
Chapter 5
Over-Determined and Under-Determined
Systems of Time-Varying Linear Equations

Abstract In this chapter, focusing on solving over-determined system of
time-varying linear equations, we first propose, generalize, develop, and investigate
two ZDmodels based on two different ZFs. Then, by introducing another two differ-
ent ZFs, another two ZD models are proposed, generalized, developed, and investi-
gated to solve under-determined system of time-varying linear equations. Computer
simulation results with different illustrative examples are presented to further sub-
stantiate the efficacy of the proposed ZD models for solving over-determined and
under-determined systems of time-varying linear equations.

5.1 Introduction

Solving over-determined and under-determined systems of linear equations is widely
encountered in a variety of scientific and engineering research fields [1–7]. As pre-
sented in Chap.4, it has no solution for over-determined system of linear equations;
while it has infinitely many solutions for under-determined system of linear equa-
tions. These characteristics make it difficult for solving over-determined and under-
determined systems of linear equations.

Focusing on solving over-determined and under-determined systems of linear
equations, many approaches (including numerical algorithms and neural-dynamics
methods) have thus been developed, analyzed, and investigated [8–12]. Note that the
problems of over-determined and under-determined systems of linear equations in
most of these researches or investigations are static (or termed, time-invariant). This
also means that almost all of these methods are theoretically/intrinsically designed
for solving over-determined and under-determined systems of time-invariant linear
equations. When these methods are exploited directly to solve the (over-determined
or under-determined) system of time-varying linear equations, they may be less
accurate and effective enough [10, 11].

In this chapter, by following the idea of ZFs, different ZD models are proposed,
generalized, developed, and investigated to solve over-determined and
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under-determined systems of time-varying linear equations. Specifically, we first
construct two different ZD models based on two ZFs for solving over-determined
system of time-varying linear equations. Then, another two different ZD models are
constructed for solving under-determined system of time-varying linear equations.
Four illustrative examples are provided and computer simulation results further sub-
stantiate the efficacy of the proposed ZD models for solving over-determined and
under-determined systems of time-varying linear equations.

5.2 ZFs and ZD Models

In this section, by defining different ZFs, different ZD models are proposed for
solving the following system of time-varying linear equations:

A(t)x(t) = b(t) ∈ R
m, t ∈ [0,+∞), (5.1)

where A(t) ∈ R
m×n with m �= n is the smoothly time-varying full-rank coefficient

matrix, b(t) ∈ R
m is the smoothly time-varying coefficient vector, and x(t) ∈ R

n is
the unknown vector that needs to be obtained in an error-free and real-time manner
(or termed, the manner of real-time time-varying problem-solving). Note that (5.1)
can be viewed as a general time-varying system of m real-valued time-varying linear
equations and n real-valued time-varying variables.

To lay a basis for further discussion, the following corollary is presented, with
the related proof being generalized from the proof of Theorem4.1 and being left to
interested readers to complete as a topic of exercise.

Corollary 5.1 Consider a smoothly time-varying full-rank matrix A(t) ∈ R
m×n

with m �= n. Let A+(t) ∈ R
n×m denote the time-varying Moore–Penrose pseo-

duinverse of A(t). Then, the time derivative of A+(t) is formulated as Ȧ+(t) =
dA+(t)/dt = −A+(t) Ȧ(t)A+(t).

5.2.1 With m > n (Over-Determined System)

In this subsection, two different ZD models based on two ZFs are developed and
investigated for solving over-determined system of time-varying linear equations,
i.e., (5.1) with m > n. Note that, as mentioned in [6], if there exists at least one
choice for the time-varying vector x(t) which satisfies (5.1) with m > n, then the
over-determined system of time-varying linear equations is consistent; and if no such
time-varying vector exists, then the over-determined system of time-varying linear
equations is inconsistent. In this chapter, we only consider the situation of the incon-
sistent over-determined systemof time-varying linear equations. Besides, in the study
of the inconsistent over-determined system of time-varying linear equations, the
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two-norm technique is adopted to zero out the time-varying residual error A(t)x(t)−
b(t) as possible as we can in this chapter.

The First ZF and ZD Model In order to solve the system of time-varying linear
equations (5.1) with m > n, the first ZF (i.e., a vector-valued lower-unbounded error
function) is defined as follows:

e(t) = A(t)x(t) − b(t) ∈ R
m . (5.2)

With ZF (5.2), by expanding the ZD design formula (4.2), we obtain the following
ZD model for solving over-determined system of time-varying linear equations:

AT(t)A(t)ẋ(t) = −AT(t) Ȧ(t)x(t)+ AT(t)ḃ(t)− γ AT(t)(A(t)x(t)− b(t)), (5.3)

where x(t), starting from an initial condition x(0), is the neural state corresponding
to an approximate time-varying solution (e.g., a pseudoinverse-type solution) x∗(t)
of (5.1) with m > n.

