
Chapter 14
Application to Fixed-Base Robot RMP

Abstract In this chapter, the ZD approach presented in the previous chapters is
applied to repetitive motion planning (RMP) of fixed-base redundant robot manip-
ulators at the joint-acceleration level. Specifically, by introducing two different ZFs
and by exploiting the ZD design formula, an acceleration-level RMP performance
index is proposed, developed, and investigated. The resultant RMP scheme, which
incorporates joint-angle, joint-velocity and joint-acceleration limits, is further pre-
sented and investigated to remedy the joint-angle drift phenomenon of fixed-base
redundant robot manipulators. Such a scheme is then reformulated as a quadratic
program, which is solved by a primal–dual neural network. With three path-tracking
examples, simulation results based on PUMA560 robot manipulator substantiate
well the effectiveness and accuracy of the proposed acceleration-level RMP scheme,
as well as show the application prospect of the presented ZD approach.

14.1 Introduction

In recent years, robotic researchers have focused on solving a variety of tasks
requiring sophisticated motion in complex environment via various advanced robots
based on different planning and/or control methods [1–7]. Redundant robot manip-
ulators are robots having more degrees of freedom (DOF) than required to perform
a given end-effector primary task [6, 8, 9]. It has been argued that redundancy can
improve the performance and versatility of a robot manipulator in various aspects
such as obstacle avoidance [5, 10, 11], joint limits avoidance [6, 12, 13], and repeti-
tive motion planning (RMP) [6, 9, 14]. Therefore, a multipurpose robot manipulator
needs to be redundant if it is to be implemented effectively; e.g., a six-DOF PUMA560
robot manipulator has 3 redundant DOF when we consider only the end-effector’s
positioning, and it can thus perform various subtasks in addition to the end-effector’s
primary path-tracking task [6].

One fundamental issue on operating such a robot system is the redundancy-
resolution problem [6]. The conventional solution to such a redundancy-resolution
problem is the pseudoinverse-based method [15, 16]. The researches in recent years
[5, 6, 8–10, 13] show that the redundancy-resolution problem can be solved in a more
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favorable manner via optimization techniques based on quadratic programming. Gen-
erally speaking, such optimization techniques are usually unified and expressed as
a quadratic program (QP) which can incorporate equality, inequality, and bound
constraints [5, 10]. The resultant QP problem can be solved by many methods and
technics, such as dual neural network (DNN) [6, 8, 17] and primal–dual neural net-
work (PDNN) [6, 9, 18]. Note that, in [19], comparisons between the DNN and
the PDNN are demonstrated, which validates the latter has more advantages (e.g.,
PDNN is matrix-inversion free).

A redundancy-resolution scheme is called repetitive, if it maps closed paths in the
task space (i.e., cyclic sequences of tasks) to closed trajectories in the configuration
space (i.e., cyclic sequences of configurations) [6, 9, 14, 17, 18, 20, 21]. By contrast,
the non-repetitive problem is that the joint angles may not return to their initial values
when the end-effector traces a closed path in its workspace [6, 9, 14, 17, 18]. Note
that the non-repetitive problem results in a joint angle drift phenomenon and may
induce a problem that the manipulator’s behavior is hard to predict [6, 9, 17, 18]; and
it is then less efficient to readjust the manipulator’s configuration after every cycle
via self-motion [6, 9, 17, 18].

The previous researches on solving the non-repetitive problem are mainly at the
joint-velocity level [6, 14, 17, 18, 20, 21]. However, these may not be applicable
to the manipulators which are controlled at the acceleration and/or torque levels. In
addition, the joint-acceleration physical limits of the manipulators cannot be incor-
porated in the scheme resolved at the joint-velocity level [6, 17, 18]. Thus, the RMP
performance index at the joint-acceleration level is a very appealing and interesting
topic in robotics research domain. Moreover, the acceleration-level scheme can effec-
tively prevent the instability/divergence problem of joint accelerations and torques
caused by some velocity-level scheme in long-range motion [9, 22].

In this chapter, based on the ZD approach presented in the previous chapters,
we propose and investigate a novel RMP scheme at the joint-acceleration level to
remedy the joint-angle drift phenomenon. Specifically, by introducing two different
ZFs and by exploiting the ZD design formula [23], an acceleration-level RMP per-
formance index is proposed, developed, and investigated. To the best of the authors’
knowledge, such a new RMP performance index at the joint-acceleration level has
never been investigated before by others. In addition, the proposed acceleration-level
RMP scheme, which incorporates joint-angle, joint-velocity and joint-acceleration
limits, is reformulated as a QP, and is then solved by a PDNN [6, 9, 18]. Moreover,
simulation results based on PUMA560 robot manipulator performing different types
of end-effector path-tracking tasks substantiate well the effectiveness and accuracy
of the proposed acceleration-level RMP scheme, as well as show the application
prospect of the presented ZD approach. Besides, it is worth pointing out here that
our previous book [6] only presents and investigates RMP of redundant robot manip-
ulators at the joint-velocity level. By contrast, in this book (or specifically, in this
chapter), we focus on the investigation of RMP at the joint-acceleration level. Evi-
dently, this is a great contribution and improvement, as it promotes the RMP research
from joint-velocity level to joint-acceleration level.
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14.2 RMP Performance Index Derived via Different ZFs

In this section, the ZD approach presented in the previous chapters is applied to
deriving the RMP performance index at the joint-acceleration level.

