
Chapter 3

A Short Course in Difference Methods

Computation will cure what ails you.
— Clifford Truesdell, The Computer, Ruin of Science and Threat
to Mankind, 1980/1982

Although front tracking can be thought of as a numerical method, and has indeed
been shown to be excellent for one-dimensional conservation laws, it is not part of
the standard repertoire of numerical methods for conservation laws. Traditionally,
difference methods have been central to the development of the theory of conserva-
tion laws, and the study of such methods is very important in applications.

This chapter is intended to give a brief introduction to difference methods for
conservation laws. The emphasis throughout will be on methods and general results
rather than on particular examples. Although difference methods and the concepts
we discuss can be formulated for systems, we will exclusively concentrate on scalar
equations. This is partly because we want to keep this chapter introductory, and
partly due to the lack of general results for difference methods applied to systems
of conservation laws.

3.1 Conservative Methods

We are interested in numerical methods for the scalar conservation law in one
dimension. (We will study multidimensional problems in Chapter 4.) Thus we con-
sider

ut C f .u/x D 0; ujtD0 D u0: (3.1)

A difference method is created by replacing the derivatives by finite differences,
e.g.,

�u

�t
C �f.u/

�x
D 0: (3.2)

Here �t and �x are small positive numbers. We shall use the notation

unj � u .j�x; n�t/ and un D
	
un�K; : : : ; u

n
j ; : : : ; u

n
K



;
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where unj now is our numerical approximation to the solution u of (3.1) at the point
.j�x; n�t/. Normally, since we are interested in the initial value problem (3.1),
we know the initial approximation

u0j ; �K � j � K;

and we want to use (3.2) to calculate un for n 2 N. We will not say much about
boundary conditions in this book. Often one assumes that the initial data is periodic,
i.e.,

u0�KCj D u0KCj ; for 0 � j � 2K,

which gives un�KCj D unKCj . Another commonly used device is to assume that
@xf .u/ D 0 at the boundary of the computational domain. For a numerical scheme
this means that

f
	
un�K�j



D f

�
un�K

�
and f

	
unKCj



D f

�
unK
�

for j > 0.

For nonlinear equations, explicit methods are most common. These can be written

unC1 D G
�
un; : : : ; un�l� (3.3)

for some function G. We see that unC1 can depend on the previous l C 1 ap-
proximations un; : : : ; un�l . The simplest methods are those with l D 0, where
unC1 D G.un/, and we shall restrict ourselves to such methods in this presenta-
tion.

} Example 3.1 (A nonconservative method)
Consider Burgers’s equation written in nonconservative form (writing uux instead
of 1

2
.u2/x)

ut C uux D 0:

Based on the linear transport equation, if unj > 0, a natural discretization of this
would be

unC1
j D unj � 
unj

	
unj � unj�1



; (3.4)

with 
 D �t=�x. Since it is based on the nonconservative formulation, we do not
automatically have conservation of u. Indeed,

�x
X
j

unC1
j D �x

X
j

unj � 
�x
X
j

unj

	
unj � unj�1



;

D �x
X
j

unj � 1

2

�x

X
j

� 	
unj


2 �
	
unj�1


2 C
	
unj � unj�1


2 �

D �x
X
j

unj � 1

2

�x

X
j

	
unj � unj�1


2
:
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Fig. 3.1 a The entropy solution; b the scheme (3.4); c the scheme (3.5)

This in itself might not seem so bad, since it may happen that �x
P
j .u

n
j � unj�1/

2

vanishes as �x ! 0. However, let us examine what happens in a specific case. Let
the initial data be given by

u0.x/ D
(
1 0 � x � 1;

0 otherwise.

The entropy solution to Burgers’s equation consists of a rarefaction wave, centered
at x D 0, and a shock with left value u D 1 and right value u D 0, starting from
x D 1 and moving to the right with speed 1=2. At t D 2 the rarefaction wave will
catch up with the shock. Thus at t D 2 the entropy solution reads

u.x; 2/ D
(
x
2

0 � x � 2;

0 otherwise.

We use u0j D u0.j�x/ as initial data for the scheme. Then we have that for every
j such that j�x > 1, unj D 0 for all n � 0. So if N�t D 2, then uNj D 0, and
clearly uNj ¨ u.j�x; 2/ for 1 � j�x � 2. This method simply fails to “detect”
the moving shock.

We might think that the situation would be better if we used a (second-order)
approximation to ux instead, resulting in the scheme

unC1
j D 1

2

	
unjC1 C unj�1



� 


2
unj

	
unjC1 � unj�1



: (3.5)

In practice, this scheme computes something that moves to the right, but the rar-
efaction part of the solution is not well approximated. In Fig. 3.1 we show how
these two nonconservative schemes work on this example. Henceforth, we will not
discuss nonconservative schemes. }

We call a difference method conservative if it can be written in the form

unC1
j D unj � 


	
F
	
unj�p; : : : ; u

n
jCq



� F

	
unj�1�p; : : : ; u

n
j�1Cq




; (3.6)

where


 D �t

�x
:
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The function F is referred to as the numerical flux. For brevity, we shall often use
the notation

Gj .u/ D G
�
uj�1�p; : : : ; ujCq

�
;

FjC1=2.u/ D F
�
uj�p; : : : ; ujCq

�
;

so that (3.6) reads

unC1
j D Gj .u

n/ D unj � 
 �FjC1=2.un/ � Fj�1=2.un/
�
: (3.7)

The above equation has a nice formal explanation. Set xj D j�x and xjC1=2 D
xj C�x=2 for j 2 Z. Likewise, set tn D n�t for n 2 N0 D f0g [ N. Define the
interval Ij D Œxj�1=2; xjC1=2/ and the cell I nj D Ij � Œtn; tnC1/. If we integrate the
conservation law

ut C f .u/x D 0

over the cell I nj , we obtainZ
Ij

u.x; tnC1/ dx D
Z
Ij

u.x; tn/ dx

C
	 tnC1Z
tn

f .u.xjC1=2; t// dt �
tnC1Z
tn

f .u.xj�1=2; t// dt


:

Now defining unj as the average of u.x; tn/ in Ij , i.e.,

unj D 1

�x

Z
Ij

u.x; tn/ dx;

we obtain the exact expression

unC1
j D unj � 


	 1
�t

tnC1Z
tn

f .u.xjC1=2; t// dt � 1

�t

tnC1Z
tn

f .u.xj�1=2; t// dt


:

Comparing this with (3.7), we see that it is reasonable that the numerical flux FjC1=2
approximates the average flux through the line segment xjC1=2 � Œtn; tnC1�. Thus

FjC1=2.un/ � 1

�t

tnC1Z
tn

f .u.xjC1=2; t// dt:

With this interpretation of F n
jC1=2 D FjC1=2.un/, equation (3.7) states that the

change in the amount of u inside the “volume” Ij equals (approximately) the influx
minus the outflux. Methods that can be written on the form (3.7) are often called
finite volume methods.

If u.x; tn/ is the piecewise constant function

u.x; tn/ D unj for x 2 Ij ;
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we can solve the conservation law exactly for 0 � t � tn � �x=.2maxu jf 0.u/j/.
This is true because the initial data is a series of Riemann problems, whose solu-
tions will not interact in this short time interval. We also see that f .u.xjC1=2; t// is
independent of t , and depends only on unj and unjC1. So if we set v D w.x=t/ to be
the entropy solution to

vt C f .v/x D 0; v.x; 0/ D
(
unj x < 0;

unjC1 x > 0;

then

F n
jC1=2 D f .w.0//: (3.8)

This method is called the Godunov method. In general, it is well defined (see Exer-
cise 3.5) for

�t max jf 0.u/j � �x: (3.9)

This last condition is called the Courant–Friedrichs–Lewy (CFL) condition.
If f 0.u/ � 0 for all u, then v.0/ D unj , and the Godunov method simplifies to

unC1
j D unj � 


	
f .unj / � f .unj�1/



: (3.10)

This is called the upwind method.
Conservative methods have the property that

R
u dx is conserved, since

KX
jD�K

unC1
j �x D

KX
jD�K

unj�x ��t
	
F n
KC1=2 � F n

�K�1=2


:

If we set u0j equal to the average of u0 over the j th grid cell, i.e.,

u0j D 1

�x

Z
Ij

u0.x/ dx;

and for the moment assume that F n
�K�1=2 D F n

KC1=2, thenZ
un.x/ dx D

Z
u0.x/ dx: (3.11)

A conservative method is said to be consistent if

F.c; : : : ; c/ D f .c/; (3.12)

and in addition, we demand that F be Lipschitz continuous in all its variables, that
is,

ˇ̌
F.aj�p; : : : ; ajCq/ � F.bj�p; : : : ; bjCq/

ˇ̌ � L

qX
iD�p

ˇ̌
ajCi � bjCi

ˇ̌
; (3.13)

for some constant L.
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} Example 3.2 (Some conservative methods)
We have already seen that the Godunov method (and in particular the upwind
method) is an example of a conservative finite volume method.

Another prominent examples is the Lax–Friedrichs scheme, usually written

unC1
j D 1

2

	
unjC1 C unj�1



� 1

2


	
f
	
unjC1



� f

	
unj�1




: (3.14)

This can be written in conservative form by defining

F n
jC1=2 D 1

2


	
unj � unjC1



C 1

2

	
f
	
unj



C f

	
unjC1




:

Some methods, so-called two-step methods, use iterates of the flux function. One
such method is the Richtmyer two-step Lax–Wendroff scheme:

F n
jC1=2 D f

�
1

2

	
unjC1 C unj



� 


2

	
f
	
unjC1



� f

	
unj



�
: (3.15)

Another two-step method is the MacCormack scheme:

F n
jC1=2 D 1

2

 
f
	
unj � 
.f

	
unjC1



� f

	
unj



/



C f
	
unj


!
: (3.16)

The Lax–Friedrichs and Godunov schemes are both of first order in the sense that
the local truncation error is of order one. (We shall return to this concept below.)
On the other hand, both the Lax–Wendroff and MacCormack methods are of sec-
ond order. In general, higher-order methods are good for smooth solutions, but they
also produce solutions that oscillate in the vicinity of discontinuities. See Sect. 3.2.
Lower-order methods have “enough diffusion” to prevent oscillations. Therefore,
one often uses hybrid methods. These methods usually consist of a linear combina-
tion of a lower- and a higher-order method. The numerical flux is then given by

F n
jC1=2 D �jC1=2.un/F n

L;jC1=2 C �
1 � �jC1=2.un/

�
F n
H;jC1=2; (3.17)

where FL denotes a lower-order numerical flux, and FH a higher-order numerical
flux. The function �jC1=2 is close to zero where un is smooth, and close to one
near discontinuities. Needless to say, choosing appropriate �’s is a discipline in
its own right. We have implemented a method (called fluxlim in Fig. 3.2) that is
a combination of the (second-order)MacCormackmethod and the (first-order) Lax–
Friedrichs scheme, and this scheme is compared with the “pure” methods in this
figure. We somewhat arbitrarily used

�jC1=2 D 1 � 1

1C
ˇ̌̌
DCD�unj

ˇ̌̌ ;
whereD˙ are the forward and backward divided differences,

D˙uj D ˙uj˙1 � uj
�x

;
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so that DCD� is an approximation to the second derivative of u with respect to x,
namely

DCD�uj D ujC1 � 2uj C uj�1
�x2

:

Another approach is to try to generalize Godunov’s method by replacing the piece-
wise constant data un by a smoother function. The simplest such replacement is
by a piecewise linear function. To obtain a proper generalization, one should then
solve a generalized “Riemann problem” with linear initial data to the left and right.
While this is difficult to do exactly, one can use approximations instead. One such
approximation leads to the following method:

FjC1=2 D 1

2

�
gj C gjC1

� � 1

2

�Cunj :

Here �˙unj D ˙.unj˙1 � unj / D �xD˙unj , and

gj D f .u
nC1=2
j /C 1

2

Quj ;

where
Quj D minmod

	
��unj ;�Cunj



;

u
nC1=2
j D unj � 


2
f 0
	
unj



Quj ;

and

minmod.a; b/ WD 1

2
.sign .a/C sign .b//minfjaj ; jbjg:

This method is labeled slopelim in the figures. Now we show how these methods
perform on two test examples. In both examples the flux function is given by (see
Exercise 2.1)

f .u/ D u2

u2 C .1 � u/2 : (3.18)

The example is motivated by applications in oil recovery, where one often encoun-
ters flux functions that have a shape similar to that of f , that is, f 0 � 0 and
f 00.u/ D 0 at a single point u. The model is called the Buckley–Leverett equation.
The first example uses initial data

u0.x/ D
(
1 for x � 0,

0 for x > 0.
(3.19)

In Fig. 3.2 we show the computed solution at time t D 1 for all methods, using 30
grid points in the interval Œ�0:1; 1:6�, and�x D 1:7=29,�t D 0:5�x. The second
example uses initial data

u0.x/ D
(
1 for x 2 Œ0; 1�,
0 otherwise,

(3.20)
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Fig. 3.2 Computed solutions at time t D 1 for flux function (3.18) and initial data (3.19)

and 30 grid points in the interval Œ�0:1; 2:6�, �x D 2:7=29, �t D 0:5�x. In
Fig. 3.3 we also show a reference solution computed by the upwind method using
500 grid points. The most notable feature of the plots in Fig. 3.3 is the solutions
computed by the second-order methods. We shall show that if a sequence of so-
lutions produced by a consistent conservative method converges, then the limit is
a weak solution. The exact solution to both these problems can be calculated by the
method of characteristics. }
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Fig. 3.3 Computed solutions at time t D 1 for flux function (3.18) and initial data (3.20)

The local truncation error of a numerical method L�t is defined as

L�t .x/ D 1

�t
.S.�t/u � SN .�t/u/ .x/; (3.21)

where S.t/ is the solution operator associated with (3.1), that is, u D S.t/u0 de-
notes the solution at time t , and SN .t/ is the solution operator associated with the
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numerical method, i.e.,

SN .�t/u.x/ D u.x/� 
 �FjC1=2.u/� Fj�1=2.u/
�
:

Assuming that we have a smooth solution of the conservation law, allowing us to
expand all relevant quantities in Taylor series, we say that the method is of kth order
if

jL�t.x/j D O
�
�tk

�
as �t ! 0. To compute L�t .x/ one uses a Taylor expansion of the exact solution
u.x; t/ near x. We know that u may have discontinuities, so it does not necessar-
ily have a Taylor expansion. Therefore, the concept of truncation error is formal.
However, if u.x; t/ is smooth near .x; t/, then one would expect that a higher-order
method would approximate u better than a lower-order method near .x; t/.

} Example 3.3 (Local truncation error)
Consider the upwind method. Then

SN .�t/u.x/ D u.x/� �t

�x
.f .u.x// � f .u.x ��x/// :

We verify that the upwind method is of first order:

L�t .x/ D 1

�t

	
u.x; t C�t/ � u.x; t/C �t

�x
.f .u.x; t// � f .u.x ��x; t///



D 1

�t

	
uC�t ut C .�t/2

2
ut t C � � � � u

C �t

�x

�
f .u/ � f .u/ � .��x/f .u/x � 1

2
.��x/2f .u/xx C � � � �


D ut C f .u/x C 1

�t

	 .�t/2
2

ut t � �t�x

2
f .u/xx C � � �



D �x

2
.
utt � f .u/xx/C O

�
.�t/2

�
:

Since u is a smooth solution of (3.1), we find that

utt D �
.f 0.u//2ux

�
x
;

and inserting this into the previous equation, we obtain

L�t D �t

2


@

@x

�
f 0.u/

�

f 0.u/ � 1�ux�C O

�
.�t/2

�
: (3.22)

Hence, the upwind method is of first order. This means that Godunov’s scheme
is also of first order. Similarly, computations based on the Lax–Friedrichs scheme
yield

L�t D �t

2
2
@

@x

��
.
f 0.u//2 � 1�ux�C O

�
�t2

�
: (3.23)
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Consequently, the Lax–Friedrichs scheme is indeed of first order. From the above
computations it also emerges that the Lax–Friedrichs scheme is second-order accu-
rate when applied to the equation (see Exercise 3.6)

ut C f .u/x D �t

2
2

��
1 � .
f 0.u//2

�
ux
�
x
: (3.24)

This is called the model equation for the Lax–Friedrichs scheme. In order for this
to be well posed, the coefficient of uxx on the right-hand side must be nonnegative,
that is,

j
f 0.u/j � 1: (3.25)

This is a stability restriction on 
, and it is the Courant–Friedrichs–Lewy (CFL)
condition that we encountered in (3.9); see also (1.50).

The model equation for the upwind method is

ut C f .u/x D �t

2


�
f 0.u/

�
1 � 
f 0.u/

�
ux
�
x
: (3.26)

In order for this equation to be well posed, we must have f 0.u/ � 0 and

f 0.u/ � 1. }

From the above examples, we see that first-order methods have model equations
with a diffusive term. Similarly, one finds that second-order methods have model
equations with a dispersive right-hand side. Therefore, the oscillations observed in
the computations were to be expected.

From now on we let the function u�t be defined by

u�t.x; t/ D unj ; for .x; t/ 2 I nj . (3.27)

Observe that Z
R

u�t.x; t/ dx D �x
X
j

unj ; for tn � t < tnC1.

We briefly mentioned in Example 3.2 the fact that if u�t converges, then the limit
is a weak solution. Precisely, we have the well-known Lax–Wendroff theorem.

Theorem 3.4 (Lax–Wendroff theorem) Let u�t be computed from a conserva-
tive and consistent method. Assume that T:V:x .u�t / is uniformly bounded in �t .
Consider a subsequence u�tk such that �tk ! 0, and assume that u�tk converges
in L1loc as�tk ! 0. Then the limit is a weak solution to (3.1).

