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Preface

Time-varying mathematical problems are frequently encountered in scientific and
engineering applications, such as circuit parameters in electronic circuits, aerody-
namic coefficients in high-speed aircraft, and mechanical parameters in machinery.
How to solve the time-varying problem effectively is becoming more and more
necessary and important (as it is usually an essential part of many solutions). As we
know, the common way to solve the time-varying problem is to treat such a
problem as a static problem within a small time period (i.e., assume the short-time
invariance of the problem). Then, the related numerical algorithms and/or neural-
dynamics methods are developed to solve the problem at each single time instant,
where the change trend of the time-varying coefficient(s) is not exploited. As for
these conventional approaches, the computation is based on the present data, and
the computed result is directly used for future. Thus, there exist lagging-error
phenomena, when they are directly exploited to solve time-varying problems. In
other words, the aforementioned approaches, which are designed theoretically/
intrinsically for solving the static (or say, time-invariant, constant) problems, are
less effective and efficient on time-varying problems solving.

Since March 12, 2001, Zhang et al. have formally proposed, investigated, and
developed a special class of recurrent neural networks (i.e., Zhang neural network),
which have been analyzed theoretically and substantiated comparatively for solving
time-varying problems precisely and efficiently. By following the previous research
on Zhang neural network, Zhang dynamics (ZD) has been generalized and further
developed since 2008, whose state dimension can be multiple or one. It is viewed as
a systematic approach to solving time-varying problems with the scalar situation
included. It differs from conventional gradient dynamics (GD) in terms of the
problem to be solved, error function, design formula, dynamic equation, and the
utilization of time-derivative information. Besides, Zhang function (ZF), which is
also referred to as Zhangian, is the design basis of ZD. It differs from the usual
error/energy functions in the study of conventional approaches. Specifically,
compared with the norm-based scalar-valued positive or at least lower-bounded
energy function usually used in the GD design, ZF (1) is indefinite (i.e., can be
positive, zero, or negative, in addition to being bounded, unbounded, or even lower
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unbounded), (2) can be matrix- or vector-valued (when solving a time-varying
matrix- or vector-valued problem), and (3) can be real- or complex-valued (cor-
responding to a real- or complex-valued time-varying problem solving) to monitor
and control the process of time-varying problems solving fully.

In this book, focusing on solving different types of time-varying problems, we
design, propose, develop, analyze, model, and simulate various ZD models by
defining various ZFs in real and complex domains. Specifically, in the real domain,
we define three different classes of ZFs, i.e., scalar-valued ZFs, vector-valued ZFs
and matrix-valued ZFs, for developing the resultant ZD models to solve the cor-
responding time-varying (scalar/vector/matrix-valued) problems. In the complex
domain, we define different complex-valued ZFs for developing the resultant ZD
models to solve three different types of complex-valued time-varying problems (one
is with scalar formulation, and the rest are with matrix formulations). As for these
ZD models, the related theoretical analyses are given, and the corresponding
modeling (together with block diagrams) is illustrated. Computer simulations with
various illustrative examples are performed to substantiate the efficacy of the pro-
posed ZD models for time-varying problems solving. The simulation results also
show the feasibility of the presented ZD approach (i.e., different ZFs leading to
different ZD models) for real-time solution of time-varying problems. Based on
these successful researches, we further apply such a ZD approach to repetitive
motion planning (RMP) of redundant robot manipulators (including fixed-base and
mobile ones). The corresponding results show the application prospect of the
presented ZD approach to robots RMP.

The idea for this book on neural dynamics was conceived during classroom
teaching as well as during research discussion in the laboratory and at international
scientific meetings. Most of the materials in this book are derived from the authors’
papers published in journals and proceedings of international conferences. In fact,
since the early 1980s, the field of neural networks/dynamics has undergone phases
of exponential growth, generating many new theoretical concepts and tools
(including the authors’ ones). At the same time, these theoretical results have been
applied successfully to the solution of many practical problems. Our first priority is
thus to cover each central topic in enough detail to make the material clear and
coherent; in other words, each part (and even each chapter) is written in a relatively
self-contained manner.

This book contains 15 chapters which are classified into the following five parts.

Part I: Scalar-Valued ZF in Real Domain (Chaps. 1–3);
Part II: Vector-Valued ZF in Real Domain (Chaps. 4–6);
Part III: Matrix-Valued ZF in Real Domain (Chaps. 7–10);
Part IV: ZF in Complex Domain (Chaps. 11–13);
Part V: ZF Application to Robot Control (Chaps. 14 and 15).

Chapter 1—In this chapter, we propose and develop four different indefinite ZFs
as the error-monitoring functions, which lead to four different ZD models for time-
varying reciprocal finding. In addition, theoretical analyses and Simulink modeling
of such different ZD models are presented. Computer simulation results with
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three illustrative examples further substantiate the efficacy of the ZD models for
time-varying reciprocal finding.

Chapter 2—In this chapter, by introducing six different ZFs, we propose,
develop, and investigate six different ZD models to solve for time-varying inverse
square root. In addition, this chapter presents theoretical analyses and Simulink
modeling of such ZD models. Computer simulation results with two illustrative
examples further substantiate the efficacy of the ZD models for time-varying
inverse square root finding.

Chapter 3—In this chapter, six different ZD models are proposed, developed,
and investigated by introducing six different ZFs for time-varying square root
finding. In addition, the Simulink modeling of such ZD models is presented.
Computer simulation results with two illustrative examples further substantiate the
efficacy of the ZD models for time-varying square root finding.

Chapter 4—In this chapter, by following the idea of ZF, two ZD models are
proposed, developed, and investigated for solving system of time-varying linear
equations. In addition, it is theoretically proved that such two ZD models globally
and exponentially converge to the theoretical time-varying solution of system of
time-varying linear equations. Computer simulation results with three illustrative
examples further substantiate the efficacy (as well as theoretical analyses) of the ZD
models for solving system of time-varying linear equations.

Chapter 5—In this chapter, focusing on solving over-determined system of time-
varying linear equations, we first propose, develop, and investigate two ZD models
based on two different ZFs. Then, by introducing anther two different ZFs, another
two ZD models are proposed, developed, and investigated for solving under-
determined system of time-varying linear equations. Computer simulation results
with four illustrative examples further substantiate the efficacy of such ZD models
for solving over-determined and under-determined systems of time-varying linear
equations.

Chapter 6—In this chapter, by introducing three different ZFs, we propose,
develop, and investigate three different ZD models for solving time-varying linear
matrix-vector inequality. Theoretical analyses and results are presented as well to
show the excellent convergence performance of such ZD models. Computer sim-
ulation results with two illustrative examples further substantiate the efficacy of the
ZD models for time-varying linear matrix-vector inequality solving.

Chapter 7—In this chapter, focusing on time-varying matrix inversion, we
propose and develop six different ZFs that lead to six different ZD models.
Meanwhile, a specific relationship between the ZD model and the Getz and
Marsden (G-M) dynamic system is discovered. Eventually, theoretical analyses and
Simulink modeling of such different ZD models are presented. Computer simula-
tion results with two illustrative examples further substantiate the efficacy of the ZD
models for time-varying matrix inversion.

Chapter 8—In this chapter, by introducing five different ZFs, we propose,
develop, and investigate five different ZD models for time-varying matrix left
pseudoinversion. In addition, the link between the ZD model and G-M dynamic
system is discovered for time-varying matrix left pseudoinverse solving.

Preface ix

http://dx.doi.org/10.1007/978-3-662-47334-4_2
http://dx.doi.org/10.1007/978-3-662-47334-4_3
http://dx.doi.org/10.1007/978-3-662-47334-4_4
http://dx.doi.org/10.1007/978-3-662-47334-4_5
http://dx.doi.org/10.1007/978-3-662-47334-4_6
http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_8


Theoretical analyses and computer simulation results with three illustrative exam-
ples further substantiate the efficacy of the ZD models on solving for the time-
varying matrix left pseudoinverse.

Chapter 9—In this chapter, by introducing four different ZFs, four different ZD
models are proposed, developed, and investigated for time-varying right pseudo-
inversion. In addition, the link between the ZD model and G-M dynamic system is
discovered to solve for time-varying matrix right pseudoinverse. Theoretical results
and computer simulations with three illustrative examples further substantiate the
efficacy of the ZD models for time-varying matrix right pseudoinversion.

Chapter 10—In this chapter, eight different indefinite ZFs, which lead to eight
different ZD models, are proposed and developed as the error-monitoring functions
for time-varying matrix square root finding. In addition, theoretical analyses and
Simulink modeling of such ZD models are presented. Computer simulation results
with two illustrative examples further substantiate the efficacy of the ZD models for
time-varying matrix square root finding.

Chapter 11—In this chapter, by introducing four different ZFs in complex
domain, four different ZD models are proposed, developed, and investigated to
solve for time-varying complex reciprocal. Computer simulation results with three
illustrative examples further substantiate the efficacy of the complex ZD models for
time-varying complex reciprocal finding.

Chapter 12—In this chapter, focusing on time-varying complex matrix inver-
sion, we propose, develop, and investigate three different complex ZD models by
introducing three different complex ZFs. Computer simulation results with four
illustrative examples further substantiate the efficacy of the complex ZD models for
time-varying complex matrix inversion.

Chapter 13—In this chapter, by introducing five different complex ZFs, five
different complex ZD models are proposed, developed, and investigated to solve for
time-varying complex matrix generalized inverse (in most cases, the complex
pseudoinverse). Meanwhile, theoretical analyses and results are presented to show
the convergence properties of such complex ZD models. In addition, we discover
the link between the complex ZD model and G-M dynamic system in complex
domain. Computer simulation results with four illustrative examples further sub-
stantiate the efficacy of the complex ZD models for time-varying complex matrix
generalized inverse solving.

Chapter 14—In this chapter, by introducing two different ZFs and by exploiting
the ZD design formula, an acceleration-level RMP performance index is proposed,
developed and investigated for fixed-base redundant robot manipulators. The
resultant RMP scheme, which incorporates joint-angle, joint-velocity, and joint-
acceleration limits, is further presented and investigated to remedy the joint-angle
drift phenomenon offixed-base redundant robot manipulators. Such a scheme is then
reformulated as a quadratic program (QP), which is solved by a primal–dual neural
network. With three path-tracking examples, computer simulation results based on
PUMA560 robot manipulator substantiate well the effectiveness and accuracy of the
acceleration-level RMP scheme, as well as show the application prospect of the
presented ZD approach (i.e., different ZFs leading to different ZD models).
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Chapter 15—In this chapter, by introducing three different ZFs and by exploiting
the ZD design formula, we propose, develop, and investigate a velocity-level RMP
performance index for mobile redundant robot manipulators. Then, based on such a
performance and with physical limits considered, the resultant RMP scheme is
presented and investigated to remedy the joint-angle drift phenomenon of mobile
redundant robot manipulators. Such a scheme is reformulated as a QP, which is
solved by a numerical algorithm. With two path-tracking examples, computer
simulation results based on a wheeled mobile robot manipulator substantiate well
the effectiveness and accuracy of the velocity-level RMP scheme, and show the
application prospect of the presented ZD approach once again.

In summary, this book presents a novel approach (i.e., different ZFs resulting in
different ZD models) for solving various time-varying problems in real and com-
plex domains, and further applies such an approach to RMP control of different
types of robot manipulators (showing its application prospect). This book is written
for graduate students as well as academic and industrial researchers studying in the
developing fields of neural dynamics, computer mathematics, time-varying com-
putation, simulation and modeling, analog hardware, and robotics. It provides a
comprehensive view of the combined research of these fields, in addition to its
accomplishments, potentials, and perspectives. We do hope that this book will
generate curiosity and also happiness to its readers for learning more in the fields
and the research, and that it will provide new challenges to seek new theoretical
tools and practical applications.

At the end of this Preface, it is worth pointing out that, in this book, a new and
inspiring direction on the definition of the error function (or say, the energy
function involved in convention researches) is provided for the neural-dynamics
construction. This opens the door on defining the error function from a single
definition equation of the specific problem to be solved to various appropriate
formulations (resulting in various neural-dynamics models that can be chosen for
practitioners in accordance with specific requests). It may promise to become a
major inspiration for studies and researches in neural dynamics, time-varying
problems solving, prediction, and dynamic decision making. Without doubt, this
book can be extended. Any comments or suggestions are welcome. The authors can
be contacted via e-mail: zhynong@mail.sysu.edu.cn, and gdongsh2008@126.com.
The web page of Yunong Zhang is http://sist.sysu.edu.cn/*zhynong/.

Guangzhou, China Yunong Zhang
March 2015 Dongsheng Guo
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Chapter 1
Time-Varying Reciprocal

Abstract Along with neural dynamics (based on analog solvers) widely arising
in scientific computation and optimization fields in recent decades which attracts
extensive interest and investigation of researchers, a special type of neural dynamics,
called Zhang dynamics (ZD), has been formally proposed by Zhang et al. for real-
time solution of time-varying problems. By following Zhang et al.’s neural-dynamics
design method, the ZD model, which is based on an indefinite Zhang function (ZF),
can guarantee the exponential convergence performance for time-varying problems
solving. In this chapter, for time-varying reciprocal finding, we propose, generalize,
develop, and investigate different indefinite ZFs as the error-monitoring functions,
which can lead to different ZD models. In addition, for the goal of developing the
floating-point processors or coprocessors for the future generation of computers,
the MATLAB Simulink modeling and simulative verifications of such different ZD
models are presented. The modeling results further substantiate the efficacy of the
proposed ZD models for time-varying reciprocal finding.

1.1 Introduction and Preliminaries

The reciprocal computation, which is described in the form of f (x) = ax −1 = 0, is
considered to be an important operation in a floating-point divider/processor. Thus,
many researches on the reciprocal computation are conducted and presented [1–6].
However, these researches are just for the static reciprocal computation, thereby
making the corresponding methods less accurate enough to solve the time-varying
reciprocal problem in the following form:

f (x(t), t) = a(t)x(t) − 1 = 0 ∈ R, t ∈ [0,+∞), (1.1)

where a(t) �= 0 ∈ R denotes a smoothly time-varying scalar with ȧ(t) ∈ R denoting
the time derivative of a(t), both of which are assumed to be known numerically or
could be measured accurately. In this chapter, we aim at finding the x(t) ∈ R to make
(1.1) hold true at any time instant t ∈ [0,+∞). Furthermore, x∗(t) is used to denote
the theoretical time-varying reciprocal of a(t) [i.e., mathematically, x∗(t) = 1/a(t)].

© Springer-Verlag Berlin Heidelberg 2015
Y. Zhang and D. Guo, Zhang Functions and Various Models,
DOI 10.1007/978-3-662-47334-4_1
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4 1 Time-Varying Reciprocal

Remark 1.1 The above x∗(t) is given symbolically for better understanding and
solution comparison, whose the computation of 1/a(t) at every single time instant
t is less practical in real-life applications. Specifically, when we compute 1/a(t) at
a time instant t , as the computation consumes time Δt inevitably, the value of a(t)
is changing during the computation procedure. Thus, the computed result is less
accurate and less effective, since the value of the theoretical time-varying reciprocal
has actually changed to x∗(t+Δt) after the computation. This is the so-called lagging-
error phenomenon. Note that, as for other time-varying problems solving (via the
conventional computation approaches), such types of lagging-error phenomena still
exist. This propels us to develop and investigate an effective computation approach
for real-time solution of various time-varying problems (e.g., the ones presented and
investigated in this chapter as well as Chaps. 2–13).

Generally speaking, in the solving process of (1.1), a real-time solver first receives
the specific data of a(t) at one single time instant; then the solver does computations
based on the present and/or the stored previous data; and finally, it outputs the result
to the user. Note that, in this process, the solver cannot use the future data because
they are unknown and have not come yet at the present time instant. Furthermore,
at every single time instant, we, based on the present and/or previous data, compute
the result for future. This is also because computation consumes time inevitably. As
for the conventional approaches, the computation is based on the present data, and
the computed result is directly used for future. Thus, there exists the lagging-error
problem (see also Remark 1.1), when they are directly exploited to solve the time-
varying reciprocal problem. In other words, these approaches are less effective on the
time-varying reciprocal problem solving. This is the reason why we need to develop
and investigate an effective approach for time-varying reciprocal finding (and further,
for real-time solution of various time-varying problems).

Being different from the conventional neural-dynamics approach (i.e., gradient
dynamics, GD), a special type of neural dynamics, called Zhang dynamics (ZD),
has been formally proposed by Zhang et al. for various time-varying problems solv-
ing [7–13]. According to Zhang et al.’s neural-dynamics design method, the ZD is
designed based on an indefinite Zhang function (ZF) as the error-monitoring function
(where the word “indefinite” here means that such an error-monitoring function can
be positive, zero, negative or even lower-unbounded). This differs from the situa-
tion involved in the design of conventional approaches; for example, a norm-based
positive-definite energy function is generally used in the GD design [8, 11, 12]. Thus,
by making use of the time-derivative information of the time-varying coefficient(s)
involved in the time-varying problem, the resultant ZD models can methodologically
avoid the lagging errors generated by the conventional approaches. Note that such
ZD models can guarantee much better convergence performance to the theoretical
time-varying solution of the time-varying problem in an error-free manner. Besides,
for better understanding and to lay a basis for further investigation, the concepts of
ZD and ZF are presented as follows.

http://dx.doi.org/10.1007/978-3-662-47334-4_2
http://dx.doi.org/10.1007/978-3-662-47334-4_13


1.1 Introduction and Preliminaries 5

Concept 1.1 Zhang dynamics (ZD) has been generalized from Zhang neural network
formally since 2008 [12], of which the state dimension can be multiple or one. It
is viewed as a systematic approach to real-time solution of time-varying problems
with scalar situation included as well. It differs from the conventional GD in terms
of the problem to be solved, error function, design formula, dynamic equation, and
the utilization of time-derivative information.

Concept 1.2 Zhang function (ZF), which is also referred to as Zhangian, is the
design basis of ZD. It differs from the usual error/energy functions in the study of
conventional approaches. Specifically, compared with the norm-based scalar-valued
positive or at least lower-bounded energy function usually used in the GD design, ZF
(1) is indefinite (i.e., can be positive, zero, or negative, in addition to being bounded,
unbounded, or even lower unbounded), (2) can be matrix- or vector-valued (when
solving a time-varying matrix- or vector-valued problem), and (3) can be real- or
complex-valued (corresponding to a real- or complex-valued time-varying problem
solving) to monitor and control the process of time-varying problems solving fully.

In this chapter, focusing on time-varying reciprocal finding, we propose, gener-
alize, develop, and investigate different ZD models by defining different ZFs as the
error-monitoring functions. In addition to the theoretical analyses and verifications of
the convergence characteristics of the proposed ZD models, the MATLAB Simulink
modeling [14–16] and illustrative examples are presented and investigated with the
goal of developing the floating-point processors or coprocessors for the future gen-
eration of computers. From the modeling results, the efficacy of the proposed ZD
models based on different ZFs for time-varying reciprocal finding is substantiated.
To the best of the author’s knowledge, almost all reported computation approaches
[1–6] are theoretically/intrinsically designed for static/time-invariant reciprocal find-
ing. There is almost no other literature handling such a specific problem solving, i.e.,
real-time solution of time-varying reciprocal, at present stage.

1.2 ZFs and ZD Models

In this section, we introduce four different ZFs and propose the resultant ZD models
for solving the time-varying reciprocal problem (1.1).

Because the ZF is the design basis for deriving a ZD model and for presentation
convenience, we denote the ZF by e(t) with ė(t) being the time derivative of e(t).
Note that, in this chapter and also in Chaps. 2 and 3, e(t) and ė(t) are used as the
notations of the scalar-valued ZF and its time derivative, respectively. Besides, to lay
a basis for further discussion, the design procedure for a ZD model is presented as
follows.

• First, we define an indefinite ZF as the error-monitoring function to monitor the
process of time-varying reciprocal finding.

• Second, to force e(t) globally and exponentially converge to zero, we choose its
time derivative ė(t) via the following ZD design formula: [7–13]:

http://dx.doi.org/10.1007/978-3-662-47334-4_2
http://dx.doi.org/10.1007/978-3-662-47334-4_3


6 1 Time-Varying Reciprocal

ė(t) = de(t)

dt
= −γ e(t), (1.2)

where design parameter γ > 0 ∈ R corresponds to the reciprocal of a capacitance
parameter, which should be set as large as the hardware would permit [10, 12, 13,
17], or selected appropriately for the simulative purpose.

• Finally, by expanding the ZD design formula (1.2), the dynamic equation of a ZD
model is thus established for time-varying reciprocal finding.

For the excellent property of global and exponential convergence of the ZD design
formula (1.2), we have the following theorem.

Theorem 1.1 As for the ZD design formula (1.2) which is also a dynamic system,
starting from an initial error e(0) ∈ R, the error function e(t) ∈ R globally and
exponentially converges to zero with rate γ .

Proof For (1.2), by calculus, we obtain its analytical solution as e(t) = e(0)

exp(−γ t). Based on the definition of global and exponential convergence, we
can draw the conclusion that, starting from any e(0), e(t) globally and exponen-
tially converges to zero with rate γ , as time t tends to infinity. The proof is thus
complete. �

Besides, it is worth pointing out here that the aforementioned design procedure for
the scalar situation can also be generalized for deriving the ZD models to solve other
time-varying problems with matrix or vector formulations (e.g., the ones presented
and investigated in Chaps. 4–10).

Specifically, for real-time solution of time-varying reciprocal problem (1.1), in
this chapter, we define the following four different ZFs:

e(t) = x(t) − 1

a(t)
, (1.3)

e(t) = a(t) − 1

x(t)
, (1.4)

e(t) = a(t)x(t) − 1, (1.5)

e(t) = 1

a(t)x(t)
− 1. (1.6)

According to the ZD design formula (1.2), different ZFs lead to different ZD models,
which is detailed as below.

• Let us consider the ZD design formula (1.2) and ZF (1.3). Then, we have

ẋ(t) + 1

a2(t)
ȧ(t) = −γ

(
x(t) − 1

a(t)

)
,

http://dx.doi.org/10.1007/978-3-662-47334-4_4
http://dx.doi.org/10.1007/978-3-662-47334-4_10


1.2 ZFs and ZD Models 7

which is rewritten as

a2(t)ẋ(t) = −ȧ(t) − γ
(

a2(t)x(t) − a(t)
)
. (1.7)

Thus, we obtain ZD model (1.7) for time-varying reciprocal finding.
• Considering the ZD design formula (1.2) and ZF (1.4), we have

ȧ(t) + 1

x2(t)
ẋ(t) = −γ

(
a(t) − 1

x(t)

)

which is reformulated as

ẋ(t) = −ȧ(t)x2(t) − γ
(

a(t)x2(t) − x(t)
)
. (1.8)

Therefore, ZD model (1.8) for time-varying reciprocal finding is obtained.
• By combining the ZD design formula (1.2) and ZF (1.5), we have

ȧ(t)x(t) + a(t)ẋ(t) = −γ (a(t)x(t) − 1),

and then
a(t)ẋ(t) = −ȧ(t)x(t) − γ (a(t)x(t) − 1). (1.9)

ZD model (1.9) for time-varying reciprocal finding is thus obtained.
• With the ZD design formula (1.2) and ZF (1.6) combined, we have

− 1

a2(t)x2(t)
(ȧ(t)x(t) + a(t)ẋ(t)) = −γ

(
1

a(t)x(t)
− 1

)
,

which is rewritten as

a(t)ẋ(t) = −ȧ(t)x(t) + γ
(

a(t)x(t) − a2(t)x2(t)
)
. (1.10)

Therefore, we come to ZD model (1.10) for time-varying reciprocal finding.

As a result, we have obtained four different types of ZD models [i.e. (1.7)–(1.10)]
for time-varying reciprocal finding, which correspond to four different types of ZFs
[i.e., (1.3)–(1.6)]. For readers’ convenience and also for comparison, such four dif-
ferent ZD model based on four different ZFs for time-varying reciprocal finding are
listed in Table 1.1.
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Table 1.1 Different ZFs resulting in different ZD models for time-varying reciprocal finding

ZF ZD model

(1.3) a2(t)ẋ(t) = −ȧ(t) − γ
(
a2(t)x(t) − a(t)

)
(1.4) ẋ(t) = −ȧ(t)x2(t) − γ

(
a(t)x2(t) − x(t)

)
(1.5) a(t)ẋ(t) = −ȧ(t)x(t) − γ (a(t)x(t) − 1)

(1.6) a(t)ẋ(t) = −ȧ(t)x(t) + γ
(
a(t)x(t) − a2(t)x2(t)

)

1.3 Theoretical Results and Analyses

In this section, four propositions (viewed as the special cases of 1.1) are presented,
which show the convergence properties of the proposed ZD models (1.7)–(1.10) for
time-varying reciprocal finding.

Proposition 1.1 Consider a smoothly time-varying scalar a(t) �= 0 ∈ R involved
in time-varying reciprocal problem (1.1). Starting from randomly-generated initial
state x(0) �= 0 ∈ R which has the same sign as a(0), the neural state x(t) of ZD
model (1.7) derived from ZF (1.3) exponentially converges to the theoretical time-
varying reciprocal x∗(t) of a(t) [i.e., a−1(t)].

Proof We use the well-known Lyapunov method to prove the exponential conver-
gence of ZD model (1.7).

First, starting with ZF (1.3), we define a Lyapunov candidate

V (x(t), t) = 1

2

(
x(t) − 1

a(t)

)2

� 0,

where V (x(t), t) = 0 for any x(t) = a−1(t), and V (x(t), t) > 0 for any x(t) �=
a−1(t). Then, we derive its time derivative as

V̇ (x(t), t) = dV (x(t), t)

dt
=

(
x(t) − 1

a(t)

) (
ẋ(t) + 1

a2(t)
ȧ(t)

)

= −γ

(
x(t) − 1

a(t)

)2

= −2γ V (x(t), t).

Since V (x(t), t) � 0, then V̇ (x(t), t) = −2γ V (x(t), t) � 0, which guarantees the
(final) negative-definiteness of V̇ (x(t), t).

Furthermore, from V̇ (x(t), t) = −2γ V (x(t), t), we have

V (x(t), t) = V (x(0), 0) exp(−2γ t).
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That is,
1

2

(
x(t) − 1

a(t)

)2

= 1

2

(
x(0) − 1

a(0)

)2

exp(−2γ t).

Thus, we have ∣∣∣∣x(t) − 1

a(t)

∣∣∣∣ =
∣∣∣∣x(0) − 1

a(0)

∣∣∣∣ exp(−γ t),

where symbol | · | denotes the absolute value of a scalar. With α = |x(0) − 1/a(0)|,
the above equation is further rewritten as

∣∣∣∣x(t) − 1

a(t)

∣∣∣∣ = α exp(−γ t),

which means that x(t) exponentially converges to a−1(t) with the convergence rate
γ > 0. That is, starting from randomly-generated initial state x(0) �= 0 ∈ R which
has the same sign as a(0), the neural state x(t) of ZD model (1.7) exponentially
converges to the theoretical time-varying reciprocal x∗(t) = a−1(t) of a(t) involved
in time-varying Eq. (1.1). The proof is thus complete. �

As for ZD models (1.8)–(1.10), we also have the following convergence results,
with the related proofs being generalized from the proof of Proposition 1.1 (and
being left to interested readers to complete as a topic of exercise).

Proposition 1.2 Consider a smoothly time-varying scalar a(t) �= 0 ∈ R involved
in time-varying reciprocal problem (1.1). Starting from randomly-generated initial
state x(0) �= 0 ∈ Rwhich has the same sign as a(0), the neural state x(t) of ZD model
(1.8) derived from ZF (1.4) converges to the theoretical time-varying reciprocal x∗(t)
of a(t) [i.e., a−1(t)], with the error defined in ZF (1.4) exponentially convergent to
zero.

Proposition 1.3 Consider a smoothly time-varying scalar a(t) �= 0 ∈ R involved
in time-varying reciprocal problem (1.1). Starting from randomly-generated initial
state x(0) �= 0 ∈ Rwhich has the same sign as a(0), the neural state x(t) of ZD model
(1.9) derived from ZF (1.5) converges to the theoretical time-varying reciprocal x∗(t)
of a(t) [i.e., a−1(t)], with the error defined in ZF (1.5) exponentially convergent to
zero.

Proposition 1.4 Consider a smoothly time-varying scalar a(t) �= 0 ∈ R involved
in time-varying reciprocal problem (1.1). Starting from randomly-generated initial
state x(0) �= 0 ∈ R which has the same sign as a(0), the neural state x(t) of
ZD model (1.10) derived from ZF (1.6) converges to the theoretical time-varying
reciprocal x∗(t) of a(t) [i.e., a−1(t)], with the error defined in ZF (1.6) exponentially
convergent to zero.
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1.4 Simulink Modeling

For possible hardware implementation based on digital circuits and also for the goal
of developing the floating-point processors or coprocessors for the future genera-
tion of computers, the MATLAB Simulink modeling of the proposed ZD models
(1.7)–(1.10) is investigated and presented in this section. Before doing this, we need
to transform some of such ZD models into the following explicit forms, with the
corresponding block diagrams depicted in Fig. 1.1.

• For ZD model (1.7),

ẋ(t) =
(

1 − a2(t)
)

ẋ(t) − ȧ(t) − γ
(

a2(t)x(t) − a(t)
)
.

• For ZD model (1.8), it is already in the explicit form, and does not need to be
transformed.

• For ZD model (1.9),

ẋ(t) = (1 − a(t)) ẋ(t) − ȧ(t)x(t) − γ (a(t)x(t) − 1).

− −

+

−

+

ȧ(t)

a(t)

1−a2(t)

a2(t)

x(t)ẋ(t)
ΣΣ γ +

−

−

−

ΣΣ γ

a(t) ȧ(t)

(·)2

x(t)ẋ(t)

+

+−

−

−

Σ

Σ

γ

a(t)

ȧ(t)

x(t)ẋ(t)

1−a(t)

1 +

−

+

−

+

Σ

Σ

γ

a(t)

ȧ(t)

(·)2

x(t)ẋ(t)

1−a(t)

a2(t)

Fig. 1.1 Block diagrams of ZD models (1.7)–(1.10) for time-varying reciprocal finding



1.4 Simulink Modeling 11

• For ZD model (1.10),

ẋ(t) = (1 − a(t)) ẋ(t) − ȧ(t)x(t) + γ
(

a(t)x(t) − a2(t)x2(t)
)
.

Therefore, the overall Simulink models of the proposed ZD models are shown in
Figs. 1.2 and 1.3, in which a(t) is generated by employing the “MATLAB Function”
block using the “Clock” block as its input.

1.5 Illustrative Examples

In the previous sections, we have proposed the ZD models based on different ZFs for
time-varying reciprocal finding, together with corresponding propositions and theo-
retical analyses. Based on the aforementioned Simulink models depicted in Figs. 1.2
and 1.3, the ensuing illustrative examples are shown to substantiate the efficacy of
the proposed ZD models (1.7)–(1.10).
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Fig. 1.2 Simulink modeling of ZD models (1.7) and (1.8) for time-varying reciprocal finding
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Fig. 1.3 Simulink modeling of ZD models (1.9) and (1.10) for time-varying reciprocal finding

Example 1.1 Let us consider the following time-varying reciprocal problem [in
which a(t) = sin(3t) + cos(sin(2t)) + 2 is involved]:

f (x(t), t) = (sin(3t) + cos(sin(2t)) + 2) x(t) − 1 = 0. (1.11)

The proposed ZD models (1.7)–(1.10) are exploited to solve this problem (1.11). It
is easy to see that the theoretical initial reciprocal value is x∗(0) = 1/a(0) ≈ 0.333.
For convenience of observation, the initial state (or to say, starting value) x(0) is
randomly generated within [0.2, 0.4], i.e., x(0) ∈ [0.2, 0.4]. The simulation results
based on the Simulink models are presented in Fig. 1.4. As shown in the figure, with
design parameter γ = 10, the states x(t) of the proposed ZD models all converge
to the theoretical time-varying reciprocal x∗(t) = a−1(t), i.e., the theoretical time-
varying solution of (1.11), in a rather short time (i.e., in less than 1 s). Through
this example, we have primarily shown the efficacy of the proposed ZD models
(1.7)–(1.10) for solving the time-varying reciprocal problem.

Example 1.2 In this example, we are considering a more complicated situation of
the time-varying reciprocal problem, i.e.,

f (x(t), t) = (sin(cos(4t)) + exp(− sin(3t)) + cos(t) + 2) x(t) − 1 = 0, (1.12)
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Fig. 1.4 State trajectories of ZD models (1.7)–(1.10) with design parameter γ = 10 for solving
the time-varying reciprocal problem (1.11), where dash-dotted curves correspond to the theoretical
time-varying reciprocal a−1(t), i.e., the theoretical solution of (1.11)

so as to investigate the general applicability of the proposed ZD models. In other
words, a(t) = sin(cos(4t)) + exp(− sin(3t)) + cos(t) + 2.

Similar to the way of Example 1.1, the proposed ZD models (1.7)–(1.10) are
exploited to solve this reciprocal problem depicted in (1.12), and the correspond-
ing simulation results are illustrated in Fig. 1.5. As shown in Fig. 1.5, with design-
parameter γ = 10 and the initial state x(0) randomly generated within [0.1, 0.4],
the state trajectories of the proposed ZD models (1.7)–(1.10) all fit well with the
theoretical time-varying reciprocal x∗(t), i.e., the theoretical time-varying solution
of (1.12), rapidly (i.e., in less than 1 s).

From the above two examples, we can draw the conclusion that, either for a
simple problem (1.11) or a more complicated problem (1.12), the proposed ZD
models (1.7)–(1.10) based on different ZFs (1.3)–(1.6) can all solve the time-varying
reciprocal problem efficiently. That is, with appropriate values of design parameter
γ and initial state x(0), the neural states of the proposed ZD models all converge to
the time-varying theoretical solution of the time-varying reciprocal problem rapidly
and accurately. Thus, the efficacy of the proposed ZD models (1.7)–(1.10) for time-
varying reciprocal finding is substantiated well.
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Fig. 1.5 State trajectories of ZD models (1.7)–(1.10) with design parameter γ = 10 for solving
the time-varying reciprocal problem (1.12), where dash-dotted curves correspond to the theoretical
time-varying reciprocal a−1(t), i.e., the theoretical solution of (1.12)

Example 1.3 As mentioned previously, the value of design parameter γ may affect
the convergence performance of the proposed ZD models (1.7)–(1.10). Let us
consider the following time-varying reciprocal problem [in which a(t) = sin(t)
cos(2t) + 2]:

f (x(t), t) = (sin(t) cos(2t) + 2) x(t) − 1 = 0. (1.13)

In this example, ZD model (1.7) is exploited to solve (1.13) with the initial state
x(0) randomly generated within [0.4, 0.6]. The computational errors e(t) = x(t) −
1/(sin(t) cos(2t) + 2) with respect to different values of γ are displayed in Fig. 1.6.
As seen from the figure, the convergence time of the computational error e(t) to zero
is becoming much shorter (i.e., from about 0.6 s to about 0.006 ) when the γ value
increases from 10 to 1000. This simulation result indicates that design parameter γ

plays an important role in the proposed ZD model (1.7), and should be set as large as
the hardware would permit, or selected appropriately large for simulative purposes.
Furthermore, the exponential-convergence characteristics of ZD model (1.7) can also
be seen comparatively from Fig. 1.6. Note that the same conclusion applies to other
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Fig. 1.6 Computational
errors e(t) =
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ZD models [i.e., (1.8)–(1.10)], of which the related modeling results are omitted due
to results similarity. Besides, the modeling testings of ZD models (1.8)–(1.10) are
left to interested readers to complete as a topic of exercise.

