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Abstract
Our skin, just like our whole body is submitted
to aging. Important changes occur: skin gets
dryer, thinner, age spots appear. It becomes
less elastic and more rigid, fine lines and wrin-
kles appear, and complexion changes. Skin
aging is characterized by all these visible
signs, which depend on many factors. One of
them has been studied for many years and is
known to be one of the mechanisms involved in
body aging: the glycation reaction.

One of the causes of skin aging is the
appearance of AGEs (advanced glycosylation
end roducts). AGEs cause biomecanics prop-
erties alterations and biological changes
involving activation of synthesis of molecules
(macromolecules of the extracellular matrix,
cytokines) and the activation of the matrix
metalloproteinases or MMPs (matrix-
degrading enzymes). The effect of UV on
some AGEs (e.g., pentosidine) generates reac-
tive oxygen species (ROS) in the matrix with
induced additional deleterious effects. AGEs
can be formed intracellularly also and conse-
quently change the biological homeostasis of
the cell. Taken together, these modifications
induced by AGEs stress the importance of
glycation in skin aging.

Introduction

Our skin, just like our whole body, is submitted to
aging. Important changes occur: skin gets dryer,
thinner, age spots appear. It becomes less elastic
and more rigid, fine lines and wrinkles appear, and
complexion changes. Skin aging is characterized
by all these visible signs, which depend on many
factors. One of them has been studied for many
years and is known to be one of the mechanisms
involved in body aging: the glycation reaction.
Indeed, the glycation reaction leads to products
called AGEs (advanced glycosylation end prod-
ucts) known to form crosslinks and to accumulate
in tissues. The nonenzymatic glycation of proteins
is a common factor in the pathophysiology related
to aging disorders and diseases such as diabetes

mellitus (DM). In elderly subjects, the
nonenzymatic glycation is high, not only because
of possible hyperglycemia but also due to long-
term exposure to normoglycemic conditions. The
glycation of proteins has been described at a cuta-
neous level [1] and in organs such as the kidney,
blood vessels, and lens [2].

The Glycation Reaction

This reaction is also known as the Maillard reac-
tion described in the early 1900s by Louis Camille
Maillard. Maillard discovered that amino acids
heated in the presence of reducing sugars devel-
oped a yellow-brown coloration [3].

The reaction of glycation is a nonenzymatic
reaction between sugar and free amine function
of amino acids (lysine, arginine) in proteins. This
reaction occurs not only in the skin. Indeed, AGEs
(advanced glycation end products) are also found
in the kidney, lens, vessels, etc. This reaction takes
place in proteins with long half-life and/or low
renewal.

In 1981, Monnier and Cerami connect the
browning reaction in nonenzymatic glycosylation
of proteins (for the reaction occurring between
glucose and the amino groups of proteins without
intervention of enzyme) with glycation in aging of
the lens, collagen, andmore generally of the extra-
cellular matrix [4].

There are several factors that can modulate the
accumulation of AGEs: renewal of proteins, con-
centration and type of molecule, availability and
reactivity of amino acids on protein to initiate the
reaction, degradation of AGEs, and their removal
by the body [5].

Mechanism of the Glycation Reaction

The aldehydic group of the reducing sugar such as
glucose reacts with a free amino group of amino
acid (lysine, arginine) proteins. This reaction
leads to unstable Schiff base which turns into
Amadori product (which will undergo
rearrangements and fragmentation) to eventually
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produce advanced glycosylation end products
or AGEs.

There are different metabolic pathways that
can lead to the appearance of AGEs. Briefly,
there are three steps in the glycation reaction: an
early stage which consists in the formation of a
Schiff base, an intermediate step in which are
found intermediate molecules known as “propa-
gators,” and at the end the formation of AGEs
(Fig. 1).

Many AGEs have been identified to date.
Structures are varied, forming linear chains or
cyclic structures on the surface of proteins or
even crosslinks between two protein chains
(Fig. 2). The same AGE and intermediate product
can be produced from various metabolites. The
intermediate products such as glyoxal,

methylglyoxal, and 3-deoxyglucosone (3 DG)
are known as the dicarbonyl compounds or
oxoaldehydes [6–8]. Methylglyoxal (MGO) can
be generated by glycolysis, oxidation of threo-
nine, ketone groups [9] or ascorbic acid [10].
3-DG is formed by a nonoxidative rearrangement
and hydrolysis of the product of Amadori [8] and
by the fructose-3-phosphate, which is a metabolite
of the polyols pathway [11]. CML appears from
the oxidation of the Amadori product (fructose-
lysine) catalyzed by transition metals or
peroxynitrite, ascorbic acid, lipid peroxidation,
and different pathways involving the formation
of glyoxal and glycoaldehyde [12]. The
pentosidine is formed with pentose, ascorbic
acid, or by oxidation and fragmentation of the
fructose-lysine [13, 14]. The nature of the

Glucose + Amino group
(Lys or Arg)

Schiff’s Base

Lipid peroxidation

α-Oxoaldehydes

GO–MGO-3-DG

CML
GOLD
G-H

CML
MOLD
MG-H
Argpyrimidine

Arginine

Pyrraline Modifications:
DOLD Lysine

Glucosepane
Lysine-Arginine (Crosslink)

Amadori product

Oxid
at
ive

 p
at
hw

ay

N
on oxidative pathway

CML
Pentosidine

Pyrraline
Glucosepane

Glucosone

Fig. 1 Schematic representation of glycation reaction.
CML carboxymethyl-lysine, CEL carboxyethyl-lysine,
GOLD glyoxal-lysine dimer,MOLDmethylglyoxal- lysine
dimer, DOLD 3-deoxyglucosone-lysine dimer, G-H

G-hyydroimidazolone, MG-H MG-hydroimidazolone,
GO glyoxal, MGO methylglyoxal, 3-DG
3-deoxyglucosone (Adapted from Singh [28, 29])
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metabolite and the oxidative environment is an
important parameter to be considered in the devel-
opment of the glycation end products. The forma-
tion of AGEs can be catalyzed by metals of
transitions [15].

In addition, it should be noted that compounds
such as methylglyoxal or deoxyglucosone deriv-
atives in interaction with lysine can produce the
allysine which in the presence of hydrogen perox-
ide (H2O2) leads to 2-aminoadipic acid stable by
oxidation [16] and the decarbamylation of argi-
nine product form ornithine which accumulates
with age [17]. Ornithine is the deguanidinylation
product of arginine resulting from the reaction
with oxoaldehydes including methylglyoxal,
glyoxal, and also the glucosepane. Ornithine can
be produced from different AGEs involving
arginine [18].

