Chapter 7

Well-Posedness of the Cauchy Problem

Ma per seguir virtute e conoscenza.'
— Dante Alighieri (1265-1321), La Divina Commedia

The goal of this chapter is to show that the limit found by front tracking, that is, the
weak solution of the initial value problem

ur+ f)x =0, u(x,0) = up(x), (7.1)

is stable in L' with respect to perturbations in the initial data. In other words, if
v = v(x, t) is another solution found by front tracking, then

(-, 1) =v(-, Ol = Clluo = ol

for some constant C. Furthermore, we shall show that under some mild extra en-
tropy conditions, every weak solution coincides with the solution constructed by
front tracking.

< Example 7.1 (A special system)
As an example for this chapter we shall consider the special 2 x 2 system

u, + (vuz)x =0,

7.2
v, + (uvz)x =0. (7.2)

For simplicity assume that ¥ > 0 and v > 0. The Jacobian matrix reads

2uv  u?
<v2 2uv>’ (7.3)

with eigenvalues and eigenvectors

Al = uv, r = (—u/v)’
1
Ay =3uv, = (”{”) . (7.4)

' Hard to comprehend? Tt means “[but to] pursue virtue and knowledge.”
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314 7 Well-Posedness of the Cauchy Problem

Fig. 7.1 The curves W in (u, v) coordinates (a) and (7, ) coordinates (b)

The system is clearly strictly hyperbolic. Observe that
V)Ll = 0,

and hence the first family is linearly degenerate. The corresponding wave curve
Wi(uy,v;) = Ci(uy, vy) is given by (cf. Theorem 5.7)

j_l::_%v u(vl):uls

or (see Fig. 7.1)
Wi(u,v) = Ci(ug,v) = {(u,v) | uv = uv;}.

The corresponding eigenvalue A, is constant along each hyperbola.
With the chosen normalization of r, we find that

sz sy = 6M,

and hence the second-wave family is genuinely nonlinear. The rarefaction curves of
the second family are solutions of

du u
dv v
and thus
u U
vooov

We see that these are straight lines emanating from the origin, and A, increases as
u increases. Consequently, R, consists of the ray
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The rarefaction speed is given by

v
Ao (s up,v)) = 3L,
uj

To find the shocks in the second family, we use the Rankine—Hugoniot relation
s (u—up) =vu®— vlulz,
s(v—uv) =viu— vlzul,

which implies

121(1+ﬂi(3_g)) _fu/.
U 2 \vy v vV v/v;.
(Observe that the solution with u/u; = v;/v coincides with the wave curve of the
linearly degenerate first family.) The shock part of this curve S, consists of the line

Satur,v) = {@,v) [v =u=t, 0 <u=wf.
uj

The shock speed is given by
2 2\ Ui
s =y (uiup,vp) = (u + uu; + ul) u_
!

Hence the Hugoniot locus and rarefaction curves coincide for this system. Systems
with this property are called Temple class systems after Temple [177]. Furthermore,
the system is linearly degenerate in the first family and genuinely nonlinear in the
second. Summing up, the solution of the Riemann problem for (7.2) is as follows:
First the middle state is given by

vy [22]
Up = (JUU,—, Uy = [V, —.
v, U,

If u;/v; < u,/v,, the second wave is a rarefaction wave, and the solution can be

written as
L forx/t <wuyvy,
vy
Um
( ) for u;v; < x/t < 3u,v,,
Um
(“) (x.1) = (7.5)
v
[ (um{vm> for 3u, v, < X/t < 3u,v,,
(u,) for 3u,v, < x/t.
vy
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In the shock case, that is, when u; /v; > u,/v,, the solution reads

i for x/t <uyvy,
V]
u U
( ) (x,1) = ) forujvy < x/t < po (Uri U, V), (7.6)
v U

u
r) for po (Uy; Up, V) < X/1.
vy

If we set

and thus

u= /5. v=n/k

the solution of the Riemann problem will be especially simple in (7, £) coordinates.
See Fig. 7.1. Given left and right states (1;, &), (1,, &), the middle state is given
by (1, ). Consequently, measured in (7, £) coordinates, the total variation of the
solution of the Riemann problem equals the total variation of the initial data. This
means that we do not need the Glimm functional to show that a front-tracking ap-
proximation to the solution of (7.2) has bounded total variation. With this in mind
it is easy to show (using the methods of the previous chapters) that there exists
a weak solution to the initial value problem for (7.2) whenever the total variation of
the initial data is bounded.
We may use these variables to parameterize the wave curves as follows:

(”) = (ul v/ 7]) (first family),

v n

(u) = (um/v;) (second family).
v n

For future use we note that the rarefaction and shock speeds are as follows:

A(n) = wi(n) =1,
Aa(m)=3n, and o (m,ny) = (m+ mnr +n,) . &

As a reminder we now summarize some properties of the front-tracking approx-
imation for a fixed 4.

1. For all positive times ¢, u%(x, ¢) has finitely many discontinuities, each having
position x; (¢). These discontinuities can be of two types: shock fronts or approx-
imate rarefaction fronts. Furthermore, only finitely many interactions between
discontinuities occur for ¢ > 0.
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2. Along each shock front, the left and right states
uy =’ (i F.1) (7.7)
are related by
ur = Sp(e)u +e,

where ¢; is the strength of the shock and 7 is the family of the shock. The “er-
ror” e; is a vector of small magnitude. Furthermore, the speed of the shock, x,
satisfies

|% — i (up,u,)] <O (1) 86, (7.8)

where 1; (47, u,) is the 7th eigenvalue of the averaged matrix

1
M (uruy) = / df (1 — any +aw,) da:
0

cf. (5.76)—(5.77).
3. Along each rarefaction front, the values u; and u, are related by

u, = R; () u; + e;. (7.9
Also,
| = A (u)|=O(1)8 and [x —A; (u)| = O(1)8, (7.10)

where A; (1) is the Ith eigenvalue of df (u).
4. The total magnitude of all errors is small:

> el <. (7.11)

Also, recall that for a suitable constant Cy the Glimm functional
GW(-,0) =T @u(.0)+Co0 ('(-,1))

is nonincreasing for each collision of fronts, where 7 and Q are defined by (6.23)
and (6.22), respectively, and that the interaction potential

Q (uS(' s t))

is strictly decreasing for each collision of fronts.




