
Design Patterns from Empirical Studies
in Computer-Aided Design

Rongrong Yu1(✉) and John Gero2,3

1 The University of Newcastle, New South Wales, NSW, Australia
rongrong.yu@uon.edu.au

2 George Mason University, Fairfax, VA, USA
john@johngero.com

3 University of North Carolina at Charlotte, Charlotte, NC, USA

Abstract. This paper presents the results from studying the effect of the use of
computational tools on designers’ behavior in terms of using design patterns in the
conceptual development stage of designing. The results are based on a protocol
study in which architectural designers were asked to complete two architectural
design tasks with similar complexity, one in a parametric design environment and
one in a geometric modeling environment. To explore the development of design
patterns during the design process, the technique of 2nd order Markov model was
used. The results suggest that there were more design patterns adopted in the
parametric design environment than in the geometric modeling environment.
Also, there are more design patterns related to structure in the parametric
design environment than in the geometric modeling environment.

Keywords: Design pattern · Markov model · Protocol studies

1 Introduction

In computational design environments, designers often adopt existing design patterns
based on their experience of using their design knowledge and their experience in using
computational tools. Design patterns have been studied in architectural design: The re-
use of existing problem-solution pairs extracted from a designer’s own or others’ profes‐
sional experience makes the design process more efficient [1]. This idea has been widely
applied in the software design domain. However, this phenomenon has not been
adequately studied and evaluated in computer-aided architectural design environments
(CAAD).

To improve our understanding of the possible use of design patterns while designing
in CAAD, the results of a cognitive study in which designers were asked to complete
two architectural design tasks with similar complexity in a parametric design environ‐
ment (PDE) and a geometric modeling environment (GME) are presented. Protocol
analysis was employed to study the designers’ behavior. The technique of Markov model
analysis is used to analyze the protocol data collected. From the Markov model analysis
results describing the occurrence design patterns in computational design environments
are derived and discussed.

© Springer-Verlag Berlin Heidelberg 2015
G. Celani et al. (Eds.): CAAD Futures 2015, CCIS 527, pp. 493–506, 2015.
DOI: 10.1007/978-3-662-47386-3_27



2 Background

2.1 Selected Computational Design Environments – PDE and GME

Design media have significant effects on designers’ thinking processes [2, 3]. Past
research has suggested that sketching can assist design thinking as an effective design
medium [4, 5]. In a similar way, with the increasing application of digital design tools,
researchers have started to study the influence of computational design tools on design
processes [6–9]. Oxman [10] argues that design media are knowledge-intensive compu‐
tational environments. Designers share the design knowledge that can be represented
and employed in computational environments.

Geometry modeling tools have largely replaced 2D drafting tools in many design
practices. GMEs as 3D digital design tools are more effective in assisting in the design
process than 2D drafting tools in various ways [6], for example, better visual represen‐
tations including the ability to produce perspective and walk-through animations, and
better coordination of documentation. 3D geometry modeling tools applied in architec‐
ture include ArchiCAD, AutoCAD, Microstation, Sketchup, 3ds Max, Maya, Rhino,
and many others. In this study, for comparison, we chose Rhino as an example of a GME,
Fig. 1(a). In the late 1990s, with the growth in importance of 3D digital tools in the
design industry, architects began to identify a range of ways where these were superior
to previous 2D computer-aided design systems [6, 11]. More recently another shift has
begun to occur, with BIM and parametric software tools beginning to challenge the role
played by 3D geometry modeling software in the AEC industry.

(a) (b) 

Fig. 1. (a) Design environment – GME, (b) design environment – PDE

Parametric design is a dynamic, rule-based process controlled by variations and
parameters, in which multiple design solutions can be developed in parallel. According
to Woodbury [12], it supports the creation, management and organization of complex
digital design models. By changing the parameters of an object, particular instances can
be altered or created from a potentially infinite range of possibilities [13]. The term
“parameters” means factors which determine a series of variations. In architecture,
parameters are usually defined as building parameters or environmental factors. In the

