
Chapter 15
Application to Mobile Robot RMP

Abstract In this chapter, the application of the ZD approach is further investigated
to the velocity-level RMP of mobile redundant robot manipulators. That is, by intro-
ducing three different ZFs and by exploiting the ZD design formula, we propose,
develop, and investigate a velocity-level RMP performance index. Then, based on
such a performance and with physical limits considered, the resultant RMP scheme
is presented and investigated to remedy the joint-angle drift phenomenon of mobile
redundant robot manipulators. Such a scheme is reformulated as a QP, which is solved
by a numerical algorithm. With two path-tracking examples, simulation results based
on a wheeled mobile robot manipulator substantiate well the effectiveness and accu-
racy of the proposed velocity-level RMP scheme (as well as show the application
prospect of the presented ZD approach once again).

15.1 Introduction

As presented in Chap. 14, fixed-base redundant robot manipulators (e.g., the PUMA
560 robot manipulator) have long been studied and widely applied in factory automa-
tion [1–8]. In addition, many techniques have been developed and investigated for
motion planning of fixed-base redundant robot manipulators. The most popular
method is to apply the pseudoinverse formulation for obtaining a general solution at
the joint-velocity and/or joint-acceleration level, which contains a minimum-norm
particular solution and a homogeneous solution [9–12]. However, this method has the
generally undesirable property that repetitive end-effector motions do not necessarily
yield repetitive joint motions. Thus, the manipulator’s behavior is difficult to predict
when the end-effector traces a closed path in its workspace. In addition, it is less
efficient to readjust the manipulator’s configuration after every cycle via self-motion
such that the joint angles return to their initial values. In the last three decades, a
large number of research on the topic of repetitive motion have been produced [5,
13–18] (see also Chap. 14).

With the evolution of the complex technological society and the introduction of
new notions and innovative theoretical tools in the field of intelligent systems, mobile
manipulators are attracting significant interest in the industrial, military, and public
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service communities [19–22], because of their large-scale mobility and manipulation
abilities, as compared to these of the fixed-base manipulators. In general, a mobile
manipulator is a robotic device composed of a mobile platform and a stationary robot
manipulator fixed to the platform. However, the integration of a redundant robot
manipulator and a mobile platform gives rise to many new difficulties; for example,
how to coordinate a given task into fine motions to be carried out by the robot manip-
ulator and the gross motions to be achieved by the mobile platform; and how to define
the repeatability of a redundancy-resolution scheme for a mobile robot manipulator.
It is well known that, for a stationary robot manipulator, an redundancy-resolution
scheme is called repetitive, if it maps closed paths in the task space to closed tra-
jectories in the configuration space (see also Chap. 14). However, for a mobile robot
manipulator, if the mobile platform does not return to the initial position, a repeti-
tive redundancy-resolution scheme for a stationary robot manipulator is no longer fit
for a mobile robot manipulator. Note that repetitive motion control of mobile robot
manipulators starts to play a more and more important role in practical applications,
which urgently requires an effective scheme for solving the non-repetitive problem
of mobile robot manipulators. In [23], Tchoń was the first to introduce the con-
cept of repeatability of inverse kinematics algorithms for mobile robot manipulators
by exploiting the endogenous configuration space approach; and further presented
repeatable inverse kinematics algorithms [24–26], which provides an insight into the
mechanism of repeatability. However, among these inverse kinematics algorithms
for repeatability of mobile robot manipulators, the physical constraints (e.g., joint-
angle limits and joint-velocity limits) are usually not taken into account. If these
physical limits are not considered, a saturation may occur in some cases. Thus, these
schemes may be less effective to control mobile robot manipulators for generating
cyclic motion.