1.6 Summary

In this chapter, by following Zhang et al.’s neural-dynamics design method and based
on the Zhang function (ZF) as the error-monitoring function, a special type of neural
dynamics, called Zhang dynamics (ZD), has been presented and investigated for
real-time solution of time-varying reciprocal problem, which is in the time-varying
form of f (x(t), t) = a(t)x(t) − 1 = 0 [i.e., (1.1)]. Specifically, based on different
ZFs (1.3)–(1.6), different ZD models (1.7)–(1.10) have thus been proposed, gener-
alized, developed, and investigated for time-varying reciprocal finding. Moreover,
theoretical analyses have been given to substantiate the exponential convergence of
the proposed ZD models. For possible hardware implementations based on digital
circuits and for the goal of developing the floating-point processors or coprocessors
for the future generation of computers, the MATLAB Simulink modeling of such
proposed ZD models has been presented and investigated in this chapter. Through
three illustrative examples, the efficacy of the proposed ZD models (1.7)–(1.10) has
been further substantiated.
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Chapter 2
Time-Varying Inverse Square Root

Abstract In this chapter, we propose, generalize, develop, and investigate different
ZD models based on different ZFs for solving the time-varying inverse square root
problem. In addition, this chapter shows modeling of the proposed ZD models
using MATLAB Simulink techniques. The modeling results with different illus-
trative examples further substantiate the efficacy of such proposed ZD models for
time-varying inverse square root finding.

2.1 Introduction

Inverse square root computation is an important numerical operation in many
application areas such as digital signal processing, scientific computing, and com-
puter graphics [1]. Specifically, inverse square root computation of a floating point
scalar is exploited to compute a normalized vector [2], which can be used to determine
lighting and reflection in a 3D graphics program [3]. The static inverse square root
problem is generally formulated as f (x) = ax2−1. Numerous numerical algorithms
are investigated for solving such a problem [4–8]. Note that many potential com-
putational algorithms are designed intrinsically for static (or to say, time-invariant,
constant) problems solving [4] and associated with gradient methods [9]. As a result,
almost all the previous algorithms are just effective for static inverse square root
computation [10], and may not be accurate enough to solve the time-varying inverse
square root problem [11–13].

In this chapter, focusing on time-varying inverse square root finding, we propose,
generalize, develop, and investigate different ZD models by defining different ZFs as
the error-monitoring functions. In addition, theoretical results are presented to show
the convergence performance of such different ZD models. Moreover, MATLAB
Simulink modeling [14–16] is shown for possible hardware realization of the pro-
posed ZD models. Illustrative examples and modeling results further substantiate the
efficacy of such proposed ZD models for time-varying inverse square root finding.

© Springer-Verlag Berlin Heidelberg 2015
Y. Zhang and D. Guo, Zhang Functions and Various Models,
DOI 10.1007/978-3-662-47334-4_2
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2.2 ZFs and ZD Models

In this section, different ZFs are introduced to construct different ZD models for
time-varying inverse square root finding.

Let us consider the time-varying inverse square root problem, which is written in
the form [11–13]

f (x(t), t) = a(t)x2(t) − 1 = 0 ∈ R, t ∈ [0,+∞), (2.1)

where a(t) > 0 ∈ R denotes a smoothly time-varying scalar with ȧ(t) ∈ R denoting
the time derivative of a(t), both of which are assumed to be known numerically or
could be measured accurately. In this chapter, we aim at finding the x(t) ∈ R at
time instant t ∈ [0,+∞) to make (2.1) hold true. Furthermore, x∗(t) is used to
denote the theoretical time-varying inverse square root of a(t) [i.e., mathematically,
x∗(t) = ±1/

√
a(t)] in this chapter.

For solving the time-varying inverse square root problem (2.1), different ZD mod-
els based on different ZFs are thus developed and investigated, with the corresponding
design procedures detailed as follows.

2.2.1 The First ZF and ZD Model

Following Zhang et al.’s design method [11–15, 17] (see also Sect. 1.2), we define
the following indefinite ZF (i.e., the first ZF) as the error-monitoring function for
time-varying inverse square root finding:

e(t) = x2(t) − 1

a(t)
. (2.2)

With ZF (2.2), by expanding the ZD design formula (1.2), we obtain

2x(t)ẋ(t) + 1

a2(t)
ȧ(t) = −γ

(
x2(t) − 1

a(t)

)
.

Hence, the ZD model based on ZF (2.2) for time-varying inverse square root finding
is derived as follows:

ẋ(t) = − ȧ(t)

2a2(t)x(t)
− 1

2
γ

(
x(t) − 1

a(t)x(t)

)
. (2.3)

Correspondingly, the block diagram of ZD model (2.3) is shown in the upper graph
of Fig. 2.1.

http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_1
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Fig. 2.1 Block diagrams of ZD (2.3) and (2.5) for time-varying inverse square root finding

2.2.2 The Second ZF and ZD Model

To introduce and show different ZD models based on different ZFs for solving the
time-varying inverse square root problem (2.1), the second ZF is defined as

e(t) = a(t) − 1

x2(t)
. (2.4)

In view of ZF (2.4) and the ZD design formula (1.2), we obtain

ȧ(t) + 2

x3(t)
ẋ(t) = −γ

(
a(t) − 1

x2(t)

)
.

That is,

ẋ(t) = −1

2
ȧ(t)x3(t) − 1

2
γ

(
a(t)x3(t) − x(t)

)
, (2.5)

which is the ZD model based on ZF (2.4) for time-varying inverse square root finding.
Correspondingly, the block diagram of ZD model (2.5) is depicted in the lower graph
of Fig. 2.1.

http://dx.doi.org/10.1007/978-3-662-47334-4_1
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Fig. 2.2 Block diagrams of ZD (2.7) and (2.9) for time-varying inverse square root finding

2.2.3 The Third ZF and ZD Model

The first ZF (2.2) and the second ZF (2.4), which lead to ZD models (2.3) and (2.5),
respectively, are defined above. Now, alternatively, we define the third ZF as

e(t) = a(t)x2(t) − 1. (2.6)

In view of the ZD design formula (1.2) and ZF (2.6), we have

ȧ(t)x2(t) + 2a(t)x(t)ẋ(t) = −γ
(

a(t)x2(t) − 1
)

,

which is further written as

ẋ(t) = − ȧ(t)x(t)

2a(t)
− γ

2

(
x(t) − 1

a(t)x(t)

)
. (2.7)

Correspondingly, the block diagram of ZD model (2.7) for time-varying inverse
square root finding is depicted in the upper graph of Fig. 2.2.

2.2.4 The Fourth ZF and ZD Model

For monitoring and controlling the process of the time-varying inverse square root
problem (2.1) solving, another ZF (i.e., the fourth ZF) is defined in the following
form:

http://dx.doi.org/10.1007/978-3-662-47334-4_1
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e(t) = 1

a(t)x2(t)
− 1. (2.8)

With the ZD design formula (1.2) and ZF (2.8) considered, we have

− ȧ(t)x(t) + 2a(t)ẋ(t)

a2(t)x3(t)
= −γ

(
1

a(t)x2(t)
− 1

)
,

which yields the following differential equation of ZD:

ẋ(t) = − ȧ(t)x(t)

2a(t)
− γ

2

(
a(t)x3(t) − x(t)

)
. (2.9)

Correspondingly, the block diagram of ZD model (2.9) is shown in the lower graph
of Fig. 2.2.

2.2.5 The Fifth ZF and ZD Model

Let us consider the following error-monitoring function (i.e., the fifth ZF):

e(t) = x(t) − 1

a(t)x(t)
. (2.10)

As another form of ZF for time-varying inverse square root finding, ZF (2.10) leads
to a different ZD model. Specifically, expanding the ZD design formula (1.2) with
the aid of ZF (2.10), we obtain

ẋ(t) + ȧ(t)x(t) + a(t)ẋ(t)

a2(t)x2(t)
= −γ

(
x(t) − 1

a(t)x(t)

)
,

which yields the following differential equation of ZD:

ẋ(t) = − ȧ(t)x(t)

a2(t)x2(t) + a(t)
− γ

a(t)x3(t) − x(t)

a(t)x2(t) + 1
. (2.11)

2.2.6 The Sixth ZF and ZD Model

The sixth and also the last ZF is given finally as

e(t) = a(t)x(t) − 1

x(t)
. (2.12)

http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_1
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Table 2.1 Different ZFs resulting in different ZD models for finding time-varying inverse
square root

ZF ZD model

(2.2) ẋ(t) = − ȧ(t)
2a2(t)x(t)

− 1
2 γ

(
x(t) − 1

a(t)x(t)

)

(2.4) ẋ(t) = − 1
2 ȧ(t)x3(t) − 1

2 γ
(
a(t)x3(t) − x(t)

)
(2.6) ẋ(t) = − ȧ(t)x(t)

2a(t) − 1
2 γ

(
x(t) − 1

a(t)x(t)

)

(2.8) ẋ(t) = − ȧ(t)x(t)
2a(t) − 1

2 γ
(
a(t)x3(t) − x(t)

)
(2.10) ẋ(t) = − ȧ(t)x(t)

a2(t)x2(t)+a(t)
− γ

a(t)x3(t)−x(t)
a(t)x2(t)+1

(2.12) ẋ(t) = − ȧ(t)x3(t)
a(t)x2(t)+1

− γ
a(t)x3(t)−x(t)

a(t)x2(t)+1

Substituting ZF (2.12) into the ZD design formula (1.2), we have

ȧ(t)x(t) + a(t)ẋ(t) + ẋ(t)

x2(t)
= −γ

(
a(t)x(t) − 1

x(t)

)
,

which yields the following differential equation of ZD:

ẋ(t) = − ȧ(t)x3(t)

a(t)x2(t) + 1
− γ

a(t)x3(t) − x(t)

a(t)x2(t) + 1
. (2.13)

Due to similarity to the block diagrams of the previous ZD models, the block diagrams
of ZD models (2.11) and (2.13) are omitted.

In summary, we have obtained six different ZD models [i.e., (2.3), (2.5), (2.7),
(2.9), (2.11) and (2.13)] for solving the time-varying inverse square root problem
(2.1). Such six ZD models are derived from six different ZFs (2.2), (2.4), (2.6), (2.8),
(2.10) and (2.12), respectively. For comparison purposes and reading convenience,
the proposed different ZD models based on different ZFs are listed in Table 2.1.

2.3 Theoretical Results and Analyses

In this section, theoretical results and analyses are presented, which show the con-
vergence properties of the proposed ZD models (2.3), (2.5), (2.7), (2.9), (2.11) and
(2.13) for finding time-varying inverse square root.

Proposition 2.1 Consider a smoothly time-varying positive scalar a(t) > 0 ∈ R

involved in (2.1). Starting from any initial state x(0) �= 0 ∈ R, we have

http://dx.doi.org/10.1007/978-3-662-47334-4_1
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• if x(0) > 0, the neural state x(t) ∈ R of ZD model (2.3) based on ZF (2.2)
converges to the positive theoretical time-varying inverse square root of a(t), with
ZF (2.2) exponentially converging to zero; and,

• if x(0) < 0, the neural state x(t) ∈ R of ZD model (2.3) based on ZF (2.2)
converges to the negative theoretical time-varying inverse square root of a(t),
with ZF (2.2) exponentially converging to zero.

Proof We use the well-known Lyapunov theory to prove the convergence perfor-
mance of ZD model (2.3).

Let us first define the following Lyapunov function candidate, which is clearly
nonnegative:

V (x(t), t) = 1

2

(
x2(t) − 1

a(t)

)2

� 0,

where V (x(t), t) = 0 only if x(t) = x∗(t) = ±1/
√

a(t) and V (x(t), t) > 0 if
x(t) �= x∗(t) = ±1/

√
a(t). In addition, if e(t) = x2(t) − 1/a(t) tends to infinity

[correspondingly |x(t) − x∗(t)| → ∞], we have V (x(t), t) → ∞ as well.
Then, along the state trajectory of ZD model (2.3), we derive the time derivative

of V (x(t), t) as

V̇ (x(t), t) = dV (x(t), t)

dt
=

(
x2(t) − 1

a(t)

) (
2x(t)ẋ(t) + 1

a2(t)
ȧ(t)

)

= −γ

(
x2(t) − 1

a(t)

)2

= −2γ V (x(t), t) � 0,

which guarantees the final negative-definiteness of V̇ (x(t), t).
Thus, in accordance with the Lyapunov theory, x(t) converges to x∗(t). In addi-

tion, as seen from the dynamic equation of ZD model (2.3), zero cannot be a divisor,
i.e., state x(t) �= 0. In view of the solution continuity of ZD model (2.3), we obtain
the following results. If initial state x(0) > 0, the neural state x(t) ∈ R of ZD model
(2.3) converges to the positive theoretical time-varying inverse square root of a(t),
i.e., x(t) → x∗(t) = 1/

√
a(t). Otherwise [i.e., if initial state x(0) < 0], the neural

state x(t) ∈ R of ZD model (2.3) converges to the negative theoretical time-varying
inverse square root of a(t), i.e., x(t) → x∗(t) = −1/

√
a(t).

Furthermore, from V̇ (x(t), t) = −2γ V (x(t), t), we have

V (x(t), t) = V (x(0), 0) exp(−2γ t).

That is,
1

2

(
x2(t) − 1

a(t)

)2

= 1

2

(
x2(0) − 1

a(0)

)2

exp(−2γ t).
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Thus, we have ∣∣∣∣x2(t) − 1

a(t)

∣∣∣∣ =
∣∣∣∣x2(0) − 1

a(0)

∣∣∣∣ exp(−γ t).

By setting α = |x2(0) − 1/a(0)|, the above equation becomes

∣∣∣∣x2(t) − 1

a(t)

∣∣∣∣ = α exp(−γ t),

which indicates that x2(t) exponentially converges to 1/a(t), i.e., ZF (2.2) exponen-
tially converges to zero. Therefore, the proof is complete. �

As for the other five ZD models, we also have the corresponding convergence
results. Concerning the convergence performance of the proposed ZD models based
on six different ZFs, the following unified proposition is presented, with the related
proof being generalized from the proof of Proposition 2.1 and being left to interested
readers to complete as a topic of exercise.

Proposition 2.2 Consider a smoothly time-varying positive scalar a(t) > 0 ∈ R

involved in (2.1). Starting from any initial state x(0) �= 0 ∈ R,

• if x(0) > 0, the neural states x(t) ∈ R
+ of ZD models listed in Table2.1 converge

to the positive theoretical time-varying inverse square root of a(t), with ZFs listed
in Table2.1 exponentially converging to zero, respectively; and,

• if x(0) < 0, the neural states x(t) ∈ R
− of ZD models listed in Table2.1 converge

to the negative theoretical time-varying inverse square root of a(t), with ZFs listed
in Table2.1 exponentially converging to zero, respectively.

2.4 Simulink Modeling

In this section, the MATLAB Simulink modeling of the proposed ZD models [i.e.,
(2.3), (2.5), (2.7), (2.9), (2.11) and (2.13)] is investigated and presented. The overall
Simulink models of such proposed ZD models for time-varying inverse square root
finding are shown in Figs. 2.3 and 2.4.

Some important parameters and options related to the Simulink models which we
establish in Figs. 2.3 and 2.4, etc., are specified as follows.
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Fig. 2.3 Modeling of ZD (2.3), (2.5) and (2.7) for finding time-varying inverse square root

• a(t) is generated by employing the “MATLAB Function” block with the “Clock”
block as its input.

• Open the “Configuration Parameters” dialog box and set the options “Solver” to
be “ode15s”, “Max step size” to be “0.1”, and “Min step size” to be “auto”. In
addition, by default, the option “Relative tolerance” is set as “1e-5” (i.e., 10−5),
and “Absolute tolerance” is “auto”.
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Fig. 2.4 Modeling of ZD (2.9), (2.11) and (2.13) for time-varying inverse square root finding
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2.5 Illustrative Examples

In this section, based on the MATLAB Simulink modeling techniques, we substantiate
the convergence performance of the proposed ZD models through two examples.

Example 2.1 Let us consider the time-varying inverse square root problem (2.1) with
a(t) = 8 cos(sin(5t)) + 3 sin(2t) + 1; i.e.,

f (x(t), t) = (8 cos(sin(5t)) + 3 sin(2t) + 1) x2(t) − 1 = 0. (2.14)

The proposed ZD models (2.3), (2.5), (2.7), (2.9), (2.11) and (2.13) with γ = 10 are
exploited to solve the above problem (2.14). Note that the theoretical initial solutions
of (2.14) are

x∗(0) = ± 1√
8 cos(sin 0) + 3 sin 0 + 1

≈ ±0.33.

For convenience of observation, we randomly generate the positive and negative
initial states x(0), respectively, within [0.2, 0.5] and [−0.5,−0.2], which are the
intervals around the theoretical initial solutions ±0.33. As shown in Fig. 2.5, the
neural states of ZD models [denoted by solid curves] converge to the theoretical
time-varying inverse square root x∗(t) [denoted by dash–dotted curves] of (2.14)
in a short time (about 0.5 s). Therefore, we have substantiated the efficacy of the
proposed ZD models for solving the time-varying inverse square root problem with
an appropriate value of γ . It is worth pointing out that, even if we set the initial states
x(0) �= 0 far away from the theoretical initial solutions ±0.33, the neural states x(t)
of the proposed ZD models (2.3), (2.5), (2.7), (2.9), (2.11) and (2.13) also converge
to the theoretical time-varying solutions of (2.14) rapidly.

Example 2.2 In this example, we discuss how the value of design parameter γ affects
the convergence performance of the proposed ZD models.

First, let us exploit ZD models (2.3) and (2.7) to solve the following time-varying
inverse square root problem with γ = 10, 100 and 1000, respectively:

f (x(t), t) = (2 sin(3t) + 3 exp(cos(2t)) + 7) x2(t) − 1 = 0. (2.15)

Starting with ten randomly-generated initial states x(0), five of which are in [0.2, 0.3]
and the others are in [−0.3,−0.2], we have the modeling results of computational
error e(t) shown in Fig. 2.6. As seen from the upper graph of Fig. 2.6, the maximal
steady-state modeling error of ZD model (2.3) becomes much smaller when the value
of design parameter γ increases. Specifically speaking, when γ = 10, the order of
the maximal steady-state modeling error is 10−3; and, when γ = 1000, the order
of the maximal steady-state modeling error decreases to be 10−5. This means that
the maximal steady-state modeling error of ZD model (2.3) decreases in an O(γ −1)

manner. Note that the integrator precision (i.e., the relative tolerance of the integrator
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Fig. 2.5 State trajectories of ZD models (2.3), (2.5), (2.7), (2.9), (2.11) and (2.13) with γ = 10 for
solving the time-varying inverse square root problem (2.14)

denoted as RT in this chapter) in the Simulink models also influences the convergence
performance and accuracy of the ZD models.

In addition, in the previous modeling results, we set the integrator precision to
be 1.0 × 10−5. Figure 2.7 shows that, when we increase the integrator precision
(i.e., decrease RT), the maximal steady-state modeling error of ZD model (2.3) is
decreased as well. Theoretically speaking, the maximal steady-state modeling error
can decrease to zero, when the relative tolerance RT tends to zero.

Moreover, the convergence speed of the proposed ZD models for solving (2.15)
can be expedited effectively by increasing γ . This is shown in the upper and lower
graphs of Fig. 2.6 with ZD models (2.3) and (2.7), respectively, as examples. Thus,
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Fig. 2.6 Modeling errors
e(t) of ZD models (2.3) and
(2.7) with the integrator’s
relative tolerance being 10−5

and with different γ for
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we should set the value of γ appropriately large not only to decrease the modeling
error, but also to shorten the convergence time.

In summary, we have the conclusion that the design parameter γ plays an impor-
tant role in ZD models (2.3) and (2.7) on the convergence performance (including
engineering accuracy). It is worth pointing out that the same conclusion applies to
other ZD models [i.e., (2.5), (2.9), (2.11) and (2.13)], whose related modeling results
are omitted due to similarity of results. Besides, the modeling tests of ZD models
(2.5), (2.9), (2.11) and (2.13) are left to interested readers to complete as a topic of
exercise.

2.6 Summary

In this chapter, six different ZD models based on six different ZFs have been proposed,
generalized, developed, and investigated for solving the time-varying inverse square
root problem in the form of f (x(t), t) = a(t)x2(t) − 1 = 0. In addition, theoretical
results and analyses have been given to substantiate the exponential convergence
of the proposed ZD models. For possible hardware implementation, the MATLAB
Simulink modeling of the proposed ZD models has also been presented and investi-
gated in this chapter. The illustrative modeling results have further substantiated the
efficacy of the proposed ZD models on time-varying inverse square root finding.
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Chapter 3
Time-Varying Square Root

Abstract In this chapter, focusing on time-varying square root finding, we propose,
generalize, develop, and investigate different ZFs as the error-monitoring functions,
which lead to different ZD models. Then, toward the final purpose of field pro-
grammable gate array (FPGA) and application-specific integrated circuit (ASIC)
realization, the MATLAB Simulink modeling and verification of such different ZD
models are shown. Both theoretical analysis and modeling results further substantiate
the efficacy of the proposed ZD models for time-varying square root finding.

3.1 Introduction

The problem of solving time-varying square root in the form of x2(t) − a(t) = 0
and/or static (or termed, constant, time-invariant) square root in the form of x2−a = 0
is considered to be a basic mathematical operation arising in science, commercial
computer, and engineering fields. Any system (e.g., the hardware units and software
packages) complying with the IEEE 754 binary floating-point standard [1], includ-
ing the majority of current microprocessors, contains the square root implementation
in the operation set. These systems must support and evaluate this operation accu-
rately and correctly. Thus, many numerical algorithms have been developed and
investigated for square root finding [2–8]. However, it may not be efficient enough
for most numerical algorithms due to their serial-processing nature performed on
digital computers [9]. Suitable for analog VLSI implementation [10, 11] and in
view of potential high-speed parallel processing, the neural-dynamics approach has
now been regarded as a powerful alternative to online problem solving [12–15].
Besides, it is worth mentioning that most reported computational-schemes are theo-
retically/intrinsically designed for solving time-invariant (or termed, static, constant)
problems (i.e., time-invariant square root finding) and/or related to those used for
division [16, 17].

In this chapter, we propose, generalize, develop, and investigate six continuous-
time ZD models for solving the time-varying square root problem by defining six
different ZFs as the error-monitoring functions and constructing six first-order differ-
ential equations to force the corresponding ZFs converge to zero. Then, the MATLAB

© Springer-Verlag Berlin Heidelberg 2015
Y. Zhang and D. Guo, Zhang Functions and Various Models,
DOI 10.1007/978-3-662-47334-4_3
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Simulink modeling [18] and verification are presented with the final purpose of field
programmable gate array (FPGA) and application-specific integrated circuit (ASIC)
realization [19]. The modeling results with different illustrative examples further
substantiate the efficacy of the proposed ZD models based on different ZFs for time-
varying square root finding.

3.2 ZFs and ZD Models

In this section, we introduce six different ZFs and propose the resultant ZD models
for time-varying square root finding (together with the convergence results of such
different ZD models).

Let us consider the following time-varying square root problem:

x2(t) − a(t) = 0 ∈ R, t ∈ [0,+∞), (3.1)

where a(t) > 0 ∈ R denotes a smoothly time-varying scalar, which, together with
time derivative ȧ(t) ∈ R, is assumed to be known numerically or can be measured
accurately. Our objective is to find x(t) ∈ R in real time t such that the above smoothly
time-varying nonlinear equation (3.1) holds true. For presentation convenience, in
this chapter, let x∗(t) ∈ R denote the theoretical time-varying square root of a(t)
[i.e., mathematically, x∗(t) = ±√

a(t)].
For solving the above time-varying square root problem (3.1), we define six dif-

ferent ZFs as below:

e(t) = 1

a(t)
x2(t) − 1, (3.2)

e(t) = 1

x2(t)
a(t) − 1, (3.3)

e(t) = x2(t) − a(t), (3.4)

e(t) = 1

x2(t)
− 1

a(t)
, (3.5)

e(t) = x(t) − a(t)
1

x(t)
, (3.6)

e(t) = 1

a(t)
x(t) − 1

x(t)
. (3.7)

According to Zhang et al.’s design method [12–15] presented in Sect. 1.2, with the
ZD design formula (1.2), different ZFs lead to different ZD models for time-varying
square root finding. Therefore, we have different ZD models as follows.

http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_1
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Fig. 3.1 Block diagram of
ZD model (3.8) for
time-varying square root
finding

∑

∑γ 1
(·)a(t)

+

+

−

−

x(t)

ȧ(t)1
a(t)

1
2

• Considering the ZD design formula (1.2) and ZF (3.2), we have

− ȧ(t)

a2(t)
x2(t) + 2

a(t)
x(t)ẋ(t) = −γ

(
1

a(t)
x2(t) − 1

)
.

Thus, the following dynamic equation (i.e., a first-order differential equation) of
a ZD model is obtained for time-varying square root finding:

ẋ(t) = ȧ(t)x(t)

2a(t)
− γ

2

(
x(t) − a(t)

x(t)

)
. (3.8)

In order to display the ZD model (3.8) better, the resultant block diagram of such
a ZD model is shown in Fig. 3.1.

• Considering the ZD design formula (1.2) and ZF (3.3), we have

ẋ(t) = ȧ(t)x(t)

2a(t)
− γ

2

(
x3(t)

a(t)
− x(t)

)
. (3.9)

Based on ZF (3.3), another ZD model [i.e., (3.9)] is obtained for time-varying
square root finding. Besides, Fig. 3.2 shows the resultant block diagram of such a
ZD model.

• Considering the ZD design formula (1.2) and ZF (3.4), the following ZD model is
established for time-varying square root finding:

ẋ(t) = ȧ(t) − γ
(
x2(t) − a(t)

)
2x(t)

. (3.10)

The resultant block diagram of ZD model (3.10) is shown in Fig. 3.3.

http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_1
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Fig. 3.2 Block diagram of
ZD model (3.9) for
time-varying square root
finding
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Fig. 3.3 Block diagram of
ZD model (3.10) for
time-varying square root
finding
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(·)
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ȧ(t)

1
2

• With (1.2) and (3.5) exploited, we have the following ZD model for time-varying
square root finding:

ẋ(t) = ȧ(t)x3(t)

2a2(t)
− γ

2

(
x3(t)

a(t)
− x(t)

)
. (3.11)

Besides, Fig. 3.4 shows the block diagram of ZD model (3.11).
• With (1.2) and (3.6) exploited, we have the following ZD model for time-varying

square root finding:

ẋ(t) = ȧ(t)x(t)

x2(t) + a(t)
− γ

x3(t) − a(t)x(t)

x2(t) + a(t)
. (3.12)

• Based on the ZD design formula (1.2) and ZF (3.7), we have

ẋ(t) = ȧ(t)x3(t)

a(t)x2(t) + a2(t)
− γ

x3(t) − a(t)x(t)

x2(t) + a(t)
. (3.13)

Thus, we obtain ZD model (3.13) based on ZF (3.7) for time-varying square root
finding. Note that the block diagrams of ZD models (3.12) and (3.13) are omitted
for the similarity, and are left to interested readers to complete as a topic of exercise.

http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_1
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Fig. 3.4 Block diagram of
ZD model (3.11) for
time-varying square root
finding
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In summary, we have obtained six different ZD models [i.e., (3.8)–(3.13)] for
time-varying square root finding, which correspond to six different ZFs [i.e., (3.2)–
(3.7)]. For readers’ convenience, such six different ZD models corresponding to six
different ZFs are listed in Table 3.1.

Besides, as for the convergence property of the proposed ZD models (3.8)–(3.13),
we have the following proposition. Note that the proof of such a proposition can be
generalized from that of Theorem 1.1 or 2.1 presented in the previous chapters (and
the related proof is also left to interested readers to complete as a topic of exercise).

Proposition 3.1 Consider a smooth time-varying scalar a(t) ∈ R involved in the
nonlinear equation (3.1), which is positive at t ∈ [0,+∞). For each of ZD models
(3.8)–(3.13), starting from randomly-generated positive (or negative) initial state
x(0) �= 0 ∈ R, the corresponding ZF exponentially converges to zero [which implies
that neural-state x(t) ∈ R of the ZD model converges to the theoretical positive (or
negative) time-varying square root x∗(t) of a(t)].

Remark 3.1 Based on the above analysis, all the resultant ZD models are effective
on time-varying square root finding, though they are based on different ZFs (i.e.,

Table 3.1 Different ZFs and
ZD models for time-varying
inverse square root finding

ZF ZD model

(3.2) ẋ(t) = ȧ(t)x(t)
2a(t) − γ

2

(
x(t) − a(t)

x(t)

)

(3.3) ẋ(t) = ȧ(t)x(t)
2a(t) − γ

2

(
x3(t)
a(t) − x(t)

)

(3.4) ẋ(t) = ȧ(t) − γ
(
x2(t) − a(t)

)
2x(t)

(3.5) ẋ(t) = ȧ(t)x3(t)
2a2(t)

− γ
2

(
x3(t)
a(t) − x(t)

)

(3.6) ẋ(t) = ȧ(t)x(t)
x2(t) + a(t)

− γ
x3(t) − a(t)x(t)

x2(t) + a(t)

(3.7) ẋ(t) = ȧ(t)x3(t)
a(t)x2(t) + a2(t)

− γ
x3(t) − a(t)x(t)

x2(t) + a(t)

http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_2
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the error-monitoring functions). Note that the results presented in this chapter as
well as the previous chapters (i.e., Chaps. 1 and 2) give us a new direction on the
definition of the error function for the neural-dynamics construction. Specifically,
the error function is not only defined by following directly the definition equation of
the problem to be solved [e.g., the Eqs. (1.1), (2.1) and (3.1) involved in Chaps. 1, 2
and this chapter respectively], but also defined as other appropriate forms. Evidently,
this opens the door on defining the error function from a single definition equation
(of the problem) to various appropriate formulations. More importantly, different
neural-dynamics models are thus obtained by defining different error functions for
the problem to be solved (e.g., different ZD models based on different ZFs in this
book), which may be an inspiring direction on the research of neural dynamics.

3.3 Simulink Modeling

According to the proposed ZD models (3.8)–(3.13) and the block diagrams shown
in Figs. 3.1, 3.2, 3.3, and 3.4, the corresponding MATLAB Simulink modelings of
such ZD models are investigated and presented in this section for possible circuits
implementation and also for the final purpose of FPGA and ASIC realization. As a
graphical design based modeling tool, MATLAB Simulink exploits existing func-
tion blocks to construct mathematical and logical models as well as process flow.
The Simulink modeling can be viewed as a virtual implementation of a real system
satisfying a set of requirements. Moreover, the dynamic model developed in MAT-
LAB Simulink environment can be extended to the HDL (Hardware Description
Language) code and then to the final FPGA and ASIC realization [19].

The overall Simulink modeling of the proposed ZD models for time-varying
square root finding is illustrated in Figs. 3.5 and 3.6. Note that, for the overall Simulink
modelings shown in Figs. 3.5 and 3.6, some of the default modeling-environment
options should be changed. The options setting can be done by using the “Config-
uration Parameters” dialog box in the MATLAB Simulink environment, with some
important parameter settings specified as follows.

• Starting time (e.g., 0.0) and Stop time (e.g., 10.0);
• Solver (i.e., integrator algorithm): “ode45 (Dormand-Prince)”;
• Max step size: “0.2” and Min step size: “auto”;
• Initial step size: “auto”;
• Relative tolerance: “1e-6” (i.e., 10−6);
• Absolute tolerance: “auto”.

In addition, the check box in front of “States” of the option “Data Import/Export”
should be selected, which is for the purpose of better displaying the ZD-modeling
results and is associated with the “StopFcn” code (of “Callbacks” in the dialog box
entitled “Model Properties” which is started from the “File” pull-down menu). This
is shown in Fig. 3.7.

http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_2
http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_2
http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_2
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Fig. 3.5 Simulink modeling of ZD models (3.8)–(3.10) for time-varying square root finding

3.4 Illustrative Examples

Based on the overall Simulink modeling depicted in Figs. 3.5 and 3.6, the ensuing
illustrative examples are presented and investigated to substantiate the efficacy of the
proposed ZD models (3.8)–(3.13) for time-varying square root finding.

Example 3.1 Let us consider the time-varying square root problem (3.1) with a(t) =
2 cos(5t) + 3 sin(cos(2t)) + 7. Then we have the following nonlinear equation:
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Fig. 3.6 Simulink modeling of ZD models (3.11)–(3.13) for time-varying square root finding

f (x(t), t) = x2(t) − 2 cos(5t) − 3 sin(cos(2t)) − 7 = 0. (3.14)

The proposed ZD models (3.8)–(3.13) are exploited to solve the above time-varying
square root problem (3.14), and the corresponding modeling results are illustrated
in Fig. 3.8. For the convenience of observation, we randomly generate five positive
and five negative initial states x(0), respectively, within [3, 4] and [−3,−4] for each
ZD model, which are the intervals around the theoretical initial solutions ±3.3948.
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Fig. 3.7 Necessary “StopFcn” code of “Callbacks” in dialog box “More Properties”

As shown in Fig. 3.8, the neural states of the proposed ZD models denoted by solid
curves converge to the theoretical time-varying solutions denoted by dash-dotted
curves. These results have substantiated the efficacy of ZD models (3.8)–(3.13) for
solving time-varying square root problem (with an appropriate value of γ ). It is
worth mentioning that, even if we set the initial state x(0) �= 0 far away from the
theoretical initial solution, the neural states of the proposed ZD models [i.e., x(t)]
can also converge to the theoretical time-varying solutions of (3.14) rapidly.

Example 3.2 In this example, we discuss how the value of γ affects the convergence
performance of the proposed ZD models.

Let us exploit ZD models (3.8) and (3.12) (as examples) to solve the following
time-varying square root problem with γ = 10, 100 and 1000, respectively:

f (x(t), t) = x2(t) − sin(exp(−2t) + t) − 2 = 0. (3.15)

Starting from randomly-generated initial states x(0) and using different values of
γ , we have the convergence of modeling residual errors ‖e(t)‖ shown in Figs. 3.9
and 3.10 by using the proposed ZD models (3.8) and (3.12), respectively. Note that
symbol ‖·‖ denotes the Euclidean norm for a vector (which, in this situation, denotes
the absolute value of a scalar).