494 R. Yu and J. Gero



architectural design industry, parametric design tools are utilized mainly on complex
building form generation, multiple design solution optimization, as well as structural and
sustainability control. Parametric design, in a computational form, is a new way of
thinking about architectural design. Its impact on designers’ processes has not been
adequately explored. Currently, typical parametric design software includes Generative
Components from Bentley Corporation, Digital Project from Gehry Technology, Grass‐
hopper from McNeel. Scripting tools include Processing based on the Java language,
Rhino script and Python script, based on the VB language from McNeel. In this study,
Grasshopper was chosen as the parametric design environment, Fig. 1(b). Grasshopper
is both an advanced environment for facilitating conceptual design and is in relatively
wide-spread use in the architectural profession. Each software classified as a GME or a
PDE has its unique features for designing. The selection of Rhino and Grasshopper as the
GME and PDE in this study is due to their features, which are representative of the main
characteristics of GMEs and PDEs.

2.2 Basis for Protocol Coding Scheme – FBS Ontology

As one of the main design ontologies, Gero’s FBS ontology [14] has been applied in
numerous cognitive studies [9, 15, 16]. Researchers argue that it is potentially capable of
capturing most of the meaningful design issues and design processes [14] with the tran‐
sitions between design issues clearly classified into eight design processes. The FBS
ontology, Fig. 2 shows the three classes of ontological variables: Function (F), Behavior
(B) and Structure (S). Function (F) represents the design intentions or purposes; behavior
(B) represents the object’s derived behavior (Bs) or expected behavior from the structure
(Be); and structure (S) represents the components that make up an artifact and their
relationships. The ontology as the basis of a coding scheme includes two additional design
issues that can be expressed in terms of FBS and therefore do not require an exten‐
sion of the ontology. These are requirements (R) and descriptions (D). The first of
these represents requirements from outside design and the second, descriptions, mean
the documentation of the design. Figure 2 shows the FBS ontology indicating the eight
design processes—formulation, analysis, evaluation, synthesis, and reformulation I, II
and III. Formulation defines the process that generates functions and then expected
behaviors, i.e. sets up expected goals from the requirement, while synthesis generates a
structure as a candidate solution. Analysis produces a behavior from the existing structure
and evaluation compares Bs and Be to determine the success or failure of the candidate
solution. Reformulation is the process from the structure back to itself, to the behavior or
to the function, which is a reconstruction or reframing process. Among the eight design
processes, the three types of reformulation processes are considered to be the dominant
processes that potentially capture creative aspects of designing by introducing new vari‐
ables or new directions [17]. The FBS ontology is claimed to be a universal coding scheme
for various design environments [15]. By calculating the transitions between design issues
from empirical data, various analyses can be conducted. In this study, the FBS ontology
is utilized as the basis of the coding scheme in the protocol analysis.

In the present study, which explores designers’ behavior in both a PDE and a GME,
an instantiation of the coding scheme is required. Gero’s FBS ontology has been applied

Design Patterns from Empirical Studies in Computer-Aided Design 495



in many cognitive studies where it has been demonstrated as potentially capturing most
of the meaningful design processes [15] and recording clear transitions between design
issues. The FBS ontology is founded on the requirements of coverage and uniqueness:
the categorical concepts that make up the ontology need to cover all the attributes of a
design and there can be no overlap of categorical concepts. A major outcome of the FBS
ontology is that design processes are a consequence of the transitions between ontolog‐
ical elements and do not require a separately produced ontology of processes. The FBS
ontology has been used widely in the domains of mechanical engineering, architecture,
software engineering, civil engineering, cognitive psychology, manufacturing, manage‐
ment and creativity research. The behavior of designers, using the FBS ontology as the
basis, can be measured from empirically derived data from protocol analysis. With this
ontology it becomes possible to compare designing independent of researcher, inde‐
pendent of domain, independent of education, independent of whether an individual or
a team is designing, independent of location or co-location, independent of the use of
tools, independent of design experience and independent of design task. Prior to this
such empirically derived data from different researchers was generally not comparable
and it was difficult to build directly on the research of others. Kan and Gero [18] applied
the FBS ontology to a study of software designers’ behavior, suggesting that the method
is effective for encoding programming or rule-based activities across different design
disciplines. Given that PDEs enable scripting and programming activities, similarly the
FBS scheme will be able to encode both geometric modeling and rule-based algorithmic
activities effectively. Therefore, in this study it is introduced as a conceptual foundation
for developing the coding scheme for the protocol analysis.

