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Preface

Background of This Book With the development of neural networks theory, many
neural network models and stability concepts have been extended and upgraded.
For example, it is well known that recurrent neural networks (RNNs) can be used to
realize associate memory and information storage. The fundamental explanation
of the statement is based on the fact that artificial neural networks (ANNs) are from
the biological neural networks (BNNs). In fact, this explanation seems too
far-fetched. Although ANNs models are the reduction of the real biological neural
network models in function, this does not mean that ANNs have the same char-
acteristics as BNNs in nature. In other words, ANNs are an implementation of
partial functions of BNNs in engineering applications. Therefore, based on the
existing research results of dynamical systems, we can regard RNNs as special
dynamical systems that have the fading memory function. In this way, there will be
an excellent explanation that RNNs are dynamical systems with memory and
storage function. Moreover, with the assembly of many RNNs, the traditional
neural network models are coupled together and a new name called complex neural
networks (CNNs) emerges, which can be regarded as an upgraded version of
RNNs. CNNs have more complex dynamics than RNNs due to the different cou-
pling strengths and topology structures. For such kind of CNNs, under some
restrictions on the coupling matrices and topology structures, synchronization
problem now being hot research, is an upgraded version of the classical stability
conception.

As one of the most important qualitative characteristics of a dynamical system,
stability problem is a long-term continuous research topic in many fields such as
mechanics, mathematics, control theory and neural networks. Stability character-
istic or stability concept may have different meanings due to different application
problems, such as stability of fixed point, structure stability, stability in the sense of
Lyapunov, input to output stability, input to state stability and invariant sets. Every
stability definition conforms to the requirements of the engineering practice or
reality. Meanwhile, different requirements of the engineering practice or reality may
produce or promote the development of stability theory, in which some different
branches of stability theory may come into the world. Every theory research has its
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own practical background, and the real-life world provides the opportunities of
emergence and establishment of new theory. From this point of view, almost all the
hot academic topics in the present are in accordance with the current requirement
of the economic development and science and technology innovation. That is, the
hot academic topic is to solve the present problems encountered in reality.

Along this line, this book aims to investigate some stability problems for
recurrent neural networks with delays, in which the main purpose of the research is
to reduce the conservativeness of the stability criteria. Specifically, the book is
mainly focused on the qualitative stability analysis and synthesis of continuous-
time real-valued recurrent neural networks with delays (a special case of additive
neural network models). The discussed stability concept is in the sense of
Lyapunov, and naturally the proof method is based on Lyapunov stability theory.
For a fixed/specified activation function and external constant input, the concerned
stability problems fall into the fields of Lyapunov stability. If the activation func-
tions belong to a special class of functions, the concerned stability problems, strictly
speaking, fall into the scope of absolute stability. In this sense, most of the existing
stability results for RNNs are absolutely stable for any activation function
belonging to a specified function class. Therefore, different stability definitions can
lead to different understandings on the dynamics of RNNs. Meanwhile, some other
qualitative characteristics of RNNs such as passivity, dissipativity, invariant set and
synchronization are also discussed. Based on the qualitative analysis, two kinds of
control schemes are designed to realize the stabilization and controlled synchro-
nization for the concerned complex dynamical networks.

Why to Write This Book? The first author Zhanshan Wang began formally to
contact stability theory of RNNs at the end of 2002. It was an opportunity for him to
join the teams to translate the excellent monograph “A.N. Michel and D. Liu,
Qualitative Analysis and Synthesis of Recurrent Neural Networks, New York:
Marcel Dekker, 2002” into a Chinese book. The Chinese version was published by
Science Press of China in 2004. It was in early 2005 that Zhanshan Wang began to
dedicate his life to the stability research of RNNs. Zhenwei Liu in 2007 and
Chengde Zheng in 2009 began to engage in the stability research of RNNs under
the direction of Prof. Huaguang Zhang, who is a professor at Northeastern
University of China, under the assistance of Zhanshan Wang. Through 10-years’
research on the stability theory of RNNs, we have cooperated on many academic
treatises and achieved some valuable results, and especially improved a lot in the
aspects of understanding the meaning of stability theory. Therefore, it is necessary
to write a book to introduce our results.

Although a number of monographs on stability and neural networks have
appeared, this book has its untouchable features which distinguishes it from others.

First, the historical and logical development of stability theory of RNNs
involved in this monograph is rather complete. From the point of view of system,
readers can find not only the origin of stability theory of RNNs and some
well-known models of RNNs, additive neural networks, Hopfield neural networks
and Cohen-Grossberg neural networks, but also some new insights into the relations
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among these models of RNNs and the different evolutions of stability analysis.
From the point of view of practicability, one can find many relations among dif-
ferent stability definitions, stability theory and stability analysis methods.

Second, since the monograph is a summary of the study results of the authors,
the methods proposed here for stability analysis, stabilization and synchronization
to a great degree benefit from the theory of nonlinear control systems and
dynamical systems, and are more advanced than those appearing in other intro-
ductory books. We only mention a few of them as examples: To present a detailed
review of the stability research of Cohen-Grossberg-type RNNs (i.e., a kind of
additive RNNs), at least 17 aspects of RNNs have been introduced, which will be
helpful for readers to further investigate. How to study the effects of delay on the
stability of RNNs, weighting-delay method and secondary delay partitioning are
proposed, which forms the novel delay partitioning method. To demonstrate an
evolution of stability method, stability results have been studied for RNNs from
fixed point to invariant set, from global stability to local stability, from absolute
stability to relative stability, and from self-stability to controlled-stability. Some
insightful comments are presented for different kinds of stability definitions.
Because there are many excellent papers scattered in books, conferences and
Internet, we have collected a lot of classical and excellent books and papers for
further reading on the stability research of RNNs in a systematic manner in this
monograph, which may show their great roles in the development of stability theory
of RNNs.

Last but not the least, some rather unique contributions are included in this
monograph. For example, the relations and meanings between Hopfield neural
networks and Cohen-Grossberg neural networks are discussed; the reasons why
Lyapunov stability theory is significantly popular in the scientific community are
presented; some comparisons among absolute stability, complete stability and
global stability are provided. These statements are first discussed by the authors and
their merits both in neural network system theory and stability theory will be
interesting.

The Audiences of This Book The book is suitable for a formal graduate course
in stability theory of neural networks or dynamical systems, or for self-study by
researchers and practitioners with an interest in system theory in the following
areas: all engineering disciplines, stability theory, control engineering, dynamical
system, computer science and applied mathematics. It is assumed that the reader of
this book has some background in neural networks, ordinary differential equations,
matrix theory and automatic control theory.

The Content of This Book This book is divided into 12 chapters. Chapter 1
provides the background knowledge on the origin of artificial neural networks,
especially the relations among the associate memory networks, Hopfield neural
networks and Cohen-Grossberg neural networks. Furthermore, as some dynamical
systems have information processing capability, it is reasonable to understand that,
as a special case of dynamical systems, RNNs have some computation and storage
ability. For dynamical neural networks, one of the fundamental qualitative
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properties is stability, which is not only related to the external structure of the
networks, but also related to the signal transmission delay. In this case, some
summaries about the delay effects on the stability of neural networks and the linear
matrix inequality (LMI)-based analysis method are provided, which are the strategic
insights of the authors’ research in the past 10 years.

Chapter 2 reviews the history of dynamical systems and stability theory. Different
kinds of definitions of dynamical systems are compared. The well-known Lyapunov
stability theory is revisited, and the general stability theory is also introduced.
Meanwhile, the applications of dynamical system theory are simply summarized.
Finally, some comments on the evolution of different stability definition are provided,
which will help readers to understand the stability definition in a different sense. This
chapter mainly presents the preliminaries of dynamical systems and the corre-
sponding stability theory. Looking through these preliminaries, one can find the
evolutionary trajectory of the research on the dynamical system and the stability
theory, from which one can find some meaningful inspiration and excite someone to
further extend the cognitive ability on the stability concept.

The literature on the stability research of recurrent neural networks is presently
scattered throughout journals and conference proceedings. Consequently, to
become reasonably proficient in the stability analysis of recurrent neural networks
may require considerable investment of time. This book aims to fill this void. To
accomplish this, Chap. 3 presents a detailed review of the development of stability
of Cohen-Grossberg type neural networks (a special kind of RNNs). The contents
include the research directions of stability of RNNs, stability analysis for
Cohen-Grossberg type RNNs, and the sufficient and necessary stability conditions
of RNNs. In each section, there are many insightful comments on the concerned
problems by the authors.

Chapters 4 and 5 present two kinds of delay-dependent stability results for RNNs
with time-varying delay on the basis of delay partitioning method. The main
method in Chap. 4 is, in the case of fixed interval terminal of time-delay, to insert
many virtual points in this interval, and by optimizing these dynamical subintervals
partitioned by the virtual points, some novel delay-dependent stability criteria are
established. In contrast, the main method in Chap. 5 is, in the case of flexible
interval terminal of time delay, to adjust the variable terminal parameter to change
the length of the subinterval, and by constructing some novel Lyapunov functions
with variable upper and lower integral term, some delay-dependent stability criteria
are established. These two methods of partitioning the delay interval are different,
which are based on different insight into the flexible change in delay interval.

In Chap. 6, delay-dependent exponential stability criteria for delayed static
neural networks (a special kind of RNNs) are established on the basis of LMI
method. Static neural networks are often used in the optimization problem.
Therefore, the established stability result plays an important role in judging the
convergence of designed optimization neural networks.

In Chap. 7, local stability or multiple stability criteria are established for a class of
RNNs with discontinuous activation functions and time-varying delay, in which
multiple equilibrium points exist. Such RNNs are usually used in the associative
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memory and pattern recognition. The present local stability result has large basin of
attraction of the fixed point, and this feature can keep the stable memory of RNNs
longer.

Some stability analysis methods of RNNs have been extended to the more
general qualitative cases of RNNs, such as passivity, dissipativity and invariant sets,
and synchronization, which have formed Chaps. 8, 9 and 10, respectively. These
results will provide profound insight into the dynamics of RNNs with delays.

Based on the above qualitative analysis results, controller design problems are
considered for the stabilization and controlled synchronization of RNNs, which
form Chaps. 11 and 12, respectively. From these two chapters, one can see that
stability analysis is the fundamental of the controller synthesis, and makes the
controller design more convenient.

The fundamental knowledge of artificial neural networks in Chap. 1 is mainly
cited from the classical textbook (Rojas, Springer-Verlag, 1996). The background
materials in Chap. 2 are mainly from Wikipedia–the free encyclopedia on the
Internet. However, some remarkable comments on the evolution of Hopfield model
and Cohen-Grossberg model, and stability conception in Chaps. 1 and 2 are pre-
sented by the authors, which make the contents of this book more systematic and
complete. Without the background materials on the history of artificial neural
networks and dynamical systems, many insightful comments cannot exhibit their
powerful effectiveness. The materials from Chaps. 3 to 12 are from the combined
research results of Zhanshan Wang, Zhenwei Liu and Chengde Zheng, respectively.
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Chapter 1
Introduction to Neural Networks

Analog circuits have played a very important role in the development of modern
electronic technology. Even in our digital computer era, analog circuits still dom-
inate such fields as communications, power, automatic control, audio, and video
electronics because of their real-time signal processing capabilities. Conventional
digital computation methods have run into a serious speed bottleneck due to their
serial nature. To overcome this problem, a new computation model as an alterna-
tive, called “neural networks” has been proposed, which is based on some aspects of
neurobiology and adapted to integrated circuits. The key features of neural networks
are asynchronous parallel processing, continuous-time dynamics, and global interac-
tion of network elements. Some encouraging if not impressive applications of neural
networks have been proposed for various fields such as optimization, linear and non-
linear programming, associative memory, pattern recognition, and computer vision.
Since 1943, when Warren McCulloch and Walter Pitts [1] presented the first model
of artificial neurons, new and more sophisticated proposals have been made from
decade to decade. Mathematical analysis has solved some of the mysteries posed by
the new models but has left many questions open for future investigations. Needless
to say, the study of neurons, their interconnections, and their role as the brain’s ele-
mentary building blocks is one of the most dynamic and important research fields in
modern biology. It is not an exaggeration to say that researchers have learned more
about the nervous system in the past 70 years than ever before. In this chapter we will
deal with artificial neural networks, and therefore the first question to be clarified
is their relation to the biological paradigm. What do we abstract from real neurons
for our models? What is the link between neurons and artificial computing units? In
the following we will present a preliminary answer to these important questions, in
which some contents are mainly cited from the book [2].
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2 1 Introduction to Neural Networks

1.1 Natural and Artificial Neural Networks

Artificial neural networks are an attempt at modeling the information processing
capabilities of nervous systems. Thus, one needs to consider the essential properties
of biological neural networks from the viewpoint of information processing. This
will allow us to design abstract models of artificial neural networks, which can
then be simulated and analyzed. Although the models were proposed to explain
the structure of the brain and the nervous systems of some animals are different
in many respects, there is a general consensus that the essence of the operation of
neural ensembles is “control through communication” [3]. Animal nervous systems
are composed of thousands or millions of interconnected cells. Each of them is a
very complex arrangement that deals with incoming signals in many different ways.
However, neurons are rather slower when compared to electronic logic gates. These
can achieve switching times of a few nanoseconds, whereas neurons need several
milliseconds to react to a stimulus. Nevertheless, the brain is capable of solving
problems that no digital computer can yet efficiently deal with.

Massive and hierarchical networking of the brain seems to be the fundamental
precondition for the emergence of consciousness and complex behavior [4]. So far,
however, biologists and neurologists have concentrated their research on uncover-
ing the properties of individual neurons. Today, mechanisms for the production and
transport of signals from one neuron to the other are well-understood physiological
phenomena, but how these individual systems cooperate to form complex and mas-
sively parallel systems capable of incredible information processing feats has not yet
been completely elucidated. Mathematics, physics, and computer science can pro-
vide invaluable help in the study of these complex systems. It is not surprising that
the study of the brain has become one of the most interdisciplinary areas of scientific
research in recent years. However, we should be careful with the metaphors and
paradigms commonly introduced when dealing with the nervous system. It seems
to be a constant in the history of science that the brain has always been compared
to the most complicated contemporary artifact produced by human industry [5]. In
ancient times the brain was compared to a pneumatic machine, in the Renaissance
to a clockwork, and to the telephone network. There are some today, who consider
computers the paradigm par excellence of a nervous system. It is rather paradoxical
that when John vonNeumannwrote his classical description of future universal com-
puters, he tried to choose terms that would describe computers in terms of brains,
not brains in terms of computers. The nervous system of an animal is an informa-
tion processing totality. The sensory inputs, i.e., signals from the environment, are
coded and processed to evoke the appropriate response. Biological neural networks
are just one of many possible solutions to the problem of processing information.
The main difference between neural networks and conventional computer systems is
the massive parallelism and redundancy they exploit in order to deal with the unreli-
ability of the individual computing units. Moreover, biological neural networks are
self-organizing systems and each individual neuron is also a delicate self-organizing
structure capable of processing information in many different ways.
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One of the interesting and important topics is to study the information process-
ing capabilities of complex hierarchical networks of simple computing units. We
deal with systems whose structure is only partially predetermined. Some parameters
modify the capabilities of the network and it is our task to find the best combination
for the solution of a given problem. The adjustment of the parameters will be done
through a learning algorithm, i.e., not through explicit programming but through an
automatic adaptive method. Artificial neural networks have aroused much interest in
recent years, not only because they exhibit interesting properties, but also because
they try to mirror the kind of information processing capabilities of nervous systems.
Biological neural networks have given us a clue regarding the properties that would
be interesting to include in artificial networks.

Recurrent neural networks (RNNs) are a kind of networks whose neurons send
feedback signals to each other. This concept includes a huge number of possibilities.
Typically, in the community of science and technology, engineers always consider
RNNs that are artificial neural networks useful in technological applications. To
complement these contributions, it is necessary to present a brief summary focus-
ing on biological recurrent neural networks (bRNNs) that are found in the brain.
Since feedback is ubiquitous in the brain, this task could include most of the brain’s
dynamics. The current review divides bRNNs into those in which feedback signals
occur in neurons within a single processing layer, which occurs in networks for such
diverse functional roles as storing spatial patterns in short-term memory, winner-
take-all decision making, contrast enhancement and normalization, hill climbing,
oscillations of multiple types (synchronous, traveling waves, chaotic), storing tem-
poral sequences of events in working memory, and serial learning of lists. These
feedback signals occur between multiple processing layers, such as when bottom-up
adaptive filters activate learned recognition categories and top-down learned expec-
tations focus attention on expected patterns of critical features and thereby modulate
both types of learning.

In the following sections, we present a review for bRNNs in the aspects of mod-
els of computation, networks of neurons, associative memory dynamical networks,
Hopfield’s networks, and Cohen-Grossberg networks. Meanwhile, some proper-
ties of neural networks, information processing capacity of dynamical, stability of
RNNs, delay effects on networks, and features of LMI-based stability are presented,
respectively.

1.2 Models of Computation

Artificial neural networks can be considered as just another approach to the problem
of computation. The first formal definitions of computability were proposed in the
1930s and 1940s and at least five different alternatives were studied at the time.
The computer era was started, not with one single approach, but with a contest of
alternative computing models. It is well known that the von Neumann computer
emerged as the undisputed winner in this confrontation, but its triumph did not lead
to the dismissal of the other computing models.
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(1) The mathematical model Mathematicians avoided dealing with the problem
of a function’s computability until the beginning of the twentieth century. This hap-
pened not just because existence theorems were considered sufficient to deal with
functions, but mainly because nobody had come up with a satisfactory definition
of computability, certainly a relative concept that depends on the specific tools that
can be used. If we want to talk about computability we must specify which tools
are available. We can start with the idea that some primitive functions and compo-
sition rules are “obviously” computable. All other functions that can be expressed
in terms of these primitives and composition rules are then also computable. David
Hilbert, the famous German mathematician, was the first to state the conjecture that
a certain class of functions contains all intuitively computable functions. Hilbert
was referring to the primitive recursive functions, the class of functions which can
be constructed from the zero and successor function using composition, projection,
and a deterministic number of iterations (primitive recursion). However, in 1928,
Wilhelm Ackermann was able to find a computable function which was not prim-
itive recursive. This led to the definition of the general recursive functions. In this
formalism, a new composition rule has to be introduced, the so-called μ operator,
which is equivalent to an indeterminate recursion or a lookup in an infinite table. At
the same time Alonzo Church and his collaborators developed the lambda calculus,
another alternative to the mathematical definition of the computability concept [6].
In 1936, Church and Kleene were able to show that the general recursive functions
can be expressed in the formalism of the lambda calculus. This led to the Church
thesis that computable functions are the general recursive functions. David Deutsch
has added that this thesis should be considered to be a statement about the physi-
cal world and be given the same status as a physical principle. He thus speaks of a
“Church principle” [7].

(2) The logic-operational model or Turing machines In his classical paper
“On Computable Numbers with an Application to the Entscheidungsproblem,” Alan
Turing introduced another kind of computing model. The advantage of his approach
is that it consists of an operational, mechanical model of computability. A Turing
machine is composed of an infinite tape, in which symbols can be stored and read
again. A read-write head can move to the left or to the right according to its inter-
nal state, which is updated at each step. The Turing thesis states that computable
functions are those that can be computed with this kind of device. It was formulated
concurrently with the Church thesis and Turing was able to show almost immediately
that they are equivalent [8]. The Turing approach made clear for the first time what
“programming” means, curiously enough at a time when no computer had yet been
built.

Note that, according to the introduction of Turing machine we can know that
before Turing machine, the computation problem is focused on the function or prob-
lem itself.All the efforts are devoted to the internal researchof computational problem
or the computational model, which is based on the accurate analytical mathematical
method instead of approximation method. After Turing machine, the computational
problem can be done by external auxiliary tool. It is the emergence of Turingmachine
that changes the way of solving the computational problem from the analytical
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function itself to the external auxiliary tool. This is a great creativity in the his-
tory of solving computational problems. Since then, many computational models,
such as digital computer and analog computer based on hardware implementation,
are frequently proposed and developed.

(3) The computer model The first electronic computing devices were devel-
oped in the 1930s and 1940s. Since then, “computation-with-the-computer” has been
regarded as computability itself. However, the first engineers developing computers
were for the most part unaware of Turing’s or Church’s research. Konrad Zuse, for
example, developed in Berlin between 1938 and 1944 the computing machines Z1
and Z3, which were programmable but not universal, because they could not reach
the whole space of the computable functions. Zuse’s machines were able to process
a sequence of instructions but could not iterate. Other computers of the time, like the
Mark I built atHarvard, could iterate a constant number of times butwere incapable of
executing open-ended iterations (WHILE loops). Therefore, the Mark I could com-
pute the primitive but not the general recursive functions. Also the ENIAC, which is
usually hailed as the world’s first electronic computer, was incapable of dealing with
open-ended loops, since iterations were determined by specific connections between
modules of the machine. It seems that the first universal computer was the Mark I
built in Manchester [9, 10]. This machine was able to cover all computable functions
by making use of conditional branching and self-modifying programs, which is one
possible way of implementing indexed addressing [2].

(4) Cellular Automata The history of the development of the first mechanical
and electronic computing devices shows how difficult it was to reach a consensus on
the architecture of universal computers. Aspects such as the economy or the depend-
ability of the building blocks played a role in the discussion, but the main problem
was the definition of the minimal architecture needed for universality. In machines
like the Mark I and the ENIAC there was no clear separation between memory
and processor, and both functional elements were intertwined. Some machines still
worked with base 10 and not 2, some were sequential, and others parallel. John
von Neumann, who played a major role in defining the architecture of sequential
machines, analyzed at that time a new computational model which he called cellular
automata. Such automata operate in a “computing space” in which all data can be
processed simultaneously. Themain problem for cellular automata is communication
and coordination between all the computing cells. This can be guaranteed through
certain algorithms and conventions. It is not difficult to show that all computable
functions, in the sense of Turing, can also be computed with cellular automata, even
of the one-dimensional type, possessing only a few states. Turing himself considered
this kind of computing model at one point in his career [11]. Cellular automata as
computing model resemble massively parallel multiprocessor systems of the kind
that has attracted considerable interest recently.

(5) The biological model or neural networks The explanation of important
aspects of the physiology of neurons set the stage for the formulation of artificial
neural network models which do not operate sequentially, as Turing machines do.
Neural networks have a hierarchical multilayered structure which sets them apart
from cellular automata, so that information is transmitted not only to the immediate
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neighbors but also to more distant units. In artificial neural networks one can connect
each unit to any other. In contrast to conventional computers, no program is handed
over to the hardware—such a program has to be created, that is, the free parameters
of the network have to be found adaptively. Although neural networks and cellular
automata are potentially more efficient than conventional computers in certain appli-
cation areas, at the time of their conception they were not yet ready to take center
stage. The necessary theory for harnessing the dynamics of complex parallel systems
is still being developed right before our eyes. In themeantime, conventional computer
technology has made great strides. There is no better illustration for the simultaneous
and related emergence of these various computability models than the life and work
of John von Neumann himself. He participated in the definition and development of
at least three of these models: in the architecture of sequential computers [12], the
theory of cellular automata and the first neural network models. He also collabo-
rated with Church and Turing in Princeton [11]. Artificial neural networks have, as
initial motivation, the structure of biological systems, and constitute an alternative
computability paradigm. For this reason we will review some aspects of the way in
which biological systems perform information processing. The fascination that still
pervades this research field hasmuch to dowith the points of contact with the surpris-
ingly elegant methods used by neurons in order to process information at the cellular
level. Several million years of evolution have led to very sophisticated solutions to
the problem of dealing with an uncertain environment. In the following section we
discuss some elements of these strategies in order to determine what features we
want to adopt in our abstract models of neural networks.

What are the elementary components of any conceivable computing model? In the
theory of general recursive functions, for example, it is possible to reduce any com-
putable function to some composition rules and a small set of primitive functions. For
a universal computer, we ask about the existence of a minimal and sufficient instruc-
tion set. For an arbitrary computing model the following metaphoric expression has
been proposed:

computation = storage + transmission + processing.

The mechanical computation of a function presupposes that these three elements
are present, that is, data can be stored, communicated to the functional units of the
model, and transformed. It is implicitly assumed that a certain coding of the data has
been agreed upon. Coding plays an important role in information processing because,
as Claude Shannon showed in 1948, when noise is present information can still be
transmitted without loss, if the right code with the right amount of redundancy is cho-
sen. Modern computers transform storage of information into a form of information
transmission. Static memory chips store a bit as a circulating current until the bit is
read. Turing machines store information in an infinite tape, whereas transmission is
performed by the read-write head. Cellular automata store information in each cell,
which at the same time is a small processor.
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1.3 Networks of Neurons

In biological neural networks information is stored at the contact points between
different neurons, the so-called synapses. These elements play for the storage, trans-
mission, and processing of information. Other forms of storage are also known,
because neurons are themselves complex systems of self-organizing signaling. More
details on how neurons compute can be found in [2].

Nervous systems possess global architectures of variable complexity, but all are
composed of similar building blocks, the neural cells or neurons. They can perform
different functions, which in turn leads to a very variable morphology. Dendrites,
synapses, cell body, and axon are theminimal structures we adopt from the biological
model. Artificial neurons for computing have input channels, a cell body, and an
output channel. Synapses will be simulated by contact points between the cell body
and input or output connections, i.e., a weight will be associated with these points.

(1) Transmission of information The fundamental problem of any information
processing system is the transmission of information, as data storage can be trans-
formed into a recurrent transmission of information between two points. Biologists
have known for more than 100 years that neurons transmit information using electri-
cal signals. Because we are dealing with biological structures, this cannot be done by
simple electronic transport as inmetallic cables. Evolution arrived at another solution
involving ions and semipermeable membranes. The British scientists Alan Hodgkin
and Andrew Huxley were able to show that it is possible to build an electric model
of the cell membrane based on very simple assumptions. The membrane behaves as
a capacitor made of two isolated layers of lipids. It can be charged with positive or
negative ions. The different concentrations of several classes of ions in the interior
and exterior of the cell provide an energy source capable of negatively polarizing the
interior of the cell.

Hodgkin–Huxley differential equation describes the instantaneous variation of
the cell’s potential V as a function of the conductances of sodium, potassium, and
leakages (gNa, gK , gL ) and of the equilibrium potentials for all three groups of ions
called VNa, VK and VL with respect to the current potential:

dV

dt
= 1

Cm
(I − gNa(V − VNa) − gK (V − VK ) − gL(V − VL)), (1.1)

whereCm is the capacitance of the cellmembrane, the termsV −VNa, V −VK , V −VL

are the electromotive forces acting on the ions. The conductances gNa , gK , and
gL reflect the permeability of the membrane to sodium, potassium, and leakages,
i.e., the number of open channels of each class. Any variation of the conductances
translates into a corresponding variation of the cell’s potential V . The variations of
gNa and gK are given by differential equations which describe their oscillations.
The conductance of the leakages, gL , can be taken as a constant. A signal can be
produced by modifying the polarity of the cell through changes in the conductances
gNa and gK . The conductance and resistance of a cell membrane in relation to the
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different classes of ions depend on its permeability. This can be controlled by opening
or closing excitable ionic channels. In addition to the static ionic channels already
mentioned, there is another class that can be electrically controlled. These channels
react to a depolarization of the cell membrane. When the potential of the interior of
the cell in relation to the exterior reaches a threshold, the sodium-selective channels
open automatically and positive sodium ions flow into the cell making its interior
positive. This in turn leads to the opening of the potassium-selective channels and
positive potassium ions flow to the exterior of the cell, restoring the original negative
polarization.

A neuron codes its level of activity by adjusting the frequency of the generated
impulses. This frequency is greater for a greater stimulus. In some cells the mapping
from stimulus to frequency is linear in a certain interval. This means that information
is transmitted from cell to cell using what engineers call frequency modulation. This
form of transmission helps to increase the accuracy of the signal and to minimize
the energy consumption of the cells.

(2) Information processing at the neurons and synapses Neurons transmit
information using action potentials. The processing of this information involves a
combination of electrical and chemical processes, regulated for the most part at the
interface between neurons, the synapses. Neurons transmit information not only by
electrical perturbations. Although electrical synapses are also known, most synapses
make use of chemical signals. When an electric impulse arrives at a synapse, the
synaptic vesicles fuse with the cell membrane. The transmitters flow into the synaptic
gap and some attach themselves to the ionic channels. If the transmitter is of the right
kind, the ionic channels are opened and more ions can now flow from the exterior
to the interior of the cell. The cell’s potential is altered in this way. If the potential
in the interior of the cell is increased, this helps prepare an action potential and the
synapse causes an excitation of the cell. If negative ions are transported into the
cell, the probability of starting an action potential is decreased for some time and
we are dealing with an inhibitory synapse. Synapses determine a direction for the
transmission of information. Signals flow from one cell to the other in a well-defined
manner. This will be expressed in artificial neural networks models by embedding
the computing elements in a directed graph. A well-defined direction of information
flow is a basic element in every computing model, and is implemented in digital
systems by using diodes and directional amplifiers.

The interplay between electrical transmission of information in the cell and chem-
ical transmission between cells is the basis for neural information processing. Cells
process information by integrating incoming signals and by reacting to inhibition.
The flow of transmitters from an excitatory synapse leads to a depolarization of the
attached cell. The depolarization must exceed a threshold, that is, enough ionic chan-
nels have to be opened in order to produce an action potential. This can be achieved
by several pulses arriving simultaneously or within a short time interval at the cell.
If the quantity of transmitters reaches a certain level and enough ionic channels are
triggered, the cell reaches its activation threshold. At this moment an action potential
is generated at the axon of this cell. In most neurons, action potentials are produced at
the so-called axon hillock, the part of the axon nearest to the cell body. In this region
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of the cell, the number of ionic channels is larger and the cell’s threshold is lower.
The dendrites collect the electrical signals which are then transmitted electronically
through the cytoplasm [12]. The transmission of information at the dendrites makes
use of additional electrical effects. Streams of ions are collected at the dendrites and
brought to the axon hillock. There is spatial summation of information when signals
coming from different dendrites are collected, and temporal summation when signals
arriving consecutively are combined to produce a single reaction. In some neurons
not only the axon hillock but also the dendrites can produce action potentials. In this
case information processing at the cell is more complex than in the standard case.

It can be shown that digital signals combined in an excitatory or inhibitory way
can be used to implement any desired logical function. The number of computing
units required can be reduced if the information is not only transmitted but also
weighted. This can be achieved by multiplying the signal by a constant. Such is the
kind of processing we find at the synapses. Each signal is an all-or-none event but the
number of ionic channels triggered by the signal is different from synapse to synapse.
It can happen that a single synapse can push a cell to fire an action potential, but other
synapses can achieve this only by simultaneously exciting the cell.With each synapse
i(1 ≤ i ≤ n) we can therefore associate a numerical weight wi . If all synapses are
activated at the same time, the information that will be transmitted is w1 + w2 +
· · · +wn . If this value is greater than the cell’s threshold, the cell will fire a pulse. It
follows from this description that neurons process information at the membrane. The
membrane regulates both transmission and processing of information. Summation
of signals and comparison with a threshold is a combined effect of the membrane
and the cytoplasm. If a pulse is generated, it is transmitted and the synapses set
some transmitter molecules free. From this description an abstract neuron [3] can be
modeled which contains dendrites, a cell body and an axon. The same three elements
will be present in the artificial computing units.

(3) Storage of information—learning In neural networks information is stored
at the synapses. Some other forms of information storagemay be present, but they are
either still unknown or not very well understood. A synapse’s efficiency in eliciting
the depolarization of the contacted cell can be increased if more ionic channels are
opened. In the past several years, N-methyl-D-aspartic acid (NMDA) receptors have
been studied because they exhibit some properties that could help explain some forms
of learning in neurons [2, 3]. NMDA receptors are just one of themechanisms used by
neurons to increase their plasticity, i.e., their adaptability to changing circumstances.
Through the modification of the membrane’s permeability a cell can be trained to
fire more often by setting a lower firing threshold. NMDA receptors also offer an
explanation for the observed phenomenon that cells that are not stimulated to fire tend
to set a higher firing threshold. The stored informationmust be refreshed periodically
in order to maintain the optimal permeability of the cell membrane. This kind of
information storage is also used in artificial neural networks. Synaptic efficiency can
be modeled as a property of the edges of the network. The networks of neurons are
thus connected through edges with different transmission efficiencies. Information
flowing through the edges is multiplied by a constant which reflects their efficiency.
One of the most popular learning algorithms for artificial neural networks is Hebbian
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learning. The efficiency of synapses is increased any time when the two cells that
are connected through this synapse fire simultaneously. The efficiency of synapses
is decreased when the firing states of the two cells are uncorrelated. The NMDA
receptors act as coincidence detectors of presynaptic and postsynaptic activity, which
in turn leads to greater synaptic efficiency.

(4) The neuron—a self-organizing system The short review of the properties of
biological neurons in the above is necessarily incomplete and can offer only a rough
description of the mechanisms and processes by which neurons deal with infor-
mation. Nerve cells are very complex self-organizing systems which have evolved
in the course of millions of years. The information processing capabilities of neu-
rons depend essentially on the characteristics of the cell membrane. Ionic channels
appeared very early in evolution to allow unicellular organisms to get some kind of
feedback from the environment. Consider the case of a paramecium, a protozoan
with cilia, which are hairlike processes which provide it with locomotion. A parame-
cium has a membrane cell with ionic channels and its normal state is one in which
the interior of the cell is negative with respect to the exterior. In this state the cilia
around the membrane beat rhythmically and propel the paramecium forward. If an
obstacle is encountered, some ionic channels sensitive to contact open, let ions into
the cell, and depolarize it. The depolarization of the cell leads in turn to a reversing
of the beating direction of the cilia and the paramecium swims backward for a short
time. After the cytoplasm returns to its normal state, the paramecium swims forward,
changing its direction of movement. If the paramecium is touched from behind, the
opening of ionic channels leads to a forward acceleration of the protozoan. In each
case, the paramecium escapes its enemies.

From these humble origins, ionic channels in neurons have been perfected over
millions of years of evolution. In the protoplasm of the cell, ionic channels are pro-
duced and replaced continually. They attach themselves to those regions of the neu-
rons where they are needed and can move laterally in the membrane. The regions of
increased neural sensitivity to the production of action potentials are thus changing
continuously according to experience. The electrical properties of the cell mem-
brane are not totally predetermined. They are also a result of the process by which
action potentials are generated. Now let us also consider the interior of the neurons.
The number of biochemical reaction chains and the complexity of the mechanical
processes occurring in the neuron at any given time have led some researchers to look
for its control system. Stuart Hameroff, for example, has proposed that the cytoskele-
ton of neurons does not just perform a static mechanical function, but in some way
provides the cell with feedback control. It is well known that the proteins that form
the microtubules in axons coordinate to move synaptic vesicles and other materi-
als from the cell body to the synapses. This is accomplished through a coordinated
movement of the proteins, configured like a cellular automaton [14, 15].

Consequently, transmission, storage, and processing of information are performed
by neurons exploiting many effects and mechanisms that we still do not understand
fully. Each individual neuron is as complex or more complex than any of our com-
puters. For this reason, we will call the elementary components of artificial neural



1.3 Networks of Neurons 11

networks simply “computing units” and not neurons. In themid-1980s, the PDP (par-
allel distributed processing) group already agreed to this convention at the insistence
of Francis Crick [2, 16].

The aforementioned discussion is only an illustration of how important it is to
define the primitive functions (or activation functions) and composition rules of
the computational model. If we are computing with a conventional von Neumann
processor, a minimal set of machine instructions is needed in order to implement
all computable functions. In the case of artificial neural networks, the primitive
functions are located in the nodes of the network and the composition rules are
contained implicitly in the interconnection pattern of the nodes, in the synchrony or
asynchrony of the transmission of information, and in the presence or absence of
cycles.

In the structure of an abstract neuron with n inputs, each input channel i can
transmit a real value xi , and the primitive function or activation function f (·) com-
puted in the body of the abstract neuron can be selected arbitrarily. Usually the input
channels have an associated weight, whichmeans that the incoming information xi is
multiplied by the corresponding weight wi , which is formulated by the well-known
fundamental neuron’s model. The transmitted information is integrated at the neu-
ron (usually just by adding the different signals) and the primitive function is then
evaluated. If we conceive of each node in an artificial neural network as a primitive
function capable of transforming its input in a precisely defined output, then artificial
neural networks are nothing but networks of primitive functions. Different models
of artificial neural networks differ mainly in the assumptions about the primitive
functions used, the interconnection pattern, and the timing of the transmission of
information. Therefore, typical artificial neural networks have the following three
parts: the structure of the nodes, the topology of the network, and the learning algo-
rithm used to find the weights of the network. Different selections of the weights
produce different network outputs.

In brief, neural networks, or artificial neural networks to be more accurate, rep-
resent a technology that is rooted in many disciplines: neurosciences, mathematics,
statics, physics, compute sciences, and control engineering. Neural networks find
many applications in such diverse fields as modeling, time series analysis, optimal
computation, and optimal control by virtue of an important property: the ability to
learn from input data with or without supervision, the dynamical features to run in
the circuit implementation without programming complex numerical algorithms.

Work on artificial neural networks, commonly referred to as “neural networks,”
has been motivated right from its inception by the recognition that the human brain
computer works in an entirely different way from the conventional digital computer.
The brain is a highly complex and parallel computer (information-processing sys-
tem). It has the ability to organize its structural constituents, known as neurons, so
as to perform certain computations (e.g., pattern recognition, perception, motor con-
trol, and optimal computation) many times faster than the fastest digital computer in
existence today.
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A developing neuron is synonymous with a plastic brain: plasticity permits the
developing nervous system to adapt to its surrounding environment. Just as plasticity
appears to be essential to the functioning of neurons as information-processing units
in the human brain, so is it with neural networks made up of artificial neurons.
In its most general form, a neural network is a machine that is designed to model
the way in which the brain performs a particular task or function of interest; the
network is usually implemented by using electronic components or is simulated
in software on a digital computer. An interest of this book is confined largely to
an important class of neural networks that perform useful computations through a
process of dynamical evolution or learning. To achieve good performance, neural
networks employ a massive interconnection of simple computing cells referred to as
neurons or processing units. Thus, we can offer another definition of a neural network
viewed as an adaptive machine: neural network is a massively parallel distributed
processor made up of simple processing units, which has a natural propensity for
storing experimental knowledge and making it available for use. It resembles the
brain in two respects: (1) Knowledge is acquired by the network from its environment
through a learning precess; (2) Interneurons connection strengths, known as synaptic
weights, are used to store the acquired knowledge.

Finally we must keep in mind: in the theory of artificial neural networks we
do not consider the whole complexity of real biological neurons. We only abstract
some general principles and content ourselves with different levels of detail when
simulating neural ensembles. The general approach is to conceive each neuron as a
primitive function producing numerical results at some points in time. These will be
the kinds of model of polynomial equations, which can be used to curve fitting and
spline interpolation. However, we can also think of artificial neurons as computing
units which produce pulse trains in the way that biological neurons do. We can
then simulate this behavior and look at the output of simple networks. This kind of
approach, although more closely related to the biological paradigm, is still a very
rough approximation of the biological processes.

1.4 Associative Memory Networks

The perceptron learning algorithm is an example of supervised learning. This kind
of approach does not seem very plausible from the biologist’s point of view, since
a teacher is needed to accept or reject the output and adjust the network weights if
necessary. Some researchers have proposed alternative learning methods in which
the network parameters are determined as a result of a self-organizing process. In
unsupervised learning, corrections to the network weights are not performed by an
external agent, because in many cases we do not even know what solution we should
expect from the network. The network itself decides what output is best for a given
input and reorganizes accordingly.Wewill make a distinction between two classes of
unsupervised learning: reinforcement and competitive learning. In the first method
each input produces a reinforcement of the network weights in such a way as to
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enhance the reproduction of the desired output. Hebbian learning is an example
of a reinforcement rule that can be applied in this case. In competitive learning, the
elements of the network compete with each other for the “right” to provide the output
associated with an input vector. Only one element is allowed to answer the query
and this element simultaneously inhibits all other competitors.

In the case of unsupervised learning, the n-dimensional input is processed by
exactly the same number of computing units as there are clusters to be individually
identified. The inputs are processed by the neural units. Each unit computes its
weighted input, but only the unit with the largest excitation is allowed to fire a 1 or
high level. The other units are inhibited by this active element through the lateral
connections. Therefore, deciding whether or not to activate a unit requires global
information about the state of each unit. The firing unit signals that the current
input is an element of the cluster of vectors it represents. We could also think of
this computation as being performed by perceptrons with variable thresholds. The
thresholds are adjusted in each computation in such a way that just one unit is able to
fire. Neural networkswithout feedback can be capable ofmapping an input space into
an output space using only feedforward computations. In the case of backpropagation
networks we demanded continuity from the activation functions at the nodes. The
neighborhood of a vector x in input space is therefore mapped to a neighborhood
of the image y of x in output space. It is this property that gives its name to the
continuous mapping networks.

Another class of neural systems is known generally as associative memories. The
goal of learning is to associate known input vectors with given output vectors. Con-
trary to continuous mappings, the neighborhood of a known input vector x should
also bemapped to the image y of x , that is, if B(x) denotes all vectors whose distance
from x (using a suitable metric) is less than some positive constant ε, then we expect
the network to map B(x) to y. Noisy input vectors can then be associated with the
correct output. Associative memories can be implemented using networks with or
without feedback, but the latter produce better results. However, as wewill see not all
networks converge to a stable state after having been set in motion. Some restrictions
on the network architecture are needed. The function of an associative memory is to
recognize previously learned input vectors, even in the case where some noise has
been added. The advantage of associative memories is that only the local information
stream must be considered. The response of each unit is determined exclusively by
the information flowing through its own weights. If we take the biological analogy
seriously or if we want to implement these systems in very large-scale integration
circuits (VLSI), locality is always an important goal. And as we will see a learning
algorithm derived from biological neurons can be used to train associative networks:
it is called Hebbian learning. The associative networks should not be confused with
conventional associative memory of the kind used in digital computers, which con-
sists of content addressable memory chips. Associative networks can be regarded as
dynamical systems, whose attractors are exactly those vectors onewould like to store.
In the case of linear eigenvector automaton, unfortunately just one vector absorbs
almost the whole of input space. The secret of associative network design is locating
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as many attractors as possible in input space, each one of them with a well-defined
and bounded influence region. To do this one must introduce a nonlinearity in the
activation of the network units so that the dynamical system becomes nonlinear.

Associative networks have been studied for a long time. Donald Hebb consid-
ered in the 1950s how neural assemblies could self-organize into feedback circuits
capable of recognizing patterns [17]. Hebbian learning has been interpreted in dif-
ferent ways and several modifications of the basic algorithm have been proposed, but
they all have three aspects in common: Hebbian learning is a local, interactive, and
time-dependent mechanism. A synaptic phenomenon in the hippocampus, known as
long-term potentiation, is thought to be produced by Hebbian modification of the
synaptic strength. There were some other experiments with associative memories
in the 1960s, for example, the hardware implementations by Karl Steinbuch of his
“learning matrix.” A precise mathematical description of associative networks was
given by Kohonen in the 1970s [18]. His experiments with many different classes
of associative memories contributed enormously to the renewed surge of interest
in neural models. Some researchers tried to find biologically plausible models of
associative memories following his lead [19]. Some discrete variants of correlation
matrices were analyzed in the 1980s, as done for example by Kanerva who consid-
ered the case of weight matrices with only two classes of elements, 0 or 1 [20]. In
the 1990s much work had been done on understanding the dynamical properties of
recurrent associative networks [21]. It is important to find methods to describe the
changes in the basins of attraction of the stored patterns. Haken has proposed his
model of a synergetic computer, a kind of associative network with a continuous
dynamics in which synergetic effects play the crucial role [22]. The fundamental dif-
ference from conventional models is the continuous, instead of discrete, dynamics
of the network, regulated by some differential equations.

1.5 Hopfield Neural Networks

One of the milestones for the great renaissance in the field of neural networks was the
associative model proposed by Hopfield (born on July 15, 1933, his research fields
include physics, molecular biology and neuroscience) at the beginning of the 1980s.
Hopfield’s approach illustrates the way theoretical physicists like to think about
ensembles of computing units. No synchronization is required, each unit behaving
as a kind of elementary system in complex interaction with the rest of the ensemble.
An energy function must be introduced to harness the theoretical complexities posed
by such an approach.

(1) Synchronous and asynchronous networks A relevant issue for the correct
design of recurrent neural networks is the adequate synchronization of the comput-
ing elements. In the case of McCulloch-Pitts networks we solved this difficulty by
assuming that the activation of each computing element consumes a unit of time. The
network is built taking this delay into account and by arranging the elements and their
connections in the necessary pattern. When the arrangement becomes too contrived,
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additional units can be included which serve as delay elements. What happens when
the synchronization of the computing elements is eliminated? The synchronization
of the output was achieved by requiring that all computing elements evaluate their
inputs and compute their output simultaneously. Under this assumption the operation
of the associative memory can be described with simple linear algebraic methods.
The excitation of the output units is computed using vector-matrix multiplication and
evaluating the sign function at each node. The methods we have used before to avoid
dealing explicitly with the synchronization problem have the disadvantage, from the
point of view of both biology and physics, that global information is needed, namely
a global time. Whereas in conventional computers synchronization of the digital
building blocks is achieved using a clock signal, there is no such global clock in
biological systems. In a more biologically oriented simulation, global synchroniza-
tion should thus be avoided. Networks in which the computing units are activated at
different times and which provide a computation after a variable amount of time are
stochastic automata. Networks built from this kind of units behave like stochastic
dynamical systems.

Above, we have already discussed recurrent associative networks in which the
output of the network is fed back to the input units using additional feedback connec-
tions. In this way we designed recurrent dynamical systems and tried to determine
their fixed points. However, there is another way to define a recurrent associative
memory made up of two layers which send information recursively between them.
The input layer contains units that receive the input to the network and send the result
of their computation to the output layer. The output of the first layer is transported by
bidirectional edges to the second layer of units, which then return the result of their
computation back to the first layer using the same edges. As in the case of associative
memory models, we can ask whether the network achieves a stable state in which
the information being sent back and forth does not change after a few iterations [23].
Such a network is known as a resonance network or bidirectional associativememory
(BAM). The activation function of the units is the sign function and information is
coded using bipolar values. The BAM is thus a generalization of a unidirectional
associative memory. An input vector, the “key,” can be presented to the network
from the left or from the right and, after some iterations, the BAM finds the corre-
sponding complementary vector. As can be seen, no external feedback connections
are necessary. The same edges are used for the transmission of information back and
forth.

So far only conventional or bidirectional associative memories working with syn-
chronized units have been considered. Dropping the assumption of simultaneous
firing of the computing elements leads to the appearance of novel network proper-
ties. In 1982 the American physicist John Hopfield proposed an asynchronous neural
network model (i.e., a kind of additive neural network model. For convenience to
cite the work by Hopfield, this kind of additive neural model is also called Hopfield
neural model) which made an immediate impact in the AI community. It is a spe-
cial case of a bidirectional associative memory, but chronologically it was proposed
before the BAM.
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In theHopfield model it is assumed that the individual units preserve their individ-
ual states until they are selected for a new update. The selection is made randomly. A
Hopfield network consists of n totally coupled units, that is, each unit is connected
to all other units except itself. The network is symmetric because the weight wi j for
the connection between unit i and unit j is equal to the weight w j i of the connec-
tion from unit j to unit i . This can be interpreted as meaning that there is a single
bidirectional connection between both units. The absence of a connection from each
unit to itself avoids a permanent feedback of its own state value [24].

The symmetry of the weight matrix and a zero diagonal are thus necessary condi-
tions for the convergence of an asynchronous totally connected network to a stable
state. These conditions are also sufficient. The units of a Hopfield network can be
assigned a threshold θ different from zero. In this case each unit selected for a state
update adopts the state 1 if its total excitation is greater than θ, otherwise the state -1.
This is the activation rule for perceptrons, so that we can think of Hopfield networks
as asynchronous recurrent networks of perceptrons. The energy function of a Hop-
field network composed of units with thresholds different from zero can be defined
in a similar way as for the BAM. Note that from the derivation relation of the energy
function of Hopfiled neural networks and BAM neural networks, Hopfield neural
network is a special kind of bidirectional associative memory neural network [2].
Therefore, Hopfield neural networks have a close relation with associative memory
networks.

The energy function of aHopfield network is a quadratic form.AHopfield network
always finds a local minimum of the energy function (i.e., local stable equilibrium
point in the sense of Hopfield energy function) (Note that, this kind of stability is
not the stability in the sense of Lyapunov). Hopfield networks can also be used to
compute logical functions. Conjunction, for example, can be implemented with a
network of three units. The states of two units are set and remain fixed during the
computation (clamping their states). Only the third unit can change its state. If the net-
work weights and the unit thresholds have the appropriate values, the unconstrained
unit will assume a state that corresponds to the conjunction of the two clamped
states. Because Hopfield used an additive neural network to solve a kind of practical
problem and then made a theoretical analysis on the additive networks by involving
energy function, especially the test result was satisfied, this work provided a new
way to handle the difficulties encountered at that time. Different assumptions on the
connection weights and activation function led to different energy function shapes,
which is directly related to the stability of the solutions. This problem is directly
relevant to the stability property of neural networks, which has been the hot topic in
the community of control theory and neural networks since the pioneering work of
Hopfield.

Observe the Lyapunov function of a Hopfield network, it is only a function of the
input and output. Although it does not possess the complete information contained
in the state variables, we can nevertheless derive the steady-state properties of the
state variables from the properties of this energy function. The so-called Lyapunov
function defined by Hopfield can be interpreted as the “generalized energy” of the
neural network, although its exact physical meaning is not very clear (along the same
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routine to Hopfield’s analysis method, some stability analysis results are proposed
for cellular neural networks) [25]. However, for the class of neural networks with
Sigmoid activation function or with piecewise linear function, the defined energy
function or Lyapunov function does always converge to a local minimum, where the
concerned neural network produces the desired output.

(2) Isomorphism between Hopfield model and Ising models This is a sig-
nificant discovery of J.J. Hopfield, who is both a biologist and a physicist in the
world! Therefore, physicists have analyzed the Hopfield model in such exquisite
detail because it is isomorphic to the Ising model of magnetism (at temperature zero)
[26]. Ising proposed the model that now bears his name nearly 90 years ago in order
to describe some properties of ensembles of elementary magnets [27]. In general,
the Ising model can be used to describe those systems made of particles capable of
adopting one of two states. In the case of ferromagnetic materials, their atoms can be
modeled as particles of spin 1/2 (up) or spin –1/2 (down). The spin points in the direc-
tion of themagnetic field. All tinymagnets interact with each other. This causes some
of the atoms to flip their spin until equilibrium is reached and the total magnetization
of the material reaches a constant level, which is the sum of the individual spins.
With these few assumptions we can show that the energy function deduced from the
Ising model has the same form as the energy function of Hopfield networks [2].

The total magnetic field hi sensed by the atom i in an ensemble of particles is the
sum of the fields induced by each atom and the external field h∗ (if present), that is,

hi =
n∑

j=1

wi j x j + h∗, (1.2)

where wi j represents the magnitude of the magnetic coupling between the atoms
labeled i and j . The magnetic coupling changes according to the distance between
atoms and the magnetic permeability of the environment. The potential energy E of
a certain state (x1, x2, . . . , xn) of an Ising material can be derived from (1.2) and has
the form

E = −1

2

n∑

i=1

n∑

j=1

wi j xi x j +
n∑

i=1

(−h∗xi ), (1.3)

In paramagneticmaterials the coupling constants are zero. In ferromagneticmaterials
the constants wi j are all positive, which leads in turn to a significant coupling of the
spin states. Equation (1.3) is isomorphic to the energy function of Hopfield networks
(i.e., E(x) = − 1

2

∑n
i=1

∑n
j=1wi j xi x j +∑n

i=1(θi xi ) or E(x) = − 1
2 X T W X +θT X ,

W = (wi j )n×n). This is why the term energy function is used in the first place. Both
systems are dynamically equivalent, but only in the case of zero temperature, since
the system behaves deterministically at each state update. On the contrary, when
we consider Boltzmann machines, we will accept a time-varying temperature and
stochastic state updates as in the full Ising model. Nearly all the neural network
models are inspired by the biological networks and the physical world!
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(3) Convergence to stable states It is easy to show that Hopfield models always
converge to stable states. The proof of this fact relies on analysis of the new value of
the energy function after each state updates. Now we will state a stability of Hopfield
neural networks as follows.

Proposition 1 A Hopfield network with n units and asynchronous dynamics, which
starts from any given network state, eventually reaches a stable state at a local
minimum of the energy function.

The wording of the Proposition 1 has been carefully chosen. That the network
“eventually” settles in a stable state means that the probability of not reaching such
a state approaches zero as the number of iterations increases. It would be possible
to select always one and the same unit for computation of the excitation, and in this
case the network would stay in deadlock. Since the units are selected randomly, the
probability of such pathological behavior falls to zero as time progresses. Note that,
in the proof of the Proposition 1 only the symmetry and the zero diagonal of the
weight matrix were used. The proof of convergence is very similar to the proof of
convergence for the bidirectional associativememory networks (BAM) [2].However,
in the case of a BAM the decisive property was the independence of a unit’s state
from its own excitation. This is also the case for Hopfield networks, since no unit
feeds its own state back into itself, i.e., the diagonal of the weight matrix is zero.

There is a simpler proof of the Proposition 1, which has the advantage of offering
a nice visualization of the dynamics of a Hopfield network [31]. Assume that we
classify the units of a network according to their states: the first set contains the
units with state 1, the second set contains the units with state -1. There are edges
linking every unit with all the others, so that some edges go from one set to the
other. We now randomly select one of the units and compute its “attraction” by the
units in its own set and the attraction by the units in the other set. The “attraction”
is the sum of the weights of all edges between a unit and the units in its set or in
the other one. If the attraction from the outside is greater than the attraction from its
own set, the unit changes sides by altering its state. If the external attraction is lower
than the internal, the unit keeps its current state. This procedure is repeated several
times, each time selecting one of the units randomly. It corresponds to the updating
strategy of a Hopfield network. The selected unit must change sides. It is clear that
the network must eventually reach a stable state, because the sum of the weights of
all edges connecting one set to the other can only become lower in the course of time.
Since the number of possible network states is finite, a global state must be reached
in which the attraction of one set by the other cannot be further reduced. This is the
task known in combinatorics as the minimal cut problem, in which we want to find
a cut of minimal flow in a graph. The procedure described always finds a locally
minimal cut.

(4) The limits of Hopfield networks The first article of Hopfield and Tank
on parallel solutions to combinatorial problems received a lot of attention [29, 30].
The theoretical question was whether this could be a method to solve N P-hard (i.e.,
nondeterministic polynomial-time hard) problems or at least to get an approximate
solution in polynomial time. In the following years many other researchers tried
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to extend the range of combinatorial problems that could be solved by Hopfield’s
technique, trying to improve the quality of the results at the same time. It emerged that
well-behaved average problems could be solved efficiently. However, these average
results should be compared to the expected running time for the worst case. Bruck
and Goodman [31] showed that a polynomially bounded network (on the size of
the problem) is unable to find the global minimum of the energy function of N P-
complete problems (encoded as Hopfield networks) with a 100% guarantee. Stated
in another way: if we try to transform all local minima of the Hopfield network into
an optimal solution of the combinatorial problem, the size of the network explodes
exponentially.

The author in [2] proceeds to prove the result of Bruck and Goodman, but he
introduces an additional complexity class: the complement of the class N P . The
class N P of nondeterministic problems solvable in polynomial time is different
from the class P of problems solvable in polynomial time. If a problem is a member
of the class P , the same is true for the complementary problem. The complement of
the decision problem “For the problem instance I , is X true for I?” is just “For the
problem instance I , is X false for I?” A deterministic polynomial time algorithm
terminates on each of the two questions. It is only necessary to substitute “true” for
“false” to transform a polynomial time algorithm for a problem in P in an algorithm
for its complement. But this is not necessarily so for problems in N P . A solution
for the Traveling Salesman Decision Problem (TSDP), that is, the computation of
the tour’s length and the comparison with the decision’s threshold, can be verified in
polynomial time. However, the complementary problem has the wording “Is there no
tour with a total length smaller than R?” If the answer is “yes,” no polynomial time
algorithm is known that could verify this assertion. It would be necessary to propose
a data structure on which to perform some computations that could convince us of
the truth of the assertion. Theoreticians assume that the complement of the TSDP
probably does not belong to the class N P . The class that contains the complement
of all N P problems is called co-N P . It is generally assumed that N P �= co-N P .
This inequality is somewhat strong, since it implies that P �= N P . Otherwise, one
would have co-P = co-N P = P = N P , i.e., the equality N P = co-N P would be
valid. Yet theoreticians expect that eventually it will be proved that N P �= co-N P .

The following lemma determines under what conditions equality of the classes
N P and co-N P would be possible. One can assume that this condition cannot be
fulfilled [2].

Lemma 1 If there is an N P-complete problem X whose complement Xc belongs to
N P, then N P = co-N P.

Lemma 1 is true because any problem Y in N P can be reduced in polynomial
time into X . The complement of Y can therefore be transformed in polynomial time
into Xc. Since a solution of Xc can be verified in polynomial time, the same is true
for any solution of Yc. This and some additional technical details would imply that
N P = co-N P . Neural networks are just a subset of the algorithmic world. Since
it is suspected that there is no polynomial time algorithm for the problems in the
class N P , it should be possible to prove that Hopfield networks of bounded size are
subjected to the same limitations. The following proposition settles this question [31].
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Proposition 2 Let L be an N P-complete decision problem and H a Hopfield net-
work with a number of weights bounded by a polynomial on the size of the problem.
If H can solve L (100% success rate), then N P = co-N P.

Proposition 2 can be proved as follows. The problem L has a certain size defined
by an appropriate coding. Since we must compute the energy function and from
it derive the necessary weights for H , a polynomial bound on the total number of
weights is necessary. A Hopfield network always finds a local minimum of its energy
function. In this case, a 100% hit rate means that all local minima of the energy
function should make possible a decision on the truth or falsity of the decision
problem L . The Hopfield network can be considered a data structure that makes
possible the verification of the found solution. It is only necessary to verify whether
the solution found by the network is indeed a local minimum of the energy function.
The polynomial size of the net makes this verification possible in polynomial time.
The decision problem and the complement are, in this case, completely symmetric.
The TSDP can be answered with “yes” if the tour found by the network is shorter
than the decision threshold. But the complement of the TSDP can be decided also
just by comparing the length of the optimal tour found with the decision threshold.
Therefore, the complement of L is a member of the class N P and it follows from
Lemma 1 that N P = co-N P . Since it is generally assumed that this cannot be so,
there should be a contradiction in the premises. The network H does not exist unless
N P = co-N P .

Even if we content ourselves with a polynomially bounded network that can pro-
vide approximate solutions (for example, traveling salesman problem (TSP) round-
trips not larger by a given ε than the optimal tour), no such network can be built. It
is because of this inherent limitation that some researchers have sought to introduce
stochastic factors into the networks, as it may be falling into the scope of Boltzmann
machines.Hopfield networks asmassively parallel systems are only interesting if they
can be implemented in hardware and not just simulated in a sequential computer.
Some proposals have been made for special chips capable of simulating Hopfield
networks but the most promising approach are optical computers, capable of solving
the connectivity problem of neural networks. For other topics on the equivalence of
Hopfield and perceptron learning, complexity of learning in Hopfield models, and
parallel combinatorics, implementation of Hopfield neural networks, readers can
further refer to [2] for more details.

Generally speaking, with the introduction in 1982 of the model named after him,
John Hopfield established the connection between neural networks and physical sys-
tems of the type considered in statistical mechanics. This in turn gave computer
scientists a whole new arsenal of mathematical tools for the analysis of neural net-
works. Other researchers had already considered more general associative memory
models in the 1970s, but by restricting the architecture of the network to a symmetric
connection matrix with a zero diagonal, it was possible to design recurrent networks
with stable states. With the introduction of the concept of the energy function, the
convergence properties of the networks could be more easily analyzed. The Hop-
field network also has the advantage, in comparison with other models, of a simple
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technical implementation using electronic or optical devices [32]. The properties of
Hopfield networks have been investigated since 1982 using the theoretical tools of
statistical mechanics [33]. Gardner [34] published a classical treatise on the capac-
ity of the perceptron and its relation to the Hopfield model. The total field sensed
by particles with a spin can be computed using the methods of mean field theory.
This simplifies a computation which is hopeless without the help of some statistical
assumptions [35]. Using these methods Amit et al. [36] showed that the number of
stable states in a Hopfield network of n units is bounded by 0.14n. A recall error
is tolerated only 5% of the time. This upper bound is one of the most cited num-
bers in the theory of Hopfield networks. In 1988 Kosko proposed the BAM model,
which is a kind of “missing link” between conventional associative memories and
Hopfield networks. Many other variations have been proposed since, some of them
with asynchronous, others with synchronous dynamics [21].

Hopfield networks have also been studied from the point of view of dynamical
systems. In this respect spin glass models play a relevant role. These are materials
composed of particles with spin and mutual interactions [37, 38]. Combinatorial
problems have a long tradition, but a really systematic theory capable of unifying the
myriad of heuristic methods developed in the past was first developed in the 1960s
and 1970s [39]. The important point was the increasingly important role played by
computers and the emergence of a new attitude which tried to reach whole classes
of problems and not just individual cases. An important research theme that remains
is how to split a combinatorial problem into subtasks which can be assigned to
different processors [40]. The efforts of Hopfield and Tank with the TSP led to many
other similar experiments in related fields. Wilson and Pawley [41] repeated their
experiments but they could not confirm the optimistic results of the former authors.
The main difficulty is that complex combinatorial problems produce an exponential
number of local minima of the energy function. In sequential computers, Hopfield
models cannot compete with conventional methods [42]. Many heuristics have been
proposed for the TSP, starting with the classical work of Kernighan and Lin [43]. The
onlyway tomakeHopfieldmodels competitive is through the use of special hardware.
Sheu et al. [44] obtained interesting results and significant speedup in comparison
with sequential computers by a technique they called hardware annealing. One of
the first to deal with the intrinsic limits of the Hopfield model for the solution of
the TSP was Abu-Mostafa [45, 46], who nevertheless considered only the case of
networks of constant size. Bruck and Goodman [31] considered networks of variable
but polynomially bounded size and obtained the same negative results. Although
this almost meant the “death of the traveling salesman” [33], the Hopfield model and
its stochastic variants have been applied in many other fields, such as psychology,
simulation of ensembles of biological neural networks, and chaotic behavior of neural
circuits. The optical implementation of Hopfield networks is a promising field of
research. Other than masks, holograms can also be used to store the network weights
[47]. Themain technical problem is still the size reduction of the optical components,
which could make them a viable alternative to conventional electronic systems.
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1.6 Cohen–Grossberg Neural Networks

In the 1950s, Grossberg (Stephen Grossberg, born on December 31, 1939, is a cog-
nitive scientist, neuroscientist, mathematician, biomedical engineer, and neuromor-
phic technologist) introduced the paradigm of using nonlinear systems of differential
equations to show how brain mechanisms can give rise to behavioral functions. The
laws were derived from an analysis of how psychological data about human and ani-
mal learning can arise in an individual learner adapting autonomously in real time.
This paradigm is helping to solve the classical mind/body problem, and is the basic
mathematical formalism that is used in biological neural network research today.

In the 1960s and 1970s, Grossberg generalized the additive and shunting models
to a class of dynamical systems that included these models as well as nonneural
biological models, and proved content addressable memory theorems for this more
general class of models. As part of this analysis, he introduced a Lyapunov function
method to help classify the limiting and oscillatory dynamics of competitive systems
bykeeping trackofwhichpopulation iswinning through time.ThisLyapunovmethod
led him and Michael Cohen to discover in 1981 and publish in 1982 and 1983
a Lyapunov function, which they used to prove that global limits exist in a class
of dynamical systems with symmetric interaction coefficients, which includes the
additive and shunting models. John Hopfield published this Lyapunov function for
the additivemodel in 1984. Some scientists started to callHopfield’s contribution “the
Hopfield model.” In an attempt to correct this historical error, other scientists called
the more general model and Lyapunov function “the Cohen–Grossberg model.” Still
other scientists call it “the Cohen–Grossberg–Hopfield model” (this assertion can
be found in Wikipedia encyclopedia). In 1987, Bart Kosko (born on February 7,
1960) adapted the Cohen–Grossberg model and Lyapunov function, which proved
global convergence of short-termmemory (STM), to define an adaptive bidirectional
associative memory that combines STM and long-term memory (LTM) and which
also globally converges to a limit [48].

Early applications of the additivemodel included computational analysis of vision,
learning, recognition, reinforcement learning, and learning of temporal order in
speech, language, and sensory-motor control. The additive model has continued to
be a cornerstone of neural network research to the present time in decision making.
Physicists and engineers unfamiliar with the classical status of the additive model in
neural networks called it the Hopfield model after the first application of this equa-
tion in Hopfield [29]. Grossberg [49] summarizes historical factors that contributed
to their unfamiliarity with the neural network literature. The additive model can be
generalized in many ways, including the effects of delays and other factors.

A much more general class of systems has this property:

ẋi = ai (x)[bi (xi ) − c(x)], (1.4)

where x = (x1, x2, . . . , xn)
T , ai (x) is a state-dependent amplification function,

bi (xi ) is a self-signal function, and c(xi ) is the state-dependent adaptation level
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against which each bi (xi ) is compared. With different parameters and signal func-
tions for each cell in (1.4), system (1.4) may represent for arbitrarily many cells,
for example, recurrent competitive field. Grossberg [50] proved that all trajectories
in such systems are “stored in STM”; that is, converge to equilibrium values as
t → ∞, even in systems that possess infinitely many equilibrium points. The proof
shows how each xi (t) gets trapped within a sequence of decision boundaries that
get laid down through time at the abscissa values of the peaks in the graphs of the
signal functions bi (xi ), starting with the highest peaks and working down. Multiple
peaks correspond to multiple cooperating subpopulations. These graphs may thus
be very complex if each population contains multiple cooperating subpopulations.
After all the decision boundaries get laid down, each xi (t) is trapped within a sin-
gle valley of its bi graph. After this occurs for all the xi variables, the function
B(x(t)) = max[bi (x(t)) : i = 1, 2, . . . , n] is a Lyapunov function, whose Lyapunov
property is then used to complete the proof of the theorem. A special case of the the-
orem concerns a competitive market with an arbitrary number of competing firms.
Each firm can choose one of infinitely many production and savings strategies that
are unknown to the other firms. The firms know each other’s behaviors only through
their effect on a competitive market price, and they produce more goods at any time
only if application of their own firm’s production and savings strategy will lead to
a net profit with respect to that market price. The theorem proves that the price in
such a market is stable and that each firm balances its books. The theorem does not,
however, determine which firms become rich and which go broke.

Due to the importance of symmetry in proving global approach to equilibria, as
in the adaptation level systems (1.4), Cohen and Grossberg attempted to prove that
all trajectories of systems of the Cohen–Grossberg form:

ẋi = ai (xi )

⎡

⎣bi (xi ) −
n∑

j=1

ci j d j (x j )

⎤

⎦ , (1.5)

with symmetric interaction coefficients ci j = c ji and weak assumptions on their
defining functions, approach equilibria as t → ∞. Systems (1.5) include both Addi-
tive Model and Shunting Model networks with distance-dependent, and thus sym-
metric, interaction coefficients, the Brain-State-in-a-Boxmodel [51], the continuous-
time version of theMcCulloch and Pitts [1] model, the BoltzmannMachine equation
[52, 53] model, the Volterra-Lotka model [54], the Gilpin and Ayala model [55], the
Eigen and Schuster model [56], the Cohen and Grossberg [57, 58] Masking Field
model, and so on. More details can be found by searching the keyword “recurrent
network networks” in the Wikipedia on the internet.

Cohen and Grossberg first attempted to prove global equilibrium by showing
that all Cohen–Grossberg systems generate jump trees, and thus no jump cycles,
which would immediately prove the desired result. This hypothesis still stands
as an unproved conjecture.While doing this, inspired by the use of Lyapunov
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methods for more general competitive systems, Cohen and Grossberg [59, 60]
discovered the Cohen–Grossberg Lyapunov function that they used to prove that
global equilibria exist:

V = −
n∑

i=1

∫ xi

0
bi (ξi )d

′
i (ξi )dξi + 1

2

n∑

j=1

n∑

k=1

c jkd j (x j )dk(xk). (1.6)

Equation (1.6) defines a Lyapunov function because integrating V along trajectories
implies that:

V̇ (x) = −
n∑

i=1

ai (xi )d
′

i (xi )

[
bi (xi ) −

n∑

k=1

cikdk(xk)

]2

. (1.7)

If ai (xi )d
′

i (xi ) ≥ 0, then (1.7) implies that V̇ (x) ≤ 0 along trajectories, where

d
′

i (t) = ddi (t)
dt . Once this basic property of a Lyapunov function is in place, it is a

technicalmatter to rigorously prove that every trajectory approaches one of a possibly
large, or infinite, number of equilibrium points. As noted above, the Lyapunov func-
tion (1.6) proposed in Cohen and Grossberg [59] includes both the Additive Model
and Shunting Model, among others. A year later, Hopfield [29] published the special
case of the Additive Model and Lyapunov function and asserted, without proof, that
trajectories approach equilibria. Based on this 1984 article, the Additive Model has
been erroneously called the Hopfield network by a number of investigators, despite
the fact that it was published in multiple articles since the 1960s and its Lyapunov
function was also published in 1982–1983. A historically more correct name, if
indeed names must be given, is the Cohen–Grossberg–Hopfield model, which is the
name already used in the literature. More details can be found by searching Stephen
Grossberg in Wikipedia, the free encyclopedia on the Internet.

Symmetry does not imply convergence: Synchronized oscillations. Cohen [61]
showed that symmetric coefficients are not sufficient to ensure global convergence by
constructing distance-dependent (hence symmetric) on-center off-surround networks
that support persistent oscillations. These networks can send excitatory feedback
signals to other populations than themselves. It has long been known that shunting
networks with slow inhibitory interneurons can persistently oscillate, e.g., Ellias
and Grossberg [62]. This observation led to the prediction that neural networks
can undergo synchronized oscillations, first called order-preserving limit cycles by
Grossberg [63, 64], during attentive resonant states. The early articles concerning
synchronized oscillations during attentive brain dynamics have been followed by
hundreds more. Persistent oscillations can also occur in recurrent competitive field
(RCF) defined by Grossberg [65].

Note that the contents in Sects. 1.5 and 1.6 are mainly from the Wikipedia on
the Internet. By comparing the evolution of Hopfield model and Cohen–Grossberg
model, we can find many interesting findings.
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(1) In fact, the neural model used by Hopfield is an additive neural model (the
additive neural-network model includes, as special cases, the Hopfield neural net-
work, the cellular neural networks (CNNs), and several other classes of extensively
employed neural networks), which has been studied for a long time in the community
of neural science. Grossberg had also studied this kind of additive neural model in the
aspects of biology. According to the introduction in this section, Grossberg has pro-
posed many different kinds of neural models, in which the Cohen–Grossberg model
is one of the most important model. However, since the publications of Hopfield’s
work in 1982 and 1984, respectively, a kind of additive neural model was renamed
by Hopfield model, which seemed to be a new kind of neural model.

(2) Comparing the work of Hopfield with that of Grossberg in neural networks,
Grossberg may have more contribution in the field of biological neural networks.
However, Hopfield may be more famous than Grossberg for his considered neural
model in the engineering field. This may raise a delusion that the Cohen–Grossberg
model is an extension of the Hopfield model. That is, Hopfield model is earlier
than the Cohen–Grossberg model, and Cohen–Grossberg’s work is on the basis of
Hopfield’s work. There is no literature to explain the original relations between the
Hopfield model and the Cohen–Grossberg model. Here, to the best of the authors’
knowledge, it is the first time that a relation is presented between these two models
in a monograph. In the aspect of mathematical model of neural networks, Hopfield
model is not new, and Cohen–Grossberg model has no inheritance relationship to the
so-called Hopfield model.

(3) Hopfield and Grossberg (born in 1939) are all outstanding scholars in the field
of biological neural networks. Meanwhile Hopfield was also a physicist, who can
use the physical thinking to consider the relation and phenomena in the biological
neural networks. In contrast, Grossberg is an excellent expert in the biological neural
networks, and he was used to considering the neuronal phenomena and biological
relations from the opinion of a biologist. Therefore, different viewpoints may lead
to different ways to further study the same phenomena. In this aspect, Hopfield is
superior to Grossberg, which leads to the famous findings by using the simple neural
network model! In another way, Hopfieds’ work also discovers that a simple additive
neural network has many fascinating features in engineering applications, let alone
the complex neural models, e.g., Cohen–Grossberg neural model.

(4) The reason that Hopfield is more famous than Grossberg, which is given by
the authors, is based on the fact that Hopfield has solved the challenging application
problems using the theoretical neuralmodel,whileGrossberg did not.Whenwe recall
the time in the 1980s, the industrial development was one of the urgent problems
in the world. Technology applications are the hot and important projects in any
country. Just under such a background, fundamental theory research may be a bit
weaker than the technical applications. Hopfield’ work using the neural model to
solve the optimization problems just met the demands of the times. Therefore, more
scholars from the world began to study Hopfield’s work. For brief citing of the model
in Hopfield’s work, a natural way is to name the model by the author’s name, which
is similar to the origin of the TS fuzzy model. This term is not decided by Hopfield,
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but by the academic market. Thinking in this way, it seems doomed that Hopfield
should appear in that era.

(5) Hopfield and Grossberg are both excellent scientists. However, different
research directions may lead to different results. Grossberg seems absorbed in the
fundamental theory research of one field. Therefore, Grossberg’s workmay be highly
recognized in the local fields of his speciality. In contrast, Hopfield used the existing
theory to solve the engineering problems. Hopfield on his own may not be famous at
that time, while the solved engineering problems may be a significant project and hot
topic at that time. In this way, Hopfield is hot! It is the time that chooses Hopfield.

1.7 Property of Neural Network

The process used to perform the learning process is called a learning algorithm,
the function of which is to modify the synaptic weight of the network in an orderly
fashion to obtain a desired design objective. Themodification of the synaptic weights
provides the traditional method for the design of neural network. Such an approach
is the closest to linear adaptive filter theory, which is already well established and
successfully applied in many diverse fields. However, it is also possible for a neural
network to modify its own topology, which is motivated by the facts that neurons in
the brain can die and that new synaptic connections can grow.

For the neural networks in a general sense, it is apparent that a neural network
derives its computing ability through, first, its massively parallel distributed struc-
ture and, second, its ability to learn and therefore generalize. Generalization means
the neural network producing reasonable outputs for inputs not encountered during
training or learning. These two information-processing capabilities make it possi-
ble for neural networks to solve complex or large-scale problems that are currently
intractable. In practice, neural network cannot provide the solution by working indi-
vidually. Rather, they need to be integrated into a consistent system. Specifically, a
complex problem of interest is decomposed into a number of relatively simple tasks,
and neural networks are assigned a subset of the tasks that match their inherent capa-
bilities. It is important to recognize that we have a long way to go before we can
build a computer architecture that mimics a human brain.

Neural networks offer the following useful properties and capabilities for engi-
neering applications.

(1) Nonlinearity. An artificial neuron can be linear or nonlinear. A neural network,
made up of interconnections of nonlinear neurons, is itself nonlinear. Moreover, the
nonlinearity is of weak approximation in the sense that it is distributed throughout the
networks. Nonlinearity is a highly important property, particularly if the underlying
physical mechanism responsible for generalization of the input signal is inherently
nonlinear.

(2) Input–output mapping. The network is presented with an example picked
at random from the set, and the synaptic weights of the network are modified to
minimize the difference between the desired response and the actual response of the
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network produced by the input signal in accordance with an appropriate statistical
criterion. The training of the network is repeated for many examples in the set until
the network reaches a steady state where there are no further significant changes in
the synaptic weights.

(3) Adaptivity. Neural networks have a built-in capability of adapting their synap-
tic weights to changes in the surroundings. The natural structure of a neural network
for pattern classification, signal processing, and control applications, coupled with
the adaptive capability of the network, makes it a useful tool in adaptive pattern
classification, adaptive signal processing, and adaptive control applications. As a
general rule, it may be said that the more adaptive we make a system, all the time
ensuring that the system remains stable, the more robust its performance will likely
be when the system is required to operate in a nonstationary environment. It should
be emphasized that adaptivity does not always lead to robustness; indeed it may do
the very opposite. This problem is referred to as the stability-plasticity dilemma.

1.8 Information Processing Capacity of Dynamical Systems

Many dynamical systems, both natural and artificial, are driven by external input
signals and can be seen as performing nontrivial, real-time computations of these
signals. It is an interesting topic to study the online information processing that takes
place within these dynamical systems. The importance of this topic is underlined by
the multitude of examples from nature and engineering which fall into this category.
These include the activation patterns of biological neural circuits to sensory input
streams, the dynamics of many classes of artificial neural network models used in
artificial intelligence (including thewhole field of “reservoir computing” aswell as its
recent implementation using time delay systems), and systems of interacting chemi-
cals, such as those found within a cell, that display intracellular control mechanisms
in response to external stimuli. Recent insight into robotics has demonstrated that the
control of animal and robot locomotion can greatly be simplified by exploiting the
physical body’s response to its environment [66–71]. Additional systems are popu-
lation dynamics responding to, e.g., changes in food supply, ecosystems responding
to external signals such as global climate changes, and the spread of information
in social network graphs. All these exemplary systems display completely different
physical implementations.

How to present a general framework that allows to compare the computational
properties of a broad class of dynamical systems is the main work in [66]. One is able
to characterize the information processing that takes place within these systems in a
way that is independent of their physical realization, using a quantitative measure. It
is normalized appropriately such that completely different systems can be compared
and it allows us to characterize different computational regimes (linear vs. nonlinear;
long vs. short memory).

Some initial steps in this direction are provided by the linear memory capacity
(later theoretically extended to linear systems in discrete time and continuous time
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systems, and using Fischer information). Although it has been argued that short-term
memory of a neural system is crucial for the brain to perform useful computation on
sensory input streams, it is a belief that the general paradigm underlying the brain’s
computation cannot solely rely on maximizing linear memory. The neural circuits
have to compute complex nonlinear and spatiotemporal functions of the inputs. Prior
models focusing on linear memory capacity in essence assumed the dynamic system
to only implement memory, while the complex nonlinear mapping is off-loaded to an
unspecified readout mechanism. The authors in [66] proposed to endow the dynamic
system with all the required computational capacity, and used only simple linear
read-out functions. The capacity measures introduced in [66] are therefore of great
interest since they quantify all the information processing that takes place within the
dynamical system, and don’t introduce an artificial separation between linear and
nonlinear information processing.

One of the startling results of the work in [66] with potentially far reaching
consequences is that all dynamical systems, provided they obey the condition of
having a fading memory and have linearly independent internal variables, have in
principle the same total normalized capacity to process information. The ability to
carry out useful information processing is therefore an almost universal characteristic
of dynamical systems.This result provides theoretical justification for thewidely used
paradigm of reservoir computing with a linear readout layer. Indeed, it confirms that
such systems can be universal for computation of time invariant functionswith fading
memory. Themain contribution in [66] is to uncover the (potentially universal) trade-
off between memory depth and nonlinear computations performed by the dynamic
system itself, and also discuss how the influence of noise decreases the computational
capacity of a dynamical system.

Inspired by the work in [66], recurrent neural networks as a special dynamical
system, its computational capability, storage capability, and learning ability fall into
the notation framework of the fading memory, Hilbert space, and fading memory
dynamical system defined in [66]. Therefore, many features of different dynamical
systems and their applications are subject to the understanding of the essentials of
the internal memory capacity of the concerned systems. No matter what the fea-
tures are, stability as one of the fundamental properties of dynamical systems is still
indispensable.

1.9 Stability of Dynamical Neural Networks

According to different measures, neural networks can be divided into different kinds
of models. For example, neural networks can be classified into feedforward neural
networks and recurrent neural networks according to different connection forms.
It is well known that feedforward neural networks have been studied deeply more
than 30 years. The advantages of feedforward neural network are approximation
capability and learning mechanism. However, recurrent neural networks have also
shown that they own the computational capability and memory capability besides
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approximation capability and learning mechanism. Therefore, recurrent neural net-
works have been re-examined with the development of feedforward neural networks.
The pioneer work of recurrent neural networks is contributed to the great biophysi-
cian Hopfield J. J., who first used the simple recurrent neural networks, now called
Hopfield neural networks, solved the optimal Problem of Traveling Salesman and
implemented the 4 digital A/D convertor via recurrent neural networks in the 1980s.
Hopfield’s work pioneered the analog computation of continuous time recurrent
neural networks instead of digital computation using complex numerical algorithms
on a digital computer. In the Hopfield’s research of recurrent neural network, one of
the most important problems is stability of the designed recurrent neural networks,
which can guarantee stable operation of the hardware circuits. At the same time, biol-
ogist Grossberg and his student Cohen proposed a class of competitive-cooperative
neural networks, which is widely called Cohen–Grossberg neural networks (CGNN)
( note that, plus “+” in interconnection coefficients means competitive and minus
“–” in interconnection coefficients means cooperation), and it has been shown that
they can represent a large kind of biological neural networks and can realize the pat-
tern formation. In some cases of network parameters, Hopfield neural networks are
a special case of Cohen–Grossberg neural networks. For the case of strictly positive
amplification, stability analysis of Cohen–Grossberg neural networks is along the
same routine as that of Hopfield neural networks. In this case, the equilibrium point
of recurrent neural networks can be positive, negative, zero, or their mixtures. How-
ever, for the case of nonnegative amplification, stability analysis of Cohen–Grossberg
neural networks is a different routine from that of Hopfield neural networks, and the
equilibrium point must be nonnegative, which represents the survival and extinction
of species. Therefore, in the aspect of engineering applications, CGNN and Hopfield
neural networks are different except that they have the similar mathematical model.

Because of the simplicity of circuit implementation of the recurrent neural net-
works, the following work is on how to reduce the conservatism of the stability
criterion because of the intervention of different kinds of delays in the circuit imple-
mentation. Time delays usually destroy the stability property of neural networks and
produce oscillation, bifurcation, and chaos. According to the environment of imple-
mentation, such delays as concentrated or discrete delay(s), multiple different delays,
neutral type delay, distributed delay, and their time-varying correspondences can be
induced. In the stability analysis of recurrent neural networks, delays are usually
regarded as one of the disadvantageous factors even though some delays may have
active factors in the design and implementation of neural circuits. In general, the con-
stant delay is rather easier to be tackled than time-varying delay. For the time-varying
delay, the changed rate of time-varying delay is usually restricted to be less than 1 in
the earlier stability study, not due to the practical consideration but due to the techni-
cal difficulty in analytical derivation of stability result. At present, the restriction of
changed rate of time-varying delay to be less than 1 is canceled because some useful
inequalities and decomposition methods (e.g., free weight matrix method, delay par-
titioning method) are involved. Theory research serves practical application. How to
reduce the gap between theory and application is a long-term and difficult task.
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Since then, a lot of stability results have been reported in journals and confer-
ences by scholars and researchers all over the world, for example, America, Italy,
China, and Canada. Among these stability results, almost all the earlier results are
based on the norm theory, M-matrix theory, measure theory, and algebraic inequality
methods. The common feature is that all the stability results take absolute operation
on the interconnection weights, which ignored the inhibitory effects (e.g., negative
interconnection weight) of neurons on the whole neural networks. Therefore, the
conservatism of the stability results are much great. With the emergence of LMI,
another kind of stability criteria are proposed in the recent 20 years. This kind of
LMI-based stability results not only consider the inhibitory effects of neurons in the
analysis, but also consider the connection strengths between neurons. Therefore, LMI
method reduces the conservativeness of stability criteria significantly and becomes
an important method in the qualitative analysis and synthesis of nonlinear control
systems.

1.10 Delay Effects on Dynamical Neural Networks

For practical neuronal networks, there are many factors to be considered in inves-
tigating the features of dynamical behavior, which are related to many biological
knowledge. Inspired by the biological neurons, some functions of neurons can be
imitated in the application of industrial technology. On the other hand, in order to
study the underlying mechanism of neural networks in theory, some analysis meth-
ods must be utilized, such as mathematical analytical model, symbol model, relation
model, and so on. Among these mathematical models, the commonly used model
is the mathematical models based on the differential equations (e.g., ordinary dif-
ferential equations and partial differential equations), in which the model based on
ordinary differential equations (ODE) are widely researched.

In order to use the ODE model to describe the real applications or plants, some
modifications of ODE models are necessary. For example, some external perturba-
tions, which are unavoidable, are often modeled by the additive or multiplicative
disturbance. For the uncertainties of the connection relations or the variations of
model structure of the concerned systems, the connection coefficients or the con-
nection matrix may be modeled as the uncertainty coefficients or matrices. These
uncertainties are usually divided into two parts: the deterministic and nondetermin-
istic parts. In general, how to describe the nondeterministic parts of the structure
uncertainties forms the different research directions in the related topics. In fact,
the structure uncertainties may arise from internal and external factors. However, in
the uncertain mathematical model based on ODE, these structure uncertainties are
completely combined into the connection matrices.

Besides the structure uncertainties, signal transmissiondelays cannot beneglected.
Signal transmission delay may arise from the concerned systems themselves or from
the external sources communicating through long distance. Therefore, the delays
may produce many different effects on the concerned systems. For example, a delay
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involved in a nonlinear system may produce complex behaviors such as chaos, peri-
odic solution, stability equilibrium, and saddle points.

Now we will state the fundamental reasons why the delayed systems or neural
networks with time delays are widely studied in recent years. From the above sec-
tions’ introduction, one can see that the development of neural networks theory is
executed in the exploration of biological neural networks. All the key points are in the
internal of neuronal network itself. In the early time of theoretical research, much
emphasis is placed on the interval interconnection relations of neurons, which is
about the external strength information. In the current stage, as external information
has been fully developed, the research focus is aimed at the internal information. One
of these internal information is the signal transmission and the action delay of the
synapse. Therefore, different kinds of delay information are considered in the neural
network model, and many surprising phenomena are found. How to obtain or use
some of the surprising phenomena is the main motivation for studying the delayed
neural networks. For more details on the evolution of time delays, readers can refer
to Sect. 3.2.3.

1.11 Features of LMI-Based Stability Results

Before 2002, the concept of Lyapunov diagonal stability (LDS) was applied to estab-
lish the stability criteria in neural networks community. The advantage of LDS lies
in that an unknown variable is involved in the stability criteria, in which the plus and
minus signs of interconnection weights are considered. Therefore, the LDS-based
stability criterion considers the excitatory (i.e., plus sign of interconnection weight)
and inhibitory (i.e., minus sign of interconnection weight) effects of neurons on
the whole neural networks. Since 2002, linear matrix inequality (LMI) method was
introduced into the neural network community, which improve the LDS-based sta-
bility results. The advantages of LMI consist in the fact that there are many degrees
of freedom in the stability criteria, and the excitatory and inhibitory effects of neu-
rons on the whole neural networks are also considered. LDS-based stability result
is a special case of stability results based on LMI. Recently, LMI method is greatly
developed in many scientific fields, such as automatic control, signal processing, and
stability analysis of nonlinear system. The main reasons why LMI method is greatly
appreciated, the authors think, lie in the following aspects.

(1) The LMI Toolbox in MATLAB is freely available, which can be mastered in a
very short time. Therefore, LMI-based results can be easily checked usingMATLAB
software.

(2) In essence, the LMI tool bridges the absolute value methods (e.g., norm the-
ory, M-matrix theory, measure theory, and algebraic inequality methods) and LDS
method. That is to say, LMImethod is easier to check than algebraic inequality meth-
ods, and hasmore freedom than thosemethods such as norm theory,M-matrix theory,
measure theory, and LDS methods. Therefore, in the total performance evaluation
of the desired results, LMI-based results are more perfect than the others.

http://dx.doi.org/10.1007/978-3-662-47484-6_3
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(3) Intuitionally, LMI-based method is most suitable for the model or system
described in state-space equation. Therefore, LMI-based method is mostly welcome
in the fields of modern control system theory. The advantages of modern control
system theory are that they can reflect the inner variables or factors of the investigated
systems and the physical meanings of some state variables are clear. For the classical
control theory, for example, transfer function methods, it can be converted into H-
infinity problem using the H-infinity norm and realization theory. Therefore, in some
cases and for some specific problems, LMI method can also be applied to classical
control theory. That is, both modern control system theory and classical control
theory can make a space for LMI method.

(4) Technically, many matrix theory methods can be incorporated into the LMI-
based methods. Therefore, like algebraic inequality methods (which mainly deal
with the scalar space or dot measure, and almost all scalar inequalities can be used
in the algebraic inequality methods), many matrix inequalities can be used in the
LMI-based method and many kinds of LMI-based stability results can be presented.
Especially, LMI-based method deals directly with the two-dimensional vector space,
which extends the application space of algebraic inequality methods. Therefore,
more information on the system can be contained in LMI-based results than those of
algebraic inequality methods.

(5) Besides the LMI method, there are many other methods to study the stabil-
ity of the neural networks with time delays, for example, bilinear matrix inequality,
algebraic inequality, measure theory, norm theory, M-matrix, etc. Different meth-
ods correspond to different mathematical models. For some kinds of mathematical
models, some methods may be invalid. Therefore, there are many factors to effect
the choice of the adopted method, such as the types of the concerned mathematical
models and the hobbies of the researchers.

(6) LMI method is more suitable for the systems described by matrix-vector
form. Meanwhile, during the analysis and synthesis of the concerned problems,
some mathematical difficulties can also arise. Therefore, similar to the algebraic
inequality methods, there are some constraints for the applications of LMI method.
For example, with more free weighted matrices being involved in the stability crite-
ria, the representation complexity of the stability criteria hindered the development
of LMI method, which have deprived of the straight advantages of LMI method.
Meanwhile, the feasibility and computational burden of LMI-based stability crite-
ria will be increased. Thus, any mathematical method has its own features, both in
advantages and disadvantages.

In this book, the reason why we mainly adopt the LMI method is based on the
following consideration. First, both artificial neural networks and recurrent dynam-
ical neural networks originate from the biological neuronal networks, in which the
inhibitory action and excitability action are the two main response mechanisms.
These bipolar actions can be well described by the matrix description, while other
nonmatrix forms always neglect bipolar actions. Second, the concerned RNNs are
expressed in the form of state-space equations, which is also suitable for the LMI
method. Third, Lyapunov stability theory is more suitable for the concerned RNNs,
and many matrix inequality methods can be easily incorporated into the qualitative
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analysis procedure. Finally, parallel to the algebraic inequality methods, it is nec-
essary to build some stability criteria based on LMI methods in order to enrich the
neural networks stability theory.

1.12 Summary

In this chapter, the evolution of artificial neural networks is simply introduced. The
main function of neurons is the computation andmemory,whichmay concern the iter-
ated processing of information. For understanding the mechanism of neurons, many
kinds of neural models are exploited, among these models are some famous mod-
els, for example, Hopfield network model, Cohen–Grossberg neural network model,
and bidirectional associative network model. For details on bidirectional associative
network model and Hopfield network model, readers can refer to the classical book
[2]. For details on Cohen–Grossberg network model, readers can refer to “recurrent
neural networks” in Wikipedia on the Internet. Some fundamental knowledge of
this chapter is based on the reference [2], and others are from the Wikipedia—the
free encyclopedia on the Internet. This chapter mainly presents a background on the
recurrent neural networks, for example, evolution history of neural networks, stabil-
ity of dynamical neural networks, relations between neural networks and dynamical
systems. These contents are always scattered in many books, published papers, or
Wikipedia encyclopedia. It is also another purpose of this book to collect and run
through these goodmaterials (including the interested topic and the references herein)
for the readers to study the stability of neural networks conveniently.

References

1. W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 5, 115–133 (1943)

2. R. Rojas, Neural networks: A systematic introduction, Springer (1996)
3. A. Brown, Nerve Cells and Nervous Systems (Springer, Berlin, 1991)
4. J. Horgan, Can science explain consciousness? Sci. Am. 271(1), 88–94 (1994)
5. P. McCorduck, Machines Who Think: A Personal Inquiry into the History and Prospects of

Artificial Intelligence, CRC Press (2004)
6. J. Rosser, Highlights of the history of the Lambda-calculus. Ann. Hist. Comput. 6(4), 337–349

(1984)
7. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer.

Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 400(1818), 97–117 (1985)
8. A. Turing, On computable numbers, with an application to the Entscheidungs problem. Proc.

Lond. Math. Soc. 42, 230–265 (1937)
9. R.Rojas,Who invented the computer?-The debate from the viewpoint of computer architecture,

in W. Gautschi (ed.), Mathematics of Computation 1943–1993, pp. 361–366 (1994). (AMS,
Proceedings of Symposia on Applied Mathematics, 1994)

10. M. Croarken, Early Scientific Computing in Britain (Clarendon Press, Oxford, 1990)
11. A. Hodges, Alan Turing: The Enigma of Intelligence (Counterpoint, London, 1983)



34 1 Introduction to Neural Networks

12. N. Stern, John von Neumann’s influence on electronic digital computing, 1944–1946. Ann.
Hist. Comput. 2(4), 349–361 (1980)

13. O. Steward, Principles of Cellular, Molecular, and Developmental Neuroscience (Springer,
New York, 1989)

14. S. Hameroff, Ultimate Computing-Biomolecular Consciousness and Nanotechnology (North-
Holland, Amsterdam, 1987)

15. S. Hameroff, J. Dayhoff, R. Lahoz-Beltra, A. Samsonovich, S. Rasmussen, Conformational
automata in the cytoskeleton. Computer 25(11), 30–39 (1992)

16. F. Crick, Astonishing Hypothesis: The Scientific Search for the Soul (Charles Scribner’s Sons,
New York, 1994)

17. P. Milner, The Mind and Donald O. Hebb, Sci. Am. 268(1), 124–129 (1993)
18. T. Kohonen, Correlation matrix memories. IEEE Trans. Comput. 21, 353–359 (1972)
19. L. Cooper, A possible organization of animalmemory and learning, inProceedings of the Nobel

Symposium on Collective Properties of Physical Systems, ed. by B. Lundquist, S. Lundquist
(Academic Press, New York, 1973), pp. 252–264

20. P. Kanerva, Sparse Distributed Memory (MIT Press, Cambridge, 1988)
21. Y. Kamp, M. Hasler, Recursive Neural Networks for Associative Memory (Wiley, New York,

1990)
22. H. Haken, Information and Self-Organization (Springer, Berlin, 1988)
23. B.Kosko,Bidirectional associativememories. IEEETrans. Syst.ManCybern.18, 49–60 (1988)
24. J. Hopfield, Neural networks and physical systems with emergent collective computational

abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)
25. L. Chua, L. Yang, Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–

1272 (1988)
26. D. Amit, Modeling Brain Function: The World of Attractor Neural Networks (Cambridge

University Press, Cambridge, UK, 1989)
27. E. Ising, Beitrag zur theorie des ferromagnetismus. Zeitschrift fur Physik 31(253), 253–258

(1925)
28. J. Bruck, On the convergence properties of the Hopfield model. Proc. IEEE 78(10), 1579–1585

(1990)
29. J. Hopfield, Neurons with graded response have collective computational properties like those

of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)
30. J. Hopfield, D. Tank, Neural computations of decisions in optimization problems. Biol. Cybern.

52, 141–152 (1985)
31. J. Bruck, J. Goodman, On the power of neural networks for solving hard problems. J. Complex.

6, 129–135 (1990)
32. N. Farhat, D. Psaltis, A. Prata, E. Paek, Optical implementation of the Hopfield model. Appl.

Opt. 24, 1469–1475 (1985)
33. B.Muller, J. Reinhardt, T.M. Strickland,Neural Networks: An Introduction, 2nd edn. (Springer-

Verlag, Berlin, 1995)
34. E. Gardner, Maximum storage capacity in neural networks. Europhys. Lett. 4, 481–485 (1987)
35. J. Hertz, A. Krogh, R. Palmer, Introduction to the Theory of Neural Computation (Addison-

Wesley, Redwood City, CA, 1991)
36. D. Amit, H. Gutfreund, H. Sompolinsky, Storing infinite numbers of patterns in a spin-glass

model of neural networks. Phys. Rev. Lett. 55(14), 1530–1533 (1985)
37. D. Stein, Lectures in the Sciences of Complexity (Addison-Wesley, Redwood City, CA, 1989)
38. D. Stein, Spin glasses. Sci. Am. 261(1), 36–43 (1989)
39. E. Reingold, J. Nievergelt, N. Deo, Combinatorial Algorithms: Theory and Practice (Prentice-

Hall, Englewood Cliffs, 1977)
40. A. Gibbons, W. Rytter, Efficient Parallel Algorithms (Cambridge University Press, Cambridge,

1988)
41. G.Wilson, G. Pawley, On the stability of the traveling salesman problem algorithm of Hopfield

and tank. Biol. Cybern. 58, 63–70 (1988)



References 35

42. D. Johnson, More approaches to the traveling salesman guide. Nature 330(6148), 525–525
(1987)

43. S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling salesman problem.
Operations Res. 21, 498–516 (1973)

44. B. Sheu, B. Lee, C.F. Chang, Hardware annealing for fast retrieval of optimal solutions in
Hopfield neural networks. International Joint Conference on Neural Networks, Seattle, IEEE
Press II, 327–332 (1991)

45. Y. Abu-Mostafa, Neural networks for computing?, in Neural Networks for Computing, J.S.
Denker, (ed.), America Institute of Physics, New York, vol. 151, pp. 1–6 (1986)

46. Y.Abu-Mostafa, J. St Jacques, Information capacity of theHopfieldmodel. IEEETrans. Inform.
Theory 31(4), 461–464 (1985)

47. D. Psaltis, K. Wagner, D. Brady, Learning in optical neural computers. SCIVAL III, 549–555
(1987)

48. B. Kosko, Adaptive bidirectional associative memories. Appl. Opt. 26(23), 4847–4860 (1987)
49. S. Grossberg, Nonlinear neural networks: principles, mechanisms, and architectures. Neural

Netw. 1, 17–61 (1988)
50. S. Grossberg, Behavioral contrast in short term memory: serial binary memory models or

paraller continuous memory models? J. Math. Psychol. 3, 199–219 (1978)
51. J.A. Anderson, J.W. Silverstein, S.R. Ritz, R.S. Jones, Distinctive features, categorical percep-

tion, and probability learning: some applications of a neural model. Psychol. Rev. 84, 413–451
(1977)

52. D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for Boltzmann machines.
Cogn. Sci. 9, 147–169 (1985)

53. F. Ratliff, H.K. Hartline, W.H. Miller, Spatial and temporal aspects of retinal inhibitory inter-
actions. J. Opt. Soc. Am. 53, 110–120 (1963)

54. A.J. Lotka, Elements of mathematical biology (Dover, New York, 1956)
55. M.E. Gilpin, F.J. Ayala, Global models of growth and competition, in Proceedings of the

National Academy of Sciences, vol. 70, pp. 3590–3593 (1973)
56. M. Eigen, P. Schuster, The hypercycle: A principle of natural self-organization, B: The abstract

hypercycle. Naturwissenshaften 65, 7–41 (1978)
57. M.A. Cohen, S. Grossberg, Neural dynamics of speech and language coding: developmental

programs, perceptual grouping, and competition for short-term memory. Hum. Neurobiol. 5,
1–22 (1986)

58. M.A. Cohen, S. Grossberg, Masking fields: A massively parallel neural architecture for learn-
ing, recognizing, and predictingmultiple groupings of patterned data.Appl.Opt.26, 1866–1891
(1987)

59. M. Cohen, S. Grossberg, Absolute stability of global pattern formation and paralled memory
storage by competitive neural networks. IEEE Trans. Syst. Man Cybern. 13, 815–826 (1983)

60. S. Grossberg, Associative and competitive principles of learning and development: The tem-
poral unfolding and stability of STM and LTM patterns, in Competition and Cooperation in
Neural Networks, ed. by S.I. Amari, M. Arbib (Springer, New York, 1982), p. 1982

61. M. Cohen, Sustained oscillations in a symmetric cooperative-competitive neural network: Dis-
proof of a conjecture about content addressable memory. Neural Netw. 1, 217–221 (1988)

62. S. Ellias, S. Grossberg, Pattern formation, contrast control, and oscillations in the short-term
memory of shunting on-center off-surround networks. Biol. Cybern. 20, 69–98 (1975)

63. S. Grossberg, Adaptive pattern classification and universal recoding, I: Parallel development
and coding of neural feature detectors. Biol. Cybern. 23, 121–134 (1976)

64. S. Grossberg, Adaptive pattern classification and universal recoding, II: Feedback, expectation,
olfaction, and illusions. Biol. Cybern. 23, 187–202 (1976)

65. S. Grossberg, Contour enhancement, short-term memory, and constancies in reverberating
neural networks. Stud. Appl. Math. 52, 213–257 (1973)

66. J.Dambre,D.Verstraeten,B. Schrauwen, S.Massar, Informationprocessing capacity of dynam-
ical systems. Sci. Rep., 2, 00514-13 (2012)



36 1 Introduction to Neural Networks

67. O. White, D. Lee, H. Sompolinsky, Short-term memory in orthogonal neural networks. Phys.
Rev. Lett. 92(14), 148102 (2002)

68. M. Hermans, B. Schrauwen, Memory in linear recurrent neural networks in continuous time.
Neural Netw. 23(3), 341–355 (2010)

69. S. Gangulia, D. Huhc, H. Sompolinsky,Memory traces in dynamical systems. Proc. Natl. Acad.
Sci. USA 105, 18970–18975 (2008)

70. S. Boyd, L. Chua, Fading memory and the problem of approximating nonlinear operators with
Volterra series. IEEE Trans. Circuits Syst. 32(11), 1150–1161 (1985)

71. L. Appeltant, M. Soriano, Q. Van der Sande, J. Danckaert et al., Information processing using
a single dynamical node as complex system. Nat. Commun. 2, 468–472 (2011)



Chapter 2
Preliminaries on Dynamical Systems
and Stability Theory

In this chapter, wewill review some fundamental concepts on dynamical systems and
stability theory, and give some evaluations and opinions on some problems, which
will be helpful for understanding the main contents of this book.