Proof The proof uses summation by parts. Let '.x; t/ be a test function. For sim-
plicity we write 'nj D '.xj ; tn/. By the definition of u

nC1
j ,

NX
nD0

1X
jD�1

'nj

	
unC1
j � unj



D ��t

�x

NX
nD0

1X
jD�1

'nj

	
F n
jC1=2 � F n

j�1=2


;
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where we choose T D N�t such that ' D 0 for t � T . After a summation by
parts we get

�
1X

jD�1
'0j u

0
j �

1X
jD�1

NX
nD1

	
'nj � 'n�1

j



unj

� �t

�x

NX
nD0

1X
jD�1

	
'nj�1 � 'nj



F n
jC1=2 D 0:

Rearranging, we find that

�t�x

NX
nD1

1X
jD�1

 
'nj � 'n�1

j

�t

!
unj C�t�x

NX
nD0

1X
jD�1

�
'nj�1 � 'nj
�x

�
F n
jC1=2

D ��x
1X

jD�1
'
�
xj ; 0

�
u0j : (3.28)

This almost looks like a Riemann sum for the weak formulation of (3.1). Thus

�x

1X
jD�1

'
�
xj ; 0

�
u0j !

1Z
0

'.x; 0/u0.x/ dx

as �x ! 0, and

�t�x

NX
nD1

1X
jD�1

 
'nj � 'n�1

j

�t

!
unj !

TZ
0

1Z
�1

't .x; t/u.x; t/ dx dt

as �x;�t ! 0.
Since

�t�x

NX
nD0

1X
jD�1

�
'nj�1 � 'nj
�x

�
f .unj / !

TZ
0

1Z
�1

'x.x; t/f .u.x; t// dx dt (3.29)

as �x;�t ! 0, it remains to show that

�t�x

NX
nD0

1X
jD�1

ˇ̌̌
F n
jC1=2 � f .unj /

ˇ̌̌
(3.30)

tends to zero as�t ! 0 in order to conclude that the limit is a weak solution. Using
consistency, (3.12), we find that (3.30) equals

�t�x

NX
nD0

1X
jD�1

ˇ̌̌
F
	
unj�p; : : : ; u

n
jCq



� F

	
unj ; : : : ; u

n
j


ˇ̌̌
;
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which by the Lipschitz continuity of F is less than

�t�xL

NX
nD0

1X
jD�1

qX
kD�p

ˇ̌̌
unjCk � unj

ˇ̌̌

� 1

2
.q.q C 1/C p.p C 1//�t�xL

NX
nD0

1X
jD�1

ˇ̌̌
unjC1 � unj

ˇ̌̌

� .q2 C p2/�x LT:V: .u�t / T;

where L is the Lipschitz constant of F . Using the uniform boundedness of the total
variation of u�x , we infer that (3.30) is small for small �x, and the limit is a weak
solution. �

We proved in Theorem 2.15 that the solution of a scalar conservation law in one
dimension possesses several properties. The corresponding properties for conserva-
tive and consistent numerical schemes read as follows:

Definition 3.5 Let u�t be computed from a conservative and consistent method.

(i) A method is said to be total variation bounded (TVB), or total variation sta-
ble,1 if the total variation of un is uniformly bounded, independently of �x
and �t .

(ii) Assume that u0 has finite total variation. We say that a numerical method is
total variation diminishing (TVD) if T:V:

�
unC1� � T:V: .un/ for all n 2 N0.

(iii) A method is called monotonicity preserving if the initial data being monotone
implies that un is monotone for all n 2 N.

(iv) Assume that u0 2 L1.R/. Let v�t be another solution with initial data v0 2
L1.R/. A numerical method is called L1-contractive if

ku�t .t/ � v�t .t/kL1 � ku�t.0/ � v�t .0/kL1
for all t � 0. Alternatively, we can of course write this asX

j

ˇ̌̌
unC1
j � vnC1

j

ˇ̌̌
�
X
j

ˇ̌̌
unj � vnj

ˇ̌̌
; n 2 N0:

(v) A method is said to be monotone if for initial data u0 and v0, we have

u0j � v0j ; j 2 Z ) vnj � vnj ; j 2 Z; n 2 N:

The above notions are strongly interrelated, as the next theorem shows.

Theorem 3.6 For conservative and consistent methods the following hold:

(i) Assume initial data to be integrable. In that case, every monotone method is
L1-contractive.

(ii) Every L1-contractive method is TVD.
(iii) Every TVD method is monotonicity preserving.

1 This definition is slightly different from the standard definition of T.V. stable methods.



108 3 A Short Course in Difference Methods

Proof (i) We apply the Crandall–Tartar lemma, Lemma 2.13, with ˝ D R, and
D equal to the set of all functions in L1 that are piecewise constant on the grid Ij ,
j 2 Z, and we define T .u0/ D un. Since the method is conservative (cf. (3.11)),
we have that

X
j

unj D
X
j

u0j ; or
Z
T .u0/ dx D

Z
un dx D

Z
u0 dx:

Lemma 2.13 immediately implies that (for t 2 Œtn; tnC1/)

ku�t .t/ � v�t .t/kL1 D �x
X
j

ˇ̌̌
vnj � vnj

ˇ̌̌
� �x

X
j

ˇ̌̌
u0j � v0j

ˇ̌̌

D ku�t .0/ � v�t .0/kL1 :

(ii) Assume now that the method is L1-contractive, i.e.,

X
j

ˇ̌̌
unC1
j � vnC1

j

ˇ̌̌
�
X
j

ˇ̌̌
unj � vnj

ˇ̌̌
:

Let vn be the numerical solution with initial data

v0j D u0jC1:

Then by the translation invariance induced by (3.6), we have vni D uniC1 for all n.
Furthermore,

T:V:
	
unC1
j



D
X
j

ˇ̌̌
unC1
jC1 � unC1

j

ˇ̌̌
D
X
j

ˇ̌̌
unC1
j � vnC1

j

ˇ̌̌

�
X
j

ˇ̌̌
unj � vnj

ˇ̌̌
D T:V:

	
unj



:

(iii) Consider now a TVD method, and assume that we have monotone initial data.
Since T:V:

�
u0
�
is finite by assumption, the limits

uL D lim
j!�1

u0j and uR D lim
j!1

u0j

exist. Then T:V:
�
u0
� D juR � uLj. If u1 were not monotone, then T:V:

�
u1
�
>

juR � uLj D T:V:
�
u0
�
, which is a contradiction. �

We can summarize the above theorem as follows:

monotone ) L1-contractive ) TVD ) monotonicity preserving:

Monotonicity is relatively easy to check for explicit methods, e.g., by calculating
the partial derivatives @G=@ui in (3.3).
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} Example 3.7 (Lax–Friedrichs scheme)
Recall from Example 3.2 that the Lax–Friedrichs scheme is given by

unC1
j D 1

2

	
unjC1 C unj�1



� 1

2


	
f
	
unjC1



� f

	
unj�1




:

Computing partial derivatives, we obtain, assuming the flux function f to be con-
tinuously differentiable,

@unC1
j

@unk
D

8̂̂<
ˆ̂:
.1 � 
f 0.unk//=2 for k D j C 1,

.1C 
f 0.unk//=2 for k D j � 1,
0 otherwise;

and hence we see that the Lax–Friedrichs scheme is monotone as long as the CFL
condition


 jf 0.u/j � 1

is fulfilled. See also Exercise 3.7. }
Theorem 3.8 Fix T > 0. Assume that f is Lipschitz continuous. Let u0 2 L1.R/
have bounded variation. Assume that u�t is computed with a method that is con-
servative, consistent, total variation bounded, and uniformly bounded, that is,

T:V: .u�t/ � M and ku�tk1 � M;

whereM is independent of �x and �t .
Then fu�t.t/g has a subsequence that converges for all t 2 Œ0; T � to a weak

solution u.t/ in L1loc.R/. Furthermore, the limit is in C
�
Œ0; T �IL1loc.R/

�
.

Proof We intend to apply Theorem A.11. It remains to show that

bZ
a

ju�t .x; t/ � u�t .x; s/j dx � C jt � sj C �.�t/; as �t ! 0; s; t 2 Œ0; T �;

for some nonnegative continuous function � with �.0/ D 0.
The Lipschitz continuity of the flux function implies, for fixed �t ,ˇ̌̌

unC1
j � unj

ˇ̌̌
D 


ˇ̌̌
F n
jC1=2 � F n

j�1=2
ˇ̌̌

D 

ˇ̌̌
F.unj�p; : : : ; u

n
jCq/� F.unj�p�1; : : : ; u

n
jCq�1/

ˇ̌̌
� 
L

	ˇ̌̌
unj�p � unj�p�1

ˇ̌̌
C � � � C

ˇ̌̌
unjCq � unjCq�1

ˇ̌̌

;

from which we conclude that

ku�t . � ; tnC1/ � u�t . � ; tn/kL1 D
X
j

ˇ̌̌
unC1
j � unj

ˇ̌̌
�x

� L.p C q C 1/T:V: .un/�t

� L.p C q C 1/M�t;
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where L is the Lipschitz constant of F . More generally,

ku�t . � ; tm/� u�t . � ; tn/kL1 � L.p C q C 1/M jn �mj�t
D L.p C q C 1/M jtn � tmj :

Now let �1; �2 2 Œ0; T �, and choose Qt1; Qt2 2 fn�t j 0 � n � T=�tg such that

0 � �j � Qtj < �t for j D 1; 2:

By construction u�t .�j / D u�t .Qtj /, and hence

ku�t. � ; �L1/� u�t . � ; �2/kL1
� ��u�t . � ; �1/� u�t . � ; Qt1/

��
L1

C ��u�t . � ; Qt1/ � u�t. � ; Qt2/
��
L1

C ��u�t. � ; Qt2/� u�t . � ; �2/
��
L1

� .p C q C 1/LM
ˇ̌Qt1 � Qt2

ˇ̌
� .p C q C 1/LM j�1 � �2j C O .�t/ :

Observe that this estimate is uniform in �1; �2 2 Œ0; T �. We conclude that

u�t ! u in C.Œ0; T �IL1.Œa; b�//

for a sequence �t ! 0. The Lax–Wendroff theorem then says that this limit is
a weak solution. �

At this point, the reader should review the concept of a Kružkov entropy condi-
tion; see Sect. 2.1. A function u is a Kružkov entropy solution of

ut C f .u/x D 0

if it satisfies


.u/t C q.u/x � 0 (3.31)

in the sense of distributions, where


.u/ D ju � kj ; q.u/ D sign .u � k/ .f .u/ � f .k//;

for all k 2 R.
The analogue of the Kružkov entropy pair for difference schemes reads as fol-

lows. We still employ 
.u/ D ju � kj. Write

a _ b D maxfa; bg and a ^ b D minfa; bg;

and observe the trivial identity

ja � bj D a _ b � a ^ b:
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Then we define the numerical entropy fluxQ by

QjC1=2.u/ D FjC1=2.u _ k/ � FjC1=2.u ^ k/; (3.32)

or more explicitly,

Q
�
uj�p; : : : ; ujCq

� D F
�
uj�p _ k; : : : ; ujCq _ k� � F �uj�p ^ k; : : : ; ujCq ^ k�:

Note thatQ is consistent with the Kružkov entropy flux, i.e.,

Q .c; : : : ; c/ D sign .c � k/ .f .c/ � f .k//:

Returning to monotone difference schemes, we have the following result.

Theorem 3.9 Fix T > 0. Assume that f is Lipschitz continuous. Let u0 2 L1.R/
have bounded variation. Assume that u�t is computed with a method that is con-
servative, consistent, and monotone.

For every sequence �tk ! 0, the family
˚
u�tk .t/

�
converges in L1loc.R/ to

the Kružkov entropy solution u.t/ for all t 2 Œ0; T �. Furthermore, the limit is in
C
�
Œ0; T �IL1loc.R/

�
.

Proof Consider a sequence �tk ! 0. Theorem 3.8 allows us to conclude that
u�tk has a subsequence that converges in C.Œ0; T �IL1.Œa; b�// to a weak solution.
It remains to show that the limit satisfies a discrete Kružkov form. First we find,
using (3.7) and (3.32), that

G.un _ k/ �G.un ^ k/ D jun � kj � 
�Qn
jC1=2 �Qn

j�1=2
�
:

Using that unC1
j D Gj .u

n/, cf. (3.3), and the consistency of the scheme, see (3.12),
which implies k D G.k; : : : ; k/ D G.k/, we conclude from the monotonicity of
the scheme that

Gj .u
n _ k/ � Gj .u

n/ _G.k/ D Gj .u
n/ _ k;

�Gj .un ^ k/ � � �Gj .un/ ^G.k/� D � �Gj .un/ ^ k� :
Therefore, ˇ̌̌

unC1
j � k

ˇ̌̌
�
ˇ̌̌
unj � k

ˇ̌̌
C 


�
Qn
jC1=2 �Qn

j�1=2
� � 0: (3.33)

Applying the technique used in proving the Lax–Wendroff theorem to (3.33) shows
that the limit u satisfies“ � ju � kj 't C sign .u � k/ �f .u/ � f .k/�'x� dx dt

C
Z
R

ju0 � kj '.x; 0/ dx �
Z
R

.ju � kj '/jtDT dx � 0;

for every nonnegative test function ' 2 C1
0 .R � Œ0; T �/ and for every k 2 R.
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Suppose there is another subsequence for which u�t does not converge to the
entropy solution. Then by the above argument, this subsequence has another sub-
sequence for which the limit is the unique entropy solution. The uniqueness of the
limit gives a contradiction, and we conclude that for all sequences �tk ! 0, the
sequence fu�tk .t/g converges to the unique entropy solution u.t/. �

Note that the above theorem offers a constructive proof of the existence of weak
entropy solutions to scalar conservation laws. The fact that monotone schemes con-
verge to the entropy solution provides an alternative to the front-tracking method
discussed in Chapt. 2.

Now we shall examine the local truncation error of a general conservative, con-
sistent, and monotone method. Since this can be written

unC1
j D Gj .u

n/ D G
	
unj�p�1; : : : ; u

n
jCq



D unj � 


	
F
	
unj�p; : : : ; u

n
jCq



� F

	
unj�p�1; : : : ; u

n
jCq�1




;

we write

G D G.˛0; : : : ; p̨CqC1/ and F D F.˛1; : : : ; p̨CqC1/:

We assume that F , and hence G, is three times continuously differentiable with
respect to all arguments, and write the derivatives with respect to the i th argument
as

@iG.˛0; : : : ; p̨CqC1/ and @iF.˛1; : : : ; p̨CqC1/:

We set @iF D 0 if i D 0. Throughout this calculation, we assume that the j th slot
of G contains unj , so that G.˛0; : : : ; p̨CqC1/ D uj � 
.� � � /. By consistency we
have that

G.u; : : : ; u/ D u and F.u; : : : ; u/ D f .u/:

Using this, we find that

pCqC1X
iD1

@iF.u; : : : ; u/ D f 0.u/; (3.34)

@iG D ıi;j � 
 .@i�1F � @iF / ; (3.35)

and

@2i;kG D �
 �@2i�1;k�1F � @2i;kF
�
: (3.36)

Therefore,

pCqC1X
iD0

@iG.u; : : : ; u/ D
pCqC1X
iD0

ıi;j D 1: (3.37)
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Furthermore,

pCqC1X
iD0

.i � j /@iG.u; : : : ; u/ D
pCqC1X
iD0

�
.i � j /ıi;j

� 
.i � j / .@i�1F.u; : : : ; u/ � @iF.u; : : : ; u//
�

D �

pCqC1X
iD0

..i C 1/� i//@iF.u; : : : ; u/

D �
f 0.u/: (3.38)

We also find that

pCqC1X
i;kD0

.i � k/2@2i;kG.u; : : : ; u/

D �

pCqC1X
i;kD0

.i � k/2 �@2i�1;k�1F.u; : : : ; u/ � @2i;kF.u; : : : ; u/
�

D �

pCqC1X
i;kD0

�
..i C 1/� .k C 1//2 � .i � k/2� @2i;kF.u; : : : ; u/

D 0: (3.39)

Having established this, we now let u D u.x; t/ be a smooth solution of the con-
servation law (3.1). We are interested in applying G to u.x; t/, i.e., in calculating

G.u.x � .p C 1/�x; t/ : : : ; u.x; t/; : : : ; u.x C q�x; t//:

Set ui D u.x C .i � .p C 1//�x; t/ for i D 0; : : : ; p C q C 1. Then we find that

G.u0; : : : ; upCqC1/

D G.uj ; : : : ; uj /C
pCqC1X
iD0

@iG.uj ; : : : ; uj /
�
ui � uj

�

C 1

2

pCqC1X
i;kD0

@2i;kG.uj ; : : : ; uj /
�
ui � uj

� �
uk � uj

�C O
�
�x3

�

D u.x; t/C ux.x; t/�x

pCqC1X
iD0

.i � j /@iG.uj ; : : : ; uj /

C 1

2
uxx.x; t/�x

2

pCqC1X
iD0

.i � j /2@iG.uj ; : : : ; uj /

C 1

2
u2x.x; t/�x

2

pCqC1X
i;kD0

.i � j /.k � j /@2i;kG.uj ; : : : ; uj /C O
�
�x3

�
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D u.x; t/C ux.x; t/�x

pCqC1X
iD0

.i � j /@iG.uj ; : : : ; uj /

C 1

2
�x2

pCqC1X
iD0

.i � j /2 �@iG.uj ; : : : ; uj /ux.x; t/�x
� 1

2
�x2u2x.x; t/

pCqC1X
i;k

�
.i � j /2 � .i � j /.k � j /� @2i;kG.uj ; : : : ; uj /

C O
�
�x3

�
:

Next we observe, since @2i;kG D @2k;iG and using (3.39), that

0 D
X
i;k

.i � k/2@2i;kG D
X
i;k

..i � j /� .k � j //2@2i;kG

D
X
i;k

..i � j /2 � 2.i � j /.k � j //@2i;kG C
X
i;k

.k � j /2@2k;iG

D 2
X
i;k

..i � j /2 � .i � j /.k � j //@2i;kG:

Consequently, the penultimate term in the Taylor expansion ofG above is zero, and
we have that

G.u.x � .p C 1/�x; t/; : : : ; u.x C q�x; t// D u.x; t/��tf .u.x; t//x
C �x2

2

X
i

.i � j /2 Œ@iG.u.x; t/; : : : ; u.x; t//ux�x C O
�
�x3

�
: (3.40)

Since u is a smooth solution of (3.1), we have already established that

u.x; t C�t/ D u.x; t/ ��tf .u/x C �t2

2

h�
f 0.u/

�2
ux

i
x

C O
�
�t3

�
:

Hence, we compute the local truncation error as

L�t D � �t

2
2

" 
pCqC1X
iD1

.i � j /2@iG.u; : : : ; u/� 
2.f 0.u//2
!
ux

#
x

DW � �t

2
2
Œˇ.u/ux�x C O

�
�t2

�
: (3.41)

Thus if ˇ > 0, then the method is of first order. What we have done so far is valid
for every conservative and consistent method where the numerical flux function is
three times continuously differentiable. Next, we use that @iG � 0, so that

p
@iG
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is well defined. This means that

j�
f 0.u/j D
ˇ̌̌
ˇ̌pCqC1X
iD0

.i � j /@iG.u; : : : ; u/
ˇ̌̌
ˇ̌

D
pCqC1X
iD0

ji � j j
p
@iG.u; : : : ; u/

p
@iG.u; : : : ; u/:

Using the Cauchy–Schwarz inequality and (3.37), we find that


2
�
f 0.u/

�2 �
pCqC1X
iD0

.i � j /2@iG.u; : : : ; u/
pCqC1X
iD0

@iG.u; : : : ; u/

D
pCqC1X
iD0

.i � j /2@iG.u; : : : ; u/:

Thus, ˇ.u/ � 0. Furthermore, the inequality is strict if more than one term in the
sum on the right-hand side is different from zero. If @iG.u; : : : ; u/ D 0 except for
i D k for some k, then G.u0; : : : ; upCqC1/ D uk by (3.37). Hence the scheme is
a linear translation, and by consistency, f .u/ D cu, where c D .j�k/
. Therefore,
monotone methods for nonlinear conservation laws are at most first-order accurate.
This is indeed their main drawback. To recapitulate, we have proved the following
theorem:

Theorem 3.10 Assume that the numerical flux F is three times continuously dif-
ferentiable, and that the corresponding scheme is monotone. Then the method is at
most first-order accurate.

3.2 Higher-Order Schemes

We want to derive a second-order difference approximation to the solution of a con-
servation law

ut C f .u/x D 0:

In order to derive scheme that is second-order accurate, the local truncation error
must be third-order accurate. For a smooth solution we have

u.x; t C�t/ D u.x; t/C�tut .x; t/C �t2

2
utt .x; t/C O

�
�t3

�
D u.x; t/ ��tf .u.x; t//x � �t2

2
f .u.x; t//xt C O

�
�t3

�
D u ��tf .u/x C �t2

2

�
f 0.u/f .u/x

�
x

C O
�
�t3

�
:
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For a difference scheme we have �x D O .�t/, so if the resulting scheme is of
second order, the difference approximation to f .u/x must be second-order accu-
rate, and the approximation to .f 0fx/x can be first-order accurate. We can use the
following (where we write D0.g.x// D .g.x C�x/ � g.x ��x//=.2�x/) rela-
tions:

f .u.x; t//x DD0f .u.x; t//C O
�
�x2

�
D f .u.x C�x; t// � f .u.x ��x; t//

2�x
C O

�
�x2

�
;

.f 0.u.x; t//f .u.x; t//x/x D 1

�x

�
f 0
	
u
	
xC �x

2
; t


f .u.xC�x; t//�f .u.x; t//

�x

�f 0
	
u
	
x��x

2
; t


f .u.x; t//�f .u.x��x; t//

�x

�
C O

�
�x2

�
;

f 0
	
u
	
x ˙ �x

2
; t




D f .u.x ˙�x; t// � f .u.x; t//
u.x ˙�x; t/ � u.x; t/ C O

�
�u2

�
:

This leads to the scheme

unC1
j D unj � 


2

	
f n
jC1 � f nj�1



C 
2

2

	
�2jC1=2�Cunj � �2j�1=2��unj



; (3.42)

where


 D �t

�x
; f nj D f .unj /; �˙vj D ˙.vj˙1 � vj /; �jC1=2 D �Cf n

j

�Cunj
:

The scheme (3.42) is called the Lax–Wendroff scheme, and by construction it is
of second order. We can see that it is conservative with a two-point numerical flux
function given by FjC1=2 D F.uj ; ujC1/, where

F.u; v/ D 1

2

�
f .v/C f .u/ � 
�2.u; v/.v � u/� ; �.u; v/ D f .v/ � f .u/

v � u :

} Example 3.11
We test this second-order scheme on the equation

ut C ux D 0

with two sets of periodic initial data

u1.x; 0/ D sin2.�x/; u2.x; 0/ D
(
1 x 2 Œ0:3; 0:7�;
0 x 2 Œ0; 1� n Œ0:3; 0:7�;

and u2 extended periodically. By periodicity, we know that ui .x; k/ D ui .x; 0/ for
k 2 N. In Fig. 3.4 we have plotted the numerical solution at t D 3 with initial data
u1 and u2 and�x D 1=30. Note that for the smooth solution the method gives very
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a b

Fig. 3.4 a The numerical solution with initial values u1. b The numerical solution with initial
value u2. We use �x D 1=30

accurate results, and the errors are indeed of second order. For the discontinuous
solution, the errors seem large, and we also see the prominent oscillations trailing
the discontinuity. }

For simplicity we will for the moment assume that f 0 � 0, so that the upwind
method is monotone (and hence TVD). If f is not monotone, then the upwind flux
below should be replaced by a numerical flux giving a monotone method.

The Lax–Wendroff numerical flux function can be rearranged to read

F n
jC1=2 D f .unj /� 1

2
�jC1=2

�

�jC1=2 � 1��Cunj

D upwind C second-order correction.

We would like to modify the Lax–Wendroff method so that it is locally of second or-
der where the solution is smooth, and first order and monotone near discontinuities.
Hence, we would like to turn off the second-order correction near discontinuities.
One way of doing this is to observe that the oscillations occur near discontinuities
(this is the Gibbs phenomenon), and use oscillations as an indicator of when the
second-order term should be turned off. As an important side effect, this is likely to
make the resulting method TVD.

To this end let rj (whose exact form will be specified later) be some “indicator
of oscillations” near xj . We assume that if there are oscillations, then rj < 0. Let
'.r/ be a continuous function that is zero if r < 0.

Now we modify the numerical flux for the Lax–Wendroff method to read

F n
jC1=2 D f n

j � 1

2
'.rj /�jC1=2

�

�jC1=2 � 1��Cunj : (3.43)

If we set

j̨C1=2 D 1

2
�jC1=2.1 � 
vjC1=2/; (3.44)
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the modified scheme reads

unC1
j D unj � 
��f nj � 
��

	
'.rj / j̨C1=2�Cunj



D unj � 
�j�1=2��unj � 
��

	
'.rj / j̨C1=2�Cunj




D unj � 

	
�j�1=2 C 


��
	
'.rj / j̨C1=2�Cunj



��unj



��unj

D unj � Aj�1=2��unj ;

where we have defined

Aj�1=2 D �j�1=2 C 

��

	
'.rj / j̨C1=2�Cunj



��unj

:

At this point the following lemma is convenient.

Lemma 3.12 (Harten’s lemma) Let vj be given by

vj D uj �Aj�1=2��uj C BjC1=2�Cuj ;

where �˙uj D ˙.uj˙1 � uj /.
(i) If AjC1=2 and BjC1=2 are nonnegative for all j , and AjC1=2 C BjC1=2 � 1 for

all j , then

T:V: .v/ � T:V: .u/ :

(ii) If AjC1=2 and BjC1=2 are nonnegative for all j , and Aj�1=2 C BjC1=2 � 1 for
all j , then

min
k
uk � vj � max

k
uk; j 2 Z:

Proof (i) We have

�Cvj D ujC1 � uj � AjC1=2�Cuj C BjC3=2�CujC1
C Aj�1=2��uj � BjC1=2�Cuj

D �
1 � AjC1=2 � BjC1=2

�
�Cuj C Aj�1=2��uj C BjC3=2�CujC3=2:

Hence X
j

ˇ̌
�Cvj

ˇ̌ �
X
j

�
1 � AjC1=2 � BjC1=2

� ˇ̌
�Cuj

ˇ̌

C
X
j

Aj�1=2
ˇ̌
��uj

ˇ̌C
X
j

BjC3=2
ˇ̌
�CujC3=2

ˇ̌

D
X
j

ˇ̌
�Cuj

ˇ̌
:
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(ii) We may write

vj D Aj�1=2uj�1=2 C .1 � Aj�1=2 � BjC1=2/uj C BjC1=2ujC1;

from which the statement follows. �

Returning to the scheme (3.43), we introduce

j̨C1=2 D 1

2
�jC1=2

�
1 � 
�jC1=2

�
:

Hence, we get the scheme

unC1
j D unj � 


	
f nj � f n

j�1



� 

	
'.rj / j̨C1=2�Cunj � '.rj�1/ j̨�1=2��unj



D unj � 
�j�1=2��unj � 
��

	
'.rj / j̨C1=2�Cunj




D unj � 

2
4�j�1=2 C

��
	
'.rj / j̨C1=2�Cunj



��unj

3
5��unj

D unj �Aj�1=2��unj :

Wewant to choose ' and r such that we can use the above lemma, withBjC1=2 D 0,
to conclude that the scheme is TVD. Note that 
maxu f 0.u/ � 1 by the CFL
condition and thus j̨C1=2 � 0 and 
 j̨C1=2 � 1.

We define

rj D j̨�1=2��uj
j̨C1=2�Cuj

: (3.45)

To see that this can be used as an “indicator of oscillations,” note that since we have
assumed that f 0 � 0, we have vjC1=2 � 0 for all j , and by the CFL condition,

vjC1=2 � 1 for all j . Hence j̨C1=2 D 1

2
�jC1=2.1 � 
vjC1=2/ � 0 for all j . We

say that “oscillations” are present at xj if uj is a local maximum or minimum. If so,
then sign

�
��uj

� ¤ sign
�
�Cuj

�
, and consequently, rj � 0. We also calculate

��
	
'.rj / j̨C1=2�Cunj



��unj

D 1

��unj

	
'.rj / j̨C1=2�Cunj � '.rj�1/ j̨�1=2��unj




D j̨�1=2
�
'.rj /

rj
� '.rj�1/

�
:

Hence

AjC1=2 D 

	
�jC1=2 C j̨C1=2

	'.rjC1/
rjC1

� '.rj /



:
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Let us assume that

max
�
'.r/

r
; '.r/



� 2; or 0 � '.r/ � maxf0;minf2r; 2gg: (3.46)

If this assumption holds, then

ˇ̌̌
ˇ'.r/r � '.s/

ˇ̌̌
ˇ � 2 for all r and s.

This means that

AjC1=2 � 

�
�jC1=2 C 2 j̨C1=2

�
D 


�
�jC1=2 C �jC1=2

�
1 � 
�jC1=2

��
D 


	
2�jC1=2 � 
�2jC1=2



D 1 � .1 � 
�jC1=2/2

� 1:

For the other bound,

AjC1=2 � 

�
�jC1=2 � 2 j̨C1=2

�
D 


�
�jC1=2 � �jC1=2.1 � 
�jC1=2/

�
D �


�jC1=2
�2 � 0:

Summing up, we have proved the following result.

Lemma 3.13 Assume f 0 � 0. Let rj be defined by (3.45), and assume 
 > 0

is such that the CFL condition 
maxu f 0.u/ � 1 holds. Assume further that the
function ' is such that '.r/ vanishes for r � 0 and satisfies (3.46). Then the finite
volume scheme with numerical flux function (3.43) is TVD.

If we choose '.r/ D r , we get another scheme, called the Beam–Warming (BW)
scheme. The Beam–Warming scheme is also of second order, but not TVD. The
Lax–Wendroff (LW) scheme is obtained by choosing '.r/ D 1.

If (for the moment) we do not care about TVD, we can define a family of second-
order schemes by linear interpolation between the Beam–Warming and the Lax–
Wendroff schemes. This interpolation can be done locally, meaning that we choose
' as

'.r/ D .1 � �.r//'LW.r/C �.r/'BW.r/:

The scheme reads

unC1
j D unj � 
��f n

j C 
��'.rj / j̨C1=2�Cunj : (3.47)
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If now unj D u.xj ; tn/ is the exact solution, then we can calculate

unC1
j D uj � 
�fj C 
��

��
.1 � �.rj //C �.rj /rj

�
j̨C1=2�Cuj

�
D �

1 � �.rj /
� �
uj � 
��fj C 
��

�
j̨C1=2�Cuj

��
C �.rj /

�
uj � 
��fj C 
��

�
rj j̨C1=2�Cuj

��
C 
 j̨�1=2

�
rj�1 � 1���uj���.rj /:

This means that

u.xj ; t C�t/� unC1
j D .1 � �.rj // .“LW truncation error”/

C �.rj / .“BW truncation error”/

C 
 j̨�1=2
�
rj�1 � 1���uj���.rj /„ ƒ‚ …

I

:

If I D O
�
�t3

�
, then the combination of the LW and the BW schemes is of second

order. By the CFL condition, 0 � 
 j̨�1=2 � 1. Furthermore, since u is an exact
smooth solution, j̨C1=2�Cu � �xf 0.u/.1 � 
f 0.u//ux , or more precisely

j̨C1=2
�Cuj
�x

D f 0.u/.1 � 
f 0.u//ux
ˇ̌
xDxjC1=2

CO
�
�x2

�
:

Recall the definition of rj , equation (3.45), and set h.x/ D f 0.u.x; t//.1 �

f 0.u.x; t///ux.x; t/. With this notation we getˇ̌

j̨�1=2.rj�1 � 1/��uj
ˇ̌ D ˇ̌

��
�
j̨�1=2�Cuj�1

�ˇ̌
D �x

ˇ̌
h.xj�1=2/ � h.xj�3=2/C O

�
�x2

�ˇ̌
� �x2max

.x;t/
jh0.x/j C O

�
�x3

�
:

Therefore, to show that I D O
�
�t3

�
, it suffices to show that ���j D O .�t/.

Since � is a smooth function with values in Œ0; 1�, we getˇ̌
���.rj /

ˇ̌ D ˇ̌
�.rj /� �.rj�1/

ˇ̌
� C

ˇ̌
rj � rj�1

ˇ̌
� C

ˇ̌̌
ˇ j̨�1=2��uj
j̨C1=2�Cuj

� j̨�3=2��uj�1
j̨�1=2��uj

ˇ̌̌
ˇ

D C

ˇ̌̌
ˇ̌hj�1=2 C O

�
�x2

�
hjC1=2 C O

�
�x2

� � hj�3=2 C O
�
�x2

�
hj�1=2 C O

�
�x2

�
ˇ̌̌
ˇ̌

D C

ˇ̌̌
ˇ̌h2j�1=2 � hjC1=2hj�3=2 C O

�
�x2

�
hjC1=2hj�1=2 C O

�
�x2

�
ˇ̌̌
ˇ̌

� C
�xmax.x;t/ jh0.x/j C O

�
�x2

�
hjC1=2hj�3=2 C O

�
�x2

�
D O .�t/ :
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Fig. 3.5 The graph of the
limiter must lie in both the
TVD region and the second-
order region. The graph
shown is a possible limiter

second orderTVD

r

ϕ(r)

1

1

2

2

Thus we have shown that if � is a Lipschitz continuous function, the resulting
scheme is of second order.

Returning to ', we have shown that the scheme (3.47) is of second order if ' is
Lipschitz continuous and

min f1; rg � '.r/ � max f1; rg : (3.48)

If ' satisfies both (3.46) and (3.48), then the resulting scheme (3.47) is TVD, and
second-order accurate away from local extrema. The scheme also produces a con-
vergent sequence of approximations, and the limit is a weak solution (prove this!).

The function ' is called a limiter; a list of popular limiters follows. It is clear
that the graph of a limiter must lie in the shaded region in Fig. 3.5.

'.r/ D max f0;min fr; 1gg ; minmod

'.r/ D max f0;min f2r; 1g ;min fr; 2gg ; superbee;

'.r/ D jr j C r

1C r
; van Leer

'.r/ D r2 C r

1C r2
; van Albada

'.r/ D max f0;min fr; ˇgg ; 1 � ˇ � 2; Chakarvarthy & Osher

In Fig. 3.6 we show the approximate solutions to

ut C ux D 0; u.x; 0/ D
(
1 x 2 Œ0; 3; 0:7�;
0 x 2 Œ0; 1� n Œ0; 3; 0:7�;

and for x … Œ0; 1� we extend u.x; 0/ periodically. The figure shows approximate
solutions at t D 0 as well as the exact solution. To the left we see that both the Lax–
Wendroff and the Beam–Warming schemes have pronounced oscillations, but the
linear combination of the two schemes, in this case using the van Leer limiter, does
not. This solution is also superior to the solution found by the upwind method. Since
these methods limit the contribution of the higher-order numerical flux function,
they are often called flux-limiter methods.