3 Research Method

3.1 Protocol Analysis

Protocol analysis is a method for turning qualitative verbal and gestural utterances into
data [19, 20]. It has been used extensively in design research to develop an understanding
of design cognition [17, 21, 22]. According to Akin [23], a protocol is the record of

Fig. 2. The FBS ontology (after [14]).

496 R. Yu and J. Gero



behaviors of designers using sketches, notes, videos or audio. After collecting the
protocol data, a coding scheme is applied to categorize the collected data, enabling
detailed study of the design process in the chosen design environments. As Gero and
Tang [24] state, protocol analysis has become the prevailing experimental technique for
exploring the understanding of design.

Usually in protocol analysis, concurrent and retrospective protocol collection
methods can be applied in design experiments [19, 25]. A concurrent protocol involves
participants in an experiment verbalizing their thoughts when working on a specific
task – also called the “think aloud” method – whereas a retrospective protocol explores
what designers were thinking while designing, a process which is applied as soon as
they have finished the design task. Some studies have compared these two protocol
collection methods. For instance, Kuusela and Pallab [26] argue that concurrent proto‐
cols are more suitable for examining the design process and can generate larger numbers
of segments, while retrospective protocols are more suitable for examining design
outcomes. Another example of this comparison is Gero and Tang’s [24] study exploring
design processes. Their results show that concurrent and retrospective protocols lead to
very similar outcomes in terms of exploring designers’ intentions during design
processes. But they also conclude that concurrent protocols are an efficient and appli‐
cable method by which to understand design processes. Retrospective protocols are
commonly believed to be less intrusive to the design processes.

Importantly, protocol analysis of this type deals with a relatively small number of
samples, but it enables an in-depth exploration of the samples. Thus, a study of the
cognitive behavior of eight designers is both acceptable and in keeping with past research
in this field because of the quality and depth of information that is recorded and analyzed.
However, for this reason we also cannot generalize the results of this research to describe
the actions or behaviors of a much larger population of designers. Nevertheless, from
such studies important patterns, which are repeated by designers can be used to provide
an increased level of understanding of the design process.

3.2 Markov Model Analysis

A Markov model describes the probabilities of moving from one state to another [27, 28],
it demonstrates the tendency of future design moves. Kan and Gero adopt the Markov
chain model using the FBS ontology to describe cognitive design processes [15, 29].
Within the context of the FBS ontology, the Markov matrix can be applied as a
quantitative tool to study design activities based on the transition probabilities
between design issues or between design processes. Within the FBS context, two
types of Markov models have been found to be useful: the 1st order Markov model
and the 2nd order Markov model. The 1st order Markov model presents the proba‐
bility of moving to a future state depending only on a knowledge of the current
state, without considering the past states, Fig. 3.

The 2nd order Markov model includes the memory of the past state. That means a
future movement is dependent on both the current state and its preceding state. For
example, if the current design activity is Be, and the previous one was F, which is a
formulation design process, then we use the 2nd order Markov model to calculate the
probability of next state being S if the previous design process was formulation, Fig. 4.

Design Patterns from Empirical Studies in Computer-Aided Design 497



Jiang [30] applies both the 1st order and 2nd order Markov model to study multidisci‐
plinary designers’ behavior. The result of his study shows that the main transition models
match the original FBS ontological processes. Compared to the 1st order Markov model,
the 2nd order Markov model presents a longer probability passage of transitions, which
contains three sequential steps. This research utilizes the 2nd order Markov model to
explore the utilization of design patterns in the CAAD environments.

An example of a 2nd order Markov model is shown in Fig. 4.

Fig. 4. An example of a 2nd order Markov model using the FBS ontology [30]: a 2nd order
Markov chain, this is the interpreted as a transition from a design process to a design issue.

