
Chapter 10
Time-Varying Matrix Square Root

Abstract In this chapter, different indefinite ZFs, which lead to different ZD mod-
els, are proposed and developed as the error-monitoring functions for time-varying
matrix square root finding. Toward the final purpose of field programmable gate array
(FPGA) and application-specific integrated circuit (ASIC) realizations, the MAT-
LAB Simulink modeling and verifications of such ZD models are further investigated
to solve for time-varying matrix square root. Both theoretical analysis and modeling
results substantiate the efficacy of the proposed ZD models for time-varying matrix
square root finding.

10.1 Introduction

The problem of solving for matrix square root is considered to be an important
special case of nonlinear matrix equation problem, which widely arises in many sci-
entific and engineering fields; e.g., control theory [1], optimization [2], and signal
processing [3]. In general, the solution of matrix square root, which can usually be
a fundamental part of many solutions, can be achieved via matrix equations solving.
Thus, many numerical algorithms/methods have been presented and developed for
online solution of matrix square roots [1–7]. However, it may not be efficient enough
for most numerical algorithms due to their serial-processing nature performed on
digital computers [2, 3]. For large-scale online or real-time applications, the mini-
mal arithmetic operations of such numerical algorithms are usually proportional to
the cube of the matrix dimension n, i.e., O(n3) operations [8]. To remedy the inherent
weaknesses of such numerical algorithms, many parallel-processing computational
methods, including various dynamic system approaches, have been developed and
implemented on specific architectures [9–15]. Note that the aforementioned compu-
tational schemes are theoretically/intrinsically designed for solving time-invariant
(or termed, static, constant) problems (e.g., time-invariant matrix square root find-
ing) rather than time-varying ones. Thus, these schemes may be less accurate and
effective enough, when they are exploited directly to solve for time-varying matrix
square root [16–18].
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130 10 Time-Varying Matrix Square Root

In this chapter, focusing on time-varying matrix square root finding, we propose,
generalize, develop, and investigate eight different ZD models by defining eight
different ZFs as the error-monitoring functions and constructing eight first-order
differential equations to force the ZFs converge to zero. In addition to the theoretical
analysis and results on the convergence characteristics of the proposed ZD models,
the MATLAB Simulink modeling and verification examples are investigated with the
final purpose of FPGA and ASIC realizations [19]. Moreover, some primary software
modeling techniques are investigated to model and simulate such ZD models. The
modeling results further substantiate the efficacy of the proposed ZD models based
on different ZFs for time-varying square root finding.

10.2 ZFs and ZD Models

In this section, we introduce eight different ZFs and propose the resultant ZD models
for time-varying matrix square root finding.

Let us consider the following time-varying matrix square root problem (which
can also be viewed as a time-varying nonlinear matrix equation problem) [16–18]:

X2(t) − A(t) = 0 ∈ R
n×n, t ∈ [0,+∞), (10.1)

where A(t) ∈ R
n×n denotes a smoothly time-varying positive-definite matrix, which,

together with its time derivative Ȧ(t), is assumed to be known numerically or can be
measured accurately. In addition, X (t) ∈ R

n×n is the time-varying unknown matrix
to be solved for. Our objective in this chapter is to find X (t) so that (10.1) holds true
for any t � 0. To lay a basis for further discussion, A(t) is assumed to be nonsingular
at any time instant t ∈ [0,+∞) in this chapter, and thus the inverse of A(t) [(i.e.,
A−1(t)] exists and is obtained.

Besides, the following preliminaries [1, 3, 18] are provided as a basis for further
discussion on solving (10.1).

Definition 10.1 Given a smoothly time-varying matrix A(t) ∈ R
n×n , if matrix

X (t) ∈ R
n×n satisfies the time-varying nonlinear equation X2(t) = A(t), then

X (t) is a time-varying square root of matrix A(t) [or say, X (t) is a time-varying
solution to the presented nonlinear equation (10.1)].

Definition 10.2 Since X (t)X (t)X−1(t)X−1(t) = I (with I ∈ R
n×n denoting

the identity matrix) and X (t)X (t) = X2(t), then X−2(t) is defined as X−2(t) =
X−1(t)X−1(t); i.e., we have X2(t)X−2(t) = I .