2.1 Overview of Dynamical Systems

The concept of a dynamical system has its origins in Newtonianmechanics. There, as
in other natural sciences and engineering disciplines, the evolution rule of dynamical
systems is an implicit relation that gives the state of the system for only a short time
into the future. (The relation is either a differential equation, difference equation, or
other timescale.) To determine the state for future time requires iterating the relation
many times, each advancing time a small step. The iteration procedure is referred to
as solving the system or integrating the system. If the system can be solved, given an
initial point it is possible to determine all its future positions, a collection of points
known as a trajectory or orbit.

Before the advent of computers, finding an orbit required sophisticated mathe-
matical techniques and could be accomplished only for a small class of dynamical
systems. Numerical methods implemented on electronic computing machines have
simplified the task of determining the orbits of a dynamical system.

For simple dynamical systems, knowing the trajectory is often sufficient, but
most dynamical systems are too complicated to be understood in terms of individual
trajectories. The difficulties are listed as follows:

(1) The systems studied may only be known approximately—the parameters of
the system may not be known precisely or terms may be missing from the equations.
The approximations used bring into question the validity or relevance of numerical
solutions. To address these questions several notions of stability have been introduced
in the study of dynamical systems, such as Lyapunov stability, Lagrange stability,
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Hurwitz stability, and structural stability or connective stability. The stability of
dynamical systems implies that there is a class of models or initial conditions for
which the trajectories would be equivalent. The operation for comparing orbits to
establish their equivalence changes with the different notions of stability.

(2) The type of trajectory may be more important than one particular trajectory.
Some trajectories may be periodic, whereas others may wander through many dif-
ferent states of the system. Applications often require enumerating these classes or
maintaining the system within one class. Classifying all possible trajectories has led
to the qualitative study of dynamical systems, that is, properties that do not change
under coordinate transformations. Linear dynamical systems and systems that have
twonumbers describing a state are examples of dynamical systemswhere the possible
classes of orbits are understood.

(3) The behavior of trajectories as a function of a parameter may be what is
needed for an application. As a parameter varies, the dynamical systems may have
bifurcation points where the qualitative behavior of the dynamical system changes.
For example, it may go from having only periodic motions to having apparently
erratic behavior, as in the transition to turbulence of a fluid.

(4) The trajectories of the system may appear erratic randomly. In these cases
it may be necessary to compute averages using one very long trajectory or many
different trajectories. The averages are well defined for ergodic systems and a more
detailed understanding has been worked out for hyperbolic systems. Understanding
the probabilistic aspects of dynamical systems has helped to establish the foundations
of statistical mechanics and of chaos.

Many people regardHenri Poincare as the founder of dynamical systems. Poincare
published two classical monographs, “NewMethods of CelestialMechanics” (1892–
1899) and “Lectures on Celestial Mechanics” (1905–1910). In the monographs, he
successfully applied the results of his research to the problem of the motion of three
bodies and studied in detail the behavior of solutions (frequency, stability, asymptotic
property, and so on). These papers included the Poincare recurrence theorem, which
states that certain systems will, after a sufficiently long but finite time, return to a
state very close to the initial state.

Aleksandr Lyapunov developed many important approximation methods. His
methods, which was developed in 1899, make it possible to define the stability of
sets of ordinary differential equations. He created the modern theory of the stability
of a dynamic system. In 1913, George David Birkhoff [1] proved Poincare’s “Last
Geometric Theorem,” a special case of the three-body problem, a result that made
him world famous. In 1927, he published his “Dynamical Systems.” Birkhoff’s most
durable result was his 1931 discovery of what is now called the ergodic theorem.
Combining insights from physics on the ergodic hypothesis withmeasure theory, this
theorem solved, at least in principle, a fundamental problem of statistical mechanics.
The ergodic theorem has also had repercussions for dynamics. Stephen Smale made
significant advances as well. His first contribution is the Smale horseshoe that jump
started significant research in dynamical systems. He also outlined a research pro-
gram carried out by many others. Oleksandr Mykolaiovych Sharkovsky developed
Sharkovsky’s theorem on the periods of discrete dynamical systems in 1964. One of
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the implications of the theorem is that if a discrete dynamical system on the real line
has a periodic point of period 3, then itmust have periodic points of every other period.

Some theories related to dynamical systems are simply described as follows:

(1) Arithmetic dynamics

Arithmetic dynamics is a field emerged in the 1990s that amalgamates two areas
of mathematics, dynamical systems and number theory. Classically, discrete dynam-
ics refers to the study of the iteration of self-maps of the complex plane or real line.
Arithmetic dynamics is the study of the number-theoretic properties of integer, ra-
tional, p-adic, and/or algebraic points under repeated application of a polynomial or
rational function.

(2) Chaos theory

Chaos theory describes the behavior of certain dynamical systems, that is, systems
whose state evolves with time, that may exhibit dynamics that are highly sensitive
to initial conditions (popularly referred to as the butterfly effect). As a result of this
sensitivity, which manifests itself as an exponential growth of perturbations in the
initial conditions, the behavior of chaotic systems appears random. This happens
even though these systems are deterministic, meaning that their future dynamics are
fully defined by their initial conditions, with no random elements involved. This
behavior is known as deterministic chaos or simply chaos.

(3) Complex systems

Complex systems are a scientific field, which study the common properties of
systems considered complex in nature, society and science. It is also called com-
plex systems theory, complexity science, study of complex systems and/or sciences
of complexity. The key problems of such systems are difficulties with their for-
mal modeling and simulation. From such perspective, in different research contexts
complex systems are defined on the basis of their different attributes. The study of
complex systems is bringing new vitality to many areas of science where a more typ-
ical reductionist strategy has fallen short. Complex systems are, therefore, often used
as a broad term encompassing a research approach to problems in many diverse dis-
ciplines including neurosciences, social sciences, meteorology, chemistry, physics,
computer science, psychology, artificial life, evolutionary computation, economics,
earthquake prediction, molecular biology, and inquiries into the nature of living cells
themselves.

(4) Control theory

Control theory is an interdisciplinary branch of engineering and mathematics,
which deals with how to influence the behavior of dynamical systems subjectively.

(5) Ergodic theory

Ergodic theory is a branch of mathematics that studies dynamical systems with
an invariant measure and related problems. Its initial proposal was motivated by
problems of statistical physics.
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(6) Functional analysis

Functional analysis is the branch of mathematics, and specifically of analysis
concerned with the study of vector spaces and operators acting upon them. It has
its historical roots in the study of functional spaces, in particular transformations of
functions, such as the Fourier transform, as well as in the study of differential and
integral equations. This usage of the word “functional” goes back to the calculus
of variations, implying a function whose argument is a function. Its use in general
has been attributed to mathematician and physicist Vito Volterra and its founding is
largely attributed to mathematician Stefan Banach.

(7) Graph dynamical systems

The concept of graph dynamical systems (GDS) can be used to capture a wide
range of processes taking place on graphs or networks. A major theme in the math-
ematical and computational analysis of GDS is to relate their structural properties
(e.g., the network connectivity) and the global dynamics that result.

(8) Projected dynamical systems

Projected dynamical systems are a mathematical theory investigating the behav-
iour of dynamical systems where solutions are restricted to a constraint set. The
discipline shares connections to and applications with both the static world of opti-
mization and equilibrium problems and the dynamical world of ordinary differential
equations. A projected dynamical system is given by the flow to the projected dif-
ferential equation.

(9) Symbolic dynamics

Symbolic dynamics are the practice of modeling a topological or smooth dynam-
ical system by a discrete space consisting of infinite sequences of abstract symbols,
each of which corresponds to a state of the system, with the dynamics (evolution)
given by the shift operator.

(10) System dynamics

System dynamics are an approach to understanding the behavior of complex
systems over time. It deals with internal feedback loops and time delays that affect
the behavior of the entire system. What makes system dynamics different from other
approaches to studying complex systems is the use of feedback loops and stocks and
flows. These elements help describe how even seemingly simple systems display
baffling nonlinearity.

(11) Topological dynamics

Topological dynamics is a branch of the theory of dynamical systems in which
qualitative, asymptotic properties of dynamical systems are studied from the view-
point of general topology.
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2.2 Definition of Dynamical System and Its Qualitative
Analysis

A dynamical system is a concept in mathematics where a fixed rule describes how
a point in a geometrical space depends on time. Examples include the mathematical
models that describe the swinging of a clock pendulum, the flow of water in a pipe,
and the number of fish each spring time in a lake. At any given time a dynamical
system has a state given by a set of real numbers (a vector) that can be represented
by a point in an appropriate state space (a geometrical manifold). Small changes in
the state of the system create small changes in the numbers. The evolution rule of
the dynamical system is a fixed rule that describes what future states follow from the
current state. The rule is deterministic; in other words, for a given time interval only
one future state follows from the current state.

In the following, several types of definitions of dynamical system are provided.
(1) A dynamical system is a four-tuple {T, X, A, S} where T denotes time set, X

is the state space (a metric space with metric d), A is the set of initial states, and S
denotes a family of motions. When T = R

+ = [0,∞), we speak of a continuous-
time dynamical system; and when T = N = {0, 1, 2, . . . , }, we speak of a discrete-
time dynamical system. For any motion x(·; x0, t0) ∈ S, we have x(t0; x0, t0) =
x0 ∈ A ⊂ X and x(t, x0, t0) ∈ X for all t ∈ [t0, t1] ∩ T, t1 > t0, where t1 may be
finite or infinite. The set of motions S is obtained by varying (t0, x0) over T × A. A
dynamical system is said to be autonomous, if every x(·, x0, t0) ∈ S is defined on
T ∩[t0,∞) and if for each x(·, x0, t0) ∈ S and for each τ such that t0 + τ ∈ T , there
exists a motion x(·, x0, t0 + τ ) ∈ S such that x(t + τ ; x0, t0 + τ ) = x(t; x0, t0) for
all t and τ satisfying t + τ ∈ T .

A set M ⊂ A is said to be invariant with respect to the set of motions S if x0 ∈ M
implies that x(t, x0, t0) ∈ M for all t ≥ t0, for all t0 ∈ T , and for all x(·; x0, t0) ∈ S.
A point p ∈ X is called an equilibrium for the dynamical system {T, X, A, S} if the
singleton {p} is an invariant set with respect to the motion S. The term stability (more
specially, Lyapunov stability) usually refers to the qualitative behavior of motions
relative to an invariant set (resp. an equilibrium), whereas the term boundedness
(more specially, Lagrange stability) refers to the (global) boundedness properties
of the motions of a dynamical system. Of the many different types of Lyapunov
stability that have been considered in the literature, perhaps the most important ones
include stability, uniform stability, asymptotic stability, uniform asymptotic stability,
exponential stability, asymptotic stability in the large, uniform asymptotic stability in
the large, exponential stability in the large, instability, and complete instability. The
most importantLagrange stability types include boundedness, uniformboundedness,
and uniform ultimate boundedness of motions.

(2) A dynamical system (geometrical definition) is the tuple 〈M, f, T 〉, with M
a manifold (locally a Banach space or Euclidean space), T the domain for time
(nonnegative reals, the integers) and f an evolution rule t → f (t) (with t ∈ T ) such
that f (t) is a diffeomorphism of the manifold to itself. So, f is a mapping of the time
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domain into the space of diffeomorphisms of the manifold to itself. In other terms,
f (t) is a diffeomorphism, for every time t in the domain T .
(3) A dynamical system (measure theoretical definition) may be defined for-

mally, as a measure-preserving transformation of a sigma-algebra, the quadruplet
(X,Σ,μ, τ ). Here, X is a set, andΣ is a sigma-algebra on X , so that the pair (X,Σ)

is a measurable space. μ is a finite measure on the sigma-algebra, so that the triplet
(X,Σ,μ) is a probability space. A map τ : X → X is said to be Σ-measurable
if and only if, for every σ ∈ Σ , one has τ−1σ ∈ Σ . A map τ is said to preserve
the measure if and only if, for every σ ∈ Σ , one has μ(τ−1σ) = μ(σ). Combining
the above, a map τ is said to be a measure-preserving transformation of X , if it is a
map from X to itself, it is Σ-measurable, and is measure-preserving. The quadruple
(X,Σ,μ, τ ), for such a τ , is then defined to be a dynamical system.

Themap τ embodies the time evolution of the dynamical system.Thus, for discrete
dynamical systems the iterations τn = τ ◦ τ ◦ · · · ◦ τ for integer n are studied. For
continuous dynamical systems, the map τ is understood to be a finite time evolution
map and the construction is more complicated.

(4) A dynamical system is a manifold M called the phase (or state) space endowed
with a family of smooth evolution functions Φ(t) that for any element of t ∈ T ,
the time, map a point of the phase space back into the phase space. The notion of
smoothness changes with applications and the type of manifold. There are several
choices for the set T . When T is taken to be the reals, the dynamical system is called
a flow, and if T is restricted to the nonnegative reals, then the dynamical system is
a semi-flow. When T is taken to be the integers, it is a cascade or a map, and the
restriction to the nonnegative integers is a semi-cascade.

For example, the evolution function Φ(t) is often the solution of a differential
equation of motion ẋ(t) = v(x(t)) or ẋ = v(x) for brevity. The equation gives the
time derivative, represented by the dot, of a trajectory x(t) on the phase space starting
at some point x0. The vector field v(x) is a smooth function that at every point of the
phase space M provides the velocity vector of the dynamical system at that point.
(These vectors are not vectors in the phase space M , but in the tangent space Tx M
of the point x .) Given a smooth function Φ(t), an autonomous vector field can be
derived from it. There is no need for higher order derivatives in the equation, nor for
time dependence in v(x) because these can be eliminated by considering systems
of higher dimensions. Other types of differential equations can be used to define
the evolution rule: G(x, ẋ) = 0 is an example of an equation that arises from the
modeling of mechanical systems with complicated constraints.

The differential equations determining the evolution function Φ(t) are often or-
dinary differential equations: in this case the phase space M is a finite dimensional
manifold. Many of the concepts in dynamical systems can be extended to infinite-
dimensional manifolds—those that are locally Banach spaces—in which case the
differential equations are partial differential equations. In the late twentieth century
the dynamical system perspective to partial differential equations started gaining
popularity.

The qualitative properties of dynamical systems do not change under a smooth
change of coordinates (this is sometimes taken as a definition of qualitative): a
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singular point of the vector field (a point where v(x) = 0) will remain a singu-
lar point under smooth transformations; a periodic orbit is a loop in phase space
and smooth deformations of the phase space cannot alter it to be a loop. It is in the
neighborhood of singular points and periodic orbits that the structure of a phase space
of a dynamical system can be well understood. In the qualitative study of dynami-
cal systems, the approach is to show that there is a change of coordinates (usually
unspecified, but computable) that makes the dynamical system as simple as possible.

A similar concept to the qualitative properties of dynamical systems is the recti-
fication. A flow in most small patches of the phase space can be made very simple.
If y is a point where the vector field v(y) �= 0, then there is a change of coordinates
for a region around y where the vector field becomes a series of parallel vectors of
the same magnitude. This is known as the rectification theorem. The rectification
theorem says that away from singular points the dynamics of a point in a small patch
is a straight line. The patch can sometimes be enlarged by stitching several patches
together, and when this works out in the whole phase space M the dynamical system
is integrable. In most cases the patch cannot be extended to the entire phase space.
There may be singular points in the vector field (where v(x) = 0) or the patches may
become smaller and smaller as some point is approached. The more subtle reason
is a global constraint, where the trajectory starts out in a patch, and after visiting a
series of other patches comes back to the original one. If the next time the orbit loops
around phase space in a different way, then it is impossible to rectify the vector field
in the whole series of patches.

Dynamical systems theory is an area of mathematics used to describe the behav-
ior of complex dynamical systems, usually by employing differential equations or
difference equations. When differential equations are employed, the theory is called
continuous dynamical systems. When difference equations are employed, the theory
is called discrete dynamical systems. When the time variable runs over a set that is
discrete over some intervals and continuous over other intervals or is any arbitrary
time—set such as a cantor set—one gets dynamic equations on timescales. Some
situations may also be modeled by mixed operators, such as differential–difference
equations. This theory deals with the long-term qualitative behavior of dynamical
systems, and studies the solutions of the equations of motion of systems that are
primarily mechanical in nature, although this includes both planetary orbits as well
as the behavior of electronic circuits and the solutions to partial differential equations
that arise in biology. Much of modern research is focused on the study of chaotic
systems. This field of study is also called just dynamical systems, mathematical
dynamical systems theory, and mathematical theory of dynamical systems.

Dynamical systems theory and chaos theory deal with the long-term qualitative
behavior of dynamical systems. Here, the focus is not on finding precise solutions to
the equations defining the dynamical system (which is often hopeless), but rather to
answer questions like, “Will the system settle down to a steady state in the long term,
and if so, what are the possible steady states?” or “Does the long-term behavior of the
system depend on its initial condition?” An important target is to describe the fixed
points, or steady states of a given dynamical system; these are values of the variable
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that do not change over time. Some of these fixed points are attractive, meaning that
if the system starts out in a nearby state, it converges toward the fixed point.

Similarly, one is interested in periodic points, states of the system that repeat after
several time steps. Periodic points can also be attractive. Sharkovskii’s theorem is
an interesting statement about the number of periodic points of a one-dimensional
discrete dynamical system. Even simple nonlinear dynamical systems often exhibit
seemingly random behavior that has been called chaos. The branch of dynamical
systems that handles the clear definition and investigation of chaos is called chaos
theory.

2.3 Lyapunov Stability of Dynamical Systems

Various types of stability may be discussed for the solutions of differential equations
describing dynamical systems. The most important type is that concerning the sta-
bility of solutions near to a point of equilibrium. This may be discussed by the theory
of Lyapunov. In simple terms, if all solutions of the dynamical system that start out
near an equilibrium point xe stay near xe forever, then xe is Lyapunov stable. More
strongly, if xe is Lyapunov stable and all solutions that start out near xe converge to
xe, then xe is asymptotically stable. The notion of exponential stability guarantees
a minimal rate of decay, i.e., an estimate of how quickly the solutions converge.
The idea of Lyapunov stability can be extended to infinite-dimensional manifolds,
where it is known as structural stability, which concerns the behavior of different
but “nearby” solutions to differential equations. Input-to-state stability (ISS) applies
Lyapunov notions to systems with inputs.

Lyapunov stability is named after Aleksandr Lyapunov, a Russian mathematician
who published his book “The General Problem of Stability of Motion” in 1892 [2].
Lyapunov was the first to consider the modifications necessary in nonlinear systems
to the linear theory of stability based on linearizing near a point of equilibrium. His
work, initially published inRussian and then translated toFrench, received little atten-
tion for many years. Interest in it started suddenly during the Cold War (1953–1962)
period when the so-called “SecondMethod of Lyapunov” was found to be applicable
to the stability of aerospace guidance systems which typically contain strong non-
linearities not treatable by other methods. A large number of publications appeared
then and since in the control and systems literature [3–7]. More recently, the concept
of the Lyapunov exponent (related to Lyapunov’s First Method of discussing stabil-
ity) has received wide interest in connection with chaos theory. Lyapunov stability
methods have also been applied to finding equilibrium solutions in traffic assignment
problems [8].

(1) Definition of Lyapunov stability for continuous-time systems

Consider an autonomous nonlinear dynamical system

ẋ(t) = f (x(t)) with x(0) = x0, (2.1)
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where x(t) ∈ D ⊆ R
n denotes the system state vector, D an open set containing the

origin, and f : D → R
n continuous on D. Suppose f has an equilibrium at xe so

that f (xe) = 0, then
(1) This equilibrium is said to be Lyapunov stable, if, for every ε > 0, there exists a
δ = δ(ε) such that, if ‖x(0)−xe‖ < δ, then for every t ≥ 0 we have ‖x(t)−xe‖ < ε.
(2) The equilibrium of the above system is said to be asymptotically stable if it
is Lyapunov stable and there exists δ > 0 such that if ‖x(0) − xe‖ < δ, then
limt→∞ ‖x(t) − xe‖ = 0.
(3) The equilibrium of the above system is said to be exponentially stable if it is
asymptotically stable and there exist α > 0,β > 0, δ > 0 such that if ‖x(0)− xe‖ <

δ, then ‖x(t) − xe‖ ≤ α‖x(0) − xe‖e−βt , for t ≥ 0.
Conceptually, the meanings of aforementioned terms are the following:

(1) Lyapunov stability of an equilibriummeans that solutions starting “close enough”
to the equilibrium (within a distance δ from it) remain “close enough” forever (within
a distance ε from it). Note that this must be true for any ε that onemaywant to choose.
(2) Asymptotic stability means that solutions that start close enough not only remain
close enough but also eventually converge to the equilibrium.
(3) Exponential stability means that solutions not only converge, but in fact converge
faster than or at least as fast as a particular known rate α‖x(0) − xe‖e−βt .

The trajectory x is (locally) attractive if ‖y(t) − x(t)‖ → 0 (where y(t) denotes
the system output) for t → ∞ for all trajectories that start close enough, and globally
attractive if this property holds for all trajectories. That is, if x belongs to the interior of
its stable manifold, it is asymptotically stable if it is both attractive and stable. (There
are counterexamples showing that attractivity does not imply asymptotic stability.)

(2) Lyapunov’s second method for stability

Lyapunov, in his original 1892 work, proposed two methods for demonstrating
stability. The first method developed the solution in a series which was then proved
convergentwithin limits. The secondmethod,which is almost universally used nowa-
days, makes use of a Lyapunov function V (x) which has an analogy to the potential
function of classical dynamics. It is introduced as follows for a system having a point
of equilibrium at x = 0.

Consider a function V (x) : Rn → R such that
(1) V (x) ≥ 0 with equality if and only if x = 0 (positive definite).
(2) V̇ (x(t)) = dV (x(t))

dt ≤ 0 with equality not constrained to only x = 0 (nega-
tive semidefinite. Note: for asymptotic stability, V̇ (x(t)) is required to be negative
definite!).
Then V (x) is called a Lyapunov function candidate and the system is stable in the
sense of Lyapunov. Furthermore, the system is asymptotically stable, in the sense
of Lyapunov, if V̇ (x(t)) ≤ 0 with equality if and only if x = 0. Global asymptotic
stability (GAS) follows similarly.

Note that, (1) V (0) = 0 is required; otherwise for example V (x) = 1
1+|x | would

“prove” that ẋ(t) = x(t) is locally stable. (2) An additional condition called “proper-
ness” or “radial unboundedness” is required in order to conclude global stability.



46 2 Preliminaries on Dynamical Systems and Stability Theory

It is easier to visualize this method of analysis by thinking of a physical system
(e.g., vibrating spring and mass) and considering the energy of such a system. If the
system loses energy over time and the energy is never restored, then eventually the
systemmust grind to a stop and reach some final resting state. This final state is called
the attractor. However, finding a function that gives the precise energy of a physical
system can be difficult, and for abstract mathematical systems, economic systems
or biological systems, the concept of energy may not be applicable. Lyapunov’s
realization is that stability can be proven without requiring knowledge of the true
physical energy, provided that a Lyapunov function can be found to satisfy the above
constraints.

Lyapunov stability method is mainly focused on the system (2.1), i.e., a system
with zero input. In fact, many systems have external control inputs. If the control
law is in the form of state feedback, then the closed-loop systems is equivalent to
the system (2.1). In this case, Lyapunov stability theory can be directly applied. If
the external input exists and is different from the system states, some variants of
Lyapunov stability theory should be investigated. In the following, we will introduce
some other stability analysis methods.

(3) Stability for systems with inputs

A system with inputs (or controls) has the form

ẋ(t) = f (x(t), u(t)), (2.2)

where the (generally time-dependent) input u(t)may be viewed as a control, external
input, stimulus, disturbance, or forcing function. The study of such systems is the
subject of control theory and applied in control engineering. For systems with inputs,
one must quantify the effect of inputs on the stability of the system. The main two
approaches to this analysis are BIBO stability (for linear systems) and input-to-state
(ISS) stability (for nonlinear systems)

(4) Barbalat’s lemma and stability of time-varying systems
Assume that f (t) is function of time only.

(1) Having ḟ (t) → 0 does not imply that f (t) has a limit at t → ∞. For example,
f (t) = sin(ln(t)), t > 0.
(2) Having f (t) approaching a limit as t → ∞ does not imply that ḟ (t) → 0. For

example, f (t) = sin(t2)
t .

(3) Having f (t) lower bounded and decreasing ( ḟ (t) ≤ 0 ) implies it converges to
a limit. But it does not say whether or not ḟ (t) → 0 as t → ∞.

Barbalat’s Lemma says: If f (t) has a finite limit as t → ∞ and if ḟ (t) is uniformly
continuous (or f̈ (t) is bounded), then ḟ (t) → 0 as t → ∞.

Usually, it is difficult to analyze the asymptotic stability of time-varying systems
because it is very difficult to find Lyapunov functions with a negative definite deriv-
ative. We know that in case of autonomous (time-invariant) systems, if V̇ (x(t)) is
negative semidefinite, then also, it is possible to know the asymptotic behavior by
invoking invariant set theorems. However, this flexibility is not available for time-
varying systems. This is where “Barbalat’s lemma” comes into picture. It says:
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If V (x(t), t) satisfies following conditions: (1) V (x(t), t) is lower bounded. (2)
V̇ (x(t), t) is negative semidefinite. (3) V̇ (x(t), t) is uniformly continuous in time
(satisfied if V̈ (x(t), t) is finite), then V̇ (x(t), t) → 0 as t → ∞.

(5) Differential inequality methods
This kind of stability analysis methods generally do not need the so-called Lya-

punov functions, and can also determine the stability properties of the concerned
system. Such kinds of methods include, but not limited to, Halanay inequality, con-
traction principle, Gronwall’s inequality, comparison theorems, and so on [9–13].
Even by constructing Lyapunov functions, except the Lyapunov stability theory,
there are still many methods to derive the stability criteria for the concerned systems,
e.g., Barbalat’s lemma. However, a key point should be kept in mind, that is, the
definition of stability property must be declared beforehand. In this way, there are
many different senses of stability definition in the literature. In the research of neural
network stability theory, more emphasis is placed on the stability of Lyapunov sense.
Fortunately, other stability definitions in the Hopfield sense and Lagrange sense are
also paid attention. Except Lyapunov function method, input–output method and
differential inequality methods are also powerful to analyze the qualitative charac-
teristics of dynamical systems.

2.4 Stability Theory

In mathematics, stability theory addresses the stability of solutions of differential
equations and of trajectories of dynamical systems under small perturbations of initial
conditions. The heat equation, for example, is a stable partial differential equation
because small perturbations of initial data lead to small variations in temperature at
a later time as a result of the maximum principle. One must specify the metric used
to measure the perturbations when claiming a system is stable. In partial differential
equations one may measure the distances between functions using L p norms or the
sup norm, while in differential geometry one may measure the distance between
spaces using the Gromov–Hausdorff distance.

In dynamical systems, an orbit is called Lyapunov stable if the forward orbit of
any point is in a small enough neighborhood or it stays in a small (but perhaps, larger)
neighborhood. Various criteria have been developed to prove stability or instability
of an orbit. Under favorable circumstances, the question may be reduced to a well-
studied problem involving eigenvalues of matrices. A more general method involves
Lyapunov functions. In practice, any one of different stability criteria is applied.

Many parts of the qualitative theory of differential equations and dynamical sys-
tems deal with asymptotic properties of solutions and the trajectories—what happens
with the system after a long period of time. The simplest kind of behavior is exhibited
by equilibrium points or fixed points, and by periodic orbits. If a particular orbit is
well understood, it is natural to ask next whether a small change in the initial condi-
tion will lead to similar behavior. Stability theory addresses the following questions:
(1) will a nearby orbit indefinitely stay close to a given orbit? (2) will it converge to



48 2 Preliminaries on Dynamical Systems and Stability Theory

the given orbit? (this is a stronger property). In the former case, the orbit is called
stable and in the latter case, asymptotically stable, or attracting.

Stability means that the trajectories do not change too much under small perturba-
tions. The opposite situation, where a nearby orbit is getting repelled from the given
orbit, is also of interest. In general, perturbing the initial state in some directions
results in the trajectory asymptotically approaching the given one and in other direc-
tions to the trajectory getting away from it. There may also be directions for which
the behavior of the perturbed orbit is more complicated (neither converging nor es-
caping completely), and then stability theory does not give sufficient information
about the dynamics.

One of the key ideas in stability theory is that the qualitative behavior of an or-
bit under perturbations can be analyzed using the linearization of the system near
the orbit. In particular, at each equilibrium of a smooth dynamical system with an
n-dimensional phase space, there is a certain n × n matrix A whose eigenvalues
characterize the behavior of the nearby points (Hartman–Grobman theorem). More
precisely, if all eigenvalues are negative real numbers or complex numbers with neg-
ative real parts, then the point is a stable attracting fixed point, and the nearby points
converge to it at an exponential rate. If none of the eigenvalues is purely imaginary
(or zero) then the attracting and repelling directions are related to the eigenspaces of
the matrix A with eigenvalues whose real part is negative and, respectively, positive.
Analogous statements are known for perturbations of more complicated orbits.

(1) Stability of fixed points

The simplest kind of an orbit is a fixed point or an equilibrium. If a mechanical
system is in a stable equilibrium state, then a small push will result in a localized
motion, for example, small oscillations as in the case of a pendulum. In a system
with damping, a stable equilibrium state is moreover asymptotically stable. On the
other hand, for an unstable equilibrium, such as a ball resting on a top of a hill,
certain small pushes will result in a motion with a large amplitude that may or may
not converge to the original state. There are useful tests of stability for the case of a
linear system. Stability of a nonlinear system can often be inferred from the stability
of its linearization.

Let f : R → R be a continuously differentiable function with a fixed point a,
f (a) = a. Consider the dynamical system obtained by iterating the function f :

xn+1 = f (xn), n = 0, 1, 2, 3, . . . , (2.3)

The fixed point a is stable if the absolute value of the derivative of f at a is strictly
less than 1, and unstable if it is strictly greater than 1. This is because near the point
a, the function f has a linear approximation with slope ḟ (a):

f (x) ≈ f (a) + ḟ (a)(x − a). (2.4)

Thus
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xn+1 − a

xn − a
= f (xn) − a

xn − a
= ḟ (a), (2.5)

which means that the derivative measures the rate at which the successive iterates
approach the fixed point a or diverge from it. If the derivative at a is exactly 1 or −1,
then more information is needed in order to decide stability.

There is an analogous criterion for a continuously differentiable map f : Rn →
R

n with a fixed point a, expressed in terms of its Jacobian matrix at a, J = Ja( f ). If
all eigenvalues of J are real or complex numbers with absolute value strictly less than
1 then a is a stable fixed point; if at least one of themhas absolute value strictly greater
than 1 then a is unstable. Just as for n = 1, the case of the largest absolute value
being 1 needs to be investigated further—the Jacobian matrix test is inconclusive.
The same criterion holds more generally for diffeomorphisms of a smooth manifold.

For the linear autonomous systems, the stability of fixed points of a system of
constant coefficient linear differential equations of first order can be analyzed using
the eigenvalues of the corresponding matrix. An autonomous system ẋ = Ax , where
x(t) ∈ R

n and A is an n × n matrix with real entries, has a constant solution
x(t) = 0. (In a different language, the origin 0 ∈ R

n is an equilibrium point of the
corresponding dynamical system.) This solution is asymptotically stable as t → ∞
(“in the future”) if and only if for all eigenvalues λ of A, Re(λ) < 0 (which means
the real part of eigenvalue λ is negative). Similarly, it is asymptotically stable as
t → −∞ (“in the past”) if and only if for all eigenvalues λ of A, Re(λ) > 0. If
there exists an eigenvalue λ of A with Re(λ) > 0 then the solution is unstable for
t → ∞. Application of this result in practice, in order to decide the stability of the
origin for a linear system, is facilitated by the Routh–Hurwitz stability criterion. The
eigenvalues of amatrix are the roots of its characteristic polynomial. A polynomial in
one variable with real coefficients is called a Hurwitz polynomial if the real parts of
all roots are strictly negative. The Routh–Hurwitz theorem implies a characterization
of Hurwitz polynomials by means of an algorithm that avoids computing the roots.

For a nonlinear autonomous systems, asymptotic stability of fixed points can
often be established using the Hartman–Grobman theorem. Suppose that v is a C1-
vector field in R

n which vanishes at a point p, v(p) = 0. Then the corresponding
autonomous system ẋ = v(x) has a constant solution x(t) = p. Let J = Jp(v)

be the n × n Jacobian matrix of the vector field v at the point p. If all eigenvalues
of J have strictly negative real part, then the solution is asymptotically stable. This
condition can be tested using the Routh–Hurwitz criterion.

For the general dynamical systems, a general way to establish Lyapunov stability
or asymptotic stability of a dynamical system is by means of Lyapunov functions,
which has been introduced above.

(2) Structural stability

Let G be an open domain in R
n with compact closure and smooth (n − 1) -

dimensional boundary. Consider the space X1(G) consisting of restrictions to G of
C1 vector fields on R

n that are transversal to the boundary of G and are inward
oriented. This space is endowed with the C1 metric in the usual fashion. A vector
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field F ∈ X1(G) is weakly structurally stable if for any sufficiently small pertur-
bation F1, the corresponding flows are topologically equivalent on G: there exists a
homeomorphism h : G → G which transforms the oriented trajectories of F into
the oriented trajectories of F1. If, moreover, for any ε > 0 the homeomorphism h
may be chosen to be C0

ε -close to the identity map when F1 belongs to a suitable
neighborhood of F depending on ε, then F is called (strongly)structurally stable.

These definitions are extended in a straightforward way to the case of n-dimen-
sional compact smoothmanifoldswith boundary.AndronovandPontryaginoriginally
considered the strong property. Analogous definitions can be given for diffeomor-
phisms in place of vector fields and flows: in this setting, the homeomorphism h must
be a topological conjugacy.

In mathematics, structural stability is a fundamental property of a dynamical sys-
tem which means that the qualitative behavior of the trajectories is unaffected by
small perturbations (to be exact C1-small perturbations). Examples of such qualita-
tive properties are numbers of fixed points and periodic orbits (but not their periods).
Unlike Lyapunov stability, which considers perturbations of initial conditions for a
fixed system, structural stability deals with perturbations of the system itself. Vari-
ants of this notion apply to systems of ordinary differential equations, vector fields
on smooth manifolds and flows generated by them, and diffeomorphisms.

Structurally stable systems were introduced by Andronov and Pontryagin [14]
under the name “systemes grossiers” or rough systems [14, 15]. They announced a
characterization of rough systems in the plane, the Andronov–Pontryagin criterion.
In this case, structurally stable systems are typical, they form an open dense set in the
space of all systems endowed with appropriate topology. In higher dimensions, this
is no longer true, indicating that typical dynamics can be very complex (e.g., strange
attractor). An important class of structurally stable systems in arbitrary dimensions
is given by Anosov diffeomorphisms and flows.

Structural stability of the system provides a justification for applying the qualita-
tive theory of dynamical systems to analysis of concrete physical systems. The idea
of such qualitative analysis goes back to thework ofHenri Poincare on the three-body
problem in celestial mechanics. Around the same time, Aleksandr Lyapunov rigor-
ously investigated stability of small perturbations of an individual system. In practice,
the evolution law of the system (i.e., the differential equations) is never known ex-
actly, due to the presence of various small interactions. It is, therefore, crucial to
know that basic features of the dynamics are the same for any small perturbation of
the “model” system, whose evolution is governed by a certain known physical law.
Qualitative analysis was further developed by George Birkhoff in the 1920s [16], but
was first formalized with introduction of the concept of rough system by Andronov
and Pontryagin in 1937 [14]. This was immediately applied to analysis of physical
systems with oscillations by Andronov, Witt, and Khaikin. The term “structural sta-
bility” is due to Solomon Lefschetz, who oversaw translation of their monograph
into English. Ideas of structural stability were taken up by Stephen Smale and his
school in the 1960s in the context of hyperbolic dynamics [17]. Earlier, Marston
Morse and Hassler Whitney initiated and Rene Thom developed a parallel theory
of stability for differentiable maps, which forms a key part of singularity theory.
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Thom envisaged applications of this theory to biological systems. Both Smale and
Thom worked in direct contact with Mauricio Peixoto, who developed Peixoto’s
theorem in the late 1950s.

When Smale started to develop the theory of hyperbolic dynamical systems, he
hoped that structurally stable systems would be “typical.” This would have been con-
sistent with the situation in low dimensions: dimension two for flows and dimension
one for diffeomorphisms.However, he soon found examples of vector fields on higher
dimensional manifolds that cannot be made structurally stable by an arbitrarily small
perturbation. This means that in higher dimensions, structurally stable systems are
not dense. In addition, a structurally stable system may have transversal homoclinic
trajectories of hyperbolic saddle closed orbits and infinitely many periodic orbits,
even though the phase space is compact. The closest higher dimensional analog of
structurally stable systems considered by Andronov and Pontryagin is given by the
Morse–Smale systems.

(3) Rough system (structurally stable dynamical system)

A smooth dynamical system is called rough systems if the following properties
hold. For any ε > 0, there is a δ > 0 such that for any perturbation of the system by
not more than δ in the C1-metric, there exists a homeomorphism of the phase space
which displaces the points by not more than ε and converts the trajectories of the
unperturbed system into trajectories of the perturbed system.

Formally, this definition assumes that a certain Riemannian metric is given on the
phase manifold. In fact, one speaks of a structurally stable system when the phase
manifold is closed, or else if the trajectories form part of some compact domain G
with a smooth boundary not tangent to the trajectories; here the perturbation and the
homeomorphism are considered on G only. In view of the compactness, the selection
of the metric is immaterial.

Thus, a small (in the sense of C1) perturbation of a structurally stable system
yields a system equivalent to the initial one as regards all its topological properties
(however, this definition comprises one additional requirement, i.e., this equivalence
must be realized by a homeomorphism close to the identity). The terms “roughness”
and “(structural) stability” are used in a broader sense, e.g., to mean merely the
preservation of some property of the system under a small perturbation (in such a
case it is preferable to speak of the structural stability of the property in question).

As said above, structurally stable systemswere introduced by A.A. Andronov and
L.S. Pontryagin. If the dimension of the phasemanifold is small (one for discrete time
and one or two for continuous time), structurally stable systems can be simply char-
acterized in terms of the qualitative properties of behavior of trajectories (then they
are the so-called Morse–Smale systems, cf. Morse–Smale system); in that case they
form an open everywhere-dense set in the space of all dynamical systems, provided
with the C1-topology. Thus, systems whose trajectories display a behavior which
is more complex and more sensitive to small perturbations are considered here as
exceptional. If the dimensions are larger, none of these facts hold, as was established
by S. Smale. He advanced the hypothesis according to which, irrespective of all these
complications, it is possible in the general case to formulate the following necessary
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and sufficient conditions for structural stability in terms of a qualitative picture of the
behavior of the trajectories: (1) the non-wandering points (cf. Non-wandering point)
should form a hyperbolic set Ω , in which the periodic trajectories are everywhere
dense (the so-called Smale’s Axiom A); and (2) the stable and unstable manifolds of
any two trajectories from Ω should intersect transversally (the strong transversality
condition). That these conditions are sufficient have now been proved in almost all
cases; as regards their necessity, proof is only available if the definition of structural
stability is somewhat changed.

(4) Absolute stability

Absolute stability practically means that a system is convergent for any choice of
parameters and nonlinear functions, within specified and well-characterized sets.

In 1944, when studying the stability of an autopilot, Lur’e and Postnikov in-
troduced the concept of absolute stability and the Lur’e problem [18]. Since then,
the problem of absolute stability for Lur’e-type systems has received considerable
attention and many fruitful results, such as Popov’s criterion, circle criterion, and
Kalman–Yakubovih–Popov (KYP) lemma have been proposed [19–21]. From the
view of modern robustness theory, absolute stability theory can be considered as the
first approach to robust stability of nonlinear uncertain systems [22].

Absolute stability theory guarantees stability of feedback systems whose for-
ward path contains a dynamic linear time-invariant system and whose feedback path
contains a memoryless (possibly time-varying) nonlinearity. These stability criteria
are generally stated in terms of the linear system and apply to every element of a
specified class of nonlinearities. Hence, absolute stability theory provides sufficient
conditions for robust stability with a given class of uncertain elements. The literature
on absolute stability is extensive. A convenient way to distinguish these results is
to focus on the allowable class of feedback nonlinearities. Specifically, the small-
gain, positivity, and circle theorems guarantee stability for arbitrarily time-varying
nonlinearities, whereas the Popov criterion does not. This is not surprising since the
Lyapunov function upon which the small-gain, positivity, and circle theorems are
based is a fixed quadratic Lyapunov function which permits arbitrary time variation
of the nonlinearity. Alternatively, the Popov criterion is based on a Lur’e-Postnikov
Lyapunov function which explicitly depends on the nonlinearity, thereby restricting
its allowable time variation.

(5) Complete stability

A system is said to be completely stable if each trajectory of the system converges
toward an equilibrium point, as t → ∞. Complete stability of neural networks is
one of the most important dynamical properties in view of practical applications to
solve a large number of signal processing tasks, including image processing, pattern
recognition, and optimization problems.

The standardLyapunov–Krasovskii functionalmethodsorLyapunov–Razumikhin
function methods are usually used for global asymptotic stability analysis of delayed
neural networks with a unique equilibrium point. For the analysis of complete sta-
bility, the Lyapunov method and the classic LaSalle approach are no longer effective
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because of the multiplicity of attractors [23]. For example, for PWL neuron activa-
tions a nonstrict energy is present both in the generic case where the neural network
equilibrium points are isolated, as well as in the degenerate case where there are
infinite nonisolated equilibrium points [24]. It is well known that to prove complete
stability using LaSalle approach for nonstrict energy functions, it is required to char-
acterize the invariant sets contained in the set where the energy is constant on orbits.
As a matter of fact, such a characterization seems hard to accomplish for the NNs
with PWL function or cellular neural network (CNN), since the sets involved have
a complex structure even in the simplest case where there are finitely many equilib-
rium points. The situation is further complicated in degenerate cases where there are
infinitely many nonisolated equilibrium points. In [25], an example shows that the
existence of a stable equilibrium point does not imply complete stability of a CNN.

In [24], a new method is proposed to study the complete stability of cellular
neural network (CNN). It allows one to completely sidestep the analysis of the
neural network invariant sets. The method is based on a fundamental limit theorem
for the length of the neural network output trajectories. Namely, it has been shown
that the symmetry of the CNN interconnection matrix implies that the total length of
the CNN output trajectories is necessarily finite. This in turn ensures convergence of
the outputs, and also the state variables, toward an equilibrium point. Furthermore,
this result is true regardless of the nature of the set of the CNN equilibrium points, so
that complete stability is naturally proved not only for isolated equilibrium points,
but also when the equilibrium points are not isolated.

(6) Input-to-state stability (ISS)

The input to state stability property provides a natural framework in which to
formulate notions of stability with respect to input perturbations. It is generally
known that ISS and set-ISS are powerful tools in the analysis of the stability and
robustness of control systems [26]. Seminal works on ISS and set-ISS include [27]
which provides a converse Lyapunov theory for set stability, and [28–31] which
introduce ISS, extend the notion to noncompact sets, and generalize to arbitrary
closed invariant sets, respectively. Input-to-state stability was introduced in [32],
and has proved to be a very useful paradigm in the study of nonlinear stability, see
for instance [33–45], as well as its variants such as integral ISS and input/output
stability [46–56]. The notion of ISS takes into account the effect of initial states in a
manner fully compatible with Lyapunov stability, and incorporates naturally the idea
of “nonlinear gain” functions. Roughly speaking, a system is ISS provided that, no
matter what is the initial state, if the inputs are small, then the statemust eventually be
small. Dualizing this definition one arrives at the notion of detectability which is the
main subject of input/output-to-state stability (IOSS). A system ẋ = f (x, u) with
measurement “output” map y = h(x) is IOSS if there are some functions β ∈ KL
and γ1, γ2 ∈ K∞ such that the estimate:

|x(t)| ≤ max{β(x(0), t), γ1(‖u[0,t]‖), γ2(‖y[0,t]‖)},
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holds for any initial state x(0) and any input u(·), where x(·) is the ensuing trajectory
and y(t) = h(x(t)) the respective output function. (States x(t), input values u(t), and
output values y(t) lie in appropriate Euclidean spaces. We use | · | to denote Euclid-
ean norm and ‖ · ‖ for supremum norm.) The terminology IOSS is self-explanatory:
formally there is “stability from the I/O data to the state.” The termwas introduced in
the paper [57], but the same notion had appeared before: it represents a natural com-
bination of the notions of “strong” observability [32] and ISS, and was called simply
“detectability” in [58, 59] and was called “strong unboundedness observability” in
[35].

Roughly, a system is output stable if, for any initial state, the output converges to
zero as t → ∞. Inputs may influence this stability in different ways, for instance,
one may ask that output approaches to zero only for those inputs for which input
approaches to zero, or just that output remains bounded whenever input is bounded.
The notion of output stability is also related to that of stability with respect to two
measures [60]. As in the corresponding ISS paper [61], there are close relationships
between output stability with respect to inputs, and robustness of stability under
output feedback. This suggests the study of yet another property, which is obtained
by a “small gain” argument from IOS: there must exist some X ∈ KL so that
|y(t)| ≤ β(x(0), t) if |u(t)| ≤ X (|y(t)|),∀t . Combining the traditional stability
definition and input/output stability conception, there may form may new stability
conceptions such as output Lagrange stability, output-Lagrange input-to-output sta-
ble, state-independent IOS, robustly output stable, and so on. Such behavior is of
central interest in control theory [60]. For the stability research of neural networks,
these concepts are also very important.

The relation between stability and ISS can be briefly stated as follows. There
are two very conceptually different ways of formulating the notion of stability of
control systems. One of them, which we may call the input/output approach, relies
on operator-theoretic techniques. In this approach, a “system” is a causal operator
F between spaces of signals, and “stability” is taken to mean that F maps bounded
inputs into bounded outputs, or finite-energy inputs into finite-energy outputs. More
stringent typical requirements are that the gain of F be finite (in more classical
mathematical terms that the operator be bounded), or that it have finite incremental
gain (mathematically, that it be globally Lispchitz). The input/output approach has
been extremely successful in the robustness analysis of linear systems subject to
nonlinear feedback and mild nonlinear uncertainties, and in general in the area that
revolves around the various versions of the small-gain theorem.Moreover, geometric
characterizations of robustness (gap metric and the like) are elegantly carried out in
this framework. Finally, I/O stability provides a natural setting in which to study the
classification and parameterization of dynamic controllers. On the other hand, there
is the model-based, or state-space approach to systems and stability, where the basic
object is a forced dynamical system, typically described by differential or difference
equations. In this approach, there is a standard notion of stability, namely Lyapunov
asymptotic stability of the unforced system. Associated to such a system, there is an
operator F mapping inputs (forcing functions) into state trajectories (or into outputs,
if partial measurements on states are of interest). It becomes of interest then to ask
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to what extent Lyapunov-like stability notions for a state-space system are related to
the stability of the associated operator F . It is well known that [62], in contrast to the
case of linear systems, where there is an equivalence between state-space and I/O
stability, for nonlinear systems the two types of properties are not so closely related.
Even for the very special and comparatively simple case of feedback linearizable
systems, this relation is far more subtle than it might appear at first sight: if one
first linearizes a system and then stabilizes the equivalent linearization, in terms
of the original system one does not in general obtain a closed-loop system that is
input/output stable in any reasonable sense. However, it is always possible to make a
choice of a feedback law that achieves such stability, in the linearizable case as well
as for all other stabilizable systems [63].

A system that is ISS exhibits low overshoot and low total energy response when
excited by uniformly bounded or energy- bounded signals, respectively. These are
highly desirable qualitative characteritics. However, it is sometimes the case that
feedback design does not render ISS behavior, or that only a weaker property than
ISS is verified in a step in recursive design. Input-to-state stability concept gives a link
between the two alternative paradigms of stability, I/O and state space. This notion
differs fundamentally from the operator-theoretic ones that have been classically
used in control theory, first of all because it takes account of initial states in a manner
fully compatible with Lyapunov stability. Second, boundedness (finite gain) is far
too strong a requirement for general nonlinear operators, and it must be replaced
by nonlinear gain estimates, in which the norms of output signals are bounded by
a nonlinear function of the norms of inputs, the definition of ISS incorporates such
gains in a natural way. The iss notion was originally introduced in [32] and has
since been employed by several authors in deriving results on control of nonlinear
systems. It can be stated in several equivalent manners, which indicates that it is at
least a mathematically natural concept: dissipation, robustness margins, and classical
Lyapunov-like definitions. The dissipation characterizations are closely related to
the pioneering work of Willems in 1976, who introduced an abstract concept of
energy dissipation in order to unify I/O and state space stability, and in particular
with the purpose of understanding conceptually themeaning of Kalman–Yakubovich
positive-realness (passivity), and frequency domain stability theorems in a general
nonlinear context. Four natural definitions of input-to-state stability are proposed,
that is, from GAS to ISS, from lyapunov to dissipation, gain margins and estimates,
all these case are equivalent for some kind of nonlinear system. More details can
refer to famous reference [63].

(7) Practical stability

For a practical system, engineers concern not only stability in the sense of Lya-
punov but also boundedness properties of the system responses. This is because a
systemmight be stable or asymptotically stable in theory, while it is actually unstable
in practice because the stable domain of the desired attractor is not large enough.
On the other hand, sometimes the desired states of a system may be mathematically
unstable, and yet the system may oscillate sufficiently near its state such that its
performance is acceptable. That it, it is stable in practice. Taking into this fact, re-
searchers have introduced the notion of practical stability [64–68]. Some important
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results in practical stability analysis over a finite time interval has been obtained in
[68], which is related to the stability definition over a finite time. From this point of
view, finite-time stability is also investigated for dynamical systems [69–72].

(8) Estimation of domain of attraction

The study of the determination of stable region for nonlinear systems is one of the
most interesting aspects [36, 73, 74]. For this reason in the last 20 years several efforts
have beenmade on the subject, generally arising fromLyapunov stability theory [75–
78]. Among these studies, to construct a Lyapunov function to estimate domain of
attraction is usually adopted. Genesio, etc., used time reversing method (or trajectory
reversing method) and demonstrated the results by a two-dimensional system [76].
Vidyasagar and Vannelli modified the Zubov’s theorem to compute the stable region
[78]. They proposed a method to construct a rational function for Lyapunov function
with the help of Taylor series expansion approximation. Reference [79] discussed
how to maximize the estimation of the domain of attraction by choosing linear state
feedback control law for nonlinear control systems.

In general, the origin of a given nonlinear system is not globally asymptotically
stable, instead, it is locally asymptotically stable. Thus, it is important to know the
stable region (or “domain of attraction”) of the operation point of the system. The
domain of attraction of the origin is defined as S = {x0 : x(t, x0) → 0 as t →
∞}, where x(·, x0) denotes the solution of the system corresponding to the initial
condition x(0) = x0. In addition, the domain of attraction S is also called “region
of attraction”, “basin” or “stable region (margin).” All trajectories starting within
this neighborhood converge to the origin. For technical systems the knowledge of
the size of such a region is very important because it contains all the initial states
which lead to an asymptotically stable system behavior. Unfortunately, in general,
an algebraic description of this region is not available [80, 81].

As is well known, Hopfield-type neural networks are mainly applied as either
associative memories (pattern recognition) or optimization solvers. When applied as
associative memories, the equilibrium points of the neural networks represent the
stored patterns. The attraction domain of each equilibrium point coincides with the
region fromwhich the corresponding stored pattern can be retrieved even in the exis-
tence of noise, that is, the attraction domain of a stable equilibriumpoint characterizes
the error-correction capability of the corresponding stored pattern. When applied as
an optimization solver, the equilibrium points of the neural networks characterize
all possible optimal solutions of the optimization problem. The attraction domain of
each equilibrium point then coincides with the region that the network, starting from
any initial guess in it, will evolve to the optimal solution. Therefore, identifying the
attraction domain is important in the application of neural networks.

The approaches extensively used in the existing investigation into this field of
neural networks are mainly based on Lyapunov direct method and so depend on the
construction of Lyapunov function. However, there is no general rule guiding us to
construct an optimal Lyapunov function for a given system, that is, constructing a
Lyapunov function requires skill. Meanwhile, in the existing results, the Lyapunov
functions used to characterize the attraction domain are mostly constructed by the
method of characteristics, which strongly depends on the solutions of system [82].
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Therefore, how to propose simple algorithms to estimate the domain of attraction for
nonlinear system with and without control is still a challenging topic.

Note that, some contents in above two sections are from the Wikipedia on the
internet. Following the trajectories of development of Lyapunov stability theory and
other stability methods, some brief comments can be provided by the authors.

(1) Although the Lyapunov stability theory was proposed in his Ph.D. dissertation
in 1892, its popularization just began in the 1950s, which is a delay over half a
century. Before the 1950s, Lyapunov was a famous scientist only in Russia, while
after 1950s, Lyapunovwas a world famous scientist! This phenomenon is mainly due
to the successful application of Lyapunov stability theory to the stability research
of aerospace guidance systems which typically contain strong nonlinearities not
treatable by other methods in the Cold War (1953–1962) period. Therefore, it is
the famous application that promotes the popularization of one potential theoretical
achievement, along with the discovery’s name.

(2) Almost all theoretical findings and achievements have potential application
value in practice. One theoretical achievement can be significantly recognized after
a long time, for example, some decades or centuries. This may be attributed to the
assonance or synchronization of theory and application. After all, all the theoretical
achievements are used to deal with the matters encountered in the real life world.
Significant and large-scale application projects may produce or promote the rapid
development of some kinds of technical theories. Small scale applications may keep
the development of some technical theories gradually. Almost all the theories in the
application fields belong to the technical theory, or more accurately the techniques.
Therefore, it is not reasonable to expect one theoretical achievement to have signif-
icant scientific value in real world in a short time. How to evaluate the theoretical
achievement should be systematically considered, for example, by the peer review
of authorities and public evaluations.

(3) No matter what the theoretical researchers do, their projects or interests must
have some relations to the reality, for example, social science and natural science.
Therefore, theoretical research achievement may not be a direct application in indus-
trial fields, but it can be very useful in social science. Keeping in mind, research or
problem is doomed to come from the reality, the mixed world of livings and nature.
There are many phenomena to be discovered and explained. How to build or find
a relation or bridge to the real word is a key way to demonstrate the value of the
theoretical research.

(4) If one researcher has no a specific research direction in his speciality, he can
trace the plan and demand of the state’s project to find a topic, which is better to
relate to the field of his research interest. Therefore, with the development of the
state’s project, theoretical problems occurred in the real world are indispensable and
need to be solved. Under such kind of background, some theories associated with
the projects or the problems may be emphasized gradually. Thus, it is not difficult to
understand that much theoretical research has its historical roles in the developments
of human society.

(5) Along with the same line as above arguments, we can consider the importance
of the stability research of recurrent neural networks. In the 1980s, the digital and
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electronic computers encounteredmany difficulties to be dealt with. In this case, ana-
log computer began to appear, and neural computer as one of typical representatives
began to be studied intensively. One of the fundamental problem of neural computer
is the calculation ability. In this circumstance, Hopfield studied a kind of additive
neural networksmodel and found their calculating capability. Then in 1984, Hopfield
designed a circuit implementation of neural optimizer, which lay a solid foundation
for the analog computer. Because the neural optimizer is a dynamical system, and its
dynamics effect the stability of the equilibrium point, which is directly related to the
optimal solution of the corresponding optimization problems, the stability analysis
of recurrent neural networks began to be developed since 1982 or 1983. Up to now, it
has gone thirty years for the research of stability theory of recurrent neural networks.
There are many different achievements to be obtained.

(6) For a given equilibrium point of a dynamical system (i.e., the considered
equilibrium point must be known in advance), how the initial values or the boundary
values of the dynamical systems affect the stability property of the given equilibrium
point is the main topic of Lyapunov’s stability theory. Interestingly, the size of the
stability degree ε or the initial size of neighbor δ in the definition of stability is not
deterministic. Therefore, there are more space to define different kind of stability
concept. In contrast, Hopfield studied the stability problem of the so-called Hopfield
neural networks in the sense of Hopfield’s stability instead of Lyapunov’s stability
(for example, the energy function introduced by Hopfield is not a standard Lyapunov
function, which has been pointed by X. Liao in [83]). In fact, no matter what kind of
definitions of stability, the common purpose of the definition is to solve the practical
problems both in engineering and theory. Therefore, there are many different kind
of stability concepts being proposed such as structure stability, practical stability,
connective stability, synchronization stability, periodic stability, and so on. Keeping
in mind, there is no fixed form of stability definition (correspondingly, the stability
theory), all the theoretical researches must adapt to the different demands of practical
applications.

(7) Lyapunov second method in essence is the gradient descent method of solving
the numerical computation. This method is fundamental in the numerical analy-
sis, which can be equivalent to the Euler method or the tangents method. All these
methods are the local methods, which means the boundedness of the initial space or
universe. According to the construction of Lyapunov’s energy function, many opti-
mization problems can be solved based on the gradient descent algorithms. Hopfield
neural network itself is just a kind of gradient dynamical system, which can be di-
rectly applied to the optimization problems. How to build the relationship between
dynamical neural network model and its energy function is the key problems. It is
Hopfield who creatively proposed the energy function in the sense of Hopfield’s de-
finition, and gave the stability analysis of the concerned neural network in the sense
of Hopfield’s stability. Note that, as pointed out in Chap.1, Professor Grossberg used
the concept of energy function in neural networks field more earlier than hopfield
did. However, since Professor Hopfield used a kind of additive neural networks to
solve the optimization problems and, meanwhile, used the energy function concept
to analyze the stability property of the concerned neural networks successfully in

http://dx.doi.org/10.1007/978-3-662-47484-6_1
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1982–1984, researches on neural networks began to recover. It is the Hopfield’s
pioneering work that initiated the new era of optimization computation in neural
network community. As far as this point is concerned, Hopfield is more excellent
than Grossberg in control and optimization engineering fields. For convenience to
mention the work by Hopfield, the additive neural network model studied by Hop-
field is called Hopfiled neural networks, while the energy function used by Hopfield
is called Hopfield energy function, and the corresponding stability concept is also
called Hopfield stability by the later researchers. Due to the introduction of Hop-
field’s energy function into recurrent neural networks, optimization problems based
on RNNs in many engineering fields such as mechanics, dynamic engineering, ar-
chitecture, operation research, computational science, and so on have been solved or
promoted significantly.

(8) In Lyapunov stability theory, the concerned system is in the absence of inputs,
i.e., ẋ(t) = f (x(t)), and the equilibrium point is usually assumed to be zero, that is,
f (0) = 0. This requirement in fact is the most important assumption in the applica-
tion of Lyapunov method. How to guarantee the zero solution being the equilibrium
point was not discussed in the Lyapunov stability theory. After all, in 1892, the con-
sidered system was only limited to the isolated systems (respect to the concept of
complex systems or complex networks at present), and the stability of the concerned
system on its own is existent or objective. There is no need to discuss the existence
and uniqueness of the equilibrium point of the concerned systems. Therefore, from
the viewpoint of energy, a system must be stable when the energy approached to
the minimum, i.e., zero. Therefore, zero, as an objective existence, is believed to be
a natural way to understand the world. However, with the emergence of complex
systems or complex phenomena, how to determine the stable states is not easy, how
to find the minimal point is not easy either. Equivalence is not necessarily equiva-
lent. Hence, Lyapunov’s stability theory falls into the scope of Newton mechanism,
which is based on the reference frame or reference coordinate system. Different se-
lection of reference frame may have different influence on the stability analysis of
the concerned system. On the Earth, it is natural to choose the Earth as the reference
frame. However, when studying the relative motion among different objects, how to
select the frame is important for the considered problems. For example, synchroniza-
tion stability as an extension of classical stability, is now intensively emphasized by
the researchers due to the emergence of world wide web, interconnection networks,
internet of things, and so on. In fact, in the research of synchronization problem, Lya-
punov stability theory is still valid. Recalling the Lyapunov stability theory again, we
can find that the nonlinear systems studied by Lyapunov is just an error system. This
is the underlying reason why Lyapunov stability theory can be used in the observer
design, filter design and synchronization! Therefore, Lyapunov stability is about the
stability of error system. Since the intrinsic equilibrium point of the nonlinear sys-
tem ẋ(t) = f (x(t)) is zero, then the error system between the state and the intrinsic
equilibrium point is just the nonlinear system itself ẋ(t) = f (x(t)). The zero in
f (0) = 0 is just the relative distance or the error between one state and an reference
point. The reference point can be the intrinsic equilibrium point of the nonlinear sys-
tem itself or the desired target out side the nonlinear system. If the relative motion
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is static or the zero solution of error system is stable, it is the fundamental meaning
of Lyapunov stability theory (i.e., relative stability or stability is just the relatively
static movement). This also implies that idea of relativity has been used in Lyapunov
stability theory, which is the fundamental reason of the universality of Lyapunov sta-
bility theory. When the input is considered in the system, i.e., ẋ(t) = f (x(t), u(t))
and y(t) = h(x(t)), stability with respect to different variables may form differ-
ent stability concepts [84], for example input-state stability, integral input-to-state
stability, and so on. Therefore, in the new environments, Lyapunov stability theory
should be kept with the times, which can make the idea or thoughts of Lyapunov
stability theory be carried forward and further developed. For example, Lyapunov
synchronization stability theory (LSST) should be regarded as an upgrade of classical
Lyapunov stability theory (LST) in the networks era. The most outstanding features
of LSST include: 1) The equilibrium point of each node system is not required. The
synchronous state or synchronous target can be the dynamics of any node system
or their combinations, or the external specified target. 2) Synchronization stability
is a relative stability. Many existing stability definitions such as Lyapunov stabil-
ity, ISS, IOSS, stability of fixed points, stability of orbits, stability of sets can be
unified in the framework of synchronization stability. 3) Many synthesis problems
such as regulation/tracking problems, observer, filter, master-slave synchronization,
drive-response synchronization, state/parameter estimation, system/parameter iden-
tification can be unified in the frameworks of synchronization stability theory. While
classical Lyapunov stability theory has already promoted the development of auto-
matic control theory for isolated systems, Lyapunov synchronization stability theory
would be sure to promote the development of automatic control theory for complex
interconnected networks.

(9) Referring to the stability definition in the sense of Lyapunov, there may have
many different stability definitions existing in practice according to different appli-
cations. One of remarkable stability concepts is the stability of living systems. This
kind of system has many stably periodic trajectories, limited cycles or other com-
plex dynamics, except the fixed equilibrium points. For example, the heart rate and
biological cycle in a living creature are all sinusoidal wave. This kind of sinusoidal
signal may include two parts: frequency and amplitude. Therefore, stability defini-
tion may be a mixed concept of time domain, frequency domain, and space domain.
Inspired by the Lyapunov stability theory, many different kinds of stability definition
can be proposed. So does the stability theory of complex neural networks.

(10) In the qualitative research of dynamical systems, most efforts are placed
on the external evolutionary dynamics of dynamical systems, for example, the infi-
nite state behavior of dynamical systems as time approaches to infinity. This leads
to the different definitions of stability and their corresponding stability results. It
is well known that most fixed point or equilibrium point is locally stable. Starting
from different domain of attraction of equilibrium may lead to different dynamical
trajectories. This feature of initial domain is especially important in the learning of
neural networks when choosing the initial weight values, as well as in the associative
memory and pattern formation. Therefore, there are two directions in the qualitative
analysis of dynamical systems. One is concerned with the ultimate state behavior
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as time approached to infinity, such as many kinds of qualitative characteristic re-
searches as global asymptotical stability, input-to-state stability, passivity, domain
of attraction of equilibrium and dissipativity. The other is concerned with the initial
condition set as time just begins, which is a inverse mapping of the infinite dynamical
behavior of a dynamical system. The origin or the beginning of the initial condition
is the definition domain of the concerned problem, from which the ultimate dynamic
behavior of the concerned system begins to evolve as time approaches to infinity.
In general, a good initial condition may trigger a better solution of the concerned
problem and a less cost of the design procedure.

(11) Nowadays, more emphasis is placed on the stability of dynamical systems.
This kind of system can be modeled by differential equation, difference equation,
or other kind of recurrent forms. However, in the real world, too many systems
can not be defined or modeled by the mathematical analytical equations. For this
kind of nonanalytical systems, the results for the dynamical systems can not be
used. For example, for a complex data-driven system, it is impossible to model it
by mathematical model accurately. Any approximated description method including
differential equation and difference equation can be suitable for the case of small
scale systems, and not suitable for the large-scale complex systems. This evolution
is similar to the principle of using distributed delay to replace the discrete delay for
the large-scale circuits. Therefore, how to establish data-driven stability theory for
the large-scale complex system is an urgent project in the contemporary era. This
will be similar to the emergence of Lyapunov stability theory in the 1900s.

In brief, doing research with great concentration is a basic principle. One cannot
expect his findings to be popularized in a short time. A good attitude for a researcher
is a prerequisite for his great achievement, no matter when his achievements have
been recognized and popularized.

2.5 Applications of Dynamical Systems Theory

In the following, some application fields are listed for the significant contribution of
dynamical systems theory.

(1) In biomechanics

In sports biomechanics, dynamical systems theory has emerged in the movement
sciences as a viable framework for modeling athletic performance. From a dynam-
ical systems perspective, the human movement system is a highly intricate network
of codependent subsystems (e.g., respiratory, circulatory, nervous, skeletomuscular,
perceptual) that are composed of a large number of interacting components (e.g.,
blood cells, oxygen molecules, muscle tissue, metabolic enzymes, connective tissue
and bone). In dynamical systems theory, movement patterns emerge through generic
processes of self-organization found in physical and biological systems.
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(2) In cognitive science

Dynamical system theory has been applied in the field of neuroscience and cogni-
tive development, especially in the neo-Piagetian theories of cognitive development.
It is the belief that cognitive development is best represented by physical theories
rather than theories based on syntax and artificial intelligence (AI). It also believed
that differential equations are the most appropriate tool for modeling human be-
havior. These equations are interpreted to represent an agent’s cognitive trajectory
through state space. In other words, dynamicists argue that psychology should be the
description (via differential equations) of the cognitions and behaviors of an agent
under certain environmental and internal pressures. The language of chaos theory is
also frequently adopted. In it, the learner’s mind reaches a state of disequilibrium
where old patterns have broken down. This is the phase transition of cognitive de-
velopment. Self-organization (the spontaneous creation of coherent forms) sets in as
activity levels link to each other. Newly formed macroscopic and microscopic struc-
tures support each other, speeding up the process. These links form the structure of
a new state of order in the mind through a process called scalloping (the repeated
building up and collapsing of complex performance). This new state is progressive,
discrete, idiosyncratic, and unpredictable. Dynamical systems theory has recently
been used to explain a long-unanswered problem in child development referred to
as the A-not-B error.

(3) In human development

Dynamical systems theory is a psychological theory of human development. Un-
like dynamical systems theory,which is amathematical construct, dynamical systems
theory is primarily nonmathematical and driven by qualitative theoretical proposi-
tions. This psychological theory does, however, apply metaphors derived from the
mathematical concepts of dynamical systems theory to attempt to explain the exis-
tence of apparently complex phenomena in human psychological and motor devel-
opment.

As it applies to developmental psychology, this psychological theory was de-
veloped by Esther Thelen, Ph.D. at Indiana University Bloomington [85]. Thelen
became interested in developmental psychology through her interest and training
in behavioral biology. She wondered if “fixed action patterns,” or highly repeatable
movements seen in birds and other animals, were also relevant to the control and
development of human infants.

According to Miller [86], dynamical systems theory is the broadest and most
encompassing of all the developmental theories. Theory attempts to encompass all
the possible factors that may be in operation at any given developmental moment,
i.e., it considers development from many levels (from molecular to cultural) and
timescales (from milliseconds to years). Development is viewed as constant, fluid,
emergent or nonlinear, and multidetermined. Dynamical systems theory’s greatest
impact lies in early sensorimotor development. However, researchers working in
fields closely related to (developmental) psychology such as linguistics have built
upon Thelen’s work in order to, for example, model the development of language
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in an individual using dynamic systems theory by linking language development to
overall cognitive development.

Esther Thelen believed that development involved a deeply embedded and con-
tinuously coupled dynamic system. It is unclear, however, if her utilization of the
concept of “dynamic” refers to the conventional dynamics of classical mechanics
or to the metaphorical representation of “something that is dynamic” as applied in
the colloquial sense in common speech, or both. The typical view presented by R.D.
Beer showed that information from the world goes to the nervous system, which
directs the body, which in turn interacts with the world. Esther Thelen instead of-
fers a developmental system that has continual and bidirectional interaction between
the world, nervous system and body. The exact mechanisms for such interaction,
however, remain unspecified.

The dynamical systems view of development has three critical features that sepa-
rate it from the traditional input–output model. Firstly, the system must be multiply
causal and self-organizing. This means that behavior is a pattern formed from mul-
tiple components in cooperation with none being more privileged than another. The
relationship between the multiple parts is what helps provide order and pattern to
the system. Why this relation would provide such order and pattern, however, is
unclear. Secondly, a dynamic system depends on time making the current state a
function of the previous state and the future state a function of the current state. The
third feature is the relative stability of a dynamic system. For a system to change, a
loose stability is needed to allow for the components to reorganize into a different
expressed behavior. What constitutes a stability as being loose or not loose, however,
is not specified. Parameters that dictate what constitutes one state of organization
versus another state are also not specified, as a generality, in dynamical systems
theory. The theory contends that development is a sequence of times where stability
is low allowing for new development and where stability is stable with less pattern
change. The theory contends that to make these movements, you must scale up on a
control parameter to reach a threshold (past a point of stability). Once that threshold
is reached, the muscles begin to form the different movements. This threshold must
be reached before each muscle can contract and relax to make the movement. The
theory can be seen to present a variant explanation for muscle length-tension reg-
ulation but the extrapolation of a vaguely outlined argument for muscle action to a
grand theory of human development remains unconvincing and unvalidated.

2.6 Notations and Discussions on Some Stability Problems

This section is divided into two parts. One is for the symbol notations, basic lemmas,
basic definition of stability and equilibrium point. The other is for the discussions on
some stability concepts, which will show the diversity of stability definitions.
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2.6.1 Notations and Preliminaries

Throughout this book, the following notations are used if no confusion occurs.
Let Rn denote the n-dimensional Euclidean space, and R denote the real space.

Let A = [ai j ]n×n denote an n × n matrix. Let W T , W −1 denote the transpose and
the inverse of a square matrix W, respectively. Let W > 0(< 0) denote a positive
(negative) definite symmetric matrix. I denote an identity matrix with compatible
dimension. A = diag(ai ) denotes the diagonal matrix. Matrices, if not explicitly
stated, are assumed to have compatible dimensions. The symbol ∗ is used to denote
a matrix which can be inferred by symmetry. If A is a matrix, ||A|| denotes its
operator norm or Euclidean norm. λmax(A),λmin(A) or λM (A) and λm(A)mean the
maximum/largest and minimum/smallest eigenvalue of A respectively. Re(λ) < 0
means the real part of eigenvalue λ is negative, where λ is the eigenvalue of a square
matrix A. For h > 0, C ([−h, 0];Rn) denotes the family of continuous functions
φ from [−h, 0] to R

n with the norm ||φ|| = sup−h≤s≤0 |φ(s)|, where | · | is the
Euclidean norm in Rn .

Definition 2.1 (Positive (semi)definite function) A function V : D → R, where
D ⊆ R

n is said to be positive semidefinite if V (0) = 0 and for every x ∈ D it holds
that V (x) ≥ 0. It is called positive definite if additionally for every x ∈ D− {0} it is
true that V (x) > 0. A function V is called negative (semi)definite if −V is positive
(semi)definite.

Definition 2.2 (Positive (semi)definite matrix) A matrix Q ∈ Mn(R) is called posi-
tive (semi)definite if the corresponding quadratic function V (x) = xT Qx is positive
(semi)definite.

An algebraic criterion exists to test whether a given symmetric matrix is positive
definite or positive semidefinite.

Definition 2.3 (Criterion for positive semidefiniteness) Let Q be a symmetricmatrix
with appropriate dimension. Then, it is positive (semi)definite if and only if all its
eigenvalues are (nonnegative)positive.

Definition 2.4 (Derivative along the trajectories of a system, see [87]) Given a
dynamical system Σ : ẋ(t) = f (x(t)), where f : R

n → R
n , and a function

V : Rn → R, we define the derivative of V along the trajectories of the system Σ

as: dV
dt |Σ ≡ dV

dt |x(t) = ∂V
∂z f (z)|z=x(t). (L f V )(x) or V̇ (x) is widely used to denote

the derivative of V .

Lemma 2.5 (Lyapunov stability theorem, see [87]) Let x = 0 be an equilibrium
point for the system ẋ = f (x) with x ∈ R

n and D ⊆ R
n with D � 0. The vector

field f is locally Lipschitz (so that the differential equation admits unique solutions).
Let V : D → [0,∞) be a continuously differentiable function such that: 1) V is
positive definite in D. 2) L f V is negative semidefinite in D. Then x = 0 is stable. If
additionally L f V is negative definite in D, then the origin is locally asymptotically
stable.
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Lemma 2.6 (Krasovskii–LaSalle principle) The Krasovskii–LaSalle principle (also
known as the invariance principle) is a criterion for the asymptotic stability of an
autonomous (possibly nonlinear) dynamical system.

The global Krasovskii–LaSalle principle: given a representation of the system
ẋ = f (x), where x is the vector of variables, with f (0) = 0. If a C1 function V (x)

can be found such that (1) V (x) > 0 for all x �= 0 (positive definite); (2) V̇ (x) ≤ 0
for all x(negative seminegative); (3) V (x) → ∞ if x → ∞ and V (0) = V̇ (0) = 0
(Such functions can be thought of as “energy-like”).

Let I be the union of complete trajectories contained entirely in the set {x :
V̇ (x) = 0}. Then the set of accumulation points of any trajectory is contained in I.
In particular, if I contains no trajectory of the system except the trivial trajectory
x(t) = 0 for t ≥ 0, then the origin is globally asymptotically stable.

Local version of the Krasovskii–LaSalle principle: if V (x) > 0 when x �= 0,
V̇ (x) ≤ 0 holds only for x in some neighborhood D of the origin, and the set
{V̇ (x) = 0}∩ D does not contain any trajectories of the system besides the trajectory
x(t) = 0, t ≥ 0, then the local version of the Krasovskii–LaSalle principle states
that the origin is locally asymptotically stable.

Relation to Lyapunov theory. If V̇ (x) is negative definite, the global asymptotic sta-
bility of the origin is a consequence of Lyapunov’s second theorem. The Krasovskii–
LaSalle principle gives a criterion for asymptotic stability in the case when V̇ (x) is
only negative semidefinite.

Definition 2.7 (Lyapunov–Krasovskii functional, see [88–91]) Generalizations of
the Lyapunov method to delay differential equations have been found, notably by
Krasovskii [90]. As an example in [91] (see [Sect. 5.3, Corollary3.1]), for a general
system

ẋ = f (xt ), f : C([−τ , 0],Rn) → R
n, (2.6)

under usual regularity assumptions, the existenceof a so-calledLyapunov–Krasovskii
functional V : C([−τ , 0],Rn) → R and of α1,α2 : R+ → R

+, α1 is unbounded,
and α2 is positive definite, such that

α1(|x(t)|) ≤ V (xt ),
dV (xt )

dt
≤ α2(|x(t)|), (2.7)

along the trajectories, ensures asymptotic stability of the origin. Here, one defines as
usual xt (s) = x(t + s), τ ≤ s ≤ 0.

In particular, simple quadratic Lyapunov–Krasovskii functionals of the type

V (xt ) = xT (t)Px(t) +
∫ t

t−τ
xT (η)Qx(η)dη, (2.8)

for positive definite matrices P, Q ∈ R
n×n have been used early [91, 92].

http://dx.doi.org/10.1007/978-3-662-47484-6_5
http://dx.doi.org/10.1007/978-3-662-47484-6_3
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Definition 2.8 (infinitesimal generator, see [93]) Consider the stochastic system

dx(t) = f (x(t))dt + g(x(t))dω, (2.9)

where x(t) ∈ R
n is the system state, ω is a r -dimensional standard Wiener process,

and f (·), g(·) : Rn → R
n are locally Lipschitz functions and satisfy f (0) = g(0) =

0.
For any given V (x) ∈ C2, associated with the stochastic system (2.9), the infini-

tesimal generator L is defined as follows:

LV (x) = ∂V

∂x
f (x) + 1

2
Tr

{
gT (x)

∂2V

∂x2
g(x)

}
, (2.10)

where Tr(A) is the trace of a matrix A = (ai j )n×n , i.e., Tr(A) = ∑n
i=1 aii , aii is the

element on the main diagonal of square matrix A.

Lemma 2.9 (Schur Complement, see [94])For a given symmetric matrix S ∈ R
n×n,

and S =
[

S11 S12
ST
12 S22

]
, where Si j ∈ R

ni ×n j are matrix blocks with appropriate

dimensions, the following statements are equivalent:(1) S < 0; (2) S11 < 0,
S22 − ST

12S−1
11 S12 < 0; (3) S22 < 0, S11 − S12S−1

22 ST
12 < 0.

Definition 2.10 (Nonsingular M-matrix, see [95]) An n ×n matrix P with nonposi-
tive offdiagonal elements is called a nonsingular M-matrix if all its principal minors
are positive.

Definition 2.11 (Nonsingular M-matrix, see [95]) P is a nonsingular M-matrix if
and only if there exists a positive diagonal matrix D such that P D is a diagonally
dominant matrix.

Lemma 2.12 (see [95]) Let D0 be an n × n positive diagonal matrix and P be
an n × n matrix with P = (pi j )n×n. If D0 − |P| is a nonsingular M-matrix with
|P| = (|pi j |)n×n, then D0 + P is nonsingular.

In mathematics and, specifically, real analysis, the Dini derivatives are a class
of generalizations of the derivative. They were introduced by Ulisse Dini (1845–
1918), who was an Italian mathematician, and is known for his contribution to real
analysis [96].

Definition 2.13 (Dini derivative)
(1) The upper Dini derivative, which is also called an upper right-hand derivative

of a continuous function f : R → R, is denoted by f+′ and defined by

D+ f (t) = f+′(t) � lim sup
h→0+

f (t + h) − f (t)

h
,

where limsup is the supremum limit.
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(2) The lower Dini derivative f−′ is defined by

D− f (t) = f−′(t) � lim inf
h→0+

f (t + h) − f (t)

h
,

where liminf is the infimum limit.
(3) If f (t) is defined on a vector space, then the upper Dini derivative at t in the

direction d is defined by

D+ f (t) = f+′(t) � lim sup
h→0+

f (t + hd) − f (t)

h
,

where limsup is the supremum limit.
(4) If f (t) is locally Lipschitz, then f+′(t) is finite. If f (t) is differentiable at t ,

then the Dini derivative at t is the usual derivative at t .
Also,

D− f (t) � lim sup
h→0−

f (t + h) − f (t)

h
,

D− f (t) � lim inf
h→0−

f (t + h) − f (t)

h

are used to denote the upper Dini derivative and lower Dini derivative, respectively.
Therefore, when using the D notation of the Dini derivatives, the plus or minus

sign indicates the left-hand or right-hand limit, and the placement of the sign indicates
the infimum or supremum limit.

Lemma 2.14 (Schauder fixed-point theorem) The Schauder fixed-point theorem is
an extension of the Brouwer fixed-point theorem to topological vector spaces, which
may be of infinite dimension. It asserts that if K is a convex subset of a topological
vector space V and T is a continuous mapping of K into itself so that T (K ) is
contained in a compact subset of K , then T has a fixed point.

A consequence, called Schaefer’s fixed-point theorem, is particularly useful for
proving existence of solutions to nonlinear partial differential equations. Schaefer’s
theorem is in fact a special case of the far reaching Leray–Schauder theorem which
was discovered earlier by Juliusz Schauder and Jean Leray. The statement is as
follows: Let T be a continuous and compact mapping of a Banach space X into
itself, such that the set

{x ∈ X : x = λT x for some 0 ≤ λ ≤ 1}

is bounded. Then T has a fixed point.

Lemma 2.15 (Brouwer’s fixed-point theorem) Brouwer’s fixed-point theorem is a
fixed-point theorem in topology, named after Luitzen Brouwer. It states that for any
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continuous function f mapping a compact convex set into itself there is a point x0
such that f (x0) = x0. The simplest forms of Brouwer’s theorem are for continuous
functions f from a closed interval I in the real numbers to itself or from a closed
disk D to itself. A more general form than the latter is for continuous functions from
a convex compact subset K of Euclidean space to itself.

Among hundreds of fixed-point theorems, Brouwer’s is particularly well known,
due in part to its use across numerous fields of mathematics. In its original field, this
result is one of the key theorems characterizing the topology of Euclidean spaces,
along with the Jordan curve theorem, the hairy ball theorem and the Borsuk–Ulam
theorem. This gives it a place among the fundamental theorems of topology. The
theorem is also used for proving deep results about differential equations and is
covered in most introductory courses on differential geometry. It appears in unlikely
fields such as game theory. In economics, Brouwer’s fixed-point theorem and its
extension, the Kakutani fixed-point theorem, plays a central role in the proof of
existence of general equilibrium in market economies as developed in the 1950s by
economics Nobel prize winners Kenneth Arrow and Grard Debreu.

Lemma 2.16 (Contraction mapping principle) In mathematics, a contraction map-
ping, or contraction or contractor, on a metric space (M, d) is a function f from M
to itself, with the property that there is some nonnegative real number 0 ≤ k < 1
such that for all x and y in M,

d( f (x), f (y)) ≤ kd(x, y).

The smallest such value of k is called the Lipschitz constant of f . Contractive maps
are sometimes called Lipschitzian maps. If the above condition is instead satisfied
for k ≤ 1, then the mapping is said to be a non-expansive map.

More generally, the idea of a contractive mapping can be defined for maps between
metric spaces. Thus, if (M, d) and (N , d1) are two metric spaces, and f : M → N,
then there is a constant k < 1 such that

d1( f (x), f (y)) ≤ kd(x, y),

for all x and y in M. Every contraction mapping is Lipschitz continuous and hence
uniformly continuous (for a Lipschitz continuous function, the constant k is no longer
necessarily less than 1).

A contraction mapping has at most one fixed point. Moreover, the Banach fixed-
point theorem states that every contraction mapping on a nonempty complete metric
space has a unique fixed point, and that for any x in M the iterated function sequence
x, f (x), f ( f (x)), f ( f ( f (x))), . . . , converges to the fixed point. This concept is
very useful for iterated function systems where contraction mappings are often used.
Banach’s fixed-point theorem is also applied in proving the existence of solutions
of ordinary differential equations, and is used in one proof of the inverse function
theorem.
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Inmathematics, in the field of differential equations, an initial value problem (also
called the Cauchy problem by some authors) is an ordinary differential equation
together with a specified value, called the initial condition, of the unknown function
at a given point in the domain of the solution. In physics or other sciences, modeling
a system frequently amounts to solving an initial value problem; in this context, the
differential equation is an evolution equation specifying how, given initial conditions,
the system will evolve with time.

Definition 2.17 (Initial value problem) An initial value problem is a differential
equation y

′
(t) = f (t, y(t)) with f : Ω ⊂ R × R

n → R
n , where Ω is an open set

of R × R
n , together with a point in the domain of f (t0, y0) ∈ Ω called the initial

condition.
A solution to an initial value problem is a function y, that is, a solution to the

differential equation and satisfies y(t0) = y0.
In higher dimensions, the differential equation is replaced with a family of equa-

tions y
′
i = fi (t, y1(t), y2(t), . . . , ) and y(t) is viewedas thevector (y1(t), . . . , yn(t)).

More generally, the unknown function y can take values on infinite dimensional
spaces, such as Banach spaces or spaces of distributions. Initial value problems are
extended to higher orders by treating the derivatives in the same way as an indepen-
dent function, e.g. y

′′
(t) = f (t, y(t), y

′
(t)).

Brouwer’s fixed-point theorem, Schauder fixed-point theorem, contraction map-
ping principle and initial value problem are from Wikipedia, the free encyclopedia
on the internet.

Definition 2.18 (Solution in the sense of Caratheodory, see [10]) Consider the fol-
lowing ordinary differential equation (ODE) in Rn ,

ẋ = f (x, t), t ≥ 0, x(0) = x0. (2.11)

By a solution of Eq. (2.11) we mean a continuously differentiable function of time
x(t) satisfying

x(t) = x0 +
∫ t

0
f (x(s), s)ds. (2.12)

Such a solution to Eq. (2.11) is called a solution in the sense of Caratheodory.

Definition 2.19 (Local existence and uniqueness, see [10]) Consider the system
(2.11). Assume that f (x, t) is continuous in t and x , and that there exist T, r, k, h
such that for all t ∈ [0, T ], we have

| f (x, t) − f (y, t)| ≤k|x − y|,∀x, y ∈ B(x0, r),

| f (x0, t)| ≤h, (2.13)
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with B(x0, r) = Br = {x ∈ R
n : |x − x0| ≤ r} is a ball of radius r centered at

x0. Then Eq. (2.11) has exactly one solution of the form of (2.12) on [0, δ] for δ
sufficiently small.

Definition 2.20 (Global existence and uniqueness, see [10]) Consider the system
(2.11) and assume that f (x, t) is piecewise continuous with respect to t and for each
T ∈ [0,∞) there exist finite constants kT , hT such that for all t ∈ [0, T ], we have

| f (x, t) − f (y, t)| ≤kT |x − y|,∀x, y ∈ R
n,

| f (x0, t)| ≤hT . (2.14)

Then Eq. (2.11) has exactly one solution on [0, T ] for all T < ∞.

Definition 2.21 (Continuous dependence on initial conditions, see [10]) Consider
the system (2.11) and let f (x, t) satisfy the hypothesis (2.14). Let x(·), y(·) be two
solutions of this system starting from x0 and y0 respectively. Then for given ε > 0,
there exists δ(ε, T ) such that

|x0 − y0| ≤δ ⇒ |x(·) − y(·)| ≤ ε. (2.15)

Definition 2.22 (Lipschitz continuous, see [10]) The function f is said to be locally
Lipschitz continuous in x if for some h > 0 there exists L ≥ 0 such that

| f (x1, t) − f (x2, t)| ≤ L|x1 − x2|, (2.16)

for all x1, x2 ∈ Bh, t ≥ 0. The constant L is called theLipschitz constant.Adefinition
for globally Lipschitz continuous functions follows by requiring Eq. (2.16) to hold
for x1, x2 ∈ R

n . The definition of semi-globally Lipschitz continuous functions hold
as well by requiring that Eq. (2.16) hold in Bh for arbitrary h but with L possibly a
function of h. The Lipschitz property is by default assumed to be uniform in t .

If f is Lipschitz continuous in x , it is continuous in x . On the other hand, if f
has bounded partial derivatives in x , then it is Lipschitz. Formally, if D1 f (x, t) �[

∂ fi
∂x j

]
denotes the partial derivative matrix of f with respect to x (the subscript 1

stands for the first argument of f (x, t)), then |D1 f (x, t)| ≤ L implies that f is
Lipschitz continuous with Lipschitz constant L (again locally, globally, or semi-
globally depending on the region in x that the bound on |D2 f (x, t)| is valid).

Definition 2.5 provides a universal definition on the stability and asymptotic sta-
bility. However, to meet the needs of this book, we will use the following delayed
neural networks (DNNs),

ẋ(t) = −Ax(t) + Bg(x(t)) + Cg(x(t − τ (t))) + U, (2.17)

to present some stability definitions for convenience, where x(t) = (x1(t), . . . ,
xn(t))T ∈ R

n , g(x(t)) = g1(x1(t)), . . . , gn(xn(t))T ∈ R
n , gi (xi (t)) is the neuronal
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activation function, A = diag(a1, . . . , an), ai > 0, B and C are connection matrices
with appropriate dimensions, τ (t) is a time-varying delay, 0 ≤ τ (t) ≤ τ , τ̇ (t) ≤ μ,
τ and μ are positive constants, U = (U1, . . . , Un)T ∈ R

n is the external constant
input vector, x0(s) = φ(s) ∈ C, i = 1, . . . , n. As usual, the solution x(t, x0) is also
called a trajectory of (2.17).

LetD ⊂ R
n be a subset.D is said to be invariant under the system (2.17) if x0 ∈ D

implies Γ1(x0) ⊆ D, where Γ1(x0) is the trajectory of system (2.17) through x0. A
point x∗ is called a ω-limit point of Γ1(x0) if there is a subsequence {ti } such that
x∗ = limi→∞ x(ti , x0). All the ω-limit points constitute the ω-limit set ω(Γ1(x0))
of Γ1(x0). The ω-limit set is invariant under the dynamics. Recall that a constant
vector x∗ is said to be an equilibrium state of the system (2.17) if x∗ is a zero point
of operator F1(x(t)) defined by [97, 98],

F1(x∗) = −Ax∗ + Bg(x∗) + Cg(x∗) + U = 0. (2.18)

The equilibrium state x∗ is said to be stable if any trajectory of (2.17) can stay within
a small neighborhood of x∗ whenever the initial x0 is close to x∗, and is said to be
attractive if there is a neighborhood Ξ(x∗), called the attraction basin of x∗, such
that any trajectory of (2.17) initialized from a state in Ξ(x∗) will approach to x∗ as
time goes to infinity. An equilibrium state x∗ is said to be asymptotically stable if it is
both stable and attractive, whilst the equilibrium state x∗ is said to be exponentially
stable if there exist a constant α > 0 and a strictly increasing function M : R → R

+
with M(0) = 0 such that the following inequality holds,

‖x(t, x0) − x∗‖ ≤ M(‖x(t, x0) − x∗‖)e−αt . (2.19)

Further, x∗ is said to be globally asymptotically stable if it is asymptotically stable,
andΞ(x∗) = R

n . System (2.17) is said to beglobally convergent if x(t, x0) converges
to an equilibrium state of (2.17) for every initial point (the limit of x(t, x0) may not
be the same for different x0), whilst it is said to be exponentially convergent if it is
globally convergent with x(t, x0), and its limit x∗ satisfying (2.19) [97].

Note that, some exponential stability definitions are required to satisfy the form
‖x(t, x0) − x∗‖ ≤ M̄(‖x(t, x0) − x∗‖)e−αt for some positive value M̄ > 0 and
α > 0. However, some scholars define M̄ ≥ 1 instead of M̄ > 0. Although this is a
trivial problem, when 0 < M̄ < 1, the exponential characteristic of the dynamical
behavior is difficult to achieve. According to the contraction mapping principle,
the state may be convergent but may not be exponentially convergent. As far as
the exponential form of stability is concerned, many stability definitions satisfy this
form. Therefore, strictly speaking, to the authors’ knowledge, it is better to define
M̄ ≥ 1 in the exponential stability definition.
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2.6.2 Discussions on Some Stability Definitions

In this subsection, we will introduce the evolution of equilibrium from fixed, sta-
ble flow to invariant set, along with different stability understandings and stability
definitions. This will help us to understand different kinds of stability definitions in
depth.

Definition 2.23 (Absolute stability, see [22]) The neural network (2.17) is said
to be robustly absolutely stable in the sector [K1, K2] if the system is glob-
ally uniformly asymptotically stable for any nonlinear function g(x) satisfying
(g(x(t)) − K1x(t))T (g(x(t)) − K2x(t)) ≤ 0.

Definition 2.24 (Absolute stability) There exists a unique equilibrium point for
DNNs (2.17) attracting all trajectories in phase space and, moreover, that this prop-
erty is valid for all neuron activations within a specific class of nonlinear functions
and for all constant input stimuli to the networks.

Definition 2.25 (Delay-independent condition, see [99]) The system (2.17) with
g(x(t)) = x(t) and U = 0 is said to be stable independent of delay if it is asymp-
totically stable for every τ (t) ∈ [0, τ ]. In this case one says that the system (2.17) is
absolutely stable.

Definition 2.26 The dynamical system defined by (2.17) is globally asymptotically
stable (GAS) if there exits a unique equilibrium point, x∗, which is stable and to
which every system trajectory converges.

The concept of absolute stability forDNNs (2.17) concerns the persistence ofGAS
when the input U is varied. (In general, one also varies the activation functions g(·),
but the DNNsmodel assumes the activation functions belonging to a form of specific
Class).When the types of activation function are given in (2.17), the followingABST
definition is given in [100].

Definition 2.27 (see [100]) The dynamical system described by (2.17) with fixed
activation function is said to be absolutely stable if it possesses a GAS equilibrium
point for each input U ∈ R

n .

Definition 2.28 (Absolute stability, see [101]) Consider the system (2.17), if we can
find a Lyapunov function V (x(t)) such that V̇ (x(t)) < 0 for any initial condition
x(t0) = φ(t) ∈ C, then the system (2.17) is absolutely stable.

Neural network is called absolutely stable (ABST), i.e., that it possesses a globally
asymptotically stable (GAS) equilibrium point for every neuron activation function
and for every constant input vector. It is easily realized that the property of absolute
stability is really desirable in view of solvingmany signal processing tasks. Consider,
for example, self-organizing neural networks. Absolute stability guarantees that con-
vergence is preserved even during the learning phase when parameters are slowly
adjusted in an unpredictable way. Moreover, absolute stability ensures convergence
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of the neural network also when, for some parameter values, there are infinitely
many nonisolated equilibrium points (e.g., a manifold of equilibria). This feature is
useful in practical problems, requiring convergence even in the presence of noniso-
lated equilibria. For instance, concerning minimization of multilinear polynomials
with nonisolated minima, it was noted that the natural choice of the neural network
parameters leads to a network with nonisolated equilibria. Another significant case
is related to the neural network for the solution of linear or quadratic programming
problems with infinite solutions. Once more, the design procedure naturally leads
to the presence of manifolds of equilibria. A third case is that of gradient systems,
which possess manifolds of equilibria in the generic case. It is also worth to mention
that there are interesting problems where it is explicitly required to implement an
associative memory, which is able to store and retrieve some pattern within a set of
infinitely many nonisolated equilibrium patterns.

Definition 2.29 (Complete stability-I, see [95])DNNs (2.17) is said to be completely
stable if for any initial continuous function φ(t), the solution x(t,φ(t)) of (2.17)
satisfies limt→∞ x(t,φ) = constant.

Definition 2.30 (Complete stability-II, see [95, 102]) DNNs (2.17) is said to be
completely stable if for any initial value starting from x0 at t = t0, the trajectory
x(t; t0, x0) of (2.17) satisfies

lim
t→∞ ‖x(t; t0, x0) − x∗‖ = 0 (2.20)

where x∗ is an equilibrium point of neural networks (2.17).

Abovedefinitions of complete stabilitymean that each trajectory converges toward
an equilibrium point (a stationary state), possibly within a set of many equilibrium
points. In [103], the property of complete stability is referred to as global pattern
formation, in order to highlight the ability of the neural networks to produce a steady-
state pattern, i.e., limt→∞ x(t) in response to any input pattern U and initial activity
pattern x0.

It is shown that several classes of real-value neural networks (RVNNs) can be
completely stable by combining energy minimization and the LaSalle invariant
principle. The equilibrium points of such networks were required to be isolated.
However, under the framework of combining the energy minimization method and
the Cauchy convergence principle to study complete stability for RVNNs, the equi-
librium points of such networks were no longer required to be isolated. Meanwhile,
complete stability for continuous-time and discrete-time RVNNs was further con-
sidered by combining the energy minimization method and the Cauchy convergence
principle, respectively. Furthermore, as the extensive versions of the existing com-
plete stability results for RVNNs, complete stability for discrete-time complex-value
neural networks (CVNNs) was investigated by the energy minimization method.
Note that GAS implies complete stability, but not vice versa [95].
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Definition 2.31 (Strict Lyapunov function, see [24]) An energy function V is said
to be strict if and only if the set {x ∈ R

n|V̇ (x) = 0} coincides with the set of
equilibrium points. This is equivalent to the fact that the energy is strictly decreasing
along nonstationary solutions.

Remark 2.32 It is necessary to give some comparisons among absolute stability,
complete stability, asymptotical stability, and global stability.

(1) As one of the basic enabling properties of multistable neural networks, com-
plete stability, which allows each trajectory converges toward an equilibrium point,
possibly within a set of many equilibrium points. In contrast, absolute stability has
a unique equilibrium point.

(2) Complete stability of (2.17) can hold both in the generic case where (2.17)
has finitely many equilibrium points, as well in degenerate situations where there are
infinitely many nonisolated equilibrium points [24].

