A configuration which
is periodic but not doubly periodic is called one-periodic.

Theorem 3 (Strong Decomposition Theorem). Let c, m = ord(c), and
Ann(c) = φ1 · · · φmH be as in Lemma 6. Let φ = φ1 · · · φm. Then there exist
configurations cφ, cH , c1, . . . , cm such that

c = cφ + cH

cφ = c1 + · · · + cm,

where Ann(cφ) = 〈φ〉, Ann(cH) = H and Ann(ci) = 〈φi〉. Moreover cφ and cH

are determined uniquely. Each ci is one-periodic in the direction of φi, and cH

is doubly periodic.

Corollary 1. Let c be as in Theorem 3. Then

– if ord(c) = 0 the configuration is doubly periodic,
– if ord(c) = 1 the configuration is one-periodic,
– if ord(c) ≥ 2 the configuration is non-periodic.

282 J. Kari and M. Szabados

5 Approaching Nivat’s Conjecture

We already know that if a finitary integral configuration c satisfies the condition
Pc(m,n) ≤ mn for some positive integers m,n, then it has an annihilating
polynomial. The Nivat’s conjecture claims that such a configuration is periodic,
that is, ord(c) ≤ 1. Our approach is the contrapositive: assume that c is a finitary
integral configuration which is non-periodic, that is, ord(c) ≥ 2. If c does not
have an annihilating polynomial, we have Pc(m,n) > mn for all m and n, and
we are done. So we assume c has an annihilating polynomial so that the theory
developed so far applies to c. We want to prove that c has high local complexity.

Assuming ord(c) ≥ 2, let ϕ1 and ϕ2 be irreducible factors of φ1 and φ2. Any
annihilator of c has a factor f ∈ Ann(c) that can be written as f = ϕ1ϕ2f

′

such that c1 = ϕ2f
′c and c2 = ϕ1f

′c are one-periodic configurations in differ-
ent directions. Moreover, a block in c determines smaller blocks in ϕ2f

′c and
ϕ1f

′c because the multiplication by a polynomial is a local operation on the
configurations. We next estimate the number of distinct blocks in one-periodic
configurations in order to lower bound the number of slightly bigger blocks in c.

Complexity of One-Periodic Configurations

Recall that for a finite domain D ⊂ Z
d we denote by cv+D the pattern extracted

from the position v ∈ Z
d in c. Let us define a line of D-patterns in direction

u ∈ Z
d to be a set of the form

L =
{

cv+ku+D

∣∣ k ∈ Z
}

for some vector v ∈ Z
d.

It is easy to characterize irreducible factors of line polynomials – every line
polynomial can be decomposed as

f(X) = Xv′
(anXnv + · · · + a1X

v + a0)

= anXv′
(Xv − λ1) . . . (Xv − λn)

where a0 �= 0 �= an, v is a primitive vector and λ1, . . . , λn are complex roots of
the polynomial antn + · · ·+ a1t+ a0. A Laurent polynomial of the form Xv −λi

is irreducible. Therefore an irreducible polynomial factor of f either divides Xv′
,

or has to be up to a multiplicative constant of the form Xv′′
(Xv − λi) for some

v′′ ∈ Z
d.

The following two lemmas will be applied later on the one-periodic configu-
rations c1 = ϕ2f

′c and c2 = ϕ1f
′c, respectively. For a vector v = (v1, v2) ∈ Z

2

let us denote the size of a minimal rectangle that contains it by Box(v) :=
(|v1|, |v2|) ∈ Z

2.

Lemma 7. Let c be a two-dimensional one-periodic configuration and v′,v ∈
Z
2, 0 �= λ ∈ C such that Ann(c) = 〈Xv′

(Xv − λ)〉. Let (m,n) = Box(v). Then
for any non-negative integers M,N there are at least Mn + mN + mn disjoint
lines of blocks (M + m) × (N + n) in c in the direction of v.

An Algebraic Geometric Approach to Nivat’s Conjecture 283

Lemma 8. Let c be a two-dimensional one-periodic configuration and u′,u ∈
Z
2, 0 �= λ ∈ C such that Ann(c) = 〈Xu′

(Xu − λ)〉. Let (m,n) = Box(u) and
v ∈ Z

2 be a vector in a different direction than u.
If L is any line of blocks (M + m) × (N + n) in direction v in c, then

|L| >
Mn + mN

S
,

where S is the positive area of the parallelogram specified by vectors u and v.

Putting Things Together

Applying Lemmas 7 and 8 on the configurations c1 = ϕ2f
′c and c2 = ϕ1f

′c
provides the following lower bound for their common pre-image c′ = f ′c.

Lemma 9. Let c′ be a two-dimensional configuration such that

Ann(c′) = 〈Xv′
(Xv1 − λ1)(Xv2 − λ2)〉

where λ1, λ2 ∈ C are non-zero, v′,v1,v2 ∈ Z
2 and v1,v2 are primitive vectors.

Denote (mi, ni) = Box(vi). Then

Pc′(M + m1 + m2, N + n1 + n2) >
(Mn1 + m1N)(Mn2 + m2N)

m1n2 + m2n1

for all non-negative integers M and N .

Let f be a Laurent polynomial in two variables and S its support. Let us
extend the definition of the bounding box Box(·) by setting

Box(f) = (max
(a,b)∈S

a − min
(a,b)∈S

a, max
(a,b)∈S

b − min
(a,b)∈S

b).

Corollary 2. Let c be a two-dimensional non-periodic finitary integral configu-
ration and f its annihilator. Denote (m,n) = Box(f) and let M ≥ m,N ≥ n be
integers. Then:

(a) Pc(M,N) > (M − m)(N − n).
(b) If in the decomposition Ann(c) = φ1 · · · φord(c)H there are two φi, φj such

that their directions are not horizontal or vertical, then ∃α > 1:

Pc(M,N) > α(M − m)(N − n).

(c) If ord(c) ≥ 3 then

Pc(M,N) > 2(M − m)(N − n).

284 J. Kari and M. Szabados

The Main Result

Theorem 4. Let c be a two-dimensional non-periodic configuration. Then
Pc(M,N) > MN holds for all but finitely many choices M,N ∈ N.

Corollary 3. If c is a two-dimensional configuration such that Pc(M,N) ≤
MN holds for infinitely many pairs M,N ∈ N, then c is periodic.

The proof (details omitted) is structured as follows. Let c be non-periodic
with a non-trivial annihilator, and let Ann(c) = φH be the decomposition of
the annihilator as in Theorem 3, where φ = φ1 · · · φord(c). We consider different
ranges of M and N .
Very Thin Blocks. Suppose N or M is so small that the support of φ does not
fit inside the M ×N rectangle. Then no annihilator of c fits inside the rectangle,
and as in Lemma 1 we see that Pc(M,N) > MN , no matter how large the other
dimension of the rectangle is.
Thin Blocks. Consider fixed N , large enough so that the support of φ fits
inside a strip of height N . It can be shown that there exists M0 such that for all
M > M0 we have Pc(M,N) > MN . Analogously for a fixed M .
Fat Blocks. We prove that there are constants M0 and N0 such that for M > M0

and N > N0 we have Pc(M,N) > MN . This follows directly from Corollary 2(c)
and (b), respectively, in the cases when ord(c) ≥ 3, or when ord(c) = 2 and φ1

and φ2 are not horizontal or vertical. The cases when ord(c) = 2 and φ1 is
vertical (or the symmetric cases) require more careful analysis. In particular, we
use the observation that it is enough to consider two letter configurations:

Lemma 10. In any non-periodic configuration c ∈ AZ
2
, letters can be merged to

obtain a non-periodic configuration c′ ∈ {0, 1}Z2
. Then Pc′(D) ≤ Pc(D) for all

finite D ⊆ Z
d. In particular, if Nivat’s conjecture holds on binary configurations

it holds in general.

It is clear that the three ranges of M and N above cover everything so that
Pc(M,N) ≤ MN can hold only for a finite number of M,N ∈ N.

References

[BN91] Beauquier, D., Nivat, M.: On translating one polyomino to tile the plane. In:
Discrete & Computational Geometry 6 (1991)

[CK13a] Cyr, V., Kra, B.: Complexity of short rectangles and periodicity. In: (sub-
mitted) (2013). arXiv: 1307.0098 [math.DS]

[CK13b] Cyr, V., Kra, B.: Nonexpansive Z2-subdynamics and Nivat’s conjecture.
Trans. Amer. Math. Soc. (2013).
http://dx.doi.org/10.1090/S0002-9947-2015-06391-0

[EKM03] Epifanio, C., Koskas, M., Mignosi, F.: On a conjecture on bidimensional
words. In: Theor. Comput. Sci. 1–3(299) (2003)

[LW96] Lagarias, J.C., Wang, Y.: Tiling the Line with Translates of One Tile. Inven-
tiones Mathematicae 124, 341–365 (1996)

http://arxiv.org/abs/1307.0098
http://dx.doi.org/10.1090/S0002-9947-2015-06391-0

An Algebraic Geometric Approach to Nivat’s Conjecture 285

[LM95] Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press (1995)

[MH38] Morse, M., Hedlund, G.A.: Symbolic Dynamics. American Journal of Math-
ematics 60(4), 815–866 (1938)

[Niv97] Nivat, M.: Invited talk at ICALP, Bologna (1997)
[QZ04] Quas, A., Zamboni, L.Q.: Periodicity and local complexity. Theor. Comput.

Sci. 319(1-3), 229–240 (2004)
[ST00] Sander, J.W., Tijdeman, R.: The complexity of functions on lattices. Theor.

Comput. Sci. 246(1-2), 195–225 (2000)
[ST02] Sander, J.W., Tijdeman, R.: The rectangle complexity of functions on two-

dimensional lattices. Theor. Comput. Sci. 270(1-2), 857–863 (2002)
[Sze98] Szegedy, M.: Algorithms to tile the infinite grid with finite clusters. In: FOCS,

pp. 137–147. IEEE Computer Society (1998)

Nominal Kleene Coalgebra

Dexter Kozen1, Konstantinos Mamouras1, Daniela Petrişan2,
and Alexandra Silva2(B)

1 Cornell University, Ithaca, USA
2 Radboud University Nijmegen, Nijmegen, The Netherlands

alexandra@cs.ru.nl

Abstract. We develop the coalgebraic theory of nominal Kleene alge-
bra, including an alternative language-theoretic semantics, a nominal
extension of the Brzozowski derivative, and a bisimulation-based deci-
sion procedure for the equational theory.

1 Introduction

Nominal Kleene algebra, introduced by Gabbay and Ciancia [12], is an algebraic
formalism intended for reasoning equationally about imperative programs with
statically scoped allocation and deallocation of resources. The system consists
of Kleene algebra, the algebra of regular expressions, augmented with a binding
operator ν that binds a named resource within a local scope.

Gabbay and Ciancia [12] proposed an axiomatization of the system consisting
of the axioms of Kleene algebra plus six equations capturing the behavior of the
binding operator ν and its interaction with the Kleene algebra operators. They
also defined a family of nominal languages consisting of certain sets of strings
over an infinite alphabet satisfying certain invariance properties and showed
soundness of the axioms over this class of interpretations. Their analysis revealed
some surprising subtleties arising from the non-compositionality of the sequential
composition and iteration operators.

In our previous work [15] we showed that the Gabbay-Ciancia axioms are
not complete for the semantic interpretation of [12], but we identified a slightly
wider class of language models over which they are sound and complete. The
proof of completeness of [15] consists of several stages of transformations to bring
expressions to a certain normal form. Although the construction is effective, one
of the transformations requires the intersection of several regular expressions, an
operation known to produce a double-exponential increase in size in the worst
case [13], thus the construction is unlikely to give a practical decision method.

In this paper, we investigate the coalgebraic theory of nominal Kleene alge-
bra. The motivation for this investigation is to understand the structure of nom-
inal Kleene algebra from a coalgebraic perspective with an eye toward a more
efficient decision procedure for the equational theory in the style of [4,5,24] for
Kleene algebra and Kleene algebra with tests.

The paper is organized as follows. In §3 we introduce a new class of language
models consisting of sets of equivalence classes of ν-strings. A ν-string is like a
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 286–298, 2015.
DOI: 10.1007/978-3-662-47666-6 23

Nominal Kleene Coalgebra 287

string, except that it may contain binding operators. Two ν-strings are equiva-
lent if they are provably so under the Gabbay-Ciancia axioms and associativity.
The equivalence classes of ν-strings over a fixed set of variables form a nominal
monoid. These language models are isomorphic to the free language models of
[15], thus giving a new characterization of the free models, but more amenable
to the development of the coalgebraic theory.

In §4 we introduce nominal versions of the semantic and syntactic Brzozowski
derivatives. The derivatives are similar to their non-nominal counterparts, but
extended to handle bound variables in such a way as to be invariant with respect
to α-conversion. The semantic derivative is defined in terms of the new language
model and characterizes the final coalgebra. We conclude the section with a
result that relates the algebraic and coalgebraic structure and establishes the
existence of minimal automata.

In the full version of this paper [16] we include all omitted proofs and extra
examples. We also describe a data representation for the efficient calculation of
the Antimirov derivative and give an exponential-space decision procedure.
Related Work. The notion of nominal sets goes back to work of Fraenkel
and Mostowski in the early part of the twentieth century. The notion was first
applied in computer science by Gabbay and Pitts [10] (see [22] for a survey).

Recently, there have been many studies involving nominal automata,
automata on infinite alphabets, and regular expressions with binders that are
closely related to the work presented here.

Montanari and Pistore [19–21] and Ferrari et al. [6] develop the theory of
history-dependent (HD) automata, an operational model for process calculi such
as the π-calculus. In these automata, there are mechanisms for explicit allocation
and deallocation of names and for explicitly representing the history of allocated
names.

A closely related model is the family of finite memory automata of Francez
and Kaminski [8,9]. These are ordinary finite-state automata equipped with a
finite set of registers. At any point in time, each register is either empty or
contains a symbol from an infinite alphabet.

Bojanczyk, Klin, Lasota [3] undertake a comprehensive study of nominal
automata and discuss the relationships between previous models. They consider
nominal sets for arbitrary symmetries. They identify the important notion of
orbit-finiteness as the appropriate analog of finiteness in the non-nominal case
and show that their definitions are equivalent to previous definitions of finite
memory automata [8,9]. Their paper does not consider the relationship with
regular expressions.

Kurz, Suzuki, Tuosto [17,18] present a syntax of regular expressions with
binders and consider its relationship with nominal automata. Their syntax
includes operational mechanisms for the dynamic allocation and deallocation of
fresh names and explicit permutations. Their semantics uses a name-independent
combinatorial construct reminiscent of De Bruijn indices.

The most important distinguishing characteristic of our approach is that
both the algebraic and coalgebraic structure are nominal. Our syntax, based on

288 D. Kozen et al.

Kleene algebra with ν-binders as introduced by Gabbay and Ciancia [12], and
our final coalgebra semantics based on nominal sets of ν-strings, both carry a
nominal coalgebraic structure given by the syntactic and semantic Brzozowski
derivatives, and the interpretation map is the unique equivariant morphism to
the final coalgebra.

2 Background

This section contains a severely abbreviated review of basic material on Kleene
algebra, nominal sets, and the nominal extension of Kleene algebra (NKA) intro-
duced by Gabbay and Ciancia [12], but prior familiarity with nominal sets, KA,
and coalgebra will be helpful. For a more thorough introduction, the reader is
referred to [11,22] for nominal sets, to [25] for Kleene (co)algebra, and to [12,15]
for NKA.
Kleene Algebra (KA) is the algebra of regular expressions. A Kleene algebra
(K,+, ·,∗ , 0, 1) is an idempotent semiring with ∗ such that x∗y is the ≤-least z
such that y + xz ≤ z and yx∗ is the ≤-least z such that y + zx ≤ z. Explicitly,

x + (y + z) = (x + y) + z x(yz) = (xy)z x + y = y + x

1x = x1 = x x + 0 = x + x = x x0 = 0x = 0
x(y + z) = xy + xz (x + y)z = xz + yz 1 + xx∗ ≤ x∗

y + xz ≤ z ⇒ x∗y ≤ z y + zx ≤ z ⇒ yx∗ ≤ z 1 + x∗x ≤ x∗

G-Sets. A group action of a group G on a set X is a map G×X → X, written
as juxtaposition, such that π(ρx) = (πρ)x and 1x = x for π, ρ ∈ G and x ∈ X.
A G-set is a set X equipped with a group action G × X → X. The orbit of
an element x ∈ X is the set {πx | π ∈ G} ⊆ X. If X and Y are two G-sets, a
function f : X → Y is called equivariant if f ◦ π = π ◦ f for all π ∈ G.

The G-sets and equivariant functions form an elementary topos G-Set with
group action on coproducts, products, and exponentials defined by

π(inx) = in(πx) π(x, y) = (πx, πy) π() = () πf = π ◦ f ◦ π−1. (1)

In particular, for sets, πA = {πx | x ∈ A}. For x ∈ X and A ⊆ X, define

fixx = {π ∈ G | πx = x} FixA =
⋂

x∈A fixx.

Note that FixA and fixA are different: they are the subgroups of G that fix A
pointwise and setwise, respectively.
Nominal Sets. Fix a countably infinite set A of atoms and let GA be the
group of all finite permutations of A (permutations generated by transpositions
(a b)). The set A is a GA-set under the group action πa = π(a). If X is another
GA-set, we say that A ⊆ A supports x ∈ X if FixA ⊆ fixx. An element x ∈ X
has finite support if there is a finite set A ⊆ A that supports x. If x has finite
support, then there is a smallest set supporting x, called suppx. We write a#x
and say a is fresh for x if a 	∈ suppx. A nominal set is a GA-set X of which every
element has finite support. The nominal sets and equivariant functions form a
full subcategory Nom of G-Set.

Nominal Kleene Coalgebra 289

Expressions and ν-Strings. NKA expressions are given by the grammar

e ::= a ∈ A | e + e | ee | e∗ | 0 | 1 | νa.e.

The scope of the binding νa in νa.e is e. As a notational convention, we assign
the binding operator νa lower precedence than product but higher precedence
than sum; thus in products, scopes extend as far to the right as possible. For
example, νa.ab νb.ba should be read as νa.(ab νb.(ba)) and not (νa.ab)(νb.ba).
The set of NKA expressions over A is denoted ExpA.

The free variables FV(e) of an expression e are defined as usual, and the group
GA acts on ExpA by permuting the variables in the obvious way. For example,
(a b)νa.b = νb.a. The relation ≡α of α-equivalence on ExpA is defined to be the
least congruence containing the pairs {e ≡α πe | π ∈ Fix FV(e)}. Let [e] denote
the ≡α-congruence class of e.

Lemma 2.1. The ≡α-congruence classes of ExpA form a nominal set with
supp [e] = FV(e), and the function FV is well defined and equivariant on ≡α-
classes.

A ν-string is a string with νa binders; that is, it is an NKA expression with no
occurrence of +, ∗, or 0 modulo multiplicative associativity, and no occurrence
of 1 except to denote the null string, in which case we use ε instead.

x ::= a ∈ Σ | xx | ε | νa.x

The set of ν-strings over A is denoted A
ν .

NKA Axioms. The axioms proposed by Gabbay and Ciancia [12] are:

νa.(d + e) = νa.d + νa.e a#e ⇒ νb.e = νa.(a b)e νa.νb.e = νb.νa.e

a#e ⇒ (νa.d)e = νa.de a#e ⇒ e(νa.d) = νa.ed a#e ⇒ νa.e = e.
(2)

Nominal ν-Monoids. A nominal ν-monoid over A is a structure (M, ·, 1, A, ν)
with binding operation ν : A × M → M such that

– (M, ·, 1) is a monoid with group action GA × M → M such that M is a
nominal set;

– the operation ν satisfies the axioms (2);
– the monoid operations and ν are equivariant, or equivalently, every π ∈ GA

is an automorphism of M .
Nominal Kleene algebra (NKA). A nominal KA over A is a structure
(K,+, ·,∗ , 0, 1, A, ν) with binding operation ν : A × K → K such that

– (K,+, ·,∗ , 0, 1) is a KA with group action GA × K → K such that K is a
nominal set;

– the operation ν satisfies the axioms (2);
– the KA operations and ν are equivariant in the sense that

π(x + y) = πx + πy π(xy) = (πx)(πy) π0 = 0
π(x∗) = (πx)∗ π(νa.x) = ν(πa).(πx) π1 = 1,

or equivalently, every π ∈ GA is an automorphism of K.

290 D. Kozen et al.

3 A Nominal Language Model

Let M be a nominal ν-monoid over A. Metasymbols m,n, . . . denote elements of
M . Let ℘ M denote the powerset of M . On ℘ M , define the KA operations and
group action

A + B = A ∪ B AB = {mn | m ∈ A, n ∈ B} A∗ =
⋃

k Ak 0 = ∅

1 = {ε} νa.A = {νa.m | m ∈ A} πA = {πm | m ∈ A}.
(3)

We say that A is uniformly finitely supported if
⋃

m∈A suppm is finite. Let

℘fs M = {A ⊆ M | A is finitely supported}
℘ufs M = {A ⊆ M | A is uniformly finitely supported}.

Lemma 3.2 ([11, Theorem 2.29]). For A ⊆ M , if A is uniformly finitely
supported, then A is finitely supported and suppA =

⋃
m∈A suppm.

The converse is false in general. Both ℘fs M and ℘ufs M are closed under the
operations (3).

Theorem 3.1. The set ℘ufs M with group action and KA operations (3) forms
an NKA.

3.1 Canonical Interpretation over A
ν/≡

For x, y ∈ A
ν , define x ≡ y if x and y are provably equivalent using the axioms (2)

(omitting the first, which is irrelevant as there is no occurrence of + in ν-strings)
and the axioms of equality and congruence. Let [x] denote the ≡-congruence class
of x and A

ν/≡ the ν-monoid of all such congruence classes.
The length of x ∈ A

ν is the number of occurrences of symbols of A in x,
excluding binding occurrences νb. If x ≡ y, then x and y have the same length,
and an occurrence of a symbol in x is free iff the corresponding occurrence in y is
free. If both are free, then they are the same symbol. If both are bound, then they
can be different symbols due to α-conversion. If two ν-strings are α-equivalent,
then they are ≡-equivalent.

Henceforth, let M = A
ν/≡. The map L : ExpA → ℘ M is defined to be the

unique homomorphism such that L(a) = {[a]} for a ∈ A. Explicitly,

L(e1 + e2) = L(e1) ∪ L(e2) L(e1e2) = {mn | m ∈ L(e1), n ∈ L(e2)}
L(e∗) = L(e)∗ =

⋃
k L(e)k L(0) = ∅ L(1) = {ε} (4)

L(a) = {[a]}, a ∈ A L(νa.e) = νa.L(e) = {νa.m | m ∈ L(e)}.

The following lemma guarantees the existence of an equivariant homomor-
phism L : ExpA/≡α → ℘ufs M .

Lemma 3.3. The map L is well defined and equivariant on ≡α-congruence
classes and takes values in ℘ufs M .

The following deconstruction lemma is important for our coalgebraic treat-
ment of §4.

Nominal Kleene Coalgebra 291

Lemma 3.4.
(i) If ax ≡ by, then a = b and x ≡ y.
(ii) If νa.ax ≡ νa.ay, then x ≡ y.

Lemma 3.4(ii) is somewhat delicate. Note that νa.x ≡ νa.y does not imply
x ≡ y in general: we have νb.ab 	≡ νb.ba, but νa.νb.ab ≡ νa.νb.ba by applying
the permutation (a b) and reversing the order of the bindings.

4 Coalgebraic Structure

We will presently define syntactic Brzozowski and Antimirov derivatives on NKA
expressions over A and a corresponding semantic derivative on subsets of M .
These constructs will be seen to comprise coalgebras for a Nom-endofunctor K
defined by

KX = 2 × XA × [A]X, (5)

where the nominal set XA consists of finitely supported functions A → X and
[A]X is the abstraction of the nominal set X; see [22] for a detailed account of the
abstraction functor on Nom. We recall here that the nominal set [A]X is defined
as the quotient of A × X by the equivalence relation given by (a, x) ∼ (b, y) if
and only if for any fresh c we have (c a)x = (c b)y. Furthermore, the abstraction
functor [A](−) has a left adjoint A#(−) defined on objects by

A#X = {(a, x) | a#x}.

Hence a K-coalgebra is a tuple of the form (X, obs, cont, contν), where X is
a nominal set and

obs : X → 2 cont : X → XA contν : X → [A]X (6)

are equivariant functions, called the observation and continuation maps, respec-
tively. Using the cartesian closed structure on Nom and the adjunction A#(−)
[A](−), the continuation maps are in one-to-one correspondence with maps
defined on A × X and A#X respectively.

cont : X → XA

cont� : A × X → X

contν : X → [A]X
cont�ν : A#X → X

To simplify notation, we write

conta : X → X, a ∈ A contνa : {s ∈ X | a#s} → X, a ∈ A (7)

for the uncurried continuation maps obtained by fixing the first argument to
a ∈ A. Intuitively, conta tries to consume a free variable a and contνa tries to
consume a bound variable a bound by νa. We will discuss the intuition behind
these constructs more fully and justify the typing (6) in Example 4.1 below.

It follows from (1) that the equivariance of the structure map (obs, cont, contν)
is equivalent to the properties

contπa ◦ π = π ◦ conta contνπa ◦ π = π ◦ contνa obs ◦ π = obs (8)

for all π ∈ GA.
Henceforth, the term coalgebra refers specifically to coalgebras for the Nom-

functor K in (5).

292 D. Kozen et al.

4.1 Semantic Derivative

Let M = A
ν/≡. The semantic derivative is defined as a K-coalgebra with carrier

the nominal set ℘fs M :

(ε, δ, δν) : ℘fs M → 2 × (℘fs M)A × [A]℘fs M

where

ε(A) =

{
1, ε ∈ A,

0, ε 	∈ A

δa(A) = {m | am ∈ A}, a ∈ A

δνa(A) = {m | νa.am ∈ A}, a ∈ A.

The maps δa and δνa are well defined by Lemma 3.4.

Example 4.1. The a in δa and δνa play very different roles. Intuitively, δa(A)
tries to consume a free variable a at the front of strings in A. For example, for
b 	= a,

– δa({aa, bb}) = {a}
– δa({νb.ab}) = {νb.b}
– δa({νa.ab}) = ∅ (since the first letter of νa.ab is bound).

On the other hand, δνa(A) tries to consume a bound variable at the front of
strings in A and change the remaining variables bound by the same binder to a.
The bound variable need not be a, but it should be possible to change it to a by
α-conversion. For example, for b 	= a,
1. δνa({νa.aa}) = δνa({νb.bb}) = {a} (since νb.bb = νa.aa in A

ν/≡)
2. δνa({νa.ab}) = {b}
3. δνa({νa.ba}) = ∅ (since the initial symbol b is not bound)
4. δνa({νb.ba}) = ∅ (since νb.ba 	= νa.am for any m ∈ A

ν/≡)
5. δνa({(νa.aa)a}) = ∅ (since (νa.aa)a 	= νa.am for any m ∈ A

ν/≡)
6. δνa({(νb.bb)b}) = {ab} (since (νb.bb)b = νa.aab in A

ν/≡).
Examples 4 and 5 do not arise in our coalgebraic semantics, since δνa may only
be applied to A for which a is fresh due to the domain restriction in (7). If there
are free occurrences of a, one cannot α-convert to obtain a string of the form
νa.am, since those free occurrences would be captured.

4.2 Brzozowski Derivative

The syntactic Brzozowski derivative is defined inductively on the set of α-
equivalence classes of NKA expressions ExpA/≡α. Like the semantic derivative,
it can also be defined on a broader domain, but also will only make coalgebraic
sense for the domain (6).

(E,D,Dν) : ExpA/≡α → 2 × (ExpA/≡α)A × [A](ExpA/≡α)

The continuation maps D and Dν can be further broken down as

Da : ExpA/≡α → ExpA/≡α Dνa : {e ∈ ExpA/≡α | a#e} → ExpA/≡α

Nominal Kleene Coalgebra 293

for a ∈ A. We first define these maps on ExpA, then argue that they are well
defined on ≡α-classes.

E(e1 + e2) = E(e1) + E(e2) E(e1e2) = E(e1)E(e2) E(a) = E(0) = 0
E(1) = E(e∗) = 1 E(νa.e) = E(e)

Da(e1 + e2) = Da(e1) + Da(e2) Da(e1e2) = Da(e1)e2 + E(e1)Da(e2)
Da(e∗) = Da(e)e∗ Da(0) = Da(1) = 0

Da(b) =

{
1, b = a

0, b 	= a
Da(νb.e) =

{
0, b = a

νb.Da(e), b 	= a

Dνa(e1 + e2) = Dνa(e1) + Dνa(e2) Dνa(e1e2) = Dνa(e1)e2 + E(e1)Dνa(e2)
Dνa(e∗) = Dνa(e)e∗ Dνa(νb.e) = νb.Dνa(e) + Da((a b)e), b 	= a

Dνa(0) = Dνa(1) = Dνa(b) = 0

We can also define Dνa(νa.e) = Dνa(νb.(a b)e) for an arbitrary b such that b#e
and b 	= a, although strictly speaking this is not a function, since the choice of b is
not determined. However, the choice of b does not matter, as we are considering
expressions modulo α-equivalence.

Example 4.2. For b 	= a,
1. Dνa(νb.bb) = νb.Dνa(bb) + Da((a b)bb) = 0 + a = a.
2. Dνa(νa.aa) = Dνa(νb.bb) = a.
3. Dνa(νa.ab) = Dνa(νc.cb) = νc.Dνa(cb) + Da(ab) = 0 + b = b.
4. Dνa(νb.ba) = νb.Dνa(ba) + Da((a b)ba) = 0 + b = b.

Example 4 will not arise in our coalgebraic semantics, since Dνa will only be
applied to e for which a is fresh and the argument has a free variable a.

4.3 Final Coalgebra

The nominal coalgebra (℘fs M, ε, δ, δν) is final among coalgebras for the Nom-
endofunctor K defined in (5). These are the coalgebras (X, obs, cont, contν) for
which X is a nominal set and obs, cont and contν are equivariant. Such a coal-
gebra can be viewed as an automaton with states X, transitions cont and contν ,
and acceptance condition obs. The inputs to the automaton are elements of M .
Starting from a state s ∈ X, an element m ∈ M is accepted if Accept(s,m),
where

Accept(s, ε) = obs(s) (9)
Accept(s, am) = Accept(conta(s),m) (10)

Accept(s, νa.am) = Accept(contνa(s),m), a#s. (11)

Clause (11) requires some explanation. We must choose a representative element
νa.am of the ≡-class such that a is fresh for s, so that contνa(s) will be defined. It
is always possible to find such an a, since the ≡-class is closed under α-conversion
and s has finite support. However, the result is independent of the choice of a,
as shown in part (ii) of the next lemma, so Accept(s, νa.am) is well defined.

294 D. Kozen et al.

Lemma 4.5.
(i) The acceptance function is equivariant:

Accept(πs, πm) = π(Accept(s,m)) = Accept(s,m).

(ii) If b#s and c#s, then

Accept(s, νb.bm) = Accept(s, νc.c(b c)m).

We do not explicitly require c#νb.bx in (ii); however, this is a consequence of
(i) and the fact that if f is an equivariant function, then supp f(x) ⊆ suppx.

The unique coalgebra homomorphism from (X, obs, cont, contν) to the final
coalgebra is just the automata-theoretic language semantics:

Theorem 4.2 (Final coalgebra). The coalgebra (℘fs M, ε, δ, δν) is a final K-
coalgebra. The unique coalgebra homomorphism (X, obs, cont, contν) to the final
coalgebra is given by

LX : (X, obs, cont, contν) → (℘fs M, ε, δ, δν) LX(s) = {m | Accept(s,m)}.

Moreover, the coalgebra homomorphism LExpA : ExpA/≡α → ℘fs M coincides
with the algebra homomorphism L : ExpA/≡α → ℘fs M defined in (4).

A more standard construction of the final coalgebra computed via the final
sequence of the functor K [1] yields an equivalent presentation based on normal
forms of ν-strings up to α-equivalence. However, this characterization is more
cumbersome algebraically, as it requires explicit α-conversion to define sequential
composition.

4.4 Automata Representation: Half of a Kleene Theorem

In this section we prove a theorem for NKA that relates the algebraic and coalge-
braic structure. As noted in §4.3, a coalgebra can be regarded as an automaton
acceptor with states X, transitions cont, and acceptance condition obs. The
inputs to the automaton are elements of M . The state sets are nominal sets
and may be formally infinite, but still may be essentially finite in a sense to be
described next.

Following [3], we define the size of a coalgebra (X, obs, cont) to be the number
of orbits of X under GA, where the orbit of s ∈ X is the set {πs | π ∈ GA}. The
orbit of s is the singleton {s} if supp s = ∅, otherwise it is infinite. The orbits
partition X and determine an equivalence relation. The coalgebra is called orbit-
finite if the total number of orbits is finite.

Lemma 4.6. Let (X, obs, cont) be a coalgebra, s ∈ X, and a ∈ A.
(i) supp (contνa(s)) ⊆ {a} ∪ supp s.
(ii) If a ∈ supp s, then supp (conta(s)) ⊆ supp s.
(iii) If L(s) is uniformly finitely supported and m ∈ L(s), then suppm ⊆ supp s.
(iv) If a#s and L(s) is uniformly finitely supported, then conta(s) is a dead state

(one for which L(s) = ∅).

Nominal Kleene Coalgebra 295

Theorem 4.3 (Half Kleene). For every NKA expression e, there is a coalge-
bra X with designated start state s such that LX(s) = L(e). The coalgebra has
an orbit-finite nondeterministic representation given by the Antimirov represen-
tation of the Brzozowski derivatives of e.

It is interesting that the Antimirov derivatives give an orbit-finite representa-
tion, whereas the Brzozowski derivatives do not. More details, including a coun-
terexample, can be found in the full version of this paper [16]. The orbit-finite
representation underlies the decision procedure of the equational theory, which
we also omit here for lack of space.

5 Conclusion and Open Problems

In this paper we have explored the coalgebraic theory of nominal Kleene algebra.
We have introduced a new family of semantic models consisting of sets of nom-
inal monoids and extended the coalgebraic structure of Kleene algebra to the
nominal setting using these models. We have developed nominal versions of the
Brzozowski and Antimirov derivatives that accommodate bound variables and
are invariant with respect to α-conversion. We have proved a theorem relating
the algebraic and coalgebraic structure, namely that every expression gives rise
to an equivalent automaton. We have used this relationship to show that the
equational theory can be decided in exponential space and described an efficient
data representation that is amenable to implementation.

This work raises several intriguing questions. Foremost among them is the
complexity of the equational theory. We have given a worst-case exponential-
space decision procedure. On the other hand, the best lower bound we have is
PSPACE-hardness, which follows from the PSPACE-completeness of the equiv-
alence problem for regular expressions [26].

Despite the high complexity of the worst-case upper bound, much like the
bisimulation-based algorithms for other KA-based systems [4,5,7,24], the situ-
ation may not be so bad in practice. To actually attain the worst-case bound
seems to require highly pathological examples that would be unlikely to arise
in practice. However, only implementation and experimentation can confirm or
refute this view. This would be an interesting direction for future work.

Theorem 4.3 gives one direction of a Kleene theorem: expressions to
automata. The converse is false, as the following example shows. Consider the
nominal coalgebra with states and group action

– s0(a) for all a ∈ A with π(s0(a)) = s0(πa),
– s1(a, b) for all a, b ∈ A, a 	= b with π(s1(a, b)) = s1(πa, πb), and
– s2 with πs2 = s2.

The transitions and observations are

contνb(s0(a)) = s1(a, b) obs(s0(a)) = 1
conta(s1(a, b)) = s0(b) obs(s1(a, b)) = obs(s2) = 0

s0(a)

s1(a, b)

s0(b)

s1(b, a)

νb a

νab

296 D. Kozen et al.

for all a, b ∈ A. All other transitions go to the dead state s2. The set of ν-strings
accepted from state s0(a) is

{ε, νb.ba, νb.ba(νa.ab), νb.ba(νa.ab(νb.ba)), νb.ba(νa.ab(νb.ba(νa.ab))), . . .}
It can be shown using the normal form theorem of [15] that this set is not
represented by any NKA expression, because it requires unbounded ν-depth.

Given that orbit-finite nominal automata are strictly more expressive than
NKA expressions, several questions arise:
1. Can we characterize the subclass of orbit-finite nominal automata that are

equivalent to NKA expressions? We conjecture that they are exactly those
automata accepting sets of ν-strings of bounded ν-depth, although we are
not sure how to characterize this class formally in a way that would lead to
a converse of Theorem 4.3.

2. Can we extend the syntax of expressions to capture sets of unbounded ν-
depth? The answer is yes: It is not difficult to show that orbit-finite nominal
automata are equivalent to orbit-finite systems of right-linear equations. For
example, the system corresponding to the automaton above would be

Xa = ε + νb.bYab Yab = aXb.

The set accepted by the automaton is the least solution of the system. This
gives a full Kleene theorem, but of course we are now left with the open
question of deriving proof rules for this new calculus and extending the
completeness result of [15].

3. Can we prove a Kleene theorem for the nominal DFA and NFA models of
Bojanczyk, Klin and Lasota [3], exposing the crucial difference that nonde-
terminism introduces in the nominal setting (nominal NFA are strictly more
expressive that DFA)?

4. Can we use the coalgebraic setting to systematically develop a nominal
Chomsky hierarchy and (semi-)decision procedures for different classes of
languages?
The first two questions have an interesting interpretation in terms of the

intended application of NKA, which was originally proposed in [12] as a frame-
work for reasoning about dynamic allocation of resources. However, the ν-
operators in NKA expressions are statically scoped, so static may be the more
accurate adjective. The more expressive automata of [3,8,18,20] and of this
paper may be the more appropriate vehicle for the study of dynamic allocation.

Acknowledgments. Thanks to Filippo Bonchi, Jamie Gabbay, Bart Jacobs, Tadeusz
Litak, Damien Pous, and Ana Sokolova for many stimulating discussions and sugges-
tions. This research was performed at Radboud University Nijmegen and supported by
the Dutch Research Foundation (NWO), project numbers 639.021.334 and 612.001.113,
and by the National Security Agency.

Nominal Kleene Coalgebra 297

References

1. Adámek, J.: On final coalgebras of continuous functors. TCS 294(12), 3–29 (2003)
2. Allauzen, C., Mohri, M.: A unified construction of the glushkov, follow, and

antimirov automata. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 110–121. Springer, Heidelberg (2006)

3. Bojanczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. LMCS
10(3) (2014)

4. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to con-
gruence. In: POPL 2013, pp. 457–468 (2013)

5. Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. LMCS 8(1:16), 1–42
(2012)

6. Ferrari, G.-L., Montanari, U., Tuosto, E., Victor, B., Yemane, K.: Modelling
fusion calculus using HD-automata. In: Fiadeiro, J.L., Harman, N.A., Roggen-
bach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 142–156. Springer,
Heidelberg (2005)

7. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision
procedure for NetKAT. In: POPL 2015, pp. 343–355 (2015)

8. Francez, N., Kaminski, M.: Finite-memory automata. TCS 134(2), 329–363
(1994)

9. Francez, N., Kaminski, M.: An algebraic characterization of deterministic regular
languages over infinite alphabets. TCS 306(1–3), 155–175 (2003)

10. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax involving binders.
In: LICS 1999, pp. 214–224 (1999)

11. Gabbay, M.: Foundations of nominal techniques: logic and semantics of variables
in abstract syntax. Bull. Symbolic Logic 17(2), 161–229 (2011)

12. Gabbay, M.J., Ciancia, V.: Freshness and name-restriction in sets of traces with
names. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 365–380.
Springer, Heidelberg (2011)

13. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular
expressions. In: TACS 2008. Dagstuhl LIPIcs, vol. 1, pp. 325–336 (2008)

14. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Tech. Rep.,
Cornell, March 2008. http://hdl.handle.net/1813/10173

15. Kozen, D., Mamouras, K., Silva, A.: Completeness and incompleteness in nominal
Kleene algebra. Tech. Rep., Cornell, November 2014. http://hdl.handle.net/1813/
38143

16. Kozen, D., Mamouras, K., Petrişan, D., Silva, A.: Nominal Kleene Coalgebra.
Tech. Rep., Cornell, February 2015. http://hdl.handle.net/1813/39108

17. Kurz, A., Suzuki, T., Tuosto, E.: A characterisation of languages on infinite alpha-
bets with nominal regular expressions. In: Baeten, J.C.M., Ball, T., de Boer, F.S.
(eds.) TCS 2012. LNCS, vol. 7604, pp. 193–208. Springer, Heidelberg (2012)

18. Kurz, A., Suzuki, T., Tuosto, E.: On nominal regular languages with binders.
In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 255–269. Springer,
Heidelberg (2012)

19. Montanari, U., Pistore, M.: History dependent automata. Tech. Rep. TR-11-98,
Computer Science, Università di Pisa (1998)

20. Montanari, U., Pistore, M.: History-dependent automata: an introduction. In:
Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28.
Springer, Heidelberg (2005)

21. Pistore, M.: History Dependent Automata. PhD thesis, Università di Pisa (1999)

http://hdl.handle.net/1813/10173
http://hdl.handle.net/1813/38143
http://hdl.handle.net/1813/38143
http://hdl.handle.net/1813/39108

298 D. Kozen et al.

22. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science, Cam-
bridge Tracts in Theoretical Computer Science 57. Cambridge University Press
(2013)

23. Pous, D.: Symbolic algorithms for language equivalence and kleene algebra with
tests. In: POPL 2015, pp. 357–368 (2015)

24. Silva, A.: Kleene Coalgebra. PhD thesis, Radboud University Nijmegen (2010)
25. Silva, A.: Position automata for Kleene algebra with tests. Scientific Annals of

Computer Science 22(2), 367–394 (2012)
26. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:

STOC 1973, pp. 1–9 (1973)

On Determinisation of Good-for-Games
Automata

Denis Kuperberg1,2,3 and Micha�l Skrzypczak3,4(B)

1 Onera/DTIM, Toulouse, France
2 IRIT, University of Toulouse, Toulouse, France

3 University of Warsaw, Warsaw, Poland
4 LIAFA, University of Paris 7, Paris, France

mskrzypczak@mimuw.edu.pl

Abstract. In this work we study Good-For-Games (GFG) automata
over ω-words: non-deterministic automata where the non-determinism
can be resolved by a strategy depending only on the prefix of the ω-word
read so far. These automata retain some advantages of determinism:
they can be composed with games and trees in a sound way, and inclu-
sion L(A) ⊇ L(B) can be reduced to a parity game over A × B if A is
GFG. Therefore, they could be used to some advantage in verification,
for instance as solutions to the synthesis problem.

The main results of this work answer the question whether par-
ity GFG automata actually present an improvement in terms of state-
complexity (the number of states) compared to the deterministic ones.
We show that a frontier lies between the Büchi condition, where GFG
automata can be determinised with only quadratic blow-up in state-
complexity; and the co-Büchi condition, where GFG automata can be
exponentially smaller than any deterministic automaton for the same
language. We also study the complexity of deciding whether a given
automaton is GFG.

1 Introduction

One of the classical problems of automata theory is synthesis — given a specifi-
cation, decide if there exists a system that fulfils it and if there is, automatically
construct one. The problem was solved positively by Büchi and Landweber [BL69]
for the case of ω-regular specifications. There are two standard approaches to the
problem: either by deterministic automata [McN66] or by tree automata [Rab72].
Henzinger and Piterman [HP06] have proposed a model of Good-For-Games
(shortly GFG) automata that enjoy a weak form of non-determinism while still
preserving soundness and completeness when solving the synthesis problem.

An automaton is Good-For-Games if there exists a strategy that resolves the
non-deterministic choices, by taking into account only the prefix of the input

Research funded by ANR/DGA project Cx (ref. ANR-13-ASTR-0006); and by fon-
dation STAE project BRIefcaSE. The second author has been supported by Poland’s
National Science Centre grant (decision DEC-2014-13/B/ST6/03595).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 299–310, 2015.
DOI: 10.1007/978-3-662-47666-6 24

300 D. Kuperberg and M. Skrzypczak

ω-word read so far. The strategy is supposed to construct an accepting run of
the automaton whenever an ω-word from the language is given. The motivation
for this model in [HP06] was to simplify the transition structure of automata
as solutions of the synthesis problem for Linear Temporal Logic. Experimental
evaluation of GFG automata and their applications to stochastic problems were
discussed in [KMBK14].

The notion of GFG automata was independently discovered in [Col09] under
the name history-determinism, in the more general framework of regular cost
functions. It turns out that deterministic cost automata have strictly smaller
expressive power than non-deterministic ones and therefore history-determinism
is used whenever a sequential model is needed.

In the survey [Col12] two important results about GFG automata over finite
words are mentioned: first that every GFG automaton over finite words con-
tains an equivalent deterministic subautomaton, second that it is decidable in
PTIME if a given automaton over finite words is GFG. Additionally, a conjecture
stating that every parity GFG automaton over ω-words contains an equivalent
deterministic subautomaton is posed.

In [BKKS13], examples were given of Büchi and co-Büchi GFG automata
which do not contain any equivalent deterministic subautomaton. Moreover,
a link between GFG and tree automata was established: an automaton for a
language L of ω-words is GFG if and only if its infinite tree version accepts the
language of trees that have all their branches in L. However, the problem of
the gap in the number of states between deterministic and GFG automata over
ω-words was left open. Indeed, for all the available examples of GFG automata,
there was an equivalent deterministic automaton of the same size.

We settle this question in the present paper. We show that for Büchi
automata determinisation can be done with only a quadratic state-space blow-
up. The picture is very different for co-Büchi automata (and all higher parity
conditions), for which for every n we give an example of a GFG automaton with
2n + 1 states that does not admit any equivalent deterministic automaton with
less than 2n

2n+1 states.
The lower bound for determinising co-Büchi GFG automata shows that these

automata can be exponentially more succinct than deterministic ones. Therefore,
it indicates possibility of avoiding exponential blow-up by using GFG automata
instead of deterministic automata in the problems of containment or synthesis.
On the other hand, the quadratic determinisation construction for Büchi GFG
automata shows that in this case GFG automata are close to deterministic ones.
Therefore, the GFG model may be considered less relevant (with respect to
succinctness) for Büchi condition than for general parity condition.

We emphasize the fact that although the model of GFG automata requires
the existence of a strategy resolving the non-determinism, this strategy is not
used in algorithms but only in proofs. Therefore, it is not a part of the size
of the input in computations based on GFG automata. This is what allows an
improvement on deterministic automata: we just rely on the existence of this
strategy without having to explicit it.

On Determinisation of Good-for-Games Automata 301

In the present paper we additionally consider the problem of deciding whether
a given parity automaton is GFG. The problem is decidable in EXPTIME
(see [HP06]) but no efficient algorithm is known. In the special case where the
automaton accepts all ω-words, we show that this is equivalent to solving a parity
game, so it is in PTIME for any fixed parity condition, and in NP∩co–NP if the
parity condition is a part of the input. The general case of deciding GFGness of
parity automata is a priori more complicated. We show that it is in PTIME for
co-Büchi automata, moreover the procedure involves building another automa-
ton that could be GFG even if the input automaton is not. Therefore, this
procedure could be used as a tool to produce co-Büchi GFG automata in some
cases. The PTIME complexity in this case is surprising — although the required
strategy can be of exponential size in the co-Büchi case, we can decide in poly-
nomial time whether it exists. In the Büchi case we show that it is in NP to
decide whether a given automaton is GFG. The problem of efficiently deciding
GFGness of automata of higher parity indices remains open.

Structure of the Paper. In Section 2 we briefly introduce the basic notions
used in our constructions. In Section 3 we provide the lower bound on the state-
complexity of determinising co-Büchi GFG automata. Section 4 is devoted to the
determinisation construction for Büchi GFG automata. In Section 5 we study
the problem of deciding GFGness of a given automaton and in Section 6 we
conclude. The technical details of the presented results are given in the long
version, available online on the websites of the authors.

2 Definitions

By A we denote a finite alphabet, elements a ∈ A are called letters. A∗ is the
set of finite words over A and Aω is the set of ω-words over A. ε stands for the
empty word. The successive letters of a word α are α(0), α(1), . . . The length of
a finite word w is |w|. We use the standard notions of prefix and suffix of a word.
By uα we denote the concatenation of a finite word u with a finite word or an
ω-word α. If K ⊆ Aω and w ∈ A∗ then we define w−1K

def= {α ∈ Aω | wα ∈ K}.
In our constructions it is easier to work with an acceptance condition over

transitions instead of states. Clearly, the translation from the state-based accep-
tance to the transition-based acceptance does not influence the number of states
of a parity automaton. The opposite translation may increase the number of
states by the factor corresponding to the acceptance condition but this trans-
lation is still polynomial (even linear for a fixed condition). Except that, the
proposed definitions are standard.

2.1 Automata over ω-words

A non-deterministic parity automaton over ω-words (shortly parity automaton)
is a tuple A =

〈
AA, QA, qA

I , ΔA, ΩA〉
that consists of: a finite set AA called the

input alphabet; a finite set QA of states; an initial state qA
I ∈ QA; a transition

302 D. Kuperberg and M. Skrzypczak

relation ΔA ⊆ QA × AA × QA; and a priority function ΩA : ΔA → N. If the
automaton A is known from the context then we skip the superscript A.

Transitions (q, a, q′) ∈ Δ are usually noted q
a−→ q′. Similarly, if w =

a0a1 . . . an and qi
ai−→ qi+1 is a transition of A for all i ≤ n then we write

q0
w−→ qn+1 and call it a path in A. We additionally require that for every

q ∈ Q, a ∈ A there is at least one transition in Δ of the form q
a−→ q′ for some

q′ ∈ Q.
If Ω : Δ → {i, i+1, . . . , j} then we say that the parity index of A is (i, j). An

automaton of parity index (1, 2) is called a Büchi automaton and an automaton
of parity index (0, 1) is called a co-Büchi automaton. If A is a Büchi automaton
then we additionally define F ⊆ Δ as Ω−1(2) and call it the set of accepting
transitions. Similarly, if A is a co-Büchi automaton then we define R ⊆ Δ as
Ω−1(1) and call it the set of rejecting transitions.

If Δ is such that for every q ∈ Q and a ∈ A, there is a unique state q′ ∈ Q
such that q

a−→ q′ then A is a deterministic automaton. In this case, we might
denote its transition relation by a function δ : Q × A → Q instead of Δ.

For an ω-word α ∈ Aω, a run of A over α from a state q ∈ Q is a function
ρ : ω → Q where for every n ≥ 0, we have a transition of A ρ(n) α(n)−→ ρ(n+1) and
ρ(0) = q. ρ is accepting over α if1 lim supn→∞ Ω

(
(ρ(n), α(n), ρ(n+1)

)
is even.

In other words, the condition requires the highest priority that occurs infinitely
often to be even. The priorities can be seen as positive (even) and negative (odd)
events, ordered by their importance. The formula says that the most important
event happening infinitely often has to be positive.

By the definition, if A is Büchi it means that the above sequence of transitions
should contain infinitely many accepting transitions. Similarly, if A is co-Büchi
then it should contain only finitely many rejecting transitions.

An automaton A accepts an ω-word α from q ∈ Q if there exists an accepting
run ρ of A from q over α. By L(A, q) we denote the set of all ω-words that are
accepted by A from q. The language of an automaton A is L(A) def= L(A, qI).

An automaton A is Good-For-Games (GFG, for short) if there exists a func-
tion σ : A∗ → Q that resolves the non-determinism of A depending only of
the prefix of the input ω-word read so far: over every ω-word α, the function
n �→ σ

(
α(0)α(1) . . . α(n − 1)

)
is a run of A from qI over α, and it is accepting

over α whenever α ∈ L(A). Clearly, every deterministic automaton is GFG.

3 Co-Büchi Case

In this section we provide the following result about the state-complexity of
determinising co-Büchi GFG automata.

Theorem 1. For every n there exists a co-Büchi GFG automaton Cn with 2n+1
states such that any equivalent deterministic automaton has at least 2n

2n+1 states.

1 Note that whether a run ρ is accepting over α depends on the ω-word α.

On Determinisation of Good-for-Games Automata 303

All the automata Cn for n ≥ 1 share the same alphabet consisting of four
symbols A

def= {ι, σ, π, �}. The letters of the alphabet enable to manipulate on
the set {0, 1, 2, . . . , 2n − 1}: ι, σ, π are three permutations of this set such that
every permutation of this set can be obtained as a composition of these three (in
fact ι is the identity permutation used for padding). The symbol � corresponds
to the identity permutation on {1, . . . , 2n − 1} but it is undefined on 0.

This way a finite word or an ω-word α over the alphabet A can be seen as
a sequence of relations on the set {0, . . . , 2n − 1} as depicted on Figure 1. We
will represent these relations as a graph (denoted Graph(α)). If α is finite let
D = {0, 1, . . . , |α|}, otherwise D = ω. The graph is a plait of width 2n: the
domain of Graph(α) is {0, 1, . . . , 2n − 1} × D and all the edges are of the form
(i, k) → (α(k)(i), k + 1) for i ∈ {0, . . . , 2n − 1} and k, k+1 ∈ D.

α:

Graph(α):

time:

0
1
2
3

0

σ

1

π

2

ι

3

σ

4

�

5

σ

6

π

7

� . . .

8 . . .

. . .

. . .

. . .

. . .

Fig. 1. The infinite sequence of relations on the set {0, . . . , 3} (i.e. n = 2) represented
by an ω-word α ∈ Aω

The language Ln contains an ω-word α ∈ Aω if and only if Graph(α) contains
at least one infinite path.

The set of states of the automaton Cn is Q = {⊥, 0, 1, 2, . . . , 2n − 1}. The
states {0, . . . , 2n − 1} are deterministic: reading a ∈ A in such a state q the
automaton moves to the successive state according to the relation represented by
a (or to ⊥ if a = � and q = 0). The state ⊥ is non-deterministic — the automaton
can move from ⊥ over any letter a ∈ A to any state q′ ∈ {0, . . . , 2n − 1}. Let
the initial state of Cn be ⊥ and the rejecting transitions be those of the form
⊥ a−→ q′.

Note that every accepting run of Cn over an ω-word α indicates an infinite
path in Graph(α). Therefore, we obtain the following fact.

Fact 2. L(Cn) ⊆ Ln.

Lemma 3. Cn is a GFG automaton recognising the language Ln.

Proof. It is enough to construct a function σ : A∗ → Q that for every ω-word
α ∈ Ln produces an accepting run of Cn over α — it will prove that Ln ⊆ L(Cn)
and that Cn is GFG. We will do it inductively with σ(ε) = ⊥ = qCn

I .
Let σ follow deterministically the transitions of Cn for all the states q
= ⊥. It

remains to define σ(wa) if σ(w) = ⊥ and a successive letter a is given. Assume
that |wa| = k.

304 D. Kuperberg and M. Skrzypczak

For every i ∈ {0, 1, . . . , 2n − 1} let pi be the unique maximal path containing
the node (i, k) in Graph(wa). Note that each of these paths pi has a starting
position — a node (̄i, ki) on the path pi with a minimal moment of time ki.
Clearly ki ≤ k. We say that pi is older than pi′ if ki < ki′ — in other words, pi

reaches further to the left than pi′ .
Let σ(wa) = i such that pi is the oldest among these paths (if there are two

paths equally old, we move to that with smaller i).
Assume that α ∈ Ln. We need to prove that σ produces an accepting run of

Cn over α. Let p1, p2, . . . , pm be the set of infinite paths in Graph(α) (we know
that 1 ≤ m ≤ 2n). Assume that p1 is an oldest among them and that it starts in
a moment of time k1. For every node (i, k1) for i = 0, . . . , 2n − 1 that does not
belong to any of these infinite paths, the unique maximal path containing (i, k1)
is finite. Therefore, for some k′ > k1, one of the paths p1, . . . , pm is the oldest
among the paths intersecting the (k′)th moment of time. So the function σ will
use at most once a rejecting transition of Cn after reading the (k′)th symbol of
α and then it will follow one of the paths p1, . . . , pm and accept.

We now assume for the sake of contradiction that there exists a deterministic
automaton D recognising Ln that has strictly less than 2n

2n+1 states. By Theo-
rem 4 from [BKKS13] it means that we can use D as a memory structure for the
automaton Cn to recognise Ln. Therefore, we focus on the product Cn × D with
the acceptance condition taken from Cn. What is important is that Cn × D has
to follow the transitions of Cn. We know that Cn × D is a deterministic co-Büchi
automaton with strictly less than 2n states and L(Cn × D) = Ln.

We will use the symbol ρ to denote finite and infinite runs of Cn × D. For a
given run ρ there are possibly many ω-words α that induce this run, since only
the sequence of states is considered in ρ.

The rest of the argument aims at providing an ω-word α that belongs to Ln

but is rejected by the product automaton Cn ×D. Intuitively, the construction of
α requires to balance between the two aims: we need to infinitely often force the
product automaton Cn × D to take a rejecting transition of Cn but at the same
time to ensure that there is at least one infinite path in Graph(α). The ω-word
α, an infinite path in Graph(α), and the rejecting run of Cn × D over α will be
constructed as a limit of inductively constructed finite approximations. We will
not control exactly the way Cn ×D works in every position of our approximation,
we will be interested only in some checkpoints controlled by partial runs.

Definition 4. A partial run is a finite partial mapping τ : ω ⇀ QCn × QD such
that τ(0) is defined and equal to (⊥, qD

I).
A partial run τ is rejecting if all its states are of the form (⊥, m).
By τ ⊆ ρ we denote the fact that a run ρ agrees with τ wherever τ is defined.
The length of τ is the maximal moment of time k such that τ(k) is defined.

Note that the domain of a partial run τ does not have to be an initial segment
of ω. The following definition is crucial.

On Determinisation of Good-for-Games Automata 305

Definition 5. Let τ be a partial run of length k. We say that a value i ∈
{0, . . . , 2n − 1} is alive in τ if there exists an ω-word α such that for the run
ρ of Cn × D over α we have τ ⊆ ρ and there exists a path p : {0, 1, . . . , k} →
{0, 1, . . . , 2n − 1} in Graph(α) that starts in the moment of time 0 and ends in
the moment of time k with the value i (i.e. p(k) = i).

Note that in the above definition we actually care only about the first k
letters of α. However, it is cleaner to consider ω-words α here.

τ :

α:

Graph(α):

ρ:

time:

? ? ? ? ? ?(q0, m0) (q6, m6) (q8, m8)

0
1
2
3

0

σ

1

π

2

σ

3

�

4

π

5

σ

6

σ

7

� . . .

8

. . .

. . .

. . .

. . .

. . .

(q0, m0) (q1, m1) (q2, m2) (q3, m3) (q4, m4) (q5, m5) (q6, m6) (q7, m7) (q8, m8)

Fig. 2. An example of a partial run τ and an ω-word α that witnesses the fact that 2
is alive in τ . ρ is the run of Cn × D over α and the states of ρ and τ agree wherever
defined. The dashed path is the path witnessing that 2 is alive in τ .

Figure 2 depicts a partial run and a witness that the value i = 2 is alive.
Our aim is to construct a sequence of partial rejecting runs of increasing

lengths τ0 ⊂ τ1 ⊂ . . . such that for all � ∈ N there are at least n alive values in
τ�. It will give a contradiction with our assumptions by the following lemma.

Lemma 6. Assume that there exists a sequence of partial rejecting runs τ0 ⊂
τ1 ⊂ . . . of increasing lengths such that for all � ∈ N there exists an alive value
in τ�. Then there exists an ω-word α ∈ Ln such that the run ρ of Cn × D over α
is rejecting.

Proof. Let k� be the length of τ�. Take any � and assume that i� is a value that
is alive in τ�. Observe that it is witnessed by:

– an ω-word α�,
– a run ρ� of Cn × D over α�, such that τ� ⊂ ρ�,
– a path p� : {0, . . . , k�} → {0, . . . , 2n − 1} in Graph(α�) with p�(k�) = i�.

Now we take a subsequence of (α�, ρ�, p�)�∈N that is point-wise convergent to
a triple

(α, ρ, p) ∈
(

A × (
QCn × QD) × {0, . . . , 2n − 1}

)ω

,

306 D. Kuperberg and M. Skrzypczak

such that:

– ρ is the run of Cn × D over α,
– for infinitely many � we have τ� ⊆ ρ,
– p encodes an infinite path in Graph(α).

To formally construct (α, ρ, p) we can proceed similarly as in the proof of König’s
lemma. We fix (α(i), ρ(i), p(i)) inductively for i = 0, 1, At each moment we
require that infinitely many (α�, ρ�, p�) agree with (α, ρ, p) on the first i positions.
Since for each i there are only finitely many choices of (α(i), ρ(i), p(i)) so we can
fix these values in such a way that still infinitely many (α�, ρ�, p�) agree with
them.

By the properties of (α, ρ, p) we know that ρ is rejecting as it contains
infinitely many times a state of the form (⊥, m). On the other hand, α ∈ Ln

because p is a witness that Graph(α) contains an infinite path.

What remains is to construct the sequence τ� inductively. Our inductive
assumption is that τ� is a partial rejecting run and the values 1, 3, 5, . . . , 2n−1 are
alive in τ� (note that there is n such values). We put τ0 =

[
0 �→ (⊥, qD

I)
]
. Clearly

τ0 satisfies the inductive assumption (in fact all the values i = 0, . . . , 2n − 1 are
alive in τ0).

Let k� be the length of τ�. We construct τ�+1 from τ� by applying some words
to the last state (⊥, m�) = τ�(k�) of τ� and observing the behaviour of Cn × D.

Observe that there are N = 2n words u1, . . . , uN ∈ {ι, σ, π}∗ that encode
distinct permutations P of {0, . . . , 2n − 1} such that for all i ∈ {0, . . . , 2n − 1},
we have �i/2 = �P (i)/2 i.e. such a permutation maps {2i, 2i + 1} to itself.

We can assume that all the words u1, . . . , uN are of equal length by padding
them with ι. Since there are strictly less than N = 2n states of Cn × D, there are
two distinct such words u, u′ leading from (⊥, m�) to the same state (q′

�, m′
�) of

Cn × D. By the construction of Cn × D we know that q′
� ∈ {0, . . . , 2n − 1}.

Assume that the permutations corresponding to u and u′ differ on 2i + 1,
i.e. one of them maps 2i + 1 to 2i and the other to 2i + 1. Let X be the set of
the values {u(1), u(3), . . . , u(2n − 3), u(2n − 1), u′(2i + 1)} (we write here u(i′)
for the value assigned to i′ by the permutation corresponding to u, the same for
u′). By the above observations X contains exactly n + 1 elements.

Consider w ∈ {ι, σ, π}∗ encoding a permutation that maps:

– q′
� to 0,

– X \ {q′
�} to 1, 3, 5, . . . , 2n−1 if q′

� ∈ X,
– X to 1, 3, . . . , 2n−1, and 2 if q′

� /∈ X.

Since w as a permutation maps q′
� to 0, we know that after reading w� from

the state (q′
�, m′

�) the automaton Cn × D reaches a state of the form (⊥, m�+1).
For an illustration of these permutations, see Figure 3.

Fact 7. Consider τ�+1 defined as τ� ∪ [
k� + |u| + |w| + 1 �→ (⊥, m�+1)

]
. By the

definition τ� ⊂ τ�+1, τ�+1 is rejecting, and all the values 1, 3, . . . , 2n−1 are alive
in τ�+1 (it is witnessed by the fact that these values were alive in τ� and by the
words uw� and u′w�).

On Determinisation of Good-for-Games Automata 307

τ�+1:

α/α′:

Graph(α):

ρ/ρ′:

time:

(⊥, m�) ? ? (⊥, m�+1)

(⊥, m�) (3, m′
�) (0, m′′

�) (⊥, m�+1)

k� k� + |u| k�+|u|+|w| k�+1

u/u′ w �

0
1
2
3

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 3. The behaviour of Cn ×D over uw� and u′w�. The alive values are in circles, only
edges between the alive values are drawn. The dashed edge corresponds to the action
of the word u′ on the value 1 (u and u′ differ on this value). X is the set of values
in circles at the moment of time k� + |u|. q′

� = 3 is mapped to 0 by the permutation
corresponding to w, the other elements of X are mapped to 1 and 3.

Therefore, we have constructed τ�+1 that satisfies the inductive invariant.
This concludes the inductive construction of the sequence (τ�)�∈N. By Lemma 6
it finishes the proof of Theorem 1.

4 Büchi Case

In this section we discuss the quadratic upper bound for the state-complexity of
determinising Büchi GFG automata, as expressed by the following theorem.

Theorem 8. For every Büchi GFG automaton there exists an equivalent deter-
ministic Büchi automaton with quadratic number of states.

Here we provide some high level overview of the construction. A detailed
description of it can be found in the full version of the paper.

The main part of the construction is an inductive normalisation of a given
Büchi automaton A. The normalisation is guided by the powerset automaton
D having sets of states of A as its states. It turns out that if A is GFG then
L(A) = L(D). During the normalisation we remove some irrelevant transitions
of A and mark some existing transitions as accepting (while ensuring that we
preserve the language L(A) and the fact that A is GFG).

When reaching a fixed-point of the normalisation, we know that A is in cer-
tain formal sense optimal. This optimal A needs not be deterministic. However,
we can prove that there is a function σ witnessing that A is GFG that uses
A as a memory structure. Therefore, by combining A with σ, we can define a
structure of a deterministic Büchi automaton for L(A) over A × A.

308 D. Kuperberg and M. Skrzypczak

5 Recognising GFG Automata

We now investigate the algorithmic complexity of recognising whether a given
automaton is GFG. We provide three results about general GFG-automata,
Büchi GFG automata, and co-Büchi GFG-automata. Let us recall that in gen-
eral, the problem of deciding if a given parity automaton is GFG was shown
in [HP06] to belong to EXPTIME.

Equivalence with Parity Games. The following theorem shows that in gen-
eral, the problem of GFGness of a given parity automaton is at least as hard
as solving parity games. The later is known to be NP ∩ co–NP but there is no
PTIME algorithm known.

Theorem 9. Finding the winner of a parity game of index (i, j) is polynomi-
ally equivalent to deciding whether a given parity automaton of index (i, j) that
accepts all ω-words is GFG.

Indeed, we show that given a parity game G between the players ∃ and ∀, it
is possible to build an automaton A accepting all ω-words, with the same parity
index as G, such that A is GFG if and only if ∃ wins G. In the initial state of
A the automaton is supposed to non-deterministically guess the next letter. If
the guess is correct, we move to an accepting sink state, otherwise we move to
a subautomaton mimicking the game G, where moves of ∀ are represented by
letters and moves of ∃ are represented by a choice of transition. This way A
accepts all ω-words but no GFG strategy can guarantee to reach the accepting
sink state. Therefore, A is GFG only if ∃ has a strategy to win the original
game G. A polynomial reduction from the problem of GFGness of an automaton
accepting all ω-words to a parity game of the same index is an easy consequence
of [HP06].

Recognising Büchi GFG Automata. The upper bounds given in Section 4
allow us to state the following theorem.

Theorem 10. It is in NP to decide whether a given non-deterministic Büchi
automaton A is GFG. Moreover, if A is GFG then we can construct an equivalent
deterministic Büchi automaton in NP.

Recognising co-Büchi GFG Automata.

Theorem 11. Given a non-deterministic co-Büchi automaton, we can decide
whether it is GFG in polynomial time.

The cornerstone of the construction is a game called the Joker Game, defined
relatively to a co-Büchi automaton A. This is a perfect information two players
game played between ∃ and ∀. The set of positions is QA × QA, the initial
position is (qA

I , qA
I), and at a round n starting in (pn, qn) the following choices

are made by the players:

On Determinisation of Good-for-Games Automata 309

– ∀ chooses a letter an ∈ A,
– ∃ chooses a transition pn

an−→ pn+1 of A,
– ∀ chooses a transition qn

an−→ qn+1 of A or plays joker and chooses a
transition pn

an−→ qn+1 of A.

After that the game moves to the position (pn+1, qn+1). Player ∃ wins an infinite
play if either:

– the run (pn)n of A is accepting over (an)n,
– ∀ played infinitely many times joker,
– or the run (qn)n of A is not accepting over (an)n

2.

Intuitively, the Joker Game forces ∃ to produce an accepting run of A over
(an)n sequentially, whenever possible. However, since we cannot put the fact that
(an)n ∈ L(A) into the acceptance condition (it would hide an exponential blow-
up in the acceptance condition). Therefore, we ask ∀ to concurrently produce
a run of A over (an)n. If ∀ manages to produce an accepting run while ∃ fails
to do so, it shows that A is not GFG. The other implication is problematic: the
automaton A may not be GFG but ∃ may win the Joker Game by relying on
the choices made by ∀.

We start by computing in polynomial time the winner of the Joker Game
(a parity game of index (0, 2)) on A. We show that if ∀ wins the Joker Game
then A is not GFG. In the opposite case we are able to build a GFG automaton
B of the same number of states as A that recognises the same language. Then,
using again an appropriate game over A × B we can decide GFGness of A in
polynomial time.

To build the automaton B, we first compute a binary relation ⇀ on the states
of A. This relation is the winning region of yet another game, the safety game,
which is the Joker Game where seeing a rejecting transition means immediate
loss. By referring to the Joker Game we prove that for all q there is p such that
p ⇀ p and p ⇀ q.

This means that we can construct a deterministic safety automaton D with
states p such that p ⇀ p. Every ω-word that is accepted by A has a suffix
accepted by D from some state p. It remains to add non-deterministic rejecting
transitions to D in order to allow it to guess such a state p. For this, we compute
an equivalence relation E on the states of A reflecting simultaneous reachability.
We then use this relation to build B by connecting E-equivalent states of D
using rejecting transitions. We finally show that the automaton B is GFG and
recognises L(A). The strategy witnessing GFGness of B uses the same intuition
as the one in Lemma 3

6 Conclusion

The main result of this paper is a solution of the open problem asking what is the
state-complexity of determinising parity GFG automata over ω-words. We prove
2 Formally, only the suffix of (qn)n after the last joker played by ∀ is a run of A over

the suffix of (an)n.

310 D. Kuperberg and M. Skrzypczak

that for co-Büchi GFG automata (and therefore all higher parity indices) the
exponential blow-up cannot be avoided. For the remaining case of Büchi GFG
automata we provide a construction of an equivalent deterministic automaton
with quadratic number of states.

Using the tools developed to prove the above results, we are additionally able
to study the complexity of the decision problem of verifying if a given parity
automaton is GFG. We prove that for general parity automata the problem
is at least as hard as solving parity games (for which no PTIME algorithm is
known). Then we focus on the two subcases of Büchi and co-Büchi automata.
In the case of Büchi automata we provide a very simple NP algorithm based
on our determinisation construction. In the case of co-Büchi automata we have
a bit more involved PTIME decision procedure. One of the advantages of the
procedure is that, even if the automaton itself is not GFG, there could be cases
when the procedure builds an equivalent GFG automaton with the same number
of states. The possibilities of exploiting this fact are still to be studied.

Hopefully, the results presented in this paper will shed some light on possible
efficient applications of GFG automata in the classical problems of verification.

For future research, in the Büchi case, both the exact time-complexity
(between PTIME and NP) and state-complexity (between linear and quadratic)
of the determinisation algorithm are still to be clarified.

The complexity of deciding GFGness for general parity automata is still open,
with a lower bound of solving parity games and an EXPTIME upper bound.

References
BKKS13. Boker, U., Kuperberg, D., Kupferman, O., Skrzypczak, M.: Nondetermin-

ism in the presence of a diverse or unknown future. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II.
LNCS, vol. 7966, pp. 89–100. Springer, Heidelberg (2013)

BL69. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-
state strategies. Transactions of the American Mathematical Society 138,
295–311 (1969)

Col09. Colcombet, T.: The theory of stabilisation monoids and regular cost func-
tions. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 139–150.
Springer, Heidelberg (2009)

Col12. Colcombet, T.: Forms of determinism for automata (invited talk). In:
STACS, pp. 1–23 (2012)

HP06. Henzinger, T.A., Piterman, N.: Solving games without determinization. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg
(2006)

KMBK14. Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games
automata good for probabilistic model checking? In: Dediu, A.-H., Mart́ın-
Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol.
8370, pp. 453–465. Springer, Heidelberg (2014)

McN66. McNaughton, R.: Testing and generating infinite sequences by a finite
automaton. Information and Control 9(5), 521–530 (1966)

Rab72. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. Amer-
ican Mathematical Society, Boston (1972)

Owicki-Gries Reasoning for Weak Memory Models

Ori Lahav(B) and Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
orilahav@mpi-sws.org

Abstract. Weshow that even in the absence of auxiliary variables, thewell-known
Owicki-Gries method for verifying concurrent programs is unsound for weak
memory models. By strengthening its non-interference check, however, we obtain
OGRA, a program logic that is sound for reasoning about programs in the release-
acquire fragment of the C11memorymodel.We demonstrate the usefulness of this
logic by applying it to several challenging examples, ranging from small litmus
tests to an implementation of the RCU synchronization primitives.

1 Introduction

In 1976, Owicki andGries [10] introduced a proof system for reasoning about concurrent
programs, which formed the basis of rely/guarantee reasoning. Their system includes
the usual Hoare logic rules for sequential programs, a rule for introducing auxiliary
variables, and the following parallel composition rule:

{P1} c1 {Q1} {P2} c2 {Q2} the two proofs are non-interfering

{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}
This rule allows one to compose two verified programs into a verified concurrent program
that assumes both preconditions and ensures both postconditions. The soundness of this
rule requires that the two proofs are non-interfering, namely that every assertion R in
the one proof is stable under any {P}x := e (guarded) assignment in the other and vice
versa; i.e., for every such pair, R ∧ P � R[e/x].

The Owicki-Gries system (OG) assumes a fairly simple but unrealistic concurrency
model: sequential consistency (SC) [7]. This is essential: OG is complete for verifying
concurrent programs under SC [12], and is therefore unsound under a weakly consistent
memory semantics, such as TSO [9]. Auxiliary variables are instrumental in achieving
completeness—without them, OG is blatantly incomplete; e.g., it cannot verify that

{x = 0} x
at:= x + 1 ‖ x

at:= x + 1 {x = 2} (where “ at:=” denotes atomic assignment).
Nevertheless, many useful OG proofs do not use auxiliary variables, and one might

wonder whether such proofs are sound under weak memory models. This is sadly not
the case. Figure 1 presents an OG proof that a certain program cannot return a = b = 0
whereas under all known weak memory models it can in fact do so. Intuitively speaking,
the proof is invalid underweakmemory because the two threadsmay have different views

Due to space limits, supplementary material including full proofs and further examples is
available at: http://plv.mpi-sws.org/ogra/.

© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 311–323, 2015.
DOI: 10.1007/978-3-662-47666-6_25

http://plv.mpi-sws.org/ogra/

312 O. Lahav and V. Vafeiadis

{
x = 0 ∧ y = 0 ∧ a �= 0

}
{
a �= 0

}

x := 1;{
x �= 0

}

a := y{
x �= 0

}

{�}

y := 1;{
y �= 0

}

b := x{
y �= 0 ∧ (a �= 0 ∨ b = x)

}
{
a �= 0 ∨ b �= 0

}

Non-interference checks are trivial. For example,

y �= 0 ∧ (a �= 0 ∨ b = x) ∧ a �= 0
� y �= 0 ∧ (a �= 0 ∨ b = 1)

and y �= 0 ∧ (a �= 0 ∨ b = x) ∧ x �= 0
� y �= 0 ∧ (y �= 0 ∨ b = x)

show stability of the last assertion of thread II
under {a �= 0}x := 1 and {x �= 0}a := y.

Fig. 1. OG proof that the “store buffering” program cannot return a = b = 0. This can also
be proved in the restricted OG system with one (stable) global invariant [11]. Note that OG’s
“indivisible assignments” condition (3.1) is met: assignmentsmention at most one shared location.

of memory before executing each command. Thus, when the second thread terminates,
the first threadmay perform a := y reading y = 0 and storing 0 in a, thereby invalidating
the second thread’s last assertion. We note that y = 0 was also readable by the second
thread, albeit at an earlier point (before the y := 1 assignment). This is no accident, and
this observation is essential for soundness of our proposed alternative.

In this paper we identify a stronger non-interference criterion that does not assume
SC semantics. Thus, while considering the effect of an assignment {P}x := y in thread
I on the validity of an assertion R in thread II, one does not get to assume that R holds
for the view of thread I while reading y. In fact, in some executions, the value read
for y might even be inconsistent with R. Instead, the only allowed assumption is that
some assertion that held not later than R in thread II was true while reading y. Thus our
condition for checking stability of R under {P}x := y is that R ∧ P � R[v/x] for every
value v of y that is consistent with P and some non-later assertion of thread II.

We show that OG with our stronger non-interference criterion is sound under the
release-acquire (RA) fragment of the C11 memory model [6], which exhibits a good
balance between performance and mathematical sanity (see, e.g., [16,17]). Soundness
under TSO follows, as TSO behaviors are all observable under RA (see [1]). Formalizing
the aforementioned intuitions into a soundness proof forRAexecutions is far from trivial.
Indeed, RA is defined axiomatically without an operational semantics and without the
notion of a state. As a basis for the soundness proof, we introduce such a notion and
study the properties of sequences of states observed by different threads.

We believe that the results of this paper may provide new insights for understanding
weak memory models, as well as a simple and useful method for proving partial correct-
ness of concurrent programs. We demonstrate the applicability of our logic (which we
call OGRA) with several challenging examples, ranging from small litmus tests to an
implementation of the read-copy-update (RCU) synchronization primitives [3]. We also
provide support for fence instructions by implementing them as RMWs to an otherwise
unused location and for a simple class of auxiliary variables, namely ghost values.

Related Work. Aiming to understand and verify high-performance realistic concurrent
programs, program logics for weak memory models have recently received a lot of
attention (see, e.g., [4,13,14,16,18]). Most of these logics concern the TSO memory
model. Only two—RSL [18] and GPS [16]—can handle RA, but have a fairly com-
plex foundation being based on separation logic. The most advanced of the two logics,
GPS, has been used (with considerable ingenuity) to verify the RCU synchronization

Owicki-Gries Reasoning for Weak Memory Models 313

primitives [15], but simpler examples such as “read-read coherence” seem to be beyond
its power (see Fig. 8). Finally, Cohen [2] studies an alternative memory model under
which OG reasoning can be performed at the execution level.

2 Preliminaries

In this section, we present a simplified programming language, whose semantics adheres
to that of the release-acquire fragment of C11’s memory model [1]. We assume a finite
set of locations Loc = {ν1, ... , νM }, a finite set Val of values with a distinguished value
0 ∈ Val, and any standard interpreted language for expressions containing at least all
locations and values. We use x, y, z as metavariables for locations, v for values, e for
expressions, and denote by e(x1, ... , xn) an expression in which x1, ... , xn are the only
mentioned locations. The language’s commands are given by the following grammar:

c ::= skip | if e(x) then c else c | while e(x) do c | c ; c | c ‖ c |
x := v | x := e(y) | x

y,z:= e(y, z) | x
at:= e(x)

To keep the presentation simple, expressions in assignments are limited to mention at
most two locations, and those in conditionals and loops mention one location. Assign-
ments of expression mentioning two locations also specify the order in which these
locations should be read (if one of them is local, this has no observable effect). The com-

mand x
at:= e(x) is an atomic assignment corresponding to a primitive read-modify-write

(RMW) instruction and, as such, mentions only one location.1

Now, as in the C11 formalization, the semantics of a program is defined to be its set
of consistent executions [1]. An execution G is a triple 〈A, L , E〉 where:
• A ⊆ N is a finite set of nodes. We identify G with this set, e.g., when writing a ∈ G.
• L is a function assigning a label to each node, where a label is either 〈S〉 (“Skip”), a
triple of the form 〈R, x, vr 〉 (“Read”), a triple of the form 〈W, x, vw〉 (“Write”), or a
quadruple of the form 〈U, x, vr , vw〉 (“Update”). For T ∈ {S,R,W,U}, we denote by
G.T the set of nodes a ∈ A for which T is the first entry of L(a), while G.Tx denotes
the set of a ∈ G.T for which x is the second entry of L(a). In addition, L induces the
partial functions G.loc : A → Loc, G.valr : A → Val, and G.valw : A → Val that
respectively return (when applicable) the x , vr and vw components of a node.

• E ⊆ (A × A) ∪ (A × A × Loc) is a set of edges, such that for every triple 〈a, b, x〉 ∈
E (reads-from edge) we have a ∈ G.Wx ∪ G.Ux , b ∈ G.S ∪ G.Rx ∪ G.Ux , and
G.valw(a) = G.valr (b) whenever b �∈ G.S.2 The subset E ∩ (A × A) is denoted
by G.po (program order), and G.Ex denotes the set {〈a, b〉 ∈ A × A | 〈a, b, x〉 ∈ E}
(x-reads-from) for every x ∈ Loc. Finally, G.Eall denotes the set G.po∪⋃

x∈Loc Ex .
For all these notations, we often omit the “G.” prefix when it is clear from the context.
Given an execution G = 〈A, L , E〉 and a set E ′ of edges we write G ∪ E ′ for the triple
〈A, L , E ∪ E ′〉 and G \ E ′ for 〈A, L , E \ E ′〉.
1 Unlike usual OG [10], our assignments can mention more than one shared variable. In fact, our
formal development does not differentiate between local and shared variables.

2 Reads-from edges 〈a, b, x〉 with b ∈ G.S are used for defining visible states (see Definition 7).

314 O. Lahav and V. Vafeiadis

�skip� = SG
�if e(x) then c1 else c2� = ⋃{RG(x, v); �ci � | v ∈ Val, i ∈ {1, 2}, �e�(v) = 0 iff i = 2}
�while e(x) do c� = ⋃

n≥0(
⋃{RG(x, v) | v ∈ Val, �e�(v) �= 0}; �c�)n;⋃{RG(x, v) | v ∈ Val, �e�(v) = 0}

�c1; c2� = �c1� ; �c2�
�c1 ‖ c2� = SG; (�c1� ‖ �c2�);SG
�x := v� = WG(x, v)

�x := e(y)� = ⋃{RG(y, v);WG(x, �e�(v)) | v ∈ Val}
�x

y,z:= e(y, z)� = ⋃{RG(y, vy);RG(z, vz);WG(x, �e�(vy , vz)) | vy , vz ∈ Val}
�x

at:= e(x)� = ⋃{UG(x, v, �e�(v)) | v ∈ Val}
Fig. 2. Mapping of commands to sets of executions

Definition 1. A node a in an execution G is initial (terminal) in G if 〈b, a〉 �∈ Eall

(〈a, b〉 �∈ Eall) for every b ∈ G. An edge 〈a, b〉 ∈ po is initial (terminal) in G if a is
initial (b is terminal) in G.

Definition 2. Let G = 〈A, L , E〉 and G ′ = 〈A′, L ′, E ′〉 be two executions with disjoint
sets of nodes.
• The execution G ‖ G ′ is given by 〈A ∪ A′, E ∪ E ′, L ∪ L ′〉.
• The execution G; G ′ is given by (G ‖ G ′) ∪ (O × I), where O is the set of terminal
nodes of G, and I is the set of initial nodes of G ′.

• Given n ≥ 0, Gn is inductively defined by G0 = 〈∅,∅,∅〉 and Gn+1 = Gn; G.
The above operations are extended to sets of executions in the obvious way (e.g.,G;G′ =
{G; G ′ | G ∈ G, G ′ ∈ G′, G; G ′ is defined}).
Definition 3. Given x ∈ Loc and v ∈ Val, an 〈x, v〉-read gadget is any execution of
the form 〈{a}, {a �→ 〈R, x, v〉},∅〉. 〈x, v〉-write gadgets, 〈x, vr , vw〉-update gadgets and
skip gadgets are defined similarly.RG(x, v),WG(x, v), UG(x, vr , vw) and SG denote,
respectively, the sets of all 〈x, v〉-read gadgets, all 〈x, v〉-write gadgets, all 〈x, vr , vw〉-
update gadgets, and all skip gadgets.

Using these definitions, the mapping of commands to (sets of) executions is given in
Fig. 2. Note that every execution G ∈ �c� for some command c satisfies G.Eall = G.po,
and has a unique initial node that can reach any node, and a unique terminal node that
can be reached from any node. We refer to such executions as plain. However, many of
these executions are nonsensical as they can, for instance, read values never written in
the program. We restrict our attention to consistent executions, as defined next.

Definition 4. A relation R is called a modification order for a location x ∈ Loc in
an execution G if the following hold: (i) R is a total strict order on Wx ∪ Ux ; (i i) if
〈a, b〉 ∈ E∗

all then 〈b, a〉 �∈ R; (i i i) if 〈a, b〉 ∈ E+
all and 〈c, b〉 ∈ Ex then 〈c, a〉 �∈ R;

and (iv) if 〈a, b〉, 〈b, c〉 ∈ R and c ∈ U then 〈a, c〉 �∈ Ex .

Definition 5. An execution G = 〈A, L , E〉 is called:
• complete if for every b ∈ R ∪ U, we have 〈a, b〉 ∈ Eloc(b) for some a ∈ W ∪ U.
• coherent if Eall is acyclic, and there is a modification order in G for each x ∈ Loc.

Owicki-Gries Reasoning for Weak Memory Models 315

Fig. 3. Ignoring the dashed edges, this graph G
is an initialized execution of the “store buffer-
ing” program (i.e., G ∈ WG(�); �c�, Def. 8).
G is consistent as it can be extended with the
set E ′ of the two dashed reads-from edges.

Fig. 4. Ignoring the dashed edges, we have the
snapshot of G∪E ′ of Fig. 3 at 〈p, q〉with respect
to {r}. Adding the dashed edges results in a coher-
ent execution; so the state {x �→ 1, y �→ 1,
a �→ 1, b �→ 1} is visible at 〈p, q〉 in G ∪ E ′.

• consistent if G ∪ E ′ is complete and coherent for some E ′ ⊆ A × A × Loc.

To illustrate these definitions, Fig. 3 depicts a consistent non-SC execution of the
“store buffering” program of Fig. 1 together with the implicit variable initializations.

While our notations are slightly different, the axiomatic semantics presented above
corresponds to the semantics of C11 programs (see [1]) in which all locations are atomic,
reads are acquire reads, writes are releasewrites, and updates are acquire-release RMWs.
In addition, we do not allow reads from uninitialized locations. C11’s “happens-before”
relation corresponds to our E+

all .

3 An Owicki-Gries Proof System for Release-Acquire

In this section, we present OGRA—our logic for reasoning about concurrent programs
under release-acquire. As usual, the basic constructs are Hoare triples of the form
{P} c {Q}, where P and Q are assertions and c is a command. To define validity of
such a triple (in the absence of usual operational semantics), we formalize the notion of
a visible state, taken to be a function from Loc to Val.

Definition 6. A snapshot of an execution G = 〈A, L , E〉 at an edge 〈a, b〉 ∈ po
with respect to a set B ⊆ A of nodes, denoted by S(G, 〈a, b〉, B), is the execution
〈A′ � {b}, L|A′ ∪ {b �→ 〈S〉}, E |A′ ∪ {〈a, b〉}〉, where:
• A′ = {a′ ∈ A \ {b} | ∃c ∈ B ∪ {a}. 〈a′, c〉 ∈ E∗

all} and• E |A′ = E ∩ ((A′ × A′) ∪ (A′ × A′ × Loc)).

Definition 7. Let G be an execution, and let 〈a, b〉 ∈ po.
• A function D : Loc → N is called a 〈G, 〈a, b〉〉-reader of a state σ : Loc → Val
if D(x) ∈ Wx ∪ Ux and valw(D(x)) = σ(x) for every x ∈ Loc, and the execution
S(G, 〈a, b〉, D[Loc]) ∪ {〈D(x), b, x〉 | x ∈ Loc} is coherent.

• A state σ is called visible at 〈a, b〉 in G if there is a 〈G, 〈a, b〉〉-reader of σ .
• An assertion P holds at 〈a, b〉 in G if σ |� P for every state σ visible at 〈a, b〉 in G.

316 O. Lahav and V. Vafeiadis

In essence, the snapshot restricts the execution to the edge 〈a, b〉, all nodes in B, and
all prior nodes and edges, and replaces the label of b by a skip. For a state to be visible
at 〈a, b〉, additional reads-from edges should be added. For an example, see Fig. 4.

Definition 8. For a state σ , letWG(σ) beWG(ν1, σ (ν1)) ‖ ... ‖ WG(νM , σ (νM)), the
set of all σ -initializations. Given an assertion P , WG(P) = ⋃{WG(σ) | σ |� P}.
An execution G is called initialized if G = (G1; G2) ∪ E for some G1 ∈ WG(�),
plain execution G2, and set E ⊆ A1 × A2 × Loc of edges. It can be shown that if G is
coherent and initialized, then at least one state is visible at every program order edge.

Definition 9. AHoare triple {P} c {Q} is valid if Q holds at the terminal edge ofG∪E ′ in
G∪E ′ for every executionG = 〈A, L , E〉 inWG(P); �c�;SG and set E ′ ⊆ A×A×Loc,
such that G ∪ E ′ is a complete and coherent execution.

OG-style reasoning is often judged as non-compositional because it refers to non-
interference of proof outlines that cannot be checked based solely on the two input
Hoare triples. A straightforward remedy is to use a rely/guarantee-style presentation
of OG, that permits compositional reasoning. In this case, the rely component, denoted
by R, consists of a set of assertions that are assumed to be stable under assignments
performed by other threads. In turn, the guarantee component, denoted by G, is a set of
guarded assignments, that is assignments together with their immediate preconditions.
Roughly speaking, a validity of an OG judgmentR;G � {P} c {Q} amounts to: “every
terminating run of c starting from a state in P ends in a state in Q, and performs only
assignments in G, where each of which is performed while satisfying its guard; and
moreover, the above holds in parallel to any run of a program c′, provided that the
assertions inR are stable under each of the assignments performed by c′.”

Now, as demonstrated in the introduction, reasoning under RA requires a richer rely
condition, as stability of an assertion in thread I under a guarded assignment of the
form {P}x := e(y) in thread II should be checked for all values readable for y in some

non-later point of thread I. Similarly, stability under {P}x
y,z:= e(y, z) should cover all

values readable for y and z in two non-later points. Hence, we takeR to consist of pairs
of assertions, where the first component of each pair describes the current state and the
second summarizes all non-later states. This leads us to the following definitions.

Definition 10. An OG judgment R;G � {P} c {Q} extends a Hoare triple with two
extra components:
• A finite setR of pairs of the form R�C , where R and C are assertions. We writeRR

for
∨{R | R�_ ∈ R} and RC for

∧{C | _�C ∈ R}. We also writeR ≤ R′ for such
sets if for every R�C ∈ R there exists C ′ such that R�C ′ ∈ R′ and C � C ′.

• A finite set G of guarded assignments, i.e., pairs of the form {R}c, where R is an
assertion and c is an assignment command. We write G ≤ G′ for such sets if for every
{R}c ∈ G there exists R′ such that {R′}c ∈ G′ and R � R′.

Definition 11. A pair R�C is stable under {P}c if one of the following holds:
• c has the form x := v and R ∧ P � R[v/x];
• c has the form x := e(y) and R ∧ P � R[�e�(vy)/x] for every vy ∈ Val such that

C ∧ P �� y �= vy (i.e., for every vy ∈ Val such that C ∧ P ∧ y = vy is satisfiable);

Owicki-Gries Reasoning for Weak Memory Models 317

(conseq)

R;G � {P} c {Q}
P ′ � P Q � Q′ R ≤ R′ G ≤ G′

R′;G′ � {
P ′} c

{
Q′} (seq)

R1;G1 � {P} c1 {R}
R2;G2 � {R} c2 {Q} RR

1 � RC
2

R1 ∪ R2;G1 ∪ G2 � {P} c1; c2 {Q}

(skip)
{P�P} ≤ R

R; ∅ � {P}skip {P}

(par)
R1;G1 � {P1} c1 {Q1} R2;G2 � {P2} c2 {Q2}

Q1 ∧ Q2 � Q R1;G1 and R2;G2 are non-interfering

R1 ∪ R2 ∪ {Q�(RR
1 ∨ RR

2 ∨ Q)};G1 ∪ G2 � {P1 ∧ P2} c1 ‖ c2 {Q}

(assn0)
P � Q[v/x] {P�P, Q�(P ∨ Q)} ≤ R

R; {{P}x := v} � {P} x := v {Q}

(assn1)
P � Q[e(y)/x] {P�P, Q�(P ∨ Q)} ≤ R
R; {{P}x := e(y)} � {P} x := e(y) {Q}

(assn2)
P � Q[e(y, z)/x] {P�P, Q�(P ∨ Q)} ≤ R

{(P ∧ (y = v))�P | v ∈ Val} ≤ R
R; {{P}x

y,z:= e(y, z)} � {P} x
y,z:= e(y, z) {Q}

(assnat)
P � Q[e(x)/x] {P�P, Q�(P ∨ Q)} ≤ R
R; {{P}x

at:= e(x)} � {P} x
at:= e(x) {Q}

(ite)
{P�P} ≤ R P � RC

R;G � {P ∧ (e(x) �= 0)} c1 {Q}
R;G � {P ∧ (e(x) = 0)} c2 {Q}

R;G � {P}if e(x) then c1 else c2 {Q}

(while)
P�_ ∈ R RR � RC P ∧ (e(x) = 0) � Q

R;G � {P ∧ (e(x) �= 0)} c {P}
R ∪ {Q�(RR ∨ Q)};G � {P}while e(x) do c {Q}

Fig. 5. Owicki-Gries proof system for release-acquire.

• c has the form x
y,z:= e(y, z) and R ∧ P � R[�e�(vy, vz)/x] for every vy, vz ∈ Val,

such that C ∧ P �� y �= vy and C ∧ P �� z �= vz ; or

• c has the form x
at:= e(x) and R ∧ P � R[e/x].

The proof system for deriving OGRA’s judgments is given in Fig. 5. The rules
are essentially those of Owicki and Gries [10] with minor adjustments due to our
rely/guarantee style presentation and the more complex form of the R component. (To
assist the reader, the supplementary material includes a similar presentation of usual
OG.) Typically, we require the preconditions and postconditions to be included in R,
and make sure their second components keep track of (at least) all non-later assertions:
for example, all the assignment rules require {P�P, Q�(P ∨ Q)} ≤ R.

The rule for parallel composition (par) allows composing non-interfering judgments.
Its precondition is the conjunction of the preconditions of the threads, while its postcon-
dition, Q, is any stable assertion implied by the conjunction of the thread postconditions.
(The asymmetry is because of the second components of theR entries: the states prior to
the end of the parallel compositions are the union of those of each thread, and hence the
stability of Q does not necessarily follow from that of Q1 and Q2.) Non-interference is
checked for every rely condition of one thread and guarded assignment in the guarantee
component of the other:

Definition 12. R1;G1 and R2;G2 are non-interfering if every R�C ∈ Ri is stable
under every {P}c ∈ G j for i �= j .

318 O. Lahav and V. Vafeiadis

{
x = 0

}
{�}

m := 42;{
m = 42

}

x := 1{�}

{
x �= 0 → m = 42

}

while x = 0 do skip;{
m = 42

}

a := m{
a = 42

}
{
a = 42

}

Fig. 6. Proof outline for a simple
message passing idiom

{
f = 0

}
{

f ∈ {0, 2}}
x := 1;{

f ∈ {0, 2} ∧ x = 1
}

f
at:= 10 f + 1;{

f ∈ {1, 12, 21} ∧ x = 1
}

a := y{
f ∈ {1, 12, 21} ∧ x = 1 ∧
(f = 21 → a = y)

}

{
f ∈ {0, 1}}

y := 1;{
f ∈ {0, 1} ∧ y = 1

}

f
at:= 10 f + 2;{

f ∈ {2, 12, 21} ∧ y = 1
}

b := x{
f ∈ {2, 12, 21} ∧ y = 1 ∧
(f = 12 → b = x)

}

{
a = 1 ∨ b = 1

}

Fig. 7. Proof outline for “store buffering” with fences

{
x = a = c = 0

}

{
(x �= 1 ∧ a �= 1)

� x �= 1

}

x := 1{�}

{
(x �= 2 ∧ c �= 2)

� x �= 2

}

x := 2{�}

{�}

a := x;{�}

b := x{
a = 1 ∧ b = 2 → x = 2

}

{�}

c := x;{�}

d := x{
c = 2 ∧ d = 1 → x = 1

}
{
a = 1 ∧ b = 2 ∧ c = 2 → d �= 1

}

Fig. 8. Proof outline for read-read coherence test (example CoRR2 in [8])

The consequence rule (conseq) allows strengthening the precondition (P ′ � P),
weakening the postcondition (Q � Q′), increasing the set of assertions required to be
stable (R ≤ R′), and increasing the set of allowed guarded assignments (G ≤ G′).

The sequential composition rule (seq) collects the assertions and allowed assign-
ments of both commands, and checks thatRR

1 � RC
2 . This ensures that stability of c2’s

assertions would take into account all the states of c1, that now become previous states.
The next interesting rule is assn2 concerning assignments with expressions reading

two variables. The rule requires that the value of the first variable being read (y) is stable
assuming P also holds. This check is needed because of the way we interpret assertions
as snapshot reads differs from the way that programs read the variables (one at a time):
the stability check ensures that the difference is not observable. Note that the stability
of y is trivial in case that there are no assignments to it in other threads.

Finally, the rules for conditionals and while-loops are standard: as with the seq rule,
we require that the second component ofR has taken into account all earlier states, and
include the initial precondition in the set of stable assertions.

We can now state our main theorem, namely the soundness of OGRA.

Theorem 1. If R;G � {P} c {Q} is derivable, then {P} c {Q} is valid.

Before proving this theorem, we provide a few example derivations. The derivations
are presented in a proof outline fashion. For each thread, the set R consists of all the
assertions in its proof outline, with the second component being � (all values are possi-
ble) unless mentioned otherwise. The set G consists of all the assignments in the proof
outline guarded by their immediate preconditions.

Our first example, shown in Fig. 6, is a simple message passing idiom. Thread I
initializes a message m to 42 and then raises a flag x ; thread II waits for x to have a

Owicki-Gries Reasoning for Weak Memory Models 319

non-zero value and then reads m, which should have value 42. To prove this, thread II
assumes the invariant x �= 0 → m = 42 that holds initially and is stable.

Our next example, shown in Fig. 7, is a variant of the “store buffering” program (see
Fig. 1) that uses fences to restore sequential consistency. Fence instructions are imple-
mented as RMWs to a distinguished location f . The RA semantics enforces the corre-
sponding update nodes to be linearly ordered by E∗

all , so this implementation imposes a
synchronization between every pair of fences. These fences are stronger than C11’s SC
fences, as they restore full SC when placed between every pair of consecutive instruc-
tions. While any atomic assignment to f will have this effect, we choose commands that
record the exact order in which the fences are linearized. By referring to this order in
the proof, we can easily show that the outcome a = b = 0 is not possible.

Our third example, shown in Fig. 8, is a coherence test, demonstrating that threads
cannot observe writes to the same location happen in different orders. The program
consists of two independent writes to x and two readers: the goal is to prove that the first
reader cannot read the one write and then the other, while the second reads them in the
reverse order. The key to showing this are the assertions at the end of the reader threads
saying that the value of x cannot change after both assignments have been observed. For
these assertions to be stable, the writers correspondingly assert that the assignments to
x happen before the corresponding reader observes x to have that value. Formally, the
precondition of the x := 1 assignment is (x �= 1 ∧ a �= 1)�x �= 1. This is stable under
the a := x assignment because 1 is not a readable value for x (we have: x �= 1 �� x �= v

iff v �= 1).

3.1 Soundness Proof

We present the main steps in the proof of Fig. 1. Annotations play a crucial role. An
annotation is a function that assigns an assertion to every pair in N × N. An annotation
Θ is valid for an execution G if Θ(〈a, b〉) holds at 〈a, b〉 in G for every 〈a, b〉 ∈ po.

The proof consists of two parts. First, we show that derivability of a judgmentR;G �
{P} c {Q} allows us to construct annotations of executions of c, that are locally valid
and stable, as defined below. Then, we prove that such annotations, for complete and
coherent executions, must also be valid. Theorem 1 is obtained as a corollary.

Definition 13. An annotationΘ is locally valid for an execution G if the following hold
for every 〈a, b〉 ∈ po, where P = ∧

〈a′,a〉∈po Θ(〈a′, a〉) and Q = Θ(〈a, b〉):
• If L(a) = 〈S〉 and a is not initial then P � Q.
• If L(a) = 〈R, x, v〉 then P ∧ (x = v) � Q.
• If L(a) = 〈W, x, v〉 then either P � Q[v/x], or there is a unique node a′ such that

〈a′, a〉 ∈ po, and we have a′ ∈ R and P ∧ (loc(a′) = valr (a′)) � Q[v/x].
• If L(a) = 〈U, x, vr , vw〉 then P ∧ (x = vr) � Q[vw/x].
Definition 14. Let G be an execution. An edge 〈b1, b2〉 ∈ po is called G-before an edge
〈a1, a2〉 ∈ po if either 〈b1, b2〉 = 〈a1, a2〉 or 〈b2, a1〉 ∈ po∗.

Definition 15. Let G be an execution. A node c ∈ G interferes with 〈a, b〉 ∈ po in G
for an annotation Θ if the following hold:

320 O. Lahav and V. Vafeiadis

• 〈c, a〉 �∈ po∗ and 〈b, c〉 �∈ po∗ (c is parallel to 〈a, b〉 in G).
• For all c′ ∈ Rwith 〈c′, c〉 ∈ po and 〈c′, a〉 �∈ po∗, we haveΘ(〈a′, b′〉)∧Θ(〈c′, c〉) ��

loc(c′) �= valr (c′) for some 〈a′, b′〉 ∈ po such that 〈a′, b′〉 is G-before 〈a, b〉 and
〈b′, c′〉 �∈ po∗.

Definition 16. An annotation Θ is stable for an execution G if the following hold for
every 〈a, b〉 ∈ po and node c ∈ W ∪ U that interferes with 〈a, b〉 in G for Θ , where
R = Θ(〈a, b〉) and P = ∧

〈c′,c〉∈po Θ(〈c′, c〉):
• If L(c) = 〈W, x, v〉 then P ∧ R � R[v/x].
• If L(c) = 〈U, x, vr , vw〉 then P ∧ (x = vr) ∧ R � R[vw/x].
Definition 17. A Hoare triple {P} c {Q} is safe if for every G ∈ SG; �c�;SG, there is
an annotation Θ that is locally valid and stable for G, and assigns some assertion P ′,
such that P � P ′, to the initial edge of G, and some assertion Q′, such that Q′ � Q, to
its terminal edge.

Theorem 2. If R;G � {P} c {Q} is derivable for some R,G, then {P} c {Q} is safe.

Proof (Outline). Call a judgment R;G � {P} c {Q} good if for every execution
G ∈ SG; �c�;SG, there exists an annotation Θ that satisfies the conditions given in
Definition 17, as well as the following ones:
• R covers Θ for G, i.e., for every 〈a1, a2〉 ∈ po, there exist P1�C1, ... , Pn�Cn ∈ R
such that

∧
Pi �� Θ(〈a1, a2〉) and Θ(〈b1, b2〉) � ∧

Ci for every 〈b1, b2〉 ∈ po that
is G-before 〈a1, a2〉 (in particular, for 〈b1, b2〉 = 〈a1, a2〉).

• G covers Θ for G, i.e., for every a2 ∈ W∪U, there exist an edge 〈a1, a2〉 ∈ po and an
assertion P ′, such that Θ(〈a1, a2〉) � P ′, and one of the following holds:
- L(a2) = 〈W, x, v〉 and {P ′}x := v ∈ G.
- L(a2) = 〈W, x, v〉, L(a1) = 〈R, y, vy〉, and {P ′}x := e(y) ∈ G for some expression

e(y) such that �e�(vy) = v.
- L(a2) = 〈W, x, v〉, L(a1) = 〈R, z, vz〉, Θ(〈a1, a2〉) � y = vy for some vy ∈ Val,

and {P ′}x
y,z:= e(y, z) ∈ G for some expression e(y, z) such that �e�(vy, vz) = v.

- L(a2) = 〈U, x, vr , vw〉 and {P ′}x
at:= e(x) ∈ G for some expression e(x) such that

�e�(vr) = vw.
Next, by induction on the derivation, one shows that every derivable judgment R;G �
{P} c {Q} is good, and so {P} c {Q} is safe. The non-interference condition is needed
for showing that two annotations of executions G1 and G2 can be joined to a stable
annotation of the parallel composition of G1 and G2. ��

It remains to establish the link from safety of a Hoare triple to its validity.

Theorem 3. Let G be a complete coherent initialized execution. If an annotation Θ is
locally valid and stable for G, then it is valid for G.

The proof (given in the full version of this paper) requires analyzing the relations between
states that are visible on consecutive edges and parallel edges in the RAmemory model.
An alternative equivalent formulation of coherence, based on a new “write-before” rela-
tion, is particularly useful for this task.

Owicki-Gries Reasoning for Weak Memory Models 321

{
r = 0

}

{�}

w := 1;{�}

while r �= 1 do
skip{

r = 1
}

{
r = 0

}

r := w;{
r = 1 → w = 1

}

r := w

{
w = 1 for 1

r �= 1 otherwise{�}
{
r = 1

}

Main non-interference checks:
r = 1 under {r = 0}r := w

r = 1 under {w = 1}r := w

r = 1 under {r �= 1}r := w

r = 1 → w = 1 under {�}w := 1
w = 1 under {�}w := 1

All the checks are trivial.

Fig. 9. Simplified RCU example illustrating the use of the stronger assignment rule

{�}

x := 2;
y := 1

y := 2;
x := 1{

x �= 2 ∨ y �= 2
}

Fig. 10. Auxiliary variables are
necessary under SC

{
x = 〈0, 0〉}{

x ∈ {〈0, 0〉, 〈1, 2〉}}

x
at:= 〈xfst + 1, xsnd + 1〉{

x ∈ {〈1, 1〉, 〈2, 3〉}}

{
x ∈ {〈0, 0〉, 〈1, 1〉}}

x
at:= 〈xfst + 1, xsnd + 2〉{

x ∈ {〈1, 2〉, 〈2, 3〉}}{
x = 〈2, 3〉}

Fig. 11. Verification of the parallel increment example

3.2 A Stronger Assignment Rule

Consider the program shown in Fig. 9, which contains an idiom found in the RCU
implementation (verified in the supplementary material). Thread II reads w and writes
its value to r twice, while thread I sets w to 1 and then waits for r to become 1. The
challenge is to show that after thread I reads r = 1, the value of r does not change; i.e.
that r = 1 is stable under the r := w assignments. For the first r := w assignment, this
is easy because its precondition is inconsistent with r = 1. For the second assignment,
however, there is not much we can do. Stability requires us to consider any value for
w readable at some point by thread I. Our idea is to do a case split on the value that w

reads. If w reads the value 1, then it writes r := 1, and so r = 1 is unaffected. If w reads
a different value, then from the assignment’s precondition, we can derive r �= 1, which
contradicts the r = 1 assertion.

To support such case splits, we provide the following stronger assignment rule. For
simplicity, we consider only assignments of the form x := e(y).

(assn′
1)

P � Q[e(y)/x] {P�P, Q�(P ∨ Q)} ≤ R
For every v ∈ Val: P ∧ (y = v) � Pv {Pv�P} ≤ R

R; {{Pv}x := e(y) | v ∈ Val} � {P} x := e(y) {Q}
The previous assignment rule is an instance of this rule by taking Pv = P for all v.

4 Discussion and Further Research

While OGRA’s non-interference condition appears to be restrictive, we note that it is
unsound for weaker memory models, such as C11’s relaxed accesses because it can

322 O. Lahav and V. Vafeiadis

prove, e.g., message passing, see Fig. 6. We also observe that OGRA’s non-interference
check coincides with the standard OG one for assignments of values (x := v) and

atomic assignments (x
at:= e(x)). Moreover, the non-interference check is irrelevant

for assignments to variables that do not occur in the proof outlines of other threads.
Therefore, standard OG (without auxiliary variables) is sound under RA provided that

all x := e(y) and x
y,z:= e(y, z) assignments write to variables that do not appear in the

proof outlines of other threads. Fig. 6 and 7 provide two such cases in point. In addition,
this entails, for instance, that the program in Fig. 10 cannot be verified in standard OG
without auxiliary variables, as x = 2 ∧ y = 2 is a possible outcome for this program
under RA.

OG’s auxiliary variables, in general, are unsound under weak memory because they
can be used to record the exact thread interleavings and establish completeness under
SC [12]. A simple form of auxiliary state, which we call ghost values, however, is
sound. The idea is as follows: given a program c, one may choose a domain G of
“ghost” values, together with a function α : G → Val, and obtain a program c′ by
substituting each expression e(x1, ... , xn) in c by an expression e′(x1, ... , xn) such that
α(�e′�(g1, ... , gn)) = �e�(α(g1), ... , α(gn)) for all g1, ... , gn ∈ G. The validity of{

P ′} c′ {Q′} entails the validity of {P} c {Q}, provided that the following hold:
• If a state satisfies P then some corresponding ghost state satisfies P ′;
• If a state does not satisfy Q then any corresponding ghost state does not satisfy Q′;
where a ghost state σ ′ : Loc → G corresponds to a state σ : Loc → Val iff α(σ ′(x)) =
σ(x) for every x ∈ Loc. This solution suffices, for instance, to reason about the parallel
increment example, as shown in Fig. 11. There we took G = Val ×N, with α being the
first projection mapping. The second component tracks which of the assignments has
already happened (0: none, 1: the first thread, 2: the second thread, otherwise: both). As

a result, we obtain the validity of {x = 0} x
at:= x + 1 ‖ x

at:= x + 1 {x = 2}.
Analyzing soundness of other restricted forms of auxiliary variables is left for future

work. Such extensions seem to be a prerequisite for obtaining a program logic that is
both sound and complete under RA. Automation of proof search is another future goal.
Our initial experiments show that, at least for the examples in this paper, HSF [5] is
successful in automatically finding proofs in OGRA.

Acknowledgments. We would like to thank the ICALP’15 reviewers for their feedback. This
work was supported by EC FET project ADVENT (308830).

References

1. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ concurrency. In:
POPL 2011, pp. 55–66. ACM (2011)

2. Cohen, E.: Coherent causal memory (2014). CoRR abs/1404.2187
3. Desnoyers, M., McKenney, P.E., Stern, A.S., Dagenais, M.R., Walpole, J.: User-level imple-

mentations of read-copy update. IEEE Trans. Parallel Distrib. Syst. 23(2), 375–382 (2012)
4. Ferreira, R., Feng, X., Shao, Z.: Parameterized memory models and concurrent separation

logic. In:Gordon,A.D. (ed.) ESOP2010. LNCS, vol. 6012, pp. 267–286. Springer,Heidelberg
(2010)

Owicki-Gries Reasoning for Weak Memory Models 323

5. Grebenshchikov, S., Lopes,N.P., Popeea,C.,Rybalchenko,A.: Synthesizing software verifiers
from proof rules. In: PLDI 2012, pp. 405–416. ACM (2012)

6. ISO/IEC 14882:2011: Programming language C++ (2011)
7. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Computers 28(9), 690–691 (1979)
8. Maranget, L., Sarkar, S., Sewell, P.: A tutorial introduction to the ARM and POWER relaxed

memory models (2012). http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
9. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Berghofer, S.,

Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407.
Springer, Heidelberg (2009)

10. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta Informatica
6(4), 319–340 (1976)

11. Owicki, S., Gries, D.: Verifying properties of parallel programs: An axiomatic approach.
Commun. ACM 19(5), 279–285 (1976)

12. Owicki, S.S.: Axiomatic Proof Techniques for Parallel Programs. Ph.D. thesis, Cornell Uni-
versity, Ithaca, NY, USA (1975)

13. Ridge, T.: A rely-guarantee proof system for x86-TSO. In: Leavens, G.T., O’Hearn, P.,
Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 55–70. Springer, Heidelberg (2010)

14. Sieczkowski, F., Svendsen, K., Birkedal, L., Pichon-Pharabod, J.: A separation logic for
fictional sequential consistency. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 736–761.
Springer, Heidelberg (2015)

15. Tassarotti, J., Dreyer, D., Vafeiadis, V.: Verifying read-copy-update in a logic for weak mem-
ory. In: PLDI 2015. ACM (2015)

16. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: Navigating weak memory with ghosts, protocols,
and separation. In: OOPSLA 2014, pp. 691–707. ACM (2014)

17. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Nardelli, F.Z.: Common compiler
optimisations are invalid in the C11 memory model and what we can do about it. In: POPL
2015, pp. 209–220. ACM (2015)

18. Vafeiadis, V., Narayan, C.: Relaxed separation logic: A program logic for C11 concurrency.
In: OOPSLA 2013, pp. 867–884. ACM (2013)

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

On the Coverability Problem for Pushdown
Vector Addition Systems in One Dimension

Jérôme Leroux1, Grégoire Sutre1, and Patrick Totzke2(B)

1 LaBRI, Univ. Bordeaux & CNRS, UMR 5800, Talence, France
2 Department of Computer Science, University of Warwick, Coventry, UK

p.totzke@warwick.ac.uk

Abstract. Does the trace language of a given vector addition system
(VAS) intersect with a given context-free language? This question lies at
the heart of several verification questions involving recursive programs
with integer parameters. In particular, it is equivalent to the coverability
problem for VAS that operate on a pushdown stack. We show decidability
in dimension one, based on an analysis of a new model called grammar-
controlled vector addition systems.

1 Introduction

Pushdown systems are a well-known and natural formalization of recursive pro-
grams. Vector addition systems (VAS) are widely used to model concurrent sys-
tems and programs with integer variables. Pushdown vector addition systems
(pushdown VAS) combine the two: They are VAS extended with a pushdown
stack and allow to model, for instance, asynchronous programs [6] and, more
generally, programs with recursion and integer variables.

Despite the model’s relevance for automatic program verification, most clas-
sical model-checking problems are so far only partially solved. Termination and
boundedness are decidable but their complexity is open [12]. Coverability and
reachability are known to be Tower-hard [9], but their decidability is open. In
fact, reachability and the seemingly simpler coverability problem are essentially
the same for pushdown VAS: there is a simple logarithmic-space reduction from
reachability to coverability that only adds one extra dimension.

Contributions. Our main result is that coverability is decidable for 1-dimensional
pushdown VAS. We work with a new grammar-based model called grammar-
controlled vector addition systems (GVAS), which amounts to VAS restricted to
firing sequences defined by a context-free grammar. In dimension one, this model
corresponds to two-stack pushdown systems where one of the two stacks uses a
single stack symbol. To prove our main result, we show that it is enough to
check finitely many potential certificates of coverability. The latter are parse
trees of the context-free grammar annotated with counter information from
the 1-dimensional VAS. We truncate these annotated parse trees thanks to an

This work was partially supported by ANR project ReacHard (ANR-11-BS02-001).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 324–336, 2015.
DOI: 10.1007/978-3-662-47666-6 26

On the Coverability Problem for Pushdown Vector Addition Systems 325

analysis of the asymptotic behavior of the summary function induced by the
1-dimensional GVAS. Asymptotically-linear summary functions are shown to be
effectively Presburger-definable, which makes the above truncation effective.

Related Work. This paper continues a line of research that investigates the limita-
tions of extending VAS while preserving the decidability of important verification
questions, such as reachability, coverability and boundedness.

The coverability and boundedness problems for ordinary VAS are long known
to be ExpSpace-complete [15,17] and reachability is decidable [8,11,16]. In
recent years, several extensions of VAS have been considered with respect
to decidability and complexity of reachability problems. For instance, Rein-
hardt [18] showed that reachability remains decidable for VAS in which one
dimension can be tested for zero. Branching VAS introduce split-transitions and
can be interpreted as bottom-up or top-down tree acceptors. Alternating VAS
add a limited form of alternation where only one player is affected by the coun-
ters. Coverability and boundedness in these models are 2-ExpTime-complete
[4,5], reachability is Tower-hard for branching and undecidable for alternating
VAS [4,10].

Closer to this paper is the work of Bouajjani, Habermehl and Mayr [3], who
study a model called BPA(Z). These are context-free grammars where nonter-
minals carry an integer parameter that can be evaluated and passed on when
applying a production rule. They show how to compute a symbolic represen-
tation of the reachability set. Their formalism, like the 1-dimensional GVAS
considered here, can model recursive programs with one integer variable. But
while BPA(Z) allows arbitrary Presburger-definable operations on the variable,
it cannot model return values.

Atig and Ganty [1] also study the context-free restriction of the reachabil-
ity relation in vector addition systems. Instead of restricting the dimension of
the VAS, they restrict the context-free language and show that reachability is
decidable for the subclass of indexed context-free languages.

Outline. We first recall some background and notation for context-free grammars.
Section 3 formally introduces grammar-controlled vector addition systems, their
coverability problem and the required technology to solve it in dimension one.
In Section 4, we show the existence of small certificates. These are subsequently
proved to be recursive in two steps. Section 5 shows that, for so-called thin GVAS,
the step relation is effectively Presburger-definable. Then, summary functions are
shown to be computable by reduction to the thin case in Section 6.

2 Preliminaries

We let R
def= R ∪ {−∞,+∞} denote the extended real number line and use the

standard extensions of + and ≤ to R. Recall that (R,≤) is a complete lattice.
Z

def= Z∪ {−∞,+∞} and N
def= N∪ {−∞,+∞} denote the (complete) sublattices

of extended integers and extended natural numbers, respectively.1

1 Our extension of N contains −∞ for technical reasons.

326 J. Leroux et al.

Words. Let A∗ be the set of all finite words over the alphabet A. The empty word
is denoted by ε. We write |w| for the length of a word w in A∗ and wk def= ww · · · w
for its k-fold concatenation. The prefix partial order � over words is defined by
u � v if v = uw for some word w. We write u ≺ v if u is a proper prefix of v. A
language is a subset L ⊆ A∗. A language L is said to be prefix-closed if u � v
and v ∈ L implies u ∈ L.

Trees. A tree T is a finite prefix-closed subset of N∗ satisfying the property that
if tj is in T then ti in T for all i < j. Elements of T are called nodes. Its root is
the empty word ε. An ancestor of a node t is a prefix s � t. A child of a node
t in T is a node tj in T with j in N. A node is called a leaf if it has no child,
and is said to be internal otherwise. The size of a tree T is its cardinal |T |, its
height is the maximal length |t| for any of its nodes t ∈ T .

Context-Free Grammars. A context-free grammar is a triple G = (V,A,R), where
V and A are disjoint finite sets of nonterminal and terminal symbols, and R ⊆
V ×(V ∪A)∗ is a finite set of production rules. The degree of G is δG def= max{|α| |
(X,α) ∈ R}. We write

X 	 α1 | α2 | . . . | αk

to denote that (X,α1), . . . , (X,αk) ∈ R. For all words w,w′ ∈ (V ∪ A)∗, the
grammar admits a derivation step w ==⇒ w′ if there exist two words u, v in
(V ∪ A)∗ and a production rule (X,α) in R such that w = uXv and w′ = uαv.
Let ∗==⇒ denote the reflexive and transitive closure of ==⇒. The language of a
word w in (V ∪ A)∗ is the set LG

w
def= {z ∈ A∗ | w

∗==⇒ z}. A nonterminal X is
said to be derivable from a word w ∈ (V ∪ A)∗ if there exists u, v ∈ (V ∪ A)∗

such that w
∗==⇒ uXv. A nonterminal X ∈ V is called productive if LG

X �= ∅.

Parse Trees. A parse tree for a context-free grammar G = (V,A,R) is a tree T
equipped with a labeling function sym : T → (V ∪A∪{ε}) such that R contains
the production rule sym(t) 	 sym(t0) · · · sym(tk) for every internal node t with
children t0, . . . , tk. In addition, each leaf t �= ε with sym(t) = ε is the only child
of its parent. Notice that sym(t) ∈ V for every internal node t. A parse tree is
called complete when sym(t) ∈ (A∪{ε}) for every leaf t. The yield of a parse tree
(T, sym) is the word sym(t1) · · · sym(t�) where t1, . . . , t� are the leaves of T in
lexicographic order (informally, from left to right). Observe that S

∗==⇒ w, where
S = sym(ε) is the label of the root and w is the yield. Conversely, a parse tree
with root labeled by S and yield w can be associated to any derivation S

∗==⇒ w.

3 Grammar-Controlled Vector Addition Systems

We first recall the main concepts of vector addition systems. Fix k ∈ N. A
k-dimensional vector addition system (shortly, k-VAS) is a finite set A ⊆ Z

k

of actions. Its operational semantics is given by the binary step relations a−−→
over N

k, where a ranges over A, defined by c
a−−→ d if d = c + a. The step

On the Coverability Problem for Pushdown Vector Addition Systems 327

relations are extended to words and languages as expected: ε−−→ is the identity,
za−−→ def= a−−→ ◦ z−−→ for z ∈ A∗ and a ∈ A, and L−−→ def=

⋃
z∈L

z−−→ for L ⊆ A∗. For
every word z = a1 · · ·ak in A∗, we let

∑
z denote the sum a1 + · · ·+ak. Notice

that c
z−−→ d implies d − c =

∑
z, for every c,d ∈ N

k.
The VAS reachability problem asks, given a k-VAS A and vectors c,d ∈ N

k,
whether c

A∗
−−→ d. This problem is known to be ExpSpace-hard [15], but no

upper bound has been established yet. The VAS coverability problem asks, given
a k-VAS A and vectors c,d ∈ N

k, whether c
A∗

−−→ d′ for some vector d′ ≥ d.
This problem is known to be ExpSpace-complete [15,17].

Definition 3.1 (GVAS). A k-dimensional grammar-controlled vector addi-
tion system (shortly, k-GVAS) is a context-free grammar G = (V,A, R) with
A ⊆ Z

k.

We give the semantics of GVAS by extending the binary step relations of
VAS to words over V ∪ A. Formally, for every word w ∈ (V ∪ A)∗, we let w−−→
def= L−−→ where L = LG

w is the language of w. The GVAS reachability problem
asks, given a k-GVAS G = (V,A, R), a nonterminal S ∈ V and two vectors
c,d ∈ N

k, whether c
S−−→ d. The GVAS coverability problem asks, given the

same input, whether c
S−−→ d′ for some vector d′ ≥ d. These problems can

equivalently be rephrased in terms of VAS that have access to a pushdown stack,
called stack VAS in [9] and pushdown VAS in [12]. Lazić [9] showed a Tower
lower bound for these two problems, by simulating bounded Minsky machines.
Their decidability remains open. As remarked in [9], GVAS reachability can be
reduced to GVAS coverability. Indeed, a simple “budget” construction allows
to reduce, in logarithmic space, the reachability problem for k-GVAS to the
coverability problem for (k + 1)-GVAS. This induces a hierarchy of decision
problems, consisting of, alternatingly, coverability and reachability for growing
dimension. The decidability of all these problems is open. This motivates the
study of the most simple case: the coverability problem in dimension one, which
is the focus of this paper. Our main contribution is the following result.

Theorem 3.2. The coverability problem is decidable for 1-GVAS.

For the remainder of the paper, we restrict our attention to the dimension
one, and shortly write GVAS instead of 1-GVAS. Every GVAS can be effectively
normalized, by removing non-productive nonterminals, replacing terminals a ∈ Z

by words over the alphabet {−1, 0, 1}, and enforcing, through zero padding (since
0−−→ is the identity relation), that |α| ≥ 2 for some production rule X 	 α. So

in order to simplify our proofs, we consider w.l.o.g. only GVAS of this simpler
form.

Assumption. We restrict our attention to GVAS G = (V,A,R) where every
X ∈ V is productive, where A = {−1, 0, 1}, and of degree δG ≥ 2.

328 J. Leroux et al.

We associate to a GVAS G and a word w ∈ (V ∪A)∗ the displacement ΔG
w ∈ Z

and the summary function σG
w : N → N defined by

ΔG
w

def= sup{
∑

z | z ∈ LG
w} σG

w (n) def= sup{d | ∃c ≤ n : c
w−−→ d}

Informally, ΔG
w is the “best shift” achievable by a word in LG

w , and σG
w (n) gives

the “largest” number that is reachable via some word in LG
w starting from n or

below. When no such number exists, σG
w (n) is −∞ (recall that sup ∅ = −∞).

Since all nonterminals are productive, the language LG
w is not empty. Therefore,

ΔG
w > −∞ and σG

w (n) > −∞ for some n ∈ N.

Remark 3.3 (Monotonicity). For every w ∈ (V ∪ A)∗ and c, d, e ∈ N, c
w−−→ d

implies c + e
w−−→ d + e. Consequently, σG

w (n + e) ≥ σG
w (n) + e holds for every

w ∈ (V ∪ A)∗, n ∈ N and e ∈ N.

A straightforward application of Parikh’s theorem shows that ΔG
w is effec-

tively computable from G and w. We will provide in Section 6 an effective char-
acterization of σG

w when the displacement ΔG
w is finite. In order to characterize

functions σG
w where the displacement ΔG

w is infinite, it will be useful to consider
the ratio of w, defined as

λG
w

def= lim inf
n→+∞

σG
w (n)
n

Notice that λG
w ≥ 1. This fact follows from Theorem 3.3 and the observation

that σG
w (n) > −∞ for some n ∈ N. From now on, we just write Lw, δ, Δw, σw

and λw when G is clear from the context.

Example 3.4. Multiplication by 2 can be expressed as a summary function using
the GVAS with production rules S 	 −1 S 1 1 | ε. Indeed, for every c,

c
S−−→ d ⇐⇒ ∃n ∈ N : c

(−1)n(11)n−−−−−−−→ d

⇐⇒ ∃n ≤ c : c
(−1)n−−−−→ c − n

(11)n−−−−→ c + n = d ⇐⇒ c ≤ d ≤ 2c

Therefore, σS(n) = 2n for every n ∈ N. Observe that ΔS = +∞ and λS = 2. ��

Example 3.5. The Ackermann functions Am : N → N, for m ∈ N, are defined by
induction for every n ∈ N by:

Am(n) def=

{
n + 1 if m = 0
An+1

m−1(1) if m > 0

These functions are expressible as summary functions for the GVAS with non-
terminals X0, . . . , Xm and with production rules X0 	 1 and Xi 	 −1 Xi Xi−1 |
1Xi−1 for 1 ≤ i ≤ m. It is routinely checked that σXm

(n) = Am(n) for every
n ∈ N. Notice also that λX0 = 1, λX1 = 2, and λXm

= +∞ for every m ≥ 2. ��

On the Coverability Problem for Pushdown Vector Addition Systems 329

Lemma 3.6. For every two words u, v ∈ (V ∪A)∗, the following properties hold:

1. Δuv = Δu + Δv and σuv = σv ◦ σu.
2. If u

∗==⇒ v then Δu ≥ Δv, λu ≥ λv, and σu(n) ≥ σv(n) for all n ∈ N.

An equivalent formulation of the coverability problem is the question whether
σS(c) ≥ d holds, given a nonterminal S ∈ V and two numbers c, d ∈ N. We solve
this problem by exhibiting small certificates for σS(c) ≥ d, that take the form of
(suitably truncated) annotated parse trees.

4 Small Coverability Certificates

To solve the coverability problem, we annotate parse trees in a way that is
consistent with the summary functions. A flow tree for a GVAS G is a parse
tree (T, sym) for G equipped with two functions in, out : T → N, assigning an
input and an output value to each node, and satisfying, for every node t ∈ T ,
the following flow conditions:

1. If t is internal with children t0, . . . , tk, then in(t0) ≤ in(t), out(t) ≤ out(tk),
and in(t(j + 1)) ≤ out(tj) for every j = 0, . . . , k − 1.

2. If t is a leaf then out(t) ≤ σsym(t)(in(t)).

We shortly write t : c#d to mean that (in(t), sym(t), out(t)) = (c,#, d). A flow
tree is called complete when the underlying parse tree is complete, i.e., when
sym(t) ∈ (A∪{ε}) for every leaf t. The following lemmas state useful properties
of flow trees that can be shown using the flow conditions and the monotonicity
of summary functions (see Theorem 3.3). A consequence is that σS(c) ≥ d holds
if, and only if, there exists a complete flow tree with root ε : cSd.

Lemma 4.1. It holds that σ#(c) ≥ d for every node t : c#d of a flow tree.

Lemma 4.2. Let S ∈ V and c, d ∈ N. If σS(c) ≥ d then there exists a complete
flow tree with root ε : bSe such that b ≤ c and e ≥ d.

We will need to compare flow trees. Let the rank of a flow tree (T, sym, in, out)
be the pair (|T |,

∑
t∈T in(t)+out(t)). The lexicographic order lex over N2 is used

to compare ranks of flow trees. A complete flow tree (T, sym, in, out) is called
optimal if there exists no complete flow tree (T ′, sym ′, in ′, out ′) of strictly smaller
rank such that in ′(ε) ≤ in(ε), sym(ε) = sym(ε), and out ′(ε) ≥ out(ε). Optimal
flow trees enjoy the following important properties, stated formally below. Firstly,
they are tight, meaning that the inequalities in the first flow condition are in fact
equalities. Secondly, they are balanced, meaning that the input value of each
node is never too large compared to its output value.

Lemma 4.3. For every internal node t in an optimal complete flow tree, we
have in(t0) = in(t), in(t1) = out(t0), . . . , in(tk) = out(t(k − 1)), and out(t) =
out(tk), where t0, . . . , tk are the children of t.

330 J. Leroux et al.

Lemma 4.4. For every node t in an optimal complete flow tree, it holds that
in(t) ≤ out(t) + δ|V |.

Next, we show how to truncate flow trees while preserving enough information
to decide that the in and out labelings satisfy the flow conditions. Our truncation
is justified by the following lemma.

Lemma 4.5. Let X ∈ V and n ∈ N. If λX = +∞ and there is a derivation
X

∗==⇒ uXv such that σu(n) > n, then it holds that σX(n) = +∞.

Definition 4.6 (Certificates). A certificate is a flow tree (T, sym, in, out) in
which every leaf t with λsym(t) = +∞ has a proper ancestor s ≺ t such that
sym(s) = sym(t) and in(s) < in(t).

Notice that every complete flow tree is a certificate. We now prove the exis-
tence of small certificates. Let S ∈ V and c, d ∈ N such that σS(c) ≥ d. We
introduce the set T of all complete flow trees with root ε : bSe satisfying b ≤ c
and e ≥ d. By Theorem 4.2, the set T is not empty. Let us pick (T, sym, in, out)
in T among those of least rank. By definition, the root ε of T satisfies in(ε) ≤ c
and out(ε) = d. Notice that the complete flow tree T is optimal. Let us introduce
the set U of all nodes t ∈ T such that every proper ancestor s ≺ t satisfies the
following condition:

For every ancestor r � s, sym(r) = sym(s) =⇒ in(r) ≥ in(s) (1)

By definition, the set U is a nonempty and prefix-closed subset of T . The follow-
ing fact derives from Theorem 4.1 and the property that T is a complete flow
tree.

Fact 4.7. The tree U , equipped with the restrictions to U of the functions sym,
in and out , is a certificate.

Our next step is to bound the height of U as well as the input and output
values of its nodes. We will use the following properties, that are easily derived
from the definition of U , the optimality of T , and Theorems 4.3 and 4.4.

Fact 4.8. Let r and s be nodes in U such that r ≺ s.

1. If s is internal in U and sym(r) = sym(s) then out(s) < out(r), and
2. If s is a child of r then out(s) ≤ out(r) + (δ − 1)δ|V |.

Consider a leaf t in U . For each i in {0, . . . , |t|}, let ti denote the unique
prefix ti � t with length |ti| = i, and let (#i, di) = (sym(ti), out(ti)). Note that
d0 = out(ε) = d. Fact 4.8 entails that for every i, j with 0 ≤ i, j < |t|,

di+1 ≤ di + δ|V |+1 and (i < j ∧ #i = #j) =⇒ di > dj (2)

Let mi = max{d0, . . . , di} for all i ∈ {0, . . . , |t|}. According to Equation (2),
increasing pairs mi < mi+1 may occur in the sequence m0, . . . ,m|t| only when

On the Coverability Problem for Pushdown Vector Addition Systems 331

#i+1 �∈ {#0, . . . ,#i} or i + 1 = |t|. So there are at most |V | such increasing
pairs. Moreover, for each increasing pair mi < mi+1, the increase mi+1 − mi is
bounded by δ|V |+1. We derive that di ≤ m|t| ≤ d + |V | · δ|V |+1 < d + δ2|V |+1 for
all i with 0 ≤ i ≤ |t|, since δ ≥ 2 by assumption. It follows from Equation (2)
that each nonterminal in V appears at most d + δ2|V |+1 times in the sequence
(#i)0≤i<|t|. By the pigeonhole principle, we get that |t| ≤ |V | · (d + δ2|V |+1). We
have thus shown that for every node t ∈ U ,

|t| ≤ d · |V | + δ3|V |+1 and in(t) + out(t) ≤ 2d + δ2|V |+3 (3)

This concludes the proof of the “only if” direction of the following proposition.
The “if” direction follows from Lemma 4.1, since every certificate is a flow tree.

Proposition 4.9. For every S ∈ V and c, d ∈ N, it holds that σS(c) ≥ d if,
and only if, there exists a certificate with root ε : bSd for some b ≤ c and whose
nodes t satisfy Equation (3).

The above proposition leads to a simple procedure to solve the coverability
problem, as we only need to enumerate finitely many potential certificates. Check-
ing whether an annotated parse tree is a certificate reduces to (a) the question
whether a given nonterminal X has an infinite ratio, and (b) the coverability ques-
tion σX(c) ≥ d for nonterminals X with finite ratio. Both questions will be shown
to be decidable in Section 6 by reduction to the subclass of thin GVAS, which is
the focus of the next section.

5 Semilinearity of the Step Relations for Thin GVAS

We turn to reachability relations in a particular subclass of GVAS called thin. A
context-free grammar is said to be thin2 if α ∈ A∗V A∗ for every production rule
X 	 α such that X is derivable from α. Recall that Presburger arithmetic is the
first-order theory of the natural numbers with addition. It is well-known that
semilinear sets coincide with the sets definable in Presburger arithmetic [7].

Theorem 5.1. For every nonterminal symbol S of a thin GVAS, the relation
S−−→ is effectively definable in Presburger arithmetic.

Our argument goes by a reduction to the reachability problem for 2-dimen-
sional vector addition systems, and uses the following result.

Theorem 5.2 ([13]). Let A be a 2-VAS and Π ⊆ A∗ be a regular language over
its actions. The relation Π−−→ is effectively definable in the Presburger arithmetic.

2 Thinness entails that for any derivation S
∗

==⇒ w, the number of nonterminals in w
is bounded by δ|V |. This entails that parse trees of thin GVAS are of bounded width.
Thin GVAS are thus a subclass of the finite-index grammars of [1].

332 J. Leroux et al.

Let us call a GVAS G = (V,A,R) simple if for every production rule X 	 α,
either X is not derivable from α, or α ∈ AV A. Clearly, every simple GVAS is
thin. Conversely, every thin GVAS can be transformed into an equivalent simple
GVAS by replacing production rules in V × A∗V A∗ by finitely many new rules
in V × AV A. See the full paper [14] for details. Consequently, it suffices to show
the claim of Theorem 5.1 for simple GVAS only.

We show by induction on |V | that S−−→ is effectively definable in Presburger
arithmetic for every simple thin GVAS G = (V,A,R), and for every nonterminal
S ∈ V . Naturally, if |V | is empty the proof is immediate. Assume the induction is
proved for a number h ∈ N, and let us consider a simple thin GVAS G = (V,A,R)
with |V | = h + 1, and a nonterminal S ∈ V .

Notice that A
def= {−1, 0, 1}2 is a vector addition system. We consider the

finite, directed graph with set of nodes V that contains an (a,−b)-labeled edge
from X to Y for every production rule X 	 aY b in R. To each nonterminal
X ∈ V , we associate the regular language ΠX of words recognized by this
finite graph starting from S and reaching X. By Theorem 5.2, ΠX−−→, the regular
restriction of the reachability set of A, is effectively definable in Presburger
arithmetic.

As a next ingredient, let ΓX be the finite set of words α ∈ (V ∪ A)∗ such
that X 	 α is a production rule and X is not derivable from α. We observe
that LG

α is equal to the language of α in the simple grammar G′, obtained from
G by removing the nonterminal X and all production rules where X occurs.
By induction, and since a−−→ are trivially Presburger-definable for terminals a ∈
A, we deduce that α−−→ is effectively Presburger-definable as a composition of
Presburger relations. Because ΓX is finite, we deduce that ΓX−−→ =

⋃
α∈ΓX

α−−→,
is definable in the Presburger arithmetic as a finite disjunction of Presburger
relations.

This following Lemma 5.3 concludes Theorem 5.1.

Lemma 5.3. For for all c, d ∈ N, c
S−−→ d if, and only if, the following relation

holds:
φS(c, d) def=

∨
X∈V

∃c′, d′ ∈ N (c, d) ΠX−−→ (c′, d′) ∧ c′ ΓX−−→ d′ (4)

Proof. Assume that c
S−−→ d. It means that there exists w ∈ LS such that

c
w−−→ d. Since w ∈ A∗, we deduce that a sequence of derivation steps from S

that produces w must necessarily derive at some point a nonterminal symbol
X with a production rule X 	 α such that α ∈ A∗, and in particular α ∈ ΓX .
By considering the first time a derivation step X

α==⇒ with α ∈ ΓX occurs, we
deduce a sequence X0, . . . , Xk of nonterminal symbols with X0 = S, a sequence
r1, . . . , rk of production rules rj ∈ R of the form Xj−1 	 ajXjbj with aj , bj ∈ A,
a production rule rk+1 ∈ R of the form Xk 	 α where α ∈ ΓXk

, and a word
w′ ∈ Lα such that w = a1 . . . akw′bk . . . b1. Since c

w−−→ d, it follows that there

exist c′, d′ ∈ N such that c
a1...ak−−−−→ c′ w′

−−→ d′ bk...b1−−−−→ d. Thus (c, d) π−−→ (c′, d′)

On the Coverability Problem for Pushdown Vector Addition Systems 333

with π
def= (a1,−b1) . . . (ak,−bk). It follows that φS(c, d) holds. Conversely, if

φS(c, d) holds, by reversing the previous proof steps, if follows that c
S−−→ d. A

detailed proof is given in the full paper [14]. ��

6 Computation of Summaries for Bounded Ratios

In this section, we show that the summary function σX is effectively computable
when the ratio λX is finite. In addition, the question whether λX is finite is
shown to be decidable. These results are ultimately obtained by reduction to
the thin GVAS case. We first consider nonterminals with finite displacements.

The next lemma follows from the observation that if the maximal displace-
ment of a nonterminal is finite, then it can already be achieved by a short word.

Lemma 6.1. Let S ∈ V be a nonterminal with ΔS < +∞. Then it holds that
σS(n) = n + ΔS for every n ∈ N such that n ≥ δ|V |.

Proposition 6.2. For every nonterminal S ∈ V with ΔS < +∞, the function
σS is effectively computable.

The following lemma will be useful in our reduction below.

Lemma 6.3. Let X ∈ V be a nonterminal. If there is a derivation X
∗==⇒ uXv

such that Δuv = +∞ then it holds that λX = +∞.

We will now show that summaries are computable for nonterminals with
finite ratio. The main idea is to transform the given GVAS into an equivalent
thin GVAS, by hard-coding the effect of nonterminals with finite displacement.
This is effective due to Proposition 6.2. Computability of λX and σX then follows
from Theorem 5.1. The following ad-hoc notion of equivalence is sufficient for
this purpose. Crucially, it has no requirement for nonterminals with infinite ratio.

Two GVAS G = (V,A,R) and G′ = (V ′, A′, R′) are called equivalent if firstly
V = V ′, secondly λG

X = λG′
X for every nonterminal X, and thirdly σG

X = σG′
X for

every nonterminal X with finite ratio.

Unfoldings. For our first transformation, assume a nonterminal X ∈ V with
ΔG

X < +∞. The unfolding of X is the GVAS H = (V,A,R′) where R′ is obtained
from R by removing all production rules X 	 α and instead adding, for every
0 ≤ i ≤ δ|V | with j = σG

X(i) > −∞, a rule X 	 (−1)i(1)j .
Observe that the language LH

X is finite, and that H can be computed from
G and X because σG

X is computable by Proposition 6.2.

Fact 6.4. The unfolding of X is equivalent to G.

334 J. Leroux et al.

Expansions. Our second transformation completely inlines a given nonterminal
with finite language. Given a nonterminal Y ∈ V with LG

Y finite, the expansion
of Y is the GVAS H = (V,A,R′) where R′ is obtained from R by replacing each
production rule X 	 α0Y α1 · · · Y αk, with Y not occurring in α0 · · · αk, by the
rules X 	 α0z1α1 · · · zkαk where z1, . . . , zk ∈ LG

Y . Note that H can be computed
from G and Y . Obviously, languages are preserved by this transformation, i.e.,
LG

w = LH
w for every w in (V ∪ A)∗. The following fact follows.

Fact 6.5. The expansion of Y is equivalent to G.

Abstractions. Our last transformation simplifies a given nonterminal with infinite
ratio, in such a way that its ratio remains infinite. Given a nonterminal X ∈ V
with λG

X = +∞, the abstraction of X is the GVAS H = (V,A ∪ {1}, R′) where
R′ is obtained from R by removing all production rules X 	 α and replacing
them by the two rules X 	 1X | ε. Note that H can be computed from G and
X.

Fact 6.6. The abstraction of X is equivalent to G.

We now show how to effectively transform a GVAS into an equivalent thin
GVAS. As a first step, we hard-code the effect of nonterminals with finite dis-
placement into the production rules, using unfoldings and expansions described
above. By Fact 6.4 and 6.5, this results in an equivalent GVAS. Moreover, it
now holds that every nonterminal Y occurring on the right handside α of some
production rule X 	 α has ΔY = +∞. Let (V,A,R) be the constructed GVAS
and assume that it is not already thin. This means that there exists a production
rule X 	 α with α �∈ A∗V A∗ such that X is derivable from α. So X

∗==⇒ uXv
for some words u, v in (V ∪ A)∗ such that uv contains some nonterminal Y . As
Y occurs on the right handside of the initial production rule, it must have an
infinite displacement. From Lemma 3.6 we thus get that also Δuv = +∞, and
Lemma 6.3 lets us conclude that λX = +∞. Therefore, by Fact 6.6, we may
replace G by the abstraction of X. Observe that this strictly decreases the num-
ber of production rules violating the condition for the system to be thin and
at the same time it preserves the property that ΔY = +∞ for every Y ∈ V
occurring in the right handside a production rule. By iterating this abstraction
process, we obtain a thin GVAS that is equivalent to the GVAS that we started
with. We have thus shown the following proposition. Its corollary follows from
Theorem 5.1, and states the missing ingredients for the proof of the coverability
problem.

Proposition 6.7. For every GVAS G, there exists an effectively constructable
thin GVAS that is equivalent to G.

Corollary 6.8. The question whether λX < +∞ holds for a given GVAS G and
a given nonterminal X, is decidable. Moreover, if λX < +∞ then the function
σX is effectively computable.

On the Coverability Problem for Pushdown Vector Addition Systems 335

Proof (of Theorem 3.2). Thanks to Proposition 4.9, it suffices to check finitely
many candidate certificates, each consisting of a parse tree (T, sym) of bounded
height and labeling functions in, out : T → N with bounded values. It remains to
show that it is possible to verify that a given candidate is in fact a certificate. For
this, it needs to satisfy the two flow conditions from page 329 and moreover, every
leaf t with λsym(t) = +∞ must have some ancestor s ≺ t with sym(s) = sym(t)
and in(s) < in(t).

The first flow condition can easily be verified locally. By Corollary 6.8, it is
possible to check if λsym(t) < +∞ for every leaf t and therefore verify the third
condition. In order to verify the second flow condition, it suffices to check that
σsym(t)(in(t)) ≥ out(t) holds for all leaves with finite ratio λsym(t) < +∞. This
is effective due to Corollary 6.8. Indeed, if none of the above checks fail then it
follows from Lemma 4.5 that σsym(t)(in(t)) ≥ out(t) necessarily holds also for
the remaining leaves t with λsym(t) = +∞ (see the full paper [14] for details).
This means that the candidate satisfies the second flow condition and therefore
all requirements for a certificate. ��

7 Conclusion

The decidability of the coverability problem for pushdown VAS is a long-standing
open question with applications for program verification. In this paper, we proved
that coverability is decidable for 1-dimensional pushdown VAS. We reformulated
the problem to the equivalent coverability problem for 1-dimensional grammar-
controlled vector addition systems, and analyzed their behavior in terms of struc-
tural properties of derivation trees.

An NP lower complexity bound can be shown by reduction from the Subset
Sum problem. A closer inspection of our approach allows to derive an ExpSpace
upper bound, using recent results by Blondin et al. [2] on 2-dimensional VAS
reachability. The exact complexity is open, and so is the decidability of the
problem for larger dimensions.

