
Chapter 13
Time-Varying Complex Matrix
Generalized Inverse

Abstract In Chaps. 8 and 9, different ZD models based on different ZFs have been
presented and investigated to solve for time-varying matrix (left and right) pseudoin-
verse in real domain. In this chapter, the ZD approach (i.e., different ZFs leading to
different ZDmodels) is extended and exploited to solve for time-varying matrix gen-
eralized inverse (in most cases, the pseudoinverse) in complex domain. Specifically,
by introducing five different complex ZFs, five different complex ZD models are
proposed, generalized, developed, and investigated for time-varying complex matrix
generalized inverse computation. Theoretical results of convergence analysis are pre-
sented to show the desirable properties of the complex ZD models. In addition, we
discover the link between the proposed complex ZD models and the Getz-Marsden
(G-M) dynamic system in complex domain. Computer simulation results further sub-
stantiate the efficacy of the proposed complex ZDmodels based on different complex
ZFs on solving for time-varying complex matrix generalized inverse.

13.1 Introduction

As presented in Chaps. 8 and 9, the solution of generalized inverse (in most cases,
the pseudoinverse, and also known as Moore-Penrose generalized inverse) is one of
the basic problems encountered in a variety of science and engineering fields, e.g.,
robotics [1], signal processing [2], associative memories [3] and image restoration
[4, 5]. Owing to its important roles, numerous efforts have been devoted to the
fast solution of generalized inverse matrices. As a result, many algorithms/methods
(including those ZD models presented in Chaps. 8 and 9) have been put forward
by researchers [6–12] for constant and/or time-varying matrix generalize inverse
computation. However, it is worth pointing out that these researchworks are confined
to applying different numerical algorithms or neural dynamics to solving for matrix
generalized inverse (or sometimes termed, matrix pseudoinverse) in real domain.

Besides, as presented in Chap.12, in some situations complex-valued matrices
may also occur, when the problem incorporates online frequency domain identifica-
tion processes, or when the input signals contain both magnitude and phase infor-
mation [13, 14]. The presence of a complex-valued matrix points to the need for
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174 13 Time-Varying Complex Matrix Generalized Inverse

efficient online complex matrix inversion/pseudoinversion as well. In general, as for
a complex-valued matrix C ∈ C

m×n , there are two cases, i.e., m = n and m �= n.
Then, we have that C− ∈ C

n×m is known as the inverse of matrix C with m = n,
and C+ ∈ C

n×m is known as the generalized inverse of matrix C with m �= n.
Note that the investigations of solving for constant and time-varying complex square
matrix inverse (i.e., corresponding to the situation of m = n) have been presented
in [14, 15] and Chap.12, respectively. Thus, in this chapter, we focus on solving for
the generalized inverse (in most cases, the pseudoinverse) of time-varying complex
matrix C(t) ∈ C

m×n under the situation of m �= n.
To lay a basis for further discussion, some necessary preliminaries of the time-

varying complex matrix generalized inverse are given.

Definition 13.1 For a given time-varying complexmatrixC(t) ∈ C
m×n withm �= n,

if Z(t) ∈ C
n×m satisfies at least one of the following four Penrose equations [16, 17]:

C(t)Z(t)C(t) = C(t), Z(t)C(t)Z(t) = Z(t),

(C(t)Z(t))H = C(t)Z(t), (Z(t)C(t))H = Z(t)C(t),

where superscript H denotes the conjugate transpose (also calledHermitian transpose)
of a complex matrix, Z(t) is called the time-varying complex generalized inverse
of C(t). If matrix Z(t) satisfies all of the Penrose equations, then matrix Z(t) is
called the pseudoinverse of matrix C(t), which is often denoted by C+(t). Note that
the pseudoinverse C+(t) exists and is unique, while the generalized inverse is not
unique usually.

In addition, if matrix C(t) is of full-rank at any time instant t , i.e., rank(C(t)) =
min{m, n}with t ∈ [0,∞), we have the following theorem to obtain the time-varying
pseudoinverse of matrix C(t).

Theorem 13.1 For a given time-varying matrix C(t) ∈ C
m×n with m �= n, if it

satisfies that rank(C(t)) = min{m, n} at any time instant t , then the unique time-
varying pseudoinverse C+(t)is given as follows [17–19]:

C+(t) =
{

CH(t)(C(t)CH(t))−1, if m < n,

(CH(t)C(t))−1CH(t), if m > n.
(13.1)

Besides, as for the unique time-varying pseudoinverse of a full-rank matrix C(t),
we have another important theorem as follows (which motivates us to define many
more ZFs for time-varying complex matrix generalized inverse).

