
Chapter 7

Well-Posedness of the Cauchy Problem

Ma per seguir virtute e conoscenza.1

—Dante Alighieri (1265–1321), La Divina Commedia

The goal of this chapter is to show that the limit found by front tracking, that is, the
weak solution of the initial value problem

ut C f .u/x D 0; u.x; 0/ D u0.x/; (7.1)

is stable in L1 with respect to perturbations in the initial data. In other words, if
v D v.x; t/ is another solution found by front tracking, then

ku. � ; t/ � v. � ; t/k1 � Cku0 � v0k1
for some constant C . Furthermore, we shall show that under some mild extra en-
tropy conditions, every weak solution coincides with the solution constructed by
front tracking.

} Example 7.1 (A special system)
As an example for this chapter we shall consider the special 2 � 2 system

ut C �
vu2

�
x

D 0;

vt C �
uv2

�
x

D 0:
(7.2)

For simplicity assume that u > 0 and v > 0. The Jacobian matrix reads 
2uv u2

v2 2uv

!
; (7.3)

with eigenvalues and eigenvectors


1 D uv; r1 D
 

�u=v
1

!
;


2 D 3uv; r2 D
 
u=v

1

!
: (7.4)

1 Hard to comprehend? It means “[but to] pursue virtue and knowledge.”
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Fig. 7.1 The curves W in .u; v/ coordinates (a) and .
; �/ coordinates (b)

The system is clearly strictly hyperbolic. Observe that

r
1 � r1 D 0;

and hence the first family is linearly degenerate. The corresponding wave curve
W1.ul ; vl / D C1.ul ; vl / is given by (cf. Theorem 5.7)

du

dv
D �u

v
; u .vl / D ul ;

or (see Fig. 7.1)

W1.ul ; vl / D C1.ul ; vl / D f.u; v/ j uv D ulvlg:

The corresponding eigenvalue 
1 is constant along each hyperbola.
With the chosen normalization of r2 we find that

r
2 � r2 D 6u;

and hence the second-wave family is genuinely nonlinear. The rarefaction curves of
the second family are solutions of

du

dv
D u

v
; u .vl / D ul ;

and thus

u

v
D ul

vl
:

We see that these are straight lines emanating from the origin, and 
2 increases as
u increases. Consequently,R2 consists of the ray

v D u
vl

ul
; u � ul :
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The rarefaction speed is given by


2 .uIul ; vl / D 3u2
vl

ul
:

To find the shocks in the second family, we use the Rankine–Hugoniot relation

s .u � ul/ D vu2 � vlu2l ;
s .v � vl / D v2u � v2l ul ;

which implies

u

ul
D 1

2

�
v

vl
C vl

v
˙
�
v

vl
� vl

v

��
D
(
vl=v;

v=vl :

(Observe that the solution with u=ul D vl=v coincides with the wave curve of the
linearly degenerate first family.) The shock part of this curve S2 consists of the line

S2.ul ; vl / D
n
.u; v/

ˇ̌
v D u

vl

ul
; 0 < u � ul

o
:

The shock speed is given by

s WD �2 .uIul ; vl / D �
u2 C uul C u2l

� vl
ul
:

Hence the Hugoniot locus and rarefaction curves coincide for this system. Systems
with this property are called Temple class systems after Temple [177]. Furthermore,
the system is linearly degenerate in the first family and genuinely nonlinear in the
second. Summing up, the solution of the Riemann problem for (7.2) is as follows:
First the middle state is given by

um D
r
ulur

vl

vr
; vm D

r
vlvr

ul

ur
:

If ul=vl � ur=vr , the second wave is a rarefaction wave, and the solution can be
written as

 
u

v

!
.x; t/ D

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

 
ul

vl

!
for x=t � ulvl ; 

um

vm

!
for ulvl < x=t � 3umvm;

q
x
3t
vm
um

 
um=vm

1

!
for 3umvm < x=t � 3urvr ; 

ur

vr

!
for 3urvr < x=t:

(7.5)
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In the shock case, that is, when ul=vl > ur=vr , the solution reads

 
u

v

!
.x; t/ D

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

 
ul

vl

!
for x=t � ulvl ; 

um

vm

!
for ulvl < x=t � �2 .ur Ium; vm/; 

ur

vr

!
for �2 .ur Ium; vm/ < x=t:

(7.6)

If we set


 D uv; � D u

v
;

and thus

u D
p

�; v D

p

=�;

the solution of the Riemann problem will be especially simple in .
; �/ coordinates.
See Fig. 7.1. Given left and right states .
l ; �l /, .
r ; �r/, the middle state is given
by .
l ; �r/. Consequently, measured in .
; �/ coordinates, the total variation of the
solution of the Riemann problem equals the total variation of the initial data. This
means that we do not need the Glimm functional to show that a front-tracking ap-
proximation to the solution of (7.2) has bounded total variation. With this in mind
it is easy to show (using the methods of the previous chapters) that there exists
a weak solution to the initial value problem for (7.2) whenever the total variation of
the initial data is bounded.

We may use these variables to parameterize the wave curves as follows:

 
u

v

!
D
 
ulvl=





!
(first family),

 
u

v

!
D
 
ul
=vl




!
(second family):

For future use we note that the rarefaction and shock speeds are as follows:


1.
/ D �1.
/ D 
;


2.
/ D 3
; and �2 .
l ; 
r / D �

l C p


l
r C 
r
�
: }

As a reminder we now summarize some properties of the front-tracking approx-
imation for a fixed ı.

1. For all positive times t , uı.x; t/ has finitely many discontinuities, each having
position xi .t/. These discontinuities can be of two types: shock fronts or approx-
imate rarefaction fronts. Furthermore, only finitely many interactions between
discontinuities occur for t � 0.
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2. Along each shock front, the left and right states

ul;r D uı .xi
; t/ (7.7)

are related by

ur D SO{ .�i / ul C ei ;

where �i is the strength of the shock and O{ is the family of the shock. The “er-
ror” ei is a vector of small magnitude. Furthermore, the speed of the shock, Px,
satisfies

j Px � �O{ .ul ; ur /j � O .1/ ı; (7.8)

where �O{ .ul ; ur / is the O{th eigenvalue of the averaged matrix

M .ul ; ur/ D
1Z
0

df ..1 � ˛/ul C ˛ur/ d˛I

cf. (5.76)–(5.77).
3. Along each rarefaction front, the values ul and ur are related by

ur D RO{ .�i / ul C ei : (7.9)

Also,

j Px � 
O{ .ur /j � O .1/ ı and j Px � 
O{ .ul /j � O .1/ ı; (7.10)

where 
O{ .u/ is the O{th eigenvalue of df .u/.
4. The total magnitude of all errors is small:

X
i

jei j � ı: (7.11)

Also, recall that for a suitable constant C0 the Glimm functional

G
�
uı. � ; t/� D T

�
uı. � ; t/�C C0Q

�
uı. � ; t/�

is nonincreasing for each collision of fronts, where T and Q are defined by (6.23)
and (6.22), respectively, and that the interaction potential

Q
�
uı. � ; t/�

is strictly decreasing for each collision of fronts.
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7.1 Stability

Details are always vulgar.
— Oscar Wilde, The Picture of Dorian Gray (1891)

Now let vı be another front-tracking solution with initial condition v0. To compare
uı and vı in the L1-norm, i.e., to estimate

��uı � vı��
1
, we introduce the vector

q D q.x; t/ D .q1; : : : ; qn/ by

vı.x; t/ D Hn .qn/Hn�1 .qn�1/ � � �H1 .q1/ u
ı.x; t/ (7.12)

and the intermediate states !i ,

!0 D uı.x; t/; !i D Hi .qi / wi�1; for 1 � i � n; (7.13)

with velocities

�i D �i.!i�1; !i /: (7.14)

As in Chapt. 5, Hk.�/u denotes the kth Hugoniot curve through u, parameterized
such that

d

d�
Hk .�/ u

ˇ̌
�D0 D rk.u/:

Note that in the definition of q we use both parts of this curve, not only the part
where � < 0. The vector q represents a “solution” of the Riemann problem with
left state uı and right state vı using only shocks. (For � > 0 these will be weak
solutions; that is, they satisfy the Rankine–Hugoniot condition. However, they will
not be Lax shocks.)

Later in this section we shall use the fact that genuine nonlinearity implies that
�k .u;Hk.�/u/ will be increasing in �, i.e.,

d

d�
�k .u;Hk.�/u/ � c > 0;

for some constant c depending only on f .
As our model problem showed, the L1 distance is more difficult to control than

the “q-distance.” However, it turns out that even the q-distance is not quite enough,
and we need to introduce a weighted form.We letD

�
uı
�
andD

�
vı
�
denote the sets

of all discontinuities in u and v, respectively, and define the functional ˚
�
uı; vı

�
as

˚.uı; vı/ D
nX
kD1

1Z
�1

jqk.x/jWk.x/ dx: (7.15)

Here the weightsWk are defined as

Wk D 1C �1Ak C �2
�
Q
�
uı
�CQ

�
vı
��
; (7.16)
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where Q
�
uı
�
and Q

�
vı
�
are the interaction potentials of uı and vı , respectively;

cf. (6.22). The quantityAk is the total strength of all waves in uı or vı that approach
the k-wave qk.x/. More precisely, if the kth field is linearly degenerate, then

Ak.x/ D
X
i; xi<xO{>k

j�i j C
X
i; x>xiO{<k

j�i j : (7.17)

The summation is over all discontinuities xi 2 D
�
uı
� [ D.vı/. If the kth field is

genuinely nonlinear, we must also account for waves of the same family approach-
ing each other, and define

Ak.x/ D
X
i; xi<xO{>k

j�i j C
X
i; x>xiO{<k

j�i j

C

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

X
i2D.uı/

O{Dk; xi<x

j�i j C
X

i2D.vı/
O{Dk; x<xi

j�i j if qk.x/ < 0;

X
i2D.vı/

O{Dk; xi<x

j�i j C
X

i2D.uı/
O{Dk; x<xi

j�i j if qk.x/ > 0.

(7.18)

In plain words, a qk shock is approached by k-waves in uı from the left, and k-
waves in vı from the right. Similarly, a qk rarefaction wave is approached by k-
waves in vı from the left and k-waves in uı from the right.

Once the values of the constants �1 and �2 are determined, we will assume that
the total variations of uı and vı are so small that

1 � Wk.x/ � 2: (7.19)

In this case we see that ˚ is equivalent to the L1 norm; i.e., there exists a finite
constant C1 such that

1

C1

��uı � vı��
1

� ˚
�
uı; vı

� � C1
��uı � vı��

1
: (7.20)

We can also define, with obvious modifications, ˚.uı1.t/; vı2 .t// with two dif-
ferent parameters ı1 and ı2. Our first goal will be to show that

˚
�
uı1.t/; vı2 .t/

� � ˚ �uı1.s/; vı2 .s/� � C2.t � s/�ı1 _ ı2
�
; (7.21)

for all 0 � t � s. Once this inequality is in place, we can show that the sequence of
front-tracking approximations is a Cauchy sequence in L1 for��uı1.t/ � uı2.t/��

1
� C1˚

�
uı1.t/; uı2 .t/

�
� C1˚

�
uı1.0/; uı2.0/

�C C1C2t
�
ı1 _ ı2

�
� C2

1

��uı1.0/ � uı2.0/��
1

C C1C2t
�
ı1 _ ı2

�
:
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Letting ı1 and ı2 tend to zero, we have the convergence of the whole sequence, and
not only a subsequence.

The first step in order to prove (7.21) is to choose �2 so large that the weights
Wk do not increase when fronts in uı1 or vı2 collide. This is possible, since the
total variations of both uı1 and vı2 are uniformly small; hence the terms �1Ak are
uniformly bounded, and by the interaction estimate, Q decreases for all collisions.
This ensures the inequalities (7.19).

