
Chapter 4

Multidimensional Scalar Conservation Laws

Just send me the theorems, then I shall find the proofs.1

— Chrysippus told Cleanthes, 3rd century BC

Our analysis has so far been confined to scalar conservation laws in one dimen-
sion. Clearly, the multidimensional case is considerably more important. Luckily
enough, the analysis in one dimension can be carried over to higher dimensions by
essentially treating each dimension separately. This technique is called dimensional
splitting. The final results are very much the natural generalizations one would ex-
pect.

The same splitting techniques of dividing complicated differential equations into
several simpler parts can in fact be used to handle other problems. These methods
are generally called operator splitting methods or fractional steps methods.

4.1 Dimensional Splitting Methods

We will show in this section how one can analyze scalar multidimensional conser-
vation laws by dimensional splitting, which amounts to solving one space direction
at a time. To be more concrete, let us consider the two-dimensional conservation
law

ut C f .u/x C g.u/y D 0; u.x; y; 0/ D u0.x; y/: (4.1)

If we let Sf;xt u0 denote the solution of

vt C f .v/x D 0; v.x; y; 0/ D u0.x; y/

(where y is a passive parameter), and similarly let Sg;yt u0 denote the solution of

wt C g.w/y D 0; w.x; y; 0/ D u0.x; y/

(x is a parameter), then the idea of dimensional splitting is to approximate the solu-
tion of (4.1) as follows:

u.x; y; n�t/ �
h
S
g;y
�t ı Sf;x�t

in
u0: (4.2)

1 Lucky guy! Paraphrased from Diogenes Laertius, Lives of Eminent Philosophers, c. A.D. 200.
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172 4 Multidimensional Scalar Conservation Laws

} Example 4.1 (A single discontinuity)
We first show how this works on a concrete example. Let

f .u/ D g.u/ D 1

2
u2

and

u0.x; y/ D
(
ul for x < y,

ur for x � y,

with ur > ul . The solution in the x-direction for fixed y gives a rarefaction wave,
the left and right parts moving with speeds ul and ur , respectively. With a quadratic
flux, the rarefaction wave is a linear interpolation between the left and right states.
Thus

u1=2 WD S
f;x
�t u0 D

8̂̂
<
ˆ̂:
ul for x < y C ul�t ,

.x � y/=�t for y C ul�t < x < y C ur�t ,

ur for x > y C ur�t .

The solution in the y-direction for fixed x with initial state u1=2 will exhibit a fo-
cusing of characteristics. The left state, which now equals ur , will move with speed
given by the derivative of the flux function, in this case ur , and hence overtake the
right state, given by ul , which moves with smaller speed, namely ul . The charac-
teristics interact at a time t given by

urt C x � ur�t D ul t C x � ul�t;

or t D �t . At that time we are back to the original Riemann problem between states
ul and ur at the point x D y. Thus

u1 WD S
g;y
�t u

1=2 D u0:

Another application of Sf;x�t will of course give

u3=2 WD S
f;x
�t u

1 D u1=2:

So we have that un D u0 for all n 2 N. When we introduce coordinates

� D 1p
2
.x C y/ ; 
 D 1p

2
.x � y/;

the equation transforms into

ut C
�
1p
2
u2
�
�

D 0; u.�; 
; 0/ D
(
ul for 
 � 0,

ur for 
 > 0.



4.1 Dimensional Splitting Methods 173

We see that u.x; y; t/ D u0.x; y/, and consequently lim�t!0 u
n D u0 (where we

keep n�t D t fixed). Thus the dimensional splitting procedure produces approxi-
mate solutions converging to the right solution in this case. }

We will state all results for the general case of arbitrary dimension, while proofs
will be carried out in two dimensions only, to keep the notation simple. We first
need to define precisely what is meant by a weak entropy solution of the initial
value problem

ut C divf .u/ D 0; ujtD0 D u0; (4.3)

where f D .f1; : : : ; fm/, and the spatial variables are denoted by .x1; : : : ; xm/2Rm.
Here we adopt the Kružkov entropy condition from Chapt. 2, and say that u is
a (weak) Kružkov entropy solution of (4.3) for time Œ0; T � if u is a bounded func-
tion that satisfies2

TZ
0

Z
Rm

� ju � kj 't C sign .u � k/
mX
jD1

�
fj .u/� fj .k/

�
'xj
�
dx1 � � � dxm dt

C
Z
Rm

	
'jtD0 ju0 � kj � .ju � kj '/jtDT



dx1 � � � dxm � 0; (4.4)

for all constants k 2 R and all nonnegative test functions ' 2 C1
0 .R

m � Œ0; T �/. It
certainly follows as in the one-dimensional case that u is a weak solution, i.e.,

1Z
0

Z
Rm

�
u't C f .u/�r'

�
dx1 � � � dxm dt

C
Z
Rm

'jtD0u0 dx1 � � � dxm D 0; (4.5)

for all test functions ' 2 C1
0 .R

m � Œ0;1//.
Our analysis aims at two different goals. We first show that the dimensional

splitting indeed produces a sequence of functions that converges to a solution of
the multidimensional equation (4.3). Our discussion will here be based on the more
or less standard argument using Kolmogorov’s compactness theorem. The argu-
ment is fairly short. In order to obtain stability in the multidimensional case in the
sense of Theorem 2.14, we show that dimensional splitting preserves this stability.
Furthermore, we show how one can use front tracking as our solution operator in
one dimension in combination with dimensional splitting. Finally, we determine
the appropriate convergence rate of this procedure. This analysis strongly uses
Kuznetsov’s theory from Sect. 3.3, but matters are more complicated and techni-
cal than in one dimension.

We shall now show that dimensional splitting produces a sequence that con-
verges to the entropy solution u of (4.3); that is, the limit u should satisfy (4.4).

2 If we want a solution for all time, we disregard the last term in (4.4) and integrate t over Œ0;1/.
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As promised, our analysis will be carried out in the two-dimensional case only, i.e.,
for equation (4.1). Assume that u0 is a function in L1.R2/ \ L1.R2/ \ BV .R2/

(consult Definition A.2 for a definition of BV .R2/; see also (A.11)). Let tn D n�t

and tnC1=2 D �
nC 1

2

�
�t . Define

u0 D u0; unC1=2 D S
f;x
�t u

n; unC1 D S
g;y
�t u

nC1=2; (4.6)

for n 2 N0. We shall also be needing an approximate solution for t ¤ tn. We want
the approximation to be an exact solution to a one-dimensional conservation law
in each interval

�
tj ; tjC1=2

�
, j D k=2, and k 2 N0. The way to do this is to make

“time go twice as fast” in each such interval; i.e., let u�t be defined by3

u�t .x; t/ D
8<
:S

f;x

2.t�tn/u
n for tn � t � tnC1=2,

S
g;y

2.t�tnC1=2/u
nC1=2 for tnC1=2 � t � tnC1.

(4.7)

We will use Theorem A.11, that is, we show that the sequence fu�tg is compact.
Since neither the operator Sf;x nor Sg;y increases the L1 norm, u�t will be uni-
formly bounded, i.e.,

ku�tkL1.R2/ � ku0kL1.R2/ (4.8)

independent of �t .
Next we study the total variation. We start by consideringZ
T:V:y

	
S
f;x
�t u

n


dx D

Z
lim
h!0

1

h

Z ˇ̌
unC1=2.x; y C h/ � unC1=2.x; y/

ˇ̌
dy dx

D lim
h!0

1

h

“ ˇ̌
unC1=2.x; y C h/ � unC1=2.x; y/

ˇ̌
dx dy

� lim
h!0

1

h

“
jun.x; y C h/� un.x; y/j dx dy

D
Z

lim
h!0

1

h

Z
jun.x; y C h/ � un.x; y/j dy dx

D
Z

T:V:y .u
n/ dx; (4.9)

where we used Lemma A.1 and the L1-contractivity; cf. Theorem 2.15 (vi). The
interchange of integrals and limits is justified using Lebesgue’s dominated conver-
gence theorem.

For the solution constructed from dimensional splitting we have

T:V:x;y
�
unC1=2� D

Z
T:V:x

	
S
f;x
�t u

n


dy C

Z
T:V:y

	
S
f;x
�t u

n


dx

�
Z

T:V:x .u
n/ dy C

Z
T:V:y .u

n/ dx

D T:V:x;y .u
n/ ; (4.10)

3 We will keep the ratio  D �t=�x fixed, and thus we index only with �t .
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using the TVD property of Sf;x and (4.9). Similarly,

T:V:x;y
�
unC1� � T:V:x;y

�
unC1=2� ;

and thus

T:V:x;y .u
n/ � T:V:x;y .u0/

follows by induction. This extends to

T:V:x;y .u�t / � T:V:x;y .u0/ : (4.11)

We now want to establish Lipschitz continuity in time of the L1-norm, i.e.,

ku�t .t/ � u�t .s/kL1.R2/ � C jt � sj (4.12)

for some constantC . By repeated use of the triangle inequality it suffices to estimate

ku�t .tnC1/� u�t .tn/kL1.R2/ � ��unC1 � unC1=2��
1

C ��unC1=2 � un��
L1.R2/

D
���Sf;x�t un � un

���
L1.R2/

C ��Sg;y�t unC1=2 � unC1=2��
L1.R2/

: (4.13)

Using Theorem 2.15 (vi), we conclude that the first term in (4.13) is bounded by
kf kLip�t T:V:x;y .un/. For the second term. we obtain, using in addition (4.9), the
bound kgkLip�t T:V:x;y .un/. This proves

ku�t .tnC1/ � u�t.tn/k1 � �t maxfkf kLip; kgkLipgT:V:x;y .u0/ : (4.14)

Using interpolation, we obtain the estimate

ku�t .t/ � u�t .s/k1 � ku�t.t/ � u�t .tn/k1
C ku�t .tn/� u�t .tm/k1 C ku�t .s/ � u�t .tm/k1

� � jtn � tmj C 2�t
�
maxfkf kLip; kgkLipgT:V:x;y .u0/

� � jt � sj C 4�t
�
maxfkf kLip; kgkLipgT:V:x;y .u0/ ;

(4.15)

where t 2 Œtn; tnC1/ and s 2 Œtm; tmC1/.
Using Theorem A.11, we conclude the existence of a convergent subsequence,

also labeled fu�tg, and set u D lim�t!0 u�t . Next we have to prove that the limit
u is a weak entropy solution.

Let � D �.x; y; t/ be a nonnegative test function, and define ' by '.x; y; t/ D
�.x; y; 1

2
t C tn/. By defining � D 2.t �n�t/, we have that for each y, the function

u�t is a weak solution in x on the strip t 2 Œtn; tnC1=2� satisfying the inequality

�tZ
0

Z �ju�t � kj '� C qf .u�t ; k/'x
�
dx d�

�
Z ˇ̌

unC1=2 � kˇ̌ 'jtD�t dx �
Z

jun � kj 'jtD0 dx;
(4.16)
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for all constants k. Here qf .u; k/ D sign .u � k/ .f .u/�f .k//. Changing back to
the t variable, we find that

2

tnC1=2Z
tn

Z �
1

2
ju�t � kj�t C qf .u�t ; k/�x

�
dx dt

�
Z ˇ̌

unC1=2 � kˇ̌ �jtDtnC1=2 dx �
Z

jun � kj �jtDtn dx: (4.17)

Similarly,

2

tnC1Z
tnC1=2

Z �
1

2
ju�t � kj�t C qg.u�t ; k/�y

�
dy dt

�
Z ˇ̌

unC1 � kˇ̌�jtDtnC1 dy �
Z ˇ̌

unC1=2 � kˇ̌�jtDtnC1=2 dy: (4.18)

Here qg is defined similarly to qf , using g instead of f . Integrating (4.17) over y
and (4.18) over x and adding the two results and summing over n, we obtain

2

TZ
0

“ �
1

2
ju�t � kj�t C

X
n

�nq
f .u�t ; k/�x

C
X
n

Q�nqg.u�t ; k/�y
�
dx dy dt

�
“

.ju�t � kj�/jtDT dx dy �
“

ju0 � kj�.0/ dx dy;

where �n and Q�n denote the characteristic functions of the strips tn � t � tnC1=2
and tnC1=2 � t � tnC1, respectively. As �t tends to zero, it follows that

X
n

�n
�
*

1

2
;

X
n

Q�n �
*

1

2
:

Specifically, for continuous functions  we see that

X
n

TZ
0

�n dt D
X
n

tnC1=2Z
tn

 dt

D
X
n

 .t�n /
�t

2

D 1

2

X
n

 .t�n /�t

! 1

2

TZ
0

 dt as �t ! 0
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(where t�n is in Œtn; tnC1=2�), by definition of the Riemann integral. The general case
follows by approximation.

Letting �t ! 0, we thus obtain

TZ
0

“ 	
ju � kj�t C qf .u; k/�x C qg.u; k/�y



dx dy dt

C
“

ju0 � kj�jtD0 dx dy �
“

.ju � kj�/jtDT dx dy;

which proves that u.x; y; t/ is a solution to (4.1) satisfying the Kružkov entropy
condition.