4 Experiment Setting

4.1 Selection of Subjects

In the any experiment, the selection of participants is important as it can influence the
objectivity and reliability of the final results. The principle behind the selection is to
reduce as much as possible individual differences and other subjective influences. The
criteria of selection for the eight architects was that they should each have more than
five years’ architectural design experience and no less than two years’ experience using

Fig. 3. An example of the foundation for a 1st order Markov model using the FBS ontology

498 R. Yu and J. Gero



parametric design tools, to ensure that the participants are experienced both in archi‐
tectural design and in operating parametric design software. The requirements of two
years’ experience using parametric design tools is based on the fact that Grasshopper,
as a parametric design software, was developed in 2007 and gained wider adoption only
during the 2010s. By the time this research was conducted, most parametric designers
have only gained two to three years’ experience with the tool. Previous protocol studies
often selected subjects with experience levels ranging from five to ten years as expert
designers [11, 31]. However most parametric designers tend to come from a younger
generation. Therefore, architects with five years’ architectural design experience are
considered as sufficiently experienced designers amongst the younger generation and
are suitable for the current study. Additionally, participants’ abilities regarding creative
design and manipulating software should be at a similar level so that individual differ‐
ences would not greatly affect the final results. In the end, eight designers were found
who could satisfy the selection criteria. Architects were recruited from architectural
design companies, tutors of parametric design workshops, and lecturers (four practi‐
tioners and four academics). Among the participants were two female designers and six
male designers, five of the participants are from Australia and three from outside
Australia. The standard deviations of the measurements are the bases for determining
whether these demographic variations are significant. If the standard deviation for a
particular measurement is low then the effect of the demographic variation in the subjects
is not statistically significant.

4.2 Design Brief

For applications of protocol analysis, it is suggested that the experiment normally be
limited to around one hour in length, meaning that the design task should not be too
complex. In real cases, an architectural design task usually takes weeks or months.
A previous studies has shown that the design behavior of designers across long-term,
multiple design sessions shows only minor variations [32]. In the current research due
to the restriction of research method, the selection of a one hour design task with an
appropriate complexity level in a simulated experiment environment is reasonable to
explore designers’ cognitive behavior during the conceptual design stage. Many
previous studies used simple product design tasks, such as a computer mouse, packaging
or even a symbol design. In the architectural field, design tasks are also simplified, such
as rearranging furniture or producing a home office layout [33]. However, parametric
design tools are appropriate for generating complex geometries. If the design task is too
simple, the advantages of parametric design tools are difficult to express.

In the present experiment, each designer was required to complete two different
design tasks with similar levels of complexity, one using Rhino (GME) and one using
Grasshopper (PDE). Designers were given 40 min for each design session, but were
allowed to continue for an extra 20 min, if required, in order to complete the task.
Considering the time necessary for a conceptual design task, as well as the time
involved for later data analysis of the results, 40 min is a reasonable time constraint.
Task 1 is a conceptual design for a community center and Task 2 is a similar study of
a shopping center, with both containing some specific functional requirements. These

Design Patterns from Empirical Studies in Computer-Aided Design 499



functional requirements are the main differences between the two tasks. In all other
ways the two design tasks are similar, including the site provided, the required building
size, and the extent of the concept development. A pre-modeled site, shown in Fig. 5,
was provided to the designers for each task. Because the present study is focused on
exploring designers’ behavior at the conceptual design stage, the designers were
required to only consider concept generation, simple site planning and general func‐
tional zoning. No detailed plan layout was required. Both tasks focus on conceptual
design in general to enable the design process to be completed in a relatively short time
period, and therefore to be captured and analyzed using the protocol analysis method.
The tasks were both open and general enough to provide designers with the freedom
to enable various possible design strategies to be applied during parametric design. As
a result, the designers were allowed to exhibit different ways of approaching parametric
design, which are similar to the actual practices of parametric design and therefore
useful in order to examine the findings about parametric design. The design sessions
and tasks were randomly matched among different designers. During the experiment
designers were not allowed to sketch, ensuring that almost all of their actions happened
within the computer. This ensured that the design environment was purely within either
the PDE or the GME.

Fig. 5. Site model provided

4.3 Experiment Procedures

Before the data collection part of the experiment commenced a “warm-up” process was
used to familiarize participants with the equipment. According to some current studies,
the “think aloud” method for protocol data collection may influence participants’
perception during design processes [19, 22]. As a consequence, designers may not be
used to talking while they are designing, which could lead to incomplete data from such
experiments. The purpose of the warm-up training is to explain to the participants the
significance of the research and to provide training to practice the “think aloud” skills
required [34] so that they can better verbalize their thoughts during the experiment.