The Second ZF and ZD Model To solve over-determined system of time-varying
linear equations, i.e., (5.1) with m > n, the second ZF is defined as follows:

e(t) = x(t) − A+(t)b(t) ∈ R
n . (5.4)

where A+(t) = (AT(t)A(t))−1AT(t) denotes the left Moore–Penrose inverse of
A(t).

Then, in view of (5.4) and Ȧ+(t) = dA+(t)/dt = −A+(t) Ȧ(t)A+(t), we have
the following ZD model by expanding ZD design formula (4.2):

AT(t)A(t)ẋ(t) = −AT(t) Ȧ(t)A+(t)b(t)+ AT(t)ḃ(t)− γ AT(t) (A(t)x(t) − b(t)) .

(5.5)
Thus, based on the secondZF (5.4), the secondZDmodel (5.5) is obtained for solving
over-determined system of time-varying linear equations.

Before closing this subsection of constructingZDmodels (5.3) and (5.5), the block
diagrams and overall Simulink models corresponding to such two ZD models are
shown in Figs. 5.1, 5.2, 5.3 and 5.4, which may be useful for their future implemen-
tations on circuit systems. Besides, it is worth pointing out that the over-determined
system of time-varying linear equations discussed in this chapter is inconsistent and
there does not exist accurate theoretical solution for it. Thus, in the ensuing simula-
tions, the two-norm measure is adopted to show the residual error about the obtained
approximate solution of (5.1) with m > n, i.e., ‖A(t)x(t) − b(t)‖2.

5.2.2 With m < n (Under-Determined System)

In this subsection, another two different ZD models based on two ZFs are devel-
oped and investigated for solving under-determined system of time-varying linear
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Fig. 5.1 Block diagram of ZD model (5.3) for solving over-determined system of time-varying
linear equations, where I is the identity matrix
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Fig. 5.2 Overall Simulink model of ZD (5.3) for solving over-determined system of time-varying
linear equations
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Fig. 5.3 Block diagram of ZD model (5.5) for solving over-determined system of time-varying
linear equations
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equations, i.e., (5.1) withm < n. Sincem < n, there exist multiple or even an infinite
number of solutions to (5.1).

Being similar to the above design procedure, in order to solve under-determined
system of time-varying linear equations, we define the following two ZFs:

e(t) = A(t)x(t) − b(t) ∈ R
m, (5.6)

e(t) = x(t) − A+(t)b(t) ∈ R
n, (5.7)

where A+(t) = AT(t)(A(t)AT(t))−1 denotes the right Moore–Penrose inverse of
A(t).

On the one hand, with ZF (5.6), by expanding the ZD design formula (4.2), we
obtain the following ZDmodel for solving under-determined system of time-varying
linear equations:

A(t)ẋ(t) = − Ȧ(t)x(t) + ḃ(t) − γ (A(t)x(t) − b(t)). (5.8)

On the other hand, with ZF (5.7), by expanding the ZD design formula (4.2),
we obtain another ZD model for solving under-determined system of time-varying
linear equations as follows:

ẋ(t) = −A+(t) Ȧ(t)A+(t)b(t) + A+(t)ḃ(t) − γ
(
x(t) − A+(t)b(t)

)
. (5.9)

In summary, based on two different ZFs (5.6) and (5.7), two different ZD models
(5.8) and (5.9) have been developed for solving under-determined system of time-
varying linear equations, i.e., (5.1) with m < n. Note that the block diagrams and
overall Simulink models corresponding to such two ZD models are left to interested
readers to complete as a topic of exercise (since they are similar to those shown in
Figs. 5.1, 5.2, 5.3, and 5.4).

5.3 Illustrative Examples

In this section, two illustrative examples are first simulated and analyzed for compar-
isons between the proposed ZD models (5.3) and (5.5) for solving over-determined
system of time-varying linear equations. Then, another two illustrative examples are
provided for substantiating the efficacy of the proposed ZD models (5.8) and (5.9)
for solving under-determined system of time-varying linear equations.

Example 5.1 In the first example, the following smoothly time-varying coefficient
matrix A(t) and coefficient vector b(t) of (5.1) with m = 3 and n = 2 are designed
to test the proposed ZD models (5.3) and (5.5):
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A(t) =
⎡

⎣
sin(3t) cos(3t)

− cos(3t) sin(3t)
sin(3t) cos(3t)

⎤

⎦ ∈ R
3×2 and b(t) =

⎡

⎣
cos(t)
sin(t)

− sin(t)

⎤

⎦ ∈ R
3.

The corresponding simulation results are shown in Figs. 5.5, 5.6, and 5.7.