Then we must examine how ˚ changes between collisions. Observe that ˚.t/ is
piecewise linear and continuous in t . Let

D D D
�
uı1
� [ D

�
vı2
�
:

We differentiate ˚ and find that

d

dt
˚
�
uı1 ; vı2

� D
X
i2D

nX
kD1

fjqk .xi�/jWk .xi�/ � jqk .xiC/jWk .xiC/g Pxi

D
X
i2D

nX
kD1

nˇ̌̌
q
i;C
k

ˇ̌̌
W

i;C
k

	
�
i;C
k � Pxi



�
ˇ̌̌
q
i;�
k

ˇ̌̌
W

i;�
k

	
�
i;�
k � Pxi


o
;

DW
X
i2D

nX
kD1

Ei;k; (7.22)

where

�
i;˙
k D �k .xi˙/ ; �k.x/ D �k .!k�1.x/; !k.x// ;

q
i;˙
k D qk .xi˙/ ; and W

i;˙
k D Wk .xi˙/ :

The second equality in (7.22) is obtained by adding terms

ˇ̌̌
q
i;�
k

ˇ̌̌
W

i;�
k �

i;�
k �

ˇ̌̌
q
.i�1/;C
k

ˇ̌̌
W

.i�1/;C
k �

.i�1/;C
k D 0;

and observing that there is only a finite number of terms in the sum in (7.22).

} Example 7.2 (Example 7.1 (cont’d.))
Let us check how this works for our special system. The two front-tracking approxi-
mations are denoted by u and v, and for simplicity we omit the superscript ı. These
are made by approximating a rarefaction wave between 
l D nı and 
r D mı,
m > n, by a series of discontinuities with speed 3jı, j D n; : : : ; m � 1. In other
words, we use the characteristic speed to the left of the discontinuity. The functions
u and v are well defined by standard techniques.

Since we managed this far without the interaction potential, we define the
weights also without these (they are needed only to bound the weights, anyway).
Hence for the example we use

Wk.x/ D 1C �Ak.x/: (7.23)
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Now we shall estimate

d

dt
˚ .u; v/ D

X
i2D
.Ei;1 C Ei;2/: (7.24)

To this end we consider a fixed discontinuity at x (to simplify the notation we
do not use a subscript on this discontinuity) in one of the functions, say v. This
discontinuity gives a contribution to the right-hand side of (7.24), denoted by E1 C
E2, where

Ej D W C
j

ˇ̌̌
qC
j

ˇ̌̌ 	
�C
j � Px



�W �

j

ˇ̌̌
q�
j

ˇ̌̌ 	
��
j � Px



; j D 1; 2:

For this 2 � 2 system we have

A1.x/ D
X

xi<x; O{D2
j�i j ;

A2.x/ D
X

xi>x; O{D1
j�i j

C

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

X
O{D2; xi<x
xi2D.u/

j�i j C
X

O{D2; xi>x
xi2D.v/

j�i j if q2 < 0,

X
O{D2; xi<x
xi2D.v/

j�i j C
X

O{D2; xi>x
xi2D.u/

j�i j if q2 > 0.

To estimate E1 CE2 we study several cases.

Case 1 Assume first that the jump at x is a contact discontinuity, that is, of the first
family, in which case

AC
1 D A�

1 ;

and consequently,

W C
1 D W �

1 : (7.25)

Furthermore,

qC
1 D q�

1 C � and �C
1 D ��

1 D Px � q�
2 :

Then

E1 D W C
1

ˇ̌
qC
1

ˇ̌ �
�C
1 � Px� �W �

1 jq�
1 j ���

1 � Px�
D W �

1 fjq�
1 C �j � jq�

1 jg ��q�
2

�
� W �

1 jq�
2 j j�j : (7.26)
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For the weights of the second family we find that

AC
2 D A�

2 � j�j ; W C
2 D W �

2 � � j�j ; qC
2 D q�

2 ; ��
2 D �C

2 :

To estimate ��
2 � Px we exploit that ��

2 is a discontinuity of the second family, while
Px is a contact discontinuity of the first family. Thus we can estimate from below
their difference by the smallest difference in speeds between waves in the first- and
second-wave families. We find that ��

2 � Px � c D minu;v f
g > 0. Hence
E2 D W C

2

ˇ̌
qC
2

ˇ̌ �
�C
2 � Px� �W �

2 jq�
2 j ���

2 � Px�
D jq�

2 j ���
2 � Px� .�� j�j/

� ��c jq�
2 j j�j : (7.27)

Then

E1 CE2 D jq�
2 j j�j �W �

1 � �c� � 0 (7.28)

if �c � supx W1.x/. (Throughout this argument we will choose larger and larger �.)
This inequality (7.28) is the desired estimate when x is a contact discontinuity.

Case 2 The case that x is a genuinely nonlinear wave, that is, belongs to the second
family, is more complicated. There are two distinct cases, that of an (approximate)
rarefaction wave and that of a shock wave. First we treat the term E1, which is
common to the two cases. Here

AC
1 D A�

1 C j�j ; W C
1 D W �

1 C � j�j ; qC
1 D q�

1 ;

�C
1 D ��

1 ; and ��
1 � Px < �c:

Consequently,

E1 D W C
1

ˇ̌
qC
1

ˇ̌ �
�C
1 � Px� �W �

1 jq�
1 j ���

1 � Px�
D � j�j jq�

1 j ���
1 � Px�

� ��c jq�
1 j j�j � 0: (7.29)

We split the estimate for E2 into several cases.

Case 2a (rarefaction wave) First we consider the case that x is an approximate
rarefaction wave. By the construction of v we have

� D ı > 0 and qC
2 D q�

2 C �:

The speeds appearing in E2 are given by

�C
2 D 2
u C q�

2 C � C
q

u
�

u C q�

2 C �
�
;

��
2 D 2
u C q�

2 C
q

u
�

u C q�

2

�
;

Px D 3
�

u C q�

2

�
:
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Fig. 7.2 q�
2 > 0

u = (ηu, ξu)

v− = (η−, ξ−)

q−2

q+1 = q−1

q+2 = q−2 +

v+ = (η+, ξ+)

We define the auxiliary speed

Q� D �2
�
v�; vC� D 2
u C 2q�

2 C � C
q�

u C q�

2

� �

u C q�

2 C �
�
:

It is easily seen that

0 � � � Q� � Px � 2�:

We have several subcases. First we assume that q�
2 > 0, in which case qC

2 > 0 as
well; see Fig. 7.2.

In this case AC
2 D A�

2 C j�j. Hence

E2 D W C
2

ˇ̌
qC
2

ˇ̌ �
�C
2 � Px� � �

W C
2 � � j�j� jq�

2 j ���
2 � Px�

D W C
2

˚�
q�
2 C �

� �
�C
2 � Q�� � q�

2

�
��
2 � Q���

CW C
2

�
qC
2 � q�

2

�
. Q� � Px/C � j�j jq�

2 j .��
2 � Px/:

We need to estimate the term
˚�
q�
2 C �

� �
�C
2 � Q�� � q�

2

�
��
2 � Q���. This estimate

is contained in Lemma 7.4 in the general case, and it is verified directly for this
model right after the proof of Lemma 7.4. We obtainˇ̌�

q�
2 C �

� �
�C
2 � Q�� � q�

2

�
��
2 � Q��ˇ̌ � O .1/ j�j jq�

2 j �jq�
2 j C j�j� ;

and thus

E2 � O .1/ j�j jq�
2 j �jq�

2 j C j�j�CW C
2 j�j j Q� � Pxj C � j�j jq�

2 j .��
2 � Px/

� O .1/ j�j jq�
2 j �jq�

2 j C j�j�C 2W C
2 j�j2 C � j�j jq�

2 j .��
2 � Px/:

We estimate ��
2 � Px � �q�

2 � 0, and hence

E2 � j�j jq�
2 j2 .O .1/� �/C O .1/ j�j2 jq�

2 j C O .1/ j�j2 � M j�j ı;

for some constantM if we choose � big enough.We have used thatW C
2 is bounded.

Therefore,

E1 CE2 � M j�j ı:
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Now for the case q�
2 < 0. Here we have two further subcases, qC

2 < 0 and q
C
2 > 0.

First we assume that qC
2 < 0, and thus both q�

2 and qC
2 are negative. Note thatˇ̌

qC
2

ˇ̌ D jq�
2 j � j�j ; 0 � �q�

2 � ��
2 � Px � �2q�

2 ; and AC
2 D A�

2 � j�j :
Thus

E2 D �
W �
2 � � j�j� ˇ̌qC

2

ˇ̌ �
�C
2 � Px� �W �

2 jq�
2 j ���

2 � Px�
D W �

2

˚�
qC
2 � �� ���

2 � Q�� � qC
2

�
�C
2 � Q���

�W �
2 j�j . Q� � Px/ � � j�j ˇ̌qC

2

ˇ̌ �
�C
2 � Px�

� O .1/ j�j ˇ̌qC
2

ˇ̌ �ˇ̌
qC
2

ˇ̌C j�j�C O .1/ j�j2 � � j�j ˇ̌qC
2

ˇ̌2
� j�j jq�

2 j2 .O .1/ � �/C O .1/ j�j2
� M j�j ı;

where we have used Lemma 7.4 (with " D �, "0 D qC
2 ) and chosen � sufficiently

large. Thus we conclude that E1 CE2 � M j�j ı in this case as well.
Now for the last case in which � > 0, namely q�

2 < 0 < q
C
2 . Since q

C
2 D q�

2 C�,
we have ˇ̌

qC
2

ˇ̌ � ı; jq�
2 j � ı:

Furthermore, AC
2 D A�

2 , and thusW
C
2 D W �

2 . We see that

0 � �q�
2 � ��

2 � Px � �2q�
2 ; �C

2 � Px � 2� � q�
2 ;

and hence

E2 D W C
2

˚
qC
2

�
�C
2 � Px�C jq�

2 j ���
2 � Px��

� W C
2

˚
qC
2

�
2 j�j C q�

2

�C jq�
2 j 2 jq�

2 j�
� M j�j ı;

for some constantM .

Case 2b (shock wave) When x is a shock front, we have � < 0. In this case,

Px D Q� D �2
�
v�; vC� D 2
u C 2q�

2 C � C
q�

u C q�

2

� �

u C q�

2 C �
�
:

We first consider the case q�
2 < 0. Then

qC
2 D q�

2 C � < 0;
ˇ̌
qC
2

ˇ̌ D jq�
2 j C j�j ; and AC

2 D A�
2 � j�j ;

and we obtain

E2 D �
W �
2 � � j�j� ˇ̌qC

2

ˇ̌ �
�C
2 � Px� �W �

2 jq�
2 j ���

2 � Px�
D �W �

2

�
.q�
2 C �/.�C

2 � Px/� q�
2 .�

�
2 � Px/�

� � j�j .jq�
2 j C j�j/.�C

2 � Px/
� O .1/ j�j jq�

2 j .jq�
2 j C j�j/ � � j�j .jq�

2 j C j�j/ jq�
2 j

� j�j jq�
2 j .jq�

2 j C j�j/ .O .1/� �/ � 0:
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Lemma 7.4 (with "0 D �, " D q�
2 ) implies

ˇ̌�
q�
2 C �

� �
�C
2 � Px� � q�

2

�
��
2 � Px�ˇ̌ � O .1/ j�j jq�

2 j �jq�
2 j C j�j� :

Furthermore,

�C
2 � Px D �q�

2 C
q

u
�

u C q�

2 C �
�

�
q�

u C q�

2

� �

u C q�

2 C �
�

D �q�
2

0
B@1C

q

u C qC

2

p

u C

q

u C qC

2

1
CA

� �q�
2 D jq�

2 j :

If q�
2 > 0, then there are two further cases to be considered, depending on the sign

of qC
2 . We first consider the case qC

2 < 0, and thus qC
2 < 0 < q�

2 . Now A
C
2 D A�

2 .
Furthermore,

��
2 � Px � �2q�

2 � 0;

�C
2 � Px D �q�

2

0
B@1C

q

u C qC

2

p

u C

q

u C qC

2

1
CA < � jq�

2 j :

Thus

�C
2 < Px < ��

2 ;

and we easily obtain

E2 D W �
2

˚ˇ̌
qC
2

ˇ̌ �
�C
2 � Px� � jq�

2 j ���
2 � Px�� < 0:

This leaves the final case q˙
2 > 0. In this case we have that A

C
2 D A�

2 Cj�j. We still
have

��
2 � Px D �qC

2

0
B@1C

p

u C q�

2

p

u C

q

u C qC

2

1
CA � �qC

2 < 0;

and thus

j Px � ��
2 j � qC

2 :

Furthermore, by Lemma 7.4, we have that

ˇ̌�
q�
2 C �

� �
�C
2 � Px� � q�

2

�
��
2 � Px�ˇ̌ � O .1/

ˇ̌
qC
2

ˇ̌ j�j �ˇ̌qC
2

ˇ̌C j�j� :
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Then we calculate

E2 D W C
2

ˇ̌
qC
2

ˇ̌ �
�C
2 � Px� � �

W C
2 � � j�j� jq�

2 j ���
2 � Px�

D W C
2

�
.q�
2 C �/.�C

2 � Px/� q�
2 .�

�
2 � Px/�C � j�j jq�

2 j .��
2 � Px/

� W C
2

ˇ̌
qC
2

�
�C
2 � Px� � q�

2

�
��
2 � Px�ˇ̌ � � j�j j��

2 � Pxj jq�
2 j

� O .1/ j�j jq�
2 j �jq�

2 j C j�j� � � j�j jq�
2 j ˇ̌qC

2

ˇ̌
� O .1/ j�j2 C j�j jq�

2 j2 .O .1/ � �/
� M j�j ı

if � is sufficiently large. This is the last case.
Now we have shown that in all cases,

E1 CE2 � M j�j ı:
Summing over all discontinuities in u and v we conclude that

d

dt
˚.u; v/ � C 0ı;

for some finite constant C 0 independent of ı.
We shall now show that

nX
kD1

Ei;k � O.1/ j�i j
�
ı1 _ ı2

�C O .1/ jei j ; (7.30)

and this estimate is easily seen to imply (7.21). To prove (7.30) we shall need some
preliminary results:

Lemma 7.3 Assume that the vectors � D .�1; : : : ; �n/, �0 D �
�0
1; : : : ; �

0
n

�
, and �00 D�

�00
1 ; : : : ; �

00
n

�
satisfy

H .�/ u D H
�
�00�H �

�0�u
for some vector u, where

H .�/ D Hn .�n/Hn�1 .�n�1/ � � �H1 .�1/ :

Then

nX
kD1

j�k � �0
k � �00

k j D O .1/
 X

j

ˇ̌̌
�0
j �

00
j

ˇ̌̌ 	ˇ̌̌
�0
j

ˇ̌̌
C
ˇ̌̌
�00
j

ˇ̌̌

C
X
k;l
k¤l

ˇ̌̌
�0
j �

00
l

ˇ̌̌!
: (7.31)

If the scalar � and the vector �0 D �
�0
1; : : : ; �

0
n

�
satisfy

Rl .�/ u D H
�
�0�u;

where Rl denotes the l th rarefaction curve, then

j� � �0
l j C

X
k¤l

j�0
kj D O .1/ j�j

�
j�0
l j
�j�j C j�0

l j
�C

X
k¤l

j�0
kj
�
: (7.32)
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Proof The proof of this lemma is a straightforward modification of the proof of the
interaction estimate (6.18). �

Lemma 7.4 Let N! 2 ˝ be sufficiently small, and let " and "0 be real numbers.
Define

! D Hk."/ N!; � D �k . N!;!/ ;
! 0 D Hk

�
"0�!; �0 D �k

�
!;! 0� ;

! 00 D Hk

�
"C "0� N!; �00 D �k

� N!;! 00� :
Then one has

j."C "0/.�00 � �0/� ".� � �0/j � O.1/ j""0j �j"j C j"0j� : (7.33)

Proof The proof of this is again in the spirit of the proof of the interaction estimate,
equation (6.13). Let the function � be defined as

�
�
"; "0� D �

"C "0��00 � "� � "0�0:

Then � is at least twice differentiable, and satisfies

� ."; 0/ D �
�
0; "0� D 0;

@2�

@"@"0 .0; 0/ D 0:

Consequently,

�
�
"; "0� D

"Z
0

"0Z
0

@2�

@"@"0 .r; s/ ds dr D O.1/
j"jZ
0

j"0 jZ
0

.jr j C jsj/ dr ds:

From this the lemma follows. �

} Example 7.5 (Lemma 7.4 for Example 7.1)
If k D 2, let N!, ! 0, and ! 00 denote the 
-coordinate, since only this will influence
the speeds. Then a straightforward calculation yields

ˇ̌
."C "0/.�00 � �0/� ".� � �0/

ˇ̌
D j"j j"0j �j"j C j"0j�

�
p N! C p

! 0 C p
! 00

N!
	p

! 0 C p
! 00



C ! 0
	p N! C p

! 00



C ! 00
	p N! C p

! 0



C 2
p N!! 0! 00

� j"j j"0j .j"j C j"0j/
min f N!;! 0; ! 00g ;

verifying the lemma in this case. }
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If the kth characteristic field is genuinely nonlinear, then the characteristic speed

k .Hk.�/!/ is increasing in �, and we can even choose the parameterization such
that


k .Hk.�/!/ � 
k.!/ D �;

for all sufficiently small � and !. This also implies that �k.!;Hk.�/!/ is strictly
increasing in �. However, the Hugoniot locus through the point ! does not in gen-
eral coincide with the Hugoniot locus through the point Hk.q/!. Therefore, it is
not so straightforward comparing speeds defined on different Hugoniot loci. When
proving (7.30) we shall need to do this, and we repeatedly use the following lemma:

Lemma 7.6 For some state ! define

�.q/ D �k .Hk.q/!;Hk.�/Hk.q/!/ � �k .!;Hk.� C q/!/ :

Then � is at least twice differentiable for all k D 1; : : : ; n. Furthermore, if the kth
characteristic field is genuinely nonlinear, then for sufficiently small jqj and j�j,

� 0.q/ � c > 0; (7.34)

where c depends only on f for all sufficiently small j!j.
Proof Let the vector �0 be defined by H .�0/! D Hk.�/Hk.q/!. Then by
Lemma 7.3,

j�0
k � .q C �/j C

X
i¤k

j�0
i j � O .1/ jq�j .j�j C jqj/ :

Consequently,

Hk.� C q/! D Hk.�/Hk.q/! C O .1/ jq�j .j�j C jqj/ :
Using this we find thatˇ̌̌
ˇHk.�/Hk.q/! �Hk.�/!

q

ˇ̌̌
ˇ D

ˇ̌̌
ˇHk.� C q/! �Hk.�/!

q

ˇ̌̌
ˇC O .1/ j�j .j�j C jqj/ :

Therefore,

d

dq
fHk.�/Hk.q/!g ˇ̌

qD0D
d

d�
fHk.�/!g C O .1/ j�j2 : (7.35)

Hence, we compute

� 0.0/ D r1�k .!;Hk.�/!/ � rk.!/
� r2�k .!;Hk.�/!/ �

�
d

d�
fHk.�/!g � d

dq
fHk.�/Hk.q/!g ˇ̌

qD0

�
D r1�k .!;Hk.�/!/ � rk.!/C O .1/ j�j2
� c0 > 0;
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Fig. 7.3 The setting in the
proof of (7.30)

q− −q+

uδ1 uδ1vδ,+vδ,−

for sufficiently small j�j. The value of the constant c0 (and its existence) depends on
the genuine nonlinearity of the system and hence on f . Since � 0 is continuous for
small jqj, the lemma follows. �

We shall prove (7.30) in the case that the front at xi is a front in vı2 ; the case in
which it is a front in uı1 is completely analogous. We therefore fix i , and study the
relation between q�

k and qC
k . Since the front is going to be fixed from now on, we

drop the subscript i . For simplicity we write ı D ı2. Assume the the family of the
front x is l and the front has strength �. The situation is as in Fig. 7.3.

A key observation is that we can regard the waves qC
k as the result of an inter-

action between the waves q�
k and �; similarly, the waves �q�

k are the result of an
interaction between � and �qC

k .
Regarding the weights, from (7.16) and (7.18) we find that

W C
k �W �

k D
(
�1 j�j if k < l;

��1 j�j if k > l;
(7.36)

while for k D l we obtain

W C
l �W �

l D

8̂̂
<
ˆ̂:
�1 j�j if min

˚
q�
l ; q

C
l

�
> 0,

��1 j�j if max
˚
q�
l ; q

C
l

�
< 0,

O .1/ if q�
l q

C
l < 0:

(7.37)

The proof of (7.30) is a study of cases. We split the estimate into two subgroups,
depending on whether the front at x is an approximate rarefaction wave or a shock.
Within each subgroup we discuss three subcases depending on the signs of q˙

l . In
all cases we discuss the terms Ek (k ¤ l) and El separately. For k ¤ l we write
Ek (recall that we dropped the subscript i ) as

Ek D �ˇ̌
qC
k

ˇ̌ � jq�
k j�W C

k

�
�C
k � Px�

C jq�
k j �W C

k �W �
k

� �
�C
k � Px�C jq�

k jW �
k

�
�C
k � ��

k

�
: (7.38)

By the strict hyperbolicity of the system, we have that

�C
k � Px � �c < 0; for k < l ,

�C
k � Px � c > 0; for k > l ,
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where c is some fixed constant depending on the system. Thus we always have that

�
W C
k �W �

k

� �
�C
k � Px� � �c�1 j�j ; k ¤ l: (7.39)

We begin with the case that the front at x is an approximate rarefaction wave
(� > 0). In this case,

Rl.�/v
ı;� C e D H

�
qC�uı1 D H

�
qC�H .�q�/ vı;� D H . Qq/ vı;�

for some vector Qq. Hence

H .�q�/ vı;� D H
��qC�H . Qq/ vı;�; (7.40)

Rl.�/v
ı;� C e D H . Qq/ vı;�: (7.41)

From (7.31) and (7.40) we obtain

X
k

ˇ̌
qC
k � q�

k � Qqk
ˇ̌
O .1/

	X
k

ˇ̌
qC
k Qqk

ˇ̌ �ˇ̌
qC
k

ˇ̌C j Qqkj
�C

X
k;j
k¤j

ˇ̌
qC
k Qqj

ˇ̌

; (7.42)

and from (7.32) and (7.41) we obtain

j Qql � �j C
X
k¤l

j Qqk j D O .1/ j�j
	
j Qql j .j Qql j C j�j/C

X
k¤l

j Qqkj



C O .1/ jej :

This implies that

j Qql � �j � O .1/ j�j C O .1/ jej ;X
k¤l

j Qqkj � O .1/ j�j C O .1/ jej : (7.43)

Furthermore, since � is an approximate rarefaction, 0 � � � ı. Therefore, we can
replace Qql with � and Qqk (k ¤ l) with zero on the right-hand side of (7.42), making
an error of O .1/ ı. Indeed,

ˇ̌
qC
l � q�

l � �ˇ̌C
X
k¤l

ˇ̌
qC
k � q�

k

ˇ̌

�
X
k

ˇ̌
qC
k � q�

k � �ˇ̌C j Qql � �j C
X
k¤l

j Qqk j

� O .1/
 X

k

ˇ̌
qC
k Qqk

ˇ̌ �ˇ̌
qC
k

ˇ̌C j Qqk j
�C

X
k;j
k¤j

ˇ̌
qC
k Qqj

ˇ̌!