References

1. Atig, M.F., Ganty, P.: Approximating Petri net reachability along context-free
traces. In: FSTTCS, pp. 152–163 (2011)

2. Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-
dimensional vector addition systems with states is PSPACE-complete. In: LICS
(2015, to appear)

3. Bouajjani, A., Habermehl, P., Mayr, R.: Automatic verification of recursive proce-
dures with one integer parameter. TCS 295, 85–106 (2003)

4. Courtois, J.-B., Schmitz, S.: Alternating vector addition systems with states. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS,
vol. 8634, pp. 220–231. Springer, Heidelberg (2014)

5. Demri, S., Jurdzinski, M., Lachish, O., Lazic, R.: The covering and boundedness
problems for branching vector addition systems. JCSS 79(1), 23–38 (2013)

336 J. Leroux et al.

6. Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. ACM
Trans. Progr. Lang. Syst. 34(1), 6:1–6:48 (2012)

7. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages.
Pacific J. Math. 16(2), 285–296 (1966)

8. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: STOC, pp. 267–281 (1982)

9. Lazic, R.: The reachability problem for vector addition systems with a stack is not
elementary (2013). CoRR abs/1310.1767

10. Lazic, R., Schmitz, S.: Non-elementary complexities for branching VASS, MELL,
and extensions. In: CSL/LICS (2014)

11. Leroux, J.: Vector addition system reachability problem: a short self-contained
proof. In: POPL, pp. 307–316 (2011)

12. Leroux, J., Praveen, M., Sutre, G.: Hyper-ackermannian bounds for pushdown
vector addition systems. In: CSL/LICS (2014)

13. Leroux, J., Sutre, G.: On flatness for 2-dimensional vector addition systems with
states. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
402–416. Springer, Heidelberg (2004)

14. Leroux, J., Sutre, G., Totzke, P.: On the coverability problem for pushdown
vector addition systems in one dimension. CoRR abs/1503.04018, April 2015.
http://arxiv.org/abs/http://arxiv.org/abs/1503.04018

15. Lipton, R.J.: The reachability problem requires exponential space. Tech. Rep. 63,
Yale University, January 1976

16. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: STOC,
pp. 238–246 (1981)

17. Rackoff, C.: The covering and boundedness problems for vector addition systems.
TCS 6(2), 223–231 (1978)

18. Reinhardt, K.: Reachability in Petri nets with inhibitor arcs. ENTCS 223, 239–264
(2008)

http://arxiv.org/abs/http://arxiv.org/abs/http://arxiv.org/abs/1503.04018

Compressed Tree Canonization

Markus Lohrey1(B), Sebastian Maneth2, and Fabian Peternek2

1 Universität Siegen, Siegen, Germany
lohrey@eti.uni-siegen.de

2 University of Edinburgh, Edinburgh, UK
{smaneth,f.peternek}@inf.ed.ac.uk

Abstract. Straight-line (linear) context-free tree (SLT) grammars have been used
to compactly represent ordered trees. Equivalence of SLT grammars is decidable
in polynomial time. Here we extend this result and show that isomorphism of
unordered trees given as SLT grammars is decidable in polynomial time. The
result generalizes to isomorphism of unrooted trees and bisimulation equivalence.
For non-linear SLT grammars which can have double-exponential compression
ratios, we prove that unordered isomorphism and bisimulation equivalence are
PSPACE-hard and in EXPTIME.

1 Introduction

Deciding isomorphism between various mathematical objects is an important topic in
theoretical computer science that has led to intriguing open problems like the pre-
cise complexity of the graph isomorphism problem. An example of an isomorphism
problem, where the knowledge seems to be rather complete, is tree isomorphism. Aho,
Hopcroft and Ullman [1, page 84] proved that isomorphism of unordered trees (rooted
or unrooted) can be decided in linear time. An unordered tree is a tree, where the chil-
dren of a node are not ordered. The precise complexity of tree isomorphism was finally
settled by Lindell [13], Buss [5], and Jenner et al. [11]: tree isomorphism is LOGSPACE-
complete if the trees are represented by pointer structures [11,13] and ALOGTIME-
complete if the trees are represented by expressions [5,11]. All these results deal with
trees that are given explicitly (either by an expression or a pointer structure). In this
paper, we deal with the isomorphism problem for trees that are given in a succinct
way. Several succinct encoding schemes for graphs exist in the literature. Galperin and
Wigderson [8] considered graphs that are given by a Boolean circuit for the adjacency
matrix. Subsequent work showed that the complexity of a problem undergoes an expo-
nential jump when going from the standard input representation to the circuit represen-
tation; this phenomenon is known as upgrading, see [7] for more details and references.
Concerning graph isomorphism, it was shown in [7] that its succinct version is PSPACE-
hard, even for very restricted classes of Boolean circuits (DNFs and CNFs).

In this paper, we consider another succinct input representation that has turned out to
be more amenable to efficient algorithms, and, in particular, does not show the upgrad-
ing phenomenon known for Boolean circuits: straight-line context-free grammars, i.e.,
context-free grammars that produce a single object. Such grammars have been inten-
sively studied for strings and recently also for trees. Using a straight-line grammar,
c© Springer-Verlag Berlin Heidelberg 2015

M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 337–349, 2015.
DOI: 10.1007/978-3-662-47666-6 27

338 M. Lohrey et al.

repeated patterns in an string or tree can be abbreviated by a nonterminal which can be
used in different contexts. For strings, this idea is known as grammar-based compres-
sion [6,14], and it was extended to trees in [4]. In fact this approach can be also extended
to general graphs by using hyperedge replacement graph grammars; the resulting for-
malism is known as hierarchical graph representation [12].

The main topic of this paper is the isomorphism problem for trees that are succinctly
represented by straight-line context-free tree grammars (ST grammars). An example of
such a grammar contains the productions S → A0(a), Ai(y) → Ai+1(Ai+1(y)) for
0 ≤ i ≤ n − 1, and An(y) → f(y, y) (here y is called a parameter and in general
several parameters may occur in a rule). This grammar produces a full binary tree of
height 2n and hence has 22

n+1 − 1 many nodes. Thus, an ST grammar may produce a
tree, whose size is doubly exponential in the size of the grammar. The reason for this
double exponential blow-up is copying: the parameter y occurs twice in the right-hand
side of the production An(y) → f(y, y). If this is not allowed, i.e., if every parameter
occurs at most once in every right-hand side, then the grammar is a straight-line linear
context-free tree grammar (SLT grammar). The latter generalize dags (directed acyclic
graphs) that allow to share repeated subtrees of a tree, whereas SLT grammars can also
share repeated patterns that are not complete subtrees.

Several algorithmic problems are harder for trees represented by ST grammars than
trees represented by SLT grammars. A good example is the membership problem for
tree automata (PTIME-complete for SLT grammars and PSPACE-complete for ST gram-
mars, see [14, Theorem 39]). A similar situation arises for the isomorphism problem:
we prove that the isomorphism problem for (rooted or unrooted) unordered trees that
are given by SLT grammars (resp., ST grammars) is PTIME-complete (resp., PSPACE-
hard and in EXPTIME). Our polynomial time algorithm for SLT grammars constructs
from a given SLT grammar G a new SLT grammar G′ that produces a canonical repre-
sentation (based on lexicographic ordering of depth-first left-to-right traversals) of the
tree produced by G. For unrooted SLT-compressed trees, we first compute a compressed
representation of the center node of a given SLT-compressed unrooted tree t. Then we
compute an SLT grammar that produces the rooted version of t that is rooted in the
center node. This is also the standard reduction of the unrooted isomorphism problem
to the rooted isomorphism problem in the uncompressed setting, but it requires some
work to carry out this reduction in polynomial time in the SLT-compressed setting.

Our techniques can be also used to show that checking bisimulation equivalence
of trees that are represented by SLT grammars is PTIME-complete. This generalizes
the well-known PTIME-completeness of bisimulation for dags [2]. In this context, it is
interesting to note that bisimulation equivalence for graphs that are given by hierarchical
graph representations is PSPACE-hard and in EXPTIME [3].

Full proofs can be found in the long version [13].

2 Preliminaries

For k ≥ 0 let [k] = {1, . . . , k}. Let Σ be an alphabet. By TΣ we denote the set of all
(ordered, rooted) trees over the alphabet Σ. It is defined recursively as the smallest set
of strings such that if t1, . . . , tk ∈ TΣ and k ≥ 0 then also σ(t1, . . . , tk) ∈ TΣ . For the

Compressed Tree Canonization 339

tree a() we simply write a. The set D(t) of Dewey addresses of a tree t = σ(t1, . . . , tk)
is the subset of N∗ defined recursively as {ε} ∪

⋃
i∈[k] i · D(ti). Thus ε is the root node

of t and u · i is the i-th child of u. For u ∈ D(t), we denote by t[u] ∈ Σ the symbol at u,
i.e., if t = σ(t1, . . . , tk), then t[ε] = σ and t[i · u] = ti[u]. The size of t is |t| = |D(t)|.

A ranked alphabet N is a finite set of symbols each of which equipped with a non-
negative integer, called its “rank”. We write N (k) for the set of symbols in N that have
rank k. For an alphabet Σ and a ranked alphabet N , we denote by TN∪Σ the set of trees
t over N ∪ Σ with the property that if t[u] = A ∈ N (k), then u · i ∈ D(t) if and only
if i ∈ [k]. Thus, if a node is labeled by a ranked symbol, then the rank determines the
number of children of the node. We fix a set Y = {y1, y2, . . . } of parameters, which
are symbols of rank 0. For y1 we also write y. We write TΣ∪N (Y) for TΣ∪N∪Y . For
trees t, t1, . . . , tk ∈ TΣ∪N (Y) we denote by t[yj ← tj | j ∈ [k]] the tree obtained from
t by replacing in parallel every occurrence of yj (j ∈ [k]) by tj . A context is a tree in
TΣ∪N ({y}) with exactly one occurrence of y. Let CΣ∪N be the set of all contexts and
let CΣ = CΣ∪N ∩ TΣ({y}). For a context t(y) and a tree t′ we write t[t′] for t[y ← t′].

A context-free tree grammar is a tuple G = (N,Σ, S, P) where N is a ranked
alphabet of nonterminal symbols, Σ is an alphabet of terminal symbols with Σ∩N = ∅,
S ∈ N (0) is the start nonterminal, and P is a finite set of productions of the form
A(y1, . . . , yk) → t where A ∈ N (k), k ≥ 0, and t ∈ TN∪Σ({y1, . . . , yk}). Occa-
sionally, we consider context-free tree grammars without a start nonterminal. Two trees
ξ, ξ′ ∈ TN∪Σ(Y) are in the one-step derivation relation ⇒G induced by G, if ξ has a
subtree A(t1, . . . , tk) with A ∈ N (k), k ≥ 0 such that ξ′ is obtained from ξ by replacing
this subtree by t[yj ← tj | j ∈ [k]], where A(y1, . . . , yk) → t is a production in P . The
tree language L(G) produced by G is {t ∈ TΣ | S ⇒∗

G t}. The size of the grammar
G is |G| =

∑
(A(y1,...,yk)→t)∈P |t|. The grammar G = (N,Σ, S, P) is deterministic if

for every A ∈ N there is exactly one production of the form A → t. The grammar G
is acyclic, if there is a linear order < on N such that A < B whenever B occurs in a
tree t with (A → t) ∈ P . A deterministic and acyclic grammar is called straight-line.
Note that |L(G)| = 1 for a straight-line grammar. We denote the unique tree t produced
by the straight-line tree grammar G by val(G). Moreover, for a tree t ∈ TΣ∪N (Y) we
denote with valG(t) the unique tree from TΣ(Y) such that t ⇒∗

G valG(t). If G is clear
from the context, we simply write val(t) for valG(t). The grammar G is linear if for
every production (A → t) ∈ P and every y ∈ Y , y occurs at most once in t.

For a straight-line context-free tree grammar (resp., straight-line linear context-free
tree grammar) we say ST grammar (resp.. SLT grammar.) Occasionally, we also con-
sider SLT grammars, where the start nonterminal belongs to N (1), i.e., has rank 1. For
such a 1-SLT grammar G it holds that val(G) ∈ CΣ . Most of this paper is about SLT

grammars, only at the very end of the paper we consider general ST grammars. SLT

grammars generalize rooted node-labelled dags (directed acyclic graph), where the tree
defined by such a dag is obtained by unfolding the dag starting from the root (formally,
the nodes of the tree are the directed paths in the dag that start in the root). A dag can
be viewed as an SLT grammar, where all nonterminals have rank 0 (the nodes of the
dag correspond to the nonterminal of the SLT grammar). Dags are less succinct than
SLT grammars (take the tree fN (a) for N = 2n), which in turn are less succinct than
general ST grammars (take a full binary tree of height 2n).

340 M. Lohrey et al.

In the literature, SLT grammars are usually defined over ranked terminal alphabets.
The proof of the following result from [14] also works for an unranked alphabet Σ.

Lemma 1. One can transform in polynomial time an SLT grammar into an equivalent
SLT grammar, where every nonterminal has rank at most one and each production has
one of the following four types (where σ ∈ Σ and A,B,C,A1, . . . , Ak ∈ N):
(1) A → σ(A1, . . . , Ak),
(2) A → B(C),

(3) A(y) → σ(A1, . . . , Ai, y, Ai+1, . . . , Ak), or
(4) A(y) → B(C(y)).

In the following, we will only deal with SLT grammars G having the property from
Lemma 1. For i ∈ [4], we denote with G(i) the SLT grammar (without start nonterminal)
consisting of all productions of G of type (i) from Lemma 1.

A straight-line program (SLP) can be seen as a 1-SLT grammar G = (N,Σ, S, P)
containing only productions of the form A(y) → B(C(y)) and A(y) → σ(y)
with B,C ∈ N and σ ∈ Σ. Thus, G contains ordinary rules of a context-free
string grammar in Chomsky normal form (but written as monadic trees). Intuitively,
if val(G) = a1(· · · an(y) · · ·) then G produces the string a1 · · · an and we also write
val(G) = a1 · · · an. For a string w = a1 · · · an and two numbers l, r ∈ [n] with l ≤ r
we denote by w[l, r] the substring alal+1 · · · ar. The following result is well-known,
see e.g. [14].

Lemma 2. For a given SLP G and two binary encoded numbers l, r ∈ [|val(G)|] with
l ≤ r one can compute in polynomial time an SLP G′ such that val(G′) = val(G)[l, r].

3 Isomorphism of Rooted Unordered SLT-Compressed Trees

Let us fix an alphabet Σ. For t ∈ TΣ we denote with uo(t) the unordered rooted version
of t. It is the node-labeled directed graph (V,E, λ) where V = D(t) is the set of nodes,
E = {(u, u · i) | i ∈ N, u ∈ N

∗, u · i ∈ D(t)} is the edge relation, and λ is the node-
labelling function with λ(u) = t[u]. For an SLT grammar G, we also write valuo(G) for
uo(val(G)).

For reasons that will become clear in a moment we have to restrict in this section to
ranked trees, i.e., trees t ∈ TΣ such that for all u, v ∈ D(t), if t[u] = t[v] then u and
v have the same number of children (nodes with the same label have the same number
of children). For the purpose of deciding the isomorphism problem for unordered SLT-
represented trees this is not a real restriction. Denote for a tree t ∈ TΣ the ranked tree
ranked(t) such that D(t) = D(ranked(t)) and for every u ∈ D(t) with t[u] = σ:
if u has k children in t, then ranked(t)[u] = σk, where σk is a new symbol. Clearly,
uo(s) and uo(t) are isomorphic if and only if uo(ranked(s)) and uo(ranked(t)) are
isomorphic. Moreover, for an SLT grammar G we construct in polynomial time the
SLT grammar ranked(G) obtained from G by changing every production A → t into
A → ranked(t), where ranked is extended to trees over Σ and nonterminals by defining
ranked(t)[u] = t[u] if t[u] is a nonterminal. Then val(ranked(G)) = ranked(val(G))
holds. Hence, in the following we will only consider ranked trees, and all SLT grammars
will produce ranked trees as well.

Compressed Tree Canonization 341

For a tree t ∈ TΣ we denote by dflr(t) ∈ Σ∗ its depth-first left-to-right traversal
string. It is defined as dflr(σ(t1, . . . , tk)) = σ dflr(t1) · · · dflr(tk) for σ ∈ Σ, k ≥ 0,
and t1, . . . , tk ∈ TΣ . Note that for ranked trees s and t it holds that: dflr(s) = dflr(t) if
and only if s = t. This is the reason for restricting to ranked trees: for unranked trees
this equivalence fails. For instance, dflr((a(a(a))) = a3 = dflr(a(a, a)).

Let <Σ be an order on Σ; it induces the length-lexicographical ordering <lex on
Σ by u <lex v iff (i) |u| < |v| or (ii) |u| = |v| and there exist p, u′, v′ ∈ Σ∗ and
a, b ∈ Σ with a <Σ b, u = pau′, and v = pbv′. We extend <llex to TΣ by s <llex t iff
dflr(s) <llex dflr(t).

Statement (1) in the following lemma was shown in [4] by computing from G,H in
polynomial time SLPs G′,H ′ with val(G′) = dflr(val(G)) and val(H ′) = dflr(val(H)).
Equivalence of SLPs can be decided in polynomial time (this result was independently
shown by Plandowski, Hirshfeld, Jerrum, Moller, and Mehlhorn, Sundar, Uhrig, see
[14] for references). For statement (2) one can do binary search to find the first position
where the string val(G′) and val(H ′) differ.

Lemma 3. Let G,H be SLT grammars. It is decidable in polynomial time whether or
not (1) val(G) <llex val(H) and (2) whether or not val(G) = val(H).

For a tree t ∈ TΣ we define its canon canon(t) as the smallest tree s w.r.t. <llex such
that uo(s) is isomorphic to uo(t). In order to determine canon(t) for t = σ(t1, . . . , tk)
let ci = canon(ti) for i ∈ [k] and let ci1 ≤llex ci2 ≤llex . . . ≤llex cik

be the length-
lexicographically ordered list of canons c1, . . . , ck. Then canon(t) = σ(ci1 , . . . , cin

).
The following lemma can be easily shown by an induction on the tree structure:

Lemma 4. Let s, t ∈ TΣ . Then uo(s) is isomorphic to uo(t) iff canon(s) = canon(t).

In the following, we denote a tree A1(A2(· · · An(t) · · ·)), where A1, A2, . . . , An are
unary nonterminals with A1A2 · · · An(t).

Theorem 5. From a given SLT grammar G one can construct in polynomial time an
SLT grammar G′ such that val(G′) = canon(val(G)).

Proof. Let G = (N,Σ, S, P). We assume that G contains no distinct nonterminals
A1, A2 ∈ N (0) such that valG(A1) = valG(A2). This is justified because we can test
valG(A1) = valG(A2) in polynomial time by Lemma 3 (and replace A2 by A1 in G in
such a case). We will add polynomially many new nonterminals to G and change the
productions for nonterminals from N (0) such that for the resulting SLT grammar G′:
valG′(Z) = canon(valG(Z)) for every Z ∈ N (0).

Consider a nonterminal Z ∈ N (0) and let M be the set of all nonterminals in
G that can be reached from Z. By induction, we can assume that G already satisfies
valG(A) = canon(valG(A)) for every A ∈ M (0) \ {Z}. We distinguish two cases.

Case (i). Z is of type (1) from Lemma 1, i.e., has a production Z → σ(A1, . . . , Ak).
Using Lemma 3 we construct an ordering i1, . . . , ik of [k] such that valG(Ai1) ≤llex

valG(Ai2) ≤llex · · · ≤llex valG(Aik
). We obtain G′ by replacing the production Z →

σ(A1, . . . , Ak) by Z → σ(Ai1 , . . . , Aik
) and get valG′(Z) = canon(valG(Z)).

Case (ii). Z is of type (2), i.e., has a production Z → B(A). Let {S1, . . . , Sm} =
M (0) \{Z} be an ordering such that valG(S1) <llex valG(S2) <llex · · · <llex valG(Sm).

342 M. Lohrey et al.

Note that A is one of these Si. The sequence S1, S2, . . . , Sm partitions the set of all
trees t in TΣ into intervals I0, I1, . . . , Im with

– Ii = {t ∈ TΣ | valH(Si) ≤llex t <llex valH(Si+1)} for 1 ≤ i ≤ m − 1,
– I0 = {t ∈ TΣ | t <llex valH(S1)}, and Im = {t ∈ TΣ | valH(Sm) ≤llex t}.

Consider the maximal G(4)-derivation B(A) ⇒∗
G(4) B1B2 · · · BN (A) starting from

B(A), where Bi is a type-(3) nonterminal. Clearly, the number N might be of expo-
nential size, but the set {B1, . . . , BN} can be easily constructed. In order to construct
an SLT for canon(valG(Z)), it remains to reorder the arguments in right-hand sides of
the type-(3) nonterminals Bi. The problem is of course that different occurrences of a
type-(3) nonterminal in the sequence B1B2 · · · BN have to be reordered in a different
way. But we will show that the sequence B1B2 · · · BN can be split into m + 1 blocks
such that all occurrences of a type-(3) nonterminal in one of these blocks have to be
reordered in the same way.

Let tk = valG(BkBk+1 · · · BN (A)) for k ∈ [N] and tN+1 = valG(A). Note that
t1 = valG(Z) >llex valG(Sm) and that tk+1 <llex tk for all k. For i ∈ [m] let ki be the
maximal position k ≤ N +1 such that tk ≥llex valG(Si). Since t1 ≥llex valG(Sm) ≥llex

valG(Si) this position is well defined. Note that if A = Si, then ki = ki−1 = · · · =
k1 = N +1. For every 0 ≤ i ≤ m, the interval [ki+1+1, ki] is the set of all k such that
valG(tk) ∈ Ii. Here we set km+1 = 0 and k0 = N+1. Clearly, the interval [ki+1+1, ki]
might be empty. The positions k0, . . . , km can be computed in polynomial time using
binary search combined with Lemma 3. To apply the latter, note that for a given k we
can compute in polynomial time an SLT grammar for the tree tk using Lemma 2 for the
SLP consisting of all type-(4) productions that are used to derive B1B2 · · · BN .

We now factorize the string B1B2 · · · BN as B1B2 · · · BN = umum−1 · · · u0,
where um = B1 · · · Bkm−1 and ui = Bki+1 · · · Bki−1 for 0 ≤ i ≤ m−1. By Lemma 2
we can compute in polynomial time an SLP Gi for the string ui. For the further consid-
eration, we view Gi as a 1-SLT grammar consisting only of type-(4) productions. Note
that val(Gi) is a linear tree, where every node is labelled with a type-(3) nonterminal.
We now add reordered versions of type-(3) productions to Gi. Consider a type-(3) pro-
duction (C(y) → σ(A1, . . . , Aj , y, Aj+1, . . . , Ak)) ∈ P where C ∈ {B1, . . . , BN}.
We add to Gi the type-(3) production C(y) → σ(Aj1 , . . . , Ajν

, y, Ajν+1 , . . . , Ajk
),

where {j1, . . . , jk} = [k] and 0 ≤ ν ≤ k are chosen such that

(1) valG(Aj1) ≤llex valG(Aj2) ≤llex · · · ≤llex valG(Ajk
) and

(2) valG(Ajν
) ≤llex valG(Si) <llex valG(Ajν+1).

Note that if ν = k then condition (2) states that valG(Ajk
) ≤llex valG(Si), and if ν = 0

then it states that valG(Si) <llex valG(Aj1). Also note that condition (2) ensures that for
every tree t ∈ Ii: valG(Ajν

) ≤llex t <llex valG(Ajν+1). Hence, valG(σ(Aj1 , . . . , Ajν
, t,

Ajν+1 , . . . , Ajk
)) is a canon. The crucial observation now is that the above factorization

umum−1 · · · u0 of B1B2 · · · BN was defined in such a way that for every occurrence
of a type-(3) nonterminal C(y) in ui, the parameter y will be substituted by a tree from
Ii during the derivation from Z to valG(Z). Hence, we reorder the arguments in the
right-hand sides of nonterminal occurrences in ui in the correct way to obtain a canon.

We now rename the nonterminals in the SLT grammars Gi (which are now of type-
(3) and type-(4)) so that the nonterminal sets of G,G0, . . . , Gm are pairwise disjoint.

Compressed Tree Canonization 343

Let Xi(y) be the start nonterminal of Gi after the renaming. Then we add to the current
SLT grammar G the union of all the Gi, and replace the production Z → B(A) by
Z → XmXm−1 · · · X0(A). The construction implies that valG′(Z) = canon(valG(Z))
for the resulting grammar G′.

It remains to argue that the above construction can be carried out in polynomial
time. All steps only need polynomial time in the size of the current SLT grammar.
Hence, it suffices to show that the size of the SLT grammar is polynomially bounded.
The algorithm is divided into |N (0)| many phases, where in each phase it enforces
valG′(Z) = canon(valG(Z)) for a single nonterminal Z. Consider a single phase,
where valG′(Z) = canon(valG(Z)) is enforced for a nonterminal Z. In this phase,
we (i) change the production for Z and (ii) add new type-(3) and type-(4) productions
to G (the union of the Gi above). But the number of these new productions is polyno-
mially bounded in the size of the initial SLT grammar (the one before the first phase),
because the nonterminals introduced in earlier phases are not relevant for the current
phase. This implies that the additive size increase in each phase is bounded polynomi-
ally in the size of the initial grammar. ��

Corollary 6. The problem of deciding whether valuo(G1) and valuo(G2) are isomor-
phic for given SLT grammars G1 and G2 is PTIME-complete

Proof. Membership in PTIME follows immediately from Lemma 3, Lemma 4, and The-
orem 5. Moreover, PTIME-hardness already holds for dags, i.e., SLT grammars where
all nonterminals have rank 0, as shown in [15]. ��

4 Isomorphism of Unrooted Unordered SLT-Compressed Trees

In this section we show isomorphism for unrooted unordered trees represented by SLT

grammars can be solved in polynomial time. An unrooted unordered tree t over Σ can
be seen as a node-labeled (undirected) graph t = (V,E, λ), where E ⊆ V × V is
symmetric and λ : V → Σ. Let s = (V,E, λ) be a rooted unordered tree. The tree
ur(s) = (V,E ∪ E−1, λ) is the unrooted version of s. An unrooted unordered tree t
can be represented by an SLT grammar G by forgetting the order and root information
present in G. Let valur,uo(G) = ur(uo(val(G))).

Let t = (V,E, λ) be an unordered unrooted tree. For a node v ∈ V we define the
eccentricity ecct(v) = maxu∈V δt(u, v) and the diameter �(t) = maxv∈V ecct(v),
where δt(u, v) denotes the distance from u to v (i.e., the number of edges on the path
from u to v in t). A node u of t is called center node of t if for all leaves v of t: δt(u, v) ≤
(�(s) + 1)/2. Let center(t) be the set of all center nodes of t. One can compute the
center nodes by deleting all leaves of the tree and iterating this step, until the current tree
consists of at most two nodes. These are the center nodes of t. In particular, t has either
one or two center nodes. Another characterization of center nodes that is important for
our algorithm is via longest paths. Let p = (v0, v1, . . . , vn) be a longest simple path in
t, i.e., n = �(t). Then the middle points v�n/2	 and v
n/2� (which are identical if n is
even) are the center nodes of t and are independent of the concrete longest path p.

Note that there are two center nodes if and only if �(t) is odd. Since our con-
structions are simpler if a unique center node exists, we first make sure that �(t) is

344 M. Lohrey et al.

even. Let # be a new symbol not in Σ. For an unrooted unordered tree t we denote
by even(t) the tree where every pair of edge (u, v), (v, u) is replaced by the edges
(u, v′), (v′, v), (v, v′), (v′, u), where v′ is a new node labelled #. Then for an SLT gram-
mar G = (N,Σ,P, S) we let even(G) = (N,Σ ∪ {#}, P ′, S) be the SLT grammar
where P ′ is obtained from P by replacing every subtree σ(t1, . . . , tk) with σ ∈ Σ,
k ≥ 1, in a right-hand side by the subtree σ(#(t1), . . . ,#(tk)). Observe that (i)
valur,uo(even(G)) = even(valur,uo(G)), (ii) �(even(t)) = 2 · �(t) is even, i.e., even(t)
has only one center node, and (iii) trees t and s are isomorphic if and only if even(t)
and even(s) are isomorphic. Since even(G) can be constructed in polynomial time, we
assume in the following that every SLT grammar produces a tree with a unique center
node. For such a tree t we denote with center(t) its unique center node.

Let u ∈ V . The rooted version root(t, u) of t with root node u is root(t, u) =
(V,E′, λ), where E′ = {(v, v′) ∈ E | δt(u, v) < δt(u, v′)}. Two unrooted
unordered trees t1, t2 of even diameter are isomorphic iff root(t1, center(t1)) is iso-
morphic to root(t2, center(t2)). Thus, we can solve in polynomial time the isomor-
phism problem for unrooted unordered trees represented by SLT grammars G1, G2 by
(i) computing for i ∈ {1, 2} in polynomial time a compressed representation ũi of
ui = center(valur,uo(Gi)) (Section 4.1), (ii) computing for i ∈ {1, 2} in polynomial
time an SLT grammar G′

i such that valuo(G′
i) = root(valur,uo(Gi), ui) (Section 4.2) and

(iii) testing in polynomial time if valuo(G′
1) is isomorphic to valuo(G′

2) (Corollary 6).

4.1 Finding Center Nodes

Let G = (N,Σ, S, P) be an SLT grammar. A G-compressed path p is a string of pairs
p = (A1, u1) · · · (An, un) such that for all i ∈ [n], Ai ∈ N , A1 = S, ui ∈ D(ti) is a
Dewey address in ti where (Ai → ti) ∈ P , ti[ui] = Ai+1 for i < n, and ti[un] ∈ Σ.
If we omit the condition ti[un] ∈ Σ, then p is a partial G-compressed path. Note that
by definition, n ≤ |N |. A partial G-compressed path uniquely represents one partic-
ular node in the derivation tree of G, and a G-compressed path represents a leaf of
the derivation tree and hence a node of val(G). We denote this node by valG(p). The
concatenation u1, u2, . . . , un of the Dewey addresses is denoted by u(p).

For a context t(y) ∈ CΣ we define ecc(t) = ecct(y) (recall that in a context there
is a unique occurrence of the parameter y) and rty(t) = δt(ε, y) (the distance from the
root to the parameter y). For a tree s ∈ TΣ we denote with h(s) its height. We extend
these notions to contexts t ∈ CΣ∪N and trees s ∈ TΣ∪N by ecc(t) = ecc(valG(t)),
rty(t) = rty(valG(t)), and h(s) = h(valG(s)). Eccentricity, distance from root to
y, and height can be computed in polynomial time for SLT-represented trees bottom-
up. To do so, observe that for contexts t(y), t′(y) ∈ CΣ∪N and a tree s ∈ TΣ∪N :
rty(t[t′]) = rty(t) + rty(t′), ecc(t[t′]) = max{ecc(t′), ecc(t) + rty(t′)}, and h(t[s]) =
max{h(s), rty(t) + h(s)}. Similarly, for t(y) = σ(s1, . . . si, y, si+1, . . . , sk) ∈ CΣ∪N

and s = σ(s1, . . . , sk) ∈ TΣ∪N : rty(t) = 1, ecc(t) = 2 + max{h(si) | i ∈ [k]}, and
h(s) = 1 +max{h(si) | i ∈ [k]}.

Our search for the center node of an SLT-compressed tree is based on the following
lemma. For a context t(y) ∈ CΣ , where u is the Dewey address of the parameter y, and
a tree s ∈ TΣ we say that a node v ∈ D(t[s]) belongs to t if v ∈ D(t)\{u}. Otherwise,
we say that v belongs to s, which means that u is a prefix of v.

Compressed Tree Canonization 345

Lemma 7. Let t(y) ∈ CΣ be a context and s ∈ TΣ a tree such that �(t[s]) is even. Let
c = center(t[s]). Then c belongs to s if and only if ecc(t) ≤ h(s).

Lemma 8. For a given SLT grammar G such that valur,uo(G) has even diameter, one
can construct a G-compressed path for center(valur,uo(G)).

Proof. Let G = (N,Σ, S, P). Our algorithm for finding the center node for val(G)
stores at each point of time a single tuple (tl, A, tr, p), where tl ∈ CΣ∪N and tr ∈
TΣ∪N ∪ {ε} are of polynomial size, A ∈ N , and p is a partial G-compressed path. It is
started with the tuple (y, S, ε, ε) The following invariants are preserved: If the current
tuple is (tl, A, tr, p) is, then:

– If A has rank 0 then tr = ε.
– val(G) = val(tl[A[tr]]) (here we set t[ε] = t).
– The tree tl[A[tr]] can be derived from the start variable S.
– p is the partial G-compressed path to the distinguished A in tl[A[tr]].
– center(valur,uo(G)) belongs to the subcontext val(A) in val(tl)[val(A)[val(tr)]].

For the tuple (tl, A, tr, p), the algorithm distinguishes on the right-hand side of A. If
this right-hand side has the form A(B) or A(B(y)), then, by comparing ecc(tl[B(y)])
and h(C[tr]) (we can compute these values in polynomial time, by constructing SLT

grammars for val(tl[B(y)]) and val(C[tr]) and using the recursions for ecc, rty and h),
we determine, whether the search for the center node has to continue in B or C, see
Lemma 7. In the first case we continue with the tuple (tl, B,C[tr], p · (A, ε)), and in
the second case we continue with (tl[B(y)], C, tr, p · (A, 1)).

Now assume that the right-hand side of A has the form σ(A1, . . . , Ak). Let ti =
tl[σ(A1, . . . , Ai−1, y, Ai+1, . . . , Ak)] for i ∈ [k]. Hence, val(G) = val(ti)[val(Ai)].
By comparing ecc(ti) and h(Ai) we want determine whether the center node belongs
to val(ti) or val(Ai), see Lemma 7. If the latter holds for some i ∈ [k], we can continue
the search in Ai, i.e., we continue with the tuple (ti, Ai, ε, p · (A, i)). On the other
hand, assume that for all i ∈ [k] the center point belongs to ti. In particular, it does
not belongs to any of the subtrees val(Ai). But by the last invariant, we known that
the center point belongs to the subcontext val(A) = σ(val(A1), . . . , val(Ak)). Hence,
the σ-labelled node must be the center point and we can return its G-compressed path
p · (A, ε). The case of a production A(y) → σ(A1, . . . As−1, y, As+1, . . . , Ak) can be
dealt with similarly. Note that |tl| + |tr| stays bounded by the size of G. ��

4.2 Re-Rooting of SLT Grammars

Let G = (N,Σ, S, P) be an SLT grammar (as usual, having the normal form from
Lemma 1) and p a G-compressed path. Let s(p) ∈ TΣ∪N be the tree defined inductively
as follows: Let (A → t) ∈ P and u ∈ D(t). Then s((A, u)) = t. If p = (A, t)p′ with
p′ non-empty, then either (i) u = ε and t = B(C) or (ii) u = i ∈ N and t[i] ∈ N (0).
In case (i) we set s(p) = s(p′)[C], in case (ii) we set s(p) = t′[s(p′)], where t′(y)
is obtained from t by replacing the i-th argument of the root by y. Note that s(p′) ∈
CΣ∪N ({y}) if p′ starts with a nonterminal of rank 1. Let s = s(p); its size is bounded
by the size of G. Note that s[u(p)] is a terminal symbol (recall that u(p) denotes the

346 M. Lohrey et al.

concatenation of the Dewey addresses in p). Assume that s[u(p)] = σ ∈ Σ. Let # be
a fresh symbol and let s′ be obtained from s by changing the label at u(p) from σ to
#. Let s′ ⇒∗

G s′′ be the shortest derivation such that s′′[ε] = δ ∈ Σ (it consists of
at most |N | derivation steps). We denote the #-labeled node in s′′ by u. Finally, let t
be obtained from s′′ by changing the unique # into σ. We define the p-expansion of
G, denoted exG(p), as the tuple (t, u, σ, δ). Note that valG(p) is the unique #-labelled
node in valG(s′′). The p-expansion can be computed in polynomial time from G and p.

The p-expansion (t, u, σ, δ) has all information needed to construct a grammar G′

representing the rooted version at p of val(G). If u = ε then also valG(p) = ε. Since G
is already rooted at ε nothing has to be done in this case and we return G′ = G. If u �= ε
then valG(p) �= ε and hence t contains two terminal nodes which uniquely represent
the root node and the node valG(p) of the tree val(G).

Let s1 ∈ TΣ be a rooted ordered tree representing the unrooted unordered tree
s̃1 = ur(uo(s1)). Let u �= ε be a node of s1. Let s1[ε] = δ ∈ Σ and s1[u] = σ ∈ Σ.
Since u �= ε, we can write s1 = δ(ζ1, . . . , ζi−1, t

′[σ(ξ1, . . . , ξm)], ζi+1, . . . , ζk), where
t′ is a context, and u = iu′, where u′ is the Dewey address of the parameter y in t′.
A rooted ordered tree s2 that represents the rooted unordered tree s̃2 = root(s̃1, u)
can be defined as s2 = σ(ξ1, . . . , ξm, rooty(t′)[δ(ζ1, . . . , ζi−1, ζi+1, . . . , ζk)]), where
rooty is a function mapping contexts to contexts defined recursively as follows (f ∈ Σ,
t1, . . . , ti−1, ti+1, . . . , t� ∈ TΣ , and t(y), t′(y) ∈ CΣ):

rooty(y) = y (1)

rooty(f(t1, . . . , ti−1, y, ti+1, . . . , t�)) = f(t1, . . . , ti−1, y, ti+1, . . . , t�) (2)

rooty(t[t′(y)]) = rooty(t′)[rooty(t(y))] (3)

Intuitively, the mapping rooty unroots a context t(y) towards its y-node u, i.e., it
reverses the path from the root to u. Thus, for instance, rooty(f(a, y, b)) = f(a, y, b)
and rooty(f(a, g(c, y, d), b)) = g(c, f(a, y, b), d).

Lemma 9. From a given SLT grammar G and a G-compressed path p one can con-
struct in polynomial time an SLT grammar G′ such that valuo(G′) is isomorphic to
root(valur,uo(G), valG(p)).

Proof. Let G = (N,Σ, S, P) and exG(p) = (t, u, σ, δ). If u = ε then define G′ = G. If
u �= ε then we can write t = δ(B1, . . . , Bi−1, t

′[σ(ξ1, . . . , ξm)], Bi+1, . . . , Bk), where
Bj ∈ N (0), ξj ∈ TN , t′ is a context composed of nonterminals A ∈ N (1) and contexts
f(ζ1, . . . , ζj−1, y, ζj+1, . . . , ζl) (f ∈ Σ, ζj ∈ TN), and u = iu′, where u′ is the Dewey
address of the parameter y in t′.

We define G′ = (N � N ′, Σ, S, P ′) where N ′ = {A′ | A ∈ N (1)}. To define
the production set P ′, we extend the definition of rooty to contexts from CΣ∪N by (i)
allowing in the trees tj from Equation (2) also nonterminals, and (ii) defining for every
B ∈ N (1), rooty(B(y)) = B′(y). We now define the set of productions P ′ of P as
follows: We put all productions from P except for the start production (S → s) ∈ P
into P ′. For the start variable S we add to P ′ the production

S → σ(ξ1, . . . , ξm, rooty(t′)[δ(B1, . . . , Bi−1, Bi+1, . . . , Bk)]). (4)

Compressed Tree Canonization 347

Moreover, let A ∈ N (1) and (A(y) → ζ) ∈ P . If this is a type-(3) production, then we
add A′(y) → ζ to P ′. If ζ = B(C(y)) then add A′(y) → C ′(B′(y)) to P ′.

A simple induction shows that valG′(A′) = rooty(valG(A)) for every A ∈ N (1).
This implies that valG′(rooty(c(y))) = rooty(valG(c(y))) for every context c(y) that
is composed of contexts f(ζ1, . . . , ζj−1, y, ζj+1, . . . , ζl) (ζj ∈ TN) and nonterminals
A ∈ N (1). In particular, valG′(rooty(t′)) = rooty(valG(t′(y))) for the context t′. This,
and the form of the start production of G′ (4) easily imply that valuo(G′) is isomorphic
to root(valur,uo(G), valG(p)). ��

Corollary 10. The problem of deciding whether valur,uo(G1) and valur,uo(G2) are iso-
morphic for given SLT grammars G1 and G2 is PTIME-complete.

Proof. The upper bound follows from Lemma 8, Lemma 9, and Corollary 6. Hardness
for PTIME follows from the PTIME-hardness for dags [15] and the fact that isomorphism
of rooted unordered trees can be reduced to isomorphism of unrooted unordered trees
by labelling the roots with a fresh symbol. ��

5 Further Results

Bisimulation on SLT-Compressed Trees. Fix a set Σ of node labels. Let G =
(V,E, λ) be a directed node-labelled graph, i.e., E ⊆ V × V and λ : V → Σ. A
binary relation R ⊆ V × V is a bisimulation on G, if for all (u, v) ∈ R the following
three conditions hold: (i) λ(u) = λ(v), (ii) if (u, u′) ∈ E then there exists v′ ∈ V such
that (v, v′) ∈ E and (u′, v′) ∈ R, and (iii) if (v, v′) ∈ E then there exists u′ ∈ V
such that (u, u′) ∈ E and (u′, v′) ∈ R. Let the relation ∼ be the union of all bisim-
ulations on G. It is the largest bisimulation and an equivalence relation. Two rooted
unordered trees s, t with node labels from Σ and roots rs, rt are bisimulation equivalent
if rs ∼ rt holds in the disjoint union of s and t. For instance, f(a, a, a) and f(a, a) are
bisimulation equivalent but f(g(a), g(b)) and f(g(a, b)) are not. For a rooted unordered
tree t we define the bisimulation canon bcanon(t) inductively: Let t = f(t1, . . . , tn)
(n ≥ 0) and let bi = bcanon(ti). Then bcanon(t) = f(s1, . . . , sm), where (i) for every
i ∈ [m], si is isomorphic to one of the bj , and (ii) for every i ∈ [n] there is a unique
j ∈ [m] such that si and bj are isomorphic as rooted unordered trees. In other words:
Bottom-up, we eliminate repeated subtrees among the children of a node. For instance,
bcanon(f(a, a, a)) = f(a) = bcanon(f(a, a)). Induction on the height of trees shows:

Lemma 11. Let s and t be rooted unordered trees. Then s and t are bisimulation equiv-
alent if and only if bcanon(s) and bcanon(t) are isomorphic.

The proof of the following theorem is similar to those of Theorem 5.

Theorem 12. From a given SLT grammar G one can compute a new SLT grammar G′

such that valuo(G′) is isomorphic to bcanon(valuo(G)).

From Corollary 6, Lemma 11, and Theorem 12 we get:

348 M. Lohrey et al.

Corollary 13. For given SLT grammars G1 and G2 one can check in polynomial time,
whether valuo(G1) and valuo(G2) are bisimulation equivalent.

Non-linear ST Grammars. Recall from Section 2 that ST grammars are exponentially
more succinct than SLT grammars. So, the following should not be surprising:

Lemma 14. A given ST grammar can be transformed in exponential time into an equiv-
alent SLT grammar.

Using this lemma, the upper bounds in the following statement follow from Corollary 6,
10, and 13. For the lower bound, one can reduce from QBF using gadgets from [11].

Theorem 15. The following questions are PSPACE-hard and in EXPTIME for given ST

grammars G1 and G2:
– Are valuo(G1) and valuo(G2) isomorphic (resp., bisimulation equivalent)?
– Are valur,uo(G1) and valur,uo(G2) isomorphic?

The precise complexity of these questions remains open. Since an ST grammar can be
transformed into a hierarchical graph definition for a dag, we rediscover the following
result from [3]: Bisimulation equivalence for dags given by hierarchical graph defini-
tions is PSPACE-hard and in EXPTIME.

References

1. Aho, A., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading (1974)

2. Balcázar, J., Gabarró, J., Sántha, M.: Deciding bisimilarity is P-complete. Formal Aspects of
Computing 4, 638–648 (1992)

3. Brenguier, R., Göller, S., Sankur, O.: A comparison of succinctly represented finite-
state systems. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 147–161. Springer, Heidelberg (2012)

4. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML document
trees. Inf. Syst. 33(4–5), 456–474 (2008)

5. Buss, S.R.: Alogtime algorithms for tree isomorphism, comparison, and canonization. Kurt
Gödel Colloquium 97, 18–33 (1997)

6. Charikar, M., Lehman, E., Lehman, A., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai,
A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576
(2005)

7. Das, B., Scharpfenecker, P., Torán, J.: Succinct encodings of graph isomorphism. In: Dediu,
A.-H., Martı́n-Vide, C., Sierra-Rodrı́guez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol.
8370, pp. 285–296. Springer, Heidelberg (2014)

8. Galperin, H., Wigderson, A.: Succinct representations of graphs. Inf. Contr. 56, 183–198
(1983)

9. Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph isomorphism.
J. Comput. Syst. Sci. 66(3), 549–566 (2003)

10. Lengauer, T., Wagner, K.W.: The correlation between the complexities of the nonhierarchical
and hierarchical versions of graph problems. J. Comput. Syst. Sci. 44, 63–93 (1992)

11. Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In: Proc. STOC
1992, pp. 400–404. ACM (1992)

Compressed Tree Canonization 349

12. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complexity Cryp-
tology 4(2), 241–299 (2012)

13. Lohrey, M., Maneth, S., Peternek, F.: Compressed tree canonization (2015). arXiv.org
http://arxiv.org/abs/1502.04625

14. Lohrey, M., Maneth, S., Schmidt-Schauß, M.: Parameter reduction and automata evaluation
for grammar-compressed trees. J. Comput. Syst. Sci. 78(5), 1651–1669 (2012)

15. Lohrey, M., Mathissen, C.: Isomorphism of regular trees and words. Inf. Comput. 224,
71–105 (2013)

http://arxiv.org/abs/http://arxiv.org/abs/1502.04625

Parsimonious Types and Non-uniform Computation

Damiano Mazza1(B) and Kazushige Terui2

1 CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France
Damiano.Mazza@lipn.univ-paris13.fr

2 RIMS, Kyoto University, Kyoto, Japan
terui@kurims.kyoto-u.ac.jp

Abstract. We consider a non-uniform affine lambda-calculus, called parsimo-
nious, and endow its terms with two type disciplines: simply-typed and with
linear polymorphism. We show that the terms of string type into Boolean type
characterize the class L/poly in the first case, and P/poly in the second. More-
over, we relate this characterization to that given by the second author in terms of
Boolean proof nets, highlighting continuous affine approximations as the bridge
between the two approaches to non-uniform computation.

1 Introduction

This paper is a contribution to the line of research known as implicit computational com-
plexity (ICC), whose aim is to characterize complexity classes by means of logical sys-
tems and programming languages (which are intimately related via the Curry-Howard
correspondence). Seminal work concerning this methodology includes [3,9,11]. The
highlight of this paper consists in dealing with non-uniform complexity classes, which,
as far as we know, no ICC work other than [13] have considered so far.

Computation is usually performed by a single machine or program which uniformly
works on inputs of arbitrary length. On the other hand, some models of computation,
such as Boolean circuits, only work on inputs of fixed length. Thus, to compute a func-
tion f : {0, 1}∗ −→ {0, 1}, one needs to prepare a family (Cn)n∈N of Boolean circuits,
one for each input length n. The non-uniform perspective is important for hardware
design and the study of small complexity classes. Two well-known non-uniform classes
are P/poly, consisting of languages decided by families of polynomial size Boolean cir-
cuits, and L/poly, consisting of those decided by families of polynomial size branching
programs (i.e., decision trees with sharing). Such languages may well be non-recursive,
but are still useful as they capture the combinatorial essence of P or L. For instance, a
potential approach to separating P and NP is to show that NP is not included in P/poly.

We may call the above approach to non-uniform computation family approach.
There is an alternative, which consists in using a uniform machine having access to
arbitrary advice, i.e., a fixed family (wn)n∈N of strings. Then, P/poly (resp. L/poly) is
equivalently defined as the class of languages decided by a deterministic polytime (resp.
logspace) Turing machine aided by a polynomial advice, i.e., s.t. |wn| is polynomial in
n. We may call this the individual approach.

Non-uniform complexity has been studied in the setting of proofs and functional
programming. The second author showed in [19] that P/poly is precisely the class
c© Springer-Verlag Berlin Heidelberg 2015

M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 350–361, 2015.
DOI: 10.1007/978-3-662-47666-6 28

Parsimonious Types and Non-uniform Computation 351

of languages decided by families of polynomial size proof nets of multiplicative lin-
ear logic (family approach), whereas the first author introduced an infinitary affine
λ-calculus in [13] exactly capturing the class P/poly (individual approach).

The present paper combines and extends these previous works. Our goal is twofold:
to reconcile the two approaches, and to capture also L/poly.

The starting point is the idea of seeing the exponential modality of linear logic as
some sort of limit, which is quite fruitful and is at the core of several recent devel-
opments [5,16] as well as, albeit implicitly, older work on games semantics [1,15]
and intersection types [10]. Following this direction, in [12] the first author introduced
an infinitary affine λ-calculus, in which the usual λ-calculus embeds, endowed with
a topology such that finite affine terms form a dense subspace and reduction is con-
tinuous. This means that computation in the λ-calculus, which is non-linear, may be
approximated arbitrarily well by computation on linear affine terms. In particular, since
data type values (such as Booleans and strings) are only approximated by themselves,
if a λ-term t is given in input a binary string w and t w −→l b (reduction in l steps) with
b a Boolean, then there exists a finite affine term t0 such that t0w −→l b.

However, the “modulus of continuity” of reduction in the λ-calculus is ill-behaved:
the size of t0 may be exponential in l. The contribution of [13] was to find a subset of
(infinitary) terms, called parsimonious, on which the “modulus of continuity” is poly-
nomial. At this point, if one manages to bound l polynomially in the length of the input
w, computation falls within P/poly: the polynomially-sized approximation t0 of t may
be given as advice, and normalization of the finite affine term t0w may be done in deter-
ministic polynomial time. In [13], stratification (originally due to Girard [9]) was used
to obtain such a bound.

Here, instead, the bound will be enforced by types, which have the benefit of allow-
ing us to modulate computational complexity via logical complexity. More specifically,
in Sect. 2 we assign types to non-uniform parsimonious terms in two ways: with a
simply-typed system called non-uniform parsimonious logic nuPL, and with its exten-
sion with linear polymorphism nuPL∀�. Let now nuPL (resp. nuPL∀�) be the class of
languages decided by programs typable in nuPL (resp. nuPL∀�), and let APN (resp.
APN0) be the class of languages decided by polynomial size proof nets (resp. proof nets
of bounded height). Our main result is

Theorem 1. nuPL = APN0 = L/poly and nuPL∀� = APN = P/poly.

The inclusion L/poly ⊆ nuPL (resp. P/poly ⊆ nuPL∀�) is shown by exhibiting
a very natural encoding of branching programs (resp. Boolean circuits) as parsimo-
nious programs (Sect. 3), while APN0 ⊆ L/poly follows from a simple observation on
the geometry of interaction, i.e., the persistency of paths in proof nets (Sect. 4). The
inclusions nuPL ⊆ APN0 and nuPL∀� ⊆ P/poly are based on polynomial step nor-
malization (Proposition 2) on top of continuity, as sketched above (Sect. 5). Finally, the
equality APN = P/poly was proved in [19].

Note that continuous approximation allows us to generate a family of proof nets
from a single parsimonious term. It is thus continuity that reconciles the two approaches
to non-uniformity (family and individual). From a more practical perspective, genera-
tion of proof nets from a single program is reminiscent of the work of Ghica [7], who
exhibits a way to synthesize VLSI circuits from a functional program.

352 D. Mazza and K. Terui

Our parsimonious framework has two aspects. On the logical side, parsimonious
logic amounts to multiplicative affine logic with what we call Milner’s exponential
modality, enjoying monoidal functorial promotion and Milner’s law !A ∼= A⊗ !A. With
respect to the usual exponential modality, Milner’s exponential refuses digging !A �
!!A and contraction !A � !A ⊗ !A. One side of Milner’s law is an asymmetric form of
contraction !A � A ⊗ !A, also known as absorption, whereas its dual A ⊗ !A � !A
has a differential flavor [4]. Indeed, parsimonious logic resembles an affine subsystem
of differential linear logic, but we have not fully explored the connection.

On the computational side, the parsimonious λ-calculus may be seen as an affine
λ-calculus with built-in streams. This is because Milner’s law naturally makes !A be the
type of streams on A: absorption is “pop” and coabsorption is “push”. Stream calculi
abound in the literature, also in connection with (classical) logic [18] and ICC [6,17].
However, these are all orthogonal to the present work, both in terms of motivations
(modeling streams is not our primary concern) and technically (our streams arise from
a previously unremarked restriction of the exponential modality of linear logic).

We should also mention the companion paper [14], which focuses on the uni-
form version of the simply-typed parsimonious calculus presented here, showing that it
exactly captures L, i.e., uniform logspace, nicely complementing the results presented
here.

2 The Non-uniform Parsimonious Lambda-Calculus

We introduce an alternative term syntax for the infinitary parsimonious calculus and
its associated type system, improving on previous work [13] in two respects. First,
we avoid use of indices when referring to instances of exponential variables (that are
reminiscent of indices in AJM games [1]). We instead use more conventional tools like
list and let constructs. Second, the calculus has a closer fit with the type system, i.e., the
type system is syntax-directed. This offers a better logical account of the programs, not
to mention easier type inference.

In the following, [k] stands for the set {0, . . . , k − 1} for every k ∈ N.

Terms. We let a, b, c, . . . (resp. x, y, z, . . .) range over a denumerably infinite set of
linear (resp. exponential) variables. A pattern p is either a ⊗ b or a list a0 :: a1 :: · · · ::
an−1 :: x with n ≥ 0 and a0, . . . , an−1 distinct. If n = 0, the latter denotes the one
element list x. We often use notation p(x) to indicate the last exponential variable x.
The terms are inductively generated by

t, u ::= ⊥ | a | x | λa.t | tu | t ⊗ u | t ::u | let p = t in u | !f (u0, . . . , uk−1),

where k ≥ 1 and f : N −→ [k]. The expression !f (u0, . . . , uk−1) is called a box. We
use u to range over boxes. When k = 1, f is obvious and we write !(u0), or even !u0.
Restricting to boxes of this form yields a uniform calculus, which is the object of [14].

The box u generates an infinite stream uf(0) :: uf(1) :: uf(2) :: · · · . We denote the
n-th component of the stream by u(n), and the result of removing the first n elements
by u+n, so that the stream can be expressed as u(0) ::u(1) :: · · · ::u(n−1) ::u+n. More
precisely, u+n denotes !f+n(u0, . . . , uk−1), where f+n(i) := f(n + i).

Parsimonious Types and Non-uniform Computation 353

Binders behave as expected; λa.u and (let a⊗b = t in u) bind linear variable a (and
also b in the latter case) occurring in u, while (let p = t in u) with p = a0 :: · · · ::an−1 ::
x binds both linear variables a0, . . . , an−1 and an exponential variable x occurring
in u. We adopt the standard α-equivalence and Barendregt’s variable convention. The
constant ⊥ corresponds to coweakening in logic. It is only used for auxiliary purposes
in this paper.

Informally, t ::u expresses the result of pushing an element t to the stream u. It is
convenient to think of pattern a0 :: · · · :: an−1 :: x as a “non-uniform” variable. When
“substituting” a box u for it, the first n variables a0, . . . , an−1 are replaced by the first
n components u(0), . . . ,u(n − 1) (with free variables renamed), while x takes u+n.

A slice of a term is obtained by removing all components but one from each box.
A term is parsimonious if (i) all its slices are affine, i.e., each variable (linear or not)
occurs at most once; (ii) box subterms do not contain free linear variables; and (iii) all
exponential variables belong to a box subterm. Thus each exponential variable corre-
sponds to an “auxiliary door” of a unique box. The set of parsimonious terms in the
above sense is denoted by nuPΛ.

Reduction. One-step reduction t
σ−→ u is defined relatively to a finite set σ of the form

{b1 ::x1, . . . , bk ::xk}. We denote the set {b1, . . . , bk, x1, . . . , xk} by fv(σ). There are
seven elementary rules, among which (beta), (com1) and (com2) are standard:

(beta) (λa.t)u ∅−→ t[u/a] (merge) let x = u in w
∅−→ w{u/x}

(com2) let p = C[t] in u
∅−→ C[let p = t in u] (com1) C[t]u ∅−→ C[tu]

(cons) let a ::p = t ::v in w
∅−→ let p = v in w[t/a]

(dup) let a ::p = u in w
σ−→ let p = u+1 in w[u(0)′/a]

(aux) let x = t :: v in w[u] σ−→ let x = v in w[u(0)′[t/x] :: u+1]

where C[•] stands for a context of the form (let q = v in •). The term u(0)′ is obtained
from u(0) by replacing its free exponential variables x1, . . . , xm (except x in (aux))
with fresh linear variables b1, . . . , bm. Thus the (dup) and (aux) rules introduce new
free variables, which are recorded in σ := {b1 ::x1, . . . , bm ::xm} and are bound later.
In the (aux) rule, the notation w[u] means that w contains a box u s.t. x ∈ fv(u). If
no such box exists, the term t is erased, i.e., the right hand side is let x = v in w.
This rule corresponds to a cut between a cocontraction and the auxiliary port of a box
in differential linear logic. We include it for completeness but we never need it.

The substitution w{u/x} in the (merge) rule needs an explanation. Suppose that
u = !f (u0, . . . , uk−1) and that x occurs in a box w = !g(w0, . . . , wl−1). Our inten-
tion is to replace the stream . . .w(i) . . . with . . .w(i)[u(i)/x] . . . To achieve this, let
vik+j := wi[uj/x] for each i ∈ [l] and j ∈ [k]. Then w{u/x} is the result of replacing
the box w with !h(v0, . . . , vlk−1), where h(m) = g(m)k + f(m).

The above rules are extended contextually. We have:

t
σ−→ u

C[t] σ−→ C[u]
w

σ∪{b::x}−−−−−→ w′

let p(x) = v in w
σ−→ let p(b ::x) = v in w′

where the left rule applies when C[t] or C[u] does not bind any variable in fv(σ).

354 D. Mazza and K. Terui

Γ ;Δ, a : A � a : A
ax

Γ ;Δ � ⊥ : A
coweak

Γ ;Δ, a : A � t : B

Γ ;Δ � λa.t : A � B
�I

Γ ;Δ � t : A � B Γ ′;Δ′ � u : A

Γ, Γ ′;Δ, Δ′ � tu : B
�E

Γ ;Δ � t : A Γ ′;Δ′ � u : B

Γ, Γ ′;Δ, Δ′ � t ⊗ u : A ⊗ B
⊗I

Γ ;Δ � t : A ⊗ B Γ ′;Δ′, a : A, b : B � u : C

Γ, Γ ′;Δ, Δ′ � let a ⊗ b = t in u : C
⊗E

Γ, p : A;Δ, a : A � t : C

Γ, (a ::p) : A;Δ � t : C
abs

Γ ;Δ � t : A Γ ′;Δ � u : !A

Γ, Γ ′;Δ, Δ′ � (t ::u) : !A
coabs

;Δ � u0 : A · · · ;Δ � uk−1 : A

Δ′;� !f (u
′
0, . . . , u

′
k−1) : !A

!I
Γ ;Δ � t : !A Γ ′, p : A;Δ′ � u : C

Γ, Γ ′;Δ, Δ′ � let p = t in u : C
!E

Γ ;Δ � t : A α �∈ fv(Γ, Δ)

Γ ;Δ � t : ∀α.A
∀I

Γ ;Δ � t : ∀α.A B is !-free

Γ ;Δ � t : A[B/α]
∀E

Fig. 1. The typing system nuPL∀�. Removing the last two rules yields nuPL.

Finally we write t −→ u if t
∅−→ u holds. This is our notion of one-step reduction.

Reduction is the reflexive-transitive closure of −→, denoted by −→∗.
For instance, if t := let a ::p = !u(x) in a ⊗ v and t′ := let p = !u(x) in u(b) ⊗ v,

we have t
{b::x}−−−−→ t′, so let x = w in t −→ let b :: x = w in t′. Thus the “uniform”

variable x is replaced by the “non-uniform” b ::x.
Reduction may be shown to be confluent. However, termination is not guaranteed:

take Δ := λb.let a ::x = b in a !x and let Ω := Δ !Δ. These terms are parsimonious,
and we have Ω −→ Ω, like the namesake usual λ-term.

Types. We take as types the formulas of intuitionistic second order linear logic:

A,B ::= α | A � B | A ⊗ B | !A | ∀α.A

where α is a type variable. The set of types (resp. ∀-free types) is denoted by Type∀�

(resp. Type).
We adopt a type system with dual contexts as in [2]. Typing judgments are of the

form Γ ;Δ
 t : A, where Γ is a set of assignments of the form p(x) : C, while Δ
consists of assignments of the form a : C. Moreover, all variables occurring in Γ,Δ are
distinct.

A term t is typable in nuPL∀� if the judgment Γ ;Δ
 t : A may be derived
according to the rules of Fig. 1. Likewise, t is typable in nuPL if Γ ;Δ
 t : A is
derived without any use of the quantifier ∀.

In the rule !I, if Δ = {b1 : B1, . . . , bm : Bm}, then Δ′ := {y1 : B1, . . . , ym : Bm}
with y1, . . . , ym fresh, and u′

i := ui[y1/b1, . . . , ym/bm]. Notice that the rule ∀E is
applicable only when B is !-free. An induction on the last rule of derivations gives

Lemma 1. Suppose that ;Δ
 t : A. Then:
1. parsimony: t ∈ nuPΛ;
2. typical ambiguity: ;Δ[B/α]
 t : A[B/α] for any type B;
3. subject reduction: t −→ t′ implies ;Δ
 t′ : A.

Parsimonious Types and Non-uniform Computation 355

In the sequel, we will mainly deal with simple types in Type. Polymorphic types in
Type∀� are considered only when necessary. When working with Type, it is convenient
to fix a propositional variable, which we denote by o. If A,B ∈ Type, A[B] stands for
A[B/o]. We will even omit B, just writing A[]. This lack of information is harmless
for composition: point 2 of Lemma 1 guarantees that terms of type A[X] � B and
B[Y] � C may be composed to yield A[X[Y]] � C. The only delicate point is
iteration (see below), which requires flat terms, i.e., of type A � A (identical domain
and codomain).

Examples. We set λp.t := λc.let p = c in t with c a fresh variable, so that we have

(λa ⊗ b.t(a, b))u ⊗ v −→∗ t(u, v), (λa ::x.t(a, x))u ::v −→∗ t(u, v).
With this notation, the two terms implementing Milner’s law may be written as

λa ::x.a ⊗ !x : !A � A ⊗ !A, λa ⊗ b.let x = b in a :: !x : A ⊗ !A � !A.

Fig. 2 shows some examples of data and functions represented in nuPL. As usual,
a natural number n is expressed by a Church numeral n of type Nat. The type Nat
supports iteration It(n, step′, base) := n !(step′) base, typed as:

;Δ
 step : A � A Γ ;Σ
 base : A

Δ′, Γ ;Σ,n : Nat[A]
 It(n, step′, base) : A

where Δ′ and step′ are the results of systematically replacing linear variables by expo-
nential ones. Note that the type of step must be flat.

Since succ has a flat type Nat � Nat, it may be iterated to result in the addi-
tion function of type Nat[] � Nat � Nat. It is again flat with respect to the
second argument, so a further iteration leads to the multiplication function of type
Nat[] � Nat[] � Nat. Subtraction is defined similarly.

Notably, Church numerals are duplicable and storable as shown in Fig. 2. Using
addition, multiplication, subtraction and duplication we may represent any polynomial
with integer coefficients as a closed term of type Nat[] � Nat.

Moreover, all these unary constructions can be extended to binary ones. We define
Str := !(o � o) � !(o � o) � o � o. The Church representation for the binary
string w = b0 · · · bn−1 ∈ {0, 1}n is given by

w := λs0 :: · · · ::sn−1 ::x.λs′
0 :: · · · ::s′

n−1 ::y.λd.c0(· · · cn−1d · · ·) : Str,

where ci = si or s′
i depending on the bit bi being 0 or 1.

For the Boolean values, we adopt the multiplicative type Bool := o ⊗ o � o ⊗ o
used in [19]. Just as numerals, words and Booleans are duplicable and storable.

An advantage of multiplicative Booleans is that they support flat exclusive-or ⊕ in
addition to flat negation ¬. On the other hand, the best we can do for conjunction (and
disjunction) is ∧ : Bool[] � Bool � Bool, i.e., one of the arguments must be non-flat.
By contrast, ∧ admits a flat typing in nuPL∀� by redefining Bool := ∀α.α ⊗ α �
α⊗α. As we will see in the next section, this results in greater expressiveness, showing
in fact that a flat representation of ∧ is impossible in nuPL unless L/poly = P/poly.

Let t : Str[] � Bool be a closed term typable in nuPL (resp. in nuPL∀�). It
defines a language L(t) := {w ∈ {0, 1}∗ : tw −→∗ tt}. Let nuPL (resp. nuPL∀�) be the
class of all such languages.

356 D. Mazza and K. Terui

Nat := !(o � o) � o � o, Bool := o ⊗ o � o ⊗ o
n := λs0 :: · · · ::sn−1 ::x.λd.s0(. . . sn−1d . . .) : Nat
succ := λn.λs ::x.λd.s(n!(x)d) : Nat � Nat
pred := λn.λx.λd.n((λa.a) :: !x)d : Nat � Nat
dup := λn.It(n, λm1 ⊗ m2.(succ m1) ⊗ (succ m2), 0 ⊗ 0) : Nat[] � Nat ⊗ Nat
store := λn.It(n, λx.!(succ x), !0) : Nat[] � !Nat
tt := λc ⊗ d.c ⊗ d, ff := λc ⊗ d.d ⊗ c : Bool
¬ := λb.λc ⊗ d.b(d ⊗ c) : Bool � Bool
⊕ := λb1.λb2.λc.b1(b2c) : Bool � Bool � Bool
∧ := λb1.λb2.let c ⊗ d = b1(b2 ⊗ ff) in c : Bool[] � Bool � Bool

Fig. 2. Some data types and encodings

3 Expressiveness of Non-uniform Parsimonious Terms

In this section, we prove

Theorem 2. L/poly ⊆ nuPL and P/poly ⊆ nuPL∀�.

An n-input branching program is a triple P = (GP , vP
s , vP

t) where: GP is a finite
directed acyclic graph (dag); its nodes have out-degree 2 or 0 and are labelled in [n];
each node of out-degree 2 has one outgoing edge labelled by 0 and one by 1; and vP

s , vP
t

are the source and target node, the former having in-degree 0, and the latter having out-
degree 0. The size of P is the number of nodes of GP .

A binary string w = b0 · · · bn−1 ∈ {0, 1}n and an n-input branching program P
induce a directed forest P (w), as follows: take GP and, for each node v of out-degree 2
whose label is i, erase the edge labelled by 1 − bi. Thus, P (w) is a dag of out-degree at
most 1, i.e., a forest, whose edges are directed towards the roots. We say that P accepts
w if vP

s is a leaf of the tree whose root is vP
t ; otherwise, it rejects.

A family of branching programs is a sequence (Pn)n∈N s.t., for all n ∈ N, Pn is
an n-input branching program. It is of polynomial size if there exists a polynomial p
such that, for all n ∈ N, the size of Pn is bounded by p(n). It is well known [20, Theo-
rem4.38] that L/poly is exactly the class of languages decided by families of branching
programs of polynomial size. Therefore, to prove the first part of Theorem 2 it will be
enough to encode polysize families of branching programs, as sketched below.

0

��
��

��
��

��
1

����
��

��
��

2

��

3

��

4 5

Fig. 3. A forest

Encoding a forest. We have a very simple encoding of a forest G
thanks to a flat encoding of the exclusive-or function. Suppose that
the nodes of G are {0, . . . , m − 1} and think of a token traversing
G. We express the state “the token is placed at node i” by the term
@i := !δi(ff, tt), where δi(j) = 1 iff i = j. The term @i is of type
!Bool and expresses the stream in which only the i-th component is tt and the rest is ff.

A forest is expressed by a term of type !Bool � !Bool. For instance the forest in
Fig. 3 is expressed by the term t below:

λ(c0 ::c1 ::c2 ::c3 ::c4 ::c5 ::x). (ff ::ff ::ff ::c0 ⊕ c1 ::c3 ⊕ c4 ::c2 ⊕ c5 :: !x).

This term replaces the 0th, 1st and 2nd components of a given stream with ff since
there are no edges coming into the nodes 0, 1, 2. The 3rd is the exclusive-or of the 0th

Parsimonious Types and Non-uniform Computation 357

and 1st, while the 4th (resp. 5th) is the exclusive-or of the 3rd and 4th (resp. 2nd and
5th). Thus the term actually represents a graph where self-loops are added to terminal
nodes 4 and 5. As a consequence, we have It(k, t,@i) −→∗ @j iff terminal node j is
reachable from node i, as far as k ≥ 2. It is clear that the same encoding works for
arbitrary forests of arbitrary size.

Encoding a branching program. Actually the edges of a forest are to be chosen accord-
ing to the input binary string w = b0 · · · bn−1 (bi ∈ {0, 1}) fed to a branching program
Pn. Hence for instance the component c0 ⊕ c1 above should be replaced by a term like
(bi ∧ c0) ⊕ (¬bj ∧ c1) where bi, bj are the Boolean values of type Bool[] depending
on which the edges 0 → 3 and 1 → 3 are drawn; the former is drawn when bi = 1,
while the latter is drawn when bj = 0. This raises no typing problem since conjunction
∧ : Bool[] � Bool � Bool is flat with respect to the second argument. We there-
fore obtain a term tn : !Bool[] � !Bool � !Bool expressing a branching program
Pn = (Gn, 0, 1) (assuming that the source and target are respectively node 0 and 1).
Converting an input string of type Str into a stream of type !Bool[] is easy.

Encoding a family of branching programs. This is not the end of the story. We can-
not store the whole family (Pn)n∈N in a term as it is, in spite of the infinite facility
of our calculus. In fact, a box !f (u0, . . . , un−1) is morally an infinite stream on the
finite alphabet u0, . . . , un−1. In particular, streams containing items of unbounded size
(such as the Pn) are not allowed. We are thus led to consider advice, an infinite stream
containing finitely many instructions, according to which each Pn is “woven” step by
step.

For instance, to compute the Boolean value associated with a single node k (rather
than the whole state of type !Bool) from the previous state, it is sufficient to consider
four instructions: iskip, nskip, pos, neg. Let Adv := o4 � o and represent each
instruction by λa0a1a2a3.ai with i ∈ [4]. Then any advice can be represented by a box
!f (iskip, nskip, pos, neg) : !Adv[] with a suitable f .

We consider the following term which expects four inputs: advice (encoded by a
term of type !Adv[]), input string (!Bool[]), previous state (!Bool) and temporal value of
node k (Bool), and returns the updated values of the same type.

λa ::x. λb ::y. λc ::z. λd. case a of iskip → !(x) ⊗ !(y) ⊗ c :: !(z) ⊗ d;
nskip → !(x) ⊗ b :: !(y) ⊗ !(z) ⊗ d;
pos → !(x) ⊗ !(y) ⊗ !(z) ⊗ ((b ∧ c) ⊕ d);
neg → !(x) ⊗ !(y) ⊗ !(z) ⊗ ((¬b ∧ c) ⊕ d).

The instruction iskip (resp. nskip) skips the first bit b of the input (resp. c of the
previous state). The behaviors of pos and neg are as expected. For instance, starting
from initial input string b0 :: · · · :: bn−1, previous state c0 :: · · · :: cm−1 and temporal
value ff, iteration of the above term four times with advice iskip ::pos ::nskip ::neg
yields value (b1 ∧ c0) ⊕ (¬b2 ∧ c2) (together with the rest of input b3 :: · · · :: bn−1 and
the rest of nodes c3 :: · · · ::cm−1).

Actually things are more complicated, since unused values ci in the previous state
are not just thrown away but to be preserved for later use. Each bit bj of the input string
is to be used several times. Most importantly, we need to compute not just one value d

358 D. Mazza and K. Terui

Fig. 4. Links (left) and cut-elimination steps (right). In the cut link, A ⊥ A′; • ∈ {⊗, }.

(of type Bool) but a stream expressing the next state (of type !Bool). We can manage to
do that by using more complicated instructions and types.

In the end, we obtain a term tP : !Adv[] � !Bool[] � !Bool � !Bool that
“weaves” a forest Pn(w) when an advice an of polynomial length r(n) and an input
string w of length n are provided. Actually the advice is given as a concatenation
of all (ai)i∈N, from which a suitable advice for Pn is extracted by skipping the first∑n−1

i=1 r(i) components.
So far we gave a proof sketch of the first part of Theorem 2. For the second part,

recall that nuPL∀� allows us to encode not only exclusive-or, but also conjunction and
disjunction by terms of flat type Bool � Bool � Bool. Hence we may build a term
similar to tP above, which is able to “weave” a family of polynomial size Boolean
circuits. This observation immediately leads to the second part of Theorem 2.

4 Boolean Nets and Logarithmic Space

We consider here multiplicative linear formulas of arbitrary arity, generated by

A,B ::= o | o⊥ | ⊗i≤nAi | i≤nAi,

where n ≥ 1 (the bound n will be omitted in the sequel unless necessary). Linear
negation (·)⊥ is defined as usual via De Morgan laws (exchanging ⊗ and). The height
of a formula is its height as a tree. We will also need a more liberal notion of duality,
which we denote by A ⊥ B, defined to be the smallest symmetric relation on formulas
such that: o ⊥ o⊥; if A1 ⊥ B1, . . . , An ⊥ Bn, then ⊗i≤nAi ⊥ i≤n+kBi and

i≤nAi ⊥ ⊗i≤n+kBi, with Bn+1, . . . , Bn+k arbitrary. Of course A ⊥ A⊥.
A net is formula-labelled directed graph built by composing the nodes of Fig. 4

(left), called links. Composition must respect the orientation, and the labeling must
respect the constraints given in Fig. 4. Edges are allowed to have unconnected extrem-
ities. The edges incoming in (resp. outgoing from) a link are called premises (resp.
conclusions) of the link. The number of premises of a ⊗ or link is called its arity.
The premises of ⊗ and links are ordered, so we may speak of “the i-th premise”.
Each edge must be the conclusion of a link. The size of a net is the number of its links.
Cut-elimination steps are defined in Fig. 4 (right).

Definition 1 (Boolean net). An n-input Boolean net π is a net whose conclusions have
type Bool[A1]⊥, . . . ,Bool[An]⊥,Bool. The height of π is the maximum height of Ai.
A family of Boolean nets is sequence (πn)n∈N where each πn is an n-input Boolean
net. A family (πn)n∈N accepts (resp. rejects) a string w ∈ {0, 1}∗ if the net obtained

Parsimonious Types and Non-uniform Computation 359

by cutting π|w| with w0, . . . ,w|w|−1 normalizes to tt (resp. ff). We denote by APN0 the
class of languages decided by families of Boolean nets of polynomial size and bounded
height.

Fig. 5. A generic net π and its normal form π′

A net π with n conclusions and
k cut links has the shape given in
the left hand side of Fig. 5, where
ρ1, . . . , ρn, τ1, τ

′
1, . . . , τk, τ ′

k are trees
of ⊗, and w links, and ω consists
solely of ax links. Moreover, since the
leaves of ρi are labelled by atomic
formulas, and since only ax and w
links may have atomic conclusions, the normal form π′ of π (which exists and is unique)
has the shape given in the right hand side of Fig. 5, where the conclusions of ω′ are
conclusions of ax or w links (ω′ may contain irreducible cut links but this will not be
important for us).

We will be interested in detecting companion leaves of ρi, ρj in π′ (we allow i = j),
i.e., leaves which are conclusions of the same ax link of ω′. The geometry of interac-
tion (GoI, [8]) gives us a way of doing this directly in π, without applying any cut-
elimination step. The following is an immediate application of standard GoI definitions.

Proposition 1. Let π be as in Fig. 5, of size s, and let h be the maximum height of
C1, . . . , Ck. If e, e′ are two leaves of ρi, ρj , deciding whether e, e′ are companions in
the normal form of π may be done in space O(h log s).

Theorem 3. APN0 ⊆ L/poly.

Proof. Let (πn)n∈N be such a family, of size p(n). Since p is a polynomial, the whole
family may be encoded as advice. Deciding whether w ∈ {0, 1}n is accepted amounts
to detecting whether a certain pair of leaves in πn cut with the representations of the
bits of w are companions in the normal form, which by Proposition 1 may be done in
space O(h log(p(n))) = O(h log n). But, by definition, the height h of cut formulas
does not depend on n, so we conclude. �

5 Approximations and Boolean Nets

We say that a term is finite if it contains only boxes of the form !⊥. Finite terms may
be mapped to nets in a standard way, as follows. We first introduce the relation A′ � A
between classical multiplicative formulas and simple types, as the smallest such that:
o � o; if A′ � A and B′ � B, then (A′)⊥ B′ � A � B and A′ ⊗ B′ � A ⊗ B; if
A′

1, . . . , A
′
n � A, then ⊗i≤nA′

i � !A. A straightforward induction on A gives

Lemma 2. A′, A′′ � A implies (A′)⊥ ⊥ A′′.

Let t be finite. We will map a type derivation of Γ ;Δ
 t : A in nuPL to a
net, which we abusively denote by �t�, of conclusions Γ ′,Δ′, A′ such that (Γ ′)⊥ � !Γ ,
(Δ′)⊥ � Δ and A′ � A. The definition is by induction on the last rule of the derivation:

360 D. Mazza and K. Terui

In the ax and coweak case, we choose Γ ′, Δ′ and A′ so that every ! is approximated
in the minimal way, i.e., n = 1 in the definition of �. In the cases ax and � E, η
denotes the η-expansion net, defined as usual. In the cases � E, ⊗E and !E, Lemma 2
guarantees the soundness of the typing. For the rule !I, by finiteness the only possibility
is that k = 1 and u0 = ⊥, so this case is treated as coweak. In the case abs (resp.
coabs), the net π represents the net �t� (resp. �u�) from which the (resp. ⊗) link
corresponding to p : A (resp. !A) has been removed. If no such link exists, it means that
the conclusion came from a w (it cannot come from an atomic axiom), in which case
we simply add a binary (resp. ⊗) link.

Note that the size of �t� is O(s · |t|), where s is the size of the types in t (this is
because of the η nets). The following is standard:

Lemma 3. Let t be finite and typable in nuPL. Then, t −→ t′ implies �t� →∗ �t′�.

In what follows, for convenience we associate with each non-linear variable x a
sequence a0, a1, a2, . . . of pairwise distinct linear variables. We further suppose that if
a (resp. b) is associated with x (resp. y), then x �= y implies a �= b. The n-th approxi-
mation of t ∈ nuPΛ is a finite term �t�n defined as follows: �⊥�n := ⊥; �a�n := a;
�x�n := ⊥; �λa.t�n := λa.�t�n; �tu�n := �t�n�u�n; �t ⊗ u�n := �t�n ⊗ �u�n;
�t :: u�n := �t�n :: �u�n; �let a ⊗ b = u in t�n := let a ⊗ b = �u�n in �t�n;
�let p(x) = u in t�n := let p(a0 :: · · · :: an−1 :: x) = �u�n in �t�n, where the ai are
associated with x; �u�n := �u(0)[a0/x]�n :: · · · :: �u(n − 1)[an−1/x]�n :: !⊥, where
x are the free variables of the box and ai are associated with x.

Proposition 2. Let t : Bool in nuPL∀� (or nuPL). There exists a polynomial p
depending solely on the types appearing in t and on its depth (the maximum number of
nested boxes) such that, if t −→l b with b ∈ {tt,ff}, then l ≤ p(|t|). As a consequence,
there is a polynomial q (with the same dependencies) s.t. �t�q(|t|) −→∗ b.

Proof. The bound on the reduction length is proved by a careful reformulation of a
standard cut-elimination argument. This immediately induces the approximation bound
via continuity, as proved in [13, Lemmas3and4]. �

Theorem 4. nuPL ⊆ APN0 and nuPL∀� ⊆ P/poly.

Proof. Given t : Str[A] � Bool and n ∈ N, it is easy to obtain a term t′ whose
type is ; b0 : Bool[A � A], . . . , bn−1[A � A] : Bool
 t′(b0, . . . , bn−1) : Bool. It
takes n Booleans, converts them into a string of type Str[A], and then passes it to t. If
w = b0 · · · bn−1 ∈ {0, 1}n, we have u := t′(b0, . . . , bn−1) −→∗ tw −→∗ b. By Proposi-
tion 2, we have �u�p(|u|) −→∗ b for p a polynomial not depending on w. But |u| = O(n)
by construction. Hence, by Lemma 3 the language decided by t may be decided by the
family of Boolean nets πn := ��t′�q(n)� with q a polynomial, so the family is of polyno-
mial size. Moreover, the conclusions of πn are Bool[Bn]⊥, . . . ,Bool[Bn]⊥,Bool, with

Parsimonious Types and Non-uniform Computation 361

Bn � A � A, whose height does not depend on n (only the arity). Hence the family is
also of bounded height. The second part is an immediate consequence of Proposition 2
as delineated in the introduction: the height of formulas plays no role, we normalize the
underlying untyped term. �

Acknowledgments. This work was partially supported by projects LOGOI ANR-2010-BLAN-
0213-02, COQUAS ANR-12-JS02-006-01, ELICA ANR-14-CE25-0005 and JSPS KAKENHI
25330013.

References
1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput. 163(2),

409–470 (2000)
2. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda calculus. Inf.

Comput. 207(1), 41–62 (2009)
3. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime func-

tions. Computational Complexity 2, 97–110 (1992)
4. Ehrhard, T., Regnier, L.: Differential interaction nets. Electr. Notes Theor. Comput. Sci. 123,

35–74 (2005)
5. Ehrhard, T., Regnier, L.: Uniformity and the taylor expansion of ordinary lambda-terms.

Theor. Comput. Sci. 403(2–3), 347–372 (2008)
6. Gaboardi, M., Péchoux, R.: Upper bounds on stream I/O using semantic interpretations. In:

Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 271–286. Springer, Heidelberg
(2009)

7. Ghica, D.R.: Geometry of synthesis: a structured approach to VLSI design. In: Proceedings
of POPL, pp. 363–375 (2007)

8. Girard, J.Y.: Geometry of interaction I: Interpretation of system F. Proccedings of Logic
Colloquium 1988, 221–260 (1989)

9. Girard, J.Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)
10. Kfoury, A.J.: A linearization of the lambda-calculus and consequences. J. Log. Comput.

10(3), 411–436 (2000)
11. Leivant, D., Marion, J.Y.: Lambda calculus characterizations of poly-time. Fundam. Inform.

19(1/2) (1993)
12. Mazza, D.: An infinitary affine lambda-calculus isomorphic to the full lambda-calculus. In:

Proceedings of LICS, pp. 471–480 (2012)
13. Mazza, D.: Non-uniform polytime computation in the infinitary affine lambda-calculus. In:

Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS,
vol. 8573, pp. 305–317. Springer, Heidelberg (2014)

14. Mazza, D.: Simple parsimonious types and logarithmic space (2015), available on the
author’s web page

15. Melliès, P.A.: Asynchronous games 2: The true concurrency of innocence. Theor. Comput.
Sci. 358(2–3), 200–228 (2006)

16. Melliès, P.-A., Tabareau, N., Tasson, C.: An explicit formula for the free exponential
modality of linear logic. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikolet-
seas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 247–260. Springer,
Heidelberg (2009)

17. Ramyaa, R., Leivant, D.: Ramified corecurrence and logspace. Electr. Notes Theor. Comput.
Sci. 276, 247–261 (2011)

18. Saurin, A.: Typing streams in the Λμ-calculus. ACM Trans. Comput. Log. 11(4) (2010)
19. Terui, K.: Proof nets and boolean circuits. In: Proceedings of LICS, pp. 182–191 (2004)
20. Vollmer, H.: Introduction to circuit complexity - a uniform approach. Texts in theoretical

computer science. Springer (1999)

Baire Category Quantifier
in Monadic Second Order Logic

Henryk Michalewski1 and Matteo Mio2(B)

1 University of Warsaw, Warsaw, Poland
2 CNRS/ENS-Lyon, Lyon, France

momatteo@gmail.com

Abstract. We consider Rabin’s Monadic Second Order logic (MSO) of
the full binary tree extended with Harvey Friedman’s “for almost all”
second-order quantifier (∀∗) with semantics given in terms of Baire Cat-
egory. In Theorem 1 we prove that the new quantifier can be eliminated
(MSO+∀∗ =MSO). We then apply this result to prove in Theorem 2 that
the finite–SAT problem for the qualitative fragment of the probabilis-
tic temporal logic pCTL* is decidable. This extends a previous result of
Brázdil, Forejt, Křet́ınský and Kučera valid for qualitative pCTL.

Keywords: Monadic second order logic · Baire category · pCTL∗

1 Introduction

The main motivation of this paper is purely logical. We investigate the extension
of Rabin’s Monadic Second Order Theory of the Full Binary Tree [14], hence-
forth simply shortened as MSO, with an additional “for almost all” second-order
quantifier ∀∗ whose set-theoretic semantics is defined as:

∀∗X.φ(X, �Y) def=
{
�Y | {X | ¬φ(X, �Y) holds} is “topologically small”

}
where topologically small is interpreted as of Baire first category (or meager)
in the standard topology on subsets of the full binary tree. Thus, for example,
the closed formula ∀∗X.φ(X) is valid if φ holds on all but a meager collection of
X’s. To the best of our knowledge, the quantifier ∀∗ has been first introduced
and investigated, in the general context of First Order Logic, by H. Friedman in
unpublished manuscripts in 1978–79 (see [17] for an overview of this research).

Another extension of MSO with a large cardinality quantifier ∀ℵ0 , defined by
replacing “is topologically small” with “has cardinality ≤ ℵ0” in the equation
defining ∀∗, has been recently investigated in [3] where it is proved that for every

H. Michalewski—Author supported by Polands National Science Centre grant no.
2014-13/B/ST6/03595.
M. Mio—Author supported by grant “Projet Émergent PMSO” of the École Normale
Supérieure de Lyon.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 362–374, 2015.
DOI: 10.1007/978-3-662-47666-6 29

Baire Category Quantifier in Monadic Second Order Logic 363

MSO+∀ℵ0 formula ψ there exists an equivalent MSO (without ∀ℵ0) formula ψ̂

such that ψ and ψ̂ denote the same set, that is the quantifier ∀ℵ0 can be expressed
(i.e., eliminated) in ordinary MSO. This implies that the theory MSO+∀ℵ0 is
decidable. We prove a similar result for MSO+∀∗.

Theorem 1. For every MSO+∀∗ formula ψ there exists an equivalent MSO
(without ∀∗) formula ψ̂ such that ψ and ψ̂ denote the same set.

Corollary 1. The theory of MSO+∀∗ is decidable.

Our proof uses the fact, first proved in [11, Theorem 6.6], that every MSO–
definable set of trees satisfies the Baire property (another, somewhat more ele-
mentary argument, can be deduced from Kolmogorov’s theory of R-sets, see [4,
Theorem 3.8] and [9]). As a consequence, the Baire category of regular sets of
trees can be determined using the well-known Banach–Mazur game (see, e.g., [12,
§8]). Our main observation is that the game itself can be “implemented” via an
alternating tree automaton (see Figure 4) which, while technically involved, is
conceptually simple. For this reason our proof is radically different from that
of [3] which is based on Shelah’s composition method and does not involve
automata constructions. An interesting topic for future research is to verify
if, with techniques similar to those used in this work, the quantifier elimina-
tion theorem for MSO + ∀ℵ0 of [3] can be proved using purely automata based
methods. Further topics of future research and related work are discussed at the
end of Section 3. The investigation of sets definable by formulas ∀∗X.φ(X, �Y),
with φ specifying Borel, analytic or R–sets, instead of regular sets, has been
an active area of research in descriptive set theory with contributions from
R. Barua, J. P. Burgess, D. Miller, P. S. Novikov and R. Vaught among others.
Our Theorem 1 can be considered an effective, automata–theoretic counterpart
of set-theoretic results such as [20, Corollary1.10], [12, Theorem 29.22] and [4,
Theorem 6.3].

An application to the theory of pCTL*. We apply our result on MSO+∀∗ to
the satisfiability problem of probabilistic temporal logics of programs (modeled
as Markov chains) such as pCTL* [10] (see also [2, §10.4]). The work of Brázdil,
Forejt, Křet́ınský and Kučera [6] is a main source of results in this area of
research. A pCTL* formula can generally be satisfiable but only by infinite
models, that is, by infinite Markov chains. Thus we distinguish between the
SAT problem and the finite–SAT problem which, more restrictively, asks about
the existence of finite models. In [6] the authors proved that both the SAT and
the finite–SAT problems for the qualitative fragment of pCTL are decidable. We
extend the second of these results to pCTL*.

Theorem 2. The finite–SAT problem for qualitative pCTL* is decidable.

Our proof method is based on a reduction of the finite–SAT problem to the
satisfiability of MSO+∀∗ which is decidable by Corollary 1. This proof technique
is of general applicability and an equivalent of Theorem 2 can be proved even for

364 H. Michalewski and M. Mio

more expressive probabilistic logics1. In contrast, the results of [6] provide much
tighter algorithmic information, but the proof methods are specifically tailored
to the logic pCTL and their applicability to other logics is not clear and requires
a separate study.

The semantics of qualitative pCTL* is based on the (measure-theoretic) prob-
abilistic concepts of null set, set of positive measure and set of measure 1. To
reduce it to MSO+∀∗, which can express the concept of Baire category, we apply
a remarkable result of Ludwig Staiger ([16, Theorem 4]) which says that a reg-
ular set L ⊆ Σω of infinite words is comeager if and only if μ(L) = 1, where μ
is the standard Lebesgue measure. This result is also used in [21] to develop a
theory of fairness for concurrent systems. Using Staiger’s theorem we prove that
pCTL* with its standard probabilistic semantics and pCTL* with an alternative
“Baire-categorical” semantics, where the state-formula P=1φ is interpreted as:
“s |= P=1φ ⇔ the set of paths starting from s and satisfying the path–formula φ
is comeager”, agree on all finite models. This kind of observation is not new and
has been already made (with respect to another logic) in the recent literature [1].
A proof of Theorem 2 is then obtained by combining these facts and by showing
that the Baire–categorical semantics of pCTL* can be interpreted in MSO+∀∗.

2 Background in Topology, Logic and Automata

Topology. Our exposition of topological and set–theoretical notions follows [12].
Given a topological space X, a set A ⊆ X is nowhere dense if the interior of
its closure is the empty set, that is (int(cl(A)) = ∅. A set A ⊆ X is of (Baire)
first category (or meager) if A can be expressed as countable union of nowhere
dense sets. A set A ⊆ X which is not meager is of the second (Baire) category.
The complement of a meager set is called comeager. A set B ⊆X has the Baire
property if B =U�M , for some open set U ⊆X and meager set M ⊆X, where
� is the operation of symmetric difference U�M =(U ∪ M) \ (U ∩ M).

The set of natural numbers is denoted by ω. A topological space X is Polish
if it is separable and completely metrizable. A main example of Polish space is
the Cantor space {0, 1}ω of infinite sequences of bits endowed with the product
topology. The Cantor space is zero-dimensional, i.e., it has a basis of clopen
(both open and closed) sets. We now describe the well-known Banach–Mazur
game (see [12, 8.H] for a detailed overview) which characterizes Baire category.

Definition 1 (Banach–Mazur Game). Let X be a zero–dimensional Polish
space. For a given payoff set A ⊆ X the infinite duration game BM(X,A) is
played by Player I and Player II by sequentially choosing non-empty clopen sets

Player I U0 U2 . . .
Player II U1 U3 . . .

1 E.g., Theorem 2 can be proved for the, easily conceivable but to our knowledge
never appeared in published work, probabilistic version of the non–probabilistic logic
ECTL* (see, e.g., [18] for an introduction to non–probabilistic ECTL*).

Baire Category Quantifier in Monadic Second Order Logic 365

with Un+1�Un. Player I wins if
⋂
n∈ω

Un ∩ A �= ∅ and Player II wins otherwise.

Theorem 3. Let X be a zero–dimensional Polish space. If A⊆X has the Baire
property, then BM(X,A) is determined and Player II wins iff A is meager.

Monadic Second Order Logic. We assume familiarity of the reader with exposi-
tion of monadic second order logic (MSO). A standard reference is [19].

The set {L,R}∗ of finite words over the alphabet {L,R} is called the full
binary tree and each w∈{L,R}∗ is referred to as a vertex. The functions SuccL

(w → w.L) and SuccR (w → w.R) are called successor operations. Given a finite
alphabet Σ the function space ({L,R}∗ → Σ) is denoted by TΣ and an element
t ∈ TΣ is called a Σ-labeled tree, or just a Σ-tree. We identify {0, 1}-labeled
trees, seen as characteristic functions, with sets of vertices. A tree t ∈ TΣ is
called regular if it has only finitely many subtrees up-to isomorphism. The space
TΣ has a natural topology homeomorphic to the Cantor space. A basis for the
topology consists of clopen sets of Σ-trees extending a given finite prefix.

The language of MSO consists of first order variables x, y (ranging over ver-
tices w ∈ {L,R}∗), second order variables X,Y (ranging over sets of vertices
t ∈ T0,1), the set-theoretic membership relation x ∈ X (interpreted as usual),
the operations SuccL and SuccR (with interpretation given as above), the usual
Boolean connectives (∨, ∧, ¬), first order quantifiers (∀x.φ, ∃x.φ) and the sec-
ond order quantifiers (∀X.φ, ∃X.φ). In the rest of this paper we will consider
MSO formulas whose free variables are all second order. This is not a significant
restriction since it is well known (see, e.g., [19]) how to present MSO as a purely
second order (i.e., without first order variables and quantifiers) theory. For a
vector �Y =(Y1, . . . , Yn) and a variable X we write φ(X, �Y) to denote that φ has
precisely n+1 free variables X,Y1, . . . , Yn. The set theoretic semantics of φ(X, �Y)
is the collection of n + 1-tuples of {0, 1}-trees 〈t0, t1, . . . , tn〉 satisfying the for-
mula φ. Equivalently, φ(X, �Y) defines a collection of Σ-trees with Σ ={0, 1}n+1.
A subset A ⊆ TΣ is regular if it is definable by a MSO formula. Given a for-
mula φ(X, �Y) and a tuple �t=〈t1, . . . , tn〉 of {0, 1}-trees, the formula φ(X,�t) with
parameters �t denotes the section {t0 | 〈t0, t1, . . . , tn〉∈φ(X, �Y)}⊆T0,1. Note that
φ(X,�t) needs not be regular, but is regular when �t is a regular tree.

Alternating Tree Automata. The importance of MSO stems from the fact that
the theory is decidable. An approach to the proof of decidability taken in [13] is
based on alternating tree automata. We include a brief exposition of alternating
automata which follows the presentation in [13, Appendix C].

Definition 2 (Alternating automaton). Given a finite set X, we denote
with DL(X) the set of expressions e generated by the grammar e ::= x ∈ X |
e ∧ e | e ∨ e. An alternating tree automaton over a finite alphabet Σ is a tuple
A = 〈Σ,Q, q0, δ,F) where Q is a finite set of states, q0 ∈ Q is the initial state,
δ : Q × Σ → DL({L,R} × Q) is the alternating transition function, F ⊆P(Q)
is a set of subsets of Q called the Muller condition. The Muller condition F is

366 H. Michalewski and M. Mio

called a parity condition if there exists a parity assignment π :Q→ ω such that:
F ={F ⊆Q | (maxq∈F π(q)) is even}.

An alternating automaton A over the alphabet Σ defines, or “accepts”, a set
of Σ-trees. The acceptance of a tree t∈TΣ is defined via a two-player (∃ and ∀)
game of infinite duration denoted as A(t). Game states of A(t) are of the form
〈�x, q〉 or 〈�x, e〉 with �x∈{L,R}∗, q∈Q and e∈DL({L,R} × Q).

The game A(t) starts at state 〈ε, q0〉. Game states of the form 〈�x, q〉, including
the initial state, have only one successor state, to which the game progresses
automatically. The successor state is 〈�x, e〉 with e=δ(q, a), where a= t(�x) is the
labeling of the vertex �x given by t. The dynamics of the game at states 〈�x, e〉
depends on the possibly nested shape of e. If e = e1 ∨ e2, then Player ∃ moves
either to 〈�x, e1〉 or 〈�x, e2〉. If e=e1 ∧ e2, then Player ∀ moves either to 〈�x, e1〉 or
〈�x, e2〉. If e=(L, q) then the game progresses automatically to the state 〈�x.L, q〉.
Lastly, if e=(R, q) the game progresses automatically to the state 〈�x.R, q〉. Thus
a play in the game A(t) is a sequence Π of game–states, that looks like: Π =
(〈ε, q0〉, . . . , 〈L, q1〉, . . . , 〈LR, q2〉, . . . , 〈LRL, q3〉, . . . , 〈LRLL, q4〉, . . .), where the
dots represent part of the play in game–states of the form 〈�x, e〉. Let ∞(Π) be
the set of automata states q∈Q occurring infinitely often in configurations 〈�x, q〉
of Π. We then say that the play Π of A(t) is winning for ∃, if ∞(Π)∈F . The
play Π is winning for ∀ otherwise. The set (or “language”) of Σ-trees defined
by A is the collection {t∈TΣ | ∃ has a winning strategy in the game A(t)}.

Definition 3. An alternating automaton A is called non-deterministic if for all
q ∈ Q and a ∈ Σ, the expression δ(q, a) is n-ary disjunction e1 ∨ · · · ∨ en where
each disjunct ei is a binary conjunction of the form 〈L, q1〉 ∧ 〈R, q2〉 with q1, q2
not necessarily distinct.

Fig. 1. A non–deterministic automa-
ton A with states Q

We will visualize alternating automata
by diagrammatic pictures with the con-
vention that ♦-shaped and �-shaped posi-
tions mark decisions of Player ∃ and
Player ∀, respectively. For example,
Figure 1 illustrates the shape of a non-
deterministic automaton.

The following theorem is of fundamen-
tal importance and states that alternating
and nondeterministic automata have the
same expressive power.

Theorem 4. [13] For every alternating automaton A there exists a non–
deterministic parity automaton B defining the same set as A.

3 The Quantifier ∀∗ in MSO

In this section we introduce the extension of MSO with Friedman’s “for almost
all” quantifier interpreted using the concept of Baire category.

Baire Category Quantifier in Monadic Second Order Logic 367

Definition 4 (MSO + ∀∗). The syntax of MSO + ∀∗ extends that of MSO with
the new second-order quantifier ∀∗ whose set-theoretic semantics is defined as:

∀∗X.φ(X, �Y) def=
{
�t | ¬φ(X,�t)⊆T0,1 is of first category

}
The dual quantifier ∃∗X.φ, derivable as ∃∗X.φ = ¬∀∗X.(¬φ) denotes the set
∃∗X.φ(X, �Y)=

{
�t | φ(X,�t)⊆T0,1 is of second category

}
.

Fig. 2. Large section interpreta-
tion of Friedman’s quantifier ∀∗.
The large sections selected by
quantifier ∀∗ are marked with
lines.

The set denoted by ∀∗X.φ(X, �Y) can be
illustrated as in Figure 2, as the collection
of trees �t having a large (comeager) section
φ(X,�t). Informally, 〈t1, . . . , tn〉∈∀∗X.φ(X, �Y)
if, “for almost all” t0 ∈ T0,1, the tuple
〈t0, t1, . . . , tn〉 satisfies φ.

Clearly, other kinds of “large section”
quantifiers can be considered. Among others,
the two quantifiers ∀ℵ0 and ∀=1 obtained by
replacing “is of first category” with “has cardi-
nality ≤ ℵ0” and “has Lebesgue measure 0”,
are particularly natural since the σ-ideals of
countable sets and of Lebesgue null sets are
important set-theoretic notions of smallness.
As already mentioned in the Introduction, the
theory MSO+∀ℵ0 has been first studied in [3]. Instead, to the best of our knowl-
edge, the theories MSO+∀∗ and MSO+∀=1 have never been investigated before.

Related and Future Work. The study of the system MSO+∀=1 appears to be an
interesting topic of future research, especially in connection with investigations
on probabilistic logics of programs. In this direction a relevant work is the recent
paper of Carayol, Haddad and Serre [7] where the authors have developed a the-
ory of nondeterministic tree automata with the usual acceptance condition on
runs “every path must be accepting” replaced by “the set of accepting paths is of
measure 1”2. Languages definable by such automata are called in [7] qualitative
tree languages. Furthermore, Olivier Serre has explored in his habilitation thesis
[15] and in a recent paper with Carayol [8], similar types of automata and lan-
guages obtained by replacing “measure 1” with “comeager” and “uncountable”
in the acceptance condition.

The automata-based work of [7] and the approach based on extensions of
MSO with large section quantifiers, followed in this paper and in [3], are to some
extend similar, however the resulting theories diverge. Qualitative tree languages
are not closed under complementation [7, Proposition 15], hence a comparison
with a logic with negation such as MSO+∀=1 may be problematic.

2 Other acceptance conditions based on measure are also investigated in [7].

368 H. Michalewski and M. Mio

4 Elimination of ∀∗ from MSO+∀∗

This section is devoted to the proof of Theorem 1. The proof is by induction on
the structure of the MSO + ∀∗ formula ψ(�Y) and consists in the construction of
an alternating tree automaton Aψ accepting the language defined by ψ. From the
automaton Aψ, by Theorem 4 and by Rabin’s theorem [14], one can effectively
construct a purely MSO formula ψ̂(�Y). The crucial step in the proof is asso-
ciated with the case of ψ(�Y) having the form ψ = ∃∗X.φ(X, �Y). By definition,
∃∗X.φ(X, �Y) defines the set of n-tuples �t of trees {�t | φ(X,�t) is not meager

}
.

The dual case of ψ(�Y)=∀∗X.φ(X, �Y) follows by complementation of automata.
By induction hypothesis, we can assume that the sub-formula φ is an ordinary

MSO formula. So let A be a nondeterministic and parity automaton, schemati-
cally representable as in Figure 1, accepting the set of (n+1)-tuples of {0, 1}-trees
defined by φ. Equivalently, the automaton A accepts Σ-trees with Σ = {0, 1}n+1.
We identify elements of Σ with sequences of bits 〈b0, b1 . . . bn〉 of length n+1.
We now describe the well-known construction of automata A∃ and A∀ recogniz-
ing respectively the languages ∃X.φ(X, �Y) and ∀X.φ(X, �Y) over the restricted
alphabet Σ′ = {0, 1}n. See [19] for a standard exposition.

Definition 5. Let A=(Σ,Q, q0, δ,Fπ) be the nondeterministic parity automa-
ton (with parity assignment π :Q→ω) accepting the language over the alphabet
Σ = {0, 1}n+1 defined by φ. The automaton A∃, over the restricted alphabet
Σ′ = {0, 1}n, is defined as A∃ =(Σ′, Q, q0, δ

∃,Fπ) where δ∃ is defined as
δ∃(q,�b) = e0 ∨ e1 ⇔

(
δ(q, 0.�b) = e0 and δ(q, 1.�b) = e1

)
and �b=〈b1, . . . , bn〉. Similarly, A∀ is defined as: A∀(Σ′, Q, q0, δ

∀,Fπ) where
δ∀(q,�b) = e0 ∧ e1 ⇔

(
δ(q, 0.�b) = e0 and δ(q, 1.�b) = e1

)
.

Fig. 3. Automaton A∃ constructed from A

The three automata A
(schematically depicted in
Figure 1), A∃ (Figure 3)
and A∀ have the same set
of states Q and parity con-
dition Fπ with π : Q → ω.
Note that A and A∃ are
non-deterministic while A∀

is not. The following is a
standard result.

Proposition 1. [13,19] The automata A∃ and A∀ accept the languages defined
by the formulas ∃X.φ(X, �Y) and ∀X.φ(X, �Y), respectively.

We now introduce some convenient terminology. In the automaton A∃, if the
current state is q and the automata reads the letter �b the transition e0 ∨ e1 is
reached. Here Player ∃ has two options:
Either choose the expression e0, thus simulating the transition of A at q reading

the letter 〈0,�b〉. Then we say that “∃ chooses to label X with 0”,

Baire Category Quantifier in Monadic Second Order Logic 369

Or choose the expression e1, thus simulating the transition of A at q reading
the letter 〈1,�b〉. Then we say that “∃ chooses to label X with 1”.

Similarly, in the automaton A∀, at the expression e0∧e1, we say that “∀ chooses
to label X with 0” if Player ∀ moves to e0 and that “∀ chooses to label X with
1” if Player ∀ moves to e1.

The alternating automaton Aψ we are going to construct, recognizing the lan-
guage of ψ=∃∗X.φ(X, �Y), is obtained by combining together the two automata
A∃ and A∀. In what follows, to avoid confusion, we rename every state q ∈ Q
of the automaton A∀ to q′ so that A∀ =(Q′, q′

0, δ
∀,F ′

π), where π (and therefore
F ′

π) and δ∀ are defined over Q′ as they were formerly defined over Q.
Before proceeding with the formal definition of Aψ we describe informally

the main ideas. The automaton A∃ can be understood as a modified copy of A
where player ∃ can choose (or “guess”) labels of X, i.e., the {0, 1}-labeled tree
associated with the variable X in φ(X, �Y). Similarly, in A∀ choices related to X
are made by Player ∀. In the automaton Aψ we will implement the dynamics
occurring in the Banach–Mazur game (see Definition 1) where Player I (as Player
∃) and Player II (as Player ∀) take turns in choosing how to label the tree
associated with X. We will do so by defining Aψ as an automaton consisting
of two disjoint components A∃ and A∀ with special transitions allowing moving
back and forth between these components. An appropriate Muller condition will
be defined on Aψ to enforce infinitely many alternations between components.

Definition 6. Aψ = (Σ′, Q ∪ Q′, q0, δψ,Fψ) where q0 ∈ Q is the initial state of
A∃ and, for �q=〈q1, . . . , qn〉∈Σ′, the transition function δψ is defined as:

δψ(q,�b) = e∃ ∨ e∀ ⇐⇒
(
δ∃(q,�b)=e∃ and δ∀(q′,�b)=e∀

)
,

δψ(q′,�b) = e∃ ∧ e∀ ⇐⇒
(
δ∃(q,�b)=e∃ and δ∀(q′,�b)=e∀

)
,

and Fψ = {S ⊆ P(Q ∪ Q′) | the condition A ∨ (B ∧ C) holds}, where A =
“S does not contain any q∈Q”,B=“S contains some q′ ∈ Q′” and, lastly, C =
“proj(S) = {q ∈ Q | q ∈ S ∨ q′ ∈ S}∈Fπ”.

See Figure 4 for a graphical exposition of Definition 6. Some explanations are
in order. The automaton Aψ starts at the state q0 which belongs to ∃-component.
This is because the Banach–Mazur game starts with a move of Player I. When
reading the letter �b of the (root of the) input tree, the transition is of the form
δψ(q0,�b) = e∃ ∨ e∀ meaning that player ∃ has two options:
guess move: choose condition e∃, i.e., the same transition as in the automaton

A∃. Once transition e∃ is chosen, the first move associated with the expres-
sion e∃ will correspond to the choice of ∃ with regard to the labeling of X
(∃ should choose between 0 and 1). Note that the next state to be visited
will be again in the A∃ component because e∃ ∈DL({0, 1} × Q}.

skip move: choose condition e∀ as in the automaton A∀. Once transition e∀ is
chosen, the first move associated with the expression e∀ will correspond to
the choice of ∀ with regard to the labeling of X (∀ should choose between 0
and 1). Note that the next visited state is, this time, in the A∀ component,
because e∀ ∈DL({0, 1} × Q′}.

370 H. Michalewski and M. Mio

q′
e∃ ∧ e∀

e∀

e′
0

q′
1

...

e′
1

...

q′
n

guess X=1

guess X=0

e∃

e0

q1

...

e1
...

qn

guess X=1

guess X=0

skip

choose

q e∃ ∨ e∀

e∃

e1

qn

...

e0 ...

q1

guess X=0

guess X=1

e∀

e′
1

q′
n

...

e′
0

...

q′
1

guess X=0

guess X=1

skip

choose

Q

Q’

Fig. 4. Automaton Aψ with states Q ∪ Q′ and transitions depicted in this figure; ♦-
shaped positions mark decisionss of player ∃ and �-shaped positions mark decisions of
player ∀.

Baire Category Quantifier in Monadic Second Order Logic 371

Guess and skip moves are marked in Figure 4. In a similar way, on states q′

when reading the letter �b the transition is of the form δψ(q′,�b) = e∃ ∧ e∀, hence
Player ∀ can either make a guess move by picking e∀, “choose the labeling of
X” and then remain in the ∀-component, or a skip move by picking e∃, thus
allowing ∃ to “choose the labeling of X” and move to the ∃-component.

The Muller condition Fψ captures the following aspects of the gameplay on
the game tree Aψ(�t), where �t=〈t1, . . . , tn〉 with ti ∈T0,1:
A) a branch in Aψ(�t) is winning for ∃ if the ∃-component was visited only

finitely many times. This intuitively means that, at some point, Player ∀
played “unfairly”, never giving back the control to ∃.

B) if ∀ was “fair” and ∃ played unfairly, then ∃ loses and ∀ wins.
C) else, if both players played “fairly” alternating infinitely often between ∃

and ∀ components, then a branch in the game Aψ(�t) is winning for ∃ if and
only if the sequence of visited states (ignoring the distinction between q and
its copy q′) is winning under the parity condition Fπ (note that the parity
assignment π is identical in all A, A∃ and A∀).

Thus the automaton Aψ implements the policy of infinite alternation between
∃ and ∀ in “guessing” the set X. Due to space limitations, a detailed proof of
the fact that Aψ accepts the set defined by ψ=∃∗X.φ(X, �Y) is not included and
will appear in an extended version of this paper.

5 Applications to Probabilistic Logics

In this section we consider the qualitative fragment of the probabilistic logic CTL*
(pCTL*), as introduced in [10], which can express useful properties of Markov
chains. We refer to the book [2, §10.4] for a detailed introduction.

Definition 7 (Markov Chain). A Markov chain is a triple (V,E, p), where
(V,E) is a directed graph and p :E → [0, 1] is a function assigning probabilities to
each edge in such a way that the sum of the probabilities of edges leaving every
vertex v is 1. A Markov chain is finite if V is finite and p(e) is a rational number
for all e∈E. A Markov chain is simple if every vertex has exactly two outgoing
edges both labeled with probability 1

2 .

Definition 8 (Syntax of Qualitative pCTL*). Given a finite set of atomic
predicates a1, . . . , an, qualitative pCTL* formulas are generated by the following
two-sorted grammar: state formulas Φ, Ψ ::= ai | ¬Φ | Ψ ∨ Φ | φ | P=1φ, and
path formulas φ, ψ ::= Φ | ¬φ | φ ∨ ψ | ◦φ | φ U ψ, where ◦ and U are the usual
Next and Until operators of linear time logic.

Definition 9 (Semantics of Qualitative pCTL*). Given a Markov chain
M = (V,E, p) and interpretations of the atomic predicates ||ai||M ⊆ V , state
formulas Φ are interpreted as sets ||Φ||M ⊆V of vertices and path formulas φ are
interpreted as sets ||φ||M of paths in the graph (V,E). The inductive definition
is the same as that of CTL* (see [2, Definition 6.81]) with the addition of:
v∈||P=1φ||M ⇔ “||φ||M has measure 1 in the set of paths starting at v”, where

372 H. Michalewski and M. Mio

the measure on paths is defined in the standard way (see, e.g., [2, §10.4]) inferred
from probabilities on the edges of M .

Definition 10 (Finite Satisfiability). We say that a formula Φ is finite sat-
isfiable (finite–SAT) if there exists a finite Markov chain M = (V,E, p) with
interpretations ||a||M of the atomic predicates such that ||Φ||M �=∅.

It has been observed in [5] that the finite–SAT problem can be restricted to
finite–and–simple Markov chains. The observation follows from the fact, that one
can transform any finite Markov chain into a finite and simple one, at the cost of
introducing auxiliary “dummy states”, by first simulating states with n outgoing
edges by a sequence of binary choices and then simulating binary choices having
arbitrary rational probabilities with a finite (cyclic) system of binary 1

2 -weighted
choices. Furthermore, for every pCTL* formula Φ one can construct a formula
Φ̂ (with an additional predicate for “dummy states”) such that Φ is finite–SAT
if and only if Φ̂ is satisfied by a finite and simple Markov chain. Thanks to this
observation we can replace “finite” with “finite and simple” in Definition 10.

Definition 11 (Categorical Semantics of Qualitative pCTL*). Given a
Markov chain M =(V,E, p), the categorical semantics of a given state formula Φ
is a set �Φ�M ⊆V , defined as in the standard semantics ||Φ||M (Definition 9) on
all connectives and on all path formulas except for P=1 which is instead defined
as follows: v ∈ �P=1φ�M ⇔ “||φ||M is comeager in the set of paths starting at
v”.

Theorem 5. Let M =(V,E, p) be a finite and simple Markov chain and assume
||ai||M = �ai�M , for all atomic predicates ai. Then ||Φ||M = �Φ�M for every
qualitative pCTL* formula Φ.

Proof. The proof goes by induction on the structure of Φ with the only non-trivial
case being Φ=P=1φ. Assume that φ is build from state formulas Ψ0, . . . , Ψn. By
inductive hypothesis ||Ψi||M =�Ψi�M , for 0≤ i≤n. It follows that ||φ||M =�φ�M .
By standard arguments, ||φ||M denotes a regular set of paths in the graph (V,E).
We only prove ||Φ||M ⊆ �Φ�M as the case �Φ�M ⊆ ||Φ||M is similar. Assume, by
contradiction, that v ∈ ||Φ||M and v �∈ �Φ�M . This means that the regular set
||φ|| has measure 1 in the set of paths starting from v. By Staiger’s theorem
[16, Theorem 4] (see also [21, Theorem 9.8] for a convenient graph–theoretical
formulation) this implies that ||φ||M is comeager in the set of paths starting from
v. It then follows that v∈�Φ�M and thus we have the desired contradiction.

Theorem 2 in the Introduction, that is the decidability of the finite–SAT
problem for qualitative pCTL*, follows from the theorem below along with the
decidability of MSO+∀∗ (Corollary 1 of Theorem 1 in this paper).

Theorem 6. To each qualitative pCTL* formula Φ with atomic predicates
a1. . .an one can effectively associate a MSO+∀∗ formula FΦ(x,Xa0 , . . . , Xan

),
such that “Φ is finite–SAT” ⇔ “FΦ is satisfiable.”

Baire Category Quantifier in Monadic Second Order Logic 373

Proof. As discussed above, we can restrict attention to simple Markov chains
M . The full binary tree {L,R}∗ can be viewed as a simple (infinite) Markov
chain by labeling each edge with 1

2 . Furthermore, since pCTL* is invariant under
bisimulation [2, Theorem 10.67], each Markov chain M (which is a binary graph
since the probabilistic information is implicit) can be replaced by its unraveling
{L,R}∗. Each interpretation ||ai||M of the atomic predicates can then by identi-
fied with a corresponding ti ∈T0,1. Hence simple (finite) Markov chains M with
interpretations �ai�M of the atomic predicates can be identified with (regular)
Σ-trees with Σ = {0, 1}n. The proof goes by induction on the structure of state
formulas Φ by defining formulas FΦ(x, �Xai

) with the following property. An arbi-
trary Σ-tree �t = 〈t0, . . . , tn〉 with vertex w ∈ {L,R}∗ satisfies FΦ iff w ∈ �FΦ�M

with interpretation of the atomic predicates as �ai�= ti. The construction of FΦ

follows the standard method (see, e.g., [18]) for interpreting CTL* into MSO.
The only non-standard step is for Φ = P=1φ. The encoding in MSO+∀∗ is not
entirely trivial and will appear in an extended version of this paper. By Rabin’s
theorem [14], the formula FΦ is satisfiable iff it satisfiable by a regular Σ-tree
which can be interpreted as a finite-and-simple Markov chain Mt satisfying Φ.
The desired result then follows by Theorem 5.

References

1. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Probabilistic and topo-
logical semantics for timed automata. In: Arvind, V., Prasad, S. (eds.) FSTTCS
2007. LNCS, vol. 4855, pp. 179–191. Springer, Heidelberg (2007)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
3. Bárány, V., Kaiser, �L., Rabinovich, A.: Cardinality quantifiers in MLO over trees.

In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 117–131. Springer,
Heidelberg (2009)

4. Barua, R.: R-sets and category. Trans. Amer. Math. Soc. 286(1), 125–158 (1984)
5. Bertrand, N., Fearnley, J., Schewe, S.: Bounded satisfiability for PCTL. In: Proc.

of CSL (2012)
6. Brázdil, T., Forejt, V., Křet́ınský, J., Kučera, A.: The satisfiability problem for

probabilistic CTL. In: Proc. of LICS, pp. 391–402 (2008)
7. Carayol, A., Haddad, A., Serre, O.: Randomization in automata on infinite trees.

ACM Transactions on Computational Logic 15(3) (2014)
8. Carayol, A., Serre, O.: How good is a strategy in a game with nature? In: To appear

in Proc. LICS (2015)
9. Gogacz, T., Michalewski, H., Mio, M., Skrzypczak, M.: Measure properties of game

tree languages. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014,
Part I. LNCS, vol. 8634, pp. 303–314. Springer, Heidelberg (2014)

10. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

11. Hjorth, G., Khoussainov, B., Montalban, A., Nies, A.: From automatic structures
to Borel structures. In: Proc. of LICS, pp. 431–441 (2008)

12. Kechris, A.S.: Classical Descriptive Set Theory. Springer (1994)

374 H. Michalewski and M. Mio

13. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: New results and new proofs of the theorems of Rabin. McNaughton
and Safra. Theor. Comput. Sci. 141(1&2), 69–107 (1995)

14. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of American Mathematical Society 141, 1–35 (1969)

15. Serre, O.: Playing with Trees and Logic. Habilitation Thesis, Université Paris
Diderot (Paris 7) (2015)

16. Staiger, L.: Rich omega-words and monadic second-order arithmetic. In: Proc. of
CSL, pp. 478–490 (1997)

17. Steinhorn, C.I.: Chapter XVI: Borel Structures and Measure and Category Logics.
Perspectives in Mathematical Logic, vol. 8. Springer (1985)

18. Thomas, W.: On chain logic, path logic, and first-order logic over infinite trees. In:
Proc. of LICS, pp. 245–256 (1987)

19. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages,
pp. 389–455. Springer (1996)

20. Vaught, R.: Invariant sets in topology and logic. Fund. Math., 82, 269–294
(1974/1975), Collection of articles dedicated to Andrzej Mostowski on his sixti-
eth birthday, VII

21. Völzer, H., Varacca, D.: Defining fairness in reactive and concurrent systems. Jour-
nal of the ACM 59(3) (2012)

Liveness of Parameterized Timed Networks

Benjamin Aminof1, Sasha Rubin2, Florian Zuleger1, and Francesco Spegni3(B)

1 TU Vienna, Vienna, Austria
2 Universitá degli Studi di Napoli “Federico II”, Napoli, Italy

3 Universitá Politecnica delle Marche, Ancona, Italy
spegni@dii.univpm.it

Abstract. We consider the model checking problem of infinite state sys-
tems given in the form of parameterized discrete timed networks with
multiple clocks. We show that this problem is decidable with respect to
specifications given by B- or S-automata. Such specifications are very
expressive (they strictly subsume ω-regular specifications), and easily
express complex liveness and safety properties. Our results are obtained
by modeling the passage of time using symmetric broadcast, and by solv-
ing the model checking problem of parameterized systems of untimed
processes communicating using k-wise rendezvous and symmetric broad-
cast. Our decidability proof makes use of automata theory, rational linear
programming, and geometric reasoning for solving certain reachability
questions in vector addition systems; we believe these proof techniques
will be useful in solving related problems.

1 Introduction

Timed automata — finite state automata enriched by a finite number of dense-
or discrete-valued clocks — can be used to model more realistic circuits and
protocols than untimed systems [3,7]. A timed network consists of an arbitrary
but fixed number of timed automata running in parallel [1,2]. In each computa-
tion step, either some fixed number of automata synchronize by a rendezvous-
transition or time advances. We consider the parameterized model-checking
problem (PMCP) for timed networks: Does a given specification (usually given
by a suitable automaton) hold for every system size? Apart from a single result
which deals with much weaker synchronization than rendezvous [13], no positive
PMCP results for liveness specifications of timed automata are known.

System model: In this paper we prove the decidability of the PMCP for dis-
crete timed networks with no controller and liveness specifications. To do this,
we reduce the PMCP of these timed networks to the PMCP of RB-systems —
systems of finite automata communicating via k-wise rendezvous and symmetric

Benjamin Aminof and Florian Zuleger were supported by the Austrian National
Research Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and by
the Vienna Science and Technology Fund (WWTF) through grant ICT12-059. Sasha
Rubin is a Marie Curie fellow of the Istituto Nazionale di Alta Matematica.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 375–387, 2015.
DOI: 10.1007/978-3-662-47666-6 30

376 B. Aminof et al.

broadcast. This broadcast action is symmetric in the sense that there is no desig-
nated sender. In contrast, the standard broadcast action can distinguish between
sender and receivers, and so the PMCP of liveness properties is undecidable even
in the untimed setting [9].

Our Techniques and Results: Classical automata (e.g., nondeterministic Büchi
word automata (NBW)) are not able to capture the behaviors of RB-systems.
Thus, our decidability result uses nondeterministic BS-automata (and their frag-
ments B- and S-automata) which strictly subsume NBW [6].

We show that the PMCP is decidable for controllerless discrete timed net-
works and (and systems communicating via k-wise rendezvous and symmetric
broadcast) and specifications given by B-automata or S-automata (and in par-
ticular by NBW) or for negative specifications (i.e., the set of bad executions)
given by BS-automata. We prove decidability by constructing a B-automaton
that precisely characterizes the runs of a timed network from the point of view
of a single process. Along the way, we also obtain an ExpSpace upper bound
for the PMCP of safety properties of discrete timed networks.

In order to build the B-automaton, an intricate analysis of the interaction
between the transitions caused by the passage of time (modeled by broadcasts)
which involve all processes, and those that are the result of rendezvousing pro-
cesses, is needed. It is this interaction that makes the problem complicated. Thus,
for example, results concerning pairwise rendezvous without broadcast [11] do
not extend to our case. Our solution to this problem involves the introduction
of the idea of a rational relaxation of a Vector Addition System, and geomet-
ric lemmas concerning paths in these relaxations. It is important to note that
these vector addition systems can not capture the edges that correspond to the
passage of time. However, they provide the much needed flexibility in capturing
what happens in between time ticks in the presence of these ticks.

Related Work. Discrete timed networks with rendezvous and a controller were
introduced in [1] where it was shown that safety is decidable using the technique
of well-structured transition systems. Their result implies a non-elementary upper
bound (which we improve toExpSpace) for the complexity of the PMCP of safety
properties of timed networks without a controller. PMCP of liveness properties
for continuous-time networks with a controller process is undecidable [2]. How-
ever, their proof heavily relies on time being dense and on the availability of a
distinguished controller process. RB-systems with a controller were introduced in
[12] where it is proved that under an additional strong restriction on the environ-
ment and process templates (called a shared simulation), such systems admit cut-
offs that allow one to model check epistemic-temporal logic of the parameterised
systems. The main difference between our work and theirs is: we do not have a
controller, we make no additional restrictions, and we can model check specifi-
cations given by B- or S-automata. The authors in [13] proved that the PMCP is
decidable for continuous timed networks synchronizing using conjunctive Boolean
guards and MITL and TCTL specifications. Finally, there are many decidability
and undecidability results in the untimed setting, e.g.,[4,5,8,9,14].

Liveness of Parameterized Timed Networks 377

2 Definitions and Preliminaries

Labeled Transition Systems. A (edge-)labeled transition system (LTS) is a
tuple 〈S, I,R,Σ〉, where S is the set of states (usually S ⊆ N), I ⊆ S are the
initial states, R ⊆ S×Σ×S is the edge relation, and Σ is the edge-labels alphabet.
Paths are sequences of transitions, and runs are paths starting in initial states.
Automata. We use standard notation and results of automata, such as nonde-
terministic Büchi word automata (NBW) [15]. A BS-word automaton (BSW)
([6]) is a tuple 〈Σ,Q,Q0, Γ, δ, Φ〉 where Σ is a finite input alphabet, Q is a
set of states, Q0 ⊆ Q is a set of initial states, Γ is a set of counter (names),
δ ⊆ Q × Σ × C∗ × Q is the transition relation where C is the set of counter
operations, i.e. c := 0, c := c + 1, c := d for c, d ∈ Γ , and Φ is the acceptance
condition described below. A run ρ is defined like for nondeterministic automata
over infinite words by ignoring the C∗ component. Denote by c(ρ, i) the ith value
assumed by counter c ∈ Γ along ρ. The acceptance condition Φ is a positive
Boolean combination of the following conditions (q ∈ Q, c ∈ Γ): (i) q is visited
infinitely often (Büchi-condition); (ii) lim supi c(ρ, i) < ∞ (B-condition); (iii)
lim infi c(ρ, i) = ∞ (S-condition). An automaton that does not use B-conditions
is called an S-automaton (SW), and one that does not use S-conditions is called
a B-automaton (BW).

It is known that BSWs are relatively well behaved [6]: their emptiness prob-
lem is decidable; they are closed under union and intersection, but not com-
plement; and BW (resp. SW) can be complemented to SW (resp. BW). Since
BSWs are not closed under complement, we are forced, if we are to use the
automata-theoretic approach for model checking (cf. [15]), to give the specifica-
tion in terms of the undesired behaviours, or to consider specifications in terms
of BWs or SWs (which both strictly extend ω-regular languages).
Rendezvous with Symmetric Broadcast (RB-System). Intuitively, RB-
systems describe the parallel composition of n ∈ N copies of a process template.
An RB-system evolves nondeterministically: either a k-wise rendezvous action
is taken, i.e., k different processes instantaneously synchronize on a rendezvous
action a, or the symmetric broadcast action is taken, i.e., all processes must take
an edge labeled by b. Systems without the broadcast action are called R-systems.

In the rest of the paper, fix k (the number of processes participating in a
rendezvous), a finite set Σactn of rendezvous actions, the rendezvous alphabet
Σrdz = ∪a∈Σactn{a1, . . . , ak}, and the communication alphabet Σcom which is the
union {((i1, a1), . . . , (ik, ak)) | a ∈ Σactn, ij ∈ N, j ∈ [k]} ∪ {b}.

A process template (or RB-template) is a finite LTS P = 〈S, I,R,Σrdz ∪ {b}〉
such that for every state s ∈ S there is a transition (s, b, s′) ∈ R for some s′ ∈ S.
We call edges labeled by b broadcast edges, and the rest rendezvous edges. For
ease of exposition, we assume (with one notable exception, namely P� defined
in Section 3) that for every ς ∈ Σrdz there is at most one edge in P labeled by

378 B. Aminof et al.

ς and we denote it by edge(ς).1 The RB-system Pn is defined, given a template
P and n ∈ N, is defined as the finite LTS 〈Qn, Qn

0 ,Δn, Σcom〉2 where:

1. Qn is the set of functions (called configurations) of the form f : [n] → S. We
call f(i) the state of process i in f . Note that we sometimes find it convenient
to consider a more flexible naming of processes in which we let Qn be the
set of functions f : X → S, where X ⊂ N is some set of size n.

2. The set of initial configurations Qn
0 = {f ∈ Qn | f(i) ∈ I for all i ∈ [n]}

consists of all configurations which map all processes to initial states of P .
3. The set of global transitions Δn are tuples (f, σ, g) ∈ Qn × Σcom × Qn where

one of the following two conditions hold:
– σ = b, and for every i ∈ [n] we have that (f(i), b, g(i)) ∈ R. This is

called a broadcast transition.
– σ = ((i1, a1), . . . , (ik, ak)), where a ∈ Σactn is the action taken, and

{i1, . . . , ik} ⊆ [n] are k different processes. In this case, for every
1 ≤ j ≤ k we have that (f(ij), aj , g(ij)) ∈ R; and f(i) = g(i) for every
i �∈ {i1, . . . , ik}. This is called a rendezvous transition, and the processes
in the set prcs(σ) := {i1, . . . , ik} are called the rendezvousing processes.

We denote the action taken on a global transition t = (f, σ, g) by actn(t).
Thus, actn(t) := a if σ = ((i1, a1), . . . , (ik, ak)), and otherwise actn(t) := b.

A process template P induces the infinite RB-system P, i.e., the LTS P =
〈Q,Q0,Δ,Σcom〉 where Q = ∪n∈NQn, Q0 = ∪n∈NQn

0 , Δ = ∪n∈NΔn.
Executions of an RB-System, and the Parameterized Model-Checking
Problem. Given a global transition t = (f, σ, g), and a process i, we say that i
moved in t iff: σ = b, or i ∈ prcs(σ). We write edgei(t) for the edge of P taken
by process i in the transition t, and ⊥ if i did not move in t. Thus, if σ = b
then edgei(t) := (f(i), b, g(i)); and if σ = ((i1, a1), . . . , (ik, ak)) then edgei(t) :=
(f(i), aj , g(i)) if σ(j) = (i, aj) for some j ∈ [k], and otherwise edgei(t) := ⊥.
Take an RB-System Pn = 〈Qn, Qn

0 ,Δn, Σcom〉, a path π = t1t2 . . . in Pn, and a
process i in Pn. Define projπ(i) := edgei(tj1)edgei(tj2) . . . , where j1 < j2 < . . .
are all the indices j for which edgei(tj) �= ⊥. Intuitively, projπ(i) is the path in
P taken by process i during the path π. Define the set of executions execP of
P to be the set of the runs of P projected onto a single process. Note that, due
to symmetry, we can assume w.l.o.g. that the runs are projected onto process 1.
Formally, execP = {projπ(1) | π is a run of P}. We denote by execfin

P (resp.
exec∞

P) the finite (infinite) executions in execP .
For specifications F (e.g., LTL, NFWs) interpreted over infinite (resp. finite)

words over the alphabet S × (Σrdz ∪ {b}) × S of transitions,3 the Parameterized
Model Checking Problem (PMCP) for F is to decide, given a template P , and a
specification ϕ ∈ F , if all executions in exec∞

P (resp. execfin
P) satisfy ϕ.

1 This can always be assumed by increasing the size of the rendezvous alphabet.
2 Even though Σcom is infinite, Δn refers only to a finite subset of it.
3 In this way we can also capture atomic propositions on edges or states since these

atoms may be pushed into the rendezvous label.

Liveness of Parameterized Timed Networks 379

Discrete Timed Networks. We refer the reader to [1] for a formal defini-
tion of timed networks. Here we describe the templates and informally describe
the semantics. Fix a set C of clocks. A timed network template is a finite LTS
〈Q, I,R,Σrdz〉. We associate to each letter ai ∈ Σrdz a command r(ai) ⊆ C and a
guard p(ai). A guard p is a Boolean combination of predicates of the form c � x
where c ∈ N is a constant, x ∈ C is a clock, and � ∈ {<,=}.

Intuitively, a discrete timed network consists of the parallel composition of
n ∈ N template processes, each running a copy of the template. Each copy
has a local state (q, t), where q ∈ Q and t : C → N. A rendezvous action a is
enabled if there are k processes in local states (qi, ti) (i ∈ [k]) and there are edges
(qi, ai, q

′
i) ∈ R such that the clocks ti satisfy the guards p(ai). The rendezvous

action is taken means that the k processes change state (to q′
i) and each of the

clocks in r(ai) is reset to 0. The network evolves non-deterministically, in steps:
either all clocks advance by one time unit (so every t(c) increases by one)4 or
a rendezvous action a ∈ Σrdz is taken. For a timed network template T let T n

denote the timed network composed of n ∈ N templates T and let T denote the
union of the networks T n for n ∈ N.

Given a timed network template T one can build an equivalent RB-template
P , i.e., execP = execT . The key insight is that the passage of time, that causes
all clocks to advance by one time unit, is simulated by symmetric broadcast, and
timed-guards are pushed into the template states. The RB-system P requires
only a finite number of states since clock values bigger than the greatest constant
appearing on the guards are collapsed to a single abstract value (cf. [1]).
Useful Lemmas. We state a few simple but useful lemmas. The first lemma
states that, by partitioning processes of an RB-system into independent groups, a
system with many processes can simulate in a single run multiple runs of smaller
systems. If the simulated paths contain no broadcasts then the transitions of the
simulated paths can be interleaved in any order. Otherwise, all simulated runs
must have the same number of broadcasts, and the simulations of all the edges
before the i’th broadcast on each simulated path must complete before taking
the i’th broadcast on the simulating combined path.

Lemma 1 (RB-System Composition). A system Pn can, using a single run,
partition its processes into groups each simulating a run of a smaller system. All
simulated paths must have the same number of broadcasts.

Consider now an RB-system Pn, and two configurations f, f ′ in it such that
the number of processes in each state in f is equal to that in f ′, i.e., such that
|f−1(s)| = |f ′−1(s)| for every s ∈ S. We call f, f ′ twins. A finite path π of length
m for which src(π1) and dst(πm) are twins is called a pseudo-cycle. For example,
for P in Figure 1, the following path in P4 is a pseudo-cycle that is not a cycle:

(p, q, q, r)
((3,c1),(4,c2))−−−−−−−−−→ (p, q, r, p)

((2,c1),(3,c2))−−−−−−−−−→ (p, r, p, p)
((3,a1),(4,a2))−−−−−−−−−→ (p, r, q, q).

Lemma 2. By renaming processes after each iteration, a pseudo-cycle π can be
pumped to an infinite path which repeatedly goes through the actions on π.
4 Alternatively, as in [1], one can let time advance by any amount.

380 B. Aminof et al.

pstart q

rstart

a1

a2c2
c1

Fig. 1. R-template with k = 2

pstart q

a1

b

a2

b

Fig. 2. RB-template with k = 2

Fig. 3. A high level view of the reachability-unwinding lasso

3 The Reachability-Unwinding of a Process Template

Given template P = 〈S, I,R,Σrdz ∪ {b}〉, our goal in this section is to construct
a new process template P� = 〈S�, I�, R�, Σrdz∪{b}〉, called the reachability-
unwinding of P , see Figure 3. The template P� will play a role in all our
algorithms for solving the PMCP of RB-systems. Intuitively, P� is obtained by
alternating the following two operations: (i) taking a copy of P and removing
from it all unreachable rendezvous edges; and (ii) unwinding on broadcast edges.
This is repeated until a copy is created which is equal to a previous one, we then
stop and close the unwinding back into the old copy, forming a high-level lasso
structure.

Technically, it is more convenient to first calculate all the desired copies and
then to arrange them in the lasso. Thus, we first calculate, for 0 ≤ i ≤ m (for an
appropriate m), an R-template Pi = 〈Si, Ii, Ri, Σrdz〉 which is a copy of P with
initial states redesignated and all broadcast edges, plus some rendezvous edges,
removed. Second, we take P0, . . . , Pm and combine them, to create the single
process template P�, by connecting the states in Pi with the initial states of
Pi+1 (Pn for i = m, where n ≤ m is determined by the lasso structure) with
broadcast edges, as naturally induced by P .

Construct the R-template Pi = 〈Si, Ii, Ri, Σrdz〉 (called the i’th component
of P�) recursively: for i = 0, we let I0 := I; and for i > 0 we let Ii := {s ∈
S | (h, b, s) ∈ R for some h ∈ Si−1} be the set of states reachable from Si−1

by a broadcast edge. The elements Si and Ri are obtained using the following
saturation algorithm, which is essentially a breadth-first search: start with Si :=
Ii and Ri := ∅; at each round of the algorithm, consider in turn each edge e =
(s, ah, t) ∈ R\Ri; if for every l ∈ [k] there is some edge (s′, al, t

′) ∈ R with s′ ∈ Si,
then add e to Ri and add t (if not already there) to Si. The algorithm ends when

Liveness of Parameterized Timed Networks 381

a fixed-point is reached. Observe a property of this algorithm: if (s, ah, t) ∈ Ri

then for all l ∈ [k] \ {h} there exists s′, t′ ∈ Si such that (s′, al, t
′) ∈ Ri.

Now, Pi is completely determined by Ii (and P), and so there are at most 2|S|

possible values for it. Hence, for some n ≤ m < 2|S| it must be that Pn = Pm+1.
We stop calculating Pi’s when this happens since for every i ∈ N0 it must be that
Pi = Pn+((i−n) mod r), where r = m + 1 − n. We call n the prefix length of P�

(usually denoted by ψ), call r the period of P�, and for i ∈ N0, call n + ((i − n)
mod r) the associated component number of i, and denote it by comp(i).

We now construct from P0, . . . , Pm the template P� = 〈S�, I�, R�, Σrdz∪
{b}〉, as follows: (i) S� := ∪m

i=0(Si × {i}); (ii) I� := I0 × {0} (recall that we
also have I0 = I); (iii) R� contains the following transitions: the rendezvous
transitions ∪m

i=0{((s, i), ς, (t, i)) | (s, ς, t) ∈ Ri}, and the broadcast transitions
∪m−1

i=0 {((s, i), b, (t, i + 1)) | (s, b, t) ∈ R and s ∈ Si} and {((s,m), b, (t, n)) |
(s, b, t) ∈ R and s ∈ Sm}.

We will abuse notation, and talk about the component Pi, referring some-
times to Pi as defined before (i.e., without the annotation with i), and sometimes
to the part of P� that was obtained by annotating the elements of Pi with i.

Observe that, by projecting out the component numbers (we will denote this
projecting by superscript �) from states in P� (i.e., by replacing (s, i) ∈ S�

with s ∈ S), states and transitions in P� induce states and transitions in P .
Similarly, paths and runs in P� can be turned into paths and runs in P. We
claim that also the converse is true, i.e., that by adding component numbers,
states and transitions in P can be lifted to ones in P�; and that by adding the
correct (i.e., reflecting the number of previous broadcasts) component numbers
to the states of the transitions of a run in P, it too can be lifted to a run in P�.
However, a path in P that is not a run (i.e., that does not start at an initial
configuration), may not always be lifted to a path in P� due to the removal of
unreachable edges in the components making up P�.

The next lemma says that we may work with template P� instead of P .

Lemma 3. For every n ∈ N, we have that runs(Pn) = {ρ� | ρ ∈ runs((P�)n)}.

The following lemma says, intuitively, that for every component Pi there is
a run of P� that “loads” arbitrarily many processes into every state of Pi.

Lemma 4. For all b, n ∈ N there is a finite run π of P� with b broadcasts, s.t.,
|f−1(s)| ≥ n for all states s in the component Pcomp(b), where f = dst(π). ��

The following lemma states that the set of finite executions of the RB-system
P is equal to the set of finite runs of the process template P� (modulo component
numbers). This is very convenient since, whereas P is infinite, P� is finite.
Unfortunately, when it comes to infinite executions of P we only get that they
are contained in (though in many cases not equal to) the set of infinite runs
of P�. This last observation is also true for P : consider for example Figure 2
without the b edges, and an infinite repetition of the self loop.

382 B. Aminof et al.

Lemma 5. execfin
P = {π� | π ∈ runs(P�), |π| ∈ N}; and exec∞

P ⊆ {π� | π ∈
runs(P�), |π| = ∞}

Solving PMCP for Regular Specifications. Given P = 〈S, I,R,Σrdz ∪{b}〉,
let Afin

P denote the reachability-unwinding P� viewed as an automaton (NFW),
with all states being accepting states, and transitions e are labeled e� (i.e., they
have the component number removed). Formally, Afin

P = 〈R,S�, I�, R′, S�〉,
so the input alphabet of Afin

P is R (the transition relation of P), and R′ :=
{(s, (s�, σ, t�), t) | (s, σ, t) ∈ R�} ⊆ S� × R × S�. Hence:

Theorem 1. The PMCP of RB-systems (resp. discrete timed networks) for reg-
ular specifications is in pspace (resp. expspace)

4 Solving PMCP of Liveness Specifications

In this section we show how to solve the PMCP for specifications concerning
infinite executions. We begin with the following lemma showing that, if we want
to use the automata theoretic approach, classical automata models (e.g. Büchi,
Parity) are not up to the task.

Lemma 6. There is a process template P such that exec∞
P is not ω-regular.

Proof. Consider the process template given in Figure 2. It is not hard to see that
in every infinite run of Pn there may be at most n − 1 consecutive rendezvous
transitions before a broadcast transition, resetting all processes to state 1, is
taken. Overall, we have that exec∞

P is the set of words of the form an1
1 am1

2 b
an2
1 am2

2 b . . . , where mi ∈ {0, 1} for every i, and lim sup ni < ∞. This language
is not ω-regular since the intersection of its complement with {a1, b}ω is not
ω-regular (because it contains no ultimately periodic words). ��

In light of Lemma 6, we turn our attention to a stronger model, called BSW
[6]. Thus, we solve the PMCP for liveness specifications as follows: given a process
template P , we show how to build a BSW A∞

P accepting exactly the executions
in exec∞

P . Model checking of a specification given by a BSW A′ accepting all
undesired (i.e., bad) executions, is thus reduced to checking for the emptiness of
the intersection of A∞

P and A′.
Defining the Automaton A∞

P . We now describe the structure of the BSW
A∞

P (in fact we define a BW) accepting exactly the executions in exec∞
P .

An important element in the construction is a classification of the edges in
P� into four types: blue, green, orange, and red. The red edges are those that
appear at most finitely many times on any execution in exec∞

P . An edge is blue
if it appears infinitely many times on some execution in exec∞

P with finitely
many broadcasts, but only finitely many times on every execution which has
infinitely many broadcasts. An edge e is green if there is some run π ∈ exec∞

P
with infinitely many broadcasts on which e appears unboundedly many times
between broadcasts, i.e., if for every n ∈ N there are i < j ∈ N such that

Liveness of Parameterized Timed Networks 383

πi . . . πj contains n occurrences of e and no broadcast edges. An edge which is
neither blue, green, nor red is orange. By definition, blue and green edges are not
broadcast edges. Since the set exec∞

P is infinite, it is not at all clear that the
problem of determining the type of an edge is decidable. Indeed, this turns out
to be a complicated question, and we dedicate Section 4.1 to show that one can
decide the type of an edge.

The automaton A∞
P is made up of three copies of Afin

P (called A∞
P

1, A∞
P

2,
A∞

P
3), as follows: A∞

P
1 is an exact copy of Afin

P ; the copy A∞
P

2 has only the
green and orange edges left; and A∞

P
3 has only the blue and green edges left (and

in particular has no broadcast edges). Furthermore, for every edge (s, σ, s′) in
A∞

P
1 we add two new edges, both with the same source as the original edge,

but one going to the copy of s′ in the copy A∞
P

2, and one to the copy of s′ in
the copy A∞

P
3. The initial states of A∞

P are the initial states of A∞
P

1. For the
acceptance condition: every state in A∞

P
2 and A∞

P
3 is a Büchi-state, and there

is a single counter C ∈ ΓB that is incremented whenever an orange rendezvous
edge is taken in A∞

P
2 and reset if a broadcast edge is taken in A∞

P
2.

Formally, given a process template P = 〈S, I,R,Σrdz ∪ {b}〉 and its unwind-
ing P� = 〈S�, I�, R�, Σrdz ∪ {b}〉 define A∞

P = 〈Σ,Q,Q0, Γ, δ, Φ〉 as:

– The input alphabet Σ is the edge relation R of template P .
– The state set Q is {(i, s) | s ∈ S�, i ∈ {1, 2, 3}}.
– The initial state set Q0 is {(1, s) | s ∈ I�}.
– There is one counter, Γ = {c}.
– The transition relation δ is δ1 ∪ δ2 ∪ δ3, where: δ1 consists of all tuples

((1, s1), (s�
1 , σ, s�

2), ε, (i, s2)) such that (s1, σ, s2) ∈ R�, i ∈ {1, 2, 3}; and δ3
consists of all tuples {((3, s1), (s�

1 , σ, s�
2), ε, (3, s2)) such that (s1, σ, s2) ∈ R�

is blue or green; and δ2 consists of all tuples ((2, s1), (s�
1 , σ, s�

2), updσ,ρ, (2, s2))
such that ρ := (s1, σ, s2) ∈ R� is green or orange, and updσ,ρ is the single
operation c := 0 if ρ is orange and actn(σ) = b, and updσ,ρ is the single
operation c := c + 1 if ρ is orange and actn(σ) �= b, and updσ,ρ is the empty
sequence ε if ρ is green. Here ε is the empty sequence of operations (i.e., do
nothing to the counter).

– The acceptance condition Φ states that lim supi c(ρ, i) < ∞ (i.e., counter c
must be bounded) and some state q ∈ Q\{(1, s) | s ∈ S�} is visited infinitely
often.

Lemma 7. An edge (s1, σ, s2) of P� is: (i) red iff it does not appear on any
pseudo-cycle of P�; (ii) blue iff it appears on a pseudo-cycle of P� with no
broadcasts, but not on any that contain broadcasts; (iii) green iff it appears on
a pseudo-cycle of P� with no broadcasts, that is part of a bigger pseudo-cycle
with broadcasts; (iv) orange iff it appears on a pseudo-cycle C of P� that has
broadcasts, but not on any without broadcasts.

The following lemma states that we can assume that pseudo-cycles mentioned
in Lemma 7 (that have broadcasts) are of a specific form.

384 B. Aminof et al.

Lemma 8. An edge e appears on a pseudo-cycle D in P�, which contains
broadcasts, iff it appears on a pseudo cycle C of P� containing exactly r broad-
cast transitions and with all processes starting in the component Pn, where n, r
are the prefix length and period of P�, respectively. Furthermore, C preserves
any nested pseudo-cycles of D that contain no broadcasts.

Theorem 2. The language recognized by A∞
P is exactly exec∞

P .

Proof (sketch). The fact that every word in exec∞
P is accepted by A∞

P follows
in a straightforward way from its construction. For the reverse direction, given
α ∈ exec∞

P with an accepting run Ω in A∞
P , we need to construct a run π in

P whose projection on process 1 is α. We consider the interesting case that α
has infinitely many broadcasts (and thus finitely many red and blue edges). The
challenging part is how to make process 1 trace the suffix β of α containing
only green and orange edges. Since Ω is accepting, counter C2 is bounded on Ω.
Hence, there is a bound m on the number of orange edges in β between any r
broadcasts, where r is the period of P�.

