
Chapter 1
Time-Varying Reciprocal

Abstract Along with neural dynamics (based on analog solvers) widely arising
in scientific computation and optimization fields in recent decades which attracts
extensive interest and investigation of researchers, a special type of neural dynamics,
called Zhang dynamics (ZD), has been formally proposed by Zhang et al. for real-
time solution of time-varying problems. By following Zhang et al.’s neural-dynamics
design method, the ZD model, which is based on an indefinite Zhang function (ZF),
can guarantee the exponential convergence performance for time-varying problems
solving. In this chapter, for time-varying reciprocal finding, we propose, generalize,
develop, and investigate different indefinite ZFs as the error-monitoring functions,
which can lead to different ZD models. In addition, for the goal of developing the
floating-point processors or coprocessors for the future generation of computers,
the MATLAB Simulink modeling and simulative verifications of such different ZD
models are presented. The modeling results further substantiate the efficacy of the
proposed ZD models for time-varying reciprocal finding.

1.1 Introduction and Preliminaries

The reciprocal computation, which is described in the form of f (x) = ax −1 = 0, is
considered to be an important operation in a floating-point divider/processor. Thus,
many researches on the reciprocal computation are conducted and presented [1–6].
However, these researches are just for the static reciprocal computation, thereby
making the corresponding methods less accurate enough to solve the time-varying
reciprocal problem in the following form:

f (x(t), t) = a(t)x(t) − 1 = 0 ∈ R, t ∈ [0,+∞), (1.1)

where a(t) �= 0 ∈ R denotes a smoothly time-varying scalar with ȧ(t) ∈ R denoting
the time derivative of a(t), both of which are assumed to be known numerically or
could be measured accurately. In this chapter, we aim at finding the x(t) ∈ R to make
(1.1) hold true at any time instant t ∈ [0,+∞). Furthermore, x∗(t) is used to denote
the theoretical time-varying reciprocal of a(t) [i.e., mathematically, x∗(t) = 1/a(t)].
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4 1 Time-Varying Reciprocal

Remark 1.1 The above x∗(t) is given symbolically for better understanding and
solution comparison, whose the computation of 1/a(t) at every single time instant
t is less practical in real-life applications. Specifically, when we compute 1/a(t) at
a time instant t , as the computation consumes time Δt inevitably, the value of a(t)
is changing during the computation procedure. Thus, the computed result is less
accurate and less effective, since the value of the theoretical time-varying reciprocal
has actually changed to x∗(t+Δt) after the computation. This is the so-called lagging-
error phenomenon. Note that, as for other time-varying problems solving (via the
conventional computation approaches), such types of lagging-error phenomena still
exist. This propels us to develop and investigate an effective computation approach
for real-time solution of various time-varying problems (e.g., the ones presented and
investigated in this chapter as well as Chaps. 2–13).

Generally speaking, in the solving process of (1.1), a real-time solver first receives
the specific data of a(t) at one single time instant; then the solver does computations
based on the present and/or the stored previous data; and finally, it outputs the result
to the user. Note that, in this process, the solver cannot use the future data because
they are unknown and have not come yet at the present time instant. Furthermore,
at every single time instant, we, based on the present and/or previous data, compute
the result for future. This is also because computation consumes time inevitably. As
for the conventional approaches, the computation is based on the present data, and
the computed result is directly used for future. Thus, there exists the lagging-error
problem (see also Remark 1.1), when they are directly exploited to solve the time-
varying reciprocal problem. In other words, these approaches are less effective on the
time-varying reciprocal problem solving. This is the reason why we need to develop
and investigate an effective approach for time-varying reciprocal finding (and further,
for real-time solution of various time-varying problems).