The experiment is divided into two parts. In the first part, participants are required
to speak aloud what they are thinking while designing. A screen capture program records
both their words and actions. If there is not sufficient verbal data produced, in the second
part the retrospective protocol method is used to produce complementary verbal data.

500 R. Yu and J. Gero



That means that, after finishing the design task, the videos are played back and partici‐
pants are asked to make additional comments about what they were thinking while
designing. The data collected, therefore include verbal information about participants’
design intentions as well as visual information about their activities.

5 Analysis

5.1 General Analysis

This study employs an integrated segmentation and coding method. The segmentation
and coding process are based on the “one segment one code” principle [35]. It means
there is no overlapped code or multiple codes for one segment. If there are multiple
codes for one segment, the segment will be further divided. Table 1 provides the general
information of the coding coverage. The values shown in the table are the average of
the eight protocols. The average overall numbers of segments are respectively 244 in
the PDE and 224 in the GME. Designers, on average, spent more time in the PDE
session (48 min) than in the GME (44 min). On average over 92.2 % of segments can
be coded as FBS codes. Non-coded segments include communication and software
management. The design speed is very similar between the two design environments,
with means of 5.11 and 4.78 segments/min and low standard deviations. The individual
speed of design varies between 3.06 and 6.86 segments/min, especially in the GME
session. That indicates that designers have their own design habits or strategies or that
some designers may think and act faster than others.

Table 1. General coding information of design sessions. Low standard deviations in these
results indicate that the demographic variation in the subjects is not significant.

Design
environment

Time (min) Number of
segments

Coded
percentage (%)

Speed
(segments/min)

Mean GME 44.0 224 92.2 5.11

PDE 48.0 244 92.2 4.78

SD GME 11.2 45.3 4.3 1.20

PDE 7.4 29.7 3.5 0.53

After transcription, two rounds of segmentation (the division of protocols into indi‐
vidual segments based on their content) and coding were conducted. The coding was
conducted by one researcher with a time interval of two weeks between the two rounds
of coding. Following this an arbitration session (to make decisions on any disagreements
between codes) was carried out to produce the final protocol. The agreement between
the two rounds of coding is 84.8 % (GME) and 83.5 % (PDE). The final arbitrated results
were 92.1 % (GME) and 91.5 % (PDE). The high level of agreement suggests the reli‐
ability of the coding results.

Design Patterns from Empirical Studies in Computer-Aided Design 501



5.2 2nd Order Markov Analysis Results

The 2nd order Markov model analysis is presented in Table 2. It shows that all the
transitions with higher probability are related to S. The 2nd order Markov model
produces a larger pattern that includes two transitions. As shown in Table 2, the highest
transition probability is from reformulation 3 to S, reformulation 3 refers to transition
S to F, which means that the transition S-F-S is the most likely to occur pattern. The
obvious difference between GME and PDE is the transition after reformulation 3 to S
and the transition after reformulation 3 to Be. Reformulation 3 to S means that, after the
designer has carried out the process reformulation 3, which is from S to F, the designers’
consideration goes back to S. This transition, which is F to S is part of a larger pattern,
which is S-F-S.

