
Chapter 11
Stabilization of Stochastic RNNs
with Stochastic Delays

The research in Chaps. 4–10 is focused on the qualitative analysis of complex neural
networks with delays. It is well known that the qualitative analysis of nonlinear
dynamical systems is the foundation of controlling the systems. Therefore, in this
chapter controller design problem will be studied for a class of stochastic Cohen-
Grossberg neural networks with mode-dependent mixed time delays and Markovian
switching, in which the neural dynamical networks will be stabilized. The contents
in this chapter are from the research result in [1].

11.1 Introduction

In recent decades, neural networks have been successfully applied to various fields
such as optimization, image processing, and associative memory design. In such
application, it is important to know the stability properties of the designed neural
network, these properties include asymptotic stability and exponential stability.How-
ever, time delays inevitably exist in neural networks due to various reasons [2]. The
existence of time delaymay lead to some complex dynamic behaviors such as oscilla-
tion, divergence, chaos, instability, or other poor performance of the neural networks.
Since neural networks usually have a spatial extent, there is a distribution of propa-
gation delays over a period of time. In these circumstances, the signal propagation
is not instantaneous and cannot be modeled with discrete-time delays [3]. A more
appropriate way is to incorporate discrete and continuously distributed time delays
in the neural network model [2, 4]. Stability analysis for neural networks with delays
has attracted more and more interests in recent years, for example, see [5–21] and
references therein.

On the other hand, the stabilization issue has been an important focus of research
in the control fields, and several feedback stabilizing control design approaches
have been proposed (see [7, 22–25]). Some interesting results [6, 26–35] on the
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stabilizationof awide range anddifferent types of neural networks havebeen reported
in the literature. For a class of discrete-time dynamic neural networks, reference [29]
proposes two methods, namely, the gradient projection and the minimum distance
projection to investigate the stabilization. For a class of dynamic neural network sys-
tems, a global robust stabilizing controller with unknown nonlinearities is developed
in [6] via Lyapunov stability and inverse optimality. For a class of linearly coupled
stochastic neural networks, some results are derived in [31] on the design of themini-
mumnumber of controllers for the pinning stabilization,which are expressed in terms
of strict linear matrix inequality (LMI). For a class of neutral neural networks with
varying delays, a novel criterion is obtained in [28] for the global stabilization using
the Razumikhin’s method. For a class of so-called standard neural network mod-
els with time delays, a few stabilization criteria are presented [30] which are based
on the Lyapunov–Krasovskii stability theory and the LMI approach. For a class of
impulsive high-order Hopfield-type neural networks with time-varying delays, some
stabilization criteria are reported in [26] by employing the Lyapunov–Razumikhin
technique. Very recently, for a class of neural networks with various activation func-
tions and time-varying continuously distributed delays, LMI-based delay-dependent
conditions are obtained in [27] for the global exponential stabilization. Despite some
good progress on the stability analysis of delayed neural networks with various acti-
vation functions [36–38], the stabilization issue has not been fully explored in the
existing studies.

Although the stabilization problem for some kinds of neural networks with or
without time delays is investigated by some authors, there has been no literature
reported on the stabilization of stochastic Cohen-Grossberg neural networks with
both Markovian jumping parameters and mixed mode-dependent time delays. As
well known, mode-dependent time delays are of practical significance since the
signal may switch between different modes and also propagate in a distributed way
during a certain time period with the presence of an amount of parallel pathways
[24]. The purpose of this chapter is to make an attempt to deal with the control
problem for a class of stochastic neural networks with mode-dependent delays [1].
By introducing a new Lyapunov–Krasovskii functional that accounts for the mode-
dependent mixed delays, stochastic analysis is conducted in order to derive delay-
dependent criteria for the exponential stabilization problem. The feedback stabilizing
controller is designed to satisfy some exponential stability constraints on the closed-
loop poles. The stabilization criteria are obtained in terms of LMI and hence the gain
control matrix is easily determined by numerical MATLABs LMI Control Toolbox.
Three numerical examples are carried out to demonstrate the feasibility of our delay-
dependent stabilization criteria.

Throughout this chapter, the shorthand col{M1, M2, . . . , Ml} denotes a column
matrix with the matrices M1, M2, . . . , Ml .

(
Ω,F , {Ft }t≥0,P

)
denotes a complete

probability space with a filtration {Ft }t≥0 satisfying the usual conditions, i.e.,
the filtration is right continuous and contains all P-null sets. Lp

F0
([−h, 0],Rn)

denotes the family of all F0-measurable C ([−h, 0];Rn)-valued random variables
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ξ = {ξ(θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0 E|ξ(θ)|p < ∞, where E{·}
stands for themathematical expectation operator with respect to the given probability
measure P.

11.2 Problem Formulation and Preliminaries

We consider the following stochastic neural network with both feedback control law
and Markovian jumping parameters described by

dx(t) = − α(x(t), ηt )

[
β(x(t), ηt ) − A(ηt ) f (x(t))

− B(ηt ) f (x(t − τ (t, ηt )))

− C(ηt )

∫ t

t−υ(t,ηt )

g(x(s))ds − D(ηt )u(t, ηt )

]
dt

+
[

E1(ηt )x(t) + E2(ηt )x(t − τ (t, ηt ))

+ E3(ηt ) f (x(t)) + E4(ηt ) f (x(t − τ (t, ηt )))

+ E5(ηt )

∫ t

t−υ(t,ηt )

g(x(s))ds

]
dω(t), (11.1)

where x(t) = [x1(t), . . . , xn(t)]T denotes the neuron state at time t , u(t) ∈
L2([0, s),Rm),∀s > 0, is the control input vector of the neural networks,α(x(t), ηt )

= diag{α j (x j (t), ηt ), . . . ,αn(xn(t), ηt )} denotes the amplification function,β(x(t),
ηt ) = diag{β j (x j (t), ηt ), . . . ,βn(xn(t), ηt )} denotes the appropriately behaved
function such that the solution of the model given in (11.1) remains bounded,
and f (x(t)) = [ f1(x1(t)), . . . , fn(xn(t))]T , g(x(s)) = [g1(x1(s)), . . . , gn(xn(s))]T

denote the activation functions. f (x(t − τ (t, ηt ))) = [ f1(x1(t − τ (t, ηt ))), . . . , fn

(xn(t − τ (t, ηt )))]T . 0 ≤ τ (t, ηt ) ≤ τ̄ (ηt ) ≤ τ̄ , 0 ≤ υ(t, ηt ) ≤ ῡ(ηt ) ≤ ῡ ( j =
1, . . . , n) are bounded and unknown delays. The matrices A(ηt ), B(ηt ), C(ηt ) ∈
R

n×n, D(ηt ) ∈ R
n×m are the connection weight matrix, the discretely delayed

connection weight matrix, the distributively delayed connection weight matrix and
the control input weights, respectively. E j (ηt )( j = 1, 2, . . . , 5) is known real
constant matrix with appropriate dimension, ω(t) is a one-dimensional Brownian
motion defined on complete probability space