318 7 Well-Posedness of the Cauchy Problem

7.1 Stability

Details are always vulgar.
— Oscar Wilde, The Picture of Dorian Gray (1891)

Now let v be another front-tracking solution with initial condition vy. To compare
u and v¥ in the L'-norm, i.e., to estimate ||u8 — 9t we introduce the vector

q=q(x,t) =(q1,-..,492) by

1°

0(x.1) = Hy (¢n) Hyo (gn-1) -+ Hy (g u’(x.1) (7.12)
and the intermediate states w;,
wy = us(x,t), w; = H; (g;))w;_;, forl <i <n, (7.13)
with velocities

wi = pi(wi—, w;). (7.14)

As in Chapt. 5, Hj (¢)u denotes the kth Hugoniot curve through u, parameterized
such that

%Hk (¢) ”L:o = ri(u).
Note that in the definition of ¢ we use both parts of this curve, not only the part
where € < 0. The vector g represents a “solution” of the Riemann problem with
left state % and right state v® using only shocks. (For € > 0 these will be weak
solutions; that is, they satisfy the Rankine—Hugoniot condition. However, they will
not be Lax shocks.)

Later in this section we shall use the fact that genuine nonlinearity implies that
i (u, Hy(e)u) will be increasing in ¢, i.e.,

i,uk (u, He(e)u) = ¢ > 0,
de
for some constant ¢ depending only on f.

As our model problem showed, the L! distance is more difficult to control than
the “g-distance.” However, it turns out that even the g-distance is not quite enough,
and we need to introduce a weighted form. We let D (u°) and D (v?) denote the sets
of all discontinuities in u and v, respectively, and define the functional @ (us, v8)
as

o' o) = Y [ lguol Wi dx. 1.15)
k=1_

Here the weights Wy are defined as

Wi =1+ K14k + 12 (Q (u®) + 0 (v%)). (7.16)
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where Q (u®) and Q (v°) are the interaction potentials of u® and v%, respectively;
cf. (6.22). The quantity Ay is the total strength of all waves in u® or v® that approach
the k-wave qi (x). More precisely, if the kth field is linearly degenerate, then

Ar(x) = E lei| + E lei] - (7.17)
i,x;<Xx 1,X>X;
>k i<k

The summation is over all discontinuities x; € D (u®) U D(v%). If the kth field is
genuinely nonlinear, we must also account for waves of the same family approach-
ing each other, and define

A = D lal+ Y el

i,x;<Xx 1,X>X;
>k i<k
doodal+ D el ifgr(x) <0,
ieDwb) ieDOY)
i=k,xi<x i=k,x<x;
+ (7.18)
doodal+ D el ifge(x) > 0.
ieD%) ieDd)
i=k,xi<x i=k,x<x;

In plain words, a g; shock is approached by k-waves in u® from the left, and k-
waves in v® from the right. Similarly, a g, rarefaction wave is approached by k-
waves in v® from the left and k-waves in u® from the right.

Once the values of the constants k; and k, are determined, we will assume that
the total variations of u® and v® are so small that

1 < Wi(x) <2. (7.19)

In this case we see that @ is equivalent to the L' norm; i.e., there exists a finite
constant C; such that

N T R YR et M B (7.20)
1

We can also define, with obvious modifications, @ (1% (¢), v%2(¢)) with two dif-
ferent parameters 6; and §,. Our first goal will be to show that

@ (¥ (1), v2(1)) — @ (1’ (5), v (5)) < Cat —5)(81 V 62), (7.21)

forall 0 <t < s. Once this inequality is in place, we can show that the sequence of
front-tracking approximations is a Cauchy sequence in L' for
[u' @) —u®@)|, < C1@ (" (1), u™ (1))
< C1@ (u"(0), u™(0)) + C1Ct (81 V 6)
< CE|[u® (0) —u™(0)||, + C1Cat (8 v 62).
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Letting &; and 8, tend to zero, we have the convergence of the whole sequence, and
not only a subsequence.

The first step in order to prove (7.21) is to choose k;, so large that the weights
Wi do not increase when fronts in ut or v%2 collide. This is possible, since the
total variations of both #® and v® are uniformly small; hence the terms k| Ay are
uniformly bounded, and by the interaction estimate, Q decreases for all collisions.
This ensures the inequalities (7.19).

Then we must examine how @ changes between collisions. Observe that @ () is
piecewise linear and continuous in 7. Let

D =D (u)UD(v?).

We differentiate @ and find that

%@ (uS‘,USZ) = Z 2”: Har (i =) Wi (xi=) = lgx (xi )| Wi (x;+)} i
ieD k=1
- ) o )
=y Xn: Ei. (7.22)
€D k=1

where

et = e (), () = g (o1 (), 0k (x))
gt =qi (k). and WF =W (xi£).

The second equality in (7.22) is obtained by adding terms

i,— i— i— i—1 i—1 i—1
q: )Wk' s )q< >+‘W( >+M( I+,
and observing that there is only a finite number of terms in the sum in (7.22).

< Example 7.2 (Example 7.1 (cont’d.))
Let us check how this works for our special system. The two front-tracking approxi-
mations are denoted by v and v, and for simplicity we omit the superscript §. These
are made by approximating a rarefaction wave between 1; = né and 1, = mé,
m > n, by a series of discontinuities with speed 3j8, j = n,...,m — 1. In other
words, we use the characteristic speed to the left of the discontinuity. The functions
u and v are well defined by standard techniques.

Since we managed this far without the interaction potential, we define the
weights also without these (they are needed only to bound the weights, anyway).
Hence for the example we use

Wi(x) =1 + kAr(x). (7.23)
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Now we Shall estimate
It ’ i l,l L, . N

To this end we consider a fixed discontinuity at x (to simplify the notation we
do not use a subscript on this discontinuity) in one of the functions, say v. This
discontinuity gives a contribution to the right-hand side of (7.24), denoted by E; +
E,, where

£y =07 () o ). =1

For this 2 x 2 system we have

A= Y el

Xi<x,1=2
Ax)= Y el
xi>x,i=1
D> lal+ Z lei|  ifgy <O,
1=2,x;<x 1=2,x;>x
x;i €D(u) xi€D(v)
+
Z lei| + Z |€; | if g, > 0.
=2, x;<x =2, x;>x
xi€D(v) x;i €D(u)

To estimate E| + E, we study several cases.

