
Chapter 1

Introduction

I have no objection to the use of the term “Burgers’ equation”
for the nonlinear heat equation
(provided it is not written “Burger’s equation”).
— Letter from Burgers to Batchelor (1968)

Hyperbolic conservation laws are partial differential equations of the form

@u

@t
C r � f .u/ D 0:

If we write f D .f1; : : : ; fm/, x D .x1; x2; : : : ; xm/ 2 Rm, and introduce initial
data u0 at t D 0, the Cauchy problem for hyperbolic conservation laws reads

@u.x; t/

@t
C

mX
jD1

@

@xj
fj .u.x; t// D 0; ujtD0 D u0: (1.1)

In applications, t normally denotes the time variable, while x describes the spatial
variation in m space dimensions. The unknown function u (as well as each fj ) can
be a vector, in which case we say that we have a system of equations, or u and each
fj can be a scalar. This book covers the theory of scalar conservation laws in several
space dimensions as well as the theory of systems of hyperbolic conservation laws
in one space dimension. In the present chapter we study the one-dimensional scalar
case to highlight some of the fundamental issues in the theory of conservation laws.

We use subscripts to denote partial derivatives, i.e., ut.x; t/ D @u.x; t/=@t .
Hence we may write (1.1) when m D 1 as

ut C f .u/x D 0; ujtD0 D u0: (1.2)

If we formally integrate equation (1.2) between two points x1 and x2, we obtain

x2Z
x1

ut dx D �
x2Z
x1

f .u/x dx D f .u .x1; t// � f .u .x2; t// :

Assuming that u is sufficiently regular to allow us to take the derivative outside the
integral, we get

d

dt

x2Z
x1

u.x; t/ dx D f .u .x1; t// � f .u .x2; t// : (1.3)
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2 1 Introduction

This equation expresses conservation of the quantity measured by u in the sense that
the rate of change in the amount of u between x1 and x2 is given by the difference
in f .u/ evaluated at these points.1 Therefore, it is natural to interpret f .u/ as the
flux density of u. Often, f .u/ is referred to as the flux function.

Consider a fluid with density � D �.x; t/ and velocity v. Assume that there are
no sources or sinks, so that amount of fluid is conserved. For a given and fixed
bounded domainD � Rm, conservation of fluid implies

d

dt

Z
D

�.x; t/ dx D �
Z
@D

.�v/ � n dSx; (1.4)

where n is the outward unit normal at the boundary @D ofD. If we interchange the
time derivative and the integral on the left-hand side of the equation, and apply the
divergence theorem on the right-hand side, we obtainZ

D

�.x; t/t dx D �
Z
D

div.�v/ dx (1.5)

which we rewrite as Z
D

�
�t C div.�v/

�
dx D 0: (1.6)

Since the domainD was arbitrary, we obtain the hyperbolic conservation law

�t C div.�v/ D 0: (1.7)

The above derivation is very fundamental, and only two assumptions are made.
First of all, we make the physical assumption of conservation, and secondly, we as-
sume sufficient smoothness of the functions to perform the necessary mathematical
manipulations. The latter aspect will a recurring theme throughout the book.

As a simple example of a conservation law, consider a one-dimensional medium
consisting of noninteracting particles, or material points, identified by their coordi-
nates y along a line. Let �.y; t/ denote the position of material point y at time t .
The velocity and the acceleration of y at time t are given by �t .y; t/ and �tt .y; t/,
respectively. Assume that for each t , �. � ; t/ is strictly increasing, so that two dis-
tinct material points cannot occupy the same position at the same time. Then the
function �. � ; t/ has an inverse  . � ; t/, so that y D  .�.y; t/; t/ for all t . Hence
x D �.y; t/ is equivalent to y D  .x; t/. Now let u denote the velocity of the
material point occupying position x at time t , i.e., u.x; t/ D �t . .x; t/; t/, or
equivalently, u.�.y; t/; t/ D �t .y; t/. Then the acceleration of material point y at
time t is

�tt .y; t/ D ut .�.y; t/; t/ C ux.�.y; t/; t/�t .y; t/

D ut .x; t/C ux.x; t/u.x; t/:

1 In physics one normally describes conservation of a quantity in integral form, that is, one starts
with (1.3). The differential equation (1.2) then follows under additional regularity conditions on u.
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If the material particles are noninteracting, so that they exert no force on each other,
and there is no external force acting on them, then Newton’s second law requires
the acceleration to be zero, giving

ut C
�
1

2
u2
�
x

D 0: (1.8)

The last equation, (1.8), is a conservation law; it expresses that u is conserved with
a flux density given by u2=2. This equation is often referred to as the Burgers equa-
tion without viscosity,2 and is in some sense the simplest nonlinear conservation
law.

Burgers’s equation, and indeed any conservation law, is an example of a quasi-
linear equation, meaning that the highest derivatives occur linearly. A general in-
homogeneous quasilinear equation for functions of two variables x and t can be
written

a.x; t; u/ut C b.x; t; u/ux D c.x; t; u/: (1.9)

If the coefficients a and b are independent of u, i.e., a D a.x; t/, b D b.x; t/, we
say that the equation is semilinear, while the equation is linear if, in addition, the
same applies to c, i.e., c D c.x; t/.

We may consider the solution as the surface S D f.t; x; u.x; t// 2 R3 j .t; x/ 2
R2g in R3. Let � be a given curve in R3 (which one may think of as the initial
data if t is constant) parameterized by .t.y/; x.y/; z.y// for y in some interval.
We want to construct the surface S � R3 parameterized by .t; x; u.x; t// such that
u D u.x; t/ satisfies (1.9) and � � S . It turns out to be advantageous to consider
the surface S parameterized by new variables .s; y/, thus t D t.s; y/, x D x.s; y/,
z D z.s; y/, in such a way that u.x; t/ D z.s; y/. We solve the system of ordinary
differential equations

@t

@s
D a;

@x

@s
D b;

@z

@s
D c; (1.10)

with

t.s0; y/ D t.y/; x.s0; y/ D x.y/; z.s0; y/ D z.y/: (1.11)

In this way we obtain the parameterized surface S D f.t.s; y/; x.s; y/; z.s; y/ j
.s; y/ 2 R2g. Assume that we can invert the relations x D x.s; y/, t D t.s; y/ and
write s D s.x; t/, y D y.x; t/. Then

u.x; t/ D z.s.x; t/; y.x; t// (1.12)

satisfies both (1.9) and the condition � � S . Namely, we have

c D @z

@s
D @u

@x

@x

@s
C @u

@t

@t

@s
D uxb C uta: (1.13)

2 Henceforth we will adhere to common practice and call it the inviscid Burgers equation.
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However, there are many pitfalls in the above construction: the solution (1.10) may
only be local, and we may not be able to invert the solution of the differential equa-
tion to express .s; y/ as functions of .x; t/. These problems are intrinsic to equations
of this type and will be discussed at length.

Equation (1.10) is called the characteristic equation, and its solutions are called
characteristics. This can sometimes be used to find explicit solutions of conserva-
tion laws. In the homogeneous case, that is, when c D 0, the solution u is constant
along characteristics, namely,

d

ds
u.x.s; y/; t.s; y// D uxxs C ut ts D uxb C uta D 0: (1.14)

} Example 1.1
Consider the (quasi)linear equation

ut � xux D �2u; u.x; 0/ D x;

with associated characteristic equations

@t

@s
D 1;

@x

@s
D �x; @z

@s
D �2z:

The general solution of the characteristic equations reads

t D t0 C s; x D x0e
�s; z D z0e

�2s :

Parameterizing the initial data for s D 0 by t D 0, x D y, and z D y, we obtain

t D s; x D ye�s ; z D ye�2s ;

which can be inverted to yield

u D u.x; t/ D z.s; y/ D xe�t : }
} Example 1.2
Consider the (quasi)linear equation

xut � t2ux D 0: (1.15)

Its associated characteristic equation is

@t

@s
D x;

@x

@s
D �t2:

This has solutions given implicitly by x2=2 C t3=3 equals a constant, since after
all, @.x2=2C t3=3/=@s D 0, so the solution of (1.15) is any function ' of x2=2C
t3=3, i.e., u.x; t/ D '.x2=2 C t3=3/. For example, if we wish to solve the initial
value problem (1.15) with u.x; 0/ D sin jxj, then u.x; 0/ D '.x2=2/ D sin jxj.
Consequently, '.	/ D sin

p
2	 with 	 � 0, and the solution u is given by

u.x; t/ D sin
p
x2 C 2t3=3; t � 0: }
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} Example 1.3 (Burgers’s equation)
If we apply this technique to Burgers’s equation(1.8) with initial data u.x; 0/ D
u0.x/, we get that

@t

@s
D 1;

@x

@s
D z; and

@z

@s
D 0

with initial conditions t.0; y/ D 0, x.0; y/ D y, and z.0; y/ D u0.y/. We cannot
solve these equations without knowing more about u0, but since u (or z) is constant
along characteristics, cf. (1.14), we see that the characteristics are straight lines. In
other words, the value of z is transported along characteristics, so that

t.s; y/ D s; x.s; y/ D y C sz D y C su0 .
/ ; z.s; y/ D u0.y/:

We may write this as

x D y C u0.y/t: (1.16)

If we solve this equation in terms of y D y.x; t/, we can use y to obtain u.x; t/ D
z.s; y/ D u0.y.x; t//, yielding the implicit relation

u.x; t/ D u0.x � u.x; t/t/: (1.17)

Given a point .x; t/, one can in principle determine the solution u D u.x; t/ from
equation (1.17). By differentiating equation (1.16) we find that

@x

@y
D 1C tu0

0 .y/ : (1.18)

Thus a solution certainly exists for all t > 0 if u0
0 > 0, since x is a strictly increasing

function of 
 in that case. On the other hand, if u0
0. Qx/ < 0 for some Qx, then a solution

cannot be found for t > t� D �1=u0
0. Qx/. For example, if u0.x/ D � arctan.x/,

there is no smooth solution for t > 1.
What actually happens when a smooth solution cannot be defined? From (1.18)

we see that for t > t�, there are several y that satisfy (1.16) for each x, since x
is no longer a strictly increasing function of y. In some sense, we can say that the
solution u is multivalued at such points. To illustrate this, consider the surface in
.t; x; u/-space parameterized by s and y,

.s; y C su0.y/; u0.
// :

Let us assume that the initial data are given by u0.x/ D � arctan.x/ and t0 D 0.
For each fixed t , the curve traced out by the surface is the graph of a (multivalued)
function of x. In Fig. 1.1 we see how the multivaluedness starts at t D 1 when the
surface “folds over,” and that for t > 1 there are some x that have three associated
u values. To continue the solution beyond t D 1 we have to choose among these
three u values. In any case, it is impossible to continue the solution and at the same
time keep it continuous. }

Now we have seen that no matter how smooth the initial function is, we cannot
expect to be able to define classical solutions of nonlinear conservation laws for
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Fig. 1.1 A multivalued solu-
tion

 t

 x

u

all time. In this case we have to extend the concept of solution in order to allow
discontinuities.

The standard way of extending the admissible set of solutions to partial differen-
tial equations is to look for weak solutions rather than so-called classical solutions,
by introducing distribution theory. Classical solutions are sufficiently differentiable
functions such that the differential equation is satisfied for all values of the inde-
pendent arguments. However, there is no unique definition of weak solutions. In the
context of hyperbolic conservation laws we do not need the full machinery of dis-
tribution theory, and our solutions will be functions that may be nondifferentiable.