(
Ω,F , {Ft }t≥0,P

)
with E{dω(t)} =

0, E{[dω(t)]2} = dt. {ηt = η(t), t ≥ 0} is a homogeneous, finite-state Markov-
ian process with right continuous trajectories and taking values in finite set ℘ =
{1, 2, . . . , N } with given probability space (Ω,F , {Ft }t≥0,P

)
and the initial model

η0. It is assumed that the initial condition of neural network (11.1) has the form
x(t) = ϕ(t) for t ∈ [−�, 0], where ϕ(t) = [ϕ1(t), . . . ,ϕn(t)]T , function
ϕ j (t)( j = 1, 2, . . . , n) is continuous, � = max{τ̄ , ῡ}. Let ℵ = [πij]i, j∈℘ denote
the transition rate matrix with given probability:
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P(ηt+δ = j |ηt = i) =
{

πijδ + o(δ), i �= j,
πiiδ + o(δ) + 1, i = j,

where δ > 0, limδ→0+ o(δ)
δ = 0 and πij is the transition rate from mode i to mode

j satisfying πij ≥ 0 for i �= j with πii = −∑N
j=1,i �= j πij, i, j ∈ ℘.

For convenience, each possible value of ηt is denoted by i(i ∈ ℘) in the sequel.
Then we have

αi (x(t)) = α(x(t), ηt ), βi (x(t)) = β(x(t), ηt ),

Ai = A(ηt ), Bi = B(ηt ), Ci = C(ηt ),

Di = D(ηt ), τi (t) = τ (t, ηt ), υi (t) = υ(t, ηt ),

Eli = El(ηt ), l = 1, . . . , 5.

In the following, we need the following definitions, assumptions, and lemmas.

Definition 11.1 ([24, 27]) Given r > 0, and any initial conditionϕ ∈ L2
F0

([−�, 0],
R

n)with u(t, ηt ) = 0.The zero solution of system (11.1) is said to be r-exponentially
stable in the mean square, if there exists a positive scalar M such that any solution
x(t,ϕ) of the system satisfies the following inequality,

E||x(t,φ)||2 ≤ M sup
−�≤s≤0

E||φ(s)||2e−2r t , ∀ t ≥ 0.

Definition 11.2 ([24, 27]) Given r > 0. The system (11.1) is said to be r-
exponentially stabilizable in the mean square, if there is a feedback control law
u(t, ηt ) = U (ηt )x(t), such that the following closed-loop system

dx(t) = − α(x(t), ηt )

[
β(x(t), ηt ) − A(ηt ) f (x(t))

− B(ηt ) f (x(t − τ (t, ηt )))

− C(ηt )

∫ t

t−υ(t,ηt )

g(x(s))ds − D(ηt )U (ηt )x(t)

]
dt

+
[

E1(ηt )x(t) + E2(ηt )x(t − τ (t, ηt ))

+ E3(ηt ) f (x(t)) + E4(ηt ) f (x(t − τ (t, ηt )))

+ E5(ηt )

∫ t

t−υ(t,ηt )

g(x(s))ds

]
dω(t),

x(t) = ϕ(t), t ∈ [−�, 0],

is r -exponentially stable.

Assumption 11.3 ([8]) Each αji(·) is a continuous function and satisfies ᾱji ≥
αji(·) ≥ αji > 0, j = 1, 2, . . . , n, i = 1, 2, . . . , N .
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Here, we denote αi = min1≤ j≤n{αji}, ᾱi = max1≤ j≤n{ᾱji} for simplicity.

Assumption 11.4 Each function βji(·) is locally Lipschitz continuous, βji(0) = 0
and there exist constants β̄ji > β

ji
≥ 0 such that

β
ji
s2 ≤ βji(s)s ≤ β̄jis

2,

for any s ∈ R, j = 1, 2, . . . , n, i = 1, 2, . . . , N .

For simplicity, we denote Πi = diag{β̄1i , . . . , β̄ni}, Γi = diag{β
1i

, . . . ,β
ni
}.

Assumption 11.5 For j = 1, 2, . . . , n, f j (0) = g j (0) = 0. Furthermore, there
exist constants �−

j , �+
j ,ψ−

j ,ψ+
j such that �−

j < �+
j ,ψ−

j < ψ+
j and

�−
j ≤ f j (s)

s
≤ �+

j , ψ−
j ≤ g j (s)

s
≤ ψ+

j ,

for any s ∈ R, j = 1, 2, . . . , n.

Remark 11.6 As pointed out in [24], the constants �−
j , �+

j ,ψ−
j ,ψ+

j in Assumption
11.5 are allowed to be positive, negative, or zero. Then, those previously used Lip-
schitz conditions are just the special cases of Assumption 11.5. Hence, the activation
functions can be of more general descriptions than those earlier forms.

For notational simplicity, we denote

Σ̄ = diag
{
�+
1 , �+

2 , . . . , �+
n

}
,

Σ = diag
{
�−
1 , �−

2 , . . . , �−
n

}
,

F1 = diag
{
�−
1 �+

1 , �−
2 �+

2 , . . . , �−
n �+

n

}
,

F2 = diag

{
�−
1 + �+

1

2
,
�−
2 + �+

2

2
, . . . ,

�−
n + �+

n

2

}

,

F3 = diag
{
ψ−
1 ψ+

1 ,ψ−
2 ψ+

2 , . . . ,ψ−
n ψ+

n

}
,

F4 = diag

{
ψ−
1 + ψ+

1

2
,
ψ−
2 + ψ+

2

2
, . . . ,

ψ−
n + ψ+

n

2

}

.

Lemma 11.7 (Jensen integral inequality, see [39]) For any constant matrix M > 0,
any scalars a and b with a < b, and a vector function χ(t) : [a, b] → R such that
the integrals concerned are well defined, then the following inequality holds

〈 ∫ b

a
χ(s)ds, M

∫ b

a
χ(s)ds

〉
≤ (b − a)

∫ b

a
χ(s)T Mχ(s)ds,

where
〈
A, B

〉
= AT B denotes the inner product.
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Lemma 11.8 Assume that ν,μ,ϑ, ϑ̄ are real scalars such that ν ≤ 1, ν + μ ≤ 4,
and ϑ < ϑ̄. Let ϑ : R → (ϑ, ϑ̄) be a real function. Then for any nonnegative scalars
a, b, the following inequality holds

− a

ϑ(t) − ϑ
− b

ϑ̄ − ϑ(t)

≤ 1

ϑ̄ − ϑ
max{−νa − μb,−μa − νb}. (11.2)

Proof Without loss of generality, we assume that ν ≤ μ. First consider the case that
a ≤ b. It is easy to see that max{−νa − μb,−μa − νb} = −μa − νb. Therefore,
we have

(
ϑ(t) − ϑ

) (
ϑ̄ − ϑ(t)

)
(−μa − νb)

+ (
ϑ̄ − ϑ

) [(
ϑ̄ − ϑ(t)

)
a + (

ϑ(t) − ϑ
)

b
]

= (
ϑ̄ − ϑ(t)

) [
ϑ̄ + (μ − 1)ϑ − μϑ(t)

]
a

+ (
ϑ(t) − ϑ

) [
(1 − ν)

(
ϑ̄ − ϑ(t)

) + (
ϑ(t) − ϑ

)]
b

≥ {(
ϑ̄ − ϑ(t)

) [
ϑ̄ + (μ − 1)ϑ − μϑ(t)

]

+ (
ϑ(t) − ϑ

) [
(1 − ν)

(
ϑ̄ − ϑ(t)

) + (
ϑ(t) − ϑ

)]}
a

= a

4

[
(ν + μ)

(
2ϑ(t) − ϑ − ϑ̄

)2 + (4 − ν − μ)
(
ϑ̄ − ϑ

)2]

≥ 0.