Theorem 13.2 For a given time-varying matrix C(t) ∈ C
m×n with m �= n, if it

satisfies that rank(C(t)) = min{m, n} at any time instant t , then the unique time-
varying pseudoinverse C+(t) is also given as follows:

http://dx.doi.org/10.1007/978-3-662-47334-4_12
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C+(t) =
⎧⎨
⎩
lim
μ→0

(CH(t)C(t) + μI )−1CH(t), if m < n,

lim
μ→0

CH(t)(C(t)CH(t) + μI )−1, if m > n,

where μ > 0 ∈ R.

Proof It can be generalized from the proof of Theorem 8.2. �

For simplicity, in this chapter, we only consider the smoothly time-varying full-
rank complex matrix C(t) ∈ C

m×n with m < n. This paper aims at finding
Z(t) ∈ C

n×m such that at least one of the Penrose equations holds true at any
time instant t ∈ [0,+∞), i.e., obtaining the complex generalized inverse (in most
cases, the pseudoinverse) of matrix C(t). Note that, in the case of m > n, the com-
plex generalized inverse of matrix C(t) could be obtained in a similar way, and is
thus omitted due to similarity and space limitation.

More specifically, focusing on solving for the generalized inverse of time-varying
complex matrix C(t) with m < n, we propose, generalize, develop, and investi-
gate five different complex ZD models by defining five different complex ZFs. It
is then theoretically proved that the proposed complex ZD models (globally) expo-
nentially converge to the theoretical time-varying generalized inverse. Moreover, we
discover the link between the proposed complex ZD models and the Getz-Marsden
(G-M) dynamic system [20] in the complex domain. Through illustrative computer-
simulation examples, the efficacy of the proposed complex ZD models for time-
varying complex matrix generalized inverse computation is well substantiated.

13.2 Complex ZFs and ZD Models

In this section, five different complex ZDmodels based on five different complex ZFs
are constructed to solve for the time-varying complex generalized inverse (in most
cases, the pseudoinverse). In addition, their excellent convergence performances are
analyzed in detail.

According to the ZD design formula (12.2), different complex ZFs can lead to
different complex ZD models for solving the same time-varying complex-valued
problem. Especially, to solve for the time-varying complex generalized inverse, we
define the following five different complex ZFs as the fundamental error-monitoring
functions:

E(t) = Z(t)C(t)CH(t) − CH(t) ∈ C
n×m, (13.2)

E(t) = CH(t)C(t)Z(t) − CH(t) ∈ C
n×m, (13.3)

E(t) = C(t)Z(t) − I ∈ C
m×m, (13.4)

E(t) = Z(t)C(t) − I ∈ C
n×n, (13.5)

E(t) = C(t) − Z+(t) ∈ C
m×n . (13.6)

http://dx.doi.org/10.1007/978-3-662-47334-4_8
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13.2.1 The First Complex ZD Model

Considering complex ZF (13.2), we have the following derivation:

Ė(t) = Ż(t)C(t)CH(t) + Z(t)
(

Ċ(t)CH(t) + C(t)ĊH(t)
)

− ĊH(t).

Then, adopting the ZD design formula (12.2), we can derive the corresponding
dynamic equation of the first complex ZD model as

Ż(t)C(t)CH(t) = ĊH(t) − Z(t)
(
Ċ(t)CH(t) + C(t)ĊH(t)

)
−γ

(
Z(t)C(t)CH(t) − CH(t)

)
.

(13.7)

In other words, we obtain complex ZD model (13.7) based on complex ZF (13.2) to
solve for the time-varying complex generalized inverse (specifically, the pseudoin-
verse). By following complex ZD model (13.7), the ijth neuron’s dynamic equation
can be presented in the following form:

żij =
m∑

l=1

żilal j − γ

(
m∑

l=1

zilbl j − c∗
j i

)
−

m∑
l=1

zildl j + ċ∗
j i ,

where c ji , al j , bl j and dl j denote the corresponding elements of matrices C , A =
I −CCH, B = CCH and D = ĊCH+CĊH, respectively, and the operator ∗ denotes
complex conjugate. Then, the neuron-connection architecture of complex ZDmodel
(13.7) is depicted in Fig. 13.1, and the specific structure of the i th row of neurons
is illustrated in Fig. 13.2. Figures13.1 and 13.2 well show that complex ZD model
(13.7) is a kind ofHopfield-type recurrent neural networkswhich can be implemented
finally on analog circuits such as very large-scale integration [11, 21, 22].

To lay a basis for discussion, an important theorem is presented below.

Theorem 13.3 For any time-varying complex matrix C(t) ∈ C
m×n, we have [23]

dCH(t)

dt
=

(
dC(t)

dt

)H

,

which, via a simpler notation of dCH(t)/dt , can be rewritten as ĊH(t) = (Ċ(t))H.
Especially, for a scalar complex variable c(t) ∈ C, we have ċ∗(t) = (ċ(t))∗.

For complex ZD model (13.7), we have the following theoretical result on its
global exponential convergence performance.