3.2 Higher-Order Schemes 123

a b

c d

Fig. 3.6 The approximate solutions found by the upwind method (a), the Lax–Wendroff method
(b), the Beam–Warming method (c), and the TVD method using the van Leer limiter (d). All
computations used �x D 1=30

Semidiscrete Higher-Order Methods

Let us now consider semidiscrete higher-order methods, where we do not (initially)
discretize time, only space. Based on the finite volume approach, such methods can
be written

u0
j .t/ D � 1

�x

�
FjC1=2 � Fj�1=2

�
; (3.49)

where uj .t/ is some approximation to the average of u in the cell .xj�1=2; xjC1=2�.
If the right-hand side of the above is a second-order approximation to �f .u/x for
smooth functions u.x/, then the method is said to be second-order accurate. To get
second-order accuracy in time as well, one could use a second-order Runge–Kutta
method to integrate (3.49) numerically. One such example is Heun’s method:

Qunj D unj � 
 �FjC1=2 � Fj�1=2
�
;

unC1
j D unj � 


2

� QFjC1=2 � QFj�1=2
� � 


2

�
FjC1=2 � Fj�1=2

�
:
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The simplest way of achieving second-order accuracy is by choosing

FjC1=2 D f

�
ujC1 C uj

2

�
: (3.50)

This, however, gives a nonviable method if we combine it with a first-order Euler
method in time. This combination is not stable2. To see this, set f .u/ D u. With
the Euler method it gives

unC1
j D unj � 


2

�
ujC1 � uj�1

�
:

Making the ansatz unj D �ne
ij�x (here i D p�1) yields

�nC1 D �n .1C i
 sin.�x// :

Therefore, j�nC1j D j�nj
p
1C 
2 sin2.�x/, or

j�nj D j�0j
�
1C 
2 sin2.�x/

�n=2
:

This is unconditionally unstable. Also using the second-order Heun’s method with
(3.50) gives an unstable method (see Exercise 3.8). Thus the choice (3.50) is of
second order, but useless.

In order to overcome this, we define values to the left and right of a cell edge
uLjC1=2 and u

R
j�1=2 by

uLjC1=2 D uj C 1

2
��uj ;

uRj�1=2 D uj � 1

2
�Cuj :

(3.51)

Then we can use any two-point monotone first-order numerical flux F.u; v/ to de-
fine a second-order approximation

f .u.x//x D 1

�x

	
F
	
uLjC1=2; u

R
jC1=2



� F

	
uLj�1=2; u

R
j�1=2




C O

�
�x2

�
:

(3.52)

Even if we use Heun’s method for time integration, the extrapolation values (3.51)
do not give a TVD method. This is to be expected, since the method is for-
mally second-order accurate. We illustrate this in Fig. 3.7 for the linear equation
ut C ux D 0 with smooth and discontinuous initial values. We used the upwind
first-order numerical flux F.u; v/ D f .u/ D u. From Fig. 3.7 we see that for
smooth initial data, the approximation is “reasonably close” to the correct function,
whereas for discontinuous initial data, the approximation bears little relation to the
exact solution.

2 Often called von Neumann stability.
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a b

Fig. 3.7 Using the extrapolation (3.51). a u.x; 1/ with smooth initial data. b u.x; 1/ with discon-
tinuous intitial data

These results suggest that the method will be improved if we use some kind of
limiter to define the extrapolated values uL;RjC1=2. To this end, set 'j D '.rj /, where
rj is to be defined, and redefine the extrapolations as

uLjC1=2 D uj C 1

2
'j��uj ;

uRj�1=2 D uj � 1

2
'j�Cuj :

(3.53)

For simplicity, we now assume that f 0 � 0, and that the numerical flux function is
the upwind flux, i.e., F.u; v/ D f .u/. In this case the resulting scheme is

unC1
j D unj � 


	
f .uLjC1=2/� f .uLj�1=2/



:

We aim to define rj and find conditions on ' such that the above scheme is TVD but
retains the formal second order away from oscillations. In order to use Lemma 3.12,
we rewrite the scheme as

unC1
j D unj � 
��f .uLjC1=2/

��unj
��unj ;

where we have used a first-order Euler method for the integration in time. This will
of course destroy the formal second-order accuracy, but it is convenient for analysis.
With

Aj�1=2 D 

��f .uLjC1=2/

��unj

the scheme will be TVD if 0 � Aj�1=2 � 1. Dropping the superscript n, we calcu-
late

Aj�1=2 D 
f 0 � Nuj
� uj C 1

2
'j��uj � uj�1 � 1

2
'j�1��uj�1

��uj

D 
f 0 � Nuj
� ��

1C 1

2
'j

�
� 1

2
'j�1

��uj�1
��uj

�
;
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where Nuj is some value between uLj�1=2 and u
L
jC1=2. If we now choose

rj D �Cuj
��uj

;

this can be rewritten as

Aj�1=2 D 
f 0 � Nuj
��
1 � 1

2

�
'.rj�1/
rj�1

� '.rj /
��

:

We now demand that the scheme satisfy the CFL condition


max
u
f 0.u/ � 1

2
:

In this case 0 � Aj�1=2 � 1 if

0 �
�
1 � 1

2

�
'.rj�1/
rj�1

� '.rj /
��

� 2;

which can be rewritten

�2 � 'j�1
rj�1

� 'j � 2:

This is the case if

0 � '.r/ � min f2r; 2g ;

which gives the same TVD-region as for the flux-limiter schemes; see Fig. 3.5.
The scheme with �.r/ � 1 is not TVD, but of second order, and the choice

�.r/ D r gives the (useless) second-order scheme with numerical flux (3.50). It
follows as before that every smooth (in r) convex combination of these two schemes
will also be of second order. Therefore, we get the same second-order region as in
Fig. 3.5. Hence we have the same choice of limiter functions as before. Each choice
will give a formally second-order scheme away from local extrema. This method is
called MUSCL (monotone upstream centered scheme for conservation laws).

If Fig. 3.8 we show how the above schemes perform on the model equation
ut Cux D 0 with smooth and discontinuous initial data. The MUSCL method does
not perform as well as the flux limiter method, but a clear difference can be seen
between the first-order upstream method and the high-resolution methods (MUSCL
and flux limiter). For both the high-resolution methods, the computations in Fig. 3.8
use the van Leer limiter. The perceptive reader may have noticed that the flux-limiter
method is further from the exact solution than the methods shown in Fig. 3.6. This
is because we choose to use the same timestep for all the methods, this being limited
by the MUSCL method. Thus, the upwind and flux limiter methods will also have
a time step �t � 
�x, with 
 D 0:49.
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a b

Fig. 3.8 A comparison of the first-order monotone upstream method and high-resolution methods
for smooth (a) and discontinuous initial data (b)

3.3 Error Estimates

Let others bring order to chaos. I would bring chaos to order instead.
— Kurt Vonnegut, Breakfast of Champions (1973)

The concept of local error estimates is based on formal computations, and such
estimates indicate how the method performs in regions where the solution is smooth.
Since the convergence of the methods discussed was in L1, it is reasonable to ask
how far the approximated solution is from the true solution in this space.

In this section we will consider functions u that are maps t 7! u.t/ from Œ0;1/

to L1loc \BV .R/ such that the one-sided limits u.t˙/ exist in L1loc, and for definite-
ness we assume that this map is right continuous. Furthermore, we assume that

ku.t/k1 � ku.0/k1; T:V: .u.t// � T:V: .u.0// :

We denote this class of functions byK. From Theorem 2.15 we know that solutions
of scalar conservation laws are in the class K.

It is convenient to introduce moduli of continuity in time (see Appendix A)

�t .u; �/ D sup
j� j��

ku.t C �/ � u.t/kL1; � > 0;

�.u; �/ D sup
0�t�T

�t .u; �/:
(3.54)

From Theorem 2.15 we have that

�.u; �/ � j� j kf kLipT:V: .u0/ (3.55)

for weak solutions of conservation laws.
Now let u.x; t/ be any function inK, not necessarily a solution of (3.1). In order

to measure how far u is from being a solution of (3.1) we insert u in the Kružkov
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form (cf. (2.23))

�T .u; �; k/ D
TZ
0

Z
.ju � kj�t C q.u; k/�x/ dx ds (3.56)

�
Z

ju.x; T / � kj�.x; T / dx C
Z

ju0.x/� kj�.x; 0/ dx:

If u is a solution, then �T � 0 for all constants k and all nonnegative test functions
�. We shall now use the special test function

˝.x; x0; s; s0/ D !"0.s � s0/!".x � x0/;

where

!".x/ D 1

"
!
	x
"




and !.x/ is an even C1 function satisfying

0 � ! � 1; !.x/ D 0 for jxj > 1;
Z
!.x/ dx D 1:

Let v.x0; s0/ be the unique weak solution of (3.1), and define

�";"0 .u; v/ D
TZ
0

Z
�T

�
u;˝. � ; x0; � ; s0/; v.x0; s0/

�
dx0ds0:

The comparison result reads as follows.

Theorem 3.14 (Kuznetsov’s lemma) Let u. � ; t/ be a function in K, and v a so-
lution of (3.1). If 0 < "0 < T and " > 0, then

ku. � ; T�/ � v. � ; T /kL1.R/ � ku0 � v0kL1.R/ C T:V: .v0/
�
2"C "0kf kLip

�
C �.u; "0/ ��";"0 .u; v/; (3.57)

where u0 D u. � ; 0/ and v0 D v. � ; 0/.

Proof We use special properties of the test function˝, namely that

˝.x; x0; s; s0/ D ˝.x0; x; s; s0/ D ˝.x; x0; s0; s/ D ˝.x0; x; s0; s/ (3.58)

and

˝x D �˝x0 ; and ˝s D �˝s0 : (3.59)
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Using (3.58) and (3.59), we find that

�";"0 .u; v/ D ��";"0 .v; u/ �
TZ
0

“
˝.x; x0; s; T /

� ju.x; T /� v.x0; s/j

C jv.x0; T / � u.x; s/j �dx dx0 ds

C
TZ
0

“
˝.x; x0; s; 0/

� jv0.x0/� u.x; s/j

C ju0.x/ � v.x0; s/j �dx dx0 ds
WD ��";"0 .v; u/ � A C B:

Since v is a weak solution, �";"0 .v; u/ � 0, and hence

A � B ��";"0 .u; v/:
Therefore, we would like to obtain a lower bound on A and an upper bound on
B , the lower bound on A involving ku.T /� v.T /kL1 and the upper bound on B
involving ku0 � v0kL1 . We start with the lower bound on A.

Let �" be defined by

�".u; v/ D
“

!".x � x0/ ju.x/� v.x0/j dx dx0: (3.60)

Then

A D
TZ
0

!"0.T � s/ .�".u.T /; v.s//C �".u.s/; v.T /// ds:

Now by a use of the triangle inequality,

ku.x; T /� v.x0; s/k C ju.x; s/ � v.x0; T /j
� ju.x; T /� v.x; T /j C ju.x; T / � v.x; T /j

� jv.x; T / � v.x0; T /j � ju.x; T / � u.x; s/j
� jv.x0; T / � v.x0; s/j � jv.x; T /� v.x0; T /j :

Hence

�".u.T /; v.s//C �".u.s/; v.T // � 2ku.T /� v.T /kL1 � 2�".v.T /; v.T //
� ku.T /� u.s/kL1 � kv.T / � v.s/kL1 :

Regarding the upper estimate on B , we similarly have that

B D
TZ
0

!"0.s/ Œ�".u0; v.s//C �".u.s/; v0/� ds;
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and we also obtain

�".u0; v.s//C �".u.s/; v0/ � 2ku0 � v0kL1 C 2�".v0; v0/

C ku0 � u.s/kL1 C kv0 � v.s/kL1:
Since v is a solution, it satisfies the TVD property, and hence

�".v.T /; v.T // D
Z "Z

�"
!".z/ jv.x C z; T / � v.x; T /j dz dx

�
"Z

�"
!".z/ sup

jzj�"

�Z
jv.x C z; T / � v.x; T /j dx

�
dz

D j"j
"Z

�"
!".z/T:V: .v.T // dz � j"jT:V: .v0/ ;

using (A.10). By the properties of !,

TZ
0

!".T � s/ ds D
TZ
0

!".s/ ds D 1

2
:

Applying (3.55), we obtain (recall that "0 < T )

TZ
0

!"0 .T � s/kv.T / � v.s/kL1 ds

�
TZ
0

!"0.T � s/ .T � s/kf kLipT:V: .v0/ ds

� 1

2
"0kf kLipT:V: .v0/

and
TZ
0

!"0.s/kv0 � v.s/kL1 ds � 1

2
"0kf kLipT:V: .v0/ :

Similarly,

TZ
0

!"0 .T � s/ku.T / � u.s/kL1 ds � 1

2
� .u; "0/

and
TZ
0

!"0.s/ku0 � u.s/kL1 ds � 1

2
� .u; "0/ :

If we collect all the above bounds, we should obtain the statement of the theorem.
�



3.3 Error Estimates 131

Observe that in the special case that u is a solution of the conservation law (3.1),
we know that �";"0 .u; v/ � 0, and hence we obtain, as "; "0 ! 0, the familiar
stability result

ku. � ; T / � v. � ; T /kL1 � ku0 � v0kL1 :

We shall now show in three cases how Kuznetsov’s lemma can be used to give
estimates on how fast a method converges to the entropy solution of (3.1).

} Example 3.15 (The smoothing method)
While not a proper numerical method, the smoothing method provides an ex-
ample of how the result of Kuznetsov may be used. The smoothing method is
a (semi)numerical method approximating the solution of (3.1) as follows: Let
!ı.x/ be a standard mollifier with support in Œ�ı; ı�, and let tn D n�t . Set
u0 D u0 � !ı. For 0 � t < �t define u1 to be the solution of (3.1) with
initial data u0. If �t is small enough, u1 remains differentiable for t < �t .
In the interval Œ.n � 1/�t; n�t/, we define un to be the solution of (3.1), with
un .x; .n � 1/�t/ D un�1. � ; tn�/ � !ı . The advantage of doing this is that un will
remain differentiable in x for all times, and the solution in the strips Œtn; tnC1/ can
be found by, e.g., the method of characteristics. To show that un is differentiable,
we calculate

junx.x; tn�1/j D
ˇ̌̌
ˇ
Z
un�1
x .y; tn�1/!ı.x � y/ dy

ˇ̌̌
ˇ

� 1

ı
T:V:

�
un�1.tn�1/

� � T:V: .u0/

ı
:

Let �.t/ D maxx jux.x; t/j. Using that u is a classical solution of (3.1), we find by
differentiating (3.1) with respect to x that

uxt C f 0.u/uxx C f 00.u/u2x D 0:

Write

�.t/ D ux.x0.t/; t/;

where x0.t/ is the location of the maximum of juxj. Then

�0.t/ D uxx.x0.t/; t/x
0
0.t/C uxt .x0.t/; t/

� uxt .x0.t/; t/ D �f 00.u/
�
ux.x0.t/; t/

�2
� c�.t/2;

since uxx D 0 at an extremum of ux . Thus

�0.t/ � c�2.t/; (3.61)
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where c D kf 00k1. The idea is now that (3.61) has a blowup at some finite time, and
we choose �t less than this time. We shall be needing a precise relation between
�t and ı and must therefore investigate (3.61) further. Solving (3.61) we obtain

�.t/ � � .tn/

1 � c� .tn/ .t � tn/ � T:V: .u0/

ı � cT:V: .u0/�t :

So if

�t <
ı

cT:V: .u0/
; (3.62)

the method is well defined. Choosing �t D ı=.2cT:V: .u0// will do.
Since u is an exact solution in the strips Œtn; tnC1/, we have

tnC1Z
tn

Z
.ju � kj�t C q.u; k/�x/ dx dt

C
Z 	

ju.x; tnC/� kj�.x; tn/ � ju.x; tnC1�/ � kj�.x; tnC1/


dx � 0:

Summing these inequalities and setting k D v.y; s/, where v is an exact solution of
(3.1), we obtain

�T .u;˝; v.y; s// � �
N�1X
nD0

Z
˝ .x; y; tn; s/

	
ju.x; tnC/� v.y; s/j

� ju.x; tn�/ � v.y; s/j


dx;

where we use the test function˝.x; y; t; s/ D !"0.t � s/!".x�y/. Integrating this
over y and s, and letting "0 tend to zero, we get

lim inf
"0!0

�";"0 .u; v/ � �
N�1X
nD0

.�".u.tnC/; v.tn// � �".u.tn�/; v.tn/// :

Using this in Kuznetsov’s lemma, and letting "0 ! 0, we obtain

ku.T / � v.T /k1 � ��u0 � u0��
1

C 2"T:V: .u0/ (3.63)

C
N�1X
nD0

.�".u.tnC/; v.tn// � �".u.tn�/; v.tn/// ;

where we have used that lim"0!0 �t .u; "0/ D 0, which holds because u is a solution
of the conservation law in each strip Œtn; tnC1/.
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To obtain a more explicit bound on the difference of u and v, we investigate
�".!ı � u; v/ � �".u; v/, where �" is defined by (3.60),

�".u � !ı; v/ � �".u; v/ �
•
jzj�1

!".x � y/!.z/
	

ju.x C ız/ � v.y/j

� ju.x/� v.y/j


dx dy dz

D 1

2

•
jzj�1

.!".x � y/ � !".x C ız � y// !.z/

� .ju.x C ız/ � v.y/j � ju.x/� v.y/j/ dx dy dz;

which follows after writing
” D 1

2

” C 1
2

”
and making the substitution x 7!