As seen from Fig. 3.9, as γ increases from 10 to 100 and to 1000, the order of
the maximal steady-state modeling residual error (MSSMRE) of ZD model (3.8)
decreases from about 10−2 to 10−3 and to 10−4, and meanwhile, the convergence
time is expedited from around 0.5 to 0.05 and to 0.005 s. That is, ZD model (3.8)
has an exponential-convergence property, which can be expedited effectively by
increasing the value of γ . Thus, we should set the value of γ appropriately large not
only to decrease the computational error, but also to shorten the convergence time.
For ZD model (3.12), we have similar conclusions, which is shown from Fig. 3.10.
Therefore, we have the conclusion that design-parameter γ plays an important role
in ZD models (3.8) and (3.12) on the convergence performance (including accuracy),
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Fig. 3.8 State trajectories of ZD models (3.8)–(3.13) for solving the time-varying square root
problem (3.14)

which implies that the convergence performance of the proposed ZD models can be
improved by increasing the value of γ . Note that, for other ZD models [i.e., (3.9)–
(3.11) and (3.13)], we have similar conclusions by observing the related modeling
results, which are omitted due to results’ similarity. Being a topic of exercise, the
corresponding modeling verifications of ZD models (3.9)–(3.11) and (3.13) are left
for interested readers.
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Fig. 3.9 Modeling residual
errors ‖e(t)‖ of ZD model
(3.8) with different values of
γ for solving the
time-varying square root
problem (3.15) 0 2 4 6 8 10
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In summary, the above modeling results with different illustrative examples have
substantiated the efficacy of the proposed ZD models (3.8)–(3.13) for time-varying
square root finding.
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Fig. 3.10 Modeling residual
errors ‖e(t)‖ of ZD model
(3.12) with different values
of γ for solving the
time-varying square root
problem (3.15) 0 2 4 6 8 10
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3.5 Summary

In this chapter, based on different ZFs (3.2)–(3.7) being the error-monitoring func-
tions, different ZD models (3.8)–(3.13) have been proposed, generalized, developed,
and investigated for time-varying square root finding. Then, for possible hardware
implementation based on electronic circuits, the MATLAB Simulink modeling of
the proposed ZD models has been presented. Note that this modeling technique
has drastically reduced the computer-programming efforts. Through illustrative
computer-modeling examples, the efficacy of the proposed ZD models has been
further substantiated for time-varying square root finding.
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Vector-Valued ZF in Real Domain



Chapter 4
System of Time-Varying Linear Equations

Abstract In this chapter, by following the idea of ZF, two ZD models are proposed,
generalized, developed, and investigated to solve the system of time-varying linear
equations. It is theoretically proved that such two ZD models globally and exponen-
tially converge to the theoretical time-varying solution of system of time-varying
linear equations. Then, we conduct extensive simulations using such two ZD mod-
els. The simulation results substantiate the theoretical analysis and the efficacy of
the proposed ZD models for solving the system of time-varying linear equations.

4.1 Introduction

The problem of solving the system of linear equations (including matrix inversion
problems as a closely related topic) is considered to be one of the basic problems
widely encountered in science and engineering. It is usually an essential part of many
solutions; e.g., as preliminary steps for optimization [1], signal processing [2], elec-
tromagnetic systems [3], and robots’ inverse kinematics [4]. Due to the important
role, many approaches (including numerical algorithms and neural-dynamics meth-
ods) have thus been developed, analyzed, and investigated for solving the system
of linear equations [5–9]. Note that almost all of the reported methods are theoreti-
cally/intrinsically designed for solving the system of time-invariant linear equations.
Therefore, these methods may be less accurate and effective enough when they are
exploited directly to solve the system of time-varying linear equations [8, 9].

To lay a basis for further discussion, the following system of time-varying linear
equations is presented [8, 9]:

A(t)x(t) = b(t) ∈ R
m, t ∈ [0,+∞), (4.1)

where A(t) ∈ R
m×n is the smoothly time-varying full-rank coefficient matrix, b(t) ∈

R
m is the smoothly time-varying coefficient vector, and x(t) ∈ R

n is the unknown
vector that needs to be obtained. Without loss of generality, A(t) and b(t), together
with their time derivatives Ȧ(t) and ḃ(t), are assumed to be known or can be estimated

© Springer-Verlag Berlin Heidelberg 2015
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accurately. Besides, we have the following descriptions about the general behavior
for the system of linear equations (4.1) [note that A(t) is of full rank].

• When m < n, (4.1) has infinitely many solutions, and it is thus known as the
underdetermined system of linear equations [10–12].

• When m = n, (4.1) has a single unique solution [5, 8, 9].
• When m > n, (4.1) has no solution, and it is thus known as the overdetermined

system of linear equations [13–15].

By realizing such a classification, in this chapter, we only focus on the investigation of
solving (4.1) under the situation of m = n [i.e., A(t) is a nonsingular square matrix];
while the investigation of solving (4.1) under the situation of m �= n (including
m < n and m > n) is conducted in the ensuing chapter (i.e., Chap. 5).

More specifically, in this chapter, focusing on solving the system of time-varying
linear equations A(t)x(t) = b(t) with A(t) ∈ R

n×n and b(t) ∈ R
n [i.e., (4.1) under

the situation of m = n], we propose, generalize, develop, and investigate two differ-
ent ZD models by defining two different ZFs as the error-monitoring functions. Then,
theoretical results are given to show that such two ZD models globally and expo-
nentially converge to the theoretical time-varying solution of system of time-varying
linear equations. Two illustrative examples are provided and computer simulation
results further substantiate the efficacy of the proposed ZD models for solving the
system of time-varying linear equations.

4.2 ZFs and ZD Models

In this section, by defining two different ZFs, two ZD models are proposed for solving
the system of time-varying linear equations (4.1).

In view of that (4.1) is depicted in the matrix–vector form (which is different from
those scalar forms presented in the previous chapters), we denote the corresponding
ZF by e(t) with ė(t) being its time derivative. Note that, in Chaps. 4–6, e(t) and ė(t)
are used as the notations of the vector-valued ZF and its time derivative, respectively.
Thus, the ZD design formula (1.2) presented in Chap. 1 is generalized as follows
(i.e., the vector form) [9]:

ė(t) = de(t)
dt

= −γ e(t), (4.2)

where design parameter γ ∈ R is defined the same as before. Based on different ZFs
and the ZD design formula (4.2), the resultant ZD models are developed for solving
the system of time-varying linear equations (4.1).

http://dx.doi.org/10.1007/978-3-662-47334-4_5
http://dx.doi.org/10.1007/978-3-662-47334-4_4
http://dx.doi.org/10.1007/978-3-662-47334-4_6
http://dx.doi.org/10.1007/978-3-662-47334-4_1
http://dx.doi.org/10.1007/978-3-662-47334-4_1
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4.2.1 The First ZF and ZD Model

In order to solve the system of time-varying linear equations (4.1), the first ZF (i.e.,
a vector-valued lower-unbounded error function) is defined as follows:

e(t) = A(t)x(t) − b(t) ∈ R
n . (4.3)

With ZF (4.3), expanding the ZD design formula (4.2), and in view of ė(t) =
A(t)ẋ(t) + Ȧ(t)x(t) − ḃ(t), we obtain

A(t)ẋ(t) = − Ȧ(t)x(t) + ḃ(t) − γ (A(t)x(t) − b(t)), (4.4)

which is the ZD model based on ZF (4.3) for solving system of time-varying linear
equations. Besides, the circuit schematic of ZD model (4.4) is depicted in Fig. 4.1,
which is an important and necessary step for the final hardware implementation of
the neural dynamics.

4.2.2 The Second ZF and ZD Model

Before defining the second ZF, an important theorem is presented to lay a basis for
further discussion as follows:

Theorem 4.1 The time derivative of the time-varying matrix inverse A−1(t) is for-
mulated as Ȧ−1(t) = dA−1(t)/dt = −A−1(t) Ȧ(t)A−1(t).

Proof It follows from A(t)A−1(t) = I ∈ R
n×n (with I being the identity matrix)

that
d

(
A(t)A−1(t)

)
dt

= dI

dt
= 0 ∈ R

n×n .

Expanding the above equation, we obtain

dA(t)

dt
A−1(t) + A(t)

dA−1(t)

dt
= 0 ∈ R

n×n,

which is further rewritten as

A(t)
dA−1(t)

dt
= −dA(t)

dt
A−1(t) = − Ȧ(t)A−1(t).

Then, we have
dA−1(t)

dt
= −A−1(t) Ȧ(t)A−1(t),
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ȧ21
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ḃn

γ

γ

γ

c11

c12

c1n

c21

c22

c2n

cn1

cn2

cnn

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

−

−

−

−
−

−
−

−
−

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+
+

+

+
+

+

+

+

+
x1

x2

xn

...

...

...

...

...

...

...

...

...

...

...

...
...

Fig. 4.1 The circuit schematic which realizes the ZD model (4.4), where such a model has been
rewritten as ẋ(t) = C(t)ẋ(t)− Ȧ(t)x(t)+ ḃ(t)−γ (A(t)x(t)−b(t)) with C(t) = I − A(t) ∈ R

n×n

i.e.,
Ȧ−1(t) = −A−1(t) Ȧ(t)A−1(t).

The proof is thus complete. �

Having the above theoretical result, we can define the second ZF as below:

e(t) = x(t) − A−1(t)b(t). (4.5)
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Then, in view of the above definition (4.5) and Ȧ−1(t) = −A−1(t) Ȧ(t)A−1(t),
we have the following ZD model by expanding ZD design formula (4.2):

ẋ(t) −
(
−A−1(t) Ȧ(t)A−1(t)b(t) + A−1(t)ḃ(t)

)
= −γ

(
x(t) − A−1(t)b(t)

)
,

and equivalently

A(t)ẋ(t) = − Ȧ(t)A−1(t)b(t) + ḃ(t) − γ (A(t)x(t) − b(t)). (4.6)

Thus, based on the second ZF (4.5), the second ZD model (4.6) is obtained for solving
the system of time-varying linear equations (4.1).

4.3 Theoretical Results and Analyses

In this section, theoretical results and analyses are presented, which show the con-
vergence performance of the proposed two ZD models (4.4) and (4.6) on solving the
system of time-varying linear equations (4.1).

Theorem 4.2 Given a smoothly time-varying nonsingular coefficient matrix A(t) ∈
R

n×n and a smoothly time-varying vector b(t) ∈ R
n in (4.1), the state vector

x(t) ∈ R
n of ZD model (4.4), starting from a randomly-generated initial state x(0),

converges globally and exponentially to the theoretical time-varying solution x∗(t)
of (4.1) with time.

Proof Let x̃(t) = x(t) − x∗(t) denote the difference between the time-varying solu-
tion x(t) generated by the proposed ZD model (4.4) and the theoretical time-varying
solution x∗(t) of (4.1). Then, we have

x(t) = x̃(t) + x∗(t).

Substituting the above equation to (4.4); and in view of the equation A(t)x∗(t) −
b(t) = 0 ∈ R

n and its time derivative A(t)ẋ∗(t) + Ȧ(t)x∗(t) − ḃ(t) = 0, we further
know that x̃(t) is the solution to the following dynamic equation:

A(t) ˙̃x(t) = − Ȧ(t)x̃(t) − γ A(t)x̃(t), (4.7)

where ˙̃x(t) is the time derivative of x̃(t).
Since e(t) = A(t)x(t) − b(t) = A(t)(x̃(t) + x∗(t)) − b(t) = A(t)x̃(t), (4.7)

is rewritten equivalently as ė(t) = −γ e(t), which is a compact vector form of the
following set of n equations (where i = 1, 2, . . . , n):

ėi = −γ ei ∈ R. (4.8)
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Then, we define a Lyapunov function candidate v = e2
i /2 � 0 for the i th subsystem

(4.8). Evidently, such a Lyapunov function is positive-definite, because v > 0 for
any ei �= 0, and v = 0 only for ei = 0. Next, its time derivative is obtained as below:

v̇ = dv

dt
= ei ėi = −γ e2

i � 0,

which guarantees the final negative-definiteness of v̇. That is to say, v̇ < 0 for any
ei �= 0, and v̇ = 0 only for ei = 0. In addition, as ei → ∞, v → ∞. According to
Lyapunov theory, ei globally converges to zero for any i ∈ {1, 2, . . . , n}. Therefore,
in view of e(t) = A(t)x̃(t) and the invertible time-varying matrix A(t), we have
x̃(t) → 0 as t → ∞. In other words, starting from a randomly-generated initial state
x(0), the state vector x(t) of ZD model (4.4) converges globally to the theoretical
time-varying solution x∗(t) ∈ R

n .
Next, we prove the exponential convergence performance of ZD model (4.4). In

view of (4.8), we obtain its analytic solution in the compact vector form as follows:

e(t) = e(0) exp(−γ t).

Then, we have
‖e(t)‖2 = ‖e(0)‖2 exp(−γ t),

where ‖ · ‖2 denotes the two norm of a vector. Evidently, as t → ∞, ‖e(t)‖2 =
‖A(t)x̃(t)‖2 → 0 exponentially with rate γ . Given α > 0 as the minimum eigen-
value of AT(t)A(t), we have ‖A(t)x̃(t)‖2 = x̃T(t)AT(t)A(t)x̃(t) � αx̃T(t)x̃(t) =
α‖x̃(t)‖2, where superscript T denotes the transpose operator. This implies that, start-
ing from any randomly-generated initial state x(0), the state vector x(t) of ZD model
(4.4) converges exponentially to the theoretical time-varying solution x∗(t) of (4.1)
as time t goes on. Based on the above analysis, the proof is thus complete. �

Theorem 4.3 Given a smoothly time-varying nonsingular coefficient matrix A(t) ∈
R

n×n and a smoothly time-varying vector b(t) ∈ R
n in (4.1), the state vector

x(t) ∈ R
n of ZD model (4.6), starting from a randomly-generated initial state x(0),

converges globally and exponentially to the theoretical time-varying solution x∗(t)
of (4.1) with rate γ > 0, as time t goes on.

Proof Let x̃(t) = x(t) − x∗(t). Substituting it to (4.6); and considering equation
x∗(t) − A−1(t)b(t) = 0 and its time derivative ẋ∗(t) + A−1(t) Ȧ(t)A−1(t)b(t) −
A−1(t) ḃ(t) = 0, we further know that x̃(t) is the solution to the ensuing dynamics

˙̃x(t) = −γ x̃(t) ∈ R
n . (4.9)

Thus, we can define a Lyapunov function candidate v = x̃2
i /2 � 0 for the i th

subsystem of (4.9), where x̃i denotes the i th element of x̃(t) (with i = 1, 2, . . . , n).
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Evidently, such a Lyapunov function is positive-definite, because v > 0 for any
x̃i �= 0, and v = 0 only for x̃i = 0. Then, its time derivative is obtained as below:

v̇ = dv

dt
= x̃i ˙̃xi = −γ x̃2

i � 0,

which guarantees the final negative-definiteness of v̇. That is to say, v̇ < 0 for any
x̃i �= 0, and v̇ = 0 only for x̃i = 0. In addition, as x̃i → ∞, v → ∞. By Lyapunov
theory, x̃i globally converges to zero for any i ∈ {1, 2, . . . , n}. Therefore, we have
x̃(t) → 0 as t → ∞. That is to say, starting from a randomly-generated initial state
x(0), state vector x(t) of ZD model (4.6) converges globally to the theoretical time-
varying solution. Now, we prove the exponential convergence of ZD model (4.6).

In view of (4.9), we can obtain its analytic solution as follows:

x̃(t) = x̃(0) exp(−γ t),

and
‖x̃(t)‖2 = ‖x̃(0)‖2 exp(−γ t),

which means that, as t → ∞, ‖x̃(t)‖2 = ‖x(t) − x∗(t)‖2 → 0 exponentially with
rate γ . That is to say, starting from a randomly-generated initial state x(0), state
vector x(t) of ZD model (4.6) converges globally and exponentially to theoretical
time-varying solution x∗(t) of (4.1) with rate γ > 0. The proof is thus complete. �

According to the theoretical analysis above, we can draw the conclusion that the
proposed ZD models globally and exponentially converge to the theoretical solution
of system of time-varying linear equations. Note that the convergence time of both ZD
models can be expedited as the value of design parameterγ increases. Specifically, the
convergence time decreases in an exponential manner with the γ value increasing.
That is to say, the convergence time of ZD model (4.4) and ZD model (4.6) for
solving the system of time-varying linear equations (4.1) is decreasing as the value
of γ increases. Therefore, design parameter γ plays an important role in ZD models
and thus should be selected appropriately large to satisfy the convergence rate in
practice.

4.4 Illustrative Examples

In the previous sections, two different ZFs have been presented, which generate two
ZD models for solving the system of time-varying linear equations (4.1). In addition
to detailed design process of ZD models, their excellent convergence performances
are analyzed in details. In this section, two illustrative examples are provided for
substantiating the efficacy of such two ZD models.
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Example 4.1 Now let us consider the following time-varying coefficients of (4.1)
with A(t) and b(t) being, respectively,

A(t) =
[

sin(3t) cos(3t)
− cos(3t) sin(3t)

]
∈ R

2×2 and b(t) =
[

sin(3t) + 1
− cos(3t)

]
∈ R

2.

Then, the theoretical time-varying solution x∗(t) of (4.1) in this situation is obtained
as below:

x∗(t) =
[

sin(3t) − cos(3t)
cos(3t) sin(3t)

] [
sin(3t) + 1
− cos(3t)

]
.

Since we have got the theoretical time-varying solution of (4.1), we can use it as a
criterion to substantiate the effectiveness of the proposed ZD models (4.4) and (4.6).
The corresponding simulation results are shown in Figs. 4.2 and 4.3.
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Fig. 4.2 Transient behaviors of neural state x(t) and residual error ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2
synthesized by ZD model (4.4) starting with ten randomly-generated initial states in Example 4.1
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Fig. 4.3 Transient behaviors of neural state x(t) and residual error ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2
synthesized by ZD model (4.6) starting with ten randomly-generated initial states in Example 4.1
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First, we investigate the convergence performance of ZD model (4.4) with γ = 1.
Starting from ten randomly-generated initial states, the transient behavior of neural
state x(t) ∈ R

2 is shown in the left graph of Fig. 4.2. As seen from it, neural states
of ZD model (4.4) all converge to the theoretical time-varying solution of (4.1)
accurately. That is, x(t) shown in the left graph of Fig. 4.2 is an exact solution
of system of time-varying linear equations (4.1). In addition, the right graph of
Fig. 4.2 shows the transient behavior of residual error ‖e(t)‖2 = ‖A(t)x(t)− b(t)‖2
corresponding to x(t) synthesized by ZD model (4.4). It follows from the right graph
of Fig. 4.2 that the residual error synthesized by (4.4) decreases exponentially to zero
as time t goes on. These results coincide with the theoretical analysis of Theorem 4.2.
Thus, the efficacy of the proposed ZD model (4.4) for solving the system of time-
varying linear equations (4.1) is substantiated primarily.

Then, we investigate the convergence performance of ZD model (4.6) under the
same conditions as before. For demonstrating the effectiveness of ZD model (4.6),
the left graph of Fig. 4.3 shows the transient behavior of state vector x(t) ∈ R

2. As
seen from it, neural states of (4.6) all converge to the theoretical time-varying solution
rapidly. The right graph of Fig. 4.3 further shows the corresponding transient behavior
of residual error ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2. Evidently, from the right graph of
Fig. 4.3, we know that the residual error synthesized by ZD model (4.6) converges
exponentially to zero. These results substantiate the efficacy of the proposed ZD
model (4.6) for solving system of time-varying linear equations (4.1) (as well as
coincide with the theoretical analysis of Theorem 4.3).

Example 4.2 For further demonstrating the effectiveness of the proposed ZD models
(4.4) and (4.6), let us consider the following time-varying coefficients of (4.1):

A(t) =
⎡
⎣3 + sin(5t) cos(5t) 0.5 cos(5t)

cos(5t) 3 + sin(5t) cos(5t)
0.5 cos(5t) cos(5t) 3 + sin(5t)

⎤
⎦ ∈ R

3×3 and

b(t) =
⎡
⎣ cos(5t)

sin(5t)
− sin(5t)

⎤
⎦ ∈ R

3.

Similarly, we apply such two ZD models (4.4) and (4.6) with γ = 1 to solve the
above system of time-varying linear equations, and the corresponding simulation
results are shown in Fig. 4.4. From Fig. 4.4 which shows the transient behavior of
‖e(t)‖2 = ‖A(t)x(t)−b(t)‖2, we can see that the residual errors synthesized by ZD
models (4.4) and (4.6) both converge exponentially to zero as time t goes on. This
also implies that the corresponding state vector x(t) ∈ R

3 [of (4.4) or (4.6)], starting
from ten randomly-generated initial states, is an exact solution of the aforementioned
system of time-varying linear equations. Thus, based on these results, the efficacy of
the proposed ZD models (4.4) and (4.6) is further substantiated.

Example 4.3 As mentioned before, the convergence time of both ZD models (4.4)
and (4.6) can be expedited as the value of design parameter γ increases. Thus, in
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Fig. 4.4 Transient behaviors of residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2 synthesized by ZD
models (4.4) and (4.6) starting with the same randomly-generated initial state in Example 4.2

this example, we further investigate the convergence performance of such two ZD
models using different γ values.

Let us exploit ZD models (4.4) and (4.6) to solve the system of time-varying linear
equations (4.1) involved in Example 4.1 with γ = 1, 5, 10 and 20, respectively.
The corresponding simulation results are shown in Fig. 4.5. As seen from Fig. 4.5,
the residual errors synthesized by ZD models (4.4) and (4.6) all converge to zero,
showing again the efficacy of such two ZD models. More importantly, from Fig. 4.5,
we confirmedly observe that the residual errors with larger γ value converge faster
than those with smaller γ value. In other words, the convergence times of ZD models
(4.4) and (4.6) for solving the system of time-varying linear equations (4.1) become
shorter and shorter as the value of γ increases. Therefore, we have the conclusion
that design parameter γ plays an important role in ZD models (4.4) and (4.6) on the
convergence performance.
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Fig. 4.5 Transient behaviors of residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2 synthesized by ZD
models (4.4) and (4.6) using different γ values in Example 4.3
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In summary, the above simulation results with different illustrative examples have
substantiated the efficacy of the proposed ZD models (4.4) and (4.6) for solving the
system of time-varying linear equations (4.1).

4.5 Summary

In this chapter, by introducing two ZFs (4.3) and (4.5), two corresponding ZD models
(4.4) and (4.6) have been proposed, generalized, developed, and investigated to solve
system of time-varying linear equations (4.1). In addition, it has been proved that
such two ZD models globally and exponentially converge to the theoretical time-
varying solution of (4.1). Computer simulation results have further substantiated
the theoretical analysis and the efficacy of the proposed ZD models for solving the
system of time-varying linear equations.
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Chapter 5
Over-Determined and Under-Determined
Systems of Time-Varying Linear Equations

Abstract In this chapter, focusing on solving over-determined system of
time-varying linear equations, we first propose, generalize, develop, and investigate
two ZDmodels based on two different ZFs. Then, by introducing another two differ-
ent ZFs, another two ZD models are proposed, generalized, developed, and investi-
gated to solve under-determined system of time-varying linear equations. Computer
simulation results with different illustrative examples are presented to further sub-
stantiate the efficacy of the proposed ZD models for solving over-determined and
under-determined systems of time-varying linear equations.

5.1 Introduction

Solving over-determined and under-determined systems of linear equations is widely
encountered in a variety of scientific and engineering research fields [1–7]. As pre-
sented in Chap.4, it has no solution for over-determined system of linear equations;
while it has infinitely many solutions for under-determined system of linear equa-
tions. These characteristics make it difficult for solving over-determined and under-
determined systems of linear equations.

Focusing on solving over-determined and under-determined systems of linear
equations, many approaches (including numerical algorithms and neural-dynamics
methods) have thus been developed, analyzed, and investigated [8–12]. Note that the
problems of over-determined and under-determined systems of linear equations in
most of these researches or investigations are static (or termed, time-invariant). This
also means that almost all of these methods are theoretically/intrinsically designed
for solving over-determined and under-determined systems of time-invariant linear
equations. When these methods are exploited directly to solve the (over-determined
or under-determined) system of time-varying linear equations, they may be less
accurate and effective enough [10, 11].

In this chapter, by following the idea of ZFs, different ZD models are proposed,
generalized, developed, and investigated to solve over-determined and
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under-determined systems of time-varying linear equations. Specifically, we first
construct two different ZD models based on two ZFs for solving over-determined
system of time-varying linear equations. Then, another two different ZD models are
constructed for solving under-determined system of time-varying linear equations.
Four illustrative examples are provided and computer simulation results further sub-
stantiate the efficacy of the proposed ZD models for solving over-determined and
under-determined systems of time-varying linear equations.

5.2 ZFs and ZD Models

In this section, by defining different ZFs, different ZD models are proposed for
solving the following system of time-varying linear equations:

A(t)x(t) = b(t) ∈ R
m, t ∈ [0,+∞), (5.1)

where A(t) ∈ R
m×n with m �= n is the smoothly time-varying full-rank coefficient

matrix, b(t) ∈ R
m is the smoothly time-varying coefficient vector, and x(t) ∈ R

n is
the unknown vector that needs to be obtained in an error-free and real-time manner
(or termed, the manner of real-time time-varying problem-solving). Note that (5.1)
can be viewed as a general time-varying system of m real-valued time-varying linear
equations and n real-valued time-varying variables.

To lay a basis for further discussion, the following corollary is presented, with
the related proof being generalized from the proof of Theorem4.1 and being left to
interested readers to complete as a topic of exercise.

Corollary 5.1 Consider a smoothly time-varying full-rank matrix A(t) ∈ R
m×n

with m �= n. Let A+(t) ∈ R
n×m denote the time-varying Moore–Penrose pseo-

duinverse of A(t). Then, the time derivative of A+(t) is formulated as Ȧ+(t) =
dA+(t)/dt = −A+(t) Ȧ(t)A+(t).

5.2.1 With m > n (Over-Determined System)

In this subsection, two different ZD models based on two ZFs are developed and
investigated for solving over-determined system of time-varying linear equations,
i.e., (5.1) with m > n. Note that, as mentioned in [6], if there exists at least one
choice for the time-varying vector x(t) which satisfies (5.1) with m > n, then the
over-determined system of time-varying linear equations is consistent; and if no such
time-varying vector exists, then the over-determined system of time-varying linear
equations is inconsistent. In this chapter, we only consider the situation of the incon-
sistent over-determined systemof time-varying linear equations. Besides, in the study
of the inconsistent over-determined system of time-varying linear equations, the

http://dx.doi.org/10.1007/978-3-662-47334-4_4
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two-norm technique is adopted to zero out the time-varying residual error A(t)x(t)−
b(t) as possible as we can in this chapter.

The First ZF and ZD Model In order to solve the system of time-varying linear
equations (5.1) with m > n, the first ZF (i.e., a vector-valued lower-unbounded error
function) is defined as follows:

e(t) = A(t)x(t) − b(t) ∈ R
m . (5.2)

With ZF (5.2), by expanding the ZD design formula (4.2), we obtain the following
ZD model for solving over-determined system of time-varying linear equations:

AT(t)A(t)ẋ(t) = −AT(t) Ȧ(t)x(t)+ AT(t)ḃ(t)− γ AT(t)(A(t)x(t)− b(t)), (5.3)

where x(t), starting from an initial condition x(0), is the neural state corresponding
to an approximate time-varying solution (e.g., a pseudoinverse-type solution) x∗(t)
of (5.1) with m > n.

The Second ZF and ZD Model To solve over-determined system of time-varying
linear equations, i.e., (5.1) with m > n, the second ZF is defined as follows:

e(t) = x(t) − A+(t)b(t) ∈ R
n . (5.4)

where A+(t) = (AT(t)A(t))−1AT(t) denotes the left Moore–Penrose inverse of
A(t).

Then, in view of (5.4) and Ȧ+(t) = dA+(t)/dt = −A+(t) Ȧ(t)A+(t), we have
the following ZD model by expanding ZD design formula (4.2):

AT(t)A(t)ẋ(t) = −AT(t) Ȧ(t)A+(t)b(t)+ AT(t)ḃ(t)− γ AT(t) (A(t)x(t) − b(t)) .

(5.5)
Thus, based on the secondZF (5.4), the secondZDmodel (5.5) is obtained for solving
over-determined system of time-varying linear equations.

Before closing this subsection of constructingZDmodels (5.3) and (5.5), the block
diagrams and overall Simulink models corresponding to such two ZD models are
shown in Figs. 5.1, 5.2, 5.3 and 5.4, which may be useful for their future implemen-
tations on circuit systems. Besides, it is worth pointing out that the over-determined
system of time-varying linear equations discussed in this chapter is inconsistent and
there does not exist accurate theoretical solution for it. Thus, in the ensuing simula-
tions, the two-norm measure is adopted to show the residual error about the obtained
approximate solution of (5.1) with m > n, i.e., ‖A(t)x(t) − b(t)‖2.

5.2.2 With m < n (Under-Determined System)

In this subsection, another two different ZD models based on two ZFs are devel-
oped and investigated for solving under-determined system of time-varying linear

http://dx.doi.org/10.1007/978-3-662-47334-4_4
http://dx.doi.org/10.1007/978-3-662-47334-4_4
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linear equations, where I is the identity matrix
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equations, i.e., (5.1) withm < n. Sincem < n, there exist multiple or even an infinite
number of solutions to (5.1).

Being similar to the above design procedure, in order to solve under-determined
system of time-varying linear equations, we define the following two ZFs:

e(t) = A(t)x(t) − b(t) ∈ R
m, (5.6)

e(t) = x(t) − A+(t)b(t) ∈ R
n, (5.7)

where A+(t) = AT(t)(A(t)AT(t))−1 denotes the right Moore–Penrose inverse of
A(t).

On the one hand, with ZF (5.6), by expanding the ZD design formula (4.2), we
obtain the following ZDmodel for solving under-determined system of time-varying
linear equations:

A(t)ẋ(t) = − Ȧ(t)x(t) + ḃ(t) − γ (A(t)x(t) − b(t)). (5.8)

On the other hand, with ZF (5.7), by expanding the ZD design formula (4.2),
we obtain another ZD model for solving under-determined system of time-varying
linear equations as follows:

ẋ(t) = −A+(t) Ȧ(t)A+(t)b(t) + A+(t)ḃ(t) − γ
(
x(t) − A+(t)b(t)

)
. (5.9)

In summary, based on two different ZFs (5.6) and (5.7), two different ZD models
(5.8) and (5.9) have been developed for solving under-determined system of time-
varying linear equations, i.e., (5.1) with m < n. Note that the block diagrams and
overall Simulink models corresponding to such two ZD models are left to interested
readers to complete as a topic of exercise (since they are similar to those shown in
Figs. 5.1, 5.2, 5.3, and 5.4).

5.3 Illustrative Examples

In this section, two illustrative examples are first simulated and analyzed for compar-
isons between the proposed ZD models (5.3) and (5.5) for solving over-determined
system of time-varying linear equations. Then, another two illustrative examples are
provided for substantiating the efficacy of the proposed ZD models (5.8) and (5.9)
for solving under-determined system of time-varying linear equations.

Example 5.1 In the first example, the following smoothly time-varying coefficient
matrix A(t) and coefficient vector b(t) of (5.1) with m = 3 and n = 2 are designed
to test the proposed ZD models (5.3) and (5.5):

http://dx.doi.org/10.1007/978-3-662-47334-4_4
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A(t) =
⎡

⎣
sin(3t) cos(3t)

− cos(3t) sin(3t)
sin(3t) cos(3t)

⎤

⎦ ∈ R
3×2 and b(t) =

⎡

⎣
cos(t)
sin(t)

− sin(t)

⎤

⎦ ∈ R
3.

The corresponding simulation results are shown in Figs. 5.5, 5.6, and 5.7.

Specifically, in the time period [0, 10]s, the state trajectories of the two elements
x1(t) and x2(t) of x(t) = [x1(t) x2(t)]T synthesized by the proposed ZD models
(5.3) and (5.5) with γ = 1 are illustrated in Fig. 5.5. It is seen that all simulated
state trajectories (denoted by solid curves) starting from ten randomly-generated
initial states x(0) ∈ [−1.5, 1.5]2 can relatively fast converge to the pseudoinverse-
type solution x∗(t) = A+(t)b(t) which is exploited and shown for comparison
and denoted by dash-dotted curves. Furthermore, Fig. 5.6 shows the residual errors
‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2 of ZD models (5.3) and (5.5) with γ = 1. As seen
from Fig. 5.6, the residual errors of both ZD models cannot converge to zero. This
phenomenon actually reflects and confirms that, for solving such an inconsistent
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Fig. 5.5 State trajectories of ZD models (5.3) and (5.5) with γ = 1 for solving over-determined
system of time-varying linear equations involved in Example5.1, where the dash-dotted curves
correspond to the pseudoinverse-type solution x∗(t) = A+(t)b(t)
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Fig. 5.6 Residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2 of ZD models (5.3) and (5.5) with γ = 1
for solving over-determined system of time-varying linear equations involved in Example5.1
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Fig. 5.7 Residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2 of ZD models (5.3) and (5.5) using dif-
ferent γ values for solving over-determined system of time-varying linear equations involved in
Example5.1

over-determined system of time-varying linear equations, we cannot find a time-
varying solution that satisfies all of the inconsistent equations simultaneously all the
time.

Moreover, as seen from Fig. 5.7, ZD models (5.3) and (5.5) using different values
of γ are investigated. Synthesized by the proposed ZD models, the residual errors
(with γ = 1, 5, 10, and 20) cannot converge to zero either, and the reason has been
explained in the preceding paragraph. Besides, as shown in Fig. 5.7, the residual
errors with larger γ value converge faster than those with smaller γ value, showing
that γ plays an important role in such ZD models.

Example 5.2 In the second example, the following time-varying coefficients of (5.1)
with m = 5 and n = 4 are designed to test the proposed ZD models (5.3) and (5.5):

A(t) =

⎡

⎢⎢⎢⎢
⎣

a1(t) a2(t) a3(t) a4(t)
a1(t) −a2(t) a3(t) a4(t)
a1(t) a2(t) −a3(t) a4(t)
a1(t) a2(t) a3(t) −a4(t)
a1(t) a2(t) a3(t) a4(t)

⎤

⎥⎥⎥⎥
⎦

∈ R
5×4 and b(t) =

⎡

⎢⎢⎢⎢
⎣

2 sin(t)
3 cos(2t)
4 sin(2t)
3 cos(t)
sin(2t)

⎤

⎥⎥⎥⎥
⎦

∈ R
5.

where a1(t) = 4 − sin(t), a2(t) = 2 + cos(2t), a3(t) = 3 − sin(2t) and a4(t) =
2 + cos(t). The corresponding simulation results are shown in Figs. 5.8, 5.9, and
5.10.

Specifically, in the time period [0, 10]s, the state trajectories of the four elements
x1(t), x2(t), x3(t), and x4(t) of x(t) = [x1(t) x2(t) x3(t) x4(t)]T synthesized by
ZD models (5.3) and (5.5) with γ = 1 are illustrated in Fig. 5.8. Starting from ten
randomly-generated initial states x(0) ∈ [−1.5, 1.5]4, all state trajectories (denoted
by solid curves) can also relatively fast converge to the pseudoinverse-type solution
x∗(t) = A+(t)b(t) (denoted by dash-dotted curves again).

http://dx.doi.org/10.1007/978-3-662-47334-4_5
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Fig. 5.8 State trajectories of ZD models (5.3) and (5.5) with γ = 1 for solving over-determined
system of time-varying linear equations involved in Example5.1
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Furthermore, Fig. 5.9 shows the residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2
of ZD models (5.3) and (5.5) with γ = 1. As seen from the figure, the residual
errors of ZD models (5.3) and (5.5) cannot converge to zero either. The reason is
explained before; i.e., we cannot find a time-varying solution which can satisfy all
of the inconsistent equations simultaneously.

Moreover, as seen fromFig. 5.10, ZDmodels (5.3) and (5.5) using different values
of γ are investigated. We confirmedly observe that the residual errors with larger γ

value converge faster than those with smaller γ value (showing again the important
role of γ for the proposed ZD models).

In summary, the simulation results of the above two examples have substantiated
the efficacy of the proposed ZD models (5.3) and (5.5) (derived from two different
ZFs) for solving over-determined system of time-varying linear equations.

Example 5.3 In the third example, the following smoothly time-varying coefficient
matrix A(t) and coefficient vector b(t) of (5.1) with m = 2 and n = 3 are designed
to test the proposed ZD models (5.8) and (5.9):

A(t) =
[

sin(0.6t) cos(0.6t) − sin(0.6t)
− cos(0.6t) sin(0.6t) cos(0.6t)

]
∈ R

2×3 andb(t) =
[
1.5 cos(t)
sin(2t)

]
∈ R

2.