Glycation Modulation by Oxidative
Stress

The majority of the steps leading to glycation end
products is accompanied by an oxidative stress
(except apparently the pathway leading to
glucosepane [19]) and often referred to as
glycoxidation [20]. The glycation reaction gener-
ates oxygen radicals in the initial, intermediate, and
advanced steps. The Amadori product and glycated
proteins can react with oxygen to form superoxide
ion [21] or hydrogen peroxide [22]. Namiki
described unstable imine formed in the initial
steps of the reaction likely to be oxidized and to
lead to the appearance of oxoaldehydes [23] such
as glyoxal, methylglyoxal, and 3-deoxyglucosone.
Oxidation of glucose (catalyzed by transition
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metals) can generate hydrogen peroxide and
cetoaldehydes [24].

Glycation pathways lead to AGE compounds
some of which are common to those derived from
lipid peroxidation and especially polyunsaturated
fatty acids (named ALEs for advanced
lipoxydation products) [25, 26]. CML may serve
as a biomarker of general oxidative stress resulting
from both carbohydrate and lipid oxidation
reactions [27].

The RAGE Receptor (Advanced
Glycation End-Products Receptor)

AGEs have the ability to bind to specific mem-
brane proteins [28]. There are several types of
receptors for AGEs: AGE receptor 1 or AGE-R1
(protein OST-48, complex oligosaccharyl trans-
ferase). AGE-R1 is able to bind AGEs, remove
oxidative stress [30] and the induced inflamma-
tory response [31]. Copurified with AGE-R1,
AGE-R2 (protein 80 K - H, membrane substrate
of protein kinase) has been described as a protein
involved in intracellular signaling of multiple
receptors [32]. AGE-R2 was found associated
with another protein that can bind AGEs:
AGE-R3 (Galectin 3). AGE-R3 performs differ-
ent functions including the internalization and
degradation of AGEs [33]. Recently, an inverse
correlation between Galectin 3 and AGEs locali-
zation in human skin was described, suggesting a
protection against accumulation of AGEs in
wound healing [34]. AGE-R3 is colocalized with
AGE-R1 and AGE-R2 and are overexpressed in
contact with AGEs [35]. Macrophage scavenger
receptor (MSR) enables macrophagic cells to
internalize and degrade the AGEs. The MSR are
of two types: MSR-AII (macrophage scavenger
receptor class A type II) [36] andMSR-BI (class B
scavenger receptor type I), or CD36 [37].

However, the well-known receptor and proba-
bly the most studied is RAGE, the receptor for
AGEs (Fig. 3). RAGE is a member of the immu-
noglobulin superfamily. The extracellular domain
of RAGE is composed by one variable part (V) and
two constant parts (C). The RAGE is a multiligand
receptor: CML, AGE peptides, AOPPs (advanced

oxidation protein products), HMGB1, S100A12/
B/A6, amyloid β products [38]. The cytoplasmic
domain of RAGE is linked to the extracellular
domain by a simple membrane domain. The intra-
cellular domain is short (< amino acids 50) and
highly charged. This cytoplasmic domain binds to
diaphanous-1 (mDia-1 or mammalian
diaphanous-1), a binding which is required for
cell activation after binding AGEs-RAGE [38]
(Fig. 3a). The extracellular domain of the RAGE
can be cleaved via the action of ADAM10
(A Disintegrine And Metallopeptidase 10) and
releases the soluble receptor (sRAGE). A second
soluble receptor, esRAGE (endogenous secretory
RAGE), can be released resulting from alternative
splicing of mRNA coding for the RAGE (Fig. 3b).
sRAGE and esRAGE are supposed to act as a
decoy receptor for AGEs (competitive binding of
AGEs) and could facilitate their elimination.
sRAGE would decrease the binding between
AGEs and the cell surface, therefore preventing
the activation of the cell. The binding AGEs-
RAGE leads to a loop of activation, in which
inflammatory stimuli activate NFκB, which
induces the expression of RAGE, followed again
by NFκB activation. NFκB stimulates multiple
cell signaling pathways that lead to increased pro-
duction of many growth factors and cytokines,
influence cell growing, gene expression, inflam-
mation, and extracellular matrix synthesis [38–40]
(Fig. 3c). RAGE activation induces also oxidative
stress by activating NADPH-oxidase, decreasing
SOD, catalase activity, and also GSH (intracellular
antioxidative systems) which by consequence
reduces Glo1 activity [41–42]. The stimulation of
esRAGE, the increasing of sRAGE, and blocking
ofmDia-1 link could be opportunities to inhibit the
response of the cell to AGEs. Recently it has been
shown that high levels of sRAGE were correlated
with longevity of humans [43].

Glycation in Skin

One of the causes of skin aging is the appearance
of AGEs (advanced glycosylation end products).
AGEs cause biological changes involving activa-
tion of synthesis of molecules (macromolecules of
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the extracellular matrix, cytokines) and the acti-
vation of the matrix metalloproteinases or MMPs
(matrix-degrading enzymes). The effect of UVon
some AGEs (e.g., pentosidine) generates reactive
oxygen species (ROS) in the matrix with induced
additional deleterious effects. AGEs can be
formed intracellularly also and consequently
change the biological homeostasis of the cell.

Accumulation of AGEs in Skin

AGEs are known to accumulate in human skin
during chronological aging [44]. This

accumulation of AGEs in tissues may also be
dependent of the protein turnover. Thus in
human skin, the fact that collagen has a half-life
of 15 years makes it a potential target for the
reaction of glycation and accordingly for the accu-
mulation of AGEs [45]. Verzijl has shown using
HPLC analysis that the appearance of AGEs in
skin seems to be linear during chronological
aging. This observation has been confirmed
using AGEs immunostaining [46] and by
autofluorescence measurement of skin using
AGE-Reader which is correlated with the amount
of pentosidine [47].
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Fig. 3 Schematic representation of Advanced
Glycation End Products Receptor: RAGE. Modulation,
signaling pathways, and consequences. (a) RAGE

structure. (b) Soluble RAGE. (c)Signaling pathways and
consequences (Adapted from Yan [38] and Barlovic [40])
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Previously, Sell showed that the accumulation
of AGEs (pentosidine) in the skin was inversely
proportional to longevity of the species,
suggesting that the alteration of the processes
controlling the speed of the collagen
glycoxidation may be under genetic control, and
within the same species according to the consid-
ered tissue (and renewal) the rate of accumulation
of pentosidine is different [48]. In the skin, the
quantities of CML, CEL, or pentosidine are
increased by a factor of 3–4 between 20 and
80 years [45]. Glycation collagen accumulates at
the rate of 3.7 % annually [49].