Table 2. The 2nd order Markov model analysis

R F Be Bs S

GME PDE GME PDE GME PDE GME PDE GME PDE

Formulation 0.04 0.02 0.22 0.20 0.24 0.19 0.24 0.22 0.26 0.37

Synthesis 0.00 0.00 0.04 0.05 0.14 0.24 0.36 0.28 0.45 0.43

Analysis 0.01 0.00 0.06 0.06 0.21 0.15 0.25 0.25 0.47 0.54

Evaluation 0.02 0.01 0.06 0.06 0.17 0.23 0.23 0.28 0.52 0.43

Reformulation 1 0.01 0.00 0.03 0.06 0.15 0.18 0.39 0.31 0.43 0.45

Reformulation 2 0.01 0.00 0.09 0.06 0.22 0.16 0.24 0.34 0.45 0.44

Reformulation 3 0.06 0.00 0.13 0.06 0.30 0.07 0.17 0.18 0.34 0.69

6 Design Patterns in Computational Design Environments

6.1 The Design Pattern S-F-S

A descriptive diagram of the 2nd order Markov model analysis in the GME and the PDE
is presented in Fig. 6. The circles labeled with the FBS codes represent the design issues,
and the size of circle represents the frequency of occurrence of the design issue. Each
arrow shows the transition from one state to the other, and the thickness of the line
represents the transition probability between design issues. To demonstrate the main
activities of the designers, we select those transitions with the probability value larger
than 0.4 and highlight them in Fig. 6. The value 0.4 is selected as threshold to abstract
the model based on a transition probability that is 2 times that of the random transition
probability. In the FBS model, each variable has 5 other states to go to, which means
that the random probability is 0.2, therefore 0.4 is set as the threshold.

502 R. Yu and J. Gero



(a) (b)

Fig. 6. (a) Primary transitions of the 2nd order Markov model in the GME, (b) primary transitions
of the 2nd order Markov model in the PDE.

Applying 2nd order Markov model analysis, the results in Fig. 6 suggest that there are
significantly more S-F-S transitions in PDE than in GME. During the F–S process,
designers select an existing structure/solution for the particular design problem based on
their experience or knowledge, which is a process of using an existing design pattern to
the problem. The S-F-S transitions refer to a consideration to a structure issue (S) followed
by the adoption of the design pattern (F-S). That is to say, design patterns usually based
on the consideration of geometrical structure. From this result we can infer that when
architects apply programming and scripting in their design, such as in a PDE, they exhibit
the characteristic of using design patterns when building the structure of the geometry.

Within the context of the FBS ontology, this process of transitioning directly from
function (F) to structure (S) is excluded from routine ways of design (excluded from the
eight design processes expressed in FBS model). Previous research suggests from the
study of software designers’ behavior, that F to S is a typical design process that occurs
frequently [18]. During the F–S process, designers select an existing structure/solution
for the particular design problem based on their experience or knowledge, which is a
process of selecting and applying an existing design pattern to the problem. This matches
the concepts behind Alexander’s “pattern language” [1]. Since software designers use
design patterns when programming and scripting [36, 37], we can infer that when archi‐
tects apply programming and scripting in their design, such as in a PDE, they exhibit
the similar characteristic of using design patterns.

Design patterns are an important concept in both architectural design and software
design. In software design, it assists software designers in working more efficiently and
makes the programming and scripting process traceable. In the PDE, if we can generalize
some useful design patterns, it would assist architects in their scripting process.

6.2 Design Patterns in Computational Design Environments

From the Markov model analysis results, we found design patterns are adopted in both
GME and PDE, with more patterns in the parametric design environment. The idea of
design patterns was first introduced by Christopher Alexander: “each pattern describes

Design Patterns from Empirical Studies in Computer-Aided Design 503



a problem which occurs over and over again in our environment, and then describes the
core of the solution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice.” [1, p. x]. That is, a pattern is a
documentation of a solution suitable for certain kinds of design problems, which may
occur frequently.

Patterns usually come from designer’s experience [36], which can be seen as a
“induction” process. Designers generalize from their own design experience or from
observation of other designers, abstract the problem-solution pair, and formalize the
“patterns” which can then be re-used. These generated patterns can be improved, and
combined into a network of connections depending on the design purpose [38]. Wood‐
bury writes that: “A pattern is a generic solution to a well-described problem. It includes
both problem and solution, as well as other contextual information.” [12, p. 185].
A design expert has accumulated a large number of examples of problems and solutions
in a specific domain [39]. The pattern itself is an abstraction of that experience, when
designers apply the patterns, they could revise them based on their own preference, or
on the specific context of the current design task.

In the software design domain, educators found that Alexander’s work on design
patterns is suitable in software design pedagogy. For example, Gamma et al. [37] define
patterns as a tool to describe compositional ideas in computer programming. This matches
our analysis results that in parametric design, design patterns are developed and used.