Next, we want to prove uniqueness of solutions of multidimensional conserva-
tion laws. Let u and v be two Kružkov entropy solutions of the conservation law

ut C f .u/x C g.u/y D 0 (4.19)

with initial data u0 and v0, respectively. The argument in Sect. 2.4 leads, with
no fundamental changes in the multidimensional case, to the same result (2.65),
namely,

ku.t/ � v.t/kL1.R2/ � ku0 � v0kL1.R2/; (4.20)

thereby proving uniqueness. Using the fact that if every subsequence of a sequence
has a further subsequence converging to the same limit, the whole sequence con-
verges to that (unique) limit, we find that the whole sequence fu�tg converges, not
just a subsequence. We have proved the following result.

Theorem 4.2 Let fj be piecewise twice continuously differentiable functions, and
furthermore, let u0 be an integrable and bounded function in BV .Rm/. Define the
sequence of functions fung by u0 D u0 and

unCj=m D S
fj ;xj
�t unC.j�1/=m; j D 1; : : : ; m; n 2 N0:

Introduce the function (where tr D r�t for a rational number r)

u�t .x1; : : : ; xm; t/ D S
fj ;xj
m.t�tnC.j�1/=m/u

nC.j�1/=m;

for t 2 ŒtnC.j�1/=m; tnCj=m�. Fix T > 0. Then for every sequence f�tg such that
�t ! 0, for all t 2 Œ0; T � the function u�t .t/ converges to the unique weak so-
lution u.t/ of (4.3) satisfying the Kružkov entropy condition (4.4). The limit is in
C.Œ0; T �IL1loc.Rm//.

To prove stability of the solution with respect to flux functions, we will show that
the one-dimensional stability result (2.80) in Sect. 2.4 remains valid with obvious
modifications in several dimensions. Let u and v denote the unique solutions of

ut C f .u/x C g.u/y D 0; ujtD0 D u0;
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and

vt C Qf .v/x C Qg.v/y D 0; vjtD0 D v0;

respectively, that satisfy the Kružkov entropy condition. We want to estimate the
L1-norm of the difference between the two solutions. To this end, we first consider

��unC1=2 � vnC1=2��
L1.R2/

D
“ ˇ̌

unC1=2 � vnC1=2 ˇ̌ dx dy
�
Z 	Z

jun � vnj dx

C�t minfT:V:x .un/ ;T:V:x .vn/gkf � Qf kLip


dy

D kun � vnkL1.R2/

C�tkf � Qf kLip
Z

minfT:V:x .un/ ;T:V:x .vn/g dy:

Next we employ the trivial, but useful, inequality

a ^ b C c ^ d � .aC c/ ^ .b C d/; a; b; c; d 2 R:

Thus

��unC1 � vnC1��
L1.R2/

D
“ ˇ̌

unC1 � vnC1 ˇ̌ dx dy
�
Z 	Z ˇ̌

unC1=2 � vnC1=2 ˇ̌ dy
C�t min

˚
T:V:y

�
unC1=2� ;T:V:y �vnC1=2�� kg � QgkLip



dx

� ��unC1=2 � vnC1=2��
L1.R2/

C�tkg � QgkLip
Z

min
˚
T:V:y

�
unC1=2� ;T:V:y �vnC1=2�� dx

� kun � vnkL1.R2/ C�t max
n
kf � Qf kLip; kg � QgkLip

o
�
�
min

n Z
T:V:x .u

n/ dy;

Z
T:V:x .v

n/ dy
o

C min
n Z

T:V:y .u
n/ dx;

Z
T:V:y .v

n/ dx
o�

� kun � vnkL1.R2/

C�t maxfkf � Qf kLip; kg � QgkLipg

� min

(R
T:V:x .un/ dy C R

T:V:y .un/ dx;R
T:V:x .vn/ dy C R

T:V:y .vn/ dx

)

D kun � vnkL1.R2/

C�t maxfkf � Qf kLip; kg � QgkLipgmin
n
T:V: .un/ ;T:V: .vn/

o
;
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which implies

kun � vnkL1.R2/ � ku0 � v0kL1.R2/

C n�t maxfkf � Qf kLip; kg � QgkLipgminfT:V: .u0/ ;T:V: .v0/g: (4.21)

Consider next t 2 Œtn; tnC1=2/. Then the continuous interpolants defined by (4.7)
satisfy

ku�t .t/ � v�t .t/kL1.R2/ D
���Sf;x2.t�tn/un � S Qf ;x

2.t�tn/v
n
���
L1.R2/

�
Z h Z

jun � vnj dx

C 2.t � tn/minfT:V:x .un/ ;T:V:x .vn/gkf � Qf kLip
i
dy

D kun � vnkL1.R2/ (4.22)

C 2.t � tn/kf � Qf kLip
Z

minfT:V:x .un/ ;T:V:x .vn/g dy
� ku0 � v0kL1.R2/

C tnmaxfkf � Qf kLip; kg � QgkLipgminfT:V: .u0/ ;T:V: .v0/g
C 2.t � tn/minfT:V: .u0/ ;T:V: .v0/gmaxfkf � Qf kLip; kg � QgkLipg

� ku0 � v0kL1.R2/

C .t C�t/minfT:V: .u0/ ;T:V: .v0/gmaxfkf � Qf kLip; kg � QgkLipg:

Observe that the above argument also holds mutatis mutandis in the general case
of a scalar conservation law in any dimension. We summarize our results in the
following theorem.

Theorem 4.3 Let u0 be in L1.Rm/ \ L1.Rm/ \ BV .Rm/, and let fj be piece-
wise twice continuously differentiable functions for j D 1; : : : ; m, and set f D
.f1; : : : ; fm/. Then there exists a unique solution u D u.x1; : : : ; xm; t/ of the initial
value problem

ut C divf .u/ D 0; ujtD0 D u0; (4.23)

that satisfies the Kružkov entropy condition (4.4). The solution satisfies

ku.t/kL1.Rm/ � ku0kL1.Rm/ ;

T:V: .u.t// � T:V: .u0/ ;

ku.t/ � u.s/kL1.Rm/ � jt � sjmax
j

f kfjkLip gT:V: .u0/ :
(4.24)

Furthermore, if v0 and g share the same properties as u0 and f , respectively, then
the unique weak Kružkov entropy solution of

vt C div g.v/ D 0; vjtD0 D v0; (4.25)
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satisfies

ku.t/ � v.t/kL1.Rm/ � ku0 � v0kL1.Rm/ (4.26)

C t minfT:V: .u0/ ;T:V: .v0/gmax
j

f kfj � gjkLip g:

If u0 � v0 and f D g, then also u � v on all of Rm � Œ0;1/.

Proof The proof of the Lipschitz continuity in time follows from (4.15). The mono-
tonicity statement at the end follows using the L1-contractivity (the special case of
(4.26) with f D g) as in the one-dimensional case by employing the Crandall–
Tartar lemma. �

(See also Exercise 4.1.)

4.2 Dimensional Splitting and Front Tracking

It doesn’t matter if the cat is black or white. As long as it catches rats, it’s a good cat.
— Deng Xiaoping (1904–1997)

In this section we will study the case in which we use front tracking to solve the
one-dimensional conservation laws. More precisely, we replace the flux functions
f and g (in the two-dimensional case) by piecewise linear continuous interpola-
tions fı and gı, with the interpolation points spaced a distance ı apart. The aim is
to determine the convergence rate toward the solution of the full two-dimensional
conservation law as ı ! 0 and �t ! 0.

With the front-tracking approximation, the one-dimensional solutions will be
piecewise constant if the initial condition is piecewise constant. In order to prevent
the number of discontinuities from growing without bound, we will project the one-
dimensional solution Sfı;xu onto a fixed grid in the .x; y/-plane before applying
the operator Sgı;y .

To be more concrete, let the grid spacing in the x- and y- directions be given by
�x and �y, respectively, and let Iij denote the grid cell

Iij D Œxi ; xiC1/ � Œyj ; yjC1/:

The projection operator � is defined by

�u.x; y/ D 1

�x�y

“
Iij

u dx dy for .x; y/ 2 Iij :

Let the approximate solution at the discrete times tl be defined as

unC1=2 D � ı Sfı ;x�t u
n and unC1 D � ı Sgı;y�t u

nC1=2;
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y

x

y

x

y

x

y

x

un(0) un(Δt)

un+1/2(0)un+1/2(Δt)

Sfδ,x
Δt

π

Sgδ,y
Δt

π n→n + 1

Fig. 4.1 Front tracking and dimensional splitting on a 3 � 3 grid

for n D 0; 1; 2; : : : , with u0 D �u0. We collect the discretization parameters in

 D .ı;�x;�y;�t/. In analogy to (4.7), we define u
 as

u
.t/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

S
fı;x

2.t�tn/u
n for tn � t < tnC1=2,

unC1=2 for t D tnC1=2;

S
gı;y

2.t�tnC1=2/u
nC1=2 for tnC1=2 � t < tnC1,

unC1 for t D tnC1.

(4.27)

In Fig. 4.1 we illustrate how this works. Starting in the upper left corner, the operator
S
fı;x
�t takes us to the upper right corner; then we apply � and move to the lower right

corner. Next, Sgı;y�t takes us to the lower left corner, and finally � takes us back to
the upper left corner, this time with n incremented by 1.

To prove that u
 converges to the unique solution u as 
 ! 0, we essentially
mimic the approach we just used to prove Theorem 4.2. First of all we observe that��u
.t/��L1.R2/

� ��u0��
L1.R2/

; (4.28)

since Sfı;x , Sgı;y , and � all obey a maximum principle. On each rectangle Iij the
function u
 is constant for t D �t . In a desperate attempt to simplify the notation,
we write

unij D u
.x; y; n�t/ for .x; y/ 2 Iij :
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Next we go carefully through one full time step in this construction, starting with
unij . At each step we define a shorthand notation that we will use in the estimates.
When we consider unij as a function of x only, we write

unj .0/ D unij D u
. � ; j�y; n�t/:
(The argument “0” on the left-hand side indicates the start of the time variable
before we advance time an interval�t using Sfı;x�t .) Advancing the solution in time
by �t by applying front tracking in the x-variable produces

unj .�t/ D
	
S
fı;x
�t u

n
j



.x/:

(The x-dependence is suppressed in the notation on the left-hand side.) We now
apply the projection � , which yields

u
nC1=2
ij D �unj .�t/:

After this sweep in the x-variable, it is time to do the y-direction. Considering
u
nC1=2
ij as a function of y, we write

u
nC1=2
i .0/ D u

nC1=2
ij D u


	
i�x; � ;

	
nC 1

2



�t


;

to which we apply the front-tracking solution operator in the y-direction

u
nC1=2
i .�t/ D

	
S
gı;y
�t u

nC1=2
i



.y/:

(The y-dependence is suppressed in the notation on the left-hand side.) One full
time step is completed by a final projection

unC1
ij D �u

nC1=2
i .�t/:

Using this notation, we first want to prove that the total variation is bounded in
the sense that

T:V: .un/ � T:V: .u0/ : (4.29)

We will show that

T:V:
�
unC1=2� � T:V: .un/ I (4.30)

an analogous argument gives T:V:
�
unC1� � T:V:

�
unC1=2�, from which we con-

clude that

T:V:
�
unC1� � T:V: .un/ ;

and (4.29) follows by induction. By definition,

T:V:
�
unC1=2� D

X
i;j

	ˇ̌̌
u
nC1=2
iC1;j � unC1=2

i;j

ˇ̌̌
�y C

ˇ̌̌
u
nC1=2
i;jC1 � unC1=2

i;j

ˇ̌̌
�x



; (4.31)
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while

T:V: .un/ D
X
i;j

	ˇ̌̌
uniC1;j � uni;j

ˇ̌̌
�y C

ˇ̌̌
uni;jC1 � uni;j

ˇ̌̌
�x



: (4.32)

We first consider

X
i

ˇ̌̌
u
nC1=2
iC1;j � unC1=2

i;j

ˇ̌̌
D T:V:x

	
�unj .�t/




� T:V:x
	
unj .�t/



� T:V:x

	
unj .0/



D
X
i

ˇ̌̌
uniC1;j � uni;j

ˇ̌̌
; (4.33)

where we first used that T:V:x .��/ � T:V:x .�/ for step functions �. This fol-
lows from the following argument: Let �c be a continuous function equal to �
except close to each jump, where we use a linear interpolation. Then T:V:x .�/ D
T:V:x .�c/ � T:V:x .��/, since �� is just a particular partition of �c ; cf. (A.1).
Subsequently we used that T:V: .v/ � T:V: .v0/ for solutions v of one-dimensional
conservation laws with initial data v0. For the second term in the definition of
T:V:

�
unC1=2� we obtain (cf. (4.10))

X
i;j

ˇ̌̌
u
nC1=2
i;jC1 � unC1=2

i;j

ˇ̌̌
�x�y D

X
i;j

Z
Iij

ˇ̌̌
u
nC1=2
i;jC1 � unC1=2

i;j

ˇ̌̌
dx dy

D
X
i;j

Z
Iij

ˇ̌̌
�
	
unjC1.�t/ � unj .�t/


ˇ̌̌
dx dy

�
X
i;j

Z
Iij

�
	ˇ̌̌
unjC1.�t/ � unj .�t/

ˇ̌̌

dx dy

D
X
i;j

Z
Iij

ˇ̌̌
unjC1.�t/ � unj .�t/

ˇ̌̌
dx dy

D
X
i;j

�y

.iC1/�xZ
i�x

ˇ̌̌
unjC1.�t/ � unj .�t/

ˇ̌̌
dx

D
X
j

�y

Z
R

ˇ̌̌
unjC1.x;�t/ � unj .x;�t/

ˇ̌̌
dx

�
X
j

�y

Z
R

ˇ̌̌
unjC1.x; 0/� unj .x; 0/

ˇ̌̌
dx

D
X
i;j

ˇ̌̌
uni;jC1 � uni;j

ˇ̌̌
�x�y: (4.34)
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The first inequality follows from j��j � � j�j; thereafter, we use RIij �� D R
Iij
�,

and finally we use the L1-contractivity, kv � wkL1.R/ � kv0 � w0kL1.R/, of solu-
tions of one-dimensional conservation laws. Multiplying (4.33) by �y, summing
over j , dividing (4.34) by �x, and finally adding the results gives (4.30).