The corresponding simulation results are shown in Figs. 5.11, 5.12, and 5.13.

Specifically, in the time period t ∈ [0, 10]s, state trajectories of the elements
x1(t), x2(t), and x3(t) (denoted by solid curves) synthesized by ZDmodels (5.8) and
(5.9) with γ = 1 are illustrated in Fig. 5.11. Evidently, starting from ten randomly-
generated initial states x(0) ∈ [−2, 2]3, some of the simulated state trajectories
synthesized by ZD model (5.8) (e.g., x1(t) in the left graph of Fig. 5.11) do not
converge to the trajectories of the referenced theoretical solution x∗(t) = A+(t)b(t)
(denoted by dash-dotted curves), but run in parallel with the theoretical-solution
trajectories. The reason is that there are multiple time-varying solutions satisfying
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Fig. 5.11 State trajectories of ZD models (5.8) and (5.9) with γ = 1 for solving under-determined
system of time-varying linear equations involved in Example5.3
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for solving under-determined system of time-varying linear equations involved in Example5.3

0 2 4 6 8 10
−5

0

5

0 2 4 6 8 10
−2

0

2

0 2 4 6 8 10
−5

0

5

x1(t)

x2(t)

x3(t)

t (s)

t (s)

t (s)
0 2 4 6 8 10

−2

0

2

0 2 4 6 8 10
−2

0

2

0 2 4 6 8 10
−2

0

2

x1(t)

x2(t)

x3(t)

t (s)

t (s)

t (s)

Fig. 5.13 State trajectories of ZD models (5.8) and (5.9) with γ = 1 for solving under-determined
system of time-varying linear equations involved in Example5.4

the under-determined system of time-varying linear equations with different initial
states x(0) used. In contrast, other simulated state trajectories of ZD model (5.8) and
all simulated state trajectories of ZD model (5.9), starting from randomly-generated
initial states, relatively fast converge to the trajectories of the referenced theoretical
solution x∗(t) = A+(t)b(t), as shown in Fig. 5.11.

Furthermore, Fig. 5.12 shows the residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2
of ZD models (5.8) and (5.9) with γ = 1 used. As seen from the figure, the residual
errors ‖e(t)‖2 fast converge to zero. Note that the simulation results synthesized
by ZD models (5.8) and (5.9) using different γ values are similar to those shown in
Figs. 5.7 and 5.10 (and thus are omitted due to results similarity). That is, the residual
errors with larger γ value converge faster than those with smaller γ value, showing
the important role of γ for the proposed ZD models (5.8) and (5.9).

Example 5.4 In the fourth example, the following smoothly time-varying coefficient
matrix A(t) and coefficient vector b(t) of (5.1) with m = 2 and n = 3 are designed
to test the proposed ZD models (5.8) and (5.9):

http://dx.doi.org/10.1007/978-3-662-47334-4_5
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Fig. 5.14 Residual errors ‖e(t)‖2 = ‖A(t)x(t) − b(t)‖2 of ZD models (5.8) and (5.9) with γ = 1
for solving under-determined system of time-varying linear equations involved in Example5.4

A(t) =
[

sin(2t) cos(2t) − sin(2t)
− cos(2t) sin(2t) cos(2t)

]
∈ R

2×3 and b(t) =
[
sin(0.5t)
cos(t)

]
∈ R

2.

The corresponding simulation results are shown in Figs. 5.13 and 5.14, where phe-
nomena are similar to those inExample5.3. That is, corresponding tox(t) in Fig. 5.13,
the residual errors of ZDmodels (5.8) and (5.9) in Fig. 5.14 all converge to zero. Note
that, being a topic of exercise, the related simulative verifications of ZDmodels (5.8)
and (5.9) using different values of γ are left for interested readers.

In summary, the simulation results of the above two illustrative examples have
substantiated the efficacy of the proposed ZD models (5.8) and (5.9) for solving
under-determined system of time-varying linear equations.

5.4 Summary

In this chapter, by introducing different ZFs [i.e., (5.2), (5.4), (5.6), and (5.7)], differ-
ent ZD models [i.e., (5.3), (5.5), (5.8), and (5.9)] have been proposed, generalized,
developed, and investigated to solve over-determined and under-determined systems
of time-varying linear equations (5.1).With different illustrative examples, computer
simulation results have further substantiated the efficacy of the proposed ZD models
for solving over-determined and under-determined systems of time-varying linear
equations.
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Chapter 6
Time-Varying Linear Matrix-Vector
Inequality

Abstract In this chapter, by defining three different ZFs, three different ZD models
are proposed, generalized, developed, and investigated to solve the time-varying
linear matrix-vector inequality. Theoretical results are given as well to show the
excellent convergence performance of such ZDmodels. Computer simulation results
are presented to further substantiate the efficacy of the proposed ZDmodels for time-
varying linear matrix-vector inequality solving.

6.1 Introduction

Online solution of linear matrix-vector inequality in the form of Ax � b (where
A denotes a constant matrix and b denotes a constant vector) and time-varying
linear matrix-vector inequality in the form of A(t)x(t) � b(t) [where A(t) denotes
a time-varying matrix and b(t) denotes a time-varying vector] is considered to be
an important issue encountered in science and engineering fields [1–10], e.g., image
restoration [1], digital signal processing [4], and robot inverse kinematics [7]. Specif-
ically, time-varying linear matrix-vector inequality has a wide application in motion
planning of robot manipulators [8–10]; e.g., different time-varying linear matrix-
vector inequalities are introduced and investigated for avoiding obstacles [9, 10],
which are used to generate escape velocities of variable magnitude, driving the
affected links away from obstacles. Thus, robot manipulators can avoid obstacles
successfully when approaching them. Due to the in-depth researches, a variety of
approaches (including numerical algorithms and neural networks) for solving (time-
varying and/or time-invariant) linear matrix-vector inequality have been developed
and investigated [2–6, 11–15].

In this chapter, focusing on solving time-varying linear matrix-vector inequal-
ity, we propose, generalize, develop, and investigate three different ZD models by
defining three different ZFs. As for such ZD models, theoretical results are given
as well to show their excellent convergence performance. Two illustrative examples
are provided and computer simulation results further substantiate the efficacy of the
proposed ZD models for time-varying linear matrix-vector inequality solving.
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6.2 ZFs and ZD Models

In this section, by defining different ZFs, different ZD models are proposed for
solving the following time-varying linear matrix-vector inequality:

A(t)x(t) � b(t), t ∈ [0,+∞), (6.1)

where A(t) ∈ R
n×n is the smoothly time-varying nonsingular coefficient matrix,

b(t) ∈ R
n is the smoothly time-varying coefficient vector, and x(t) ∈ R

n is the
unknown vector that needs to be obtained.

To lay a basis for further discussion, let us define the theoretical time-varying
solution set S(t) = {x(t)|x(t) ∈ R

n is a solution of 6.1} with S(0) denoting its
initial solution set. For presentation convenience, we define the residual error as

y(t) = A(t)x(t) − b(t) ∈ R
n,

and y(t) = [y1(t), y2(t), . . . , yn(t)]T. In addition, we use max{0, y(t)} as a criterion
to measure the efficacy of ZD models for online solution of time-varying linear
matrix-vector inequality. This is because if max{0, y(t)} = 0 holds true, then y(t) =
A(t)x(t) − b(t) � 0 and we can say that the resultant time-varying solution x(t) is
the desired solution of (6.1). This paper aims at defining different ZFs to result in
different types of ZDmodels for solving time-varying linear matrix-vector inequality
(6.1) and finding an unknown x(t) ∈ S(t) in real time t such that max{0, y(t)} → 0
as time t goes on.

6.2.1 The First ZF and ZD Model

In order to solve time-varying linear matrix-vector inequality (6.1), the first ZF is
defined as follows:

e(t) =

⎡
⎢⎢⎢⎣

e1(t)
e2(t)

...

en(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(max{0, y1(t)})2/2
(max{0, y2(t)})2/2

...

(max{0, yn(t)})2/2

⎤
⎥⎥⎥⎦ ∈ R

n . (6.2)

Based on ZF (6.2), by expanding the ZD design formula (4.2), we obtain

A(t)ẋ(t) = − Ȧ(t)x(t) + ḃ(t) − γ

2
max{0, A(t)x(t) − b(t)} (6.3)

which is the first ZD model for time-varying linear matrix-vector inequality solving.

http://dx.doi.org/10.1007/978-3-662-47334-4_4
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As for ZD model (6.3), we have the following important theorem to guarantee
that, as t → ∞, ‖e(t)‖2 → 0 globally and exponentially. Note that the correspond-
ing proof is given in [13] and thus is not repeated again (but left to interested readers
to complete as a topic of exercise).

Theorem 6.1 For ZD model (6.3), given a smoothly time-varying nonsingular coef-
ficient matrix A(t) and a smoothly time-varying coefficient vector b(t) in (6.1),

• if initial state x(0) ∈ R
n is outside the initial solution set S(0) of (6.1), the norm-

based error function ‖e(t))‖2 is globally and exponentially convergent to zero with
convergence rate γ;

• if initial state x(0) ∈ R
n is inside the initial solution set S(0) of (6.1), the norm-

based error function ‖e(t)‖2 is always equal to zero.

That is, ZD model (6.3) generates an exact time-varying solution of (6.1), A(t)x(t) �
b(t), with an exponential convergence performance.

6.2.2 The Second ZF and ZD Model

In this subsection, being different from the first ZF (6.2), the second ZF is defined
as below:

e(t) =

⎡
⎢⎢⎢⎣

e1(t)
e2(t)

...

en(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y1(t)
y2(t)

...

yn(t)

⎤
⎥⎥⎥⎦ = y(t) = A(t)x(t) − b(t) ∈ R

n . (6.4)

Then, in order to obtain an effective ZD model for solving time-varying linear
matrix-vector inequality (6.1), a new design formula is elaborately constructed for
the second ZF (6.4) as follows [which is clearly different from the design formula
(4.2) presented in Chap.4]:

ė(t) = de(t)
dt

= −γ JMP (e(0)) � e(t), (6.5)

where JMP(·) : Rn → R
n denotes an array of jump functions with each element

defined as

jmp(c) =
{
1, if c > 0,

0, if c � 0.

http://dx.doi.org/10.1007/978-3-662-47334-4_4
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In addition, the vector multiplication operator � is defined as

u � v =

⎡
⎢⎢⎢⎣

u1v1
u2v2

...

unvn

⎤
⎥⎥⎥⎦ ∈ R

n with u =

⎡
⎢⎢⎢⎣

u1
u2
...

un

⎤
⎥⎥⎥⎦ ∈ R

n and v =

⎡
⎢⎢⎢⎣

v1
v2
...

vn

⎤
⎥⎥⎥⎦ ∈ R

n .

In view of ZF (6.4) and ẏ(t) = Ȧ(t)x(t) + A(t)ẋ(t) − ḃ(t), by expanding the
ZD design formula (6.5), we obtain the following ZD model for time-varying linear
matrix-vector inequality solving:

A(t)ẋ(t) = −γ JMP (A(0)x(0) − b(0))�(A(t)x(t)−b(t))− Ȧ(t)x(t)+ḃ(t). (6.6)

As for ZD model (6.6), we have the following important theorem to guarantee
the convergence performance of such a model. Note that the corresponding proof
is generalized from the proof shown in [6], and is also left to interested readers to
complete as a topic of exercise).

Theorem 6.2 Given a smoothly time-varying nonsingular coefficient matrix A(t)
and a smoothly time-varying coefficient vector b(t) in (6.1), for ZD model (6.6),

• if initial state x(0) ∈ R
n is outside the initial solution set S(0) of (6.1), then there

exists at least one i ∈ {1, 2, . . . , n} such that ei (t) is globally and exponentially
convergent to zero with convergence rate λ, while the other error functions e j (t),
with j = 1, 2, . . . , n and j �= i , are always equal to e j (0);

• if initial state x(0) ∈ R
n is inside the initial solution set S(0) of (6.1), the error

function e(t) is always equal to e(0).

That is, ZD model (6.6) generates an exact time-varying solution of (6.1) with an
exponential convergence performance.

6.2.3 The Third ZF and ZD Model

In this subsection, we aim at developing another effective ZD model to solve time-
varying linear matrix-vector inequality (6.1). Inspired by [16, 17], we surprisedly
discover that solving linear matrix-vector inequality (6.1) can be equivalently con-
verted to linearmatrix-vector equation solving.Therefore, an equivalent time-varying
matrix-vector equation is firstly derived from a time-varying matrix-vector inequal-
ity by introducing a time-varying nonnegative vector. Then, by defining the third ZF,
the corresponding ZD model is developed and investigated for solving time-varying
linear matrix-vector inequality (6.1).
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Conversion In order to convert time-varying linear matrix-vector inequality (6.1) to a
time-varyingmatrix-vector equation, a time-varying nonnegative vector is introduced
and incorporated into time-varying linearmatrix-vector inequality (6.1). Specifically,
(6.1) can be transformed into

A(t)x(t) − b(t) + x̃2(t) = 0 ∈ R
n, (6.7)

where parameter factor x̃2(t) := x̃(t) � x̃(t) with the time-varying vector x̃(t) =
[x̃1(t), x̃2(t), . . . , x̃n(t)]T ∈ R

n . Evidently, x̃2(t) � 0, and thus time-varyingmatrix-
vector equation (6.7) is equivalent to time-varying linear matrix-vector inequality
(6.1) in view of

A(t)x(t) − b(t) = −x̃2(t) � 0.

Therefore, for solving time-varying linear matrix-vector inequality (6.1), we only
need to solve such a time-varying linear matrix-vector equation (6.7). Then, for the
need of modeling, we define the diagonal matrix C(t) as

C(t) =

⎡
⎢⎢⎢⎣

x̃1(t) 0 · · · 0
0 x̃2(t) · · · 0
...

...
. . .

...

0 0 · · · x̃n(t)

⎤
⎥⎥⎥⎦ ∈ R

n×n .

Thus, one can obtain

x̃2(t) = C(t)x̃(t), and ˙̃x2(t) = dx̃2(t)
dt

= 2C(t) ˙̃x(t).

Note that the above equations would be used to obtain the third ZD model.

Model FormulationTomonitor and control the process of solving time-varying linear
matrix-vector equation (6.7) and time-varying linear matrix-vector inequality (6.1),
we define the third ZF as follows:

e(t) =

⎡
⎢⎢⎢⎣

e1(t)
e2(t)

...

en(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y1(t) + x̃21 (t)
y2(t) + x̃22 (t)

...

yn(t) + x̃2n (t)

⎤
⎥⎥⎥⎦ = y(t) + x̃2(t) ∈ R

n . (6.8)

With ZF (6.8), by expanding the ZD design formula (4.2), we obtain the following
dynamic equation of a ZD model:

A(t)ẋ(t)+2C(t) ˙̃x(t) = − Ȧ(t)x(t)+ ḃ(t)−γ (A(t)x(t)−b(t)+C(t)x̃(t)). (6.9)

http://dx.doi.org/10.1007/978-3-662-47334-4_4
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Let w(t) = [xT(t), x̃T(t)]T ∈ R
2n , and then (6.9) is reformulated as below:

P(t)ẇ(t) = G(t)w(t) + ḃ(t) − γ (D(t)w(t) − b(t)), (6.10)

where the augmented matrices are defined as follows:

P(t) =
[

AT(t)
2CT(t)

]T
, G(t) =

[− ȦT(t)
0

]T
, and D(t) =

[
AT(t)
CT(t)

]T
.

Thus, based on ZF (6.8), ZDmodel (6.10) is obtained for solving time-varying linear
matrix-vector equation (6.7) and time-varying linear matrix-vector inequality (6.1).
Besides, the block diagram of ZD model (6.10) is shown in Fig. 6.1, which is an
important and necessary step for the final hardware implementation.

Theoretical Results and Analysis In this part, we come to prove the convergence
performance of ZD model (6.10) through following important theorem.

Theorem 6.3 Given a smoothly time-varying nonsingular coefficient matrix A(t)
and a smoothly time-varying coefficient vector b(t) in (6.1), ZD model (6.10), start-
ing from any randomly-generated initial state, converges exponentially to the time-
varying solution of time-varying linear matrix-vector equation (6.7) with rate γ , of
which the first n elements constitute an exact time-varying solution of time-varying
linear matrix-vector inequality (6.1).

Proof Consider time-varying linear matrix-vector equation (6.7), i.e., A(t)x(t) −
b(t) + x̃2(t) = 0, which can be rewritten as

D(t)w(t) − b(t) = 0.

x(0), x̃(0)

−Ȧ(t) 0

A(t)C(t)

b(t)

A(t) 2C(t)

+

+

+

+

+
−−

− ×

××
∑

∑

∑ γ
w(t)

I

G(t)

D(t)

b(t)

P(t) I−P(t)

ẇ(t)

d(·)
dt

Fig. 6.1 Block diagram of ZD model (6.10) for time-varying linear matrix-vector inequality (6.1)
solving
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Evidently, ZD model (6.10) is derived from the following design formula:

d(D(t)w(t) − b(t))

dt
= −γ (D(t)w(t) − b(t)).

From the above equation, we obtain

D(t)w(t) − b(t) = [D(0)w(0) − b(0)] exp(−γ t).

which means that, as t → ∞, D(t)w(t) − b(t) → 0 globally and exponentially.
That is, ZD model (6.10), starting from any randomly-generated initial state w(0),
converges exponentially to the time-varying solution of time-varying linear matrix-
vector equation (6.7) with rate γ . The first part is thus completed. Next, we are going
to prove the other part.

Let x∗(t) be a theoretical solution of (6.1), i.e., A(t)x∗(t)− b(t) � 0. Thus, there
exists a time-varying nonnegative vector x̃∗2(t) � 0, which makes the following
time-varying matrix-vector equation hold true:

A(t)x∗(t) + x̃∗2(t) = b(t). (6.11)

Differentiating (6.11) with respect to time t , we can obtain

Ȧ(t)x∗(t) + A(t)ẋ∗(t) + ˙̃x∗2(t) = ḃ(t), (6.12)

where ẋ∗(t) and ˙̃x∗2(t) denote time derivatives of x∗(t) and x̃∗2(t), respectively.
Then, substituting (6.11) and (6.12) into (6.10), we can obtain

A(t)(ẋ(t) −ẋ∗(t)) + Ȧ(t)(x(t) − x∗(t)) + ˙̃x2(t) − ˙̃x∗2(t)
= −γ (A(t)(x(t) − x∗(t)) + x̃2(t) − x̃∗2(t)).

Let ẽ(t) = A(t)(x(t)−x∗(t))+x̃2(t)−x̃∗2(t). Then, the above equation is rewritten as

˙̃e(t) = −γ ẽ(t). (6.13)

Evidently, from (6.13), we can obtain

ẽ(t) = ẽ(0) exp(−γ t),

which means that, as t → ∞, ẽ(t) → 0 globally and exponentially. In addition,
based on (6.11), i.e., b(t) = A(t)x∗(t) + x̃∗2(t), ẽ(t) is further reformulated as

ẽ(t) = A(t)x(t) − b(t) + x̃2(t),
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Table 6.1 Different ZFs resulting in different ZD models for time-varying linear matrix-vector
inequality solving

ZF ZD model

(6.2) A(t)ẋ(t) = −γmax{0, A(t)x(t) − b(t)}/2 − Ȧ(t)x(t) + ḃ(t)

(6.4) A(t)ẋ(t) = −γ JMP(A(0)x(0) − b(0)) � (A(t)x(t) − b(t)) − Ȧ(t)x(t) + ḃ(t)

(6.8) P(t)ẇ(t) = G(t)w(t) + ḃ(t) − γ (D(t)w(t) − b(t))

which is equivalent to

A(t)x(t) − b(t) = −x̃2(t) + ẽ(t).

Therefore, A(t)x(t)−b(t) → −x̃2(t) globally and exponentially as ẽ(t) → 0. Note
that x̃2(t) is an introduced time-varying nonnegative vector, and thus −x̃2(t) � 0.
This implies that x(t) [being the first n element of w(t) in ZD model (6.10)] would
exponentially converge to an exact time-varying solution of (6.1) with convergence
rate γ . The proof is thus complete. �

In summary, three different ZFs [i.e., (6.2), (6.4) and (6.8)] are presented, which
result in different ZD models [i.e., (6.3), (6.6) and (6.10)] for solving time-varying
linear matrix-vector inequality (6.1). For readers’ convenience and also for compar-
ison, such three different ZD models are listed comparatively in Table6.1.

6.3 Illustrative Examples

In the previous section, three different ZFs are presented, which result in different
ZD models for solving time-varying linear matrix-vector inequality (6.1). Note that
the first two ZD models shown in Table6.1 have been investigated in [6, 13]. Thus,
we only summarize and compare their design processes and final models for the
completeness of this book. Besides, by introducing a time-varying nonnegative vec-
tor, time-varying linear matrix-vector inequality (6.1) is transformed equivalently
into time-varying linear matrix-vector equation (6.7). In addition to detailed design
process of the ZDmodels, the excellent convergence performance is analyzed. In this
section, we further focus on the study of ZD model (6.10), and thus two illustrative
examples are provided for substantiation of the efficacy of such a ZD model.

Example 6.1 Now let us consider linear matrix-vector inequality (6.1) with time-
varying coefficients being as follows:

A(t) =
[
2 sin(10t) + 4 3 cos(12t)
− cos(12t) sin(10t) + 5

]
∈ R

2×2 and b(t) =
[
sin(15t)
cos(10t)

]
∈ R

2.
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Considering that different initial states of the ZDmodel (6.10) may result in different
convergent performance, we investigate the following two cases.

Case 1: Initial State Outside S(0) If initial state x(0) is outside the initial solution
set S(0) of (6.1), applying ZD model (6.10) to solving time-varying linear matrix-
vector equation (6.7) with γ = 5 and a randomly-generated initial value x̃(0), the
dynamic performance of x(t) and x̃(t) is seen from Fig. 6.2. For a better understand-
ing, Fig. 6.3 shows the transient behavior of ‖A(t)x(t) − b(t) + x̃2(t)‖2 synthesized
by ZDmodel (6.10) for online solution of time-varying linear matrix-vector equation
(6.7). It is seen from Fig. 6.3 that ‖A(t)x(t)−b(t)+ x̃2(t)‖2 decreases to zero within
1.5s. That is to say, x(t) and x̃(t) shown in Fig. 6.2 are a group of exact time-varying
solution of time-varying linear matrix-vector equation (6.7).

For demonstrating the effectiveness of ZD model (6.10) on solving time-varying
linear matrix-vector inequality (6.1), the transient behavior of max{0, y(t)} is shown
in Fig. 6.3. It follows that y(t) = A(t)x(t) − b(t) is less than or equal to zero within
0.6s. That is, x(t) shown in Fig. 6.2 is also an exact time-varying solution of time-
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Fig. 6.2 Transient behavior of state vectors x(t) and x̃(t) synthesized by ZD model (6.10) starting
from x(0) /∈ S(0) in Example 6.1
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Fig. 6.3 Simulation results via ZD model (6.10) starting from x(0) /∈ S(0) in Example 6.1
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varying linear matrix-vector inequality (6.1). The results demonstrate theoretical
analysis of Theorem 6.3.

Case 2: Initial State Inside S(0) If initial state x(0) is inside the initial solution set
S(0) of (6.1), under the same conditions, we apply ZD model (6.10) to solve time-
varying linear matrix-vector inequality (6.1) and the corresponding time-varying
linear matrix-vector equation (6.7). The corresponding simulation results are shown
in Figs. 6.4 and 6.5.

Figure6.4 shows the resultant solutions of time-varying linearmatrix-vector equa-
tion (6.7), of which the left graph constitutes the solution of time-varying linear
matrix-vector inequality (6.1). Similar with those of Fig. 6.2, x(t) and x̃(t) also pos-
sess the dynamic performance (i.e., time-varying performance). In addition, as seen
from Fig. 6.5, ‖A(t)x(t)−b(t)+ x̃2(t)‖2 synthesized by ZDmodel (6.10) converges
to zero within 1.5s as well. That is, ZD model (6.10) is still effective on solving
time-varying linear matrix-vector equation (6.7) when initial state x(0) is inside the
initial solution set S(0) of (6.1) and x̃(0) is a randomly-generated initial value.
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For demonstrating the effectiveness of ZD model (6.10) on solving time-varying
linear matrix-vector inequality (6.1), the right graph of Fig. 6.5 shows the transient
behavior of max{0, y(t)}. Since the initial state x(0) is inside the initial solution set
S(0), ZD model (6.10) guarantee that A(t)x(t)−b(t) � 0 always holds true without
an appreciable convergence process (i.e., max{0, y(t)} = 0). The right graph of
Fig. 6.5 illustrates and substantiates the above situation. The results are consistent
with those of the first two ZD models (6.3) and (6.6) (see also [6, 13]).

In summary, from the above simulation results of two cases (i.e., Figs. 6.2 through
6.5), we can conclude that ZD model (6.10) is effective on solving time-varying lin-
ear matrix-vector inequality (6.1) and the corresponding time-varying linear matrix-
vector equation (6.7), no matter whether the initial state x(0) is inside or outside the
initial solution set S(0).

Example 6.2 In this example,we exploit ZDmodel (6.10)withγ = 5 to solve amore
complex time-varying linear inequality (6.1) with time-varying Toeplotz coefficients
being as follows:
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generated initial states x(0) ∈ [−4, 4]9 in Example 6.2



86 6 Time-Varying Linear Matrix-Vector Inequality

A(t) =

⎡
⎢⎢⎢⎢⎢⎣

a1(t) a2(t) a3(t) . . . a9(t)
a2(t) a1(t) a2(t) . . . a8(t)
a3(t) a2(t) a1(t) . . . a7(t)

...
...

...
. . .

...

a9(t) a8(t) a7(t) . . . a1(t)

⎤
⎥⎥⎥⎥⎥⎦

∈ R
9×9 and b(t) =

⎡
⎢⎢⎢⎢⎢⎣

b1(t)
b2(t)
b3(t)

...

b9(t)

⎤
⎥⎥⎥⎥⎥⎦

∈ R
9,

where a1(t) = 9 + sin(4t) and ak(t) = cos(4t)/(k − 1) with k = 2, 3, . . . , 9. In
addition, b2k−1(t) = cos(4t) + 2 with k = 1, 2, . . . , 5, and b2k(t) = sin(4t) + 1
with k = 1, 2, 3, 4.

Note that, for solving such a complex time-varying linear matrix-vector inequal-
ity (6.1), it may be difficult to generate a random initial state such that the x(0) is
inside or outside the initial solution set S(0) completely. Thus, it is worth investigat-
ing the performance of ZD model (6.10) for solving time-varying linear inequality
(6.1) when initial states x(0) are randomly-generated in a more general sense that
some elements of x(0) are inside the initial solution set S(0), while the others are
outside the initial solution set S(0). By applying ZDmodel (6.10) with 10 randomly-
generated initial states x(0) to online solution of such a complex time-varying linear
matrix-vector inequality (6.1), the corresponding simulation results are illustrated in
Figs. 6.6 and 6.7.
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Fig. 6.7 Transient behavior of max{0, y(t)} synthesized by ZD model (6.10) starting with 10
randomly-generated initial states x(0) ∈ [−4, 4]9 in Example 6.2
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As seen from Fig. 6.6, starting from 10 randomly-generated initial states x(0) ∈
[−4, 4]9, the solutions synthesized by ZD model (6.10) are all time-varying or pos-
sess dynamic performance. In addition, from Fig. 6.7, we can see that max{0, y(t)}
all converge to zero within 0.5s. In detail, some max{0, yi (t)} remain zero corre-
sponding to yi (0) � 0 (with i ∈ {1, 2, . . . , 9}) and the other max{0, y j (t)} decrease
to zero rapidly corresponding to yi (0) > 0 (with j �= i and j ∈ {1, 2, . . . , 9}). The
results demonstrate again that ZDmodel (6.10) is effective on solving more complex
time-varying linear matrix-vector inequality.

6.4 Summary

In this chapter, focusing on solving time-varying matrix-vector inequality (6.1), we
have proposed, generalized, developed, and investigated three different ZD models
[i.e., (6.3), (6.6), and (6.10)] by defining three different ZFs [i.e., (6.2), (6.4), and
(6.8)]. Theoretical results have also been given to show the excellent convergence
performance of the proposed ZD models. Computer simulation results have further
substantiated the efficacy of ZD model (6.10) for time-varying linear matrix-vector
inequality solving.
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Chapter 7
Time-Varying Matrix Inverse

Abstract In this chapter, focusing on time-varying matrix inversion, we propose,
generalize, develop, and investigate different ZFs that lead to different ZD mod-
els. Meanwhile, a specific relationship between the proposed ZD model and oth-
ers’ model/method [i.e., the Getz and Marsden (G-M) dynamic system] is pre-
sented. Eventually, the MATLAB Simulink modeling and simulative verifications
with examples using such different ZD models are further researched. Both theoret-
ical analysis and modeling results further substantiate the efficacy of the proposed
ZD models which originate from different ZFs for time-varying matrix inversion.

7.1 Introduction

In recent years, the problem of solving linear matrix equations, e.g., Sylvester equa-
tion, Lyapunov equation, and Stein’s equation, has been encountered in various sci-
ence and engineering fields [1–5]. As a subtopic of the linear matrix equations solv-
ing, matrix inversion is often treated as one of the fundamental issues [5–7], for
instance, as preliminary steps for robotic kinematics and optimization.

Generally speaking, if the time-varying matrix A(t) ∈ R
m×n is of full-rank, i.e.,

rank(A) = min{m, n} at any time instant t ∈ [0,+∞), then the unique time-varying
pseudoinverse/inverse A+(t) for matrix A(t) is given as [5, 8–10]

A+(t) =

⎧⎪⎨
⎪⎩

(AT(t)A(t))−1AT(t), if m > n,

A−1(t), if m = n,

AT(t)(A(t)AT(t))−1, if m < n.

(7.1)

As for (7.1), the upper part, middle part, and lower part correspond to the left
pseudoinverse, inverse, and right pseudoinverse, respectively. Note that, in this
chapter, we only focus on the investigation of solving for time-varying inverse A−(t)
of a nonsingular square matrix A(t) [i.e., (7.1) under the situation of m = n]. The
investigations of solving for time-varying left and right pseudoinverse of a full-rank
rectangular matrix A(t) [i.e., (7.1) under the situation of m �= n] are conducted,
respectively, in the ensuing two Chaps. 8 and 9.
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In mathematics, the problem of matrix inversion is generally formulated as AX =
I ∈ R

n×n . Much effort has been directed toward computational aspects of fast
matrix inversion since the mid-1980s, and subsequently lots of numerical algorithms
have been proposed for matrix inversion [11–14]. In general, owing to the serial-
processing feature performed on digital computers, it may not be efficient enough in
large-scale online or real-time applications for most numerical algorithms. Note that,
for such numerical algorithms, the minimal arithmetic operations are proportional to
the cube of the matrix dimension [15]. In view of this situation, a variety of parallel-
processing computationalmethods (e.g., randomneural networks and gradient neural
networks) [5–7, 16–20] have been further developed and implemented on specific
architectures. It is worth pointing out here that almost all of the reported methods
are theoretically/intrinsically designed for time-invariant matrix inversion (instead
of time-varying matrix inversion investigated in [5–7]).

Aiming at time-varying matrix inversion, in this chapter, by introducing different
ZFs, different ZD models are proposed, generalized, developed, and investigated.
Note that a dynamic system has been proposed by Getz andMarsden [21–23], which
is described in an explicit dynamics; and that such a dynamic system (termed the
G-M dynamic system) can converge exponentially to the theoretical time-varying
inverse A−1(t), for sufficiently large design parameter under the condition of hard-
ware permitting and for initial conditions adequately close to the initial theoretical
inverse A−1(0). Then, the direct link between the proposed ZD model and the G-M
dynamic system is discovered. Apart from the theoretical analysis on the conver-
gence properties of the proposed ZD models, MATLAB Simulink modeling and
simulative examples are provided accordingly. Modeling and simulative results fur-
ther substantiate the efficacy of the proposed ZD models derived from different ZFs
for time-varying matrix inversion.

7.2 ZFs and ZD Models

In this section, we introduce different ZFs, propose the resultant ZD models, and
show the relationship between the ZD model and the G-M dynamic system for time-
varying matrix inversion. Meanwhile, the relevant theoretical analysis is given.

To lay a basis for further discussion, the problem of time-varying matrix inversion
investigated in this chapter is described in the following standard form:

A(t)X (t) − I = 0 ∈ R
n×n, (7.2)

where A(t) ∈ R
n×n is the smoothly time-varying nonsingular coefficient matrix,

I ∈ R
n×n is the identity matrix, and X (t) ∈ R

n×n is the time-varying unknown
matrix to be obtained. The target of this chapter is to find X (t) such that (7.2) holds
true for any time instant t � 0, i.e., to invert matrix A(t) in real time t � 0. Note
that A(t) together with its time derivative Ȧ(t) ∈ R

n×n is assumed to be known or
measurable.
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In view of that (7.2) is depicted in the matrix form (which is different from
those scalar and matrix vector forms presented in the previous chapters), we denote
the corresponding ZF by E(t) with Ė(t) being its time derivative. Note that, in
Chaps. 7–10, E(t) and Ė(t) are used as the notations of the matrix-valued ZF and its
time derivative, respectively. Thus, the ZD design formula (4.2) presented in Chap.4
is further generalized as follows (i.e., from the vector form to the matrix form) [5–7]:

Ė(t) = dE(t)

dt
= −γE(t), (7.3)

where design parameter γ ∈ R is defined the same as before. Based on different
ZFs and the ZD design formula (7.3), the resultant ZD models are developed and
investigated for time-varying matrix inversion [i.e., (7.2)].

Specifically, for solving time-varying matrix-inversion problem (7.2), in this
chapter, we define different ZFs as below:

E(t) = A−1(t) − X (t), (7.4)

E(t) = A(t) − X−1(t), (7.5)

E(t) = A(t)X (t) − I, (7.6)

E(t) = X (t)A(t) − I, (7.7)

E(t) = (A(t)X (t))−1 − I, (7.8)

E(t) = (X (t)A(t))−1 − I. (7.9)

Before constructing different ZD models from different ZFs, we present the follow-
ing theorem for further discussion.

Theorem 7.1 We have the following facts:

d(X−1(t))

dt
= −X−1(t)Ẋ(t)X−1(t), (7.10)

d(A−1(t))

dt
= −A−1(t) Ȧ(t)A−1(t), (7.11)

d(A(t)X (t))−1

dt
= −(A(t)X (t))−1 d(A(t)X (t))

dt
(A(t)X (t))−1. (7.12)

Proof It is obtained readily by following the proof of Theorem 4.1 in Chap.4. �

According to the ZD model design formula (7.3), with six different ZFs [i.e.,
(7.4)–(7.9)] used, six different ZDmodels for time-varying matrix inversion are thus
derived and presented as follows.

http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_10
http://dx.doi.org/10.1007/978-3-662-47334-4_4
http://dx.doi.org/10.1007/978-3-662-47334-4_4
http://dx.doi.org/10.1007/978-3-662-47334-4_4
http://dx.doi.org/10.1007/978-3-662-47334-4_4
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• Considering ZD design formula (7.3), ZF (7.4), and Eq. (7.11), we then have

A(t)Ẋ(t)A(t) = −γ (A(t)X (t) − I )A(t) − Ȧ(t), (7.13)

which is also rewritten in the following explicit form:

Ẋ(t) = Ẋ(t) + (A(t)Ẋ(t) − γ (A(t)X (t) − I ))A(t) + Ȧ(t).