Specifically, in the time period [0, 10]s, the state trajectories of the two elements
x1(t) and x2(t) of x(t) = [x1(t) x2(t)]T synthesized by the proposed ZD models
(5.3) and (5.5) with γ = 1 are illustrated in Fig. 5.5. It is seen that all simulated
state trajectories (denoted by solid curves) starting from ten randomly-generated
initial states x(0) ∈ [−1.5, 1.5]2 can relatively fast converge to the pseudoinverse-
type solution x∗(t) = A+(t)b(t) which is exploited and shown for comparison
and denoted by dash-dotted curves. Furthermore, Fig. 5.6 shows the residual errors
‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2 of ZD models (5.3) and (5.5) with γ = 1. As seen
from Fig. 5.6, the residual errors of both ZD models cannot converge to zero. This
phenomenon actually reflects and confirms that, for solving such an inconsistent

0 2 4 6 8 10
−2

−1

0

1

2

0 2 4 6 8 10
−2

−1

0

1

2

x1(t)

x2(t)

t (s)

t (s)
0 2 4 6 8 10

−2

−1

0

1

2

0 2 4 6 8 10
−2

−1

0

1

2

x1(t)

x2(t)

t (s)

t (s)

Fig. 5.5 State trajectories of ZD models (5.3) and (5.5) with γ = 1 for solving over-determined
system of time-varying linear equations involved in Example5.1, where the dash-dotted curves
correspond to the pseudoinverse-type solution x∗(t) = A+(t)b(t)
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Fig. 5.6 Residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2 of ZD models (5.3) and (5.5) with γ = 1
for solving over-determined system of time-varying linear equations involved in Example5.1
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Fig. 5.7 Residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2 of ZD models (5.3) and (5.5) using dif-
ferent γ values for solving over-determined system of time-varying linear equations involved in
Example5.1

over-determined system of time-varying linear equations, we cannot find a time-
varying solution that satisfies all of the inconsistent equations simultaneously all the
time.

Moreover, as seen from Fig. 5.7, ZD models (5.3) and (5.5) using different values
of γ are investigated. Synthesized by the proposed ZD models, the residual errors
(with γ = 1, 5, 10, and 20) cannot converge to zero either, and the reason has been
explained in the preceding paragraph. Besides, as shown in Fig. 5.7, the residual
errors with larger γ value converge faster than those with smaller γ value, showing
that γ plays an important role in such ZD models.

Example 5.2 In the second example, the following time-varying coefficients of (5.1)
with m = 5 and n = 4 are designed to test the proposed ZD models (5.3) and (5.5):

A(t) =

⎡

⎢⎢⎢⎢
⎣

a1(t) a2(t) a3(t) a4(t)
a1(t) −a2(t) a3(t) a4(t)
a1(t) a2(t) −a3(t) a4(t)
a1(t) a2(t) a3(t) −a4(t)
a1(t) a2(t) a3(t) a4(t)

⎤

⎥⎥⎥⎥
⎦

∈ R
5×4 and b(t) =

⎡

⎢⎢⎢⎢
⎣

2 sin(t)
3 cos(2t)
4 sin(2t)
3 cos(t)
sin(2t)

⎤

⎥⎥⎥⎥
⎦

∈ R
5.

where a1(t) = 4 − sin(t), a2(t) = 2 + cos(2t), a3(t) = 3 − sin(2t) and a4(t) =
2 + cos(t). The corresponding simulation results are shown in Figs. 5.8, 5.9, and
5.10.

Specifically, in the time period [0, 10]s, the state trajectories of the four elements
x1(t), x2(t), x3(t), and x4(t) of x(t) = [x1(t) x2(t) x3(t) x4(t)]T synthesized by
ZD models (5.3) and (5.5) with γ = 1 are illustrated in Fig. 5.8. Starting from ten
randomly-generated initial states x(0) ∈ [−1.5, 1.5]4, all state trajectories (denoted
by solid curves) can also relatively fast converge to the pseudoinverse-type solution
x∗(t) = A+(t)b(t) (denoted by dash-dotted curves again).
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Fig. 5.8 State trajectories of ZD models (5.3) and (5.5) with γ = 1 for solving over-determined
system of time-varying linear equations involved in Example5.1
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for solving time-varying over-determined system of linear equations involved in Example5.1
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Furthermore, Fig. 5.9 shows the residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2
of ZD models (5.3) and (5.5) with γ = 1. As seen from the figure, the residual
errors of ZD models (5.3) and (5.5) cannot converge to zero either. The reason is
explained before; i.e., we cannot find a time-varying solution which can satisfy all
of the inconsistent equations simultaneously.