In this chapter, based on the presented ZD approach, we propose and investigate
a novel redundancy-resolution scheme at the velocity level to achieve the RMP pur-
pose of mobile redundant robot manipulators (with physical constraints considered).
Specifically, by introducing three different ZFs and by exploiting the ZD design
formula [27], a velocity-level RMP performance index is proposed, developed and
investigated. To the best of the authors’ knowledge, such a new RMP performance
index for mobile redundant robot manipulators has never been investigated before by
others. Then, a novel RMP scheme is presented by combining the proposed perfor-
mance index, physical constraints, and integrated kinematical equations of mobile
robot manipulators, and further reformulated as a QP subject to equality and bound
constraints. As an illustrative example, a wheeled mobile robot manipulator is stud-
ied, which is composed of a mobile platform driven by two independent wheels,
and a six-DOF spatial robot manipulator mounted on the platform. Tracking-path
tasks based on such a wheeled mobile robot manipulator are performed, which fur-
ther substantiate the efficacy of the proposed RMP scheme and show once again
the application prospect of the presented ZD approach. Besides, it is worth pointing
out here that, in our previous book [5], the investigation of velocity-level RMP is
presented only for fixed-base redundant robot manipulators. By contrast, in this book
(or specifically, in this chapter), we focus on investigating the velocity-level RMP for
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mobile redundant robot manipulators. Thus, the velocity-level RMP investigation in
this chapter can be viewed as an extension of that in [5] (i.e., from the fixed-base
robot to the mobile one).

15.2 RMP Performance Index Derived via Different ZFs

In this section, the presented ZD approach is applied to deriving the velocity-level
RMP performance index for mobile redundant robot manipulators.

15.2.1 Kinematics Modeling of Mobile Robot Manipulators

In this subsection, a wheeled mobile redundant robot manipulator [21, 22, 28, 29]
is developed to lay a basis for further discussion and to substantiate the efficacy of
the proposed velocity-level RMP scheme (see Sect. 15.4).

The computer-aided design model of the mobile redundant robot manipulator is
shown in Fig. 15.1, which is composed of a wheeled mobile platform and a six-
DOF spatial robot manipulator. The mobile platform includes two independent drive
wheels and two omnidirectional passive supporting wheels. In this chapter, only the
end-effector position is considered, and thus the robot manipulator becomes a func-
tionally redundant robot manipulator. As for such a mobile redundant robot manipu-
lator, the integrated kinematics at the velocity level is obtained in the following form
(with the detailed derivation being shown in [22]):

ṙw = J (ϑ)q̇, (15.1)

Fig. 15.1 The computer-aided design model of the mobile redundant robot manipulator
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where ṙw ∈ R
m is the time derivative of the manipulator’s end-effector position-and-

orientation vector rw in Cartesian space with respect to the world coordinate frame.
In addition, J (ϑ) ∈ R

m×(2+n) is the Jacobian matrix with vector ϑ = [φ, θT]T ∈
R

1+n . Besides, φ ∈ R is the heading angle of the mobile platform, and θ ∈ R
n

denotes the joint-angle vector of the six-DOF robot manipulator. Note that we define
ϕ = [ϕl, ϕr]T ∈ R

2 as the driving wheel angle (angular position) vector, with ϕl and
ϕr being the angles of left and right driving wheel, respectively. Thus, we have the
combined angle vector q = [ϕT, θT]T ∈ R

2+n for the presented mobile redundant
robot manipulator, and its time derivative q̇ = [ϕ̇T, θ̇T]T (i.e., the combined velocity
vector).

15.2.2 Velocity-Level RMP Performance Index

In order to achieve the RMP purpose of the mobile robot manipulators, let us con-
sider three factors of mobile robot manipulators, i.e., the joint angle of the robot
manipulator θ ∈ R

n , the rotational angle of the mobile platform φ ∈ R and the
location of the robot manipulator on the mobile platform pC = [xC, yC]T ∈ R

2.
Evidently, the mobile robot manipulator can return to the original state if and only if
these three variables return to their initial positions, when the end-effector of mobile
robot manipulators performs a closed trajectory. That is to say, the repetitive motion
of mobile robot manipulators is equivalent to the repetitive motion of variables θ , φ,
and pC. Thus, by following the presented ZD approach, the repetitive motion of θ ,
φ, and pC can be achieved through the following design steps.