Concept 10.1 (Square-root existence condition) If a smoothly time-varying matrix
A(t) ∈ R

n×n is positive-definite (in general sense [18]) at any time instant t ∈
[0,+∞), then there exists a time-varying matrix square root X (t) ∈ R

n×n for
matrix A(t).
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Thus, specifically for solving time-varying matrix square root problem (10.1), in
this chapter, we define eight different ZFs as follows:

E(t) = X2(t)A−1(t) − I, (10.2)

E(t) = A−1(t)X2(t) − I, (10.3)

E(t) = X2(t) − A(t), (10.4)

E(t) = X−2(t) − A−1(t), (10.5)

E(t) = X (t) − A(t)X−1(t), (10.6)

E(t) = X (t) − X−1(t)A(t), (10.7)

E(t) = X−1(t) − A−1(t)X (t), (10.8)

E(t) = X−1(t) − X (t)A−1(t). (10.9)

Before deriving different ZD models from different ZFs, the following theorem
is provided as a basis for further discussion.

Theorem 10.1 The time derivative of X−2(t) [(i.e., d(X−2(t))/dt] is formulated as

d(X−2(t))

dt
= −X−2(t)(X (t)Ẋ(t) + Ẋ(t)X (t))X−2(t). (10.10)

Proof It follows from Definition 10.2 that X2(t)X−2(t) = I . Then, we have

d(X2(t)X−2(t))

dt
= dI

dt
= 0.

Expanding the left-hand side of the above equation, we thus obtain

d(X2(t))

dt
X−2(t) + X2(t)

d(X−2(t))

dt
= 0,

which is further rewritten as

X2(t)
d(X−2(t))

dt
= −d(X2(t))

dt
X−2(t) = −(X (t)Ẋ(t) + Ẋ(t)X (t))X−2(t).

Finally, in view of X2(t)X−2(t) = I , we have

d(X−2(t))

dt
= −X−2(t)(X (t)Ẋ(t) + Ẋ(t)X (t))X−2(t),

which now completes the proof. �
According to the ZD design formula (7.3), different ZFs lead to different ZD

models for time-varying matrix square root finding, which is presented as follows.

http://dx.doi.org/10.1007/978-3-662-47334-4_7
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Note that argument t [e.g., t in X (t)] is omitted in the following derivation of the
ZD models for ease of presentation.

• Let us consider the ZD design formula (7.3), ZF (10.2), and Eq. (7.11) (see also
Theorem 7.1). Then, we have

(Ẋ X + X Ẋ)A−1 − X2(A−1 ȦA−1) = −γ (X2 A−1 − I ).

Thus, based on ZF (10.2), we obtain the following dynamic equation (i.e., a first-
order matrix-valued differential equation) of a ZD model for time-varying matrix
square root finding:

Ẋ X + X Ẋ = X2 A−1 Ȧ − γ (X2 − A). (10.11)

In order to display ZD model (10.11) better, we can get its block diagram. Before
doing this, we transform such a ZD model into the following explicit form:

Ẋ = Ẋ(I − X) − X Ẋ + X2 A−1 Ȧ − γ (X2 − A).

Therefore, we have the resultant block diagram of ZD model (10.11), which is
shown in Fig. 10.1, and the modeling of ZD model (10.11) can also be done in this
manner.

• Considering the ZD design formula (7.3), ZF (10.3), and Eq. (7.11), then we have

−A−1 ȦA−1 X2 + A−1(Ẋ X + X Ẋ) = −γ (A−1 X2 − I ),

which is reformulated as

Ẋ X + X Ẋ = ȦA−1 X2 − γ (X2 − A). (10.12)

Fig. 10.1 Block diagram of
ZD model (10.11) for
time-varying matrix square
root finding
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That is, we obtain another ZD model (10.12), which is based on ZF (10.3), for
time-varying matrix square root finding. In addition, the explicit form of ZD model
(10.12) is

Ẋ = (I − X)Ẋ − Ẋ X + ȦA−1 X2 − γ (X2 − A).

It is worth pointing out that, by comparing the explicit form of the ZD model (10.11)
with that of ZD model (10.12), we can see that the differences between these two
explicit forms lie in the first three terms of the right-hand sides [for comparison,
in the explicit form of (10.16), we have Ẋ(I − X), X Ẋ , and X2 A−1 Ȧ]. Due to
the similarity, the block diagram of ZD model (10.12) is omitted and is left to
interested readers to complete as a topic of exercise.