(3) Consider the neural networks (2.17) with symmetric interconnection matrices,
and neuron activation is a continuous, nondecreasing, and bounded piecewise linear
(PWL) function, such that g(0) = 0. Then, within this class global pattern formation
is absolutely stable, i.e., complete stability holds for any choice of the parameters
defining A, B, C, U and g(·) in neural network [24]. Few results are reported on
absolute stability of global pattern formation [24]. In some constraints, complete
stability and absolute stability can be equivalent.

(4) In the analysis of complete stability, the Lyapunov method and the classic
LaSalle approach are no longer effective because of the multiplicity of attractors,
some new method must be proposed, for example, a convergence theorem of Gauss–
Seidel method [23–25]. While for the absolute stability, the Lyapunov method and
the classic LaSalle approach are very effective.

(5) Both absolute stability and asymptotical stability are concernedwith the neural
networks with unique equilibrium point. That is, for a specified equilibrium point,
how to determine the stability property of the unique/specific equilibrium point.
By contrast, complete stability and global stability is about the total dynamics of
the concerned networks, not for a specific equilibrium state. Therefore, for neural
networkswith given equilibriumpoint, theLyapunov stability theory can be effective,
while for the nonisolated equilibrium point, Lyapunov stability theory can not be
applied.

(6) Global stability of neural network (2.17) has been extensively investigated
in the context of absolute stability theory, i.e., global absolute stability. When the
input nonlinearities satisfy the sector constraints for only some finite range of their
arguments, the network can only be guaranteed to be locally asymptotically stable.
By contrast, complete stability itself is the global dynamics. Therefore, there is no
global/local complete stability concept.

Definition 2.33 (Global dynamic behavior, see [104]) A stable system equilibrium
point of the neural network (2.17) is defined to be the state vector with all its com-
ponents consisting of stable equilibrium states.
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Definition 2.34 (Global stability, see [13]) If every nonequilibrium solution of
neural network (2.17) converges to an equilibrium, then neural network (2.17) is
said to be global stable. In order to ensure that neural network (2.17) is globally sta-
ble, one requires that the set of equilibria for the networks (2.17) is discrete set. Thus,
any point in the limit set of state is an equilibrium of networks (2.17) as t → ∞, and
this point approaches to some equilibrium of networks (2.17).

It follows from the above definition that a cellular neural network is always at one
of its stable system equilibrium point after the transient has decayed to zero. From
the dynamical systems theory point of view, the transient of a cellular neural network
is simply the trajectory starting from some initial state and ending at an equilibrium
point of the system. Since any stable equilibrium point of a cellular neural network
is a limit point of a set of trajectories of the corresponding differential equations
(2.17), such an attracting limit point has a basin of attraction, namely, the union
of all trajectories converging to this point. Therefore, the state space of a cellular
neural network can be partitioned into a set of basins centered at the stable system
equilibrium points.

Definition 2.35 Neural network (2.17) is said to be bounded if its each trajectory
are bounded.

Definition 2.36 (Globally attractive set, see [98]) Let S be a compact subset of Rn .
Denote the ε-neighborhood of S by Sε. A compact set S is called a globally attractive
set of neural network (2.17) if, for any ε > 0, all the trajectories of neural network
(2.17) ultimately enter and remain in Sε.

As a special class of RNNs, cellular neural networks have many outstanding
features with stable dynamics when it is applied in pattern recognition and storage
memory. Generally, cellular neural networks can be characterized by a large system
of ordinary differential equations. Since all of the cells are arranged in a regular array,
one can exploit many spatial properties, such as regularity, sparsity, and symmetry in
studying the dynamics of cellular neural networks. There are twomathematical mod-
els which can characterize dynamical systems having these spatial properties. One
is partial differential equation and the other is cellular automata. Partial differential
equation, cellular automata, and cellular neural networks share a common property,
namely, their dynamic behavior depend only on their spatial local interactions.

In general, the limit set of a complex nonlinear system is very difficult, if not
impossible, to determine, either analytically or numerically. Although, for piecewise
linear circuit, it is possible to find all dc solutions by using either a brute force algo-
rithm or some more efficient ones, it is nevertheless very time consuming for large
systems. For a cellular neural network, in view of the nearest neighbor interactive
property, one can solve for all system equilibrium points by first determining the
stable cell equilibrium states, and then using the neighbor interactive rules to find the
corresponding system equilibrium. As presented above, the dynamic behavior of a
cellular neural network with zero control operators and nonzero feedback operators
is reminiscent of a two-dimensional cellular automaton. Both of them have the par-
allel signal processing capability and are based on the nearest neighbor interactive
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dynamic rules. The main difference between a cellular neural network and a cellular
automata machine is in their dynamic behaviors. The former is a continuous time
while the latter is a discrete-time dynamical system. Because the two systems have
many similarities, one can use cellular automata theory to study the steady-state be-
havior of cellular neural networks. Another remarkable distinction between them is
that while the cellular neural networks will always settle to stable equilibrium points
in the steady state, a cellular automata machine is usually imbued with a much richer
dynamical behavior, such as periodic, chaotic, and even more complex phenomena.
Of course, one can train a cellular neural network by choosing a sigmoid nonlinear-
ity. If one chooses some other nonlinearity for the nonlinear elements, many more
complex phenomena will also occur in cellular neural networks.

Definition 2.37 (K-class function, see [63]) A function Φ : [0, a] → [0,+∞) is
said to be positive if Φ(s) > 0 for all s > 0 and Φ(0) = 0. A continuous function
α : [0, a] → [0,+∞) is said to belong to class K if it is positive, strictly increasing
and α(0) = 0. It is said to belong to class K∞ if a = ∞ and α(r) → +∞ as
r → ∞. Similarly, the continuous function β : [0, a] × [0,∞) → [0,∞) is said to
belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class K with
respect to r and, for each fixed r , the mapping β(r, s) is decreasing with respect to
s and β(r, s) → ∞ as s → ∞.

An example of a class K∞ function is α(r) = rc with c > 0. An example of a
class KL function is β(r, s) = rce−s with c > 0.

The system

ẋ(t) = f (x(t), u(t)), y(t) = h(x(t)), (2.21)

is said to be forward complete if for every initial state x0 = x(0) = ξ and for
every input u defined on R

+, tmax = +∞. The corresponding output is denoted by
y(t; ξ, u) = h(x(t; ξ, u)) on the domain of definition of the solution, where the input
means a measurable and locally essentially bounded function, x(t; ξ, u) denotes the
unique maximal solution of the initial value problem of (2.21) with x0 = x(0) = ξ.

Definition 2.38 (see [105]) Let u = 0. For some region D ⊆ R
n , if for any ε > 0,

there exists a δ = δ(ε) such that when x0 ∈ D and ‖x0‖ ≤ δ, the following inequality
holds: ‖x(t, x0)‖ < ε,∀t ≥ 0. Then, system (2.21) is said to be uniformly stable
(US) in D and D is called to be a stable region of system (2.21).

Definition 2.39 (see [105]) Let u = 0. system (2.21) is said to be uniformly as-
ymptotically stable (UAS) in D if it is US in D, and moreover the equality holds:
limt→∞ ‖x(t, x0)‖ = 0,∀t ≥ 0.

Definition 2.40 (see [105]) Letu = 0. If there exist positive constantsα > 0, K ≥ 1
such that for any x0 ∈ D, ‖x(t, x0)‖ < K‖x0‖e−αt ,∀t ≥ 0. Then system (2.21)
is said to be uniformly exponentially stable (UES) in D and D is called to be an
exponential stable region of system (2.21).
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Definition 2.41 (see [60]) A forward complete system (2.21) is
(1) input-to-output stable (IOS) if there exist a KL-function β and a K-function

γ such that

|y(t; ξ, u)| ≤ β(|ξ|, t) + γ(‖u‖),∀t ≥ 0; (2.22)

(2) output-Lagrange input-to-output stable (OLIOS) if it is IOS and there exist
some K-functions σ1,σ2 such that

|y(t; ξ, u)| ≤ max{σ1(|h(ξ)|),σ2(‖u‖)},∀t ≥ 0; (2.23)

(3) state-independent IOS (SIIOS) there exist some β ∈ KL and some γ ∈ K
such that

|y(t; ξ, u)| ≤ β(|h(ξ)|, t) + γ(‖u‖),∀t ≥ 0. (2.24)

Definition 2.42 (see [59]) The system (2.21) without u(t) is output-to-state stable
(OSS) if there exist some β ∈ KL and some γ ∈ K such that

|x(t, ξ)| ≤ max{β(|ξ|, t), γ(‖yξ |[0,t]‖)}, (2.25)

for all ξ ∈ X and all t ∈ [0, tmax], where |ξ| indicates the Euclidean norm, and
‖yξ|[0,t0]‖ is the sup-norm of the restriction of yξ to real interval [0, t0], that is
supt∈[0,t0] yξ(t).

Definition 2.43 (see [110]) The system (2.21) is globally asymptotically stable
(GAS) if there exists a function β(s, t) ∈ KL, such that, with the control u = 0,
given any initial state ξ, the solution exists for all t > 0 and it satisfies the estimate

|x(t)| ≤ β(|ξ|, t), (2.26)

for all t ≥ 0.

Definition 2.44 (see [110]) The system (2.21) is input-to-state stable (ISS) if there
exist functions β ∈ KL and γ ∈ K∞, such that for each measurable essentially
bounded control u(t) and each initial state ξ, the solution exists for each t ≥ 0, and
furthermore it satisfies

|x(t)| ≤ β(|ξ|, t) + γ(|u(t)|), (2.27)

for all t ≥ 0.

The above definition of GAS is of course equivalent to the usual one (stability
plus attractivity) but it is much more elegant and easier to work with. The definition
of an ISS system is a natural generalization of this. Since γ(0) = 0, an ISS system
is necessarily GAS. For linear systems ẋ = Ax + Bu with asymptotically stable
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matrix A, an estimate (2.27) is obtained from the variation of parameters formula,
but in general, GAS does not imply ISS. The notion of ISS is somewhat related to
the classical total stability notion, but total stability typically studies only the effect
of small perturbations (or controls), while ISS concerns with the bounded behavior
for arbitrary bounded controls [110].

Definition 2.45 (Integral input-to-state stability (iISS), see [49]) System (2.21) is
iISS if there exist functions α ∈ K∞, β ∈ KL and γ ∈ K, such that, for all ξ ∈ R

n

and all u, the solution x(t, ξ, u) is defined for all t ≥ 0, and

α(|x(t, ξ, u)|) ≤ β(|ξ|, t) +
∫ t

0
γ(|u(s)|)ds, (2.28)

for all t ≥ 0.

Observe that a system is iISS if and only if there exist functions β ∈ KL and
γ1, γ2 ∈ K such that

α(|x(t, ξ, u)|) ≤ β(|ξ|, t) + γ1

( ∫ t

0
γ2(|u(s)|)ds

)
, (2.29)

for all t ≥ 0, all ξ ∈ R
n , and all u. Also note that if system (2.21) is iISS, then it

is 0-GAS, that is, the 0-input system ẋ = f (x, 0) is globally asymptotically stable
(GAS). (That is, the zero solution of this system is globally asymptotically stable.)

Definition 2.46 (see [49]) A continuously differentiable function V : Rn → R is
called an iISS-Lyapunov function for system (2.21) if there exist functions α1,α2 ∈
K∞ and σ ∈ K, and a continuous positive definite function α3, such that

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|) (2.30)

for all ξ ∈ R
n , and

DV (ξ) f (ξ, u) ≤ −α3(|ξ|) + σ(|u|), (2.31)

for all ξ ∈ R
n , and all u ∈ R

m .

Note that the estimate (2.30) amounts to the requirement that V must be positive
definite (i.e., V (x) > 0 for all x �= 0 and V (0) = 0), and proper (i.e., radially
unbounded, namely, as V (x) → ∞ as |x | → ∞).

Stability so far is studied with respect to equilibrium points. Stability, however,
can be studied with respect to invariant sets.

Definition 2.47 (Stability of Sets, see [87]) A set M is said to be stable for the system
ẋ = f (x) if for every ε > 0, there is a δ = δ(ε) > 0 such that distM (x) < δ ⇒
distM (x(t, x0)) < ε for all t ≥ 0. Where distM (x) denotes the distance of x from
the set M defined as distM (x) = inf x∈M ‖x − z‖.
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Definition 2.48 (Asymptotic stability of Sets, see [87]). A set M is said to be lo-
cally asymptotically stable for the system ẋ = f (x) if it is stable and additionally
limt→∞ distM (x(t, x0)) = 0 for all x such that distM (x(t, x0)) < η for some η > 0.
If the limitation holds true for all x ∈ R

n , then M is called a globally asymptotically
stable set.

Definition 2.49 (LaSalle’s Principle, see [87]). Let Ω ⊂ D be a compact set that
is positively invariant with respect to ẋ = f (x). Let V : D → R be a continuously
differentiable and positive definite function such that the derivative of V , i.e., L f V ,
is negative semidefinite. Define the set: E � {x ∈ D, (L f V )(x) = 0}. Let ⊂ E be
a maximal invariant set in E . Then M is globally asymptotically stable.

Aforementioned stability definitions are mainly for the nonlinear autonomous
systems. In the following, we will consider a kind of systems that may be represented
by equations of the form [84],

dx

dt
= f (x, t), (2.32)

where x ∈ R
n, x = (x1, . . . , xn)T , F : Rn × J → R are considered, J = [t0,∞), t0

is an finite initial time instant. It is assumed that f is continuous on R
n × J , which

denote their Cartesian product. The solutions of (2.32) are denoted by x(t; x0, t0)
with x(t0; x0, t0) = x0. In general it is not required that f (0, t) = 0.

Let S(t) ∈ R
n for all t ∈ J . Assume that S(t) is a connected open region. Let

¯S(t) denote the closure of S(t) and let ∂S(t) denote the boundary of S(t). Assume
that S(t) is bounded for all t ∈ J , and limt→ta S(t) exists for all ta ∈ J , and
that limt→ta S(t) = S(ta). Henceforth, whenever the symbol S(t) (with appropriate
subscripts) is used to denote a set, it is assumed that this set possesses the properties
described above. Let[S(t) − S0(t)] = {x ∈ R

n : x ∈ S(t), x /∈ S0(t)}, B(a) = {x ∈
R

n : ‖x‖ < a}, ∂B(a) = {x ∈ R
n : ‖x‖ ≤ a}. Let ti be any point (initial time) in J ,

and let xi = x(ti ; xi , ti ). Then the following definitions are presented in [84].

Definition 2.50 (Uniformly stable) System (2.32) is stable with respect to {S0(t),
S(t), t0}, if x0 ∈ S0(t0) implies x(t; x0, t0) ∈ S(t) for all t ∈ J . System (2.32) is
uniformly stable with respect to (S0(t), S(t)), if for all ti ∈ J , xi ∈ S0(ti ) implies
that x(t; xi , ti ) ∈ S(t) for all t ∈ [ti ,∞).

Definition 2.51 (Unstable) System (2.32) is unstable with respect to {S0(t),
S(t), t0}, S0(t0) ⊆ S(t0), if x0 ∈ S0(t0) and a tc ∈ J such that x(tc; x0, t0) ∈ ∂S(tc).

Definition 2.52 (Uniformly asymptotically stable) System (2.32) is asymptotically
stable with respect to {S0(t), S(t), S f , t0}, if it is stability respect to {S0(t), S(t), t0},
and if in addition, x0 ∈ S0(t0) implies x(t; x0, t0) → S f as t → ∞ (d(x(t; x0,
t0), S f ) → 0 as t → ∞, where d(x, S f ) = inf y∈S f ‖y − x‖). System (2.32) is
uniformly asymptotically stable with respect to {S0(t), S(t), S f }, if it is uniformly
stable with respect to {S0(t), S(t)}, and if in addition, for all ti ∈ J , xi ∈ S0(ti )
implies x(t; xi , ti ) → S f , as t → ∞.
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Definition 2.53 (Practically stable) If in Definition 2.50, if S(t) ≡ B(β) = {x ∈
R

n : ‖x‖ < β}, S0(t) ≡ S0(t0) = B(α),α ≤ β, then system (2.32) is said to be
practically stable with respect to α,β, t0, ‖ · ‖, and uniformly practically stable with
respect to α,β, ‖ · ‖. If in Definition 2.52, S(t) ≡ B(β), S0(t) ≡ S0(t0) = B(α),
S f = B(0),α ≤ β, then system (2.32) is said to be practically asymptotically stable
with respect to (α,β, t0, ‖ · ‖), and uniformly practically asymptotically stable with
respect to (α,β, ‖ · ‖). Finally, system (2.32) is said to be practically exponentially
stable with respect to (α,β, γ, t0, ‖ · ‖), α ≤ β, γ > 0, if ‖x0‖ < α implies
‖x(t; x0, t0)‖ ≤ βe−γ(t−t0) for all t ∈ J .

In the following, suppose f : R × C → R
n is continuous and consider the

following retarded functional differential equation or delayed nonlinear system,

ẋ = f (t, xt ), (2.33)

where xt (θ) = x(t + θ) for θ ∈ [−r, 0]. The function f will be supposed to be
completely continuous and to satisfy enough additional smoothness conditions to
ensure the solution x(σ,φ)(t) through (σ,φ) is continuous in (σ,φ, t) in the domain
of definition of the function. A function x is said to be a solution of Eq. (2.33) on
[σ − r,σ + q] if there are σ ∈ R and q > 0 such that x ∈ C([σ − r,σ + q],Rn),
(t, xt ) ∈ D, and x(t) satisfies equation (2.33) for t ∈ [σ,σ + q], where C =
C([−r, 0],Rn), which is the Banach space of linear functions mapping the interval
[−r, 0] into Rn with the topology of uniform convergence. For given σ ∈ R, φ ∈ C,
we say x(σ,φ, f ) is a solution of Eq. (2.33) with initial value φ at σ or simply a
solution through (σ,φ). Finding a solution of Eq. (2.33) through (σ,φ) is equivalent
to solving the integral equation

xσ =φ

x(t) =φ(0) +
∫ t

σ
f (s, xs)ds, t ≥ σ. (2.34)

Definition 2.54 (Uniformly asymptotically stable, see [91]) Suppose f (t, 0) = 0
for all t ∈ R. The solution x = 0 of system (2.33) is said to be stable if for any
σ ∈ R, ε > 0, there is a δ = δ(ε,σ) such that φ ∈ B(0, δ) implies xt (σ,φ) ∈ B(0, ε)
for t ≥ σ. The solution x = 0 of system (2.33) is said to be asymptotically stable if it
is stable and there is ab0 = b0(σ) > 0 such thatφ ∈ B(0, b0) implies x(σ,φ)(t) → 0
as t → ∞. The solution x = 0 of system (2.33) is said to be uniformly stable if the
number δ in the definition is independent of σ. The solution x = 0 of system (2.33)
is said to be uniformly asymptotically stable if it is uniformly stable and there is a
b0 > 0 such that, for every η > 0, there is a t0(η) such that φ ∈ B(0, b0) implies
xt (σ,φ) ∈ B(0, η) for t ≥ σ + t0(η) for every σ ∈ R.

If y(t) is any solution of system (2.33), then y is said to be stable if the solution
z = 0 of the equation

ż(t) = f (t, zt + yt ) − f (t, yt ), (2.35)
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is stable.

Definition 2.55 (Uniformly ultimately bounded, see [91]) A solution x(σ,φ) of
system (2.33) is bounded if there is a β(σ,φ) such that |x(σ,φ)(t)| < β(σ,φ) for
t ≥ σ − r , r > 0 is the maximal bound of time delay. The solutions are uniformly
bounded if, for any α > 0, there is a β = β(α) > 0 such that, for all σ ∈ R,φ ∈ C,
and |φ| ≤ α, we have |x(σ,φ)(t)| ≤ β(α) for all t ≥ σ. The solutions are ultimately
bounded if there is a constant β such that, for any (σ,φ) ∈ R×C, there is a constant
t0(σ,φ) such that |x(σ,φ)(t)| < β for t ≥ σ + t0(σ,φ). The solutions are uniformly
ultimately bounded if there is a β > 0 such that, for any α > 0, there is a constant
t0(α) > 0 such that |x(σ,φ)(t)| ≤ β for t ≥ σ+t0(α) for all σ ∈ R,φ ∈ C, |φ| ≤ α.

If V : Rn → R
n is a given positive definite continuously differentiable function,

the derivative of V along a solution of system (2.33) is given by

V̇ (x(t)) = ∂V (x(t))

∂x
f (t, xt ). (2.36)

In order for V̇ to be nonpositive for all initial data, one would be forced to impose
very severe restrictions on the function f (φ). In fact, the point φ(0) must play a
dominant role and therefore, the results will apply only to equations which are very
similar to ordinary differential equations.

A fewmoments of reflection in this proper direction indicates the tit is unnecessary
to require that Eq. (2.36) be nonpositive for all initial data in order to have stability. In
fact, if a solution of the Eq. (2.33) begins in a ball and is to leave this ball at some time
t , then |xt | = |x(t)|, that is, |x(t + s)| ≤ |x(t)| for all [s ∈ [−r, 0]]. Consequently,
one need only consider initial data satisfying the latter property. This is the basic
idea of Razumikhin-type stability theorem.

Lemma 2.56 (Razumikhin uniform stability theorem, see [91]) Suppose f : R ×
C → R

n takes R× bounded sets of C into bounded sets of Rn and consider the sys-
tem (2.33). Suppose u, v, w : R+ → R

+ are continuous, nondecreasing functions,
u(s), v(s) positive for s > 0, u(0) = v(0) = 0. If there is a continuous function
V : R × R

n → R such that

u(|x |) ≤V (t, x) ≤ v(|x |), t ∈ R, x ∈ R
n,

V̇ (t,φ(0)) ≤ − w(|φ(0)|) if V (t + s,φ(s)) ≤ V (t,φ(0)), s ∈ [−r, 0], (2.37)

then the solution x = 0 of system (2.33) is uniformly stable.

Lemma 2.57 (Razumikhin uniform asymptotical stability theorem, see [91]) Sup-
pose all of the conditions of Lemma 2.56 are satisfied and in addition w(s) > 0 if
s > 0. If there is a continuous nondecreasing function p(s) > s for s > 0 such that

u(|x |) ≤V (t, x) ≤ v(|x |), t ∈ R, x ∈ R
n,

V̇ (t,φ(0)) ≤ − w(|φ(0)|) if V (t + s,φ(s)) ≤ p(V (t,φ(0))), s ∈ [−r, 0], (2.38)
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then the solution x = 0 of system (2.33) is uniformly asymptotically stable. If u(s) →
∞ as s → ∞, then the solution x = 0 is also a global attractor for the system (2.33).

Lemma 2.58 (Razumikhin uniformly ultimately bounded theorem, see [91]) Sup-
pose f : R × C → R

n takes R × bounded sets of C into bounded sets of Rn and
consider the system (2.33). Suppose u, v, w : R

+ → R
+ are continuous nonde-

creasing functions, u(s) → ∞ as s → ∞. If there is a continuous nondecreasing
function V : R × R

n → R, a continuous nondecreasing function p : R+ → R
+,

p(s) > s for s > 0, and a constant H ≥ 0 such that

u(|x |) ≤V (t, x) ≤ v(|x |), t ∈ R, x ∈ R
n,

V̇ (t,φ(0)) ≤ − w(|φ(0)|)
if |φ(s)| ≥ H, V (t + s,φ(s)) ≤ p(V (t,φ(0))), s ∈ [−r, 0], (2.39)

then the solutions of system (2.33) are uniformly ultimately bounded.

With the coupling of neural networks, complex neural networks (CNN) have
become the hot topic in the scientific community. For this kind of CNN, new dy-
namics such as synchronization have been proposed and studied. For this purpose,
synchronization stability is necessary to be introduced.

Colloquially, synchronization means correlated in-time behavior between dif-
ferent processes [106, 107]. Indeed, the Oxford Advanced dictionary, 12 defines
synchronization as “to agree in time” and “to happen at the same time.” From this
intuitive definition we propose that synchronization requires the following four tasks
[108, 109]: (1) Separating the dynamics of a large dynamical system into the dy-
namics of subsystems. (2) Measuring properties of the subsystems. (3) Comparing
properties of the subsystems. (4) Determining whether the properties agree in time.
If the properties agree then the systems are synchronized.

Consider the following dynamical system:

{
ẋ = F1(x, y, t),
ẏ = F2(x, y, t),

(2.40)

where x ∈ X ⊂ R
d1 , y ∈ Y ⊂ R

d2 , and t ∈ R. The space of all trajectories is
defined by Z = X × Y , and the global trajectory is denoted by Φ(z), z = (x, y) ∈
R

d1 otimesRd2 , d1 and d2 are positive integers, respectively. The trajectory properties
of each subsystem are defined by the functionals: gx : X ×R → R

k , gy : Y ×R →
R

k . An example of functional commonly used is gx = x(t). The comparison of the
functionals is made by the function h : Rk × R

k → R
k , that is called comparison

function. By using these functionals two synchronization definitions can be given.

Definition 2.59 (Synchronization-1) [108, 109]: The subsystems of equation (2.40)
are synchronized on the trajectory Φ(z), with respect to the properties gx , gy and
synchronization norm ‖ · ‖s if there is a time independent mapping h such that
‖h(gx , gy)‖s = 0.
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Definition 2.60 (Synchronization-2) [108, 109]: The subsystems of equation (2.40)
are synchronized with respect to the properties gx , gy and synchronization norm ‖·‖s

if there is a time independent mapping h such that ‖h(gx , gy)‖s = 0.

The synchronization definition 2.60 is what many papers in the literature call
synchronization. However, synchronization depends strongly on the trajectory. Two
subsystems can be synchronized on some trajectories and not synchronized on other
trajectories. Therefore, the trajectory dependence in synchronization definition 2.59
cannot be ignored.

The stability of synchronous motion is another issues raised by these two defin-
itions. Specifically, stability is not required by the synchronization definition 2.59.
This definition only requires that ‖h‖ = 0 exists for properties measured on the
trajectory. If the trajectory of one of the sub-systems is perturbed then this condition
may no longer hold. As a trivial example of this, consider two uncoupled identical
Lorenz systems with parameter values that produce chaotic trajectories. If both sys-
tems have the same initial condition then they will follow the same trajectory and
their motion will clearly be synchronous. However, because of chaos, this type of
synchronization is very unstable. In contrast, the second synchronization definition
2.60 implicitly requires the notion of stability because it requires ‖h‖ = 0 for all
trajectories.

A strength of the definition is that the properties and comparison functions are
not specified, a priori. Due to different synchronous target, different applications
require different properties and comparison functions. Those that are suitable for
one application are often completely unsuitable for another. This also implies that
synchronization stability is a relative stability with respect to specified or virtual
target.

The major point about this definition is the appropriated choice of the functionals
gx , gy and the synchronization norm. The appropriated choice of the functional and
synchronization norm depends upon the required type of synchronization.

In the majority of chaotic applications the required synchronization is the one re-
ferred as identical. In this case the functional are given by gx = x(t) and gy = y(t).
The synchronization stability of identical subsystems coupled in a master-slave con-
figuration exhibiting chaotic behavior is now presented, based on a criterion that
assures based on a criterion that assures the stability of the synchronous motion
under small perturbations.

Definition 2.61 (Synchronization stability): The subsystems of equation (2.40) are
synchronous stable with respect to the properties gx = x(t), gy = y(t) and
synchronization norm ‖ · ‖s if there is a time independent mapping h such that
‖h(gx , gy)‖s = ‖x(t) − y(t)‖ = 0.

When ‖x(t) − y(t)‖ = 0, it implies x(t) = y(t) = s(t), where s(t) is the
synchronous state, and s(t) can be an equilibrium point, a limit cycle, an aperiodic
orbit, or a chaotic orbit.

Based on above different definitions of stability, we can present a brief review on
the evolution process of stability theory.
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(1) In the original stability definition, it is about a fixed equilibrium point of sys-
tem ẋ(t) = f (x(t)) under some restrictions on the nonlinear function. In the phase,
asymptotical stability, exponential stability, attractivity, and so on have been studied.
For the multiple fixed or discrete equilibrium point, global stability, complete stabil-
ity, convergence, etc., have been developed. When the solution of ẋ(t) = f (x(t)) is
periodic or chaotic, such concepts as invariant sets and limit sets have been proposed.
In general, stability in the sense of Lyapunov is about the nonlinear system without
input, or the system with zero input and nonzero initial states.

(2) With the development of nonlinear system theory, some external actions can
affect the dynamics of the autonomous system ẋ(t) = f (x(t)) In this case, such
systems as ẋ(t) = f (x(t), u(t)) have been studied. In this phase, the external control
input has direct influence on the nonlinear system. In order tomore precisely describe
the qualitative behavior of nonlinear system, such concepts as ISS, iISS, OSS, IOS,
SIIOS, passive, dissipative, and so on have been proposed, and the relations among
global asymptotical stability and ISS, OSS have been discussed. These concepts have
generalized the stability conception in the sense of Lyapunov.

(3) Besides the internal states and certain input, a system always suffers from
the external disturbance. Therefore, a more accurate description of the concerned
nonlinear system is x(t) = f (x(t), u(t), w(t)), where w(t) can represent uncertain
input such as disturbance, noise, fault, and so on. In this phase, generalized input
(u(t), w(t)) can be used to evaluate the stability in the sense of boundedness. Mean-
while, in the aspect of control performances, such concepts as L2 performance and
H∞ performance have been proposed. All above three-phased, the concerned non-
linear systems are isolated or are not connected to other systems (e.g., node system
with respect to complex system with couplings).

(4) For the complex systems with couplings, such as complex networks and multi-
agent systems, such concepts as synchronization used consensus have been proposed.
Synchronization and consensus stresses the identical behavior among all the node
dynamics. Even though the complex network is synchronous, the global dynamics
of this complex networks can not be stable. This is a significant difference between
synchronization and stability in the sense of Lyapunov (or called stability of fixed
point). The reference frame of stability of fixed point is itself, or the origin of the
system without any input. Stability of fixed point is the internal dynamical behav-
ior of a system, while synchronization is the external dynamical behavior among
different systems. The reference frame of synchronization can be the dynamics of
any node systems or other external reference target. Therefore, synchronization is
the upgrade of stability in the sense of Lyapunov. The essence of stability of fixed
point is a relative stability with the inherent equilibrium of the concerned system.
For the system ẋ(t) = f (x(t)), its inherent equilibrium is naturally the origin. This
reflects that f (0) = 0 is the fundamental assumption on the nonlinear function. Or
in another way, one can say that ẋ(t) = f (x(t)) with f (0) = 0 is just an error
system required in the research of stability of fixed point, state estimation, system
identification, regulation, tracking, and synchronization. Therefore, where there is
the research of relative motion such as tracking and regulation, where there is the
Lyapunov stability theory.
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(5) The systems concerned in [84] is an interconnected large-scale systems, in
which f (0, t) = 0 is not required. However, there is no any explanation on this
features. Although some similar ideas to the present book may contain, to the best
of the authors’ knowledge, it is not explicitly noted in his series of studies on the
stability of dynamical systems. Except the work in [84], above stability definitions
are about the total variables of the systems ẋ(t) = f (x(t)) or x(t) = f (x(t), u(t)).
That is to say, Lyapunov stability theory, synchronization, ISS, and its variants are
all about the total variables or the whole systems. The global dynamics of the whole
system ultimately have the same characteristics, for example, asymptotic stability,
or synchronization, or chaos. These qualitative concepts are relative to the whole
systems. In fact, there may coexist many different dynamics in a system, for ex-
ample, periodic solution and stable equilibrium point. This phenomenon relates to
the concept of partial stability. Partial stability is an important variants and comple-
ments to the original Lyapunov and Lagrange stability concepts. For a given motion
of a dynamical system, say x(t, x0, t0) = (y(t, x0, t0), z(t, x0, t0)), partial stabil-
ity concerns the qualitative behavior of the y-component of the motion, relative to
disturbances in the entire initial vector x(t0, x0, t0) = x0 = (y0, z0), or relative to
disturbances in the initial component y0. In the former case one speaks simply of
y-stability, while in the latter case, one speaks more explicitly of y-stability under
arbitrary z-perturbations [111–114]. We note in passing that problems concerning
partial stability of dynamical systems are closely related to problems of stability with
respect to two measures [115].

Thus, stability is relative to some reference frame. If the reference frame is the
total variable, then the stability result is global; while if the reference frame is partial
variables, then the stability result is partial.

2.7 Summary

This chapter ismainly concernedwith the preliminaries of the dynamical systems and
stability theory, since neural network is also a special kind of dynamical systems. For
the stability analysis of dynamical systems, the famous Lyapunov stability concept is
emphasized here. From the background of the different stability definitions, we can
find that all the theory researches must conform to the contemporary requirement
including the industry and information technology. Practical production demands
need the scientific innovation and technical revolution. Therefore, by understanding
the history of different stability concepts and analysis methods, one may have a
deep insight into the research of science and technology, and arousing the study
interests and enthusiasm of researchers. Note that, some contents about the research
background and partial stability theory and definitions of this chapter are from the
Wikipedia—the free encyclopedia on the internet, while some original comments
for the development of stability theory and stability concepts are presented by the
authors.
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Chapter 3
Survey of Dynamics
of Cohen–Grossberg-Type RNNs

In Chaps. 1 and 2, we have introduced the history of artificial neural networks and
the concepts of dynamical systems and stability, respectively, which are related to
the research background of complex neural networks and the basis of qualitative
stability analysis in the mathematical meaning. In this chapter, we will present a
comprehensive review on the stability research of Cohen–Grossberg neural networks
(a special kind of RNNs) in recent years. By analyzing the internal structures and
external actions of RNNs, some elements that can be explored to study the stability
of RNNs have been pointed out, which will provide some new insights and new
alternatives to reduce the conservativeness of the stability criteria. The contents in
this chapter are mainly from the result in [39], which forms the main fundamentals
of complex neural networks in the whole book.

3.1 Introduction

The neural approach for solving optimization problems has attracted considerable
attention in recent years, see [1–9] and references therein. However, some crucial
drawbacks have seriously limited its applicability. One main drawback is that spu-
rious suboptimal responses, due to the existence of many stable equilibrium points,
are likely to be present [1, 4, 5, 9]. The main features that a neural optimizer of the
Hopfield type (or the original Hopfield additive neural networks) should possess are
as follows.

(1) The interconnection matrix should be symmetric. The property of symmetry
is indeed inherently related to the optimization capabilities [1, 2, 7].

(2) There should be a unique equilibrium point which is globally asymptotically
stable (GAS), i.e., locally stable and attracting all trajectories ofmotion.As discussed
in [3–5], GAS is a necessary property to avoid the presence of spurious responses
and to guarantee convergence towards the global optimal solution.
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(3) The neural network should be absolutely stable (ABST). In accordance to [10,
11], by ABST of a neural network it means that there is a GAS equilibrium point for
every neuron activation function belonging to the class S of sigmoidal (i.e., bounded
increasing) functions and for every constant input vector to the neural network. In
general, ABST is a relative concept to the total elements set of neural networks, for
example, the entire set is composed of external input class, activation function class,
and the time delay class. Occasionally, one may also define ABST with respect to
some element. For example, the networks are ABST with respect to any forms of
activation function belonging to a specified class, while other elements of networks
are known and deterministic. ABST is important since in practical problems the
neuron activation is known to belong to the class S, but its shape is not specified
exactly. A typical case is that of neural networks in the high-gain limit [1, 7], where
GAS must hold for every sufficiently large value of the activation gain. Also, for
neural networks running in real time, the input data are fed by using biasing input
currents that are held constant in each given sampling interval and then vary at a clock
rate in many applications [1]. Then, for each constant input vector there should be
a unique GAS equilibrium. ABST neural networks are best suited for optimization
problems, being devoid of spurious responses for every choice of the activation
function and of the input vector.

Research on recurrently connected neural networks is an important topic in neural
network theory. Among them, the Cohen–Grossberg neural networks were first pro-
posed in the pioneer work of Cohen–Grossberg in 1983 [17], which includes the
famous Hopfield neural networks as its special cases. Since Cohen–Grossberg neural
networks, Hopfield neural networks and other recurrent neural networks have their
promising potential for the tasks of classification, associative memory, parallel com-
putations, and their ability to solve difficult optimization problems, they have greatly
attracted the attentions of the scientific community. The success of most of these net-
works’ applications relies heavily on understanding the underlying dynamic behavior
of these networks. A thorough analysis of this dynamics is a necessary step toward a
practical design of the recurrent neural networks. One of the most investigated prob-
lems is that the existence, uniqueness, and global asymptotic/exponential stability of
the equilibrium point. The number of equilibrium points of the neural networks relate
to their storage capacity.Whendesigning an associativememoryneural networks,we
should make as many stable equilibrium states as possible to provide a memory sys-
tem with large information capability, an attractive region of each stable equilibrium
state as large as possible to provide the robustness and fault tolerance for information
processing, and a convergence speed as high as possible to ensure the quick conver-
gence of the neural network operation. Due to the properties of locally asymptotic
stability, the associative memory network is used mainly for information retrieval,
pattern recognition, and so on. On the other hand, to embed and solve many prob-
lems in applications of neural networks to parallel computations, signal processing,
and other problems involving the optimization, the dynamic neural networks have to
be designed to have only one equilibrium point which is global asymptotic stability
(that is, the whole real space or the interested domain as its domain of attraction)
to avoid the risk of spurious equilibrium point or the problem of local minima. In
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fact, the earlier applications of recurrent neural networks to optimization problems
have suffered from the existence of a complicated set of equilibrium point. Thus, the
global asymptotic/exponential stability of a unique equilibrium point for RNNs is of
great importance from theoretical and applicable points of view.

Research on the dynamic behaviors of RNNs can date back to the early days
of neural network science. For example, multistable and oscillatory behaviors
were studied in [12–14] and chaotic behaviors are investigated in [15]. References
[1, 7, 16] looked into the dynamic stability of symmetrically connected networks
and showed their practical applicability to optimization problems. It should also be
noted that Cohen and Grossberg [17] presented more rigorous analytical results on
the global stability of the recurrent neural networks. In the early times, global sta-
bility of symmetrically connected networks has been widely studied, and by now
most of the results have been well established [1, 4, 7, 16–18]. Because stability of
symmetric RNNs usually ensures the local stability, and symmetry is too much ideal,
local and global stability of asymmetrically connected neural networks begin to be
widely studied since 1989 (Note that asymmetry is the source power of evolution).
For example, some sufficient conditions for the local exponential stability and for
the existence and the uniqueness of an equilibrium point have been obtained in [5,
19, 20]. However, they did not address the issue of global stability of the networks
(Note that, global stability may have different definition. Here, it means the global
stability of the unique equilibrium point). In practice, the topic of global stability is of
more importance than that of local stability, and some sufficient conditions for global
stability have been given in [21]. Reference [22] applies contraction mapping theory
to obtain some sufficient conditions for global stability. Reference [23] generalizes
some results in [21, 22] by use of a new Lyapunov function. Reference [24] proves
that the diagonal stability of the interconnection matrix implies the existence and
uniqueness of an equilibrium point and the global stability at the equilibrium point.
References [4, 25, 26] propose three main features a neural network should possess.
Among them, the important one is that the neural networks should be absolutely
stable. They also point out that the negative semi-definiteness of the interconnec-
tion matrix guarantees the global stability of the Hopfield networks and prove the
absolute global stability for a class of activation functions. Reference [27] applies
the matrix measure theory to get some sufficient conditions for global and local sta-
bility. References [28, 29] discuss the stability of delayed neural networks by using
Lyapunov functions and Lyapunov diagonal stability condition on interconnection
matrix. References [31, 32] introduce a newmethod to address the global stability of
Hopfield neural networks. Reference [33] proves the exponential stability under less
restrictive conditions and also obtains an estimate of the accurate rate of convergence.

The analysis of dynamical behavior of Cohen–Grossberg neural networks was
first discussed by Cohen and Grossberg in 1983 [17] and later studied further by
Grossberg in 1988 [34], in which some global limit property with symmetric connec-
tion matrix was given. Since 2000, researches on Cohen–Grossberg neural networks
with asymmetric connection matrices have become the main focus in the neural
network community. Reference [35] presents some sufficient conditions for expo-
nential stability of Cohen–Grossberg neural networks with asymmetric connection
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matrices. However, the signs of entries in the connection matrices are neglected in
the conditions of theorems given in [35], and as a result the differences between the
excitatory and inhibitory effects have been ignored. In addition, the activation func-
tions are restricted to be bounded functions in [35]. Reference [36] gives a detailed
description on the development history of Cohen–Grossberg neural networks, and
some global asymptotic stability criteria have been established without requiring the
boundedness on the activation function and the positive lower boundedness on the
amplification function. For the case of bounded amplification function, some expo-
nential stability criteria have been established. All the stability results in [36] are in
the forms of Lyapunov diagonal stability and M-matrix, respectively.

Time delays are ubiquitous both in biological and artificial neural networks due to
the processing of information [37–39]. For example, they may arise because of the
finite propagation speed of signals along the axons in nervous systems or the finite
switching speed of amplifier in neural circuits. Therefore, the study of effects of time
delays on stability and convergent dynamics of neural networks has attracted consid-
erable attention in recent years. Under certain symmetric connectivity assumptions,
it is found that a neural network with time delays will be stable when the delays
do not exceed certain (usually small) bounds [18, 40, 41]. For asymmetric neural
networks with delays, sufficient stability conditions independent of or depending on
the magnitude of delays are established [42–45]. These results are mostly based on
linearization analysis and energy or Lyapunov functional method (Note that energy
function is generally not the Lyapunov function. Energy function has a energy-like
expression form, and it is a continuous and differentiable function. The foundation of
energy function-based method is the LaSalle invariant set principle, while Lyapunov
functionmethod is on the basis of Lyapunov stability theory). Recently, almost all the
stability results are for RNNs with delays, no matter discrete delay and distributed
delays, and many different analysis methods are proposed and applied, and more and
more elegant results have been reported and published.

Before stating the detailed review, we first give some explanations on some con-
cepts, which will be used in this chapter. Regarding on the other conceptions, they
are all formal and standard, which can be found in the literature or classical text-
books [39].

(1) On the conception of inhibitory and excitatory action. In fact, inhibitory and
excitatory action corresponds to the competitive-cooperative connectivity of a net-
work. By competitive connection it means the way in which a neuron’s firing inhibits
the firing of other neurons. Conversely, cooperative connection means the way in
which a neuron’s firing excites the firing of others. The competitive-cooperative con-
nection pattern can thus be recognized by the sign of the weights: positive weights
are due to excitatory coupling, negative weights are due to inhibitory coupling, while
a zero weight indicates no interaction at all.

(2) Stability result in algebraic inequality form. Nowadays, there are many differ-
ent expression forms of stability results, for example, in the form of M-matrix, H -
matrix, matrix measure or norm, Lyapunov diagonal stability, LMI, matrix inequal-
ity, P or P′ Class, and so on. For a kind of stability criteria with scalar inequality
form, which involves suitable parameter to be tuned, we call them as stability results
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in algebraic inequality form. These kinds of stability results have such features: (a)
Expressed in scalar inequality form and involving some parameters to be determined,
(b) Derived mostly by algebraic inequalities, for example, Young inequality, Holder
inequality and Minkowski inequality, and (c) Difficultly unified in a vector or matrix
form due to different parameters being involved.

(3) Stability result in like-M-matrix form. These kind of stability results lie
between M-matrix and algebraic inequality form. For some specific case, stability
result in like-M-matrix form can be converted to stability result in M-matrix form.
For general case, it is expressed in the algebraic inequality form. Stability result in
algebraic inequality form generally cannot be expressed in any compact form.

3.2 Main Research Directions of Stability of RNNs

In a recurrent neural network, it is mainly composed of such components as self-
feedback connection weights, activation functions, interconnection weights asso-
ciated with activation functions, delays, delay interconnection weights associated
with activation functions with state delays, and amplification function in Cohen–
Grossberg-type neural networks. In a class of RNNs with Cohen–Grossberg type,
which are mainly used in the optimization problem solving, associative memory,
and pattern recognition, the self-feedback connection weight is always negative, and
plays a stabilization role in the whole networks. For the interconnection weight and
delay interconnection weight, they can be positive, negative, and zero, which cor-
respond to the excitatory, inhibitory, and no action on each other. For the activation
functions associated with state or delayed state, they may be the same or different in
the whole networks. For time delay, it can be constant or time-varying, single or mul-
tiple delays, neutral, discrete and distributed delays, and so on. In order to improve
the stability performance, one can stress any component in the RNNs, which will
lead to better stability results. Along the aforementioned line, in this section, we will
give detailed reviews on the development of stability theory of RNNs.

3.2.1 Development of Neuronal Activation Functions

Many existing results on the existence, uniqueness, and global asymptotic or expo-
nential stability of the equilibrium point of RNNs concern the case that the acti-
vation functions are continuous, bounded, and strictly monotonically increasing.
These assumptions make the results inapplicable to some important engineering
problems. For example, when RNNs are designed for solving optimization prob-
lems in the presence of constraints (linear, quadratic, or more general programming
problems), unbounded activation functions modeled by diode-like exponential-type
functions are needed to impose the constraints. Because of the difference between
the bounded activation function and unbounded activation function, which will affect
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the dynamics of RNNs, the extensions of stability results with bounded activation
function to the unbounded case is not straightforward. Different from the bounded
activation function where the existence of an equilibrium point is always guaranteed,
for the case of unbounded activation function, it may happen that there are no equi-
librium points [25, 26]. When considering the widely used piecewise linear neural
networks (which is composed of the piecewise linear activation function) [3, 46],
infinite interval with zero slope are present in the activation functions, making it of
interest to drop the assumption of strictly monotonically increasing and continuous
first-order derivative for the activation functions. Reference [26] studies a class of
Hopfield neural network with unbounded monotonic activation function. References
[49, 50] have shown that the absolute capacity of an associative memory model
can be remarkably improved by replacing the usual Sigmoid activation functions
with nonmonotonic activation functions. Therefore, it seems that for some purposes,
nonmonotonic (and not necessarily smooth) functions might be better candidates
for neuronal activation functions in designing RNNs. In many electronic circuits,
amplifiers, which have neither monotonically increasing nor continuously differen-
tiable input-output functions, are frequently adopted. For example, Ref. [1] designs
a linear programming Hopfield network with piecewise linear (nonsmooth) activa-
tion function, and Ref. [44] studies the global attractivity of delayed Hopfield neural
network models with bounded and nonmonotonic activation functions. Therefore,
for different application fields, both RNNs with bounded and unbounded activa-
tion functions have been studied sufficiently. An apparent tendency is toward the
unbounded activation function in theory. In practical applications, one can take spe-
cific kind of activation function to solve the corresponding problems, either bounded
or unbounded activation functions.

The following activation functions have been used in the existing references.
(1) In the original papers [1, 7, 16, 18, 47], the activation function is a sigmoidal

function such that

g
′
(u j ) = dg j (u j )/du j > 0, lim

ζi →+∞
gi (ζi ) = 1,

lim
ζi →−∞

gi (ζi ) = −1, lim
|ζi |→∞

g
′

i (ζi ) = 0, i, j = 1, . . . , n. (3.1)

Obviously, the activation function is continuous, differential, smooth, monotonic,
and bounded. Also, a general Sigmoid function gi (ui ) is defined by the properties
|gi (ui )| ≤ M and dgi (ui )

dui
> 0, where M is a constant [46, 48].

(2) Piecewise linear (PWL) functions [3, 46, 51–57]. A special case of PWL
function has the following form,

gi (s) = |s + 1| − |s − 1|
2

. (3.2)

A PWL multilevel neuron activation can be found in [57]. The use of PWL approx-
imates in neural-network modeling features a number of advantages, among which
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we mention the capability to exactly locate the neural-network equilibrium points.
This in turn has permitted to derive effective techniques to design neural networks for
solving specific signal processing tasks, such as image processing, the implementa-
tion of content-addressablememories, and the solution of combinatorial optimization
problems. More generally, PWL modeling and analysis have proven extremely use-
ful to study circuits containing nonlinear resistors, also due to the fact that the theory
of PWL functions is well established and their universal approximation properties
of continuous functions are well understood.

(3) The following activation function has been widely used in the existing litera-
ture [58–63],

|gi (ζ) − gi (ξ)| ≤ δi |ζ − ξ|, (3.3)

no matter whether the activation function is bounded or not. As pointed out in [58],
the type of activation functions in (3.3) is not necessarily monotonic and smooth.

(4) The following activation function has been used in the existing literatures
[64–67],

0 <
gi (ζ) − gi (ξ)

ζ − ξ
≤ δi . (3.4)

(5) The following activation function has been widely used in the existing litera-
tures [60, 62, 68–71],

0 ≤ gi (ζ) − gi (ξ)

ζ − ξ
≤ δi . (3.5)

(6) The following activation function is developed in recent year [72–79],

δ−
i ≤ gi (ζ) − gi (ξ)

ζ − ξ
≤ δ+

i , (3.6)

As pointed out in [75–78], δ−
i and δ+

i may be positive, negative, or zero. Then, those
previously usedLipschitz conditions (3.1), (3.4), and (3.5) are just the special cases of
the condition (3.6). Note that for thewell-knownLur’e system, the nonlinear function
gi (s(t)) is memoryless and possibly time-varying, which is piecewise continuous in
t and globally Lipschitz in s(t) and satisfies the sector condition

(g(u(t)) − K1u(t))T (g(u(t)) − K2u(t)) ≤ 0,

where K1 and K2 are constant real matrices of appropriate dimensions and K =
K1 − K2 is a symmetric positive definite matrix, g(u(t)) = (g1(u1(t)), . . . ,
gn(un(t)))T . It is customary that such a nonlinear function g(u) is said to belong
to a sector [K1, K2]. Obviously, activation function (3.6) has the features of sector
condition.
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The above-listed activation functions belong to the class of continuous func-
tion. For more details on the relations of global Lipschitz continuous, partially Lip-
schitz continuous, and locally Lipschitz continuous, readers can refer to [80, 81]. In
fact, some discontinuous activation functions also exist in practical applications. For
example, in the classical Hopfield neural networks with graded response neurons [7],
the standard assumption is that the activations are employed in the high-gain limit
where they closely approximate a discontinuous hard comparator function. Another
important example concerns the class of neural networks introduced by Kennedy
and Chua [3] to solve linear and nonlinear programming problems, in which the con-
straint neurons are with a diode-like input-output activations. In order to guarantee
the satisfaction of constraints, the diodes are required to possess a very high slope in
the conducting region, i.e., they should approximate the discontinuous characteristic
of an ideal diode. Therefore, the following activation function is for the discontinuous
case.

(7) Discontinuous activation function [82–88]. Let gi (·) be a continuous, nonde-
creasing function and in every compact set ofR, each gi (·) has only finite discontin-
uous points. Therefore, in any compact set in R, except some finite points ρk , there
exist finite right and left limit gi (ρ

+) and gi (ρ−) with gi (ρ
+) > gi (ρ−). In general,

one assumes that gi (·) is bounded, i.e., there exist a positive number G > 0, such that
gi (·) ≤ G. On the other hand, stability analysis of neural networks with discontinu-
ous activation functions has drawnmany scholars’ attention and many related results
have been published in the literature since the independent pioneering work of Forti
and Nistri in [82, 83] and Lu and Chen in [84] (Note that, Ref. [84] was submitted
in Oct. 2003, while the paper [82] was not published. Moreover, the model, method
used and the activation functions (unbounded) in [84] are different from (bounded
activation functions) those in [82]).

Therefore, activation functions have evolved from bounded cases to unbounded
cases, from continuous to discontinuous, and from strictly monotonic case to non-
monotonic case. All these show the depth of stability research on the essence of
RNNs.

3.2.2 Evolution of Uncertainties in Interconnection Matrix

For the deterministic and accurate connection weight matrix, lots of stability results
have been published since 1980s. However, with the application and implementa-
tion of RNNs, the connection weight matrix can be disturbed or perturbed in the
external environment. Therefore, robustness or ill-posedness of RNNs against such
perturbations should be considered.

There are generally several kinds of expression forms of uncertainty in the
literature.
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(1) Uncertainty with match condition

ΔA = M F(t)N , FT (t)F(t) ≤ I, (3.7)

or

ΔA = M F0(t)N , F0(t) = (I − F(t)J )−1F(t), FT (t)F(t) ≤ I, (3.8)

where M, N , J are all constant matrices, J T J ≤ I . This kind of uncertainty is very
convenient in the stability proof based on LMI method. Robust stability for neural
network with matched uncertainty (3.7) has been studied in [89].

(2) Interval uncertainty

A ∈ AI = [A, A] = {[ai j ] : ai j ≤ ai j ≤ ai j }. (3.9)

This kind of uncertainty is usually used in the non-LMI method. However, if let
A0 = (A+ A)/2,ΔA = (A− A)/2, then interval uncertainty (3.9) can be expressed
as the following form,

AJ = {A = A0 + ΔA = A0 + MA FA NA|FT
A FA ≤ I }, (3.10)

where MA, NA, FA are well defined according to some arrangement of elements
in A and A. Obviously, interval uncertainty (3.9) has been changed into the form
of uncertainty with match condition (3.7). It has been shown in [62, 90–92] that
interval uncertainty (3.9) is equivalent to the uncertainty (3.10). Therefore, both
interval uncertainty and matched uncertainty can be uniformly dealt with by LMI
method. Robust stability for neural networks with interval uncertainty (3.9) has been
studied in [62, 91, 93].

(3) Absolute value uncertainty or unmatched uncertainty

ΔA = (δai j ) ∈ {|δai j | ≤ ai j }. (3.11)

(4) Polytopic-type uncertainty:

A ∈ Ω,Ω =
{

A(ξ) =
p∑

k=1

ξk Ak,

p∑

k=1

ξk = 1, ξk ≥ 0

}
, (3.12)

where Ak are constant matrices with compatible dimensions, ξk are time-invariant
uncertainties. Robust stability for system with this kind of uncertainty has been
studied in [94–96].

Above uncertainties are for the case of constant and real-value interconnection
matrices. Recently, some control system ideas have been incorporated into the sta-
bility research of RNNs. For example, similar to complex-value system and time-
varying system, the interconnection matrix can be complex-value, time-varying,
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switching, jumping, or state-dependent [97–99]. In these cases, partial concepts of
aforementioned uncertainty can be suitable, for example, the boundedness of uncer-
tainty. However, the specific expression of uncertainty in these cases will be different
from above uncertainty expressions (3.7)–(3.12). How to redefine the uncertainty in
these complex cases is not an easy work.

3.2.3 Evolution of Time Delays

Time delays involved in RNNs have evolved from the single constant delay τ to
the multiple delays τi and τi j . Corresponding, the time-varying cases evolves from
single delay τ (t) to the multiple delays τi (t) and τi j (t), i, j = 1, . . . , n. Note that
all the delays such as τ , τi , τi j , τi (t), and τi j (t) are called discrete delays since they
only have actions on the neural networks at some isolated or discrete point with
respect to continuously distributed delays. For the continuously distributed delay∫ t

t−τ (t) u(s)ds,
∫ t

t−τ (t) Ki j (s)u(t − s)ds, and
∫ t
−∞ Ki j (s)u(t − s)ds, or

∫ ∞
0 Ki j (t −

s)u(s)ds, where Ki j (s) is a kernel function satisfying some constraint conditions.
These kinds of delays may keep a short- or long-time interval. Therefore, the past
history or information of system states may have direct influence on the present states
[100, 101].

For the case of time-varying delay, the derivative of time-varying delay τ (t) (or
τi (t) and τi j (t)) has been relaxed from τ̇ (t) < 1 (or τ̇i (t) < 1 and τ̇i j (t) < 1) to
τ̇ (t) ≥ 1 (or τ̇i (t) ≥ 1 and τ̇i j (t) ≥ 1). That is, due to the contribution of free weight
matrix method, delay partitioning method, and other methods, no matter slow time-
varying delays or fast time-varying delays (τ̇ (t) ≥ 1) in RNNs can be dealt with
easily at present.

It is common that time-varying delay τ (t) belongs to an interval 0 ≤ τ (t) ≤ τ in
the previous literature (date back to the end of 2006). Since 2007, the time-varying
delay interval is expanded from 0 ≤ τ (t) ≤ τ to 0 ≤ τ ≤ τ (t) ≤ τ [102]. The
meaning of this expansion lies in the fact that the lower bound of time-varying delay
in a practical system cannot be zero. On the other hand, the upper bound of time
delay to be estimated in a real delayed system can be approximated to the real value
if the nonzero lower bound of time delay is used. In addition, neutral-type delay is
involved in RNNs due the implementation of electronic circuits in a real system.

Many other kinds of delays used in the control system and biological system
have also been involved in RNNs, for example, stochastic time delay is introduced
into the neural networks by [74, 79]. In the existing references for delayed RNNs,
only the deterministic time delay is concerned, and the criteria are derived based only
on the information of variation range of the time delay. Actually, the time-varying
delay in RNNs often exists in a random fashion, and its probabilistic characteristic,
such as Poisson distribution or normal distribution, can often be obtained by statistical
methods. It often occurs in the real systems that some values of the delay are very
large but the probabilities of the delay taking such large values are very small. In
this case, if only the variation range of time delay is employed to derive the criteria,
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the results may be somewhat more conservative. Therefore, a challenging issue is
how to derive some criteria for the uncertain stochastic RNNs which can exploit the
available probability distribution of the delay and obtain a larger allowable variation
range of the delay. As stated in [74], however, few results have been reported in the
literature.

With the changes of different time delays, the proof procedure and the expression
form of stability results are different, which will promote the development of neural
network theory and the related topics in other disciplines.

3.2.4 Relations Between Equilibrium and Activation
Functions

In general, there are two kinds of proof methods to the existence and uniqueness of
the equilibrium point of RNNs in the literature. However, there is no clear expla-
nation about the relations between these two proof methods yet. This problem is a
fundamental topic in neural network stability theory, andmay lead to misunderstand-
ing for the readers. Based on this purpose, in this subsection, we will try our best to
present an explanation on this problem.

For the boundedactivation function |gi (xi )| ≤ M or the like-unbounded activation
function |gi (xi )| ≤ δ0i |xi |+σ0

i , where M > 0, δ0i ≥ 0, and σ0
i ≥ 0 are constants, the

existence of equilibrium point is established mainly on the basis of Brouwer’s fixed
point theorem, Schauder fixed point theorem and contraction mapping principle [25,
26, 47, 103, 104]. Comparison principle, theory of monotone flow and monotone
operator are also used to ensure the existence and uniqueness of the periodic solution
of a class of RNNs [105].

In general, for the case of bounded/unbounded activation functions satisfying
Lipschitz continuous conditions, the existence of the solution can be guaranteed by
the existence theorem of ordinary differential equation [106], which is consistent
with the results in [23, 25, 26, 36, 47, 103, 107, 108].

For the unbounded activation function (in general sense, no specific form of the
activation function is given), the existence of equilibriumpoint inRNNs is established
mainly on the basis of homeomorphism mapping [26, 108, 109], topological degree
theory [110, 111], Leray–Schauder principle [112] and so on.

The existence of equilibrium point cannot guarantee the uniqueness of the fixed
point. In general, there are two ways to deal with the uniqueness. One way is that the
uniqueness of the equilibrium point can be followed directly by the global asymp-
totic/exponential stability of the equilibrium point. The other way to derive the
sufficient conditions guaranteeing the uniqueness of equilibrium point is to use con-
traction mapping, homeomorphism mapping, contradiction method and comparison
principle [103, 110, 111, 113].

Aforementioned statements have already concerned the following questions:Must
the existence, uniqueness, and global asymptotic/exponential stability be simultane-
ously done in the proof of the stability of neural networks?
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Obviously, for the case of bounded activation function, we can directly present
the proof on the global asymptotic/exponential stability as it is well known that
the bounded activation function always guarantees the existence of the equilibrium
point. For the like-unbounded case, the existence of the equilibrium point is also
guaranteed as the same as that bounded activation function. Therefore, it suffices to
present the global asymptotic/exponential stability proof on the equilibrium point,
and the uniqueness is directly followed from the global stability [114].

For the case of unbounded activation function (in general sense), onemust provide
the proof on the existence, uniqueness, and global asymptotic/exponential stability
of the concerned neural networks, respectively. Otherwise, it is not rigorous in math-
ematical viewpoints. However, in the general case of bounded/unbounded activation
functions satisfying Lipschitz continuous conditions, the existence of the solution
can also be guaranteed by the existence theorem of ordinary differential equation
[106]. On the other hand, the stability conditions guaranteeing the global asymp-
totic/exponential stability is always sufficient (at least at present), these stability
conditions are also sufficient for the existence and uniqueness. In other word, an exis-
tence condition is usually a necessary condition for the global asymptotic/exponential
stability. Therefore, for activation functions satisfying Lipschitz continuous condi-
tions (no matter it is bounded or not), global asymptotic/exponential stability can be
directly proved. For activation functions satisfying non-Lipschitz continuous condi-
tions, the existence, uniqueness, and global asymptotic/exponential stability must be
done in the stability proof of RNNs. The first step is to prove the existence, then the
uniqueness and global asymptotical/exponential stability of the equilibrium point.

The above-introduced methods present two ways to prove the global stability
of the unique equilibrium, which can derive the same conclusions with different
orders. Different from above proof method, [31, 115] provide an effective approach,
called direct method, to prove the stability, which prove the exponential convergence
directly, and that the existence and uniqueness of the equilibrium point is a direct
consequence of the exponential convergence. Furthermore, the boundedness of the
activation function is not required and the derivatives of the state variables converge
to zero exponentially in [31, 115]. The main idea of direct approach proposed in [31,
115] is differentiating the differentiable system with respect to time t directly, and
obtaining a system with the derivatives of state variable. To the authors’ knowledge,
Ref. [31] is the first paper providing such a unified approach in the stability research
of RNNs.

Note that in the existing literature, stability proof procedure for recurrent neural
networks usually consists of two steps: First, prove the existence and uniqueness of
the equilibrium point. Second, prove the stability of the equilibrium point.

3.2.5 Different Construction Methods of Lyapunov Functions

Generally, there are two concepts concerning the stability of systems with time
delays. The first one is called as the delay-independent stability criteria which do not
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include any information about the size of the time delay and the change rate of time-
varying delays [108, 112, 116–118]. For the systems with unknown delays, delay-
independent stability criteria will play an important role in checking the stability
problems. The second is called as the delay-dependent stability criteria, in which the
size of the time delay is mainly taken explicitly in the formulation [102, 119]. Strictly
speaking, if the information on the change rate of time-varying delays is involved
in the stability conditions, this kind of stability result should be categorized into the
delay-dependent one. That is to say, stability criteria associated with any information
on time delays are all called delay-dependent criteria. As the information on the
size of delays and the magnitude of change rate of time-varying delays are used in
delay-dependent criteria, delay-dependent criteria are often be less conservative than
delay-independent ones, especially when the size of time delay is small. Notice that
most of the cited approaches for the stability analysis of RNNs with time delay are
on the basis of Lyapunov–Krasovskii functional method.

It should be pointed out that, in the past few years, linear matrix inequalities
(LMIs) have gainedmuch attention for their computational tractability and usefulness
in system engineering [120] because the so-called interior point method [121] has
been proved to be numerically very efficient for solving the LMIs. The number of
analysis and design problems that can be formulated as LMI problems is large and
continues to grow.

LMI Control Toolbox implements the state-of-the-art of interior point LMI
solvers. While these solvers are significantly faster than classical convex optimiza-
tion algorithms, it should be kept in mind that the complexity of LMI computations
remains higher than that of solving, say, a Riccati equation. For instance, problems
with a thousand design variables typically take over an hour on today’s workstations
[122]. However, research on LMI optimization is a very active area in the applied
math, optimization and the operation research community, and substantial speed-ups
can be expected in the future.

In [123], the approach applied to delay-dependent stability analysis of RNNs
with time delays is done by Razumikin-type techniques based on construction of a
Lyapunov function. It is known, however, that there exists no general rule to guide
how a proper Lyapunov function can be constructed for a given neural network.
So, the construction of Lyapunov function frequently becomes very skillful, which
makes the use of this approach somehow conservative.

In the early day of neural network stability theory (before 1990), most stability
studies stem from the viewpoint of building the algebraic relations among the physical
parameters in a neural network. Therefore, the stability criteria based on matrix
measure, matrix norm, and M-matrix have been developed.

Since the physical parameters in a neural network may have some nonlinear
relations or some constraint relations by some free variables, which will affect the
stability criteria crucially, stability criteria based on algebraic inequality, e.g., Young
inequality, Holder inequality, Poicare inequality, Hardy inequality, have become the
hot topic. Although the stability criteria based on algebraic inequality method can be
less conservative in theory, they are generally difficult to check due to more adjusting
variables being involved while we have no prior information to know how to tune
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these variables. A compromise or balance between computational complexity and
effectiveness should be a possible way to find some alternative methods to establish
stability criteria. Since LMI is regarded as a powerful tool to deal with matrix opera-
tion, LMI-based stability criteria have received the attentions of researchers all over
the world. LMI is a vector form to build the relation of the physical parameters in a
neural network. Therefore, they have compact structure and elegant symmetry, which
build a cube architecture to connect the physical parameters in a neural network. In
this cube framework, different transformations and changes lead to the different sta-
bility criteria. Therefore, LMI-based stability analysis and synthesismethod inRNNs
has become one of main streams sine 2002.

In the stability analysis of RNNs based on Lyapunov theory, there are two keys
to be stressed. One is how to construct effective Lyapunov function, the other is
how to efficiently estimate the derivative of the Lyapunov function. The former is
always concerned with the system thinking, the latter is often related tomathematical
computational methods, especially the inequality techniques. If these two keys are
harmony in the stability analysis, some effective results will be obtained. For the
inequality methods, readers can refer to any textbook about inequality, e.g., [124].

In the subsection, we will first introduce some effective matrix analysis methods
in the estimation of derivatives of Lyapunov function. Thesematrix analysis methods
are not the matrix inequality methods, but they are useful to analyze the qualitative
characteristics of RNNs. Then, we will introduce some decomposition methods,
which will be helpful to constructing different Lyapunov functions.

The following threematrix analysis methods can be used inmany given Lyapunov
function, which will provide sufficient information to improve the effectiveness of
the stability results.

(1) Free weight matrix method: This is a very powerful technique to deal with
the case of fast time-varying delay, i.e., τ̇ (t) ≥ 1. Before the emergence of free
weight matrix method, all the LMI-based stability results can only deal with the case
of slow time-varying delay, i.e., τ̇ (t) < 1. The assumption that τ̇ (t) < 1 stems from
the need to bound the growth variations in the delay factor as a time function. It
may be considered restrictive but in some applications it is considered realistic and
holds for a wide class of retarded functional differential equations. In most cases,
the constraint condition τ̇ (t) < 1 is from the requirement of mathematical analysis
method instead of engineering application.

The essence of free weight matrix method is to add free variables/matrices in
an identical equation, which will not effect the identical equation. For example, the
following identical equation holds according to the Newton–Leibniz formula,

x(t) − x(t − τ (t)) −
∫ t

t−τ (t)
ẋ(t)dt = 0, (3.13)

or the following nonlinear system,

ẋ(t) − Ax(t) − Bx(t − τ (t)) − C f (x(t)) = 0. (3.14)
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If multiplying xT (t)Q or xT (t)Q + gT (x(t))P , −xT (t)Q or xT (t)Q − gT (x(t))P
on both sides of (3.13) and (3.14), respectively, the identical equations still hold.
That is to say, element 0 is substituted by some implicit relations among the system
parameters and redundant variables Q and P . In this case, we call Q and P the
free weight matrix. Therefore, we can utilize the combination of x(t) and f (x(t)),
especially the combinations xT (t)Qx(t) or −xT (t)Qx(t), which will compensate
the effects of fast/slow time-varying delays on the systems.

(2) Nondelay-matrix decomposition method: For the case of Hopfield and
Cohen–Grossberg neural network without delay, some matrix decomposition meth-
ods are used [125–129]. In [125], the nondelayed connection matrix W satisfying
W T W = W W T is decomposed into the summation of its symmetric and skew-
symmetric parts, W = Ws + Wss , where Ws = W T

s is the symmetric part and
Wss = −W T

ss is the skew-symmetric part of W , respectively. Then based on matrix
eigenvalue method, a necessary and sufficient condition is presented to guarantee the
absolute stability of the concerned Hopfield neural network. Similarly, dropping out
the restriction of W T W = W W T , a more general matrix decomposition is used in
[126]. That is, for any matrix W , it can always be written as summation of its sym-
metric and skew-symmetric parts, i.e., W = W s + W ss , where W s = (W + W T )/2
and W ss = (W − W T )/2 are the symmetric and the skew-symmetric parts of W ,
respectively. Then based on the matrix eigenvalue method, a new necessary and suf-
ficient condition is presented to guarantee the absolute stability of the concerned
Hopfield neural network, which improves the result in [125]. This method is suitable
for the results based onmatrix eigenvalue method. Meanwhile, this method is mainly
used in the Hopfield neural network without delay. In [127], the nondelayed matrix
W is decomposed into the summation of n matrices Wi , where the i th column is
composed by the i th column of W , and the other columns are all zeros. Similarly,
in [128], the nondelayed matrix W is decomposed into the summation of n matrices
Wi , where the i th row is composed by the i th row of W , and the other columns are
all zeros. In general, the method used in [127, 128] will improve the stability result
based on Lyapunov diagonal stability (LDS) as stated in [127, 128], while it will
be conservative than the stability results based on LMI. For the Cohen–Grossberg
neural network, the nondelayed matrix W is decomposed as the product of a sym-
metric matrix and the positive definite diagonal matrix, i.e., W = DS, where D is
a positive definite diagonal matrix, and S is a symmetric matrix [129]. In general,
DS �= SD, therefore, the stability condition in [129] relaxed the condition in [17].

(3) Interval matrix partitioning method: This method is devoted to the robust
stability analysis for neural networks with interval uncertainty, i.e., uncertainty
connection matrix A ∈ [A, A]. Similar to delay partitioning method, the interval

A ∈ [A, A] is divided by Ã = A−A
m or ãi j = ai j −ai j

m where m is an integer greater
than or equal to 2, or the split interval may be unequal. Then based on the LMI
method, large sets of matrix inequalities need to be checked simultaneously. This
interval matrix partitioning/splitting method has been proposed in [130].
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Next, the following decomposition methods can provide four different ways to
construct Lyapunov function. Along this way, it can present us some certifications
to show the idea on how to construct the Lyapunov function.

(1) Delay-matrix partitioning/decomposition method: Since LMI is a very
powerful tool to analyze the stability of many kinds of neural networks with dif-
ferent delays, it is natural to build some LMI-based stability criteria for the neural
systems with different multiple delays τi j (t). For the case of τ (t) and τ j (t), many
LMI-based stability results have been established. In the case of τi j , delay-matrix
decomposition method is proposed to specially deal with the term x(t − τi j (t)) or
g(x(t −τi j (t))) [116, 131–134]. For the neural systemswith continuously distributed
delay

∫ ∞
0 Ki j (s)ds, the delay-matrix decomposition method is still valid [135–137].

The expression formof stability results based on delay-matrix decompositionmethod
is a natural generalization of the expression form of those stability results for the case
of τ (t) and τ j (t). Delay-matrix decompositionmethod is a special method to analyze
the system with multiple delays τi j (t) or distributed delays

∫ ∞
0 Ki j (s)ds. It is the

contribution of delay-matrix decomposition method that unifies many LMI-based
stability results for neural networks with different kinds of delays into one frame-
work. In such a framework, all the stability results can be compared and changed
for neural networks with different delays. Note that in [68], a matrix decomposition
method is proposed for a kind of pure delay neural networks. The delayedmatrix B is
decomposed into two parts: excitatory and inhibitory parts, i.e., B = B+−B−, where
b+

i j = max{bi j , 0} signifying the excitatory weights and b−
i j = max{−bi j , 0} signify-

ing the inhibitoryweights.Obviously, the elements in B+ = (b+
i j ) and B− = (b−

i j ) are
all nonnegative. Then, through a symmetric transformation, the network is embedded
into an augmented cooperative dynamical system. Using the monotone dynamical
system theory, such a system has a significant order-preserving ormonotone property
that is useful in the analysis of pure delay neural networks. Via this method, some
detailed componentwise exponential convergence estimates have been established
in the form of like-M-matrix. Obviously, the delay-matrix decomposition method
in both [116, 131–137] and [68] is different in such aspects as analysis method,
decomposition purpose, and the expression forms of stability results.

(2) Descriptor system method: This is a universal transformationmethod, which
can transform an ordinary differential system into a like-descriptor system and use
the analysis concept of descriptor system to study the normal differential system.
Therefore, the number of vector dimension of the original differential system is
enlarged from n-dimensions to 2n-dimensions. With the augment of the dimensions,
the number of adjustable matrices in the construction of Lyapunov functional will
be increased. It is the essence of the descriptor system method that by increasing
the state space and correspondingly the number of tuning matrices to decrease the
conservativeness of the stability results. Descriptor system method can be used in
many delayed systems in which the Newton–Leibniz formula holds.

(3) Delay partitioning method with fixed interval: Time delay is a very impor-
tant parameter in RNNs with delays. Because interconnection weight coefficients
or matrices have been sufficiently explored in the development of neural network
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stability theory, especially with the emergence of free wight matrix method, it seems
that the stability criteria have reached the limit that no more space in connection
weights can be used to further decrease the conservativeness of the stability results.
Another important physical parameter time delay, which has always been ignored in
the proof procedure of previous stability analysis methods, has been re-recognized
and begins to be utilized in recent years, mainly in the aspect of delay-dependent sta-
bility results. For the case of discrete time delay, how to achieve the maximum upper
bound of time delay has become one of important aspects in judging the conserva-
tiveness of stability criteria. In general, the larger the maximum value of time delay,
the less conservative of the stability results. It is well known that time delay belongs
to an fixed interval [0, τM ], i.e., 0 ≤ τ (t) ≤ τM . In the previous stability analysis
methods, τ (t) is simply restricted to the interval [0, τM ]. However, according to the
sample theory or the approximate theory, if the whole interval [0, τM ] is divided into
m subinterval and the subinterval distance or the sample frequency in the interval
[0, τM ] is suitable, then a new delay-dependent stability criteria can be obtained,
which may decrease the conservativeness of the stability results. The subinterval
distance or the sample frequency in the interval [0, τM ] may be fixed or variable.
This is the principle of delay partitioning method. The essence of delay partition-
ing method is to enlarge/augment the state space and involve too many adjustable
variables, which has larger state space or system dimensions than that in descrip-
tor system method. Meanwhile, delay partitioning approach can shorten the delay
interval artificially, which may improve the integral accuracy of variables associated
with time delay in the Lyapunov function. This characteristic is very similar with the
approximation characteristic of neural networks in modeling and identifying. Delay
partitioning method can be used to the system with discrete delays τ (t), τ j (t), or
τi j (t). For the case of τ j (t) or τi j (t), i, j = 1, . . . , n, the expression form of stability
results will be more complex. A challenging topic existing in the delay partitioning
method is how to determine the number of subinterval and the subinterval distance
to achieve the optimal upper bound value of time delay.

(4) Delay interval contraction method: Delay partitioning approach studied
recently aims to divide a fixed delay interval [τm, τM ] into several subintervals
[τ j−1, τ j ], j = 1, . . . , l, (τm = τ0 < τ1 · · · < τl = τM ), [138–140] by involv-
ing some adjusting parameters, which realize the contraction of subinterval. The
delay partitioning approach has evolved from the equal interval division to nonequal
interval division [141, 142] for the fixed delay interval. In theory, we can also achieve
the same target as the delay partitioning method with fixed interval does to change
the delay interval [τm, τM ] in another way by involving some adjusting parameters.
For example, define τm(t) = ατ (t)+(1−α)τm , τM (t) = ατ (t)+(1−α)τM , where
α ∈ [0, 1]. In the case of α = 0, the delay interval [τm(t), τM (t)] is equivalent to
[τm, τM ], where α = 1, it is just the discrete delay τ (t). As a counterpart of delay
partitioningmethodwith fixed interval, this kind ofmethod is regarded as delay inter-
val contraction method or dynamic delay interval method. By continuously chang-
ing the size of α, the delay interval [τm(t), τM (t)] varies from discrete delay τ (t)
to the maximal delay interval [τm, τM ] dynamically, which realize the contraction of
the whole delay interval. Similar idea behind this method has been shown in [142].
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The principle of delay interval contraction method is on the basis of convex combi-
nation technique, which is similar to the essence of delay partitioning method with
fixed interval, but the way to achieve is different.

After all, all the derived stability criteria based on aforementioned method are
sufficient. How to get the sufficient and necessary stability condition for RNNs with
delays still needs some suitable combinations of above methods and other effective
methods.

3.2.6 Expression Forms of Stability Criteria

At present, there are many different methods to show the stability property of RNNs,
such as Lyapunov stability theory [36, 143, 144], nonsmooth analysis [145–147],
ordinary differential equation theory [111, 148–150], LaSalle invariant set theory
[17, 129], nonlinear measure method [151], gradient-like system theory [9, 57,
152, 153], comparison principle of delay differential systems [45, 154], and so
on. Correspondingly, the obtained stability criteria can be expressed in different
forms due to different proof methods and using different stability theories, such as
M-matrix form, algebraic inequality form, matrix norm form, matrix measure form,
linear matrix inequality form, and the mixed form of the above forms. For example,
linear matrix inequality [59–62, 69, 70, 72, 73, 75–79, 89, 102, 117, 131, 132, 134,
155], M-matrix results [36, 63, 67, 109, 112, 149, 150], Algebraic inequality results
[64–66, 103, 111, 113, 118, 143, 144, 148, 149, 156–161], Matrix norm [18, 60,
93], additive diagonal stability [162–164], Lyapunov diagonal stability [24, 26, 29,
36, 128, 165–167], Matrix measure [27, 146] (Note that, compared with the matrix
norm, the matrix measure can not only have positive values, but also negative values,
whereas the matrix norm can only have nonnegative values. Therefore, the results
expressed in the form of matrix measure are more precise than the ones expressed
by matrix norms), Spectral radius [168, 169], and like-M-matrix result [68].

Since the expression forms of M-matrix, matrix measure, matrix norm, and spec-
tral radius are only associated with the system parameters, and not any freedom or
free variables can be used in the criteria, these kinds of stability criteria play impor-
tant roles in the early days of recurrent neural network stability theory and now are
becoming less and less. Similarly, Lyapunov diagonal stability result is generally
simple and no complex variant forms can be used, this kind of stability result is also
becoming more and more scare. Algebraic inequality results and LMI results have
many different expression forms and represent the nature of dynamical system in
the aspects of number and vector in real space, therefore, many different kinds of
stability results based on algebraic inequality and LMI have been proposed. Gen-
erally speaking, their expression forms are becoming more and more complex, and
involving more and more tuning variables and tuning matrices. The development of
stability results are accompanied with the development of mathematical tools and
conceptual innovation. After all, how to find simple and effective stability criteria is
still a challenging topic.
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With globally Lipschitz continuous and monotone nondecreasing activation func-
tions, Lyapunov diagonal stability (LDS) results is reported in [26]. The LDS result
for the global exponential stability (GES) is extended in [185]. It is shown in [165,
166] that the LDS result extends many existing conditions in the literature, such as
M-matrix characteristic, lower triangular structure, negative semi-definiteness, diag-
onal stability, diagonal semistability, and other kinds of sufficient conditions [128].

3.2.7 Domain of Attraction

The domain of attraction of each equilibrium point coincides with the region that
the network, starting from any initial guess in it, will evolve to the optimal solution.
Therefore, identifying the domain of attraction is important in the application of
neural networks [170–176]. The approaches extensively used in the existing investi-
gation into this field of neural networks are mainly based on Lyapunov direct method
and so depend on the construction of Lyapunov function.However, there is no general
rule guiding us to construct an optimal Lyapunov function for a given system; that is,
constructing a Lyapunov function requires skill. Between 1985 and 1995, L.Gruyitch
obtained many interesting results concerning the determination of attraction domain
[177]. However, in those results, the Lyapunov functions used to characterize the
attraction domain are constructed by the method of characteristics, which strongly
depends on the solutions of system.

Important work about the determination of attraction domain has been done by S.
Balint and his colleagues since 1985 [178]. In 1985, S. Balint developed a novel Lya-
punov function (named the optimal Lyapunov function in 1986) and proved that the
determination of attraction domain can be reduced to the determination of the analytic
domain of the vector field when the field is R-analytic. In this case, the optimal Lya-
punov function can be found by solving linear systems of algebraic equations whose
solutions are the coefficients of the expansion of the optimal Lyapunov function at
the equilibrium point. In 1986, the special case when the Jacobianmatrix is diagonal-
izable at the equilibrium point was considered in [179], where a recurrence formula
for finding the coefficients of the expansion of the optimal Lyapunov function had
been established. When this formula was used, the optimal Lyapunov functions and
attraction domains were found for several two-dimensional systems. The hypothesis
that the Jacobian matrix is diagonalizable is used only for finding the recurrence for-
mula; otherwise, it is possible to find the coefficients as developed in [178] by solving
some linear algebraic equations but impossible to find a recurrence formula. In 1987,
a method for approximating the attraction domain by the region of convergence of
the Taylor series of the optimal Lyapunov function was established in [180] under the
assumption that the Jacobian matrix is diagonalizable at the equilibrium point. The
region of convergence of the Taylor series, obtained by the recurrence formula given
in [179], has been shown to be part of attraction domain, and its boundary in some
directions touches the boundary of attraction domain. Hence, by using the recurrence
formula, it is possible to find the radius of the convergence in any direction so that the
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region of convergence of the Taylor’s series can be found. However, the weakness
of the approximation method is that part of the attraction domain may be lost when
the domain is not symmetric with respect to the equilibrium points.

In 2003, a new approach for approximating the attraction domain by gradually
extending the Lyapunov function (called the “embryo” of the optimal Lyapunov
function) obtained in a neighborhood of the equilibrium point was presented in
[181], which shows that it is possible to improve the approximation obtained by
the region of convergence of the Taylor series of the optimal Lyapunov function at
the equilibrium point by expanding the obtained “embryo” of the optimal Lyapunov
function at a point apart from the equilibriumpoint but in the region of convergence of
the Taylor series and near the boundary of the region. In 2005, another important step
in approximation of the attraction domain was made in [182], in the case when the
Jacobian matrix is diagonalizable at the equilibrium point. That article discusses the
capacity of the Taylor polynomials of the optimal Lyapunov function to provide good
approximations of the attraction domain for autonomous and R-analytical systems
and presents some very good approximations of the attraction domain for some
systems. In 2006 and 2009, the method in [182] was applied to evaluate the attraction
domains of Hopfield-type neural networks [184] where some good results were
achieved.

The approximation methods developed in [182] are good approaches to determin-
ing the attraction domain and also provide a way to construct Lyapunov functions
by using a practical recurrence formula. In the approximation methods presented in
[182], the Taylor polynomials of the optimal Lyapunov function can approximate
the optimal Lyapunov function with better accuracy as the order p of the polynomial
increases, and so better approximations of the attraction domain can be achievedwith
greater recurrence, though only in the region of convergence of the Taylor series. The
meaning is twofold. On one hand, if the region of convergence of the Taylor series
is the whole attraction domain, the approximation accuracy to the attraction domain
increases with the order p. On the other hand, if the region of convergence is not the
whole attraction domain, the approximation accuracy may not increase monoton-
ically with the order p. In this case, it cannot be expected that the approximation
accuracy would be better after more recurrences. Although it would be possible to
find a better approximation by lower order polynomials, how to choose the best finite
order p that can give the best approximation is an unsolved theoretical problem.

3.2.8 Different Kinds of Neural Network Models

Before 2010, a lot of stability results are established for the real-valued neural net-
works. In this kind of network models, the connection coefficients are real-value
constants, for example, the well-known Cohen–Grossberg neural networks, Hopfield
networks, and other kind of recurrent neural networks. However, according to the
different forms of the connection coefficients, different kinds of network models are
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proposed and studied. Since 2010, memristive neural networks and complex-valued
recurrent neural networks are two main network models being widely studied.

Compared with the real-valued neural networks, the states, connection weights,
and activation functions of the complex-valued neural networks are all complex val-
ued. Therefore, there are many differences between the real-valued neural networks
and the complex-valued ones [186–194]. In fact, the complex-valued neural net-
works have much more complicated properties than the real-valued ones in a lot of
aspects and hence make it possible to solve many problems that cannot be solved by
their real-valued counterparts. For example, both the XOR problem and the detection
of symmetry problem cannot be solved with a single real-valued neuron, however,
they can be solved by a single complex-valued neuron with the orthogonal decision
boundaries. Therefore, it is very important to investigate the dynamical behaviors of
complex-valued neural networks, especially the stability of complex-valued neural
networks.

Memristive neural networksmadeof hybrid complementarymetal-oxide-semicon-
ductors have averywide rangeof uses in bioinspired engineering [195–202].Memris-
tive neural networks arewell suited to characterize the nonvolatile feature of themem-
ory cell because of hysteresis effects. Analysis and synthesis of memristive neural
networks are very attractive for neuromorphic systems in which the bionic memories
are appropriate for innovative designs. The development of high-performance mem-
ristive neural networks would benefit a number of important applications in neural
learning circuits, associative memories, new classes of artificial neural systems, and
so forth. From a systems-theoretic point of view, a memristive neural network is a
state-dependent nonlinear system family. Such system family can reveal coexisting
solutions, jump, and transient chaos of rich and complex nonlinear behaviors. Over
the years, a lot of pioneering works on nonlinear systems have been reported. With
the development and application of memristors, the studies of such state-dependent
nonlinear system family with its various generalizations may be an active area of
research, to allow the memristors to be readily used in emerging technologies.

Similar studies have similar evolution process. In the aspects of activation func-
tion, time delay, uncertainties in connection coefficients, proof method, forms of
stability results, and so on, along with the similar routines to real-valued neural net-
works, memristive neural networks and complex-valued recurrent neural networks
will have more space to be developed. For example, it is well known that the acti-
vation functions are often chosen to be bounded and smooth in real-valued neural
networks. However, in complex-valued neural networks, if the activation functions
are chosen to be smooth and bounded, then according to Liouville’s theorem, the
activation functions will be a constant over the entire complex domain. Therefore,
it is a big challenge to choose proper activation functions for the complex-valued
neural networks.
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3.3 Stability Analysis for Cohen–Grossberg-Type RNNs

3.3.1 Stability on Hopfield-Type RNNs

It has been recognized that the time delay, which is an inherent feature of signal
transmission between neurons, is one of the main sources for causing instability and
poor performances of neural networks [203–207]. Therefore, stability analysis for
RNNs with constant or time-varying delays has been an attractive subject of research
in the past few years. Various sufficient conditions, either delay-dependent or delay-
independent, have been proposed to guarantee the global asymptotic or exponential
stability for the RNNs [208–212], where only the discrete time delays have been
handled.

For more details on stability of continuous timeHopfield neural networks, readers
can refer to the books [211, 212]. In the following, wewill stress the stability analysis
of Hopfield networks with bounded activation function based on the finite length of
the trajectory. The following contents come from the discussion and communication
with Professor Tianping Chen from Fudan University of China.

In [153], the authors proposed the so-called finite length of the trajectory by
proving Theorem 3 (more details see [153]): Suppose that g ∈ GA, D ∈ DA, and
U ∈ VA, Then, any trajectory of the following Hopfield neural networks

u̇(t) = −Du(t) + Ag(u(t)) + U, (3.15)

has finite length on [0,∞), i.e.,

∫ ∞

0
‖u̇(σ)‖2dσ = lim

t→∞

∫ t

0
‖u̇(σ)‖2dσ < ∞. (3.16)

Once one has proved that the length of u(t) on [0,∞) is finite, a standard math-
ematical argument permits to prove the existence of the limit of u(t) as t → ∞,
i.e., convergence of toward an equilibrium point of (3.15), hence absolute sta-
bility for (3.15). The details are as follows. From Theorem 3 in [153], we have
limt→∞

∫ t
0 ‖u̇(σ)‖2dσ < ∞. From Cauchy criterion on limit existence (necessary

part), it follows that for any ε > 0, there exists T (ε) such that when s2 > s1 > T (ε),
it results

∫ s2
s1

‖u̇(σ)‖2dσ < ε. Hence,

ε >

∫ s2

s1
‖u̇(σ)‖2dσ ≥ ‖

∫ s2

s1
u̇(σ)dσ‖2 = ‖u(s2) − u(s1)‖2 (3.17)

for s2 > s1 > T (ε). On the basis of Cauchy criterion on limit existence (sufficient
part), it follows that there exists the limitation limt→∞ u(t) = u∗ = constant, where
u∗ is an equilibrium point of (3.15).

On the other hand, in the Ref. [31], the following lemma is given.
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Lemma: If ‖ du(t)
dt ‖2 ≤ Ee−ηt , where E is a constant. Then when t → ∞, u(t) has

a limit u∗ and

‖u(t) − u∗‖2 ≤ E

η
e−ηt . (3.18)

A brief proof can be done as follows,

‖u(t2) − u(t1)‖2 ≤
∫ t2

t1
‖du(t)

dt
‖2dt ≤ E

η
(e−ηt2 − e−ηt1). (3.19)

By the Cauchy convergence principle, u(t) has a limit u∗ and (3.18) holds. It is clear
that the idea of finite length of the trajectory has been proposed and used in [31],
which was published much earlier than that in [153]. Both contributions in [153] and
[31] are novel and independent, which provide the new way to study the stability of
neural networks out of the framework of Lyapunov stability theory.

3.3.2 Stability on Cohen–Grossberg-Type RNNs

Cohen and Grossberg [17] first proposed a kind of neural network model in 1983
described by the following equations (called Cohen–Grossberg neural networks),

u̇i (t) = −di (ui (t))
[
ai (ui (t)) −

n∑

j=1

wi jg j (u j (t))
]
, (3.20)

whereui (t) is the state variable of the i th neuron at time t ,di (ui (t)) is anamplification
function, ai (ui (t)) is awell-defined function to guarantee the existence of the solution
of system (3.20), g j (u j (t)) is an activation function describing the effects of input
on the output of neuron, wi j is the connection weight coefficient of the neurons,
i, j = 1, . . . , n. System (3.20) includes a number of models from neurobiology,
population biology and evolution theory, as well as the following Hopfield neural
network model [7] as a special case in mathematical description,

u̇i (t) = −γi ui (t) +
n∑

j=1

wi jg j (u j (s)) + Ui , (3.21)

where Ui represents the external input source introduced from the outside of the
network to theneuron. It iswell known that if the connectionmatrix is symmetric, then
every solution of systems (3.20) and (3.21) will always converge to an equilibrium
point [7, 17, 46].

Note that the solution of system (3.21) depends upon the specification of an initial
condition u(θ) = φ(θ). It is usually assumed that the given n-dimensional vector
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function φ(θ) is continuous, though it should only be measurable for system (3.21)
being well defined. Here, we will also assume a bounded and piecewise continuous
initial function with finite discontinuity points. More specifically, we allow as an
initial condition a piecewise constant functionwith a possible discontinuity atφ(θ) =
0. Such a function is clearly measurable. We note that piecewise constant type initial
functions have also been used in determining the fundamental solution of linear delay
systems.

One of the objectives of neural network theory is to study the qualitative behavior
of the fixed point dynamics of the network (3.21). By definition, for a given constant
input vector U , a fixed point or an equilibrium of system (3.21) is a point ue ∈ R

n

having the property that

0 = −Γ ue + Wg(ue) + U, (3.22)

where Γ = diag(γ1, . . . , γn), W = (wi j )n×n , g(u) = (g1(u1), . . . , gn(un))T ,
U = (U1, . . . , Un)T , ue = (ue

1, . . . , ue
n)T . Since g(u) is bounded and continuous, it

follows readily from Brouwer’s fixed point theorem that there is at least one solution
ue to the Eq. (3.20) for every constant vector U . The locations of such equilibria in
R

n are determined by the connection pattern (i.e., the weight matrix W ) of the neural
network, by the relaxed matrix Γ , the nature of the nonlinearity g(u), and the con-
stant inputU . If ue is globally asymptotically stable, then it is the unique equilibrium
that attracts all other trajectories. In this case, to each given input vector U the net-
work associates a unique equilibrium to which it converges irrespective of the initial
conditions. This establishes a one-to-one correspondence between the input space
and the steady-state space, which is a desirable property in applications of neural
network (3.21) to such problems as optimization and input patterns classification
[26].

As is well known, both in biological and artificial neural networks, delays arises
because of the processing of information. For example, in the electronic implemen-
tation of analog neural networks, delay occurs in the communication and response of
amplifiers due to the finite switching speed of amplifiers [40]. On the other hand, the
delayed cellular neural network can be used to solve some moving image processing
problems [213, 214], and hence it is desirable to introduce delays into neural net-
works when dealing with problems associated with motions [146, 215–218]. So it is
important and practical to incorporate delays into neural networks. Neural networks
with time delay have much more complicated dynamics due to the incorporation of
delay. Therefore, model (3.20) and its delayed version have attracted the attention
of many researchers and have been extensively investigated due to their potential
applications such as associative content-addressable memories, pattern recognition,
and optimization. Such applications rely on the qualitative stability properties of the
network. Thus, the qualitative analysis of the network’s dynamic behavior is a pre-
requisite step for practical design and application of neural networks. Recently, some
sufficient conditions for global asymptotic/exponential stability of Cohen–Grossberg
neural networks have been studied in the literature, see, e.g., [18, 36, 103, 109, 114,
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116, 117, 132, 143, 147, 149, 219–225]. When delays are incorporated into system
(3.20), it is natural to expect that the property of global asymptotic stability remains
if the delays are sufficiently small. This became a challenging topic at that times,
which attractedmany researchers to study this topic since 1983–2002. In fact, such an
expectation is confirmed in [18] under a certain type of symmetry requirement. More
precisely, Ref. [18] introduces constant discrete delays into (3.20), which yields the
following form,

u̇i (t) = − di (ui (t))

⎡

⎣ai (ui (t)) −
N∑

k=0

n∑

j=1

wk
i jg j (u j (t − τk))

⎤

⎦ , (3.23)

where τk ≥ 0 are bounded constant delays,wk
i j are the connectionweight coefficients,

0 = τ0 < τ1 < τ2 < · · · < τN , and other notations are the same as those in system
(3.20), k = 0, . . . , N , i, j = 1, . . . , n. Assume that matrix W e = (

∑N
k=1 wk

i j ) =
∑N

k=1 Wk , Wk = (wk
i j ), is symmetric and activation function g j (·) is sigmoidal

and also satisfies other conditions, system (3.23) is globally stable if the following
condition holds,

N∑

k=1

(τkβ‖Wk‖) < 1, (3.24)

where β = max ‖D(u(t))g
′
(u(t))‖ ≤ d δ, d = max{di }, δ = max{δi }, ‖A‖ =

[λmax(AT A)]1/2.
Note that systems (3.20) and (3.21) are for the case of instantaneous transmission

of signal,while the system (3.23) is for the case of pure delay transmissionof signal. In
biological systemandpractical implementationof neural network, both instantaneous
transmission and pure delay transmission of signal often occurs simultaneously,
even with more complicated phenomena. Therefore, many kinds of complex neural
networkmodels have been proposed and studied in the literature [58, 64, 77, 78, 107,
158–161, 226]. For example, the following Hopfield neural networks with delay,

u̇(t) = −Cu(t) + W0g(u(t)) + W1g(u(t − τ )). (3.25)

For the purely delayed Hopfield networks,

u̇(t) = −Cu(t) + W1g(u(t − τ )), (3.26)

from condition (3.24) we can derive that τβ‖W1‖ < 1 guarantees the global stability
of (3.26), where β = max ‖g ′

(u)‖ or maximum slope of activation function. It has
been shown in [18] that if the condition (3.24) holds, then the asymptotic stability of
an equilibrium point of (3.23) can be deduced from the asymptotic stability of the
corresponding equilibrium point of system (3.20). In other words, if (3.24) holds,
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then system (3.20) and system (3.23) are both globally stable, both have similar local
stability properties at an asymptotic stable equilibrium. This enables us to verify the
asymptotic stability of the equilibrium point of system (3.23) by ascertaining the
asymptotic stability of corresponding equilibrium point of system (3.20). Second
contribution of [18] is that the locations of the (asymptotic) stable equilibria of
system (3.23) will not depend on the delays τk . Third contribution of [18] is that the
interconnection matrices Wk, k = 1, . . . , N , is not required to be symmetric, while
the summation

∑N
k=1 Wk is required to be symmetric. This requirement significantly

reduces the symmetric constraint condition on the interconnection conditions Wk .
Therefore, if (3.24) holds, then system (3.23) and system (3.20) will have identical
(asymptotic) stable equilibria.

The symmetry requirement is a very critical constraint because the neural networks
should be robust against the asymmetric connection matrix. Much work has been
done to relax this symmetric requirement [109, 225]. Although the symmetry of
the connection matrix is canceled, the activation function is assumed to be globally
Lipschitz and bounded. Without requiring the symmetry of connection matrix and
the boundedness of the activation function, how to establish the stability criteria of
RNNs has become a challenging topic since 2002.

The use of constant fixed time delays in the models of delayed feedback systems
serves as a good approximation in simple circuits having a small number of neurons.
However, neural networks usually have a spatial extent due to the presence of a
multitude of parallel pathways with a variety of axon sizes and lengths, there will
be a distribution of propagation delays. In this case, the signal propagation is no
longer instantaneous and cannot bemodeledwith discrete delays.Reference [228] has
proposed a neural circuit with distributed delays|indexdistributed delay that solves a
general problem of recognizing patterns using a time-dependent signal. It is desired
to model them by introducing continuously distributed delays [109, 169, 228–231].
Nowadays, there are generally two kinds of continuously distributed delays in the
modeling of RNNs, i.e., finitely distributed delays and infinitely distributed delays.
The following system with finitely distributed delays,

u̇i (t) = −ai (ui (t)) +
n∑

j=1

wi j

∫ t

t−τ (t)
g j (u j (s))ds, (3.27)

has been investigated in the recent literature, where τ (t) is a time-varying delay,
i = 1, . . . , n. Model (3.27) and its variants have been studied in [76, 232–236]
based on LMI method and other methods. Similarly, the following models with
infinitely distributed delays,

u̇i (t) = −ai (ui (t)) +
n∑

j=1

wi j

∫ t

−∞
Ki j (t − s)g j (u j (s))ds, (3.28)
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and

u̇i (t) = −ai (ui (t)) +
n∑

j=1

wi jg j

(∫ t

−∞
Ki j (t − s)u j (s)ds

)
, (3.29)

have also been investigated in the literature [135–137], where the delay kernel
Ki j (·) : [0,∞) → [0,∞) is a real-valued nonnegative continuous function, and
the additional restrictions are as follows:

∫ ∞

0
Ki j (s)ds = 1,

∫ ∞

0
sKi j (s)ds < ∞, (3.30)

and other notations are the same as those in system (3.20), i, j = 1, . . . , n. If the
delay kernel function Ki j (s) is of the form Ki j (s) = δ(t −τi j ), thenmodel (3.28) and
model (3.29) can be reduced to the following neural networks with discrete delays,

u̇i (t) = −ai (ui (t)) +
n∑

j=1

wi jg j (u j (t − τi j )). (3.31)

If the delay kernel function Ki j (s) are of the form Ki j (s) = Li j (t) if t ∈ [0, τi j ],
otherwise, Ki j (s) = 0, then the duration intervals for time delays are finite, and thus,
model (3.28) and model (3.29) can be reduced to the following neural networks with
finite distributed delays,

u̇i (t) = −ai (ui (t)) +
n∑

j=1

wi j

∫ t

t−τi j

Li j (t − s)g j (u j (s))ds, (3.32)

and

u̇i (t) = −ai (ui (t)) +
n∑

j=1

wi jg j

(∫ t

t−τi j

Li j (t − s)u j (s)ds

)
, (3.33)

where Li j (t) ≥ 0 and
∫ τi j
0 Li j (t)dt = 1. If we further take a special form of the

delay kernel function as Li j (t) = 1/τi j , τi j > 0, then model (3.32) and model (3.33)
can be reduced to the following form

u̇i (t) = −ai (ui (t)) +
n∑

j=1

wi j/τi j

∫ t

t−τi j

g j (u j (s))ds, (3.34)
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and

u̇i (t) = −ai (ui (t)) +
n∑

j=1

wi jg j

(∫ t

t−τi j

u j (s)/τi jds

)
. (3.35)

Therefore, the discrete delays and the finite distributed delays can be included
in the model (3.28) and model (3.29) by choosing suitable kernel functions. Model
(3.28) and its variants have been studied in [64, 158–160, 169, 229, 230, 237–248].
Model (3.29) and its variants have been studied in [42, 47, 109, 144, 249–253].
However, few LMI-based stability criteria have been established for model (3.28)
and model (3.29) in the existing literature except [135].