7 Conclusion and Future Work

This paper has presented the results of a protocol study that explores the phenomenon
of using design patterns in computational design environments. It compared the design
patterns found in a parametric design environment (PDE) with those found in a geometry
modeling environment (GME). The main finding is that: firstly, the adoption of design
patterns is found in both computational design environments – PDE and GME. Secondly,
significantly more design patterns are used in the PDE than in the GME. Since the main
differences between the two design environments is that there is rule algorithm feature
in the PDE, we can assume that the more rule algorithm features in the computational
design environment, the more design patterns tend to be used during design process;
Thirdly, the occurrence of design patterns is mainly based on the consideration of
geometry. This claim is based on the higher number of S-F-S transitions in the PDE than
in the GME. During this process designers’ attention first focus on building the
geometric pattern, followed with a design pattern. This is to say, when designers consider
the structure of geometry, they tend to adopt design patterns based on their professional
experience or knowledge.

The existence of design patterns implies that some aspects of the design processes
in computational design are potentially generalizable and transferable, and can be
learned by architectural designers and students. The design patterns identified from the
current study can be potentially customized for different design scenarios and embedded
as generic components in the system to allow designers to apply computer-aided design
tools more effectively. These protocol analysis results suggest that some designers

504 R. Yu and J. Gero



currently define design patterns by themselves and repeatedly use them in a computa‐
tional design process.

The future work based on this study will focus on exploring the development of
design patterns in the PDE over time. This has pedagogical implications in terms of both
teaching and learning.

Acknowledgements. This research has been supported in part by the National Science
Foundation grant CMMI-1161715. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of
National Science Foundation.

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, New York (1977)

2. Chen, S.-C.: The role of design creativity in computer media. In: Architectural information
management, 30th eCAADe conference, Helsinki, Finland (2001)

3. Mitchell, W.J.: Beyond Productivity: Information Technology. Innovation and Creativity,
Washington, DC (2003)

4. Black, A.: Visible planning on paper and on screen. Behav. Info. Technol. 9(4), 283–296
(1990)

5. Schön, D.A.: The Reflective Practitioner: How Professionals Think in Action. Basic Books,
New York (1983)

6. Bilda, Z., Demirkan, H.: An insight on designers’ sketching activities in traditional versus
digital media. Des. Stud. 24(1), 27–50 (2003)

7. Fallman, D.: Design-oriented human-computer interaction. In: 21th ACM CHI Conference
on Human Factors in Computing Systems, Florida, USA (2003)

8. Kim, M.J., Maher, M.L.: The impact of tangible user interfaces on spatial cognition during
collaborative design. Des. Stud. 29(3), 222–253 (2008)

9. Gero, J., Tang, H.-H.: concurrent and retrospective protocols and computer-aided
architectural design. In: 4th CAADRIA conference, Shanghai (1999)

10. Oxman, R.: Design media for the cognitive designer. Autom. Constr. 9(4), 337–346 (2000)
11. Kan, J.W.T., Gero, J.S.: The effect of computer mediation on collaborative designing, in

between man and MACHINE? Integration, Intuition, Intelligence. In: Proceedings of 14th
CAADRIA conference, Yunlin, Taiwan (2009)

12. Woodbury, R.: Elements of Parametric Design. Routledge, New York (2010)
13. Kolarevic, B.: Architecture in the Digital Age: Design And Manufacturing. Spon Press,

New York (2003)
14. Gero, J.S.: Design prototypes: a knowledge representation schema for design. AI Mag. 11(4),

26–36 (1990)
15. Kan, J.W.T., Gero, J.S.: Using the FBS ontology to capture semantic design information in

design protocol studies. In: McDonnell, J., Lloyd, P. (eds.) About: Designing. Analysing
Design Meetings, pp. 213–229. Taylor & Francis, New York (2009)

16. Kan, J.W.T., Gero, J.S.: Can entropy indicate the richness of idea generation in team
designing? In: Digital Opportunities, 10th CAADRIA conference, New Delhi, India (2005)

17. Kan, J.W.T., Gero, J.S.: Acquiring information from linkography in protocol studies of
designing. Des. Stud. 29(4), 315–337 (2008)

Design Patterns from Empirical Studies in Computer-Aided Design 505



18. Kan, J.W.T., Gero, J.S.: Studing software design cognition, In: Petre, M., Hoek, AVd (eds.)
Software Designers in Action: A Human-Centric Look at Design Work. Chapman Hall,
London (2009)