Theorem 13.4 Given a smoothly time-varying complex matrix C(t) ∈ C
m×n (with

m < n) of full rank, the state matrix Z(t) ∈ C
n×m of complex ZD model (13.7), start-

ing from an initial state Z(0), globally and exponentially converges to the theoretical
time-varying generalized inverse [specifically, the pseudoinverse C+(t) ∈ C

n×m] of
matrix C(t).

http://dx.doi.org/10.1007/978-3-662-47334-4_12
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Fig. 13.1 Neuron-connection architecture of complex ZD model (13.7) for time-varying complex
generalized inverse computation

Proof Let Z̃(t) = Z(t) − C+(t) denote the difference between the solution Z(t)
generated by complex ZD model (13.7) and the theoretical pseudoinverse C+(t).
Following from C+(t)C(t)CH(t) − CH(t) = 0, its time derivative is depicted as

Ċ+(t)C(t)CH(t) + C+(t)
(

Ċ(t)CH(t) + C(t)ĊH(t)
)

− ĊH(t) = 0.

Substituting C+(t) = Z(t) − Z̃(t) into the above identity, we have

˙̃Z(t)C(t)CH(t) + Z̃(t)
(
Ċ(t)CH(t) + C(t)ĊH(t)

) =
Ż(t)C(t)CH(t) + Z(t)

(
Ċ(t)CH(t) + C(t)ĊH(t)

) − ĊH(t).

Using complex ZDmodel equation (13.7), with Z(t) = Z̃(t)+C+(t), it follows that
Z̃(t) is the solution to the ensuing dynamics with the initial state Z̃(0) = Z(0) −
C+(0),

˙̃Z(t)C(t)CH(t) + Z̃(t)
(

Ċ(t)CH(t) + C(t)ĊH(t)
)

= −γZ̃(t)C(t)CH(t). (13.8)

Since E(t) = Z̃(t)C(t)CH(t), (13.8) can thus be rewritten as Ė(t) = −γE(t), which
is a compact matrix form of the following set of n × m equations:

ėij(t) = −γ eij(t), ∀i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. (13.9)
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Fig. 13.2 Structure of the i th row of neurons in complex ZDmodel (13.7) for time-varying complex
generalized inverse computation
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Evidently, we can define a Lyapunov function candidate vij = eije∗
ij/2 � 0 for the

ijth subsystem (13.9), which is positive-definite, i.e., vij > 0 for eij �= 0 and vij = 0
for eij = 0. Then, we have its time derivative

dvij(t)

dt
= 1

2

(
ėije

∗
ij + eijė

∗
ij

)
.

Adopting Theorem 13.3 and (13.9), we obtain

dvij(t)

dt
= 1

2

(
(−γ eij)e

∗
ij + eij(−γ eij)

∗) = −γ eije
∗
ij.

Apparently, v̇ij is negative-definite, i.e., v̇ij < 0 for eij �= 0 and v̇ij = 0 for eij =
0. In addition, if |eij| → ∞, the Lyapunov function candidate vij = |eij|2/2 →
∞. By the Lyapunov stability theory, eij(t) globally converges to zero for any i ∈
{1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. Thus, in viewof E(t) = Z(t)C(t)CH(t)−CH(t)
and the nonsingularity of C(t)CH(t), we have Z(t) → CH(t)(C(t)CH(t))−1 ∈
C

n×m as t → ∞. Then, in view of m < n and based on Theorem 13.1, the state
matrix Z(t) of (13.7) globally converges to the theoretical time-varying generalized
inverse [specifically, the pseudoinverse C+(t) ∈ C

n×m] starting from a randomly-
generated initial state Z(0). Next, we are going to prove the exponential convergence
performance of complex ZD model (13.7).

In view of (13.9), we can obtain its analytic solution in the compact matrix form:

E(t) = E(0) exp(−γ t).

Thus, we further have
‖E(t)‖F = ‖E(0)‖F exp(−γ t).

Evidently, as t → ∞, ‖E(t)‖F exponentially converges to 0with rate γ , whichmeans
that, starting from any randomly-generated initial state Z(0), state matrix Z(t) of
complex ZD model (13.7) exponentially converges to the theoretical time-varying
generalized inverse [specifically, the pseudoinverse C+(t)] with rate γ > 0. The
proof on global and exponential convergence of complex ZD model (13.7) is thus
complete. �

For further investigation and illustration, we can also make use of other complex
ZFs [i.e., complex ZFs (13.3) through (13.6)] to construct other types of complex
ZD models. Thus, it can provide many more models for researchers to choose.