In this book we use the following standard notation: C i.U / is the set of i times
continuously differentiable functions on a set U 	 Rn, and C i

0 .U / denotes the set
of such functions that have compact support in U . Then C1.U / D T1

iD0 C
i .U /,

and similarly for C1
0 . Where there is no ambiguity, we sometimes omit the set U

and write only C0, etc.
If we have a classical solution to (1.2), we can multiply the equation by a function

' D '.x; t/ 2 C1
0 .R � Œ0;1//, called a test function, and integrate by parts to get

0 D
1Z
0

Z
R

�
ut' C f .u/x'

�
dx dt

D �
1Z
0

Z
R

�
u't C f .u/'x

�
dx dt �

Z
R

u.x; 0/'.x; 0/ dx:

Observe that the boundary terms at t D 1 and at x D ˙1 vanish, since ' has
compact support, and that the final expression incorporates the initial data. Now we
define a weak solution of (1.2) to be a measurable function u.x; t/ such that

1Z
0

Z
R

�
u't C f .u/'x

�
dxdt C

Z
R

u0'.x; 0/ dx D 0 (1.19)

holds for all ' 2 C1
0 .R � Œ0;1//. We see that the weak solution u is no longer

required to be differentiable, and that a classical solution is also a weak solution.
We will spend considerable time in understanding the constraints that the equation
(1.19) puts on u.
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We employ the usual notation that for p 2 Œ0;1/, Lp.U / denotes the set of all
measurable functions F WU ! R such that the integralZ

U

jF jp dx

is finite. The set Lp.U / is equipped with the norm

kF kp D kF kLp D kF kLp.U / D
0
@Z
U

jF jpdx
1
A
1=p

:

If p D 1, L1.U / denotes the set of all measurable functions F such that

ess supU jF j
is finite. The space L1.U / has the norm kF k1 D ess supU jF j. As is well-known,
the spaces Lp.U / are Banach spaces for p 2 Œ1;1�, and L2.U / is a Hilbert space.
In addition, we will frequently use the spaces

L
p

loc.U / D ff WU ! R j f 2 Lp.K/ for every compact set K 	 U g:
So what kind of discontinuities are compatible with (1.19)? If we assume that u is
constant outside some finite interval, the remarks below (1.2) imply that

d

dt

1Z
�1

u.x; t/ dx D 0:

Hence, the total amount of u is independent of time, or equivalently, the area below
the graph of u. � ; t/ is constant.
} Example 1.4 (Burgers’s equation (cont’d.))
We now wish to determine a discontinuous function such that the graph of the func-
tion lies on the surface given earlier with u.x; 0/ D � arctan x. Furthermore, the
area under the graph of the function should be equal to the area between the x-axis
and the surface. In Fig. 1.2 we see a section of the surface making up the solution for
t D 3. The curve is parameterized by x0, and explicitly given by u D � arctan .x0/,
x D x0 � 3 arctan .x0/.

The function u is shown by a thick line, and the surface is shown by a dotted
line. A function u.x/ that has the correct integral,

R
u dx D R

u0 dx, is easily

x

u

x

u

x

u
a b c

Fig. 1.2 Different solutions with u conserved
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Fig. 1.3 An isolated discon-
tinuity

x

t

D2

D1

x t)(

found by making any cut from the upper fold to the middle fold at some negative
xc with xc � �p

2, and then making a cut from the middle part to the lower part
at �xc . We see that in all cases, the area below the thick line is the same as the
area bounded by the curve .x .x0/ ; u .x0//. Consequently, conservation of u is not
sufficient to determine a unique weak solution. }

Let us examine what kind of discontinuities are compatible with (1.19) in the
general case. Assume that we have an isolated discontinuity that moves along
a smooth curve � W x D x.t/. The discontinuity being isolated means that the
function u.x; t/ is differentiable in a sufficiently small neighborhood of x.t/ and
satisfies equation (1.2) classically on each side of x.t/. We also assume that u is
uniformly bounded in a neighborhood of the discontinuity.

Now we choose a neighborhoodD around the point .x.t/; t/ and a test function
�.x; t/ whose support lies entirely inside the neighborhood. The situation is as
depicted in Fig. 1.3. The neighborhood consists of two parts D1 and D2, and is
chosen so small that u is differentiable everywhere insideD except on x.t/. LetD"

i

denote the set of points

D"
i D ˚

.x; t/ 2 Di j dist�.x; t/; .x.t/; t/� > "� :
The function u is bounded, and hence

0 D
Z
D

.u�t C f .u/�x/ dx dt D lim
"!0

Z
D"
1[D"

2

.u�t C f .u/�x/ dx dt: (1.20)

Since u is a classical solution inside each D"
i , we can use Green’s theorem and

obtainZ
D"
i

.u�t C f .u/�x/ dx dt D
Z
D"
i

.u�t C f .u/�x C .ut C f .u/x/�/ dx dt

D
Z
D"
i

..u�/t C .f .u/�/x/ dx dt

D
Z
D"
i

.@x; @t / � �f .u/�; u�� dx dt
D
Z
@D"

i

� .f .u/; u/ � ni ds: (1.21)
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Here ni is the outward unit normal at @D"
i . But � is zero everywhere on @D"

i except
in the vicinity of x.t/. Let � "

i denote this part of @D"
i . Then

lim
"!0

Z
� "i

� .f .u/; u/ � ni ds D
Z
I

�
��ulx0.t/C fl

�
dt

D �
Z
I

�
��urx0.t/C fr

�
dt

for some suitable time interval I . Here ul denotes the limit of u.x; t/ as x ! x.t/�,
and ur the limit as x approaches x.t/ from the right, i.e., ur D limx!x.t/C u.x; t/.
Similarly, fl D f .ul / and fr D f .ur /. The reason for the difference in sign is that
according to Green’s theorem, we must integrate along the boundary counterclock-
wise. Therefore, the positive sign holds for i D 1, and the negative for i D 2. Using
(1.20) we obtain (slightly abusing notation by writing u.t/ D u.x.t/; t/, etc.)

Z
I

�
�� .ul.t/ � ur.t// x0.t/C .fl .t/ � fr.t//

�
dt D 0:

Since this is to hold for all test functions �, we must have

s .ur � ul/ D fr � fl ; (1.22)

where s D x0.t/. This equality is called the Rankine–Hugoniot condition or the
jump condition, and it expresses conservation of u across jump discontinuities. It is
common in the theory of conservation laws to introduce a notation for the jump in
a quantity. Write

�a� D ar � al (1.23)

for the jump in any quantity a. With this notation the Rankine–Hugoniot relation
takes the form

s �u� D �f � : (1.24)

} Example 1.5 (Burgers’s equation (cont’d.))
For Burgers’s equation we see that the shock speed must satisfy

s D
�
u2=2

�

�u�
D

�
u2r � u2l

�
2 .ur � ul/ D 1

2
.ul C ur/ :

Consequently, the left shock in parts a and b in Fig. 1.2 above will have greater
speed than the right shock, and will, eventually, collide. Therefore, solutions of
type a or b cannot be isolated discontinuities moving along two trajectories starting
at t D 1. Type c yields a stationary shock. }
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} Example 1.6 (Traffic flow)

I am ill at these numbers.
— W. Shakespeare, Hamlet (1603)

Rather than continue to develop the theory, we shall now consider an example of
a conservation law in some detail. We will try to motivate how a conservation law
can model the flow of cars on a crowded highway.

Consider a road consisting of a single lane, with traffic in one direction only.
The road is parameterized by a single coordinate x, and we assume that the traffic
moves in the direction of increasing x.

Suppose we position ourselves at a point x on the road and observe the number
of cars N D N.x; t; h/ in the interval Œx; x C h�. If some car is located at the
boundary of this interval, we account for that by allowing N to take any real value.
If the traffic is dense, and if h is large compared with the average length of a car,
but at the same time small compared with the length of our road, we can introduce
the density given by

�.x; t/ D lim
h!0

N.x; t; h/

h
:

Then N.x; t; h/ D R xCh
x

�.y; t/ dy.
Let now the position of some vehicle be given by r.t/, and its velocity by

v.r.t/; t/. Considering the interval Œa; b�, we wish to determine how the number
of cars changes in this interval. Since we have assumed that there are no entries
or exits on our road, this number can change only as cars are entering the interval
from the left endpoint, or leaving the interval at the right endpoint. The rate of cars
passing a point x at some time t is given by

v.x; t/�.x; t/:

Consequently,

� .v.b; t/�.b; t/ � v.a; t/�.a; t// D d

dt

bZ
a

�.y; t/ dy:

Comparing this with (1.3) and (1.2), we see that the density satisfies the conserva-
tion law

�t C .�v/x D 0: (1.25)

In the simplest case we assume that the velocity v is given as a function of the
density � only. This may be a good approximation if the road is uniform and does
not contain any sharp bends or similar obstacles that force the cars to slow down. It
is also reasonable to assume that there is some maximal speed vmax that any car can
attain. When traffic is light, a car will drive at this maximum speed, and as the road
gets more crowded, the cars will have to slow down, until they come to a complete
standstill as the traffic stands bumper to bumper. Hence, we assume that the velocity
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v is a monotone decreasing function of � such that v.0/ D vmax and v .�max/ D 0.
The simplest such function is a linear function, resulting in a flux function given by

f .�/ D v� D �vmax

�
1 � �

�max

�
: (1.26)

For convenience we normalize by introducing u D �=�max and Qx D vmaxx. The
resulting normalized conservation law reads

ut C .u.1 � u//x D 0: (1.27)

Setting Qu D 1
2

� u, we recover Burgers’s equation, but this time with a new inter-
pretation of the solution.

Let us solve an initial value problem explicitly by the method of characteristics
described earlier. We wish to solve (1.27), with initial function u0.x/ given by

u0.x/ D u.x; 0/ D

8̂̂
<
ˆ̂:
3
4

for x � �a,
1
2

� x=.4a/ for �a < x < a,
1
4

for a � x.

The characteristics satisfy t 0.�/ D 1 and x0.�/ D 1 � 2u.x.�/; t.�//. The solution
of these equations is given by x D x.t/, where

x.t/ D

8̂̂
<
ˆ̂:
x0 � t=2 for x0 < �a,
x0 C x0t=.2a/ for �a � x0 � a,

x0 C t=2 for a < x0.

Inserting this into the solution u.x; t/ D u0 .x0.x; t//, we find that

u.x; t/ D

8̂̂
<
ˆ̂:
3
4

for x � �a � t=2,
1
2

� x=.4aC 2t/ for �a � t=2 < x < aC t=2,
1
4

for aC t=2 � x.

This solution models a situation in which the traffic density initially is small for
positive x, and high for negative x. If we let a tend to zero, the solution reads

u.x; t/ D

8̂̂<
ˆ̂:
3
4

for x � �t=2,
1
2

� x=.2t/ for �t=2 < x < t=2,
1
4

for t=2 � x.

As the reader may check directly, this is also a classical solution everywhere except
at x D ˙t=2. It takes discontinuous initial values:

u.x; 0/ D
(
3
4

for x < 0,
1
4

otherwise.
(1.28)
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This initial function may model the situation when a traffic light turns green at
t D 0. The density of cars facing the traffic light is high, while on the other side of
the light there is a small constant density.

Initial value problems of the kind (1.28), where the initial function consists of
two constant values, are called Riemann problems. We will discuss Riemann prob-
lems at great length in this book.

If we simply insert ul D 3
4
and ur D 1

4
in the Rankine–Hugoniot condition

(1.22), we find another weak solution to this initial value problem. These left and
right values give s D 0, so the solution found here is simply u2.x; t/ D u0.x/.
A priori, this solution is no better or worse than the solution computed earlier. But
when we examine the situation the equation is supposed to model, the second so-
lution u2 is unsatisfactory, since it describes a situation in which the traffic light is
green, but the density of cars facing the traffic light does not decrease!

In the first solution the density decreased. Examining the model a little more
closely, we find, perhaps from experience of traffic jams, that the allowable dis-
continuities are those in which the density is increasing. This corresponds to the
situation in which there is a traffic jam ahead, and we suddenly have to slow down
when we approach it.

When we emerge from a traffic jam, we experience a gradual decrease in the
density of cars around us, not a sudden jump from a bumper to bumper situation to
a relatively empty road.

We have now formulated a condition, in addition to the Rankine–Hugoniot con-
dition, that allows us to reduce the number of weak solutions to our conservation
law. This condition says that every weak solution u has to increase across dis-
continuities. Such conditions are often called entropy conditions. This terminology
comes from gas dynamics, where similar conditions state that the physical entropy
has to increase across any discontinuity.