Recently, a more general model, i.e., recurrent neural networks with a general
continuously distributed delays, have been proposed and studied in the literature
[254–265],

ẋi (t) = − ai xi (t) +
n∑

j=1

∫ ∞

0
g j (x j (t − s))dJi j (s)

+
n∑

j=1

∫ ∞

0
g j (x j (t − τi j (t) − s))dKi j (s) + Ui , (3.36)

where x = (x1, . . . , xn)T , A = diag(a1, . . . , an), ai > 0, g(x(t)) = (g1(x1(t)),
. . . , gn(xn(t)))T , gi (xi (t)) are the activation functions, τi j (t) are the time-varying
delays with 0 < τi j (t) ≤ τM , and τ̇i j (t) ≤ μi j , μi j > 0 are positive constants,
dJi j (s) and dKi j (s) are Lebesgue–Stieltjes measures for each i, j = 1, . . . , n.

The model (3.36) is said to be general because it can involve a large kinds of
different delays. In the existing references, different kinds of delays have been con-
sidered, for example, discrete or concentrated constant delays τ , τ j , τi j and their time-
varying counterparts; finitely distributed delays

∫ t
t−τ g j (x j (s))ds,

∫ t
t−τ j

g j (x j (s))ds,
∫ t

t−τi j
g j (x j (s))ds and their time-varying counterparts; infinitely distributed delays

∫ t
−∞ ki j (t − s)g j (x j (s))ds, where g j (·) are the neuron activation functions, ki j (s)
are someKernel functions. All the above delays can be uniformly expressed inmodel
(3.36). Therefore, it is more interesting to study the stability of model (3.36).

As pointed out in [255, 258], can we propose an effective approach to investigate
them in a universal framework? An affirmative answer has been given in [255, 258]
to integrate the different delays based on like-M-matrix framework, i.e.,

−ξi ai +
n∑

j=1

ξ jδ j

{∫ ∞

0

(
|dJi j (s)| + |dKi j (s)|

)}
< 0, (3.37)

where ξi > 0 are some parameters to be determined. Obviously, when the Lebesgue–
Stieltjes measures dJi j (s) and dKi j (s) take different form, stability result (3.37) can
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be expressed inM-matrix form. This is also the reason why we call the form of (3.37)
as like-M-matrix.

Similar to model (3.28) and model (3.29), few LMI-based stability criteria for
model (3.36) have been obtained except [265].

In the case that activation function is a bounded andLipschitz continuous function,
Ref. [47] presents some sufficient conditions for the existence, global asymptotic sta-
bility, and global exponential stability of the equilibrium point of model (3.29) using
algebraic inequality method. Reference [47] is a very classical paper to discuss the
dynamics of Cohen–Grossberg/Hopfield neural networks with infinite distributed
delays using algebraic inequality method, including how to prove the existence of
the equilibrium point, how to deal with the infinite distributed delay by construct-
ing different Lyapunov functional, how to use the characteristic equation method
to directly derive the stability criterion for Hopfield neural networks with infinite
distributed delays, and so on.

Without requiring the boundedness, differentiability, and the monotonicity of the
activation function, and the symmetry of the interconnection matrix, Ref. [109] has
presented some sufficient conditions to guarantee the existence, uniqueness, and
global asymptotic stability of the equilibrium point of neural networks (3.23) and
(3.29) on the basis of M-matrix theory.

Although the global stability results formodel (3.28) and its variants are expressed
in different forms, such as M-matrix form and algebraic inequality form, all the
results take the absolute value operation on the connection weight coefficients. Con-
sequently, the sign of entries in connection matrix is ignored, which leads to the
ignorance of the neuron’s excitatory and inhibitory effects on the neural networks.
As a result, the conservativeness of the stability criteria will be increased. Because
LMI method can provide a rather well trade-off between conservativeness and the
verification, many LMI-based stability results have been proposed for different kinds
of neural networks in the literature [36, 116, 131, 132, 218, 232], which have con-
sidered the neuron’s excitatory and inhibitory effects on the neural network and have
reduced the conservativeness. Therefore, it is important to study the LMI-based sta-
bility criteria for model (3.28) and its variants as that did for model (3.27) and its
modifications and other kinds of neural networks.

In the practical operations, diffusion effects cannot be avoided in the neural net-
work and electric circuits when electrons are moving in a nonuniform electromag-
netic field. Hence, it is essential to consider the state variables which vary in space
as well as in time. Furthermore, modeling and analysis of the dynamics of biological
populations by means of differential equations is one of the primary concerns in
population growth problems. A well-known and extensively studied class of mod-
els in population dynamics is the Lotka–Volterra competition system which mod-
els the interaction among various competing species. In the case that the effect of
dispersion of the population in a bounded habitat is taken into consideration, the
governing equations for the population densities become a Lotka–Volterra competi-
tion system with reaction-diffusion terms. Therefore, it is also common to consider
the reaction-diffusion effects in biological systems caused by the immigration of
species [266–271]. On the other hand, a second-order cellular neural networks with
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reaction–diffusion term has been identified which is able to reproduce through para-
meter setting a rich variety of spatio-temporal behaviors, and be able to robustly
reproduce the rich phenomenology associated with active wave propagation and pat-
tern formation.Thesewave formationphenomena are exhibited by systemsbelonging
to very different scientific disciplines, for example, in neurophysiology, the propa-
gation of electrical impulses through the nervous system, or the propagation of the
cardiac movement through the cardiac muscle [272]. Since Cohen–Grossberg neural
networks (3.20) are a kind of competitive-cooperation networks, which can describe
ecological systems and general neural networks, it is natural to study the effects of
reaction diffusion in stability analysis. In [113, 148, 154, 156, 167, 239, 243, 250,
273–277], the authors have considered the stability problems of reaction–diffusion
neural networks, which are usually expressed by partial differential equations.

For Hopfield-type recurrent neural networks with reaction-diffusion terms, [156]
presents an algebraic inequality GES stability criterion and a like-LMI-based GES
stability criterion. However, the like-LMI-based GES stability criterion is generally
difficult to check due to some unknown parameters. For Hopfield-type recurrent
neural networks with both reaction-diffusion terms and neutral type delay, [275]
presents an LMI-based GES stability condition. If the boundary domain of the
bounded compact set is known a prior, the main result in [275] is easy to check. Oth-
erwise, it is not easy to be applicable. For Hopfield-type recurrent neural networks
with reaction-diffusion terms and stochastic perturbation term, almost sure stability
and moment exponential stability are established in [276] based onM-matrix theory,
respectively.

For the Cohen–Grossberg neural networks with reaction diffusion terms, under
the requirement of both bounded activation function and positive and bounded ampli-
fication function, [148] presents an algebraic inequality criterion guaranteeing the
GES of the unique equilibrium point. The proof method in [148] is similar to those
in [110, 154].

In the following subsections, in order to make comparisons with the existing
stability results, the following assumptions are required for the Cohen–Grossberg
neural networks (3.23).

Assumption 3.1 Amplification function di (ζ) ∈ C(R, [0,∞)) and there exist con-
stants di , di such that 0 < di ≤ di (ζ) ≤ di for ζ ∈ R.

Assumption 3.2 The behaved function ai (ui (t)) ∈ C(R, R) and there exists γi > 0
such that ai (ζ)−ai (ξ)

ζ−ξ ≥ γi for ζ, ξ ∈ R with ζ �= ξ.

Assumption 3.3 gi (ui (t)) ∈ C(R, R) is globally Lipschitz with constant δi , i.e.,
|gi (ζ) − gi (ξ)| ≤ δi |ζ − ξ| for ζ, ξ ∈ R.

Assumption 3.4 gi (ui (t)) ∈ C(R, R) is globally Lipschitz with constant δi , i.e.,
0 ≤ gi (ζ)−gi (ξ)

ζ−ξ ≤ δi for ζ �= ξ, ζ, ξ ∈ R.

Assumption 3.5 Amplification function di (ζ) is continuouswith di (0) = 0, di (ζ) >

0 for all ζ > 0, and
∫ ε
0

ds
di (s)

= +∞ for all i = 1, . . . , n, ε > 0 is a constant.
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Note that in [18], the behaved function is assumed to be continuous, limζi →+∞ ai

(ζi ) = +∞, limζi →−∞ ai (ζi ) = −∞. The activation function is a sigmoidal func-

tion such that g
′
(u j ) = dg j (u j )

du j
> 0, limζi →+∞ gi (ζi ) = 1, limζi →−∞ gi (ζi ) = −1,

lim|ζi |→∞ g
′
i (ζi ) = 0. Obviously, the activation in [18] is continuous, differential,

smooth, monotonic, and bounded. Meanwhile, the concerned behaved function can
guarantee the boundedness of system (3.23) with or without delays, which has been
proved using the contradiction method. It can be seen that both Assumption 3.2 and
Assumption 3.3 all include those hypothesis in [18] as special cases. The differen-
tiable activation function can be relaxed to be continuous function, i.e., the existence
of right and left derivatives of activation function, which includes the monotonically
increasing piecewise linear function.

Denoting D = diag(d1, . . . , dn), D = diag(d1, . . . , dn), Δ = diag(δ1, . . . , δn)

and Γ = diag(γ1, . . . , γn), d = max{di }, d = min{di }, δM = max{δi }, and γm =
min{γi }, which will be used in the sequel.

3.3.3 The Case with Nonnegative Equilibria

In this subsection, wewill review the stability results on the Cohen–Grossberg neural
networks (3.20) with nonnegative equilibrium point.

In the original paper of Cohen andGrossberg [17, 278], the concerned competitive
neural network model is as follows:

u̇i (t) = di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t))

⎤

⎦ , (3.38)

is proposed as a kind of competitive-cooperation dynamical system for decision rules,
pattern formation, and parallel memory storage. Hereby, each state of neuron might
be the population size, activity, or concentration of the i th species in the system,
which is always positive for all time. Based on such background, Cohen–Grossberg
neural networks (3.38) has been studied under the following hypothesis [17]:

(a) Symmetry: matrix W = (wi j ) is a symmetric matrix of nonnegative constants;
(b) Continuity: function di (ξ) is continuous for ξ ≥ 0; function ai (ξ) is continuous

for ξ > 0;
(c) Positivity: function di (ξ) > 0 for ξ > 0; function gi (ξ) ≥ 0 for ξ ∈ (−∞,∞);
(d) Smoothness and monotonicity: function gi (ξ) is differentiable and monotone

nondecreasing for ξ ≥ 0.
(e) The boundedness of the trajectories are guaranteed by the following condition

lim sup
ζ→+∞

[ai (ζ) − wi igi (ζ)] < 0. (3.39)
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(f) For any positive initial data, the positivity of the trajectories are guaranteed by
the following condition

lim
ζ→0+ ai (ζ) = +∞, (3.40)

or

lim
ζ→0+ ai (ζ) < +∞,

∫ ε

0

ds

di (s)
= +∞ for some ε > 0. (3.41)

Under above hypotheses (a)–(d), (3.39), (3.40) or (3.41), all the trajectories of
Cohen–Grossberg neural networks (3.38) are convergent (locally).

Note that for system (3.38) in [17], the relations between the activation func-
tion gi (ui (t)) and the behaved function ai (ui (t)) are constrained in (3.39), which is
a very general restriction on the interaction of neural system. Obviously, the acti-
vation function gi (ui (t)) in (3.38) can be bounded or unbounded as ui (t) → ∞,
which will affect the property of behaved function directly. For the behaved function
ai (ui (t)), however, from the boundedness condition (3.39) and positivity conditions
(3.40) or (3.41), we can conclude that if the behaved function ai (ui (t)) is monoton-
ically decreasing in system (3.38), then both boundedness condition and positivity
conditions naturally hold.

Note that the Cohen–Grossberg neural network (3.20) widely studied in the exist-
ing literature is just the opposite or counterpart of the original competitive sys-
tem (3.38). Therefore, in order to keep the stability of the Cohen–Grossberg neural
networks (3.20), corresponding to the constraint conditions for (3.38), the restric-
tion conditions exerted on the Cohen–Grossberg neural networks (3.20) should
be changed, which will not affect the qualitative stability property of the Cohen–
Grossberg neural networks (3.20). The hypotheses (b)–(d) discussed above are not
changed, while the boundedness condition and the positivity condition should be
changed. Specifically,

(a1) Symmetry: matrix W = (wi j ) is a symmetricmatrix of nonpositive constants;
(e1) The boundedness of the trajectories of Cohen–Grossberg neural network

(3.20) is guaranteed by the following condition

lim sup
ζ→+∞

[−ai (ζ) + wi igi (ζ)] < 0. (3.42)

(f1) For any positive initial data, the positivity of the trajectories for Cohen–
Grossberg neural network (3.20) are guaranteed by the following condition

lim
ζ→0+ −ai (ζ) = +∞, (3.43)

or

lim
ζ→0+ −ai (ζ) < +∞,

∫ ε

0

ds

di (s)
= +∞ for some ε > 0. (3.44)
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Under above hypotheses (a1), (b)–(d), (3.42), (3.43) or (3.44), all the trajecto-
ries of Cohen–Grossberg neural networks (3.20) are convergent (locally). Similar to
aforementioned discussions, we can conclude that if the behaved function ai (ui (t)) is
monotonically increasing in system (3.20), then both boundedness condition and pos-
itive conditions naturally hold. This is the reason why the behaved function ai (ui (t))
in system (3.20) is usually assumed to be increasing in the existing literature, see
Assumption 3.2.

In addition, another interesting question can be discussed as follows. Why does
the so-called Cohen–Grossberg-type neural network model (3.20) studied widely in
the existing literature overwhelms the original competitive neural network model
(3.38)? In fact, these two models are counterparts to each other. It is well known that
the competitive neural network (3.38) is mainly for the biological system, in which
the states represent the population of some species and all the states are nonnegative.
However, with the development and wide application of Hopfield neural networks in
optimization problem and other fields [1, 7, 16, 228], the Hopfield neural networks
have become a very hot topic in the engineering community. The standard Hopfield
neural network model has the following structure,

u̇i (t) = −γi ui (t) +
n∑

j=1

wi jg j (u j (s)) + Ui . (3.45)

Comparing the competitive neural network model (3.38), i.e.,

u̇i (t) = di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t))

⎤

⎦ , (3.46)

we can change the Hopfield neural network model (3.45) as follows:

u̇i (t) = −
⎛

⎝γi ui (t) −
n∑

j=1

wi jg j (u j (s)) − Ui

⎞

⎠ . (3.47)

If we further consider the effects of amplification function on the neural network
model (3.47) as that done on model (3.38), we then have the general Cohen–
Grossberg-type neural network model (3.20), i.e.,

u̇i (t) = −di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t))

⎤

⎦ . (3.48)

Obviously, in the aspect of model description, both models (3.48) and (3.46) are
similar and have the same structure. However, in the aspect of physical essence, both
models (3.48) and (3.46) represent different background and engineering meaning.
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• Model (3.46) originates from the biological system, in which the elements wi j

and the states are all nonnegative. The amplification function di (ui (t)) in (3.46)
is nonnegative, i.e., di (ui (t)) > 0 for ui (t) > 0 and di (ui (t)) = 0 for ui (t) = 0,
which represents the inhibitory and excitatory effects on the population of species.

• Model (3.48) originates from the Hopfield neural network model, which has the
storage capability and computational capability and has very notable superiority in
engineering application. Meanwhile, all the elements wi j and the states in model
(3.48) can be negative, positive, or mixture. The amplification function di (ui (t)) in
(3.48) is strictly positive, i.e., di (ui (t)) > 0 for any ui (t) ∈ R, which represents the
amplification capability on themagnitude of the state of the concerned engineering
problems to be solved.
In the viewpoint of mathematics, we can have the following statements to under-
stand the relations between models (3.48) and (3.46).

• Model (3.46) and model (3.48) are counterparts in the description of general bio-
logical system, in which the states may be nonnegative and nonpositive. For exam-
ple, if the behaved function inmodel (3.46) is decreasing, then the behaved function
in model (3.48) is increasing; if the connection weight in model (3.46) is positive,
then the connection weight in model (3.48) is negative.

• Model (3.46) and model (3.48) have many common features. For example, the
activation function should be nondecreasing, the amplification function should be
positive, and the connection weight matrices are required to be symmetric.

• Model (3.46) is widely used in the fields such as biological system, while model
(3.48) is widely used in the fields such as industrial and engineering systems.

This is the reason why model (3.48) is called Cohen–Grossberg-type neural net-
work model and why model (3.48) has been widely studied in engineering fields.

Since model (3.48) is also a kind of Cohen–Grossberg neural network structure,
it can represent a class of biological system model if some assumption conditions in
(3.46) are exerted on the model (3.48). Hence, it is also meaningful to consider the
dynamics of (3.48) with positive trajectories. This is the reason why the dynamics
of delayed Cohen–Grossberg neural network (3.48) with nonnegative amplification
function and positive initial condition have received much attention in the neural
network community, and the corresponding stability results have dropped out the
requirement of symmetry on the connection weight matrix.

The main contribution of [17] is to discover the essence of the symmetry on the
effects of dynamics of complex systems. Symmetry holds naturally and the nature
in essence is symmetry and harmonic. The symmetric structure is so elegant that it
attracted many scientists to devote themselves to the research on the nature of the
human being and the natural science. In this aspect, Cohen and Grossberg set a good
example for us. The contribution of [17] is important not only in natural science, but
also in philosophy.

For Cohen–Grossberg neural networks (3.38), Ref. [129] proposes the following
sufficient global stability condition based on LaSalle’s invariance principle, if the
nondelayed matrix W is decomposed as the product of a symmetric matrix and the
positive definite diagonal matrix, i.e.,
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W = DS, (3.49)

where D is a positive definite diagonal matrix, and S is a symmetric matrix, then
every bounded trajectories approaches to one of possibly large number of equilibrium
points as t → ∞. In general, DS �= SD, therefore, the stability condition in [129]
relaxed the condition in [17].

The following classical Lotka–Volterra model of competing species, which is a
special case of Cohen–Grossberg neural networks (3.38), has been studied in [279],

u̇i (t) = Gi ui

(
1 −

n∑

k=1

Hikuk(t)

)
, (3.50)

where ui (t) is the population of the i th species, Hik ≤ 0 for i �= k are the negative
interaction parameters between different species, and Gi > 0 are constants. Model
(3.50) is of great importance not only in modeling population dynamics but also in
chemical kinetics, ecology, plasma physics, and neural network modeling in general.

Theorem1 in [279] requires that ifmatrix H = Hik is symmetric and Hii > 0, then
each trajectory u(t) starting at u(0) ∈ O+ = {u ∈ R

n : ui (t) ≥ 0, i = 1, . . . , n} is
bounded for t ≥ 0, and limt→+∞ u(t) = ue ∈ O+, where ue is an equilibrium point
of system (3.50).

Theorem 1 in [279] implies that any trajectory of (3.50) starting in O+ converges
toward a singleton, for any choice of the parameters Gi > 0, and for any choice
of the symmetric neuron interconnection matrix H , including the situations where
networks (3.50) possess infinitely nonisolated equilibrium points. According to the
terminology used in [17], this means that the global pattern formation is absolutely
stable within the class of neural network (3.50) with a symmetric interaction matrix
H and positive parameters Gi . Theorem 1 in [279] extends the results in [17] as far as
the convergence is concerned for model (3.50), because the result in [17] requires an
additional assumption of isolated equilibrium point to ensure the convergence, while
the result in [279] admits multiple and (possible) infinitely nonisolated equilibrium
points.

Convergence of system (3.50) cannot be proved by means of the Lyapunov
method and LaSalle’s invariance principle. When system (3.50) possesses non-
isolated equilibrium points, Lyapunov method only enables to show that system
(3.50) is quasi-convergent. This means that for any trajectory u(t) of (3.50), we have
limt→+∞ u̇(t) = 0, or equivalently, u(t) approaches to the set of equilibrium points
of (3.50) as t → +∞ (see [17]). However, in a quasi-convergent system, we can-
not exclude that a trajectory u(t) approaches to a manifold of equilibrium without
converging to a singleton (see [279]). An example of this kind is given in [280],
where a gradient system of a C∞ function is constructed, such that all bounded tra-
jectories indefinitely slide along a manifold of equilibria, and they display large size
nonvanishing oscillations as t → +∞. The oscillatory behavior would be highly
undesirable for a neural optimization solver or a neural associate memory. The cru-
cial point is that Gi ui (t)will vanish at ui (t) = 0. It can be seen that the term Gi ui (t)
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introduces singularities in the expression of the length of the trajectory u(t), making
it impossible to prove the finiteness of the trajectory length.

Therefore, despite that the description form of the consequences in [279] and [17]
being same for the system (3.50), they represent different dynamics and require dif-
ferent proof methods. For the case of isolated equilibrium point, Ref. [17] presents
the absolute stability property for system (3.50) via LaSalle’s invariance principle, in
which all the trajectories converge to the isolated equilibrium.While the consequence
in [279] is to prove the convergence of the isolated or nonisolated equilibrium point
for system (3.50) by exploiting the Lojasiewicz inequality for analytic-gradient sys-
tems, in which a suitable change of variable plays an important role in the application
of Lojasiewicz inequality.

Moreover, for the system (3.50) with nonsymmetric matrix H , Ref. [279] also
shows that if there exists two positive definite diagonal matrices Da and Db such
that Ha = Da H Db is a symmetric matrix, then the convergence of the trajectory in
Theorem 1 in [279] still holds.

Although the generality of the research results in [17] is excellent, the specific
application of this kind of research results is another question. Since the assumption
conditions in [17] are too general, the applications of the results in [17] will be
restricted in the practical systems. Especially, the requirement of the symmetry on
the connectionweight is too hard to implement in practice, whichmay lead to poor/no
robustness in applications.

In the aspects of behaved function and symmetric connection weights, Ref. [112,
116, 117, 131, 167, 222] improved the conditions in [17], and the stability of the
nonnegative/positive equilibrium point for corresponding Cohen–Grossberg neural
networks with delays has been studied.

For the reaction-diffusion Cohen–Grossberg neural network,

∂ui (t)

∂t
=

m∑

k=1

∂

∂xk

(
Dik

∂ui (t, x)

∂xk

)

− di (ui (t, x))

⎡

⎣ai (ui (t, x)) −
n∑

j=1

wi jg j (u j (t, x))

⎤

⎦ , (3.51)

under the following conditions on the activation function and amplification function:

(gi (ζ) − gi (ξ))(ζ − ξ) > 0, for ζ �= ξ, (3.52)

(ai (ζ) − ai (ξ))(ζ − ξ) > 0 ( or ≥ 0), for ζ �= ξ, (3.53)

Amplification function di (ui (t, x)) is nonnegative and continuous in R
n+,

di (ui (t, x)) > 0 for ui (t, x) > 0 (3.54)
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(
gi (ui (t, x)) − gi (u∗

i )

di (ui (t, x))

)′

≥ 0, (3.55)

where gi (ui (t, x))
′ = dgi (ui (t,x))

dui (t,x)
, Theorem 1 (or Theorem 2) in [167] requires W =

(wi j ) to be Lyapunov-Volterra quai-stable (or stable), i.e., there exists a positive
diagonal matrix P = diag(p1, . . . , pn) such that

−PW − (PW )T ≥ 0 ( or > 0), (3.56)

then the nonnegative equilibrium point of system (3.51) is (locally) asymptotically
stable. Further, if the following condition also holds (which guarantees the average
Lyapunov function chosen in [167] to be positive infinity +∞ as ui (t, x) → +∞ or
ui (t, x) → 0+),

∫ +∞

u∗
i

(gi (ui (t, x)) − gi (u
∗
i ))

dui (t, x)

di (ui (t, x))

=
∫ 0

u∗
i

(gi (ui (t, x)) − gi (u
∗
i ))

dui (t, x)

di (ui (t, x))
= +∞, (3.57)

then the nonnegative equilibrium point of system (3.51) is globally asymptotically
stable. Some other different forms of stability criteria are also presented in [167].
From the stability results in [167], we can see the following interesting things.

(1) The stability condition (3.56) is a special case of stability condition (3.69) in
[36] in the sequel, which means that whether the equilibrium point is nonnegative
or not, the negative definite matrix W will guarantee the asymptotic stability of the
equilibrium point of system (3.20). Under other additional assumption conditions,
the negative definite matrix W will also guarantee the global asymptotic stability of
the equilibrium point of system (3.51).

(2) The assumption conditions on the activation function, behaved function, and
amplification function are different from those in Assumptions 3.1–3.3. On the one
hand, the nonnegative property of the concerned equilibriumpoint in [167] is different
from those equilibrium points in the existing references, in which the equilibrium
points can be positive, negative, zero, and their combinations. On the other hand, any
specific parameter on the activation function, behaved function, and amplification
function is not involved in the stability criteria, which builds some general stability
criteria for system (3.51) with the negative definiteness of matrix W . Because any
information on the system parameters except W have not been used in the stability
criteria, the conservativeness of the derived stability criteria will be increased.

(3) The existence condition on the nonnegative equilibriumpoints of system (3.51)
is not discussed, which will effect the completeness of the studied results in [167].

(4) The stability criteria are only for the system without delays. For the delayed
cases, it is not easy to establish such elegant stability criteria as stated in [167].
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(5) The continuous dependence on the boundary data and initial condition is not
discussed.

(6) Except above disadvantages, the main contribution of [167] is first introducing
the reaction-diffusion term into the Cohen–Grossberg neural network, and based on
some new assumptions on the system functions, some local and global asymptotic
stability conditions have been established for the nonnegative equilibrium point of
system (3.51), which are independent of reaction-diffusion term. All the assumptions
on the system functions, e.g., activation function, behaved function, and amplification
function, are rather general, which lead to the generalization of the stability criteria.

Note that, despite that the symmetry restriction on the matrix W is dropped out,
Theorem 1 (or Theorem 2) in [167] will not always hold for any symmetric matrix
W . If and only if symmetric matrix W is stable, e.g., Hurwitz stable, then Theorem
1 (or Theorem 2) in [167] always holds. Obviously, main results in [167] and [17]
are different sufficient conditions to guarantee the (local) asymptotic stability for
system (3.20) due to the different assumptions on the system functions and different
construction of Lyapunov functional.

Therefore, we can draw the following conclusions for the comparisons of the
different stability criteria. For the same system (3.20), under different assumptions
on the physical parameters, it is natural to derive some different stability condi-
tions. Also, with different Lyapunov functionals, the derived stability criteria are
generally different. In particular, even we have derived some same stability condi-
tions under different assumptions on the physical parameters of system (3.20) using
same/different Lyapunov functionals, these stability conditions are generally differ-
ent and cannot be compared if the assumptions on the system parameters are ignored.
Therefore, before comparing one stability criterion with the other, it is very impor-
tant to consider the restriction conditions or the assumptions on the system (3.20).
Under different assumptions on the system parameters, the stability criteria cannot
be compared in essence. Even the expression form of stability criteria are the same,
they are not equivalent due to different assumptions on the system parameters.

In the following, we always suppose that the behaved function ai (ui (t)) satisfies
Assumption 3.2 and amplification function di (ui (t)) satisfies Assumption 3.5 if there
are no other explanations.

When the activation function is a quasi-Lipschitz condition or linear growth con-
dition |gi (s)| ≤ δi |s|+qi instead of global LipschitzAssumption 3.3 and the behaved
function satisfies ai (s)sgn(s) ≥ γi |s|−βi , bounded delays τi j (t) and positive initial
data, Ref. [112] considers the following networks,

u̇i (t) = −di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t)) −
n∑

j=1

w1
i jg j (u j (t − τi j (t)))

⎤

⎦ .

(3.58)
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If the following matrix

Γ − (|W | + |W1|)Δ (3.59)

is an M-matrix, then system (3.58) has a unique equilibrium point, which is globally
asymptotically stable, where |W | = (|wi j |).

For system (3.58), Ref. [116] requires the following inequality to hold

2Liγi −
n∑

j=1

(Liwi jδ j + L jw j iδi ) −
n∑

j=1

(Liw
1
i jδ j + L jw

1
j iδi ) > 0, (3.60)

where Li > 0, or the following matrix

2Γ − (|W | + |W1|)Δ − Δ(|W | + |W1|)T (3.61)

to be an M-matrix, which guarantees the unique equilibrium point of system (3.58),
independent of time-varying delays. Obviously, the existence condition (3.60) in
[116] improves the existence condition (3.59) in [112]. As same as that in (3.59), the
global asymptotic stability condition in [116] is the same as condition (3.59).

Under Assumption 3.5, system (3.58) with τi j (t) = τ has been studied in [117]. If
P[Γ |Δ−1 − (W + W1)] is Lyapunov diagonal stable, or equivalently, the following
linear matrix inequality holds,

P[Γ Δ−1 − W − W1)] + [Γ Δ−1 − W − W1)]T P > 0, (3.62)

where P is a positive diagonal matrix, then there exists a unique nonnegative equi-
librium point of system (3.58) with τi j (t) = τ . If there exists a positive diagonal
matrix P and positive definite symmetric matrix Q such that the following linear
matrix inequality holds,

[
2PΓ Δ−1 − PW − (PW )T − Q −PW1

−(PW1)
T Q

]
> 0, (3.63)

then the unique nonnegative equilibrium point of system (3.58) with τi j (t) = τ
is globally asymptotically stable. If the unique equilibrium point is positive, then
condition (3.63) can ensure the global exponential stability of system (3.58) with
τi j (t) = τ .

Note that using Schur Complement Lemma [120], condition (3.63) is equivalent
to the following form

2PΓ Δ−1 − PW − (PW )T − Q − PW1Q−1(PW1)
T > 0. (3.64)

Comparing the uniqueness condition (3.62) and the stability condition (3.64), we
have the following relation



130 3 Survey of Dynamics of Cohen–Grossberg-Type RNNs

− 2PΓ Δ−1 + PW + PW1 + W T P + W T P (uniqueness)

≤ −2PΓ Δ−1 + PW + W T P + Q + PW1Q−1(PW1)
T < 0. (stability) (3.65)

Or

Uniqueness conditions ⇐ stability conditions

Uniqueness conditions � stability conditions (3.66)

Obviously, the uniqueness and stability conditions are generally different and are
not equivalent. As far as the existence of the equilibrium point is concerned, unique
condition (3.62) is less conservative than condition (3.64), which can also guarantee
the existence of the equilibrium point. Since the stability condition (3.64) ensures the
uniqueness condition (3.62), then the proof on the existence and the proof of unique-
ness in the existing stability are not necessary. It is well known that the existence
condition or uniqueness condition cannot guarantee the stability of the concerned
equilibrium point, since the interested unique equilibrium point may be unstable.
Therefore, we can draw the following conclusion: almost all the existing stability
conditions are sufficient and correspondingly guarantee the existence and uniqueness
of the equilibrium points. If the concerned networkmodels are well defined, in a non-
strict sense of mathematical analytical viewpoint, the existence and uniqueness of
the equilibrium point naturally holds if global stability conditions have been drawn.
As scientific researchers, the existence of the equilibrium point must be guaranteed
in advance; otherwise, the study will lose its meaning (on the contrary, engineers
may be more interested in the implementation of a given performance for a practical
system). This is one of fundamental differences between scholars and engineers in
the aspects of considering an objective problem. After all, for rigorous consideration,
all the preliminaries on the concerned problem must be stated clearly beforehand so
as to ensure the well-posedness of the concerned problem.

For the following Cohen–Grossberg neural networks with finite distributed delays

u̇i (t) = − di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t))

−
N∑

k=1

n∑

j=1

wk
i jg j (u j (t − τk j (t)))

−
r∑

l=1

n∑

j=1

bl
i j

∫ t

t−dl

g j (u j (s))ds

⎤

⎦ , (3.67)

Ref. [131] studies the global asymptotic stability problem and establishes the fol-
lowing sufficient condition
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−2PΓ Δ−1 + PW + (PW )T +
N∑

i=1

(PWi Q−1
i W T

i P + Qi )

+
r∑

l=1

(dlYl + di P BlY
−1
l BT

l P) < 0, (3.68)

where P, Qi , Yl are positive diagonalmatrices to be solved,W = (wi j ), Wk = (wk
i j ),

and Bl = (bl
i j ). Obviously, condition (3.68) in [131] includes the condition (3.63) in

[117] as a special case, and unifiesmany LMI-based stability results in the literatures.

3.3.4 Stability via M-Matrix or Algebraic Inequality Methods

In the aspects of amplification function and the behaved function, Ref. [18, 35, 36,
225] improves the conditions in [17], which has become the main tendency in the
analysis of dynamics of Cohen–Grossberg neural networks, referring toAssumptions
3.2 (in which ai (ui (t)) ∝ ui (t) instead of ai (ui (t)) ∝ 1/ui (t)) and Assumption 3.3.
Therefore, a lot of different stability results on the equilibrium point of Cohen–
Grossberg neural networks (3.20) and their variants have been established, and more
and more less conservative and practical stability criteria have been proposed in dif-
ferent applications. This makes the research on recurrent neural network theorymore
and more fruitful and promising. It is the specific division, according to the principle
from general to specialty, that makes the different disciplines develop quickly. A
detailed global stability analysis for system (3.20) and its variants can be found in
[64], in which all the results are based on algebraic inequality method.

Under Assumptions 3.2 and 3.3, Ref. [36] studies the global stability for system
(3.20) without requiring the boundedness of activation function and positive lower
bound of amplification function. If the following matrix

Γ Δ−1 − W (3.69)

is Lyapunov diagonal stable, i.e., there exists a positive diagonal matrix P =
diag(p1, . . . , pn) such that

P(Γ Δ−1 − W ) + (Γ Δ−1 − W )T P > 0 (3.70)

is positive definite, then the unique equilibrium point of system (3.20) is the global
asymptotic stability, which is independent of the amplification function [36]. More
importantly, the relation betweenM-matrix and Lyapunov diagonal stability has been
discussed in [36]. From (3.70) we have

pi (γiδ
−1
i − wi i ) − 1

2

n∑

j=1, j �=i

(piwi j + p jw j i )



132 3 Survey of Dynamics of Cohen–Grossberg-Type RNNs

≥ pi (γiδ
−1
i − wi i ) − 1

2

n∑

j=1, j �=i

(pi |wi j | + p j |w j i |). (3.71)

or

− pi (γiδ
−1
i − wi i ) + 1

2

n∑

j=1, j �=i

(piwi j + p jw j i )

≤ −pi (γiδ
−1
i − wi i ) + 1

2

n∑

j=1, j �=i

(pi |wi j | + p j |w j i |). (3.72)

IfΓ Δ−1−W ∗ is a nonsingularM-matrix,whereW ∗ = (w∗
i j ), w

∗
i j = |wi j | for i �=

j, w∗
i j = wi j for i = j , we can see that the right-hand side of (3.71) is equal and

greater than 0, or the right-hand side of (3.72) is equal and less than 0. Therefore,
from inequalities (3.71), (3.72) and M-matrix property, we can conclude that non-
singular M-matrix Γ Δ−1 − W ∗ also guarantees the global asymptotic stability of
system (3.20) ifΓ Δ−1−W is Lyapunov diagonal stable. The relations are as follows

nonsingular M-matrix Γ Δ−1 − W ∗

⇒ Γ Δ−1 − W is Lyapunov diagonal stable

⇒ Global asymptotic stability. (3.73)

Obviously, for the Cohen–Grossberg neural networks (3.20) without delays, we can
see that LDS (Lyapunov diagonal stability) condition is less conservative than M-
matrix stability condition.

For Cohen–Grossberg neural network (3.20) with positive interconnection coef-
ficients, asymptotic stability criteria based on M-matrix and Lyapunov diagonal
stable concept is equivalent. It is the M-matrix that builds a bridge between alge-
braic inequality and LMI method. However, for the Cohen–Grossberg neural net-
work (3.20) with delays, asymptotic stability criteria based on M-matrix and LMI
approach are not equivalent any more. Generally speaking, M-matrix-based stabil-
ity results can have a unified expressions; see M-matrix-based stability results for
Cohen–Grossberg neural network (3.20) with different kinds of delays in the sequel.
However, we also see that LMI-based results often have different/various expres-
sions for Cohen–Grossberg neural network (3.20) with different kinds of delays.
Therefore, many different kinds of LMI-based stability results have been proposed
in the literature for Cohen–Grossberg neural network (3.20) with different kinds of
delays. If the lower bound of amplification function is given, then it is proved in [36]
that the condition (3.69) or (3.70) also guarantees the global exponential stability. In
contrast, exponential stability results in [35] requires the lower and upper bounds of
amplification function in Cohen–Grossberg neural network (3.20).

When the activation function is a quasi-Lipschitz condition or linear growth con-
dition |gi (s)| ≤ δi |s|+qi instead of global LipschitzAssumption 3.3 and the behaved
function satisfies ai (s)sgn(s) ≥ γi |s|−βi , where qi ≥ 0 and βi ≥ 0 are nonnegative



3.3 Stability Analysis for Cohen–Grossberg-Type RNNs 133

constants, Ref. [112] studies the global stability for system (3.58) without requiring
the boundedness of activation function and positive lower bound of amplification
function. If the following matrix

Γ − |W + W1|Δ (3.74)

is a nonsingular M-matrix, then system (3.58) has at least one equilibrium point.
Since

Γ − |W + W1|Δ ≥ Γ − (|W | + |W1|)Δ, (3.75)

where A = (ai j ) ≥ B = (bi j ) implies ai j ≥ bi j , then if

Γ − (|W | + |W1|)Δ (3.76)

is a nonsingular M-matrix, then system (3.58) also has at least one equilibrium
point.Obviously, existence condition (3.74) is less conservative than condition (3.76).
Further, under Assumptions 3.2 and 3.3, Theorem 2 in [112] states that a nonsingular
M-matrix condition (3.76) also guarantees the global asymptotic stability of system
(3.58).

For system (3.58) with bounded activation function, Ref. [118] establishes the
following inequality to guarantee the global exponential stability,

diγi −
n∑

j=1

di (|wi j | + |w1
i j |)δ j > 0, (3.77)

which is dependent on the bounds of amplification function. Condition (3.77)
improves the stability results in [47].

Under Assumptions 3.2 and 3.3 and the positive lower bound of amplification,
the following system

u̇i (t) = −di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

w1
i jg j (u j (t − τi j (t)))

⎤

⎦ , (3.78)

has been studied in [108]. It has been proved that if the following determinant holds,

det(Γ − W1K ) �= 0 (3.79)

for diagonal matrix K satisfying −Δ ≤ K ≤ Δ, then system (3.78) has a unique
equilibrium point. Further, if the following matrix

Γ Δ−1 − |W1| (3.80)
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is a nonsingular M-matrix, then the equilibrium point of system (3.78) is globally
exponentially stable. Obviously, from (3.80) we can deduce the condition (3.79).

Under Assumptions 3.1–3.3, [109] requires the following matrix

M0 = DΓ −
N∑

k=0

|W k |ΔD (3.81)

to be an nonsingular M-matrix, which guarantees the Cohen–Grossberg neural net-
works (3.23) to be global asymptotic stability, where |W k | = (|wk

i j |)n×n .
Note that the results in [109] can also be applied to the following networks,

u̇i (t) = −di (ui (t))

⎡

⎣ai (ui (t)) −
N∑

k=0

n∑

j=1

wi jg j (u j (t − τ k
i j ))

⎤

⎦ , (3.82)

u̇i (t) = −di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi j

∫ t

−∞
Ki j (t − s)g j (u j (s))ds

⎤

⎦ , (3.83)

u̇i (t) = −di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j

(∫ t

−∞
Ki j (t − s)u j (s)ds

)⎤

⎦ , (3.84)

which includes the models (3.28), (3.29) and (3.31) as special cases. The unifies
global asymptotic stability criterion for models (3.82), (3.83) and (3.84) requires

M
′
0 = DΓ − |W |ΔD (3.85)

and

M
′′
0 = Γ − |W |Δ (3.86)

to be an nonsingular M-matrix, where |W | = (|wi j |)n×n .
Obviously, stability results in the form of M-matrix in [109] can give a uni-

fied expression for Cohen–Grossberg neural networks with many different types of
delays, and it is easy to check.

Under the same assumptions, some results in [103] have improved the main result
in [109] for themodel (3.82) with N = 0, which can be expressed as a set of algebraic
inequalities independent of amplification functions (see Theorem 10 in [103]). For
example, Theorem 10 in [103] includes the following M-matrix

M
′′′
0 = Γ − W ∗Δ (3.87)

as a special case, where W ∗ = (w∗
i j ), w

∗
i j = |wi j | for i �= j, w∗

i j = wi j for i = j . It
is clear that from (3.85), (3.86), and (3.87), we can have the following relations
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DΓ − |W |ΔD ⇒ Γ − |W |Δ ⇒ Γ − W ∗Δ ⇒ global asymptitic stability,
(3.88)

and the reverse is generally false. Obviously, Theorem 10 in [103] is less conservative
than conditions in [109].

Comparing the stability results in [109] with that in [103], we can find that the
conservativeness of the results in [103] is decreased with involving many adjustable
parameters at the expense of increasing the computational complexity. Altogether,
the paper [103] presents a set of less conservative stability results in the algebraic
inequality forms under different assumptions on amplification functions, activation
functions, and the behaved functions for Cohen–Grossberg neural networks. Both
[109] and [103] are excellent papers in briefly introducing the development and
applications of recurrent neural networks. It should be emphasized that all the stability
criteria can be compared only under the sameprerequisite conditions.Otherwise, they
cannot be compared.

Under Assumptions 3.1–3.3, and activation function being bounded, for the fol-
lowing Cohen–Grossberg neural network,

u̇i (t) = −di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t)) −
n∑

j=1

w1
i jg j (u j (t − τi j ))

⎤

⎦ ,

(3.89)

[114] requires the matrix M1 = (m1
i j )n×n to be a nonsingular M-matrix, then the

equilibrium point is unique and globally exponential stable, where m1
i i = γi −

wi iδi − |w1
i j |δi , M1

i j = −(|wi j | + |w1
i j |)δ j for i �= j . Also, the main result in [114]

is equivalent to the following nonsingular M-matrix

M1 = Γ − W ∗Δ − |W1|Δ (3.90)

or algebraic inequality

M
′
1 = ζiγi − ζiwi iδi −

n∑

j=1, j �=i

ζ j |w j i |δi −
n∑

j=1

ζ j |w1
j i |δi > 0, (3.91)

M
′′
1 = ζiγi − ζiwi iδi −

n∑

j=1, j �=i

ζ j |wi j |δ j −
n∑

j=1

ζ j |w1
i j |δ j > 0, (3.92)

M
′′′
1 =ζiγi − ζiwi iδi −

∑n
j=1, j �=i (ζ j |w j i |δi + ζi |wi j |δ j )

2

−
∑n

j=1(ζ j |w1
j i |δi + ζi |w1

i j |δ j )

2
> 0, (3.93)
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for positive constant ζi > 0, where W ∗ is the same as that in (3.87), |W1| =
(|w1

i j |)n×n .
We should notice that inequalities (3.91), (3.92) and (3.93) are equivalent to

μ1(ζM1) < 0 (strictly diagonally column-dominant), μ∞(M1ζ) < 0 (strictly diago-
nally row-dominant) andμ2(ζM1) < 0, respectively, where ζ = diag(ζ1, ζ2, . . . , ζn)

is a positive diagonal matrix, and for a matrix M = (mi j )n×n , the three matrix mea-
sures are defined by μ1(M) = maxi (mii + ∑

j �=i m ji ), μ∞(M) = maxi (mii +∑
j �=i mi j ), μ2(M) = λmax {(M + MT )/2}, λmax (·) denotes the maximal eigen-

value of a symmetric square matrix. Therefore, the main result in [114] improved
the results in [35, 47, 281–284].

When the activation function gi (ui (t)) is absolutely continuous, 0 ≤ g
′
i (ui (t)) ≤

1 or | f
′
i (ui (t))| ≤ 1,Assumption 3.1 andAssumption 3.2 hold, the followingCohen–

Grossberg neural networks

u̇i (t) = −di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t)) −
n∑

j=1

w1
i j f j (u j (t − τi j (t)))

⎤

⎦ ,

(3.94)

have been studied in [149], where τ̇i j (t) < 1 and τi j (t) ≤ τi j . In the case of
|g′

i (ui (t))| ≤ 1 and | f
′
i (ui (t))| ≤ 1, Theorem 2 in [149] requires the following

matrix

M2 = Γ − |W | − |W1| (3.95)

to be a nonsingular M-matrix, or the following algebraic inequality to be true,

M
′
2 = ζ jγ j −

n∑

i=1

ζi |wi j | −
n∑

i=1

ζi |w1
i j | > 0, (3.96)

where ζ j > 0, which all guarantee the global exponential stability of the equilibrium
point for system (3.94). In the case of 0 ≤ g

′
(u(t)) ≤ 1 and | f

′
i (ui (t))| ≤ 1, Theorem

1 in [149] requires the following algebraic inequality to be true,

M
′′
2 = ζ j (γ j − εd−1

j ) −
⎡

⎣ζ jw j j +
n∑

i=1,i �= j

ζi |wi j |
⎤

⎦
+

−
n∑

i=1

ζi e
ετi j |w1

i j | ≥ 0,

(3.97)

and Corollary 1.1 in [149] requires the following algebraic inequality to hold

M
′′′
2 = ζ jγ j −

⎡

⎣ζ jw j j +
n∑

i=1,i �= j

ζi |wi j |
⎤

⎦
+

−
n∑

i=1

ζi |w1
i j | > 0, (3.98)
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which all guarantee the global exponential stability of the equilibrium point for
system (3.94), where ζ j > 0 and ε > 0, x+ = max{0, x}. According to [114,
149], (3.97) and (3.98) are equivalent. When gi (ui (t)) = fi (ui (t)) is bounded and
|g′

i (ui (t))| ≤ 1, for system (3.94) with constant delays, we can see that stability
results (3.90) and (3.91) in [114] are less conservative than those stability results
(3.95), (3.96), and (3.98) in [149], respectively, which all can be expressed in M-
matrix form. As far as the time-varying delays are concerned, the results in [149]
improves some existing results.

For the nonautonomous case of (3.94), i.e.,

u̇i (t) = − di (ui (t))

⎡

⎣ai (t, ui (t)) −
n∑

j=1

wi j (t)g j (u j (t))

−
n∑

j=1

w1
i j (t) f j (u j (t − τi j (t)))

⎤

⎦ , (3.99)

Theorem 1 in [285] requires the following inequality to be true,

max
n∑

j=1

d jζ jδ j (w
+
i j (t) + |wi j (t)|)

ζi diγi (t)
< 1 (3.100)

under the Assumption 3.4 and requirements of ω-periodic function on γi (t) >

0, wi j (t), w1
i j (t) and τi j (t) (see H3 in [285]), then system (3.99) has an ω-periodic

solution which is globally attractive, where ζi > 0. Under the Assumption 3.3 and
requirements of H3 in [285], if the following inequality holds,

max
n∑

j=1

d jζ jδ j (|wi j (t)| + |wi j (t)|)
ζi diγi (t)

< 1, (3.101)

then system (3.99) has an ω-periodic solution which is globally attractive, where
ζi > 0. Obviously, for the case of constant coefficients, the results in [285] can be
equivalent to some forms of M-matrix as those defined in (3.104) and (3.105) later.

For the Cohen–Grossberg neural network (3.94) with reaction-diffusion term,

∂ui (t)

∂t
=

m∑

k=1

∂

∂xk

(
Dik

∂ui (t, x)

∂xk

)

− di (ui (t, x))

⎡

⎣ai (ui (t, x)) −
n∑

j=1

wi jg j (u j (t, x))
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−
n∑

j=1

w1
i j f j (u j (t − τi j (t), x))

⎤

⎦ , (3.102)

global exponential stability problem has been discussed in [148], where x =
(x1, x2, . . . , xm)T ∈ Ω ⊂ R

m , Ω is a bounded compact set with smooth boundary
∂Ω and measure mesΩ > 0 in space R

m , u = (u1(t, x), . . . , un(t, x))T , ui (t, x)

is the state of the i th unit at time t and in space x , bik = bik(t, x, u) ≥ 0 denotes
the transmission diffusion operator along the i th neuron. The boundary condition of
(3.102) is given by

∂ui (t, x)

∂n̄
=

(
∂ui (t, x)

∂x1
,
∂ui (t, x)

∂x2
, . . . ,

∂ui (t, x)

∂xm

)T

= 0, x ∈ ∂Ω,

ui (s, x) = φ̄i (s, x), ∂
∂t ui (s, x) = ∂φ̄i (s,x)

∂t , in which φ̄i (s, x) are bounded and con-
tinuous differentiable functions, s ∈ (−∞, 0], i = 1, 2, . . . , n, n̄ is the outer normal
vector of ∂Ω .

Under Assumptions 3.1–3.3, and bounded activation functions are globally Lip-
schitz with positive constants δi , δ

0
i , i.e., |gi (ζ)−gi (ξ)| ≤ δi |ζ−ξ|, | fi (ζ)− fi (ξ)| ≤

δ0i |ζ−ξ| for ζ, ξ ∈ R, Corollary 3.2 in [148] establishes a global exponential stability
condition if the following inequality holds,

M3 = diγi −
n∑

j=1

d j |w j i |δi −
n∑

i=1

d j |w1
j i |δ0i > 0. (3.103)

Obviously, if

M
′
3 = DΓ − |W |DΔ − W1DΔ0 (3.104)

is a nonsingular M-matrix, condition (3.103) is naturally satisfied, where D =
diag(d1, . . . , dn), D = diag(d1, . . . , dn), and Δ0 = diag(δ01, . . . , δ

0
n). For the Hop-

field neural networkwith reaction-diffusion term (3.102), the followingM-matrix has
been derived to ensure the global exponential stability for system (3.102) in [154],

M
′′′′
0 = Γ − W +Δ − |W1|Δ, (3.105)

where W + = (w+
i j ), w+

i i = max{0, wi i }, w+
i j = |wi j | for i �= j . For the Hopfield

neural network with reaction-diffusion term, which is a special case of (3.102) with
reaction-diffusion term, in the case of wi j = 0, main result in [110] requires

M
′′
3 = Γ − Δ0|W1| (3.106)
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to be a nonsingular M-matrix, which guarantees the global exponential stability of
the unique equilibrium point. It is clear that for Cohen–Grossberg neural network
(3.102) with/without reaction-diffusion term, the stability conditions are the same in
the expression form. However, the restriction conditions on reaction-diffusion term
and delay terms are different in the prerequisite of the networks.

For stochastic Hopfield neural networks (3.102) with constant delays, i.e.,

dyi (t, x) =
m∑

k=1

∂

∂xk

(
Dik

∂ui (t, x)

∂xk

)

−
⎡

⎣ai (ui (t, x)) −
n∑

j=1

wi jg j (u j (t, x)) −
n∑

j=1

w1
i j f j (u j (t − τi j , x))

⎤

⎦ dt

+
n∑

j=1

σi j (y j (t, x))dω j (t), (3.107)

global exponential stability problem has been discussed in [286], where ω(t) =
(ω1(t), . . . ,ωn(t))T is an n-dimensional Brownian motion defined on a complete
probability space (Ω, ,F , P) with a natural filtration {Ft }t≥0 generated by {ω(s) :
0 ≤ s ≤ t}, where we associate Ω with the canonical space generated by all {ωi (t)},
and denote by F the associated σ-algebra generated by {ω(t)} with the probability
measure P.

For the deterministic case of (3.107), condition (3.104) with di = di = 1 has been
derived in [286] to guarantee theglobal exponential stability of the unique equilibrium
point. For system (3.107), in the case of σi j (y∗

j ) = 0 and σi j (·) being Lipschitz
continuous with Lipschitz constant Li j , the following M-matrices conditions have
been derived,

M4 = Γ − |W |Δ − W1Δ
0 − C, (3.108)

M
′
4 = Γ − |W |Δ − W1Δ

0 − C̃, (3.109)

which guarantee the almost sure exponential stability (or exponential stability
in mean square) and mean-value exponential stability, respectively, where C =
diag(c1, . . . , cn), ci = −γi +

n∑
j=1

wi jδ j +
n∑

j=1
w1

i jδ
0
j +

n∑
j=1

L2
i j ≥ 0, C̃ =

diag(c̃1, . . . , c̃n), c̃i = 0.5
n∑

j=1
L2

i j + K1(
n∑

j=1
L2

i j )
1/2 ≥ 0, K1 > 0 is a constant.

Obviously, M-matrix (3.108) or (3.109) unifies many existing results as its special
cases, for example, the stability results in [110, 114, 148, 149, 151].

For the reaction-diffusion Hopfield neural networks (3.102) with continuously
distributed delays,
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∂ui (t)

∂t
=

m∑

k=1

∂

∂xk

(
Dik

∂ui (t, x)

∂xk

)

−
⎡

⎣ai (ui (t, x)) −
n∑

j=1

wi jg j (u j (t, x))

−
n∑

j=1

w1
i j

∫ t

−∞
Ki j (t − s)g j (u j (s, x))ds

⎤

⎦ , (3.110)

global exponential stability problem has been studied in [246, 287]. The following
M-matrices have been derived to ensure the global exponential stability for system
(3.110) in [246, 287], respectively,

M
′′′′
0 = Γ − |W |Δ − |W1|Δ, (3.111)

M̄
′′′′
0 = Γ − W +Δ − |W1|Δ. (3.112)

For the reaction-diffusion Hopfield neural networks (3.102) with continuously
distributed delays,

∂ui (t)

∂t
=

m∑

k=1

∂

∂xk

(
Dik

∂ui (t, x)

∂xk

)

−
⎡

⎣ai (ui (t, x)) −
n∑

j=1

w1
i j f j

(∫ ∞

0
Ki j (s)u j (t − s, x)ds

)⎤

⎦ , (3.113)

and
∫ ∞

0
Ki j (s)ds = ki j > 0, (3.114)

global exponential stability problem has been studied in [288]. The following
M-matrix has been derived to ensure the global exponential stability for system
(3.113) in [288],

M
′′′′
0 = Γ − Δ0|W a

1 |, (3.115)

where W a
1 = (w1

i j ki j ). If ki j = 1 in (3.114), the global asymptotic stability problem
for (3.113) has been studied in [289], which has the same result as that in (3.115).
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For the following systems with distributed delays

u̇i (t) = −
⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t)) −
n∑

j=1

w1
i j f j (u j (t − τi j (t)))

−
n∑

j=1

w2
i j

∫ ∞

0
Ki j (s)h j (u j (t − s))ds

⎤

⎦ , (3.116)

and
∫ ∞

0
eλs Ki j (s)ds = ki j (λ) > 0, (3.117)

where 0 ≤ (hi (ζ) − hi (ξ))/(ζ − ξ) ≤ δ1i , ki j (0) = 1, Ref. [150] establishes the
following condition

[
λI − Γ + |W |Δ + eλτ |W1|Δ0 + (ρ(λ) ⊗ |W2|Δ1)

]
ζ < 0, (3.118)

or

Γ − |W |Δ − |W1|Δ0 − |W2|Δ1 (3.119)

is a nonsingular M-matrix, to guarantee the global exponential stability of the unique
equilibria for system (3.116),whereλ > 0 is a positive number, I is an identitymatrix
with appropriate dimension, 0 ≤ τi j (t) ≤ τ , A⊗ B = (ai j bi j ), ζ = (ζ1, . . . , ζn)T >

0, ζi > 0, W2 = (w2
i j ),Δ

1 = diag(δ11, . . . , δ
1
n), ρ(λ) = (ki j (ρ)).

Note that systems (3.113) and (3.116) can be changed into the form of system
(3.110) by coordinate transformation. More generally, for such kind of distributed
delays

∂ui (t)

∂t
=

m∑

k=1

∂

∂xk

(
Dik

∂ui (t, x)

∂xk

)

−
⎡

⎣ai (ui (t, x)) −
n∑

j=1

w1
i j f j

(∫ T

0
Ki j (s)u j (t − s, x)ds

)⎤

⎦ , (3.120)

where T > 0 is a positive constant, we can also use the same method as those
in (3.113) and (3.110) to analyze the stability of (3.120), the asymptotic stability
criteria can be expressed as (3.115) [290]. Therefore, it is the same to deal with the
continuous distributed delays in (3.110), (3.113), and (3.120).

However, we can find that conditions (3.106) and (3.115) are different from (3.86),
(3.90), (3.105), and (3.108) because of the different position of amplification function
Δ. By carefully checking and comparing, we can find that the expression form of
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M-matrix in [110, 288, 289] is not correct due to the misuse of M-matrix properties.
Therefore, if Δ0 in (3.106) and (3.115) were removed to the right side of |W1| and
|W a

1 |, respectively, then it would lead to the correct consequences.
For the neutral-type Cohen–Grossberg neural networks with constant delays, i.e.,

u̇i (t) +
n∑

j=1

ei j u̇ j (t − τ j )

= −di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t)) −
n∑

j=1

w1
i jg j (u j (t − τ j ))

⎤

⎦ ,

(3.121)

global asymptotic stability problem has been discussed in [291], where E = (ei j )

shows how the derivatives of the neurons are delay feedforward connected in the
network, i.e., the time delay occurs in the state velocity vector. If E = 0, then
(3.121) describes a class of neural networks with retarded-type delays or discrete
time delays. In the case of ai (ui (t)) and a−1

i (ui (t)) being continuously differentiable

and 0 < γi ≤ a
′

i (ui (t)) ≤ γ0
i < ∞, the following conditions are presented,

0 ≤ ‖E‖ < 1 (3.122)

L P(1 + ‖E‖) + L R(1 + ‖E‖) + Q < min
1≤i≤n

{diγi }, (3.123)

which guarantees the global asymptotic stability of system (3.121), where L =
max{δi }, P = max{di }‖W‖, Q = max{diγ

0
i }‖E‖ and R = max{di }‖W1‖. When

E = 0 in (3.121), condition (3.123) can be reduced to the following form,

L(‖W‖ + ‖W1‖)max
i

{di } ≤ min
i

{diγi }. (3.124)

Further, if di = di = 1, then (3.124) can be reduced to the following form

L(‖W‖ + ‖W1‖) ≤ min
i

{γi } (3.125)

where ‖B‖ is the Euclidean norm induced from the vector norm.
The nonlinear measure proposed in [30] is only some rephrase of the part con-

cerning with L1 norm in Corollary 1 in [31]. In [27], by using matrix measure theory,
the authors obtained some test conditions for global stability of Hopfield neural net-
works, where all the coefficients Ci assumed to be 1. Test conditions in Theorem 9
in [27] can be easily obtained from Proposition 4 in [31]. Moreover, by the direct
approach in [31], the authors show that all the test conditions do not depend on the
parameters Ci . Moreover, the direct method is more readable and applicable. It is
also easy to see that the conditions in Proposition 4 in [31] are less restrictive than
those in the Theorem 9 in [27].
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3.3.5 Stability via Matrix Inequalities or Mixed Methods

In this subsection, the activation function is assumed to satisfy Assumption 3.4 if no
other declaration is given.

For the following Cohen–Grossberg neural networks,

u̇i (t) = −di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t)) −
n∑

j=1

w1
i j f j (u j (t − τ ))

⎤

⎦ ,

(3.126)

which is a special case of system (3.94), global exponential stability has been studied
in [60], and the following matrix inequality-based and matrix norm-based stability
criteria have been presented, respectively,

2PΓ Δ−1 − PW − (PW )T − Q − PW1Q−1W T
1 P > 0 (3.127)

or

δM (‖W‖ + ‖W1‖) < γm, (3.128)

where P and Q are positive diagonal matrices, respectively, γm = min{γi }, δM =
max{δi }, i = 1, . . . , n. In fact, stability condition (3.127) is the same as stability
condition (3.64) in [117]. In order to compare with the existing results, here we
rewrite it again. It is easy to see that the stability condition (3.127) includes the
stability conditions (3.56), Lyapunov diagonal stability condition (3.69) or (3.70) as
special cases in expression forms. In the following, we will show that (3.128) can be
recovered from (3.127). If ‖W1‖ = 0, which implies W1 = 0, we choose P = I and
Q = (γm/δM − ‖W‖)I > 0, respectively, then (3.127) becomes

2Γ Δ−1 − W − W T − (γm/δM − ‖W‖)I > 0. (3.129)

If condition (3.129) holds, which implies that there exists any vector x(t) �= 0 such
that

xT
(
2Γ Δ−1 − W − W T − (γm/δM − ‖W‖)I

)
x(t) > 0 (3.130)

or

xT
(
2γmδ−1

M − 2‖W‖ − (γm/δM − ‖W‖)
)

x(t) > 0. (3.131)

Obviously, condition (3.131) implies condition (3.128) with ‖W1‖ = 0. This also
means that for system (3.126) without delay, if the following conditions hold, which
ensue the global exponential stability of the equilibrium point,
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2PΓ Δ−1 − PW − (PW )T > 0, (3.132)

then we can also derive a stability condition from (3.132) that if the following con-
dition holds,

δM‖W‖ < γm, (3.133)

then the equilibrium point of system (3.126) without delay is globally exponentially
stable. For the case ‖W1‖ �= 0, we choose P = I and Q = ‖W1‖I > 0, respectively,
then (3.127) becomes

2Γ Δ−1 − W − W T − ‖W1‖I − 1

‖W1‖W1W T
1 > 0. (3.134)

If condition (3.134) holds, which implies that there exists any vector x(t) �= 0 such
that

xT
(
2Γ Δ−1 − W − W T − ‖W1‖I − 1

‖W1‖W1W T
1

)
x(t) > 0 (3.135)

or

xT
(
2γmδ−1

M − 2‖W‖ − 2‖W1‖
)

x(t) > 0. (3.136)

Obviously, condition (3.136) implies condition (3.128). Under Assumption 3.3, Ref.
[224] presents the following global exponential stability criterion,

dδM (‖W‖ + ‖W1‖) < γmd, (3.137)

and Ref. [322] presents the following global exponential stability criterion, respec-
tively,

dδM (‖W‖1 + ‖W1‖1) < γmd, (3.138)

where ‖B‖1 = max1≤i≤n
∑n

j=1 |bi j | represents the first norm of matrix B, B =
(bi j ). Since the Euclidean norm ‖B‖ and the first norm ‖B‖1 are different in the
measure space, they cannot be compared directly.Meanwhile, there exist some equiv-
alent relations among different matrix norms, therefore, different matrix norm-based
stability results have similar expression forms, see (3.137) and (3.138). Further, com-
paring (3.137) with (3.128), we can find the following relation,

(‖W‖ + ‖W1‖) <
γmd

δM d
≤ γm

δM
< 1. (3.139)

Obviously, stability result (3.128) in [60] is conservative than result (3.137) in [224].
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For system (3.83), or for system (3.126) with W = 0, under the assumption of
bounded activation function, Ref. [168] requires the following condition to be true,

ρ(AM) < 1, A = diag

(
d1

d1
, . . . ,

dn

dn

)
, M = (mi j ), mi j = |w1

i j |δ j

γi
, (3.140)

where ρ(B) = maxi |λi | is the spectral radius of a square matrix B, λi is the eigen-
value of B, then the uniqueness of system (3.83) or system (3.126) with W = 0 is
uniformly stable, uniformly bounded, globally attractive and globally asymptotically
stable. Obviously, from (3.140) we have

AM =
(

di |w1
i j |δ j

diγi

)
= AΓ −1W1Δ, (3.141)

which implies

ρ(AM) ≤ ‖AM‖ = ‖AΓ −1MΔ‖ ≤ d

d

δM

γm
‖W1‖. (3.142)

Comparing the conditions (3.142), (3.139), and (3.128), we can see that the stability
result in [168] is less conservative.

For the following Cohen–Grossberg neural networks with continuously distrib-
uted delays,

u̇i (t) = − di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t))

−
n∑

j=1

w1
i jg j (u j (t − τ (t))) −

n∑

j=1

w2
i j

∫ t

−∞
K j (t − s)g j (u j (s))ds

⎤

⎦ ,

(3.143)

LMI-based global exponential stability (GES) problem has been studied in [75],
where

∫ ∞

0
K j (s)ds = 1,

∫ ∞

0
sK j (s)e

2λsds = π j (λ) < ∞,λ > 0. (3.144)

System (3.143) can be written in a compact matrix-vector form,

u̇(t) = − D(u(t))

[
A(u(t)) − Wg(u(t)) − W1g(u(t − τ (t)))

−W2

∫ t

−∞
K (t − s)g(u(s))ds

]
, (3.145)
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Obviously, the distributed delay (3.144) in [75] is different from that in (3.30). There-
fore, the analysis method in [75] cannot be applied to the neural networks with
distributed delay (3.30). By using a descriptor system method [72, 76, 155, 292,
293], an LMI-based GES stability criterion has been derived, which has involved
more tuning variables. Meanwhile, the results in [75] have no restrictions on the
change rate of time-varying delays. When di (ui (t)) = constant in (3.144), this kind
of model with constant delay is studied in [59], using Moon inequality [294] and
the well-known Leibniz–Newton formula, an LMI-based global asymptotic stability
criterion has been established, which is dependent on the magnitude of time delay.

For neural networks (3.94) with fi (ui (t)) = gi (ui (t)) and τ̇i j (t) ≤ η < 1,
Theorem 4.1 in [237] requires the following matrix inequality to hold,

2PΓ Δ−1 − PW − W T P − (P Q−1W1)∞ − 1

1 − η
(P QW1)1 > 0, (3.146)

then the equilibrium point of (3.94) is globally exponentially stable, where P and Q
are positive diagonal matrices to be determined, B = (bi j ), B1 = diag(

∑n
i=1 |bi1|,∑n

i=1 |bi2|, . . . ,∑n
i=1 |bin|), B∞ = diag(

∑n
i=1 |b1i |, ∑n

i=1 |b2i |, . . . ,
∑n

i=1 |bni |),
For the following Cohen–Grossberg neural networks with continuously distrib-

uted delays,

u̇i (t) = − di (ui (t))

⎡

⎣ai (ui (t)) −
n∑

j=1

wi jg j (u j (t))

−
n∑

j=1

w1
i j

∫ t

−∞
Ki j (t − s)g j (u j (s))ds

⎤

⎦ , (3.147)

Theorem 5.2 in [237] requires the following matrix inequality to hold,

2PΓ Δ−1 − PW − W T P − (P Q−1W1)∞ − (P QW1)1 > 0, (3.148)

then the equilibrium point of (3.147) is globally asymptotically stable. Further, if the
following condition holds,

∫ ∞

0
Ki j (s)e

δ0sds < ∞, (3.149)

where δ0 > 0 is a positive constant, then the equilibrium point of (3.147) is glob-
ally exponentially stable if (3.148) holds. Obviously, for the case of constant delays,
condition (3.148) guarantees the global asymptotic stability for both (3.94) with
g(·) = f (·) and (3.147) with continuously distributed delays. The reason is that sys-
tem (3.94) with g(·) = f (·) can be deduced from system (3.147) if a suitable kernel
function is selected (also see (3.30)–(3.31) for more details). Since the distributed
delays are involved, under suitable assumption on kernel function, the equilibrium
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point of (3.147) is also globally exponentially stable if (3.148) holds. It is clear, on
the one hand, that stability conditions both (3.146) and (3.148) only consider the
inhibitory effect of W , and do not consider the inhibitory effect of W1. On the other
hand, both conditions (3.146) and (3.148) are not easy to check because unknown
matrix Q is involved in computing the 1-norm and ∞-norm.

For the Cohen–Grossberg neural networks with finite distributed delays (3.67),
Ref. [131] studies the global asymptotic stability problem and establishes the same
sufficient condition as that in (3.68). Obviously, stability condition (3.68) in [131]
unifies many LMI-based stability results in the literature.

For the Cohen–Grossberg neural networks (3.58), Ref. [116] establishes the fol-
lowing LMI-based global exponential stability conditions, independent of time-
varying delays,

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 Φ2 P B1 P B2 . . . P Bn

∗ Φ3 Q B1 Q B2 . . . Q Bn

∗ ∗ −H1 0 . . . 0
∗ ∗ ∗ −H2 . . . 0
...

...
...

...
. . .

...

∗ ∗ ∗ ∗ . . . −Hn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (3.150)

P/d >

n∑

i=1

ΔHiΔ, (3.151)

where Φ1 = −2PΓ + (P + QΔ)/d + θ I , Φ2 = RΔ − QΓ + PW , Φ3 = QW +
(QW )T − 2R, P, Q, R and Hi are positive diagonal matrices, respectively. θ > 0
is a positive constant, and Bk = (bk

i j ), whose kth row is composed of the kth row of

matrix W1 = (w1
i j ) and the other rows are all zeros.

For the Cohen–Grossberg neural networks (3.58) with τi j (t) = τ (t), Ref. [116]
establishes the followingLMIconditions to guarantee the global exponential stability,
independent of time-varying delays,

⎡

⎣
Φ1 Φ2 PW1
∗ Φ3 QW1
∗ ∗ −H

⎤

⎦ > 0, (3.152)

P/d > ΔHΔ, (3.153)

where H is a positive diagonal matrix, and the other notations are the same as those
defined in (3.150).

Obviously, based on different assumptions on activation functions, amplifica-
tion functions, and delay types, different LMI-based stability criteria have been
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established. With more matrix inequality techniques being involved in the proof
procedure of stability analysis, these kinds of stability criteria begin to become more
and more complex. Correspondingly, it is not an easy work to check the stability
conditions and compare them with the other kind of stability criteria analytically. In
the extreme case, how to evaluate the performance of an LMI-based stability crite-
rion, it will be no other choice but to resort to the case study. Case study is plentiful,
which will reflect the diversity of theory research. With the development of different
theories on stability and computational mathematics, case study can also be deep-
ened significantly, and some common understandings may be reached. In this way,
theory research will become more and more refined, which gradually promotes the
development of stability theory. LMI-based stability research is such a reflection on
the understanding of the neural dynamical networks.

3.3.6 Topics on Robust Stability of RNNs

RNNs have been extensively studied in recent years, e.g., [80, 209, 281, 282, 295–
302] and the references cited therein, because of their many important applications
in various areas such as pattern recognition, associate memory, and combinatorial
optimization. Since the existence of delays is frequently a source of instability for
neural networks, the stability of neural networks with time delays has long been
a focused topic of theoretical as well as practical importance. In the design and
hardware implementation of neural networks, however, a common problem is that
parameters acquired in neural networks are inaccurate. To design neural networks,
vital data, such as the neurons fire rate, the synaptic interconnection weight and
the signal transmission delays, etc., usually need to be measured, acquired, and
processed by means of statistical estimation which definitely leads to estimation
errors. Moreover, parameter fluctuation in neural network implementation on very
large scale integration (VLSI) chips is also unavoidable. In practice, it is possible
to explore the range of the above-mentioned vital data as well as the bounds of
circuit parameters by engineering experience even from incomplete information.
This fact implies that a good neural network should have certain robustness which
paves the way for introducing the theory of interval matrices and interval dynamics
to investigate the global stability of interval neural networks. Otherwise, the neural
network is not meaningful in the practical applications. For example, as using an
interval neural network having certain robustness to solve optimization problems,
we need not consider spurious suboptimal responses for each parameter value of the
neural network, which is of great importance. Therefore, besides global exponential
stability, complete stability, asymptotic stability, and periodic oscillation of neural
networks with time delays have been extensively investigated, e.g., [67, 71, 80, 118,
205, 208, 209, 232, 282, 296–298, 300, 301, 303]. As pointed out in [71], robust
stability is seldom considered for neural networks with and without delay. There
exist several related results on robust stability, see, [123, 304–307]. In [305, 306],
global robust stability of delayed interval Hopfield neural networks are investigated
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with respect to the bounded and strictly increasing activation functions. Several
M-matrix conditions to ensure the robust stability are given for delayed interval
Hopfield neural networks. In [123], the authors view the uncertain parameters as
perturbations and give some testable results for robust stability of continuous-time
Hopfield neural networks without time delay. In [71], the authors view the interval
uncertain parameters as the matched uncertainty and give some LMI-based robust
testable results.

In general, there are several kinds of expression forms for uncertainty of inter-
connection matrices, which have been introduced in Sect. 3.2.2. In the following, we
will mainly consider the interval uncertainty.

Interval uncertainty can be expressed in the following form [71, 304],

AI = [A, A] = {A = (ai j )n×n : A ≤ A ≤ A, i.e., ai j ≤ ai j ≤ ai j }. (3.154)

In the proof of the robust stability of this kind of interval system, some inequalities
are evolved gradually. In [304], the following inequality is used,

‖A‖22 ≤ max{‖A‖22, ‖A‖22}, (3.155)

where ‖A‖2 = √
λmax(AT A) is the normal Euclidean norm. As pointed out in [71],

inequality (3.155) does not always hold, for example, take

A =
[

0 −16
−16 0

]
, A =

[
16 0
0 16

]
, A =

[
16 −16

−16 16

]
, (3.156)

clearly, A ≤ A ≤ A, and ‖A‖2 = ‖A‖2 = 16, ‖A‖2 = 32. Therefore, for this case
the inequality (3.155) does not hold. In [71], the following inequality is presented,

‖A‖2 ≤ ‖A∗‖2 + ‖A∗‖2, (3.157)

where A∗ = (A + A)/2, A∗ = (A − A)/2.
As a commonly used concept, we give the following robust definition.

Definition 3.6 (Robust stability, see [208, 298, 308–310]) The neural network
model given by (3.89) with the parameter ranges defined by (3.154) is globally
robust stable if the unique equilibrium point u∗ = (u∗

1, u∗
2, . . . , u∗

n) of the model is
globally asymptotically stable for all W ∈ WI , W1 ∈ W1 I .

For the interval uncertainty (3.154), a splitting or partitioning interval matrix
method has been proposed in [130] to prove the robust stability. Specifically, the

interval A ∈ [A, A] is divided by Ã = A−A
m or ãi j = ai j −ai j

m where m is an inte-
ger greater than or equal to 2. The disadvantage of the partitioning interval matrix
method will produce a large set of criteria to be checked, which leads to the complex-
ity and difficult check of the robust result. The advantage is that it presents another
method to study the robust stability of RNNs with interval parameter uncertainties.
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Similar to the delay partitioning method, in which time delay varies in a fixed inter-
val or bounded range, interval matrix can also be partitioned by as many subinterval
matrices as possible. In this partitioning way, the total uncertainties are divided by
many almost deterministic subinterval matrices. Then based on the similar principle
of neural network approximator, some weighted combination methods are applied to
the subinterval matrix, which forms the fundamental principle of partitioning inter-
val matrix method. It is interesting that the universal approximation capability of
neural networks have two main applications: one is to model and identify the exter-
nal controlled systems, the other is to analyze the interval dynamics by partitioning
the interval number. It is the internal partitioning/decomposition approximation and
external synthesis approximation that make neural networks more powerful. Stabil-
ity analysis of neural networks to some degree is a optimal approximated process
with the combinations of interconnection matrix, activation functions, time delay,
amplifications, and external inputs.

By the way, as an important parameter of RNNs, time delay cannot be avoidable
[311]. Nowadays, both delay-dependent and delay-independent stability criteria have
been investigated. Delay-independent stability criteria are robust to variations of time
delay, while delay-dependent stability criteria are sensitive to the variations of time
delay. At present, more emphasis is placed on the robust stability with respect to
the variations of interconnection coefficients, while delay-dependent robust stability
conditions is sensitive to time delay, no matter the change rate of time-varying delay
and the size of time delay. This is a strange phenomenon in the robust stability
research of RNNs. From the other viewpoint of understanding, robust stability is
also a relative conception, who is robust to some variables while is sensitive to other
variables. Robust stability, similar to stability definition, is also defined subjectively.
Based on this kind of understanding, we can know that the current robust stability
is not with respect to the total perturbations of the networks, on the contrary, it is
relative to the partial uncertainties or the interested uncertainties. Therefore, for the
variation of time delay, how to establish the corresponding robust stability criteria
has not gained the attention of researchers.

3.3.7 Other Topics on Stability Results of RNNs

In the aforementioned subsections, the focus is on the stability in Lyapunov sense and
global asymptotical stability of a kind of continuous-time real-value additive recur-
rent neural networks with discrete delays (or called isolated delays or concentrated
delays with respect to the distributed delays). These kinds of stability criteria are
the main streams in the current researches of neural network theory. However, there
are many qualitative characteristics of RNNs, such as absolute stability, complete
stability, and stability in Lagrange sense. Other topics include the periodic solution,
ω−limit set, aperiodic solution, local stability, partial stability, practical stability. In
these cases, the stability problems may not be concerned with the fixed point, but
they may be concerned with the invariant set or ω−limit set, even the boundedness
of the state or output trajectories.
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Besides the above qualitative features, there are some other directions to be fur-
ther investigated for Cohen–Grossberg neural networks(CGNN). (1) One is in the
aspect of neural network models. For example, the CGNN can be extended to
the cases: the connection weight coefficients can be complex valued, which forms the
complex-valued CGNN; the connection weight coefficients can be state-dependent,
which forms the memristive neural networks; the neuronal activation function can
be discontinuous, which forms the discontinuous neural networks; the time delay
can be distributed or stochastic, which forms the neural networks with distributed
delays and stochastic neural networks; when the number of variables in the derivative
of differential equations exceeds to one, which is more suitable to be expressed by
partial differential equations, some neural networks expressed in the partial differ-
ential equation are necessary; when the variables are involved in different structures,
bidirectional memory neural networks, competing neural networks, and gene reg-
ulation networks are formed, to name a few. For these neural network models, the
introduced contents in above subsections can be continued to study. (2) The other
is in the aspect of analysis methods. Different stability property or qualitative char-
acteristic may require different analysis method, especially for further improving
the effectiveness of the obtained stability criteria. In this way, such mathematical
methods as algebraic method, geometric method, set method, manifold method, and
so on can be used. Except the mathematical analytical methods, maybe some other
nonanalytical methods are still more effective in the qualitative analysis of com-
plex networks. (3) Stability problem is doomed to be connected with some practical
applications. Different applications may require different stability concepts and sta-
bility analysis methods. Different neural models may reflect different description of
engineering applications. Different qualitative characteristics may represent differ-
ent requirements of the designers. Different level or degree of stability may indicate
different response of the process systems. Therefore, it is better to connect some sta-
bility analysis to some specific engineering or social applications, which will make
the stability research more meaningful and will provide a unified framework for the
qualitative analysis and quantitative control/synthesis.

3.3.8 Qualitative Evaluation on the Stability Results of RNNs

From above subsections, we can draw the following conclusions.
(1) At present, there are two kinds of stability results for the neural networks with

delays, one is the delay-dependent one, the other is delay-independent one. Specially,
if any delay-related information is involved in the stability criteria, all these kinds
of stability results are called delay-dependent stability results. For example, such
information as the size of time delay, the change rate of time-varying delay, the
kernel function of the distributed delay, the density function of the stochastic delay,
and so on, is involved in the stability criteria, the corresponding stability criteria
are all called delay-dependent ones. If no information about delay is involved in
the stability criteria, this kind of stability result is called as delay-independent one.
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In fact, delay-independent stability criterion is a relative concept. Although not any
information about delay is involved in the stability criteria, some information about
delay is usually involved in the assumption conditions. For example, such information
as the boundedness of time delay, slowly time-varying delay (e.g., τ̇ (t) < 1), partially
known probability transition density, known kernel function and so on, are always
assumed in the prerequisite or assumption. Therefore, strictly speaking, no delay-
independent stability condition exists in the literature. This is the reason why the
prerequisite must be considered before a stability criterion formula is used to judge
whether a neural network is stable or not. Ignoring the prerequisite and directly
verifying the criterion, there will not be a correct understanding on the concerned
problem. In general, if partial information of time delay can be relaxed in the stability
criteria, for example, the size of time delay, we then call this criterion as independent
of the size of time delay (although the bounded delay is unknown). Similarly, stability
criterion independent of probability transition density, independent of change rate of
time delay, etc., are all meaningful results for the stability research of delayed neural
networks, despite some other information about delay is required in the prerequisite.
This is the relativity of partial-delay-information independent stability result.

(2) When discussing the delay-dependent stability criterion, researchers usually
say that delay-dependent criteria are better than delay-independent criteria, espe-
cially when the size of time delay is very small. This assertion seems odd. According
to [2, 18], when the size of time delay does not exceed a limit (for the case of con-
stant delay), the neural networks with delay have the same dynamical property as the
neural networks without delay. Therefore, when the size of time delay is too small, it
is not necessary to establish the delay-dependent stability criterion. If the size of time
delay exceeds some limit, it is necessary to discuss the stability of RNNs with large
delay. Naturally, a questionmay arise, is it necessary to spend toomuch effort finding
some techniques to establish the delay-dependent stability criteria? In this respect,
there is a misleading understanding on reducing the conservativeness of the stability
results. Except the size of time delay, there are many delay information effecting
the stability of the delayed neural networks, such as the change rate of time-varying
delay, the delayed kernel function and probability transition density. Therefore, the
traditional delay-dependent and delay-independent concept is only concerned with
the size of time delay. With the development of neural network theory, such concept
should be updated. Except the case of discrete or concentrated delay (with respect to
distributed delay), the meaning of delay-dependent and delay-independent concept
seems no longermeaningful. In this case, discussing the effects of other delay-related
information (no limited to the size of time delay) on the stability of delayed neural
networks looks meaningful, which forms the initial value and boundary value prob-
lems of the concerned neural networks. The meaning of delay-dependent stability
criteria lies in the fact that it can present a more close relationship among the total
information of RNNs and the qualitative stability property of RNNs, which can
provide a theoretical foundation for the synthesis of RNNs. If the stability of fixed
equilibrium point is further upgraded, qualitative characteristics such as invariant set,
passivity, dissipativity, and synchronization of the complex neural networks will play
more important roles. After all, neural networks fall into the interdisciplinary fields,
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both mathematical methods and engineering applications are two main streams in
the development of stability theory. Stability problem is the original and fundamen-
tal investigation of the concerned problems, and other researches such as control
schemes, invariant sets, and passivity are all on the basis of the stability theory of
fixed equilibrium point.

Above two points are for the discussion on the delay-dependent/independent sta-
bility criteria form. The following points are for the specific methods of the stability
research on RNNs.

(3)With the increase of additive terms in (3.82), the negative term in theM-matrix
condition is also increasing. This means that the stability criteria based on M-matrix
will become more and more conservative with the increase of additive terms (such
as different types of delays) in the network structure, which will affect the accurate
judgement of stability for the parallel computational neural networkmodels.With the
increase of the complexity, the conservativeness of stability criteria will be increased.
This assertion is also suitable for the case of LMI-based stability criteria, matrix
norm-based stability results and algebraic inequality-based results. Meanwhile, all
the stability results based on M-matrix neglect the signs of the connection weight
coefficients, which lead to the ignorance of the inhibitory effect of neurons on the
neural networks. It is well known that the inhibitory action of neurons can stabilize
the neural network while excitatory action will destabilize the neural networks. The
balance of a system dynamics is kept by the interactions of inhibitory and excitatory
effect. In the applications such as optimization problems and image processing, the
inhibitory action of neurons plays an important role in practice. Therefore, the simple
M-matrix-based stability criteria are derived at the expense of ignoring the inhibitory
action of neurons.

(4) M-matrix-based method builds a bridge among algebraic inequality meth-
ods, matrix measure methods, spectral norm methods and Lyapunov diagonal stabil-
ity methods. Especially, matrix-based method will build the connection with linear
matrix inequality method through the Lyapunov diagonal stability methods. Further-
more,M-matrix-based stability result is a very flexible, effective, and simple criterion
to determine the dynamic properties of a complex recurrent neural network. In the
development of stability theory of RNNs, M-matrix method plays an important role
in promoting the stability research both in applications and theory. Interestingly,
some global asymptotic stability results and global exponential stability results for
RNNs can be expressed in the same form of M-matrix.

3.4 Necessary and Sufficient Conditions for RNNs

Nowadays, most stability results for Hopfield-type and Cohen–Grossberg-type
neural networks are sufficient. Few necessary and sufficient conditions for asymp-
totic/exponential stability of RNNs with delay has been published. However, there
exist some necessary and sufficient conditions for different dynamics of recurrent
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neural networks with/without delay. Especially, for the delayed case, some necessary
and sufficient conditions for the attractiveness of a class of recurrent neural networks
with delay have been published [312].

Note that the sufficient asymptotic/exponential stability criteria in the existing
literature are all established on the basis of strict inequality (i.e., > 0 or < 0). It is
natural to ask: what will happen if the strict inequalities are placed by the nonstrict
inequalities (i.e., ≥ 0 or ≤ 0)? For the case of necessary and sufficient conditions,
one must consider the critical case, i.e., the nonstrict inequalities. For the case of
nonstrict inequalities, Ref. [313] establishes a global convergence condition based
on M-matrix-like (or algebraic inequality) method for the following neural network

u̇i (t) = −γi ui (t) +
n∑

j=1

wi jg j (u j (t)) +
n∑

j=1

w1
i j f j (u j (t − τi j )), (3.158)

where gi (ui (t)) = tanh(αi ui (t)) and fi (ui (t)) = tanh(βi ui (t)), i.e., |gi (ui (t))| ≤
αi |ui (t)| and | fi (ui (t))| ≤ βi |ui (t)|, αi > 0,βi > 0, i = 1, . . . , n. Obviously,
model (3.158) is a special case of model (3.94). If

Mc = −γ j + α j

⎛

⎝w j j +
n∑

i=1,i �= j

|wi j |
⎞

⎠
+

+ β j

n∑

i=1

|w1
i j | ≤ 0, (3.159)

then there is a unique equilibrium point such that every solution of (3.158) satisfies
limt→∞ u(t) = u∗. It is clear that the following matrix

Γ − W +α − |W1|β ∈ P0, (3.160)

is equivalent to the condition (3.159), whereP0 will be defined in (3.164). Comparing
the condition (3.160) in [313] with (3.95) in [149], we can see that the result in [313]
further relaxes the restrictive condition on the stability/convergence, which is close
to the necessary condition on the stability/convergence.

For the following pure delay Hopfield neural network,

u̇(t) = −Γ u(t) + W1 f (u(t − τ )), (3.161)

Theorem 3 in [68] presents the following necessary and sufficient condition

(
σ I −

[
Γ 0
0 Γ

]
+ eστ

[
W +

1 W −
1

W −
1 W +

1

] [
Δ 0
0 Δ

])
η ≤ 0, (3.162)

then system (3.161) is guaranteed componentwise exponential convergence, where
η = [αT ,βT ]T , α > 0 and β > 0 are two constant vectors with appropriate dimen-
sions, σ > 0 is a scalar, I is an identity matrix with appropriate dimension, (w1

i j )
+ =
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max{w1
i j , 0} signifying the excitatory weights and (w1

i j )
− = max{−w1

i j , 0} signify-
ing the inhibitory weights. Obviously, the elements in W +

1 and W −
1 are all nonneg-

ative.
In this subsection, we will introduce some recent development in the aspects of

necessary and sufficient condition on the dynamics of RNNs.
For the case of Hopfield neural networks without any delay, under some assump-

tions on the activation and connection weight matrix, some sufficient and necessary
stability and attractiveness conditions have been established in the existing litera-
ture. For the following Hopfield neural network, absolute stability (ABST) has been
studied in [125, 126, 314, 315],

u̇i (t) = −γi ui (t) +
n∑

j=1

wi jg j (u j (t)) + Ui , (3.163)

where W = (wi j )n×n is the connection matrix, and the activation function gi (ui (t)))
is a class of sigmoid function that consists of smooth, strictly monotone, increasing
functions which are saturated as ui (t) → ±∞ (e.g., tanh(ui (t))), i = 1 . . . , n. In
Ref. [314], for the nonsymmetric case of connectionmatrix W in (3.163), a necessary
and sufficient condition as follows

−W ∈ P0, (3.164)

is presented to guarantee the uniqueness of the equilibriumpoint for anybounded acti-
vation function Class g, where P0 denotes the class of square matrices A defined by
one of the following equivalent properties [314]: (i) All principalminors of A are non-
negative; (ii) Every real eigenvalue of A as well as of each principal submatrix of A is
nonnegative; (iii) det(K + A) �= 0 for every diagonal matrix K = diag(K1, . . . , Kn)

with K > 0, i = 1, . . . , n. That is to say, the negative semi-definite matrix W is
a necessary and sufficient condition to guarantee the uniqueness of the equilibrium
point for system (3.163) with asymmetric connection matrix. However, condition
(3.164) is not in general sufficient for the absolute stability of system (3.163) with
asymmetric connection matrix. On the contrary, for the system (3.163) with sym-
metric connection matrix, it has been shown that condition (3.164), or the negative
semi-definite matrix W , is a necessary and sufficient condition to guarantee the
absolute stability of the unique equilibrium point. This is consistent with the result
in [315]. The ABST result was also extended to the absolute exponential stability
(AEST) in [316, 317]. At this point, we make some comments on the necessary
and sufficient stability result. It is well known that a symmetric Hopfield neural
network always exhibits convergent dynamics, but it may run into local minimum
when applied to optimization problems [16]. Condition (3.164) shows that the largest
subclass of symmetric Hopfield networks that can guarantee achievement of global
minimization without spurious response are those with negative semi-definite weight
matrices.
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In [318], a conjecture is raised: the necessary and sufficient condition for ABST of
the neural network is that its connectionmatrix W belongs to the Class of matrices W
such that all eigenvalues of matrix (W − D1)D2 has negative real parts for arbitrary
positive diagonal matrices D1 and D2. This condition is proven to be a necessary
and sufficient condition for ABST of the neural network with two neurons [319].
The necessity of such a condition for ABST is proven in [318] and implies that all
existing sufficient conditions for ABST in the literature are special cases of that in
[318]. However, whether or not such a condition is sufficient for ABST of a general
neural network remains unknown in the case of more than two neurons. Within
the class of partially Lipschitz continuous and monotone nondecreasing activation
functions (this class includes the sigmoidal activation as a special case), a recent
AEST result is given in [163] under a mild condition that the connection weight
matrix W belongs to the Class of additively diagonally stable matrix introduced
in [162], i.e., for any positive diagonal matrix D1, there exists a positive diagonal
matrix D2 such that D2(W − D1) + (W − D1)

T D2 < 0. This condition extends
the condition in [320] that the connection weight matrix W is an H -matrix with
nonpositive diagonal elements.

As a comparison, the following two conditions have been proposed in [21],
respectively,

δM <
γi

wi i + 0.5
∑n

j �=i, j=1(|wi j | + |w j i |) , (3.165)

and

wi i ≤ −0.5
n∑

j �=i, j=1

(|wi j | + |w j i |), (3.166)

which guarantee the system (3.163) with symmetric connection matrix to have a
unique global asymptotic stable equilibrium point.

In theGAS condition (3.166), it is independent of themaximum slope δM . Clearly,
(3.166) assures GAS for all functions g in the Class S (i.e., bounded, monotonic,
strictly increasing activation function) and hence represents a sufficient condition
for ABST. On the contrary, (3.165) does not represent a condition for ABST, since
(3.165) requires a limitation on the maximum slope δM of the sigmoidal function g.

For a symmetric W , (3.166) can be rewritten as wi i ≤ −∑n
j �=i, j=1 |wi j |, which

means that W is weakly row sum dominant and hence is negative semi-definite.
Therefore, (3.166) implies the condition of (3.164). However, the class of negative
semi-definite matrices is wider than that of matrices satisfying a row dominance
condition, which implies that condition (3.166) is more restrictive than the condition
(3.164).

In [125], W is a normal matrix in (3.163), i.e., W T W = W W T , and system
(3.163) is called normal Hopfield neural network, which is a special case of original
Hopfield neural network (3.21). The following sufficient and necessary condition is
established in [125],
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max
i

Re λi (W ) ≤ 0, (3.167)

or

max
i

λi

(
W + W T

2

)
≤ 0, (3.168)

then the normal neural network (3.163) is absolute stability, where λi (B) represents
the i-th eigenvalue of matrix B. Re λi (B) represents the real part of eigenvalue
λi (B). Since a symmetric matrix is normal, then for a symmetric neural network, the
negative semi-definiteness result in [314] is obviously a special case of the result in
[125]. Furthermore, a sufficient global asymptotic stability condition is also presented
in [125],

δM max
i

Re λi (W ) ≤ γm . (3.169)

Condition (3.169) is clearlyweaker than condition (3.167). In particular, the condition
(3.169) even possibly allows an unstable connection matrix W , i.e., Re λi (W ) > 0
for some i .

In [126], the same Hopfield neural network (3.163) has been further discussed.
By removing the assumption of normal matrix on W , a more general matrix decom-
position method is proposed. That is W = W s + W ss , where W s = (W + W T )/2
and W ss = (W − W T )/2 are the symmetric and the skew-symmetric parts of W ,
respectively. Then based on the matrix eigenvalue method and a solvable Lie algebra
condition, a new necessary and sufficient condition is presented to guarantee the
absolute stability of the concerned Hopfield neural network. Specifically, suppose
that {W s, W ss} generates a solvable Lie algebra, if and only if the following condition
holds,

max
i

Re λi (W ) ≤ 0, (3.170)

or

the symmetric part W sof the weight matrix W is negative semi-definite, (3.171)

then the system (3.163) is absolutely stable, which includes the results in [125,
314, 315] as special cases. In the case of smooth activation function for Hopfield
neural network (3.163), condition (3.170) also ensures the exponential convergence
of the equilibrium point. It is clear that the exponential convergence result stated in
[126] is also valid for neural networks under the conditions of stability results in
[125, 314, 315]. However, such an exponential convergence result has not been
obtained in [125, 314, 315]. Therefore, the results in [126] improves the results in
[125, 314, 315].
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The importance of absolute stability is as follows. In general, absolute stability of a
neural network implies existence and global attractiveness of a unique equilibrium of
the system for every neuron activation function of sigmoid type and for every constant
input to the neural network. The insensitivity of this property to model details is of
important physical significance, since inmost cases the neuron activation is known to
belong to the sigmoid class but its shape is not exactly specified. A typical example of
this case is a neural network in the high-gain limit.Moreover, the global attractiveness
inherent in absolute stability ensures a neural network running in real time without
the need of resetting the activations when changing inputs. It also precludes spurious
responses for every choice of the activation function and of the external input. This
is particularly desirable for neural optimization and classification problems.

For (3.163) with global Lipschitz condition satisfying Assumption 3.4, the fol-
lowing necessary and sufficient stability condition has been derived in [127, 321]

−Γ + WΔ is nonsingular or det(−Γ + WΔ) �= 0, (3.172)

which ensures that system (3.163) has a unique equilibrium point. According to
the discussion, the absolute stability discussed in [125] is the attractiveness of the
equilibrium point.

For the case of Hopfield neural network with delays,

u̇i (t) = −γi ui (t) +
n∑

j=1

w1
i jg j (u j (t − τi j )), (3.173)

global attractivity of system (3.173)was studied in [312] basedonM-matrix structure,
where W1 = (w1

i j ) is the connection matrix, and the activation function gi (0) = 0,

gi (ui (t)) saturates at±1 for any ui (t) ∈ R, i.e., limui (t)→±∞ = ±1, g
′

i (ui (t)) is con-

tinuous such that g
′

i (s) = dgi (s)
ds > 0 for any s ∈ R, g

′
(0) = 1, and 0 < ḡi (ui (t)) <

mb for any mb > 0, where ḡi (ui (t)) = max{gi (ui (t)), −gi (−ui (t))}, i = 1, . . . , n,
max{τi j } = τM ≥ 0, the initial conditions are continuous on [−τM , 0]. That is to say,
the activation function is a Sigmoid-type and positive saturation function. The fol-
lowing necessary and sufficient condition has been obtained to guarantee the global
attractivity of the origin of system (3.173),

det(−Γ + W1) �= 0, and Γ − |W1| is an P0-matrix, (3.174)

where P0-matrix is defined in (3.164). Comparing the result (3.174) in [312] with
those results (3.79) and (3.80) in [108], we can see the theorem conditions in [312]
improve the results in [108] for system (3.173), which is a special case of the model
(3.78) studied in [108]. Thus, generally speaking, the results in [108] have wider
application ranges than that in [312].
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Also, the following result is presented in [312] if

Γ − |W1| is a nonsingular M-matrix, (3.175)

then the origin of system (3.173) is globally exponential stable for any time delay
τi j ≥ 0, which is the same as that result (3.80) in [108]. As far as the model (3.173)
is concerned, the result (3.175) in [312] improves the results in [108].

3.5 Summary

In summary, stability studies for recurrent neural networks with or without delays
have achieved great development in the last three decades, no matter in the wideness
and the deepness. However, there are still many new problems to be proposed and
solved. All these changes accompany the development of mathematical theory, espe-
cially the applied mathematics and computational mathematics. Keeping in mind,
any forms of stability criteria have their own feasible ranges, and one cannot expect
that only one stability result can tackle all the stability problems existed in the recur-
rent neural networks. Every kind of stability result, for example, in the forms of
algebraic inequality, M-matrix, and LMI, has its own advantages, which has con-
sidered different tradeoff between computational complexity and efficiency of the
stability results. One form of stability result is not absolutely superior to the other
form of stability result, it only reflects different aspects of the investigated recurrent
neural networks. Therefore, it is the different forms of stability results that promote
the development of the stability theory of recurrent neural networks.
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Chapter 4
Delay-Partitioning-Method Based Stability
Results for RNNs

Chapter3 has presented many ways on how to use the time delay to establish the
effective stability criteria for RNNs with delays. In this chapter, inspired by the
discussion in Chap.3, a new delay splitting method is proposed. By nonuniformly
splitting the interval of time delay through involving many adjustable parameters,
along with the construction of a new Lyapunov function, some delay-dependent sta-
bility results are established. By some comments and comparisons with the existing
results, the effectiveness and novelty of the obtained criteria are verified. The contents
in this chapter are from the results in [28].

4.1 Introduction

As a special class of nonlinear dynamical systems, recurrent neural networks (RNNs)
have been paid much attention in the past decades due to their wide range of applica-
tions, such as signal processing [1, 2], combinatorial optimization [3–5], associative
memories [6–8], pattern recognition [9, 10], etc. Since the RNNs are usually imple-
mented by VLSI or digital circuit, etc., they are not much associated with training of
ensembles. Meanwhile, time delay is also commonly encountered in the implemen-
tation of RNNs due to the finite switching speed of amplifier, and it is frequently a
source of oscillation in neural networks. Therefore, the stability of RNNs with delay
has become a topic of great theoretical and practical importance. Generally, when
a neural network is applied to solve an optimization problem, it needs to have a
unique and globally stable equilibrium point. Thus, it is of great interest to establish
some sufficient conditions that ensure the global asymptotic stability of a unique
equilibrium point of RNNs with delay [11–28].

