
Chapter 6

Existence of Solutions of the Cauchy Problem

Faith is an island in the setting sun. But proof, yes.
Proof is the bottom line for everyone.
— Paul Simon, Proof (1990)

In this chapter we study the generalization of the front-tracking algorithm to sys-
tems of conservation laws, and how this generalization generates a convergent se-
quence of approximate weak solutions. We shall then proceed to show that the limit
is a weak solution. Thus we shall study the initial value problem

ut C f .u/x D 0; ujtD0 D u0; (6.1)

where f WRn ! Rn and u0 is a function in L1.R/.
In doing this, we are in the setting of Lax’s theorem (Theorem 5.17); we have

a system of strictly hyperbolic conservation laws, where each characteristic field
is either genuinely nonlinear or linearly degenerate, and the initial data are close
to a constant. This restriction is necessary, since the Riemann problem may fail to
have a solution for initial states far apart, which is analogous to the appearance of
a “vacuum” in the solution of the shallow-water equations.

The convergence part of the argument follows the traditional method of proving
compactness in the context of conservation laws, namely, via Kolmogorov’s com-
pactness theorem or Helly’s theorem.

Again, the basic ingredient in front tracking is the solution of Riemann problems,
or in this case, the approximate solution of Riemann problems. Therefore, we start
by defining these approximations.

6.1 Front Tracking for Systems

Nisi credideritis, non intelligetis.1

— Saint Augustine, De Libero Arbitrio (387/9)

In order for us to define front tracking in the scalar case, the solution of the Riemann
problem had to be a piecewise constant function. For systems, this is possible only
if all waves are shock waves or contact discontinuities. Consequently, we need to
approximate the continuous parts of the solution, the rarefaction waves, by functions
that are piecewise continuous in x=t .

1 Soft on Latin? It says, “If you don’t believe it, you won’t understand it.”
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There are, of course, several ways to make this approximation. We use the fol-
lowing: Let ı be a small parameter. For the rest of this chapter, ı will always denote
a parameter that controls the accuracy of the approximation. We start with the sys-
tem of conservation laws (6.1), and the Riemann problem

u.x; 0/ D
(
ul for x < 0,

ur for x � 0.
(6.2)

We have seen (Theorem 5.17) that the solution of this Riemann problem consists
of at most n C 1 constant states, separated by either shock waves, contact disconti-
nuities, or rarefaction waves. We wish to approximate this solution by a piecewise
constant function in .x=t/.

When the solution has shocks or contact discontinuities, it is already a step func-
tion for some range of .x=t/, and we set the approximation equal to the exact
solution u for such x and t .

Thus, if the j th wave is a shock or a contact discontinuity, we let

uı
j;�j

.x; t/ D uj;�j .x; t/; t�C
j < x < t��

jC1;

where the right-hand side is given by (5.137).
A rarefaction wave is a smooth transition between two constant states, and we

will replace this by a step function whose “steps” are no farther apart than ı and lie
on the correct rarefaction curve Rj . The discontinuity between two steps is defined
to move with a speed equal to the characteristic speed of the left state.

More precisely, let the solution to (6.2) be given by (5.137). Assume that the j th
wave is a rarefaction wave; that is, the solutions u and umj

lie on the j th rarefaction
curve Rj

�
umj�1

�
through umj�1

, or

u.x; t/ D uj;�j
�
x; t I umj

; umj�1

�
; for t��

j � x � t�C
j :

Let k D rnd
�
�j =ı

�
for the moment, where rnd .z/ denotes the integer closest2 to z,

and let Oı D �j =k. The step values of the approximation are now defined as

uj;l D Rj

�
l Oı I umj�1

�
; for l D 0; : : : ; k. (6.3)

We have that uj;0 D umj�1
and uj;k D umj

. We set the speed of the steps equal to
the characteristic speed to the left, and hence the piecewise constant approximation
we make is the following:

uı
j;�j

.x; t/ WD uj;0 C
kX

lD1

�
uj;l � uj;l�1

�
H
�
x � 
j

�
uj;l�1

�
t
�
; (6.4)

where H now denotes the Heaviside function. Equation (6.4) is to hold for t�C
j <

x < ��
jC1t . Loosely speaking, we step along the rarefaction curve with steps of size

at most ı. Observe that the discontinuities that occur as a result of the approximation
of the rarefaction wave will not satisfy the Rankine–Hugoniot condition, and hence
the function will not be a weak solution. However, we will prove that uı converges
to a weak solution as ı ! 0. Fig. 6.1 illustrates this in phase space and in .x; t/-
space.

2 Such that z � 1
2

� rnd .z/ < z C 1
2
.
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Fig. 6.1 An approximated
rarefaction wave in phase
space and in .x; t/-space
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The approximate solution to the Riemann problem is then found by inserting
a superscript ı at the appropriate places in (5.137), resulting in

uı.x; t/ D

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:

ul for x � ��
1 t ;

uı
1;�1

.x=t Ium1
; ul / for ��

1 t � x � �C
1 t ;

um1
for �C

1 t � x � ��
2 t ;

uı
2;�2

.x=t Ium2
; um1

/ for ��
2 t � x � �C

2 t ;

um2
for �C

2 t � x � ��
3 t ;

:::

uı
n;�n

.x=t Iur; umn�1
/ for ��

n t � x � �C
n t ;

ur for x � �C
n t .

(6.5)

It is clear that uı converges pointwise to the exact solution given by (5.137). Indeed,

ˇ̌
uı.x; t/ � u.x; t/

ˇ̌ D O .ı/ :

Therefore, we also have that
��uı.t/ � u.t/

��
L1 D O .ı/, since uı and u are equal

outside a finite interval in x.
Nowwe are ready to define the front-tracking procedure to (approximately) solve

the initial value problem (6.1).
Our first step is to approximate the initial function u0 by a piecewise constant

function uı
0 (we let ı denote this approximation parameter as well) such that

lim
ı!0

��uı
0 � u0

��
L1 D 0: (6.6)

We then generate approximations, given by (6.5), to the solutions of the Riemann
problems defined by the discontinuities of uı

0. Already here we see one reason why
we must assume T:V: .u0/ to be small: The initial Riemann problems must be solv-
able. Therefore, we assume our initial data u0, as well as the approximation uı

0, to
be in some small neighborhoodD of a constant Nu. Without loss of generality, Nu can
be chosen to be zero.

Since the initial discontinuities interact at some later time, we can solve the
Riemann problems defined by the states immediately to the left and right of the
collisions. These solutions are then replaced by approximations, and we may con-
tinue to propagate the front-tracking construction until the next interaction.
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However, as in the scalar case, it is not obvious that this procedure will take us
up to any predetermined time. A priori, it is not even clear whether the number
of discontinuities will blow up at some finite time, that is, that the collision times
will converge to some finite time. This problem is much more severe in the case
of a system of conservation laws than in the scalar case, since a collision of two
discontinuities generically will result in at least n � 2 new discontinuities. So for
n > 2, the number of discontinuities seems to be growing without bound as t

increases. As in the scalar case, the key to the solution of these problems lies in
the study of interactions of discontinuities. To keep the number of waves finite, we
shall eliminate small waves emanating from Riemann problems. However, there is
a trade-off: The more waves we eliminate, the easier it is to prove convergence, but
the less likely it is that the limit is a solution of the differential equation.

The method we shall use to eliminate discontinuities is taken from [9]. Let � > 0

be some small number whose precise value will be determined later, cf. (6.36).
Henceforth, we shall call all discontinuities in the approximate Riemann solution
fronts. The family of a front separating states uL and uR is the unique number j
such that

uR 2 Wj .uL/;

where, as in Chapt. 5,Wj .u/ denotes the j th wave curve through the point u. These
are parameterized as in Theorem 5.16. (Observe that we still have this relation for
fronts approximating a rarefaction wave.) The strength of a front is �, where we
have

uR D Wj;�uL:

Note that the total strength of a rarefaction wave remains unchanged in the front-
tracking approximation.