That is

1

ϑ̄ − ϑ
max{−νa − μb,−μa − νb}

= 1

ϑ̄ − ϑ
(−μa − νb)

≥ − a

ϑ(t) − ϑ
− b

ϑ̄ − ϑ(t)
.

Similarly, we can also conclude that the inequality (11.2) holds for a > b. Now, the
proof of Lemma 11.8 is completed.

Remark 11.9 If we set ν = 1,μ = 3, then we get Lemma 3 of [40] from Lemma
11.8. Thus, based on Lemma 11.8, we can get some conditions of exponential stabi-
lization problem with less conservativeness.
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11.3 Stabilization Result

As is well known, for stochastic systems, Itô’s formula plays an important role in the
stability analysis of stochastic systems and we cite some related results here [41].
Consider a general stochastic system

dx(t) = f (x(t), t, ηt )dt + g(x(t), t, ηt )dω(t) (11.3)

on t ≥ t0 with initial value x(t0) = x0 ∈ R
n, where f : Rn × R

+ × ℘ → R
n

and g : Rn × R
+ × ℘ → R

n+m . Let C2,1
(
R

n × R
+,R+) denote the family of all

nonnegative functions V (x, t, i) on Rn × R
+ which are continuously differentiable

in t and twice differentiable in x . Let £ be the weak infinitesimal generator of the
random process {x(t), η(t)}t≥0 along the system (11.3) (see [24, 42, 43]), i.e.,

£V (xt , t, i) := lim
δ→0+

1

δ
sup

[
E
{

V (xt+δ, t + δ, η(t + δ))
∣∣x(t),

η(t) = i
} − V (xt , t, η(t) = i)

]
,

then, by the generalized Itô’s formula, one can get

EV (x, t, i) = EV (x0, t0, i) + E

∫ t

t0
£V (x(s), s, i)ds.

Theorem 11.10 Given r > 0. For any given scalars τ̄i > 0, ῡi > 0, υ′
i < 1, con-

sidering the system (11.1) satisfying Assumptions 11.3–11.5 and τ̇i (t) ≤ τ ′
i , υ̇i (t) ≤

υ′
i , the system (11.1) is globally r-exponentially stabilized if there exist symmet-

ric positive definite matrices Pi ∈ R
n×n, symmetric nonnegative definite matri-

ces Qji, Ri , Mi , Sl , Zi ( j = 1, . . . , 4, l = 1, . . . , 9), positive diagonal matrices
Gi , Ui , Ti , Wi , H, K , and real matrices Xi satisfying the following inequalities
(i = 1, . . . , N )

N∑

j=1

πij Qlj < Sl , l = 1, 2, 3, 4, (11.4)

N∑

j=1

πij R j < S5, (11.5)

N∑

j=1

πij Z j < S6, (11.6)

N∑

j=1

πijῡ j R j < S7, (11.7)
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N∑

j=1

πijτ̄ j Z j < S8, (11.8)

N∑

j=1

πijτ̄ j Q4 j < S9, (11.9)

[
Ωi + Ω̃i ET

E Zi

]
< 0, (11.10)

[
Ωi + Ω̂i ET

E Zi

]
< 0, (11.11)

where

Ωi =

⎡

⎢⎢
⎣

Ω1i Ω2i Ω4i Ω7i

∗ Ω3i Ω5i 0
∗ ∗ Ω6i Ω8i

∗ ∗ ∗ Ω9i

⎤

⎥⎥
⎦ ,

Ω̃i = − 2

τ̄i
I

T Q4i I, Ω̂i = − 2

τ̄i
IT Q4iI,

E = [ E1i E2i E3i E4i 0 E5i 0 0 0 0 0 0 ],

Zi = τ̄2

2
S6 + τ̄ S8 + τ̄i Zi + Z̃i ,

Z̃i = α−1
i [Pi + H(Πi − Γi ) + K (Σ̄ − Σ)],

with

Ω1i =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

Ω11i Ω12i Ω13i Ω14i Ω15i Ω16i

∗ Ω22i 0 Ω24i 0 0
∗ ∗ Ω33i Ω34i 0 Ω36i

∗ ∗ ∗ Ω44i 0 0
∗ ∗ ∗ ∗ Ω55i 0
∗ ∗ ∗ ∗ ∗ Ω66i

⎤

⎥
⎥⎥⎥⎥⎥
⎦

,

Ω2i = [ 0 0 Ai Bi 0 Ci ]
T GT

i ,

Ω3i = − 2ᾱ−2
i Gi + α−2

i

[1
2
τ̄2S4 + τ̄i Q4i + τ̄ S9

]
,

Ω4i =

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ω18i 0 Ω1ai

0 Ω29i 0
Ω38i 0 Ω3ai

0 0 Ω4ai

0 0 0
0 0 Ω6ai

⎤

⎥⎥⎥⎥⎥⎥
⎦

, Ω7i =

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ω1bi 0
Ω2bi Ω2ci

0 0
0 0
0 0
0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

,
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Ω5i = Gi

[
Di DT

i 0 − I
]
,

Ω6i =
⎡

⎣
Ω88i 0 Ω8ai

∗ Ω99i 0
∗ ∗ Ωaai

⎤

⎦ , Ω8i =
⎡

⎣
0 0
0 Ω9ci

0 0

⎤

⎦ ,

Ω9i = diag{Ωbbi, Ωcci},
I = [

0 −I 0 0 0 0 0 0 I 0 0 I
]
,

I = [−I I 0 0 0 0 0 0 0 0 I 0
]
,

and

Ω11i = − 2PiΓi + Q1i + Q3i − 1

τ̄i
Q4i

+
N∑

j=1

πijρ
−1
ij Pj + τ̄ (S1 + S3) − Ui F1 − Wi F3

+
N∑

j=1

π̄ijα
−1
i

[
Pi + 2H(Πi − Γi ) + 2K (Σ̄ − Σ)

