
Chapter 2
Time-Varying Inverse Square Root

Abstract In this chapter, we propose, generalize, develop, and investigate different
ZD models based on different ZFs for solving the time-varying inverse square root
problem. In addition, this chapter shows modeling of the proposed ZD models
using MATLAB Simulink techniques. The modeling results with different illus-
trative examples further substantiate the efficacy of such proposed ZD models for
time-varying inverse square root finding.

2.1 Introduction

Inverse square root computation is an important numerical operation in many
application areas such as digital signal processing, scientific computing, and com-
puter graphics [1]. Specifically, inverse square root computation of a floating point
scalar is exploited to compute a normalized vector [2], which can be used to determine
lighting and reflection in a 3D graphics program [3]. The static inverse square root
problem is generally formulated as f (x) = ax2−1. Numerous numerical algorithms
are investigated for solving such a problem [4–8]. Note that many potential com-
putational algorithms are designed intrinsically for static (or to say, time-invariant,
constant) problems solving [4] and associated with gradient methods [9]. As a result,
almost all the previous algorithms are just effective for static inverse square root
computation [10], and may not be accurate enough to solve the time-varying inverse
square root problem [11–13].

In this chapter, focusing on time-varying inverse square root finding, we propose,
generalize, develop, and investigate different ZD models by defining different ZFs as
the error-monitoring functions. In addition, theoretical results are presented to show
the convergence performance of such different ZD models. Moreover, MATLAB
Simulink modeling [14–16] is shown for possible hardware realization of the pro-
posed ZD models. Illustrative examples and modeling results further substantiate the
efficacy of such proposed ZD models for time-varying inverse square root finding.

© Springer-Verlag Berlin Heidelberg 2015
Y. Zhang and D. Guo, Zhang Functions and Various Models,
DOI 10.1007/978-3-662-47334-4_2

17

18 2 Time-Varying Inverse Square Root

2.2 ZFs and ZD Models

In this section, different ZFs are introduced to construct different ZD models for
time-varying inverse square root finding.

Let us consider the time-varying inverse square root problem, which is written in
the form [11–13]

f (x(t), t) = a(t)x2(t) − 1 = 0 ∈ R, t ∈ [0,+∞), (2.1)

where a(t) > 0 ∈ R denotes a smoothly time-varying scalar with ȧ(t) ∈ R denoting
the time derivative of a(t), both of which are assumed to be known numerically or
could be measured accurately. In this chapter, we aim at finding the x(t) ∈ R at
time instant t ∈ [0,+∞) to make (2.1) hold true. Furthermore, x∗(t) is used to
denote the theoretical time-varying inverse square root of a(t) [i.e., mathematically,
x∗(t) = ±1/

√
a(t)] in this chapter.

For solving the time-varying inverse square root problem (2.1), different ZD mod-
els based on different ZFs are thus developed and investigated, with the corresponding
design procedures detailed as follows.

2.2.1 The First ZF and ZD Model

Following Zhang et al.’s design method [11–15, 17] (see also Sect. 1.2), we define
the following indefinite ZF (i.e., the first ZF) as the error-monitoring function for
time-varying inverse square root finding:

e(t) = x2(t) − 1

a(t)
. (2.2)

With ZF (2.2), by expanding the ZD design formula (1.2), we obtain

2x(t)ẋ(t) + 1

a2(t)
ȧ(t) = −γ

(
x2(t) − 1

a(t)

)
.

Hence, the ZD model based on ZF (2.2) for time-varying inverse square root finding
is derived as follows:

ẋ(t) = − ȧ(t)

2a2(t)x(t)
− 1

2
γ

(
x(t) − 1

a(t)x(t)

)
. (2.3)

Correspondingly, the block diagram of ZD model (2.3) is shown in the upper graph
of Fig. 2.1.

http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_1

2.2 ZFs and ZD Models 19

− −
−

+
x(t)ẋ(t)

a(t)

a(t)ȧ(t)

∑∑ γ 1
(·)

1
(·)

1
2

1
2

−

−

−
+

x(t)ẋ(t)

a(t)

ȧ(t)

∑∑ γ (·)31
2

1
2

Fig. 2.1 Block diagrams of ZD (2.3) and (2.5) for time-varying inverse square root finding

2.2.2 The Second ZF and ZD Model

To introduce and show different ZD models based on different ZFs for solving the
time-varying inverse square root problem (2.1), the second ZF is defined as

e(t) = a(t) − 1

x2(t)
. (2.4)

In view of ZF (2.4) and the ZD design formula (1.2), we obtain

ȧ(t) + 2

x3(t)
ẋ(t) = −γ

(
a(t) − 1

x2(t)

)
.