Therefore, based on ZF (7.4), we obtain ZD model (7.13) for time-varying matrix
inversion.

• Based on ZD design formula (7.3), ZF (7.5), and Eq. (7.10) we have

Ẋ(t) = −X (t) Ȧ(t)X (t) − γX (t)(A(t)X (t) − I ). (7.14)

Therefore, we obtain ZD model (7.14) based on ZF (7.5), which is exactly the
G-M dynamic system for time-varying matrix inversion [21–23]. In other words, a
direct linkbetween theZDmodel andothers’model/method (i.e., theG-Mdynamic
system) for time-varying matrix inversion is found. Specifically, the G-M dynamic
system can be derived directly from the ZD design formula (7.3) with ZF (7.5)
exploited. Thus, the G-M dynamic system can be regarded as a special case of ZD
models. Evidently, this chapter shows an explanation to the G-M dynamic system
for time-varying matrix inversion, which is different from the original derivation
proposed by Getz and Marsden [21–23].

• With ZD design formula (7.3) and ZF (7.6) exploited, the following ZD model is
established:

A(t)Ẋ(t) = − Ȧ(t)X (t) − γ (A(t)X (t) − I ), (7.15)

and similarly we have the following explicit form:

Ẋ(t) = (I − A(t))Ẋ(t) − Ȧ(t)X (t) − γ (A(t)X (t) − I ).

• BasedonZDdesign formula (7.3) andZF (7.7), the resultantZDmodel is expressed
as below:

Ẋ(t)A(t) = −X (t) Ȧ(t) − γ (X (t)A(t) − I ), (7.16)

of which the explicit form is shown as follows:

Ẋ(t) = Ẋ(t)(I − A(t)) − X (t) Ȧ(t) − γ (X (t)A(t) − I ).

• Considering ZD design formula (7.3), ZF (7.8), and Eq. (7.12), we have

A(t)Ẋ(t) = − Ȧ(t)X (t) − γ (A(t)X (t) − I )A(t)X (t), (7.17)
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Table 7.1 Different ZFs resulting in different ZD models (depicted in explicit dynamics for mod-
eling purposes) for time-varying matrix inversion

ZF ZD model

(7.4) Ẋ(t) = Ẋ(t) + (A(t)Ẋ(t) + γ (A(t)X (t) − I ))A(t) + Ȧ(t)

(7.5) Ẋ(t) = −X (t) Ȧ(t)X (t) − γX (t)(A(t)X (t) − I )

(7.6) Ẋ(t) = (I − A(t))Ẋ(t) − Ȧ(t)X (t) − γ (A(t)X (t) − I )

(7.7) Ẋ(t) = Ẋ(t)(I − A(t)) − X (t) Ȧ(t) − γ (X (t)A(t) − I )

(7.8) Ẋ(t) = (I − A(t))Ẋ(t) − Ȧ(t)X (t) − γ (A(t)X (t) − I )A(t)X (t)

(7.9) Ẋ(t) = Ẋ(t)(I − A(t)) − X (t) Ȧ(t) − γX (t)A(t)(X (t)A(t) − I )

and then we further have the following explicit form:

Ẋ(t) = (I − A(t))Ẋ(t) − Ȧ(t)X (t) − γ (A(t)X (t) − I )A(t)X (t).

• Similarly, based on ZF (7.9), we have

Ẋ(t)A(t) = −X (t) Ȧ(t) − γX (t)A(t)(X (t)A(t) − I ), (7.18)

of which the explicit form is shown below:

Ẋ(t) = Ẋ(t)(I − A(t)) − X (t) Ȧ(t) − γ X (t)A(t)(X (t)A(t) − I ).

Thus, we obtain six different types of ZD models [i.e., ZD models (7.13)–(7.18)]
for time-varying matrix inversion [with the problem formulated as (7.2)], which are
based on six different types of ZFs [i.e., ZFs (7.4)–(7.9)]. For readers’ convenience
and also for comparison, such six different ZDmodels corresponding to six different
ZFs are listed in Table7.1.

7.3 Theoretical Results and Analyses

In this section, from the theoretical results of [20, 23], we summarize and present the
following general observations on the convergence properties of ZD models (7.13)–
(7.18) for time-varying matrix inversion [i.e., (7.2)].

Theorem 7.2 Let us consider a smoothly time-varying nonsingular matrix A(t) ∈
R

n×n in (7.2). Starting from an initial state X (0) ∈ R
n×n, the state matrix X (t) of

ZD model (7.13) derived from ZF (7.4) globally and exponentially converges to the
theoretical time-varying inverse A−1(t) of matrix A(t).
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Proof From the compact form of the presented ZD design formula Ė(t) = −γE(t),
a set of n × n decoupled differential equations is written equivalently as follows:

ėij(t) = −γ eij(t), (7.19)

for any i, j ∈ {1, 2, 3, . . . , n}. Thus, we define a Lyapunov function candidate
vij(t) = e2ij(t)/2 � 0 with its time derivative being

v̇ij(t) = dvij(t)

dt
= eij(t)ėij(t) = −γ e2ij(t) � 0,

which guarantees the negative-definiteness of v̇ij (i.e., v̇ij < 0 for eij �= 0 while
v̇ij = 0 for eij = 0 only). By Lyapunov theory, equilibrium point eij = 0 of (7.19) is
globally asymptotically stable; i.e., eij(t) globally converges to zero, for any i, j ∈
{1, 2, 3, . . . , n}. In other words, the matrix-valued error function E(t) = [eij(t)] ∈
R

n×n is globally convergent to zero. In addition, we have E(t) = A−1(t) − X (t);
or equivalently, X (t) = A−1(t) − E(t). Since E(t) → 0 as t → +∞, we have
X (t) → A−1(t) as t → +∞. That is, state matrix X (t) of ZD model (7.13) derived
from ZF (7.4) globally converges to the theoretical time-varying inverse A−1(t) of
matrix A(t). The proof on global convergence is thus complete.

Furthermore, in view of ėij = −γ eij, solving the linear first-order differential
equation yields readily eij(t) = exp(−γ t)eij(0). In other words, the matrix-valued
error function E(t) ∈ R

n×n is expressed explicitly as

E(t) =

⎡
⎢⎢⎢⎣

e11(0) e12(0) · · · e1n(0)
e21(0) e22(0) · · · e2n(0)

...
...

. . .
...

en1(0) en2(0) · · · enn(0)

⎤
⎥⎥⎥⎦ exp(−γ t) = E(0) exp(−γ t).

With α = E(0) and in view of ZF (7.4), the above equation is further rewritten as

A−1(t) − X (t) = α exp(−γ t),

which indicates that X (t) exponentially converges to A−1(t) with convergence rate
γ > 0. That is, starting from an initial state X (0) ∈ R

n×n , the state matrix X (t) of
ZD model (7.13) derived from ZF (7.4) exponentially converges to the theoretical
time-varying matrix inverse A−1(t).

In summary, the state matrix X (t) of ZD model (7.13), starting from an initial
state X (0), globally and exponentially converges to the the theoretical time-varying
inverse A−1(t) of matrix A(t). The proof is thus complete. �
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As for the other five ZDmodels (7.14)–(7.18), we also have the following conver-
gence results,with the related proofs being generalized from the proof of Theorem7.2
and being left to interested readers to complete as a topic of exercise.

Proposition 7.1 Consider a smoothly time-varying nonsingular matrix A(t) ∈
R

n×n in (7.2). Starting from an initial state X (0) ∈ R
n×n that is close enough

to the initial theoretical inverse A−1(0), the state matrix X (t) of ZD model (7.14)
derived from ZF (7.5), the state matrix X (t) of ZD model (7.17) derived from ZF (7.8),
and the state matrix X (t) of ZD model (7.18) derived from ZF (7.9) exponentially
converge to the theoretical time-varying inverse A−1(t) of matrix A(t).

Proposition 7.2 Consider a smoothly time-varying nonsingular matrix A(t) ∈
R

n×n in (7.2). Starting from an initial state X (0) ∈ R
n×n, the state matrix X (t)

of ZD model (7.15) derived from ZF (7.6) and the state matrix X (t) of ZD model
(7.16) derived from ZF (7.7) globally and exponentially converge to the theoretical
time-varying inverse A−1(t) of matrix A(t).

7.4 Simulink Modeling

For possible circuit implementation and also for the final purpose of FPGA and
ASIC realization, the MATLAB Simulink modeling of the proposed ZD models
(7.13)–(7.18) is researched in this section.

Specifically, the corresponding block diagrams of such ZD models are shown
in Figs. 7.1, 7.2, and 7.3. It is worth noting that, in order to make clear the block
diagrams of ZD models (7.15) and (7.16) shown in Fig. 7.2 as well as ZD models
(7.17) and (7.18) shown in Fig. 7.3, we indicate the left multiplication and the right
multiplication via the position of the symbol “∗”, e.g., “A(t)∗” and “∗A(t)” stand for
“A(t) ∗ X (t)” and “X (t) ∗ A(t)”, respectively. In addition, we take ZD model (7.15)
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Fig. 7.1 Block diagrams of ZD models (7.13) and (7.14) for time-varying matrix inversion
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Fig. 7.2 Block diagrams of ZD models (7.15) and (7.16) for time-varying matrix inversion
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Fig. 7.3 Block diagrams of ZD models (7.17) and (7.18) for time-varying matrix inversion

as an example for further investigation on hardware implementation. Evidently, it
follows from (7.15) that the ijth neuron dynamics of ZD model (7.15) is expressed
as the following dynamic equation:

ẋij =
n∑

k=1

μik ẋk j −
n∑

k=1

ȧik xk j − γ

(
n∑

k=1

(aik xk j − δij)

)
,

where

• xij denotes the ijth neuron state of ZD model (7.15) corresponding to the ijth entry
of state matrix X (t), with i, j = 1, 2, . . . , n;

• time-variantweights aij and ȧij are defined, respectively, as the ijth entries ofmatrix
A(t) and its time-derivative measurement Ȧ(t);

• δij is the Kronecker delta defined here as the ijth entry of the identity matrix I , and
μij = δij − aij.

The j th-column circuit schematic of ZD model (7.15) is thus shown in Fig. 7.4.
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Fig. 7.4 Circuit schematic of the j th column (with j = 1, 2, . . . , n) of neurons of ZDmodel (7.15)

Hence, based on the above analysis, the overall Simulink modeling of ZD model
(7.15) for time-varyingmatrix inversion is shown in Fig. 7.5, where A(t) is generated
by employing the “MATLAB Function” block with the “Clock” block used as its
input. Note that other Simulink modeling of ZD models [i.e., (7.13) and (7.14), and
(7.16)–(7.18)] can also be obtained through the above processing, but omitted here
and left to interested readers to complete as a topic of exercise.
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Fig. 7.5 Overall Simulink modeling of ZD model (7.15) for time-varying matrix inversion

7.5 Illustrative Examples

In the previous sections, six different ZDmodels (7.13)–(7.18) based on different ZFs
are presented, studied, and modeled for time-varying matrix inversion, together with
corresponding theoretical analysis and results. In this section, based on the above-
mentioned overall Simulink modeling technique, the following illustrative examples
are provided to show the efficacy of the proposed ZDmodels for time-varying matrix
inversion.

Example 7.1 Let us consider the time-varying matrix-inversion problem (7.2)
[i.e., A(t)X (t) = I ] with the following time-varying matrix A(t):

A(t) =
[

sin(5t) cos(5t)
−cos(5t) sin(5t)

]
∈ R

2×2. (7.20)

By algebraic operations, the theoretical time-varying inverse of A(t) is given as

X∗(t) = A−1(t) =
[
sin(5t) −cos(5t)
cos(5t) sin(5t)

]
∈ R

2×2.

Thus, we can use such a theoretical solution to compare with the solutions of corre-
sponding ZD models and then check the correctness of the models’ solutions.

The proposed ZD models (7.13)–(7.18) are exploited to solve such a problem,
and the corresponding simulation results based on ZD model (7.13) are illustrated
in Fig. 7.6. Specifically, as shown in the left graph of Fig. 7.6, with design parameter
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Fig. 7.6 Convergence performance of ZDmodel (7.13) with γ = 10 for inverting the time-varying
matrix A(t) in (7.20)

γ = 10, state matrix X (t) of ZD model (7.13) denoted by solid curves converges
rapidly to the theoretical solution X∗(t) denoted by dash-dotted curves. In addition,
to further investigate the convergence performance of ZD model (7.13), we monitor
the residual error ‖E(t)‖F = ‖A(t)X (t) − I‖F (with ‖ · ‖F denoting the Frobenius
norm of a matrix) during the inverting process. As seen from the right graph of
Fig. 7.6, by applying (7.13) to inverting the time-varying matrix (7.20), the residual
error converges to zero fast and accurately in about 1 s. Note that, as for other ZD
models [i.e., (7.14)–(7.18)], we have the same or similar observations which are
omitted because of results similarity. The modeling testings of such ZD models are
left to interested readers to complete as a topic of exercise.

Example 7.2 To further substantiate the efficacy of the proposed ZDmodels (7.13)–
(7.18) for more complicated situations, we consider (7.2) with the following time-
varying Toeplitz matrix A(t):

A(t) =

⎡
⎢⎢⎢⎣

a1(t) a2(t) · · · an(t)
a2(t) a1(t) · · · an−1(t)

...
...

. . .
...

an(t) an−1(t) · · · a1(t)

⎤
⎥⎥⎥⎦ ∈ R

n×n . (7.21)

Let a1(t) = n+sin(5t) and ak(t) = cos(5t)/(k−1)with k = 2, 3, . . . , n. Evidently,
Toeplitz matrix A(t) is strictly diagonally dominant for any time instant t � 0 and is
thus invertible. Figure7.7 shows the simulation results by using ZD models (7.13)–
(7.18) with γ = 10 for the time-varying inverse of the above Toeplitz matrix A(t)
under the condition of n = 4. As seen from the figure, residual errors ‖E(t)‖F of
the proposed ZD models all converge to zero, which means that their corresponding
state matrices converge to A−1(t). These results manifest again the efficacy of the
proposed ZD models (7.13)–(7.18) on time-varying matrix inversion.
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Fig. 7.7 Residual errors ‖E(t)‖F of ZD models (7.13)–(7.18) for inverting the time-varying
Toeplitz matrix A(t) in (7.21)

Fig. 7.8 Residual errors
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(i.e., γ = 100, 1000, and
10000) for inverting the
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Meanwhile, the residual errors ‖E(t)‖F of ZD model (7.17) with different values
of γ are illustrated in Fig. 7.8. As shown in the figure, the convergence time of ZD
model (7.17) can be expedited from around 0.04 to 0.004 and even to 0.0004s,
when the γ value is increased from 100 to 1000 and to 10,000, respectively. This
observation tells that ZD model (7.17) has an exponential convergence property,
which can be expedited effectively by increasing the value of γ. Note that, for other
ZD models [i.e., (7.13)–(7.16) and (7.18)], we have the same or similar observations
which are omitted here due to results similarity. Besides, the modeling testings of
ZD models (7.13)–(7.16) and (7.18) using different γ values are left to interested
readers to complete as a topic of exercise.
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In summary, the above simulation results have shown the efficacy of the proposed
ZD models (7.13)–(7.18) which are derived from different ZFs for time-varying
matrix inversion [with the problem formulated as (7.2)]. In addition, they have sub-
stantiated the main points of the theoretical analyses which are presented in Sect. 7.3.

7.6 Summary

In this chapter, originating from different ZFs [i.e., (7.4)–(7.9)] as error basis func-
tions, different ZDmodels (7.13)–(7.18) have been derived, analyzed, and simulated
to solve for time-varyingmatrix inverse. In addition, the clear and direct link between
the ZD model and the G-M dynamic system has been found and presented. More-
over, theoretical analysis and results have been given to substantiate the exponential
convergence properties of the proposed ZD models for time-varying matrix inver-
sion. Besides, for possible hardware implementation based on electronic circuits,
the MATLAB Simulink modeling of the proposed ZD models has been shown and
studied. Through computer simulations and illustrative examples, the efficacy of the
proposed ZD models (7.13)–(7.18) has been further substantiated for time-varying
matrix inversion [i.e., (7.2)].
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Chapter 8
Time-Varying Matrix Left Pseudoinverse

Abstract In this chapter, focusing on time-varying matrix left pseudoinversion, we
propose, generalize, develop, and investigate five different ZDmodels by introducing
five different ZFs. In addition, the link between the ZDmodels and theGetz–Marsden
(G-M) dynamic system is discovered and presented for time-varying matrix left
pseudoinversion. Computer simulation results further substantiate the theoretical
analysis and show the effectiveness of the proposedZDmodels derived fromdifferent
ZFs on solving for the time-varying matrix left pseudoinverse.

8.1 Introduction

The solution of pseudoinverse (also known as Moore–Penrose generalized inverse)
is one of the basic problems encountered in a variety of science and engineering
fields, e.g., image noise reduction [1], signal processing [2], robotics [3], linear
classifiers [4], and associative memories [5]. Owing to its important roles, many
related numerical algorithms have been put forward by researchers [6–9]. For exam-
ple, Perković and Stanimirović developed an iterative algorithm for estimating the
Moore–Penrose generalized inverse [6]. Courrieu proposed an algorithm based on
a full-rank Cholesky factorization for fast computation of Moore–Penrose inverse
matrices [7]. However, these serial-processing algorithms may be less favorable in
large-scale online or real-time applications. Particularly, when applied to the online
solution of the time-varying matrix pseudoinverse [10–13], these related iterative
algorithms should be performed within every sampling period and the algorithms
fail when the sampling rate is too high to allow the algorithms to complete the
calculation in a single sampling period.

To lay a basis for further discussion, some necessary preliminaries of the time-
varying matrix pseudoinverse are given [13–15].

© Springer-Verlag Berlin Heidelberg 2015
Y. Zhang and D. Guo, Zhang Functions and Various Models,
DOI 10.1007/978-3-662-47334-4_8
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Definition 8.1 For a given time-varyingmatrix A(t) ∈ R
m×n withm �= n, if X (t) ∈

R
n×m satisfies all of the following four Penrose equations:

A(t)X (t)A(t) = A(t), X (t)A(t)X (t) = X (t),

(A(t)X (t))T = A(t)X (t), (X (t)A(t))T = X (t)A(t),

then X (t) is called the time-varying pseudoinverse of A(t), which is often denoted
by A+(t).

Note that the time-varying pseudoinverse A+(t) always exists and is unique.
Specially, if matrix A(t) is of full-rank at any time instant t , i.e., rank(A(t)) =
min{m, n}with t ∈ [0,∞), we have the following theorem to obtain the time-varying
pseudoinverse of matrix A(t) [13–15].

Theorem 8.1 For a given time-varying matrix A(t) ∈ R
m×n with m �= n, if it

satisfies that rank(A(t)) = min{m, n} at any time instant t , then the unique time-
varying pseudoinverse A+(t) is given as follows:

A+(t) =
{

(AT(t)A(t))−1AT(t), if m > n,

AT(t)(A(t)AT(t))−1, if m < n.
(8.1)

Besides, as for the unique time-varying pseudoinverse of a full-rank matrix, we
have another important theorem as follows (which motivates us to define many more
ZFs for time-varying matrix pseudoinversion).

Theorem 8.2 For a given time-varying matrix A(t) ∈ R
m×n with m �= n, if it

satisfies that rank(A(t)) = min{m, n} at any time instant t , then the unique time-
varying pseudoinverse A+(t) is also given as follows:

A+(t) =
⎧⎨
⎩
lim
μ→0

AT(t)(A(t)AT(t) + μI )−1, if m > n

lim
μ→0

(AT(t)A(t) + μI )−1AT(t), if m < n,
(8.2)

where μ > 0 ∈ R.

Proof It can be generalized from [13–15]. �

Evidently, from the above two theorems, we know that there are two cases of
time-varying pseudoinverse A+(t) ∈ R

n×m for matrix A(t) ∈ R
m×n with m �= n.

Specifically, A+(t) is termed as the time-varying matrix left pseudoinverse for A(t)
with m > n; and A+(t) is termed as the time-varying matrix right pseudoinverse
for A(t) with m < n. Note that, in this chapter, we only consider the smoothly
time-varying full-rank matrix A(t) ∈ R

m×n with m > n, which, together with its
time derivative, is assumed to be known or can be estimated accurately. That is to
say, this chapter focuses on solving for time-varying matrix left pseudoinverse of
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A(t). In the case of m < n, the procedure of obtaining the time-varying matrix right
pseudoinverse of A(t) is presented in Chap.9.

More specifically, by introducing five different ZFs, this chapter proposes, gener-
alizes, develops, and investigates five different ZD models for time-varying matrix
left pseudoinversion. In addition, the link between the ZD models and the G-M
dynamic system is discovered and presented to solve for time-varying matrix left
pseudoinverse.Computer simulation results further substantiate the theoretical analy-
sis and show the effectiveness of the proposed ZDmodels derived from different ZFs
for time-varying matrix left pseudoinversion.

8.2 ZFs and ZD Models

In this section, we introduce five different ZFs and propose the resultant ZD models
for time-varying matrix left pseudoinversion (together with the theoretical results
and the link to the G-M dynamic system).

By denoting X (t) ∈ R
n×m as the unknown matrix to be obtained, this chapter

aims at designing different ZFs to construct various ZDmodels to solve for the time-
varying matrix left pseudoinverse. That is to say, the unknown X (t) can be obtained
by using ZD models in real time t such that it can converge to the exact theoretical
time-varying left pseudoinverse A+(t) (which satisfies all of the above-presented
Penrose equations at any time instant t).

8.2.1 The First ZF and ZD Model

In order to solve for the time-varying matrix left pseudoinverse, the first ZF (i.e., a
matrix-valued unbounded error function) is defined as follows:

E(t) = AT(t)A(t)X (t) − AT(t) ∈ R
n×m . (8.3)

Based on ZF (8.3), adopting the ZD design formula (7.3) and in view of Ė(t) =
AT(t)A(t)Ẋ(t) + ( ȦT(t)A(t) + AT(t) Ȧ(t))X (t) − ȦT(t), we obtain the following
ZD model for time-varying matrix left pseudoinversion:

AT(t)A(t)Ẋ(t)

= ȦT(t) − ( ȦT(t)A(t) + AT(t) Ȧ(t))X (t) − γ (AT(t)A(t)X (t) − AT(t)),
(8.4)

where X (t) ∈ R
n×m , starting from an initial state X (0) ∈ R

n×m , denotes the state
matrix corresponding to the theoretical time-varying left pseudoinverse A+(t).

http://dx.doi.org/10.1007/978-3-662-47334-4_9
http://dx.doi.org/10.1007/978-3-662-47334-4_7
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As for ZD model (8.4), we have the following theorem about its convergence
property on time-varying matrix left pseudoinversion.

Theorem 8.3 Given a smoothly time-varying full-rank matrix A(t) ∈ R
m×n with

m > n, the state matrix X (t) of ZD model (8.4), starting from any initial state X (0),
converges to the theoretical time-varying left pseudoinverse A+(t) of matrix A(t).

Proof Let us define X̃(t) = X (t) − A+(t) ∈ R
n×m which denotes the difference

between the solution X (t) generated by ZDmodel (8.4) and the theoretical pseudoin-
verse A+(t). Following equation AT(t)A(t)A+(t) − AT(t) = 0 ∈ R

n×m , we obtain
its time derivative

AT(t)A(t) Ȧ+(t) + ( ȦT(t)A(t) + AT(t) Ȧ(t))A+(t) − ȦT(t) = 0

Substituting A+(t) = X (t) − X̃(t) into the above equation, we have

AT(t)A(t) ˙̃X (t) + ( ȦT(t)A(t) + AT(t) Ȧ(t))X̃(t) = AT(t)A(t)Ẋ(t)

+ ( ȦT(t)A(t) + AT(t) Ȧ(t))X (t) − ȦT(t).

Using ZD model equation (8.4), with X (t) = X̃(t) + A+(t), we know that X̃(t) is
the solution to the ensuing dynamics:

AT(t)A(t) ˙̃X (t) + ( ȦT(t)A(t) + AT(t) Ȧ(t))X̃(t) = −γ (AT(t)A(t)X̃(t)).

Because E(t) = AT(t)A(t)X̃(t), the above equation is thus rewritten as Ė(t) =
−γ (E(t)), which is a compact matrix form of the following set of n × m equations:

ėij(t) = −γ eij(t) ∈ R, ∀i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. (8.5)

Then, we can define a Lyapunov function candidate vij(t) = e2ij(t)/2 � 0 for the ijth
subsystem (8.5), with its time derivative being

v̇ij(t) = dvij(t)

dt
= eij(t)ėij(t) = −γ e2ij(t) � 0.

Evidently, v̇ij(t) is negative-definite, i.e., v̇ij(t) < 0 for eij(t) �= 0 and v̇ij(t) = 0 for
eij(t) = 0. By the Lyapunov stability theory, eij(t) globally converges to zero for any
i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. In view of E(t) = AT(t)A(t)X (t) − AT(t)
and the nonsingularity of AT(t)A(t), we obtain X (t) → (AT(t)A(t))−1AT(t) ∈
R

n×m (with m > n) as t → ∞. Therefore, based on Theorem 8.1, the state matrix
X (t), starting from any initial state X (0), converges to the theoretical time-varying
left pseudoinverse A+(t) of matrix A(t). The proof is thus complete. �
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8.2.2 The Second ZF and ZD Model

Inspired by Theorem 8.2, we define the second ZF as

E(t) = X (t)(A(t)AT(t) + μI ) − AT(t) ∈ R
n×m . (8.6)

Then, we obtain the following model by expanding the ZD design formula (7.3):

Ẋ(t)(A(t)AT(t) + μI )+X (t)( Ȧ(t)AT(t) + A(t) ȦT(t)) − ȦT(t)

= −γ (X (t)(A(t)AT(t) + μI ) − AT(t)),

and equivalently

Ẋ(t)(A(t)AT(t) + μI ) = ȦT(t) − X (t)( Ȧ(t)AT(t) + A(t) ȦT(t)) (8.7)

− γ (X (t)(A(t)AT(t) + μI ) − AT(t)),

Note that the parameterμ should be set appropriately small, in other words,μ should
be sufficiently close to 0. Thus, based on ZF (8.6), the ZD model (8.7) is developed
for time-varying matrix left pseudoinversion. For such a ZD model, we have the
following theorem about its convergence performance.

Theorem 8.4 Given a smoothly time-varying full-rank matrix A(t) ∈ R
m×n with

m > n, the state matrix X (t) of ZD model (8.7), starting from any initial state X (0),
converges to the theoretical time-varying left pseudoinverse A+(t) of matrix A(t).

Proof Because ZD model (8.7) is derived by using the ZD design method [with the
procedure being similar to ZD model (8.4)], we also have

ėij(t) = −γ eij(t) ∈ R, ∀i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m},

for ZF (8.6). The proof can thus be generalized from the proof of Theorem 8.3 by
considering the initial value of ZF (8.6) [i.e., X (0)(A(0)AT(0) + μI ) − AT(0)] and
Theorem 8.2. Therefore, such a proof is omitted and is left to interested readers to
complete as a topic of exercise. �

8.2.3 The Third ZF and ZD Model

To solve for the time-varying matrix left pseudoinverse, the simplified matrix-valued
ZF is defined as

E(t) = A(t)X (t) − I ∈ R
m×m . (8.8)

http://dx.doi.org/10.1007/978-3-662-47334-4_7
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In view of ZF (8.8), by using the ZD design formula (7.3), we obtain

A(t)Ẋ(t) + Ȧ(t)X (t) = −γ (A(t)X (t) − I ),

and then
A(t)Ẋ(t) = − Ȧ(t)X (t) − γ (A(t)X (t) − I ). (8.9)

For the purpose of computation and simulation, left multiplying AT(t) in both sides
of (8.9) yields

AT(t)A(t)Ẋ(t) = −AT(t) Ȧ(t)X (t) − γ (AT(t)A(t)X (t) − AT(t)). (8.10)

Thus, based on ZF (8.8), the resultant ZD model (8.10) is obtained for time-varying
matrix left pseudoinversion.

8.2.4 The Fourth ZF and ZD Model

For solving the problemof time-varyingmatrix left pseudoinverse, another simplified
ZF [being different from ZF (8.8)] is defined as

E(t) = X (t)A(t) − I ∈ R
n×n . (8.11)

Similar to the derivation of ZD model (8.10), using formula (7.3), we have

Ẋ(t)A(t) + X (t) Ȧ(t) = −γ (X (t)A(t) − I ),

and equivalently

Ẋ(t)A(t) = −X (t) Ȧ(t) − γ (X (t)A(t) − I ). (8.12)

Then, to make Eq. (8.12) more computable, we right multiply AT(t) in both sides of
(8.12), and further obtain

Ẋ(t)A(t)AT(t) = −X (t) Ȧ(t)AT(t) − γ (X (t)A(t)AT(t) − AT(t)). (8.13)

Note that, in (8.13), A(t)AT(t) is singular (in view of m > n). Hence, we adopt the
Tikhonov regularization method for (8.13), i.e., add a bias term μI with μ → 0 to
A(t)AT(t). As a result, (8.13) is rewritten as

Ẋ(t)(A(t)AT(t) + μI ) = −X (t) Ȧ(t)AT(t) − γ (X (t)(A(t)AT(t) + μI ) − AT(t)).
(8.14)

http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
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Thus, based on ZF (8.11), the resultant ZD model (8.14) is obtained to solve for
time-varying matrix left pseudoinverse.

8.2.5 The Fifth ZF and ZD Model

By denoting X+(t) ∈ R
m×n the time-varying right pseudoinverse of X (t), we can

present a new simplified ZF as

E(t) = A(t) − X+(t) ∈ R
m×n . (8.15)

Following the ZD design formula (7.3), we obtain

Ȧ(t) − Ẋ+(t) = −γ (A(t) − X+(t)).

By employing Corollary 5.1, the above equation can be further modified as

X+(t)Ẋ(t)X+(t) = − Ȧ(t) − γ (A(t) − X+(t)).

Reformulating the above equation, we have

Ẋ(t) = −X (t) Ȧ(t)X (t) − γ (X (t)A(t)X (t) − X (t)). (8.16)

Therefore, based on ZF (8.15), we obtain ZD model (8.16), which is exactly the
G-M dynamic system for time-varying matrix left pseudoinversion [16–18]. In other
words, a direct link between the ZD model and others’ model/method (i.e., the G-M
dynamic system) for time-varyingmatrix left pseudoinversion is found. According to
Theorem 3.1 of [18], the fundamental G-M dynamic system is locally exponentially
convergent rather than globally exponentially convergent. Thus, the initial state of ZD
model (8.16) (or say, the G-M dynamic system) should be chosen as X (0) ≈ A+(0),
i.e., X (0) should be sufficiently close to A+(0).

In summary, defining five different ZFs [i.e., ZFs (8.3), (8.6), (8.8), (8.11), and
(8.15)], we have obtained five different ZD models [i.e., (8.4), (8.7), (8.10), (8.14),
and (8.16)] to solve for time-varying matrix left pseudoinverse. For readers’ con-
venience and also for comparison purpose, we summarize these ZFs and the corre-
sponding ZD models in Table8.1. As seen from the table, there exist clear differ-
ences among such ZDmodels. Specifically, the ZFs (termed also the error functions),
dynamic equations, and model complexities differ from each other. In practical the
practitioner could find and choose the most suitable ZF and the corresponding ZD
model in accordance with the specific request.

http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_5
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Table 8.1 Different ZFs resulting in different ZD models for time-varying matrix left
pseudoinversion

ZF ZD model

(8.3) AT(t)A(t)Ẋ(t) = ȦT(t) − ( ȦT(t)A(t) + AT(t) Ȧ(t))X (t) − γ (AT(t)A(t)X (t) − AT(t))

(8.6) Ẋ(t)(A(t)AT(t) + μI ) =
ȦT(t) − X (t)( Ȧ(t)AT(t) + A(t) ȦT(t)) − γ (X (t)(A(t)AT(t) + μI ) − AT(t))

(8.8) AT(t)A(t)Ẋ(t) = −AT(t) Ȧ(t)X (t) − γ (AT(t)A(t)X (t) − AT(t))

(8.11) Ẋ(t)(A(t)AT(t) + μI ) = −X (t) Ȧ(t)AT(t) − γ (X (t)(A(t)AT(t) + μI ) − AT(t))

(8.15) Ẋ(t) = −X (t) Ȧ(t)X (t) − γ (X (t)A(t)X (t) − X (t))

8.3 Illustrative Examples

In the previous sections, five different ZD models based on different ZFs have been
proposed for time-varying matrix left pseudoinversion. In this section, three illustra-
tive examples are provided for substantiating the efficacy of such five ZD models on
solving for time-varying matrix left pseudoinverse.

Example 8.1 Let us consider the following time-varying full-rank matrix A(t):

A(t) =
⎡
⎣ sin(2t) cos(2t)

− cos(2t) sin(2t)
sin(2t) cos(2t)

⎤
⎦ ∈ R

3×2. (8.17)

Then, according to Eq. (8.1), the theoretical time-varying left pseudoinverse ofmatrix
A in (8.17) is obtained as

A+(t) =
[
0.5 sin(2t) − cos(2t) 0.5 sin(2t)
0.5 cos(2t) sin(2t) 0.5 cos(2t)

]
∈ R

2×3.

Because we have got theoretical time-varying pseudoinverse A+(t), we can use it
as a criterion to check the efficacy of the proposed ZD models (8.4) and (8.7). The
corresponding simulation results are shown in Figs. 8.1, 8.2, 8.3, and 8.4.

First, we investigate the convergence performance of ZD model (8.4) using γ =
1, with the related simulations results shown in Figs. 8.1 and 8.2. As illustrated
in Fig. 8.1, starting from a randomly-generated initial state X (0) ∈ R

2×3, state
matrix X (t) ∈ R

2×3 of ZD model (8.4) converges to the theoretical time-varying
pseudoinverse A+(t) of matrix A(t) in (8.17) accurately and rapidly. In addition,
we show the residual error ‖E(t)‖F = ‖AT(t)A(t)X (t) − AT(t)‖F synthesized
by ZD model (8.4) in Fig. 8.2. It follows from Fig. 8.2 that residual error via (8.4)
diminishes exponentially to zero within around 6 s. Thus, based on these simulation
results, the efficacy of ZD model (8.4) for time-varying matrix left pseudoinversion
is substantiated.
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Fig. 8.1 State trajectories of
ZD model (8.4), where
dash-dotted curves denote
theoretical pseudoinverse
A+(t) of matrix A(t) in
(8.17) and solid curves
denote the neural-state
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Fig. 8.2 Residual error
‖E(t)‖F =
‖AT(t)A(t)X (t) − AT(t)‖F
synthesized by ZD model
(8.4) for the pseudoinverse
of matrix A(t) in (8.17)
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Second, we investigate the convergence performance of ZD model (8.7) using
γ = 1 and μ = 10−3. For substantiating the effectiveness of ZD model (8.7), the
neural-state matrix X (t) ∈ R

2×3 is shown in Fig. 8.3. As seen from such a figure,
X (t) converges to the theoretical time-varying pseudoinverse A+(t) ofmatrix A(t) in
(8.17) rapidly. In addition, Fig. 8.4 further shows the corresponding transient behavior
of ‖E(t)‖F synthesized by ZD model (8.7). Evidently, from Fig. 8.4, we know that
the residual error via (8.7) converges exponentially to zero within around 6 s. These
simulation results substantiate the efficacy of ZDmodel (8.7) for time-varyingmatrix
left pseudoinverse computation.
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Fig. 8.3 State trajectories of
ZD model (8.7), where
dash-dotted curves denote
theoretical pseudoinverse
A+(t) of matrix A(t) in
(8.17) and solid curves
denote the neural-state
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Fig. 8.4 Residual error
‖E(t)‖F =
‖AT(t)A(t)X (t) − AT(t)‖F
synthesized by ZD model
(8.7) for the pseudoinverse
of matrix A(t) in (8.17)
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Example 8.2 For further substantiating the efficacy of ZDmodels (8.10), (8.14), and
(8.16), let us consider the following time-varying full-rank matrix A(t):

A(t) =
⎡
⎣ sin(3t) cos(3t)

− cos(3t) sin(3t)
sin(3t) cos(3t)

⎤
⎦ ∈ R

3×2. (8.18)

It follows (8.1) that the theoretical time-varying left pseudoinverse of matrix A(t)
in (8.18) is

A+(t) =
[
0.5 sin(3t) − cos(3t) 0.5 sin(3t)
0.5 cos(3t) sin(3t) 0.5 cos(3t)

]
∈ R

2×3. (8.19)
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Fig. 8.5 State trajectories of
ZD model (8.10), where
dash-dotted curves denote
theoretical pseudoinverse
A+(t) of matrix A(t) in
(8.18) and solid curves
denote the neural-state
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Note that the variation frequency of A(t) in (8.18) is one and a half times that of
Example 8.3. The corresponding simulation results are shown in Figs. 8.5 and 8.6.