]
,

Ω12i = 1

τ̄i
Q4i ,

Ω22i = − (1 − τ ′
i )Q1i +

N∑

j=1

π̄ijτ̄ j Q1 j − 2

τ̄i
Q4i − Ti F1,

Ω13i = Pi Ai + Ui F2 − Γi HAi − ΣKAi ,

Ω33i = Q2i − Ui + KAi + AT
i K + τ̄ S2,

Ω14i = Pi Bi − Γi HBi − ΣKBi ,

Ω24i = − Ti F2, Ω34i = KBi ,

Ω44i = − Ti − (1 − τ ′
i )Q2i +

N∑

j=1

π̄ijτ̄ j Q2 j ,

Ω15i = Wi F4, Ω55i = −Wi + ῡi Ri + ῡ2

2
S5 + ῡS7,

Ω16i =Pi Ci − Γi HCi − ΣKCi ,

Ω36i = KCi , Ω66i = −1 − υ′
i

ῡi
Ri ,

Ω18i = (Pi − Σ K + Γi H)Di DT
i + M̄T

i ,

Ω38i = KDi DT
i , Ω88i = −2Mi , Ω29i = 1

τ̄i
Q4i ,
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Ω99i = − 1

τ̄i
Q4i − Q3i +

N∑

j=1

π̄ijτ̄ j Q3 j ,

Ω1ai = Γi H + Σ K , Ω3ai = AT
i H − K ,

Ω4ai = BT
i H, Ω6ai = CT

i H, Ω8ai = Di DT
i H,

Ωaai = − 2H, Ω1bi = 1

τ̄i
Q4i ,

Ω2bi = − 1

τ̄i
Q4i , Ωbbi = − 1

τ̄i
Q4i − Zi ,

Ω2ci = 1

τ̄i
Q4i , Ω9ci = − 1

τ̄i
Q4i , Ωcci = − 1

τ̄i
Q4i − Zi ,

and π̄ij = max{πij, 0}, M̄i = Mi Xi ,

ρij =
{

ᾱi , j = i
αi , j �= i

.

Furthermore, the feedback stabilizing control law is defined by ui (t) = DT
i Xi x(t).

Proof From Assumption 11.3, we know that the amplification function αi (x(t))
is nonlinear and satisfies αi (x(t))αi (x(t)) ≤ ᾱ2

i I. Following the way in [15],
pre- and postmultiplying the left-hand sides of inequalities (11.10) and (11.11) by
diag{I I I I I I αi (x(t)) I I I I I }, respectively, it follows that

[
Ω i + Ω̃i ET

E Zi

]
< 0, (11.12)

[
Ω i + Ω̂i ET

E Zi

]
< 0, (11.13)

where

Ω i
.=
⎡

⎣
Ω1i Ω2i Ω4i

∗ Ω3i Ω5i

∗ ∗ Ω6i

⎤

⎦ ,

with

Ω2i = [ 0 0 Ai Bi 0 Ci ]
T αi (x(t))GT

i ,

Ω3i = τ̄i Q4i − (Gi + GT
i ) + τ̄2

2
S4 + τ̄ S9,

Ω5i = Giαi (x(t))
[

Di DT
i 0 − I 0 0

]
.
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For any j = 1, 2, . . . , n, from Assumption 11.5 we obtain that

(
f (x j (t)) − �+

j x j (t)
) (

f (x j (t)) − �−
j x j (t)

)
≤ 0,

(
g(x j (t)) − ψ+

j x j (t)
) (

g(x j (t)) − ψ−
j x j (t)

)
≤ 0.

Therefore, the following matrix inequalities hold for any positive diagonal matrices
Ui , Ti , Wi ,

〈[
x(t)

f (x(t))

]
,

[−Ui F1 Ui F2
Ui F2 −Ui

] [
x(t)

f (x(t))

]〉
≥ 0, (11.14)

〈[
x(t − τi (t))

f (x(t − τi (t)))

]
,

[−Ti F1 Ti F2
Ti F2 −Ti

] [
x(t − τi (t))

f (x(t − τi (t)))

]〉
≥ 0, (11.15)

〈[
x(t)

g(x(t))

]
,

[−Wi F3 Wi F4
Wi F4 −Wi

] [
x(t)

g(x(t))

]〉
≥ 0. (11.16)

Denoting

ιi (t) = − βi (x(t)) + Ai f (x(t)) + Bi f (x(t − τi (t)))

+ Ci

∫ t

t−υi (t)
g(x(s))ds + Di ui (t),

ϑi (t) = αi (x(t))ιi (t),

σi (t) = E1i x(t) + E2i x(t − τi (t)) + E3i f (x(t))

+ E4i f (x(t − τi (t))) + E5i

∫ t

t−υi (t)
g(x(s))ds,

then system (11.1) can be rewritten as

dx(t) = ϑi (t)dt + σi (t)dω(t). (11.17)

Define the following Lyapunov–Krasovskii functional:

V (xt , t, i) =
6∑

l=1

Vli(xt , t), (11.18)

where

V1i (xt , t) =
n∑

j=1

2pji

∫ x j (t)

0

s

αji(s)
ds
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+
n∑

j=1

2h j

∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

+
n∑

j=1

2k j

∫ x j (t)

0

f j (s) − �−
j s

αji(s)
ds,

V2i (xt , t) =
∫ t

t−τi (t)
〈x(s), Q1i x(s)〉 ds

+
∫ t

t−τi (t)
〈 f (x(s)), Q2i f (x(s))〉 ds

+
∫ t

t−τ̄i

〈x(s), Q3i x(s)〉 ds,

V3i (xt , t) =
∫ 0

−τ̄i

∫ t

t+θ
〈ϑi (s), Q4iϑi (s)〉 dsdθ

+
∫ 0

−υi (t)

∫ t

t+θ
〈g(x(s)), Rig(x(s))〉 dsdθ

+
∫ 0

−τ̄i

∫ t

t+θ
〈σi (s), Ziσi (s)〉 dsdθ,

V4i (xt , t) =
∫ 0

−τ̄

∫ t

t+θ

{ 〈x(s), (S1 + S3)x(s)〉
+ 〈 f (x(s)), S2 f (x(s))〉 }dsdθ,

V5i (xt , t) =
∫ 0

−τ̄

∫ 0

θ

∫ t

t+λ
〈ϑi (s), S4ϑi (s)〉 dsdλdθ

+
∫ 0

−ῡ

∫ 0

θ

∫ t

t+λ
〈g(x(s)), S5g(x(s))〉 dsdλdθ

+
∫ 0

−τ̄

∫ 0

θ

∫ t

t+λ
〈σi (s), S6σi (s)〉 dsdλdθ,

V6i (xt , t) =
∫ 0

−ῡ

∫ t

t+θ
〈g(x(s)), S7g(x(s))〉 dsdθ

+
∫ 0

−τ̄

∫ t

t+θ

{ 〈σi (s), S8σi (s)〉
+ 〈ϑi (s), S9ϑi (s)〉

}
dsdθ,

with Pi = diag{p1i , p2i , . . . , pni}, H = diag{h1, h2, . . . , hn}, K = diag{k1,
k2, . . . , kn}.
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For any η(t) = i ∈ ℘, it can be shown that