• First, to achieve the RMP purpose of the mobile robot manipulators, we define
three different ZFs as follows:

e(t) = θ − θ(0) ∈ R
n, (15.2)

e(t) = sin φ − sin φ(0) ∈ R, (15.3)

e(t) = pC − pC(0) ∈ R
2, (15.4)

where θ(0), φ(0), and pC(0) denote the initial states of θ , φ and pC, respectively.
It is worth pointing out that, when the mobile platform moves circularly (i.e., the
heading angle φ makes 360◦ turns), the heading angle can return to the initial
position. In this situation, the value of the heading angle is φ = φ(0) + 2kπ

(k = ±1,±2, . . .). If φ−φ(0) is used [instead of sin φ−sin φ(0)], the restrictions
become harsh and the resultant RMP scheme is difficult to realize. Thus, the sine
function is exploited, and the simulation and modeling of the velocity-level RMP
scheme become easy.

• Second, by combining the ZD design formula [27] and the above three ZFs, respec-
tively [i.e., (4.2) corresponding to (15.2), (15.4), and (1.2) corresponding to (15.3)],
three resultant differential equations are obtained as follows:
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θ̇ + γ1(θ − θ(0)) = 0 ∈ R
n, (15.5)

φ̇ cos φ + γ2(sin φ − sin φ(0)) = 0 ∈ R, (15.6)

ṗC + γ3(pC − pC(0)) = 0 ∈ R
2. (15.7)

For the above equations, θ̇ ∈ R
n is the joint-velocity vector of the robot manip-

ulator, φ̇ ∈ R is the heading velocity of the mobile platform (being the time
derivative of φ), and ṗC ∈ R

2 is the time derivative of pC. In addition, design
parameters γ1 > 0 ∈ R, γ2 > 0 ∈ R, and γ3 > 0 ∈ R are used for achieving the
RMP purpose. In addition, one can prove theoretically that, in equations (15.5)–
(15.7), as t → ∞, θ , sin φ and pC can converge to their initial states globally and
exponentially.

• Third, in (15.1), the variables of the velocity-level integrated kinematics of the
mobile root manipulator only include ϕ̇ and θ̇ (i.e., q̇ = [ϕ̇T, θ̇T]T), so Eqs. (15.5)–
(15.7) have to be converted into a q̇-based matrix-vector equation for meeting the
needs of the simulation modeling. Note that, as for the mobile platform shown in
Fig. 15.1, we have

Aϕ̇ = φ̇ and Bϕ̇ = ṗC,

where matrices A and B are defined respectively as follows:

A = r

2b

[−1
1

]T

∈ R
1×2, and B = r

2

[
cos φ − sin φ

sin φ cos φ

] [
1 1

−d/b d/b

]
∈ R

2×2,

with r being the radius of the drive wheels, b being the distance between the drive
wheels and the middle point of the two-drive wheel axis (denoted as P0), and d
being the distance between the point connecting the robot manipulator and the
mobile platform (corresponding to pC) and point P0. Thus, based on the above
analysis, Eqs. (15.6) and (15.7) are merged into an equation in the form of

[
B

A cos φ

]
ϕ̇ +

[
γ3(pC − pC(0))

γ2(sin φ − sin φ(0))

]
= 0 ∈ R

3. (15.8)

• Fourth, by defining a = [γ3(pC − pC(0)), γ2(sin φ − sin φ(0))]T ∈ R
3, C =

[BT, AT cos φ]T ∈ R
3×2, and c = γ1[θ − θ(0)] ∈ R

n , Eqs. (15.5) and (15.8) are
further combined into a unified matrix-vector equation as follows:

Dq̇ + z = 0 ∈ R
n+3, (15.9)

where matrix D and vector z are defined respectively as

D =
[

C 0
0 I

]
∈ R

(n+3)×(n+2) and z =
[

a
c

]
∈ R

n+3,
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with I ∈ R
n×n being the identity matrix. Therefore, from the above derivation,

one knows that solving (15.5)–(15.7) is equivalent to solving (15.9). In addition,
when (15.9) is solved, the resultant solutions can achieve the RMP purpose of
mobile redundant robot manipulators.