Figure8.5 illustrates the state matrix X (t) of ZD model (8.10) with γ = 1.
Note that the state matrices X (t) synthesized by ZD models (8.14) and (8.16) are
not presented again because they are similar with that shown in Fig. 8.5. As seen
from Fig. 8.5, starting from a randomly-generated initial state X (0) ∈ R

2×3, state
matrix X (t) ∈ R

2×3 of ZD model (8.10) converges to the theoretical time-varying
pseudoinverse A+(t) of matrix A(t) in (8.18) in a short time. Besides, Fig. 8.6 shows
the transient behavior of ‖E(t)‖F synthesized by ZD models (8.10), (8.14), and
(8.16). FromFig. 8.6,we can see that residual errors ‖E(t)‖F of such threeZDmodels
(8.10), (8.14), and (8.16) all converge to zero. Therefore, the efficacy of ZD models
(8.10), (8.14), and (8.16) for the time-varying pseudoinverse is also substantiated.

Example 8.3 In this example, we consider a more complicated time-varying full-
rank matrix A(t) as follows:

A(t) =

⎡
⎢⎢⎢⎢⎢⎣

a11(t) a12(t) a13(t) · · · a16(t)
a21(t) a22(t) a23(t) · · · a26(t)
a31(t) a32(t) a33(t) · · · a36(t)

...
...

...
. . .

...

a71(t) a72(t) a73(t) · · · a76(t)

⎤
⎥⎥⎥⎥⎥⎦

∈ R
7×6, (8.20)

where the element aij(t) is set as

aij(t) =

⎧⎪⎨
⎪⎩
sin(t), if i = j,

i + cos(t), if i > j,

j + cos(t), if i < j.
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Fig. 8.6 Residual errors
‖E(t)‖F =
‖AT(t)A(t)X (t) − AT(t)‖F
synthesized by ZD models
(8.10), (8.14), and (8.16) for
the pseudoinverse of matrix
A(t) in (8.18)
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Note that, because of the complexity ofmatrix A(t) in (8.20), the analytical theoretical
pseudoinverse solution is difficult to be obtained. In addition, due to results simi-
larity, we only present the convergence performance of the residual errors ‖E(t)‖F
synthesized by ZD models (8.4) and (8.10) with different γ values in this example.
The corresponding simulation results are shown in Figs. 8.7 and 8.8. As seen from
Figs. 8.7 and 8.8, starting from a randomly-generated initial state, the residual error
‖E(t)‖F synthesized by (8.4) or (8.10) diminishes to zero, which means that the cor-
responding solutions X (t) converge to the theoretical time-varying pseudoinverse of
matrix A(t) in (8.20) rapidly and accurately. Thus, the efficacy of the proposed ZD
models (8.4) and (8.10) on solving for the more complicated time-varying pseudoin-
verse is also substantiated evidently. Moreover, comparing Fig. 8.7 with Fig. 8.8, we
observe that the convergence time of residual errors ‖E(t)‖F becomes shorter as
the value of γ increases (showing the important role of γ ). Specifically, the conver-
gence time corresponding to (8.4) or (8.10) can be expedited from around 0.7–0.07s,
when the γ value is increased from 10 to 100. This observation tells that ZD mod-
els (8.4) and (8.10) both have the exponential convergence property, which can be

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

t (s)

E(t) F via (8.4)

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

t (s)

E(t) F via (8.10)

Fig. 8.7 Residual errors ‖E(t)‖F = ‖AT(t)A(t)X (t) − AT(t)‖F synthesized by ZD models (8.4)
and (8.10) with γ = 10 for the pseudoinverse of matrix A(t) in (8.20)
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Fig. 8.8 Residual errors ‖E(t)‖F = ‖AT(t)A(t)X (t) − AT(t)‖F synthesized by ZD models (8.4)
and (8.10) with γ = 100 for the pseudoinverse of matrix A(t) in (8.20)
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expedited effectively by increasing the value of γ . Note that, for other ZD models
[i.e., (8.7), (8.14), and (8.16)], we have the same or similar observations which are
omitted here due to results similarity. In addition, based on the above three illus-
trative examples, we can conclude that the convergence time of the proposed ZD
models does not increase as the matrix dimension increases. Besides, being a topic
of exercise, the corresponding simulative verifications of ZD models (8.7), (8.14),
and (8.16) are left for interested readers.

In summary, from the above three computer-simulation examples, we have sub-
stantiated the efficacy of the proposed ZD models (8.4), (8.7), (8.10), (8.14), and
(8.16) for time-varying matrix left pseudoinversion.

8.4 Summary

In this chapter, by defining five different ZFs (8.3), (8.6), (8.8), (8.11), and (8.15), five
different ZD models (8.4), (8.7), (8.10), (8.14), and (8.16) have been proposed, gen-
eralized, developed, and investigated to solve for time-varying matrix left pseudoin-
verse. In addition, the relationship between ZD model (8.16) and G-M dynamic sys-
tem for time-varying matrix left pseudoinversion has been discovered. Computer-
simulation results with three illustrative examples have further substantiated the
efficacy of the proposed ZDmodels for time-varying matrix left pseudoinverse com-
putation.
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Chapter 9
Time-Varying Matrix Right Pseudoinverse

Abstract In Chap.8, different ZD models based on ZFs have been presented for
time-varying matrix left pseudoinversion. Being another case study of pseudoinverse
for a time-varying rectangular matrix, in this chapter, by introducing four different
ZFs, four different ZD models are proposed, generalized, developed, and investi-
gated for time-varying right pseudoinversion. In addition, the link between the ZD
models and the Getz-Marsden (G-M) dynamic system is discovered and presented
to solve for time-varying matrix right pseudoinverse. Theoretical results and com-
puter simulations with three illustrative examples are provided to further substantiate
the excellent convergence performance of the proposed ZD models for time-varying
matrix right pseudoinversion.

9.1 Introduction

As presented in Chap.8, there are two cases of time-varying pseudoinverse A+(t) ∈
R

n×m for matrix A(t) ∈ R
m×n with m �= n; i.e., the left pseudoinverse (corre-

sponding to m > n) and the right pseudoinverse (corresponding to m < n). In
addition, different ZD models based on ZFs have been presented for time-varying
matrix left pseudoinversion in Chap.8. Thus, in this chapter, we focus on solving for
time-varying right pseudoinverse of matrix A(t) ∈ R

m×n with m < n.
Note that the problem of solving for (time-varying) matrix right pseudoinverse

is one of the basic issues encountered in a large number of science and engineering
fields [1–5]. For example, the pseudoinverse-type solutions have been applied to
motion planning of redundant robot manipulators [6–8]. Due to the important role
of the right pseudoinverse, much effort has been contributed to fast solution of right
pseudoinverse, and subsequently a number of algorithms/methods (including those
ZD models presented in Chap.8) [6, 9–16] have been developed and studied for
static and/or time-varying matrix right pseudoinversion.

In this chapter, focusing on time-varying matrix right pseudoinversion, we pro-
pose, generalize, develop, and investigate four different ZD models by introducing
four different ZFs. In addition, the link between the ZD models and the Getz-
Marsden (G-M) dynamic system [11–13] is presented to solve for time-varying
matrix right pseudoinverse. Theoretical results are also provided, which show that the
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proposedZDmodels have the global/exponential convergence performance. Through
computer simulations with three illustrative examples, we further substantiate the
efficacy of the proposed ZD models for time-varying matrix right pseudoinversion.

9.2 ZFs and ZD Models

In this section, we introduce four different ZFs and propose the resultant ZD models
for time-varying matrix right pseudoinversion (together with the link to the G-M
dynamic system).

For a given time-varying full-rank matrix A(t) ∈ R
m×n with m < n, based on

Theorem8.1, the unique time-varying right pseudoinverse A+(t) of A(t) is given as

A+(t) = AT(t)(A(t)AT(t))−1 ∈ R
n×m . (9.1)

Then, based on (9.1) and Definition8.1, we know that matrix A+(t) satisfies the
following equations (being a basis for defining different ZFs):

A+(t)A(t)AT(t) = AT(t) ∈ R
n×m and A(t)A+(t) = I ∈ R

m×m .

By denoting X (t) ∈ R
n×m as the unknownmatrix to be obtained, this chapter aims at

designing different ZFs to construct various ZDmodels to solve for the time-varying
matrix right pseudoinverse. That is to say, the unknown X (t) can be obtained by using
ZD models in real-time t such that it converges to the exact theoretical time-varying
right pseudoinverse A+(t).

Specifically, to solve for time-varying matrix right pseudoinverse, in this chapter,
we define four different ZFs as follows:

E(t) = A(t)X (t) − I, (9.2)

E(t) = A(t) − X+(t), (9.3)

E(t) = X (t)A(t)AT(t) − AT(t), (9.4)

E(t) = X (t)A(t) − I, (9.5)

According to the ZD model design formula (7.3), based on four different ZFs [i.e.,
(9.2)–(9.5)], four different ZDmodels for time-varying matrix right pseudoinversion
are thus derived and presented as follows.

• Combining the ZD design formula (7.3) and ZF (9.2), we have

Ȧ(t)X (t) + A(t)Ẋ(t) = −γ (A(t)X (t) − I ),

which is rewritten as

A(t)Ẋ(t) = − Ȧ(t)X (t) − γ (A(t)X (t) − I ), (9.6)

http://dx.doi.org/10.1007/978-3-662-47334-4_8
http://dx.doi.org/10.1007/978-3-662-47334-4_8
http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
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Then, to make (9.6) more computable, we left multiply AT(t) on both sides of
(9.6), and further obtain

AT(t)A(t)Ẋ(t) = −AT(t) Ȧ(t)X (t) − γ
(

AT(t)A(t)X (t) − AT(t)
)

. (9.7)

It is worth noting that AT(t)A(t) is singular (in view of m < n). Hence, ZDmodel
(9.7) cannot be used directly to solve for time-varying matrix right pseudoinverse
A+(t). In order to make ZD model (9.7) computable and make X (t) converge to
the unique solution, we can adopt the Tikhonov regularization method for (9.7),
i.e., add a bias term μI with μ → 0 to AT(t)A(t). Therefore, based on the above
analysis, ZD model (9.7) is modified as

(AT(t)A(t)+μI )Ẋ(t) = −AT(t) Ȧ(t)X (t)−γ
(
(AT(t)A(t) + μI )X (t) − AT(t)

)
.

(9.8)
Thus, we obtain the final ZDmodel (9.8) based on ZF (9.2) for time-varyingmatrix
right pseudoinversion. Additionally, design parameter μ should be set appropri-
ately small for the convergence of ZD model (9.8) to the solution.

• By considering ZF (9.3) and following the ZD design formula (7.3), the time deriv-
ative of E(t) is obtained with a minimum-norm derivation [see also Corollary5.1
for the derivation of Ẋ+(t)]:

Ė(t) = Ȧ(t) − Ẋ+(t) = Ȧ(t) + X+(t)Ẋ(t)X+(t) = −γ E(t) = −γ
(

A(t) − X+(t)
)
.

Reformulating the above equation (with X (t)X+(t) replaced by I ), we have the
following new ZD model aiming at solving for the time-varying matrix right
pseudoinverse:

Ẋ(t) = −X (t) Ȧ(t)X (t) − γ (X (t)A(t)X (t) − X (t)) . (9.9)

Thus, ZD model (9.9) based on ZF (9.3) is obtained. Note that such a ZD model
(9.9) is also the G-M dynamic system [11–13] for time-varying matrix right
pseudoinversion. In other words, the G-M dynamic system is found to be a special
case of the ZDmodels. In addition, such a G-M dynamic system requires the initial
state X (0) to be close enough to the theoretical initial right pseudoinverse A+(0).

• Combining the ZD design formula (7.3) and ZF (9.4), we have

Ẋ(t)A(t)AT(t) = −X (t)
(

Ȧ(t)AT(t) + A(t) ȦT(t)
)

+ ȦT(t) − γ
(
X (t)A(t)AT(t) − AT(t)

)
.

(9.10)

Therefore, based on ZF (9.4), we have ZD model (9.10) for time-varying matrix
right pseudoinversion.

• With the ZD design formula (7.3) and ZF (9.5) combined, we have

Ẋ(t)A(t) = −X (t) Ȧ(t) − γ (X (t)A(t) − I ) .

http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_5
http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
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Table 9.1 Different ZFs resulting in different ZD models for time-varying matrix right pseudoin-
version

ZF ZD model

(9.2) (AT(t)A(t) + μI )Ẋ(t) = −γ
(
(AT(t)A(t) + μI )X (t) − AT(t)

) − AT(t) Ȧ(t)X (t)

(9.3) Ẋ(t) = −γ (X (t)A(t)X (t) − X (t)) − X (t) Ȧ(t)X (t)

(9.4) Ẋ(t)A(t)AT(t) =
−γ

(
X (t)A(t)AT(t) − AT(t)

) − X (t)
(

Ȧ(t)AT(t) + A(t) ȦT(t)
) + ȦT(t)

(9.5) Ẋ(t)A(t)AT(t) = −γ
(
X (t)A(t)AT(t) − AT(t)

) − X (t) Ȧ(t)AT(t)

To make the above equation computable, we right multiply AT(t) in both sides,
and further obtain

Ẋ(t)A(t)AT(t) = −X (t) Ȧ(t)AT(t) − γ
(

X (t)A(t)AT(t) − AT(t)
)

. (9.11)

Therefore, we have ZD model (9.11) based on ZF (9.5) for time-varying matrix
right pseudoinversion.

As a result, we have obtained four different ZD models, i.e., ZD models (9.8)–
(9.11), corresponding to four different ZFs, i.e., ZFs (9.2)–(9.5). For readers’ con-
venience, we summarize these ZFs and ZD models in Table9.1.

9.3 Theoretical Results

In this section,wepresent and compare the followingpropositions on the convergence
characteristics of the proposed ZD models for time-varying matrix right pseudoin-
version. Note that the proofs of such propositions can be generalized from that of
Theorem8.3 presented in Chap.8 (and the related proofs are also left to interested
readers to complete as a topic of exercise).

Proposition 9.1 Consider a smoothly time-varying full-rank matrix A(t) ∈ R
m×n

with m < n. The state matrix X (t) of the theoretical ZD model (9.6) based on ZF
(9.2), starting from any initial state X (0) ∈ R

n×m, converges to the theoretical time-
varying right pseudoinverse A+(t) of matrix A(t).

Proposition 9.2 Consider a smoothly time-varying full-rank matrix A(t) ∈ R
m×n

with m < n. The state matrix X (t) of the practical ZD model (9.8) based on ZF
(9.2), starting from a randomly-generated initial state X (0) ∈ R

n×m, converges to
the theoretical time-varying right pseudoinverse A+(t) of matrix A(t).

Proposition 9.3 Consider a smoothly time-varying full-rank matrix A(t) ∈ R
m×n

with m < n. Starting from an initial state X (0) ∈ R
n×m which is close enough to

http://dx.doi.org/10.1007/978-3-662-47334-4_8
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A+(0), the state matrix X (t) of ZD model (9.9) based on ZF (9.3) converges to the
theoretical time-varying right pseudoinverse A+(t) of matrix A(t).

Besides, the propositions on the convergence characteristics of ZD models (9.10)
and (9.11) have been given and investigated in the other book [15]. Therefore, we do
not detail such two ZD models (9.10) and (9.11) in this chapter/book.

9.4 Illustrative Examples

In this section, we have three illustrative examples to substantiate the efficacy of ZD
models (9.8) and (9.9) and discuss how parameters γ and μ effect the convergence
performance of such two ZD models.

Example 9.1 Let us consider the following time-varying full-rank matrix:

A(t) =
[

sin(1.5t) cos(1.5t) − sin(1.5t)
− cos(1.5t) sin(1.5t) cos(1.5t)

]
∈ R

2×3, (9.12)

of which the theoretical time-varying right pseudoinverse is given as below for com-
parative purposes (i.e., to check the correctness of ZD solutions):

A+(t) =
⎡
⎣ 0.5 sin(1.5t) −0.5 cos(1.5t)

cos(1.5t) sin(1.5t)
−0.5 sin(1.5t) 0.5 cos(1.5t)

⎤
⎦ ∈ R

3×2.

We exploit ZDmodels (9.8) and (9.9) to solve for the time-varying right pseudoin-
verse of matrix A(t) in (9.12) with γ = 10 and μ = 10−8. In Fig. 9.1, the neural
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Fig. 9.1 State trajectories of ZD models (9.8) and (9.9) with γ = 10 and μ = 10−8 solving for
the time-varying right pseudoinverse of matrix A(t) in (9.12)
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states X (t) of ZD models (9.8) and (9.9) are respectively shown, with the theoretical
time-varying right pseudoinverse A+(t) denoted by the dash-dotted curves. From
Fig. 9.1, we see that the state trajectories of ZD model (9.8) always converge to
the A+(t) trajectories. In contrast, there exists appreciable difference between the
A+(t) trajectories and the state trajectories of ZD model (9.9) (which is also the
G-M dynamic system). Thus, the difference and efficacy of the proposed ZDmodels
(resulting from different ZFs) are substantiated.

Example 9.2 In this example, we consider a time-varying full-rank matrix as follows:

A(t) =
[
0.5 sin(t) − cos(t) 0.5 sin(t)
0.5 cos(t) sin(t) 0.5 cos(t)

]
∈ R

2×3, (9.13)

whose theoretical time-varying right pseudoinverse is given as below for comparison:

A+(t) =
⎡
⎣ sin(t) cos(t)

− cos(t) sin(t)
sin(t) cos(t)

⎤
⎦ ∈ R

3×2.

About ZD model (9.8) solving for the time-varying right pseudoinverse of matrix
A(t) in (9.13) with μ = 10−8 and different values of γ , the solution errors ‖X (t) −
A+(t)‖F are displayed in Fig. 9.2.When γ = 10, the solution error ‖X (t)− A+(t)‖F
converges to zero in about 0.7s; and when γ = 20 and γ = 40, the convergence time
of the solution error toward zero is shortened to about 0.35 and 0.15s, respectively.
Therefore, we can set γ appropriately large to expedite the ZD-solution process.

Example 9.3 For comparative purposes, we set the value of μ to be 10−4, 10−8 and
10−12 in this example to solve for the time-varying right pseudoinverse of matrix
A(t) in (9.12) via ZD model (9.8). As shown in Fig. 9.3, the solution errors of ZD
model (9.8) (with γ = 10) all converge to zero rapidly. Though different values of μ

Fig. 9.2 Solution errors
‖X (t) − A+(t)‖F of ZD
model (9.8) solving for the
time-varying right
pseudoinverse of matrix A(t)
in (9.13) with μ = 10−8

fixed and with different
values of γ tested (i.e., with
γ = 10, 20 and 40)
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Fig. 9.3 Solution errors
‖X (t) − A+(t)‖F of ZD
model (9.8) solving for
time-varying right
pseudoinverse of matrix A(t)
in (9.12) with γ = 10 fixed
and with different values of
μ tested
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are used, the convergence time is almost the same. Thus, we come to the conclusion
that, when the μ value is set appropriately small, ZD model (9.8) can achieve the
same excellent convergence performance, i.e., solving for the time-varying right
pseudoinverse accurately.

9.5 Summary

In this chapter, by defining four different ZFs (9.2) through (9.5), four different
ZD models (9.8) through (9.11) have been proposed, generalized, developed, and
investigated to solve for time-varying matrix right pseudoinverse. In addition, the
relationship between ZD model (9.8) and the G-M dynamic system for time-varying
matrix right pseudoinversion has been discovered and presented. Theoretical results
and computer simulation results with three illustrative examples have been provided
to substantiate the efficacy of the proposed ZD models for time-varying matrix right
pseudoinverse computation.
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Chapter 10
Time-Varying Matrix Square Root

Abstract In this chapter, different indefinite ZFs, which lead to different ZD mod-
els, are proposed and developed as the error-monitoring functions for time-varying
matrix square root finding. Toward the final purpose of field programmable gate array
(FPGA) and application-specific integrated circuit (ASIC) realizations, the MAT-
LAB Simulink modeling and verifications of such ZD models are further investigated
to solve for time-varying matrix square root. Both theoretical analysis and modeling
results substantiate the efficacy of the proposed ZD models for time-varying matrix
square root finding.

10.1 Introduction

The problem of solving for matrix square root is considered to be an important
special case of nonlinear matrix equation problem, which widely arises in many sci-
entific and engineering fields; e.g., control theory [1], optimization [2], and signal
processing [3]. In general, the solution of matrix square root, which can usually be
a fundamental part of many solutions, can be achieved via matrix equations solving.
Thus, many numerical algorithms/methods have been presented and developed for
online solution of matrix square roots [1–7]. However, it may not be efficient enough
for most numerical algorithms due to their serial-processing nature performed on
digital computers [2, 3]. For large-scale online or real-time applications, the mini-
mal arithmetic operations of such numerical algorithms are usually proportional to
the cube of the matrix dimension n, i.e., O(n3) operations [8]. To remedy the inherent
weaknesses of such numerical algorithms, many parallel-processing computational
methods, including various dynamic system approaches, have been developed and
implemented on specific architectures [9–15]. Note that the aforementioned compu-
tational schemes are theoretically/intrinsically designed for solving time-invariant
(or termed, static, constant) problems (e.g., time-invariant matrix square root find-
ing) rather than time-varying ones. Thus, these schemes may be less accurate and
effective enough, when they are exploited directly to solve for time-varying matrix
square root [16–18].
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In this chapter, focusing on time-varying matrix square root finding, we propose,
generalize, develop, and investigate eight different ZD models by defining eight
different ZFs as the error-monitoring functions and constructing eight first-order
differential equations to force the ZFs converge to zero. In addition to the theoretical
analysis and results on the convergence characteristics of the proposed ZD models,
the MATLAB Simulink modeling and verification examples are investigated with the
final purpose of FPGA and ASIC realizations [19]. Moreover, some primary software
modeling techniques are investigated to model and simulate such ZD models. The
modeling results further substantiate the efficacy of the proposed ZD models based
on different ZFs for time-varying square root finding.

10.2 ZFs and ZD Models

In this section, we introduce eight different ZFs and propose the resultant ZD models
for time-varying matrix square root finding.

Let us consider the following time-varying matrix square root problem (which
can also be viewed as a time-varying nonlinear matrix equation problem) [16–18]:

X2(t) − A(t) = 0 ∈ R
n×n, t ∈ [0,+∞), (10.1)

where A(t) ∈ R
n×n denotes a smoothly time-varying positive-definite matrix, which,

together with its time derivative Ȧ(t), is assumed to be known numerically or can be
measured accurately. In addition, X (t) ∈ R

n×n is the time-varying unknown matrix
to be solved for. Our objective in this chapter is to find X (t) so that (10.1) holds true
for any t � 0. To lay a basis for further discussion, A(t) is assumed to be nonsingular
at any time instant t ∈ [0,+∞) in this chapter, and thus the inverse of A(t) [(i.e.,
A−1(t)] exists and is obtained.

Besides, the following preliminaries [1, 3, 18] are provided as a basis for further
discussion on solving (10.1).

Definition 10.1 Given a smoothly time-varying matrix A(t) ∈ R
n×n , if matrix

X (t) ∈ R
n×n satisfies the time-varying nonlinear equation X2(t) = A(t), then

X (t) is a time-varying square root of matrix A(t) [or say, X (t) is a time-varying
solution to the presented nonlinear equation (10.1)].

Definition 10.2 Since X (t)X (t)X−1(t)X−1(t) = I (with I ∈ R
n×n denoting

the identity matrix) and X (t)X (t) = X2(t), then X−2(t) is defined as X−2(t) =
X−1(t)X−1(t); i.e., we have X2(t)X−2(t) = I .

Concept 10.1 (Square-root existence condition) If a smoothly time-varying matrix
A(t) ∈ R

n×n is positive-definite (in general sense [18]) at any time instant t ∈
[0,+∞), then there exists a time-varying matrix square root X (t) ∈ R

n×n for
matrix A(t).
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Thus, specifically for solving time-varying matrix square root problem (10.1), in
this chapter, we define eight different ZFs as follows:

E(t) = X2(t)A−1(t) − I, (10.2)

E(t) = A−1(t)X2(t) − I, (10.3)

E(t) = X2(t) − A(t), (10.4)

E(t) = X−2(t) − A−1(t), (10.5)

E(t) = X (t) − A(t)X−1(t), (10.6)

E(t) = X (t) − X−1(t)A(t), (10.7)

E(t) = X−1(t) − A−1(t)X (t), (10.8)

E(t) = X−1(t) − X (t)A−1(t). (10.9)

Before deriving different ZD models from different ZFs, the following theorem
is provided as a basis for further discussion.

Theorem 10.1 The time derivative of X−2(t) [(i.e., d(X−2(t))/dt] is formulated as

d(X−2(t))

dt
= −X−2(t)(X (t)Ẋ(t) + Ẋ(t)X (t))X−2(t). (10.10)

Proof It follows from Definition 10.2 that X2(t)X−2(t) = I . Then, we have

d(X2(t)X−2(t))

dt
= dI

dt
= 0.

Expanding the left-hand side of the above equation, we thus obtain

d(X2(t))

dt
X−2(t) + X2(t)

d(X−2(t))

dt
= 0,

which is further rewritten as

X2(t)
d(X−2(t))

dt
= −d(X2(t))

dt
X−2(t) = −(X (t)Ẋ(t) + Ẋ(t)X (t))X−2(t).

Finally, in view of X2(t)X−2(t) = I , we have

d(X−2(t))

dt
= −X−2(t)(X (t)Ẋ(t) + Ẋ(t)X (t))X−2(t),

which now completes the proof. �
According to the ZD design formula (7.3), different ZFs lead to different ZD

models for time-varying matrix square root finding, which is presented as follows.

http://dx.doi.org/10.1007/978-3-662-47334-4_7
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Note that argument t [e.g., t in X (t)] is omitted in the following derivation of the
ZD models for ease of presentation.

• Let us consider the ZD design formula (7.3), ZF (10.2), and Eq. (7.11) (see also
Theorem 7.1). Then, we have

(Ẋ X + X Ẋ)A−1 − X2(A−1 ȦA−1) = −γ (X2 A−1 − I ).

Thus, based on ZF (10.2), we obtain the following dynamic equation (i.e., a first-
order matrix-valued differential equation) of a ZD model for time-varying matrix
square root finding:

Ẋ X + X Ẋ = X2 A−1 Ȧ − γ (X2 − A). (10.11)

In order to display ZD model (10.11) better, we can get its block diagram. Before
doing this, we transform such a ZD model into the following explicit form:

Ẋ = Ẋ(I − X) − X Ẋ + X2 A−1 Ȧ − γ (X2 − A).

Therefore, we have the resultant block diagram of ZD model (10.11), which is
shown in Fig. 10.1, and the modeling of ZD model (10.11) can also be done in this
manner.

• Considering the ZD design formula (7.3), ZF (10.3), and Eq. (7.11), then we have

−A−1 ȦA−1 X2 + A−1(Ẋ X + X Ẋ) = −γ (A−1 X2 − I ),

which is reformulated as

Ẋ X + X Ẋ = ȦA−1 X2 − γ (X2 − A). (10.12)

Fig. 10.1 Block diagram of
ZD model (10.11) for
time-varying matrix square
root finding
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That is, we obtain another ZD model (10.12), which is based on ZF (10.3), for
time-varying matrix square root finding. In addition, the explicit form of ZD model
(10.12) is

Ẋ = (I − X)Ẋ − Ẋ X + ȦA−1 X2 − γ (X2 − A).

It is worth pointing out that, by comparing the explicit form of the ZD model (10.11)
with that of ZD model (10.12), we can see that the differences between these two
explicit forms lie in the first three terms of the right-hand sides [for comparison,
in the explicit form of (10.16), we have Ẋ(I − X), X Ẋ , and X2 A−1 Ȧ]. Due to
the similarity, the block diagram of ZD model (10.12) is omitted and is left to
interested readers to complete as a topic of exercise.

• With the ZD design formula (7.3) and ZF (10.4) exploited, the following ZD model
is established for time-varying matrix square root finding:

X Ẋ + Ẋ X = −γ (X2 − A) + Ȧ. (10.13)

Thus, ZD model (10.13) based on ZF (10.4) for time-varying matrix square root
finding is obtained, and its explicit form is formulated as

Ẋ = (I − X)Ẋ − Ẋ X + Ȧ − γ (X2 − A).

Note that, as compared to ZD models (10.11) and (10.12), ZD model (10.13) is
viewed as a simplified one (i.e., with less model structure). The block diagram of
ZD model (10.13) can thus be generalized from that of (10.11) or (10.12), and is
omitted here due to the similarity (but is also left to interested readers to complete
as a topic of exercise).

• With the ZD design formula (7.3), ZF (10.5), and Eqs. (7.11) and (10.10) exploited,
we have

−X−2(X Ẋ + Ẋ X)X−2 + A−1 ȦA−1 = −γ (X−2 − A−1),

which is reformulated as

X Ẋ + Ẋ X = X2 A−1 ȦA−1 X2 + γ (X2 − X2 A−1 X2). (10.14)

Thus, we obtain another ZD model (10.14) based on ZF (10.5) for time-varying
matrix square root finding. To depict the block diagram of ZD model (10.14), we
transform such a ZD model into the following explicit form:

Ẋ = Ẋ(I − X) − X Ẋ + X2 A−1 ȦA−1 X2 + γ (X2 − X2 A−1 X2).

Therefore, we have the resultant block diagram of ZD model (10.14) in Fig. 10.2.
• Considering the ZD design formula (7.3), ZF (10.6), and Eq. (7.10) (see also

Theorem 7.1), we have

http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
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Fig. 10.2 Block diagram of
ZD model (10.14) for
time-varying matrix square
root finding
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A−1ȦA−1

+

+

+

+
+

+

−

−

−

(·)2

(·)2

X(t)Ẋ(t)
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Ẋ − ȦX−1 + AX−1 Ẋ X−1 = −γ (X − AX−1),

which is rewritten as

A−1 Ẋ − A−1 ȦX−1 + X−1 Ẋ X−1 = −γ A−1(X − AX−1).

Then, we further have

X A−1 Ẋ X − X A−1 Ȧ + Ẋ = −γ X A−1(X − AX−1)X,

which is finally formulated as

Ẋ = −X A−1 Ẋ X + X A−1 Ȧ − γ X A−1(X2 − A). (10.15)

Thus, based on ZF (10.6), ZD model (10.15) is obtained for time-varying matrix
square root finding, of which the block diagram is shown in Fig. 10.3.

• Similar to the derivation of ZD model (10.15), based on ZF (10.7), we have

X Ẋ A−1 X − ȦA−1 X + Ẋ = −γ X (X − X−1 A)A−1 X,

Ẋ = −X Ẋ A−1 X + ȦA−1 X − γ (X2 − A)A−1 X. (10.16)
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Fig. 10.3 Block diagram of
ZD model (10.15) for
time-varying matrix square
root finding
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Thus, we obtain ZD model (10.16) based on ZF (10.7) for time-varying matrix
square root finding. Note that, like the situation of ZD model (10.11) and ZD
model (10.12), the block diagram of ZD model (10.16) is omitted for its similarity
to that of ZD model (10.15) (and is left to interested readers to complete as a topic
of exercise).

• By using the ZD design formula (7.3), ZF (10.8), and Eqs. (7.10) and (7.11), we
have

−X−1 Ẋ X−1 + A−1 ȦA−1 X − A−1 Ẋ = −γ (X−1 − A−1 X),

and then

Ẋ − X A−1 ȦA−1 X2 + X A−1 Ẋ X = γ (X − X A−1 X2),

which is finally formulated as

Ẋ = X A−1 ȦA−1 X2 − X A−1 Ẋ X − γ X A−1(X2 − A). (10.17)

Therefore, based on ZF (10.8), ZD model (10.17) is obtained for time-varying
matrix square root finding, of which the block diagram is shown in Fig. 10.4.

• Similar to the derivation of ZD model (10.17), based on ZF (10.9), we have

Ẋ − X2 A−1 ȦA−1 X + X Ẋ A−1 X = γ (X − X2 A−1 X),

which is reformulated as

Ẋ = X2 A−1 ȦA−1 X − X Ẋ A−1 X − γ (X2 − A)A−1 X. (10.18)

http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
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Fig. 10.4 Block diagram of
ZD model (10.17) for
time-varying matrix square
root finding
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A−1ȦA−1

+

+
−

−

−
(·)2

(·)2

X(t)Ẋ(t)
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Table 10.1 Different ZFs resulting in different ZD models for time-varying matrix square root
finding

ZF ZD model

(10.2) Ẋ X + X Ẋ = X2 A−1 Ȧ − γ (X2 − A)

(10.3) Ẋ X + X Ẋ = ȦA−1 X2 − γ (X2 − A)

(10.4) X Ẋ + Ẋ X = Ȧ − γ (X2 − A)

(10.5) X Ẋ + Ẋ X = X2 A−1 ȦA−1 X2 + γ (X2 − X2 A−1 X2)

(10.6) Ẋ = −X A−1 Ẋ X + X A−1 Ȧ − γ X A−1(X2 − A)

(10.7) Ẋ = −X Ẋ A−1 X + ȦA−1 X − γ (X2 − A)A−1 X

(10.8) Ẋ = X A−1 ȦA−1 X2 − X A−1 Ẋ X − γ X A−1(X2 − A)

(10.9) Ẋ = X2 A−1 ȦA−1 X − X Ẋ A−1 X − γ (X2 − A)A−1 X

Thus, we obtain ZD model (10.18) based on ZF (10.9) for time-varying matrix
square root finding. Note that the block diagram of ZD model (10.18) is omitted
for its similarity to that of ZD model (10.17).

In summary, we obtain eight different types of ZD models [i.e., ZD models
(10.11)–(10.18)] for time-varying matrix square root finding, which correspond to
eight different types of ZFs [i.e., ZFs (10.2)–(10.9)]. For readers’ convenience and
also for comparison, such eight different ZNN models corresponding to eight differ-
ent ZFs are listed in Table 10.1.
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10.3 Theoretical Results and Analyses

In this section, theoretical results and analyses are presented, which show the con-
vergence performance of the proposed ZD models (10.11)–(10.18) on solving for
time-varying matrix square root.