Let us consider the opposite initial value problem, namely,

u0.x/ D
(
1
4

for x < 0,
3
4

for x � 0.

Now the characteristics starting at negative x0 are given by x.t/ D x0Ct=2, and the
characteristics starting on the positive half-line are given by x.t/ D x0 � t=2. We
see that these characteristics immediately will run into each other, and therefore the
solution is multivalued for every positive time t . Thus there is no hope of finding
a continuous solution to this initial value problem for any time interval .0; ı/, no
matter how small ı is. When inserting the initial values ul D 1

4
and ur D 3

4
into

the Rankine–Hugoniot condition, we see that the initial function is already a weak
solution. This time, the solution increases across the discontinuity, and therefore
satisfies our entropy condition. Thus, an admissible solution is given by u.x; t/ D
u0.x/.

Now we shall attempt to solve a more complicated problem in some detail. As-
sume that we have a road with a uniform density of cars initially. At t D 0 a traffic
light placed at x D 0 changes from green to red. It remains red for some time inter-
val�t , then turns green again and stays green thereafter. We assume that the initial
uniform density is given by u D 1

2
, and we wish to determine the traffic density for

t > 0.
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When the traffic light initially turns red, the situation for the cars to the left of
the traffic light is the same as when the cars stand bumper to bumper to the right of
the traffic light. So in order to determine the situation for t in the interval Œ0;�t/,
we must solve the Riemann problem with the initial function

ul0.x/ D
(
1
2

for x < 0,

1 for x � 0.
(1.29)

For the cars to the right of the traffic light, the situation is similar to the situation in
which the traffic abruptly stopped at t D 0 behind the car located at x D 0. There-
fore, to determine the density for x > 0 we have to solve the Riemann problem
given by

ur0.x/ D
(
0 for x < 0,
1
2

for x � 0.
(1.30)

Returning to (1.29), here u is increasing over the initial discontinuity, so we can try
to insert this into the Rankine–Hugoniot condition. This gives

s D fr � fl
ur � ul D

1
4

� 0
1
2

� 1 D �1
2
:

Therefore, an admissible solution for x < 0 and t in the interval Œ0;�t/ is given by

ul.x; t/ D
(
1
2

for x < �t=2,
1 for x � �t=2.

This is indeed close to what we experience when we encounter a traffic light. We
see the discontinuity approaching as the brake lights come on in front of us, and the
discontinuity has passed us when we have come to a halt. Note that although each
car moves only in the positive direction, the discontinuity moves to the left.

In general, we have to deal with three different speeds when we study conser-
vation laws: the particle speed, in our case the speed of each car; the characteristic
speed; and the speed of a discontinuity. These three speeds are not equal if the con-
servation law is nonlinear. In our case, the speed of each car is nonnegative, but both
the characteristic speed and the speed of a discontinuity may take both positive and
negative values. Note that the speed of an admissible discontinuity is less than the
characteristic speed to the left of the discontinuity, and larger than the characteristic
speed to the right. This is a general feature of admissible discontinuities.

It remains to determine the density for positive x. The initial function given by
(1.30) also has a positive jump discontinuity, so we obtain an admissible solution
if we insert it into the Rankine–Hugoniot condition. Then we obtain s D 1

2
, so the

solution for positive x is

ur.x; t/ D
(
0 for x < t=2,
1
2

for x � t=2.
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Piecing together ul and ur , we find that the density u in the time interval Œ0;�t/
reads

u.x; t/ D

8̂̂̂
<̂
ˆ̂̂̂:

1
2

for x � �t=2,
1 for �t=2 < x � 0,

0 for 0 < x � t=2,
1
2

for t=2 < x,

t 2 Œ0;�t/:

What happens for t > �t? To find out, we have to solve the Riemann problem

u.x;�t/ D
(
1 for x < 0,

0 for x � 0.

Now the initial discontinuity is not acceptable according to our entropy condition,
so we have to look for some other solution. We can try to mimic the example above
in which we started with a nonincreasing initial function that was linear on some
small interval .�a; a/. Therefore, let v.x; t/ be the solution of the initial value prob-
lem

vt C .v.1 � v//x D 0;

v.x; 0/ D v0.x/ D

8̂̂
<
ˆ̂:
1 for x < �a,
1
2

� x=.2a/ for �a � x < a,

0 for a � x.

As in the above example, we find that the characteristics are not overlapping, and
they fill out the positive half-plane exactly. The solution is given by v.x; t/ D
v0 .x0.x; t//:

v.x; t/ D

8̂̂
<
ˆ̂:
1 for x < �a � t ,
1
2

� x=.2aC 2t/ for �a � t � x < aC t ,

0 for aC t � x.

Letting a ! 0, we obtain the solution to the Riemann problem with a left value 1
and a right value 0. For simplicity we also denote this function by v.x; t/.

This type of solution can be depicted as a “fan” of characteristics emanating
from the origin, and it is called a centered rarefaction wave, or sometimes just
a rarefaction wave. The origin of this terminology lies in gas dynamics.

We see that the rarefaction wave, which is centered at .0;�t/, does not imme-
diately influence the solution away from the origin. The leftmost part of the wave
moves with a speed �1, and the front of the wave moves with speed 1. So for some
time after �t , the density is obtained by piecing together three solutions, ul.x; t/,
v.x; t ��t/, and ur.x; t/.

The rarefaction wave will of course catch up with the discontinuities in the so-
lutions ul and ur . Since the speeds of the discontinuities are 
 1

2
, and the speeds of

the rear and the front of the rarefaction wave are 
1, and the rarefaction wave starts
at .0;�t/, we conclude that this will happen at .
�t; 2�t/.
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Fig. 1.4 A traffic light on a single road. To the left we show the solution in .x; t/, and to the right
the solution u.x; t/ at three different times t

It remains to compute the solution for t > 2�t . Let us start with examining
what happens for positive x. Since the u values that are transported along the char-
acteristics in the rarefaction wave are less than 1

2
, we can construct an admissible

discontinuity using the Rankine–Hugoniot condition (1.22). Define a function that
has a discontinuity moving along a path x.t/. The value to the right of the disconti-
nuity is 1

2
, and the value to the left is determined by v.x; t ��t/. Inserting this into

(1.22), we get

x0.t/ D s D
1
4

�
	
1
2

C x
2.t��t/


	
1
2

� x
2.t��t/



1
2

�
	
1
2

� x
2.t��t/


 D x

2.t ��t/ :

Since x.2�t/ D �t , this differential equation has solution

xC.t/ D p
�t.t ��t/:

The situation is similar for negative x. Here, we use the fact that the u values in
the left part of the rarefaction fan are larger than 1

2
. This gives a discontinuity with

a left value 1
2
and right values taken from the rarefaction wave. The path of this

discontinuity is found to be x�.t/ D �xC.t/.
Now we have indeed found a solution that is valid for all positive time. This

function has the property that it is a classical solution at all points x and t where
it is differentiable, and it satisfies both the Rankine–Hugoniot condition and the
entropy condition at points of discontinuity. We show this weak solution in Fig. 1.4,
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both in the .x; t/-plane, where we show characteristics and discontinuities, and u
as a function of x for various times. The characteristics are shown as gray lines,
and the discontinuities as thicker black lines. This concludes our example. Note
that we have been able to find the solution to a complicated initial value problem
by piecing together solutions from Riemann problems. This is indeed the main idea
behind front tracking, and a theme to which we shall give considerable attention in
this book. }

1.1 Linear Equations

I don’t make unconventional stories;
I don’t make nonlinear stories.
I like linear storytelling a lot.
— Steven Spielberg

We now make a pause in the exposition of nonlinear hyperbolic conservation laws
and take a brief look at linear transport equations. Many of the methods and con-
cepts introduced later in the book are much simpler if the equations are linear.

Let u 2 R be an unknown scalar function of x 2 R and t 2 Œ0;1/ satisfying
the Cauchy problem

(
ut C a ux D 0; x 2 R; t > 0;

u.x; 0/ D u0.x/;
(1.31)

where a is a given (positive) constant, and u0 is a known function. Recall the theory
of characteristics. Since this case is particularly simple, we can use t as a parameter,
and we will here use .t; x0/ rather than .s; y/ as parameters. Thus the characteristics
x D �.t Ix0/ are defined as

d

dt
�.t Ix0/ D a; �.0Ix0/ D x0;

with solution

�.t Ix0/ D at C x0:

We know that d
dt
u .�.t Ix0/; t/ D 0, and thus u.�.t Ix0/; t/ D u.�.0Ix0/; 0/ D

u.x0; 0/ D u0.x0/. We can use the solution of � to write

u.at C x0; t/ D u0.x0/:

If we set x D at C x0, i.e., x0 D x � at , we get the solution formula

u.x; t/ D u0.x � at/:

Thus (1.31) expresses that the initial function u0 is transported with a constant ve-
locity a.
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The same reasoning works if now a D a.x; t/, where the map x 7! a.x; t/

is Lipschitz continuous for all t . In this case let u D u.x; t/ satisfy the Cauchy
problem

(
ut C a.x; t/ux D 0; x 2 R; t > 0;

u.x; 0/ D u0.x/:
(1.32)

First we observe that this equation is not conservative, and the interpretation of
a.x; t/u is not the flux of u across a point. Now let �.t Ix0/ denote the unique
solution of the ordinary differential equation

d

dt
�.t Ix0/ D a.�.t Ix0/; t/; �.0Ix0/ D x0: (1.33)

By the chain rule we also now find that

d

dt
u .�.t Ix0/; t/ D @u

@t
C @u

@x

d

dt
�.t Ix0/ D ut .�; t/C a.�; t/ux.�; t/ D 0:

Therefore u.�.t Ix0/; t/ D u0.x0/. In order to get a solution formula, we must solve
x D �.t Ix0/ in terms of x0, or equivalently, find a function 	.� Ix/ that solves the
backward characteristic equation,

d

d�
	.� Ix/ D �a.	.� Ix/; t � �/; 	.0Ix/ D x: (1.34)

Then

d

d�
u.	.� Ix/; t � �/ D 0;

which means that u.x; t/ D u.	.0Ix/; t/ D u.	.t Ix/; 0/ D u0.	.t Ix//.

} Example 1.7
Let us study the simple example with a.x; t/ D x. Thus

ut C xux D 0; u.x; 0/ D u0.x/:

Then the characteristic equation is

d

dt
� D �; �.0/ D x0;

with solution

�.t Ix0/ D x0e
t :

Solving �.t Ix0/ D x in terms of x0 gives x0 D xe�t , and thus

u.x; t/ D u0
�
xe�t� : }
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Fig. 1.5 Characteristics in the .x; t/-plane for (1.35)

} Example 1.8
Let us look at another example:

a.x/ D

8̂̂
<
ˆ̂:
0 x < 0;

x 0 � x � 1;

1 1 < x:

(1.35)

In this case the characteristics are straight lines �.t Ix0/ D x0 if x0 � 0, and
�.t Ix0/ D x0 C t if x0 � 1. Finally, whenever 0 < x0 < 1, the characteristics
are given by

�.t Ix0/ D
(
x0e

t t � � ln.x0/;

1C t C ln.x0/ t > � ln.x0/:

See Fig. 1.5 for a picture of this. In this case a is increasing in x, and therefore
the characteristics are no closer than they were initially. Since u is constant along
characteristics, this means that

max
x

jux.x; t/j � max
x

ju0
0.x/j :

If a is decreasing, such a bound cannot be found, as the next example shows. }
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Fig. 1.6 The characteristics for (1.36)

} Example 1.9
Let now

a.x/ D

8̂̂
<
ˆ̂:
1 x < 0;

1 � x 0 � x � 1;

0 1 < x:

(1.36)

In this case the characteristics are given by

�.t Ix0/ D

8̂̂
ˆ̂<
ˆ̂̂̂:

(
x0 C t; t < �x0;
1 � e�.tCx0/ t � �x0;

x0 < 0;

1 � .1 � x0/e�t 0 � x0 < 1;

x0 1 � x0:

See Fig. 1.6 for an illustration of these characteristics. Let now x0 be in the interval
.0; 1/, and assume that u0 is continuously differentiable. Since u is constant along
characteristics, u. � ; t/ is also continuously differentiable for all t > 0. Thus

u0
0.x0/ D @

@x0
u.�.t Ix0/; t/ D ux.�.t Ix0/; t/ @�

@x0
;

which, when x0 2 .0; 1/, implies that ux.x; t/ D u0
0.x0/e

t for x D �.t Ix0/. From
this we see that the only bound on the derivative that we can hope for is of the type

max
x

jux.x; t/j � et max
x

ju0
0.x/j : }
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Numerics (I)

If we (pretend that we) do not have the characteristics, and still want to know the
solution, we can try to approximate it by some numerical method.