For every green (resp. orange) edge e of P that appears on β, by Lemmas 7, 8,
there is a pseudo-cycle Ce with r broadcasts on which e appears. Furthermore, if
e is green it actually appears on an inner pseudo-cycle of Ce without broadcasts.
Let Egreen (resp. Eorange) be the set of green (resp. orange) edges that appear
infinitely often on α. By taking exactly enough processes to assign them to one
copy of Ce for every e ∈ Egreen, and m copies of Ce for every e ∈ Eorange, and
composing them using Lemma 1 we can simulate all these copies of these pseudo-
cycles in one pseudo-cycle D also with r broadcasts. By Lemma 2, we can pump
this pseudo-cycle forever. Furthermore, between broadcasts we have freedom on
how to interleave the simulations. We make process 1 trace β by making it
successively swap places with the right process in the group simulating a copy
of the cycle Ce where e is the next edge on β to be traced (just when the group
is ready to use that edge). The key observation is that once a group is used by
process 1 there are two options. If it is a group corresponding to a green edge
then we can make the group (after 1 leaves it) traverse the inner pseudo-cycle
(the one without broadcasts) thus making it ready to serve process 1 again. If
the group corresponds to an orange edge e, then it will only be reusable when the
whole pseudo-cycle Ce completes (since there is no inner pseudo-cycle to use),
i.e., after r broadcasts. However, since there are m groups for each such edge,
and m bounds from above the number of orange edges that need to be taken by
process 1 between r broadcasts. ��

As we show (Section 4.1, Theorem 4), the problem of determining the type
(blue, green, orange, or red) of an edge in P� is decidable, hence, we conclude
this section by stating our main theorem (the proof is now immediate).

Theorem 3. The PMCP (of RB-systems or discrete timed networks) for BW-
or SW-specifications or complements of specifications given by BSW, is decidable.

Liveness of Parameterized Timed Networks 385

4.1 Deciding Edge Types

Theorem 4. Given a process template P�, the problem of determining the type
(blue, green, orange, red) of an edge e in P� is decidable.

A key observation for proving Theorem 4 is that by Lemma 7, the type of an
edge can be decided by looking for witnessing pseudo-cycles C in P�. Indeed,
a witness can determine if an edge is green or not. If not, another witness can
determine if it is orange or not, and the last witness can separate the blue from
the red. We will show an algorithm that given an edge that is not green tells us
if it is orange or not. The algorithm can be modified to check for the other types
of witnesses without much difficulty.

By Lemma 8, we can assume that the pseudo-cycle C we are looking for has
very specific structure. Our algorithm uses linear programming, in a novel and
interesting way, to detect the existence of such a pseudo-cycle C.
Counter Representation. Given a process template P = 〈S, I,R,Σrdz ∪ {b}〉,
let d = |S|, and fix once and for all some ordering s1, s2, . . . , sd of the states in
S. We associate with every configuration f in P a vector f � := (|f−1(s1)|, . . . ,
|f−1(sd)|) ∈ N

d
0, called the counter representation of f . We also associate with

every transition t = (f, σ, g) the vector t� := g� − f � representing the change
in the number of processes in each state. If t is a rendezvous transition then
g� − f � is completely determined by the action a ∈ Σactn taken in σ. Indeed, if
σ = ((i1, a1), . . . , (ik, ak)) then g� − f � = a�, where a� ∈ N

d
0 is the vector defined

by letting a�(s) := |{j ∈ [k] | dst(edge(aj)) = s}| − |{j ∈ [k] | src(edge(aj)) = s}|
for every s ∈ S.

Given u ∈ Q
d, and a sequence of vectors � = �1 . . . �m in Q

d, the pair
ρ = (u, �) is called a path from u to v = u + Σm

i=1�i. We write ρj for the vector
u + Σj

i=1�i, for every 0 ≤ j ≤ m. The path ρ is legal if ρj ∈ Q
d
≥0 for every

0 ≤ j ≤ m, i.e., if no coordinate goes negative at any point. Given a finite
path π1 . . . πm in P, we call the path π� := (src(π1)�, π�

1 . . . π�
m) in Q

d its counter
representation. Observe that π� is always a legal path.
Rational Relaxation of VASs. Vector Addition Systems (VASs) or equiv-
alently Petri nets are one of the most popular formal methods for the repre-
sentation and the analysis of parallel processes [10]. Unfortunately, RB-systems
cannot be modelled by VASs since a transition in a VAS only moves a con-
stant number of processes, whereas a broadcast in an RB-system may move any
number of processes. On the other hand, R-System can be modelled by VASs,
and we do use this fact to analyze the behaviour of the counter representation
between broadcasts. Moreover, we note that integer linear programming is a nat-
ural fit for describing paths and cycles in the counter representation. However,
in order to apply linear programming to RB-systems we have to overcome two
intertwined obstacles: (i) not every path in the counter representation induces
a path in P, and (ii) since we have no bound on the length of the pseudo-cycle
C we cannot have variables describing each configuration on it, and we need to
aggregate information. These obstacles are aggravated by the presence of broad-
casts. Another difficulty of applying linear programming to RB-systems arises

386 B. Aminof et al.

from the fact that the question of reachability in an RB-system with two (sym-
metric) broadcast actions and a controller is undecidable (which can be obtained
by modifying a result in [9] concerning asymmetric broadcast).

The solution we propose to this problem, which we found to be surprisingly
powerful, is to use linear programming but look for a solution in rational numbers
and not in integers. Thus, we introduce the notion of the rational relaxation of a
VAS, obtained by allowing any non-negative rational multiple of configurations
and transitions of the original VAS. Since our linear programs use homogeneous
systems of equations, multiplying a rational solution by a large enough number
would yield another solution in integers. Thus the scaling property obtained
a consequence of rational relaxation precludes the possibility of specifying a
single controller! Thinking of the counter representation as vectors of rational
numbers also allows us to use geometric reasoning to solve the two problems (i),
(ii) described above. Essentially, by cutting transitions to smaller pieces (which
cannot be done at will to integer vectors) and rearranging the pieces, we can
transform a description of a path in an aggregated form, as it comes out of
the linear program, into one which is legal and can be turned into a path in
P. We strongly believe that these techniques can be fruitfully used in other
circumstances concerning counter-representations, and similar objects (such as
vector addition systems and Petri nets).

Due to lack of space, the description of the linear programs we use, as well as
the geometric machinery we develop will be published in an extended version.

References

1. Abdulla, P.A., Deneux, J., Mahata, P.: Multi-clock timed networks. In: Ganzinger,
H. (ed.) LICS, pp. 345–354, July 2004

2. Abdulla, P.A., Jonsson, B.: Model checking of systems with manyidentical timed
processes. TCS 290(1), 241–264 (2003)

3. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

4. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of
token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS,
vol. 8318, pp. 262–281. Springer, Heidelberg (2014)

5. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014.
LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014)

6. Bojanczyk, M.: Beyond ω-regular languages. In: STACS 2010, pp. 11–16 (2010)
7. Chevallier, R., Encrenaz-Tiphene, E., Fribourg, L., Xu, W.: Timed verification of

the generic architecture of a memory circuit using parametric timed automata.
Formal Methods in System Design 34(1), 59–81 (2009)

8. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 313–327. Springer, Heidelberg (2010)

9. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS, pp. 352–359 (1999)

10. Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. Bulletin of
the EATCS 52, 244–262 (1994)

Liveness of Parameterized Timed Networks 387

11. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. JACM
39(3), 675–735 (1992)

12. Kouvaros, P., Lomuscio, A.: A cutoff technique for the verification of parameterised
interpreted systems with parameterised environments. In: IJCAI 2013 (2013)

13. Spalazzi, L., Spegni, F.: Parameterized model-checking of timed systems with
conjunctive guards. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014.
LNCS, vol. 8471, pp. 235–251. Springer, Heidelberg (2014)

14. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.
28(4), 213–214 (1988)

15. Vardi, M.Y.: An automata-theoretic approach to linear temporallogic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

Symmetric Strategy Improvement

Sven Schewe1(B), Ashutosh Trivedi2, and Thomas Varghese1

1 University of Liverpool, Liverpool, UK
{Sven.Schewe,thomasmv}@liverpool.ac.uk

2 Indian Institute of Technology Bombay, Mumbai, India
trivedi@cse.iitb.ac.in

Abstract. Symmetry is inherent in the definition of most of the two-
player zero-sum games, including parity, mean-payoff, and discounted-
payoff games. It is therefore quite surprising that no symmetric analysis
techniques for these games exist. We develop a novel symmetric strategy
improvement algorithm where, in each iteration, the strategies of both
players are improved simultaneously. We show that symmetric strategy
improvement defies Friedmann’s traps, which shook the belief in the
potential of classic strategy improvement to be polynomial.

1 Introduction

We study turn-based graph games between two players—Player Min and Player
Max—who take turns to move a token along the vertices of a coloured finite graph
so as to optimise their adversarial objectives. Various classes of graph games are
characterised by the objective of the players, for instance in parity games the
objective is to optimise the parity of the dominating colour occurring infinitely
often, while in discounted and mean-payoff games the objective is the discounted
and limit-average sum of the colours. Solving graph games is the central and most
expensive step in many model checking [1,6,8,17,32], satisfiability checking [17,
27,30,32], and synthesis [23,28] algorithms. More efficient algorithms for solving
graph games will therefore foster the development of performant model checkers
and contribute to bringing synthesis techniques to practice.

Parity games enjoy a special status among graph games and the quest for per-
formant algorithms [2–4,7,9,11,15–18,20–22,24–26,31,33,34] for solving them
has therefore been an active field of research during the last decades. Tra-
ditional forward techniques (≈ O(n

1
2 c) [15] for parity games with n positions

and c colours), backward techniques (≈O(nc) [9,21,33]), and their combination
(≈O(n

1
3 c) [25]) provide good complexity bounds. These bounds are sharp, and

techniques with good complexity bounds [15,25] frequently display their worst
case complexity on practical examples. On the other hand, strategy improve-
ment algorithms [3,11,20,24,26,31], a class of algorithms closely related to the
Simplex for linear programming, are known to perform well in practice.

The work has been done while the second author was visiting the University of
Liverpool supported by a Liverpool India Fellowship.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 388–400, 2015.
DOI: 10.1007/978-3-662-47666-6 31

Symmetric Strategy Improvement 389

The standard strategy improvement algorithms are built around the existence
of optimal positional strategies for both players. They start with an arbitrary
positional strategy for a player and iteratively compute a better positional strat-
egy in every step until the strategy cannot be further improved. Since there are
only finitely many positional strategies in a finite graph, termination is guar-
anteed. The crucial step in a strategy improvement algorithm is to compute
a better strategy from the current strategy. Given a current strategy σ of a
player (say, Player Max), this step is performed by first computing the globally
optimal counter strategy τ c

σ of the opponent (Player Min) and then computing
the value of each vertex of the game restricted to the strategies σ and τ c

σ. For
the games under discussion (parity, discounted, and mean-payoff) both of these
computations are simple and tractable. This value dictates potentially locally
profitable changes or switches Prof(σ) that Player Max can make vis-à-vis his
previous strategy σ. For the correctness of the strategy improvement algorithm
it is required that such locally profitable changes imply a global improvement.
The strategy of Player Max can then be updated according to a switching rule
(akin to pivoting rule of the Simplex) in order to give an improved strategy. This
has led to the following template for classic strategy improvement algorithms.

1 determine an optimal counter strategy τ c
σ for σ

2 evaluate the game for σ and τ c
σ and determine profitable changes Prof(σ) for σ

3 update σ by applying changes from Prof(σ) to σ

A number of switching rules, including the ones inspired by Simplex pivot-
ing rules, have been suggested for strategy improvement algorithms. The most
widespread ones are to select changes for all game states where this is possi-
ble, choosing a combination of those with an optimal update guarantee, or to
choose uniformly at random. For some classes of games, it is also possible to
select an optimal combination of updates [26]. There have also been suggestions
to use more advanced randomisation techniques with sub-exponential – 2O(

√
n)

– bounds [3] and snare memory [11]. Unfortunately, all of these techniques have
been shown to be exponential in the size of the game [12–14].

Classic strategy improvement algorithms treat the two players involved quite
differently where at each iteration one player computes a globally optimal
counter strategy, while the other player performs local updates. In contrast, a
symmetric strategy improvement algorithm symmetrically improves the strate-
gies of both players at the same time, and uses the finding to guide the strategy
improvement. This suggests the following näıve symmetric approach.

1 determine τ ′ = τ c
σ determine σ′ = σc

τ

2 update σ to σ′ update τ to τ ′

This algorithm has earlier been suggested by Condon [5] where it was shown
that a repeated application of this update can lead to cycles [5]. A problem
with this näıve approach is that there is no guarantee that the primed strategies

390 S. Schewe et al.

are generally better than the unprimed ones. With hindsight this is maybe not
very surprising, as in particular no improvement in the evaluation of running
the game with σ′, τ ′ can be expected over running the game with σ, τ , as an
improvement for one player is on the expense of the other. This observation led
to the approach being abandoned.

The key contribution of this paper is the following more careful symmetric
strategy improvement algorithm that guarantees improvements in each iteration
similar to classic strategy improvement.

1 determine τ c
σ determine σc

τ

2 determine Prof(σ) for σ determine Prof(τ) for τ
3 update σ using Prof(σ) ∩ σc

τ update τ using Prof(τ) ∩ τ c
σ

Observe that the main difference to classic strategy improvement approaches
is that we exploit the strategy of the other player to inform the search for a
good improvement step. In this algorithm we select only such updates to the
two strategies that agree with the optimal counter strategy to the respective
other’s strategy. We believe that this will provide a gradually improving advice
function that will lead to few iterations. We support this assumption by showing
that this algorithm suffices to escape the traps Friedmann has laid to establish
lower bounds for different types of strategy improvement algorithms [12–14].

2 Preliminaries

We focus on turn-based zero-sum games played between two players—Player
Max and Player Min—over finite graphs. A game arena A is a tuple
(VMax, VMin, E,C, φ) where (V = VMax ∪ VMin, E) is a finite directed graph with
the set of vertices V partitioned into a set VMax of vertices controlled by Player
Max and a set VMin of vertices controlled by Player Min, E ⊆ V × V is the set
of edges, C is a set of colours, φ : V → C is the colour mapping. We require that
every vertex has at least one outgoing edge.

A turn-based game over A is played between players by moving a token along
the edges of the arena. A play of such a game starts by placing a token on some
initial vertex v0 ∈ V . The player controlling this vertex then chooses a successor
vertex v1 such that (v0, v1) ∈ E and the token is moved to this successor vertex.
In the next turn the player controlling the vertex v1 chooses the successor vertex
v2 with (v1, v2) ∈ E and the token is moved accordingly. Both players move the
token over the arena in this manner and thus form a play of the game. Formally,
a play of a game over A is an infinite sequence of vertices 〈v0, v1, . . .〉 ∈ V ω such
that, for all i ≥ 0, we have that (vi, vi+1) ∈ E. We write PlaysA(v) for the set
of plays over A starting from vertex v ∈ V and PlaysA for the set of plays of
the game. We omit the subscript when the arena is clear from the context. We
extend the colour mapping φ : V → C from vertices to plays by defining the
mapping φ : Plays → Cω as 〈v0, v1, . . .〉
→ 〈φ(v0), φ(v1), . . .〉.

A graph game G is a tuple (A, η,≺), where A is an arena, η : Cω→D is
an evaluation function, and D is equipped with a preference order ≺. Parity,

Symmetric Strategy Improvement 391

mean-payoff and discounted payoff games are graph games (A, η,≺) played on
game arenas A = (VMax, VMin, E,R, φ). For mean payoff games the evaluation
function is η : 〈c0, c1, . . .〉
→ lim infi→∞ 1

i

∑i−1
j=0 cj , while for discounted payoff

games with discount factor λ ∈ [0, 1) it is η : 〈c0, c1, . . .〉
→
∑∞

i=0 λici with ≺ as
the natural order over the reals. For (max) parity games the evaluation function
is η : 〈c0, c1, . . .〉
→ lim supi→∞ ci often used with a preference order ≺parity

where higher even colours are preferred over smaller even ones, even colours are
preferred over odd ones, and smaller odd colours are preferred over higher ones.

In the remainder, we will use parity games where every colour is unique, i.e.,
where φ is injective. The reason for this assumption is that we extended [19],
which implements variants of [31], and the lower bounds from [12–14] refer to
such games. All parity games can be translated into such games as discussed
in [31]. For these games, we use a valuation function based on their progress
measure. We define η as 〈c0, c1, . . .〉
→ (c, C, d), where c = lim supi→∞ ci is the
dominant colour of the colour sequence, d = min{i ∈ ω | ci = c} is the index
of the first occurrence of c, and C = {ci | i < d, ci > c} is the set of colours
that occur before the first occurrence of c. The preference order is such that
(c′, C ′, d′) ≺ (c, C, d) if either c′ ≺parity c, or c = c′ and following holds:

– C �= C ′ and h = max((C \ C ′) ∪ (C ′ \ C)) is even and belongs to C,
– C �= C ′ and h = max((C \ C ′) ∪ (C ′ \ C)) is odd and belongs to C ′,
– C = C ′, c is even and d < d′, or C = C ′, c is odd and d > d′.

A strategy of Player Max is a function σ : V ∗VMax → V such that(
v, σ(πv)

)
∈ E for all π ∈ V ∗ and v ∈ VMax. Similarly, a strategy of Player

Min is a function τ : V ∗VMin → V such that
(
v, σ(πv)

)
∈ E for all π ∈ V ∗ and

v ∈ VMin. We write Σ∞ and T∞ for the set of strategies of Player Max and
Player Min, respectively. For a strategy pair (σ, τ) ∈ Σ∞ × T∞ and an initial
vertex v ∈ V we denote the unique play starting from the vertex v by π(v, σ, τ)
and we write valG(v, σ, τ) for the value of the vertex v under the strategy pair
(σ, τ) defined as valG(v, σ, τ) def= η

(
φ(π(v, σ, τ))

)
. We also define the concept of

the value of a strategy σ ∈ Σ∞ and τ ∈ T∞ as valG(v, σ) def= infτ∈T ∞ valG(v, σ, τ)
and valG(v, τ) def= supσ∈Σ∞ valG(v, σ, τ). We also extend the valuation for ver-
tices to a valuation for the whole game by defining |V |-dimensional vectors
valG(σ) : v
→ valG(v, σ) with the usual |V |-dimensional partial order , where
val val′ iff val(v) � val′(v) for all v ∈ V .

We say that a strategy σ ∈ Σ∞ is memoryless or positional if for all π, π′ ∈ V ∗

and v ∈ VMax we have that σ(πv) = σ(π′v). Thus, a positional strategy can be
viewed as a function σ : VMax → V such that for all v ∈ VMax we have that
(v, σ(v)) ∈ E. The concept of positional strategies of Player Min is defined in an
analogous manner. We write Σ and T for the set of positional strategies of Players
Max and Min, respectively. We say that a game is positionally determined if:

– valG(v, σ) = minτ∈T valG(v, σ, τ) holds for all σ ∈ Σ,
– valG(v, τ) = maxσ∈Σ valG(v, σ, τ) holds for all τ ∈ T ,
– Existence of value: for all v ∈ V maxσ∈Σ valG(v, σ) = minτ∈T valG(v, τ)

holds, and we use valG(v) to denote this value, and

392 S. Schewe et al.

1 4 3 0

Fig. 1. Parity game arena with four vertices and unique colours

– Existence of globally positional optimal strategies: there is a pair
τmin, σmax of strategies such that, for all v ∈ V , valG(v) = valG(v, σmax) =
valG(v, τmin) holds. Observe that for all σ ∈ Σ and τ ∈ T we have that
valG(σmax) � valG(σ) and valG(τmin) valG(τ).

Observe that the classes of games with positional strategies guarantee a posi-
tional optimal counter strategy for Player Min to all strategies σ ∈ Σ of Player
Max. We denote these strategies by τ c

σ. Similarly, we denote the positional opti-
mal counter strategy for Player Max to a strategy τ ∈ T by σc

τ of Player Min.
While this counter strategy is not necessarily unique, we use the notational con-
vention in all proofs that τ c

σ is always the same counter strategy for σ ∈ Σ, and
σc

τ is always the same counter strategy for τ ∈ T .

Example 1. Consider the parity game arena shown in the Figure 1. We use cir-
cles for the vertices of Player Max and squares for Player Min. We label each
vertex with its colour. Notice that a positional strategy can be depicted just
by specifying an outgoing edge for all the vertices of a player. The positional
strategies σ of Player Max is depicted in blue and the positional strategy τ of
Player Min is depicted in red.

Classic Strategy Improvement Algorithm. For a strategy σ, an edge
(v, v′)∈E with v ∈ VMax is a profitable update if σ′∈Σ with σ′ : v
→ v′ and
σ′ : v′′
→ σ(v′′) for all v′′ �=v has a strictly greater evaluation than σ, i.e.
valG(σ′) � valG(σ). Let Prof(σ) be the set of profitable updates.

Example 2. Consider the strategies σ from the Example 1. Notice that strategy
τ = τ c

σ is the optimal counter strategy to σ, i.e. val(σ) = val(σ, τ). It follows
that Prof(σ) = {(3, 4), (3, 0)}, because both the successor to the left and the
successor to the right have a better valuation, (3, {4}, 1) and (0, ∅, 0), resp., than
the successor on the selected self-loop, (3, ∅, 0).

For a strategy σ and a functional (right-unique) subset P ⊆ Prof(σ) we define
the strategy σP with σP : v
→ v′ if (v, v′) ∈ P and σP : v
→ σ(v) if there is no
v′ ∈ V with (v, v′) ∈ P .

Algorithm 3 provides a generic template for strategy improvement algo-
rithms. As we discussed in the introduction, the classic strategy improvement
algorithms work well for classes of games that are positionally determined and
have evaluation function are such that the set Prof(σ) of profitable updates is
easy to identify, and reach an optimum exactly where there are no profitable
updates. We next formalise these prerequisites for a class of games to be good
for strategy improvement algorithm.

Symmetric Strategy Improvement 393

Algorithm 3. Classic strategy improvement algorithm
1 Let σ0 be an arbitrary positional strategy. Set i := 0.
2 If Prof(σi) = ∅ return σi

3 σi+1 := σi
P for some functional subset P ⊆ Prof(σi) s.t. P �= ∅ if Prof(σi) �= ∅.

Set i := i + 1. go to 2.

For a class of graph games, profitable updates are combinable if, for all
strategies σ and all functional (right-unique) subsets P ⊆ Prof(σ) we have that
valG(σP) � valG(σ). Moreover, we say that a class of graph games is maximum
identifying if Prof(σ) = ∅ ⇔ valG(σ) = valG . We say that a class of games is
good for max strategy improvement if they are positionally determined and have
combinable and maximum identifying improvements.

Theorem 1. Algorithm 3 returns an optimal strategy σ (valG(σ) = valG) of
Player Max for all games that are good for max strategy improvement.

As a remark, we can drop the combinability requirement while maintaining cor-
rectness when we restrict the updates to a single position, that is, when we
require P to be singleton for every update. We call such strategy improvement
algorithms slow, and a class of games good for slow max strategy improvement
if it is maximum identifying and positionally determined.

Theorem 2. Slow variants of Algorithm 3 returns an optimal strategy σ
(valG(σ) = valG) of Player Max for all games that are positionally determined
with maximum identifying improvement.

Proof (of Theorems 1 and 2). The proof for both theorems is the same. The
strategy improvement algorithm will produce a sequence σ0, σ1, σ2 . . . of posi-
tional strategies with increasing quality valG(σ0) � valG(σ1) � valG(σ2) �
As the set of positional strategies is finite, this chain must be finite. As the game
is maximum identifying, the stopping condition provides optimality. ��

Various concepts and results extend naturally for analogous claims about
Player Min. We call a class of game good for strategy improvement if it is good
for max strategy improvement and good for min strategy improvement. Parity
games, mean payoff games, and discounted payoff games are all good for strategy
improvement (for both players). Moreover, the calculation of Prof(σ) is cheap in
all of these instances, which makes them well suited for strategy improvement.

3 Symmetric Strategy Improvement Algorithm

We first extend the termination argument for classic strategy improvement tech-
niques (Theorems 1 and 2) to symmetric strategy improvement given as Algo-
rithm 4. In this section, we show the correctness of Algorithm 4.

394 S. Schewe et al.

Algorithm 4. Symmetric strategy improvement algorithm
1 Let σ0 and τ0 be arbitrary positional strategies. set i := 0.
2 Determine σc

τi and τ c
σi

3 σ′
i := σi

P for P ⊆ Prof(σi) ∩ σc
τi , s.t. P �= ∅ if Prof(σi) ∩ σc

τi �= ∅.

4 τ ′
i := τi

P for P ⊆ Prof(τi) ∩ τ c
σi

, s.t. P �= ∅ if Prof(τi) ∩ τ c
σi

�= ∅ .
5 if σ′

i = σi and τ ′
i = τi return (σi, τi).

6 set σi+1 = σ′
i; τi+1 = τ ′

i ; i := i + 1. go to 2.

Lemma 1. The symmetric strategy improvement algorithm terminates for all
classes of games that are good for strategy improvement.

Proof. We first observe that the algorithm yields a sequence σ0, σ1, σ2, . . . of
Player Max strategies for G with improving values valG(σ0) valG(σ1)
valG(σ2) . . ., where equality, valG(σi) ≡ valG(σi+i), implies σi = σi+1. Sim-
ilarly, for the sequence τ0, τ1, τ2, . . . of Player Min strategies for G, the values
valG(τ0) � valG(τ1) � valG(τ2) � . . ., improve (for Player Min), such that equal-
ity, valG(τi) ≡ valG(τi+i), implies τi = τi+1. As the number of values that can be
taken is finite, eventually both values stabilise and the algorithm terminates. ��

What remains to be shown is that the symmetric strategy improvement algo-
rithm cannot terminate with an incorrect result. In order to show this, we first
prove the weaker claim that it is optimal in G(σ, τ, σc

τ , τ c
σ) = (Vmax, Vmin, E

′, val)
such that E′ =

{(
v, σ(v)

)
| v ∈ Vmax

}
∪

{(
v, τ(v)

)
| v ∈ Vmin

}
∪

{(
v, σc

τ (v)
)

|
v ∈ Vmax

}
∪

{(
v, τ c

σ(v)
)

| v ∈ Vmin

}
is the subgame of G whose edges are those

defined by the four positional strategies, when it terminates with the pair σ, τ .

Lemma 2. When the symmetric strategy improvement algorithm terminates
with the strategy pair σ, τ on games that are good for strategy improvement, then
σ and τ are the optimal strategies for the respective players in G(σ, τ, σc

τ , τ c
σ).

Proof. For G(σ, τ, σc
τ , τ c

σ), both update steps are not restricted: the changes
Player Max can potentially select his updates from are the edges defined by
σc

τ at the vertices v ∈ Vmax where σ and σc
τ differ (σ(v) �= σc

τ (v)). Consequently,
Prof(σ) = Prof(σ) ∩ σc

τ . Thus, σ = σ′ holds if, and only if, σ is the result of
an update step when using classic strategy improvement in G(σ, τ, σc

τ , τ c
σ) when

starting in σ. As game is maximum identifying, σ is the optimal Player Max
strategy for G(σ, τ, σc

τ , τ c
σ). Likewise, the Player Min can potentially select every

updates from τ c
σ at vertices v ∈ Vmin, and we first get Prof(τ) = Prof(τ) ∩ τ c

σ

with the same argument. As the game is minimum identifying, τ is the optimal
Player Min strategy for G(σ, τ, σc

τ , τ c
σ). ��

We can now expand the optimality in the subgame G(σ, τ, σc
τ , τ c

σ) from
Lemma 2 to global optimality the valuation of these strategies for G.

Lemma 3. When the symmetric strategy improvement algorithm terminates
with the strategy pair σ, τ on a game G that is good for strategy improvement,
then σ is an optimal Player Max strategy and τ an optimal Player Min strategy.

Symmetric Strategy Improvement 395

Proof. Let σ, τ be the strategies returned by the symmetric strategy improve-
ment algorithm for a game G, and let L = G(σ, τ, σc

τ , τ c
σ) denote the local game

from Lemma 2 defined by them. Lemma 2 has established optimality in L.
Observing that the optimal responses in G to σ and τ , τ c

σ and σc
τ , respectively,

are available in L, we first see that they are also optimal in L. Thus, we have

– valL(σ) ≡ valL(σ, τ c
σ) ≡ valG(σ, τ c

σ) and
– valL(τ) ≡ valL(σc

τ , τ) ≡ valG(σc
τ , τ).

Optimality in L then provides valL(σ) = valL(τ). Putting these three equations
together, we get valG(σ, τ c

σ) ≡ valG(σc
τ , τ).

Taking into account that τ c
σ and σc

τ are the optimal responses to σ and τ ,
respectively, in G, we expand this to valG � valG(σ) ≡ valG(σ, τ c

σ) ≡ valG(σc
τ , τ) ≡

valG(τ) � valG and get valG ≡ valG(σ) ≡ valG(τ) ≡ valG(σ, τ). ��

The lemmas in this subsection yield the following results.

Theorem 3. The symmetric strategy improvement algorithm is correct for
games that are good for strategy improvement.

Theorem 4. The slow symmetric strategy improvement algorithm is correct for
positionally determined games that are maximum and minimum identifying.

We implemented our symmetric strategy improvement algorithm based on
the progress measures introduced by Vöge and Jurdziński [31]. The first step is to
determine the valuation for the optimal counter strategies to and the valuations
for σ and τ .

Example 3. In our running example from Figure 1, we have discussed in the
previous section that τ is the optimal counter strategy τ c

σ and that Prof(σ) =
{(3, 4), (3, 0)}. In the optimal counter strategy σc

τ to τ , Player Max moves from 3
to 4, and we get val(1, τ) = (1, ∅, 0), val(4, τ) = (4, ∅, 0), val(3, τ) = (4, ∅, 1), and
val(0, τ) = (0, ∅, 0). Consequently, Prof(τ) = {(4, 1)}. For the update of σ, we
select the intersection of Prof(σ) and σc

τ . In our example, this is the edge from
3 to 4 (depicted in green). To update τ , we select the intersection of Prof(τ)
and τ c

σ. In our example, this intersection is empty, as the current strategy τ
agrees with τ c

σ.

A Minor Improvement on Stopping Criteria. We look at a minor but
natural improvement over Algorithm 4. In Algorithm 4, we use termination on
both sides as a condition to terminate the algorithm. We could alternatively
check if either player has reached an optimum. Once this is the case, we can
return the optimal strategy and an optimal counter strategy to it.

The correctness of this stopping condition is provided by Theorems 1 and 2.
Checking this stopping condition is cheap: it suffices to check if Prof(σi) is
empty—and to return (σi, τ

c
σi

) in this case—and to check Prof(τi) is empty—and
then return (σc

τi , τi).

396 S. Schewe et al.

Theorem 5. The difference in the number of iterations of Algorithm 4 and the
improved algorithm is at most linear in the number of states of G.

This holds because one simply converges against the optimal strategy: every
change replcase a decision that deviates from it by a decision that concurs with
it. While the improvement is minor, it implies that, for single player games,
the number of updates required is at most linear in the number of states of G.
Consequently, exponential lower bounds for one player cases, e.g., for MDPs [10],
do not apply for symmetric strategy improvement.

Friedmann’s Traps. A thorough discussion on how symmetric strategy
improvement defies Friedmann’s traps is provided in [29]. Broadly speaking,
Friedmann’s traps have two main ingredients. The most important one is a
binary counter, which is counted up (hence providing an exponential bound)
and a deceleration lane (a technical trick to orchestrate the timely counting).

This structure of Friedmann’s traps has proven to be quite resistant against
different update strategies. The traps for different update strategies differ mainly
in the details of how the counter is incremented.

As we discuss in [29], symmetric strategy improvement defies the central
counting strategy by setting the bits successively, starting with the most signifi-
cant bit of the counter. Additionally, it also causes a malfunction of the deceler-
ation lane. The deceleration lane ceases to work because, for all strategies of the
opponent player, the optimal counter strategy is to take the same (the longest)
path through the deceleration lane. Thus, the strategy for the deceleration lane
will quickly converge to taking this path, and will never be reset in parts or full.

4 Experimental Results

We have implemented the symmetric strategy improvement algorithm for parity
games and compared it with the standard strategy improvement algorithm with
the popular locally optimising and other switching rules. To generate various
examples we used the tools steadygame and stratimprgen that comes as a
part of the parity game solver collection PGSolver [19]. We have compared
the performance of our algorithm on parity games with 100 positions (see [29])
and found that the locally optimising policy outperforms other switching rules.
We therefore compare our symmetric strategy improvement algorithm with the
locally optimising strategy improvement below.

Since every iteration of both algorithms is rather similar—one iteration of
our symmetric strategy improvement algorithm essentially runs two copies of an
iteration of a classical strategy improvement algorithm—and tractable, the key
data to compare these algorithms is the number of iterations taken.

Symmetric strategy improvement will often rule out improvements at indi-
vidual positions: it disregards profitable changes of Player Max and Min if they
do not comply with σc

τ and τ c
σ, respectively. It is well known that considering

fewer updates can lead to a significant increase in the number of updates on

Symmetric Strategy Improvement 397

0 10 20 30 40 50 60
4

6

8

10

12

14

16

example number

n
u
m

b
er

o
f
it

er
a
ti

o
n
s

A

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1
·104

number of counter bits in Friedmann’s trap

n
u
m

b
er

o
f
it

er
a
ti

o
n
s

B

Fig. 2. The plots compare the performance of symmetric strategy improvement (data
points in cyan circles) with classic strategy improvement using the locally optimising
policy rule (data points in orange squares). The left plot refers to random examples gen-
erated using the steadygame 1000 2 4 3 5 6 command. The right plot refers to Fried-
mann’s trap [12] generated by the command stratimprgen -pg switchallsubexp i.

random examples and benchmarks. An algorithm based on the random-facet
method [3,20], e.g., needs around a hundred iterations on the random examples
with 100 positions we have drawn, simply because it updates only a single posi-
tion at a time. The same holds for a random-edge policy where only a single
position is updated. The figures for these two methods are given in [29].

Switch Rule 1 2 3 4 5 6 7 8 9 10
Cunningham 2 6 9 12 15 18 21 24 27 30
CunninghamSubexp 1 1 1 1 1 1 1 1 1 1
FearnleySubexp 4 7 11 13 17 21 25 29 33 37
FriedmannSubexp 4 9 13 15 19 23 27 31 35 39
RandomEdgeExpTest 1 2 2 2 2 2 2 2 2 2
RandomFacetSubexp 1 2 7 9 11 13 15 17 19 21
SwitchAllBestExp 4 5 8 11 12 13 15 17 18 19
SwitchAllBestSubExp 5 7 9 11 13 15 17 19 21 23
SwitchAllSubExp 3 5 7 9 10 11 12 13 14 15
SwitchAllExp 3 4 6 8 10 11 12 14 16 18
ZadehExp - 6 10 14 18 21 25 28 32 35
ZadehSubexp 5 9 13 16 20 23 27 30 34 37

It is therefore good news
that symmetric strategy
improvement does not dis-
play a similar weakness. It
even uses less updates when
compared to classic strat-
egy improvement with the
popular locally optimising
and locally random policy
rules. Note also that having
less updates can lead to
a faster evaluation of the
update, because unchanged
parts do not need to be
re-evaluated [3].

As shown in Figure 2, the symmetric strategy improvement algorithm per-
forms better (on average) in comparison with the traditional strategy improve-
ment algorithm with the locally optimising policy rule. It also avoids Friedmann’s
traps for the strategy improvement algorithm: the table above shows the perfor-
mance of the symmetric strategy improvement algorithm for Friedmann’s traps

398 S. Schewe et al.

for other common switching rules. It is clear that our algorithm is not exponential
for these classes of examples.

5 Discussion

We have introduced symmetric approaches to strategy improvement, where the
players take inspiration from the respective other’s strategy when improving
theirs. This creates a rather moderate overhead, where each step is at most
twice as expensive as a normal improvement step. For this moderate price, we
have shown that we can break the traps Friedmann has introduced to establish
exponential bounds for the different update policies in classic strategy improve-
ment [12–14].

In hindsight, attacking a symmetric problem with a symmetric approach
seems so natural, that it is quite surprising that it has not been attempted
immediately. There are, however, good reasons for this, but one should also
consent that the claim is not entirely true: the concurrent update to the respec-
tive optimal counter strategy has been considered quite early [12–14], but was
dismissed, because it can lead to cycles [5].

The first reason is therefore that it was folklore that symmetric strategy
improvement does not work. The second reason is that the argument for the
techniques that we have developed in this paper would have been restricted to
beauty until some of the appeal of classic strategy improvement was caught in
Friedmann’s traps. Friedmann himself, however, remained optimistic:

We think that the strategy iteration still is a promising candidate for a
polynomial time algorithm, however it may be necessary to alter more
of it than just the improvement policy.

This is precisely, what the introduction of symmetry and co-improvement tries
to do.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic.
Journal of the ACM 49(5), 672–713 (2002)

2. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and parity games.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536.
Springer, Heidelberg (2006)

3. Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Appl. Math. 155(2), 210–
229 (2007)

4. Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.: An improved algo-
rithm for the evaluation of fixpoint expressions. TCS 178(1–2), 237–255 (1997)

5. Condon, A.: On algorithms for simple stochastic games. In: Advances in
Computational Complexity Theory, pp. 51–73. American Mathematical Society
(1993)

Symmetric Strategy Improvement 399

6. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control:
dynamic programs for omega-regular objectives. In: Proc. of LICS, pp. 279–290
(2001)

7. Emerson, E.A., Jutla, C.S.: Tree automata, μ-calculus and determinacy. In: Proc.
of FOCS, pp. 368–377. IEEE Computer Society Press, October 1991

8. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of
μ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396.
Springer, Heidelberg (1993)

9. Emerson, E.A., Lei, C.: Efcient model checking in fragments of the propositional
μ-calculus. In: Proc. of LICS, pp. 267–278. IEEE Computer Society Press (1986)

10. Fearnley, J.: Exponential lower bounds for policy iteration. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 551–562. Springer, Heidelberg (2010)

11. Fearnley, J.: Non-oblivious strategy improvement. In: Clarke, E.M., Voronkov, A.
(eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 212–230. Springer, Heidelberg (2010)

12. Friedmann, O.: An exponential lower bound for the latest deterministic strategy
iteration algorithms. LMCS 7(3) (2011)

13. Friedmann, O.: A Subexponential lower bound for Zadeh’s pivoting rule for
solving linear programs and games. In: Günlük, O., Woeginger, G.J. (eds.) IPCO
2011. LNCS, vol. 6655, pp. 192–206. Springer, Heidelberg (2011)

14. Friedmann, O.: A superpolynomial lower bound for strategy iteration based on
snare memorization. Discrete Applied Mathematics 161(10–11), 1317–1337 (2013)

15. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

16. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)

17. Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)
18. Lange, M.: Solving parity games by a reduction to SAT. In: Proc. of Int. Workshop

on Games in Design and Verification (2005)
19. Lange, M., Friedmann, O.: The PGSolver collection of parity game solvers.

Technical report, Institut für Informatik Ludwig-Maximilians-Universität (2010)
20. Ludwig, W.: A subexponential randomized algorithm for the simple stochastic

game problem. Inf. Comput. 117(1), 151–155 (1995)
21. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic

65(2), 149–184 (1993)
22. Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded.

In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92.
Springer, Heidelberg (2003)

23. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: Proc. of LICS, pp. 255–264. IEEE Computer Society (2006)

24. Puri, A.: Theory of hybrid systems and discrete event systems. PhD thesis,
Computer Science Department, University of California, Berkeley (1995)

25. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

26. Schewe, S.: An optimal strategy improvement algorithm for solving parity and
payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp.
369–384. Springer, Heidelberg (2008)

27. Schewe, S., Finkbeiner, B.: Satisfiability and finite model property for the
alternating-time μ-calculus. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207,
pp. 591–605. Springer, Heidelberg (2006)

400 S. Schewe et al.

28. Schewe, S., Finkbeiner, B.: Synthesis of asynchronous systems. In: Puebla, G. (ed.)
LOPSTR 2006. LNCS, vol. 4407, pp. 127–142. Springer, Heidelberg (2007)

29. Schewe, S., Trivedi, A., Varghese, T.: Symmetric strategy improvement (2015).
CoRR, abs/1501.06484

30. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998)

31. Vöge, J., Jurdziński, K.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

32. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg. 8(2), May 2001

33. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

34. Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs.
Theoretical Computer Science 158(1–2), 343–359 (1996)

Effect Algebras, Presheaves, Non-locality
and Contextuality

Sam Staton1(B) and Sander Uijlen2

1 University of Oxford, Oxford, England, UK
sam.staton@cs.ox.ac.uk

2 Radboud University, Nijmegen, The Netherlands

Abstract. Non-locality and contextuality are among the most counter-
intuitive aspects of quantum theory. They are difficult to study using
classical logic and probability theory. In this paper we start with an
effect algebraic approach to the study of non-locality and contextuality.
We will see how different slices over the category of set valued functors
on the natural numbers induce different settings in which non-locality
and contextuality can be studied. This includes the Bell, Hardy and
Kochen-Specker-type paradoxes. We link this to earlier sheaf theoretic
approaches by defining a fully faithful embedding of the category of effect
algebras in this presheaf category over the natural numbers.

1 Introduction

This paper is about generalized theories of probability that allow us to analyze
the non-locality and contextuality paradoxes from quantum theory. Informally,
the paradoxes have to do with the idea that it might not be possible to explain the
outcomes of measurements in a classical way. We proceed by using now-standard
techniques for local reasoning in computer science. Partial monoids play a crucial
role in ‘separation logic’ which is a basic framework of locality especially relevant
to memory locality (e.g. [3,4]). Presheaves on natural numbers have already been
used to study local memory (e.g. [16]) and also to study contexts in abstract
syntax (e.g. [7]).

The paper is in two parts. In the first we establish new relationships between
two generalized theories of probability. In the second we analyze the paradoxes of
contextuality using our theories of probability, and we use this to recover earlier
formulations of them in different frameworks.

1.1 Generalized Probability Measures

Recall that a finite measurable space (X,Ω) comprises a finite set X and a
sub-Boolean algebra Ω of the powerset Ω ⊆ P(X), and recall:

Definition 1. A probability distribution on a finite measurable space (X,Ω) is
a function p : Ω → [0, 1] such that p(X) = 1 and if A1 . . . An are disjoint sets
in Ω, then

∑n
i=1 p(Ai) = p(

⋃n
i=1 Ai).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 401–413, 2015.
DOI: 10.1007/978-3-662-47666-6 32

402 S. Staton and S. Uijlen

We now analyze this definition to propose two general notions of probability
measure. (NB. We will focus on finite probability spaces, because this is sufficient
for our examples. We intend to return to infinite spaces in future work.)

Partial Monoids. Our first generalization involves partial monoids. Notice that
the conditions on the probability distribution p : Ω → [0, 1] do not involve the
space P(X). We only used the disjoint union structure of Ω. More generally,
we can define a pointed partial commutative monoid (PPCM) to be a structure
(E,�, 0, 1) where � : E × E → E is a commutative, associative partial binary
operation with a unit 0. Then (Ω,�, ∅,X) and the interval ([0, 1],+, 0, 1) are
PPCMs. A probability distribution is now the same thing as a PPCM homo-
morphism, (Ω,�, ∅,X) → ([0, 1],+, 0, 1). Thus PPCMs are a candidate for a
generalized probability theory. (This is a long-established position; see e.g. [6].)

Functors. Our second generalization goes as follows. Every finite Boolean algebra
Ω is isomorphic to one of the form P(N) for a finite set N , called the atoms
of Ω. Now, a probability distribution p : Ω → [0, 1] is equivalently given by a
function q : N → [0, 1] such that

∑
a∈N q(a) = 1. Let

D(N) = {q : N → [0, 1] |
∑

a∈N q(a) = 1} (1)

be the set of all distributions on a finite set N . It is well-known that D extends to a
functor D : FinSet → Set. The Yoneda lemma gives a bijection between distribu-
tions in D(N) and natural transformations FinSet(N,−) → D. Thus we are led
to say that a generalized finite measurable space is a functor F : FinSet → Set
(aka presheaf), and a probability distribution on F is a natural transformation
F → D. (This appears to be a new position.)

Relationship. Our main contribution in Section 2 and 3 is an adjunction
between the two kinds of generalized measurable spaces: PPCMs, and presheaves
FinSet → Set. ‘Effect algebras’ are a special class of PPCMs [5,9]. We show
that our adjunction restricts to a reflection from effect algebras into presheaves
FinSet → Set, which gives us a slogan that ‘effect algebras are well-behaved gen-
eralized finite measurable spaces’.

1.2 Relating Non-locality and Contextuality Arguments

In the second part of the paper we investigate three paradoxes from quantum
theory, attributed to Bell, Hardy and Kochen-Specker. We justify our use of
effect algebras and presheaves by establishing relationships with earlier work by
Abramsky and Brandenburger [1] and Hamilton, Isham and Butterfield [10]. For
the purposes of introduction, we focus on the Bell paradox, and we focus on the
mathematics. (Some physical intuitions are given in Section 4.)

Effect Algebras, Presheaves, Non-locality and Contextuality 403

The Bell paradox in terms of effect algebras and presheaves. As we show, the
Bell scenario can be understood as a morphism of effect algebras E

t−→ [0, 1], i.e.,
a generalized probability distribution. The paradox is that although this has a
quantum realization, in that it factors through Proj (H), the projections on a
Hilbert space H, it has no explanation in classical probability theory, in that
there it does not factor through a given Boolean algebra Ω. Informally:

E

��������
t �� [0, 1]

but

E

�������
t �� [0, 1]

Proj (H)

��������
Ω

|���

����� (2)

Relationship with earlier sheaf-theoretic work on the Bell paradox. In [1], Abram-
sky and Brandenburger have studied Bell-type scenarios in terms of presheaves.
We recover their results from our analysis in terms of generalized probability
theory. Our first step is to notice that effect algebras essentially fully embed in
the functor category [FinSet → Set]. We step even closer by recalling the slice
category construction. This is a standard technique of categorical logic for work-
ing relative to a particular object. As we explain in Section 4, the slice category
[FinSet → Set]/Ω is again a presheaf category. It is more-or-less the category
used in [1]. Moreover, our non-factorization (2) transports to the slice category:
Ω becomes terminal, and E is a subterminal object. Thus the non-factorization
in diagram (2) can be phrased in the sheaf-theoretic language of Abramsky and
Brandenburger: ‘the family t has no global section’.

Other Paradoxes. Alongside the Bell paradox we study two other paradoxes:

– The Hardy paradox is similar to the Bell paradox, except that it uses possi-
bility rather than probability. We analyze this by replacing the unit interval
([0, 1],+, 0, 1) by the PPCM ({0, 1},∨, 0, 1) where ∨ is bitwise-or. Although
this monoid is not an effect algebra, everything still works and we are able to
recover the analysis of the Hardy paradox by Abramsky and Brandenburger.

– The Kochen-Specker paradox can be understood as saying that there is no
PPCM morphism

Proj (H) → ({0, 1},�, 0, 1) (3)

with dim. H ≥ 3 and where � is like bitwise-or, except that 1�1 is undefined.
Now, the slice category [FinSet → Set]/Proj (H) is again a presheaf cate-
gory, and it is more-or-less the presheaf category used by Hamilton, Isham
and Butterfield. The non-existence of a homomorphism (3) transports to
this slice category: Proj (H) becomes the terminal object, and ({0, 1},�, 0, 1)
becomes the so-called ‘spectral presheaf’. We are thus able to rephrase the
non-existence of a homomorphism (3) in the same way as Hamilton, Isham
and Butterfield [10]: ‘the spectral presheaf does not have a global section’.

Summary. Motivated by techniques for locality in computer science, we have
developed a framework for generalized probability theory based on effect alge-
bras and presheaves. The relevance of the framework is demonstrated by the

404 S. Staton and S. Uijlen

paradoxes of non-locality and contextuality, which arise as diagrams in one fun-
damental adjunction. Different analyses in the literature use different presheaf
categories, but these all arise from our analysis by taking slice categories.

2 Pointed Partial Commutative Monoids

Definition 2. A pointed partial commutative monoid (PPCM) (E, 0, 1,�) con-
sists of a set E with a special element 0 ∈ E, a chosen point 1 ∈ E and a partial
function � : E × E → E, such that for all x, y, z ∈ E we have:

1. If x � y is defined, then y � x is also defined and x � y = y � x.
2. x � 0 is always defined and x = x � 0.
3. If x � y and (x � y) � z are defined, then y � z and x � (y � z) are defined

and (x � y) � z = x � (y � z).

We write x ⊥ y (say x is perpendicular to y), if x� y is defined. When we write
x � y, we tacitly assume x ⊥ y. We refer to x � y as the sum of x and y.

A morphism f : E → F of PPCMs is a map such that f(0) = 0, f(1) = 1
and f(a � b) = f(a) � f(b) whenever a ⊥ b. This entails the category PPCM.

Definition 3. An effect algebra (E, 0,�, 1) is a PPCM (E, 0,�, 1) such that

1. For every x ∈ E there exists a unique x⊥ such that x ⊥ x⊥ and x � x⊥ = 1.
2. x ⊥ 1 implies x = 0.

We call x⊥ the ‘orthocomplement of x’. PPCM morphisms between effect
algebras always preserve orthocomplements. We denote by EA the full subcat-
egory of PPCM whose objects are effect algebras.

Example 4. – We will consider the set 2 = {0, 1} as a PPCM in two ways.
• The initial PPCM (2,�, 0, 1) has 0 � 0 = 0 and 1 � 0 = 0 � 1 = 1; this

is an effect algebra.
• The monoid (2,∨, 0, 1) with 0 ∨ 0 = 0 and 1 ∨ 0 = 0 ∨ 1 = 1 ∨ 1 = 1; this

is not an effect algebra.
– Any Boolean algebra (B,∨,∧, 0, 1) is an effect algebra (B,�, 0, 1) where x ⊥

y iff x∧ y = 0, and then x� y
def
= x∨ y. A function between Boolean algebras

is a Boolean algebra homomorphism iff it is a PPCM morphism.
– The projections on a Hilbert space form an effect algebra (Proj (H),+, 0, 1)

where p ⊥ q if their ranges are orthogonal.
– The unit interval ([0, 1],+, 0, 1) is an effect algebra when x ⊥ y iff x+y ≤ 1.

Effect Algebras, Presheaves, Non-locality and Contextuality 405

3 Presheaves and Tests

In this section we consider a different notion of generalized probability space.
Recall that for any finite set N we have a set D(N) of distributions (Equa-
tion (1)). This construction is functorial in N . Consider the category N, the
skeleton of FinSet, whose objects are natural numbers considered as sets,
N = {1, . . . , n}, and whose morphisms are functions. Then D : N → Set, with
((D f)(q))(i) =

∑
j∈f−1(i) q(j).

This leads us to a notion of generalized probability space via the Yoneda
lemma. Write SetN for the category of functors N → Set (aka ‘covariant
presheaves’) and natural transformations. The Yoneda lemma says D(N) ∼=
SetN(N(N,−),D). More generally we can thus understand natural transforma-
tions F → D as ‘distributions’ on a functor F ∈ SetN.

To make a connection between presheaves and PPCMs and effect algebras
we recall the notion of test.

Definition 5. Let E be a PPCM. An n-test in E is an n-tuple (e1, . . . , en) of
elements in E such that e1 � . . . � en = 1.

The tests of a PPCM E form a presheaf T (E) ∈ SetN, where T (E)(N) is the
set of n-tests in E, and if f : N → M is a function then

T (E)(f)(e1, . . . , en) = (�i∈f−1(j)ei)j=1,...,m

This extends to a functor T : PPCM → SetN. If ψ : E → A is a PPCM
morphism, then we obtain the natural transformation T (ψ) with components
T (ψ)N (e1, . . . , en) = (ψ(e1), . . . , ψ(en)). (See also [12, Def. 6.3].)

Example 6. – T (2,�, 0, 1) ∈ SetN is the inclusion: (T (2,�, 0, 1))(N) = N .
– T (2,∨, 0, 1) ∈ SetN is the non-empty powerset functor: (T (2,∨, 0, 1))(N) =

{S ⊆ N | S = ∅}.
– Any finite Boolean algebra (B,∨,∧, 0, 1) is of the form P(N) for a finite set

N ; we have T (B,�, 0, 1) = N(N,−), the representable functor.
– For the unit interval, T ([0, 1],+, 0, 1) = D, the distribution functor.

Our main result in this section is that the test functor essentially exhibits effect
algebras as a full subcategory of SetN.

Theorem 7 The induced function TA,B : PPCM(A,B) → SetN(TA, TB) is a
bijection when A is an effect algebra.

Proof (summary). Since A is an effect algebra, every element a ∈ A is part of a
2-test (a, a⊥). It is then clear that TA,B is injective. Now suppose we have some
natural transformation μ : T (A) → T (B). The map ψμ : A → B defined by
ψμ(a) = x, where (x, x⊥) = μ2(a, a⊥) has the property that T (ψμ) = μ.

Corollary 8. The restriction to effect algebras, T : EA → SetN, is full and
faithful.

406 S. Staton and S. Uijlen

We remark that a more abstract way to view the test functor is through the
framework of nerves and realizations. For any natural number N the powerset
P(N) is a Boolean algebra and hence an effect algebra. This extends to a functor
P : Nop → PPCM. The test functor T has a left adjoint, which is the left Kan
extension of P along the Yoneda embedding. (This follows from Theorem 2 of
[15, Ch. I.5]; PPCM is cocomplete by [2, Theorem 3.36].) Theorem 7 can be
phrased ‘the counit is an isomorphism at effect algebras’, and Corollary 8 can
be phrased ‘finite Boolean algebras are dense in effect algebras’.

4 Non-Locality and Contextuality

In probability theory, questions of contextuality arise from the problem that the
joint probability distribution for all outcomes of all measurements may not exist.
We suppose a simple framework where Alice and Bob each have a measurement
device with two settings. For simplicity we suppose that the device will emit 0
or 1, as the outcome of a measurement. We write a0:0 for ‘Alice measured 0 with
setting a0’, b1:0 for ‘Bob measured 0 with setting b1’, and so on. To model this
in classical probability theory we would consider a sample space SA for Alice
whose elements are functions {a0, a1} → {0, 1}, i.e., assignments of outcomes to
measurements. Similarly we have a sample space SB for Bob. We would then
consider a joint probability distribution on SA and SB.

In this model, we implicitly assume that Alice and Bob can not signal to
each other. That is to say, for any joint distribution we can define marginal
distributions each for Alice and Bob. However, the classical model does include
an assumption: that Alice is able to record the outcome of the measurement
in both settings. In reality, and in quantum physics, once Alice has recorded an
outcome using one measurement setting, she cannot then know what the outcome
would have been using the other measurement setting. Effect algebras provide a
way to describe a kind of probability distribution that takes this measure-only-
once phenomenon into account.

The non-locality ‘paradox’ is as follows: there are probability distributions in
this effect algebraic sense (without signalling), which are physically realizable,
but cannot be explained in a classical probability theory without signalling.

The main purpose of this section is not to study non-locality and contextu-
ality in different systems, but rather to give a general framework to study them.
We use this to recover earlier frameworks.

4.1 Bimorphisms, Joint Distributions, and Tables

It is convenient to first introduce a notion of bimorphism, which captures the
notion of a probability distribution on joint measurements. Later we will see
that bimorphisms are classified by a tensor product.

Definition 9. Let A,B and C be pointed partial commutative monoids. A
bimorphism A,B → C is a function f : A×B → C such that for all a, a1, a2 ∈ A
and b, b1, b2 ∈ B with a1 ⊥ a2 and b1 ⊥ b2 we have

Effect Algebras, Presheaves, Non-locality and Contextuality 407

f(a, b1 � b2) = f(a, b1) � f(a, b2) f(a1 � a2, b) = f(a1, b) � f(a2, b)
f(a, 0) = f(0, b) = 0 f(1, 1) = 1

We now describe the scenario in the introduction to this section using bimor-
phisms. Let EA be the effect algebra {0, a0:0, a0:1, a1:0, a1:1, 1} with 0 � x = x
and ai:0�ai:1 = 1. This is the algebra for Alice’s measurements. Similarly, let EB

be the algebra for Bob’s measurements. A distribution on the joint measurements
of Alice and Bob is a bimorphism EA, EB → [0, 1]. We now give an elementary
description of these bimorphisms. Each bimorphism t : EA, EB → [0, 1] restricts
to a function

τ : {a0:0, a0:1, a1:0, a1:1} × {b0:0,b0:1,b1:0,b1:1} → [0, 1]

which we call a probability table, and we characterize these:

Proposition 10. A table τ:{a0:0, a0:1, a1:0, a1:1}×{b0:0,b0:1,b1:0,b1:1}→[0, 1]
arises as the restriction of a bimorphism EA, EB → [0, 1] if and only if

– it is a probability:
∑

o,o′∈{0,1} τ(ai:o,bj :o′) = 1, for i, j ∈ {0, 1}.
– it has marginalization, aka no signalling: for all i, j ∈ {0, 1},

τ(ai:j,b0:0) + τ(ai:j,b0:1) = τ(ai:j,b1:0) + τ(ai:j,b1:1),
τ(a0:0,bi:j) + τ(a0:1,bi:j) = τ(a1:0,bi:j) + τ(a1:1,bi:j).

The standard Bell table is as below, and by Proposition 10 it extends to a
bimorphism EA, EB → [0, 1]. In this simple scenario we have two observers, each
with two measurement settings, each with two outcomes, but it is straightforward
to generalize to more elaborate Bell-like settings.

t a0:0 a0:1 a1:0 a1:1
b0:0 1

2 0 3
8

1
8

b0:1 0 1
2

1
8

3
8

b1:0 3
8

1
8

1
8

3
8

b1:1 1
8

3
8

3
8

1
8

(4)

4.2 Realization and Bell’s Paradox

Quantum realization. A table has a ‘quantum realization’ if there is a way to
obtain it by performing quantum experiments. Recall that a quantum system is
modelled by a Hilbert space H, and a yes-no question such as “is the outcome
of measuring a0 equal to 1” is given by a projection on this Hilbert space. The
projections form an effect algebra Proj (H).

Definition 11. A quantum realization for a distribution on joint measurements
t : E,E′ → [0, 1] is given by finite dimensional Hilbert spaces H,H′, two
PPCM maps r : E → Proj (H) and r′ : E′ → Proj (H′), and a bimorphism
p : Proj (H),Proj (H′) → [0, 1], such that for all e ∈ E and e′ ∈ E′ we have
p(r(e), r′(e′)) = t(e, e′).

The Bell table (4) has a quantum realization, with H = H′ = C
2.

408 S. Staton and S. Uijlen

Classical realization. Classically, every time Alice and Bob perform a measure-
ment, nature determines an assignment of outcomes for all measurements, which
determines the outcomes for Alice and Bob. In such a deterministic theory we
can calculate a probability for things like a0:0 ∧ a1:1 ∧ b0:1 ∧ b1:1, in which case
if Alice chose a0 and Bob chose b1, they would get the outcome 0 and 1, respec-
tively. It can be shown (e.g., see [1]), that this is not the case for the standard
Bell table.

Definition 12. A classical realization for a distribution t : E,E′ → [0, 1] is
given by two Boolean algebras B,B′, two effect algebra morphisms r : E → B,
r′ : E′ → B′ and a bimorphism p : B,B′ → [0, 1] such that for all e ∈ E and
e′ ∈ E′ we have p(r(e), r′(e′)) = t(e, e′).

Consider the Boolean algebra, BA, with atoms {a1:i ∧ a2:j | i, j ∈ {0, 1}}.
Note that BA is a free completion of the effect algebra EA to a Boolean algebra,
in that, under identification of (a1:0 ∧ a2:0) ∨ (a1:0 ∧ a2:1) with a1:0, we have
EA ⊆ BA and every morphism EA → B, with B a Boolean algebra, must factor
through BA. Similarly, we have the algebra BB for Bob.

Proposition 13. The canonical maps rA : EA → BA and rB : EB → BB

cannot be completed to a classical realization of Table 4. Therefore, Table 4 has
no classical realization.

4.3 Tensor Products

Definition 14. The tensor product of two PPCMs E, E′ is given by a PPCM
E ⊗ E′ and a bimorphism i : E,E′ → E ⊗ E′, such that for every bimorphism
f : E,E′ → F there is a unique morphism g : E ⊗ E′ → F such that f = g ◦ i.

This gives a bijective correspondence between morphisms E ⊗ E′ → F and
bimorphisms E,E′ → F . In fact, all tensor products of effect algebras exist (see
e.g. [11]; but they can be trivial [8]). We return to the example of Alice and Bob.

Proposition 15. – The tensor product of Boolean algebras, BA ⊗ BB, is the
free Boolean algebra on the four elements {a1, a2,b1,b2}, where we identify,
for example, a1:1 with a1 and a1:0 with ¬a1.

– The tensor product of effect algebras EA⊗EB is the effect algebra generated by
the 16 elements ai:0∧bj :0, ai:0∧bj :1, ai:1∧bj :0, ai:1∧bj :1, for i, j ∈ {0, 1},
such that each 4-tuple (ai:0 ∧ bj :0, ai:0 ∧ bj :1, ai:1 ∧ bj :0, ai:1 ∧ bj :1) with
i, j ∈ {0, 1} is a 4-test. (For elements in such a 4-test we have that the effect
algebra sum � is the Boolean join, ∨. Elements in different 4-tests are not
perpendicular.)

The statement of Bell’s paradox can now be written in terms of homomor-
phisms, rather than bimorphisms:

Corollary 16. Table 4, t : EA⊗EB → [0, 1], does not factor through the embed-
ding EA ⊗ EB → BA ⊗ BB.

Effect Algebras, Presheaves, Non-locality and Contextuality 409

4.4 Sheaf Theoretic Characterization

Since the test functor T : EA → SetN is full and faithful from effect algebras
(Cor. 8), we can apply it to our effect algebra formulation of the Bell scenario, and
arrive at a similar statement in terms of presheaves. Recall that T ([0, 1]) = D,
the distributions functor, and so the Bell table yields a natural transformation
T (EA⊗EB) → D. Recall that T (BA⊗BB) = N(16,−), the representable functor,
and so the non-existence of a classical realization (Cor. 16) amounts to the non-
existence of a natural transformation as in the following diagram:

T (EA ⊗ EB)

Ti
�������

Tt �� D

N(16,−)
|���

����� (5)

We can thus phrase Bell’s paradox in the language of Grothendieck’s sheaf
theory. Since i : (EA ⊗ EB) → (BA ⊗ BB) is a subalgebra and T preserves
monos, T (EA ⊗ EB) is a subpresheaf of N(16,−), aka a ‘sieve’ on 16. A map
T (EA ⊗ EB) → D out of a sieve is called a ‘compatible family’, and a map
N(16,−) → D amounts to a distribution in D(16) (by the Yoneda lemma).
Bell’s paradox now states: “the compatible family T (t) has no amalgamation”.

4.5 Relationship with the Work of Abramsky and Brandenburger

Abramsky and Brandenburger [1] also phrase Bell’s paradox in terms of a com-
patible family with no amalgamations. We now relate our statement with theirs.

Transferring the paradox to other categories. We can use adjunctions to transfer
statements of non-factorization (such as Corollary 16) between different cate-
gories. Let C be a category and let R : EA → C be a functor with a left adjoint
L : C → EA. Let j : X → Y be a morphism in C, and let f : L(X) → A be
a morphism in EA. Then f factors through L(j) if and only if f � : X → R(A)
factors through j, where f � is the transpose of f .

L(X)

L(j)
		������

f �� A

L(Y)
|			

			
X

j ��

f�

�� R(A)

Y
|���

�����

We use this technique to derive several equivalent statements of Bell’s paradox.
To start, the equivalence of the non factoring of the triangles (5) and (2) is
immediate from the adjunction between the test functor and its left adjoint.

No global section. Recall that if X is an object of a category C then the objects
of the slice category C/X are pairs (C, f) where f : C → X. Morphisms are
commuting triangles. The slice category C/X always has a terminal object,
(X, idX). The projection map ΣX : C/X → C, with ΣX(C, f) = C, has a right
adjoint ΔX : C → C/X with ΔX(C) = (C × X,π2). First, notice that, using the

410 S. Staton and S. Uijlen

adjunction ΣN(16,−) � ΔN(16,−) we can rewrite diagram (5) in the slice category
(SetN)/N(16,−) as:

(T (EA ⊗ EB), T i)
��������

〈Tt,T i〉 �� (D × N(16,−), π2)

(N(16,−), id)
|

(6)

Since (N(16,−), id) is terminal, we can phrase Bell’s paradox as “the local section
〈Tt, T i〉 : (T (EA ⊗ EB), T i) → (D × N(16,−), π2) has no global section”.

Measurement Covers. The analysis of Abramsky and Brandenburger is based
on a ‘measurement cover’, which corresponds to our effect algebra EA ⊗ EB.

Fix a finite set X of measurements. In our Bell example, X = {a0, a1,b0,b1}.
Also fix a finite set of O of outcomes. In our example, O = {0, 1}, so OX = 16.
Abramsky and Brandenburger work in the category of presheaves P(X)op → Set
on the powerset P(X) (ordered by subset inclusion). They explain Bell-type
paradoxes as statements that a certain compatible family for the presheaf
D(O(−)) : P(X)op → Set does not have a global section:

M
�������� �� D(O(−))

1
|���

�����
(7)

Here 1 is the terminal presheaf. The ‘measurement cover’ M ⊆ 1 is defined by
M(S) = ∅ if {a0, a1} ⊆ S or {b0,b1} ⊆ S, and M(S) = {∗} otherwise. In
general, M(S) is inhabited, i.e., non-empty, if the measurement context S is
allowed in the Bell situation.

We now relate this diagram (7) with our diagram (2) by using an adjunc-
tion between EA and SetP(X)op . We construct this adjunction as the following
composite:

EA
T

�
��
SetN��

ΔOX

�
��
SetN/N(OX ,−)

ΣOX

�� � Set(N
op/(OX))op

I∗

�
��
SetP(X)op

I!

�� (8)

The first two adjunctions in this composite have already been discussed.
The categorical equivalence SetN/N(16,−) � Set(N

op/16)op is an instance
of a general fact about slices by representable presheaves (e.g. [13,
Prop. A.1.1.7,Lem. C2.2.17]): in general, SetD

op
/D(−, d) � Set(D/d)op .

It remains to explain I! � I∗. The functor I∗ : Set(N
op/16)op → SetP(X)op

is induced by precomposing with the functor I : P(X) → N
op/OX that takes

a subset U ⊆ X to the pair (OU , OiU : OX → OU) where iU : U → X is
the set inclusion function. It has a left adjoint, I!, for general reasons (e.g. [13,
Prop. A.4.1.4]).

Corollary 17. The right adjoint in (8) takes the effect algebra [0, 1] to the
presheaf D(O(−)) : SetP(X)op . The left adjoint in (8) takes the measurement
cover M ⊆ 1 to the effect algebra EA ⊗ EB ⊆ BA ⊗ BB.

Effect Algebras, Presheaves, Non-locality and Contextuality 411

Thus the adjunction (8) relates the effect algebra formulation of Bell’s para-
dox (2), with the formulation of Abramsky and Brandenburger (7).

4.6 Hardy Paradoxes

We now briefly consider a different kind of distribution. Not one where the entries
are probabilities in the interval [0, 1], but where they are possibilities, i.e., either 1
for “this outcome is possible” or 0 for “this outcome is not possible”. The pointed
monoid ({0, 1},∨, 0, 1) is built from these two possibilities. For an effect algebra
A, a possibility distribution is a morphism A → ({0, 1},∨, 0, 1), and a possibility
distribution on joint measurements is a bimorphism A,B → ({0, 1},∨, 0, 1).

The PPCM morphism s : ([0, 1],+, 0, 1) → ({0, 1},∨, 0, 1) given by s(0) = 0,
s(x) = 1 for (x = 0) takes a probability distribution to its support, and by
composing this with a probability distribution we get a possibility distribution.

The Hardy paradox concerns possibility, rather than probability. We can
analyze it using PPCMs in a similar way to the way we analyzed the Bell paradox
in Section 4.2. We can also relate our analysis with the analysis of Abramsky
and Brandenburger [1], by embedding it in the presheaf category SetN. Here the
situation is slightly more subtle: we cannot use Corollary 8 since ({0, 1},∨, 0, 1)
is not an effect algebra, but we can still use Theorem 7, since it only appears on
the right-hand-side of arrows.

4.7 Kochen-Specker Systems

A Kochen-Specker system is represented by a sub-effect algebra E of Proj (H)
such that there is no effect algebra morphism E → ({0, 1},�, 0, 1). This means
we cannot assign a value 0 or 1 to every element of E in such a way that whenever
p1, . . . pn ∈ E with p1 + . . . pn = 1, exactly one of the pi is assigned 1 and this
assignment does not depend on the other pj , j = i. (NB here we use partial join
�, with 1 � 1 undefined, whereas we used the total join ∨ in §4.6.)

We now view this in the presheaf category SetN. Since there is no mor-
phism Proj (H) → ({0, 1},�, 0, 1), there is also no natural transformation
T (Proj (H)) → T ({0, 1},�, 0, 1), by Corollary 8. We now explore this more
explicitly.

The bounded operators on H form a C*-algebra, B(H). An n-test in the effect
algebra Proj (H) can be identified with a unital *-homomorphism C

n → B(H)
from the commutative C*-algebra C

n, by looking at the images of the character-
istic functions on single points. So T (Proj (H)) ∼= C∗(C−, B(H)). On the other
hand, T ({0, 1},�, 0, 1)(N) = N .

There is another way to view this, via a restricted Gelfand duality. Let CC∗
f

be the category of finite dimensional commutative C*-algebras. The functor
C

− : Nop → CC∗
f is an equivalence of categories. Under this equivalence we have

presheaves T (Proj (H)), T ({0, 1},�, 0, 1) ∈ SetCC∗
f
op

with

T (Proj (H))(A) = C∗(A,B(H)) T ({0, 1},�, 0, 1)(A) = Spec(A)

412 S. Staton and S. Uijlen

where Spec(A) is the Gelfand spectrum of A. Thus the Kochen-Specker paradox
says that there is no natural transformation C∗(−, B(H)) → Spec in SetCC∗

f
op

.
We can use adjunctions to transport this statement to other categories. If

a functor R : SetCC∗
f
op

→ C has a left adjoint L : C → SetCC∗
f
op

and L(X) =
C∗(−, B(H)) then the paradox says there is no morphism X → R(Spec) in C.

In particular, we transport the paradox to the setting of Hamilton et al. [10],
who were concerned with presheaves on the poset C(B(H)) of commutative
subalgebras of B(H). We do this using the following composite adjunction:

SetCC∗
f
op
ΔC∗(−,B(H))

�
��
SetCC∗

f
op
/C∗(−, B(H))

ΣC∗(−,B(H))

�� � Set(CC∗
f ↓B(H))op

J∗

�
��
SetC(B(H))op

J!

��

The first adjunction between slice categories is as in Section 4.5. The middle
equivalence is standard (e.g. [13, Prop. A.1.1.7]); here (CC∗

f ↓ B(H)) is the cat-
egory whose objects are pairs (A, f : A → B(H)) where A is a finite-dimensional
commutative C*-algebra and f is a *-homomorphism. The adjunction J! � J∗ is
induced by the evident embedding J : C(B(H)) → (CC∗

f ↓ B(H)).
The left adjoint of this composite takes the terminal presheaf on C(B(H)) to

the presheaf C∗(−, B(H)) on CC∗
f . The right adjoint takes the spectral presheaf

on CC∗
f to the spectral presheaf on C(B(H)). Thus our statement of the paradox

is equivalent to the statement of [10]: the spectral presheaf has no global section.

Summary. We have exhibited a crucial adjunction between two general
approaches to finite probability theory: effect algebras and presheaves (Corol-
lary 8). We have used this to analyze paradoxes of non-locality and contextuality
(Section 4). There are simple algebraic statements of these paradoxes in terms
of partial commutative monoids, but these transport across the adjunction to
statements about presheaves on N. By taking slice categories of the presheaf
category, we recover earlier analyses of the paradoxes (e.g. Corollary 17).

Acknowledgments. We thank Robin Adams, Tobias Fritz, the Royal Society and
the ERC.

References

1. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and
contextuality. New J. Phys 13 (2011)

2. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. CUP
3. Brotherston, J., Calcagno, C.: Classical BI: Its semantics and proof theory. Log.

Meth. Comput. Sci. 6(3) (2010)
4. Calcagno, C., O’Hearn, P.W., Yang: H.: Local action and abstract separation logic.

In: Proc. LICS 2007, pp. 366–378 (2007)
5. Dvurečenskij, A., Pulmannová, S.: New trends in quantum structures. Kluwer
6. Engesser, K., Gabbay, D.M., Lehmann, D. (eds.): Handbook of Quantum Logic

and Quantum Structures: Quantum Structures. Elsevier (2007)

Effect Algebras, Presheaves, Non-locality and Contextuality 413

7. Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In:
Proc. LICS 1999 (1999)

8. Foulis, D.J., Bennett, M.K.: Tensor products of orthoalgebras. Order 10, 271–282
9. Foulis, D.J., Bennett, M.: Effect algebras and unsharp quantum logics. Found.

Physics 24(10), 1331–1352 (1994)
10. Hamilton, J., Isham, C.J., Butterfield, J.: Topos perspective on the Kochen-Specker

theorem: III. Int. J. Theoret. Phys., 1413–1436 (2000)
11. Jacobs, B., Mandemaker, J.: Coreflections in algebraic quantum logic. Foundations

of physics 42(7), 932–958 (2012)
12. Jacobs, B.: Probabilities, distribution monads, and convex categories. Theor. Com-

put. Sci. 2(28) (2011)
13. Johnstone, P.T.: Sketches of an elephant: a topos theory compendium. OUP (2002)
14. Kelly, G.M.: Basic concepts of enriched category theory. CUP (1980)
15. Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic. Springer-Verlag (1992)
16. Staton, S.: Instances of computational effects. In: Proc. LICS 2013 (2013)

On the Complexity of Intersecting Regular,
Context-Free, and Tree Languages

Joseph Swernofsky1 and Michael Wehar2(B)

1 Independent Researcher, Los Altos, USA
joseph.swernofsky@gmail.com

2 University at Buffalo, Buffalo, USA
mwehar@buffalo.edu

Abstract. We apply a construction of Cook (1971) to show that the
intersection non-emptiness problem for one PDA (pushdown automaton)
and a finite list of DFA’s (deterministic finite automata) characterizes
the complexity class P. In particular, we show that there exist constants
c1 and c2 such that for every k, intersection non-emptiness for one PDA
and k DFA’s is solvable in O(nc1k) time, but is not solvable in O(nc2k)
time. Then, for every k, we reduce intersection non-emptiness for one
PDA and 2k DFA’s to non-emptiness for multi-stack pushdown automata
with k-phase switches to obtain a tight time complexity lower bound.
Further, we revisit a construction of Veanes (1997) to show that the
intersection non-emptiness problem for tree automata also characterizes
the complexity class P. We show that there exist constants c1 and c2
such that for every k, intersection non-emptiness for k tree automata is
solvable in O(nc1k) time, but is not solvable in O(nc2k) time.

1 Introduction

To determine whether a mathematical object exists one could start by listing
constraints for the proposed object to satisfy. Then, for each constraint one
could build a verifier to computationally determine whether an input satisfies
the constraint. If each constraint can be verified by an automaton, does that
mean one could efficiently determine whether there exists an object that satisfies
all of the constraints?

We will investigate problems where we are given an encoding of a finite list of
automata and want to determine whether there exists a string that satisfies each
automaton in the list. A problem of this form is referred to as an intersection non-
emptiness problem because it is equivalent to determining whether the languages
associated with the automata have a non-empty intersection.

Each of the intersection non-emptiness problems that we investigate will be
viewed as an infinite family of problems indexed on the natural numbers by the
number of machines k. For each problem in such a family, we will prove a time
complexity lower bound. One may be tempted to view each family of problems
as a single parameterized problem. Such an interpretation is fine as long as one
realizes that we aren’t simply proving a single parameterized complexity lower
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 414–426, 2015.
DOI: 10.1007/978-3-662-47666-6 33

On the Complexity of Intersecting Regular 415

bound. Rather, we are proving a lower bound for each of the infinitely many
fixed levels of the parameterized problem.

In Section 2, we introduce some basic results that allow us to compare infinite
families of problems. These results will be used to put all of our findings into a
general framework to efficiently present our complexity lower bounds and shed
light on the relationship between types of automata and complexity classes.

The intersection non-emptiness problem for DFA’s, which we denote by IED,
is a well known PSPACE-complete problem [7]. Consider fixing the number of
machines in the input. Let k-IED denote the restricted version of IED such that
only inputs with at most k machines are accepted. In [18], the second author
proved a tight non-deterministic space complexity lower bound for the k-IED
problems. He showed that there exist c1 and c2 such that for every k, k-IED ∈
NSPACE(c1k log(n)) and k-IED /∈ NSPACE(c2k log(n)) where space is measured
relative to a fixed work tape alphabet. Therefore, we say that intersection non-
emptiness for DFA’s characterizes the complexity class NL.

First, we will investigate intersection non-emptiness for one PDA and a finite
list of DFA’s which we denote by IE1P+D. We will show that there exist constants
c1 and c2 such that for every k, k-IE1P+D ∈ DTIME(nc1k) and k-IE1P+D /∈
DTIME(nc2k). In order to show the lower bound, we will reduce the acceptance
problem for k log(n)-space bounded auxiliary pushdown automata to k-IE1P+D.
Then, we will apply results from [4] to get that k log(n)-space bounded auxiliary
pushdown automata can be used to simulate k log(n)-space bounded alternating
Turing machines. Finally, we will apply results from [2] to get that k log(n)-space
bounded alternating Turing machines can be used to simulate nk-time bounded
deterministic Turing machines.

Next, we will investigate non-emptiness for multi-stack pushdown automata
with k-phase switches which we denote by k-MPDA. From [12], we know that
k-MPDA ∈ DTIME(nO(2k)). This result was shown by reducing k-MPDA to
non-emptiness for graph automata with bounded tree width and then further
reducing to non-emptiness for tree automata. We will show that this upper bound
is tight. In particular, we will show that there exist constants c1 and c2 such that
for every k, k-MPDA ∈ DTIME(nc12

k

) and k-MPDA /∈ DTIME(nc22
k

). In order
to show the lower bound, we will reduce 2k-IE1P+D to k-MPDA and then apply
the lower bound for 2k-IE1P+D from the preceding section. In addition, we will
present a lower bound for the dual of the k-MPDA problem.

Finally, we will investigate intersection non-emptiness for tree automata
which we denote by IET . In [16], it was shown that IET is EXPTIME-complete.
We will show that there exist constants c1 and c2 such that for every k, k-IET
∈ DTIME(nc1k) and k-IET /∈ DTIME(nc2k). In order to show the lower bound,
we will reduce the acceptance problem for k log(n)-space bounded alternating
Turing machines to k-IET . Then, we will again apply results from [2] to get that
k log(n)-space bounded alternating Turing machines can be used to simulate
nk-time bounded deterministic Turing machines.

416 J. Swernofsky and M. Wehar

2 Preliminaries

2.1 Complexity Classes

Each of the following complexity classes is associated with a machine class. In
particular, a language X is in the complexity class if and only if there exists a
machine M in the associated machine class such that M accepts X.

NL : Logarithmic space bounded non-deterministic Turing machines
AL : Logarithmic space bounded alternating Turing machines

AuxL : Logarithmic space bounded auxiliary pushdown automata
P : Polynomial time bounded deterministic Turing machines

Although NL ⊆ P, it is not known if P = NL. However, using machine
simulations, it was proven that P = AL in [2] and P = AuxL in [4].

If one carefully looks at the simulations from [2], one will notice that there
are universal constants c1 and c2 such that for every k, each nk-time bounded
deterministic Turing machine can be simulated by a c1k log(n)-space bounded
alternating Turing machine and each k log(n)-space bounded alternating Turing
machine can be simulated by a nc2k-time bounded deterministic Turing machine.
Hence, not only are P and AL equivalent, but the DTIME(nk) classes that make
up P and the ASPACE(k log(n)) classes that make up AL are in some sense level-
by-level equivalent to each other. This example should motivate the notion of
level-by-level equivalence that we introduce in Section 2.3.

2.2 Acceptance Problems

We will specify a Turing machine model and introduce acceptance problems for
the machine classes associated with NL, AL, AuxL, and P.

By a Turing machine, we are referring to a machine with a single two-way
read-only input tape and a single two-way read/write binary work tape. The con-
dition on the work tape being binary is significant. In particular, for space com-
plexity, constants matter when the alphabet is fixed. By an f(n)-time bounded
Turing machine, we mean a Turing machine that runs for at most f(n) steps
on all inputs of length n. By an f(n)-space bounded Turing machine, we mean
a Turing machine that uses at most f(n) cells on the binary work tape for all
inputs of length n. By uses at most f(n) cells, we mean that the tape head
never moves to the right of the f(n)th cell. Time and space bounded auxiliary
pushdown automata can be defined similarly where the space bounds only apply
to the auxiliary work tape. The space bounds do not apply to the stack.

The general form of an acceptance problem is as follows. Given an encoding of
a machine M and an input x, does M accept x? For each k and each machine class
that we discussed in Section 2.1, we can define an acceptance problem. Consider

On the Complexity of Intersecting Regular 417

the following acceptance problems and their associated machine classes.

NS
k log : k log(n)-space bounded non-deterministic Turing machines

AS
k log : k log(n)-space bounded alternating Turing machines

AuxS
k log : k log(n)-space bounded auxiliary pushdown automata

DT
nk : nk-time bounded deterministic Turing machines

2.3 Level-By-Level Equivalence

For each k and each machine class from Section 2.1, we defined an acceptance
problem. In other words, for each machine class, we defined an infinite family
of acceptance problems. These infinite families of problems characterize their
associated machine classes and their associated complexity classes.

Let’s look at an example. Consider the family {DT
nk}k∈N. The proof of the

time hierarchy theorem has two parts: universal simulation and diagonalization.
From universal simulation of deterministic Turing machines, we get a constant
c1 such that for every k, DT

nk ∈ DTIME(nc1k). From diagonalization, we get a
smaller constant c2 such that for every k, DT

nk /∈ DTIME(nc2k). Therefore, we
say that this family characterizes the complexity class P.

The notion of an infinite family characterizing a complexity class leads us
to the concept of LBL (level-by-level) reducibility. This concept will allow us to
compare the complexity of infinite families of problems.1

Given two infinite families of problems X := {Xk}k∈N and Y := {Yk}k∈N, we
say that X is (polynomial time) LBL-reducible to Y if there exists a constant c
such that for every k, there exists an O(nc)-time bounded reduction from Xk to
Yk where k is treated as a constant. If X is LBL-reducible to Y , then we write
X ≤L Y . If X is LBL-reducible to Y and Y is LBL-reducible to X, then we
say that X and Y are LBL-equivalent and write X ≡L Y . Notice that ≤L is
transitive and ≡L is an equivalence relation.

To simplify how one shows that an infinite family X is LBL-reducible to
{DT

nk}k∈N, we have the following proposition.

Proposition 1. Let an infinite family X be given. If there exists c such that for
every k, Xk ∈ DTIME(nck), then X is LBL-reducible to {DT

nk}k∈N.

To simplify how one shows a (near) tight time complexity lower bound for
an infinite family X, we have the following proposition.

Proposition 2. If an infinite family X is LBL-equivalent to {DT
nk}k∈N, then

there exist c1 and c2 such that for every k, Xk ∈ DTIME(nc1k) and Xk /∈
DTIME(nc2k).

1 An LBL-reduction is an infinite family of reductions. Such a family of reductions
can be viewed as the non-uniform analogue of an fpt-reduction [5]. We introduce the
distinct notion of an LBL-reduction to emphasize that our lower bounds will apply
to each problem in the respective family of problems.

418 J. Swernofsky and M. Wehar

The simulations that we mentioned in Section 2.1 lead to two significant
examples of LBL equivalence. In particular, from the simulations in [2], we have
that {DT

nk}k∈N is LBL-equivalent to {AS
k log}k∈N. Also, from the simulations

in [4], we have that {DT
nk}k∈N is LBL-equivalent to {AuxS

k log}k∈N. Now, we
can apply Proposition 2 and the LBL equivalences to obtain (near) tight time
complexity lower bounds. For example, consider the LBL equivalence between
{DT

nk}k∈N and {AS
k log}k∈N. By applying Proposition 2, we get that there exist c1

and c2 such that for every k, AS
k log ∈ DTIME(nc1k) and AS

k log /∈ DTIME(nc2k).
We will further use the equivalences for deterministic time, alternating space,

and auxiliary space to prove equivalences for intersection non-emptiness prob-
lems. Then, we will apply Proposition 2 to obtain (near) tight time complexity
lower bounds for these problems.

3 One PDA and k DFA’s

It is well known that the general intersection non-emptiness problem for DFA’s is
PSPACE-complete [7]. Further work has shown that variations of this problem
are hard as well [9]. We consider the problem where in addition to a finite
list of DFA’s, we are also given a single pushdown automaton. Notice that it
doesn’t make sense to consider more than one PDA because the intersection
non-emptiness problem for two pushdown automata is undecidable.

We will show that intersection non-emptiness for one PDA and k DFA’s is
equivalent to acceptance for nk-time bounded deterministic Turing machines. In
particular, we will show that {k-IE1P+D}k∈N is LBL-equivalent to {DT

nk}k∈N.
Using the product construction, one can solve each k-IE1P+D problem in

O(nck) time for some constant c. Further, one can apply Proposition 1 to get
the following result.

Proposition 3. {k-IE1P+D}k∈N is LBL-reducible to {DT
nk}k∈N.

In the following theorem, we reduce acceptance for space bounded auxiliary
pushdown automata to intersection non-emptiness for one PDA and a finite list
of DFA’s. The reduction that we present is based on reductions from [6] and [7].
Our presentation is in the same format as that from the second author’s previous
work where he reduces acceptance for non-deterministic space bounded Turing
machines to intersection non-emptiness for a finite list of DFA’s [18].

Theorem 4. {AuxS
k log}k∈N is LBL-reducible to {k-IE1P+D}k∈N.

Proof. An auxiliary pushdown automaton has a stack, a two-way read-only
input tape, and a single read/write work tape. We will restrict the read/write
work tape to be binary and bound the amount of cells that the automaton
can use in terms of the input length. In addition, we will only consider auxiliary
pushdown automata where the stack alphabet is binary. Such restricted auxiliary
PDA’s are sufficient for carrying out the simulation in [4].

On the Complexity of Intersecting Regular 419

Let k be given. We will describe a reduction from AuxS
k log to k-IE1P+D. Let

a k log(n)-space bounded auxiliary pushdown automaton M of size nM and an
input string x of length nx be given. Together, an encoding of M and x represent
an arbitrary input for AuxS

k log. Let n denote the total size of M and x combined
i.e. n := nM + nx.

Our task is to construct one PDA and k DFA’s, denoted by PD and {Di}i∈[k],
each of size at most O(nc) for some fixed constant c such that M accepts x if
and only if L(PD) ∩

⋂
i∈[k] L(Di) is non-empty.

The automata will read in a string that represents a computation of M on x
and verify that the computation is valid and accepting. The PDA PD will verify
that the stack is managed correctly while the DFA’s will verify that the work
tape is managed correctly. In particular, the work tape of M will be split into
k sections each consisting of log(nx) sequential bits of memory. The ith DFA,
Di, will keep track of the ith section and verify that it is managed correctly. In
addition, all of the DFA’s will keep track of the tape head positions.

The following two concepts are essential to our construction.
A section i configuration of M is a tuple of the form:

(state, input position, work position, ith section of work tape).

A forgetful configuration of M is a tuple of the form:

(state, input position, work position, write bit, stack action, top bit).

The alphabet symbols are identified with forgetful configurations. The PDA
PD only has two states. When it reads a forgetful configuration a, if a represents
the top of the stack correctly, then PD loops in the initial/accepting state and
pushes or pops based on the stack instruction that a represents. Otherwise, PD
goes to the dead/rejecting state.

The states for the Di’s are identified with section i configurations. Each
Di has a single initial state. We identify this initial state with the section i
configuration of M that represents the initial input and work positions, a blank
ith section of the work tape, and the initial state of M. The final states of Di

represent accepting configurations of M.
Informally, the transitions are defined as follows. For each Di, there is a

transition from state r1 to state r2 with symbol a if a validly represents how the
state and partial tapes for r1 and r2 could be manipulated in one step for the
computation of M on input x. It’s important to notice that in order to determine
if there is a transition, the stack action and top bit of the stack must be taken
into account.

We assert without proof that for every string y, y represents a valid accepting
computation of M on x if and only if y ∈ L(PD) ∩

⋂
i∈[k] L(Di). Therefore, M

accepts x if and only if L(PD) ∩
⋂

i∈[k] L(Di) is non-empty. By bounding the
total number of section i configurations, one can show there exists a fixed two
variable polynomial q such that each Di has at most q(n, k) states. Therefore,
there is a constant d that does not depend on k such that each Di has size at
most O(nd) where k is treated as a constant. Further, we can compute each Di’s

420 J. Swernofsky and M. Wehar

transition table by looping through every combination of a pair of states and an
alphabet symbol, and marking the valid combinations. The number of possible
combinations is a fixed polynomial blow-up from nd. Therefore, we can compute
the transition tables in O(nc) time for some slightly larger constant c that does
not depend on k.

Since k was arbitrary, we have that for every k, there is an O(nc)-time reduc-
tion from AuxS

k log to k-IE1P+D. ��
In the preceding reduction, it was surprising that the PDA had a fixed number

of states. Even more surprisingly, one could convert the automata constructed
in the reduction to automata with a binary input alphabet. In doing so, the
PDA can be made fixed. In other words, there is a fixed deterministic pushdown
automaton for which the intersection non-emptiness problem is hard.

Corollary 5. {k-IE1P+D}k∈N and {DT
nk}k∈N are LBL-equivalent.

Proof. From Section 2, we know that {AuxS
k log}k∈N ≡L {DT

nk}k∈N. Further,
we have {AuxS

k log}k∈N ≤L {k-IE1P+D}k∈N ≤L {DT
nk}k∈N from Proposition 3 and

Theorem 4. Combine to obtain the desired result. ��

Corollary 6. ∃c1 ∃c2 ∀k k-IE1P+D ∈ DTIME(nc1k) and k-IE1P+D /∈ DTIME
(nc2k).

Proof. Combine Corollary 5 with Proposition 2. ��

4 MPDA’s with k-Phase Switches

A two-stack pushdown automaton can simulate a Turing machine. Therefore,
the non-emptiness problem for such machines is undecidable. However, we can
restrict how and when the machines can access their stacks to obtain classes
of machines whose non-emptiness problems are decidable [12]. In particular, we
will discuss the k-phase switches restriction. This restriction forces a machine
to designate a stack for popping. In other words, a restricted machine can push
to any stack, but only pop from the designated stack. The k refers to how
many times the machine can switch which stack is designated. We refer to a
machine with such a restriction as a multi-stack pushdown automaton with k-
phase switches. For background on such machines, we refer the reader to [14].
We also investigate what we refer to as the dual machines. These machines can
pop from any stack, but can only push to the designated stack.

We will denote the non-emptiness problem for multi-stack pushdown
automata with k-phase switches by k-MPDA. Similarly, we will denote the non-
emptiness problem for the dual machines by k-co-MPDA. We will show that
{k-MPDA}k∈N, {k-co-MPDA}k∈N, and {DT

n2k }k∈N are LBL-equivalent. As a
result, we will obtain tight lower bounds for these non-emptiness problems.

Recently, the non-emptiness problem for a related class of infinite automata
was shown to have a double exponential time lower bound [8]. In addition, the
non-emptiness problem for ordered multi-stack pushdown automata was shown

On the Complexity of Intersecting Regular 421

to have a double exponential time lower bound [1]. Our lower bound may be
suggested by such sources, but we elegantly prove it using a novel reduction
found in the proof of Theorem 8.

Proposition 7. {k-MPDA}k∈N and {k-co-MPDA}k∈N are LBL-reducible to
{DT

n2k }k∈N.

Sketch of proof. In [12], it was shown that k-MPDA and k-co-MPDA ∈
DTIME(nO(2k)) by a reduction to non-emptiness for graph automata with
bounded tree width and further to non-emptiness for tree automata. Then, one
can apply a variation of Proposition 1 to get the desired result. ��

In the following theorem, we reduce intersection non-emptiness for one PDA
and 2k DFA’s to non-emptiness for multi-stack pushdown automata with k-phase
switches.

Theorem 8. {2k-IE1P+D}k∈N is LBL-reducible to {k-MPDA}k∈N.

Sketch of proof. Let an input for 2k-IE1P+D consisting of a PDA and 2k

DFA’s be given. We will describe how to construct a multi-stack pushdown
automaton M with k-phase switches whose language is non-empty if and only if
the PDA and DFA’s languages have a non-empty intersection.

The machine M will have k stacks. It will read its input and copy it onto all
of the stacks besides the first stack. While it is reading the input, the first stack
will be used to simulate the PDA on the input. Then, it will repeat the following
procedure until each of the stacks have been designated once.

The procedure consists of popping from the designated stack and pushing
what is being popped onto all of the other stacks. While it is popping, it is
also simulating one DFA per copy of the input string or simulating one DFA in
reverse per copy of the reversal of the input string. This will eventually create
exponentially many copies of the input string followed by the reversal of the
input string and lead to simulating each DFA or reversal on one of the copies.

If the PDA and all of the DFA’s accept, then M will accept. Otherwise, M
will reject. In total, we are able to simulate one PDA and O(2k) DFA’s using
only k-phase switches. Also, the size of M will be approximately the sum of the
sizes of the PDA and DFA’s. ��

A related reduction can be given for the dual machines. The proof of Theorem
9 has been omitted, but will be made available online for the interested reader.

Theorem 9. {2k-IE1P+D}k∈N is LBL-reducible to {k-co-MPDA}k∈N.

Corollary 10. {k-MPDA}k∈N, {k-co-MPDA}k∈N, and {DT
n2k }k∈N are LBL-

equivalent.

Sketch of proof. From Corollary 5, we have {2k-IE1P+D}k∈N ≡L

{DT
n2k }k∈N. Further, we have {2k-IE1P+D}k∈N ≤L {k-MPDA}k∈N ≤L

{DT
n2k }k∈N from Proposition 7 and Theorem 8. Similarly, we have reductions

for the dual machines. Combine to obtain the desired result. ��

422 J. Swernofsky and M. Wehar

Corollary 11. There exist c1 and c2 such that for every k:

i) k-MPDA and k-co-MPDA ∈ DTIME(nc12
k

)

ii) k-MPDA and k-co-MPDA /∈ DTIME(nc22
k

).

Sketch of proof. Combine Corollary 10 and a variation of Proposition 2. ��

5 k Tree Automata

It is known that the general intersection non-emptiness problem for deterministic
top-down tree automata is EXPTIME-complete [3]. We will show that inter-
section non-emptiness for k deterministic top-down tree automata is equivalent
to acceptance for nk-time bounded deterministic Turing machines. In particular,
we will show that {k-IET }k∈N is LBL-equivalent to {DT

nk}k∈N. For background
on decision problems for tree automata, we refer the reader to [3] and [13].

Using the product construction, one can solve each k-IET problem in O(nck)
time for some constant c. Further, one can apply Proposition 1 to get the fol-
lowing result.

Proposition 12. {k-IET }k∈N is LBL-reducible to {DT
nk}k∈N.

In the following theorem, we reduce acceptance for alternating Turing
machines to intersection non-emptiness for tree automata. The reduction that
we present is similar to that found in [16] and briefly described in [3]. Our pre-
sentation is in the same format as Theorem 4.

Theorem 13. {AS
k log}k∈N is LBL-reducible to {k-IET }k∈N.

Proof. An alternating Turing machine has existential states and universal
states. Therefore, there are existential configurations and universal configura-
tions. An existential configuration c leads to an accepting configuration if and
only if there exists a valid transition out of c that leads to an accepting config-
uration. A universal configuration c leads to an accepting configuration if and
only if every valid transition out of c leads to an accepting configuration. We
will only consider alternating machines such that no universal configuration can
have more than two valid outgoing transitions. We assert without proof that
any alternating machine can be unraveled with intermediate universal states to
satisfy this property in such a way that there is no more than a polynomial
blow-up in the number of states.

Let k be given. We will describe a reduction from AS
k log to k-IET . Let a

k log(n)-space bounded alternating Turing machine M of size nM and an input
string x of length nx be given. Together, an encoding of M and x represent an
arbitrary input for AS

k log. Let n denote the total size of M and x combined i.e.
n := nM + nx.

Our task is to construct k top-down deterministic tree automata, denoted
by {Ti}i∈[k], each of size at most O(nc) for some fixed constant c such that M
accepts x if and only if

⋂
i∈[k] L(Ti) is non-empty.

On the Complexity of Intersecting Regular 423

The tree automata will read in a labeled tree that represents a computation
of M on x and verify that the computation is valid and accepting. The work
tape of M will be split into k sections each consisting of log(nx) sequential bits
of memory. The ith tree automaton, Ti, will keep track of the ith section and
verify that it is managed correctly. In addition, all of the tree automata will keep
track of the tape head positions.

The following two concepts are essential to our construction.
A section i configuration of M is a tuple of the form:

(state, input position, work position, ith section of work tape).

A forgetful configuration of M is a tuple of the form:

(state, input position, work position, write bit).

The alphabet consists of symbols of arity 0, 1, and 2 such that each arity 0
symbol represents an accepting forgetful configuration, each arity 1 symbol rep-
resents an arbitrary forgetful configuration, and each arity 2 symbol represents a
pair of forgetful configurations. We won’t need any symbols of arity larger than
2 because each universal configuration has at most two outgoing transitions.

The states of Ti are identified with section i configurations. Each Ti has a
single initial state. We identify this initial state with the section i configuration
of M that represents the initial input and work positions, a blank ith section of
the work tape, and the initial state of M.

We say that a section i configuration r extends a forgetful configuration a if
r agrees with a on state, input position, and work position.

We say that a section i configuration r1 transitions to a section i configuration
r2 on input x if either (a) the work position for r1 is in the ith section and r2
correctly represents how the tape positions and the ith section could change in
one step of the computation on x, or (b) r1 is not in the ith section and r1 and
r2 agree on the ith section of the work tape.

For each Ti, we have the following transitions. Each arity 0 symbol a accepts
on a state r if and only if r extends a and a represents an accepting state of M.
Each arity 1 symbol a transitions from a state r1 to a state r2 if and only if (i)
r1 transitions to r2 on input x (consistently with a’s write bit), (ii) r2 extends
a, and (iii) if r1 is a universal configuration and the work position of r1 is in the
ith section, then r1 can only transition to r2 on input x. Each arity 2 symbol
(a1, a2) transitions from a state r to a pair of distinct states (r1, r2) if and only
if r transitions to r1 on input x, r transitions to r2 on input x, r1 extends a1,
and r2 extends a2.

We assert without proof that for every labeled tree y, y represents a valid
accepting computation of M on x if and only if y ∈

⋂
i∈[k] L(Ti). Therefore,

M accepts x if and only if
⋂

i∈[k] L(Ti) is non-empty. By bounding the total
number of section i configurations, one can show there exists a fixed two variable
polynomial q such that each Ti has at most q(n, k) states. Therefore, there is
a constant d that does not depend on k such that each Ti has size at most
O(nd) where k is treated as a constant. Further, we can compute each Ti’s

424 J. Swernofsky and M. Wehar

transition table by looping through every combination of a pair of states and an
alphabet symbol, and marking the valid combinations. The number of possible
combinations is a fixed polynomial blow-up from nd. Therefore, we can compute
the transition tables in O(nc) time for some slightly larger constant c that does
not depend on k.

Since k was arbitrary, we have that for every k, there is an O(nc)-time reduc-
tion from AS

k log to k-IET . ��

Corollary 14. {k-IET }k∈N and {DT
nk}k∈N are LBL-equivalent.

Proof. From Section 2, we know that {AS
k log}k∈N ≡L {DT

nk}k∈N. Further,
we have {AS

k log}k∈N ≤L {k-IET }k∈N ≤L {DT
nk}k∈N from Proposition 12 and

Theorem 13. Combine to obtain the desired result. ��

Corollary 15. ∃c1 ∃c2 ∀k k-IET ∈ DTIME(nc1k) and k-IET /∈ DTIME(nc2k).

Proof. Combine Corollary 14 with Proposition 2. ��

6 Conclusion

We introduced the notions of LBL reducibility and LBL equivalence for infinite
families of problems.2 We then used existing simulations to show that {DT

nk}k∈N,
{AS

k log}k∈N, {AuxS
k log}k∈N, {k-IE1P+D}k∈N, and {k-IET }k∈N are all polynomial

time LBL-equivalent. Further, we applied that {DT
nk}k∈N and {k-IE1P+D}k∈N

are LBL-equivalent to show that {DT
n2k }k∈N, {2k-IE1P+D}k∈N, {k-MPDA}k∈N,

and {k-co-MPDA}k∈N are all polynomial time LBL-equivalent. By combining
these equivalences with Proposition 2, we get (near) tight time complexity lower
bounds for all of these problems.

We claim that all of the polynomial time LBL-reductions that we presented
can be carefully optimized to become log-space LBL-reductions. Formally, we
say that a family X if log-space LBL-reducible to a family Y if there exists a
constant c and a function f such that for every k, there exists a (c+o(1)) log(n)-
space reduction from Xk to Yk where k is treated as a constant.

The notion of log-space LBL equivalence can be used to express the P vs
NL problem from structural complexity theory. Consider the machine classes
consisting of polynomial time bounded deterministic Turing machines and log-
space bounded non-deterministic Turing machines. These machine classes have
associated acceptance problems {DT

nk}k∈N and {NS
k log}k∈N, respectively. One

can show that P = NL if and only if {DT
nk}k∈N and {NS

k log}k∈N are log-space
LBL-equivalent.

Now, one might ask, “What’s the relationship between P vs NL and inter-
section non-emptiness problems?” We know that {DT

nk}k∈N and {k-IE1P+D}k∈N

are log-space LBL-equivalent. In addition, from the second author’s previous

2 These concepts serve as the non-uniform analogues of fpt reducibility and fpt equiv-
alence from the subject of parameterized complexity theory [5].

On the Complexity of Intersecting Regular 425

work [18], it can be shown that {NS
k log}k∈N and {k-IED}k∈N are log-space LBL-

equivalent. Therefore, we get that P = NL if and only if {k-IE1P+D}k∈N and
{k-IED}k∈N are log-space LBL-equivalent. In other words, P = NL if and only if
adding a PDA does not increase the difficulty of the intersection non-emptiness
problem for DFA’s.

We showed that intersection non-emptiness problems for DFA’s, PDA’s, and
tree automata characterize complexity classes. There are many more types of
automata and we suggest that one may be able to prove more characteriza-
tions using the notion of LBL reducibility. From this perspective, we intend to
investigate decision problems for tree automata with auxiliary memory.

Acknowledgments. We greatly appreciate all of the help and suggestions that we
received. We would especially like to thank Richard Lipton, Kenneth Regan, Atri
Rudra, and all those from Carnegie Mellon University who were supportive of our
research work while we were undergraduates.

References

1. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is
2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
121–133. Springer, Heidelberg (2008)

2. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981)

3. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications, October 2007

4. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded
computers. J. ACM 18(1), 4–18 (1971)

5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York
Inc., Secaucus (2006)

6. Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting finite
state automata and NL versus NP. TCS 302, 257–274 (2003)

7. Kozen, D.: Lower bounds for natural proof systems. In: Proc. 18th Symp. on the
Foundations of Computer Science, pp. 254–266 (1977)

8. La Torre, S., Madhusudan, P., Parlato, G.: An infinite automaton characterization
of double exponential time. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS,
vol. 5213, pp. 33–48. Springer, Heidelberg (2008)

9. Lange, K.-J., Rossmanith, P.: The emptiness problem for intersections of regular
languages. In: Havel, Ivan M., Koubek, Václav (eds.) MFCS 1992. LNCS, vol. 629,
pp. 346–354. Springer, Heidelberg (1992)

10. Limaye, N., Mahajan, M.: Membership testing: removing extra stacks from multi-
stack pushdown automata. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.)
LATA 2009. LNCS, vol. 5457, pp. 493–504. Springer, Heidelberg (2009)

11. Lipton, R.J.: On the intersection of finite automata. Gödel’s Lost Letter and P=NP,
August 2009

12. Madhusudan, P., Parlato, G.: The tree width of automata with auxiliary storage.
POPL 2011 (2011)

13. Martens, W., Vansummeren, S.: Automata and logic on trees: Algorithms. ESSLLI
2007 (2007)

426 J. Swernofsky and M. Wehar

14. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS 2007, pp. 161–170 (2007)

15. Valiant, L.G.: Decision Procedures for Families of Deterministic Pushdown
Automata. Ph.D thesis, University of Warwick, August 1973

16. Veanes, M.: On computational complexity of basic decision problems of finite tree
automata. UPMAIL Technical Report 133 (1997)

17. Wehar, M.: Intersection emptiness for finite automata. Honors thesis, Carnegie
Mellon University (2012)

18. Wehar, M.: Hardness results for intersection non-emptiness. In: Esparza, J., Fraig-
niaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol.
8573, pp. 354–362. Springer, Heidelberg (2014)

Containment of Monadic Datalog Programs
via Bounded Clique-Width

Miko�laj Bojańczyk, Filip Murlak(B), and Adam Witkowski

University of Warsaw, Warsaw, Poland
fmurlak@mimuw.edu.pl

Abstract. Containment of monadic datalog programs over data trees
(labelled trees with an equivalence relation) is undecidable. Recently,
decidability was shown for two incomparable fragments: downward pro-
grams, which never move up from visited tree nodes, and linear child-
only programs, which have at most one intensional predicate per rule
and do not use descendant relation. As different as the fragments are,
the decidability proofs hinted at an analogy. As it turns out, the com-
mon denominator is admitting bounded clique-width counter-examples
to containment. This observation immediately leads to stronger decid-
ability results with more elegant proofs, via decidability of monadic sec-
ond order logic over structures of bounded clique-width. An argument
based on two-way alternating tree automata gives a tighter upper bound
for linear child-only programs, closing the complexity gap: the problem
is 2-ExpTime-complete. As a step towards these goals, complexity of
containment over arbitrary structures of bounded clique-width is anal-
ysed: satisfiability and containment of monadic programs with stratified
negation is in 3-ExpTime, and containment of a linear monadic program
in a monadic program is in 2-ExpTime.

1 Introduction

One of the central questions of database theory is that of query containment:
deciding if the answers to one query are always contained in the answers to
another query, regardless of the content of the database. Being a generalization
of satisfiability, containment is undecidable for queries expressed in first order
logic (FO), but it is decidable for more restrictive classes of queries like unions
of conjunctive queries (UCQs) [6], that is, queries expressible in the positive-
existential fragment of FO. A way to go beyond FO without losing decidability,
is to add recursion (equivalently, least fixed point operator) to unions of con-
junctive queries: the resulting language is datalog. In general, containment of
datalog programs is undecidable [19], but it becomes decidable under restriction
to monadic datalog programs (equivalently, when the use of least fixed point
operator is limited to unary formulae) [7].

Supported by Poland’s National Science Centre grant UMO-2013/11/D/ST6/03075.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 427–439, 2015.
DOI: 10.1007/978-3-662-47666-6 34

428 M. Bojańczyk et al.

In this work we are interested in a particular class of structures, called data
trees, which are trees labelled with a finite alphabet with an additional equiv-
alence relation over nodes (modelling data equality). The main motivation for
studying data trees is that they are a convenient model for data organized in a
hierarchical structure, for instance, XML documents. When the class of struc-
tures is restricted to data trees, containment is still decidable for UCQs [3], but
it is undecidable for monadic datalog [1]. A line of research focused on XML
applications investigates XPath, an XML query language, which in some vari-
ants allows recursion in the form of Kleene star [12,18]. The positive fragment of
XPath can be translated to monadic datalog, but the converse translation is not
possible due to XPath’s limited abilities of testing data equality. In pure dat-
alog setting, two natural fragments were recently shown decidable: downward
programs, which never move up from visited tree nodes (cf. [12]), and linear
child-only programs, which do not use descendant relation and do not branch
(i.e., have at most one intensional predicate per rule) [17]. Relying on ad-hoc
arguments, [17] sheds little light on the real reasons behind the decidability,
and may give an impression that decidability of these two seemingly different
fragments of datalog is pure coincidence. This work puts these two results in
context and finds a common denominator, which leads to cleaner arguments,
more general results, and—in some cases—tightened complexity bounds.

We show that the common feature of the two fragments is that they both
admit counter-examples to containment of clique-width [10] linear in the size
of the programs. This almost immediately gives decidability of containment,
because monadic datalog is equivalent to monadic second order logic (MSO)
[13], for which satisfiability is decidable over structures of bounded clique-width
[9]. Unlike tree-width [14], clique-width has not been investigated in the context
of datalog. The reason is that, for fixed k, a tree decomposition of width k can
be computed in linear time for graphs of tree-width k [4], but for clique-width
the best currently known polynomial time algorithm computes decompositions of
width 2k+1−1 for graphs of clique-width k [16]. Given that algorithms relying on
decompositions are typically exponential in k, this results in a double exponen-
tial constant, which is impractical most of the time. For the purpose of our work,
however, constructing a decomposition for a given structure is not an issue: we
need to test if there exists a decomposition that yields some counter-example. A
closer look at the MSO based approach gives a 3-ExpTime upper bound; for lin-
ear programs we provide a more economic construction, which gives 2-ExpTime
upper bound (even for containment in arbitrary monadic programs).

This approach does not guarantee optimal complexity: for downward pro-
grams containment is 2-ExpTime-complete, and ExpSpace-complete under
restriction to linear programs [17]. But in some cases it actually tightens the
bounds: for linear child-only programs the complexity bounds were 2-ExpTime-
hard and in 3-ExpTime, and our method gives a 2-ExpTime algorithm, thus
closing the complexity gap. Also, the classes of programs for which the algorithms
work are broader; for instance, we can test containment in arbitrary monadic
programs, not just downward, or linear child-only.

Containment of Monadic Datalog Programs via Bounded Clique-Width 429

The paper is organized as follows. In Section 2 we recall basic definitions. In
Section 3 we focus on datalog over (arbitrary) structures of bounded clique width.
We show that a datalog program with stratified negation can be translated into
a triple exponential tree automaton working over clique-width decompositions;
this implies that satisfiability and containment of such programs over structures
of bounded clique-width is in 3-ExpTime. For linear monadic programs with-
out negation we provide a construction going via two-way alternating automata
[7,21], which gives a 2-ExpTime upper bound for containment (even in arbitrary
monadic programs). In Section 4 we apply these results to the problem of con-
tainment over data trees for downward programs and linear child-only programs.
In Section 5 we conclude with a brief discussion of the obtained results.

2 Preliminaries

Finite structures and clique-width. Let τ = {R1, . . . , R�} be a relational signa-
ture, i.e., a set of predicate symbols with arities ar(Ri). A (finite) τ -structure A

is a tuple 〈A,RA

1 , . . . , RA

� 〉 consisting of universe A and relations RA

i ⊆ Aar(Ri)

(interpretations of the predicates). A k-coloured τ -structure is a pair (A, γ), con-
sisting of a τ -structure A and a mapping γ : A → {1, . . . , k}, assigning colours
to elements of the universe of A.

Clique width of structures is defined by means of an appropriate notion of
decomposition, traditionally known as k-expression (over τ). It is defined as a
term over the following set of operations (function symbols) Op(τ, k):

– new(i) for 1 ≤ i ≤ k, nullary,
– ρ(i, j) for 1 ≤ i, j ≤ k, unary,
– R(i1, . . . , ir) for predicates R ∈ τ of arity r and 1 ≤ i1, . . . , ir ≤ k, unary,
– ⊕, binary.

With k-expression e we associate a k-coloured τ -structure [[e]]:

– [[new(i)]] is a structure with a single element, coloured i, and empty relations;
– [[ρ(i, j)(e)]] is obtained from [[e]] by recolouring all elements of colour i to j;
– [[R(i1, . . . , ir)(e)]] is obtained from [[e]] = (A, γ) by adding to R[[e]] all tuples

(a1, . . . , ar) such that aj ∈ A and γ(aj) = ij for 1 ≤ j ≤ r;
– [[e ⊕ e′]] is the disjoint union of [[e]] and [[e′]].

A k-expression for A is any k-expression e such that [[e]] = (A, γ) for some γ.
The clique-width of A is the least k such that there exists a k-expression for A.

Datalog. We assume some familiarity with datalog and only briefly recall its
syntax and semantics; for more details see [2] or [5].

A datalog program P over a relational signature σ, split into extensional
predicates σext and intensional predicates σint, is a finite set of rules of the form
head ← body , where head is an atom over σint and body is a (possibly empty)
conjunction of atoms over σ written as a comma-separated list. All variables in
the body that are not used in the head are implicitly quantified existentially.

430 M. Bojańczyk et al.

Program P is evaluated on σext-structure A by generating all atoms over
σint that can be inferred from A by applying the rules repeatedly, to the point of
saturation. Each inferred atom can be witnessed by a proof tree: an atom inferred
by a rule r from intensional atoms A1, A2, . . . , An (and some extensional atoms)
is witnessed by a proof tree whose root has label r and n children which are the
roots of the proof trees for atoms Ai (if r has no intensional predicates in its
body then the root has no children). The program returns set P(A) consisting
of those inferred atoms that match a distinguished goal predicate G.

In programs with stratified negation we assume that signature σ is partitioned
into strata σext = σ0, σ1, . . . , σn−1, σn = {G} for some n ∈ N. For each i > 0,
rules for predicates from stratum σi contain atoms over σ0 ∪· · ·∪σi and negated
atoms over predicates from σ0 ∪· · ·∪σi−1. The partition of σ induces a partition
of P into P1, . . . ,Pn. The evaluation is done stratum by stratum, that is Pi is
run over atoms inferred by strata P1, . . . ,Pi−1, including those coming directly
from the structure.

In this paper we consider only monadic programs, i.e., programs whose inten-
sional predicates are at most unary. A datalog program is linear, if the right-hand
side of each rule contains at most one atom with an intensional predicate (proof
trees for such programs are single branches, and we call them proof words).

For programs P,Q with a common goal predicate G, we say that program P
is contained in program Q, written as P ⊆ Q, if

P(A) ⊆ Q(A)

for each σext-structure A. Note that if goal predicate G is nullary, this means
that if G ∈ P(t) then G ∈ Q(t); that is, if P says true, so does Q.

Automata. A ranked alphabet Γ is a set of letters with arities. A tree over ranked
alphabet Γ is an ordered tree labelled with elements of Γ such that the number
of children of any given node is equal to the arity of its label. Trees over ranked
alphabet Γ can be seen as terms over Γ , and vice versa. A term of the form
f(t1, t2, . . . , tn), n = ar(f) corresponds to a tree whose root has label f , and
children v1, . . . , vn where the subtree rooted at vi corresponds to the term ti.
Thus, k-expressions over τ are trees over ranked alphabet Op(τ, k). An unranked
tree is a tree without any constraints on the number of children.

A two-way alternating tree automaton (2ATA) A = 〈Γ,Q, qI , δ〉 consists of
a ranked alphabet Γ , a finite set of states Q, an initial state qI ∈ Q, and a
transition function

δ : Q × Γ → BC+
(
Q × Z

)
describing actions of automaton A in state q in a node with label f as a positive
Boolean combination of atomic actions of the form (q, d), where −1 ≤ d ≤ arf .

A run r of A over tree t is an unranked tree labelled with pairs (q, v), where
q is a state of A and v is a node of t, satisfying the following condition: if a
node of r with label (q, v) has children with labels (q1, v1), . . . , (qn, vn), and v
has label f in t, then there exist d1, . . . , dn ∈ N such that

Containment of Monadic Datalog Programs via Bounded Clique-Width 431

– vi is the di’th child of v in t for all i such that di > 0;
– vi = v for all i such that di = 0;
– vi is the parent of v in t for all i such that di = −1; and
– Boolean combination δ(q, f) evaluates to true when atomic actions

(q1, d1), . . . , (qn, dn) are substituted by true, and other atomic actions are
substituted by false.

Tree t is accepted by automaton A if it admits a finite run. By L(A) we denote
the language recognized by A; that is, the set of trees accepted by A.

A nondeterministic (one-way) tree automaton (NTA) is an alternating two-
way automaton such that each δ(q, f) is a disjunction of expressions of the from
(q1, 1) ∧ (q2, 2) ∧ · · · ∧ (qarf , arf).

3 Evaluating Monadic Datalog Over k-expressions

It is a part of the database theory folklore that every monadic datalog program
can be translated to a formula of monadic second order logic (MSO) [13]. For
concreteness, let us assume the syntax of MSO formulae over signature τ is

ϕ,ψ ::= ∀X ϕ | ∃X ϕ |ϕ ∧ ψ |ϕ ∨ ψ |ϕ → ψ |ϕ ↔ ψ | ¬ϕ |
|X ⊆ Y |X = ∅ | singleton(X) |R(X1, . . . , Xr)

for R ∈ τ , r = arR; the semantics is as usual. As is also well known, each MSO
formula (over arbitrary structures) can be translated to an equivalent formula
over k-expressions (see e.g. [15, Lemma16]). Finally, each MSO formula over trees
can be translated to an equivalent tree automaton [11,20]. Thus, evaluating a
monadic Datalog program over a structure reduces to running an appropriate
nondeterministic automaton over any k-expression for this structure. With a bit
of care we can ensure that the automaton does not grow too fast.

Proposition 1. Let k be a positive integer and P a monadic datalog program
with stratified negation. One can construct (in time polynomial in the size of
the output) a triple exponential NTA AP recognizing k-expressions e such that
[[e]] = (A, γ) and P(A) �= ∅.

Moreover, if P uses no negation, one can construct (in time polynomial in
the size of the output) a double exponential NTA A¬P recognizing k-expressions
e such that [[e]] = (A, γ) and P(A) = ∅.

Proof. Program P with p intensional predicates and at most q variables per rule
can be translated to a linear-size MSO formula ϕ of the form

∀X1 . . . ∀Xp ∃Xp+1 . . . ∃Xp+q ϕ0(X1, . . . , Xp+q)

where ϕ0 is a quantifier-free formula over signature σext, such that A |= ϕ if and
only if P(A) �= ∅ [13]. For programs with stratified negation we do not need to
introduce arbitrary number of alternations. Without loss of generality we can
assume that intensional predicates are split into positive, used only under even

432 M. Bojańczyk et al.

number of negations, and negative, used only under odd number of negations.
One can obtain a linear-size formula of the form

∃X1 . . . ∃X� ∀X�+1 . . . ∀Xm∃Xm+1 . . . ∃Xn ϕ0(X1, . . . , Xn)

where, roughly speaking, the first block of quantifiers introduces the negative
predicates, the second deals with closure properties for the negative predicates
and introduces the positive predicates, and the third deals with closure properties
of the positive predicates.

The next step is to translate ϕ to a formula ϕ̂ over the signature of k-
expressions over σext, such that for every σext-structure A and every k-expression
e for A, A |= ϕ iff e |= ϕ̂. We follow the translation from [15, Lemma 16]. It
relies on the assumption that the universe of structure A is contained in the set
of nodes of k-expression e: each node with label new(i) is identified with the
element of A it represents. The translation does two things. It relativises the
quantifiers to the set of leaves; that is, it replaces ϕ0 with

�∧
i=1

leaf (Xi) ∧
(

m∧
i=�+1

leaf (Xi) →
n∧

i=m+1

leaf (Xi) ∧ ϕ0(X1, . . . , Xn)

)

where leaf (Xj) is an auxiliary formula saying that each element of Xj is a leaf.
Then, it replaces each atomic formula R(Xj1 , . . . , Xjr

) in ϕ0 with formula

ψR(Xj1 , . . . , Xjr
)

saying that there is a node v with label R(i1, . . . , ir) such that some leaves
x1 ∈ Xj1 , . . . , xr ∈ Xjr

are descendants of v and have colours i1, . . . , ir according
to the current colouring in v. Note that the obtained formula ϕ̂ only uses tree
relations (child and labels) in the auxiliary formulae leaf and ψR for R ∈ σext,
which, incidentally, are not quantifier free. Instead of expressing these formulae
in MSO, we shall keep them as primitives, to be translated directly to automata.

Translation of MSO formulae to automata [11,20] is done by induction over
the structure of the formula: for each quantifier free subformula η(Xj1 , . . . , Xj�

)
of ϕ̂ we construct a deterministic automaton over alphabet {0, 1}n ×Op(σext, k)
that accepts tree t if and only if

(t′, U1, . . . , U�) |= η(Xj1 , . . . , Xj�
)

where tree t′ is obtained from t by projecting the labels to Op(σext, k), and
U1, . . . , U� are the sets of nodes whose label in t has 1 in coordinates j1, . . . , j�,
respectively. For subformulae Xj1 ⊆ Xj2 , singleton(Xj), Xj = ∅, and leaf (Xj),
there are automata of constant-size state-space (though over exponential alpha-
bet). For ψR(Xj1 , . . . , Xjr

) the automaton has 2kr +1 states: it works bottom-up
maintaining sets I1, . . . , Ir of colours assigned to elements of Xj1 , . . . , Xjr

by the
colouring corresponding to the current node; it accepts if at any moment it
finds a node with label R(i1, . . . , ir) for some i1 ∈ I1, . . . , ir ∈ Ir. The boolean
connectives are realized by an appropriate product construction (negation is

Containment of Monadic Datalog Programs via Bounded Clique-Width 433

straightforward for deterministic automata). Altogether we end up with a prod-
uct of linearly many deterministic automata of size at most single exponential;
this gives a single exponential deterministic automaton A for the quantifier-free
part of formula ϕ̂. Automaton AP can be obtained from A by projecting out
coordinates m+1, . . . , n of the labels, complementing, projecting out coordinates
�+1, . . . , m, complementing, and projecting out coordinates 1, . . . , �. Since each
complementation involves exponential blow-up, the resulting automaton is triple
exponential in the size of the program.

Automaton A¬P is obtained from the negation of the first MSO formula in
this proof; it requires only one complementation of a nondeterministic automa-
ton, resulting in a double exponential bound. ��

As an immediate corollary we get that satisfiability in structures of bounded
clique-width can be tested in 3-ExpTime for monadic programs with stratified
negation. The following is a special case of this.

Corollary 1. Given monadic programs P,Q and k ∈ N, one can decide in
3-ExpTime if P(A) ⊆ Q(A) for all structures A of clique-width at most k.

If the “smaller” program is linear, we get better complexity. Our main tech-
nical contribution here is a direct translation from linear monadic datalog to
2ATA. Unlike in [7], were 2ATA worked on proof trees and essentially mimicked
behaviour of datalog programs, we work on k-expressions, in which distant leaves
may represent nodes that are in fact close together. The main idea is that each
time the 2ATA sees ⊕, it guesses a way to cut the proof word into subwords to
be realised in the left and right subtree (see appendix for the details).

Theorem 1. For a linear monadic program P and k ∈ N one can construct
(in time polynomial in the size of the output) a single exponential 2ATA A
recognizing k-expressions e such that [[e]] = (A, γ) and P(A) �= ∅.

We shall see later that these bounds are tight in the sense that obtaining a
polynomial bound would violate lower bounds on the containment problem over
data trees discussed in the following section.

The second, and last, step of the construction relies on the following theorem.

Theorem 2 ([7,21]). For a given 2ATA A one can construct (in time polyno-
mial in the size of the output) single exponential NTA B recognizing L(A).

Combining Theorem 1, Theorem 2, and the additional claim of Proposition 1,
we obtain the following bounds.

Corollary 2. Given a linear monadic program P, a monadic program Q, and
k ∈ N, one can decide in 2-ExpTime if P(A) ⊆ Q(A) for all structures A of
clique-width at most k.

Proof. If the goal predicate G of P and Q is nullary, the claim follows immedi-
ately: one constructs an NTA AP recognizing the set of k-expressions e such that
[[e]] = (A, γ) and G ∈ P(A), and an NTA A¬Q recognizing the set of k-expressions
e such that [[e]] = (A, γ) and G /∈ P(A), and checks if L(AP) ∩ L(A¬Q) �= ∅.

434 M. Bojańczyk et al.

Assume that G is unary. Extend σext with a fresh unary relation H. Let
P0 be obtained from P by adding rule G0 ← G(x),H(x) for a fresh nullary
predicate G0 and changing the goal predicate to G0; similarly construct Q0

from Q. Now, it is enough to check if L(AP0) ∩ L(A¬Q0) ∩ L(B) �= ∅, where B is
an automaton recognizing the set of k-expressions e over signature σext ∪ {H}
such that [[e]] = (A, γ) and HA is a singleton. ��

4 Containment Over Data Trees

We now restrict the class of structures to data trees; that is, (finite) labelled
unranked trees over Γ × DVal, where Γ is a finite alphabet and DVal is an
infinite set of so-called data values. Datalog programs over data trees refer to
relations: child ↓, descendant ↓+, data value equality ∼, and label tests a ∈ Γ .
That is, a data tree is seen as a relational structure over signature τdt consisting
of binary relations {↓, ↓+,∼} and unary relations Γ .

We are interested in the problem of containment over data trees: we say that
program P is contained in program Q over data trees, written as P ⊆dt Q, if

P(t) ⊆ Q(t)

for each data tree t. In this section by containment we always mean containment
over data trees. Thus, the containment problem is: given programs P, Q over
data trees, decide if P ⊆dt Q.

We propose the following generic approach:

1. show that containment over all data trees is equivalent to containment over
data trees of clique-width at most k;

2. test containment over k-expressions for data-trees.

The second step is easy for arbitrary monadic programs (Section 4.1). Hence,
given that containment over data trees is undecidable for monadic programs [1],
the first step can only be carried out for restricted fragments of monadic data-
log. In what follows we shall consider two such fragments: downward programs
(Section 4.2), and linear child-only programs (Section 4.3).

4.1 Containment Over Data Trees of Bounded Clique-width

In the light of the general results of the previous section, testing containment
over data trees of clique-width at most k is almost straightforward: the only issue
is that not all k-expressions over signature τdt yield data-trees. But those that
do can be recognized by a tree automaton. Since the bound on the clique-width
depends on the size of the program, the construction requires some care.

Lemma 1. For all k, k-expressions for data trees form a regular language. The
size of automaton recognizing those k-expressions is double exponential in k.

Proof. To prove the claim, it suffices to give a double-exponential bottom-up
automaton that given a k-expression for structure A verifies that:

Containment of Monadic Datalog Programs via Bounded Clique-Width 435

– every element is reachable from root via directed ↓-path;
– the relation ↓ ∪ ↓−1 is acyclic;
– ↓+ is transitive closure of ↓;
– ∼ is reflexive, symmetric and transitive.

The construction is straightforward. The details are given in the appendix. ��

This suffices to solve containment over data trees of bounded clique-width.

Proposition 2. Given monadic programs P,Q and k ∈ N, one can test in
3-ExpTime whether P(t) ⊆ Q(t) for every data tree t of clique-width at most k.
If P is linear, the complexity drops to 2-ExpTime.

Proof. The proofs are just like for Corollary 1 and Corollary 2, except that the
automaton recognizing counter-examples to containment has to be intersected
with the automaton recognizing k-expressions that yield data trees. ��

4.2 Downward Programs

As we have explained, showing that containment over data trees of two programs
is equivalent to containment over data trees of bounded clique-width immediately
gives decidability of containment in 3-ExpTime in general, and in 2-ExpTime
if the “smaller” problem is linear. In this section we apply this method to the
class of downward programs. We do it mainly for illustrative purposes, as it
is known that for downward programs containment is 2-ExpTime-complete in
general, and ExpSpace-complete for linear programs [17]. But our method also
gives broader results: it uses a relaxed definition of downward programs, and it
works for testing containment in arbitrary monadic programs.

We begin with an observation that has been seminal to this work. Let
datacut(t) be the maximum over all ↓-edges (u, v) in t of the number of ∼-
classes represented in both parts of t: the subtree rooted at v, and the rest of
the tree.

Lemma 2. Every data tree t has clique-width at most 4 · datacut(t) + 5.

Proof. Let k = 4 · datacut(t) + 5. We will use colours of the form

{root,notroot} × {0, 1, . . . , datacut(d)} × {old,new}

plus an additional colour temp. We construct a k-expression inductively for sub-
forests f of t, maintaining the following invariants for the induced colouring

1. all nodes have colours (x, y, old),
2. colours (root, y, z) are reserved for the roots of f ,
3. colours (notroot, y, z) are used by other nodes,
4. node has colour (x, 0, z) iff it carries a data value never used outside of f .

436 M. Bojańczyk et al.

Colors (x, y,new) are used when combining two parts of the tree with ⊕, to avoid
gluing colours together. Color temp is used for recolouring.

For single-node tree s, we just use (root, 1, old) or (root, 0, old), in accordance
with invariant 4.

Assume we have k-expressions for all immediate subtrees of subtree s, say
e1, . . . , e�. We use ⊕ to add them one by one, adding necessary ∼-edges. Each
time we add another ei, we first recolour (x, y, old) to (x, y,new) in ei for all
x, y. We add ∼-edges as required, and recolour the nodes (using temp) to restore
invariants 1 and 4.

Next, we want to build a k-expression for s. We use ⊕ to add the
root, coloured (root, y,new), where y is chosen depending on ∼ relation
between the root and the nodes in the immediate subtrees. We add ↓ edges
between (root, y,new) and (root, y′, old) and ↓+ edges between (root, y,new)
and (x′, y′, old) for all x′, y′, as well as appropriate ∼-edges. Next, we recolour
(root, y′, old) to (notroot, y′, old) for all y′, and (root, y,new) to (root, y, old). If
necessary, we do additional recolouring to restore invariant 4. ��

A datalog rule is essentially a conjunctive query, so one can associate with
it a relational structure Ar in the usual way: the universe is the set var(r) of
variables used in r, and relations are defined by extensional atoms of r. Recall
that program P is downward if it had no nullary predicates and for each rule
r ∈ P, graph (V,E) with V = var(r) and E = (↓)Ar ∪ (↓+)Ar was a tree in which
the variable used in the head of r is the root [17]. Here we use a relaxed variant
of this definition: we lift the restriction that the graph is a tree, but we keep the
requirement that each node is reachable from the variable used in the head.

Theorem 3. Let P be a downward program and Q an arbitrary monadic pro-
gram. If P �⊆ Q, then there exists a witness with clique-width at most 4 · ‖P‖+5.

Proof. The theorem follows immediately from the following claim (with A set
to the goal predicate G): for each tree t and each atom A(v) inferred by P from
t, there exists a data tree t′ such that

– datacut(t′) ≤ ‖P‖,
– A(roott′) can be inferred by P from t′, where roott′ is the root of t′,
– there exists a homomorphism from t′ to t that maps roott′ to v

(in particular, G(roott′) /∈ Q(t′) unless G(v) ∈ Q(t)).

We prove the claim by induction on the size of proof tree p witnessing A(v). Let r
be the rule in the root of p and let h : Ar → t be the associated homomorphism (it
maps the head variable to v). Let tr be the data tree obtained from tv (the subtree
of t rooted at v) by interpreting ∼ as the least equivalence relation extending
the image of ∼Ar under h; it has at most |r| non-singleton abstraction classes.
Let R1(y1), . . . , Rm(ym) be the intensional atoms in rule r. By the inductive
hypothesis there exist appropriate t1, . . . , tm for R1(h(y1)), . . . , Rm(h(ym)). We
obtain t′ by taking disjoint union of tr and t1, . . . , tm with the roots of t1, . . . , tm
identified with h(y1), . . . , h(ym), and closing ∼ and ↓+ under transitivity. ��
Corollary 3. Containment of a downward program in a monadic program is in
3-ExpTime, and in 2-ExpTime if the downward program is also linear.

Containment of Monadic Datalog Programs via Bounded Clique-Width 437

4.3 Linear Child-Only Programs

In this section we show a more useful application of results from Section 3. Recall
that by child-only programs we mean programs that use only ↓ and ∼ relation,
while ↓+ is forbidden. It is known that containment for linear child-only pro-
grams is in 3-ExpTime and 2-ExpTime-hard (for non-linear ones containment
is undecidable) [17]. Here, we close this complexity gap and also extend the
result to containment of linear child-only programs in arbitrary monadic ones.
Similarly to the downward programs, we show that containment can be verified
over data trees of bounded clique-width.

Theorem 4. For a linear child-only program P and arbitrary monadic program
Q, if P �⊆ Q, there exists a witness with clique-width at most 8‖P‖2 + 3‖P‖+ 2.

Because child-only programs can go up and down in the tree, it is not possible
to bound datacut as we did for downward programs. It is possible, however, to
bound the number of ∼-classes represented at the same time in an appropriately
generalized subtree of a node v and in the rest of the tree. The proof of this fact
is not very hard but it requires some technical definitions from [17] and is given
in the appendix.

Just like for downward programs, the following is a straightforward applica-
tion of Theorems 1 and 4 (and 2-ExpTime-hardness shown in [17]).

Corollary 4. Containment of a linear child-only program in a monadic program
is 2 -ExpTime-complete.

5 Conclusions

We have shown that over structures of bounded clique-width (arbitrary struc-
tures and data trees), containment of monadic datalog programs is decidable in
3-ExpTime, and containment of linear monadic programs in monadic programs
is in 2-ExpTime. Consequently, decidability of containment for a fragment of
monadic datalog reduces to showing that the fragment admits bounded clique-
width counter-examples to containment. Graph decompositions have been used
before for deciding properties of datalog programs: already in early 1990s Cour-
celle noticed a connection between runs of datalog programs and tree decompo-
sitions of structures, and concluded decidability of some properties of programs
expressible in MSO over these decompositions [8]. Over data trees, however,
tree-width is not useful: there is much less freedom in constructing models of a
program, and neither ↓+ nor ∼ are sparse relations, as is required by bounded
tree-width. Clique-width seems to be exactly the notion that is needed.

We applied this method to generalize previously known decidability results
for downward programs and linear child-only programs: we relaxed the defini-
tion of downward programs and, more importantly, we covered containment in
arbitrary monadic programs. With a bit of extra effort one could further relax
the notion of downward programs to allow disconnected rules. More interestingly,
there is a relatively natural unifying fragment with decidable containment: linear

438 M. Bojańczyk et al.

child-only programs that use freely predicates defined by downward programs.
The method seems flexible enough for further extensions. More generally, one
could try to port the method to formalisms other then monadic datalog, e.g.,
XPath, both for data trees and data graphs.

References

1. Abiteboul, S., Bourhis, P., Muscholl, A., Wu, Z.: Recursive queries on trees and
data trees. In: ICDT 2013, pp. 93–104 (2013)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
(1995)

3. Björklund, H., Martens, W., Schwentick, T.: Optimizing conjunctive queries over
trees using schema information. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS
2008. LNCS, vol. 5162, pp. 132–143. Springer, Heidelberg (2008)

4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

5. Ceri, S., Gottlob, G., Tanca, L.: Logic programming and databases. Springer-Verlag
New York Inc. (1990)

6. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: STOC 1977, pp. 77–90. ACM, New York (1977)

7. Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C., Vardi, M.Y.: Decidable optimiza-
tion problems for database logic programs (preliminary report). In: STOC 1988,
pp. 477–490 (1988)

8. Courcelle, B.: Recursive queries and context-free graph grammars. Theor. Comput.
Sci. 78(1), 217–244 (1991)

9. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

10. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101(1–3), 77–114 (2000)

11. Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci.
4(5), 406–451 (1970)

12. Figueira, D.: Satisfiability of downward XPath with data equality tests. In: PODS
2009, pp. 197–206 (2009)

13. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for
web information extraction. J. ACM 51(1), 74–113 (2004)

14. Gottlob, G., Pichler, R., Wei, F.: Monadic datalog over finite structures of bounded
treewidth. ACM Trans. Comput. Log. 12(1), 3 (2010)

15. Grohe, M., Turán, G.: Learnability and definability in trees and similar structures.
Theory Comput. Syst. 37(1), 193–220 (2004)

16. Hlinený, P., Oum, S.: Finding branch-decompositions and rank-decompositions.
SIAM J. Comput. 38(3), 1012–1032 (2008)

17. Mazowiecki, F., Murlak, F., Witkowski, A.: Monadic datalog and regular tree
pattern queries. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS
2014, Part I. LNCS, vol. 8634, pp. 426–437. Springer, Heidelberg (2014)

Containment of Monadic Datalog Programs via Bounded Clique-Width 439

18. Neven, F., Schwentick, T.: On the complexity of XPath containment in the presence
of disjunction, DTDs, and variables. Logical Methods in Computer Science 2(3)
(2006)

19. Shmueli, O.: Equivalence of datalog queries is undecidable. J. Log. Program. 15(3),
231–241 (1993)

20. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems
Theory 2(1), 57–81 (1968)

21. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 628. Springer,
Heidelberg (1998)

An Approach to Computing Downward Closures

Georg Zetzsche(B)

Technische Universität Kaiserslautern, Fachbereich Informatik,
Concurrency Theory Group, Kaiserslautern, Germany

zetzsche@cs.uni-kl.de

Abstract. The downward closure of a word language is the set of all (not
necessarily contiguous) subwords of its members. It is well-known that
the downward closure of any language is regular. While the downward
closure appears to be a powerful abstraction, algorithms for computing
a finite automaton for the downward closure of a given language have
been established only for few language classes.

This work presents a simple general method for computing downward
closures. For language classes that are closed under rational transduc-
tions, it is shown that the computation of downward closures can be
reduced to checking a certain unboundedness property.
This result is used to prove that downward closures are computable
for (i) every language class with effectively semilinear Parikh images
that are closed under rational transductions, (ii) matrix languages, and
(iii) indexed languages (equivalently, languages accepted by higher-order
pushdown automata of order 2).

1 Introduction

The downward closure L↓ of a word language L is the set of all (not neces-
sarily contiguous) subwords of its members. While it is well-known that the
downward closure of any language is regular [15], it is not possible in general to
compute them. However, if they are computable, downward closures are a pow-
erful abstraction. Suppose L describes the behavior of a system that is observed
through a lossy channel, meaning that on the way to the observer, arbitrary
actions can get lost. Then, L↓ is the set of words received by the observer [14].
Hence, given the downward closure as a finite automaton, we can decide whether
two systems are equivalent under such observations, and even whether one sys-
tem includes the behavior of another.

Further motivation for studying downward closures stems from a recent result
of Czerwiński and Martens [8]. It implies that for language classes that are
closed under rational transductions and have computable downward closures,
separability by piecewise testable languages is decidable.

As an abstraction, compared to the Parikh image (which counts the number
of occurrences of each letter), downward closures have the advantage of guar-
anteeing regularity for any language. Most applications of Parikh images, in
contrast, require semilinearity, which fails for many interesting language classes.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 440–451, 2015.
DOI: 10.1007/978-3-662-47666-6 35

An Approach to Computing Downward Closures 441

An example of a class that lacks semilinearity of Parikh images and thus spurred
interest in computing downward closures is that of the indexed languages [3] or,
equivalently, those accepted by higher-order pushdown automata of order 2 [22].

It appears to be difficult to compute downward closures and there are few
language classes for which computability has been established. Computability is
known for context-free languages and algebraic extensions [7,21], 0L-systems and
context-free FIFO rewriting systems [1], Petri net languages [14], and stacked
counter automata [29]. They are not computable for reachability sets of lossy
channel systems [23] and Church-Rosser languages [13].

This work presents a new general method for the computation of downward
closures. It relies on a fairly simple idea and reduces the computation to the
so-called simultaneous unboundedness problem (SUP). The latter asks, given a
language L ⊆ a∗

1 · · · a∗
n, whether for each k ∈ N, there is a word ax1

1 · · · axn
n ∈ L

such that x1, . . . , xn ≥ k. This method yields new, sometimes greatly simplified,
algorithms for each of the computability results above. It also opens up a range
of other language classes to the computation of downward closures.

First, it implies computability for every language class that is closed
under rational transductions and exhibits effectively semilinear Parikh images.
This re-proves computability for context-free languages and stacked counter
automata [29], but also applies to many other classes, such as the multiple
context-free languages [26]. Second, the method yields the computability for
matrix grammars [9,10], a powerful grammar model that generalizes Petri net
and context-free languages. Third, it is applied to obtain computability of down-
ward closures for the indexed languages.

Due to space restrictions, many proofs are only available in the full version
of this work [28].

2 Basic Notions and Results

If X is an alphabet, X∗ (X+) denotes the set of (non-empty) words over X. The
empty word is denoted by ε ∈ X∗. For a symbol x ∈ X and a word w ∈ X∗, let
|w|x be the number of occurrences of x in w. For words u, v ∈ X∗, we write u � v
if u = u1 · · · un and v = v0u1v1 · · · unvn for some u1, . . . , un, v0, . . . , vn ∈ X∗. It is
well-known that � is a well-quasi-order on X∗ and that therefore the downward
closure L↓ = {u ∈ X∗ | ∃v ∈ L : u � v} is regular for any L ⊆ X∗ [15]. If X is an
alphabet, X⊕ denotes the set of maps α : X → N, which are called multisets. For
α, β ∈ X⊕, k ∈ N the multisets α+β and k ·α are defined in the obvious way. A
set of the form {μ0 +x1 ·μ1 + · · ·+xn ·μn | x1, . . . , xn ≥ 0} for μ0, . . . , μn ∈ X⊕

is called linear and μ1, . . . , μn are its period elements. A finite union of linear
sets is called semilinear. The Parikh map is the map Ψ : X∗ → X⊕ defined by
Ψ(w)(x) = |w|x for all w ∈ X∗ and x ∈ X. We lift Ψ to sets in the usual way:
Ψ(L) = {Ψ(w) | w ∈ L}. If Ψ(L) = Ψ(K), then L and K are Parikh-equivalent.

A finite automaton is a tuple (Q,X,E, q0, F), where Q is a finite set of states,
X is its input alphabet, E ⊆ Q × X∗ × Q is a finite set of edges, q0 ∈ Q is its
initial state, and F ⊆ Q is the set of its final states. If there is a path labeled

442 G. Zetzsche

w ∈ X∗ from state p to q, we denote this fact by p w−→ q. The language accepted
by A is denoted L(A).

A (finite-state) transducer is a tuple (Q,X, Y,E, q0, F), where Q, X, q0, F
are defined as for automata and Y is its output alphabet and E ⊆ Q×X∗×Y ∗×Q
is the finite set of its edges. If there is a path from state p to q that reads the
input word u ∈ X∗ and outputs the word v ∈ Y ∗, we denote this fact by p u,v−−→ q.
In slight abuse of terminology, we sometimes specify transducers where an edge
outputs a regular language instead of a word.

For alphabets X,Y , a transduction is a subset of X∗×Y ∗. If A is a transducer
as above, then T(A) denotes its generated transduction, namely the set of all
(u, v) ∈ X∗ × Y ∗ such that q0

u,v−−→ f for some f ∈ F . Transductions of the
form T(A) are called rational. For a transduction T ⊆ X∗ × Y ∗ and a language
L ⊆ X∗, we write TL = {v ∈ Y ∗ | ∃u ∈ L : (u, v) ∈ T}. A class of languages C
is called a full trio if it is effectively closed under rational transductions, i.e. if
TL ∈ C for each L ∈ C and each rational transduction T .

Observe that for each full trio C and L ∈ C, the language L↓ is effectively con-
tained in C. By computing downward closures we mean finding a finite automaton
for L↓ when given a representation of L in C. It will always be clear from the
definition of C how to represent languages in C.

The Simultaneous Unboundedness Problem. We come to the central decision
problem in this work. Let C be a language class. The simultaneous unboundedness
problem (SUP) for C is the following decision problem:

Given A language L ⊆ a∗
1 · · · a∗

n in C for some alphabet {a1, . . . , an}.
Question Does L↓ equal a∗

1 · · · a∗
n?

The term “simultaneous unboundedness problem” reflects the fact that the
equality L↓ = a∗

1 · · · a∗
n holds if and only if for each k ∈ N, there is a word

ax1
1 · · · axn

n ∈ L such that x1, . . . , xn ≥ k.
After obtaining the results of this work, the author learned that Czerwiński

and Martens considered a very similar decision problem [8]. Their diagonal prob-
lem asks, given a language L ⊆ X∗ whether for each k ∈ N, there is a word w ∈ L
with |w|x ≥ k for each x ∈ X. Czerwiński and Martens prove that for full trios
with a decidable diagonal problem, it is decidable whether two given languages
are separable by a piecewise testable language. In fact, their proof only requires
decidability of the (ostensibly easier) SUP. Here, Theorem 1 implies that in each
full trio, the diagonal problem is decidable if and only if the SUP is.

The following is the first main result of this work.

Theorem 1. Let C be a full trio. Then downward closures are computable for
C if and only if the SUP is decidable for C.

The proof of Theorem 1 uses the concept of simple regular expressions. Let
X be an alphabet. An atomic expression is a rational expression of the form
(x∪ε) with x ∈ X or of the form (x1 ∪· · ·∪xn)∗ with x1, . . . , xn ∈ X. A product
is a (possibly empty) concatenation a1 · · · an of atomic expressions. A simple

An Approach to Computing Downward Closures 443

regular expression (SRE) is of the form p1 ∪ · · · ∪ pn, where the pi are products.
Given an SRE r, we write L(r) for the language it describes. It was shown by
Jullien [19] (and later rediscovered by Jonsson [2]) that SREs describe precisely
the downward closed languages.

Proof (Theorem 1). Of course, if downward closures are computable for C, then
given a language L ⊆ a∗

1 · · · a∗
n in C, we can compute a finite automaton for L↓

and check whether L↓ = a∗
1 · · · a∗

n. This proves the “only if” direction.
For the other direction, let us quickly observe that the emptiness problem

can be reduced to the SUP. Indeed, if L ⊆ X∗ and T is the rational transduction
X∗ × {a}∗, then TL ⊆ a∗ and (TL)↓ = a∗ if and only if L
= ∅.

Now, suppose the SUP is decidable for C and let L ⊆ X∗. Since we know
that L↓ is described by some SRE, we can enumerate SREs over X and are
guaranteed that one of them will describe L↓. Hence, it suffices to show that
given an SRE r, it is decidable whether L(r) = L↓.