• Finally, because the end-effector motion-trajectory requirement has to be consid-
ered and physical constraints always exist in mobile manipulators, it is better to
minimize ‖Dq̇ + z‖2

2/2, rather than use Dq̇ + z = 0 directly. Thus, we obtain

‖Dq̇ + z‖2
2/2 = (Dq̇ + z)T(Dq̇ + z)/2, (15.10)

which is the velocity-level RMP performance index for mobile redundant robot
manipulators.

In summary, by using the ZD approach, we have developed the RMP performance
index (15.10) at the velocity level (showing the application prospect of such a ZD
approach once again). Note that, by minimizing the velocity-level performance index
(15.10) [i.e., “minimize (Dq̇ + z)T(Dq̇ + z)/2”], the RMP purpose is thus achieved
for mobile redundant robot manipulators.

15.3 Scheme and QP Formulations

In this section, based on the proposed performance index (15.10), a novel velocity-
level RMP scheme is further developed and investigated for mobile redundant robot
manipulators. In addition, such an acceleration-level RMP scheme is reformulated
as a QP, which is solved by a numerical algorithm.

15.3.1 Velocity-Level RMP Scheme

For mobile redundant robot manipulators, with physical limits considered, the
velocity-level RMP scheme is proposed as follows:

minimize (Dq̇ + z)T(Dq̇ + z)/2 (15.11)

subject to J (ϑ)q̇ = ṙdw, (15.12)

q− � q � q+, (15.13)

q̇− � q̇ � q̇+, (15.14)

where ṙdw ∈ R
m denotes the time derivative of the desired end-effector path rdw. In

addition, q− and q+ denote respectively the lower and upper limits of the combined
angle vector q. Furthermore, q̇− and q̇+ denote respectively the lower and upper
limits of the combined velocity vector q̇. Note that the physical limits (i.e., q−, q+,
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q̇− and q̇+) used in the wheeled mobile robot manipulator shown in Fig. 15.1 are
presented in Table 15.1.

15.3.2 QP Reformulation

As the proposed RMP scheme (15.11)–(15.14) is resolved at the combined-vector
velocity level (i.e., in terms of q̇), the limited combined angle vector range [q−, q+]
has to be converted into a q̇-based expression. The following conversion technique
is adopted:

μ(q− − q) � q̇ � μ(q+ − q),

where μ > 0 ∈ R is used to scale the feasible region of q̇ . Note that large val-
ues of μ may cause sudden deceleration for joints and wheels when the mobile
robot manipulator approaches their physical limits, and that, in mathematically,
μ � 2max1�i�n+2{q̇+

i /(q+
i − q−

i ),−q̇−
i /(q+

i − q−
i )}. Therefore, the following

new combined bound constraints can be used to replace (15.13) and (15.14):

ζ− � q̇ � ζ+,

where the i th elements of ζ− and ζ+ are, respectively, defined as (with i =
1, 2, . . . , n + 2) ζ−

i = max{μ(q−
i − qi ), q̇−

i } and ζ+
i = min{μ(q+

i − qi ), q̇+
i }.

By summarizing the above analysis and defining the decision variable vector
x = q̇ ∈ R

n+2, the proposed RMP scheme (15.11)–(15.14) for mobile redundant
robot manipulators is reformulated as the following QP, in view of (Dx + z)T(Dx +
z)/2 = xT DT Dx/2 + zT Dx + zTz/2:

minimize xTW x/2 + hTx (15.15)

subject to Cx = d, (15.16)

ζ− � x � ζ+, (15.17)

where W = DT D ∈ R
(n+2)×(n+2), C = J (ϑ) ∈ R

m×(n+2), h = DTz ∈ R
n+2, and

d = ṙdw ∈ R
m . As for the above QP, the performance criterion (15.15) is for the