To this end we introduce approximations to the first spatial derivative

D�u.x/ D u.x/ � u.x ��x/
�x

;

DCu.x/ D u.x C�x/ � u.x/
�x

; and

D0u.x/ D u.x C�x/ � u.x ��x/
2�x

;

where �x is a small positive number. When we deal with numerical approxi-
mations, we shall always use the notation uj .t/ to indicate an approximation to
u.j�x; t/ for some integer j . We also use the notation

xj D j�x; xj˙1=2 D
	
j ˙ 1

2



�x D xj ˙ �x

2
:

Now consider the case in which a is a positive constant. As a semidiscrete numer-
ical scheme for (1.31) we propose to let uj solve the (infinite) system of ordinary
differential equations

u0
j .t/C aD�uj .t/ D 0; uj .0/ D u0.xj /: (1.37)

We need to define an approximation to u.x; t/ for every x and t , and we do this by
linear interpolation:

u�x.x; t/ D uj .t/C �
x � xj

�
D�ujC1.t/; for x 2 Œxj ; xjC1/. (1.38)

We want to show that (a) u�x converges to some function u as�x ! 0, and (b) the
limit u solves the equation.

If u0 is continuously differentiable, we know that a solution to (1.31) exists (and
we can find it by the method of characteristics). Since the equation is linear, we
can easily study the error e�x.x; t/ D u.x; t/ � u�x.x; t/. In the calculation that
follows, we use the following properties:

DCuj �D�uj D �xDCD�uj andD�ujC1 D DCuj .

Inserting the error term e�x into the equation, we obtain for x 2 .xj ; xjC1/,

@

@t
e�x C a

@

@x
e�x D � @

@t
u�x � a @

@x
u�x

D � d

dt

�
uj .t/C �

x � xj
�
D�ujC1.t/

� � aD�ujC1.t/

D �u0
j .t/ � �

x � xj
�
D�u0

jC1.t/ � aDCuj .t/

D aD�uj .t/ � aDCuj .t/C a
�
x � xj

�
D�D�ujC1.t/

D �a�xDCD�uj .t/C a
�
x � xj

�
DCD�uj .t/

D a
��
x � xj

� ��x�DCD�uj .t/:
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Next let f�x be defined by

f�x.x; t/ D a
��
x � xj

� ��x�DCD�uj .t/ for x 2 Œxj ; xjC1/,

so that

.e�x/t C a .e�x/x D f�x: (1.39)

Using the method of characteristics on this equation gives (see Exercise 1.3)

e�x.x; t/ D e�x.x � at; 0/C
tZ

0

f�x.x � a.t � s/; s/ ds: (1.40)

(Here we tacitly assume uniqueness of the solution.) Hence we get the bound

je�x.x; t/j � sup
x

je�x.x; 0/j C t kf�xkL1.R�Œ0;t �/ : (1.41)

In trying to bound f�x , note first that

jf�x.x; t/j � �x a
ˇ̌
D�DCuj .t/

ˇ̌
;

so f�x tends to zero with �x ifD�DCuj is bounded. Writing wj D D�DCuj and
applyingD�DC to (1.37), we get

w0
j .t/C aD�

�
wj
� D 0; wj .0/ D D�DCu0.x/:

Now it is time to use the fact that a > 0. To bound wj , observe that if wj � wj�1,
thenD�wj � 0. Hence, if wj .t/ � wj�1.t/, then

d

dt
wj .t/ D �aD�wj .t/ � 0:

Similarly, if for some t , wj .t/ � wj�1.t/, then w0
j .t/ � 0. This means that

inf
x
u00
0.x/ � inf

k
D�DCuk.0/ � wj .t/ � sup

k

D�DCuk.0/ � sup
x

u00
0.x/:

Thus wj is bounded if u0
0 is Lipschitz continuous. Note that it is the choice of

the difference scheme (1.37) (choosing D� instead of DC or D) that allows us to
conclude that we have a bounded approximation. It remains to study e�x.x; 0/. For
x 2 Œxj ; xjC1/,

je�x.x; 0/j D
ˇ̌̌
u0.x/� u0.xj /� x � xj

�x

�
u0.xjC1/ � u0.xj /

�ˇ̌̌
� 2�x max

x2Œxj ;xjC1�
ju0
0.x/j :

Then we have proved the bound

ju�x.x; t/ � u.x; t/j � �x
	
2 ku0

0kL1.R/ C t a ku00
0kL1.R/



; (1.42)

for all x and t > 0.
Strictly speaking, in order for this argument to be valid, we have implicitly as-

sumed in (1.40) that equation (1.39) has only the solution (1.40). This brings us to
another topic.
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Entropy Solutions (I)

You should call it entropy . . . [since] . . . no one knows what entropy really is,
so in a debate you will always have the advantage.3

— John von Neumann

Without much extra effort, we can generalize slightly, and we want to ensure that
the equation

ut C a.x; t/ux D f .x; t/ (1.43)

has only one differentiable solution. If we let the characteristic curves be defined by
(1.33), a solution is given by (see Exercise 1.3)

u .�.t Ix0/; t/ D u0.x0/C
tZ

0

f .�.sIx0/; s/ ds:

In terms of the inverse characteristic 	 defined by (1.34) this formula reads (see
Exercise 1.3)

u.x; t/ D u0 .	.t Ix//C
tZ
0

f .	.� Ix/; t � �/ d�:

If u0 is differentiable and f is bounded, this formula gives a differentiable function
u.x; t/.

Now we can turn to the uniqueness question. Since (1.43) is linear, to prove
uniqueness means to show that the equation with f D 0 and u0 D 0 has only the
zero solution. Therefore, we consider

ut C a.x; t/ux D 0:

Now let 
.u/ be a differentiable function, and multiply the above by 
0.u/ to get

0 D @

@t

.u/C a

@

@x

.u/ D 
.u/t C .a
.u//x � ax
.u/:

Assume that 
.0/ D 0 and 
.u/ > 0 for u ¤ 0, and that jax.x; t/j < C for all x
and t . If 
.u. � ; t// is integrable, then we can integrate this to get

d

dt

Z
R


.u.x; t// dx D
Z
R

ax.x; t/
.u.x; t// dx � C

Z
R


.u.x; t// dx:

By Gronwall’s inequality (see Exercise 1.10),Z
R


.u.x; t// dx � eCt
Z
R


.u0.x// dx:

3 In a discussion with Claude Shannon about Shannon’s new concept called “entropy.”
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If u0 D 0, then 
.u0/ D 0, and we must have u.x; t/ D 0 as well. We have shown
that if 
.u0/ is integrable for some differentiable function 
 with 
.0/ D 0 and

.u/ > 0 for u ¤ 0, and ax is bounded, then (1.43) has only one differentiable
solution.

Frequently, the model (1.43) (with f identically zero) is obtained by the limit of
a physically more realistic model,

u"t C a.x; t/u"x D "u"xx (1.44)

as " becomes small. You can think of u" as the temperature in a long rod moving
with speed a. In this case " is proportional to the heat conductivity of the rod.
Equation (1.44) has more regular solutions than the initial data u0 (see Appendix B).
If we multiply this equation by 
0.u"/, where 
 2 C2.R/ is a convex function, we
get


 .u"/t C a 
 .u"/x D "
�

0 .u"/ u"x

�
x

� "
00 .u"/
�
u"x
�2
:

The function 
 is often called an entropy. The term with .u"x/
2 is problematic when

" ! 0, since the derivative will not be square integrable in this limit. For linear
equations the integrability of this term depends on the integrability of this term
initially. However, for nonlinear equations, we have seen that jumps can form inde-
pendently of the smoothness of the initial data, and the limit of u"x will in general
not be square integrable.

The key to circumventing this problem is to use the convexity of 
, that is,

00.u/ � 0, and hence "
00 .u"/

�
u"x
�2

is nonnegative, to replace this term by the
appropriate inequality. Thus we get that


 .u"/t C .a
 .u"//x � ax
 .u"/ � "
�

0 .u"/ u"x

�
x
: (1.45)

Now the right-hand side of (1.45) converges to zero weakly.4 We define an entropy
solution to be the limit u D lim"!0 u

" of solutions to (1.44) as " ! 0. Formally, an
entropy solution to (1.43) should satisfy (reintroducing the function f )


.u/t C .a
.u//x � ax
.u/ � 
0.u/f .x; t/; (1.46)

for all convex functions 
 2 C2.R/. We shall see later that this is sufficient to
establish uniqueness even if u is not assumed to be differentiable.

Numerics (II)

Let us for the moment return to the transport equation

ut C a.x; t/ux D 0: (1.47)

4 That is, "
’

R�Œ0;1/
'x


0.u"/u"x dx dt ! 0 as " ! 0 for any test function '.
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We want to construct a fully discrete scheme for this equation, and the simplest such
scheme is the explicit Euler scheme,

Dt
Cu

n
j C anj D�unj D 0; n � 0; (1.48)

and u0j D u0.xj /. HereDt
C denotes the discrete forward time difference

Dt
Cu.t/ D u.t C�t/ � u.t/

�t
;

and unj is an approximation of u.xj ; tn/, with tn D n�t , n � 0. Furthermore, anj
denotes some approximation of a.xj ; tn/, to be determined later. We can rewrite
(1.48) as

unC1
j D unj � anj 

	
unj � unj�1



;

where  D �t=�x.5

Let us first return to the case that a is constant. We can then use von Neumann
stability analysis. Assume that the scheme produces approximations that converge
to a bounded solution for almost all x and t ; in particular, assume that unj is bounded
independently of �x and �t . Consider the periodic case. We make the ansatz that
unj D ˛neij�x with i D p�1 (the equation is linear, so we might as well expand

the solution in a Fourier series). Inserting this into the equation for unC1
j , we get

˛nC1eij�x D ˛neij�x � a �˛neij�x � ˛nei.j�1/�x�
D ˛neij�x

�
1 � a.1 � e�i�x/

�
;

so that

˛ D 1 � a�1 � cos.�x/C i sin.�x/
�
:

If j˛j � 1, then the sup-norm estimate will hold also for the solution generated by
the scheme. In this case the scheme is called von Neumann stable.

We calculate

j˛j2 D 1C 22a2 � 2a.1C .1 � a/ cos.�x//
D 1 � 2a .1 � a/ .1 � cos.�x// :

This is less than or equal to 1 if and only if a.1 � a/ � 0. Thus we require

0 � a � 1: (1.49)

This relationship between the spatial and temporal discretization (as measured by )
and the wave speed given by a is the simplest example of the celebrated CFL con-
dition, named after Courant–Friedrichs–Lewy. We will return to the CFL condition
repeatedly throughout the book.