That is,

ẋ(t) = −1

2
ȧ(t)x3(t) − 1

2
γ

(
a(t)x3(t) − x(t)

)
, (2.5)

which is the ZD model based on ZF (2.4) for time-varying inverse square root finding.
Correspondingly, the block diagram of ZD model (2.5) is depicted in the lower graph
of Fig. 2.1.

http://dx.doi.org/10.1007/978-3-662-47334-4_1

20 2 Time-Varying Inverse Square Root

− −

+

−

x(t)ẋ(t)

a(t)

ȧ(t)

∑∑ γ 1
(·)

1
2

1
2

1
a(t)

−
− +

− x(t)ẋ(t)

a(t)

ȧ(t)

∑ ∑γ (·)31
2

1
2

1
a(t)

Fig. 2.2 Block diagrams of ZD (2.7) and (2.9) for time-varying inverse square root finding

2.2.3 The Third ZF and ZD Model

The first ZF (2.2) and the second ZF (2.4), which lead to ZD models (2.3) and (2.5),
respectively, are defined above. Now, alternatively, we define the third ZF as

e(t) = a(t)x2(t) − 1. (2.6)

In view of the ZD design formula (1.2) and ZF (2.6), we have

ȧ(t)x2(t) + 2a(t)x(t)ẋ(t) = −γ
(

a(t)x2(t) − 1
)

,

which is further written as

ẋ(t) = − ȧ(t)x(t)

2a(t)
− γ

2

(
x(t) − 1

a(t)x(t)

)
. (2.7)

Correspondingly, the block diagram of ZD model (2.7) for time-varying inverse
square root finding is depicted in the upper graph of Fig. 2.2.

2.2.4 The Fourth ZF and ZD Model

For monitoring and controlling the process of the time-varying inverse square root
problem (2.1) solving, another ZF (i.e., the fourth ZF) is defined in the following
form:

http://dx.doi.org/10.1007/978-3-662-47334-4_1

2.2 ZFs and ZD Models 21

e(t) = 1

a(t)x2(t)
− 1. (2.8)

With the ZD design formula (1.2) and ZF (2.8) considered, we have

− ȧ(t)x(t) + 2a(t)ẋ(t)

a2(t)x3(t)
= −γ

(
1

a(t)x2(t)
− 1

)
,

which yields the following differential equation of ZD:

ẋ(t) = − ȧ(t)x(t)

2a(t)
− γ

2

(
a(t)x3(t) − x(t)

)
. (2.9)

Correspondingly, the block diagram of ZD model (2.9) is shown in the lower graph
of Fig. 2.2.

2.2.5 The Fifth ZF and ZD Model

Let us consider the following error-monitoring function (i.e., the fifth ZF):

e(t) = x(t) − 1

a(t)x(t)
. (2.10)

As another form of ZF for time-varying inverse square root finding, ZF (2.10) leads
to a different ZD model. Specifically, expanding the ZD design formula (1.2) with
the aid of ZF (2.10), we obtain

ẋ(t) + ȧ(t)x(t) + a(t)ẋ(t)

a2(t)x2(t)
= −γ

(
x(t) − 1

a(t)x(t)

)
,

which yields the following differential equation of ZD:

ẋ(t) = − ȧ(t)x(t)

a2(t)x2(t) + a(t)
− γ

a(t)x3(t) − x(t)

a(t)x2(t) + 1
. (2.11)