Being different from the conventional neural-dynamics approach (i.e., gradient
dynamics, GD), a special type of neural dynamics, called Zhang dynamics (ZD),
has been formally proposed by Zhang et al. for various time-varying problems solv-
ing [7–13]. According to Zhang et al.’s neural-dynamics design method, the ZD is
designed based on an indefinite Zhang function (ZF) as the error-monitoring function
(where the word “indefinite” here means that such an error-monitoring function can
be positive, zero, negative or even lower-unbounded). This differs from the situa-
tion involved in the design of conventional approaches; for example, a norm-based
positive-definite energy function is generally used in the GD design [8, 11, 12]. Thus,
by making use of the time-derivative information of the time-varying coefficient(s)
involved in the time-varying problem, the resultant ZD models can methodologically
avoid the lagging errors generated by the conventional approaches. Note that such
ZD models can guarantee much better convergence performance to the theoretical
time-varying solution of the time-varying problem in an error-free manner. Besides,
for better understanding and to lay a basis for further investigation, the concepts of
ZD and ZF are presented as follows.
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Concept 1.1 Zhang dynamics (ZD) has been generalized from Zhang neural network
formally since 2008 [12], of which the state dimension can be multiple or one. It
is viewed as a systematic approach to real-time solution of time-varying problems
with scalar situation included as well. It differs from the conventional GD in terms
of the problem to be solved, error function, design formula, dynamic equation, and
the utilization of time-derivative information.

Concept 1.2 Zhang function (ZF), which is also referred to as Zhangian, is the
design basis of ZD. It differs from the usual error/energy functions in the study of
conventional approaches. Specifically, compared with the norm-based scalar-valued
positive or at least lower-bounded energy function usually used in the GD design, ZF
(1) is indefinite (i.e., can be positive, zero, or negative, in addition to being bounded,
unbounded, or even lower unbounded), (2) can be matrix- or vector-valued (when
solving a time-varying matrix- or vector-valued problem), and (3) can be real- or
complex-valued (corresponding to a real- or complex-valued time-varying problem
solving) to monitor and control the process of time-varying problems solving fully.

In this chapter, focusing on time-varying reciprocal finding, we propose, gener-
alize, develop, and investigate different ZD models by defining different ZFs as the
error-monitoring functions. In addition to the theoretical analyses and verifications of
the convergence characteristics of the proposed ZD models, the MATLAB Simulink
modeling [14–16] and illustrative examples are presented and investigated with the
goal of developing the floating-point processors or coprocessors for the future gen-
eration of computers. From the modeling results, the efficacy of the proposed ZD
models based on different ZFs for time-varying reciprocal finding is substantiated.
To the best of the author’s knowledge, almost all reported computation approaches
[1–6] are theoretically/intrinsically designed for static/time-invariant reciprocal find-
ing. There is almost no other literature handling such a specific problem solving, i.e.,
real-time solution of time-varying reciprocal, at present stage.

1.2 ZFs and ZD Models

In this section, we introduce four different ZFs and propose the resultant ZD models
for solving the time-varying reciprocal problem (1.1).

Because the ZF is the design basis for deriving a ZD model and for presentation
convenience, we denote the ZF by e(t) with ė(t) being the time derivative of e(t).
Note that, in this chapter and also in Chaps. 2 and 3, e(t) and ė(t) are used as the
notations of the scalar-valued ZF and its time derivative, respectively. Besides, to lay
a basis for further discussion, the design procedure for a ZD model is presented as
follows.

• First, we define an indefinite ZF as the error-monitoring function to monitor the
process of time-varying reciprocal finding.

• Second, to force e(t) globally and exponentially converge to zero, we choose its
time derivative ė(t) via the following ZD design formula: [7–13]:

http://dx.doi.org/10.1007/978-3-662-47334-4_2
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ė(t) = de(t)

dt
= −γ e(t), (1.2)

where design parameter γ > 0 ∈ R corresponds to the reciprocal of a capacitance
parameter, which should be set as large as the hardware would permit [10, 12, 13,
17], or selected appropriately for the simulative purpose.

• Finally, by expanding the ZD design formula (1.2), the dynamic equation of a ZD
model is thus established for time-varying reciprocal finding.

For the excellent property of global and exponential convergence of the ZD design
formula (1.2), we have the following theorem.

Theorem 1.1 As for the ZD design formula (1.2) which is also a dynamic system,
starting from an initial error e(0) ∈ R, the error function e(t) ∈ R globally and
exponentially converges to zero with rate γ .

Proof For (1.2), by calculus, we obtain its analytical solution as e(t) = e(0)

exp(−γ t). Based on the definition of global and exponential convergence, we
can draw the conclusion that, starting from any e(0), e(t) globally and exponen-
tially converges to zero with rate γ , as time t tends to infinity. The proof is thus
complete. �

Besides, it is worth pointing out here that the aforementioned design procedure for
the scalar situation can also be generalized for deriving the ZD models to solve other
time-varying problems with matrix or vector formulations (e.g., the ones presented
and investigated in Chaps. 4–10).