Case 1 Assume first that the jump at x is a contact discontinuity, that is, of the first
family, in which case

Al = Ay,
and consequently,
wit=w . (7.25)
Furthermore,
g =qy +€ and pf =p;=x-gq;.
Then

Er =W g | (ui — %) = W lgy | (7 — %)
=W {lar + €l —la7 1} (—43)
W lgs | el . (7.26)

A
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For the weights of the second family we find that
Ay = Ay —lel. W' =Wy —«lel. ¢ =q5. 1y =p3.

To estimate (1, — X we exploit that u; is a discontinuity of the second family, while
X is a contact discontinuity of the first family. Thus we can estimate from below
their difference by the smallest difference in speeds between waves in the first- and
second-wave families. We find that u; — X > ¢ = min,, {n} > 0. Hence

Ey =Wy |5 | (ud — %) = Wy las | (13 — %)
= Ig5 | (k2 — %) (=« [e])
< —kclgy|lel . (7.27)

Then
E\+ Ey=|g|le|] (W —«kc) <0 (7.28)

if k¢ > sup, Wj(x). (Throughout this argument we will choose larger and larger «.)
This inequality (7.28) is the desired estimate when x is a contact discontinuity.

Case 2 The case that x is a genuinely nonlinear wave, that is, belongs to the second
family, is more complicated. There are two distinct cases, that of an (approximate)

rarefaction wave and that of a shock wave. First we treat the term E;, which is
common to the two cases. Here

AT = A7 +lel, W =W +«lel. qf =47,

I’Li’» = /"l’l_’ and /J,I — .X < —C.
Consequently,
Er =W g | (i = %) = W lgy | (k7 — %)

= i le| gy | (u7 — %)
< —kclgy|lel <0. (7.29)

We split the estimate for E, into several cases.

Case 2a (rarefaction wave) First we consider the case that x is an approximate
rarefaction wave. By the construction of v we have

€e=8§>0 and ¢ =¢q, +e

The speeds appearing in E, are given by

1y =2m +q5 + €+ (nu +q5 +e).
wy =2+ g5 + (e +45).

& =3(m+4)-
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Fig.7.2 g, >0 4 =q; +e
E VO v
\\\
vT=(n",§")
o =q
u = (7711,7 fu)

We define the auxiliary speed

ﬁ:lLZ(v_’v+)=27lu+2q;+€+\/(r)u +CI2_)(7714 +C]2_+€)-
It is easily seen that
0<e<pi—x<2e

We have several subcases. First we assume that g, > 0, in which case q2+ > 0 as
well; see Fig. 7.2.
In this case A; = A5 + |e|. Hence

Ey = Wy' gy | (3 — %) — (W5 —xclel) lax | (n7 — %)
=W," {(g7 +€) (13 — 1) — a5 (15 — 1)}
+ W, (g —q) (B = %) + kel lg5 | (ny = %).

We need to estimate the term {(¢; + €) (3 — 1) — g5 (17 — i) }. This estimate
is contained in Lemma 7.4 in the general case, and it is verified directly for this
model right after the proof of Lemma 7.4. We obtain

(a5 +€) (3 — i) — g5 (k5 — )| <0 ) el gz ] (195 |+ l€l) .
and thus

Ey <0 () el gy | (la5 |+ lel) + WaT le] |z — %]+ |e| 145 ] (3 — %)
< 0 lellgz | (laz | + lel) +2W," lel” + & le] gz | (3 — %)

We estimate u;, — X < —¢q, < 0, and hence
Ey < |ellg; P (@ (1) =) + O () [e]* g5 | + O (1) |e]* < M |¢]$,

for some constant M if we choose k big enough. We have used that W;r is bounded.
Therefore,

E1+E2§M|6|5
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Now for the case ¢; < 0. Here we have two further subcases, ¢, < 0 and g, > 0.
First we assume that ¢, < 0, and thus both ¢, and ¢, are negative. Note that

lg5 | =1a51—el.0 < —g5 < p; —% <—2q;, and A = A; —|e].
Thus

E2=(W2 —K|6| |‘] i( -wy |‘I2|( —)'c)
=Wy {(a; —€) (13 _:“)_qz (w3 — )}

— Wy el (i — %) — kel g5 | (13 — %)

O () el g5 | (|g5| + lel) + O (1) [e]> —k |e] |g5 |

< lellg; P (© (1) = 1) + O (1) |¢]?
< M| 8,

IA

where we have used Lemma 7.4 (with ¢ = ¢, &' = ¢, +) and chosen « sufficiently
large. Thus we conclude that E; + E» < M |€| § in this case as well.

Now for the last case in which € > 0, namely ¢, < 0 < g5". Since ¢ = ¢; +¢,
we have

la5| <8, gz <.

Furthermore, A7 = A5, and thus W," = W,~. We see that

+

0<-q;, <p; —x <-2¢q,, wi—x <2—gq;,

and hence

Ex =W {gf (uf — %) + 145 | (u5 — %)}

< W, {qz (2|€| +‘]2)+|‘]2| 2 |‘]2|}
= M |els,

for some constant M .

Case 2b (shock wave) When x is a shock front, we have € < 0. In this case,

F= = o (vo0) = 2+ 25 et (o az) (e +ap + o).
We first consider the case g; < 0. Then
4y =¢; +€<0. |gf|=lgz|+le|. and A = A7 —|e|,
and we obtain
= Wy —«lel) a5 | (3 — %) = W5 laz | (13 — %)
=W, ((g; +(uy — %) —q; (15 — X))
— el (Ig5 | + leD(ny — %)

<O lellgy (g2 | + lel) = le (g5 | + [€]) gz |
< lellgz [ (lgz | + le[) (O (1) = k) =< 0.
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Lemma 7.4 (with ¢’ = €, & = g5 ) implies

(97 +€) (13 —%) —q5 (u7 —%)| <O el g5 | (Ig7 ] + lel) -
Furthermore,

py—% =—=q5 + /m(nu + g5 +¢)

—\/(nu+q2‘)(nu+q;+e)

N
Vi a3

>—q;, =gz 1.

=—q, |1+

If g; > 0, then there are two further cases to be considered, depending on the sign
of g . We first consider the case g5~ < 0, and thus ¢ < 0 < g5. Now A = A7.
Furthermore,

By —X = —=2q, =0,

N -
<—lg;|.
V’]u"'\/r’u +CI;—

py—x=-q; |1+

Thus
My <X <p.
and we easily obtain
Ey =Wy {|q] | (n3 — %) = la5 | (13 — %)} < 0.