Finally, we want to show the analogue of Lipschitz continuity in time of the
spatial L1-norm as expressed in (4.12). We want to prove the following result:

��u
.tm/� u
.tn/
��
L1.R2/

D
X
i;j

ˇ̌̌
umij � unij

ˇ̌̌
�x�y

�
	
maxf kfıkLip; kgıkLip g�t C 2.�x C�y/



� T:V:

�
u0
� jm � nj : (4.35)

To prove (4.35), it suffices to show that

X
i;j

ˇ̌̌
unC1
ij � unij

ˇ̌̌
�x�y � �

maxf kfıkLip; kgıkLip g�t C 2.�x C�y/
�
T:V:

�
u0
�
:

(4.36)

We start by writing

ˇ̌̌
unC1
ij � unij

ˇ̌̌
�
ˇ̌̌
unC1
ij � unC1=2

i .�t/
ˇ̌̌
C
ˇ̌̌
u
nC1=2
ij � unj .�t/

ˇ̌̌
C
ˇ̌̌
u
nC1=2
i .�t/ � unC1=2

i .0/
ˇ̌̌
C
ˇ̌̌
unj .�t/ � unj .0/

ˇ̌̌

D
ˇ̌̌
�u

nC1=2
i .�t/� unC1=2

i .�t/
ˇ̌̌
C
ˇ̌̌
�unj .�t/ � unj .�t/

ˇ̌̌
C
ˇ̌̌
u
nC1=2
i .�t/ � unC1=2

i .0/
ˇ̌̌
C
ˇ̌̌
unj .�t/ � unj .0/

ˇ̌̌
:

Integrating this inequality over R2 gives

X
i;j

ˇ̌̌
unC1
ij � unij

ˇ̌̌
�x�y �

“ ˇ̌̌
�u

nC1=2
i .�t/� unC1=2

i .�t/
ˇ̌̌
dx dy

C
“ ˇ̌̌

�unj .�t/ � unj .�t/
ˇ̌̌
dx dy

C
“ ˇ̌̌

u
nC1=2
i .�t/ � unC1=2

i .0/
ˇ̌̌
dx dy

C
“ ˇ̌̌

unj .�t/ � unj .0/
ˇ̌̌
dx dy:

(4.37)

We see that two terms involve the projection operator � . For these terms we prove
the estimate “

j� �  j dx dy � .�x C�y/T:V: . / : (4.38)
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We will prove (4.38) in the one-dimensional case only (See Exercise 4.3). Consider
(where Ii D Œxi ; xiC1/)Z

j� �  j dx D
X
i

Z
Ii

j� .x/�  .x/j dx

D
X
i

Z
Ii

ˇ̌̌
ˇ 1�x

Z
Ii

 .y/ dy �  .x/
ˇ̌̌
ˇdx

D 1

�x

X
i

Z
Ii

ˇ̌̌
ˇ
Z
Ii

. .y/�  .x// dy
ˇ̌̌
ˇ dx

� 1

�x

X
i

Z
Ii

Z
Ii

j .y/�  .x/j dy dx

D 1

�x

X
i

Z
Ii

Z
�xCIi

j .x C �/�  .x/j d� dx

� 1

�x

X
i

Z
Ii

�xZ
��x

j .x C �/ �  .x/j d� dx

D 1

�x

�xZ
��x

Z
R

j .x C �/ �  .x/j dx d�

� 1

�x

�xZ
��x

j�jT:V: . / d�

D �x T:V: . / : (4.39)

For the two remaining terms in (4.37) we obtain, using the Lipschitz continuity in
time in the L1 norm in the x-variable (see Theorem 2.15), that“ ˇ̌̌

unj .�t/ � unj .0/
ˇ̌̌
dx dy � �t kfıkLip

Z
T:V:x

	
unj .0/



dy

� �t kfıkLipT:V: .un/ : (4.40)

Combining this result with (4.29), (4.38), we conclude that (4.36), and hence also
(4.35), holds.

So far we have obtained the following estimates:

(i) Uniform boundedness, ��u
.t/��L1.R2/
� ��u0��

L1.R2/
:

(ii) Uniform bound on the total variation,

T:V: .un/ � T:V: .u0/ :

(iii) Lipschitz continuity in time,��u
.tm/ � u
.tn/
��
L1.R2/

�
	
maxf kfıkLip; kgıkLip g C 2

�x C�y

�t



� T:V:

�
u0
� jtm � tnj :

(4.41)
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From TheoremA.11 we conclude that the sequence fu
g has a convergent subse-
quence as 
 ! 0, provided that the ratio maxf�x;�yg=�t remains bounded. We
let u denote its limit. Furthermore, this sequence converges in C.Œ0; T �IL1loc.R2//

for every positive T .
It remains to prove that the limit is indeed an entropy solution of the full

two-dimensional conservation law. We first use that unj .x; t/ (suppressing the y-
dependence) is a solution of the one-dimensional conservation law in the time
interval Œtn; tnC1=2�. Hence we know that

Z
R

tnC1=2Z
tn

�
1

2

ˇ̌̌
unj .x; t/ � k

ˇ̌̌
�t C qfı .unj .x; t/; k/�x

�
dt dx

� 1

2

Z
R

ˇ̌̌
unj .x; tnC1=2�/ � k

ˇ̌̌
�.x; tnC1=2/ dx

C 1

2

Z
R

ˇ̌̌
unj .x; tnC/� k

ˇ̌̌
�.x; tn/ dx � 0:

Similarly, we obtain for the y-direction

Z
R

tnC1Z
tnC1=2

�
1

2

ˇ̌̌
u
nC1=2
i .y; t/ � k

ˇ̌̌
�t C qgı .u

nC1=2
i .y; t/; k/�y

�
dt dy

� 1

2

Z
R

ˇ̌̌
u
nC1=2
i .y; tnC1�/ � k

ˇ̌̌
�.y; tnC1/ dy

C 1

2

Z
R

ˇ̌̌
u
nC1=2
i .y; tnC1=2C/� k

ˇ̌̌
�.y; tnC1=2/ dy � 0:

Integrating the first inequality over y and the second over x and adding the results
as well as adding over n gives, where T D N�t ,

“
R2

TZ
0

	1
2

ˇ̌
u
 � kˇ̌ �t C

X
n

�nq
fı .u
; k/�x C

X
n

Q�nqgı .u
; k/�y


dx dy dt

� 1

2

�“
R2

ˇ̌
u
.x; y; T / � kˇ̌ �.x; y; T / dx dy

�
“
R2

ˇ̌
u
.x; y; 0/ � kˇ̌�.x; y; 0/ dx dy�

� �1
2

2N�1X
nD1

“
R2

	ˇ̌
u
.x; y; tn=2C/� kˇ̌ � ˇ̌

u
.x; y; tn=2�/ � kˇ̌
�.x; y; tn=2/ dx dy

DW �1
2

2N�1X
nD1

In;
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and as before, �n and Q�n denote the characteristic functions on f.x; y; t/ j t 2
Œtn; tnC1=2�g and f.x; y; t/ j t 2 ŒtnC1=2; tnC1�g, respectively. Observe that we have
obtained the right-hand side by using a projection at each time step. As n ! 1
and �t ! 0 while keeping T fixed, we have that

P
n �n

�
* 1

2
. To estimate the

right-hand side we first observe that

u
.x; y; tn=2C/� k D �
�
u
.x; y; tn=2�/ � k�;

and since the absolute value function is convex, Jensen’s inequality implies that

ˇ̌
u
.x; y; tn=2C/ � kˇ̌ � ˇ̌u
.x; y; tn=2�/ � kˇ̌ � 0: (4.42)

Thus we obtain

In D �
“
R2

	ˇ̌
u
.x; y; tn=2C/� kˇ̌ � ˇ̌

u
.x; y; tn=2�/ � kˇ̌
�.x; y; tn=2/ dx dy
D �

X
i;j

“
Ii;j

	ˇ̌
u
.x; y; tn=2C/� kˇ̌ � ˇ̌

u
.x; y; tn=2�/ � kˇ̌
�.xi ; yj ; tn=2/ dx dy

�
X
i;j

“
Ii;j

	ˇ̌
u
.x; y; tn=2C/� kˇ̌ � ˇ̌

u
.x; y; tn=2�/ � kˇ̌


� ��.x; y; tn=2/ � �.xi ; yj ; tn=2/
�
dx dy

� �
X
i;j

“
Ii;j

	ˇ̌
u
.x; y; tn=2C/ � kˇ̌ � ˇ̌

u
.x; y; tn=2�/ � kˇ̌


� ��.x; y; tn=2/ � �.xi ; yj ; tn=2/
�
dx dy

D QIn;

using (4.42). This implies

ˇ̌ QIn
ˇ̌ �

X
i;j

“
Ii;j

ˇ̌
u
.x; y; tn=2C/� u
.x; y; tn=2�/

ˇ̌

� ˇ̌�.x; y; tn=2/ � �.xi ; yj ; tn=2/
ˇ̌
dx dy

� �
�x C�y

� kr�kL1.R2/

�
X
i;j

“
Ii;j

ˇ̌
u
.x; y; tn=2C/ � u
.x; y; tn=2�/

ˇ̌
dx dy

� �
�x C�y

�“
R2

kr�kL1.R2/

ˇ̌
�u
.x; y; tn=2�/ � u
.x; y; tn=2�/

ˇ̌
dx dy

� �
�x C�y

�2 kr�kL1.R2/ T:V: .u0/ ;
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since

ˇ̌
�.x; y/� �.xi ; yj /

ˇ̌ � ˇ̌
.x � xi ; y � yj /

ˇ̌ 1Z
0

ˇ̌r�.r.x � xi ; y � yj //
ˇ̌
dr

� �
�x C�y

� kr�kL1.R2/ ; .x; y/ 2 Ii;j ;
where we have used (4.38). Thus

2NX
nD1

ˇ̌ QIn
ˇ̌ � .�x C�y/2

�t
kr�kL1.R2/ T:V: .u0/ : (4.43)

In order to conclude that u is an entropy solution, we need the right-hand side of
(4.43) to vanish as �x;�y;�t ! 0; that is, we need to assume that

�x C�y

�t
remains bounded

as 
 ! 0. Under this assumption,

“
R2

TZ
0

�ju � kj �t C qf .u; k/�x C qg.u; k/�y
�
dt dx dy

�
“
R2

ju.x; y; T / � kj�.x; y; T / dx dy

C
“
R2

ju.x; y; 0/ � kj�.x; y; 0/ dx dy � 0;

which shows that u indeed satisfies the Kružkov entropy condition. We summarize
the result.

Theorem 4.4 Let u0 be an integrable and bounded function in L1.Rm/ \
BV .Rm/, and let fj be piecewise twice continuously differentiable functions
for j D 1; : : : ; m. Construct an approximate solution u
 using front tracking by
defining

u0 D �u0; unCj=m D � ı Sfj;ı ;xj�t unC.j�1/=m; j D 1; : : : ; m; n 2 N;

and

u
.x; t/ D
(
S
fj;ı ;xj

m.t�tnC.j�1/=m/u
nC.j�1/=m; for t 2 ŒtnC.j�1/=m; tnCj=m/;

unCj=m for t D tnCj=m,

where x D .x1; : : : ; xm/.
For every sequence f
g, with 
 D .�x1; : : : ; �xm;�t; ı/, where 
 ! 0 and

max
j

˚
�xj

�
=�t remains bounded;
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we have that fu
g converges to the unique solution u D u.x; t/ of the initial value
problem

ut C
mX
jD1

fj .u/xj D 0; u.x; 0/ D u0.x/; (4.44)

which satisfies the Kružkov entropy condition.

4.3 Convergence Rates

Now I think I’m wrong on account of those damn partial integrations.
I oscillate between right and wrong.
— Letter from Feynman to Welton (1936)

In this section we show how fast front tracking plus dimensional splitting converges
to the exact solution. The analysis is based on Kuznetsov’s lemma.

We start by generalizing Kuznetsov’s lemma, Theorem 3.14, to the present mul-
tidimensional setting. Although the argument carries over, we will present the rele-
vant definitions in arbitrary dimension.

Let the class K consist of maps uW Œ0;1/ ! L1.Rm/ \ BV .Rm/ \ L1.Rm/

such that:

(i) The limits u.t˙/ exist.
(ii) The function u is right continuous, i.e., u.tC/ D u.t/.
(iii) ku.t/kL1.Rm/ � ku.0/kL1.Rm/.
(iv) T:V: .u.t// � T:V: .u.0//.