5 Unless otherwise is stated, you can safely assume that this is the definition of .
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Returning to the scheme for the transport equation with variable and nonnegative
speed, we say that the scheme will be von Neumann stable if

max
.x;t/

a.x; t/ � 1: (1.50)

Consider now the scheme (1.48) with

anj D 1

�t

tnC1Z
tn

a.xj ; t/ dt:

We wish to establish the convergence of unj . To this end, set

enj D u.xj ; tn/ � unj ;
where u is the unique solution to (1.47). Inserting this into the scheme, we find that

Dt
Ce

n
j C anj D�enj D Dt

Cu.xj ; tn/C anj D�u.xj ; tn/

D 1

�t

tnC1Z
tn

ut .xj ; t/ dt C anj

�x

xjZ
xj�1

ux.x; tn/ dx

D 1

�x�t

tnC1Z
tn

xjZ
xj�1

�
ut .xj ; t/C a.xj ; t/ux.x; tn/

�
dx dt

D 1

�x�t

xjZ
xj�1

tnC1Z
tn

a.xj ; t/
�
ux.x; tn/ � ux.xj ; t/

�
dt dx

D 1

�x�t

xjZ
xj�1

tnC1Z
tn

a.xj ; t/
	 xZ
xj

uxx.z; tn/dz�
tZ

tn

uxt .xj ; s/ds


dt dx

DW Rnj :
Assuming now that uxx and utx are bounded, which they will be if we consider a fi-
nite time interval Œ0; T �, chooseM such that maxfkuxxkL1 ; kutxkL1 ; kakL1g � M .
Then we get the bound

ˇ̌̌
Rnj

ˇ̌̌
� M2

�x�t

xjZ
xj�1

tnC1Z
tn

� �
xj � x�C .t � tn/

�
dt dx

D M2

2
.�x C�t/ :

Therefore the error will satisfy the inequality

enC1
j � enj

	
1 � anj



C anj e

n
j�1„ ƒ‚ …

�

C�t
M2

2
.�x C�t/ :
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If kakL1  < 1 (recall the CFL condition), then � is a convex combination of

enj and enj�1, which is less than or equal to max
n
enj ; e

n
j�1
o
. Taking the supremum

over j , first on the right, and then on the left, we get

sup
j

n
enC1
j

o
� sup

j

n
enj

o
C�t

M2

2
.�x C�t/ :

We also have that

enC1
j � enj

	
1 � anj



C anj e

n
j�1„ ƒ‚ …

�

��tM
2

2
.�x C�t/ ;

which implies that

inf
j

n
enC1
j

o
� inf

j

n
enj

o
��t M

2

2
.�x C�t/ :

With Nen D supj

ˇ̌̌
enj

ˇ̌̌
, the above means that

NenC1 � Nen C�t
M2

2
.�x C�t/ :

Inductively, we then find that

Nen � Ne0 C tn
M2

2
.�x C�t/ D tn

M2

2
.�x C�t/ ;

since e0j D 0 by definition. Hence, the approximation defined by (1.48) converges
to the unique solution if u is twice differentiable with bounded second derivatives.

We have seen that if x 7! a.x; t/ is decreasing on some interval, the best bounds
for uxx and uxt are likely to be of the form CeCt , which means that the “constant”
M is likely to be large if we want to study the solution for large (or even moderate)
times.

Similarly, if a.x; t/ < 0, the scheme

Dt
Cu

n
j C anj DCunj D 0

will give a convergent sequence.

Entropy Solutions (II)

Consider the Cauchy problem(
ut C a.x; t/ux D 0; x 2 R; t > 0;

u.x; 0/ D u0.x/;
(1.51)
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where a is a continuously differentiable function (in this section not assumed to be
nonnegative). Recall that an entropy solution is defined as the limit of the singularly
perturbed equation (1.44). For every positive ", u" satisfies (1.45), implying that the
limit u D lim"!0 u

" should satisfy (1.46) with f identically zero. Multiplying the
inequality (1.46) by a nonnegative test function  , and integrating by parts, we find
that

1Z
0

Z
R

�

.u/ t C a
.u/ x C ax
.u/ 

�
dx dt C

Z
R


.u0.x// .x; 0/ dx � 0 (1.52)

should hold for all nonnegative test functions  2 C1
0 .R � Œ0;1//, and for all

convex 
. If u.x; t/ is a function in L1loc.R� Œ0;1// that satisfies (1.52) for all con-
vex entropies 
, then u is called a weak entropy solution to (1.51). The point of this
is that we no longer require u to be differentiable, or even continuous. Therefore,
showing that approximations converge to an entropy solution should be much easier
than showing that the limit is a classical solution.

We are going to show that there is only one entropy solution. Again, since the
equation is linear, it suffices to show that u0 D 0 (in L1.R/) implies u. � ; t/ D 0

(in L1.R/).
To do this, we specify a particular test function. Let ! be a C1 function such

that

0 � !.�/ � 1; supp! 	 Œ�1; 1�; !.��/ D !.�/;

1Z
�1
!.�/ d� D 1:

Now define

!".�/ D 1

"
!
	�
"



: (1.53)

Let x1 < x2, and introduce

'".x; t/ D
x2�LtZ
x1CLt

!".x � y/ dy;

where L is a constant such that L > kakL1.˝/ and ˝ D R � Œ0;1/. We fix a T
such that T < .x2 � x1/=.2L/, and consider t < T . Observe that '". � ; t/ is an
approximation to the characteristic function for the interval .x1 C Lt; x2 � Lt/.

Next introduce

h".t/ D 1 �
tZ

0

!".s � T / ds:

This is an approximation to the characteristic function of the interval .�1; T �.
Finally, we choose the test function

 ".x; t/ D h".t/'".x; t/ 2 C1
0 .˝/:
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Inserting this into the entropy inequality (1.52), we get“
˝


.u/'"h
0
".t/ dx dt

C
“
˝

h".t/
.u/

�
@

@t
'".x; t/C a.x; t/

@

@x
'".x; t/

�
dx dt

C
“
˝

ax
.u/h"'" dx dt C
Z
R


.u0/'".x; 0/ dx � 0:

(1.54)

We treat the second integral first, and calculate

@

@t
'".x; t/ D �L .!".x � x2 C Lt/C !".x � x1 � Lt// ;

@

@x
'".x; t/ D �!".x � x2 C Lt/C !".x � x1 � Lt/:

Therefore,

@

@t
'" C a

@

@x
'" D .�LC a/!".x � x2 C Lt/C .�L � a/!".x � x1 � Lt/

� .jaj � L/ �!".x � x2 C Lt/C !".x � x1 � Lt/� � 0;

since L is chosen to be larger than jaj. Hence, if 
.u/ � 0, then the second integral
in (1.54) is nonpositive. Thus we have“

˝


.u/'"h
0
".t/ dx dt C

“
˝

ax
.u/h"'" dx dt

C
Z
R


.u0/'".x; 0/ dx � 0:

(1.55)

Let us for the moment proceed formally. The function h" approximates the charac-
teristic function �.�1;T �, which has derivative �ıT , a negative Dirac delta function
at T . Similarly, '" approximates the characteristic function �.x1CLt;x2�Lt/, with
derivative L.ıx1CLt � ıx2�Lt /. From (1.54) we formally obtain by sending " ! 0,
that

�
x2�LTZ
x1CLT


.u.x; T // dx C
TZ
0

x2�LtZ
x1CLt

ax.x; t/
.u.x; t// dx dt C
x2Z
x1


.u.x; 0// dx � 0;

(1.56)

and this is what we intend to prove next.
The first integral in (1.54) reads

�
“
˝


.u/'".x; t/!".t � T / dx dt D �
1Z
0

f".t/!".t � T / dt;
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where

f".t/ D
Z
R

'".x; t/
.u.x; t// dx:

Keeping t fixed, we obtain

f".t/ !
x2�LtZ
x1CLt


.u.x; t// dx D f0.t/ as " ! 0,

the limit being uniform in t for t 2 Œ0; T �. If t 7! u. � ; t/ is continuous as a map
from Œ0;1/ with values in L1.R/, then f" and f0 are continuous in t . In that case,

1Z
0

f".t/!".t � T / dt D
1Z
0

�
f".t/ � f0.t/

�
!".t � T / dt C

1Z
0

f0.t/!".t � T / dt

! f0.T / as " ! 0,

since ˇ̌̌
ˇ̌̌ 1Z
0

�
f".t/ � f0.t/

�
!".t � T / dt

ˇ̌̌
ˇ̌̌ � kf" � f0kL1

1Z
0

!".t � T / dt

D kf" � f0kL1 ! 0:

In order to ensure that t 7! u. � ; t/ is continuous as a map from Œ0;1/ to L1.R/,
we define an entropy solution to have this property; see Definition 1.10 below. We
have that

h".t/'".x; t/ ! �˘T .x; t/ in L1.˝T /,

where ˘T D f.x; t/ j 0 � t � T; x1 C Lt � x � x2 � Ltg and ˝T D R � Œ0; T �.
By sending " ! 0 in (1.54), we then find that (cf. (1.56))

x2Z
x1


.u.x; 0// dx C
TZ
0

x2�LtZ
x1CLt

ax.x; t/
.u.x; t// dx dt �
x2�LTZ
x1CLT


.u.x; T // dx;

(1.57)

which implies that

f0.T / � f0.0/C kaxkL1.˝T /

TZ
0

f0.t/ dt;

assuming that 
 is positive.
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Gronwall’s inequality then implies

f0.T / � f0.0/e
kaxkL1.˝T /

T
;

or, writing it out explicitly,

x2�LTZ
x1CLT


.u.x; T // dx �
x2Z
x1


.u0.x// dx e
kaxkL1 .˝T /

T
;

for every nonnegative convex function 
. Observe that this proves the finite speed
of propagation.

Choosing 
.u/ D jujp for 1 � p < 1, assuming 
.u/ to be integrable, and
sending x1 to �1 and x2 to 1, we get

ku. � ; T /kLp.R/ � ku0kLp.R/ ekaxkL1 .˝T /
T=p
; 1 � p < 1: (1.58)

Next, we can let p ! 1, assuming 
.u/ to be integrable for all 1 � p < 1, to get

ku. � ; T /kL1.R/ � ku0kL1.R/ : (1.59)

In order to formalize the preceding argument, we introduce the following definition.

Definition 1.10 A function u D u.x; t/ in C.Œ0;1/IL1.R// is called a weak en-
tropy solution to the problem

(
ut C a.x; t/ux D 0; t > 0; x 2 R;

u.x; 0/ D u0.x/;

if for all nonnegative and convex functions 
.u/ and all nonnegative test functions
' 2 C1

0 .˝/, the inequality

1Z
0

Z
R

�

.u/'t C a 
.u/'x C ax
.u/'

�
dx dt C

Z
R


.u0.x//'.x; 0/ dx � 0

holds.

Theorem 1.11 Assume that a D a.x; t/ is such that ax is bounded. Then the prob-
lem (1.32) has at most one entropy solution u D u.x; t/, and the bounds (1.58) and
(1.59) hold.

Remark 1.12 From the proof of this theorem (applying (1.58) for p D 1), we
see that if we define an entropy solution to satisfy the entropy condition only for

.u/ D juj, then we get uniqueness in C.Œ0;1/; L1.R//.
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Numerics (III)

We now reconsider the transport equation(
ut C a.x; t/ux D 0; t > 0;

u.x; 0/ D u0.x/;
(1.60)

and the corresponding difference scheme

Dt
Cu

n
j C anj D�unj D 0;

with

anj D 1

�t

tnC1Z
tn

a.xj ; t/ dt; u0j D 1

�x

xjC1=2Z
xj�1=2

u0.x/ dx;

where as before, we assume that a.x; t/ � 0. In order to have an approximation
defined for all x and t , we define

u�x.x; t/ D unj for .x; t/ 2 I nj�1=2 WD Œxj�1; xj / � Œtn; tnC1/;

where tn D n�t . We wish to show that u�x converges to an entropy solution (the
only one!) of (1.60). Now we do not use the linearity, and first prove that fu�xg�x>0
has a convergent subsequence.

First we recall that the scheme can be written

unC1
j D

	
1 � anj 



unj C anj u

n
j�1:

We aim to use Theorem A.11 to prove compactness. First we show that the approx-
imation is uniformly bounded. This is easy, since unC1

j is a convex combination of
unj and unj�1, so new maxima or minima are not introduced. Thus

ku�x. � ; t/kL1.R/ � ku0kL1.R/ :

Therefore, the first condition of Theorem A.11 is satisfied.
To show that the second condition holds, recall, or consult Appendix A, that the

total variation of a function uWR ! R is defined as

T:V: .u/ D sup
fxi g

X
i

ju.xi/ � u.xi�1/j ;

where the supremum is taken over all finite partitions fxig such that xi < xiC1. This
is a seminorm, and we also write jujBV WD T:V: .u/.