So far, the stability criteria of RNNs with time delay are classified into two cat-
egories, i.e., delay-independent [11–19] and delay-dependent [20–23]. Since delay-
dependent criteria tend to be less conservative, especially when the size of time
delay is small, much attention has been paid to the delay-dependent category. For

© Science Press, Beijing and Springer-Verlag Berlin Heidelberg 2016
Z. Wang et al., Qualitative Analysis and Control of Complex Neural
Networks with Delays, Studies in Systems, Decision and Control 34,
DOI 10.1007/978-3-662-47484-6_4

173

http://dx.doi.org/10.1007/978-3-662-47484-6_3
http://dx.doi.org/10.1007/978-3-662-47484-6_3


174 4 Delay-Partitioning-Method Based Stability Results for RNNs

the delay-dependent case considered in this current stability study, less conservative
criteria means that the larger allowable upper bound of delay can be calculated for a
certain system, or the larger allowable ranges of parameters in system are obtained
for a fixed delay.

Nowadays, there are twokinds of usefulmethods dealingwith problems associated
with time delay: free-weighting matrix approach [29–31] and augmented Lyapunov
functional method [32–35]. Reference [30] considers the term− ∫ t−d(t)

t−h ẋT (s)Z ẋ(s)
ds in Lyapunov functional, which is usually neglected in previous literature, where
d(t) denotes a time-varying delay and h denotes the upper bound of d(t), i.e., d(t) ∈
[0, h]. Reference [34] uses a new augmented Lyapunov function, which is similar
to the functions applied to the descriptor system with delay in [36]. We can see that
the free-weighting matrix approach is used as a main tool to make the criteria less
conservative in literature, and only the lower and upper bound of delay function d(t)
are considered. Recently, a novel method is proposed for Hopfield neural networks
with constant delay in [37], which is carried out by dividing the constant time delay
interval [0, h] into m subintervals with the same size. This method utilizes the
information in the interval [0, h] to achieve the aim of reducing the conservativeness
of stability criterion.

It is worth noticing that the delay interval [0, d(t)] is usually considered as a single
interval in literature for RNNs with time-varying delay d(t). Thus, how to utilize the
information in [0, d(t)] in order to further obtain less conservative stability for RNNs
with time-varying delay d(t) motivates our present study. Our proposed approach
is to divide the delay interval [0, d(t)] into smaller variable subintervals, and study
the stability based on these subintervals. As a result, we will introduce the idea of
dividing delay interval [0, d(t)] from the viewpoint of mathematics.

The idea of dividing the delay interval [0, d(t)] is as follows: We determine a
point α (or multiple points αi , i = 1, 2, . . . , K ), where α ∈ (0, d(t)) (or αi ∈
(0, d(t))), i.e., 0 < α < d(t) (or 0 < αi < d(t)), such that interval [0, d(t)] can
be divided into two subintervals [0,α] and [α, d(t)] (or K + 1 subintervals [0,α1],
[α1,α2], . . . , [αK , d(t)]).

Different from [37]which divides the delay interval into thefixed subintervalswith
the same size, this chapter provides a dynamic mode to divide delay interval since
the pointα or pointsαi can be chosen arbitrarily in the interval [0, d(t)]. For the sake
of convenience, in this chapter, we let α = ρd(t) or αi = ρi d(t), where ρ ∈ (0, 1)
or ρi ∈ (0, 1), and (ρ1, ρ2, . . . , ρK ) is a parameter sequence satisfying 0 < ρ1 <

ρ2 < · · · < ρK < 1. Therefore, ρd(t) or ρi d(t) are nominated as weighting-delays,
parametersρorρi areweighting-delay parameters, and (ρ1d(t), ρ2d(t), . . . , ρK d(t))
is weighting-delay sequence. Meanwhile, [0, ρd(t)] and [ρd(t), d(t)] or [0, ρ1d(t)],
[ρ1d(t), ρ2d(t)], . . . , [ρK d(t), d(t)] are called two or K + 1 variable subintervals,
respectively.

Therefore, this chapter proposes the new method referred to the weighting-delay
to dealwith the stability of RNNswith time-varying delay, so that the larger allowable
upper bound can be obtained by introducing these variable subintervals. Different
from previous studies, the weighting-delay method has the following features:
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(1) The idea of dividing delay interval will be used in this method. Unlike the
previous works [29–35] which treat the delay interval [0, d(t)] as one single interval,
[0, d(t)] will be divided into several subintervals in this chapter. It means that much
more information in the interval [0, d(t)] can be utilized.

(2) Different from the fixed subintervals with the same size mode in [37], the
weighting-delay method is the onewith dynamic subintervals. That is to say, the delay
interval is divided into variable subintervals in this method. It implies that the points
ρi d(t) are reconfigurable at delay interval [0, d(t)]. Compared to the fixed subinter-
vals, it has inherent flexibility, and should be more suitable to deal with time-varying
delay d(t).

(3) Since the weighting-delays are introduced in the delay interval, it is clear that
the stability results based on the weighting-delay method is related to the number of
subintervals, and the size of the variable subintervals or the position of the variable
points (the values of parameters ρi ).When the positions ofweighting-delays vary, the
stability results of proposed criteria are also different. In order to obtain the optimal
weighting-delay sequence, we proposed an implementation algorithm based on an
optimization method.

Based on these features, some novel weighting-delay-based stability criteria for
RNNs with time-varying delay are developed by linear matrix inequality (LMI)
technique. Four illustrative examples show that our results are less conservative than
those in previous literature.

4.2 Problem Formulation

Consider the following RNNs with time-varying delay d(t):

ż(t) = −Dz(t) + A f (z(t)) + B f (z(t − d(t))) + U,

z(t) = φ(t), ∀t ∈ [−h, 0], (4.1)

where z(·) = (
z1(·), z2(·), . . . , zn(·))T is the neuron state vector, f (z(·)) =

(
f1(z1(·)), f2(z2(·)), . . . , fn(zn(·))

)T denotes the neuron activation function, and
U = (U1, U2, . . . , Un)T is a bias value vector. D = diag(d1, d2, . . . , dn) is a diag-
onal matrix with di > 0, i = 1, 2, . . . , n. A and B are the connection weight matrix
and the delay connection weight matrix, respectively. The initial condition φ(t) is a
continuous and differentiable vector-valued function, where t ∈ [−h, 0]. The time
delay d(t) is a differentiable function that satisfies

0 � d(t) � h, (4.2)
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and

0 � ḋ(t) � μ, (4.3)

where h > 0 and μ � 0. Obviously, d(t) is a time-varying continuous function with
the upper bound h.

For systems (4.1), f (z(t)) and f (z(t − d(t))) are two different signals, i.e., it is
different for dynamical characteristics of RNNs only with f (z(t)) connection and
with two connections. Similarly, RNNswith time-varying delay d(t) orwith constant
delay havedifferent dynamical characteristics, either.ComparedwithHopfield neural
networks only with the delayed connection and constant delay in [37], we studied
the stability of a class of neural networks with two connections and time-varying
delay d(t). Since delay d(t) is a time-varying function, it will be described using the
parameters h and μ. Meanwhile, system (4.1) can be reduced to the neural networks
in [37] if A = 0 and ḋ(t) = 0 (i.e., d(t) = h). Thus, it means that system (4.1) with
two connections studied in this chapter is more general than that in [37].

In addition, it is assumed that each neuron activation function in system (4.1),
fi (·), i = 1, 2, . . . , n, satisfies the following condition:

0 � li � fi (u) − fi (v)

u − v
� li (4.4)

where ∀u, v ∈ R, u �= v, li are some nonnegative constants, and li are some positive
constants, i = 1, 2, . . . , n.

Assume the equilibrium point of system (4.1) be denoted by z∗ = (z∗
1, z∗

2,

. . . , z∗
n)T . Define xi (·) = zi (·) − z∗

i , system (4.1) can then be transformed into
the following error system:

ẋ(t) = −Dx(t) + Ag(x(t)) + Bg(x(t − d(t))),
x(t) = ϕ(t),∀t ∈ [−h, 0], (4.5)

where x(·) = (
x1(·), x2(·), . . . , xn(·))T is the state vector of the transformed sys-

tem, the initial condition ϕ(t) = φ(t) − z∗. g(x(t)) = (
g1(x1(t)), g2(x2(t)),

. . . , gn(xn(t))
)T , and gi (xi (t)) = fi (xi (t)+z∗

i )− fi (z∗
i ), i = 1, 2, . . . , n. Functions

gi (·), i = 1, 2, . . . , n, satisfy the following condition:

{
0 � li � gi (xi )

xi
� li , if xi �= 0,

gi (xi ) = 0, if xi = 0.
(4.6)

The following lemmas will be used to prove the results of this chapter.

Lemma 4.1 (Jensen’s inequality) (see [38]) For any constant matrix Ω > 0, vector
function χ(t) with appropriate dimensions, and function σ(t) ∈ R satisfying 0 <

σ(t) � δ we have
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[∫ t

t−σ(t)
χ(s)ds

]T

Ω

[∫ t

t−σ(t)
χ(s)ds

]

� σ(t)
∫ t

t−σ(t)
χT (s)Ωχ(s)ds

� δ

∫ t

t−δ
χT (s)Ωχ(s)ds.

Lemma 4.2 The following inequalities

{
Δ + αX1 < 0,
Δ + αX2 < 0,

(4.7)

are equivalent to the following condition:

Δ + τ X1 + (α − τ )X2 < 0, (4.8)

where X1, X2, Δ are constant matrices with appropriate dimensions, τ ∈ [0, α],
and α > 0.

Proof The proof is on the basis of the idea of convex combination in [42].
(1) (4.7)⇒(4.8)
Let matrices Δ1 and Δ2 satisfy the following condition

Δ1 = Δ + αX1 < 0,

Δ2 = Δ + αX2 < 0.

We can get

τΔ1 + (α − τ )Δ2 < 0,

i.e.,

α(Δ + τ X1 + (α − τ )X2) < 0.

Since α > 0, the following inequality holds

Δ + τ X1 + (α − τ )X2 < 0.

(2) (4.8)⇒(4.7)
Since variable τ satisfies the following condition at interval [0, α]

Δ + τ X1 + (α − τ )X2 < 0.
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Then, for variable τ = α and τ = 0, respectively, the following inequalities hold

Δ + αX1 < 0 and Δ + αX2 < 0.

4.3 GAS Criteria with Single Weighting-Delay

In this section, we will establish weighting-delay-independent stability criterion and
weighting-delay-dependent stability criterion, respectively.

4.3.1 Weighting-Delay-Independent Stability Criterion

In this subsection, we will consider the delay interval [0, h], which is divided into
two subintervals [0, ρh] and [ρh, h], where ρh is a weighting-delay, ρ ∈ (0, 1) and
0 < ρh < h. For this case, a weighting-delay-independent stability criterion can be
proposed.

Theorem 4.3 The equilibrium point of system (4.5) with time-varying delay d(t)
satisfying (4.2) and (4.3) is unique and globally asymptotically stable, if there exist
matrices:

P = PT =
[

P11 P12

PT
12 P22

]
> 0, R = RT > 0,

Q = QT > 0, Y1 = Y T
1 > 0, Y2 = Y T

2 > 0,

Z = Z T =
[

Z11 Z12

Z T
12 Z22

]
> 0, G = GT > 0,

Λ = diag(λ1, λ2, . . . ,λn) > 0,

W1 = diag(w11, w12, . . . , w1n) > 0,

W2 = diag(w21, w22, . . . , w2n) > 0,

such that the following LMI holds:

⎡

⎢⎢⎣

Θ Γ1 Γ2 h ĀT (G + Z22)

∗ −Z11 0 0
∗ ∗ −Z11 0
∗ ∗ ∗ − (G + Z22)

⎤

⎥⎥⎦ < 0, (4.9)
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where

Θ =

⎡

⎢⎢⎢⎢⎢⎢⎣

Θ11 Z22 G −P12 Θ15 Θ16
∗ −Q − 2Z22 0 Z22 0 0
∗ ∗ Θ33 G 0 Θ36
∗ ∗ ∗ Θ44 0 0
∗ ∗ ∗ ∗ Θ55 ΛB
∗ ∗ ∗ ∗ ∗ Θ66

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Θ11 = −P11D − D P11 + Q + R + Y1 + P12 + PT
12 − G

+ h2Z11 − h2Z12D − h2DZ T
12 − Z22 − 2LW1L,

Θ15 = P11A − DΛ + (
L + L

)
W1 + h2Z12A,

Θ16 = P11B + h2Z12B,

Θ33 = −(1 − μ)Y1 − 2G − 2LW2L,

Θ36 = (
L + L

)
W2,

Θ44 = −R − G − Z22,

Θ55 = ΛA + AT Λ + Y2 − 2W1,

Θ66 = −(1 − μ)Y2 − 2W2,

Γ1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

PT
22 − D P12 − Z T

12
Z T
12
0

−PT
22

AT P12

BT P12

⎤

⎥⎥⎥⎥⎥⎥⎦
, Γ2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

PT
22 − D P12

−Z T
12

0
Z T
12 − PT

22
AT P12

BT P12

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Ā = [−D, 0, 0, 0, A, B], L = diag(li ), L = diag(li ), i = 1, 2, . . . , n, and ∗
denotes the symmetric terms in a symmetric matrix.

Proof The proof will include two steps.
(1) The uniqueness of the equilibrium point
Assuming x� is a nonzero equilibrium point, which satisfies the equilibrium equa-

tion,
ẋ� = −Dx� + Ag(x�) + Bg(x�) = 0. (4.10)

Thus, we can get the following equations,

2(x�)T [P11 P12]
[−Dx� + Ag(x�) + Bg(x�)

x� − x�

]
= 0,

2gT (x�)Λ
(−Dx� + Ag(x�) + Bg(x�)

) = 0,

h2
[

x�

ẋ�

]T

Z

[
x�

ẋ�

]
� 0,
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where P11, P12, Z , and Λ are defined at Theorem 4.3.
Then, according to μ � 0 and condition (4.6), there exist the following equations,

(x�)T Y1x� − (1 − μ)(x�)T Y1x� � 0,

gT (x�)Y2g(x�) − (1 − μ)gT (x�)Y2g(x�) � 0,

−(W1 + W2)
(
g(x�) − Lx�

) (
g(x�) − Lx�

)
� 0,

where Y1, Y2, W1, and W2 are defined at Theorem 4.3.
Let ζ� = [

(x�)T , (x�)T , (x�)T , (x�)T , gT (x�), gT (x�)
]T
, applying the equations

above and proper deviation, we can get

(ζ�)T
(
Θ + h2 ĀT (G + Z22) Ā

)
ζ� � 0, for ζ� �= 0. (4.11)

However, applying Schur complements for (4.9), we can get

(ζ�)T
(
Θ + h2 ĀT (G + Z22) Ā

)
ζ� < 0, for ζ� �= 0. (4.12)

Thus, there exists a contradiction between (4.11) and (4.12), which implies that
the origin should be the unique equilibrium point under condition (4.9), i.e., x� = 0.

(2) The stability of the equilibrium point
Construct the following augmented Lyapunov–Krasovskii functional:

V (x(t)) =
6∑

i=1

Vi (x(t)), (4.13)

where

V1(x(t)) = ηT
1 (t)Pη1(t),

V2(x(t)) = 2
n∑

i=1

λi

∫ xi (t)

0
gi (s)ds,

V3(x(t)) =
∫ t

t−d(t)

(
xT (s)Y1x(s) + gT (x(s))Y2g(x(s))

)
ds,

V4(x(t)) =
∫ t

t−ρh
xT (s)Qx(s)ds +

∫ t

t−h
xT (s)Rx(s)ds,

V5(x(t)) = h
∫ 0

−h

∫ t

t+θ
ηT
2 (s)Zη2(s)dsdθ,

V6(x(t)) = h
∫ 0

−h

∫ t

t+θ
ẋ T (s)Gẋ(s)dsdθ,
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where ηT
1 (t) =

[
xT (t),

∫ t
t−h xT (s)ds

]
, ηT

2 (t) = [
xT (t), ẋ T (t)

]
, P = PT =

[
P11 P12

PT
12 P22

]
> 0 , Λ = diag(λ1, λ2, . . . , λn) > 0, Y1 = Y T

1 > 0, Y2 = Y T
2 > 0,

R = RT > 0, Q = QT > 0, Z = Z T =
[

Z11 Z12

Z T
12 Z22

]
> 0, and G = GT > 0.

For functional V (x(t)), we can verify that it satisfies the following condition

β1‖x(t)‖2 � V (x(t)) � β2‖x(t)‖2c, (4.14)

where ‖x(t)‖c := sup−h�θ�0 ‖x(t +θ)‖, β1 = λm(P), and β2 = (1 + h)λM (P) +
2λM (ΛL) + hλM (Y1) + hλM (Y2)λM (L

2
) + ρhλM (Q) + hλM (R) + 0.5h3λM (Z)

[1 + 3λM (DT D) + 3λM (AT A)λM (L
2
) + 3λM (BT B)λM (L

2
)] + 1.5h3λM (G)

[λM (DT D)+λM (AT A)λM (L
2
) + λM (BT B)λM (L

2
)].

Then, calculating the time derivatives of V1(x(t)), V2(x(t)), V3(x(t)), and
V4(x(t)), respectively, along the trajectories of system (4.5), they yield

V̇1(x(t)) = 2

[
x(t)∫ t

t−h x(s)ds

]T [
P11 P12

PT
12 P22

]

×
[−Dx(t) + Ag(x(t)) + Bg(x(t − d(t)))

x(t) − x(t − h)

]
, (4.15)

V̇2(x(t)) = − 2gT (x(t))ΛDx(t) + 2gT (x(t))ΛAg(x(t))

+ 2gT (x(t))ΛBg(x(t − d(t))), (4.16)

V̇3(x(t)) � xT (t)Y1x(t) + gT (x(t))Y2g(x(t))

− (1 − μ)xT (t − d(t))Y1x(t − d(t))

− (1 − μ)gT (x(t − d(t)))Y2g(x(t − d(t))), (4.17)

V̇4(x(t)) = xT (t)Qx(t) − xT (t − ρh)Qx(t − ρh)

+ xT (t)Rx(t) − xT (t − h)Rx(t − h). (4.18)

Then, using Lemma 4.1 and the Leibniz–Newton formula, the time derivatives of
V5(x(t)) and V6(x(t)) can be obtained as follows:

V̇5(x(t)) = h2
[

x(t)
ẋ(t)

]T [
Z11 Z12

Z T
12 Z22

] [
x(t)
ẋ(t)

]

− h
∫ t

t−ρh

[
x(s)
ẋ(s)

]T [
Z11 Z12

Z T
12 Z22

] [
x(s)
ẋ(s)

]
ds

− h
∫ t−ρh

t−h

[
x(s)
ẋ(s)

]T [
Z11 Z12

Z T
12 Z22

] [
x(s)
ẋ(s)

]
ds
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� h2
[

x(t)
ẋ(t)

]T [
Z11 Z12

Z T
12 Z22

] [
x(t)
ẋ(t)

]

−
∫ t

t−ρh

[
x(s)
ẋ(s)

]T

ds

[
Z11 Z12

Z T
12 Z22

] ∫ t

t−ρh

[
x(s)
ẋ(s)

]
ds

−
∫ t−ρh

t−h

[
x(s)
ẋ(s)

]T

ds

[
Z11 Z12

Z T
12 Z22

] ∫ t−ρh

t−h

[
x(s)
ẋ(s)

]
ds

= h2
[

x(t)
ẋ(t)

]T [
Z11 Z12

Z T
12 Z22

] [
x(t)
ẋ(t)

]

−
[∫ t

t−ρh xT (s)ds∫ t
t−ρh ẋT (s)ds

] [
Z11 Z12

Z T
12 Z22

][∫ t
t−ρh x(s)ds∫ t
t−ρh ẋ(s)ds

]

−
[∫ t−ρh

t−h xT (s)ds∫ t−ρh
t−h ẋT (s)ds

] [
Z11 Z12

Z T
12 Z22

] [∫ t−ρh
t−h x(s)ds∫ t−ρh
t−h ẋ(s)ds

]

= h2
[

x(t)
ẋ(t)

]T [
Z11 Z12

Z T
12 Z22

] [
x(t)
ẋ(t)

]

−
∫ t

t−ρh
xT (s)ds Z11

∫ t

t−ρh
x(s)ds

−
∫ t−ρh

t−h
xT (s)ds Z11

∫ t−ρh

t−h
x(s)ds

− 2
∫ t

t−ρh
xT (s)ds Z12(x(t) − x(t − ρh))

− 2
∫ t−ρh

t−h
xT (s)ds Z12 (x(t − ρh)

−x(t − h)) − υT (t)Z̃υ(t), (4.19)

V̇6(x(t)) � h2 ẋ T (t)Gẋ(t) −
∫ t

t−d(t)
ẋ T (s)dsG

∫ t

t−d(t)
ẋ(s)ds

−
∫ t−d(t)

t−h
ẋT (s)dsG

∫ t−d(t)

t−h
ẋ(s)ds

= h2 ẋ T (t)Gẋ(t) − υT (t)G̃υ(t), (4.20)

where V̇6(x(t)) is obtained using the derivation similar to V̇5(x(t)), υT (t) =
[xT (t), xT (t − ρh), xT (t − d(t)), xT (t − h)], and
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Z̃ =

⎡

⎢⎢⎣

1 −1 0 0
−1 2 0 −1
0 0 0 0
0 −1 0 1

⎤

⎥⎥⎦ Z22, G̃ =

⎡

⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 2 −1
0 0 −1 1

⎤

⎥⎥⎦ G.

On the other hand, according to (4.6), we can obtain that

(
gi (xi (t)) − li xi (t)

) (
gi (xi (t)) − li xi (t)

)
� 0, (4.21)

and

(gi (xi (t − d(t))) − li xi (t − d(t)))

× (
gi (xi (t − d(t))) − li xi (t − d(t))

)
� 0, (4.22)

where i = 1, 2, . . . , n.
For any W1 = diag (w11, w12, . . . , w1n) > 0, W2 = diag (w21, w22, . . . , w2n) >

0, by (4.21) and (4.22), we have

0 � −2gT (x(t))W1g(x(t)) + 2gT (x(t))W1Lx(t)

+2xT (t)LW1g(x(t)) − 2xT (t)LW1Lx(t)

−2gT (x(t − d(t)))W2g(x(t − d(t)))

+2gT (x(t − d(t)))W2Lx(t − d(t))

+2xT (t − d(t))LW2g(x(t − d(t)))

−2xT (t − d(t))LW2Lx(t − d(t)), (4.23)

where L = diag(li ) and L = diag(li ), i = 1, 2, . . . , n.
Thus, combining (4.15)−(4.20) and adding (4.23), the derivative of V (x(t)) is

obtained as follows:

V̇ (x(t)) � ζT (t)
(
Θ + Γ1Z−1

11 Γ T
1 + Γ2Z−1

11 Γ T
2

+ h2 ĀT (Z22 + G) Ā
)

ζ(t), (4.24)

where ζT (t) = (
υT (t), gT (x(t)), gT (x(t − d(t)))

)
.

Obviously, if Θ + Γ1Z−1
11 Γ T

1 + Γ2Z−1
11 Γ T

2 + h2 ĀT (Z22 + G) Ā < 0, then
V̇ (x(t)) < −ε‖x(t)‖2 for a small ε > 0. Using Schur complements, we can know
that the above inequality is equivalent to (4.9). As a result, according to Lyapunov
stability theory and inequality (4.14), the equilibrium point of the system (4.5) is
globally asymptotically stable.

According to (1) and (2), if (4.9) is satisfied, equilibrium point of the system (4.5)
is unique and globally asymptotically stable.
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When μ � 1 or μ is unknown, by letting Y1 = 0 and Y2 = 0 in Theorem 4.3,
the stability result independent of τ̇ (t) can be obtained. Meanwhile, as a universal
tool, LMI has been widely applied in many fields, such as dynamical systems theory,
control systems, and neural networks and its applications, etc. In this chapter, we
have obtained the stability criteria for RNNswith time-varying delay using Lyapunov
stability theory. Here, the LMI can be just used to express and solve the proposed
stability criteria. On the other hand, there are three points to show the advantages of
LMI in stability analysis of RNNs.

(1) Since the LMI-based stability results consider the sign difference of the ele-
ments in connectionmatrices, neuron’s excitatory and inhibitory effects on the neural
network have been considered, which overcome the shortcomings of the results based
on other methods (such as M-matrix and algebraic inequality, etc.).

(2) Currently, the stability problem based on Lyapunov stability theory can be
considered as an optimization problem with multiple matrix variables and many
constraints. Thus, LMI is the best and only tool to solve this kind of stability problem
till now.

(3) Along with the development of computer and the related software, LMI-based
stability criteria can be solved easily using the interior point algorithm.

Remark 4.4 In Theorem 4.3, the delay interval [0, h] is divided into two subintervals
[0, ρh] and [ρh, h]. For two variable subintervals, the weighting-delay-independent
stability criterion (i.e., Theorem 4.3) is developed, i.e., stability results will not be
affected by the value of parameter ρ. Since the terms with weighting-delay ρh do not
appear in LMI (4.9), the computation burden of Theorem 4.3 is not increased while
less conservative stability results are obtained.

4.3.2 Weighting-Delay-Dependent Stability Criterion

From Sect. 4.3.1, we can know that Theorem 4.3 is a criterion independent of
weighting-delay, i.e., the effect of weighting-delay parameter ρ is neglected. Then,
when the effect of ρ is considered, what about the stability results? According to this
idea, the weighting-delay-dependent stability criterion can be proposed. In this sub-
section, the delay interval [0, d(t)] will be divided into two subintervals [0, ρd(t)]
and [ρd(t), d(t)], i.e., the corresponding weighing-delay term ρd(t) is introduced.
It is clear that ρd(t) satisfies the following conditions:

0 < ρd(t) < d(t) � h, 0 � ρḋ(t) � ρμ < μ,

where ρ ∈ (0, 1).

Theorem 4.5 The equilibrium point of system (4.5) with time-varying delay d(t)
satisfying (4.2) and (4.3) is unique and globally asymptotically stable, for a given
parameter ρ satisfying 0 < ρ < 1, if there exist matrices
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P = PT =
[

P11 P12

PT
12 P22

]
> 0, R = RT > 0,

Z = Z T =
[

Z11 Z12

Z T
12 Z22

]
> 0, Q = QT > 0,

R = RT > 0, Y1 = Y T
1 > 0, Y2 = Y T

2 > 0,

Λ = diag(λ1, λ2, . . . ,λn) > 0,

W1 = diag(w11, w12, . . . , w1n) > 0,

W2 = diag(w21, w22, . . . , w2n) > 0,

MT = [
MT

1 MT
2 MT

3 0 0 0
]
,

N T = [
N T
1 N T

2 N T
3 0 0 0

]
,

ST = [
ST
1 ST

2 ST
3 0 0 0

]
,

such that the following LMIs hold:

Φ + h ĀT Z22 Ā + ρhM̄ Z−1M̄T + (1 − ρ)hN̄ Z−1 N̄ T < 0, (4.25)

and

Φ + h ĀT Z22 Ā + hS̄Z−1 S̄T < 0, (4.26)

where

Φ = Ω + Ω̄ + Ω̄T ,

Ω =

⎡

⎢⎢⎢⎢⎢⎢⎣

Ω1 0 0 −P12 Θ15 Θ16
∗ −(1 − ρμ)Q 0 0 0 0
∗ ∗ Ω3 0 0 Θ36
∗ ∗ ∗ −R 0 0
∗ ∗ ∗ ∗ Θ55 ΛB
∗ ∗ ∗ ∗ ∗ Θ66

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Ω1 = − P11D − D P11 + Q + R + Y1 + h Z11 + P12 + PT
12

− h Z12D − h DZ T
12 − 2LW1L,

Ω3 = − (1 − μ)Y1 − 2LW2L,

Ω̄ = [M − M + N − N + S − S 0 0],
M̄ = [Γ − M] , N̄ = [Γ − N ] , S̄ = [Γ − S] ,

Γ T = [−PT
12D + P22 0 0 −P22 PT

12A PT
12B

]
,

and the other parameters are the same as those defined in Theorem 4.3.
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Proof Similar with Theorem 4.3, there are two steps in the Proof of Theorem 4.5:
(1) The uniqueness of the equilibrium point
The proof is similar to that of Theorem 4.3, and thus it is omitted here.
(2) The stability of the equilibrium point
Construct the following augmented Lyapunov–Krasovskii functional:

V̄ (x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) + V̄4(x(t)) + V̄5(x(t)), (4.27)

where V1(x(t)), V2(x(t)), and V3(x(t)) are the same as those in Theorem 4.3, and

V̄4(x(t)) =
∫ t

t−ρd(t)
xT (s)Qx(s)ds +

∫ t

t−h
xT (s)Rx(s)ds,

V̄5(x(t)) =
∫ 0

−h

∫ t

t+θ
ηT
2 (s)Zη2(s)dsdθ,

where the parameters are defined in Theorem 4.5.
Similar to Theorem 4.3, we can verify that V̄ (x(t)) satisfies the following

condition

β1‖x(t)‖2 � V̄ (x(t)) � β̄2‖x(t)‖2c, (4.28)

where β1 = λm(P) and β̄2 = (1 + h)λM (P) + 2λM (ΛL) + hλM (Y1) +
hλM (Y2)λM (L

2
) + ρhλM (Q) + hλM (R) + 0.5h3λM (Z)[1 + 3λM (DT D) +

3λM (AT A)λM (L
2
) + 3λM (BT B)λM (L

2
)].

Calculating the time derivatives of V̄4(x(t)) and V̄5(x(t)) along the trajectories
of system (4.5), respectively, they yield

˙̄V4(x(t)) � xT (t)Qx(t) + xT (t)Rx(t)

−(1 − ρμ)xT (t − ρd(t))Qx(t − ρd(t))

−xT (t − h)Rx(t − h), (4.29)

˙̄V5(x(t)) = h

[
x(t)
ẋ(t)

]T [
Z11 Z12

Z T
12 Z22

] [
x(t)
ẋ(t)

]

−
∫ t

t−h
ηT
2 (s)Zη2(s)ds. (4.30)

where V̇1(x(t)), V̇2(x(t)), and V̇3(x(t)) are given in (4.15)−(4.17).
According to the Leibniz–Newton formula, the following equations hold for any

matrices M , N , and S with appropriate dimensions,

2ζT (t)M

[
x(t) − x(t − ρd(t)) −

∫ t

t−ρd(t)
ẋ(s)ds

]
= 0, (4.31)



4.3 GAS Criteria with Single Weighting-Delay 187

2ζT (t)N

[
x(t − ρd(t)) − x(t − d(t)) −

∫ t−ρd(t)

t−d(t)
ẋ(s)ds

]
= 0, (4.32)

2ζT (t)S

[
x(t − d(t)) − x(t − h) −

∫ t−d(t)

t−h
ẋ(s)ds

]
= 0, (4.33)

where ζT (t) = [xT (t), xT (t − ρd(t)), xT (t − d(t)), xT (t − h), gT (x(t)), gT (x(t −
d(t)))].

Thus, combining (4.15)−(4.17), (4.29), and (4.30), adding (4.23)and (4.31)−(4.33),
the derivative of V̄ (x(t)) is obtained as follows:

˙̄V (x(t)) � ζT (t)
[
Φ + h ĀT Z22 Ā + Φ̄

]
ζ(t)

−
∫ t

t−ρd(t)

[
Zη2(s) − M̄T ζ(t)

]T
Z−1

[
Zη2(s) − M̄T ζ(t)

]
ds

−
∫ t−ρd(t)

t−d(t)

[
Zη2(s) − N̄ T ζ(t)

]T
Z−1

[
Zη2(s) − N̄ T ζ(t)

]
ds

−
∫ t−d(t)

t−h

[
Zη2(s) − S̄T ζ(t)

]T
Z−1

[
Zη2(s) − S̄T ζ(t)

]
ds,

where Φ̄ = ρd(t)M̄ Z−1M̄T + (1 − ρ)d(t)N̄ Z−1 N̄ T + (h − d(t))S̄Z−1 S̄T .
Since Z > 0, then the last three terms in (4.34) are all less than zero. Thus, if

Φ + h ĀT Z22 Ā + Φ̄ < 0, we have ˙̄V (x(t)) < 0.
UsingLemma4.2, letα = h, τ = d(t),Δ = Φ+h ĀT Z22 Ā, X1 = ρM̄ Z−1M̄T +

(1 − ρ)N̄ Z−1 N̄ T and X2 = S̄Z−1 S̄T , then Φ + h ĀT Z22 Ā + Ξ < 0 is equivalent
to the inequalities (4.25) and (4.26) at d(t) = h and d(t) = 0. Thus, if (4.25) and

(4.26) are satisfied, then ˙̄V (x(t)) < −ε‖x(t)‖2 for some ε > 0, i.e., the equilibrium
point of the system (4.5) is globally asymptotically stable.

Remark 4.6 Obviously, when weighting-delay parameter ρ is set with different val-
ues, the stability results in Theorem 4.5 are also changed. Compared with previous
results, the negative definite termswith parameters (1−ρ), 1−ρ

ρ , and ρ
1−ρ are added to

somemain diagonal elements of LMIs (4.25) and (4.26). Thus, by properly choosing
the value of parameter ρ, it can lead to less conservative stability results. Meanwhile,
Theorem 4.5 is studied based on two subintervals [0, ρd(t)] and [ρd(t), d(t)]. Thus,
the criteria based on such subintervals with time-varying delay d(t) should be more
suitable to deal with; some examples are provided in Sect. 4.6 to prove this result.

Remark 4.7 For Theorem 4.5, when μ � 1, there are two cases: (1) When 1 � μ <
1
ρ , stability result can be obtained by setting matrices Y1 = 0 and Y2 = 0; (2) when

μ � 1
ρ , let Q = 0, Y1 = 0 and Y2 = 0 in Theorem 4.5, the criterion independent

of τ̇ (t) can be derived. Namely, for the case 2), we can obtain the criterion with
unknown μ.
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In Theorem 4.5, the weighting-delay parameter ρ belongs to (0, 1). Then, when
ρ ∈ [0, 1], the following corollary independent ofweighting-delay can be developed.
Corollary 4.8 The equilibrium point of system (4.5) with time-varying delay d(t)
satisfying (4.2) and (4.3) is unique and globally asymptotically stable if there exist
matrices

P = PT =
[

P11 P12

PT
12 P22

]
> 0, R = RT > 0,

Z = Z T =
[

Z11 Z12

Z T
12 Z22

]
> 0, Q = QT > 0,

Y1 = Y T
1 > 0, Y2 = Y T

2 > 0,

Λ = diag(λ1, λ2, . . . ,λn) > 0,

W1 = diag(w11, w12, . . . , w1n) > 0,

W2 = diag(w21, w22, . . . , w2n) > 0,

MT = [
MT

1 MT
2 MT

3 0 0 0
]
,

N T = [
N T
1 N T

2 N T
3 0 0 0

]
,

ST = [
ST
1 ST

2 ST
3 0 0 0

]
,

such that the following LMIs hold:

Φ1 + h ĀT Z22 Ā + hM̄ Z−1M̄T < 0, (4.34)

Φ0 + h ĀT Z22 Ā + hN̄ Z−1 N̄ T < 0, (4.35)

Φ1 + h ĀT Z22 Ā + hS̄Z−1 S̄T < 0, (4.36)

Φ0 + h ĀT Z22 Ā + hS̄Z−1 S̄T < 0, (4.37)

where
Φ j = Ω j + Ω̄ + Ω̄T , j = 0, 1,

Ω0 =

⎡

⎢⎢⎢⎢⎢⎢⎣

Ω11 0 0 −P12 Θ15 Θ16
∗ −Q 0 0 0 0
∗ ∗ Ω33 0 0 Θ36
∗ ∗ ∗ −R 0 0
∗ ∗ ∗ ∗ Ω55 ΛB
∗ ∗ ∗ ∗ ∗ Ω66

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Ω1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

Ω11 0 0 −P12 Θ15 Θ16
∗ −(1 − μ)Q 0 0 0 0
∗ ∗ Ω33 0 0 Θ36
∗ ∗ ∗ −R 0 0
∗ ∗ ∗ ∗ Ω55 ΛB
∗ ∗ ∗ ∗ ∗ Ω66

⎤

⎥⎥⎥⎥⎥⎥⎦
,
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and the other parameters are the same as those defined in Theorems 4.3 and 4.5.

Proof Similar to the proof of Theorem 4.5, constructing the same augmented

Lyapunov–Krasovskii functional as that in Theorem 4.5, we can get ˙̄V (x(t)) as

same as (4.34). By omitting the integral terms which are less than zero, ˙̄V (x(t)) can
be rewritten as:

˙̄V (x(t)) � ζT (t)
[
Φ + h ĀT Z22 Ā + (1 − ρ)d(t)N̄ Z−1 N̄ T

+ρd(t)M̄ Z−1M̄T + (h − d(t))S̄Z−1 S̄T
]
ζ(t).

If the following inequality holds

Φ + h ĀT Z22 Ā + ρd(t)M̄ Z−1M̄T

+(1 − ρ)d(t)N̄ Z−1 N̄ T + (h − d(t))S̄Z−1 S̄T < 0, (4.38)

then ˙̄V (x(t)) < −ε‖x(t)‖2 for some ε > 0. In addition, because of 0 � ρ � 1, let
α = 1, τ = ρ, Δ = Φ + h ĀT Z22 Ā + (h − d(t))S̄Z−1 S̄T , X1 = d(t)M̄ Z−1M̄T

and X2 = d(t)N̄ Z−1 N̄ T , using Lemma 4.2, inequality (4.38) is equivalent to the
following two inequalities at ρ = 1 and ρ = 0.

Φ1 + h ĀT Z22 Ā + d(t)M̄ Z−1M̄T + (h − d(t))S̄Z−1 S̄T < 0, (4.39)

Φ0 + h ĀT Z22 Ā + d(t)N̄ Z−1 N̄ T + (h − d(t))S̄Z−1 S̄T < 0. (4.40)

Similar toTheorem4.5, inequalities (4.39) and (4.40) are equivalent to the inequal-
ities (4.34)−(4.37), which are derived using Lemma 4.2 again. Then, the criterion
will be derived.

4.4 GAS Criteria with Multiple Weighting-Delays

In previous section, the stability of RNNs with time-varying delay was stud-
ied based on single weighting-delay. Naturally, the idea of introducing multiple
weighting-delays into the delay interval will be considered. In this section, the delay
interval [0, d(t)] is divided into K + 1 dynamical subintervals, i.e., [0, ρ1d(t)],
[ρ1d(t), ρ2d(t)], . . . , [ρK d(t), h], where ρ1 < ρ2 < · · · < ρK . That is to say, there
is a parameter sequence (ρ1, ρ2, . . . , ρK ) satisfying the following conditions,

0 < ρ1d(t) < ρ2d(t) < · · · < ρK d(t) < d(t),

0 � ρi ḋ(t) � ρiμ,
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where ρi ∈ (0, 1), i = 1, 2, . . . , K , K is a positive integer and K � 2. Then, a
stability criterion with multiple weighting-delays can be proposed.

Theorem 4.9 The equilibrium point of system (4.5) with time-varying delay d(t)
satisfying (4.2) and (4.3) is unique and globally asymptotically stable, if there exist
parameters ρi satisfying 0 < ρ1 < ρ2 < · · · < ρK < 1, symmetric matrices P =
PT > 0, R = RT > 0, Y = Y T > 0, Z = Z T > 0, Q j = QT

j > 0, and diagonal
matrices Λ = diag(λ1, λ2, . . . ,λn) > 0, W1 = diag(w11, w12, . . . , w1n) > 0,
W2 = diag(w21, w22, . . . , w2n) > 0, where i = 1, 2, . . . , K , j = 1, 2, . . . , K + 1,
and K is a positive integer, such that the following matrix inequality holds:

Υ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υ1
1
ρ1

Z 0 · · · 0 0 0 Υa P B

∗ Υ2
1

ρ2−ρ1
Z · · · 0 0 0 0 0

∗ ∗ Υ3 · · · 0 0 0 0 0

∗ ∗ ∗ . . .
...

...
...

...
...

∗ ∗ ∗ ∗ ΥK+1
1

1−ρK
Z 0 0 0

∗ ∗ ∗ ∗ ∗ ΥK+2 Z 0
(
L + L

)
W2

∗ ∗ ∗ ∗ ∗ ∗ −R − Z 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ΥK+4 ΛB
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ΥK+5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.41)

Υ + h2 ÃT Z Ã < 0 (4.42)

where Υ is shown in (4.41), Υa = P A − DΛ + (
L + L

)
W1,

Υ1 = −P D − D P + Q1 + R − 1

ρ1
Z − 2LW1L,

Υ2 = −(1 − ρ1μ)Q1 + Q2 − 1

ρ1
Z − 1

ρ2 − ρ1
Z ,

Υ3 = −(1 − ρ2μ)Q2 + Q3 − 1

ρ2 − ρ1
Z − 1

ρ3 − ρ2
Z ,

...

ΥK+1 = −(1 − ρK μ)QK + QK+1 − 1

ρK − ρK−1
Z

− 1

1 − ρK
Z ,

ΥK+2 = −(1 − μ)QK+1 − 1

1 − ρK
Z − Z − 2LW2L,

ΥK+4 = ΛA + AT Λ + Y − 2W1,

ΥK+5 = −(1 − μ)Y − 2W2,

Ã = [−D 0 · · · 0 A B
]
(K+5)n×n ,
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and the other parameters are the same as those defined in Theorem 4.3.

Proof Similar with Theorems 4.3 and 4.5, the proof still includes two steps.
(1) The uniqueness of the equilibrium point
Assume there is a nonzero equilibriumpoint x�. Similar toTheorem4.3, according

to μ � 0, 0 < ρi < 1 (i = 1, 2, . . . , n), (4.6), and the equilibrium equation (4.10),
we can obtain the following equations

2(x�)T P
[−Dx� + Ag(x�) + Bg(x�)

] = 0,

2gT (x�)Λ
[−Dx� + Ag(x�) + Bg(x�)

] = 0,
K−1∑

i=0

[
(x�)T Qi+1x� − (1 − ρi+1μ)(x�)T Qi+1x�

]
� 0,

(x�)T QK+1x� − (1 − μ)(x�)T QK+1x� � 0,

gT (x�)Yg(x�) − (1 − μ)gT (x�)Yg(x�) � 0,

−(W1 + W2)
(
g(x�) − Lx�

) (
g(x�) − Lx�

)
� 0,

where the parameters are defined in Theorem 4.9.
Let ς� = (

(x�)T , . . . , (x�)T , gT (x�), gT (x�)
)T , applying the equations above

and proper deviation, we can get

(ς�)T Υ ς� � 0, (4.43)

for ς� �= 0.
However, applying Schur complements for (4.42), we can get

(ς�)T Υ ς� < 0, (4.44)

for ς� �= 0.
Thus, there is a contradiction between (4.43) and (4.44), which implies that the

origin is the unique equilibrium point of system (4.5) under the condition (4.42), i.e.,
x� = 0.

(2) The stability of the equilibrium point
Construct the following Lyapunov–Krosovskii functional:

Ṽ (x(t)) = xT (t)Px(t) + 2
n∑

i=1

λi

∫ xi (t)

0
gi (s)ds

+
K∑

i=0

∫ t−ρi d(t)

t−ρi+1d(t)
xT (s)Qi+1x(s)ds

+
∫ t

t−h
xT (s)Rx(s)ds
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+
∫ t

t−d(t)
gT (x(s))Yg(x(s))ds

+ h
∫ 0

−h

∫ t

t+θ
ẋ T (s)Z ẋ(s)dsdθ, (4.45)

where P = PT > 0, Λ = diag(λ1, λ2, . . . ,λn) > 0, Y = Y T > 0, R = RT > 0,
Z = Z T > 0, Qi = QT

i > 0, i = 1, 2, 3, . . . , K + 1 and parameters ρ0 = 0,
ρK+1 = 1.

According to ḋ(t) � 0 from (4.3), Jensen’s inequality and Leibniz–Newton for-
mula, calculating the time derivatives of Ṽ (x(t)) along the trajectories of system
(4.5) yields

˙̃V (x(t)) � − 2xT (t)P Dx(t) + 2xT (t)P Ag(x(t))

+ 2xT (t)P Bg(x(t − d(t))))

− 2gT (x(t))ΛDx(t) + 2gT (x(t))ΛAg(x(t))

+ 2gT (x(t))ΛBg(x(t − d(t))))

+
K∑

i=0

xT (t − ρi d(t))Qi+1x(t − ρi d(t))

−
K∑

i=0

(1 − ρi+1ḋ(t))xT (t − ρi+1d(t))Qi+1x(t − ρi+1d(t))

+ xT (t)Rx(t) − xT (t − h)Rx(t − h) + gT (x(t))Yg(x(t))

− (1 − μ)gT (x(t − d(t)))Yg(x(t − d(t)))

+ h2 ẋ T (t)Z ẋ(t) − �T (t)Ẑ�(t), (4.46)

where�T (t) = (
xT (t), xT (t−ρ1d(t)), xT (t−ρ2d(t)), . . . , xT (t−ρK d(t)), xT (t−

d(t)), xT (t − h)
)
, Ẑ is shown in (4.48).

Thus, adding (4.23) into ˙̃V (x(t)), we have

˙̃V (x(t)) � ςT (t)
[
Υ + h2 ÃT Z Ã

]
ς(t), (4.47)

where ςT (t) = [�T (t), gT (x(t)), gT (x(t − d(t)))].
Thus, if Υ + h2 ÃT Z Ã < 0, then V̇ (x(t)) < −ε‖x(t)‖2 for some small ε > 0,

i.e., the equilibrium point of the system (4.5) is globally asymptotically stable.

Remark 4.10 Obviously, Theorem 4.9 is the weighting-delay sequence-dependent
criterion, and it depends on not only the value of parameter sequence (ρ1, ρ2, . . . ,
ρK ), but also the number of subintervals, i.e., the number K of weighting-delays.
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Thus, by properly choosing the number of weighting-delay and the value of
weighting-delay parameter sequence, the less conservative stability results can be
obtained.

Remark 4.11 Theorem 4.9 is a typical trade-off between conservativeness and com-
plexity. Our results are less conservative by involving more parameters. That is to
say, by increasing the useful parameters, the aim of reducing conservativeness will
be achieved. Meanwhile, the global stability conditions are expressed in the form
of LMI, which can be checked easily using the interior point algorithm. Thus, the
overall computation complexity looks similar to the previous methods. And then,
some studies on simultaneously reducing the complexity and conservativeness still
need to be further carried out for the weighting-delay method.

In the following, a corollary based on augmentedLyapunov–Krasovskii functional
can be proposed.

Corollary 4.12 The equilibrium point of system (4.5) with time-varying delay d(t)
satisfying (4.2) and (4.3) is unique and globally asymptotically stable, if there exist
parameters ρi satisfying 0 < ρ1 < ρ2 < · · · < ρK < 1, matrices

Ẑ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
ρ1

1
ρ1

0 · · · 0 0 0

∗ − 1
ρ1

− 1
ρ2−ρ1

1
ρ2−ρ1

· · · 0 0 0

∗ ∗ − 1
ρ2−ρ1

− 1
ρ3−ρ2

· · · 0 0 0

∗ ∗ ∗ . . .
...

...
...

∗ ∗ ∗ ∗ ẐK
1

1−ρK
0

∗ ∗ ∗ ∗ ∗ − 1
1−ρK

− 1 1
∗ ∗ ∗ ∗ ∗ ∗ −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Z ,

ẐK = − 1
ρK −ρK−1

− 1
1−ρK

.

(4.48)

P = PT =
[

P11 P12

PT
12 P22

]
> 0, Y = Y T > 0,

Z = Z T =
[

Z11 Z12

Z T
12 Z22

]
> 0, R = RT > 0,

Λ = diag(λ1, λ2, . . . ,λn) > 0, Q j = QT
j > 0,

W1 = diag(w11, w12, . . . , w1n) > 0,

W2 = diag(w21, w22, . . . , w2n) > 0,
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where i = 1, 2, . . . , K , and j = 1, 2, . . . , K +1, such that the following LMI holds:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ Π1 · · · ΠK+1 ΠK+2 h ÃT Z22

∗ − 1
ρ1

Z11 · · · 0 0 0

∗ ∗ . . .
...

...
...

∗ ∗ ∗ − 1
1−ρK

Z11 0 0
∗ ∗ ∗ ∗ −Z11 0
∗ ∗ ∗ ∗ ∗ −Z22

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.49)

where Ξ , Π1, . . . ,ΠK+2 are shown in (4.50) and (4.51),

Ξ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ1
1
ρ1

Z22 0 · · · 0 0 −P12 Θ15 Θ16

∗ Ξ2
1

ρ2−ρ1
Z22 · · · 0 0 0 0 0

∗ ∗ Ξ3 · · · 0 0 0 0 0

∗ ∗ ∗ . . .
...

...
...

...
...

∗ ∗ ∗ ∗ ΞK+1
1

1−ρK
Z22 0 0 0

∗ ∗ ∗ ∗ ∗ ΞK+2 Z22 0 Θ36
∗ ∗ ∗ ∗ ∗ ∗ −R − Z22 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ΥK+4 ΛB
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ΥK+5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.50)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΠT
1 =

[
−PT

12D + P22 − 1
ρ1

Z12
1
ρ1

Z12 0 0 · · · 0 −P22 PT
12 A PT

12B
]

n×(K+5)n
,

ΠT
2 =

[
−PT

12D + P22 − 1
ρ2−ρ1

Z12
1

ρ2−ρ1
Z12 0 · · · 0 −P22 PT

12 A PT
12B

]

n×(K+5)n
,

.

.

.

ΠT
K+1 =

[
−PT

12D + P22 0 · · · 0 − 1
1−ρK

Z12
1

1−ρK
Z12 −P22 PT

12 A PT
12B

]

n×(K+5)n
,

ΠT
K+2 =

[
−PT

12D + P22 0 · · · 0 0 −Z12 Z12 − P22 PT
12 A PT

12B
]

n×(K+5)n

(4.51)

Ξ1 = − P11D − D P11 + Q1 + R + P12 + PT
12 + h2Z11

− h2Z12D − h2DZ T
12 − 1

ρ1
Z22 − 2LW1L,

Ξ2 = − (1 − ρ1μ)Q1 + Q2 − 1

ρ1
Z22 − 1

ρ2 − ρ1
Z22,

Ξ3 = − (1 − ρ2μ)Q2 + Q3 − 1

ρ2 − ρ1
Z22 − 1

ρ3 − ρ2
Z22,

...
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ΞK+1 = − (1 − ρK μ)QK + QK+1 − 1

ρK − ρK−1
Z22 − 1

1 − ρK
Z22,

ΞK+2 = − (1 − μ)QK+1 − 1

1 − ρK
Z22 − Z22 − 2LW2L,

and the other parameters are the same as those defined in Theorems 4.3 and 4.9.

Proof The proof is similar with Theorem 4.9 using the augmented Lyapunov–
Krasovskii functional V1 and V5 in (4.13) to replace the terms xT (t)Px(t) and
h

∫ 0
−h

∫ t
t+θ ẋ T (s)Z ẋ(s)dsdθ in (4.45). Here, the detailed proof is omitted.

Remark 4.13 For stability criteria to deal with Hopfield neural networks with con-
stant delay in [37], the delay interval [0, h] was divided into m fixed subintervals
[0, h/m], [2h/m, 3h/m], . . . , [(m − 1)h/m, h], where m is an integer and m � 1.
Different from that, the weighting-delay method proposed in this chapter is one with
dynamic subintervals to handle RNNs with time-varying delay, where the subinter-
vals are [0, ρ1d(t)], [ρ2d(t), ρ2d(t)], . . . , [ρK d(t), d(t)], respectively. The sizes
of subintervals are variable by altering parameter sequence (ρ1, ρ2, . . . , ρK ) satis-
fying 0 < ρ1 < ρ2 < · · · < ρK < 1, where i = 1, 2, . . . , K . That is to say,
sequence (h/m, 2h/m, . . . , (m −1)h/m) is obtained in [37], while weighting-delay
sequence (ρ1d(t), ρ2d(t), . . . , ρK d(t)) is derived in this chapter. Obviously, when
d(t) is constant delay, parameter sequence (ρ1, ρ2, . . . , ρK ) is more general and
flexile than parameter sequence (1/m, 2/m, . . . , (m − 1)/m).

4.5 Implementation of Optimal Weighting-Delay Parameters

Compared with other results in previous literature, the key problem is how to choose
the values of weighting-delay parameters ρ or ρi , where i = 1, 2, . . . , K . Since The-
orem 4.3 and Corollary 4.8 are weighting-delay-independent stability criteria, they
can be directly obtained using LMI ToolBox ofMATLAB. The solutions to obtaining
the values of weighting-delay parameters will be proposed for Theorems 4.5, 4.9,
and Corollary 4.12 as follows:

4.5.1 The Single Weighting-Delay Case

Since only aweighting-delayρd(t) is used inTheorem4.5, the value of theweighting-
delay parameter ρ can be chosen by trial and error. Then the stability results can be
verified by MATLAB. Thus, a satisfactory value ρ can be obtained.
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4.5.2 The Multiple Weighting-Delays Case

Obviously, the method in Sect. 4.5.1 is not suitable for Theorem 4.9 and Corol-
lary 4.12. Thus, an optimization process is presented to simultaneously solve the
stability results and obtain the value of the weighting-delay parameter sequence
(ρ1, ρ2, . . . , ρK ). On the other hand, for the number of weighting-delays, K , it is
chosen by trial and error.

Take Theorem 4.9 for example, the optimization process is listed as follows to
find the optimal weighting-delay parameter sequence. It consists of three steps.

1. Define δ1 = ρ1, δ2 = ρ2 − ρ1, . . . , δK = ρK − ρK−1. According to the range of
ρi , we can know that δi satisfies the following conditions

K∑
i=1

δi < 1, (4.52)

δi > 0. (4.53)

2. Given μ, K , and (δ1, δ2, . . . , δK ), we can obtain maximum allowable h based on
LMI ToolBox of MATLAB, which subjects to matrix inequality (4.42) and other
restrictions in Theorem 4.9.

3. Choose the K + 1 groups of parameter sequence Δ( j) = (δ
( j)
1 , δ

( j)
2 , . . . , δ

( j)
K ),

where δ
( j)
i satisfying (4.52) and (4.53), i = 1, 2, . . . , K and j = 1, 2, . . . , K +1.

Based on these data and step (2), applying N-M simplex method proposed in
[41], the optimal weighting-delay parameter sequence and the corresponding
maximum allowable h can be obtained for Theorem 4.9.

4.6 Illustrative Examples

In this section, three numerical examples and an application example are given to
verify the effectiveness of the criteria proposed in this chapter.
1. Numerical Examples

Example 4.14 Consider RNNs (4.5) with the following parameters [21],

D = diag(1.2769, 0.6231, 0.9230, 0.4480),

A =

⎡

⎢⎢⎣

−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015

⎤

⎥⎥⎦ ,
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Table 4.1 Allowable upper bound of h for different μ and ρ in Example 4.14

Weighting-delay parameter Methods μ = 0.1 μ = 0.5 μ = 0.9 Unknown μ

− [22] and [29] 3.2775 2.1502 1.3164 1.2598

− [30] 3.2793 2.2245 1.5847 1.5444

− [34] 3.2819 2.2261 1.6035 1.5593

− [31] 3.3039 2.5376 2.0853 2.0389

− Theorem 4.3 3.2844 2.2376 1.6272 1.5777

− Corollary 4.8 3.3574 2.5912 2.1303 2.0779

ρ = 0.6 Theorem 4.5 3.3574 2.5915 2.1306 2.0779

B =

⎡

⎢⎢⎣

0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

⎤

⎥⎥⎦ ,

l1 = 0.1137, l2 = 0.1279, l3 = 0.7994, l4 = 0.2368,

l1 = l2 = l3 = l4 = 0,

and time-varying delay d(t) satisfies (4.2) and (4.3).
By setting different μ and parameter ρ (or ρ1, ρ2), the upper bound h of time

delay d(t) has been studied in [22, 29–31, 34], respectively. The corresponding
results are shown in Table4.1, where “−” means the results are not applicable to the
corresponding cases. Specially, if μ = 0, i.e., d(t) is constant, the upper bound h is
1.4224 in [21], 1.9321 in [23], 3.5841 in [30, 31], respectively. And then, applying
Theorem 4.3 and Theorem 4.5 in this chapter, h is 3.5869 and 3.6156. FromTable4.1,
it is clear that the results in this chapter improve upon the existing delay-dependent
results. Figure4.1 shows the state response of Example 4.14 with constant delay
h = 3.6156, when the initial value is [12.2, 13.6, 11.4, 10.7]T .

Example 4.15 Consider the RNNs (4.5) with the following parameters [22],

D =
[
2 0
0 2

]
, A =

[
1 1

−1 −1

]
, B =

[
0.88 1
1 1

]
,

l1 = 0.4, l2 = 0.8, l1 = l2 = 0,

and time-varying delay d(t) satisfies (4.2) and (4.3).
The corresponding results are given in Table4.2 by using Theorems 4.3, 4.5 and

Corollary 4.8 of this chapter and methods in [22, 29–31], when different μ and
parameter ρ are set, respectively. Figure4.2 shows the state response of Example 4.15
with h = 1.5571 and μ = 1, when the initial value is [8, −10]T . Obviously, when ρ
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Fig. 4.1 State response curves with μ = 0 and h = 3.6156 for Example 4.14, when the initial
value is [12.2, 13.6, 11.4, 10.7]T

Table 4.2 Allowable upper bound of h for different μ and ρ in Example 4.15

Parameter Methods μ = 0.8 μ = 0.9 μ = 1 μ = 1.1

− [22] and [29] 1.2281 0.8636 0.8298 0.8298

− [30] 1.6831 1.1493 1.0880 1.0880

− [31] 2.3534 1.6050 1.5103 1.5103

− Theorem 4.3 1.6831 1.1494 1.0880 1.0880

− Corollary 4.8 2.3534 1.6050 1.5103 1.5103

ρ = 0.1 Theorem 4.5 2.3734 1.6133 1.5136 1.5130

ρ = 0.2 Theorem 4.5 2.3961 1.6270 1.5209 1.5190

ρ = 0.3 Theorem 4.5 2.4215 1.6466 1.5320 1.5276

ρ = 0.4 Theorem 4.5 2.4490 1.6715 1.5449 1.5358

ρ = 0.5 Theorem 4.5 2.4779 1.7003 1.5556 1.5387

ρ = 0.6 Theorem 4.5 2.5065 1.7286 1.5571 1.5303

ρ = 0.7 Theorem 4.5 2.5308 1.7457 1.5416 1.5139

ρ = 0.8 Theorem 4.5 2.5406 1.7273 1.5161 1.5103

ρ = 0.9 Theorem 4.5 2.5053 1.6583 1.5103 1.5103

varies in this example, the results of Theorem 4.5 are different, too. Based on the data
of Table4.2, the results of Theorem 4.5 are not monotonically increasing. Therefore,
the satisfactory result of criterion for μ = 0.8 will be obtained at ρ ∈ (0.7, 0.9),
i.e., (0.7, 0.9) is the better interval to design the value of ρ for μ = 0.8. Similarly,
for μ = 0.9, μ = 1, and μ = 1.1, the corresponding intervals of parameter ρ are
(0.6, 0.8), (0.5, 0.7), and (0.4, 0.6), respectively.



4.6 Illustrative Examples 199

0 1 2 3 4 5 6 7 8
−10

−8

−6

−4

−2

0

2

4

6

8

time/s

st
at
e

x1(t)
x2(t)

Fig. 4.2 State response curves with μ = 1 and h = 1.5571 for Example 4.15, when the initial
value is [8, −10]T

Example 4.16 Consider RNNs (4.5) with the following parameters [37],

D =
⎡

⎣
4.1989 0 0

0 0.7160 0
0 0 1.9985

⎤

⎦ ,

B =
⎡

⎣
−0.1052 −0.5069 −0.1121
−0.0257 −0.2808 0.0212
0.1205 −0.2153 0.1315

⎤

⎦ ,

l1 = 0.4129, l2 = 3.8993, l3 = 1.0160,

l1 = l2 = l3 = 0,

A = 0, and time-varying delay d(t) satisfies (4.2) and (4.3).
First, the upper bound h for this example with constant delay has been studied

between [37] and this chapter, where the optimal parameter value ρi are obtained
by applying the method proposed in Sect. 4.5.2, m = K + 1, and i = 1, . . . , K .
The corresponding results are shown in Table4.3. For this example, the stability
results is subequal between Theorem 4.9 and [37] when constant delay is employed.
Then, the upper bound h for this example with time-varying delay d(t) is given
in Table4.4 by using fixed subintervals method like [37] and the method proposed
in Sect. 4.5.2 for Theorem 4.9, where the optimal weighting-delay parameters are
given in brackets. From Table4.4, it is clear that weighting-delay method dividing
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Table 4.3 Allowable upper bound of h when d(t) is constant delay using optimization method in
Example 4.16, where i = 1, . . . , K and K = m − 1

Results in this chapter Results in [37]

Optimal parameters Theorem 4.9 Parameters [37]

ρi = i × 0.3333, K = 2 2.5492 m = 3 2.54

ρi = i × 0.2500, K = 3 2.5720 m = 4 2.57

ρi = i × 0.2000, K = 4 2.5825 m = 5 2.581

ρi = i × 0.1000, K = 9 2.5966 m = 10 2.596

ρi = i × 0.0667, K = 14 2.5992 m = 15 2.597

Table 4.4 Allowable upper bound of h for time-varying delay d(t) with different μ using opti-
mization method at K = 2 for Theorem 4.9 in Example 4.16

μ h (ρ1 = 1/3, ρ2 = 2/3) h (optimal value of parameters)

0.1 2.1573 2.1927 (ρ1 = 0.2051, ρ2 = 0.4935)

0.5 1.4276 1.4948 (ρ1 = 0.1000, ρ2 = 0.2187)

0.9 1.1870 1.2030 (ρ1 = 0.7613, ρ2 = 0.8819)

1 1.1790 1.1887 (ρ1 = 0.6483, ρ2 = 0.8817)
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Fig. 4.3 State response curves with μ = 0 and h = 2.5992 for Example 4.16, when the initial
value is [1.2, 1.6, 1.4]T

delay interval [0, d(t)] is more suitable for dealing with stability problem with time-
varying delay. Figure4.3 shows the state response of Example 4.16 with constant
delay h = 2.5992, when the initial value is [1.2, 1.6, 1.4]T .
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2. An Application Example

Example 4.17 Consider the continuous P H neutralization of an acid stream by a
highly concentrated basic stream, which can be expressed in the following form
[18, 39]:

v ẏ(t) = − f y(t) − u(t), P H = w2 tanhw1y(t), (4.54)

where v is the volume of the mixing tank, u(t) is the manipulated variable represent-
ing the base flow rate, f is the acid flow rate, w1 and w2 are some constants, y(t) is
the strong acid, and P H is the measured output signal.

In fact, time delay is always inevitable in this control process. Therefore, we
slightly modify model (4.54) as follows:

{
v ẏ(t) = − f y(t) − u(t),

P H = w2 tanh (w1y(t)) + w2w3 tanh (w1y(t − τ )).
(4.55)

The purpose of this application is to find the maximum allowable upper bound of
delay τ for a feedback gain K by adopting output feedback controller u = −K × P H
such that the closed-loop system is asymptotically stable. The closed-loop system
can be expressed in the following form:

ẏ(t) = − f

v
y(t) + Kw2

v
tanh (w1y(t))

+ Kw2w3

v
tanh (w1y(t − τ )), (4.56)

Let x(t) = w1y(t). Then, system (4.56) is changed into the following form:

ẋ(t) = −Dx(t) + A tanh (x(t)) + B tanh (x(t − τ )), (4.57)

where D = f
v
, A = Kw1w2

v
, and B = Kw1w2w3

v
.

Then, we take f = 5.8154, v = 1500.3732, w1 = 28.9860, w2 = −3.8500, and
w3 = 2.56. Meanwhile, based on the results of [18], we choose the feedback gain
K = 0.5022. Thus, we can obtain D = 0.0039, A = −0.0374, and B = −0.0956.
Using criteria in [30, 31] and [34], Theorems 4.3 and 4.5 in this chapter, themaximum
allowable upper bound τ of system (4.57) is 17.4956. Meanwhile, the maximum
allowable τ = 18.2871 for Theorem 4.9, when ρ1 = 0.3333 and ρ2 = 0.6667.
Namely, the better result can be obtained using our criteria. Thus, the origin is the
equilibrium point of system (4.57) based on the feedback gain K = 0.5022.
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4.7 Summary

In this chapter, the delay-dependent stability problem for RNNs with time-varying
delay is studied based on weighting-delay method. By introducing the new vari-
ables nominated as weighting-delays, delay interval [0, d(t)] is divided into several
variable subintervals, i.e., several dynamic subintervals. It implies that the stabil-
ity results depend on the positions of weighting-delays in delay interval, which can
be denoted as the form of parameter value ρ (or ρi , i = 1, 2, . . . , K ). Compared
with previous results, several negative definite terms with weighting-delay parame-
ters will be added to our proposed criteria, which leads to less conservative stability
results. Specially, when weighting-delay sequence (ρ1d(t), ρ2d(t), . . . , ρK d(t)) is
applied, the optimal parameter sequence (ρ1, ρ2, . . . , ρK ) is obtained by an opti-
mization method. Compared with the fixed subintervals method used in [37], it is
clear that weighting-delay method by applying the variable subintervals with delay
d(t) has inherent flexibility, and is more suitable for dealing with stability problem
with time-varying delay. As a result, in both theory and practice, the criteria based on
weighting-delay method are less conservative in dealing with the stability of RNNs
with time-varying delay.
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Chapter 5
Stability Criteria for RNNs Based
on Secondary Delay Partitioning

Chapter4 presented a new way to establish the delay-dependent stability results for
RNNs with delay. The main feature of the method in Chap.4 is to split the time
delay with fixed interval by inserting some virtual sampling points or weighting co-
efficients, which leads to the nonuniformly changeable subintervals. In this chapter,
we will present another method to decompose the interval of time delay and change
the sizes of the subintervals. This new method is called the secondary delay parti-
tioning method, and the effectiveness of the established stability result is verified by
numerical simulation. The contents of this chapter are mainly from the result in [26].

5.1 Introduction

Delay-dependent stability criteria for delayed recurrent neural networks (RNN) have
received considerable attention in recent years [1–27], because they are less conser-
vative than the delay-independent stability results by incorporating such information
as magnitude of time delay, change rate of time-varying delay, and connection ma-
trices, especially when the sizes of time-delays are small. Till date, there are many
delay-dependent stability results for RNN with different kinds of delays published.

In the early research on RNN, the concerned delay was often constant τ > 0 or
time-varying τ (t), which belonged to an interval 0 < τ (t) ≤ τM . In practice, the
lower bound of time-varying delay may not be zero, then the time-varying delay
was extended to the interval 0 < τm ≤ τ (t) ≤ τM [4]. Based on this require-
ment, many new delay-dependent stability criteria have been established, and the
conservativeness of the stability results is further reduced. Among these stability
results, delay partitioning approach played an important role [2, 7, 11–13, 16–21].
For the case of constant delay τ , the interval [0, τ ] is divided into l subinterval
uniformly, l ≥ 1, i.e., [0, τ

l ], [ τ
l , 2τ

l ], . . . , [ (l−1)
l τ , τ ] [11, 12]. By constructing

corresponding Lyapunov functional, the LMI-based global asymptotical stability
criterion had been derived. For the case of time-varying delay, the delay partitioning
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approach was studied in [2, 14, 18], and the interval τ (t) ∈ [0, τM ] was divided into
subinterval [0, τM ] = ⋃l

j=1[τ j−1, τ j ] with 0 = τ0 < τ1 < τ2, . . . , < τl = τM .
In [16], the authors also divided the interval τ (t) ∈ [0, τM ] into subinterval
[0, τM ] = ⋃l

j=1[τ j−1, τ j ] with 0 = τ0 < τ1 < τ2, . . . , < τl = τM , and constructed
some corresponding Lyapunov functions to derive the LMI-based stability criteria.
In [14], τ (t) ∈ [0, τM ] is divided into two parts [0, τm] and [τm, τM ], and the inter-
val [0, τm] is divided into l subinterval [0, τm

l ], [ τm
l , 2τm

l ], . . . , [ (l−1)
l τm, τm], l ≥ 1.

By constructing corresponding Lyapunov function, the LMI-based global asymp-
totical stability criterion was derived. As pointed out in [18], the constant delay
partitioning approach is not suitable for the case of time-varying delay. Thus, in or-
der to deal with the relation between the states with partitioned delays and the state
with time-varying delay τ (t), a value-set method, that is, there exists a j such that
τ (t) ∈ [τ j−1, τ j ], j = 1, . . . , l, was proposed in [18], and later it was combined
with the reciprocal convex combination (RCC) approach [28] to study the stabil-
ity problem of delayed RNN [2, 14]. In [9], by dividing the interval [τm, τM ] into
[τm, τ (t)]⋃[τ (t), τM ], some stability criteria based on RCC approach was obtained
for delayed RNN,where convex combination information on τM −τ (t) and τ (t)−τm

was used. Different from the methods in [9, 11, 12, 14, 16, 18], the authors in [2]
used the delay partitioning approach and reciprocal convex combination approach
by dividing the interval τ (t) ∈ [0, τM ] into subintervals [0, τM ] = ⋃l

j=1[τ j−1, τ j ]
with 0 = τ0 < τ1 < τ2, . . . , < τl = τM , and some stability criteria were established.
The delay partitioning approach was also applied to discrete-time RNN [29, 30].

Summarizing the above main methods, we find that the delay intervals [0, τM ]
and [τm, τM ] are usually divided into

⋃l
j=1[τ j−1, τ j ], and [τm, τ (t)] ⋃[τ (t), τM ],

respectively. This can be named as first delay partitioning. If [τm , τ (t)] and [τ (t), τM ]
are further divided into several subintervals, which is named as secondary delay
partitioning, and some corresponding Lyapunov functionals are constructed, how
about the obtained stability result? For example, considering a time-varying delay
τ (t) = sin( t

3 ) + cos( t
2 ), the relation between τ (t) and its interval bounds [τm, τM ]

is depicted in Fig. 5.1, where the dotted line is the fixed boundary of the interval of
the time-varying delay and the thick line is τ (t), respectively.

Motivated by the above argument, we present a novel delay-dependent stability
criterion for RNN with time-varying delay in this paper. In this aspect, we nonuni-
formly decompose the delay intervals [τM −τ (t)] and [τ (t)−τm] intomultiple subin-
tervals, and construct a new Lyapunov–Krasovskii functional by choosing different
weighting matrices on different subintervals. Then, we employ the new Lyapunov–
Krasovskii functional and extend reciprocal convex combination approach to formu-
late a new delay-dependent stability criterion for a class of RNNs with time-varying
delays. The main contributions of the chapter are as follows. (1) Both delay intervals
[τm, τ (t)] and [τ (t), τM ] are further divided into many subintervals by involving
dynamic weighting parameters. Comparing with the methods in [2, 14, 18], the pro-
posed method may build a closer relation among the states x(t − τ (t)), x(t − τM ),
x(t −τm) and other states associated with the different subintervals. (2) An extended
RCC is established and a double integral term with variable upper and lower limits
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Fig. 5.1 The segmentation of time-varying delay τ (t)

as a Lyapunov functional is constructed, simultaneously, which are used to tackle
the cross terms among the states associated with the subintervals.

5.2 Problem Formulation and Preliminaries

We consider the following RNNs with time-varying delay,

u̇ (t) = Au(t) + B f̂ (u(t)) + C f̂ (u(t − τ (t))) + Î , (5.1)

where u(t) = (u1(t), . . . , un(t))T is the state of neuron, A = −diag(a1, . . . , an)

with ai > 0, B and C are the interconnected matrices with appropriate dimen-
sions, f̂ (u) = ( f̂1(u1), f̂2(u2), . . . , f̂n(un))T is the activation function. Î =
( Î1, Î2, . . . , În)T is a constant input vector, τ (t) is the time-varying delay satisfying

0 ≤ τm ≤ τ (t) ≤ τM , ρm ≤ τ̇i (t) ≤ ρM ,

where τm, τM , ρm and ρM are known constants, i = 1, . . . , n.

Assumption 5.1 The bounded activation functions f̂i (·) satisfy the following con-
dition for ∀s1, s2 ∈ R, s1 �= s2,

δ−
i ≤ f̂i (s1) − f̂i (s2)

s1 − s2
≤ δ+

i , (5.2)

where δ−
i and δ+

i are known constants, which can be positive, zero and negative,
i = 1, . . . , n.
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According to [7, 10], Assumption 5.1 always ensures the existence of an equilib-
rium point u∗. Denote Σ = diag(δ−

i ) and Γ = diag(δ+
i ), i = 1, . . . , n.

We shift the equilibrium point u∗ of the system (5.1) to the origin by the transfor-
mation x(t) = u(t) − u∗, it yields the following error system,

ẋ(t) = Ax(t) + B f (x(t)) + C f (x(t − τ (t))), (5.3)

where f (x(t)) = f̂ (x(t)+ u∗)− f̂ (u∗), φ(t) is a continuously real-valued function
on [−τM , 0].

In order to derive our main result, the following lemmas are introduced.

Lemma 5.2 (Jensen integral inequality, see [17])For any symmetric positive definite
constant matrix Q > 0, any scalars a and b with a < b, and a vector function
�(t) : [a, b] → R such that the integrals concerned are well-defined, then the
following inequality holds:

( ∫ b

a
�(s)ds

)T
Q

( ∫ b

a
�(s)ds

)
≤ (b − a)

∫ b

a
�(s)T Q�(s)ds.

The RCC approach in [28] is a useful approach to deal with the convex combina-
tion problem. However, the RCC approach in [28] is a basic expression, it may not
be easy to be used directly, especially for the complex case of convex combination.
Now we will present an extended RCC.

Lemma 5.3 For any vectors h1, . . . , hN with appropriate dimensions, positive

scalars αi > 0,
∑N

i=1 αi = 1, R > 0, if there exist appropriately dimensioned
matrices S1, . . . , S N (N−1)

2
satisfying the following conditions:

[
R Sj

∗ R

]
≥ 0, j = 1, . . . ,

N (N − 1)

2
,

then the following inequality holds:

−
N∑

i=1

1

αi
hT

i Rhi

≤ −

⎡

⎢⎢⎢⎢⎢⎢⎣

h1
h2
...
...

hN

⎤

⎥⎥⎥⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎢⎢⎣

R S1 S2 · · · SN−1
∗ R SN · · · S2N−3

∗ ∗ . . .
. . .

...

∗ ∗ ∗ R S N (N−1)
2∗ ∗ ∗ R

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

h1
h2
...
...

hN

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Proof We denote [h1, . . . , hN ] as δT , [hi , h j ] as δT
i j , then we have
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N∑

i=1

1

αi
hT

i Rhi − δT

⎡

⎢⎢⎢⎢⎢⎣

R S1 S2 · · · SN−1
∗ R SN · · · S2N−3

∗ ∗ . . .
. . .

...

∗ ∗ ∗ R S N (N−1)
2∗ ∗ ∗ ∗ R

⎤

⎥⎥⎥⎥⎥⎦
δ

= δT

⎡

⎢⎢⎢⎢⎢⎣

c1R −S1 −S2 · · · −SN−1
∗ c2R −SN · · · −S2N−3

∗ ∗ . . .
. . .

...

∗ ∗ ∗ cN−1R −S N (N−1)
2∗ ∗ ∗ ∗ cN R

⎤

⎥⎥⎥⎥⎥⎦
δ, (5.4)

where ci = 1−αi
αi

, i = 1, . . . , N .

Since 1−αi
αi

=
∑N

j=1 α j −αi

αi
, then from (5.4) we have,

∑

{i=1,...,N−1, j=i+1,...,N }
δT

i j

[ α j
αi

R −S
(i−1)N− i(i+1)

2 + j

∗ αi
α j

R

]
δi j

=
∑

{i=1,...,N−1, j=i+1,...,N }
δT

i j

⎡

⎣

√
α j
αi

0

0 −
√

αi
α j

⎤

⎦

×
[

R S
(i−1)N− i(i+1)

2 + j

∗ R

] ⎡

⎣

√
α j
αi

0

0 −
√

αi
α j

⎤

⎦ δi j

=
∑

{i=1,...,N−1, j=i+1,...,N }

⎡

⎣

√
α j
αi

hi

−
√

αi
α j

h j

⎤

⎦
T

×
[

R S
(i−1)N− i(i+1)

2 + j

∗ R

] ⎡

⎣

√
α j
αi

hi

−
√

αi
α j

h j

⎤

⎦

≥ 0.

This ends the proof.

The following lemma is about the time derivative of a double integral term with
variable upper and lower limits, which will be used in the proof of our main result.
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Lemma 5.4 For continuous functions f̄ (t), a(t) and b(t), the double integration
w(t) = ∫ b(t)

a(t)

∫ t
t−θ f̄ (s)dsdθ is well-defined. Then the following equality holds:

d

dt
w(t) = (b(t) − a(t)) f̄ (t) − (1 − ḃ(t))

∫ t−a(t)

t−b(t)
f̄ (s)ds

+ (ḃ(t) − ȧ(t))
∫ t

t−a(t)
f̄ (s)ds. (5.5)

Proof According to the derivative formula of variable upper and lower limits of
integral,

d

dt

∫ b(t)

a(t)
g(θ, t)dθ

=
∫ b(t)

a(t)

∂g(θ, t)

∂t
dθ + g(b(t), t)

d

dt
b(t) − g(a(t), t)

d

dt
a(t), (5.6)

and let g(θ, t) = ∫ t
t−θ f̄ (s)ds, we can derive the Lemma 5.4.

5.3 Global Asymptotical Stability Result

Now we present a novel delay-dependent stability criterion for (5.3) in this section.

Theorem 5.5 The origin of system (5.3) is globally asymptotically stable, if for
given diagonal matrices Δ1, Δ2, and positive scalars τm , τM , ρm, ρM , βk, γ j , n1
and n2, there exist symmetric definite matrices P > 0, Ws > 0, Ss > 0, Qk > 0,
R j > 0, positive definite diagonal matrices V > 0, U > 0, Λ1 > 0 and Λ2 > 0,
and matrices Gr and J such that the following inequalities hold, s = 1, 2, 3:

max{βk, γ j }ρM < 1, (5.7)

Ω − Ξ1 − Ξ2 < 0, (5.8)
[

S3 J
∗ S3

]
≥ 0, (5.9)

[
S2 Gr

∗ S2

]
≥ 0, (5.10)

where 0 ≤ βk < βk+1 ≤ 1, 0 ≤ γ j+1 < γ j ≤ 1, k = 0, . . . , n1 − 1, j =
0, . . . , n2 − 1, r = 1, . . . , (n1+n2)(n1+n2−1)

2 ,
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Ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1 χ1 0 0 0 0 χ2 χ3
∗ ω2 0 0 0 0 0 0
∗ ∗ ω3 0 0 0 0 0
∗ ∗ ∗ ω4 0 0 0 χ4
∗ ∗ ∗ ∗ ω5 0 0 0
∗ ∗ ∗ ∗ ∗ ω6 0 0
∗ ∗ ∗ ∗ ∗ ∗ ω7 χ9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ω8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.11)

Ξ1 = {Ξ1pq } = {Ξ ′
pq −Ξ ′

(p−n)q −Ξ ′
p(q−n) +Ξ ′

(p−n)(q−n)}, p, q = 1, 2, . . . , (n1 +
n2 + 4)n and Ξpq = 0 when p or q ≤ 0, (Ξ1 = {Ξ1pq } means the element of matrix
Ξ1 in row p, column q is Ξ1pq ), and

ω1 = P A + AT PT + W1 + W2 − S + AT S′ A − Δ1V

− ΣΛ1A − (ΣΛ1A)T + Γ Λ2A + (Γ Λ2A)T ,

ω2 = −W1 + Q0 − S1,ω6 = −W2 − Rn2−1,

ω4 = −(1 − ρM )Qn1−1 + (1 − ρm)R0 − Δ1U,

ω7 = BT S′ B + W3 − V − ΣΛ1B − (ΣΛ1B)T

+ Γ Λ2B + (Γ Λ2B)T ,

ω8 = CT S′C − (1 − ρM )W3 − U, χ1 = S1,

χ2 = AT S′ B + P B + Δ2V + AT ΛT
1 − AT ΛT

2

− ΣΛ1B + Γ Λ2B,

χ3 = AT S′C + PC − ΣΛ1C + Γ Λ2C,

χ4 = Δ2U,χ9 = BT S′C + CT ΛT
1 − CT ΛT

2 ,

S′ = τ2m S1 + (τM − τm)2S2 + (1 − γ1)
2(τM − τm)2

1 − γ1ρM
S3,

ω3 = diag
(

− (1 − β1ρM )Q0 + (1 − β1ρm)Q1, . . . ,

− (1 − βn1−1ρM )Qn1−2 + (1 − βn1−1ρm)Qn1−1

)
,

ω5 = diag
(

− (1 − γ1ρM )R0 + (1 − γ1ρm)R1, . . . ,

− (1 − γn2−1ρM )Rn2−2 + (1 − γn2−1ρm)Rn2−1

)
,

Ξ2 =

⎡

⎢⎢⎢⎢⎣

0n1n×n1n 0n1n×n 0n1n×n 0n1n×n Θ1
∗ S3 J − S3 −J Θ2
∗ ∗ −2S3 − J J − S3 Θ3
∗ ∗ ∗ −S3 Θ4
∗ ∗ ∗ ∗ Θ5

⎤

⎥⎥⎥⎥⎦
,
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Θ1 = 0n1n×(n2+1)n, Θ2 = 0n×(n2+1)n,Θ3 = 0n×(n2+1)n,

Θ4 = 0n×(n2+1)n, Θ5 = 0(n2+1)n×(n2+1)n,

{Ξ ′
pq} = Ξ ′ =

⎡

⎣
02n×2n 02n×(n1+n2) 02n×2n

∗ Ξ ′′ 0(n1+n2)×2n

∗ ∗ 02n×2n

⎤

⎦ ,

Ξ ′′ =

⎡

⎢⎢⎢⎢⎢⎣

S2 G1 G2 · · · G(n1+n2−1)
∗ S2 G(n1+n2) · · · G(2n1+2n2−3)

∗ ∗ . . .
. . .

...

∗ ∗ ∗ S2 G (n1+n2−1)(n1+n2)

2∗ ∗ ∗ ∗ S2

⎤

⎥⎥⎥⎥⎥⎦
.

Proof Define a Lyapunov function as

V0(t) = V1(t) + V2(t) + V3(t), (5.12)

where

V1(t) = xT (t)Px(t) +
∫ t

t−τm

xT (s)W1x(s)ds

+
∫ t

t−τM

xT (s)W2x(s)ds

+ 2
n∑

i=1

λ1i

∫ xi (t)

0
( fi (s) − δ−

i s)ds

+ 2
n∑

i=1

λ2i

∫ xi (t)

0
(δ+

i s − fi (s))ds,

V2(t) =
∫ t

t−τ (t)
f T (x(s))W3 f (x(s))ds

+ τm

∫ 0

−τm

∫ t

t+s
ẋ T (θ)S1 ẋ(θ)dθds

+ (τM − τm)

∫ −τm

−τM

∫ t

t+s
ẋ T (θ)S2 ẋ(θ)dθds,

V3(t) =
n1−1∑

k=0

[∫ t−βkτ (t)−(1−βk)τm

t−βk+1τ (t)−(1−βk+1)τm

xT (s)Qk x(s)ds

]
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+
n2−1∑

j=0

[∫ t−γ j τ (t)−(1−γ j )τM

t−γ j+1τ (t)−(1−γ j+1)τM

xT (s)R j x(s)ds

]

+ (1 − γ1)(τM − τm)

1 − γ1ρM

∫ −γ1τ (t)−(1−γ1)τm

−γ1τ (t)−(1−γ1)τM

∫ t

t+s
ẋ T (θ)S3 ẋ(θ)dθds,

where β0 = 0, βn1 = 1, γ0 = 1, γn2 = 0, βn1−1 = γ1, n1 and n2 are the numbers
of partitioning the intervals [t − τ (t), t − τm] and [t − τM , t − τ (t)], respectively.

Time derivative of the Lyapunov function (5.12) along the solutions to (5.3) is
computed as follows:

V̇1 + V̇2 ≤ 2xT (t)P
[

Ax(t) + B f (x(t)) + C f (x(t − τ (t)))
]

+
2∑

l=1

xT (t)Wl x(t) − xT (t − τm)W1x(t − τm)

− xT (t − τM )W2x(t − τM )

+ 2[ f (x(t)) − Σx(t)]T Λ1 ẋ(t)

+ 2[Γ x(t) − f (x(t))]T Λ2 ẋ(t)

+ ẋ T (t)
[
τ2m S1 + (τM − τm)2S2

]
ẋ(t)

− τm

∫ t

t−τm

ẋT (s)S1 ẋ(s)ds + f T (x(t))W3 f (x(t))

− (τM − τm)

∫ t−τm

t−τM

ẋT (s)S2 ẋ(s)ds

− (1 − ρM ) f T (x(t − τ (t)))W3 f (x(t − τi (t))), (5.13)

V̇3 =
n1−1∑

k=0

[
(1 − βk τ̇ (t))xT

(
t − βkτ (t) − (1 − βk)τm

)

× Qk x
(

t − βkτ (t) − (1 − βk)τm

)

− (1 − βk+1τ̇ (t))xT
(

t − βk+1τ (t) − (1 − βk+1)τm

)

× Qk x
(

t − βk+1τ (t) − (1 − βk+1)τm

)]

+
n2−1∑

j=0

[
(1 − γ j τ̇ (t))xT

(
t − γ jτ (t) − (1 − γ j )τm

)

× R j x
(

t − γ jτ (t) − (1 − γ j )τm

)
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− (1 − γ j+1τ̇ (t))xT
(

t − γ j+1τ (t) − (1 − γ j+1)τm

)

×R j x
(

t − γ j+1τ (t) − (1 − γ j+1)τm

)]

+ (1 − γ1)
2(τM − τm)2

1 − γ1ρM
ẋT (t)S3 ẋ(t)

− (1 − γ1)(τM − τm)

1 − γ1ρM

∫ t−γ1τ (t)−(1−γ1)τm

t−γ1τ (t)−(1−γ1)τM

ẋT (s)S3 ẋ(s)ds

+ (1 − γ1)(τM − τm)

1 − γ1ρM
γ1τ̇ (t)

∫ t−γ1τ (t)−(1−γ1)τm

t−γ1τ (t)−(1−γ1)τM

ẋT (s)S3 ẋ(s)ds

≤
n1−1∑

k=0

[
(1 − βkρm)xT

(
t − βkτ (t) − (1 − βk)τm

)

× Qk x
(

t − βkτ (t) − (1 − βk)τm

)

− (1 − βk+1ρM )xT
(

t − βk+1τ (t) − (1 − βk+1)τm

)

× Qk x
(

t − βk+1τ (t) − (1 − βk+1)τm

)]

+
n2−1∑

j=0

[
(1 − γ jρm)xT

(
t − γ jτ (t) − (1 − γ j )τm

)

× R j x
(

t − γ jτ (t) − (1 − γ j )τm

)

− (1 − γ j+1ρM )xT
(

t − γ j+1τ (t) − (1 − γ j+1)τm

)

× R j x
(

t − γ j+1τ (t) − (1 − γ j+1)τm

)]

+ (1 − γ1)
2(τM − τm)2

1 − γ1ρM
ẋT (t)S3 ẋ(t)

− (1 − γ1)(τM − τm)

∫ t−γ1τ (t)−(1−γ1)τm

t−γ1τ (t)−(1−γ1)τM

ẋT (s)S3 ẋ(s)ds, (5.14)

where we have used Lemma 5.4 to compute the derivative of double integral term in
V3(t).
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fk =
[
x
(

t − βkτ (t) − (1 − βk)τm

)
− x

(
t − βk+1τ (t) − (1 − βk+1)τm

)]T
,

g j =
[
x
(

t − γ jτ (t) − (1 − γ j )τm

)
− x

(
t − γ j+1τ (t) − (1 − γ j+1)τm

)]T
,

Ω̄ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S2 G1 G2 G3 . . . . . . Gn1+n2−2 Gn1+n2−1
∗ S2 Gn1+n2 Gn1+n2+1 Gn1+n2+2 . . . G2(n1+n2)−4 G2(n1+n2)−3

∗ ∗ . . .
...

...
...

...
...

∗ ∗ ∗ . . .
...

...
...

...

∗ ∗ ∗ ∗ . . .
...

...
...

∗ ∗ ∗ ∗ ∗ . . .
...

...

∗ ∗ ∗ ∗ ∗ ∗ S2 G (n1+n2)(n1+n2−1)
2∗ ∗ ∗ ∗ ∗ ∗ ∗ S2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.15)

Furthermore, according to Assumption 5.1, the following conditions hold [7, 10]

ω̄T
1 (t)

[
Δ1V −Δ2V

−Δ2V V

]
ω̄1(t) ≤ 0, (5.16)

ω̄T
2 (t)

[
Δ1U −Δ2U

−Δ2U U

]
ω̄2(t) ≤ 0, (5.17)

where Δ1 = diag(δ−
i δ+

i ) and Δ2 = diag(
δ−

i +δ+
i

2 ), ω̄1(t) = [xT (t), f T (x(t))]T ,

ω̄2(t) = [xT (t − τ (t)), f T (x(t − τ (t)))]T , V and U are two positive diagonal
matrices, respectively.

On the other hand, from Lemma 5.2 we know that

− (τM − τm)

∫ t−τm

t−τM

ẋT (s)S2 ẋ(s)ds

= −
n1−1∑

k=0

{
τM − τm

(βk+1 − βk)τ (t) + (βk − βk+1)τm

× [(βk+1 − βk)τ (t) + (βk − βk+1)τm]

×
∫ t−βkτ (t)−(1−βk)τm

t−βk+1τ (t)−(1−βk+1)τm

ẋT (s)S2 ẋ(s)ds

}

−
n2−1∑

j=0

{
τM − τm

(γ j+1 − γ j )τ (t) + (γ j − γ j+1)τM

× [(γ j+1 − γ j )τ (t) + (γ j − γ j+1)τM ]
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×
∫ t−γ j τ (t)−(1−γ j )τM

t−γ j+1τ (t)−(1−γ j+1)τM

ẋT (s)S2 ẋ(s)ds

}

≤ −
n1−1∑

k=0

{
τM − τm

(βk+1 − βk)τ (t) + (βk − βk+1)τm

×
[
x(t − βkτ (t) − (1 − βk)τm)

− x(t − βk+1τ (t) − (1 − βk+1)τm)
]T

× S2
[
x(t − βkτ (t) − (1 − βk)τm)

− x(t − βk+1τ (t) − (1 − βk+1)τm)
]}

−
n2−1∑

j=0

{
τM − τm

(γ j+1 − γ j )τ (t) + (γ j − γ j+1)τM

×
[
x(t − γ jτ (t) − (1 − γ j )τM )

− x(t − γ j+1τ (t) − (1 − γ j+1)τM )
]T

× S2
[
x(t − γ jτ (t) − (1 − γ j )τM )

− x(t − γ j+1τ (t) − (1 − γ j+1)τM )
]}

, (5.18)

− τm

∫ t

t−τm

ẋT (s)S1 ẋ(s)ds

≤ − [x(t) − x(t − τm)]T S1[x(t) − x(t − τm)], (5.19)

and

− (1 − γ1)(τM − τm)

∫ t−γ1τ (t)−(1−γ1)τm

t−γ1τ (t)−(1−γ1)τM

ẋT (s)S3 ẋ(s)ds

= − (1 − βn1−1)(τM − τm)

∫ t−βn1−1τ (t)−(1−βn1−1)τm

t−τ (t)
ẋ T (s)S3 ẋ(s)ds

− (1 − γ1)(τM − τm)

∫ t−τ (t)

t−γ1τ (t)−(1−γ1)τM

ẋT (s)S3 ẋ(s)ds

≤ − (1 − γ1)(τM − τm)

(1 − βn1−1)(τ (t) − τm)

[
x
(

t − βn1−1τ (t)
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− (1 − βn1−1)τm

)
− x(t − τ (t))

]T
S3

×
[
x
(

t − βn1−1τ (t) − (1 − βn1−1)τm

)
− x(t − τ (t))

]

− (1 − γ1)(τM − τm)

(1 − γ1)(τM − τ (t))

[
x
(

t − γ1τ (t)

− (1 − γ1)τM

)
− x(t − τ (t))

]T
S3

×
[
x
(

t − γ1τ (t) − (1 − γ1)τM

)
− x(t − τ (t))

]
. (5.20)

Because

1 =
n1−1∑

k=0

[
(βk+1 − βk)τ (t) + (βk − βk+1)τm

τM − τm

]

+
n2−1∑

j=0

[
(γ j+1 − γ j )τ (t) + (γ j − γ j+1)τM

τM − τm

]
, (5.21)

βn1−1 = γ1, (5.22)

1 = τ (t) − τm

τM − τm
+ τM − τ (t)

τM − τm
, (5.23)

and let Fx = ( f T
0 , . . . , f T

n1−1, g
T
0 , . . . , gT

n2−1)
T ,

h1 =
[
x
(

t − βn1−1τ (t) − (1 − βn1−1)τM

)
− x(t − τ (t))

]T
,

h2 =
[
x
(

t − γ1τ (t) − (1 − γ1)τM

)
− x(t − τ (t))

]T
,

applying Lemma 5.3 to inequalities (5.18) and (5.20), we get the following inequal-
ities, respectively:

Inequality|(5.18) ≤FT
x Ω̄ Fx (5.24)

Inequality|(5.20) ≤(hT
1 hT

2 )

[
S3 J
J T S3

]
(hT

1 hT
2 )T , (5.25)

where fk, g j and Ω̄ are defined in (5.15), respectively, k = 1, . . . , n1 − 1, j =
1, . . . , n2 − 1.

Combining (5.13), (5.14), (5.16), (5.19), (5.24), with (5.25), and by some op-
erations, we have V̇0(t) < ζ(t)T (Ω + Ξ1 + Ξ2)ζ(t) < 0 for ∀ζ(t) �= 0, if the
inequalities (5.7)–(5.10) hold, where

ζ(t)T =
[
xT (t), xT

(
t − β0τ (t) − (1 − β0)τm

)
, . . . ,

xT
(

t − βkτ (t) − (1 − βk)τm

)
, . . . ,
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xT
(

t − βn1τ (t) − (1 − βn1)τm

)
,

xT
(

t − γ1τ (t) − (1 − γ1)τM

)
, . . . ,

xT
(

t − γ jτ (t) − (1 − γ j )τM

)
, . . . ,

xT
(

t − γn2τ (t) − (1 − γn2)τM

)
,

f T (x(t)), f T (x(t − τ (t)))
]
. (5.26)

This completes the proof.

Remark 5.6 In [2, 18], it is assumed that τ (t)∈[τ j−1, τ j ] for some j ∈ [1, 2, . . . , n0],
where n0 is the number of splitting delay interval [0, τM ]. By deciding which interval
τ (t) belongs to, the corresponding stability criterion is then obtained. In general, the
n0 sets of LMI-based conditions need to be checked for different j . In contrast, we
use the secondary partitioning approach to dynamically divide the delay interval,
and τ (t) is naturally incorporated into the state variables with different subinterval,
which leads to a compact LMI-based stability criterion.

Remark 5.7 In this chapter, different from the existing construction of Lyapunov
function, a double integral term with variable upper and lower limits of integral is
used to be the Lyapunov function (see the last term in V3(t)). In order to estimate the
derivative of the Lyapunov function, Lemma 5.4 is presented. This kind of Lyapunov
function can be effectively combined with the proposed secondary delay partitioning
method. Since the partitioning coefficients satisfy the equalities (5.21)–(5.23), an
extended RCC (see Lemma 5.3) is presented to establish the relations among the
states. Combining the secondary delay partitioning method and extended RCC, our
approach is effective for the RNN with fast time-varying delay.

Remark 5.8 Note that, among the ways of reducing the conservativeness of the
estimation of the upper bound of time delay, delay-slope-dependent method is an
effective one [27, 34]. This method includes more information on the slope of neu-
ron activation functions, and can establish the relationship between the time delay
upper bound and the slope of neuron activation functions. In contrast, this chapter
establishes the relation between the time delay upper bound and the partitioning
parameters of subinterval of time-varying delay. Obviously, the methods in [27, 34]
and those in this chapter are different, and they reduce the conservativeness of upper
bound of time delay in different ways.

Remark 5.9 When the delay interval [τm, τM ] is divided into two delay subinter-
vals [τm, τ (t)] and [τ (t), τM ], how to further divide these two intervals into many
subintervals is the key problem to be dealt with. In this chapter, we apply the con-
vex combination method to the intervals [τm, τ (t)] and [τ (t), τM ] by involving
some dynamic weighting parameters, and by constructing a novel functional (see
V3(t)), then the secondary delay partitioning is realized. In the proposed method,
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the interval [τm, τ (t)] is partitioned into n1 segments by dynamic parameters βk

(k = 0, . . . , n1 − 1), while the interval [τ (t), τM ] is partitioned into n2 segments
by dynamic parameters γ j ( j = 0, . . . , n2 − 1). Here, n1 may not be equal to n2,
and βk and γ j may be different. In order to obtain some compact expressions when
computing the derivative of V3(t), some restriction conditions are required, for ex-
ample, βn1−1 = γ1. How to choose these scalars βk and γi to get the better results
is a constrained optimal problem, a challenging problem, and out of the scope of the
purpose of the present chapter. In this chapter, we choose these parameters by trial
and error.

Remark 5.10 In order to realize the secondary delay partitioning method, some Lya-
punov functions should be constructed, for example, V2(t) and V3(t). The last terms
in V2(t) and V3(t) are useful for reducing the conservatism of the results. When
one of them is removed, the desired results cannot be obtained. In principle, the
integration intervals in V3(t) are variant or changeable, which implies that this kind
of Lyapunov function can be used to tackle the problem of partitioning the fixed
delay interval by flexible terminal. This partitioning method in fact is a contraction
method by changing the terminals. How to use this method systematically to study
the stability problems for RNNs with delay is a future direction.

Remark 5.11 By using different inequality techniques, some different stability
analysis methods were proposed [31–34]. For example, a matrix-based quadratic
convex approach was introduced in [32]. A double integral term of activation func-
tion was utilized as an element of augmented vector in estimating the time-derivative
of Lyapunov–Krasovskii functional [33]. A novel approachwhich divided the bound-
ing of activation function into two subinterval was proposed in [34]. For the case
of two additive time-varying delays, the domain of the integral terms in Lyapunov–
Krasovskii functional was partitioned into three parts in [31]. Although the methods
in [31–34] can reduce the conservativeness of the upper bound of time delay, the ter-
minal of interval time delay is fixed and no further partition is conducted. In contrast,
we use the secondary partitioning method to divide the interval time delay by involv-
ing some weights, which can lead to the changeable terminal of some subinterval of
time delay. The method used in this chapter is different from those in [31–34].