Recall the following definition of moduli of continuity in time (cf. (3.54)):

�t .u; �/ D sup
j� j��

ku.t C �/ � u.t/kL1.Rm/; � > 0;

�.u; �/ D sup
0�t�T

�t .u; �/:

The estimate (3.55) is replaced by

�.u; �/ � j� jT:V: .u0/max
j

f kfjkLip g;

for a solution u of (4.23).
In several space dimensions, the Kružkov form reads

�T .u; �; k/ D
“

Rm�Œ0;T �

� ju � kj�t C
X
j

qfj .u; k/�xj
�
dx1 � � �dxm

�
Z
Rm

ju.x; T / � kj�.x; T / dx1 � � �dxm dt

C
Z
Rm

ju0.x/ � kj�.x; 0/ dx1 � � �dxm:

(4.45)
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In this case, we use the test function

˝.x; x0; s; s0/ D !"0.s � s0/!".x1 � x0
1/ � � �!".xm � x0

m/; (4.46)

x D .x1; : : : ; xm/; x0 D .x0
1; : : : ; x

0
m/:

Here !" is the standard mollifier defined by

!".xj / D 1

"
!
	xj
"



with

0 � ! � 1; supp! 	 Œ�1; 1�; !.�xj / D !.xj /;

1Z
�1
!.z/ dz D 1:

When v is the unique solution of the conservation law (4.25), we introduce

�";"0 .u; v/ D
TZ
0

Z
Rm

�T
�
u;˝. � ; x0; � ; s0/; v.x0; s0/

�
dx0ds0:

Kuznetsov’s lemma can be formulated as follows.

Theorem 4.5 Let u be a function in K, and let v be an entropy solution of (4.25).
If 0 < "0 < T and " > 0, then

ku. � ; T�/ � v. � ; T /kL1.Rm/ � ku0 � v0kL1.Rm/

C T:V: .v0/
	
2"C "0max

j
f kfjkLip g



C �.u; "0/ ��";"0 .u; v/; (4.47)

where u0 D u. � ; 0/ and v0 D v. � ; 0/.
The proof of Theorem 3.14 carries over to this setting verbatim.

} Example 4.6
Let us first apply this theorem to the case that u is the dimensional splitting ap-
proximation, defined with exact solution operators Sf;x�t and Sg;y�t ; cf. (4.6). We have
established that �.u�t ; "0/ � C"0, where the constant C depends on the total vari-
ation of u0 and the Lipschitz norm of the flux. The inequalities (4.17) and (4.18)
imply

LT .u�t ; k; '/ D
TZ
0

“
R2

ju�t � kj 't

C 2�n.t/q
f .u�t ; k/'x C 2 Q�n.t/qg.u�t ; k/'y dx dy dt

�
“
R2

ju�t � kj '
ˇ̌̌
tDT

dx dy C
“
R2

ju�t � kj '
ˇ̌̌
tD0

dx dy

� 0:
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Set

L"0;" D
•

LT .u�t ; v.x
0; y0; s/; !". � � x0/!. � � y0/!"0. � � s/ dx0 dy0 ds � 0:

In the following we always have that u�t D u�t .x; y; t/ and v D v.x0; y0; s/,
although we sometimes do not indicate that, or indicate only those variables to
which we would like to draw the reader’s attention. Then

��"0;".u�t ; v/ � ��"0;".u�t ; v/C L"0;"

D
TZ
0

“
R2

TZ
0

“
R2

�
I x C I y

�
dx dy dt dx0 dy0 ds;

where

I x D .2�n.t/ � 1/ qf .u�t ; v/! 0
".x � x0/!".y � y0/!"0.t � s/;

I y D .2 Q�n.t/ � 1/ qg.u�t ; v/!".x � x0/! 0
".y � y0/!"0.t � s/:

We shall estimate
R
I x ; the estimate for I y is identical. First observe that

2�n.t/ � 1 D
(
1 tn � t < tnC1=2;
�1 tnC1=2 � t < tnC1:

Therefore, if N�t D T , then

TZ
0

.2�n.t/ � 1/ .t/ dt D
N�1X
nD0

tnC1=2Z
tn

�
 .t/�  .t C�t=2/

�
dt;

for every function  . Thus

TZ
0

“
R2

TZ
0

“
R2

I x dx dy dt dx0 dy0 ds

D
N�1X
nD0

tnC1=2Z
tn

TZ
0

“
R2

“
R2

	
qf .u�t .t/; v/!"0 .t � s/

� qf .u�t .t C�t=2/; v/!"0.t C�t=2 � s/



� ! 0
".x � x0/!".y � y0/ dx dy dx0 dy0 ds dt
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D
N�1X
nD0

tnC1=2Z
tn

TZ
0

“
R2

“
R2

	
!"0.t � s/ � !"0.t C�t=2 � s/




� qf .u�t .t/; v/! 0
".x � x0/!".y � y0/ dx dy dx0 dy0 ds dt

C
N�1X
nD0

tnC1=2Z
tn

TZ
0

“
R2

“
R2

!"0.t C�t=2� s/

�
	
qf .u�t .t C�t/; v/ � qf .u�t.t/; v/



� ! 0

".x � x0/!".y � y0/ dx dy dx0 dy0 ds dt
DW A C B:

Regarding A,

jAj �
N�1X
nD0

tnC1=2Z
tn

L

Z
R

ju�t. � ; x; t/jBV dy
�t=2Z
0

TZ
0

ˇ̌
! 0
"0
.t � s C �/

ˇ̌
ds d�dt

� CT�t

"0

Z
R

ju�t . � ; x; t/jBV dy:

Also

jB j �
N�1X
nD0

tnC1=2Z
tn

!"0.t � s C�t=2/

� L
“
R2

ju�t .t C�t=2/� u�t .t/j dx dy j! 0
".x � x0/j dx0 ds dt

� �.u�t ;�t=2/
C

"

� C�t

"
:

Hence

ˇ̌̌ TZ
0

“
R2

TZ
0

“
R2

I x dx dy dt dx0 dy0 ds
ˇ̌̌

� C�t

"0

Z
R

ju�t. � ; x; t/jBV dy C C�t

"
:

We have a similar estimate for the integral of I y ; thus we end up with the estimate

��"0;".u�t ; v/ � C�t

"0
ju0jBV.R2/ C C�t

"
:
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Since we have v.0/ D u�t.0/ D u0, Kuznetsov’s lemma yields

ku�t . � ; T / � v. � ; T /kL1.R2/ � C

�
"0 C "C �t

"0
C �t

"

�
;

which on setting "0 D " D p
�t , yields

ku�t. � ; T / � v. � ; T /kL1.R2/ � C
p
�t: (4.48)

Since this estimate was obtained using the exact solution operator in each direc-
tion, there is no hope of obtaining a better estimate using numerical approximations
instead of Sf;g�t . }

Next, we use Kuznetsov’s lemma to estimate the rate of convergence for the front
tracking approximation. This entails using a first-order (in ı) approximation to the
exact solution operators, so from the previous example, the best we can hope for is
that the error is bounded by O.ı C p

�t/.
We want to estimate��S.T /u0 � u


��
L1.Rm/

� kS.T /u0 � Sı.T /u0kL1.Rm/ C ��Sı.T /u0 � u

��
L1.Rm/

;

(4.49)

where u D S.T /u0 and Sı.T /u0 denote the exact solutions of the multidimen-
sional conservation law with flux functions f replaced by their piecewise linear
and continuous approximations fı . The first term can be estimated by

kS.T /u0 � Sı.T /u0kL1.Rm/ � T max
j

˚ kfj � fj;ıkLip
�
T:V: .u0/ ; (4.50)

while we apply Kuznetsov’s lemma, Theorem 4.5, for the second term. For the
function u we choose u
, the approximate solution using front tracking along each
dimension and dimensional splitting, while for v we use the exact solution with
piecewise linear continuous flux functions fı and gı, and u0 as initial data, that is,
v D vı D Sı.T /u0. Thus we find, using (4.41), that

�.u
; "0/ � "0

�
C C O

�
1

�t
max
j

˚
�xj

���
T:V: .u0/ :

Kuznetsov’s lemma then reads

��Sı.T /u0 � u

��
L1.Rm/

� ��u0 � u0��
L1.Rm/

C
�
2"C max

j

˚kfj;ıkLip� "0
C "0

	
C C O

	max
˚
�xj

�
�t



�
T:V: .u0/

��";"0 .u
; vı/; (4.51)

and the name of the game is to estimate �";"0 .
To make the estimates more transparent, we start by rewriting �T .u
; �; k/.

Since all the complications of several space dimensions are present in two dimen-
sions, we present the argument in two dimensions only, that is, with m D 2, and
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denote the spatial variables by .x; y/. All arguments carry over to arbitrary dimen-
sions without any change. By definition we have (in obvious notation, qfı .u/ D
sign .u � k/ .fı.u/� fı.k// and similarly for qgı )

�T .u
; �; k/ D
“ TZ

0

�ˇ̌
u
 � kˇ̌�t C qfı .u
; k/�x C qgı .u
; k/�y

�
dt dx dy

C
“ ˇ̌

u
 � kˇ̌ �jtD0C dx dy �
“ ˇ̌

u
 � kˇ̌�jtDT� dx dy

D
N�1X
nD0

“ � tnC1=2Z
tn

C
tnC1Z

tnC1=2

�	ˇ̌
u
 � kˇ̌�t

C qfı .u
; k/�x C qgı .u
; k/�y



dt dx dy

C
“ ˇ̌

u
 � kˇ̌ �jtD0C dx dy �
“ ˇ̌

u
 � kˇ̌�jtDT� dx dy

D
N�1X
nD0

“ tnC1=2Z
tn

�ˇ̌
u
 � kˇ̌�t C 2qfı .u
; k/�x

�
dt dx dy

C
X
n

“ tnC1Z
tnC1=2

�ˇ̌
u
 � kˇ̌ �t C 2qgı .u
; k/�y

�
dt dx dy

C
N�1X
nD0

“ � tnC1Z
tnC1=2

�
tnC1=2Z
tn

�
qfı .u
; k/�x dt dx dy

C
N�1X
nD0

“ � tnC1=2Z
tn

�
tnC1Z

tnC1=2

�
qgı .u
; k/�y dt dx dy

C
“ ˇ̌

u
 � kˇ̌ �jtD0C dx dy �
“ ˇ̌

u
 � kˇ̌�jtDT� dx dy:

We now use that u
 is an exact solution in the x-direction and the y-direction on
each strip Œtn; tnC1=2� and ŒtnC1=2; tnC1�, respectively. Thus we can invoke inequali-
ties (4.17) and (4.18), and we conclude that

�T .u
; �; k/ �
N�1X
nD0

“ 	ˇ̌
u
 � kˇ̌ jtDtnC1=2��.tnC1=2/

� ˇ̌
u
 � kˇ̌ jtDtnC�.tn/



dx dy

C
N�1X
nD0

“ 	ˇ̌
u
 � kˇ̌ jtDtnC1��.tnC1/

� ˇ̌
u
 � kˇ̌ jtDtnC1=2C�.tnC1=2/



dx dy
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C
N�1X
nD0

“ � tnC1Z
tnC1=2

�
tnC1=2Z
tn

�
qfı .u
; k/�x dt dx dy

C
N�1X
nD0

“ � tnC1=2Z
tn

�
tnC1Z

tnC1=2

�
qgı .u
; k/�y dt dx dy

C
“ ˇ̌

u
 � kˇ̌ �jtD0C dx dy �
“ ˇ̌

u
 � kˇ̌�jtDT� dx dy

D �2
N�1X
nD0

“ tnC1=2Z
tn

qfı .u
; k/�x dt dx dy

C
“ TZ

0

qfı .u
; k/�x dt dx dy

� 2
N�1X
nD0

“ tnC1Z
tnC1=2

qgı .u
; k/�y dt dx dy

C
“ TZ

0

qgı .u
; k/�y dt dx dy

C
N�1X
nD0

“ 	ˇ̌
u
 � kˇ̌ ˇ̌̌

tDtnC1=2�

� ˇ̌
u
 � kˇ̌ ˇ̌̌

tDtnC1=2C



�.tnC1=2/ dx dy

C
N�1X
nD1

“ � ˇ̌
u
 � kˇ̌ ˇ̌̌

tDtn�
� ˇ̌u
 � kˇ̌ ˇ̌̌

tDtnC
�
�.tn/ dx dy

WD �I1.u
; k/ � I2.u
; k/ � I3.u
; k/ � I4.u
; k/: (4.52)

Observe that because we employ the projection operator � between each pair of
consecutive times, we solve a conservation law in one dimension; unC1=2 and un
are in general discontinuous across tnC1=2 and tn, respectively. The terms I1 and I2
are due to dimensional splitting, while I3 and I4 come from the projections.