If a front of strength �l collides from the left with a front from the right of
strength �r , and j�l �r j � �, then we shall not use the approximate Riemann solver
given by (6.5), but the following construction.

Let Ol denote the family of the front �l and Or the family of �r . Let the state to the
left of the collision be ul and the state to the right be ur . Observe that since we have
a collision, Ol � Or . If Ol > Or , define the states u0

m and u0
r by

u0
m D W Or;�r ul ; u0

r D W Ol;�l u
0
m: (6.7)

If Ol D Or , then we define
u0
r D W Or;�lC�r ul : (6.8)

The piecewise constant approximation to the Riemann problem defined by the col-
lision of a left front �l and right front �r consists of two fronts if Ol > Or and of one
front if Ol D Or . We define the front-tracking approximation to this problem to be the
piecewise constant approximation to the Riemann problem defined by ul and u0

r ,
followed by a discontinuity traveling at a fixed speed � > maxu j
n.u/j separating
u0
r and ur . This front we call a ghost front. Other fronts we call physical fronts.

Regarding ghost fronts, we label these �g , and define the strength of a ghost front
�g to be �g D ju0

r � ur j. IfN physical fronts, �1; : : : ; �N , interact at the same point,
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a b

Fig. 6.2 a A collision producing a ghost front. b Collision between a ghost front and a physical
front

then we use an analogous construction ifX
i;j
i�j

ˇ̌
�i�j

ˇ̌ � �;

so that the result of this interaction will not be more than N physical fronts of the
same families as the incoming fronts, followed by a ghost front. More specifically,
we use the following construction. First observe that since the fronts are colliding,
their families are nonincreasing from left to right. We sum the strengths of fronts
belonging to the same family, i.e., Q�k D P

j; O|Dk �j for k D 1; : : : ; n. If the kth
family is absent, the corresponding Q�k vanishes. Next we construct the new states
after the collision, starting from the left. We define u0

m1
D W1; Q�1ul . Next we let

u0
m2

D W2; Q�2u
0
m1
, and so on until u0

r D u0
mn

D Wn; Q�nu
0
mn�1

. The strength of the ghost
front will be "g D jur � u0

r j.
Two ghost fronts will never interact, since they travel at the same speed. In order

to complete our description of the front-tracking algorithm, we must define how
a collision between a ghost front and a physical front is resolved. If a ghost front
separating states u0

l and ul collides with a physical front �r separating ul and ur ,
we define

u0
r D W Or;�r u

0
l :

Then the solution consists of a physical front of family Or and strength �r , followed
by a ghost front separating u0

r and ur , traveling at speed �. In particular, note that
the strength of a physical front is not changed if it collides with a ghost front. See
Fig. 6.2.

If a ghost front interacts with several physical fronts, �1; : : : ; �N at some point
.xc; tc/, we define u0

r D W1; Q�1 ı� � �ıWn; Q�nu
0
l ,
3 where is Q�k is as above. Then we solve

the Riemann problem with left state u0
l and right state u

0
r by the general procedure.

If
P

i�j

ˇ̌
�i�j

ˇ̌
> �, we use the full solution of the Riemann problem to define

the fronts. If
P

i�j

ˇ̌
�i�j

ˇ̌ � �, we should solve the Riemann problem using the
middle states u0

mk
D Wk; Q�k u

0
mk�1

for k D 1; : : : ; n, with u0
m0

D u0
l followed by

a ghost front separating u0
r and ur . Note that this solution equals the one we would

3 Observe that the order of families is reversed.
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a b

Fig. 6.3 a A collision between a ghost front and several physical fronts. b How this collision is
resolved by considering a sequence of collisions

have obtained if we had let the ghost front first interact with the leftmost of the
interacting fronts, �N , then let the resulting ghost front interact with �N�1 and so
on, until the interaction between a ghost front and the rightmost front �1, and after
this, resolve the collision between �N ; : : : ; �1. Thus, a collision between a ghost
front and several physical fronts can be viewed as a succession of collisions, first
between the ghost front and each physical front, and then between the physical
fronts. For an illustration of this, see Fig. 6.3. This perspective will be useful when
we obtain interaction estimates, cf. (6.25).

Since ghost fronts have a speed larger than that of other fronts, we define them
to be of family n C 1.

Front tracking in a box (systems)
(i) Given a one-dimensional strictly hyperbolic system of conservation

laws,
ut C f .u/x D 0; ujtD0 D u0; (6.9)

where u0 has small total variation.
(ii) Approximate the initial data u0 by a piecewise constant function uı

0.
(iii) Approximate the solution of each Riemann problem by a piecewise con-

stant function by sampling points at distance ı apart on the rarefaction
curve and using the exact shocks and contact discontinuities.

(iv) Track fronts (discontinuities).
(v) Solve new Riemann problems as in (iii), or if j�l �r j � � or one of the

colliding fronts is a ghost front, use (6.7)–(6.8).
(vi) Continue to solve Riemann problems approximately as in (v). Denote

an approximate solution by uı.
(vii) The function uı is well defined, and as ı ! 0, the approximate solution

uı will converge to u, the solution of (6.9).4



6.1 Front Tracking for Systems 289

Fig. 6.4 A collision of N
physical fronts
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We wish to estimate the strengths of the fronts resulting from a collision in terms
of the strengths of the colliding fronts. With some abuse of notation we shall refer
to both the front itself and its strength by �i .

Consider therefore oncemoreN physical fronts �N ; : : : ; �1 interacting at a single
point as in Fig. 6.4. We will have to keep track of the associated family of each front.
As before, we denote by O{ the family of wave �i . Thus if �1; : : : ; �4 all come from
the first family, we have O1 D � � � D O4 D 1. Since the speed of �j is greater than
the speed of �i for j > i , we have O| � O{. We label the waves resulting from the
collision ˇ1; : : : ; ˇn.

Let ˇ denote the vector of waves in solution of the Riemann problem, defined by
the collision of �1; : : : ; �N , i.e., ˇ D .ˇ1; : : : ; ˇn/, and let

˛ D
	 X

O{D1

�i ;
X
O{D2

�i ; : : : ;
X
O{Dn

�i



:

For simplicity, also set � D .�1; : : : ; �N /. Note that ˇ is a function of � , that is,
ˇ D ˇ.�/. For i < j we define

ˇi;j .�; �/ WD @2ˇ

@�i@�j

�
�1; : : : ; �i�1; ��i ; 0; : : : ; 0; ��j ; 0; : : : ; 0

�
:

Then

�i�j

1Z
0

1Z
0

ˇi;j .�; �/ d� d� (6.10)

D ˇ
�
�1; : : : ; �i ; 0; : : : ; 0; �j ; 0; : : : ; 0

�C ˇ .�1; : : : ; �i�1; 0; : : : ; 0/

� ˇ .�1; : : : ; �i ; 0; : : : ; 0/ � ˇ
�
�1; : : : ; �i�1; 0; : : : ; 0; �j ; 0; : : : ; 0

�
:

Furthermore,

ˇ .0; : : : ; 0; �k; 0; : : : ; 0/ D .0; : : : ; 0; �k; 0; : : : ; 0/ ; (6.11)

4 Proved in Sect. 6.2.
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where �k on the right is at the Okth place, since in this case we have no collision.
Summing (6.10) for all i < j , we obtain

NX
i<j

�i �j

1Z
0

1Z
0

ˇi;j .�; �/ d� d�

D ˇ .�1; : : : ; �N / �
NX
iD1

ˇ .0; : : : ; 0; �i ; 0; : : : ; 0/ D ˇ � ˛: (6.12)

By the solution of the general Riemann problem, see Lax’s theorem 5.17, we have
that ˇi;j is bounded; hence

jˇ � ˛j � O .1/

NX
i;j Ii<j

ˇ̌
�i�j

ˇ̌
; (6.13)

or

ˇ D ˛ C O .1/

NX
i;j
i<j

ˇ̌
�i�j

ˇ̌
: (6.14)

Note that if the incoming fronts �k are small, then the fronts resulting from the
collision will be very small for those families that are not among the incoming
fronts.