To lay a basis for further discussion, some well-known essential equations for
redundant robot manipulators can be given below directly [9, 15, 16]:

f (θ) = r, (14.1)

J (θ)θ̇ = ṙ, (14.2)

J (θ)θ̈ = r̈ − J̇ (θ)θ̇ . (14.3)

For the above equations, (14.1) describes the relationship between the end-effector
position-and-orientation vector r ∈ R

m and joint-angle vector θ ∈ R
n , where f (·)

is a differentiable nonlinear function with a structure and parameters which are
known for a given robot manipulator. ṙ and θ̇ in (14.2) [by differentiating (14.1)
with respect to time t] denote respectively the end-effector velocity vector and the
joint-velocity vector, and J (θ) ∈ R

m×n is the Jacobian matrix defined as J (θ) =
∂ f (θ)/∂θ . In (14.3) [by differentiating (14.2)], r̈ and θ̈ denote, respectively, the end-
effector acceleration vector and the joint-acceleration vector, and J̇ (θ) is the time
derivative of Jacobian matrix J (θ). For redundant robot manipulators (i.e., m < n),
(14.1)–(14.3) are all underdetermined and generally admit an infinite number of
solutions in terms of inverse kinematics. Besides, it is worth mentioning here that
the RMP schemes investigated in [6, 17, 18] are based on (14.2) (i.e., at the joint-
velocity level), whereas the RMP scheme presented in this chapter is based on (14.3)
(i.e., at the joint-acceleration level).

Now we present the specific design procedure to obtain the acceleration-level
RMP performance index as follows:

• Firstly, to achieve RMP of both end-effector and joints, we require that r(Td) =
r(0) and θ(Td) = θ(0), where Td denotes the task duration of both path-tracking
and RMP, and θ(0) denotes the initial value of θ(t) [i.e., θ(0) = θ(t = 0)]. Thus,
by following the ZD approach, it is natural to define the following vector-valued
joint-displacement function (i.e., the first ZF):

e(t) = θ(t) − θ(0) ∈ R
n .

• Secondly, to eliminate every entry of the vector-valued joint-displacement function
e(t) over [0, Td], we exploit the ZD design formula [i.e., (4.2)] as follows:

ė(t) = −γ e(t) = −γ (θ(t) − θ(0)) (14.4)

http://dx.doi.org/10.1007/978-3-662-47334-4_4
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where design parameter γ > 0 ∈ R is used to adjust the exponential convergence
rate of e(t) to zero. Since the time derivative of e(t) is ė(t) = θ̇ (t), (14.4) is
rewritten as

θ̇ (t) + γ (θ(t) − θ(0)) = 0 ∈ R
n . (14.5)

• Thirdly, to achieve (14.5), we define the second ZF as follows:

e(t) = θ̇ (t) + γ (θ(t) − θ(0)) ∈ R
n .

By exploiting the ZD design formula (4.2) again, we have θ̈ (t) + γ θ̇(t) =
−γ (θ̇(t) + γ (θ(t) − θ(0))), which is reformulated as

θ̈ (t) + 2γ θ̇(t) + γ 2(θ(t) − θ(0)) = 0 ∈ R
n .

• Finally, as the end-effector’s task requirement and joint physical limits should
be considered, it is better to minimize the performance index ‖θ̈ (t) + 2γ θ̇(t) +
γ 2(θ(t) − θ(0))‖2

2/2, rather than using θ̈ (t) + 2γ θ̇(t) + γ 2(θ(t) − θ(0)) = 0
directly. Therefore, with h = 2γ θ̇(t) + γ 2(θ(t) − θ(0)) defined, we obtain

‖θ̈ (t) + 2γ θ̇(t) + γ 2(θ(t) − θ(0))‖2
2/2 = ‖θ̈ (t) + h‖2

2/2 = (θ̈ + h)T(θ̈ + h)/2,

(14.6)

which is the acceleration-level RMP performance index for fixed-base redundant
robot manipulators.