RMP purpose and results from the simplification of (15.11). The equality constraint
(15.16) [i.e., (15.1) or (15.12)] describes the integrated kinematics relationship of
mobile robot manipulators at the combined-vector velocity level. The inequality
constraint (15.17) is used to equivalently replace constraints (15.13) and (15.14) by
exploiting a conversion technique.
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15.3.3 QP Solver

Note that the presented QP formulation [i.e., (15.15)–(15.17)] is the same as the
one shown in Chap. 14. Thus, the PDNN (14.18) can also be used to solve such a
QP problem (15.15)–(15.17). In this subsection, being different from the PDNN, a
numerical algorithm is exploited to solve the presented QP problem [as well as the
proposed RMP scheme (15.11)–(15.14)].

In order to solve the QP problem (15.15)–(15.17), guided by [5, 6, 22, 30–32],
we define the following vector-valued error function:

e(u) = u − PΩ(u − (Mu + p)) ∈ R
n+m+2, (15.18)

where the formulations of matrix M ∈ R
(n+m+2)×(n+m+2), vectors u ∈ R

n+m+2 and
p ∈ R

n+m+2 are presented the same as those shown in Chap. 14, and PΩ(·) is the
projection operator.

Let S = {u∗|u∗is a zero point of (15.18)}. When the initial value of primal–dual
decision variable vector u0 ∈ R

n+m+2 is given, for iteration index k = 0, 1, 2, . . .,
if uk /∈ S, we have the following iteration formula for finding a zero point of (15.18)
[as well as for solving QP (15.15)–(15.17)]:

uk+1 = uk − ‖e(uk)‖2
2

‖(MT + I )e(uk)‖2
2

(MT + I )e(uk), (15.19)

where I ∈ R
(n+m+2)×(n+m+2) is the identity matrix.

An important criterion of measuring the performance of numerical algorithms is
their computational complexity. As seen from the above iteration formula (15.19),
within one iteration, it only contains 2α̂2 + 3α + 1 multiplications and 2α̂2 + 5α̂ − 2
additions, with α̂ = n + m + 2. Therefore, the discrete-time QP solver (15.19) has a
low computational complexity; i.e., O(α̂2). In addition, we usually choose the solu-
tion obtained in the previous time step as the initial value of the new time step, as
such, the discrete-time QP solver (15.19) has better real-time performance. Besides,
by following [5, 22, 30, 31], an important theorem about the global convergence of
the discrete-time QP solver (15.19) is presented.

Theorem 15.1 The sequence {uk} generated by the discrete-time solver (15.19) for
(15.18) as well as for QP (15.15)–(15.17) satisfies

‖uk+1 − u∗‖2
2 � ‖uk − u∗‖2

2 − ‖e(uk)‖2
2/‖MT + I‖2

F

for all u∗ ∈ S. In addition, the sequence {uk} globally converges to a solution u∗,
of which the first (n + 2) elements constitute the optimal solution x∗ to QP (15.15)–
(15.17).
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15.4 Illustrative Examples

In this section, computer simulations are conducted on the wheeled mobile redundant
robot manipulator shown in Fig. 15.1 to substantiate the efficacy of the proposed
RMP scheme (15.11)–(15.14). Note that the final error tolerance of ‖e(uk)‖2 is set
to be 1.0 × 10−6 for discrete-time QP solver (15.19). In the first example, the end-
effector of the mobile robot manipulator is expected to track a circular path, and in
the second example the end-effector is to follow a Lissajous path. Without loss of
generality, we set μ = 2, initial state θ(0) = [π/12, π/3, π/3, π/3, π/3, π/3]T rad,
and φ(0) = xC(0) = yC(0) = 0 rad, for the wheeled mobile robot manipulator.

15.4.1 Circular Path Tracking

In this subsection, the end-effector of the wheeled mobile robot manipulator is
expected to track a circular path with radius ψ being 0.3 m. The X-axis, Y-axis,
and Z-axis functions of the desired circular path are

⎧⎪⎨
⎪⎩

ṙdwX(t) = − 2π2ψ
T sin(2π sin2( π t

2T ) + π/6) sin( π t
2T ) cos( π t

2T ),

ṙdwY(t) = 2π2ψ
T cos(2π sin2( π t

2T ) + π/6) sin( π t
2T ) cos( π t

2T ),

ṙdwZ(t) = 0,

where task duration T = 5 s and t ∈ [0, T ].