x � ız, z 7! �z in one of these integrals. Therefore,

�".u � !ı; v/ � �".u; v/ � 1

2

•
jzj�1

j!".y C ız/ � !".y/j

� !.z/ ju.x C ız/ � u.x/j dx dy dz
� 1

2
T:V: .!"/ T:V: .u/ ı

2

� T:V: .u/
ı2

"
;

by the triangle inequality and a further substitution y 7! x � y. Since N D T=�t ,
the last term in (3.63) is less than

N T:V: .u0/
ı2

"
� .T:V: .u0//

2 2cT
ı

"
;

using (3.62). Furthermore, we have that

��u0 � u0
��
1

� ıT:V: .u0/ :

Letting K D T:V: .u0/ c, we find that

ku.T / � v.T /k1 � 2T:V: .u0/

�
ı C "C KT ı

"

�
;

using (3.63). Minimizing with respect to ", we find that

ku.T /� v.T /k1 � 2T:V: .u0/
�
ı C 2

p
KT ı

�
: (3.64)

So, we have shown that the smoothing method is of order 1
2
in the smoothing coef-

ficient ı. }
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} Example 3.16 (The method of vanishing viscosity)
Another (semi)numerical method for (3.1) is the method of vanishing viscosity.
Here we approximate the solution of (3.1) by the solution of

ut C f .u/x D ıuxx; ı > 0; (3.65)

using the same initial data. Let uı denote the solution of (3.65). Due to the dissi-
pative term on the right-hand side, the solution of (3.65) remains a classical (twice
differentiable) solution for all t > 0. Furthermore, the solution operator for (3.65)
is TVD. Hence a numerical method for (3.65) will (presumably) not experience the
same difficulties as a numerical method for (3.1). If .
; q/ is a convex entropy pair,
we have, using the differentiability of the solution, that


.u/t C q.u/x D ı
0.u/uxx D ı
�

.u/xx � 
00.u/u2x

�
:

Multiplying by a nonnegative test function ' and integrating by parts, we get“
.
.u/'t C q.u/'x/ dx dt � ı

“

.u/x'x dx dt;

where we have used the convexity of 
. Applying this with 
 D ˇ̌
uı � uˇ̌ and q D

F.uı; u/, we can bound lim"0!0 �";"0 .u
ı; u/ as follows:

� lim
"0!0

�";"0 .u
ı; u/ � ı

TZ
0

“ ˇ̌̌
ˇ@!".x � y/

@x

ˇ̌̌
ˇ @

ˇ̌
uı.x; t/ � u.y; t/ˇ̌

@x
dx dy dt

� ı

TZ
0

“ ˇ̌̌
ˇ@!".x � y/

@x

ˇ̌̌
ˇ
ˇ̌̌
ˇ@uı.x; t/@x

ˇ̌̌
ˇ dx dy dt

� 2T:V:
�
uı
�
T
ı

"

� 2T T:V: .u0/
ı

"
:

Now letting "0 ! 0 in (3.57), we obtain

��uı.T /� u.T /��
1

� min
"

�
2"C 2T ı

"

�
T:V: .u0/ D 2T:V: .u0/

p
T ı:

So the method of vanishing viscosity also has order 1
2
. }

} Example 3.17 (Monotone schemes)
We will here show that monotone schemes converge in L1 to the solution of (3.1)
at a rate of .�t/1=2. In particular, this applies to the Lax–Friedrichs scheme.

Let u�t be defined by (3.27), where unj is defined by (3.6), that is,

unC1
j D unj � 


	
F n
jC1=2 � F n

j�1=2


; (3.66)
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where F n
jC1=2 D F

	
unj�p; : : : ; u

n
jCp0



, for a scheme that is assumed to be mono-

tone; cf. Definition 3.5. In the following we use the notation


nj D
ˇ̌̌
unj � k

ˇ̌̌
; qnj D f

	
unj _ k



� f

	
unj ^ k



:

We find that

��T .u�t ; �; k/ D �
X
j

N�1X
nD0

xjC1=2Z
xj�1=2

tnC1Z
tn

�

nj �t .x; s/C qnj �x.x; s/

�
ds dx

�
X
j

xjC1=2Z
xj�1=2


0j �.x; 0/ dx C
X
j

xjC1=2Z
xj�1=2


Nj �.x; T / dx

D �
X
j

"
N�1X
nD0

xjC1=2Z
xj�1=2


nj
�
�.x; tnC1/� �.x; tn/

�
dx

C
xjC1=2Z
xj�1=2


0j �.x; 0/ dx �
xjC1=2Z
xj�1=2


Nj �.x; T / dx

C
N�1X
nD0

tnC1Z
tn

qnj
�
�.xjC1=2; s/ � �.xj�1=2; s/

�
ds

#

D
X
j

N�1X
nD0

�
.
nC1
j � 
nj /

xjC1=2Z
xj�1=2

�.x; tnC1/ dx

C .qnj � qnj�1/

tnC1Z
tn

�.xj�1=2; s/ ds
�

by a summation by parts. Recall that we define the numerical entropy flux by

Qn
jC1=2 D F.unj�p _ k; : : : ; unjCp0 _ k/ � F.unj�p ^ k; : : : ; unjCp0 ^ k/:

Monotonicity of the scheme implies, cf. (3.33), that


nC1
j � 
nj C 
.Qn

jC1=2 �Qn
j�1=2/ � 0:

For a nonnegative test function � we obtain

��T .u�t ; �; k/ �
X
j

N�1X
nD0

	
�
.Qn

jC1=2 �Qn
j�1=2/

xjC1=2Z
xj�1=2

�.x; tnC1/ dx

C .qnj � qnj�1/

tnC1Z
tn

�.xj ; s/ ds
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D
X
j

N�1X
nD0

�


		
qnj �Qn

jC1=2



�
	
qnj�1 �Qn

j�1=2


 xjC1=2Z

xj�1=2

�.x; tnC1/ dx

C .qnj � qnj�1/
	 tnC1Z
tn

�.xj�1=2; s/ ds � 

xjC1=2Z
xj�1=2

�.x; tnC1/ dx

�

D
X
j

N�1X
nD0

�


	
Qn
jC1=2 � qnj


 	 xjC3=2Z
xjC1=2

�.x; tnC1/ dx �
xjC1=2Z
xj�1=2

�.x; tnC1/ dx



C
	
qnj � qnj�1


	 tnC1Z
tn

�.xj�1=2; s/ ds � 

xjC1=2Z
xj�1=2

�.x; tnC1/ dx

�

D
X
j

N�1X
nD0

�


	
Qn
jC1=2 � qnj


 	 xjC1=2Z
xj�1=2

�.x C�x; tnC1/ � �.x; tnC1/ dx



C .qnj � qnj�1/
	 tnC1Z
tn

�.xj�1=2; s/ ds � 

xjC1=2Z
xj�1=2

�.x; tnC1/ dx

�
:

We also have that

ˇ̌̌
qnj �Qn

jC1=2
ˇ̌̌

� kf kLip
p0X

mD�p

ˇ̌̌
unjCm � unj

ˇ̌̌

and

ˇ̌̌
qnj � qnj�1

ˇ̌̌
� kf kLip

ˇ̌̌
unj � unj�1

ˇ̌̌
;

which implies that

��T .u�t ; �; k/ � kf kLip
X
j

N�1X
nD0

�	 p0X
mD�p

ˇ̌̌
unjCm � unj

ˇ̌̌


� 

xjC1=2Z
xj�1=2

j�.x C�x; tnC1/� �.x; tnC1/j dx

C
ˇ̌̌
unj � unj�1

ˇ̌̌

�
ˇ̌̌ tnC1Z
tn

�.xj�1=2; s/ ds � 

xjC1Z
xj

�.x; tnC1/ dx
ˇ̌̌ �
:
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Next, we subtract �.xj�1=2; tnC1/ from the integrand in each of the latter two inte-
grals. Since �t D 
�x, the extra terms cancel, and we obtain

��T .u�t ; �; k/ � kf kLip
X
j

N�1X
nD0

�	 p0X
mD�p

ˇ̌̌
unjCm � unj

ˇ̌̌

(3.67)

� 

xjC1=2Z
xj�1=2

j�.x C�x; tnC1/ � �.x; tnC1/j dx

C ˇ̌
unj �unj�1

ˇ̌	 tnC1Z
tn

ˇ̌
�.xj�1=2; t/��.xj�1=2; tnC1/

ˇ̌
dt

C 


xjC1=2Z
xj�1=2

ˇ̌
�.x; tnC1/ � �.xj�1=2; tnC1/

ˇ̌
dx

�
:

Let v D v.y; s/ denote the unique entropy solution of (3.1), and let k D v.y; s/.
Then

��"0;".u; v/ D �
TZ
0

Z
R

�T
�
u; v.y; s/; !"0 . � � s/!". � � x/� dy ds:

Thus to estimate ��"0;".u; v/ we must integrate the terms on the right-hand side of
(3.67) in .y; s/. To this end,

TZ
0

Z
R

xjC1=2Z
xj�1=2

!"0 .tnC1 � s/ j!".x C�x � y/ � !".x � y/j dx dy ds

D
Z
R

xjC1=2Z
xj�1=2

j!".x C�x � y/ � !".x � y/j dx dy

� �x2 j!"jBV
� 2�x2

"
:

Recalling that 
 D �t=�x, we get

TZ
0

Z
R

kf kLip
X
j

N�1X
nD0

�	 p0X
mD�p

ˇ̌̌
unjCm � unj

ˇ̌̌


� 

xjC1=2Z
xj�1=2

j�.x C�x; tnC1/� �.x; tnC1/j dx dy ds

� kf kLip 1
2
.p.p � 1/C p0.p0 � 1//

N�1X
nD0

X
j

ˇ̌̌
unj � unj�1

ˇ̌̌ 2�x2
"




� CT
�x

"
: (3.68)
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We also have that

TZ
0

Z
R

tnC1Z
tn

!".xj�1=2 � y/ j!"0.t � s/ � !"0.tnC1 � s/j dt dy ds

D
TZ
0

tnC1Z
tn

j!"0.t � s/ � !"0.tnC1 � s/j dt ds

�
tnC1Z
tn

tnC1Z
t

TZ
0

ˇ̌
! 0
"0
.� � s/ˇ̌ ds d� dt

� C�t2

"0
:

Therefore,

TZ
0

Z
R

kf kLip
X
j

N�1X
nD0

ˇ̌̌
unj � unj�1

ˇ̌̌ tnC1Z
tn

ˇ̌
�.xj�1=2; t/ � �.xj�1=2; tnC1/

ˇ̌
dt dy ds

� kf kLip
X
j

ˇ̌̌
u0j � u0j�1

ˇ̌̌ N�1X
nD0

C�t2

"0

� CT
�t

"0
: (3.69)

Similarly,

TZ
0

Z
R

tnC1Z
tn

!"0.tnC1 � s/ ˇ̌!".x � y/ � !".xj�1=2 � y/ˇ̌ dx dy ds

�
tnC1Z
tn

xZ
xj�1=2

Z
R

j! 0
".z � y/j dy dz dx

� C�x�t

"0
;

and therefore

kf kLip
X
j

N�1X
nD0

TZ
0

Z
R

ˇ̌̌
unj � unj�1

ˇ̌̌



xjC1=2Z
xj�1=2

ˇ̌
�.x; tnC1/� �.xj�1=2; tnC1/

ˇ̌
dxdyds

� kf kLip
X
j

N�1X
nD0

ˇ̌̌
u0j � u0j�1

ˇ̌̌


C�x�t

"0

� CT
�t

"0
: (3.70)
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Collecting the estimates (3.68)–(3.70), we obtain

��"0;".u; v/ � CT

�
�x

"
C �t

"0

�
; (3.71)

where the constant C depends only on f , F , and ju0jBV . Regarding the term
�.u; "0/, we have that t 7! u�t .x; � / is “almost” L1 Lipschitz continuous, so

�.u�t ; "0/ � C .max f"0;�tg C�t/ :

The entropy solution v is of uniformly bounded variation in x for each t . Therefore,
we conclude that

ku�t . � ; T /� v. � ; T /kL1 � ku�t. � ; 0/� v0k1
C CT

�
max f"0;�tg C "0 C "C �t

"0
C �x

"

�
:

Choosing

u0j D 1

�x

xjC1=2Z
xj�1=2

v0.y/ dy;

we have that ku�t . � ; 0/� v0k1 � �x jv0jBV . Then we can choose " D p
�x and

"0 D p
�t to find that

ku�t . � ; T /� v. � ; T /k1 � C
p
�t; (3.72)

where C depends on T , jv0jBV , f , and F . }

If one uses Kuznetsov’s lemma to estimate the error of a scheme, one must
estimate the modulus of continuity Q�t .u; "0/ and the term �";"0 .u; v/. In other
words, one must obtain regularity estimates on the approximation u. Therefore,
this approach gives a posteriori error estimates, and perhaps the proper use for this
approach should be in adaptive methods, in which it would provide error control
and govern mesh refinement. However, despite this weakness, Kuznetsov’s theory
is still actively used.

3.4 A Priori Error Estimates

We shall now describe an application of a variation of Kuznetsov’s approach in
which we obtain an error estimate for the method of vanishing viscosity without
using the regularity properties of the viscous approximation. Of course, this appli-
cation only motivates the approach, since regularity of the solutions of parabolic
equations is not difficult to obtain elsewhere. Nevertheless, it is interesting in its
own right, since many difference methods have (3.73) as their model equation. We
first state the result.
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Theorem 3.18 Let v.x; t/ be a solution of (3.1) with initial value v0, and let u
solve the equation

ut C f .u/x D .ı.u/ux/x ; u.x; 0/ D u0.x/; (3.73)

in the classical sense, with ı.u/ > 0. Then

ku.T / � v.T /kL1.R/ � 2ku0 � v0kL1.R/ C 4T:V: .v0/
p
8T kıkv;

where

kıkv D sup
t2Œ0;T �
x2R

Qı .v.x�; t/; v.xC; t//

and

Qı.a; b/ D 1

b � a

bZ
a

ı.c/ dc:

This result is not surprising, and in some sense is weaker than the correspond-
ing result found using Kuznetsov’s lemma. The new element here is that the proof
does not rely on any smoothness properties of the function u, and is therefore also
considerably more complicated than the proof using Kuznetsov’s lemma.

Proof The proof consists in choosing new �’s, and using a special form of the test
function '. Let !1 be defined as

!1.x/ D
(
1
2

for jxj � 1,

0 otherwise.

We will consider a family of smooth functions ! such that ! ! !1. To keep the
notation simple we will not add another parameter to the functions !, but rather
write ! ! !1 when we approach the limit. Let

'.x; y; t; s/ D !".x � y/!"0.t � s/

with !˛.x/ D .1=˛/ !.x=˛/ as usual. In this notation,

!1
" .x/ D

(
1=.2"/ for jxj � ",

0 otherwise.

In the following we will use the entropy pair


.u; k/ D ju � kj and q.u; k/ D sign .u � k/ .f .u/ � f .k//;
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and except where explicitly stated, we always let u D u.y; s/ and v D v.x; t/. Let

�.u; k/ and q�.u; k/ be smooth approximations to 
 and q such that


� .u/ ! 
.u/ as � ! 0, q� .u; k/ D
Z

0
� .z � k/.f .z/ � f .k// dz:

For a test function ' define

��T .u; k/ D
TZ
0

Z

0
� .u � k/

	
us C f .u/y � �

ı.u/uy
�
y



' dy ds

(which is clearly zero because of (3.73)) and

��";"0 .u; v/ D
TZ
0

Z
��T .u; v.x; t// dx dt:

Note that since u satisfies (3.73), ��
";"0

D 0 for every v. We now split ��";"0 into two
parts. Writing (cf. (2.15))

�
usCf .u/x � .ı.u/uy/y/
0

� .u � k/
D 
.u � k/s C ..f .u/ � f .k//0
0

� .u � k/uy � .ı.u/uy/y
0
� .u � k/

D 
� .u � k/s C q� .u; k/uuy � .ı.u/uy/y
0
� .u � k/

D 
� .u � k/s C q� .u; k/y � .ı.u/
�.u � k/y/y C 
00
� .u � k/ı.u/.uy/2

D 
� .u � k/s C .q� .u; k/ � ı.u/
�.u � k/y/y C 
00.u � k/ı.u/.uy/2;

we may introduce

��1 .u; v/ D
TZ
0

Z TZ
0

Z

00
� .u � v/ı.u/ �uy�2 ' dy ds dx dt;

��
2 .u; v/ D

TZ
0

Z TZ
0

Z 	

�.u � v/s C �

q�.u; v/ � ı.u/
�.u � v/y
�
y



' dy ds dx dt;

such that ��";"0 D ��1 C ��2 . Note that if ı.u/ > 0, we always have ��1 � 0, and
hence ��2 � 0. Then we have that

�2 WD lim sup
�!0

��2 � 0:
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To estimate �2, we integrate by parts:

�2.u; v/ D
TZ
0

Z TZ
0

Z ��
.u � v/'s � q.u; v/'y C V.u; v/'yy
�
dy ds dx dt

C
TZ
0

“

.u.T /� v/'jsDT dy dx dt �

TZ
0

“

.u0 � v/'jsD0 dy dx dt

D
TZ
0

Z TZ
0

Z �

.u � v/'t C F.u; v/'x � V.u; v/'xy

�
dy ds dx dt

C
TZ
0

“

.u.T /� v/'jsDT dy dx dt �

TZ
0

“

.u0 � v/'jsD0 dy dx dt;

where

V.u; v/ D
vZ
u

ı.s/
0.s � v/ ds:

Now define (the “dual of �2”)

��
2 WD �

TZ
0

Z TZ
0

Z �

.u � v/'t C q.u; v/'x � V.u; v/'xy

�
dy ds dx dt

�
TZ
0

“

.u � v.T //'

ˇ̌̌tDT
tD0

dx dy ds:

Then we can write

�2 D ���
2 C

TZ
0

“ �

.u.T / � v/'�jsDT dy dx dt

„ ƒ‚ …
˚1

�
TZ
0

“ �

.u0 � v/'�jsD0 dy dx dt

„ ƒ‚ …
˚2

C
TZ
0

“ �

.u � v.T //'�jtDT dx dy ds

„ ƒ‚ …
˚3

�
TZ
0

“ �

.u0 � v0/'

�jtD0 dx dy ds
„ ƒ‚ …

˚4

DW ���
2 C ˚:
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We will need later that

˚ D ��
2 C�2 � ��

2 : (3.74)

Let

˝"0.t/ D
tZ
0

!"0.s/ ds

and

e.t/ D ku.t/ � v.t/kL1 D
Z

.u.x; t/ � v.x; t// dx:

To continue estimating, we need the following proposition.