However, if the accumulation is linear, struc-
tures and levels may be different. All the struc-
tures identified as AGEs do not coexist in human
skin. For example, the identification of the AGEs
in human skin of subject aged 80 years allowed to
highlight various structures (linear or crosslinking
forming bonds between protein) [50]. The most
important AGEs in concentration in skin (from the
most highly concentrated to the least concen-
trated) are: glucosepane, fructosyl-lysine, CML,
pentosidine, and CEL. If some AGEs are in sig-
nificant quantities like glucosepane (on average
1000 pmol/mg protein), others on the contrary are
in low concentrations, less than 10 pmol/mg pro-
tein (e.g., GOLD = glyoxal-lysine dimer).

If AGEs have been strongly evidenced in the
dermis, they were recently observed in epidermis
of human skin [51]. In addition to the chronobio-
logical accumulation of AGEs, solar irradiation
accelerates their formation [46, 52] (see section
“Modulation of glycation by UV light”).

AGES Alter Physical Parameters of Skin

Glycation is known to change the organization of
collagen fibers and to induce expansion of the
molecular packing of collagen [53]. The presence
of AGEs in skin changes themechanical properties
thereof in part through the formation of crosslinks.
It has been shown that mechanical parameters,
using the multiaxial test mode, were altered in
elderly diabetic (noninsulin-dependent diabetes
mellitus) subjects compared to nondiabetic sub-
jects of the same age (>74-year-old age group)

[54]. This modification of the mechanical parame-
ters is equivalent to that obtained in vitro by incu-
bation for 4 weeks of normal human skin with
0.5 M glucose-6-phosphate [54]. The
intermolecular crosslinks of adjacent collagen
fibers changes its biomechanical properties
[55]. More recently, Wilson et al. described that
age-related intermolecular and intramolecular col-
lagen crosslinks interfere with fibrillogenesis,
change collagen monomer structure and macro-
scopic properties. Indeed, these modifications
influence the ability of the cells to contract and
remodel the collagen constructs [56]. This result
was obtained with collagen from rat tail tendon;
however, the process with human skin collagen
should be similar. In 2008, Corstjens has suggested
that the accumulation of AGEs in human skin of
elderly subjects and/or overweight could contrib-
ute to loss of elasticity [49]. In dermal equivalents
containing collagen modified by glycation and
fibroblasts used in reconstructed skin models, the
properties of contraction are also altered. Dermal
equivalents containing collagen modified by
glycation show a reduction of contraction as com-
pared to control without glycation [57, 58]. In
addition, intracellular glycation has also been
shown to reduce collagen gel contraction [59]. In
diabetic subjects of type 2, with an increase in the
concentrations of fructose-lysine and pentosidine,
the plantar skin shows an increase of its thickness
and its elastic property is reduced compared to
nondiabetic control group [60].

The formations of AGEs on chains of collagen
change the global charge. In consequence, the
contact with cells and proteins is altered and affect
the structure reactivity [61].

Yoshinaga et al. show by optical microscopy
that aggregates of CML-modified α-elastin are
larger than the unmodified α-elastin. Comparison
of the elastic modulus and rupture elongation
between unmodified and CML-modified elastic
fiber sheets reveals decreased elastic modulus
and rupture elongation of the glycated sheets [62].

AGEs could also increase the yellowish
change in the skin. In acellular dermis model
only a slight yellowish change was produced by
the treatment with 200 mM ribose or 10 mM
glyoxal. [63].
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If changes in the mechanical properties are
essentially observed for the dermis or its equiva-
lent, there are also changes in the epidermis.
Indeed, the presence of AGEs has been reported
in epidermis. Pentosidine identified in the stratum
corneum modifies the viscoelasticity properties
and could be implicated in the ulceration pathol-
ogy [60]. Glycated stratum corneum and
epidermis-dermis differentially regulate the per-
meability of hydrophilic molecules [64].

The mechanical changes of skin induced by
AGEs thus participate in alterations in elastic
properties of skin observed during aging.

Effects of AGEs on Skin Cell Viability

The CML-collagen injection into mouse skin
(scalp site) triggers a process of apoptosis of
fibroblasts at the site of injection [65]. The same
authors also obtained this result with human der-
mal fibroblasts cultured in the presence of
CML-collagen. A time course experiment deter-
mined that CML-induced apoptosis was not
detected before 6 hours and increased after this
time. In addition CML-collagen induced a dose
dependent increase in fibroblast apoptosis medi-
ated by RAGE. The CML-collagen-induced apo-
ptosis is highly dependent on the presence of
caspases 3, 8, and 9. In addition, after extraction
of the fibroblasts cultured in the presence of
CML-collagen, the level of mRNA coding for
genes involved in apoptosis was altered (P53
gene was upregulated six-fold while Bcl-2 gene
was downregulated by two-fold). The
proapoptotic FOXO1 transcription factor induced
by CML-collagen stimulated the fibroblast apo-
ptosis and reduced by 75 % if FOXO1 is silenced
[66]. The use of inhibitors helped to highlight that
the CML-collagen-induced apoptosis was depen-
dent on reactive oxygen species (ROS), of nitric
oxide (NO), ceramide, p38, and JNKMAP kinase
activation, inducing FOXO1 and caspase 3. Simi-
lar results involving the effect of the ROS induc-
ing changes of proliferation and cell death have
been reported [67]. In the culture medium of cul-
tured fibroblasts in the presence of glyoxal and
methylglyoxal, the concentration of hydrogen

peroxide increases by a factor of 2 causing a
growth arrest without apoptotic process
[68]. The involvement of receptor RAGE and
growth factor receptors (EGFR, FGFR-1, and
FGFR-2) were likely to be involved in apoptosis
and also in maintaining the effect after exposure to
AGEs [67]. This is correlated with the results of
Ravelojaona and colleagues that demonstrate a
cytotoxic effect when fibroblasts are cultured in
the presence of AGEs. This effect persisted when
fibroblasts were transferred into a new medium
devoid of glycation end products. The authors
suggest that the persistence of the toxicity is
maintained by RAGE [69]. However, recent
results show that apoptosis is not necessarily due
to the presence of RAGE. Indeed,
3-deoxyglucosone (3DG), a highly reactive pre-
cursor α-dicarbonyl of AGEs, induces oxidative
stress and activation of caspase 3 without the
intervention of the RAGE. Apoptosis induced by
the 3DG would be via integrin α1β1 [41].