Moreover, as seen fromFig. 5.10, ZDmodels (5.3) and (5.5) using different values
of γ are investigated. We confirmedly observe that the residual errors with larger γ

value converge faster than those with smaller γ value (showing again the important
role of γ for the proposed ZD models).

In summary, the simulation results of the above two examples have substantiated
the efficacy of the proposed ZD models (5.3) and (5.5) (derived from two different
ZFs) for solving over-determined system of time-varying linear equations.

Example 5.3 In the third example, the following smoothly time-varying coefficient
matrix A(t) and coefficient vector b(t) of (5.1) with m = 2 and n = 3 are designed
to test the proposed ZD models (5.8) and (5.9):

A(t) =
[

sin(0.6t) cos(0.6t) − sin(0.6t)
− cos(0.6t) sin(0.6t) cos(0.6t)

]
∈ R

2×3 andb(t) =
[
1.5 cos(t)
sin(2t)

]
∈ R

2.

The corresponding simulation results are shown in Figs. 5.11, 5.12, and 5.13.

Specifically, in the time period t ∈ [0, 10]s, state trajectories of the elements
x1(t), x2(t), and x3(t) (denoted by solid curves) synthesized by ZDmodels (5.8) and
(5.9) with γ = 1 are illustrated in Fig. 5.11. Evidently, starting from ten randomly-
generated initial states x(0) ∈ [−2, 2]3, some of the simulated state trajectories
synthesized by ZD model (5.8) (e.g., x1(t) in the left graph of Fig. 5.11) do not
converge to the trajectories of the referenced theoretical solution x∗(t) = A+(t)b(t)
(denoted by dash-dotted curves), but run in parallel with the theoretical-solution
trajectories. The reason is that there are multiple time-varying solutions satisfying
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Fig. 5.11 State trajectories of ZD models (5.8) and (5.9) with γ = 1 for solving under-determined
system of time-varying linear equations involved in Example5.3
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Fig. 5.12 Residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2 of ZD models (5.8) and (5.9) with γ = 1
for solving under-determined system of time-varying linear equations involved in Example5.3
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Fig. 5.13 State trajectories of ZD models (5.8) and (5.9) with γ = 1 for solving under-determined
system of time-varying linear equations involved in Example5.4

the under-determined system of time-varying linear equations with different initial
states x(0) used. In contrast, other simulated state trajectories of ZD model (5.8) and
all simulated state trajectories of ZD model (5.9), starting from randomly-generated
initial states, relatively fast converge to the trajectories of the referenced theoretical
solution x∗(t) = A+(t)b(t), as shown in Fig. 5.11.

Furthermore, Fig. 5.12 shows the residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2
of ZD models (5.8) and (5.9) with γ = 1 used. As seen from the figure, the residual
errors ‖e(t)‖2 fast converge to zero. Note that the simulation results synthesized
by ZD models (5.8) and (5.9) using different γ values are similar to those shown in
Figs. 5.7 and 5.10 (and thus are omitted due to results similarity). That is, the residual
errors with larger γ value converge faster than those with smaller γ value, showing
the important role of γ for the proposed ZD models (5.8) and (5.9).

Example 5.4 In the fourth example, the following smoothly time-varying coefficient
matrix A(t) and coefficient vector b(t) of (5.1) with m = 2 and n = 3 are designed
to test the proposed ZD models (5.8) and (5.9):
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Fig. 5.14 Residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2 of ZD models (5.8) and (5.9) with γ = 1
for solving under-determined system of time-varying linear equations involved in Example5.4

A(t) =
[

sin(2t) cos(2t) − sin(2t)
− cos(2t) sin(2t) cos(2t)

]
∈ R

2×3 and b(t) =
[
sin(0.5t)
cos(t)

]
∈ R

2.

The corresponding simulation results are shown in Figs. 5.13 and 5.14, where phe-
nomena are similar to those inExample5.3. That is, corresponding tox(t) in Fig. 5.13,
the residual errors of ZDmodels (5.8) and (5.9) in Fig. 5.14 all converge to zero. Note
that, being a topic of exercise, the related simulative verifications of ZDmodels (5.8)
and (5.9) using different values of γ are left for interested readers.

In summary, the simulation results of the above two illustrative examples have
substantiated the efficacy of the proposed ZD models (5.8) and (5.9) for solving
under-determined system of time-varying linear equations.

5.4 Summary

In this chapter, by introducing different ZFs [i.e., (5.2), (5.4), (5.6), and (5.7)], differ-
ent ZD models [i.e., (5.3), (5.5), (5.8), and (5.9)] have been proposed, generalized,
developed, and investigated to solve over-determined and under-determined systems
of time-varying linear equations (5.1).With different illustrative examples, computer
simulation results have further substantiated the efficacy of the proposed ZD models
for solving over-determined and under-determined systems of time-varying linear
equations.
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