If we have a collision between a ghost front �g , separating states u0
l and ul , and

a physical front with strength � of family j separating states ur and ur , the result
will be a physical front of strength � separating states u0

l and u0
r , and a ghost front

�0
g separating u0

r and ur ; see the right part of Fig. 6.2. Since u0
r D Wj;�u

0
l and

ur D Wj;�ul ,

ur � u0
r D Wj;�ul � Wj;�u

0
l

D ul � u0
l C

�Z
0

@

@�

�
Wj;�ul � Wj;�u

0
l

�
d�

D ul � u0
l C

�Z
0

	@Wj;�

@�
.ul/ � @Wj;�

@�
.u0

l /


d�

D ul � u0
l C O .1/ j�j jul � u0

l j :
Therefore ˇ̌̌

�0
g

ˇ̌̌
� ˇ̌

�g
ˇ̌C K j�j ˇ̌�g ˇ̌ : (6.15)

} Example 6.1 (Higher-order estimates)
The estimate (6.13) is enough for our purposes, but we can extract some more in-
formation from (6.12) by considering higher-order terms. Firstly, note that

ˇ D ˛ C
X
i<j

�i�j ˇi;j .0; 0/ C O .1/
X
i<j

ˇ̌
�i�j

ˇ̌ j� j : (6.16)



6.1 Front Tracking for Systems 291

Therefore, we evaluate ˇi;j .0; 0/. To do this, observe that

ur D Rˇ.�/ ul D R�N ı R�N�1
ı � � � ı R�1 ul ; (6.17)

where Rˇ is defined as in (5.141), and ul and ur are the states to the left and right
of the collision, respectively. If we define

ˇ�j WD @ˇ

@�j
;

(6.11) implies

ˇ�j .0; : : : ; 0/ D e O| ;

where ek denotes the kth standard basis vector in Rn. Also note that

@

@�i
Rˇ.�/ D rˇRˇ � ˇ�i :

Furthermore, from Lemma 5.18 and (5.141), we have that

rˇRˇ D
0
@: : : ; rk C

nX
jD1

ǰDrmin.j;k/ rmax.j;k/; : : :

1
AC O

	
jˇj2



:

Here the first term on the right-hand side is the n � n matrix with the kth column
equal to rk CPn

jD1 ǰDrmin.j;k/ rmax.j;k/. Consequently,5

@

@�j
rˇR.0;:::;0/ D �

Dr1r O| ;Dr2r O| ; : : : ;Dr O| r O| ;Dr O| r O|C1; : : : ;Dr O| rn
�

evaluated at ul . Differentiating (6.17) with respect to �i , we obtain�rˇRˇ � ˇ�i

� j�D.0;:::;0;�j ;0:::;0/.ul / D rO{
�
R�j ul

�
for j > i . Differentiating this with respect to �j , we obtain�

@

@�j
rˇRˇ

�
j�D.0;:::;0/e O| C rˇR.0;:::;0/ˇi;j .0; 0/ D Dr O| rO{ .ul / :

Inserting this in (6.16), we finally obtain

ˇ D ˛ C
NX
i<j

�i�j
�rˇRˇ

��1 �
Dr O| rO{ � DrO{ r O|

�C O .1/
X
i<j

ˇ̌
�i�j

ˇ̌ j� j ; (6.18)

5 The right-hand side denotes the n � n matrix whose first O| columns equal Drk r O| , k D 1; : : : ; O| ,
and the remaining .n � O|/ columns equal Dr O| rk , k D O| C 1; : : : ; n.
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Fig. 6.5 An interaction in .x; t/-space and in phase space

which we call the interaction estimate. One can also use (6.12) to obtain estimates
of higher order.

In passing, we note that if the integral curves of the eigenvectors form a coordi-
nate system nearM , then �

Drj ri � Dri rj
� D 0

for all i and j , and we obtain a third-order estimate. The estimate (6.13) will prove
to be the key ingredient in our analysis of front tracking.

For the reader with knowledge of differential geometry, the estimate (6.18) is no
surprise. Assume that only two fronts collide, �l and �r , separating states uL, uM ,
and uR. Let the families of the two fronts be l and r , respectively. The states uL,
uM , and uR are almost connected by the integral curves of rl and rr , respectively.
If we follow the integral curve of rl a (parameter) distance ��l from uR, and then
follow the integral curve of rr a distance ��r , we end up with, up to third order in
�l and �r , half the Lie bracket of �lrl and �rrr away from uL. This Lie bracket is
given by

Œ�l rl ; �r rr � WD �l �r
�
Drl rr � Drr rl

�
:

This means that if we start from uL and follow rr a distance �r , and then rl a dis-
tance �l , we finish a distance O .Œ�l rl ; �r rr �/ away from uR. Consequently, up to
O .Œ�l rl ; �r rr �/, the solution of the Riemann problem with right state uR and left
state uL is given by a wave of family r of strength �r , followed by a wave of family
l of strength �l . While not a formal proof, these remarks illuminate the mechanism
behind the calculation leading up to (6.18). See Fig. 6.5. }

Before we proceed further, we introduce some notation. Front tracking will pro-
duce a piecewise constant function labeled uı.x; t/ that has, at least initially, some
finite number N of fronts. These fronts have strengths �i , i D 1; : : : ; N . We will
refer to the i th front by its strength �i , and label the left and right states uli and
uri , respectively. The position of �i is denoted by xi.t/, and with a slight abuse of
notation we have that

xi .t/ D xi C si .t � ti / ; (6.19)
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where si is the speed of the front, and .xi ; ti / is the position and time it originated.
In this notation, uı can be written

uı.x; t/ D ul1 C
NX
iD1

.uri � uli /H .x � xi .t// : (6.20)

The interaction estimate (6.13) shows that the “amount of change” produced by
a collision is proportional to the product of the strengths of the colliding fronts.
Therefore, in order to obtain some estimate of what will happen as fronts collide,
we define the interaction potential Q. The idea is thatQ should (over)estimate the
amount of change in uı caused by all future collisions. Hence by (6.13), Q should
involve terms of type j�l �r j. We say that two fronts are approaching if the front to
the left has a larger family than the front to the right, or if both fronts are of the
same family and at least one of the fronts is a shock wave. Note that this means that
a ghost front is approaching all physical fronts to its right. We collect all pairs of
approaching fronts in the approaching set A, that is,

A WD ˚�
�i ; �j

�
such that �i and �j are approaching

�
: (6.21)

The set A will, of course, depend on time. All future collisions will now involve
two fronts from A due to the hyperbolicity of the equation. Observe that two ap-
proximate rarefaction waves of the same family never collide unless there is another
front between, all colliding at the same point .x; t/. Therefore, we define Q as

Q WD
X
A

ˇ̌
�i �j

ˇ̌
: (6.22)

For scalar equations we saw that the total variation of the solution of the conserva-
tion law was not greater than the total variation of the initial data. From the solution
of the Riemann problem, we know that this is not true for systems. Nevertheless, we
shall see that if the initial total variation is small enough, the total variation of the
solution is bounded. To measure the total variation we use another time-dependent
functional T defined by

T WD
NX
iD1

j�i j ; (6.23)

where N is the number of fronts. Lax’s theorem (Theorem 5.17) implies that T is
equivalent to the total variation as long as the total variation is small.

Let t1 denote the first time two fronts collide. At this time we will have another
Riemann problem, which can be solved up to the next collision time t2, etc. In this
way we obtain an increasing sequence of collision times ti , i 2 N. To show that
front tracking is well defined, we need to show that the sequence ftig is finite, or if
infinite, not convergent. In the scalar case we saw that indeed this sequence is finite.