2.2.6 The Sixth ZF and ZD Model

The sixth and also the last ZF is given finally as

e(t) = a(t)x(t) − 1

x(t)
. (2.12)

http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_1

22 2 Time-Varying Inverse Square Root

Table 2.1 Different ZFs resulting in different ZD models for finding time-varying inverse
square root

ZF ZD model

(2.2) ẋ(t) = − ȧ(t)
2a2(t)x(t)

− 1
2 γ

(
x(t) − 1

a(t)x(t)

)

(2.4) ẋ(t) = − 1
2 ȧ(t)x3(t) − 1

2 γ
(
a(t)x3(t) − x(t)

)
(2.6) ẋ(t) = − ȧ(t)x(t)

2a(t) − 1
2 γ

(
x(t) − 1

a(t)x(t)

)

(2.8) ẋ(t) = − ȧ(t)x(t)
2a(t) − 1

2 γ
(
a(t)x3(t) − x(t)

)
(2.10) ẋ(t) = − ȧ(t)x(t)

a2(t)x2(t)+a(t)
− γ

a(t)x3(t)−x(t)
a(t)x2(t)+1

(2.12) ẋ(t) = − ȧ(t)x3(t)
a(t)x2(t)+1

− γ
a(t)x3(t)−x(t)

a(t)x2(t)+1

Substituting ZF (2.12) into the ZD design formula (1.2), we have

ȧ(t)x(t) + a(t)ẋ(t) + ẋ(t)

x2(t)
= −γ

(
a(t)x(t) − 1

x(t)

)
,

which yields the following differential equation of ZD:

ẋ(t) = − ȧ(t)x3(t)

a(t)x2(t) + 1
− γ

a(t)x3(t) − x(t)

a(t)x2(t) + 1
. (2.13)

Due to similarity to the block diagrams of the previous ZD models, the block diagrams
of ZD models (2.11) and (2.13) are omitted.

In summary, we have obtained six different ZD models [i.e., (2.3), (2.5), (2.7),
(2.9), (2.11) and (2.13)] for solving the time-varying inverse square root problem
(2.1). Such six ZD models are derived from six different ZFs (2.2), (2.4), (2.6), (2.8),
(2.10) and (2.12), respectively. For comparison purposes and reading convenience,
the proposed different ZD models based on different ZFs are listed in Table 2.1.

2.3 Theoretical Results and Analyses

In this section, theoretical results and analyses are presented, which show the con-
vergence properties of the proposed ZD models (2.3), (2.5), (2.7), (2.9), (2.11) and
(2.13) for finding time-varying inverse square root.

Proposition 2.1 Consider a smoothly time-varying positive scalar a(t) > 0 ∈ R

involved in (2.1). Starting from any initial state x(0) �= 0 ∈ R, we have

http://dx.doi.org/10.1007/978-3-662-47334-4_1

2.3 Theoretical Results and Analyses 23

• if x(0) > 0, the neural state x(t) ∈ R of ZD model (2.3) based on ZF (2.2)
converges to the positive theoretical time-varying inverse square root of a(t), with
ZF (2.2) exponentially converging to zero; and,

• if x(0) < 0, the neural state x(t) ∈ R of ZD model (2.3) based on ZF (2.2)
converges to the negative theoretical time-varying inverse square root of a(t),
with ZF (2.2) exponentially converging to zero.

Proof We use the well-known Lyapunov theory to prove the convergence perfor-
mance of ZD model (2.3).

Let us first define the following Lyapunov function candidate, which is clearly
nonnegative:

V (x(t), t) = 1

2

(
x2(t) − 1

a(t)

)2

� 0,

where V (x(t), t) = 0 only if x(t) = x∗(t) = ±1/
√

a(t) and V (x(t), t) > 0 if
x(t) �= x∗(t) = ±1/

√
a(t). In addition, if e(t) = x2(t) − 1/a(t) tends to infinity

[correspondingly |x(t) − x∗(t)| → ∞], we have V (x(t), t) → ∞ as well.
Then, along the state trajectory of ZD model (2.3), we derive the time derivative

of V (x(t), t) as

V̇ (x(t), t) = dV (x(t), t)

dt
=

(
x2(t) − 1

a(t)