Since L(r) is a regular language, we can decide whether L↓ ⊆ L(r) by checking
whether L↓ ∩ (X∗ \ L(r)) = ∅. This can be done because we can compute a
representation for L↓ ∩ (X∗ \ L(r)) in C and check it for emptiness. It remains
to be shown that it is decidable whether L(r) ⊆ L↓.

The set L(r) is a finite union of sets of the form {w0}↓Y ∗
1 {w1}↓ · · · Y ∗

n {wn}↓
for some Yi ⊆ X, Yi
= ∅, 1 ≤ i ≤ n, and wi ∈ X∗, 0 ≤ i ≤ n. Therefore, it suf-
fices to decide whether {w0}↓Y ∗

1 {w1}↓ · · · Y ∗
n {wn}↓ ⊆ L↓. Since L↓ is downward

closed, this is equivalent to w0Y
∗
1 w1 · · · Y ∗

n wn ⊆ L↓. For each i ∈ {1, . . . , n},
we define the word ui = y1 · · · yk, where Yi = {y1, . . . , yk}. Observe that
w0Y

∗
1 w1 · · · Y ∗

n wn ⊆ L↓ holds if and only if for every k ≥ 0, there are num-
bers x1, . . . , xn ≥ k such that w0u

x1
1 w1 · · · uxn

n wn ∈ L↓. Moreover, if T is the
rational transduction T = {(w0u

x1
1 w1 · · · uxn

n wn, ax1
1 · · · axn

n) | x1, . . . , xn ≥ 0},
then T (L↓) = {ax1

1 · · · axn
n | w0u

x1
1 w1 · · · uxn

n wn ∈ L↓}. Thus, the inclusion
w0Y

∗
1 w1 · · · Y ∗

n wn ⊆ L↓ is equivalent to (T (L↓))↓ = a∗
1 · · · a∗

n, which is an
instance of the SUP, since we can compute a representation of T (L↓) in C. ��

Despite its simplicity, Theorem 1 has far-reaching consequences for the com-
putability of downward closures. Let us record a few of them.

Corollary 1. Suppose C and D are full trios such that given L ∈ C, we can
compute a Parikh-equivalent K ∈ D. If downward closures are computable for
D, then they are computable for C.

Proof. We show that the SUP is decidable for C. Given L ∈ C, L ⊆ a∗
1 · · · a∗

n, we
construct a Parikh-equivalent K ∈ D. Observe that then Ψ(K↓) = Ψ(L↓). We
compute a finite automaton A for K↓ and then a semilinear representation of
Ψ(L(A)) = Ψ(K↓) = Ψ(L↓). Then L↓ = a∗

1 · · · a∗
n if and only if some of the linear

sets has for each 1 ≤ i ≤ n a period element containing ai. Hence, the SUP is
decidable for C. ��

Note that if a language class has effectively semilinear Parikh images, then
we can construct Parikh-equivalent regular languages. Therefore, the following
is a special case of Corollary 1.

444 G. Zetzsche

Corollary 2. For each full trio with effectively semilinear Parikh images, down-
ward closures are computable.

Corollary 2, in turn, provides computability of downward closures for a vari-
ety of language classes. First, it re-proves the classical downward closure result
for context-free languages [7,21] and thus algebraic extensions [21] (see [29] for
a simple reduction of the latter to the former). Second, it yields a drastically
simplified proof of the computability of downward closures for stacked counter
automata, which was shown in [29] using the machinery of Parikh annotations. It
should be noted, however, that the algorithm in [29] is easily seen to be primitive
recursive, while this is not clear for the brute-force approach presented here.

Corollary 2 also implies computability of downward closures for multiple
context-free languages [26], which have received considerable attention in com-
putational linguistics. As shown in [26], the multiple context-free languages con-
stitute a full trio and exhibit effectively semilinear Parikh images.

Our next application of Theorem 1 is an alternative proof of the computabil-
ity of downward closures for Petri net languages, which was established by Haber-
mehl, Meyer, and Wimmel [14]. Here, by Petri net language, we mean sequences
of transition labels of runs from an initial to a final marking. Czerwiński and
Martens [8] exhibit a simple reduction of the diagonal problem for Petri net lan-
guages to the place boundedness problem for Petri nets with one inhibitor arc,
which was proven decidable by Bonnet, Finkel, Leroux, and Zeitoun [4]. Since
the Petri net languages are well-known to be a full trio [18], Theorem 1 yields
an alternative algorithm for downward closures of Petri net languages.

We can also use Corollary 1 to extend the computability of downward clo-
sures for Petri net languages to a larger class. Matrix grammars are a powerful
formalism that is well-known in the area of regulated rewriting and generalizes
numerous other grammar models [9,10]. They generate the matrix languages, a
class which strictly includes both the context-free languages and the Petri net
languages. It is well-known that the matrix languages are a full trio and given a
matrix grammar, one can construct a Parikh-equivalent Petri net language [10].
Thus, the following is a consequence of Corollary 1.

Corollary 3. Downward closures are computable for matrix languages.

Finally, we apply Theorem 1 to the indexed languages. These were introduced
by Aho [3] and are precisely those accepted by higher-order pushdown automata
of order 2 [22]. Since indexed languages do not have semilinear Parikh images,
downward closures are a promising alternative abstraction.

Theorem 2. Downward closures are computable for indexed languages.

The indexed languages constitute a full trio [3], and hence the remainder of
this work is devoted to showing that their SUP is decidable. Note that since
this class significantly extends the 0L-languages [11], Theorem 2 generalizes the
computability result of Abdulla, Boasson, and Bouajjani for 0L-systems and
context-free FIFO rewriting systems [1].

An Approach to Computing Downward Closures 445

3 Indexed Languages

Let us define indexed grammars. The following definition is a slight variation1 of
the one from [17]. An indexed grammar is a tuple G = (N,T, I, P, S), where N ,
T , and I are pairwise disjoint alphabets, called the nonterminals, terminals, and
index symbols, respectively. P is the finite set of productions of the forms A → w,
A → Bf , Af → w, where A,B ∈ N , f ∈ I, and w ∈ (N ∪T)∗. We regard a word
Af1 · · · fn with f1, . . . , fn ∈ I as a nonterminal to which a stack is attached.
Here, f1 is the topmost symbol and fn is on the bottom. For w ∈ (N ∪ T)∗ and
x ∈ I∗, we denote by [w, x] the word obtained by replacing each A ∈ N in w by
Ax. A word in (NI∗ ∪ T)∗ is called a sentential form. For q, r ∈ (NI∗ ∪ T)∗, we
write q ⇒G r if there are words q1, q2 ∈ (NI∗ ∪ T)∗, A ∈ N , p ∈ (N ∪ T)∗ and
x, y ∈ I∗ such that q = q1Axq2, r = q1[p, y]q2, and one of the following is true:
(i) A → p is in P , p ∈ (N ∪ T)∗ \ T ∗, and y = x, (ii) A → p is in P , p ∈ T ∗,
and y = x = ε, (iii) A → pf is in P and y = fx, or (iv) Af → p is in P and
x = fy. The language generated by G is L(G) = {w ∈ T ∗ | S ⇒∗

G w}, where
⇒∗

G denotes the reflexive transitive closure of ⇒G. Derivation trees are always
unranked trees with labels in NI∗ ∪ T ∪ {ε} and a very straightforward analog
to those of context-free grammars (see, for example, [27]). If t is a labeled tree,
then its yield, denoted yield(t), is the word spelled by the labels of its leaves.

We will often assume that our indexed grammars are in normal form, which
means that every production is in one of the following forms:

(i) A → Bf, (ii) Af → B, (iii) A → uBv, (iv) A → BC, (v) A → w,

with A,B,C ∈ N , f ∈ I, and u, v, w ∈ T ∗. Productions of these forms are called
push, pop, output, split, and terminal productions, respectively. The normal form
can be attained just like the Chomsky normal form of context-free grammars.

The SUP for Indexed Grammars. The SUP for indexed grammars does not
seem to easily reduce to a decidable problem. In the case L ⊆ a∗, the SUP is
just the finiteness problem, for which Hayashi presented a procedure using his
pumping lemma [16]. However, neither Hayashi’s nor any of the other pump-
ing or shrinking lemmas [12,20,24,27] appears to yield decidability of the SUP.
Therefore, this work employs a different approach: Given an indexed grammar G
with L(G) ⊆ a∗

1 · · · a∗
n, we apply a series of transformations, each preserving the

simultaneous unboundedness (steps 1–3). These transformations leave us with
an indexed grammar in which the number of nonterminals appearing in sen-
tential forms is bounded. This allows us to construct an equivalent finite-index
scattered context grammar (step 4), a type of grammars that is known to exhibit
effectively semilinear Parikh images.

We begin with an analysis of the structure of index words that facilitate
certain derivations. Let G = (N,T, P, S) be an indexed grammar, A ∈ N a
nonterminal and R ⊆ T ∗ a regular language. We write IWG(A,R) for the set of
1 We require that a nonterminal can only be replaced by a terminal word if it has no

index attached to it. It is easy to see that this leads to the same languages [27].

446 G. Zetzsche

index words that allow A the derivation of a word from R. Formally, we define
IWG(A,R) = {x ∈ I∗ | ∃y ∈ R : Ax ⇒∗

G y}. The following lemma is essentially
equivalent to the fact that the set of stack contents from which an alternating
pushdown system can reach a final configuration is regular [5].

Lemma 1. For an indexed grammar G, a nonterminal A, and a regular lan-
guage R, the language IWG(A,R) is effectively regular.

Step 1: Productive Interval Grammars. We want to make sure that each non-
terminal can only derive words in some fixed ‘interval’ a∗

i · · · a∗
j . An interval

grammar is an indexed grammar G = (N,T, I, P, S) in normal form together
with a map ι : N → N × N, called interval map, such that for each A ∈ N with
ι(A) = (i, j), we have (i) 1 ≤ i ≤ j ≤ n, (ii) if Ax ⇒∗

G u for x ∈ I∗ and u ∈ T ∗,
then u ∈ a∗

i · · · a∗
j , and (iii) if S ⇒∗

G uAx v By w with u, v, w ∈ (NI∗ ∪ T)∗,
B ∈ N , x, y ∈ I∗, and ι(B) = (k, �), then j ≤ k.

We will also need our grammar to be ‘productive’, meaning that every deriv-
able sentential form and every nonterminal in it contribute to the derived ter-
minal words. A production is called erasing if its right-hand side is the empty
word. A grammar is non-erasing if it contains no erasing productions. More-
over, a word u ∈ (NI∗ ∪ T)∗ is productive if there is some v ∈ T ∗ with u ⇒∗

G v.
We call an indexed grammar G productive if (i) it is non-erasing and (ii) when-
ever u ∈ (NI∗ ∪ T)∗ is productive and u ⇒∗

G u′ for u′ ∈ (NI∗ ∪ T)∗, then u′

is productive as well. The following proposition is shown in two steps. First,
we construct an interval grammar and then use Lemma 1 to encode information
about the current index word in each nonterminal. This information is then used,
among other things, to prevent the application of productions that lead to non-
productive sentential forms. The proposition clearly implies that the SUP for
indexed grammars can be reduced to the case of productive interval grammars.

Proposition 1. For each indexed grammar G with L(G) ⊆ a∗
1 · · · a∗

n, one can
construct a productive interval grammar G′ with L(G′) = L(G) \ {ε}.

Step 2: Partitioned Grammars. Our second step is based on the following obser-
vation. Roughly speaking, in an interval grammar, in order to generate an
unbounded number of ai’s, there have to be derivation trees that contain either
(i) an unbounded number of incomparable (with respect to the subtree order-
ing) ai-subtrees (i.e. subtrees with yield in a∗

i) or (ii) a bounded number of such
subtrees that themselves have arbitrarily large yields. In a partitioned grammar,
we designate for each ai, whether we allow arbitrarily many ai-subtrees (each of
which then only contains a single ai) or we allow exactly one ai-subtree (which
is then permitted to be arbitrarily large).

Let us formalize this. A nonterminal A in an interval grammar is called unary
if ι(A) = (i, i) for some 1 ≤ i ≤ n. A partitioned grammar is an interval grammar
G = (N,T, I, P, S), with interval map ι : N → N × N, together with a subset
D ⊆ T of direct symbols such that for each ai ∈ T , the following holds: (i) If
ai ∈ D, then there is no A ∈ N with ι(A) = (i, i), and (ii) if ai /∈ D and t is a
derivation tree of G, then all occurrences of ai are contained in a single subtree

An Approach to Computing Downward Closures 447

whose root contains a unary nonterminal. In other words, direct symbols are
never produced through unary nonterminals, but always directly through non-
unary ones. If, on the other hand, ai is not direct, then all occurrences of ai stem
from one occurrence of a suitable unary symbol. The next proposition clearly
reduces the SUP for indexed grammars to the case of partitioned grammars.

Proposition 2. Let G be a productive interval grammar with L(G) ⊆ a∗
1 · · · a∗

n.
Then, one can construct partitioned grammars G1, . . . , Gm such that we have
L(G)↓ = a∗

1 · · · a∗
n if and only if L(Gi)↓ = a∗

1 · · · a∗
n for some 1 ≤ i ≤ m.

Step 3: Breadth-bounded Grammars. The last step in our proof will be to solve
the SUP in the case where we have a bound on the number of nonterminals
in reachable sentential forms. The only obstacle to such a bound are the unary
nonterminals corresponding to terminals ai /∈ D: All other nonterminals have
ι(A) = (i, j) with i < j and there can be at most n − 1 such symbols in a
sentential form. However, for each ai /∈ D, there is at most one subtree with a
corresponding unary nonterminal at its root. Our strategy is therefore to replace
these problematic subtrees so as to bound the nonterminals: Instead of unfolding
the subtree generated from u ∈ NI∗, we apply a transducer to u.

In order to guarantee that the replacement does not affect whether L(G)↓
equals a∗

1 · · · a∗
n, we employ a slight variant2 of the equivalence that gives rise to

the cost functions of Colcombet [6]. If f : X → N∪{∞} is a partial function, we
say that f is unbounded on E ⊆ X if for each k ∈ N, there is some x ∈ E with
f(x) ≥ k (in particular, f(x) is defined). If g : X → N ∪ {∞} is another partial
function, we write f ≈ g if for each subset E ⊆ X, we have: f is unbounded
on E if and only if g is unbounded on E. Note that if h : Y → X is a partial
function and f ≈ g, then h ◦ f ≈ h ◦ g. Now, we compare the transducer and
the original grammar on the basis of the following partial functions. Given an
indexed grammar G = (N,T, I, P, S) and a transducer A with T(A) ⊆ NI∗×T ∗,
we define the partial functions fG, fA : NI∗ → N ∪ {∞} by

fG(u) = sup{|v| | v ∈ T ∗, u ⇒∗
G v},

fA(u) = sup{|v| | v ∈ T ∗, (u, v) ∈ T(A)}.

Note that here, supM is undefined if M is the empty set.

Proposition 3. Given an indexed grammar G, one can construct a finite-state
transducer A such that fA ≈ fG.

A simple argument (see the full version [28]) shows that it suffices to prove
proposition 3 in the case that G is productive. Hence, we assume productivity
of G. The construction of the transducer will involve deciding the finiteness
problem for indexed languages, which asks, given G, whether L(G) is finite. Its
decidability has been shown by Rounds [25] (and later again by Hayashi [16,
Corollary5.1]).

2 The difference is that we have an equivalence on partial instead of total functions.

448 G. Zetzsche

Theorem 3 ([25]). The finiteness problem for indexed languages is decidable.

Let R = {Bw | B ∈ N, w ∈ I∗, w ∈ IWG(B, T ∗)}. Then fG is clearly
undefined on words outside of R. Therefore, it suffices to exhibit a finite-state
transducer A with fA|R ≈ fG: The regularity of R means we can construct a
transducer A′ with fA′ = fA|R. In order to prove the relation fA|R ≈ fG, we
employ the concept of shortcut trees.

Shortcut Trees. Note that since G is productive, the label ε does not occur in
derivation trees for G. Let t be such a derivation tree. Let us inductively define
the set of shortcut trees for t. Suppose t’s root r has the label � ∈ NI∗ ∪ T . If
� ∈ N ∪ T , then the only shortcut tree for t consists of just one node with label
�. If � = Bfv, B ∈ N , f ∈ I, v ∈ I∗, then the shortcut trees for t are obtained
as follows. We choose a set U of nodes in t such that

(i) each path from r to a leaf contains precisely one node in U ,
(ii) the label of each x ∈ U either equals Cv for some C ∈ N or belongs to T ,
(iii) the index word of each node on a path from r to any x ∈ U has v as a suffix.

For each such choice of U = {x1, . . . , xn}, we take shortcut trees t1, . . . , tn for the
subtrees of x1, . . . , xn and create a new shortcut tree for t by attaching t1, . . . , tn
to a fresh root node. The root node carries the label B. Note that every shortcut
tree for t has height |�| − 1. We also call these shortcut trees from �.

In other words, a shortcut tree is obtained by successively choosing a sen-
tential form such that the topmost index symbol is removed, but the rest of the
index is not touched. Note that if t̄ is a shortcut tree for a derivation tree t, then
|yield(t̄)| ≤ |yield(t)|. On the other hand, every derivation tree has a shortcut
tree with the same yield. Thus, if we define f̄G : NI∗ → N ∪ {∞} by

f̄G(u) = sup{|yield(t̄)| | t̄ is a shortcut tree from u}

then we clearly have f̄G ≈ fG. Therefore, in order to prove fA|R ≈ fG, it suffices
to show fA|R ≈ f̄G. Let us describe the transducer A. For B,C ∈ N and g ∈ I,
consider the language LB,g,C = {w ∈ (N ∪ T)∗ | Bg ⇒′∗

G w, |w|C ≥ 1}. Here,
⇒′

G denotes the restricted derivation relation that forbids terminal productions.
Then LB,g,C is the set of words w(root(t̄)) for shortcut trees t̄ of derivation trees
from Bg (or, equivalently, Bgv with v ∈ I∗) such that C occurs in w(root(t̄)).
Here, root(t̄) denotes the root node of t̄ and w(root(t̄)) is the word consisting of
the labels of the root’s child nodes. Each LB,g,C belongs to the class of indexed
languages, which is a full trio and has a decidable finiteness and emptiness
problem. Hence, we can compute the following function, which will describe
A’s output. Pick an a ∈ T and define for each B,C ∈ N and g ∈ I:

Out(B, g, C) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{a}∗ if LB,g,C is infinite,
{a} if LB,g,C is finite and LB,g,C ∩ (N ∪ T)≥2
= ∅,

{ε} if LB,g,C
= ∅ and LB,g,C ⊆ N ∪ T ,

∅ if LB,g,C = ∅.

An Approach to Computing Downward Closures 449

Note that for each B,C ∈ N and g ∈ I, precisely one of the conditions on the
right holds. The transducer A has states {q0} ∪ N and edges (q0, B, {ε}, B) and
(B, g,Out(B, g, C), C) for each B,C ∈ N and g ∈ I. A’s initial state is q0 and
its final states are all those B ∈ N with B ⇒∗

G w for some w ∈ T ∗. Hence, the
runs of A on a word Bw ∈ R correspond to paths (from root to leaf) in shortcut
trees from Bw. Here, the productivity of the words in R guarantees that every
run of A with input from R does in fact arise from a shortcut tree in this way.

Suppose A performs a run on input Bw ∈ R, |w| = k, and produces the
outputs an1 , . . . , ank in its k steps that read w. Then the definition of Out(·, ·, ·)
guarantees that there is a shortcut tree t̄ such that the run corresponds to a
path in which the i-th node has at least ni + 1 children. In particular, t̄ has at
least n1 + · · · + nk leaves. Therefore, we have fA(Bw) ≤ f̄G(Bw).

It remains to be shown that if f̄G is unbounded on E ⊆ R, then fA is
unbounded on E. For this, we use a simple combinatorial fact. For a tree t, let
δ(t) denote the maximal number of children of any node and let β(t) denote the
maximal number of branching nodes (i.e. those with at least two children) on
any path from root to leaf.

Lemma 2. In a set of trees, the number of leaves is unbounded if and only if δ
is unbounded or β is unbounded.

Suppose f̄G is unbounded on E ⊆ R. Then there is a sequence of shortcut trees
t1, t2, . . . from words in E such that |yield(t1)|, |yield(t2)|, . . . is unbounded. This
means δ or β is unbounded on t1, t2, Note that if t is a shortcut tree from
Bw ∈ R, then the path in t with β(t) branching nodes gives rise to a run of A
on Bw that outputs at least β(t) symbols. Hence, fA(Bw) ≥ β(t). Thus, if β is
unbounded on t1, t2, . . ., then fA is unbounded on E.

Suppose δ is unbounded on t1, t2, Let x be an inner node of a shortcut
tree t̄. Then the subtree of x is also a shortcut tree, say of a derivation tree t
from Bgw ∈ R with B ∈ N , g ∈ I, w ∈ I∗. Moreover, x has a child node with a
label C ∈ N (otherwise, it would be a leaf of t̄). We say that (B, g, C) is a type of
x (note that a node may have multiple types). Since δ is unbounded on t1, t2, . . .
and there are only finitely many possible types, we can pick a type (B, g, C)
and a subsequence t′1, t

′
2, . . . such that each t′k has an inner node xk with at

least k children and type (B, g, C). This means there are nodes of type (B, g, C)
with arbitrarily large numbers of children and hence LB,g,C is infinite. We can
therefore choose any t′i and a run of A that corresponds to a path involving xi.
Since LB,g,C is infinite, this run outputs {a}∗ in the step corresponding to xi.
Moreover, this run reads a word in E and hence fA is unbounded on E. This
proves fA|R ≈ f̄G and thus Proposition 3.

A breadth-bounded grammar is an indexed grammar, together with a bound
k ∈ N, such that each of its reachable sentential forms contains at most k non-
terminals. We can now show the following.

Proposition 4. Let G be a partitioned grammar with L(G) ⊆ a∗
1 · · · a∗

n. Then,
one can construct a breadth-bounded grammar G′ with L(G′) ⊆ a∗

1 · · · a∗
n such

that L(G)↓ = a∗
1 · · · a∗

n if and only if L(G′)↓ = a∗
1 · · · a∗

n.

450 G. Zetzsche

The proof comprises two steps. First, we build a breadth-bounded grammar that,
instead of unfolding the derivation trees below unary nonterminals, outputs their
index words as terminal words, which results in a breadth-bounded grammar.
Then, we apply our transducer from Proposition 3 to the resulting subwords.
Since the breadth-bounded grammars generate a full trio, the proposition follows.

Step 4: Semilinearity. We have thus reduced the SUP for indexed grammars to
the special case of breadth-bounded grammars. The last step in our proof is to
prove the following. It clearly implies decidability of the SUP.

Proposition 5. Breadth-bounded grammars exhibit effectively semilinear
Parikh images.

The basic idea of Proposition 5 is to use a decomposition of derivation trees into
a bounded number of ‘slices’, which are edge sequences of either (i) only push
and output productions (‘positive slice’) or (ii) only pop and output productions
(‘negative slice’). Furthermore, there is a relation between slices such that the
index symbols that are pushed in a positive slice are popped precisely in those
negative slices related to it. One can then mimic the grammar by simulating
each positive slice in lockstep with all its related negative slices. This leads to a
‘finite index scattered context grammar’. This type of grammars is well known
to guarantee effectively semilinear Parikh images [9].

Acknowledgments. The author would like to thank Sylvain Schmitz, who pointed
out to him that Jullien [19] was the first to characterize downward closed languages by
SREs.

References

1. Abdulla, P.A., Boasson, L., Bouajjani, A.: Effective lossy queue languages. In:
Proc. of ICALP 2001, pp. 639–651 (2001)

2. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using Forward
Reachability Analysis for Verification of Lossy Channel Sys- tems. Form. Method.
Syst. Des. 25(1), 39–65 (2004)

3. Aho, A.V.: Indexed grammars-an extension of context-free grammars. J. ACM
15(4), 647–671 (1968)

4. Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Model Checking Vector Addition
Systems with one zero-test. In: LMCS 8.2:11 (2012)

5. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of push- down
automata: application to model-checking. In: Proc. of CONCUR 1997, pp. 135–150
(1997)

6. Colcombet, T.: Regular cost functions, Part I: logic and algebra over words. In:
LMCS 9.3 (2013)

7. Courcelle, B.: On constructing obstruction sets of words. Bulletin of the EATCS
44, 178–186 (1991)

8. Czerwiński, W., Martens, W.: A Note on Decidable Separability by Piece- wise
Testable Languages (2014). arXiv:1410.1042 [cs.FL]

http://arxiv.org/abs/1410.1042

An Approach to Computing Downward Closures 451

9. Dassow, J., Păun, G.: Regulated rewriting in formal language theory. Springer-
Verlag, Berlin (1989)

10. Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In:
Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2,
pp. 101–154. Springer, Heidelberg (1997)

11. Ehrenfeucht, A., Rozenberg, G., Skyum, S.: A relationship between ET0L and
EDT0L languages. Theor. Comput. Sci. 1(4), 325–330 (1976)

12. Gilman, R.H.: A shrinking lemma for indexed languages. Theor. Comput. Sci.
163(1-2), 277–281 (1996)

13. Gruber, H., Holzer, M., Kutrib, M.: The size of Higman-Haines sets. Theor. Com-
put. Sci. 387(2), 167–176 (2007)

14. Habermehl, P., Meyer, R., Wimmel, H.: The downward-closure of petri net lan-
guages. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 466–477. Springer, Heidel-
berg (2010)

15. Haines, L.H.: On free monoids partially ordered by embedding. J. Combin. Theory
6(1), 94–98 (1969)

16. Hayashi, T.: On Derivation Trees of Indexed Grammars-An Extension of the
uvwxy-Theorem–. Publications of the Research Institute for Mathematical Sci-
ences 9(1), 61–92 (1973)

17. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

18. Jantzen, M.: On the hierarchy of Petri net languages. RAIRO Theor. Inf. Appl.
13(1), 19–30 (1979)

19. Jullien, P.: Contribution à létude des types d’ordres dispersés. Université de Mar-
seille, PhD thesis (1969)

20. Kartzow, A.: A pumping lemma for collapsible pushdown graphs of level 2. In:
Proc. of CSL 2011, pp. 322–336 (2011)

21. van Leeuwen, J.: Effective constructions in well-partially-ordered free monoids.
Discrete Math. 21(3), 237–252 (1978)

22. Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission
12(1), 38–42 (1976)

23. Mayr, R.: Undecidable problems in unreliable computations. Theor. Comput. Sci.
297(1-3), 337–354 (2003)

24. Parys, P.: A pumping lemma for pushdown graphs of any level. In: Proc. of STACS
2012, pp. 54–65 (2012)

25. Rounds, W.C.: Tree-oriented proofs of some theorems on context-free and indexed
languages. In: Proc. of STOC 1970, pp. 109–116 (1970)

26. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theor. Comput. Sci. 88(2), 191–229 (1991)

27. Smith, T.: On infinite words determined by indexed languages. In: Csuhaj-Varjú,
E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634,
pp. 511–522. Springer, Heidelberg (2014)

28. Zetzsche, G.: An approach to computing downward closures (2015). arXiv:1503.
01068 [cs.FL]

29. Zetzsche, G.: Computing downward closures for stacked counter au tomata. In:
Proc. of STACS 2015, pp. 743–756 (2015)

How Much Lookahead is Needed
to Win Infinite Games?

Felix Klein(B) and Martin Zimmermann

Reactive Systems Group, Saarland University, Saarbrücken, Germany
{klein,zimmermann}@react.uni-saarland.de

Abstract. Delay games are two-player games of infinite duration in
which one player may delay her moves to obtain a lookahead on her
opponent’s moves. For ω-regular winning conditions it is known that
such games can be solved in doubly-exponential time and that doubly-
exponential lookahead is sufficient.

We improve upon both results by giving an exponential time algo-
rithm and an exponential upper bound on the necessary lookahead. This
is complemented by showing ExpTime-hardness of the solution problem
and tight exponential lower bounds on the lookahead. Both lower bounds
already hold for safety conditions. Furthermore, solving delay games with
reachability conditions is shown to be PSpace-complete.

1 Introduction

Many of today’s problems in computer science are no longer concerned with
programs that transform data and then terminate, but with non-terminating
reactive systems which have to interact with a possibly antagonistic environment
for an unbounded amount of time. The framework of infinite two-player games is
a powerful and flexible tool to verify and synthesize such systems. The seminal
theorem of Büchi and Landweber [1] states that the winner of an infinite game
on a finite arena with an ω-regular winning condition can be determined and a
corresponding finite-state winning strategy can be constructed effectively.

Delay Games. In this work, we consider an extension of the classical framework:
in a delay game, one player can postpone her moves for some time to obtain a
lookahead on her opponent’s moves. This allows her to win some games which
she would loose without lookahead, e.g., if her first move depends on the third
move of her opponent. Nevertheless, there are winning conditions that cannot
be won with any finite lookahead, e.g., if her first move depends on every move
of her opponent. Delay arises naturally if transmission of data in networks or
components equipped with buffers are modeled.

From a more theoretical point of view, uniformization of relations by con-
tinuous functions [14,15] can be expressed and analyzed using delay games.

Partially supported by the DFG projects “TriCS” (ZI 1516/1-1) and “AVACS”
(SFB/TR 14). The first author was supported by an IMPRS-CS PhD Scholarship.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 452–463, 2015.
DOI: 10.1007/978-3-662-47666-6 36

How Much Lookahead is Needed to Win Infinite Games? 453

We consider games in which two players pick letters from alphabets ΣI and ΣO,
respectively, thereby producing two infinite sequences α and β. Thus, a strategy
for the second player induces a mapping τ : Σω

I → Σω
O. It is winning for her if

(α, τ(α)) is contained in the winning condition L ⊆ Σω
I ×Σω

O for every α. If this
is the case, we say that τ uniformizes L. In the classical setting, in which the
players pick letters in alternation, the n-th letter of τ(α) depends only on the
first n letters of α. A strategy with bounded lookahead, i.e., only finitely many
moves are postponed, induces a Lipschitz-continuous function τ (in the Cantor
topology on Σω) and a strategy with unbounded lookahead induces a continuous
function (equivalently, a uniformly continuous function, as Σω is compact).

Related Work. Hosch and Landweber proved that it is decidable whether a
delay game with an ω-regular winning condition can be won with bounded
lookahead [8]. Later, Holtmann, Kaiser, and Thomas revisited the problem and
showed that if the delaying player wins such a game with unbounded lookahead,
then she already wins it with doubly-exponential bounded lookahead, and gave
a streamlined decidability proof yielding an algorithm with doubly-exponential
running time [7]. Thus, the delaying player does not gain additional power from
having unbounded lookahead, bounded lookahead is sufficient.

Going beyond ω-regularity by considering context-free conditions leads to
undecidability and non-elementary lower bounds on the necessary lookahead,
even for very weak fragments [5]. Nevertheless, there is another extension of the
ω-regular conditions where one can prove the analogue of the Hosch-Landweber
Theorem: it is decidable whether the delaying player wins a delay game with
bounded lookahead, if the winning condition is definable in weak mondadic
second order logic with the unbounding quantifier (WMSO+U) [16]. Further-
more, doubly-exponential lookahead is sufficient for such conditions, provided
the delaying player wins with bounded lookahead at all. However, bounded
lookahead is not always sufficient to win such games, i.e., the analogue of the
Holtmann-Kaiser-Thomas Theorem does not hold for WMSO+U conditions.
Finally, all delay games with Borel winning conditions are determined [11].

Stated in terms of uniformization, Hosch and Landweber proved decidability
of the uniformization problem for ω-regular relations by Lipschitz-continuous
functions and Holtmann et al. proved the equivalence of the existence of a
continuous uniformization function and the existence of a Lipschitz-continuous
uniformization function for ω-regular relations. Furthermore, uniformization of
context-free relations is undecidable, even with respect to Lipschitz-continuous
functions, but uniformization of WMSO+U relations by Lipschitz-continuous
functions is decidable.

Furthermore, Carayol and Löding considered the case of finite words [3],
and Löding and Winter [12] considered the case of finite trees, which are both
decidable. However, the non-existence of MSO-definable choice functions on the
infinite binary tree [2,6] implies that uniformization fails for such trees.

Although several extensions of ω-regular winning conditions for delay games
have been considered, many problems remain open even for ω-regular condi-
tions: there are no non-trivial lower bounds on the necessary lookahead and on

454 F. Klein and M. Zimmermann

the complexity of solving such games. Furthermore, only deterministic parity
automata were used to specify winning conditions, and the necessary lookahead
and the solution complexity is measured in their size. Thus, it is possible that
considering weaker automata models like reachability or safety automata leads
to smaller lookahead requirements and faster algorithms.

Our Contribution. We answer all these questions and improve upon both results
of Holtmann et al. by determining the exact complexity of ω-regular delay games
and by giving tight bounds on the necessary lookahead.

First, we present an exponential time algorithm for solving delay games
with ω-regular winning conditions, an exponential improvement over the origi-
nal doubly-exponential time algorithm. Both algorithms share some similarities:
given a deterministic parity automaton A recognizing the winning condition of
the game, a parity game is constructed that is won by by the delaying player
if and only if she wins the delay game with winning condition L(A). Further-
more, both parity games are induced by equivalence relations that capture the
behavior of A. However, our parity game is of exponential size while the one of
Holtmann et al. is doubly-exponential. Also, they need an intermediate game,
the so-called block game, to prove the equivalence of the delay game and the
parity game, while our equivalence proof is direct. Thus, our algorithm and its
correctness proof are even simpler than the ones of Holtmann et al.

Second, we show that solving delay games is ExpTime-complete by proving
the first non-trivial lower bound on the complexity of ω-regular delay games. The
lower bound is proved by a reduction from the acceptance problem for alternat-
ing polynomial space Turing machines [4], which results in delay games with
safety conditions. Thus, solving delay games with safety conditions is already
ExpTime-hard. Our reduction is inspired by the ExpTime-hardness proof for
continuous simulation games [9], a simulation game on Büchi automata where
Duplicator is able to postpone her moves to obtain a lookahead on Spoiler’s
moves. However, this reduction is from a two-player tiling problem while we
directly reduce from alternating Turing machines.

Third, we determine the exact amount of lookahead necessary to win delay
games with ω-regular conditions. From our algorithm we derive an exponential
upper bound, which is again an exponential improvement. This upper bound is
complemented by the first non-trivial lower bound on the necessary lookahead:
there are reachability and safety conditions that are winning for the delaying
player, but only with exponential lookahead, i.e., our upper bound is tight.

Fourth, we present the first results for fragments of ω-regular conditions. As
already mentioned above, our lower bounds on complexity and necessary looka-
head already hold for safety conditions, i.e., safety is already as hard as parity.
Thus, the complexity of the problems manifests itself in the transition structure
of the automaton, not in the acceptance condition. For reachability conditions,
the situation is different: we show that solving delay games with reachability con-
ditions is equivalent to universality of non-deterministic reachability automata
and therefore PSpace-complete.

Omitted proofs can be found in the full version [10].

How Much Lookahead is Needed to Win Infinite Games? 455

2 Preliminaries

The non-negative integers are denoted by N. An alphabet Σ is a non-empty
finite set, Σ∗ the set of finite words over Σ, Σn the set of words of length n, and
Σω the set of infinite words. The empty word is denoted by ε and the length of
a finite word w by |w|. For w ∈ Σ∗ ∪ Σω we write w(n) for the n-th letter of w.

Automata. We use automata of the form A = (Q,Σ, qI ,Δ, ϕ) where Δ : Q×Σ →
2Q \ {∅} is a a non-deterministic transition function and where the acceptance
condition ϕ is either a set F ⊆ Q of accepting states or a coloring Ω : Q → N.
An automaton is deterministic, if |Δ(q, a)| = 1 for every q and a. In this case, we
denote Δ by a function δ : Q×Σ → Q. A state q of A is a sink, if Δ(q, a) = {q} for
every a ∈ Σ. Finite and infinite runs are defined as usual. Given an automaton A
over Σ with some set F of accepting states or with some coloring Ω, we consider
the following acceptance modes:

Finite: L∗(A) ⊆ Σ∗ denotes the set of finite words accepted by A, i.e., the set
of words that have a run ending in F .

Reachability: L∃(A) ⊆ Σω denotes the set of infinite words that have a run
visiting an accepting state at least once. We have L∃(A) = L∗(A) · Σω.

Safety: Dually, L∀(A) ⊆ Σω denotes the set of infinite words that have a run
only visiting accepting states.

Parity: Lp(A) ⊆ Σω denotes the set of infinite words that have a run such that
the maximal color visited infinitely often during this run is even.

Note that we require automata to be complete. For safety and parity accep-
tance this is no restriction, since we can always add a fresh rejecting sink and
lead all missing transitions to this sink. However, incomplete automata with
reachability acceptance are strictly stronger than complete ones, as incomplete-
ness can be used to check safety properties. We impose this restriction since we
are interested in pure reachability conditions.

Given a language L ⊆ (ΣI × ΣO)ω we denote by prI(L) its projection to the
first component. Similarly, given an automaton A over ΣI × ΣO, we denote by
prI(A) the automaton obtained by projecting each letter to its first component.

Remark 1. Let acc ∈ {∗,∃,∀, p}, then prI(Lacc(A)) = Lacc(prI(A)).

Games with Delay. A delay function is a mapping f : N → N\{0}, which is said to
be constant, if f(i) = 1 for every i > 0. Given an ω-language L ⊆ (ΣI × ΣO)ω

and a delay function f , the game Γf (L) is played by two players, the input
player “Player I” and the output player “Player O” in rounds i = 0, 1, 2, . . . as
follows: in round i, Player I picks a word ui ∈ Σ

f(i)
I , then Player O picks one

letter vi ∈ ΣO. We refer to the sequence (u0, v0), (u1, v1), (u2, v2), . . . as a play
of Γf (L), which yields two infinite words α = u0u1u2 · · · and β = v0v1v2 · · · .
Player O wins the play if the outcome

(
α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

)
· · · is in L, otherwise

Player I wins.

456 F. Klein and M. Zimmermann

Given a delay function f , a strategy for Player I is a mapping τI : Σ∗
O → Σ∗

I

where |τI(w)| = f(|w|), and a strategy for Player O is a mapping τO : Σ∗
I → ΣO.

Consider a play (u0, v0), (u1, v1), (u2, v2), . . . of Γf (L). Such a play is consistent
with τI , if ui = τI(v0 · · · vi−1) for every i ∈ N. It is consistent with τO, if
vi = τO(u0 · · · ui) for every i ∈ N. A strategy τ for Player p ∈ {I,O} is winning,
if every play that is consistent with τ is winning for Player p. We say that a
player wins Γf (L), if she has a winning strategy.

Example 1. Consider L over {a, b, c} × {b, c} with
(
α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

)
· · · ∈ L, if

α(n) = a for every n ∈ N or if β(0) = α(n), where n is the smallest position with
α(n)
= a. Intuitively, Player O wins, if the letter she picks in the first round is
equal to the first letter other than a that Player I picks. Also, Player O wins, if
there is no such letter. Note that L can be accepted by a safety automaton.

We claim that Player I wins Γf (L) for every delay function f : Player I
picks af(0) in the first round and assume Player O picks b afterwards (the case
where she picks c is dual). Then, Player I picks a word starting with c in the
second round. The resulting play is winning for Player I no matter how it is
continued. Thus, Player I has a winning strategy in Γf (L).

Note that if a language L is recognizable by a (deterministic) parity automa-
ton, then Γf (L) is determined, as a delay game with parity condition can be
expressed as an explicit parity game in a countable arena.

Also, note that universality of prI(L) is a necessary condition for Player O
to win Γf (L). Otherwise, Player I could pick a word from Σω

I \ prI(L), which is
winning for him, no matter how Player O responds.

Proposition 1. If Player O wins Γf (L), then prI(L) is universal.

3 Lower Bounds on the Lookahead

In this section, we prove lower bounds on the necessary lookahead for Player O
to win delay games with reachability or safety conditions. Thus, the same bounds
hold for more expressive conditions like Büchi, co-Büchi, and parity. They are
complemented by an exponential upper bound for parity conditions in the next
section. Note that both lower bounds already hold for deterministic automata.

Theorem 1. For every n > 1 there is a language Ln such that

– Ln = L∃(An) for some deterministic automaton An with |An| ∈ O(n),
– Player O wins Γf (Ln) for some constant delay function f , but
– Player I wins Γf (Ln) for every delay function f with f(0) ≤ 2n.

Proof. Let ΣI = ΣO = {1, . . . , n}. We say that w in Σ∗
I contains a bad j-pair,

for j ∈ ΣI , if there are two occurrences of j in w such that no j′ > j occurs in
between. The automaton Bj , depicted in Figure 1(a), accepts exactly the words
with a bad j-pair. Now, consider the language L over ΣI defined by

L =
⋂

1≤j≤n

{w ∈ Σ∗
I | w contains no bad j-pair}.

How Much Lookahead is Needed to Win Infinite Games? 457

ΣI \ {j}
j

<j

>j

j

ΣI

B1[a\(a∗
)
]

Bn[a\(a∗
)
]

...

(∗
1

)

(∗
n

)

(a) (b)

Fig. 1. (a) Automaton Bj for j ∈ ΣI . (b) Construction of An.

Straightforward inductions show that every w ∈ L satisfies |w| < 2n and that
there is a word wn ∈ L with |wn| = 2n − 1.

The winning condition Ln is defined as follows:
(
α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

)
· · · is in Ln

if α(1)α(2) · · · contains a bad β(0)-pair, i.e., with her first move, Player O has to
pick a j such that Player I has produced a bad j-pair. For technical reasons, the
first letter picked by Player I is ignored. The construction of an automaton An

recognizing Ln is sketched in Figure 1(b). Here, Bj [a\
(
a
∗
)
] denotes Bj , where for

each a ∈ ΣI every transition labeled by a is replaced by transitions labeled by(
a
b

)
for every b ∈ ΣO. Clearly, we have An ∈ O(n).
Player O wins Γf (Ln) for every delay function with f(0) > 2n. In the first

round, Player I has to pick a word u0 such that u0 without its first letter is not
in L. This allows Player O to find a bad j-pair for some j, i.e., she wins the play
no matter how it is continued.

However, for f with f(0) ≤ 2n, Player I has a winning strategy by picking
the prefix of 1wn of length f(0) in the first round. Player O has to answer with
some j ∈ ΣO. In this situation, Player I can continue by finishing wn and then
playing some j′
= j ad infinitum, which ensures that the resulting sequence does
not contain a bad j-pair. Thus, the play is winning for Player I. �

Using a similar construction, one can show exponential lower bounds for
safety conditions as well.

Theorem 2. For every n > 1 there is a language L′
n such that

– L′
n = L∀(A′

n) for some deterministic automaton A′
n with |A′

n| ∈ O(n),
– Player O wins Γf (L′

n) for some constant delay function f , but
– Player I wins Γf (L′

n) for every delay function f with f(0) ≤ 2n.

The aforementioned constructions also work for constant-size alphabets, if
we encode every j ∈ {1, . . . , n} in binary, resulting in automata An and A′

n

whose sizes are in O(n log n). It is open whether linear-sized automata and a
constant-sized alphabet can be achieved simultaneously.

4 Computational Complexity of Delay Games

In this section, we determine the computational complexity of solving delay
games. First, we consider the special case of reachability conditions and prove

458 F. Klein and M. Zimmermann

such games to be PSpace-complete. Then, we show that games with safety con-
ditions are ExpTime-hard. The latter bound is complemented by an ExpTime-
algorithm for solving delay games with parity conditions. From this algorithm,
we also deduce an exponential upper bound on the necessary lookahead for
Player O, which matches the lower bounds given in the previous section.

4.1 Reachability Conditions

Recall that universality of the projection to the first component of the winning
condition is a necessary condition for Player O for having a winning strategy in a
delay game. Our first result in this section states that universality is also sufficient
in the case of reachability conditions. Thus, solving delay games with reachability
conditions is equivalent, via linear time reductions, to the universality problem
for non-deterministic reachability automata, which is PSpace-complete. Also,
our proof yields an exponential upper bound on the necessary lookahead.

Theorem 3. Let L = L∃(A), where A is a non-deterministic reachability
automaton. The following are equivalent:

1. Player O wins Γf (L) for some delay function f .
2. Player O wins Γf (L) for some constant delay function f with f(0) ≤ 2|A|.
3. prI(L) is universal.

Proof. To show the equivalence, it only remains to prove 3. ⇒ 2.
We assume w.l.o.g. that the accepting states of A are sinks, which implies

that L∗(prI(A)) is suffix-closed, i.e., w ∈ L∗(prI(A)) implies ww′ ∈ L∗(prI(A))
for every w′ ∈ Σ∗

I . Furthermore, let Ac be an automaton recognizing the com-
plement of L∗(prI(A)), which is prefix-closed, as it is the complement of a suffix-
closed language. We can choose Ac such that |Ac| ≤ 2|A|.

We claim that L∗(Ac) is finite. Assume it is infinite. Then, by König’s Lemma
there is an infinite word α whose prefixes are all in L∗(Ac). Due to universality,
we have α ∈ L∃(prI(A)), i.e., there is a prefix of α in L∗(prI(A)). Thus, the
prefix is in L∗(prI(A)) and in the complement L∗(Ac) yielding the desired con-
tradiction. An automaton with n states with a finite language accepts words of
length at most n − 1. Thus, w ∈ L∗(prI(A)) for every w ∈ Σ∗

I with |w| ≥ 2|A|.
Using this, we show that Player O wins Γf (L) if f(0) = 2|A|. Player I has to

pick f(0) letters with his first move, say u0 = α(0) · · · α(f(0)−1). As f(0) is large
enough, we have u0 ∈ L∗(prI(A)). Hence, there is a word β(0) · · · β(f(0) − 1) ∈
Σ∗

O such that
(
α(0)
β(0)

)
· · ·

(
α(f(0)−1)
β(f(0)−1)

)
∈ L∗(A). By picking β(0), . . . , β(f(0) − 1) in

the first f(0) rounds, Player O wins the play, no matter how it is continued.
Hence, she has a winning strategy. �

As universality for non-deterministic reachability automata is PSpace-com-
plete (see, e.g., [10]), we obtain the following consequence of Theorem 3.

Corollary 1. The following problem is PSpace-complete: Given a non-deter-
ministic reachability automaton A, does Player O win Γf (L∃(A)) for some f?

The upper bounds on complexity and necessary lookahead hold for non-
deterministic automata while the lower bounds hold for deterministic ones [10].

How Much Lookahead is Needed to Win Infinite Games? 459

4.2 Safety Conditions

Unsurprisingly, Example 1 shows that Theorem 3 does not hold for safety con-
ditions: the projection prI(L) is universal, but Player O has no winning strategy
for any delay function. It turns out that safety conditions are even harder than
reachability conditions (unless PSpace equals ExpTime).

Theorem 4. The following problem is ExpTime-hard: Given a deterministic
safety automaton A, does Player O win Γf (L∀(A)) for some f?

The proof proceeds by a reduction from the non-acceptance problem for alter-
nating polynomial space Turing machines, which is sufficient due to APSpace =
ExpTime [4] being closed under complement. Fix such a machine M, an input x,
and a polynomial p that bounds the space consumption of M. We construct a
safety automaton A of polynomial size in |M| + p(|x|) such that M rejects
x if and only if Player O wins Γf (L∀(A)) for some f . To this end, we give
Player I control over the existential states while Player O controls the universal
ones. Additionally, Player I is in charge of producing all configurations with his
moves. He can copy configurations in order to wait for Player O’s decisions of
successors for universal transitions, which are delayed due to the lookahead.

More formally, the input alphabet ΣI consists of the alphabet and the set
of states of M and of two separators N and C while the output alphabet ΣO

consists of the transition relation of M and of two signals ✗ and ✓. Intuitively,
Player I produces configurations of M of length p(|x|) preceded by either C or N
to denote whether the configuration is a copy of the previous one or a new one.
Copying configurations is necessary to bridge the lookahead while waiting for
Player O to determine the transition that is applied to a universal configuration.
Player I could copy a configuration ad infinitum, but this will be losing for him,
unless it is an accepting one. Player O chooses universal transitions at every
separator1 N by picking a transition of M. At every other position, she has
to pick a signal: ✗ allows her to claim an error in the configurations picked by
Player O while ✓ means that she does not claim an error at the current position.

The automaton A checks that Player I produces only legal configurations,
that he starts with the initial one, that Player O always picks a transition at the
separators, and that the first error claimed by Player O is indeed an error. If it
is one, then A goes to an accepting sink, otherwise to a rejecting sink. Finally, if
Player I produces an accepting configuration without Player O correctly claiming
an error in a preceding configuration, then A goes to a rejecting sink.

These properties can be checked by a deterministic safety automaton of poly-
nomial size, as the configuations of M are of polynomial size. A detailed descrip-
tion of A and a proof that M rejects x if and only if Player O wins Γf (L∀(A))
for some f can be found in the full version [10].

It is noteworthy that the ExpTime lower bound does not require the full
exponential lookahead that might be necessary to win delay games with safety

1 If the following configuration is existential or the separator is a C, then her choice
is ignored.

460 F. Klein and M. Zimmermann

conditions: Player O wins the game constructed above with constant lookahead
that is smaller than |A|, if she wins at all.

4.3 Parity Conditions

Now, we complement the ExpTime lower bound shown in the previous sub-
section with an exponential time algorithm for solving delay games with parity
conditions. Thus, delay games with safety or parity conditions are ExpTime-
complete. Also, we derive an exponential upper bound on the necessary looka-
head from the algorithm. All results only hold for deterministic automata.

Theorem 5. The following problem is in ExpTime: Given a deterministic par-
ity automaton A, does Player O win Γf (Lp(A)) for some delay function f?

We begin by constructing an exponentially-sized, delay-free parity game with
the same number of colors as A, which is won by Player O if and only if she
wins Γf (Lp(A)) for some delay function f .

Let A = (Q,ΣI × ΣO, qI , δ, Ω) with Ω : Q → N. First, we adapt A to
keep track of the maximal color visited during a run. To this end, we define
the automaton C = (QC , ΣI × ΣO, qC

I , δC , ΩC) where QC = Q × Ω(Q), qC
I =

(qI , Ω(qI)),
δC((q, c), a) = (δ(q, a),max{c,Ω(δ(q, a))}),

and ΩC(q, c) = c. We denote the size of C by n. Note that C does not recognize
Lp(A). However, we are only interested in runs on finite play infixes.

Remark 2. Let w ∈ (ΣI × ΣO)∗ and let (q0, c0)(q1, c1) · · · (q|w|, c|w|) be the run
of C on w from some state (q0, c0) ∈ {(q,Ω(q)) | q ∈ Q}. Then, q0q1 · · · q|w| is
the run of A on w starting in q0 and c|w| = max{Ω(qj) | 0 ≤ j ≤ |w|}.

In the following, we work with partial functions from QC to 2QC , where we
denote the domain of such a function r by dom(r). Intuitively, we use r to
capture the information encoded in the lookahead provided by Player I. Assume
Player I has picked α(0) · · · α(j) and Player O has picked β(0) · · · β(i) for i < j
such that the lookahead is w = α(i + 1) · · · α(j). Then, we can determine the
state q that C reaches after processing

(
α(0)
β(0)

)
· · ·

(
α(i)
β(i)

)
, but the automaton cannot

process w, since Player O has not yet picked β(i + 1) · · · β(j). However, we can
determine the states Player O can enforce by picking an appropriate completion,
which will be the ones contained in r(q). Note that the function r depends on
the lookahead w picked by Player I.

To formalize the functions capturing the lookahead picked by Player I, we
define δP : 2QC × ΣI → 2QC via δP(S, a) =

⋃
q∈S

⋃
b∈ΣO

δC(q,
(
a
b

)
), i.e., δP is the

transition function of the powerset automaton of prI(C). As usual, we extend δP
to δ∗

P : 2QC × Σ∗
I → 2QC via δ∗

P(S, ε) = S and δ∗
P(S,wa) = δP(δ∗

P(S,w), a).
Let D ⊆ QC be non-empty and let w ∈ Σ∗

I . We define the function rD
w with

domain D as follows: for every (q, c) ∈ D, we have

rD
w (q, c) = δ∗

P({(q,Ω(q))}, w).

How Much Lookahead is Needed to Win Infinite Games? 461

Note that we apply δP to {(q,Ω(q))}, i.e., the second argument is the color of
q and not the color c from the argument to rD

w . If (q′, c′) ∈ rD
w (q, c), then there

is a word w′ whose projection is w and such that the run of A on w′ leads from
q to q′ and has maximal color c′. Thus, if Player I has picked the lookahead w,
then Player O could pick an answer such that the combined word leads A from
q to q′ with minimal color c′.

We call w a witness for a partial function r : QC → 2QC , if we have r = r
dom(r)
w .

Thus, we obtain a language Wr ⊆ Σ∗
I of witnesses for each such function r. We

define R = {r | dom(r)
= ∅ and Wr is infinite}.

Remark 3. Let R be defined as above.

1. Let r ∈ R. Then, r(q)
= ∅ for every q ∈ dom(r).
2. Let r be a partial function from QC to 2QC . Then, Wr is recognized by a

deterministic finite automaton with 2n2
states.

3. Let D ⊆ QC be non-empty and let w be such that |w| ≥ 2n2
. Then, there

exists some r ∈ R with dom(r) = D and w ∈ Wr.

Now, we can define an abstract game G(A) which is played between Player I
and Player O in rounds i = 0, 1, 2, . . . as follows: in each round, Player I
picks a function from R and Player O answers by a state of C subject to the
following constraints. In the first round, Player I has to pick r0 ∈ R such
that dom(r0) = {qC

I } (C1) and Player O has to answer by picking a state
q0 ∈ dom(r0), which implies q0 = qC

I . Now, consider round i > 0: Player I has
picked functions r0, r1, . . . , ri−1 and Player O has picked states q0, q1, . . . , qi−1.
Now, Player I has to pick a function ri ∈ R such that dom(ri) = ri−1(qi−1) (C2).
Then, Player O picks some state qi ∈ dom(ri).

Both players can always move: Player I can move, as ri−1(qi−1) is always
non-empty (Remark 3.1) and thus the domain of some r ∈ R (Remark 3.3), and
Player O can move, as the domain of every r ∈ R is non-empty by construction.
The resulting play of G(A) is the sequence r0q0r1q1r2q2 · · · . It is won by Player O
if the maximal color occurring infinitely often in ΩC(q0)ΩC(q1)ΩC(q2) · · · is even.
Otherwise, Player I wins.

A strategy for Player I is a function τ ′
I mapping the empty play prefix to a

function r0 satisfying (C1) and mapping a non-empty prefix r0q0 · · · ri−1qi−1

to a function ri satisfying (C2). A strategy for Player O maps a play pre-
fix r0q0 · · · ri to a state qi ∈ dom(ri). A play r0q0r1q1r2q2 · · · is consistent with
τ ′
I , if ri = τ ′

I(r0q0 · · · ri−1qi−1) for every i ∈ N and it is consistent with τ ′
O, if

qi = τ ′
O(r0q0 · · · ri) for every i ∈ N. A strategy τ ′ for Player p ∈ {I,O} is win-

ning, if every play that is consistent with τ ′ is winning for Player p. As usual,
we say that a player wins G(A), if she has a winning strategy.

Lemma 1. Player O wins Γf (Lp(A)) for some delay function f if and only if
Player O wins G(A).

Now, we can prove Theorem 5. Due to Lemma 1, we just have to show that
we can construct and solve an explicit version of G(A) in exponential time.

462 F. Klein and M. Zimmermann

Proof. First, we argue that R can be constructed in exponential time: to this
end, one constructs for every partial function r from QC to 2QC the automaton
of Remark 3.2 recognizing Wr and tests it for recognizing an infinite language.
There are exponentially many functions and each automaton is of exponential
size, which yields the desired result. To conclude, we encode G(A) as a graph-
based parity game of exponential size with the same number of colors as A. Such
a game can be solved in exponential time in the size of A [13]. �

The proof of Lemma 1 yields the exponential upper bound 2(|A|k)2+1 on the
necessary lookahead, where k is the number of colors of A. However, this can be
improved by using a direct pumping argument.

Theorem 6. Let L = Lp(A) where A is a deterministic parity automaton with
k colors. The following are equivalent:

1. Player O wins Γf (L) for some delay function f .
2. Player O wins Γf (L) for some constant delay function f with

f(0) ≤ 22|A|k+2 + 2.

5 Conclusion

We gave the first algorithm that solves ω-regular delay games in exponen-
tial time, which is an exponential improvement over the previously known
algorithms. We complemented this by showing the problem to be ExpTime-
complete, even for safety conditions. Also, we determined the exact amount of
lookahead that is necessary to win ω-regular delay games by proving tight expo-
nential bounds, which already hold for safety and reachability conditions. Finally,
we showed solving games with reachability conditions to be PSpace-complete.
To the best of our knowledge, all lower bounds are the first non-trivial ones for
delay games.

Our lower bounds already hold for deterministic automata while our upper
bounds (but the ones for reachability) only hold for deterministic automata. One
can obviously obtain upper bounds for non-deterministic automata via deter-
minization, but this incurs an exponential blowup, which might not be optimal.
We leave the study of this problem for future work. Another open question con-
cerns the influence of using different deterministic automata models that recog-
nize the class of ω-regular conditions, e.g., Rabin, Streett, and Muller automata,
on the necessary lookahead and the solution complexity, again measured in the
size of the automata. Indeed, our construction used to prove Theorem 5 can be
adapted to deal with these acceptance conditions, e.g., for conditions given by
Muller automata, C keeps track of the vertices visited on a run and G(A) is a
Muller game. This yields upper bounds, but it is open whether these are optimal.

Finally, we also considered winning conditions that are both reachability and
safety conditions. Here, polynomial lookahead suffices and the problem is in ΠP

2 ,
i.e., in the second level of the polynomial hierarchy. Again, both results only hold
for deterministic automata and are presented in the full version [10]. In future
work, we aim to find lower bounds.

How Much Lookahead is Needed to Win Infinite Games? 463

Acknowledgments. We thank Bernd Finkbeiner for a fruitful discussion that lead
to Theorem 1 and Theorem 3.

References

1. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Amer. Math. Soc. 138, 295–311 (1969)

2. Carayol, A., Löding, C.: MSO on the infinite binary tree: choice and order. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 161–176.
Springer, Heidelberg (2007)

3. Carayol, A., Löding, C.: Uniformization in automata theory. In: Schroeder-Heister,
P., Heinzmann, G., Hodges, W., Bour, P.E. (eds.) CLMPS. College Publications,
London (2012) (to appear)

4. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981)

5. Fridman, W., Löding, C., Zimmermann, M.: Degrees of lookahead in context-free
infinite games. In: Bezem, M. (ed.) CSL 2011. LIPIcs, vol. 12, pp. 264–276. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2011)

6. Gurevich, Y., Shelah, S.: Rabin’s uniformization problem. The Journal of Symbolic
Logic 48, 1105–1119 (1983)

7. Holtmann, M., Kaiser, L., Thomas, W.: Degrees of lookahead in regular infinite
games. LMCS 8(3) (2012)

8. Hosch, F.A., Landweber, L.H.: Finite delay solutions for sequential conditions. In:
ICALP 1972, pp. 45–60 (1972)

9. Hutagalung, M., Lange, M., Lozes, É.: Buffered simulation games for Büchi
automata. In: Ésik, Z., Fülöp, Z. (eds.) AFL 2014. EPTCS, vol. 151, pp. 286–
300 (2014)

10. Klein, F., Zimmermann, M.: How much lookahead is needed to win infinite games?
(2014). arXiv: 1412.3701

11. Klein, F., Zimmermann, M.: What are strategies in delay games? Borel determi-
nacy for games with lookahead (2015). arXiv: 1504.02627

12. Löding, C., Winter, S.: Synthesis of deterministic top-down tree transducers from
automatic tree relations. In: Peron, A., Piazza, C. (eds.) GandALF 2014. EPTCS,
vol. 161, pp. 88–101 (2014)

13. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

14. Thomas, W., Lescow, H.: Logical specifications of infinite computations. In: de
Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803,
pp. 583–621. Springer, Heidelberg (1994)

15. Trakhtenbrot, B., Barzdin, I.: Finite Automata; Behavior and Synthesis. Funda-
mental Studies in Computer Science, vol. 1. North-Holland Publishing Company,
New York. American Elsevier (1973)

16. Zimmermann, M.: Delay games with WMSO+U winning conditions. In: CSR 2015
(2015, to appear). arXiv: 1412.3978

http://arxiv.org/abs/1412.3701
http://arxiv.org/abs/1504.02627
http://arxiv.org/abs/1412.3978

Track C: Foundations of Networked
Computation: Models, Algorithms
and Information Management

Symmetric Graph Properties
Have Independent Edges

Dimitris Achlioptas1(B) and Paris Siminelakis2

1 Department of Computer Science, University of California, Santa Cruz, USA
optas@cs.ucsc.edu

2 Department of Electrical Engineering, Stanford University, Stanford, USA
psimin@stanford.edu

Abstract. In the study of random structures we often face a trade-off
between realism and tractability, the latter typically enabled by indepen-
dence assumptions. In this work we initiate an effort to bridge this gap
by developing tools that allow us to work with independence without
assuming it. Let Gn be the set of all graphs on n vertices and let S be
an arbitrary subset of Gn, e.g., the set of all graphs with m edges. The
study of random networks can be seen as the study of properties that are
true for most elements of S, i.e., that are true with high probability for
a uniformly random element of S. With this in mind, we pursue the fol-
lowing question: What are general sufficient conditions for the uniform
measure on a set of graphs S ⊆ Gn to be well-approximable by a product
measure on the set of all possible edges?

1 Introduction

Since their introduction in 1959 by Erdős and Rényi [6] and Gilbert [8], respec-
tively, G(n,m) and G(n, p) random graphs have dominated the mathematical
study of random networks [2,10]. Given n vertices, G(n,m) selects uniformly
among all graphs with m edges, whereas G(n, p) includes each edge indepen-
dently with probability p. A refinement of G(n,m) are graphs chosen uniformly
among all graphs with a given degree sequence, a distribution made tractable by
the configuration model of Bollobás [2]. Due to their mathematical tractability
these three models have become a cornerstone of Probabilistic Combinatorics
and have found application in the Analysis of Algorithms, Coding Theory, Eco-
nomics, Game Theory, and Statistical Physics.

At the foundation of this mathematical tractability lies symmetry: the proba-
bility of all edge sets of a given size is either the same, as in G(n, p) and G(n,m),

D. Achlioptas—Research supported by ERC Starting Grant StG-210743 and an
Alfred P. Sloan Fellowship. Research co-financed by the European Union (Euro-
pean Social Fund ESF) and Greek national funds through the Operational Program
“Education and Lifelong Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: ARISTEIA II.
P. Siminelakis—Supported in part by an Onassis Foundation Scholarship.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 467–478, 2015.
DOI: 10.1007/978-3-662-47666-6 37

468 D. Achlioptas and P. Siminelakis

or merely a function of the potency of the vertices involved, as in the configu-
ration model. This extreme symmetry bestows numerous otherworldly proper-
ties, including near-optimal expansion. Perhaps most importantly, it amounts
to a complete lack of geometry, as manifest by the fact that the shortest path
metric of such graphs suffers maximal distortion when embedded in Euclidean
space [14]. In contrast, vertices of real networks are typically embedded in some
low-dimensional geometry, either explicit (physical networks), or implicit (social
and other latent semantics networks), with distance being a strong factor in
determining the probability of edge formation.

While the shortcomings of the classical models have long been recognized,
proposing more realistic models is not an easy task. The difficulty lies in achiev-
ing a balance between realism and mathematical tractability: it is only too easy
to create network models that are both ad hoc and intractable. By now there are
thousands of papers proposing different ways to generate graphs with desirable
properties [9] the vast majority of which only provide heuristic arguments to
support their claims. For a gentle introduction the reader is referred to the book
of Newman [17] and for a more mathematical treatment to the books of Chung
and Lu [4] and of Durrett [5].

In trying to replicate real networks one approach is to keep adding features,
creating increasingly complicated models, in the hope of matching observed prop-
erties. Ultimately, though, the purpose of any good model is prediction. In that
sense, the reason to study (random) graphs with certain properties is to under-
stand what other graph properties are (typically) implied by the assumed prop-
erties. For instance, the reason we study the uniform measure on graphs with
m edges, i.e., G(n,m), is to understand “what properties are typically implied
by the property of having m edges” (and we cast the answer as “properties that
hold with high probability in a ‘random’ graph with m edges”). Notably, ana-
lyzing the uniform measure even for this simplest property is non-trivial. The
reason is that it entails the single massive choice of an m-subset of edges, rather
than m independent choices. In contrast, the independence of choices in G(n, p)
makes that distribution far more accessible, dramatically enabling analysis.

Connecting G(n,m) and G(n, p) is a classic result of random graph theory.
The key observation is that to sample according to G(n, p), since edges are
independent and equally likely, we can first sample an integer m ∼ Bin

((
n
2

)
, p

)
and then sample a uniformly random graph with m edges, i.e., G(n,m). Thus,
for p = p(m) = m/

(
n
2

)
, the random graph G ∼ G(n,m) and the two random

graphs G± ∼ G(n, (1 ± ε)p) can be coupled so that, viewing each graph as a set
of edges, with high probability,

G− ⊆ G ⊆ G+ . (1)

The significance of this relationship between what we wish to study (uniform
measure) and what we can study (product measure) can not be overestimated.
It manifests most dramatically in the study of monotone properties: to study
a monotone, say, increasing property in G ∼ G(n,m) it suffices to bound from
above its probability in G+ and from below in G−. This connection has been

Symmetric Graph Properties Have Independent Edges 469

thoroughly exploited to establish threshold functions for a host of monotone
graph properties such as Connectivity, Hamiltonicity, and Subgraph Existence,
making it the workhorse of random graph theory.

In this work we seek to extend the above relationship between the uniform
measure and product measures to properties more delicate than having a given
number of edges. In doing so we (i) provide a tool that can be used to revisit a
number of questions in random graph theory from a more realistic angle and (ii)
lay the foundation for designing random graph models eschewing independence
assumptions. For example, our tool makes short work of the following set of
questions (which germinated our work):

Given an arbitrary collection of n points on the plane what can be said about
the set of all graphs that can be built on them using a given amount of wire, i.e.,
when connecting two points consumes wire equal to their distance? What does
a uniformly random such graph look like? How does it change as a function of
the available wire?

1.1 Our Contribution

A product measure on the set of all undirected simple graphs on n vertices, Gn,
is specified by a symmetric matrix Q ∈ [0, 1]n×n where Qii = 0 for i ∈ [n]. By
analogy to G(n, p) we denote by G(n,Q) the measure in which every edge {i, j}
is included independently with probability Qij = Qji. Let S ⊆ Gn be arbitrary.
Our main result is a sufficient condition for the uniform measure on S, denoted
by U(S), to be approximable by a product measure in the following sense.

Sandwichability. The measure U(S) is (ε, δ)-sandwichable if there exists an
n × n symmetric matrix Q such that the distributions G ∼ U(S) and G± ∼
G(n, (1 ± ε)Q) can be coupled so that Pr[G− ⊆ G ⊆ G+] ≥ 1 − δ.

Informally, the two conditions required for our theorem to hold are as follows:

Partition Symmetry. The set S should be symmetric with respect to some parti-
tion P = (P1, . . . , Pk) of the

(
n
2

)
possible edges. More specifically, for a partition

P define the edge profile of a graph G with respect to P to be the k-dimensional
vector m(G) = (m1(G), . . . , mk(G)) where mi(G) counts the number of edges
in G from part Pi. Partition symmetry amounts to the requirement that the
characteristic function of S can depend on how many edges are included from
each part but not on which edges. That is, if we let m(S) := {m(G) : G ∈ S},
then ∀G ∈ Gn, IS(G) = Im(S)(m(G)). The G(n,m) model is recovered by con-
sidering the trivial partition with k = 1 parts and m(S) = {m}. Far more
interestingly, in our motivating example edges are partitioned into equivalence
classes according to their cost c (distance of endpoints) and the characteristic
function allows graphs whose edge profile m(G) does not violate the total wire
budget CB = {v ∈ INk : cᵀv ≤ B}. We discuss the motivation for edge-partition
symmetry at length in Section 2.

Convexity. Since membership in S depends solely on a graph’s edge-profile, it
follows that a uniformly random element of S can be selected as follows: (i) select

470 D. Achlioptas and P. Siminelakis

an edge profile v = (v1, . . . , vk) ∈ R
k from the distribution on m(S) induced

by U(S), and then (ii) for each i ∈ [k] independently select a uniformly random
vi-subset of Pi. In other words, the complexity of the uniform measure on S
manifests entirely in the induced distribution on m(S) ∈ N

k whose structure we
need to capture.

Without any assumptions the set m(S) can be arbitrary, e.g., S can be the
set of graphs having either n1/2 or n3/2 edges, rendering any approximation by
a product measure hopeless. To impose some regularity we require the discrete
set m(S) to be convex in the sense, that it equals the set of integral points in its
convex hull. While convexity is not strictly necessary for our proof method to
work (see Section 5), we feel that it provides a clean conceptual framework while
still allowing very general properties to be expressed. These include all properties
expressible as Linear Programs in the number of edges from each part, but also
properties involving non-linear constraints, e.g., the absence of percolation. (Our
original example, of course, amounts to a single linear inequality constraint.)
Most importantly, since convex sets are closed under intersection, convex prop-
erties can be composed arbitrarily while remaining amenable to approximability
by a product measure.

We state our results formally in Section 4. The general idea is this.

Theorem 1 (Informal). If S is a convex symmetric set, then U(S) is sand-
wichable by a product measure G(n,Q∗).

The theorem is derived by following the Principle of Maximum Entropy,
i.e., by proving that the induced measure on the set of edge-profiles m(S) con-
centrates around a unique vector m∗, obtained by solving an entropy (concave
function) maximization problem on the convex hull of m(S). The maximizer
m∗ can in many cases be computed explicitly, either analytically or numerically,
and the product measure Q∗ follows readily from it. Indeed, the maximizer m∗

essentially characterizes the set S, as all quantitative requirements of our the-
orem are expressed only in terms of the number of vertices, n, the number of
parts, k, and m∗.

The proof relies on a new concentration inequality we develop for symmetric
subsets of the binary cube which, as we shall see, is sharp. Besides enabling the
study of monotone properties, our results allow one to obtain tight estimates of
local graph features, such as the expectation and variance of subgraph counts.

2 Motivation

As stated, our goal is to enable the study of the uniform measure over sets of
graphs. The first step in this direction is to identify a “language” for specifying
sets of graphs that is expressive enough to be interesting but restricted enough
to be tractable.

Arguably the most natural way to introduce structure on a set is to impose
symmetry. Formally this is expressed as the invariance of the set’s characteristic
function under the action of a group of transformations. In this work, we explore

Symmetric Graph Properties Have Independent Edges 471

the progress that can be made if we define an arbitrary partition of the edges and
take the set of transformations to be the the Cartesian product of all possible
permutations of the edges (indices) within each part (symmetric group). While
our work is only a first step towards a theory of extracting independence from
symmetry, we argue that symmetry with respect to an edge partition is well-
motivated for two reasons.
Existing Models. The first is that such symmetry, typically in a very rigid
form, is already implicit in several random graph models besides G(n,m). Among
them are Stochastic Block Models (SBM), which assume the much stronger prop-
erty of symmetry with respect to a vertex partition, and Stochastic Kronecker
Graphs [13]. The fact that our notion of symmetry encompasses SBMs is par-
ticularly pertinent in light of the theory of Graph Limits [15], since inherent in
the construction of the limiting object is an intermediate approximation of the
sequence of graphs by a sequence of SBMs, via the (weak) Szemerédi Regurality
Lemma [3,7]. Thus, any property that is encoded in the limiting object, typically
subgraph densities, is expressible within our framework.
Enabling the Expression of Geometry. A strong driving force behind the
development of recent random graph models has been the incorporation of geom-
etry, an extremely natural backdrop for network formation. Typically this is done
by embedding the vertices in some (low-dimensional) metric space and assigning
probabilities to edges as a function of distance. Perhaps the most significant fea-
ture of our work is that it fully supports the expression of geometry but in a far
more light-handed manner, i.e., without imposing any specific geometric require-
ment. This is achieved by (i) using edge-partitions to abstract away geometry as
a symmetry rendering edges of the same length equivalent, while (ii) recogniz-
ing that there exist macroscopic constraints on the set of feasible graphs, e.g.,
the total edge length. Most obviously, in a physical network where edges (wire,
roads) correspond to a resource (copper, concrete) there is a bound on how much
can be invested to create the network while, more generally, cost (length) may
represent a number of different notions that distinguish between edges.

3 Applications

A common assumption throughout the paper is the existence of a partition of the
edges, expressing prior information about the setting at hand. Two prototypical
examples are: vertex-induced partitions, as in the SBM, and geometry induced
partitions, as in the d-dimensional lattice (torus). The applicability of our frame-
work depends crucially on whether the partition is fine enough to express the
desired property S. The typical pipeline is: (i) translate prior information in
a partition of the edges, (ii) express the set of interest S as a specification on
the edge-profile m, (iii) solve the entropy-optimization problem and obtain the
matrix Q∗, and finally, (iv) perform all analyses and computations using the
product measure G(n,Q∗), typically exploiting results from random graph the-
ory and concentration of measure. Below are some examples.

472 D. Achlioptas and P. Siminelakis

Budgeted Graphs. Imagine that each possible edge e has multiple attributes
that can be categorical (type of relation) or operational (throughput, latecency,
cost, distance), compactly encoded as vector Xe ∈ IRd. We can form a partition P
by grouping together edges that have identical attributes. Let XXX = [XXX1 . . .XXXk] ∈
IRd×k be the matrix where we have stacked the attribute vectors from each
group and b be a vector of budgets. In this setting we might be interested in
the affine set of graphs S(XXX,bbb) = {G ∈ Gn|XXX · m(G) ≤ bbb}, which can express
a wide range of constraints. For such a set, besides generality of expression, the
entropy optimization problem has a closed-form analytic solution in terms of the
dual variables λλλ ∈ IRd

+. The probability of an edge (u, v) in part � is given by:
Q∗

uv(S) = [1 + exp(XXXᵀ
�λλλ)]−1.

Navigability. In [11,12], Kleinberg gave sufficient conditions for greedy rout-
ing to discover paths of poly-logarithmic length between any two vertices in a
graph. One of the most general settings where such navigability is possible is
set-systems, a mathematical abstraction of the relevant geometric properties of
grids, regular-trees and graphs of bounded doubling dimension. The essence of
navigability lies in the requirement that for any vertex in the graph, the prob-
ability of having an edge to a vertex at distance in the range [2i−1, 2i), i.e., at
distance scale i, is approximately uniform for all i ∈ [log n]. In our setting, we
can partition the

(
n
2

)
edges according to distance scale so that part Pi includes all

possible edges between vertices at distance scale i. In [1] we prove that by consid-
ering a single linear constraint where the cost of edges in scale i is proportional to
i, we recover Kleinberg’s results on navigability in set-systems, without any inde-
pendence assumptions regarding network formation, or coordination between the
vertices (such as using the same probability distribution). Besides establishing
the robustness of navigability, eschewing a specific mechanism for (navigable)
network formation allows us to recast navigability as a property of networks
brought about by economical (budget) and technological (cost) advancements.
Percolation Avoidance. To show that interesting non-linear constraints can
also be accommodated we focus on the case of the Stochastic Block Model.
Consider a social network consisting of q groups of sizes (ρ1, . . . , ρq) · n, where
ρi > 0 for i ∈ [q]. As the partition of edges is naturally induced by the partition
of vertices, for simplicity we adopt a double indexing scheme and instead of the
edge-profile vector m ∈ IR(q+1

2) we are going to use a symmetric edge-progile
matrix M ∈ IRq×q. Consider the property Sε that a specific group s acts as the
“connector”, i.e., that the graph induced by the remaining groups should have
no component of size greater than εn for some arbitrarily small ε > 0. While
the set Sε is not symmetric with respect to this partition our result can still be
useful, as follows.

Using a well known connection between multitype branching processes [16]
and the existence of a giant component (percolation) in mean-field models,
such as G(n, p) and SBM, we can cast the existence of the giant component
in terms of a condition on the number of edges between each block. Con-
cretely, given the edge-profile matrix M, for a given cluster s ∈ [q] define the
(q − 1) × (q − 1) matrix: T (M)ij := mij

n2ρi
,∀i, j ∈ [q] \ {s} that encapsulates

Symmetric Graph Properties Have Independent Edges 473

the dynamics of a multi-type branching process. Let ‖·‖2 denote the opera-
tor norm (maximum singular value). A classic result of branching processes
asserts that if ‖T (M)‖2 < 1 no giant component exists. Thus, in our framework,
the property Sε = { no giant component without vertices from s}, can be accu-
rately approximated under the specific partition P by the set of graphs S for
which M(S) = {M : ||T (M)||2 < 1}, where additionally the set M(S) is convex
as ||T (M)||2 is a convex function of T (M) which is convex (linear) in M.

4 Definitions and Results

We start with some notation. We will use lower case boldface letters to denote
vectors and uppercase boldface letters to denote matrices. Further, we fix an
arbitrary enumeration of the N =

(
n
2

)
edges and sometimes represent the set of

all graphs on n vertices as HN = {0, 1}N . We will refer to an element of x ∈ HN

interchangeably as a graph and a string. Given a partition P = (P1, . . . , Pk) of
[N], we define ΠN (P) to be the set of all permutations acting only within blocks
of the partition.

Edge Block Symmetry. Fix a partition P of [N]. A set S ⊆ HN is called
P-symmetric if it is invariant under the action of ΠN (P). Equivalently, if IS(x)
is the indicator function of set S, then IS(x) = IS(π(x)) for all x ∈ HN and
π ∈ ΠN (P).

The number of parts k = |P| gives a rough indication of the amount of
symmetry present. For example, when k = 1 we have maximum symmetry as all
edges are equivalent. In a stochastic block model (SBM) with � vertex classes
we have k =

(
�
2

)
. For a d-dimensional lattice, partitioning the

(
n
2

)
edges by

distance results in roughly k = n1/d parts. Finally, if k = N there is no symmetry
whatsoever. Our results accommodate partitions with as many as O(n1−ε) parts.
This is way more than enough for most situations. For example, as we just saw,
in d-dimensional lattices there are O(n1/d) distances. Generically, if we have n
points such that the nearest pair habe distance 1 and the farthest have distance
D, fixing any δ > 0 and binning together all edges of length [(1+ δ)i, (1+ δ)i+1)
for i ≥ 0, yields only O(δ−1 log D) classes.

Recall that given a partition P = (P1, . . . , Pk) of HN and a graph x ∈ HN ,
the edge profile of x is m(x) := (m1(x), . . . ,mk(x)), where mi(x) is the number
of edges of x from Pi, and that the image of a P-symmetric set S under m is
denoted as m(S) ⊆ IRk. The edge-profile is crucial to the study of P-symmetric
sets due to the following intuitively obvious fact.

Proposition 1. Any function f : HN → IR invariant under ΠN (P) depends
only on the edge-profile m(x).

Definition 1. Let pi = |Pi| denote the number of edges in part i of partition P.

Edge Profile Entropy. Given an edge profile v ∈ m(S) define the entropy of

v as Ent(v) =
k∑

i=1

log
(

pi

vi

)
.

474 D. Achlioptas and P. Siminelakis

Using the edge-profile entropy we can express the induced distribution on
m(S) as P(v) = 1

|S|e
Ent(v). The crux of our argument is now this: the only gen-

uine obstacle to S being approximable by a product measure is degeneracy, i.e.,
the existence of multiple, well-separated edge-profiles that maximize Ent(v).
The reason we refer to this as degeneracy is that it typically encodes a hidden
symmetry of S with respect to P. For example, imagine that P = (P1, P2),
where |P1| = |P2| = p, and that S contains all graphs with p/2 edges from P1

and p/3 edges from P2, or vice versa. Then, the presence of a single edge e ∈ Pi

in a uniformly random G ∈ S boosts the probability of all other edges in Pi,
rendering a product measure approximation impossible.

Note that since m(S) is a discrete set, it is non-trivial to quantify what
it means for the maximizer of Ent to be “sufficiently unique”. For example,
what happens if there is a unique maximizer of Ent(v) strictly speaking, but
sufficiently many near-maximizers to potentially receive, in aggregate, a majority
of the measure? To strike a balance between conceptual clarity and generality
we focus on the following.

Convexity. Let Conv(A) denote the convex hull of a set A. Say that a P-
symmetric set S ⊆ GN is convex iff the convex hull of m(S) contains no new
integer points, i.e., if Conv(m(S)) ∩ N

k = m(S).

Let HP(v) be the approximation to Ent(v) that results by replacing each
binomial term with its binary entropy approximation via the first term in Stir-
ling’s approximation.

Entropic Optimizer. Let m∗ = m∗(S) ∈ IRk be the solution to
max

v∈Conv(m(S))
HP(v).

Defining the optimization over the convex hull of m(S) will allow us to study
the set S by studying only the properties of the maximizer m∗. Clearly, if a
P-symmetric set S has entropic optimizer m∗ = (m∗

1, . . . ,m
∗
k), the natural can-

didate product measure for each i ∈ [k] assigns probability m∗
i /pi to all edges

in part Pi. The challenge is to relate this product measure to the uniform mea-
sure on S by proving concentration of the induced measure on m(S) around a
point near m∗. For that we need (i) the vector m∗ to be “close” to a vector in
m(S), and (ii) to control the decrease in entropy “away” from m∗. To quantify
this second notion we need the following parameters, expressing the geometry of
convex sets.

Definition 2. For a P-symmetric convex set S define

Thickness: μ = μ(S) = min
i∈[k]

min{m∗
i , pi − m∗

i } (2)

Condition number: λ = λ(S) =
5k log n

μ(S)
(3)

Resolution: r = r(S) =
λ +

√
λ2 + 4λ

2
> λ (4)

Symmetric Graph Properties Have Independent Edges 475

The most important of the above three parameters is thickness. Its role is
to quantify how close the optimizer m∗(S) comes, in any coordinate, to the
natural boundary {0, p1} × . . . × {0, pk}, where the entropy of a class becomes
zero. As a result, thickness determines the coordinate-wise concentration around
the optimum.

The condition number λ(S), on the other hand, quantifies the robustness of
S. To provide intuition, in order for the product measure approximation to be
accurate for every class of edges (part of P), fluctuations in the number of edges
of order

√
m∗

i need to be “absorbed” in the mean m∗
i . For this to happen with

polynomially high probability for a single part, standard results imply we must
have m∗

i = Ω(log(n)). We absorb the dependencies between parts by taking a
union bound, thus multiplying by the number of parts, yielding the numerator
in (3). Our results give strong probability bounds when λ(S) � 1, i.e., when in
a typical graph in S the number of edges from each part Pi is Ω(k log n) edges
away from triviality, i.e., both from 0 and from |Pi| = pi, a condition we expect
to hold in all natural applications. We can now state our main result.

Theorem 2 (Main result). Let P be any edge-partition and let S be any P-
symmetric convex set. For every ε >

√
12λ(S), the uniform measure on S is

(ε, δ)-sandwichable, where δ = 2 exp
[
−μ(S)

(
ε2

12 − λ(S)
)]

.

Remark 1. As a sanity check we see that as soon as m log n, Theorem 2
recovers the sandwichability of G(n,m) by G(n, p(m)) as sharply as the Chernoff
bound, up to the constant factor 1

12 in the exponent.

Theorem 2 follows by analyzing the natural coupling between the uniform
measure on S and the product measure corresponding to the entropic opti-
mizer m∗. Our main technical contribution is Theorem 3 below, a concentration
inequality for m(S) when S is a convex symmetric set. The resolution, r(S),
defined in (4) above, reflects the narrowest concentration interval that can be
proved by our theorem. When λ(S) � 1, as required for the theorem to be
meaningfully applied, it scales optimally as

√
λ(S).

Theorem 3. Let P be any edge-partition, let S be any P-symmetric convex set,
and let m∗ be the entropic optimizer of S. For all ε > r(S), if G ∼ U(S), then

PS (|m(G) − m∗| ≤ εm̃∗) ≥ 1 − exp
(

−μ(S)
(

ε2

1 + ε
− λ(S)

))
, (5)

where x ≤ y means that xi ≤ yi for all i ∈ [k], and m̃i = min{m∗
i , pi − m∗

i }.
The intuition driving concentration is that as thickness increases two phe-

nomena occur: (i) vectors close to m∗ capture a larger fraction of the measure,
and (ii) the decay in entropy away from m∗ becomes steeper. These joint forces
compete against the probability mass captured by vectors “away” from the opti-
mum. The point were they prevail corresponds to λ(S) � 1 or, equivalently,
μ(S) 5k log(n). Assuming λ(S) � 1 the probability bounds we give scale as
n−Ω(kε2). Without assumptions on S, and up to the constant 5 in (3), this is
sharp, per Proposition 2 below.

476 D. Achlioptas and P. Siminelakis

5 Technical Overview

In this section, we present an overview of the technical work involved in proving
Theorems 2 and 3. Most of the work lies in the concentration result, Theorem 3.
Concentration. The general idea is to identify a high-probability subset L ⊆
m(S) by integrating the probability measure around the entropy-maximizing
profile m∗. Since ultimately our goal is to couple the uniform measure with a
product measure, we need to establish concentration for the number of edges
from each and every part, i.e., in every coordinate. There are two main issues:
(i) we do not know |S|, and (ii) we must quantify the decrease in entropy as a
function of the L∞ distance from the maximizer m∗. Our strategy to address
these issues is:

Size of S. We bound log |S| from below by the contribution to log |S| of the
entropic optimal edge-profile m∗, thus upper-bounding the probability of every
v ∈ m(S) as

logPS(v) = Ent(v) − log(|S|) ≤ Ent(v) − Ent(m∗) . (6)

This is the crucial step that opens up the opportunity of relating the probability
of a vector v to the distance ‖v − m∗‖2 through analytic properties of entropy.
Key to this is the definition of m∗ as the maximizer over Conv(m(S)) instead
of over m(S).

Proposition 2. If S = Gn and P is any k-partition such that |Pi| =
(
n
2

)
/k for

all i, then log(|S|) − Ent(m∗) = Ω(k log(n)).

Proposition 2 demonstrates that unless one utilizes specific geometric proper-
ties of the set S enabling integration around m∗, instead of using a point-bound
for log |S|, a loss of Ω(k log(n)) is unavoidable. In other words, either one makes
more assumptions on S besides symmetry and “convexity”, or the claimed error
term is optimal.
Distance bounds: To bound from below the rate at which entropy decays as
a function of the component-wise distance from the maximizer m∗, we first
approximate Ent(v) by HP(v) (the binary entropy introduced earlier) to get
a smooth function. Then, exploiting the separability, concavity and differen-
tiability of binary entropy, we obtain component-wise distance bounds using a
second-order Taylor approximation. At this step we also lose a cumulative factor
of order 3k log n stemming from Stirling approximations and the subtle point
that the maximizer m∗ might not be an integer point. The constant 3 can be
improved, but in light of Proposition 2 this would be pointless and complicate
the proof unnecessarily.
Union bound: Finally, we integrate the obtained bounds outside the set of interest
by showing that even if all “bad” vectors where placed right at the boundary
of the set, where the lower bound on the decay of entropy is smallest, the total
probability mass would be exponentially small. The loss incurred at this step is
of order 2k log n, since there are at most n2k bad vectors.

Symmetric Graph Properties Have Independent Edges 477

Relaxing Conclusions. Our theorem seeks to provide concentration simultane-
ously for all parts. That motivates the definition of thickness parameter μ(S)
as the minimum distance from the trivial boundary that any part has at the
optimum m∗. Quantifying everything in terms of μ(S) is a very conservative
requirement. For instance, if we define the set S to have no edges in a particular
part of the partition, then μ(S) is 0 and our conclusions become vacuous. Our
proofs in reality generalize, to the case where we confine our attention only to
a subset I ⊆ [k] of blocks in the partition. In particular, if one defines I∗ as
the set of parts whose individual thickness parameter m̃i = min{mi, pi − mi}
is greater than 5k log n, both theorems hold for the subset of edges ∪i∈I∗Pi. In
essence that means that for every part that is “well-conditioned”, we can provide
concentration of the number of edges and approximate monotone properties of
only those parts by coupling them with product measures.
Relaxing Convexity. Besides partition symmetry, that comprises our main
premise and starting point, the second main assumption made about the struc-
ture of S is convexity. In the proof convexity is used only to argue that: (i) the
maximizer m∗ will be close to some vector in m(S), and (ii) that the first order
term in the Taylor approximation of the entropy around m∗ is always nega-
tive. Since the optimization problem is defined on the convex hull of m(S), the
convexity of Conv(m(S)) implies (ii), independently of whether m(S) is convex
or not. We thus see that we can replace convexity of P-symmetric sets with
approximate unimodality.

Definition 3. A P-symmetric set S is called Δ-unimodal if the solution m∗ to
the entropy optimization problem defined in Section 2, satisfies:

d1(m∗, S) := min
v∈m(S)

‖m∗ − v‖1 ≤ Δ (7)

Convexity essentially implies that the set S is k-unimodal as we need to
round each of the k coordinates of the solution to the optimization problem to
the nearest integer. Under this assumption, all our results apply by only changing
the condition number of the set to λ(S) = (2Δ+3k) log n

μ(S) . In this extended abstract,
we opted to present our results by using the familiar notion of convexity to convey
intuition on our results and postpone the presentation in full generality for the
full version of the paper.
Coupling. To prove Theorem 2 using our concentration result, we argue as
follows. Conditional on the edge-profile, we can couple the generation of edges
in different parts independently, in each part the coupling being identical to
that between G(n,m) and G(n, p). Then, using a union bound we can bound
the probability that all couplings succeed, given an appropriate v. Finally, using
the concentration theorem we show that sampling an appropriate edge-profile v
happens with high probability.

478 D. Achlioptas and P. Siminelakis

References

1. Achlioptas, D., Siminelakis, P.: Navigability is a robust property. CoRR,
abs/1501.04931 (2015)

2. Bollobás, B.: Random graphs, vol. 73. Cambridge Studies in Advanced Mathemat-
ics, 2nd edn. Cambridge University Press, Cambridge (2001)

3. Borgs, C., Chayes, J.T., Cohn, H., Zhao, Y.: An $L̂ p$ theory of sparse graph
convergence I: limits, sparse random graph models, and power law distributions.
ArXiv e-prints, January 2014

4. Chung, F.R.K., Lu, L.: Complex graphs and networks, vol. 107. American mathe-
matical society Providence (2006)

5. Durrett, R.: Random graph dynamics, vol. 20. Cambridge University Press (2007)
6. Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae Debrecen 6,

290–297 (1959)
7. Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Com-

binatorica 19(2), 175–220 (1999)
8. Gilbert, E.N.: Random graphs. The Annals of Mathematical Statistics, 1141–1144

(1959)
9. Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical

network models. Found. Trends Mach. Learn. 2(2), 129–233 (2010)
10. Janson, S., �Luczak, T., Rucinski, A.: Random graphs. Wiley-Interscience Series in

Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)
11. Kleinberg, J.M.: Navigation in a small world. Nature 406(6798), 845 (2000)
12. Kleinberg, J.M.: Small-world phenomena and the dynamics of information. In:

Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) NIPS, pp. 431–438. MIT Press
(2001)

13. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker graphs: An approach to modeling networks. The Journal of Machine Learn-
ing Research 11, 985–1042 (2010)

14. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its
algorithmic applications. Combinatorica 15(2), 215–245 (1995)

15. Lovász, L.: Large networks and graph limits, vol. 60. American Mathematical Soc.
(2012)

16. Mode, C.J.: Multitype branching processes: theory and applications. Modern ana-
lytic and computational methods in science and mathematics. American Elsevier
Pub. Co. (1971)

17. Newman, M.: Networks: an introduction. Oxford University Press (2010)

Polylogarithmic-Time Leader Election
in Population Protocols

Dan Alistarh1(B) and Rati Gelashvili2

1 Microsoft Research, Cambridge, UK
dan.alistarh@microsoft.com
2 MIT, Cambridge, MA, USA

gelash@mit.edu

Abstract. Population protocols are networks of finite-state agents,
interacting randomly, and updating their states using simple rules.
Despite their extreme simplicity, these systems have been shown to coop-
eratively perform complex computational tasks, such as simulating regis-
ter machines to compute standard arithmetic functions. The election of a
unique leader agent is a key requirement in such computational construc-
tions. Yet, the fastest currently known population protocol for electing a
leader only has linear convergence time, and it has recently been shown
that no population protocol using a constant number of states per node
may overcome this linear bound.

In this paper, we give the first population protocol for leader election
with polylogarithmic convergence time, using polylogarithmic memory
states per node. The protocol structure is quite simple: each node has
an associated value, and is either a leader (still in contention) or a min-
ion (following some leader). A leader keeps incrementing its value and
“defeats” other leaders in one-to-one interactions, and will drop from
contention and become a minion if it meets a leader with higher value.
Importantly, a leader also drops out if it meets a minion with higher
absolute value. While these rules are quite simple, the proof that this
algorithm achieves polylogarithmic convergence time is non-trivial. In
particular, the argument combines careful use of concentration inequal-
ities with anti-concentration bounds, showing that the leaders’ values
become spread apart as the execution progresses, which in turn implies
that straggling leaders get quickly eliminated. We complement our analy-
sis with empirical results, showing that our protocol converges extremely
fast, even for large network sizes.

1 Introduction

Recently, there has been significant interest in modeling and analyzing interac-
tions arising in biological or bio-chemical systems through an algorithmic lens.
In particular, the population protocol model [AAD+06], which is the focus of
this paper, consists of a set of n finite-state nodes interacting in pairs, where
each interaction may update the states of both participants. The goal is to
have all nodes converge on an output value, which represents the result of the
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 479–491, 2015.
DOI: 10.1007/978-3-662-47666-6 38

480 D. Alistarh and R. Gelashvili

computation, usually a predicate on the initial state of the nodes. The set of
interactions occurring at each step is assumed to be decided by an adversar-
ial scheduler, which is usually subject to some fairness conditions. The stan-
dard scheduler when computing convergence bounds is the probabilistic (uniform
random) scheduler, e.g., [AAE08b,PVV09,DV12], which picks the next pair to
interact uniformly at random in each step. We adopt this probabilistic scheduler
model in this paper. (Some references refer to this model as the probabilistic
population model.) The fundamental measure of convergence is parallel time,
defined as the number of scheduler steps until convergence, divided by n.1

The class of predicates computable by population protocols is now well-
understood [AAD+06,AAE06,AAER07] to consist precisely of semilinear predi-
cates, i.e. predicates definable in first-order Presburger arithmetic. The first such
construction was given in [AAD+06], and later improved in terms of convergence
time in [AAE06]. A parallel line of research studied the computability of deter-
ministic functions in chemical reaction networks, which are also instances of
population protocols [CDS14]. All three constructions fundamentally rely on the
election of a single initial leader node, which co-ordinates phases of computation.

Reference [AAD+06] gives a simple protocol for electing a leader from a uni-
form population, based on the natural idea of having leaders eliminate each other
directly through symmetry breaking. Unfortunately, this strategy takes at least
linear parallel time in the number of nodes n: for instance, once this algorithm
reaches two surviving leaders, it will require Ω(n2) additional interactions for
these two leaders to meet. Reference [AAE08a] proposes a significantly more
complex protocol, conjectured to be sub-linear, and whose convergence is only
studied experimentally. This reference posits the existence of a sublinear-time
population protocol for leader election as a “pressing” open problem. In fact,
the existence of a poly-logarithmic leader election protocol would imply that
any semilinear predicate is computable in poly-logarithmic time by a uniform
population [AAE06].

Recently, Doty and Soloveichik [DS15] showed that Ω(n2) expected inter-
actions are necessary for electing a leader in the classic probabilistic protocol
model in which each node only has constant number of memory states (with
respect to n). This negative result implies that computing semilinear predicates
in leader-based frameworks is subject to the same lower bound. In turn, this
motivates the question of whether faster computation is possible if the amount
of memory per node is allowed to be a function of n.

Contribution. In this paper, we solve this problem by proposing a new popula-
tion protocol for leader election, which converges in O(log3 n) expected parallel
time, using O(log3 n) memory states per node. Our protocol, called LM for
Leader-Minion, roughly works as follows. Throughout the execution, each node
is either a leader, meaning that it can still win, or a minion, following some
leader. Each node state is associated to some absolute value, which is a positive

1 An alternative definition is when reactions occur in parallel according to a Poisson
process [PVV09,DV12].

Polylogarithmic-Time Leader Election in Population Protocols 481

integer, and with a sign, positive if the node is still in contention, and negative
if the node has become a minion.

If two leaders meet, the one with the larger absolute value survives, and
increments its value, while the other drops out, becoming a minion, and adopting
the other node’s value, but with a negative sign. (If both leaders have the same
value, they both increment it and continue.) If a leader meets a minion with
smaller absolute value than its own, it increments its value, while the minion
simply adopts the leader’s value, but keeps the negative sign. Conversely, if a
leader meets a minion with larger absolute value than its own, then the leader
drops out of contention, adopting the minion’s value, with negative sign. Finally,
if two minions meet, they update their values to the maximum absolute value
between them, but with a negative sign.

These rules ensure that, eventually, a single leader survives. While the
protocol is relatively simple, the proof of poly-logarithmic time convergence is
non-trivial. In particular, the efficiency of the algorithm hinges on the minion
mechanism, which ensures that a leader with high absolute value can eliminate
other contenders in the system, without having to directly interact with them.

Roughly, the argument is based on two technical insights. First, consider two
leaders at a given time T , whose (positive) values are at least Θ(log n) apart.
Then, we show that, within O(log n) parallel time from T , the node holding
the smaller value has become a minion, with constant probability. Intuitively,
this holds since 1) this node will probably meet either the other leader or one
of its minions within this time interval, and 2) it cannot increase its count fast
enough to avoid defeat. For the second part of the argument, we show via anti-
concentration that, after parallel time Θ(log2 n) in the execution, the values
corresponding to an arbitrary pair of nodes will be separated by at least Ω(log n).

We ensure that the values of nodes cannot grow beyond a certain threshold,
and set the threshold in such a way that the total number of states is Θ(log3 n).
We show that with high probability the leader will be elected before the values of
the nodes reach the threshold. In the other case, remaining leaders with thresh-
old values engage in a backup dynamics where minions are irrelevant and leaders
defeat each other when they meet based on random binary indicators which are
set using the randomness of the scheduler. This process is slower but determinis-
tically correct, and only happens with very low probability, allowing to conclude
that the algorithm converges to a single leader within O(log3 n) parallel time,
both with high probability and in expectation, using O(log3 n) states.

In population protocols, in every interaction, one node is said to be the initia-
tor, the other is the responder, and the state update rules can use this distinction.
In our protocol, this would allow a leader (the initiator in the interaction) to
defeat another leader with the same value (the responder), and could also sim-
plify the backup dynamics of our algorithm. However, our algorithm has the
nice property that the state update rules can be made completely symmetric
with regards to the initiator and responder roles. (For this reason, LM works for
n > 2 nodes, because to elect a leader among two nodes it is necessary to rely
on the initiator-responder role distinction.)

482 D. Alistarh and R. Gelashvili

Summing up, we give the first poly-logarithmic time protocol for electing a
leader from a uniform population. We note that Ω(n log n) interactions seem
intuitively necessary for leader election, as this number is required to allow each
node to interact at least once. However, this idea fails to cover all possible reac-
tion strategies if nodes are allowed to have arbitrarily many states.

We complement our analysis with empirical data, suggesting that the conver-
gence time of our protocol is close to logarithmic, and that in fact the asymptotic
constants are small, both in the convergence bound, and in the upper bound on
the number of states the protocol employs.

Related Work. We restrict our attention to work in the population model.
The framework of population protocols was formally introduced in refer-
ence [AAD+06], to model interactions arising in biological, chemical, or sensor
networks. It sparked research into its computational power [AAD+06,AAE06,
AAER07], and into the time complexity of fundamental tasks such as major-
ity [AAE08b,PVV09,DV12], and leader election [AAD+06,AAE08a].2 Refer-
ences interested in computability consider an adversarial scheduler which is
restricted to be fair, e.g., where each agent interacts with every other agent
infinitely many times. For complexity bounds, the standard scheduler is uni-
form, scheduling each pair uniformly at random at each step, e.g., [AAE08b,
PVV09,DV12]. This model is also known as the probabilistic population model.

To the best of our knowledge, no population protocol for electing a leader with
sub-linear convergence time was known before our work. References [AAD+06,
AAE06,CDS14] present leader-based frameworks for population computations,
assuming the existence of such a node. The existence of such a sub-linear protocol
is stated as an open problem in [AAD+06,AAE08a]. Reference [DH13] proposes
a leader-less framework for population computation.

Recent work by Doty and Soloveichik [DS15] showed an Ω(n2) lower bound
on the number of interactions necessary for electing a leader in the classic proba-
bilistic protocol model in which each node only has constant number of memory
states with respect to the number of nodes n [AAER07]. The proof of this result
is quite complex, and makes use of the limitation that the number of states
remains constant even as the number of nodes n is taken to tend to infinity.

Thus, our algorithm provides a complexity separation between population
protocols which may only use constant memory per node, and protocols where
the number of states is allowed to be a function of n. We note that, historically,
the classic population protocol model [AAD+06] only allowed a constant number
of states per node, while later references relaxed this assumption.

A parallel line of research studied self-stabilizing population protocols, e.g.,
[AAFJ06,FJ06,SNY+10], that is, protocols which can converge to a correct solu-
tion from an arbitrary initial state. It is known that stable leader election is
impossible from an arbitrary initial state [AAFJ06]. References [FJ06,SNY+10]
circumvent this impossibility by relaxing the problem semantics. Our algorithm
is not affected by this impossiblity result since it is not self-stabilizing.

2 Leader election and majority are complementary tasks, and no complexity-preserving
transformations exist, to our knowledge.

Polylogarithmic-Time Leader Election in Population Protocols 483

2 Preliminaries

Population Protocols. We assume a population consisting of n agents, or
nodes, each executing as a deterministic state machine with states from a finite
set Q, with a finite set of input symbols X ⊆ Q, a finite set of output symbols
Y , a transition function δ : Q × Q → Q × Q, and an output function γ : Q → Y .
Initially, each agent starts with an input from the set X, and proceeds to update
its state following interactions with other agents, according to the transition
function δ. For simplicity of exposition, we assume that agents have identifiers
from the set V = {1, 2, . . . , n}, although these identifiers are not known to agents,
and not used by the protocol.

The agents’ interactions proceed according to a directed interaction graph
G without self-loops, whose edges indicate possible agent interactions. Usually,
the graph G is considered to be the complete directed graph on n vertices, a
convention we also adopt in this paper.

The execution proceeds in steps, or rounds, where in each step a new edge
(u,w) is chosen uniformly at random from the set of edges of G. Each of the two
chosen agents updates its state according to function δ.

Parallel Time. The above setup considers sequential interactions; however, in
general, interactions between pairs of distinct agents are independent, and are
usually considered as occurring in parallel. In particular, it is customary to define
one unit of parallel time as n consecutive steps of the protocol.

The Leader Election Problem. In the leader election problem, all agents
start in the same initial state A, i.e. the only state in the input set X = {A}.
The output set is Y = {Win,Lose}.

A population protocol solves leader election within � steps with probability
1 − φ, if it holds with probability 1 − φ that for any configuration c : V → Q
reachable by the protocol after ≥ � steps, there exists a unique agent i such that,
(1) for the agent i, γ(c(i)) = Win, and, (2) for any agent j �= i, γ(c(j)) = Lose.

3 The Leader Election Algorithm

In this section, we describe the LM leader election algorithm. The algorithm has
an integer parameter m > 0, which we set to Θ(log3 n). Each state corresponds
to an integer value from the set {−m,−m+1, . . . ,−2,−1, 1, 2,m−1,m,m+1}.
Respectively, there are 2m+1 different states. We will refer to states and values
interchangeably. All nodes start in the same state corresponding to value 1.

The algorithm, specified in Figure 1, consists of a set of simple deterministic
update rules for the node state. In the pseudocode, the node states before an
interaction are denoted by x and y, while their new states are given by x′ and y′.
All nodes start with value 1 and continue to interact according to these simple
rules. We prove that all nodes except one will converge to negative values, and

484 D. Alistarh and R. Gelashvili

Parameters:
m, an integer > 0, set to Θ(log3 n)
State Space:
LeaderStates = {1, 2, . . . , m − 1, m, m + 1},
MinionStates = {−1, −2, . . . , −m + 1, −m},
Input: States of two nodes, x and y
Output: Updated states x′ and y′

Auxiliary Procedures:

is-contender(x) =

{
true if x ∈ LeaderStates;
false otherwise.

contend-priority(x, y) =

{
m if max(|x|, |y|) = m + 1;
max(|x|, |y|) + 1 otherwise.

minion-priority(x, y) =

{−m if max(|x|, |y|) = m + 1;
−max(|x|, |y|) otherwise.

1 procedure update〈x, y〉
2 if is-contender(x) and |x| ≥ |y| then
3 x′ ← contend-priority(x, y)
4 else x′ ← minion-priority(x, y)
5 if is-contender(y) and |y| ≥ |x| then
6 y′ ← contend-priority(x, y)
7 else y′ ← minion-priority(x, y)

Fig. 1. The state update rules for the LM algorithm

that convergence is fast with high probability. This solves the leader election
problem since we can define γ as mapping only positive states to Win (a leader).3

Since positive states translate to being a leader according to γ, we call a node
a contender if it has a positive value, and a minion otherwise. We present the
algorithm in detail below.

The state updates (i.e. the transition function δ) of the LM algorithm are
completely symmetric, that is, the new state x′ depends on x and y (lines 2-4)
exactly as y′ depends on y and x (lines 5-7).

If a node is a contender and has absolute value not less than the absolute
value of the interaction partner, then the node remains a contender and updates
its value using the contend-priority function (lines 3 and 6). The new value will
be one larger than the previous value except when the previous value was m+1,
in which case the new value will be m.

If a node had a smaller absolute value than its interaction partner, or was a
minion already, then the node will be a minion after the interaction. It will set
its value using the minion-priority function, to either −max(|x|, |y|), or −m if
the maximum was m + 1 (lines 4 and 7).

Values m+1 and m are treated the same way if the node is a minion (essen-
tially corresponding to −m). These values serve as a binary tie-breaker among
the contenders that reach the value m, as will become clear from the analysis.

3 Alternatively, γ that maps states with values m and m+1 to WIN would also work,
but we will work with positive “leader” states for the simplicity of presentation.

Polylogarithmic-Time Leader Election in Population Protocols 485

4 Analysis

In this section, we provide a complete analysis of our leader election algorithm.

Notation. Throughout this proof, we denote the set of n nodes executing the
protocol by V . We measure execution time in discrete steps (rounds), where
each step corresponds to an interaction. The configuration at a given time t is
a function c : V → Q, where c(v) is the state of the node v at time t. (We omit
time t when clear from the context.) We call a node contender when the value
associated with its state is positive, and a minion when the value is negative. As
previously discussed, we assume n > 2. Also, for presentation purposes, consider
n to be a power of two. We first prove that the algorithm never eliminates all
contenders and that having a single contender means that a leader is elected.

Lemma 1. There is always at least one contender in the system. After an exe-
cution reaches a configuration with only a single node v being a contender, then
from this point, v will have c(v) > 0 (mapped to WIN by γ) in every reachable
future configuration c, and there may never be another contender.

Proof. By the structure of the algorithm, a node starts as a contender and
may become a minion during an execution, but a minion may never become
a contender. Moreover, an absolute value associated with the state of a minion
node can only increase to an absolute value of an interaction partner. Finally,
an absolute value may never decrease except from m + 1 to m.

Let us assume for contradiction that an execution reaches a configuration
where all nodes are minions. Consider such a time point T0 and let the maximum
absolute value of the nodes at T0 be u. Because the minions cannot increase the
maximum absolute value in the system, there must have been a contender node v
and a time T1 < T such that v had value u at time T1. In order for this contender
to have become a minion by time T0, it must have interacted with another node
with an absolute value strictly larger than u, after time T1. However, the absolute
value of a node never decreases except from m+1 to m, and despite the existence
of an absolute value larger than u before time T0, u is the largest absolute value
at time T0. The only way this can occur is if u = m and the node v interacted
with a node v′ with value m + 1. But after such an interaction the node v′

remains a contender with value m. In order for v′ to become a minion by time
T0, it must have interacted with yet another node v′′ of value m + 1 at some
time T2 between T1 and T0. But then this node v′′ is left as a contender with
value m, and the same reasoning applies to it. By infinite descent, we obtain a
contradiction with the initial assumption that all nodes are minions.

Consequently, whenever there is a single contender in the system, it must
have the largest absolute value. Otherwise, it could interact with a node with
a larger absolute value and become a minion itself, contradicting the invariant
that not all nodes can be minions at the same time.

Now we turn our attention to the convergence speed of the LM algorithm.
Our goal is bound the number of rounds necessary to eliminate all except a
single contender. In order for a contender to get eliminated, it must come across

486 D. Alistarh and R. Gelashvili

a larger value of another contender, the value possibly conducted through a chain
of multiple minions via multiple interactions.

We first show by a rumor spreading argument that if the difference between
the values of two contenders is large enough, then the contender with the smaller
value will become a minion within the next O(n log n) rounds, with constant
probability. Then using anti-concentration bounds we establish that for any two
contenders, if no absolute value in the system reaches m, after O(n log2 n) rounds
the difference between their values is large enough with constant probability.

Lemma 2. Consider two contender nodes with values u1 and u2, where u1 −
u2 ≥ 4ξ log n at time T for ξ ≥ 8. Then, after ξn log n rounds from T , the node
that initially held the value u2 will be a minion with probability at least 1/24,
independent of the history of previous interactions.

Proof. Call a node that has an absolute value of at least u1 an up-to-date
node, and out-of-date otherwise. At time T , at least one node is up-to-date.
Before an arbitrary round where we have x up-to-date nodes, the probabil-
ity that an out-of-date node interacts with an up-to-date node, increasing the
number of up-to-date nodes to x + 1, is 2x(n−x)

n(n−1) . By a Coupon Collector argu-
ment, the expected number of rounds until every node is up-to-date is then∑n−1

x=1
n(n−1)
2x(n−x) ≤ (n−1)

2

∑n−1
x=1

(
1
x + 1

n−x

)
≤ 2n log n.

By Markov’s inequality, the probability that not all nodes are up-to-date
after ξn log n communication rounds is at most 2/ξ. Let Y denote the number
of up-to-date nodes at some given time after T . It follows that, after ξn log n

rounds, E[Y] ≥ n(ξ−2)
ξ . Let q be the probability of having at least n

3 + 1 nodes
after ξn log n communication rounds. Then we have qn+(1−q)(n

3 +1) ≥ E[Y] ≥
n(ξ−2)

ξ , which implies that q ≥ 1
4 for n > 2 and ξ ≥ 8.

Hence, with probability at least 1/4, at least n/3 + 1 are nodes are up to
date after ξn log n rounds. By symmetry, the n/3 up-to-date nodes except the
original node are uniformly random among the other n−1 nodes. Therefore, any
given node, in particular the node that had value u2 at time T , has probability
at least 1/4 · 1/3 = 1/12 to be up-to-date after ξn log n rounds from T .

Let v2 be the node that had value u2 at time T . We now wish to bound the
probability that v2 is still a contender once it becomes up-to-date. The only way
in which this can happen is if it increments its value at least 4ξ log n times (so
that its value can reach u1) during the first ξn log n rounds after T . We will show
that the probability of this event is at most 1/24.

In each round, the probability to select node v2 is 2/n (selecting n− 1 out of
n(n − 1)/2 possible pairs). Let us describe the number of times it is selected in
ξn log n rounds by considering a random variable Z ∼ Bin(ξn log n, 2/n). By a
Chernoff Bound, the probability of being selected at least 4ξ log n times in these
rounds is at most Pr [Z ≥ 4ξ log n] ≤ exp (−2ξ log n/3) ≤ 1/n2ξ/3 ≤ 1/24.

The next Lemma shows that, after Θ(n log2 n) rounds, the difference between
the values of any two given contenders is high, with reasonable probability.

Polylogarithmic-Time Leader Election in Population Protocols 487

Lemma 3. Fix an arbitrary time T , and a constant ξ ≥ 1. Consider any two
contender nodes at time T , and time T1 which is 32ξ2n log2 n rounds after T .

If no absolute value of any node reaches m at any time until T1, then, with
probability at least 1

24 − 1
n8ξ , at time T1, either at least one of the two nodes has

become a minion, or the absolute value of the difference of the two nodes’ values
is at least 4ξ log n.

Proof. We will assume that no absolute value reaches m at any point until time
T1 and that the two nodes are still contenders at T1. We should now prove that
the difference of values is large enough.

Consider 32ξ2n log2 n rounds following time T . If a round involves an inter-
action with exactly one of the two fixed nodes we call it a spreading round. A
round is spreading with probability 4(n−2)

n(n−1) , which for n > 2 is at least 2/n. So,
we can describe the number of spreading rounds among the 32ξ2n log2 n rounds
by a random variable X ∼ Bin(32ξ2n log2 n, 2/n). Then, by Chernoff Bound, the
probability of having at most 32ξ2 log2 n spreading rounds is at most

Pr
[
X ≤ 32ξ2 log2 n

]
≤ exp

(
−64ξ2 log2 n

22 · 2

)
≤ 2−8ξ2 log2 n <

1
n8ξ

,

Let us from now on focus on the high probability event that there are at least
32ξ2 log2 n spreading rounds between times T and T1, and prove that the desired
difference will be large enough with probability 1

24 . This implies the claim by
Union Bound with the above event (note that for n > 2, 1

n8ξ < 1
24 holds).

We assumed that both nodes remain contenders during the whole time, hence
in each spreading round, a value of exactly one of them, with probability 1/2
each, increases by one. Without loss of generality assume that at time T , the
value of the first node was larger than or equal to the value of the second node.
Let us now focus on the sum S of k independent uniformly distributed ±1
Bernoulli trials xi where 1 ≤ i ≤ k, where each trial corresponds to a spreading
round and outcome +1 means that the value of the first node increased, while
−1 means that the value of the second node increased. In this terminology, we
are done if we show that Pr[S ≥ 4ξ log n] ≥ 1

24 for k ≥ 32ξ2 log2 n trials.
However, we have that:

Pr[S ≥ 4ξ log n] ≥ Pr[|S| ≥ 4ξ log n]/2 = Pr[|S2| ≥ 16ξ2 log2 n]/2 (1)

≥ Pr[|S2| ≥ k/2]/2 = Pr[|S2| ≥ E[S2]/2]/2 (2)

≥ 1
22 · 2

E[S2]2

E[S4]
≥ 1/24 (3)

where (1) follows from the symmetry of the sum with regards to the sign. For (2)
we have used that k ≥ 32ξ2 log2 n and E[S2] = k. Finally, to get (3) we use
the Paley-Zygmund inequality and the fact that E[S4] = 3k(k − 1) + k ≤ 3k2.
Evaluating E[S2] and E[S4] is simple by using the definition of S and the linearity
of expectation. The expectation of each term then is either 0 or 1 and it suffices
to count the number of terms with expectation 1, which are exactly the terms
where each multiplier is raised to an even power.

488 D. Alistarh and R. Gelashvili

Now we are ready to prove the bound on convergence speed.

Theorem 1. There exists a constant α, such that for any constant β ≥ 3 follow-
ing holds: If we set m = αβ log3 n = Θ(log3 n), the algorithm elects a leader (i.e.
reaches a configuration with a single contender) in at most O(n log3 n) rounds
(i.e. parallel time O(log3 n)) with probability at least 1 − 1/nβ.

Proof. Let us fix constants 0 < p < 1 and ξ ≥ 8 large enough such that

1/24 ·
(
1/24 − 1/n8ξ

)
≥ p. (4)

Let β be any constant ≥ 3 and take α = 16(33ξ2)/p. We set m = αβ log3 n
and consider the first αβn log3 n/4 rounds of the algorithm’s execution. For a
fixed node, the probability that it interacts in each round is 2/n. Let us describe
the number of times a given node interacts within the first αβn log3 n/4 rounds
by a random variable B ∼ Bin(αβn log3 n/4, 2/n). By the Chernoff Bound, the
probability of being selected more than m times during these rounds is at most:

Pr [B ≥ m] ≤ exp
(
−αβ log3 n/6

)
≤ 2− αβ

6 log3 n ≤ 1/nαβ/6.

Taking the Union Bound over all n nodes, with probability at least 1−(n/nαβ/6),
all nodes interact strictly less than m times during the first αβn log3 n/4 rounds.

Next, let us focus on the high probability event above, meaning that all abso-
lute values are strictly less than m during the first αβn log3 n

4 = 4β
p (33ξ2)n log3 n

rounds. For a fixed pair of nodes, this allows us to apply Lemma 3 followed
by Lemma 2 (with parameter ξ) 4β(33ξ2)n log3 n

p(32ξ2n log2 n+ξn log n)
≥ 4β log n

p times. Each time,

by Lemma 3, after 32ξ2n log2 n rounds with probability at least 1/24 − 1/n8ξ

the nodes get values at least 4ξ log n apart. Then, after the next ξn log n rounds,
by Lemma 2, one of the nodes becomes a minion with probability at least 1/24.
Since Lemma 2 is independent from the interactions that precede it, by (4),
each of the 4β log n

p times if both nodes are contenders, we get probability at
least p that one of the nodes becomes a minion. Consider a random variable
W ∼ Bin (4β log n/p, p). By Chernoff bound the probability that both nodes in
a given pair are still contenders after αβn log3 n

4 rounds is at most:

Pr [W ≤ 0] = Pr [W ≤ 4β log n (1 − 1)] ≤ exp
(

−4β log n

2

)
≤ 2−2β log n <

1
n2β

,

By a Union Bound over all < n2 pairs, for every pair of nodes, one of them is a
minion after αβn log3 n

4 communication rounds with probability at least 1 − n2

n2β .
Hence, with this probability, there will be only one contender.

Finally, combining with the conditioned event that none of the nodes interact
m or more times gives that after the first αβn log3 n

4 = O(n log3 n) rounds there
must be a single contender with probability at least 1 − n2

n2β − n
nαβ/6 ≥ 1 − 1

nβ

for β ≥ 3. A single contender means that leader is elected by Lemma 1.

Finally, we can prove the expected convergence bound.

Polylogarithmic-Time Leader Election in Population Protocols 489

Fig. 2. The performance of the LM protocol. Both axes are logarithmic. The dots
represent the results of individual experiments (100 for each network size), while the
solid line represents the mean value for each network size.

Theorem 2. There is a setting of parameter m of the algorithm such that m =
Θ(log3 n), and the algorithm elects the leader in expected O(n log3 n) rounds of
communication (i.e. parallel time O(log3 n)).

Proof. Let us prove that from any configuration, the algorithm elects a leader
in expected O(n log3 n) rounds. By Lemma 1, there is always a contender in the
system and if there is only a single contender, then a leader is already elected.
Now in a configuration with at least two contenders consider any two of them.
If their values differ, then with probability at least 1/n2 these two contenders
will interact in the next round and the one with the lower value will become a
minion (after which it may never be a contender again). If the values are the
same, then with probability at least 1/n, one of these nodes will interact with
one of the other nodes in the next round, leading to a configuration where the
values of our two nodes differ4, from where in the next round, independently,
with probability at least 1/n2 these nodes meet and one of them again becomes
a minion. Hence, unless a leader is already elected, in any case, in every two
rounds, with probability at least 1/n3 the number of contenders decreases by 1.

Thus the expected number of rounds until the number of contenders decreases
by 1 is at most 2n3. In any configuration there can be at most n contenders,
thus the expected number of rounds until reaching a configuration with only a
single contender is at most 2(n − 1)n3 ≤ 2n4 from any configuration.

Now using Theorem 1 with β = 4 we get that with probability at least
1−1/n4 the algorithm converges after O(n log3 n) rounds. Otherwise, with prob-
ability at most 1/n4 it ends up in some configuration from where it takes at most
2n4 expected rounds to elect a leader. The total expected number of rounds is
therefore also O(n log3 n) + O(1) = O(n log3 n), i.e. parallel time O(log3 n).

4 This is always true, even when the new value is not larger, for instance when the
values were equal to m + 1, the new value of one of the nodes will be m �= m + 1.

490 D. Alistarh and R. Gelashvili

5 Experiments and Discussion

Empirical Data. We have also measured the convergence time of our protocol
for different network sizes. (Figure 2 presents the results in the form of a log-log
plot.) The protocol converges to a single leader quite fast, e.g., in less than 100
units of parallel time for a network of size 105. This suggests that the constants
hidden in the asymptotic analysis are small. The shape of the curve confirms the
poly-logarithmic behavior of the protocol.

Discussion. We have given the first population protocol to solve leader elec-
tion in poly-logarithmic time, using a poly-logarithmic number of states per
node. Together with [AAE06], the existence of our protocol implies that pop-
ulation protocols can compute any semi-linear predicate on their input in
time O(n log5 n), with high probability, as long as memory per node is poly-
logarithmic.

Our result opens several avenues for future research. The first concerns lower
bounds. We conjecture that the lower bound for leader election in population
protocols is Ω(log n), irrespective of the number of states. Further, empirical data
suggests that the analysis of our algorithm can be tightened, cutting logarithmic
factors. It would also be interesting to prove a tight a trade-off between the
amount of memory available per node and the running time of the protocol.

Acknowledgments. Support is gratefully acknowledged from the National Science
Foundation under grants CCF-1217921, CCF-1301926, and IIS-1447786, the Depart-
ment of Energy under grant ER26116/DE-SC0008923, and the Oracle and Intel cor-
porations.”

References

[AAD+06] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computa-
tion in networks of passively mobile finite-state sensors. Distributed com-
puting 18(4), 235–253 (2006)

[AAE06] Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are
semilinear. In: Proceedings of PODC 2006, pp. 292–299 (2006)

[AAE08a] Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population
protocols with a leader. Distributed Computing 21(3), 183–199 (2008)

[AAE08b] Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast
robust approximate majority. Distributed Computing 21(2), 87–102 (2008)

[AAER07] Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational
power of population protocols. Distributed Computing 20(4), 279–304
(2007)

[AAFJ06] Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population
protocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS
2005. LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006)

[CDS14] Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation
with chemical reaction networks. Natural computing 13(4), 517–534 (2014)

Polylogarithmic-Time Leader Election in Population Protocols 491

[DH13] Doty, D., Hajiaghayi, M.: Leaderless deterministic chemical reaction net-
works. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141,
pp. 46–60. Springer, Heidelberg (2013)

[DS15] Doty, D., Soloveichik, D.: Stable leader election in population protocols
requires linear time (2015). ArXiv preprint. http://arxiv.org/abs/1502.
04246

[DV12] Draief, M., Vojnovic, M.: Convergence speed of binary interval consensus.
SIAM Journal on Control and Optimization 50(3), 1087–1109 (2012)

[FJ06] Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-
state anonymous agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006.
LNCS, vol. 4305, pp. 395–409. Springer, Heidelberg (2006)

[PVV09] Perron, E., Vasudevan, D., Vojnovic, M.: Using three states for binary con-
sensus on complete graphs. In: IEEE INFOCOM 2009, pp. 2527–2535. IEEE
(2009)

[SNY+10] Sudo, Y., Nakamura, J., Yamauchi, Y., Ooshita, F., Kakugawa, H.,
Masuzawa, T.: Loosely-stabilizing leader election in population protocol
model. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869,
pp. 295–308. Springer, Heidelberg (2010)

http://arxiv.org/abs/1502.04246
http://arxiv.org/abs/1502.04246

Core Size and Densification
in Preferential Attachment Networks

Chen Avin1, Zvi Lotker1, Yinon Nahum2(B), and David Peleg2

1 Ben-Gurion University of the Negev, Beer Sheva, Israel
{avin,zvilo}@cse.bgu.ac.il

2 The Weizmann Institute, Rehovot, Israel
{yinon.nahum,david.peleg}@weizmann.ac.il

Abstract. Consider a preferential attachment model for network evo-
lution that allows both node and edge arrival events: at time t, with
probability pt a new node arrives and a new edge is added between the
new node and an existing node, and with probability 1 − pt a new edge
is added between two existing nodes. In both cases existing nodes are
chosen at random according to preferential attachment, i.e., with prob-
ability proportional to their degree. For δ ∈ (0, 1), the δ-founders of the
network at time t is the minimal set of the first nodes to enter the net-
work (i.e., founders) guaranteeing that the sum of degrees of nodes in
the set is at least a δ fraction of the number of edges in the graph at time
t. We show that for the common model where pt is constant, i.e., when
pt = p for every t and the network is sparse with linear number of edges,
the size of the δ-founders set is concentrated around δ2/pnt, and thus is
linear in nt, the number of nodes at time t. In contrast, we show that
for pt = min{1, 2a

ln t
} and when the network is dense with super-linear

number of edges, the size of the δ-founders set is sub-linear in nt and
concentrated around Θ̃((nt)

η), where η = δ1/a.

1 Introduction

Preferential Attachment is one of the prevalent mechanisms for network evo-
lution, in the context of both social networks and other complex systems, and
considerable efforts have been invested in studying its structure, properties and
behavior. In particular, preferential attachment models were shown to generate
networks with a power law degree distribution [9], a property that has been
observed in many real life networks and is thought to be universal. Additional
study of large scale social networks has revealed several other universal prop-
erties, for example the “small-world” phenomena, short average path lengths,
navigability and high clustering coefficients.

Recently, two seemingly unrelated properties of social networks have been
explored and analyzed. The first is a property of evolving networks known as
densification [7], namely, the property that the network becomes denser over
time. The second property concerns the core-periphery structure of the network:

Supported in part by the Israel Science Foundation (grant 1549/13).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 492–503, 2015.
DOI: 10.1007/978-3-662-47666-6 39

Core Size and Densification in Preferential Attachment Networks 493

it is claimed that many networks exhibit a small and dense core, surrounded by
a larger and sparser periphery [1].

Traditionally, most of the existing literature on preferential attachment net-
works and models deals with linear-sized networks, namely, networks whose num-
ber of edges is linear and whose average degree is constant over time. However,
several recent empirical studies have suggested that the number of edges in a
social network is sometimes superlinear [7], namely, the average degree grows
over time, which leads to densification. Somewhat analogously, while much of
the evidence and research concerning cores seems to indicate that core size is
often linear, it was recently shown empirically that in certain settings, social
networks have a dense sub-linear core [1]. These two seemingly unrelated dis-
crepancies are the subject of the current paper, which focuses attention on the
differences between linear and nonlinear sized preferential attachment social net-
works, and considers the effect of the number of edges in (or the density of) the
network on the size of its core.

Once a universal property is observed experimentally, it is desirable to develop
an evolutionary model in which the observed property naturally arises. For exam-
ple, the preferential attachment model itself was proposed by Price [10] to explain
observed power law distribution in citation networks and later by Barabasi et al.
[2] in order to explain the observed heavy-tailed degree distributions in various
other networks. Likewise, the model of Fraigniaud et al. [5] can be viewed as an
evolutionary explanation for the navigability property observed by Milgram [8]
and elaborated upon by Kleinberg [6]. This general approach is adopted in the
current paper as well, namely, we attempt to explain the above discrepancies by
analyzing the core size in a suitable evolutionary model. On the face of it, it is
unclear why and how a dense sublinear core can emerge in an evolutionary model.
In a nutshell, our main result shows that in the preferential attachment model, the
core size depends “inversely” on the network density, in the sense that, whereas a
sparse social network with linear number of edges (i.e., constant average degree)
tend to have a linear-sized core, it turns out that denser social networks, which
have a superlinear number of edges, tend to have a sublinear core.

While the notion of a core-periphery partition is intuitively clear, there are
several different approaches to formalizing its definition [3,11,12]. All of these
definitions share the common assumption, which is in fact inherently at the basis
of the preferential attachment model, that the amount of power or influence of
a vertex in a social network is proportional to its degree, that is, higher degree
vertices are more powerful. Hence intuitively, the core should hold a sizable
fraction of the degrees in the network while the periphery is much sparser and
less connected. Two such examples are (i) to consider the core as the “rich club”
[13] of the network, i.e., the set of nodes with the highest degrees in the network,
and (ii) to define the core properties using an axiomatic approach [1], and leave
open the possibility for several candidate sets.

Yet another characterization for the core can be motivated by a “historical”
perspective on the evolution of a social network. By this viewpoint, the core
should consist of the “founders” of the network, namely, the first vertices to join

494 C. Avin et al.

and establish it. Formally, the δ-founders set of a given network G consists of
the γ vertices which were the first to join the network, where γ is the minimum
integer such that the sum of the degrees of the vertices of the founders set is at
least δ times the sum of the degrees of the vertices of the entire network.

The rest of the paper is organized as follows. Section 2 presents the model
formally. Section 3 provides an overview of the results. The following sections
present a detailed analysis of the model in its two cases: linear and super-linear
number of edges. Due to lack of space we defer many of the technical details and
proofs to the full version.

2 Model and Preleminaries

In this section we describe a slight generalization of the Preferential Attachment
model G(pt) defined in [4] Ch 3.1. G(pt) has one parameter, pt, which was
assumed to be constant with t. Here we allow pt to vary with t. Let us now
introduce the model formally.

Consider a sequence (Gt)∞
t=1 of graphs, Gt = (Vt, Et), where Vt denotes the

set of vertices in Gt and nt = |Vt|. Let dt(w) denote the degree of node w in Gt.
The initial graph G1 consists of a single node v1 and a single self loop (counted
as degree 2), and for t ≥ 1 the graph Gt+1 is constructed from Gt at time t by
performing either a node event with probability pt ∈ (0, 1], or an edge event with
probability 1 − pt. In a node event, a new vertex v is added to the graph, along
with a new edge (v, u) where u ∈ Vt is chosen using preferential attachment, i.e.,
with probability proportional to its degree, i.e., with probability pt

u = dt(u)
∑

w∈Vt

dt(w) .

In an edge event, a new edge (v, u) is added, where both u, v ∈ Vt are chosen by
preferential attachment, independently of each other, i.e., (u, v) is chosen with
probability pt

u ·pt
v. Note that each time step adds exactly one edge, so the number

of edges in the graph Gt is t and the sum of degrees is 2t.
Traditionally G(pt) was studied with constant pt, i.e., pt = p for all t. In this

paper we also study the case where pt = min{1, 2a
ln t} for fixed a > 0.

The goal of the paper is to study the power and size of the core vs. the
periphery of Gt. As mentioned earlier, intuitively the nodes in the core should
be very powerful and well-connected within and to the network, but there is no
single, clear definition for a core in the context of a social networks. Here we study
a natural candidate set to be considered as the network core: the set of nodes
who joined the network first, or the founders of the network. We conjecture that
other possible definitions of the core will be highly correlated with the notion of
founders, but we leave this direction to the full version of the paper.

Founders Definition. For Gt we name the vertices in the graph v1, v2 . . . accord-
ing to their order of arrival, where i < j if node vi arrived before node vj . Since
at most one vertex joins the graph at each time step, this order is well defined.
Intuitively, one may think of the nodes that arrived the network first as the
founders of the society since they will be in the graph for the longest time and

Core Size and Densification in Preferential Attachment Networks 495

Table 1. Summary of properties of the model G(pt) for constant pt and pt =
min{1, 2a/ ln t}. Θ̃ hides polylogarithmic terms.

Parameters of G(pt) pt = p pt = min{1, 2a
ln t

}
Number of edges t

Expected number of nodes E [nt] 1 + p(t − 1) 2at
ln t

(1 ± o(1))

Expected number of edges in terms of nt

Linear in nt: super-linear in nt:

p−1nt
nt ln(nt)

2a
(1 ± o(1))

Expected δ-founders size E
[
γδ

t

] Linear in nt: sub-linear in nt:

δ2/pnt(1 ± o(1)) Θ̃((nt)
δ1/a

)

Power law exponent β 2 + p
2−p

2

consequently, by the preferential attachment mechanism, one would expect them
to be among the nodes of highest degrees in the graph. The degree of a vertex is
well accepted as a measure of its power and influence, and similarly we use the
sum of degrees of a group of vertices to capture its power. The power of the i
founders at time t is denoted by Si,t =

∑i
j=1 dt(vj).

To consider the founders as a core, the founders set should have enough
power, but what is enough? We use a parameter δ to quantify this and seek
the minimal size set of founders that has a δ fraction of the total power of the
entire network (i.e, the sum of degrees of all nodes). This set is referred to as
the δ-founders set. Formally:

Definition 1. The δ-founders set of a graph Gt (for δ ∈ [0, 1]) is defined as
Cδ

t = {v1, . . . , vγδ
t
}, where γδ

t is the minimum integer such that Sγδ
t ,t ≥ δ · 2t.

Recall that
∑

v∈Vt
dt(v) = 2t, thus the δ-founders set has at least δ fraction of

the degrees. Our goal is to analyze γδ
t = |Cδ

t | over time. Since γδ
t is increasing in

δ, and γ0
t = 0, γ1

t = nt, we are interested in γδ
t for δ ∈ (0, 1). We note:

Lemma 1. For every nonnegative integers t and i,

P[γδ
t > i] = P[Si,t < 2δt] and P[γδ

t ≤ i] = P[Si,t ≥ 2δt] .

Therefore, we can bound the size of the core Cδ
t by bounding Si,t for all i.

Furthermore, We would like to bound γδ
t in terms of nt.

3 Results Overview

The main contribution of the paper is in rigorously analyzing the G(pt) preferen-
tial attachment model when pt = min{1, 2a

ln t}. As it turns out, changing pt from
a constant to pt s.t pt −→

t→∞ 0 leads to significant changes in the graph structure.

496 C. Avin et al.

Moreover, the proofs for the concentration of the measures of interest (such as
Si,t and γδ

t) are challenging.
Table 1 highlights the main changes in our properties and measures of interest

for the two parameter settings of the model. For clarity, we present the expected
values of the various measures, but the technical sections provide proofs for
bounds that hold with high probability as well. These results offer a possible
explanation for two seemingly unrelated phenomena, namely, densefication and
sub-linear core size. We observe that if pt is constant then the network does
not exhibit densefication, namely, it has a linear number of edges and a con-
stant average degree, which results also in a linear core size. In contrast, when
pt = min{1, 2a

ln t}, the network becomes dense with average degrees increasing
logarithmically, which results also in a sub-linear core size. These findings may
suggest that these two phenomena are indeed related to each other.

It is important to note that one can also relate the above results to the degree
distribution of the graph. It is known that for a constant pt = p > 0 the degree
distribution of G(p) follows a power law (i.e., the fraction of nodes with degree
k is proportional to k−β) with exponent 2 < β ≤ 3, depending on p. In the full
paper we show that for the case pt = min{1, 2a

ln t} the degree distribution remains
a power law, but for the special case where β = 2. Nevertheless, the bounds on
the power law and β alone are insufficient to establish our conclusions with high
probability, therefore the bounds on the power and size of the founders set have
to be derived directly on G(pt) and not from the degree distribution.

Technically, our main analysis effort concentrated on proving our claims on
the core sizes for the founders definition, namely bounding Si,t and γ, the size
of the δ-founders set, with high probability. To do so, we first had to study the
evolution process of the network and provide bounds for τi, the arrival time of
node i. Once establishing the concentration of τi, it becomes possible to bound
Si,t conditioned on τi. We believe that similar bounds can be derived for other
definitions for the network core.

4 Expectation and Concentration of Degree Sums

Let nt = |Vt| denote the number of vertices at time t, and τi = min{t | nt ≥ i}
denote the arrival time of node vi. Given τi, we analyze E [Si,t | τi], the expec-
tation of Si,t, for various times t. Formally we prove the following theorems.

Theorem 1 (Expectation of Si,t). For any positive integers i and t,

E [Si,t | τi] = 2t
t∏

j=τi+1

(
1 − pj−1

2j

)
, (1)

where the empty product, corresponding to t ≤ τi, is defined to be equal to 1.

We also show the concentration of Si,t around E [Si,t | τi].

Core Size and Densification in Preferential Attachment Networks 497

Theorem 2 (Concentration of Si,t). For any positive integers i and t, and
real λ ≥ 0,

P[Si,t − E [Si,t | τi] ≥ λ | τi] ≤ exp
(

−λ2τi

32t2

)
, (2)

P[Si,t − E [Si,t | τi] ≤ −λ | τi] ≤ exp
(

−λ2τi

32t2

)
, (3)

We make use of the following technical lemma.

Lemma 2. For integers t, k such that t ≥ k ≥ 0 and reals rk, rk+1, . . . , rt−1,

k
t−1∏
j=k

(
1 +

1 − rj

j

)
= t

t∏
j=k+1

(
1 − rj−1

j

)
.

Proof of Thm. 1: Note that for every t ≤ τi, we have Si,t = 2t = E [Si,t | τi].
Therefore, we prove Thm. 1 and Thm. 2 for times t > τi. Then a node event will
increase Si,t+1 by 1 w.r.t Si,t if and only if the node u ∈ Vt, to which the new
arriving v is attached, is one of the first i nodes, which happens with probability
Si,t

2t . Similarly, an edge event, where the edge (u, v) is added, will increase Si,t+1

by 1 w.r.t Si,t if u is one of the first i nodes, which happens with probability
Si,t

2t and by another 1, if v is one of the first i nodes, which happens, again, with
probability Si,t

2t . Hence, we have the following regression formula.

E [Si,t+1 | τi, Si,t] = Si,t + pt
Si,t

2t
+ 2(1 − pt)

Si,t

2t
=

(
1 +

2 − pt

2t

)
Si,t . (4)

Taking expectations on both sides and proceeding with the recursion, we have

E [Si,t | τi] =

{
2t , t ≤ τi ,

2τi · Zτi,t , t ≥ τi ,
(5)

where Zj,t =
∏t−1

�=j

(
1 + 2−p�

2�

)
. Applying Lemma 2 with (k, rj) set to (τi, pj/2),

Thm. 1 follows. �

Proof of Thm. 2: Again, it suffices to consider t ≥ τi. Let Xi,t = Si,t

Zτi,t
| τi.

We have that (Xi,t)t≥τi
is a martingale, since

E [Xi,t+1 | Xi,t, . . . , Xi,τi
] = E [Xi,t+1 | Xi,t] = E [Xi,t+1 | τi, Si,t]

=
E [Si,t+1 | τi, Si,t]

Zi,t+1
=

Si,t

Zτi,t
= Xi,t ,

where the third equality follows since given τi, Zi,t+1 is a fixed number (and not
a random variable), and the fourth equality follows by Eq. (4).

498 C. Avin et al.

Since |Si,t − Si,t−1| ≤ 2 and Si,t ≤ 2t, we have

Zτi,t · |Xi,t − Xi,t−1| =
∣
∣
∣∣Si,t −

(
1 +

2 − pt−1

2(t − 1)

)
Si,t−1

∣
∣
∣∣

≤ |Si,t − Si,t−1| + 2 − pt−1

2(t − 1)
Si,t−1 ≤ 2 + (2 − pt−1)

Si,t−1

2(t − 1)

≤ 4 − pt−1 ≤ 4 .

Hence, |Xi,t −Xi,t−1| ≤ 4/Zτi,t. Applying Azuma’s Inequality to the martingale
(Xi,t)t≥τi

yields, for λ ≥ 0,

P[Xi,t − E [Xi,t | τi] ≥ λ | τi] ≤ exp
(
−λ2/

(
32

∑t
j=τi+1 Z−2

τi,j

))
,

P[Xi,t − E [Xi,t | τi] ≤ −λ | τi] ≤ exp
(
−λ2/

(
32

∑t
j=τi+1 Z−2

τi,j

))
.

Substituting λ/Zτi,t for λ, and noting that Za,c = Za,b ·Zb,c for integers a ≤ b ≤ c,

P[Si,t − E [Si,t | τi] ≥ λ | τi] ≤ exp
(
−λ2/

(
32

∑t
j=τi+1 Z2

j,t

))
,

P[Si,t − E [Si,t | τi] ≤ −λ | τi] ≤ exp
(
−λ2/

(
32

∑t
j=τi+1 Z2

j,t

))
.

Noting that Zj,t ≤
∏t−1

�=j

(
1 + �−1

)
= t/j, and that

t∑
j=τi+1

j−2 ≤
∫ t

τi

j−2dj ≤
∫ ∞

τi

j−2dj = τ−1
i ,

Thm. 2 follows. �

5 Concentration Inequalities for Arrival Times

The number of vertices at time t, denoted nt, can be written as a sum of inde-

pendent variables nt = 1 +
t−1∑
j=1

Nj , where where Nj is an indicator which equals

1 if a new node arrived at time j, and 0 otherwise. Let Q(t) = E [nt] = 1+
t−1∑
j=1

pt

denote the expected number of vertices at time t. We then have the following
bounds on τi, the expected arrival time of node i.

Lemma 3. For any positive integers tL, tH , i satisfying Q(tL) ≤ i ≤ Q(tH)+1,

P[τi ≤ tL] ≤ exp
(

−2(i − Q(tL))2

tL − 1

)
, (6)

P[τi > tH] ≤ exp
(

−2(Q(tH) + 1 − i)2

tH − 1

)
, (7)

Core Size and Densification in Preferential Attachment Networks 499

Proof. By definition of τi,

P[τi ≤ tL] = P[ntL
≥ i] = P [ntL

− E[ntL
] ≥ i − Q(tL)]

= P

⎡
⎣tL−1∑

j=1

Nj −
tL−1∑
j=1

pj ≥ i − Q(tL)

⎤
⎦ .

Recalling that Nj ∈ {0, 1} and applying Hoeffding’s Inequality, Ineq. (6) follows.
Similarly for tH ,

P[τi > tH] = P[ntH
< i] = P[ntH

≤ i − 1] = P [ntH
− E [ntH

] ≤ i − Q(tH) − 1] ,

yielding Ineq. (7). �

By Lemma 3, we obtain the following bounds on γδ
t , the size of the core Cδ

t at
time t.

Corollary 1. For every positive integers t, i, tL, tH satisfying Q(tL) ≤ i ≤
Q(tH) + 1,

P[γδ
t ≤ i] ≤ exp

(
−2(i − Q(tL))2

tL − 1

)
+ exp

(
−2(Q(tH) + 1 − i)2

tH − 1

)

+
tH∑

k=tL+1

(
P[τi = k] · P[Si,t ≥ 2δt | τi = k]

)
, (8)

P[γδ
t > i] ≤ exp

(
−2(i − Q(tL))2

tL − 1

)
+

t∑
k=tL+1

(
P[τi = k] · P[Si,t ≥ 2δt | τi = k]

)
.

(9)

Proof. By Lemma 1,

P[γδ
t ≤ i] = P[Si,t ≥ 2δt] =

∞∑
k=i

(
P[τi = k] · P[Si,t ≥ 2δt | τi = k]

)

≤ P[τi ≤ tL] +
tH∑

k=tL+1

(
P[τi = k] · P[Si,t ≥ 2δt | τi = k]

)
+ P[τi > tH] .

Applying Lemma 3 to the last inequality, Ineq. (8) follows. Similarly,

P[γδ
t > i] ≤ P[τi ≤ tL] +

∞∑
k=tL+1

(
P[τi = k] · P[Si,t < 2δt | τi = k]

)
.

Recalling that for t ≤ τi we have Si,t = 2t ≥ 2δt, the sum may be truncated
once k reaches t. Applying Lemma 3, Ineq (9) follows.

500 C. Avin et al.

6 Core Size in Linear-Sized Networks

In this section we assume pt is constant, i.e., pt = p for every t. We now show
that γδ

t , the size of the core Cδ
t at time t, is concentrated around ηpt, where

η = δ2/p. Formally, we prove the following theorem.

Theorem 3. For every nonnegative α, α1, α2 = Ω(1) satisfying α = α1 + α2

and α = o(
√

t),

(I) P[γδ
t ≤ ηpt − α

√
ηt] ≤ 2 exp

(
−2α2

1

(
1 − O

(
1/(α1

√
t)

)))
+ exp

(
−α2

2δ2

32

(
1 − O

(
α/

√
t
)))

,

(II) P[γδ
t > ηpt + α

√
ηt] ≤ exp

(
−2α2

1

(
1 − O

(
α2/

√
t
)))

+ exp
(
−α2

2δ2

32

(
1 − O

(
α2/

√
t
)))

.

Theorem 3 is a result of Corollary 1. Specifically, part (I) is obtained by applying
the following lemma:

Lemma 4. For any nonnegative α, α1, α2 = Ω(1) satisfying α = α1 + α2

and α = o(
√

t), and for i = �ηpt − α
√

ηt�, tL = �ηt − (α + α1)
√

ηt/p�,
tH = �ηt − α2

√
ηt/p� and every k ∈ [tL + 1, tH], the following hold:

P[γδ
t ≤ i] = P[γδ

t ≤ ηpt − α
√

ηt] , (10)

(Q(tH) + 1 − i)2

tH − 1
≥ α2

1 , (11)

(i − Q(tL))2

tL − 1
≥ α2

1

(
1 − O

(
1

α1

√
t

))
, (12)

P[Si,t ≥ 2δt | τi = k] ≤ exp
(

−α2
2δ

2

32

(
1 − O

(
α√
t

)))
. (13)

Plugging Eq. (10) and Ineq. (11),(12),(13) into Ineq. (8) with these values of
(i, tL, tH), Thm. 3(I) follows.

Part (II) is obtained by applying the following lemma:

Lemma 5. For any nonnegative α, α1, α2 = Ω(1) satisfying α = α1 + α2 and
α = o(

√
t), and for i = �ηpt + α

√
ηt�, tL = 	ηt + α2

√
ηt/p
, and every k ∈

[tL + 1, t], the following hold:

P[γδ
t > i] ≥ P[γδ

t > ηpt + α
√

ηt] , (14)

(i − Q(tL))2

tL − 1
≥ α2

1

(
1 − O

(
α2√

t

))
, (15)

P[Si,t < 2δt | τi = k] ≤ exp
(

−α2
2δ

2

32

(
1 − O

(
α2√

t

)))
. (16)

Core Size and Densification in Preferential Attachment Networks 501

Plugging Ineq. (10),(12) and (13) into Ineq. (9) with these values of (i, tL),
Thm. 3(II) follows.