Choose now for the constant k the function vı.x0; y0; s0/, and for � we use ˝
given by (4.46). Integrating over the new variables, we obtain

�";"0 .u
; vı/ D
“ TZ

0

�T .u
;˝. � ; x0; � ; y0; � ; s0/; vı.x0; y0; s0// ds0 dx0 dy0

� �I ";"01 .u
; vı/� I ";"02 .u
; vı/ � I ";"03 .u
; vı/ � I ";"04 .u
; vı/;
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where I ";"0j are given by

I
";"0
1 .u
; vı/ D

“ TZ
0

“ �
2

N�1X
nD0

tnC1=2Z
tn

qfı .u
; vı/˝x ds

�
TZ
0

qfı .u
; vı/˝x ds

�
dx dy ds0 dx0 dy0;

I
";"0
2 .u
; vı/ D

“ TZ
0

“ �
2

N�1X
nD0

tnC1Z
tnC1=2

qgı .u
; vı/˝y ds

�
TZ
0

qgı .u
; vı/˝y ds

�
dx dy ds0 dx0 dy0;

I
";"0
3 .u
; vı/ D

N�1X
nD1

“ TZ
0

“ 	ˇ̌
u
 � vı

ˇ̌ jsDtnC

� ˇ̌
u
 � vı

ˇ̌ jsDtn�


˝ dx dy ds0 dx0 dy0;

I
";"0
4 .u
; vı/ D

N�1X
nD0

“ TZ
0

“ 	ˇ̌
u
 � vı

ˇ̌ jsDtnC1=2C

� ˇ̌
u
 � vı

ˇ̌ jsDtnC1=2�


˝ dx dy ds0 dx0 dy0:

We will start by estimating I ";"01 and I ";"02 .

Lemma 4.7 We have the following estimate:ˇ̌
I
";"0
1

ˇ̌C ˇ̌
I
";"0
2

ˇ̌ � T max
˚kf kLip; kgkLip

�
T:V: .u0/

�
	�t
"0

C 1

"

	
fkf kLip C kgkLipg�t C�x C�y




: (4.53)

Proof We will detail the estimate for
ˇ̌
I
";"0
1

ˇ̌
. Writing

qfı .u
.s/; vı.s
0// D qfı .u
.tnC1=2/; vı.s0//

C �
qfı .u
.s/; vı.s

0//� qfı .u
.tnC1=2/; vı.s0//
�
;

we rewrite I ";"01 as

I
";"0
1 .u
; vı/ D

N�1X
nD0

� �
J1.tn; tnC1=2/ � J1.tnC1=2; tnC1/

�

C �
J2.tn; tnC1=2/� J2.tnC1=2; tnC1/

� �
;

(4.54)
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with

J1.�1; �2/ D
“ TZ

0

“ �2Z
�1

qfı .u
.x; y; tnC1=2/; vı.x0; y0; s0//

�˝x.x; x
0; y; y0; s; s0/ ds dx dy ds0 dx0 dy0;

J2.�1; �2/ D
“ TZ

0

“ �2Z
�1

	
qfı .u
.x; y; s/; vı.x

0; y0; s0//

� qfı .u
.x; y; tnC1=2/; vı.x0; y0; s0//



�˝x.x; x
0; y; y0; s; s0/ ds dx dy ds0 dx0 dy0:

Here we have written out all the variables explicitly; however, in the following we
will display only the relevant variables. All spatial integrals are over the real line
unless specified otherwise. Rewriting

!"0.s � s0/ D !"0.tnC1=2 � s0/C
sZ

tnC1=2

! 0
"0
.Ns � s0/ d Ns;

we obtain

J1.tn; tnC1=2/ D
“ TZ

0

“
qfı .u
.tnC1=2/; vı.s0//˝"

x

� tnC1=2Z
tn

!"0 .tnC1=2 � s0/ ds

C
tnC1=2Z
tn

sZ
tnC1=2

! 0
"0
.Ns � s0/ d Ns ds

�
dx dy ds0 dx0 dy0

D
“ TZ

0

“
qfı .u
.tnC1=2/; vı.s0//˝"

x

�
�t

2
!"0.tnC1=2 � s0/

C
tnC1=2Z
tn

sZ
tnC1=2

! 0
"0
.Ns � s0/ d Ns ds

�
dx dy ds0 dx0 dy0;

where˝" D !".x � x0/!".y � y0/ denotes the spatial part of˝.
If we rewrite J1.tnC1=2; tnC1/ in the same way, we obtain

J1.tnC1=2; tnC1/ D
“ TZ

0

“
qfı .u
.tnC1=2/; vı.s0//˝"

x

�
�t

2
!"0.tnC1=2 � s0/

C
tnC1Z

tnC1=2

sZ
tnC1=2

! 0
"0
.Ns � s0/ d Ns ds

�
dx0 dy0 ds0 dx dy;
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and hence

J1
�
tn; tnC1=2/ � J1.tnC1=2; tnC1

�

D
“ TZ

0

“
qfı .u
.tnC1=2/; vı.s0//˝"

x

	 tnC1=2Z
tn

sZ
tnC1=2

! 0
"0
.Ns � s0/ d Ns ds

�
tnC1Z

tnC1=2

sZ
tnC1=2

! 0
"0
.Ns � s0/ d Ns ds



dx dy ds0 dx0 dy0: (4.55)

Now using the Lipschitz continuity of qfı , we can replace variation in qfı by vari-
ation in u, and obtain, using

’
! 0
"0
.x � x0/ dx dx0 D 0, thatˇ̌̌

ˇ
“

qfı .u
.x; y; tnC1=2/; vı.s0//! 0
"0
.x � x0/ dx dx0

ˇ̌̌
ˇ

D
ˇ̌̌
ˇ
“

! 0
"0
.x � x0/ dx dx0

� �qfı .u
.x; y; tnC1=2/; vı.s0// � qfı .u
.x0; y; tnC1=2/; vı.s0//
�ˇ̌̌ˇ

� kfıkLip
“ ˇ̌

! 0
"0
.x � x0/

ˇ̌
� ˇ̌u
.x; y; tnC1=2/� u
.x0; y; tnC1=2/

ˇ̌
dx dx0

D kfıkLip
“ ˇ̌

u
.x
0 C z; y; tnC1=2/ � u
.x0; y; tnC1=2/

ˇ̌ ˇ̌
! 0
"0
.z/
ˇ̌
dx0 dz

� kfıkLip
Z

1

jzj
Z ˇ̌

u
.x
0 C z; y; tnC1=2/ � u
.x0; y; tnC1=2/

ˇ̌
dx0

� ˇ̌z! 0
"0
.z/
ˇ̌
dz

� kfıkLipT:V:x
�
u
.tnC1=2/

� Z ˇ̌
z! 0

"0
.z/
ˇ̌
dz

� kfıkLipT:V:x
�
u
.tnC1=2/

�
;

using that
R ˇ̌
z! 0

"0
.z/
ˇ̌
dz D 1. We combine this with (4.55) to getˇ̌̌

J1.tn; tnC1=2/ � J1.tnC1=2; tnC1/
ˇ̌̌

� kfıkLip
“

T:V:x
�
u
.tnC1=2/

�
!"0.y � y0/

�
� TZ
0

tnC1=2Z
tn

ˇ̌̌
ˇ

sZ
tnC1=2

ˇ̌
! 0
"0
.Ns � s0/

ˇ̌
d Ns
ˇ̌̌
ˇ ds ds0

C
TZ
0

tnC1Z
tnC1=2

ˇ̌̌
ˇ

sZ
tnC1=2

ˇ̌
! 0
"0
.Ns � s0/

ˇ̌
d Ns
ˇ̌̌
ˇ ds ds0

�
dy0 dy:
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Inserting the estimate

TZ
0

ˇ̌
! 0
"0
.Ns � s0/

ˇ̌
ds0 � 1

"0

Z
j! 0.z/j dz � 2="0;

we obtain

ˇ̌̌
J1.tn; tnC1=2/ � J1.tnC1=2; tnC1/

ˇ̌̌
� kfıkLip.�t/2

2"0
T:V:

�
u
.tnC1=2/

�
: (4.56)

Next we consider the term J2. We first use the Lipschitz continuity of qfı , which
yields

ˇ̌̌
J2.tn; tnC1=2/

ˇ̌̌
� kfıkLip

“ TZ
0

“ tnC1=2Z
tn

ˇ̌
u
.x; y; s/ � u
.x; y; tnC1=2/

ˇ̌

� j˝xj ds dx0 dy0 ds0 dx dy

� kfıkLip
"

tnC1=2Z
tn

“ ˇ̌
u
.x; y; s/ � u
.x; y; tnC1=2/

ˇ̌
ds dx dy

� kfıkLip
"

tnC1=2Z
tn

“ ˇ̌
u
.x; y; s/ � u
.x; y; tnC1=2�/

ˇ̌
ds dx dy

C kfıkLip�t
2"

“ ˇ̌
u
.x; y; tnC1=2�/ � u
.x; y; tnC1=2/

ˇ̌
dx dy

� kfıkLip�t
"

�kfıkLip�t C�x
�
T:V:

�
u

�
tnC1=2

��
:

Herewe integrated to unity in the variables s0 andy0, and estimated
R j! 0

".x �x0/jdx0
by 2=". Finally, we used the continuity in time of the L1-norm in the x-direction
and estimated the error due to the projection. A similar bound can be obtained for
J2.tnC1=2; tnC1/, and hence

ˇ̌̌
J2.tn; tnC1=2/ � J2.tnC1=2; tnC1/

ˇ̌̌
� ˇ̌
J2.tn; tnC1=2/

ˇ̌C ˇ̌
J2.tnC1=2; tnC1/

ˇ̌
� kf kLip�t

"

�
2kf kLip�t C�x C�y

�
T:V:

�
u
.tn/

�
; (4.57)
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where we used that T:V:
�
u
.tnC1=2/

� � T:V:
�
u
.tn/

�
. Inserting estimates (4.56)

and (4.57) into (4.54) yields

ˇ̌
I
";"0
1 .u
; vı/

ˇ̌ � kfıkLipT:V:
�
u
.0/

�
�
N�1X
nD0

�
.�t/2

2"0
C �t

2"
.2kfıkLip�t C�x C�y/

�

� T kfıkLipT:V:
�
u
.0/

�
�
�
�t

2"0
C 1

2"
.2kfıkLip�t C�x C�y/

�
;

where we again used that T:V:
�
u

�
is nonincreasing. An analogous argument gives

the same estimate for I ";"02 . Adding the two inequalities, we conclude that (4.53)
holds. �

It remains to estimate I ";"03 and I ";"04 . We aim at the following result.

Lemma 4.8 The following estimate holds:

ˇ̌
I
";"0
3

ˇ̌C ˇ̌
I
";"0
4

ˇ̌ � T .�x C�y/2

�t "
T:V: .u0/ :

Proof We discuss the term I
";"0
3 only. Recall that

I
";"0
3 .u
; vı/ D

N�1X
nD1

“ TZ
0

“ � ˇ̌
u
.x; y; tn/� vı.x0; y0; s0/

ˇ̌

� ˇ̌
u
.x; y; tn�/ � vı.x0; y0; s0/

ˇ̌ �
�˝.x; x0; y; y0; tn; s0/ dx0 dy0 ds0 dx dy:

The function u
.x; y; tnC/ is the projection of u
.x; y; tn�/, that is,

u
.x; y; tnC/ D 1

�x�y

“
Iij

u
. Nx; Ny; tn�/ d Nx d Ny: (4.58)

If we replace
’

R2 by
P

i;j

’
Iij

and use (4.58), we obtain

I
";"0
3 .u
; vı/

D
N�1X
nD1

“ TZ
0

X
i;j

“
Iij

� ˇ̌̌
ˇ 1

�x�y

“
Iij

u
. Nx; Ny; tn�/ d Nx d Ny � vı.x0; y0; s0/
ˇ̌̌
ˇ

� ˇ̌
u
.x; y; tn�/ � vı.x0; y0; s0/

ˇ̌ �
˝.x; x0; y; y0; tn; s0/ dx dy ds0 dx0 dy0
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D 1

�x�y

N�1X
nD1

“ TZ
0

˝.x; x0; y; y0; tn; s0/

�
X
i;j

“
Iij

“
Iij

� ˇ̌
u
. Nx; Ny; tn�/ � vı.x0; y0; s0/

ˇ̌

� ˇ̌
u
.x; y; tn�/ � vı.x0; y0; s0/

ˇ̌ �
d Nx d Ny dx dy ds0 dx0 dy0

D 1

2�x�y

N�1X
nD1

“ TZ
0

˝.x; x0; y; y0; tn; s0/

�
X
i;j

“
Iij

“
Iij

� ˇ̌
u
. Nx; Ny; tn�/ � vı.x0; y0; s0/

ˇ̌

� ˇ̌
u
.x; y; tn�/ � vı.x0; y0; s0/

ˇ̌ �
d Nx d Ny dx dy ds0 dx0 dy0

C 1

2�x�y

N�1X
nD1

“ TZ
0

˝. Nx; x0; Ny; y0; tn; s0/

�
X
i;j

“
Iij

“
Iij

� ˇ̌
u
.x; y; tn�/ � vı.x0; y0; s0/

ˇ̌

� ˇ̌u
. Nx; Ny; tn�/ � vı.x0; y0; s0/
ˇ̌ �
dx dy d Nx d Ny ds0 dx0 dy0

D 1

2�x�y

N�1X
nD1

“ TZ
0

�
˝.x; x0; y; y0; tn; s0/ �˝. Nx; x0; Ny; y0; tn; s0/

�

�
X
i;j

“
Iij

“
Iij

� ˇ̌
u
. Nx; Ny; tn�/ � vı.x0; y0; s0/

ˇ̌

� ˇ̌u
.x; y; tn�/ � vı.x0; y0; s0/
ˇ̌ �
d Nx d Ny dx dy ds0 dx0 dy0:

Estimating I ";"03 .u
; vı/ using the inverse triangle inequality, we obtain

ˇ̌̌
I
";"0
3 .u
; vı/

ˇ̌̌

� 1

2�x�y

N�1X
nD1

“ TZ
0

X
i;j

“
Iij

“
Iij

ˇ̌
u
. Nx; Ny; tn�/ � u
.x; y; tn�/

ˇ̌

� j˝.x; x0; y; y0; tn; s0/�˝. Nx; x0; Ny; y0; tn; s0/j d Nx d Ny dx dy ds0 dx0 dy0:
(4.59)
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The next step is to bound the test functions in (4.59) from above. To this end we
first consider, for x; Nx 2 .i�x; .i C 1/�x/,

Z
j!".x � x0/� !". Nx � x0/j dx0 D

Z
j!.z/� !.z C . Nx � x/="/j dz

D
Z ˇ̌̌
ˇ̌̌ zC. Nx�x/="Z

z

! 0.�/ d�

ˇ̌̌
ˇ̌̌ dz

�
Z zC. Nx�x/="Z

z

j! 0.�/j d� dz

�
Z �x="Z

0

j! 0.˛ C ˇ/j d˛ dˇ D 2�x

"
:

Integrating the time variable to unity, we easily see (really, this is easy!) that

“ TZ
0

j˝.x; x0; y; y0; tn; s0/ �˝. Nx; x0; Ny; y0; tn; s0/j ds0 dx0dy0

D
TZ
0

!"0.s � s0/ ds0

�
“

j!".x � x0/!".y � y0/� !". Nx � x0/!". Ny � y0/j dx0dy0

�
“

j!".x � x0/� !". Nx � x0/j!".y � y0/ dx0dy0

C
“

j!".y � y0/ � !". Ny � y0/j!". Nx � x0/ dx0dy0

�
Z

j!".x � x0/ � !". Nx � x0/j dx0 C
Z

j!".y � y0/ � !". Ny � y0/j dy0

� .�x C�y/
2

"
: (4.60)

Furthermore,

ˇ̌
u
. Nx; Ny; tn�/ � u
.x; y; tn�/

ˇ̌ D ˇ̌
u
.x; Ny; tn�/ � u
.x; y; tn�/

ˇ̌
� T:V:.j�y;.jC1/�y/

�
u
.x; � ; tn�/

�
: (4.61)
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Inserting (4.60) and (4.61) into (4.59) yields

ˇ̌
I
";"0
3 .u
; vı/

ˇ̌
� 1

2�x�y

2.�x C�y/

"

�
N�1X
nD1

X
i;j

“
Iij

“
Iij

T:V:.j�y;.jC1/�y/
�
u
.x; � ; tn�/

�
d Nx d Ny dx dy

� �x C�y

"�x�y

N�1X
nD1

�x.�y/2
X
i;j

.iC1/�xZ
i�x

T:V:.j�y;.jC1/�y/
�
u
.x; � ; tn�/

�
dx

� .�x C�y/

"
�y

N�1X
nD1

T:V:
�
u
.tn�/

�

� .�x C�y/

"
�y

T

�t
T:V:

�
u
.0/

�
; (4.62)

where in the final step we used that T:V:
�
u
.tn�/

� � T:V:
�
u
.0/

�
.

The same analysis provides the following estimate for I ";"04 .vı; u
/:

ˇ̌
I
";"0
4 .u
; vı/

ˇ̌ � .�x C�y/

"
�x

T

�t
T:V:

�
u
.0/

�
: (4.63)

Adding (4.62) and (4.63) proves the lemma. �

We now return to the proof of the estimate of �";"0 .u
; vı/. Combining
Lemma 4.7 and Lemma 4.8, we obtain

��";"0 .u
; vı/ � ˇ̌
I
";"0
1 .u
; vı/

ˇ̌C ˇ̌
I
";"0
2 .u
; vı/

ˇ̌C ˇ̌
I
";"0
3 .u
; vı/

ˇ̌C ˇ̌
I
";"0
4 .u
; vı/

ˇ̌
� T

��
�t

"0
C 1

"
.fkfıkLip C kgıkLipg�t C�x C�y/

�

� max
˚kfıkLip; kgıkLip�C .�x C�y/2

�t "

�
T:V: .u0/

DW T T:V: .u0/�."; "0; 
/: (4.64)

Returning to (4.49), we combine (4.50), (4.51), as well as (4.64), to obtain

��S.T /u0 � u
.T /
��
L1.R2/

� kS.T /u0 � Sı.T /u0kL1.R2/ C ��Sı.T /u0 � u
.T /
��
L1.R2/

� T maxf kf � fıkLip; kg � gıkLip gT:V: .u0/C ��u0 � u0��
L1.R2/

C
	
2"C maxf kfıkLip; kgıkLip g"0 C "0

	
C C O

	maxf�x;�yg
�t




C T �."; "0; 
/



T:V: .u0/ : (4.65)



204 4 Multidimensional Scalar Conservation Laws

Next we take the minimum over " and "0 on the right-hand side of (4.65). This has
the form

min
";"0

	
a "C b

"
C c "0 C d

"0



D 2

p
ab C 2

p
cd :

The minimum is obtained for " D p
b=a and "0 D p

d=c. We obtain

��S.T /u0 � u
.T /
��
L1.R2/

� T max
˚kf � fıkLip; kg � gıkLip

�
T:V: .u0/C ��u0 � u0��

L1.R2/

C O
�	
.�x C�y/C�t C .�x C�y/2

�t


1=2�
T:V: .u0/ : (4.66)

We may choose the approximation of the initial data such that
��u0 � u0��

L1.R2/
D

O .�x C�y/T:V: .u0/. Furthermore, if the flux functions f and g are piecewise
C2 and Lipschitz continuous, then

kf � fıkLip � ıkf 00kL1.R/:

We state the final result in the general case.

Theorem 4.9 Let u0 be a function in L1.Rm/\ L1.Rm/ with bounded total vari-
ation, and let fj for j D 1; : : : ; m be piecewise C2 functions that in addition are
Lipschitz continuous. Then

��u.T / � u
.T /
��
L1.Rm/

� O
�
ı C .�x C�y/1=2

�
as 
 ! 0 when

�x D K1�y D K2�t

for constants K1 and K2.

It is worthwhile to analyze the error terms in the estimate. We are clearly making
four approximations with the front-tracking method combined with dimensional
splitting. First of all, we are approximating the initial data by step functions. That
gives an error of order �x. Secondly, we are approximating the flux functions by
piecewise linear and continuous functions; in this case the error is of order ı. A third
source is the intrinsic error in the dimensional splitting, which is of order .�t/1=2,
and finally, the projection onto the grid gives an error of order .�x/1=2.

The advantage of this method over difference methods is the fact that the time
step �t is not bounded by a CFL condition expressed in terms of �x and �y. The
only relation that must be satisfied is (4.27), which allows for taking large time
steps. In practice it is observed that one can choose CFL numbers4 as high as 10–15
without loss in accuracy. This makes it a very fast method.

4 In several dimensions the CFL number is defined as maxi .
ˇ̌
f 0
i

ˇ̌
�t=�xi /.
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4.4 Operator Splitting: Diffusion

The answer, my friend, is blowin’ in the wind, the answer is blowin’ in the wind.
— Bob Dylan, Blowin’ in the Wind (1968)

We show how to use the concept of operator splitting to derive a (weak) solution of
the parabolic problem5 on Rm � Œ0; T �,

ut C
mX
jD1

fj .u/xj D �

mX
jD1

uxj xj ; (4.67)

by solving

ut C fj .u/xj D 0; j D 1; : : : ; m; (4.68)

and

ut D ��u; (4.69)

where we employ the notation �u D P
j uxj xj . We augment the equation with

initial data ujtD0 D u0. Let Sj .t/u0 and H.t/u0 denote the solutions of (4.68) and
(4.69), respectively, with initial data u0. Introducing the heat kernel, we may write

u.x; t/ D .H.t/u0/ .x; t/

D
Z
Rm

K.x � y; t/u0.y/ dy

D 1

.4��t/m=2

Z
Rm

exp

 
�jx � yj2

4�t

!
u0.y/ dy:

Let �t be positive and tn D n�t . Define

u0 D u0; unC1 D .H.�t/Sm.�t/ � � �S1.�t// un; (4.70)

with the idea that un approximates u.x; tn/. We will show that un converges to the
solution of (4.67) as �t ! 0.

Lemma 4.10 The following estimates hold:

kunkL1.Rm/ � ��u0��
L1.Rm/

; (4.71)

T:V: .un/ � T:V:
�
u0
�
; (4.72)

kun1 � un2kL1loc.Rm/ � C
� jn1 � n2j�t

�1=.mC1/
: (4.73)

5 Although we have used the parabolic regularization to motivate the appropriate entropy condi-
tion, we have constructed the solution of the multidimensional conservation law independtly, and
hence it is logically consistent to use the solution of the conservation law in combination with
operator splitting to derive the solution of the parabolic problem. A different approach, where we
start with a solution of the parabolic equation and subsequently show that in the limit of vanishing
viscosity the solution converges to the solution of the conservation law, is discussed in Appendix B.
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Proof Equation (4.71) is obvious, since both the heat equation and the conservation
law obey the maximum principle.

We know that the solution of the conservation law has the TVD property (4.72);
see (4.24). Thus it remains to show that this property is shared by the solution of
the heat equation. To this end, we haveˇ̌̌

H.t/u.x C h/ �H.t/u.x/
ˇ̌̌

D
ˇ̌̌
ˇ̌̌Z
Rm

�
K.x C h � y; t/u.y/ �K.x � y; t/u.y/� dy

ˇ̌̌
ˇ̌̌

�
Z
Rm

jK.y; t/u.x C h � y/ �K.y; t/u.x � y/j dy;

which implies thatZ
Rm

ˇ̌̌
H.t/u.x C h/ �H.t/u.x/

ˇ̌̌
dx

�
Z
Rm

Z
Rm

jK.y; t/u.x C h � y/ �K.y; t/u.x � y/j dy dx

D
Z
Rm

K.y; t/

Z
Rm

ju.x C h � y/ � u.x � y/j dx dy

D
Z
Rm

K.y; t/ dy

Z
Rm

ju.x C h/� u.x/j dx

D
Z
Rm

ju.x C h/ � u.x/j dx:

Dividing by jhj and letting h ! 0, we conclude that

T:V: .H.t/u/ � T:V: .u/ ;

which proves (4.72).
Finally, we consider (4.73). We will first show that the approximate solution

obtained by splitting is weakly Lipschitz continuous in time. More precisely, for
each ball Br D fx j jxj � rg, we will show thatˇ̌̌

ˇ
Z
Br

.un1 � un2/�
ˇ̌̌
ˇ � Cr jn1 � n2j�t

�
k�k1 C max

j
k�xj k1

�
; (4.74)

for smooth test functions � D �.x/, where Cr is a constant depending on r . It is
enough to study the case n2 D n1 C 1, and we set n1 D n. Furthermore, we can
writeˇ̌̌
ˇ
Z
.unC1 � un/� dx

ˇ̌̌
ˇ �

ˇ̌̌
ˇ
Z
.H.�t/ Qun � Qun/� dx

ˇ̌̌
ˇC

ˇ̌̌
ˇ
Z
. Qun � un/� dx

ˇ̌̌
ˇ ; (4.75)
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where Qun D .Sm.�t/ � � �S1.�t// un. This shows that it suffices to prove this prop-
erty for the solutions of the conservation law and the heat equation separately. From
Theorem 4.3 we know that the solution of the one-dimensional conservation law
satisfies the stronger estimate

kS.t/u � ukL1.Rm/ � C jt j :

This implies that (for simplicity with m D 2)

kS2.t/S1.t/u � ukL1.R2/ � kS2.t/S1.t/u � S1.t/ukL1.R2/ C kS1.t/u � ukL1.R2/

� C jt j ;

and hence we infer that the last term of (4.75) is of order�t , that is,

k Qun � unkL1.R2/ � Ck�kL1.R2/ j�t j :

The first term can be estimated as follows (for simplicity of notation we assume
m D 1). Consider

ˇ̌̌
ˇ
Z
.H.t/u0 � u0/� dx

ˇ̌̌
ˇ D

ˇ̌̌
ˇ̌̌Z tZ

0

ut dt � dx

ˇ̌̌
ˇ̌̌ D

ˇ̌̌
ˇ̌̌Z tZ

0

uxx dt � dx

ˇ̌̌
ˇ̌̌

�
Z tZ

0

jux�xj dt dx

� k�xkL1.R/

tZ
0

Z
juxj dx dt

� k�xkL1.R/

tZ
0

T:V: .u/ dt � k�xkL1.R/T:V: .u0/ t:

(4.76)

Thus we conclude that (4.74) holds.
From the TVD property (4.72), we have that

sup
j�j��

Z
jun.x C �; t/ � un.x; t/j dx � �T:V: .un/ : (4.77)

Using Kružkov’s interpolation lemma (stated and proved right after this proof) we
can infer, using (4.74) and (4.77), that

Z
Br

jun1.x/ � un2.x/j dx � Cr

�
"C jn1 � n2j�t

"