We will analyze more closely the changes in Q and T when fronts collide.
Clearly, they change only at collisions. Let tc be some fixed collision time.

Assume then that the situation is as in Fig. 6.6:N fronts �1; : : : ; �N are colliding
at some point .xc; tc/, givingN 0 fronts �0

1; : : : ; �
0
N 0 . Observe that if one of the collid-

ing fronts is a ghost front, then it must be the leftmost one, �N . Furthermore, if �N is
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Fig. 6.6 A collision of N
fronts
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a ghost front, then this collision can be viewed as a sequence of collisions between
the ghost front and each physical front �N�1; : : : ; �1, followed by the interaction of
�N�1; : : : ; �1 as depicted in Fig. 6.3. Thus for interaction estimates, we can assume
that if �N is a ghost front, then there are only two fronts colliding; �2 (the ghost
front) and �1 (the physical front).

Let I be a small interval containing xc , and let J be the complement of I . Then
we may write Q D Q.I/ C Q.J / C Q.I; J /, where Q.I/ and Q.J / indicate
that the summation is restricted to those pairs of fronts that both lie in I and that
both lie in J , respectively. Similarly, Q.I; J / means that the summation is over
those pairs where one front is in I and the other in J . Let �1 < tc < �2 be two
times, chosen such that no other collisions occur in the interval Œ�1; �2�, and such
that no fronts other than �1; : : : ; �N are crossing the interval I at time �1, and only
waves emanating from the collision at tc , i.e., waves denoted by �0

1; : : : ; �
0
n, cross I

at time �2. Let Qi and Ti denote the values ofQ and T at time �i . By construction,
Q2.I / D 0 andQ2.J / D Q1.J /, and hence

Q2 � Q1 D Q2.I; J / � Q1.I; J / � Q1.I /: (6.24)

We now want to bound the increase in Q.I; J / from time �1 to �2. More precisely,
we want to prove that

Q2.I; J / � Q1.I; J / C O .1/Q1.I /T1.J /: (6.25)

Let
ˇ̌
��0

i

ˇ̌
be a term in Q2.I; J /, i.e., .�; �0

i / 2 A at time �2. This means that �0
i < 0

or � < 0. With a slight abuse of notation we denote the family of �0
i by i . Let Ii be

the set of indices of the colliding fronts in I at time �1 with family i , i.e.,

Ii D fj j O| D i; j D 1; : : : ; N g :
Now the interaction estimate (6.14) reads

�0
i D

X
j2Ii

�j C O.1/Q1.I /:
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To prove (6.25) we study different cases. First we consider the three possibilities
that can occur if neither �0

i nor � is a ghost front:

(a) The family of � is not i . In this case, .�j ; �/ 2 A at time �1 for all j 2 Ii .
Therefore

j�0
i �j �

X
O|Di

.�j ;�/2A

ˇ̌
�j �
ˇ̌C O .1/Q1.I / j�j : (6.26)

(b) The family of � is i , and � < 0. In this case, since .�0
i ; �/ 2 A at time �2, also

.�j ; �/ 2 A at time �1 for all j 2 Ii . Hence (6.26) holds.
(c) The family of � is i , and � > 0. Since .�0

i ; �/ 2 A, we infer that �0
i < 0. Let

Ii;� D fk 2 Ii j "k < 0g. Then

j�0
i j D

X
j2Ii;�

ˇ̌
�j
ˇ̌ �

X
j2IinIi;�

ˇ̌
�j
ˇ̌C O.1/Q1.I /:

Also, for j 2 Ii , .�j ; �/ 2 A if and only if j 2 Ii;�. Hence (6.26) holds also in
this case.

Next we consider the situation when either �0
i or � is a ghost front.

(d) � is a ghost front. In this case � must be to the left of I since .�0
i ; �/ 2 A. Thus

.�j ; �/ 2 A for all j 2 K and (6.26) holds.
(e) �0

i is a ghost front. Then � must be to the right of I for .�0
i ; �/ to be in A. This

situation is depicted in Fig. 6.2. In the right case, �i is a ghost front, and in the
left case, �0

i D O .1/Q1.I / and there were no ghost fronts in I at �1. In the
latter case, clearly (6.26) holds. If �i is a ghost front, then there are only two
fronts colliding in I . By (6.15),

ˇ̌
�0
i

ˇ̌ � j�i j C O .1/ j�i jT1.I / and .�i ; �/ 2 A.
Thus (6.26) holds.

Therefore, for all pairs .�0
i ; �k/ 2 A with �k in J , (6.26) holds. Summing over i and

k gives (6.25).
Inserting (6.25) into (6.24), using the constant K to replace the order symbol,

we obtain

Q2 � Q1 � KQ1.I /T1 � Q1.I / D Q1.I / .KT1 � 1/ � �1

2
Q1.I / (6.27)

if T1 is smaller than 1=.2K/. By the estimate (6.15), (6.27) holds also for collisions
involving a ghost front.We summarize the above discussion in the following lemma.

Lemma 6.2 Assume that T1 � 1=.2K/. Then

Q2 � Q1 � �1

2
Q1.I /

for every ı and �.

We will use this lemma to deduce that the total variation remains bounded if it
initially is sufficiently small, or in other words, if the initial data are sufficiently
close to a constant state.
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Lemma 6.3 If T is sufficiently small at t D 0, then there is some constant c inde-
pendent of ı such that

G D T C c Q

is nonincreasing. We call G the Glimm functional. Consequently, T and T:V:
�
uı
�

are bounded independently of ı and �.

Proof Let Tn and Qn denote the values of T and Q, respectively, before the nth
collision of fronts at tn, with 0 < t1 < t2 < � � � . Using the interaction estimate
(6.13), we first infer that

TnC1 D
X
j

ˇ̌̌
�0
j

ˇ̌̌
� Tn C KQn.I /: (6.28)

Let c � 2K and assume that T1CcT 2
1 � 1=.2K/. Assume furthermore that T Cc Q

is nonincreasing for all t less than tn, and that Tn � 1=.2K/. Lemma 6.2 and (6.28)
imply that

TnC1 C c QnC1 � Tn C KQn.I / C c Qn � c

2
Qn.I /

D Tn C c Qn C
	
K � c

2



Qn.I /

� Tn C c Qn;

since K � c
2

� 0. Consequently,

TnC1 � TnC1 C c QnC1 � � � � � T1 C c Q1 � T1 C c T 2
1 � 1=.2K/;

which by induction proves the result. �

We still have not shown that the front-tracking approximation can be continued
up to any desired time. Now, however, this is clear. Since only collisions between
physical fronts that have strengths �l and �r such that j�l �r j > � will produce new
fronts, andQ decreases by at least j�l �r j =2 in such a collision, there can be at most
2Q.0/=� collisions producing new nonghost fronts. Since fronts of each family
will travel in a wedge in the .x; t/-plane, eventually all physical fronts of different
families will have interacted. After this time, two rarefaction fronts (fronts approx-
imating rarefaction waves) of the same family will not collide, and the collision of
two shock fronts of the same family will produce a single shock front of the same
family and a ghost front. Thus in such collisions the number of physical fronts de-
creases by at least one. Therefore, there can be only a finite number of this type of
collision. Since ghost fronts all have the same speed, they will not interact among
themselves. Therefore, for fixed ı and �, there will be only a finite number of inter-
actions for all t > 0. Hence the front-tracking approximation is well defined, and
we can calculate the approximation uı.x; t/ for all t > 0 using a finite number of
steps. Thus front tracking for systems is also a hyperfast method.

Summing up our results so far, we have proved the following result.
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Theorem 6.4 Let fj 2 C2.Rn/, j D 1; : : : ; n. Let D be a domain in Rn and
consider the strictly hyperbolic equation ut C f .u/x D 0 in D. Assume that f
is such that each wave family is either genuinely nonlinear or linearly degenerate.
Assume also that the function u0.x/ has sufficiently small total variation.