AGEs could provoke cellular senescence.
Indeed, as a function of passages, fibroblasts accu-
mulate pentosidine and the number of cells
decreases. These results suggest an alteration of
antiglycoxidation defense systems of the cell
when the passages increase allowing accumula-
tion of pentosidine and altering the properties of
fibroblasts [70]. When fibroblasts are submitted to
AGEs and perform successive passages,
β-galactosidase positive cells increase as com-
pared to fibroblasts which were not in contact
with the AGEs. The increase in the number of
fibroblasts with a senescent phenotype is a func-
tion of the AGE contact time [71]. We showed in
our laboratory that the type of AGEs can be
important also in the cellular senescence process.
Indeed, the exposure of fibroblasts to CML or
MG-H1 during one week caused an increase in
β-galactosidase positive cells after successive pas-
sages. The number of senescent cells increase
according to the time spent in culture, as expected,
and this increase is higher when the cells are
preexposed to AGE products. It seems that the
senescent potential effect was higher with
MG-H1 as compared with CML (Fig. 4). Incuba-
tion of fibroblasts with glyoxal or methylglyoxal
also causes this increase in senescence. The
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reversion of the phenomenon does not appear
before 72 h after replacing fibroblasts in a new
culture medium without AGEs [68]. Like fibro-
blasts, normal human keratinocytes show a
decrease of viability in presence of glucose or
glyoxal. The proportion of β-galactosidase-posi-
tive cells increased significantly in number by
52 % in 100 mM glucose and by 44 % in
100 μM glyoxal-treated keratinocytes and in the
same time glycoxidation level of total proteins
was 58 and 68 % higher, respectively [72]. The
AGEs effect on the keratinocyte viability has also
been reported and associated to loss of their
migratory and proliferation abilities [73].

Solar irradiation can affect the viability also.
The viability of dermal fibroblasts cultured in pres-
ence of AGEs and exposed toUVA is reduced [74].

This effect of AGEs on cell viability (senes-
cence and apoptosis) is particularly important
because it could contribute to cell loss observed
during aging of the skin.

Effect of AGEs on the Synthesis of the
Dermal Matrix and Epidermal Cells

The bibliography described essentially the
glycation modifications on the collagens and

elastin; however, any protein is susceptible to be
modified and in consequence to participate to
dermal dysfunction [46, 55, 62, 75]. Glycation
end products affect the physiology of fibroblasts
in terms of mRNA and protein expression. Indeed
when fibroblasts are cultured in the presence of
AGEs, the synthesis of extracellular matrix pro-
teins is altered. Thus, the synthesis of collagen
type I is increased by 28 % and synthesis of
hyaluronic acid is reduced by 40–50 %. Modula-
tion of this synthesis is based on the concentration
of AGEs in the culture medium [76]. Unlike
Okano et al. it has been observed a decrease in
the synthesis of type I procollagen. The same
authors also observed alteration of type I
procollagen mRNA expression in the presence
of β2 microglobulin or bovine serum albumin
(BSA) as amended by glycation [77]. More
recently, other authors have described other
changes on the extracellular matrix mRNA
expression using microarrays: downregulation of
fibronectin, chain α2 of type I collagen, chain α1
of type III collagen, and decorin [78]. If Molinari
described a reduction of these mRNAs, however,
other authors observed overexpression of mRNA
for the chain α2 of type I procollagen and chain α1
of type III procollagen [79]. Using a reconstructed
skin system modified by glycation, an increase of
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type I procollagen [80], type III procollagen, and
type VII collagen [81, 82] synthesis was also
observed.

In addition, specific AGEs influence soluble
factor releasing like growth factor or
proinflammatory molecules [80]. VEGF (vascular
endothelial growth factor) was reduced which
could lead to the increasing scarcity of vessels
reported in skin aging [83] or enhanced MCP1
(monocytes chemoattractant protein type I)
known to be involved in matrix protein synthesis
[84] or in inflammatory response [85, 86].

Indirectly, glycation in the dermis could mod-
ify the biology of epidermis. Indeed, a persistence
of β1 integrin subunit was observed in the
suprabasal layer of epidermis and an increase of
α6 expression in the basal layer mediated by sol-
uble factor synthesis from fibroblasts [58,
81]. These integrin subunits have been reported
to be associated with epidermal stem cells [87], or
a dedifferentiation process [88] or a hyperproli-
ferative process [89].

Recently CML was detected in human epider-
mis associated with keratin 10 [51] and probably
with other members of the keratin family
[90]. Other authors identified previously the pres-
ence of glycated proteins in the stratum corneum
of diabetic subject [91] and more specifically
pentosidine in the stratum corneum of plantar
epidermis [60]. As a consequence, AGEs could
modify the epidermal physiology like
keratinocyte migration [73]: by increasing
MMP9 expression [92, 93], by induction of ter-
minal differentiation markers [92], or by reducing
the synthesis of antimicrobial peptides like
defensin β2 and β3 [94, 95]. These modifications
could be involved in wound-healing defect or
infection in diabetic subjects.

It has been recently reported that changes in the
dermal matrix caused by collagen I glycation also
affects the epidermal compartment. Indeed,
glycation of collagen induces the synthesis of
carboxymethyllysine in both dermal and epider-
mal compartments. The aging phenotype
consisting of poor stratification of epidermal
layers and vacuolization of keratinocyte cyto-
plasm, increasing expression of cell–cell adhesion
markers, such as desmoglein and E-cadherin or

upregulation of keratin 10 and 14 were observed
in glycated skins [96]. Recently, a system of
reconstructed skin treated by glyoxal to induce
CML showed an alteration of capillary and nerve
networks associated with a lack of both loricirin
and filaggrin in epidermis reflected an epidermal
terminal differentiation defect [97].

If all experiments show that the AGEs alter the
expression and synthesis of extracellular matrix
molecules, the results are not necessarily the same
(either increased or decreased). This can be
explained by the different AGEs structures gener-
ated in protein solutions modified by glycation.
All these extracellular matrix molecules are essen-
tial actors in the stability of the dermal matrix and
their alteration can change the balance and have a
role in aging of the skin.