) (
2x(t)ẋ(t) + 1

a2(t)
ȧ(t)

)

= −γ

(
x2(t) − 1

a(t)

)2

= −2γ V (x(t), t) � 0,

which guarantees the final negative-definiteness of V̇ (x(t), t).
Thus, in accordance with the Lyapunov theory, x(t) converges to x∗(t). In addi-

tion, as seen from the dynamic equation of ZD model (2.3), zero cannot be a divisor,
i.e., state x(t) �= 0. In view of the solution continuity of ZD model (2.3), we obtain
the following results. If initial state x(0) > 0, the neural state x(t) ∈ R of ZD model
(2.3) converges to the positive theoretical time-varying inverse square root of a(t),
i.e., x(t) → x∗(t) = 1/

√
a(t). Otherwise [i.e., if initial state x(0) < 0], the neural

state x(t) ∈ R of ZD model (2.3) converges to the negative theoretical time-varying
inverse square root of a(t), i.e., x(t) → x∗(t) = −1/

√
a(t).

Furthermore, from V̇ (x(t), t) = −2γ V (x(t), t), we have

V (x(t), t) = V (x(0), 0) exp(−2γ t).

That is,
1

2

(
x2(t) − 1

a(t)

)2

= 1

2

(
x2(0) − 1

a(0)

)2

exp(−2γ t).

24 2 Time-Varying Inverse Square Root

Thus, we have ∣∣∣∣x2(t) − 1

a(t)

∣∣∣∣ =
∣∣∣∣x2(0) − 1

a(0)

∣∣∣∣ exp(−γ t).

By setting α = |x2(0) − 1/a(0)|, the above equation becomes

∣∣∣∣x2(t) − 1

a(t)

∣∣∣∣ = α exp(−γ t),

which indicates that x2(t) exponentially converges to 1/a(t), i.e., ZF (2.2) exponen-
tially converges to zero. Therefore, the proof is complete. �

As for the other five ZD models, we also have the corresponding convergence
results. Concerning the convergence performance of the proposed ZD models based
on six different ZFs, the following unified proposition is presented, with the related
proof being generalized from the proof of Proposition 2.1 and being left to interested
readers to complete as a topic of exercise.

Proposition 2.2 Consider a smoothly time-varying positive scalar a(t) > 0 ∈ R

involved in (2.1). Starting from any initial state x(0) �= 0 ∈ R,

• if x(0) > 0, the neural states x(t) ∈ R
+ of ZD models listed in Table2.1 converge

to the positive theoretical time-varying inverse square root of a(t), with ZFs listed
in Table2.1 exponentially converging to zero, respectively; and,

• if x(0) < 0, the neural states x(t) ∈ R
− of ZD models listed in Table2.1 converge

to the negative theoretical time-varying inverse square root of a(t), with ZFs listed
in Table2.1 exponentially converging to zero, respectively.

2.4 Simulink Modeling

In this section, the MATLAB Simulink modeling of the proposed ZD models [i.e.,
(2.3), (2.5), (2.7), (2.9), (2.11) and (2.13)] is investigated and presented. The overall
Simulink models of such proposed ZD models for time-varying inverse square root
finding are shown in Figs. 2.3 and 2.4.

Some important parameters and options related to the Simulink models which we
establish in Figs. 2.3 and 2.4, etc., are specified as follows.

2.4 Simulink Modeling 25

Out
1

MATLAB
Function

Scope

Product3
Product 2

Product

Integrator

1
s

Gain 1

Gain

1/2

Divide 2

Divide 1

Divide
Derivative

du/dt

Constant1

1

Constant 1

Clock

ȧ(t)
a(t)

γ

x(t)

e(t)

ẋ(t)

Out
1

MATLAB
Function

Scope 1

Product3

Product2

Product1

Product

Integrator

1
s

Gain 1

1/2

Gain

Divide
Derivative

du/dt

Constant

1

Clock

ȧ(t)
a(t)

γ
x(t)

e(t)

ẋ(t)

Out
1

MATLAB
Function

Scope

Product2

Product 1

Product

Integrator

1
s

Gain 1

Gain

1/2

Divide1

Divide

Derivative

du/dt

Constant1

1

Constant1

Clock

ȧ(t)a(t)

γ

x(t)

e(t)

ẋ(t)

1

Fig. 2.3 Modeling of ZD (2.3), (2.5) and (2.7) for finding time-varying inverse square root

• a(t) is generated by employing the “MATLAB Function” block with the “Clock”
block as its input.