Non-repetitive motion First, we show the non-repetitive motion of the mobile robot
manipulator. Since γ1, γ2 and γ3 are greater than zero, a non-repetitive motion scheme
is produced when γ1 = γ2 = γ3 = 0. In this situation, the circular-path tracking
results are shown in Fig. 15.2. The upper graph of Fig. 15.2 shows the whole tracking
process of the mobile robot manipulator. It follows from such a graph that the final
state of the mobile robot manipulator does not return to the initial one, i.e., the solution
in this situation is not repetitive. For a better understanding, the middle graph of
Fig. 15.2 shows the top view of motion trajectories of the mobile robot manipulator,
and the lower graph of Fig. 15.2 shows the motion trajectories of the mobile platform.
It follows from such two graphs that the mobile platform is not repetitive after the end-
effector completing the circular-path tracking task. Besides, Fig. 15.3 shows profiles
of point of junction [xC, yC]T, heading angle φ, joint angle θ , left and right wheels
synthesized by the non-repetitive motion scheme when the mobile robot manipulator
tracks the given circular path. From Fig. 15.3, we can see that these variables do not
return to their initial values. In engineering applications, this situation may induce
a problem wherein the behavior of the mobile robot manipulator is hard to predict.
Readjusting the configuration of the manipulator through self-motion is inefficient.
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Fig. 15.2 Simulation results
when the mobile robot
manipulator tracks the given
circular path synthesized by
the non-repetitive motion
scheme
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Fig. 15.3 Profiles of point
of junction [xC, yC]T,
heading angle φ, joint angle
θ , left and right wheels for
the mobile robot manipulator
synthesized by the
non-repetitive motion
scheme
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Fig. 15.4 Simulation results
when the mobile robot
manipulator tracks the given
circular path synthesized by
the proposed RMP scheme
(15.11)–(15.14)
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Fig. 15.5 More simulation
results when the mobile
robot manipulator tracks the
given circular path
synthesized by the proposed
RMP scheme
(15.11)–(15.14)
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Repetitive motion To finish the circular-path tracking task in a repetitive manner,
the proposed RMP scheme (15.11)–(15.14) with γ1 = γ2 = γ3 = 105 and the
discrete-time QP solver are applied to the control of the mobile robot manipulator.
The corresponding simulation results are shown in Figs. 15.4, 15.5, 15.6, and 15.7.

Specifically, the upper graph of Fig. 15.4 shows the motion trajectories of the
mobile robot manipulator during the whole tracking process. As seen from such a
graph, the proposed RMP scheme (15.11)–(15.14) not only coordinates simultane-
ously the mobile platform and the manipulator to complete the given end-effector
task, but also makes the mobile manipulator return to the initial state. In addition,
from the middle graph of Fig. 15.4, we can see that the actual end-effector motion
trajectory is close enough to the desired circular path. The lower graph of Fig. 15.4
shows the corresponding tracking position errors. As seen from such a graph, the
corresponding X-axis, Y-axis, and Z-axis components of the tracking position error
are less than 5×10−6 m. These results substantiate that the mobile robot manipulator
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Fig. 15.6 Profiles of point of junction [xC, yC]T, heading angle φ and joint angle θ when the
mobile robot manipulator tracks the given circular path synthesized by the proposed RMP scheme
(15.11)–(15.14)
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proposed RMP scheme (15.11)–(15.14)
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can finish the circular path tracking task well, as synthesized by the proposed RMP
scheme (15.11)–(15.14).