�

for all " � �. Choosing " D pjn1 � n2j�t proves the result. �
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We next state and prove Kružkov’s interpolation lemma. It will be convenient
to use the multi-index notation. A vector of the form ˛ D .˛1; : : : ; ˛m/, where
each component is a nonnegative integer, is called a multi-index of order j˛j D
˛1 C � � � C ˛m. Given a multi-index ˛, we define

D˛u.x/ D @j˛ju.x/
@x

˛1
1 � � �@x˛mm :

Lemma 4.11 (Kružkov interpolation lemma) Let u.x; t/ be a bounded measur-
able function defined in the cylinderBrCOr�Œ0; T �, Or � 0. For t 2 Œ0; T � and j�j � Or ,
assume that u possesses a spatial modulus of continuity

sup
j�j�j�j

Z
Br

ju .x C �; t/ � u.x; t/j dx � �r;T;Or .j�j Iu/; (4.78)

where �r;T;Or does not depend on t . Suppose that for every � 2 C1
0 .Br / and t1; t2 2

Œ0; T �,

ˇ̌̌
ˇ
Z
Br

�
u .x; t2/ � u �x; t1���.x/ dx

ˇ̌̌
ˇ � Constr;T

� X
j˛j�m

kD˛�kL1.Br /

�
jt2 � t1j ;

(4.79)

where ˛ denotes a multi-index.
Then for t and t C � 2 Œ0; T � and for all " 2 .0; Or�,
Z
Br

ju.x; t C �/ � u.x; t/j dx � Constr;T

�
"C �r;T;Or ."Iu/C j� j

"m

�
: (4.80)

Proof Let ı 2 C1
0 be a function such that

0 � ı.x/ � 1; supp ı 	 B1;
Z
ı.x/ dx D 1;

and define

ı".x/ D 1

"m
ı
	x
"



:

Furthermore, write f .x/ D u.x; t C �/�u.x; t/ (suppressing the time dependence
in the notation for f ),

�.x/ D sign .f .x// for jxj � r � ", and 0 otherwise;

and

�".x/ D .� � ı"/.x/ D
Z
�.x � y/ı".y/ dy:
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By construction, �" 2 C1
0 .R

m/ and supp�" 	 Br . Furthermore, j�"j � 1 and

ˇ̌̌
ˇ @@xj �"

ˇ̌̌
ˇ � 1

"m

Z ˇ̌̌
ˇ @@xj ı.

x � y
"

/

ˇ̌̌
ˇ �.y/ dy

� 1

"mC1

Z ˇ̌̌
ıxj .

x � y
"

/
ˇ̌̌
�.y/ dy � C

"
:

This easily generalizes to

kD˛�"kL1.Rm/ � C

"j˛j :

Next we have the elementary but important inequality

Z
Br

jf .x/j dx D
ˇ̌̌
ˇ̌̌Z
Br

jf .x/j dx
ˇ̌̌
ˇ̌̌

D
ˇ̌̌
ˇ̌̌Z
Br

.jf .x/j � �".x/f .x/C �".x/f .x// dx

ˇ̌̌
ˇ̌̌

�
ˇ̌̌
ˇ̌̌Z
Br

.jf .x/j � �".x/f .x// dx
ˇ̌̌
ˇ̌̌C

ˇ̌̌
ˇ̌̌Z
Br

�".x/f .x/ dx

ˇ̌̌
ˇ̌̌

�
Z
Br

j jf .x/j � �".x/f .x/j dx C
ˇ̌̌
ˇ̌̌Z
Br

�".x/f .x/ dx

ˇ̌̌
ˇ̌̌

DW I1 C I2:

We estimate I1 and I2 separately. Starting with I1, we obtain

I1 D
Z
Br

ˇ̌jf .x/j � �".x/f .x/
ˇ̌
dx

D
Z
Br

ˇ̌̌
ˇ jf .x/j 1"m

Z
ı.
x � y
"

/ dy � 1

"m

Z
ı.
x � y
"

/�.y/ dy f .x/

ˇ̌̌
ˇ dx

D 1

"m

Z Z
ı.
x � y
"

/
ˇ̌ jf .x/j � �.y/f .x/ˇ̌ dy dx:

The integrand is integrated over the domain

f.x; y/ j jxj � r; jx � yj � "g:

We further divide this set into two parts: (i) jyj � r � ", and (ii) jyj � r � "; see
Fig. 4.2. In case (i) we haveˇ̌jf .x/j � �.y/f .x/ˇ̌ D jf .x/j ;
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Fig. 4.2 The integration
domain

x

y

−r

−r + ε

−r − ε

r

r − ε

r + ε

(i)

(ii)

(i)

since �.y/ D 0 whenever jyj � r � ". In case (ii) we haveˇ̌jf .x/j � �.y/f .x/ˇ̌ D ˇ̌jf .x/j � sign .f .y// f .x/
ˇ̌ � 2 jf .x/ � f .y/j ;

using the elementary inequalityˇ̌jaj � sign .b/ a
ˇ̌ D ˇ̌jaj � jbj C sign .b/ .b � a/ˇ̌

� ˇ̌jaj � jbjˇ̌C jsign .b/ .b � a/j
� 2 ja � bj :

Thus

I1 � 2

"m

Z
Br

Z
Br�"

ı.
x � y
"

/ jf .x/ � f .y/j dy dx

C 1

"m

Z
Br

Z
jyj�r�"

ı.
x � y
"

/ jf .x/j dy dx

� 2

Z
Br

Z
B1

ı.z/ jf .x/ � f .x � "z/j dz dx

C kf k1
1

"m

Z
Br

Z
jyj�r�"

ı.
x � y
"

/ dy dx

� 2

Z
B1

ı.z/ sup
j�j�"

Z
Br

jf .x/ � f .x C �/j dx dz

C kf kL1.Rm/

Z
BrC"nBr�"

1

"m

Z
Br

ı.
x � y
"

/ dx dy

� 2�."If /C kf kL1.Rm/vol .BrC" n Br�"/
� 2�."If /C kf kL1.Rm/Cr":
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Furthermore,

�."If / � 2�."Iu/:
The second term I2 is estimated by the assumptions of the lemma, namely,

I2 D
ˇ̌̌
ˇ̌̌Z
Br

�".x/f .x/ dx

ˇ̌̌
ˇ̌̌ � Constr;T

� X
j˛j�m

kD˛�"kL1.Br /

�
j� j � C

j� j
"m
:

Combining the two estimates, we conclude thatZ
Br

ju.x; t C �/ � u.x; t/j dx � Cr

�
"C �r;T;Or ."Iu/C j� j

"m

�
: �

Next we need to extend the function un to all times. First, define

unCj=.mC1/ D Sju
nC.j�1/=.mC1/; j D 1; : : : ; m:

Now let

u�t .x; t/ D

8̂̂
ˆ̂<
ˆ̂̂̂:

Sj ..mC 1/.t � tnC.j�1/=.mC1///unC.j�1/=.mC1/

for t 2 ŒtnC.j�1/=.mC1/; tnCj=.mC1//;

H..mC 1/.t � tnCm=.mC1///unCm=.mC1/

for t 2 ŒtnCm=.mC1/; tnC1/:

(4.81)

The estimates in Lemma 4.10 carry over to the function u�t . Fix T > 0. Apply-
ing Theorem A.11, we conclude that there exists a sequence of �t ! 0 such that
for each t 2 Œ0; T �, the function u�t .t/ converges to a function u.t/, and the con-
vergence is in C.Œ0; T �IL1loc.Rm//. It remains to show that u is a weak solution of
(4.67), or

Z
Rm

tZ
0

.u�t C f .u/ � r� C �u��/ dt dx C
Z
Rm

u0�jtD0 dx D
Z
Rm

.u�/jtDT dx

(4.82)

for all smooth and compactly supported test functions �. We have

Z
Rm

tnCj=.mC1/Z
tnC.j�1/=.mC1/

	 1

mC 1
u�t �t C f .u�t / � r�



dt dx

D 1

mC 1

Z
Rm

�tZ
0

�
unC.j�1/=.mC1/.x; Qt / �t

	
x;

Qt � tnC.j�1/=.mC1/
mC 1




C f .unC.j�1/=.mC1// � r�
	
x;

Qt � tnC.j�1/=.mC1/
mC 1


�
d Qt dx

D 1

mC 1

Z
Rm

.u�t�/
ˇ̌̌tDtnCj=.mC1/

tDtnC.j�1/=.mC1/
dx; (4.83)
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for j D 1; : : : ; m, where we have used that unC.j�1/=.mC1/ is a solution of the
conservation law on the strip t 2 ŒtnC.j�1/=.mC1/; tnCj=.mC1//. Similarly, we find for
the solution of the heat equation that

Z
Rm

tnC1Z
tnCm=.mC1/

�
1

mC 1
u�t�t C �u�t��

�
dt dx

D 1

mC 1

Z
Rm

�
.u�t�/ jtDtnCm=.mC1/ � .u�t�/ jtDtnC1

�
dx:

(4.84)

Summing (4.83) for j D 1; : : : ; m, and adding the result to (4.84), we obtain

Z
Rm

tZ
0

�
1

mC 1
u�t�t C f�t .u�t/ � r� C ��mC1u�t��

�
dt dx

C 1

mC 1

Z
Rm

u0�jtD0 dx D 1

mC 1

Z
Rm

.u�t�/jtDT dx;
(4.85)

where
f�t D .�1f1; : : : ; �mfm/

and

�j D
(
1 for t 2 [nŒtnC.j�1/=.mC1/; tnCj=.mC1//;
0 otherwise:

As �t ! 0, we have �j
�
* 1=.m C 1/, which proves (4.82). We summarize the

result as follows.

Theorem 4.12 Let u0 be a function in L1.Rm/\L1.Rm/\BV .Rm/, and assume
that fj are piecewise twice continuously differentiable functions for j D 1; : : : ; m.
Define the family of functions fu�tg by (4.70) and (4.81). Fix T > 0. Then there
exists a sequence of �t ! 0 such that fu�t.t/g converges to a weak solution u of
(4.67). The convergence is in C.Œ0; T �IL1loc.Rm//.

One can prove that a weak solution of (4.67) is indeed a classical solution; see
[147]. Hence, by uniqueness of classical solutions, the sequence fu�tg converges
for every sequence f�tg tending to zero.

4.5 Operator Splitting: Source

Experience must be our only guide; Reason may mislead us.
— J. Dickinson, the Constitutional Convention (1787)

We will use operator splitting to study the inhomogeneous conservation law

ut C
mX
jD1

fj .u/xj D g.x; t; u/; ujtD0 D u0; (4.86)
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where the source term g is assumed to be continuous in .x; t/ and Lipschitz contin-
uous in u. In this case the Kružkov entropy condition reads as follows. The bounded
function u is a weak entropy solution on Œ0; T � if it satisfies

TZ
0

Z
Rm

� ju � kj 't C sign .u � k/
mX
jD1

�
fj .u/� fj .k/

�
'xj
�
dx1 � � � dxm dt

C
Z
Rm

ju0 � kj 'jtD0 dx1 � � � dxm �
Z
Rm

.ju � kj '/jtDT dx1 � � � dxm

� �
TZ
0

Z
Rm

sign .u � k/ 'g.x; t; u/ dx1 � � � dxm dt; (4.87)

for all constants k 2 R and all nonnegative test functions ' 2 C1
0 .R

m � Œ0; T �/.
To simplify the presentation we consider only the case with m D 1, and where

g D g.u/. Thus

ut C f .u/x D g.u/: (4.88)

The case in which g also depends on .x; t/ is treated in Exercise 4.7. Let S.t/u0
and R.t/u0 denote the solutions of

ut C f .u/x D 0; ujtD0 D u0; (4.89)

and

ut D g.u/; ujtD0 D u0; (4.90)

respectively. Define the sequence fung by (we still use tn D n�t)

u0 D u0; unC1 D .S.�t/R.�t// un

for some positive�t . Furthermore, we need the extension to all times, defined by6

u�t .x; t/ D
(
S.2.t � tn//un for t 2 Œtn; tnC1=2/;
R
�
2
�
t � tnC1=2

��
unC1=2 for t 2 ŒtnC1=2; tnC1/;

(4.91)

with

unC1=2 D S.�t/un; tnC1=2 D
	
nC 1

2



�t:

For this procedure to be welldefined, we must be sure that the ordinary differential
equation (4.90) is welldefined. This is the case if g is uniformly Lipschitz continu-
ous in u, i.e.,

jg.u/� g.v/j � kgkLip ju � vj : (4.92)

6 Essentially replacing the operator H used in operator splitting with respect to diffusion by R in
the case of a source.
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For convenience, we set � D kgkLip. This assumption also implies that the solution
of (4.90) does not “blow up” in finite time, since

jg.u/j � jg.0/j C � juj � Cg.1C juj/; (4.93)

for some constant Cg . Under this assumption on g we have the following lemma.