£

⎧
⎨

⎩

n∑

j=1

2pji

∫ x j (t)

0

s

αji(s)
ds

⎫
⎬

⎭

= lim
Δ→0+

1

Δ
E

⎧
⎨

⎩

n∑

j=1

2

(
N∑

l=1

[πilΔ + o(Δ)]pjl + pji

)

×
∫ x j (t+Δ)

0

s
∑N

l=1[πilΔ + o(Δ)]αjl(s) + αji(s)
ds

−
n∑

j=1

2pji

∫ x j (t)

0

s

αji(s)
ds

⎫
⎬

⎭

=
N∑

l=1

πil

n∑

j=1

2pjl

∫ x j (t)

0

s

αji(s)
ds

+ lim
Δ→0+

1

Δ
E

⎧
⎨

⎩

n∑

j=1

2pji

[

−
∫ x j (t)

0

s

αji(s)
ds

+
∫ x j (t+Δ)

0

s
∑N

l=1[πilΔ + o(Δ)]αjl(s) + αji(s)
ds

]⎫⎬

⎭

=
N∑

l=1

πil

n∑

j=1

2
∫ x j (t)

0

s
[

pjlαji(s) − pjiαjl(s)
]

α2
ji(s)

ds

+ 2 〈ιi (t), Pi x(t)〉 + trace
〈
σi (t),α

−1
i (x(t))Piσi (t)

〉
, (11.19)

£

⎧
⎨

⎩

n∑

j=1

2h j

∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

⎫
⎬

⎭

= lim
Δ→0+

1

Δ
E

⎧
⎨

⎩

n∑

j=1

2h j

[

−
∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

+
∫ x j (t+Δ)

0

∑N
l=1[πilΔ + o(Δ)]βjl(s) + βji(s)

∑N
l=1[πilΔ + o(Δ)]αjl(s) + αji(s)

ds

−
∫ x j (t+Δ)

0

∑N
l=1[πilΔ + o(Δ)]β

jl
s + β

ji
s

∑N
l=1[πilΔ + o(Δ)]αjl(s) + αji(s)

ds

⎤

⎦

⎫
⎬

⎭
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= lim
Δ→0+

1

Δ
E

⎧
⎨

⎩

n∑

j=1

2h j

[
−
∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

+
∫ x j (t+Δ)

0

∑N
l=1[πilΔ + o(Δ)]βjl(s)

∑N
l=1[πilΔ + o(Δ)]αjl(s) + αji(s)

ds

−
∫ x j (t+Δ)

0

∑N
l=1[πilΔ + o(Δ)]β

jl
s

∑N
l=1[πilΔ + o(Δ)]αjl(s) + αji(s)

ds

+
∫ x j (t+Δ)

0

βji(s) − β
ji
s

∑N
l=1[πilΔ + o(Δ)]αjl(s) + αji(s)

ds

]}

=
N∑

l=1

πil

n∑

j=1

2h j

∫ x j (t)

0

[
βji(s) − β

ji
s
] [

αji(s) − αjl(s)
]

α2
ji(s)

ds

+ 2 〈ιi (t), H (βi (x(t)) − Γi x(t))〉
+ trace

〈
σi (t),α

−1
i (x(t))H(Πi − Γi )σi (t)

〉
, (11.20)

£

⎧
⎨

⎩

n∑

j=1

2k j

∫ x j (t)

0

f j (s) − �−
j s

αji(s)
ds

⎫
⎬

⎭

=
N∑

l=1

πil

n∑

j=1

2k j

∫ x j (t)

0

[
f j (s) − �−

j s
] [

αji(s) − αjl(s)
]

α2
ji(s)

ds

+ 2 〈ιi (t), K ( f (x(t)) − Σx(t))〉
+ trace

〈
σi (t),α

−1
i (x(t))K (Σ̄ − Σ)σi (t)

〉
, (11.21)

where α−1
i (x(t)) = diag

{
α−1
1i (x1(t)), . . . , α−1

ni (xn(t))
}

.

According to the definition of ρil and Assumptions 11.3–11.5 we have that

N∑

l=1

πil

n∑

j=1

2pjl

∫ x j (t)

0

s

αji(s)
ds ≤

〈
x(t),

N∑

l=1

πilρ
−1
il Pl x(t)

〉
, (11.22)

−
N∑

l=1

πil

n∑

j=1

2pji

∫ x j (t)

0

sαjl(s)

α2
ji(s)

ds

≤ −πii

n∑

j=1

2pji

∫ x j (t)

0

s

αji(s)
ds

≤
〈
x(t),

N∑

l=1

π̄ilα
−1
i Pi x(t)

〉
, (11.23)
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N∑

l=1

πil

n∑

j=1

2h j

∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

≤
N∑

l=1

π̄il

n∑

j=1

2h j

∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

≤
〈
x(t), H

N∑

l=1

π̄ilα
−1
i (Πi − Γi )x(t)

〉
, (11.24)

−
N∑

l=1

πil

n∑

j=1

2h j

∫ x j (t)

0

[
βji(s) − β

ji
s
]
αjl(s)

α2
ji(s)

ds

≤ −πii

n∑

j=1

2h j

∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

≤
〈
x(t), H

N∑

l=1

π̄ilα
−1
i (Πi − Γi )x(t)

〉
, (11.25)

N∑

l=1

πil

n∑

j=1

2k j

∫ x j (t)

0

f j (s) − �−
j s

αji(s)
ds

≤
N∑

l=1

π̄il

n∑

j=1

2k j

∫ x j (t)

0

f j (s) − �−
j s

αji(s)
ds

≤
〈
x(t), K

N∑

l=1

π̄ilα
−1
i (Σ̄ − Σ)x(t)

〉
, (11.26)

−
N∑

l=1

πil

n∑

j=1

2k j

∫ x j (t)

0

[
f j (s) − �−

j s
]
αjl(s)

α2
ji(s)

ds

≤ −πii

n∑

j=1

2k j

∫ x j (t)

0

f j (s) − �−
j s

αji(s)
ds

≤
〈
x(t), K

N∑

l=1

π̄ilα
−1
i (Σ̄ − Σ)x(t)

〉
. (11.27)

Using the well-known Itô’s differential formula [41, 44], we obtain

£V1i (xt , t) ≤ 2
〈
ιi (t), Pi x(t) + H

[
βi (x(t)) − Γi x(t)

] + K ( f (x(t)) − Σx(t))
〉

+ trace
〈
σi (t), α−1

i (x(t))
[
Pi +H(Πi − Γi ) + K (Σ̄ − Σ)

]
σi (t)

〉
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+
N∑

l=1

πilρ
−1
il

〈
x(t), Pl x(t)

〉

+
N∑

l=1

π̄il

〈
x(t), α−1

i

[
Pi + 2H ×(Πi − Γi ) + 2K (Σ̄ − Σ)

]
x(t)

〉
,

(11.28)