Theorem 10.2 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X2(t)A−1(t) − I ∈
R

n×n of ZD model (10.11), converges to zero [which implies that state matrix X (t) ∈
R

n×n of ZD model (10.11) converges to the theoretical positive-definite (or negative-
definite) time-varying matrix square root X∗(t) of matrix A(t)].

Proof From the compact form of the ZD design formula Ė(t) = −γ E(t), a set of
n2 decoupled differential equations can be written equivalently as follows:

ėij(t) = −γ eij(t), (10.19)

for any i ∈ {1, 2, 3, · · · , n} and j ∈ {1, 2, 3, · · · , n}. Thus, to analyze the equivalent
ijth subsystem (10.19), we define a Lyapunov function candidate vij(t) = e2

ij(t)/2 �
0 with its time derivative being

dvij(t)

dt
= eij(t)ėij(t) = −γ e2

ij(t) � 0,

which guarantees the final negative-definiteness of v̇ij (i.e., v̇ij < 0 for eij �= 0
while v̇ij = 0 for eij = 0 only). By Lyapunov theory [20, 21], the equilibrium point
eij = 0 of (10.19) is asymptotically stable, i.e., eij(t) converges to zero, for any
i ∈ {1, 2, 3, · · · , n} and j ∈ {1, 2, 3, · · · , n}. In other words, the matrix-valued
error function E(t) = [ei j (t)] ∈ R

n×n is convergent to zero. In addition, we have
E(t) = X2(t)A−1(t)− I , or equivalently, X2(t)A−1(t) = I +E(t). Since E(t) → 0
as t → +∞, we have X2(t)A−1(t) → I and thus X2(t) → A(t) [(i.e., X (t) →
X∗(t)] as t → +∞. That is, the state matrix X (t) of ZD model (10.11) can converge
to the theoretical time-varying matrix square root X∗(t) of matrix A(t).

Furthermore, when the state matrix X (t) of (10.11) starts from a randomly-
generated positive-definite diagonal initial state-matrix X (0), it can converge to the
positive-definite time-varying matrix square root A1/2(t) [i.e., a form of X∗(t)]. This
can be proven by the contradiction as follows. Suppose that the state matrix X (t)
starting from a positive-definite diagonal initial state-matrix X (0) converges to the
negative-definite time-varying matrix square root −A1/2(t) [i.e., the other form of
X∗(t)], then such a state matrix X (t) must pass through at least one 0-eigenvalue,
which leads to the contradiction that the left- and right-hand sides of the ZD model
(10.11) cannot hold. So, starting from a randomly-generated positive-definite diag-
onal initial state-matrix X (0), the state matrix X (t) of ZD model (10.11) converges
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to the positive-definite time-varying matrix square root A1/2(t). Similarly, it can
also be proved that, starting from a randomly-generated negative-definite diagonal
initial state-matrix X (0), the state matrix X (t) of ZD model (10.11) converges to
the negative-definite time-varying matrix square root −A1/2(t) [i.e., another form of
X∗(t)]. The proof is thus complete. �

As for the other seven ZD models (10.12)–(10.18), we also have the following
convergence results, with the related proofs being generalized from the proof of
Theorem 10.2 and being left to interested readers to complete as a topic of exercise.

Corollary 10.1 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = A−1(t)X2(t) − I ∈
R

n×n of ZD model (10.12), converges to zero [which implies that the state matrix
X (t) ∈ R

n×n of ZD model (10.12) converges to theoretical positive-definite (or
negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.2 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X2(t)− A(t) ∈ R
n×n of

ZD model (10.13), converges to zero [which implies that the state matrix X (t) ∈ R
n×n

of ZD model (10.13) converges to theoretical positive-definite (or negative-definite)
time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.3 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X−2(t) − A−1(t) ∈
R

n×n of ZD model (10.14), converges to zero [which implies that the state matrix
X (t) ∈ R

n×n of ZD model (10.14) converges to theoretical positive-definite (or
negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.4 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X (t) − A(t)X−1(t) ∈
R

n×n of ZD model (10.15), converges to zero [which implies that the state matrix
X (t) ∈ R

n×n of ZD model (10.15) converges to theoretical positive-definite (or
negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.5 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X (t) − X−1(t)A(t) ∈
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R
n×n of ZD model (10.16), converges to zero [which implies that the state matrix

X (t) ∈ R
n×n of ZD model (10.16) converges to theoretical positive-definite (or

negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.6 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X−1(t)− A−1(t)X (t) ∈
R

n×n of ZD model (10.17), converges to zero [which implies that the state matrix
X (t) ∈ R

n×n of ZD model (10.17) converges to theoretical positive-definite (or
negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

Corollary 10.7 Consider a smoothly time-varying matrix A(t) ∈ R
n×n involved

in nonlinear equation (10.1), which satisfies the square-root existence condition.
Starting from a randomly-generated positive-definite (or negative-definite) diagonal
initial state-matrix X (0) ∈ R

n×n, the error function E(t) = X−1(t)−X (t)A−1(t) ∈
R

n×n of ZD model (10.18), converges to zero [which implies that the state matrix
X (t) ∈ R

n×n of ZD model (10.18) converges to theoretical positive-definite (or
negative-definite) time-varying matrix square root X∗(t) of matrix A(t)].

10.4 MATLAB Simulink Modeling

According to the aforementioned explicit forms and the presented block diagrams
of the ZD models (10.11), (10.14), (10.15), and (10.17) shown in Figs. 10.1, 10.2,
10.3, and 10.4, the corresponding MATLAB Simulink modeling of such ZD models
[i.e., ZD models (10.11), (10.14), (10.15), and (10.17)] is investigated and presented
in this section for possible circuits implementation and also for the final purpose of
FPGA and ASIC realizations.

10.4.1 Simulink Blocks

MATLAB Simulink contains a comprehensive block library including sinks, sources,
linear, and nonlinear components, as well as connectors. The blocks generally used to
construct ZD models (10.11), (10.14), (10.15), and (10.17) are discussed as follows.

• The MATLAB Fcn block can be employed to (1) generate matrix A(t) using the
Clock block as its input, or (2) compute the matrix norm.

• The Constant block, which outputs a constant specified by its parameter “Constant
value”, can be used to generate the identity matrix.

• The Gain block can be used to scale the neural network convergence, e.g., as a
scaling parameter γ to scale the convergence rate of neural dynamics.
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• The Math Function block can perform various common mathematical operations,
and is used in this chapter for generating the inverse of a matrix.

• The Product block, specified as the standard matrix-wise product mode, can be
used to multiply the matrices involved in the neural-dynamics models.

• The Integrator block makes continuous-time integration on the input signals. For
instance, in the Example 10.1 discussed in the ensuing section, we set its “Initial
condition” as “diag(2 ∗ rand(3, 1))” in order to generate a diagonal positive-
definite initial state-matrix X (0) with its diagonal elements randomly distributed
in [0, 2].
By interconnecting these basic Simulink function blocks and setting appropriate

block parameters, the overall modeling of ZD models (10.11), (10.14), (10.15), and
(10.17) can then be built up readily for time-varying matrix square roots finding,
with the corresponding Simulink models shown in Figs. 10.5, 10.6, 10.7, and 10.8.

10.4.2 Parameter Settings

After showing the overall Simulink models of the proposed ZD models in
Figs. 10.5, 10.6, 10.7 and 10.8, we discuss changing some of the default modeling
environment options. The options setting can be done by using the “Configuration
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Fig. 10.5 Simulink modeling of ZD model (10.11) for time-varying matrix square root finding
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Fig. 10.6 Simulink modeling of ZD model (10.14) for time-varying matrix square root finding
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Fig. 10.7 Simulink modeling of ZD model (10.15) for time-varying matrix square root finding

Parameters” dialog box in the MATLAB Simulink environment [18]. Some important
parameter settings have to be specified as follows:

• Starting time (e.g., 0.0) and Stop time (e.g., 8.0);
• Solver (i.e., integrator algorithm): “ode45 (Dormand-Prince)”;
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Fig. 10.8 Simulink modeling of ZD model (10.17) for time-varying matrix square root finding

• Max step size: “0.2”, and Min step size: “auto”;
• Initial step size: “auto”;
• Relative tolerance: “1e-6” (i.e., 10−6);
• Absolute tolerance:“auto”.

In addition, the check box in front of “States” of the option “Data Import/Export”
should be selected, which is for the purpose of better displaying the ZD modeling
results and is associated with the “StopFcn” code (of “Callbacks” in the dialog box
entitled “Model Properties” which is started from the “File” pull-down menu).

10.5 Illustrative Examples

In the previous sections, different ZD models based on different ZFs have been
proposed and developed for time-varying matrix square root finding, together with
corresponding theoretical results. Based on the above-presented overall Simulink
models depicted in Figs. 10.5, 10.6, 10.7, and 10.8, the ensuing illustrative examples
are investigated to substantiate the efficacy of the proposed ZD models. Note that
the representative ZD models (10.11), (10.14), (10.15), and (10.17) are chosen and
modeled to solve for time-varying matrix square root.

Example 10.1 Let us consider nonlinear equation (10.1) with the following sym-
metric positive-definite time-varying matrix A(t) ∈ R

3×3:
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A(t) =
⎡
⎣ 5 + sin2(t) 4sin(t) + exp(−2t) 4 + exp(−2t)sin(t)

4sin(t) + exp(−2t) 4 + sin2(t) + exp(−4t) sin(t) + 4 exp(−2t)
4 + exp(−2t)sin(t) sin(t) + 4 exp(−2t) 5 + exp(−4t)

⎤
⎦.

(10.20)

For such a matrix, the theoretical time-varying square root X∗(t) is

X∗(t) =
⎡
⎣ 2 sin(t) 1

sin(t) 2 exp(−2t)
1 exp(−2t) 2

⎤
⎦ ∈ R

3×3,

which is given for comparison purposes, i.e., to check the correctness of the neural
dynamics solutions.

The proposed ZD models (10.11), (10.14), (10.15), and (10.17) are exploited
to solve this problem, and the corresponding modeling results based on the above
Simulink models are illustrated in Figs. 10.9, 10.10, 10.11, and 10.12. As shown in
the left graph of Fig. 10.9, with design parameter γ = 10, the state matrix X (t)
of the proposed ZD model (10.11) denoted by solid curves converges to the theo-
retical time-varying solution X∗(t) denoted by dash-dotted curves. In addition, to
further investigate the convergence performance of ZD model (10.11), we monitor
the residual error ‖E(t)‖F = ‖X2(t) − A(t)‖F during the solving process. As seen
from the right graph of Fig. 10.9, by applying ZD model (10.11) to solve for time-
varying matrix square root, the residual error converges to zero within around 1 s.
For other ZD models [i.e., (10.14), (10.15), and (10.17)], we have the same observa-
tions/conclusions, which are shown in Figs. 10.10 and 10.11 (as well as the related
modeling results which are omitted due to the similarity).

In addition, it is worth pointing out that the convergence performance of the
proposed ZD models can be improved by increasing the value of γ . As an illustra-
tive example, the convergence of residual error ‖E(t)‖F of ZD model (10.11) with
different γ values is shown in Fig. 10.12. As seen from the figure, the convergence
time of ZD model (10.11) can be expedited from around 8 s to 0.08 s and to 0.008 s,
as the γ value is increased from 1 to 100 and to 1000, respectively. This result shows
that ZD model (10.11) has an exponential convergence property, which can be expe-
dited effectively by increasing the value of γ . Note that, for other ZD models [i.e.,
(10.14), (10.15), and (10.17)], we have the same conclusions by observing the related
modeling results, which are omitted here due to the results’ similarity. Being a topic
of exercise, the corresponding modeling verifications of ZD models (10.14), (10.15),
and (10.17) are left for interested readers.

In summary, the above modeling results (i.e., Figs. 10.9, 10.10, 10.11, and 10.12)
have substantiated well the efficacy of the proposed ZD models (10.11), (10.14),
(10.15), and (10.17) for time-varying matrix square root finding.

Example 10.2 In order to further investigate the efficacy of the proposed ZD models
for larger dimension matrices, let us consider nonlinear equation (10.1) with the
following time-varying circulant matrix A(t):
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Fig. 10.9 Convergence
performance of ZD model
(10.11) with γ = 10 for
finding the square root of
time-varying matrix A(t) in
(10.20)
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...
. . .

...

a1(t) a2(t) a3(t) · · · a0(t)

⎤
⎥⎥⎥⎥⎥⎦

∈ R
n×n, (10.21)

in which, without loss of generality, we choose a0(t) = n and ai (t) = sin(i t)/ i
for i = 1, 2, · · · , n − 1. In this example, we choose n = 6. Evidently, the circulant
matrix A(t) is strictly diagonally dominant for any time instant t � 0.

Figure 10.13 shows the modeling results by using the proposed ZD models (10.11),
(10.14), (10.15), and (10.17) with γ = 10 to find the time-varying matrix square root
of the above circulant matrix A(t). As seen from the figure, residual errors ‖E(t)‖F
of such ZD models all converge to zero, which implies that their corresponding state
matrices always converge to the theoretical time-varying square root of A(t). These
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Fig. 10.10 Convergence performance of ZD model (10.14) with γ = 10 for finding the square
root of time-varying matrix A(t) in (10.20)
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(10.17) with γ = 10 for finding the square root of time-varying circulant matrix A(t) in (10.21)
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results substantiate again the efficacy of the proposed ZD models (10.11), (10.14),
(10.15), and (10.17) for time-varying matrix square root finding.

In summary, the above modeling results have shown the efficacy of the proposed
ZD models (10.11), (10.14), (10.15), and (10.17) based on different ZFs for solving
the time-varying matrix square root problem (10.1); and they have also confirmed the
theoretical analysis and results given in Sect. 10.3. Besides, it is worth mentioning that
the other ZD models [i.e., (10.12), (10.13), (10.16), and (10.18)] are also effectively
exploited for time-varying matrix square root finding. The corresponding modeling
verifications of such ZD models are left to interested readers to complete as a topic
of exercise.

10.6 Summary

In this chapter, to solve for time-varying matrix square root, based on different ZFs
(10.2)–(10.9), different ZD models shown in Table 10.1 [i.e., (10.11)–(10.18)] have
been proposed, generalized, developed, and investigated in the form of the first-order
matrix-valued differential equations. In addition, theoretical analysis and results have
been given to show the convergence performance of such eight different ZD models.
For possible hardware implementation based on electronic circuits, the MATLAB
Simulink modeling of the proposed ZD models has been presented as well. Through
illustrative computer-modeling examples, the efficacy of the proposed ZD models
has been further substantiated for time-varying matrix square root finding [with the
problem formulation depicted in (10.1)].
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Chapter 11
Time-Varying Complex Reciprocal

Abstract In Chap.1, different ZD models based on different ZFs have been
presented and investigated to solve for time-varying reciprocal in real domain. In
this chapter, such a ZD approach (i.e., different ZFs leading to different ZD mod-
els) is extended and exploited for time-varying reciprocal computation in complex
domain. Specifically, by defining four different ZFs, the corresponding four differ-
ent ZD models are proposed, generalized, developed, and investigated to solve for
time-varying complex reciprocal. Through three illustrative examples, the efficacy
of the proposed complex ZD models for time-varying complex reciprocal finding is
substantiated evidently.

11.1 Introduction

As presented in Chap.1, the reciprocal computation described in the form of
f (x) = ax − 1 = 0 is considered to be an important operation in a floating-point
divider/processor. In the real world, we usually use the decimal arithmetic when
presenting the numerical data and performing the computation. However, most of
the microprocessors do not provide instructions or hardware support for the decimal
floating-point arithmetic [1], and the digital computers can only process the binary
numbers. As a result, the conversion between the decimal and binary numbers may
introduce unacceptable errors. In addition, the high accuracy is often requested in
the real-time applications.

For the floating-point divider, the Newton–Raphson iteration is an effective
method with a quadratic convergence and can be faster than the digit recurrence
methods if an accurate initial approximation is available [2]. Besides, there are also
many other researches about the reciprocal computation, and thus various algo-
rithms/methods (including the ZDmodels presented in Chap.1) have been developed
and studied for static and/or time-varying reciprocal finding [3–8]. Note that all of
these algorithms/methods are just for reciprocal computation in real domain.

In recent years, the problems in the complex field have attracted the extensive
attention of many researchers, and many relevant researches are arising in many sci-
ence and engineering fields [9–13]. Under this background, in this chapter, instead of
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solving time-varying reciprocal in real domain, the ZD approach (i.e., different ZFs
leading to different ZD models) is extended and exploited for time-varying recip-
rocal computation in complex domain. That is, focusing on time-varying complex
reciprocal finding, we propose, generalize, develop, and investigate four different
ZD models by introducing four different ZFs. Note that the proposed complex ZD
models based on the different complex ZFs are different from each other. Through
three illustrative examples, the efficacy of the proposed complex ZD models for
time-varying complex reciprocal finding is substantiated evidently.

11.2 Complex ZFs and ZD Models

In this section, we introduce four different complex ZFs (as the error-monitoring
functions); and thus, the corresponding complex ZD models based on the presented
complex ZFs are constructed to solve for time-varying complex reciprocal.

Without loss of generality, the time-varying complex reciprocal computation prob-
lem considered in this chapter is described in the following general form [9]:

f (z(t), t) = c(t)z(t) − 1 = 0 ∈ C, t ∈ [0,+∞), (11.1)

in which, c(t) �= 0 ∈ C is a smoothly time-varying complex-valued scalar, with
ċ(t) denoting the time derivative of c(t). Note that, in this chapter, we suppose that
ċ(t) is known or can be measured accurately in practice. Our objective is to find
the unknown scalar z(t) ∈ C in real time t ∈ [0,+∞) such that (11.1) is always
satisfied.

In viewof that (11.1) is depicted in the scalar form,we reuse e(t) ∈ C and ė(t) ∈ C

as the notations of the ZF and its time derivative in this chapter, respectively. Thus,
the corresponding complex ZD design formula is formulated as follows [which is
generalized from the ZD design formula (1.2) in real domain]:

ė(t) = de(t)

dt
= −γ e(t), (11.2)

where design parameter γ > 0 ∈ R corresponds to the reciprocal of a capacitance
parameter in the hardware implementation and should be set as large as the hardware
would permit, e.g., in analog circuits or VLSI [14–16]. By exploiting the complex
ZD design formula (11.2), the resultant complex ZD model can guarantee the global
convergence performance in the process of solving time-varying complex recipro-
cal, since it utilizes the time-derivative information of the time-varying coefficient
involved in (11.1). Note that design parameter γ plays an important role in the ZD
approach, in the sense that different γ values can affect the convergence performance
of the resultant complex ZD models.

http://dx.doi.org/10.1007/978-3-662-47334-4_1
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To solve for time-varying complex reciprocal depicted in (11.1), we define the
following four complex ZFs for constructing the complex ZD models:

e(t) = c(t)z(t) − 1 ∈ C, (11.3)

e(t) = z(t) − 1

c(t)
∈ C, (11.4)

e(t) = 1

c(t)z(t)
− 1 ∈ C, (11.5)

e(t) = c(t) − 1

z(t)
∈ C. (11.6)

According to the complex ZD design formula (11.2) and based on the complex
ZFs (11.3)–(11.6), we can develop the corresponding complex ZD models for time-
varying complex reciprocal finding as below.

• Let us consider complex ZF (11.3), of which the time derivative is

ė(t) = ċ(t)z(t) + c(t)ż(t).

By exploiting the complex ZD design formula (11.2), we have

ċ(t)z(t) + c(t)ż(t) = −γ (c(t)z(t) − 1),

which is reformulated as

c(t)ż(t) = −ċ(t)z(t) − γ (c(t)z(t) − 1). (11.7)

Thus, based on complex ZF (11.3), we obtain complex ZD model (11.7) for time-
varying complex reciprocal finding. Through the same way, we can also exploit
the other complex ZFs (11.4)–(11.6) to construct the other complex ZD models to
solve for time-varying complex reciprocal.

• Considering complex ZF (11.4), we have its time derivative as

ė(t) = ż(t) + 1

c2(t)
ċ(t).

Together with the complex ZD design formula (11.2), we obtain

ż(t) + 1

c2(t)
ċ(t) = −γ

(
z(t) − 1

c(t)

)
,

which is reformulated as

c2(t)ż(t) = −ċ(t) − γ (c2(t)z(t) − c(t)). (11.8)
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Therefore, we have complex ZDmodel (11.8) for time-varying complex reciprocal
finding, which is based on complex ZF (11.4).

• By combining complex ZF (11.5) and the complex ZD design formula (11.2),
we have

− 1

c2(t)z2(t)
(ċ(t)z(t) + c(t)ż(t)) = −γ

(
1

c(t)z(t)
− 1

)
,

which is reformulated as

c(t)ż(t) = −ċ(t)z(t) + γ (c(t)z(t) − c2(t)z2(t)). (11.9)

As a result, complex ZD model (11.9) based on the corresponding complex ZF
(11.5) is obtained for time-varying complex reciprocal finding.

• Similarly, by combining complex ZF (11.6) and the complex ZD design formula
(11.2), we have

ċ(t) + 1

z2(t)
ż(t) = −γ

(
c(t) − 1

z(t)

)
,

which is reformulated as

ż(t) = −ċ(t)z2(t) − γ (c(t)z2(t) − z(t)). (11.10)

Therefore, we obtain complex ZD model (11.10) based on the corresponding
complex ZF (11.6) for time-varying complex reciprocal finding.

In summary, we have obtained four different complex ZDmodels (11.7)–(11.10),
which are, respectively, based on four different complex ZFs (11.3)–(11.6), for time-
varying complex reciprocal finding. For readers’ convenience and the purpose of
summary, such complex ZFs and the corresponding complex ZD models are listed
in Table11.1. Evidently, from the proposed complex ZD models (11.7)–(11.10), we
can find that, the complex-valued first-order time-derivative information of the time-
varying coefficient involved in (11.1) is fully utilized. Hence, the global convergence
performances of the proposed complex ZD models (11.7)–(11.10) are guaranteed.

Table 11.1 Different complex ZFs resulting in different complex ZD models for time-varying
complex reciprocal finding

Complex ZF Complex ZD model

(11.3) c(t)ż(t) = −ċ(t)z(t) − γ (c(t)z(t) − 1)

(11.4) c2(t)ż(t) = −ċ(t) − γ (c2(t)z(t) − c(t))

(11.5) c(t)ż(t) = −ċ(t)z(t)+γ (c(t)z(t)−c2(t)z2(t))

(11.6) ż(t) = −ċ(t)z2(t) − γ (c(t)z2(t) − z(t))



11.2 Complex ZFs and ZD Models 155

Furthermore, the proposed complex ZD models (11.7)–(11.9) can be transferred
from the implicit forms to the explicit forms as below.

• For complex ZD model (11.7), it is transferred as

ż(t) = (1 − c(t))ż(t) − ċ(t)z(t) − γ (c(t)z(t) − 1).

• For complex ZD model (11.8), it is transferred as

ż(t) =
(
1 − c2(t)

)
ż(t) − ċ(t) − γ (c2(t)z(t) − c(t)).

• For complex ZD model (11.9), it is transferred as

ż(t) = (1 − c(t))ż(t) − ċ(t)z(t) + γ (c(t)z(t) − c2(t)z2(t)).

Thus, we have the block diagram of the proposed complex ZDmodel (11.7) depicted
in Fig. 11.1 for the purpose of better understanding on its hardware implementation.
Note that, as for other ZD models [i.e., (11.8)–(11.10)], similar block diagrams
can be extended and obtained readily from Fig. 11.1. Being a topic of exercise, the
corresponding block diagrams of such ZD models are left for interested readers.

Fig. 11.1 Block diagram of
complex ZD model (11.7)
for time-varying complex
reciprocal finding

+

+

−

−
−

∑

∑

γ

c(t)

ċ(t)

z(t)ż(t)

1− c(t)

1
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11.3 Illustrative Examples

In the previous section, we have proposed and developed four different complex
ZD models (11.7)–(11.10) based on different complex ZFs (11.3)–(11.6) for time-
varying complex reciprocal finding. In this section, in order to substantiate the effi-
cacy of the proposed complex ZD models (11.7)–(11.10), we have the following
illustrative examples.
Example 11.1 In this example, let us consider the following time-varying complex
reciprocal computation problem, in which the time-varying complex coefficient
c(t) = cos(4t) + i sin(5t) is involved, i.e.,

f (z(t), t) = (cos(4t) + i sin(5t))z(t) − 1 = 0 ∈ C. (11.11)

The proposed complex ZD models (11.7)–(11.10) with γ = 10 are exploited to
solve the problem (11.11) and the corresponding simulation results are illustrated
in Figs. 11.2, 11.3, 11.4 and 11.5. In each figure, the state trajectory of a com-
plex ZD model for solving the time-varying complex reciprocal problem (11.11)
is shown, as well as the trajectories of the real part and the imaginary part of the
corresponding state. From the left graphs of Figs. 11.2, 11.3, 11.4 and 11.5, we can
observe that, with γ = 10, the state trajectories of the proposed complex ZD models
(11.7)–(11.10) are smooth and continuous, and can all converge to the theoretical
time-varying solution of (11.11) rapidly and accurately. In addition, tomake the above
observation/conclusion more persuasive, as shown in the right graphs of Figs. 11.2,
11.3, 11.4 and 11.5, the trajectories of the real part and the imaginary part of the cor-
responding states of the proposed ZDmodels (11.7)–(11.10) can also converge to the
real part and the imaginary part of the theoretical time-varying solution of (11.11),
respectively. Thus, the efficacy of the proposed complex ZD models (11.7)–(11.10)
is preliminarily substantiated.
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11.3 Illustrative Examples 157

−2
0

2
4

−5

0

5
0

2

4

6

8

10

zre(t)
zim(t)

t (
s)

0 2 4 6 8 10
−2

0

2

4

0 2 4 6 8 10
−5

0

5

t (s)

t (s)

zre(t)

zim(t)

Fig. 11.3 State trajectories of the complex ZD model (11.8) with γ = 10 for solving the time-
varying complex reciprocal computation problem (11.11)
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Fig. 11.4 State trajectories of the complex ZD model (11.9) with γ = 10 for solving the time-
varying complex reciprocal computation problem (11.11)

Example 11.2 In the previous example, we have preliminarily substantiated the effi-
cacy of the proposed complex ZDmodels (11.7)–(11.10). In this example, we use the
residual error e(t) = |c(t)z(t)−1| (with symbol | · | denoting the absolute value of a
scalar) to investigate the efficacy of the proposed complex ZDmodels (11.7)–(11.10)
for time-varying complex reciprocal finding.

Let us consider the following time-varying complex reciprocal computation
problem:

f (z(t), t) = (cos(8t) + i sin(4t))z(t) − 1 = 0 ∈ C, (11.12)

where the time-varying complex coefficient c(t) = cos(8t) + i sin(4t) is used.
Similarly, the proposed complex ZD models (11.7)–(11.10) are exploited to solve
(11.12). The corresponding simulation results are displayed in Fig. 11.6. From
Fig. 11.6, we can observe that, with γ = 10, the residual error e(t) of each
proposed complex ZD model can converge to 0 within a rather short time (i.e.,
about 0.76 s). In other words, these simulation results further demonstrate the effi-
cacy of the proposed complex ZD models (11.7)–(11.10) for time-varying complex
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Fig. 11.6 Residual errors e(t) synthesized by complex ZD models (11.7)–(11.10) with γ = 10 for
solving the time-varying complex reciprocal computation problem (11.12)

reciprocal finding in the sense of the convergence performance of the residual error
e(t) for each complex ZD model.

Example 11.3 In this example, we investigate the important role of design parameter
γ in the proposed complex ZDmodels (11.7)–(11.10). Let us consider the following
time-varying complex reciprocal computation problem:
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Fig. 11.7 Residual errors
e(t) of complex ZD model
(11.7) with different γ values
for solving the time-varying
complex reciprocal
computation problem (11.13) 0 0.5 1 1.5 2 2.5 3
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with γ = 5
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with γ = 500

f (z(t), t) = (cos(5t) + i sin(5t))z(t) − 1 = 0 ∈ C. (11.13)

The corresponding simulation results are shown in Fig. 11.7 and Table11.2 using
the proposed complex ZD models (11.7)–(11.10) with different values of γ . In
Fig. 11.7, an intuitive illustration is given for showing the change of the conver-
gence time of the residual error e(t) of complex ZD model (11.7). As seen from
Fig. 11.7, the convergence time of the residual error e(t) becomes much shorter
when the value of design parameter γ increases; i.e., the convergence time of the
residual error e(t) decreases from about 1.41s to about 0.015s while the γ value
increases from 5 to 500. The detailed convergence time of the proposed complex ZD
models (11.7)–(11.10) with different γ values for solving the time-varying complex
reciprocal computation problem (11.13) are shown in Table11.2. From Fig. 11.7 and

Table 11.2 Convergence time (in seconds) of residual errors e(t) of the proposed complex ZD
models (11.7)–(11.10) using different values of γ for solving (11.13)

γ ZD (11.7) ZD (11.8) ZD (11.9) ZD (11.10)

1 7.40 7.40 6.95 7.00

2 3.68 3.70 3.53 3.70

5 1.41 1.40 1.40 1.42

10 0.76 0.74 0.72 0.75

20 0.38 0.37 0.36 0.39

50 0.14 0.14 0.15 0.14

100 0.070 0.076 0.072 0.070

200 0.035 0.038 0.037 0.036

500 0.015 0.015 0.014 0.015
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Table11.2, we can draw a conclusion that, different values of γ can affect the con-
vergence performance of the proposed complex ZD models (11.7)–(11.10). That is,
by increasing the value of γ , we can expedite the convergence of the residual errors
e(t) of the proposed complex ZD models (11.7)–(11.10).

In summary, through the above three illustrative examples, the efficacy of the
proposed complex ZD models (11.7)–(11.10) based on complex ZFs (11.3)–(11.6)
for solving time-varying complex reciprocal computation problem (11.1) has been
evidently substantiated.

11.4 Summary

In this chapter, to solve for time-varying complex reciprocal [in the form of (11.1)],
different complex ZDmodels [i.e., (11.7)–(11.10)] have been proposed, generalized,
developed, and investigated by defining different complex ZFs [i.e., (11.3)–(11.6)].
The proposed complex ZD models fully utilize the complex-valued first-order time-
derivative information of the time-varying coefficient involved in the time-varying
complex reciprocal computation problem (11.1). Thus, the global convergence per-
formance of the proposed complex ZDmodels is guaranteed. Through three illustra-
tive examples, the efficacy of the proposed complex ZD models (11.7)–(11.10) has
been evidently substantiated.

References

1. Wang L, Schulte MJ (2007) A decimal floating-point divider using Newton-Raphson iteration.
J VLSI Signal Process Syst 49(1):3–18

2. Agrawal G, Khandelwal A, Swartzlander EE Jr (2007) An improved reciprocal approxima-
tion algorithm for a Newton-Raphson divider. In: Proceedings of advanced signal processing
algorithms, architectures, and implementations, vol XVII, pp 1–12

3. Pineiro J,Bruguera JD (2002)High-speeddouble-precision computation of reciprocal, division,
squareroot, and inverse square root. IEEE Trans Comput 51(12):1377–1388

4. Hanrot G, Rivat J, Tenenbaum G, Zimmermann P (2003) Density results on floating-point
invertible numbers. Theor Comput Sci 291(2):135–141

5. Kucukkabak U, Akkas A (2004) Design and implementation of reciprocal unit using table
look-up and Newton-Raphson iteration. In: Proceedings of euromicro symposium on digital
system design, pp 249–253

6. Croot E, Li R-C, Zhu HJ (2004) The abc conjecture and correctly rounded reciprocal square
roots. Theor Comput Sci 315(2–3):405–417

7. AnteloE, LangT,Montuschi P, SannarelliA (2005)Low latency digit-recurrence reciprocal and
square-root reciprocal algorithm and architecture. In: Proceedings of the 17th IEEE symposium
on computer arithmetic, pp 147–154

8. Zhang Y, Li F, Yang Y, Li Z (2012) Different Zhang functions leading to different
Zhang-dynamics models illustrated via time-varying reciprocal solving. Appl Math Model
36(9):4502–4511



References 161

9. Zhang Y, Li Z, Guo D, Li F, Chen P (2012) Time-varying complex reciprocals solved by ZD
via different complex Zhang functions. In: Proceedings of the 2nd international conference on
computer science and network technology, pp 120–124

10. Song J, YamY (1998)Complex recurrent neural network for computing the inverse and pseudo-
inverse of the complex matrix. Appl Math Comput 93(2–3):195–205

11. Yau L, Ben-Israel A (1998) The Newton and Halley methods for complex roots. Am Math
Mon 105(9):806–818

12. Cardoso J, Loureiro A (2011) Iteration functions for pth roots of complex numbers. Numer
Algorithms 57(3):329–356

13. Zhang Y, Li Z, Li K (2011) Complex-valued Zhang neural network for online complex-valued
time-varying matrix inversion. Appl Math Comput 217(24):10066–10073

14. Mead C (1989) Analogue VLSI and neural systems. Addison-Wesley Longman, Boston
15. Zhang Y, Ma W, Li K, Yi C (2008) Brief history and prospect of coprocessors. China Sci

Technol Inf 13:115–117
16. Zhang Y, Yi C (2011) Zhang neural networks and neural-dynamic method. Nova Science

Publishers, New York



Chapter 12
Time-Varying Complex Matrix Inverse

Abstract In this chapter, the ZD approach is further extended and exploited for time-
varying matrix inversion in complex domain. Specifically, focusing on time-varying
complex matrix inversion, we propose, generalize, develop, and investigate three
different complex ZD models by defining three different complex ZFs. Through sim-
ulations and verifications with four illustrative examples, the corresponding results
substantiate the efficacy of the complex ZD models based on different complex ZFs
for time-varying complex matrix inversion.

12.1 Introduction

As presented in Chap. 7, the problem of solving for constant matrix inverse in the
form of AX = I ∈ R

n×n and for time-varying matrix inverse in the form of
A(t)X (t) = I ∈ R

n×n is considered to be a fundamental issue and is widely encoun-
tered in science and engineering fields [1–9]. This is usually the essential part of many
problems; for example, as the preliminary steps of image reconstruction [1], physics
[2] and robot control [6, 8]. In many situations, the online solution of (time-varying)
matrix inversion is required. As a result, a number of algorithms/methods (including
those ZD models presented in Chap. 7) have been developed and investigated for
constant and/or time-varying matrix inversion [7–15]. These research works, how-
ever, are confined to applying different numerical algorithms or neural dynamics to
matrix inversion in real domain.

While it is true that more often the aforementioned problems involve only real-
valued matrices, it is noted that in some situations complex-valued matrices may
also occur, when the problem incorporates online frequency domain identification
processes, or when the input signals contain both magnitude and phase information.
The presence of a complex-valued matrix points to the need for efficient online
complex matrix inversion as well [16–18]. Aiming at complex matrix inversion,
Song and Yam [16] presented a complex neural network containing complex-valued
weighting, thresholds, and inputs and output signals to yield the complex matrix
inverse. Note that such a work is just for static (or termed, time-invariant) complex
matrix inversion.
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Therefore, in this chapter, based on the results presented in Chap. 7, the ZD
approach (i.e., different ZFs leading to different ZD models) is further extended
for time-varying complex matrix inversion (instead of static complex matrix inver-
sion investigated in [16]). More specifically, by defining three different complex ZFs
as the error-monitoring functions, three different complex ZD models are proposed,
generalized, developed, and investigated to solve for time-varying complex matrix
inverse. Some simulations and verifications are then performed, and from the illus-
trative results, the efficacy of the proposed complex ZD models based on different
complex ZFs for time-varying complex matrix inversion is substantiated evidently.

