

© Springer-Verlag Berlin Heidelberg 2015
James J. (Jong Hyuk) Park et al. (eds.), Advanced Multimedia and Ubiquitous Engineering,

31

Lecture Notes in Electrical Engineering 352, DOI: 10.1007/978-3-662-47487-7_5

A Middleware Supporting Query Processing
on Distributed CUBRID

Hyeong-Il Kim, Min Yoon, YoungSung Shin, and Jae-Woo Chang*

Chonbuk National University, Korea
{melipion,myoon,twotoma,jwchang}@jbnu.ac.kr

Abstract. Due to the shortages of NoSQL, studies on RDBMS based bigdata
processing have been actively performed. Although they can store data in the
distributed servers by dividing the database, they cannot process a query when
data of a user is distributed on the multiple servers. Therefore, in this paper we
propose a CUBRID based middleware supporting distributed parallel query
processing. Through the performance evaluations, we show that our proposed
scheme outperforms the existing work in terms of query processing time.

Keywords: Middleware, distributed parallel query processing, CUBRID.

1 Introduction

Recently, studies on the bigdata processing have been actively performed [1], [2].
With the existing IT technologies, it is very hard to efficiently store, process and
analyze the bigdata. The bigdata itself is hard to be used as valuable information
because of the immense volume of the bigdata. Therefore, it is necessary to analyze
the bigdata to extract the meaningful information. To analyze the bigdata, a large
scale of computing resources and efficient bigdata management system are required.
For this, studies on NoSQL have been done [3-7]. However, NoSQL cannot satisfy
the ACID properties of database transactions. Therefore, bigdata processing based on
RDBMS (Relational DataBase Management System) has been spotlighted.

CUBRID Shard [8] is a RDBMS that is designed to process bigdata. To support
parallel query processing, CUBRID Shard stores data in the distributed CUBRID
servers by dividing the database. However, if data of a user is distributed on the
multiple CUBRID servers, CUBRID Shard cannot process the query. Moreover,
CUBRID Shard has a low usability because a user should specify a 'shard_hint' in the
SQL when requesting the query.

To solve these problems, in this paper we propose a CUBRID based middleware
which supports distributed parallel query processing. Through our proposed
middleware, users who are familiar with SQL can conveniently process the bigdata by
using SQL statements. In addition, the middleware can support the aggregation
queries that have not been handled on the distributed parallel computing environment.

* Corresponding author.

32 H.-I. Kim et al.

The rest of this paper is organized as follows. In section 2, we briefly review
related work. Section 3 explains the propose middleware in detail. An empirical
evaluation is presented in Section 4. Finally, we conclude this paper in section 5.

2 Related Work

NoSQL systems are increasingly used in bigdata and real-time web applications.
NoSQL such as Hadoop [3], MongoDB [4], and Cassandra [5] provides a mechanism
for storage and retrieval of unstructured data. The data structures used by NoSQL
differ from those used in relational databases, making some operations faster in
NoSQL. However, most NoSQL cannot satisfy the ACID properties of the database
transactions. Especially, the major shortcoming of NoSQL is that it cannot guarantee
data consistency when NoSQL supports the partition tolerance and availability.

Therefore, RDBMS have been spotlighted in the field of bigdata processing.
CUBRID [9] is an object-oriented RDBMS developed by NHN (Next Human
Networks). CUBRID provides predictable automatic fail-over and fail-back features
based on a native CUBRID heartbeat technology. However, CUBRID cannot run on
the distributed system environments because CUBRID is optimized on single
machine. So, it is not efficient for dealing with bigdata. To solve the problems of
CUBRID, CUBRID Shard [8] is developed. CUBRID Shard can partition the data
based on the horizontal partitioning technique. CUBRID Shard allows storing a
number of database shards and distributing data. With CUBRID Shard, application
developers do not need to modify the application logic to divide a database into
CUBRID Shards because the database system automatically handles it. CUBRID
Shard provides built-in distributed load balancing, connection, and statement pooling.
However, CUBRID Shard cannot process a query when data of a user is distributed
on the multiple CUBRID servers. It can be a big problem when dealing with the
bigdata. Moreover, CUBRID Shard has a low usability because a user should specify
a 'shard_hint' in the SQL when requesting the query.

3 Middleware Based on the Distributed CUBRID

Fig. 1 shows the overall system architecture of our proposed middleware supporting
parallel query processing on the distributed CUBRID. The middleware consists of 4
components.