Lemma 4.13 Assume that u0 is a function in L1loc.R/, and that u0 is of bounded
variation. Then for n�t � T , the following estimates hold:

(i) There is a constantM1 independent of n and �t such that

kunkL1.R/ � M1: (4.94)

(ii) There is a constantM2 independent of n and �t such that

T:V: .un/ � M2: (4.95)

(iii) There is a constantM3 independent of n and �t such that for t1 and t2, with
0 � t1 � t2 � T , and for each bounded interval B � R,Z

B

ju�t.x; t1/ � u�t.x; t2/j dx � M3 jt1 � t2j : (4.96)

Proof We start by proving (i). The solution operator St obeys a maximum principle,
so that

��unC1=2��1 � kunk1. Multiplying (4.90) by sign .u/, we find that

jujt D sign .u/ g.u/ � jg.u/j � Cg.1C juj/;

where we have used (4.93). By Gronwall’s inequality (see Exercise 1.10), for a so-
lution of (4.90), we have that

ju.t/j � eCgt .1C ju0j/ � 1:

This means that

��unC1��
L1.R/ � eCg�t

	
1C ��unC1=2��

L1.R/



� 1

� eCg�t
�
1C kunkL1.R/

� � 1;

which by induction implies

kunkL1.R/ � eCgtn
�
1C ku0kL1.R/

� � 1:

Setting

M1 D eCgT
�
1C ku0kL1.R/

� � 1

proves (i).
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Next, we prove (ii). The proof is similar to that of the last case, since St is TVD,
T:V:

�
unC1=2� � T:V: .un/. As before, let u be a solution of (4.90) and let v be

another solution with initial data v0. Then we have .u�v/t D g.u/�g.v/. Setting
w D u � v, and multiplying by sign .w/, we find that

jwjt D sign .w/ .g.u/� g.v// � � jwj :
Then by Gronwall’s inequality,

jw.t/j � e�t jw.0/j :
Hence, ˇ̌

unC1.x/ � unC1.y/
ˇ̌ � e��t

ˇ̌
unC1=2.x/ � unC1=2.y/

ˇ̌
:

This implies that

T:V:
�
unC1� � e��tT:V:

�
unC1=2� � e��tT:V: .un/ :

Inductively, we then have that

T:V: .un/ � e�tnT:V: .u0/ ;

and settingM2 D e�T concludes the proof of (ii).
Regarding (iii), we know thatZ

B

ˇ̌
unC1=2.x/ � un.x/ˇ̌ dx � C�t:

We also have that

Z
B

ˇ̌
unC1.x/ � unC1=2.x/

ˇ̌
dx D

Z
B

ˇ̌̌
ˇ̌̌ �tZ
0

g .u�t .x; t � tn// dt
ˇ̌̌
ˇ̌̌ dx

�
Z
B

�tZ
0

jg .u�t .x; t � tn//j dt dx

� Cg

�tZ
0

Z
B

.1CM1/ dx dt

D jB jCg.1CM1/�t;

where jB j denotes the length of B . SettingM3 D C C jB jCg.1CM1/ shows thatZ
B

ˇ̌
unC1.x/ � un.x/ˇ̌ � M3�t;

which implies (iii). �
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Fix T > 0. Theorem A.11 implies the existence of a sequence�t ! 0 such that
for each t 2 Œ0; T �, the function u�t .t/ converges in L1loc.R/ to a bounded function
of bounded variation u.t/. The convergence is in C.Œ0; T �IL1loc.Rm//. It remains to
show that u solves (4.88) in the sense of (4.87).

Using that u�t is an entropy solution of the conservation law without source term
(4.89) in the interval Œtn; tnC1=2�, we obtain7

2

tnC1=2Z
tn

Z �
1

2
ju�t � kj 't C sign .u�t � k/ .f .u�t / � f .k//'x

�
dx dt

C
Z
.ju�t � kj '/

ˇ̌̌tDtn
tDtnC1=2

dx � 0: (4.97)

Regarding solutions of (4.90), since kt D 0 for every constant k, we find that

ju � kjt D sign .u � k/ .u � k/t D sign .u � k/ g.u/:
Multiplying this by a test function �.t/ and integrating over s 2 Œ0; t �, we find after
a partial integration that

tZ
0

� ju � kj�s C sign .u � k/ g.u/��ds C u�jsDtsD0 D 0:

Since u�t is a solution of the ordinary differential equation (4.90) on the interval
ŒtnC1=2; tnC1� (with time running “twice as fast”; see (4.91)), we find that

2

tnC1=2Z
tn

Z �
1

2
ju�t � kj 't C sign .u�t � k/ g.u�t/'

�
dx dt

C
Z
.ju�t � kj '/

ˇ̌̌tDtnC1=2

tDtnC1
dx D 0:

Adding this and (4.97), and summing over n, we obtain

2

TZ
0

Z �
1

2
ju�t � kj 't C ��t sign .u�t � k/ .f .u�t / � f .k//'x

C Q��t sign .u�t � k/ g.u�t /'
�
dx dt

�
Z
.ju�t � kj '/ jtDTtD0 dx � 0;

where ��t and Q��t denote the characteristic functions of the sets [nŒtn; tnC1=2/ and
[nŒtnC1=2; tnC1/, respectively. We have that ��t

�
* 1

2
and Q��t �

* 1
2
, and hence we

conclude that (4.87) holds in the limit as �t ! 0.

7 The constants 2 and 1
2
come from the fact that time is running “twice as fast” in the solution

operators S and R in (4.91) (cf. also (4.16)–(4.17)).
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Theorem 4.14 Let f .u/ be piecewise twice continuously differentiable, and as-
sume that g D g.u/ satisfies the bound (4.92). Let u0 be a bounded function of
bounded variation. Then the initial value problem

ut C f .u/x D g.u/; u.x; 0/ D u0.x/ (4.98)

has a weak entropy solution, which can be constructed as the limit of the sequence
fu�tg defined by (4.91).

4.6 Notes

Dimensional splitting for hyperbolic equations was first introduced by Bagrinovskiı̆
and Godunov [7] in 1957. Crandall and Majda made a comprehensive and sys-
tematic study of dimensional splitting (or the fractional steps method) in [52]. In
[53] they used dimensional splitting to prove convergence of monotone schemes as
well as the Lax–Wendroff scheme and the Glimm scheme, i.e., the random choice
method. A more general introduction to operator splitting can be found in [91].

There are also methods for multidimensional conservation laws that are intrinsi-
cally multidimensional. However, we have here decided to use dimensional splitting
as our technique because it is conceptually simple and allows us to take advantage
of the one-dimensional analysis.

Another natural approach to the study of multidimensional equations based on
the front-tracking concept is first to make the standard front-tracking approxima-
tion: Replace the initial data by a piecewise constant function, and replace flux
functions by piecewise linear and continuous functions. That gives rise to truly
two-dimensional Riemann problems at each grid point .i�x; j�y/. However, that
approach has turned out to be rather cumbersome even for a single Riemann prob-
lem and piecewise linear and continuous flux functions f and g. See Risebro [159].

The one-dimensional front-tracking approach combined with dimensional split-
ting was first introduced in Holden and Risebro [93]. The theorem on the conver-
gence rate of dimensional splitting was proved independently by Teng [178] and
Karlsen [105, 106]. Our presentation here follows Haugse, Lie, and Karlsen [133].
Sect. 4.4, using operator splitting to solve the parabolic regularization, is taken
from Karlsen and Risebro [108]. The Kružkov interpolation lemma, Lemma 4.11,
is taken from [117]; see also [108].

The presentation in Sect. 4.5 can be found in Holden and Risebro [95], where
also the case with a stochastic source is treated. The convergence rate in the case of
operator splitting applied to a conservation law with a source term is discussed in
Langseth, Tveito, and Winther [123].

4.7 Exercises

4.1 Consider the initial value problem

ut C f .u/x C g.u/y D 0; ujtD0 D u0;

where f , g are piecewise twice continuously differentiable functions, and u0
is a bounded integrable function with finite total variation.
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(a) Show that the solution u is Lipschitz continuous in time; that is,

ku.t/ � u.s/kL1.R2/ � jt � sj �kf kLip _ kgkLip
�
T:V: .u0/ :

(b) Let v0 be another function with the same properties as u0. Show that if
u0 � v0, then also u � v almost everywhere, where v is the solution with
initial data v0.

4.2 Consider the initial value problem

ut C f .u/x D 0; ujtD0 D u0; (4.99)

where f is a piecewise twice continuously differentiable function and u0 is
a bounded, integrable function with finite total variation. Write

f D f1 C f2

and let Sj .t/u0 denote the solution of

ut C fj .u/x D 0; ujtD0 D u0:

Prove that operator splitting converges to the solution of (4.99). Determine the
convergence rate.

4.3 Prove (4.38), that is, that“
j� �  j dx dy � .�x C�y/T:V: . / ;

for all functions  of bounded variation.
4.4 Consider the heat equation in Rm,

ut D
mX
iD1

@2u

@x2i
; u.x; 0/ D u0.x/: (4.100)

Let Hi
t denote the solution operator for the heat equation in the i th direction,

i.e., we write the solution of

ut D @2u

@x2i
; u.x; 0/ D u0.x/;

asHi
t u0. Define

un.x/ D �
Hm
�t ı � � � ıH1

�t

�n
u0.x/;

unCj=m.x/ D H
j
�t ıHj�1

�t ı � � � ıH1
�tu

n.x/;

for j D 1; : : : ; m, and n � 0.
For t in the interval Œtn C ..j � 1/=m/�t; tn C .j=m/�t� define

u�t.x; t/ D H
j

m.t�tnC.j�1/=m/u
nC.j�1/=m.x/:

If the initial function u0.x/ is bounded and of bounded variation, show that
fu�tg converges in C.Œ0; T �IL1loc.Rm// to a weak solution of (4.100).
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4.5 We consider the viscous conservation law in one space dimension,

ut C f .u/x D uxx; u.x; 0/ D u0.x/; (4.101)

where f satisfies the “usual” assumptions and u0 is in L1 \BV . Consider the
following scheme based on operator splitting:

U
nC1=2
j D 1

2

	
Un
jC1 C Un

j�1



� 
	
f
	
Un
jC1



� f

	
Un
j�1



;

U nC1
j D U

nC1=2
j C �

	
U
nC1=2
jC1 � 2U nC1=2

j C U
nC1=2
j�1



;

for n � 0, where  D �t=�x and � D �t=�x2. Set

U 0
j D 1

�x

.jC1=2/�xZ
.j�1=2/�x

u0.x/ dx:

We see that we use the Lax–Friedrichs scheme for the conservation law and an
explicit difference scheme for the heat equation. Let

u�t .x; t/ D Un
j

for
�
j � 1

2

�
�x � x <

�
j C 1

2

�
�x and n�t < t � .nC 1/�t .

(a) Show that this gives a monotone and consistent scheme, provided that
a CFL condition holds.

(b) Show that there is a sequence of �t ’s such that u�t converges to a weak
solution of (4.101) as �t ! 0.

(a) Assume that u, f , and g are inL1.Œ0; T �/, and that g is nonnegative, while
f is strictly positive and nondecreasing. Assume that

u.t/ � f .t/C
tZ

0

g.s/u.s/ ds; t 2 Œ0; T �:

Show that

u.t/ � f .t/ exp
	 tZ
0

g.s/ ds


; t 2 Œ0; T �:

4.6 Assume that u and v are entropy solutions of

ut C f .u/x D g.u/; u.x; 0/ D u0.x/;

vt C f .v/x D g.v/; v.x; 0/ D v0.x/;

where u0 and v0 are in L1.R/\ BV .R/, and f and g satisfy the assumptions
of Theorem 4.14.
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(a) Use the entropy formulation (4.87) and mimic the arguments used to prove
(2.60) to show that for every nonnegative test function  ,“ � ju.x; t/ � v.x; t/j t C q.u; v/ x

�
dt dx

�
Z

ju.x; T / � v.x; T /j .x; T / dx

C
Z

ju0.x/� v0.x/j .x; 0/ dx

�
“

sign .u � v/ .g.u/� g.v// dt dx:

(b) Define  .x; t/ by (2.61), and set

h.t/ D
Z

ju.x; t/ � v.x; t/j .x; t/ dx:

Show that

h.T / � h.0/C �

TZ
0

h.t/ dt;

where � denotes the Lipschitz constant of g. Use the previous exercise to
conclude that

h.T / � h.0/
�
1C �Te�T

�
:

(c) Show that

ku. � ; t/� v. � ; t/kL1.R/ � ku0 � v0kL1.R/
�
1C � te�t

�
;

and hence that entropy solutions of (4.98) are unique. Note that this im-
plies that fu�tg defined by (4.91) converges to the entropy solution for
every sequence f�tg such that�t ! 0.

4.7 We consider the case that the source depends on .x; t/. For u0 2 L1loc \ BV ,
let u be an entropy solution of

ut C f .u/x D g.x; t; u/; u.x; 0/ D u0.x/; (4.102)

where g is bounded for each fixed u and continuous in t , and satisfies

jg.x; t; u/ � g.x; t; v/j � � ju � vj ;
T:V: .g. � ; t; u// � b.t/;

where the constant � is independent of x and t , for all u and v and for
a bounded function b.t/ in L1.Œ0; T �/. We let St be as before, and let
R.x; t; s/u0 denote the solution of

u0.t/ D g.x; t; u/; u.s/ D u0;

for t > s.
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(a) Define an operator splitting approximation u�t using St and R.x; t; s/.
(b) Show that there is a sequence of �t’s such that u�t converges in

C.Œ0; T �IL1loc.R// to a function of bounded variation u.
(c) Show that u is an entropy solution of (4.102).

4.8 Show that if the initial data u0 of the heat equation ut D �u is smooth, that is,
u0 2 C1

0 , then

ku.t/ � u0kL1 � C t:

Compare this result with (4.76).
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