13.2.2 The Second Complex ZD Model

For complex ZF (13.3), as m < n, CH(t)C(t) ∈ C
n×n is singular. Thus, we can add

a bias term λI ∈ R
n×n to CH(t)C(t), with λ > 0 ∈ R. This method is known as
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Tikhonov regularization method [24]. Then, complex ZF (13.3) is modified as

E(t) =
(

CH(t)C(t) + λI
)

Z(t) − CH(t). (13.10)

For modified ZF (13.10), we have its time derivative

Ė(t) =
(

CH(t)C(t) + λI
)

Ż(t) +
(

ĊH(t)C(t) + CH(t)Ċ(t)
)

Z(t) − ĊH(t).

Following the ZD design formula (12.2), we obtain the dynamic equation of the
second complex ZD model as

(
CH(t)C(t) + λI

)
Ż(t) = ĊH(t) − (

ĊH(t)C(t) + CH(t)Ċ(t)
)

Z(t)
−γ

((
CH(t)C(t) + λI

)
Z(t) − CH(t)

)
.

(13.11)

Note that the parameter λ should be set appropriately small, in other words, λ should
be sufficiently close to 0. Similarly, after presenting complex ZD model (13.11) for
solving for the time-varying complex generalized inverse (specifically, the pseudoin-
verse), we come to prove its convergence performance through the following impor-
tant theorem.

Theorem 13.5 Given a smoothly time-varying complex matrix C(t) ∈ C
m×n (with

m < n) of full rank, the state matrix Z(t) ∈ C
n×m of complex ZD model (13.11), start-

ing from an initial state Z(0), globally and exponentially converges to the theoretical
time-varying generalized inverse [specifically, the pseudoinverse C+(t) ∈ C

n×m] of
matrix C(t).

Proof Since complex ZD model (13.11) is derived using the standard ZD design
method similar to the aforementioned first complex ZD model, its modified ZF
(13.10) satisfies relation (12.2), which means that E(t) = (CH(t)C(t) + λI )Z(t) −
CH(t) can globally and exponentially converge to zero from an initial value. That
is to say, as t → ∞, we have Z(t) → (CH(t)C(t) + λI )−1CH(t) ∈ C

n×m . In
view of λ → 0 and m < n, then based on Theorem 13.2, the state matrix Z(t)
globally and exponentially converges to the theoretical time-varying generalized
inverse, specifically, the pseudoinverse C+(t). The proof on global and exponential
convergence performance of complex ZD model (13.11) is thus complete. �

13.2.3 The Third Complex ZD Model

Combining the ZD design formula (12.2) and complex ZF (13.4), we can have

Ċ(t)Z(t) + C(t)Ż(t) = −γ (C(t)Z(t) − I ) ,

http://dx.doi.org/10.1007/978-3-662-47334-4_12
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and then
C(t)Ż(t) = −Ċ(t)Z(t) − γ (C(t)Z(t) − I ) .

For the purpose of computation and simulation, by left multiplying CH(t) both sides
of the above equation, we obtain

CH(t)C(t)Ż(t) = −CH(t)Ċ(t)Z(t) − γ
(

CH(t)C(t)Z(t) − CH(t)
)

. (13.12)

Note that, in (13.12), CH(t)C(t) is singular (in view of m < n). Hence, to make
(13.12)more computable,we can similarly adopt theTikhonov regularizationmethod
[24], i.e., add a bias term λI with λ → 0 to CH(t)C(t). As a result, the dynamic
equation of the third complex ZD model is presented as

(
CH(t)C(t) + λI

)
Ż(t) = −CH(t)Ċ(t)Z(t)

− γ
((

CH(t)C(t) + λI
)

Z(t) − CH(t)
)

. (13.13)

That is to say, based on complex ZF (13.4), we obtain complex ZD model (13.13) to
solve for the time-varying complex generalized inverse (specifically, the pseudoin-
verse). Similarly, the important theorem about the convergence performance of com-
plex ZD model (13.13) is given as follows.

Theorem 13.6 Given a smoothly time-varying complex matrix C(t) ∈ C
m×n (with

m < n) of full rank, the state matrix Z(t) ∈ C
n×m of complex ZD model (13.13), start-

ing from an initial state Z(0), globally and exponentially converges to the theoretical
time-varying generalized inverse [specifically, the pseudoinverse C+(t) ∈ C

n×m] of
matrix C(t).

Proof The convergence of complex ZDmodel (13.13) can be proven in a way similar
to the proofs of Theorems 13.4 and 13.5, and thus it is omitted here. �

13.2.4 The Fourth Complex ZD Model

With the ZD design formula (12.2) and complex ZF (13.5), we have

Ż(t)C(t) + Z(t)Ċ(t) = −γ (Z(t)C(t) − I ) ,

and then
Ż(t)C(t) = −Z(t)Ċ(t) − γ (Z(t)C(t) − I ) . (13.14)

http://dx.doi.org/10.1007/978-3-662-47334-4_12
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Similarly, to make (13.14) more computable, we right multiply CH(t) both sides of
(13.14), and obtain the dynamic equation of the fourth complex ZD model as