This leaves the final case g5 > 0. In this case we have that A} = A5 + |e|. We still
have

NI

Vi + e+ 45

E _q; < 01

and thus
X — sl =g
Furthermore, by Lemma 7.4, we have that

(72 +€) (13 — %) — a3 (n3 —%)| <O ) |a5 ]| lel (Ja5| + le]) -
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Then we calculate
E, = WzJr |Q2+| (M;r —)'c) - (WzJr —K |6|) 95 | (ME —)'c)
=W, ((g7 + Oy — %) —q5 (u3 — X)) + « le] lg5 | (15 — %)
< Wi lqF (13 —x) — g5 (15 — x)| = lel |1z — %] lg3 |
<0 M) ellgy | (lgz |+ el) = lel g5 |95 |
<0 () [el’ + el lgz > (O (1) = k)
<Mle|$§

if « is sufficiently large. This is the last case.
Now we have shown that in all cases,

E1+E2§M|6|8

Summing over all discontinuities in ¥ and v we conclude that
d
—®du,v) <C’S,
T 0(.v) <

for some finite constant C’ independent of 6.
We shall now show that

D Eix <0 e (61 V) +0 (1) e, (7.30)
k=1

and this estimate is easily seen to imply (7.21). To prove (7.30) we shall need some
preliminary results:

Lemma 7.3 Assume that the vectors € = (€1, ...,€,), € = (6{, . e;), and €’ =

(¢7.....€)) satisfy
H(e)u=H (¢")H (¢')u
for some vector u, where

H(e) = H, (ey) Hy— (€p—1) -+~ Hy (e1) .

Then
Z lex — €, — €] = O (1) (Z €€l ( €|+ |€f ) + Z €€ ) (7.31)
k=1 j k.l
k£l
If the scalar € and the vector € = (6{, o 6;) satisfy

Ri(e)u=H () u,

where R; denotes the lth rarefaction curve, then

=il + LIl =0 el (il (el +16i) + T lel). @32
k£l k£l
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Proof The proof of this lemma is a straightforward modification of the proof of the
interaction estimate (6.18). O

Lemma 7.4 Let @ € 2 be sufficiently small, and let ¢ and &' be real numbers.
Define

w = Hk(S)(Z), n = Ui (CZ),C()) s
o' = Hi (¢) o, o= (0,0,
" =H(e+¢)a, W= (@,0").

Then one has
(e + &)W — ') —e(u — )| < O) |e€| (e] + |€']) - (7.33)

Proof The proof of this is again in the spirit of the proof of the interaction estimate,
equation (6.13). Let the function ¥ be defined as

V)= (e+e&)u" —en—epu'

Then ¥ is at least twice differentiable, and satisfies

¥ (e,0) =¥ (0,6)=0 azlI/(OO)—O
£ - E) - ) 8888, ) - .
Consequently,
e ¢ le] 1€’}
, *w
V(e &) = (r,s)dsdr = O(1) (Ir] + |s]) drds.
dede’
0 0 0 0

From this the lemma follows. O

< Example 7.5 (Lemma 7.4 for Example 7.1)
If k = 2, let @, o', and @” denote the n-coordinate, since only this will influence
the speeds. Then a straightforward calculation yields

(e + )" — ') — e(u — )|
= lel [¢'] (le] + l'])
5 Vo + Vo' + Vo
6 (Vo' + V') + o (Vi + Vo) + o (Va + Vo) + 2Va0'e”
_ lelle'ldel + 1D
T min{o,0, 0"}’

verifying the lemma in this case. &




328 7 Well-Posedness of the Cauchy Problem

If the kth characteristic field is genuinely nonlinear, then the characteristic speed
Ax (Hi(€)w) is increasing in €, and we can even choose the parameterization such
that

Ak (Hi(6)w) — Ar (@) = €,

for all sufficiently small € and w. This also implies that pu; (@, Hy(€)w) is strictly
increasing in €. However, the Hugoniot locus through the point @ does not in gen-
eral coincide with the Hugoniot locus through the point Hy (q)w. Therefore, it is
not so straightforward comparing speeds defined on different Hugoniot loci. When
proving (7.30) we shall need to do this, and we repeatedly use the following lemma:

Lemma 7.6 For some state w define

V(q) = pr (Hi(q)w, Hi(€) Hi(q)w) — pi (@, Hi (€ + q)w) .

Then W is at least twice differentiable for all k = 1, ..., n. Furthermore, if the kth
characteristic field is genuinely nonlinear, then for sufficiently small |q| and |€|,

v'(g) >c >0, (7.34)
where ¢ depends only on f for all sufficiently small |w|.

Proof Let the vector € be defined by H (€)oo = H(e)Hi(q)w. Then by
Lemma 7.3,

ek — (@ + O+ Y _le/l <0 (1) |ge] (el + Ig])-
i#k

Consequently,
Hi (e + q)o = Hi(e)Hi(q)w + O (1) |g€] (] + |q]) -

Using this we find that

Hi(e)Hi(q)w — Hi(€)w ‘ _ |Hi(e + @)oo — Hi(e)w

+ O (1) le] (le] + g -
q q

Therefore,
LA O M@0} |,_= L (Hol + 0P, (135
dq{ké Ko | = - tHi(eow} + el :
Hence, we compute
v'(0) = Viu (@, Hi(e)w) - i (w)

d d
— Vo (@, H(€)w) - (% {Hi(e)w} — dq {Hi(e)Hi(q)w} lqzo)

= Vi (0, He(€)w) - re(w) + O (1) |e]*
> >0,
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Fig. 7.3 The setting in the €
proof of (7.30)

for sufficiently small |e|. The value of the constant ¢’ (and its existence) depends on
the genuine nonlinearity of the system and hence on f. Since ¥’ is continuous for
small |g|, the lemma follows. |

We shall prove (7.30) in the case that the front at x; is a front in v%; the case in
which it is a front in #°! is completely analogous. We therefore fix i, and study the
relation between ¢, and q,j. Since the front is going to be fixed from now on, we
drop the subscript i. For simplicity we write § = §,. Assume the the family of the
front x is / and the front has strength €. The situation is as in Fig. 7.3.