C O .1/ j�j
�

j Qql j .j Qql j C j�j/C
X
k¤l

j Qqkj
�

C O .1/ jej :
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Using (7.43) and the fact that � � ı, we conclude that

ˇ̌
qC
l �q�

l � �ˇ̌C
X
k¤l

ˇ̌
qC
k � q�

k

ˇ̌

D O .1/ j�j
�
ı C ˇ̌

qC
l

ˇ̌ �ˇ̌
qC
l

ˇ̌C j�j�C
X
k¤l

ˇ̌
qC
k

ˇ̌�C O .1/ jej :
(7.44)

Similarly,

ˇ̌
qC
l �q�

l � �ˇ̌C
X
k¤l

ˇ̌
qC
k � q�

k

ˇ̌

D O .1/ j�j
�
ı C jq�

l j �jq�
l j C j�j�C

X
k¤l

jq�
k j
�

C O .1/ jej :
(7.45)

Since in this case 0 � � � ı, and the total variation is small, we can assume that
the right-hand sides of (7.44)–(7.45) are smaller than � C O .1/ jej. Also, the error
e is small; cf. (7.11). Then

0 < qC
l � q�

l < 2� C O .1/ jej � 2ı C O .1/ jej : (7.46)

We can also use the estimates (7.44) and (7.45) to make a simplifying assumption
throughout the rest of our calculations. Since the total variation of u�v is uniformly
bounded, we can assume that the right-hand sides of (7.44) and (7.45) are bounded
by

1

2
j�j C O .1/ jej :

In particular, we then find that

� � 1

2
j�j � O .1/ jej � qC

` � q�
` � � C 1

2
j�j C O .1/ jej :

Hence if � > 0, from the left inequality we find that

qC
` > q

�
`

or

j�j � O .1/ jej ;

and if � < 0, from the right inequality above,

qC
` < q

�
`

or

j�j � O .1/ jej :
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If � > 0 and q�
` � qC

` or � < 0 and qC
` � q�

` , then j�j � O .1/ jej. In this case we
find for k ¤ l , or k D l and q�

` q
C
` > 0, that

Ek D ˚jq�
k j �W �

k �W C
k

�CW C
k

�jq�
k j � ˇ̌

qC
k

ˇ̌�� Px
� ˚jq�

k j �1 j�j C ˇ̌
W C
k

ˇ̌
.j�j =2C O .1/ jej/� j Pxj

� O .1/ jej : (7.47)

If k D l and q�
` q

C
` < 0, then for � > 0 we have that qC

` � q�
` � O .1/ jej, so if

qC
` < q

�
` , we must have that

ˇ̌
qC
`

ˇ̌ � O .1/ jej and q�
` � O .1/ jej :

Similarly, if � < 0 and qC
` > q

�
` , we obtain

qC
` < O .1/ jej and jq�

` j � O .1/ jej :

Then we find that

El D ˚jq�
` jW �

l � ˇ̌
qC
`

ˇ̌
W C
l

� Px � O .1/ jej : (7.48)

These observations imply that if j�j D O .1/ jej, we have that
X
k

Ek D O .1/ jej ;

which is what we want to show. Thus in the following we can assume that either

� > 0 and qC
` > q

�
` ;

or

� < 0 and qC
` < q

�
` : (7.49)

Now follows a discussion of several different cases, depending on whether the front
is an approximate rarefaction wave or a shock wave, and on the signs of q�

` and qC
` .

Case R1 0 < q�
l < q

C
l , � > 0.

For k ¤ l we recall (7.38) that

Ek D �ˇ̌
qC
k

ˇ̌ � jq�
k j�W C

k

�
�C
k � Px�

C jq�
k j �W C

k �W �
k

� �
�C
k � Px�C jq�

k jW �
k

�
�C
k � ��

k

�
: (7.50)

The second term in (7.50) is less than or equal to (cf. (7.39))

�c�1 jq�
k j j�j :
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Fig. 7.4 The situation for
0 < q�

l < qC
l , � > 0, and

k D l

ω 1

ω

ω

ω̃

H ( )ω 1

H ( )ω

−

Furthermore, by (7.45),

ˇ̌
qC
k

ˇ̌� jq�
k j � O .1/ j�j

�
ı C jq�

l j �jq�
l j C j�j�C

X
k¤l

jq�
k j
�

C O .1/ jej :

By the continuity of �k ,

ˇ̌
�C
k � ��

k

ˇ̌ D O .1/ .j�j C jej/ :

Hence from (7.38), we find that

Ek � O .1/ j�j
�
ı C jq�

l j �jq�
l j C j�j�C

X
Qk¤l

ˇ̌̌
q�

Qk
ˇ̌̌�

C O .1/ jej � c�1 jq�
k j j�j

� O .1/ j�j
�
ı C

X
Qk¤l

ˇ̌̌
q�

Qk

ˇ̌̌�
C O .1/ jej

� c�1 j�j jq�
k j C O .1/ j�j jq�

l j �jq�
l j C j�j� : (7.51)

For k D l the situation is more complicated. We define states and speeds

Q!` D Hl

�
q�
l C �

�
!�
l�1; Q�` D �l

�
!�
l�1; Q!`

�
;

!?` D Hl .�/ !
�
l ; �?` D �l

�
!�
l ; !

?
`

� I (7.52)

see Fig. 7.4.
Recall that

�˙
l D �l

�
!˙
l�1; !

˙
l

�
:

Now by Lemma 7.4, with ! D !�
l�1, " D q�

` , and "
00 D q�

` C �,

ˇ̌�
q�
` C �

� � Q�` � �?`
� � q�

`

�
��
l � �?`

�ˇ̌ D O .1/ jq�
` j j�j �jq�

` j C j�j� : (7.53)
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We also find that (cf. (7.10) and the fact that �l.u; u/ D 
l .u/)

j�?` � Pxj � ˇ̌
�l
�
!�
l ; !

?
`

� � �l
�
vı;�; vı;�

�ˇ̌C O .1/ ı
D ˇ̌

�l
�
!�
l ;Hl.�/!

�
l

� � �l
�
!�
n ; !

�
n

�ˇ̌C O .1/ ı
� ˇ̌
�l
�
!�
l ;Hl.�/!

�
l

� � �l.!�
l ; !

�
l /
ˇ̌

C ˇ̌
�l.!

�
l ; !

�
l /� �l.!�

l ; !
�
lC1/

ˇ̌
C ˇ̌
�l.!

�
l ; !

�
lC1/� �l.!�

lC1; !
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Since the l th field is genuinely nonlinear, then by Lemma 7.6,
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Adding (7.57) and (7.51), we obtainX
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which holds for sufficiently large �1. This implies (7.30) in Case R1.

Case R2 q�
l < q

C
l < 0, � > 0.

Writing Ek as in (7.38), and using (7.44) (instead of (7.45) as in the previous
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Fig. 7.5 The situation for
q�
l < qC

l < 0, � > 0, and
k D l
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−

For k D l the situation is similar to the previous case. We define auxiliary states
and speeds
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By genuine nonlinearity, using Lemma 7.6, we find that
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for some constant c. Now
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Using the above estimates (7.61)–(7.64), we compute
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by choosing �1 larger if necessary. Hence (7.30) holds in this case as well.

Case R3 q�
l < 0 < q

C
l , � > 0.

Since the front at x is a rarefaction front, both estimates (7.51) and (7.59) hold.
Moreover, we have that
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Then from ADCBC � .ACB/.DCC/ for positive A, B , C , andD, we obtain
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Using (7.51) for k < l and (7.59) for k > l , and choosing �1 sufficiently large, we
obtain (7.30).

Now we shall study the cases in which the front at x is a shock front. Also, here
we prove (7.30) in three cases depending on q�
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Fig. 7.6 The situation for
0 < qC

` < q�
` , � < 0, and

k D l
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Case S1 0 < qC
` < q

�
` , � < 0.

If k ¤ l , then we can write Ek as (7.38) and use the arguments leading to (7.51)
and the estimate (7.69) to obtain
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For k D l we define the auxiliary states and speeds as in (7.60); see Fig. 7.6.
Then the estimate (7.61) holds. Also, using (7.69) we find that
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By Lemma 7.6, we have
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We estimate
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` C j�j� .O .1/� c�1/C O .1/ jej : (7.75)

As before, setting �1 sufficiently large, (7.75) and (7.70) implyX
k

Ek D El C
X
k¤l

Ek � O .1/ jej ; (7.76)

which is (7.30).

Case S2 qC
` < q

�
` < 0, � < 0.

In this case we proceed as in Case S1, but using (7.68) instead of (7.69). For
k ¤ l this gives the estimate

Ek � O .1/ j�j
�

jq�
` j �jq�

` j C j�j�C
X
Qk¤l

ˇ̌̌
q�

Qk

ˇ̌̌�
C O .1/ jej � c�1 jq�

k j j�j : (7.77)
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Fig. 7.7 The situation for
qC
` < q�

` < 0, � < 0, and
k D l

ω̃

ω
ω

ω 1

H ( )ω H ( )ω 1−

−

We now define the intermediate states Q!`, !?` and the speeds Q�` and �?` as in (7.52);
see Fig. 7.7.

Then the estimate (7.53) holds. As in Case R1, we computeˇ̌
�C
` � Q�`

ˇ̌ D O .1/
�ˇ̌
!�
l�1 � !C

l�1
ˇ̌C ˇ̌

qC
` � q�

` � �ˇ̌�
D O .1/ j�j

	
jq�
` j �jq�

` j C j�j�C
X
k¤l

jq�
k j



C O .1/ jej (7.78)

and

j�?` � Pxj � ˇ̌
�l
�
!�
l ;Hl.�/!

�
l

� � �l
�
vı;�;Hl.�/v

ı;��ˇ̌C O .1/ jej
� O .1/ ı C O .1/ j!�

l � !�
0 j C O .1/ jej

� O .1/ jej C O .1/
X
k<l

jq�
k j : (7.79)

In this case, genuine nonlinearity and Lemma 7.6 imply that

Q�` � �?` > c jq�
` j ; (7.80)

with c > 0. Moreover, now

W C
` D W �

` � �1 j�j :
Now we can use the (by now) familiar technique of estimating El :

El D �
W �
` � �1 j�j� ˇ̌qC

`

ˇ̌ �
�C
` � Px� �W �

` jq�
` j ���

` � Px�
� ��1 j�j �jq�

` j C j�j� � Q�` � �?`
�

C �1 j�j �jq�
` j C j�j� �ˇ̌�C

` � Q�`
ˇ̌C j�?` � Pxj�

C �1 j�j ˇ̌qC
` � q�

` � �ˇ̌ ˇ̌�C
` � Px ˇ̌

CW �
`

˚ˇ̌
qC
`

ˇ̌ �
�C
` � Px� � jq�

` j ���
` � Px��

� �c�1 jq�
` j j�j �jq�

` j C j�j�
C O .1/ �1 j�j �jq�

` j C j�j��jq�
` j �jq�

` j C j�j�C
X
k¤l

jq�
k j
�

CW �
`

nˇ̌
q�
`

�
��
` � �?`

� � �
q�
` C �

� � Q�` � �?`
�ˇ̌

C ˇ̌
qC
` � q�

` � �ˇ̌ ˇ̌�C
` � Px ˇ̌

C j�j j�?` � Pxj C �jq�
` j C j�j� ˇ̌�C

` � Q�`
ˇ̌oC O .1/ jej
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� �c�1 jq�
` j j�j �jq�

` j C j�j�C O .1/
�

jq�
` j �jq�

` j C j�j�C
X
k¤l

jq�
k j
�

C O .1/ jej
� O .1/

X
k¤l

jq�
k j C j�j jq�

` j �jq�
` j C j�j� .O .1/� c�1/C O .1/ jej : (7.81)

Combining (7.81) and (7.77), we obtain

X
k

Ek D El C
X
k¤l

Ek � O .1/ jej ; (7.82)

which is (7.30).

Case S3 qC
` < 0 < q

�
` , � < 0.