In summary, by using the ZD approach, we have developed the RMP performance
index (14.6) at the joint-acceleration level (showing the application prospect of such
a ZD approach). Note that, by minimizing the acceleration-level performance index
(14.6) [i.e., “minimize (θ̈ + h)T(θ̈ + h)/2”], the RMP purpose is thus achieved for
fixed-base redundant robot manipulators.

14.3 Scheme and QP Formulations

In this section, based on the proposed performance index (14.6), a novel RMP
scheme is further developed and investigated for fixed-base redundant robot manip-
ulators at the joint-acceleration level. In addition, such an acceleration-level RMP
scheme is reformulated as a QP, which is solved by a primal–dual neural network
[6, 9, 18, 19].

http://dx.doi.org/10.1007/978-3-662-47334-4_4
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14.3.1 Acceleration-Level RMP Scheme

With joint physical limits (i.e., joint-angle, joint-velocity, and joint-acceleration
limits) being considered, the acceleration-level RMP scheme is proposed as follows:

minimize (θ̈ + h)T(θ̈ + h)/2 (14.7)

subject to J (θ)θ̈ = r̈d − J̇ (θ)θ̇ , (14.8)

θ− � θ � θ+, (14.9)

θ̇− � θ̇ � θ̇+, (14.10)

θ̈− � θ̈ � θ̈+, (14.11)

where r̈d denotes the twice time derivative of the desired end-effector path rd ∈ R
m .

In addition, θ±, θ̇± and θ̈± denote the upper and lower limits of the joint-angle,
joint-velocity, and joint-acceleration vectors, respectively.

14.3.2 Bound Constraint Transformation Technique

Since the proposed RMP scheme (14.7)–(14.11) is resolved at the joint-acceleration
level, the constraints in (14.9)–(14.11) have to be converted to the expressions in
terms of joint acceleration θ̈ . In view of the inertia movement, the avoidance of the
upper limit of the i th joint (i.e., θ+

i ) in (14.9) can be converted as

θ̈i � κα(λθ+
i − θi ), (14.12)

and the avoidance of the lower limit of the i th joint (i.e., θ−
i ) in (14.9) can be

converted as

θ̈i �
{

κα(λθ−
i − θi ), for θ−

i < 0

κα(θ−
i + ϑ − θi ), for θ−

i � 0
(14.13)

where design parameters λ ∈ (0, 1) and ϑ > 0 ∈ R are selected (e.g., λ = 0.9 and
ϑ = 0.0524 rad), to define critical regions [θ−

i , λθ−
i ] or [θ−

i , θ−
i +ϑ] and [λθ+

i , θ+
i ]

for joint position variables such that there will appear a deceleration when the robot
manipulator enters them [9, 22]. In addition, κα > 0 ∈ R determines the magnitude
of such a deceleration. Similarly, the avoidance of the i th joint-velocity limits θ̇±

i in
(14.10) can be converted as

κβ(θ̇−
i − θ̇i ) � θ̈i � κβ(θ̇+

i − θ̇i ), (14.14)

which guarantees that joint acceleration changes its direction gradually as the
joint velocity approaches its limit. Design parameters κα and κβ are selected such
that the feasible region of θ̈ made by the conversion of joint-angle limits and
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joint-velocity limits [i.e., (14.9) and (14.10)] are normally not smaller than the
original one made by joint-acceleration limits, i.e., bound constraint (14.11). By
using (14.12)–(14.14), the acceleration-level avoidance of joint physical limits
(14.9)–(14.11) becomes ζ− � θ̈ � ζ+. Here, ζ− and ζ+ denote, respectively,
the resultant lower bound and upper bound synthesized by the joint-angle limits,
joint-velocity limits, and joint-acceleration limits. In addition, the i th elements of
ζ− and ζ+ are defined respectively as

ζ−
i =

{
max{κα(λθ−

i − θi ), κβ(θ̇−
i − θ̇i ), θ̈

−
i }, for θ−

i < 0

max{κα(θ−
i + ϑ − θi ), κβ(θ̇−

i − θ̇i ), θ̈
−
i }, for θ−

i � 0

ζ+
i = min{κα(λθ+

i − θi ), κβ(θ̇+
i − θ̇i ), θ̈

+
i }.

14.3.3 QP Reformulation

In (14.7), (θ̈ + h)T(θ̈ + h)/2 = (θ̈Tθ̈ + θ̈Th + hTθ̈ + hTh)/2. Since the proposed
RMP scheme is resolved at the joint-acceleration level and the decision variable
vector is joint acceleration θ̈ , the parameter h [i.e., h = 2γ θ̇ + γ 2(θ − θ(0)) in
(14.7)] is viewed as a constant in the performance index. In this situation, hTh/2
is also viewed as a constant (with respect to θ̈) and hTh/2 is thus set aside from
the performance index. Therefore, the minimization of (14.7) is equivalent to the
minimization of θ̈Tθ̈/2 + hTθ̈ (note that θ̈Th = hTθ̈ ).

