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Abstract. The problem of automated theorem finding is one of 33 basic re-
search problems in automated reasoning which was originally proposed by 
Wos. The problem is still an open problem until now. To solve the problem, a 
systematic methodology with forward reasoning based on strong relevant logic 
has been proposed. This paper presents a case study of automated theorem find-
ing in graph theory to show the generality of the methodology, and presents a 
future direction for automated theorem finding based on the methodology. 
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1 Introduction 

The problem of automated theorem finding (ATF for short) is one of 33 basic re-
search problems in automated reasoning which was originally proposed by Wos in 
1988 [14,15], and it is still an open problem [6, 9, 10, 12-15]. The ATF problem [14, 
15]: “What properties can be identified to permit an automated reasoning program to 
find new and interesting theorems, as opposed to proving conjectured theorems?”  

The most important and difficult requirement of the problem is that, in contrast to 
prove conjectured theorems supplied by the user, it asks for criteria that an automated 
reasoning program can use to find some theorems in a field that must be evaluated by 
theorists of the field as new and interesting theorems. The significance of solving the 
problem is obvious because an automated reasoning program satisfying the require-
ment can provide great assistance for scientists in various fields [2].  

To solve the ATF problem, a forward reasoning approach based on strong relevant 
logic [1, 2] and its systematic methodology [8] have been proposed. To verify the effec-
tiveness of the approach, we used the methodology to perform a case study of ATF in 
axiomatic set theory, and the result of that case study shows that the forward reasoning 
approach based on strong relevant logic is hopeful to solve the ATF problem [8]. 

This paper presents a case study of automated theorem finding in graph theory [7] 
to show the generality of the proposed methodology, and presents a future direction 
for ATF based on the methodology. 
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2 Basic Notions and Notations 

A formal logic system L is an ordered pair (F(L), ⊢L) where F(L) is the set of well 
formed formulas of L, and ⊢L is the consequence relation of L such that for a set P of 
formulas and a formula C, P ⊢L C means that within the framework of L taking P as 
premises we can obtain C as a valid conclusion. Th(L) is the set of logical theorems of 
L such that ϕ ⊢L T holds for any T ∈ Th(L). According to the representation of the 
consequence relation of a logic, the logic can be represented as a Hilbert style system, 
Gentzen sequent calculus system, Gentzen natural deduction system, and so on [3]. 

Let (F(L), ⊢L) be a formal logic system and P ⊆ F(L) be a non-empty set of sen-
tences. A formal theory with premises P based on L, called an L-theory with premises 
P and denoted by TL(P), is defined as TL(P) =df Th(L) ∪ The L(P) where The L(P)  =df 
{A|P ⊢L A and A ∉ Th(L)}, Th(L) and The L(P) are called the logical part and the em-
pirical part of the formal theory, respectively, and any element of The L(P)  is called 
an empirical theorem of the formal theory [3]. 

Based on the definition above, the problem of ATF can be said as “for any given 
premises P, how to construct a meaningful formal theory TL(P) and then find new and 
interesting theorems in The L(P) automatically” [3]. 

The notion of predicate abstract level [8] is defined as follows: (1) Let pal(X) = k 
denote that an abstract level of a predicate X is k where k is a natural number, (2) 
pal(X) = 1 if X is the most primitive predicate in a target field, (3) pal(X) = 
max(pal(Y1), pal(Y2), ..., pal(Yn))+1 if a predicate X is defined by other predicates Y1, 
Y2, ..., Yn in the target field where n is a natural number. A predicate X is called k-level 
predicate, if pal(X) = k. If pal(X) < pal(Y), then the abstract level of predicate X is 
lower than Y, and Y is higher than X. 

The notion of function abstract level [8] is defined as follows: (1) Let fal(f ) = k 
denote that an abstract level of a function f is k where k is a natural number, (2) fal(f ) 
= 1 if f is the most primitive function in the target field, (3) fal(f ) = max(fal(g1), 
fal(g2), ..., f al(gn)) + 1 if a function f is defined by other functions g1, g2, ..., gn in the 
target field where n is a natural number. A function f is k-level function, if fal(f ) = k. 
If fal(f ) < fal(g), we call the abstract level of function f is lower than g, and g is high-
er than f . 