For k ¤ l , the estimate (7.77) remains valid.
Next we consider the case k D l . The O .1/ that multiplies j�j in (7.69) (or

(7.69)) is proportional to the total variation of the initial data. Hence we can assume
that this is arbitrarily small by choosing T:V: .u0/ sufficiently small. Since all terms
q˙
j are bounded, we can and will assume that

ˇ̌
qC
l � q�

l � �ˇ̌ � 1

2
j�j C O .1/ jej : (7.83)

Without loss of generality we may assume that
ˇ̌
qC
l

ˇ̌ � ˇ̌
q�
l

ˇ̌
. This implies that

ˇ̌
qC
l � q�

l � �ˇ̌ � ˇ̌
q�
l � qC

l

ˇ̌ � j�j D q�
l � qC

l C � � 2q�
l C �: (7.84)

Thus

2q�
l C � � 1

2
j�j C O .1/ jej ; (7.85)

or

q�
l C � � �1

4
j�j C O .1/ jej ; (7.86)

which can be rewritten as

jq�
l C � � O .1/ jejj � 1

4
j�j : (7.87)

From this we conclude that

jq�
l C �j � 1

4
j�j � O .1/ jej : (7.88)

We define the auxiliary states Q!`, !?` and the speeds Q�` and �?` as in (7.52); see
Fig. 7.8. Then estimates (7.78) and (7.79) hold.
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Fig. 7.8 The situation for
qC
` < 0 < q�

` , � < 0, and
k D l

ω̃

ω 1

ω

ω
H ( )ω

H ( )ω 1

−

−

By Lemma 7.6 we have that

Q�` � �?` � 0; (7.89)

��
` � �?` � c jq�

` C �j ; (7.90)

for a positive constant c. Recalling that W �
` � 1, and using (7.89), (7.90), and the

estimates (7.78) and (7.79) (which remain valid in this case), we compute

El D W C
`

ˇ̌
qC
`

ˇ̌ �
�C
` � Px� �W �

` jq�
` j ���

` � Px�
� W C

`

ˇ̌
qC
`

ˇ̌ � Q�` � �?`
� �W �

` jq�
` j ���

` � �?`
�

CW C
`

ˇ̌
qC
`

ˇ̌ �ˇ̌
�C
` � Q�`

ˇ̌C j�?` � Pxj�CW �
` jq�

` j j�?` � Pxj
� � jq�

` j c jq�
` C �j C O .1/ j�j

�
q�
`

�
q�
` C j�j�C

X
Qk¤l

ˇ̌̌
q�

Qk

ˇ̌̌�
C O .1/ jej

� �c
4

jq�
` j j�j C O .1/ j�j

�
q�
`

�
q�
` C j�j�C

X
Qk¤l

ˇ̌̌
q�

Qk

ˇ̌̌�
C O .1/ jej : (7.91)

Now (7.77) and (7.91) are used to balance the terms containing the factor
P

k¤l
ˇ̌
q�
k

ˇ̌
.

The remaining term,

jq�
` j j�j

�
�1
4
c C O .1/

�
q�
` C j�j�� ;

can be made negative by choosing T:V: .u0/ (and hence O .1/) sufficiently small.
Hence also in this case (7.30) holds.
Finally, if q�

` or qC
` is zero, (7.30) can easily be shown to be a limit of one of the

previous cases.
Summing up, we have proved the following theorem:

Theorem 7.7 Let uı1 and vı2 be front-tracking approximations, with accuracies
defined by ı1, ı2,

G
�
uı1.t/

�
< M; and G

�
vı2 .t/

�
< M; for t � 0. (7.92)

For sufficiently small M there exist constants �1, �2, and C2 such that the func-
tional ˚ defined by (7.15) and (7.16) satisfies (7.21). Furthermore, there exists
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a constant C (independent of ı1 and ı2) such that��uı1.t/ � vı2 .t/��
1

� C
��uı1.0/� vı2 .0/��

1
C Ct

�
ı1 _ ı2

�
: (7.93)

To state the next theorem we need the following definition. Let the domainD be
defined as the L1 closure of the set

D0 D
n
u 2 L1.RIRn/ j u is piecewise constant and G.u/ < M

o
I (7.94)

that is, D D D0. Since the total variation is small, we will assume that all possible
values of u are in a (small) neighborhood˝ � Rn.

Theorem 7.8 Let fj 2 C2.Rn/, j D 1; : : : ; n. Consider the strictly hyperbolic
equation ut C f .u/x D 0. Assume that each wave family is either genuinely
nonlinear or linearly degenerate. For all initial data u0 in D, defined by (7.94),
every sequence of front-tracking approximations uı converges to a unique limit u
as ı ! 0. Furthermore, let u and v denote solutions

ut C f .u/x D 0;

with initial data u0 and v0, respectively, obtained as a limit of a front-tracking
approximation. Then

ku.t/ � v.t/k1 � Cku0 � v0k1: (7.95)

Proof First we use (7.93) to conclude that every front-tracking approximation uı

has a unique limit u as ı ! 0. Then we take the limit ı ! 0 in (7.93) to conclude
that (7.95) holds. �

Note that this also gives an error estimate for front tracking for systems. If we
denote the limit of the sequence

˚
uı
�
by u and vı2 D uı , then by letting ı2 ! 0 in

(7.93) ��uı. � ; t/ � u. � ; t/��
1

� C
���uı0 � u0

��
1

C ıt
� D O .1/ ı

for some finite constant C . Hence front tracking for systems is a first-order method.

7.2 Uniqueness

Let St denote the map that maps initial data u0 into the solution u of

ut C f .u/x D 0; ujtD0 D u0

at time t , that is, u D St u0. In Chapt. 6 we showed the existence of the semigroup
St , and in the previous section its stability for initial data in the class D as limits of
approximate solutions obtained by front tracking. Thus we know that it satisfies

S0u D u; StSsu D StCsu;
kSt u � Ssvk1 � L .jt � sj C ku � vk1/

for all t; s � 0 and u, v in D.
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In this section we prove uniqueness of solutions that have initial data in D.
We want to demonstrate that every other solution u coincides with this semi-

group. To do this we will basically need three assumptions. The first is that u is
a weak solution, the second is that it satisfies Lax’s entropy conditions across dis-
continuities, and the third is that it has locally bounded variation on a certain family
of curves. Concretely, we define an entropy solution of

ut C f .u/x D 0; ujtD0 D u0;

to be a bounded measurable function u D u.x; t/ of bounded total variation satis-
fying the following conditions:

A The function u D u.x; t/ is a weak solution of the Cauchy problem (7.1) taking
values in D, i.e.,

TZ
0

Z
R

.u't C f .u/'x/ dx dt C
Z
R

'.x; 0/u0.x/ dx D 0 (7.96)

for all test functions ' whose support is contained in the strip Œ0; T i.
B Assume that u has a jump discontinuity at some point .x; t/, i.e., there exist states
ul;r 2 ˝ and speed � such that if we let

U.y; s/ D
(
ul for y < x C �.s � t/,
ur for y � x C �.s � t/, (7.97)

then

lim
�!0

1

�2

tC�Z
t��

xC�Z
x��

ju.y; s/ � U.y; s/j dy ds D 0: (7.98)

Furthermore, there exists k such that


k .ul / � � � 
k .ur/ : (7.99)

C There exists a � > 0 such that for all Lipschitz functions � with Lipschitz con-
stant not exceeding � , the total variation of u.x; �.x// is locally bounded.

Remark 7.9 One can prove, see Exercise 7.1, that the front-tracking solution con-
structed in the previous chapter is an entropy solution of the conservation law.

There is a direct argument showing that any weak solution, whether it is a limit of
a front-tracking approximation or not, satisfies a Lipshitz continuity in time of the
spatial L1-norm, as long as the solution has a uniform bound on the total variation.
We present that argument here.

Theorem 7.10 Let u0 2 D, and let u denote any weak solution of (7.1) such that
T:V: .u.t// � C . Then

ku. � ; t/� u. � ; s/k1 � C kf kLip jt � sj ; s; t � 0: (7.100)
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Proof Let 0 < s < t < T , and let ˛h be a smooth approximation to the character-
istic function of the interval Œs; t �, so that

lim
h!0

˛h D �Œs;t �:

Furthermore, define

'h.y; �/ D ˛h.�/�.y/;

where � is any smooth function with compact support. If we insert this into the
weak formulation

TZ
0

Z
R

.u'h;t C f .u/'h;x/ dx dt C
Z
R

'h.x; 0/u.x; 0/ dx D 0; (7.101)

and let h ! 0, we obtain

Z
�.y/ .u.y; t/ � u.y; s// dy C

tZ
s

Z
�yf .u/ dy ds D 0:

From this we obtain

ku. � ; t/ � u. � ; s/k1 D sup
j�j�1

Z
�.y/ .u.y; t/ � u.y; s// dy

D � sup
j�j�1

tZ
s

Z
�.y/yf .u/ dy ds

�
tZ
s

T:V: .f .u// ds

� C kf kLip.t � s/;
which proves the claim. Here we first used Exercise A.1, Theorem A.4, subse-
quently the definition (A.1) for T:V: .f /, and finally the Lipschitz continuity of
f and the bound on the total variation on u. �

Remark 7.11 This argument provides an alternative to the proof of the Lipschitz
continuity in Theorem 2.15 in the scalar case.

Before we can compare an arbitrary entropy solution to the semigroup solution,
we need some preliminary results. Firstly, Theorem 7.10 says that every function
u. � ; t/ taking values in D and satisfying A is L1 Lipschitz continuous:

ku. � ; t/� u. � ; s/k1 � L.t � s/;

for t � s.
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Furthermore, by the structure theorem for functions of bounded variation [193,
Theorem 5.9.6], u is continuous almost everywhere. For the sake of definiteness, we
shall assume that all functions inD are right continuous. Also, there exists a setN
of zero Lebesguemeasure in the interval Œ0; T � such that for t 2 Œ0; T �nN , the func-
tion u. � ; t/ either is continuous at x or has a jump discontinuity there. Intuitively,
the set N can be thought of as the set of times when collisions of discontinuities
occur.

Lemma 7.12 If (7.96)–(7.98) hold, then

ul D lim
y!x�u.y; t/; ur D lim

y!xCu.y; t/;

and � .ul � ur/ D f .ul/ � f .ur/ :

Proof Let P
 denote the parallelogram

P
 D ˚
.y; s/ j jt � sj � 
; jy � x � �.s � t/j � 


�
:

Integrating the conservation law over P
, we obtain

� xC
C
�Z
x�
C
�

u.y; t C 
/ dy �
xC
�
�Z
x�
�
�

u.y; t � 
/ dy
�

C
tC
Z
t�


.f .u/ � �u/.x C 
C �.s � t/; s/ ds

�
tC
Z
t�


.f .u/ � �u/.x � 
C �.s � t/; s/ ds D 0:

If we furthermore integrate this with respect to 
 from 
 D 0 to 
 D �, and divide
by �2, we obtain

1

�2

0
@ �Z
0

xC
C
�Z
x�
C
�

u.y; t C 
/ dy d
 �
�Z
0

xC
�
�Z
x�
�
�

u.y; t � 
/ dy d

1
A

C 1

�2

� �Z
0

tC
Z
t�


.f .u/ � �u/.x C 
C �.s � t/; s/ ds d


�
�Z
0

tC�Z
t��

.f .u/ � �u/.x � 
C �.s � t/; s/ ds d

�

D 0:
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Now let � ! 0. Then

1

�2

�Z
0

xC
C
�Z
x�
C
�

u.y; t C 
/ dy d
 ! 1

2
.ul C ur/;

1

�2

�Z
0

xC
�
�Z
x�
�
�

u.y; t � 
/ dy d
 ! 1

2
.ul C ur/;

1

�2

�Z
0

tC
Z
t�


.f .u/ � �u/.x C 
C �.s � t/; s/ ds d
 ! f .ur/ � �ur;

1

�2

�Z
0

tC
Z
t�


.f .u/ � �u/.x � 
C �.s � t/; s/ ds d
 ! f .ul/ � �ul :

Hence

1

2
.ul C ur/ � 1

2
.ul C ur/C .f .ur/ � �ur/ � .f .ul/ � �ul/ D 0:

This concludes the proof of the lemma. �

The next lemma states that if u satisfies C, then the discontinuities cannot cluster
too tightly together.

Lemma 7.13 Assume that uW Œ0; T � ! D satisfies C. Let t 2 Œ0; T � and " > 0.
Then the set

Bt;" D
n
x 2 R j lim sup

s!tC; y!x
ju.x; t/ � u.y; s/j > "

o
(7.102)

has no limit points.