In light of the above minimization formula and the above bound constraint con-
version, with x = θ̈ ∈ R

n and W = I ∈ R
n×n , the proposed acceleration-level RMP

scheme (14.7)–(14.11) for physically-constrained redundant robot manipulators is
reformulated finally as the following QP:

minimize xTW x/2 + hTx (14.15)

subject to Cx = d, (14.16)

ζ− � x � ζ+, (14.17)

where C = J (θ) and d = r̈d − J̇ (θ)θ̇ .

14.3.4 QP Solver

According to [6, 9, 18, 19], the presented QP problem (14.15)–(14.17) can be solved
by the following primal–dual neural network (PDNN):

u̇ = ν(I + MT){PΩ(u − (Mu + p)) − u} (14.18)
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where design parameter ν > 0 ∈ R is used to scale the convergence rate of the neural
network. The piecewise-linear activation-function array PΩ(·) can be implemented
by using operational amplifiers. In addition, Ω = {u ∈ R

n+m |u− � u � u+} ⊂
R

n+m ,

u =
[

x
y

]
∈ R

n+m, u− =
[

ζ−
−1v

]
∈ R

n+m, u+ =
[

ζ+
1v

]
∈ R

n+m,

M =
[

W −CT

C 0

]
∈ R

(n+m)×(n+m), p =
[

h
−d

]
∈ R

n+m, 1v = [1, . . . , 1]T ∈ R
m .

It is worth mentioning that PΩ(·) : R
n+m → Ω is a projection operator, with the

i th element of PΩ(u) defined as

⎧⎪⎨
⎪⎩

u−
i , if ui < u−

i ,

ui , if u−
i � ui � u+

i ,

u+
i , if ui > u+

i ,

∀i ∈ {1, 2, 3, . . . , n + m}.

y ∈ R
m is the dual decision vector defined for equality constraint (14.16), and

 � 0 is defined sufficiently large (e.g.,  = 106) to replace +∞ numerically.
Furthermore, we have the following theorem which guarantees that PDNN (14.18)
can globally generate optimal solution x∗ to QP (14.15)–(14.17) [6, 9, 18, 19].

Theorem 14.1 Assume the existence of optimal solution x∗ to QP (14.15)–(14.17).
Starting from any initial state u(0), state vector u(t) of PDNN (14.18) converges to
equilibrium point u∗, of which the first n elements constitute the optimal solution x∗
to QP (14.15)–(14.17).

14.4 Illustrative Examples

In this section, to substantiate the efficacy of the proposed acceleration-level RMP
scheme (14.7)–(14.11), computer simulations are performed based on PUMA560
robot manipulator, of which the mechanical configuration is shown in Fig. 14.1 and
the joint physical parameters (i.e., joint-angle limits θ±, joint-velocity limits θ̇±,
joint-acceleration limits θ̈±) used in the ensuing simulations are given in Table 14.1.
In the simulations, the end-effector of the PUMA560 robot manipulator is required
to track three different paths, i.e., a pentagram path, an East-Asian character looking
like symbol “�” which means “the sun” in Chinese, and the initial letter “V” of
the English word “VICTORY.” Note that, when we apply PDNN (14.18) to solving
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Fig. 14.1 Mechanical configuration of PUMA560 robot manipulator used in simulations

Table 14.1 Joint physical limits used in the PUMA560 simulations

# θ+ (rad) θ− (rad) θ̇+ (rad/s) θ̇− (rad/s) θ̈+ (rad/s2) θ̈− (rad/s2)

1 +2.775 −2.775 +1.5 −1.5 +6.0 −6.0

2 +0.750 −3.892 +1.5 −1.5 +6.0 −6.0

3 +4.049 −0.905 +1.5 −1.5 +6.0 −6.0

4 +2.967 −1.919 +1.5 −1.5 +6.0 −6.0

5 +1.745 −1.745 +1.5 −1.5 +6.0 −6.0

6 +4.625 −4.625 +1.5 −1.5 +6.0 −6.0

the presented QP problem (14.15)–(14.17) [as well as the proposed acceleration-
level RMP scheme (14.7)–(14.11)] for controlling the PUMA560 robot manipulator,
design parameter ν = 105 is used throughout this chapter.