Remark 5.12 In [4, 5], the relationship between the time-varying delay and its upper
bounds was taken into account when estimating the upper bound of the derivative of
Lyapunov function, in which the free weight matrix method played an important role
in establishing the improved delay-dependent stability criteria for neural networks
with time-varying interval delay. In [6], by dividing the bounding of activation func-
tions into two parts, an improved stability criterion was proposed. In [7], the uniform
delay partitioning method was used on both discrete and distributed delays and a
triple integral term was used in the construction of Lyapunov function, in which
more number of fractions were considered and some improved stability results were
established for neural networks with constant delay. In general, there are many ways
to be explored to further reduce the conservativeness of the stability results for neural
networks with time-varying delay, for example, the methods in [4–7]. As far as the
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delay partitioning method is concerned, the method in [3-6] is the first delay parti-
tioning method, while in this chapter we further partition the first delay partitioning
interval (called secondary delay partitioning method). This is the main difference
between the present chapter and [4–7].

Remark 5.13 Analogous to the analysis method of this chapter, some higher or-
der partitions seem possible for the interval delay, for example, third-order delay
partitioning, fourth-order delay partitioning. In this case, how to establish the corre-
sponding stability criterion needs further to be investigated.

5.4 Illustrative Example

In this section, a numerical example will be used to check the effectiveness of the
proposed stability criterion.

Example 5.14 Consider the neural networks (5.3), where

A = −diag(1.2769, 0.62310, 0.9230, 0.448),

B =

⎡

⎢⎢⎣

−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.086 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015

⎤

⎥⎥⎦ ,

C =

⎡

⎢⎢⎣

0.8674 −1.2405 −0.5325 0.022
0.0474 −0.9164 0.036 0.9816
1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

⎤

⎥⎥⎦ ,

Σ =diag(0, 0, 0, 0),

Γ =diag(0.1137, 0.1279, 0.7994, 0.2368),

This example has often been used to compare the conservativeness of the stability
results in the literature, in which the larger the maximum bound of time delay is,
the less conservative the derived stability result is. Pertaining to this example, our
obtained delay bounds and the detailed comparisons with other results are listed in
Table 5.1 (n1 = 2, n2 = 2, β1 = γ1 = 10−4, τm = 0, ρm = 0) and Table 5.2
(n1 = 2, n2 = 2, β1 = γ1 = 0.9999, τm = 1, ρm = −ρM ), respectively. From these
two tables we can see that when the change rate of time-varying delay is small, for
example, ρM ≤ 0.5, our result will be slightly conservative comparing with some
existing results. This point can be shown by the terms ω3 and ω5 in Theorem 5.5.
When ρM is very small, the term −(1− βn1−1ρM )Qn1−2 or −(1− γn2−1ρM )Rn2−2
is nearly equal to−Qn1−2 or−Rn2−2, respectively, which means that the parameters
βn1−1 and γn2−1 have not much influence on the change rate of time-varying delay.
On the contrary, for the case of fast change rate of time-varying delay, for example,
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Table 5.1 Comparisons of delay bound τM with the results in some references for different ρM

Method τ̇ (t) 0.1 0.5 0.9

Theorem 1 [4] |τ̇ (t)| ≤ ρM 3.2793 2.2245 1.5847

Theorem 2 [5] |τ̇ (t)| ≤ ρM 3.3039 2.5376 2.0853

Theorem 1 [8] |τ̇ (t)| ≤ ρM 3.2819 2.2261 1.6035

Theorem 2 [24] |τ̇ (t)| ≤ ρM 3.4183 2.5943 2.1306

Theorem 2 [20] |τ̇ (t)| ≤ ρM 3.3574 2.5915 2.0779

Theorem 2 [23] |τ̇ (t)| ≤ ρM 3.3981 2.6711 2.1783

Proposition 2 [18] |τ̇ (t)| ≤ ρM 3.5204 2.7167 2.2141

Theorem 1 [2] |τ̇ (t)| ≤ ρM 3.7665 2.6814 2.2274

Theorem 1 [16] |τ̇ (t)| ≤ ρM 3.8428 2.7081 2.2485

Theorem 5.5 in
this chapter

|τ̇ (t)| ≤ ρM 3.4886 2.6056 2.2522

Table 5.2 Comparisons of delay bound τM with the results in some references for different ρM

Method τ̇ (t) 0.1 0.9 ≥1

Theorem 1 [5] |τ̇ (t)| ≤ ρM 3.3068 2.2736 2.2393

Proposition 3 [18] |τ̇ (t)| ≤ ρM 3.5235 2.3510 2.2740

Proposition 2 [18] |τ̇ (t)| ≤ ρM 3.8025 2.3811 2.3114

Theorem 5.5 in
this chapter

|τ̇ (t)| ≤ ρM 3.7515 2.4628 2.4554
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Fig. 5.2 State trajectories of x1(t) x2(t) x3(t) and x4(t)

ρM ≥ 0.9, our result will be more effective than the existing results. In this case,
the parameters βn1−1 and γn2−1 in Theorem 5.5 will have much influence on the
change rate of time-varying delay, which also verifies the statements in Remark 5.7.
In general, it is impossible to use one method to obtain the best upper bound of
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time delay for both slow and fast time-varying case simultaneously. Each method is
generally suitable for a kind of time-varying delay. Therefore, in this example, we
further confirm that our proposed method is suitable for the case of fast time-varying
delay.

When τ (t) = 1.1261 + 0.3536 sin(0.4620t) + 0.7725 cos(0.5
√
3 t) (i.e., τM =

2.2477, ρM = 0.8324) and the initial values are randomly chosen, the simulation
result is given in Fig. 5.2. Obviously, the concerned neural network is globally as-
ymptotically stable.

5.5 Summary

In this chapter, we have studied the global asymptotic stability for a class of RNNs
with time-varying delay. By using the secondary delay partitioningmethod, extended
RCC approach, and a double integral term with variable upper and lower limits
as a Lyapunov functional, an LMI-based stability criterion has been established.
The proposed secondary delay partitioning method is mainly used to reduce the
conservativeness of the stability criterion for RNN with fast change rate of time-
varying delay. A numerical example is used to demonstrate the effectiveness of the
derived criteria. However, there are many adjustable parameters to be determined in
Theorem 5.5, how to optimize these parameters is not an easy work. One way is to
design optimal algorithms to solve these parameters, which will be a further research
direction.
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Chapter 6
LMI-Based Stability Criteria for Static
Neural Networks

In Chaps. 1 and 5, stability problems based on LMI have been investigated for a kind
of local fieldRNNswith delay. This kind of local fieldRNNs is usually used in pattern
recognition and associative memory. In fact, there is another kind of RNNs, which
is called static neural networks. Static neural networks have widely been applied in
optimization problems. Therefore, in this chapter, based on the result in [25], we will
establish some LMI-based stability results for static neural networks.

6.1 Introduction

In the recent years, neural networks have been found a lot of successful applications
in many fields, such as pattern recognition, associative memories, signal processing,
fixed-point computations, and so on.When designing a neural network or implement-
ing it by VLSI (very large scale integrated) electronic circuit in practice, stability
is frequently one of the preconditions which have to be concerned with. Since time
delay is unavoidably in real-world systems and is often an important source of oscil-
lation and instability, the stability analysis of neural networks with time delays has
emerged as a research topic of primary significance in the past years [1–25].

As reported in [6, 12], recurrent neural networks can be classified as static neural
networks and local field networks. In the past few decades, the stability analysis
problem has been studied thoroughly for the latter. However, it has received little
attention for the former. As reviewed in [3, 4, 7], many neural networks exhibiting
short-term memory are modeled by non-invertible networks, such as the oculomo-
tor integrator or the head direction system [5]. That is, local field neural network
models and static neural network models are not always equivalent. For the static
neural networks without delays, exponential stability conditions were obtained in
[2] when the connection weigh matrix is symmetric, while the robustly exponen-
tial stability of the unique equilibrium was studied in [11], where an LMI method
was employed. As for the static neural networks with delays, reference [4] obtains a
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delay-independent stability criterion which ensures the globally asymptotic stability
of the unique equilibrium of the network with a constant time delay. In [3], by use
of nonlinear measure approach, a delay-independent exponential stability criterion
is developed for recurrent neural networks with constant time delay. Reference [7]
researches the uniqueness and delay-dependent exponential stability condition for
neural networks with a constant time delay. Reference [5] discusses the globally
asymptotic stability of the network with a time-varying delay which is also delay-
dependent. However, there is still some conservatism in these analysis results.

In this chapter, in order to reduce the conservativeness of the previous results,
we construct a Lyapunov–Krasovskii functional and derive some new sufficient con-
ditions for the globally exponential stability of the unique equilibrium of the static
neural network, which are delay-dependent and computationally efficient [25]. Since
the free weight matrix approach [1, 9] and the Jensen integral inequality [26] are
involved, the results are less conservative than some existing ones. An illustrative
example is given to demonstrate the effectiveness of the proposed results.

6.2 Problem Formulation

Considering the following static neural networks with time-varying delays:

ẋ(t) = −Ax(t) + f (W x(t − τ (t)) + J ), (6.1)

where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ R
n is the neural state vector, A =

diag{a1, a2, ..., an} is a positive diagonal matrix, W = (wi j )n×n is a known con-
stant matrix, 0 ≤ τ (t) ≤ h is the time-varying delay, where h is constant.
J = (J1, J2, ..., Jn)T is the constant external input vector, and f (W x(t − τ (t))) =
( f1(W1x(t − τ (t))), f2(W2x(t − τ (t))), ..., fn(Wn x(t − τ (t))))T ∈ R

n denotes the
neural activation function, where W j denotes the j th row of matrix W. It is assumed
that f j (s) is continuous, and there exist constants σ j such that

0 ≤ f j (s1) − f j (s2)

s1 − s2
≤ σ j , j = 1, 2, ..., n, (6.2)

for any s1, s2 ∈ R,s1 �= s2.
Moreover, we assume that the initial condition of system (6.1) has the form

xi (t) = φi (t), t ∈ [−h, 0]

where φi (t)(i = 1, 2, ..., n) is continuous function.
In this chapter, we assume that system (6.1) always has an equilibrium point x∗.

In order to prove the exponential stability of the equilibrium point x∗ of system (6.1),
we will first simplify system (6.1) as follows. Let u(·) = x(·) − x∗, then we have
the error system,



6.2 Problem Formulation 227

u̇(t) = −Au(t) + g(W u(t − τ (t))), (6.3)

where g(W u(t − τ (t))) = (g1(W1u(t − τ (t))), g2(W2u(t − τ (t))), ..., gn(Wnu(t −
τ (t))))T , g j (W j u(t)) = f j (W j u(t)+W j x∗+ J j )− f j (W j x∗+ J j ).By assumption
(6.2), we can see that

0 ≤ g j (u j (t))

u j (t)
≤ σ j . (6.4)

The definition of exponential stability is now given.

Definition 6.1 The system (6.1) is said to be globally exponentially stable if there
exist constants k > 0 and K > 1 such that

||x(t)|| ≤ K sup
−h≤θ≤0

||x(θ)|| e−kt ,

where k is called the exponential convergence rate.

Clearly, the equilibrium point of system (6.1) is exponentially stable if and only
if the zero solution of system (6.3) is exponentially stable.

In order to obtain the results, we need the following lemma:

Lemma 6.2 (see [21, 22]) Assuming that function g j (s) satisfies inequality (6.4),
then the following inequality holds

∫ u

v

(g j (s) − g j (v))ds ≤ (u − v)(g j (u) − g j (v)).

6.3 Main Results

First, we present a new exponential stability result for static neural network (6.3) for
τ̇ (t) ≤ η < 1.

Theorem 6.3 Under the assumption (6.2) and 0 ≤ τ (t) ≤ h, 0 ≤ τ̇ (t) ≤ η < 1,
given a constant k > 0, suppose that there exist positive definite symmetric matrices
P1, nonnegative definite symmetric matrices Pi (i = 2, 3, 4), positive diagonal
matrices T1, T2, D = diag{d1, d2, ..., dn}, real symmetric matrices Q = [Qij]2×2 ≥
0, S = [Sij]3×3 ≥ 0 and real matrices U T = [

U T
1 U T

2 U T
3

]
, Z T = [

Z T
1 Z T

2 Z T
3

]

such that the following LMIs hold:

Ξ1 =
[

S U
∗ e−2kh P4

]
≥ 0, (6.5)
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Ξ2 =
[

S Z
∗ e−2kh P4

]
≥ 0, (6.6)

Ω =

⎡

⎢⎢⎢⎢⎣

Ω11 Ω12 Ω13 Ω14 Ω15
∗ Ω22 0 Ω24 Ω25
∗ 0 Q22 − 2T1 DW 0
∗ ∗ ∗ Ω44 0
∗ ∗ 0 0 Ω55

⎤

⎥⎥⎥⎥⎦
< 0, (6.7)

where “*” are entries readily inferred by symmetry, and

Ω11 = 2k(P1 + 2W T DΣW ) − P1A − AP1 + P2 + hS11

+ h A(P3 + P4)A − 1

h
e−2kh P3 + U1 + U T

1 + Q11,

Ω12 = 1

h
e−2kh P3 − U1 + U T

2 + Z1 + hS12,

Ω13 = −AW T D + Q12 + W T ΣT1,

Ω14 = P1 − h A(P3 + P4),

Ω15 = U T
3 − Z1 + hS13,

Ω22 = −2

h
e−2kh P3 − (1 − η)e−2kh Q11 − U2 − U T

2 + Z2 + Z T
2 + hS22,

Ω24 = −(1 − η)e−2kh Q12 + W T ΣT2,

Ω25 = 1

h
e−2kh P3 − U T

3 − Z2 + Z T
3 + hS23,

Ω44 = h(P3 + P4) − (1 − η)e−2kh Q22 − 2T2,

Ω55 = −e−2kh P2 − 1

h
e−2kh P3 − Z3 − Z T

3 + hS33,

Σ = diag{σ1,σ2, ...,σn},

then the origin of neural network (6.3) is the unique equilibrium point, and it is
exponentially stable with convergence rate k.

Proof First, we show the uniqueness of the equilibrium point by contradiction. To
end this, let û be the equilibrium point of the delayed recurrent neural network (6.3),
then we have

−Aû + g(W û) = 0.

Now suppose û �= 0. It is easy to see that

2
(

ûT P1 + gT (W û)DW
)(

− Aû + g(W û)
)

= 0. (6.8)
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By inequality (6.4), the following inequality holds

2ûT W T Σ(T1 + T2)g(W û) ≥ 2gT (W û)(T1 + T2)g(W û).

This together with Eq. (6.8) gives

−ûT (P1A + AP1)û + 2ûT E1g(û) + gT (û)E2g(û) ≥ 0,

i.e.,

[
ûT gT (û)

] [−P1A − AP1 E1
∗ E2

] [
û

g(û)

]
≥ 0, (6.9)

where E1 = P1 + W T Σ(T1 + T2) − AW T D, E2 = DW + W T D − 2(T1 + T2).
On the other hand, let

Π =
[

I I 0 0 I
0 0 I I 0

]
,

multiplying (6.7) by Π and ΠT on its left and right side respectively, we obtain

[
E0 E1 − h A(P3 + P4)

∗ E2 + h(P3 + P4)

]
+

(
1 − (1 − η)e−2kh

)
Q < 0,

where

E0 = −P1A − AP1 + 2k(P1 + 2W T DΣW )

+ (
1 − e−2kh)

P2 + h A(P3 + P4)A

+ h{S11 + S12 + ST
12 + S13 + ST

13 + S22 + S23 + ST
23 + S33}.

That is
[−P1A − AP1 E1

∗ E2

]
+

(
1 − (1 − η)e−2kh

)
Q

+
[
2k(P1 + 2W T DΣW ) + (

1 − e−2kh
)
P2 0

0 0

]

+
[−A

I

]
h(P3 + P4)

[−A I
]

+
⎡

⎣
I I I
0 0 0
0 0 0

⎤

⎦ hS

⎡

⎣
I 0 0
I 0 0
I 0 0

⎤

⎦ < 0.
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Note that P1 > 0, Pi ≥ 0 (i = 2, 3, 4), Q ≥ 0, S ≥ 0, D > 0, therefore

[−P1A − AP1 E1
∗ E2

]
< 0.

Obviously, this contradicts with (6.9). The contradiction implies that û = 0. That is,
the origin of the delayed recurrent neural networks (6.3) is the unique equilibrium
point.

Next, we show the unique equilibrium point of networks (6.3) is exponentially
stable. Consider the following Lyapunov–Krasovskii functional:

V (u(t)) = e2kt uT (t)P1u(t) +
∫ t

t−h
e2ksuT (s)P2u(s)ds

+
∫ t

t−h

∫ t

θ
e2ks u̇T (s)(P3 + P4)u̇(s)dsdθ

+
∫ t

t−τ (t)
e2ksξT (u(s))Qξ(u(s))ds

+ 2e2kt
n∑

i=1

di

∫ Wi u(t)

0
gi (s)ds, (6.10)

where ξT (u(s)) = (uT (s), gT (W u(s))).
For convenience, we denote uτ = u(t − τ (t)). The time derivative of functional

(6.10) along the trajectories of system (6.3) is obtained as follows:

V̇ (u(t)) = e2kt
{
2kuT (t)P1u(t) + 2uT (t)P1u̇(t)

+ uT (t)P2u(t) − e−2khuT (t − h)P2u(t − h)

−
∫ t

t−h
e2k(s−t)u̇T (s)(P3 + P4)u̇(s)ds

+ ξT (u(t))QξT (u(t)) + hu̇T (t)(P3 + P4)u̇(t)

− (1 − τ̇ (t))e−2kτ (t)ξT (uτ )QξT (uτ )

+ 4k
n∑

i=1

di

∫ Wi u(t)

0
gi (s)ds + 2gT (W u(t))DW u̇(t)

}
. (6.11)

By Lemma 6.2 and inequality (6.4), we have

4k
n∑

i=1

di

∫ Wi u(t)

0
gi (s)ds ≤ 4kuT (t)W T Dg(W u(t))

≤ 4kuT (t)W T DΣW u(t). (6.12)
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It is clear that the following equation is true:

∫ t

t−h
u̇T (s)(P3 + P4)u̇(s)ds =

∫ t

t−τ (t)
u̇T (s)(P3 + P4)u̇(s)ds

+
∫ t−τ (t)

t−h
u̇T (s)(P3 + P4)u̇(s)ds. (6.13)

By using Lemma 5.2 (i.e., the Jensen integral inequality), we obtain

−
∫ t

t−τ (t)
u̇T (s)P3u̇(s)ds

≤ − 1

τ (t)

( ∫ t

t−τ (t)
u̇(s)ds

)T
P3

∫ t

t−τ (t)
u̇(s)ds

≤ −1

h
[u(t) − uτ ]T P3[u(t) − uτ ], (6.14)

−
∫ t−τ (t)

t−h
u̇T (s)P3u̇(s)ds

≤ − 1

h − τ (t)

( ∫ t−τ (t)

t−h
u̇(s)ds

)T
P3

∫ t−τ (t)

t−h
u̇(s)ds

≤ −1

h
[uτ − u(t − h)]T P3[uτ − u(t − h)]. (6.15)

On the other hand, based on the Leibniz-Newton formula, for any real matrix
Ui , Zi (i = 1, 2, 3) with compatible dimensions, we get

0 = 2e2kt
[
uT (t)U1 + uT

τ U2 + uT (t − h)U3

]

×
[
u(t) − uτ −

∫ t

t−τ (t)
u̇(s)ds

]
, (6.16)

0 = 2e2kt
[
uT (t)Z1 + uT

τ Z2 + uT (t − h)Z3

]

×
[
uτ − u(t − h) −

∫ t−τ (t)

t−h
u̇(s)ds

]
. (6.17)

From inequality (6.4), the following matrix inequalities hold for any positive
diagonal matrices T1, T2 with compatible dimensions

0 ≤ 2e2kt {uT (t)W T ΣT1g(W u(t)) − gT (W u(t))T1g(W u(t))}, (6.18)

0 ≤ 2e2kt {uT
τ W T ΣT2g(W uτ ) − gT (W uτ )T2g(W uτ )}. (6.19)

http://dx.doi.org/10.1007/978-3-662-47484-6_5
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Moreover, for any real positive definite symmetric matrix S with compatible
dimension, we have

0 = e2kt
(

hκT (t)Sκ(t) −
∫ t

t−τ (t)
κT (t)Sκ(t)ds −

∫ t−τ (t)

t−h
κT (t)Sκ(t)ds

)
, (6.20)

where κT (t) = (uT (t), uT
τ , uT (t − h)).

Adding the terms on the right-hand side of Eqs. (6.11), (6.13), (6.16), (6.17),
(6.20), inequalities (6.12), (6.14), (6.15), (6.18) and (6.19), we obtain

V̇ (u(t)) ≤ e2kt
(
ζT (t)Ωζ(t) −

∫ t

t−τ (t)
ςT (t, s)Ξ1ς(t, s)ds

−
∫ t−τ (t)

t−h
ςT (t, s)Ξ2ς(t, s)ds

)
, (6.21)

where Ξ1, Ξ2,Ω are defined in (6.5), (6.6), (6.7) respectively, ςT (t, s) = (κT (t),
u̇T (s)) and ζT (t) = [

uT (t), uT
τ , gT (W u(t)), gT (W uτ ), uT (t − h)

]
. Therefore

V (u(t)) ≤ V (u(0)).
Furthermore, similar to [22, 23], from Lemma 5.2, (6.3) and inequality (6.4), we

have

V (u(0)) ≤ Λ||φ(t) − x∗||2,

where

Λ = λM (P1) + λM (W T DΣW ) + h
[
λM (Q12Q−1

22 QT
12)

+ 2λM (W T Σ Q22ΣW ) + λM (P2) + λM (Q11)
]

+ h2λM (P3 + P4)
[
λM (AT A) + λM (W T Σ2W )

]
.

Meanwhile V (u(t)) ≥ e2kt ||u(t)||2λm(P1), by Lyapunov stability theory, the
proof of Theorem 6.3 is completed.

Remark 6.4 It is easy to see that the stability results given in [3, 4] are delay-
independent. As well known, delay-dependent criteria make use of information on
the length of delays, and are usually less conservative than delay-independent ones
especially when the time delay is small. An example will show that the condition in
Theorem 6.3 is more effective than those in [3, 4].

Remark 6.5 For η ≥ 1, Q will no longer be helpful to improve the stability con-
dition since −(1 − η)Q is nonnegative definite. Therefore, by setting Q = 0 in
Theorem 6.3, an easy delay-dependent and rate-independent criterion can be derived
for unknown η.

http://dx.doi.org/10.1007/978-3-662-47484-6_5


6.3 Main Results 233

Next, we estimate the upper bound of V̇ (u(t)) by following the idea of convex
combination, and another stability criterion can be developed as follows:

Theorem 6.6 Under the assumption (6.2) and 0 ≤ τ (t) ≤ h, 0 ≤ τ̇ (t) ≤ η < 1,
given a constant k > 0, suppose that there exist positive definite symmetric matri-
ces P1, nonnegative definite symmetric matrices Pi (i = 2, 3, 4), positive diago-
nal matrices T1, T2, D, real symmetric matrices Q ≥ 0, S ≥ 0 and real matrices
U, Z , MT = [

MT
1 MT

2 0 0 MT
3

]
, N T = [

N T
1 N T

2 0 0 N T
3

]
, such that (6.5), (6.6)

and the following LMIs hold:

Υ1 =
[

Υ hN
∗ −h P3

]
< 0, (6.22)

Υ2 =
[

Υ hM
∗ −h P3

]
< 0, (6.23)

where

Υ =

⎡

⎢⎢⎢⎢⎣

Υ11 Υ12 Ω13 Ω14 Υ15
∗ Υ22 0 Ω24 Υ25
∗ 0 Q22 − 2T1 DW 0
∗ ∗ ∗ Ω44 0
∗ ∗ 0 0 Υ55

⎤

⎥⎥⎥⎥⎦
,

Υ11 = 2k(P1 + 2W T DΣW ) − P1A − AP1 + P2 + hS11
+ h A(P3 + P4)A + U1 + U T

1 + Q11 + M1 + MT
1 ,

Υ12 = −U1 + U T
2 + Z1 + hS12 − M1 + MT

2 + N1,

Υ15 = U T
3 − Z1 + hS13 + MT

3 − N1,

Υ22 = −(1 − η)e−2kh Q11 − U2 − U T
2 + Z2 + Z T

2

+ hS22 − M2 − MT
2 + N2 + N T

2 ,

Υ25 = −U T
3 − Z2 + Z T

3 + hS23 − MT
3 − N2 + N T

3 ,

Υ55 = −e−2kh P2 − Z3 − Z T
3 + hS33 − N3 − N T

3 ,

other parameters are the same defined in Theorem 6.3, then the origin of neural
network (6.3) is the unique equilibrium point, and is exponentially stable with con-
vergence rate k.

Proof The proof of the uniqueness of the equilibrium point is similar to Theorem
6.3. Now we prove the exponential stability of the unique equilibrium point. From
[27], the following inequalities hold



234 6 LMI-Based Stability Criteria for Static Neural Networks

−
∫ t

t−τ (t)
u̇T (s)P3u̇(s)ds ≤ τ (t)ζT (t)M P−1

3 MT ζ(t)

+ 2ζT (t)M[u(t) − uτ ], (6.24)

−
∫ t−τ (t)

t−h
u̇T (s)P3u̇(s)ds ≤ (h − τ (t))ζT (t)N P−1

3 N T ζ(t)

+ 2ζT (t)N [uτ − u(t − h)]. (6.25)

Thus, combining Eqs. (6.11), (6.13), (6.16), (6.17), (6.20) and inequalities (6.12),
(6.18), (6.19), (6.24) and (6.25), it yields

V̇ (u(t)) ≤ e2kt
{
ζT (t)

[
Υ + τ (t)M P−1

3 MT

+ (h − τ (t))N P−1
3 N T ]

ζ(t)

−
∫ t

t−τ (t)
ςT (t, s)Ξ1ς(t, s)ds

−
∫ t−τ (t)

t−h
ςT (t, s)Ξ2ς(t, s)ds

}
.

Note that 0 ≤ τ (t) ≤ h, thus,

Υ + τ (t)M P−1
5 MT + (h − τ (t))N P−1

3 N T < 0,

holds if and only if

Υ + hN P−1
3 N T < 0, (6.26)

and

Υ + hM P−1
3 MT < 0 (6.27)

hold. From the Schur complement (see [22, 27]), inequalities (6.26) and (6.27) are
equivalent to (6.21) and (6.22) respectively, thus V̇ (u(t)) < 0 holds if (6.5), (6.6),
(6.22) and (6.23) hold. This completes the proof.

Remark 6.7 Similar to Remark 6.5, by setting Q = 0,we can employ the criterion of
Theorem 6.6 to analyze the stability of neural network when τ (t) is not differentiable
or τ̇ (t) is unknown.
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6.4 Illustrative Example

In this section, we provide a numerical example to demonstrate the effectiveness and
less conservativeness of our delay-dependent stability criteria.

Consider system (6.3) with

A = diag{4.1989, 0.7160, 1.9985},

W =
⎛

⎝
−0.1052 −0.5069 −0.1121
−0.0257 −0.2808 0.0212
0.1205 −0.2153 0.1315

⎞

⎠ ,

σ1 = 0.4219,σ2 = 3.8993,σ3 = 1.0160.

For this neural network, it is verified that all the asymptotic stability results in
[4, 5] and the exponential stability result in [3] fail to ascertain the stability of the
equilibrium point. Further, the criteria in [2, 11] can only be applied to confirm
the stability without time delay, thus none of the criteria in [2, 11] is applicable to
ascertain the exponential stability for τ (t) �= 0.Moreover, the criterion in [7] can only
be applied to ensure the stability with constant time delay, so the result of [7] cannot
be applicable to verify the stability for η �= 0. Therefore, all of the criteria given
in [2–5, 7, 11] fail to conclude whether this given neural network is asymptotically
stable or not for η �= 0. When the time delay is constant, the exponential stability
criterion of [7] gives the upper bound of time delay being 1.9518. However, by use
of the MATLAB LMI Control Toolbox, from Theorems 6.3 and 6.6, the calculated
maximal upper bounds of time delay being all 4.5872.

If we set h = 1, the calculated maximal convergence rates of k for various η with
Theorems 6.3, 6.6, Remarks 6.5, and 6.7 in this chapter and that of [7] are listed in
Table6.1.

Therefore, we can say that for this system the results in this chapter are much
effective and less conservative than those in [2–5, 7, 11].

Table 6.1 Calculated maximal convergence rate of k for h = 1 and various η (where “−” denotes
that the condition cannot give the exponential convergence rate

η 0 0.1 0.2 Unknown

Ref. [7] − Fail Fail Fail

Theorems 6.3 and
6.6

0.2505 0.2378 0.2273 −

Remarks 6.5 and
6.7

− − − 0.4424
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6.5 Summary

Based on free weight matrix method and Jensen integral inequality, two sufficient
conditions have been derived for the globally exponential stability of static neural
networks with time-varying delays. The obtained results can be expressed in the
form of LMI and are easy to be verified. The effectiveness is demonstrated by an
illustrative example.
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Chapter 7
Multiple Stability for Discontinuous RNNs

In Chaps. 4–6, global stability problems are considered for some kinds of RNNs
with delays. In those network models, the considered activation functions in RNNs
are continuous. However, in some cases, discontinuous activation can be used in
some associative memory and pattern storage problems. Such kind of applications
require more equilibrium to restore so many patterns. In this case, local stability
or multiple stability is meaningful and important. In this chapter, we will discuss
the local stability of multiple equilibrium points for time-varying delayed recurrent
neural networks with discontinuous activation functions. The contents in this chapter
are from the result in [1].

7.1 Introduction

In the past few decades, many efforts have been made on the applications of neural
networks, such as, signal processing, image processing, pattern recognition, associa-
tive memories, optimization problems, and so on. Such applications rely heavily on
the dynamical properties of neural network systems. Therefore, the theoretical study
on these dynamical systems is of great importance [2–8]. The notion of “multista-
bility” of a neural network describes coexistence of multiple stable patterns such as
equilibrium points or periodic orbits. In an associative memory neural network, the
addressable memories or patterns are stored as stable equilibrium points or stable
periodic orbits. Thus, it is required that neural networks exhibit more than one stable
equilibrium point or more than one exponentially attractive periodic orbit instead
of a single globally stable equilibrium point. In recent years, some sufficient condi-
tions for multistability and multiperiodicity of recurrent neural networks have been
studied in the literature. References [9–11] investigated multiple stable equilibrium
points or multiple stable periodic orbits of recurrent neural networks by geometri-
cal observation. References [12–16] discussed multiple stable equilibrium points or
multiple stable periodic orbits of recurrent neural networks based on decomposition

© Science Press, Beijing and Springer-Verlag Berlin Heidelberg 2016
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of state space. A general n-dimensional neural networks with piecewise linear acti-
vation functions with two corner points have 3n equilibrium points or periodic orbits,
of which 2n are stable equilibrium points or stable periodic orbits. References [17–
23] discussed multistability and multiperiodicity of recurrent neural networks with
unsaturating piecewise linear transfer functions. For more references, see [24–43]
and references therein.

It iswell known that the activation functions play an important role in the dynamics
analysis of recurrent neural networks. The storage capacity of patterns and associa-
tive memories relies heavily on the structures of activation functions [44]. It has been
shown that n-neuron recurrent neural networks with one step piecewise linear activa-
tion functions could have 2n locally exponentially stable equilibrium points located
in saturation regions (see [9, 10, 12, 42]). In order to increase storage capacity, a
stair-style activation function can be redefined with k steps. In [16], multistability
for n-neuron neural networks with k-stair activation functions was discussed. It was
shown that this system could have (4k − 1)n equilibrium points and (2k)n of them
were locally exponentially stable. In [15], the authors investigated the neural net-
works with a class of nondecreasing piecewise linear activation functions with 2r
corner points, and n-neuron dynamical system could have and only have (2r + 1)n

equilibrium points under some conditions, of which (r + 1)n were locally exponen-
tially stable and the others were unstable. Most of the above results were based on
the assumption that the activation functions are continuous. Whereas, as mentioned
in [28], a brief overview on some common neural network models reveals that neural
networks described by differential equations with a discontinuous right-hand side
are of importance and do frequently arise in practice. When dealing with dynam-
ical systems possessing high-slope nonlinear elements, it is often advantageous to
model them with a system of differential equations with discontinuous right-hand
side. Global convergence criteria of neural networks with discontinuous activation
functions were first introduced by Forti and Nistri [28] and Lu and Chen [22]. Much
efforts have been devoted to analyzing the dynamical properties of neural networks
with discontinuous activation functions. See [22, 29–36] and references therein. The
dynamics of Cohen–Grossberg neural networks with discontinuous activations func-
tions was discussed in [22]. In [29–31], some sufficient conditions were obtained for
the global convergence of neural networks with discontinuous neuron activations.
The global asymptotic stability of delayed neural networks with discontinuous acti-
vation functions was derived in [32]. In [24], the authors discussed multistability
of neural networks without delay and with discontinuous activation functions. The
value of activation functions was located in [−1, 1].

Motivated by the above discussions, the purpose of this chapter is to explore the
multistability of n-neuron recurrent neural networks with time-varying delays and k-
level discontinuous activation functions. Based on the decomposition of state space,
we will establish some new sufficient conditions for the existence of multiple equi-
librium points in this chapter. Under the configuration of discontinuous activation
functions, recurrent neural networks have kn locally exponentially stable equilib-
rium points. The activation functional value is located in [c1, ck], where c1 and ck

can be any constants. The result is more general than that in the existing literature
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(for example [24]). Moreover, conditions for the existence of sets of stable equilib-
rium points and unstable equilibrium points are derived for recurrent neural networks
without delay. Our result is a more comprehensive discussion of multistability for
neural networks with discontinuous activation functions [1]. Finally, three examples
are given to illustrate the effectiveness of the obtained results.

7.2 Problem Formulations and Preliminaries

In this chapter, we consider the following n-neuron recurrent neural networks with
time-varying delays:

dxi (t)

dt
= − xi (t) +

n∑

j=1

ai j f j (x j (t)) +
n∑

j=1

bi j f j (x j (t − τi j (t))) + ui , (7.1)

where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ R
n , xi (t) represents the state of the i th

neuron at time t, i = 1, 2, · · · , n; ai j , bi j correspond to the connection weights of
the j th unit on the i th unit at time t and time t − τi j (t), respectively; τi j (t) denotes
time-varying delay that satisfies 0 ≤ τi j (t) ≤ τ := max1≤i, j≤n{sup{τi j (t)}}; f j (·)
is the activation function; u = (u1,u2, · · · ,un)T ∈ R

n is an input vector.
We consider a general class of activation function as follows:

f j (ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c1, ξ ∈ (−∞, p1),
c2, ξ ∈ (p1, p2),
· · ·
ck−1, ξ ∈ (pk−2, pk−1),

ck, ξ ∈ (pk−1,+∞),

undefined, ξ ∈ {p1, p2, · · · , pk−1},

(7.2)

where j = 1, 2, · · · , n; k is an integer that satisfies k ≥ 1; c1, c2, · · · , ck ,
p1, p2, · · · , pk−1 are constants with c1 < c2 < · · · < ck , p1 < p2 < · · · < pk−1.
Denote p0 = −∞, pk = +∞. Typical configuration of the activation function is
depicted in Fig. 7.1.

Since f j (·) is allowed to have points of discontinuity, we need to specify what
mean by solution of the system having a discontinuous right-side. For this purpose,
we consider the solution of delayed neural networks (7.1) in the sense of Filippov
[37].

Definition 7.1 ([29]) A function x(t) = (x1(t), x2(t), · · · , xn(t))T : [t0 − τ , T ) →
R

n , T ∈ (t0,+∞] is a solution of system (7.1) on [t0−τ , T ) if, (1). x(t) is continuous
on [t0, T ); (2). there exists ameasurable functionγ(t) = (γ1(t), γ2(t), · · · , γn(t))T :
[t0−τ , T ) → R

n , such that γi (t) ∈ K [ fi (xi (t))] for almost all (a.a.) t ∈ [t0−τ , T ),
and
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Fig. 7.1 The graph for
activation function (7.2)

dxi (t)

dt
= −xi (t) +

n∑

j=1

ai jγ j (t) +
n∑

j=1

bi jγ j (t − τi j (t)) + ui ,

for a.a. t ∈ [t0, T ), where K [E] represents closure of the convex hull of E .

Definition 7.2 ([29]) For any continuous function ϕ(θ) = (ϕ1(θ),ϕ2(θ), · · · ,
ϕn(θ))T : [t0 − τ , t0] → R

n and any measurable selection λ(θ) = (λ1(θ),λ2(θ),
· · · ,λn(θ))T : [t0 − τ , t0] → R

n , such that λi (θ) ∈ K [ fi (ϕi (θ))] for a.a.
θ ∈ [t0 − τ , t0] by an initial value problem associated with system (7.1) having
initial condition ϕ(θ), λ(θ), we mean the following problem: find a couple of func-
tions [x(t), γ(t)] : [t0 − τ , T ] → R

n × R
n , such that x(t) is a solution of system

(7.1) on [t0 − τ , T ) for some T > t0, γ(t) is an output associated with x(t) and

⎧
⎪⎪⎨

⎪⎪⎩

dxi (t)
dt = −xi (t) +

n∑
j=1

ai j γ j (t) +
n∑

j=1
bi j γ j (t − τi j (t)) + ui , for a.a. t ∈ [t0, T ),

xi (θ) = ϕi (θ), ∀ θ ∈ [t0 − τ , t0],
γi (θ) = λi (θ), for a.a. θ ∈ [t0 − τ , t0].

Definition 7.3 ([37]) A solution x = φ(t) (t0 ≤ t < ∞) of a differential inclusion
(dx)/(dt) ∈ F(t, x) is called stable (respectively, weakly stable) if for any ε > 0,
there exists δ > 0, which possesses the following property. For each x̄0 such that
|x̄0 − φ(t0)| < δ, each solution (respectively, some solution) x̄(t) with the initial
data x̄(t) = x̄0 for t0 ≤ t < ∞ exists and satisfies the inequality |x̄(t) − φ(t)| < ε
(t0 ≤ t < ∞).
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Definition 7.4 ([41]) The equilibrium x∗ of system (7.1) is said to be locally expo-
nentially stable in region D, if there exist constants α > 0 and M > 0 such that for
a.a. t ≥ t0

‖x(t, t0,φ) − x∗‖ ≤ M‖φ − x∗‖ exp{−α(t − t0)},

where x(t, t0,φ) is the state of system (7.1) with any initial condition φ(θ) ∈ C([t0−
τ , t0],D).

Lemma 7.5 ([38]) LetD be a bounded and closed set inRn, and H be a mapping on
complete matric space (D, ‖ ·‖), where for any x, y ∈ D, ‖x−y‖ = max1≤i≤n{|xi −
yi |} is measurement in D. If H(D) ⊂ D and there exists a constant α < 1 such that
for any x, y ∈ D, ‖H(x) − H(y)‖ ≤ α‖x − y‖, then there exists a unique x∗ ∈ D
such that H(x∗) = x∗.

Some denotations are required as follows:

(−∞, p1) =(−∞, p1)
1 × (p1, p2)

0 × · · · × (pk−1,+∞)0,

(p1, p2) =(−∞, p1)
0 × (p1, p2)

1 × · · · × (pk−1,+∞)0,

...

(pk−1,+∞) =(−∞, p1)
0 × (p1, p2)

0 × · · · × (pk−1,+∞)1.

and denote

Ω =
{

n∏

i=1

(−∞, p1)
δi
1 × (p1, p2)

δi
2 × · · · × (pk−1,+∞)δ

i
k :

}
,

where (δi
1, δ

i
2, · · · , δi

k) = (1, 0, · · · , 0) or (0, 1, · · · , 0) or · · · or (0, 0, · · · , 1). It
is easy to see that Ω is composed of kn parts. For example, when n = 2, k = 4, Ω
is made up of 42 parts, and all parts of Ω are depicted in Fig. 7.2.

7.3 Main Results

In this section, we will discuss the existence and stability for recurrent neural net-
works with discontinuous activation functions. Some sufficient conditions are estab-
lished to ensure system (7.1) with activation function (7.2) can have kn equilibrium
points in Ω and they are locally exponentially stable. Moreover, conditions for the
existence of sets of stable equilibrium points and unstable equilibrium points are
derived for system (7.1) without delay.
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Fig. 7.2 Ω is made up of 42 parts

For any Ωκ ⊂ Ω , we have the following results.

Theorem 7.6 There exists one equilibrium point in Ωκ for system (7.1) with acti-
vation function (7.2), if the following conditions hold:

pm−1 < (aii + bii )cm +
n∑

j=1, j �=i

(ai j + bi j )cq j + ui < pm, (7.3)

where i = 1, 2, · · · , n, m = 1, 2, · · · , k, q j = 1, 2, · · · , k, j = 1, 2, · · · , n.

Proof From condition (7.3), there exists a small constant ε (0 < ε � min{|1/p1|,
|1/pk−1|}) such that

pm−1 + ε ≤ (aii + bii )cm +
n∑

j=1, j �=i

(ai j + bi j )cq j + ui ≤ pm − ε. (7.4)

Denote

[−1/ε, p1 − ε] = [−1/ε, p1 − ε]1 × [p1 + ε, p2 − ε]0 × · · · × [pk−1 + ε, 1/ε]0,
[p1 + ε, p2 − ε] = [−1/ε, p1 − ε]0 × [p1 + ε, p2 − ε]1 × · · · × [pk−1 + ε, 1/ε]0,

· · ·
[pk−1 + ε, 1/ε] = [−1/ε, p1 − ε]0 × [p1 + ε, p2 − ε]0 × · · · × [pk−1 + ε, 1/ε]1,

Φ =
{

n∏

i=1

[−1/ε, p1 − ε]δi
1 × [p1 + ε, p2 − ε]δi

2 × · · · × [pk−1 + ε, 1/ε]δi
k

}
,
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where (δi
1, δ

i
2, · · · , δi

k) = (1, 0, · · · , 0) or (0, 1, · · · , 0) or · · · or (0, 0, · · · , 1).
It is obvious that Φ is made up of kn parts and Φ is bounded in Ω . There must

exist Φι ⊂ Φ such that Φι ⊂ Ωκ. For any x = (x1, x2, · · · , xn)T ∈ Φι, consider
the following algebraic equations

xi = (aii + bii ) fi (xi ) +
n∑

j=1, j �=i

(ai j + bi j ) f j (x j ) + ui , i = 1, 2, · · · , n.

Denote

Hi (x) = (aii + bii ) fi (xi ) +
n∑

j=1, j �=i

(ai j + bi j ) f j (x j ) + ui . (7.5)

Let H(x) = (H1(x), H2(x), · · · , Hn(x))T . We will show that H(Φι) ⊂ Φι. We can
get from (7.2) that

f j (x j ) =
{

cm, j = i,
cq j , j �= i,

(7.6)

where i = 1, 2, · · · , n, m = 1, 2, · · · , k, q j = 1, 2, · · · , k, j = 1, 2, · · · , n. Hence,
it follows from (7.5) and (7.6) that

Hi (x) = (aii + bii ) fi (xi ) +
n∑

j=1, j �=i

(ai j + bi j ) f j (x j ) + ui

= (aii + bii )cm +
n∑

j=1, j �=i

(ai j + bi j )cq j + ui . (7.7)

From (7.4) and (7.7), we can get that

pm−1 + ε ≤ Hi (x) ≤ pm − ε.

Hence,

H(Φι) ⊂ Φι.

For any x, y ∈ Φι,

|Hi (x) − Hi (y)| = |(aii + bii )( fi (xi ) − fi (yi ))

+
n∑

j=1, j �=i

(ai j + bi j )( f j (x j ) − f j (y j ))|

= 0.
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Therefore, there exists a constant α < 1 such that

‖H(x) − H(y)‖ ≤ α‖x − y‖.

According to Lemma 7.5, there exists a unique solution x∗ located in Φι for system
(7.1) with activation function (7.2) such that H(x∗) = x∗; i.e., x∗ is an isolated
equilibrium point located in Ωι for system (7.1). By arbitrariness of ε, x∗ is an
isolated equilibrium point located in Ωκ for system (7.1) with activation function
(7.2). This completes the proof.

According to Theorem7.6, we can obtain the following corollary.

Corollary 7.7 There exists one equilibrium point in Ωκ for system (7.1) with acti-
vation function (7.2), if

(aii + bii )cm +
n∑

j=1, j �=i

|ai j + bi j |max{|c1|, |ck |} + |ui | < pm,

(aii + bii )cm −
n∑

j=1, j �=i

|ai j + bi j |max{|c1|, |ck |} − |ui | > pm−1, (7.8)

where i = 1, 2, . . . , n; m = 1, 2, . . . , k.

Proof It is noted that

(aii + bii )cm +
n∑

j=1, j �=i

(ai j + bi j )cq j + ui

≤ (aii + bii )cm +
n∑

j=1, j �=i

|ai j + bi j |max{|c1|, |ck |} + |ui |, (7.9)

(aii + bii )cm +
n∑

j=1, j �=i

(ai j + bi j )cq j + ui

≥ (aii + bii )cm −
n∑

j=1, j �=i

|ai j + bi j |max{|c1|, |ck |} − |ui |. (7.10)

where i = 1, 2, . . . , n, m = 1, 2, . . . , k, q j = 1, 2, . . . , k, j = 1, 2, · · · , n. From
(7.8)–(7.10), we can get that

pm−1 < (aii + bii )cm +
n∑

j=1, j �=i

(ai j + bi j )cq j + ui < pm .
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According to Theorem 7.6, there exists one equilibrium point in Ωκ for system (7.1)
with activation function (7.2).

Remark 7.8 It is noted that the number of such region Ωκ is kn in Ω . Hence there
exist kn equilibrium points for system (7.1) with activation function (7.2) in Ω .

Next, we will investigate the stability of multiple equilibrium points for system
(7.1) with activation function (7.2).

Theorem 7.9 If one of conditions (7.3) and (7.8) holds, then system (7.1) with acti-
vation function (7.2) has kn locally exponentially stable equilibrium points in Ω .

Proof For any Ων ⊂ Ω , according to Theorem7.6, there exists one equilibrium
point x∗ = (x∗

1 , x∗
2 , · · · , x∗

3 )
T ∈ Ων . Let x(t) be the solution of system (7.1) with

the initial condition x(t0) ∈ Ων . Denote zi (t) = xi (t) − x∗
i , i = 1, 2, · · · , n. Then

dzi (t)

dt
= −zi (t). (7.11)

Thus, we obtain |xi (t) − x∗
i | = |xi (t0) − x∗

i | exp{−(t − t0)}. x∗ is a locally expo-
nentially stable equilibrium point for system (7.1) with activation function (7.2) in
Ων . Due to the arbitrariness of Ων , we conclude that system (7.1) has kn locally
exponentially stable equilibrium points in Ω .

Remark 7.10 Activation function (7.2) is composed of k sections. Neural networks
with this class of activation functions can store more patterns than those with a
stair-style activation function (such as [10, 12]) in practical applications. Based on
the configuration of activation function (7.2), the space R

n can contain kn parts.
Each of these parts is an attractive basin of one equilibrium point. If the length
of any one section (for example (pr , pr−1)) in activation function (7.2) increases,
then the attractive basin of the corresponding equilibrium point will increase. One
large attractive basin can contain sufficient information about the stable pattern. We
can conclude that the attractive basins of equilibrium points rely heavily on the
configuration of activation functions.

It is worth noting that the above results can be applied to the following system
without delay:

dxi (t)

dt
= −xi (t) +

n∑

j=1

ai j f j (x j (t)) + ui , i = 1, 2, · · · , n. (7.12)

Corollary 7.11 There exists one equilibrium point in Ωκ for system (7.12) with
activation function (7.2), if the following conditions hold:

pm−1 < aii cm +
n∑

j=1, j �=i

ai j cq j + ui < pm, (7.13)
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where i = 1, 2, · · · , n, m = 1, 2, · · · , k, q j = 1, 2, · · · , k, j = 1, 2, · · · , n.

Corollary 7.12 There exists one equilibrium point in Ωκ for system (7.12) with
activation function (7.2), if

aii cm +
n∑

j=1, j �=i

|ai j |max{|c1|, |ck |} + |ui | < pm,

aii cm −
n∑

j=1, j �=i

|ai j |max{|c1|, |ck |} − |ui | > pm−1, (7.14)

where i = 1, 2, · · · , n; m = 1, 2, · · · , k.

Corollary 7.13 If one of conditions (7.13) and (7.14) holds, then system (7.12) with
activation function (7.2) has kn locally exponentially stable equilibrium points in Ω .

Remark 7.14 Reference [24] discussed multistability of neural networks without
delay and with discontinuous activation functions. When we denote c1 = −2 and
ck = 2 in this chapter, it is easy to find that the parameters go beyond the definition
of activation functions in [24]. Hence, it cannot be applied in [24]. But it can be
applied in our chapter. So, our results are superior to that in [24].

Remark 7.15 In this chapter, we can regard all subregions in Ω as a whole region.
Based on sufficient conditions in Theorems7.6 and 7.9 and Corollaries7.12–7.13,
there exist kn equilibrium points which are exponentially stable in the whole region.
For any initial condition φ in the whole region, the system will be exponentially
convergence toward an equilibrium point corresponding to initial condition φ. An
important application of multistability of recurrent neural networks is to implement
pattern memory [39]. A recalling probe, which is sufficiently similar to the pattern
to be retrieved, is set as an initial state and the state variables converge to one of the
locally stable equilibrium points, which corresponds to the pattern to be retrieved.
However, in this case, it is difficult to avoid spurious equilibrium points, and accu-
rate pattern recalling cannot be guaranteed using initial conditions. Therefore, it is
necessary to reduce the number of spurious equilibrium points. In [40], analysis
and design of associative memories based on recurrent neural networks with linear
saturation activation functions was presented, and a formula for the number of spu-
rious equilibrium points was derived. In further research work, reducing number of
spurious equilibrium points in attractive regions for recurrent neural networks with
discontinuous activation functions will be an issue to be further studied.

Now,wewill discuss the existence of sets of stable equilibriumpoints and unstable
equilibrium points for system (7.12) with activation function (7.2). Denote

N1 = { j |x j = pq j , q j = 1, 2, · · · , k − 1, j ∈ {1, 2, · · · , n}},
N2 = { j |x j ∈ (pq j , pq j +1), q j = 0, 1, · · · , k − 1, j ∈ {1, 2, · · · , n}}.
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where x j represents the state of the j th neuron for system (7.1).

Theorem 7.16 There exists a set of equilibrium points for system (7.12) with acti-
vation function (7.2) in R

n if

{ ∑

j∈N1

ai j [cq j , cq j +1] +
∑

j∈N2

ai j cq j + ui

}
∩

{
p1, p2, · · · , pk−1

}
�= ∅; (7.15)

moreover, an equilibrium point x∗ in the set of equilibrium points is stable if

|x∗
i −

n∑

j=1

ai jζ j − ui | < |x∗
i − xi (t0)|; (7.16)

x∗ is unstable if

|x∗
i −

n∑

j=1

ai jζ j − ui | > |x∗
i − xi (t0)|, (7.17)

and one of the following conditions is true

n∑

j=1

ai jζ j + ui − x∗
i < 0, (7.18)

n∑

j=1

ai jζ j + ui − x∗
i > 0, (7.19)

where i, j = 1, 2, · · · , n, ζ j ∈ [c1, ck], x(t0) = (x1(t0), x2(t0), . . . , xn(t0))T ∈ R
n

is any initial state.

Proof Let xi (t) be a solution of system (7.12) in the sense of Filippov with initial
condition xi (t0). It satisfies the differential inclusion

dxi (t)

dt
∈ −xi (t) +

n∑

j=1

ai j K [ f j (x j (t))] + ui (7.20)

The stationary equation for (7.20) is

0 ∈ −x∗
i +

n∑

j=1

ai j K [ f j (x∗
j )] + ui , (7.21)
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where

K [ f j (x∗
j )] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1, x∗
j ∈ (−∞, p1),

[c1, c2] , x∗
j = p1,

c2, x∗
j ∈ (p1, p2),

· · ·
ck−1, x∗

j ∈ (pk−2, pk−1),[
ck−1, ck

]
, x∗

j = pk−1,

ck, x∗
j ∈ (pk−1,+∞).

We claim that N1 �= ∅. If it is not true, then x∗
i = ∑n

j=1 ai j cq j + ui . From
(7.15), we have x∗

i ∈ {p1, p2, · · · , pk−1}. Therefore, fi (x∗
i ) ∈ [cqi , cqi +1] (qi ∈

{1, 2, · · · , k − 1}). This yields a contradiction to N1 = ∅. So, N1 �= ∅ and
x∗

i ∈ ∑
j∈N1

ai j [cq j , cq j +1] + ∑
j∈N2

ai j cq j + ui . There exists a set of equilib-
rium points for system (7.12) with activation function (7.2). Now, we discuss the
stability of equilibrium points. There exist ζ j ∈ [c1, ck] ( j = 1, 2, · · · , n) such that

dxi (t)

dt
= −xi (t) +

n∑

j=1

ai jζ j + ui . (7.22)

The solution of Eq. (7.22) with initial condition xi (t0) is given by

xi (t) =
⎛

⎝xi (t0) −
n∑

j=1

ai jζ j − ui

⎞

⎠ e−(t−t0) +
n∑

j=1

ai jζ j + ui . (7.23)

Case 1. Based on condition (7.16), we have

|xi (t) − x∗
i | = |

⎛

⎝xi (t0) −
n∑

j=1

ai jζ j − ui

⎞

⎠ e−(t−t0) +
n∑

j=1

ai jζ j + ui − x∗
i |

< |xi (t0) −
n∑

j=1

ai jζ j − ui | + |x∗
i −

n∑

j=1

ai jζ j − ui | (7.24)

< |x∗
i − xi (t0)| + 2|x∗

i −
n∑

j=1

ai jζ j − ui |

< 3|x∗
i − xi (t0)|.

Therefore, x∗ is a stable equilibrium point.
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Case 2. Based on condition (7.17), we can derive the following result.

|x∗
i −

n∑

j=1

ai jζ j − ui | > |x∗
i − xi (t0)|

≥ |xi (t0) −
n∑

j=1

ai jζ j − ui | − |x∗
i −

n∑

j=1

ai jζ j − ui |.

Therefore,

2|x∗
i −

n∑

j=1

ai jζ j − ui | > |xi (t0) −
n∑

j=1

ai jζ j − ui |. (7.25)

From (7.25), we have

⎛

⎝xi (t0) −
n∑

j=1

ai jζ j − ui

⎞

⎠ e−(t−t0) +
n∑

j=1

ai jζ j + ui − x∗
i

< 2e−(t−t0)|x∗
i −

n∑

j=1

ai jζ j − ui | +
n∑

j=1

ai jζ j + ui − x∗
i , (7.26)

⎛

⎝xi (t0) −
n∑

j=1

ai jζ j − ui

⎞

⎠ e−(t−t0) +
n∑

j=1

ai jζ j + ui − x∗
i

> − 2e−(t−t0)|x∗
i −

n∑

j=1

ai jζ j − ui | +
n∑

j=1

ai jζ j + ui − x∗
i . (7.27)

That is

xi (t) − x∗
i < 2e−(t−t0)|x∗

i −
n∑

j=1

ai jζ j − ui | +
n∑

j=1

ai jζ j + ui − x∗
i , (7.28)

xi (t) − x∗
i > −2e−(t−t0)|x∗

i −
n∑

j=1

ai jζ j − ui | +
n∑

j=1

ai jζ j + ui − x∗
i . (7.29)

From (7.18), there exists T1 > t0 such that, for t > T1,

2e−(t−t0)|x∗
i −

n∑

j=1

ai jζ j − ui | +
n∑

j=1

ai jζ j + ui − x∗
i
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< 2e−(T1−t0)|x∗
i −

n∑

j=1

ai jζ j − ui | +
n∑

j=1

ai jζ j + ui − x∗
i < 0.

And from (7.28), we have

|xi (t) − x∗
i | > |2e−(T1−t0)|x∗

i −
n∑

j=1

ai jζ j − ui | +
n∑

j=1

ai jζ j + ui − x∗
i |.

Similarly, from (7.19) and (7.29), there exists T2 > t0 such that, for t > T2,

|xi (t) − x∗
i | > | − 2e−(T2−t0)|x∗

i −
n∑

j=1

ai jζ j − ui | +
n∑

j=1

ai jζ j + ui − x∗
i |.

Therefore, x∗ is an unstable equilibrium point. This completes the proof.

Remark 7.17 Throughout this book, only this chapter does not use the well-known
Lyapunov stability theory in the stability analysis of RNNs with discontinuous acti-
vation function. In the discontinuous case, the concept of solution in the sense of
Filippov is used instead of the stability in the sense of Lyapunov. Therefore, for
the continuous case, Lyapunov theory can play an important role in the qualitative
analysis of RNNs, while for the discontinuous case, some other analysis method or
theory should be adopted.

7.4 Illustrative Examples

In this section, three examples are presented to illustrate our results.

Example 7.18 Consider the following 2-neuron delayed recurrent neural networks
with 3-level discontinuous activation function

ẋ1(t) = − x1(t) + 0.7 f (x1(t)) + 0.5 f (x2(t))

+ 0.5 f (x1(t − sin(t))) − 0.51 f (x2(t − sin(t))) + 0.1,

ẋ2(t) = − x2(t) − 0.62 f (x1(t)) + 0.6 f (x2(t))

+ 0.6 f (x1(t − sin(t))) + 0.7 f (x2(t − sin(t))) − 0.2. (7.30)

The activation function is described by

f (ξ) =
⎧
⎨

⎩

−1, ξ ∈ (−∞,−1),
0, ξ ∈ (−1, 1),
1, ξ ∈ (1,+∞).

(7.31)
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Fig. 7.3 Transient behaviors of x1(t) and x2(t) of system (7.30)

This system satisfies the conditions of Theorem7.6. According to Theorem7.6, sys-
tem (7.30) has 32 = 9 locally exponentially stable equilibrium points. The dynamics
of this system are depicted in Fig. 7.3, where evolutions of 270 initial conditions have
been tracked.

Example 7.19 Consider the following 2-neuron recurrent neural networks without
delay and with 3-level discontinuous activation function

ẋ1(t) = − x1(t) + 0.7 f (x1(t)) + 0.1 f (x2(t)) − 0.1,

ẋ2(t) = − x2(t) − 0.15 f (x1(t)) + 0.8 f (x2(t)) − 0.2. (7.32)

The activation function is described by

f (ξ) =
⎧
⎨

⎩

−2, ξ ∈ (−∞,−1),
1, ξ ∈ (−1, 1),
2, ξ ∈ (1,+∞).

(7.33)

The value of activation function (7.33) is located in [−2, 2], which goes beyond
the definition of activation functions in [24]. Hence, it cannot be applied in [24].
Whereas, the activation function (7.33) is useful in this chapter. System (7.32) with
activation function (7.33) satisfies the conditions of Corollary7.11. According to
Corollarys7.11 and 7.13, system (7.32) has 32 = 9 locally exponentially stable
equilibrium points. The dynamics of this system are depicted in Fig. 7.4, where
evolutions of 270 initial conditions have been tracked.

Example 7.20 Design a recurrent neural network with 25 neurons to store three
patterns shown in Fig. 7.5 as stable memories (black = −1 and white = 1).
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Fig. 7.4 Transient behaviors of x1(t) and x2(t) of system (7.32)

Fig. 7.5 Three desired memory patterns for Example7.20

Step 1. Choose activation function as follows:

f (ξ) =
{−1, ξ ∈ (−∞, 0),
1, ξ ∈ (0,+∞).

Step 2. Choose connection weight matrix A = (ai j )25×25,

ai j =
{
5, i = j,
0.2, i �= j,

and input vector u = 0.
According to Corollary7.11, the following recurrent neural network

dx(t)

dt
= −x(t) + A f (x(t)) (7.34)

can store 225 stable memory patterns. When one initial condition is sufficiently
near to the equilibrium point corresponding to the pattern which is retrieved, the
desired output pattern can be derived. Specifically, simulation results with six random
initial values, which are sufficiently near to the equilibrium point corresponding
to the pattern p3, are depicted in Fig. 7.6. We can see that Fig. 7.6d is the desired
output pattern, and Fig. 7.6a–c,e,f are spurious memory patterns. Removing spurious
memory patterns is a very difficult problem at present. In further research work,
reducing number of spurious memory patterns is a challenging topic.
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Fig. 7.6 Transient behaviors of output variables with six initial conditions

7.5 Summary

In this chapter, we have discussed multistability for n-dimensional recurrent neural
networks with time-varying delays and k-level discontinuous activation functions.
Some sufficient conditions have been established to ensure that system could have kn

locally exponentially stable equilibrium points. Moreover, we have also derived con-
ditions for the existence of sets of stable equilibrium points and unstable equilibrium
points for recurrent neural networks without delay and with discontinuous activation
functions. The activation functions are k-level discontinuous. Neural network mod-
els with this class of activation functions can store more patterns than those with a
stair-style activation function (such as [10, 12]) in practical applications. Compared
with [24], our activation function value is located in larger range. Hence, our results
are less conservative. In multi-equilibrium associative memories, it is necessary that
each dynamic trajectory converges to one of locally asymptotically stable equilib-
rium points. However, when the initial state of a neural network is located at arbitrary
given attractive region, it is difficult to avoid spurious equilibrium points. So, our
further research work might continue to reduce the number of spurious equilibrium
points in attractive regions for recurrent neural networks with discontinuous activa-
tion functions. It might be possible to extend the current results to synchronization
and state estimation of neural networks with discontinuous activation functions.
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Chapter 8
LMI-based Passivity Criteria for RNNs
with Delays

As one of most widely used qualitative characteristics, stability property are studied
for the equilibrium point of some kinds of RNNs with delays in Chaps. 4–7. For a
dynamical system, there are many qualitative characteristics to be studied. In this
chapter, we will study the passivity problem for neural networks with discrete and
unbounded distributed time-varying delays. The contents in this chapter is mainly
from the authors’ previous paper [1].

8.1 Introduction

In the past two decades, neural networks have been extensively studied in many
aspects and successfully applied to many fields such as pattern identifying, voice
recognizing, system controlling, signal processing systems, static image treatment,
and solving nonlinear algebraic equations, etc. In hardware implementation of neural
networks, time delays are inevitably present due to the finite switching speeds of
the amplifiers. It is well known that time delays not only deteriorate dynamical
performance such as the boundary of the basin of attraction of the stable equilibria but
also affect the stability of a network creating oscillatory and unstable characteristics.
Hence, it is of primary importance to investigate the stability of delayed neural
networks. There exist some results of stability for delayed neural networks, see, for
example, [2–12]. Among them, delay-dependent criteria (see, e.g. [2, 3, 5]) make use
of information on the length of delays, therefore they are usually less conservative
than delay-independent ones (see, e.g. [9, 11, 13]) especially when the time delay is
small. Much attention has been paid to the delay-dependent type recently.

Passivity can be used to demonstrate that passive circuits will be stable under
specific criteria. In addition, passive circuits will not necessarily be stable under all
stability criteria. For instance, a resonant series LC circuit will have unbounded volt-
age output for a boundedvoltage input, butwill be stable in the sense ofLyapunov, and
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given bounded energy input will have bounded energy output. Passivity is frequently
used in control systems to design stable control systems or to show stability in control
systems. This is especially important in the design of large, complex control systems.
Since neural networks are implemented in hardware based on large-scale integrated
circuits, the concept of passivity has played an important role in the analysis of the
stability of dynamical systems, nonlinear control, and other research areas [14–16].
The essence of the passivity theory is that the passive properties of a system can
keep the system internal stability. Recently, the problem of passivity analysis for
delayed neural networks has been addressed in [17–22], where sufficient conditions
for passivity were established. Note that the passivity conditions in both [17] and [18]
are delay-independent, which are usually more conservative than delay-dependent
ones, particularly in the case when the delay size is small [5, 12]. Considering this,
several delay-dependent passivity conditions for delayed neural networks were pro-
posed in [13, 15, 23–26], which are based on linear matrix inequalities techniques
(LMIs) and Jensen integral inequality or free-weighting matrix method. Especially,
delay-dependent passivity results were obtained in [27] for neural networks with dis-
crete and bounded distributed time-varying delays, which are also based on LMIs
techniques and free-weighting matrix method. On the other hand, neural networks
usually have a spatial extent due to the presence of a multitude of parallel pathways
with a variety of axon sizes and lengths. Therefore, there will be a distribution of
conduction velocities along these pathways. In this case, it is not suitable to model
a distribution of propagation by discrete delays, and a more appropriate way is to
incorporate continuously distributed delays. To the best of our knowledge, delay-
dependent sufficient conditions for passivity of uncertain neural networks with dis-
crete and unbounded distributed time-varying delays have not yet been established
in the literature, mainly due to the mathematical difficulties in dealing with discrete
and unbounded distributed delays simultaneously. Hence, it is our intention in this
chapter to tackle such an important yet challenging problem.

Motivated by the preceding discussions, our objective in this chapter is to study
the passivity of a class of uncertain neural networks with discrete and unbounded
distributed time-varying delays. By combining the Gu’s discretized procedure [2, 3,
28–30] on complete LKF (Lyapunov–Krasovskii Functional)with the free-weighting
matrix technique, we develop a new discretized LKF method for analyzing the pas-
sivity of delayed neural networks. Moreover, due to the presence of modeling error,
external disturbance or parameter fluctuation during the physical implementation,
uncertainty is unavoidable and may affect the passivity of the whole system. Thus,
it is necessary to further extend our main result to the uncertain case. In this regard,
we investigate the robust passivity of neural networks by considering two kinds of
uncertainties: time-varying structured uncertainty and the interval uncertainty. In the
form of LMIs, delay-dependent passivity conditions are obtained for two kinds of
uncertain neural networks, respectively. These conditions can be easily checked by
using recently developed algorithms in solving LMIs. The less conservatism of the
proposed conditions is demonstrated via a numerical example.

In the following, we let the shorthand col{M1, M2, . . . , Mk} denote a column
matrix with the matrices M1, M2, . . . , Mk .
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8.2 Problem Formulation

Considering the following cellular neural networks with time-varying delay:

ẋ(t) = −Ax(t) + W0 f (x(t)) + W1 f (x(t − τ (t)))

+ W2

∫ t

−∞
K (t − s) f (x(s))ds + u(t), (8.1)

y(t) = f (x(t)),

x(t) = φ(t), t ∈ [−τ̄ , 0]

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ R
n is the neural state vector, A =

diag(a1, a2, . . . , an) is a positive diagonal matrix, Wι = (wι
i j )n×n (ι = 0, 1, 2)

are known constant matrices, 0 ≤ τ (t) ≤ τ̄ is the time-varying delay, and
τ̄ is a constant. u(t) is the external input vector, and f (x(t)) = ( f1(x(t)),
f2(x2(t)), . . . , fn(xn(t)))T ∈ R

n denotes the neural activation function, contin-
uous function φ(t) = (φ1(t),φ2(t), . . . ,φn(t))T ∈ R

n is the initial condition.
K (t − s) = diag(k1(t − s), k2(t − s), . . . , kn(t − s)) denotes the delay kernel. It
is assumed that ki is a real value nonnegative continuous function defined in [0,∞)

satisfying

∫ ∞

0
ki (s)ds = 1, i = 1, 2, . . . , n.

In this chapter, it is assumed that the neural activation function satisfies the following
condition.

Assumption 8.1 Neural activation function is bounded and satisfies the following
condition:

| f j (s1) − f j (s2)| ≤ σ j |s1 − s2|, (8.2)

where f j (0) = 0, j = 1, 2, . . . , n, s1, s2 ∈ R, s1 �= s2.

For notational simplicity, we denote Σ = diag{σ1,σ2, . . . ,σn}.
We now introduce the following definition of passivity.

Definition 8.2 ([17]) The system in (8.1) is said to be passive if there exists a scalar
γ > 0 such that for all t f ≥ 0

2
∫ t f

0
yT (s)u(s)ds ≥ − γ

∫ t f

0
uT (s)u(s)ds. (8.3)

under the zero initial condition.

In order to obtain the results, we need the following lemma.
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Lemma 8.3 (see [9, 31]) Let H, F(t) be real matrices of appropriate dimensions
with H > 0 and FT (t)F(t) ≤ I. Then for any matrices X and Y with appropriate
dimensions, the following matrix inequality holds:

X T F(t)Y + Y T FT (t)X ≤ X T
H

−1X + Y T
HY.

8.3 Passivity for RNNs Without Uncertainty

Now, we present the passivity result for system (8.1) with τ̇ (t) ≤ η < 1.

Theorem 8.4 Under Assumption 8.1, system (8.1) is passive for 0 ≤ τ (t) ≤ τ̄ = νh
(where ν is an positive integer), τ̇ (t) ≤ η < 1, if there exist constant scalar γ > 0,
positive definite symmetric matrices B, P = [Pακ]2×2, nonnegative definite symmet-
ric matrices Q = [Q pq ]3×3, R, S, E j , positive diagonal matrices Ω,Ξ,Λ, T1, T2,
real matrices Dl j = DT

jl , C j ( j, l = 0, 1, . . . , ν), Xι(ι = 1, . . . , 4), Y with com-
patible dimensions such that the following LMIs hold (κ = 1, 2) :

[
B C

C
T
D + E

]
> 0, (8.4)

⎡

⎢⎢⎣

Γ + Γ + Γ
T C C τ̄Φκ

CT −D − E 0 0
CT 0 −3E 0

τ̄ΦT
κ 0 0 −S

⎤

⎥⎥⎦ < 0, (8.5)

where

Γ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 0 −Cν 0 P12 Q12 0 0 0
∗ Γ22 0 0 P22 − Q13 0 −(1 − η)Q12 0 0
∗ ∗ −R − Eν 0 0 0 0 0 0
∗ ∗ ∗ Γ44 0 0 0 0 0
∗ ∗ ∗ ∗ −Q33 0 −QT

23 0 0
∗ ∗ ∗ ∗ ∗ ΓQ 0 0 −I
∗ ∗ ∗ ∗ ∗ ∗ −(1 − η)Q22 − T2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ω 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with ΓQ = Q22 + Ω − T1,

C = [ C0 C1 . . . Cν ], D = [ Dl j ]0≤l, j≤ν, E = 1

h
diag{ E0 E1 . . . Eν },

Γ11 = Q11 + R + C0 + CT
0 + E0 + Σ2T1,

Γ22 = −(1 − η)Q11 + Σ2T2, Γ44 = Q33 + τ̄2S − Y − Y T ,
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Γ = P[−A 0 0 0 0 W0 W1 W2 I ] + τ̄ [Φ1 −Φ1 + Φ2 −Φ2 0 0 0 0 0 0 ],
PT = [ B + P11 + QT

13 + (Ξ + Λ)Σ P12 0 Y T 0 QT
23 + Ξ − Λ 0 0 0 ],

ΦT
1 = [ X T

1 X T
2 0 0 0 0 0 0 0 ], ΦT

2 = [ 0 X T
3 X T

4 0 0 0 0 0 0 ],
C = [Ci j ]9×ν, C = [Ci j ]9×ν, D = [Dl j ]ν×ν,

C1 j = h

2
(D0, j−1 + D0 j ) − (C j−1 − C j ),

C3 j = −h

2
(Dν, j−1 + Dν j ), C4 j = h

2
(C j−1 + C j ),

C1 j = −h

2
(D0, j−1 − D0 j ),

C3 j = h

2
(Dν, j−1 − Dν j ), C4 j = −h

2
(C j−1 − C j ),

Dl j = h(Dl−1, j−1 − Dl j ), E = diag{ E0 − E1 E1 − E2 . . . Eν−1 − Eν },

other parameters Ci j ,Ci j (i = 1, . . . , 9; j = 1, . . . , ν) are all equal to zeros.

Proof Employ the following LKF:

V (t) =V1(t) + V2(t), (8.6)

V1(t) = xT (t)Bx(t) + 2xT (t)
∫ 0

−τ̄
C(s)x(t + s)ds

+
∫ 0

−τ̄

∫ 0

−τ̄
xT (t + s)D(s, v)x(t + v)dsdv

+
∫ 0

−τ̄
xT (t + s)E(s)x(t + s)ds,

V2(t) = ΘT (t)PΘ(t) +
∫ 0

−τ (t)
Υ T (t + s)QΥ (t + s)ds

+
∫ 0

−τ̄
xT (t + s)Rx(t + s)ds

+ τ̄

∫ 0

−τ̄
(s + τ̄ )ẋ T (t + s)Sẋ(t + s)ds

+
n∑

i=1

ωi

∫ ∞

0
ki (v)

∫ t

t−v

f 2i (ui (s))dsdv

+ 2
n∑

i=1

{
ξi

∫ xi (t)

0

(
σi s + fi (s)

)
ds + λi

∫ xi (t)

0

(
σi s − fi (s)

)
ds

}
,

where Ω = diag{ω1,ω2, . . . ,ωn}, Ξ = diag{ξ1, ξ2, . . . , ξn}, Λ = diag{λ1,λ2,

. . . ,λn}, andC(s), D(s, v) = DT (v, s), E(s) = ET (s) are continuous matrix func-
tions,
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ΘT (t) = [ xT (t) xT (t − τ (t))
]
, Υ T (s) = [ xT (s) f T (x(s)) ẋ T (s)

]
.

The time derivative of functional (8.6) along the trajectories of system (8.1) is
obtained as follows:

V̇1(t) = 2xT (t)Bẋ(t) + 2ẋ T (t)
∫ 0

−τ̄
C(s)x(t + s)ds

+ 2xT (t)
∫ 0

−τ̄
C(s)ẋ(t + s)ds

+ 2
∫ 0

−τ̄

∫ 0

−τ̄
ẋ T (t + s)D(s, v)x(t + v)dsdv

+ 2
∫ 0

−τ̄
ẋ T (t + s)E(s)x(t + s)ds,

V̇2(t) = 2ΘT (t)PΘ̇(t) + Υ T (t)QΥ (t) − (1 − τ̇ (t))Υ T (t − τ (t))QΥ (t − τ (t))

+ xT (t)Rx(t) − xT (t − τ̄ )Rx(t − τ̄ ) + τ̄2 ẋ T (t)Sẋ(t)

− τ̄

∫ t

t−τ̄
ẋ T (s)Sẋ(s)ds

+
n∑

i=1

ωi

∫ ∞

0
ki (s)

{
f 2i (ui (t)) − f 2i (ui (t − s))

}
ds

+ 2{xT (t)Σ + f T (x(t))}Ξ ẋ(t) + 2{xT (t)Σ − f T (x(t))}Λẋ(t). (8.7)

From Cauchy–Schwarz inequality we have

n∑

i=1

ωi

∫ ∞

0
ki (s)

(
f 2i (xi (t)) − f 2i (xi (t − s))

)
ds

= f T (x(t))Ω f (x(t)) −
n∑

i=1

ωi

∫ ∞

0
ki (s)ds

∫ ∞

0
ki (s) f 2i (xi (t − s))ds

≤ f T (x(t))Ω f (x(t)) −
n∑

i=1

ωi

(∫ ∞

0
ki (s) fi (xi (t − s))ds

)2

= f T (x(t))Ω f (x(t))

−
(∫ t

−∞
K (t − s) f (x(s))ds

)T

Ω

(∫ t

−∞
K (t − s) f (x(s))ds

)
. (8.8)

Nowwe use the Gu’s discretized LKFmethod in [29] to choose continuous matrix
functions C(s), D(s, v), E(s). This technique consists in dividing the delay interval
[−τ̄ , 0] into ν segments [ρ j , ρ j−1] ( j = 1, 2, . . . , ν) of equal length h, then ρ j =
− jh. This method also divides the square [−τ̄ , 0] × [−τ̄ , 0] into ν2 small squares
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[ρ j , ρ j−1] × [ρl , ρl−1] ( j, l = 1, 2, . . . , ν). Each square is further divided into two
triangles, which will be used in the expression of D(s, v).

The continuous matrix functions C(s) and E(s) are chosen to be linear within
each segment and the continuous matrix function D(s, v) is chosen to linear with
each triangular. Then, they can be expressed in terms of their values at the dividing
points using a linear interpolation formula as

C(ρ j + ςh) = ςC j−1 + (1 − ς)C j ,

E(ρ j + ςh) = ς E j−1 + (1 − ς)E j ,

D(ρ j + ςh, ρl + εh) =
{

εD j−1,l−1 + (ς − ε)D j−1,l + (1 − ς)D jl , ς ≥ ε,
ς D j−1,l−1 + (ε − ς)D j,l−1 + (1 − ε)D jl , ς < ε,

for 0 ≤ ς, ε ≤ 1, j, l = 1, . . . , ν. Thus, V1(t) is completely determined by matrices
B, C j , D jl , E j ( j, l = 0, 1, . . . , ν).

Dividing the integral interval [−τ̄ , 0] into ν intervals [ρ j , ρ j−1] ( j = 1, 2, . . . , ν)

and integrating by parts, yields

V̇1(t) = 2xT (t)Bẋ(t) + 2ẋ T (t)
ν∑

j=1

∫ ρ j−1

ρ j

C(s)x(t + s)ds

+ 2xT (t)
ν∑

j=1

(
C(s)x(t + s)

∣∣∣
ρ j−1

ρ j
−
∫ ρ j−1

ρ j

Ċ(s)x(t + s)ds

)

+ 2
ν∑

j=1

ν∑

l=1

(∫ ρ j−1

ρ j

xT (t + s)D(s, v)x(t + v)

∣∣∣
s=ρl−1

s=ρl
dv

−
∫ ρ j−1

ρ j

∫ ρl−1

ρl

xT (t + s)
(∂D(s, v)

∂s
+ ∂D(s, v)

∂v

)
x(t + v)dsdv

)

+
ν∑

j=1

(
xT (t + s)E(s)x(t + s)

∣∣∣
ρ j−1

ρ j
−
∫ ρ j−1

ρ j

xT (t + s)Ė(s)x(t + s)ds

)

= 2xT (t)Bẋ(t) + xT (t)
(
C(0) + CT (0) + E(0)

)
x(t) − 2xT (t)C(−τ̄ )x(t − τ̄ )

− xT (t − τ̄ )E(−τ̄ )x(t − τ̄ ) + 2ẋ T (t)
ν∑

j=1

∫ ρ j−1

ρ j

C(s)x(t + s)ds

+ 2xT (t)
ν∑

j=1

∫ ρ j−1

ρ j

(− Ċ(s) + D(0, s)
)
x(t + s)ds

−
ν∑

j=1

∫ ρ j−1

ρ j

[
2xT (t − τ̄ )D(−τ̄ , s) + xT (t + s)Ė(s)

]
x(t + s)ds

−
ν∑

j=1

ν∑

l=1

∫ ρ j−1

ρ j

∫ ρl−1

ρl

xT (t + s)
(∂D(s, v)

∂s
+ ∂D(s, v)

∂v

)
x(t + v)dsdv. (8.9)
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It is noted that the following equations hold for any s ∈ [ρ j , ρ j−1], v ∈
[ρl , ρl−1] ( j, l = 1, 2, . . . , ν),

Ċ(s) =1

h
(C j−1 − C j ),

Ė(s) =1

h
(E j−1 − E j ),

∂D(s, v)

∂s
+ ∂D(s, v)

∂v
=1

h
(D j−1,l−1 − D jl).

Through some calculations, we can obtain

2
∫ ρ j−1

ρ j

C(s)x(t + s)ds

=h
∫ 1

0

[
(C j + C j−1) + (1 − 2ς)(C j − C j−1)

]
x(t + ρ j + ςh)dς, (8.10)

2
∫ ρ j−1

ρ j

(− Ċ(s) + D(0, s)
)
x(t + s)ds

=
∫ 1

0

[
2(C j − C j−1) + h(D0 j + D0, j−1)

+ (1 − 2ς)h(D0 j − D0, j−1)
]
x(t + ρ j + ςh)dς, (8.11)

2
∫ ρ j−1

ρ j

D(−τ̄ , s)x(t + s)ds

= h
∫ 1

0

[
(Dν j + Dν, j−1) + (1 − 2ς)(Dν j − Dν, j−1)

]
x(t + ρ j + ςh)dς,

(8.12)
∫ ρ j−1

ρ j

∫ ρl−1

ρl

xT (t + s)
(∂D(s, v)

∂s
+ ∂D(s, v)

∂v

)
x(t + v)dsdv

= h
∫ 1

0

∫ 1

0
xT (t + ρ j + εh)(D j−1,l−1 − D jl)x(t + ρl + ςh)dςdε, (8.13)

∫ ρ j−1

ρ j

xT (t + s)Ė(s)x(t + s)ds

=
∫ 1

0
xT (t + ρ j + ςh)(E j−1 − E j )x(t + ρ j + ςh)dς. (8.14)

On the other hand, from Assumption 8.1 that the following matrix inequalities
hold for any positive diagonal matrices T1, T2 with compatible dimensions
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xT (t)T1Σ
2x(t) − f T (x(t))T1 f (x(t)) ≥ 0, (8.15)

xT (t − τ (t))T2Σ
2x(t − τ (t)) − f T (x(t − τ (t)))T2 f (x(t − τ (t))) ≥ 0. (8.16)

Furthermore, it is easy to see that the following equation holds for any real matrix
Y with compatible dimension

0 = 2ẋ T (t)Y
{

− ẋ(t) − Ax(t) + W0 f (x(t)) + W1 f (x(t − τ (t)))

+ W2

∫ t

−∞
K (t − s) f (x(s))ds + u(t)

}
. (8.17)

Noting that 0 ≤ τ (t) ≤ τ̄ , therefore the following inequality holds

∫ t

t−τ̄
ẋ T (s)Sẋ(s)ds =

∫ t

t−τ (t)
ẋ T (s)Sẋ(s)ds +

∫ t−τ (t)

t−τ̄
ẋ T (s)Sẋ(s)ds. (8.18)

From Lemma 8.3 and the Leibniz–Newton formula, for any real matrices Xi (i =
1, . . . , 4) with compatible dimensions, we get

−
∫ t

t−τ (t)
ẋ T (s)Sẋ(s)ds

≤
∫ t

t−τ (t)

{
ζT (t)Φ1S−1ΦT

1 ζ(t) + 2ζT (t)Φ1 ẋ(s)
}
ds

= τ (t)ζT (t)Φ1S−1ΦT
1 ζ(t) + 2ζT (t)Φ1(x(t) − x(t − τ (t))), (8.19)

−
∫ t−τ (t)

t−τ̄
ẋ T (s)Sẋ(s)ds

≤
∫ t−τ (t)

t−τ̄

{
ζT (t)Φ2S−1ΦT

2 ζ(t) + 2ζT (t)Φ2 ẋ(s)
}
ds

= (τ̄ − τ (t))ζT (t)Φ2S−1ΦT
2 ζ(t)

+ 2ζT (t)Φ2(x(t − τ (t)) − x(t − τ̄ )), (8.20)

where

ζT (t) = [ xT (t) xT (t − τ (t)) xT (t − τ̄ ) ẋ T (t) (1 − τ̇ (t))ẋ T (t − τ (t))

f T (x(t)) f T (x(t − τ (t)))
( ∫ t

−∞ K (t − s) f (x(s))ds
)T

uT (t)
]
.

Now, to show the passivity of the delayed neural network in (8.1), we set

J (t f ) =
∫ t f

0

[− γuT (t)u(t) − 2yT (t)u(t)
]
dt.
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where t f ≥ 0. Noting the zero initial condition, we can deduce that

J (t f ) =
∫ t f

0

[
V̇ (t) − γuT (t)u(t) − 2yT (t)u(t)

]
dt − V (xt f )

≤
∫ t f

0

[
V̇ (t) − γuT (t)u(t) − 2yT (t)u(t)

]
dt.

From (8.6)–(8.20), we obtain

V̇ (t) − γuT (t)u(t) − 2yT (t)u(t)

≤ζT (t)
(
Γ + τ̄ τ (t)Φ1S−1ΦT

1 + τ̄ (τ̄ − τ (t))Φ2S−1ΦT
2

)
ζ(t)

+ 2ζT (t)
∫ 1

0

(C + (1 − 2ς)C
)
ϑ(t, ς)dς

−
∫ 1

0

∫ 1

0
ϑT (t, ς)Dϑ(t, ε)dς −

∫ 1

0
ϑT (t, ς)Eϑ(t, ς)dς, (8.21)

where

ϑT (t, ς) = [ xT (t − h + ςh) xT (t − 2h + ςh) . . . xT (t − νh + ςh) ].

Applying Prop. 5.21 of [29] to (8.21), we conclude that V̇ (t) − γuT (t)u(t) −
2yT (t)u(t) < 0 if (8.4) and the following matrix inequality hold:

⎡

⎣
Γ + Γ + Γ

T + τ̄ τ (t)Φ1S−1ΦT
1 + τ̄ (τ̄ − τ (t))Φ2S−1ΦT

2 C C

CT −D − E 0
CT 0 −3E

⎤

⎦ < 0.

(8.22)

Note that 0 ≤ τ (t) ≤ τ̄ , so inequality (8.22) holds if and only if the following
inequalities are true, (κ = 1, 2)

⎡

⎣
Γ + Γ + Γ

T + τ̄2ΦκS−1ΦT
κ C C

CT −D − E 0
CT 0 −3E

⎤

⎦ < 0. (8.23)

From the well known Schur complement, inequalities (8.23) are equivalent to
inequalities (8.5), thus J (t f ) ≤ 0 holds for any t f ≥ 0 if inequalities (8.4) and (8.5)
are true. From the Definition 8.2 of passivity, the proof of Theorem 8.4 is completed.

Remark 8.5 Compared with the existing augmented LKFs [13, 15, 17, 26, 27], the
proposed one contains the following terms:

∫ t
t−τ (t) Υ T (s)QΥ (s)ds ΘT (t)PΘ(t),

other than
∫ t

t−τ (t)

[
xT (s)Q11x(s) + f T (x(s))Q22 f (x(s))

]
ds and xT (t)P11x(t).
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Through the following numerical examples, it will be found that these terms play
important roles in the reduction of conservativeness.

Remark 8.6 It is easy to see that the derivatives of
∫ t

t−τ (t) Υ T (s)QΥ (s)ds and

ΘT (t)PΘ(t) have some terms containing 1− τ̇ (t). In order to absorb some 1− τ̇ (t),
we introduce (1 − τ̇ (t))ẋ T (t − τ (t)) in ζ(t) but not ẋ T (t − τ (t)), so Γ contains
fewer 1 − τ̇ (t), which leads to a more effective result than that in [5].

Remark 8.7 It is easy to see that the passivity result in [17] is delay-independent.
As is well known, delay-dependent criteria make use of information on the length of
delay, and are usually less conservative than delay-independent ones especially when
the size of the time delay is small. Numerical examples will show the effectiveness
of the conditions in Theorem 8.4.

Remark 8.8 In Theorem 8.4, by setting P12 = P22 = 0, Q = 0,we can employ this
criterion to analyze the passivity of neural network when τ (t) is not differentiable
or τ̇ (t) is unknown.

8.4 Passivity for RNNs with Uncertainty

In this section, we will study the following uncertain RNNs,

ẋ(t) = − Ãx(t) + W̃ 0 f (x(t)) + W̃ 1 f (x(t − τ (t)))

+ W̃ 2

∫ t

−∞
K (t − s) f (x(s))ds + u(t), (8.24)

in which two kinds of uncertainties will be considered respectively, i.e., time-varying
structured uncertainty and interval uncertainty.

Case I: Time-varying structured uncertainty
First, we consider the neural networks (8.24) with time-varying structured uncer-

tainties as follows:

Ã = A + ΔA(t), W̃ ι = Wι + ΔWι(t),

ΔA(t) = H F(t)G, ΔWι(t) = HιFι(t)Gι, (ι = 0, 1, 2), (8.25)

where H, Hι and G, Gι(ι = 0, 1, 2) are known constant matrices, and F(t), Fι(t)
(ι = 0, 1, 2) are unknown time-varying matrices satisfying

FT (t)F(t) ≤ I, FT
ι (t)Fι(t) ≤ I (ι = 0, 1, 2).

Then, for passivity of system (8.24) with (8.25), we have the following theorem:

Theorem 8.9 Under Assumption 8.1, system (8.24) with (8.25) is passive for 0 ≤
τ (t) ≤ τ̄ = νh, τ̇ (t) ≤ η < 1, if there exist constant scalar γ > 0, matrices
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B > 0, P > 0, Q > 0, R > 0, S > 0, E j > 0, positive diagonal matrices
Ω,Ξ,Λ, T1, T2, real matrices Dl j = DT

jl , Y, C j ( j, l = 0, 1, . . . , ν), Xι(ι =
1, . . . , 4), and positive scalars ε, ει(ι = 0, 1, 2) such that (8.4) and the following
LMIs hold (κ = 1, 2) :

⎡

⎢⎢⎢⎢⎣

Γ + Γ + Γ
T + GGT C C τ̄Φκ PHT

CT −D − E 0 0 0
CT 0 −3E 0 0

τ̄ΦT
κ 0 0 −S 0

HPT 0 0 0 −Ψ

⎤

⎥⎥⎥⎥⎦
< 0, (8.26)

where

GT = [√εG 0 0 0 0
√

ε0G0
√

ε1G1
√

ε2G2 0 ],
HT = [ H H0 H1 H2 ], Ψ = diag{εI, ε0 I, ε1 I, ε2 I },

and other parameters are all defined in Theorem 8.4.

Proof Replacing A, Wι(ι = 0, 1, 2) in (8.1) and (8.17) with Ã, W̃ ι(ι = 0, 1, 2)
respectively, we have that system (8.24) is passive if (8.4) and the following LMIs
hold (κ = 1, 2) :

⎡

⎣
Ωa C C

CT −D − E 0
CT 0 −3E

⎤

⎦ < 0, (8.27)

where

Ωa = Γ + Γ + Γ
T + τ̄2ΦκS−1ΦT

κ + PHTF(t)GT + GFT (t)HPT ,

F(t) = diag{ F(t) F0(t) F1(t) F2(t) },
GT = [G G0 G1 G2 ],
GT = [−GT 0 0 0 0 0 0 0 0 ], GT

0 = [ 0 0 0 0 0 GT
0 0 0 0 ],

GT
1 = [ 0 0 0 0 0 0 GT

1 0 0 ], GT
2 = [ 0 0 0 0 0 0 0 GT

2 0 ].

By Lemma 8.3 and Theorem 8.4, from (8.27) the neural networks in (8.24) is
passive for all time-varying uncertainties satisfying (8.25) if (8.4) and the following
LMIs hold (κ = 1, 2):

⎡

⎣
Γ + Γ + Γ

T + τ̄2ΦκS−1ΦT
κ + PHT Ψ −1HPT + GΨGT C C

CT −D − E 0
CT 0 −3E

⎤

⎦ < 0,
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Applying the Schur complement to above inequalities, we obtain (8.26) and the
proof is completed.

Case II: Interval uncertainty
Now we consider systems with an uncertainty due to bounded parameter varia-

tions, that is, Ã, W̃ ι(ι = 0, 1, 2) in (8.24) may take any constant values within two
bounding matrices and their elements ai , w

ι
i j can be described as follows:

AI = { Ã = diag{ã1, ã2, . . . , ãn} : 0 < ai ≤ ãi ≤ āi },
W ι

I = {W̃ ι = (w̃ι
i j )n×n : wι

i j ≤ w̃ι
i j ≤ w̄ι

i j }, (ι = 0, 1, 2). (8.28)

For convenience, we define

A = diag{a1, a2, . . . , an}, Ā = diag{ā1, ā2, . . . , ān}, W ι = (wι
i j )n×n,

W ι = (w̄ι
i j )n×n, A = 1

2
(A + Ā), L A = 1

2
( Ā − A) = diag{α1,α2, . . . ,αn},

Wι = 1

2
(W ι + W ι), LWι = 1

2
(W ι − W ι) = (βι

i j )n×n (ι = 0, 1, 2).

Since each element of L A, LWι(ι = 0, 1, 2) is nonnegative, then we can define

HA = G A = diag
{√

α1,
√

α2, . . . ,
√

αn
}

n×n,

HWι = [
√

βι
11e1, . . . ,

√
βι
1ne1, . . . . . . ,

√
βι

n1en, . . . ,
√

βι
nnen

]
n×n2 ,

GWι = [
√

βι
11e1, . . . ,

√
βι
1nen, . . . ,

√
βι

n1e1, . . . ,
√

βι
nnen

]T
n2×n, (ι = 0, 1, 2),

where ei (i = 1, . . . , n) denotes the i th standard basis ofRn . Furthermore, we denote

Θ = {Z ∈ R
n×n : Z = diag{θ1, . . . , θn}, |θi | ≤ 1, i = 1, . . . , n},

Δ = {Z ∈ R
n2×n2 : Z = diag{δ11, . . . , δ1n, . . . . . . , δn1, . . . , δnn},

|δi j | ≤ 1, i, j = 1, . . . , n}.

Then it is easy to check that

AI = { Ã = A + HAΘAG A : ΘA ∈ Θ},
W ι

I = {W̃ ι = Wι + HWιΔWι GWι : ΔWι ∈ Δ},

with ΘT
A ΘA ≤ I, ΔT

Wι
ΔWι ≤ I, (ι = 0, 1, 2). Then by Theorem 8.9, we obtain

the following result for passivity of neural networks (8.24) with interval uncer-
tainty (8.28).

Theorem 8.10 Under Assumption 8.1, system (8.24) with (8.28) is passive for 0 ≤
τ (t) ≤ τ̄ = νh, τ̇ (t) ≤ η < 1, if there exist constant scalar γ > 0, matrices
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B > 0, P > 0, Q > 0, R > 0, S > 0, E j > 0, positive diagonal matrices
Ω,Ξ,Λ, T1, T2, real matrices Dl j = DT

jl , Y, C j ( j, l = 0, 1, . . . , ν), Xι(ι =
1, . . . , 4), and positive scalars ε, ει(ι = 0, 1, 2) such that (8.4) and the following
LMIs hold (κ = 1, 2):

⎡

⎢⎢⎢⎢⎣

Γ + Γ + Γ
T + GG

T C C τ̄Φκ PHT

CT −D − E 0 0 0
CT 0 −3E 0 0

τ̄ΦT
κ 0 0 −S 0

HPT 0 0 0 −Ψ

⎤

⎥⎥⎥⎥⎦
< 0, (8.29)

where

G
T = [√εG A 0 0 0 0

√
ε0GW0

√
ε1GW1

√
ε2GW2 0 ],

HT = [ HA HW0 HW1 HW2 ],

and other parameters are all defined in Theorem 8.4.

Remark 8.11 Similar to Remark 8.8, by setting P12 = P22 = 0, Q = 0 in Theorems
8.9 and 8.10, we can employ these criteria to analyze the passivity of neural network
with uncertainty when τ (t) is not differentiable or τ̇ (t) is unknown.

8.5 Illustrative Examples

In this section, we provide three numerical examples to demonstrate the effectiveness
and less conservativeness of our delay-dependent passivity criteria over some recent
results in the literature.

Example 8.12 Consider the system (8.24) with

Ā = diag{2.4225, 2.3225}, Ā = diag{2.1775, 2.0775}, Σ = I,

W 0 =
[

0.4024 0.3024
−0.2976 0.2024

]
, W 0 =

[
0.1976 0.0976

−0.5024 −0.0024

]
,

W 1 =
[
0.5784 0.7784
0.7784 −0.3216

]
, W 1 =

[
0.4216 0.6216
0.6216 −0.4784

]
,

W 2 =
[

0.5676 0.2676
−0.2324 1.2676

]
, W 2 =

[
0.4324 0.1324

−0.3676 1.1324

]
.

For this model with τ (t) = 0.5+0.5 sin(t), that is τ̄ = 1, η = 0.5, from Remark
8.11 of Theorem 8.10 with ν = 3 we can conclude that this system is passive. For
different η’s, Table 8.1 gives the results on the maximum τ̄ allowed by the method in
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Table 8.1 Calculated maximal upper bounds of time delays for various η in Example 8.12

Methods η = 0 η = 0.1 η = 0.5 η = 0.9 Unknown η

This chapter (ν = 1) 1.2190 0.9429 − − −
This chapter (ν = 2) 1.5152 1.3560 0.9202 0.6504 0.6386

This chapter (ν = 3) 1.6070 1.4466 1.0130 0.7292 0.7178

This chapter (ν = 4) 1.6651 1.5032 1.0654 0.7724 0.7610

Theorem 8.10 or Remark 8.11 in this chapter, where “−”means that the result is not
applicable to the corresponding case, and “unknown η” means that η can be arbitrary
value or τ (t) can be not differentiable.

Moreover, it is easy to see that the larger ν is, the larger τ̄ becomes. We also
compute the number of the decision variables involved in Theorem 8.10 for ν = 3
and ν = 4, the results are 142 and 184 respectively. When η = 0, the difference
between the values of maximal upper bounds for ν = 4 and ν = 3 is just 3.6%, but
the number of the decision variables involved by the former is 29.6% larger than
that by the latter. As a compromise, taking ν = 3 is a good choice for the obtained
maximal upper bounds and for the low cost of the CPU time.

Example 8.13 Consider the uncertain neural networks (8.24), where the parameters
are as follows: [17],

A = diag{1, 2}, W2 = 0, G = G0 = G1 = [ 0.1 0.2 ], Σ = I,

W0 =
[

1 −1
−0.5 2

]
, W1 =

[
0.1 0.5
0.2 0.4

]
,

H0 =
[
0.2
0.3

]
, H1 =

[
0.3
0.2

]
, H2 =

[
0.2
0.1

]
.

It is verified that none of the conditions given in [13, 15, 26, 27, 32] can conclude
whether this model is passive or not for any time delays. On the other hand, the author
of [13] pointed out that the results of Examples 1 and 2 given in [17] were wrong.
In fact, the criterion of [17] fails to assure the passivity of this model. However, for
this model with τ (t) = 0.18+0.55 sin(2t), that is τ̄ = 0.73, η = 1.1, from Remark
8.11 of Theorem 8.9 with ν = 4 we can conclude that this system is passive. For
different η’s, Table 8.2 gives the results on the maximum τ̄ allowed via the method
in Theorem 8.9 or Remark 8.11 in this chapter.

Example 8.14 Consider the uncertain neural networks (8.24), where the parameters
are as follows [27],

A =
[
2.2 0
0 1.5

]
, W0 =

[
1 0.6
0.1 0.3

]
, W1 =

[
1 −0.1
0.1 0.2

]
, W2 = 0,

Σ = I, H = H0 = H1 = 0.1I, G = 0.1I, G0 = 0.2I, G1 = 0.3I, G2 = 0.
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Table 8.2 Calculated maximal upper bounds of time delays for various η in Example 8.13

Methods η = 0 η = 0.1 η = 0.5 η = 0.9 Unknown η

This chapter (ν = 1) – – – – –

This chapter (ν = 2) 0.8025 0.7678 0.7212 0.6411 0.6000

This chapter (ν = 3) 0.8934 0.8604 0.8107 0.7258 0.6806

This chapter (ν = 4) 0.9422 0.9100 0.8606 0.7736 0.7312

Table 8.3 Calculated maximal upper bounds of time delays for various η in Example 8.14

Methods η = 0.1 η = 0.5 η = 0.9 Unknown η

Ref. [13] (corrected) 0.0847 0.0785 0.0698 −
Ref. [26] 0.2338 0.2242 0.2213 0.2152

Ref. [15] 0.4148 0.4004 0.3954 0.3846

Ref. [27] 0.7841 0.4145 0.4082 0.3994

This chapter (ν = 1) 0.6806 0.5506 0.4464 0.4038

This chapter (ν = 2) 3.9066 1.7338 1.4358 1.3228

This chapter (ν = 3) 4.4928 1.8674 1.5199 1.3961

This chapter (ν = 4) 4.8502 1.9434 1.5668 1.4350

It is proved that the conditions given in [17, 32] fail to concludewhether thismodel
is passive or not for η ≥ 0.1. For different η’s, Table 8.3 gives the comparison results
on the maximum τ̄ allowed via the methods in [13, 15, 26, 27] and Theorem 8.9 or
Remark 8.11 in this chapter, where the results of [13] (corrected) are the corrected
ones of [13] based on [26].