Ż(t)C(t)CH(t) = −Z(t)Ċ(t)CH(t) − γ
(

Z(t)C(t)CH(t) − CH(t)
)

. (13.15)

Thus, based on complex ZF (13.5), we have complex ZD model (13.15) to solve
for the time-varying complex generalized inverse (specifically, pseudoinverse). Sim-
ilar to the previous ZD models, we have the following important result about the
convergence performance of complex ZD model (13.15). That is, given a smoothly
time-varying complex matrix C(t) ∈ C

m×n (with m < n) of full rank, the state
matrix Z(t) ∈ C

n×m of complex ZD model (13.15), starting from an initial state
Z(0), globally and exponentially converges to the theoretical time-varying general-
ized inverse, specifically, the pseudoinverse C+(t) ∈ C

n×m .

13.2.5 The Fifth Complex ZD Model

Before constructing the fifth complex ZD model, an important corollary (being an
extension of Corollary 5.1 from the real domain to the complex domain) is presented
here to lay a basis for discussion.

Corollary 13.1 For a given time-varying complex matrix C(t) ∈ C
m×n (with

m < n) and its time-varying pseudoinverse C+(t), we approximately have Ċ+(t) =
−C+(t)Ċ(t)C+(t).

Proof It can also be generalized from the proof of Theorem 4.1 in Chap.4. �

Then, based on the ZD design formula (12.2) and complex ZF (13.6), we can have

Ċ(t) − Ż+(t) = −γ
(
C(t) − Z+(t)

)
.

By adopting Corollary 13.1, the above equation can be further rewritten as

Ċ(t) + Z+(t)Ż(t)Z+(t) = −γ
(
C(t) − Z+(t)

)
,

Z+(t)Ż(t)Z+(t) = −Ċ(t) − γ
(
C(t) − Z+(t)

)
. (13.16)

Reformulating (13.16), we have the following dynamic equation of the new complex
ZD model aiming at solving for the time-varying complex generalized inverse:

Ż(t) = −Z(t)Ċ(t)Z(t) − γ (Z(t)C(t)Z(t) − Z(t)) , (13.17)

Thus, we obtain complex ZD model (13.17) based on complex ZF (13.6). Note that
complex ZDmodel (13.17) is also the Getz andMarsden (G-M) dynamic system [20]
for the time-varying complex generalized inverse computation. In other words, the

http://dx.doi.org/10.1007/978-3-662-47334-4_5
http://dx.doi.org/10.1007/978-3-662-47334-4_4
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G-M dynamic system could be generalized to the case of complex matrices and
is a special case of the complex ZD models. This is quite a novel result beyond
our previous work. Following the literature [20], we have the theoretical results
of the convergence performance of complex ZD model (13.17). That is, given a
smoothly time-varying complex matrix C(t) ∈ C

m×n of full rank, if initial state
Z(0) satisfies ‖Z(0) − C+(0)‖F � β < ∞ and β ∈ R is sufficiently small, then
C(t)Z(t) − I → 0 as t → ∞, i.e., the state matrix Z(t) ∈ C

n×m of complex ZD
model (13.17) exponentially converges to the theoretical time-varying generalized
inverse of matrix C(t). It is worth noting that the initial condition of complex ZD
model (13.17) should be chosen as Z(0) ≈ C+(0) [i.e., Z(0) should be sufficiently
close to C+(0)].

In summary, we have constructed five different complex ZD models (13.7),
(13.11), (13.13), (13.15), and (13.17) by defining five different complex ZFs [i.e.,
complex ZFs (13.2)–(13.6)] to solve for time-varying complex generalized inverse
(in most cases, the pseudoinverse). For readers’ convenience and also for compari-
son purpose, we summarize these complex ZFs and the corresponding complex ZD
models in Table13.1.

Remark 13.1 Five complex ZFs have been elaborately constructed to obtain five dif-
ferent complex ZD models. There exist clear differences among such complex ZD
models. Specifically, the dynamic equations, model complexities and convergence
performance differ from each other. For instance, the fifth complex ZDmodel (13.17)
has the simplest network structure which can be more readily implemented, whereas
the first complexZDmodel (13.7) has better global convergence performance. There-
fore, in practical applications, the practitioner could find and choose themost suitable
complex ZF and the corresponding complex ZD model in accordance with specific
request.