A key observation is that we can regard the waves q,j as the result of an inter-
action between the waves ¢, and ¢; similarly, the waves —q, are the result of an
interaction between € and —q,j .

Regarding the weights, from (7.16) and (7.18) we find that

Wk+ W= K1 |€] ifk <1, (7.36)
—k1 le| ifk >1,

while for k = [ we obtain

cilelifmin{gr.q) >0,
W =W =~k le] ifmax{q;,q} <0, (7.37)
o) ifgq <o.
The proof of (7.30) is a study of cases. We split the estimate into two subgroups,
depending on whether the front at x is an approximate rarefaction wave or a shock.
Within each subgroup we discuss three subcases depending on the signs of qli. In

all cases we discuss the terms Ej (kK # [) and E; separately. For k # [ we write
Ej. (recall that we dropped the subscript i) as

Ex = (lgf | = la ) W (uf — x)
g L (W = W) (i = %) + lai | Wi (i — i) - (7.38)
By the strict hyperbolicity of the system, we have that

pLZ—Xf—c<O, fork <1,

pi—x>c¢>0, fork>I,
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where ¢ is some fixed constant depending on the system. Thus we always have that
(W =Wo) (= %) < —cxile]. k #L (7.39)

We begin with the case that the front at x is an approximate rarefaction wave
(€ > 0). In this case,

Ri(eW ™ +e=H(qg")u" = H (¢") H(—¢g") v = H (§) v*~

for some vector g. Hence
H(—¢") v~ = H (~¢") H @) v*", (7.40)
R (e)v*™ +e = H (§)v*~. (7.41)

From (7.31) and (7.40) we obtain

Solai —ai —ad o (X latael (g | +1ac) + Y laias]). 742
k k kl;.éjj
and from (7.32) and (7.41) we obtain

G — el + Y 1akl = 0 (1) lel (1211 (@] + lel) + Y ldxl ) + © (D el .
k#l k#l

This implies that

|G —€el =0 )[e] +O(1)]e],
Y ldel = 0 (1) fe] + O (1) el (7.43)
k£l

Furthermore, since € is an approximate rarefaction, 0 < € < §. Therefore, we can
replace ¢; with € and g, (k # [) with zero on the right-hand side of (7.42), making
an error of O (1) §. Indeed,

" —ar —e| + > lai —ai |
k£l
<D lad =g —e| +1a—el+ D1l
k k#l
<o (z 7] (a7 + 1) + Y \q:ajs)
¢ o
+0(1)e (|qv| Uil +leh + 3 |c7k|) + 0.
k#l
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Using (7.43) and the fact that € < §, we conclude that

g —a — €| + D lad —ax|

k#l
7 (7.44)
— 0l (s lar| (gt | + 1el) + Z|q,:|) o).
k£l
Similarly,
af —ar —e|+ ) lai —ai|
k£l
(7.45)
— o)l (5 gl (a7 +1el) + 3 |q;|) o).
k£l

Since in this case 0 < € < §, and the total variation is small, we can assume that
the right-hand sides of (7.44)—(7.45) are smaller than € + O (1) |e|. Also, the error
e is small; cf. (7.11). Then

0<q—q; <2e+0)|e] <254+ 0O(1)]e|. (7.46)
We can also use the estimates (7.44) and (7.45) to make a simplifying assumption
throughout the rest of our calculations. Since the total variation of ¥ —v is uniformly

bounded, we can assume that the right-hand sides of (7.44) and (7.45) are bounded
by

1
= o .
Slel+O M) e]

In particular, we then find that

=3l =0 el < g7 a7 <+ 5 Il + O M),

Hence if € > 0, from the left inequality we find that

4 > q;
or

lel = O (1) ]e],

and if € < 0, from the right inequality above,

a <4,
or

le] = O (1) ]e].
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Ife >0andg, > g, ore <0andgq; > gq;, then || < O (1) |e|. In this case we
find fork # [, ork = [ and ¢; ¢ > 0, that

E = {lai | (W = W) + W (lax | — | ]}«
<{lailxilel + W (el /2+ 0 (1) e} | %]
<O(1)le|. (7.47)

Ifk =1 and q[q,f < 0, then for € > 0 we have that qzr —-q;, 20 (1) le], so if
qz < ¢, , we must have that

laf | =0)le] and g7 <O(1)]e].
Similarly, if € < 0 and ¢, > ¢, we obtain
g <O()lel and |g;|<O(1)]e].
Then we find that
Er={q; | W =g/ | WHx <0)]e|. (7.48)
These observations imply that if |¢] = O (1) |e|, we have that

Y Ec=0()e,
k

which is what we want to show. Thus in the following we can assume that either
e>0 and ¢ >gq;.

or
€ <0 and qzr <qy. (7.49)

Now follows a discussion of several different cases, depending on whether the front
is an approximate rarefaction wave or a shock wave, and on the signs of g, and qzr.

CaseRl 0<gq; <g;",e>0.
For k # [ we recall (7.38) that

Ee = (g | = lac ) W (i — %)
+ g | (W = W) (e = %) + la | W (e = 1850) - (7.50)

The second term in (7.50) is less than or equal to (cf. (7.39))

—ckr |q; | €]
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Fig. 7.4 The situation for
0<gq; <gq e>0and
k=1

Furthermore, by (7.45),

¢ |~ lag1 < 0 ) el (5-+ a7 (a1 + le) + X i 1) + O 1) el
k£l

By the continuity of py,

W = il = 0.(1) (le| + Jel).

Hence from (7.38), we find that

Bc =01l (8+1a71 a7 1+16) + 3 o) + 0 ) kel = exr g e

k#l
<o) (8 +Z\qg\) + Ol
k#l
—ckrlellgi |+ O (D) el lgr | (lg; | + lel) - (7.51)

For k = [ the situation is more complicated. We define states and speeds

o= Hi (g +€) oy fie= (o, d),

. _ X o (7.52)
w; = H(€) oy, 1 = i (o, of);

see Fig. 7.4.
Recall that

Wt = (0 1 07).