• Open the “Configuration Parameters” dialog box and set the options “Solver” to
be “ode15s”, “Max step size” to be “0.1”, and “Min step size” to be “auto”. In
addition, by default, the option “Relative tolerance” is set as “1e-5” (i.e., 10−5),
and “Absolute tolerance” is “auto”.

26 2 Time-Varying Inverse Square Root

Out
1

MATLAB
Function

Scope

Product2

Product 1

Product

Integrator

1
s

Gain 1

Gain

1/2

Divide 2

Divide 1

Derivative

du/dt

Constant1

1
Constant1

Clock

ȧ(t)a(t)

γ

x(t)

e(t)

ẋ(t)

Out
1

MATLAB
Function

Scope

Product4

Product3
Product2

Product1

Product

Integrator

1
s

Gain

Divide 2

Divide 1

Divide

Derivative

du/dt

Constant1 1

Constant

1

Clock

ȧ(t)
a(t)

γ

x(t)

e(t)

ẋ(t)

Out
1

MATLAB
Function

Scope

Product

Product4

Product3

Product2

Product 1

Integrator

1
s

Gain

Divide 2

Divide 1

Divide

Derivative

du/dt

Constant2

1

Constant1

1

Constant

1

Clock

ȧ(t)

a(t)

γ

x(t)

e(t)

ẋ(t)

5

Fig. 2.4 Modeling of ZD (2.9), (2.11) and (2.13) for time-varying inverse square root finding

2.5 Illustrative Examples 27

2.5 Illustrative Examples

In this section, based on the MATLAB Simulink modeling techniques, we substantiate
the convergence performance of the proposed ZD models through two examples.

Example 2.1 Let us consider the time-varying inverse square root problem (2.1) with
a(t) = 8 cos(sin(5t)) + 3 sin(2t) + 1; i.e.,

f (x(t), t) = (8 cos(sin(5t)) + 3 sin(2t) + 1) x2(t) − 1 = 0. (2.14)

The proposed ZD models (2.3), (2.5), (2.7), (2.9), (2.11) and (2.13) with γ = 10 are
exploited to solve the above problem (2.14). Note that the theoretical initial solutions
of (2.14) are

x∗(0) = ± 1√
8 cos(sin 0) + 3 sin 0 + 1

≈ ±0.33.

For convenience of observation, we randomly generate the positive and negative
initial states x(0), respectively, within [0.2, 0.5] and [−0.5,−0.2], which are the
intervals around the theoretical initial solutions ±0.33. As shown in Fig. 2.5, the
neural states of ZD models [denoted by solid curves] converge to the theoretical
time-varying inverse square root x∗(t) [denoted by dash–dotted curves] of (2.14)
in a short time (about 0.5 s). Therefore, we have substantiated the efficacy of the
proposed ZD models for solving the time-varying inverse square root problem with
an appropriate value of γ . It is worth pointing out that, even if we set the initial states
x(0) �= 0 far away from the theoretical initial solutions ±0.33, the neural states x(t)
of the proposed ZD models (2.3), (2.5), (2.7), (2.9), (2.11) and (2.13) also converge
to the theoretical time-varying solutions of (2.14) rapidly.

Example 2.2 In this example, we discuss how the value of design parameter γ affects
the convergence performance of the proposed ZD models.