14.4.1 Pentagram-Path Tracking

In the computer simulations of this subsection, the PUMA560 robot manipulator’s
end-effector is expected to move along a pentagram path with the side length being
0.0707 m. The X-axis, Y-axis, and Z-axis acceleration functions of the desired pen-
tagram path are
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r̈X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√

2lπ
T 2 cos(π

5 ) sin( 2π t
T ), ∀t ∈ [0, T ]

−
√

2lπ
T 2 cos(π

5 ) sin[ 2π(t−T )
T ], ∀t ∈ [T, 2T ]

√
2lπ
T 2 cos( 2π

5 ) sin[ 2π(t−2T )
T ], ∀t ∈ [2T, 3T ]

−
√

2lπ
T 2 cos(π

5 ) sin[ 2π(t−3T )
T ], ∀t ∈ [3T, 4T ]

√
2lπ
T 2 sin[ 2π(t−4T )

T ], ∀t ∈ [4T, 5T ]
√

2lπ
T 2 sin( π

10 ) sin[ 2π(t−5T )
T ], ∀t ∈ [5T, 6T ]

√
2lπ
T 2 sin( π

10 ) sin[ 2π(t−6T )
T ], ∀t ∈ [6T, 7T ]

√
2lπ
T 2 sin[ 2π(t−7T )

T ], ∀t ∈ [7T, 8T ]
−

√
2lπ
T 2 cos(π

5 ) sin[ 2π(t−8T )
T ], ∀t ∈ [8T, 9T ]

√
2lπ
T 2 cos( 2π

5 ) sin[ 2π(t−9T )
T ], ∀t ∈ [9T, 10T ]

r̈Y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√

2lπ
T 2 sin(π

5 ) sin( 2π t
T ), ∀t ∈ [0, T ]

−
√

2lπ
T 2 sin(π

5 ) sin[ 2π(t−T )
T ], ∀t ∈ [T, 2T ]

√
2lπ
T 2 sin( 2π

5 ) sin[ 2π(t−2T )
T ], ∀t ∈ [2T, 3T ]

√
2lπ
T 2 sin(π

5 ) sin[ 2π(t−3T )
T ], ∀t ∈ [3T, 4T ]

0, ∀t ∈ [4T, 5T ]√
2lπ
T 2 cos( π

10 ) sin[ 2π(t−5T )
T ], ∀t ∈ [5T, 6T ]

−
√

2lπ
T 2 cos( π

10 ) sin[ 2π(t−6T )
T ], ∀t ∈ [6T, 7T ]

0, ∀t ∈ [7T, 8T ]
−

√
2lπ
T 2 sin(π

5 ) sin[ 2π(t−8T )
T ], ∀t ∈ [8T, 9T ]

−
√

2lπ
T 2 sin( 2π

5 ) sin[ 2π(t−9T )
T ], ∀t ∈ [9T, 10T ]

r̈Z(t) = 0,∀t ∈ [0, 10T ]

where the task duration Td is 10T , and parameter l should be set appropriately
according to the desired length of the line segment in a path-tracking task. Specif-
ically, in the computer simulation of this subsection, l = 0.1 m and the task
duration Td is 3.9 s (i.e., T = 0.39 s). In addition, during such a task execution,
the joints of PUMA560 robot manipulator are expected to start from initial state
θ(0) = [0,−π/4, 0, π/2,−π/4, 0]T rad, and finally return to the initial state.

First, the inverse kinematics problem of PUMA560 robot manipulator is handled
via QP (14.15)–(14.17) with neither joint physical limits nor RMP criterion consid-
ered. That is, θ± in (14.9), θ̇± in (14.10) and θ̈± in (14.11) are set as ±1v, and in
(14.7), the RMP coefficient γ = 0. The corresponding simulation results are shown
in Fig. 14.2. It is seen from the upper graph of Fig. 14.2 that the end-effector’s trajec-
tory is the desired pentagram curve, which shows that the end-effector’s primary task
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Fig. 14.2 PUMA560
end-effector tracks a
pentagram path with neither
joint physical limits nor
RMP criterion considered
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is completed. However, the final state of the robot manipulator (denoted in black) has
not returned to the initial one (denoted in red). This can also be seen from the middle
graph of Fig. 14.2 which illustrates the θ profiles over the task duration. The exact
actual values of the final joints, θ(3.9), are shown in the second column of Table 14.2,
which are evidently different from the initial ones, θ(0), in the third column.
That is to say, the joint angle drift phenomenon has happened. It is worth
mentioning that this phenomenon is not desired in industrial applications because
we need extra self-motion to readjust the manipulator’s configuration. This would
thus lead to low efficiency. Besides, the θ and θ̈ profiles during the task execu-
tion are shown, respectively, in the middle and lower graphs of Fig. 14.2. Compared
with the joint physical limits in Table 14.1, the joint angles and joint velocities in
the simulations do not reach their corresponding limits; i.e., the joint-angle limits
and joint-velocity limits have not been activated. However, joint acceleration θ̈3(t)
exceeds its lower limit −6 rad/s2 at about t = 2.83 s and its upper limit +6 rad/s2

at about t = 3.03 s, which may lead to the damage to the manipulator and is less
desirable in applications.