Then the front-tracking approximation uı.x; t/, defined by (6.5), (6.6) and con-
structed by the front-tracking procedure described above, is well defined. Further-
more, the method is hyperfast, i.e., it requires only a finite number of computations
to define uı.x; t/ for all t . The total variation of uı is uniformly bounded, and there
is a constant C such that

T:V:
�
uı. � ; t/� � C;

for all t � 0 and all ı > 0 and all � > 0.

6.2 Convergence

The Devil is in the details.
— English proverb

At this point we could proceed, as in the scalar case, by showing that front tracking
is stable with respect to L1 perturbations of the initial data. This would then imply
that the sequence of approximations

˚
uı
�
has a unique limit as ı ! 0. For systems,

however, this analysis is rather complicated. In this section we shall instead prove
that the sequence

˚
uı
�
is compact and that every (there is really only one) limit is

a weak solution. The reader willing to accept this, or primarily interested in front
tracking, may skip ahead to the next chapter.

To show that a subsequence of the sequence fuıgı>0 converges inL1
loc.R� Œ0; T �/,

we use Theorem A.11 from Appendix A. We have already shown that uı.x; t/ is
bounded, and we have thatZ

R

ˇ̌
uı.x C �; t/ � uı.x; t/

ˇ̌
dx � � T:V:

�
uı. � ; t/� � C�;

for some C independent of ı. Hence, by Theorem A.11, to conclude that a subse-
quence of

˚
uı
�
converges, we must show that

RZ
�R

ˇ̌
uı.x; t/ � uı.x; s/

ˇ̌
dx � C.t � s/;

where t � s � 0, for every R > 0 and for some C independent of ı. Since uı is
bounded, we have that � (the speed of the ghost fronts) is bounded, and (recall that

1 < � � � < 
n)

� > max
juj�supjuıj

fj
n.u/j ; j
1.u/jg :
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Let ti and tiC1 be two consecutive collision times. For t 2 .ti ; tiC1� we write uı in
the form

uı.x; t/ D u1 C
NiX
kD1

�
ui
k � ui

k�1

�
H
�
x � xi

k.t/
�
; (6.29)

where xi
k.t/ denotes the position of the kth front from the left, andH the Heaviside

function. Here uı.x; t/ D ui
k for x between xi

k and xi
kC1. Assume now that t 2

Œti ; tiC1� and s 2 Œtj ; tjC1�, where j � i and s � t . Then

Z
R

ˇ̌
uı.x; t/ � uı .x; ti /

ˇ̌
dx

D
Z
R

ˇ̌̌ tZ
ti

d

d�
uı.x; �/ d�

ˇ̌̌
dx

�
Z
R

tZ
ti

NiX
kD1

ˇ̌
ui
k�1 � ui

k

ˇ̌ ˇ̌̌
xi
k

0
.�/
ˇ̌̌ ˇ̌
H 0 �x � xi

k.�/
�ˇ̌

d� dx

� �

tZ
ti

NiX
kD1

ˇ̌
ui
k�1 � ui

k

ˇ̌ Z
R

ˇ̌
H 0 �x � xi

k.�/
�ˇ̌

dx d�

� �.t � ti /T:V:
�
uı. � ; t/�

� �C .t � ti / ;

since
ˇ̌
xi
k

0 ˇ̌ � �. Similarly, we show that

Z
R

ˇ̌
uı .x; ti / � uı

�
x; tjC1

�ˇ̌
dx � �C

�
ti � tjC1

�
if j C 1 < i ,

and Z
R

ˇ̌
uı
�
x; tjC1

� � uı .x; s/
ˇ̌
dx � �C

�
tjC1 � s

�
:

Therefore,

��uı. � ; t/ � uı. � ; s/��
L1 � C jt � sj ;

for some constant C independent of t and ı. Hence, we can use Theorem A.11 to
conclude that there exist a function u.x; t/ and a subsequence

˚
ıj
� � fıg such that

uıj ! u.x; t/ in L1
loc as j ! 1.

As in the scalar case, it is by no means obvious that the limit function u.x; t/ is
a weak solution of the original initial value problem (6.1). For a single conservation
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law, this was not difficult to show, using that the approximations were weak solu-
tions of approximate problems. This is not so in the case of systems, so we must
analyze how close the approximations are to being weak solutions.

There are three sources of error in the front-tracking approximation. Firstly, the
initial data are approximated by a step function. Secondly, there is the approxima-
tion of rarefaction waves by step functions, and finally, ghost fronts are not weak
solutions locally.

In the following, the next lemma will be useful.

Lemma 6.5 Let the sequence faig1
iD1 be defined by

a1 D 1; am D
m�1X
jD1

am�j aj ; m D 2; 3; : : : : (6.30)

Then

am D 2
.2m � 3/Š

mŠ.m � 2/Š
D O .1/ 4mm�1=2:

Proof We use the notation 
1=2

m

!
D

1
2

� . 1
2

� 1/ � � � . 1
2

� m C 1/

mŠ
:

Define the function

y.x/ D
1X

mD1

amx
m:

Then, using (6.30),

y2 D
1X

mD2

0
@m�1X

jD1

am�j aj

1
A xm D y � x;

and we infer that (recall that y.0/ D 0)

y.x/ D 1

2

	
1 � p

1 � 4x



D
1X

mD1

.�1/mC1

 
1=2

m

!
22m�1xm;

which implies

am D .�1/mC1

 
1=2

m

!
22m�1:

We may rewrite this as

am D 2
.2m � 3/Š

mŠ.m � 2/Š
:
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To estimate am as m ! 1, we apply Stirling’s formula [188, p. 253]

nŠ D p
2� exp

 	
n � 1

2



ln.n C 1/ � .n C 1/ C �

12.n C 1/

!
;

for 0 � � � 1. We obtain

am D 2
.2m � 3/Š

mŠ.m � 2/Š
D O .1/ 4m m�1=2: �

We begin the error analysis by estimating how much we “throw away” by the
ghost fronts. To do this, it is useful to introduce the concept of the generation of
a front. We say that each initial front starting at t D 0 belongs to the first generation.
Consider two first-generation fronts of families l and r , respectively, that collide.
The resulting fronts of families l and r will still belong to the first generation,
while all the remaining fronts resulting from this collision will be called second-
generation fronts. More generally, if a front of family l and generation m interacts
with a front of family r and generation n, the resulting fronts of families l and r are
still assigned generationsm and n, respectively, while the remaining fronts resulting
from this collision are given generation n C m. If k fronts, of generations M1; : : : ; Mk
and families O1; : : : ; Ok collide, then the resulting fronts of family O{ have generation
M{, while resulting fronts of families not in the set

nO1; : : : ; Ok
o
will have generation

mini;j fM{ C M|g. The motivation behind this concept is that fronts of high generations
will have small strength.

For fixed ı and �, there will be only a finite number of fronts in uı.x; t/. We
can use Lemma 6.5 to estimate the number of fronts of generation m. If we let Gm

denote this number, we have that

GmC1 � .n � 2/
T

ı

mX
jD1

GmC1�jGj ; m � 1; G1 D N � O .1/
T

ı
: (6.31)

This holds since there will be at most .n � 2/ waves of new generations at each
collision, each of which can consist of at most T=ı rarefaction fronts.

Set C D .n � 2/T=ı and

am D Gm

Cm�1
:

Then am satisfies

amC1 D GmC1

Cm

� 1

Cm�1

X
jD1

GmC1�jGj

D 1

Cm�1

mX
jD1

amC1�j ajC
mC1�j�1Kj�1

D
mX

jD1

amC1�j aj :
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We can use Lemma 6.5 and conclude that

Gm � O .1/

�
.n � 2/T

ı

�m�1

.4N /mm�1=2

� O .1/
4m.n � 2/m�1T 2m�1

ı2m�1m1=2
: (6.32)

We also need to estimate the total variation of the fronts belonging to a given gen-
eration. Let Gm denote the set of all fronts of generation m, and let Tm denote the
sum of the strengths of fronts of generationm. Thus

Tm.t/ D
X
�j 2Gm

ˇ̌
�j
ˇ̌
:

Since there are no fronts of generation more than N (see the discussion of Theo-
rem 6.4),

T .t/ D
NX

mD1

Tm.t/:

Lemma 6.6 We have that

Tm.t/ � C.4KT .t//m

for some constant C .