19. Ericsson, K.A., Simon, H.A.: Protocol Analysis: Verbal Reports as Data. MIT Press, Mass
(1993)

20. Gero, J.S., Mc Neill, T.: An approach to the analysis of design protocols. Des. Stud. 19(1),
21–61 (1998)

21. Atman, C.J., et al.: A comparison of freshman and senior engineering design processes. Des.
Stud. 20(2), 131–152 (1999)

22. Suwa, M., Tversky, B.: What do architects and students perceive in their design sketches?
A protocol analysis. Des. Stud. 18(4), 385–403 (1997)

23. Akin, O.: Psychology of Architectural Design. Pion, London (1986)
24. Gero, J., Tang, H.-H.: The differences between retrospective and concurrent protocols in

revealing the process-oriented aspects of the design process. Des. Stud. 22(3), 283–295 (2001)
25. Dorst, K., Dijkhuis, J.: Comparing paradigms for describing design activity. Des. Stud. 16(2),

261–274 (1995)
26. Kuusela, H., Pallab, P.: A comparison of concurrent and retrospective verbal protocol

analysis. Am. J. Psychol. 113(3), 387–404 (2000)
27. Ching, W.K., Ng, M.K.: Markov Chains: Models, Algorithms and Applications. Springer,

New York (2006)
28. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Cambridge University

Press, Cambridge (2009)
29. Kan, J.W.T., Gero, J.S.: Exploring quantitative methods to study design behavior in

collaborative virtual workspaces. In: New Frontiers, Proceedings of the 15th International
Conference on CAADRIA (2010)

30. Jiang, H.: Understanding senior design students’ product conceptual design activities—
a comparison between industrial and engineering design students. National University of
Singapore, Singapore (2012)

31. Gero, J.S., Kannengiesser, U.: Commonalities across designing: empirical results. In:
Proceedings of 5th International Conference on Design Computing and Cognition, College
Station (2014)

32. Gero, J.S., Jiang, H., Vieira, S.: Exploring a multi-meeting engineering design project. In:
Chakrabarti, A., Prakash, R.V. (eds.) ICoRD’13 conference, Springer, India (2013)

33. Kim, M.J.: The effects of tangible user interfaces on designers’ spatial cognition key centre
of design computing and cognition. Faculty of Architecture, Doctor of Philosophy (2006)

34. Nguyen, L., Shanks, G.: Using protocol analysis to explore the creative requirements
engineering process. Information Systems Foundations Workshop, pp. 133–151. ANUE
Press, Canberra (2006)

35. Pourmohamadi, M., Gero, J.S.: LINKOgrapher: An analysis tool to study design protocols
based on FBS coding scheme. In: Culley, S., et al. (eds.) Design Theory and Methodology,
pp. 294–303. Design Society, Glasgow (2011)

36. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Reading
(2003)

37. Gamma, E., et al.: Design patterns: abstraction and reuse of object-oriented design. In:
Manfred, B., Ernst, D. (eds.) Software Pioneers, pp. 701–717. Springer, New York (2002)

38. Alexander, C.: The Timeless Way of Building. Oxford University Press, Oxford (1979)
39. Razzouk, R., Shute, V.: What Is Design Thinking and Why Is It Important? Rev. Educ. Res.

82(3), 330–348 (2012)

506 R. Yu and J. Gero


	Design Patterns from Empirical Studies in Computer-Aided Design
	Abstract
	1 Introduction
	2 Background
	2.1 Selected Computational Design Environments – PDE and GME
	2.2 Basis for Protocol Coding Scheme – FBS Ontology

	3 Research Method
	3.1 Protocol Analysis
	3.2 Markov Model Analysis

	4 Experiment Setting
	4.1 Selection of Subjects
	4.2 Design Brief
	4.3 Experiment Procedures

	5 Analysis
	5.1 General Analysis
	5.2 2nd Order Markov Analysis Results

	6 Design Patterns in Computational Design Environments
	6.1 The Design Pattern S-F-S
	6.2 Design Patterns in Computational Design Environments

	7 Conclusion and Future Work
	References