Proof Assume that Bt;" has a limit point, denoted by x0. Then there is a monotone
sequence fxig1

iD1 inBt;" converging to x0. Without loss of generality we assume that
the sequence is decreasing. Since u.x; t/ is right continuous, we can find a point zi
in .xi ; xi�1/ such that

ju .zi ; t/ � u .xi ; t/j � "

2
:

Now choose si > t and yi 2 .ziC1; zi / such that
ju .yi ; si /� u .xi ; t/j � "; jsi � t j � � max fjyi � zi j ; jyi � ziC1jg :

We define a curve �.x/ for x 2 Œx0; x1� passing through all the points .zi ; t/ and
.yi ; si / by

�.x/ D

8̂̂
<
ˆ̂:
t for x D x0 or x � z1,

si � .x � yi / si�t
zi�yi for x 2 Œyi ; zi �,

t C .x � ziC1/ si�t
yi�ziC1 for x 2 ŒziC1; yi �.

(7.103)
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Then � is Lipschitz continuous with Lipschitz constant � , and we have that

ju .yi ; si / � u .zi ; t/j � "

2

for all i 2 N. This means that the total variation of u.x; �.x// is infinite, violat-
ing C, concluding the proof of the lemma. �

In the following, we let �? be a number strictly larger than the absolute value
of every characteristic speed, and we also demand that �? � 1=� , where � is the
constant in C. The next lemma says that if u satisfies C, then discontinuities cannot
propagate faster than �?. Precisely, we have the following result.

Lemma 7.14 Assume that uW Œ0; T � ! D satisfies C. Then for .x; t/ 2 .0; T / � R,

lim
s!tC; y!x˙

jx�yj>�?.s�t /
u.y; s/ D u.x˙; t/: (7.104)

Proof We assume that the lemma does not hold. Then, for some .x0; t/ there exist
decreasing sequences sj ! t and yj ! x0 such thatˇ̌

yj � x0
ˇ̌ � �?

�
sj � t� ; ˇ̌

u
�
yj ; sj

� � u .x0; t/
ˇ̌ � "

for some " > 0 and j 2 N. Now let

z0 D y1 C s1 � t
�

;

where as before � is defined by C. Now we define a subsequence of
˚
.yj ; sj /

�
as

follows. Set j1 D 1 and for i � 1 define

(
zi D yji � sji�t

�
;

jiC1 D min
˚
k
ˇ̌
sk � t � � .yk � zi /

�
:

Then

yji 2 .ziC1; zi / and
ˇ̌
sji � t ˇ̌ � � max

˚ˇ̌
yji � zi

ˇ̌
;
ˇ̌
yji � ziC1

ˇ̌�
for all i . Let � be the curve defined in (7.103). Since we have that zi ! x0, we have
that

ju .zi ; t/ � u .x0; t/j � "

2

for sufficiently large i . Consequently,

ˇ̌
u .zi ; t/ � u �yji ; sji �ˇ̌ � "

2
;

and the total variation of u.x; �.x// is infinite, contradicting C. �



350 7 Well-Posedness of the Cauchy Problem

The next lemma concerns properties of the semigroup St . We assume that u is
a continuous function uW Œ0; T � ! D, and wish to estimate ST u.0/ � u.T /. Let h
be a small number such that Nh D T . Then we can calculate

kST u.0/ � u.T /k1 �
NX
iD1

��ST�.i�1/hu..i � 1/h/� ST�ihu.ih/
��
1

� L

NX
iD1

���� 1h
�
u.ih/� Shu..i � 1/h/�����

1

h:

Letting h tend to zero, we obtain the following lemma:

Lemma 7.15 Assume that uW Œ0; T � ! D is Lipschitz continuous in the L1-norm.
Then for every interval Œa; b�, we have

kST u.0/� u.T /kL1.ŒaC�?T;b��?T � IRn/

� O .1/
TZ
0

n
lim inf
h!0C

1

h
kShu.t/� u.t C h/kL1.ŒaC�?.tCh/;b��?.tCh/� IRn/

o
dt:

Proof For ease of notation we set

k � k D k � kL1.ŒaC�?.tCh/;b��?.tCh/� IRn/:

Observe that by finite speed of propagation, we can define u.x; 0/ to be zero outside
of Œa; b�, and the Lipschitz continuity of the semigroup will look identical written
in the norm k � k to how it looked before. Let

�.t/ D lim inf
h!0C

1

h
ku.t C h/� Shu.t/k :

Note that � is measurable, and for all h > 0, the function

�h.t/ D 1

h
ku.t C h/ � Shu.t/k

is continuous. Hence we have that

�.t/ D lim
"!0C

inf
h2Q\Œ0;"�

�h.t/;

and therefore � is Borel measurable. Define functions

�.t/ D kST�t u.t/ � ST u.0/k ;

 .t/ D �.t/ � L
tZ
0

�.s/ ds: (7.105)
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The function  is a Lipschitz function, and hence

 .T / D
TZ
0

 0.s/ ds: (7.106)

Furthermore, Rademacher’s theorem2 implies that there exists a null set N1 	
Œ0; T � such that � and  are differentiable outside N1. Furthermore, using that
Lebesgue measurable functions are approximately continuous almost everywhere
(see [64, p. 47]), we conclude that there exists another null set N2 such that � is
continuous outside N2. Let N D N1 [ N2. Outside N we have

 0.t/ D lim
h!0

1

h

�
�.t C h/ � �.t/� � L .t/: (7.107)

Using properties of the semigroup we infer

�.t C h/ � �.t/ D kST�t�hu.t C h/ � ST u.0/k � kST�t u.t/ � ST u.0/k
� kST�t�hu.t C h/ � ST�t u.t/k
D kST�t�hu.t C h/ � ST�t�hShu.t/k
� L ku.t C h/ � Shu.t/k ;

which implies

lim
h!0

1

h

�
�.t C h/ � �.t/� � L lim inf

h!0

1

h
ku.t C h/ � Shu.t/k D L�.t/:

Thus  0 � 0 almost everywhere, and we conclude that

 .T / � 0; (7.108)

which proves the lemma. �

The next two lemmas are technical results valid for functions satisfying (7.97)
and (7.98).

Lemma 7.16 Assume that uW Œ0; T � ! D is Lipschitz continuous, and that for some
.x; t/ equations (7.97) and (7.98) hold. Then for all positive ˛ we have

lim
�!0C

sup
jhj��

˛Z
0

ju.x C 
hC �y; t C h/ � ur j dy D 0; (7.109)

lim
�!0C

sup
jhj��

0Z
�˛

ju.x C 
hC �y; t C h/ � ul j dy D 0: (7.110)

2 Rademacher’s theorem states that a Lipschitz function is differentiable almost everywhere; see
[64, p. 81].
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Proof We assume that the limit in (7.109) is not zero. Then there exist sequences
�i ! 0 and jhi j < �i and a ı > 0 such that

˛Z
0

ju .x C 
hi C �iy; t C hi / � ur j dy > ı (7.111)

for all i . Without loss of generality we assume that hi > 0, and let

v.z; h/ D u.x C 
hC z; t C h/:

Then the map h 7! v. � ; h/ is Lipschitz continuous with respect to the L1 norm,
since

kv. � ; h/ � v. � ; 
/k1 D
Z

ju.z; t C h/� u.
.
 � h/C z; t C 
/j dz

�
Z

ju.z; t C h/ � u.z; t C 
/j dz

C
Z

ju.z; t C 
/ � u.
.
 � h/C z; t C 
/j dz
� M jh � 
j C 
 j
 � hjT:V: .u.t C 
//

� fM j
 � hj :
From (7.111) we obtain

˛�iZ
0

ju.x C 
hC z; t C h/ � ur j dz

�
˛�iZ
0

ju .x C 
hi C z; t C hi / � ur j dz

�
˛�iZ
0

ju .x C 
hi C z; t C hi /� u.x C 
hC z; t C h/j dz

� ı�i �fM jhi � hj :

We can (safely) assume that ı=fM < 1 (if this is not so, then (7.111) will hold
for smaller ı as well). We integrate the last inequality with respect to h, for h in
Œ��i ; �i �. Since

�
hi � �i ı=fM;hi

� � Œ��i ; �i �, we obtain
�iZ

��i

˛�iZ
0

ju.x C 
hC z; t C h/ � ur j dz dh �
hiZ

hi��i ı=eM
�
ı�i �fM.hi � h/� dh

D .ı2�2i /=.2
fM/:

Comparing this with (7.97) and (7.98) yields a contradiction. The limit (7.111) is
proved similarly. �
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For the next lemma, recall that a (signed) Radon measure is a (signed) regular
Borel measure3 that is finite on compact sets.

Lemma 7.17 Assume that w is in L1 ..a; b/ I Rn/ such that for some Radon mea-
sure �, we have thatˇ̌̌

ˇ̌̌ x2Z
x1

w.x/ dx

ˇ̌̌
ˇ̌̌ � � .Œx1; x2�/ for all a < x1 < x2 < b. (7.112)

Then

bZ
a

jw.x/j dx � � ..a; b// : (7.113)

Proof First observe that the assumptions of the lemma also hold if the closed in-
terval on the right-hand side of (7.112) is replaced by an open interval. We have
that ˇ̌̌

ˇ̌̌ x2Z
x1

w.x/ dx

ˇ̌̌
ˇ̌̌ D lim

"!0

ˇ̌̌
ˇ̌̌ x2�"Z
x1C"

w.x/ dx

ˇ̌̌
ˇ̌̌

� lim
"!0

� .Œx1 C "; x2 � "�/ D � ..x1; x2// :

Secondly, since w is in L1, it can be approximated by piecewise constant functions.
Let v be a piecewise constant function with discontinuities located at a D x0 <

x1 < � � � < xN D b, and

bZ
a

jw.x/ � v.x/j dx � ":

Then we have

bZ
a

jw.x/j dx �
bZ
a

jw.x/ � v.x/j C
bZ
a

jv.x/j dx

� "C
X
i

xiZ
xi�1

jv.x/j dx

D "C
X
i

ˇ̌̌
ˇ̌̌ xiZ
xi�1

v.x/ dx

ˇ̌̌
ˇ̌̌

3 A Borel measure � is regular if it is outer regular on all Borel sets (i.e., �.B/ D inff�.A/ j
A � B;A openg for all Borel sets B) and inner regular on all open sets (i.e., �.U / D supf�.K/ j
K � U;K compactg for all open sets U ).
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� "C
X
i

ˇ̌̌
ˇ̌̌ xiZ
xi�1

.v.x/ �w.x// dx
ˇ̌̌
ˇ̌̌C

X
i

ˇ̌̌
ˇ̌̌ xiZ
xi�1

w.x/ dx

ˇ̌̌
ˇ̌̌

� "C
bZ
a

jv.x/ � w.x/j dx C
X
i

� ..xi�1; xi //

� 2"C � ..a; b// :

Since " can be made arbitrarily small, this proves the lemma. �

Next we need two results that state how well the semigroup is approximated
firstly by the solution of a Riemann problem with states that are close to the initial
state for the semigroup, and secondly by the solution of the linearized equation. To
define this precisely, let !0 be a function in D, fix a point x on the real line (which
will remain fixed throughout the next lemma and its proof), and let !.y; t/ be the
solution of the Riemann problem

!t C f .!/y D 0; !.y; 0/ D
(
!0.x�/ for y < 0,

!0.xC/ for y � 0.

(If !0 is continuous at x, then !.y; t/ D !0.x/ is constant.) Define QA D
df .!0.xC//, and let Qu be the solution of the linearized equation

Qut C QA Quy D 0; Qu.y; 0/ D !0.y/: (7.114)

Furthermore, define Ou.y; t/ by

Ou.y; t/ D
(
!.y � x; t/ for jy � xj � �?t ,

!0.y/ otherwise.
(7.115)

Then we can state the following lemma.