We have to estimate the total variation of u�x . For t 2 Œtn; tnC1/ this is given by

ju�x. � ; t/jBV D
X
j

ˇ̌̌
unj � unj�1

ˇ̌̌
:

We also have that

unC1
j � unC1

j�1 D .1 � anj /unj C anj u
n
j�1 � .1 � anj�1/u

n
j�1 � anj�1u

n
j�2

D .1 � anj /.unj � unj�1/C anj�1.u
n
j�1 � unj�2/:
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By the CFL condition 0 � anj  � 1 for all n and j , we inferˇ̌̌
unC1
j � unC1

j�1
ˇ̌̌

� .1 � anj /
ˇ̌̌
unj � unj�1

ˇ̌̌
C anj�1

ˇ̌̌
unj�1 � unj�2

ˇ̌̌
:

ThereforeX
j

ˇ̌̌
unC1
j � unC1

j�1
ˇ̌̌

�
X
j

.1 � anj /
ˇ̌̌
unj � unj�1

ˇ̌̌
C
X
j

anj�1
ˇ̌̌
unj�1 � unj�2

ˇ̌̌

D
X
j

ˇ̌̌
unj � unj�1

ˇ̌̌
�
X
j

anj

ˇ̌̌
unj � unj�1

ˇ̌̌
C
X
j

anj

ˇ̌̌
unj � unj�1

ˇ̌̌

D
X
j

ˇ̌̌
unj � unj�1

ˇ̌̌
:

Hence

ju�x. � ; t/jBV � ju�x. � ; 0/jBV � ju0jBV :
This shows that the second condition of Theorem A.11 is satisfied; see Re-
mark A.12.

To show that the third condition holds, i.e., the continuity of theL1-norm in time,
we assume that s 2 Œtn; tnC1/, and that t is such that t � s � �t . ThenZ

R

ju�x.x; t/ � u�x.x; s/j dx � �x
X
j

ˇ̌̌
unC1
j � unj

ˇ̌̌

D �x
X
j

anj 
ˇ̌̌
unj � unj�1

ˇ̌̌

� �t kakL1.˝/
X
j

ˇ̌̌
unj � unj�1

ˇ̌̌

� �t kakL1.˝/ ju0jBV :
If s 2 Œtn; tnC1/ and t 2 ŒtnCk; tnCkC1/, we haveZ

R

ju�x.x; t/ � u�x.x; s/j dx D �x
X
j

ˇ̌̌
unCk
j � unj

ˇ̌̌

�
nCk�1X
mDn

�x
X
j

ˇ̌̌
umC1
j � umj

ˇ̌̌

D
nCk�1X
mDn

�x
X
j

amj 
ˇ̌̌
umj � umj�1

ˇ̌̌

�
nCk�1X
mDn

�t kakL1.˝/
X
j

ˇ̌̌
umj � umj�1

ˇ̌̌

� k�t kakL1.˝/ ju0jBV
� .t � s C�t/ kakL1.˝/ ju0jBV :
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Hence, also the third condition of Theorem A.11 is fulfilled, and we have the con-
vergence (of a subsequence) u�x ! u as �x ! 0. It remains to prove that u is the
entropy solution.

To do this, start by observing that



	
unC1
j



D 


	
.1 � anj /unj C anj u

n
j�1



� .1 � anj /

	
unj



C anj 


	
unj�1



;

since 
 is assumed to be a convex function. This can be rearranged as

Dt
C


n
j C anj D�
nj � 0;

where 
nj D 
.unj /, and as

Dt
C


n
j CD�

	
anj 


n
j



� 
nj�1D�anj � 0: (1.61)

The operatorsD�,DC, andDt
C satisfy the following “summation by parts” formu-

las:

X
j

ajD�bj D �
X
j

bjDCaj ; if a˙1 D 0 or b˙1 D 0,

1X
nD0

anDt
Cb

n D � 1

�t
a0b0 �

1X
nD1

bnDt
�a

n if a1 D 0 or b1 D 0.

Let ' be a nonnegative test function in C1
0 .˝/ and set

'nj D 1

jI nj�1=2j
“
In
j�1=2

'.x; t/ dx dt:

We multiply (1.61) by�t�x 'nj and sum over n � 0 and j 2 Z, using the summa-
tion by parts formulas above, to get

�x�t

1X
nD1

X
j


.unj /D
t
�'

n
j

C�x�t

1X
nD0

X
j

	
anj 
.u

n
j /DC'nj C 
.unj�1/D�anj '

n
j



C�x

X
j


.u0j /'
0
j � 0:

Call the left-hand side of the above inequality B�x, and set

A�x D
“
˝

�

.u�x/'t C a
.u�x/'x C ax
.u�x/'

�
dx dt C

Z
R


.u0/'.x; 0/ dx:
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Then we have

A�x D B�x C .A�x � B�x/ � A�x � B�x:
We find that

A�x � B�x D
1X
nD1

X
j

“
In
j�1=2


nj

	
't �Dt

�'
n
j



dx dt (1.62a)

C
X
j

“
I 0
j�1=2


0j 't dx dt (1.62b)

C
X
j;n

“
In
j�1=2


nj a
	
'x �DC'nj



dxdt (1.62c)

C
X
j;n

“
In
j�1=2


nj DC'nj
	
a � anj



dx dt (1.62d)

C
X
j;n

“
In
j�1=2

	

nj � 
nj�1



ax' dx dt (1.62e)

C
X
j;n

“
In
j�1=2

ax

n
j�1

	
' � 'nj



dx dt (1.62f)

C
X
j;n

“
In
j�1=2


nj�1
	
ax �D�anj



'nj dx dt (1.62g)

C
X
j

Z
Ij�1=2

	

.u0/� 
0j



'.x; 0/ dx (1.62h)

C
X
j

Z
Ij�1=2


0j

	
'.x; 0/ � '0j



dx: (1.62i)

Here Ij�1=2 D Œxj�1; xj /. To show that the limit u is an entropy solution, we must
show that all the terms (1.62a)–(1.62i) vanish when�x becomes small. A small but
useful device is contained in the following remark.

Remark 1.13 For a continuously differentiable function � we have

j'.x; t/ � '.y; s/j D
ˇ̌̌
ˇ̌̌ 1Z
0

d

d�
'.�.x; t/C .1 � �/.y; s//d�

ˇ̌̌
ˇ̌̌

D
ˇ̌̌
ˇ̌̌ 1Z
0

r'.�.x; t/C .1 � �/.y; s// � .x � y; t � s/d�
ˇ̌̌
ˇ̌̌

� jx � yj k'xkL1 C jt � sj k'tkL1 :
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We start with the last term (1.62i). NowZ
Ij�1=2


0j

	
'.x; 0/� '0j



dx

D 
0j

�x�t

Z
Ij�1=2

“
I 0
j�1=2

'.x; 0/ � '.y; t/ dy dt dx

D 
0j

�x�t

Z
Ij�1=2

“
I 0
j�1=2

	 xZ
y

'x.z; 0/ dz C
tZ
0

't .y; s/ ds


dy dt dx:

Therefore,

j(1.62i)j � k
.u0/kL1.R/
�k'xkL1.˝/ �x C k'tkL1.˝/ �t

�
;

where we used the convexity of 
. Next, we consider the term (1.62h): Since 
 is
convex, we have

j
.b/� 
.a/j � max fj
0.a/j ; j
0.b/jg jb � aj :
Furthermore, if both x and y are in Ij�1=2, then

ju0.x/ � u0.y/j � ju0jBV.Ij�1=2/ :

Using this and choosing C D k
0.u0/kL1 yieldsˇ̌̌ Z
Ij�1=2

	

.u0/ � 
.u0j /



'.x; 0/ dx

ˇ̌̌

� C k'kL1.˝/

Z
Ij�1=2

ˇ̌̌
u0.x/ � u0j

ˇ̌̌
dx

� C k'kL1.˝/

Z
Ij�1=2

1

�x

Z
Ij�1=2

ju0.x/ � u0.y/j dx dy

� C k'kL1.˝/ �x ju0jBV.Ij�1=2/ :

Therefore,

j(1.62h)j � C k'kL1.˝/ �x
X
j

ju0jBV.Ij�1=2/

� C k'kL1.˝/ �x ju0jBV :
Next, we consider (1.62g). First observe that

D�anj D D�
	 1
�t

tnC1Z
tn

a.xj ; t/ dt



D 1

�x�t

“
In
j�1=2

ax.x; t/ dx dt:
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Therefore,


nj�1

“
In
j�1=2

ax.x; t/ �D�anj dx dt D 
nj�1
	“
In
j�1=2

ax.x; t/ dx dt ��x�tanj



D 0;

and (1.62g) D 0. We continue with the term (1.62f), namely

“
In
j�1=2

jaxj 
nj�1
ˇ̌̌
' � 'nj

ˇ̌̌
dx dt

� kaxkL1.˝/ 

n
j�1

1

�x�t

“
Inj

“
Inj

j'.x; t/ � '.y; s/j dy ds dx dt

� kaxkL1.˝/ 

n
j�1�x�t

�
�x k'xkL1.˝/ C�t k'tkL1.˝/

�
:

Recall that the test function ' has compact support, contained in ft < T g. Further-
more, using the scheme for 
nj , cf. (1.61), it is straightforward to show that

�x
X
j


nj � eCtn�x
X
j


0j � eCtn k
.u0/kL1.R/ ;

where C is a bound onD�anj . Therefore,

ˇ̌̌X
j;n

“
In
j�1=2

ax

n
j�1

	
' � 'nj



dx dt

ˇ̌̌
� CT�x

X
j;n


nj �t.�x C�t/

� CT�x
X
n;j


0j�t.�x C�t/

� CT T k
.u0/kL1.R/ .�x C�t/;

since the sum in n is only over those n such that tn D n�t � T . Regarding (1.62e),
and settingM > ku0kL1.R/, we have that

ˇ̌̌X
j;n

“
In
j�1=2

	

nj � 
nj�1



ax' dx dt

ˇ̌̌

� k
0kL1..�M;M// kaxkL1.˝/ k'kL1.˝/ �x�t
X
j;n

ˇ̌̌
unj � unj�1

ˇ̌̌

� C�xT ju0jBV :
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Next, we turn to (1.62d):

j(1.62d)j � k'xkL1.˝/
X
j;n


nj

“
In
j�1=2

ˇ̌
a.x; t/ � a.xj ; t/

ˇ̌
dxdt

� k'xkL1.˝/ kaxkL1.˝/ �x
X
j;n


nj �x�t

� k'xkL1.˝/ kaxkL1.˝/ CT T�x k
.u0/kL1.R/ :

We can use the same type of argument to estimate (1.62c):

j(1.62c)j � kakL1.˝/
�
�x k'xxkL1.˝/ C�t k'xtkL1.˝/

�X
n;j


nj �x�t

� kakL1.˝/
�
�x k'xxkL1.˝/ C�t k'xtkL1.˝/

�
CT T k
.u0/kL1.R/ :

Similarly, we show that

j(1.62b)j � C�t�t k
.u0/kL1.R/ k'tkL1.˝/ :

Now the end is in sight. We estimate the right-hand side of (1.62a). This will be less
than

X
j;n�1


nj

“
In
j�1=2

ˇ̌̌
't �Dt

C'
n
j

ˇ̌̌
dx dt

� �
�x k'xtkL1.˝/ C�t k'ttkL1.˝/

� X
j;n�1


nj �x�t

� �
�x k'xtkL1.˝/ C�t k'ttkL1.˝/

�
CT T k
.u0/kL1.R/ :

To sum up, what we have shown is that for every test function '.x; t/,

“
˝

�

.u/'tCa
.u/'x C ax
.u/

�
dx dt C

Z
R


.u0/'.x; 0/ dx

D lim
�x!0

A�x

� lim
�x!0

�
A�x � B�x

� D 0;

if ax is (locally) continuous and u0 2 BV.R/. Hence the scheme (1.60) produces
a subsequence that converges to the unique weak solution. Since the limit is the
unique entropy solution, every subsequence will produce a further subsequence that
converges to the same limit, and thus the whole sequence converges!