From this table, one can see that Theorem 8.9 provides the larger upper bounds
than those criteria in [13, 15, 26, 27]. In particular, when η = 0.1, the achieved
maximal upper bound τ̄ by Theorem 8.9 with ν = 3 is 5204.4, 1821.6, 983.1 and
472.8% larger than those in [13, 15, 26] and [27], respectively.

Therefore, we can say that for these three systems the results in this chapter are
much effective and less conservative than those in [13, 15, 17, 26, 27, 32].

8.6 Summary

In this chapter we have investigated the passivity problem of recurrent neural net-
works with discrete and unbounded distributed time-varying delays. By integrating
the Gu’s discretization technique with the free-weightingmatrix approaches, we pro-
posed novel passivity criteria for the considered systems. The obtained results are
expressed in the form of LMI, which can be easily optimized. Finally, numerical
examples have showed the superiority of our proposed passivity conditions to some
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existing ones. One of the future research topics would be an extension of the present
results to more general cases, for example, the case with impulsive effects, the case
with stochastic terms or the case with reaction–diffusion terms.
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Chapter 9
Dissipativity and Invariant Sets for Neural
Networks with Delay

Energy dissipation is a fundamental concept in dynamical systems. Passivity and
dissipativity characterize the “energy” consumption of a dynamical system and form
a powerful tool in many real applications. Passivity is closely related to stability
and exhibits a compositional property for parallel and feedback interconnections.
Passivity-based control is especially useful in the analysis of complex coupled sys-
tems. In Chap.8, passivity problem is studied for a kind of neural networks with
delays. Dissipativity and invariant sets are also the qualitative characteristics of a
dynamical system. Such qualitative characteristics as passivity, dissipativity, and
invariant sets are extensions and upgrades of the stability property, which can char-
acterize the dynamics of dynamical systemsmore general. Based on such analysis, in
this chapter some sufficient conditions for dissipativity and invariant sets have been
established for a kind of RNNs with delay. The contents in this chapter are some
extensions of the stability results of previous chapters.

9.1 Delay-Dependent Dissipativity Conditions
for Delayed RNNs

9.1.1 Introduction

Since the study of dissipative systems was initiated by Willems [1], and further
addressed by Hill and Moylan [2], there has been a steady increase in the inter-
est of dissipative systems in the past several decades. The reasons are as follows:
(1) The dissipative theory gives a framework for the design and analysis of control
systems using an input–output description based on energy-related considerations
[3, 4]. (2) The dissipative theory serves as a powerful or even indispensable tool in
characterizing important system behaviors, such as stability and passivity, and has
close connectionswith passivity theorem, bounded real lemma,Kalman–Yakubovich
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lemma, and the circle criterion [5].Many significant advances on this issue have been
reported in the literature. To name a few, by using a linear matrix inequality (LMI)
approach, the problem of quadratic dissipative control for linear systems with or
without uncertainty was studied in [6], where some necessary and sufficient condi-
tions were presented for synthesis of feedback controllers to ensure the dissipativity
of the resulting closed-loop system. In [7], by proposing multiple storage functions
and multiple supply rates, a framework of dissipativity theory for switched systems
was established. More recently, some dissipativity conditions were presented in [8]
for singular systems. When stochastic noise was taken into consideration in study-
ing dissipative systems, the problems of sliding mode control were tackled in [9].
In [10], the robust reliable dissipative filtering problem has been investigated for
uncertain discrete-time singular system with interval time-varying delays and sensor
failures. The problem of static output-feedback dissipative control has been studied
for linear continuous-time system based on an augmented system approach in [11].
A necessary and sufficient condition for the existence of a desired controller has been
given, and a corresponding iterative algorithm has also been developed to solve the
condition.

On the other hand, as a special class of nonlinear dynamical systems, neural
networks have achieved much attention in the last years due to their extensive appli-
cations in various fields, including combinatorial optimization, associated memory,
pattern recognition, and so on [12–17]. In practice, time delays are unavoidably
encountered in the electronic implementation of neural works, which usually bring
negative and undesirable effects, such as performance degradation or even instability
of neural networks. Therefore, it is not surprising that the past decades havewitnessed
fruitful literature about performance analysis of delayed neural networks (DNNs). In
the existing literature, compared with stability and passivity problems, the problem
of dissipativity analysis for DNNs has also been investigated, which is also an aspect
of qualitative analysis for nonlinear system. For instance, by introducing an integral
partitioning technique, a sufficient delay-dependent dissipativity conditionwas given
in [18] for DNNs, where the time delay under consideration was a constant distrib-
uted delay. However, neither the time-varying delay nor parameters uncertainty was
taken into account in [18]. Robust dissipativity analysis for DNNs with time-varying
delay was addressed in [19–21], where some effective delay-dependent dissipativity
conditions were established by introducing some free-weightingmatrices. Reference
[22] addresses the global dissipativity of a general class of continuous-time recurrent
neural networks, and the set of global dissipativity is characterized using the parame-
ters of recurrent neural network models. In particular, it is shown that the Hopfield
neural networks and cellular neural networks with or without time delays are dis-
sipative systems. It should be pointed out that these dissipativity conditions based
on the free-weighting matrix approach and the integral partitioning technique, still
have some space to be improved. As an extension of stability and passivity analysis,
it is necessary to investigate the dissipativity problem for RNNs. These motivate the
present study.
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In this section, attention is focused on the derivation of improved dissipativity
conditions for a class ofDNNs. To this end, a reciprocally convex approach combined
with an extendedWirtinger inequality is employed. Some delay-dependent sufficient
conditions that guarantee the dissipativity of the considered DNNs are established.

Note that, in this section, | · | refers to the Euclidean vector norm; ‖ · ‖ stands for
the usual L2[0,∞) norm. The signal space under consideration is L2 space or the
extended L2 space. Denote the truncation of u(t) up to time �(0 ≤ � < ∞) by
u�(t). The inner product of truncated signals u�(t), y�(t) is denoted by 〈u, y〉�,
where 〈u, y〉� = ∫�

0 yT (t)u(t)dt .

9.1.2 Problem Formulation

Consider the following uncertain delayed neural networks (DNNs),

ẋi (t) = − ai xi (t) +
n∑

j=1

bi j f j (x j (t)) +
n∑

j=1

ci j f j (x j (t − h(t))) + ui (t), (9.1)

yi (t) = fi (xi (t)), (9.2)

or equivalently

ẋ(t) = − Ax(t) + B f (x(t)) + C f (x(t − h(t))) + u(t), (9.3)

y(t) = f (x(t)), (9.4)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ R
n , xi (t) is the state vector of the i th net-

work at time t ; f (x(t)) = ( f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T ∈ R
n denotes the

neuron activation function; u(t) = (u1(t),u2(t), . . . ,un(t))T stands for the external
inputs at time t and y(t) is the output; A = diag{a1, a2, . . . , an} is a diagonal matrix
with positive entries; B = (bi j )n×n and C = (ci j )n×n are the interconnection matri-
ces representing the weight coefficients of the neurons. h(t) is a bounded function
denoting the time-varying delay, 0 < h(t) ≤ h, ḣ ≤ μ. x(t) = φ(t), t ∈ [−h, 0],
where φ(t) is the initial function. Throughout this chapter, we shall use the following
assumptions.

Assumption 9.1 (see [23]) Every activation function fi (·) in (9.3) is continuous
and bounded, and satisfies

Fi ≤ fi (x) − fi (y)

x − y
≤ Fi , i = 1, 2, . . . , n, (9.5)

where fi (0) = 0, x, y ∈ R, x �= y, and Fi and Fi are known real scalars and they
may be positive, negative, or zero.
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Assumption 9.1 means that the resulting activation functions may be non-
monotonic and more general than the usual sigmoid functions and Lipschitz-type
condition [19]. For the sake of simplicity, in what follows we denote

F = diag{F1, F2, . . . , Fn}, F = diag{F1, F2, . . . , Fn}.

Definition 9.2 The energy supply function of DNNs (9.3) and (9.4) is defined as

G(u, y, �) = 〈y, Qy〉� + 2〈y, Su〉� + 〈u, Ru〉�, ∀� > 0, (9.6)

where Q, R, and S are real matrices of appropriate dimensions, with Q and R being
symmetric matrices. The notation 〈y, Su〉� represents

∫�

0 yT (t)Su(t)dt , and the
other symbols are similarly defined.

Without loss of generality, as noted in [24], in this section we assume that Q ≤ 0
and denoted that −Q = Q̂T Q̂ for some Q̂.

Definition 9.3 ([25]) Consider the DNNs (9.3) and (9.4) with input u(t) and output
y(t), where u(t), y(t) ∈ R

n . It is called
(1) passive, if there is a constant β < 0 such that

〈y,u〉� ≥ β. (9.7)

(2) input strictly passive (ISP), if there exist ν > 0 and a constant β ≤ 0 such that

〈y,u〉� ≥ β + ν〈u,u〉�. (9.8)

(3) output strictly passive (OSP), if there exist ρ > 0 and a constant β ≤ 0 such
that

〈y,u〉� ≥ β + ρ〈y, y〉�. (9.9)

(4) very strictly passive (VSP), if there exist ρ > 0 and ν > 0 and a constant
β ≤ 0 such that

〈y,u〉� ≥ β + ρ〈y, y〉� + ν〈u,u〉�. (9.10)

In all cases, the inequality should hold for ∀u(t),∀� > 0 and the corresponding
y(t).

The constant β is related to the initial condition of the DNNs (9.3) and (9.4) and
plays an important role in the stability analysis. The inner product 〈y,u〉� may be
interpreted as the externally supplied energy to DNNs during the interval [0, �].
The above Definition 9.3 can be viewed as special cases of (Q, R, S)−dissipative
systems defined in Definition 9.2, where G(u, y, �) is called the supply rate function
for DNNs (9.3) and (9.4) [25].
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Note that, if a system is ISP for ν > 0, it is also ISP for ν − ε, where 0 ≤ ε < ν.
Analogously, if the system is OSP for ρ > 0, it is also OSP for ρ − ε, where
0 ≤ ε < ρ. If the system is VSP for (ρ, ν), it is also VSP for (ρ − ε, ν − ε), where
0 ≤ ε < min(ρ, ν). A positive value of ρ or ν can thus be interpreted as an excess of
passivity and these two values (called passivity levels) characterize “how passive”
the system is. If ρ or ν is negative, we say the system has a shortage of passivity.
More details can also be referred to [26].

Definition 9.4 ([20]) Given a scalar θ > 0, real matrices Q = QT and R = RT and
matrix S, neural network (9.3) and (9.4) is said to be strictly (Q, R, S)−θ-dissipative,
if for any � ≥ 0, under zero initial state, the following condition is satisfied:

G(u, y, �) ≥ θ〈u,u〉�, ∀� ≥ 0, (9.11)

Lemma 9.5 (Extended Wirtinger inequality [27]) Let ζ be any continuously dif-
ferentiable function on interval [c, a] and ζ(a) = ζ(c) = 0. Then, for any matrix
M ∈ R

n×n, M = MT > 0, the following inequality holds

∫ a

c
ζ̇T (s)M ζ̇(s)ds ≥ π2

(a − c)2

∫ a

c
ζT (s)Mζ(s)ds

The problem concerned in this section is formulated as follows: for givenmatrices
Q, S, R and scalars θ > 0, h > 0, consider theDNNs (9.3) and (9.4), determine under
what condition the considered neural network is strictly (Q, R, S) − θ-dissipative
by using a reciprocally convex approach combined with an extended Wirtinger
inequality.

9.1.3 θ-dissipativity Result

In this subsection, along the similar routine in [20], wewill present a delay-dependent
sufficient condition, which ensures that delayed neural network (9.3) and (9.4) is
strictly (Q, R, S) − θ-dissipative.

Theorem 9.6 Given a scalar h > 0, μ > 0, and matrices Q = QT , S, R = RT ,
DNNs (9.3) and (9.4) is strictly (Q, R, S)−θ-dissipative, if there exist matrices P >

0, X =
[

X1 X2

X T
2 X3

]
> 0, Z =

[
Z1 Z2

Z T
2 Z3

]
> 0, W > 0, Y1, Y2, diagonal matrices Φl >

0, l = 1, 2, 3, Ω1 = diag{λ11,λ12, . . . ,λ1n} > 0, Ω2 = diag{λ21,λ22, . . . ,λ2n} >

0, and a scalar θ > 0 such that the following LMIs hold:
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Ξ =

⎡

⎢⎢⎢⎢⎢⎢⎣

J1 J2 J4 J7 J11 J13
∗ J3 J5 J8 0 J14
∗ ∗ J6 J9 0 0
∗ ∗ ∗ J10 0 0
∗ ∗ ∗ ∗ J12 hW
∗ ∗ ∗ ∗ ∗ −W

⎤

⎥⎥⎥⎥⎥⎥⎦
< 0, (9.12)

[
diag{W,π2W } Y

∗ diag{W,π2W }
]

≥ 0 (9.13)

where

J1 =
[−PA − ATPT − (0.25π2 + 1)W PB − AT Ω12

∗ Ω12B + BT Ω12 − Φ1 − Q

]

+ X + h Z + Λ1,

J2 =
[
(1 − 0.25π2)W − Y1 − 1.25Y2 PC

0 Ω12C

]
,

J3 = −(1 − μ)Z + Λ2 + diag{−(2 + 0.5π2)W + Y1 + Y T
1 − 0.25(Y2 + Y T

2 ), 0},
J3 = −X + Λ2,

J4 = diag{Y1 − 0.25Y2, 0},
J5 = diag{(1 − 0.25π2)W − Y1 + 0.75Y2, 0},
J6 = −X + Λ3 + diag{(0.25π2 + 1)W, 0},

J7 =
[
0.5π2W 1.5Y2

0 0

]
, J8 =

[
0.5π2W + 1.5Y2 0.5π2W − 0.5Y2

0 0

]

J9 =
[−0.5Y2 0.5π2W

0 0

]
, J10 =

[−π2W −Y2

0 −π2W

]

J11 =
[ P
Ω12 − S

]
, J12 = −(R − θ I )

J13 =
[−h AT W

h BT W

]
, J14 =

[
0

hCT W

]

P = P + FΩ2 − FΩ1, Ω12 = Ω1 − Ω2,

Y =
[

Y1 Y2
Y2 Y2

]
, Λl =

[
−F FΦl

F+F
2 Φl

∗ −Φl

]
, l = 1, 2, 3.
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Proof First, we define some new vectors

ς(t) = [ξT (t), ξT (t − h(t)), ξT (t − h), ςT
1 (t), uT (t)

]T
,

ξ(t) = [xT (t), f T (x(t))
]T

,

ς1 =
[

1
h(t)

∫ t
t−h(t xT (ϑ)dϑ, 1

h−h(t)

∫ t−h(t)
t−h xT (ϑ)dϑ

]T
,

and choose the following Lyapunov function candidate for DNNs (9.3) and (9.4):

V (t) = V1(t) + V2(t) + V3(t), (9.14)

where

V1(t) = xT (t)Px(t) + 2
n∑

i=1

∫ xi (t)

0

{
λ1i [ fi (ϑ) − Fiϑ] + λ2i [Fiϑ − fi (ϑ)]} dϑ,

V2(t) =
∫ t

t−h
ξT (ϑ)Xξ(ϑ)dϑ +

∫ t

t−h(t)
ξT (ϑ)Zξ(ϑ)dϑ,

V3(t) = h
∫ 0

−h

∫ t

t+s
ẋ T (ϑ)W ẋ(ϑ)dϑds.

Then, it can be deduced that,

V̇1(t) = 2xT (t)Pẋ(t) + 2[( f (x(t)) − Fx(t))T Ω1 + (Fx(t) − f (x(t)))T Ω2]ẋ(t),
(9.15)

Similarly, we have

V̇2(t) = ξT (t)Xξ(t) − ξT (t − h)Xξ(t − h) + ξT (t)Zξ(t)

− (1 − μ)xT (t − h(t))Zξ(t − h(t)), (9.16)

and

V̇3(t) = h2 ẋ T (t)W ẋ(t) − h
∫ t

t−h
ẋT (ϑ)W ẋ(ϑ)dϑ, (9.17)

Inspired bySeuret andGouaisbaut [27], for the vector function x : [t−h(t), t] → R
n ,

we set a new vector function η : [t − h(t), t] → R
n

η(ϑ) = x(ϑ) − ϑ − t + h(t)

h(t)
x(t) − t − ϑ

h(t)
x(t − h(t)).
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It is easy to see that η(t) = 0 and η(t − h(t)) = 0, thus we use the Lemma 9.5, and
have

− h
∫ t

t−h(t)
ẋ T (ϑ)W ẋ(ϑ)dϑ

= − h
∫ t

t−h(t)
η̇T (ϑ)W η̇(ϑ)dϑ − h

h(t)
[x(t) − x(t − h(t))]T W [x(t) − x(t − h(t))]

≤ − hπ2

h3(t)

∫ t

t−h(t)
ηT (ϑ)dϑW

∫ t

t−h(t)
η(ϑ)dϑ

− h

h(t)
[x(t) − x(t − h(t))]T W [x(t) − x(t − h(t))]. (9.18)

Noting that

∫ t

t−h(t)
η(ϑ)dϑ

=
∫ t

t−h(t)

[
x(ϑ) − ϑ − t + h(t)

h(t)
x(t) − t − ϑ

h(t)
x(t − h(t))

]
dϑ

=
∫ t

t−h(t)
x(ϑ)dϑ − 0.5h(t)x(t) − 0.5h(t)x(t − h(t)), (9.19)

it follows from (9.18) that

− h
∫ t

t−h(t)
ẋ T (ϑ)W ẋ(ϑ)dϑ

≤ − h

h(t)
[x(t) − x(t − h(t))]T W [x(t) − x(t − h(t))]

− π2h

h(t)

[
1

h(t)

∫ t

t−h(t)
x(ϑ)dϑ − 0.5x(t) − 0.5x(t − h(t))

]T

× W

[
1

h(t)

∫ t

t−h(t)
x(ϑ)dϑ − 0.5x(t) − 0.5x(t − h(t))

]

= − h

h(t)
ςT (t)HT

1 WH1ς(t) − π2h

h(t)
ςT (t)HT

2 WH2ς(t)

= − h

h(t)
ςT (t)HT

12diag{W,π2W }H12ς(t)

= −
(
1 + h − h(t)

h(t)

)
ςT (t)HT

12diag{W,π2W }H12ς(t). (9.20)
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Similarly, we have

− h
∫ t−h(t)

t−h
ẋT (ϑ)W ẋ(ϑ)dϑ

≤ − h

h − h(t)
[x(t − h(t)) − x(t − h)]T W [x(t − h(t)) − x(t − h)]

− π2h

h − h(t)

[
1

h − h(t)

∫ t−h(t)

t−h
x(ϑ)dϑ − 0.5x(t − h(t)) − 0.5x(t − h)

]T

× W

[
1

h − h(t)

∫ t−h(t)

t−h
x(ϑ)dϑ − 0.5x(t − h(t)) − 0.5x(t − h)

]

= − h

h − h(t)
ςT (t)HT

3 WH3ς(t) − π2h

h − h(t)
ςT (t)HT

4 WH4ς(t)

= − h

h − h(t)
ςT (t)HT

34diag{W,π2W }H34ς(t)

= −
(
1 + h(t)

h − h(t)

)
ςT (t)HT

34diag{W,π2W }H34ς(t), (9.21)

where

H12 =
[H1
H2

]
, H34 =

[H3
H4

]
,

H1 = [I 0 −I 0 0 0 0 0
]
, H2 = [0.5I 0 0.5I 0 0 0 −I 0

]
,

H3 = [0 0 I 0 −I 0 0 0
]
, H4 = [0 0 0.5I 0 0.5I 0 0 −I

]
.

Now, in view of reciprocally convex approach introduced in [28], it is easy to see
that from (9.13),

ςT (t)

⎡

⎣

√
h−h(t)

h(t) H12

−
√

h−h(t)
h(t) H34

⎤

⎦
T [

diag{W,π2W } Y
∗ diag{W,π2W }

]

×
⎡

⎣

√
h−h(t)

h(t) H12

−
√

h−h(t)
h(t) H34

⎤

⎦ ς(t) ≥ 0, (9.22)

which is equivalent to the following inequality as

h − h(t)

h(t)
ςT (t)HT

12diag{W,π2W }H12ς(t) (9.23)

+ h(t)

h − h(t)
ςT (t)HT

34diag{W,π2W }H34ς(t) (9.24)

≥ ςT (t)HT
12YH34ς(t) + ςT (t)HT

34Y TH12ς(t), (9.25)
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Together with (9.18)–(9.21), it yields

−h
∫ t

t−h
ẋT (ϑ)W ẋ(ϑ)dϑ

≤ − ςT (t)HT
12diag{W,π2W }H12ς(t) − ςT (t)HT

12YH34ς(t)

− ςT (t)HT
12diag{W,π2W }H12ς(t) − ςT (t)HT

34Y TH12ς(t)

= − ςT (t)

[H12
H34

]T [diag{W,π2W } Y
∗ diag{W,π2W }

] [H12
H34

]
ς(t).

(9.26)

Therefore, it is not difficult to obtain that

V̇3(t) ≤ h2 ẋ T Mẋ(t)

− ςT (t)

[H12
H34

]T [diag{W,π2W } Y
∗ diag{W,π2W }

] [H12
H34

]
ς(t).

(9.27)

On the other hand, it follows from (9.5) that

( fi (xi (t)) − Fi xi (t))(Fi xi (t) − fi (xi (t))) ≤ 0, (9.28)

which means that for any appropriately dimensioned diagonal matrices Φl > 0,
l = 1, 2, 3, the following inequalities hold:

ξT (t)Λ1ξ(t) ≥ 0, (9.29)

ξT (t − h)Λ2ξ(t − h) ≥ 0, (9.30)
∫ t

t−h
ξT (ϑ)Λ1ξ(ϑ)dϑ ≥ 0, (9.31)

where Λl , l = 1, 2, 3, have been denoted in (9.12).
From (9.15)–(9.27), it can be concluded that

V̇ (t) − yT (t)Qy(t) − 2yT (t)Su(t) − uT (t)Ru(t) + θuT (t)u(t) ≤ ςT (t)Ξ1ς(t).

where

Ξ1 =

⎡

⎢⎢⎢⎢⎣

J1 J2 J4 J7 J11
∗ J3 J5 J8 0
∗ ∗ J6 J9 0
∗ ∗ ∗ J10 0
∗ ∗ ∗ ∗ J12

⎤

⎥⎥⎥⎥⎦
+ h2AT (t)WA(t)
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and

A(t) = [−A B 0 C 0 0 0 0 I
]

On the other hand, by using Schur complement and Lemma 2 in [19], it follows from
(9.12) that ςT (t)Ξ1ς(t) < 0, which implies that

V̇ (t) − yT (t)Qy(t) − 2yT (t)Su(t) − uT (t)Ru(t) + θuT (t)u(t) < 0. (9.32)

Noting that −Q > 0, we also have V̇ (t) < 0 for u(t) = 0. Then, in light of (9.14),
it can be shown that V̇ (t) < δ‖x(t)‖2 for a sufficiently small δ > 0 and x(t) �= 0,
that is, neural network (9.3) and (9.4) is stable.

In what follows, we will prove that neural network (9.3) and (9.4) is strictly
(Q, R, S)−θ-dissipative. To this end, we introduce the following performance index

J� = −〈y, Qy〉� − 〈y, Sy〉� − 〈u, Ru〉� + θ〈u,u〉�, (9.33)

where � > 0. Under the zero initial condition, it follows from (9.32) and (9.33) that

J� =
∫ �

0
[V̇ (t) − yT (t)Qy(t) − 2yT (t)Su(t) − uT (t)Ru(t)

+ θuT (t)u(t)]dt < 0.

for any nonzero u(t) ∈ L2[0,∞). This implies

∫ �

0
[yT (t)Qy(t) + 2yT (t)Su(t) + uT (t)Ru(t)]dt > θ

∫ �

0
uT (t)u(t)dt,

then the condition in (9.11) is satisfied. Hence, DNNs (9.3) and (9.4) is strictly
(Q, R, S) − θ-dissipative according to Definition 9.4. This completes the proof.

Remark 9.7 Many existing works (for example, [19, 29]) employed V3(t) =
h
∫ 0
−h

∫ t
t+s ẋ T (ϑ)W ẋ(ϑ)dϑds as a part of Lyapunov functional to derive delay-

dependent conditions, where the derivation of V3(t) was enlarged as V̇3(t) =
h2 ẋ T (t)W ẋ(t)−[x(t)− x(t − h)]T W [x(t)− x(t − h)] by using the noted Jensen’s
inequality. It should be pointed out that, however, some useful information was
ignored in those papers. In this work, an extended Wirtinger inequality is introduced
and then the derivation of V3(t) is enlarged as shown in (9.27), it is easy to see that
the conservatism is reduced due to W > 0.

Remark 9.8 Theorem 9.31 provides a sufficient condition of strictly (Q, R, S) −
θ-dissipative for DNNs (9.3) and (9.4), it is worth mentioning that the proposed
condition can be directly used to analyze the passivity of DNNs (9.3) and (9.4). By
following a similar line in the proof of Theorem 9.6, the passivity condition of DNNs
(9.3) and (9.4) can be obtained readily, which is shown as the following corollary.
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Corollary 9.9 Given a scalar h > 0, μ > 0, and matrices Q = QT = 0, S = I ,
R = RT = 2θ I , DNNs (9.3) and (9.4) is passive, if there exist matrices P > 0,

X =
[

X1 X2

X T
2 X3

]
> 0, Z =

[
Z1 Z2

Z T
2 Z3

]
> 0, W > 0, Y1, Y2, diagonal matrices Φl > 0,

l = 1, 2, 3, Ω1 = diag{λ11,λ12, . . . ,λ1n} > 0, Ω2 = diag{λ21,λ22, . . . ,λ2n} > 0,
and a scalar θ > 0 such that the LMIs in (9.12) and (9.13) hold.

Remark 9.10 In fact, the conditions (i.e., stability criterion, passivity condition, and
strictly (Q, R, S) − θ-dissipative condition) for DNNs (9.3) and (9.4)) given in
[19, 29, 30] were based on the idea of free-weighting matrix. However, our method
outperforms those in [19, 29, 30]. The reduced conservatism ofCorollary 9.9 benefits
from reciprocally convex approach combined with an extendedWirtinger inequality.
In addition, the proposed conditions require less computational complexity than the
methods in [19, 29]. More specifically, there are 9.5n2 + 5.5n + 1 variables and
8n2 + 8n + 1 variables needed to solve in Theorem 1 in [29] and in Corollary 3 in
[19], respectively, compared with 6n2+8n+1 variables needed in our Corollary 9.9.

9.2 Positive Invariant Sets and Attractive Sets of DNN

9.2.1 Introduction

From a systems-theoretic point of view, the global stability of recurrent neural net-
works (RNNs) is a very interesting issue for research because of the special nonlinear
structure of RNNs. From a practical point of view, the global stability of RNNs is also
very important because it is a prerequisite inmany neural network applications. In the
past two decades, there has been arousing widespread concern on neural networks,
due to their successful applications in many areas, such as pattern recognition, paral-
leled computation, associative memory, optimization, control, and signal processing,
etc. It is well known that the integration and communication delays are unavoidably
encountered both in biological and artificial neural systems. On the other hand, it
has also been shown that the process of moving images requires the introduction of
delay in the signal transmitted through the networks. Therefore, Lyapunov stability
is one of the important properties of dynamic systems and there are a large number
of results on the stability in Lyapunov sense for neural networks with bounded or
unbounded time delays [31–39]. For example, Ref. [33] gets some sufficient con-
ditions for globally exponential stability of unique equilibrium of the neural work
with unbounded time delay by assuming that the activation functions are bounded
and satisfy the global Lipschitz condition.

The studies of periodicity and almost periodicity are also important to dynamical
systems as well as neural networks. A necessary condition of existence on global
attractive periodicity and almost periodicity is that the system is ultimately bounded.
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Global attractive periodic states and almost periodic states should be within global
attractive sets, so that it would provide specific bounds on the existence of them.

It is worth mentioning that Lyapunov stability refers to the stability of equilib-
rium points which requires the existence and uniqueness of equilibrium points, while
Lagrange stability refers to the stability of the total system which does not require
the information of equilibrium points. Moreover, the global stability in Lyapunov
sense can be viewed as a special case of stability in Lagrange sense by regarding an
equilibrium point as an attractive set [40]. It is generally considered that a nonlin-
ear dynamic systems may have chaos when the system is dissipative (or ultimately
bounded) in large scale and has positive Lyapunov index in small scale. The notion of
global stability in Lagrange sense is to extend the global stability in Lyapunov sense
by including many dynamic behaviors such as stability, periodicity, and chaos. Basi-
cally, the study of global stability in Lagrange sense is to determine global attractive
sets. Once a global attractive set is found, a rough bound of equilibria, periodic states,
and chaotic attractors can be estimated. Thus global stability in Lagrange sense for
RNNs canprovidemore prior knowledge. In addition, the global stability in Lyapunov
sense on unique equilibrium point and the stability in Hopfield sense (i.e., complete
stability) can be viewed as a special case of stability in Lagrange sense by regarding
an equilibrium point as an attractive set. For this reason, the Lagrange stability has
been extensively studied [40–47]. Reference [40] gives the detailed estimation of
global exponential attractive sets and positive invariant sets of RNNs without any
hypothesis on the existence, which is only based on the parameters of the systems.
Meanwhile, it is also verified that outside the global exponential attractive set there
is no equilibrium state, periodic state, almost periodic state, and chaos attractor of
the neural network. Though delays occur frequently in practical applications, it is
difficult tomeasure them precisely. Inmost situations, delays are time-varying, and in
fact unbounded. That is, the entire history of the DNNs affects the present states [34].
For example, when the time delay is τ (t) = t

3 , the time delay τ (t) is unbounded and
time-varying. Therefore, the studies of neural network with variable and unbounded
time delays are more important and actual to practical neural networks than those
with bounded delays. Therefore, it is necessary to study the Lagrange stability and
invariant set of neural network with unbounded time delays.

Motivated by the above analysis, the aim of this section is to study the positive
invariant sets and global exponential attractive sets of a class of neural networks with
unbounded time delays.

9.2.2 Problem Formulation and Preliminaries

In this section, denote R
+ = (0,+∞) and Γ = {1, 2, . . . , n}. C[X, Y ] is a class

of continuous mapping set from the topological space X to the topological space Y .
Especially, C � C((−∞, t0], R

n).
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Consider the following neural networks with unbounded time delays

ẋi (t) = −ci xi (t) +
n∑

j=1

ai jg j (x j (t)) +
n∑

j=1

bi j f j (x j (t − τ (t))) + ui , (9.34)

where i, j ∈ Γ = {1, 2, . . . , n}; ci ∈ R
+ is the self-feedback connection weight;

ai j , bi j ∈ R are connection weights related to the neurons without and with delays,
respectively; ui ∈ R is an external input; τ (t) ≥ 0 is a continuous time delay;
g j (·) and f j (·) which meet the conditions g j (0) = 0 and f j (0) = 0 are activation
functions related to the neurons without and with delays, respectively. In this section,
our results hold under the following assumption:

Assumption 9.11 g j (·) and f j (·) are Lipschitz continuous, g j (0) = 0, f j (0) =
0, j ∈ Γ . That is, there exist constants h j , L j such that for any x1, x2, y1, y2 ∈ R

the following inequalities hold,

| g j (x1) − g j (x2) |≤ h j | x1 − x2 |, | f j (y1) − f j (y2) |≤ L j | y1 − y2 | .

For any initial functionϕ(s) ∈ C, s ∈ (−∞, t0], the solution of (9.34) that starts from
the initial condition ϕ will be denoted by x(t; t0,ϕ) or simply x(t) if no confusion
occurs.

In the following, some definitions and lemmas are given so that our main results
can be expediently explained.

Definition 9.12 (see [22]) The neural networkmodel (9.34) is said to be a dissipative
system, if there exists a compact set S ⊂ R

n , such that ∀x0 ∈ R
n , ∃� > 0, when

t ≥ t0 + �, x(t; t0, x0) ⊂ S, where x(t; t0, x0) denotes the solution of Eq. (9.34)
from initial state x0 and initial time t0, x(t) = (x1(t), . . . , xn(t))T . In this case, S is
called a globally attractive set. A set S is called positive invariant, if ∀x0 ∈ S implies
x(t; t0, x0) ∈ S for t > t0.

Definition 9.13 (see [22]) Let S is a globally attractive set of neural network model
(9.34). The neural network model (9.34) is said to be globally exponentially dissi-
pative system, if there exists a compact set S∗ ⊃ S in R

n such that ∀x0 ∈ R
n\S∗,

there exists a constant M(x0) > 0 and α > 0 such that

inf
x∈Rn\S∗{‖x(t; t0, x0) − x̃‖|x̃ ∈ S∗} ≤ M(x0)e

−α(t−t0), (9.35)

where the set S∗ is called globally exponentially attractive set, x ∈ R
n\S∗ means

x ∈ R
n but x /∈ S∗.

Definition 9.14 (see [46, 48]) A set S ⊆ R
n is said to be a positive invariant set of

(9.34), if for ∀s ∈ [t0 − τ (t0), t0], x(s) ∈ S implies x(t; t0,ϕ) ⊆ S, t ≥ t0.
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Definition 9.15 (see [46, 48]) A set S ⊆ R
n is said to be a attractive set of (9.34), if

for ∀s ∈ [t0 −τ (t0), t0], x(s) ∈ R
n\S, limt→+∞ ρ(x(t), S) = 0 holds, where R

n \ S
is the complement set of S, ρ(x, S) = inf y∈S ‖ x − y ‖ is the distance between x
and S.

Definition 9.16 (see [45]) The compact set Ω � {x ∈ R
n|V (x) ≤ l} is said to be a

global exponential attractive set of (9.34), where V (x) is a radially unbounded and
positive definite function, if there exists a nonnegative continuous function K (·), and
two positive constants l and α such that for any solution x(t) = x(t; t0,ϕ) of (9.34),
V (x(t)) > l, implies

V (x(t)) − l ≤ K (ϕ) exp{−αt}, t ≥ t0.

Definition 9.17 (see [49]) The trajectory of network (9.34) is said to be uniformly
stable in Lagrange sense (or uniformly bounded), if for any H > 0, there exists a
constant K = K (H) > 0 such that |x(t; t0,φ)| < K for all φ ∈ CH and t ≥ 0,
where CH is defined as the subset {σ ∈ C : ‖σ‖ ≤ H}.
Definition 9.18 (see [49]) The trajectory of network (9.34) is called globally expo-
nentially stable in Lagrange sense, if it is both uniformly stable in Lagrange sense
and globally exponentially attractive.

Lemma 9.19 (see [47, 49]) Let a > 0, b > 0, p > 1, q > 1, and 1
p + 1

q = 1.

Then we have the inequality ab ≤ 1
p a p + 1

q bq , and the equality holds if and only if
a p = bq .

9.2.3 Invariant Set Results

In the following, we will establish some invariant set results for neural network
(9.34).

Theorem 9.20 Under Assumption 9.11, and assuming that time delay satisfies 0 <

τ̇ (t) ≤ τM < 1 as well as ci > hi
∑n

j=1 |a ji | + Li
1−τM

∑n
j=1 |b ji |, i ∈ Γ . Then the

set

S1 =

⎧
⎪⎨

⎪⎩
x ∈ R

n|
n∑

i=1

|xi (t)| ≤
∑n

i=1 |ui |
min
1≤i≤n

{ci − hi
∑n

j=1 |a ji | − Li
1−τM

∑n
j=1 |b ji |}

⎫
⎪⎬

⎪⎭

is a positive invariant set and global attractive set of the system (9.34).
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Proof We consider the following radially unbounded and positive definite Lyapunov
function

V (t) =
n∑

i=1

⎛

⎝|xi (t)| + 1

1 − τM

n∑

j=1

(
|bi j |

∫ t

t−τ (t)
| f j (x j (s)

)
|ds

⎞

⎠ .

Calculating the Dini derivative of V (t) along the positive semi trajectory of (9.34),
it follows that

D+V (t)|(9.34)

≤
n∑

i=1

⎛

⎝−ci |xi (t)| +
n∑

j=1

|ai j ||g j (x j (t))| +
n∑

j=1

|bi j || f j (x j (t − τ (t)))| + |ui |
⎞

⎠

+
n∑

i=1

⎛

⎝ 1

1 − τM

n∑

j=1

|bi j || f j (x j (t))|

− 1

1 − τM
(1 − τ̇ (t))

n∑

j=1

|bi j || f j (x j (t − τ (t)))|
⎞

⎠

≤
n∑

i=1

⎛

⎝−ci |xi (t)| +
n∑

j=1

|ai j ||g j (x j (t))|

+ 1

1 − τM

n∑

j=1

|bi j || f j (x j (t))| + |ui |
⎞

⎠

≤
n∑

i=1

⎛

⎝−ci |xi (t)| +
n∑

j=1

h j |ai j ||x j (t)| + 1

1 − τM

n∑

j=1

L j |bi j ||x j (t)| + |ui |
⎞

⎠

=
n∑

i=1

⎛

⎝−(ci − hi

n∑

j=1

|a ji | − Li

1 − τM

n∑

j=1

|b ji |)|xi (t)| + |ui |
⎞

⎠

≤ − min
1≤i≤n

⎧
⎨

⎩ci − hi

n∑

j=1

|a ji | − Li

1 − τM

n∑

j=1

|b ji |
⎫
⎬

⎭

n∑

i=1

|xi (t)| +
n∑

i=1

|ui |. (9.36)

When x ∈ Rn \ S1, that is x /∈ S1, then D+V (t)|(9.34) < 0, which implies that for
∀ϕ ∈ S1, t ≥ t0, x(t; t0,ϕ) ⊆ S1 holds. And for x0 /∈ S1, there exists �0 such that
x(t; t0,ϕ) ⊆ S1 holds for all t ≥ t0 + �. Following the Definitions 9.14 and 9.15,
we can know S1 is a positive invariant and global attractive set of (9.34).
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From Theorem 9.20, we can derive the following corollary:

Corollary 9.21 Under Assumption 9.11 and assuming that time delay satisfies 0 <

τ̇ (t) ≤ τM < 1 as well as ci > hi
∑n

j=1 |a ji | + Li
1−τM

∑n
j=1 |b ji |, i ∈ Γ. Then the

set

S̃1 =
{

x ∈ R
n||xi (t)| ≤

∑n
i=1 |ui |

ci − hi
∑n

j=1 |a ji | − Li
1−τM

∑n
j=1 |b ji |

, i ∈ Γ

}

is a positive invariant and global attractive set of the system (9.34).

Choosing ξ1 + ξ2 = 1, 0 < ξ1 < 1, and let A = (ai j )n×n , B = (bi j )n×n ,

Q11 = diag(−ξ1c1, . . . ,−ξ1cn), Q =
⎛

⎜⎝
Q11

A
2

B
2

AT

2 0 0
BT

2 0 0)

⎞

⎟⎠, Q̃ =
⎛

⎜⎝
Q11 + εIn

A
2

B
2

AT

2 0 0
BT

2 0 0)

⎞

⎟⎠,

where 0 ≤ ε � 1. Then we have the following theorem.

Theorem 9.22 Under Assumption 9.11 and assume that Q is negative semidefinite.
Then the set

S2 =
{

x ∈ R
n|

n∑

i=1

ci x2i (t) ≤
∑n

i=1 u2
i

4ξ2ε

}

is a positive invariant and global attractive set of the system (9.34).

Proof Introducing the radially unbounded and positive definite Lyapunov function

V (t) =
n∑

i=1

x2i (t)

2
,

it leads to

dV (t)

dt
|(9.34)

=
n∑

i=1

xi (t)

⎛

⎝−ci xi (t) +
n∑

j=1

ai jg j (x j (t)) +
n∑

j=1

bi j f j (x j (t − τ (t))) + ui

⎞

⎠

= −
n∑

i=1

ξ1ci x2i (t) +
n∑

i=1

xi (t)
n∑

j=1

ai jg j (x j (t))

+
n∑

i=1

xi (t)
n∑

j=1

bi j f j (x j (t − τ (t))) +
n∑

i=1

(
−ξ2ci x2i (t) + 2

√
εxi (t)

ui

2
√

ε

)

≤ (xT (t), gT (x(t)), f T (x(t − τ (t))))T Q(xT (t), gT (x(t)), f T (x(t − τ (t))))
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+
n∑

i=1

(
−ξ2ci x2i (t) + εx2i (t) + u2

i

4ε

)

= (xT (t), gT (x(t)), f T (x(t − τ (t))))T Q̃(xT (t), gT (x(t)), f T (x(t − τ (t))))

+
n∑

i=1

(
−ξ2ci x2i (t) + u2

i

4ε

)
. (9.37)

Since Q is negative semidefinite, by the continuation of Q, Q̃ is negative semi-
definite too. So

D+V (t)|(9.34) ≤ −ξ2

n∑

i=1

ci x2i (t) +
n∑

i=1

u2
i

4ε
.

When x ∈ R
n \ S2, i.e., x /∈ S2, then D+V (t)|(9.34) ≤ 0, which implies that for

∀ϕ ∈ S2, t ≥ t0, x(t; t0,ϕ) ⊆ S2 holds. And for x0 /∈ S2, there exists � > 0 such
that x(t; t0,ϕ) ⊆ S2 holds for all t ≥ t0 + �. Following the Definitions 9.14 and
9.15, S2 is a positive invariant and globally attractive set of (9.34).

From Theorem 9.22, we have the following corollary:

Corollary 9.23 Under Assumption 9.11 and assume that Q is negative semidefinite.
Then the set

S̃2 =
{

x ∈ R
n|x2i (t) ≤ u2

i

4ξ2ciε
, i ∈ Γ

}

is a positive invariant and global attractive set of the system (9.34).

Now, similar to [46], we will establish a sufficient condition of global exponential
attractive set for the system (9.34).

Theorem 9.24 Under Assumption 9.11, and assume that:

1. there exist p > 1, εi > 0, i = 1, 2, 3, such that I11 > I12 > 0, where

I11 = min
1≤i≤n

⎧
⎨

⎩pci −
n∑

j=1

(
(p − 1)ε1h j |ai j |

+ 1

ε
p−1
1

hi |a ji | + (p − 1)ε2L j |bi j |
)

− (p − 1)ε3

}
, (9.38)

I12 = max
1≤i≤n

⎧
⎨

⎩

n∑

j=1

1

ε
p−1
2

Li |b ji |
⎫
⎬

⎭ . (9.39)

2. there exist M1 > 1 and β1 > 0 such that

e
∫ t

t0
(−I11+I12eI11τ (s))ds ≤ M1e−β1(t−t0).
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Then the set S = {x ∈ R
n|∑n

i=1 |xi (t)| ≤ η
I11

} is a global exponential attractive set

of the system (9.34), where η ≥
I11
∑n

i=1
|ui |p

pε
p−1
3

I11−I12
.

Proof Consider the radially unbounded and positive definite Lyapunov function

V (t) =
n∑

i=1

|xi (t)|p

p
.

Calculating the Dini derivative of V (t) along the positive semi trajectory of (9.34)
and employing Lemma 9.19, we obtain

D+V (t)|(9.34)

≤
n∑

i=1

|xi (t)|p−1

⎛

⎝−ci |xi (t)| +
n∑

j=1

|ai j ||g j (x j (t))|

+
n∑

j=1

|bi j || f j (x j (t − τ (t)))| + |ui |
⎞

⎠

≤
n∑

i=1

|xi (t)|p−1

⎛

⎝−ci |xi (t)| +
n∑

j=1

h j |ai j ||x j (t)|

+
n∑

j=1

L j |bi j ||x j (t − τ (t))| + |ui |
⎞

⎠

=
n∑

i=1

⎛

⎝−ci |xi (t)|p +
n∑

j=1

h j |ai j ||xi (t)|p−1|x j (t)|
⎞

⎠

+
n∑

i=1

n∑

j=1

(
L j |bi j ||xi (t)|p−1|x j (t − τ (t))| + |xi (t)|p−1|ui |

)

≤
n∑

i=1

⎡

⎣−ci |xi (t)|p +
n∑

j=1

h j |ai j |
(

p − 1

p
ε1|xi (t)|p + 1

pε
p−1
1

|x j (t)|p

)⎤

⎦

+
n∑

i=1

n∑

j=1

L j |bi j |
(

p − 1

p
ε2|xi (t)|p + 1

pε
p−1
2

|x j (t − τ (t))|p

)

+
n∑

i=1

(
p − 1

p
ε3|xi (t)|p + |ui |p

pε
p−1
3

)

=
n∑

i=1

⎡

⎣−pci +
n∑

j=1

(
(p − 1)ε1h j |ai j | + 1

ε
p−1
1

hi |a ji | + (p − 1)ε2L j |bi j |
)
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+(p − 1)ε3

⎤

⎦ |xi (t)|p

p

+
n∑

i=1

n∑

j=1

1

pε
p−1
2

L j |bi j ||x j (t − τ (t))|p +
n∑

i=1

|ui |p

pε
p−1
3

≤ − I11V (t) + I12V (t − τ (t)) +
n∑

i=1

|ui |p

pε
p−1
3

. (9.40)

Let

y(t) =
(

V (t) − η

I11

)
eI11(t−t0), y(t0) = sup

−∞<s≤t0

(
V (s) − η

I11

)
,

then

D+y(t)|(9.34)

≤
(

−I11V (t) + I12V (t − τ (t)) +
n∑

i=1

|ui |p

pε
p−1
3

+ I11V (t) − η

)
eI11(t−t0)

= I12

⎛

⎜⎝V (t − τ (t)) −
η −∑n

i=1
|ui |p

pε
p−1
3

I12

⎞

⎟⎠ eI11(t−t0). (9.41)

Since η ≥
I11
∑n

i=1
|ui |p

pε
p−1
3

I11−I12
, one has

V (t − τ (t)) −
η −∑n

i=1
|ui |p

pεp−1

I12
≤ V (t − τ (t)) − η

I11
. (9.42)

From (9.41) and (9.42), one gets

D+y(t)|(9.34) ≤ I12

(
V (t − τ (t)) − η

I11

)
eI11(t−t0) = I12y(t − τ (t))eI11τ (t).

Then

y(t) ≤ y(t0) +
∫ t

t0
I12y(s − τ (s))eI11τ (s)ds, t ≥ t0. (9.43)

Let

U (t) =
{

ȳ(t0) + ∫ t
t0

I12y(s − τ (s))eI11τ (s)ds, t ≥ t0,

ȳ(t0), t ≤ t0.
(9.44)
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Since I12 > 0, when V (t) >
η

I11
, then y(t) ≥ 0, U (t) is a monotone increasing

function and we have for ∀t ≥ t0,

dU (t)

dt
= I12y(t − τ (t))eI11τ (t). (9.45)

It follows from I11 > 0, (9.44) and (9.45), one gets y(t) ≤ U (t) for ∀t ≥ t0. Hence,
y(t − τ (t)) ≤ U (t − τ (t)) ≤ U (t). So

I12y(t − τ (t))eI11τ (t) ≤ I12U (t)eI11τ (t), t ≥ t0. (9.46)

Combining (9.45) and (9.46), one gets

dU (t)

dt
≤ I12U (t)eI11τ (t).

Therefore

V (t) − η

I11
= y(t)e−I11(t−t0) ≤ U (t)e−I11(t−t0) ≤ ȳ(t0)e

∫ t
t0

(−I11+I12eI11τ (s))ds
.

From (2) in Theorem 9.24, we can obtain

V (t) − η

I11
≤ M1 ȳ(t0)e

−β1(t−t0).

It follows from Definition 9.16, the set S3 is a global exponential attractive set of the
system (9.34).

Note thatTheorem9.24 establishes a global exponential attractive set of the system
(9.34) by Young Inequality (see Lemma 9.19). In Theorem 9.24, p �= 1. If p = 1,
how about the case? In other words, if we do not use the Young Inequality, can we
derive a global exponential attractive set of the system (9.34)? In the following, we
will present such a kind of result without using Lemma 9.19).

Theorem 9.25 Under Assumption 9.11, and assume that:
(a) there exist Wi > 0, i ∈ Γ , such that

I21 = min
1≤ j≤n

{
c j −

n∑

i=1

Wi

W j
h j |ai j |

}
> I22 = max

1≤ j≤n

{
n∑

i=1

Wi

W j
L j |bi j |

}
.

And let
(b) there exist M2 > 1 and β2 > 0 such that

e
∫ t

t0
(−I21+I22eI21τ (s))ds ≤ M2e−β2(t−t0).
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Then the set S4 = {x ∈ R
n|∑n

i=1 Wi |xi (t)| ≤ η
I21

} is a global exponential attractive

set of the system (9.34), where η ≥ I21
∑n

i=1 Wi |ui |
I21−I22

.

Proof Consider the radially unbounded and positive definite Lyapunov function

V (t) =
n∑

i=1

Wi |xi (t)|,

then

D+V (t)|(9.34)

≤
n∑

i=1

⎛

⎝−Wi ci |xi (t)| +
n∑

j=1

Wi |ai j ||g j (x j (t))|

+
n∑

j=1

Wi |bi j || f j (x j (t − τ (t)))| + Wi |ui |
⎞

⎠

≤
n∑

i=1

⎛

⎝−Wi ci |xi (t)| +
n∑

j=1

Wi h j |ai j ||x j (t)|

+
n∑

j=1

Wi L j |bi j ||x j (t − τ (t))| + Wi |ui |
⎞

⎠

≤ − I21V (t) + I22V (t − τ (t)) +
n∑

i=1

Wi |ui |, t ≥ t0. (9.47)

Similar to the last part of the proof of Theorem 9.24, S4 is a global exponential
attractive set of the system (9.34).

If both fi (·) and gi (·) are bounded, it is well known that there exists an equilibrium
of the system (9.34) by Schauder fixed point theorem. Thus we have the following
corollary which is the Theorem 9.20 in [33].

Corollary 9.26 Under Assumption 9.11, if both fi (·) and gi (·) are bounded, i ∈ Γ ,
and the (a) and (b) in Theorem 9.25 hold, then the equilibrium point of the system
(9.34) is globally exponentially stable.

Choosing A′ = (ai j h j )n×n , B ′ = (bi j L j )n×n , we denote that λA′ and λB′ are the
maximal eigenvalues of following matrices

A∗ =
(

0 A′
A′T 0

)

2n×2n
and B∗ =

(
0 B ′

B ′T 0

)

2n×2n
,

respectively. It is easy to prove that if λ is an eigenvalue of the matrix A∗, then −λ
is also an eigenvalue of the matrix A∗, thus λA′ > 0, λB′ > 0 [46].
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Theorem 9.27 Under Assumption 9.11, and assume that:
(A) there exists ε̃ > 0, such that

I31 = 2 min
1≤i≤n

{ci } − ε̃ − 2λA′ − λB′ > I32 = λB′ .

(B) there exist M3 > 1 and β3 > 0 such that

e
∫ t

t0
(−I31+I32eI31τ (s))ds ≤ M3e−β3(t−t0).

Then the set S5 = {x ∈ R
n|∑n

i=1 |xi (t)| ≤ η
I31

} is a global exponential attractive

set of the system (9.34), where η ≥ I31
∑n

i=1
u2i
ε̃

I31−I32
.

Proof Consider the following function

V (t) =
n∑

i=1

x2i (t),

and let

f̃ (x(t)) =
(

1

h1
f1(x1(t)), . . . ,

1

hn
fn(xn(t))

)T

,

g̃(x(t)) =
(

1

L1
g1(x1(t)), . . . ,

1

Ln
gn(xn(t))

)T

,

one has

dV (t)

dt
|(9.34)

=
n∑

i=1

2xi (t)

⎛

⎝−ci xi (t) +
n∑

j=1

ai jg j (x j (t)) +
n∑

j=1

bi j f j (x j (t − τ (t))) + ui

⎞

⎠

= −
n∑

i=1

2ci x2i (t) +
n∑

i=1

2xi (t)
n∑

j=1

ai jg j (x j (t))

+
n∑

i=1

2xi (t)
n∑

j=1

bi j f j (x j (t − τ (t))) +
n∑

i=1

2xi (t)
√

ε̃
ui√
ε̃

≤
n∑

i=1

(−2ci + ε̃)x2i (t) + (xT (t), g̃T (x(t)))

(
0 A′

A′T 0

)
(xT (t), g̃T (x(t)))T

+ (xT (t), f̃ T (x(t − τ (t))))

(
0 B ′

B ′T 0

)
(xT (t), f̃ T (x(t − τ (t))))T +

n∑

i=1

u2
i

ε̃
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≤(−2 min
1≤i≤n

{ci } + ε̃ + 2λA′ + λB′)V (t) + λB′ V (t − τ (t)) +
n∑

i=1

u2
i

ε̃

= − I31V (t) + I32V (t − τ (t)) +
n∑

i=1

u2
i

ε̃
. (9.48)

Similar to the last part of the proof of Theorem 9.24, S5 is a globally exponentially
attractive set of the system (9.34).

9.3 Attracting and Invariant Sets of CGNN with Delays

9.3.1 Introduction

Since Cohen–Grossberg neural networks (CGNN) were first proposed by Cohen
and Grossberg [50] in 1983, many researchers have done extensive works on this
subject due to their extensive applications in many fields such as pattern recognition,
parallel computing, associative memory, signal and image processing, and combi-
natorial optimization. In such applications, it is of prime importance to ensure that
the designed neural networks is stable. In reality, time delays often occur due to
finite switching speeds of the amplifiers and communication time. Moreover, it was
observed both experimentally and numerically that time delay could destroy a sta-
ble network and cause sustained oscillations, bifurcation or chaos, and thus could
be harmful. In recent years, the dynamical behaviors of Cohen–Grossberg neural
networks with delays have been studied by many researchers [51–58].

Similar to the study of invariant set of recurrent neural networks with delay in
Sect. 9.2, it is necessary to study the global attracting set and invariant set of CGNNs
with time-varying delays. This motivates us to write this section. Different from
[59–61], we will introduce a new nonlinear differential inequality, which is more
effective than the linear differential inequalities for studying the asymptotic behavior
of some nonlinear differential equations. Applying this new nonlinear delay differ-
ential inequality, the attracting set and invariant set of CGNNs are obtained. Mean-
while, using the properties of M-cone and a generalization of Barbalat’s lemma, the
boundedness and asymptotic behavior for the solution of the inequality are obtained.
Furthermore, without using Lyapunov functional, the proposed method is shown
to be simple yet effective for analyzing the asymptotic behavior of CGNNs with
time-varying delays.

For convenience, in the following, the meanings of notations Γ , R+ and C[X, Y ]
are the same defined in Sect. 9.2.2. For A, B ∈ R

m×n or A, B ∈ R
n , A ≥ B(A > B)

means that each pair of corresponding elements of A and B satisfies the inequality
“≥ (>).” In particular, letC � C[[−τ , 0], R

n] denote the family of all bounded con-
tinuousR

n-valued functionsφ defined on [−τ , 0]with the norm ‖ φ ‖= sup−τ≤θ≤0 |
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φ(θ) |, where | · | is Euclidean norm of R
n . For any x ∈ R

n , A ∈ R
n×n , φ ∈ C , we

define

[x]+ = (| x1 |, | x2 |, . . . , | xn |)T � col{| xi |},
[A]+ = (| ai j |)n×n,

[φ(t)]τ = col{[φi (t)]τ },
[φ(t)]+τ = col{[φ(t)]+}τ ,
[φi (t)]τ = sup

−τ≤θ≤0
{φi (t + θ)}.

For an M-matrix D ([62, 63], p. 114), we denote D ∈ M and ΩM (D) � {z ∈
R

n|Dz > 0, z > 0}.

9.3.2 Problem Formulation and Preliminaries

Now, we will consider the following neural networks,

ẋi (t) = αi (xi (t))

⎡

⎣−βi (xi (t)) + Ei +
n∑

j=1

ai jg j (x j (t))

+
n∑

j=1

bi jg j (x j (t − τi j (t)))

⎤

⎦ ,

xi (t0 + s) = φi (s),−τ ≤ s ≤ 0, i ∈ N , (9.49)

where xi (t) is the i th neuron state, αi (·) represents an amplification function, βi (·)
is an appropriately behaved function, g j (·) denotes the activation function, τi j (t) is
a time-varying delay with 0 ≤ τi j (t) ≤ τ , τ is a constant. Ei denotes the input and
bias of the i th neuron, i, j ∈ Γ .

Throughout the subsection, we always assume that for any φ ∈ C , system (9.49)
has least one solution through (t0,φ), denoted by x(t; t0,φ) or xt (t0,φ) (simply x(t)
or xt if no confusion occurs), where xt (t0,φ) = x(t + s, t0,φ) ∈ C, s ∈ [−τ , 0].

To prove our results, the following generalization of Barbalat’s lemma are nec-
essary.

Lemma 9.28 (See [64])Let f (t) be defined, continuous, and piecewise continuously
differentiable for t ≥ 0, and let f (t) and ḟ (t) be bounded. Let G(x) be defined,
continuous, and positive definite for all x. Further, let

∫ ∞

0
G ( f (t)) dt < ∞,

then f (t) → 0 as t → ∞.
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In the following, referring to [48], a useful nonlinear differential inequality will
be given.

Lemma 9.29 Assume u(t) ∈ C[[t0,∞), R
n] satisfies that

{
D+[u(t)]+ ≤ R(u(t))

(
P[u(t)]+ + Q[u(t)]+τ + E

)
, t ≥ t0,

u(t0 + θ) = φ(θ) ∈ C, θ ∈ [−τ , 0], (9.50)

where D+ denotes the Dini derivative operator, P = (pi j )n×n and pi j ≥ 0 for i �=
j, Q = (qi j )n×n ≥ 0, E = col{Ei } ≥ 0, R(u) = diag{Ri (u)}, Ri (·) ∈ C[Rn, R+].
If D = −(P + Q) ∈ M and L = D−1E , then:

(1) For any constant d̄ ≥ 1, the solution u(t) of (9.50) satisfies

[u(t)]+ ≤ L , t ≥ t0, (9.51)

provided that [φ]+τ ≤ d̄ L .

(2)

[u(t)]+ ≤ ze
−λ
∫ t

t0
R̂(u(s))ds + L , t ≥ t0, (9.52)

provided that the initial conditions satisfy

[u(t)]+ ≤ ze
−λ
∫ t

t0
R̂(u(s))ds + L , t ∈ [t0 − τ , t0], (9.53)

where R̂(u) ≤ min1≤i≤n{Ri (u)} with R̂(u) ∈ C[Rn, R+], z = col{zi } ∈ ΩM (D)

and the positive constant λ is determined by the following inequality

[λI + P + QeλHτ ]z < 0, (9.54)

where H = max[u]+≤d̄ L R̂(u) < ∞.

Proof Since D = −(P + Q) ∈ M , we have D−1 ≥ 0. Let F = D−1col{1}ε (ε > 0
small enough), then F > 0. In order to prove (9.51), we will first prove that

[u(t)]+ ≤ d̄ L + F � col{x̄i } = x̄, ∀t ≥ t0, (9.55)

for any given initial function φ ∈ C with [φ]+τ ≤ d̄ L .
If (9.55) does not hold, then there exist i ∈ Γ and t1 > t0 such that

| ui (t1) |= x̄i , [u(t)]+ ≤ x̄, for t ≤ t1, (9.56)

and

D+ | ui (t1) |≥ 0. (9.57)
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It follows from (9.50) and (9.56) that

D+ | ui (t1) |+ ≤ R(u(t1))
[
P[u(t1)]+ + Q[u(t1)]+τ + E

]

≤ R(u(t1))[(P + Q)x̄ + E]
= −R(u(t1))[d̄ E + col{1}ε − E]
≤ −R(u(t1))col{1}ε < 0,

which contradicts with the inequality (9.57). So (9.55) holds for all t ≥ t0. Letting
ε → 0 in (9.55), we have

[u(t)]+ ≤ d̄ L , t ≥ t0.

The proof of part (1) is completed.
Since L = D−1E , we have (P + Q)L + E = 0. Then

n∑

j=1

(pi j + qi j )L j + Ei = 0, i ∈ Γ. (9.58)

From (9.54), we can get

n∑

j=1

(pi j + qi j e
λHτ )z j < −λzi , i ∈ Γ. (9.59)

In the following, we at fist shall prove that for any positive constant ε,

| ui (t) |≤(1 + ε)

(
zi e

−λ
∫ t

t0
R̂(u(s))ds + Li

)
� wi (t), t ≥ t0, i ∈ N . (9.60)

We let

ð = {i ∈ Γ | |ui (t)| > wi (t) for some t ∈ [t0,∞]},
θi = inf{t ∈ [t0,∞]| |ui (t)| > wi (t), i ∈ ð}.

If inequality (9.60) is not true, then ð is a nonempty set and there must exist some
integer m ∈ ð such that θm = mini∈ð{θi } ∈ [t0,∞).

By um(t) ∈ C[[t0,∞), R] and the inequality (9.60), we can get

θm > t0, |um(θm)| = wm(θm), D+|um(θm)| = ẇm(θm) (9.61)

|ui (t)| ≤ wi (t), t ∈ [t0 − τ , θm], i ∈ Γ. (9.62)
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By using (9.50) and (9.58)–(9.62), we obtain

D+|um(θm)|

≤ Rm(u(θm))

⎡

⎣
n∑

j=1

(1 + ε)z j e
−λ
∫ θm

t0
R̂(u(s))ds

[
pmj + qmj e

λ
∫ θm
θm−τ R̂(u(s))ds

]
− εEm

⎤

⎦

≤ Rm(u(θm))

⎡

⎣
n∑

j=1

(
pmj + qmj e

λHτ
)

(1 + ε)z j e
−λ
∫ θm

t0
R̂(u(s))ds

⎤

⎦

< −λR(u(θm))(1 + ε)zme
−λ
∫ θm

t0
R̂(u(s))ds = ẇm(θm),

which contradicts with the inequality in (9.61). Thus the inequality (9.60) holds.
Therefore, letting ε → 0, we have (9.52). The proof is completed.

Remark 9.30 When the initial conditions φ ∈ PC (PC is an abbreviation of piece-
wise continuous function) defined in [60], Lemma 9.29 still holds. Therefore, many
known results are easily obtained. For example, Lemma 2.1 in [61], Theorem
3.1 in [60], and Lemma 1 in [65] can be derived by Lemma 9.29 if we choose
R(u) ≥ diag(s1, . . . , sn) > 0, E = 0; R(u) = F, E = 0; and R(u) = F in (9.50),
respectively.

According to Lemma 9.29, we can establish the following result:

Proposition 9.31 Under the conditions of Lemma 9.29, if R̂(u) is positive definite,
then

lim
t→+∞ [u(t)]+ ≤ L . (9.63)

Proof We only need to consider the following two possible cases:
(i) If

∫ +∞
t0

R̂(u(s))ds = +∞. Then from (9.52), we have limt→+∞ [u(t)]+ ≤ L .

(ii) If
∫ +∞

t0
R̂(u(s))ds < +∞. Since R(·) is continuous, we can get ∫ +∞

t0
R̂(u(s))

ds < +∞.
On the other hand, from (9.51), for any given initial function φ ∈ C , we have

that u(t) is bounded. Furthermore, u̇(t) is bounded by (9.50). Thus by Lemma 9.28,
we have limt→+∞ u(t) = 0 ≤ L . Therefore, the conclusion holds and the proof is
completed.

9.3.3 Invariant Set Result

In this subsection, we always suppose the following assumptions to be true.
(A1)Amplification functions αi (·) are positive and continuous. Furthermore, there

is a continuous and positive definite function α̂(s) such that min1≤i≤n{αi } ≥ α̂(s).
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(A2) There exists a positive diagonal matrix β = diag{βi } such that

βi (s1) − βi (s2)

s1 − s2
≥ βi > 0,

for all i ∈ Γ, s1 �= s2, s1, s2 ∈ R.

(A3) The activation function g j (x(t)) with g j (0) = 0 satisfies the Lipschitz
condition, that is, for any u j ∈ R, j ∈ Γ , there exist nonnegative constants G j such
that | g j (u j ) |≤ G j | u j | .

(A4) Let D̂ = −(P̂ + Q̂) ∈ M , where P̂ = ( p̂i j )n×n , p̂i j = −βi + |aii |Gi ,
pi j = |ai j |G j , for i �= j ; Q̂ = (q̂i j )n×n , q̂i j = |bi j |G j ; Ê = col{βi (0) + |Ei |}.
Theorem 9.32 Assume that (A1)–(A4) hold, then S = {φ ∈ C |[φ]+τ ≤ D̂−1 Ê} is a
positive invariant and global attracting set of (9.49).

Proof Calculating the upper right Dini derivative D+[x(t)]+ along system (9.49),
from conditions (A1)–(A3), we obtain

D+[xi (t)]+ = sgn(xi (t))ẋi (t)

≤ αi (xi (t))

⎡

⎣−βi |xi (t)| + βi (0) +
n∑

j=1

|ai j |G j |x j (t)|

+
n∑

j=1

|bi j |G j |x j (t − τi j (t))| + |Ei |
⎤

⎦

≤ αi (xi (t))

⎡

⎣(−βi + |aii |Gi |)xi (t)| +
n∑

j=1, j �=i

|ai j |G j |x j (t)|

+
n∑

j=1, j �=i

|bi j |G j |x j (t − τi j (t))| + βi (0) + |Ei |
⎤

⎦ . (9.64)

From (A4), we get that

D+[x(t)]+ ≤ α(x(t))
[

P̂[x(t)]+ + Q̂[x(t)]+τ + Ê
]
, t ≥ t0, (9.65)

where α(x(t)) = diag(α1(x1(t)), . . . ,αn(xn(t))). Then from the conclusion 1) of
Lemma 9.29, we can obtain

[x(t)]+ ≤ L̂, t ≥ t0, (9.66)

provided [φ]+τ ≤ L̂ , where L̂ = D̂−1 Ê . So S is a positive invariant set of (9.49).
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On the other hand, since D̂ ∈ M , there exists a positive vector z = (z1, . . . , zn)T

such that

D̂z > 0, or [P̂ + Q̂]z < 0.

According to continuity property, we know that there must exist a positive scalar
λ such that

[
λI + P̂ + Q̂eλĤτ

]
z < 0, (9.67)

where Ĥ = max[u]+≤d̂ L̂ α̂(u) < ∞ and d̂ ≥ 1 is a constant such that [φ]+τ ≤ d̂ L̂ .
Then by (9.65), (9.67) and (A4), all the conditions of Theorem 9.31 are satisfied,

we have

lim
t→∞[x(t)]+ ≤ L̂. (9.68)

According to the Definitions 9.14 and 9.15, S is also a global attracting set of (9.49).
The proof is completed.

Remark 9.33 We can easily find that our result improves the earlier criteria on the
amplification functions. In [61, 66, 67], amplification functions in the systems are
continuous and satisfy αi (u) > αi > 0 (αi is a constant) for all u ∈ R

n . Moreover,
conditions ensuring the asymptotic behavior of systems in [51, 52, 68, 69] require that
the amplification functionsαi (u) is bounded, positive and continuous, i.e., there exist
constants ᾱi ,αi such that 0 < αi ≤ αi (u) ≤ ᾱi < ∞. However, in this subsection,
we only require that amplification functionsαi (u) are positive, continuous, and there
is a continuous and positive definite function α̂(u) such that min1≤i≤n{αi (u)} ≥
α̂(u).

Remark 9.34 Dissipativity and invariant set are discussed for a kind of neural net-
works with delays in this chapter. In the assumptions on the activation function of
the neural networks, Lipschitz conditions are required and the activation function
equals zero at origin. This is a fundamental assumption in the application of Lya-
punov stability. Similarly, passivity problem for RNNs discussed in Chap. 8 has the
same assumption on the activation. Therefore, we can also conclude that besides the
origin or the fixed equilibrium point of the isolated systems, the concepts such as
passivity, dissipativity, and invariant sets are some generalizations of the fixed equi-
librium point, in which fixed equilibrium point can be the center of a circle or a focus
of an ellipse. The underlying error system formed by the coordinate transformation
required in the stability analysis of RNNs still exists in the analysis of passivity and
invariant sets of RNNs.

http://dx.doi.org/10.1007/978-3-662-47484-6_8
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9.4 Summary

In this chapter,wehave discussed the dissipativity and invariant set of neural networks
with delay, which is an extension of stability and passivity. In this chapter, the adopted
method is not in the LMI form, while the algebraic inequality method is used. Indeed,
different methods can be chosen according to the requirement of the concerned
problems. Each method has its own features and advantages.
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Chapter 10
Synchronization Stability in Complex Neural
Networks

In Chaps. 4–9, all the considered RNNs models can be described as some state-
vector differential equations, which can also be regarded as isolated systems or
node systems. With the information communications and region interconnections
being quickly developed, some isolated systems are coupled together closely, no
matter they are coupled passively or actively. In this case, the dynamics of complex
interconnected dynamical systems should be deeply studied. The interconnected
complex dynamical systems are the upgraded version of isolated dynamical systems,
therefore, some dynamics are different from those in isolated dynamical systems.
Among the dynamics of complex dynamical systems, synchronization problem has
been hotly investigated in recent years. In theory, synchronization conception is an
upgrade of stability conception in vector space. Based on this discussion, this chapter
will discuss the synchronization stability of complex interconnected neural networks
with nonsymmetric coupling. The main contents in this chapter are from the research
result in [1].

10.1 Introduction

There exist increasing interests in the study of dynamical properties of delayed recur-
rent neural networks due to its potential applications in various fields, including
online optimization, pattern recognition, signal and image processing, and associa-
tive memories [1–5]. Most of the previous studies mainly concentrated on stability
analysis, periodic or almost periodic attractors, and dissipativity of recurrent neural
networks with or without delays [6–11]. Since it has been reported that there are
synchronization phenomena in many real systems, such as in an array composing
of identical delayed neural networks, it is important to study the synchronization
problem in coupled networks and systems in engineering applications such as secure
communication and signal generators design [12–18]. Therefore, the study of syn-
chronization of coupled neural networks is an important step for both understanding
brain science and designing coupled neural networks for practical use [1, 19–28].
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Nowadays, there are mainly two kinds of coupling matrix structure to study the
synchronization in an array composing of identical delayed neural networks,

(1) symmetric coupling matrix G = (Gij) ∈ R
N×N , which means that for two

connected nodes the influences to each other are the same. That is, Gij = Gji ≥ 0
for i �= j and Gii = −∑N

j=1, j �=i Gij;

(2) nonsymmetric coupling matrix, Gij ≥ 0 for i �= j and Gii = −∑N
j=1, j �=i Gij,

i, j = 1, . . . , N , N is the number of couple term, G = (Gij) ∈ R
N×N is an

irreducible coupling matrix.
For the case of symmetric coupling matrix, the synchronization problems have

been investigated in [12, 18, 29–33], and some synchronization criteria have been
derived based on LMI method or other methods. All the LMI-based synchronization
results are on the basis of Kronecker product expression, in which the symmetric
and irreducible feature of couple matrix plays an important role in the derivation.

For the case of nonsymmetric couplingmatrix, the synchronization problems have
been studied in [34–40], in which the coupling matrix G is irreducible. In [35], the
coupling matrix elements Gij ≥ 0 for i �= j , and Gii = −∑

j=1, j �=i Gij, and G
is irreducible. The methods in [36–38] are to use the Jacobian matrix of nonlinear
function at synchronization state, which can only ensure the local synchronization.
Meanwhile, all the results in [36–39] are in the Kronecker form, which enhance the
difficulty to check. The results in [40] are on the basis of eigenvalue approach, in
which some relations between the coupling matrix of linear couple term and the
parameters of isolated system are established.

In this chapter, we will extend the requirement condition of the coupling matrix
G = (Gij), and study an array of linearly delay coupled system consisting of N iden-
tical delayed neural networks with each network being an n-dimensional dynamical
system. Synchronization stability problem of the coupled interconnected large-scale
system is first studied on the basis of LMI, and some discussions on the coupling
matrix G are compared with the synchronization problem of the existing complex
networks.

The main contributions of this chapter are as follows:
(1) Without the requirement of symmetric and irreducible conditions on coupling

matrix G, some global asymptotical synchronization stability criteria are established
for an array of linearly coupled neural networks with delays, which make the syn-
chronization criteria of complex networks more flexible.

(2) The relations between the stability of isolated neural networks and the synchro-
nization of an array of linearly coupled neural networks with delays are discussed,
which present a deep insight into the research on the dynamics of complex systems.

(3) Somediscussions aremade on the coordinate transformationmethod in dealing
with synchronization problem of complex networks, which reveal the necessity of
the uniqueness assumption on the equilibrium point as required in [29].
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10.2 Problem Formulation and Preliminaries

We consider an array of linearly coupled complex neural networks consisting of
N identical delayed neural networks with each isolated node network being an
n-dimensional dynamical system as follows:

dxi (t)

dt
= − Dxi (t) + Ag(xi (t)) + Bg(xi (t − τ1))

+ a1

N∑

j=1

GijCx j (t) + a2

N∑

j=1

GijΓ x j (t − τ2) + U, (10.1)

with isolated node networks

dxi (t)

dt
= − Dxi (t) + Ag(xi (t)) + Bg(xi (t − τ1)) + U, (10.2)

where xi (t) = (xi,1(t), . . . , xi,n(t))T ∈ R
n denotes the state vector of the neurons

in the i th neural networks, g(xi (t)) = (g1(xi,1(t)), . . . , gn(xi,n(t)))T , i = 1, . . . , N ,
D = diag(d1, . . . , dn) > 0, A = (aij)n×n , B = (bij)n×n , τ1 and τ2 are the positive
and constant delays, respectively, G = (Gij)N×N is the coupling matrix representing
the coupling strength and topological structure of the networks,C = diag(c1, . . . , cn)

and Γ = diag(γ1, . . . , γn) are the positive diagonal matrices representing the inner-
linking strengths, a1 and a2 are the strengths of the constant coupling and delayed
coupling, U = (U1, . . . , Un)T denotes an external input.

Remark 10.1 In the synchronization analysis of coupled networks (10.1), if all the
states are the same or synchronous, i.e., x1(t) = x2(t) = · · · = xN (t) = s(t), where
s(t) is a common solution of node networks (10.2), a restriction condition must be
required on the coupledmatrixG = (Gij). This is the fundamental reasonwhy a zero-
row-sum

∑N
j=1 Gij = 0 is required. In this case, synchronization state of coupled

system (10.1) is just the same as that isolated node networks (10.2). A usually used
zero-row-sum condition is expressed as Gii = −∑N

j=1, j �=i Gij [31–40]. Obviously,

the assumption Gii = −∑N
j=1, j �=i Gij is only an alternative of guaranteeing the

zero-row-sum condition
∑N

j=1 Gij = 0.
In the literature [12, 18, 29–33], symmetric coupling matrix G is required, which

also means that the zero-column-sum condition of coupling matrix G holds. The
underlying reason is the requirement of mathematical techniques, such as Kroneker
product method, in dealing with the synchronization problem. Therefore, along the
similar routine of symmetrically connected neural networks toward the asymmetri-
cally connected neural networks, the development of symmetrically coupled complex
systems is being toward the asymmetrically/nonsymmetrically coupled complex sys-
tems [34–40].

In reference [41], the synchronization problem is investigated in an array of lin-
early coupled identical networks, in which the coupling configuration matrix G is
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not required to be nonnegative condition on its off-diagonal elements, and the zero-
row sum condition

∑N
j=1 Gij = 0 is only required for ensuring the synchronization.

Obviously, the restriction on coupling configuration matrix G is more relaxed. This
naturally arises a more general question: if no any restriction is made on coupling
matrix G, what would the complex networks be like? In general, this question may
resort to the stability problem of complex large-scale systems. In the sense of above
discussions, synchronization problem is only a special case of stability problem of
complex large-scale systems.

The conception of synchronization in coupled systems or complex networks
should be clarified clearly before discussing the following problems. For the syn-
chronization studied in [42–44], an external input control action is executed or a syn-
chronization controller is designed to implement the state synchronization between
two same/different kinds of isolated systems. How to guarantee these two systems
synchronous is to study the synchronization error system for the sake of designing the
synchronization controller. For the synchronization of complex coupled networks,
the synchronization conception should fall into the stability field of dynamical system
[45–48], which is only concerned with the internal interactions of system parameters
of the coupled systems. That is to say, synchronization is the internal self-organizing
dynamical behavior of the coupled interconnected large-scale systems. In general,
the final synchronization states of the coupled networks are unknown in advance.

Remark 10.2 In the case
∑N

j=1 Gij = 0, synchronous state s(t) in (10.1) should be
a solution of isolated node network (10.2), which may be stable or unstable. One way
to analyze the global synchronization is directly to consider the coupled systems, for
example, Kroneker product method [12, 18, 29], no matter what the synchronous
states are. Another commonly used method is to linearize the system at the interested
point [23], which often results in local synchronization. Moreover, similar to stabil-
ity analysis of recurrent neural networks [6–11], in which the existence condition
of the solution of isolated system (10.2) must be guaranteed in advance, a coordi-
nate transformation method is also used to analyze the synchronization problem of
complex networks [34, 36]. The coordinate transformation method seems like the
synchronization control of chaotic systems [42–44], but the underlying principle is
different. As pointed out in [49], if s(t) is a constant states, then s(t) is an equi-
librium point of node networks (10.2); if s(t) is the nonconstant states, variational
analysis and linearization can be done only near the trajectories s(t) and this trajec-
tory must contain an attracting set. For the case that s(t) is a solution of the chaotic
node networks (10.2), there does not seem to be any rigorous results in the literature
on networks synchronization to a chaotic trajectory. For example, the approach of
fixing x1(t) = s(t) in [50] is only heuristic but not completely rigorous [49]. Even
for a node neural networks with multiple equilibrium point, no a universal stabil-
ity analysis method is used [51–56], at least the linear coordinate transformation of
equilibrium point is not used. This is the reason why there is an assumption condition
required in [29].

In this chapter, we regard the coupling matrix G as an arbitrary matrix to study
the global stability problem of the coupled neural networks. However, for the
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synchronization problem, the zero-row-sum condition on G is still required. Note
that for the complex networks with nonsymmetrical coupling matrix G, synchro-
nization problems are also studied in the literature. For example, in [41], an adaptive
controller is designed to realize the controlled synchronization without the non-
negative condition on its off-diagonal elements of G. In [34–40], Jacobian matrix
method, Kronecker product method, and eigenvalue approach are used, respectively,
to establish the synchronization criteria for the complex networks with nonsymmet-
rical coupling matrix G. In contrast, we will use LMImethod to establish some novel
synchronization criteria for the complex neural networks with nonsymmetrical G, in
which a relation between the stability criteria of both isolated node networks and the
coupled networks will be established. Therefore, in the aspects of analyzing methods
and the synchronization criteria, the present results are different from the existing
research.

The initial condition associated with (10.1) are given as follows,

xi (s) = φi0(s) ∈ C([−τ , 0],Rn), i = 1, . . . , n,

where τ = max{τ1, τ2}.
For the activation functions gk(·), the following condition is required, k =

1, . . . , n.

Assumption 10.3 The bounded activation function gk(·) is Lipschitz continuous
and monotonically nondecreasing, i.e., there exist constants δk > 0 such that

0 ≤ gk(ζ) − gk(ξ)

ζ − ξ
≤ δk,

for any ζ, ξ ∈ R and ζ �= ξ, k = 1, . . . , n. Let Δ = diag(δ1, . . . , δn).

A synchronized network has the property that the state trajectories of the coupled
agents converge to a common trajectory. More precisely, we have the following
definition.

Definition 10.4 (see [25]) System (10.1) is said to be globally asymptotically syn-
chronized if for any xi (t0), x j (t0) ∈ R

n , when t → ∞, ‖xi (t)− x j (t)‖ → 0, t ≥ t0,
i, j = 1, . . . , N .

Thus, different from network stability, network synchronization requires that the
differences of the states of the isolated neural networks converge to zero as time runs
off to infinity.

Remark 10.5 According to the neural networks stability results in [6–11], the
bounded activation function can always guarantee the existence of the solution, for
example s(t), of isolated node networks (10.2). In the zero-row-sum condition of G,
s(t) is also the synchronization state of coupled system (10.1).
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Similar to the stability analysis methods used in [6–11], we suppose that s(t) is
an equilibrium point of the coupled system (10.1), that is,

ds(t)

dt
= − Ds(t) + Ag(s(t)) + Bg(s(t − τ1))

+ a1

N∑

j=1

GijCs(t) + a2

N∑

j=1

GijΓ s(t − τ2) + U. (10.3)

Define the linear coordinate transformation ei (t) = xi (t) − s(t), i = 1, . . . , N ,
then the error dynamical systems can be described as follows:

dei (t)

dt
= − Dei (t) + A f (ei (t)) + B f (ei (t − τ1))

+ a1

N∑

j=1

GijCe j (t) + a2

N∑

j=1

GijΓ e j (t − τ2), (10.4)

where f (ei (t)) = g(xi (t)) − g(s(t)), f (ei (t − τ1)) = g(xi (t − τ1)) − g(s(t)),
i = 1, . . . , N .

Remark 10.6 The main purpose of this study is to use the stability analysis method
in neural network theory to study the dynamics of an array of linear coupled system
consisting of N identical neural networks (10.1). In the stability analysis of complex
networks (10.1), we do not require any assumption on coupling matrix G, which can
be seen in the proof of Theorem 10.7 in sequel. However, if we discuss the synchro-
nization problem of complex system (10.1), the zero-row-sum condition of coupling
matrix G must be required. Comparing the stability problem and synchronization
problem of complex system (10.1), we can conclude that synchronization stability is
to some degree a special case of global stability of complex system (10.1). However,
synchronization state s(t) of isolated node networks (10.2) may be stable, chaotic or
oscillated. In this sense, synchronization state in complex networks (10.1) is different
from the equilibrium in node networks (10.2), which has its own features and blazes a
newway in complex science. Just based on above argument wewill establish a stabil-
ity criterion for complex networks (10.1) in two separate forms (see Theorem 10.7).
One condition is for the stability of node networks (10.2), and the other condition
is for the constraints of coupling information. Without considering the information
of coupling matrix G, using our proposed result we can judge whether the complex
networks (10.1) is stable. If the zero-row-sum condition of coupling matrix G holds,
we can judge whether the synchronization of complex networks (10.1) is achieved by
our proposed results. Therefore, the proposed results in this chapter extend the appli-
cation fields of the synchronization criteria in the literature, and bridge the stability
theory of neural network and synchronization theory of complex neural networks.
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10.3 Synchronization Results

Now we are in a position to state the main results.

Theorem 10.7 Under Assumption 10.3, if there exist positive definite diagonal
matrices Pi = diag(pi

1, pi
2, . . . , pi

n), Ri = diag(r i
1, r i

2, . . . , r i
n), P̄j = diag(p1j , p2j ,

. . . , pN
j ), Q̄ j = diag(q1

j , q2
j , . . . , q N

j ), positive diagonal matrices Q1i and Q2i ,
such that the following linear matrix inequalities hold simultaneously,

Ψ1i =

⎡

⎢⎢⎣

Ψi Pi A + ΔQ1i Pi B 0
∗ −2Q1i 0 0
∗ ∗ −2Q2i ΔQ2i

∗ ∗ ∗ −Ri

⎤

⎥⎥⎦ < 0, (10.5)

Ψ2 j =
[

Q̄ j − d j P̄j + 2a1c j P̄j G a2γ j P̄j G
∗ −Q̄ j

]
< 0, (10.6)

then the coupled system (10.4) is globally stable, where Ψi = Ri − 0.5(Pi D +
DT Pi ), i = 1, . . . , N , j = 1, . . . , n.

Proof Let us consider the following Lyapunov–Krasovskii functional candidate for
system (10.4),

V (t) = V1(t) + V2(t) (10.7)

where

V1(t) =
N∑

i=1

eT
i (t)Pi ei (t), (10.8)

V2(t) =
N∑

i=1

∫ t

t−τ1

eT
i (s)Ri ei (s)ds +

N∑

i=1

∫ t

t−τ2

eT
i (s)Qi ei (s)ds, (10.9)

with Pi = diag(pi
1, pi

2, . . . , pi
n), Ri = diag(r i

1, r i
2, . . . , r i

n) and Qi = diag(qi
1, qi

2,

. . . , qi
n), are positive definite diagonal matrix, i = 1, 2, . . . , N .

Calculating the time derivatives of V1(t) and V2(t) along the trajectories of system
(10.4), we have
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dV1(t)

dt
= 2

N∑

i=1

eT
i (t)Pi ėi (t)

= 2
N∑

i=1

eT
i (t)Pi

[
− Dei (t) + A f (ei (t)) + B f (ei (t − τ1))

+ a1

N∑

j=1

GijCe j (t) + a2

N∑

j=1

GijΓ e j (t − τ2)
]
, (10.10)

dV2(t)

dt
=

N∑

i=1

[
eT

i (t)Ri ei (t) − eT
i (t − τ1)Ri ei (t − τ1)

]

+
N∑

i=1

[
eT

i (t)Qi ei (t) − eT
i (t − τ2)Qi ei (t − τ2)

]
. (10.11)

The following facts hold according to the requirement of activation function,

2
[
eT

i (t)ΔQ1i f (ei (t)) − f T (ei (t))Q1i f (ei (t))
]

≥ 0, (10.12)

2
[
eT

i (t − τ1)ΔQ2i f (ei (t − τ1))

− f T (ei (t − τ1))Q2i f (ei (t − τ1))
]

≥ 0. (10.13)

Meanwhile, the following equalities hold,

2
N∑

i=1

eT
i (t)Pi a1

N∑

j=1

GijCe j (t) = 2
n∑

j=1

a1c j ē
T
j (t)P̄j Gē j (t), (10.14)

2
N∑

i=1

eT
i (t)Pi a2

N∑

j=1

GijΓ e j (t − τ2) = 2
n∑

j=1

a2γ j ē
T
j (t)P̄j Gē j (t − τ2), (10.15)

N∑

i=1

[
eT

i (t)Qi ei (t) − eT
i (t − τ2)Qi ei (t − τ2)

]

=
n∑

j=1

[
ēT

j (t)Q̄ j ē j (t) − ēT
j (t − τ2)Q̄ j ē j (t − τ2)

]
, (10.16)

−
N∑

i=1

eT
i (t)Pi Dei (t) = −

n∑

j=1

d j ē
T
j (t)P̄j ē j (t), (10.17)
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where P̄j = diag(p1j , p2j , . . . , pN
j ), and the elements in P̄j are all the same elements

in Pi , Q̄ j = diag(q1
j , q2

j , . . . , q N
j ), and the elements in Q̄ j are all the same elements

in Qi , Q1i , Q2i are positive diagonal matrices, ei (t) = (e1i , e2i , . . . , en
i )T , ē j (t) =

(e j
1 , e j

2 , . . . , e j
N )T , i = 1, . . . , N , j = 1, . . . , n.

Substituting (10.12)–(10.17) into (10.10) and (10.11), it yields,

dV (t)

dt
≤

N∑

i=1

[
eT

i (t)
(

− Pi D + (Pi D)T

2
+ Ri

)
eT

i (t)

+ 2eT
i (t)(Pi A + ΔQ1i ) f (ei (t))

+ 2eT
i (t)Pi B f (ei (t − τ1)) − 2 f T (ei (t))Q1i f (ei (t))

+ 2eT
i (t − τ1)ΔQ2i f (ei (t − τ1)) − eT

i (t − τ1)Ri ei (t − τ1)

− 2 f T (ei (t − τ1))Q1i f (ei (t − τ1))

+
n∑

j=1

[
ēT

j (t)
(

Q̄ j − d j P̄j + 2a1c j P̄j G
)

ē j (t)

+ 2ēT
j (t)a2γ j P̄j Gē j (t − τ2) − ē j (t − τ2)Q̄ j ē j (t − τ2)

]

=
N∑

i=1

ηT
i (t)Ψ1iηi (t) +

n∑

j=1

(ēT
j (t), ēT

j (t − τ2))Ψ2 j (ē
T
j (t), ēT

j (t − τ2))
T ,

(10.18)

where Ψ1i and Ψ2 j are the same as those defined in (10.5) and (10.6), ηT
i (t) =

(eT
i (t), f T (ei (t)), f T (ei (t − τ1)), eT

i (t − τ1)). Therefore, if Ψ1i < 0 and Ψ2 j < 0,
one has dV (t)/dt < 0 for any (eT

i (t), f T (ei (t)), f T (ei (t−τ1)), eT
i (t−τ1)) �= 0 and

(ēT
j (t), ēT

j (t −τ2)) �= 0. dV (t)/dt = 0 for (eT
i (t), f T (ei (t)), f T (ei (t −τ1)), eT

i (t −
τ1)) = 0 and (ēT

j (t), ēT
j (t − τ2))

T = 0. Therefore, the origin of system (10.4) is

globally stable. This completes the proof.

Noting that in the proof of Theorem 10.7, we have used the conditions of acti-
vation function by involving some adjustable parameters Q1i and Q2i , which lead
to inequalities (10.12) and (10.13). If we take another way of activation function to
derive some inequalities, for example,

2eT
i (t)Pi A f (ei (t))

≤ eT
i (t)Pi AQ−1

1i AT Pi ei (t) + f T (ei (t))Q1i f (ei (t))

≤ eT
i (t)Pi AQ−1

1i AT Pi ei (t) + eT
i (t)ΔQ1iΔei (t), (10.19)
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2eT
i (t)Pi B f (ei (t − τ1))

≤ eT
i (t)Pi B Q−1

2i BT Pi ei (t) + f T (ei (t − τ1))Q2i f (ei (t − τ1))

≤ eT
i (t)Pi B Q−1

2i BT Pi ei (t) + eT
i (t − τ1)ΔQ2iΔei (t − τ1), (10.20)

where Q1i and Q2i are positive diagonal matrices, i = 1, . . . , N , then we can obtain
the following result.

Theorem 10.8 Under Assumption 10.3, if there exist positive definite diagonal
matrices Pi = diag(pi

1, pi
2, . . . , pi

n), Ri = diag(r i
1, r i

2, . . . , r i
n), P̄j = diag(p1j , p2j ,

. . . , pN
j ), Q̄ j = diag(q1

j , q2
j , . . . , q N

j ), positive diagonal matrices Q1i and Q2i ,
such that the following linear matrix inequalities hold simultaneously,

Ψ 1
1i =

⎡

⎢⎢⎣

Ψ 1
i Pi A Pi B 0
∗ −Q1i 0 0
∗ ∗ −Q2i 0
∗ ∗ ∗ ΔQ2iΔ − Ri

⎤

⎥⎥⎦ < 0, (10.21)

Ψ 1
2 j =

[
Q̄ j − d j P̄j + 2a1c j P̄j G a2γ j P̄j G

∗ −Q̄ j

]
< 0, (10.22)

then the coupled system (10.4) is globally stable, where Ψ 1
i = Ri + ΔQ1iΔ −

0.5(Pi D + DT Pi ), i = 1, . . . , N , j = 1, . . . , n.

Proof The proof of Theorem 10.8 is as the same as Theorem 10.7 except that the
inequalities (10.12) and (10.13) are substituted by (10.19) and (10.20), respectively.
The details are omitted.

Remark 10.9 The differences between Theorems 10.7 and 10.8 lie in the fact that the
condition of activation function f (·) is used differently in the proof procedure (see
(10.12) and (10.13), or (10.19) and (10.20)) although the selected Lyapunov func-
tional is the same. That is, different inequality treatment leads to different expressions
Ψ1i and Ψ 1

1i , which are just the stability criteria of the node networks, while the cou-
pled term expressions Ψ2i and Ψ 1

2i are the same. Because both Theorems 10.7 and
10.8 are sufficient conditions, in general, it is difficult to state which criterion would
be better.

Remark 10.10 In both Theorems 10.7 and 10.8, the first condition Ψ1i (or Ψ 1
1i ) is

independent of second condition Ψ2 j (or Ψ 1
2 j ), while the second condition Ψ2 j (or

Ψ 1
2 j ) is dependent on the first condition Ψ1i (or Ψ 1

1i ). Therefore, when solving the
conditions in Theorems 10.7 and 10.8, the first LMI (10.5) (or (10.21)) should be
first computed, then computing the second LMI (10.6) (or (10.22)).
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Remark 10.11 In bothTheorems 10.7 and 10.8, the first conditionΨ1i (orΨ 1
1i ) is only

related to the dynamics of the isolated node networks, which is independent of the
coupling connections. The second condition Ψ2 j (or Ψ 1

2 j ), on the contrary, depends
on the coupling matrix G, coupling strengths a1 and a2. In general, the first condition
Ψ1i (or Ψ 1

1i ) means a kind of stability condition of the node networks [8–11]. If the
node networks (10.2) are stable, the coupled complex neural networks (10.1) may
not be stable because of the connection conditionΨ2 j (orΨ 1

2 j ). Therefore, Theorems
10.7 and 10.8 bridge the stability of isolated node recurrent neural networks and
stability of the complex neural networks composing of the arrays of N identical
recurrent neural networks. Different coupling configurations, e.g., G, a1 and a2,
may influence the total dynamics of the coupled complex networks, despite the node
networks are stable.

Remark 10.12 The proof of Theorems 10.7 and 10.8 is inspired by the stability
analysis of recurrent neural networks and fuzzy systems, respectively. Instead of
using Kroneker product method, which is often used to deal with the coupled com-
plex networks (10.1) as a whole dynamical system, we deal with the isolated or
node networks directly. Then in a similar way to weighting the fuzzy rule by dif-
ferent membership degree in a fuzzy system, the coupled terms in an isolated or
node networks is weighted and the node networks is integrated as a total large-scale
system. The advantage of this method is easy to use the stability analysis method of
recurrent neural networks, which can usually derive two separate stability or syn-
chronization conditions, i.e., one is for node dynamics and the other is for the coupled
connections. The key difficulty of the analysis procedure is how to tackle the coupled
connections G, a1, and a2. In this chapter, by using the relation (10.14)–(10.17), we
have successfully established some stability criteria.

Remark 10.13 In the proof of Theorems 10.7 and 10.8, no any restriction is imposed
on coupling matrix G, which means that the symmetry and irreducible condition on
G can be canceled in this chapter. If we require the zero-row-sum condition of G,
i.e.,

∑N
j=1 Gij = 0, then the conditions in Theorems 10.7 and 10.8 are converted into

the global synchronization conditions. Meanwhile, we do not require the positivity
of Gij for i �= j and Gii = −∑N

j=1 Gij, either. In this sense, the couple matrix G
can be regarded as a weighted topology or an interconnected coefficient matrix.

In the proof of Theorems 10.7 and 10.8,

−2
N∑

i=1

eT
i (t)Pi Dei (t)

is divided into two parts, which leads to (10.17) and

−
N∑

i=1

eT
i (t)

(Pi D + DT Pi )

2
ei (t)
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while the former is used to compensate the effect of term
∑n

j=1 ēT
j (t)P̄j Gē j (t).

Keep this in mind and observe that Qi (see Lyapunov functional (10.9)) does not
appear in Theorem 10.7 (see (10.5)) and Theorem 10.8 (see (10.21)), whichmay lead
to imbalance of unknown parameter distribution and affect the solvability. Thus, one
can decompose

∑N
i=1 eT

i (t)Qi ei (t) into two parts, i.e.,

N∑

i=1

eT
i (t)

Qi

2
ei (t)

and

N∑

i=1

eT
i (t)

Qi

2
ei (t) =

n∑

j=1

ēT
j (t)

Q̄ j

2
ē j (t).

Therefore, considering above discussions and Theorems 10.7 and 10.8, we have
the following results directly.

Theorem 10.14 Under Assumption 10.3, if there exist positive definite diagonal
matrices Pi = diag(pi

1, pi
2, . . . , pi

n), Ri = diag(r i
1, r i

2, . . . , r i
n), Qi = diag(qi

1, qi
2,

. . . , qi
n), P̄j = diag(p1j , p2j , . . . , pN

j ), Q̄ j = diag(q1
j , q2

j , . . . , q N
j ), positive diag-

onal matrices Q1i and Q2i , such that the following linear matrix inequalities hold
simultaneously,

Ψ1i =

⎡

⎢⎢⎣

Ψ0 Pi A + ΔQ1i Pi B 0
∗ −2Q1i 0 0
∗ ∗ −2Q2i ΔQ2i

∗ ∗ ∗ −Ri

⎤

⎥⎥⎦ < 0, (10.23)

Ψ2 j =
[

Q̄ j/2 − d j P̄j + 2a1c j P̄j G a2γ j P̄j G
∗ −Q̄ j

]
< 0, (10.24)

then system (10.4) is globally stable, where Ψ0 = Qi/2+Ri −0.5(Pi D+DT Pi ), i =
1, . . . , N , j = 1, . . . , n.

Theorem 10.15 Under Assumption 10.3, if there exist positive definite diagonal
matrices Pi = diag(pi

1, pi
2, . . . , pi

n), Ri = diag(r i
1, r i

2, . . . , r i
n), Qi = diag(qi

1, qi
2,

. . . , qi
n), P̄j = diag(p1j , p2j , . . . , pN

j ), Q̄ j = diag(q1
j , q2

j , . . . , q N
j ), positive diag-

onal matrices Q1i and Q2i , such that the following linear matrix inequalities hold
simultaneously,

Ψ1i =

⎡

⎢⎢⎣

Ψ1 Pi A Pi B 0
∗ −Q1i 0 0
∗ ∗ −Q2i 0
∗ ∗ ∗ ΔQ2iΔ − Ri

⎤

⎥⎥⎦ < 0, (10.25)
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Ψ2 j =
[

Q̄ j/2 − d j P̄j + 2a1c j P̄j G a2γ j P̄j G
∗ −Q̄ j

]
< 0, (10.26)

then system (10.4) is globally stable, where Ψ1 = Qi/2+ Ri +ΔQ1iΔ−0.5(Pi D +
DT Pi ), i = 1, . . . , N , j = 1, . . . , n.

The following results are some special cases of Theorems 10.7–10.15 if we let
Q1i = Q1, Q2i = Q2, Ri = R in Theorems 10.7–10.15. The proof procedures are
all omitted.

Corollary 10.16 Under Assumption 10.3, if there exist positive definite diagonal
matrices P = diag(p1, p2, . . . , pn), R = diag(r1, r2, . . . , rn), Q = diag(q1, q2,
. . . , qn), positive diagonal matrices Q1 and Q2, such that the following linear matrix
inequalities hold simultaneously,

Ψ1 =

⎡

⎢⎢⎣

Ψ0 P A + ΔQ1 P B 0
∗ −2Q1 0 0
∗ ∗ −2Q2 ΔQ2
∗ ∗ ∗ −R

⎤

⎥⎥⎦ < 0, (10.27)

Ψ2 j =
[

(q j − d j p j )IN + 2a1c j p j G a2γ j p j G
∗ −q j IN

]
< 0, (10.28)

then the coupled system (10.4) is globally stable, where Ψ0 = R − 0.5(P D +
DT P), i = 1, . . . , N , j = 1, . . . , n.