Second, for comparison and for illustration, the simulation results with both joint
physical limits and RMP criterion considered are shown in Fig. 14.3. That is, θ±, θ̇±,
and θ̈± are set correctly according to Table 14.1, λ = 0.9, κα = κβ = 20, and γ = 6.
As seen from the upper left graph of Fig. 14.3, the end-effector of PUMA560 moves
along a pentagram path, which is sufficiently close to the desired one. In addition, this
solution is repetitive and applicable for PUMA560 working with a cyclic pentagram-
path tracking requirement, because the final and initial states coincide well with each
other (in the upper right graph of Fig. 14.3). Furthermore, as seen from Fig. 14.3 and
Table 14.3, all joint variables are kept within their limited ranges. Besides, the lower
left graph of Fig. 14.3 shows the motion trajectories of PUMA560 over the task
duration. The end-effector positioning error ε = rd − f (θ) is shown in the lower
right graph of Fig. 14.3, illustrating small deviations of the end-effector from the
desired path rd in the X-axis, Y-axis, and Z-axis of the base frame (i.e., εX, εY and
εZ, respectively). As seen from the figure, the maximal component of the positioning
error is less than 5.0×10−4 m, which illustrates the accuracy of the PUMA560 robot

Table 14.2 Joint drifts (rad) with neither joint limits nor RMP criterion considered when PUMA560
end-effector tracks the pentagram path

Joint θ(3.9) θ(0) θ(3.9) − θ(0)

θ1 +0.00957950482 +0.00000000000 +0.00957950482

θ2 −0.80021692574 −0.78539816340 −0.01481876234

θ3 +0.05479385946 +0.00000000000 +0.05479385946

θ4 +1.42816130434 +1.57079632680 −0.14263502246

θ5 −0.75586229472 −0.78539816340 +0.02953586868

θ6 +0.00000000000 +0.00000000000 +0.00000000000
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Fig. 14.3 PUMA560 end-effector tracks the pentagram path with both joint physical limits and
RMP criterion considered, where PUMA560 final state coincides with its initial state

manipulator synthesized by the proposed acceleration-level RMP scheme when the
end-effector tracks the desired pentagram path.

Third, comparing Tables 14.2 and 14.3, we can see that the joint angle drifts in the
former (i.e., Table 14.2) are large; in contrast, the joint angle drifts in the latter (i.e.,
Table 14.3) are quite small (less than 3.41×10−3 rad). This shows quantificationally
the repetitive accuracy of the proposed RMP scheme. In summary, this example
has substantiated well the efficacy of the proposed acceleration-level RMP scheme
(14.7)–(14.11) and its QP solver (14.18) (i.e., a PDNN) on redundancy resolution
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Table 14.3 Joint drifts (rad) with both joint limits and RMP criterion considered when PUMA560
end-effector tracks a pentagram path

Joint θ(3.9) θ(0) θ(3.9) − θ(0)

θ1 +0.00000629838 +0.00000000000 +6.29838 × 10−6

θ2 −0.78469374929 −0.78539816340 +7.04414 × 10−4

θ3 −0.00096763343 +0.00000000000 −9.67633 × 10−4

θ4 +1.57045580322 +1.57079632680 −3.40524 × 10−3

θ5 −0.78474817868 −0.78539816340 +6.49985 × 10−4

θ6 +0.00000000000 +0.00000000000 +0.00000000000

of physically-constrained robot manipulators, and more importantly, has shown the
application prospect of the presented ZD approach.

14.4.2 East-Asian Character Writing

In the simulations of this subsection, the motion trajectory of the PUMA560 end-
effector is expected to be an East-Asian character looking like symbol “�” which
means “the sun” in Chinese. The word width is 0.1697 m and the word height is
0.3394 m. The X-axis, Y-axis, and Z-axis acceleration functions of the path are

r̈X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√

2ιπ
T 2 sin( 2π t

T ), ∀t ∈ [0, T ]
0, ∀t ∈ [T, 2T ]√

2ιπ
T 2 sin[ 2π(t−2T )

T ], ∀t ∈ [2T, 3T ]
0, ∀t ∈ [3T, 4T ]
−

√
2ιπ
T 2 sin[ 2π(t−4T )

T ], ∀t ∈ [4T, 5T ]
0, ∀t ∈ [5T, 6T ]√

2ιπ
T 2 sin[ 2π(t−6T )

T ], ∀t ∈ [6T, 7T ]

r̈Y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ∀t ∈ [0, T ]√
2ιπ
T 2 sin[ 2π(t−T )