Given Thm. 3, and since nt = |Vt| is concentrated around Q(t), it is easy to
show that γδ

t is concentrated around η · nt for η = δ2/p. Formally, letting

P− = P[γδ
t ≤ ηnt − α

√
ηnt/p] and P+ = P[γδ

t > ηnt + α
√

ηnt/p],

we prove the following.

Theorem 4. For every nonnegative α, α1, α2, α3 = Ω(1) satisfying α = α1 +
α2 + α3 and α = o(

√
t),

(I) P− ≤ 2 exp
(
−2α2

1

(
1 − O

(
1

α1
√

t

)))
+ exp

(
−α2

2δ2

32

(
1 − O

(
α√
t

)))
+ exp

(
− 2α2

3
η

(
1 − O

(
1

α3
√

t

)))
,

(II) P+ ≤ exp
(
−2α2

1

(
1 − O

(
α2/

√
t
)))

+ exp
(
−α2

2δ2

32

(
1 − O

(
α2/

√
t
)))

+ exp
(
− 2α2

3
η

(
1 − O

(
α√
t

)))
.

Proof. Denoting B = pt + α3

√
t/η,

P− =
t∑

k=1

P[nt = k] · P[γδ
t ≤ ηnt − α

√
ηnt/p | nt = k]

≤
∑
k>B

P[nt = k] +
∑
k≤B

P[nt = k] · P[γδ
t ≤ ηnt − α

√
ηnt/p | nt = k]

≤ P[nt > B] + P[γδ
t ≤ ηB − α

√
ηB/p] .

Recalling that E[nt] = E[1 +
∑t−1

j=1 Nj] = 1 + p(t − 1), the first term can be
bounded using Hoeffding’s Inequality as follows.

P[nt > B] = P [nt − E[nt] > B − (1 + p(t − 1))] = P

[
nt − E[nt] > α3

√
t

η
− 1 + p

]
.

Recalling that Nj ∈ {0, 1}, and applying Hoeffding’s Inequality, we get

P[nt > B] ≤ exp

⎛

⎜
⎝−2

(
α3

√
t/η − 1 + p

)2

t − 1

⎞

⎟
⎠ = exp

(
−2α2

3

η

(
1 − O

(
1

α3

√
t

)))
.

The second term can be bounded by part (I) of Thm. 3 as follows.

P[γδ
t ≤ ηB − α

√
ηB/p] = P

[
γδ

t ≤ ηpt + α3

√
ηt − α

√
ηt + α3

√
ηt/p

]
≤ P

[
γδ

t ≤ ηpt − (α − α3)
√

ηt
]
.

Applying part (I) of Thm. 3, part (I) of Thm. 4 follows. The proof of part (II)
of Thm. 4 is similar. �

502 C. Avin et al.

7 Core Size in Superlinear-Sized Networks

In this section we assume pt = min{1, 2a/ ln t} for some fixed real a > 0 and
analyze γδ

t , the size of the core Cδ
t at time t. Specifically, fixing η = δ1/a and

letting σ = �tη�, we show that γδ
t is concentrated around Q(σ). Formally, we

prove the following theorem.

Theorem 5. For any nonnegative reals α, α1, α2 = Ω(1) satisfying α = α1 +α2

and α = o(
√

σ/ ln σ), we have

(I) P[γδ
t ≤ Q(σ) − α

√
σ] ≤ 2 exp

(
−2α2

1

(
1 − O

(
α2

2
α1

√
σ

)))
+ exp

(
−α2

2δ2

32

(
1 − O

(
α lnσ√

σ

)))
,

(II) P[γδ
t > Q(σ) + α

√
σ] ≤ exp

(
−2α2

1

(
1 − O

(
α2 lnσ√

σ

)))
+ exp

(
−α2

2δ2

32

(
1 − O

(
α2 lnσ√

σ

)))
.

Note: Since pt = min{1, 2a/ ln t}, then Q(σ) is proportional to tη

η ln t , so we
indeed get a concentration around Q(σ). Also note that since nt is concentrated
around Q(t), which is proportional to t

ln t , we have that E
[
γδ

t

]
= Θ̃(nη

t).

Theorem 5 is a result of Corollary 1. Specifically, denoting Δ = �α2
√

σ/pσ�, part
(I) is obtained by applying the following lemma:

Lemma 6. For any nonnegative α, α1, α2 = Ω(1) satisfying α = α1 + α2 and
α = o(

√
σ/ ln σ), and for i = �Q(σ) − α

√
σ�, tL = σ − 	(α + α1)

√
σ/pσ
, tH =

σ − Δ and every k ∈ [tL + 1, tH], the following hold:

P[γδ
t ≤ i] = P[γδ

t ≤ Q(σ) − α
√

σ] , (17)

(Q(tH) + 1 − i)2

tH − 1
≥ α2

1

(
1 − O

(
α2
2

α1
√

σ

))
, (18)

(i − Q(tL))2

tL − 1
≥ α2

1

(
1 − O

(
1

α1
√

σ

))
, (19)

P[Si,t ≥ 2δt | τi = k] ≤ exp
(

−α2
2δ

2

32

(
1 − O

(
α ln σ√

σ

)))
. (20)

Plugging Eq. (17) and Ineq. (18),(19),(20) into Ineq. (8) with these values of
(i, tL, tH), Thm. 5(I) follows.

Part (II) is obtained by applying the following lemma:

Lemma 7. For any nonnegative α, α1, α2 = Ω(1) satisfying α = α1 + α2 and
α = o(

√
σ/ ln σ), and for i = �Q(σ) + α

√
σ�, tL = σ+Δ, and every k ∈ [tL+1, t],

the following hold:

P[γδ
t > i] ≥ P[γδ

t > Q(σ) + α
√

σ] , (21)

(i − Q(tL))2

tL − 1
≥ α2

1

(
1 − O

(
α2 ln σ√

σ

))
, (22)

Core Size and Densification in Preferential Attachment Networks 503

P[Si,t < 2δt | τi = k] ≤ exp
(

−α2
2δ

2

32

(
1 − O

(
α2 ln σ√

σ

)))
. (23)

Plugging Ineq. (17),(19) and (20) into Ineq. (9) with these values of (i, tL),
Thm. 5(II) follows.

References

1. Avin, C., Lotker, Z., Peleg, D., Pignolet, Y.-A., Turkel, I.: Core-periphery in net-
works: An axiomatic approach (2014). arXiv preprint arXiv:1411.2242

2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286, 509–512 (1999)

3. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Social networks
21(4), 375–395 (2000)

4. Chung, F.R.K., Lu, L.: Complex graphs and networks. AMS (2006)
5. Fraigniaud, P., Gavoille, C., Kosowski, A., Lebhar, E., Lotker, Z.: Universal aug-

mentation schemes for network navigability: overcoming the sqrt(n)-barrier. In:
Proc. 19th SPAA, pp. 1–7 (2007)

6. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Proc.
32nd ACM Symp. on Theory of computing, pp. 163–170 (2000)

7. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. Trans. Knowledge Discovery from Data 1, 2 (2007)

8. Milgram, S.: The small world problem. Psychology today 2(1), 60–67 (1967)
9. Newman, M.: Networks: An Introduction. Oxford Univ. Press (2010)

10. de Price, D.S.: A general theory of bibliometric and other cumulative advantage
processes. J. Amer. Soc. Inform. Sci. 27(5), 292–306 (1976)

11. Rombach, M.P., Porter, M.A., Fowler, J.H., Mucha, P.J.: Core-periphery structure
in networks. SIAM J. Applied Math. 74(1), 167–190 (2014)

12. Zhang, X., Martin, T., Newman, M.E.J.: Identification of core-periphery structure
in networks (2014). CoRR, abs/1409.4813

13. Zhou, S., Mondragón, R.J.: The rich-club phenomenon in the internet topology.
IEEE Commun. Lett. 8(3), 180–182 (2004)

http://arxiv.org/abs/1411.2242

Maintaining Near-Popular Matchings

Sayan Bhattacharya1, Martin Hoefer2(B), Chien-Chung Huang3,
Telikepalli Kavitha4, and Lisa Wagner5

1 Institute of Mathematical Sciences, Chennai, India
bsayan@imsc.res.in

2 MPI für Informatik and Saarland University, Saarbrücken, Germany
mhoefer@mpi-inf.mpg.de

3 Department of Computer Science and Engineering, Chalmers University,
Gothenburg, Sweden

villars@mpi-inf.mpg.de
4 Tata Institute of Fundamental Research, Mumbai, India

kavitha@tcs.tifr.res.in
5 Department of Computer Science, RWTH Aachen University, Aachen, Germany

lwagner@rwth-aachen.de

Abstract. We study dynamic matching problems in graphs among
agents with preferences. Agents and/or edges of the graph arrive and
depart iteratively over time. The goal is to maintain matchings that are
favorable to the agent population and stable over time. More formally, we
strive to keep a small unpopularity factor by making only a small amor-
tized number of changes to the matching per round. Our main result is
an algorithm to maintain matchings with unpopularity factor (Δ+k) by
making an amortized number of O(Δ+Δ2/k) changes per round, for any
k > 0. Here Δ denotes the maximum degree of any agent in any round.
We complement this result by a variety of lower bounds indicating that
matchings with smaller factor do not exist or cannot be maintained using
our algorithm.

As a byproduct, we obtain several additional results that might be of
independent interest. First, our algorithm implies existence of matchings
with small unpopularity factors in graphs with bounded degree. Second,
given any matching M and any value α ≥ 1, we provide an efficient
algorithm to compute a matching M ′ with unpopularity factor α over
M if it exists. Finally, our results show the absence of voting paths in
two-sided instances, even if we restrict to sequences of matchings with
larger unpopularity factors (below Δ).

1 Introduction

Matching arises as a fundamental task in many coordination, resource alloca-
tion, and network design problems. In many domains, matching and allocation
problems occur among agents with preferences, e.g., in job markets, when assign-
ing residents to hospitals, or students to dormitory rooms, or when allocating

Supported by DFG Cluster of Excellence MMCI at Saarland University.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 504–515, 2015.
DOI: 10.1007/978-3-662-47666-6 40

Maintaining Near-Popular Matchings 505

resources in distributed systems. There are a number of approaches for formal
study of allocation under preferences, the most prominent being stable and pop-
ular matchings. Usually, there is a set of agents embedded into a graph, and
each agent has a preference list over his neighbors. An edge is called a blocking
pair if both agents strictly prefer each other to their current partners (if any). A
matching without blocking pair is a stable matching. In a popular matching all
agents get to vote between two matchings M and M ′. They vote for M if it yields
a partner which is strictly preferred to the one in M ′, or vice versa (they don’t
vote if neither of them is strictly preferred). The matching that receives more
votes is more popular. For a popular matching there exists no other matching
that is more popular.

Stable and (to a lesser extent) popular matchings have been studied inten-
sively in algorithms, economics, operations research, and game theory, but
mostly under the assumption that the set of agents and the set of possible match-
ing edges remain static. In contrast, many application areas above are inherently
dynamic. For example, in a large firm new jobs open up on a repeated basis,
e.g., due to expansion into new markets, retirement of workers, or the end of
fixed-term contracts. Similarly, new applicants from outside arrive, or internal
employees seek to get promoted or move into a different department. The firm
strives to fill its positions with employees in a way that is preferable to both firm
and workers. The naive approach would be to compute, e.g., a stable or popular
matching from scratch every time a change happens, but then employees might
get assigned differently every time. Instead, the obvious goal is to maintain a
stable or popular assignment at a small rate of change. Similar problems arise
also in the context of dormitory room assignment or resource allocation in dis-
tributed systems. Perhaps surprisingly, these natural problems have not been
studied in the literature so far.

Maintaining graph-theoretic solution concepts like matchings or shortest
paths is an active research area in algorithms. In these works, the objective
is to maintain matchings of maximum cardinality while making a small number
of changes. These approaches are unsuitable for systems with agent preferences,
which fundamentally change the nature and the characteristics of the problem.

More fundamentally, a central theme in algorithmic game theory is to study
dynamics in games such as best response or no-regret learning. However, in the
overwhelming majority of these works, the games themselves (agents, strategies,
payoffs) are static over time, and the interest is to characterize the evolution of
strategic interaction. In contrast, there are many games in which maintaining
stability concepts at a small rate of change is a natural objective, such as in
routing or scheduling problems. To the best of our knowledge, our paper is the
first to study algorithms for maintaining equilibria in the prominent domain of
matching and network design problems.

Model and Notation. Before we state our results, let us formally introduce
the model and notation. We consider a dynamic round-based matching scenario
for a set V of agents. In each round t, there exists a graph Gt = (V,Et) with
set Et of possible matching edges among the agents. Initially, E0 = ∅. For edge

506 S. Bhattacharya et al.

dynamics, in the beginning of each round t ≥ 1 a single edge is added or deleted,
i.e., Et and Et+1 differ in exactly one edge. We denote this edge by et. Note
that a particular edge e can be added and removed multiple times over time.

For vertex dynamics, in the beginning of each round t ≥ 1 a single vertex
arrives or departs along with all incident edges. We denote this vertex by vt,
where the same vertex can arrive and depart multiple times over time. Formally,
in vertex dynamics all vertices exist throughout. We color them red and blue
depending on whether they are currently present or not, respectively. Then, in
the beginning of a round, if vt arrives, it is colored red and all edges between vt

and red agents arrive. If vt leaves, it is colored blue and all incident edges are
removed. Thus, Et and Et+1 differ by exactly a set of edges from vt to red agents.
Vertex dynamics also model the case when in each round the preference list of
one vertex changes. Assume there is a separate vertex with the new preference
list and consider two rounds in which the old vertex leaves and the new one
arrives. Our asymptotic bounds will directly apply.

We consider several structures for the preferences. In the roommates case
each agent v ∈ V has a strict preference list �v over all other agents in V . In the
two-sided case we have sets X and Y and Et ⊆ X ×Y . In the one-sided case the
elements in X do not have preferences, only agents in Y have preferences over
elements in X. Each agent always prefers being matched over being unmatched.

Our goal is to maintain at small amortized cost a matching in each round
that satisfies a preference criterion. Towards this end, we study several criteria in
this paper. For matching M and agent v we denote by M(v) the agent matched
to v in M , where we let v = M(v) when v is unmatched. In round t, an edge
e = (u, v) ∈ Et \ M is called a blocking pair for matching M ⊆ Et if u �v M(v)
and v �u M(u). M is a stable matching if it has no blocking pair.

For two matchings M and M ′, v is called a (+)-agent if M ′(v) �v M(v). We
call v a (−)-agent if M(v) �v M ′(v) and (0)-agent if M ′(v) = M(v). We denote
by V +, V − and V 0 the sets of (+)-, (−)- and (0)-agents, respectively. For α ≥ 1,
we say M ′ is α-more popular than M if |V +| ≥ α · |V −|. If |V +| = |V −| = 0, we
say M ′ is 1-more popular than M , and if |V +| > 0 = |V −| then M ′ is ∞-more
popular than M . In round t, the unpopularity factor ρ(M) ∈ [1,∞) ∪ {∞} of
matching M ⊆ Et is the maximum α such that there is an α-more popular
matching M ′ ⊆ Et. M is a c-unpopular matching if it has unpopularity factor
ρ(M) ≤ c. A 1-unpopular matching is called popular matching.

Our bounds depend on the maximum degree of any agent, where for one-sided
instances this includes only the agents in Y . In round t, consider an agent v in
Gt. We denote by N t(v) the set of current neighbors of v, by dt(v) the degree of
v, by Δt the maximum degree of any agent. Finally, by Δ = maxt Δt we denote
the maximum degree of any agent in any of the rounds. Observe that throughout
the dynamics, we allow the same edge to arrive and depart multiple times. In
addition, an agent v can have a much larger degree than Δ in

⋃
t Et.

Our Results. We maintain matchings when agents and/or edges of the graph
arrive and depart iteratively over time. If every agent has degree at most Δ
in every round, our algorithm maintains O(Δ)-unpopular matchings by making

Maintaining Near-Popular Matchings 507

an amortized number of O(Δ) changes to the matching per round. This result
holds in one-sided, two-sided and roommates cases. It is almost tight with respect
to the unpopularity factor, since there are instances where all matchings have
unpopularity factor at least Δ. More formally, if there is one edge arriving or
leaving per round, our algorithm yields a tradeoff. Given any number k > 0, the
algorithm can maintain matchings with unpopularity factor (Δ + k) using an
amortized number of O(Δ + Δ2/k) changes per round. If one vertex arrives or
leaves per round, the algorithm needs O(Δ2 + Δ3/k) changes per round.

The algorithm switches to a matching that is α > (Δ + k)-more popular
whenever it exists, and we show that this strategy converges in every round. We
can decide for a given matching M and value α ≥ 1 if there is a matching M ′

that yields an unpopularity factor at least α for M and compute M ′ if it exists.
Our bounds imply the existence of matchings with small unpopularity factors in
one-sided and roommates instances with bounded degree. These insights might
be of independent interest.

For two-sided instances, stable and popular matchings exist, but we show that
maintaining them requires an amortized number of Ω(n) changes to the matching
per round, even when Δ = 2. In addition, our algorithm cannot be used to
maintain matchings with unpopularity factors below Δ−1. Iterative resolution of
matchings with such unpopularity factors might not converge. In fact, we provide
an instance and an initial matching from which every sequence of matchings with
unpopularity factor greater than 1 leads into a cycle. In contrast to one-sided
instances, this implies that two-sided instances might have no voting paths,
even for complete and strict preferences. Furthermore, we show that cycling
dynamics can evolve even when we restrict to resolution of matchings with higher
unpopularity factors (up to Δ).

In summary, our results show that we can maintain a near-popular matching
in a dynamic environment with relatively small changes, by pursuing a greedy
improvement strategy. For the one-sided case, this achieves essentially the best
unpopularity factor we can hope for. In the two-sided case, achieving a better
factor with our strategy is bound to fail. Whether there are other strategies
with better factors or smaller changes to maintain near-popular matchings is an
interesting future direction.

Related Work. Stable matchings have been studied intensively and we refer
to standard textbooks for an overview [10,16,19]. Perhaps closest to our paper
are works on iterative resolution of blocking pairs. Knuth [15] provided a cyclic
sequence of resolutions in a two-sided instance. Hence, even though stable match-
ings exist, iterative resolution of blocking pairs might not always lead there. Roth
and Vande Vate [20] showed that there is always some sequence of polynomially
many resolutions that leads to a stable matching. Ackermann et al [3] constructed
instances where random sequences require exponential time with high probabil-
ity. Although in the roommates case (for general graphs) stable matchings might
not exist, Diamantoudi et al. [7] showed that there are always sequences of res-
olutions leading to a stable matching if it exists. Furthermore, the problem has

508 S. Bhattacharya et al.

been studied in constrained stable matching problems [11–13]. In contrast, our
aim is to maintain matchings by making a small number of changes per round.
However, we also show that, perhaps surprisingly, similar sequences do not exist
for popular matchings in two-sided instances.

Stable matching turns out to be a very demanding concept that cannot
be maintained at small cost. We obtain more positive results for near-popular
matchings. The notion of popularity was introduced by Gärdenfors [8] in the
two-sided case, who showed that every stable matching is popular when all pref-
erence lists are strict. When preference lists admit ties, it was shown by Biró,
Irving, and Manlove [6] that the problem of computing an arbitrary popular
matching in two-sided instances is NP-hard. They also provide an algorithm to
decide if a matching is popular or not in the two-sided and roommates cases.

When agents on only one side have preferences, popular matchings might not
exist. Abraham et al. [1] gave a characterization of instances that admit popular
matchings; when preference lists are strict, they showed a linear-time algorithm
to determine if a popular matching exists and if so, to compute one. Popular
matchings in the one-sided case have been well-studied; closest to our paper is
Abraham and Kavitha [2] that study the voting paths problem. Given an initial
matching M1, the problem is to find a voting path of least length, i.e., a sequence
of matchings M1,M2, . . . ,Mk of least length such that Mk is popular. In this
sequence every Mi must be more popular than Mi−1. If a one-sided instance
admits a popular matching, then from every M1 there is always a voting path
of length at most 2, and one of least length can be determined in linear time [2].

McCutchen [17] introduced the notion of unpopularity factor and showed that
the problem of computing a least unpopular matching in one-sided instances is
NP-hard. For a roommates instance, popular matchings might not exist. Huang
and Kavitha [14] show that with strict preference lists, there is always a matching
with unpopularity factor at most O(log n), and there exist instances where every
matching has unpopularity factor Ω(log n).

A prominent topic in algorithms is maintaining matchings in dynamic graphs
that approximate the maximum cardinality matching. In graphs with n nodes
and iterative arrival and departure of edges, Onak and Rubinfeld [18] design
a randomized algorithm that maintains a matching which guarantees a large
constant approximation factor and requires only O(log2 n) amortized update
time. Baswana, Gupta and Sen [4] provide a randomized 2-approximation in
O(log n) amortized time. For deterministic algorithms, Gupta and Peng [9] gave a
(1+ε)-approximation in O(

√
m/ε2) worst-case update time. Very recently, Bhat-

tacharya et al. [5] showed a deterministic (4 + ε)-approximation in O(m1/3/ε2)
worst-case update time.

2 Maintaining (Δ + k)-Unpopular Matchings

In this section, we present an algorithm that, given any number k > 0, maintains
(Δ+k)-unpopular matchings. Our approach applies in one-sided, two-sided and
roommates instances. In the edge-dynamic case, it makes an amortized number of

Maintaining Near-Popular Matchings 509

Algorithm 1. DeferredResolution

1 for every round t = 1, 2, . . . do
2 Compute for matching M an α-more popular matching M ′ if it exists.
3 while M ′ exists do
4 M ← M ′

5 Compute for matching M an α-more popular matching M ′ if it exists.

O(Δ+Δ2/k) changes to the matching per round. In every round, our algorithm
DeferredResolution iteratively replaces the current matching with an α-
more popular matching until no such matching exists (see Algorithm 1). We show
in Section 2.1 that such matchings can be computed efficiently. In Section 2.2
we show that when α > Δ the iterative replacement converges in every round
and amortized over all rounds the number of changes made to the matching is
at most O(Δ + Δ2/k) per round.

2.1 Finding an α-More Popular Matching

Let us first show that for any given matching M and any value α, we can decide
in polynomial time if the unpopularity factor is ρ(M) ≥ α and construct an
α-more popular matching if it exists. While throughout this paper we assume
agents to have strict preferences, this result holds even when the preferences
have ties.

Theorem 1. Let G = (V,E) be a graph, and suppose for every agent v ∈ V
there is a preference order �v (possibly with ties) over N(v) ∪ {v} such that
u �v v for all u ∈ N(v). Then for every matching M in G and every value
α ∈ R∪ {∞}, we can decide in polynomial time if ρ(M) ≥ α as well as compute
an α-more-popular matching M ′ if it exists.

Proof. The general structure of the algorithm is shown as Algorithm 2. The main
idea is to construct an adjusted graph and find a maximum-weight matching,
which allows to see if an α-more popular matching exists.

We first take a closer look at α. The case α ≤ 1 is trivial. If α > |V | − 1,
any α-more popular M ′ has no (−)-agent. So we are checking if ρ(M) = ∞ or,
equivalently, if ρ(M) ≥ α = |V |. If ρ(M) ∈ (1, |V | − 1], it is given as a ratio of
two numbers |V +| and |V −|, which are both integers in {1, . . . , n}. Let Qn be
the set of rational numbers that can be expressed as a fraction of two integers in
{1, . . . , n}. Thus, when α �∈ Qn, we can equivalently test for ρ(M) ≥ α∗, where
α∗ is the smallest number of Qn larger than α (see line 3 in the algorithm). Due to
reasons mentioned below, we replace the test ρ(M) ≥ α∗ by testing ρ(M) > α′,
where α′ is slightly smaller than α∗, but still larger than the next-smaller number
of Qn. Formally, α′ = α∗ − ε with

ε =
1
2

· min
r,r′∈Qn

{r − r′ | r − r′ > 0}

510 S. Bhattacharya et al.

Algorithm 2. Finding an α-more popular matching for M

1 if α ≤ 1 then return M
2 else if α > |V | − 1 then set α∗ ← |V |
3 else set α∗ ← min{r ∈ Qn | r ≥ α}
4 Set α′ ← α∗ − ε

5 Construct G̃ = (Ṽ , Ẽ) as union of two copies (V1, E1), (V2, E2) of G and edges

E3 between copies, and assign edge weights w2(e) to every edge e ∈ Ẽ

6 Compute a maximum-weight matching M∗ in G̃
7 if w2(M

∗) > |V |(2α′ + 1) then return M∗ ∩ E1

8 else return ∅

half of the smallest strictly positive difference between any two numbers in Qn.
Observe that ρ(M) ≥ α if and only if ρ(M) > α′.

For the test we construct M ′ via a maximum-weight matching in a graph
structure G̃ indicating the gains and losses in popularity. G̃ contains two full
copies of G. In addition, for each vertex v in G there is an edge connecting the
two copies of v. More formally, G̃ = (Ṽ , Ẽ), Ṽ = V1 ∪ V2 and Ẽ = E1 ∪ E2 ∪ E3.
(V1, E1) and (V2, E2) constitute two copies of G. E3 contains for each vertex v
in G an edge (v1, v2) between its two copies v1 ∈ V1 and v2 ∈ V2. We define edge
weights such that each maximum-weight matching M∗ in G̃ is perfect. Then, we
construct M ′ by restricting attention to V1 and matching the same vertices as
M∗ within V1. Vertices of V1 matched to their copy remain unmatched in M ′.

For clarity, we define the edge weights w2(e) in two steps. We first consider
weights w1 where, intuitively, w1(e) indicates whether the incident agents become
(+)-, (0)-, or (−)-agents when e is added to M . The value of w1 is used to charge
the (+)-agents to the (−)-agents. Formally, let e = (ui, vj) ∈ Ẽ and set

w1(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if v �u M(u) and u �v M(v),

1 if v �u M(u) and u =v M(v), or v =u M(u) and u �v M(v),

0 if v =u M(u) and u =v M(v),

1 − α′ if v �u M(u) and M(v) �v u, or M(u) �u v and u �v M(v),

−α′ if v =u M(u) and M(v) �v u, or M(u) �u v and u =v M(v),

−2α′ if M(u) �u v and M(v) �v u

We let w1(M) =
∑

e∈M w1(e).
If there is an α∗-more popular matching M ′, there is a perfect matching M̃

in G̃ with total weight w1(M̃) > 0. We simply install M ′ in both copies (V1, E1)
and (V2, E2) and match single vertices to their copy. Then, for every (+)-agent
in V + we add a weight of 2 on the incident edges of M̃ . For every (−)-agent in
V − we subtract a weight of 2α′ on the incident edges of M̃ . The contribution of
(0)-agents in V 0 to the edge weight is 0. Thus, as 2|V +| ≥ 2α∗|V −| > 2α′|V −|,
we get w1(M̃) > 0. In contrast, an arbitrary matching M̃ with w1(M̃) > 0
might not be perfect and thus impossible to be transformed into a α∗-more
popular matching in G. Towards this end, we change the weights to w2 with

Maintaining Near-Popular Matchings 511

w2(e) = w1(e) + 2α′ + 1 for every e ∈ Ẽ. We show that there is an α∗-more
popular matching M ′ if and only if a maximum-weight matching M∗ for w2 in
G̃ has w2(M∗) > |V |(2α′ +1). The key difference is that w2(e) > 0 for all e ∈ Ẽ,
and therefore under w2 every maximum-weight matching is perfect.

More formally, if there is an α∗-more popular matching M ′, we construct
M̃ as above and observe that w1(M̃) > 0 if and only if w2(M̃) > |V |(2α′ + 1).
For the other direction, we first claim that every maximum-weight matching
M∗ for w2 is perfect. Assume first there is some maximum matching M∗ where
some vertex v remains single. By M∗(V1) we denote the part of M∗ which only
uses vertices in V1. Similarly, M∗(V2) is the part of M∗ which only uses vertices
in V2. W.l.o.g. we assume w2(M∗(V1)) ≥ w2(M∗(V2)), and if w2(M∗(V1)) =
w2(M∗(V2)) we assume the number of unmatched vertices in V1 is larger or
equal to the number of unmatched vertices in V2. If w2(M∗(V1)) > w2(M∗(V2)),
then M∗ could be improved by matching V2 in the same manner as V1. Thus,
w2(M∗(V1)) = w2(M∗(V2)), and there is at least one single vertex v1 regarding
M∗ in V1. If the corresponding copy v2 ∈ V2 is single as well, we can improve
M∗ by adding (v1, v2). If v2 is matched, we can rearrange the matching on V2 to
mirror the one on V1 without loss in total weight. Then (v1, v2) can be added.
Hence, M∗ has to be a perfect matching.

Suppose w2(M∗) > |V |(2α′ +1), we construct an α∗-more popular matching
as follows. As M∗ has maximum-weight for w2, by the observations above we can
assume that M∗(V1) and M∗(V2) contain exactly the copies of the same edges of
E. Since M∗ is perfect, for each v ∈ V both copies v1, v2 are matched. If they are
matched via (v1, v2), we leave v single in M ′. Otherwise, the non-single agents in
M ′ are matched as their copies in M∗(V1). We claim that w2(M∗) > |V |(2α′+1)
implies M ′ is α∗-more popular. First, note that w2(M∗) > |V |(2α′ + 1) implies
w1(M∗) > 0. Especially, this implies that |V +| > 0. The preference of agent v
for M ′ corresponds to the contribution of v1 ∈ V1 to w1(M∗), i.e., v1 contributes
1,0, or −α′ when v ∈ V +, V 0, or V −, respectively. By symmetry of M∗ and of
edge weights in E3, the total contribution of vertices in V1 to w1(M∗) is exactly
w1(M∗)/2. Hence, w1(M∗) > 0 implies |V +| > α′|V −| for M ′. Here the choice of
α′ = α∗ − ε becomes crucial. By the choice of ε we know that the smallest value
of Qn larger than α′ is α∗. Thus, |V +| > α′|V −| also implies |V +| ≥ α∗|V −|
which shows |V +| ≥ α|V −|. Hence, w2(M∗) > |V |(2α′ + 1) if and only if an
α-more popular matching exists.

We can use the same approach for instances with one-sided preferences by
simply defining the preferences of the other side to be indifferent between all
potential matching partners as well as being single. �

2.2 Convergence and Amortized Number of Changes

Given that we can decide and find α-more popular matchings efficiently, we now
establish that for α > Δ the iterative resolution does not lead into cycles and
makes a small amortized number of changes per round.

512 S. Bhattacharya et al.

Theorem 2. DeferredResolution maintains a (Δ+k)-unpopular matching
by making an amortized number of O(Δ + Δ2/k) changes to the matching per
round with edge dynamics, for any k > 0.

Proof. Our proof is based on the following potential function

Φt(M) =
∑
v∈V

dt(v) + 1 − rank(M(v)) ,

where rank(M(v)) = i if in the preference list of v restricted to N t(v)∪{v}, part-
ner M(v) ranks at the ith position. Whenever DeferredResolution replaces
a matching M in round t with any (Δ+ k + ε)-more popular one M ′ with ε > 0,
we know that |V +| > (Δ + k)|V −|.

Consider the symmetric difference M ′ ⊕M = (M ∪M ′) \ (M ∩M ′). Observe
that due to strictness of preference lists, we have v ∈ V 0 if and only if M(v) =
M ′(v). In the two-sided or roommates case this also implies M(v) ∈ V 0. This
implies that the number of changes between M and M ′ is at most |M ⊕ M ′| ≤
|V +| + |V −| (or in the one-sided case |M ⊕ M ′| ≤ 2(|V +| + |V −|)).

First, suppose |V −| = 0. In these steps, the potential strictly increases by at
least |V +|. Thus, on the average, for every unit of increase in the potential, the
number of changes from M to M ′ is O(1). Second, suppose |V −| ≥ 1. Then for
every v ∈ V +, the potential increases by at least 1. For every v ∈ V −, it drops
by at most Δ. Let δ = |V +| − (Δ + k)|V −| > 0. Thus,

Φt(M ′) − Φt(M) ≥ |V +| − Δ|V −| ≥ �δ + k|V −|�

The average number of changes made per unit increase in the potential due to
updates of the matching with V − > 0 is at most

|M ⊕ M ′|
Φt(M ′) − Φt(M)

= O

(
1 +

Δ

k

)
.

Finally, we bound the total increase in the potential function over time. Consider
the rounds with additions and deletions of edges. If an edge is added in round t,
the maximum potential value increases by at most 2 (or 1 in the one-sided case)
and the current value of the potential does not decrease. If an edge is deleted,
the maximum potential value decreases by at most 2 (or 1 in the one-sided case)
and the current value of the potential decreases by at most 2Δ (or Δ in the one-
sided case). Thus, in total we can increase the potential up to at most twice the
number of edge additions. Also, each deletion creates the possibility to increase
the potential by at most 2Δ in subsequent rounds. This implies an amortized
potential increase of at most O(Δ) per round. Also, we get an average number
of O(1+Δ/k) changes in the matching per unit of potential increase. Combining
these insights yields the theorem. �

We can strengthen the latter result in case we have only edge additions.

Corollary 1. DeferredResolution maintains a (Δ+k)-unpopular matching
by making an amortized number of O(1+Δ/k) changes to the matching per round
with edge dynamics without deletions, for any k > 0.

Maintaining Near-Popular Matchings 513

Proof. In the previous proof we observed that rounds with edge additions gen-
erate an amortized potential increase of 1. Hence, we directly get the average
number of O(1 + Δ

k) changes in the matching per unit of potential increase also
as amortized change per round. �

The following corollary is due to the fact that we can simulate the addition
or deletion of a single vertex by Δ additions or deletions of the incident edges.
A similar reduction by Δ can be achieved without vertex deletions.

Corollary 2. DeferredResolution maintains a (Δ+k)-unpopular matching
by making an amortized number of O(Δ2 + Δ3/k) changes to the matching per
round with vertex dynamics, for any k > 0.

The above results apply in the roommates, two-sided, and one-sided cases.
The bound on the unpopularity factor is almost tight, even in terms of existence
in the one-sided case.

Proposition 1. There exist one-sided instances with maximum degree Δ for
every agent in Y such that every matching has unpopularity factor at least Δ.

Proof. As an example establishing the lower bound consider a one-sided instance
with |X| = Δ elements and |Y | = Δ + 1 agents. We assume there is a global
ordering x1, . . . , xΔ over elements and xi �y xi+1 for all agents y ∈ Y . If a
matching M leaves an element in X unmatched, we can add any single edge
and thereby create a matching with |V +| > 0 and |V −| = 0. By definition this
new matching is now ∞-more popular, and the unpopularity factor becomes
ρ(M) = ∞. For any matching M that matches all of X, we w.l.o.g. denote yi as
the agent with M(yi) = xi for i = 1, . . . , Δ, and yΔ+1 the remaining unmatched
agent. We show that M has unpopularity factor Δ by providing a matching M ′

that is Δ-more popular than M . Consider M ′ composed of edges (xi, yi+1) for
i = 1, . . . ,Δ and y1 unmatched. y1 is a (−)-agent, all others are (+)-agents. �

3 Two-Sided Matching and Lower Bounds

For the roommates case, the construction in [14] shows that there are instances
in which every matching has unpopularity factor of Ω(log Δ). In contrast, in the
two-sided case there always exists a stable matching, and every stable matching
is a popular matching. However, we show that maintaining a stable or popular
matching requires Ω(n) amortized changes per round, even in instances where
we have only edge or vertex additions and every agent has degree at most 2.

Theorem 3. There exist two-sided instances with Δ = 2 such that maintain-
ing a stable or popular matching requires Ω(n) amortized number of changes to
the matching per round for (1) edge dynamics with only additions, (2) vertex
dynamics with only additions in X and Y , (3) vertex dynamics with additions
and deletions only in X.

514 S. Bhattacharya et al.

The case of vertex dynamics and only additions to X can be tackled using the
standard DeferredAcceptance algorithm of Gale-Shapley for stable match-
ing.

Proposition 2. DeferredAcceptance maintains a stable matching by mak-
ing an amortized number of O(Δ) changes to the matching per round with vertex
dynamics and only additions to X.

Hence, without any additional assumptions we can only expect to main-
tain α-unpopular matchings for α > 1. Here we observe that our algorithm
DeferredResolution cannot be used to maintain matchings with unpopular-
ity factor significantly below Δ, even in the two-sided case. The problem is that
the iterative resolution may be forced to cycle.

Theorem 4. There is an instance with maximum degree Δ and an initial
matching such that no sequence of iterative resolution of matchings with unpop-
ularity factor (Δ − 1) leads to a α-unpopular matching, for any α < Δ − 1.

It is easy to force DeferredResolution into the cycle. We first add the
edges of one cycle matching, then the edges of the more popular cycle matching,
and finally the edges of the third cycle matching. DeferredResolution will
construct the first cycle matching and switch to the next one whenever it has
arrived entirely.

The proof here uses a particular instance with degree Δ = 3. Furthermore,
it shows that even though two-sided instances always have popular matchings,
there are instances and initial matchings such that no sequence of resolutions
towards more popular matchings converges. The following corollary sharply con-
trasts the one-sided case, in which there always exist voting paths of length 2
whenever a popular matching exists.

Corollary 3. There are two-sided matching instances and matchings from
which there is no voting path to a popular matching.

More generally, we can establish the following lower bound for any maximum
degree Δ ≥ 3.

Theorem 5. For every Δ ≥ 3 and k = 3, . . . ,Δ there is an instance with maxi-
mum degree Δ and an initial matching M such that any sequence of resolutions
of matchings with unpopularity factor at least k−1 does not converge to a (k−2)-
unpopular matching.

We can again steer DeferredResolution into the cycle. We first let
the edges (xj , yj) arrive that remain fixed throughout the cycle, for j =
Δ − k + 1, . . . ,Δ. Then, we let the remaining incident edges arrive for these
nodes. DeferredResolution will construct all edges (xj , yj) and keep them
in the matching throughout. Then, we assume edges (xj , yj) arrive iteratively
for j = 1, . . . , k−1. DeferredResolution will include each of these edges into
the matching. Subsequently, we consider the next matching from the cycle and
let the edges arrive iteratively, and so on. DeferredResolution will switch to
the next matching in the cycle whenever it has arrived entirely. It then infinitely
runs through the cycle once all edges have arrived.

Maintaining Near-Popular Matchings 515

References

1. Abraham, D., Irving, R., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM
J. Comput. 37(4), 1030–1045 (2007)

2. Abraham, D., Kavitha, T.: Voting paths. SIAM J. Disc. Math. 24(2), 520–537
(2010)

3. Ackermann, H., Goldberg, P., Mirrokni, V., Röglin, H., Vöcking, B.: Uncoordinated
two-sided matching markets. SIAM J. Comput. 40(1), 92–106 (2011)

4. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in O(log n)
update time. In: Proc. 52nd Symp. Foundations of Computer Science (FOCS),
pp. 383–392 (2011)

5. Bhattacharya, S., Henzinger, M., Italiano, G.: Deterministic fully dynamic
data structures for vertex cover and matching. In: Proc. 25th Symp. Discrete
Algorithms (SODA), pp. 785–804 (2015)

6. Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the marriage and
roommates problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol.
6078, pp. 97–108. Springer, Heidelberg (2010)

7. Diamantoudi, E., Miyagawa, E., Xue, L.: Random paths to stability in the
roommates problem. Games Econom. Behav. 48(1), 18–28 (2004)

8. Gärdenfors, P.: Match making: Assignments based on bilateral preferences.
Behavioural Sciences 20, 166–173 (1975)

9. Gupta, M., Peng, R.: Fully dynamic (1+ε)-approximate matchings. In: Proc. 54th
Symp. Foundations of Computer Science (FOCS), pp. 548–557 (2013)

10. Gusfield, D., Irving, R.: The Stable Marriage Problem: Structure and Algorithms.
MIT Press (1989)

11. Hoefer, M.: Local matching dynamics in social networks. Inf. Comput. 222, 20–35
(2013)

12. Hoefer, M., Wagner, L.: Locally stable marriage with strict preferences. In: Fomin,
F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II.
LNCS, vol. 7966, pp. 620–631. Springer, Heidelberg (2013)

13. Hoefer, M., Wagner, L.: Matching dynamics with constraints. In: Liu, T.-Y., Qi,
Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 161–174. Springer, Heidelberg
(2014)

14. Huang, C., Kavitha, T.: Near-popular matchings in the roommates problem.
SIAM J. Disc. Math. 27(1), 43–62 (2013)

15. Knuth, D.: Marriages stables et leurs relations avec d’autres problemes combina-
toires. Les Presses de l’Université de Montréal (1976)

16. Manlove, D.: Algorithmics of Matching Under Preferences. World Scientific (2013)
17. McCutchen, R.M.: The least-unpopularity-factor and least-unpopularity-margin

criteria for matching problems with one-sided preferences. In: Laber, E.S.,
Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957,
pp. 593–604. Springer, Heidelberg (2008)

18. Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover.
In: Proc. 42nd Symp. Theory of Computing (STOC), pp. 457–464 (2010)

19. Roth, A., Sotomayor, M.O.: Two-sided Matching: A study in game-theoretic
modeling and analysis. Cambridge University Press (1990)

20. Roth, A., Vate, J.V.: Random paths to stability in two-sided matching.
Econometrica 58(6), 1475–1480 (1990)

Ultra-Fast Load Balancing
on Scale-Free Networks

Karl Bringmann1, Tobias Friedrich2,3, Martin Hoefer4,
Ralf Rothenberger2,3(B), and Thomas Sauerwald5

1 Institute of Theoretical Computer Science, ETH Zurich, Switzerland
2 Friedrich Schiller University Jena, Jena, Germany

3 Hasso Plattner Institute, Potsdam, Germany
ralf.rothenberger@hpi.de

4 Max Planck Institute for Informatics, Saarbrücken, Germany
5 University of Cambridge, Cambridge, UK

Abstract. The performance of large distributed systems crucially
depends on efficiently balancing their load. This has motivated a large
amount of theoretical research how an imbalanced load vector can be
smoothed with local algorithms. For technical reasons, the vast majority
of previous work focuses on regular (or almost regular) graphs including
symmetric topologies such as grids and hypercubes, and ignores the fact
that large networks are often highly heterogenous.

We model large scale-free networks by Chung-Lu random graphs and
analyze a simple local algorithm for iterative load balancing. On n-node
graphs our distributed algorithm balances the load within O((log log n)2)
steps. It does not need to know the exponent β ∈ (2, 3) of the power-law
degree distribution or the weights wi of the graph model. To the best of
our knowledge, this is the first result which shows that load-balancing
can be done in double-logarithmic time on realistic graph classes.

1 Introduction

Load Balancing. Complex computational problems are typically solved on
large parallel networks. An important prerequisite for their efficient usage is
to balance the work load efficiently. Load balancing is also known to have appli-
cations to scheduling [17], routing [6], numerical computation such as solving
partial differential equations [16,19], and finite element computations [13]. In
the standard abstract formulation of load balancing, processors are represented
by nodes of a graph, while links are represented by edges. The objective is to
balance the load by allowing nodes to exchange loads with their neighbors via
the incident edges. Particularly popular are decentralized, round-based itera-
tive algorithms where a processor knows only its current load and that of the
neighboring processors. We focus on diffusive load balancing strategies, where
each processor decides how many jobs should be sent and balances its load with
its neighbors in each round. As the degrees of the topologies of many networks
follow heavy tailed statistics, our main interest lies on scale-free networks.
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 516–527, 2015.
DOI: 10.1007/978-3-662-47666-6 41

Ultra-Fast Load Balancing on Scale-Free Networks 517

Diffusion. On networks with n nodes, our balancing model works as follows: At
the beginning, each node i has some work load x

(0)
i . The goal is to obtain (a good

approximation of) the balanced work load x :=
∑n

i=1 x
(0)
i /n on all nodes. On

heterogenous graphs with largely varying node degrees it is natural to consider
a multiplicative quality measure: We want to find an algorithm which achieves
maxi x

(t)
i = O(x) at the earliest time t possible. Load-balancing is typically

considered fast if this can be achieved in time logarithmic in the number of
nodes. We aim at double-logarithmic time, which we call ultra-fast (following the
common use of the superlative “ultra” for double-logarithmic bounds [4,10,18]).

The diffusion model was first studied by Cybenko [6] and, independently,
Boillat [1]. The standard implementation is the first order scheme (FOS), where
the load vector is multiplied with a diffusion matrix P in each step. For regular
graphs with degree d, a common choice is Pij = 1/(d + 1) if {i, j} ∈ E. Already
Cybenko [6] in 1989 shows for regular graphs a tight connection between the
convergence rate of the diffusion algorithm and the absolute value of the second
largest eigenvalue λmax of the diffusion matrix P. While FOS can be defined for
non-regular graphs, its convergence is significantly affected by the loops which
are induced by the degree discrepancies. Regardless of how the damping factor
is chosen, FOS requires Ω(log n) rounds on a broad class of non-regular graphs.
For a proof and discussion of this statement we refer to the full version of this
paper.
Scale-free Networks. Many real-world graphs have a power law degree dis-
tribution, meaning that the number of vertices with degree k is proportional
to k−β , where β is a constant intrinsic to the network. Such networks are syn-
onymously called scale-free networks and have been widely studied. As a model
for large scale-free networks we use the Chung-Lu random graph model with a
power-law degree distribution with exponent β ∈ (2, 3). (See Section 2 for a for-
mal definition.) This range of β’s is typically studied as many scale-free networks
(e.g. co-actors, protein interactions, internet, peer-to-peer [15]) have a power law
exponent with 2 < β < 3. It is known that the diameter of this graph model is
Θ(log n) while the average distance between two vertices is Θ(log log n) [3].
Results. Scale-free networks are omnipresent, but surprisingly few rigorous
insights are known about their ability to efficiently balance load. Most results and
developed techniques for theoretically studying load balancing only apply to reg-
ular (or almost-regular) graphs. In fact, we cannot hope for ultra-fast balancing
on almost-regular graphs: Even for expander graphs of maximum degree d, there
is a general lower bound of Ω(log n/ log d) iterations for any distributed load bal-
ancing algorithms (for a proof of this statement we refer to the full version of
this paper). Our main result (cf. Theorem 2.1) shows that within O((log log n)2)
steps, our simple local balancing algorithm (cf. Algorithm 1) can balance the
load on a scale-free graph with high probability. The algorithm assumes that
the initial load is only distributed on nodes with degree Ω(polylog n) (cf. The-
orem 2.2), which appears to be a natural assumption in typical load balancing
applications. As the diameter of the graph is Θ(log n), ultra-fast balancing is
impossible if the initial load is allowed on arbitrary vertices. As standard FOS

518 K. Bringmann et al.

requires Ω(log n) rounds, our algorithm uses a different, novel approach to over-
come these restrictions.

Algorithm. The protocol proceeds in waves, and each wave (roughly) proceeds
as follows. First, the remaining load is balanced within a core of high-degree
nodes. These nodes are known to compose a structure very similar to a dense
Erdős-Rényi random graph and thereby allow very fast balancing. Afterwards,
the load is disseminated into the network from high- to low-degree nodes. Each
node absorbs some load and forwards the remaining to lower-degree neighbors.
If there are no such neighbors, the excess load is routed back to nodes it was
received from. In this way, the load moves like a wave over the graph in decreasing
order of degree and then swaps back into the core. We will show that each wave
needs O(log log n) rounds. The algorithm keeps initiating waves until all load is
absorbed, and we will show that only O(log log n) waves are necessary.

Techniques. There are a number of technical challenges in our analysis, mostly
coming from the random graph model, and we have to develop new techniques
to cope with them. For example, in scale-free random graphs there exist large
sparse areas with many nodes of small degree that result in a high diameter.
A challenge is to avoid that waves get lost by pushing too much load deep
into these periphery areas. This is done by a partition of nodes into layers with
significantly different degrees and waves that proceed only to neighboring layers.
To derive the layer structure, we classify nodes based on their realized degrees.
However, this degree might be different from the expected degree corresponding
to the weights wi of the network model, which is unknown to the algorithm.
This implies that nodes might not play their intended role in the graph and the
analysis (cf. Definition 4.2). This can lead to poor spread and the emersion of
a few, large single loads during every wave. Here we show that several types
of “wrong-degree” events causing this problem are sufficiently rare, or, more
precisely, they tend to happen frequently only in parts of the graph that turn
out not to be critical for the result. At the core, our analysis adjusts and applies
fundamental probabilistic tools to derive concentration bounds, such as a variant
of the method of bounded variances (cf. Theorem 4.1).

2 Model, Algorithms, and Formal Result

Chung-Lu Random Graph Model. We consider random graphs G = (V,E)
as defined by Chung and Lu [3]. Every vertex i ∈ V = {1, . . . , n} has a weight
wi with wi := β−2

β−1dn1/(β−1)i−1/(β−1) for i = 1, 2 . . . , n. The probability for
placing an edge {i, j} ∈ E is then set to min{wi wj/W, 1} with W :=

∑n
i=1 wi.

This creates a random graph where the expected degrees follow a power-law
distribution with exponent β ∈ (2, 3), the maximum expected node degree is
β−2
β−1dn1/(β−1) and d influences the average expected node degree Chung and Lu
[3]. The graph has a core of densely connected nodes which we define as

C :=
{

i ∈ V : degi � n1/2 −
√

n1/2 · (c + 1) ln n

}
.

Ultra-Fast Load Balancing on Scale-Free Networks 519

Algorithm 1. Balance load in waves from core to all other nodes
repeat

for phase t ← 1 to log log n do
for 32

3−β rounds do // 1. diffusion on the core

Nodes v with deg(v) � ω0 perform diffusion with P = D−1A
for L rounds do // 2. downward propagation

Every node absorbs at most m/nt2 load.
All remaining load is forwarded in equal shares to neighbors on
the next lower layer.

for L rounds do // 3. upward propagation

All nodes send their load back to the the next higher layer over
the edges they received it from. The distribution of load
amongst these edges can be arbitrary.

until terminated ;

Distributing the Load in Waves. Our main algorithm is presented in Algo-
rithm 1. It assumes that an initial total load of m resides exclusively on the
core C of the network. The first rounds are spend on simple diffusion on the
core with diffusion matrix P = D−1A, where A is the adjacency matrix and
D is the degree matrix. Afterwards, the algorithm pushes the load to all other
nodes in waves from the large to the small degree nodes and the other way
around. To define the direction of the waves, the algorithm partitions the nodes
into layers, where on layer k we have all nodes v of degree degv ∈ (ωk, ωk−1],
where ω0 = n1/2 −

√
n1/2 · (c + 1) ln n and ωk+1 = ω1−ε

k for a constant

0 < ε < min
{

(3−β)
(β−1) ,

β−2
3 , 1

2

(
1 −
√

3
β+1

)}
.

For every layer k we have ωk > 2
1

ε(β−1) . The last layer � is the first, for

which ω� � 2
1

ε(β−1) holds. In this case, we define the interval simply to include
all nodes with degree less than ω�−1. Note that in total we obtain at most
L := 1

log(1/(1−ε))

(
log log n + log ε(β−1)

2

)
layers. To choose an appropriate ε, we

have to know lower and upper bounds on β. These bounds are either known or
can be chosen as constants arbitrarily close to 2 and 3. The algorithm therefore
does not need to know the precise β. Our main result is then as follows.

Theorem 2.1. Let G = (V,E) be a Chung-Lu random graph as defined above.
For any load vector x(0) ∈ R

n
�0 with support only on the core C of the graph,

there is a τ = O((log log n)2) such that for all steps t � τ of Algorithm 1, the
resulting load vector x(t) fulfills x

(t)
u = O(x) for all u ∈ V w. h. p.1

1 w. h. p. is short for “with high probability”. We use w.h.p. to describe events that
hold with probability 1 − n−c for an arbitrary large constant c.

520 K. Bringmann et al.

Reaching the Core. Algorithm 1 and Theorem 2.1 above require that the ini-
tial total load resides exclusively on the core C of the network. As the diameter
of the network is Θ(log n) [3], we cannot hope to achieve a double-logarithmic
balancing time if all the initial load starts at an arbitrary small and remote
vertex. However, we can allow initial load on all nodes with at least some poly-
logarithmic degree by adding an initial phase in which all nodes send all their
load to an arbitrary neighbor on the next-highest layer. This initial local rout-
ing phase succeeds if all nodes with at least this polylogarithmic degree have at
least one neighbor on the next-highest layer. The following theorem, the proof
of which can be found in the full version of this paper, formalizes this result,
while the rest of the paper proves Theorem 2.1.

Theorem 2.2. Let G = (V,E) be a Chung-Lu random graph as defined
above. For any load vector x(0) ∈ R

n
�0 with support only on nodes with degree

Ω((log n)max(3,2/(3−β)), the initial phase reaches after L = Θ(log log n) steps a
load vector x(L) such that x

(L)
u has support only on the core C w. h. p.

3 Analysis of Load Balancing on the Core

We start our analysis of Algorithm 1 with its first step, the diffusion on the core.
Recall the definition of the core C of the network and consider the core subgraph
G̃ = (Ṽ , Ẽ) induced by C.

Lemma 3.1. The core subgraph G̃ of G fulfills

|1 − λk(L)| � Θ

(√
(c + 1) ln(4n)
n(3−β)/4

+
(2c ln n)1/4

n1/8

)

for all eigenvalues λk(L) > λmin(L) of the normalized Laplacian L(G̃) w. h. p.

The proof of Lemma 3.1 is based on Theorem 2 from [12] and can be found
in the full version of this paper. The following lemma states that after only a
constant number of diffusion rounds in G̃, the load of node v ∈ C is more or less
equal to m · wv/W0.

Lemma 3.2. After 32
3−β rounds of diffusion with P = D−1A in the core sub-

graph G̃, each node v ∈ C has a load of at most O
(
wy/

∑
x∈C wx

)
w. h. p.

The proof of Lemma 3.2 uses eq. 12.11 from [14] and can be found in the
full version, too. An implication of the lemma is, that there is a constant ε0 > 0
such that each node v ∈ C has a load of at most (1 + ε0) wv

W0
m after the first

phase of Algorithm 1.

4 Analysis of Top-Down Propagation

We continue our analysis of Algorithm 1. This section studies the down-
ward/upward propagation.

Ultra-Fast Load Balancing on Scale-Free Networks 521

Many of the proofs in this section are based on the following variant of the
method of bounded variances [8], which might be useful in its own respect.

Theorem 4.1. Let X1, . . . , Xn be independent random variables taking values
in {0, 1}, and set μ := E [

∑n
i=1 Xi]. Let f := f(X1, . . . , Xn) be a function

satisfying
|f | � M,

and consider an error event B such that for every Xn ∈ B

|f(Xn) − f(X′
n)| � c

for every X′
n that differs in only one position Xi from Xn, and for some c > 0.

Then for any 0 � t � cμ we have

Pr
[∣∣f − E [f]

∣∣ > t + (2M)2

c Pr[B]
]

� 2M
c Pr[B] + 2 exp

(
− t2

16c2μ

)
.

The proof of this theorem closely follows the one of the method of bounded
variances as can be found in [8]. For the sake of brevity, however, all proofs are
omitted in this version of the paper and interested readers are referred to the
full version.

First note that our algorithm deals with a random graph and therefore it
might happen that some of the nodes’ neighborhood look significantly different
from what one would expect by looking at the expected values. We call these
nodes dead-ends as they can not be utilized to effectively forward load. This
definition will be made precise in Definition 4.2 below.

Only for the sake of analysis we assume that dead-ends do not push load to
neighbors on the next lowest layer, but instead keep all of it. In reality the algo-
rithm does not differentiate between nodes which are dead-ends and nodes which
are no dead-ends. We also assume in this section that nodes do not consume any
load during the top-down distribution.

The main goal of this section is twofold. We first show that no node which
is not a dead-end, gets too much load. Then we show that the total load on all
dead-ends from the core down to a layer with nodes of a certain constant degree
is at most a constant fraction of the total load. The converse means that at least
a constant fraction of load reaches the nodes of the last layer we are considering.

We define Vk = {v | wv ∈ (ωk, ωk−1]} as the set of nodes on layer k and
nk = |Vk|. Let Wk =

∑
v∈Vi

wv be the total weight of nodes in layer k. Let

γ := 1
2

(
dβ−2

β−1

)β−1

. From the given weight sequence and the requirements ωk >

2
1

ε(β−1) and ωk < n1/(β−1), we can easily derive the following bounds. For all 0 �
k < � it holds that γ

2 ·nω1−β
k � nk � 4γ ·nω1−β

k .This implies Wk � γ
2 ·nω2−β

k .Let
d = W

n the expected average degree.
For a node v ∈ Vk we consider two partial degrees. Let Dh

v be the number of
edges to nodes in the higher layer k − 1, and D�

v is the number of edges to nodes

522 K. Bringmann et al.

in the lower layer k + 1. Note that Dh
v and D�

v are random variables, composed
of sums of independent Bernoulli trials:

Dh
v =

∑
u∈Vk−1

Ber
(wv · wu

W

)
and D�

v =
∑

u∈Vk+1

Ber
(wv · wu

W

)
.

In our proofs we will apply several well-known Chernoff bounds which use the
fact that partial degrees are sums of independent Bernoulli trials.

We now define four properties which will be used throughout the analysis.

Definition 4.2. A node v ∈ V is a dead-end if one of the following holds:

〈D1〉 In-/Out-degree: A node v ∈ Vk has this property if either |Dh
v −

E
[
Dh

v

]
| � E

[
Dh

v

]2/3 or |D�
v − E

[
D�

v

]
| � E

[
D�

v

]2/3.
〈D2〉 Wrong layer: A node v ∈ Vk has this property if it has a degree that

deviates by at least w
2/3
v from its expected degree.

〈D3〉 Border: A node v ∈ Vk has this property if it does not fulfill property 〈D2〉
and if it is of weight at least ωk−1 − ω

2/3
k−1 or at most ωk + ω

2/3
k−1 and if it

is assigned to the wrong layer.
〈D4〉 Induced Out-degree: A node v ∈ Vk has this property if it fulfills none

of the properties 〈D1〉 – 〈D3〉 and if it has at least (ωk Wk+1/W)2/3 many
lower-layer neighbors with properties 〈D2〉 or 〈D3〉.

The next lemma shows that for a non-dead-end node v ∈ Vk the received load xv

in phase k is almost proportional to the “layer-average load” m·wv/Wk. For dead-
ends, the received load can be higher, but the probability to receive significantly
higher load is small.

Lemma 4.3. For vk ∈ Vk and the received load xv in phase k the following
holds. If v is not a dead-end,

xv � (1 + εk) · m · wv

Wk
,

where for every layer k the error term εk is given by

(1 + εk) = (1 + εk−1) · (1 + O(ω−1+β/3
k)) · (1 + O(ω−(3−β)/6

k)) ,

so εk � εk+1 and εk = O(1).

Now we want to show that on each layer with sufficiently large constant
weight at most a small fraction of the total load remains on dead-ends. To do so,
we show that for each property 〈D1〉 – 〈D4〉 the nodes with these properties only
contribute a small enough fraction to the total dead-end load of each layer. We
begin by bounding the contribution of 〈D1〉-nodes to the total dead-end load.

Lemma 4.4. If ε � (3 − β)/(β − 1) and ωk >

(
2d
γ

(
1

2e−1

)3)2/(3−β)

, the prob-

ability that a node v ∈ Vk is a 〈D1〉-node is at most 2 exp(−c · ω
(3−β)/6
k), for

c = 1
4

(
γ

2d

)1/3

.

Ultra-Fast Load Balancing on Scale-Free Networks 523

An implication of the former lemma is that there are no 〈D1〉-nodes on layers
with weight at least polylog(n). Now that we have an understanding of which
layers actually contain 〈D1〉-nodes, we can start to derive high probability upper
bounds on the total load that is left on these nodes throughout the top-down
phase.

Lemma 4.5. If v ∈ Vk is a 〈D1〉-node, then

Pr
[

xv � α · m · wv

Wk

]
< exp

(
−Ω(ω(3−β)/2

k · min{α − 1, (α − 1)2})
)

.

Now we use the tail bound from Lemma 4.5 and overestimate the load dis-
tribution of 〈D1〉-nodes with an exponential distribution. In particular, for each
node v ∈ Vk we introduce the variable Xv that measures the “〈D1〉-load” of
this node, i.e. the load that each 〈D1〉-node keeps. We can now show that for
each node v ∈ Vk the following random variable stochastically dominates the
〈D1〉-load Xv.

Definition 4.6. For a node v ∈ Vk let

X̂v =

{
0 with prob. 1 − p̂v

�v

(
1 + Exp(λv) + E

[
Dh

v

]−2/3
)

with prob. p̂v ,

where p̂v = 2 exp
(

−E[Dh
v]1/3

4

)
is an upper bound for the probability that v is a

〈D1〉-node, λv = 1
4E
[
Dh

v

]
and �v = 2(1 + εk)m wv

Wk
.

Note that our 〈D1〉-load overestimates the contribution of v to the total load
left on 〈D1〉-nodes during the top-down phase. In particular, if v is not a 〈D1〉-
node, then no 〈D1〉-load is left on v and consequently the contribution is 0.
Otherwise, we use the tail bound from Lemma 4.5 as follows. We overestimate
the load by assuming that at least twice the layer-average load is present on v. For
the additional load, we can apply the tail bound under the condition α � 2, which
implies that this excess load is upper bounded by an exponentially distributed
random variable with a parameter λv = 1

4E
[
Dh

v

]
.

We first obtain a high probability bound on the total load left on 〈D1〉-nodes
in each layer k during the top-down phase.

Lemma 4.7. For every constant c > 0 and any k the total load left on 〈D1〉-
nodes in layer k is at most

4(1 + εk)m
ωk−1

Wk
c ln n + 40(1 + εk)m

ωk−1

Wk
nk exp

(
−1

4

(
ωk

Wk−1

W

)1/3
)

with probability at least 1 − n−c.

Now we take a closer look at nodes with property 〈D2〉. We can employ
a Chernoff Bound to show that nodes with polylogarithmically large weights

524 K. Bringmann et al.

do not deviate by w
2/3
v from their expected degree with high probability. This

means that none of these nodes fulfills property 〈D2〉 with high probability. In
the following analysis we can therefore concentrate on nodes with weight at most
polylog(n). This observation is crucial for the proof of Lemma 4.8.

Lemma 4.8. For any k all nodes v ∈ Vk with property 〈D2〉 contribute at most

O
((

1 + ω
−2/3
k

)3
ω

4−β+ε(β−1)
1−ε

k · exp
(
−ω

1/3
k /4

)
m

)
+ O

(
polylog(n)√

n
m

)

to the total dead-end load of all layers with probability at most 1 − 3
nC , for a

constant C > 1 + (β − 2)
(
1 + 1

1−ε

)
.

After successfully bounding the contribution of nodes with properties 〈D1〉
and 〈D2〉 to dead-end load, we will now turn to the border nodes with property
〈D3〉. We already know that these nodes cannot deviate too much from their
expected degrees, because they do not fulfill property 〈D2〉 by definition. There-
fore they can only be on one of two layers. We still have to differ between nodes
in the upper half of a border and those in the lower half. The following lemma
bounds the contribution of nodes in the upper half of a border.

Lemma 4.9. For any k all nodes v ∈ Vk with property 〈D3〉 and
ωk � wv � ωk + ω

2/3
k−1 contribute at most

Θ

(
ω

−ε(β−2)
k +

ωβ−2
k ωβ−2

k+1 · c ln n

n

)
m

to the total dead-end load of layer k + 1 w. h. p.

The following lemma about the contribution of nodes in the lower half of a
border uses the smoothness of the weight distribution.

Lemma 4.10. For any k all nodes v ∈ Vk+1 with property 〈D3〉 and
ωk − ω

2/3
k � wv � ωk contribute at most

(1 + εk)

⎛
⎜⎝6
(
dβ−2

β−1

)β−1

γ
2

ω
−1/3
k +

2 · ωβ−1
k

γ
2n

+
d · ωβ−2

k ωβ−2
k+1 · c ln n(

γ
2

)2
n

⎞
⎟⎠m

to the total dead-end load of layer k w. h. p.

At last we have to show that the dead-end load of nodes with property 〈D4〉
is properly bounded. We already know, that each of these nodes obeys the upper
bound from Lemma 4.3. Therefore it is sufficient to bound the number of these
nodes. To bound the number of these nodes in Vk, we simply have to bound the
total number of edges lost between nodes from Vk and nodes with properties
〈D2〉 or 〈D3〉 from Vk+1. This idea helps us to proof the following lemma.

Ultra-Fast Load Balancing on Scale-Free Networks 525

Lemma 4.11. Let ε < min
{

β−2
3 , 1

2

(
1 −
√

3
β+1

)}
. Then the following state-

ments hold:

(1) For all k > 0 the total load of nodes v ∈ Vk with property 〈D4〉 is at most

O
(

ω
2−β

3(1−ε)

k + ω
(2β2−11β+14)(β−2)

27(1−ε)

k + n
3+1−ε+2(β−2)(1−ε)2

6 −1

+ exp
(
−ω

1−ε
3

k /4
)

ω
1

1−ε+(β−2)

k +
polylog(n)√

n

)
m w. h. p.

(2) For k = 0 there are no 〈D4〉-nodes w. h. p.

Finally, we bound the total load left on dead-ends during the top-down phase.

Lemma 4.12. For every constant c, there exists a constant c′ such that if we run
the top-down phase on layers with ωi � c′, then with probability at least 1−1/n−c

we obtain a total load of at most m/2 on all dead-ends on these layers.

The last lemma implies that with high probability, for a suitably chosen key
layer at most half of the load is left on dead-ends during the top-down phase
on this and the above layers. In particular, our upper bound on the load of
non-dead-end nodes in Lemma 4.3 implies that on this layer, every such node
gets at most a load of (1 + εk) · m · wv/Wk. On the other hand, a load of m/2
passes through this layer w.h.p. In the worst case all non-dead-ends get the
maximum load of (1 + εk) · m · wv/Wk. This results in at least n γ

4(1+εk)
ωk

− β−1
(1−ε)

nodes which absorb m/n load each, causing a decrease of unassigned load by a
constant fraction of at least γ

4(1+εk)
ωk

− β−1
(1−ε) . Here, ωk � c′ where c′ is as chosen

in Lemma 4.12.

5 Analysis of Iterative Absorption

Algorithm 1 sends all unassigned load back to the top, balances it within the top
layer, and restarts the top-down distribution step. Observe that all the arguments
made for the analysis of the downward propagation can be applied for any value
of m. The absorption of load during these iterations is adjusted according to the
following scheme. We let each of the nodes absorb at most a load of m/(n · t2)
in round t. This scheme is executed for t = log log n rounds and then repeated
in chunks of log log n rounds until all load is assigned. We will show that with
high probability after a constant number of repetitions, all load is assigned. In
addition, as

∑∞
t=1 1/t2 = Π2/6, each node receives a load of (1 + O(1)) · m/n.

In particular, our aim is to show that using this scheme we need only
O(log log n) top-down distribution steps to reduce the total unassigned load in
the system to m′ = m/ logc n, for any constant c. This is shown in the lemma
below. Given this result, we run the protocol long enough such that c becomes
a sufficiently large constant. We want to show that, if this is the case, each node

526 K. Bringmann et al.

on a layer with polylogarithmic degree gets a load of at most m/n, resulting in
all remaining load being absorbed. As each non-dead-end on this layer gets a
share of at most wv

Wk

W m′ = polylog(n)
n m′ = m/n they fulfill the requirement. The

same bound holds for 〈D4〉-nodes by definition. As 〈D1〉- and 〈D2〉-nodes do not
appear on layers of at least polylogarithmic degree, we can ignore them as well.
All we need to care about now are 〈D3〉-nodes. We can derive upper bounds on
their load similar to the ones for non-dead-ends using results on the expected
number of edges between these nodes and both their possible next-highest layers.
This is a simple corollary from the proof of Theorem 2.2 which we defer to the
full version of the paper. It now remains to show the following lemma, the proof
of which can be found in the full version of this paper.

Lemma 5.1. Using the repeated absorption scheme of Algorithm 1, for any
constant c, only O(log log n) rounds suffice to reduce the unassigned load in the
network to m/ logc n.

6 Discussion

To the best of our knowledge, we have presented the first double-logarithmic
load balancing protocol for a realistic network model. Our algorithm reaches a
balanced state in time less than the diameter of the graph, which is a common
lower bound for other protocols (e.g. [9]). Note that our Theorem 2.1 can be
interpreted outside of the intended domain: It reproves (without using the fact)
that the giant component is of size Θ(n) (known from [3]) and that rumor
spreading to most vertices can be done in O(log log n) (known from [10]).

Our algorithm works fully distributed, and nodes decide how many tokens
should be sent or received based only on their current load (and those of its
neighbors). We expect our wave algorithm to perform very robust against node
and edge failures as it does not require global information on distances [9] or the
computation of a balancing flow [7].

Our Theorem 2.2 allows initial load on nodes with degree Ω(polylog n).
Future work includes a further relaxation of this assumption, for instance, by
employing results about greedy local-search based algorithms to find high degree
nodes [2,5]. Another interesting direction is to translate our load balancing
protocol into an algorithm which samples a random node using the analogy
between load and probability distributions. Such sampling algorithms are crucial
for crawling large-scale networks such as online social networks like Facebook,
where direct sampling is not supported [11].

References

1. Boillat, J.E.: Load balancing and poisson equation in a graph. Concurrency: Pract.
Exper., 2, 289–313 (1990)

2. Borgs, C., Brautbar, M., Chayes, J., Khanna, S., Lucier, B.: The power of local
information in social networks. In: Goldberg, P.W. (ed.) WINE 2012. LNCS,
vol. 7695, pp. 406–419. Springer, Heidelberg (2012)

Ultra-Fast Load Balancing on Scale-Free Networks 527

3. Chung, F., Lu, L.: The average distances in random graphs with given expected
degrees. Proceedings of the National Academy of Sciences 99, 15879–15882 (2002)

4. Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90,
058701 (2003)

5. Cooper, C., Radzik, T., Siantos, Y.: A fast algorithm to find all high degree vertices
in graphs with a power law degree sequence. In: Bonato, A., Janssen, J. (eds.) WAW
2012. LNCS, vol. 7323, pp. 165–178. Springer, Heidelberg (2012)

6. Cybenko, G.: Load balancing for distributed memory multiprocessors. J. Parallel
and Distributed Comput. 7, 279–301 (1989)

7. Diekmann, R., Frommer, A., Monien, B.: Efficient schemes for nearest neighbor
load balancing. Parallel Computing 25, 789–812 (1999)

8. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press (2009)

9. Elsässer, R., Sauerwald, T.: Discrete load balancing is (almost) as easy as continu-
ous load balancing. In: 29th Symp. Principles of Distributed Computing (PODC),
pp. 346–354 (2010)

10. Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in
social networks. In: 23rd Symp. Discrete Algorithms (SODA), pp. 1642–1660 (2012)

11. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in Facebook:
A case study of unbiased sampling of OSNs. In: 29th IEEE Conf. Computer
Communications (INFOCOM), pp. 2498–2506 (2010)

12. Graham, F.C., Radcliffe, M.: On the spectra of general random graphs. Electr. J.
Comb. 18 (2011)

13. Huebner, K.H., Dewhirst, D.L., Smith, D.E., Byrom, T.G.: The Finite Element
Methods for Engineers. Wiley (2001)

14. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. AMS
(2008)

15. Newman, M.E.J.: The structure and function of complex networks. SIAM Review
45, 167–256 (2003)

16. Subramanian, R., Scherson, I.D.: An analysis of diffusive load-balancing. In: 6th
Symp. Parallelism in Algorithms and Architectures (SPAA), pp. 220–225 (1994)

17. Surana, S., Godfrey, B., Lakshminarayanan, K., Karp, R., Stoica, I.: Load
balancing in dynamic structured peer-to-peer systems. Performance Evaluation
63, 217–240 (2006)

18. van der Hofstad, R.: Random graphs and complex networks (2011). www.win.tue.
nl/rhofstad/NotesRGCN.pdf

19. Zhanga, D., Jianga, C., Li, S.: A fast adaptive load balancing method for par-
allel particle-based simulations. Simulation Modelling Practice and Theory 17,
1032–1042 (2009)

www.win.tue.nl/ rhofstad/NotesRGCN.pdf
www.win.tue.nl/ rhofstad/NotesRGCN.pdf

Approximate Consensus in Highly Dynamic
Networks: The Role of Averaging Algorithms

Bernadette Charron-Bost1, Matthias Függer2, and Thomas Nowak3(B)

1 CNRS, École polytechnique, Palaiseau, France
charron@lix.polytechnique.fr

2 Max-Planck-Institut für Informatik, Saarbrucken, Germany
mfuegger@mpi-inf.mpg.de
3 ENS Paris, Paris, France

thomas.nowak@ens.fr

Abstract. We investigate the approximate consensus problem in highly
dynamic networks in which topology may change continually and unpre-
dictably. We prove that in both synchronous and partially synchronous
networks, approximate consensus is solvable if and only if the communi-
cation graph in each round has a rooted spanning tree. Interestingly, the
class of averaging algorithms, which have the benefit of being memory-
less and requiring no process identifiers, entirely captures the solvability
issue of approximate consensus in that the problem is solvable if and
only if it can be solved using any averaging algorithm.

We develop a proof strategy which for each positive result consists in
a reduction to the nonsplit networks. It dramatically improves the best
known upper bound on the decision times of averaging algorithms and
yields a quadratic time non-averaging algorithm for approximate con-
sensus in non-anonymous networks. We also prove that a general upper
bound on the decision times of averaging algorithms have to be expo-
nential, shedding light on the price of anonymity.

Finally we apply our results to networked systems with a fixed topol-
ogy and benign fault models to show that with n processes, up to 2n− 3
of link faults per round can be tolerated for approximate consensus,
increasing by a factor 2 the bound of Santoro and Widmayer for exact
consensus.

1 Introduction

Recent years have seen considerable interest in the design of distributed algo-
rithms for dynamic networked systems. Motivated by the emerging applications
of the Internet and mobile sensor systems, the design of distributed algorithms
for networks with a swarm of nodes and time-varying connectivity has been the
subject of much recent work. The algorithms implemented in such dynamic net-
works ought to be decentralized, using local information, and resilient to mobility
and link failures.

This work has been partially supported by a LIX-DGA contract.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 528–539, 2015.
DOI: 10.1007/978-3-662-47666-6 42

Approximate Consensus in Highly Dynamic Networks 529

A large number of distributed applications require to reach some kind of
agreement in the network in finite time. For example, processes may attempt
to agree on whether to commit or abort the results of a distributed database
transaction; or sensors may try to agree on estimates of a certain variable; or
vehicles may attempt to align their direction of motions with their neighbors.
Another example is clock synchronization where processes attempt to maintain
a common time scale. In the first example, an exact consensus is achieved on one
of the outcomes (namely, commit or abort) as opposed to the other examples
where processes are required to agree on values that are sufficiently close to each
other. The latter type of agreement is referred to as approximate consensus.

For the exact consensus problem, one immediately faces impossibility results
in truly dynamic networks in which some stabilization of the network during a
sufficiently long period of time is not assumed (see, e.g., [21] and [19, Chapter5]).
Because of its wide applicability, the approximate consensus problem appears as
an interesting weakening of exact consensus to circumvent these impossibility
results. The objective of the paper is exactly to study computability and com-
plexity of approximate consensus in dynamic networks in which the topology
may change continually and unpredictably.

Dynamic Networks. We consider a fixed set of processes that operate in rounds
and communicate by broadcast. In the first part of this article, rounds are sup-
posed to be synchronous in the sense that the messages received at some round
have been sent at that round. Then we extend our results to partially syn-
chronous rounds with a maximum allowable delay bound.

At each round, the communication graph is chosen arbitrarily among a set of
directed graphs that determines the network model. Hence the communication
graph can change continually and unpredictably from one round to the next.
The local algorithm at each process applies a state-transition function to its cur-
rent state and the messages received from its incoming neighbors in the current
communication graph to obtain a new state.

While local algorithms can be arbitrary in principle, the basic idea is to
keep them simple, so that coordination and agreement do not result from the
local computational powers but from the flow of information across the network.
In particular, we focus on averaging algorithms which repeatedly form convex
combinations. These algorithms thus have the benefit of requiring little compu-
tational overhead, e.g., allowing for efficient implementations, even in hardware.
One additional feature of averaging algorithms is to be memoryless in the sense
that the next value of each process is entirely determined only from the values of
its incoming neighbors in the current communication graph. More importantly,
they work in anonymous networks, not requiring processes to have identifiers.

The network model we consider unifies a wide variety of dynamic networks.
The most evident class of networks captured by this model are dynamic multi-
agent networks, in which communication links frequently go down while other
links are established due to the mobility of the agents. The network model can
also serve as an abstraction for static or dynamic wireless networks in which
collisions and interferences make it difficult to predict which messages will be

530 B. Charron-Bost et al.

delivered in time. Finally, it can also be used to model traditional communication
networks with a fixed communication graph and some transient link failures.

In our model, the number of processes n is fixed and known to each process.
However, all of our results still hold when n is not the exact number of processes
but only an upper bound. That allows us to extend the results to a completely
dynamic network with a maximal number of processes that may join or leave.

Finally, for simplicity, we assume that all processes start computation at
the same round. In fact, it is sufficient to assume that every process eventually
participates to the computation either spontaneously (in other words, initiates
the computation) or by receiving, possibly indirectly, a message from an initiator.

Contribution. We make the following contributions in this work:

(i) The main result is the exact characterization of the network models in which
approximate consensus is solvable. We prove that the approximate consensus
problem is solvable in a network model if and only if each communication graph
in this model has a rooted spanning tree. This condition guarantees that the
network has at least one coordinator in each round. The striking point is that
coordinators may continually change over time without preventing nodes from
converging to consensus. Accordingly, the network models in which approximate
consensus is solvable are called coordinated network models. This result high-
lights the key role played by averaging algorithms in approximate consensus: the
problem is solvable if and only if it can be solved using any averaging algorithm.

(ii) With averaging algorithms, we show that agreement with precision of ε
can be reached in O

(
nn+1 log 1

ε

)
rounds in a coordinated network model, which

dramatically improves the previous bound in [8]. As a matter of fact, every
general upper bound for the class of averaging algorithms has to be exponential
in the size of the network as exemplified by the butterfly network model [11,
20]. Besides we derive a non-averaging algorithm that achieves agreement with
precision of ε in O

(
n2 log 1

ε

)
rounds in non-anonymous networks.

(iii) We extend our computability and complexity results to the case of par-
tially synchronous rounds in which communication delays may be non-null but
are bounded by some positive integer Δ. We prove the same necessary and suf-
ficient condition on network models for solvability of approximate consensus,
and give an O

(
nnΔ+1 log 1

ε

)
upper bound on the number of rounds needed by

averaging algorithms to achieve agreement with precision of ε.
(iv) Finally, as an application of the above results, we revisit approximate

consensus in the context of communication faults. We prove a new result on
the solvability of approximate consensus in a complete network model in the
presence of benign communication faults, which shows that the number of link
faults that can be tolerated increases by a factor 2 when solving approximate
consensus instead of consensus.

Related Work. Agreement problems have been extensively studied in the
framework of static communication graphs or with limited topology changes (see,
e.g., [3,19]). In particular, the approximate consensus problem has been studied
in numerous papers in the context of a complete graph and at most f faulty

Approximate Consensus in Highly Dynamic Networks 531

processes (see, e.g., [2,14,15]). In the case of benign failures, this yields commu-
nication graphs with a fixed core of at least n − f processes that have outgoing
links to all processes, and so play the role of steady coordinators of the network.

There is also a large body of previous work on general dynamic networks.
However, in much of them, topology changes are restricted and the sequences of
communication graphs are supposed to be “well-formed” in various senses. Such
well-formedness properties are actually opposite to the idea of unpredictable
changes. In [1], Angluin, Fischer, and Jiang study the stabilizing consensus prob-
lem in which nodes are required to agree exactly on some initial value, but
without necessarily knowing when agreement is reached, and they assume that
any two nodes can directly communicate infinitely often. In other words, they
suppose the limit graph formed by the links that occur infinitely often to be com-
plete. To solve the consensus problem, Biely, Robinson, and Schmid [5] assume
that throughout every block of 4n − 4 consecutive communication graphs there
exists a stable set of roots. Coulouma and Goddard [12] weaken the latter sta-
bility condition to obtain a characterization of the sequences of communication
graphs for which consensus is solvable. Kuhn, Lynch, and Oshman [17] study
variations of the counting problem; they assume bidirectional links and a sta-
bility property, namely the T -interval connectivity which stipulates that there
exists a stable spanning tree over every T consecutive communication graphs.
All their computability results actually hold in the case of 1-interval connectivity
which reduces to a property on the set of possible communication graphs, and
the cases T > 1 are investigated just to improve complexity results. Thus they
fully model unpredictable topology changes, at least for computability results
on counting in a dynamic network.

The network model in [17], however, assumes a static set of nodes and commu-
nication graphs that are all bidirectional and connected. The same assumptions
are made to study the time complexity of several variants of consensus [18] in
dynamic networks. Concerning the computability issue, such strong assumptions
make exact agreement trivially solvable: since communication graphs are con-
tinually strongly connected, nodes can collect the set of initial values and then
make a decision on the value of some predefined function of this set.

The most closely related pieces of work are without a doubt those about asymp-
totic consensus and more specifically consensus sets: a consensus set is a set of
stochastic matrices such that every infinite backward product of matrices from
this set converges to a rank one matrix. Computations of averaging algorithms
correspond to infinite products of stochastic matrices, and the property of asymp-
totic consensus is captured by convergence to a rank one matrix. Hence, when an
upper bound on the number of nodes is known, the notion of network models in
which approximate consensus is solvable reduces to the notion of consensus sets if
we restrict ourselves to averaging algorithms. However the characterization of con-
sensus sets in [6,13] is not included into our main computability result for approx-
imate consensus since the fundamental assumption of a self loop at each node in
communication graphs (a process can obviously communicate with itself) does
not necessarily hold for the directed graphs associated to stochastic matrices in a

532 B. Charron-Bost et al.

consensus set. The characterization of compact consensus sets in [6,13] and our
computability result of approximate consensus are thus incomparable.

In the same vein, some of our positive results can be shown equivalent to
results about stochastic matrix products in the vast existing literature on asymp-
totic consensus. Notably Theorem 3 is similar to the central result in [7], but for
that we develop a new proof strategy which consists in a reduction to nonsplit
network models. The resulting proof is much simpler and direct as it requires
neither star graphs [7] nor Sarymsakov graphs [23]. Moreover our proof yields a
significantly better upper bound on the time complexity of averaging algorithms
in coordinated network models, namely O

(
nn+1 log 1

ε

)
instead of O

(
nn2

log 1
ε

)
in [8]. It also yields a non-averaging algorithm that achieves agreement with
precision of ε in O

(
n2 log 1

ε

)
rounds in non-anonymous networks.

2 Approximate Consensus and Averaging Algorithms

We assume a distributed, round-based computational model in the spirit of the
Heard-Of model [10]. A system consists of a set of processes [n] = {1, . . . , n}. Com-
putation proceeds in rounds: In a round, each process sends its state to its outgo-
ing neighbors, receives values from its incoming neighbors, and finally updates its
state. The value of the updated state is determined by a deterministic algorithm,
i.e., a transition function that maps the values in the incoming messages to a new
state value. Rounds are communication closed in the sense that no process receives
values in round k that are sent in a round different from k.

Communications that occur in a round are modeled by a directed graph G =
([n], E(G)) with a self-loop at each node. The latter requirement is quite natu-
ral as a process can obviously communicate with itself instantaneously. Such a
directed graph is called a communication graph. We denote by Inp(G) the set of
incoming neighbors of p and by Outp(G) the set of outgoing neighbors of p in G.
Similarly InS(G) and OutS(G) denote the sets of the incoming and outgoing
neighbors of the nodes in a non-empty set S ⊆ [n]. The cardinality of Inp(G) is
called the in-degree of process p in G.

A communication pattern is a sequence (G(k))k�1 of communication graphs.
Here, E(k), Inp(k) and Outp(k) stand for E (G(k)), Inp(G(k)) and Outp(G(k)),
respectively.

Each process p has a local state sp whose value at the end of round k � 1
is denoted by sp(k). Process p’s initial state, i.e., its state at the beginning of
round 1, is denoted by sp(0). The global state at the end of round k is the
collection s(k) = (sp(k))p∈[n]. The execution of an algorithm from global ini-
tial state s(0), with communication pattern (G(k))k�1 is the unique sequence
(s(k))k�0 of global states defined as follows: for each round k � 1, process p
sends sp(k − 1) to all the processes in Outp(k), receives sq(k − 1) from each
process q in Inp(k), and computes sp(k) from the incoming messages, according
to the algorithm’s transition function.

Consensus and Approximate Consensus. A crucial problem in distributed
systems is to achieve agreement among local process states from arbitrary initial

Approximate Consensus in Highly Dynamic Networks 533

local states. It is a well-known fact that this goal is not easily achievable in the
context of dynamic network changes [16,21], and restrictions on communication
patterns are required for that. A network model thus is a non-empty set N of
communication graphs, those that may occur in communication patterns.

We now consider the above round-based algorithms in which the local state
of process p contains two variables xp and decp. Initially, the range of xp is [0, 1]
and decp = ⊥ (which informally means that p has not decided). Process p is
allowed to set decp to the current value of xp, and so to a value v different
from ⊥, only once; in that case we say that p decides v. An algorithm achieves
consensus with communication pattern (G(k))k�1 if each execution from a global
initial state as specified above and with the communication pattern (G(k))k�1

fulfills the following three conditions: (i) Agreement: The decision values of any
two processes are equal. (ii) Integrity: The decision value of any process is an
initial value. (iii) Termination: All processes eventually decide.

An algorithm solves consensus in a network model N if it achieves consensus
with each communication pattern formed with graphs all in N . Consensus is
solvable in N if there exists an algorithm that solves consensus in N . Observe
that consensus is solvable in n−1 rounds if each communication graph is strongly
connected. The following impossibility result due to Santoro and Widmayer [21],
however, shows that network models in which consensus is solvable are highly
constrained: consensus is not solvable in some “almost complete” graphs. Namely
that consensus is not solvable in the network model comprising all communica-
tion graphs in which at least n − 1 processes have outgoing links to all other
processes. The above theorem has been originally stated in the context of link
faults in a complete communication graph but its scope can be trivially extended
to dynamic communication networks.

To circumvent the impossibility of consensus even in such highly restricted
network models, one may weaken Agreement into ε-Agreement: The decision
values of any two processes are within an a priori specified ε > 0; and replace
Integrity by Validity: All decided values are in the range of the initial values of
processes.

An algorithm achieves ε-consensus with communication pattern (G(k))k�1 if
each execution from a global initial state as specified above and with the commu-
nication pattern (G(k))k�1 fulfills Termination, Validity, and ε-Agreement. An
algorithm solves approximate consensus in a network model N if for any ε > 0,
it achieves ε-consensus with each communication pattern formed with graphs all
in N . Approximate consensus is solvable in a network model N if there exists
an algorithm that solves approximate consensus in N .

Averaging Algorithms. We focus on averaging algorithms which require little
computational overhead and, more importantly, have the benefit of working in
anonymous networks. The update rules for each variable xp are of the form:

xp(k) =
∑

q∈Inp(k)

wqp(k)xq(k − 1), (1)

534 B. Charron-Bost et al.

where wqp(k) are positive reals and
∑

q∈Inp(k)
wqp(k) = 1. In other words, at each

round k, process p updates xp to some weighted average of the values xq(k − 1)
it has just received. For convenience, we let wqp(k) = 0 if q /∈ Inp(k).

An averaging algorithm with parameter � > 0 is an averaging algorithm
with the positive weights uniformly lower bounded by � : ∀k � 1, p, q ∈ [n] :
wqp(k) ∈ {0}∪[�, 1]. Since we strive for distributed implementations of averaging
algorithms, wqp(k) is required to be locally computable. Finally note that the
decision rule is not specified in the above definition: the decision time immedi-
ately follows from the number of rounds that is proven to be sufficient to reach
ε-Agreement.

Some averaging algorithms with locally computable weights are of particular
interest, such as the equal neighbor averaging algorithm, where at each round k
process p chooses wqp(k) = 1/| Inp(k)| for every q in Inp(k). It is clearly an
averaging algorithm with parameter � = 1/n.

3 Solvability and Complexity of Approximate Consensus

In this section, we characterize the network models in which approximate consen-
sus is solvable. First we prove that every averaging algorithm solves approximate
consensus in nonsplit network models, and extend this result to coordinated net-
work models by a reduction to the nonsplit case. The latter result which is quite
intuitive in the case of a fixed coordinator, actually holds when coordinators
vary over time. Our proof of this known result (in the context of products of
stochastic matrices) yields a new upper bound on the decision times of averag-
ing algorithms and a quadratic time approximate consensus algorithm for non-
anonymous coordinated networks. A classical partitioning argument combined
with a characterization of rooted graphs [9] shows that the condition of rooted
graphs is actually necessary to solve approximate consensus.

Nonsplit Network Model. A directed graph G is nonsplit if for all pro-
cesses (p, q), it holds that Inp(G) ∩ Inq(G) �= ∅ . A nonsplit network model is
a network model in which each communication graph is nonsplit.

Intuitively, the occurrence of a nonsplit communication graph makes the vari-
ables xp in an averaging algorithm to come closer together: any two processes p
and q have at least one common incoming neighbor, leading to a common term
in both p’s and q’s average. The convergence proof in [9] of infinite backward
products of scrambling stochastic matrices, using the sub-multiplicativity of the
Dobrushin’s coefficient, formalizes this intuition and yields:

Theorem 1. In a nonsplit network model of n processes, every averaging algo-
rithm with parameter � achieves ε-consensus in 1

� log 1
ε rounds.

Theorem 1 can be easily extended with respect to the granularity at which
the assumption of nonsplit graphs holds. Let the product of two directed graphs
G and H with the same set of nodes V be the directed graph G ◦ H with set
of nodes V and a link from (p, q) if there exists r ∈ V such that (p, r) ∈ E(G)

Approximate Consensus in Highly Dynamic Networks 535

and (r, q) ∈ E(H). For any positive integer K, we say a network model N is
K-nonsplit if any product of K graphs from N is nonsplit.

Corollary 2. In a K-nonsplit network model of n processes, every averaging
algorithm with parameter � achieves ε-consensus in K�−K log 1

ε + K −1 rounds.

Coordinated Network Model. A directed graph G is said to be p -rooted, for
some node p, if for every node q, there exists a directed path from p to q. Then p
is called a root of G.

While communication graphs remain p-rooted, process p can play the role of
network coordinator: its particular position in the network allows p to impose
its value on the network. Accordingly, a network model is said to be coordinated
if each of its graphs is rooted. It is easy to grasp why in the case of a steady
coordinator, processes converge to a common value and so achieve approximate
consensus when running an averaging algorithm. We now show that the same
still holds when coordinators change over time.

Theorem 3. In a coordinated network model of n processes, every averaging
algorithm with parameter � achieves ε-consensus in n�−n log 1

ε + n − 1 rounds.

The following lemma is the heart of our proof. Corollary 2 allows us to conclude.

Lemma 4. Every coordinated network model with n processes is (n−1)-nonsplit.

Proof. Let H1, . . . , Hn−1 be a sequence of n − 1 communication graphs, each of
which is rooted. We recursively define the sets Sp(k) by

Sp(0) = {p} and Sp(k) = InSp(k−1)(Hk) for k ∈ {1, . . . , n − 1} . (2)

Then Sp(k) = Inp(Hk ◦ · · · ◦ H1); because of the self-loops, Sp(k) ⊆ Sp(k + 1)
and none of the sets Sp(k) is empty.

Now we have to show that for any p, q ∈ [n],

Sp(n − 1) ∩ Sq(n − 1) �= ∅ . (3)

If p = q, then (3) trivially holds. Otherwise, assume by contradiction that (3)
does not hold; for each k ∈ {0, . . . , n − 1}, the sets Sp(k) and Sq(k) are disjoint.
Consider the sequences Sp(0) ⊆ · · · ⊆ Sp(n − 1), Sq(0) ⊆ · · · ⊆ Sq(n − 1), and
Sp(0) ∪ Sq(0) ⊆ · · · ⊆ Sp(n − 1) ∪ Sq(n − 1). Because |Sp(0) ∪ Sq(0)| � 2 if p �= q
and |Sp(n−1)∪Sq(n−1)| � n, the latter sequence cannot be strictly increasing
by the pigeonhole principle. Therefore Sp(�) ∪ Sq(�) = Sp(� + 1) ∪ Sq(� + 1) for
some � ∈ {0, . . . , n − 2}. Since Sp(�) ∩ Sq(�) = ∅ and Sp(� + 1) ∩ Sq(� + 1) = ∅,
it follows that Sp(�) = Sp(� + 1) and Sq(�) = Sq(� + 1). Hence both Sp(�) and
Sq(�) have no incoming links in the graph H�+1. This implies these sets both
contain all the roots of H�+1, a contradiction to the disjointness assumption.

The major difference with the previous proofs of this result [7,9] lies in the
fact that we deal with “cumulative graphs” which are just nonsplit (scrambling

536 B. Charron-Bost et al.

matrices) instead of being star graphs (matrices with a positive column). In other
words, we analyze the evolution of the lines and not of the columns of backward
products of stochastic matrices. That allows for a drastic improvement of the
decision time of averaging algorithms.

From [9], we derive that a directed graph G is rooted iff the acyclic con-
densation of G has a sole source. Combined with a simple partitioning argu-
ment, we show there exists no algorithm, whether or not it is an averaging
algorithm, achieving approximate consensus in a network model with some non-
rooted graphs. With our positive result in Theorem 3, this gives:

Theorem 5. The approximate consensus problem is solvable in a synchronous
network model N if and only if N is a coordinated model.

Time Complexity of Approximate Consensus. Even with the improvement
of Theorem 3, the upper bound on the decision times of averaging algorithms
is exponential in the number n of processes. In particular, the equal neighbor
averaging algorithm achieves ε-consensus in O

(
nn+1 log 1

ε

)
rounds. The butterfly

network model [11,20] is an example of a coordinated network model for which
the equal neighbor averaging algorithm exhibits an exponentially large decision
time. The example does not even require the network to be dynamic, using a
time-constant network only. More precisely by spectral gap arguments, we show
the following lower bound.

Theorem 6. There is a coordinated model consisting of one graph such that, for
any ε > 0, the equal neighbor averaging algorithm does not achieve ε-consensus
by round k if k = O

(
2n/3 log 1

ε

)
.

Another benefit of Lemma 4 is to provide an approximate consensus algo-
rithm with a quadratic decision time. Indeed Lemma 4 corresponds to a uniform
translation in the Heard-Of model [10] that transforms each block of n−1 consec-
utive coordinated rounds into one nonsplit macro-round. If each process applies
an equal neighbor averaging procedure only at the end of each macro-round
instead of applying it round by round, the resulting distributed algorithm (cf.
Algorithm 1), which is no more an averaging algorithm and requires a unique
identifier for each process, achieves ε-consensus in only O

(
n2 log 1

ε

)
rounds, hint-

ing at a price of of anonymity.

Algorithm 1. A quadratic time Approximate Consensus algorithm
Initially:
1: xp ∈ [0, 1] and Vp ← {(p, xp)}
In round k � 1 do:
2: send Vp to all processes in Outp(k) and receive Vq from all processes q in Inp(k)
3: Vp ← ⋃q∈Inp(k)

Vq

4: if k ≡ 0 mod n − 1 then
5: xp ←∑(q,xq)∈Vp

wqp(k)xq

6: Vp ← {(p, xp)}
7: end if

Approximate Consensus in Highly Dynamic Networks 537

4 Synchronism and Faults

Partially Synchronous Networks. Rounds so far have been supposed to
be synchronous: messages are delivered in the same round in which they are
sent. In [4,22], the latter condition is relaxed by allowing processes to receive
outdated messages, and by bounding the number of rounds between the send-
ing and the receipt of messages by some positive integer Δ. That results in
the definitions of Δ-partially synchronous rounds and Δ-bounded executions.
The communication graph at round k is understood to be the directed graph
defined by the incoming messages at round k. In the case of averaging algo-
rithms, xp(k) =

∑
q∈Inp(k)

wqp(k)xq

(
κp

q(k)
)
, where k − Δ � κp

q(k) � k − 1.
Since process p has immediate access to xp, we assume κp

p(k) = k − 1.
We now extend the results in the previous section to partially synchronous

rounds. Our proof strategy is based on a reduction to the synchronous case: each
process corresponds to a set of Δ virtual processes, and every Δ-bounded exe-
cution of an averaging algorithm with n processes coincides with a synchronous
execution of an averaging algorithm with nΔ processes.

Unfortunately, Theorem 3 does not simply apply since the key property of
a self-loop at each node is not preserved in this reduction. We overcome this
difficulty by using Corollary 2 directly: First we prove that if all the graphs
in the Δ-bounded execution are rooted, then each cumulative graph over nΔ
consecutive rounds of the synchronous execution is nonsplit. To conclude, we
observe that Corollary 2 holds even when some nodes have no self-loop. Again
the reduction to nonsplit rounds allows for a much better upper bound on the
decision time of the equal neighbor algorithm, namely O

(
nnΔ+1 log 1

ε

)
instead

of O
(
n(Δn)2 log 1

ε

)
in [8,9].

We can now extend the characterization of the network models in which
approximate consensus is solvable in Theorem 5 to computations with partially
synchronous rounds.

Theorem 7. The approximate consensus problem is solvable in a partially syn-
chronous network model N if and only if N is a coordinated model.

Communication Faults. Time varying communication graphs may result from
benign communication faults (message losses) in a fixed network. In the light of
Theorem 3, we revisit the problem of approximate consensus in the context of a
complete network and communication faults.

Theorem 8. Approximate consensus is solvable in a complete network with n
processes if there are at most 2n − 3 link faults per round.

Proof. We actually prove that any directed graph with n nodes and at least
n2 − 3n + 3 links is rooted. Since n2 − 3n + 3 = (n2 − n) − (2n − 3), the theorem
immediately follows.

538 B. Charron-Bost et al.

Assume that G is not a rooted graph. Then the condensation of G has two
nodes without incoming link. We denote the corresponding two strongly con-
nected components in G by S1 and S2, and their cardinalities by n1 and n2,
respectively. Therefore the number of links in G that are not self-loops is at most
equal to n2−n−n1(n−n1)−n2(n−n2). Since n2−n−n1(n−n1)−n2(n−n2) �
n2 − 3n + 2 when n1, n2 ∈ [n − 1], G has at most n2 − 3n + 2 links.

Compared with the impossibility result established by Santoro and Wid-
mayer [21] for exact consensus with n − 1 faults per round, the above theorem
shows that the number of link faults that can be tolerated increases by a fac-
tor 2 when solving approximate consensus instead of consensus. Besides it is easy
to construct a non-rooted communication graph with n2 − 2n + 2 links which,
combined with Theorem 5, shows that the bound in the above theorem is tight.

5 Discussion

The main goal of this paper has been to characterize the dynamic network models
in which approximate consensus is solvable. As for exact consensus, approximate
consensus does not require strong connectivity and it can be solved under the sole
assumption of rooted communication graphs. However contrary to the condition
of a stable set of roots and identifiers supposed in [5] for achieving consensus,
approximate consensus can be solved even though roots arbitrarily change over
time and processes are anonymous. In these respects, approximate consensus
seems to be more suitable than consensus for handling real network dynamicity.

While anonymity of processes does not affect solvability, it could increase
decision times in view of our quadratic time approximate consensus algorithm
for a coordinated network with process identifiers, and the upper bound for
averaging algorithms that we proved to be necessarily exponential.

Acknowledgments. We wish to thank Alex Olshevsky for helpful discussions on con-
sensus sets, Martin Perner for many detailed comments, and Martin Biely for pointing
out the full implications of the round translation in Lemma 4.

References

1. Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing consensus in mobile networks. In:
Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS,
vol. 4026, pp. 37–50. Springer, Heidelberg (2006)

2. Attiya, H., Lynch, N.A., Shavit, N.: Are wait-free algorithms fast? J. ACM 41(4),
725–763 (1994)

3. Attiya, H., Welch, J.: Distributed Computing. Wiley, Hoboken (2005)
4. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical

Methods. Athena Scientific, Belmont (1989)
5. Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic networks. In:

Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 73–84.
Springer, Heidelberg (2012)

Approximate Consensus in Highly Dynamic Networks 539

6. Blondel, V., Olshevshy, A.: How to decide consensus? A combinatorial necessary
and sufficient condition and a proof that consensus is decidable but NP-hard. SIAM
J. Control Optim. 52(5), 2707–2726 (2014)

7. Cao, M., Morse, A.S., Anderson, B.D.O.: Reaching a consensus in a dynami-
cally changing environment: a graphical approach. SIAM J. Control Optim. 47(2),
575–600 (2008)

8. Cao, M., Morse, A.S., Anderson, B.D.O.: Reaching a consensus in a dynamically
changing environment: convergence rates, measurement delays, and asynchronous
events. SIAM J. Control Optim. 47(2), 601–623 (2008)

9. Charron-Bost, B.: Orientation and connectivity based criteria for asymptotic con-
sensus (2013). arXiv:1303.2043v1 [cs.DC]

10. Charron-Bost, B., Schiper, A.: The Heard-Of model: computing in distributed
systems with benign faults. Distrib. Comput. 22(1), 49–71 (2009)

11. Chung, F.R.: Spectral Graph Theory. AMS, Providence (1997)
12. Coulouma, É., Godard, E.: A characterization of dynamic networks where consen-

sus is solvable. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS,
vol. 8179, pp. 24–35. Springer, Heidelberg (2013)

13. Daubechies, I., Lagarias, J.C.: Sets of matrices all infinite products of which con-
verge. Linear Algebra Appl. 161, 227–263 (1992)

14. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approx-
imate agreement in the presence of faults. J. ACM 33(2), 499–516 (1986)

15. Fekete, A.D.: Asymptotically optimal algorithms for approximate agreement. Dis-
trib. Comput. 4(1), 9–29 (1990)

16. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

17. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: 42nd ACM Symposium on Theory of Computing, pp. 513–522. ACM,
New York City (2010)

18. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks.
In: 30th Annual ACM Symposium on Principles of Distributed Computing, pp.
1–10. ACM, New York City (2011)

19. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
20. Olshevsky, A., Tsitsiklis, J.N.: Degree fluctuations and the convergence time of

consensus algorithms (2011), arXiv:1104.0454v1 [math.OC]
21. Santoro, N., Widmayer, P.: Time is not a healer. In: Monien, B., Cori, R. (eds.)

6th Symposium on Theoretical Aspects of Computer Science, LNCS, vol. 349, pp.
304–313. Springer, Heidelberg (1989)

22. Tsitsiklis, J.N.: Problems in Decentralized Decision Making and Computation.
Ph.D. thesis, Massachusetts Institute of Technology (1984)

23. Xia, W., Cao, M.: Sarymsakov matrices and their application in coordinating
multi-agent systems. In: 31st Chinese Control Conference, pp. 6321–6326. IEEE,
New York City (2012)

http://arxiv.org/abs/1303.2043v1
http://arxiv.org/abs/1104.0454v1

The Range of Topological Effects
on Communication

Arkadev Chattopadhyay1 and Atri Rudra2(B)

1 Tata Institute of Fundamental Research, Mumbai, India
arkadev.c@tifr.res.in

2 University at Buffalo, SUNY, Buffalo, NY, USA
atri@buffalo.edu

Abstract. We continue the study of communication cost of computing
functions when inputs are distributed among k processors, each of which
is located at one vertex of a network/graph called a terminal. Every other
node of the network also has a processor, with no input. The communica-
tion is point-to-point and the cost is the total number of bits exchanged
by the protocol, in the worst case, on all edges.

Chattopadhyay, Radhakrishnan and Rudra (FOCS’14) recently initi-
ated the study of the effect of topology of the network on the total com-
munication cost using tools from L1 embeddings. Their techniques pro-
vided tight bounds for simple functions like Element-Distinctness (ED),
which depend on the 1-median of the graph. This work addresses two
other kinds of natural functions. We show that for a large class of natu-
ral functions like Set-Disjointness the communication cost is essentially
n times the cost of the optimal Steiner tree connecting the terminals.
Further, we show for natural composed functions like ED ◦ XOR and
XOR ◦ ED, the naive protocols suggested by their definition is opti-
mal for general networks. Interestingly, the bounds for these functions
depend on more involved topological parameters that are a combination
of Steiner tree and 1-median costs.

To obtain our results, we use some new tools in addition to ones used
in Chattopadhyay et al. These include (i) viewing the communication
constraints via a linear program; (ii) using tools from the theory of tree
embeddings to prove topology sensitive direct sum results that handle
the case of composed functions and (iii) representing the communica-
tion constraints of certain problems as a family of collection of multiway
cuts, where each multiway cut simulates the hardness of computing the
function on the star topology.

1 Introduction

We consider the following distributed computation problem p ≡ (f,G,K,Σ):
there is a set K of k processors that have to jointly compute a function f :
ΣK → {0, 1}. (Unless stated otherwise, we will assume that Σ = {0, 1}n.) Each
of the k inputs to f is held by a distinct processor. Each processor is located on
some node of a network (graph) G ≡ (V,E). These nodes in V with an input are
called terminals and the set of such nodes is denoted by K. The other nodes in
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 540–551, 2015.
DOI: 10.1007/978-3-662-47666-6 43

The Range of Topological Effects on Communication 541

V have no input but have processors that also participate in the computation of
f via the following communication process: there is some fixed a-priori protocol
according to which, in each round of communication, nodes of the network send
messages to their neighbors. The behavior of a node in any round is just a
(randomized) function of inputs held by it and the sequence of bits it has received
from its neighbors in the past. All communication is point-to-point in the sense
that each edge of G is a private communication channel between its endpoints.
In any round, if one of the endpoints of an edge is in a state where it expects
to receive some communication from the other side, then silence from the other
side is not allowed in a legal protocol. At the end of communication process,
some pre-designated node of the network outputs the value of f on the input
instance held by processors in K. We assume that protocols are randomized,
using public coins that are accessible to all nodes of the network, and err with
probability at most ε. The cost of a protocol on an input is the expected total
number of bits communicated on all edges of the network. The main question
we study in this work is how the cost of the best protocol on the worst input
depends on the function f , the network G and the set of terminals K. This cost
is denoted by Rε

(
p
)

(and we use R(p) to denote R1/3(p)).
This communication model seems to be a natural abstraction of many dis-

tributed problems and was recently studied in its full generality by Chattopad-
hyay, Radhakrishnan and Rudra [9].1 A noteworthy special case is when G is just
a pair of nodes connected by an edge. This corresponds to the classical model
of 2-party communication introduced by Yao [33] more than three decades ago.
The study of the classical model has blossomed into the vibrant and rich field of
communication complexity, which has deep connections to theoretical computer
science in general and computational complexity in particular.

This point-to-point model had received early attention in the works of
Tiwari [27], Dolev and Feder [11] and Duris and Rolim [13]. These early works
seem to have entirely focused on deterministic and non-deterministic complex-
ities. In particular, Tiwari [27] showed several interesting topology-sensitive
bounds on the cost of deterministic protocols for simple functions. However,
these bounds were for specific graphs like trees, grids, rings etc. More recently,
there has been a resurgence of interest in the randomized complexity of func-
tions in the point-to-point model. These have several motivations: BSP model of
Valiant [28], models for MapReduce [18], parallel models to compute conjunctive
queries [4], distributed models for learning [2], distributed streaming and func-
tional monitoring [10], sensor networks [19] etc. Recently Drucker, Kuhn and
Oshman [12] showed that some outstanding questions in this model (where one
is interested in bounding the number of rounds of communication as opposed
to bounding the total communication) have connections to well known hard
problems on constant-depth circuits. Motivated by such diverse applications,
a flurry of recent works [6,7,16,20,23,30–32] have proved strong lower bounds,
developing very interesting techniques. All of these works, however, focus on the

1 Related but different problems have been considered in distributed computing.
Please see the full paper for more details.

542 A. Chattopadhyay and A. Rudra

star topology with k leaves, each having a terminal and a central non-terminal
node. Note that every function on the star can be computed using O(kn) bits
of communication, by making the leaves simultaneously send each of their n-bit
inputs to the center that outputs the answer. The aforementioned recent works
show that this is an optimal protocol for various natural functions.

In contrast, on a general graph not all functions seem to admit O(kn)-bit
protocols. Consider the naive protocol that makes all terminals send their inputs
to a special node u. The speciality of u is the following: let the status of a node
v in network G w.r.t. K, denoted by σK (v), be given by

∑
w∈K dG(v, w), where

dG(x, y) is the length of a shortest path in G between nodes x and y. Node u is
special and called the median as it has a minimal status among all nodes, which
we denote by σK (G). Thus, the cost of the naive protocol is σK (G) · n. For the
star, the center is the median with status k. On the other hand, for the line, ring
and grid, each having k nodes all of which are terminals, σK(G) is Θ(k2), Θ(k2)
and Θ(k3/2) respectively.

The work in [9] appears to be the first one to address the issue of random-
ized protocols over arbitrary G. It shows simple natural functions like Element-
Distinctness2, have Θ(σK (G)) as the cost (up to a poly-log(k) factor) of the
optimal randomized protocol computing them. In fact, all of the bounds in [9]
are of the 1-median type (formally defined later). While these are essentially
the strongest possible lower bounds3, not all functions of interest have that high
complexity. Consider the function Equality that outputs 1 precisely when all
input strings at the nodes in K are the same. There is a randomized protocol
of cost much less than σK(G) for computing it: consider a minimal cost Steiner-
tree with nodes in K as the terminals. Let the cost of this tree be denoted by
ST (G,K). Root this tree at an arbitrary node. Each leaf node sends a hash (it
turns out O(1) bits of random hash suffices for our purposes4) of its string to its
parent. Each internal node u collects all hashes that it receives from nodes in the
sub-tree rooted at u, verifies if they are all equal to some string s. If so, it sends
s to its parent and otherwise, it sends a special symbol to its parent indicating
inequality. Thus, in cost O (ST (G,K)), one can compute Equality with small
error probability.5

For many scenarios in a distributed setting, the task to be performed is natu-
rally layered in the following way. The set of terminal nodes is divided into t groups
K1, . . . ,Kt. Within a group of m terminals, the input needs to be pre-processed in
a specified manner, expressed as a function g :

(
{0, 1}n

)m → {0, 1}n. Finally the

2 Given inputs Xi ∈ Σ for every i ∈ K, the function ED : ΣK → {0, 1} is defined as
follows: ED

(
(Xi)i∈K

)
= 1 if and only if Xi �= Xj for every i �= j ∈ K.

3 Strictly speaking, the strongest lower bound is Ω(σK (G) · n). Several functions,
called linear 1-median type later, are shown to achieve this bound in [9].

4 Observe that if two strings held at two terminals are not equal, each hash will detect
inequality with probability at least 2/3.

5 In fact, we observe in the full paper that any function f : ΣK → {0, 1} that depends
on all of its input symbols needs Ω(ST(G, K)) amounts of communication (even
for randomized protocols), which implies that the randomized protocol above for
Equality is essentially optimal.

The Range of Topological Effects on Communication 543

results of the computation of the groups need to be combined in a different way,
given by another function f :

(
{0, 1}n

)t → {0, 1}. More precisely, we want to
compute the composed function f ◦ g. The canonical protocol will first compute in
parallel all instances of the task g in groups using the optimal protocol for g and
then use the optimal protocol for f on the outputs of g in each of Ki. However, this
is not the optimal protocol for all f, g and network G. For example, consider the
case when f is Equality and g is the bit-wise XOR function. As we show in the full
paper, the optimal protocol for computing XOR has cost Θ (ST (G,K) · n). Hence,
the naive protocol for EQ ◦ XOR will have cost Ω

(∑t
i=1 (ST (G,Ki) · n)

)
. How-

ever, it is not hard to see that there is a protocol of cost O
(
t · (ST (G,K)). This

cost can be much lower than the naive cost depending on the network.

Full version of the paper. All omitted material (including all the proofs) can be
found in the full version of the paper [8].

2 Our Results

The first part of our work attempts to understand when the naive protocol
cannot be improved upon for composed functions. Function composition is a
widely used technique in computational complexity for building new functions
out of more primitive ones [3,14,15,17,24]. Proving that the naive way of solving
f◦g is essentially optimal, in many models remain open. In particular, even in the
2-party model of communication where the network is just an edge, this problem
still remains unsolved (see [3]).To describe our results on composition, we need
the following terminology: The cost of solving a problem

(
f,G,K, {0, 1}n

)
will

have a dependence on both n and the topology of G. We will deal with two
kinds of dependence on n. If the cost depends linearly on n, we say f is of linear
type. Otherwise, there is no dependence on n. (We typically ignore poly-log
factors in this paper.) Call f a 1-median type function if its topology-sensitive
complexity is σK (G). We say f is of Steiner tree type, if its topology-sensitive
complexity is ST (G,K). The protocol for a Steiner tree type problem f seems to
move information around in a fundamentally different way from the one for a 1-
median type problem g. It seems tempting to conjecture that there composition
cannot be solved by any cheaper protocol than the naive ones. However, we are
only able to prove this intuition for few natural instances in this work.

Consider the following composition: the first function is element distinct-
ness function, denoted by ED, which was shown by [9] to be of 1-median type.
The second is the bit-wise xor function (which we denote by XORn), which is
shown to be of linear Steiner-tree type in the full paper. In particular, given
a graph G = (V,E) and t subsets K1, . . . ,Kt ⊆ V , we define the composed

function ED ◦ XORn as follows. Given ki
def
= |Ki| n-bit vectors Xi

1, . . . , X
i
ki

∈
{0, 1}n for every i ∈ [t], define ED ◦ XORn

(
X1

1 , . . . , X1
k1

, . . . , Xt
1, . . . , X

t
kt

)
=

ED
(
XORn

(
X1

1 , . . . , X1
k1

)
, . . . ,XORn

(
Xt

1, . . . , X
t
kt

))
. The naive algorithm men-

tioned earlier specializes for ED ◦ XORn as follows: compute the inner bit-wise

544 A. Chattopadhyay and A. Rudra

XOR’s first6 and then compute the ED on the intermediate values. This imme-
diately leads to an upper bound of

O

(
σK1,...,Kt

(G) · log k +
t∑

i=1

ST(G,Ki) · log k

)
, (1)

where σK1,...,Kt
(G) is the minimum of σK̄(G) for every choice of K̄ that has

exactly one terminal from Ki for every i ∈ [t]. One of our results, stated below,
shows that this upper bound is tight to within a poly-log factor:

Theorem 1

R(ED ◦ XORn, G,K, {0, 1}n) ≥ Ω

(
σK1,...,Kt

(G)
log t

+
∑t

i=1 ST(G,Ki)
log |V | log log |V |

)
.

We prove the above result (and other similar results) by essentially proving
a topology sensitive direct sum theorem (see Section 3.1 for more).

In the full paper, we further show that changing the order of composition to
XOR ◦ ED also does not allow any cost savings over the naive protocol:

Theorem 2. For every choice of ui ∈ Ki (where k =
∑t

i=1 |Ki|):

R(XOR1 ◦ ED, G,K, {0, 1}n) ≥ Ω

(
ST(G, {u1, . . . , ut}) +

∑t
i=1 σKi

(G)
log k

)
.

The results discussed so far follow by appropriately reducing the problem
on a general graph to a bunch of two-party lower bounds, one across each cut
in the graph. This was the general idea in [9] as well but the reductions in this
paper need to use different tools. However, the idea of two-party reduction seems
to fail for the Set-Disjointness function, which is one of the centrally studied
function in communication complexity. In our setting, the natural definition
of Set-Disjointness (denoted by DISJ) is as follows: each of the k terminals
in K have an n-bit string and the function tests if there is an index i ∈ [n]
such that all k strings have their ith bit set to 1. It is easy to check that this
function can be computed with O(ST(G,K) · n) bits of communication (in fact
one can compute the bit-wise AND function with this much communication by
successively computing the partial bit-wise AND as we go up the Steiner tree).
Before our work, only a tight bound was known for the special case of G being
a k-star (i.e. a lower bound of Ω(kn)), due to the recent work of Braverman et
al. [6]. In this work, we present a fairly general technique that ports a tight lower
bound on a k-star to an almost tight lower bound for the general graph case. For
the complexity of Set-Disjointness, this technique yields the following bound:

6 In fact, we just need to compute the XOR of the hashes of the input, which with a
linear hash is just the bit-wise XOR of O(log k)-bits of hashes.

The Range of Topological Effects on Communication 545

Theorem 3

R(DISJ, G,K, {0, 1}n) ≥ Ω

(
ST(G,K) · n

log2 k

)
.

Next, we present our key technical results and overviews of their proofs. We
would like to point out that our proofs use many tools used in algorithm-design
like (sub)tree embeddings, Boru̇vka’s algorithm to compute an MST for a graph
and integrality gaps of some well-known LPs, besides using L1-embeddings of
graph that was also used in [9]. We hope this work encourages further investi-
gation of other algorithmic techniques to prove message-passing lower bounds.

3 Key Technical Results and Our Techniques

In the full paper, we present a simple re-formulation of the lower bound argument
in [9] as a linear program (LP). The idea is simple: consider a problem p =
(f,G,K,Σ) and any cut C in the graph. Then the cut naturally gives rise to
a two party problem for the induced function fC across the cut C. Specifically,
Alice gets the inputs from K on one side of the cut and Bob gets the rest of the
inputs. Let Π be a protocol for p. Then by considering the messages exchanged
byΠ on the crossing edges of C induces a two party protocol for fC . If xe bits are
transmitted on edge e, then

∑
e crosses C xe ≥ b(C), where b(C) is a two-party

communication complexity lower bound for fC . Then
∑

e∈E(G) xe subject to the
constraint

∑
e crosses C xe ≥ b(C) is a valid lower bound on R(p). To make this

idea work, we actually need to pick a hard distribution μ on ΣK and use xe to
denote the expected communication over edge e under μ: see the full paper for
more.

Using the scheme outlined above, we can prove our earlier claimed lower
bound of Ω(ST(G,K) · n) for the XORn problem. Further, this connection can
also be used to recover the Ω(σK(G)/ log k) lower bound for the ED function
from [9]– see the full paper. While LPs have been used to prove communication
complexity lower bounds in the standard 2-party setting (see e.g. [25,26]), our
use of LPs above seem to be novel for proving communication lower bounds. In
the remainder of the section, we present two general results that we will use to
prove our lower bounds for specific functions including those in Theorems 1, 2
and 3.

3.1 A Result on Two LPs

We now present a result that relates the objective values of two similar LPs.
Both the LPs will involve the same underlying topology graph G = (V,E).

We begin with the first LP, which we dub LPL(G) (� ≥ 1 and bi(C) ≥ 0 for
every j ∈ [�] and cut C are integers):

min
∑
e∈E

xe

subject to

546 A. Chattopadhyay and A. Rudra

∑
e crosses C

xe ≥
�∑

i=1

bi(C) for every cut C

xe ≥ 0 for every e ∈ E.

In our results, we will use xe to denote the expected communication on the
edge e of an arbitrary protocol for a problem p over a distribution over the
input. The constraint for each cut C will correspond to a two-party lower bound
of

∑�
i=1 bi(C). Then the objective value of the above LP, which by abuse of

notation we will also denote by LPL(G), will be a valid lower bound on R(p).
Next we consider the second LP, which we dub LPU (G):

min
�∑

i=1

∑
e∈E

xi,e

subject to ∑
e crosses C

xi,e ≥ bi(C) for every cut C and i ∈ [�]

xi,e ≥ 0 for every e ∈ E and i ∈ [�].

In our results, we will connect the objective value of the above LP (which again
with abuse of notation we denote by LPU (G)) to the total communication of a
trivial algorithm that solves problem p.

Our main aim is to show that for certain settings, the lower bound we get
from LPL(G) is essentially the same as the upper bound we get from LPU (G).

Before we state our main technical result, we need to define the property we
need on the values bi(C). We say that the values bi(C) satisfy the sub-additive
property if for any three cuts C1, C2 and C3 such that C1 ∪ C2 = C3,7 we have
that for every i ∈ [�]: bi(C3) ≤ bi(C1) + bi(C2). We remark that the two main
families of functions that we consider in this paper lead to LPs that do satisfy
the sub-additive property:

– Steiner Tree constraints. There are sets of terminals Ti ⊆ V (for i ∈ [�]) and
bi(C) = 1 if C separates Ti and 0 otherwise.

– Multi-commodity flow constraints. We have a set of demands Di (for i ∈ [�])
and bi(C) is the number of demand pairs in Di that are separated by C.

We are now ready to state our first main technical result:

Theorem 4. For any graph G = (V,E) (and values bi(C) for any i ∈ [�] and
cut C with the sub-additive property), we have

LPU (G) ≥ LPL(G) ≥ Ω

(
1

log |V | log log |V |

)
· LPU (G).

7 This means that one side of the cut C3 is the union of one side each of C1 and C2.

The Range of Topological Effects on Communication 547

Theorem 4 is the main ingredient in proving the lower bound for a 1-median
function composed with a Steiner tree function as given in Theorem 1. We can
also use Theorem 4 to prove nearly tight lower bound for composing a Steiner
tree type function XOR with a linear 1-median function IP as well as another
1-median function ED. However, it turns out for these functions, we can prove a
better bound than Theorem 4. In particular, using techniques developed in [9],
we can prove lower bounds given in Theorem 2 and the one stated below:

Corollary 1. For every choice of ui ∈ Ki (where k =
∑t

i=1 |Ki|):

R(XOR ◦ IPn, G,K, {0, 1}n) ≥ Ω

(
ST(G, {u1, . . . , ut}) +

∑t
i=1 σKi

(G) · n

log k

)
.

Proof Overview. We give an overview of our proof of Theorem 4 (specialized
to the proof of Theorem 1). While the LP based lower bound argument for XORn

in the full paper is fairly straightforward things get more interesting when we
consider ED ◦ XORn. It turns out that just embedding the hard distribution for
ED from [9], one can prove a lower bound of just Ω

(
σK1,...,Kt (G)

log t

)
. The more

interesting part is proving a lower bound of Ω̃
(∑t

i=1 ST(G,Ki)
)
. It is not too

hard to connect the upper bound of Õ
(∑t

i=1 ST(G,Ki)
)

to the following LP,

which we dub LPU
ST(G,K) (and is a specialization of LPU (G)):

min
t∑

i=1

∑
e∈E

xi,e

subject to∑
e crosses C

xi,e ≥ 1 for every cut C that separates K and i ∈ [t]

xi,e ≥ 0 for every e ∈ E and i ∈ [t].

Indeed the above LP is basically solving the sum of t independent linear pro-
grams: call them LPST(G,Ki) for each i ∈ [t]. Hence, one can independently
optimize each of these LPST(G,Ki) and then just put them together to get an
optimal solution for LPU

ST(G,K). This matches the claimed upper bounds since
it is well-known that the objective value of LPST(G,Ki) is Θ(ST(G,Ki)) [29].

On the other hand, if one tries the approach we used to prove the lower
bound for XORn, then one picks an appropriate hard distribution μ and shows
that for every cut C the induced two-party problem has a high enough lower
bound. In this case, it turns out that the corresponding two-party lower bound
(ignoring constant factors) is the number of sets Ki separated by the cut. Then
proceeding as in the argument for XORn if one sets ye to be the expected (under
μ) communication for any fixed protocol over any e ∈ E, then (ye)e∈E is a feasible

548 A. Chattopadhyay and A. Rudra

solution for the following LP, which we dub LPL
ST(G,K) (and is a specialization

of LPL(G)):
min

∑
e∈E

xe

subject to ∑
e crosses C

xe ≥ v(C,K) for every cut C

xe ≥ 0 for every e ∈ E,

where v(C,K) is the number of subsets Ki that are separated by C. If we denote
the objective value of the above LP by LPL

ST(G,K), then we have an overall
lower bound of Ω(LPL

ST(G,K)). Thus, we would be done if we can show that
LPL

ST(G,K) and LPU
ST(G,K) are close. It is fairly easy to see that LPL

ST(G,K) ≤
LPU

ST(G,K). However, to prove a tight lower bound, we need an approximate
inequality in the other direction. We show this is true by the following two step
process:

1. First we observe that if G is a tree T then LPL
ST(T,K) = LPU

ST(T,K).
2. Then we use results from embedding graphs into sub-trees to show that

there exists a subtree T of G such that LPL
ST(G,K) ≈ LPL

ST(T,K) and
LPU

ST(G,K) ≈ LPU
ST(T,K), which with the first step completes our proof.

We would like to remark on three things. First, our proof can handle more
general constraints than those imposed by the Steiner tree LP. In particular,
we generalize the argument above to prove Theorem 4. Second, to the best of
our knowledge this result relating the objective values of these two similar LPs
seems to be new. However, we would like to point out that our proof follows
(with minor modifications) a similar structure that has been used to prove other
algorithmic results via tree embeddings (e.g. in [1]). Third, we find it interesting
to observe that the upper bound on the gap between the two LP’s is the key
step in accomplishing a distributed direct-sum like result.

3.2 From Star to Steiner Trees

We define a multicut C of K to be a collection of non-empty pair-wise disjoint
subsets C1, . . . , Cr of K. Each such subset is called an explicit set of C and the
(maybe empty) set K \ ∪r

i=1Ci is called its implicit set. We will call f : ΣK →
{0, 1} to be h-maximally hard on the star graph if the following holds for any
multicut C. There exists a distribution μf

C such that the expected cost (under
μf

C) of any protocol that correctly computes f on the following star graph is
Ω(|C| · h(|Σ|)): each leaf of the star has all terminals from an explicit set from
C, no two leaves have terminals from the same explicit set and the center contains
terminals from the implicit set. The following is our second main technical result:

The Range of Topological Effects on Communication 549

Theorem 5. Let f be h-maximally hard on the star graph. Then

R(f,G,K,Σ) ≥ Ω

(
ST(G,K) · h(|Σ|)

log2 k

)
.

The above result easily implies the lower bound in Theorem 3. Theorem 5
can also be used to prove a lower bound similar to Theorem 3 above for the
Tribes function using the lower bound for Tribes on the star topology from [7].

Proof Overview. In all of the arguments so far, we reduce the lower bound
problem on (G,K) to a bunch of two party lower bounds induced by cuts. How-
ever, we are not aware of any hard distribution such that one can prove a tight
lower bound that reduces the set disjointness problem to a bunch of two-party
lower bounds. In fact, the only non-trivial lower bound for set disjointness, in
the point-to-point model, that we are aware of is the Ω(kn) lower bound for the
k-star by Braverman et al. [6]. In particular, their proof does not seem to work
by reducing the problem to two-party lower bounds. In this work, we are able
to extend the set disjointness lower bound of [6] to Theorem 3.

We prove Theorem 3 by modifying the argument in [9] as follows. The idea
in [9] is to construct a collection of cuts such that essentially every edge partici-
pates in O(log k) cuts and one can prove the appropriate two-party lower bound
across each of the cuts in the collection so that when one sums up the contribu-
tion from each cut one gets the appropriate Ω(σK(G)/ log k) overall lower bound.
(These collection of cuts were obtained via Bourgain’s L1 embedding [5,21]. As
mentioned earlier, this trick does not seem to work for set disjointness and it
is very much geared towards 1-median type functions). We modify this idea
as follows: we construct a collection of multi-cuts such that (i) every edge in G
appears in at most one multi-cut and (ii) one can use lower bounds on star graph
to compute lower bounds for the induced function on each multi-cut, which can
then be added up.

The main challenge in the above is to construct an appropriate collection of
multi-cuts that satisfy properties (i) and (ii) above. The main idea is natural:
we start with balls of radius 0 centered at each of the k terminals and then grow
all the balls at the same rate. When two balls intersect, we combine the two
balls and grows the larger ball appropriately. The multi-cut at any point of time
is defined by the vertices in various balls. To argue the required properties, we
observe that the algorithm above essentially simulates Boru̇vka’s algorithm [22]
on the metric closure of K with respect to the shortest path distances in G. In
other words, we show that the sum of the contributions of the lower bounds from
each multi-cut is related to the MST on the metric closure of K with respect to
G, which is well-known to be closely related to ST(G,K) (see e.g. [29, Chap.2]).
It turns out that for set disjointness, one has to define O(log k) different hard
distributions (that depend on the structure of the multi-cuts above) and this is
the reason why we lose a O(log k) factor in our lower bound. (We lose another
O(log k) factor since we use lower bounds on the star topology.) To the best
of our knowledge this is the first instance where the hard distribution actually

550 A. Chattopadhyay and A. Rudra

depends on the graph structure– most of our results as well as those preceding
ours use hard distributions that are independent of the graph structure. This
argument generalizes easily to prove Theorem 5.

Acknowledgments. Thanks to Jaikumar Radhakrishnan for pointing out that the
cost of minimum Steiner tree can bound the communication complexity of a class
of functions. Many thanks to Anupam Gupta for answering our questions on tree
embeddings and related discussions. We would like to thank the organizers of the
2014 Dagstuhl seminar on Algebra in Computational Complexity for inviting us to
Dagstuhl, where some of the results in this paper were obtained. AC is supported
by a Ramanujan Fellowship of the DST and AR is supported in part by NSF grant
CCF-0844796.

References

1. Awerbuch, B., Azar, Y.: Buy-at-bulk network design. In: 38th Annual Sympo-
sium on Foundations of Computer Science, FOCS 1997, October 19–22, Miami
Beach, Florida, USA, pp. 542–547 (1997). http://doi.ieeecomputersociety.org/10.
1109/SFCS.1997.646143

2. Balcan, M.F., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communica-
tion complexity and privacy. In: COLT, pp. 26.1–26.22 (2012)

3. Barak, B., Braverman, M., Chen, X., Rao, A.: How to compress interactive commu-
nication. SIAM J. Comput. 42(3), 1327–1363 (2013). http://dx.doi.org/10.1137/
100811969

4. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query processing.
In: PODS, pp. 273–284 (2013)

5. Bourgain, J.: On lipschitz embedding of finite metric spaces in hilbert space. Israel
J. Math. 52(1–2), 46–52 (1995)

6. Braverman, M., Ellen, F., Oshman, R., Pitassi, T., Vaikuntanathan, V.: A tight
bound for set disjointness in the message-passing model. In: 54th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 668–677 (2013).
http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.77

7. Chattopadhyay, A., Mukhopadhyay, S.: Tribes is hard in the message-passing
model. In: STACS, pp. 224–237 (2015)

8. Chattopadhyay, A., Rudra, A.: The Range of Topological Effects on Communica-
tion. ArXiv e-prints (April 2015)

9. Chattopadhyay, A., Radhakrishnan, J., Rudra, A.: Topology matters in communi-
cation. In: FOCS, pp. 631–640 (2014)

10. Cormode, G.: The continuous distributed monitoring model. SIGMOD Rec. 42(1),
5–14 (2013). http://doi.acm.org/10.1145/2481528.2481530

11. Dolev, D., Feder, T.: Multiparty communication complexity. In: FOCS, pp. 428–433
(1989)

12. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: PODC, pp. 367–376 (2014)

13. Duris, P., Rolim, J.: Lower bounds on the multiparty communication complexity.
J. Comput. Syst. Sci. 56(1), 90–95 (1998)

14. Goldreich, O.: Three XOR-Lemmas — an exposition. In: Goldreich, O. (ed.)
Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 248–272. Springer,
Heidelberg (2011)

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=14391
http://doi.ieeecomputersociety.org/10.1109/SFCS.1997.646143
http://doi.ieeecomputersociety.org/10.1109/SFCS.1997.646143
http://dx.doi.org/10.1137/100811969
http://dx.doi.org/10.1137/100811969
http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.77
http://doi.acm.org/10.1145/2481528.2481530

The Range of Topological Effects on Communication 551

15. Goldreich, O., Nisan, N., Wigderson, A.: On yao’s XOR-Lemma. In: Goldreich,
O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 273–301.
Springer, Heidelberg (2011)

16. Huang, Z., Radunovic, B., Vojnovic, M., Zhang, Q.: Communication complexity of
approximate maximum matching in distributed graph data. In: 32nd Symposium
on Theoretical Aspects of Computer Science (STACS), pp. 460–473 (2015)

17. Karchmer, M., Raz, R., Wigderson, A.: Super-logarithmic depth lower bounds via
the direct sum in communication complexity. Computational Complexity 5(3/4),
191–204 (1995)

18. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce. In:
SODA, pp. 938–948 (2010)

19. Kowshik, H., Kumar, P.: Optimal function computation in directed and undirected
graphs. IEEE Transcations on Information Theory 58(6), 3407–3418 (2012)

20. Li, Y., Sun, X., Wang, C., Woodruff, D.P.: On the communication complexity of
linear algebraic problems in the message passing model. In: Kuhn, F. (ed.) DISC
2014. LNCS, vol. 8784, pp. 499–513. Springer, Heidelberg (2014). http://dx.doi.
org/10.1007/978-3-662-45174-8 34

21. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its
algorithmic applications. Combinatorica 15(2), 215–245 (1995)

22. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Boru̇vka on minimum
spanning tree problem translation of both the 1926 papers, comments, history. Dis-
crete Mathematics 233(13), 3–36 (2001). http://www.sciencedirect.com/science/
article/pii/S0012365X00002247; czech and Slovak 2

23. Phillips, J.M., Verbin, E., Zhang, Q.: Lower bounds for number-in-hand
multiparty communication complexity, made easy. In: Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 486–
501 (2012). http://portal.acm.org/citation.cfm?id=2095158&CFID=63838676&
CFTOKEN=79617016

24. Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. Combinatorica
19(3), 403–435 (1999)

25. Sherstov, A.: Separating AC0 from depth-2 majority circuits. SIAM J. Comput.
38(6), 2113–2129 (2009)

26. Shi, Y., Zhu, Y.: Quantum communication complexity of block-composed func-
tions. Qunatum Computation and Information 9(5), 444–460 (2009)

27. Tiwari, P.: Lower bounds on communication complexity in distributed computer
networks. J. ACM 34(4), 921–938 (1987)

28. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

29. Vazirani, V.V.: Approximation Algorithms. Springer-Verlag New York Inc., New
York (2001)

30. Woodruff, D., Zhang, Q.: Tight bounds for distributed functional monitoring. In:
STOC, pp. 941–960 (2012)

31. Woodruff, D.P., Zhang, Q.: When distributed computation is communication
expensive. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 16–30. Springer,
Heidelberg (2013)

32. Woodruff, D., Zhang, Q.: An optimal lower bound for distinct elements in the
message passing model. In: SODA, pp. 718–733 (2014)

33. Yao, A.C.C.: Some complexity questions related to distributed computing. In: 11th
ACM Symposium on Theory of Computing (STOC), pp. 209–213 (1979)

http://dx.doi.org/10.1007/978-3-662-45174-8_34
http://dx.doi.org/10.1007/978-3-662-45174-8_34
http://www.sciencedirect.com/science/article/pii/S0012365X00002247
http://www.sciencedirect.com/science/article/pii/S0012365X00002247
http://portal.acm.org/citation.cfm?id=2095158&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095158&CFID=63838676&CFTOKEN=79617016

Secretary Markets with Local Information

Ning Chen1, Martin Hoefer2(B), Marvin Künnemann2,3, Chengyu Lin4,
and Peihan Miao5

1 Nanyang Technological University, Singapore, Singapore
ningc@ntu.edu.sg

2 MPI für Informatik, Saarbrücken, Germany
{mhoefer,marvin}@mpi-inf.mpg.de

3 Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany
4 Chinese University of Hong Kong, Hong Kong, China

cylin@cse.cuhk.edu.hk
5 University of California Berkeley, Berkeley, USA

peihan@berkeley.edu

Abstract. The secretary model is a popular framework for the analysis
of online admission problems beyond the worst case. In many markets,
however, decisions about admission have to be made in a decentralized
fashion and under competition. We cope with this problem and design
algorithms for secretary markets with limited information. In our basic
model, there are m firms and each has a job to offer. n applicants arrive
iteratively in random order. Upon arrival of an applicant, a value for
each job is revealed. Each firm decides whether or not to offer its job to
the current applicant without knowing the strategies, actions, or values
of other firms. Applicants decide to accept their most preferred offer.

We consider the social welfare of the matching and design a decen-
tralized randomized thresholding-based algorithm with ratio O(log n)
that works in a very general sampling model. It can even be used by
firms hiring several applicants based on a local matroid. In contrast,
even in the basic model we show a lower bound of Ω(log n/(log log n))
for all thresholding-based algorithms. Moreover, we provide secretary
algorithms with constant competitive ratios, e.g., when values of appli-
cants for different firms are stochastically independent. In this case, we
can show a constant ratio even when each firm offers several different
jobs, and even with respect to its individually optimal assignment. We
also analyze several variants with stochastic correlation among applicant
values.

1 Introduction

The Voice is a popular reality television singing competition to find new singing
talent contested by aspiring singers. The competition employs a panel of coaches;
upon the arrival of a singer, every coach critiques the artist’s performance and
determines in real time if he/she wants the artist to be on his/her team. Among
those who express “I want you”, the artist selects a favorite coach. What strategy
of picking artists should coaches adopt in order to select the best candidates?

M. Hoefer—Supported by DFG Cluster of Excellence MMCI at Saarland University.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 552–563, 2015.
DOI: 10.1007/978-3-662-47666-6 44

Secretary Markets with Local Information 553

This problem is a reminiscent of the classic secretary problem: A firm inter-
views a set of candidates who arrive in an online fashion. When a candidate
arrives, its value is revealed and the firm needs to make an immediate and irre-
vocable decision on whether to make an offer to the candidate, without know-
ing the values of future potential candidates. The objective is to maximize the
(expected) value of the hired candidate. The secretary problem is well studied
in social science and computer science. It is well known that the problem, in
the worst case, does not admit an algorithm with any guaranteed competitive
ratio. However, if candidates arrive in uniform random order, there is an online
algorithm that achieves the optimal competitive ratio 1/e [7,21]. For a more
detailed discussion on the secretary problem see, e.g., [1].

The scenario of The Voice is a generalization of the secretary problem from
one firm to multiple firms and from one hire to multiple hires. Such a generaliza-
tion yields several fundamental changes to the problem: Firms (i.e., coaches) are
independent and compete with each other for candidates. Thus, each firm may
determine on their own the strategy to adopt. Firms are decision makers; that
is, there is no centralized authority and every firm can choose different strate-
gies on its own (based on observed information). Each firm can only observe
information revealed to itself, i.e., it has no knowledge on the values of other
(firm, candidate)-pairs and selected strategies of other firms. Hence, adopting
a best-response strategy in a game-theoretic sense might require learning other
strategies and payoffs. Given the limited feedback this can be hard or even
impossible. The same issues occur in many other decentralized markets, e.g.,
online dating and school admission, where entities behave individually and have
to make decisions based on a very limited view on the market, the preferences,
and the strategies used by potential competitors.

The objective of the present paper is to design and analyze strategies for all
firms in such a decentralized, competitive enviroment to enable efficient alloca-
tions. Our algorithms are evaluated both globally and individually: On the one
hand, we hope the outcomes achieve good social welfare (i.e., the total value
obtained by all firms). Thus, we measure the competitive ratio compared to
social welfare given by the optimal centralized online algorithm. On the other
hand, considering that firms are self-interested entities, we hope that our algo-
rithms generate a nearly optimal outcome for each individual firm. That is,
although given the limited feedback it can be impossible to obtain best-response
strategies, we nevertheless hope that (when applied in combination) our algo-
rithms can approximate the outcome of a best response (in hindsight with full
information) of every individual firm within a small factor.

We identify several settings that admit algorithms with small constant compet-
itive ratio both globally and individually. This implies that even in decentralized
markets with very limited feedback, there are algorithms to obtain a good social
solution. For the general case, we provide a strategy to approximate social welfare
within a logarithmic factor, and we show almost matching lower bounds on the
competitive ratio for a very natural class of algorithms. Thus, in the general case
centralized control seems to be necessary in order to achieve good social welfare.

554 N. Chen et al.

Model and Preliminaries. We first outline our basic model, a decentralized online
scenario for hiring a single applicant per firm with random arrival. There is a
complete bipartite graph G = (U, V,w) with sets U = {u1, u2, . . . , um} and
V = {v1, v2, . . . , vn} of firms and applicants, respectively. There is a value or
weight function1 w : U × V → R

+. We assume that each firm can hire at most
one applicant and there are more applicants than firms, i.e., m ≤ n.

The weights describe an implicit preference of each individual to the other
side. Each firm u ∈ U prefers applicants according to the decreasing order of
w(u, ·) of the edges incident to u; similarly, each applicant v ∈ V prefers firms
according to the decreasing order of w(·, v) of the edges incident to v.2

Applicants in V arrive one by one in the market and reveal their edge weights
to all firms. Upon the arrival of an applicant, each firm decides on whether to
provide an offer for the applicant or not immediately; after collecting all job
offers, the applicant then picks one that she prefers most, i.e., the one with the
largest weight. Note that each firm can only see its own weights for the applicants
and has no information about future applicants; in addition, all decisions cannot
be revoked. In this paper, we consider the problem in the random permutation
model, i.e., applicants arrive in a uniformly random order.

Our goal is to design decentralized algorithms when each firm makes its
decision only based on its own previous information and there is no centralized
authority that manages different firms altogether. There are two natural objec-
tives to evaluate the performance of an algorithm, and due to online arrival
some performance loss is unavoidable. The standard benchmark is social wel-
fare, defined to be the total weight of assigned firm and applicant pairs. For
an algorithm A, we say the algorithm has a competitive ratio of α if for all
instances, we have E [w(M∗)] /E

[
w(MA)

]
≤ α. Here the expectation is over

random permutation, M∗ is the maximum weight matching in G, and MA is
the matching returned when every firm runs algorithm A. In addition, we would
like to approximate the individual optimum assignment for each firm (i.e., the
weight of its best candidate) and strive to obtain a constant competitive ratio
for this benchmark.

Contribution and Techniques. As a natural first attempt, consider every firm
running the classic secretary algorithm [7,21], which samples the first r − 1
applicants, records the best weight seen in the sample, and then offers to every
applicant that exceeds this threshold. It turns out that such a strategy fails
miserably in a decentralized market, even if each applicant has the same weight
for all firms. For spatial reasons, the proof of this statement and many other
formal arguments in this extended abstract are deferred to a full version.

Proposition 1. For any constant β < 1, when setting r = �βn� + 1, then the
classic secretary algorithm has a competitive ratio of Ω(n/ log n).

1 To avoid ties, we assume that no two edges have the same weight; this assumption is
without loss of generality by using small perturbations or a fixed rule to break ties.

2 In a more general preference model there are for each pair (u, v) different values
obtained by u and v; we will not consider this general case in the present paper.

Secretary Markets with Local Information 555

In contrast, we present in Section 2 a more careful approach based on sampling
and thresholds that is O(log n)-competitive. This algorithm can be applied in
large generality (well beyond the basic model). In fact, we prove the guarantee in
a scenario, where each firm ui has a private matroid Si and can accept any sub-
set of applicants that forms an independent set in Si. Furthermore, our analysis
extends to a general sampling model that encompasses the secretary model (ran-
dom arrival, worst-case weights), prophet-inequality model (worst-case arrival,
stochastic weights), as well as a variety of other mixtures of stochastic and worst-
case assumptions [10]. Our main technique to handle decentralized thresholding
is to bundle all stochastic decisions and treat correlations using linearity of expec-
tation. The effects of applicant preferences and competition can then be analyzed
in a pointwise fashion.

We contrast this result with an almost matching lower bound for
thresholding-based algorithms in the basic model. A thresholding-based algo-
rithm samples a number of applicants, determines a threshold, and then offers to
every remaining applicant that has a weight above the threshold. Although such
algorithms are nearly optimal in the centralized setting, every such algorithm
must have a competitive ratio of at least Ω(log n/ log log n) in the decentralized
setting. The lower bound carefully constructs a challenge to guess how many
firms contribute to social welfare and to avoid overly high concentration of offers
on a small number of valuable applicants.

In Section 3 we show that this challenge can be overcome if there is stochastic
independence between the weights of an applicant to different firms. We study
this property in a generalized model for decentralized k-secretary, where each
firm ui has ki different jobs to offer. Upon arrival, an applicant reveals ki weights
for each firm ui, one for each position. If each firm uses a variant of the optimal e-
competitive algorithm for bipartite matching [16], independence between weights
of different firms allows to show a constant competitive ratio. Moreover, each
firm even manages to recover a constant fraction of the individual optimum
matching and therefore almost plays a best response strategy.

Finally, in Section 4 we consider two additional variants with stochastically
generated weights. In both variants we can show constant competitive ratios, and
in one case firms can even hire their best applicant with constant probability.

Related Work. The secretary model is a classic approach to stopping problems
and online admission [7]. The classic algorithm outlined in the previous section
is e-competitive, which is the best possible ratio. In the algorithmic literature,
recent work has addressed secretary models for packing problems with random
arrival of elements. A prominent case is the matroid secretary problem [2], for
which the first general algorithm was O(log k)-competitive, where k is the rank of
the matroid. The ratio was very recently reduced to O(log log k) [8,20]. Constant-
factor competitive algorithms have been obtained for numerous special cases [6,
11,14,18,24]. It remains a fascinating open problem if a general constant-factor
competitive algorithm exists.

Another popular domain is bipartite matching in the secretary model,
which has many applications in online revenue maximization via ad-auctions.

556 N. Chen et al.

In Section 3 we use a variant of a recent optimal e-competitive algorithm [16],
which tightened the ratio and improved it over previous algorithms [2,5,19]. The
main idea has recently been extended to construct optimal secretary algorithms
for packing linear problems [17], improving over previous approaches [4,23].
Algorithms based on primal-dual techniques are a popular approach, espe-
cially for budgeted online matching with different stochastic input assump-
tions [3,15,22].

Our analysis of the algorithm for the general case applies in a unifying sam-
pling model recently proposed as a framework for online maximum independent
set in graphs [10]. It encompasses many stochastic adversarial models for online
optimization – the secretary model, the prophet inequality model, and various
other mixtures of stochastic and worst-case adversaries.