Table 13.1 Different complex ZFs resulting in different complex ZD models for time-varying
complex generalized inverse (in most cases, the pseudoinverse) computation

Complex ZF Complex ZD model

(13.2) Ż(t)C(t)CH(t) = −γ (Z(t)C(t)CH(t)−CH(t))− Z(t)(Ċ(t)CH(t)+C(t)ĊH(t))
+ ĊH(t)

(13.3) (CH(t)C(t)+λI )Ż(t) = ĊH(t)−(ĊH(t)C(t)+CH(t)Ċ(t))Z(t)−γ ((CH(t)C(t)
+ λI )Z(t) − CH(t))

(13.4) (CH(t)C(t)+λI )Ż(t) = −CH(t)Ċ(t)Z(t)− γ ((CH(t)C(t)+λI )Z(t)− CH(t))

(13.5) Ż(t)C(t)CH(t) = −Z(t)Ċ(t)CH(t) − γ (Z(t)C(t)CH(t) − CH(t))

(13.6) Ż(t) = −Z(t)Ċ(t)Z(t) − γ (Z(t)C(t)Z(t) − Z(t))



184 13 Time-Varying Complex Matrix Generalized Inverse

13.3 Illustrative Examples

In this section, the related simulation techniques are presented, and four illustrative
examples are given to substantiate the efficacy of the proposed complex ZD mod-
els [i.e., (13.7), (13.11), (13.13), (13.15), and (13.17)] on solving for time-varying
complex generalized inverse (in most cases, the pseudoinverse).

Kronecker product and vectorization In the previous sections, we have developed five
complex ZD models (13.7), (13.11), (13.13), (13.15), and (13.17) for time-varying
complex generalized inverse computation. Note that all the proposed complex ZD
models are described in matrix form, which cannot be directly simulated. Thus,
the Kronecker product and vectorization techniques [11, 25] are needed to transform
suchmatrix-form differential equations to vector-form differential equations for sim-
ulative purposes. Note that, for presentation convenience, B(t) = CH(t)C(t) + λI
is introduced [for complex ZD models (13.11) and (13.13)].

• For complex ZD model (13.7), based on the Kronecker product (denoted by the
symbol of “⊗”) and vectorization techniques, we can transform such a complex
ZD model into the following vector-form differential equation:

(
(CCH)T ⊗ I

)
vec(Ż) = vec(ĊH) − (

(ĊCH)T ⊗ I + (CĊH)T ⊗ I
)
vec(Z)

−γ
((

(CCH)T ⊗ I
)
vec(Z) − vec(CH)

)
.

• In view of B(t) = CH(t)C(t) + λI , complex ZD model (13.11) is rewritten as

B(t)Ż(t) = ĊH(t)−
(

ĊH(t)C(t) + CH(t)Ċ(t)
)

Z(t)−γ
(

B(t)Z(t) − CH(t)
)

.

Therefore, similar to (13.7), we obtain the vector form of (13.11) as follows:

(I ⊗ B) vec(Ż) = vec(ĊH) − (
(I ⊗ ĊHC) + (I ⊗ CHĊ)

)
vec(Z)

−γ
(
(I ⊗ B) vec(Z) − vec(CH)

)
.

• Similarly, for complex ZD model (13.13), we can have its vector form as

(I ⊗ B) vec(Ż) = −(I ⊗ CHĊ) vec(Z) − γ
(
(I ⊗ B) vec(Z) − vec(CH)

)
.

• Considering complex ZD model (13.15), we similarly have its vector form as

(
(CCH)T ⊗ I

)
vec(Ż) = − (

(ĊCH)T ⊗ I
)
vec(Z)

−γ
((

(CCH)T ⊗ I
)
vec(Z) − vec(CH)

)
.

• For complex ZD model (13.17), we can also obtain its vector form as

vec(Ż) = −(I ⊗ ZĊ) vec(Z) − γ ((I ⊗ ZC) vec(Z) − vec(Z)) .
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Besides, it is worth pointing out here that, in MATLAB, the Kronecker product
can be realized by using the routine “kron” [i.e., “Z ⊗ C” is realized by the code
“kron(Z,C)”], and “vec(Z)” is realized by the code “reshape(Z,n*m,1)”.

Therefore, based on the aforementioned vectorization technique, the following
four computer simulation examples are illustrated to substantiate the efficacy of
the proposed complex ZD models (13.7), (13.11), (13.13), (13.15), and (13.17) on
solving for time-varying complex generalized inverse.

Example 13.1 In this example, we consider the time-varying full-rank complex
matrix C(t) as follows:

C(t) =
[

i sin(3t) i cos(3t) −i sin(3t)
−i cos(3t) i sin(3t) i cos(3t)

]
∈ C

2×3. (13.18)

For checking the correctness of the ZD solution, according to (13.1), we can obtain
the theoretical time-varying pseudoinverse of matrix C(t) in (13.18) as

C+(t) =
⎡
⎣−0.5i sin(3t) 0.5i cos(3t)

−i cos(3t) −i sin(3t)
0.5i sin(3t) −0.5i cos(3t)

⎤
⎦ ∈ C

3×2.