Specifically, for real-time solution of time-varying reciprocal problem (1.1), in
this chapter, we define the following four different ZFs:

e(t) = x(t) − 1

a(t)
, (1.3)

e(t) = a(t) − 1

x(t)
, (1.4)

e(t) = a(t)x(t) − 1, (1.5)

e(t) = 1

a(t)x(t)
− 1. (1.6)

According to the ZD design formula (1.2), different ZFs lead to different ZD models,
which is detailed as below.

• Let us consider the ZD design formula (1.2) and ZF (1.3). Then, we have

ẋ(t) + 1

a2(t)
ȧ(t) = −γ

(
x(t) − 1

a(t)

)
,

http://dx.doi.org/10.1007/978-3-662-47334-4_4
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which is rewritten as

a2(t)ẋ(t) = −ȧ(t) − γ
(

a2(t)x(t) − a(t)
)
. (1.7)

Thus, we obtain ZD model (1.7) for time-varying reciprocal finding.
• Considering the ZD design formula (1.2) and ZF (1.4), we have

ȧ(t) + 1

x2(t)
ẋ(t) = −γ

(
a(t) − 1

x(t)

)

which is reformulated as

ẋ(t) = −ȧ(t)x2(t) − γ
(

a(t)x2(t) − x(t)
)
. (1.8)

Therefore, ZD model (1.8) for time-varying reciprocal finding is obtained.
• By combining the ZD design formula (1.2) and ZF (1.5), we have

ȧ(t)x(t) + a(t)ẋ(t) = −γ (a(t)x(t) − 1),

and then
a(t)ẋ(t) = −ȧ(t)x(t) − γ (a(t)x(t) − 1). (1.9)

ZD model (1.9) for time-varying reciprocal finding is thus obtained.
• With the ZD design formula (1.2) and ZF (1.6) combined, we have

− 1

a2(t)x2(t)
(ȧ(t)x(t) + a(t)ẋ(t)) = −γ

(
1

a(t)x(t)
− 1

)
,

which is rewritten as

a(t)ẋ(t) = −ȧ(t)x(t) + γ
(

a(t)x(t) − a2(t)x2(t)
)
. (1.10)

Therefore, we come to ZD model (1.10) for time-varying reciprocal finding.

As a result, we have obtained four different types of ZD models [i.e. (1.7)–(1.10)]
for time-varying reciprocal finding, which correspond to four different types of ZFs
[i.e., (1.3)–(1.6)]. For readers’ convenience and also for comparison, such four dif-
ferent ZD model based on four different ZFs for time-varying reciprocal finding are
listed in Table 1.1.
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Table 1.1 Different ZFs resulting in different ZD models for time-varying reciprocal finding

ZF ZD model

(1.3) a2(t)ẋ(t) = −ȧ(t) − γ
(
a2(t)x(t) − a(t)

)
(1.4) ẋ(t) = −ȧ(t)x2(t) − γ

(
a(t)x2(t) − x(t)

)
(1.5) a(t)ẋ(t) = −ȧ(t)x(t) − γ (a(t)x(t) − 1)

(1.6) a(t)ẋ(t) = −ȧ(t)x(t) + γ
(
a(t)x(t) − a2(t)x2(t)

)

1.3 Theoretical Results and Analyses

In this section, four propositions (viewed as the special cases of 1.1) are presented,
which show the convergence properties of the proposed ZD models (1.7)–(1.10) for
time-varying reciprocal finding.

Proposition 1.1 Consider a smoothly time-varying scalar a(t) �= 0 ∈ R involved
in time-varying reciprocal problem (1.1). Starting from randomly-generated initial
state x(0) �= 0 ∈ R which has the same sign as a(0), the neural state x(t) of ZD
model (1.7) derived from ZF (1.3) exponentially converges to the theoretical time-
varying reciprocal x∗(t) of a(t) [i.e., a−1(t)].

Proof We use the well-known Lyapunov method to prove the exponential conver-
gence of ZD model (1.7).