Closer to our paper are studies of a secretary problem with k queues [9], or
game-theoretic approaches with complete knowledge of opponent strategies [12,
13]. These scenarios, however, have significantly different assumptions on the
firms and their feedback, and they do not target markets with both decentralized
control and restricted feedback that we explore in this paper.

2 General Preferences

For general weights w : U × V → R
+, Proposition 1 shows that the classic

secretary algorithm may perform poorly in a decentralized market. A reason-
able strategy has to be more careful in adopting a threshold to avoid extensive
competition for few candidates. Inspired by Babaioff et al. [2], we overcome this
obstacle with a randomized thresholding strategy, and analyze it in a very gen-
eral distributed matroid scenario. We remark that our bounds apply even within
a general sampling model [10] that encompasses the secretary model, prophet-
inequality model, and many other approaches for stochastic online optimization.

For the combinatorial structure of the scenario, we consider that each firm ui

holds a possibly different matroid Si over the set of applicants. Firm ui can accept
an applicant as long as the set of accepted applicants forms an independent set
in Si. Special cases include hiring a single applicant or any subset of at most
ki many applicants. Each firm strives to maximize the sum of weights of hired
applicants. The structure of Si does not have to be known in advance. ui only
needs an oracle to test if a set of arrived applicants is an independent set in Si.

Algorithm 1 is executed in parallel by all firms ui. We first sample a fraction
of roughly n/(c + 1) applicants, where c ≥ 1 is a global constant. Then we
determine a random threshold based on the maximum weight seen by firm ui in
its sample. Firm ui then greedily makes an offer only to those candidates whose
values are above the threshold.

Theorem 1. Algorithm 1 is O(log n)-competitive.

Proof. We denote by V S
i the set of candidates in the sample and by V I

i the other
candidates. Note that by the choice of sample and the random arrival, we have
that Pr

[
vj ∈ V S

i

]
= 1

c+1 . More broadly, our subsequent arguments will require
only the weaker bounds

Secretary Markets with Local Information 557

Algorithm 1. Thresholding algorithm for ui with matroids.
Draw a random number k ∼ Binom(n, 1/(c + 1))

Reject the first k applicants, denote this set by V S
i

mi ← arg maxvj∈V S
i

w(ui, vj)

Xi ← Uniform(−1, 0, 1, . . . , �log n�)
ti ← w(ui, mi)/2Xi , Mi ← ∅
for all remaining vj over time do

if w(ui, vj) ≥ ti and Mi ∪ {vj} is independent set in Si then
make an offer to vj
if vj accepts then Mi ← Mi ∪ {vj}

Pr
[
vj ∈ V I

i

]
≥ 1

c + 1
and Pr

[
vj ∈ V S

i

]
≥ 1

c + 1
. (1)

These sampling inequalities obviously hold for every vj , independently of vj′ ∈
V S

i or not for all other candidates j′ �= j.
Let vmax

i = argmaxjw(ui, vj) and v2nd
i = argmaxj �=vmax

i
w(ui, vj) be a best

and second best applicant for firm ui, respectively (breaking ties arbitrarily). In
addition, we denote by wmax

i = w(ui, v
max
i) and w2nd

i = w(ui, v
2nd
i) their weights

for firm ui. For most of the analysis, we consider another weight function, the
capped weights w̃(ui, vj), based on thresholds ti set by the algorithm as follows

w̃(ui, vj) =

⎧⎪⎨
⎪⎩

wmax
i if vj ∈ V I

i , ti = 2w2nd
i , and w(ui, vj) > 2w2nd

i ,

ti if vj ∈ V I
i and w(ui, vj) ≥ ti,

0 otherwise.

Observe that the definition of w̃ relies on several random events, i.e., vj ∈ V I
i

and the choice of thresholds ti. For any outcome of these events, however, we
have that w̃(ui, vj) ≤ w(ui, vj) for all pairs (ui, vj), since if ti = 2w2nd

i and
w(ui, vj) > 2w2nd

i , then vj = vmax
i . By the following lemma, in expectation over

all the correlated random events, an optimal offline solution with respect to w̃
still gives an approximation to the optimal offline solution with respect to w.

Lemma 1. Denote by w(M) and w̃(M) the weight and capped weight of a solu-
tion M . Let M̃∗ and M∗ be optimal solutions for w̃ and w, respectively. Then

E

[
w̃(M̃∗)

]
≥ Ω

(
1

log n

)
· w(M∗).

Proof. Let (ui, vj) ∈ M∗ be an arbitrary pair. First, assume that vj maximizes
w(ui, vj), i.e., vj = vmax

i . By (1) with probability at least 1/(c+1)2, we have vj ∈
V I

i and v2nd
i ∈ V S

i . For any such outcome, we have with probability 1/(log(n)
+
2) that either (1) ti = 2w2nd

i and w̃(ui, vj) = wmax
i (if wmax

i ≥ 2w2nd
i), or

(2) ti = w2nd
i and ti ≤ wmax

i < 2w2nd
i (otherwise). This yields E [w̃(ui, vj)] ≥

w(ui, vj)/(2(c + 1)2(log(n)
 + 2)).

558 N. Chen et al.

Second, for any vj �= vmax
i with wmax

i /(2n) < w(ui, vj) ≤ wmax
i , by (1)

we know vmax
i ∈ V S

i is an independent event which happens with probability
at least 1/(c + 1). Then, there is some 0 ≤ k′ ≤ 	log n
 + 1, with w(ui, vj) >

wmax
i /2k′ ≥ w(ui, vj)/2. With probability 1/(log(n)
+2), we have that Xi = k′

and w̃(ui, vj) = ti ≥ w(ui, vj)/2. This yields E [w̃(ui, vj)] ≥ w(ui, vj)/(2(c +
1)2(log(n)
 + 2)), since vj ∈ V I

i with probability at least 1/(c + 1) by (1).
Finally, we denote by M> the set of pairs (ui, vj) ∈ M∗ for which w(ui, vj) >

wmax
i /(2n). The expected weight of the best assignment with respect to the

threshold values is thus

E

[
w̃(M̃∗)

]
≥

∑
(ui,vj)∈M∗

E [w̃(ui, vj)] ≥
∑

(ui,vj)∈M>

w(ui, vj)
2(c + 1)2(log(n)
 + 2)

=
1

2(c + 1)2(log(n)
 + 2)
· (w(M∗) − w(M∗ \ M>))

≥ 1
4(c + 1)2(log(n)
 + 2)

· w(M∗),

since
∑

(ui,vj)∈M∗\M> wmax
i /(2n) ≤ maxi wmax

i /2 ≤ w(M∗)/2. ��

The previous lemma bounds the weight loss due to (i) all random choices
inherent in the process of input generation and threshold selection and (ii) using
the capped weights. The next lemma bounds the remaining loss due to adversar-
ial arrival of elements in V I

i , exploiting that w̃ equalizes equal-threshold firms.

Lemma 2. Suppose subsets V I
i and thresholds ti are fixed arbitrarily and con-

sider the resulting weight function w̃. Let MA be the feasible solution resulting
from Algorithm 1 using the thresholds ti, for any arbitrary arrival order of appli-
cants in

⋃
V I

i . Then w(MA) ≥ w̃(M̃∗)/2.

Combining the insights, we see that that w(M∗) ≤ O(log n) · E
[
w(MA)

]
,

which proves the theorem. ��

Our general upper bound results from a thresholding-based algorithm. We
constrast this result with a lower bound for thresholding-based algorithms when
every firm wants to hire only a single applicant. It applies even when preferences
of all firms over applicants are identical. More formally, an algorithm A is called
thresholding-based if during its execution A rejects applicants for some number
of rounds, then determines a threshold T and afterwards enters an acceptance
phase. In the acceptance phase, it makes an offer to exactly those applicants
whose weight exceeds threshold T . Note that the number of rejecting rounds in
the beginning and the threshold T can be chosen arbitrarily at random.

The lower bound uses an identical-firm instance in which for each applicant vj

all firms have the same weight, i.e., there is w(vj) ≥ 0 such that w(ui, vj) = w(vj)
for every firm ui. It applies in the secretary model and the iid model. In the latter
we draw the weight w(vj) for each vj independently at random from a single
distribution. The main difference is that M∗ becomes a random variable.

Secretary Markets with Local Information 559

Theorem 2. Suppose every firm strives to hire a single applicant, and let A be
any thresholding-based algorithm. If every firm adopts A, there is an identical-
firm instance I on which A has a competitive ratio of Ω(log n/ log log n). This
lower bound applies in the iid model and the secretary model.

Proof (Idea). For simplicity, we assume3 that the thresholding-based algorithm
A does not know the number of firms m. Assume that n =

∑t
j=2 t2j for some

t ∈ N. We construct a distribution I on a family of identical-firm instances by
drawing the weight w(vj′) of each applicant vj′ according to Pr[w(vj′) = t−j] =
t2j/n for j = 2, . . . , t. In the secretary model, we may assume that each applicant
draws w(vj′) at the moment it arrives in the random order, since the order is
chosen independently of the weights. Since all applicant weights are identically
distributed, we may even completely disregard the random arrival order.

We define classes C2, . . . , Ct, where each class Cj consists of all applicants
vj′ with value w(vj′) = t−j . Consider how A performs on I for some firm ui.
We can assume that A chooses a threshold among {t−2, . . . , t−t}, since all other
choices are equivalent concerning the set of applicants receiving an offer from ui.
Let pj be the probability (over I and the random choices of A) that threshold
t−j is chosen. Clearly, there is some 2 ≤ k ≤ t with pk ≤ 1

t−1 . By setting m :=∑k
j=2 t2j , most firms should choose a threshold of t−k to obtain a competetive

solution, but by choice of k few firms do. Hence, the challenge for the firms is to
guess m correctly and extract welfare from the right class of applicants. ��

3 Independent Preferences

In this section, we show improved results for decentralized matching in the sec-
retary model when preferences are independent among firms. More formally, we
assume firm ui has a set Ui of ki positions available. An adversary specifies a sep-
arate set Pi of n applicant profiles for each firm ui. An applicant profile p ∈ Pi is
a function p : Ui → R

+. In round t, when a new applicant vt arrives, we pick one
remaining profile pit ∈ Pi for each ui ∈ U independently and uniformly at ran-
dom. The weight for position uij ∈ Ui is then given by w(uij , vt) = pit(uij). We
pick profiles from Pi uniformly at random without replacement. Special cases of
this model are, e.g., when all weights for all positions are independently sampled
from a certain distribution, or for each firm ui the weights of all applicants are
sampled independently from a different distribution for each position.

In contrast to the previous section, we assume that each applicant has ki

weight values for each firm ui. A straightforward O(log n)-competitive algorithm
is to run Algorithm 1 separately for each position of each firm. In contrast, when
n ≥

∑m
i=1 ki and ki ≤ αn for all i ∈ [m] and some constant α ∈ (0, 1), we can

achieve a constant competitive ratio using Algorithm 2. This algorithm resembles
an optimal algorithm for secretary matching with a single firm [16]. Each firm
rejects a number of applicants and enters an acceptance phase. In this phase,
it maintains two virtual solutions: (1) an individual virtual optimum M∗

i,t with

3 This assumption can be dropped by introducing firms with neglibly small preferences.

560 N. Chen et al.

Algorithm 2. Matching algorithm for firm ui for independent weights
Reject the first ri − 1 applicants
Mi, M

′
i ← ∅

for applicant vt arriving in round t = ri, . . . , n do
Let M∗

i,t be optimum matching for firm ui and applicants {v1, . . . , vt}
if vt is matched to position uij in M∗

i and uij unmatched in M ′
i then

Make an offer for position uij to vt
M ′

i ← M ′
i ∪ {(uij , vt)}

if vt accepts then
Mi ← Mi ∪ {(uij , vt)}

respect to applicants arrived up to and including round t, and (2) a virtual
solution M ′

i where all applicants are assumed to accept the offers of ui. If the
newly arrived applicant vt is matched in M∗

i,t, it is offered the same position
unless this position is already filled in M ′

i .

Theorem 3. Algorithm 2 achieves a constant competitive ratio.

Proof. Fix a firm ui. The matching M ′
i is constructed by assuming that ui is

the only firm in the market, i.e., every applicant accepts the offer of firm ui.
Consider the individual optimum M∗

i,n in hindsight. Then, by repeating the
analysis of [16], the expected value of M ′

i is

E [w(M ′
i)] ≥ ri − 1

n
ln

(
n

ri − 1

)
· w(M∗

i,n) = f(ri) · w(M∗
i,n) ,

where we denote the ratio by f(ri). Recall ki ≤ αn. Set ri in the interval (βn, γn)
for some appropriate constants β, γ ∈ (0, 1) such that β > α. This ensures that
f(ri) becomes a constant.

Let us now analyze the performance of the algorithm in the presence of com-
petition. Consider applicant vt in round t and the following events: (1) P (ui, vt)
is the event that ui sends an offer to vt, and (2) A(ui, vt) is the event that ui

sends an offer to vt and he accepts it. ui’s decision to offer depends only on M∗
i,t

and M ′
i , but not on the acceptance decisions of earlier applicants. vt for sure

accepts an offer from ui if ui offers and no other firm offers. Offers from other
firms ui′ occur only if ui′ is matched in M∗

i′,t. More formally, A(ui, vt) occurs (at
least) if P (ui, vt) and none of the P (ui′ , vt) occur. Since the profiles for different
firms are combined independently

Pr [A(ui, vt) | P (ui, vt)] ≥
∏
i�=i′

(1 − Pr [P (ui′ , vt)])

Consider the probability that vt is matched in M∗
i′,t. Since the order of pro-

files for ui′ is independent of the order for ui, we can imagine again choosing t

Secretary Markets with Local Information 561

profiles at random. Of those a random profile is chosen to be one of vt. The t
profiles determine M∗

i′,t, which matches min(t, ki′) profiles. Since the last profile
is determined at random, the probability that vt is matched in M∗

i′,t is at most
min(1, ki′/t). As t ≥ ri′ ≥ βn, we have

Pr [P (ui′ , vt)] ≤
{

0 if t ≤ ri′ − 1,

ki′/(βn) otherwise.

Thus,

Pr [A(ui, vt) | P (ui, vt)] ≥
∏
i�=i′

(1 − Pr [P (ui′ , vt)]) ≥ exp

(
m∑

i=1

ln
(

1 − ki

βn

))

≥ exp

(
−

m∑
i=1

1
1 − (α/β)

· ki

βn

)
≥ exp

(
− 1

β − α

)
.

The third inequality follows from ki ≤ αn by (1 − ki/(βn)) ≥ 1 − α/β. Further-
more, it holds that ln(1−x) ≥ − x

1−x for all x ∈ (0, 1). The last inequality is due
to n ≥

∑
j kj .

Consequently, E [w(Mi)] recovers at least a constant fraction of E [w(M ′
i)],

which represents a constant factor approximation to the individual optimum
M∗

i,n for i in hindsight. By linearity of expectation, the algorithm achieves a
constant competitive ratio for the expected weight of the optimum matching.

��

4 Correlated Preferences

In this section, we treat the basic model where every firm strives to hire one
applicant. We consider stochastic input generation which allows correlations on
the weights incident to an applicant. Specifically, assume that each applicant
vi has a parameter qi, measuring his built-in quality, and the weights of edges
incident to vi are generated independently from a distribution Di with mean
qi. Note that the lower bound for the classical e-competitive algorithm for the
secretary problem (Proposition 1) applies to this general setting. As a natural
candidate, we consider in particular normal distributions and assume that Di ∼
N(qi, σ

2) where qi is the quality of applicant vi and σ is a fixed constant.
We analyze correlations in two regimes: When the random noise is small and

the preference lists of each firm are unlikely to differ significantly and when large
variance has substantial effects on the preferences.

Small Variance. We consider the case of highly correlated preferences of an
applicant to all firms with possibly small fluctuations around an applicant’s
quality. Consider the list-based approach of Algorithm 3 that first samples a
linear number r = Θ(n) of applicants and afterwards maintains a list of the top
m candidates observed so far. The key observation we exploit is that Algorithm 3,

562 N. Chen et al.

Algorithm 3. List-based algorithm for firm u

Initialize list Lu = (�u,1, . . . , �u,m), initialized with (−∞, . . . , −∞)
(maintain Lu to contain the top m weights u observed so far, where
�u,1 ≥ · · · ≥ �u,m)
Reject the first (r − 1) applicants, denote the set by R
for applicant vt arriving in round t = r, . . . , n do

if w(u, vt) ≥ �u,m then
Update Lu: Push wu,vt into Lu and pop �u,m out.
if popped out �u,m = −∞ or corresponds to an applicant in R then

Make an offer to vt, stop if vt accepts

in contrast to the classical algorithm for the secretary problem, can cope well
with competition, provided that applicants have a global quality that all firms
roughly agree on. In particular, each of the top m applicants will be matched to
her best firm with constant probability.

Without loss of generality, let q1 ≥ · · · ≥ qn. Formally, define the parameter
δmin := mini�=j |qi − qj |, and ψ = δmin

σ .

Theorem 4. Let ψ = ω(n) and r = Θ(n). Algorithm 3 achieves a constant
competitive ratio with high probability, i.e., with probability approaching 1 over
all possible weights, we have E [w(M∗)] ≤ c·E

[
w(MA)

]
for some constant c > 0.

Large Variance. If weights are perturbed by high-variance normal distributions,
this yields a natural situation in which the classic algorithm for the secretary
problem achieves a constant competitive ratio. Let δmax := maxi�=j |qi − qj |
denote the largest difference in applicants’ qualifications and define the param-
eter ϕ := δmax

σ .

Theorem 5. The classic secretary algorithm achieves a constant competitive
ratio when ϕ = O(1

n2) and r = Θ(n). Each firm hires its best applicant with
constant probability.

References

1. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and
generalized secretary problems. SIGecom Exchanges 7(2) (2008)

2. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online
mechanisms. In: Proc. 18th Symp. Discrete Algorithms (SODA), pp. 434–443 (2007)

3. Devanur, N., Hayes, T.: The adwords problem: Online keyword matching with
budgeted bidders under random permutations. In: Proc. 10th Conf. Electronic
Commerce (EC), pp. 71–78 (2009)

4. Devanur, N., Jain, K., Sivan, B., Wilkens, C.: Near optimal online algorithms and
fast approximation algorithms for resource allocation problems. In: Proc. 12th Conf.
Electronic Commerce (EC), pp. 29–38 (2011)

5. Dimitrov, N., Plaxton, G.: Competitive weighted matching in transversal matroids.
Algorithmica 62(1–2), 333–348 (2012)

Secretary Markets with Local Information 563

6. Dinitz, M., Kortsarz, G.: Matroid secretary for regular and decomposable matroids.
SIAM J. Comput. 43(5), 1807–1830 (2014)

7. Dynkin, E.: The optimum choice of the instant for stopping a Markov process. Sov.
Math. Dokl. 4, 627–629 (1963)

8. Feldman, M., Svensson, O., Zenklusen, R.: A simple O(log log(rank))-competitive
algorithm for the matroid secretary problem. In: Proc. 26th Symp. Discrete Algo-
rithms (SODA), pp. 1189–1201 (2015)

9. Feldman, M., Tennenholtz, M.: Interviewing secretaries in parallel. In: Proc. 13th
Conf. Electronic Commerce (EC), pp. 550–567 (2012)

10. Göbel, O., Hoefer, M., Kesselheim, T., Schleiden, T., Vöcking, B.: Online indepen-
dent set beyond the worst-case: secretaries, prophets, and periods. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol.
8573, pp. 508–519. Springer, Heidelberg (2014)

11. Im, S., Wang, Y.: Secretary problems: Laminar matroid and interval scheduling. In:
Proc. 22nd Symp. Discrete Algorithms (SODA), pp. 1265–1274 (2011)

12. Immorlica, N., Kalai, A., Lucier, B., Moitra, A., Postlewaite, A., Tennenholtz,
M.: Dueling algorithms. In: Proc. 43rd Symp. Theory of Computing (STOC),
pp. 215–224 (2011)

13. Immorlica, N., Kleinberg, R.D., Mahdian, M.: Secretary problems with competing
employers. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE
2006. LNCS, vol. 4286, pp. 389–400. Springer, Heidelberg (2006)

14. Jaillet, P., Soto, J.A., Zenklusen, R.: Advances on matroid secretary problems: free
order model and laminar case. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS,
vol. 7801, pp. 254–265. Springer, Heidelberg (2013)

15. Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown
distributions. In: Proc. 43rd Symp. Theory of Computing (STOC), pp. 587–596
(2011)

16. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: An optimal online algorithm for
weighted bipartite matching and extensions to combinatorial auctions. In: Bodlaen-
der, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 589–600. Springer,
Heidelberg (2013)

17. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online
packing LPs in the random-order model. In: Proc. 46th Symp. Theory of Computing
(STOC), pp. 303–312 (2014)

18. Kleinberg, R.: A multiple-choice secretary algorithm with applications to online
auctions. In: Proc. 16th Symp. Discrete Algorithms (SODA), pp. 630–631 (2005)

19. Korula, N., Pál, M.: Algorithms for secretary problems on graphs and hypergraphs.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 508–520. Springer, Heidelberg
(2009)

20. Lachish, O.: O(log log rank) competitive ratio for the matroid secretary problem. In:
Proc. 55th Symp. Foundations of Computer Science (FOCS), pp. 326–335 (2014)

21. Lindley, D.: Dynamic programming and decision theory. Applied Statistics 10,
39–51 (1961)

22. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. J. ACM 54(5) (2007)

23. Molinaro, M., Ravi, R.: Geometry of online packing linear programs. Math. Oper.
Res. 39(1), 46–59 (2014)

24. Soto, J.: Matroid secretary problem in the random-assignment model. SIAM J.
Comput. 42(1), 178–211 (2013)

A Simple and Optimal Ancestry Labeling
Scheme for Trees

Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Noy Rotbart(B)

Department of Computer Science, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen, Denmark

{soerend,knudsen,noyro}@di.ku.dk

Abstract. We present a lg n + 2 lg lg n + 3 ancestry labeling scheme
for trees. The problem was first presented by Kannan et al. [STOC 88’]
along with a simple 2 lg n solution. Motivated by applications to XML
files, the label size was improved incrementally over the course of more
than 20 years by a series of papers. The last, due to Fraigniaud and
Korman [STOC 10’], presented an asymptotically optimal lg n+4 lg lg n+
O(1) labeling scheme using non-trivial tree-decomposition techniques.
By providing a framework generalizing interval based labeling schemes,
we obtain a simple, yet asymptotically optimal solution to the problem.
Furthermore, our labeling scheme is attained by a small modification of
the original 2 lg n solution.

1 Introduction

The concept of labeling schemes, introduced by Kannan, Naor and Rudich [16],
is a method to assign bit strings, or labels, to the vertices of a graph such that a
query between vertices can be inferred directly from the assigned labels, without
using a centralized data structure. A labeling scheme for a family of graphs F
consists of an encoder and a decoder. Given a graph G ∈ F , the encoder assigns
labels to each node in G, and the decoder can infer the query given only a set of
labels. The main quality measure for a labeling scheme is the size of the largest
label size it assigns to a node of any graph of the entire family. One of the most
well studied questions in the context of labeling schemes is the ancestry problem.
An ancestry labeling scheme for the family of rooted trees of n nodes F assigns
labels to a tree T ∈ F such that given the labels �(u), �(v) of any two nodes
u, v ∈ T , one can determine whether u is an ancestor of v in T .

Improving the label size for this question is highly motivated by XML search
engines. An XML document can be viewed as a tree and queries over such

S. Dahlgaard—Research partly supported by Mikkel Thorup’s Advanced Grant from
the Danish Council for Independent Research under the Sapere Aude research career
programme.
M. Bæk Tejs Knudsen—Research partly supported by Mikkel Thorup’s Advanced
Grant from the Danish Council for Independent Research under the Sapere Aude
research career programme and the FNU project AlgoDisc - Discrete Mathematics,
Algorithms, and Data Structures.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 564–574, 2015.
DOI: 10.1007/978-3-662-47666-6 45

A Simple and Optimal Ancestry Labeling Scheme for Trees 565

documents amount to testing ancestry relations between nodes of these trees
[2,10,11]. Search engines process queries using an index structure summarizing
the ancestor relations. It is imperative to the performance of such engines, that
as much as possible of this index can reside in main memory. The big size of
web data thus implies that even a small reduction in label size may significantly
improve the memory cost and performance. A more detailed explanation can be
found in [1].

One solution to this problem, dating back to at least ’74 by Tarjan [19] and
used in the seminal paper in ’92 by Kannan et al. [16] is the following: Given
an n node tree T rooted in r, perform a DFS traversal and for each u ∈ T
let dfs(u) be the index of u in the traversal. Assign the label of u as the pair
�(u) = (dfs(u),dfs(v)), where v is the descendant of u of largest index in the DFS
traversal. Given two labels �(u) = (dfs(u),dfs(v)) and �(w), u is an ancestor of w
iff dfs(u) ≤ dfs(w) ≤ dfs(v). In other words the label �(u) represents an interval,
and ancestry is determined by interval containment. Since every DFS index is a
number in {1, . . . , n} The size of a label assigned by this labeling scheme is at
most 2 lg n.1

This labeling scheme, denoted Classic from hereon, was the first in a long
line of research to minimize the label size to 1.5 lg n [3], lg n+O(lg n/ lg lg n) [20]2,
lg n + O(

√
lg n) [1,8] and finally lg n + 4 lg lg n + O(1) [14], essentially matching

a lower bound of lg n + lg lg n − O(1) [4]. Additional results for this labeling
scheme are a lg n + O(lg δ) labeling scheme for trees of depth at most δ [13] and
investigation on a dynamic variant with some pre-knowledge on the structure of
the constructed tree [10]. The asymptotically optimal labeling scheme [14] also
implies the existence of a universal poset of size O(nk lg4k n).

Labeling schemes for other functions were considered. Among which are adja-
cency [7,9,16], routing [12,20], nearest common ancestor [5,6] connectivity [18],
distance [15], and flow [17].

1.1 Our Contribution

We present a simple ancestry labeling scheme of size lg n+2 lg lg n+3. Similarly
to [1,14] our labeling scheme is based on assigning an interval to each node of
the tree. Our labeling scheme can be seen as an extension of the Classic scheme
described above, with the key difference that rather than storing the exact size of
the interval, we store only an approximation thereof. In order to store only this
approximation, our scheme assigns intervals larger than needed, forcing us to
use a range larger than 1, . . . , n. Our main technical contribution is to minimize
the label size by balancing the approximation ratio with the size of the range
required to accommodate the resulting labels. While it is a challenge to prove
the mathematical properties of our labeling scheme, describing it can be done
in a few lines of pseudocode.

1 Throughout this paper we use lg n to denote the base 2 logarithm lg2 n.
2 The paper discussed proves this bound on routing, which can be used to determine

ancestry.

566 S. Dahlgaard et al.

The simplicity of our labeling scheme contrast the labeling scheme of [14]
, which relies among other things, on a highly nontrivial tree decomposition
that must precede it’s encoding. As a concrete example, our encoder can be
implemented using a single DFS traversal, and results in a label size of lg n +
2 lg lg n + O(1) bits compared to lg n + 4 lg lg n + O(1). However, for trees of
constant depth, our scheme has size lg n+lg lg n+O(1), which is worse than the
bound achieved in [13].

The paper is structured as follows: In Section 2 we present a general frame-
work for describing ancestry labeling schemes based on the notion of left-
including intervals, which we introduce in Definition 1. Lemmas 1 and 2 show
the correctness of all labeling schemes which construct labels by assigning left-
including intervals to nodes. We illustrate the usefulness of this framework by
using it to describe Classic in Section 3. Finally, In Section 4 we use the
framework to construct our new approximation-based ancestry labeling scheme.

The proofs of Lemmas 1 to 3 are deferred to the full version.

1.2 Preliminaries

We use the notation [n] = {0, 1, . . . , n − 1} and denote the concatenation of two
bit strings a and b by a◦ b. Let T = (V,E) be a tree rooted in r, where u, v ∈ V .
The node u is an ancestor of v if u lies on the unique path from the root to v,
and we call v a descendant of u iff u is an ancestor of v. We denote the subtree
rooted in u as Tu, i.e. the tree consisting of all descendants of u, and stress that
a node is both an ancestor and descendant of itself. The encoding and decoding
running time are described under the word-RAM model.

We denote the interval assigned to a node u by I(u) = [a(u), b(u)], where
a(u) and b(u) denote the lower and upper part of the interval, respectively. We
also define a(u) and b(u) to be the maximum value of a(v) respectively b(v),
where v is a descendant of u (note that this includes u itself). We will use the
following notion:

Definition 1. Let T be a rooted tree and I an interval assignment defined on
V (T). We say that the interval assignment I is left-including if for each u, v ∈ T
it holds that u is an ancestor of v iff a(v) ∈ I(u).

In contrast to Definition 1, the literature surveyed [3,8,14,16] considers intervals
where u is an ancestor of v iff I(v) ⊆ I(u), i.e. the interval of a descendant node
is fully contained in the interval of the ancestor. This distinction is amongst the
unused leverage points which we will use to arrive at our new labeling scheme.

2 A Framework for Interval Based Labeling Schemes

In this section we introduce a framework for assigning intervals to tree nodes.
We will see in Sections 3 and 4 how this framework can be used to describe
ancestry labeling schemes. The framework relies heavily on the values defined in
Section 1.2, namely a(u), b(u), a(u), b(u). An illustration of these values is found

A Simple and Optimal Ancestry Labeling Scheme for Trees 567

Fig. 1. Two examples of left-including interval assignments to a tree. Left: a left-
including assignment as used for Classic in the introduction corresponding to b(u) =
a(u). Right: a different left-including assignment for the same tree. For internal nodes
where a(u) and b(u) do not coincide with b(u), we have marked these by a gray diamond
and square respectively.

in Figure 1 below. The interval [a(u), b(u)] can be seen as a slack interval from
which b(u) can be chosen. This will prove useful in Section 4.

The following lemmas contain necessary and sufficient conditions for interval
assignments satisfying the left inclusion property.

Lemma 1. Let T be a rooted tree and I a left-including interval assignment
defined on V (T). Then the following is true:

1. For each u ∈ T , b(u) ≥ a(u).
2. For each u ∈ T and v ∈ Tu\ {u} a descendant of u, a(v) > a(u).
3. For each u ∈ T , [a(u), b(u)] =

⋃
v∈Tu

I(v) =
⋃

v∈Tu
[a(v), b(v)]

4. For any two distinct nodes u, v ∈ T such that u is not an ancestor of v and v
is not an ancestor of u the intervals [a(u), b(u)] and [a(v), b(v)] are disjoint.

Lemma 2. Let T be a rooted tree and I an interval assignment defined on V (T).
If the following conditions are satisfied, then I is a left-including interval assign-
ment.

i For each u ∈ T , b(u) ≥ a(u).
ii For each u ∈ T and v ∈ T a child of u, a(v) > a(u).
iii For any two siblings u, v ∈ T the intervals [a(u), b(u)] and [a(v), b(v)] are

disjoint.

2.1 The Framework

We now consider a general approach for creating left-including interval assign-
ments. For a node u ∈ T and a positive integer t we define the procedure
Assign(u, t) that assigns intervals to Tu recursively and in particular, assigns
a(u) = t. For pseudocode of the procedure see Algorithm 1.

568 S. Dahlgaard et al.

Algorithm 1. Assigning intervals to all nodes in the subtree Tu rooted at u
ensuring a(u) = t.
1: procedure Assign(u, t)
2: (a(u), a(u), b(u), b(u)) ← (t, t, t, t)
3: for v ∈ children(u) do
4: Assign(v, b(u) + 1)
5:

(
a(u), b(u)

)← (a(v), b(v))

6: Assign b(u) such that b(u) ≥ a(u).
7: b(u) ← max

{
b(u), b(u)

}

Algorithm 1 provides a general framework for assigning intervals using a
depth-first traversal. We can use it to design an actual interval assignment by
specifying: (1) the way we choose b(u), and (2) the order in which the children
are traversed. These specifications correspond to Algorithm 1 and Algorithm 1,
respectively, and determine entirely the way the intervals are assigned. It may
seem counter-intuitive to pick b(u) > ā(u), but we will show that doing so in a
systematic way, we are able to describe the interval using fewer bits by limiting
the choices for b(u). In the remainder of this paper, we will see how these two
decisions impact also the label size, and produce our claimed labeling scheme.

We now show that any ordering of the children and any way of choosing b(u)
satisfying b(u) ≥ a(u) generates a left-including interval assignment.

Lemma 3. Let T be a tree rooted in r. After running Algorithm 1 with
Assign(r, 0) the values of a(u), b(u) are correct, i.e. for all u ∈ T :

a(u) = max
v∈Tu

{a(v)} , b(u) = max
v∈Tu

{b(v)} .

The following Lemma is useful for showing several properties in the framework.

Lemma 4. Let u be a node in a tree T with children v1 . . . vk. After running
Algorithm 1 with parameters Assign(r, 0) where v1 . . . vk are processed in that
order, the following properties hold:

1. b(u) − a(u) + 1 =
(∑k

i=1 b(vi) − a(vi) + 1
)

+ 1.

2. a(u) − a(u) + 1 = a(vk) − a(vk) +
(∑k−1

i=1 b(vi) − a(vi) + 1
)

+ 1.

Proof. By the definition of Assign we see that for all i = 1, . . . , k −1, a(vi+1) =
1 + b(vi). Furthermore a(v1) = a(u) + 1 and b(vk) = b(u). Hence:

b(u) − a(u) + 1 = b(vk) − a(v1) + 2

=

(
k∑

i=2

b(vi) − b(vi−1)

)
+ b(v1) − a(v1) + 2

=

(
k∑

i=1

b(vi) − a(vi) + 1

)
+ 1.

A Simple and Optimal Ancestry Labeling Scheme for Trees 569

The second equality follows by the same line of argument. �	

Theorem 1. Let T be a tree rooted in r. After running Algorithm 1 with param-
eters Assign(r, 0) the set of intervals produced are left-including.

Proof. Consider any node u ∈ T and a call Assign(u, t). We will prove each of
the conditions of Lemma 2, which implies the theorem.

i This condition is trivially satisfied by Algorithm 1.
iii First, observe that any interval assigned to a node w by a call to Assign(v, t)

has a(w) ≥ t, and by i it has b(w) ≥ b(w) ≥ a(w). Let v1, . . . , vk be the
children in the order of the for loop in Algorithm 1. By Algorithms 1 to 1
we have a(v1) = a(u) + 1, a(v2) = b(v1) + 1, a(v3) = b(v2) + 1, . . . , a(vk) =
b(vk−1) + 1, thus the condition is satisfied.

ii The first child v of u has a(v) = t + 1 = a(u) + 1. By the same line of
argument as in iii we see that all other children w of u must have a(w) >
a(v) = a(u) + 1. �	

3 The Classic Ancestry Labeling Scheme

To get acquainted with the framework of Section 2, we use it to redefine Classic,
the labeling scheme introduced in Section 1.

Let T be a tree rooted in r. We first modify the function Assign to create
Assign-Classic such that the intervals I(u) = [a(u), b(u)] correspond to the
intervals of the Classic algorithm described in the introduction. To do this
we set b(u) = a(u) in Algorithm 1 and traverse the children in any order in
Algorithm 1. We note that there is a clear distinction between an algorithm
such as Assign-Classic and an encoder. This distinction will be more clear in
Section 4. We will need the following lemma to describe the encoder.

Lemma 5. After Assign-Classic(u, t) is called the following invariant is true:

b(u) − a(u) + 1 = |Tu|

Proof. We prove the claim by induction on |Tu|. When |Tu| = 1 u is a leaf and
hence b(u) = a(u) = t and the claim holds.

Let |Tu| = m > 1 and assume that the claim holds for all nodes with subtree
size < m. Let v1, . . . , vk be the children of u. By Lemma 4 and the induction
hypothesis we have:

b(u) − a(u) + 1 =

(
k∑

i=1

b(vi) − a(vi) + 1

)
+ 1

=

(
k∑

i=1

|Tvi
|
)

+ 1 = |Tu| .

This completes the induction. �	

570 S. Dahlgaard et al.

Description of the Encoder: Let T be an n-node tree rooted in r. We first
invoke a call to Assign-Classic(r, 0). By Lemma 5 we have b(r)− a(r) + 1 = n
and this implies 0 ≤ a(u), b(u) ≤ n − 1 for every u ∈ T . Let xu and yu be the
encoding of a(u) and b(u) using exactly3
lg n� bits respectively. We set the label
of u to be the concatenation of the two bitstrings, i.e. �(u) = xu ◦ yu.

Description of the Decoder: Let �(u) and �(v) be the labels of the nodes u
and v in a tree T . By the definition of the encoder, the labels have the same
size and it is 2z for some integer z ≥ 1. Let �(u) = xu ◦ yu where xu and yu

are the first and last z bits of �(u) respectively. Let au and bu the integers from
[2z] corresponding to the bit strings xu and yu respectively. We define av and
bv analogously. The decoder responds True, i.e. that u is the ancestor of v, iff
av ∈ [au, bu].

The correctness of the labeling scheme follows from Theorem 1 and the
description of the decoder.

4 An Approximation-Based Approach

In this section we present the main result of this paper:

Theorem 2. There exist an ancestry labeling scheme of size
lg n�+2
lg lg n�+
3.

To prove this theorem, we use the framework introduced in Section 2. The
barrier in reducing the size of the Classic labeling scheme is that the number
of different intervals that can be assigned to a node is Θ(n2). It is impossible
to encode so many different intervals without using at least 2 lg n − O(1) bits.
The challenge is therefore to find a smaller set of intervals I(u) = [a(u), b(u)] to
assign to the nodes. First, note that Lemma 1 points 2 and 4 imply that any two
nodes u, v must have a(u) �= a(v). By considering the n node tree T rooted in r
where r has n−1 children, we also see that there must be at least n−1 different
values of b(u) (by Lemma 1 point 4). One might think that this implies the need
for Ω(n2) different intervals. This is, however, not the case. We consider a family
of intervals, such that a(u) = O(n) and the size of each interval, b(u)− a(u)+1,
comes from a much smaller set, S. Since there are O(n |S|) such intervals we are
able to encode them using lg n + lg |S| + O(1) bits.

We now present a modification of Assign called Assign-New. Calling
Assign-New(r, 0) on an n-node tree T with root r will result in each a(u) ∈ [2n]
and b(u) ∈ S, where S is given by:

S =
{⌊

(1 + ε)k
⌋

| k ∈
[
4
lg n�2

]}
, (1)

where ε is the unique solution to the equation lg(1 + ε) = (
lg n�)−1. First, we
examine some properties of S:

3 This can be accomplished by padding with zeros if necessary.

A Simple and Optimal Ancestry Labeling Scheme for Trees 571

Lemma 6. Let S be defined as in (1). For every m ∈ {1, 2, . . . , 2n} there exists
s ∈ S such that:

m ≤ s < m(1 + ε) .

Furthermore, s =
⌊
(1 + ε)k

⌋
for some k ∈

[
4
lg n�2

]
, and both s and k can be

computed in O(1) time.

Proof. Fix m ∈ {1, 2, . . . , 2n}. Let k be the largest integer such that (1 + ε)k−1
<

m. Equivalently, k is the largest integer such that:

k − 1 <
lg m

lg (1 + ε)
= (lg m) ·
lg n� .

In other words we choose k as
(lg m) ·
lg n�� and note that k is computed in
O(1) time. Since lg m ≤ lg(2n) ≤ 2 lg n:

k ≤
2(lg n) ·
lg n�� ≤ 2
lg n�2 < 4
lg n�2 .

By setting s =
⌊
(1 + ε)k

⌋
we have s ∈ S. By the definition of k we see that

(1 + ε)k ≥ m and thus also s ≥ m. Similarly:

m(1 + ε) > (1 + ε)k−1 · (1 + ε) = (1 + ε)k ≥ s.

This proves that s ∈ S satisfies the desired requirement. Furthermore s can be
computed in O(1) time by noting that:

s =
⌊
(1 + ε)k

⌋
=

⌊
2lg(1+ε)k

⌋
=

⌊
2�lg n�−1·k

⌋
.

�	

We now define Assign-New by modifying Assign in the following two ways.
First, we specify the order in which the children are traversed in Algorithm 1.
This is done in non-decreasing order of their subtree size, i.e. we iterate v1, . . . , vk,
where |Tv1 | ≤ . . . ≤ |Tvk

|. Second, we choose b(u) in Algorithm 1 as the smallest
value, such that b(u) ≥ a(u) and b(u) − a(u) + 1 ∈ S. This is done by using
Lemma 6 with m = a(u) − a(u) + 1 and setting b(u) = a(u) + s − 1. In order
to do this we must have m ≤ 2n. To do this, we show the following lemma
corresponding to Lemma 5 in Section 3.

Lemma 7. After Assign-New(u, t) is called the following invariants holds:

a(u) − a(u) + 1 ≤ |Tu| (1 + ε)�lg|Tu|� (2)

b(u) − a(u) + 1 ≤ |Tu| (1 + ε)�lg|Tu|�+1 (3)

Proof. We prove the claim by induction on |Tu|. When |Tu| = 1, u is a leaf, so
b(u) = a(u) = a(u) = t and the claim holds.

Now let |Tu| = m > 1 and assume that the claim holds for all nodes with
subtree size < m. Let v1, . . . , vk be the children of u such that |Tv1 | ≤ . . . ≤ |Tvk

|.

572 S. Dahlgaard et al.

First, we show that (2) holds. By Lemma 4 we have the following expression
for a(u) − a(u) + 1:

a(u) − a(u) + 1 = (a(vk) − a(vk) + 1) +

(
k−1∑
i=1

b(vi) − a(vi) + 1

)
+ 1. (4)

It follows from the induction hypothesis that:

a(vk) − a(vk) + 1 ≤ |Tvk
| (1 + ε)lg|Tvk |� ≤ |Tvk

| (1 + ε)�lg|Tu|�. (5)

Furthermore, by the ordering of the children, we have lg |Tvi
| ≤ lg |Tu| − 1 for

every i = 1, . . . , k − 1. Hence:

b(vi) − a(vi) + 1 ≤ |Tvi
| (1 + ε)lg|Tvi |�+1 ≤ |Tvk

| (1 + ε)�lg|Tu|�. (6)

Inserting (5) and (6) into (4) proves invariant (2).
Since b(u) = max

{
b(vk), b(u)

}
we only need to upper bound b(vk)−a(u)+1

and b(u)−a(u)+1. First we note that since b(u) is chosen smallest possible such
that b(u) ≥ a(u) and b(u) − a(u) + 1 ∈ S, it is guaranteed by Lemma 6 that:

b(u) − a(u) + 1 < (1 + ε) (a(u) − a(u) + 1) ≤ |Tu| (1 + ε)�lg|Tu|�+1

Hence we just need to upper bound b(vk) − a(u) + 1. First we note that just as
in (4):

b(vk) − a(u) + 1 =

(
k∑

i=1

b(vi) − a(vi) + 1

)
+ 1 (7)

By the induction hypothesis, for every i = 1, . . . , k:

b(vi) − a(vi) + 1 ≤ |Tvi
| (1 + ε)lg|Tvi |�+1 ≤ |Tvi

| (1 + ε)�lg|Tu|�+1 (8)

Inserting (8) into (7) gives the desired:

b(vk) − a(u) + 1 ≤ 1 +
k∑

i=1

|Tvi
| (1 + ε)�lg|Tu|�+1 ≤ |Tu| (1 + ε)�lg|Tu|�+1.

This completes the induction. �	

By Lemma 7 we see that for a tree T with n nodes and u ∈ T :

a(u) − a(u) + 1 ≤ |Tu| (1 + ε)�lg|Tu|� ≤ n · 2�lg n� lg(1+ε) ≤ n · 21 = 2n.

In particular, for any u ∈ T we see that a(u) ≤ 2n, and by Lemma 6 the function
Assign-New is well-defined.

We are now ready to describe the labeling scheme:

A Simple and Optimal Ancestry Labeling Scheme for Trees 573

Description of the Encoder: Given an n-node tree T rooted in r, the encoding
algorithm works by first invoking a call to Approx-New(r, 0). Recall that by
Lemma 6 we find b(u) such that b(u) − a(u) + 1 =

⌊
(1 + ε)k

⌋
as well as the

value of k in O(1) time. For a node u, denote the value of k by k(u) and let xu

and yu be the bit strings representing a(u) and k(u) respectively, consisting of
exactly
lg(2n)� and

⌈
lg(4
lg n�2)

⌉
bits (padding with zeroes if necessary). This

is possible since a(u) ∈ [2n] and k(u) ∈
[
4
lg n�2

]
.

For each node u ∈ T we assign the label �(u) = xu ◦ yu. Since

lg(2n)� = 1 +
lg n� ,
⌈
lg(4
lg n�2)

⌉
= 2 +
2 lg(
lg n�)� = 2 +
2 lg lg n� ,

the label size of this scheme is
lg n� +
2 lg lg n� + 3.

Description of the Decoder: Let �(u) and �(v) be the labels of the nodes u and
v in a tree T . By the definition of the encoder the labels have the same size and it
is s = z+
2 lg z�+3 for some integer z ≥ 1. By using that s−
2 lg s�−3 = z−O(1)
we can compute z in O(1) time. We know that the number of nodes n in T
satisfies
lg n� = z. We can therefore define ε to be the unique solution to
lg(1 + ε) =
lg n�−1 = z−1. Let xu and yu be the first z + 1 bits and last

2 lg z� + 2 bits of �(u) respectively. We let au and ku be the integers in [2z+1]
and [4z2] corresponding to the bit strings xu and yu respectively. We define su

as
⌊
(1 + ε)ku

⌋
and bu = su + au − 1. We define av, bv, kv, sv analogously. The

decoder responds True, i.e. that u is the ancestor of v, iff av ∈ [au, bu].
Theorem 2 is now achieved by using the labeling scheme described above.

Correctness follows from Theorem 1.

References

1. Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Compact labeling
scheme for ancestor queries. SIAM J. Comput. 35(6), 1295–1309 (2006)

2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann (1999)

3. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries.
In: Proc. 25th ACM-SIAM Symposium on Discrete Algorithms, pp. 547–556 (2001)

4. Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees.
SIAM J. Discret. Math. 19(2), 448–462 (2005)

5. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: A
survey and a new distributed algorithm. pp. 258–264. ACM Press (2002)

6. Alstrup, S., Halvorsen, E.B., Larsen, K.G.: Near-optimal labeling schemes for near-
est common ancestors. In: SODA, pp. 972–982 (2014)

7. Alstrup, S., Kaplan, H., Thorup, M., Zwick, U.: Adjacency labeling schemes and
induced-universal graphs. CoRR, abs/1404.3391 (2014) (to appear in STOC 2015)

8. Alstrup, S., Rauhe, T.: Improved labeling scheme for ancestor queries. In: Proc.
13th ACM-SIAM Symposium on Discrete Algorithms, pp, 947–953 (2002)

9. Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph
representations. In: FOCS 2002, pp. 53–62 (2002)

574 S. Dahlgaard et al.

10. Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic xml trees. SIAM Journal on
Computing 39(5), 2048–2074 (2010)

11. Deutsch, A., Fernández, M.F., Florescu, D., Levy, A.Y., Suciu, D.: A query lan-
guage for XML. Computer Networks 31(11–16), 1155–1169 (1999)

12. Fraigniaud, P., Gavoille, C.: Routing in Trees. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg
(2001)

13. Fraigniaud, P., Korman, A.: Compact ancestry labeling schemes for xml trees. In:
Proc. 21st ACM-SIAM Symp. on Discrete Algorithms (SODA) (2010)

14. Fraigniaud, P., Korman, A.: An optimal ancestry scheme and small universal
posets. In: STOC 2010, pp. 611–620 (2010)

15. Gavoille, C., Peleg, D., Pérennesc, S., Razb, R.: Distance labeling in graphs. Jour-
nal of Algorithms 53, 85–112 (2004)

16. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM Journal
on Discrete Mathematics, 334–343 (1992)

17. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and con-
nectivity. SIAM Journal on Computing 34(1), 23–40 (2004)

18. Korman, A.: Labeling schemes for vertex connectivity. ACM Transactions on Algo-
rithms 6(2) (2010)

19. Robert Endre Tarjan: Finding dominators in directed graphs. SIAM J. Comput.
3(1), 62–89 (1974)

20. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA 2001, pp. 1–10 (2001)

Interactive Communication with Unknown
Noise Rate

Varsha Dani1, Mahnush Movahedi1(B), Jared Saia1, and Maxwell Young2

1 University of New Mexico, Albuquerque, USA
{movahedi,saia}@cs.unm.edu

2 Drexel University, Philadelphia, USA
myoung@cs.drexel.edu

Abstract. Alice and Bob want to run a protocol over an noisy channel,
where a certain number of bits are flipped adversarially. Several results
take a protocol requiring L bits of noise-free communication and make
it robust over such a channel. In a recent breakthrough result, Haeupler
described an algorithm that sends a number of bits that is conjectured to
be near optimal in such a model. However, his algorithm critically requires
a priori knowledge of the number of bits that will be flipped by the adver-
sary.

We describe an algorithm requiring no such knowledge. If an adversary
flips T bits, our algorithm sends L+O

(
(T +

√
LT + L) log(LT + L)

)
bits

in expectation and succeeds with high probability in L. It does so with-
out any a priori knowledge of T . Assuming a conjectured lower bound by
Haeupler, ourresult is optimal up to logarithmic factors.

Our algorithm critically relies on the assumption of a private channel.
We show that privacy is necessary when the amount of noise is unknown.

1 Introduction

How can two parties run a protocol over a noisy channel? Interactive communi-
cation seeks to solve this problem while minimizing the total number of bits sent.
Recently, Haeupler [12] gave an algorithm for this problem that is conjectured
to be optimal. However, as in previous work [1,2,4,6,9–11,17], his algorithm
critically relies on the assumption that the algorithm knows the noise rate in
advance, i.e., the algorithm knows in advance the number of bits that will be
flipped by the adversary.

In this paper, we remove this assumption. To do so, we add a new assumption
of privacy. In particular, in our model, an adversary can flip an unknown number
of bits, at arbitrary times, but he never learns the value of any bits sent over
the channel. This assumption is necessary: with a public channel and unknown
noise rate, the adversary can run a man-in-the-middle attack to mislead either
party (see Theorem 3, Section 4).

This research was supported in part by NSF grants CNS-1318294 and CCF-1420911.
An extended version of the paper is available at http://arxiv.org/abs/1504.06316

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 575–587, 2015.
DOI: 10.1007/978-3-662-47666-6 46

http://arxiv.org/abs/1504.06316

576 V. Dani et al.

Problem Overview. We assume that Alice and Bob are connected by a noisy
binary channel. Our goal is to build an algorithm that takes as input some dis-
tributed protocol π that works over a noise-free channel and outputs a distributed
protocol π′ that works over the noisy channel.

We assume an adversary chooses π, and which bits to flip in the noisy channel.
The adversary knows our algorithm for transforming π to π′. However, he neither
knows the private random bits of Alice and Bob, nor the bits sent over the
channel, except when it is possible to infer these from knowledge of π and our
algorithm.

We let T be the number of bits flipped by the adversary, and L be the length
of π. As in previous work, we assume that Alice and Bob know L.

Our Results. Our main result is summarized in the following theorem.

Theorem 1. Algorithm 1 (Section 2) tolerates an unknown number of adver-
sarial errors, T , succeeds with high probability in the transcript length1, L, and
if successful, sends L + O

(
(T +

√
LT + L) log(LT + L)

)
bits in expectation.

The number of bits sent by our algorithm is within logarithmic factors of
optimal, assuming a conjecture from [12]. Details are in the full version.

In the full version, we also show a relationship between the overhead incurred
when T = 0 and when T ≥ 1 for a very general class of algorithms, and derive
some near-optimal results under this class.

Challenges. Can we adapt prior results by guessing the noise rate? Underesti-
mation threatens correctness if the actual number of bit flips exceeds the algo-
rithm’s tolerance. Conversely, overestimation leads to sending more bits than
necessary. Thus, we need a protocol that adapts to the adversary’s actions.

One idea is to adapt the amount of communication redundancy based on
the number of errors detected thus far. However, this presents a new challenge
because the parties may have different views of the number of errors. They will
need to synchronize their adaptions over the noisy channel.

Another technical challenge is termination. The length of the simulated pro-
tocol is necessarily unknown, so the parties will likely not terminate at the same
time. After one party has terminated, it is a challenge for the other party to
detect this fact based on bits received over the noisy channel.

1.1 Related Work

For L bits to be transmitted from Alice to Bob, Shannon [19] proposes an error
correcting code of size O(L) that yields correct communication over a noisy
channel with probability 1−e−Ω(L). At first glance, this may appear to solve our
problem. But consider an interactive protocol with communication complexity
L, where Alice sends one bit, then Bob sends back one bit, and so forth where the
value of each bit sent depends on the previous bits received. Two problems arise.
First, using block codewords is not efficient; to achieve a small error probability,
1 Specifically with probability at least 1 − 1/Lc, for some constant c > 0.

Interactive Communication with Unknown Noise Rate 577

“dummy” bits may be added to each bit prior to encoding, but this results in a
superlinear blowup in overhead. Second, due to the interactivity, an error that
occurs in the past can ruin all computation that comes after it. Thus, error
correcting codes fall short when dealing with interactive protocols.

The seminal work of Schulman [17,18] overcame these obstacles by describing
a deterministic method for simulating interactive protocols on noisy channels
with only a constant-factor increase in the total communication complexity. This
work spurred vigorous interest in the area (see [3] for an excellent survey).

Schulman’s scheme tolerates an adversarial noise rate of 1/240. It critically
depends on the notion of a tree code for which an exponential-time construction
was originally provided. This exponential construction time motivated work on
more efficient constructions [4,13,16]. There were also efforts to create alterna-
tive codes [9,15]. Recently, elegant computationally-efficient schemes that toler-
ate a constant adversarial noise rate have been demonstrated [1,10]. Additionally,
a large number of powerful results have improved the tolerable adversarial noise
rate [2,5,6,8,11].

The closest prior work to ours is that of Haeupler [12]. His work assumes
a fixed and known adversarial noise rate ε, the fraction of bits flipped by the
adversary. Communication efficiency is measured by communication rate which
is L divided by the total number of bits sent. Haeupler [12] describes an algorithm
that achieves a communication rate of 1−O(

√
ε log log(1/ε), which he conjectures

to be optimal. We compare our work to his in Section 4.
Feinerman, Haeupler and Korman [7] recently studied the interesting related

problem of spreading a rumor of a single bit in a noisy network. In their frame-
work, in each synchronous round, each agent can deliver a single bit to a random
anonymous agent. This bit is flipped independently at random with probabil-
ity 1/2 − ε for some fixed ε > 0. Their algorithm ensures with high probability
that in O(log n/ε2) rounds and with O(n log n/ε2)) messages, all nodes learn the
correct rumor. They also present a majority-consensus algorithm with the same
resource costs, and prove these resource costs are optimal for both problems.

2 Our Algorithm

In this section, we first provide a formal definition of our model. We then sum-
marize the main components of our algorithm along with the intuition behind
our design.

2.1 Formal Model

Our algorithm takes as input a protocol π which is a sequence of L bits, each
of which is transmitted either from Alice to Bob or from Bob to Alice. As in
previous work, we also assume that Alice and Bob both know L. We let Alice
be the party who sends the first bit in π.

578 V. Dani et al.

Channel Steps. We assume communication over the channel is synchronous
and individual computation is instantaneous. We define a channel step as the
amount of time that it takes to send one bit over the channel.

Silence on the Channel. When neither Alice nor Bob sends in a channel step,
we say that the channel is silent. In any contiguous sequence of silent channel
steps, the bit received on the channel in the first step is set by the adversary for
free. By default, the bit received in subsequent steps of the sequence remains the
same, unless the adversary pays for one bit flip in order to change it. In short,
the adversary pays a cost of one bit flip each time it wants to change the value
of the bit received in any contiguous sequence of silent steps.

2.2 Overview, Notation and Definitions

Our algorithm is presented as Algorithm 1. The overall idea of the algorithm is
simple: the parties run the original protocol π for b steps as if there was no noise.
Then, they verify whether an error has occurred by checking the fingerprints.
Based on the result of this verification procedure, the computation of π either
moves forward b steps or is rewound b steps. We now define some notation.

Fingerprints. To verify communication, our algorithm uses randomized hash
functions as described in the following well-known theorem.

Theorem 2. (Naor and Naor [14]) For any positive integer L and any proba-
bility p, there exists a hash function F that given a uniformly random bit string
S as the seed, maps any string of length at most L bits to a bit string hash value
H, such that the collision probability of any two strings is at most p, and the
length of S and H are |S| = Θ(log(L/p)) and |H| = Θ(log(1/p)) bits.

Transcripts. We define Alice’s transcript, TA, as the sequence of possible bits
of π that Alice has either sent or received up to the current time. Similarly,
we let TB denote Bob’s transcript. For both Alice or Bob, we define a verified
transcript to be the longest prefix of a transcript for which a verified fingerprint
has been received. We denote the verified transcript for Alice as T ∗

A, and for Bob
as T ∗

B .

Blocks. We define a block as b contiguous bits of protocol π that are run during
Line 8 of Alice’s protocol. The value b denotes the size of the block which is set
by Alice, and decreases based on the number of blocks in which she detects a
corruption.

Rounds. We define a round as one iteration of the repeat loop in Alice’s proto-
col. This loop starts at Line 2 and ends at Line 12. A round consists of executing
b channel steps of π (a block), as well as sending and receiving some fingerprints
required for verification purposes.

Other Notation. For a transcript T and integer x, we define T [0, . . . , x] to be
the first x bits of T if T is of length at least x. Otherwise, we define T [0, . . . , x]
as null. For two strings x and y, we define x�y to be the concatenation of x and

Interactive Communication with Unknown Noise Rate 579

y. We define the function getH based on Theorem 2. When given a probability
p, getH returns the tuple (h, �h, �s), where h denotes the hash function from
Theorem 2; �h is |H|, the size of the output of the hash function; and �s is |S|,
the size of the seed. The probability used in getH is 1

(Lx)c for some c ≥ 2.

2.3 Algorithm Design

At the start of each round, Alice chooses a random seed SA and sends 1) SA;
2) HA which is the fingerprint of TA; and 3) |TA| which is size of TA. This
allows Bob to determine which block of π they should compute. Next, Alice and
Bob continue the computation of π for b steps as if the channel was noiseless.
Finally, Bob sends HB, which is the hash of TB using the same seed SA previously
received from Alice. Alice listens for the hash value from Bob and checks if it
matches her own transcript. If she receives a correct hash value, she proceeds
to the next round. If she does not, she rewinds the transcript TA by b steps,
decreases the value of b, and begins a new round.

Adaptive Block Size. The block size b decreases each time Alice fails to receive
a correct fingerprint from Bob. We can use our lower-bound to calculate how to
decrease the b during the protocol. To prevent progress in computation of π in
a round, it suffices to corrupt a single bit in the round. Drawing intuition from
our lower bound, we want our algorithm to send L + Θ̃(

√
LT) bits per block.

Thus, we initially set b =
√

L, and after t errors, we set b =
√

L/t.
Adapting the block size is critical to achieving a good communication rate,

but it raises a new challenge: How can Alice and Bob agree on the current
block size? Our solution is to make Alice authoritative on the current block size.
Therefore, while Alice knows the start and the end of each block, Bob may not.

To overcome this problem, Alice includes the block size at the start of each
block. If Bob detects an error, he enters into a “listening loop”. During this time,
Bob continually checks all received bits and exits the loop if a valid fingerprint is
received. Alice, having not received a correct fingerprint from Bob, will rewind
all the bits added to her transcript in the current round and reduce the current
block size. Intuitively, this ensures that 1) Alice is never more than one block
ahead of Bob; and 2) Bob is always allowed to “catch up” to Alice.

Adapting Fingerprint Size. The execution time of our algorithm depends on
the unknown value T . But a fixed-sized fingerprint will fail if T is very large.
For example, consider the case where the fingerprint size is always Θ(log L)
with collision probability of 1

Lc for some constant c. The adversary can choose
T = ω(Lc) and flip one bit in each block. Since Alice and Bob must send Ω(T)
blocks, the probability of failure due to hash collision is no longer negligible.

To solve this problem, we adaptively increase the fingerprint size based on
the channel step, x. In particular, we use a family of hash functions with |S| =
|H| = Θ(log(Lx)) and probability of failure of p = 1

(Lx)c , for some constant
c ≥ 2. This ensures the probability that there is any fingerprint collision is o(1).

580 V. Dani et al.

Algorithm 1. Interactive Communication

ALICE’S PROTOCOL

Data: π ← L-step protocol to be
simulated augmented by 2

√
L

extra steps of sending random
bits; x is the channel step
number;

1 Initialization:
TA ← null; T ∗

A ← null;

i ← 1; b ← √
L;

2 repeat

3 (h, �h, �s) ← getH
(

1
(Lx)c

)
;

4 SA ← �s uniformly random bits;
5 HA ← h(TA � |TA| � b, SA);
6 Send (|TA|, b, SA, HA);
7 T ∗

A ← TA ;
8 Resume π

for b steps; record in TA;
9 H′

B ← the next �h bits received;
10 if H′

B �= h(TA, SA) then
11 TA ← T ∗

A ;
12 i ← i + 1;

13 b ← max

(
log L,

√
L
i

)
;

until14 |TA| ≥ L +
√

L;
15 Terminate and Output: the out-

come of π based on transcript T ∗
A;

BOB’S PROTOCOL

Data: π ← L-step protocol to be
simulated augmented by 2

√
L

extra steps of listening; x is
the channel step number;

1 Initialization:
TB ← null; T ∗

B ← null;
(h, �h, �s) ← getH

(
1
Lc

)
; Listen for

�h + �s + 2 log L − 1 channel steps ;

2 while TRUE do
3 repeat
4 Listen for 1 step;
5 Find x′ such that x′+�h+�s+

2 log L = x and (h, �h, �s) =

getH
(

1
(Lx′)c

)
;

6 (h, �h, �s) ← getH
(

1
(Lx′)c

)
;

7 Set (t′
A, b′, S′

A, H′
A) based on

last �h + �s + 2 log L bits
received;

8 if |T ∗
B | ≥ L and the last

10 log x received bits are the
same then

9 Terminate and Out-
put: the outcome of π
based on T ∗

B ;

until10 H′
A =

h(TB[0, . . . , tA] � t′
A � b′, S′

A);
11 T ∗

B ← TB[0, . . . , t′
A] ;

12 TB ← T ∗
B ;

13 Resume π for b′ steps; record in
TB;

14 HB ← h(TB, S′
A);

15 Send HB;

end

Interactive Communication with Unknown Noise Rate 581

Handling Termination. In previous work, since ε and L′ are known, both
parties know when to terminate, and can do so at the same time. However, since
we know neither parameter, termination is now more challenging.

In our algorithm, π is padded with 2
√

L additional bits at the end. Each of
these bits is set independently and uniformly at random by Alice. Alice termi-
nates when her transcript is of length equal to L+

√
L. Bob terminates when 1)

his verified transcript is of length L; and 2) he has received a sequence of 10 log x
consecutive bits that are all the same. These conditions ensure that 1) Bob is
very unlikely to terminate before Alice; and 2) Bob terminates soon after Alice,
unless the adversary pays a significant cost to delay this.

3 Proof of Theorem 1

3.1 Probabilities of Bad Events

Before proceeding to our proof, we bound the probability of two bad events.

• Event 1 - Hash Collision. Either Alice or Bob incorrectly validates a finger-
print and updates their verified transcript to include bits not in π.

• Event 2 - Consecutive Bit Match. In the last 2
√

L padded random bits of π
sent by Alice, Bob receives 10 log x consecutive bits that are all the same.

Lemma 1. The probability of Event 1 is O(1/Lc) for any constant c > 1.

Proof. Alice chooses a fresh random seed S each time she sends a fingerprint
and Bob’s fingerprints use the received seed. The adversary never learns these
random bits. Assume the adversary flips some bits in the block and also possibly
flips some bits in the fingerprint sent. Then, by Theorem 2, the probability of a
hash collision is at most 2/(Lx)c, where x is the channel step in which Alice set
the hash function. Let ξ be the event that there is ever a collision for any of the
hash functions. Then Pr(ξ) ≤ 2

Lc

∑∞
x=1

1
xc which is O(1/Lc) when c > 1. ��

Lemma 2. The probability of Event 2 is O(1/L9).

Proof. Let ξ be the event that Bob receives 10 log x bits that are all the same after
|T ∗

B | ≥ L, but before Alice terminates. The bits sent by Alice during this time
are random and will remain random, even if the adversary flips them. Thus,
for a fixed channel step x, the probability that the last 10 log x random bits
received by Bob are all the same is 1/x10. Thus, by a union bound, Pr(ξ) ≤∑∞

x=L 1/x10 = O(1/L9). ��

582 V. Dani et al.

3.2 Remaining Proof

We now complete the proof of correctness.

Lemma 3. In Line 5 of Bob’s algorithm, there is only one possible value for
(h, �h, �s).

Proof. We give a proof by contradiction. We assume that there are two values
x′ and x′′ that meet the two conditions of Line 5. Thus, x′ = x − (�′

h + �′
s +

2 log L) and x′′ = x − (�′′
h + �′′

s + 2 log L). Without loss of generality, let x′ < x′′.

Thus, �′
h + �′

s ≤ �′′
h + �′′

s since they will be computed based on getH
(

1
(Lx′)c

)
and

getH
(

1
(Lx′′)c

)
. But then, x′′ − x′ = �′

h + �′
s − �′′

h + �′′
s ≤ 0 or x′ ≥ x′′ which is a

contradiction. ��

Lemma 4. |TA| never decreases in any round.

Proof. In each round, Alice adds b bits to TA. At the end of the round, she either
keeps these b bits if there is a fingerprint match or rewinds b bits if not. ��

For transcripts T and T ′, we denote T � T ′ if and only if T is a prefix of T ′.

Lemma 5. Our algorithm has the following properties:

1. When Alice is in Line 2 through Line 6 of her protocol, Bob is listening on
the channel.

2. When Alice is in Line 2 through Line 6 of her protocol and also at the end
of each round, TA � TB.

3. It is always the case that |TA| − b ≤ |T ∗
B | ≤ |TA|.

4. Alice terminates before Bob.

Proof. We prove by induction on the number of times that Alice executes Line 6.
Base Case: If i = 0, then TA = TB = T ∗

B = null, and Bob is listening at the
start of his protocol, so all of the lemma’s statements hold.
Inductive Step: In Line 6 of round i−1, Alice sends a fingerprint. By the inductive
hypothesis, Bob is listening at this point. We do a case analysis:

• Case 1: Bob does not verify the fingerprint Alice sends. In this case, Bob will
continue listening in his repeat loop for the entire time that Alice completes
round i − 1 and continues to Line 6 of round i. Bob will not update TB and
T ∗

B in round i − 1 and up to Line 6 of round i. After Line 6 of round i − 1,
Alice continues computation of π for b steps, but the value H′

B received in
Line 9 will not match her own transcript. Thus, she will undo the updates
to her transcript. Therefore, all of the lemma statements hold from Line 6
of round i − 1 up to Line 6 of round i.

Interactive Communication with Unknown Noise Rate 583

• Case 2: Bob verifies the fingerprint Alice sends. Thus, TB[0, . . . , t′a] = TA
and b′ = b at the end of Line 6 of round i − 1. Next, Bob exits his repeat
loop and sets TB and T ∗

B both to TB[0, . . . , t′a] = TA. Then, Alice and Bob
compute b steps of π. Finally, Bob sends his fingerprint to Alice.

If Bob’s fingerprint matches Alice’s transcript, she will update her tran-
script by b steps. This means at the end of round i − 1, TA = TB and they
are at most b steps ahead of T ∗

B . If Bob’s fingerprint does not match Alice’s
transcript, she sets her transcript to T ∗

A which is equal to TA at the beginning
of round i−1 which is itself equal to T ∗

B . Thus, TA � TB at the end of round
i−1 up to Line 6 of round i. In both cases it holds that |TA|−b ≤ |T ∗

B | ≤ |TA|
from Line 6 of round i − 1 up to Line 6 of round i.

We now show that Alice terminates before Bob. Alice terminates if |TA| ≥
L+

√
L. Bob terminates when both |T ∗

B | ≥ L and he receives 10 log x consecutive
bits that are the same. When |T ∗

B | ≥ L, since |TA|−b ≤ |T ∗
B | ≤ |TA| and b ≤

√
L,

we know L ≤ |TA| ≤ L +
√

L. This means that either Alice terminates in the
round that |T ∗

B | ≥ L, or she sends extra random bits to Bob for one more round.
Since Event 2 does not occur, we know that Bob will not terminate until after
Alice has finished sending these random bits. ��

In the following lemmas, we say that a round is successful if TA increases by b
bits at the end of the round, i.e., a successful round simulates one block of π.

Lemma 6. In a round, if no bit flip occurs in lines 2 through 6 of Alice’s algo-
rithm, then when Alice completes Line 6, Bob will exit his listening loop (repeat
loop) and TA = TB.

Proof. Based on Lemma 5, when Alice sends her message in Line 6, Bob is in his
listening loop, and he receives values HA, ta = |TA| and b. If no bit flip occurs
before or at Line 6 of Alice’s algorithm, these values are received correctly by
Bob. Also, by Lemma 5, TA is a prefix of TB at this point. Since there are no
bit flips through Line 6 of Alice’s algorithm, Bob verifies Alice’s fingerprint and
exits the listening loop. When Bob updates his transcript in Line 12, he sets it to
TA. So, after Alice completes Line 6, both parties have the same transcript. ��

Lemma 7. If no bit flip occurs in a round, then the round is successful.

Proof. By Lemma 6, when Alice completes Line 6 in a round with no bit flips, Bob
exits his listening loop, and TA = TB. Thus, both parties run π for b bits. Since
there are no bit flips during the computation of π or during the transmission of
Bob’s fingerprint, at the end of the round, TA and TB will increase by b bits. ��

The proof of the following lemma is technical and is deferred to the full
version.

Lemma 8. The size of the fingerprints that Alice or Bob send in round i is
Θ(log Li).

584 V. Dani et al.

Lemma 9. Alice terminates after at most L+O
(
(T +

√
LT + L) log(LT + L)

)
channel steps and Bob terminates in O

(
(T +

√
LT + L) log(LT + L)

)
channel

steps after Alice.

Proof. There are T total bit flips, so bit flips occur in at most T rounds. Thus, by
Lemma 7, at most T rounds are not successful. The value of b decreases only in
rounds that are not successful, so the value of b never gets smaller than

√
L

T+1 .
By definition of a successful round, TA increases by b steps in such a round.

The number of successful rounds until |TA| ≥ L +
√

L is at most
√

LT + L +√
T + 1. Thus, Alice terminates after at most rA = T +

√
LT + L +

√
T + 1

rounds.
We first calculate the number of fingerprint bits sent by Alice and Bob in

these rounds. Let xi denote the number of channel steps that have elapsed when
Alice or Bob is sending the fingerprint in round i. Note that any block is of size at
most

√
L and at least log L. We let the size of the fingerprint be equal to c1 log Lxi

for some constant c1 > 0. Then, i(log L + c log xi) ≤ xi ≤ i(
√

L + c log xi), and
thus c1 log Lxi = Θ(log Li) (see Lemma 8). So, the total number of fingerprint
bits sent is no more than

rA∑
i=1

c1 log Lxi = Θ(
rA∑
i=1

log Li) = Θ((T +
√

LT + L) log(LT + L)).

We now count the number of channel steps (called xA) until Alice terminates.
This will be L +

√
L plus the number of bits sent in rounds that were not

successful plus the number of bits sent for fingerprints, i.e.,

xA = L +
√

L +
T∑

i=1

√
L

i
+ Θ

(
(T +

√
LT + L) log(LT + L)

)
= L + Θ

(
(T +

√
LT + L) log(LT + L)

)
.

By Lemma 5, |TA| − b ≤ |T ∗
B | at each channel step. Thus, in the round that

Alice terminates, |T ∗
B | ≥ L since b is at most

√
L. Bob terminates when, in some

step x, he has seen 10 log x consecutive bits that are all the same. Let xB be the
time when Bob terminates. After Alice terminates, the adversary must flip at
least one bit every 10 log xB channel steps. So,

xB − xA

10 log xB
≤ T. (1)

Note that,

L+c5
(
(T +

√
LT + L) log(LT +L)

)
≤ xA ≤ L+c4

(
(T +

√
LT + L) log(LT +L)

)
.

Let xB = xA +α(xA −L) for some α ≥ 1. By substituting xA and xB in the left
side of Formula 1,

Interactive Communication with Unknown Noise Rate 585

xB − xA

10 log xB
=

α(xA − L)
10 log ((1 + α)xA − αL)

≥
αc4

(
(T +

√
LT + L) log(LT + L)

)
10 log(L + (1 + α)c5((T +

√
LT + L) log(LT + L))))

≥ αc4
c6 log α

T

This is a contradiction if c4α > c6 log α or α
log α > c6

c4
. This means that α

must be smaller than a constant depending only on c6 and c4. ��

Lemma 10. If a party terminates, its output will be correct.

Proof. Conditioned on both Event 1 and Event 2 not happening, all bits added
to T ∗

A and T ∗
B have already been verified to be correct. Upon termination, both

|T ∗
A| and |T ∗

B | are of size at least L by the termination conditions. Thus, upon
termination both Alice and Bob will have the first L bits of π which is all that
is needed to have the correct output. ��

The proof of Theorem 1 now follows from Lemmas 1, 2, 9, and 10.

4 Some Additional Remarks

Need for Private Channels The following theorem justifies our assumption
of private channels. The proof is in the extended version of this paper.

Theorem 3. Consider any algorithm for interactive communication over a pub-
lic channel that works with unknown T and always terminates in the noise-free
case. Any such algorithm succeeds with probability at most 1/2.

Communication Rate Comparison. In Haeupler’s algorithm [12], the noise
rate ε is known in advance and is used to design an algorithm with a commu-
nication rate of 1 − O(

√
ε log log 1/ε). Let L′ be the length of π′. Then in his

algorithm, L′ = O(L), and so the adversary is restricted to flipping εL′ = O(L)
bits. Thus, in his model, T and L′ are always O(L). In our model, the values of T
and L′ are not known in advance, and so both T and L′ may be asymptotically
larger than L.

How do our results compare with [12]? As noted above, a direct comparison
is only possible when T = O(L). Restating our algorithm in terms of ε, we have
the following theorem whose proof is extended version of this paper.

Theorem 4. If the adversary flips O(L) bits and the noise rate is ε then our
algorithm guarantees a communication rate of 1 − O

(
1√
L

+
√

ε
)

log L.

586 V. Dani et al.

Our algorithm has the property that a noise rate greater than 1/ log L gives
communication rate no less than a noise rate of 1/ log L. In particular, it does not
help the adversary to flip more than 1 bit per block. The above communication
rate is meaningful when ε ≤ 1/ log2 L. An optimized version of our algorithm,
not included here for ease of presentation2, achieves, for T < L, a communication
rate of 1 − O

(
1√
L

+
√

ε log L
)
. This communication rate is always positive, and

hence meaningful.

A Note on Fingerprint Size. A natural question is whether more powerful
probabilistic techniques than union bound could enable us to use smaller fin-
gerprints as done in [12]. The variability of block sizes poses a challenge to this
approach since Alice and Bob must either agree on the current block size, or be
able to recover from a disagreement by having Bob stay in the listening loop so he
can receive Alice’s message. If their transcripts diverge by more than a constant
number of blocks, it may be difficult to make such a recovery, and therefore it
seems challenging to modify our algorithm to use smaller fingerprints. However,
it is a direction for further investigation.

5 Conclusion

We have described the first algorithm for interactive communication that tol-
erates an unknown but finite amount of noise. Against an adversary that flips
T bits, our algorithm sends L + O

(
(T +

√
LT + L) log(LT + L)

)
bits in expec-

tation where L is the transcript length of the computation. We prove this is
optimal up to logarithmic factors, assuming a conjectured lower bound by Hae-
upler. Our algorithm critically relies on the assumption of a private channel, an
assumption that we show is necessary in order to tolerate an unknown noise rate.

Several open problems remain including the following. First, can we adapt
our results to interactive communication that involves more than two parties?
Second, can we more efficiently handle an unknown amount of stochastic noise?
Finally, for any algorithm, what are the optimal tradeoffs between the overhead
incurred when T = 0 and the overhead incurred for T > 0?

Acknowledgments. We are grateful to Bernhard Haeupler, Tom Hayes, Mahdi
Zamani, and the anonymous reviewers for their useful discussions and comments.

References

1. Brakerski, Z., Kalai, Y.T.: Efficient interactive coding against adversarial noise.
In: Foundations of Computer Science (FOCS), pp. 160–166 (2012)

2. Brakerski, Z., Naor, M.: Fast algorithms for interactive coding. In: Symposium on
Discrete Algorithms (SODA), pp. 443–456 (2013)

3. Braverman, M.: Coding for interactive computation: progress and challenges. In:
Communication, Control, and Computing (Allerton), pp. 1914–1921, October 2012

2 The basic idea is to start the block size at
√

L log L instead of
√

L.

Interactive Communication with Unknown Noise Rate 587

4. Braverman, M.: Towards deterministic tree code constructions. In: Innovations in
Theoretical Computer Science Conference (ITCS), pp. 161–167 (2012)

5. Braverman, M., Efremenko, K.: List and unique coding for interactive communi-
cation in the presence of adversarial noise. In: Foundations of Computer Science
(FOCS), pp. 236–245 (2014)

6. Braverman, M., Rao, A.: Towards coding for maximum errors in interactive com-
munication. In: Symposium on Theory of Computing (STOC), pp. 159–166 (2011)

7. Feinerman, O., Haeupler, B., Korman, A.: Breathe before speaking: efficient
information dissemination despite noisy, limited and anonymous communication.
In: Principles of Distributed Computing (PODC), pp. 114–123. ACM (2014)

8. Franklin, M., Gelles, R., Ostrovsky, R., Schulman, L.: Optimal Coding for
Streaming Authentication and Interactive Communication. IEEE Transactions on
Information Theory 61(1), 133–145 (2015)

9. Gelles, R., Moitra, A., Sahai, A.: Efficient and explicit coding for interactive
communication. In: Foundations of Computer Science (FOCS), pp. 768–777, Octo-
ber 2011

10. Ghaffari, M., Haeupler, B.: Optimal Error Rates for Interactive Coding II:
Efficiency and List Decoding (2013) http://arxiv.org/abs/1312.1763

11. Ghaffari, M., Haeupler, B., Sudan, M.: Optimal Error Rates for Interactive
Coding I: Adaptivity and Other Settings. In: Symposium on Theory of Computing
(STOC), pp. 794–803 (2014)

12. Haeupler, B.: Interactive channel capacity revisited. In: Foundations of Computer
Science (FOCS), pp. 226–235. IEEE (2014)

13. Moore, C., Schulman, L.J.: Tree Codes and a Conjecture on Exponential Sums.
In: Innovations in Theoretical Computer Science (ITCS), pp. 145–154 (2014)

14. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and appli-
cations. SIAM Journal on Computing (SICOMP) 22(4), 838–856

15. Ostrovsky, R., Rabani, Y., Schulman, L.J.: Error-Correcting Codes for Automatic
Control. IEEE Transactions on Information Theory 55(7), 2931–2941 (2009)

16. Peczarski, M.: An Improvement of the Tree Code Construction. Information
Processing Letters 99(3), 92–95 (2006)

17. Schulman, L.: Communication on noisy channels: a coding theorem for computa-
tion. In: Foundations of Computer Science (FOCS), pp. 724–733, October 1992

18. Schulman, L.J.: Deterministic coding for interactive communication. In:
Symposium on Theory of Computing (STOC), pp. 747–756 (1993)

19. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical
Journal 27(3), 379–423 (1948)

http://arxiv.org/abs/http://arxiv.org/abs/1312.1763

Fixed Parameter Approximations for k-Center
Problems in Low Highway Dimension Graphs

Andreas Emil Feldmann(B)

Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Canada

andreas.feldmann@uwaterloo.ca

Abstract. We consider the k-Center problem and some generalizations.
For k-Center a set of k center vertices needs to be found in a graph G
with edge lengths, such that the distance from any vertex of G to its near-
est center is minimized. This problem naturally occurs in transportation
networks, and therefore we model the inputs as graphs with bounded
highway dimension, as proposed by Abraham et al. [ICALP 2011].

We show both approximation and fixed-parameter hardness results,
andhow to overcome themusingfixed-parameter approximations. In partic-
ular,we prove that for any ε > 0 computing a (2−ε)-approximation isW[2]-
hard for parameter k, and NP-hard for graphs with highway dimension
O(log2 n). The latter does not rule out fixed-parameter (2−ε)-approxima-
tions for the highway dimension parameter h, but implies that such an algo-
rithm must have at least doubly exponential running time in h if it exists,
unless the ETH fails. On the positive side, we show how to get below the
approximation factor of 2 by combining the parameters k and h: we develop
a fixed-parameter 3/2-approximation with running time 2O(kh log h) ·nO(1).

We also provide similar fixed-parameter approximations for the
weighted k-Center and (k,F)-Partition problems, which generalize k-
Center.

1 Introduction

In this paper we consider the k-Center problem and some of its generalizations.
For the problem, k locations need to be found in a network, so that every node
in the network is close to a location. More formally, the input is specified by
an integer k ∈ N and a graph G = (V,E) with positive edge lengths. A feasible
solution to the problem is a set C ⊆ V of centers such that |C| ≤ k. The aim is to
minimize the maximum distance between any vertex and its closest center. That
is, let distG(u, v) denote the shortest-path distance between two vertices u, v ∈ V
of G according to the edge lengths, and Bv(r) = {u ∈ V | distG(u, v) ≤ r} be
the ball of radius r around v. We need to minimize the cost of the solution C,
which is the smallest value ρ for which

⋃
v∈C Bv(ρ) = V . We say that a center

v ∈ C covers a vertex u ∈ V if u ∈ Bv(ρ). Hence we can see the problem as
finding k centers covering all vertices of G with balls of minimum radius.

I would like to thank Jochen Könemann for reading a draft of this paper. This work
was supported by ERC Starting Grant PARAMTIGHT (No. 280152).

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 588–600, 2015.
DOI: 10.1007/978-3-662-47666-6 47

Fixed Parameter Approximations for k-Center Problems 589

The k-Center problem naturally arises in transportation networks, where for
instance it models the need to find locations for manufacturing plants, hospitals,
police stations, or warehouses under a budget constraint. Unfortunately it is
NP-hard to solve the problem in general [23], and the same holds true in various
models for transportation networks, such as planar graphs [22] and metrics using
Euclidean (L2) or Manhattan (L1) distance measures [13]. A more recent model
for transportation networks uses the highway dimension, which was introduced
as a graph parameter by Abraham et al. [1]. The intuition behind its definition
comes from the empirical observation [6,7] that in a road network, starting from
any point A and travelling to a sufficiently far point B along the quickest route,
one is bound to cross one of relatively few “access points”. There are several for-
mal definitions for the highway dimension that differ slightly [1,3,2]. All of them
however imply the existence of locally sparse shortest path covers. Therefore, in
this paper we consider this as a generalization of the original highway dimension
definitions (in fact the definition given in [2] is equivalent to this).

Definition 1. Given a graph G = (V,E) with edge lengths and a scale r ∈ R
+,

let P(r,2r] ⊆ 2V contain all vertex sets given by shortest paths in G of length more
than r and at most 2r. A shortest path cover spc(r) ⊆ V is a hitting set for the
set system P(r,2r], i.e. P ∩ spc(r) �= ∅ for each P ∈ P(r,2r]. We call the vertices in
spc(r) hubs. A hub set spc(r) is called locally h-sparse, if for every vertex v ∈ V
the ball Bv(2r) of radius 2r around v contains at most h vertices from spc(r). The
highway dimension ofG is the smallest integer h such that there is a locally h-sparse
shortest path cover spc(r) for every scale r ∈ R

+ in G.

Abraham et al. [1] introduced the highway dimension in order to explain
the fast running times of various shortest-path heuristics. However they also
note that “conceivably, better algorithms for other [optimization] problems can
be developed and analysed under the small highway dimension assumption”.
In this paper we investigate the k-Center problem and focus on graphs with
low highway dimension as a model for transportation networks. One advantage
of using such graphs is that they do not only capture road networks but also
networks with transportation links given by air-traffic or railroads. For instance,
introducing connections due to airplane traffic will render a network non-planar,
while it can still be argued to have low highway dimension. This is because longer
flight connections tend to be serviced by bigger but sparser airports, which act as
hubs. This can for instance be of interest in applications where warehouses need
to be placed to store and redistribute goods of globally operating enterprises.
Unfortunately however, we show in this paper that the k-Center problem also
remains NP-hard on graphs with low highway dimension.

Two popular and well-studied ways of coping with NP-hard problems is to
devise approximation [23] and fixed-parameter [12] algorithms. For the former we
demand polynomial running times but allow the computed solution to deviate
from the optimum cost. That is, we compute a c-approximation, which is a feasi-
ble solution with a cost that is at most c times worse than the best possible for
the given instance. A problem that allows a polynomial-time c-approximation for

590 A.E. Feldmann

any input is c-approximable, and c is called the approximation factor of the corre-
sponding algorithm. The rational behind fixed-parameter algorithms is that some
parameter p of the input is small and we can therefore afford running times that
are super-polynomial in p, where however we demand optimum solutions. That
is, we compute a solution with optimum cost in time f(p)·nO(1) for some function
f(·) that is independent of the input size n. A problem that has a fixed-parameter
algorithm for a parameter p is called fixed-parameter tractable (FPT) for p. What
however, if a problem is neither approximable nor FPT? In this case it may be
possible to overcome the complexity by combining these two paradigms. In partic-
ular, the objective becomes to develop fixed-parameter c-approximation (c-FPA)
algorithms that compute a c-approximation in time f(p)·nO(1) for a parameter p.

The idea of combining the two paradigms of approximation and fixed-
parameter tractability has been suggested before. However only few results are
known for this setting (cf. [21]). In this paper we show that for the k-Center
problem it is possible to overcome lower bounds for its approximability and its
fixed-parameter tractability using fixed-parameter approximations. For many dif-
ferent input classes, such as planar graphs [22], and L2- and L∞-metrics [13], the
k-Center problem is 2-approximable but not (2− ε)-approximable for any ε > 0,
unless P=NP. We show that, unless P=W[2], for general graphs there is no
(2 − ε)-FPA algorithm for the parameter k. Additionally, we prove that, unless
P=NP, k-Center is not (2 − ε)-approximable on graphs with highway dimen-
sion O(log2 n). This does not rule out (2 − ε)-FPA algorithms for the highway
dimension parameter, and we leave this as an open problem. However the result
implies that if such an algorithm exists then its running time must be enormous.
In particular, unless the exponential time hypothesis (ETH) fails, there can be
no (2 − ε)-FPA algorithm with doubly exponential 22

o(
√

h) · nO(1) running time
in the highway dimension h.

In face of these hardness results, it seems tough to beat the approximation
factor of 2 for k-Center, even when considering fixed-parameter approximations
for either the parameter k or the highway dimension. Our main result however
is that we can obtain a significantly better approximation factor for k-Center
when combining these two parameters. Such an algorithm is useful when aiming
for high quality solutions, for instance in a setting where only few warehouses
should be built in a transportation network, since warehouses are expensive or
stored goods should not be too dispersed for logistical reasons.

It is known [2] that locally O(h log h)-sparse shortest path covers can be
computed for graphs of highway dimension h in polynomial time. In the following
theorem summarizing our main result, the first given running time assumes this
approximation. In general it is NP-hard to compute the highway dimension [14],
but it is unknown whether this problem is FPT. If this is the case and the
running time is sufficiently small, this can be used as an oracle in our algorithm.

Theorem 2. For any graph G with n vertices and of highway dimension h, there
is an algorithm that computes a 3/2-approximation to the k-Center problem in
time 2O(kh log h) · nO(1). If locally h-sparse shortest path covers are given by an
oracle the running time is 9kh · nO(1).

Fixed Parameter Approximations for k-Center Problems 591

We leave open whether approximation factors better than 3/2 can be
obtained for the combined parameter (k, h). Even if we also leave open whether
(2 − ε)-FPA algorithms exist for the parameter h alone, we are able to prove that
the techniques we use to obtain Theorem 2 cannot omit using both k and h as
parameters. To obtain a (2−ε)-FPA algorithm with running time f(h) ·nO(1) for
any function f(·) independent of n, a lot more information of the input would
need to be exploited than the algorithm of Theorem 2 does. To explain this, we
now turn to the used techniques.

1.1 Used Techniques

Fig. 1. Clusters (dashed
circles) are far from hubs
(crosses). They have small
diameter and are far from
each other.

A crucial observation for our algorithm is that at any
scale r, a graph of low highway dimension is structured
in the following way (Figure 1). We will prove that the
vertices are either at distance at most r from some hub,
or they lie in clusters of diameter at most r that are
at distance more than 2r from each other. Hence, for
the cost ρ of the optimum solution, at scale r = ρ/2
a center that resides in a cluster cannot cover any
vertices of some other cluster. In this sense the clusters
are “independent” of each other. At the same time we
are able to bound the number of hubs of scale ρ/2 in terms of k and the highway
dimension. Intuitively, this is comparable to graphs with small vertex cover, since
the vertices that are not part of the vertex cover form an independent set. In this
sense the highway dimension is a generalization of the vertex cover number (this
is in fact the reason why computing the highway dimension is NP-hard [14]).

At the same time the k-Center problem is a generalization of the Dominating
Set problem. This problem is W[2]-hard [12], which, as we will show, is also why
k-Center is W[2]-hard to approximate for parameter k. However Dominating Set
is FPT using the vertex cover number as the parameter [5]. This is one of the
reasons why combining the two parameters k and h yields a 3/2-FPA algorithm
for k-Center. In fact the similarity seems so striking at first that one is tempted
to either reduce the problem of finding a 3/2-approximation for k-Center on low
highway dimension graphs to solving Dominating Set on a graph of low vertex
cover number, or at least use the known techniques for the latter problem to
solve the former. However it is unclear how this can be made to work. Instead
we devise a more involved algorithm that is driven by the intuition that the
two problems are similar. The intuition works on two levels. The first part of
the algorithm will determine some of the approximate centers by exploiting the
fact that a center in a cluster cannot cover vertices of other clusters. In the
second part of our algorithm we will actually reduce the problem of finding
the remaining approximate centers to Dominating Set in a graph with small
vertex cover number. Proving that the found centers form a feasible approximate
solution needs a non-trivial proof.

The algorithm will guess the cost ρ of the optimum solution in order to
exploit the structure of the graph given by the locally h-sparse shortest path

592 A.E. Feldmann

cover for scale r = ρ/2. In particular, the shortest path covers of other scales
do not need to be locally sparse in order for the algorithm to succeed. We will
show that there are graphs for which k-Center is not (2−ε)-approximable, unless
P=NP, and for which the shortest path cover for scale ρ/2 is locally 25-sparse.
Hence our techniques, which only consider the shortest path cover of scale ρ/2,
cannot yield a (2 − ε)-FPA algorithm for parameter h. The catch is though that
the reduction produces graphs which do not have locally sparse shortest path
covers for scales significantly larger than ρ/2. Hence a (2 − ε)-FPA algorithm
for parameter h might still exist. However such an algorithm would have to take
larger scales into account than just ρ/2, and as argued above, it would have to
have at least doubly exponential running time in h.

Proving that no (2 − ε)-FPA algorithm for parameter k exists for k-Center,
unless P=W[2], is straightforward given the original reduction of Hsu and
Nemhauser [19] from the W[2]-hard Dominating Set problem. For parameter h
however we develop some more advanced techniques. For the reduction we show
how to construct a graph of low highway dimension given a metric of low dou-
bling dimension, so that distances between vertices are preserved by a (1 + ε)
factor. The doubling dimension [16] is a parameter that captures the bounded
volume growth of metrics, such as given by Euclidean and Manhattan distances.
Formally, a metric has doubling dimension d if for every r ∈ R

+ and vertex v,
the ball Bv(2r) of radius 2r is the union of at most 2d balls of radius r. Since
k-Center is not (2−ε)-approximable in L∞-metrics [13], unless P=NP, and these
have doubling dimension 2, we are able to conclude that the hardness translates
to graphs of highway dimension O(log2 n).

1.2 Generalizations

In addition to k-Center, we can obtain similar results for two generalizations
of the problem by appropriately modifying our techniques.1 For the weighted k-
Center problem, the vertices have integer weights and the objective is to choose
centers of total weight at most k to cover all vertices with balls of minimum
radius (see [23] for a formal definition). This problem is 3-approximable [18,23]
and no better approximation factor is known. However we are able to modify
our techniques to obtain a 2-FPA algorithm for the combined parameter (k, h).

An alternative way to define the k-Center problem is in terms of finding a
star cover of size k in a metric, where the cost of the solution is the longest of any
star edge in the solution. More generally, in their seminal work Hochbaum and
Shmoys [18] defined the (k,F)-Partition problem (see [18] for a formal defini-
tion). Here a family of (unweighted) graphs F is given and the aim is to partition
the vertices of a metric into k sets and connect the vertices of each set by a graph
from the family F . The solution cost is measured by the “bottleneck”, which is
the longest distance between any two vertices of the metric that are connected
by an edge in a graph from the family F . The case when F contains only stars

1 The details of the generalizations, together with all missing proofs of this paper, are
deferred to the full version.

Fixed Parameter Approximations for k-Center Problems 593

is exactly the k-Center problem, given the shortest-path metric as input. The
(k,F)-Partition problem is 2d-approximable [18], where d is the largest diameter
of any graph in F . We show that a 3δ-FPA algorithm for the combined parame-
ter (k, h) exists, where δ is the largest radius of any graph in F . Hence for graph
families in which 3δ < 2d this improves on the general algorithm by Hochbaum
and Shmoys [18]. This is for example the case when F contains “stars of paths”,
i.e. stars for which each edge is replaced by a path of length δ. The diameter of
such a graph is 2δ, while the radius is δ, and hence 3δ < 2d = 4δ.

1.3 Related Work

Given its applicability to various problems in transportation networks, but also
in other contexts such as image processing and data-compression, the k-Center
problem has been extensively studied in the past. We only mention closely related
results here, that were not mentioned before. For planar and map graphs the
k-Center problem is FPT [11] for the combined parameter (k, ρ). Note though
that k and ρ are somewhat opposing parameters in the sense that typically if k
is small then ρ will be large, and vice versa. It would therefore be interesting to
know if there are (2 − ε)-FPA algorithms for k-Center on planar or map graphs
that do not use ρ as a parameter. For metrics with Euclidean or Manhattan
distances, (1 + ε)-FPA algorithms for the combined parameter (k, ε,D) can be
obtained [4,17], where D is the dimension of the geometric space.

Generally, fixed-parameter approximations have not been intensively stud-
ied so far. A survey is given by Marx [21]. Some newer developments include
(1 + ε)-FPA algorithms [20] for problems such as Max Cut, Edge Dominating
Set, or Graph Balancing, for parameters such as treewidth and cliquewidth com-
bined with ε. In terms of lower bounds, Bonnet et al. [9] make a connection
between the linear PCP conjecture and fixed-parameter inapproximability for
problems such as Independent Set.

Abraham et al. [1] introduce the highway dimension, and study it in various
papers [1,3,2]. Their main interest is in explaining the good performance of var-
ious shortest-path heuristics assuming low highway dimension. In [2] they show
that a locally O(h log h)-sparse shortest path cover can be computed in polyno-
mial time for any scale if the highway dimension of the input graph is h, and
each shortest path is unique. We will assume that the latter is always the case,
since we can slightly perturb the edge lengths. Feldmann et al. [14] consider
computing approximations for various other problems that naturally arise in
transportation networks. They show that quasi-polynomial time approximation
schemes can be obtained for problems such as Travelling Salesman, Steiner Tree,
or Facility Location, if the highway dimension is constant. This is done by proba-
bilistically embedding a low highway dimension graph into a bounded treewidth
graph while introducing arbitrarily small distortions of distances. Known algo-
rithms to compute optimum solutions on low treewidth graphs then imply the
approximation schemes. It is interesting to note that this approach does not work
for the k-Center problem since, in contrast to the above mentioned problems, its
objective function is not linear in the edge lengths. The only other theoretical

594 A.E. Feldmann

result mentioning the highway dimension that we are aware of is by Bauer et
al. [8], who show that for any graph G there exist edge lengths such that the
highway dimension is Ω(pw(G)/ log n), where pw(G) is the pathwidth of G.

2 Highway Dimension and Vertex Covers

We observe that the vertices of a low highway dimension graph are highly struc-
tured for any scale r: the vertices that are far from any hub of a shortest path
cover for scale r are clustered into sets of small diameter and large inter-cluster
distance (Figure 1). This observation was already made in [14]. We first formally
define the clusters and then prove that they have the claimed properties. For a
set S ⊆ V let distG(u, S) = minv∈S distG(u, v) be the distance from u to the
closest vertex in S.

Definition 3. Fix r ∈ R
+ and spc(r) ⊆ V in a graph G = (V,E). We call

an inclusion-wise maximal set T ⊆ {v ∈ V | distG(v, spc(r)) > r} with
distG(u, v) ≤ r for all u, v ∈ T a cluster, and we denote the set of all clusters by T .
The non-cluster vertices are those which are not contained in any cluster of T .

Note that the set T is specific for the scale r and the hub set spc(r). The
following lemma characterizes the structure of the clusters and non-cluster ver-
tices. Here we let distG(S, S′) = minv∈S distG(v, S′) be the minimum distance
between vertices of two sets S and S′.

Lemma 4. Let T be the cluster set for a scale r and a shortest path cover spc(r).
For each non-cluster vertex v there is a hub in spc(r) with distG(u, v) ≤ r. The
diameter of any cluster T ∈ T is at most r, and distG(T, T ′) > 2r for any
distinct pair of clusters T, T ′ ∈ T .

Intuitively, Lemma 4 means that a low highway dimension graph has similar-
ities to a graph with small vertex cover. For this reason, as part of our algorithm
we compute the optimum dominating set of a graph with a small vertex cover. To
show how this can be done, we begin by formally defining the relevant notions.
Let G = (V,E) be an (unweighted) graph. A dominating set D ⊆ V is a set
of vertices such that every vertex of V is adjacent to some vertex of D. The
Dominating Set problem is to find a dominating set of minimum size. A vertex
cover W ⊆ V is a set of vertices such that every edge of E is incident to some
vertex of W . The vertex cover number is the size of the smallest vertex cover.
The reason why the Dominating Set problem is FPT for this parameter essen-
tially is that the vertex cover number is an upper bound on the pathwidth [15].
For the following lemma, we simplify an algorithm due to Alber et al. [5] to solve
Dominating Set on bounded treewidth graphs. This improves the running time.
Note that the algorithm assumes the vertex cover to be given explicitly.

Lemma 5. Given a graph G and a vertex cover W of G, the Dominating Set
problem can be solved in time O(3l · n2), where l = |W |.

Fixed Parameter Approximations for k-Center Problems 595

3 The Fixed-Parameter Approximation Algorithm

If the optimum cost for k-Center is ρ and there is a locally s-sparse shortest
path cover spc(r) for scale r = ρ/2, then | spc(r)| ≤ ks. This is because there
are k balls of radius ρ covering the whole graph, and by Definition 1 there are
at most s hubs in each ball. If the input graph has highway dimension h and
there is an oracle that gives locally h-sparse shortest path covers for each scale,
then we can set s = h. Otherwise, Abraham et al. [2] show how to compute
O(log h)-approximations of shortest path covers in polynomial time, if shortest
paths have unique lengths. The latter can be assumed by perturbing the edge
lengths and therefore we can set s = O(h log h).

The hubs of spc(r) hit all shortest paths of length in (r, 2r] in the same way a
vertex cover hits all single edges, which can be thought of as unit length paths in
an unweighted graph. Furthermore, we know that the clusters are all more than
2r = ρ apart by Lemma 4. Hence any center of the optimum solution to k-Center
that lies in a cluster cannot cover any vertex of another cluster. Compared to
the Dominating set problem, this is analogous to the vertices of a graph that do
not belong to the vertex cover and therefore form an independent set: a vertex of
an optimum dominating set that is part of the independent set cannot dominate
another vertex of the independent set.

The first part of our algorithm is driven by this intuition. After guessing the
optimum cost ρ and computing spc(ρ/2) together with its cluster set T , we will
see how the algorithm computes three approximate center sets. For the first set
C1 the algorithm guesses a subset of the hubs of spc(ρ/2) that are close to the
optimum center set. This can be done in exponential time in ks because there are
at most that many hubs. The independence property of the clusters then makes
it easy to determine a second set C2 of approximate centers, each of which lies
in a cluster that must contain an optimum center. To determine the third set
of centers C3, the similarity of our problem to Dominating Set on graphs with
small vertex cover number becomes more concrete in our algorithm: we reduce
finding C3 to Dominating Set in such a way that the constructed graph has a
vertex cover number that can be bounded in the number of hubs of spc(ρ/2).

More concretely, consider an input graph G = (V,E) with an optimum
k-Center solution C∗ with cost ρ. For an index i ∈ {1, 2, 3} we denote by
R∗

i =
⋃

v∈C∗
i

Bv(ρ) and Ri =
⋃

v∈Ci
Bv(32ρ) the regions covered by some set

of optimum centers C∗
i ⊆ C∗ (with balls of radius ρ) and approximate centers

Ci ⊆ V (with balls of radius 3
2ρ), respectively. The algorithm tries every scale r

in order to guess the correct value for which r = ρ/2. After computing spc(r)
together with its cluster set T , the algorithm first checks that the number of
hubs is not too large, in order to keep the running time low. In particular, since
we know that | spc(ρ/2)| ≤ ks, we can dismiss any shortest path cover contain-
ing more hubs. Assume that r = ρ/2 was found. The next step is to guess a
minimal set H of hubs in spc(ρ/2), such that the balls of radius ρ/2 around
hubs in H cover all optimum non-cluster centers. That is, if C∗

1 ⊆ C∗ denotes
the set of optimum centers which each are at distance at most ρ/2 from some
hub in spc(ρ/2), then C∗

1 ⊆
⋃

v∈H Bv(ρ/2) and H is minimal with this property.

596 A.E. Feldmann

We choose this set of hubs H as the first set of centers C1 for our approximate
solution. Note that due to the minimality of H, |C1| ≤ |C∗

1 |. Also R∗
1 ⊆ R1 since

for any center in C∗
1 there is a center at distance at most ρ/2 in C1.

The next step is to compute a set of centers so that all clusters of the cluster
set T of spc(ρ/2) are covered. Some of the clusters are already covered by the
first set of centers C1, and thus in this step we want to cover all clusters in
U = {T ∈ T | T \R1 �= ∅}. By the definition of C∗

1 , any remaining optimum cen-
ter in C∗ \ C∗

1 must lie in a cluster. Furthermore, the distance between clusters
of spc(ρ/2) is more than ρ by Lemma 4, so that a center of C∗ \ C∗

1 in a cluster
T cannot cover any vertices of another cluster T ′ �= T . Hence if we guessed H
correctly we can be sure that each cluster T ∈ U must contain a center of C∗\C∗

1 .
For each such cluster we pick an arbitrary vertex v ∈ T and declare it a center
of the second set C2 for our approximate solution. Thus if the optimum set of
centers for U is C∗

2 = {v ∈ C∗ | ∃T ∈ U : v ∈ T}, we have |C2| ≤ |C∗
2 |. Moreover,

since the diameter of each cluster is at most ρ/2 by Lemma 4, we get R∗
2 ⊆ R2.

At this time we know that all clusters in T are covered by the region R1 ∪
R2. Hence if any uncovered vertices remain in V \ (R1 ∪ R2) for our current
approximate solution, they must be non-cluster vertices. By our definition of C∗

1

and C∗
2 , all remaining optimum centers C∗

3 = C∗ \ (C∗
1 ∪ C∗

2) lie in clusters of
T \U . Since R∗

1 ⊆ R1 and R∗
2 ⊆ R2, any remaining vertex of V \ (R1 ∪R2) must

be in the region R∗
3 covered by centers in C∗

3 . Next we show how to compute a
set C3 such that the region R3 includes all remaining vertices of the graph and
|C3| ≤ |C∗

3 |. Note that the latter means that the number of centers in C1∪C2∪C3

is at most k, since C∗
1 , C∗

2 , and C∗
3 are disjoint.

To control the size of C3 we will compute the smallest number of centers
that cover parts of R∗

3 with balls of radius ρ. In particular, we will guess the
set of hubs H ′ ⊆ spc(ρ/2) \ H that lie in the region R∗

3 (note that we exclude
hubs of H from this set). We then compute a center set C3 of minimum size
such that H ′ ⊆

⋃
v∈C3

Bv(ρ). For this we reduce the problem of computing
centers covering H ′ to the Dominating Set problem in a graph of fixed vertex
cover number. The reduction follows the lines of the bipartite reduction from Set
Cover to Dominating Set [10]. More concretely, let W =

⋃
T∈T \U T denote the

vertices in the clusters that include C∗
3 . For each vertex w ∈ W we encode the

set of vertices of H ′ that it could cover with a ball of radius ρ, in an instance G′

of Dominating Set as follows. The vertices of G′ include all vertices of W and H ′,
and we introduce an edge between a vertex w ∈ W and u ∈ H ′ if the distance
between w and u is at most ρ. Hence a vertex w ∈ W will dominate exactly the
vertices of H ′ in the ball Bw(ρ). Since we are only interested in covering vertices
of H ′, additionally we introduce apex vertices a and a′ to G′, together with an
edge between every w ∈ W and a, and an edge between a and a′. This way all
vertices of W can be dominated by only a, and one of the apexes must be part
of any dominating set in G′. Note that by our choice of the edges, H ′ ∪ {a} is a
vertex cover for G′ and so its vertex cover number is at most ks+1, as required.

Fixed Parameter Approximations for k-Center Problems 597

If the optimum dominating set of G′ is D, we let C3 = D \ {a, a′}. The
following lemma shows that the size of C3 is as required, and the centers of C3

cover all hubs of H ′ with balls of radius ρ.

Lemma 6. Assuming that the algorithm guessed the correct scale r = ρ/2 and
the correct sets H and H ′, the set C3 = D \ {a, a′} is of size at most |C∗

3 | and
H ′ ⊆

⋃
v∈C3

Bv(ρ).

It remains to show that the three computed center sets C1, C2, and C3 cover
all vertices of G, which we do in the following lemma.

Lemma 7. Assuming that the algorithm guessed the correct scale r = ρ/2 and
the correct sets H and H ′, the approximate center sets C1, C2, and C3 cover all
of G, i.e. R1 ∪ R2 ∪ R3 = V .

Proof. The proof is by contradiction. Assume there is a v ∈ V \ (R1 ∪ R2 ∪ R3)
that is not covered by the computed approximate center sets. The idea is to
identify a hub y ∈ spc(ρ/2) on the shortest path between v and an optimum
center w ∈ C∗ covering v. We will show that this hub y must however be in H ′

and therefore v is in fact in R3, since v also turns out to be close to y.
To show the existence of y, we begin by arguing that the closest hub

x ∈ spc(ρ/2) to v is neither in H nor in H ′. We know that each cluster of
T is in R1 ∪ R2, so that v /∈ R1 ∪ R2 must be a non-cluster vertex. Thus by
Lemma 4, distG(v, x) ≤ ρ/2. The region R1 in particular contains all vertices
that are at distance at most ρ/2 from any hub in H = C1. Since v /∈ R1 and
distG(v, x) ≤ ρ/2, this means that x /∈ H. From v /∈ R3 we can also conclude that
x /∈ H ′ as follows. By Lemma 6, C3 covers all hubs of H ′ with balls of radius ρ.
Hence if x ∈ H ′ then v is at distance at most 3

2ρ from a center of C3, i.e. v ∈ R3.
From x /∈ H ∪ H ′ we can conclude the existence of y as follows. Consider

an optimum center w ∈ C∗ that covers v, i.e. v ∈ Bw(ρ). Recall that R∗
1 ⊆ R1

and R∗
2 ⊆ R2. Since v /∈ R1 ∪ R2, this means that w is neither in C∗

1 nor in C∗
2

so that w ∈ C∗
3 . By definition of H ′, any hub at distance at most ρ from a center

in C∗
3 is in H ′, unless it is in H. Hence, as x /∈ H ∪ H ′, the distance between x

and w must be more than ρ. Since distG(v, x) ≤ ρ/2, we get distG(v, w) > ρ/2.
We also know that distG(v, w) ≤ ρ, because w covers v. Hence the shortest path
cover spc(ρ/2) must contain the hub y, which lies on the shortest path between
v and w. In particular, distG(v, y) ≤ ρ and distG(y, w) ≤ ρ. Analogous to the
argument used for x above, R1 contains all vertices at distance at most ρ from
H, so that y /∈ H since v /∈ R1. However, then the distance bound for y and w
yields y ∈ H ′, as w ∈ C∗

3 .
Since C∗

1 contains all non-cluster centers but w /∈ C∗
1 , by Lemma 4 we get

distG(y, w) > ρ/2, which implies distG(v, y) < ρ/2. But then v is contained in the
ball By(ρ/2), which we know is part of the third region R3 since y ∈ H ′. This con-
tradicts the assumption that v was not covered by the approximate center set.
�

Note that the proof of Lemma 7 does not imply that R∗
3 ⊆ R3, as was the case

for R1 and R2. It suffices though to establish the correctness of the algorithm.
The runtime analysis concluding the proof of Theorem 2 is deferred to the full
version of the paper.

598 A.E. Feldmann

4 Hardness Results

We begin by observing that the original reduction of Hsu and Nemhauser [19]
for k-Center also implies that there are no (2 − ε)-FPA algorithms.

Theorem 8. It is W[2]-hard for parameter k to compute a (2−ε)-approximation
to the k-Center problem, for any ε > 0.

We now turn to proving that (2− ε)-approximations are hard to compute on
graphs with low highway dimension. For this we introduce a general reduction
from low doubling metrics to low highway dimension graphs in the next lemma.
Here the aspect ratio of a metric (X,distX) is the maximum distance between
any two vertices of X divided by the minimum distance.

Lemma 9. Given any metric (X,distX) with constant doubling dimension d
and aspect ratio α, for any ε > 0 there is a graph G = (X,E) of highway
dimension O((log(α)/ε)d) on the same vertex set such that for all u, v ∈ X,
distX(u, v) ≤ distG(u, v) ≤ (1 + ε) distX(u, v). Furthermore, G can be computed
in polynomial time from the metric.

Feder and Greene [13] show that, for any ε > 0, it is NP-hard to compute a
(2 − ε)-approximation for the k-Center problem in two-dimensional L∞ metrics.
Furthermore all edges of the instance they construct in the reduction have unit
length, and thus the aspect ratio is at most n. The doubling dimension of any
such metric is 2, since a ball of radius 2r (a “square” of side-length 4r) can be
covered by 4 balls of radius r (“squares” of side-length 2r). By the reduction
given in Lemma 9 we thus get the following result.

Corollary 10. For any constant ε > 0 it is NP-hard to compute a
(2 − ε)-approximation for the k-Center problem on graphs of highway dimension
O(log2 n).

The challenge remains is to push the highway dimension bound of this inap-
proximability result down to a constant. This would mean that no (2 − ε)-FPA
algorithm for k-Center exists if the parameter is the highway dimension h, unless
P=NP. However, assuming the exponential time hypothesis, any (2−ε)-FPA algo-
rithm for parameter h must have doubly exponential running time. In particular,
by Corollary 10 any algorithm with running time 22

o(
√

h) · nO(1) would solve an
NP-hard problem in subexponential 2o(n) time when h ∈ O(log2 n). Thus if a
(2 − ε)-approximation algorithm for k-Center with parameter h exists, it is fair
to assume that its running time depending on h must be extremely large.

The following lemma gives further evidence that obtaining a (2 − ε)-FPA
algorithm for parameter h is hard. As argued below, it excludes the existence of
such algorithms that only use shortest path covers of constant scales.

Lemma 11. For any ε > 0 it is NP-hard to compute a (2 − ε)-approximation
for the k-Center problem on graphs for which on any scale r > 0 there is a
locally (3 · 22r−1 + 1)-sparse shortest path cover spc(r). Moreover, this is true
for instances where the optimum cost ρ is at most 4.

Fixed Parameter Approximations for k-Center Problems 599

Consider a (2−ε)-FPA algorithm for k-Center, which only takes shortest path
covers of constant scales into account, where the parameter is their sparseness.
That is, the algorithm computes a (2 − ε)-approximation using hub sets spc(r)
only for values r ≤ R for some R ∈ O(1), and the parameter is a value s such
that for every r ≤ R, spc(r) is locally s-sparse. By Lemma 11 such an algorithm
would imply that P=NP. Moreover this is true even if R ∈ O(ρ). Hence if it is
possible to beat the inapproximability barrier of 2 using the local sparseness as a
parameter, then such an algorithm would have to take large (non-constant) scales
into account. Note that the running time of our 3/2-FPA algorithm can in fact
be bounded in terms of the local sparseness of spc(ρ/2) instead of the highway
dimension. Therefore, by Theorem 8 and Lemma 11, our algorithm necessarily
needs to combine the parameter h with k in order to achieve its approximation
guarantee.

References

1. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest
paths, and provably efficient algorithms. In: SODA, pp. 782–793 (2010)

2. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-Dimension
and shortest path algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011)

3. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimen-
sion, shortest paths, and provably efficient shortest path algorithms. Techical
Report (2013)

4. Agarwal, P.K., Procopiuc, C.M.: Exact and approximation algorithms for cluster-
ing. Algorithmica 33(2), 201–226 (2002)

5. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed param-
eter algorithms for dominating set and related problems on planar graphs. Algo-
rithmica 33(4), 461–493 (2002)

6. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant
time shortest-path queries in road networks. In: ALENEX (2007)

7. Bast, H., Funke, S., Matijevic, D.: Ultrafast shortest-path queries via transit nodes.
9th DIMACS Implementation. Challenge 74, 175–192 (2009)

8. Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-Space size in contrac-
tion hierarchies. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part I. LNCS, vol. 7965, pp. 93–104. Springer, Heidelberg (2013)

9. Bonnet, E., Escoffier, B., Kim, E.J., Paschos, V.T.: On subexponential and FPT-
time inapproximability. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol.
8246, pp. 54–65. Springer, Heidelberg (2013)

10. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems in
bounded degree graphs. Information and Computation 206(11), 1264–1275 (2008)

11. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter algo-
rithms for (k, r)-center in planar graphs and map graphs. TALG 1(1), 33–47 (2005)

12. Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity, vol. 4.
Springer (2013)

13. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: STOC,
pp. 434–444 (1988)

600 A.E. Feldmann

14. Feldmann, A.E., Fung, W.S., Könemann, J., Post, I.: A (1 + ε)-embedding of low
highway dimension graphs into bounded treewidth graphs. In: ICALP (2015)

15. Fellows, M.: Towards fully multivariate algorithmics: some new results and direc-
tions in parameter ecology. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA
2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)

16. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: FOCS, pp. 534–543 (2003)

17. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
STOC, pp. 291–300 (2004)

18. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms
for bottleneck problems. JACM 33(3), 533–550 (1986)

19. Hsu, W.-L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Dis-
crete Applied Mathematics 1(3), 209–215 (1979)

20. Lampis, M.: Parameterized approximation schemes using graph widths. In:
Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 775–786. Springer, Heidelberg (2014)

21. Marx, D.: Parameterized complexity and approximation algorithms. The Computer
Journal 51(1), 60–78 (2008)

22. Plesńık, J.: On the computational complexity of centers locating in a graph.
Aplikace Matematiky 25(6), 445–452 (1980)

23. Vazirani, V.V.: Approximation Algorithms. Springer-Verlag New York Inc. (2001);
ISBN 3-540-65367-8

A Unified Framework for Strong Price
of Anarchy in Clustering Games

Michal Feldman and Ophir Friedler(B)

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michal.feldman@cs.tau.ac.il, ophirf@mail.tau.ac.il

Abstract. We devise a unified framework for quantifying the ineffi-
ciency of equilibria in clustering games on networks. This class of games
has two properties exhibited by many real-life social and economic set-
tings: (a) an agent’s utility is affected only by the behavior of her direct
neighbors rather than that of the entire society, and (b) an agent’s utility
does not depend on the actual strategies chosen by agents, but rather
by whether or not other agents selected the same strategy. Our frame-
work is sufficiently general to account for unilateral versus coordinated
deviations by coalitions of different sizes, different types of relationships
between agents, and different structures of strategy spaces. Many settings
that have been recently studied are special cases of clustering games on
networks. Using our framework: (1) We recover previous results for spe-
cial cases and provide extended and improved results in a unified way.
(2) We identify new settings that fall into the class of clustering games
on networks and establish price of anarchy and strong price of anarchy
bounds for them.

1 Introduction

Suppose that mobile phone providers offer a significant discount for calls between
their subscribers. In such a case, users selecting a provider would benefit the most
by subscribing to the provider of the friends with whom they talk most. Alterna-
tively, consider radio stations selecting radio frequencies on which to broadcast.
Because nearby stations that select the same frequency incur interference, each
station would favor a frequency that is used the least by its nearby stations.
Finally, in some opinion formation settings, an agent forming an opinion aims
to have the same opinion as similar agents and an opinion that is different from
dissimilar agents.

At a first glance the different settings described above seem different in their
nature. In the first example, people want to make similar choices to others, while
in the second example they wish to differentiate themselves from others, and in
the third example their choice depends on the type of relationship they have with

This work was partially supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement number 337122.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 601–613, 2015.
DOI: 10.1007/978-3-662-47666-6 48

602 M. Feldman and O. Friedler

others. Indeed, different models for these real-life settings have been devised and
studied in the algorithmic game theory literature [2,13–15,18]. For example, in
coordination games on graphs [2], each agent has her own set of feasible options,
and an agent benefits by sharing her option with as many friends as possible. In
Max-Cut games [15], all agents choose one of two options, and they all seek to
distinguish themselves from others. In 2-NAE-SAT games [13], CNF clauses are
satisfied when their literals have different values. Agents correspond to literals
that select truth values, where agents derive utility from the satisfied clauses of
which they are part of. In this case, an agent may wish to share her truth value
with some (e.g. in a clause where she is negated, and the other literal is not),
while distinguishing herself from others.

Inefficiency of Equilibria. It is well known that settings in which individual
agents follow their self interests may exhibit economic inefficiencies. A great deal
of the work in the algorithmic game theory literature has attempted to quantify
the inefficiencies that may arise as a result of selfish behavior. The most common
measure that has been used is the price of anarchy (PoA) [17], which is defined
as the ratio of the welfare obtained in the worst Nash equilibrium (NE) and the
unconstrained optimal welfare. But because of some weaknesses of the NE solution
concept, researchers have turned to additional solution concepts, such as strong
equilibrium (SE), and q-strong equilibrium (q-SE). Whereas an NE is an outcome
that is resilient against unilateral deviations, a q-SE is resilient against coordinated
deviations of coalitions of size at most q. Therefore, a 1-SE is a NE, and an n-SE
is resilient against any coordinated coalitional deviation, i.e., an n-SE is an SE.
In settings in which agents can coordinate their actions (in particular their devi-
ations), the SE concept is more suitable. One can then study the strong price of
anarchy (SPoA) [1], which is the worst case ratio of an SE and the social optimum,
or the q-SPoA, in which the SE is replaced by the q-SE.

The inefficiency of equilibria, as measured by the PoA (and in some cases also
theSPoAand q-SPoA), hasbeen studied in all of the above-mentionedgames [2,13–
15,18]. Because these models correspond to different settings, each work developed
its own tools and techniques to compute the (q-)strong price of anarchy.

Clustering. The starting point of this paper is the observation that all the
above-mentioned settings are special cases of a very well known setting — that of
clustering [5]. In this setting, a network is given, with each edge labeled as either
a coordination or an anti-coordination edge. The objective is to find a clustering
(i.e., a partition of the nodes into clusters) that maximizes the number of edges
(or the total weight of edges in the weighted case) that are satisfied, where a
coordination edge is satisfied if its adjacent nodes are in the same cluster, and an
anti-coordination edge is satisfied if its adjacent nodes are in different clusters.

The above description represents the traditional perspective on the prob-
lem, but one can also consider its game-theoretic variant. In the game-theoretic
setting each node corresponds to a strategic agent whose strategy space is a
feasible subset of all clusters. Each strategic agent chooses a cluster, and given
the selected clusters of all the agents (i.e. an outcome of the game), the payoff
of an agent is the number (or total weight, in the weighted case) of the satisfied

A Unified Framework for Strong Price of Anarchy in Clustering Games 603

edges to which she is incident. We refer to the class of games that arises from
this setting as clustering games on networks.

Let us recall some of the classes mentioned above, and restate them as special
cases of clustering games on networks. In coordination games on graphs [2], each
agent has a specified subset of clusters she can join, and all edges are coordination
edges. In Max-k-Cut games [15] all the edges are anti-coordination edges, and
all agents can join any of the k existing clusters. In 2-NAE-SAT games [13],
each agent can join one of two clusters, and edges can be either coordination or
anti-coordination edges.

As mentioned above, each case has its own analysis. In light of the observation
that all of these settings are special cases of clustering games on networks, the
objective of the persent paper is the following:

Construct a unified recipe for quantifying the degradation of social wel-
fare (i.e., PoA, SPoA, q-SPoA) in various settings that fall into the class
of clustering games on networks.

The class of clustering games on networks is a rich class that lies at the
intersection of two important classes of games: hedonic [11] and graphical games
[16]. In hedonic games the utility of each player is fully determined by the set of
players that selected the same strategy. They serve as a fundamental model in the
study of coalition formation, which has implications for many social, economic,
and political scenarios [4,6,8–11]. In graphical games (see [16,20] and references
therein) the agents are nodes in a graph, and the payoff of each agent depends
strictly on the strategies of her neighbors. Such games attempt to capture the
local nature of interactions in a network.

Our Contribution Is Four-Fold:

1. We provide a unified framework for computing the PoA, SPoA, and q-SPoA
in clustering games on graphs.

2. We use our framework to recover previous results on special cases.
3. We use our framework to establish new PoA, SPoA, and q-SPoA bounds on

previously studied games.
4. We identify new settings that fall into the class of clustering games on net-

works and establish PoA, SPoA, and q-SPoA bounds for them.

A summary of our results appears in Fig. 1. The different rows correspond to
different games, whose description is given in the three left columns. For each
class of games, we provide results on the PoA, SPoA, and q-SPoA. For q-SPoA,
we find it convenient to present our results using the coordination factor z(q) =
q−1
n−1 , which is a real number in [0, 1] that equals 0 in the case of PoA (i.e., q = 1)
and 1 in the case of SPoA (i.e., q = n). Because of lack of space we elaborate
below on two types of games that appear in the table. For the other games, we
refer the reader to the corresponding sections.

Symmetric Coordination Games on Graphs (SCGGs). We introduce the class
of SCGGs, in which all the relationships are coordination, and all players have
the same k strategies. We use our framework to establish tight bounds of 1/k
for the PoA, and k

2k−1 for the SPoA, and provide lower bounds on the q-SPoA.

604 M. Feldman and O. Friedler

Max-Cut games. It is part of folklore that the PoA of Max-Cut games is
exactly 1/2. Recently, [13] showed that the SPoA is exactly 2/3, and that the
q-SPoA remains roughly 1/2 even for q = O(n

1
2 −ε) for any ε > 0. Using our

framework, we provide more refined results on the q-SPoA, specifically, we show
that the q-SPoA is at least 2

4−z(q) for every q. A direct corollary of this result is
that when the coordination factor is at least some constant α ∈ [0, 1] (i.e., q is
roughly αn), the q-SPoA strictly improves to 2

4−α (in particular, recovering the
PoA and SPoA results, which correspond to the two extremes, α = 0 and α = 1,
respectively). On the negative side, we construct an instance in which the q-
SPoA remains roughly 1/2 even for q = O(n1−ε) (and even slightly more relaxed
values of q), thus further tightening the previous negative results. Referred to
Fig. 1 for a complete list of our results.

Class Case Description Result
Name +/− # of Str. Sym PoA SPoA q-SPoA

Max-Cut − 2
√

1/2 2/3 2
4−z(q)

�

2-NAE-SAT +/− 2
√

1/2 2/3 2
4−z(q)

�

Max-k-Cut − k
√ k−1

k
k−1

k− 1
2(k−1)

� k−1

k− 1
2(k−1) ·z(q)

�

SCGGs + k
√

1/k � k
2k−1

� 2+(k−2)·z(q)
2k−z(q)

�

CGGs + k × 0 1/2 z(q)
2

SCGs +/− k
√

1/k 1

2− 1
k(k−1)

� 2+(k−2)·z(q)
2k− 1

k−1 ·z(q) �

CGs +/− k × 0 1/2 z(q)
2

�

Fig. 1. In the first column: SCGs = Symmetric Clustering Games on Networks, SCGGs
= Symmetric Coordination Games on Graphs, CGGs = Coordination games on graphs,
CGs = Clustering Games on Networks. Each class is fully described using three
attributes: (a) the “+/−” column states the type of relationships on the edges (+
for coordination, − for anti-coordination); (b) the “# of Str.” column states how many
strategies exist in the game; And (c) the “Sym” (i.e., symmetry) column states whether
all players have the same strategies or not. The coordination factor z(q) is q−1

n−1
. New

results are marked with a ‘�’, the rest are recovered by our framework. PoA results are
tight. SPoA results for Max-Cut, 2-NAE-SAT, SCGGs, CGGs and CGs are tight. The
q-SPoA results still have a gap between lower and upper bounds.

Existence of Equilibria. While there exist clustering games on networks
that do not possess any SE (see, e.g., [2]), for some special cases, it has been
shown that an SE always exists if the size of the strategy space is 2 [2,13].
Theorem 1 extends this result to every clustering game with two strategies.

Our Techniques. In our analysis, we utilize equilibrium properties to order
the agents of a coalition so that each agent does not benefit when deviating
together with the agents following her. We obtain a lower bound on the total

A Unified Framework for Strong Price of Anarchy in Clustering Games 605

welfare of a coalition, with respect to a different outcome (typically an optimal
one), and utilize the potential function to translate it into an expression which
we break into combinatorial objects such as cuts – edges between disjoint sets
of agents (e.g. the coalition and its complement), and interiors – edges between
agents in the same set (e.g. edges between agents in the coalition). The obtained
expression for the lower bound is generic enough to encompass all clustering
games on networks, yet expressive enough to give each special case its unique
treatment. For symmetric games, rather than providing a lower bound with
respect to a single (optimal) outcome, we generalize the method from [13,14]
and consider all the optimal outcomes that can be obtained by permuting the
agents strategies. We combine all these lower bounds to achieve an improved
lower bound which is quantified for each special case separately.

Related Work. PoA analysis was initiated by [17], and continued in a long line
of studies in the algorithmic game theory literature. PoA with respect to SE
and q-SE was first considered in [1]. The notion of coalitional smoothness was
introduced by [3]. Specifically, if a game is (λ, μ)-coalitionally smooth, the SPoA
is at least λ

1+μ , and the same bound extends to more general solution concepts
(see [3] and references therein for details on strong correlated and strong coarse
correlated equilibria). In clustering games on networks, half the social welfare is
a potential function [19], therefore a result from [3] implies that clustering games
on networks are (1/2, 0)-coalitionally smooth, which implies that the SPoA is
at least 1/2 (which is tight for clustering games on networks). We improve the
lower bound for SPoA in most of the special cases, and provide q-SPoA bounds,
but our technique does not extend to the more general solution concepts.

Many clustering models have been studied from a game theoretic perspective.
In [12] two variants are considered, and in both the weights of the edges are
derived from a metric. In one the utilities are computed differently, and in the
other the number of clusters is not pre-defined. Moreover, only NE is studied.
In [7], all edges are coordination edges and the utility of each player is the
utility of clustering games on networks, divided by the number of players that
selected the same strategy, therefore each player derives her utility not only
from her neighbours but from everyone in her cluster. Finally, clustering, i.e. the
partitioning of objects with respect to similarity measures, is an area of research
with an explosive amount of studies (e.g. [5]).

2 Model and Preliminaries

A Clustering Game (CG) is a tuple 〈G = (V,E), (we)e∈E , (be ∈ {0, 1})e∈E ,
(Σi)i∈V 〉 where G is an undirected graph with no self-loops. Each node corresponds
to a player, and Σi is the (finite) strategy space of player i. Each edge e has a weight
we ∈ R≥0, and a type be ∈ {0, 1}, where 0 implies that e is an anti-coordination
edge and 1 implies that e is a coordination edge. Let |V | = n, |E| = m. Each ele-
ment σ = (σ1, . . . , σn) ∈ ×iΣi is an outcome of the game. For each edge e = {i, j},
if e is a coordination edge, then it is satisfied if and only if σi = σj ; if e is an anti-
coordination edge, then it is satisfied if and only if σi �= σj . Let 1σ

e equal 1 if the

606 M. Feldman and O. Friedler

edge e is satisfied in outcome σ and 0 otherwise. The utility of player i is the weight
of satisfied edges she is incident to, i.e., ui(σ) =

∑
e:i∈e we · 1σ

e . A CG is symmetric
if Σi = {1, . . . , k} for every player i. In this case we abuse notation and denote the
strategy space by k.

We identify several games from the literature as special cases of clustering
games on networks and introduce symmetric coordination games on graphs as
another special case. Due to space limitations, the proof of the following propo-
sition as well as most proofs are deferred to the full version.

Proposition 1. The following games are special cases of clustering games.

1. Max-Cut games [13] are CGs of the form: 〈G, (we)e∈E , (0)e∈E , 2〉
2. 2-NAE-SAT games [13] are CGs of the form: 〈G, (we)e∈E , (be ∈ {0, 1})e∈E , 2〉
3. Max-k-Cut games [14] are CGs of the form: 〈G, (we)e∈E , (0)e∈E , k〉
4. Coordination games on graphs [2] are CGs of the form: 〈G, (we)e∈E ,

(1)e∈E , (Σi)i∈V 〉
5. Symmetric coordination games on graphs are CGs of the form: 〈G = (V,E),

(we)e∈E , (1)e∈E , k〉.

Given an outcome σ , (σ∗
i , σ−i) denotes the outcome where σi is replaced by

σ∗
i ∈ Σi, e.g., σ = (σi, σ−i). Given outcomes σ , σ∗ and a set of players A ⊆ V ,

(σ∗
A, σ−A) denotes the outcome where all players in A play by σ∗, and all players

in Ac play by σ , where Ac = V \ A (and so σ = (σA, σ−A)).

Definition 1. A Nash equilibrium (NE)1 is an outcome σ such that no player
can strictly increase her utility by deviating unilaterally, i.e., if for every player i
and strategy a ∈ Σi, ui(σi, σ−i) ≥ ui(a, σ−i). σ is a q-strong equilibrium (q-SE)
if there is no coalition A of size at most q and outcome σ∗

A of A’s members such
that ui(σ∗

A, σ−A) > ui(σA, σ−A) for all i ∈ A. For q = n, the outcome σ is called
a strong equilibrium (SE).

Throughout this paper the quality of an outcome σ is measured by its social
welfare, i.e., the sum: SW (σ) =

∑
i∈V ui(σ). In addition, for every set of players

A ⊆ V , denote the total welfare of the players in A by SWA(σ) =
∑

i∈A ui(σ).

Theorem 1. For every clustering game with two strategies, any optimal out-
come is an SE.

The degradation of social welfare is commonly quantified as follows: Consider a
solution concept (e.g. a NE), and quantify the ratio between the social welfare of
the worst solution and that of an optimal outcome. When the solution concept
is a q-SE the ratio is called the q-strong price of anarchy, which is the measure of
interest in this paper. Note that for q = 1 the ratio is the price of anarchy (PoA),
and for q = n it is the strong price of anarchy (SPoA) which was defined in [1].
Formally, given a class of games Γ, let G ∈ Γ, and let q-SE(G) be the set of q-SE
in game G, and let σ∗ be an optimal outcome of G (i.e. σ∗ ∈ arg maxσ SW (σ)):

1 In this paper we restrict attention to pure-strategy equilibrium (i.e., no randomiza-
tion is used in an agent’s behavior).

A Unified Framework for Strong Price of Anarchy in Clustering Games 607

q-SPoA = min
G∈Γ

min{SW (σ) : σ ∈ q-SE(G)}
SW (σ∗)

(1)

By definition, the q-SPoA ranges from 0 to 1, where 1 corresponds to full effi-
ciency. In this terminology lower bounds are positive results on the efficiency
and upper bounds are negative results. Note that in order to lower bound the
q-SPoA, it is enough to bound the term SW (σ)/SW (σ∗) for every q-SE σ .

2.1 Welfare Guarantees in Equilibrium

In this section we establish the lemmas required to analyse the efficiency loss quan-
tified by the q-SPoA in various special cases of clustering games on networks.

For two m-vectors v = (v1, . . . vm), u = (u1, . . . um), let v · u = (v1 ·
u1, . . . , vm ·um), and denote by 〈v〉 the inner product with the edge weights, i.e.,
〈v〉 =

∑
e∈E we · ve. Observe that the operator 〈·〉 is linear, i.e., given vectors

v1, . . . , vk, it holds that:
∑k

i=1 〈vi〉 =
∑k

i=1

∑
e∈E we · vi

e =
∑

e∈E we ·
∑k

i=1 vi
e =

〈
∑k

i=1 vi〉.
Edge Partition. Let 1σ = (1σ

e)e∈E . Consider a pair of outcomes σ and σ∗.
Let B be the characteristic vector of edges that are satisfied both by σ and σ∗,
i.e., B = 1σ · 1σ∗

. Let E be the characteristic vector of edges that are satisfied in
σ but not satisfied in σ∗, i.e., E = 1σ · 1σ∗ . Let O be the characteristic vector of
edges that are satisfied in σ∗ but not satisfied in σ , i.e., O = 1σ ·1σ∗

. The choice
of these notations will become clear later, regardless, observe that 1σ = B + E
and 1σ∗

= B + O. Sometimes we abuse notation and let a characteristic vector
be the set of edges it represents (e.g. e ∈ 1σ if and only if e is satisfied in σ).

Consider a set of players A. Let 1A
e equal 1 if e ∩ A �= ∅ and 0 otherwise.

Let 1A = (1A
e)e∈E . The interior of A is the set {e ∈ E : e ⊆ A}. Observe that

IA = 1Ac is the characteristic vector of the interior of A, since e ⊆ A if and only
if e ∩ Ac = ∅. Moreover, for two disjoint sets of players A,B ⊆ V , the vector
δA,B = 1A · 1B is the characteristic vector of the A–B cut, since an edge is in
the cut if and only if it intersects with A and B.

Lemma 1. For every set of players A ⊆ V it holds that:
SWA(σ) = 〈

(
2 · IA + δA,Ac) · 1σ 〉. As a result, if A = V then SW (σ) = 2〈1σ 〉

Clustering games admit a potential function. A function Φ is a potential if it
encodes the difference in utility of a player when deviating from one strategy to
another, i.e., ∀i,∀a, b ∈ Σi,∀σ : ui(a, σ−i) − ui(b, σ−i) = Φ(a, σ−i) − Φ(b, σ−i).

Theorem 2. The function Φ(σ) = 〈1σ 〉 is a potential for every clustering game.

A direct corollary of Theorem 2 and Lemma 1 is that for every outcome σ ,
Φ(σ) = 1

2SW (σ), therefore the problem of bounding the q-SPoA reduces to
bounding the ratio Φ(σ)/Φ(σ∗) for every q-SE σ and optimal outcome σ∗. By
rearranging the terms of the potential function property, we get:

ui(a, σ−i) = Φ(a, σ−i) − Φ(b, σ−i) + ui(b, σ−i) (2)

608 M. Feldman and O. Friedler

The Renaming Procedure. Let σ be a q-SE, σ∗ an optimal outcome, and
K ⊆ V a set of players of size at most q. If all players in K deviate together
from σ to σ∗, then by the definition of a q-SE, there is some player i ∈ K so that
ui(σ) ≥ ui(σ∗

K , σ−K). Rename the players so that this is player 1. Similarly, there
is some player i in K ′ = K\{1} so that ui(σ) ≥ ui(σ∗

K′ , σ−K′). Rename the play-
ers in K ′ so that this is player 2. Iterate this argument to rename all players in K
and conclude that for each i ∈ K it holds that ui(σ) ≥ ui(σ∗

{i...|K|}, σ−{i...|K|}).

To simplify notation, for each i ∈ K let p
σ,σ∗

K,i = (σ∗
{i...|K|}, σ−{i...|K|}). When

clear in the context, we omit the outcomes and denote it by pK,i. Note that
pK,1 = (σ∗

K , σ−K) and pK,|K|+1 = σ . By this notation, we get ui(σ) ≥ ui(pK,i)
for all i ∈ K. Therefore, it holds that SWK(σ) =

∑
i∈K ui(σ) ≥

∑
i∈K ui(pK,i).

For each i ∈ K we apply (2) to ui(pK,i) and ui(pK,i+1) and we get that∑
i∈K ui(pK,i) =

∑
i∈K (Φ(pK,i) − Φ(pK,i+1) + ui(pK,i+1)) . Observe that the

sum on the potential function telescopes. We conclude that

SWK(σ) ≥ Φ(σ∗
K , σ−K) − Φ(σ) +

∑
i∈K

ui(pK,i+1) (3)

Given an ordering o on a set of players K, for every edge e = {i, j} from the
interior of K, if o(i) < o(j) then let [K]σ,σ∗

e = 1
(σi,σ

∗
−i)

e . For each edge e � K,
let [K]σ,σ∗

e = 0. Let [K]σ,σ∗
= ([K]σ,σ∗

e)e. The essence of [K]σ,σ∗
e is that the

first player in the edge e plays according to her strategy in σ , and the second
player plays according to her strategy in σ∗. Therefore, when considering edges
from [K]σ,σ∗

, we are guaranteed that exactly one player changes color (from σ
to σ∗) on each edge in the interior of K. We prove in the full version that the
right-most sum of (3) can be expressed as follows:

∑
i∈K

ui(pK,i+1) = 〈δK,Kc · 1σ 〉 + 〈IK ·
(
1σ + [K]σ,σ∗)

〉 (4)

The object [K]σ,σ∗
formally describes the result of the renaming procedure, i.e.,

it encodes the fact that we are considering edges from the interior of K such that
one player plays according to σ , and the other plays according to σ∗. Equation (3)
together with (4) provides a welfare guarantee for a set of players of size q. To
provide a welfare guarantee for a larger set of players A, |A| > q, apply (3) for
each subset K ⊆ A, and sum all inequalities. The resulting equation is:

SWA(σ) ≥ q − 1
|A| − 1

〈IA · (B + O)〉+
(

|A| − 1
q − 1

)−1 ∑
K⊆A,|K|=q

〈
(
IK ·[K]σ,σ∗

+ δK,Kc ·1(σ∗
K ,σ−K)

)
·(B + O + E)〉 (5)

Let Π be the set of all permutations π : {1, . . . , k} → {1, . . . , k}. Given a
permutation π, let σ∗

π be the outcome in which every player i plays π(σ∗
i), i.e.,

σ∗
π = (π(σ∗

i))i∈V . For every permutation π, 1σ∗
= 1σ∗

π . Therefore, B, O and E

A Unified Framework for Strong Price of Anarchy in Clustering Games 609

are permutation invariant, i.e., for every π, B = 1σ ·1σ∗
π , and similarly for O and

E . Permutation invariance was previously considered for Max-k-Cut games [14].
Let Dπ(σ, σ∗) be the set of players with different strategies in σ and σ∗

π, i.e.,
Dπ(σ, σ∗) = {i : (σ∗

π)i �= σi}. When clear in the context we omit the outcomes
and write Dπ. Let qπ = min{q, |Dπ|}. Lemma 2 establishes our general inequality
for symmetric clustering games.

Lemma 2. For every q-SE σ, and optimal outcome σ∗, it holds that:

∑

π∈Π

SWDπ (σ) ≥
∑

π∈Π

(

〈
(

qπ − 1

|Dπ| − 1
IDπ + δ

Dπ,Dc
π

)

·(B + O)〉+

(|Dπ| − 1

qπ − 1

)−1
∑

K⊆Dπ,|K|=qπ

〈
(

IK ·[K]
σ,σ∗

π+ δ
K,Dπ\K ·1((σ∗

π)K ,σ−K)
)

·(B + O + E)〉
)

Lemma 3. Let σ and σ∗ be two outcomes. Then it holds that:∑
π∈Π SWDπ

(σ) = (k − 1)(k − 1)!SW (σ).

Game Specific Analysis. For each special case of clustering games, given a
set K, the values of [K]σ,σ∗

π
e and 1

((σ∗
π)

K
,σ−K)

e in the right-hand side of Lemma 2
may be interpreted differently by making arguments that are specific to the
special case. While nothing is assumed on the order of the players in any set
K, since K is a subset of Dπ, it is guaranteed that for each edge e ∈ IK , the
outcome that is considered in [K]σ,σ∗

π
e is such that one player plays her strategy

in σ , while the other player plays her strategy in σ∗
π which is different from her

strategy in σ . Similarly, in the outcome ((σ∗
π)K , σ−K), all the players in K play

their strategies in σ∗
π which are different from their strategies in σ .

3 Strong Price of Anarchy Bounds

In this section we show how to utilize the proposed framework to establish
bounds on the q-strong price of anarchy. Define the coordination factor to be
z(q) = q−1

n−1 , with z(1) = 0 and z(n) = 1, which correspond to the PoA and
SPoA, respectively. Intuitively, it measures the amount of coordination that is
assumed to exist in the regarded solution concept. Our first result generalizes
the lower bound in [2].

Theorem 3. The q-SPoA of every clustering game is at least z(q)
2

Proof. Let σ be a q-SE and σ∗ an optimal outcome. Substitute V for A in (5)
and omit all terms with [K]σ,σ∗

e and 1(σ∗
K ,σ−K) (since they are non-negative).

Observe that 1V = (1, . . . , 1) and recall that 〈1σ∗〉 = 1
2SW (σ∗). Therefore,

SW (σ) = SWV (σ) ≥ q − 1
n − 1

〈B + O〉 = z(q) · 〈1σ∗〉 = z(q) · 1
2

· SW (σ∗)
�

610 M. Feldman and O. Friedler

A tight upper bound of 1/2 for q = n, and an upper bound of z(q)
2−z(q) for

every q was shown in [2] for coordination games on graphs. For q = n, the
same lower bound is also achieved by Theorem 10 in [3]. Indeed, clustering
games on networks are utility-maximization potential games with only positive
externalities, and Φ(σ) = 1

2SW (σ). Therefore, the game is (1/2, 0)-coalitionally
smooth2 which implies that the SPoA is at least 1/2. This bound extends to
more general solution concepts (see [3] for details regarding mixed, correlated
and coarse-correlated strong equilibria).

3.1 Symmetric Coordination Games on Graphs (SCGGs)

When all edges are coordination edges, and all players have the same strategy
space {1, . . . , k}, the class that is obtained is SCGGs with k strategies.

Theorem 4. The SPoA of SCGGs with k strategies is at least k
2k−1 .

Proof. (sketch.) Let σ be an SE and σ∗ an optimal outcome. Consider Lemma 2
in the context of SCGGs. Since all edges are coordination edges, any edge e that
is satisfied in σ or σ∗

π is certainly unsatisfied when exactly one of its adjacent
nodes changes strategy, i.e. [Dπ]σ,σ∗

π
e = 0. Therefore, for q = n we get:∑

π∈Π

SWDπ
(σ) ≥

∑
π∈Π

〈
(
IDπ + δDπ,Dc

π

)
· (B + O)〉 (6)

By Lemma 3, in the left-hand side we get (k−1)(k−1)!SW (σ). In the right-hand
side, since B and O are permutation invariant, we get four expressions:

〈(
∑

π

IDπ) · B〉 + 〈(
∑

π

δDπ,Dc
π) · B〉 + 〈(

∑
π

IDπ) · O〉 + 〈(
∑

π

δDπ,Dc
π) · O〉 (7)

We use simple combinatorial arguments to compute the expressions above.
First expression: e = {i, j} ∈ B if and only if σi = σj and σ∗

i = σ∗
j . In such

a case, for every permutation π we get that e ∈ IDπ if and only if π(σ∗
i) �= σi.

There are (k−1) options to fix π(σ∗
i), and for each such option there are (k−1)!

options to set the other (k−1) values of π (as there are no additional restrictions).
Therefore, 〈

(∑
π IDπ

)
·B〉 = (k−1)(k−1)! 〈B〉. Second expression: Since e cannot

be in the Dπ–Dc
π cut, it holds that 〈(

∑
π δDπ,Dc

π) · B〉 = 0. Third expression:
e = {i, j} ∈ O if and only if σi �= σj and σ∗

i = σ∗
j . In such a case e ∈ IDπ if and

only if {π(σ∗
i)}∩{σi, σj} = ∅. There are (k−2) options to fix π(σ∗

i), and for each
such option there are (k−1)! options to set the other (k−1) values of π (as there
are no additional restrictions). Therefore, 〈

(∑
π IDπ

)
· O〉 = (k − 2)(k − 1)! 〈O〉.

Fourth expression: e ∈ δDπ,Dc
π in exactly two disjoint events: π(σ∗

i) = σi or
π(σ∗

j) = σj , therefore, 〈
(∑

π δDπ,Dc
π

)
· O〉 = 2(k − 1)! 〈O〉.

In total, we conclude that (7) is at least k! Φ(σ∗)− (k − 1)! Φ(σ). Recall that
SW (σ) = 2 · Φ(σ). Divide both sides by (k − 1)! and reorganize terms to get
(2k − 1) · Φ(σ) ≥ k · Φ(σ∗), as desired. �
2 The reader is referred to [3] for the exact definition.

A Unified Framework for Strong Price of Anarchy in Clustering Games 611

The following proposition shows that Theorem 4 is tight.