If u00
0 is bounded, we have seen that the scheme (1.60) converges at a rate O .�x/

to the entropy solution. The significance of the above computations is that we have
the convergence to the unique entropy solution even if u0 is assumed to be only in
L1.R/\ BV.R/. However, in this case we have not shown any convergence rate.
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Systems of Equations

I have a different way of thinking. I think synergistically.
I’m not linear in thinking, I’m not very logical.
— Imelda Marcos

Now we generalize, and let uWR � Œ0;1/ ! Rn be a solution of the linear system

(
ut C Aux D 0; x 2 R; t > 0;

u.x; 0/ D u0.x/;
(1.63)

where A is an n � n matrix with real and distinct eigenvalues figniD1. We order
these such that

1 < 2 < � � � < n:

If this holds, then the system is said to be strictly hyperbolic. The matrix Awill also
have n linearly independent right eigenvectors r1; : : : ; rn such that

Ari D iri :

Similarly, it has n independent left eigenvectors l1; : : : ; ln such that

liA D i li :

We assume ri to be column vectors and li to be row vectors. However, we will not
enforce this strictly, and will write, e.g., li � rk. For k ¤ m, lk and rm are orthogonal,
since

mrm � lk D Arm � lk D rm � lkA D krm � lk:

Let

L D

0
B@
l1
:::

ln

1
CA ; R D �

r1 � � � rn
�
:

Normalize the eigenvectors so that lk � ri D ıki , i.e., L D R�1, or LR D I . Then

LAR D

0
B@
1 0

: : :

0 n

1
CA :

We can multiply (1.63) by L from the left to get

Lut C LAux D 0;
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and defining w by u D Rw, we find that

wt C

0
B@
1 0

: : :

0 n

1
CAwx D 0: (1.64)

This is n decoupled equations, one for each component of w D .w1; : : : ; wn/,

@wi

@t
C i

@wi

@x
D 0; for i D 1; : : : ; n.

The initial data transforms into

w0 D Lu0 D .l1 � u0; : : : ; ln � u0/;

and hence we obtain the solution

wi .x; t/ D li � u0.x � i t/:

Transforming back into the original variables, we obtain

u.x; t/ D
nX
iD1

wi .x; t/ri D
nX
iD1

Œli � u0.x � i t/� ri : (1.65)

} Example 1.14 (The linear wave equation)
Now consider the linear wave equation; ˛WR � .0;1/ ! R is a solution of

(
˛tt � c2˛xx D 0; x 2 R; t > 0;

˛.x; 0/ D ˛0.x/; ˛t .x; 0/ D ˇ0.x/;

where c is a positive constant. Defining

u D
 
u1

u2

!
D
 
˛t

˛x

!

implies that

@u1

@t
� c2 @u2

@x
D 0;

@u2

@t
� @u1

@x
D 0;

or ut C
 
0 �c2

�1 0

!
ux D 0:

The matrix

A D
 
0 �c2

�1 0

!
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has eigenvalues and eigenvectors

1 D �c; r1 D
 
c

1

!
; 2 D c; r2 D

 
�c
1

!
:

Thus

R D
 
c �c
1 1

!
; L D R�1 D 1

2c

 
1 c

�1 c

!
:

Hence we find that  
w1

w2

!
D 1

2c

 
u1 C cu2

�u1 C cu2

!
:

Writing the solution in terms of ˛x and ˛t , we find that

˛t .x; t/C c˛x.x; t/ D ˇ0.x C ct/C c˛0
0.x C ct/;

�˛t .x; t/C c˛x.x; t/ D �ˇ0.x � ct/C c˛0
0.x � ct/:

Therefore,

˛x.x; t/ D 1

2

�
˛0
0.x C ct/C ˛0

0.x � ct/�C 1

2c
.ˇ0.x C ct/ � ˇ0.x � ct// ;

˛t .x; t/ D 1

2
.ˇ0.x C ct/C ˇ0.x � ct//C c

2

�
˛0
0.x C ct/ � ˛0

0.x � ct/� :
To find ˛, we can integrate the last equation in t ,

˛.x; t/ D 1

2
.˛0.x C ct/C ˛0.x � ct//C 1

2c

xCctZ
x�ct

ˇ0.y/ dy;

after a change of variables in the integral involving ˇ0. This is the famous
d’Alembert formula for the solution of the linear wave equation in one dimen-
sion. }

Next, we discuss the notion of entropy solutions. The meaning of an entropy
solution to an equation written in characteristic variables is that for some convex
function O
.u/, the entropy solution should satisfy

O
.u/t C Oq.u/x � 0;

in the weak sense. Here the entropy flux Oq should satisfy

rw Oq.u/ D ru O
.u/�; i.e.,
@ Oq
@ui

D i
@ O

@ui

for i D 1; : : : ; n.
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An entropy solution to (1.63) is the limit (if such a limit exists) of the parabolic
reqularization

u"t C Au"x D "u"xx

as " ! 0. To check whether we have a convex entropy 
WRn ! R, we take the
inner product of the above with r
.u"/ to get


 .u"/t C r
 .u"/ � A u"x � "
�r
 .u"/ � u"x

�
x
;

by the convexity of 
. Observe that the convexity is used to get rid of a term con-
taining .u"x/

2, which may not be wellbehaved (for nonlinear equations) in the limit
" ! 0, and we obtain an inequality rather than an equality. We want to write the
second term on the left as the x derivative of some function q.u"/. Using

q .u"/x D rq .u"/ � u"x;
we see that if this is so, then

@q

@uj
D
X
i

aij
@


@ui
for j D 1; : : : ; n. (1.66)

This is n equations in the two unknowns 
 and q. Thus we cannot expect any solu-
tion if n > 2. The right-hand side of (1.66) is given, and hence we are looking for
a potential q with a given gradient. This problem has a solution if

@2q

@uk@uj
D @2q

@uj@uk
;

or X
i

aik
@2


@ui@uj
D
X
i

aij
@2


@ui@uk
for 1 � j; k � n.

If we wish to find an entropy flux for the entropy 
.u/ D juj2 =2, note that
@2


@ui@uk
D ıik:

Thus we can find an entropy flux if ajk D akj for 1 � j; k � n; in other words, A
must be symmetric. In this case the entropy flux q reads

q.u/ D
X
i;j

aij uiuj � 1

2

X
i

ai iu
2
i :

Hence, an entropy (using the entropy 
.u/ D juj2 =2) solution satisfies

juj2t C q.u/x � 0 weakly.

This means that

ku. � ; t/kL2.R/ � ku0kL2.R/ ;
and thus there is at most one entropy solution to (1.63) if A is symmetric.
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The Riemann Problem for Linear Systems

Returning to the general case, recall that the solution u D u.x; t/ to (1.63) is given
by (1.65), namely

u.x; t/ D
nX
iD1

Œli � u0.x � i t/� ri : (1.67)

Now we shall look at a type of initial value problem where u0 is given by two
constant values, namely

u0.x/ D
(
uleft x < 0;

uright x � 0;
(1.68)

where uleft and uright are two constant vectors. This type of initial value problem is
called a Riemann problem, (cf. (1.28)) which will a problem of considerable interest
throughout the book.

For a single equation (n D 1), the weak solution to this Riemann problem reads

u.x; t/ D u0.x � 1t/ D
(
uleft x < 1t;

uright x � 1t:

Note that u is not continuous. Nevertheless, it is the unique entropy solution in the
sense of Definition 1.10 to (1.63) with initial data (1.68) (see Exercise 1.4).

For two equations (n D 2), we write

uleft D
2X
iD1

Œli � uleft� ri ; uright D
2X
iD1

�
li � uright

�
ri :

We can find the solution of each component separately. Namely, using (1.67) for
initial data (1.68), we obtain

Œl1 � u.x; t/� D
(
l1 � uleft x < 1t;

l1 � uright x � 1t;
Œl2 � u.x; t/� D

(
l2 � uleft x < 2t;

l2 � uright x � 2t:

Combining these we see that

u.x; t/ D Œl1 � u.x; t/� r1 C Œl2 � u.x; t/� r2

D

8̂̂
<
ˆ̂:
Œl1 � uleft� r1 C Œl2 � uleft� r2 x < 1t;�
l1 � uright

�
r1 C Œl2 � uleft� r2 t1 < x � t2;�

l1 � uright
�
r1 C �

l2 � uright
�
r2 x � 1t;

D

8̂̂
<
ˆ̂:
uleft x < 1t;

umiddle t1 < x � t2;

uright x � 1t;
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a b

Fig. 1.7 The solution of the Riemann problem. a In .x; t/-space. b In phase space

with umiddle D �
l1 � uright

�
r1 C Œl2 � uleft� r2. Observe the structure of the different

states:

uleft D Œl1 � uleft� r1 C Œl2 � uleft� r2;
umiddle D �

l1 � uright
�
r1 C Œl2 � uleft� r2;

uright D �
l1 � uright

�
r1 C �

l2 � uright
�
r2:

We can also view the solution in phase space, that is, in the .u1; u2/-plane. We see
that for every uleft and uright, we have the solution u.x; t/ D uleft for x < 1t and
u.x; t/ D uright for x � 2t . In the middle, u.x; t/ D umiddle for 1t � x < 2t .
The middle value umiddle is on the intersection of the line through uleft parallel to
r1 and the line through uright parallel to r2. See Fig. 1.7. In the general, nonlinear,
case, the straight lines connecting uleft, um, and uright will be replaced by arcs, not
necessarily straight. However, the same structure prevails, at least locally.

Now we can find the solution to the Riemann problem for any n, namely

u.x; t/ D

8̂̂<
ˆ̂:
uleft x < 1t;

ui i t � x < iC1t; i D 1; : : : ; n � 1;
uright x � nt;

where

ui D
iX

jD1

�
lj � uright

�
rj C

nX
jDiC1

�
lj � uleft

�
rj :

Observe that this solution can also be viewed in phase space as the path from u0 D
uleft to un D uright obtained by going from ui�1 to ui on a line parallel to ri for i D
1; : : : ; n. This viewpoint will be important when we consider nonlinear equations,
where the straight lines will be replaced by arcs. Locally, the structure will remain
unaltered.
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Numerics for Linear Systems with Constant Coefficients

If i > 0, then we know that the scheme

Dt
Cw

m
i;j C iD�wmi;j D 0

will produce a sequence of functions fwi;�xg that converges to the unique entropy
solution of

@wi

@t
C i

@wi

@x
D 0:

Similarly, if i < 0, the scheme

Dt
Cw

m
i;j C iDCwmi;j D 0

will give a convergent sequence. Both of these schemes will be convergent only if
�t � �x ji j, which is the CFL condition. In eigenvector coordinates, with

w D

0
B@
w1
:::

wn

1
CA ; wmj � w.j�x;m�t/;

the resulting scheme for w reads

Dt
Cw

m
j C�CD�wmj C��DCwnj D 0; (1.69)

where

�� D

0
B@
1 ^ 0 0

: : :

0 n ^ 0

1
CA and �C D

0
B@
1 _ 0 0

: : :

0 n _ 0

1
CA ;

and we have introduced the notation

a _ b D max fa; bg and a ^ b D min fa; bg :

Observe that � D �C C��. If the CFL condition

�t

�x
max
i

ji j D �t

�x
max fj1j ; jnjg � 1

holds, then the scheme (1.69) will produce a convergent sequence, and the limit w
will be the unique entropy solution to

wt C�wx D 0: (1.70)

By defining u D Rw, we obtain a solution of (1.63).
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We can also make the same transformation on the discrete level. Multiplying
(1.69) by L from the left and using that u D Rw yields

Dt
Cu

m
j C ACD�umj C A�DCumj D 0; (1.71)

where

A˙ D R�˙L;

and this finite difference scheme will converge directly to u.