Effect of AGEs on the Degradation
of the Dermal Matrix

AGEs can also modify the expression and synthe-
sis of enzymes which are responsible for ECM
degradation. AGEs has been showed to alter the
elastase-type matrix metalloproteinase
(ET-MMT) activity in human fibroblasts:
ET-MMT activity was reduced in a dose-
dependent manner (by �27 % and �41 % for
1.25 and 10 mg of AGEs per ml) while no effect
was detected on the secretion of MMP1 in the
culture medium. Dysfunctions of dermal fibro-
blasts are induced by AGEs [76]. The modulation
of MMPs (matrix metalloproteinases) by AGEs in
fibroblasts cultures was observed in another study.
Indeed, Molinari et al. have observed an
upregulation of mRNA coding for MMP8 and
9 (202 % and 160 %, respectively, as compared
to the control) [78]. A decrease of mRNA MMP3
expression in fibroblasts has been observed after
contact with CML [98] and also the MMP3
expression in in vitro skin 3D model containing
CML in the dermis [80]. Using a 3D system,
containing collagen modified by glycation and
fibroblasts without keratinocytes, MMP1
synthetized by fibroblasts was decreased but no
modification of pro-MMP2. However, MMP2
activation (observed by zymography method)
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was strongly inhibited by AGEs without modifi-
cation of tissue inhibitors of metalloproteinase
(TIMP-1 and 2) production [57]. In a full thick-
ness reconstructed skin system, AGEs induced
overexpression of MMPs synthesis and activity
which could be correlated with a decrease of the
thickness dermis probably degraded by these
MMPs [81].

Concept of AGE’s Biological Specificity
in Skin

The AGEs family is characterized by different
chemical structure like linear chain or cyclic struc-
ture or crosslinks between proteins. AGEs bound
to lysine or arginine residues could have opposite
effects concerning the expression of biological
markers (blocking of Lys or Arg and/or leading
to modifications of charge). Indeed, it seems that
AGEs-crosslinks (like pentosidine) induce a
downregulation of mRNA coding for matrix mol-
ecules [80] which could explain in part the volume
reduction of dermal molecules which is observed
during aging skin like collagen [99], proteogly-
cans, and glycosaminoglycans [100]. This con-
cept of specific reactivity has been previously
notified without structure identification. Indeed,
Ohashi et al. described with monocytes a response
depending on the BSA-AGE preparation.
BSA-AGEs obtained after incubation with D-
glyceraldehyde or D-glycoladehyde stimulate the
RAGE expression and increase cytokine produc-
tion while with BSA-AGEs obtained by
methylglyoxal or glyoxal no effect are detected
[101]. In the same way, fibroblasts cultivated in
presence of methylglyoxal induce an upregulation
of mRNA Col1A1, Col3A1, TGFβ1, and β1
integrin as opposed to incubation with
3-deoxyglucosone which provoke a
downregulation of these mRNA [102]. In addi-
tion, Abe et al. demonstrated a different invasive
potential with tumoral melanocytes in function of
the AGEs preparation type [103]. In addition, our
results seem to show a different effect concerning
the senescence intensity when human dermal
fibroblasts were cultivated in presence of CML
or MG-H1 (Fig. 4).

Glycation and the Monocyte Lineage
in Skin

The effect of AGEs on monocytes and macro-
phages has been studied; the most important
effects are proliferation, apoptosis, and differenti-
ation. Hou et al. reported that AGEs delayed apo-
ptosis of monocytes and induced monocytic
differentiation into macrophage morphology
[104]. Also, dendritic cell maturation of
monocyte-derived cells by AGEs was reported
[105]. AGES could affect the number of
monocyte-derived cells (CD45+, CD14+) in the
dermis and lead to dendritic cells/macrophages
differentiation [106]. Interestingly, Gunin
et al. observed a monocyte cell increase in the
dermis with aging [107]. AGEs exert a chemotac-
tic effect toward the monocytes [108] and endo-
thelial cells in contact with AGEs released the
chemokines MCP-1 – monocyte chemoattractant
protein type 1 [109–111]. AGEs stimulate the
synthesis of factors or proinflammatory cytokines
by monocytes and macrophages [104, 111–114]
or increase the extracellular matrix degradation
induced by metalloproteinase, e.g., MMP-9 [115,
116]. Both receptors, SRA and RAGE were
expressed by CD14+ cells [106]. RAGE was
reported to induce the secretion of MMPs [116,
117] and inflammatory factors by monocytes or
macrophages [113, 114]. Overexpression of SRA
suppressed RAGE-induced MAPK signaling,
whereas RAGE activation in macrophages favors
a proinflammatory phenotype in absence of SRA
[118]. As a consequence, the accumulation of
these cells in skin could favor an inflammation
process, a loss of dermal matrix balance, and skin
homeostasis.

Interaction of AGEs with Cell
Membranes

AGEs seem to have an important interaction with
cell membranes. After incubation of fibroblasts in
the presence of AGEs, a level of AGEs in the
cellular lysate associated to liposomes and an
increase in membrane fluidity was observed
[76]. In addition, the lactate dehydrogenase
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(LDH) release from fibroblasts measured in the
culture media in the presence of AGEs was found
to be increased in a dose-dependent manner with-
out affecting cell viability corresponding to a loss
of membrane permeability.

AGEs and Intracellular Activity

If AGEs alter extracellular matrix in skin, also
intracellular proteins are modified by AGEs prod-
ucts. Kueper et al. reported that vimentin (inter-
mediate filament) was the major target for CML in
human skin fibroblasts. Crosslinked by AGEs,
vimentin was redistributed into a perinuclear
aggregate. This rearrangement of CML-vimentin
was identified as an “aggresome”. The conse-
quence was a reduction of contraction properties
on collagen gel by fibroblasts. A treatment of
fibroblasts by glyoxal exhibited CML modifica-
tion in vimentin. Like this, the contractile capacity
of three-dimensional collagen gel as compared to
untreated fibroblasts was decreased [59]. In
another study, the same author demonstrated that
methylglyoxal induced also the aggregation of
vimentin. Vimentin could be modified, not only
by CML and CEL but also by pentosidine and
pyrraline [119]. The accumulation of modified
vimentin is observed in fibroblasts from human
facial skin biopsies of aged donors [59]. The skin
of the face being exposed to UV, we can hypoth-
esize that these “aggresome” formations could be
directly related to the oxidative stress induced by
them via the generation of α-dicarbonyl com-
pounds such as glyoxal. Interestingly, Shin et al.
reported that expression of CML-vimentin
increased in HDMEC (human dermal microvas-
cular endothelial cells) during culture and pas-
sage, an effect which was reversed by intense
pulsed light treatment [120].