Now by Lemma 7.4, withw = w;_,, e = q;,and &" = q; + ¢,

(a7 +€) (e —ni) —a; (ur — i) =0 W) lg; | lel (g7 | + lel) . (7.53)
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We also find that (cf. (7.10) and the fact that p; (v, u) = A;(u))

i =51 < i (0 0F) = vV 0%7) [+ 0(1) 8
= | (o] . Hi(e)o] ) — i (0, 0;) | + O (1) 8
< | (o . Hi(©)op ) — pi(o; . op)|
+ [ o) = i(or o)
+ i@ o) = (o, 0| + -+
+ iy 07) — oy o) + 0 (1)
=0 (lel+]of —ory |+ + o, .0, ) +0 (1)
=0 (181 +lai |+ Y lai 1)- (7.54)

k>1
Furthermore,

ui = | = | (o Hr (aF) o)) = i (01 Hi (a7 + €) o)

< |wi (o Hi (af) o)) = i (Hi (¢f) o 04)|
+ | (Hi (q) o 021) = i (0 H (g7 + €) o)

<O (|of ) —or |+ |[H () o, — Hi (a7 +€) or4|)

<o) (|of — o]+ [H (¢f) oty — Hi (g7 +€) o]
+|Hy (g7 +e) o = Hi (47 +€) o)

<o) (|ofy —or |+ ¢ —ar —¢])

=0 (g —aiia| ++ laf —ar |+ |af —a7 —€])

=(9(1)6(8+|q[|(|q[|+|e|)+2|qk_|)+(9(1)|e|. (7.55)

k#l

Since the /th field is genuinely nonlinear, then by Lemma 7.6,
e rEarn (7.56)
for some constant ¢ > 0 depending only on the system. Recall that in this case,
W, =W, + ki el
Moreover, €, q[, and g, are positive. Using the above inequalities, we compute

Er =W q) (nf —%) =W ap (kg — %)

= (W +rlel) qf (nf —x) = Wiqp (ug — %)

= kieq) (g — %) + W {a) (mf —%) — a7 (ng — %)}

= ke {(q7 +e) (e —pp) +aqf (0 — %) = (a7 +€) (e — i)}
+ W el (wf = %) —ag (ng — %)}

= i€ (g7 +e) (e —nf)
+rre{(qr +e) (uf —% = (e— i) + (¢ —ar —€) (uf — %)}
+ WA (1f = %) —ag (g — %)}
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< ki€ (qp +€) (fie — ui) +rre (g7 +€) (g — fre| + |pj = %1)
el —ap —el | —x|+ W el (W — %) —ap (ng — %)}
< —ciiqpe(q; +¢€)

+ k1€ (q; + €) (0(1)6(5 +q; (g7 +€) + Z|‘Iz_|)

k#l
+5+0(1)Zlqﬂ+0(1)lel)

k>1

e (lmeZ(s fa @)+ Y |q,:|) o)
Py

+ W g (nf — %) — a7 (g — %)}

< —cxi1q;€(q; +€)+ 0 (1)K16(3 tay (ar +e)+ > |q;|)+0 (1) el
k£l

+W[%I(qz+€) (e — i) —ap (me — )| + laf —ar —e| [nf — %]
elut =51+ (o + ) uf — ]

<~ el (a71 + Ie) + © ) el (34 b (a7 + 1e) + X lac1)
k#l
+0(1) el
<O lel (8+ Y 1ai 1) + 0 (1) lel + lel la7 | (la | + lel) (© (1) = ex)
k£l
(7.57)

Adding (7.57) and (7.51), we obtain
Z Er = E; + Z Ey
k k£l
<OMes+0M) el +€) g (O (1) —ckr)
k£l
+elar| (g + €) (0 (1) —cky)
<O(M)es+0(1)]el, (7.58)

which holds for sufficiently large «;. This implies (7.30) in Case R1.
CaseR2 ¢, <gq' <0,¢>0.

Writing Ej as in (7.38), and using (7.44) (instead of (7.45) as in the previous
case), we find for k # [ that

B <0 (5-+ a7 i |+ 1e) + X [ag]) + 0 el =t |1l
k#l
(7.59)
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Fig. 7.5 The situation for
q; <gq;” <0,e > 0,and
k=1

For k = [ the situation is similar to the previous case. We define auxiliary states
and speeds

@ = H (¢ —€) oy o= (0 .0r).

‘ ‘ ’ (7.60)
w; = H (&) o], 1y = (o of);
see Fig. 7.5.
Recall that
o =H (¢ ) o, and puf = (0. o).
In this case we use (7.33) with ® = o/, ¢ = ¢/, and ¢’ = —e. This gives

(@ =€) (e = 1) —a/ (1 = i) = 0 g lel (ja/ | + lel). (76D
As in (7.54), we find that
i — x| < | (of .of) = (007 05|+ 0(1)8

= | (o Hi(—e)o;") — i (0" %) + 0 (1) 8
<O0Ms+00) (o —of|+¢)

SOMs+oMY g (7.62)
kI

We also obtain the analogue of (7.55), namely,
Iy — fuel = |H1 (“’l_—l’ H, (q[) W) = M (wltl’ H, (‘11+ - 6) wlt1)|
=0 () (lo - — o+ |gf —ar =€)

=0 (8+|af | (lgF | +1el) + Y laf| ) + 0 lel. (7.63)
k£l

By genuine nonlinearity, using Lemma 7.6, we find that

fie =i > clgf |, (7.64)
for some constant ¢c. Now

W, =W, +ki|el.
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Using the above estimates (7.61)—(7.64), we compute M

Er =Wt lal | (nd = %) = (W +xa€) lag | (g — %)
= —ielgr | (ng — %) =W g (0 — %) —ap (ne — %))
< —kie(|gf | +€) (e — wp) + ke (Ja | + €) (Iug — el + 1% — pf])
+rie g —qp —e|lug — %= W gl () — %) — a7 (ng — %)}
< —cexy g/ [ (|g]| +¢)

r 0 (a7 | +6) (a7 (o |+ + lat |+ kel
k1

— Wi al (W —%) — a7 (17 — %)}
< —cewr g/ | (/] +¢)

+0 (ke (g + ) (5 +la/ | (g [ +¢) + D lad |+ |e|)
Py

WAt e = 2) = (g |+ €) (e = 7)|

+laf = ai = el lug =51+ € lug = &1 + (g | + €) I — fel}

< —cexs o (] +9) + 0 (5l ot | + )+ Xl |

k#l
+0(1)]e]
< 0(1)6(5 +> |q,j|) + O el +e€lgf| (g ] +€) @1)—cky).
k#l
(7.65)
Finally,

ZEk = FE; + ZEk
k k£l

<OWes+OM)e|+e) g (O 1) —cxr)

k#l
+elgf | (Jaf | +€) (O (1) —cxr)
<O es+0()]e| (7.66)

by choosing k larger if necessary. Hence (7.30) holds in this case as well.