Proof Using the interaction estimate, we obtain

TmC1 D
mX

jD1

X
�l2GmC1�j

X
�r2Gj

O .j�l j j�r j/

� K

mX
jD1

X
�l2GmC1�j

X
�r2Gj

j�l j j�r j

D K

mX
jD1

TmC1�jTj :

By introducing QTm.t/ D Tm.t/=.T .t/
mKm�1/, we see that QTm.t/ satisfies

QTmC1.t/ �
mX

jD1

QTmC1�j .t/ QTj .t/;

with QT1.t/ � 1. Now we can use Lemma 6.5 to conclude that

QTm � C4mm�1=2;

and thus

Tm � C
.4KT /mp

m
; (6.33)

and the lemma follows. �
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Next we must estimate the change in the strength of a ghost front as it collides
with other fronts. We denote the strength of the ghost front after colliding with m

other fronts by �m. First we claim that

j�0j � K�: (6.34)

To see this, assume that a front �l of family Ol and a front �r of family Or collide and
produce a ghost front; see Fig. 6.2. If Ol > Or , then (6.7) holds, and if Ol D Or , (6.8)
holds. If we solve the Riemann problem exactly, obtaining n waves of strengths
�0
1; : : : ; �

0
n, we have that

ur D Wn;�0
n

ı Wn�1;�0
n�1

ı W1;�0
1
ul ;

as well as the interaction estimate

�0
i D ıi;Ol �l C ıi;Or�r C O .1/ j�l �r j :

With a slight abuse of notation, write

W.�1; �2; : : : ; �n/ul WD Wn;�n ı Wn�1;�n�1
ı W1;�1ul ;

so that

ur D W.�0
1; �

0
2; : : : ; �

0
n/ul

and

u0
r D W.0; : : : ; 0; �r ; 0; : : : ; 0; �l ; 0; : : : ; 0/ul :

The functionW has bounded derivatives with respect to all its arguments, whence

j�0j D ju0
r � ur j � K

nX
iD1

ˇ̌̌
�0
i � ı

i;Ol �l � ıi;Or�r
ˇ̌̌

� K j�l �r j � K�;

and (6.34) holds. The proof of (6.34) if several fronts interact to produce a ghost
front is analogous.

To estimate how the strength of a ghost front evolves as it collides with physical
fronts, we use the interaction estimate (6.15),

j�mC1j � .1 C K j�r j/ j�mj ;
after the next collision with a front �r . Using this repeatedly, after collisions with
�r;1; : : : ; �r;m, yields

j�mj � .1 C K j�r;1j/ � � � .1 C K j�r;mj/ j�0j

� j�0j exp
	
K

mX
kD1

j�r;k j


:
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Assume that the ghost front started at .x0; t0/, and let Y.x/ be the curve coinciding
with the trajectory of the ghost front for t > t0 and t0 otherwise, i.e.,

Y.x/ D
(
t0 x � x0;

t0 C x�x0
�

x > x0:

Then we have that

mX
kD1

j�r;k j � T
ˇ̌̌
Y.x/�

� G.t0/ � T .0/ C cT .0/2 � 1

2K
;

since Y.x/ is “spacelike.” Hence, for all ghost fronts,

j�j � K�e1=2; (6.35)

since their initial strength is by definition bounded by K�.
Now we can finally determine �. Let G denote the set of all ghost fronts. We

want to choose � such that the variation of uı across the ghost fronts vanishes as ı
becomes small. Let Tg denote this variation. We have that

Tg D
X
g2G

ˇ̌
�g
ˇ̌

D
k0�1X
MgD1

ˇ̌
�g
ˇ̌C

X
Mg�k0

ˇ̌
�g
ˇ̌

� Ke1=2�

k0�1X
kD1

Gk C
X
k�k0

C .4KT /k ;

where Gk is the total number of fronts of generation k, and T is the total variation
over all fronts. Now we assume that T .0/ is so small that

4KT .t/ � � < 1:

By (6.32),

Gk � C.C=ı/2k�1:

Using this, we have that

Tg � C�

k0�1X
kD1

	C
ı


2k�1 C C
�k0

1 � �
:

Now we first choose k0 such that

C
�k0

1 � �
� ı

2
;
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and then choose � such that

C�

k0�1X
kD1

	C
ı


2k�1 � ı

2
: (6.36)

Thus Tg � ı, and the total strength of the ghost fronts is small.
Now we can estimate how far uı is from being a weak solution. Recall that

shock fronts are local weak solutions, while we are making errors across fronts
approximating rarefaction waves and across ghost fronts.

To bound the error coming from a ghost front, we use

jf .ul / � f .ur/ � �.ul � ur/j � C jul � ur j : (6.37)

This follows from the Lipschitz continuity of f .
To bound the error coming from a rarefaction front separating ul and ur , we note

that ur D Wj;�ul for some � � ı, and we shall need to estimate

�.�/ D f .ur / � f .ul / � 
j .ul/.ur � ul /

D f
�
Wj;�ul

� � f .ul / � 
.ul/
�
Wj;�ul � ul

�
:

We have that �.0/ D 0 and that

� 0.0/ D df .ul /rj .ul/ � 
j .ul/rj .ul/ D 0:

Hence, �.�/ D O
�
�2
�
, orˇ̌

f .ur / � f .ul / � 
j .ul/.ur � ul/
ˇ̌ � Cı2; (6.38)

if ul and ur are the left and right states of a rarefaction front.
By construction, if ul and ur are the states to the left and right of a shock front

traveling with a speed � , then

f .ur / � f .ul / � �.ur � ul/ D 0:

For a fixed time, we have that uı is piecewise constant in x, and that the disconti-
nuities of uı are located at xi and move with speed �i for i D 1; : : : ; N . This holds
for all times t that are not collision times. Using this, we can write

uı.x; t/ D uL C
X
i

H .x � xi.t// �u�i ;

f
�
uı
� D f .uL/ C

X
i

H .x � xi .t// �f .u/�i ;

where H denotes the Heaviside function and �u�i D ur � ul if ur is the state to
the right of the discontinuity, and ul the state to the left. Thus in the distributional
sense,

uı
t .x; t/ D �

X
i

�i �u�i ıxi .t/.x/;

f
�
uı.x; t/

�
x

D
X
i

�f .u/�i ıxi .t/.x/;
(6.39)

where ıxi .t/ denotes the Dirac delta distribution located at xi.t/.
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We can use this to estimate how far uı is from a being a weak solution. Recall
that u is a weak solution of (6.1) if

1Z
0

Z
R

�
u't C f .u/'x

�
dx dt C

Z
R

u.x; 0/'.x; 0/ dx D 0:

Since u D limı!0 u
ı , we need to show that

0 D lim
ı!0

	 1Z
0

Z
R

�
uı't C f .uı/'x

�
dx dt C

Z
R

uı.x; 0/'.x; 0/ dx


; (6.40)

for all test functions '. We have constructed the initial data uı.x; 0/ such that the
last integral in the limit approaches

R
u0'.x; 0/ dx. Regarding the double integral,

using the representation of uı as a sum of Heaviside functions and (6.39), we have

1Z
0

Z
R

�
uı't C f .uı/'x

�
dx dt

D �
TZ

0

X
i

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt

D �
X
i2S

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt

�
X
i2R

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt

�
X
i2G

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt;

where S denotes the set of shock fronts, R the set of rarefaction fronts, and G the
set of ghost fronts. Here, T is chosen so that ' is zero for t > 0. We have that