First, starting with ZF (1.3), we define a Lyapunov candidate

V (x(t), t) = 1

2

(
x(t) − 1

a(t)

)2

� 0,

where V (x(t), t) = 0 for any x(t) = a−1(t), and V (x(t), t) > 0 for any x(t) �=
a−1(t). Then, we derive its time derivative as

V̇ (x(t), t) = dV (x(t), t)

dt
=

(
x(t) − 1

a(t)

) (
ẋ(t) + 1

a2(t)
ȧ(t)

)

= −γ

(
x(t) − 1

a(t)

)2

= −2γ V (x(t), t).

Since V (x(t), t) � 0, then V̇ (x(t), t) = −2γ V (x(t), t) � 0, which guarantees the
(final) negative-definiteness of V̇ (x(t), t).

Furthermore, from V̇ (x(t), t) = −2γ V (x(t), t), we have

V (x(t), t) = V (x(0), 0) exp(−2γ t).
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That is,
1

2

(
x(t) − 1

a(t)

)2

= 1

2

(
x(0) − 1

a(0)

)2

exp(−2γ t).

Thus, we have ∣∣∣∣x(t) − 1

a(t)

∣∣∣∣ =
∣∣∣∣x(0) − 1

a(0)

∣∣∣∣ exp(−γ t),

where symbol | · | denotes the absolute value of a scalar. With α = |x(0) − 1/a(0)|,
the above equation is further rewritten as

∣∣∣∣x(t) − 1

a(t)

∣∣∣∣ = α exp(−γ t),

which means that x(t) exponentially converges to a−1(t) with the convergence rate
γ > 0. That is, starting from randomly-generated initial state x(0) �= 0 ∈ R which
has the same sign as a(0), the neural state x(t) of ZD model (1.7) exponentially
converges to the theoretical time-varying reciprocal x∗(t) = a−1(t) of a(t) involved
in time-varying Eq. (1.1). The proof is thus complete. �

As for ZD models (1.8)–(1.10), we also have the following convergence results,
with the related proofs being generalized from the proof of Proposition 1.1 (and
being left to interested readers to complete as a topic of exercise).

Proposition 1.2 Consider a smoothly time-varying scalar a(t) �= 0 ∈ R involved
in time-varying reciprocal problem (1.1). Starting from randomly-generated initial
state x(0) �= 0 ∈ Rwhich has the same sign as a(0), the neural state x(t) of ZD model
(1.8) derived from ZF (1.4) converges to the theoretical time-varying reciprocal x∗(t)
of a(t) [i.e., a−1(t)], with the error defined in ZF (1.4) exponentially convergent to
zero.

Proposition 1.3 Consider a smoothly time-varying scalar a(t) �= 0 ∈ R involved
in time-varying reciprocal problem (1.1). Starting from randomly-generated initial
state x(0) �= 0 ∈ Rwhich has the same sign as a(0), the neural state x(t) of ZD model
(1.9) derived from ZF (1.5) converges to the theoretical time-varying reciprocal x∗(t)
of a(t) [i.e., a−1(t)], with the error defined in ZF (1.5) exponentially convergent to
zero.

Proposition 1.4 Consider a smoothly time-varying scalar a(t) �= 0 ∈ R involved
in time-varying reciprocal problem (1.1). Starting from randomly-generated initial
state x(0) �= 0 ∈ R which has the same sign as a(0), the neural state x(t) of
ZD model (1.10) derived from ZF (1.6) converges to the theoretical time-varying
reciprocal x∗(t) of a(t) [i.e., a−1(t)], with the error defined in ZF (1.6) exponentially
convergent to zero.
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1.4 Simulink Modeling

For possible hardware implementation based on digital circuits and also for the goal
of developing the floating-point processors or coprocessors for the future genera-
tion of computers, the MATLAB Simulink modeling of the proposed ZD models
(1.7)–(1.10) is investigated and presented in this section. Before doing this, we need
to transform some of such ZD models into the following explicit forms, with the
corresponding block diagrams depicted in Fig. 1.1.

• For ZD model (1.7),

ẋ(t) =
(

1 − a2(t)
)

ẋ(t) − ȧ(t) − γ
(

a2(t)x(t) − a(t)
)
.

• For ZD model (1.8), it is already in the explicit form, and does not need to be
transformed.

• For ZD model (1.9),

ẋ(t) = (1 − a(t)) ẋ(t) − ȧ(t)x(t) − γ (a(t)x(t) − 1).