Proposition 3.19

˚ � ˝"0.T /e.T / �˝"0.T /e.0/C
TZ
0

!"0.T � t/e.t/ dt �
TZ
0

!"0.t/e.t/ dt

� 4˝"0.T /
�
"0kf kLip C "

�
T:V: .v0/ :

Proof (of Proposition 3.19) We start by estimating ˚1. First note that


.u.y; T / � v.x; t// D ju.y; T /� v.x; t/j
� ju.y; T / � v.y; T /j

� jv.y; T /� v.y; t/j � jv.y; t/ � v.x; t/j
D 
.u.y; T / � v.y; T //

� jv.y; T /� v.y; t/j � jv.y; t/ � v.x; t/j :
Thus

˚1 �
TZ
0

“

.u.y; T /� v.y; T //'jsDT dy dx dt

�
TZ
0

“
jv.y; T /� v.y; t/j 'jsDT dy dx dt

�
TZ
0

“
jv.y; t/ � v.x; t/j 'jsDT dy dx dt

� ˝"0.T /e.T / �˝"0.T /
�
"0kf kLip C "

�
T:V: .v0/ :

Here we have used that v is an exact solution. The estimate for ˚2 is similar, yield-
ing

˚2 � �˝"0.T /e.0/ �˝"0.T /
�
"0kf kLip C "

�
T:V: .v0/ :
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To estimate ˚3 we proceed in the same manner:


.u.y; s/ � v.x; T // � 
.u.y; s/ � v.y; s// � jv.y; s/ � v.x; s/j
� jv.x; s/ � v.x; T /j :

This gives

˚3 �
TZ
0

!"0.T � t/e.t/ dt �˝"0.T /
�
"0kf kLip C "

�
T:V: .v0/ ;

while by the same reasoning, the estimate for ˚4 reads

˚4 � �
TZ
0

!"0.t/e.t/ dt �˝"0.T /
�kf kLip"0 C "

�
T:V: .v0/ :

The proof of Proposition 3.19 is complete. �

To proceed further, we shall need the following Gronwall-type lemma:

Lemma 3.20 Let � be a nonnegative function that satisfies

˝1
"0
.�/�.�/C

�Z
0

!1
"0
.� � t/�.t/ dt � C ˝1

"0
.�/C

�Z
0

!1
"0
.t/�.t/ dt; (3.75)

for all � 2 Œ0; T � and some constant C . Then

�.�/ � 2C:

Proof (of Lemma 3.20) If � � "0, then for t 2 Œ0; ��, !1
"0
.t/ D !1

"0
.� � t/ D

1=.2"0/. In this case (3.75) immediately simplifies to �.t/ � C .
For � > "0, we can write (3.75) as

�.�/ � C C 1

˝1
"0
.�/

"0Z
0

�
!1
"0
.t/ � !1

"0
.� � t/� �.t/ dt:

For t 2 Œ0; "0� we have �.t/ � C , and this implies

�.�/ � C

0
@1C 1

˝1
"0
.�/

"0Z
0

�
!1
"0
.t/ � !1

"0
.� � t/� dt

1
A � 2C:

This concludes the proof of the lemma. �
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Now we can continue the estimate of e.T /.

Proposition 3.21 We have that

e.T / � 2e.0/C 8
�
"C "0kf kLip

�
T:V: .v0/C 2 lim

!!!1 sup
t2Œ0;T �

��
2.u; v/

˝"10 .t/
:

Proof (of Proposition 3.21) Starting with the inequality (3.74), using the estimate
for ˚ from Proposition 3.19, we have, after passing to the limit ! ! !1, that

˝1
"0
.T /e.T /C

TZ
0

!1
"0
.T � t/e.t/ dt � ˝1

"0
.t/e.0/C

TZ
0

!1
"0
.t/e.t/ dt

C 4˝1
"0
.t/
�
"C "0kf kLip

�
T:V: .v0/

C˝1
"0
.T / lim

!!!1 sup
t2Œ0;T �

��
2.u; v/

˝1
"0
.t/

:

We apply Lemma 3.20 with

C D 4
�
"C "0kf kLip

�
T:V: .v0/C lim

!!!1 sup
t2Œ0;T �

��
2.u; v/

˝1
"0
.t/

C e.0/

to complete the proof. �

To finish the proof of the theorem, it remains only to estimate

lim
!!!1 sup

t2Œ0;T �

��
2.u; v/

˝.t/
:

We will use the following inequality:

ˇ̌̌
ˇ̌V

�
u; vC� � V .u; v�/
vC � v�

ˇ̌̌
ˇ̌ � 1

vC � v�

vCZ
v�

ı.s/ ds: (3.76)

Since v is an entropy solution to (3.1), we have that

��
2 � �

TZ
0

Z TZ
0

Z
V.u; v/'xy dy ds dx dt: (3.77)

Since v is of bounded variation, it suffices to study the case that v is differentiable
except on a countable number of curves x D x.t/. We shall bound ��

2 in the case
that we have one such curve; the generalization to more than one is straightforward.
Integrating (3.77) by parts, we obtain

��
2 �

TZ
0

Z
�.y; s/ dy ds; (3.78)
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where � is given by

�.y; s/ D
TZ
0

	 x.t/Z
�1

V.u; v/v vx'y dx

C �V �

�v�
�v� 'y jxDx.t/ C

1Z
x.t/

V .u; v/v vx'y dx


dt:

As before, �a� denotes the jump in a, i.e., �a� D a.x.t/C; t/ � a.x.t/�; t/. Using
(3.76), we obtain

j�.y; s/j �kıkv
TZ
0

	 x.t/Z
�1

jvx j ˇ̌'y ˇ̌ dx

C j�v�j ˇ̌'y jxDx.t/
ˇ̌C

1Z
x.t/

jvxj
ˇ̌
'y
ˇ̌
dx


dt:

(3.79)

LetD be given by

D.x; t/ D
TZ
0

Z ˇ̌
'y
ˇ̌
dy ds:

A simple calculation shows that

D.x; t/ D 1

"

TZ
0

!"0.t � s/ ds
Z

j! 0.y/j dy � 1

"

TZ
0

!"0.t � s/ ds:

Consequently,

TZ
0

sup
x

D.x; t/ dt � 1

"

TZ
0

TZ
0

!"0.t � s/ ds dt

D 2

"

TZ
0

.T � t/!"0 .t/ dt

� 2T˝.T /

"
:

Inserting this in (3.79), and the result in (3.78), we find that

��
2.u; v; T / � 2

"
T T:V: .v0/ kıkv˝.T /:
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Summing up, we have now shown that

e.T / � 2e.0/C 8
�
"C "0kf kLip

�
T:V: .v0/C 4

"
T T:V: .v0/ kıkv:

We can set "0 to zero, and minimize over ", obtaining

ku.T / � v.T /kL1 � 2ku0 � v0kL1 C 4T:V: .v0/
p
8T kıkv:

The theorem is proved. �

The main idea behind this approach to getting a priori error estimates is to choose
the “Kuznetsov-type” form �";"0 such that

�";"0 .u; v/ D 0

for every function v, and then write�";"0 as the sum of a nonnegative and a nonpos-
itive part. Given a numerical scheme, the task is then to prove a discrete analogue
of the previous theorem.

3.5 Measure-Valued Solutions

You try so hard, but you don’t understand : : :
— Bob Dylan, Ballad of a Thin Man (1965)

Monotone methods are at most first-order accurate. Consequently, one must work
harder to show that higher-order methods converge to the entropy solution. While
this is possible in one space dimension, i.e., in the above setting, it is much more dif-
ficult in several space dimensions. One useful tool to aid the analysis of higher-order
methods is the concept of measure-valued solutions. This is a rather complicated
concept, which requires a solid background in analysis beyond this book. There-
fore, the presentation in this section is brief, and is intended to give the reader a first
flavor, and an idea of what this method can accomplish.

The Young Measure

Consider a sequence fungn2N that is uniformly bounded in L1.R � Œ0;1//. This
is typically the result of a numerical method, where one has L1 bounds, but no
uniform bounds on the total variation. Passing to a subsequence, we can still infer
that the weak-star limit

un
�
* u;

exists, which means that for all ' 2 L1.R � Œ0;1//,“
˝

un' dx dt !
“
˝

u' dx dt;
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with ˝ D R � Œ0;1/. In order to show that the limit u is a weak solution to the
conservation law, we must study“

˝

�
un't C f .un/'x

�
dx dt:

The first term in this equation has a limit
’
u't dx dt , but the second term is more

complicated, as the next example shows.

} Example 3.22
Let un D sin.nx/ and f .u/ D u2, and ' a smooth function in L1.R/. Thenˇ̌̌

ˇ
Z

sin.nx/'.x/ dx

ˇ̌̌
ˇ � 1

n

ˇ̌̌
ˇ
Z

cos.nx/' 0.x/ dx
ˇ̌̌
ˇ � C

n
! 0 as n ! 1:

On the other hand, f .un/ D sin2.nx/ D .1 � cos.2nx//=2, and hence a similar
estimate shows thatˇ̌̌

ˇ
Z
.f .un/ � 1

2
/'.x/ dx

ˇ̌̌
ˇ � C

n
! 0 as n ! 1:

Thus we conclude that

un
�
* 0; f .un/

�
*

1

2
¤ 0 D f .0/: }

The Young measure is one method for studying the weak limits of nonlinear
functions of a weak-star convergent sequence.

In order to define it, we first define the function

�.
; u/ D

8̂̂
<
ˆ̂:
1 0 � 
 � u;

�1 u � 
 � 0;

0 otherwise.

(3.80)

It is easily verified that for every differentiable function f ,

1Z
�1

f 0.
/�.
; u/ d
 D f .u/ � f .0/: (3.81)

Furthermore, let g.
/ be a function such that

u D
Z
R

g.
/ d
; sign .
/ g.
/ D jg.
/j � 1: (3.82)

Define m.
/ by

m.
/ D

Z

�1

�
�.�; u/� g.�/�d�:
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Then lim
!�1m.
/ D 0, and

lim

!1

m.
/ D
1Z

�1
�.�; u/� g.�/ d� D u � u D 0:

Furthermore, by (3.82), we have that m is nondecreasing in the interval .�1; u/

and nonincreasing in the interval .u;1/. Hence m.
/ is nonnegative. For every
twice differentiable convex function S.
/ we haveZ

R

S 0.
/ .�.
; u/� g.
// d
 D �
Z
R

S 00.
/m.
/ d
 � 0:

Thus, for a strictly convex function S , the function �. � ; u/ is the unique minimizer
of the problem: Find g 2 L1.R/ such that (3.82) holds andZ

R

S 0.
/g.
/ d
 is minimized. (3.83)

If fungn2N � L1.˝/ is uniformly bounded, then f�. � ; un/gn2N � L1.R � ˝/

is also uniformly bounded. Thus it has (modulo subsequences) a weak-star limit,
which we call f .
; x; t/. The next lemma gives some properties of this limit.

Lemma 3.23 Let f .
; x; t/ denote the weak-star limit of �.
; un/. Then f is in
L1.R �˝/ and satisfies Z

R

f .
; x; t/ d
 D u.x; t/ (3.84)

for almost all .x; t/. Furthermore,

jf .
; x; t/j D sign .
/ f .
; x; t/; (3.85)

@

@

f .
; x; t/ D ı.
/ � �.x;t/.
/; (3.86)

where ı.
/ is the Dirac measure, and �.x;t/.
/ is a nonnegative measure in .
; x; t/
such that Z

R

�.x;t/.
/ d
 D 1 (3.87)

for almost all .x; t/.

Remark 3.24 The derivative in (3.86) is to be interpreted in the distributional sense,
i.e., (3.86) means that

�
Z
R

f .
; x; t/' 0.
/ d
 D
Z
R

@

@

f .
; x; t/'.
/ d


D
Z
R

�
ı.
/� �.x;t/.
/

�
'.
/ d
;

for all ' 2 C1
0 .R/.
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Proof The first equality, (3.84) follows from the observation

un.x; t/ D
Z
R

�.
; un.x; t// d
:

To prove (3.85) we choose a test function of the form '.x; t/ .
/, where the  has
support in .0;1/ and ' � 0. By definition of the weak-star limit,

“
˝

Z
R

f .
; x; t/ .
/'.x; t/ d
 dx dt

D lim
n!1

“
˝

Z
R

�.
; un.x; t// .
/'.x; t/ d
 dx dt � 0:

Thus f � 0 for 
 � 0, and one similarly shows that f � 0 if 
 � 0.
To prove (3.86), by Remark 3.24 we have that for all test functions '.
; x; t/,

“
˝

Z
R

@

@

�.
; un/'.
; x; t/ d
 dx dt

D �
“
˝

Z
R

�.
; un/
@

@

'.
; x; t/ d
 dx dt

D
“
˝

�
'.0; x; t/ � '.un; x; t/

�
dx dt

D
“
˝

Z
R

	
ı.
/'.
; x; t/ � ıun.
/'.
; x; t/



d
dx dt;

where ıun is the Dirac mass centered at un. Thus we define

�n;.x;t/.
/ D ıun.
/;

so that

@

@

�.
; un.x; t// D ı.
/� �n;.x;t/.
/:

The measure �n;.x;t/ is a probability measure in the first variable, in the sense that it
is nonnegative and has unit total mass. Thus we have that there exists a nonnegative
measure �.x;t/ such that

Z
R

�n;.x;t/.
/ .
/ d
 !
Z
R

 .
/ �.x;t/.
/ d
;

for all continuous functions  . In order to conclude, we must prove (3.87). Choose
a test function of the form  .
/'.x; t/, where  has compact support and  � 1
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for j
j � kunk1. Then

0 D �
“
˝

Z
R

�.
; un/ 
0.
/'.x; t/ d
 dx dt

D
“
˝

�
1 �

Z
R

�n;.x;t/.
/ d


�
'.x; t/ dx dt

!
“
˝

�
1 �

Z
R

�.x;t/.
/ d


�
'.x; t/ dx dt as n ! 1.

Thus (3.87) holds. �

If now un
�
* u in L1, then we have

un.x; t/ D
Z
R

�.
; un.x; t// d
 !
Z
R

f .
; x; t/ d
 D u.x; t/:

Similarly, for every function S.u/ with S 0 bounded and S.0/ D 0,

S.un/ D
Z
R

S 0.
/�.
; un/ d
 D
Z
R

S.
/�n;.x;t/.
/ d
:

Therefore, if NS.x; t/ denotes the weak-star limit of S.un/, then

NS.x; t/ D
Z
R

S 0.
/f .
; x; t/ d
 D
Z
R

S.
/�.x;t/.
/ d
: (3.88)

The limit measure �.x;t/ is called the Young measure associated with the sequence
fung. If S is strictly convex, then using (3.83), we obtain

NS.x; t/ D
Z
R

S 0.
/f .
; x; t/ d
 �
Z
R

S 0.
/�.
; u/ d
 D S.u/;

with equality if and only if f .
; x; t/ D �.
; u.x; t//. Hence, un ! u strongly, if
and only if �.x;t/.
/ D ıu.
/.

We have proved the following theorem:

Theorem 3.25 (Young’s theorem) Let fung be a sequence of functions from˝ D
R � Œ0;1/ with values in Œ�K;K�. Then there exists a family of probability mea-
sures

˚
�.x;t/.
/

�
.x;t/2˝ , depending weak-star measurably on .x; t/, such that for

every continuously differentiable function S W Œ�K;K� ! R with S 0 bounded and
S.0/ D 0, we have

S.un/
�
* NS in L1.˝/ as n ! 1;
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where
NS.x; t/ D

Z
R

S.
/ d�.x;t/.
/ for a.e. .x; t/ 2 ˝;

and where the exceptional set possibly depends on S . Furthermore,

supp �.x;t/ � Œ�K;K� for a.e. .x; t/ 2 ˝:
We also have that un ! u strongly in L1loc.˝/ if and only if �.x;t/.
/ D ıu.x;t/.
/.

} Example 3.26
Let us compute the Young measure associated with the sequence fsin.nx/g. In this
case the weak limit of �.
; sin.nx// will be independent of x. If 
 > 0, then

bZ
a

�.
; sin.nx// dx D meas fx 2 Œa; b� j sin.nx/ > 
g
b � a ;

and similarly, if 
 < 0, then

bZ
a

�.
; sin.nx// dx D �meas fx 2 Œa; b� j sin.nx/ < 
g
b � a :

We have �.
; sin.nx//
�
* f.
/, where

f .
/ D 1

2�

8̂̂
<
ˆ̂:
2.�

2
� sin�1.
// 0 < 
 � 1;

�2.�
2

C sin�1.
// �1 � 
 � 0;

0 otherwise.