• With the ZD design formula (7.3) and ZF (10.4) exploited, the following ZD model
is established for time-varying matrix square root finding:

X Ẋ + Ẋ X = −γ (X2 − A) + Ȧ. (10.13)

Thus, ZD model (10.13) based on ZF (10.4) for time-varying matrix square root
finding is obtained, and its explicit form is formulated as

Ẋ = (I − X)Ẋ − Ẋ X + Ȧ − γ (X2 − A).

Note that, as compared to ZD models (10.11) and (10.12), ZD model (10.13) is
viewed as a simplified one (i.e., with less model structure). The block diagram of
ZD model (10.13) can thus be generalized from that of (10.11) or (10.12), and is
omitted here due to the similarity (but is also left to interested readers to complete
as a topic of exercise).

• With the ZD design formula (7.3), ZF (10.5), and Eqs. (7.11) and (10.10) exploited,
we have

−X−2(X Ẋ + Ẋ X)X−2 + A−1 ȦA−1 = −γ (X−2 − A−1),

which is reformulated as

X Ẋ + Ẋ X = X2 A−1 ȦA−1 X2 + γ (X2 − X2 A−1 X2). (10.14)

Thus, we obtain another ZD model (10.14) based on ZF (10.5) for time-varying
matrix square root finding. To depict the block diagram of ZD model (10.14), we
transform such a ZD model into the following explicit form:

Ẋ = Ẋ(I − X) − X Ẋ + X2 A−1 ȦA−1 X2 + γ (X2 − X2 A−1 X2).

Therefore, we have the resultant block diagram of ZD model (10.14) in Fig. 10.2.
• Considering the ZD design formula (7.3), ZF (10.6), and Eq. (7.10) (see also

Theorem 7.1), we have

http://dx.doi.org/10.1007/978-3-662-47334-4_7
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Fig. 10.2 Block diagram of
ZD model (10.14) for
time-varying matrix square
root finding
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Ẋ − ȦX−1 + AX−1 Ẋ X−1 = −γ (X − AX−1),

which is rewritten as

A−1 Ẋ − A−1 ȦX−1 + X−1 Ẋ X−1 = −γ A−1(X − AX−1).

Then, we further have

X A−1 Ẋ X − X A−1 Ȧ + Ẋ = −γ X A−1(X − AX−1)X,

which is finally formulated as

Ẋ = −X A−1 Ẋ X + X A−1 Ȧ − γ X A−1(X2 − A). (10.15)

Thus, based on ZF (10.6), ZD model (10.15) is obtained for time-varying matrix
square root finding, of which the block diagram is shown in Fig. 10.3.

• Similar to the derivation of ZD model (10.15), based on ZF (10.7), we have

X Ẋ A−1 X − ȦA−1 X + Ẋ = −γ X (X − X−1 A)A−1 X,

Ẋ = −X Ẋ A−1 X + ȦA−1 X − γ (X2 − A)A−1 X. (10.16)
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Fig. 10.3 Block diagram of
ZD model (10.15) for
time-varying matrix square
root finding
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Thus, we obtain ZD model (10.16) based on ZF (10.7) for time-varying matrix
square root finding. Note that, like the situation of ZD model (10.11) and ZD
model (10.12), the block diagram of ZD model (10.16) is omitted for its similarity
to that of ZD model (10.15) (and is left to interested readers to complete as a topic
of exercise).

• By using the ZD design formula (7.3), ZF (10.8), and Eqs. (7.10) and (7.11), we
have

−X−1 Ẋ X−1 + A−1 ȦA−1 X − A−1 Ẋ = −γ (X−1 − A−1 X),

and then

Ẋ − X A−1 ȦA−1 X2 + X A−1 Ẋ X = γ (X − X A−1 X2),

which is finally formulated as

Ẋ = X A−1 ȦA−1 X2 − X A−1 Ẋ X − γ X A−1(X2 − A). (10.17)

Therefore, based on ZF (10.8), ZD model (10.17) is obtained for time-varying
matrix square root finding, of which the block diagram is shown in Fig. 10.4.