To further illustrate and verify the effectiveness of the proposed RMP scheme
(15.11)–(15.14), in Fig. 15.5, we show the movements of the mobile platform. Specif-
ically, the upper graph of Fig. 15.5 shows the top view of motion trajectories of the
mobile robot manipulator, the middle graph of Fig. 15.5 shows the motion trajectories
of the mobile platform, and the lower graph of Fig. 15.5 shows the corresponding left
and right wheel profiles. From Fig. 15.5, we can conclude that the mobile platform
is repetitive after the end-effector completing the circular-path tracking task.

Besides, what we are more interested in are some important variables, such as
point of junction [xC, yC]T, heading angle φ and joint angle θ . This reason lies in
that if and only if these variables return to their initial states, the mobile manipulator
can achieve the repetitive motion. Figure 15.6 shows the profiles of [xC, yC]T, φ, and
θ when the mobile manipulator tracks the given circular path. As seen from the left
graph of Fig. 15.6, xC, yC, and φ return to their initial states. In addition, the right
graph of Fig. 15.6 shows that θ also returns to its initial state θ(0). That is to say, these
variables all return to their initial states, so that the mobile robot manipulator can
achieve the repetitive motion. Figure 15.7 shows the profiles of [ẋC, ẏC]T, heading
velocity φ̇, joint velocity θ̇ , and the corresponding tracking velocity error when the
mobile manipulator tracks the given circular path. From Fig. 15.7, we can see that the
final states of the combined velocity equal zero, and that the corresponding X-axis,
Y-axis, and Z-axis components of the tracking velocity error are less 1×10−6 m. The
results further substantiate the high accuracy of the proposed RMP scheme (15.11)–
(15.14). It is worth pointing out that, in the left graph of Fig. 15.7, θ̇5 reaches its
upper bound θ̇+

5 , but never exceed the upper bound, which demonstrates that the
bound constraint (15.14) is activated and effective.

15.4.2 Lissajous-Figure Path Tracking

In this subsection, the end-effector of the mobile robot manipulator is expected to
track a Lissajous-figure path with parameter χ being 0.45 m. The X-axis, Y-axis, and
Z-axis velocity functions of the desired Lissajous-figure path are

⎧⎪⎨
⎪⎩

ṙdwX(t) = − 4π2χ
T sin(4π sin2( π t

2T ) + π/6) sin( π t
2T ) cos( π t

2T ),

ṙdwY(t) = 2π2χ
T cos(2π sin2( π t

2T ) + π/6) sin( π t
2T ) cos( π t

2T ),

ṙdwZ(t) = 0.

In order to investigate the effectiveness of the proposed RMP scheme (15.11)–(15.14)
for different values of parameters, in this example, we set task duration T = 10
s, γ1 = γ2 = 103, and γ3 = 102. Thus, the corresponding simulation results,
synthesized by the proposed RMP scheme (15.11)–(15.14) and the discrete-time QP
solver (15.19), are shown in Figs. 15.8, 15.9, 15.10, and 15.11.
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Fig. 15.8 Simulation results
when the mobile robot
manipulator tracks the given
Lissajous-figure path
synthesized by the proposed
RMP scheme
(15.11)–(15.14)
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Fig. 15.9 More simulation
results when the mobile
robot manipulator tracks the
given Lissajous-figure path
synthesized by the proposed
RMP scheme
(15.11)–(15.14)
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Fig. 15.10 Profiles of point of junction [xC, yC]T, heading angle φ and joint angle θ when the
mobile robot manipulator tracks the given Lissajous-figure path synthesized by the proposed RMP
scheme (15.11)–(15.14)
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Fig. 15.11 Profiles of [ẋC, ẏC]T, heading velocity φ̇, joint velocity θ̇ , and the corresponding tracking
velocity error when the mobile robot manipulator tracks the given Lissajous-figure path synthesized
by the proposed RMP scheme (15.11)–(15.14)

The upper graph of Fig. 15.8 shows the whole tracking process of the mobile
robot manipulator. As seen from such a graph, the RMP purpose of the mobile robot
manipulator is achieved. Besides, the middle graph of Fig. 15.8 shows the desired
Lissajous-figure path and the actual end-effector trajectory, and the lower graph of
Fig. 15.8 shows the corresponding tracking position errors. As observed from the
middle graph of Fig. 15.8, the actual motion trajectory of the mobile robot manip-
ulator’s end-effector is sufficiently close to the desired Lissajous-figure path. The
corresponding X-axis, Y-axis, and Z-axis components of the tracking position error
shown in the lower graph of Fig. 15.8 are less than 1 × 10−5 m. These demonstrate
that the given Lissajous-figure path tracking task is performed well via the proposed
RMP scheme (15.11)–(15.14).