This can be rewritten

f .
/ D �Œ�1;1�.
/
�
1

2
sign .
/� 1

�
sin�1.
/

�
:

Thus from (3.86),

f 0.
/ D ı.
/� �x.
/ D ı.
/ � �Œ�1;1�.
/ 1

�
p
1 � 
2 ;

and we see that

�x.
/ D �Œ�1;1�.
/

�
p
1 � 
2 : }

Theorem 3.25 is indeed the main reason why measure-valued solutions are easier
to obtain than weak solutions, since for every bounded sequence of approximations
to a solution of a conservation law we can associate (at least) one probability mea-
sure �.x;t/ representing the weak-star limits of the sequence. Thus we avoid having
to show that the method is TVD stable and use Helly’s theorem to be able to work
with the limit of the sequence. The measures associated with weakly convergent
sequences are frequently called Young measures.
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Intuitively, when we are in the situation that we have no knowledge of eventual
oscillations in u" as " ! 0, the Young measure �.x;t/.E/ can be thought of as the
probability that the “limit” at the point .x; t/ takes a value in the set E. To be a bit
more precise, define

�
";r
.x;t/.E/ D 1

r2
meas

n
.y; s/

ˇ̌ jx � yj ; jt � sj � r and u".y; s/ 2 E
o
:

Then for small r , �";r.x;t/.E/ is the probability that u
" takes values in E near x. It can

be shown that

�.x;t/ D lim
r!0

lim
"!0

�";r.x;t/I

see [10].

Measure-Valued Solutions

Now we can define measure-valued solutions. We use the notation

h�.x;t/; gi D
Z
R

g.
/d�.x;t/.
/:

A probability measure �.x;t/ is a measure-valued solution to (3.1) if

˝
�.x;t/; Id

˛
t
C ˝
�.x;t/; f

˛
x

D 0

in the distributional sense, where Id is the identity map, Id.
/ D 
. As with weak
solutions, we call a measure-valued solution compatible with the entropy pair .
; q/
(recall that q0 D 
0f 0) if

˝
�.x;t/; 


˛
t
C ˝
�.x;t/; q

˛
x

� 0 (3.89)

in the distributional sense. If (3.89) holds for all convex 
, we call �.x;t/ a measure-
valued entropy solution. Clearly, weak entropy solutions are also measure-valued
solutions, as we can see by setting

�.x;t/ D ıu.x;t/

for a weak entropy solution u. But measure-valued solutions are more general than
weak solutions, since for every two measure-valued solutions �.x;t/ and �.x;t/ and
� 2 Œ0; 1�, the convex combination

��.x;t/ C .1 � �/�.x;t/ (3.90)

is also a measure-valued solution. It is not clear, however, what are the initial
data satisfied by the measure-valued solution defined by (3.90). We would like our
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measure-valued solutions initially to be Dirac masses, i.e., �.x;0/ D ıu0.x/. Con-
cretely, we shall assume the following:

lim
T#0

1

T

TZ
0

AZ
�A

˝
�.x;t/; jId�u0.x/j

˛
dx dt D 0 (3.91)

for every A. For every Young measure �.x;t/ we have the following lemma.

Lemma 3.27 Let �.x;t/ be a Young measure with supp �.x;t/ � Œ�K;K�, and let !"
be a standard mollifier in x and t . Then:

(i) there exists a Young measure �".x;t/ defined byD
�".x;t/; g

E
D ˝
�.x;t/; g

˛ � !"
D
“

!".x � y/!".t � s/ ˝�.y;s/; g˛ dy ds: (3.92)

(ii) For all .x; t/ 2 R � Œ0; T � there exist bounded measures @x�".x;t/ and @t�
"
.x;t/,

defined by D
@t�

"
.x;t/; g

E
D @t

D
�".x;t/; g

E
;D

@x�
"
.x;t/; g

E
D @x

D
�".x;t/; g

E
:

(3.93)

Proof Clearly, the right-hand side of (3.92) is a bounded linear functional on
C0.R/, the set of compactly supported continuous functions, and hence the
Riesz representation theorem guarantees the existence of �".x;t/. To show that
k�".x;t/kM.R/ D 1, where M.R/ is the set of all Radon measures, we let f ng
be a sequence of test functions such that˝

�.x;t/;  n
˛ ! 1; as n ! 1.

Then for all 1 > � > 0 we can find an N such that˝
�.x;t/;  n

˛
> 1 � �;

for n � N . Thus, for such n, D
�".x;t/;  n

E
� 1 � �;

and therefore k�".x;t/kM.R/ � 1. The opposite inequality is immediate, sinceˇ̌̌D
�".x;t/;  

Eˇ̌̌
� ˇ̌˝

�.x;t/;  
˛ˇ̌

for all test functions  . Therefore, �".x;t/ is a probability measure. Similarly, the
existence of @x�".x;t/ and @t�

"
.x;t/ follows by the Riesz representation theorem. Since

�.x;t/ is bounded, the boundedness of @x�".x;t/ and @t�
"
.x;t/ follows for each fixed

" > 0. �

Now that we have established the existence of the “smooth approximation” to
a Young measure, we can use this to prove the following lemma.
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Lemma 3.28 Assume that f is a Lipschitz continuous function and that �.x;t/.
/
and �.x;t/.�/ are measure-valued solutions with support in Œ�K;K�. Then

@t
˝
�.x;t/ ˝ �.x;t/; j
 � �j˛C @x

˝
�.x;t/ ˝ �.x;t/; q.
; �/

˛ � 0; (3.94)

in the distributional sense, where

q.
; �/ D sign .
� �/ .f .
/ � f .�//;

and �.x;t/ ˝ �.x;t/ denotes the product measure d�.x;t/d�.x;t/ on R � R.

Proof If �".x;t/ and �
"
.x;t/ are defined by (3.92), and ' 2 C1

0 .R � Œ0; T �/, then we
have that“

R�Œ0;T �

˝
�.x;t/; g

˛
@t .' � !"/ dx dt D

“
R�Œ0;T �

D
�".x;t/; g

E
@t' dx dt

D �
“

R�Œ0;T �

D
@t�

"
.x;t/; g

E
' dx dt;

and similarly,

“
R�Œ0;T �

˝
�.x;t/; g

˛
@x .' � !"/ dx dt D �

“
R�Œ0;T �

D
@x�

"
.x;t/; g

E
' dx dt;

and analogous identities also hold for �.x;t/. Therefore,

D
@t�

"
.x;t/; j
 � �j

E
C
D
@x�

"
.x;t/; q.
; �/

E
� 0; (3.95)D

@t�
"
.x;t/; j
� �j

E
C
D
@x�

"
.x;t/; q.
; �/

E
� 0: (3.96)

Next, we observe that for every continuous function g,

@t

D
�".x;t/ ˝ �".x;t/; g.
; �/

E
D
Z
R

@t

0
@Z

R

g.
;�/ d�".x;t/.
/

1
A d�".x;t/.�/

C
Z
R

@t

0
@Z

R

g.
;�/ d�".x;t/.�/

1
A d�".x;t/.
/

D
Z
R

D
@t�

"
.x;t/; g.
; �/

E
d�".x;t/.�/

C
Z
R

D
@t�

"
.x;t/; g.
; �/

E
d�".x;t/.
/;
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and an analogous equality holds for

@x

D
�".x;t/ ˝ �".x;t/; g.
; �/

E
:

Therefore, we find that

“
R�Œ0;T �

h D
�
"1
.x;t/ ˝ �

"2
.x;t/; j
 � �j

E
't C

D
�
"1
.x;t/ ˝ �

"2
.x;t/; q.
; �/

E
'x.x; t/

i
dx dt

D �
“

R�Œ0;T �

	Z
R

D
@t�

"1
.x;t/; j
� �j

E
C
D
@x�

"1
.x;t/; q.
; �/

E
d�

"2
.x;t/.�/



' dx dt

�
“

R�Œ0;T �

	Z
R

D
@t�

"2
.x;t/; j
� �j

E
C
D
@x�

"2
.x;t/; q.
; �/

E
d�

"1
.x;t/.
/



' dx dt

� 0;

for every nonnegative test function '. Now we would like to conclude the proof by
sending "1 and "2 to zero. Consider the second term:

I "1;"2 D
“

R�Œ0;T �

D
�
"1
.x;t/ ˝ �

"2
.x;t/; q.
; �/

E
'x.x; t/ dx dt

D
“

R�Œ0;T �

• D
�
"2
.x;t/; q.
; �/

E
d�.y;s/

� !"1.x � y/!"1.t � s/'x.x; t/ dy ds dx dt:

Since • D
�
"2
.x;t/; q.
; �/

E
d�.y;s/!"1.x � y/!"1.t � s/'x.x; t/ dy ds

!
Z D

�
"2
.x;t/; q.
; �/

E
d�.x;t/'x.x; t/ < 1

for almost all .x; t/ as "1 ! 0, we can use the Lebesgue dominated convergence
theorem to conclude that

lim
"1!0

I "1;"2 D
“

R�Œ0;T �

D
�.x;t/ ˝ �

"2
.x;t/; q.
; �/

E
'x.x; t/ dx dt:

We can apply this argument once more for "2, obtaining

lim
"2!0

lim
"1!0

I "1;"2 D
“

R�Œ0;T �

˝
�.x;t/ ˝ �.x;t/; q.
; �/

˛
'x.x; t/ dx dt: (3.97)
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Similarly, we obtain

lim
"2!0

lim
"1!0

“
R�Œ0;T �

D
�
"1
.x;t/ ˝ �

"2
.x;t/; j
 � �j

E
't .x; t/ dx dt

D
“

R�Œ0;T �

˝
�.x;t/ ˝ �.x;t/; j
 � �j˛ 't .x; t/ dx dt:

(3.98)

This concludes the proof of the lemma. �

Let fu"g and fv"g be the sequences associated with �.x;t/ and �.x;t/, respectively,
and assume that for t � T , the support of u". � ; t/ and v". � ; t/ is contained in
a finite interval I . Then both u". � ; t/ and v". � ; t/ are in L1.R/ uniformly in ". This
means that both ˝

�.x;t/; j
j˛ and
˝
�.x;t/; j
j˛

are in L1.R/ for almost all t . Using this observation and the preceding lemma,
Lemma 3.28, we can continue. Define a smooth approximation to the characteristic
function of Œt1; t2� by

�".t/ D
tZ
0

�
!".s � t1/� !".s � t2/

�
ds;

where t2 > t1 > 0 and !" is the usual mollifier. Also define

 n.x/ D

8̂̂
<
ˆ̂:
1 for jxj � n;

2.1� x=.2n// for n < jxj � 2n;

0 otherwise,

and set  ";n D  n � !".x/. Hence
'.x; t/ D �".t/ ";n.x/

is an admissible test function. Furthermore,
ˇ̌
 0
";n

ˇ̌ � 1=n, and �".t/ tends to the
characteristic function of the interval Œt1; t2� as " ! 0. Therefore,

� lim
"!0

“
R�Œ0;T �

h ˝
�.x;t/ ˝ �.x;t/; j
 � �j˛ 't

C ˝
�.x;t/ ˝ �.x;t/; q.
; �/

˛
'x

i
dx dt � 0:

Set

An.t/ D
Z
R

˝
�.x;t/ ˝ �.x;t/; j
 � �j˛ n.x/ dx:



158 3 A Short Course in Difference Methods

Using this definition, we find that

An.t2/ �An.t1/ �
t2Z
t1

Z
R

˝
�.x;t/ ˝ �.x;t/; j
� �j˛ j 0

n.x/j dx dt: (3.99)

The right-hand side of this is bounded by

kf kLip
1

n

	��˝�.x;t/; j
j˛��
L1.R/

C ��˝�.x;t/; j�j˛��
L1.R/



! 0

as n ! 1. Since �.x;t/ and �.x;t/ are probability measures, for almost all t , the set˚
x j h�.x;t/; 1i ¤ 1 and h�.x;t/; 1i ¤ 1

�
has zero Lebesgue measure. Therefore, for almost all t ,

An.t/ �
Z
R

˝
�.x;t/ ˝ �.x;t/; j
� u0.x/j C j� � u0.x/j

˛
dx

D
Z
R

˝
�.x;t/; j
� u0.x/j

˛
dx C

Z
R

˝
�.x;t/; j� � u0.x/j

˛
dx:

Integrating (3.99) with respect to t1 from 0 to T , then dividing by T and sending T
to 0, using (3.91), and finally sending n ! 1, we find that“

R�R

j
 � �j d�.x;t/ d�.x;t/ D 0; for .x; t/ … E, (3.100)

where the Lebesgue measure of the (exceptional) set E is zero. Suppose now that
for .x; t/ … E there is a N
 in the support of �.x;t/ and a N� in the support of �.x;t/ andN
 ¤ N�. Then we can find positive functions g and h such that

0 � g � 1; 0 � h � 1;

and

N
 2 supp.g/; N� 2 supp.h/; supp.g/\ supp.h/ D ;:
Furthermore, ˝

�.x;t/; g
˛
> 0 and

˝
�.x;t/; h

˛
> 0:

Thus

0 <

“
R�R

g.
/h.�/ d�.x;t/ d�.x;t/

� sup

;�

ˇ̌̌
ˇg.
/h.�/
 � �

ˇ̌̌
ˇ
“

R�R

j
 � �j d�.x;t/ d�.x;t/ D 0:

This contradiction shows that both �.x;t/ and �.x;t/ are unit point measures with
support at a common point. Precisely, we have proved the following theorem:
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Theorem 3.29 Let u0 2 L1.R/\ L1.R/.

(i) Suppose that �.x;t/ is a measure-valued entropy solution to the conservation
law

ut C f .u/x D 0

such that �.x;t/ satisfies the initial condition (3.91), and that h�.x;t/; j
ji is in
L1.Œ0; T �IL1.R//. Then there exists a function u 2 L1.Œ0; T �IL1.R// \
L1.R � Œ0; T �/ such that

�.x;t/ D ıu.x;t/; for almost all .x; t/.

(ii) Assume that �.x;t/ is (another) measure-valued entropy solution satisfying the
same regularity assumptions as �.x;t/. Then

�.x;t/ D �.x;t/ D ıu.x;t/; for almost all .x; t/.

In order to avoid checking (3.91) directly, we can use the following lemma.

Lemma 3.30 Let �.x;t/ be a probability measure, and assume that for all test func-
tions '.x/ we have

lim
�!0C

1

�

�Z
0

Z ˝
�.x;t/; Id

˛
'.x/ dx dt D

Z
u0.x/'.x/ dx; (3.101)

and that for all nonnegative '.x/ and for at least one strictly convex continuous
function 
,

lim sup
�!0C

1

�

�Z
0

Z ˝
�.x;t/; 


˛
'.x/ dx dt �

Z

 .u0.x// '.x/ dx: (3.102)

Then (3.91) holds.

Proof We shall prove

lim
�!0C

1

�

�Z
0

AZ
�A

h�.x;t/;
�
Id�u0.x/

�Ci dx dt D 0; (3.103)

from which the desired result will follow from (3.101) and the identity

j
 � u0.x/j D 2
�

� u0.x/

�C � �

� u0.x/

�
;

where aC D maxfa; 0g denotes the positive part of a. To get started, we write 
0
C

for the right-hand derivative of 
. It exists by virtue of the convexity of 
; moreover,


.
/ � 
.y/C 
0
C.y/.
 � y/
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for all 
. Whenever " > 0, write

	.y; "/ D 
.y C "/ � 
.y/
"

� 
0
C.y/:

Since 
 is strictly convex, 	.y; "/ > 0, and this quantity is an increasing function of
". In particular, if 
 > y C ", then 	.y; 
 � y/ > 	.y; "/, or


.
/ > 
.y/C 
0
C.y/.
 � y/C 	.y; "/.
 � y/:

In every case, then,


.
/ > 
.y/C 
0
C.y/.
 � y/C 	.y; "/

�
.
 � y/C � "�: (3.104)

On the other hand, whenever y < 
 < y C ", then 	.y; 
 � y/ > 	.y; "/, so


.
/ < 
.y/C 
0
C.y/.
 � y/C "	.y; "/ .y � 
 < y C "/: (3.105)

Let us now assume that ' � 0 is such that

'.x/ ¤ 0 ) y � u0.x/ < y C ": (3.106)

We use (3.104) on the left-hand side and (3.105) on the right-hand side of (3.102),
and get

lim sup
�!0C

1

�

�Z
0

Z
R

h�.x;t/;
�

.y/C 
0

C.y/.Id�y/

C 	.y; "/
�
.Id�y/C � "��i'.x/ dx dt

�
Z
R

�

.y/C 
0

C.y/
�
u.x0/� y�C "	.y; "/

�
'.x/ dx:

Here, thanks to (3.101) and the fact that �.x;t/ is a probability measure, all the terms
not involving 	.y; "/ cancel, and then we can divide by 	.y; "/ ¤ 0 to arrive at

lim sup
�!0C

1

�

�Z
0

Z
R

h�.x;t/; .Id�y/Ci'.x/ dx dt � 2"

Z
R

'.x/ dx:

Now, remembering (3.106), we see that whenever '.x/ ¤ 0 we have .
 � y/C �
.
 � u0.x//C C ", so the above implies

lim sup
�!0C

1

�

�Z
0

Z
R

h�.x;t/;
�
Id�u0.x/

�Ci'.x/ dx dt � 3"

Z
R

'.x/ dx

whenever (3.106) holds.
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It remains only to divide up the common support Œ�M;M� of all the measures
�.x;t/, writing yi D �M C i" for i D 0; 1; : : : ; N � 1, where " D 2M=N . Let 'i
be the characteristic function of Œ�A;A� \ u�1

0 .Œyi ; yi C "//, and add together the
above inequalities, one for each i , to arrive at

lim sup
�!0C

1

�

�Z
0

AZ
�A

h�.x;t/;
�
Id�u0.x/

�Ci'.x/ dx dt � 3"

AZ
�A
'.x/ dx:

Since " can be made arbitrarily small, (3.103) follows, and the proof is complete.
�

Remark 3.31 We cannot conclude that3

lim
�!0C

1

�

�Z
0

Z
R

h�.x;t/; j Id�u0.x/ji dx dt D 0 (3.107)

from the present assumptions. Here is an example to show this.
Let �.x;t/ D ��.x;t/, where �ˇ D 1

2
.ı�ˇ C ıˇ/ and � is a continuous, nonnegative

function with �.x; 0/ D 0. Let u0.x/ D 0 and 
.y/ D y2.
Then (3.101) holds trivially, and (3.102) becomes

lim sup
�!0C

1

�

�Z
0

Z
R

�.x; t/2'.x/ dx dt D 0;

which is also true due to the stated assumptions on � .
The desired conclusion (3.107), however, is now

lim sup
�!0C

1

�

�Z
0

Z
R

�.x; t/ dx dt D 0:

But the simple choice

�.x; t/ D te�.xt/2

yields

lim sup
�!0C

1

�

�Z
0

Z
R

�.x; t/ dx dt D p
�:

We shall now describe a framework that allows one to prove convergence of
a sequence of approximations without proving that the method is TV stable. Un-
fortunately, the application of this method to concrete examples, while not very

3 Where the integral over the compact interval Œ�A;A� in (3.91) has been replaced by an integral
over the entire real line.
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difficult, involves quite large calculations, and will be omitted here. Readers are
encouraged to try their hands at it themselves.