The notion of abstract level of a formula [8] is defined as follows: (1) lfal(f )= (k, 
m) denotes that an abstract level of a formula A where k = pal(A) and m = fal(A), (2) 
pal(A) = max(pal(Q1), pal(Q2), ..., pal(Qn)) where Qi is a predicate and occurs in A (1 
≤ i ≤ n), or pal(A) = 0, if there is not any predicate in A, (3) fal(A) = max(fal(g1), 
fal(g2), ..., fal(gn)) where gi is a function and occurs in A (1 ≤ i ≤ n), or fal(A) = 0, if 
there is not any function in A. A formula A is (k, m)-level formula, if lfal(A) = (k, m). 

(k, m)-fragment of premises P, denoted by P (k, m), is a set of all formulas in P that 
consists of only (j, n)-level formulas where m, n, j and k are natural number (0 ≤ j ≤ k 
and 0 ≤ n ≤ m) [8]. 
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3 A Systematic Methodology for ATF with Forward Reasoning 

The systematic methodology for ATF consists of five phases [8]. Phase 1 is to prepare 
logical fragments [5] of strong relevant logic for various empirical theories. The pre-
pared logic fragments are independent from any target field, therefore they can be 
reused for ATF in different fields. Phase 2 is to prepare empirical premises of the 
target theory and draw up a plan to use collected empirical theorems. In detail, we 
prepare (k, m)-fragment of collected empirical premises in the target field to define a 
semi-lattice. A set of the prepared fragments and inclusion relation on the set is a 
partial order set, and is a finite semi-lattice. Moreover, a set of formal theories with 
the fragments and inclusion relation on the set is also a partial order set, and is also a 
finite semi-lattice. Partial order of the set of the prepared fragments can be used for a 
plan to reason out fragments of formal theories with collected empirical premises. 
According to the partial order, we can systematically do ATF from simple theorems 
to complex theorems. 

Phase 3 to phase 5 are performed repeatedly until deducing all fragments of formal 
theory that have been planned in phase 2. In this methodology, loop means doing 
phase 3 to phase 5 at once. We use one of (k, m)-fragment of collected empirical 
premises to perform phase 3 to phase 5 in one loop. In detail, we firstly use lowest 
level fragment of premises to reason out empirical theorems. Then, we enter into 
phase 4 to abstract deduced empirical theorems, and then enter into phase 5 to find 
new and interesting theorems from empirical theorems. After that, we go back to the 
phase 3, and use the next level fragment of premises and theorems obtained in last 
loop as premises of this loop. Then, we enter into phase 4 and phase 5 to abstract 
theorems and find interesting theorems again. We repeat the loops until all of the  
(k, m)-fragment of collected empirical premises have been used.   

4 Case Study of ATF in Graph Theory 

The purpose of the case study is to show the generality of our methodology. We chose 
graph theory as the field of ATF in the case study, because graph theory can be estab-
lished above axiomatic set theory. We have performed a case study of ATF [8] in 
axiomatic set theory by using the proposed methodology. If we can also perform ATF 
in graph theory by using the methodology, it means that we can also do ATF in other 
mathematical fields by using our methodology, because almost all of mathematical 
fields can be established above axiomatic set theory. 

We performed the case study according to our methodology. Phase 1 is to prepare 
logical fragments of strong relevant logic. We prepared logical fragments in the case 
study of axiomatic set theory [8] and those logic fragments can be reused in the case 
study. Phase 2 is to prepare the empirical premises of graph theory. Diestel [7] rec-
orded the definitions of graph theory in his book. In the case study, we chose 21 defi-
nitions in Diestel’s book as empirical premises of the case study and formalized them 
based on the predicates and functions of NBG set theory [11]. 

The definitions of graph theory formalized by us are shown as follows. 
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1. Definition of graph 
G (V, E) = <V, E> 