T ], ∀t ∈ [T, 2T ]
0, ∀t ∈ [2T, 3T ]
− 2

√
2ιπ

T 2 sin[ 2π(t−3T )
T ], ∀t ∈ [3T, 4T ]

0, ∀t ∈ [4T, 5T ]√
2ιπ
T 2 sin[ 2π(t−5T )

T ], ∀t ∈ [5T, 6T ]
0, ∀t ∈ [6T, 7T ]

r̈Z(t) = 0,∀t ∈ [0, 7T ]



208 14 Application to Fixed-Base Robot RMP

where the task duration Td is 7T , and parameter ι should be set appropriately
according to the desired length of the line segment in a path-tracking task. Specif-
ically, in the simulations of this subsection, design parameter ι = 0.24 m and
the task duration Td is 4.55 s (i.e., T = 0.65 s). In addition, the initial joint state
θ(0) = [0,−π/4, 0, π/2,−π/4, 0]T rad.

First, we show, in Fig. 14.4, the redundancy-resolution results with joint physical
limits considered (i.e., λ = 0.9 and κα = κβ = 20) but without considering cyclic
motion criterion (i.e., γ = 0). As seen from the upper left graph of Fig. 14.4, the
end-effector of the PUMA560 robot manipulator moves along a “�” path, which
indicates that the robot manipulator completes the desired path-tracking task. From
the upper left graph of Fig. 14.4, we can also see that such a solution is not repetitive,
because the final and initial states of the manipulator are not equal. Thus, if such a
non-repetitive solution is exploited to control the PUMA560 robot manipulator, then
an additional self-motion readjustment is needed, which would be of low efficiency
in engineering applications.

Second, for comparison as well as for illustration, the inverse kinematics problem
is finally solved via the proposed acceleration-level RMP scheme (14.7)–(14.11) with
both joint physical limits and RMP criterion considered (i.e., λ = 0.9, κα = κβ = 20
and γ = 5). The corresponding simulation results are shown in the rest graphs
of Fig. 14.4. As seen from the upper right graph of Fig. 14.4, the end-effector of
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Fig. 14.4 PUMA560 end-effector tracks a path of an East-Asian character looking like “�” syn-
thesized by the scheme without and with RMP criterion considered
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PUMA560 robot manipulator tracks a “�” path, which is sufficiently close to the
desired one. In addition, this solution is repetitive and applicable for PUMA560
robot manipulator working with a cyclic motion requirement, because the final and
initial states of the robot manipulator coincide with each other as shown in the
upper right graph of Fig. 14.4, which can also be seen from the θ profiles in the
lower left graph of Fig. 14.4. Furthermore, as seen from the lower two graphs of
Fig. 14.4 and Table 14.1, the joint angles and joint accelerations are kept within their
limited ranges. Note that the joint velocities are also within their ranges and the
corresponding figure is omitted due to the space limitation. It is worth pointing out
that the maximum component of the robot end-effector’s positioning error is also
small during the “�” path tracking task execution, i.e., less than 8 × 10−4 m. The
efficacy of the proposed RMP scheme (14.7)–(14.11) at the joint-acceleration level
subject to joint-angle limits, joint-velocity limits and joint-acceleration limits is thus
well substantiated.

14.4.3 “V” Path Path Tracking

In order to further demonstrate the efficacy and the general applicability of the pro-
posed acceleration-level RMP scheme (14.7)–(14.11) as well as the corresponding
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Fig. 14.5 PUMA560 end-effector tracks the path of the initial letter “V” of English word “VIC-
TORY” synthesized by scheme (14.7)–(14.11) without and with RMP criterion considered (i.e.,
corresponding to γ = 0 and γ �= 0)
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QP solver [i.e., PDNN (14.18)], the initial letter “V” writing of English word “VIC-
TORY” is also performed based on PUMA560 robot manipulator in this subsection.

Figure 14.5 illustrates the simulation results of PUMA560 robot manipulator’s
end-effector tracking the “V” path. Specifically, the upper left graph of Fig. 14.5
shows the simulation result with joint physical limits considered but without con-
sidering RMP criterion (i.e., γ = 0). From such a figure, we can see that the initial
and final states of the robot manipulator do not match. For comparison, the simula-
tion results with both joint physical limits and RMP criterion considered are shown
in the rest graphs of Fig. 14.5. These simulation results illustrate that, by applying
the proposed acceleration-level RMP scheme (14.7)–(14.11) to the PUMA560 robot
manipulator, the joint drift phenomenon is remedied, all joint variables [i.e., joint
angle θ(t), joint velocity θ̇ (t) and joint acceleration θ̈ (t)] are kept within their lim-
ited ranges, and that the positioning error of the robot end-effector is small. These
comparisons of simulation results further substantiate the efficacy and accuracy of
the proposed RMP scheme (14.7)–(14.11), as well as the effectiveness of the PDNN
(14.18) as a QP solver.