Lemma 7.18 Let !0 2 D. Then we have

1

h

xC��h�?Z
x��Ch�?

j.Sh!0/ .y/ � Ou.y; h/j dy D O .1/T:V:.x��;x/[.x;xC�/ .!0/ ; (7.116)

1

h

xC��h�?Z
x��Ch�?

j.Sh!0/ .y/ � Qu.y; h/j dy D O .1/
�
T:V:.x��;xC�/ .!0/

�2
; (7.117)

for all x and all positive h and � such that x � � C h�? < x C � � h�?.
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Proof We first prove (7.117). In the proof of this we shall need the following gen-
eral result:

Let Nv be the solution of Nvt C f . Nv/y D 0 with Riemann initial data

Nv.y; 0/ D
(
ul for y < 0,

ur for y � 0,

for some states ul;r 2 ˝. We have that this Riemann problem is solved by waves
separating constant states ul D v0; v1; : : : ; vn D ur . Let uc be a constant in ˝ and
set Ac D df .uc/. Assume that ul and ur satisfy

Ac .ul � ur/ D 
ck .ul � ur/ I
i.e., 
ck is the kth eigenvalue and ul � ur is the kth eigenvector of Ac . Let Qv be
defined by

Qv.y; t/ D
(
ul for y < 
ckt ,

ur for y � 
ckt

( Qv solves ut CAcuy D 0 with a single jump at y D 0 from ul to ur as initial data).
We wish to estimate

I D 1

t

�?tZ
��?t

j Nv.y; t/ � Qv.y; t/j dy:

Note that since Nv and Qv are equal outside the range of integration, the limits in the
integral can be replaced by 
1.

Due to the hyperbolicity of the system, the vectors frj .u/gnjD1 form a basis in

Rn, and hence we can find unique numbers N"l;rj such that

ur � ul D
nX

jD1
N"lj rj .ul/ D

1X
jDn

N"rj rj .ur/: (7.118)

From ur � ul D "crk.u
c/ for some "c it follows that

N"li D li .ul / �
nX

jD1
N"lj rj .ul/

D li .ul / � .ul � ur/
D .li .ul / � li .uc// � .ul � ur/C li .u

c/ � .ul � ur/
D .li .ul / � li .uc// � .ul � ur/C "cli .u

c/ � rk.uc/
D .li .ul / � li .uc// � .ul � ur/; i ¤ k:

Thus we conclude (using an identical argument for the right state) thatˇ̌ N"li ˇ̌ � C jul � ur j jul � ucj ; i ¤ k;

j N"ri j � C jul � ur j jur � ucj ; i ¤ k:
(7.119)



356 7 Well-Posedness of the Cauchy Problem

Let "i denote the strength of the i th wave in Nv. Then, by construction of the solution
of the Riemann problem, for i < k we have that

ˇ̌
"i � N"li

ˇ̌ � C
	
jvi�1 � ul j2 C jvi � ul j2



� C jul � ur j2 ;

while for i > k we find that

j"i � N"ri j � C jul � ur j2 ;

for some constant C . Assume that the k-wave in Nv moves with speed in the inter-
val Œ
k; N
k�; i.e., if the k-wave is a shock, then 
k D N
k D �k .vk�1; vk/, and
if the wave is a rarefaction wave, then 
k D 
k.vk�1/ and N
k D 
k.vk/. Set
s D min.
k; Q
k/ and Ns D max. N
k; Q
k/. Then we can write I as

I D 1

t

� sZ
�1

jul � Nv.y; t/j dy

C
NsZ

s

j Ov.y; t/ � Nv.y; t/j dy C
1Z

Ns
jur � Nv.y; t/j dy

�

D I1 C I2 C I3:

Next we note that the first integral above can be estimated as

I1 � C

k�1X
iD1

jvi � ul j � C

k�1X
iD1

j"i j � C

�k�1X
iD1

ˇ̌ N"li ˇ̌C jur � ul j2
�
;

and similarly,

I3 � C

� nX
iDkC1

j N"ri j C jul � ur j2
�
:

Using (7.119), we obtain

I1 C I3 � C jul � ur j .jul � ucj C jur � ucj C jul � ur j/
� C jul � ur j .jul � ucj C jur � ucj/ ; (7.120)

for some constant C . It remains to estimate I2. We first assume that the k-wave in
Nv is a shock wave and that 
ck > �k.vk�1; vk/. Then

I3 D �

ck � �k .vk�1; vk/

� jul � vkj
� C jul � vkj .juc � vk�1j C juc � vkj/
� C jul � ur j .jul � ucj C jur � ucj C jvk � ur j C jvk�1 � ul j/ ;
� C jul � ur j .jul � ucj C jur � ucj C C jul � ur j .jul � ucj C jur � ucj//
� C jul � ur j .jul � ucj C jur � ucj/ (7.121)
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by the above estimates for jvk � ur j and jvk�1 � ul j. If 
ck � �k .vk�1; vk/ or the
k-wave is a rarefaction wave, we similarly establish (7.121). Combining this with
(7.120), we find that

I � C jul � ur j .jul � ucj C jur � ucj/ : (7.122)

Having established this preliminary estimate, we turn to the proof of (7.117). Let
N!0 be a piecewise constant approximation to !0 such that

N!0.x˙/ D !0.x˙/;
xC�Z
x��

j N!0.y/ � !0.y/j dy � �;

T:V:.x��;xC�/ . N!0/ � T:V:.x��;xC�/ .!0/ : (7.123)

Furthermore, let v be the solution of the linear hyperbolic problem

vt C QAvy D 0; v.y; 0/ D N!0.y/;
where again QA D df .!0.xC//. Let the eigenvalues and the right and left eigenvec-
tors of QA be denoted by Q
k , Qrk , and Qlk, respectively, for k D 1; : : : ; n, normalized
so that ˇ̌̌ Qlk ˇ̌̌ D 1; Qlk � Qrj D

(
0 for j ¤ k;

1 for j D k:
(7.124)

Then it is not too difficult to verify (see Sect. 1.1) that v.y; t/ is given by

v.y; t/ D
X
k

� Qlk � N!0.y � Q
kt/
� Qrk: (7.125)

We can also construct v by front tracking. Since the eigenvalues are constant and
the initial data piecewise constant, front tracking will give the exact solution. Hence
v will be piecewise constant with a finite number of jumps occurring at xi .t/, where
we have that

d

dt
xi .t/ D Q
k;� QA � Q
kI

�
.v.xi .t/C; t/ � v.xi .t/�; t// D 0;

for all t where we do not have a collision of fronts, that is, for all but a finite number
of t’s. Now we apply the estimate (7.122) to each individual front xi . Then we
obtain, introducing v˙

i D v.xi .t/˙; t/,
xC���?"Z
x��C�?"

j.S"v. � ; �// .y/ � v.y; � C "/j dy

� "O .1/
X
i

ˇ̌
vC
i � v�

i

ˇ̌ �ˇ̌
vC
i � !0.xC/ˇ̌C jv�

i � !0.xC/j�
� "O .1/T:V:.x��;xC�/ . N!0/

X
i

ˇ̌
vC
i � v�

i

ˇ̌
� "O .1/

�
T:V:.x��;xC�/ .!0/

�2
: (7.126)
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Recall that QA D df .!0.xC// and that Qu was defined by (7.114), that is,

Qut C QA Quy D 0; Qu.y; 0/ D !0.y/: (7.127)

In analogy to formula (7.125) we have that Qu satisfies

Qu.y; t/ D
X
k

� Qlk � !0.y � Q
kt/
� Qrk: (7.128)

Regarding the difference between Qu and v, we find that

xC���?hZ
x��C�?h

jv.y; h/ � Qu.y; h/j dy (7.129)

D
xC���?hZ
x��C�?h

ˇ̌̌
ˇX
k

	 Qlk � . N!0 � !0/ .y � Q
kh/



Qrk
ˇ̌̌
ˇ dy

� O .1/
xC�Z
x��

j N!0.y/ � !0.y/j dy

� O .1/ �: (7.130)

By the Lipschitz continuity of the semigroup we have that

xC���?hZ
x��C�?h

jSh N!0.y/ � Sh!0.y/j dy � L

xC�Z
x��

j N!0.y/ � !0.y/j dy � L�: (7.131)

Furthermore, by Lemma 7.15 with a D x � �, b D x C �, T D h, and t D 0, and
using (7.126), we obtain

1

h

xC���?hZ
x��C�?h

j.Sh N!0/ .y/ � v.y; h/j dy

� O .1/
h

hZ
0

lim inf
"!0C

1

"

xC���?"Z
x��C�?"

j.S"v . � ; �// .y/ � v.y; � C "/j dy d�

� O .1/
�
T:V:.x��;xC�/ .!0/

�2
: (7.132)

Consequently, using (7.132), (7.131), and (7.130), we find that

1

h

xC��h�?Z
x��Ch�?

j.Sh!0/ .y/ � Qu.y; h/j dy

� O .1/
�
T:V:.x��;xC�/ .!0/

�2 C L�

h
C O .1/ �

h
:

Since � is arbitrary, this proves (7.117).



7.2 Uniqueness 359

Now we turn to the proof of (7.116). First we define z to be the function

z.y; t/ D
(
ul for y < 
t ,

ur for y � 
t ,

where j
j � �?. Recall that Nv.y; t/ denotes the solution of Nvt C f . Nv/y D 0 with
Riemann initial data

Nv.y; 0/ D
(
ul for y < 0,

ur for y � 0.

Then trivially we have that

�?tZ
��?t

jz.y; t/ � Nv.y; t/j dy � t O .1/ jul � ur j : (7.133)

Let N!0 be as (7.123) but replacing the TV bound by

T:V:.x��;x/[.x;xC�/ . N!0/ � T:V:.x��;x/[.x;xC�/ .!0/ :

Recall that Ou.y; t/ was defined in (7.115) by

Ou.y; t/ D
(
!.y � x; t/ for jy � xj � �?t ,

!0.y/ otherwise.

Let Jh be the set

Jh D ˚
y j h�? < jy � xj < � � h�?�;

and let Ov be the function defined by

Ov.y; t/ D
(

Ou.y; t/ for jx � yj � �?t ,

N!0.y/ otherwise.

Then we have that

xC���?hZ
x��C�?h

j Ov.y; h/ � Ou.y; h/j dy �
Z
Jh

j N!0.y/ � !0.y/j dy � �: (7.134)

Note that the bound (7.131) remains valid. We need a replacement for (7.126). In
this case we wish to estimate

I D
xC���?"Z
x��C�?"

j.S"v. � ; �// .y/ � Nv.y; � C "/j dy:
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For jx � yj > �?t , the function Nv.y; t/ is discontinuous across lines located at
xi . In addition, it may be discontinuous across the lines jx � yj D �?t . Inside the
region jx � yj � �?t , v is an exact entropy solution, coinciding with the semigroup
solution. Using this and (7.133), we find that

I D
� x��?�Z
x��C�?"

C
xC���?"Z
xC�?�

�
j.S�C" N!0/ .y/ � N!0.y/j dy

C
xC�?�Z
x��?�

j.S" Ou. � ; �// .y/ � Ou.y; � C "/j dy

� "O .1/
� X

jxi�xj<�?�
j N!0 .xiC/ � N!0 .xi�/j

�

C L

� xZ
x�2�?�

j N!0.y/ � ul j dy C
xC2�?�Z
x

j N!0.y/ � ur j dy
�

� "O .1/T:V:.x��;x/[.x;xC�/ .!0/ : (7.135)

Now using Lemma 7.15, we find that

1

h

xC���?hZ
x��C�?h

j.Sh N!0/ .y/ � Nv.y; t/j dy

� O .1/
h

hZ
0

lim inf
"!0C

1

"

xC���?"Z
x��C�?"

j.S" Nv . � ; �// .y/ � Nv.y; � C "/j dy d�

� O .1/T:V:.x��;x/[.x;xC�/ .!0/ : (7.136)

As before, since � is arbitrary, (7.131), (7.134), and (7.136) imply (7.116). �

Remark 7.19 Note that if !0 is continuous at x, then Lemma 7.18 and (7.117) say
that the linearized equation gives a good local approximation of the action of the
semigroup. If !0 has a discontinuity at x, then

T:V:hx��;xC�i .!0/

does not become small as � tends to zero; hence we must resort to (7.116) in this
case. Since the total variation of every function in D is small, (7.117) is a much
stronger estimate than (7.116).

Now that the preliminary technicalities are out of the way, we can set about
proving that an entropy solution coincides with the semigroup.