AGEs can also modify other constituents of the
cell. Indeed, the enzymatic activity of proteasome
(intracellular proteolytic system involved in the
removal of altered proteins) can be reduced by
glycation after glyoxal treatment on dermal fibro-
blasts [121]. Also, the proteinase activities of the
proteasome decline during aging, probably due to

posttranslational modifications of the subunits
forming the proteasome complex. An age-related
increase in glycated α7 subunit of the proteasome
was observed after serial passing of human skin
fibroblasts [122]. Glycation of the proteasome has
also been reported for keratinocytes. After glu-
cose treatment, proteasome glycation increased
by +61 % with a synchronous decrease of its
activity (�44 %) [72]. AGE-modified proteins,
with a decrease in proteasome activity and con-
tent, were found in keratinocytes from old
donors [123].

Also alterations of antioxidant (SOD and Cat-
alase) enzyme activities were observed [68, 124]
with increased oxidative reactions in the cells.

In addition, HScP 70 (heat shock cognate pro-
tein 70) is a target for AGE modification in senes-
cent human dermal fibroblasts [125].

DNA of the cells is also sensitive to glycation.
To mimic the cellular carbonyl stress,
keratinocytes and fibroblasts from human skin
were cultivated in presence of glyoxal or
methylglyoxal. Both dicarbonyl compounds
caused growth inhibition of cells (concentration
dependent) and in addition this treatment pro-
voked CML accumulation in histones
(<0.10 mmol CML/mol lysine from untreated
and 1.3 mmol CML/mol lysine from glyoxal
treated keratinocytes) and DNA strand cleavage.
Interestingly, at the molecular level the effects of
α-dicarbonyl compounds were different. Indeed,
glyoxal caused DNA strand breaks, while
methylglyoxal produced extensive DNA-protein
crosslinking [126].

Modulation of Glycation by UV Light

It is now well known that ultraviolet radiations
and especially UVA have a deleterious effect on
dermis and fibroblasts [127]. The dermal extracel-
lular matrix is sensitive to UVA. UVA induces an
oxidant stress in the dermis environment which
could be related to existing crosslinking on colla-
gen [128]. In vitro, the viability of dermal fibro-
blasts cultured in the presence of AGEs and
exposed to UVA decreases and the rate of lipid
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peroxides in fibroblasts and liposomes increases
[74]. This loss of viability can be explained by the
production of radical oxygen species like super-
oxide anion radicals (·Oˉ2) and hydroxyl radicals
(·OH) after AGEs irradiation. The hydroxyl radi-
cal is derived from the production of hydrogen
peroxide after irradiation of AGEs via the Fenton
reaction. Hydrogen peroxide (H2O2) increases in
an AGEs concentration-dependent and UVA
dose-dependent manner. Pentosidine-rich com-
pounds exposed to UVA release H2O2 [129] and
provoke cellular deleterious effects like cell dam-
age leading to LDH accumulation outside the cell.
In addition, the enzymatic system able to elimi-
nate H2O2 declines with age. The activity of cat-
alase in stratum corneum declines in an
age-dependent manner on sun-exposed sites and
the creatine kinase activity decreases after in vitro
glycation by methylglyoxal [130], and in addition
the inactivations of catalase and superoxide
dismutase by sugars of different glycating abilities
have been described [124].

Pentosidine is established as photosensitizer-
AGEs because associated to UVA it leads to the
formation of 1O

2. Consequently, AGE sensitiza-
tion can be implicated in photodamage of glycated
lens proteins and chronologically aged human
skin. Photosensitization of skin cell as photooxi-
dative stress by UVA-irradiation of AGEmodified
proteins has been demonstrated in cultured human
skin fibroblasts and keratinocytes [131]. Due to
accumulation of skin AGEs during aging,
involvement of AGE photosensitization in skin
photooxidative stress may contribute to
UVA-induced photoaging and carcinogenesis.
Accumulation of AGEs was enhanced with UV
preirradiated DED and incubated with sugar
[46]. In vivo, CML and pentosidine accumulation
in sun-exposed skin especially in the aged group
has been described. A vicious circle is envisioned
in which the presence of AGEs in a tissue accel-
erates the formation of additional glycoxidation
products following UV exposure [52]. Another
study shows that AGE staining was increased in
UV-exposed dermis as compared to UV-protected
skin [132]. In the dermis of sun-exposed skin, the
number and the intensity of CML positive cells in

both fibroblasts and endothelial cells was higher
compared to sun-protected site and significantly
enhanced in older subjects [2]. Interestingly, low
dose of UVA associated with the presence of
AGEs in skin in vitro could provoke inflammation
and matrix degradation by synthesis of IL1α and
upregulation of mRNA MMPs [133].

In solar elastosis, a colocalization of elastin
and CML has been observed [75]. The oxidation
induced via ultraviolet could promote the emer-
gence of CML (a glycoxidation product) at this
particular zone. This accumulation of AGEs
which correlates with the presence of elastin was
also observed by Jeanmaire et al. [46]. The
CML-modified elastin is more resistant to degra-
dation by elastase [62]. After irradiation of in vitro
skin containing AGEs, upregulations of mRNA
coding for tropoelastin, elastase, and MMP12
were observed emphasizing the possible direct
implication in the elastosis process [133]. In addi-
tion, in monolayer culture of fibroblasts we
showed an increase of tropoelastin synthesis
after stimulation by MG-H1. No effect was
observed after CML stimulation (Fig. 5).

Also CML was detected in human epidermis
associated with different members of the keratin
family after UVB exposition [90]. AGEs were
enhanced in the stratum corneum and in the
nuclear of epidermal cells of UV-exposed as com-
pared to UV-protected skin [132]. An
age-dependent adaption and protective mecha-
nisms of the epidermis has been suggested against
sunlight-associated oxidative stress like CML
formation [134].