2. Definition of empty graph 
0 = G (0, 0) 

3. Definition of incident edge 
∀x∀y∀v ( ({x, y}∈E)∧(v∈{x, y}) <=> ({x, y} = incidentedge (v))) 

4. Definition of loop 
∀x (loop (x) = {x}) 

5. Definition of isomorphism 
∀w∀v∀v’∀e∀e’ ((G (v, e) = G (v’, e’)) <=> (w∈e => isomorphism (w) ∈e’) 

6. Definition of ∩g 
∀x∀x’∀y∀y’ (G (x, y) ∩g G (x’, y’) = G (x∩x’, y∩y’)) 

7. Definition of ∪g 
∀x∀x’∀y∀y’ (G (x, y) ∪g G (x’, y’) = G (x∪x’, y∪y’)) 

8. Definition of subgraph 
∀x∀x’∀y∀y’ (Sub (G (x, y), G’ (x’, y’)) <=> ((x⊆x’)∧(y⊆y’)∧(x’ ⊆V) ∧  
(y’ ⊆E))) 

9. Definition of induced subgraph 
∀v∀x∀x’∀y∀y’ (InducedSub (G (x, y), G’ (x’, y’)) <=> Sub (G (x, y), G’ (x’, y’)) 
∧((v∈(x∩ x’)) => (incidentedge (v) ∈ y))) 

10. Definition of super graph 
∀x∀x’∀y∀y’ (Sup (G’ (x’, y’), G (x, y)) <=> Sub (G (x, y), G’ (x’, y’)) 

11. Definition of simple graph 
∀x∀m∀n∀v∀e (SimpleGraph (G (v, e)) <=> (v⊆V)∧ (e⊆E)∧((x∈v) => 
￢(loop (x)∈e)) ∧ ((m∈e) ∧(n∈e) => ￢(m= n))) 

12. Definition of adjacent 
∀x∀y (Adjacent (x, y) <=> ({x, y}∈E)) 

13. Definition of complete graph 
∀x∀y∀v∀e (CompleteGraph (G (v, e)) <=> SimpleGraph (G (v, e))∧((x∈v)∧ 

(y∈v) => Adjacent (x, y))) 

14. Definition of disjoint 
∀x∀x’∀y∀y’ (Disjoint (G (x, y), G (x’, y’)) <=> (G (x, y) ∩g G (x’, y’) = 0)) 

15. Definition of – 
∀x∀y∀u (G (x, y) – u = G (~ (x∩u), ~ (y∩ incidentedge (u))) 

16. Definition of connected graph 
∀u∀x∀y∀z∀v∀e (ConnectedGraph (G (v, e)) <=> ((G (u, x) ∪g G (y, z)  = 
 G (v, e)) =>￢Disjoint (G (u, x), G (y, z))) 

17. Definition of path 
∀e∀v∀x∀m∀n∀p((path (v, e) = G (v, e)) <=> (ConnectedGraph (G (v, e)) ∧    
((m∈e)∧(n∈e)∧(p∈e)∧￢(m=n)∧￢(n=p)∧￢(m=p)∧(x∈m) ∧ (x∈n)) =>  
￢(x∈p)))  
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18. Definition of cycle 
∀v∀e∀x∀m∃n ((cycle(v, e) = G (v, e)) <=> ((path (v, e) = G (v, e))∧((m∈e)∧ 

(x∈m) => (x∈n)∧(n∈e)∧￢(m=n))) 

19. Definition of connectivity 
∀x∀y∀e∀v (Connect (x, y) <=> ((x∈v)∧(y∈v) => ({v} ∈ path(v, e)))) 

20. Definition of forest 
∀v∀v’∀e∀e’ (Forest (G(v, e)) <=> ￢Sub (cycle (v’, e’), G (v, e))) 

21. Definition of tree 
∀v∀e (Tree (G (v, e)) <=> ConnectedGraph (G (v, e)) ∧ Forest (G (v, e))) 

Then, we defined a semi-lattice of abstract level fragments of formalized empirical 
premises according to the proposed methodology. In detail, first we summarized all of 
the predicate abstract levels in the formalized definitions: 2-level predicate: Adjacent 
(abstract from ∈), Connect (from ∈); 3-level predicate: Sub (from ⊆); 4-level predi-
cate: Forest (from Sub), InducedSub (from Sub, ∈), Sup (from Sub), SimpleGraph 
(from ∈, ⊆, =),  Disjoint (from =); 5-level predicate: CompleteGraph (from 
SimpleGraph, ∈, Adjacent), ConnectedGraph (from =, Disjoint); 6-level predicate: 
Tree (from ConnectedGraph, Forest). Second, we summarized all of the function 
abstract levels in the formalized definition: 2-level function: incidentedge (abstract 
from unordered pair); 3-level function: loop (from singleton); 4-level function: G 
(from ordered pair); 5-level function: path (from G), ∩g (from ∩, G), ∪g (from ∪, 
G), isomorphism (from G), – (from G, ~ , ∩, incidentedge); 6-level function: cycle 
(from G, path). Third, we summarized all of the abstract levels of formalized defini-
tions as shown in Table 1. Finally, we defined the semi-lattice of abstract level  
fragments of empirical premises in graph theory as shown in Fig. 1 by using the 
methodology. In this case study NBG set theory is seen as the minimum element of 
the semi-lattice, which is different from the last case study of axiomatic set theory [8]. 