£V2i (xt , t) = 〈x(t), Q1i x(t)〉 + 〈 f (x(t)), Q2i f (x(t))〉
− (1 − τ̇i (t))

{ 〈x(t − τi (t)), Q1i x(t − τi (t))〉
+ 〈 f (x(t − τi (t))), Q2i f (x(t − τi (t)))〉

}

+ 〈x(t), Q3i x(t)〉 − 〈x(t − τ̄i ), Q3i x(t − τ̄i )〉

+
N∑

j=1

πij

[ ∫ t

t−τi (t)

〈
x(s), Q1 j x(s)

〉
ds

+
∫ t

t−τi (t)

〈
f (x(s)), Q2 j f (x(s))

〉
ds +

∫ t

t−τ̄i

〈
x(s), Q3 j x(s)

〉
ds

]

+
N∑

j=1

πijτ j (t)
[ 〈x(t − τi (t)), Q1i x(t − τi (t))〉

+ 〈 f (x(t − τi (t))), Q2i f (x(t − τi (t)))〉
]

+
N∑

j=1

πijτ̄ j 〈x(t − τ̄i ), Q3i x(t − τ̄i )〉 , (11.29)

£V3i (xt , t) = τ̄i 〈ϑi (t), Q4iϑi (t)〉 −
∫ t

t−τ̄i

〈ϑi (s), Q4iϑi (s)〉 ds

+ υi (t) 〈g(x(t)), Rig(x(t))〉 −
∫ t

t−υi (t)
〈g(x(t)), Rig(x(t))〉 ds

+ τ̄i 〈σi (t), Ziσi (t)〉 −
∫ t

t−τ̄i

〈σi (t), Ziσi (t)〉 ds

+
N∑

j=1

πij

[∫ 0

−τ̄i

∫ t

t+θ

〈
ϑi (s), Q4 jϑ j (s)

〉
dsdθ

+
∫ 0

−υi (t)

∫ t

t+θ

〈
g(x(s)), R jg(x(s))

〉
dsdθ

+
∫ 0

−τ̄i

∫ t

t+θ

〈
σi (s), Z jσ j (s)

〉
dsdθ

]

+
N∑

j=1

πij

[
τ̄ j

∫ t

t−τ̄i

〈ϑi (s), Q4iϑi (s)〉 ds
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+ υ j (t)
∫ t

t−υi (t)

〈
g(x(s)), R jg(x(s))

〉
ds

+ τ̄ j

∫ t

t−τ̄i

〈
σi (s), Z jσi (s)

〉
ds

]
, (11.30)

£V4i (xt , t) = τ̄ 〈x(t), (S1 + S3)x(t)〉 + τ̄ 〈 f (x(t)), S2 f (x(t))〉
−
∫ t

t−τ̄
{〈x(s), (S1 + S3)x(s)〉 + 〈 f (x(s)), S2 f (x(s))〉} ds,

(11.31)

£V5i (xt , t) = τ̄2

2

{ 〈ϑi (t), S4ϑi (t)〉 + 〈σi (t), S6σi (t)〉
}

−
∫ 0

−τ̄

∫ t

t+θ
〈ϑi (s), S4ϑi (s)〉 dsdθ

+ ῡ2

2
〈g(x(t)), S5g(x(t))〉 −

∫ 0

−ῡ

∫ t

t+θ
〈g(x(s)), S5g(x(s))〉 dsdθ

−
∫ 0

−τ̄

∫ t

t+θ
〈σi (s), S6σi (s)〉 dsdθ, (11.32)

£V6i (xt , t) = ῡ 〈g(x(t)), S7g(x(t))〉 −
∫ t

t−ῡ
〈g(x(s)), S7g(x(s))〉 ds

+ τ̄ 〈σi (t), S8σi (t)〉 + τ̄ 〈ϑi (t), S9ϑi (t)〉
−
∫ t

t−τ̄
〈σi (s), S8σi (s)〉 ds −

∫ t

t−τ̄
〈ϑi (s), S9ϑi (s)〉 ds. (11.33)

Based on Assumption 11.4, we obtain that

−xT (t)Piβi (x(t)) ≤ −xT (t)PiΓi x(t). (11.34)

From Lemma 11.7, it follows that

−
∫ t

t−υi (t)
〈g(x(s)), Rig(x(s))〉 ds

≤ − 1

ῡi

〈 ∫ t

t−υi (t)
g(x(s))ds, Ri

∫ t

t−υi (t)
g(x(s))ds

〉
. (11.35)

For simplicity, we denote

ς1i (t) =
∫ t−τi (t)

t−τ̄
ϑi (s)ds, ς2i (t) =

∫ t

t−τi (t)
ϑi (s)ds.
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When 0 < τi (t) < τ̄i , from Lemma 11.8 with ν = 1,μ = 3, one can obtain that

−
∫ t

t−τ̄i

〈ϑi (s), Q4iϑi (s)〉 ds

= −
∫ t−τi (t)

t−τ̄i

〈ϑi (s), Q4iϑi (s)〉 ds

−
∫ t

t−τi (t)
〈ϑi (s), Q4iϑi (s)〉 ds

≤ − 1

τ̄i − τi (t)
〈ς1i (t), Q4i ς1i (t)〉 − 1

τi (t)
〈ς2i (t), Q4i ς2i (t)〉

≤ 1

τ̄i
max

{ − 〈ς1i (t), Q4i ς1i (t)〉 − 3 〈ς2i (t), Q4i ς2i (t)〉 ,

− 3 〈ς1i (t), Q4i ς1i (t)〉 − 〈ς2i (t), Q4i ς2i (t)〉
}
. (11.36)

Obviously, from Lemma 11.7, inequality (11.36) holds when τi (t) = 0 or τi (t) =
τ̄i . Therefore, inequality (11.36) holds for any t with 0 ≤ τi (t) ≤ τ̄i .

On the other hand, by the Leibniz-Newton formula, we get

x(t) − x(t − τi (t)) −
∫ t

t−τi (t)
ϑi (s)ds −

∫ t

t−τi (t)
σi (s)dω(s) = 0, (11.37)

x(t − τi (t)) − x(t − τ̄i ) −
∫ t−τi (t)

t−τ̄i

ϑi (s)ds −
∫ t−τi (t)

t−τ̄i

σi (s)dω(s) = 0. (11.38)

It is easy to see that the following equality holds for any positive diagonal matrices
Gi with compatible dimensions

0 = −2 〈Giϑi (t),ϑi (t) − αi (x(t))ιi (t)〉 . (11.39)

Considering that the feedback stabilizing control law being defined by ui (t) =
DT

i Xi x(t), if we denote yi (t) = Xi x(t), then for any symmetric nonnegative definite
matrices Mi , we have

0 = −2 〈Mi yi (t), yi (t) − Xi x(t)〉 (i = 1, 2, . . . , N ). (11.40)