First, a communication component is in charge of data transmission with a user or
CUBRID servers. SQL query and database connection information are transmitted
through the communication component. Second, a query analysis component
performs an SQL parsing to extract table names in from phrase that are used for
retrieving meta tables. In addition, the component distinguishes the query types.
Third, metadata retrieval component retrieves meta tables. There are 3 meta tables. i)
MinMaxTable stores information for inserting data on the distributed CUBRID
servers. The schema of the table is {dbName, partition, tableName, column, min,
max}. The column means the name of the column that is used to partition the

 A Middleware Supporting Query Processing on Distributed CUBRID 33

Fig. 1. The overall system architecture

tableName table. The partition means a CUBRID server which stores records whose
values of the column are between min and max. ii) SearchTable stores information
required for retrieving data that are stored on the distributed CUBRID servers. The
schema of the table is {userID, dbName, tableName, partition}. By using the table,
we can determine the partitions storing the tableName table that are necessary to
process the query of the userID. iii) IpPortTable stores connection information of
each CURED server. The schema of the table is {partition, ip, port}. Finally, a query
result merge component merges results sent from CUBRID servers. The middleware
prepares a buffer for each CBURID server to receive each query result in parallel
without any collisions. In addition, the query result merge component eliminates
duplicated results and aggregates query results if needed. Finally, the query result
merge component sends the final query result to the query issuer.

The overall query processing procedure with the proposed middleware is as
follows. i) A user sends an SQL query to the middleware. ii) By using the query
analysis component, the middleware distinguishes a type of the query. iii) The
middleware reconstructs the SQL query to be processed on the distributed CUBRID
servers. iv) By using the query analysis component, the middleware extracts table
names in from phrase. v) By using metadata retrieval component, the middleware
finds a list of CUBRID servers holding the required data to process the query. vi) The
middleware generates a packet for each CUBRID server. vii) By using the
communication component, the middleware sends packets to the CUBRID servers. In
addition, the middleware prepares a buffer for each CBURID server to receive query
results in parallel. viii) The middleware receives a query result from each CUBRID
server that processes the query. ix) By using the query result merge component, the
middleware draws the final query result. x) The middleware finishes the query request
by sending the final query result to the client.

Meanwhile, the middleware plays a different role according to the query type.
Following describes how our proposed middleware processes each query type. First,
in case of Insert phrase, the middleware stores data into the distributed CUBRID
servers. To handle data insertion, data partitioning strategy of the designated table
should be stored in MinMaxTable. By referring the table, the system can

34 H.-I. Kim et al.

automatically store the data into the appropriate partition. For example, for a given
SQL query “Insert into Student(ID, name) values(20, ‘KIM’)”, the middleware can
notice that the data should be inserted into the Student table. By referencing the
MinMaxTable, the middleware confirms that the Student table is partitioned based on
the ID column and the record with the ID value of 20 is related to the partition 1.
Then, the middleware retrieves the IpPortTable to find the connection information of
the partition 1. Table 2 shows an example of the IpPortTable. By retrieving the
IpPortTable, the middleware finds that the ip and port of the partition 1 are
“123.456.789.001” and “9001” respectively. So, the middleware performs the data
insertion by sending the SQL query to the CUBRID server (partition 1). Through the
mechanism, the middleware achieves the distributed data insertion.

Table 1. MinMaxTable

dbName partition TableName column min Max
db01 1 Student ID 0 50
db01 2 Student ID 50 100
db01 1 Graduate ID 0 50
db01 2 Graduate ID 50 100

Table 2. IpPortTable Table 3. SearchTable

partition ip port id dbName TableName Partition
1 123.456.789.001 9001 user01 db01 Student 1, 2
2 123.456.789.002 9002 user02 db09 Professor 1
10 123.456.789.010 9010

Second, in case of Select phrase, the middleware retrieves databases in distributed
manner. For this, the middleware determines which tables should be retrieved by
analyzing the SQL query and retrieves SearchTable to find partitioning information of
the tables. For example, assume that user01 sends a query like “Select * from Student
where age=21”. By analyzing the query, the middleware can notice that the Student
table is required to process the query. When we consider the SearchTable shown in
Table 3, the middleware can find that Student table of the user01 is distributed in
partition 1 and partition 2. Then, the middleware accesses the IpPortTable to retrieve
the connection information of the CUBRID servers. By sending the query to these
CUBRID servers, data retrieval can be performed in parallel. Meanwhile, when
processing the select query type, the middleware should consider following. The
query result of each CUBRID server is sorted based on the order by conditions. If
there is no order by phrase in the query, the query result of each CUBRID server is
sorted based on the key value by default. So, the middleware should re-sort the query
result sent from each CUBRID server based on the order by conditions to make the
final query result. In addition, the middleware eliminates a duplicated record during
re-sorting the query results. If there is a limit phrase in the query, the middleware
terminates the query processing when the middleware writes the required number of
records to the final result. Finally, the middleware completes the select query
processing by sending the final query result to the client.