Since we have obtained theoretical pseudoinverse C+(t), we can use it as an
analytic theoretical solution to verify the correctness of the solution synthesized by
complex ZD model (13.7). As illustrated in Fig. 13.3, starting from a randomly-
generated initial state Z(0) ∈ C

3×2, the state matrix Z(t) ∈ C
3×2 of complex ZD

model (13.7) with γ = 100 can converge to the theoretical pseudoinverse C+(t)
rapidly and accurately within a rather short time. In addition, we show the residual
errors ‖E(t)‖ = ‖Z(t)C(t)CH(t) − CH(t)‖F synthesized by the proposed complex
ZD model (13.7) starting from 10 randomly-generated initial states. From Fig. 13.4,
we can further find that the residual errors of (13.7) all diminish to zero within
around 0.06s. These simulation results demonstrate the efficacy of complex ZD
model (13.7) on solving for time-varying complex generalized inverse (specifically,
the pseudoinverse).

Example 13.2 In this example, we verify the efficacy of the proposed complex ZD
models (13.11) and (13.13) use a more general complex matrix. Let us consider the
following time-varying complex matrix:

C(t) =
[
exp(4it) i exp(4it) exp(−4it)

i exp(4it) exp(4it) i exp(4it)

]
∈ C

2×3. (13.19)
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Fig. 13.3 State trajectories of complex ZD model (13.7) with γ = 100, where dash-dotted curves
denote the theoretical time-varying pseudoinverse C+(t) in Example 13.1 and solid curves denote
the solution computed by complex ZD model (13.7)
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Fig. 13.4 Residual errors ‖E(t)‖F = ‖Z(t)C(t)CH(t) − CH(t)‖F synthesized by complex ZD
model (13.7) with γ = 100 for the time-varying pseudoinverse of matrix C(t) in (13.18)
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It follows from (13.1) that the theoretical time-varying pseudoinverse of matrix C(t)
in (13.19) is

C+(t) =
⎡
⎢⎣

3
8 exp(−4it) − 1

8 exp(4it) − 3
8 i exp(−4it) + 1

8 i exp(−12it)

− 3
8 i exp(−4it) − 1

8 i exp(4it) 3
8 exp(−4it) + 1

8 exp(−12it)
1
4 exp(4it) − 1

4 i exp(−4it)

⎤
⎥⎦ ∈C

3×2.

Note that, in this example, the complex matrix C(t) in (13.19) is more general
since its elements have both real and imaginary parts. Furthermore, the varia-
tion frequency of such a complex matrix is greater than that of Example 13.1.
Figures13.5 and 13.6, respectively, illustrate the neural state Z(t) of complex ZD
models (13.11) and (13.13) by using γ = 100 and λ = 10−3, with the residual errors
‖E(t)‖F = ‖Z(t)C(t)CH(t) − CH(t)‖F shown in Fig. 13.7. As seen from Figs. 13.5
and 13.6, starting from a randomly-generated initial state Z(0), the neural states Z(t)
of complex ZD models (13.11) and (13.13) both converge to the theoretical time-
varying pseudoinverse C+(t). In addition, from Fig. 13.7, we can see that residual
errors ‖E(t)‖F of (13.11) and (13.13) all converge to zero. Therefore, the efficacy
of complex ZD models (13.11) and (13.13) on solving for the time-varying complex
generalized inverse (specifically, the pseudoinverse) is also substantiated.
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Fig. 13.5 State trajectories of complex ZD model (13.11) with γ = 100 and λ = 10−3, where
dash-dotted curves denote the theoretical time-varying pseudoinverse C+(t) in Example 13.2 and
solid curves denote the solution computed by complex ZD model (13.11)



188 13 Time-Varying Complex Matrix Generalized Inverse

−0.5 0
0.5

−0.5
0

0.5
0

5

10

−0.5 0
0.5

−0.5
0

0.5
0

5

10

−0.5
0

0.5
−0.5

0
0.5
0

5

10

−0.5 0
0.5

−0.5
0

0.5
0

5

10

−0.5 0
0.5

−0.5
0

0.5
0

5

10

−0.5
0 0.5

−0.5
0

0.5
0

5

10
t
(s
)

t
(s
)

t
(s
)

t
(s
)

t
(s
)

t
(s
)

z11(t) z12(t)

z21(t) z22(t)

z31(t) z32(t)

real axisreal axis

real axisreal axis

real axisreal axis

imaginary axisimaginary axis

imaginary axisimaginary axis

imaginary axisimaginary axis

Fig. 13.6 State trajectories of complex ZD model (13.13) with γ = 100 and λ = 10−3, where
dash-dotted curves denote the theoretical time-varying pseudoinverse C+(t) in Example 13.2 and
solid curves denote the solution computed by complex ZD model (13.13)
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Fig. 13.7 Residual errors ‖E(t)‖F = ‖Z(t)C(t)CH(t) − CH(t)‖F synthesized by complex ZD
models (13.11) and (13.13) with γ = 100 and λ = 10−3 for the time-varying pseudoinverse of
matrix C(t) in (13.19)
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Example 13.3 In this example, we consider a more complicated situation of the
time-varying complex generalized inverse (specifically, the pseudoinverse), which is
the pseudoinverse of the following time-varying full-rank complex matrix:

C(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11(t) c12(t) c13(t) · · · c1n(t)

c21(t) c22(t) c23(t) · · · c2n(t)

c31(t) c32(t) c33(t) · · · c3n(t)
...