• Similar to the derivation of ZD model (10.17), based on ZF (10.9), we have

Ẋ − X2 A−1 ȦA−1 X + X Ẋ A−1 X = γ (X − X2 A−1 X),

which is reformulated as

Ẋ = X2 A−1 ȦA−1 X − X Ẋ A−1 X − γ (X2 − A)A−1 X. (10.18)

http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
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Fig. 10.4 Block diagram of
ZD model (10.17) for
time-varying matrix square
root finding
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Table 10.1 Different ZFs resulting in different ZD models for time-varying matrix square root
finding

ZF ZD model

(10.2) Ẋ X + X Ẋ = X2 A−1 Ȧ − γ (X2 − A)

(10.3) Ẋ X + X Ẋ = ȦA−1 X2 − γ (X2 − A)

(10.4) X Ẋ + Ẋ X = Ȧ − γ (X2 − A)

(10.5) X Ẋ + Ẋ X = X2 A−1 ȦA−1 X2 + γ (X2 − X2 A−1 X2)

(10.6) Ẋ = −X A−1 Ẋ X + X A−1 Ȧ − γ X A−1(X2 − A)

(10.7) Ẋ = −X Ẋ A−1 X + ȦA−1 X − γ (X2 − A)A−1 X

(10.8) Ẋ = X A−1 ȦA−1 X2 − X A−1 Ẋ X − γ X A−1(X2 − A)

(10.9) Ẋ = X2 A−1 ȦA−1 X − X Ẋ A−1 X − γ (X2 − A)A−1 X

Thus, we obtain ZD model (10.18) based on ZF (10.9) for time-varying matrix
square root finding. Note that the block diagram of ZD model (10.18) is omitted
for its similarity to that of ZD model (10.17).

In summary, we obtain eight different types of ZD models [i.e., ZD models
(10.11)–(10.18)] for time-varying matrix square root finding, which correspond to
eight different types of ZFs [i.e., ZFs (10.2)–(10.9)]. For readers’ convenience and
also for comparison, such eight different ZNN models corresponding to eight differ-
ent ZFs are listed in Table 10.1.
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10.3 Theoretical Results and Analyses

In this section, theoretical results and analyses are presented, which show the con-
vergence performance of the proposed ZD models (10.11)–(10.18) on solving for
time-varying matrix square root.

Theorem 10.2 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X2(t)A−1(t) − I ∈
R

n×n of ZD model (10.11), converges to zero [which implies that state matrix X (t) ∈
R

n×n of ZD model (10.11) converges to the theoretical positive-definite (or negative-
definite) time-varying matrix square root X∗(t) of matrix A(t)].

Proof From the compact form of the ZD design formula Ė(t) = −γ E(t), a set of
n2 decoupled differential equations can be written equivalently as follows:

ėij(t) = −γ eij(t), (10.19)

for any i ∈ {1, 2, 3, · · · , n} and j ∈ {1, 2, 3, · · · , n}. Thus, to analyze the equivalent
ijth subsystem (10.19), we define a Lyapunov function candidate vij(t) = e2

ij(t)/2 �
0 with its time derivative being

dvij(t)

dt
= eij(t)ėij(t) = −γ e2

ij(t) � 0,

which guarantees the final negative-definiteness of v̇ij (i.e., v̇ij < 0 for eij �= 0
while v̇ij = 0 for eij = 0 only). By Lyapunov theory [20, 21], the equilibrium point
eij = 0 of (10.19) is asymptotically stable, i.e., eij(t) converges to zero, for any
i ∈ {1, 2, 3, · · · , n} and j ∈ {1, 2, 3, · · · , n}. In other words, the matrix-valued
error function E(t) = [ei j (t)] ∈ R

n×n is convergent to zero. In addition, we have
E(t) = X2(t)A−1(t)− I , or equivalently, X2(t)A−1(t) = I +E(t). Since E(t) → 0
as t → +∞, we have X2(t)A−1(t) → I and thus X2(t) → A(t) [(i.e., X (t) →
X∗(t)] as t → +∞. That is, the state matrix X (t) of ZD model (10.11) can converge
to the theoretical time-varying matrix square root X∗(t) of matrix A(t).