1.2 Notes

Never any knowledge was delivered in the same order it was invented.6

— Sir Francis Bacon (1561–1626)

The simplest nontrivial conservation law, the inviscid Burgers equation, has been
extensively analyzed. Burgers introduced the “nonlinear diffusion equation”

ut C 1

2
.u2/x D uxx; (1.72)

which is currently called (the viscous) Burgers’s equation, in 1940 [37] (see also
[38]) as a model of turbulence. Burgers’s equation is linearized, and thereby solved,
by the Cole–Hopf transformation [46, 98]. Both the equation and the Cole–Hopf
transformation were, however, known already in 1906; see Forsyth [66, p. 100]. See
also Bateman [14]. The early history of hyperbolic conservation laws is presented
in [56, pp. XV–XXX]. A source of some of the early papers is [104].

The most common elementary example of application of scalar conservation
laws is the model of traffic flow called “traffic hydrodynamics” that was introduced
independently by Lighthill andWhitham [134] and Richards [155]. A modern treat-
ment can be found in Haberman [81]. Example 1.6 presents some of the fundamen-
tals, and serves as a nontechnical introduction to the lack of uniqueness for weak
solutions. Extensions to traffic flow on networks exist; see [94] and [68].

The jump condition, or the Rankine–Hugoniot condition, was derived heuristi-
cally from the conservation principle independently by Rankine in 1870 [152] and
Hugoniot in 1886 [101–103]. Our presentation of the Rankine–Hugoniot condition
is taken from Smoller [169].

The notion of “Riemann problem” is fundamental in the theory of conservation
laws. It was introduced by Riemann in 1859 [156, 157] in the context of gas dynam-
ics. He studied the situation in which one initially has two gases with different (con-
stant) pressures and densities separated by a thin membrane in a one-dimensional
cylindrical tube. See [97] and [56, pp. XV–XXX] for a historical discussion.

The final section of this chapter contains a detailed description of the one-
dimensional linear case, both in the scalar case and in the case of systems. This
allows us to introduce some of the methods in a simpler case. Here existence of

6 in Valerius Terminus: Of the Interpretation of Nature, c. 1603.
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solutions is shown using appropriate finite difference schemes, in contrast to the
front-tracking method used in the text proper.

There are by now several books on various aspects of hyperbolic conservation
laws, starting with the classical book by Courant and Friedrichs [51]. Nice treat-
ments with emphasis on the mathematical theory can be found in books by Lax
[126, 127], Chorin and Marsden [42], Roždestvenskiı̆ and Janenko [164], Smoller
[169], Rhee, Aris, and Amundson [153, 154], Málek et al. [141], Hörmander [99],
Liu [137], Serre [167, 168], Benzoni-Gavage and Serre [15], Bressan [24, 27],
Dafermos [56], Lu [139], LeFloch [129], Perthame [150], Zheng [192]. The books
by Bouchut [19], Godlewski and Raviart [78, 79], LeVeque [130, 131], Kröner
[116], Toro [180], Thomas [179], and Trangenstein [183] focus more on the numer-
ical theory.

1.3 Exercises

1.1 Determine characteristics for the following quasilinear equations:

ut C sin.x/ux D u;

sin.t/ut C cos.x/ux D 0;

ut C sin.u/ux D u;

sin.u/ut C cos.u/ux D 0:

1.2 Use characteristics to solve the following initial value problems:

(a) uux C xuy D 0, u.0; s/ D 2s for s > 0:

(b) eyux C uuy C u2 D 0, u.x; 0/ D 1=x for x > 0:

(c) xuy � yux D u, u.x; 0/ D h.x/ for x > 0:

(d) .x C 1/2ux C .y � 1/2uy D .x C y/u, u.x; 0/ D �1 � x:
(e) ux C 2xuy D x C xu, u.1; y/ D ey � 1:
(f) ux C 2xuy D x C xu, u.0; y/ D y2 � 1:
(g) xuux C uy D 2y, u.x; 0/ D x:

1.3 (a) Use characteristics to show that

ut C aux D f .x; t/; ujtD0 D u0;

with a a constant, has solution

u.x; t/ D u0.x � at/C
tZ

0

f .x � a.t � s/; s/ ds:

(b) Show that

u .�.t Ix0/; t/ D u0.x0/C
tZ
0

f .�.sIx0/; s/ ds
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holds if u is the solution of

ut C a.x; t/ux D f .x; t/; ujtD0 D u0; (1.73)

where � satisfies

d

dt
�.t Ix0/ D a.�.t Ix0/; t/; �.0Ix0/ D x0:

(c) Show that

u.x; t/ D u0 .	.t Ix//C
tZ
0

f .	.� Ix/; t � �/ d�

holds if u is the solution of (1.73) and

d

d�
	.� Ix/ D �a.	.� Ix/; t � �/; 	.0Ix/ D x:

1.4 Show that

u.x; t/ D
(
uleft x < at;

uright x � at;

is the entropy solution in the sense of Definition 1.10 for the equation ut C
aux D 0 (where a is constant) and ujtD0.x/ D uleft�x<0 C uright�x�0.

1.5 Find the shock condition (i.e., the Rankine–Hugoniot condition) for one-
dimensional systems, i.e., the unknown u is a vector u D .u1; : : : ; un/ for
some n > 1, and also f .u/ D .f1.u/; : : : ; fn.u//.

1.6 Consider a scalar conservation law in two space dimensions,

ut C @f .u/

@x
C @g.u/

@y
D 0;

where the flux functions f and g are continuously differentiable. Now the
unknown u is a function of x, y, and t . Determine the Rankine–Hugoniot
condition across a jump discontinuity in u, assuming that u jumps across
a regular surface in .x; y; t/. Try to generalize your answer to a conservation
law in n space dimensions.

1.7 We shall consider a linearization of Burgers’s equation. Let

u0.x/ D

8̂̂
<
ˆ̂:
1 for x < �1;
�x for �1 � x � 1;

�1 for 1 < x:

(a) First determine the maximum time that the solution of the initial value
problem

ut C 1

2

�
u2
�
x

D 0; u.x; 0/ D u0.x/;

will remain continuous. Find the solution for t less than this time.
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(b) Then find the solution v of the linearized problem

vt C u0.x/vx D 0; v.x; 0/ D u0.x/:

Determine the solution also in the case v.x; 0/ D u0.˛x/, where ˛ is
nonnegative.

(c) Next, we shall determine a procedure for finding u by solving a sequence
of linearized equations. Fix n 2 N. For t in the interval .m=n; .mC1/=n�
and m � 0, let vn solve

.vn/t C vn .x;m=n/ .vn/x D 0;

and set vn.x; 0/ D u0.x/. Then show that

vn

	
x;
m

n



D u0 .˛m;nx/

and find a recurrence relation (in m) satisfied by ˛m;n.
(d) Assume that

lim
n!1˛m;n D N̨ .t/;

for some continuously differentiable N̨.t/, where t D m=n < 1. Show
that N̨ .t/ D 1=.1 � t/, and thus vn.x/ ! u.x/ for t < 1. What happens
for t � 1?

1.8 (a) Solve the initial value problem for Burgers’s equation

ut C 1

2

�
u2
�
x

D 0; u.x; 0/ D
(
0 for x < 0;

1 for x � 0:
(1.74)

(b) Then find the solution where the initial data are

u.x; 0/ D
(
1 for x < 0;

0 for x � 0:

(c) If we multiply Burgers’s equation by u, we formally find that u satisfies

1

2

�
u2
�
t
C 1

3

�
u3
�
x

D 0; u.x; 0/ D u0.x/: (1.75)

Are the solutions to (1.74) you found in parts a and b weak solutions
to (1.75)? If not, then find the corresponding weak solutions to (1.75).
Warning: This shows that manipulations valid for smooth solutions are
not necessarily so for weak solutions.



1.3 Exercises 49

1.9 ([169, p. 250]) Show that

u.x; t/ D

8̂̂̂
<̂
ˆ̂̂̂:

1 for x � .1 � ˛/t=2;
�˛ for .1 � ˛/t=2 < x � 0;

˛ for 0 < x � .˛ � 1/t=2;
�1 for x � .˛ � 1/t=2

is a weak solution of

ut C
�
1

2
u2
�
x

D 0; u.x; 0/ D
(
1 for x � 0;

�1 for x > 0;

for all ˛ � 1. Warning: Thus we see that weak solutions are not necessarily
unique.

1.10 We outline a proof of some Gronwall inequalities.

(a) Assume that u satisfies

u0.t/ � �u.t/:

Show that u.t/ � e�tu.0/.
(b) Assume now that u satisfies

u0.t/ � C.1C u.t//:

Show that u.t/ � eCt .1C u.0//� 1.
(c) Assume that u satisfies

u0.t/ � c.t/u.t/ C d.t/;

for 0 � t � T , where c.t/ and d.t/ are in L1.Œ0; T �/. Show that

u.t/ � u.0/C
tZ

0

d.s/ exp
� tZ
s

c.Qs/ d Qs�ds
for t � T .

(d) Assume that u is in L1.Œ0; T �/ and that for t 2 Œ0; T �,

u.t/ � C1

tZ
0

u.s/ ds C C2:

Show that

u.t/ � C2e
C1t :
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1.11 Consider the semidiscrete difference scheme (1.37). The goal of this exercise
is to prove that a unique solution exists for all t > 0.

(a) Let 
.u/ be a smooth function. Show that

D�
.uj / D 
0.uj /D�uj � �x

2

00.uj�1=2/

�
D�uj

�2
;

where uj�1=2 is some value between uj and uj�1.
(b) Assume now that 
00 � 0. Show that

d

dt

X
j


.uj / � sup
j

ˇ̌
DCaj

ˇ̌X
j


.uj /:

Note that in particular, this holds for 
.u/ D u2.
(c) Show that for fixed �x, and u 2 l2, the function F W l2 ! l2 defined by

Fj .u/ D aD�uj is Lipschitz continuous.
If we view u.t/j D uj .t/, then the difference scheme (1.37) reads u0 D
�F.u/. Since we know that the solution is bounded in l2, we cannot have
a blowup, and the solution exists for all time.

1.12 Consider the fully discrete scheme (1.48). Show that

X
j


.unC1
j / �

X
j


.unj /C�t
X
j


.unj /DCanj :

Use this to show that

�x
X
j


.unj / � eCtn k
.u0/kL1.R/ ;

where C is a bound on ax .
1.13 The linear variational wave equation reads

˛tt C c.x/ .c.x/˛x/x D 0; t > 0; x 2 R;

˛.x; 0/ D ˛0.x/; ˛t .x; 0/ D ˇ0.x/;
(1.76)

where c is a positive Lipschitz continuous function, and ˛0 and ˇ0 are suitable
initial data.

(a) Set u D ˛t C c˛x and v D ˛t � c˛x . Find the equations satisfied by u
and v.

(b) Find the solutions of these equations in terms of the characteristics.
(c) Formulate a difference scheme to approximate u.x; t/ and v.x; t/, and

give suitable conditions on your scheme and the initial data (here you
have a large choice) that guarantee the convergence of the scheme.

(d) Test your scheme with c.x/ D
p
1C sin2.x/, ˛0.x/ D max f0; 1 � jxjg,

ˇ0 D 0, and periodic boundary conditions in Œ��; ��.
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1.14 Consider the transport equation

ut C a.x; t/ux D 0; t > 0; x 2 R;

u.x; 0/ D u0.x/:

We know that the (unique) solution can be written in terms of the backward
characteristics, u.x; t/ D u0.	.t Ix//, where 	 solves

d

d�
	.� Ix/ D �a.	.� Ix/; t � �/; 	.0Ix/ D x:

We want to use this numerically. Write a routine that given t , u0, and a, cal-
culates an approximation to u.x; t/ using a numerical method to find 	.t Ix/.
Test the routine for the initial function u0.x/ D sin.x/, and for a given by
(1.35) and (1.36), as well as for the example a.x; t/ D x2 sin.t/.
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