− −

+

−

+

ȧ(t)

a(t)

1−a2(t)

a2(t)

x(t)ẋ(t)
ΣΣ γ +

−

−

−

ΣΣ γ

a(t) ȧ(t)

(·)2

x(t)ẋ(t)

+

+−

−

−

Σ

Σ

γ

a(t)

ȧ(t)

x(t)ẋ(t)

1−a(t)

1 +

−

+

−

+

Σ

Σ

γ

a(t)

ȧ(t)

(·)2

x(t)ẋ(t)

1−a(t)

a2(t)

Fig. 1.1 Block diagrams of ZD models (1.7)–(1.10) for time-varying reciprocal finding
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• For ZD model (1.10),

ẋ(t) = (1 − a(t)) ẋ(t) − ȧ(t)x(t) + γ
(

a(t)x(t) − a2(t)x2(t)
)
.

Therefore, the overall Simulink models of the proposed ZD models are shown in
Figs. 1.2 and 1.3, in which a(t) is generated by employing the “MATLAB Function”
block using the “Clock” block as its input.

1.5 Illustrative Examples

In the previous sections, we have proposed the ZD models based on different ZFs for
time-varying reciprocal finding, together with corresponding propositions and theo-
retical analyses. Based on the aforementioned Simulink models depicted in Figs. 1.2
and 1.3, the ensuing illustrative examples are shown to substantiate the efficacy of
the proposed ZD models (1.7)–(1.10).

MATLAB
Function

To Workspace

simout

Scope1

Scope

Product3

Product2

Product1

Product
Integrator

1
s

Gain

−1

Derivative

du/dt

Constant1

1

Constant

1

Clock

Add3

Add2

Add1

Add

a(t)

γ x(t)

e(t)

ȧ(t)

ẋ(t)

MATLAB
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Product1

Product Integrator

1
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−1
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−1
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Derivative

du/dt

Constant

1

Clock

Add3

a(t)

γ

x(t)

e(t)

ȧ(t)
ẋ(t)

Fig. 1.2 Simulink modeling of ZD models (1.7) and (1.8) for time-varying reciprocal finding
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MATLAB
Function
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Scope
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Product
Integrator

1
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−1
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du/dt

Constant 1

1
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1
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Add 2

Add 1

Add
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e(t)

ȧ(t)

ẋ(t)

MATLAB
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Product2
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Product

Integrator

1
s
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−1

Derivative

du/dt

Constant2

1
Constant1

1

Constant

1

Clock

Add3

Add2

Add1

Add

a(t)

γ
x(t)

e(t)

ȧ(t)
ẋ(t)

Fig. 1.3 Simulink modeling of ZD models (1.9) and (1.10) for time-varying reciprocal finding

Example 1.1 Let us consider the following time-varying reciprocal problem [in
which a(t) = sin(3t) + cos(sin(2t)) + 2 is involved]:

f (x(t), t) = (sin(3t) + cos(sin(2t)) + 2) x(t) − 1 = 0. (1.11)

The proposed ZD models (1.7)–(1.10) are exploited to solve this problem (1.11). It
is easy to see that the theoretical initial reciprocal value is x∗(0) = 1/a(0) ≈ 0.333.
For convenience of observation, the initial state (or to say, starting value) x(0) is
randomly generated within [0.2, 0.4], i.e., x(0) ∈ [0.2, 0.4]. The simulation results
based on the Simulink models are presented in Fig. 1.4. As shown in the figure, with
design parameter γ = 10, the states x(t) of the proposed ZD models all converge
to the theoretical time-varying reciprocal x∗(t) = a−1(t), i.e., the theoretical time-
varying solution of (1.11), in a rather short time (i.e., in less than 1 s). Through
this example, we have primarily shown the efficacy of the proposed ZD models
(1.7)–(1.10) for solving the time-varying reciprocal problem.

Example 1.2 In this example, we are considering a more complicated situation of
the time-varying reciprocal problem, i.e.,

f (x(t), t) = (sin(cos(4t)) + exp(− sin(3t)) + cos(t) + 2) x(t) − 1 = 0, (1.12)
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Fig. 1.4 State trajectories of ZD models (1.7)–(1.10) with design parameter γ = 10 for solving
the time-varying reciprocal problem (1.11), where dash-dotted curves correspond to the theoretical
time-varying reciprocal a−1(t), i.e., the theoretical solution of (1.11)

so as to investigate the general applicability of the proposed ZD models. In other
words, a(t) = sin(cos(4t)) + exp(− sin(3t)) + cos(t) + 2.