Furthermore, when the state matrix X (t) of (10.11) starts from a randomly-
generated positive-definite diagonal initial state-matrix X (0), it can converge to the
positive-definite time-varying matrix square root A1/2(t) [i.e., a form of X∗(t)]. This
can be proven by the contradiction as follows. Suppose that the state matrix X (t)
starting from a positive-definite diagonal initial state-matrix X (0) converges to the
negative-definite time-varying matrix square root −A1/2(t) [i.e., the other form of
X∗(t)], then such a state matrix X (t) must pass through at least one 0-eigenvalue,
which leads to the contradiction that the left- and right-hand sides of the ZD model
(10.11) cannot hold. So, starting from a randomly-generated positive-definite diag-
onal initial state-matrix X (0), the state matrix X (t) of ZD model (10.11) converges
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to the positive-definite time-varying matrix square root A1/2(t). Similarly, it can
also be proved that, starting from a randomly-generated negative-definite diagonal
initial state-matrix X (0), the state matrix X (t) of ZD model (10.11) converges to
the negative-definite time-varying matrix square root −A1/2(t) [i.e., another form of
X∗(t)]. The proof is thus complete. �

As for the other seven ZD models (10.12)–(10.18), we also have the following
convergence results, with the related proofs being generalized from the proof of
Theorem 10.2 and being left to interested readers to complete as a topic of exercise.

Corollary 10.1 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = A−1(t)X2(t) − I ∈
R

n×n of ZD model (10.12), converges to zero [which implies that the state matrix
X (t) ∈ R

n×n of ZD model (10.12) converges to theoretical positive-definite (or
negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.2 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X2(t)− A(t) ∈ R
n×n of

ZD model (10.13), converges to zero [which implies that the state matrix X (t) ∈ R
n×n

of ZD model (10.13) converges to theoretical positive-definite (or negative-definite)
time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.3 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X−2(t) − A−1(t) ∈
R

n×n of ZD model (10.14), converges to zero [which implies that the state matrix
X (t) ∈ R

n×n of ZD model (10.14) converges to theoretical positive-definite (or
negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.4 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X (t) − A(t)X−1(t) ∈
R

n×n of ZD model (10.15), converges to zero [which implies that the state matrix
X (t) ∈ R

n×n of ZD model (10.15) converges to theoretical positive-definite (or
negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.5 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X (t) − X−1(t)A(t) ∈
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R
n×n of ZD model (10.16), converges to zero [which implies that the state matrix

X (t) ∈ R
n×n of ZD model (10.16) converges to theoretical positive-definite (or

negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.6 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X−1(t)− A−1(t)X (t) ∈
R

n×n of ZD model (10.17), converges to zero [which implies that the state matrix
X (t) ∈ R

n×n of ZD model (10.17) converges to theoretical positive-definite (or
negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.7 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X−1(t)−X (t)A−1(t) ∈
R

n×n of ZD model (10.18), converges to zero [which implies that the state matrix
X (t) ∈ R

n×n of ZD model (10.18) converges to theoretical positive-definite (or
negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

10.4 MATLAB Simulink Modeling

According to the aforementioned explicit forms and the presented block diagrams
of the ZD models (10.11), (10.14), (10.15), and (10.17) shown in Figs. 10.1, 10.2,
10.3, and 10.4, the corresponding MATLAB Simulink modeling of such ZD models
[i.e., ZD models (10.11), (10.14), (10.15), and (10.17)] is investigated and presented
in this section for possible circuits implementation and also for the final purpose of
FPGA and ASIC realizations.

10.4.1 Simulink Blocks

MATLAB Simulink contains a comprehensive block library including sinks, sources,
linear, and nonlinear components, as well as connectors. The blocks generally used to
construct ZD models (10.11), (10.14), (10.15), and (10.17) are discussed as follows.

• The MATLAB Fcn block can be employed to (1) generate matrix A(t) using the
Clock block as its input, or (2) compute the matrix norm.

• The Constant block, which outputs a constant specified by its parameter “Constant
value”, can be used to generate the identity matrix.

• The Gain block can be used to scale the neural network convergence, e.g., as a
scaling parameter γ to scale the convergence rate of neural dynamics.
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• The Math Function block can perform various common mathematical operations,
and is used in this chapter for generating the inverse of a matrix.

• The Product block, specified as the standard matrix-wise product mode, can be
used to multiply the matrices involved in the neural-dynamics models.