First, let us exploit ZD models (2.3) and (2.7) to solve the following time-varying
inverse square root problem with γ = 10, 100 and 1000, respectively:

f (x(t), t) = (2 sin(3t) + 3 exp(cos(2t)) + 7) x2(t) − 1 = 0. (2.15)

Starting with ten randomly-generated initial states x(0), five of which are in [0.2, 0.3]
and the others are in [−0.3,−0.2], we have the modeling results of computational
error e(t) shown in Fig. 2.6. As seen from the upper graph of Fig. 2.6, the maximal
steady-state modeling error of ZD model (2.3) becomes much smaller when the value
of design parameter γ increases. Specifically speaking, when γ = 10, the order of
the maximal steady-state modeling error is 10−3; and, when γ = 1000, the order
of the maximal steady-state modeling error decreases to be 10−5. This means that
the maximal steady-state modeling error of ZD model (2.3) decreases in an O(γ −1)

manner. Note that the integrator precision (i.e., the relative tolerance of the integrator

28 2 Time-Varying Inverse Square Root

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x(t) of (2.3)

t (s)

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x(t) of (2.5)

t (s)

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x(t) of (2.7)

t (s)

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x(t) of (2.9)

t (s)

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x(t) of (2.11)

t (s)

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x(t) of (2.13)

t (s)

Fig. 2.5 State trajectories of ZD models (2.3), (2.5), (2.7), (2.9), (2.11) and (2.13) with γ = 10 for
solving the time-varying inverse square root problem (2.14)

denoted as RT in this chapter) in the Simulink models also influences the convergence
performance and accuracy of the ZD models.

In addition, in the previous modeling results, we set the integrator precision to
be 1.0 × 10−5. Figure 2.7 shows that, when we increase the integrator precision
(i.e., decrease RT), the maximal steady-state modeling error of ZD model (2.3) is
decreased as well. Theoretically speaking, the maximal steady-state modeling error
can decrease to zero, when the relative tolerance RT tends to zero.

Moreover, the convergence speed of the proposed ZD models for solving (2.15)
can be expedited effectively by increasing γ . This is shown in the upper and lower
graphs of Fig. 2.6 with ZD models (2.3) and (2.7), respectively, as examples. Thus,

2.5 Illustrative Examples 29

Fig. 2.6 Modeling errors
e(t) of ZD models (2.3) and
(2.7) with the integrator’s
relative tolerance being 10−5

and with different γ for
solving the time-varying
inverse square root problem
(2.15)

0 2 4 6 8 10
−2

0

2
x 10

−3

0 2 4 6 8 10
−2

0

2
x 10

−4

0 2 4 6 8 10
−2

0

2
x 10

−5

e(t)

e(t)

e(t)

t (s)

t (s)

t (s)

with γ = 10

with γ = 100

with γ = 1000

0 2 4 6 8 10
−0.05

0

0.05

0 2 4 6 8 10
−5

0

5
x 10

−3

0 2 4 6 8 10
−5

0

5
x 10

−4

e(t)

e(t)

e(t)

t (s)

t (s)

t (s)

with γ = 10

with γ = 100

with γ = 1000

Fig. 2.7 Modeling errors
e(t) of ZD model (2.3) with
γ = 100 and with different
values of relative tolerance
(RT) for solving the
time-varying inverse square
root problem (2.15)

0 2 4 6 8 10
−5

0

5
x 10

−4

0 2 4 6 8 10
−5

0

5
x 10

−4

0 2 4 6 8 10
−5

0

5
x 10

−4

e(t)

e(t)

e(t)

t (s)

t (s)

t (s)

with RT= 10−3

with RT= 10−5

with RT= 10−7

30 2 Time-Varying Inverse Square Root

we should set the value of γ appropriately large not only to decrease the modeling
error, but also to shorten the convergence time.

In summary, we have the conclusion that the design parameter γ plays an impor-
tant role in ZD models (2.3) and (2.7) on the convergence performance (including
engineering accuracy). It is worth pointing out that the same conclusion applies to
other ZD models [i.e., (2.5), (2.9), (2.11) and (2.13)], whose related modeling results
are omitted due to similarity of results. Besides, the modeling tests of ZD models
(2.5), (2.9), (2.11) and (2.13) are left to interested readers to complete as a topic of
exercise.