X
i2S

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt D 0;

ˇ̌̌X
i2R

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt

ˇ̌̌
� C

X
i2R

ˇ̌
�u�i

ˇ̌2 � Cı;

ˇ̌̌X
i2G

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt

ˇ̌̌
� C

X
i2G

ˇ̌
�u�i

ˇ̌ � Cı:

Thus the limit is a weak solution.
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We can actually extract some more information about the limit u by examining
the approximate solutions uı. More precisely, we would like to show that isolated
jump discontinuities of u satisfy the Lax entropy condition


m .ul/ � � � 
m .ur/ (6.41)

for some m between 1 and n, where � is the speed of the discontinuity, and

ul D lim
y!x�u.y; t/ and ur D lim

y!xCu.y; t/:

To show this, we assume that u has an isolated discontinuity at .x; t/, with left and
right limits ul and ur . We can enclose .x; t/ by a trapezoid Eı with corners defined
as follows. Start by finding points

xk
ı;l ! x�; xk

ı;r ! xC; t1ı " t; t2ı # t;

for k D 1; 2 as ı ! 0. We let Eı denote the trapezoid with corners .x1
ı;l ; t

1
ı /,

.x1
ı;r ; t

1
ı /, .x

2
ı;r ; t

2
ı /, .x

2
ı;l ; t

2
ı /. Recall that convergence inL

1
loc implies pointwise con-

vergence almost everywhere, so we choose these points such that

uı.x1
ı;l ; t

1
ı /

uı.x2
ı;l ; t

2
ı /

)
! ul and

uı.x1
ı;r ; t

1
ı /

uı.x2
ı;r ; t

2
ı /

)
! ur

as ı ! 0. We can also choose points such that the diagonals of Eı have slopes not
too different from � ; precisely,ˇ̌̌

ˇ̌x1
ı;l � x2

ı;r

t1ı � t2ı
� �

ˇ̌̌
ˇ̌ � ".ı/ and

ˇ̌̌
ˇ̌x1

ı;l � x2
ı;r

t1ı � t2ı
� �

ˇ̌̌
ˇ̌ � ".ı/; (6.42)

where ".ı/ ! 0 as ı ! 0. Next for k D 1; 2, set

Mk
ı D

P j�i j
xk
ı;r � xk

ı;l

;

where the sum is over all rarefaction fronts in the interval
�
xk
ı;l ; x

k
ı;r

�
. If Mk

ı is
unbounded as ı ! 0, then u contains a centered rarefaction wave at .x; t/, i.e.,
a rarefaction wave starting at .x; t/. In this case the discontinuity will not be iso-
lated, and henceMk

ı remains bounded as ı ! 0. Next observe thatˇ̌̌
uı.xk

ı;l ; t
k
ı / � uı.xk

ı;r ; t
k
ı /

ˇ̌̌
xk
ı;r � xk

ı;l

� C

P jrarefaction frontsj CP jshock frontsj
xk
ı;r � xk

ı;l

D CMk
ı C C

P jshock frontsj
xk
ı;r � xk

ı;l

:

Here the sums are over fronts crossing the interval
�
xk
ı;l ; x

k
ı;r

�
. Since the fraction on

the left is unbounded as ı ! 0, there must be shock fronts crossing the top and
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bottom ofEı for all ı > 0. Furthermore, since the discontinuity is isolated, the total
strength of all fronts crossing the left and right sides of Eı must tend to zero as
ı ! 0.

Next we define a shock line as a sequence of shock fronts of the same family in
uı. Assume that a shock line has been defined for t < tn, where tn is a collision time,
and in the interval Œtn�1; tn/ consists of the shock front �. In the interval Œtn; tnC1/,
this shock line continues as the front � if � does not collide at tn. If � collides at tn,
and the approximate solution of the Riemann problem determined by this collision
contains an approximate shock front of the same family as �, then the shock line
continues as this front. Otherwise, it stops at tn. Note that we can associate a unique
family to each shock line.

From the above reasoning it follows that for all ı there must be shock lines
entering Eı through the bottom that do not exit Eı through the sides; hence such
shock lines must exit Eı through the top. Assume that the leftmost of these shock
lines enters Eı at y1

ı;l and leaves Eı at y2
ı;l . Similarly, the rightmost of the shock

lines enters Eı at y1
ı;r and leaves Eı at y2

ı;r . Set

vkı;l D uı
�
yk
ı;l�; tkı

�
and vkı;r D uı

�
yk
ı;rC; tkı

�
:

Between yk
ı;l and xk

ı;l , the function uı varies over rarefaction fronts or over shock
lines that must enter or leaveEı through the left or right side. Since the discontinuity
is isolated, the total strength of such waves must tend to zero as ı ! 0. Because
uı.xk

ı;l ; t
k
ı / ! ul as ı ! 0, we have that vkı;l ! ul as ı ! 0. Similarly, vkı;r ! ur .

Since " .ı/ ! 0, by strict hyperbolicity, the family of all shock lines not crossing
the left or right side of Eı must be the same, say m. The speed of an approximate
m-shock front with speed Q� and left state vkı;l satisfies


m�1

�
vkı;l
�
< Q� C O .ı/ < 
m

�
vkı;l
�
: (6.43)

Similarly, an approximatem-shock front with right state vkı;r and speed O� satisfies


m

�
vkı;r

�
< O� C O .ı/ < 
mC1

�
vkı;r

�
: (6.44)

Then (6.41) follows by noting that Q� and O� both tend to � as ı ! 0, and then letting
ı ! 0 in (6.43) and (6.44).

To summarize the results of this chapter we have the following theorem:

Theorem 6.7 Consider the strictly hyperbolic system of equations

ut C f .u/x D 0; u.x; 0/ D u0.x/;

and assume that f 2 C2 is such that each characteristic wave family is either
linearly degenerate or genuinely nonlinear. If T:V: .u0/ is sufficiently small, there
exists a global weak solution u.x; t/ to this initial value problem. This solution may
be constructed by the front-tracking algorithm described in Sect. 6.1. Furthermore,
if u has an isolated jump discontinuity at a point .x; t/, then the Lax entropy con-
dition (6.41) holds for some m between 1 and n.
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We have seen that for each ı > 0 there is only a finite number of collisions
between the fronts in uı for all t > 0. Hence there exists a finite time Tı such
that for t > Tı, the fronts in uı will move apart, and not interact. This has some
similarity to the solution of the Riemann problem. One can intuitively make the
change of variables t 7! t=", x 7! x=" without changing the equation, but the
initial data is changed to u0.x="/. Sending " ! 0, or alternatively t ! 1, we see
that u solves the Riemann problem

ut C f .u/x D 0; u.x; 0/ D
(
uL for x < 0;

uR for x � 0;
(6.45)

where uL D limx!�1 u0.x/ and uR D limx!1 u0.x/. Thus in some sense, for
very large times, u should solve this Riemann problem. Next, we shall show that
this (very imprecise statement) is true, but first we need some more information
about uı.

For t > Tı, the function uı will consist of a finite number of constant states, say
uı
i , for i D 0; : : : ;M . If uı

i�1 is connected with uı
i by a wave of a different family

from the one connecting uı
i to uı

iC1, we call u
ı
i a real state, and we let f NuigNiD0 be

the set of real states of uı. Since the discontinuities of uı are moving apart, we must
have

N � n; (6.46)

by strict hyperbolicity. Furthermore, to each pair . Nui�1; Nui / we can associate a fam-
ily ki such that 1 � ki < kiC1 � n, and we define k0 D 0 and kNC1 D n.
We write the solution of the Riemann problem with left and right data Nu0 and NuN ,
respectively, as u, and define �j , j D 1; : : : ; n, by

NuN D Wn.�n/Wn�1.�n�1/ � � �W1.�1/ Nu0;

and define the intermediate states

u0 D Nu0 and uj D Wj .�j /uj�1 for j D 1; : : : ; n.