• The Integrator block makes continuous-time integration on the input signals. For
instance, in the Example 10.1 discussed in the ensuing section, we set its “Initial
condition” as “diag(2 ∗ rand(3, 1))” in order to generate a diagonal positive-
definite initial state-matrix X (0) with its diagonal elements randomly distributed
in [0, 2].
By interconnecting these basic Simulink function blocks and setting appropriate

block parameters, the overall modeling of ZD models (10.11), (10.14), (10.15), and
(10.17) can then be built up readily for time-varying matrix square roots finding,
with the corresponding Simulink models shown in Figs. 10.5, 10.6, 10.7, and 10.8.

10.4.2 Parameter Settings

After showing the overall Simulink models of the proposed ZD models in
Figs. 10.5, 10.6, 10.7 and 10.8, we discuss changing some of the default modeling
environment options. The options setting can be done by using the “Configuration
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Fig. 10.5 Simulink modeling of ZD model (10.11) for time-varying matrix square root finding
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Fig. 10.6 Simulink modeling of ZD model (10.14) for time-varying matrix square root finding
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Fig. 10.7 Simulink modeling of ZD model (10.15) for time-varying matrix square root finding

Parameters” dialog box in the MATLAB Simulink environment [18]. Some important
parameter settings have to be specified as follows:

• Starting time (e.g., 0.0) and Stop time (e.g., 8.0);
• Solver (i.e., integrator algorithm): “ode45 (Dormand-Prince)”;
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Fig. 10.8 Simulink modeling of ZD model (10.17) for time-varying matrix square root finding

• Max step size: “0.2”, and Min step size: “auto”;
• Initial step size: “auto”;
• Relative tolerance: “1e-6” (i.e., 10−6);
• Absolute tolerance:“auto”.

In addition, the check box in front of “States” of the option “Data Import/Export”
should be selected, which is for the purpose of better displaying the ZD modeling
results and is associated with the “StopFcn” code (of “Callbacks” in the dialog box
entitled “Model Properties” which is started from the “File” pull-down menu).

10.5 Illustrative Examples

In the previous sections, different ZD models based on different ZFs have been
proposed and developed for time-varying matrix square root finding, together with
corresponding theoretical results. Based on the above-presented overall Simulink
models depicted in Figs. 10.5, 10.6, 10.7, and 10.8, the ensuing illustrative examples
are investigated to substantiate the efficacy of the proposed ZD models. Note that
the representative ZD models (10.11), (10.14), (10.15), and (10.17) are chosen and
modeled to solve for time-varying matrix square root.

Example 10.1 Let us consider nonlinear equation (10.1) with the following sym-
metric positive-definite time-varying matrix A(t) ∈ R

3×3:
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A(t) =
⎡
⎣

5 + sin2(t) 4sin(t) + exp(−2t) 4 + exp(−2t)sin(t)
4sin(t) + exp(−2t) 4 + sin2(t) + exp(−4t) sin(t) + 4 exp(−2t)
4 + exp(−2t)sin(t) sin(t) + 4 exp(−2t) 5 + exp(−4t)

⎤
⎦.

(10.20)

For such a matrix, the theoretical time-varying square root X∗(t) is

X∗(t) =
⎡
⎣

2 sin(t) 1
sin(t) 2 exp(−2t)

1 exp(−2t) 2

⎤
⎦ ∈ R

3×3,

which is given for comparison purposes, i.e., to check the correctness of the neural
dynamics solutions.

The proposed ZD models (10.11), (10.14), (10.15), and (10.17) are exploited
to solve this problem, and the corresponding modeling results based on the above
Simulink models are illustrated in Figs. 10.9, 10.10, 10.11, and 10.12. As shown in
the left graph of Fig. 10.9, with design parameter γ = 10, the state matrix X (t)
of the proposed ZD model (10.11) denoted by solid curves converges to the theo-
retical time-varying solution X∗(t) denoted by dash-dotted curves. In addition, to
further investigate the convergence performance of ZD model (10.11), we monitor
the residual error ‖E(t)‖F = ‖X2(t) − A(t)‖F during the solving process. As seen
from the right graph of Fig. 10.9, by applying ZD model (10.11) to solve for time-
varying matrix square root, the residual error converges to zero within around 1 s.
For other ZD models [i.e., (10.14), (10.15), and (10.17)], we have the same observa-
tions/conclusions, which are shown in Figs. 10.10 and 10.11 (as well as the related
modeling results which are omitted due to the similarity).