2.6 Summary

In this chapter, six different ZD models based on six different ZFs have been proposed,
generalized, developed, and investigated for solving the time-varying inverse square
root problem in the form of f (x(t), t) = a(t)x2(t) − 1 = 0. In addition, theoretical
results and analyses have been given to substantiate the exponential convergence
of the proposed ZD models. For possible hardware implementation, the MATLAB
Simulink modeling of the proposed ZD models has also been presented and investi-
gated in this chapter. The illustrative modeling results have further substantiated the
efficacy of the proposed ZD models on time-varying inverse square root finding.

References

1. Seidel PM (1999) High-speed redundant reciprocal approximation. Integr VLSI J 28(1):1–12
2. Blinn J (2003) Jim Blinn’s corner: notation, notation, notation. Elsevier, San Francisco
3. Eberly D (2001) 3D game engine design. Elsevier, San Francisco
4. Clenshaw CW, Olver FWJ (1986) Unrestricted algorithms for reciprocals and square roots.

BIT Numer Math 26(4):475–492
5. Lang T, Montuschi P (1999) Very high radix square root with prescaling and rounding and a

combined division/square root unit. IEEE Trans Comput 48(8):827–841
6. Pineiro JA, Bruguera JD (2002) High-speed double-precision computation of reciprocal, divi-

sion, square root, and inverse square root. IEEE Trans Comput 51(12):1377–1388
7. Ercegovac MD, Lang T, Muller JM, Tisserand A (2000) Reciprocation, square root, inverse

square root, and some elementary functions using small multipliers. IEEE Trans Comput
49(7):628–637

8. Mead C (1989) Analog VLSI and neural systems. Addison-Wesley Longman, Boston
9. Zhang Y, Yi C, Guo D, Zheng J (2011) Comparison on Zhang neural dynamics and gradient-

based neural dynamics for online solution of nonlinear time-varying equation. Neural Comput
Appl 20(1):1–7

10. Zhang Y, Leithead WE, Leith DJ (2005) Time-series Gaussian process regression based on
Toeplitz computation of O(N 2) operations and O(N)-level storage. In: Proceedings of the
44th IEEE international conference on decision and control, pp 3711–3716

11. Zhang Y, Li Z, Xie Y, Tan H, Chen P (2013) Z-type and G-type ZISR (Zhang inverse square
root) solving. In: Proceedings of the 4th international conference on intelligent control and
information processing, pp 123–128

References 31

12. Zhang Y, Li Z, Guo D, Li W, Chen P (2013) Z-type and G-type models for time-varying inverse
square root (TVISR) solving. Soft Comput 17(11):2021–2032

13. Zhang Y, Yu X, Xie Y, Tan H, Fan Z (2013) Solving for time-varying inverse square root by
different ZD models based on different Zhang functions. In: Proceedings of the 25th Chinese
control and decision conference, pp 1358–1363

14. Zhang Y, Guo X, Ma W (2008) Modeling and simulation of Zhang neural network for online
time-varying equations solving based on MATLAB Simulink. In: Proceedings of the 7th inter-
national conference on machine learning and cybernetics, pp 805–810

15. Tan N, Chen K, Shi Y, Zhang Y (2009) Modeling, verification and comparison of Zhang neural
net and gradient neural net for online solution of time-varying linear matrix equation. In:
Proceedings of the 4th IEEE conference on industrial electronics and applications, pp 3698–
3703

16. Ansari MS, Rahman SA (2011) DVCC-based non-linear feedback neural circuit for solving
system of linear equations. Circuits Syst Signal Process 30(5):1029–1045

17. Zhang Y, Yi C (2011) Zhang neural networks and neural-dynamic method. Nova Science
Publishers, New York

	2 Time-Varying Inverse Square Root
	2.1 Introduction
	2.2 ZFs and ZD Models
	2.2.1 The First ZF and ZD Model
	2.2.2 The Second ZF and ZD Model
	2.2.3 The Third ZF and ZD Model
	2.2.4 The Fourth ZF and ZD Model
	2.2.5 The Fifth ZF and ZD Model
	2.2.6 The Sixth ZF and ZD Model

	2.3 Theoretical Results and Analyses
	2.4 Simulink Modeling
	2.5 Illustrative Examples
	2.6 Summary
	References