We give one application of these concepts. The setting is as follows. Let un be
computed from a conservative and consistent scheme, and assume uniform bound-
edness of un. Young’s theorem states that there exists a family of probability mea-

sures �.x;t/ such that g.un/
�
* h�.x;t/; gi for Lipschitz continuous functions g. We

assume that the CFL condition, 
 supu jf 0.u/j � 1, is satisfied. The next theorem
states conditions, strictly weaker than TVD, for which we prove that the limit mea-
sure �.x;t/ is a measure-valued solution of the scalar conservation law.

Theorem 3.32 Let u0 2 L1.R/ \ L1.R/. Assume that the sequence fung is the
result of a conservative, consistent method, and define u�t as in (3.27). Assume that
u�t is uniformly bounded inL1.R�Œ0; T �/, T D n�t . Let�tn ! 0 be a sequence

such that u�tn
�
* u, and let �.x;t/ be the Young measure associated with u�tn , and

assume that unj satisfies the estimate

.�x/ˇ
NX
nD0

X
j

ˇ̌̌
unjC1 � unj

ˇ̌̌
�t � C.T /; (3.108)

for some ˇ 2 Œ0; 1/ and some constant C.T /. Then �.x;t/ is a measure-valued solu-
tion to (3.1).

Furthermore, let .
; q/ be a strictly convex entropy pair, and let Q be a numer-
ical entropy flux consistent with q. Write 
nj D 
.unj / and Q

n
jC1=2 D Q.un/jC1=2.

Assume that

1

�t

	

nC1
j � 
nj



C 1

�x

	
Qn
jC1=2 �Qn

j�1=2



� Rnj (3.109)

for all n and j , where Rnj satisfies,

lim
�t!0

NX
nD0

X
j

'nj R
n
j �x�t D 0 (3.110)

for all nonnegative ' 2 C1
0 where 'nj D '.j�x; n�t/. Then �.x;t/ is a measure-

valued solution compatible with .
; q/, and the initial data is assumed in the sense
of (3.101), (3.102). If (3.109) and (3.110) hold for all entropy pairs .
; q/, then
�.x;t/ is a measure-valued entropy solution to (3.1).

Remark 3.33 For ˇ D 0, (3.108) is the standard TV estimate, while for ˇ > 0,
(3.108) is genuinely weaker than a TV estimate.

Proof We start by proving the first statement in the theorem, assuming (3.108).
As before, we obtain (3.28) by rearranging. For simplicity, we now write F n

jC1=2 D
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F.un/jC1=2, f n
j D f .unj /, and observe that F

n
jC1=2 D f nj C

	
F n
jC1=2 � f nj



, getting

“ 	
u�tD

t
C'

n
j C f .u�t /DC'nj



dx dt

D
X
j;n

DC'nj
	
F n
jC1=2 � f n

j



�t �x:

(3.111)

Here we use the notation

u�t D unj for .x; t/ 2 Œj�x; .j C 1/�x/ � Œn�t; .nC 1/�t/ ;

and

Dt
C'

n
j D 1

�t

	
'nC1
j � 'nj



;

DC'nj D 1

�x

	
'njC1 � 'nj



:

The first term on the left-hand side in (3.111) reads“
u�tD

t
C'

n
j dx dt D

“ ˝
�.x;t/; Id

˛
't dx dt C

“ �
u�t � ˝

�.x;t/; Id
˛�
't dx dt

C
“

u�t

	
Dt

C'
n
j � 't



dx dt: (3.112)

The third term on the right-hand side of (3.112) clearly tends to zero as �t goes to
zero. Furthermore, by definition of the Young measure �.x;t/, the second term tends
to zero as well. Thus the left-hand side of (3.112) approaches

’ h�.x;t/; Idi't dx dt .
One can use a similar argument for the second term on the left-hand side of

(3.111) to show that the (whole) left-hand side of (3.111) tends to“ �˝
�.x;t/; Id

˛
't C ˝

�.x;t/; f
˛
'x
�
dx dt (3.113)

as �t ! 0. We now study the right-hand side of (3.111). Mimicking the proof of
the Lax–Wendroff theorem, we have

ˇ̌̌
F n
jC1=2 � f nj

ˇ̌̌
� C

qX
kD�p

ˇ̌̌
unjCk � unj

ˇ̌̌
:

Therefore,ˇ̌̌
ˇX
j;n

DC'nj
	
F n
jC1=2 � f nj



�t�x

ˇ̌̌
ˇ

� Ck'kLip.p C q C 1/

NX
nD0

X
j

ˇ̌̌
unjC1 � unj

ˇ̌̌
�t�x

� Ck'kLip.p C q C 1/.�x/1�ˇ; (3.114)
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using the assumption (3.108). Thus the right-hand side of (3.114), and hence also
of (3.111), tends to zero. Since the left-hand side of (3.111) tends to (3.113), we
conclude that �.x;t/ is a measure-valued solution. Using similar calculations, and
(3.110), one shows that �.x;t/ is also an entropy measure-valued solution.

It remains to show consistency with the initial condition, i.e., (3.101) and (3.102).
Let '.x/ be a test function, and we use the notation '.j�x/ D 'j . From the
definition of unC1

j , after a summation by parts, we have thatX
j

'j

	
unC1
j � unj



�x D �t

X
j

F n
jC1=2DC'j�x � O .1/�t;

since unj is bounded. Recall that ' D '.x/, we getˇ̌̌
ˇX
j

'j

	
unj � u0j



�x

ˇ̌̌
ˇ � O .1/ n�t: (3.115)

Let t1 D n1�t and t2 D n2�t . Then (3.115) yieldsˇ̌̌
ˇ 1

.n2 C 1 � n1/�t
n2X
nDn1

X
j

'j

	
unj � u0j



�x�t

ˇ̌̌
ˇ � O .1/ t2;

which implies that the Young measure �.x;t/ satisfies

ˇ̌̌
ˇ 1

t2 � t1

t2Z
t1

'.x/
˝
�.x;t/; Id

˛
dx dt �

Z
'.x/u0.x/ dx

ˇ̌̌
ˇ � O .1/ t2: (3.116)

We let t1 ! 0 and set t2 D � in (3.116), obtainingˇ̌̌
ˇ̌̌1
�

�Z
0

Z
'.x/

˝
�.x;t/; Id

˛
dx dt �

Z
'.x/u0.x/ dx

ˇ̌̌
ˇ̌̌ � O .1/ �; (3.117)

which proves (3.101). Now for (3.102). We have that there exists a strictly convex
entropy 
 for which (3.109) holds. Now let '.x/ be a nonnegative test function.
Using (3.109), and proceeding as before, we obtainˇ̌̌

ˇX
j

	

nj � 
0j



'j�x

ˇ̌̌
ˇ � O .1/ n�t C

nX
lD0

X
j

Rlj 'j�t�x:

Using this estimate and the assumption on Rlj , (3.110), we can use the same argu-
ments as in proving (3.117) to prove (3.102). The proof of the theorem is complete.

�

A trivial application of this approach is found by considering monotone schemes.
Here we have seen that (3.108) holds for ˇ D 0, and (3.109) for Rnj D 0. The the-
orem then gives the convergence of these schemes without using Helly’s theorem.
However, in this case the application does not give the existence of a solution, since
we must have this in order to use DiPerna’s theorem. The main usefulness of the
method is for schemes in several space dimensions, where TV bounds are more
difficult to obtain.
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3.6 Notes

The Lax–Friedrichs scheme was introduced by Lax in 1954; see [124]. Godunov
discussed what has later become the Godunov scheme in 1959 as a method to study
gas dynamics; see [80]. The CFL condition was introduced in the seminal paper
[50]; see also [57].

The Lax–Wendroff theorem, Theorem 3.4, was first proved in [128]. Theo-
rem 3.8 was proved by Oleı̆nik in her fundamental paper [145]; see also [169].
Several of the key results concerning monotone schemes are due to Crandall and
Majda [53], [52]. Theorem 3.10 is due to Harten, Hyman, and Lax; see [84].
Harten’s lemma, Lemma 3.12, can be found in [83]. See also [148].

The error analysis is based on the fundamental analysis by Kuznetsov, [119],
where one also can find a short discussion of the examples we have analyzed,
namely the smoothing method, the method of vanishing viscosity, as well as mono-
tone schemes. Our presentation of the a priori estimates follows the approach due
to Cockburn and Gremaud; see [44] and [45], where also applications to numerical
methods are given.

The concept of measure-valued solutions is due to DiPerna, and the key results
can be found in [62], while Lemma 3.30 is to be found in [61]. Our presentation
of the Young measure follows the exposition of Perthame, [150]. For further infor-
mation regarding the functional-analytic framework, see, e.g., [34] and references
therein. The proof of Lemma 3.30 and Remark 3.31 are due to H. Hanche-Olsen.
Our presentation of the uniqueness of measure-valued solutions, Theorem 3.29, is
taken mainly from Szepessy, [173]. Theorem 3.32 is due to Coquel and LeFloch,
[48]; see also [49], where several extensions are discussed. For numerical schemes
that satisfy the criteria in Theorem 3.32, see [49] and [65].

3.7 Exercises

3.1 Consider the difference scheme (3.4). Show that if u0 is given by

u0j D
(
0 for j < 0,

1 for j � 0,

then un D u0 for all n, thus indicating the solution u.x; t/ D �Œ0;1/. Deter-
mine the weak entropy solution.

3.2 Show that the Lax–Wendroff and the MacCormack methods are of second
order.

3.3 The Engquist–Osher (or generalized upwind) method, see [63], is a conserva-
tive difference scheme with a numerical flux defined as follows:

FjC1=2.u/ D f EO
�
uj ; ujC1

�
; where

f EO.u; v/ D
uZ
0

maxff 0.s/; 0g ds C
vZ
0

minff 0.s/; 0g ds C f .0/:
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(a) Show that this method is consistent and monotone.
(b) Find the order of the scheme.
(c) Show that the Engquist–Osher flux f EO can be written

f EO.u; v/ D 1

2

0
@f .u/C f .v/ �

vZ
u

jf 0.s/j ds
1
A :

(d) If f .u/ D u2=2, show that the numerical flux can be written

f EO.u; v/ D 1

2

�
maxfu; 0g2 C minfv; 0g2� :

Generalize this simple expression to the case that f 00.u/ ¤ 0 and
limjuj!1 jf .u/j D 1.

3.4 Why does the method

unC1
j D unj � �t

2�x

	
f
	
unjC1



� f

	
unj�1




not give a viable difference scheme?

3.5 In the derivation of the Godunov scheme it is assumed that�t maxu jf 0.u/j �
1
2
�x, yet it is stated that the method is well defined if the CFL condition
�t maxu jf 0.u/j � �x is satisfied; see (3.9). Please explain.

3.6 Show that (3.24) is the model equation for the Lax–Friedrichs scheme.
3.7 Show that the Lax–Friedrichs scheme is monotone also in the case that the

flux function is assumed only to be Lipschitz continuous.
3.8 Show that Heun’s method is unstable.
3.9 We study a nonconservativemethod for Burgers’s equation. Assume that u0j 2

Œ0; 1� for all j . Then the characteristic speed is nonnegative, and we define

unC1
j D unj � 
unC1

j

	
unj � unj�1



; n � 0; (3.118)

where 
 D �t=�x.

(a) Show that this yields a monotone method, provided that a CFL condition
holds.

(b) Show that this method is consistent and determine the truncation error.

3.10 Assume that f 0.u/ > 0 and that f 00.u/ � 2c > 0 for all u in the range of u0.
We use the upwind method to generate approximate solutions to

ut C f .u/x D 0; u.x; 0/ D u0.x/I (3.119)

i.e., we set

unC1
j D unj � 


	
f .unj / � f .unj�1/



:

Set

vnj D unj � unj�1
�x

:
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(a) Show that

vnC1
j D

	
1 � 
f 0.unj�1/



vnj C 
f 0.unj�1/v

n
j�1

� �t

2

�
f 00.
j�1=2/

	
vnj


2 C f 00.
j�3=2/
	
vnj�1


2�
;

where 
j�1=2 is between unj and unj�1.
(b) Next, assume inductively that

vnj � 1

.nC 2/c�t
; for all j ,

and set Ovn D maxfmaxj vnj ; 0g. Then show that

OvnC1 � Ovn � c�t . Ovn/2 :

(c) Use this to show that

Ovn � Ov0
1C Ov0cn�t :

(d) Show that this implies that

uni � unj � �x.i � j / Ov0
1C Ov0cn�t ;

for i � j .
(e) Let u be the entropy solution of (3.119), and assume that

0 � max
x
u0
0.x/ D M < 1:

Show that for almost every x, y, and t we have that

u.x; t/ � u.y; t/
x � y � M

1C cMt
: (3.120)

This is the Oleı̆nik entropy condition for convex scalar conservation laws.

3.11 Assume that f is as in the previous exercise, and that u0 is periodic with
period p.

(a) Use uniqueness of the entropy solution to (3.119) to show that the entropy
solution u.x; t/ is also periodic in x with period p.

(b) Then use the Oleı̆nik entropy condition (3.120) to deduce that

sup
x

u.x; t/ � inf
x
u.x; t/ � Mp

1C cMt
:

Thus limt!1 u.x; t/ D Nu for some constant Nu.
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(c) Use conservation to show that

Nu D 1

p

pZ
0

u0.x/ dx:

3.12 Let unW Œ0; 1/ ! Œ�1; 1� be defined as

un.x/ D
(
1 x 2 Œ2k=2n; .2k C 1/=2n/;

�1 x 2 Œ.2k C 1/=2n; .2k C 2/=2n/;
for k D 0; : : : ; n � 1,

for n 2 N. Find the weak limit of un as n ! 1, and the associated Young
measure.

3.13 We shall consider a scalar conservation law with a “fractal” function as the
initial data. Define the set of piecewise linear functions

D D f�.x/ D Ax C B j x 2 Œa; b�; A;B 2 Rg;
and the map

F.�/ D

8̂̂
<
ˆ̂:
2D.x � a/C �.a/ for x 2 Œa; aC L=3�;

�D.x � a/C �.a/ for x 2 ŒaC L=3; aC 2L=3�;

2D.x � b/C �.b/ for x 2 ŒaC 2L=3; b�;

for � 2 D, where L D b � a and D D .�.b/ � �.a//=L. For a nonnegative
integer k introduce �j;k as the characteristic function of the interval Ij;k D
Œj=3k; .jC1/=3k�, j D 0; : : : ; 3kC1�1. We define functions fvkg recursively
as follows. Let

v0.x/ D

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

0 for x � 0;

x for 0 � x � 1;

1 for 1 � x � 2;

3 � x for 2 � x � 3;

0 for 3 � x:

Assume that vj;k is linear on Ij;k and let

vk D
3k�1X
jD�3k

vj;k�j;k; (3.121)

and define the next function vkC1 by

vkC1 D
3kC1�1X
jD0

F.vj;k/�j;k D
3kC2�1X
jD0

vj;kC1�j;kC1: (3.122)

In the left part of Fig. 3.9 we show the effect of the map F , and on the right
we show v5.x/ (which is piecewise linear on 36 D 729 segments).
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a b

Fig. 3.9 a The construction of F.�/ from �. b v5.x/

(a) Show that the sequence fvkgk>1 is a Cauchy sequence in the supremum
norm, and hence we can define a continuous function v by setting

v.x/ D lim
k!1

vk.x/:

(b) Show that v is not of bounded variation, and determine the total variation
of vk .

(c) Show that

v.j=3k/ D vk.j=3
k/;

for all integers j D 0; : : : ; 3kC1, k 2 N.
(d) Assume that f is a C1 function on Œ0; 1� with 0 � f 0.u/ � 1. We are

interested in solving the conservation law

ut C f .u/x D 0; u0.x/ D v.x/:

To this end we shall use the upwind scheme defined by (3.10), with�t D
�x D 1=3k, and

u0j D v.j�x/:

Show that u�t.x; t/ converges to an entropy solution of the conservation
law above.
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