In addition, it is worth pointing out that the convergence performance of the
proposed ZD models can be improved by increasing the value of γ . As an illustra-
tive example, the convergence of residual error ‖E(t)‖F of ZD model (10.11) with
different γ values is shown in Fig. 10.12. As seen from the figure, the convergence
time of ZD model (10.11) can be expedited from around 8 s to 0.08 s and to 0.008 s,
as the γ value is increased from 1 to 100 and to 1000, respectively. This result shows
that ZD model (10.11) has an exponential convergence property, which can be expe-
dited effectively by increasing the value of γ . Note that, for other ZD models [i.e.,
(10.14), (10.15), and (10.17)], we have the same conclusions by observing the related
modeling results, which are omitted here due to the results’ similarity. Being a topic
of exercise, the corresponding modeling verifications of ZD models (10.14), (10.15),
and (10.17) are left for interested readers.

In summary, the above modeling results (i.e., Figs. 10.9, 10.10, 10.11, and 10.12)
have substantiated well the efficacy of the proposed ZD models (10.11), (10.14),
(10.15), and (10.17) for time-varying matrix square root finding.

Example 10.2 In order to further investigate the efficacy of the proposed ZD models
for larger dimension matrices, let us consider nonlinear equation (10.1) with the
following time-varying circulant matrix A(t):



144 10 Time-Varying Matrix Square Root

Fig. 10.9 Convergence
performance of ZD model
(10.11) with γ = 10 for
finding the square root of
time-varying matrix A(t) in
(10.20)
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A(t) =

⎡
⎢⎢⎢⎢⎢⎣

a0(t) a1(t) a2(t) · · · an−1(t)
an−1(t) a0(t) a1(t) · · · an−2(t)
an−2(t) an−1(t) a0(t) · · · an−3(t)

...
...

...
. . .

...

a1(t) a2(t) a3(t) · · · a0(t)

⎤
⎥⎥⎥⎥⎥⎦

∈ R
n×n, (10.21)

in which, without loss of generality, we choose a0(t) = n and ai (t) = sin(i t)/ i
for i = 1, 2, · · · , n − 1. In this example, we choose n = 6. Evidently, the circulant
matrix A(t) is strictly diagonally dominant for any time instant t � 0.

Figure 10.13 shows the modeling results by using the proposed ZD models (10.11),
(10.14), (10.15), and (10.17) with γ = 10 to find the time-varying matrix square root
of the above circulant matrix A(t). As seen from the figure, residual errors ‖E(t)‖F
of such ZD models all converge to zero, which implies that their corresponding state
matrices always converge to the theoretical time-varying square root of A(t). These
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Fig. 10.10 Convergence performance of ZD model (10.14) with γ = 10 for finding the square
root of time-varying matrix A(t) in (10.20)
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results substantiate again the efficacy of the proposed ZD models (10.11), (10.14),
(10.15), and (10.17) for time-varying matrix square root finding.

In summary, the above modeling results have shown the efficacy of the proposed
ZD models (10.11), (10.14), (10.15), and (10.17) based on different ZFs for solving
the time-varying matrix square root problem (10.1); and they have also confirmed the
theoretical analysis and results given in Sect. 10.3. Besides, it is worth mentioning that
the other ZD models [i.e., (10.12), (10.13), (10.16), and (10.18)] are also effectively
exploited for time-varying matrix square root finding. The corresponding modeling
verifications of such ZD models are left to interested readers to complete as a topic
of exercise.

10.6 Summary

In this chapter, to solve for time-varying matrix square root, based on different ZFs
(10.2)–(10.9), different ZD models shown in Table 10.1 [i.e., (10.11)–(10.18)] have
been proposed, generalized, developed, and investigated in the form of the first-order
matrix-valued differential equations. In addition, theoretical analysis and results have
been given to show the convergence performance of such eight different ZD models.
For possible hardware implementation based on electronic circuits, the MATLAB
Simulink modeling of the proposed ZD models has been presented as well. Through
illustrative computer-modeling examples, the efficacy of the proposed ZD models
has been further substantiated for time-varying matrix square root finding [with the
problem formulation depicted in (10.1)].
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