Similar to the way of Example 1.1, the proposed ZD models (1.7)–(1.10) are
exploited to solve this reciprocal problem depicted in (1.12), and the correspond-
ing simulation results are illustrated in Fig. 1.5. As shown in Fig. 1.5, with design-
parameter γ = 10 and the initial state x(0) randomly generated within [0.1, 0.4],
the state trajectories of the proposed ZD models (1.7)–(1.10) all fit well with the
theoretical time-varying reciprocal x∗(t), i.e., the theoretical time-varying solution
of (1.12), rapidly (i.e., in less than 1 s).

From the above two examples, we can draw the conclusion that, either for a
simple problem (1.11) or a more complicated problem (1.12), the proposed ZD
models (1.7)–(1.10) based on different ZFs (1.3)–(1.6) can all solve the time-varying
reciprocal problem efficiently. That is, with appropriate values of design parameter
γ and initial state x(0), the neural states of the proposed ZD models all converge to
the time-varying theoretical solution of the time-varying reciprocal problem rapidly
and accurately. Thus, the efficacy of the proposed ZD models (1.7)–(1.10) for time-
varying reciprocal finding is substantiated well.
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Fig. 1.5 State trajectories of ZD models (1.7)–(1.10) with design parameter γ = 10 for solving
the time-varying reciprocal problem (1.12), where dash-dotted curves correspond to the theoretical
time-varying reciprocal a−1(t), i.e., the theoretical solution of (1.12)

Example 1.3 As mentioned previously, the value of design parameter γ may affect
the convergence performance of the proposed ZD models (1.7)–(1.10). Let us
consider the following time-varying reciprocal problem [in which a(t) = sin(t)
cos(2t) + 2]:

f (x(t), t) = (sin(t) cos(2t) + 2) x(t) − 1 = 0. (1.13)

In this example, ZD model (1.7) is exploited to solve (1.13) with the initial state
x(0) randomly generated within [0.4, 0.6]. The computational errors e(t) = x(t) −
1/(sin(t) cos(2t) + 2) with respect to different values of γ are displayed in Fig. 1.6.
As seen from the figure, the convergence time of the computational error e(t) to zero
is becoming much shorter (i.e., from about 0.6 s to about 0.006 ) when the γ value
increases from 10 to 1000. This simulation result indicates that design parameter γ

plays an important role in the proposed ZD model (1.7), and should be set as large as
the hardware would permit, or selected appropriately large for simulative purposes.
Furthermore, the exponential-convergence characteristics of ZD model (1.7) can also
be seen comparatively from Fig. 1.6. Note that the same conclusion applies to other
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Fig. 1.6 Computational
errors e(t) =
x(t) − 1/(sin(t) cos(2t) + 2)

of ZD model (1.7) for
solving the time-varying
reciprocal problem (1.13)
with different values of γ
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ZD models [i.e., (1.8)–(1.10)], of which the related modeling results are omitted due
to results similarity. Besides, the modeling testings of ZD models (1.8)–(1.10) are
left to interested readers to complete as a topic of exercise.

1.6 Summary

In this chapter, by following Zhang et al.’s neural-dynamics design method and based
on the Zhang function (ZF) as the error-monitoring function, a special type of neural
dynamics, called Zhang dynamics (ZD), has been presented and investigated for
real-time solution of time-varying reciprocal problem, which is in the time-varying
form of f (x(t), t) = a(t)x(t) − 1 = 0 [i.e., (1.1)]. Specifically, based on different
ZFs (1.3)–(1.6), different ZD models (1.7)–(1.10) have thus been proposed, gener-
alized, developed, and investigated for time-varying reciprocal finding. Moreover,
theoretical analyses have been given to substantiate the exponential convergence of
the proposed ZD models. For possible hardware implementations based on digital
circuits and for the goal of developing the floating-point processors or coprocessors
for the future generation of computers, the MATLAB Simulink modeling of such
proposed ZD models has been presented and investigated in this chapter. Through
three illustrative examples, the efficacy of the proposed ZD models (1.7)–(1.10) has
been further substantiated.
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