14.4.4 Comparisons with Velocity-Level RMP Scheme

To substantiate the superiority of the proposed acceleration-level RMP scheme
(14.7)–(14.11), comparisons between the RMP schemes at the joint-acceleration
and joint-velocity levels are shown in this subsection. As presented in [6, 17, 18],
the velocity-level RMP scheme is formulated as follows:

minimize (θ̇ + ρ)T(θ̇ + ρ)/2 (14.19)

subject to J (θ)θ̇ = ṙd, (14.20)

θ− � θ � θ+, (14.21)

θ̇− � θ̇ � θ̇+, (14.22)

where ρ = γ (θ(t) − θ(0)), and ṙd ∈ R
m is the time derivative of the desired

end-effector path rd.
Comparing these two different level RMP schemes, we find that the proposed

acceleration-level RMP scheme (14.7)–(14.11) can incorporate the joint-acceleration
limits into the scheme formulation readily, but the presented velocity-level RMP
scheme (14.19)–(14.22) can not do it. In other words, the redundancy-resolution
results generated by the velocity-level scheme probably exceed the physical accel-
eration limits sometimes. To explain this point, without loss of generality, we still
take tracking the pentagram-path for example. The initial state θ(0), task duration
Td and the corresponding design parameters κα , κβ , λ, and γ are set the same as
before. In this comparison example, l = 0.12 m. The acceleration profiles of the
RMP scheme resolved, respectively, at the velocity level and acceleration level
when the end-effector of PUMA560 robot manipulator tracks the pentagram path
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Fig. 14.6 Profiles of the joint acceleration θ̈ ∈ R
6: comparisons between the RMP schemes,

respectively, resolved at the joint-velocity and joint-acceleration levels

are presented in Fig. 14.6. Note that, in Fig. 14.6, VRMP denotes the RMP scheme at
the joint-velocity level [i.e., (14.19)–(14.22)] and ARMP denotes the RMP scheme
at the joint-acceleration level [i.e., (14.7)–(14.11)]. As shown in Fig. 14.6, all the
joint-acceleration profiles generated by ARMP, denoted by the red dot line, are
constrained within the acceleration limits θ̈±

i (with i = 1, 2, . . . , 6) denoted by
the black dash line. Even some joint accelerations (i.e., θ̈3, θ̈4 and θ̈5) reach their
limits in some durations, the bound constraints keep them within their physical
limits. For instance, θ̈3 reaches its upper or lower limit many times (e.g., during
[1.828, 1.875], [2.801, 2.875], [2.978, 3.075], [3.175, 3.253] and [3.378, 3.428] s)
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as shown in Fig. 14.6, and it stops increasing in these durations. This illustrates that
the bound constraint (14.11) is activated effectively. On the contrary, joint acceler-
ation θ̈3 indirectly resolved by VRMP, denoted by the blue solid line, exceeds the
limits θ̈±

3 because the joint-acceleration limits have not been considered in the VRMP.
In actual application, the case of exceeding physical limits is unallowed, because it
may lead to the acceleration saturation and even destroy the physical robot. From this
point, the RMP scheme at the joint-acceleration level is readily applied and preferred.
Another advantage of the proposed acceleration-level RMP scheme (14.7)–(14.11)
is that, in applications, some robot manipulators are controlled by acceleration (such
as the robot in [24]). This kind of robot cannot directly use the redundancy-resolution
results generated by the presented velocity-level RMP scheme (14.19)–(14.22), and
it is less efficient to transform the resolution results (i.e., joint velocity θ̇) of the
velocity-level RMP scheme to joint acceleration θ̈ .

In summary, compared with the presented velocity-level RMP scheme (14.19)–
(14.22), the proposed acceleration-level RMP scheme (14.7)–(14.11) is safer and
more applicable (showing again the successful application of the presented ZD
approach to RMP of fixed-base redundant robot manipulators).

14.5 Summary

In this chapter, by defining two different ZFs and by exploiting the ZD design formula,
the acceleration-level RMP performance index (14.9) has been proposed, developed,
and investigated. Based on such a performance index, the acceleration-level RMP
scheme (14.7)–(14.11) has been further presented and investigated to remedy the
joint-angle drift phenomenon of fixed-base redundant robot manipulators, which is
reformulated as a QP (14.15)–(14.17) and then is solved by PDNN (14.18). Computer
simulation results based on PUMA560 robot manipulator performing three different
types of end-effector path-tracking tasks have substantiated well the effectiveness,
accuracy, and safety of the proposed acceleration-level RMP scheme for physically-
constrained redundant robot manipulators, and more importantly, have shown the
application prospect of the presented ZD approach to robotic redundancy resolution.
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