Now we claim that ˇ̌
uj � Nui

ˇ̌ � O .ı/ ; for ki�1 � j � ki : (6.47)

If N D 1, this clearly holds, since in this case uı consists of two states for t > Tı ,
and by construction of uı, the pair . Nu0; Nu1/ is the solution of the same Riemann
problem as u is, but possibly with waves of a high generation ignored.

Now assume that (6.47) holds for some N > 1. We shall show that it holds for
N C 1 as well. Let v be the solution of the Riemann problem with initial data given
by

v.x; 0/ D
(

Nu0 for x < 0;

NuN for x � 0;



6.2 Convergence 309

and let w be the solution of the Riemann problem with initial data

w.x; 0/ D
(

NuN for x < 0;

NuNC1 for x � 0:

We denote the waves in v and w by �vj and �wj , respectively. Then by the induction
hypothesis,

ˇ̌N�i � �vki

ˇ̌ � O .ı/ ;
ˇ̌̌
N�NC1 � �wkNC1

ˇ̌̌
� O .ı/ ;X

i…fk1;:::;kN g
j�vi j � O .ı/ ; and

X
i¤kNC1

j�wi j � O .ı/ ;

where N�i denotes the strength of the wave separating Nui�1 and Nui . Notice now that
u can be viewed as the interaction of v and w; hence by the interaction estimate,

X
i

j�i � �vi j � O .ı/ for i � kN ; and
ˇ̌̌
�kNC1

� �wkNC1

ˇ̌̌
� O .ı/ :

Thus (6.47) holds for N C 1 real states, and therefore for every N � n. Now we
can conclude that for u D limı!0 u

ı the following result holds.

Theorem 6.8 Assume that uL D limx!�1 u0.x/ and uR D limx!1 u0.x/ exist.
Then as t ! 1, u will consist of a finite number of states fuigNiD0, where N � n.
These states are the intermediate states in the solution of the Riemann problem
(6.45), and they will be separated by the same waves as the corresponding states in
the solution of the Riemann problem.

Proof By the calculations preceding the lemma, for t > Tı we can define a func-
tion Nuı that consists of a number of constant states separated by elementary waves,
shocks, rarefactions, or contact discontinuities such that these constant states
are the intermediate states in the solution of the Riemann problem defined by
limx!�1 uı.x; t/ and limx!1 uı.x; t/, and such that for every bounded interval I ,

�� Nuı. � ; t/ � uı. � ; t/��
L1.I /

! 0 as ı ! 0.

Then for t > Tı,

ku. � ; t/ � Nuı. � ; t/kL1.I / � ��u. � ; t/ � uı. � ; t/��
L1.I /

C �� Nuı. � ; t/ � uı. � ; t/��
L1.I /

:

Set t D Tı C 1, and let ı ! 0. Then both terms on the right tend to zero, and
Nu0 ! uL and NuN ! uR. Hence the lemma holds. Note, however, that u does not
necessarily equal some Nuı in finite time. �
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Remark 6.9 Here is another way to interpret heuristically the asymptotic result for
large times. Consider the set

fuı.x; t/ j x 2 Rg

in phase space. There is a certain ordering of that set given by the ordering of x. As
ı ! 0, this set will approach some set

fu.x; t/ j x 2 Rg:

Theorem 6.8 states that as t ! 1 this set approaches the set that consists of the
states in the solution of the Riemann problem (6.45) with the same order. No state-
ments are made as to how fast this limit is obtained. In particular, if uL D uR D 0,
then u.x; t/ ! 0 for almost all x as t ! 1.

6.3 Notes

The fundamental result concerning existence of solutions of the general Cauchy
problem is due to Glimm [72], where the fundamental approach was given, and
where all the basic estimates can be found. Glimm’s result for small initial data
uses the random choice method. The random element is not really essential to the
random choice method, as was shown by Liu in [135]. The existence result has been
extended for some 2� 2 systems, allowing for initial data with large total variation;
see [144, 170]. These systems have the rather special property that the solution of
the Riemann problem is translation-invariant in phase space.

Our proof of the interaction estimate (6.13) is a modified version of Yong’s ar-
gument [190].

Front tracking for systems was first used by DiPerna in [60]. In this work a front-
tracking process was presented for 2 � 2 systems, and shown to be well defined
and to converge to a weak solution. Although DiPerna states that “the method is
adaptable for numerical calculation,” numerical examples of front tracking were
first presented by Swartz and Wendroff in [172], in which front tracking was used
as a component in a numerical code for solving problems of gas dynamics.

The front tracking presented here contains elements from the front-tracking
methods of Bressan [21] and, in particular, of Risebro [160]. In [160] the genera-
tion concept was not used. Instead, one “looked ahead” to see whether a buildup of
collision times was about to occur. In [9] Baiti and Jenssen showed that one does
not really need to use the generation concept or look ahead in order to decide which
fronts to ignore.

The large-time behavior of u was shown to hold for the limit of the Glimm
scheme by Liu in [136].

The front-tracking method presented in [160] has been used as a numerical
method; see Risebro and Tveito [162, 163] and Langseth [121, 122] for examples
of problems in one space dimension. In several space dimensions, front tracking
has also been used in conjunction with dimensional splitting with some success for
systems; see [92] and [132].
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6.4 Exercises

6.1 Assume that f WRn ! Rn is three-times differentiable, with bounded deriva-
tives. We study the solution of the system of ordinary differential equations

dx

dt
D f .x/; x.0/ D x0:

We write the unique solution as x.t/ D exp.tf /x0.

(a) Show that

exp."f /x0 D x0 C "f .x0/ C "2

2
df .x0/ f .x0/ C O

�
"3
�
:

(b) If g is another vector field with the same properties as f , show that

exp."g/ exp."f /x0 D x0 C " .f .x0/ C g .x0//

C "2

2

	
df .x0/ f .x0/ C dg .x0/ g .x0/



C "2dg .x0/ f .x0/ C O

�
"3
�
:

(c) The Lie bracket of f and g is defined as

Œf; g�.x/ D dg.x/f .x/ � df .x/g.x/:

Show that

Œf; g� .x0/ D lim
"!0

1

"2

�
exp."g/ exp."f /x0 � exp."f / exp."g/x0

�
:

(d) Indicate how this can be used to give an alternative proof of the interaction
estimate (6.13).

6.2 We study the p system with p.u1/ as in Exercise 5.3, and we use the re-
sults of Exercise 5.9. Define a front-tracking scheme by introducing a grid in
the .�; �/-plane. We approximate rarefaction waves by choosing intermediate
states that are not farther apart than ı in .�; �/. If � is a front with left state
.�l ; �l / and right state .�r ; �r /, define

T .�/ D
(

j���j � j���j if � is a 1-wave,

j���j � j���j if � is a 2-wave,

and define T additively for a sequence of fronts.

(a) Define a front-tracking algorithm based on this, and show that

TnC1 � Tn;

where Tn denotes the T value of the front-tracking approximation between
collision times tn and tnC1.
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(b) Find a suitable condition on the initial data so that the front-tracking algo-
rithm produces a convergent subsequence.

(c) Show that the limit is a weak solution.

6.3 Assume that the flux function f .u/ admits an entropy/entropy flux pair .
; q/,
that is, 
 and q are functions from Rn to R such that

ru
.u/ D ruq.u/df .u/:

Assume also that for the solution of the Riemann problem

ut C f .u/x D 0; u.x; 0/ D
(
ul x < 0;

ur x > 0;

we have that


.u/t C q.u/x D 0 if the solution is a rarefaction wave

or contact discontinuity,


.u/t C q.u/x < 0 in the distributional sense if the solution is a shock.

Let now u D lim uı, where uı is the front-tracking approximation. Show that


.u/t C q.u/x � 0;

in the distributional sense.
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