Table 1. The abstract level of definitions in graph theory 

Abstract Level Definition 

(2, 1) Definition of adjacent 
(2, 5) Definition of connectivity 
(3, 2) Definition of incident edge 
(3, 3) Definition of loop 
(3, 4) Definition of graph, empty graph, subgraph 
(3, 5) Definition of isomorphism, ∩g, ∪g, – 
(3, 6) Definition of cycle 
(4, 4) Definition of super graph, simple graph, induced subgraph 
(4, 5) Definition of disjoint 
(4, 6) Definition of forest 
(5, 4) Definition of complete graph 
(5, 5) Definition of path, connected graph 
(6, 4) Definition of tree 
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Fig. 1. The defined semi-lattice of graph theory based on NBG set theory 

From Phase 3 to Phase 5, we performed deduction, abstraction, and finding of the-
orems. We used the general reasoning engine FreeEnCal [5] as the tool. In detail, we 
used the prepared logic fragments [8] from small to large according to the defined 
semi-lattice of strong relevant logic [8] as logic premises, and used (k, m)-fragments 
of premises of graph theory from lower abstract level to higher abstract level as em-
pirical premises, we also used obtained empirical theorems of NBG set theory in last 
case study [8] as empirical premises to perform ATF. Then, we used filtering method 
to remove uninteresting theorems. We showed the results of the case study in Table 2. 

The case study shows that our methodology holds generality. By using our meth-
odology, we defined the (k, m)-fragments of empirical premises of axiomatic set theo-
ry and extended them to graph theory well. Besides, it is sure that the case study of 
ATF in graph theory were performed systematically in each phase. All of those em-
pirical theorems are obtained by using forward reasoning method and our filtering 
method can filter most of uninteresting theorems based on syntax, more than 90% 
empirical theorems reasoned out by all of the five prepared logical fragments can be 
removed as uninteresting theorems automatically such that the scientists can find 
interesting theorems from the filtered results based on semantics by acceptable time.  
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Table 2. The results of the case study 

Used  
logic fragments 

Obtained 
empirical theorems 

Core 
empirical theorems

Filtered 
results 

Th(⇒, 2) (EeQ)  1138 102 83 
Th(⇒, 3) (EeQ)  1662 133 93 

Th(⇒, 2, ￢, 1) (EenQ)  1139 103 84 
Th(⇒, 3, ￢, 1) (EenQ)  2885 288 216 

Th(⇒, 2, ￢, 1, ∧, 1) (EcQ) 1216 122 97 

5 A Future Direction for ATF 

Cheng has proposed a semi-lattice model of formal theories [4], which can support 
forward reasoning approach based on strong relevant logic to do ATF in multi-fields. 
The core of the model is strong relevant logic (SRL) and axiomatic set theory is seen 
as the minimum element in the semi-lattice, and other formal theories can be estab-
lished above the axiomatic set theory as shown in Fig. 2. 

To do ATF based on Cheng’s semi-lattice model [4] of formal theories by using our 
methodology is a future direction for ATF, because it holds generality. Our methodology 
can support Cheng’s semi-lattice model and provide a method to establish the semi-
lattice of formal theories, that is we define the (k, m)-fragment of empirical premises of 
axiomatic set theory and we extend them to other mathematical fields. The case study of 
graph theory which we have presented in Section 4 shows our methodology is effective 
to support Cheng’s semi-lattice model of formal theories. We consider finding process of 
theorems must include some concept/notion abstraction processes in other mathematical 
fields, so we can conclude that our methodology is suitable for ATF in other mathemati-
cal fields, such as group theory, lattice theory and number theory. 
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Fig. 2. The semi-lattice model of formal theories 
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6 Concluding Remarks 

We have presented a case study of ATF in graph theory, and showed the generality of 
our proposed methodology through the case study. We have shown a future direction 
for ATF through the case study. We will do ATF in other fields like lattice theory, 
group theory, and number theory in future according to Cheng’s semi-lattice model of 
formal theories. 
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