Noticing that the following equality holds

−
∫ t

t−τ̄i

〈σi (s), Ziσi (s)〉 ds = −
∫ t−τi (t)

t−τ̄i

〈σi (s), Ziσi (s)〉 ds

−
∫ t

t−τi (t)
〈σi (s), Ziσi (s)〉 ds. (11.41)
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From [14], we have

E

{∫ t

t−τi (t)
〈σi (s), Ziσi (s)〉 ds

}

=E

〈 ∫ t

t−τi (t)
σi (s)dω(s), Zi

∫ t

t−τi (t)
σi (s)dω(s)

〉
, (11.42)

E

{∫ t−τi (t)

t−τ̄i

〈σi (s), Ziσi (s)〉 ds

}

=E

〈 ∫ t−τi (t)

t−τ̄i

σi (s)dω(s), Zi

∫ t−τi (t)

t−τ̄i

σi (s)dω(s)

〉
. (11.43)

By (11.4)–(11.9) and (11.14)–(11.43), we obtain

dE[V (x(t), t, i)]
dt

≤ Emax
{〈

ζi (t),
(
Ω i + Ω̃i + ET ZiE

)
ζi (t)

〉
,
〈
ζi (t),

(
Ω i + Ω̂i + ET ZiE

)
ζi (t)

〉}
,

(11.44)

where

ζi (t) = col

{
x(t) x(t − τi (t)) f (x(t))

f (x(t − τi (t))) g(x(t))
∫ t

t−υi (t)
g(x(s))ds

ϑi (t) yi (t) x(t − τ̄i ) βi (x(t))
∫ t

t−τi (t)
σi (s)dω(s)

∫ t−τi (t)

t−τ̄i

σi (s)dω(s)

}
.

Next, we prove that the error system is exponentially stable in mean square.
For convenience, we define

λp = min
i∈℘

{λmin(Pi )},

λM = min
i∈℘

{λmin(−Ω i − Ω̃i − ET ZiE), λmin(−Ω i − Ω̂i − ET ZiE)}.

From (11.12) and (11.13) and the well-known Schur complements, it can be easily
seen that λM > 0. Furthermore, from (11.44) we have that

dE[V (x(t), t, i)]
dt

≤ −λME||ζi (t)||2 ≤ −λME||x(t)||2. (11.45)
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Similar to [45], from (11.18) and the definition ofϑi (t), there exist positive scalars
ε1 and ε2 such that

E[V (x(t), t, i)] ≤ ε1E||ζ(t)||2 + ε2E

∫ t

t−τ̄i

||x(s)||2ds.

To prove the mean square exponential stability, we modify the Lyapunov function
candidate (11.18) as V̄ (x(t), t, i) = ertV (x(t), t, i), where r is chosen such that
r(ε1 + τ̄ ε2er τ̄ ) ≤ λM .

Then, we have
E[V̄ (x(t), t, i)] ≥ λpE||x(t)||2.

Furthermore, by the Dynkin’s formula [14], for any η(t) = i ∈ ℘, t > 0, we
obtain that

E[V̄ (x(t), t, i)] =E[V̄ (x(0), 0, η(0))] + E

∫ t

0
ers [r V̄ (x(s), s, i) + £V̄ (x(s), s, i)

]
ds

≤ (ε1 + τ̄ ε2) sup
−�≤s≤0

E||x(t)||2 + rε1

∫ t

0
ers

E||x(s)||2ds

+ rε2E

∫ t

0
ers

∫ s

s−τ̄
||x(θ)||2dθds − λM

∫ t

0
ers||x(s)||2ds.

By changing the integration sequence, we get

∫ t

0
ers

∫ s

s−τ̄
||x(θ)||2dθds

≤
∫ 0

−τ̄
ers

∫ θ+τ̄

0
||x(θ)||2dsdθ +

∫ t

0
ers

∫ θ+τ̄

0
||x(θ)||2dsdθ

≤
∫ 0

−τ̄
(θ + τ̄ )er(θ+τ̄ )||x(θ)||2dθ + τ̄

∫ t

0
er(θ+τ̄ )||x(θ)||2dθ

≤ τ̄er τ̄

{
sup

−�≤s≤0
||x(s)||2 +

∫ t

0
erθ||x(θ)||2dθ

}
.

Therefore we have

E||x(t)||2 ≤ εe−rt sup
−�≤s≤0

||x(s)||2,

or

lim
t→∞ sup

1

t
log(E||x(t)||2) ≤ −r,

where ε = λ−1
p (ε1 + τ̄ ε2 + r τ̄2ε2er τ̄ ).
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Consequently,weprove that the error system (11.1) is exponentially stable inmean
square. So the system (11.1) is r-exponentially stabilizable in the mean square. This
ends the proof.

Remark 11.11 The Lyapunov functional (11.18) of this chapter fully uses the infor-
mation about the amplification function and the mode-dependent time-varying
delays, but [15, 20] only use the information about delays when constructing their
Lyapunov functionals. Therefore the Lyapunov functional is more general than those
in [15, 20], and the stability criteria in this chapter may be less conservativeness.

Remark 11.12 When one of the time-varying delays τ̇i (t) is not differentiable or
unknown, the result in Theorem 11.10 is no longer applicable. For this case, by
setting Q1i = Q2i = 0 in Theorem 11.10, one can obtain a result of the mean square
exponential stability of system (11.1).

If there are no stochastic disturbances, that is E j (ηt ) = 0 ( j = 1, . . . , 5), then
the neural network (11.1) is simplified to

ẋ(t) = − α(x(t), ηt )

[
β(x(t), ηt ) − A(ηt ) f (x(t)) − B(ηt ) f (x(t − τ (t, ηt )))

− C(ηt )

∫ t

t−υ(t,ηt )

g(x(s))ds − D(ηt )u(t, ηt )

]
. (11.46)

For system (11.46), by setting Zi = S6 = S8 = 0 in Theorem 11.10 and deleting∫ t
t−τi (t)

σi (s)dω(s),
∫ t−τi (t)

t−τ̄i
σi (s)dω(s) from ζi (t), we can get the following result

of the mean square exponential stability.

Corollary 11.13 Given r > 0. For any given scalars τ̄i > 0, ῡi > 0, υ′
i < 1, con-

sidering the system (11.46) satisfying Assumptions 11.3–11.5 and τ̇i (t) ≤ τ ′
i , υ̇i (t) ≤

υ′
i , the system (11.46) is globally r-exponentially stabilizable if there exist symmet-

ric positive definite matrices Pi ∈ R
n×n, symmetric nonnegative definite matri-

ces Qli, Ri , Mi , Sl (l = 1, . . . , 4, l = 1, . . . , 5, 7, 9), positive diagonal matrices
Gi , Ui , Ti , Wi , H, K , and real matrices Xi such that (11.4), (11.5), (11.7), (11.9)
and the following inequalities hold,

[
Ω i + Ω̌i E

T

E Z̃i

]
< 0, (11.47)

[
Ω i + Ὼi E

T

E Z̃i

]
< 0, (11.48)

where

Ω i =
⎡

⎣
Ω1i Ω2i Ω4i

∗ Ω3i Ω5i

∗ ∗ Ω6i

⎤

⎦ ,
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Ω̌i = − 2

τ̄i
IT Q4iI, Ὼi = − 2

τ̄i
J

T Q4iJ,

I = [
0 −I 0 0 0 0 0 0 I 0

]
,

J = [−I I 0 0 0 0 0 0 0 0
]
,

E = [ E1i E2i E3i E4i 0 E5i 0 0 0 0 ],

i = 1, . . . , N , and other parameters are defined in Theorem 11.10. Furthermore,
the feedback stabilizing control law is defined by ui (t) = DT

i Xi x(t).