 A Middleware Supporting Query Processing on Distributed CUBRID 35

Third, in case of Join phrase, the middleware can process the query when the
following criteria are satisfied. i) MinMaxTable should store the partitioning strategies
of the designated tables. ii) The tables should be partitioned based on the same
column and should follow the same partitioning strategy. For example, assume that
the middleware receives a query like “Select * from Student, Graduate where
age=21” and the MinMaxTable is given as like Table 1. Student and Graduate tables
use ID column for partitioning and their partitioning strategy is identical (e.g.,
partition 1 is in charge of storing records whose ID values are between 0 and 50 for
both tables). In this case, the middleware can perform the join operation on the tables.

Finally, in case of Aggregation phrase, the middleware finds what kinds of
aggregation operations are included in the query. According to the type, the
middleware operates in different way. i) When the type is min or max, the middleware
receives the minimum or maximum value from each CUBRID server and sets the
smallest or largest value as the final result. ii) When the type is count or sum, the
middleware receives the number of records of sum from each CUBRID server and
calculates the final result by adding result values. iii) When the type is average, it is
impossible to draw the final result by using average results sent form CUBRID
servers. Therefore, the middleware reconstructs the query by using sum and count
instead of average. Then, the middleware receives the query result (count and sum)
from each CUBRID server. The middleware calculates the sum of these values
respectively and calculates the average value (total sum / total count).

4 Performance Evaluation

We compare our middleware with the existing CUBRID in terms of query processing
time varying the number of data. Because CUBRID does not support parallel query
processing in distributed environments, we perform query processing of CUBRID in a
sequential way. We use one master node and 3 slave nodes for the performance
evaluation. We use CUBRID version 2.2.0 and compile the middleware using g++
4.6.3 running on the Linux 3.5.0-23 with Intel® CoreTM i3-3240 3.40Ghz CPU and 8
GB memory. According to Wisconsin Benchmark [10], we generate a million data for
select and average operations, and 10,000 data for join operation.

Fig. 2 describes query processing time for select operation. The query processing
time is increased as the number of data increases. When the number of data is 60% of
all data, the query processing time of our scheme and CUBRID are 7.76 and 14.49
seconds, respectively. The middleware shows about 47% better performance than
CUBRID. Fig. 3 shows the query processing time for join operation. When the
number of data is 60% of all data, the query processing time of our scheme and
CUBRID are 0.14 and 0.35 seconds, respectively. Our proposed middleware shows
about 60% better performance than CUBRID. Fig. 4 shows query processing time for
average operation. When the number of data is 60% of all data, the query processing
time of our scheme and CUBRID are 0.12 and 0.31 seconds. Overall, our proposed
middleware outperforms the existing CUBRID because our middleware supports
parallel query processing in a distributed environment. Especially, in case of join
operation, the middleware shows much performance improvement because join
operation requires more computations than the select operation.

36 H.-I. Kim et al.

Fig. 2. Select operation performance

Fig. 3. Join operation performance

Fig. 4. Average operation performance

5 Conclusion

Existing distributed systems have problems when processing bigdata. Therefore, in
this paper we propose a CUBRID based middleware which supports distributed
parallel query processing. The middleware can support users who are familiar with
SQL to conveniently process the bigdata by using SQL statements. In addition, the
middleware can support various aggregation operators. Through the performance
evaluations, we show that our proposed scheme outperforms the existing work in
terms of query processing time. As a future work, we plan to expand our middleware
to support various types of join with reasonable efficiency.

Acknowledgements. This research was supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (2014065816).

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

2. Rabl, T., Sadoghi, M., Jacobsen, H.: Solving Big Data Challenges for Enterprise
Application Performance Management. VLDB Endowment 5(12), 1724–1735 (2012)

3. Apache Software Foundation, Apache Hadoop, http://hadoop.apache.org
4. Chodorow, K.: MongoDB: the definitive guide. O’Reilly Media Inc. (2013)

 A Middleware Supporting Query Processing on Distributed CUBRID 37

5. Dietrich, A., Mohammad, S., Zug, S., Kaiser, J.: ROS meets Cassandra: Data Management
in Smart Environments with NoSQL. In: 11th International Baltic Conference (2014)

6. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System. In:
26th IEEE Symposium on Mass Storage Systems and Technologies (MSST), NV (2010)

7. Han, J., Haihong, E., Guan, L.: Survey on NoSQL Database. In: 6th IEEE International
Conference on Pervasive Computing and Applications, Port Elizabeth, pp. 363–366 (2011)

8. CUBRID Shard, http://www.cubrid.org/manual/91/en/shard.html
9. CUBRID, http://www.cubrid.com

10. DeWitt, D.J.: The Wisconsin Benchmark: Past, Present, and Future. In: Database and
Transaction Processing System Performance Handbook (1993)

	A Middleware Supporting Query Processing on Distributed CUBRID
	1 Introduction
	2 Related Work
	3 Middleware Based on the Distributed CUBRID
	4 Performance Evaluation
	5 Conclusion
	References