...
...

. . .
...

cm1(t) cm2(t) cm3(t) · · · cmn(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ C
m×n, (13.20)

where m < n. Thereinto,

cmn(t) =

⎧⎪⎨
⎪⎩
exp(it), if m = n,

n + exp(−it), if m > n,

m + exp(−it), if m < n.

In this example, due to the complexity of matrix C(t) in (13.20) (with large
dimensions, i.e., m = 8 and n = 9), the analytical theoretical pseudoinverse solution
is difficult to be obtained. Therefore, we only present the convergence performance of
the residual errors ‖E(t)‖F = ‖Z(t)C(t)CH(t) − CH(t)‖F synthesized by complex
ZD model (13.15). The simulation results are shown in Fig. 13.8. As seen from the
figure, starting from 10 randomly-generated initial states, the residual errors ‖E(t)‖F
synthesized by complex ZD model (13.15) with γ = 100 can diminish to 0 within
a short time (also about 0.06s), which means that the corresponding solutions Z(t)
converge to the theoretical time-varying pseudoinverse of complex matrix matrix
C(t) in (13.20) rapidly and accurately. Thus, the efficacy of the proposed complexZD
model (13.15) on solving for themore complicated time-varying complex generalized

Fig. 13.8 Residual errors
‖E(t)‖F =
‖Z(t)C(t)CH(t) − CH(t)‖F
synthesized by complex ZD
model (13.15) with γ = 100
for the time-varying
pseudoinverse of matrix C(t)
in (13.20)
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inverse (specifically, the pseudoinverse) is substantiated evidently. Note that, based
on the above three examples, we can conclude that the convergence time of the
proposed complex ZD models does not increase as the matrix dimension increases.

Example 13.4 In this example, we investigate the important effect of the design para-
meter γ for the convergent rate of the proposed complex ZD models. For illustrative
purpose, we only exploit complex ZD model (13.17) to solve for the generalized
inverse of complex matrix C(t) in (13.19) (see also Example 13.2).

Note that, for complex ZD model (13.17), the initial state Z(0) should be suffi-
ciently close to C+(0). Moreover, C+(0) can be obtained from C+(t) presented in
Example 13.2 by setting t = 0. As displayed in Fig. 13.9, we can clearly find that
the residual errors ‖E(t)‖F = ‖C(t)Z(t) − I‖F synthesized by complex ZD model
(13.17) are decreasing faster as the value of design parameter γ increases (i.e., with
γ = 100, 200 and 500). That is, with γ = 100, 200 and 500, the convergence time of
the residual errors ‖E(t)‖F diminishes from about 0.06 to 0.03s, and even to 0.01s.
Note that the simulative results using other complex ZDmodels [i.e., (13.7), (13.11),
(13.13) and (13.15)] are similar to those shown in Fig. 13.9, and are thus omitted
due to results similarity. Being a topic of exercise, the corresponding simulative ver-
ifications of such four complex ZD models are left for interested readers. Thus, the
efficacy of complex ZD model (13.17) is demonstrated. Meanwhile, we can draw
the conclusion that the superior convergence performance of the proposed complex
ZD models can be achieved by choosing a larger value of design parameter γ .

In summary, from the above four illustrative examples, we have substantiated
the efficacy of the proposed complex ZD models (13.7), (13.11), (13.13), (13.15),
and (13.17) on solving for time-varying complex generalized inverse (in most cases,
the pseudoinverse). Besides, the important role of the design parameter γ in such
complex ZD models has also been discussed and illustrated.

Fig. 13.9 Comparison on
residual errors
‖E(t)‖F = ‖C(t)Z(t) − I‖F
synthesized by complex ZD
model (13.17) with γ = 100,
200 and 500 for the
time-varying pseudoinverse
of matrix C(t) in (13.19)
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13.4 Summary

In this chapter, by defining different complex ZFs [i.e., (13.2)–(13.6)], five differ-
ent complex ZD models [i.e., (13.7), (13.11), (13.13), (13.15), and (13.17)] have
been proposed, generalized, developed and investigated for time-varying complex
generalized inverse (in most cases, the pseudoinverse). Based on the complex ZF
and the ZD design method, the complex ZD model has fully utilized the first-order
time-derivative information of the time-varying complexmatrix and has achieved the
global convergence performance. In addition, the relationship between the proposed
complex ZD models and the G-M dynamic system for time-varying complex gen-
eralized inverse computation has been discovered and presented. Moreover, through
four illustrative examples, the efficacy of the proposed complex ZDmodels has been
substantiated evidently.
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