11.4 Illustrative Examples

In this section, we provide three numerical examples to demonstrate the feasibility
of our delay-dependent stabilization criteria.

Example 11.14 Consider system (11.1) with N = 2,

αji(x j (t)) = 0.4 sin(x j (t)) + 0.8,

βji(x j (t)) = 7.5x j (t) + 0.5 sin(x j (t)),

f j (x j (t)) = g j (x j (t)) = tanh(x j (t)), j = 1, 2,

τi (t) = 0.2 sin(t) + 0.2,

υi (t) = 0.3 sin(t) + 0.3, i = 1, 2,

and

A1 =
[

1 −0.01
0.1 1.2

]
, A2 =

[
1.1 −0.01
0.1 1.2

]
,

B1 =
[
5.2 1.2
1.12 2.3

]
, B2 =

[
5.3 1.1
1.11 2.3

]
,

C1 =
[
1.2 0.11
0.1 1.22

]
, C2 =

[
1.1 0.12
0.1 1.22

]
,

D1 = D2 = 0, E11 = E21 = 0.5I,

E12 = E22 = 0.4I, El1 = El2 = 0, l = 3, 4, 5;
ℵ =

[−0.8 0.8
0.3 −0.3

]
.

For this system without external controller, Fig. 11.1a shows the results of time
response of x1(t) and x2(t).

However, if we set

D1 =
[

4
2.1

]
, D2 =

[
4
2

]
,
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Fig. 11.1 a Time response of x1(t) and x2(t)without external controller in Example 11.14, b Time
response of x1(t) and x2(t) with external controller u1(t), u2(t) in Example 11.14

it is easy to see that Assumptions 11.3–11.5 are satisfied with αi = 0.4, ᾱi =
1.2,Πi = 8I, Γi = 7I, Σ̄ = I,Σ = F1 = F3 = 0, F2 = F4 = 0.5I, and
τ̄ = τ̄i = 0.4, ῡ = ῡi = 0.6, i = 1, 2. Using the Matlab LMI Toolbox, the LMIs
(11.4)–(11.11) are feasible and the feedback control is

u1(t) = [ −15.9876 28.4673 ]x(t),

u2(t) = [ −9.8136 17.5622 ]x(t).

The simulation of the solution is given in Fig. 11.1b for t ∈ [−0.65, 200]. It is
clear that both x1(t) and x2(t) converge exponentially to zeros.

Example 11.15 Consider system (11.46) with N = 2,

B1 =
[
6.2 1.2
1.12 0.3

]
, B2 =

[
6.3 1.1
1.11 0.3

]
,
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Fig. 11.2 a Time response of x1(t) and x2(t)without external controller in Example 11.15, b Time
response of x1(t) and x2(t) with external controller u1(t), u2(t) in Example 11.15

and other parameters are defined in Example 11.14.
For this system without external controller, Fig. 11.2a shows the results of time

response of x1(t) and x2(t).
However, if we set D1 = D2 = [ 4 0 ]T , it is easy to see that Assumptions 1-3

are satisfied. Using the Matlab LMI Toolbox, the LMIs (11.4), (11.5), (11.7), (11.9),
(11.47) and (11.48) are feasible and the feedback control is

u1(t) = [ −0.9144 − 1.20177 ]x(t),

u2(t) = [ −1.0149 − 0.1481 ]x(t).

The simulation of the solution is given in Fig. 11.2b for t ∈ [−0.65, 200]. It is
clear that both x1(t) and x2(t) converge exponentially to zeros.

Example 11.16 Consider system (11.46) with N = 1,
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α j1(x j (t)) = 1, β j1(x j (t)) = 8x j (t),

f j (x j (t)) = g j (x j (t)) = tanh(x j (t)), j = 1, 2,

τ1(t) = 8.5, υ1(t) = 2.5,

and

A1 =
[

1 −0.01
0.1 1.2

]
, B1 =

[
5.2 1.2
1.12 2.3

]
,

C1 =
[
1.2 0.11
0.1 1.22

]
, D1 =

[−1.2
0.2

]
.

For this system, Assumptions 11.3–11.5 are satisfied with αi = ᾱi = 1,Πi =
Γi = 8I, Σ̄ = I,Σ = F1 = F3 = 0, F2 = F4 = 0.5I, and τ̄ = τ̄1 = 8.5, ῡ =
ῡ1 = 2.5. It is easy to verify that Theorem 1 of [27] admits no feasible solution.
However, using the Matlab LMI Toolbox, the LMIs (11.4), (11.5), (11.7), (11.9),
(11.47) and (11.48) are feasible with the following matrices:

P1 =
[

72.4939 −13.8747
−13.8747 103.5930

]
,

Q11 =
[

16.7250 −26.0105
−26.0105 88.6304

]
,

Q21 =
[
644.0687 178.7808
178.7808 234.9008

]
,

Q31 =
[

14.2369 −26.9039
−26.9039 81.3660

]
,

Q41 =
[

0.3839 −0.0816
−0.0816 0.6447

]
,

R1 =
[
175.2573 −2.4592
−2.4592 269.3507

]
,

M1 =
[
95.6377 −2.9849
−2.9849 75.6384

]
,

M̄1 =
[−334.3276 58.5190

58.5190 −17.4669

]
,

T1 = diag{12.6571, 49.6002},
U1 = diag{125.4140, 170.7878},

W1 = diag{10.2844, 37.0834},
G1 = diag{9.2136, 15.5713},
H = diag{11.6382, 15.4633},
K = diag{5.1548, 8.9735},
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and accordingly the feedback control is

u1(t) = [ 0.3810 0.2053 ]x(t).

Based on Example 11.16, it is easy to see that the obtained results are better than
those in [27]. Hence, the proposed method is an improvement over the existing ones.

11.5 Summary

In this chapter, the problem of designing a feedback control law to exponentially
stabilize a class of stochastic Cohen-Grossberg neural networks with both Markov-
ian jumping parameters and mixed mode-dependent time delays has been studied.
The mixed time delays consist of both discrete and distributed delays. Using a
new Lyapunov–Krasovskii functional that accounts for the mode-dependent mixed
delays, a new delay-dependent condition for the global exponential stabilization has
been established in terms of linear matrix inequalities. Upon the feasibility of the
LMI, all the control parameters can be easily computed and the design of a stabilizing
controller can be accomplished.
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