RAGE in Skin Aging

The distribution pattern of AGEs receptor (RAGE)
is modified in epidermis and dermis in function of
chronological aging and photo-aging
(sun-protected or sun-exposed site). In young skin
from breast (sun-protected), RAGE was more
expressed in the upper part of the epidermis and
dermis as opposed to old donor where RAGE was
preferentially expressed in lower parts. In the
sun-exposed face (old donor) the distribution of
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RAGE was almost similar to old skin from breast
except for the upper dermis where RAGE was
more expressed which can be attributed to photo-
aging. RAGE is highly expressed in skin and
upregulated in sun-exposed sites [98]. Interestingly,
human foreskin fibroblasts stimulated by CML and
tumor necrosis factor-alpha (TNFα) resulted in
upregulation of RAGE expression and CML
induced profibrogenic markers like connective tis-
sue growth factor (CTGF), transforming growth
factor-beta 1 (TGFβ1), and chain α1 of type I
procollagen. CML could not be the only AGEs
structure responsible for the induction of RAGE.
Indeed, Buetler et al. demonstrated that CML do

not form the necessary structure to interact with
RAGE. This could be explained by the method of
CML preparation which would generate other
structures which can react with RAGE
[135]. Such observation was previously reported
by Twigg et al. since CTGF was induced by
AGE-BSA stimulated human dermal fibroblasts
but not by the RAGE-specific ligand CML-BSA
[136]. However, it was interesting to note that a
weak expression of RAGE in fibroblasts [137] and
absence of induction in the expression of mRNA
RAGE in keratinocytes have been reported [92].

It was highlighted that the presence of AGEs
could induce the differentiation of normal human

Fig. 5 Stimulation of the tropoelastin synthesis by
AGEs. Immunostaining of tropoelastin (a–f) on human
dermal fibroblasts from two different donors – donor#1

(a, c, e) and donor#2 (b, d, f) treated with CML (c, d) or
MG-H1 (e, f) or without treatment (a, b). 100�
magnification
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keratinocytes (increase of keratin 10 and
involucrin) and increases the expression of
MMP9 via CD36 receptor expression (but not
other types of receptors). This interaction could
contribute to explain the mechanism involved in
some pathologies related to diabetes such as per-
forating dermatosis (biopsies of these patients
express strongly the CD36 and MMP9) [92]. A
more recent study has also shown the involvement
of AGEs in wound-healing defects related to dia-
betes via an increase in the rate of MMP9 (protein
and mRNA) as shown on cultures of keratinocytes
[73] mediated by RAGE, ERK1/2, p38MAPK
pathways, and also activation of NFκB. In the
mouse model, RAGE expression in keratinocytes
is involved in acute inflammation and supports the
role of RAGE in paracrine communication
between keratinocytes and stromal immune cells
like monocytes and macrophages [138]. Also
RAGE was described to be involved in skin
pathologies. Indeed, e.g., RAGE is involved in
tumoral pathology like melanoma [103] or pro-
moted the development of immune mediated dis-
orders, like psoriasis, through the regulation of
many proinflammatory genes [139]. Recently,
the implication of RAGE in squamous cell carci-
noma (SCC) has been described. The proliferation
and migratory activity of normal keratinocytes
and SCC was induced by S100A8/A9 and
abolished by blocking RAGE [140].

Particular Case of Melanocyte/
Melanoma

AGEs could also influence melanocyte physiol-
ogy. Indeed, an indirect effect mediated by MCP1
released by fibroblasts in contact with AGEs has
been reported. Melanocyte MCP1 receptor could
induce tyrosinase expression and increase activity
[141]. In addition, upregulation of MCP1 mRNA
[110] and MCP1 protein [142] is induced by
endothelial cells after contact with AGEs. Previ-
ously, it has been described that in parallel with
AGEs inhibition, a reduction of tyrosinase activity
was observed, suggesting a possible relationship
between them [143]. However, in the Japanese
population, the AGEs index does not seem to

indicate an alteration in the melanin amount
[144]. More recently, Leblanc-Noblesse
et al. described the correlation between AGEs
and solar lentigo. In this study, CML was
enhanced in the dermis of solar lentigo as com-
pared to the adjacent photoexposed zone.
Autofluorescence measurement (AGE Reader) of
the skin was linked to depigmentation [145].

In pathologies such as melanoma (described in
the mouse model), overexpression of RAGE
might be responsible for the development of
tumors and the metastatic ability of cells; the use
of anti-RAGE antibodies reduces this effect
[103]. This observation has been reported more
recently in humans in the case of melanoma where
the expression of the RAGE and S100 ligand are
strongly increased [146]. Also, binding extracel-
lular S100P to RAGE or coupling the intracellular
S100P with ezrin (a cytoskeletal protein) was
involved in tumor growth, invasion, and metasta-
sis. The coordinate upregulation of S100P,
RAGE, and ezrin may provoke the malignant
transformation of melanoma [147].

How to Fight Against AGEs?

Since AGEs are known to have an impact on
aging and certain diseases (including diabetes-
related), work has been undertaken in order to
find ways to reduce the reaction of glycation,
accumulation of AGEs, and its effects on tissues.
Many dedicated publications [148–150] have
detailed various molecules and strategies to pro-
tect from glycation. The main possibilities to pro-
tect from glycation with some examples are
described below:

Prevention

Different types of strategies [149] or molecules
[148] already exist to prevent glycation:
(i) competition with protein amino groups (for
example, aspirin can react with the amino group
by acetylation, anti-inflammatory molecules like
ibuprofen and diclofenac have a protective effect
against glycation by protecting the enzymes from
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inactivation via the glycation as catalase for
example); (ii) binding to the protein to reduce
the accessibility of the amino group, the elimina-
tion of the open form of the sugar in the reaction
of glycation (amino acids, polyamines, peptides
as carnosine which can also react with the protein
carbonylated and prevent the formation of
crosslinks) and (iii) binding to a reactive inter-
mediate to prevent the appearance of the terminal
product (aminoguanidine can react with the
product of Amadori thus blocking the following
reactions. However, the aminoguanidine can also
react directly with the sugar, to eliminate
methylglyoxal and other dicarbonyls and to act
as a chelator of metals. Another example is the
metformin which could act by removing the
intermediate reagents).

The use of plant extracts is also a source of
glycation inhibitors, most often associated with
antioxidant activities of the molecule families
contained in extracts like blueberry. Using blue-
berry extract in reconstructed skin as glycation
inhibitor, a return to a normal pattern concerning
the biological markers previously modified by
the presence of AGEs has been observed
[58]. Flavonoids (antioxidants present in vegetal
foods) at micromolar concentrations are very
potent inhibitors of pentosidine formation in
collagens [151]. Other vegetable substances
containing the puerarine and chlorogenic acid
have also inhibitory activity [152]. Consumable
plants are also sources of AGEs inhibition
(in vitro) like ginger, cumin, black pepper,
green tea [153]. Tea polyphenols like epicatechin
and theaflavin can also trap the methylglyoxal
and reduce the accumulation of AGEs [154].