CaseR3 ¢, <0<g;",e>0.
Since the front at x is a rarefaction front, both estimates (7.51) and (7.59) hold.
Moreover, we have that

af —ay = |a/ |+ la;| <2e < 26.
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Then from AD + BC < (A+ B)(D + C) for positive A, B, C, and D, we obtain
Ep =W/ |qf | (ki = %) = W lag | (kg — %)
=0 (lg/ | +lazl) (Jug — %[ + g — ¥1)
<O e(|puf — [+ |ug — 1)
= 0 W (| (@ 1.0) = s (0. 0))

+ | (0 0p) = (', v‘g’_)|)

_ 0<1>e(5 ]+ gl + X e + Z|q,:|)

k>1 k<l

=0 (1)6(8 NHEDD |q,;|). (7.67)

k>1 k<l

Using (7.51) for k < [ and (7.59) for k > I, and choosing «; sufficiently large, we
obtain (7.30).

Now we shall study the cases in which the front at x is a shock front. Also, here
we prove (7.30) in three cases depending on ¢, and qz. If the front at x is a shock
front, then by the construction of the front-tracking approximation, we have

Hi(e)v*™ = v5F 4 e,
or
Hi(e)H (¢ ) u® = H (¢7) u’ +e,

where ¢* = (¢it,....¢;), and e is the error of the front at x. Then we can use
(7.31) and continuity of the mapping H to find that

" —ar —e|+ Y |a —ai|

k#l
(7.68)
— o) (|q7| (a71+ 1) + X lai1) +0 () el
k£l
‘We also have that
uh = H (—¢%) vt = H (—¢™) (H, ()’ + e),
or
H (=¢7)v"" = H (—q") Hi(e)v"~ + 0 (1) e],
by the continuity of H. From this we obtain
af —ar —e| +>_ laf —ai|
k#l
(7.69)

— o) (|q,+; (laF] + 1e) +Z|q,:|) o).
k#l
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Fig. 7.6 The situation for
0<gq/ <gq;,e <0, and
k=1

CaseS1 0<gq,/ <q;,e<0.
If k # [, then we can write E} as (7.38) and use the arguments leading to (7.51)
and the estimate (7.69) to obtain

Ee <0 (1)]el (|q,+| (g [ +1el) + D2 )qg)) +0.(1) lel = ek [gf | el
k#l
(7.70)

For k = [ we define the auxiliary states and speeds as in (7.60); see Fig. 7.6.
Then the estimate (7.61) holds. Also, using (7.69) we find that

i — el = 0 (1) (lo — oy | + g —ar —€])

— o)l (}qzi (lat|+1e) + 3 |qk+|) Lo, @)
Py

Moreover,

g =51 = | (@ o) = (07 0))
< | (o Hi(—e)o)) — p (v*F, Hy (=) v* )|+ O (1) e
=0 (lof =) +01)e]

=0(1) (Z g | + |e|). (7.72)

k>1

By Lemma 7.6, we have
Wy — e > cq; . (7.73)
In this case
W, =W +kilel. (7.74)
and

e<0<gq/ <gq;.
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We estimate

Er=Wrq (nf —%) = (W' —kilel) g7 (ng —%)
= ki1 lelqp (g —X) + W g (uf — %) —q; (7 — X))
= k1 lel {(q/ + lel) (ng — 17) +ai (ne — %) = (@ + lel) (g — 17)}
+ W e (mf — %) —ap (kg — %)}
=iy le| (g + lel) (e — 17)
+ ki lel {(a; + lel) (kg = %) = (fe — 1))
+ (a7 —a; — lel) (ng — %)}
+ W el (g — %) —ag (ng — %)}
< lel (qi + lel) (/e — n7)
+ el (g + lel) (g = fel + |1 = %1)
+ulel|gf — a7 —e€| lng — %l
+ W e (i — %) —ap (kg — %)}
< —cki (g + l€l) lel g

+ 0 (1)« |e)? (qz (aF + 1)+ > Iq,;*l) +0(1) el
k#1

+ O (1) e (Z Iq,;*l) +0(1) el

k>1

+ W lad (1w = i) = (aF =) (e —w7)]
+ o — a7 — el Iz = £1+lel I = £+ (@ + lel) lug — el

< —cky (g +lel) el g + O (1) |e] (q; (aF +le)+ Y !q:!)

k#l
+0®)e|
oMY g+ lel |af | (@ + 1)) @) —crr) + O (D) ]e].  (7.75)
k1

As before, setting « sufficiently large, (7.75) and (7.70) imply
Y Ex=Ei+) Ec<0()lel. (7.76)
k k#l
which is (7.30).
CaseS2 ¢/ <q; <0,e <0.

In this case we proceed as in Case S1, but using (7.68) instead of (7.69). For
k # I this gives the estimate

£e <0 el (la71 (a7 1+ e + X [az]) + 00 kel e lgg el .77
k#l
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Fig. 7.7 The situation for
q) <q; <0,e <0,and
k=1

We now define the intermediate states @y, w; and the speeds i, and p; as in (7.52);
see Fig. 7.7.
Then the estimate (7.53) holds. As in Case R1, we compute

wi =il =0 () (jor, —of | + | — a7 —€|)

= oW el (laz | (1971 + lel) + Y laz1) + O (Dlel  (7.78)
k#l

and
i = %1 < | (7 Hi@wp) = (v, Hy(€)v*™)| + 0 (1) fe]
<05+ 0 1) | — 5| +0(1)e]

SO lel+0 1)) gl (1.79)
k<l

In this case, genuine nonlinearity and Lemma 7.6 imply that
i =i > clarl. (7.80)
with ¢ > 0. Moreover, now
W =W~k e
Now we can use the (by now) familiar technique of estimating E;:
Ep= (W7 =k lel) a7 | (i — %) = W lag | (u7 — %)
< w1 lel (lgg | + lel) (fe — p7)
+ o lel (Igr |+ lel) (|f — fe + ug — x1)
+urlel|gf —ap —ef | — |
+ W lal | (1w = %) = lag | (ne = %))
< —cki |qy | el (g | + lel)
+ 00 lel g1+ eD) (1071 a1+ 1) + i)
k#l
+ Wi lar (7 = i) = (a7 + ) (e = p7)|
+ a7 —ag —ef[uf — 3|
+ lel 1 = %1+ (197 | + lel) [1f = iel} + O (1) Je]
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< —exr g7 el (g7 | + el) + 0 (1) (|q;| (i1 + 1) + 3 |q,:|)

k#l
+0@1)le|
<0 lag |+ lellgr] (Ig7 ] + 1€l) (© (1) —cxr) + O (1) e] . (7.81)
k#l

Combining (7.81) and (7.77), we obtain

D Ec=E+)Y E<0()e. (7.82)
k k1

which is (7.30).