Proposition 2. The symmetric coordination game on a line graph with 2k
nodes and k strategies for each player has a SPoA of k

2k−1 .

Theorem 4 extends to q-SPoA case as follows:

Theorem 5. The q-SPoA of SCGGs with k strategies is at least 2+z(q)·(k−2)
2k−z(q) .

Proposition 3 shows that the PoA (i.e., for q = 1) bound is tight.

Proposition 3. There exists a SCGG with k strategies, with a PoA = 1/k.

3.2 Symmetric Anti-coordination Games on Graphs

When all edges are anti-coordination edges, and all players have the same strat-
egy space {1, . . . , k}, the class that is obtained is Max-k-Cut [14]. Previous work
[15,18] showed that the PoA exactly (k − 1)/k. For k = 2, [13] showed that the
SPoA is exactly 2/3. In [14] an upper bound of 2k−2

2k−1 was established3. Theorem 6
uses the framework to establish lower bounds on the q-SPoA for any k and q.

Theorem 6. The q-SPoA of Max-k-Cut games is at least: k−1
k− 1

2(k−1) ·z(q)
.

3.3 Symmetric Clustering Games on Networks (SCGs)

In this class, edges are either coordination or anti-coordination edges, and all
players have k strategies. For k = 2, the class coincides with 2-NAE-SAT, for
which a tight SPoA bound of 2/3 was shown [13]. We establish a bound on the
q-SPoA for every q and k:

Theorem 7. The q-SPoA of SCGs with k strategies is at least 2+z(q)·(k−2)

2k−z(q)· 1
k−1

.

A special case of Theorem 7 is that the SPoA of SCGs is at least 1
2− 1

k(k−1)
, for

which a simplified proof is provided in the full version. For the class of 2-NAE-
SAT (k = 2), it was shown in [13] that for q = O(n

1
2 −ε) (for any ε > 0), the

q-SPoA is 1/2. Theorem 8 shows this is true even for q = O(n1−ε).

Theorem 8. For any ε > 0 and q = O(n1−ε), the q-SPoA of Max-Cut is 1/2.

On the other hand, the positive result that is implied by Theorem 7, is that for
any α ∈ (0, 1] and z(q) ≥ α, (roughly, when q ≥ αn), the q-SPoA is 2

4−α .

Corollary 1. The q-SPoA of 2-NAE-SAT games is at least 2
4−z(q) .

3 In [14], the authors also presented a matching lower bound of 2k−2
2k−1

. However, one
of the derivations in the analysis contained an error. This was verified by personal
communication with the authors. Their corrected analysis leads to a lower bound
that matches the lower bound, established in this paper in Theorem 6 for z(q) = 1.

612 M. Feldman and O. Friedler

4 Future Directions

Our results and analysis suggest interesting directions for future research. First,
the existence of q-SE in clustering games on networks is only partially under-
stood. For example, it is conjectured in [14] that every Max-k-Cut game admits
an SE. This is clearly an interesting open problem, as well as the more general
problem of whether all symmetric clustering games on networks possess an SE.

A full characterization of q-SE existence for clustering games on networks is
an interesting open problem.

Second, our analysis leaves a gap in the q-SPoA for Max-k-Cut games. We
note that the analysis of this gap gives rise to a combinatorial problem that is
of independent interest.

Third, our proof techniques provide q-SPoA results only with respect to pure
equilibria. It is desired to extend this analysis to handle other solution concepts
such as mixed, correlated and coarse correlated equilibria. Finally, it would be
interesting to explore ways in which our analysis can shed light on coalitional
dynamics in clustering games on networks.

References

1. Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. In: SODA,
pp. 189–198 (2007)

2. Apt, K.R., Rahn, M., Schäfer, G., Simon, S.: Coordination games on graphs
(Extended Abstract). In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol.
8877, pp. 441–446. Springer, Heidelberg (2014)

3. Bachrach, Y., Syrgkanis, V., Tardos, É., Vojnović, M.: Strong price of anarchy,
utility games and coalitional dynamics. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol.
8768, pp. 218–230. Springer, Heidelberg (2014)

4. Banerjee, S., Konishi, H., Sönmez, T.: Core in a simple coalition formation game.
Social Choice and Welfare 18(1), 135–153 (2001)

5. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1–3),
89–113 (2004)

6. Barberà, S., Gerber, A.: On coalition formation: durable coalition structures. Math-
ematical Social Sciences 45(2), 185–203 (2003)

7. Bilò, V., Fanelli, A., Flammini, M., Monaco, G., Moscardelli, L.: Nash stability in
fractional hedonic games. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS,
vol. 8877, pp. 486–491. Springer, Heidelberg (2014)

8. Bloch, F., Diamantoudi, E.: Noncooperative formation of coalitions in hedonic
games. International Journal of Game Theory 40(2), 263–280 (2011)

9. Bogomolnaia, A., Jackson, M.O.: The stability of hedonic coalition structures.
Games and Economic Behavior 38(2), 201–230 (2002)

10. Diamantoudi, E., Xue, L.: Farsighted stability in hedonic games. Social Choice and
Welfare 21(1), 39–61 (2003)

11. Dreze, J.H., Greenberg, J.: Hedonic coalitions: Optimality and stability. Economet-
rica: Journal of the Econometric Society, 987–1003 (1980)

12. Feldman, M., Lewin-Eytan, L., Naor, J.: Hedonic clustering games. In: SPAA,
pp. 267–276. ACM (2012)

A Unified Framework for Strong Price of Anarchy in Clustering Games 613

13. Gourvès, L., Monnot, J.: On strong equilibria in the max cut game. In: Leonardi, S.
(ed.) WINE 2009. LNCS, vol. 5929, pp. 608–615. Springer, Heidelberg (2009)

14. Gourvès, L., Monnot, J.: The max k-cut game and its strong equilibria. In:
Kratochv́ıl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108,
pp. 234–246. Springer, Heidelberg (2010)

15. Hoefer, M.: Cost sharing and clustering under distributed competition. Ph.D thesis,
University of Konstanz (2007)

16. Kearns, M., Littman, M.L., Singh, S.: Graphical models for game theory. In: UAI,
pp. 253–260. Morgan Kaufmann Publishers Inc. (2001)

17. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S.
(eds.) STACS 1999. LNCS, vol. 1563, p. 404. Springer, Heidelberg (1999)

18. Kun, J., Powers, B., Reyzin, L.: Anti-coordination games and stable graph colorings.
In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 122–133. Springer, Heidel-
berg (2013)

19. Monderer, D., Shapley, L.: Potential games. Games and economic behavior 14(1),
124–143 (1996)

20. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic game theory,
chapter 7. Cambridge University Press (2007)

On the Diameter of Hyperbolic Random Graphs

Tobias Friedrich1,2 and Anton Krohmer1,2(B)

1 Friedrich-Schiller-Universität Jena, Jena, Germany
2 Hasso Plattner Institute, Potsdam, Germany

anton.krohmer@hpi.de

Abstract. Large real-world networks are typically scale-free. Recent
research has shown that such graphs are described best in a geometric
space. More precisely, the internet can be mapped to a hyperbolic space
such that geometric greedy routing performs close to optimal (Boguná,
Papadopoulos, and Krioukov. Nature Communications, 1:62, 2010). This
observation pushed the interest in hyperbolic networks as a natural model
for scale-free networks. Hyperbolic random graphs follow a power-law
degree distribution with controllable exponent β and show high cluster-
ing (Gugelmann, Panagiotou, and Peter. ICALP, pp. 573–585, 2012).

For understanding the structure of the resulting graphs and for analyz-
ing the behavior of network algorithms, the next question is bounding the
size of the diameter. The only known bound is O((log n)32/((3−β)(5−β)))
(Kiwi and Mitsche. ANALCO, pp. 26–39, 2015). We present two much
simpler proofs for an improved upper bound of O((log n)2/(3−β)) and a
lower bound of Ω(log n). If the average degree is bounded from above by
some constant, we show that the latter bound is tight by proving an upper
bound of O(log n) for the diameter.

1 Introduction

Large real-world networks are almost always sparse and non-regular. Their
degree distribution typically follows a power law, which is synonymously used
for being scale-free. Since the 1960’s, large networks have been studied in detail
and hundreds of models were suggested. In the past few years, a new line of
research emerged, which showed that scale-free networks can be modeled more
realistically when incorporating geometry.

Euclidean Random Graphs. It is not new to study graphs in a geometric
space. In fact, graphs with Euclidean geometry have been studied intensively for
more than a decade. The standard Euclidean model are random geometric graphs
which result from placing n nodes independently and uniformly at random on
an Euclidean space, and creating edges between pairs of nodes if and only if
their distance is at most some fixed threshold r. These graphs have been studied
in relation to subjects such as cluster analysis, statistical physics, hypothesis
testing, and wireless sensor networks [23]. The resulting graphs are more or
less regular and hence do not show a scale-free behavior with power-law degree
distribution as observed in large real-world graphs.
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 614–625, 2015.
DOI: 10.1007/978-3-662-47666-6 49

On the Diameter of Hyperbolic Random Graphs 615

Table 1. Known diameter bounds for various random graphs. In all cases the diameter
depends on the choice of the model parameters. Here we consider a constant average
degree. For scale-free networks, we also assume a power law exponent 2 < β < 3.1

Random Graph Model Diameter

Sparse Erdős-Rényi [5] Θ(log n) [24]
d-dim. Euclidean [23] Θ(n1/d) [15]
Watts-Strogatz [26] Θ(log n) [6]
Kleinberg [18] Θ(log n) [21]

Chung-Lu [8] Θ(log n) [8]
Pref. Attachment [1] Θ(log log n) [10]
Hyperbolic [19] O((log n)

32
(3−β)(5−β)) [17]

power-law graphs

Hyperbolic Random Graphs. For modeling scale-free graphs, it is natural
to apply a non-Euclidean geometry with negative curvature. Krioukov et al. [19]
introduced a new graph model based on hyperbolic geometry. Similar to euclidean
random graphs, nodes are uniformly distributed in a hyperbolic space and two
nodes are connected if their hyperbolic distance is small. The resulting graphs
have many properties observed in large real-world networks. This was impres-
sively demonstrated by Boguná et al. [4]: They computed a maximum likelihood
fit of the internet graph in the hyperbolic space and showed that greedy rout-
ing in this hyperbolic space finds nearly optimal shortest paths in the internet
graph. The quality of this embedding is an indication that hyperbolic geometry
naturally appears in large scale-free graphs.

Known Properties. A number of properties of hyperbolic random graphs have
been studied. Gugelmann et al. [16] compute exact asymptotic expressions for
the expected number of vertices of degree k and prove a constant lower bound
for the clustering coefficient. They confirm that the clustering is non-vanishing
and that the degree sequence follows a power-law distribution with controllable
exponent β. For 2 < β < 3, the hyperbolic random graph has a giant component
of size Ω(n) [2,3], similar to other scale-free networks like Chung-Lu [8]. Other
studied properties include the clique number [14], bootstrap percolation [7]; as
well as algorithms for efficient generation of hyperbolic random graphs [25] and
efficient embedding of real networks in the hyperbolic plane [22].

Diameter. The diameter, the length of the longest shortest path, is a fundamen-
tal property of a network. It also sets a worst-case lower bound on the number
of steps required for all communication processes on the graph. In contrast to
the average distance, it is determined by a single—atypical—long path. Due to
this sensitivity to small changes, it is notoriously hard to analyze. Even subtle

1 Note that the table therefore refers to a non-standard Preferential Attachment ver-
sion with adjustable power law exponent 2 < β < 3 (normally, β = 3).

616 T. Friedrich and A. Krohmer

changes to the graph model can make an exponential difference in the diam-
eter, as can be seen when comparing Chung-Lu (CL) random graphs [8] and
Preferential Attachment (PA) graphs [1] in the considered range of the power
law exponent 2 < β < 3: On the one hand, we can embed a CL graph in the
PA graph and they behave effectively the same [13]; on the other hand, the
diameter of CL graphs is Θ(log n) [8] while for PA graphs it is Θ(log log n) [10].
Table 1 provides an overview over existing results. It was open so far how the
diameter of hyperbolic random graphs compares to the aforementioned bounds
for other scale-free graph models. The only known result for their diameter is
O((log n)

32
(3−β)(5−β)) by Kiwi and Mitsche [17].

Our Contribution. We improve upon the result of Kiwi and Mitsche [17] in
the three directions, as described by the following theorems. First, we present
a much simpler proof which also shows polylogarithmic upper bound for the
diameter, but with a better (i.e. smaller) exponent.

Theorem 1. Let 2 < β < 3. The diameter of the giant component in the hyper-
bolic random graph G(n, α,C) is O((log n)

2
3−β) with probability 1 − O(n−3/2).

The proof of Theorem 1 is presented in Section 3. It serves as an introduc-
tion to the more involved proof of a logarithmic upper bound for the diameter
presented in Section 4. There we show with more advanced techniques that for
small average degrees the following theorem holds.

Theorem 2. Let 2 < β < 3, and C be a large enough constant. Then, the
diameter of the giant component in the hyperbolic random graph G(n, α,C) is
O(log n) with probability 1 − O(n−3/2).

The logarithmic upper bound is best possible. In particular, we show that
Theorem 2 is tight by presenting the following matching lower bound.

Theorem 3. Let 2 < β < 3. Then, the diameter of the giant component in the
hyperbolic random graph G(n, α,C) is Ω(log n) with probability 1 − n−Ω(1).

Due to space constraints, the proof of Theorem 3 can be found in the long
version. We point out that although we prove all diameter bounds on the giant
component, our proofs will make apparent that the giant component is in fact
the component with the largest diameter in the graph.

Used Techniques. Our formal analysis of the diameter has to deal with a
number of technical challenges. First, in contrast to proving a bound on the
average distance, it is not possible to average over all path lengths. In fact, it is
not even sufficient to exclude a certain kind of path with probability 1−O(n−c);
as this has to hold for all possible Ω(n!) paths. This makes a union bound
inapplicable. We solve this by introducing upwards paths (cf. Definition 12),
which are in a sense “almost” shortest paths, and of which there are only two
per node. We prove deterministically that their length asymptotically bounds the
diameter. Then, we bound the length of a single upwards path by a multiplicative
drift argument known from evolutionary computation [20]; and show that the
length of conjunctions of upwards paths follows an Erlang distribution.

On the Diameter of Hyperbolic Random Graphs 617

A second major challenge is the fact that a probabilistic analysis of shortest
paths (and likewise, upwards paths) typically uncovers the probability space in
a consecutive fashion. Revealing the positions of nodes on the path successively
introduces strong stochastic dependencies that are difficult to handle with proba-
bilistic tail bounds [11]. Instead of studying the stochastic dependence structure
in detail, we use the geometry and model the hyperbolic random graph as a
Poisson point process. This allows us to analyze different areas in the graph
independently, which in turn supports our stochastic analysis of shortest paths.

2 Notation and Preliminaries

In this section, we briefly introduce hyperbolic random graphs. Although this
paper is self-contained, we recommend to a reader who is unfamiliar with the
notion of hyperbolic random graphs the more thorough investigations [16,19].

Let H2 be the hyperbolic plane. Following [19], we use the native representa-
tion; in which a point v ∈ H2 is represented by polar coordinates (rv, ϕv); and
rv is the hyperbolic distance of v to the origin.2

To construct a hyperbolic random graph G(n, α,C), consider now a circle Dn

with radius R = 2 ln n+C that is centered at the origin of H2. Inside Dn, n points
are distributed independently as follows. For each point v, draw ϕv uniformly at
random from [0, 2π), and draw rv according to the probability density function

ρ(r) :=
α sinh(αr)

cosh(αR) − 1
≈ αeα(r−R).

Next, connect two points u, v if their hyperbolic distance is at most R, i.e. if

d(u, v) := cosh−1(cosh(ru) cosh(rv) − sinh(ru) sinh(rv) cos(Δϕu,v)) � R. (1)

By Δϕu,v we describe the small relative angle between two nodes u, v, i.e.
Δϕu,v := cos−1(cos(ϕu − ϕv)) � π.

This results in a graph whose degree distribution follows a power law with
exponent β = 2α + 1, if α � 1

2 , and β = 2 otherwise [16]. Since most real-world
networks have been shown to have a power law exponent 2 < β < 3, we assume
throughout the paper that 1

2 < α < 1. Gugelmann et al. [16] proved that the
average degree in this model is then δ = (1 + o(1)) 2α2e−C/2

π(α−1/2)2 .
We now present a handful of Lemmas useful for analyzing the hyperbolic

random graph. Most of them are taken from [16]. We begin by an upper bound
for the angular distance between two connected nodes. Consider two nodes with
radial coordinates r, y. Denote by θr(y) the maximal radial distance such that
these two nodes are connected. By equation (1),

θr(y) = arccos
(

cosh(y) cosh(r) − cosh(R)
sinh(y) sinh(r)

)
. (2)

This terse expression is closely approximated by the following Lemma.
2 Note that this seemingly trivial fact does not hold for conventional models (e.g.

Poincaré halfplane) for the hyperbolic plane.

618 T. Friedrich and A. Krohmer

Lemma 4 ([16]). Let 0 � r � R and y � R − r. Then,

θr(y) = θy(r) = 2e
R−r−y

2 (1 ± Θ(eR−r−y)).

For most computations on hyperbolic random graphs, we need expressions
for the probability that a sampled point falls into a certain area. To this end,
Gugelmann et al. [16] define the probability measure of a set S ⊆ Dn as

μ(S) :=
∫

S

f(y) dy,

where f(r) is the probability mass of a point p = (r, ϕ) given by f(r) := ρ(r)
2π =

α sinh(αr)
2π(cosh(αR)−1) . We further define the ball with radius x around a point (r, ϕ) as

Br,ϕ(x) := {(r′, ϕ′) | d((r′, ϕ′), (r, ϕ)) � x}.

We write Br(x) for Br,0(x). Note that Dn = B0(R). Using these definitions, we
can formulate the following Lemma.

Lemma 5 ([16]). For any 0 � r � R we have

μ(B0(r)) = e−α(R−r)(1 + o(1)) (3)

μ(Br(R) ∩ B0(R)) =
2αe−r/2

π(α − 1/2)
· (1 ± O(e−(α−1/2)r + e−r)) (4)

Since we often argue over sequences of nodes on a path, we say that a node v
is between two nodes u,w, if Δϕu,v + Δϕv,w = Δϕu,w. Recall that Δϕu,v � π
describes the small angle between u and v. E.g., if u = (r1, 0), v = (r2, π

2), w =
(r3, π), then v lies between u and w. However, w does not lie between u and v
as Δϕu,v = π/2 but Δϕu,w + Δϕw,v = 3

4π.
Finally, we define the area BI := B0(R − log R

1−α − c) as the inner band, and
BO := Dn \ BI as the outer band, where c ∈ R is a large enough constant.

The Poisson Point Process. We often want to argue about the probability
that an area S ⊆ Dn contains one or more nodes. To this end, we usually apply
the simple formula

Pr[∃v ∈ S] = 1 − (1 − μ(S))n � 1 − exp(−n · μ(S)). (5)

Unfortunately, this formula significantly complicates once the positions of some
nodes are already known. This introduces conditions on Pr[∃v ∈ S] which can be
hard to grasp analytically. To circumvent this problem, we use a Poisson point
process Pn [23] which describes a different way of distributing nodes inside Dn.
It is fully characterized by the following two properties:

• If two areas S, S′ are disjoint, then the number of nodes that fall within S
and S′ are independent random variables.

• The expected number of points that fall within S is
∫

S
nμ(S).

One can show that these properties imply that the number of nodes inside S
follows a Poisson distribution with mean nμ(S). In particular, we obtain that
the number of nodes |Pn| inside Dn is distributed as Po(n), i.e. E[|Pn|] = n, and

On the Diameter of Hyperbolic Random Graphs 619

Pr(|Pn| = n) =
e−nnn

n!
= Θ(n−1/2).

Let the random variable G(Pn, n, α, C) denote the resulting graph when using
the Poisson point process to distribute nodes inside Dn. Since it holds

Pr[G(Pn, n, α, C) = G | |Pn| = n] = Pr[G(n, α,C) = G],

we have that every property p with Pr[p(G(Pn, n, α, C))] � O(n−c) holds for the
hyperbolic random graphs with probability Pr[p(G(n, α,C))] � O(n

1
2−c).

We explicitly state whenever we use the Poisson point process G(Pn, n, α, C)
instead of the normal hyperbolic random graph G(n, α,C). In particular, we can
use a matching expression for equation (5): Pr[∃v ∈ S] = 1 − exp(−n · μ(S)).

3 Polylogarithmic Upper Bound

As an introduction to the main proof, we first show a simple polylogarithmic
upper bound on the diameter of the hyperbolic random graph. We start by
investigating nodes in the inner band BI and show that they are connected by
a path of at most O(log log n) nodes. We prove this by partitioning Dn into
R layers of constant thickness 1. Then, a node in layer i has radial coordinate
∈ (R − i, R − i + 1]. We denote the layer i by Li := B0(R − i + 1) \ B0(R − i).

Lemma 6. Let 1 � i, j � R/2, and consider two nodes v ∈ Li, w ∈ Lj. Then,

2
e
e

i+j−R
2 (1 − Θ(ei+j−R)) � θru

(rv) � 2e
i+j−R

2 (1 + Θ(ei+j−R)),

Furthermore, we have μ(Lj ∩BR(v)) = Θ(e−αj+ i+j−R
2), and, if (i+j)/R < 1−ε

for some constant ε > 0, we have for large n

1
e
e−αj+ i+j−R

2 � μ(Lj ∩ BR(v)) � 4e−αj+ i+j−R
2 .

Proof. The statements follow directly from Lemmas 4 and 5 and the fact that
we have R − i < rv � R − i + 1 for a node v ∈ Li.

Using Lemma 6, we can now prove that a node v ∈ BI has a path of length
O(log log n) that leads to B0(R/2). Recall that the inner band was defined as
BI := B0(R − log R

1−α − c), where c is a large enough constant.

Lemma 7. Consider a node v in layer i. With probability 1 − O(n−3) it holds

1. if i ∈ [log R
1−α + c, 2 log R

1−α + c], then v has a neighbor in layer Li+1, and
2. if i ∈ [2 log R

1−α + c,R/2], then v has a neighbor in layer Lj for j = α
2α−1 i.

Proof. The probability that node v ∈ Li does not contain a neighbor in Li+1 is

(1 − Θ(e−α(i+1)+i+ 1−R
2))n � exp(−Θ(1) · elog R+c(1−α)).

Since R = 2 log n + C and c is a large enough constant, this proves part (1) of
the claim. An analogous argument shows part (2).

620 T. Friedrich and A. Krohmer

Lemma 7 shows that there exists a path of length O(log log n) from each node
v ∈ BI to some node u ∈ B0(R− 2 log R

1−α −c). Similarly, from u there exists a path
of length O(log log n) to B0(R/2) with high probability. Since we know that the
nodes in B0(R/2) form a clique by the triangle inequality, we therefore obtain
that all nodes in BI form a connected component with diameter O(log log n).

Corollary 8. Let 1
2 < α < 1. With probability 1 − O(n−3), all nodes u, v ∈ BI

in the hyperbolic random graph are connected by a path of length O(log log n).

3.1 Outer Band

By Corollary 8, we obtain that the diameter of the graph induced by nodes in
BI is at most O(log log n). In this section, we show that each component in BO

has a polylogarithmic diameter. Then, one can easily conclude that the overall
diameter of the giant component is polylogarithmic, since all nodes in B0(R/2)
belong to the giant component [3]. We begin by presenting one of the crucial
Lemmas in this paper that will often be reused.

Lemma 9. Let u, v, w ∈ V be nodes such that v lies between u and w, and let
{u,w} ∈ E. If rv � ru and rv � rw, then v is connected to both u and w. If
rv � ru but rv � rw, then v is at least connected to w.

Proof. By [3, Lemma5.28], we know that if two nodes (r1, ϕ1), (r2, ϕ2) are con-
nected, then so are (r′

1, ϕ1), (r′
2, ϕ2) where r1 � r′

1 and r′
2 � r2. Since the distance

between nodes is monotone in the relative angle Δϕ, this proves the first part
of the claim. The second part can be proven by an analogous argument.

For convenience, we say that an edge {u,w} passes under v if one of the
requirements of Lemma 9 is fulfilled. Using this, we are ready to show Theo-
rem 1. In this argument, we investigate the angular distance a path can at most
traverse until it passes under a node in BI . By Lemma 9, we then have with
high probability a short path to the center B0(R/2) of the graph.

(Proof of Theorem 1). Partition the hyperbolic disc into n disjoint sectors of
equal angle Θ(1/n). The probability that k consecutive sectors contain no node
in BI is

(1 − Θ(k/n) · μ(B0(R − log R
1−α − c)))n � exp(−Θ(1) · k · e−α log R/(1−α))

= exp(−Θ(1) · k · (log n)− α
1−α).

Hence, we know that with probability 1 − O(n−3), there are no k :=
Θ((log n)

1
1−α) such consecutive sectors. By a Chernoff bound, the number of

nodes in k such consecutive sectors is Θ((log n)
1

1−α) with probability 1−O(n−3).
Applying a union bound, we get that with probability 1−O(n−2), every sequence
of k consecutive sectors contains at least one node in BI and at most Θ(k) nodes
in total. Consider now a node v ∈ BO that belongs to the giant component. Then,
there must exist a path from v to some node u ∈ BI . By Lemma 9, this path can

On the Diameter of Hyperbolic Random Graphs 621

visit at most k sectors—and therefore use at most Θ(k) nodes—before reach-
ing u. From u, there is a path of length O(log log n) to the center B0(R/2) of
the hyperbolic disc by Corollary 8. Since this holds for all nodes, and the center
forms a clique, the diameter is therefore O((log n)

1
1−α) = O((log n)

2
3−β).

This bound slightly improves upon the results in [17] who show an upper
bound of O((log n)

8
(1−α)(2−α)). As we will see in Theorem 3, however, the lower

bound on the diameter is only Ω(log n). We bridge this gap in the remaining
part of the paper by analyzing the behavior in the outer band more carefully.

4 Logarithmic Upper Bound

In this section, we show that the diameter of the hyperbolic random graph is
actually O(log n), as long as the average degree is a small enough constant. We
proceed by the following proof strategy. Consider a node v ∈ BO. We investigate
the upwards path from this node, which is intuitively constructed as follows: Each
node on an upwards path has the smallest radial coordinate among all neighbors
of the preceding node.

We first show that the diameter is asymptotically bounded by the longest
upwards path in the graph. Afterwards, we prove that an upwards path is at
most of length O(log n) with high probability by investigating a random walk
whose hitting time dominates the length of the upwards path. A simple union
bound over all nodes will conclude the proof.

We start by stating a bound that shows that if v is between two nodes u,w
that are connected by an edge, then v is either connected to u or v, or one
of these nodes has a radial coordinate at least 1 smaller than v. Due to space
constraints, this and all following proofs can be found in the long version.

Lemma 10. Let u, v, w be nodes in the outer band such that v lies between u
and w. Furthermore, let {u,w} ∈ E, but {u, v}, {v, w} �∈ E. Then, for large n,
at least one of the following holds: ru � rv − 1 or rw � rv − 1.

Similarly to Lemma 9, we say that an edge {u,w} passes over v, if the
requirements of Lemma 10 are fulfilled. Before we introduce the formal definition
of an upwards path, we define the notion of a straight path.

Definition 11. Let π = [v1, . . . , vk] be a path in the hyperbolic random graph
where ∀i, vi ∈ BO. We say that π is straight, if ∀i ∈ {2, . . . , k − 1} the node vi

lies between vi−1 and vi+1.

The definition of a straight path captures the intuitive notion that the path
does not “jump back and forth”. Next, we define an upwards path, which is a
special case of a straight path.

Definition 12. Let v ∈ BO be a node in the hyperbolic random graph and define
ϕ̃u := (π + ϕu − ϕv)mod 2π. Furthermore, we define the neighbors to the right
of u as

Γ̃ (u) := Γ (u) ∩ {w ∈ BO | ϕ̃w � ϕ̃u}. (6)

622 T. Friedrich and A. Krohmer

Then we say that πv = [v = v0, v1, . . . , vk] is an upwards path from left to right
from v if ∀i ∈ {0, . . . , k − 1} : vi+1 = argmaxu∈˜Γ (vi)

{ru}, and there is no longer
upwards path π′

v � πv.
Analogously, we define an upwards path from right to left by replacing ϕ̃w �

ϕ̃u by ϕ̃w � ϕ̃u in equation (6).

Observe that there are two upwards paths from each node: One from right
to left, and the other from left to right. An upwards path also only uses nodes
in BO. The exclusion of BI can only increase the diameter of a component in
the outer band.

The next Lemma shows that the length of the longest upwards path asymp-
totically bounds the length of all straight shortest paths in the outer band.

Lemma 13. Assume that for all nodes v ∈ BO, the upwards paths in both direc-
tions are of length |πv| � f(n). Let π = [u1, u2, . . . , uk] be a straight shortest path.
Then, |π| � 2 · f(n) + 1 = O(f(n)).

We proceed by arguing that all upwards paths in the outer band are of
length O(log n) at most. In fact, we show a stronger statement by deriving an
exponential tail bound on the length of an upwards path. To this end, we model
an upwards path as a random walk. Consider for some node v all neighbors to
the right of v. Among those, the neighbor in the largest layer (or equivalently,
the smallest radial coordinate) is the neighbor on which any upwards path from
left to right will continue. We formulate a probability that the upwards path
jumps into a certain layer and analyze the probability that after T steps, the
random walk modeled by this process is absorbed, i.e. we reach a node that has
no further neighbors in this direction.

Let the random variables [u = V0, V1, . . .] describe the upwards path from u,
and let Xi := � if Vi is in layer L�, and Xi := 0 if the upwards path consists
of < i nodes. Without loss of generality, the upwards path is from left to right.
Then, we have

Pr[Xi+1 = m | X1, . . . , Xi] � 1
2 Pr[∃w ∈ Lm such that d(Vi, w) � R]

· Pr[� ∃m′ > m such that ∃w′ ∈ Lm′ with d(Vi, w
′) � R] (7)

Note that in Pr[Xi+1 = m | X1, . . . , Xi] we implicitly condition on the fact that
some preceding node Vi′ with i′ < i on the upwards path was not connected
to Vi+1; which technically excludes some subset of BR(Vi). We fix this issue by
considering the Poisson point process and exposing the randomness as follows.
First, we assume that there are no preconditions on Pr[Xi+1 = m] (i.e. the
upwards path begins in Vi). Then, the above formula is exact. We now expose
all neighbors of Vi, and obtain w ∈ Lm as the neighbor in the uppermost layer.
Now we expose the conditions. This is possible, since in the Poisson point model,
each area disjoint from other areas can be treated independently. The exposing
of the conditions can only delete nodes. In this process, w might be deleted,
lowering the probability of Pr[Xi+1 = m].

Therefore, our stated formula is indeed an upper bound.

On the Diameter of Hyperbolic Random Graphs 623

Lemma 14. Let the random variables [u = V0, V1, . . .] describe the upwards path
from u, and let ∀i,Xi := � if Vi is in layer L�, and Xi := 0 if the upwards path
consists of < i nodes. Then, if C is large enough, we have E[Xi+1] � 0.99 · Xi.

Lemma 14 shows that Xi has a multiplicative drift towards 0. Let T :=
min{i | Xi = 0} be the random variable describing the length of an upwards
path. We now bound T by a multiplicative drift theorem as presented by Lehre
and Witt [20, Theorem 7] and originally developed by Doerr and Goldberg [9,
Theorem 1] for the analysis of evolutionary algorithms. For the sake of complete-
ness, we restate their result.

Theorem 15 (from [9,20]). Let (Xt)t�0 be a stochastic process over some
state space {0} ∪ [xmin, xmax], where xmin > 0. Suppose that there exists some
0 < δ < 1 such that E[Xt − Xt+1 | X0, . . . , Xt] � δXt. Then for the first hitting
time T := min{t | Xt = 0} it holds

Pr[T � 1
δ (ln(X0/xmin) + r) | X0] � e−r for all r > 0.

In our case, X0 � log R
1−α + c and xmin = 1. Using Lemma 14 this shows that

Pr[T � 101 · (log log log n + r)] � e−r. (8)

Hence, with probability 1 − O(n−3) the random walk process described by Xi

terminates after O(log n) steps. By a union bound we have that all upwards
paths in G are of length O(log n) with probability 1 − O(n−2). To show that
all shortest paths are of length O(log n), however, we need a slightly stronger
statement, namely that the sum of O(log log n) upwards paths is at most of
length O(log n).

Lemma 16. Let (Ti)i=1...X be distributed according to equation (8), where X =
c log log n. Then, with probability 1 − O(n−3),

∑X
i=1 Ti � O(log n).

To conclude our result on the diameter, it is left to investigate shortest paths
in BO that are not straight. The general proof strategy for those paths is as
follows. First, we show that such a path has edges that switch directions. Such
an edge must pass over all preceding (or all following) nodes, as will become
apparent in the next Lemma.

Lemma 17. Consider a shortest path π = [u1, . . . , uk] that is not straight. In
particular, π then has one or more sequence of nodes ui−1, ui, ui+1 such that ui

is not between ui−1 and ui+1. Then, for all such positions i it holds that either

1. ∀j < i : uj is between ui and ui+1, or
2. ∀j > i : uj is between ui and ui−1.

By Lemma 10, we know that can only be O(log log n) changes of directions;
and Lemma 16 lets us conclude that the total path length is still O(log n). This
can be used to show that all shortest paths are of length O(log n).

624 T. Friedrich and A. Krohmer

Lemma 18. Let π = [u1, u2, . . . , uk] be a shortest path where ∀i, ui ∈ BO. Then,
with probability 1 − O(n−3/2), |π| = O(log n) .

Lemma 18 in conjunction with Lemma 7 then proves Theorem 2, i.e. that
the diameter of the hyperbolic random graph is O(log n) if the average degree
is a small enough constant.

5 Conclusion

We derive a new polylogarithmic upper bound on the diameter of hyperbolic
random graphs; and show that it is O(log n) if the average degree is small. We
further prove a matching lower bound. This immediately yields lower bounds
for any broadcasting protocol that has to reach all nodes. Processes such as
bootstrap percolation or rumor spreading therefore must run at least Ω(log n)
steps until they inform all nodes in the giant component.

Our work focuses on power law exponents 2 < β < 3, but we believe that
our proof can be extended to bound the diameter for β > 3 by Θ(log n). For
other scale-free models it was also interesting to study the phase transition at
β = 2 and β = 3. Another natural open question is the average distance (also
known as average diameter) between two random nodes. We conjecture that the
average distance is Θ(log log n), but leave this open for future work.

Acknowledgements. We thank Konstantinos Panagiotou for many useful discus-
sions, and suggesting a layer-based proof as in Lemma 6.

References

1. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286, 509–512 (1999)

2. Bode, M., Fountoulakis, N., Müller, T.: On the giant component of random hyper-
bolic graphs. In: 7th European Conference on Combinatorics, Graph Theory and
Applications (EuroComb), pp. 425–429 (2013)

3. Bode, M., Fountoulakis, N., Müller, T.: The probability that the hyperbolic random
graph is connected (2014). www.math.uu.nl/Muell001/Papers/BFM.pdf

4. Boguná, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyper-
bolic mapping. Nature Communications 1, 62 (2010)

5. Bollobás, B.: Random graphs. Springer (1998)
6. Bollobás, B., Chung, F.R.K.: The diameter of a cycle plus a random matching.

SIAM Journal of Discrete Mathematics 1, 328–333 (1988)
7. Candellero, E., Fountoulakis, N.: Bootstrap percolation and the geometry of com-

plex networks (2014). arxiv1412.1301
8. Chung, F., Lu, L.: The average distances in random graphs with given expected

degrees. Proceedings of the National Academy of Sciences 99, 15879–15882 (2002)
9. Doerr, B., Goldberg, L.A.: Drift analysis with tail bounds. In: Schaefer, R., Cotta,

C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 174–183.
Springer, Heidelberg (2010)

www.math.uu.nl/ Muell001/Papers/BFM.pdf

On the Diameter of Hyperbolic Random Graphs 625

10. Dommers, S., van der Hofstad, R., Hooghiemstra, G.: Diameters in preferential
attachment models. Journal of Statistical Physics 139, 72–107 (2010)

11. Dubhashi, D.P., Panconesi, A.: Concentration of measure for the analysis of ran-
domized algorithms. Cambridge University Press (2009)

12. Evans, M., Hastings, N., Peacock, B.: Statistical Distributions, chapter 12, 3rd
edn., pp. 71–73. Wiley-Interscience (2000)

13. Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in
models of real-world networks (2015). Unpublished draft

14. Friedrich, T., Krohmer, A.: Cliques in hyperbolic random graphs. In: 34th IEEE
Conference on Computer Communications (INFOCOM) (2015). https://hpi.de/
fileadmin/user upload/fachgebiete/friedrich/publications/2015/cliques2015.pdf

15. Friedrich, T., Sauerwald, T., Stauffer, A.: Diameter and broadcast time of random
geometric graphs in arbitrary dimensions. Algorithmica 67, 65–88 (2013)

16. Gugelmann, L., Panagiotou, K., Peter, U.: Random hyperbolic graphs: degree
sequence and clustering. In: Czumaj, A., Mehlhorn, K., Pitts, A., Watten-
hofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 573–585. Springer,
Heidelberg (2012)

17. Kiwi, M., Mitsche, D.: A bound for the diameter of random hyperbolic graphs.
In: 12th Workshop on Analytic Algorithmics and Combinatorics (ANALCO),
pp. 26–39 (2015)

18. Kleinberg, J.: Navigation in a small world. Nature 406, 845 (2000)
19. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic

geometry of complex networks. Physical Review E 82, 036106 (2010)
20. Lehre, P.K., Witt, C.: General drift analysis with tail bounds (2013).

arxiv1307.2559
21. Martel, C.U., Nguyen, V.: Analyzing Kleinberg’s (and other) small-world mod-

els. In: 23rd Annual ACM Symposium on Principles of Distributed Computing
(PODC), pp. 179–188 (2004)

22. Papadopoulos, F., Psomas, C., Krioukov, D.: Network mapping by replaying hyper-
bolic growth. IEEE/ACM Transactions on Networking, 198–211 (2014)

23. Penrose, M.: Random Geometric Graphs. Oxford scholarship online. Oxford Uni-
versity Press (2003)

24. Riordan, O., Wormald, N.: The diameter of sparse random graphs. Combinatorics,
Probability and Computing 19, 835–926 (2010)

25. von Looz, M., Staudt, C.L., Meyerhenke, H., Prutkin, R.: Fast generation
of dynamic complex networks with underlying hyperbolic geometry (2015).
arxiv1501.03545

26. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393, 440–442 (1998)

https://hpi.de/fileadmin/user_upload/fachgebiete/friedrich/publications/2015/cliques2015.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/friedrich/publications/2015/cliques2015.pdf

Tight Bounds for Cost-Sharing
in Weighted Congestion Games

Martin Gairing1(B), Konstantinos Kollias2, and Grammateia Kotsialou1

1 University of Liverpool, Liverpool, Merseyside L69 3BX, UK
m.gairing@liverpool.ac.uk

2 Stanford University, Stanford, CA 94305, USA

Abstract. This work studies the price of anarchy and the price of sta-
bility of cost-sharing methods in weighted congestion games. We require
that our cost-sharing method and our set of cost functions satisfy certain
natural conditions and we present general tight price of anarchy bounds,
which are robust and apply to general equilibrium concepts. We then
turn to the price of stability and prove an upper bound for the Shapley
value cost-sharing method, which holds for general sets of cost functions
and which is tight in special cases of interest, such as bounded degree
polynomials. Also for bounded degree polynomials, we close the paper
with a somehow surprising result, showing that a slight deviation from
the Shapley value has a huge impact on the price of stability. In fact, for
this case, the price of stability becomes as bad as the price of anarchy.

1 Introduction

The class of weighted congestion games [16,17] encapsulates a large collection
of important applications in the study of the inefficiencies induced by strate-
gic behavior in large systems. The applications that fall within this framework
involve a set of players who place demands on a set of resources. As an example,
one of the most prominent such applications is selfish routing in a telecommu-
nications or traffic network [3,8,20]. When more total demand is placed on a
resource, the resource becomes scarcer, and the quality of service experienced
by its users degrades. More specifically, in weighted congestion games there is a
set of players N and a set of resources E. Each player i ∈ N has a weight wi > 0
and she gets to select the subset of the resources that she will use. The possible
subsets she can pick are given in her set of possible strategies, Pi. Once play-
ers make their decisions, each resource e ∈ E generates a joint cost fe · ce(fe),
where fe is the total weight of the users of e and ce is the cost function of e.
The joint cost of a resource is covered by the set of players Se using e, i.e.,∑

i∈Se
χie = fe · ce(fe), where χie is the cost share of player i on resource e.

The way the cost shares χie are calculated is given by the cost-sharing method
used in the game. A cost-sharing method determines the cost-shares of the play-
ers on a resource, given the joint cost that each subset of them generates, i.e., the

This work was supported by EPSRC grants EP/J019399/1 and EP/L011018/1.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 626–637, 2015.
DOI: 10.1007/978-3-662-47666-6 50

Tight Bounds for Cost-Sharing in Weighted Congestion Games 627

cost shares are functions of the state on that resource alone. In most applications
of interest, it is important that the cost-sharing method possesses this locality
property, since we expect the system designer’s control method to scale well with
the size of the system and to behave well as resources are dynamically added to
or removed from the system. Altering our cost-sharing method of choice changes
the individual player costs. Given that our candidate outcomes are expected
to be game-theoretic equilibrium solutions, this modification of the individual
player costs also changes the possible outcomes players can reach. The price of
anarchy (POA) and the price of stability (POS) measure the performance of a
cost-sharing method by comparing the worst and best equilibrium, respectively,
to the optimal solution, and taking the worst-case ratio over all instances.

Certain examples of cost-sharing methods include proportional sharing (PS)
and the Shapley value (SV). In PS, the cost share of a player is proportional to
her weight, i.e., χie = wi · ce(fe), while the SV of a player on a resource e is
her average marginal cost increase over a uniform ordering of the players in Se.
Other than different POA and POS values, different cost-sharing methods also
possess different equilibrium existence properties. The pure Nash equilibrium
(PNE) is the most widely accepted solution concept in such games. In a PNE,
no player can improve her cost with a unilateral deviation to another strategy.
In a mixed Nash equilibrium (MNE) players randomize over strategies and no
player can improve her expected cost by picking a different distribution over
strategies. By Nash’s famous theorem, a MNE is guaranteed to exist in every
weighted congestion game. However, existence of a PNE is not guaranteed for
some cost-sharing methods. As examples, PS does not guarantee equilibrium
existence (see [12] for a characterization), while the SV does. In [11], it is shown
that only the class of generalized weighted Shapley values (see Section 2 for a
definition) guarantees the existence of a PNE in such games.

As a metric that is worst-case by nature, the POA of a method that does not
always induce a PNE must be measured with respect to more general concepts,
such as the MNE, which are guaranteed to exist. Luckily, POA upper bounds
are typically robust [18] which means they apply to MNE and even more general
classes (such as correlated and coarse-correlated equilibria). On the other hand,
the motivations behind the study of the POS assume a PNE will exist, hence
the POS is more meaningful when the method does guarantee a PNE.

1.1 Our Contributions

In this work we make two main contributions, one with respect to the POA and
one with respect to the POS.

General POA bounds: On the POA side, we present tight bounds for general
classes of allowable cost functions and for general cost-sharing methods, i.e.,
we parameterize the POA by (i) the set of allowable cost functions (which
changes depending on the application under consideration) and (ii) the cost-
sharing method. To obtain our tight bounds we make use of the following natural
assumptions, which we explain in more detail in Section 2:

628 M. Gairing et al.

1. Every cost function in the game is continuous, nondecreasing, and convex.
2. Cost-sharing is consistent when player sets generate costs in the same way.
3. The cost share of a player on a resource is a convex function of her weight.

We now briefly discuss these assumptions. Assumption 1 is standard in
congestion-type settings. For example, linear cost functions have obvious appli-
cations in many network models, as do queueing delay functions, while higher
degree polynomials (such as quartic) have been proposed as realistic models of
road traffic [22]. Assumption 2 asks that the cost-sharing method only looks at
how players generate costs and does not discriminate between them in any other
way. Assumption 3 asks that the curvature of the cost shares is consistent, i.e.,
given Assumption 1, that the share of a player on a resource is a convex function
of her weight (otherwise, we would get that the share of the player increases
in a slower than convex way but the total cost of the constant weight players
increases in a convex way, which we view as unfair). We note that our upper
bounds are robust and apply to general equilibrium concepts that are guaranteed
to exist for all cost-sharing methods.

SV based POS bounds: Studying the POS is most well-motivated in settings
where a trusted mediator or some other authority can place the players in an
initial configuration and they will not be willing to deviate from it. For this
reason, the POS is a very interesting concept, especially for games possessing a
PNE. Hence, we focus on cost sharing methods which always induce games with
a PNE. For SV cost sharing, we prove an upper bound on the POS which holds
for all sets of cost functions that satisfy Assumption 1. We show that for the
interesting case of polynomials of bounded degree d, this upper bound is d + 1,
which is asymptotically tight and always very close to the lower bound in [7].

Moreover, we show that this linear dependence on the maximum degree d
is very fragile. To do so, we consider a parameterized class of weighted Shapley
values, where players with larger weight get an advantage or disadvantage, which
is determined by a single parameter γ. When γ = 0 this recovers the SV. For
all other values γ �= 0, we show that the POS is very close and for γ > 0 even
matches the upper bound on the price of anarchy in [10]. In other words, for
this case the POS and the POA coincide, which we found very surprising, in
particular because the upper bound in [10] even applies to general cost-sharing
methods. We note that these weighted Shapley values are the only cost-sharing
methods that guarantee existence of a PNE and satisfy Assumption 2 [10,11].

1.2 Related Work and Comparison to Previous Results

POA. The POA was proposed in [15]. Most work on the inefficiency of equilibria
for weighted congestion games has focused on PS. Tight bounds for the case of
linear cost functions have been obtained in [3,8]. The case of bounded degree
polynomials was resolved in [1] and subsequent work [4,9,18] concluded the study
of PS. In particular, [18] formalized the smoothness framework which shows
how robust POA bounds (i.e., POA bounds that apply to general equilibrium
concepts) are obtained.

Tight Bounds for Cost-Sharing in Weighted Congestion Games 629

Further cost-sharing methods have been considered in [10,14]. Here, [14] pro-
vides tight bounds for the SV in games with convex cost functions, while [10]
proves that the SV is optimal among the methods that guarantee the existence
of a PNE and that PS is near-optimal in general, for games with polynomial
cost functions. The authors also show tight bounds on the marginal contribution
method (which charges a player the increase her presence causes to the joint cost)
in games with polynomial costs. Optimality of the SV in closely related settings
has also been discussed in [13,19].

POS. The term price of stability was introduced in [2] for the network cost-
sharing game, which was further studied in [5,6,14] for weighted players and
various cost-sharing methods. With respect to congestion games, results on the
POS are only known for polynomial unweighted games, for which [7] provides
exact bounds. Work in [13,19] studies the POS of the Shapley value in related
settings.

Comparison to previous work. Our POA results greatly generalize the work
on cost-sharing methods for weighted congestion games and give a recipe for
tight bounds in a large array of applications. Prior to our work only a handful
of cost-sharing methods have been tightly analyzed. Our results facilitate the
better design of such systems, beyond the optimality criteria considered in [10].
For example, the SV has the drawback that it can’t be computed efficiently,
while PS (on top of not always inducing a PNE) might have equilibria that
are hard to compute. In cases where existence and efficient computation of a
PNE is considered important, the designer might opt for a different cost-sharing
method, such as a priority based one (that fixes a weight-dependent ordering of
the players and charges them the marginal increase they cause to the joint cost
in this order) which has polynomial time computable shares and equilibria. Our
results show how the inefficiency of equilibria is quantified for all such possible
choices, to help evaluate the tradeoffs between different options. Our work closely
parallels the work on network cost-sharing games in [14], which provides tight
bounds for general cost-sharing methods.

Our POS upper bound is the first for weighted congestion games that applies
to any class of convex costs. The work in [19] presents SV POS bounds in a more
general setting with non-anonymous but submodular cost functions. In a similar
vein, [13] presents tight POS bounds on the SV in games with non-anonymous
costs, by allowing any cost function and parameterizing by the number of players
in the game, i.e., they show that for the set of all cost functions the POS of the
Shapley value is Θ(n log n) and for the set of supermodular cost functions it
becomes n, where n is the number of players. These upper bounds apply to
our games as well, however we adopt a slightly different approach. We allow an
infinite number of players for our bounds to hold and parameterize by the set of
possible cost functions, to capture the POS of different applications. For example,
for polynomials of degree at most d, we show that the POS is at most d + 1,
even when n → ∞. Observe that for unweighted games PS and SV are identical.

630 M. Gairing et al.

Thus, the lower bound in [7], which approaches d+1, also applies to our setting,
showing that our bound for polynomials is asymptotically tight.

Our lower bounds on the POS for the parameterized class of weighted Shap-
ley values build on the corresponding lower bounds on the POA in [10]. Our
construction matches these bounds by ensuring that the instance possesses a
unique Nash equilibrium. Together with our upper bound this shows an inter-
esting contrast: For the special case of SV the POS is exponentially better than
the POA, but as soon as we give some weight dependent priorities to the players,
the POA and the POS essentially coincide.

2 Preliminaries

In this section we present our model in more detail. We write N = {1, 2, . . . , n}
for the players and E = {1, 2, . . . ,m} for the resources. Each player i ∈ N has
a positive weight wi and a strategy set Pi, each element of which is a subset
of the resources, i.e., Pi ⊆ 2E . We write P = (P1, . . . , Pn) for an outcome,
with Pi ∈ Pi the strategy of player i. Let Se(P) = {i : e ∈ Pi} be the set of
users of e and fe(P) =

∑
i∈Se(P) wi be the total weight on e. The joint cost on e

is Ce(fe(P)) = fe(P) · ce(fe(P)), with ce a function that is drawn from a given
set of allowable functions C. We write χie(P) for the cost share of player i on
resource e. These shares are such that

∑
i∈Se(P) χie(P) = Ce(fe(P)). We make

the following assumptions on the cost-sharing method and the set of allowable
cost functions:

(1) Every function that can appear in the game is continuous, nondecreasing,
and convex. We also make the mild technical assumption that C is closed under
dilation, i.e., that if c(x) ∈ C, then also c(a · x) ∈ C for a > 0. We note that
without loss of generality, every C is also closed under scaling, i.e., if c(x) ∈ C,
then also a · c(x) ∈ C for a > 0 (this is given by simple scaling and replication
arguments).
(2) Given a player set S and a cost function c, suppose we alter the players
(e.g., change their weights or identities) and the cost function c in a manner
such that the cost generated by every subset of S on c remains unchanged. (For
example suppose we initially have two players with weights 1 and 2 and cost
function c(x) = x2 and we modify them so that the weights are now 2 and 4
and the cost function is now c(x) = x2/4.) Our second assumption states that
the cost shares of the players will remain the same. In effect, we ask that the
cost-sharing method only charges players based on how they contribute to the
joint cost. We also assume, without loss of generality, that if the costs of all
subsets of Ŝ = {1, 2, . . . , k} are scaled versions of those corresponding to S =
{1, 2, . . . , k}, then the cost shares are also simply scaled by the same factor (again
this is given by simple scaling and replication arguments).
(3) Since each cost share is a function of the cost function and player set on
a resource, we will also write ξc(i, S) for the share of a player i when the cost
function is c and the player set is S. This means that the cost share of player i on

Tight Bounds for Cost-Sharing in Weighted Congestion Games 631

resource e can be written both as χie(P) and as ξce(i, Se(P)). Our third assump-
tion now states that the expression ξce(i, Se(P)) is a continuous, nondecreasing,
and convex function of the weight of player i. This is something to expect from
a reasonable cost-sharing method, given that the joint cost on the resource is a
continuous nondecreasing convex function of the weight of player i.

The pure Nash equilibrium (PNE) condition on an outcome P states that for
every player i it must be the case that:∑

e∈Pi

χie(P) ≤
∑
e∈P ′

i

χie(P ′
i , P−i), for every P ′

i ∈ Pi. (1)

The social cost in the game will be the sum of the player costs, i.e.,

C(P) =
∑
i∈N

∑
e∈Pi

χie(P) =
∑
i∈N

∑
e∈Pi

ξce(i, Se(P)) =
∑
e∈E

fe(P) · ce(fe(P)). (2)

Let P be the set of outcomes and PN be the set of PNE outcomes of the game.
Then the price of anarchy (POA) is defined as POA = maxP∈PN C(P)

minP∈P C(P) , and the

price of stability (POS) is defined as POS = minP∈PN C(P)

minP∈P C(P) . The POA and POS
for a class of games are defined as the largest such ratios among all games in the
class.

Weighted Shapley Values. The weighted Shapley value defines how the cost
Ce(·) of resource e is partitioned among the set of players Se using e. Given
an ordering π of the players in Se, the marginal cost increase by players i ∈ Se

is C(fπ
i +wi)−C(fπ

i), where fπ
i is the total weight of players preceding i in the

ordering. For a given distribution Π over orderings, the cost share of player i
is Eπ∼Π [C(fπ

i + wi) − C(fπ
i)]. For the weighted Shapley value, the distribution

over orderings is given by a sampling parameter λi for each player i. The last
player of the ordering is picked proportional to the sampling parameter λi. This
process is then repeated iteratively for the remaining players.

As in [10], we study a parameterized class of weighted Shapley values defined
by a parameter γ. For this class λi = wγ

i for all players i. For γ = 0 this reduces
to the (normal) Shapley value (SV), where we have a uniform distribution over
orderings.

3 Tight POA Bounds for General Cost-Sharing Methods

We first generalize the (λ, μ)-smoothness framework of [18] to accommodate
any cost-sharing method and set of possible cost functions. Suppose we identify
positive parameters λ and μ < 1 such that for every cost function in our allowable
set c ∈ C, and every pair of sets of players T and T ∗, we get∑

i∈T ∗
ξc(i, T ∪ {i}) ≤ λ · wT ∗ · c(wT ∗) + μ · wT · c(wT), (3)

where wS =
∑

i∈S wi for any set of players S. Then, for P a PNE and P ∗ the
optimal solution, we would get

632 M. Gairing et al.

C(P)
(2)
=

∑
i∈N

∑
e∈Pi

ξce(i, Se(P))
(1)

≤
∑
i∈N

∑
e∈P ∗

i

ξce(i, Se(P) ∪ {i})

=
∑
e∈E

∑
i∈Se(P ∗)

ξce(i, Se(P) ∪ {i})

(3)

≤
∑
e∈E

λ · wSe(P ∗)ce(wSe(P ∗)) + μ · wSe(P) · ce(wSe(P))

(2)
= λ · C(P ∗) + μ · C(P). (4)

Rearranging (4) yields a λ/(1 − μ) upper bound on the POA. The same bound
can be easily shown to apply to MNE and more general concepts (correlated
and coarse correlated equilibria), though we omit the details (see, e.g., [18] for
more). We then get the following lemma.

Lemma 1. Consider the following optimization program with variables λ, μ.

Minimize λ
1−μ (5)

Subject to μ ≤ 1 (6)∑
i∈T ∗ ξc(i, T ∪ {i}) ≤ λ · wT ∗ · c(wT ∗) + μ · wT · c(wT),∀c, T, T ∗(7)

Every feasible solution yields a λ/(1 − μ) upper bound on the POA of the cost
sharing method given by ξc(i, S) and the set of cost functions C.

The upper bound holds for any cost-sharing method and set of cost functions.
We now proceed to show that the optimal solution to Program (5)-(7) gives a
tight upper bound when our assumptions described in Section 2 hold.

Theorem 1. Let (λ∗, μ∗) be the optimal point of Program (5)-(7). The POA
of the cost-sharing method given by ξc(i, S) and the set of cost functions C is
precisely λ∗/(1 − μ∗).

Proof. First define ζc(y, x) for y, x > 0 as

ζc(y, x) = max
T ∗:wT∗=y,T :wT=x

∑
i∈T ∗

ξc(i, T ∪ {i}). (8)

With this definition, we can rewrite Program (5)-(7) as

Minimize λ
1−μ (9)

Subject to μ ≤ 1 (10)
ζc(y, x) ≤ λ · y · c(y) + μ · x · c(x), ∀c ∈ C, x, y (11)

Observe that for every constraint, we can scale the weights of the players by
a factor a, dilate the cost function by a factor 1/a, and scale the cost function
by an arbitrary factor and keep the constraint intact (by Assumption 2). This

Tight Bounds for Cost-Sharing in Weighted Congestion Games 633

suggests we can assume that every constraint has y = 1 and c(1) = 1. Then we
rewrite Program (9)-(11) as

Minimize λ
1−μ (12)

Subject to μ ≤ 1 (13)
ζc(1, x) ≤ λ + μ · x · c(x), ∀c ∈ C, x (14)

The Lagrangian dual of Program (12)-(14) is

Minimize λ
1−μ+

∑
c∈C,x>0

zcx · (ζc(1, x) − λ − μ · x · c(x)) + zμ · (μ − 1) (15)

Subject to zcx, zμ ≥ 0 (16)

Our primal is a semi-infinite program with an objective that is continuous, dif-
ferentiable, and convex in the feasible region, and with linear constraints. We
get that strong duality holds (see also [21,23] for a detailed treatment of strong
duality in this setting). We first treat the case when the optimal value of the
primal is finite and is given by point (λ∗, μ∗). Before concluding our proof we
will explain how to deal with the case when the primal is infinite or infeasible.
The KKT conditions yield for the optimal λ∗, μ∗, z∗

cx:

1
1 − μ∗ =

∑
c∈C,x>0

z∗
cx (17)

λ∗

(1 − μ∗)2
=

∑
c∈C,x>0

z∗
cx · x · c(x) (18)

Calling ηcx = z∗
cx/

∑
c∈C,x>0 z∗

cx and dividing (18) with (17) we get

λ∗

1 − μ∗ =
∑

c∈C,x>0

ηcx · x · c(x). (19)

By (19) and the fact that all constraints for which z∗
cx > 0 are tight (by comple-

mentary slackness), we get∑
c∈C,x>0

ηcx · ζc(1, x) =
∑

c∈C,x>0

ηcx · x · c(x). (20)

Lower bound construction. Let T = {(c, x) : z∗
cx > 0}. The construction starts

off with a single player i, who has weight 1 and, in the PNE, uses a single
resource ei by herself. The cost function of resource ei is an arbitrary function
from C such that cei

(1) �= 0 (it is easy to see that such a function exists, since C
is closed under dilation, unless all function are 0, which is a trivial case) scaled
so that cei

(1) =
∑

(c,x)∈T ηcx ·ζc(1, x). The other option of player i is to use a set
of resources, one for each (c, x) ∈ T with cost functions ηcx · c(·). The resource
corresponding to each (c, x) is used in the PNE by a player set that is equivalent

634 M. Gairing et al.

to the T that maximizes the expression in (8) for the corresponding c, x. We
now prove that player i does not gain by deviating to her alternative strategy.
The key point is that due to convexity of the cost shares (Assumption 3), the
worst case T ∗ in definition (8) will always be a single player. Then we can see
that the cost share of i on each (c, x) resource in her potential deviation will
be ηcx · ζc(1, x). It then follows that she is indifferent between her two strategies.
Note that the PNE cost of i is

∑
(c,x)∈T ηcx · ζc(1, x), which by (19) and (20) is

equal to λ∗/(1−μ∗). Also note that if player i could use her alternative strategy
by herself, her cost would be 1.

We now make the following observation which allows us to complete the
lower bound construction: Focus on the players and resources of the previous
paragraph. Suppose we scale the weight of player i, as well as the weights of the
users of the resources in her alternative strategy by the same factor a > 0. Then,
suppose we dilate the cost functions of all these resources (the one used by i in
the PNE and the ones in her alternative strategy) by a factor 1/a so that the
costs generated by the players go back to the values they had in the previous
paragraph. Finally, suppose we scale the cost functions by an arbitrary factor b >
0. We observe that the fact that i has no incentive to deviate is preserved (by
Assumption 2) and the ratio of PNE cost versus alternative cost for i remains
the same, i.e., λ∗/(1 − μ∗). This suggests that for every player generated by our
construction so far in the PNE, we can repeat these steps by looking at her
weight and PNE cost and appropriately constructing her alternative strategy
and the users therein. After repeating this construction for a large number of
layers M → ∞, we complete the instance by creating a single resource for each of
the players in the final layer. The cost functions of these resources are arbitrary
nonzero functions from C scaled and dilated so that each one of these players is
indifferent between her PNE strategy and using the newly constructed resource.

Consider the outcome that has all players play their alternative strategies
and not the ones they use in the PNE. Evey player other than the ones in the
final layer would have a cost λ∗/(1 − μ∗) smaller, as we argued above. We can
now see that, by (20), the cost of every player in the PNE is the same as that
of the players in the resources of her alternative strategy. This means the cost
across levels of our construction is identical and the final layer is negligible,
since M → ∞. This proves that the cost of the PNE is λ∗/(1 − μ∗) times larger
than the outcome that has all players play their alternative strategies, which
gives the tight lower bound.

Note on case with primal infeasibility. Recall that during our analysis we
assumed that the primal program (12)-(14) had a finite optimal solution. Now
suppose the program is either infeasible or μ = 1, which means the minimizer
yields an infinite value. This implies that, if we set μ arbitrarily close to 1,
then there exists some c ∈ C, such that, for any arbitrarily large λ, there
exists x > 0 such that ζc(1, x) > λ+μ·x·c(x). We can rewrite this last expression
as ζc(1, x)/(x · c(x)) > μ + λ/(x · c(x)), which shows we have c, x values such
that ζc(1, x) is arbitrarily close to x · c(x) or larger (since μ is arbitrarily close
to 1). We can then replace λ with λ′ such that the constraint becomes tight. It

Tight Bounds for Cost-Sharing in Weighted Congestion Games 635

is not hard to see that these facts give properties parallel to (19) and (20) by
setting ηcx = 1 for our c, x and every other such variable to 0. Then our lower
bound construction goes through for this arbitrarily large λ′/(1−μ), which shows
we can construct a lower bound with as high POA as desired. ��

4 Shapley Value POS

In this section we study the POS for a class of weighted Shapley values, where
the sampling parameter of each player i is defined by λi = wγ

i for some γ.
We start with an upper bound on the POS for the case that γ = 0, i.e., for

the Shapley value (SV) cost-sharing method. For the SV, existence of a PNE
has been shown in [14] with the help of the following potential function, which
is defined for an arbitrary ordering of the players:

Φ(P) =
∑
e∈E

Φe(P) =
∑
e∈E

∑
i∈Se(P)

ξce(i, {j : j ≤ i, j ∈ Se(P)}). (21)

We first prove the following lemma which is the main tool for proving our
upper bound on the POS.

Lemma 2. Suppose we are given an outcome of the game and suppose we sub-
stitute any given player i with two players who have weight wi/2 each and who
use the exact same resources as i. Then the value of the potential function will
be at most the same as before the substitution.

Proof. First rename the players so that the substituted player i has the highest
index. Assign indices i′ and i′′ to the new players, with i′′ > i′ > i. On every
resource e that is used by these players, the potential decreases by ξce(i, Se(P)),
while it increases by ξce(i

′, Se(P) ∪ {i′} \ {i}) + ξce(i
′′, Se(P) ∪ {i′, i′′} \ {i}).

Hence, it suffices to show that

ξce(i
′, Se(P) ∪ {i′} \ {i}) + ξce(i

′′, Se(P) ∪ {i′, i′′} \ {i}) ≤ ξce(i, Se(P)). (22)

For simplicity, in what follows call ξ = ξce(i, Se(P)), ξ′ = ξce(i
′, Se(P)∪{i′}\{i}),

and ξ′′ = ξce(i
′′, Se(P) ∪ {i′, i′′} \ {i}). Consider every ordering π of the players

in Se(P) \ {i} and every possible point in the ordering where a new player can
be placed. If we assume that player is i and we average all possible joint cost
jumps i can cause (by definition of the SV) we get ξ. Similarly, with i′, we get ξ′.
If we repeat the same thought process for i′′, we are not getting ξ′′, since the
position of i′ in the ordering is unspecified. However, we get a value that is larger
than ξ′′ if we always place i′ right before i′′. Call this larger value ξ̂′′. Observe
that if we take every ordering π of Se(P) \ {i} and in every possible position,
we place first i′ and then i′′ and we take the average of the combined joint cost
jump that they cause, we will be getting ξ′ + ξ̂′′, which, as we explained is at
least ξ′ + ξ′′. Now note that this combined jump of the two players will also be
the jump that i would cause in that particular position (since wi′ + wi′′ = wi),
which means ξ′ + ξ̂′′ = ξ, which in turn gives ξ ≥ ξ′ + ξ′′ and completes the
proof. ��

636 M. Gairing et al.

By repeatedly applying Lemma 2, we can break the total weight on each
resource in players of infinitesimal size and the value of the potential will not
increase. This suggests:

Φe(P) ≥
∫ fe(P)

0

ce(x)dx. (23)

Now call P ∗ the optimal outcome and P = arg minP ′ Φ(P ′) the minimizer of the
potential function, which is, by definition, also a PNE. We get:

C(P ∗)
(21)

≥ Φ(P ∗)
Def.P
≥ Φ(P)

(23)

≥
∑
e∈E

∫ fe(P)

0

ce(x)dx

=
∑

e∈E

∫ fe(P)

0
ce(x)dx∑

e∈E fe(P) · ce(fe(P))
· C(P) ≥ min

e∈E

∫ fe(P)

0
ce(x)dx

fe(P) · ce(fe(P))
· C(P).

Rearranging yields the following theorem.

Theorem 2. The POS of the SV with C the set of allowable cost functions is
at most maxc∈C,x>0

x·c(x)
∫ x
0 c(x′)dx′ .

Corollary 1. For polynomials with non-negative coefficients and degree at
most d, the POS of the SV is at most d + 1, which asymptotically matches
the lower bound of [7] for unweighted games.

In the remainder of this section, we show that this linear dependence on
the maximum degree d of the polynomial cost functions is very fragile. More
precisely, for all values γ �= 0, we show an exponential (in d) lower bound which
matches the corresponding lower bound on the POA in [10]. Our bound for γ > 0
even matches the upper bound on the POA [10], which holds for the weighted
Shapley value in general. Our constructions modify the corresponding instances
in [10], making sure that they have a unique Nash equilibrium. Due to page
restrictions we defer the proof to our full version.

Theorem 3. For polynomial cost functions with non-negative coefficients and
maximum degree d, the POS for the class of weighted Shapley values with sam-
pling parameters λi = wγ

i is at least

(a) (2
1

d+1 − 1)−(d+1), for all γ > 0, and
(b) (d + 1)d+1, for all γ < 0.

References

1. Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price
of anarchy for polynomial congestion games. SIAM Journal on Computing 40(5),
1211–1233 (2011)

2. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The price of stability for network design with fair cost allocation. SIAM Journal
on Computing 38(4), 1602–1623 (2008)

Tight Bounds for Cost-Sharing in Weighted Congestion Games 637

3. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In:
Proceedings of STOC, pp. 57–66. ACM (2005)

4. Bhawalkar, K., Gairing, M., Roughgarden, T.: Weighted congestion games: Price
of anarchy, universal worst-case examples, and tightness. ACM Transactions on
Economics and Computation 2(4), 14 (2014)

5. Chen, H.L., Roughgarden, T.: Network design with weighted players. Theory of
Computing Systems 45(2), 302–324 (2009)

6. Chen, H.L., Roughgarden, T., Valiant, G.: Designing network protocols for good
equilibria. SIAM Journal on Computing 39(5), 1799–1832 (2010)

7. Christodoulou, G., Gairing, M.: Price of stability in polynomial congestion games.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part II. LNCS, vol. 7966, pp. 496–507. Springer, Heidelberg (2013)

8. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: Proceedings of STOC, pp. 67–73. ACM (2005)

9. Gairing, M., Schoppmann, F.: Total latency in singleton congestion games. In:
Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 381–387.
Springer, Heidelberg (2007)

10. Gkatzelis, V., Kollias, K., Roughgarden, T.: Optimal cost-sharing in weighted con-
gestion games. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877,
pp. 72–88. Springer, Heidelberg (2014)

11. Gopalakrishnan, R., Marden, J.R., Wierman, A.: Potential games are necessary
to ensure pure Nash equilibria in cost sharing games. Mathematics of Operations
Research (2014)

12. Harks, T., Klimm, M.: On the existence of pure Nash equilibria in weighted con-
gestion games. Mathematics of Operations Research 37(3), 419–436 (2012)

13. Klimm, M., Schmand, D.: Sharing non-anonymous costs of multiple resources
optimally. In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079,
pp. 274–287. Springer, Heidelberg (2015). arXiv preprint arXiv:1412.4456

14. Kollias, K., Roughgarden, T.: Restoring pure equilibria to weighted congestion
games. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 539–551. Springer, Heidelberg (2011)

15. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Computer Science
Review 3(2), 65–69 (2009)

16. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior
14(1), 124–143 (1996)

17. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Inter-
national Journal of Game Theory 2(1), 65–67 (1973)

18. Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proceedings of
STOC, pp. 513–522. ACM (2009)

19. Roughgarden, T., Schrijvers, O.: Network cost-sharing without anonymity. In: Lavi,
R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 134–145. Springer, Heidelberg (2014)

20. Roughgarden, T., Tardos, É.: How bad is selfish routing? Journal of the ACM
(JACM) 49(2), 236–259 (2002)

21. Shapiro, A.: On duality theory of convex semi-infinite programming. Optimization
54(6), 535–543 (2005)

22. Sheffi, Y.: Urban transportation networks: equilibrium analysis with mathematical
programming methods. Prentice-Hall (1985)

23. Wu, S.Y., Fang, S.C.: Solving convex programs with infinitely many linear con-
straints by a relaxed cutting plane method. Computers & Mathematics with Appli-
cations 38(3), 23–33 (1999)

http://arxiv.org/abs/1412.4456

Distributed Broadcast Revisited:
Towards Universal Optimality

Mohsen Ghaffari(B)

MIT, Cambridge, USA
ghaffari@mit.edu

Abstract. This paper revisits the classical problem of multi-message
broadcast: given an undirected network G, the objective is to deliver k
messages, initially placed arbitrarily in G, to all nodes. Per round, one
message can be sent along each edge. The standard textbook result is an
O(D + k) round algorithm, where D is the diameter of G. This bound is
existentially optimal, which means there exists a graph G′ with diameter
D over which any algorithm needs Ω(D + k) rounds.

In this paper, we seek the stronger notion of optimality—called
universal optimality by Garay, Kutten, and Peleg [FOCS’93]—which is
with respect to the best possible for graph G itself. We present a dis-
tributed construction that produces a k-message broadcast schedule with
length roughly within an Õ(log n) factor of the best possible for G, after
Õ(D + k) pre-computation rounds.

Our approach is conceptually inspired by that of Censor-Hillel, Ghaf-
fari, and Kuhn [SODA’14, PODC’14] of finding many essentially-disjoint
trees and using them to parallelize the flow of information. One key
aspect that our result improves is that our trees have sufficiently low
diameter to admit a nearly-optimal broadcast schedule, whereas the trees
obtained by the algorithms of Censor-Hillel et al. could have arbitrarily
large diameter, even up to Θ(n).

1 Introduction and Related Work

Broadcasting messages is a basic primitive used in the vast majority of global1

distributed algorithms. This paper presents an algorithm that moves towards
universal optimality for this decades-old problem, in contrast to the standard
existential optimality.

Model and Problem: We use the standard message passing model CONGEST
[10] where the network is represented by an undirected graph G = (V,E), n :=
|V | and initially each node only knows its neighbors. Communications occur
in synchronous rounds, where per round, one B-bit message can be sent along
each edge — typically one assumes B = O(log n). In the multi-message broadcast
problem, k many B-bit messages are each initially placed in an arbitrary location
of the network G, possibly multiple ones in the same node, and the objective is
to deliver them to all nodes.
1 Global problems are those in which the solution in a node can depend on the infor-

mation residing in far away parts of the network.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 638–649, 2015.
DOI: 10.1007/978-3-662-47666-6 51

Distributed Broadcast Revisited: Towards Universal Optimality 639

1.1 The Standard Algorithm, and Existential vs. Universal
Optimality

The standard k-message broadcast algorithms work in O(D + k) rounds, where
D denotes the network diameter. The solution that appears in most textbooks
is via communication on a BFS tree, e.g., Peleg [10, Section 4.3.2] writes:

“A natural approach . . . is to collect the items at the root of the tree and
then broadcast them one by one. Clearly since broadcasting the items can be
done in a pipelined fashion (releasing one item in each round), the broadcast
phase can be completed within (k + depth(T)) time. ... the collection phase
can be performed by an upcast operation with a similar complexity. Hence,
the entire problem can be solved in time O(k + depth(T)).”

This O(k+depth(T)) time is O(k+D) rounds in our terminology as for the BFS
tree T , depth(T) = O(D). An even more natural approach that achieves the same
bound is flooding—in each round, each node sends to all its neighbors a message
that it has not sent before, if it has one. Analyzing multi-message flooding is non
completely trivial. An elegant, but surprisingly2 less-known, analysis is given by
Topkis [13]. See Appendix A of the full-version for a streamlined description.

Existential vs. Universal Optimality: In the theoretical distributed com-
puting community, we often call this O(k + D) time algorithm optimal, without
paying close attention to the meaning of the implied optimality. Interestingly,
Peleg [10, Chapter4,Excercise1] asks (implicitly) to explain why the Ω(D) term
is a universal lower bound while the Ω(k) term is only existential. The simple
explanation is that broadcasting even a single message takes Ω(D), regardless
of its initial placement. At the same time, on many graphs, one can solve the
problem much faster than O(k + D). To give an example, and to take it to the
extreme, in the complete graph D = 1 but it would be quite embarrassing if
O(k) time was the best that we could do for broadcasting k messages; one can
easily achieve an O(k/n) time.

To the best of our knowledge, the distinction between the two notions was
first emphasized by Garay, Kutten, and Peleg in 1993[6]. Referring to an O(n)
time solution for leader election, they write:

“This solution is optimal in the sense that there exist networks for which
this is the best possible. This type of optimality may be thought of as ‘exis-
tential’ optimality. Namely, there are points in the class of input instances
under consideration, for which the algorithm is optimal. A stronger type of
optimality—which we may analogously call ‘universal’ optimality—is when
the proposed algorithm solves the problem optimally on every instance.”

Although the motivation for universal optimality is clear and strong, achieving it
is not straightforward and thus, to the best of our knowledge, there is no known
distributed algorithm that (non-trivially) achieves universal optimality. In fact,
2 The author believes that this analysis should make its way to the textbooks and

courses on distributed algorithms.

640 M. Ghaffari

even for the MST problem that Garay, Kutten, and Peleg [6] chose to seek such
a universal optimality, currently only an existential (near) optimality is known3.
Furthermore, this is even after more than 20 years which includes developments
such as the Õ(D +

√
n) upper bound of Kutten and Peleg [7], the Õ(μ(G,w) +√

n) upper bound of Elkin [4] where μ(G,w) denotes the MST-radius4, and the
(existential) Ω̃(D +

√
n) lower bounds of Peleg and Rubinovich[11] and Das

Sarma et al. [3].

1.2 Main Result

We present a distributed algorithm that, with high probability5, produces a
k-message broadcast schedule of length O((OPT · log n+log2 n) log log n) rounds,
after Õ(D + k) pre-computation rounds. Here, we use OPT to denote the mini-
mum k-message broadcast schedule length, which depends on graph G and the
initial placement of the messages in G.

Remark: We note that the length of the pre-computation phase is certainly a
weakness of our result, as our aim is to move “towards universal optimality”.
See the brief discussion at the end of this section in this regard.

1.3 Our Approach in a Nutshell

A key concept in our approach is what we call shallow-tree packing, which is
an adaptation of the tree packing concept Censor-Hillel et al. [1,2] used for
connectivity decomposition.

Shallow-Tree Packing: Imagine an optimal broadcast schedule that deliv-
ers the k messages to all nodes in OPT rounds. If we trace how each message
spreads to all the nodes, for each message i ∈ [k], we get a spanning subgraph
Hi of G that has diameter at most OPT, i.e., the spanning subgraph defined by
edge-set having all the edges that message i was transmitted over them. Out of
these, we can carve out spanning trees Ti of depth OPT. Clearly, each edge is
used by at most OPT of the trees, at most one per round. Let T be the set of all
spanning trees of G with depth at most OPT. For each tree T ∈ T , define λ(T)
to be the number of messages i ∈ [k] for which Ti = T , divided by OPT. Thus,
we know that in G, there exists a weighted collection F = (λ(T), T) of spanning

3 It is presumable that, to achieve universal optimality for MST, it might be helpful to
first understand universal optimality for multi-message broadcast. This is because,
the Õ(D +

√
n)-round MST algorithm of Kutten and Peleg [7] uses an k-message

broadcast subroutine, with k = Õ(
√

n), which currently is the standard existentially
optimal O(k + D) scheme, thus taking Õ(D +

√
n) rounds.

4 The MST-radius is defines as, roughly speaking, the maximum radius around each
edge e up to which one has to look to ensure that this edge e is not the heaviest
edge in a cycle. See [4] for the formal definition.

5 We use the phase “with high probability” (w.h.p.) to indicate that an event happens
with probability at least 1 − 1/n.

Distributed Broadcast Revisited: Towards Universal Optimality 641

trees of depth α = OPT such that

∀e ∈ G,
∑

T∈F,e∈T

λ(T) ≤ 1, and
∑
T∈F

λ(T) = β =
k

OPT
.

This tree collection F is what we call a shallow-tree packing with depth α = OPT
and size β = k/OPT. Intuitively, the reader can think of this as a fractional
variant of the cleaner integral version where we have β = k/OPT edge-disjoint
spanning trees, each of depth α = OPT.

A Rough Sketch of Our Algorithm: Our algorithm tries to mimic the opti-
mal broadcast schedule—which we only know exists but we do not know what
it looks like—by constructing a shallow-tree packing with depth O(OPT log n)
and size O(k/(OPT log n)).

The high-level outline of this construction is via an instantiation of the
Lagrangian relaxation (see e.g., [12,14]): Roughly speaking, we start with an
empty initial collection, and we add shallow-trees to it, one by one. In each iter-
ation, we assign to each edge a cost defined by an exponential in the hitherto
load, where load means the total weight of trees crossing the edge. We then
compute a tree of depth O(OPT log n) with cost within O(log n) factor of the
optimal, and add this tree to the collection (with a small weight). We show that,
after a number of these iterations, we arrive at the claimed shallow-tree packing.
The Lagrangian relaxation analysis we provide for this can be viewed as consid-
erably simplifying the counterpart in [1], thanks to some small changes we have
in the outline of the iterative packing method. To distributedly compute the
shallow tree of nearly minimum cost in each iteration, we present an algorithm
which has an outline close to the MST algorithm of Gallager, Humblet, Spira [5],
but with many vital changes both in the algorithm and in the analysis.

Once the shallow-tree packing is constructed, we use it to produce the near-
optimal broadcast schedule. Roughly speaking, we almost evenly distribute the
messages among the trees, and each tree broadcasts its own share of messages.
While this part would have been essentially trivial if we had a packing of edge-
disjoint trees, some complications arise due to the fractionality of our packing.
Some additional algorithmic ideas are used to overcome this challenge. The anal-
ysis of this part includes a novel technique for tightly bounding the information
dissemination time in probabilistic scenarios, which we believe can be of interest
well-beyond this paper. To make the technique more accessible, the full-version of
the paper explains this analysis also in the context of a very simple toy problem.

On the Length of the Pre-computation Phase: While the length of the pre-
computation weakens our result, we believe that there is still important merit in
the result, because: (1) The pre-computation is only performed once, regardless
of the number of the times one needs to solve k-message broadcast, and even
for different initial message placements. Hence its cost amortizes over multiple
iterations. (2) Even the pre-computation phase is not significantly longer than
the standard time bound. (3) Most importantly, the author believes that the
general framework set forth here and particularly our characterization of dis-
tributed broadcast algorithms as special combinatorial graph structures, i.e., the

642 M. Ghaffari

shallow-tree packings, are an important step towards universal optimality. Fur-
thermore, the technical method we use for computing these structures arguably
has the right overall outline. However, it is conceivable that one might be able
to improve this pre-computation phase, while using the same outline.

2 Distributed Shallow-Tree Packing

In this section, we explain how we compute the shallow-tree packing, which is our
pre-computation phase. In the next section, we explain how to use this structure
to produce the near-optimal broadcast schedule. The main result of this section
is captured by the following theorem:

Theorem 1. There is a distributed algorithm that, with high probability, pro-
duces a shallow-tree packing of depth O(OPT log n) and size O(k/(OPT log n)),
in Õ(D + k) rounds.

Throughout this section, we assume that a 2-approximation of OPT is known.
This assumption can be removed using standard techniques, simply by repeat-
ing our algorithm for O(log n) iterations, once for each 2-approximation guess
OPT = 2j , and picking the smallest guess OPT for which the construction was
successful. That is, the first guess that lead to a successful construction of a
shallow-tree packing with depth O(OPT log n) and size O(k/(OPT log n)). Since
overall this is a standard technique, we do not explain the details any further.
Also, note that these O(log n) iterations increase the round complexity of our
pre-computation by an O(log n) factor, which gets absorbed in the Õ() notation.
Furthermore, at the end only this one successful shallow-tree packing is kept,
which means this part only effects the pre-cumputation.

2.1 Packing via Lagrangian Relaxations

The algorithm we present here is to some extent similar to an algorithm in [1],
which itself is rooted in a long line of research on Lagrangian relaxations (see
e.g. the prominent works of [12,14]). Our algorithm, however, has small but vital
changes, which allow us to extend the result to our approximate setting, and
furthermore, interestingly, they allow us to significantly simplify the analysis, in
contrast to the counterpart in [1, AppendixF].

Lemma 1. Suppose that given costs for the edges, each in range [n−Θ(1), nΘ(1)],
we can distributedly compute a depth O(d log n) tree with cost within O(log n)
factor of the min-cost depth d tree, in O(d log2 n) rounds. Then, there is a dis-
tributed algorithm that produces a shallow-tree packing with depth O(OPT log n)
and size O(k/(OPT log n)), in Õ(k/OPT) iterations, each taking Õ(OPT)
rounds.

We note that any broadcast schedule needs at least Ω(D) rounds, which means
that OPT ≥ Ω(D). This will be used throughout our calculations.

Distributed Broadcast Revisited: Towards Universal Optimality 643

Let us first present the outline of the algorithm: We maintain a weighted
collection F of trees of depth O(OPT log n), where each tree τ ∈ F has weight
wτ ∈ [0, 1]. Initially, the collection is empty. We iteratively add trees to our
collection, one by one, as follows: In each iteration, we define an edge cost ce =
eαloade , where α = 10 log n and loade =

∑
τ∈F,e∈τ wτ . We then find a tree τ∗

of depth at most OPT · O(log n) such that its cost is within an O(log n) factor
of the min-cost depth OPT tree. This part will be done using the distributed
algorithm that we describe later in Section 2.2. We add τ∗ to our collection with
weight δ

α , where δ > 0 is a small constant, e.g., δ = 0.01. If there is an edge that
has loade ≥ 1, or if Θ(k

OPT) iterations have passed, we stop.
We get the following result about the total weight of the collection. We only

provide a proof sketch; the full proof appears in the full-version of this paper.

Lemma 2. At termination, the total weight in the collection is at least
k

OPT·O(log n) .

Proof (Proof Skecth). The claim is trivial if termination is because of finishing
Θ(k

OPT) iterations. Suppose that the algorithm terminated because there was an
edge with load greater than 1. Consider the potential function φ =

∑
e∈E eαloade .

Initially, this potential is equal to m ≤ n2 as each edge has load 0. When we
stop, there is at least one edge with load 1, which means that the potential at
that point is at least eα ≥ n10. Also notice that the potential is non-decreasing
over time because the loads are non-decreasing. Using some calculations, we can
show that per iteration, the potential increases by at most a (1 + δ·O(log n)·OPT

k)
factor. Thus, we conclude that there are at least Θ(k

δ·OPT) iterations, and there-
fore, the total weight at the end is at least k

OPT·O(log n) , as claimed.

2.2 Distributed Approximation of Min-Cost Shallow-Tree

The general outline of our distributed min-cost shallow-tree approximation algo-
rithm is inspired by that of the MST algorithm of Boruvka from 1926 [9], which
has the same outline as the algorithm of Gallager, Humblet, and Spira[5]. That
is, our algorithm also works in O(log n) iterations, each time reducing the num-
ber of connected components by a constant factor. However, there are significant
changes both in the algorithm and in the analysis, which allow us to upper bound
the depth of the produced tree to O(d log n), while sacrificing only an O(log n)
factor in the cost, in comparison to the min-cost depth d tree.

Theorem 2. There is a distributed algorithm that in O(d log2 n) rounds com-
putes a depth O(d log n) tree with cost within O(log n) factor of the min-cost
depth d tree.

General Outline: The algorithm works in O(log n) iterations, each taking
O(d log n) rounds. During these iterations, we maintain a spanning forest, which
changes from each iteration to the next. Initially, the forest has no edges, thus

644 M. Ghaffari

each node forms its own connected component of the forest, i.e., its own clus-
ter. In each iteration, some components merge with each other, hence forming
the new clustering, i.e., the new forest. Throughout, we have a center for each
cluster, and the centers of the next iteration are a subset of the centers of the
current iteration. We maintain the invariant that at the end of iteration i, each
forest component has radius at most id (computed as farthest distance from
its center). Therefore, the final depth of the tree after O(log n) iterations is at
most O(d log n), as promised. This linear depth growth is a part that makes our
algorithm significantly different than what happens in the aforementioned MST
algorithms, as there the radius can grow much faster, up to exponentially fast,
i.e., by a multiplicative constant factor per iteration.

Let C∗ be the cost of the min-cost depth d tree. Per iteration, we spend a
cost of O(C∗) to buy more edges that are added to the forest, in such a way
that the number of components goes down by a constant factor in expectation
(and while maintaining the radius invariant). This will let us prove that after
O(log n) iterations, w.h.p, we have a single spanning tree. Therefore, the total
cost is at most O(C∗ log n), as promised.

Merges in Each Iteration: Per iteration, for each center v, we find a path P ∗
v

with at most d hops that connects v to one of the other centers u �= v, and such
that P ∗

v has a 2-factor minimal cost, considering all the d-hop paths connecting
v to other centers. Then, this path gets suggested to be added to the forest. For
each center, we toss a fair coin. Each center v that draws a head will “buy” and
add to its component all the paths coming from centers u that draw a tail and
suggested a path towards v. Then, v stays as a component center of this bigger
component and those centers u loose their centrality role. A center that draw a
tail but the end point of its suggested path also draw a tail stays as a center for
the next iteration. Since each of the previous components had radius (i − 1)d,
by induction hypothesis, and we added only a path of length d from center u to
one of the centers v of the previous components, the new component has radius
at most id, thus proving the induction about the radius of the clusters.

Note that the added paths might produce cycles. To clean up these cycles, we
run a BFS from each cluster center that decided to stay alive for this iteration,
along the already-bought edges (those of the paths bought in this iteration or in
the past iterations), and the BFS grows for only id rounds. Each (non-center)
node joins the cluster related to the first BFS that reaches it, and only forwards
the BFS token of this center (along its already-bought edges). This way, the
cluster of each center has radius at most id. Note that each node v will still be
in a cluster, because the center of cluster that absorbed the old cluster of v is at
most id hops away from v, considering the already-bought edges.

Lemma 3. After O(log n) iterations, with high probability, we have a single
connected component, i.e., a spanning tree.

Proof. Consider a single iteration. For each component, the probability that it
merges with at least one other component is at least 1/4, which happens when
this component draws a tail and the receptive end of the path draws a head.

Distributed Broadcast Revisited: Towards Universal Optimality 645

Hence, we get that in expectation, the total number of the new components
is at most 3/4 fraction of the old number of components. Therefore, after say
20 log n iterations, the expected number of connected components is at most
(34)20 log n ≤ 1

n10 . Hence, Markov’s inequality tells us that the probability that
we have 2 or more components left is at most 2

n10 . That is, w.h.p., the number
of connected components is at most one, i.e., we have arrived at a tree.

What remains is to explain how we compute the approximately min-cost sug-
gested paths, from each cluster center to another cluster along a path of at most
d-hops, and why all these paths in one iteration together have cost at most O(C∗).
We first explain the path finding part, and then present our cost analysis.

Path Computations: To recap the setting, we are given a set S of centers,
and we want to find for each center v ∈ S a d-hop path P ∗

v to a center u �= v
such that the cost of P ∗

v is within 2-factor of the minimum cost such path for v.
Furthermore, we want to do this for all nodes v ∈ S, altogether in time Õ(d).
If we had a single center, we could run a d-round truncated version of Bellman-
Ford which would find the best path for the center exactly. However, doing this
for many centers at the same time is nontrivial, due the congestion. Intuitively,
the challenge is rooted in the fact that the edges have non-uniform costs, and
thus, a path with larger hop-count can have significantly lower cost to alternative
paths with smaller number of hops. To overcome this, we use a clever rounding
trick of Nanongkai [8] presented in the context of single-source shortest path
approximation6. Roughly speaking, this trick allows us to translate the problem
approximately to one in the setting with uniform edge costs.

Consider a threshold W = 2j , for j ∈ [−Θ(log n), Θ(log n)]. Roughly speak-
ing, we want for each v ∈ S to know if it has a d-hop path of cost at most W
to another node in S or not. We round up the cost of each edge to the next
multiplicative factor of εW/d, where ε = 0.01. That is, for each edge e, define
cost′(e) = Wε

d � cost(e)
εW/d 	. Thus, cost(e) ≤ cost′(e) ≤ cost(e) + Wε/d. Hence, over

a path made of at most d hops, this rounding can only increase the cost by most
Wε, which is much smaller than W . Hence, if for example we had a d-hop path
with length at most W (1 − ε), it still is below our threshold W .

What did we gain by doing this rounding? First, consider a single center and
imagine a BFS growing synchronously from all sides at a speed of Wε

d units of
cost per round. Any node at distance (according to cost′) at most W from the
BFS source would be hit by the BFS after at most W

Wε/d = d/ε such rounds.
Even nicer, we can run many BFSs each growing from one of the centers, in

parallel and at the same speed. At some point some BFS tokens might simul-
taneously reach the same node which gives rise to the question of which one
should be forwarded. Since we only care to find one nearly min-cost path for
each center, to control the congestion, when many BFS tokens reach the same
point at the same time, we only keep two of the tokens and discard the rest. We
keep two tokens so that, for any center node that will be reached later, at least
6 Nanongkai[8] mentions that this idea has been rediscovered a few times before, in

different contexts, which is a testament to its elegance and naturalness.

646 M. Ghaffari

one token is different from this center’s. Hence, we can run the BFS growth in
2d/ε rounds, still growing synchronously but at the speed of speed of Wε

d units
of cost per two rounds. As a result, for each center v, if there is a center u at
d-hop distance at most (1 − ε)W from v, then at the end of the BFS growth,
center v will receive the token of u, or potentially a different center u′ at d-hop
distance at most W from v.

The above description was for a given threshold W = 2j . We simply run it for
all possible values j ∈ [−Θ(log n), Θ(log n)], one by one, and we let each node v
remember the first center u that its BFS token reaches v. This way, each center
node v will know a different center u with a 2-factor-minimal d-hop path to v.
The path is not known by v itself, but v can reconstruct the path by sending a
token in the reverse direction of the path, towards u. This token traversal does
not create congestion either as at most two tokens will be sent in the reverse
direction, per each value of j.

Note that the heads and tails outcomes of the coin tosses of the centers can
already be put in these tokens, and we only spread BFS tokens out of head-
centers and only tail-centers accept a token. At the end, the tail tokens send
the tokens in the reverse direction. Thus, all the edges that are bought in this
iteration get identified distributedly.

Lemma 4. Per iteration, we spend a cost of at most O(C∗).

Proof. We prove that, the total cost of all the suggested paths is at most O(C∗).
For this, we turn our attention to the d-depth spanning tree τ∗ which has (the
minimum) cost C∗. Note that the algorithm does not know this tree, and it only
appears in our analysis. Recall that for each center v, we used the notation P ∗

v

to denote a 2-factor minimal-cost d-hop path connecting v to a different center,
which gets suggested by v. We show that there exist alternate d-hop paths P ′

v, one
for each v, connecting v to a different center, such that

∑
v cost(P ′

v) = O(C∗).
This would finish our cost analysis proof, simply because for each v, we have
cost(P ∗

v) ≤ 2cost(P ′
v).

To define the paths P ′
v, we present a simple (and in our opinion cute)

distributed algorithm, which we imagine it to be run on the tree τ∗. We empha-
size that in reality there is no such algorithm being run, and we are only imag-
ining such an algorithm for the purpose of analysis.

Pick an arbitrary root for τ∗ and orient τ∗ outwards, making each node
know its parent, and its depth in τ∗, and the maximum depth of τ∗. Then, we
start a synchronous upcast in τ∗ starting from the deepest level and moving
upwards, one hop at a time, from all sides. Each center node v starts this upcast
with a pebble tagged with its name and we gradually send up these pebbles. We
maintain that each node will send to its parent at most one pebble. When the
upcast reaches a node w, this node w might have received a number of pebbles
from its children, at most one from each of them, and might have one of its
own as well, if it is a center. Node w matches a maximal even number of the
pebbles pairwise, except for at most one which remains when the number of
pebbles is odd. This matching defines a unique τ∗-path P ′ for the owner center
of each pebble, the unique τ∗-path connecting the pebble owner to the origin

Distributed Broadcast Revisited: Towards Universal Optimality 647

of the other pebble in the pair. Furthermore, this way, each edge of τ∗ appears
in at most two of the paths, once for each end of the matching. If w has an
odd number of pebbles, it sends the one remaining up to its parent. The same
process is repeated until the upcast reaches the root. If the root has no pebble
left once it performs its step of matching, we are done as we have found paths
for centers with total cost at most 2C∗. If there is one pebble left at the root,
grab an arbitrary one of the other centers and assign to this pebble owner the
unique τ∗-path to that other center. This increases the total cost of paths P ′ to
at most 3C∗.

3 Broadcast on the Shallow-Tree Packing

We now can assume that we are given a shallow-tree packing of depth O(OPT ·
log n) and size k/O(OPT · log n), as computed in Section 2, and use it to produce
a broadcast schedule of length O(OPT log n log log n + log2 n) rounds.

Theorem 3. Given the shallow-tree packing of Section 2, we can broadcast k
messages in O((OPT log n + log2 n) log log n) rounds.

Due to the space limitations, this algorithm and its analysis are deferred to the
full-version of the paper. Here, we describe the general outline of the approach
and present a much simpler algorithm that produces a broadcast schedule of
length O(OPT log2 n).

3.1 General Outline for Broadcast Using Shallow-Tree Packing

Consider the given shallow-tree packing, which is a collection F = (λ(T), T) of
depth-O(OPT log n) spanning trees such that

∀e ∈ G,
∑

T∈F,e∈T

λ(T) ≤ 1, and
∑
T∈F

λ(T) =
k

OPT · O(log n)
.

Our general broadcast method is as follows: for each message i ∈ [k], we assign
it to one of the trees, chosen randomly with probabilities proportional to the
weights λ(T). This choice will be made by the node initially holding the message,
which then tags the message with this tree. Each message i ∈ [k] is assigned to
tree T with probability λ(T)

∑

T∈F λ(T) . Since
∑

T∈T λ(T) = k
OPT·O(log n) and for

each tree λ(T) ≤ 1, we can infer that each tree in expectation receives at most
O(log n) · OPT messages, and due to the independence of the choices of the
messages, a Chernoff bound and then a union bound over all trees tell us that,
w.h.p., each tree receives at most O(log n) · OPT messages.

What is left at this point is to broadcast the messages assigned to each tree,
inside it. If we were in the hypothetical/ideal scenario where trees are truly non-
overlapping (i.e., edge-disjoint), we could perform the broadcasts in different
trees with no interference from each other, and the broadcasts in tree T would

648 M. Ghaffari

be done in O(kT + DT) where kT is the number of messages assigned to T and
DT is its depth. Hence, the broadcast in each tree would be done in at most
O(OPT · log n) rounds. This would mean all broadcasts finish in this time, as
the broadcasts in different trees happen in parallel. Hence, that would give us a
broadcast schedule with length at most an O(log n · OPT).

However, this outline misses a critical point, namely that the trees are not
edge-disjoint; they are only fractionally disjoint which means that they can over-
lap but this overlap is controlled, i.e., ∀e ∈ G,

∑
T∈T ,e∈T λ(T) ≤ 1. We next

describe in more detail the challenge caused by this fractionality and the sim-
pler method of overcoming it while sacrificing an O(log n) factor.

3.2 The Challenge, and Our Simpler O(log2 n) · OPT Schedule

The Challenge: Here, we try to provide an intuitive description of the challenge.
Consider an edge e, and suppose that there are many trees in the collection
that include e. Per round, only one of the trees can use the edge. The natural
methods for giving the edge to the trees would be by various methods of time-
sharing, proportional to the weight of the trees. For instance, per round, we could
pick the tree that will use the edge randomly, with probabilities proportional to
λ(T). The total weight of the trees going through an edge is at most 1, but also
typically at least a constant. That is, we can not count on it being considerably
smaller than 1. Hence, with these methods of time sharing, roughly speaking, a
tree with weight λ(T) will get to use the edge only once per about Θ(1/λ(T))
rounds. Notice that a similar difficulty occurs with other simple methods of time-
sharing as well. Such a delay would effectively make the time to even broadcast
a single message in the tree grow by about a Θ(1/λ(T)) factor, i.e., to Ω(OPT ·
log n/λ(T)), which can be larger than ω(OPT · log n) because λ(T) ∈ [0, 1].

Our Simpler Broadcast Schedule: One saving grace which allows us to find
an O(log2 n) ·OPT length broadcast schedule without too much of work is that,
the construction we presented in Section 2 is not too far from integrality7. More
concretely, we in fact have O(k/OPT) trees, one per iteration of the Lagrangian
relaxation, and each of these trees has λ(T) = δ/α = Θ(1/ log n). Hence, each
edge is in at most O(log n) trees. In the random distribution of the messages
among these trees, each gets O(OPT + log n) messages, with high probability.

Now to broadcast messages, divide the time into phases, each having O(log n)
rounds: For each edge, assign each of the rounds of the phase to one of the trees
that goes through this edge. Hence, each tree gets to use each of its edges at
least once per phase. Therefore, the messages that are being broadcast in each
tree proceed with a speed of one hop per phase, at least. This means that after
O(kT + DT) = O(OPT + log n + OPT · log n) = O(OPT · log n) phases, which is
equal to O(OPT log2 n) rounds, all the messages of the tree are delivered to all
its nodes. As this holds for each of our trees, this method finishes the broadcast
in O(OPT log2 n) rounds.
7 We note that already having this property ready by our construction is not vital. One

can obtain similar guarantees for any other construction, using randomized rounding.

Distributed Broadcast Revisited: Towards Universal Optimality 649

Acknowledgments. The author thanks Christoph Lenzen for helpful conversations
about the concept of shallow-tree packings. The author is also grateful to Bernhard
Haeupler for discussions regarding correctness of the max-flow min-cut based analysis
technique that we present for probabilistic message dissemination.

References

1. Censor-Hillel, K., Ghaffari, M., Kuhn, F.: Distributed connectivity decomposition.
In: The Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pp. 156–165
(2014)

2. Censor-Hillel, K., Ghaffari, M., Kuhn, F.: A new perspective on vertex connectivity.
In: Pro. of ACM-SIAM Symp. on Disc. Alg. (SODA), pp. 546–561 (2014)

3. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. In: Proc. of the Symp. on Theory of Comp. (STOC), pp. 363–372
(2011)

4. Elkin, M.: A faster distributed protocol for constructing a minimum spanning tree.
In: Pro. of ACM-SIAM Symp. on Disc. Alg. (SODA), pp. 359–368 (2004)

5. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Trans. on Prog. Lang. and Sys. 5(1), 66–77 (1983)

6. Garay, J., Kutten, S., Peleg, D.: A sub-linear time distributed algorithm for
minimum-weight spanning trees. In: Proc. of the Symp. on Found. of Comp. Sci.
(FOCS), pp. 659–668 (1993)

7. Kutten, S., Peleg, D.: Fast distributed construction of k-dominating sets and appli-
cations. In: The Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC),
pp. 238–251 (1995)

8. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths.
In: Proc. of the Symp. on Theory of Comp. (STOC), pp. 565–573 (2014)

9. Nesetril, J., Milkova, E., Nesetrilova, H.: Otakar boruvka on minimum spanning
tree problem translation of both the 1926 papers, comments, history. Discrete
Mathematics 233(1), 3–36 (2001)

10. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. Society for
Industrial and Applied Mathematics, Philadelphia (2000)

11. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of
distributed MST construction. In: Proc. of the Symp. on Found. of Comp. Sci.
(FOCS) (1999)

12. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for frac-
tional packing and covering problems. Mathematics of Operations Research 20(2),
257–301 (1995)

13. Topkis, D.M.: Concurrent broadcast for information dissemination. IEEE Trans-
actions on Software Engineering 10, 1107–1112 (1985)

14. Young, N.E.: Sequential and parallel algorithms for mixed packing and covering.
In: Proc. of the Symp. on Found. of Comp. Sci. (FOCS), pp. 538–546. IEEE (2001)

Selling Two Goods Optimally

Yiannis Giannakopoulos(B) and Elias Koutsoupias

University of Oxford, Oxford, UK
ygiannak@cs.ox.ac.uk

Abstract. We provide sufficient conditions for revenue maximization
in a two-good monopoly where the buyer’s valuations for the items
come from independent (but not necessarily identical) distributions over
bounded intervals. Under certain distributional assumptions, we give
exact, closed-form formulas for the prices and allocation rules of the opti-
mal selling mechanism. As a side result we give the first example of an
optimal mechanism in an i.i.d. setting over a support of the form [0, b]
which is not deterministic. Since our framework is based on duality tech-
niques, we were also able to demonstrate how slightly relaxed versions
of it can still be used to design mechanisms that have very good approx-
imation ratios with respect to the optimal revenue, through a “convexi-
fication” process.

1 Introduction

The problem of designing auctions that maximize the seller’s revenue in settings
with many heterogeneous goods has attracted a large amount of interest in the
last years, both from the Computer Science as well as the Economics community
(see e.g. [2,3,5,6,8,11,15]). Here the seller faces a buyer whose true values for
the m items come from a probability distribution over R

m
+ and, based only on

this incomplete prior knowledge, he wishes to design a selling mechanism that
will maximize his expected revenue. For the purposes of this paper, the prior
distribution is a product one, meaning that the item valuations are independent.
The buyer is additive, in the sense that her happiness from receiving any subset
of items is the sum of her values of the individual items in that bundle. The buyer
is also selfish and completely rational, thus willing to lie about her true values if
this is to improve her own happiness. So, the seller should also make sure to give
the right incentives to the buyer in order to avoid manipulation of the protocol
by misreporting.

The special case of a single item has been very well understood since the
seminal work of Myerson [13]. However, when one moves to settings with mul-
tiple goods, the problem becomes notoriously difficult and novel approaches are
necessary. Despite the significant effort of the researchers in the field, essen-
tially only specialized, partial results are known: there are exact solutions for

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no. 321171.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 650–662, 2015.
DOI: 10.1007/978-3-662-47666-6 52

Selling Two Goods Optimally 651

two items in the case of identical uniform distributions over unit-length inter-
vals [11,15], exponential over [0,∞) [3] or identical Pareto distributions with tail
index parameters α ≥ 1/2 [6]. For more items optimal results are only known
for uniform valuations over the unit interval [5], and due to the difficulty of
exact solutions most of the work focuses in showing approximation guarantees
for simple selling mechanisms [1,4,6,9]. This difficulty is further supported by
the complexity #P -hardness results of Daskalakis et al. [2]. It is important to
point out that even for two items we know of no general and simple, closed-form
conditions framework under which optimality can be extracted when given as
input the item distributions, in the case when these are not necessarily identical.
This is our goal in the current paper.

Our Contribution. We introduce general but simple and clear, closed-form dis-
tributional conditions that can guarantee optimality and immediately give the
form of the revenue-maximizing selling mechanism (its payment and allocation
rules), for the setting of two goods with valuations distributed over bounded
intervals (Theorem 1). For simplicity and a clearer exposition we study dis-
tributions supported over the real unit interval [0, 1]. By scaling, the results
generalize immediately to intervals that start at 0, but more work would be
needed to generalize them to arbitrary intervals. We use the closed forms to
get optimal solutions for a wide class of distributions satisfying certain simple
analytic assumptions (Theorem 2 and Sect. 4). As useful examples, we provide
exact solutions for families of monomial (∝ xc) and exponential (∝ e−λx) dis-
tributions (Corollaries 1 and 2 and Sect. 4), and also near-optimal results for
power-law (∝ (x + 1)−α) distributions (Sect. 5). This last approximation is an
application of a more general result (Theorem 3) involving the relaxation of some
of the conditions for optimality in the main Theorem 1; the “solution” one gets
in this new setting might not always correspond to a feasible selling mechanism,
however it still provides an upper bound on the optimal revenue as well as hints
as to how to design a well-performing mechanism, by “convexifying” it into a
feasible mechanism (Sect. 5).

Particularly for the family of monomial distributions it turns out that the
optimal mechanism is a very simple deterministic mechanism that offers to the
seller a menu of size [7] just 4: fixed prices for each one of the two items and for
their bundle, as well as the option of not buying any of them. For the rest of the
distributions randomization is essential for optimality, as is generally expected
in such problems of multidimensional revenue maximization (see e.g. [3,8,15]).
For example, this is the case for two i.i.d. exponential distributions over the unit
interval [0, 1], which gives the first such example where determinism is subop-
timal even for regularly1 i.i.d. items. A point worth noting here is the striking
difference between this result and previous results [3,4] about i.i.d. exponential
distributions which have as support the entire R+: the optimal selling mechanism
there is the deterministic one that just offers the full bundle of both items.

1 A probability distribution F is called regular if t − 1−F (t)
f(t)

is increasing.

652 Y. Giannakopoulos and E. Koutsoupias

Although the conditions that the probability distributions must satisfy are
quite general, they leave out a large class of distributions. For example, they do
not apply to power-law distributions with parameter α > 2. In other words, this
work goes some way towards the complete solution for arbitrary distributions for
two items, but the general problem is still open. In this paper, we opted towards
simple conditions rather than full generality, but we believe that extensions of
our method can generalize significantly the range of distributions; we expect that
a proper “ironing” procedure will enable our technique to resolve the general
problem for two items.

Techniques. The main result of the paper (Theorem 1) is proven by utilizing
the duality framework of [5] for revenue maximization, and in particular using
complementarity: the optimality of the proposed selling mechanism is shown by
verifying the existence of a dual solution with which they satisfy together the
required complementary slackness conditions of the duality formulation. Con-
structing these dual solutions explicitly seems to be a very challenging task and
in fact there might not even be a concise way to do it, especially in closed-form.
So instead we just prove the existence of such a dual solution, using a max-flow
min-cut argument as main tool (Lemma 3). This is, in a way, an abstraction
of a technique followed in [5] for the case of uniform distributions which was
based on Hall’s theorem for bipartite matchings. Since here we are dealing with
general and non-identical distributions, this kind of refinement is essential and
non-trivial, and in fact forms the most technical part of the paper. Our approach
has a strong geometric flavor, enabled by introducing the notion of the deficiency
of a two-dimensional body (Definition 1, Lemma 2), which is inspired by classic
matching theory [10,14].

All omitted proofs and further discussion can be found in the full version of
our paper.

1.1 Model and Notation

We study a two-good monopoly setting in which a seller deals with a buyer who
has values x1, x2 ∈ I for the items, where I = [0, 1]. The seller has only an
incomplete knowledge of the buyer’s preference, in the form of two independent
distributions (with densities) f1, f2 over I from which x1 and x2 are drawn,
respectively. The cdf of fj will be denoted by Fj . We will also use standard
vector notation x = (x1, x2). For any item j ∈ {1, 2}, index −j will refer the
complementary item, that is 3 − j, and as it’s standard in game theory x−j =
x−j will denote the remaining of vector x if the j-th coordinate is removed, so
x = (xj , x−j) for any j = 1, 2.

The seller’s goal is to design a selling mechanism that will maximize his
revenue. Without loss2 we can focus on direct-revelation mechanisms: the bidder
will be asked to submit bids b1, b2 and the mechanism consists simply of an
allocation rule a1, a2 : I2 → I and a payment function p : I2 → R+ such that

2 This is due to the celebrated Revelation Principle [13].

Selling Two Goods Optimally 653

aj(b1, b2) is the probability of item j being sold to the buyer (notice how we
allow for randomized mechanisms, i.e. lotteries) and p(b1, b2) is the payment
that the buyer expects to pay; it is easier to consider the expected payment for
all allocations, rather than individual payments that depend on the allocation
of items. The reason why the bids bj are denoted differently than the original
values xj for the items is that, since the bidder is a rational and selfish agent,
she might lie and misreport bj �= xj if this is to increase her personal gain given
by the quasi-linear utility function

u(b;x) ≡ a1(b)x1 + a2(b)x2 − p(b), (1)

the expected happiness she’ll receive by the mechanism minus her payment.
Thus, we will demand our selling mechanisms to satisfy the following standard
conditions:

– Incentive Compatibility (IC), also known as truthfulness, saying that the
player would have no incentive to misreport and manipulate the mechanism,
i.e. her utility is maximized by truth-telling: u(b;x) ≤ u(x;x)

– Individual Rationality (IR), saying that the buyer cannot harm herself just
by truthfully participating in the mechanism: u(x;x) ≥ 0.

It turns out the critical IC property comes without loss3 for our revenue-
maximization objective, so for now on we will only consider truthful mechanisms,
meaning we can also relax the notation u(b;x) to just u(x).

There is a very elegant and helpful analytic characterization of truthfulness,
going back to Rochet [16] (for a proof see e.g. [6]), which states that the player’s
utility function must be convex and that the allocation probabilities are sim-
ply given by the utility’s derivatives, i.e. ∂u(x)/∂xj = aj(x). Taking this into
consideration and rearranging (1) with respect to the payment, we define

Rf1,f2(u) ≡
∫ 1

0

∫ 1

0

(
∂u(x)
∂x1

x1 +
∂u(x)
∂x2

x2 − u(x)
)

f1(x1)f2(x2) dx1 dx2

for every absolutely continuous function u : I2 −→ R+. If u is convex with partial
derivatives in [0, 1] then u is a valid utility function and Rf1,f2(u) is the expected
revenue of the seller under the mechanism induced by u. Let Rev(f1, f2) denote
the best possible such revenue, i.e. the supremum of Rf1,f2(u) when u ranges
over the space of all feasible utility functions over I2. So the problem we want
to deal with in this paper is exactly that of supu Rf1,f2(u).

We now present the conditions on the probability distributions which enable
our technique to provide a closed-form of the optimal auction.

Assumption 0. We assume that the density functions f1, f2 are absolutely con-
tinuous over I and almost everywhere4 (a.e.) differentiable. Furthermore, we
assume that they are bounded from below, except for small values of xi; in par-
ticular, we assume that there exists some small ε such that fi(xi) > ε, for every
xi > ε.
3 Also due to the Revelation Principle.
4 Everywhere except a set of zero Lebesgue measure.

654 Y. Giannakopoulos and E. Koutsoupias

Assumption 1. The probability distributions f1, f2 are such that functions
hf1,f2(x) − f2(1)f1(x1) and hf1,f2(x) − f1(1)f2(x2) are nonnegative, where

hf1,f2(x) ≡ 3f1(x1)f2(x2) + x1f
′
1(x1)f2(x2) + x2f

′
2(x2)f1(x1). (2)

Function hf1,f2 will also be assumed to be absolutely continuous.

We will drop the subscript f1, f2 in the above notations whenever it is clear which
distributions we are referring to. Assumption 1 is a slightly stronger condition
than h(x) ≥ 0 which is a common regularity assumption in the economics liter-
ature for multidimensional auctions with m items: (m + 1)f(x) + ∇f(x) ·x ≥ 0,
where f is the joint distribution for the item valuations (see e.g. [11,12,15]). In
fact, Manelli and Vincent [11] make the even stronger assumption that for each
item j, xjfj(xj) is an increasing function. Even more recently, that assumption
has also been deployed by Wang and Tang [17] in a two-item setting as one of
their sufficient conditions for the existence of optimal auctions with small-sized
menus.

Strengthening the regularity condition h(x) ≥ 0 to that of Assumption 1 is
essentially only used as a technical tool within the proof of Lemma 2, and as a
matter of fact we don’t really need it to hold in the entire unit box I2 but just
in a critical sub-region D1,2 which corresponds to the valuation subspace where
both items are sold with probability 1 (see Fig. 1 and Sect. 2.1). The same is true
for the second leg of Assumption 0, which is used in the proof of Lemma 3. As
mentioned earlier in the Introduction, we introduce these technical conditions
in order to simplify our exposition and enforce the clarity of the techniques,
but we believe that a proper “ironing” [13] process can probably bypass these
restrictions and generalize our results.

2 Sufficient Conditions for Optimality

This section is dedicated to proving the main result of the paper:

Theorem 1. If there exist decreasing, concave functions s1, s2 : I → I, with
s′
1(t), s

′
2(t) > −1 for all t ∈ I, such that for almost every x1, x2 ∈ I

s1(x2)f1(s1(x2))
1 − F1(s1(x2))

= 2+
x2f

′
2(x2)

f2(x2)
and

s2(x1)f2(s2(x1))
1 − F2(s2(x1))

= 2+
x1f

′
1(x1)

f1(x1)
, (3)

then there exists a constant p ∈ [0, 2] such that∫
D

h(x) dx1 dx2 = f1(1) + f2(1) (4)

where D is the region of I2 enclosed by curves5 x1 + x2 = p, x1 = s1(x2) and
x2 = s2(x1) and including point (1, 1), i.e. D = {x ∈ I | x1 + x2 ≥ p ∨ x1 ≥

5 See Fig. 1.

Selling Two Goods Optimally 655

s1(x2) ∨ x2 ≥ s2(x1)}, and the optimal selling mechanism is given by the utility
function

u(x) = max {0, x1 − s1(x2), x2 − s2(x1), x1 + x2 − p} . (5)

In particular, if p ≤ min {s1(0), s2(0)}, then the optimal mechanism is the deter-
ministic full-bundling with price p.

2.1 Partitioning of the Valuation Space

Due to the fact that the derivatives of functions sj in Theorem 1 are above
−1, each curve x1 = s1(x2) and x2 = s2(x1) can intersect the full-bundle line
x1 + x2 = p at most at a single point. So let x∗

2 = x∗
2(p), x∗

1 = x∗
1(p) be the

x2

x1

x1

x2

s2(x1) = x2

s1(x2) = x1x1 + x2 = p

0 1

1

D̄

D1,2

(x̂1, x̂2)

D1

D2

Fig. 1. The valuation space partitioning of the optimal selling mechanism for two
independent items, one following a uniform distribution and the other an exponential
with parameter λ = 1. Here s1(t) = (2 − t)/(3 − t), s2(t) = 2 − W (2e) = 0.625 and
p = 0.787. In region D1 (light grey) item 1 is sold deterministically and item 2 with
a probability of −s′

1(x2), in D2 (light grey) only item 2 is sold and region D1,2 (dark
grey) is where the full bundle is sold deterministically, for a price of p.

656 Y. Giannakopoulos and E. Koutsoupias

coordinates of these intersections, respectively, i.e. s1(x∗
2) = p−x∗

2 and s2(x∗
1) =

p − x∗
1. If such an intersection does not exist, just define x∗

2 = 0 or x∗
1 = 0.

The construction and the optimal mechanism given in Theorem 1 gives then
rise to the following partitioning of the valuation space I2 (see Fig. 1):

– Region D̄ = I2 \ D where no item is allocated
– Region D1 =

{
x ∈ I2 | x1 ≥ s1(x2) ∧ x2 ≤ x∗

2

}
where item 1 is sold with

probability 1 and item 2 with probability s′
1(x2) for a price of s1(x2) −

x2s
′
1(x2)

– Region D2 =
{
x ∈ I2 | x2 ≥ s2(x1) ∧ x1 ≤ x∗

1

}
where item 2 is sold with

probability 1 and item 1 with probability s′
2(x1) for a price of s2(x1) −

x1s
′
2(x1)

– Region D1,2 = D \ D1 ∪ D2 =
{
x ∈ I2 | x1 + x2 ≥ p ∧ x1 ≥ x∗

1 ∧ x2 ≥ x∗
2

}
where both items are sold deterministically in a full bundle of price p.

Under this decomposition:∫
D1

h(x) dx1 dx2 =
∫ x∗

2

0

∫ 1

s1(x2)

h(x) dx1 dx2 = f1(1)F2(x∗
2)

so expression (4) can be written equivalently as∫
D1,2

h(x) dx1 dx2 = f1(1)(1 − F2(x∗
2)) + f2(1)(1 − F1(x∗

1)). (6)

2.2 Duality

The major underlying tool to prove Theorem 1 will be the duality framework
of [5]. For completeness we briefly present here the formulation and key aspects,
and the interested reader is referred to the original text for further details.

Remember that the revenue optimization problem we want to solve here is
to maximize R(u) over the space of all convex functions u : I2 −→ R+ with

0 ≤ ∂u(x)
∂xj

≤ 1, j = 1, 2, (7)

for a.e. x ∈ I2. First we relax this problem by dropping the convexity assump-
tion and replacing it with (absolute) continuity. We also drop the lower bound
in (7). Then this new relaxed program is dual to the following: minimize∫ 1

0

∫ 1

0
z1(x) + z2(x) dx where the new dual variables z1, z2 : I2 −→ R+ are

such that zj is (absolutely) continuous with respect to its j-coordinate and the
following conditions are satisfied for all x1, x2 ∈ I:

zj(0, x−j) = 0, j = 1, 2, (8)
zj(1, x−j) ≥ fj(1)f−j(x−j), j = 1, 2, (9)

∂z1(x)
∂x2

+
∂z2(x)
∂x2

≤ 3f1(x1)f2(x2) + x1f
′
1(x1)f2(x2) + x2f1(x1)f ′

2(x2). (10)

Selling Two Goods Optimally 657

We will refer to the first optimization problem, where u ranges over the relaxed
space of continuous, nonnegative functions with derivatives at most 1, as the
primal program and to the second as the dual. Intuitively, every dual solution
zj must start at zero and grow all the way up to fj(1)f−j(x−j) while travelling
in interval I, in a way that the sum of the rate of growth of both z1 and z2 is
never faster than the right hand side of (10). In [5] is proven that indeed these
two programs satisfy both weak duality, i.e. for any feasible u, z1, z2 we have

R(u) ≤
∫ 1

0

∫ 1

0

z1(x) + z2(x) dx

as well as complementary slackness, in the form of the even stronger following
form of ε-complementarity:

Lemma 1 (Complementarity). If u, z1, z2 are feasible primal and dual solu-
tions, respectively, ε > 0 and the following complementarity constraints hold for
a.e. x ∈ I2,

u(x)
(

h(x) − ∂z1(x)
∂x1

− ∂z2(x)
∂x2

)
≤ εf1(x1)f2(x2), (11)

u(1, x−j) (zj(1, x−j) − fj(1)f−j(x−j)) ≤ εfj(1)f−j(x−j), j = 1, 2, (12)

zj(x)
(

1 − ∂u(x)
∂xj

)
≤ εf1(x1)f2(x2), j = 1, 2, (13)

where h is defined in (2), then the values of the primal and dual programs differ
by at most 7ε. In particular, if the conditions are satisfied with ε = 0, both
solutions are optimal.

Our approach into proving Theorem 1 will be to show the existence of a pair
of dual solutions z1, z2 with respect to which the utility function u given by the
theorem indeed satisfies complementarity. Notice here the existential character
of our technique: our duality approach offers the advantage to use the proof of
just the existence of such duals, without having to explicitly describe them and
compute their objective value in order to prove optimality, i.e. that the primal
and dual objectives are indeed equal. Also notice that the utility function u given
by Theorem 1 is convex by construction, so in case someone shows optimality
for u in the relaxed setting, then u must also be optimal among all feasible
mechanisms.

2.3 Deficiency

The following notion will be the tool that gives a very useful geometric interpre-
tation to the rest of the proof of Theorem 1 and it will be critical into proving
Lemma 3.

658 Y. Giannakopoulos and E. Koutsoupias

Definition 1. For any body S ⊆ I2 define its deficiency (with respect to distri-
butions f1, f2) to be

δ(S) ≡
∫

S

h(x) dx − f2(1)
∫

S1

f1(x1) dx1 − f1(1)
∫

S2

f2(x2) dx2,

where S1, S2 denote S’s projections to the x1 and x2 axis, respectively.

Lemma 2. If the requirements of Theorem 1 hold, then no body S ⊆ D1,2 has
positive deficiency.

2.4 Dual Solution and Optimality

The following lemma will complete the proof of Theorem 1. It is the most tech-
nical part of this paper, and utilizes a max-flow min-cut argument in order to
prove the existence of a feasible dual pair z1, z2 that satisfies the complemen-
tarity conditions with respect to the utility function given by Theorem 1, thus
establishing optimality. It is inspired by the bipartite matching approach in [5]
where Hall’s theorem is used in order to prove existence, in the special case
of uniformly distributed items. Here we need to abstract and generalize our
approach in order to incorporate general distributions in the most smooth way
possible. The proof has a strong geometric flavor, which is achieved by utilizing
the notion of deficiency that was introduced in Sect. 2.3 and using Lemma 2.

Lemma 3. Assume that the conditions of Theorem 1 hold. Then for arbitrary
small ε > 0, there exist feasible dual solutions z1, z2 which are ε-complementary
to the (primal) u given by (5). Therefore, the mechanism induced by u is optimal.

3 The Case of Identical Items

In this section we focus in the case of identically distributed valuations,
i.e. f1(t) = f2(t) ≡ f(t) for all t ∈ I, and we provide clear and simple con-
ditions under which the critical property (3) of Theorem 1 hold.

First notice that in this case the regularity Assumption 1 gives 3+ x1f ′(x1)
f(x1)

+
x2f ′(x2)

f(x2)
≥ 0 a.e. in I2 (since f is positive) and thus tf ′(t)

f(t) ≥ − 3
2 for a.e. t ∈ I. An

equivalent way of writing this is that t3/2f(t) is increasing, which interestingly
is the complementary case of that studied by Hart and Nisan [6] for two i.i.d.
items: they show that when t3/2f(t) is decreasing, then deterministically selling
in a full bundle is optimal.

Theorem 2. Assume that G(t) = tf(t)/(1 − F (t)) and H(t) = tf ′(t)/f(t) give
rise to well defined, differentiable functions over I, G being strictly increasing
and convex, H decreasing and concave, with G + H increasing and G(1) ≥ 2 +
H(0). Then the requirements of Theorem 1 are satisfied. In particular

s(t) = G−1(2 + H(t))

Selling Two Goods Optimally 659

and, if ∫ 1

0

∫ 1

0

h(x) dx −
∫ p

0

∫ p−x2

0

h(x) dx − 2f(1) (14)

is nonpositive for p = s(0) then the optimal selling mechanism is the one offering
deterministically the full bundle for a price of p being the root of (14) in [0, s(0)],
otherwise the optimal mechanism is the one defined by the utility function

u(x) = max {0, x1 − s(x2), x2 − s(x1), x1 + x2 − p}

with p = x∗ + s(x∗), where x∗ ∈ [0, s(0)] is the constant we get by solving∫ s(x∗)

x∗

∫ 1

s(x∗)+x∗−x2

h(x) dx +
∫ 1

s(x∗)

∫ 1

x∗
h(x) dx = 2f(1)(1 − F (x∗)). (15)

Corollary 1 (Monomial Distributions). The optimal selling mechanism for
two i.i.d. items with valuations from the family of distributions with densities
f(t) = (c + 1)tc, c ≥ 0, is deterministic. In particular, it offers each item for a

price of s = c+1

√
c+2
2c+3 and the full bundle for a price of p = s + x∗, where x∗ is

the solution to (15).

Notice that for c = 0 the setting of Corollary 1 reduces to a two uniformly
distributed goods setting, and gives the well-known results of s = 2/3 and p =
(4 −

√
2)/3 (see e.g. [11]). For the linear distribution f(t) = 2t, where c = 1, we

get s =
√

3/5 and p ≈ 1.091.

Corollary 2 (Exponential Distributions). The optimal selling mechanism
for two i.i.d. items with valuations exponentially distributed over I, i.e. having
densities f(t) = λe−λt/(1 − e−λ), with 0 < λ ≤ 1, is the one having s(t) =
1
λ

[
2 − λt − W

(
e2−λ−λt(2 − λt)

)]
and a price of p = x∗ + s(x∗) for the full

bundle, where x∗ is the solution to (15). Here W is Lambert’s product logarithm
function6.

For example, for λ = 1 we get s(t) = 2 − t − W
(
e1−t(2 − t)

)
and p ≈ 0.714.

Interestingly, to our knowledge this is the first example for an i.i.d. setting with
valuations coming from a regular, continuous distribution over an interval [0, b],
where an optimal selling mechanism is not deterministic. Also notice how this
case of exponential i.i.d. items on a bounded interval is different from the one on
[0,∞): by [3,4] we know that at the unbounded case the optimal selling mech-
anism for two exponential i.i.d. items is simply the deterministic full-bundling,
but in our case of the bounded I this is not the case any more.

4 Non-identical Items

An interesting aspect of the technique of Theorem 2 is that it can readily
be used also for non identically distributed valuations. One just has to define
6 Function W can be defined as the solution to W (t)eW (t) = t.

660 Y. Giannakopoulos and E. Koutsoupias

Gj(t) ≡ tfj(t)/(1 − Fj(t)) and Hj(t) = tf ′
j(t)/fj(t) for both items j = 1, 2 and

check again whether G1, G2 are strictly increasing and convex and H1,H2 non-
negative, decreasing and concave. Then, we can get sj(t) = G−1

j (2 + H−j(t))
and check if sj(1) > −1 and the price p of the full bundle can be given
by (4). Again, a quick check of whether full bundling is optimal is to see if for
p = min {s1(0), s2(0)} expression

∫ 1

0

∫ 1

0
h(x) dx−

∫ p

0

∫ p−x2

0
h(x) dx−f1(1)−f2(1)

is nonpositive.

Example 1. Consider two independent items, one having uniform valuation
f1(t) = 1 and one exponential f2(t) = e−t/(1 − e−1). Then we get that
s1(t) = (2 − t)/(3 − t), s2(t) = 2 − W (2e) ≈ 0.625 and p ≈ 0.787. The opti-
mal selling mechanism offers either only item 2 for a price of s2 ≈ 0.625, or
item 1 deterministically and item 2 with a probability s′

1(x2) for a price of
s1(x2) − x2s

′
1(x2), or the full bundle for a price of p ≈ 0.787. You can see the

allocation space of this mechanism in Fig. 1.

5 Approximate Solutions

In the previous sections we developed tools that, under certain assumptions, can
give a complete closed-form description of the optimal selling mechanism. How-
ever, remember that the initial primal-dual formulation upon which our analysis
was based, assumes a relaxed optimization problem. Namely, we dropped the
convexity assumption of the utility function u. In the results of the previous sec-
tions this comes for free: the optimal solution to the relaxed program turns out
to be convex anyways, as a result of the requirements of Theorem 1. But what
happens if that was not the case? The following tool shows that even in that
case our results are still applicable and very useful into both finding good upper
bounds on the optimal revenue (Theorem 3) as well as designing almost-optimal
mechanisms that have provably very good performance guarantees (Sect. 5.1).

Theorem 3. Assume that all the requirements of Theorem 2 are satisfied, except
from the concavity of function H. Then, the function u given by that theorem
might not be convex any more and thus not a valid utility function, but it gen-
erates an upper bound to the optimal revenue, i.e. Rev(f, f) ≤ Rf,f (u).

Example 2 (Power-Law Distributions). A class of important distributions that
falls into the description of Theorem 3 are the power-law distributions with
factors α ≤ 2. More specifically, these are the distributions having densities
f(t) = c/(t+1)α, with the normalization factor c selected so that

∫ 1

0
f(t) dt = 1,

i.e. c = (a − 1)/(1 − 21−α). It is not difficult to verify that these distributions
satisfy Assumption 1. For example, for α = 2 one gets f(x) = 2/(x + 1)2, the
equal revenue distribution shifted in the unit interval. For this we can compute
via (3) that s(t) = 1

2

√
5 + 2t + t2 − 1

2 (1+ t) and p ≈ 0.665, which gives an upper
bound of Rf,f (u) ≈ 0.383 to the optimal revenue Rev(f, f).

Selling Two Goods Optimally 661

5.1 Convexification

The approximation results described in Theorem 3 can be used not only for
giving upper bounds on the optimal revenue, but also as a design technique for
good selling mechanisms. Since the only deviation from a feasible utility function
is the fact that function s is not concave (and thus u is not convex), why don’t
we try to “convexify” u, by replacing s by a concave function s̃? If s̃ is “close
enough” to the original s, by the previous discussion this would also result in
good approximation ratios for the new, feasible selling mechanism.

Let’s demonstrate this by an example, using the equal revenue distribution
f(t) = 2/(t + 1)2 of the previous example. We need to replace s with a concave
s̃ in the interval [0, x∗]. So let’s choose s̃ to be the concave hull of s, i.e. the
minimum concave function that dominates s. Since s is convex, this is simply
the line that connects the two ends of the graph of s in [0, x∗], that is, the line

s̃(t) =
s(0) − s(x∗)

x∗ (x∗ − t) + s(x∗).

A calculation shows that this new valid mechanism has an expected revenue
which is within a factor of just 1+3× 10−9 of the upper bound given by s using
Theorem 3, rendering it essentially optimal.

Acknowledgments. We thank Anna Karlin, Amos Fiat, Costis Daskalakis and Ian
Kash for insightful discussions. We also thank the anonymous reviewers for their useful
comments.

References

1. Babaioff, M., Immorlica, N., Lucier, B., Weinberg, S.M.: A simple and approxi-
mately optimal mechanism for an additive buyer. In FOCS 2014 (2014)

2. Daskalakis, C., Deckelbaum, A., Tzamos, C.: The complexity of optimal mechanism
design. In: SODA 2013, pp. 1302–1318 (2013)

3. Daskalakis, C., Deckelbaum, A., Tzamos, C.: Mechanism design via optimal trans-
port. In: EC 2013, pp. 269–286 (2013)

4. Giannakopoulos, Y.: Bounding the optimal revenue of selling multiple goods.
CoRR, abs/1404.2832 (2014)

5. Giannakopoulos, Y., Koutsoupias, E.: Duality and optimality of auctions for uni-
form distributions. In: EC 2014, pp. 259–276 (2014)

6. Hart, S., Nisan, N.: Approximate revenue maximization with multiple items. In:
EC 2012 (2012)

7. Hart, S., Nisan, N.: The menu-size complexity of auctions. In: EC 2013, pp. 565–566
(2013)

8. Hart, S., Reny, P.J.: Maximal revenue with multiple goods: nonmonotonicity and
other observations. Technical report, The Center for the Study of Rationality,
Hebrew University, Jerusalem (2012)

9. Li, X., Yao, A.C.-C.: On revenue maximization for selling multiple independently
distributed items. Proc. Natl. Acad. Sci. 110(28), 11232–11237 (2013)

10. Lovász, L., Plummer, M.D.: Matching theory, North-Holland (1986)

662 Y. Giannakopoulos and E. Koutsoupias

11. Manelli, A.M., Vincent, D.R.: Bundling as an optimal selling mechanism for a
multiple-good monopolist. J. Econ. Theory 127(1), 1–35 (2006)

12. McAfee, R.P., McMillan, J.: Multidimensional incentive compatibility and mecha-
nism design. J. Econ. Theory 46(2), 335–354 (1988)

13. Myerson, R.B.: Optimal auction design. Mathematics of Operations Research 6(1),
58–73 (1981)

14. Ore, O.: Graphs and matching theorems. Duke Mathematical Journal 22(4),
625–639 (1955)

15. Pavlov, G.: Optimal mechanism for selling two goods. The BE Journal of Theo-
retical Economics 11(1) (2011)

16. Rochet, J.-C.: The taxation principle and multi-time hamilton-jacobi equations.
Journal of Mathematical Economics 14(2), 113–128 (1985)

17. Wang, Z., Tang, P.: Optimal mechanisms with simple menus. In: EC 2014 (2014)

Adaptively Secure Coin-Flipping, Revisited

Shafi Goldwasser1,3, Yael Tauman Kalai2, and Sunoo Park3(B)

1 The Weizmann Institute of Science, Rehovot, Israel
2 Microsoft Research, Cambridge, USA

3 MIT, Cambridge, USA
sunoo@csail.mit.edu

Abstract. The question of how much bias a coalition of faulty players
can introduce into distributed sampling protocols in the full information
model was first studied by Ben-Or and Linial in 1985. They focused on
the problem of collective coin-flipping, in which a set of n players wish to
use their private randomness to generate a common random bit b in the
presence of t(n) faulty players, such that the probability that b = 0 (and
1) are at least ε for some constant ε > 0. They showed that the major-
ity function can tolerate t = Θ(

√
n) corruptions even in the presence of

adaptive adversaries and conjectured that this is optimal in the adaptive
setting. Shortly thereafter, Lichtenstein, Linial, and Saks proved that the
conjecture holds for protocols where each player sends a single bit. Their
result has been the main progress on the conjecture for the last 30 years.

In this work we revisit this question, and ask: what about protocols
where players can send longer messages? Can increased communication
enable tolerance of a larger fraction of corrupt players?

We introduce a model of strong adaptive corruptions, in which an
adversary sees all messages sent by honest parties in any given round,
and based on the message content, decides whether to corrupt a party
(and alter its message) or not. This is in contrast to the (classical) adap-
tive adversary, who corrupts parties based on prior communication his-
tory, and cannot alter messages already sent. Such strongly adaptive
corruptions seem to be a realistic concern in settings where malicious
parties can alter (or sabotage the delivery) of honest messages depend-
ing on their content, yet existing adversarial models do not take this into
account.

We prove that any one-round coin-flipping protocol, regardless of mes-
sage length, can be secure against at most Õ(

√
n) strong adaptive corrup-

tions. Thus, increased message length does not help in this setting.
We then shed light on the connection between adaptive and strongly

adaptive adversaries, by proving that for any symmetric one-round coin-
flipping protocol secure against t adaptive corruptions, there is a sym-
metric one-round coin-flipping protocol secure against t strongly adaptive
corruptions. Going back to the standard adaptivemodel, we can now prove
that any symmetric one-round protocol with arbitrarily long messages can
tolerate at most Õ(

√
n) adaptive corruptions.

At the heart of our results there is a new technique for converting any
one-round secure protocol with arbitrarily long messages into a secure one
where each player sends only polylog(n) bits. This technique may be of
independent interest.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 663–674, 2015.
DOI: 10.1007/978-3-662-47666-6 53

664 S. Goldwasser et al.

1 Introduction

A collective coin-flipping protocol is one where a set of n players use private ran-
domness to generate a common random bit b. Several protocol models have been
studied in the literature. In this work, we focus on the model of full information
[1] where all parties communicate via a single broadcast channel.

The challenge is that t = t(n) of the parties may be corrupted and aim to
bias the protocol outcome (i.e. the “coin”) in a particular direction. We focus
on Byzantine faults, where once a party is corrupted, the adversary completely
controls the party and can send any message on its behalf. Two types of Byzan-
tine adversaries have been considered in the literature: static adversaries and
adaptive adversaries. A static adversary is one that chooses which t players to
corrupt before the protocol begins. An adaptive adversary is one who may choose
which t players to corrupt adaptively, as the protocol progresses.

Collective coin-flipping in the case of static adversaries is well understood
(see section 1.2). In this work, our focus is on the setting of adaptive adversaries,
which has received considerably less attention. A collective coin-flipping protocol
is said to be secure against t adaptive (resp. static) corruptions if for any adaptive
adversary corrupting t parties, there is a constant ε > 0 such that the probability
that the protocol outputs 0 (and the probability that the protocol outputs 1) is
at least ε, where the probability is taken over the randomness of the players and
the adversary.

The question we study is: What is the maximum number of adaptive cor-
ruptions that a secure coin-flipping protocol can tolerate? On the positive side,
it has been shown by Ben-Or and Linial [1] in 1985 that the majority protocol
(where each party sends a random bit, and the output is equal to the majority
of the bits sent), is resilient to Θ(

√
n) adaptive corruptions. Ben-Or and Linial

conjectured that this is in fact optimal.

Conjecture 1 ([1]). Majority is the optimal coin-flipping protocol against adap-
tive adversaries. In particular, any coin-flipping protocol is resilient to at most
O(

√
n) adaptive corruptions.

Shortly thereafter, Lichtenstein, Linial, and Saks [6] proved the conjecture
for a restricted class of protocols: namely, those in which each player sends only
a single bit. Their result has been the main progress on the conjecture of [1]
during the last 30 years.

1.1 Our Contribution

We first define a new adversarial model of strong adaptive corruptions. Infor-
mally, an adversary is strongly adaptive if he can corrupt players depending on
the content of their messages. More precisely, in each round, he can see all the
messages that honest players “would” send, and then decide which of them to
corrupt. This is in contrast to a (traditionally defined) adaptive adversary who
can, at any point in the protocol, corrupt any player who has not yet spoken
based on the history of communication, but cannot alter the message of a player

Adaptively Secure Coin-Flipping, Revisited 665

who has already spoken. Thus, strong adaptive adversaries are more powerful
than adaptive adversaries.

We believe that the notion of strong adaptive security gives rise to a natural
and interesting new adversarial model1 in which to study multi-party protocols
in general. Indeed, it is a realistic concern in many settings that malicious parties
may decide to stop or alter messages sent by honest players depending on message
content, and it is a shortcoming that existing adversarial models fail to take such
behavior into account.

Our main result is that the conjecture of [1] holds (up to polylogarithmic fac-
tors) for any one-round coin-flipping protocol in the presence of strong adaptive
corruptions.

Theorem. Any secure one-round coin-flipping protocol Π can tolerate at most
t = Õ(

√
n) strong adaptive corruptions.

This is shown by a generic reduction of communication in the protocol: first,
we prove that any strongly adaptively secure protocol Π can be converted to
one where players send messages of no more than polylogarithmic length, while
preserving the number of corruptions that can be tolerated. Then, we show that
any protocol with messages of polylogarithmic length can be converted to one
where each player sends only a single bit, at the cost of a polylogarithmic factor
in the number of corruptions. Finally, we reach the single-bit setting in which the
bound of Lichtenstein et al. [6] can be applied to obtain the theorem. We believe
that our technique of converting any protocol into one with short messages is of
independent interest and will find other applications.

Furthermore, we prove that strongly adaptively secure protocols are a more
general class of protocols than symmetric adaptively secure protocols. A sym-
metric protocol Π is a one that is oblivious to the order of its inputs: that is,
where for any permutation π : [n] → [n] of the players, it holds that the protocol
outcome Π(r1, . . . , rn) = Π(rπ(1), . . . , rπ(n)) is the same.

Theorem. For any symmetric one-round coin-flipping protocol Π secure against
t = t(n) adaptive corruptions, there is a symmetric one-round coin-flipping pro-
tocol Π ′ secure against Ω(t) strong adaptive corruptions.

Curiously, this proof makes a novel use of the Minimax Theorem [7,8] from
game theory, in order to take any symmetric, adaptively secure protocol and
convert it to a new protocol which is strongly adaptively secure. This technique
views the protocol as a zero-sum game between two players A0 and A1, where A0

1 We consider our strong adaptive adversarial notion to be closely tied to the notion
of a rushing adversary in the setting of static corruptions. The intuitive idea of a
rushing adversary is that the adversary sees all possible information in each round,
before making his move. We remark that a notion of “rushing adaptive adversary”
has been previously proposed in the literature, but such an adversary is weaker than
our strong adaptive adversary. We argue that our strong adaptive adversary better
captures the idea that the adversary sees all possibly relevant information in each
round, before making his move, since in the adaptive setting, the adversary’s strategy
must decide not only what messages to send, but also which players to corrupt.

666 S. Goldwasser et al.

wins if the protocol outcome is 0 and A1 wins if the outcome is 1. We analyze the
“minimax strategy” in which the players try to minimize their maximum loss,
in order to deduce the strong adaptive security of the new protocol. Whereas
some prior works have made use of game theory in the analysis of (two-party)
protocols, this is the first use of these game-theoretic concepts in the construction
of distributed multiparty protocols.

Finally, using the above results as stepping stones, we return to the classical
conjecture of [1], in the model of adaptive adversaries, and show that the conjec-
ture holds (up to polylogarithmic factors) for any symmetric one-round protocol
with arbitrarily long messages.

Theorem. Any secure symmetric one-round coin-flipping protocol Π can toler-
ate at most t = Õ(

√
n) adaptive corruptions.

1.2 Related Work

The full-information model (also known as the perfect information model) was
introduced by Ben-Or and Linial [1] to study the problem of collective coin-
flipping when no secret communication is possible between honest players.

In the Static Setting. Protocols for collective coin-flipping in the presence of
static corruptions have been constructed in a series of works that variously focus
on improving the fault-tolerance, round complexity, and/or bias of the output
bit. Feige [3] gave a protocol that is (δ1.65/2)-secure2 in the presence of t =
(1 + δ) · n/2 static corruptions for any constant 0 < δ < 1. Russell, Saks, and
Zuckerman [9] then showed that any protocol that is secure in the presence of
linearly many corruptions must either have at least (1/2−o(1)) · log∗(n) rounds,
or communicate many bits per round.

Interestingly, nearly all proposed multi-round protocols for collective coin-
flipping first run a leader election protocol in which one of the n players is
selected as a “leader”, who then outputs a bit that is taken as the protocol
outcome. We remark that this approach is inherently unsuitable for adaptive
adversaries, which can always corrupt the leader after he is elected, and thereby
surely control the protocol outcome.

In the Adaptive Setting. The study of coin-flipping protocols has been pre-
dominantly in the static setting. The problem of adaptively secure coin-flipping
was introduced by Ben-Or and Linial [1] and further examined by Lichtenstein,
Linial, and Saks [6] as described in the previous section. In addition, Dodis [2]
proved that through “black-box” reductions from non-adaptive coin-flipping, it
is not possible to tolerate significantly more corruptions than the majority pro-
tocol. The definition of “black-box” used in [2] is rather restricted: it only con-
siders sequential composition of non-adaptive coin-flipping protocols, followed
by a (non-interactive) function computation on the coin-flips thus obtained.
2 A coin-flipping protocol is ε-secure against t static corruptions if for any static adver-
sary that corrupts up to t parties, the probability that the protocol outputs 0 is at
least ε.

Adaptively Secure Coin-Flipping, Revisited 667

In the point-to-Point Channels Setting. An adversarial model bearing some
resemblance to our strong adaptive adversary model was introduced and ana-
lyzed by Hirt and Zikas [5] in the pairwise communication channels model, rather
than the full-information model. In their model, the adversary can corrupt a
party P based on some of the messages that P sends within a round, then the
adversary controls the rest of P ’s messages in that round (and for future rounds).
Unlike in our strong adaptive model, the adversary of [5] cannot “see inside all
players’ heads” and overwrite arbitrary honest messages based on their content
before they are sent.

A brief survey of the literature on coin-flipping in the setting of computa-
tionally bounded players is given in the full version [4].

2 Preliminaries

We consider coin-flipping protocols in the full-information model (also known
as the perfect information model), where n computationally unbounded play-
ers communicate via a single broadcast channel. The network is synchronized
between rounds, but is asynchronized within each round (that is, there is no
guarantee on message ordering within a round, and an adversary can see the
messages of all honest players in a round before deciding his own messages).

In this work, we focus on one-round protocols, and we consider protocols
that terminate (and produce an output) with probability 1. In particular, we
focus on coin-flipping protocols, which are defined as follows.

Definition 1 (Coin-flipping protocol). A coin-flipping protocol Π =
{Πn}n∈N is a family of protocols where each Πn is a n-player protocol which
outputs a bit in {0, 1}.

Notation. We write
s≈ for statistical indistinguishability of distributions. We

denote by PrΠ(b) the probability that an honest execution of Π will lead to the
outcome b ∈ {0, 1}. We denote by PrΠ,A(b) the probability that an execution of
Π in the presence of an adversary A will lead to the outcome b ∈ {0, 1}. The
probability is over the random coins of the honest players and the adversary.

For one-round protocols, we write Πn(r1, . . . , rn) to denote the outcome of
the protocol Πn when each player i sends message ri. (The vector (r1, . . . , rn) is
a protocol transcript.)

2.1 Properties of Protocols

Definition 2 (Symmetric protocol). A protocol Π is symmetric if the out-
come of a protocol execution is the same no matter how the messages within each
round are permuted. In particular, a one-round protocol Π is symmetric if for
all n ∈ N and any permutation π ∈ [n] → [n],

Πn(r1, . . . , rn) = Πn(rπ(1), . . . , rπ(n)).

668 S. Goldwasser et al.

We remark, for completeness, that in the multi-round case, the outcome of
a symmetric protocol should be unchanged even if different permutations are
applied in different rounds.

Definition 3 (Single-bit/multi-bit protocol). A protocol is single-bit if
each player sends at most one bit over the course of the protocol execution.
Similarly, a protocol is m-bit if each player sends at most m bits over the course
of the protocol execution. More generally, a protocol which is not single-bit is
called multi-bit.

Definition 4 (Public-coin protocol). A protocol is public-coin if each honest
player broadcasts all of the randomness he generates (i.e. his “local coin-flips”),
and does not send any other messages.

2.2 Adversarial Models in the Literature

The type of adversary that has been by far the most extensively studied in the
coin-flipping literature is the static adversary, which chooses a subset of players
to corrupt before the protocol execution begins, and controls the behavior of the
corrupt players arbitrarily throughout the protocol execution.