Corollary 10.17 Under Assumption 10.3, if there exist positive definite diagonal
matrices P = diag(p1, p2, . . . , pn), R = diag(r1, r2, . . . , rn), Q = diag(q1, q2,
. . . , qn), positive diagonal matrices Q1 and Q2, such that the following linear matrix
inequalities hold simultaneously,

Ψ1 =

⎡

⎢⎢⎣

Ψ1 P A P B 0
∗ −Q1 0 0
∗ ∗ −Q2i 0
∗ ∗ ∗ ΔQ2Δ − R

⎤

⎥⎥⎦ < 0, (10.29)

Ψ2 j =
[

(q j − d j p j )IN + 2a1c j p j G a2γ j p j G
∗ −q j IN

]
< 0, (10.30)

then the coupled system (10.4) is globally stable, where Ψ1 = R+ΔQ1Δ−0.5(P D+
DT P), i = 1, . . . , N , j = 1, . . . , n.

Corollary 10.18 Under Assumption 10.3, if there exist positive definite diagonal
matrices P = diag(p1, p2, . . . , pn), R = diag(r1, r2, . . . , rn), Q = diag(q1, q2,
. . . , qn), positive diagonal matrices Q1 and Q2, such that the following linear matrix
inequalities hold simultaneously,
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Ψ1 =

⎡

⎢⎢⎣

Ψ0 P A + ΔQ1 P B 0
∗ −2Q1 0 0
∗ ∗ −2Q2 ΔQ2
∗ ∗ ∗ −R

⎤

⎥⎥⎦ < 0, (10.31)

Ψ2 j =
[

(q j/2 − d j p j )IN + 2a1c j p j G a2γ j p j G
∗ −q j IN

]
< 0, (10.32)

then the coupled system (10.4) is globally stable, where Ψ0 = Q/2+ R −0.5(P D +
DT P), i = 1, . . . , N , j = 1, . . . , n.

Corollary 10.19 Under Assumption 10.3, if there exist positive definite diagonal
matrices P = diag(p1, p2, . . . , pi

n), R = diag(r1, r2, . . . , rn), Q = diag(q1, q2,
. . . , qn), positive diagonal matrices Q1 and Q2, such that the following linear matrix
inequalities hold simultaneously,

Ψ1 =

⎡

⎢⎢⎣

Ψ1 P A P B 0
∗ −Q1 0 0
∗ ∗ −Q2 0
∗ ∗ ∗ ΔQ2Δ − R

⎤

⎥⎥⎦ < 0, (10.33)

Ψ2 j =
[

(q j/2 − d j p j )IN + 2a1c j p j G a2γ j p j G
∗ −q j IN

]
< 0, (10.34)

then the coupled system (10.4) is globally stable, where Ψ1 = Q/2+ R + ΔQ1Δ −
0.5(P D + DT P), i = 1, . . . , N , j = 1, . . . , n.

10.4 Illustrative Example

In this section, we will use an illustrative example to show the effectiveness of the
obtained result.

Example 10.20 Let us consider the following recurrent neural networks,

dy(t)

dt
= − Dy(t) + Ag(y(t)) + Bg(y(t − τ1)) + I, (10.35)

where y(t) = (y1(t), y2(t))T is the state vector of neural networks, g(yi (t)) =
tanh(yi (t)) is the activation function, I = (−10,−10)T is the external input vector,

D =
[
12 0
0 12

]
, A =

[
2 −0.1

−5 3.0

]
, B =

[−1.5 −0.1
−0.2 −2.5

]
,
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Fig. 10.1 The state trajectories of node system (10.35)

Since M = D − |A|Δ − |B|Δ is an M-matrix, according to the stability result
of Theorem 2 in [11], the concerned isolated neural networks is globally asymptot-
ically stable, which has a unique equilibrium point, (−0.8540,−0.5540). The state
trajectory of system (10.35) is shown in Fig. 10.1.

Nowwe consider a dynamical systemconsisting of three linearly coupled identical
models (10.35). The state equations of the entire array are the same as system (10.1),

where τ1 = τ2 = 1, C =
[
4 0
0 4

]
, Γ =

[
0.3 0
0 0.3

]
.

In the following, we will discuss four cases of coupling matrix G, which will be
used to verify the effectiveness of the proposed results and remarks in this chapter.

Case I: G is nonsymmetric, zero-row-sum and Gij ≥ 0.

G =
⎡

⎣
−4.7497 4.5647 0.1850
4.4470 −12.6611 8.2141
7.9194 6.1543 −14.0737

⎤

⎦ ,

By using the MATLAB LMI Control Toolbox, solving the conditions (10.5) and
(10.6) in Theorem 10.7, it yields the following feasible solutions,

P1 = P2 = P3 = diag(3.0546, 0.2753), R1 = R2 = R3 = diag(3.7716, 0.7247),
P̄1 = diag(3.0546, 3.0546, 3.0546), P̄2 = diag(0.2753, 0.2753, 0.2753),
Q̄1 = diag(5.4619, 5.0869, 5.9030), Q̄2 = diag(1.1408, 1.7505, 2.0176),

Q11 = Q12 = Q13 = diag(7.2276, 0.9042),
Q21 = Q22 = Q23 = diag(3.0434, 0.7267),
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Fig. 10.2 The synchronization state trajectories of coupled system (10.35) with Case I

According to Theorem 10.14, the coupled neural networks can achieve the global
synchronization, and the synchronized states converge to (−0.8540,−0.5540),
which is the global stable equilibrium point of isolated system (10.35). The syn-
chronization performance is shown in Fig. 10.2.

Case II: G is nonsymmetric and zero-row-sum.

G =
⎡

⎣
−2 −0.25 2.25

−0.5 −0.5 1
−0.25 3.5 −3.25

⎤

⎦ ,

By using the MATLAB LMI Control Toolbox, solving the conditions (10.5) and
(10.6) in Theorem 10.7, it yields the following feasible solutions,

P1 = P2 = P3 = diag(3.0546, 0.2753), R1 = R2 = R3 = diag(3.7716, 0.7247),
P̄1 = diag(3.0546, 3.0546, 3.0546), P̄2 = diag(0.2753, 0.2753, 0.2753),
Q̄1 = diag(5.0151, 4.9651, 5.0419), Q̄2 = diag(3.6395, 0.9549, 2.1528),

Q11 = Q12 = Q13 = diag(7.2276, 0.9042),
Q21 = Q22 = Q23 = diag(3.0434, 0.7267),

According to Theorem 10.7, the coupled neural networks can achieve the global
synchronization, and the synchronized states converge to (−0.8540,−0.5540),
which is the global stable equilibrium point of isolated system (10.35). The syn-
chronization performance is shown in Fig. 10.3.
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Fig. 10.3 The synchronization state trajectories of coupled system (10.35) with Case II

Case III: G is arbitrary matrix with stable states.

G =
⎡

⎣
−1.4781 0.3217 0.2334
0.3619 −1.8776 1.2395
0.4778 0.6805 0.1257

⎤

⎦ ,

By using the MATLAB LMI Control Toolbox, solving the conditions (10.5) and
(10.6) in Theorem 10.7, it yields the following feasible solutions,

P1 = P2 = P3 = diag(3.0546, 0.2753), R1 = R2 = R3 = diag(3.7716, 0.7247),
P̄1 = diag(3.0546, 3.0546, 3.0546), P̄2 = diag(0.2753, 0.2753, 0.2753),
Q̄1 = diag(4.8567, 4.8657, 4.7407), Q̄2 = diag(3.2379, 3.0410, 1.3645),

Q11 = Q12 = Q13 = diag(7.2276, 0.9042),
Q21 = Q22 = Q23 = diag(3.0434, 0.7267),

Since the coupling matrix G does not satisfy the zero-row-sum condition, the
coupled neural networks (10.35) can only achieve the global stable state according to
Theorem10.7, and the state trajectories converge to (−0.6880,−0.4672), (−0.9067,
−0.5599), and (−1.2828,−0.7576), respectively. This means that the final stable
states are different from that of the isolated node system due to the different couple
topology. The global stable performance is shown in Fig. 10.4.

Case IV: G is arbitrary matrix with unstable states.

G =
⎡

⎣
2.2047 0.8039 0.2302
1.7129 −1.1685 0.1369

−2.3570 −1.9590 −1.0598

⎤

⎦ ,
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Fig. 10.4 The state trajectories of coupled system (10.35) with Case III
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Fig. 10.5 The state trajectories of coupled system (10.35) with Case IV

By using the MATLAB LMI Control Toolbox, solving the conditions (10.5) and
(10.6) in Theorem 10.7, it yields infeasible solutions. That is, Theorem 10.7 cannot
ensurewhether the coupled neural networks stable or not. By simulation, the evolving
trajectories are shown in Fig. 10.5.

From these four cases of simulation, we can find that the coupled complex net-
works can exhibit many complex dynamics by taking different coupling topology
matrix G, although the node neural networks are always stable. Meanwhile, the
simulation examples also show that the proposed results and remarks are effective.
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10.5 Summary

In this chapter, we have established the global stability criteria for arrays of linearly
coupled delayed neural networks with nonsymmetric coupling on the basis of LMI
method. The derived results are two separate conditions, one is for the dynamics of
the node networks, and the other is for the couple configuration. The outstanding
feature of the proposed stability results is to bridge the gap of stability theory of
recurrent neural networks and the synchronization stability of complex networks
with an array of linearly coupled complex networks consisting of N identical delayed
neural networks. The relations of coupling matrix G to stability and synchronization
are discussed in detail, and some analysis method to the synchronization stability
of complex networks are also stated. A numerical example is used to show the
effectiveness of the theoretical results and the comments.
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Chapter 11
Stabilization of Stochastic RNNs
with Stochastic Delays

The research in Chaps. 4–10 is focused on the qualitative analysis of complex neural
networks with delays. It is well known that the qualitative analysis of nonlinear
dynamical systems is the foundation of controlling the systems. Therefore, in this
chapter controller design problem will be studied for a class of stochastic Cohen-
Grossberg neural networks with mode-dependent mixed time delays and Markovian
switching, in which the neural dynamical networks will be stabilized. The contents
in this chapter are from the research result in [1].

11.1 Introduction

In recent decades, neural networks have been successfully applied to various fields
such as optimization, image processing, and associative memory design. In such
application, it is important to know the stability properties of the designed neural
network, these properties include asymptotic stability and exponential stability.How-
ever, time delays inevitably exist in neural networks due to various reasons [2]. The
existence of time delaymay lead to some complex dynamic behaviors such as oscilla-
tion, divergence, chaos, instability, or other poor performance of the neural networks.
Since neural networks usually have a spatial extent, there is a distribution of propa-
gation delays over a period of time. In these circumstances, the signal propagation
is not instantaneous and cannot be modeled with discrete-time delays [3]. A more
appropriate way is to incorporate discrete and continuously distributed time delays
in the neural network model [2, 4]. Stability analysis for neural networks with delays
has attracted more and more interests in recent years, for example, see [5–21] and
references therein.

On the other hand, the stabilization issue has been an important focus of research
in the control fields, and several feedback stabilizing control design approaches
have been proposed (see [7, 22–25]). Some interesting results [6, 26–35] on the

© Science Press, Beijing and Springer-Verlag Berlin Heidelberg 2016
Z. Wang et al., Qualitative Analysis and Control of Complex Neural
Networks with Delays, Studies in Systems, Decision and Control 34,
DOI 10.1007/978-3-662-47484-6_11

333

http://dx.doi.org/10.1007/978-3-662-47484-6_4
http://dx.doi.org/10.1007/978-3-662-47484-6_10


334 11 Stabilization of Stochastic RNNs with Stochastic Delays

stabilizationof awide range anddifferent types of neural networks havebeen reported
in the literature. For a class of discrete-time dynamic neural networks, reference [29]
proposes two methods, namely, the gradient projection and the minimum distance
projection to investigate the stabilization. For a class of dynamic neural network sys-
tems, a global robust stabilizing controller with unknown nonlinearities is developed
in [6] via Lyapunov stability and inverse optimality. For a class of linearly coupled
stochastic neural networks, some results are derived in [31] on the design of themini-
mumnumber of controllers for the pinning stabilization,which are expressed in terms
of strict linear matrix inequality (LMI). For a class of neutral neural networks with
varying delays, a novel criterion is obtained in [28] for the global stabilization using
the Razumikhin’s method. For a class of so-called standard neural network mod-
els with time delays, a few stabilization criteria are presented [30] which are based
on the Lyapunov–Krasovskii stability theory and the LMI approach. For a class of
impulsive high-order Hopfield-type neural networks with time-varying delays, some
stabilization criteria are reported in [26] by employing the Lyapunov–Razumikhin
technique. Very recently, for a class of neural networks with various activation func-
tions and time-varying continuously distributed delays, LMI-based delay-dependent
conditions are obtained in [27] for the global exponential stabilization. Despite some
good progress on the stability analysis of delayed neural networks with various acti-
vation functions [36–38], the stabilization issue has not been fully explored in the
existing studies.

Although the stabilization problem for some kinds of neural networks with or
without time delays is investigated by some authors, there has been no literature
reported on the stabilization of stochastic Cohen-Grossberg neural networks with
both Markovian jumping parameters and mixed mode-dependent time delays. As
well known, mode-dependent time delays are of practical significance since the
signal may switch between different modes and also propagate in a distributed way
during a certain time period with the presence of an amount of parallel pathways
[24]. The purpose of this chapter is to make an attempt to deal with the control
problem for a class of stochastic neural networks with mode-dependent delays [1].
By introducing a new Lyapunov–Krasovskii functional that accounts for the mode-
dependent mixed delays, stochastic analysis is conducted in order to derive delay-
dependent criteria for the exponential stabilization problem. The feedback stabilizing
controller is designed to satisfy some exponential stability constraints on the closed-
loop poles. The stabilization criteria are obtained in terms of LMI and hence the gain
control matrix is easily determined by numerical MATLABs LMI Control Toolbox.
Three numerical examples are carried out to demonstrate the feasibility of our delay-
dependent stabilization criteria.

Throughout this chapter, the shorthand col{M1, M2, . . . , Ml} denotes a column
matrix with the matrices M1, M2, . . . , Ml .

(
Ω,F , {Ft }t≥0,P

)
denotes a complete

probability space with a filtration {Ft }t≥0 satisfying the usual conditions, i.e.,
the filtration is right continuous and contains all P-null sets. Lp

F0
([−h, 0],Rn)

denotes the family of all F0-measurable C ([−h, 0];Rn)-valued random variables
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ξ = {ξ(θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0 E|ξ(θ)|p < ∞, where E{·}
stands for themathematical expectation operator with respect to the given probability
measure P.

11.2 Problem Formulation and Preliminaries

We consider the following stochastic neural network with both feedback control law
and Markovian jumping parameters described by

dx(t) = − α(x(t), ηt )

[
β(x(t), ηt ) − A(ηt ) f (x(t))

− B(ηt ) f (x(t − τ (t, ηt )))

− C(ηt )

∫ t

t−υ(t,ηt )

g(x(s))ds − D(ηt )u(t, ηt )

]
dt

+
[

E1(ηt )x(t) + E2(ηt )x(t − τ (t, ηt ))

+ E3(ηt ) f (x(t)) + E4(ηt ) f (x(t − τ (t, ηt )))

+ E5(ηt )

∫ t

t−υ(t,ηt )

g(x(s))ds

]
dω(t), (11.1)

where x(t) = [x1(t), . . . , xn(t)]T denotes the neuron state at time t , u(t) ∈
L2([0, s),Rm),∀s > 0, is the control input vector of the neural networks,α(x(t), ηt )

= diag{α j (x j (t), ηt ), . . . ,αn(xn(t), ηt )} denotes the amplification function,β(x(t),
ηt ) = diag{β j (x j (t), ηt ), . . . ,βn(xn(t), ηt )} denotes the appropriately behaved
function such that the solution of the model given in (11.1) remains bounded,
and f (x(t)) = [ f1(x1(t)), . . . , fn(xn(t))]T , g(x(s)) = [g1(x1(s)), . . . , gn(xn(s))]T

denote the activation functions. f (x(t − τ (t, ηt ))) = [ f1(x1(t − τ (t, ηt ))), . . . , fn

(xn(t − τ (t, ηt )))]T . 0 ≤ τ (t, ηt ) ≤ τ̄ (ηt ) ≤ τ̄ , 0 ≤ υ(t, ηt ) ≤ ῡ(ηt ) ≤ ῡ ( j =
1, . . . , n) are bounded and unknown delays. The matrices A(ηt ), B(ηt ), C(ηt ) ∈
R

n×n, D(ηt ) ∈ R
n×m are the connection weight matrix, the discretely delayed

connection weight matrix, the distributively delayed connection weight matrix and
the control input weights, respectively. E j (ηt )( j = 1, 2, . . . , 5) is known real
constant matrix with appropriate dimension, ω(t) is a one-dimensional Brownian
motion defined on complete probability space

(
Ω,F , {Ft }t≥0,P

)
with E{dω(t)} =

0, E{[dω(t)]2} = dt. {ηt = η(t), t ≥ 0} is a homogeneous, finite-state Markov-
ian process with right continuous trajectories and taking values in finite set ℘ =
{1, 2, . . . , N } with given probability space (Ω,F , {Ft }t≥0,P

)
and the initial model

η0. It is assumed that the initial condition of neural network (11.1) has the form
x(t) = ϕ(t) for t ∈ [−�, 0], where ϕ(t) = [ϕ1(t), . . . ,ϕn(t)]T , function
ϕ j (t)( j = 1, 2, . . . , n) is continuous, � = max{τ̄ , ῡ}. Let ℵ = [πij]i, j∈℘ denote
the transition rate matrix with given probability:
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P(ηt+δ = j |ηt = i) =
{

πijδ + o(δ), i �= j,
πiiδ + o(δ) + 1, i = j,

where δ > 0, limδ→0+ o(δ)
δ = 0 and πij is the transition rate from mode i to mode

j satisfying πij ≥ 0 for i �= j with πii = −∑N
j=1,i �= j πij, i, j ∈ ℘.

For convenience, each possible value of ηt is denoted by i(i ∈ ℘) in the sequel.
Then we have

αi (x(t)) = α(x(t), ηt ), βi (x(t)) = β(x(t), ηt ),

Ai = A(ηt ), Bi = B(ηt ), Ci = C(ηt ),

Di = D(ηt ), τi (t) = τ (t, ηt ), υi (t) = υ(t, ηt ),

Eli = El(ηt ), l = 1, . . . , 5.

In the following, we need the following definitions, assumptions, and lemmas.

Definition 11.1 ([24, 27]) Given r > 0, and any initial conditionϕ ∈ L2
F0

([−�, 0],
R

n)with u(t, ηt ) = 0.The zero solution of system (11.1) is said to be r-exponentially
stable in the mean square, if there exists a positive scalar M such that any solution
x(t,ϕ) of the system satisfies the following inequality,

E||x(t,φ)||2 ≤ M sup
−�≤s≤0

E||φ(s)||2e−2r t , ∀ t ≥ 0.

Definition 11.2 ([24, 27]) Given r > 0. The system (11.1) is said to be r-
exponentially stabilizable in the mean square, if there is a feedback control law
u(t, ηt ) = U (ηt )x(t), such that the following closed-loop system

dx(t) = − α(x(t), ηt )

[
β(x(t), ηt ) − A(ηt ) f (x(t))

− B(ηt ) f (x(t − τ (t, ηt )))

− C(ηt )

∫ t

t−υ(t,ηt )

g(x(s))ds − D(ηt )U (ηt )x(t)

]
dt

+
[

E1(ηt )x(t) + E2(ηt )x(t − τ (t, ηt ))

+ E3(ηt ) f (x(t)) + E4(ηt ) f (x(t − τ (t, ηt )))

+ E5(ηt )

∫ t

t−υ(t,ηt )

g(x(s))ds

]
dω(t),

x(t) = ϕ(t), t ∈ [−�, 0],

is r -exponentially stable.

Assumption 11.3 ([8]) Each αji(·) is a continuous function and satisfies ᾱji ≥
αji(·) ≥ αji > 0, j = 1, 2, . . . , n, i = 1, 2, . . . , N .
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Here, we denote αi = min1≤ j≤n{αji}, ᾱi = max1≤ j≤n{ᾱji} for simplicity.

Assumption 11.4 Each function βji(·) is locally Lipschitz continuous, βji(0) = 0
and there exist constants β̄ji > β

ji
≥ 0 such that

β
ji
s2 ≤ βji(s)s ≤ β̄jis

2,

for any s ∈ R, j = 1, 2, . . . , n, i = 1, 2, . . . , N .

For simplicity, we denote Πi = diag{β̄1i , . . . , β̄ni}, Γi = diag{β
1i

, . . . ,β
ni
}.

Assumption 11.5 For j = 1, 2, . . . , n, f j (0) = g j (0) = 0. Furthermore, there
exist constants �−

j , �+
j ,ψ−

j ,ψ+
j such that �−

j < �+
j ,ψ−

j < ψ+
j and

�−
j ≤ f j (s)

s
≤ �+

j , ψ−
j ≤ g j (s)

s
≤ ψ+

j ,

for any s ∈ R, j = 1, 2, . . . , n.

Remark 11.6 As pointed out in [24], the constants �−
j , �+

j ,ψ−
j ,ψ+

j in Assumption
11.5 are allowed to be positive, negative, or zero. Then, those previously used Lip-
schitz conditions are just the special cases of Assumption 11.5. Hence, the activation
functions can be of more general descriptions than those earlier forms.

For notational simplicity, we denote

Σ̄ = diag
{
�+
1 , �+

2 , . . . , �+
n

}
,

Σ = diag
{
�−
1 , �−

2 , . . . , �−
n

}
,

F1 = diag
{
�−
1 �+

1 , �−
2 �+

2 , . . . , �−
n �+

n

}
,

F2 = diag

{
�−
1 + �+

1

2
,
�−
2 + �+

2

2
, . . . ,

�−
n + �+

n

2

}
,

F3 = diag
{
ψ−
1 ψ+

1 ,ψ−
2 ψ+

2 , . . . ,ψ−
n ψ+

n

}
,

F4 = diag

{
ψ−
1 + ψ+

1

2
,
ψ−
2 + ψ+

2

2
, . . . ,

ψ−
n + ψ+

n

2

}
.

Lemma 11.7 (Jensen integral inequality, see [39]) For any constant matrix M > 0,
any scalars a and b with a < b, and a vector function χ(t) : [a, b] → R such that
the integrals concerned are well defined, then the following inequality holds

〈 ∫ b

a
χ(s)ds, M

∫ b

a
χ(s)ds

〉
≤ (b − a)

∫ b

a
χ(s)T Mχ(s)ds,

where
〈
A, B

〉
= AT B denotes the inner product.
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Lemma 11.8 Assume that ν,μ,ϑ, ϑ̄ are real scalars such that ν ≤ 1, ν + μ ≤ 4,
and ϑ < ϑ̄. Let ϑ : R → (ϑ, ϑ̄) be a real function. Then for any nonnegative scalars
a, b, the following inequality holds

− a

ϑ(t) − ϑ
− b

ϑ̄ − ϑ(t)

≤ 1

ϑ̄ − ϑ
max{−νa − μb,−μa − νb}. (11.2)

Proof Without loss of generality, we assume that ν ≤ μ. First consider the case that
a ≤ b. It is easy to see that max{−νa − μb,−μa − νb} = −μa − νb. Therefore,
we have

(
ϑ(t) − ϑ

) (
ϑ̄ − ϑ(t)

)
(−μa − νb)

+ (
ϑ̄ − ϑ

) [(
ϑ̄ − ϑ(t)

)
a + (

ϑ(t) − ϑ
)

b
]

= (
ϑ̄ − ϑ(t)

) [
ϑ̄ + (μ − 1)ϑ − μϑ(t)

]
a

+ (
ϑ(t) − ϑ

) [
(1 − ν)

(
ϑ̄ − ϑ(t)

) + (
ϑ(t) − ϑ

)]
b

≥ {(
ϑ̄ − ϑ(t)

) [
ϑ̄ + (μ − 1)ϑ − μϑ(t)

]

+ (
ϑ(t) − ϑ

) [
(1 − ν)

(
ϑ̄ − ϑ(t)

) + (
ϑ(t) − ϑ

)]}
a

= a

4

[
(ν + μ)

(
2ϑ(t) − ϑ − ϑ̄

)2 + (4 − ν − μ)
(
ϑ̄ − ϑ

)2]

≥ 0.

That is

1

ϑ̄ − ϑ
max{−νa − μb,−μa − νb}

= 1

ϑ̄ − ϑ
(−μa − νb)

≥ − a

ϑ(t) − ϑ
− b

ϑ̄ − ϑ(t)
.

Similarly, we can also conclude that the inequality (11.2) holds for a > b. Now, the
proof of Lemma 11.8 is completed.

Remark 11.9 If we set ν = 1,μ = 3, then we get Lemma 3 of [40] from Lemma
11.8. Thus, based on Lemma 11.8, we can get some conditions of exponential stabi-
lization problem with less conservativeness.
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11.3 Stabilization Result

As is well known, for stochastic systems, Itô’s formula plays an important role in the
stability analysis of stochastic systems and we cite some related results here [41].
Consider a general stochastic system

dx(t) = f (x(t), t, ηt )dt + g(x(t), t, ηt )dω(t) (11.3)

on t ≥ t0 with initial value x(t0) = x0 ∈ R
n, where f : Rn × R

+ × ℘ → R
n

and g : Rn × R
+ × ℘ → R

n+m . Let C2,1
(
R

n × R
+,R+) denote the family of all

nonnegative functions V (x, t, i) on Rn × R
+ which are continuously differentiable

in t and twice differentiable in x . Let £ be the weak infinitesimal generator of the
random process {x(t), η(t)}t≥0 along the system (11.3) (see [24, 42, 43]), i.e.,

£V (xt , t, i) := lim
δ→0+

1

δ
sup

[
E
{

V (xt+δ, t + δ, η(t + δ))
∣∣x(t),

η(t) = i
} − V (xt , t, η(t) = i)

]
,

then, by the generalized Itô’s formula, one can get

EV (x, t, i) = EV (x0, t0, i) + E

∫ t

t0
£V (x(s), s, i)ds.

Theorem 11.10 Given r > 0. For any given scalars τ̄i > 0, ῡi > 0, υ′
i < 1, con-

sidering the system (11.1) satisfying Assumptions 11.3–11.5 and τ̇i (t) ≤ τ ′
i , υ̇i (t) ≤

υ′
i , the system (11.1) is globally r-exponentially stabilized if there exist symmet-

ric positive definite matrices Pi ∈ R
n×n, symmetric nonnegative definite matri-

ces Qji, Ri , Mi , Sl , Zi ( j = 1, . . . , 4, l = 1, . . . , 9), positive diagonal matrices
Gi , Ui , Ti , Wi , H, K , and real matrices Xi satisfying the following inequalities
(i = 1, . . . , N )

N∑

j=1

πij Qlj < Sl , l = 1, 2, 3, 4, (11.4)

N∑

j=1

πij R j < S5, (11.5)

N∑

j=1

πij Z j < S6, (11.6)

N∑

j=1

πijῡ j R j < S7, (11.7)
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N∑

j=1

πijτ̄ j Z j < S8, (11.8)

N∑

j=1

πijτ̄ j Q4 j < S9, (11.9)

[
Ωi + Ω̃i ET

E Zi

]
< 0, (11.10)

[
Ωi + Ω̂i ET

E Zi

]
< 0, (11.11)

where

Ωi =

⎡

⎢⎢⎣

Ω1i Ω2i Ω4i Ω7i

∗ Ω3i Ω5i 0
∗ ∗ Ω6i Ω8i

∗ ∗ ∗ Ω9i

⎤

⎥⎥⎦ ,

Ω̃i = − 2

τ̄i
I

T Q4i I, Ω̂i = − 2

τ̄i
IT Q4iI,

E = [ E1i E2i E3i E4i 0 E5i 0 0 0 0 0 0 ],

Zi = τ̄2

2
S6 + τ̄ S8 + τ̄i Zi + Z̃i ,

Z̃i = α−1
i [Pi + H(Πi − Γi ) + K (Σ̄ − Σ)],

with

Ω1i =

⎡

⎢⎢⎢⎢⎢⎢⎣

Ω11i Ω12i Ω13i Ω14i Ω15i Ω16i

∗ Ω22i 0 Ω24i 0 0
∗ ∗ Ω33i Ω34i 0 Ω36i

∗ ∗ ∗ Ω44i 0 0
∗ ∗ ∗ ∗ Ω55i 0
∗ ∗ ∗ ∗ ∗ Ω66i

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Ω2i = [ 0 0 Ai Bi 0 Ci ]
T GT

i ,

Ω3i = − 2ᾱ−2
i Gi + α−2

i

[1
2
τ̄2S4 + τ̄i Q4i + τ̄ S9

]
,

Ω4i =

⎡

⎢⎢⎢⎢⎢⎢⎣

Ω18i 0 Ω1ai

0 Ω29i 0
Ω38i 0 Ω3ai

0 0 Ω4ai

0 0 0
0 0 Ω6ai

⎤

⎥⎥⎥⎥⎥⎥⎦
, Ω7i =

⎡

⎢⎢⎢⎢⎢⎢⎣

Ω1bi 0
Ω2bi Ω2ci

0 0
0 0
0 0
0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,
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Ω5i = Gi

[
Di DT

i 0 − I
]
,

Ω6i =
⎡

⎣
Ω88i 0 Ω8ai

∗ Ω99i 0
∗ ∗ Ωaai

⎤

⎦ , Ω8i =
⎡

⎣
0 0
0 Ω9ci

0 0

⎤

⎦ ,

Ω9i = diag{Ωbbi, Ωcci},
I = [

0 −I 0 0 0 0 0 0 I 0 0 I
]
,

I = [−I I 0 0 0 0 0 0 0 0 I 0
]
,

and

Ω11i = − 2PiΓi + Q1i + Q3i − 1

τ̄i
Q4i

+
N∑

j=1

πijρ
−1
ij Pj + τ̄ (S1 + S3) − Ui F1 − Wi F3

+
N∑

j=1

π̄ijα
−1
i

[
Pi + 2H(Πi − Γi ) + 2K (Σ̄ − Σ)

]
,

Ω12i = 1

τ̄i
Q4i ,

Ω22i = − (1 − τ ′
i )Q1i +

N∑

j=1

π̄ijτ̄ j Q1 j − 2

τ̄i
Q4i − Ti F1,

Ω13i = Pi Ai + Ui F2 − Γi HAi − ΣKAi ,

Ω33i = Q2i − Ui + KAi + AT
i K + τ̄ S2,

Ω14i = Pi Bi − Γi HBi − ΣKBi ,

Ω24i = − Ti F2, Ω34i = KBi ,

Ω44i = − Ti − (1 − τ ′
i )Q2i +

N∑

j=1

π̄ijτ̄ j Q2 j ,

Ω15i = Wi F4, Ω55i = −Wi + ῡi Ri + ῡ2

2
S5 + ῡS7,

Ω16i =Pi Ci − Γi HCi − ΣKCi ,

Ω36i = KCi , Ω66i = −1 − υ′
i

ῡi
Ri ,

Ω18i = (Pi − Σ K + Γi H)Di DT
i + M̄T

i ,

Ω38i = KDi DT
i , Ω88i = −2Mi , Ω29i = 1

τ̄i
Q4i ,
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Ω99i = − 1

τ̄i
Q4i − Q3i +

N∑

j=1

π̄ijτ̄ j Q3 j ,

Ω1ai = Γi H + Σ K , Ω3ai = AT
i H − K ,

Ω4ai = BT
i H, Ω6ai = CT

i H, Ω8ai = Di DT
i H,

Ωaai = − 2H, Ω1bi = 1

τ̄i
Q4i ,

Ω2bi = − 1

τ̄i
Q4i , Ωbbi = − 1

τ̄i
Q4i − Zi ,

Ω2ci = 1

τ̄i
Q4i , Ω9ci = − 1

τ̄i
Q4i , Ωcci = − 1

τ̄i
Q4i − Zi ,

and π̄ij = max{πij, 0}, M̄i = Mi Xi ,

ρij =
{

ᾱi , j = i
αi , j �= i

.

Furthermore, the feedback stabilizing control law is defined by ui (t) = DT
i Xi x(t).

Proof From Assumption 11.3, we know that the amplification function αi (x(t))
is nonlinear and satisfies αi (x(t))αi (x(t)) ≤ ᾱ2

i I. Following the way in [15],
pre- and postmultiplying the left-hand sides of inequalities (11.10) and (11.11) by
diag{I I I I I I αi (x(t)) I I I I I }, respectively, it follows that

[
Ω i + Ω̃i ET

E Zi

]
< 0, (11.12)

[
Ω i + Ω̂i ET

E Zi

]
< 0, (11.13)

where

Ω i
.=
⎡

⎣
Ω1i Ω2i Ω4i

∗ Ω3i Ω5i

∗ ∗ Ω6i

⎤

⎦ ,

with

Ω2i = [ 0 0 Ai Bi 0 Ci ]
T αi (x(t))GT

i ,

Ω3i = τ̄i Q4i − (Gi + GT
i ) + τ̄2

2
S4 + τ̄ S9,

Ω5i = Giαi (x(t))
[

Di DT
i 0 − I 0 0

]
.
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For any j = 1, 2, . . . , n, from Assumption 11.5 we obtain that

(
f (x j (t)) − �+

j x j (t)
) (

f (x j (t)) − �−
j x j (t)

)
≤ 0,

(
g(x j (t)) − ψ+

j x j (t)
) (

g(x j (t)) − ψ−
j x j (t)

)
≤ 0.

Therefore, the following matrix inequalities hold for any positive diagonal matrices
Ui , Ti , Wi ,

〈[
x(t)

f (x(t))

]
,

[−Ui F1 Ui F2
Ui F2 −Ui

] [
x(t)

f (x(t))

]〉
≥ 0, (11.14)

〈[
x(t − τi (t))

f (x(t − τi (t)))

]
,

[−Ti F1 Ti F2
Ti F2 −Ti

] [
x(t − τi (t))

f (x(t − τi (t)))

]〉
≥ 0, (11.15)

〈[
x(t)

g(x(t))

]
,

[−Wi F3 Wi F4
Wi F4 −Wi

] [
x(t)

g(x(t))

]〉
≥ 0. (11.16)

Denoting

ιi (t) = − βi (x(t)) + Ai f (x(t)) + Bi f (x(t − τi (t)))

+ Ci

∫ t

t−υi (t)
g(x(s))ds + Di ui (t),

ϑi (t) = αi (x(t))ιi (t),

σi (t) = E1i x(t) + E2i x(t − τi (t)) + E3i f (x(t))

+ E4i f (x(t − τi (t))) + E5i

∫ t

t−υi (t)
g(x(s))ds,

then system (11.1) can be rewritten as

dx(t) = ϑi (t)dt + σi (t)dω(t). (11.17)

Define the following Lyapunov–Krasovskii functional:

V (xt , t, i) =
6∑

l=1

Vli(xt , t), (11.18)

where

V1i (xt , t) =
n∑

j=1

2pji

∫ x j (t)

0

s

αji(s)
ds
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+
n∑

j=1

2h j

∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

+
n∑

j=1

2k j

∫ x j (t)

0

f j (s) − �−
j s

αji(s)
ds,

V2i (xt , t) =
∫ t

t−τi (t)
〈x(s), Q1i x(s)〉 ds

+
∫ t

t−τi (t)
〈 f (x(s)), Q2i f (x(s))〉 ds

+
∫ t

t−τ̄i

〈x(s), Q3i x(s)〉 ds,

V3i (xt , t) =
∫ 0

−τ̄i

∫ t

t+θ
〈ϑi (s), Q4iϑi (s)〉 dsdθ

+
∫ 0

−υi (t)

∫ t

t+θ
〈g(x(s)), Rig(x(s))〉 dsdθ

+
∫ 0

−τ̄i

∫ t

t+θ
〈σi (s), Ziσi (s)〉 dsdθ,

V4i (xt , t) =
∫ 0

−τ̄

∫ t

t+θ

{ 〈x(s), (S1 + S3)x(s)〉
+ 〈 f (x(s)), S2 f (x(s))〉 }dsdθ,

V5i (xt , t) =
∫ 0

−τ̄

∫ 0

θ

∫ t

t+λ
〈ϑi (s), S4ϑi (s)〉 dsdλdθ

+
∫ 0

−ῡ

∫ 0

θ

∫ t

t+λ
〈g(x(s)), S5g(x(s))〉 dsdλdθ

+
∫ 0

−τ̄

∫ 0

θ

∫ t

t+λ
〈σi (s), S6σi (s)〉 dsdλdθ,

V6i (xt , t) =
∫ 0

−ῡ

∫ t

t+θ
〈g(x(s)), S7g(x(s))〉 dsdθ

+
∫ 0

−τ̄

∫ t

t+θ

{ 〈σi (s), S8σi (s)〉
+ 〈ϑi (s), S9ϑi (s)〉

}
dsdθ,

with Pi = diag{p1i , p2i , . . . , pni}, H = diag{h1, h2, . . . , hn}, K = diag{k1,
k2, . . . , kn}.
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For any η(t) = i ∈ ℘, it can be shown that

£

⎧
⎨

⎩

n∑

j=1

2pji

∫ x j (t)

0

s

αji(s)
ds

⎫
⎬

⎭

= lim
Δ→0+

1

Δ
E

⎧
⎨

⎩

n∑

j=1

2

(
N∑

l=1

[πilΔ + o(Δ)]pjl + pji

)

×
∫ x j (t+Δ)

0

s
∑N

l=1[πilΔ + o(Δ)]αjl(s) + αji(s)
ds

−
n∑

j=1

2pji

∫ x j (t)

0

s

αji(s)
ds

⎫
⎬

⎭

=
N∑

l=1

πil

n∑

j=1

2pjl

∫ x j (t)

0

s

αji(s)
ds

+ lim
Δ→0+

1

Δ
E

⎧
⎨

⎩

n∑

j=1

2pji

[
−
∫ x j (t)

0

s

αji(s)
ds

+
∫ x j (t+Δ)

0

s
∑N

l=1[πilΔ + o(Δ)]αjl(s) + αji(s)
ds

]⎫⎬

⎭

=
N∑

l=1

πil

n∑

j=1

2
∫ x j (t)

0

s
[

pjlαji(s) − pjiαjl(s)
]

α2
ji(s)

ds

+ 2 〈ιi (t), Pi x(t)〉 + trace
〈
σi (t),α

−1
i (x(t))Piσi (t)

〉
, (11.19)

£

⎧
⎨

⎩

n∑

j=1

2h j

∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

⎫
⎬

⎭

= lim
Δ→0+

1

Δ
E

⎧
⎨

⎩

n∑

j=1

2h j

[
−
∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

+
∫ x j (t+Δ)

0

∑N
l=1[πilΔ + o(Δ)]βjl(s) + βji(s)∑N
l=1[πilΔ + o(Δ)]αjl(s) + αji(s)

ds

−
∫ x j (t+Δ)

0

∑N
l=1[πilΔ + o(Δ)]β

jl
s + β

ji
s

∑N
l=1[πilΔ + o(Δ)]αjl(s) + αji(s)

ds

⎤

⎦

⎫
⎬

⎭
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= lim
Δ→0+

1

Δ
E

⎧
⎨

⎩

n∑

j=1

2h j

[
−
∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

+
∫ x j (t+Δ)

0

∑N
l=1[πilΔ + o(Δ)]βjl(s)∑N

l=1[πilΔ + o(Δ)]αjl(s) + αji(s)
ds

−
∫ x j (t+Δ)

0

∑N
l=1[πilΔ + o(Δ)]β

jl
s

∑N
l=1[πilΔ + o(Δ)]αjl(s) + αji(s)

ds

+
∫ x j (t+Δ)

0

βji(s) − β
ji
s

∑N
l=1[πilΔ + o(Δ)]αjl(s) + αji(s)

ds

]}

=
N∑

l=1

πil

n∑

j=1

2h j

∫ x j (t)

0

[
βji(s) − β

ji
s
] [

αji(s) − αjl(s)
]

α2
ji(s)

ds

+ 2 〈ιi (t), H (βi (x(t)) − Γi x(t))〉
+ trace

〈
σi (t),α

−1
i (x(t))H(Πi − Γi )σi (t)

〉
, (11.20)

£

⎧
⎨

⎩

n∑

j=1

2k j

∫ x j (t)

0

f j (s) − �−
j s

αji(s)
ds

⎫
⎬

⎭

=
N∑

l=1

πil

n∑

j=1

2k j

∫ x j (t)

0

[
f j (s) − �−

j s
] [

αji(s) − αjl(s)
]

α2
ji(s)

ds

+ 2 〈ιi (t), K ( f (x(t)) − Σx(t))〉
+ trace

〈
σi (t),α

−1
i (x(t))K (Σ̄ − Σ)σi (t)

〉
, (11.21)

where α−1
i (x(t)) = diag

{
α−1
1i (x1(t)), . . . , α−1

ni (xn(t))
}

.

According to the definition of ρil and Assumptions 11.3–11.5 we have that

N∑

l=1

πil

n∑

j=1

2pjl

∫ x j (t)

0

s

αji(s)
ds ≤

〈
x(t),

N∑

l=1

πilρ
−1
il Pl x(t)

〉
, (11.22)

−
N∑

l=1

πil

n∑

j=1

2pji

∫ x j (t)

0

sαjl(s)

α2
ji(s)

ds

≤ −πii

n∑

j=1

2pji

∫ x j (t)

0

s

αji(s)
ds

≤
〈
x(t),

N∑

l=1

π̄ilα
−1
i Pi x(t)

〉
, (11.23)
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N∑

l=1

πil

n∑

j=1

2h j

∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

≤
N∑

l=1

π̄il

n∑

j=1

2h j

∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

≤
〈
x(t), H

N∑

l=1

π̄ilα
−1
i (Πi − Γi )x(t)

〉
, (11.24)

−
N∑

l=1

πil

n∑

j=1

2h j

∫ x j (t)

0

[
βji(s) − β

ji
s
]
αjl(s)

α2
ji(s)

ds

≤ −πii

n∑

j=1

2h j

∫ x j (t)

0

βji(s) − β
ji
s

αji(s)
ds

≤
〈
x(t), H

N∑

l=1

π̄ilα
−1
i (Πi − Γi )x(t)

〉
, (11.25)

N∑

l=1

πil

n∑

j=1

2k j

∫ x j (t)

0

f j (s) − �−
j s

αji(s)
ds

≤
N∑

l=1

π̄il

n∑

j=1

2k j

∫ x j (t)

0

f j (s) − �−
j s

αji(s)
ds

≤
〈
x(t), K

N∑

l=1

π̄ilα
−1
i (Σ̄ − Σ)x(t)

〉
, (11.26)

−
N∑

l=1

πil

n∑

j=1

2k j

∫ x j (t)

0

[
f j (s) − �−

j s
]
αjl(s)

α2
ji(s)

ds

≤ −πii

n∑

j=1

2k j

∫ x j (t)

0

f j (s) − �−
j s

αji(s)
ds

≤
〈
x(t), K

N∑

l=1

π̄ilα
−1
i (Σ̄ − Σ)x(t)

〉
. (11.27)

Using the well-known Itô’s differential formula [41, 44], we obtain

£V1i (xt , t) ≤ 2
〈
ιi (t), Pi x(t) + H

[
βi (x(t)) − Γi x(t)

] + K ( f (x(t)) − Σx(t))
〉

+ trace
〈
σi (t), α−1

i (x(t))
[
Pi +H(Πi − Γi ) + K (Σ̄ − Σ)

]
σi (t)

〉
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+
N∑

l=1

πilρ
−1
il

〈
x(t), Pl x(t)

〉

+
N∑

l=1

π̄il

〈
x(t), α−1

i

[
Pi + 2H ×(Πi − Γi ) + 2K (Σ̄ − Σ)

]
x(t)

〉
,

(11.28)

£V2i (xt , t) = 〈x(t), Q1i x(t)〉 + 〈 f (x(t)), Q2i f (x(t))〉
− (1 − τ̇i (t))

{ 〈x(t − τi (t)), Q1i x(t − τi (t))〉
+ 〈 f (x(t − τi (t))), Q2i f (x(t − τi (t)))〉

}

+ 〈x(t), Q3i x(t)〉 − 〈x(t − τ̄i ), Q3i x(t − τ̄i )〉

+
N∑

j=1

πij

[ ∫ t

t−τi (t)

〈
x(s), Q1 j x(s)

〉
ds

+
∫ t

t−τi (t)

〈
f (x(s)), Q2 j f (x(s))

〉
ds +

∫ t

t−τ̄i

〈
x(s), Q3 j x(s)

〉
ds

]

+
N∑

j=1

πijτ j (t)
[ 〈x(t − τi (t)), Q1i x(t − τi (t))〉

+ 〈 f (x(t − τi (t))), Q2i f (x(t − τi (t)))〉
]

+
N∑

j=1

πijτ̄ j 〈x(t − τ̄i ), Q3i x(t − τ̄i )〉 , (11.29)

£V3i (xt , t) = τ̄i 〈ϑi (t), Q4iϑi (t)〉 −
∫ t

t−τ̄i

〈ϑi (s), Q4iϑi (s)〉 ds

+ υi (t) 〈g(x(t)), Rig(x(t))〉 −
∫ t

t−υi (t)
〈g(x(t)), Rig(x(t))〉 ds

+ τ̄i 〈σi (t), Ziσi (t)〉 −
∫ t

t−τ̄i

〈σi (t), Ziσi (t)〉 ds

+
N∑

j=1

πij

[∫ 0

−τ̄i

∫ t

t+θ

〈
ϑi (s), Q4 jϑ j (s)

〉
dsdθ

+
∫ 0

−υi (t)

∫ t

t+θ

〈
g(x(s)), R jg(x(s))

〉
dsdθ

+
∫ 0

−τ̄i

∫ t

t+θ

〈
σi (s), Z jσ j (s)

〉
dsdθ

]

+
N∑

j=1

πij

[
τ̄ j

∫ t

t−τ̄i

〈ϑi (s), Q4iϑi (s)〉 ds
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+ υ j (t)
∫ t

t−υi (t)

〈
g(x(s)), R jg(x(s))

〉
ds

+ τ̄ j

∫ t

t−τ̄i

〈
σi (s), Z jσi (s)

〉
ds

]
, (11.30)

£V4i (xt , t) = τ̄ 〈x(t), (S1 + S3)x(t)〉 + τ̄ 〈 f (x(t)), S2 f (x(t))〉
−
∫ t

t−τ̄
{〈x(s), (S1 + S3)x(s)〉 + 〈 f (x(s)), S2 f (x(s))〉} ds,

(11.31)

£V5i (xt , t) = τ̄2

2

{ 〈ϑi (t), S4ϑi (t)〉 + 〈σi (t), S6σi (t)〉
}

−
∫ 0

−τ̄

∫ t

t+θ
〈ϑi (s), S4ϑi (s)〉 dsdθ

+ ῡ2

2
〈g(x(t)), S5g(x(t))〉 −

∫ 0

−ῡ

∫ t

t+θ
〈g(x(s)), S5g(x(s))〉 dsdθ

−
∫ 0

−τ̄

∫ t

t+θ
〈σi (s), S6σi (s)〉 dsdθ, (11.32)

£V6i (xt , t) = ῡ 〈g(x(t)), S7g(x(t))〉 −
∫ t

t−ῡ
〈g(x(s)), S7g(x(s))〉 ds

+ τ̄ 〈σi (t), S8σi (t)〉 + τ̄ 〈ϑi (t), S9ϑi (t)〉
−
∫ t

t−τ̄
〈σi (s), S8σi (s)〉 ds −

∫ t

t−τ̄
〈ϑi (s), S9ϑi (s)〉 ds. (11.33)

Based on Assumption 11.4, we obtain that

−xT (t)Piβi (x(t)) ≤ −xT (t)PiΓi x(t). (11.34)

From Lemma 11.7, it follows that

−
∫ t

t−υi (t)
〈g(x(s)), Rig(x(s))〉 ds

≤ − 1

ῡi

〈 ∫ t

t−υi (t)
g(x(s))ds, Ri

∫ t

t−υi (t)
g(x(s))ds

〉
. (11.35)

For simplicity, we denote

ς1i (t) =
∫ t−τi (t)

t−τ̄
ϑi (s)ds, ς2i (t) =

∫ t

t−τi (t)
ϑi (s)ds.
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When 0 < τi (t) < τ̄i , from Lemma 11.8 with ν = 1,μ = 3, one can obtain that

−
∫ t

t−τ̄i

〈ϑi (s), Q4iϑi (s)〉 ds

= −
∫ t−τi (t)

t−τ̄i

〈ϑi (s), Q4iϑi (s)〉 ds

−
∫ t

t−τi (t)
〈ϑi (s), Q4iϑi (s)〉 ds

≤ − 1

τ̄i − τi (t)
〈ς1i (t), Q4i ς1i (t)〉 − 1

τi (t)
〈ς2i (t), Q4i ς2i (t)〉

≤ 1

τ̄i
max

{ − 〈ς1i (t), Q4i ς1i (t)〉 − 3 〈ς2i (t), Q4i ς2i (t)〉 ,

− 3 〈ς1i (t), Q4i ς1i (t)〉 − 〈ς2i (t), Q4i ς2i (t)〉
}
. (11.36)

Obviously, from Lemma 11.7, inequality (11.36) holds when τi (t) = 0 or τi (t) =
τ̄i . Therefore, inequality (11.36) holds for any t with 0 ≤ τi (t) ≤ τ̄i .

On the other hand, by the Leibniz-Newton formula, we get

x(t) − x(t − τi (t)) −
∫ t

t−τi (t)
ϑi (s)ds −

∫ t

t−τi (t)
σi (s)dω(s) = 0, (11.37)

x(t − τi (t)) − x(t − τ̄i ) −
∫ t−τi (t)

t−τ̄i

ϑi (s)ds −
∫ t−τi (t)

t−τ̄i

σi (s)dω(s) = 0. (11.38)

It is easy to see that the following equality holds for any positive diagonal matrices
Gi with compatible dimensions

0 = −2 〈Giϑi (t),ϑi (t) − αi (x(t))ιi (t)〉 . (11.39)

Considering that the feedback stabilizing control law being defined by ui (t) =
DT

i Xi x(t), if we denote yi (t) = Xi x(t), then for any symmetric nonnegative definite
matrices Mi , we have

0 = −2 〈Mi yi (t), yi (t) − Xi x(t)〉 (i = 1, 2, . . . , N ). (11.40)

Noticing that the following equality holds

−
∫ t

t−τ̄i

〈σi (s), Ziσi (s)〉 ds = −
∫ t−τi (t)

t−τ̄i

〈σi (s), Ziσi (s)〉 ds

−
∫ t

t−τi (t)
〈σi (s), Ziσi (s)〉 ds. (11.41)
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From [14], we have

E

{∫ t

t−τi (t)
〈σi (s), Ziσi (s)〉 ds

}

=E

〈 ∫ t

t−τi (t)
σi (s)dω(s), Zi

∫ t

t−τi (t)
σi (s)dω(s)

〉
, (11.42)

E

{∫ t−τi (t)

t−τ̄i

〈σi (s), Ziσi (s)〉 ds

}

=E

〈 ∫ t−τi (t)

t−τ̄i

σi (s)dω(s), Zi

∫ t−τi (t)

t−τ̄i

σi (s)dω(s)

〉
. (11.43)

By (11.4)–(11.9) and (11.14)–(11.43), we obtain

dE[V (x(t), t, i)]
dt

≤ Emax
{〈

ζi (t),
(
Ω i + Ω̃i + ET ZiE

)
ζi (t)

〉
,
〈
ζi (t),

(
Ω i + Ω̂i + ET ZiE

)
ζi (t)

〉}
,

(11.44)

where

ζi (t) = col

{
x(t) x(t − τi (t)) f (x(t))

f (x(t − τi (t))) g(x(t))
∫ t

t−υi (t)
g(x(s))ds

ϑi (t) yi (t) x(t − τ̄i ) βi (x(t))
∫ t

t−τi (t)
σi (s)dω(s)

∫ t−τi (t)

t−τ̄i

σi (s)dω(s)

}
.

Next, we prove that the error system is exponentially stable in mean square.
For convenience, we define

λp = min
i∈℘

{λmin(Pi )},

λM = min
i∈℘

{λmin(−Ω i − Ω̃i − ET ZiE), λmin(−Ω i − Ω̂i − ET ZiE)}.

From (11.12) and (11.13) and the well-known Schur complements, it can be easily
seen that λM > 0. Furthermore, from (11.44) we have that

dE[V (x(t), t, i)]
dt

≤ −λME||ζi (t)||2 ≤ −λME||x(t)||2. (11.45)
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Similar to [45], from (11.18) and the definition ofϑi (t), there exist positive scalars
ε1 and ε2 such that

E[V (x(t), t, i)] ≤ ε1E||ζ(t)||2 + ε2E

∫ t

t−τ̄i

||x(s)||2ds.

To prove the mean square exponential stability, we modify the Lyapunov function
candidate (11.18) as V̄ (x(t), t, i) = ertV (x(t), t, i), where r is chosen such that
r(ε1 + τ̄ ε2er τ̄ ) ≤ λM .

Then, we have
E[V̄ (x(t), t, i)] ≥ λpE||x(t)||2.

Furthermore, by the Dynkin’s formula [14], for any η(t) = i ∈ ℘, t > 0, we
obtain that

E[V̄ (x(t), t, i)] =E[V̄ (x(0), 0, η(0))] + E

∫ t

0
ers [r V̄ (x(s), s, i) + £V̄ (x(s), s, i)

]
ds

≤ (ε1 + τ̄ ε2) sup
−�≤s≤0

E||x(t)||2 + rε1

∫ t

0
ers

E||x(s)||2ds

+ rε2E

∫ t

0
ers

∫ s

s−τ̄
||x(θ)||2dθds − λM

∫ t

0
ers||x(s)||2ds.

By changing the integration sequence, we get

∫ t

0
ers

∫ s

s−τ̄
||x(θ)||2dθds

≤
∫ 0

−τ̄
ers

∫ θ+τ̄

0
||x(θ)||2dsdθ +

∫ t

0
ers

∫ θ+τ̄

0
||x(θ)||2dsdθ

≤
∫ 0

−τ̄
(θ + τ̄ )er(θ+τ̄ )||x(θ)||2dθ + τ̄

∫ t

0
er(θ+τ̄ )||x(θ)||2dθ

≤ τ̄er τ̄

{
sup

−�≤s≤0
||x(s)||2 +

∫ t

0
erθ||x(θ)||2dθ

}
.

Therefore we have

E||x(t)||2 ≤ εe−rt sup
−�≤s≤0

||x(s)||2,

or

lim
t→∞ sup

1

t
log(E||x(t)||2) ≤ −r,

where ε = λ−1
p (ε1 + τ̄ ε2 + r τ̄2ε2er τ̄ ).
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Consequently,weprove that the error system (11.1) is exponentially stable inmean
square. So the system (11.1) is r-exponentially stabilizable in the mean square. This
ends the proof.

Remark 11.11 The Lyapunov functional (11.18) of this chapter fully uses the infor-
mation about the amplification function and the mode-dependent time-varying
delays, but [15, 20] only use the information about delays when constructing their
Lyapunov functionals. Therefore the Lyapunov functional is more general than those
in [15, 20], and the stability criteria in this chapter may be less conservativeness.

Remark 11.12 When one of the time-varying delays τ̇i (t) is not differentiable or
unknown, the result in Theorem 11.10 is no longer applicable. For this case, by
setting Q1i = Q2i = 0 in Theorem 11.10, one can obtain a result of the mean square
exponential stability of system (11.1).

If there are no stochastic disturbances, that is E j (ηt ) = 0 ( j = 1, . . . , 5), then
the neural network (11.1) is simplified to

ẋ(t) = − α(x(t), ηt )

[
β(x(t), ηt ) − A(ηt ) f (x(t)) − B(ηt ) f (x(t − τ (t, ηt )))

− C(ηt )

∫ t

t−υ(t,ηt )

g(x(s))ds − D(ηt )u(t, ηt )

]
. (11.46)

For system (11.46), by setting Zi = S6 = S8 = 0 in Theorem 11.10 and deleting∫ t
t−τi (t)

σi (s)dω(s),
∫ t−τi (t)

t−τ̄i
σi (s)dω(s) from ζi (t), we can get the following result

of the mean square exponential stability.

Corollary 11.13 Given r > 0. For any given scalars τ̄i > 0, ῡi > 0, υ′
i < 1, con-

sidering the system (11.46) satisfying Assumptions 11.3–11.5 and τ̇i (t) ≤ τ ′
i , υ̇i (t) ≤

υ′
i , the system (11.46) is globally r-exponentially stabilizable if there exist symmet-

ric positive definite matrices Pi ∈ R
n×n, symmetric nonnegative definite matri-

ces Qli, Ri , Mi , Sl (l = 1, . . . , 4, l = 1, . . . , 5, 7, 9), positive diagonal matrices
Gi , Ui , Ti , Wi , H, K , and real matrices Xi such that (11.4), (11.5), (11.7), (11.9)
and the following inequalities hold,

[
Ω i + Ω̌i E

T

E Z̃i

]
< 0, (11.47)

[
Ω i + Ὼi E

T

E Z̃i

]
< 0, (11.48)

where

Ω i =
⎡

⎣
Ω1i Ω2i Ω4i

∗ Ω3i Ω5i

∗ ∗ Ω6i

⎤

⎦ ,
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Ω̌i = − 2

τ̄i
IT Q4iI, Ὼi = − 2

τ̄i
J

T Q4iJ,

I = [
0 −I 0 0 0 0 0 0 I 0

]
,

J = [−I I 0 0 0 0 0 0 0 0
]
,

E = [ E1i E2i E3i E4i 0 E5i 0 0 0 0 ],

i = 1, . . . , N , and other parameters are defined in Theorem 11.10. Furthermore,
the feedback stabilizing control law is defined by ui (t) = DT

i Xi x(t).

11.4 Illustrative Examples

In this section, we provide three numerical examples to demonstrate the feasibility
of our delay-dependent stabilization criteria.

Example 11.14 Consider system (11.1) with N = 2,

αji(x j (t)) = 0.4 sin(x j (t)) + 0.8,

βji(x j (t)) = 7.5x j (t) + 0.5 sin(x j (t)),

f j (x j (t)) = g j (x j (t)) = tanh(x j (t)), j = 1, 2,

τi (t) = 0.2 sin(t) + 0.2,

υi (t) = 0.3 sin(t) + 0.3, i = 1, 2,

and

A1 =
[

1 −0.01
0.1 1.2

]
, A2 =

[
1.1 −0.01
0.1 1.2

]
,

B1 =
[
5.2 1.2
1.12 2.3

]
, B2 =

[
5.3 1.1
1.11 2.3

]
,

C1 =
[
1.2 0.11
0.1 1.22

]
, C2 =

[
1.1 0.12
0.1 1.22

]
,

D1 = D2 = 0, E11 = E21 = 0.5I,

E12 = E22 = 0.4I, El1 = El2 = 0, l = 3, 4, 5;
ℵ =

[−0.8 0.8
0.3 −0.3

]
.

For this system without external controller, Fig. 11.1a shows the results of time
response of x1(t) and x2(t).

However, if we set

D1 =
[

4
2.1

]
, D2 =

[
4
2

]
,
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Fig. 11.1 a Time response of x1(t) and x2(t)without external controller in Example 11.14, b Time
response of x1(t) and x2(t) with external controller u1(t), u2(t) in Example 11.14

it is easy to see that Assumptions 11.3–11.5 are satisfied with αi = 0.4, ᾱi =
1.2,Πi = 8I, Γi = 7I, Σ̄ = I,Σ = F1 = F3 = 0, F2 = F4 = 0.5I, and
τ̄ = τ̄i = 0.4, ῡ = ῡi = 0.6, i = 1, 2. Using the Matlab LMI Toolbox, the LMIs
(11.4)–(11.11) are feasible and the feedback control is

u1(t) = [ −15.9876 28.4673 ]x(t),

u2(t) = [ −9.8136 17.5622 ]x(t).

The simulation of the solution is given in Fig. 11.1b for t ∈ [−0.65, 200]. It is
clear that both x1(t) and x2(t) converge exponentially to zeros.

Example 11.15 Consider system (11.46) with N = 2,

B1 =
[
6.2 1.2
1.12 0.3

]
, B2 =

[
6.3 1.1
1.11 0.3

]
,
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Fig. 11.2 a Time response of x1(t) and x2(t)without external controller in Example 11.15, b Time
response of x1(t) and x2(t) with external controller u1(t), u2(t) in Example 11.15

and other parameters are defined in Example 11.14.
For this system without external controller, Fig. 11.2a shows the results of time

response of x1(t) and x2(t).
However, if we set D1 = D2 = [ 4 0 ]T , it is easy to see that Assumptions 1-3

are satisfied. Using the Matlab LMI Toolbox, the LMIs (11.4), (11.5), (11.7), (11.9),
(11.47) and (11.48) are feasible and the feedback control is

u1(t) = [ −0.9144 − 1.20177 ]x(t),

u2(t) = [ −1.0149 − 0.1481 ]x(t).

The simulation of the solution is given in Fig. 11.2b for t ∈ [−0.65, 200]. It is
clear that both x1(t) and x2(t) converge exponentially to zeros.

Example 11.16 Consider system (11.46) with N = 1,
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α j1(x j (t)) = 1, β j1(x j (t)) = 8x j (t),

f j (x j (t)) = g j (x j (t)) = tanh(x j (t)), j = 1, 2,

τ1(t) = 8.5, υ1(t) = 2.5,

and

A1 =
[

1 −0.01
0.1 1.2

]
, B1 =

[
5.2 1.2
1.12 2.3

]
,

C1 =
[
1.2 0.11
0.1 1.22

]
, D1 =

[−1.2
0.2

]
.

For this system, Assumptions 11.3–11.5 are satisfied with αi = ᾱi = 1,Πi =
Γi = 8I, Σ̄ = I,Σ = F1 = F3 = 0, F2 = F4 = 0.5I, and τ̄ = τ̄1 = 8.5, ῡ =
ῡ1 = 2.5. It is easy to verify that Theorem 1 of [27] admits no feasible solution.
However, using the Matlab LMI Toolbox, the LMIs (11.4), (11.5), (11.7), (11.9),
(11.47) and (11.48) are feasible with the following matrices:

P1 =
[

72.4939 −13.8747
−13.8747 103.5930

]
,

Q11 =
[

16.7250 −26.0105
−26.0105 88.6304

]
,

Q21 =
[
644.0687 178.7808
178.7808 234.9008

]
,

Q31 =
[

14.2369 −26.9039
−26.9039 81.3660

]
,

Q41 =
[

0.3839 −0.0816
−0.0816 0.6447

]
,

R1 =
[
175.2573 −2.4592
−2.4592 269.3507

]
,

M1 =
[
95.6377 −2.9849
−2.9849 75.6384

]
,

M̄1 =
[−334.3276 58.5190

58.5190 −17.4669

]
,

T1 = diag{12.6571, 49.6002},
U1 = diag{125.4140, 170.7878},

W1 = diag{10.2844, 37.0834},
G1 = diag{9.2136, 15.5713},
H = diag{11.6382, 15.4633},
K = diag{5.1548, 8.9735},
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and accordingly the feedback control is

u1(t) = [ 0.3810 0.2053 ]x(t).

Based on Example 11.16, it is easy to see that the obtained results are better than
those in [27]. Hence, the proposed method is an improvement over the existing ones.

11.5 Summary

In this chapter, the problem of designing a feedback control law to exponentially
stabilize a class of stochastic Cohen-Grossberg neural networks with both Markov-
ian jumping parameters and mixed mode-dependent time delays has been studied.
The mixed time delays consist of both discrete and distributed delays. Using a
new Lyapunov–Krasovskii functional that accounts for the mode-dependent mixed
delays, a new delay-dependent condition for the global exponential stabilization has
been established in terms of linear matrix inequalities. Upon the feasibility of the
LMI, all the control parameters can be easily computed and the design of a stabilizing
controller can be accomplished.
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Chapter 12
Adaptive Synchronization of Complex
Neural Networks

In Chap.11, stabilization problems were discussed for a class of stochastic Cohen–
Grossberg neural networks with mode-dependent mixed time-delays andMarkovian
switching. In this chapter, synchronization problem will be discussed for a kind of
interconnected neural dynamical networks with time-varying coupling connections.

12.1 Introduction

As an important branch of human biology, neuroscience has become a very hot
topic nowadays. A lot of efforts have been made by neuroscientists to understand,
predict, and control the neural dynamics so as to contribute in this area. At theoretical
level, some neural models are constructed to simulate the real neurons and their
various electrophysiological characteristics for studying the behavior of neurons and
neural networks. The structure of neural networks and its dynamics have significant
impacts on the development of artificial intelligence and cognitive science. Whether
in biological or artificial neural networks, the constructed neural networkmodel plays
an essential role in describing the dynamics and the mechanism of neural networks.
In the past decades, many neural network models such as Hopfield neural networks
and Cohen–Grossberg neural networks, to name a few, have been widely studied
and applications have been found in different areas [1–9]. Most previous studies
mainly concentrated on stability analysis, periodic oscillation, and chaotic behavior
of neural networks [10].

There is evidence to show that arrays of complex interconnected neural networks
on the level of linear coupling through synapses or gap junctions can exhibit the
small-world properties [11, 12] and many interesting phenomena, such as spatio-
temporal chaos [13], auto waves [14, 15], spiral waves [16, 17], etc., which cannot be
found in node network or uncoupled network. Moreover, experiment and theoretical
results have revealed that a mammalian brain not only displays its storage of associa-
tive memory, but also modulates oscillatory neuronal synchronization by selective
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perceive attention [18, 19]. Circadian rhythms in biological and living systems reg-
ulate the functions of cells in the living bodies which are entrained to the day/night
cycle via the sophisticated action of various gene regulatory networks [20]. More
notably, synchronization has beenproposed as a powerfulmechanism to explain some
of the patterns observed in the brain [21–24]. Thus, investigation of synchronization
dynamics of such complex interconnected neural networks is indispensable in theory
[25, 26]. Synchronization of complex interconnected neural networks also has many
applications. In [14, 27], the authors proposed the so-called “the autowave princi-
ples for parallel image processing.” In [28], the authors presented an architecture
of complex interconnected neural networks to store and retrieve complex oscillatory
patterns as synchronization states. In [29], the authors introduced a secure communi-
cation system based on interconnected cellular neural networks. Therefore, study on
synchronization of complex interconnected or coupled neural networks is an impor-
tant step for both understanding brain science and designing coupled neural networks
for practical applications.

Nowadays, there are many synchronization results for complex interconnected
neural networks [30–42]. However, they are mainly suitable for complex neural
networks with exact structure and parameters. In the real world, it is impossible to
precisely describe the behavior of any physical system throughmathematicalmodels.
In modeling physical systems, a classical dilemma is the trade-off between model
accuracy and tractability. A variety of approximation methods are used, for analysis,
simulation, or control design of the “real” systems. It is critical that the approximate
model preserves properties and features of interests of the original system, such
as stability, Hamiltonian structure, or passivity. One example of approximation is
the use of linearization methods. Nonlinear behaviors abound in the real world,
including saturation, backlash, and dead zone. Linearized models are often used,
because methods for analysis and control designs are readily available for linear
systems. Another example is model reduction. The need for modeling accuracy
may result in large-scale, higher order, and complex mathematical models. Model
reduction methods lead to a lower-order, simpler system that can be used to facilitate
control designs or speedup simulations. Similarly, in real-world complex networks,
it is hard to get the exact estimation of the coupling coefficients and structure.

Therefore, how to design an effective controller to realize the synchronization
for complex networks remains a hot topic. In order to handle the synchronization
problem of complex networks with imprecise models or unknown parameters, many
approaches have been proposed, e.g., robust synchronization, switching synchroniza-
tion, and adaptive synchronization, [43–48]. Among these approaches, as a natural
extension of self-synchronization, adaptive synchronization or controlled synchro-
nization has become a major topic in nonlinear sciences due to its suitability of
designing adaptive updating laws and achieving better synchronization performance
[46–48]. Adaptive synchronization approaches are usually related to the optimal con-
trol and system identification [49, 50], and there are many different ways to realize
the adaptive synchronization. One of the most simplest ways is to design a linear
error feedback controller with fixed gain, for example, the methods in [51]. Another
improved method is the linear error feedback with adaptive gain [52–54]. Besides
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the linear error feedback controller, some complex controllers are also designed,
e.g., [55], in which too many adjustable parameters are required to design, and the
structure of the controller becomesmore complex than the linear feedback controller.
This often leads to infeasible performance in applications. When the coupling matrix
is time-varying, some local controllers are usually designed by linearized methods
[56, 57], in which the Jacobian matrix is required at the synchronization state. For
global synchronization, the adaptive coupling updating law should also be designed
[58]. However, several simplified assumptions are often required in existing adaptive
synchronization approaches. For example, it is typically assumed that the network
topology is time-invariant, and that a unique coupling gain determines the strength of
the coupling between neighboring nodes. Clearly, these assumptions are unrealistic
when compared to the natural world. Therefore, how to synchronize a complex neural
network with imprecise models or unknown parameters is still a challenging topic.

Based on the above discussions, this chapter aims to present a distributed control
strategy to design an adaptive coupling updating law and an adaptive control law
simultaneously. The remarkable advantage of the adopted method is to use inter-
nal adjusting and external control to adjust the whole networks simultaneously for
the purpose of synchronization. The present method can be suitable for large-scale
complex neural networks with amounts of nodes due to the distributed updating law.

12.2 Problem Formulation and Preliminaries

In this chapter wewill discuss the following complex interconnected neural networks
with N identical nodes

ẋi (t) = − Cxi (t) + Af(xi (t)) + Bf(xi (t − τ (t))) + J (t)

+
N∑

j=1, j �=i

dijGij(t)Γ (x j (t) − xi (t)), (12.1)

where xi (t) = (xi1(t), . . . , xin(t))T is the state vector of the i th node, and pos-
itive integer n is the dimension of the i th node. Positive integer N ≥ 1 denotes
the number of node network, and C = diag(c1, . . . , cn) denotes a positive def-
inite diagonal matrix. A = (arj)n×n and B = (brj)n×n are the interconnection
matrix and delayed interconnection matrix with appropriate dimensions, respec-
tively, where arj > 0 (arj < 0) if the output from the j th unit excites (respectively,
inhibits) the r th unit at time t . brj has the same meaning as arj, r, j = 1, . . . , n.
f (xi (t)) = ( f1(xi1(t)), . . . , fn(xin(t)))T is the activation function and J (t) is the
external input vector of the i th node with appropriate dimensions. τ (t) > 0 is
a bounded and time-varying delay, and its change rate satisfies τ̇ (t) ≤ μ < 1.
G = (Gij(t))N×N denotes the coupling configuration matrix of the networks with
Gij(t) > 0 (i �= j) but not all zeros, and it satisfies the diffusive condition
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Gii(t) = −∑N
j=1, j �=i Gij(t). D = (dij)N×N is the coupling strength matrix of

the networks with dij > 0, where dij denotes the coupling strength of the networks.
Inner-coupling matrix Γ = diag(γ1, . . . , γn) is a positive diagonal matrix which
describes the individual coupling between two connected nodes of the networks,
i, j = 1, . . . , N .

Remark 12.1 In order to study the dynamics of neural networks, mathematical mod-
els in the form of differential equations are commonly adopted. Different kinds of
electrophysiological characteristics of neurons can be simulated based on a neural
network model. For example, if we ignore the coupling effects in complex networks
(12.1), i.e., dij = 0 or Gij(t) = 0, i, j = 1, . . . , N , complex networks (12.1) are
reduced to the following famous Hopfield neural networks model [7–9],

ẏ(t) = − Cy(t) + Af(y(t)) + Bf(y(t − τ (t))) + J (t), (12.2)

which is used to describe how action potentials in neurons are initiated and propa-
gated, where y(t) = (y1(t), . . . , yn(t))T is the state vector of the network model. Its
basic idea is to model the segment of nerve membrane’s electrical properties with an
equivalent circuit, which can be used in engineering fields such as signal processing
and optimization computation [59–64].

Remark 12.2 Neural network (12.2) has potential applications in optimization com-
putation and cognitive computation [63–66]. In different applications, parameters
in (12.2) may have different physical meanings. For example, when neural network
(12.2) is used in optimization computation, cr , r = 1, . . . , n, represents the rate
with which the r th unit will reset its potential to the resting state in isolation when
disconnected from the network and external inputs. A = (arj)n×n and B = (brj)n×n

denote the synaptic weights and represent the connection strengths of the synaptic
connections from the j th neuron to the r th neuron, respectively. J (t) = (J1(t), . . . ,
Jn(t))T denotes the external input bias term, where Jr (t) represents a firing threshold
for the r th neuron. Activation function f (xr (t)) is a nonlinear function and repre-
sents the input–output characteristics of the r th neuron. In the circuit implement of
neural network (12.2), all these connectionmatricesC, A, and B are implemented by
the capacitors and resistances, and f (xr (t)) is realized by the operational amplifiers,
r = 1, . . . , n. More details can be referred to in reference [59].

Remark 12.3 Associative memories are brain-style devices designed to store a set
of patterns as stable equilibria such that the stored patterns can be reliably retrieved
with the initial probes containing sufficient information about the patterns [60, 61].
When the network (12.2) with space-invariant templates is used to realize associative
memory, where the cells are arranged in a two-dimensional array, the meanings of
the network parameters are as follows: A = (arj)n×n denotes the feedback cloning
template and B = (brj)n×n denotes the delay feedback cloning template, respectively.
J (t) is the input cloning template. The convergence of the neural network (12.2)
resulting from the design procedure can be guaranteed by the obtained stability
conditions. More details can be referred to in reference [62].
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Remark 12.4 The relations between node network (12.2) and complex networks
(12.1) can be briefly stated as follows.

(1) Hopfield neural networks, Cohen–Grossberg neural networks and cellular
neural networks can be changed to the neural network model (12.2), and have
attracted more and more attention of researchers due to their great perspectives
in applications such as associative memory and optimization computation. Previous
studies on neural networks mainly aimed at solving the engineering problems, for
instance, system modeling, function approximation, and associative memory. How-
ever, as a powerful tool of nonlinear modeling and function approximation, neural
networks are always regarded as a black-box role. Consequently, neural networks
(e.g., model (12.2)) cannot clearly reflect the essence of the complex systems because
they are established in a relatively simple connection rule [67].As pointed out by [68],
structural complexity and node diversity are the main features of complex networks.
Therefore, existing neural network models (e.g., model (12.2)) have not considered
the structural complexity and node diversity.

(2) Recently, arrays of complex interconnected neural networks have attracted
much attention of researchers in different research fields. They can exhibit many
interesting phenomena (for instance, an equilibrium point, a periodic orbit, or a
chaotic attractor, among others [69–71]) by choosing different coupling strength D =
(dij)N×N and coupling configuration matrix G(t)N×N (e.g., refer to model (12.1)).
For example, the stability of the synchronous manifold of complex networks (12.1)
is determined by the dynamics of the node (12.2), the inner-coupling connection
matrix Γ , the outer-coupling configuration matrix G(t), and the coupling strength
matrix D. In contrast, the stability of node network (12.2) is only determined by
C, A, B f (x(t)) and J (t), which are all the information of its own networks, and
are not related to other nodes. Therefore, the study of synchronization phenomena
of complex interconnected neural networks is an important step toward both basic
theory of neuroscience and technological practice.

In order to give our main results, we need the following assumption, definitions,
and lemma.

Assumption 12.5 The activation function fi (v) is bounded and continuous, which
satisfies

0 ≤ fi (η) − fi (v)

η − v
≤ δi , (12.3)

for any η �= v, where η, v ∈ R, δi > 0, | fi (v)| ≤ Gb
i , and Gb

i > 0 is a positive
constant, i = 1, . . . , n. Let Δ = diag(δ1, . . . , δn).

Definition 12.6 (see [47]) The set S = {(xT
1 (t), xT

2 (t), . . . , xT
N (t))T ∈ R

nN :
xi (t) = x j (t), i, j = 1, . . . , N } is called synchronization manifold, where xi (t) =
(xi1(t), xi2(t), . . . , xin(t))T ∈ R

n is the state of the i th node, i = 1, . . . , N .
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Definition 12.7 (see [48]) Synchronization manifold S is said to be globally asymp-
totically stable for the complex networks (12.1), equivalently, the complex networks
(12.1) is globally asymptotically synchronized, if the following conditions hold,

limt→∞‖xi (t) − x j (t)‖ = 0, i, j = 1, 2, . . . , N .

Obviously, if complex networks (12.1) realize the synchronization, that is,

x1(t) = x2(t) = · · · = xN (t) = s(t),

then
N∑

j=1, j �=i

dijGij(t)Γ (x j (t) − xi (t)) = 0.

Thus, the synchronous state s(t) satisfies the following condition:

ṡ(t) = −Cs(t) + Af(s(t)) + Bf(s(t − τ (t))) + J (t). (12.4)

Synchronous state s(t) can be an equilibrium point, a limit cycle, an aperiodic orbit,
or a chaotic orbit [72].

In order to realize the synchronization of complex networks (12.1), an external
control ui (t) should be acted on the networks (12.1), i.e.,

ẋi (t) = − Cxi (t) + Af(xi (t)) + Bf(xi (t − τ (t))) + J (t)

+
N∑

j=1, j �=i

dijGij(t)Γ (x j (t) − xi (t)) + ui (t), (12.5)

where i = 1, . . . , N .
Defining the synchronization error ei (t) = xi (t) − s(t), we have the following

error dynamical systems, i = 1, . . . , N :

ėi (t) = − Cxi (t) + Af(xi (t)) + Bf(xi (t − τ (t))) + J (t)

−
[

− Cs(t) + Af(s(t)) + Bf(s(t − τ (t))) + J (t)
]

+
N∑

j=1, j �=i

dijGij(t)Γ (x j (t) − xi (t)) + ui (t)

= − Cei + A( f (xi (t)) − f (s(t)))

+ B( f (xi (t − τ (t)) − f (s(t − τ (t)))

+
N∑

j=1, j �=i

dijGij(t)Γ (x j (t) − xi (t)) + ui (t). (12.6)
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In the sequel, we will design the adaptive controller ui (t) and adaptive coupling
updating laws Ġij(t) to guarantee the synchronization of complex networks (12.5),
i, j = 1, . . . , N .

Note that the purpose of designing the adaptive coupling updating laws Ġij(t) is
to estimate the coupling configuration magnitude among the different nodes. That
is, we only estimate the magnitudes of Gij(t) for i �= j . For the case of i = j , we
use the results of Gij(t) with i �= j to compute Gii(t), which is used to guarantee
the diffusive condition of the coupling matrices, i.e., Gii(t) = −∑N

j=1, j �=i Gij(t),
i, j = 1, . . . , N .

In this case, we take the following adaptive control laws:

ui (t) = −σiθi (t)Γ (xi (t) − s(t)), (12.7)

where σi = 1 if node i is chosen to be controlled, otherwise σi = 0. θi (t) is an
adaptive control gain which is updated in the following form:

θ̇i (t) = σi ki (xi (t) − s(t))T (xi (t) − s(t)), (12.8)

where θi (0) > 0 and ki > 0, i = 1, . . . , N .
Combining the methods in [46, 73], the adaptive coupling updating laws Ġij(t)

are selected in the following form:

Ġij(t) = dijhij(xi (t) − x j (t))
T (xi (t) − x j (t)), (12.9)

where Gij(0) ≥ 0 (i �= j) and hij > 0 are positive constants, i, j = 1, . . . , N .

Lemma 12.8 (see [5])Let X, Y and P be real matrices with appropriate dimensions,
and P be a positive definite symmetric matrix. Then for any positive scalar ε > 0,
the following inequality holds:

X T Y + Y T X ≤ ε−1X T P−1X + εY T PY. (12.10)

12.3 Adaptive Synchronization Scheme

Now we state our main results in this section.

Theorem 12.9 Suppose that Assumption12.5 holds. The complex networks (12.5)
are globally asymptotically synchronized if control laws (12.7) and (12.8) and adap-
tive coupling updating laws (12.9) hold.

Proof Let us consider the following Lyapunov function,

V (t) = V1(t) + V2(t),
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where

V1(t) =
N∑

i=1

eT
i (t)ei (t) +

N∑

i=1

N∑

j=1, j �=i

1

2hij
(Gij(t) − ᾱij)

2

+
N∑

i=1

N∑

j=1, j �=i

1

ki
(θi (t) − β̄i )

2 (12.11)

V2(t) =
N∑

i=1

∫ t

t−τ (t)
eT

i (s)Mei (s)ds, (12.12)

hij > 0 and ki > 0. ᾱij = ᾱ j i and β̄i are nonnegative constants, and ᾱij = 0
if and only if Gij(t) = 0. Positive semi-definite matrix M will be defined later,
i, j = 1, . . . , N .

The derivative of V1(t) is as follows:

V̇1(t)

= 2
N∑

i=1

eT
i (t)ėi (t) +

N∑

i=1

N∑

j=1, j �=i

1

hij
(Gij(t) − ᾱij)Ġij(t)

+
N∑

i=1

N∑

j=1, j �=i

2

ki
(θi (t) − β̄i )θ̇i (t)

= 2
N∑

i=1

eT
i (t)

[
− Cei (t) + A( f (xi (t)) − f (s(t)))

+ B( f (xi (t − τ (t)) − f (s(t − τ (t)))

+
N∑

j=1, j �=i

dijGij(t)Γ (x j (t) − xi (t)) + ui (t)
]

+
N∑

i=1

N∑

j=1, j �=i

dij(Gij(t) − ᾱij)(xi (t) − x j (t))
T Γ (xi (t) − x j (t))

+ 2
N∑

i=1

N∑

j=1, j �=i

σi (θi (t) − β̄i )(xi (t) − s(t))T Γ (xi (t) − s(t)). (12.13)
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Applying Assumption12.5, Lemma12.8 and the definition of synchronization
error, we have

V̇1(t)

=
N∑

i=1

eT
i (t)

[
− 2C + AAT + ΔΔ + BBT

]
ei (t)

+
N∑

i=1

eT
i (t − τ (t))ΔΔeT

i (t − τ (t))

+ 2
N∑

i=1

eT
i (t)

[ N∑

j=1, j �=i

dijGij(t)Γ (x j (t) − xi (t)) − σiθi (t)Γ e(t)

]

+
N∑

i=1

N∑

j=1, j �=i

dij(Gij(t) − ᾱij)(xi (t) − x j (t))
T Γ (xi (t) − x j (t))

+ 2
N∑

i=1

N∑

j=1, j �=i

σi (θi (t) − β̄i )e
T
i (t)Γ ei (t)

=
N∑

i=1

eT
i (t)

[
− 2C + AAT + ΔΔ + BBT

]
ei (t)

+
N∑

i=1

eT
i (t − τ (t))ΔΔeT

i (t − τ (t))

+ 2
N∑

i=1

eT
i (t)

[ N∑

j=1, j �=i

dijGij(t)Γ (x j (t) − xi (t)) − σi β̄iΓ ei (t)

]

+
N∑

i=1

N∑

j=1, j �=i

dij(Gij(t) − ᾱij)(xi (t) − x j (t))
T Γ (xi (t) − x j (t)). (12.14)

Note that the following condition holds:

N∑

i=1

N∑

j=1, j �=i

dij(Gij(t) − ᾱij)(xi (t) − x j (t))
T Γ (xi (t) − x j (t))

=
N∑

i=1

N∑

j=1, j �=i

dij(Gij(t) − ᾱij)(ei (t) − e j (t))
T Γ (xi (t) − x j (t))

= 2
N∑

i=1

N∑

j=1, j �=i

dij(Gij(t) − ᾱij)e
T
i (t)Γ (xi (t) − x j (t))
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= − 2
N∑

i=1

N∑

j=1, j �=i

dij(Gij(t) − ᾱij)e
T
i (t)Γ (x j (t) − xi (t)). (12.15)

Substituting (12.15) into (12.14), it yields

V̇1(t) =
N∑

i=1

eT
i (t)

[
− 2C + AAT + ΔΔ + BBT − 2σi β̄iΓ

]
ei (t)

+
N∑

i=1

eT
i (t − τ (t))ΔΔeT

i (t − τ (t))

+ 2
N∑

i=1

N∑

j=1, j �=i

dijᾱije
T
i Γ (x j (t) − xi (t)). (12.16)

Meanwhile, the following equality holds:

2
N∑

i=1

N∑

j=1, j �=i

dijᾱije
T
i (t)Γ (x j (t) − xi (t))

= 2
N∑

i=1

N∑

j=1, j �=i

dijᾱije
T
i (t)Γ (e j (t) − ei (t))

= 2
N∑

i=1

N∑

j=1

dijᾱije
T
i (t)Γ e j (t). (12.17)

Combining (12.16) with (12.17), we have

V̇1(t) =
N∑

i=1

eT
i (t)

[
− 2C + AAT + ΔΔ + BBT − 2σi β̄iΓ

]
ei (t)

+
N∑

i=1

eT
i (t − τ (t))ΔΔeT

i (t − τ (t))

+ 2
N∑

i=1

N∑

j=1

dijᾱije
T
i (t)Γ e j (t). (12.18)

The derivative of V2(t) is as follows:

V̇2(t) =
N∑

i=1

[eT
i (t)Mei (t) − eT

i (t − τ (t))Mei (t − τ (t))(1 − τ̇ (t))]. (12.19)
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If we take M = 1
1−μΔΔ, where τ̇ (t) ≤ μ < 1, then

V̇2(t) =
N∑

i=1

[
eT

i (t)
1

1 − μ
ΔΔei (t)

− eT
i (t − τ (t))

1

1 − μ
ΔΔei (t − τ (t))(1 − τ̇ (t))

]

≤
N∑

i=1

[
eT

i (t)
1

1 − μ
ΔΔei (t)

− eT
i (t − τ (t))ΔΔei (t − τ (t))

]
. (12.20)

Therefore,

V̇ (t) =V̇1(t) + V̇2(t)

=
N∑

i=1

eT
i (t)

[
− 2C + AAT + ΔΔ + BBT + 1

1 − μ
ΔΔ

]
ei (t)

+ 2
N∑

i=1

N∑

j=1

dijᾱi j e
T
i Γ e j − 2

N∑

i=1

eT
i (t)σi β̄iΓ ei (t)

= 2eT (t)(dijᾱij)N×N ⊗ Γ eT

− 2eT (t)(σi β̄i )N×N ⊗ Γ e(t) + eT (t)IN ⊗ Q0e(t)

= 2eT (t)

[
(dijᾱij)N×N − (σi β̄i )N×N

]
⊗ Γ e(t) + eT (t)IN ⊗ Q0e(t),

(12.21)

where Q0 = −2C + AAT + ΔΔ + BBT + 1
1−μΔΔ.

Since the coupling strength matrix D = (dij)N×N is a bounded real matrix and
ᾱij is positive and symmetric, then the norm of matrix D exits. Also, since σi and

β̄i are all positive, the eigenvalue distribution of matrix
[
(dijᾱij)N×N − (σi β̄i )N×N

]

is determined by the magnitude of β̄i . Therefore, the larger the magnitude of β̄i is,

the more negative the eigenvalue of matrix
[
(dijᾱij)N×N − (σi β̄i )N×N

]
is. Since

IN ⊗ Q0 is a fixed matrix, then one can choose large enough value β̄i to make the
following inequality hold, i = 1, . . . , N :

V̇ (t) ≤ −ε

N∑

i

eT
i (t)ei (t) < 0 for ei (t) �= 0. (12.22)
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According to Lyapunov stability theory, ei (t) approaches to zero as time evolves
to infinity, i = 1, . . . , N . That is, the synchronization manifold S of complex net-
works (12.5) is globally asymptotically stable under the adaptive control laws (12.7)
and (12.8) and adaptive coupling updating laws (12.9). Therefore, complex net-
works (12.5) are globally asymptotically synchronized. This completes the proof of
Theorem12.9.

Note that if the coupling strength matrix D satisfies the diffusive condition dii =
−∑N

j=1, j �=i dij, or the compound matrix Ḡ = (ḡij) = (dijgij) satisfies the diffusive

condition ḡii = −∑N
j=1, j �=i ḡij, under the adaptive control laws (12.7) and (12.8)

and adaptive coupling updating laws (12.9), the global synchronization is rather easy
to be implemented due to the availability of magnitude of β̄i , i = 1, . . . , N .

Remark 12.10 Because the proposedmethod is a distributed adaptive strategy,which
only uses the nearest neighbor information of nodes to adjust the coupling strength
adaptively, it can work for large-scale networks. One of the remarkable features of
the proposed adaptive strategy is that there is no unknown parameters to be designed.
Therefore, the proposed method is not confined by the scales of complex networks.

Remark 12.11 From the proof procedure of adaptive synchronization, it is obvious
that the parameters ᾱij and β̄i always exist. Especially, if the magnitude of β̄i is large
enough, the adaptive adjusting laws (12.7)–(12.9) will always hold to achieve the
synchronization. In contrast, if the magnitude of ᾱij is small enough, it will make the
implementation of synchronization easier, i, j = 1, . . . , N .

Remark 12.12 For the adaptive control laws (12.7)–(12.9), we can make some
remarks as follows.

(1) The external control laws (12.7) and (12.8) can regulate the whole networks
by injecting some information flows. There are many ways to design the external
control laws such as the linear control law, nonlinear control law, and so on. The
internal adjusting laws (12.9) can only regulate the coupling strength or configura-
tion magnitude using the available information of complex networks. If the internal
adjusting laws are designed to be too complex, the whole system will become more
and more complex and will lose practical meaning. Therefore, the capability of inter-
nal adjusting laws is more limited to some degree than the external control laws.

(2) If D is diffusive and the strength ᾱij can be selected to be large enough,
then the eigenvalues of matrix (dijᾱij)N×N may become much negative, while the
maximum eigenvalue is still zero. In this case, if the pinning control (a kind of control
methods, which can control a network by pinning part of nodes and significantly
reduce the number of controllers for large-scale networks) is not selected on this
node, then the synchronization cannot be ensured because the term IN ⊗ Q0 may
have positive eigenvalues. If the pinning control is just selected on this node, then the
synchronization can be realized. In contrast, the external control laws can be designed
elaborately such that the controlled nodes can be selected purposely. Therefore,
as far as the adjusting capability is concerned, the external control laws are more
powerful than the internal adjusting laws. This is the reasonwhywe use both external
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control laws and adaptive coupling updating laws simultaneously to synchronize the
networks (12.1).

12.4 Illustrative Example

In this section, we will use two examples to show the effectiveness of the proposed
result.

Example 12.13 Let us consider the node neural network (12.2) as follows:

ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t − τ (t))) + J (t), (12.23)

where

C =
[
1 0
0 1

]
, A =

[
2 −0.1

−5 3

]
, B =

[−1.5 −0.1
−0.2 −2.5

]
,

J (t) = (0, 0)T , τ (t) = 1.
Under the initial conditions x(s) = (0.4, 0.6)T , the node neural network (12.23)

has a chaotic attractor as shown in Fig. 12.1.
Now we take the state of network (12.23) with initial conditions x(s) =

(0.4, 0.6)T as the desired synchronization state s(t), and then consider the complex
interconnected networks (12.5) with five node neural networks (12.23). The adaptive
coupling laws of Gij(t) are selected as in the form of (12.9), and the control laws
are the same as (12.7) and (12.8). The initial parameters in adaptive coupling laws
(12.9) and control laws (12.7) and (12.8) are given as follows: σi = 1, i = 1, . . . , 5,
k1 = 1, k2 = 1, k3 = 0.5, k4 = 4, k5 = 3, Γ = diag(1, 1). The initial states of five

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−5

−4

−3
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−1

0

1

2
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4

x
1
(t)

x 2
(t

)

Fig. 12.1 Chaotic node network (12.23)
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Fig. 12.2 States of complex networks (12.5), xi1, i = 1, . . . , 5
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Fig. 12.3 States of complex networks (12.5), xi2, i = 1, . . . , 5

nodes are x1(s) = (1, 2)T , x2(s) = (1,−1)T , x3(s) = (2,−2)T , x4(s) = (5,−3)T

and x5(s) = (0.1, 6)T for s ∈ [−1, 0], respectively.
The time response curves of state variables xi1 and xi2 of the complex networks

(12.5) are depicted in Figs. 12.2 and 12.3, respectively, i = 1, . . . , 5. The trajectories
of synchronization errors ei (t) = xi (t) − s(t) are depicted in Figs. 12.4 and 12.5,
respectively.
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Fig. 12.4 Synchronization errors of complex networks (12.5), ei1, i = 1, . . . , 5
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Fig. 12.5 Synchronization errors of complex networks (12.5), ei2, i = 1, . . . , 5

When hij = 1, the initial values of G = (Gij)5×5 and D are randomly selected
as follows:

G0 =

⎡

⎢⎢⎢⎢⎣

−1.4258 0.6085 0.0576 0.0841 0.6756
0.6831 −2.2043 0.3676 0.4544 0.6992
0.0928 0.0164 −1.2785 0.4418 0.7275
0.0353 0.1901 0.7176 −1.4214 0.4784
0.6124 0.5869 0.6927 0.1536 −2.0456

⎤

⎥⎥⎥⎥⎦
,
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Fig. 12.6 Trajectories of coupling coefficients G1 j , j = 2, 3, 4, 5
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Fig. 12.7 Trajectories of coupling coefficients G2 j , j = 1, 3, 4, 5

D = (dij)5×5 =

⎡

⎢⎢⎢⎢⎣

0.8699 0.6400 0.4093 0.6084 0.5061
0.7694 0.2473 0.4635 0.1750 0.4648
0.4442 0.3527 0.6109 0.6210 0.5414
0.6206 0.1879 0.0712 0.2460 0.9423
0.9517 0.4906 0.3143 0.5874 0.3418

⎤

⎥⎥⎥⎥⎦
,

the trajectories of coupling matrix G are shown in Figs. 12.6, 12.7, 12.8, 12.9
and 12.10, respectively. These results show that the coupling coefficients of the
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Fig. 12.8 Trajectories of coupling coefficients G3 j , j = 1, 2, 4, 5
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Fig. 12.9 Trajectories of coupling coefficients G4 j , j = 1, 2, 3, 5

interconnected neural networks are bounded and converge to constants when the
synchronization is achieved.

The trajectories of θi (t) are depicted in Fig. 12.11 under the initial conditions
θ1(s) = 0.1, θ2(s) = 0.2, θ3(s) = 0.3, θ4(s) = 1, and θ5(s) = 2, where s is the
initial time instant, i = 1, . . . , 5. Here we take s = 0.

Example 12.14 Consider the complex networks (12.5) with 100 nodes. In this case,
each node is constituted by network (12.23), and the parameters in (12.23) are the
same as those in Example12.13. Assume that the nodes are coupled through the
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Fig. 12.10 Trajectories of coupling coefficients G5 j , j = 1, . . . , 4
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Fig. 12.11 Trajectories of control parameters θi (t), i = 1, . . . , 5

decentralized adaptive strategy (12.9). The simulation starts from null initial cou-
pling gains. The initial states are taken randomly from a normal distribution with
standard derivation 40, and the initial parameters are dij = 1, hij = h ji = 0.1,
Γ = diag(1, 1) and N = 100, respectively. As depicted in Figs. 12.12, 12.13 and
12.14, synchronization is asymptotically achieved and the adaptive control gains
asymptotically converge to constant values.

Based on the above simulations, we can see that the proposed control scheme is
effective and synchronization is achieved.



12.5 Summary 379

0 5 10 15
−15

−10

−5

0

5

10

15

20

Fig. 12.12 Trajectories of state variables xi1 and xi2, i = 1, . . . , N
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Fig. 12.13 Trajectories of coupling coefficients Gij, i �= j , i, j = 1, . . . , N

12.5 Summary

In this chapter, a distributed adaptive control scheme for synchronization of complex
interconnected neural networks has been presented and analyzed, which adaptively
tunes the coupling weights of the networks toward reaching synchronization. From
the viewpoints of internal adjusting and external control, adaptive coupling updat-
ing laws and external control laws are designed, which will greatly improve the
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Fig. 12.14 Trajectories of adaptive control gains θi (t), i = 1, . . . , N

synchronization performance both in robustness and fastness. Especially, the distrib-
uted control concept is involved in the design of the adaptive coupling updating laws,
which can use the neighbor information of the nodes to adaptively adjust the con-
nection strengths. The established result is illustrated by two numerical examples.
The contents in this chapter are written purposely for completeness of the research
in qualitative analysis and control of complex neural networks, and have not been
published in any conferences and journals yet.

Moreover, a fascinating direction could be the exploration of shape, capacity, and
evolution of the attractors in the complex interconnected neural networks, which has
a strict functional correlation between the attractor features and the network’s stored
information. Therefore, how to present an architecture of complex interconnected
neural networks to store and retrieve complex oscillatory patterns as synchronization
states and build internal representations of external input stimuli as attractors of
neurons in a complex interconnected neural network are further research directions.
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LaSalle’s Principle, 79
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Leibniz–Newton formula, 186, 231, 267,
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Limit point, 75
Limit set, 75
Linear approximation, 48
Linear growth condition, 128, 132
Linear matrix inequality, 31, 103
Linearization analysis, 94
Linearization method, 362
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Lyapunov second method, 45, 58
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Lyapunov stability theorem, 64
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M-matrix, 132, 138
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Matrix decomposition method, 105
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Multistability, 240, 248
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Neurons, 10
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Nonsingular M-matrix, 66
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Orbit stability, 47
Output stable, 54
Output strictly passive, 280
Output-Lagrange input-to-output stable, 77
Output-to-state stable, 77
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Partial stability, 85
Passive, 261, 280
Passivity, 259, 281
Positive definite, 78
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Positive semidefinite function, 64
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Practical stability, 55
Practically exponentially stable, 80
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Qualitative behavior, 48
Qualitative concepts, 85
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Quasi-Lipschitz condition, 128

R
Razumikhin uniform asymptotical stability
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Razumikhin uniform stability theorem, 81
Razumikhin uniformly ultimately bounded
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Rectification of dynamical system, 43
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Schauder fixed-point theorem, 67
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Solution in the sense of Filippov, 252
Solution of equation, 80
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Stability and ISS, 54
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Stability in Lagrange sense, 289
Stability in Lyapunov sense, 289
Stability in the sense of Lyapunov, 252
Stability of fixed point, 48, 84
Stability of Sets, 78
Stability theory, 47, 83
Stability theory problem, 47
Stabilization, 334
Stable, 79, 80, 242, 259
Static neural networks, 226
Stationary state, 73
Steady-state behavior, 76
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Synchronization controller, 314
Synchronization error, 369
Synchronization manifold, 365
Synchronization stability, 59, 82, 83
Synchronization state, 313, 363
Synchronized network, 315
Synchronous state, 366
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Total stability, 78
Total variables, 85
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Ultimately bounded, 81
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Uncertainty, 98, 149
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Uniformly bounded, 81
Uniformly exponentially stable, 76
Uniformly stable, 76, 80, 291
Uniformly ultimately bounded, 81
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Wirtinger inequality, 281
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