Let u be an entropy solution. To prove that u. � ; t/ D St u0, it suffices to show,
applying Lemma 7.15, that

lim inf
h!0

1

h
kShu. � ; t/ � u. � ; t C h/kL1.Œa;b�/ D 0; (7.137)

for all a < b, and for all t 2 Œ0; T � n N .
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Assume therefore that t … N . Then by the structure theorem, see [193, Theo-
rem 5.9.6], there exists a null set N � Œ0; T � such that outside that set, u either is
continuous or has a jump discontinuity (as a function of x). Therefore, we split the
argument into two cases, one in which u has a jump discontinuity, and one in which
u is continuous or has a small jump in the sense that it is not in the set Bt;".

Consider first a point .x; t/ where u has jump discontinuity.4 By condition B
there exist ul;r 2 ˝ and � such that the limit (7.98) holds when U is defined by
(7.97). Using a change of variables, we find that

lim
h!0C

1

h

xC�?hZ
x��?h

ju.y; t C h/� U.y; t C h/j dy

D lim
h!0C

�?
� 0Z

�1�
=�?
ju .x C 
hC �?hy; t C h/ � ul j dy

C
1�
=�?Z
0

ju .x C 
hC �?hy; t C h/ � ur j dy
�

D 0;

by Lemma 7.16. Hence for small positive h, we have that

1

h

xC�?hZ
x��?h

ju.y; t C h/ � U.y; t C h/j dy � Q"; (7.138)

for some small Q" to be determined later. By Lemma 7.14 we haveU.y; s/ D Ou.y; s�
t/, where Ou is defined by (7.115) with !0.y/ D u.y; t/, and U is defined by (7.97),
in some forward neighborhood of .x; t/. Then using (7.138) and (7.116), we obtain

1

h

xC�?hZ
x��?h

j.Shu. � ; t// .y/ � u.y; t C h/j dy

� Q"C 1

h

xC�?hZ
x��?h

j.Shu. � ; t// .y/ � U.y; t C h/j dy

� Q"C O .1/T:V:.x�2�?h;x/[.x;xC2�?h/ .u. � ; t//
� 2 Q"; (7.139)

for all h sufficiently small, since we compute the total variation on a shrinking
interval excluding the jump in u at x.

Now we consider points .x; t/ where u either is continuous or has a small jump
discontinuity. Hence we can choose an interval hc; d i centered at x such that Bt;" \

4 The following argument is valid for every jump discontinuity, but will be applied only to jumps
in Bt;".
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.c; d/ D ;. Recall that Bt;", defined in (7.102), is the set of points where u. � ; t/
has a jump larger than ". Let the family of trapezoids �h be defined by

�h D ˚
.y; s/ j s 2 Œt; t C h�; y 2 .c C �?.s � t/; d � �?.s � t// �:

Now we claim that for h sufficiently small, we have that for all .y; s/ 2 �h,
ju.y; s/ � u.x; t/j � 2"C T:V:.c;d/ .u. � ; t// : (7.140)

To prove this, we argue as follows: By Lemma 7.14, discontinuities in u cannot
propagate faster than �?; hence u. � ; t/ is continuous in the lower corners of �h, and
the estimate surely holds for .y; s/ located there. We must prove (7.140) for .y; s/
in a region ŒcCh0; d�h0�� Œt; tCh�, where h0 is given and we can be free to choose
h small. Now also Œc C h0; d � h0� \ B";t D ;; hence for each y 2 Œc C h0; d � h0�
we can find �y , hy such that the estimate (7.140) is valid for

.y; s/ 2 .y � �y; y C �y/ � �t; t C hy
�
:

Now we can cover the compact interval Œc C h0; d � h0� with a finite number of
intervals of the form .yi � �yi ; yi C �yi /, and choose

h D min
i
hyi :

Then we obtain (7.140) for .y; s/ in Œc C h0; d � h0� � Œt; t C h�.
Now we must compare u and Qu near .x; t/. The eigenvectors of QA D df .u.x; t//

are normalized according to (7.124). Observe that trivially

u D
X
k

	 Qlk � u



Qrk:

Then

d��?hZ
cC�?h

ju.y; t C h/ � Qu.y; t C h/j dy

�
X
k

d��?hZ
cC�?h

ˇ̌̌ Qlk � �u.y � Q
kh; t/ � u.y; t C h/
�ˇ̌̌
dy:

(7.141)

To aid us here we use Lemma 7.17. Let x1 < x2 be in the interval .cC�?h; d��?h/.
Then we shall estimate

Ek D
x2Z
x1

Qlk � �u.y; t C h/� u.y � Q
kh; t/
�
dy:

If we integrate the conservation law over the region˚
.y; s/ j y 2 Œx1 � .s � .t C h// Q
k; x2 C .s � .t C h// Q
k�; s 2 Œt; t C h�

�
;
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we find that

x2Z
x1

u.y; t C h/dy �
x2CQ
khZ
x1�Q
kh

u.y; t/dy C
tChZ
t

.f .u/ � Q
ku/.x2 C .s � .t C h// Q
k; s/ds

�
tChZ
t

.f .u/ � Q
ku/.x1 � .s � .t C h// Q
k; s/ ds D 0:

Taking the inner product with Qlk, we obtain

Ek D
tChZ
t

Qlk � .f .u/ � Q
ku/.x2 C .s � .t C h// Q
k; s/ ds

�
tChZ
t

Qlk � .f .u/ � Q
ku/.x1 � .s � .t C h// Q
k; s/ ds

D
tChZ
t

Qlk � �f .u2/ � f .u1/� Q
k.u2 � u1/
�
ds; (7.142)

where we have defined

u1 D u
�
x1 � .s � .t C h// Q
k; s

�
; u2 D u

�
x2 C .s � .t C h// Q
k; s

�
:

Let A? denote the matrix

A? D
1Z
0

df
�
su2 C .1 � s/u1

�
ds � QA:

Then

Qlk � �f .u2/ � f .u1/� Q
k.u2 � u1/
� D Qlk � �A?.u2 � u1/

C QA.u2 � u1/ � Q
k .u2 � u1/
�

D Qlk � A?.u2 � u1/: (7.143)

Since

kA?k � O .1/ .ju1 � u.x; t/j C ju2 � u.x; t/j/ ;
(7.142) and (7.143) yield

jEkj � O .1/
tChZ
t

.ju1 � u.x; t/j C ju2 � u.x; t/j/ ju2 � u1j ds

� O .1/ sup
.y;s/2�h

ju.y; s/ � u.x; t/j

�
tChZ
t

T:V:.x1�.s�.tCh// Q
k;x2C.s�.tCh// Q
k/ .u. � ; s// ds:
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Therefore,ˇ̌̌
ˇ̌̌ x2Z
x1

.u.y; t C h/ � Qu.y; t C h// dy

ˇ̌̌
ˇ̌̌

�
X
k

jEkj

� O .1/ sup
.y;s/2�h

ju.y; s/ � u.x; t/j

�
tChZ
t

X
k

T:V:.x1�.s�.tCh// Q
k;x2C.s�.tCh// Q
k/ .u. � ; s// ds: (7.144)

Returning to (7.141) and using Lemma 7.17, we find that

d��?hZ
cC�?h

ˇ̌
u.y; t C h/ � Qu.y; t C h/

ˇ̌
dy

� O .1/ sup
.y;s/2�h

ju.y; s/ � u.x; t/j

�
tChZ
t

T:V:ŒcC�?.s�t /;d��?.s�t /� .u. � ; s// ds:

(7.145)

Now we use (7.117), (7.145), and (7.140) to obtain

d��?hZ
cC�?h

j.Shu. � ; t// .y/ � u.y; t C h/j dy

�
d��?hZ
cC�?h

� j.Shu. � ; t// .y/ � Qu.y; t C h/j C j Qu.y; t C h/ � u.y; t C h/j � dy
� O .1/ h

�
T:V:.c;d/ .u. � ; t//�2

C O .1/
�
2"C T:V:Œc;d � .u. � ; t//�

�
tChZ
t

T:V:ŒcC�?.s�t /;d��?.s�t /� .u. � ; s// ds: (7.146)

By Lemma 7.13, the set Bt;" contains only a finite number of points; x1 < x2 <

� � � < xN , where u. � ; t/ has a discontinuity larger than ". We can cover the set
Œa; b� n [i fxig by a finite number of open intervals .cj ; dj /, j D 1; : : : ;M , such
that:

(a) xi … [j .cj ; dj / D ; for i D 1; : : : ; N .
(b) T:V:.cj ;dj / .u . � ; t// � 2" for j D 1; : : : ;M .
(c) Every x 2 Œa; b� is contained in at most two distinct intervals .ci ; di /.
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We have established that for sufficiently small h,

1

h

xiC�?hZ
xi��?h

j.Shu. � ; t// .y/ � u.y; t C h/j � "

N
;

by (7.139) choosing Q" D "=.2N /. Also,

dj��?hZ
cjC�?h

j.Shu. � ; t// .y/ � u.y; t C h/j dy

� O .1/ "
tChZ
t

T:V:.cjC�?.s�t /;dj��?.s�t // .u. � ; s// ds

C O .1/ h"T:V:.cj ;dj / .u. � ; t//

for all i , j , and " > 0. Combining this, we find that

1

h

bZ
a

j.Shu. � ; t// .y/ � u.y; t C h/j dy

�
X
i

1

h

xiC�?hZ
xi��?h

j.Shu. � ; t// .y/ � u.y; t C h/j dy

C
X
j

dj��?hZ
cjC�?h

j.Shu. � ; t// .y/ � u.y; t C h/j dy

� "C O .1/ "
h

tChZ
t

T:V: .u. � ; s// ds C "T:V: .u. � ; t//

� O .1/ ":

Since " can be arbitrarily small, (7.137) holds, and we have proved the following
theorem:

Theorem 7.20 Let fj 2 C2.Rn/, j D 1; : : : ; n. Consider the strictly hyperbolic
equation ut C f .u/x D 0. Assume that each wave family is either genuinely non-
linear or linearly degenerate. For every u0 2 D, defined by (7.94), the initial value
problem

ut C f .u/x D 0; u.x; 0/ D u0.x/;

has a unique weak entropy solution satisfying conditions A–C, see Sect. 7.2. Fur-
thermore, this solution can be found by the front-tracking construction.
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7.3 Notes

The material in Sect. 7.1 is taken almost entirely from the fundamental result of
Bressan, Liu, and Yang [33]; there is really only an O .jej/ difference.

Stability of front-tracking approximations to systems of conservation laws was
first proved by Bressan and Colombo in [28], in which they used a pseudopolygon
technique to “differentiate” the front-tracking approximation with respect to the
initial location of the fronts. This approach was later used to prove stability for
many special systems; see [47], [8], [3], [4].

The same results as those in Sect. 7.1 of this chapter have also been obtained by
Bressan, Crasta, and Piccoli, using a variant of the pseudopolygon approach [29].
This leads to many technicalities, and [29] is heavy reading indeed!

The material in Sect. 7.2 is taken from the works of Bressan [23–26] and cowork-
ers, notably Lewicka [32], Goatin [30], and LeFloch [31].

There are few earlier results on uniqueness of solutions to systems of conserva-
tion laws; most notable are those by Bressan [20], where uniqueness and stability
are obtained for Temple class systems where every characteristic field is linearly
degenerate, and in [22] for more general Temple class systems.

Continuity in L1 with respect to the initial data was also proved by Hu and
LeFloch [100] using a variant of Holmgren’s technique. See also [77].

Stability for some non-strictly hyperbolic systems of conservation laws (these
are really only “quasisystems”) has been proved by Winther and Tveito [185] and
Klingenberg and Risebro [114].

We end this chapter with a suitable quotation:

This is really easy:

jwhat you havej � jwhat you wantj C jwhat you have � what you wantj

— Rinaldo Colombo, private communication

7.4 Exercises

7.1 Show that the solution of the Cauchy problem obtained by the front-tracking
construction of Chapt. 6 is an entropy solution in the sense of conditions A–C
in Sect. 7.2.

7.2 The proof of Theorem 7.8 was carried out in detail only in the genuinely non-
linear case. Do the necessary estimates in the case of a linearly degenerate
wave family.
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