Crosslinks Breakers

Thiazolium salts have been studied and the first
results suggested theywere able to break crosslinks
(especially of the di-ketone crosslinks) [155,
156]. If the exact mechanism of action remains
disputed [157], experimental results showed a res-
toration of the flexibility of arteries after adminis-
tration of thiazolium salts to animals characterized
by experimentally induced diabetes [158].

Prevention of the Consequences
of Glycation

Modulation of RAGE expression could be a
means to reduce the incidence of AGEs [159].
For instance, nifedipine can inhibit over-
expression of RAGE by removing the appearance
of reactive oxygen species [160].

Intracellular Defense Systems

Several systems of defense against glycation are
described in the literature. This role is played by
several enzymes: the fructosylamine oxidase
(amadoriases), fructosamine 3 kinase (FN3K),
and the glyoxalase system.

Fructosylamine Oxidase or Amadoriases:
Horiuchi has isolated fructosylamine oxidase
(FAO) from Corynebacterium sp. [161]. Subse-
quently various FAO have been isolated and
cloned from different microorganisms. It may be
noted that two enzymes have been isolated from
Aspergillus sp. (amadoriase I and amadoriase II).
FAO oxidizes the Amadori product and generates
H2O2. The Amadori product obtained after oxida-
tion breaks down spontaneously through hydroly-
sis. The result is a free amine, glucosone, and
H2O2. In higher organisms the FAO has not been
identified. FAO can remove AGEs only from
products with low molecular weight but is not
active on the BSA glycated proteins as example.
Two hypotheses can explain this activity: (i) small
PM products can be easily placed near the active
site of the enzyme and (ii) the charges brought by
the protein affect the protein enzyme
interaction [162].

Fructosamine 3-Kinase (FN3K): Szwergold
identified 3-phosphate fructose in the lens of dia-
betic rats [163]. Then the fructoamine 3-kinase
was identified from a lysate of erythrocytes
[164]. Fructosamine 3 kinase phosphorylates
Amadori products and generates 3-phosphate
fructose which breaks down into a residue lysine,
a phosphate and 3-deoxyglucosone (3DG). The
fructosamine 3 kinase (FN3K) gene is expressed
in all tissues. The enzyme was intracellular and
ATP dependent; the deglycation of the product of
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Amadori in the extracellular matrix is, therefore,
not possible. The existence of a fructosamine
3-kinase-related-protein (FN3KRP) has been
described in addition to the FN3K with a similar
mechanism [165]. It can be assumed that the use
of assets protecting these enzymes or their disap-
pearance during the aging process (if this is the
case) would be beneficial for the cell.

Glyoxalase: The glyoxalase system present in
the cytosol of cells catalyzes the conversion of
methylglyoxal in D-lactate via an intermediary S-
D-lactoylglutathione [42]. The system consists of
two enzymes, glyoxalase I (Glo1) and glyoxalase
II (Glo2) and the GSH (glutathione). The main
substrate of Glo1 is the methylglyoxal, but
glyoxal(the hydroxypyrivaldehyde) and
4, 5-doxovalerate are also potential substrates.
Glo1 and the glyoxalase system prevent the
α-oxoaldehydes formation inside the cells. Enzy-
matic defense (glyoxalase) decreases during aging
(particularly Glo1). Oxidative stress is closely
linked with glycation because GSH depletion in
oxidative stress also decreases activity in situ of
Glo1 and thus increases the concentrations of
glyoxal and methylglyoxal and therefore accumu-
lation of AGEs as well as possible increase of
radical oxygen.

In the aging of C. elegans, an accumulation of
MG-H1 (methylglyoxal hydroimidazolone) in the
mitochondria was observed. If Glo1 is stimulated,
MG-H1 appearance is prevented and the life of
C. elegans increases. If Glo1 is silenced the
lifespan of C. elegans decreases. The decline of
Glo1 with aging has been also highlighted in
rodents and humans. The Glo1 activity is directly
proportional to the concentration of GSH. In lens,
the concentration of GSH decreases with age
while MG-H1 increases, thus the protective role
of GSH in aging is not only related to its antiox-
idant function but also its role as cofactor in the
glyoxalase system. Recent results suggest that
hyperglycemia could decrease the expression of
Glo1 by increased activity and activation of
RAGE [166, 167]. It was reported that the geno-
mic expression of Glo1 is variable; therefore, the
significance of the expression of Glo1 could be an
important factor to be considered in research on
aging.

DJ-1/PARK7

Recently has been reported a new antiglycating
enzyme activity. This enzyme is DJ-1/PARK7.
The Parkinsonism-associated protein DJ-1/Park7
is described as a multifunctional oxidative stress
response protein. DJ-1 is a protein deglycase that
repairs methylglyoxal- and glyoxal-glycated amino
acids and proteins by acting on early glycation
intermediates and releases deglycated proteins
and lactate or glycolate, respectively [168].

Diet

It is established that the origin of AGEs in the body
is not only endogenous but also exogenous.
Glycation reagents (named glycotoxines) are pre-
sent in aqueous tobacco extract and smoke in a
form that can quickly react with proteins to form
AGEs and this reaction is inhibited by
aminoguanidine [169]. It is also known that food
and the way used for cooking can be a source of
exogenous AGEs by ingestion. Recently, Uribarri
has published a list of foods with AGEs, named
dAGEs for dietary AGEs. Heat (cooking mode)
increases the formation of new dAGEs by ten- to
hundredfold as compared to the raw food. The
cooking mode or the use of acidic ingredients
(e.g., lemon juice) can reduce the formation of
the dAGEs [170].

If the cooking mode affects the appearance of
AGEs, caloric restriction can also regulate the
concentration of AGEs [171]. Animal caloric
restriction studies have shown an increase in
life expectancy, a decline in the rate of insulin
and glucose [172], or even a reduction of oxida-
tive damage [173]. In addition, some caloric
restriction studies have been conducted in
humans in whom a decrease of atherosclerosis
risk, diabetes, and a reduction of inflammatory
processes were observed [174]. Most of these
changes can be linked to the reduction of the
rate of glycation.

Taken together, these findings suggest that
healthy diet associated with selected cooking
modes could limit the addition of an exogenous
supply of AGEs.
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Conclusion

Taken together, these reports brought together in
this chapter allow us to stress the importance of
glycation in skin aging. Most skin alterations
caused by AGEs (Fig. 6) are correlated with the
major biochemical changes and signaling path-
ways involved in the generation of intrinsically
and extrinsically aged skin [175]. Skin aging is
characterized by the progressive degradation of
skin components, the development of an

inflammatory environment, and it’s self-
maintaining due to the progressive accumulation
of AGE products.
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