A stronger type of adversary is the adaptive adversary, which may choose
players to corrupt at any point during protocol execution, and controls the
behavior of the corrupt players arbitrarily from the moment of corruption until
protocol termination.

Definition 5 (Adaptive adversary). Within each round, the adversary
chooses players one-by-one to send their messages; and he can perform cor-
ruptions at any point during this process.

2.3 Security of Coin-Flipping Protocols

The security of a coin-flipping protocol is usually measured by the extent to
which an adversary can, by corrupting a subset of parties, bias the protocol
outcome towards his desired bit.

Definition 6 (ε-security). A coin-flipping protocol Π is ε-secure against t =
t(n) adaptive (or static or strong adaptive) corruptions if for all n ∈ N, it holds
that for any adaptive (resp. static or strong adaptive) adversary A that corrupts
at most t = t(n) players,

min
(
PrΠn,A(0),PrΠn,A(1)

)
≥ ε.

We remark that this definition of ε-security is sometimes referred to as ε-
control or ε-resilience in other works. We next define a secure protocol to be
one with “minimal” security properties (that is, one where the adversary does
not almost always get the outcome he wants).

Definition 7 (Security). A coin-flipping protocol is secure against t = t(n)
corruptions if it is ε-secure against t corruptions for some constant 0 < ε < 1.

In this work, we investigate the maximum proportion of adaptive corruptions
that can be tolerated by any secure protocol.

Adaptively Secure Coin-Flipping, Revisited 669

3 Our Results

3.1 Strongly Adaptive Adversaries

In this work, we propose a new, stronger adversarial model than those that have
been studied thus far (see section 2.2), in which the adversary can see all honest
players’ messages within any given round, and subsequently decide which players
to corrupt. That is, he can see all the messages that the honest players “would
have sent” in a round, and then selectively intercept and alter these messages.

Definition 8 (Strong adaptive adversary). Within each round, the adver-
sary sees all the messages that honest players would have sent, then gets to
choose which (if any) of those messages to corrupt (i.e. replace with messages of
his choice).

This notion is an essential tool underlying the proof techniques in our work.
Moreover, we believe that the notion of strong adaptive security gives rise to
a natural and interesting new adversarial model in which to study multi-party
protocols, which is of independent interest beyond the scope of this work.

3.2 Corruption Tolerance in Secure Coin-Flipping Protocols

Our main contributions consist of the following three results. These can be
viewed as partial progress towards proving the 30-year-old conjecture of [1].

Theorem 1. Any one-round coin-flipping protocol Π can be secure against at
most t = Õ(

√
n) strong adaptive corruptions.

Theorem 2. For any symmetric one-round coin-flipping protocol Π secure
against t = t(n) adaptive corruptions, there is a symmetric one-round coin-
flipping protocol Π ′ secure against Ω(t) strong adaptive corruptions.

Corollary 1. Any symmetric one-round coin-flipping protocol Π can be secure
against at most t = Õ(

√
n) adaptive corruptions.

In the next sections, we proceed to give detailed proofs of the theorems.

3.3 Proof of Theorem 1

We begin by recalling the result of Lichtenstein et al. [6] which proves that the
maximum number of adaptive corruptions for any secure single-bit coin-flipping
protocol is O(

√
n). Note that the majority protocol is the one-round protocol

in which each player broadcasts a random bit, and the majority of broadcasted
bits is taken to be the protocol outcome.

Theorem 3 ([6]). Any coin-flipping protocol in which each player broadcasts
at most one bit can be secure against at most t = O(

√
n) corruptions. Moreover,

the majority protocol achieves this bound.

670 S. Goldwasser et al.

Next, we establish some definitions and supporting lemmas.

Definition 9 (Distance between message-vectors). For vectors r, r′ ∈
Mn, let dist(r, r′) be equal to the number of coordinates i ∈ [n] for which ri �= r′

i.

Definition 10 (Robust sets). Let Π be a one-round coin-flipping protocol in
which each player sends a message from a message space M. For any n ∈ N and
b ∈ {0, 1}, define the set RobustΠn(b, t) as follows:

RobustΠn(b, t)={r ∈ Mn : ∀r′ ∈ Mn s.t. dist(r, r′) ≤ t, Πn(r)=Πn(r′)=b} .

Lemma 1. Let Π be a one-round coin-flipping protocol in which each player
sends a random message from a message space M. Π is secure against t = t(n)
strong adaptive corruptions if and only if there exists a constant 0 < ε < 1 such
that for all n ∈ N and each b ∈ {0, 1},

Pr
r←M

[
r ∈ RobustΠn(b, t)

]
≥ ε.

Proof. Given in the full version [4].

Since players are computationally unbounded and we consider one-round
protocols, we may without loss of generality consider public-coin protocols3: for
any one-round protocol Π in the full-information model, there is a protocol Π ′

with an identical output distribution (in the presence of any adversary), in which
honest players send random messages in {0, 1}k for some k = poly(n).

The following lemma serves as a stepping-stone to our final theorem.

Lemma 2. For any one-round multi-bit coin-flipping protocol Π secure against
t = t(n) strong adaptive corruptions, and any constant δ > 0, there is a one-
round �-bit coin-flipping protocol Π ′ that is secure against t strong adaptive cor-
ruptions, where � = O(log1+δ(n)).

Proof. Without loss of generality, we consider only public-coin protocols, and
assume that each player sends a message of the same length (say, k = k(n) bits).
Let δ > 0 be any constant, let � = O(log1+δ(n)), and let �′ = 2�.

For an �′ × n matrix of messages M ∈ ({0, 1}k)�′×n, we define the protocol
ΠM as follows: each player Pi broadcasts a random integer ai ← [�′], and the
protocol outcome is defined by

ΠM
n (a1, . . . , an) = Πn(M(a1,1), . . . ,M(an,n)),

where M(i,j) denotes the message at the ith row and jth column of the matrix
M . For notational convenience, define M(a1, . . . , an) = (M(a1,1), . . . ,M(an,n)).
Notice that by construction of the protocol ΠM , it holds that for any message-
vector a ∈ [�′]n,

M(a) ∈ RobustΠn(b, t) =⇒ a ∈ RobustΠ
M
n (b, t). (1)

3 This is without loss of generality: each player can simply send his random coin tosses,
and security holds since we are in the full-information model.

Adaptively Secure Coin-Flipping, Revisited 671

Suppose each entry of the matrix M is a uniformly random message in {0, 1}k.
Note that the length of each player’s message in ΠM is log(�′) = �. We want
to show that ΠM is a secure coin-flipping protocol against t strong adaptive
corruptions, for some M . By Lemma 1, it is sufficient to show that there exists
M ∈ ({0, 1}k)�′×n such that for all b ∈ {0, 1}, Pra←[�′]n

[
a ∈ RobustΠ

M
n (b, t)

]
≥

ε, where 0 < ε < 1 is constant. By implication (1), it actually suffices to prove:

∃M ∈ ({0, 1}k)�′×n s.t. ∀b ∈ {0, 1}, Pr
a←[�′]n

[
M(a) ∈ RobustΠn(b, t)

]
≥ ε. (2)

Suppose the matrix M is chosen uniformly at random. Let a1, . . .an be sam-
pled independently and uniformly from [�′]n. Since, the number of matrix rows
�′ = 2O(log1+δ(n)) is super-polynomial, it is overwhelmingly likely that a1, . . .an

will be composed of distinct elements in [�′]. That is, to be precise,

Pr
a1,...,an

[∀(i, j) �= (i′, j′) ∈ [n] × [n], (ai)j �= (ai′)j′] ≥ 1 − negl(n).

If a1, . . . ,an are indeed composed of distinct elements, the message-vectors
M(a1), . . . ,M(an) are independent random elements in ({0, 1}k)n. Thus,

(M(a1), . . . ,M(an))
s≈ (r1, . . . , rn), (3)

when M is a random matrix in ({0, 1}k)�′×n, the (short) message-vectors
a1, . . . ,an are random in [�′]n, and the (long) message-vectors r1, . . . , rn are
random in ({0, 1}k)n.

Since Π is a secure coin-flipping protocol, there is a constant 0 < ε′ < 1 such
that for all n ∈ N and b ∈ {0, 1} and i ∈ [n],

Pr
ri

[
ri ∈ RobustΠn(b, t)

]
≥ ε′.

The rest of the proof follows from a series of Chernoff bounds. Details are given
in the full version [4].

Having reduced the length of players’ messages to polylog(n) in Lemma 2,
we now prove the following lemma which reduces the required communication
even further, so that each player sends only one bit. This comes at the cost of a
polylogarithmic factor reduction in the number of corruptions. Then, finally, we
bring together Lemmas 2 and 3 to prove the theorem.

Lemma 3. For any one-round �-bit coin-flipping protocol Π secure against t =
t(n) strong adaptive corruptions, there is a one-round single-bit coin-flipping
protocol Π ′ that is secure against t/� strong adaptive corruptions.

Proof (sketch). Let Π be any one-round �-bit coin-flipping protocol secure
against t = t(n) strong adaptive corruptions. We construct a new protocol Π ′

in which there are a factor of � more players, and each player sends only a single

672 S. Goldwasser et al.

bit. To compute the outcome, the messages of the first � players in Π ′ are con-
catenated and interpreted as the message of the first player in Π, and the rest
of the players’ messages are constructed analogously. Due to the strong adaptive
security of the original protocol Π, any adversary attacking the new protocol
Π ′

n·� that corrupts up to t(n) bits can be perfectly simulated by an adversary
attacking the original protocol Π ′, so Π ′

n·� is secure against up to t(n) corrup-
tions. We remark that this argument does not hold for adaptive adversaries,
because seeing the players’ messages bit-by-bit in the new protocol Π ′ may give
an adversary more power to attack Π ′

n·� than Πn, given the same number t of
corruptions in each. The full proof is given in the full version [4].

Theorem 1. Any one-round coin-flipping protocol Π can be secure against at
most t = Õ(

√
n) strong adaptive corruptions.

Proof. Suppose, for contradiction, that there exists a one-round coin-flipping
protocol Π which is secure against t corruptions, where t = ω(

√
n · polylog(n)).

Then, by Lemma 2, there is an �-bit one-round coin-flipping protocol Π ′ that
is secure against t strong adaptive corruptions, where � = polylog(n). By apply-
ing Lemma 3 to the protocol Π ′, we deduce that there is a single-bit one-round
coin-flipping protocol Π ′′ which is secure against t/� = Ω̃(t) strong adaptive cor-
ruptions. Since a strongly adaptive adversary can perfectly simulate any strategy
of an adaptive adversary, it follows that Π ′′ is secure against Ω̃(t) adaptive cor-
ruptions. Since Π ′′ is single-bit, this contradicts Theorem 3.

3.4 Proof of Theorem 2

In this section, we show that for any symmetric one-round coin-flipping protocol
secure against t adaptive corruptions, there is a one-round coin-flipping protocol
secure against Ω(t) corruptions by strong adaptive adversaries. That is, one-
round strong adaptively secure protocols are a more general class than one-round
symmetric, adaptively secure protocols.

The Minimax Theorem – a classic tool in game theory – will be an important
tool in our proof. Due to space constraints, we refer to the full version [4] for the
statement of the Minimax Theorem and supporting game-theoretic definitions.

Theorem 2. For any symmetric one-round coin-flipping protocol Π secure
against t = t(n) adaptive corruptions, there is a symmetric one-round coin-
flipping protocol Π ′ secure against s = t/2 strong adaptive corruptions.

Proof. Let Π be a symmetric one-round coin-flipping protocol secure against t =
t(n) adaptive corruptions, and define s(n) = t(n)/2. We define a new protocol
Π ′ = {Π ′

n}n∈N as follows:

Π ′
n(r1, . . . , rn) = min

r′
1,...,r′

s

max
r′′
1 ,...,r′′

s

Πn+2s (r1, . . . , rn, r′
1, . . . , r

′
s, r

′′
1 , . . . , r′′

s) ,

where s = s(n) and honest players in Π ′
n send messages exactly as in Πn+2s.

Observe that Πn+2s is secure against t(n + 2s(n)) > t(n) corruptions. We show
that Π ′

n is secure against s(n) = t(n)/2 strong adaptive corruptions.

Adaptively Secure Coin-Flipping, Revisited 673

Case 1. Suppose that the adversary aims to bias the outcome towards 0. By
the security of Πn+2s, there is a constant 0 < ε < 1 such that PrΠn+2s,A(1) ≥ ε
for any adaptive adversary A that corrupts up to t = 2s players. Without loss of
generality (since the protocol is symmetric), suppose that the adversary corrupts
the last 2s players in Πn+2s.

We say that the honest players’ messages r1, . . . , rn “fix” the outcome of
Πn+2s to be 1 if for any possibly malicious messages r̂1, . . . , r̂2s, it holds that
Πn+2s(r1, . . . , rn, r̂1, . . . , r̂2s) = 1. Then, with probability at least ε, the honest
players’ messages r1, . . . , rn “fix” the outcome of Πn+2s to be 1. (To see this:
suppose not. Then there would exist an adversary which could set the corrupt
messages r̂1, . . . , r̂2s so that the protocol outcome is 0 with probability 1 − ε.
But this cannot be, since we already established that PrΠn+2s,A(1) ≥ ε.)

Define R1
def= {(r1, . . . , rn) : ∀r̂1, . . . , r̂2s, Πn+2s(r1, . . . , rn, r̂1, . . . , r̂2s) = 1}

to be the set of those honest message-vectors that fix the output of Πn+2s to 1.
Take any (r1, . . . , rn) ∈ R1. We now show that the outcome of Π ′

n when the
honest players send messages r1, . . . , rn is equal to 1, even in the presence of
a strong adaptive adversary A′ that corrupts up to s players and aims to bias
the outcome towards 0. Without loss of generality, suppose that A′ corrupts the
first s players in Π ′

n, and replaces their honest messages r1, . . . , rs with some
maliciously chosen messages r̂1, . . . , r̂s. In this case, the outcome of Π ′

n is

Π ′
n(r̂1, . . . , r̂s, rs+1, . . . , rn)

= min
r′
1,...,r′

s

max
r′′
1 ,...,r′′

s

Πn+2s (r̂1, . . . , r̂s, rs+1, . . . , rn, r′
1, . . . , r

′
s, r

′′
1 , . . . , r′′

s)

≥ min
r′
1,...,r′

s

Πn+2s (r̂1, . . . , r̂s, rs+1, . . . , rn, r′
1, . . . , r

′
s, r1, . . . , rs)

= min
r′
1,...,r′

s

Πn+2s (r1, . . . , rn, r̂1, . . . , r̂s, r
′
1, . . . , r

′
s) (by symmetry)

= 1,

since we started with (r1, . . . , rn) ∈ R1.
We already established that the probability that the honest players’ messages

fall in R1 is at least ε. Thus we deduce that with probability at least ε, the
outcome of the new protocol Π ′

n is equal to 1, even in the presence of a strong
adaptive adversary corrupting s players and aiming to bias towards 0.

Case 2. Suppose instead that the adversary A′ aims to bias the outcome
towards 1. We apply the Minimax Theorem to a zero-sum game where player
1 chooses the messages r′

1, . . . , r
′
s and player 2 chooses the messages r′′

1 , . . . , r′′
s ,

and player 1 “wins” if the protocol outcome is 0, and player 2 wins otherwise.
The rest of Case 2 is similar to Case 1; see the full version [4] for details.

4 Conclusion

We believe that this work paves the way to a number of little-explored research
directions. We highlight some interesting questions for future work:

674 S. Goldwasser et al.

– To study the extent to which communication can be reduced in protocols
in general, and to extend our communication-reduction techniques to the
settings of multi-round protocols and/or adaptive security.

– To apply the strong adaptive security notion in the context of other types
of protocols and settings, and to design protocols secure in the presence of
strong adaptive adversaries.

– To consider whether adaptively secure asymmetric coin-flipping protocols
can be converted to adaptively secure symmetric protocols, in general. This
is not known even for the one-round case, and the question is moreover of
interest since there are known one-round protocols which are not symmetric.

– To extend this work to prove (or disprove) the long-open conjecture of Licht-
enstein et al. [6] that any adaptively secure coin-flipping protocol can tolerate
at most O(

√
n) corruptions.

References

1. Ben-Or, M., Linial, N.: Collective coin flipping, robust voting schemes and minima
of banzhaf values. In: FOCS, pp. 408–416. IEEE Computer Society (1985)

2. Dodis, Y.: Impossibility of black-box reduction from non-adaptively to adap-
tively secure coin-flipping. In: Electronic Colloquium on Computational Complexity
(ECCC) 7.39 (2000)

3. Feige, U.: Noncryptographic selection protocols. In: FOCS, pp. 142–153. IEEE Com-
puter Society (1999)

4. Goldwasser, S., Kalai, Y.T., Park, S.: Adaptively Secure Coin-Flipping, Revisited.
(2015). arXiv: 1503.01588 [cs]

5. Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010)

6. Lichtenstein, D., Linial, N., Saks, M.E.: Some extremal problems arising form dis-
crete control processes. Combinatorica 9(3), 269–287 (1989)

7. Nash, J.F.: Equilibrium points in n-person games. In: Proceedings of the
National Academy of Sciences 36(1), 1950, pp. 48–49. doi:10.1073/pnas.36.1.
48. eprint: http://www.pnas.org/content/36/1/48.full.pdf+html. http://www.pnas.
org/content/36/1/48.short

8. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior.
Princeton University Press. ISBN: 0691119937 (1944)

9. Russell, A., Saks, M.E., Zuckerman, D.: Lower Bounds for Leader Election and
Collective Coin-Flipping in the Perfect Information Model. SIAM J. Comput.
31(6), 1645–1662 (2002). doi:10.1137/S0097539700376007. http://dx.doi.org/10.
1137/S0097539700376007

http://arxiv.org/abs/1503.0158
http://dx.doi.org/10.1073/pnas.36.1.48
http://dx.doi.org/10.1073/pnas.36.1.48
http://www.pnas.org/content/36/1/48.full.pdf+html
http://www.pnas.org/content/36/1/48.short
http://www.pnas.org/content/36/1/48.short
http://dx.doi.org/10.1137/S0097539700376007
http://dx.doi.org/10.1137/S0097539700376007
http://dx.doi.org/10.1137/S0097539700376007

Optimal Competitiveness for the Rectilinear
Steiner Arborescence Problem

Erez Kantor1(B) and Shay Kutten2

1 MIT CSAIL, Cambridge, MA, USA
erezk@csail.mit.edu

2 Technion, 32000 Haifa, Israel
kutten@ie.technion.ac.il

Abstract. We present optimal online algorithms for two related known
problems involving Steiner Arborescence, improving both the lower and
the upper bounds. One of them is the well studied continuous problem of
the Rectilinear Steiner Arborescence (RSA). We improve the lower bound
and the upper bound on the competitive ratio for RSA from O(log N)
and Ω(

√
log N) to Θ(logN

log logN
), where N is the number of Steiner points.

This separates the competitive ratios of RSA and the Symetric-RSA
(SRSA), two problems for which the bounds of Berman and Coulston
is STOC 1997 were identical. The second problem is one of the Multi-
media Content Distribution problems presented by Papadimitriou et al.
in several papers and Charikar et al. SODA 1998. It can be viewed as
the discrete counterparts (or a network counterpart) of RSA. For this
second problem we present tight bounds also in terms of the network
size, in addition to presenting tight bounds in terms of the number of
Steiner points (the latter are similar to those we derived for RSA).

1 Introduction

Steiner trees, in general, have many applications, see e.g. [12] for a rather early
survey that already included hundreds of items. In particular, Steiner Arbores-
cences1 are useful for describing the evolution of processes in time. Intuitively,
directed edges represent the passing of time. Since there is no way to go back in
time in such processes, all the directed edges are directed away from the initial
state of the problem (the root), resulting in an arborescence. Various examples
are given in the literature such as processes in constructing a Very Large Scale
Integrated electronic circuits (VLSI), optimization problems computed in itera-
tions (where it was not feasible to return to results of earlier iterations), dynamic
programming, and problems involving DNA, see, e.g. [3,4,6,13]. Papadimitriou
at al. [19,20] and Charikar et al. [5] presented the discrete version, in the context

E. Kantor– in a part by NSF Awards 0939370-CCF, CCF-1217506 and CCF-AF-
0937274 and AFOSR FA9550-13-1-0042.
S. Kutten–Supported in part by the ISF, Israeli ministry of science and by the
Technion Gordon Center.

1 A Steiner arborescence is a Steiner tree directed away from the root.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 675–687, 2015.
DOI: 10.1007/978-3-662-47666-6 54

676 E. Kantor and S. Kutten

of Multimedia Content Delivery (MCD) to model locating and moving caches
for titles on a path graph. The formal definition of (one of the known versions)
of this problem, Directed-MCD, appears in Section 2.

We present new tight lower and upper bounds for two known interre-
lated problems involving Steiner Arborescences: Rectilinear Steiner Arborescence
(RSA) and Directed-MCD (DMCD). We also deal indirectly with a third known
arborescence problem: the Symmetric-RSA (SRSA) problem by separating its
competitive ratio from that of RSA. That is, when the competitive ratios of
RSA and SRSA were discussed originally by Berman and Coulston [4], the
same lower and upper bounds were presented for both problems.

The RSA Problem: This is a rather heavily studied problem, described also
e.g. in [4,9,17,18,22]. A rectilinear line segment in the plane is either horizontal
or vertical. A rectilinear path contains only rectilinear line segments. This path is
also y-monotone (respectively, x-monotone) if during the traversal, the y (resp.,
x) coordinates of the successive points are never decreasing. The input is a set
of requests R = {r1 = (x1, y1), ..., rN = (xN , yN)} called Steiner terminals (or
points) in the positive quadrant of the plane. A feasible solution to the problem
is a set of rectilinear segments connecting all the N terminals to the origin
r0 = (0, 0), where the path from the origin to each terminal is both x-monotone
and y-monotone (rectilinear shortest path). The goal is to find a feasible solution
in which the sum of lengths of all the segments is the minimum possible. The
above mentioned third problem, SRSA was defined in the same way, except that
the above paths were not required to be x-monotone (only y-monotone).

Directed-MCD defined in Section 2 is very related to RSA. Informally, one
difference is that it is discrete (Steiner points arrive only at discrete points)
whiling RSA is continuous. In addition, in DMCD each “X coordinates” rep-
resents a network nodes. Hence, the number of X coordinates is bounded from
above by the network size. This resemblance turned out to be very useful for us,
both for solving RSA and for solving DMCD.

The online Version of RSA [4]: the given requests (terminals) are pre-
sented to the algorithm with nondecreasing y-coordinates. After receiving the
i’th request ri = (xi, yi) (for i = 1, ..., N), the on-line RSA algorithm must
extend the existing arborescence solution to incorporate ri. There are two addi-
tional constraints: (1) a line, once drawn (added to the solution), cannot be
deleted, and (2) a segment added when handling a request ri, can only be drawn
in the region between yi−1 (the y-coordinates of the previous request ri−1) and
upwards (grater y-coordinates). If an algorithm obeys constraint (1) but not
constraint (2), then we term it a pseudo online algorithm. Note that quite a few
algorithms known as “online”, or as “greedy offline” fit this definition of “pseudo
online”.

Additional Related Works. Online algorithms for RSA and SRSA were pre-
sented by Berman and Coulston [4]. The online algorithms in [4] were O(log N)
competitive (where N was the number of the Steiner points) both for RSA and
SRSA. Berman and Coulston also presented Ω(

√
log N) lower bounds for both

Optimal Competitiveness for the Rectilinear Steiner Arborescence Problem 677

continuous problems. Note that the upper bounds for both problems were equal,
and were the squares of the lower bounds. A similar gap for MCD arose from
results of Halperinet al. [11], who gave a similar competitive ratio of O(log N),
while Charikaret al. [5] presented a lower bound of Ω(

√
log n) for various variants

of MCD, where n was the network size. Their upper bound was again the square
of the lower bound. Berman and Coulston also conjectured that to close these
gaps, both the upper bound and the lower bound for both problems could be
improved. This conjecture was disproved in the cases of SRSA and of MCD on
undirected line networks [15]. The latter paper closed the gap by presenting an
optimal competitive ratio of O(

√
log N) for SRSA and O(min{√n,

√
log N}) for

MCD on the undirected line network with n nodes. They left the conjecture of
Berman and Coulston open for RSA and for MCD on directed line networks. In
the current paper, we prove this conjecture (for RSA and for Directed-MCD),
thus separating RSA and SRSA in terms of their competitive ratios.

Charikar et al. [5] also studied the the offline case for MCD, for which they
gave a constant approximation. The offline version of RSA is heavily studied. It
was attributed to [18] who gave an exponential integer programming solution and
to [9] who gave an exponential time dynamic programming algorithm. An exact
and polynomial algorithm was proposed in [24], which seemed surprising, since
many Steiner problems are NP-Hard. Indeed, difficulties in that solution were
noted by Rao et al. [22], who also presented an approximation algorithm. Effi-
cient algorithms are claimed in [7] for VLSI applications. However, the problem
was proven NP-Hard in [23]. (The rectilinear Steiner tree problem was proven
NP-Hard in [10]). Heuristics that are fast “in practice” were presented in [8]. A
PTAS was presented by [17].

An optimal logarithmic competitive ratio for MCD on general undirected net-
works was presented in [2]. They also present a constant off-line approximation
for MCD on grid networks.

On the Relation Between this Paper and [15]. An additional contribution
of the current paper is the further development of the approach of developing
(fully) online algorithms in two stages: (a) develop a pseudo online algorithm;
and (b) convert the pseudo online into an online algorithm. As opposed to the
problem studied in [15] where a pseudo online algorithm was known, here the
main technical difficulty was to develop such an algorithm. From [15] we also
borrowed an interesting twist on the rather common idea to translate between
instances of a discrete and a continuous problems: we translate in both directions,
the discrete solutions helps in optimizing the continuous one and vice versa.

Our Contributions. We improve both the upper and the lower bounds of RSA
to show that the competitive ratio is Θ(log N

log log N). This proves the conjecture for
RSA of Berman and Coulston [4] and also separates the competitive ratios of
RSA and SRSA. We also provide tight upper and lower bound for Directed-
MCD, the network version of RSA (both in terms of n and of N). The main
technical innovation is the specific pseudo online algorithm we developed here,
in order to convert it later to an online algorithm. The previously known offline

678 E. Kantor and S. Kutten

algorithms for RSA and for DMCD where not pseudo online, so we could not
use them. In addition to the usefulness of the new algorithm in generating the
online algorithm, this pseudo online algorithm may be interesting in itself: It
is O(1)-competitive for DMCD and for RSA (via the transformation) for a
different (but rather common) online model (where each request must be served
before the next one arrives, but no time passes between requests).
Paper Structure. Definitions are given in Section 2. The pseudo online algo-
rithm Square for DMCD is presented and analyzed in Section 3. In Section
4, we transform Square to a (fully) online algorithm D-Lineon for DMCD.
Then, Section 5 describes the transformation of the online DMCD algorithm
D-Lineon to become an optimal online algorithm for RSA, as well as a trans-
formation back from RSA to DMCD to make the DMCD online algorithm also
optimal in terms of n (not just N). These last two transformations are taken
from [15]. Finally, a lower bound is given in Section 6.

Because of space considerations, some of the proofs are omitted. However, all
the proofs are given in the full version [16]. Moreover, the best way to understand
the algorithms in this paper may be from a geometric point of view. Hence, in
[16], we added multiple drawings to illustrate both the algorithms and the proofs.

2 Preliminaries

The Network×Time Grid (Papadimitriou et. al, [20]). A directed line network
L(n) = (Vn, En) is a network whose node set is Vn = {1, ..., n} and its edge set is
En = {(i, i+1) | i = 1, ..., n−1}. Given a directed line network L(n) = (Vn, En),
construct ”time-line” graph L(n) = (Vn, En), intuitively, by “layering” multiple
replicas of L(n), one per time unit, where in addition, each node in each replica
is connected to the same node in the next replica. Formally, the node set Vn

contains a node replica (sometimes called just a replica) (v, t) of every v ∈ Vn,
coresponding to each time step t ∈ N. That is, Vn = {(v, t) | v ∈ Vn, t ∈ N}.
The set of directed edges En = Hn ∪An contains horizontal directed edges Hn =
{((u, t), (v, t)) | (u, v) ∈ En, t ∈ N}, connecting network nodes in every time step
(round), and directed vertical edges, called arcs, An = {((v, t), (v, t + 1)) | v ∈
Vn, t ∈ N}, connecting different copies of Vn. When n is clear from the context,
we may write just X rather than Xn, for every X ∈ {V,E,V,H,A}. Notice that
L(n) can be viewed geometrically as a grid of n by ∞ whose grid points are the
replicas. We consider the time as if it proceeds upward. We use such geometric
presentations also in the text, to help clarifying the description.

The DMCD Problem. We are given a directed line network L(n), an origin
node v0 ∈ V , and a set of requests R ⊆ V. A feasible solution is a subset of
directed edges F ⊆ E such that for every request r ∈ R, there exists a path in F
from the origin (v0, 0) to r. Intuitively a directed horizontal edge ((u, t), (v, t))
is for delivering a copy of a multimedia title from node u to node v at time t.

A directed vertical edge (arc) ((v, t), (v, t + 1)) is for storing a copy of the
title at node v from time t to time t + 1. For convenience, the endpoints VF of

Optimal Competitiveness for the Rectilinear Steiner Arborescence Problem 679

edges in F are also considered parts of the solution. For a given algorithm A,
let FA be the solution of A, and let cost(A,R), (the cost of algorithm A), be
|FA|. (We assume that each storage cost and each delivery cost is 1.) The goal
is to find a minimum cost feasible solution. Let opt be the set of edges in some
optimal solution whose cost is |opt|.

Online DMCD. In the online versions of the problem, the algorithm receives
as input a sequence of events. One type of events is a request in the (ordered)
set R of requests R = {r1, r2, ..., rN}, where the requests times are in a non-
decreasing order, i.e., t1 ≤ t2 ≤ ... ≤ tN (as in RSA). A second type of events is
a time event (this event does not exists in RSA), where we assume a clock that
tells the algorithm that no additional requests for time t are about to arrive (or
that there are no requests for some time t at all). The algorithm then still has
the opportunity to complete its calculation for time t (e.g., add arcs from some
replica (v, t) to (v, t + 1)). Then time t + 1 arrives.

When handling an event ev, the algorithm only knows the following: (a) all
the previous requests r1, ..., ri; (b) time t; and (c) the solution arborescence Fev

it constructed so far (originally containing only the origin). In each event, the
algorithm may need to make decisions of two types, before seeing future events:

(1.DMCD) If the event is the arrival of a request ri = (vi, ti), then from which
current (time ti) cache (a point already in the solution arborescence
Fev when ri arrives) to serve ri by adding horizontal directed edges
to Fev.

(2.DMCD) If this is the time event for time t, then at which nodes to store a
copy for time t + 1, for future use: select some replica (or replicas)
(v, t) already in the solution Fev and add to Fev an edge directed
from (v, t) to (v, t + 1).

Note that at time t, the online algorithm cannot add nor delete any edge with
an endpoint that corresponds to previous times. Similarly to e.g. [2,5,19–21], at
least one copy must remain in the network at all times.

General Definitions and Notations. Consider an interval J = {v, v +
1, ..., v +ρ} ⊆ V and two integers s, t ∈ N, s.t. s ≤ t. Let J [s, t] be the “rectangle
subgraph” of L(n) corresponding to vertex set J and time interval [s, t]. This
rectangle consists of the replicas and edges of the nodes of J corresponding to
every time in the interval [s, t]. For a given subsets V ′ ⊆ V, H′ ⊆ H and A′ ⊆ A,
denote by (1) V ′[s, t] replicas of V ′ corresponding to times s, ..., t. Define sim-
ilarly (2) H′[s, t] for horizontal edges of H′; and (3) A′[s, t] arcs of A′. (When
s = t, we may write X [t] = X [s, t], for X ∈ {J,V ′,H′}.) Consider also two nodes
v, u ∈ V s.t. u ≤ v. Let PH[(u, t), (v, t)] be the set of horizontal directed edges
of the path from (u, t) to (v, t). Let PA[(v, s), (v, t)] be the set of arcs of the
path from (v, s) to (v, t). Let dist→∞((u, s), (v, t)) be the “directed” distance from
(u, s) to (v, t) in L∞ norm. Formally, dist→∞((u, s), (v, t)) = max{t − s, v − u}, if
s ≤ t and u ≤ v and dist→∞((u, s), (v, t)) = ∞, otherwise.

680 E. Kantor and S. Kutten

3 Algorithm Square, a Pseudo Online Algorithm

This section describes a pseudo online algorithm named Square for the DMCD
problem. Developing Square was the main technical difficulty of this paper.
Consider a requests set R = {r0 = (0, 0), r1 = (v1, t1), ..., rN = (vN , tN)} such
that 0 ≤ t1 ≤ t2 ≤ ... ≤ tN . When Algorithm Square starts, the solution
includes just r0 = (0, 0). Then, Square handles, first, request r1, then, request
r2, etc... In handling a request ri, the algorithm may add some edges to the
solution. (It never deletes any edge from the solution.) After handling ri, the
solution is an arborescence rooted at r0 that spans the request replicas r1, ..., ri.
Denote by Square(i) the solution of Square after handling the i’th request.
For a given replica r = (v, t) ∈ V and a positive integer ρ, let

S[r, ρ] = [v − ρ, v] × [t − ρ, t]

denotes the rectangle subgraph (of the layered graph) whose top right corner is
r induced by the set of replicas that contains every replica q such that (1) there
is a directed path in the layer graph from q to r; and (2) the distance from q to
r in L∞ is at most ρ. For each request ri ∈ R, for i = 1, ..., N , Square performs
the following.

(SQ1) Add the vertical path from (0, ti−1) to (0, ti).
(SQ2) Let replica qclose

i = (uclose
i , sclose

i) be such that qclose
i is already in the

solution Square(i − 1) and (1) the distance in L∞ norm from qclose
i to

ri is minimum (over the replicas already in the solution); and (2) over
those replicas choose the latest, that is, sclose

i = max{t ≤ ti | (uclose
i , t) ∈

Square(i − 1)}. Define the radius of ri as ρSQ(i) = dist→∞(qclose
i , ri) =

max{|vi − uclose
i |, |ti − sclose

i |}. Call qclose
i the closest replica of the i’th

request.
(SQ3) Choose a replica qserve

i = (userve
i , sserve

i) ∈ S[ri, 5 · ρSQ(i)] such that
qserve
i is already in the solution Square(i− 1) and userve

i is the leftmost
node (over the nodes corresponding to replicas of S[ri, 5 ·ρSQ(i)] that are
already in the solution). Call qserve

i the serving replica of the i’th request.
(SQ4) Deliver a copy from qserve

i to ri via (userve
i , ti). This is done by storing

a copy in node userve
i from time sserve

i to time ti, and then delivering a
copy from (userve

i , ti) to (vi, ti) .
(SQ5) Store a copy in userve

i from time ti to time ti + 4 · ρSQ(i) .

Intuitively, steps SQ1–SQ4 utilize previous replicas in the solution, while step
SQ5 prepares the contribution of ri to serve later requests. Note that Square is
not an online algorithm, since in step SQ4, it may add to the solution some
arcs corresponding to previous times. Such an action cannot be preformed
by an online algorithm. Denote by FSQ = HSQ ∪ ASQ the feasible solution
Square(N) of Square. Let Base(i) = {(u, ti) | userve

i ≤ u ≤ vi} and let
Base = ∪N

i=1Base(i) (notice that Base ⊆ FSQ because of step SQ4). Simi-
larly, let tail(i) = {(userve

i , t) | ti ≤ t ≤ ti + 4ρSQ(i)} be the nodes of the

Optimal Competitiveness for the Rectilinear Steiner Arborescence Problem 681

path PA[(userve
i , ti), (userve

i , ti + 4 · ρSQ(i))] (added to the solution in step SQ5)
and let tail = ∪N

i=1tail(i). Note that FSQ is indeed an arborescence rooted at
(0, 0).

Analysis of Square. First, bound the cost of Square as a function of the
radii (defined in SQ2).

Observation 1 cost(Square,R) ≤ 14
∑N

i=1 ρSQ(i).

(For lack of space, some of the proofs are omitted. Still, Observation 1 is obvious
from the description of Square.) It is left to bound from below the cost of the
optimal solution as a function of the radii.

Quarter Balls. Our analysis is based on the following notion. A quarter-ball,
or a Q-ball, of radius ρ ∈ N centered at a replica q = (v, t) ∈ V contains every
replica from which there exists a path of length ρ to q 2 . For every request
ri ∈ R, denote by Q-ballsq(ri, ρ

SQ(i)) 3 (also Q-ballsq(i) for short) the
quarter-ball centered at ri with radius ρSQ(i).

Intuitively, for every request ri ∈ R′ (where R′ obey the observation’s con-
dition below), opt’s solution starts outside of Q-ballsq(i), and must reach ri

with a cost of ρSQ(i) at least.

Observation 2 Consider some subset R′ ⊆ R of requests. If the Q-balls,
Q-ballsq(i) and Q-ballsq(j), of every two requests ri, rj ∈ R′ are edges dis-
joint, then |opt| ≥

∑
ri∈R′ ρSQ(i).

Covered and Uncovered Requests. Consider some request ri = (vi, ti)
and its serving replica qserve

i = (userve
i , sserve

i) (see step SQ3). We say
that ri is covered, if vi − userve

i ≥ ρSQ(i) (see SQ2 and SQ3). Intuitively,
this means the solution FSQ is augmented by the whole top of the square
Square[ri, ρ

SQ(i)].Otherwise, we say that ri is uncovered. Let cover = {i |
ri is a covered request} and let uncover = {i | ri is an uncovered request}.
Given Observation 2, the following lemma implies that

|opt| ≥
∑

i∈cover
ρSQ(i). (1)

Lemma 1. Consider two covered Requests ri and rj. The quarter balls
Q-ballsq(i) and Q-ballsq(j) are edge disjoint.

The lemma follows easily from geometric considerations, see figures 5–6 and the
proof in [16]. By observations 1, 2, and Inequality (1), we have:
2 This is, actually, the definition of the geometric place “ball”. We term them “quarter

ball” to emphasize that we deal with directed edges. That is, it is not possible to
reach (v, t) from above nor from the right.

3 Note that Q-ballsq(ri, ρ
SQ(i)) is different from S[ri, ρ

SQ(i)], since the first ball
considers distances in L2 norm and the last considers distances in L∞ norm.

682 E. Kantor and S. Kutten

Observation 3 Square’s cost for covered requests is no more than 14 · opt.

It is left to bound the cost of Square for the uncovered requests.

Overview of the Analysis of the Cost of Uncovered Requests. Unfor-
tunately, unlike the case of covered requests, balls of two uncovered requests
may not be disjoint. Still, we managed to have a somewhat similar argument
that we now sketch. The formal analysis appears in [16]. Below, we partition
the balls of uncovered requests into disjoint subsets. Each has a representative
request, a root. We show that the Q-ball of roots are edge disjoint. This implies
by Observation 1 and Observation 2 that the cost Square pays for the roots is
smaller than 14 times the total cost of an optimal solution. Finally, we show that
the cost of Square for all the requests in each subset is at most twice the cost
of Square for the root of the subset. Hence, the total cost of Square for the
uncovered requests is also just a constant times the total cost of the optimum.

To construct the above partition, we define the following relation: ball
Q-ballsq(j) is the child of Q-ballsq(i) (for two uncovered requests ri and
rj) intuitively, if the Q-ballsq(i) is the first ball (of a request later then rj)
such that Q-ballsq(i) and Q-ballsq(j) are not edge disjoint. Clearly, this
parent-child relation induces a forest on the Q-balls of uncovered requests. The
following observation follows immediately from the definition of a root.

Observation 4 The quarter balls of every two root requests are edge disjoint.

The above observation together with Observation 2, implies the following.

Observation 5 The cost of Square for the roots is 14 · |opt| at most.

It is left to bound the cost that Square pays for the balls in each tree (in the for-
est of Q-balls) as a constant function of the cost it pays for the tree root. Specifi-
cally, we show that the sum of the radii of the Q-balls in the tree (including that
of the root) is at most twice the radius of the root. This implies the claim for the
costs by Observation 1 and Observation 2. To show that, given any non leaf ball
Q-ballsq(i) (not just a root), we first analyze only Q-ballsq(i)’s “latest child”
Q-ballsq(j). That is, j = maxk{Q-ballsq(k) is a child of Q-ballsq(i)}. We
show that the radius of the latest child is, at most, a quarter of the radius of
Q-ballsq(i). Second, we show that the sum of the radii of the rest of the chil-
dren (all but the latest child) is, at most, a quarter of the radius of Q-ballsq(i)
too. Hence, the radius of a parent ball is at least twice as the sum of its children
radii. This implies that the sum of the radii of all the Q-balls in a tree is at
most twice the radius of the root.

The hardest technical part here is in the following lemma that, intuitively,
states that “a lot of time” (proportional to the request’s radius) passes between
the time one child ball ends and the time the next child ball starts, see Fig. 1.

Lemma 2. Consider some uncovered request ri which has at least two children.
Let Q-ballsq(j), Q-ballsq(k) some two children of Q-ballsq(i), such that
k < j. Then, tj − ρSQ(j) ≥ tk + 4ρSQ(k).

Optimal Competitiveness for the Rectilinear Steiner Arborescence Problem 683

tail(k)

i

kr

rj

ρSQ(k)

4ρSQ(k)

ρSQ(j)

ρSQ(i)

Q-ballSQ(i)

r

Fig. 1. Geometric look on a parent Q-ballsq(i) (note that a Q-ball is a triangle) and
its children Q-ballsq(j) and Q-ballsq(k)

Intuitively, the radius of a parent Q-ball is covered by the radii of its children
Q-balls, plus the tails (see step SQ5) between them. Restating the lemma, the
time of the earliest replica in Q-ballsq(j) is not before the time of the latest
replica in tail(k). Intuitively, recall that the tail length of a request is much
grater than the radius of the request’s Q-ball. Hence, the fact that the radius
of a latest child is at most a quarter of the radius of its parent, together with
Lemma 2, imply that the sum of the childrens radii is less than half of the
radius of the parent Q-ball . The full proof of Lemma 2 (appears in [16]) uses
geometric considerations. Outlining the proof, we first establish an additional
lemma. Given any two requests rj and r� such that j > �, the following lemma
formalizes the following: Suppose that the node vj of request rj is “close in
space (or in the network)” to the node v� of another request r�. Then, the whole
Q-ball of rj is “far in time” (and later) from rj .

Lemma 3. Suppose that, j > � and vj − ρSQ(j) + 1 ≤ userve
� ≤ vj. Then, the

time of the earliest replica in Q-ballsq(j) is not before the time of the latest
replica in tail(�), i.e., tj − ρSQ(j) ≥ t� + 4ρSQ(�).

Intuitively, Lemma 3 follows thanks to the tail left in step SQ5 of Square, as
well as to the action taken in SQ3 for moving userve further left of uclose. In
the proof of Lemma 2, we show that in the case that two requests rk and rj are
siblings, either (1) they satisfy the conditions of Lemma 3, or (2) there exists
some request r� such that k < � < j such that r� and rj satisfy the conditions
of Lemma 3. Moreover, the time of the last replica in tail(�) is even later then
the time of the last replica in tail(k). In both cases, we apply Lemma 3 to show
that the time of the earliest replica in Q-ballsq(j) is not before the time of the
latest replica in tail(k) as needed for the lemma.

To summarize, we show (1) For covered requests the cost of Square is O(1)
of |opt|; see Observation 3. (2) For uncovered requests, we prove in [16] (as
overviewed above) two facts: (2.a) the Q-balls of the root requests are edges
disjoint, and hence by Observation 5, the sum of their radii is O(1) of |opt| too.

684 E. Kantor and S. Kutten

(2.b) On the other hand, the sum of root’s radii is at least half of the sum of the
radii of all the uncovered requests. This establishes Theorem 6.

Theorem 6. Algorithm Square is O(1)-competitive for DMCD under the
pseudo online model.

4 Algorithm D-Lineon - The “real” Online Algorithm

In this section, we transform the pseudo online algorithm Square of Section 3
into a (fully) online algorithm D-Lineon for DMCD. The full details as well as
the formal proof of this transformation appears in [16]4. Let us nevertheless give
some intuition here.

The reason Algorithm Square is not online, is one of the the actions it takes
at step SQ4. There, it stores a copy at the serving replica userve

i for request
ri from time sserve

i to time ti. This requires “going back in time” in the case
that the time sserve

i < ti. A (full) online algorithm cannot perform such an
action. Intuitively, Algorithm D-Lineon “simulates” the impossible action by
(1) storing additional copies (beyond those stored by Square); and (2) shifting
the delivery to request ri (step SQ4 of Square) from an early time to time ti
of ri. It may happen that the serving node userve

i of ri does not have a copy (in
Square) at ti. In that case, Algorithm D-Lineon also (3) delivers first a copy
to (userve

i , ti) from some node w on the left of userve
i . Simulation step (1) above

(that we term the storage phase) is the one responsible for ensuring that such a
node w exists, and is “not too far” from userve

i .
For the storage phase, Algorithm D-Lineon covers the network by “intervals”

of various lengthes (pathes that are subgraphs of the network graph). There
are overlaps in this cover, so that each node is covered by intervals of various
lengthes. Let the length of some interval I be length(I). Intuitively, given an
interval I and a time t, if Square kept a copy in a node of interval I “recently”
(“recent” is proportional to length(I)), then D-Lineon makes sure that a copy
is kept at the left most node of this interval, or “nearby” (in some node in the
interval just left to I).

Theorem 7. D-Lineon is O(log n
log log n)-competitive for DMCD problem.

5 Optimal Algorithm for RSA and for DMCD

Algorithm D-Lineon in Section 4 solves DMCD. To solve also RSA, we trans-
form Algorithm D-Lineon to an algorithm rsaon that solves RSA. First, let
us view the reasons why the solution for DMCD (Section 4) does not yet solve

4 We comment that it bears similarities to the transformation of the pseudo online
algorithm Triangle to a (full) online algorithm for undirected MCD in [15]. The
transformation here is harder, since there the algorithm sometimes delivered a copy
to a node v from some node on v’s right, which we had to avoid here (since the
network is directed to the right).

Optimal Competitiveness for the Rectilinear Steiner Arborescence Problem 685

RSA. In DMCD, the X coordinate of every request (in the set R) is taken from
a known set of size n (the network nodes {1, 2, ..., n}). On the other hand, in
RSA, the X coordinate of a point is arbitrary. (A lesser obstacle is that the Y
coordinate is a real number, rather than an integer.) The main idea is to make
successive guesses of the number of Steinr points and of the largest X coordi-
nate and solve under is proven wrong (e.g. a point with a larger X coordinate
arrives) then readjust the guess for future request. Fortunately, the transforma-
tion is exactly the same as the one used in [14,15] to transform the algorithm
for undirected MCD to solve SRSA.

Theorem 8. Algorithm rsaon is optimal and is O(log N
log log N)-competitive.

5.1 Optimizing DMCD for a Small Number of Requests

Algorithm D-Lineon was optimal only as the function of the network size. Recall
that our solution for RSA was optimal as a function of the number of requests.
We obtain this property for the solution of DMCD too, by transforming our
RSA algorithm back to solve DMCD, and obtain the promised competitiveness,
O(min{ log N

log log N , log n
log log n}), see [16].

6 Lower Bound for RSA

In this section, we prove the following theorem, establishing a tight lower bound
for RSA and for DMCD on directed line networks. Interestingly, this lower
bound is not far from the one proven by Alon and Azar for undirected Euclidian
Steiner trees [1]. Unfortunately, the lower bound of [1] does not apply to our case
since their construct uses edges directed in what would be the wrong direction
in our case (from a high Y value to a low one).

Theorem 9. The competitive ratio of any deterministic online algorithm for
DMCD in directed line networks is Ω(log n

log log n), implying also an Ω(log N
log log N)

lower bound for RSA.

Proof: We first outline the proof. Informally, given a deterministic online
algorithm onalgmcd, we construct an adversarial input sequence. Initially, the
request set includes the set diag = {(k, k) | 0 ≤ k ≤ n}. That is, at each time
step t, the request (t, t) is made. In addition, if the algorithm leaves “many
copies” then the lower bound is easy. Otherwise, the algorithm leaves “too few
copies” from some time t − 1 until time t. For each such time, the adversary
makes another request at (t − k, t) for some k defined later. The idea is that the
adversary can serve this additional request from the diagonal copy at (t−k, t−k)
paying the cost of k. On the other hand, the algorithm is not allowed at time t
to decide to serve from (t−k, t−k). It must serve from a copy it did leave. Since
the algorithm left only “few” copies to serve time t the replica, (t, t − k) can
be chosen at least at distance k(log n) from any copy the algorithm did leave.
Hence, the algorithm’s cost for such a time t is Ω(log n) times greater than that
of the adversary. The full proof appears in [16].

686 E. Kantor and S. Kutten

References

1. Alon, N., Azar, Y.: On-line Steine trees in the euclidean plane. Discrete & Com-
putational Geometry 10, 113–121 (1993)

2. Bar-Yehuda, R., Kantor, E., Kutten, S., Rawitz, D.: Growing half-balls: minimizing
storage and communication costs in CDNs. In: Czumaj, A., Mehlhorn, K., Pitts, A.,
Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 416–427. Springer,
Heidelberg (2012)

3. Bein, W., Golin, M., Larmore, L., Zhang, Y.: The Knuth-Yao quadrangle-inequality
speedup is a consequence of total monotonicity. ACM Transactions on Algorithms,
6(1) (2009)

4. Berman, P., Coulston, C.: On-line algorrithms for Steiner tree problems. In: STOC,
pp. 344–353 (1997)

5. Charikar, M., Halperin, D., Motwani, R.: The dynamic servers problem. In: 9th
Annual Symposium on Discrete Algorithms (SODA), pp. 410–419 (1998)

6. Cheng, X., Dasgupta, B., Lu, B.: Polynomial time approximation scheme for sym-
metric rectilinear Steiner arborescence problem. J. Global Optim., 21(4) (2001)

7. Cho, J.D.: A min-cost flow based min-cost rectilinear Steiner distance-preserving
tree construction. In: ISPD, pp. 82–87 (1997)

8. Cong, J., Kahng, A.B., Leung, K.S.: Efficient algorithms for the minimum shortest
path Steiner arborescence problem with applications to VLSI physical design. IEEE
Trans. on CAD of Integrated Circuits and Systems 17(1), 24–39 (1998)

9. Ladeira de Matos, R.R.: A rectilinear arborescence problem. Dissertation, Univer-
sity of Alabama (1979)

10. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32(4), 826–834 (1977)

11. Halperin, D., Latombe, J.C., Motwani, R.: Dynamic maintenance of kinematic struc-
tures. In: Laumond, J.P., Overmars, M. (eds.) Algorithmic Foundations of Robotics,
pp. 155–170. A.K. Peters Publishing (1997)

12. Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22(1), 55–897 (1992)
13. Kahng, A., Robins, G.: On optimal interconnects for VLSI. Kluwer Academic Pub-

lishers (1995)
14. Kantor, E., Kutten, S.: Optimal competitiveness for symmetric rectilinear Steiner

arborescence and related problems (2013). CoRR, abs/1307.3080
15. Kantor, E., Kutten, S.: Optimal competitiveness for symmetric rectilinear steiner

arborescence and related problems. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 520–531. Springer,
Heidelberg (2014)

16. Kantor, E., Kutten, S.: Optimal competitiveness for the rectilinear steiner arbores-
cence problem (2015). CoRR, arxiv.org/abs/1504.08265

17. Lu, B., Ruan, L.: Polynomial time approximation scheme for rectilinear Steiner
arborescence problem. Combinatorial Optimization 4(3), 357–363 (2000)

18. Nastansky, L., Selkow, S.M., Stewart, N.F.: Cost minimum trees in directed acyclic
graphs. Z. Oper. Res. 18, 59–67 (1974)

19. Papadimitriou, C.H., Ramanathan, S., Rangan, P.V.: Information caching for deliv-
ery of personalized video programs for home entertainment channels. In: IEEE Inter-
national Conf. on Multimedia Computing and Systems, pp. 214–223 (1994)

20. Papadimitriou, C.H., Ramanathan, S., Rangan, P.V.: Optimal information delivery.
In: Staples, J., Katoh, N., Eades, P., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004,
pp. 181–187. Springer, Heidelberg (1995)

Optimal Competitiveness for the Rectilinear Steiner Arborescence Problem 687

21. Papadimitriou, C.H., Ramanathan, S., Rangan, P.V., Sampathkumar, S.: Multime-
dia information caching for personalized video-on demand. Computer Communica-
tions 18(3), 204–216 (1995)

22. Rao, S., Sadayappan, P., Hwang, F., Shor, P.: The Rectilinear Steiner Arborescence
problem. Algorithmica, pp. 277–288 (1992)

23. Shi, W., Su, C.: The rectilinear Steiner arborescence problem is NP-complete. In:
SODA, pp. 780–787 (2000)

24. Trubin, V.A.: Subclass of the Steiner problems on a plane with rectilinear metric.
Cybernetics and Systems Analysis 21(3), 320–324 (1985)

Normalization Phenomena in Asynchronous
Networks

Amin Karbasi1, Johannes Lengler2(B), and Angelika Steger2

1 School of Engineering and Applied Science, Yale University, New Haven, CT, USA
amin.karbasi@yale.edu

2 Department of Computer Science, ETH Zurich, Zurich, Switzerland
{johannes.lengler,angelika.steger}@inf.ethz.ch

Abstract. In this work we study a diffusion process in a network that
consists of two types of vertices: inhibitory vertices (those obstructing
the diffusion) and excitatory vertices (those facilitating the diffusion).
We consider a continuous time model in which every edge of the network
draws its transmission time randomly. For such an asynchronous diffusion
process it has been recently proven that in Erdős-Rényi random graphs
a normalization phenomenon arises: whenever the diffusion starts from a
large enough (but still tiny) set of active vertices, it only percolates to a
certain level that depends only on the activation threshold and the ratio
of inhibitory to excitatory vertices. In this paper we extend this result
to all networks in which the percolation process exhibits an explosive
behaviour. This includes in particular inhomogeneous random networks,
as given by Chung-Lu graphs with degree parameter β ∈ (2, 3).

1 Introduction

One of the main goals in studying complex networks (e.g., social, neural net-
works) is to better understand the interconnection between the elements of such
systems, and as a result being able to reason about their accumulated behavior.
Of particular interest is to make a connection between the network’s structure
and function: once we have quantified the configuration of a network, how can
we turn the results into predictions on the overall system behaviour?

A natural setting in which network structure plays a central role is the diffu-
sion of innovation where a new product is introduced to the market (e.g., a new
search engine), a new drug is suggested to doctors, or a new political movement
has gained power in an unstable society. Once an innovation appears, people
may have different reactions: some embrace it and try to promote the innova-
tion, and others may refute it and try to obstruct the circulation of innovation.
As a result, depending on the nature of the innovation (how much intrinsically
people like or dislike the new product, idea, etc) and the structure of the network,
the diffusion may die out quickly or spread explosively through the population.
In order to understand to what extent an innovation is accepted it is important
to understand the dynamics of the diffusion within the underlying network.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 688–700, 2015.
DOI: 10.1007/978-3-662-47666-6 55

Normalization Phenomena in Asynchronous Networks 689

We make the following assumptions: after trying an innovation, an individ-
ual’s reaction (i.e., like or dislike of the innovation) is parametrized by a binary
random variable that takes −1 with probability τ (indicating that she dislikes
the innovation) and +1 with probability 1 − τ (indicating that she likes the
innovation). We assume that each individual’s reaction is independent of that
of its neighbors. However, an individual’s tendency to become active, meaning
that she tries the new innovation, depends on input from neighbors who have
already tried the innovation and either promote or bash it. More precisely, we
adopt the so-called linear threshold model [16]: an individual switches her state
from inactive to active if the difference between its active supporting and its
active inhibiting neighbors is above a threshold k. Given an initial set of early
active individuals (those who were first exposed to the innovation and tried it),
the diffusion process unfolds according to the aforementioned model. What we
are interested in is to understand under what conditions an initially active set
will spread through a non-trivial portion of the population.

Related Work. Classically, such diffusion processes have been studied without
inhibition under the name of bootstrap percolation [9], [11]. With hindsight we
note that in such processes the exact timing of the transmission of information
from an active vertex to its neighbors plays no role and we can thus assume
that all transmission times are exactly one. The activation then takes place in
rounds. Such process were first studied by Chalupa et al. [9] on a 2-dimensional
lattice in the context of magnetic disordered systems. Since then it has been
the subject of intense research and found numerous applications for modeling
complex systems’ behaviors such as social influence [16], infectious disease prop-
agation [18], jamming transitions [20], and neuronal activity [8], to name a few.
The main focus of the previous work has been to understand the final number
of active vertices. In the case of the 2-dimensional lattice, Holroyd [15] deter-
mined a sharp asymptotic threshold: as the size of the initial active set goes
above a threshold, the process percolates to almost all vertices. This result was
then generalized to 3-dimensional [4] and recently to any d-dimensional grid [3].
Bootstrap percolation has also been studied on a variety of graphs such as trees
[5], random regular graphs [6], Erdős-Rényi graphs [17], and power-law graphs
[2]. All this work exhibits an all-or-nothing phenomenon: either the initial set
is small and the diffusion stops quickly or it is large enough and percolates to
almost all vertices.

In [12] the authors introduced the bootstrap percolation process with
inhibitory vertices as a model for the spread of activity through a population of
neurons. That paper analyzed the bootstrap percolation process for Erdős-Rényi
random graphs. The authors showed that on the one hand, if activation takes
place in rounds inhibition makes the network highly susceptible to small changes
in the starting set, but that on the other hand it does not so in the asynchronous
case (where the spread of activity requires an exponentially distributed, random
transmission time). However, the proofs relied substantially on the symmetry
of Erdős-Rényi random graphs. The aim of the paper at hand is to extend the
results from [12] (in the asynchronous setting) to a much larger class of graphs

690 A. Karbasi et al.

that do not exhibit a uniform degree distribution as the Erdős-Rényi random
graphs do. This graph class contains in particular power-law distributed random
graphs as provided by the so-called Chung-Lu model.

It has been empirically observed that many real networks follow a power-law
degree distribution, including internet topology [13], World Wide Web [1], and
Facebook social network [21]. That is, for most real-world graphs, the fraction
of vertices with degree d scale like d−β where β is usually between 2 and 3.
As a result, power-law graphs represent real-world networks more realistically
than Erdős-Rényi graphs [7]. There are many generative models that construct
such power-law graphs. In the present work we use the model of Chung and Lu
[10]. It is known that for a graph of size n and in the absence of any inhibition,
θ(n) := n(β−2)/(β−1) is a coarse threshold for bootstrap percolation in such
scale-free graphs [2].

Main Results. We say that a process looks explosive to an individual if in a
short time a large number of her neighbors become active (for a formal defini-
tion, see Section 3). In [12] it was shown (without using this terminology) that
asynchronous bootstrap percolation is explosive for Erdős-Rényi random graphs.
In Theorem 2, we show that explosive percolation is more prevalent and happens
also for power-law graphs, if we restrict ourselves to vertices of large degree.

In Theorem 1 we prove that an explosive process is automatically normalizing :
of all individuals to which the process looks explosive, a certain fraction will turn
active that can be accurately estimated as a function of τ and k that is indepen-
dent of the structure of the graph. In contrast to all-or-nothing phenomena where
the size of the final active set can either be very small or very large, our result pro-
vides a middle ground for asynchronous percolation processes. Note that to some
vertices the process does not look explosive for a rather trivial reason: they may
not have many neighbors at all. For these low degree vertices we can still give a
heuristic prediction on how many of them will become active (cf. Section 5.1).

To further support our theoretical results, we perform experiments on real-
world networks such as the Epinions social network. We observe that already
for a small number of vertices our theoretical estimates for the final set of active
vertices matches the numbers provided by the experimental data.

2 Formal Definitions and Notation

Let G = (V,E) be a finite graph, and let A ⊂ V . Let k ≥ 2 be an integer, and
let τ ∈ [0, 1]. Then the (k, τ)-bootstrap percolation process on G with starting
set A is defined as follows. We first split the set of vertices randomly into two
subsets V + and V −. Each vertex is independently assigned to V − with prob-
ability τ , and to V + otherwise. We call the vertices in V + excitatory, and the
vertices in V − inhibitory. We start the percolation process at time t = 0. At this
time, all vertices in A turn active, and all other vertices are inactive. Whenever
a vertex becomes active, it sends out signals to all its neighbors. Each signal
takes a random transmission time to travel to its target; all transmission times

Normalization Phenomena in Asynchronous Networks 691

are independently drawn from the exponential distribution Exp(1) with expec-
tation 1. For every vertex v and time t, let S+(v, t) and S−(v, t) be the number
of signals that have arrived at v until time t and that originated from excitatory
and inhibitory vertices, respectively. Let S(v, t) := S+(v, t)−S−(v, t). Whenever
there is an inactive vertex v and a time t > 0 such that S(v, t) ≥ k then v imme-
diately turns active, and sends out signals to all its neighbors. Active vertices do
not turn inactive again. In particular, during the process each active vertex sends
out exactly one signal to each of its neighbors. For t ≥ 0, we denote by a(t) the
number of active neighbors at time t, and by a∗ the number of active neighbors
at termination, i.e., a∗ = limt→∞ a(t). As further notation, let Γ+

s (v) and Γ−
s (v)

be the number of active excitatory and inhibitory neighbors of v among the first
s active neighbors, respectively. (We only consider these random variables when
there are at least s active neighbors.) Note that Γ+

s (v, t)+Γ−
s (v, t) = s. Finally,

let Xi(v) ∈ {±1} be the random variable that describes whether the i-th signal
arriving at v is excitatory or inhibitory.

Chung-Lu Model. To generate power law graphs of size n, we use the model of
Chung and Lu [10]. In this model, each vertex i is assigned a positive weight wi.
The probability pij of having an edge between vertices i and j is min{1, wiwj/z}
where z =

∑n
i=1 wi. Note that G(n, p) can be viewed as a special case where

for all vertices i we set wi = pn. To generate a power-law graph with exponent
2 < β < 3 and (constant) average degree d̄, we set wi = d̄β−2

β−1 (n
i)1/(β−1).

Basic Notation. For a sequence of events E = E(n) we say that E holds with
high probability (w.h.p.) if Pr[E(n)] → 1 for n → ∞. For any x, y, z ∈ R, we use
x ∈ y ± z to abbreviate the inequalities y − z ≤ x ≤ y + z.

3 Results

The main result of our paper is that the normalization phenomenon occurs for a
large class of graphs, i.e., there is a universal constant α = α(τ, k) that does not
depend on the structure of the graph such that bootstrap percolation activates
an α-fraction of all vertices to which the process appears fast. We start with a
precise definition of what we mean by “fast”.

Definition 1. Let G = (V,E) be a graph1 with n vertices, and let A,S ⊂ V .
Furthermore, let C ∈ N and η, δ > 0. We say that percolation on G with start-
ing set A is locally (C, η, δ)-explosive for the set S if the following holds with
probability at least 1 − δ. For all but at most η|S| vertices v ∈ S there are times
t = t(v) such that at time t the vertex v has no active neighbor and at time t+ η
it has at least C active neighbors.

In the above definition, the probability is taken with respect to the random
choices of inhibitory/excitatory signs and random delays. Also note that the

1 All results and proofs carry over immediately to directed graphs as well. In this case,
explosiveness needs to be defined with respect to the in-neighbors of G.

692 A. Karbasi et al.

time t may well depend on the run of the diffusion and how it unfolds. If t can
be chosen independently of v (but possibly still depending on the run), then we
call the process globally (C, η, δ)-explosive for S. In this case, we call the time t
the start of the explosion.2

Intuitively, a locally (C, η, δ)-explosive process looks fast from the point of
view of individual vertices v ∈ S: the time that is needed to go from 0 active
neighbors to C active neighbors is at most η. A globally (C, η, δ)-explosive process
also looks fast from a global point of view, since the process needs only time η
to go from a situation where almost no vertex in S has any active neighbors to
a point where almost all of them have many neighbors.

We have defined (C, η, δ)-explosive processes for all values of C and η, but we
will use them only in the case that C is large and η > 0 is very small. It turns out
that for many standard graph models, percolation processes are locally (C, η, δ)-
explosive for a large enough set S. For example, for the Erdős-Rényi random
graph model G(n, p) (with p � 1/n) it was observed in [12] that this is the case
for S = V and for all constants C, η > 0 (see also Theorem 3 in Section 4.1
of the present paper). In Theorem 2 below we prove the same for power law
graphs, and in Section 5 we perform experiments indicating that percolation is
also explosive on real-world networks.

The following theorem tells us that every process that is locally (C, η, δ)-
explosive for some set S is also normalizing for that set, i.e., the number of
active vertices in S at the end of the process is roughly α|S|, where the constant
α given by

α = min

{(
1 − τ

τ

)k

, 1

}
. (1)

Note crucially that α does not depend on the structure of the graph or on the
size of S.

Theorem 1. For every ε > 0 there exist positive constants CS, C, η, δ > 0
such that the following holds. For a graph G = (V,E) with n vertices, and sets
A,S ⊂ V such that |S| ≥ CS and |A∩S| ≤ η|S|, if G with starting set A is locally
(C, η, δ)-explosive for S, then with probability at least 1−ε the percolation process
will terminate with (α ± ε)|S| active vertices in S. In particular, for S = V the
final active set has size a∗ = (α ± ε)n.

Theorem 1 has vast implications since many bootstrap percolation processes are
(C, η, δ)-explosive – mostly even globally explosive. In the latter case, our proofs
imply that we truly have an explosive behaviour in the set S: for every ε, ε′ > 0
there is a constant C and a time t (that may depend on the process at hand)
such that at time t there are at most ε|S| active vertices in S, while at time
t + ε′ there are at least (α − ε)|S| active vertices in S. Since we know that the
final number of active vertices is at most (α + ε)|S|, we may informally restate
this fact as follows. For sufficiently large C and sufficiently small η, in a (C, η, δ)-
explosive process all but an arbitrarily small fraction of the activations in S will
happen in an arbitrarily short time interval.
2 By slight abuse of notation, as t is not unique.

Normalization Phenomena in Asynchronous Networks 693

Recall that the C ′-core of a graph is defined as the largest subgraph in which
all vertices have degree at least C ′. In the following, we show that for every
C, η > 0, scale free networks are locally (C, η, δ)-explosive if we choose S to be
the C ′-core for some constant C ′ = C ′(C, η, δ).

Theorem 2. Let G = Gn = (Vn, En) be a Chung-Lu power law graph with
exponent β ∈ (2, 3). Moreover, let a = an be such that an ∈ ω(n(β−2)/(β−1))
and an ∈ o(n), and let A = An ⊂ Vn be a random set of size a. Then for all
constants C, η, δ > 0 there exists C ′ > 0 such that w.h.p. G with starting set A
is globally (C, η, δ)-explosive for the C ′-core of G. In particular, by Theorem 1
for every ε > 0 w.h.p. the fraction of active vertices in the C ′-core is α ± ε for
sufficiently large C ′, where α is given by Equation (1).

It should not be surprising to see that for normalization in power-law graphs we
need to restrict ourselves to large degree vertices. Most generative models for
power-law graphs (including the Chung-Lu model) contain linearly many vertices
with degrees strictly less than k. Typically, there are even linearly many isolated
vertices. It is clear that none of these vertices can be activated by a bootstrap
percolation process unless they are in the initial active set. In Section 5, we
develop a heuristic estimate on the fraction of low degree vertices that finally
become active. The fraction of active vertices can be as small as 0 (for vertices
with degree less than k), and approaches α as the degree grows. Note, however,
that the exact fraction for low degree vertices that become active depends on the
degree distribution of the graph, whereas for high degree vertices this fraction is
a universal constant that is independent of the graph structure.

4 Proofs

This section contains the proofs of Theorem 1 and Theorem 2. Due to space
restrictions, we only give rough sketches. Full proofs can be found in the
appendix. The proof of Theorem 1 takes up ideas from [12], where it was proven
that bootstrap percolation with inhibition is normalizing on Erdős-Rényi graphs.

Proof of Theorem 1

We start with some basic facts about the percolation process. Fix some vertex
v ∈ V , and recall that Γ+

s (v) and Γ−
s (v) are the number of excitatory and

inhibitory vertices among the first s active neighbors of v, respectively. When
the process starts, we do not need to decide right away for the signs of all
the vertices in V . Rather, we can postpone the decision until a vertex becomes
active. So whenever a neighbor of v turns active, it flips a coin to decide on its
sign, and this coin flip is independent of any other coin flips. Hence, the number
of inhibitory vertices among its first s active neighbors is binomially distributed
Bin(s, τ). By the Chernoff bounds, if s is sufficiently large then Γ+

s (v) and Γ−
s (v)

are concentrated around their expectations (1 − τ)s and τs, respectively.

694 A. Karbasi et al.

We will link the probability that a vertex v ∈ S becomes active with a random
walk on Z, using the following fact about random walks (see [14], Problem 5.3.1.).

Lemma 1. Let X1,X2, . . . , Xn be a sequence of independent random variables,
each of which is equal to 1 with probability p ∈ [0, 1] and −1 otherwise. Consider
the biased random walk Zi = X1 + X2 + · · · + Xi. Then there exists for every
ε > 0 and k ∈ N a constant C0 = C0(ε, k) such that the following is true:

Pr[∃i ≤ C0 s.t. Zi = k] ∈ (1 ± ε) · min
{
1, pk/(1 − p)k

}
.

Recall that Xi(v) is 1 if the i-th signal arriving in v is excitatory, and −1 oth-
erwise, and let Zi(v) := X1(v) + X2(v) + · · · + Xi(v). We know that the vertex
v becomes active with the arrival of the first signal that causes Zi(v) to become
k, if such a signal exists. We will show that Zi(v) follows (essentially) a one-
dimensional random walk with bias τ .

There are two problems which complicate the analysis: the first being that
the processes (Zi(v))i∈N and (Zi(u))i∈N are not independent for different vertices
u and v, and the second being that for a fixed vertex v, the variables Xi(v) and
Xj(v) are not independent for i �= j, meaning that (Zi(v))i∈N is not a true
random walk.

We overcome these problems as follows. Fix some large constant C̃ > 0. Since
the process is explosive, for the typical vertex v there exists a time at which v
has at least C̃ active neighbors, but has not yet received any signals (if all C̃
neighbors become active in a sufficiently small time interval, then the signals are
very unlikely to arrive within this interval). If C̃ is sufficiently large, then the
fraction of positive signals among all signals on their way will be roughly 1 − τ .
Since the transmission delays are distributed with an exponential distribution,
which is memoryless, all the signals on their way are equally likely to arrive first.
In particular, X1(v) is positive with probability roughly 1 − τ , and this holds
independent of the sign of the first incoming signal of other vertices. After the
first signal has arrived, the fraction of positive signals on their way will still
be roughly 1 − τ , since removing a single signal has only a very small impact
on this fraction. Thus X2(v) is also positive with probability ≈ 1 − τ , and the
same holds for the first few incoming signals. Therefore, for small i the random
variable Zi(v) resembles a one-dimensional random walk as in Lemma 1. As i
grows larger, Zi(v) fails to follow a random walk, but then Zi(v) is typically
already very negative. Thus we can show directly that most likely Zi(v) never
becomes positive again. The details are rather involved, and we omit them due
to space restrictions.

We remark that if we would assign positive or negative labels to the edges
instead of the vertices, then similar, but substantially simpler arguments apply.
E.g., the one-dimensional random walks for different vertices are independent of
each other, so it is not necessary to condition on the history of the process.

Normalization Phenomena in Asynchronous Networks 695

4.1 Proof of Theorem 2

In this section we prove Theorem 2, which states that bootstrap percolation
on a power law random graph G is locally (C, η, δ)-explosive for the C ′-core
of G. We remark that the condition a � n(β−2)/(β−1) is necessary since the
threshold for bootstrap percolation without inhibition in Chung-Lu graphs is
n(β−2)/(β−1), see [2, Theorem 2.3]. We want to apply Theorem 1. The main
idea to see that bootstrap percolation is explosive is to observe that the C-core
contains an Erdős-Rényi random graph G(n′, p), where n′ and p depend on C. In
order to prove Theorem 2, we will use the following statement about bootstrap
percolation in Erdős-Rényi random graphs G(n, p) with n vertices, where each
edge is present independently of each other with probability p. For convenience,
let

Λ :=
(

(k − 1)!
(1 − τ)knpk

)1/(k−1)

. (2)

In [12, Theorem 2] it was shown that the threshold for bootstrap percolation is
(1 − 1/k)Λ, i.e., w.h.p. a random set of size a0 = (1 + ε)(1 − 1/k)Λ will activate
almost all of the graph, while for a random set of size a0 = (1 − ε)(1 − 1/k)Λ
the bootstrap percolation process dies out with a∗ ≤ 2a0. Moreover, it was
shown that the bootstrap percolation process on G(n, p) is globally explosive
and normalizing. More precisely, we have the following.

Theorem 3. For every ε > 0 there is a constant D > 0 such that the following
holds. Assume D/n ≤ p n−1/k. Let G contain an Erdős-Rényi random graph
G(n, p). Let x ≥ D, and let A be a random set of size |A| = xΛ. Then with
probability at least 1 − O(1/ log x) the bootstrap percolation process on G with
starting set A activates at least (α − ε)n vertices in time O(x−1/(2k) + (pn)−1).

Apart from some technical differences, Theorem 3 differs from the statement
proven in [12] in an important aspect: there the statement was only proven for
the case G = G(n, p), while we only require the graph to contain a G(n, p). Note
that this a non-trivial extension since additional edges may obstruct percolation
due to inhibition. For this reason the proof becomes more subtle at some points
even though the main line of argument remains similar to the proof in [12].

We are now ready to prove Theorem 2. The key observation is that the
vertices of weight at least w induce a graph that contains an Erdős-Rényi graph
as a subgraph, and thus by Theorem 3 percolation is explosive. However, we
cannot immediately use w = C ′ since then the size of the initial set would be
below threshold, so we need to iterate the argument for several values of w.
For convenience, let the w-weight core G≥w of a Chung-Lu power law graph
be the subgraph induced by all vertices of weight at least w. Since the weight
corresponds to the expected degree, this notion is closely related to the w-core.

Proof (of Theorem 2). Let C, η > 0. Further let ε > 0, and let D > 0 be the
constant given by Theorem 3. For sake of exposition, we assume that the i-th
weight is given by (n/i)1/(β−1), i.e., that the average degree is d̄ = (β−1)/(β−2).

696 A. Karbasi et al.

Other values of d̄ will change the calculations below only by constant factors.
Since 2 < β < 3, we may choose γ > 0 such that (β − 1)/2 < γ < 1. Let
γ′ := (β−1)(k−1)/(2k+1−β). It is easy to check that 0 < γ′ < (β−1)/2 < γ < 1.
For all i ∈ N, let wi := nγi/(β−1). Then the wi-weight core Gi has size ni, where
ni is given by the equation (n/ni)1/(β−1) = wi. We easily deduce ni = n1−γi

.
Any two vertices in Gi have weight at least wi, so they are connected with
probability at least pi := min{1, w2

i /n} = min{1, n−1+2γi/(β−1)}.
Let θi be the threshold for percolation in an Erdős-Rényi random graph

G(ni, pi). By Theorem 3 we know that there is an absolute constant C̃ (depend-
ing only on k and τ) such that θi = C̃−1 · (nip

k
i)−1/(k−1) = C̃−1 · (n1−γi/γ′

).
Therefore, ni−1/θi = C̃ · ((n/ni−1)(−1+γ/γ′)) for all i. In particular, for D̃ :=
((α − ε)C̃/D)γ′/(γ−γ′) note that (α − ε)ni−1 > Dθi whenever ni−1 ≤ D̃n. Let
i0 be the some index such that ni0−1 ≤ D̃n. Note that equivalently i0 satisfies
n−γi0−1

< D̃.
We show inductively that we have explosive percolation on Gi for all 1 ≤

i ≤ i0. For i = 1, the number of vertices in G1 that are initially active is
n−1+(β−2)(β−1)n1 = nγ−(β−1)/2 = nΩ(1) = n

Ω(1)
1 . Any two vertices in G1 are

connected with probability p1 = 1. We apply Theorem 1 (with some probability
p′
1 = n

−1/k−ε
1 < p1 to ensure the condition p′

1 n
−1/k
1), and obtain that an

(α − ε)-fraction of G1 is activated after time o(1). For convenience, set the time
t = 0 to be the time after this phase, since we may safely ignore an additional
time of o(1).

For the inductive step, assume that an (α − ε)-fraction of Gi−1 is activated
at some time ti−1 < η. Obviously Gi−1 is a subgraph of Gi, so there are at
least (α − ε)ni−1 active vertices in Gi. Since (α − ε)ni−1 > Dθi for i − 1 < i0,
we may apply Theorem 3 to deduce that bootstrap percolation activates with
probability at least 1−qi at least an (α−ε)-fraction of Gi−1 until time ti−1+Δi,
where qi = O(1/ log(ni−1/θi)) and Δi = O((ni−1/θi)−1/(2k) + (pini)−1). Since
ni−1/θi = Θ(nγi(γ−γ′)/γ′

) and pini = Ω(nγi(3−β)/(β−1)), let c := min{(γ −
γ′)/(2kγ′), (3 − β)/(β − 1)} > 0. Then

ti0 =
i0∑

i=1

Δi = O

(
i0∑

i=1

n−cγi

)
= O

(
n−cγi0

)
= O((ni0/n)c).

In particular, by choosing i0 such that ni0/n is a sufficiently small constant, we
can achieve ti0 ≤ η. Similarly, since qi = O((γi log n)−1), the accumulated error
probability is

∑i0
i=1 qi = O (qi0) = O(1/ log(n/ni0)), and again by choosing i0

such that ni0/n is a sufficiently small constant, we can achieve
∑i0

i=1 qi ≤ δ.
This proves that with probability at least 1−δ bootstrap percolation activates

an (α − ε)-fraction of the wi0 -weight core of G. Finally observe that wi0 is a
constant if ni0/n is constant. Now choose C ′ := cmax{2C/(α−ε), wi0} for some
c > 1. Observe that for suitable c at least a (1 − η)-fraction of the C ′-core is
also in the wi0 -weight core, and each of those vertices has at time η an expected
number of at least (1−η)C ′(α−ε) ≥ cC active neighbors in the wi0 -weight core.
Thus the bootstrap percolation process is (C, η, δ)-explosive for the C ′-core.

Normalization Phenomena in Asynchronous Networks 697

5 Experiments

Note that Theorem 2 explains what happens to the set of high degree vertices.
However, many interesting graphs have a quite large number of low-degree ver-
tices. To this end, we first develop a heuristic estimate for what happens in the
remainder of the graph.

5.1 Heuristic Estimation

The proof of Theorem 1 shows that if a process is explosive for a set S then
the vertices in S follow closely a random walk with bias 1 − τ (cf. Lemma 1).
For our estimation we will assume that this is in fact true for all vertices in G.
So consider a random walk with bias 1 − τ . Let pi,k,j denote the probability
of reaching k within i steps if we start from j. Clearly we have p0,k,k = 1 and
p0,k,j = 0 for all j < k. For all i ≥ 1 we can recursively compute pi,k,j as follows:

pi,k,j =

{
1; j = k

(1 − τ) · pi−1,k,j+1 + τ · pi−1,k,j−1 otherwise

Assume we know that (after percolation has terminated) a p̂-fraction of all edges
starts at an active vertex. Then we can assume that the probability that a vertex
in V \A with degree i has been activated is given by

∑i
j=k Pr[Bin(i, p̂) = j]·pj,k,0.

Using this idea we can now set up an approximation for a given graph G = (V,E)
with n vertices and m edges. Let ni denote the number of vertices with degree
i, for 0 ≤ i ≤ n, and let pboot = a0/n be the probability that a vertex belongs
to the initial active set A. Then p̂ satisfies the following equation:

p̂ · m =
n∑

i=0

(
(pbootini) + (1 − pboot) ·

i∑
j=k

Pr[Bin(i, p̂) = j] · pj,k,0 · i · ni

)
. (3)

By Equation (3), we can numerically compute p̂. Afterwards, we can estimate
the number a∗ of vertices that will turn active:

a∗ ≈
n∑

i=0

(
pboot · ni + (1 − pboot) ·

i∑
j=k

Pr[Bin(i, p̂) = j] · pj,k,0 · ni

)
. (4)

Note that the i-th summand in (4) predicts the number of vertices of degree i,
so we also obtain an estimate for the number of active vertices of a given degree.

5.2 Simulations

To test Equation (4), we compare it with simulations. We use the Epinion social
network [19] that describes the trust relationship between its members. The size
of the network is 75879, but we only consider its largest connected component
with size n = 75877. We use k = 4 as activation parameter, and we start with a

698 A. Karbasi et al.

random active set A of size a0 = 2000. In all the experiments, we simulate the
asynchronous percolation process for different values of τ ranging from 0.1 to
0.9 with the step size of 0.1. For each value of τ we run the diffusion process 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

time

nu
m

be
r o

f h
ig

h−
de

gr
ee

 a
ct

iv
e

no
de

s
Epinions Social Network

tot. high deg.
experimental
theoretical

τ=0.1τ=0.2
τ=0.3

τ=0.4

τ=0.5

τ=0.6 τ=0.8τ=0.7 τ=0.9

(a) Percolation process (high-degree vertices)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

pe
rc

ol
at

io
n

ra
tio

 (h
ig

h
de

g.
)

Epinions Social Network

experimental
theoretical

(b) Percolation ratio (high-degree)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

τ

pe
rc

ol
at

io
n

ra
tio

 (
to

ta
l n

od
es

)

Epinions Social Network

experimental
theoretical

(c) Percolation ratio (all).

Fig. 1. Asynchronous bootstrap percolation in the Epinions social network. (a) shows
the evolution of the process for different values of τ among high degree vertices, i.e.,
those with degrees at least 16. Red dashed line: number of high-degree vertices in
V \ A; blue lines: growth of number of active high-degree vertices in V \ A over time;
green dashed lines: prediction from Theorem 1 (Equation (1)) for the C′-core if C′

is sufficiently large. (b) shows the active fraction (blue lines) among all high-degree
vertices in V \A after termination, and the prediction from Equation (1) (green lines),
cf. above. (c) shows the corresponding fraction among all vertices in V \ A, and the
prediction from equation (4).

Normalization Phenomena in Asynchronous Networks 699

times and report the average size of the final active vertices along with standard
deviations. We plot the fraction of active vertices within V \ A (or within {v ∈
V \ A | deg(v) ≥ 16} for Figures 1a and 1b).

Acknowledgements. We thank Qi Zhang for her help in preparing Figure 1.

References

1. Adamic, L.A., Huberman, B.A.: Power-law distribution of the world wide web.
Science 287(5461), 2115–2115 (2000)

2. Amini, H., Fountoulakis, N.: Bootstrap Percolation in Power-Law Random Graphs.
Journal of Statistical Physics 155(1), 72–92 (2014)

3. Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for
bootstrap percolation in all dimensions. Transactions of the American Mathemat-
ical Society (2012)

4. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in three dimensions.
The Annals of Probability, 1329–1380 (2009)

5. Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-
amenable groups. Combinatorics, Probability & Computing 15(5), 715–730 (2006)

6. Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Ran-
dom Structures & Algorithms 30(1–2), 257–286 (2007)

7. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

8. Breskin, I., Soriano, J., Moses, E., Tlusty, T.: Percolation in living neural networks.
Physical Review Letters (2006)

9. Chalupa, J., Leath, P., Reich, G.: Bootstrap percolation on a bethe lattice. Journal
of Physics C: Solid State Physics 12(1), L31 (1979)

10. Chung, F., Lu, L.: The average distances in random graphs with given expected
degrees. Proceedings of the National Academy of Sciences 99(25), 15879–15882
(2002)

11. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.: Critical phenomena in complex
networks. Reviews of Modern Physics 80(4), 1275 (2008)

12. Einarsson, H., Lengler, J., Panagiotou, K., Mousset, F., Steger, A.: Bootstrap
percolation with inhibition (2014). arXiv preprint arXiv:1410.3291

13. Faloutsos, M., Faloutsos, P., and Faloutsos, C. On power-law relationships of the
internet topology. In: ACM SIGCOMM Computer Communication Review, vol.
29, pp. 251–262. ACM (1999)

14. Grimmett, G., Stirzaker, D.: One Thousand Exercises in Probability. OUP Oxford
(2001)

15. Holroyd, A.E.: Sharp metastability threshold for two-dimensional bootstrap per-
colation. Probability Theory and Related Fields 125(2), 195–224 (2003)

16. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: ACM SIGKDD Knowledge Discovery and Data Mining,
pp. 137–146. ACM (2003)

17. Lelarge, M.: Diffusion and cascading behavior in random networks. Games and
Economic Behavior 75(2), 752–775 (2012)

18. Moore, C., Newman, M.E.: Epidemics and percolation in small-world networks.
Physical Review E 61(5), 5678 (2000)

http://arxiv.org/abs/1410.3291

700 A. Karbasi et al.

19. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic
web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 351–368. Springer, Heidelberg (2003)

20. Toninelli, C., Biroli, G., Fisher, D.S.: Jamming percolation and glass transitions
in lattice models. Physical review letters 96(3), 035702 (2006)

21. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook
social graph (2011). arXiv preprint arXiv:1111.4503

http://arxiv.org/abs/1111.4503

Broadcast from Minicast Secure Against
General Adversaries

Pavel Raykov1,2(B)

1 School of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel
2 ITMO University, 49 Kronverkskiy av., Saint-Petersburg 197101, Russia

pavelraykov@post.tau.ac.il

Abstract. Byzantine broadcast is a distributed primitive that allows a
specific party to consistently distribute a message among n parties in the
presence of potential misbehavior of up to t of the parties. The celebrated
result of [PSL80] shows that broadcast is achievable from point-to-point
channels if and only if t < n/3.

The following two generalizations have been proposed to the original
broadcast problem. In [FM98] the authors considered a general adver-
sary characterized by the sets of parties that can be corrupted. It was
shown that broadcast is achievable from point-to-point channels if and
only if no three possible corrupted sets can cover the whole party set.
In [CFF+05] the notion of point-to-point channels has been extended to
the b-minicast channels allowing to locally broadcast among any subset
of b parties. It has been shown that broadcast secure against adversaries
corrupting up to t parties is achievable from b-minicast if and only if
t < b−1

b+1
n.

In this paper we combine both generalizations by considering the
problem of achieving broadcast from b-minicast channels secure against
general adversaries. Our main result is a condition on the possible cor-
rupted sets such that broadcast is achievable from b-minicast if and only
if this condition holds.

1 Introduction

1.1 Byzantine Broadcast

The Byzantine broadcast problem (aka Byzantine generals) is formulated as fol-
lows [PSL80]: A specific party (the sender) wants to distribute a message among
n parties in such a way that all correct parties obtain the same message, even
when some of the parties are malicious. The malicious misbehavior is modeled
by a central adversary corrupting up to t parties and taking full control of their
actions. Corrupted parties are called Byzantine and the remaining parties are

The unabridged version of this paper appears in [Ray15].
P. Raykov – Supported by ISF grant 1155/11, Israel Ministry of Science and Tech-
nology (grant 3-9094), GIF grant 1152/2011, and the Check Point Institute for Infor-
mation Security.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 701–712, 2015.
DOI: 10.1007/978-3-662-47666-6 56

702 P. Raykov

called correct. Broadcast requires that all correct parties agree on the same
value v, and if the sender is correct, then v is the value proposed by the sender.
Broadcast is one of the most fundamental primitives in distributed computing.
It is used to implement various protocols like voting, bidding, collective contract
signing, etc. Basically, this list can be continued with all protocols for secure
multi-party computation (MPC) as defined in [Yao82,GMW87].

There exist various implementations of Byzantine broadcast from syn-
chronous point-to-point communication channels with different security guaran-
tees. In the model without trusted setup, perfectly-secure Byzantine broadcast
is achievable if and only if t < n/3 [PSL80,BGP92,CW92]. In the model with
trusted setup, information-theoretically or cryptographically secure Byzantine
broadcast is achievable for any t < n [DS83,PW96].

1.2 Extending the Broadcast Problem

We consider the following two extensions of the broadcast problem.

b-Minicast Communication Model. The classical Byzantine broadcast prob-
lem [PSL80] assumes that the parties communicate with point-to-point channels
only. Fitzi and Maurer [FM00] considered a model where the parties can addi-
tionally access partial broadcast channels among any set of b parties. We call
such a partial broadcast channel b-minicast. Then, one can interpret the point-to-
point communication model as the 2-minicast model. Hence, the result of [PSL80]
states that broadcast is achievable from 2-minicast if and only if the number of
corrupted parties t < n/3. In [FM00] it is shown that broadcast is achievable
from 3-minicast if and only if t < n/2. Later this was generalized for the arbi-
trary b-minicast model—in [CFF+05] it is proved that broadcast is achievable
from b-minicast if and only if t < b−1

b+1n.
It has also been studied how many 3-minicast channels need to be available in

order to achieve broadcast [JMS12]. A general MPC protocol in the asynchronous
model using 3-minicasts has been considered in [BBCK14].
General Adversaries. Originally, the broadcast problem has been stated for
a threshold adversary that can corrupt any set of parties A such that |A| ≤
t for some threshold t. Fitzi and Maurer [FM98] considered a model with a
general adversary that can corrupt a set of parties A such that A ∈ A for some
family of possible corrupted sets A. In [FM98] it has been shown that broadcast
is achievable from point-to-point channels if and only if the adversary cannot
corrupt three sets of parties from A that cover the whole party set.

A MPC protocol secure against general adversaries is given in [HM97]. More
efficient MPC protocols secure against general adversaries are studied in [Mau02,
HMZ08,HT13,LO14].

One of the most prominent approaches to construction of protocols secure
against general adversaries is the “player emulation” technique of [HM97]. Its
main idea is a generation of a new set of “virtual parties” V that are emulated
by the original parties P. Then the problem of constructing a protocol among
P is reduced to a protocol construction among V. As an example application of

Broadcast from Minicast Secure Against General Adversaries 703

the player emulation technique, consider the protocols by [RVS+04,CDI+13].
These protocols construct broadcast from 3-minicast and tolerate any general
adversary who cannot corrupt two sets of parties that cover the whole party
set. In [RVS+04,CDI+13], triples of actual parties from P are used to emulate
virtual parties, where the emulation protocol is implemented with the help of
3-minicast.

1.3 Contributions

We consider the combination of the two described extensions for the broadcast
problem. That is, we study which general adversaries can be tolerated while
constructing broadcast from b-minicast channels. We completely resolve this
question by (1) giving a condition on a general adversary that can be tolerated
while implementing broadcast from b-minicast and (2) showing that this condi-
tion is tight. Our results improve the previous work on generalized adversaries
in the minicast communication model [FM00,RVS+04,CDI+13]. For example,
consider a setting with 4 parties P1, P2, P3, P4 in the 3-minicast model. In Table 1
we illustrate for which general adversaries our results are new.

To show (1) we construct a protocol that realizes broadcast from mini-
cast and is secure against general adversaries. The protocol we give does not
employ the player emulation technique and is inspired by the original protocol
of [CFF+05] that is secure against threshold adversaries. To show (2) we reduce
a protocol secure against a general adversary to a protocol that is secure against
a threshold adversary such that the former is impossible according to [CFF+05].

2 Model and Definitions

Parties. We consider a setting with n parties (that are also called players)
P = {P1, . . . , Pn}. We employ the following notion of party set partition:

Definition 1. A list S = (S0, . . . , Sk−1) is a k-partition of P if
⋃k−1

i=0 Si = P
and all Si, Sj are pair-wise disjoint. Furthermore, if all Si are non-empty we call
such a partition proper.

We introduce additional notation to denote the set of parties from P without
two sets Si and Sj from the partition S: Let S↓i,j := P \ (Si mod k ∪ Sj mod k).
Adversary. We assume that some of the parties can be corrupted by a cen-
tral adversary making them deviate from the prescribed protocol in any desired
manner. Before the execution of the protocol the adversary must specify the
set of parties A ⊆ P to corrupt. The choice of the adversary is limited by
means of a family of possible corrupted sets A ⊆ 2P , i.e., the corrupted
set A can be chosen only from A. We assume that A is monotone, i.e., for
∀S, S′ (S ∈ A) ∧ (S′ ⊆ S) ⇒ S′ ∈ A. The set A is called an adversarial struc-
ture. We consider perfect security which captures the fact that the protocol never
fails even if the adversary has unbounded computing power.

704 P. Raykov

Table 1. The overview of tolerable general adversaries in the 3-minicast model. In the
first column each maximal corrupted set is shown with an oval. In the third column we
give a reference to the first work to show whether one can construct broadcast from
3-minicasts in the setting where any of the possible corrupted sets can be controlled
by the adversary.

Possible corrupted sets Broadcast possible? Literature

P1 P2

P3P4

No [FM00]

P1 P2

P3P4

No This work

P1 P2

P3P4

Yes This work

P1 P2

P3P4

Yes [RVS+04,CDI+13]

P1 P2

P3P4

Yes [FM00]

The parties that are corrupted are also called Byzantine or malicious, while
the remaining uncorrupted parties are called correct or honest.
Communication. In the classical setting [PSL80], it is assumed that the par-
ties are connected with a synchronous authenticated point-to-point network.
Synchronous means that all parties share a common clock and that the message
delay in the network is bounded by a constant. In this paper we consider an
extended model where messages can be consistently delivered to more than one
recipient via a b-minicast channel.

Definition 2 (b-minicast model). In the b-minicast model, in every subset
Q ⊆ P of at most b parties each party Pi ∈ Q has access to a b-minicast channel
that takes an input v from some domain D from Pi and outputs v to all parties

Broadcast from Minicast Secure Against General Adversaries 705

in Q. Each of the b-minicast channels is also synchronous, i.e., the message
delivery delay to all recipients is bounded by a constant.

Note that the classical setting with point-to-point channels can be seen as an
instantiation of the b-minicast model for b = 2.
Broadcast Protocols. A broadcast protocol allows parties to simulate a global
broadcast channel with the help of the communication means available in the
presence of an adversary. Formally, this is defined as follows.

Definition 3 (Broadcast). A protocol among the parties P where some party
Ps ∈ P (called the sender) holds an input v ∈ D and every party Pi ∈ P outputs
a value yi ∈ D achieves broadcast if the following holds:
Validity: If the sender Ps is correct, then every correct party Pi ∈ P outputs

the sender’s value yi = v.
Consistency: All correct parties in P output the same value.

3 The Main Result

We now characterize which adversary structures A can be tolerated while imple-
menting broadcast from b-minicast channels. Our condition is inspired by the
impossibility proof of [CFF+05]. There it is shown that no protocol can realize
broadcast among b + 1 parties from b-minicast where the adversary can corrupt
any number of parties. The impossibility proof of [CFF+05] is built by consid-
ering a chain of parties P1, . . . , Pb+1 where any pair of parties Pi, Pi+1 mod b+1

(i = 1, . . . , b + 1) can be honest, while the remaining parties are corrupted. We
generalize this to a chain of party sets:

Definition 4. An adversarial structure A is said to contain a k-chain if there
exists a proper k-partition S = (S0, . . . , Sk−1) of P such that ∀i ∈ [0, k −
1] S↓i,i+1 ∈ A. A structure is called k-chain-free if it does not have a k-chain.

Our main result can be formulated as follows.

Theorem 1. In the b-minicast communication model, broadcast tolerating
adversary structure A is achievable if and only if A is (b + 1)-chain-free.

The proof of the theorem is split into two parts. In Section 4 we give a protocol
that realizes broadcast from b-minicast channels and tolerates any (b+1)-chain-
free A. In Section 5 we show that no protocol can implement broadcast in this
model while tolerating some A that has a (b + 1)-chain. Some of the proofs are
omitted and appear only in the full version of this paper [Ray15].

4 The Feasibility Proof

In this section we construct a broadcast protocol that uses b-minicast channels
and tolerates any adversarial structure A which is (b + 1)-chain-free. Our con-
struction consists of three steps and is based on [CFF+05]. First, we introduce

706 P. Raykov

a new distributed primitive called proxcast and show how to realize proxcast
from b-minicast while tolerating arbitrary corruptions. Second, we consider a
broadcast primitive with hybrid security, i.e., depending on which set of parties
the adversary corrupts, the primitive satisfies only one of the broadcast security
guarantees. We then show how to implement such a hybrid broadcast primi-
tive from proxcast. Finally, given broadcast with hybrid security, we implement
broadcast secure against any A which is (b + 1)-chain-free.

4.1 Proxcast

Proxcast is a relaxed version of the binary broadcast primitive in that it has a
weakened consistency property. As a result of a proxcast invocation, each of the
parties Pi outputs a level �i from some range [0, � − 1] indicating whether 0 was
likely to be proxcast (lower levels) or 1 (higher levels). It is guaranteed that if
the sender is correct, then any correct Pi outputs �i = 0 if 0 is proxcast, and
�i = � − 1 if 1 is proxcast. The consistency property of proxcast guarantees that
levels of correct parties are close, however, they may be different. Formally, we
define proxcast as follows.

Definition 5 (�-proxcast). Let � ∈ N. A protocol among P where the sender
Ps ∈ P holds an input v ∈ {0, 1} and every party Pi ∈ P finally outputs a level
�i ∈ [0, � − 1], achieves �-proxcast if the following holds:
Validity: If Ps is correct then all correct Pi output �i = (� − 1)v.
Consistency: There exists k ∈ [0, � − 2] such that each correct Pi outputs level

�i ∈ {k, k + 1}.

Our construction of b-proxcast from b-minicasts is a simplification of the
proxcast protocol of [CFF+05]. We let the sender Ps b-minicast the value he
holds among all subsets of b parties. Then each Pi computes the level �i to be
the minimum number of parties with whom Pi sees only zeros.

Protocol Proxcastb(P, Ps, v)
1. If |P| ≤ b then broadcast v using b-minicast. Let yi denote the output of

Pi. Each Pi decides on �i := (b − 1)yi.
2. Otherwise:

2.1 Let B = {S ⊆ P | (Ps ∈ S) ∧ (|S| = b)}.
∀S ∈ B: Ps b-minicasts v among S. Let yS be the output of each
Pi ∈ S.

2.2 ∀Pi ∈ P \{Ps}: For each T ⊆ P \{Ps, Pi} with |T | ≤ b−2, let V T
i :=

{yS | (S ∈ B) ∧ (Pi ∈ S) ∧ (T ⊆ S)}. Output �i to be the minimum
|T | such that V T

i = {0} (if no such T exists output �i := b − 1).
The sender Ps: Output �s := v(b − 1).

Lemma 1. In the b-minicast model, the protocol Proxcastb perfectly securely
achieves b-proxcast in the presence of any adversary.

Broadcast from Minicast Secure Against General Adversaries 707

4.2 Broadcast with Hybrid Security

In [FHHW03] the authors proposed a more fine-grained security definition of
broadcast in the setting with a threshold adversary. The new primitive is called
a two-threshold broadcast. In the two-threshold version of broadcast, the con-
sistency and validity properties of broadcast are guaranteed to be achieved
in the presence of up to tc and tv malicious parties, respectively. It is shown
in [FHHW03] that one can implement two-threshold broadcast from point-to-
point channels if and only if t = 0 or t + 2T < n (where t = min(tc, tv) and
T = max(tc, tv)).

We consider an extended notion of the two-threshold broadcast with respect
to general adversaries. We call the resulting primitive hybrid broadcast.1

Definition 6 (Hybrid broadcast). A protocol among P where the sender
Ps ∈ P holds an input v ∈ D and every party Pi ∈ P finally outputs a value
yi ∈ D, achieves hybrid broadcast with respect to a pair of adversarial structures
(Ac,Av) if the following holds:
Validity: If the sender Ps is honest and a set A ∈ Av of parties is corrupted

then all honest Pi ∈ P \ A output sender’s value yi = v.
Consistency: If a set A ∈ Ac of parties is corrupted then all honest Pi ∈ P \A

output the same value.

We construct a hybrid broadcast protocol in two steps. First, we introduce
additional operations on adversary structures and prove properties of them.
Then, we present the protocol.

Additional Tools. We start by defining two operators del and proj that trans-
form adversarial structures. The first operator del chooses only the sets A ∈ A
that do not contain a specific party Pi. The second operator proj selects only the
sets A ∈ A that can be corrupted together with a specific party Pi. Formally,
del(A, Pi) := {A ∈ A | Pi 	∈ A} and proj(A, Pi) := {A ∈ del(A, Pi) | A ∪ {Pi} ∈
A}. We prove that del(A, Pi) and proj(A, Pi) are adversarial structures over
P \ {Pi}.

Lemma 2. If A is an adversarial structure over P, then del(A, Pi) and
proj(A, Pi) are adversarial structures over P \ {Pi}.

1 Note that our extension for non-threshold adversaries is more general than the one
given in [FHHW03], because we allow any Ac and Av, and not only Ac ⊆ Av

or Av ⊆ Ac as [FHHW03]. This difference stems from the fact that we treat the
broadcast security properties (validity and consistency) equally, while [FHHW03]
considers the case where the broadcast security properties can be “degraded” if the
adversarial power grows. That is, in [FHHW03], if the adversary corrupts A from
some Asmall then the broadcast protocol must satisfy both validity and consistency,
while if the adversary corrupts A from some Abig ⊇ Asmall, then only validity (or
only consistency) is required to be satisfied.

708 P. Raykov

We now give a condition on adversarial structures (Ac,Av), such that if
this condition holds then there exists a protocol that constructs hybrid broad-
cast from b-minicasts and tolerates (Ac,Av). Similarly to the k-chain-free con-
dition, it is inspired by the chain of parties considered in the impossibility proof
of [CFF+05].

Definition 7. A pair of structures (Ac,Av) is said to be k-chain-free-
compatible if for any proper k-partition S of P, there exists i ∈ [0, k − 3] such
that S↓i,i+1 	∈ Ac or S↓k−2,k−1 	∈ Av or S↓k−1,0 	∈ Av.

We show that k-chain-free-compatible structures satisfy the following useful
properties:

Lemma 3. Let (Ac,Av) be k-chain-free-compatible and Pi ∈ P. Then the pair
(proj(Ac, Pi), del(Av, Pi)) is also k-chain-free-compatible.

Lemma 4. If A is k-chain-free, then (A,A) is k-chain-free-compatible.

The protocol. The protocol HybridBC works recursively as follows. First, the
sender Ps proxcasts the value v he holds to everyone in P. Then, each of the
receivers in P \ {Ps} invokes HybridBC again to hybridly broadcast his level
among the receivers. Now the view of every receiver Pi consists of n− 1 levels of
the others. Then, Pi partitions the receiver set P \{Ps} into b subsets according
to the level that is hybridly broadcast by the parties in the set. By analyzing
the properties of this partition, each Pi takes his final decision.

Protocol HybridBC(P, Ps, v,Ac,Av)
1. If |P| ≤ b then broadcast v using b-minicast.
2. Otherwise:

2.1 Parties in P invoke Proxcastb(P, Ps, v). Let �i denote the output of
Pi.

2.2 Let A′
c := proj(Ac, Ps), A′

v := del(Av, Ps) and P ′ := P \ {Ps}.
2.3 ∀Pj ∈ P ′ : Parties in P ′ invoke HybridBC(P ′, Pj , �j ,A′

c,A′
v).2

∀Pj ∈ P ′ : Let �i
j denote the output of Pi.

2.4 ∀Pi ∈ P ′ : For all � ∈ [0, b − 1] let Li
� := {Pj ∈ P ′ | �i

j = �}. Let
Li

b = {Ps}. Let Li = (Li
0, . . . , L

i
b) be a (b + 1)-partition of P.

2.5 ∀Pi ∈ P ′ : Output 0 if

(Li
↓b,0 ∈ Av) ∧

(
�i∧

k=0

Li
k 	= ∅

)
∧

(
�i−1∧
k=0

Li
↓k,k+1 ∈ Ac

)
.3

Otherwise, output 1.
2.6 The sender Ps outputs v.

2 The protocol HybridBC works for binary values only. This invocation is translated
into log b parallel invocations of HybridBC to broadcast �j bit by bit.

3 We assume that
∧−1

k=0(. . .) is always true.

Broadcast from Minicast Secure Against General Adversaries 709

Lemma 5. In the b-minicast model, the protocol HybridBC perfectly securely
achieves binary hybrid broadcast if (Ac,Av) is (b + 1)-chain-free-compatible.

Proof. The proof proceeds by induction over the size of the party set |P| = n.
If |P| ≤ b then broadcast is directly achieved with the help of b-minicast. Now
we prove the induction step. We assume that the protocol HybridBC achieves
hybrid broadcast for any set of n − 1 parties.

Consider now any (b + 1)-chain-free-compatible (Ac,Av) over the set of n
parties P. Due to Lemma 3, the pair (A′

c,A′
v) computed at Step 2.2 is (b + 1)-

chain-free-compatible. Hence, we can assume that each recursive invocation of
the protocol HybridBC at Step 2.3 achieves hybrid broadcast.

Now we prove each of the hybrid broadcast security properties:
Validity: We assume that the sender Ps is correct, and we show that all correct

parties in P output v. Because Ps always outputs v, we are left to show only
that all correct receivers in P ′ = P\{Ps} output v. Assume that the adversary
corrupts some A ∈ Av. Let H = P ′\A denote the set of the remaining honest
receivers. We consider two cases:
(v = 0) Because Ps is correct, Proxcastb guarantees that every Pi ∈ H has

�i = 0. Now consider any correct Px. We have that H ⊆ Lx
0 . Because

Av is monotone and P ′ \ H ∈ Av, we get that P ′ \ Lx
0 ∈ Av. Hence,

Lx
↓b,0 ∈ Av. We also have that Lx

0 	= ∅ since Px ∈ Lx
0 . Consequently, each

correct Px ∈ H verifies that his Lx
↓b,0 ∈ Av, Lx

0 	= ∅ and decides on 0 at
Step 2.5.

(v = 1) Because Ps is correct, Proxcastb guarantees that every Pi ∈ H
has �i = b − 1. Now consider any correct Px. We have that H ⊆ Lx

b−1.
Because Av is monotone and P ′ \ H ∈ Av, we get that P ′ \ Lx

b−1 ∈ Av.
Hence, Lx

↓b−1,b ∈ Av. Assume for the sake of contradiction that Px decides
on 0 instead of 1. This means that Lx

↓b,0 ∈ Av,
∧b−1

k=0

(
Lx

k 	= ∅
)

and∧b−2
k=0

(Lx
↓k,k+1 ∈ Ac

)
. Together with Lx

↓b−1,b ∈ Av this implies that Lx

is a proper (b + 1)-partition of P, showing that (Ac,Av) is not (b + 1)-
chain-free-compatible, a contradiction.

Consistency: If Ps is correct, then consistency holds because of the validity
property. Assume now the adversary corrupts some A ∈ Ac such that Ps ∈ A.
Let H := P ′\A denote the set of correct receivers. Because HybridBC satisfies
the consistency property if A\{Ps} ∈ A′

c is corrupted, we have that receivers
in H compute the same set L, i.e., for all Pi, Pj ∈ H holds Li = Lj .
Consider a party Pi ∈ H with the smallest �i. The properties of Proxcastb

guarantee that any Pj ∈ H has �j ∈ {�i, �i +1}. If �j = �i, then Pj decides on
the same value as Pi at Step 2.5 because Pj uses the same L. Assume now
that �j = �i + 1. Consider two possible cases:
(Pi decides on 0) If Pi decides on 0, then

(L↓b,0 ∈ Av) ∧
(

�i∧
k=0

Li
k 	= ∅

)
∧

(
�i−1∧
k=0

L↓k,k+1 ∈ Ac

)

710 P. Raykov

is true. Because any correct Px ∈ H has �x ∈ {�i, �i + 1}, we have that
H ⊆ L�i ∪L�i+1. Because Ac is monotone, we get that P ′ \(L�i ∪L�i+1) ∈
Ac. Hence, L↓�i,�i+1 ∈ Ac. Since Pj ∈ L�i+1, we have that L�i+1 	= ∅.
Consequently, Pj verifies that

(L↓b,0 ∈ Av) ∧
(

�i+1∧
k=0

Li
k 	= ∅

)
∧

(
�i∧

k=0

L↓k,k+1 ∈ Ac

)

is true and decides on 0.
(Pi decides on 1) If Pi decides on 1, then the following formula is false:

(L↓b,0 ∈ Av) ∧
(

�i∧
k=0

Li
k 	= ∅

)
∧

(
�i−1∧
k=0

L↓k,k+1 ∈ Ac

)
.

If the above formula is false, then so is the one below:

(L↓b,0 ∈ Av) ∧
(

�i+1∧
k=0

Li
k 	= ∅

)
∧

(
�i∧

k=0

L↓k,k+1 ∈ Ac

)
.

Hence, Pj also decides on 1. ��

4.3 The Broadcast Protocol

In order to achieve broadcast secure against an adversarial structure A which is
(b+1)-chain-free, we let the parties invoke the hybridly secure broadcast protocol
with Ac and Av set to A.

Protocol Broadcast(P, Ps, v,A)
1. Parties P invoke HybridBC(P, Ps, v,A,A). Let yi denote the output each

Pi receives.
2. ∀Pi ∈ P: decide on yi.

Note that the protocol Broadcast achieves broadcast for binary domains
only. In order to achieve broadcast for arbitrary input domains efficiently one
can use broadcast amplification protocols of [HMR14,HR14].

Lemma 6. In the b-minicast model, the protocol Broadcast perfectly securely
achieves broadcast if A is (b + 1)-chain-free.

5 The Impossibility Proof

We employ Lemma 2 of [CFF+05]:

Lemma 7. In the b-minicast communication model, broadcast among b+1 par-
ties {Q0, . . . , Qb} is not achievable if any pair Qi, Q(i+1) mod (b+1) can be honest
while the adversary corrupts the remaining parties.

Broadcast from Minicast Secure Against General Adversaries 711

Now we proceed to the main impossibility statement (based on [CFF+05, The-
orem2]).

Lemma 8. In the b-minicast communication model, there is no secure broadcast
protocol among P that tolerates an adversarial structure A which is not (b + 1)-
chain-free.

Proof. For the sake of contradiction, assume that there exists a broadcast pro-
tocol π tolerating A which is not (b + 1)-chain-free. Because A is not (b + 1)-
chain-free, there exists a proper (b+1)-partition S = (S0, . . . , Sb) of P such that
all S↓i,i+1 ∈ A. Using π, we now construct a protocol π′ among b + 1 parties
{Q0, . . . , Qb} for achieving broadcast from b-minicast. The protocol π′ lets each
Qi simulate parties in Si. If a party Qi is corrupted, then the simulated parties
in Si can behave arbitrarily. If a party Qi is honest, then the simulated parties in
Si follow their protocol specification, i.e., behave correctly. Because π is secure
against corruption of any set S↓i,i+1, the protocol π′ is secure whenever any pair
Qi, Qi+1 mod b+1 is honest and the remaining parties are corrupted. This contra-
dicts Lemma 7. ��

6 Conclusions

We showed that broadcast secure against any adversarial structure A is achiev-
able from b-minicast channels if and only if A is (b+1)-chain-free. This result is
a generalization of [PSL80,FM98,FM00,CFF+05,RVS+04,CDI+13]. An inter-
esting open question is to continue this line of research and study broadcast
achieveability in communication models where only some subset of b-minicast
channels is available.

Acknowledgments. We would like to thank Martin Hirt, Sandro Coretti and anony-
mous referees for their valuable comments about the paper.

References

[BBCK14] Backes, M., Bendun, F., Choudhury, A., Kate, A.: Asynchronous MPC
with a strict honest majority using non-equivocation. In: PODC (2014)

[BGP92] Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus.
In: Computer Science Research (1992)

[CDI+13] Cohen, G., Damg̊ard, I.B., Ishai, Y., Kölker, J., Miltersen, P.B., Raz, R.,
Rothblum, R.D.: Efficient multiparty protocols via log-depth threshold for-
mulae. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 185–202. Springer, Heidelberg (2013)

[CFF+05] Considine, J., Fitzi, M., Franklin, M., Levin, L.A., Maurer, U., Metcalf,
D.: Byzantine agreement given partial broadcast. Journal of Cryptology
(2005)

[CW92] Coan, B.A., Welch, J.L.: Modular construction of a byzantine agreement
protocol with optimal message bit complexity. Inf. and Comp. (1992)

712 P. Raykov

[DS83] Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agree-
ment. SIAM Journal on Computing (1983)

[FHHW03] Fitzi, M., Hirt, M., Holenstein, T., Wullschleger, J.: Two-threshold broad-
cast and detectable multi-party computation. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 51–67. Springer, Heidelberg (2003)

[FM98] Fitzi, M., Maurer, U.M.: Efficient byzantine agreement secure against
general adversaries. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499,
pp. 134–148. Springer, Heidelberg (1998)

[FM00] Fitzi, M., Maurer, U.: From partial consistency to global broadcast. In:
STOC (2000)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: STOC (1987)

[HM97] Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable
in secure multi-party computation. In: PODC (1997)

[HMR14] Hirt, M., Maurer, U., Raykov, P.: Broadcast amplification. In: Lindell,
Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 419–439. Springer, Heidelberg
(2014)

[HMZ08] Hirt, M., Maurer, U.M., Zikas, V.: MPC vs. SFE : unconditional and com-
putational security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol.
5350, pp. 1–18. Springer, Heidelberg (2008)

[HR14] Hirt, M., Raykov, P.: Multi-valued byzantine broadcast: the t < n case. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874,
pp. 448–465. Springer, Heidelberg (2014)

[HT13] Hirt, M., Tschudi, D.: Efficient general-adversary multi-party computa-
tion. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 181–200. Springer, Heidelberg (2013)

[JMS12] Jaffe, A., Moscibroda, T., Sen, S.: On the price of equivocation in byzantine
agreement. In: PODC (2012)

[LO14] Lampkins, J., Ostrovsky, R.: Communication-efficient MPC for general
adversary structures. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014.
LNCS, vol. 8642, pp. 155–174. Springer, Heidelberg (2014)

[Mau02] Maurer, U.M.: Secure multi-party computation made simple. In: Cimato,
S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 14–28.
Springer, Heidelberg (2003)

[PSL80] Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the pres-
ence of faults. Journal of the ACM (1980)

[PW96] Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and
Byzantine agreement for t ≥ n/3. Technical report, IBM Research (1996)

[Ray15] Raykov, P.: Broadcast from minicast secure against general adversaries
(2015). Cryptology ePrint Archive, Report 2015/352 http://eprint.iacr.
org/

[RVS+04] Ravikant, D.V.S., Muthuramakrishnan, V., Srikanth, V., Srinathan, K.,
Pandu Rangan, C.: On byzantine agreement over (2,3)-uniform hyper-
graphs. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 450–464.
Springer, Heidelberg (2004)

[Yao82] Yao, A.C.: Protocols for secure computations. In: FOCS (1982)

http://eprint.iacr.org/
http://eprint.iacr.org/

Author Index

Abramsky, Samson II-31
Achlioptas, Dimitris II-467
Agrawal, Shweta I-1
Ailon, Nir I-14
Aisenberg, James II-44
Albers, Susanne I-26
Alistarh, Dan II-479
Amanatidis, Georgios I-39
Amarilli, Antoine II-56
Aminof, Benjamin II-375
Anshelevich, Elliot I-52
Aronov, Boris I-65
Avigdor-Elgrabli, Noa I-78
Avin, Chen II-492
Azar, Yossi I-91

Beame, Paul I-103
Behsaz, Babak I-116
Bei, Xiaohui I-129
Beigi, Salman I-143
Beneš, Nikola II-69
Berkholz, Christoph I-155
Bernstein, Aaron I-167
Beyersdorff, Olaf I-180
Bezděk, Peter II-69
Bhangale, Amey I-193
Bhattacharya, Sayan I-206, II-504
Bienvenu, Laurent I-219
Björklund, Andreas I-231, I-243
Bodirsky, Manuel I-256
Bojańczyk, Mikołaj II-427
Bonet, Maria Luisa II-44
Boreale, Michele II-82
Bouajjani, Ahmed II-95
Bourhis, Pierre II-56
Bringmann, Karl II-516
Bun, Mark I-268
Burton, Benjamin A. I-281
Buss, Sam II-44

Canonne, Clément L. I-294
Cao, Yixin I-306
Charron-Bost, Bernadette II-528

Chatterjee, Krishnendu II-108, II-121
Chattopadhyay, Arkadev II-540
Chekuri, Chandra I-318
Chen, Ning I-129, II-552
Chew, Leroy I-180
Ciobanu, Laura II-134
Cohen, Aloni I-331
Cohen, Gil I-343
Cohen, Ilan Reuven I-91
Colcombet, Thomas II-146
Coudron, Matthew I-355
Crãciun, Adrian II-44
Cseh, Ágnes I-367
Curticapean, Radu I-380
Czyzowicz, Jurek I-393

Dahlgaard, Søren II-564
Dani, Varsha II-575
Datta, Samir II-159
Dell, Holger I-231
Desfontaines, Damien I-219
Diekert, Volker II-134
Disser, Yann I-406
Doron, Dean I-419
Doyen, Laurent II-108
Dubut, Jérémy II-171
Dvořák, Zdeněk I-432

Elder, Murray II-134
Emmi, Michael II-95
Enea, Constantin II-95
Erlebach, Thomas I-444
Etesami, Omid I-143
Etessami, Kousha II-184

Faonio, Antonio I-456
Feldman, Michal II-601
Feldmann, Andreas Emil I-469, II-588
Fijalkow, Nathanaël II-197
Filiot, Emmanuel II-209
Finkel, Olivier II-222
Fomin, Fedor V. I-481, I-494
Fontes, Lila I-506

Frascaria, Dario I-26
Friedler, Ophir II-601
Friedrich, Tobias II-516, II-614
Friggstad, Zachary I-116
Függer, Matthias II-528
Fulla, Peter I-517
Fung, Wai Shing I-469

Gairing, Martin II-626
Galanis, Andreas I-529
Ganguly, Sumit I-542
Garg, Jugal I-554
Ga�sieniec, Leszek I-393
Gaspers, Serge I-567
Gawrychowski, Paweł I-580, I-593
Gelashvili, Rati II-479
Georgiadis, Loukas I-605
Ghaffari, Mohsen II-638
Gharibian, Sevag I-617
Giannakopoulos, Yiannis II-650
Giannopoulou, Archontia C. I-629
Göbel, Andreas I-642
Gohari, Amin I-143
Goldberg, Leslie Ann I-529, I-642, I-654
Goldreich, Oded I-666
Goldwasser, Shafi II-663
Golovnev, Alexander I-481, I-1046
Goubault, Éric II-171
Goubault-Larrecq, Jean II-171
Grohe, Martin I-155
Große, Ulrike I-678
Gudmundsson, Joachim I-678
Gupta, Shalmoli I-318
Gur, Tom I-666
Gysel, Rob I-654

Haase, Christoph II-234
Hamza, Jad II-95
Hansen, Thomas Dueholm I-689
Hemenway, Brett I-701
Henzinger, Monika I-206, I-713, I-725
Henzinger, Thomas A. II-121
Hoefer, Martin II-504, II-516, II-552
Hoffmann, Michael I-444
Holmgren, Justin I-331
Horn, Florian II-197
Huang, Chien-Chung I-367, II-504
Huang, Lingxiao I-910
Husfeldt, Thore I-231

Ibsen-Jensen, Rasmus II-121
Im, Sungjin I-78, I-737
Ishai, Yuval I-1
Istrate, Gabriel II-44
Italiano, Giuseppe F. I-206, I-605

Jagadeesan, Radha II-31, II-247
Jahanjou, Hamid I-749
Jain, Rahul I-506
Jansen, Bart M.P. I-629
Jerrum, Mark I-529
Jin, Yifei I-898
Jurdziński, Marcin II-260

Kalai, Yael Tauman II-663
Kamat, Vikram I-243
Kammer, Frank I-444
Kaniewski, Jedrzej I-761
Kannan, Sampath I-773
Kantor, Erez II-675
Kaplan, Haim I-689
Kar, Koushik I-52
Karbasi, Amin II-688
Kari, Jarkko II-273
Kari, Lila I-1022
Karpinski, Marek I-785
Kaski, Petteri I-494
Katz, Matthew J. I-65
Kavitha, Telikepalli I-367, II-504
Kawarabayashi, Ken-ichi II-3
Kawase, Yasushi I-797
Kayal, Neeraj I-810
Kerenidis, Iordanis I-506
Khot, Subhash I-822
Khurana, Dakshita I-1
Kiefer, Stefan II-234
Klein, Felix II-452
Klimm, Max I-406
Knauer, Christian I-678
Knudsen, Mathias Bæk Tejs II-564
Kobayashi, Yusuke I-797
Koiran, Pascal I-810
Kollias, Konstantinos II-626
Komarath, Balagopal I-834
Könemann, Jochen I-469
Kopecki, Steffen I-1022
Kopparty, Swastik I-193
Kosowski, Adrian I-393
Kotsialou, Grammateia II-626

714 Author Index

Koutsoupias, Elias II-650
Kowalik, Łukasz I-243
Kozen, Dexter II-286
Kozik, Marcin I-846
Kranakis, Evangelos I-393
Kreutzer, Stephan II-3
Krinninger, Sebastian I-713, I-725
Krohmer, Anton II-614
Kulikov, Alexander S. I-481
Kulkarni, Raghav II-159
Künnemann, Marvin I-859, II-552
Kupec, Martin I-432
Kuperberg, Denis II-197, II-299
Kurpisz, Adam I-872
Kutten, Shay II-675

Lahav, Ori II-311
Lapinskas, John I-654
Laplante, Sophie I-506
Larsen, Kim G. II-69
Laura, Luigi I-605
Laurière, Mathieu I-506
Lazić, Ranko II-260
Lee, Troy I-761
Lengler, Johannes II-688
Leppänen, Samuli I-872
Leroux, Jérôme II-324
Li, Jerry I-886
Li, Jian I-898, I-910
Liew, Vincent I-103
Lin, Chengyu II-552
Lingas, Andrzej I-785
Lohrey, Markus II-337
Loitzenbauer, Veronika I-713
Lokshtanov, Daniel I-494, I-629,

I-922, I-935
Lotker, Zvi II-492
Lübbecke, Elisabeth I-406

Mahajan, Meena I-180
Mamouras, Konstantinos II-286
Maneth, Sebastian II-209, II-337
Manthey, Bodo I-859
Maria, Clément I-281
Markakis, Evangelos I-39
Martin, Barnaby I-256
Mastrolilli, Monaldo I-872
Mathieu, Claire I-773
Mazza, Damiano II-350
Mehta, Ruta I-554

Meunier, Pierre-Étienne I-1022
Miao, Peihan II-552
Michalewski, Henryk II-362
Mihajlin, Ivan I-481
Miles, Eric I-749
Mio, Matteo II-362
Misra, Pranabendu I-922
Mitchell, Joseph S.B. I-947
Molinaro, Marco I-960
Mömke, Tobias I-973
Moseley, Benjamin I-78, I-737
Mottet, Antoine I-256
Mouawad, Amer E. I-985
Movahedi, Mahnush II-575
Mozes, Shay I-580
Mukherjee, Anish II-159
Murlak, Filip II-427
Muscholl, Anca II-11

Nahum, Yinon II-492
Nanongkai, Danupon I-725
Nayyeri, Amir I-997
Nicholson, Patrick K. I-593
Nielsen, Jesper Buus I-456
Nikolov, Aleksandar I-1010
Nikzad, Afshin I-39
Nishimura, Naomi I-985
Nowak, Thomas II-528

Ochremiak, Joanna I-846
Otop, Jan II-121

Panolan, Fahad I-494, I-922
Park, Sunoo II-663
Parotsidis, Nikos I-605
Paskin-Cherniavsky, Anat I-1
Pathak, Vinayak I-985
Patitz, Matthew J. I-1022
Pǎtras�cu, Mihai I-103
Pecatte, Timothée I-810
Peebles, John I-886
Peleg, David II-492
Peternek, Fabian II-337
Petris�an, Daniela II-286
Pietrzak, Krzysztof I-1046
Polishchuk, Valentin I-947
Post, Ian I-469

Quanrud, Kent I-318

Author Index 715

Rabani, Yuval I-78
Raman, Venkatesh I-985
Ramanujan, M.S. I-935
Raykov, Pavel II-701
Reynier, Pierre-Alain II-209
Richerby, David I-642
Riely, James II-247
Roland, Jérémie I-506
Rotbart, Noy II-564
Rothblum, Ron D. I-666
Rothenberger, Ralf II-516
Rubin, Sasha II-375
Rudra, Atri II-540

Saberi, Amin I-39
Sachdeva, Sushant I-193
Saha, Chandan I-810
Saia, Jared II-575
Saket, Rishi I-822
Salavatipour, Mohammad R. I-116
Sanyal, Swagato I-1035
Sarma, Jayalal I-834
Sauerwald, Thomas II-516
Saurabh, Saket I-494, I-629, I-922, I-935
Schewe, Sven II-388
Schmitz, Sylvain II-260
Schwentick, Thomas II-159
Sekar, Shreyas I-52
Seki, Shinnosuke I-1022
Senellart, Pierre II-56
Shen, Alexander I-219
Shinkar, Igor I-343
Shukla, Anil I-180
Sidiropoulos, Anastasios I-997
Sikora, Jamie I-617
Silva, Alexandra II-286
Siminelakis, Paris II-467
Sivakumar, Rohit I-116
Skórski, Maciej I-1046
Skrzypczak, Michał II-197, II-299
Sledneu, Dzmitry I-785
Smid, Michiel I-678
Sorkin, Gregory B. I-567
Spegni, Francesco II-375
Spirakis, Paul G. I-393
Spreer, Jonathan I-281
Srba, Jiří II-69
Sreejith, A.V. II-146
Staton, Sam II-401
Steger, Angelika II-688

Stehn, Fabian I-678
Stein, Cliff I-167
Stewart, Alistair II-184
Sunil, K.S. I-834
Sutre, Grégoire II-324
Swernofsky, Joseph II-414
Sysikaski, Mikko I-947
Szabados, Michal II-273

Talbot, Jean-Marc II-209
Tarjan, Robert E. I-689
Ta-Shma, Amnon I-419
Terui, Kazushige II-350
Thaler, Justin I-268
Thapper, Johan I-1058
Totzke, Patrick II-324
Trivedi, Ashutosh II-388

Uijlen, Sander II-401
Uznański, Przemysław I-393

Vafeiadis, Viktor II-311
Vákár, Matthijs II-31
Vardi, Moshe Y. II-108
Varghese, Thomas II-388
Vazirani, Vijay V. I-554
Venturi, Daniele I-456
Vidick, Thomas I-355
Viola, Emanuele I-749

Wagner, Lisa II-504
Wang, Haitao I-947
Wang, Yajun I-1070
Wehar, Michael II-414
Weimann, Oren I-580
Weinstein, Omri I-1082
Wiese, Andreas I-973
Witkowski, Adam II-427
de Wolf, Ronald I-761
Wong, Sam Chiu-wai I-1070
Woodruff, David P. I-960, I-1082
Wootters, Mary I-701

Yamaguchi, Yutaro I-797
Yannakakis, Mihalis II-184
Yaroslavtsev, Grigory I-960
Yazdanbod, Sadra I-554
Young, Maxwell II-575
Yu, Huacheng I-1094

716 Author Index

Zehavi, Meirav I-243
Zetzsche, Georg II-440
Zeume, Thomas II-159
Zhang, Shengyu I-129
Zhou, Hang I-773

Zimmermann, Martin II-452

Zuleger, Florian II-375

Zwick, Uri I-689

Živný, Stanislav I-517, I-1058

Author Index 717

	Preface
	Organization
	Towards the Graph Minor Theoremsfor Directed Graphs
	Dynamic Graphs: Time, Spaceand Communication
	Automated Synthesis of Distributed Controllers
	Incentive Networks
	Fast Algorithms for Structured Sparsity
	Computational Complexity of Puzzlesand Games
	Contents – Part II
	Contents – Part I
	Invited Talks
	Towards the Graph Minor Theorems for Directed Graphs
	1 Introduction
	2 What about Digraphs?
	3 Algorithmic Contributions
	4 Additional Notations
	References

	Automated Synthesis of Distributed Controllers
	1 Context
	2 Distributed Models: Some Motivation
	2.1 Race Detection
	2.2 Atomicity

	3 Mazurkiewicz Traces and Zielonka's Theorem
	4 Distributed Monitoring
	4.1 Gossip in Trees

	5 Related Work
	References

	Track B: Logic, Semantics, Automata and Theory of Programming
	Games for Dependent Types
	1 Introduction
	2 A Category of Games
	3 Dependent Games
	4 A Category with Families of Context Games
	5 Semantic Type Formers
	6 Ground Types and Completeness Results
	7 Future Work
	References

	Short Proofs of the Kneser-Lovász Coloring Principle
	1 Introduction
	2 Mathematical Arguments
	2.1 Argument for Extended Frege Proofs
	2.2 Argument for Frege Proofs

	3 Formalization in Propositional Logic
	3.1 Polynomial Size Extended Frege Proofs
	3.2 Quasi-Polynomial Size Frege Proofs

	4 The Truncated Tucker Lemma
	References

	Provenance Circuits for Trees and Treelike Instances
	1 Introduction
	2 Preliminaries
	3 Provenance Circuits for Tree Automata
	4 Provenance on Tree Encodings
	5 General Semirings
	6 Applications
	7 Related Work
	8 Conclusion
	References

	Language Emptiness of Continuous-Time Parametric Timed Automata
	1 Introduction
	2 Definitions
	3 Undecidability for Three Parametric Clocks
	4 Decidability for One Parametric Clock
	5 Conclusion
	References

	Analysis of Probabilistic Systems via Generating Functions and Padé Approximation
	1 Introduction
	2 The System Generating Function g(z)
	3 Exact Reconstruction of g(z)
	4 Discussion: Approximating g(z)
	5 Approximation of g(z) via a Projection Method
	6 Experiments
	7 Conclusion, Further and Related Work
	References

	On Reducing Linearizability to State Reachability
	1 Introduction
	2 Linearizability
	3 Inductively-Defined Data Structures
	4 Reducing Linearizability to State Reachability
	4.1 Reduction to a Finite Number of Classes of Violations
	4.2 Regularity of Each Class of Violations

	5 Decidability and Complexity of Linearizability
	6 Related Work
	7 Conclusion
	References

	The Complexity of Synthesis from Probabilistic Components
	1 Introduction
	2 Definitions
	3 Realizability with Embedded Parity
	3.1 Perfect-Information Stochastic Parity Games
	3.2 Complexity Results

	4 Realizability with DPW Specifications
	4.1 Partial-Observation Stochastic Parity Games
	4.2 Qualitative and Quantitative Realizability

	References

	Edit Distance for Pushdown Automata
	1 Introduction
	2 Preliminaries
	2.1 Words, Languages and Automata
	2.2 Problem Statement

	3 Threshold Edit Distance from Pushdown to Regular Languages
	3.1 Upper Bound
	3.2 Lower Bound

	4 Finite Edit Distance from Pushdown to Regular Languages
	4.1 Upper Bound
	4.2 Lower Bound

	5 Edit Distance to PDA
	References

	Solution Sets for Equations over Free Groups are EDT0L Languages
	References

	Limited Set Quantifiers over Countable Linear Orderings
	1 Introduction
	2 Preliminaries
	2.1 Linear Orderings
	2.2 Infinite Words
	2.3 First-Order Logic, Monadic Second-Order Logic, and Between

	3 The Algebraic Presentation: -monoids
	3.1 ◦-monoids, Syntactic ◦-monoids and Recognizability
	3.2 The Derived Operations
	3.3 The Core Theorem

	4 From Logics to ◦-monoids
	4.1 Restricted Quantifiers over ◦-monoids
	4.2 Establishing Invariants

	5 Conclusion
	References

	Reachability is in DynFO
	1 Introduction
	2 Preliminaries
	3 Dynamic Algorithms for Rank, Reachability and Others
	3.1 Maintaining the Rank of a Matrix
	3.2 Maintaining Reachability

	4 Matrix Rank and Reachability in DynFO
	4.1 Dynamic Complexity
	4.2 DynFO and DynFO(+,×) Coincide for Domain IndependentQueries
	4.3 Matrix Rank in DynFO(+,)
	4.4 Reachability in DynFO

	5 Conclusion
	References

	Natural Homology
	1 Introduction
	2 Related Work
	3 Natural Homology of Pospaces, and Natural Systems
	4 Bisimilarity of Natural Systems
	5 Cubical Complexes and Their Geometric Realization
	6 Discrete Natural Homology of Cubical Complexes
	7 Conclusion
	References

	Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations, and Reachability for Branching Markov Decision Processes
	1 Introduction
	2 Definitions and Background
	3 Greatest Fixed Points Capture Non-reachability Values
	4 maxPPSs
	5 minPPSs
	References

	Trading Bounds for Memory in Games with Counters
	1 Introduction
	2 Definitions
	3 The Conjecture
	3.1 Statement of the Conjecture
	3.2 The Interplay with Cost MSO

	4 No Trade-off Over Finite Arenas
	4.1 A First Lower Bound of 3
	4.2 General Lower Bound

	5 Existence of a Trade-off for Thin Tree Arenas
	5.1 Word and Thin Tree Arenas
	5.2 Existence of a Trade-off for Word Arenas

	References

	Decision Problems of Tree Transducers with Origin
	1 Preliminaries
	2 Tree Translations with Origin
	3 Tree-to-String Translations with Origin
	4 Subclass Definability Problems
	References

	Incompleteness Theorems, Large Cardinals, and Automata over Infinite Words
	1 Introduction
	2 Counter Automata
	3 Some Results of Set Theory
	4 Incompleteness Results for 1-counter -languages
	5 Incompleteness Results for Infinitary Rational Relations
	6 Concluding Remarks
	References

	The Odds of Staying on Budget
	1 Introduction
	2 Preliminaries
	3 Quantile Queries
	4 Cost Chains
	5 Cost Processes
	6 Conclusions and Open Problems
	References

	From Sequential Specifications to Eventual Consistency
	1 Introduction
	2 Bracketed Partial Orders and Labeled Visibility Relations
	3 Eventual Consistency
	4 Results
	References

	Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time
	1 Introduction
	2 Multi-Weighted Games
	2.1 Multi-Weighted Game Graphs
	2.2 Multi-Dimensional Energy Games
	2.3 Multi-Dimensional Bounding Games

	3 Complexity Upper Bounds
	3.1 Small Hypercube Property
	3.2 Energy Games with Arbitrary Initial Credit
	3.3 Energy Games with Given Initial Credit

	4 Perfect Half-Spaces
	4.1 Definitions from Linear Algebra
	4.2 Generated Perfect Half-Spaces
	4.3 Hierarchy of Perfect Half-Spaces

	5 First-Cycle Bounding Games
	5.1 Definition
	5.2 Winning Strategies for Player 2
	5.3 Winning Strategies for Player 1

	6 Concluding Remarks
	References

	An Algebraic Geometric Approach to Nivat's Conjecture
	1 Introduction
	2 Basic Concepts and Notation
	3 Annihilating Polynomials and Decomposition Theorem
	4 Structure of the Annihilator Ideal
	5 Approaching Nivat's Conjecture
	References

	Nominal Kleene Coalgebra
	1 Introduction
	2 Background
	3 A Nominal Language Model
	3.1 Canonical Interpretation over Aν/≡

	4 Coalgebraic Structure
	4.1 Semantic Derivative
	4.2 Brzozowski Derivative
	4.3 Final Coalgebra
	4.4 Automata Representation: Half of a Kleene Theorem

	5 Conclusion and Open Problems
	References

	On Determinisation of Good-for-Games Automata
	1 Introduction
	2 Definitions
	2.1 Automata over w-words

	3 Co-Büchi Case
	4 Büchi Case
	5 Recognising GFG Automata
	6 Conclusion
	References

	Owicki-Gries Reasoning for Weak Memory Models
	1 Introduction
	2 Preliminaries
	3 An Owicki-Gries Proof System for Release-Acquire
	3.1 Soundness Proof
	3.2 A Stronger Assignment Rule

	4 Discussion and Further Research
	References

	On the Coverability Problem for Pushdown Vector Addition Systems in One Dimension
	1 Introduction
	2 Preliminaries
	3 Grammar-Controlled Vector Addition Systems
	4 Small Coverability Certificates
	5 Semilinearity of the Step Relations for Thin GVAS
	6 Computation of Summaries for Bounded Ratios
	7 Conclusion
	References

	Compressed Tree Canonization
	1 Introduction
	2 Preliminaries
	3 Isomorphism of Rooted Unordered SLT-Compressed Trees
	4 Isomorphism of Unrooted Unordered SLT-Compressed Trees
	4.1 Finding Center Nodes
	4.2 Re-Rooting of SLT Grammars

	5 Further Results
	References

	Parsimonious Types and Non-uniform Computation
	1 Introduction
	2 The Non-uniform Parsimonious Lambda-Calculus
	3 Expressiveness of Non-uniform Parsimonious Terms
	4 Boolean Nets and Logarithmic Space
	5 Approximations and Boolean Nets
	References

	Baire Category Quantifier in Monadic Second Order Logic
	1 Introduction
	2 Background in Topology, Logic and Automata
	3 The Quantifier ∀∗ in MSO
	4 Elimination of ∀∗ from MSO+∀∗
	5 Applications to Probabilistic Logics
	References

	Liveness of Parameterized Timed Networks
	1 Introduction
	2 Definitions and Preliminaries
	3 The Reachability-Unwinding of a Process Template
	4 Solving PMCP of Liveness Specifications
	4.1 Deciding Edge Types

	References

	Symmetric Strategy Improvement
	1 Introduction
	2 Preliminaries
	3 Symmetric Strategy Improvement Algorithm
	4 Experimental Results
	5 Discussion
	References

	Effect Algebras, Presheaves, Non-locality and Contextuality
	1 Introduction
	1.1 Generalized Probability Measures
	1.2 Relating Non-locality and Contextuality Arguments

	2 Pointed Partial Commutative Monoids
	3 Presheaves and Tests
	4 Non-Locality and Contextuality
	4.1 Bimorphisms, Joint Distributions, and Tables
	4.2 Realization and Bell's Paradox
	4.3 Tensor Products
	4.4 Sheaf Theoretic Characterization
	4.5 Relationship with the Work of Abramsky and Brandenburger
	4.6 Hardy Paradoxes
	4.7 Kochen-Specker Systems

	References

	On the Complexity of Intersecting Regular, Context-Free, and Tree Languages
	1 Introduction
	2 Preliminaries
	2.1 Complexity Classes
	2.2 Acceptance Problems
	2.3 Level-By-Level Equivalence

	3 One PDA and k DFA's
	4 MPDA's with k-Phase Switches
	5 k Tree Automata
	6 Conclusion
	References

	Containment of Monadic Datalog Programs via Bounded Clique-Width
	1 Introduction
	2 Preliminaries
	3 Evaluating Monadic Datalog Over k-expressions
	4 Containment Over Data Trees
	4.1 Containment Over Data Trees of Bounded Clique-width
	4.2 Downward Programs
	4.3 Linear Child-Only Programs

	5 Conclusions
	References

	An Approach to Computing Downward Closures
	1 Introduction
	2 Basic Notions and Results
	3 Indexed Languages
	References

	How Much Lookahead is Needed to Win Infinite Games?
	1 Introduction
	2 Preliminaries
	3 Lower Bounds on the Lookahead
	4 Computational Complexity of Delay Games
	4.1 Reachability Conditions
	4.2 Safety Conditions
	4.3 Parity Conditions

	5 Conclusion
	References

	Track C: Foundations of Networked Computation: Models, Algorithms and Information Management
	Symmetric Graph Properties Have Independent Edges
	1 Introduction
	1.1 Our Contribution

	2 Motivation
	3 Applications
	4 Definitions and Results
	5 Technical Overview
	References

	Polylogarithmic-Time Leader Election in Population Protocols
	1 Introduction
	2 Preliminaries
	3 The Leader Election Algorithm
	4 Analysis
	5 Experiments and Discussion
	References

	Core Size and Densification in Preferential Attachment Networks
	1 Introduction
	2 Model and Preleminaries
	3 Results Overview
	4 Expectation and Concentration of Degree Sums
	5 Concentration Inequalities for Arrival Times
	6 Core Size in Linear-Sized Networks
	7 Core Size in Superlinear-Sized Networks
	References

	Maintaining Near-Popular Matchings
	1 Introduction
	2 Maintaining (Δ + k)-Unpopular Matchings
	2.1 Finding an α-More Popular Matching
	2.2 Convergence and Amortized Number of Changes

	3 Two-Sided Matching and Lower Bounds
	References

	Ultra-Fast Load Balancing on Scale-Free Networks
	1 Introduction
	2 Model, Algorithms, and Formal Result
	3 Analysis of Load Balancing on the Core
	4 Analysis of Top-Down Propagation
	5 Analysis of Iterative Absorption
	6 Discussion
	References

	Approximate Consensus in Highly Dynamic Networks: The Role of Averaging Algorithms
	1 Introduction
	2 Approximate Consensus and Averaging Algorithms
	3 Solvability and Complexity of Approximate Consensus
	4 Synchronism and Faults
	5 Discussion
	References

	The Range of Topological Effects on Communication
	1 Introduction
	2 Our Results
	3 Key Technical Results and Our Techniques
	3.1 A Result on Two LPs
	3.2 From Star to Steiner Trees

	References

	Secretary Markets with Local Information
	1 Introduction
	2 General Preferences
	3 Independent Preferences
	4 Correlated Preferences
	References

	A Simple and Optimal Ancestry Labeling Scheme for Trees
	1 Introduction
	1.1 Our Contribution
	1.2 Preliminaries

	2 A Framework for Interval Based Labeling Schemes
	2.1 The Framework

	3 The Classic Ancestry Labeling Scheme
	4 An Approximation-Based Approach
	References

	Interactive Communication with Unknown Noise Rate
	1 Introduction
	1.1 Related Work

	2 Our Algorithm
	2.1 Formal Model
	2.2 Overview, Notation and Definitions
	2.3 Algorithm Design

	3 Proof of Theorem 1
	3.1 Probabilities of Bad Events
	3.2 Remaining Proof

	4 Some Additional Remarks
	5 Conclusion
	References

	Fixed Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs
	1 Introduction
	1.1 Used Techniques
	1.2 Generalizations
	1.3 Related Work

	2 Highway Dimension and Vertex Covers
	3 The Fixed-Parameter Approximation Algorithm
	4 Hardness Results

	A Unified Framework for Strong Price of Anarchy in Clustering Games
	1 Introduction
	2 Model and Preliminaries
	2.1 Welfare Guarantees in Equilibrium

	3 Strong Price of Anarchy Bounds
	3.1 Symmetric Coordination Games on Graphs (SCGGs)
	3.2 Symmetric Anti-coordination Games on Graphs
	3.3 Symmetric Clustering Games on Networks (SCGs)

	4 Future Directions
	References

	On the Diameter of Hyperbolic Random Graphs
	1 Introduction
	2 Notation and Preliminaries
	3 Polylogarithmic Upper Bound
	3.1 Outer Band

	4 Logarithmic Upper Bound
	5 Conclusion
	References

	Tight Bounds for Cost-Sharing in Weighted Congestion Games
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work and Comparison to Previous Results

	2 Preliminaries
	3 Tight POA Bounds for General Cost-Sharing Methods
	4 Shapley Value POS
	References

	Distributed Broadcast Revisited: Towards Universal Optimality
	1 Introduction and Related Work
	1.1 The Standard Algorithm, and Existential vs. Universal Optimality
	1.2 Main Result
	1.3 Our Approach in a Nutshell

	2 Distributed Shallow-Tree Packing
	2.1 Packing via Lagrangian Relaxations
	2.2 Distributed Approximation of Min-Cost Shallow-Tree

	3 Broadcast on the Shallow-Tree Packing
	3.1 General Outline for Broadcast Using Shallow-Tree Packing
	3.2 The Challenge, and Our Simpler O(log2 n) OPT Schedule

	References

	Selling Two Goods Optimally
	1 Introduction
	1.1 Model and Notation

	2 Sufficient Conditions for Optimality
	2.1 Partitioning of the Valuation Space
	2.2 Duality
	2.3 Deficiency
	2.4 Dual Solution and Optimality

	3 The Case of Identical Items
	4 Non-identical Items
	5 Approximate Solutions
	5.1 Convexification

	References

	Adaptively Secure Coin-Flipping, Revisited
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Properties of Protocols
	2.2 Adversarial Models in the Literature
	2.3 Security of Coin-Flipping Protocols

	3 Our Results
	3.1 Strongly Adaptive Adversaries
	3.2 Corruption Tolerance in Secure Coin-Flipping Protocols
	3.3 Proof of Theorem 1
	3.4 Proof of Theorem 2

	4 Conclusion
	References

	Optimal Competitiveness for the Rectilinear Steiner Arborescence Problem
	1 Introduction
	2 Preliminaries
	3 Algorithm Square, a Pseudo Online Algorithm
	4 Algorithm D-Lineon - The ``real'' Online Algorithm
	5 Optimal Algorithm for RSA and for DMCD
	5.1 Optimizing DMCD for a Small Number of Requests

	6 Lower Bound for RSA
	References

	Normalization Phenomena in Asynchronous Networks
	1 Introduction
	2 Formal Definitions and Notation
	3 Results
	4 Proofs
	4.1 Proof of Theorem 2

	5 Experiments
	5.1 Heuristic Estimation
	5.2 Simulations

	References

	Broadcast from Minicast Secure Against General Adversaries
	1 Introduction
	1.1 Byzantine Broadcast
	1.2 Extending the Broadcast Problem
	1.3 Contributions

	2 Model and Definitions
	3 The Main Result
	4 The Feasibility Proof
	4.1 Proxcast
	4.2 Broadcast with Hybrid Security
	4.3 The Broadcast Protocol

	5 The Impossibility Proof
	6 Conclusions
	References

	Author Index