CaseS3 ¢/ <0<gq;,e<0.

For k # [, the estimate (7.77) remains valid.

Next we consider the case k = [. The O (1) that multiplies || in (7.69) (or
(7.69)) is proportional to the total variation of the initial data. Hence we can assume
that this is arbitrarily small by choosing T.V. (1) sufficiently small. Since all terms
qf are bounded, we can and will assume that

_ 1
a7 —q; —€| < 3 le] + O (1) ]e|. (7.83)

Without loss of generality we may assume that |‘11+| > \ql_|. This implies that

af —dai —€| = |ay —q | —lel = a7 —q +e=2q] +e. (7.84)
Thus
_ 1
2q, +6§§|6|+0(1)|3|y (7.85)
or
_ 1
4 +e=—,lef+0) el (7.86)

which can be rewritten as
_ 1
g7 +e=OMel| = el (7.87)
From this we conclude that
_ 1
lg; + €| > Z|6|—(9(1) le| . (7.88)

We define the auxiliary states @, w; and the speeds ji, and pu} as in (7.52); see
Fig. 7.8. Then estimates (7.78) and (7.79) hold.
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Fig. 7.8 The situation for
q; <0 <g;,e <0,and
k=1

By Lemma 7.6 we have that

fe — i <0, (7.89)
ne —ui=clg +el, (7.90)

for a positive constant ¢. Recalling that W,~ > 1, and using (7.89), (7.90), and the
estimates (7.78) and (7.79) (which remain valid in this case), we compute

Er =W g | (uf = %) = W g | (ng — %)
W g | (e — 18) = W lag | (me — 17)
+ W gl | (i = fe| + g = x1) + W lay | |wg — %1

IA

<—lg;lclg; +el+0)]e (q; (g7 +lel) + > )‘?ED +O(1) el
k#l
< _TC 4 | el + O (1) |e] (qz (a7 + lel) +Z)q;)) +o)e. (791

k#l

Now (7.77) and (7.91) are used to balance the terms containing the factor - ’q,: ’
The remaining term,

i1l (~5e + 0 ) (a7 + 1)),

can be made negative by choosing T.V. (1) (and hence O (1)) sufficiently small.
Hence also in this case (7.30) holds.
Finally, if g, or qzr is zero, (7.30) can easily be shown to be a limit of one of the
previous cases.
Summing up, we have proved the following theorem:

Theorem 7.7 Let u®' and v* be front-tracking approximations, with accuracies
defined by 61, 85,

G ') <M, and G(v2(1)) <M,  fort>0. (7.92)

For sufficiently small M there exist constants ki, ik, and C, such that the func-
tional @ defined by (7.15) and (7.16) satisfies (7.21). Furthermore, there exists
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a constant C (independent of 81 and 8,) such that
[u (@) — v (@) ||, = C|lu® () = v ()|, + Ct (81 v &). (7.93)

To state the next theorem we need the following definition. Let the domain D be
defined as the L' closure of the set

Dy = {u e L'(R;R") | u is piecewise constant and G (1) < M} ; (7.94)

that is, D = D,. Since the total variation is small, we will assume that all possible
values of u are in a (small) neighborhood £2 C R".

Theorem 7.8 Let f; € C*(R"), j = 1,...,n. Consider the strictly hyperbolic
equation u; + f(u), = 0. Assume that each wave family is either genuinely
nonlinear or linearly degenerate. For all initial data uy in D, defined by (7.94),
every sequence of front-tracking approximations u® converges to a unique limit u
as § — 0. Furthermore, let u and v denote solutions

u; + f(u)x =0,

with initial data uy and v, respectively, obtained as a limit of a front-tracking
approximation. Then

@) = v, = Clluo = voll;. (7.95)

Proof First we use (7.93) to conclude that every front-tracking approximation 1’

has a unique limit u as §6 — 0. Then we take the limit § — 0 in (7.93) to conclude
that (7.95) holds. O

Note that this also gives an error estimate for front tracking for systems. If we
denote the limit of the sequence {u®} by u and v® = u?, then by letting §, — 0 in
(7.93)

||L¢8(-,t)—14(-,t)||1 <C (||u(8)—uo”1 +81) =0(1)8

for some finite constant C. Hence front tracking for systems is a first-order method.

7.2 Uniqueness

Let S; denote the map that maps initial data u into the solution u of
u, + fu)y =0, ul=o=uo

at time ¢, that is, u = S,u . In Chapt. 6 we showed the existence of the semigroup
S:, and in the previous section its stability for initial data in the class D as limits of
approximate solutions obtained by front tracking. Thus we know that it satisfies

Sou = u, S:Ssu = S;45u,
[Siu — Ssvlly < L (|t —s|+ [lu—vl)

forallz,s > 0and u, vin D.
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In this section we prove uniqueness of solutions that have initial data in D.

We want to demonstrate that every other solution u coincides with this semi-
group. To do this we will basically need three assumptions. The first is that u is
a weak solution, the second is that it satisfies Lax’s entropy conditions across dis-
continuities, and the third is that it has locally bounded variation on a certain family
of curves. Concretely, we define an entropy solution of

U+ fu)y =0, uli=o = uo,
to be a bounded measurable function u = u(x, t) of bounded total variation satis-
fying the following conditions:

A The function u = u(x,t) is a weak solution of the Cauchy problem (7.1) taking
values in D, i.e.,

T
//(ugo, + fw)ey)dxdt + /ga(x,O)uo(x) dx =0 (7.96)
0 R R

for all test functions ¢ whose support is contained in the strip [0, T').
B Assume that u has a jump discontinuity at some point 