To see more clearly the repetitive motion of the mobile robot manipulator, its
mobile platform is visualized in Fig. 15.9. Specifically, the upper graph of Fig. 15.9
shows the top view of motion trajectories of the mobile robot manipulator, the middle
graph of Fig. 15.9 shows the motion trajectories of the mobile platform, and the lower



234 15 Application to Mobile Robot RMP

graph of Fig. 15.9 shows the corresponding left and right wheel profiles. It follows
from Fig. 15.9 that the mobile platform is repetitive after the end-effector completing
the Lissajous-figure path tracking task.

Figure 15.10 shows the profiles of [xC, yC]T, φ, and θ when the mobile manipu-
lator tracks the given Lissajous path. As seen from the left graph of Fig. 15.10, xC,
yC, and φ go back to their initial states. In addition, the right graph of Fig. 15.10
shows that θ also returns to its initial state θ(0). These illustrate and verify again
the effectiveness of such a repetitive motion scheme and the non-repetitive problem
of the mobile manipulator has been solved by using the repetitive motion scheme.
Figure 15.11 further shows the profiles of [ẋC, ẏC]T, heading velocity φ̇, joint veloc-
ity θ̇ and the corresponding tracking velocity error when the mobile manipulator
tracks the given Lissajous path. From the left graph of Fig. 15.11, we can see that
the final states of the combined velocity equal zero. Note that, if the final states of
combined velocity are not zero, the mobile manipulator will not stop immediately at
the end of the task duration; and thus the non-repetitive problem may happen. From
the right graph of Fig. 15.11, one can see that the corresponding X-axis, Y-axis, and
Z-axis components of the tracking velocity error are less 1 × 10−6 m. The results
further demonstrate the high accuracy of the proposed RMP scheme (15.11)–(15.14)
and discrete-time QP solver (15.19). It is also worth noting that all the variables
(e.g., θ , θ̇ , φ, and ϕ) in simulations are kept within their limits due to consideration
of physical constraints of mobile manipulators. Thus, the given end-effector task can
be completed successfully.

In summary, the presented two examples performed on the wheeled mobile robot
manipulator, i.e., tracking a circular path and a Lissajous-figure path, have both
substantiated the efficacy of the proposed RMP scheme (15.11)–(15.14) and the cor-
responding discrete-time QP solver (15.19), which can solve the non-repetitive prob-
lem well. Furthermore, the tracking position and velocity errors shown in Figs. 15.4,
15.7, 15.8 and 15.11, have validated well the high accuracy of such a RMP scheme
(15.11)–(15.14). Besides, these simulation results have shown again the success-
ful application of the presented ZD approach to RMP of mobile redundant robot
manipulators.

15.5 Summary

In this chapter, by defining three different ZFs and by exploiting the ZD design for-
mula, the velocity-level RMP performance index (15.10) has been proposed, devel-
oped, and investigated. Based on such a performance index, the velocity-level RMP
scheme (15.11)–(15.14) has been further presented and investigated for mobile redun-
dant robot manipulators, which is reformulated as a QP (15.15)–(15.17) and then is
solved by the numerical algorithm (15.19). Computer simulation results based on
the wheeled mobile robot manipulator with different illustrative examples have sub-
stantiated well the effectiveness, accuracy, and safety of the proposed velocity-level
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RMP scheme for physically-constrained mobile redundant robot manipulators, and
more importantly, have shown once again the application prospect of the presented
ZD approach to robotic redundancy resolution.
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