12.2 Complex ZFs and ZD Models

Consider a smoothly time-varying complex-valued nonsingular matrix C(t) ∈ C
n×n .

In this chapter, our objective is to find the unknown complex-valued matrix Z(t) ∈
C

n×n , which always satisfies the following time-varying complex matrix equa-
tion [17, 18]:

C(t)Z(t) = I ∈ C
n×n, t ∈ [0,+∞), (12.1)

where I is the identity matrix, and the complex-valued matrix C(t) ∈ C
n×n is usually

assumed bounded in practice. In this chapter, we aim at solving the time-varying com-
plex matrix-inversion problem (12.1) by constructing different complex ZD models
based on different complex ZFs in an error-free manner (i.e., the residual error is
small enough to be omitted). Note that, for the solvableness of the time-varying com-
plex matrix-inversion problem (12.1), all of the eigenvalues of the complex-valued
matrix C(t) ∈ C

n×n must be nonzero.
As (12.1) is depicted in matrix form, we reuse E(t) ∈ C

n×n and Ė(t) ∈ C
n×n

as the notations of the ZF and its time derivative in this chapter, respectively. Thus,
the corresponding complex ZD design formula is formulated as follows [which is
generalized from the ZD design formula (7.3) in real domain]:

Ė(t) = dE(t)

dt
= −γ E(t), (12.2)

where design parameter γ > 0 ∈ R is defined the same as before (see also Chap. 11).
By exploiting the complex ZD design formula (12.2), the complex first-order time-
derivative information of the time-varying complex matrix involved in (12.1), i.e.,
Ċ(t) ∈ C

n×n , is fully utilized in the process of solving for time-varying complex
matrix inverse. Therefore, the resultant complex ZD model can guarantee the global
convergence performance for time-varying complex matrix inversion.

http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_7
http://dx.doi.org/10.1007/978-3-662-47334-4_11
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In this chapter, specifically for time-varying complex matrix inversion with the
problem formulation depicted in (12.1), we define the following complex ZFs as the
error-monitoring functions:

E(t) = Z(t) − C−1(t) ∈ C
n×n, (12.3)

E(t) = C(t) − Z−1(t) ∈ C
n×n, (12.4)

E(t) = C(t)Z(t) − I ∈ C
n×n . (12.5)

Before constructing the complex ZD models from such complex ZFs, we present the
following theorem (i.e., an extension from real domain to complex domain) to lay a
basis for further discussion.

Theorem 12.1 The time derivative of C−1(t), i.e., dC−1(t)/dt , is formulated as
Ċ−1(t) = dC−1(t)/dt = −C−1(t)Ċ(t)C−1(t). So as for the time derivative of
Z−1(t), i.e., Ż−1(t) = dZ−1(t)/dt = −Z−1(t)Ż(t)Z−1(t).

Proof It is generalized from Theorem 7.1 in Chap. 7. �

According to the complex ZD design formula (12.2), by using different com-
plex ZFs [i.e., (12.3)–(12.5)], three different complex ZD models for time-varying
complex matrix inversion are thus derived and presented as follows.

• Based on Theorem 12.1, let us consider the complex ZD design formula (12.2)
and complex ZF (12.3). Then, we have

Ż(t) − Ċ−1(t) = −γ
(

Z(t) − C−1(t)
)

,

which is further rewritten as

Ż(t) + C−1(t)Ċ(t)C−1(t) = −γ
(

Z(t) − C−1(t)
)

,

Ż(t) = −C−1(t)Ċ(t)C−1(t) − γ
(

Z(t) − C−1(t)
)

,

C(t)Ż(t)C(t) = −Ċ(t) − γ (C(t)Z(t)C(t) − C(t)) . (12.6)

Thus, we obtain complex ZD model (12.6) for time-varying complex matrix inver-
sion. For further illustration and investigation, we can also exploit other complex
ZFs [i.e., complex ZFs (12.4) and (12.5)] to construct other types of complex ZD
models.

• Based on Theorem 12.1, considering the complex ZD design formula (12.2) and
complex ZF (12.4), we have the following derivation:

Ċ(t) − Ż−1(t) = −γ
(

C(t) − Z−1(t)
)

,

Ċ(t) + Z−1(t)Ż(t)Z−1(t) = −γ
(

C(t) − Z−1(t)
)

,

http://dx.doi.org/10.1007/978-3-662-47334-4_7
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Table 12.1 Different complex ZFs resulting in different complex ZD models for time-varying
complex matrix inversion

Complex ZF Complex ZD model

(12.3) C(t)Ż(t)C(t) = −Ċ(t) − γ (C(t)Z(t)C(t) − C(t))

(12.4) Ż(t) = −Z(t)Ċ(t)Z(t) − γ (Z(t)C(t)Z(t) − Z(t))

(12.5) C(t)Ż(t) = −Ċ(t)Z(t) − γ (C(t)Z(t) − I )

Z(t)Ċ(t)Z(t) + Ż(t) = −γ Z(t)
(

C(t) − Z−1(t)
)

Z(t),

Ż(t) = −Z(t)Ċ(t)Z(t) − γ (Z(t)C(t)Z(t) − Z(t)) . (12.7)

Therefore, another type of complex ZD model, i.e., complex ZD model (12.7), is
obtained for time-varying complex matrix inversion.

• By combining the complex ZD design formula (12.2) and complex ZF (12.5), we
have

C(t)Ż(t) = −Ċ(t)Z(t) − γ (C(t)Z(t) − I ) . (12.8)

Thus, complex ZD model (12.8) based on complex ZF (12.5) for time-varying
complex matrix inversion is obtained.

In summary, we have constructed three different types of complex ZD models,
i.e., complex ZD models (12.6)–(12.8), by defining three different complex ZFs [i.e.,
complex ZFs (12.3)–(12.5)] for solving the time-varying complex matrix-inversion
problem (12.1). Besides, for readers’ convenience and also for comparison, the above
three different ZD models corresponding to three different ZFs are listed in Table 12.1.
Note that, compared with complex ZD model (12.6), complex ZD model (12.8) has
a relatively simplified model structure. Thus, in the ensuing simulations, such a ZD
model (12.8) is not discussed [since it can be generalized from (12.6)]. Being a topic
of exercise, the corresponding simulative verification of complex ZD model (12.8)
is left for interested readers (see also [14]).

12.3 Illustrative Examples

In the previous sections, we developed complex ZD models (12.6) and (12.7). Note
that both the proposed complex ZD models for time-varying complex matrix inver-
sion are described in matrix form. Thus, vectorization techniques are needed to trans-
form such matrix-form differential equations to vector-form differential equations
for simulative purposes.
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• For complex ZD model (12.6), based on the Kronecker product (denoted by the
symbol of “⊗”) and vectorization techniques, we can transform (12.6) into the
following vector-form differential equation:

(
CT(t) ⊗ C(t)

)
vec

(
Ż(t)

) = −vec
(
Ċ(t)

)

− γ
((

CT(t) ⊗ C(t)
)

vec(Z(t)) − vec(C(t))
)

.

• Similarly, for complex ZD model (12.7), we can have its vector form as

vec
(
Ż(t)

) = − (
I ⊗ (

Z(t)Ċ(t)
))

vec(Z(t))

− γ ((I ⊗ (Z(t)C(t))) vec(Z(t)) − vec(Z(t))) .

In this section, we have the ensuing examples for verification of the efficacy of
the proposed complex ZD models (12.6) and (12.7).

Example 12.1 Let us consider the following time-varying complex-valued matrix
C(t) involved in (12.1):

C(t) =
[

exp(10i t) −i exp(−10i t)
−i exp(10i t) exp(−10i t)

]
∈ C

2×2, (12.9)

whose inverse, i.e., the theoretical inverse of (12.9), is given as

C−1(t) =
[

0.5 exp(10i t) 0.5i exp(10i t)
0.5i exp(−10i t) 0.5 exp(−10i t)

]
∈ C

2×2.

Since we have obtained the theoretical time-varying inverse of matrix C(t), we can
use it as an analytic theoretical solution to verify the correctness of the solutions of the
proposed complex ZD models (12.6) and (12.7). As illustrated in Figs. 12.1 and 12.2,
starting from the randomly-generated initial states Z(0) ∈ C

2×2, the state matrices
Z(t) ∈ C

2×2 of complex ZD models (12.6) and (12.7) with design parameter γ = 10
can converge to the theoretical time-varying inverse C−1(t) rapidly and accurately
within a rather short time. Thus, from these results, the efficacy of the proposed
complex ZD models (12.6) and (12.7) for time-varying complex matrix inversion is
substantiated primarily.

Example 12.2 In this example, we will further verify the efficacy of the proposed
complex ZD models (12.6) and (12.7). Let us consider the following time-varying
complex-valued matrix C(t) involved in (12.1):

C(t) =
[

i sin(5t) i cos(5t)
i cos(5t) −i sin(5t)

]
∈ C

2×2, (12.10)
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Fig. 12.1 State trajectories of complex ZD model (12.6) with γ = 10 for inverting the time-varying
complex-valued matrix in (12.9), where dash-dotted curves denote the theoretical time-varying
inverse and solid curves denote the solution computed by complex ZD model (12.6)
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Fig. 12.2 State trajectories of complex ZD model (12.7) with γ = 10 for inverting the time-varying
complex-valued matrix in (12.9), where dash-dotted curves denote the theoretical time-varying
inverse and solid curves denote the solution computed by complex ZD model (12.7)
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and its theoretical time-varying inverse is given as

C−1(t) =
[−i sin(5t) −i cos(5t)
−i cos(5t) i sin(5t)

]
∈ C

2×2.

In this example, we investigate the residual errors ‖E(t)‖F = ‖C(t)Z(t) − I‖F
synthesized by the proposed complex ZD models (12.6) and (12.7) with γ = 10.
From the residual errors illustrated in Fig. 12.3, we can find that the residual error
of each of complex ZD models (12.6) and (12.7) diminishes to 0 within about 1 s.
Therefore, the efficacy of the proposed complex ZD models (12.6) and (12.7) for
time-varying complex matrix inversion is further substantiated.

Example 12.3 In this example, we consider a more complicated situation of the
time-varying complex matrix-inversion problem (12.1), which is the inversion of the
following time-varying complex-valued Toeplitz matrix: C(t):

C(t) =

⎡
⎢⎢⎢⎢⎢⎣

c1(t) c2(t) c3(t) · · · cn(t)
c2(t) c1(t) c2(t) · · · cn−1(t)
c3(t) c2(t) c1(t) · · · cn−2(t)

...
...

...
. . .

...

cn(t) cn−1(t) cn−2(t) · · · c1(t)

⎤
⎥⎥⎥⎥⎥⎦

∈ C
n×n . (12.11)

Let c1(t) = n + exp(10i t) and ck(t) = exp(−10i t)/(k − 1)(k = 2, 3, . . . n). We
know that the time-varying complex-valued Toeplitz matrix C(t) is strictly diagonally
dominant for any time instant t � 0 and is invertible. To verify the efficacy of the
proposed complex ZD models (12.6) and (12.7) for a more complicated time-varying
complex matrix-inversion problem solving, we exploited the complex ZD models
(12.6) and (12.7) to solve for the inverse of C(t) in (12.11) in the situation of n = 6.
The corresponding simulation results are shown in Fig. 12.4. Evidently, the residual
errors ‖E(t)‖F synthesized by complex ZD models (12.6) and (12.7) with γ = 10
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Fig. 12.3 Residual errors ‖E(t)‖F = ‖C(t)Z(t)− I‖F synthesized by complex ZD models (12.6)
and (12.7) with γ = 10 for the inversion of matrix C(t) in (12.10)
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Fig. 12.4 Residual errors ‖E(t)‖F = ‖C(t)Z(t)− I‖F synthesized by complex ZD models (12.6)
and (12.7) with γ = 10 for the inversion of matrix C(t) in (12.11)

can diminish to 0 within a short time, which means that the corresponding solutions
Z(t) converge to the theoretical time-varying inverse rapidly and accurately. As a
result, the efficacy of the proposed complex ZD models (12.6) and (12.7) for a more
complicated time-varying complex matrix-inversion problem solving is substantiated
evidently.

Example 12.4 In this example, we investigate the important role of the design para-
meter γ . In order to achieve the faster convergence of the proposed complex ZD
models (12.6) and (12.7) for time-varying complex matrix inversion with matrix
C(t) depicted in (12.10), we can increase the value of γ correspondingly. As dis-
played in Fig. 12.5, we can clearly find that the residual errors ‖E(t)‖F synthesized
by complex ZD model (12.6) diminish more rapidly with the increase of the γ val-
ues (i.e., with γ = 5, 50, and 500, respectively). That is, with γ = 5, 50, and 500,
the convergence time of the residual error ‖E(t)‖F diminishes from about 1.4 s to
about 0.014 s. Note that the simulation results by using complex ZD model (12.7)

Fig. 12.5 Comparison of the
residual errors ‖E(t)‖F
synthesized by complex ZD
model (12.6) with γ = 5, 50,
and 500 for the inversion of
matrix C(t) in (12.10)
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are similar to those shown in Fig. 12.5 and are thus omitted due to results similarity
(but with the corresponding verification being left to interested readers to complete
as a topic of exercise). Therefore, we can draw the conclusion that, we can promote
the convergence performance of the proposed complex ZD models (12.6) and (12.7)
by choosing a larger value of design parameter γ .

In sum, from the above four illustrative examples, we have already substantiated
the efficacy of the proposed complex ZD models (12.6) and (12.7) for the time-
varying complex matrix inversion.

12.4 Summary

In this chapter, to solve the time-varying complex matrix-inversion problem (12.1),
three different complex ZD models [i.e., (12.6)–(12.8)] have been proposed, gener-
alized, developed, and investigated by defining different complex ZFs [i.e., (12.3)–
(12.5)]. Such complex ZD models utilize the complex first-order time-derivative
information of the time-varying complex matrix involved in (12.1) and achieve the
global convergence performance. Through four illustrative examples, the efficacy of
the proposed complex ZD models for time-varying complex matrix inversion has
been substantiated evidently.
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Chapter 13
Time-Varying Complex Matrix
Generalized Inverse

Abstract In Chaps. 8 and 9, different ZD models based on different ZFs have been
presented and investigated to solve for time-varying matrix (left and right) pseudoin-
verse in real domain. In this chapter, the ZD approach (i.e., different ZFs leading to
different ZDmodels) is extended and exploited to solve for time-varying matrix gen-
eralized inverse (in most cases, the pseudoinverse) in complex domain. Specifically,
by introducing five different complex ZFs, five different complex ZD models are
proposed, generalized, developed, and investigated for time-varying complex matrix
generalized inverse computation. Theoretical results of convergence analysis are pre-
sented to show the desirable properties of the complex ZD models. In addition, we
discover the link between the proposed complex ZD models and the Getz-Marsden
(G-M) dynamic system in complex domain. Computer simulation results further sub-
stantiate the efficacy of the proposed complex ZDmodels based on different complex
ZFs on solving for time-varying complex matrix generalized inverse.

13.1 Introduction

As presented in Chaps. 8 and 9, the solution of generalized inverse (in most cases,
the pseudoinverse, and also known as Moore-Penrose generalized inverse) is one of
the basic problems encountered in a variety of science and engineering fields, e.g.,
robotics [1], signal processing [2], associative memories [3] and image restoration
[4, 5]. Owing to its important roles, numerous efforts have been devoted to the
fast solution of generalized inverse matrices. As a result, many algorithms/methods
(including those ZD models presented in Chaps. 8 and 9) have been put forward
by researchers [6–12] for constant and/or time-varying matrix generalize inverse
computation. However, it is worth pointing out that these researchworks are confined
to applying different numerical algorithms or neural dynamics to solving for matrix
generalized inverse (or sometimes termed, matrix pseudoinverse) in real domain.

Besides, as presented in Chap.12, in some situations complex-valued matrices
may also occur, when the problem incorporates online frequency domain identifica-
tion processes, or when the input signals contain both magnitude and phase infor-
mation [13, 14]. The presence of a complex-valued matrix points to the need for

© Springer-Verlag Berlin Heidelberg 2015
Y. Zhang and D. Guo, Zhang Functions and Various Models,
DOI 10.1007/978-3-662-47334-4_13

173

http://dx.doi.org/10.1007/978-3-662-47334-4_8
http://dx.doi.org/10.1007/978-3-662-47334-4_9
http://dx.doi.org/10.1007/978-3-662-47334-4_8
http://dx.doi.org/10.1007/978-3-662-47334-4_9
http://dx.doi.org/10.1007/978-3-662-47334-4_8
http://dx.doi.org/10.1007/978-3-662-47334-4_9
http://dx.doi.org/10.1007/978-3-662-47334-4_12


174 13 Time-Varying Complex Matrix Generalized Inverse

efficient online complex matrix inversion/pseudoinversion as well. In general, as for
a complex-valued matrix C ∈ C

m×n , there are two cases, i.e., m = n and m �= n.
Then, we have that C− ∈ C

n×m is known as the inverse of matrix C with m = n,
and C+ ∈ C

n×m is known as the generalized inverse of matrix C with m �= n.
Note that the investigations of solving for constant and time-varying complex square
matrix inverse (i.e., corresponding to the situation of m = n) have been presented
in [14, 15] and Chap.12, respectively. Thus, in this chapter, we focus on solving for
the generalized inverse (in most cases, the pseudoinverse) of time-varying complex
matrix C(t) ∈ C

m×n under the situation of m �= n.
To lay a basis for further discussion, some necessary preliminaries of the time-

varying complex matrix generalized inverse are given.

Definition 13.1 For a given time-varying complexmatrixC(t) ∈ C
m×n withm �= n,

if Z(t) ∈ C
n×m satisfies at least one of the following four Penrose equations [16, 17]:

C(t)Z(t)C(t) = C(t), Z(t)C(t)Z(t) = Z(t),

(C(t)Z(t))H = C(t)Z(t), (Z(t)C(t))H = Z(t)C(t),

where superscript H denotes the conjugate transpose (also calledHermitian transpose)
of a complex matrix, Z(t) is called the time-varying complex generalized inverse
of C(t). If matrix Z(t) satisfies all of the Penrose equations, then matrix Z(t) is
called the pseudoinverse of matrix C(t), which is often denoted by C+(t). Note that
the pseudoinverse C+(t) exists and is unique, while the generalized inverse is not
unique usually.

In addition, if matrix C(t) is of full-rank at any time instant t , i.e., rank(C(t)) =
min{m, n}with t ∈ [0,∞), we have the following theorem to obtain the time-varying
pseudoinverse of matrix C(t).

Theorem 13.1 For a given time-varying matrix C(t) ∈ C
m×n with m �= n, if it

satisfies that rank(C(t)) = min{m, n} at any time instant t , then the unique time-
varying pseudoinverse C+(t)is given as follows [17–19]:

C+(t) =
{

CH(t)(C(t)CH(t))−1, if m < n,

(CH(t)C(t))−1CH(t), if m > n.
(13.1)

Besides, as for the unique time-varying pseudoinverse of a full-rank matrix C(t),
we have another important theorem as follows (which motivates us to define many
more ZFs for time-varying complex matrix generalized inverse).

Theorem 13.2 For a given time-varying matrix C(t) ∈ C
m×n with m �= n, if it

satisfies that rank(C(t)) = min{m, n} at any time instant t , then the unique time-
varying pseudoinverse C+(t) is also given as follows:

http://dx.doi.org/10.1007/978-3-662-47334-4_12
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C+(t) =
⎧⎨
⎩
lim
μ→0

(CH(t)C(t) + μI )−1CH(t), if m < n,

lim
μ→0

CH(t)(C(t)CH(t) + μI )−1, if m > n,

where μ > 0 ∈ R.

Proof It can be generalized from the proof of Theorem 8.2. �

For simplicity, in this chapter, we only consider the smoothly time-varying full-
rank complex matrix C(t) ∈ C

m×n with m < n. This paper aims at finding
Z(t) ∈ C

n×m such that at least one of the Penrose equations holds true at any
time instant t ∈ [0,+∞), i.e., obtaining the complex generalized inverse (in most
cases, the pseudoinverse) of matrix C(t). Note that, in the case of m > n, the com-
plex generalized inverse of matrix C(t) could be obtained in a similar way, and is
thus omitted due to similarity and space limitation.

More specifically, focusing on solving for the generalized inverse of time-varying
complex matrix C(t) with m < n, we propose, generalize, develop, and investi-
gate five different complex ZD models by defining five different complex ZFs. It
is then theoretically proved that the proposed complex ZD models (globally) expo-
nentially converge to the theoretical time-varying generalized inverse. Moreover, we
discover the link between the proposed complex ZD models and the Getz-Marsden
(G-M) dynamic system [20] in the complex domain. Through illustrative computer-
simulation examples, the efficacy of the proposed complex ZD models for time-
varying complex matrix generalized inverse computation is well substantiated.

13.2 Complex ZFs and ZD Models

In this section, five different complex ZDmodels based on five different complex ZFs
are constructed to solve for the time-varying complex generalized inverse (in most
cases, the pseudoinverse). In addition, their excellent convergence performances are
analyzed in detail.

According to the ZD design formula (12.2), different complex ZFs can lead to
different complex ZD models for solving the same time-varying complex-valued
problem. Especially, to solve for the time-varying complex generalized inverse, we
define the following five different complex ZFs as the fundamental error-monitoring
functions:

E(t) = Z(t)C(t)CH(t) − CH(t) ∈ C
n×m, (13.2)

E(t) = CH(t)C(t)Z(t) − CH(t) ∈ C
n×m, (13.3)

E(t) = C(t)Z(t) − I ∈ C
m×m, (13.4)

E(t) = Z(t)C(t) − I ∈ C
n×n, (13.5)

E(t) = C(t) − Z+(t) ∈ C
m×n . (13.6)

http://dx.doi.org/10.1007/978-3-662-47334-4_8
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13.2.1 The First Complex ZD Model

Considering complex ZF (13.2), we have the following derivation:

Ė(t) = Ż(t)C(t)CH(t) + Z(t)
(

Ċ(t)CH(t) + C(t)ĊH(t)
)

− ĊH(t).

Then, adopting the ZD design formula (12.2), we can derive the corresponding
dynamic equation of the first complex ZD model as

Ż(t)C(t)CH(t) = ĊH(t) − Z(t)
(
Ċ(t)CH(t) + C(t)ĊH(t)

)
−γ

(
Z(t)C(t)CH(t) − CH(t)

)
.

(13.7)

In other words, we obtain complex ZD model (13.7) based on complex ZF (13.2) to
solve for the time-varying complex generalized inverse (specifically, the pseudoin-
verse). By following complex ZD model (13.7), the ijth neuron’s dynamic equation
can be presented in the following form:

żij =
m∑

l=1

żilal j − γ

(
m∑

l=1

zilbl j − c∗
j i

)
−

m∑
l=1

zildl j + ċ∗
j i ,

where c ji , al j , bl j and dl j denote the corresponding elements of matrices C , A =
I −CCH, B = CCH and D = ĊCH+CĊH, respectively, and the operator ∗ denotes
complex conjugate. Then, the neuron-connection architecture of complex ZDmodel
(13.7) is depicted in Fig. 13.1, and the specific structure of the i th row of neurons
is illustrated in Fig. 13.2. Figures13.1 and 13.2 well show that complex ZD model
(13.7) is a kind ofHopfield-type recurrent neural networkswhich can be implemented
finally on analog circuits such as very large-scale integration [11, 21, 22].

To lay a basis for discussion, an important theorem is presented below.

Theorem 13.3 For any time-varying complex matrix C(t) ∈ C
m×n, we have [23]

dCH(t)

dt
=

(
dC(t)

dt

)H

,

which, via a simpler notation of dCH(t)/dt , can be rewritten as ĊH(t) = (Ċ(t))H.
Especially, for a scalar complex variable c(t) ∈ C, we have ċ∗(t) = (ċ(t))∗.

For complex ZD model (13.7), we have the following theoretical result on its
global exponential convergence performance.

Theorem 13.4 Given a smoothly time-varying complex matrix C(t) ∈ C
m×n (with

m < n) of full rank, the state matrix Z(t) ∈ C
n×m of complex ZD model (13.7), start-

ing from an initial state Z(0), globally and exponentially converges to the theoretical
time-varying generalized inverse [specifically, the pseudoinverse C+(t) ∈ C

n×m] of
matrix C(t).

http://dx.doi.org/10.1007/978-3-662-47334-4_12
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Fig. 13.1 Neuron-connection architecture of complex ZD model (13.7) for time-varying complex
generalized inverse computation

Proof Let Z̃(t) = Z(t) − C+(t) denote the difference between the solution Z(t)
generated by complex ZD model (13.7) and the theoretical pseudoinverse C+(t).
Following from C+(t)C(t)CH(t) − CH(t) = 0, its time derivative is depicted as

Ċ+(t)C(t)CH(t) + C+(t)
(

Ċ(t)CH(t) + C(t)ĊH(t)
)

− ĊH(t) = 0.

Substituting C+(t) = Z(t) − Z̃(t) into the above identity, we have

˙̃Z(t)C(t)CH(t) + Z̃(t)
(
Ċ(t)CH(t) + C(t)ĊH(t)

) =
Ż(t)C(t)CH(t) + Z(t)

(
Ċ(t)CH(t) + C(t)ĊH(t)

) − ĊH(t).

Using complex ZDmodel equation (13.7), with Z(t) = Z̃(t)+C+(t), it follows that
Z̃(t) is the solution to the ensuing dynamics with the initial state Z̃(0) = Z(0) −
C+(0),

˙̃Z(t)C(t)CH(t) + Z̃(t)
(

Ċ(t)CH(t) + C(t)ĊH(t)
)

= −γZ̃(t)C(t)CH(t). (13.8)

Since E(t) = Z̃(t)C(t)CH(t), (13.8) can thus be rewritten as Ė(t) = −γE(t), which
is a compact matrix form of the following set of n × m equations:

ėij(t) = −γ eij(t), ∀i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. (13.9)
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ċ∗
1i

ċ∗
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generalized inverse computation



13.2 Complex ZFs and ZD Models 179

Evidently, we can define a Lyapunov function candidate vij = eije∗
ij/2 � 0 for the

ijth subsystem (13.9), which is positive-definite, i.e., vij > 0 for eij �= 0 and vij = 0
for eij = 0. Then, we have its time derivative

dvij(t)

dt
= 1

2

(
ėije

∗
ij + eijė

∗
ij

)
.

Adopting Theorem 13.3 and (13.9), we obtain

dvij(t)

dt
= 1

2

(
(−γ eij)e

∗
ij + eij(−γ eij)

∗) = −γ eije
∗
ij.

Apparently, v̇ij is negative-definite, i.e., v̇ij < 0 for eij �= 0 and v̇ij = 0 for eij =
0. In addition, if |eij| → ∞, the Lyapunov function candidate vij = |eij|2/2 →
∞. By the Lyapunov stability theory, eij(t) globally converges to zero for any i ∈
{1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. Thus, in viewof E(t) = Z(t)C(t)CH(t)−CH(t)
and the nonsingularity of C(t)CH(t), we have Z(t) → CH(t)(C(t)CH(t))−1 ∈
C

n×m as t → ∞. Then, in view of m < n and based on Theorem 13.1, the state
matrix Z(t) of (13.7) globally converges to the theoretical time-varying generalized
inverse [specifically, the pseudoinverse C+(t) ∈ C

n×m] starting from a randomly-
generated initial state Z(0). Next, we are going to prove the exponential convergence
performance of complex ZD model (13.7).

In view of (13.9), we can obtain its analytic solution in the compact matrix form:

E(t) = E(0) exp(−γ t).

Thus, we further have
‖E(t)‖F = ‖E(0)‖F exp(−γ t).

Evidently, as t → ∞, ‖E(t)‖F exponentially converges to 0with rate γ , whichmeans
that, starting from any randomly-generated initial state Z(0), state matrix Z(t) of
complex ZD model (13.7) exponentially converges to the theoretical time-varying
generalized inverse [specifically, the pseudoinverse C+(t)] with rate γ > 0. The
proof on global and exponential convergence of complex ZD model (13.7) is thus
complete. �

For further investigation and illustration, we can also make use of other complex
ZFs [i.e., complex ZFs (13.3) through (13.6)] to construct other types of complex
ZD models. Thus, it can provide many more models for researchers to choose.

13.2.2 The Second Complex ZD Model

For complex ZF (13.3), as m < n, CH(t)C(t) ∈ C
n×n is singular. Thus, we can add

a bias term λI ∈ R
n×n to CH(t)C(t), with λ > 0 ∈ R. This method is known as
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Tikhonov regularization method [24]. Then, complex ZF (13.3) is modified as

E(t) =
(

CH(t)C(t) + λI
)

Z(t) − CH(t). (13.10)

For modified ZF (13.10), we have its time derivative

Ė(t) =
(

CH(t)C(t) + λI
)

Ż(t) +
(

ĊH(t)C(t) + CH(t)Ċ(t)
)

Z(t) − ĊH(t).

Following the ZD design formula (12.2), we obtain the dynamic equation of the
second complex ZD model as

(
CH(t)C(t) + λI

)
Ż(t) = ĊH(t) − (

ĊH(t)C(t) + CH(t)Ċ(t)
)

Z(t)
−γ

((
CH(t)C(t) + λI

)
Z(t) − CH(t)

)
.

(13.11)

Note that the parameter λ should be set appropriately small, in other words, λ should
be sufficiently close to 0. Similarly, after presenting complex ZD model (13.11) for
solving for the time-varying complex generalized inverse (specifically, the pseudoin-
verse), we come to prove its convergence performance through the following impor-
tant theorem.

Theorem 13.5 Given a smoothly time-varying complex matrix C(t) ∈ C
m×n (with

m < n) of full rank, the state matrix Z(t) ∈ C
n×m of complex ZD model (13.11), start-

ing from an initial state Z(0), globally and exponentially converges to the theoretical
time-varying generalized inverse [specifically, the pseudoinverse C+(t) ∈ C

n×m] of
matrix C(t).

Proof Since complex ZD model (13.11) is derived using the standard ZD design
method similar to the aforementioned first complex ZD model, its modified ZF
(13.10) satisfies relation (12.2), which means that E(t) = (CH(t)C(t) + λI )Z(t) −
CH(t) can globally and exponentially converge to zero from an initial value. That
is to say, as t → ∞, we have Z(t) → (CH(t)C(t) + λI )−1CH(t) ∈ C

n×m . In
view of λ → 0 and m < n, then based on Theorem 13.2, the state matrix Z(t)
globally and exponentially converges to the theoretical time-varying generalized
inverse, specifically, the pseudoinverse C+(t). The proof on global and exponential
convergence performance of complex ZD model (13.11) is thus complete. �

13.2.3 The Third Complex ZD Model

Combining the ZD design formula (12.2) and complex ZF (13.4), we can have

Ċ(t)Z(t) + C(t)Ż(t) = −γ (C(t)Z(t) − I ) ,

http://dx.doi.org/10.1007/978-3-662-47334-4_12
http://dx.doi.org/10.1007/978-3-662-47334-4_12
http://dx.doi.org/10.1007/978-3-662-47334-4_12
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and then
C(t)Ż(t) = −Ċ(t)Z(t) − γ (C(t)Z(t) − I ) .

For the purpose of computation and simulation, by left multiplying CH(t) both sides
of the above equation, we obtain

CH(t)C(t)Ż(t) = −CH(t)Ċ(t)Z(t) − γ
(

CH(t)C(t)Z(t) − CH(t)
)

. (13.12)

Note that, in (13.12), CH(t)C(t) is singular (in view of m < n). Hence, to make
(13.12)more computable,we can similarly adopt theTikhonov regularizationmethod
[24], i.e., add a bias term λI with λ → 0 to CH(t)C(t). As a result, the dynamic
equation of the third complex ZD model is presented as

(
CH(t)C(t) + λI

)
Ż(t) = −CH(t)Ċ(t)Z(t)

− γ
((

CH(t)C(t) + λI
)

Z(t) − CH(t)
)

. (13.13)

That is to say, based on complex ZF (13.4), we obtain complex ZD model (13.13) to
solve for the time-varying complex generalized inverse (specifically, the pseudoin-
verse). Similarly, the important theorem about the convergence performance of com-
plex ZD model (13.13) is given as follows.

Theorem 13.6 Given a smoothly time-varying complex matrix C(t) ∈ C
m×n (with

m < n) of full rank, the state matrix Z(t) ∈ C
n×m of complex ZD model (13.13), start-

ing from an initial state Z(0), globally and exponentially converges to the theoretical
time-varying generalized inverse [specifically, the pseudoinverse C+(t) ∈ C

n×m] of
matrix C(t).

Proof The convergence of complex ZDmodel (13.13) can be proven in a way similar
to the proofs of Theorems 13.4 and 13.5, and thus it is omitted here. �

13.2.4 The Fourth Complex ZD Model

With the ZD design formula (12.2) and complex ZF (13.5), we have

Ż(t)C(t) + Z(t)Ċ(t) = −γ (Z(t)C(t) − I ) ,

and then
Ż(t)C(t) = −Z(t)Ċ(t) − γ (Z(t)C(t) − I ) . (13.14)

http://dx.doi.org/10.1007/978-3-662-47334-4_12


182 13 Time-Varying Complex Matrix Generalized Inverse

Similarly, to make (13.14) more computable, we right multiply CH(t) both sides of
(13.14), and obtain the dynamic equation of the fourth complex ZD model as

Ż(t)C(t)CH(t) = −Z(t)Ċ(t)CH(t) − γ
(

Z(t)C(t)CH(t) − CH(t)
)

. (13.15)

Thus, based on complex ZF (13.5), we have complex ZD model (13.15) to solve
for the time-varying complex generalized inverse (specifically, pseudoinverse). Sim-
ilar to the previous ZD models, we have the following important result about the
convergence performance of complex ZD model (13.15). That is, given a smoothly
time-varying complex matrix C(t) ∈ C

m×n (with m < n) of full rank, the state
matrix Z(t) ∈ C

n×m of complex ZD model (13.15), starting from an initial state
Z(0), globally and exponentially converges to the theoretical time-varying general-
ized inverse, specifically, the pseudoinverse C+(t) ∈ C

n×m .

13.2.5 The Fifth Complex ZD Model

Before constructing the fifth complex ZD model, an important corollary (being an
extension of Corollary 5.1 from the real domain to the complex domain) is presented
here to lay a basis for discussion.

Corollary 13.1 For a given time-varying complex matrix C(t) ∈ C
m×n (with

m < n) and its time-varying pseudoinverse C+(t), we approximately have Ċ+(t) =
−C+(t)Ċ(t)C+(t).

Proof It can also be generalized from the proof of Theorem 4.1 in Chap.4. �

Then, based on the ZD design formula (12.2) and complex ZF (13.6), we can have

Ċ(t) − Ż+(t) = −γ
(
C(t) − Z+(t)

)
.

By adopting Corollary 13.1, the above equation can be further rewritten as

Ċ(t) + Z+(t)Ż(t)Z+(t) = −γ
(
C(t) − Z+(t)

)
,

Z+(t)Ż(t)Z+(t) = −Ċ(t) − γ
(
C(t) − Z+(t)

)
. (13.16)

Reformulating (13.16), we have the following dynamic equation of the new complex
ZD model aiming at solving for the time-varying complex generalized inverse:

Ż(t) = −Z(t)Ċ(t)Z(t) − γ (Z(t)C(t)Z(t) − Z(t)) , (13.17)

Thus, we obtain complex ZD model (13.17) based on complex ZF (13.6). Note that
complex ZDmodel (13.17) is also the Getz andMarsden (G-M) dynamic system [20]
for the time-varying complex generalized inverse computation. In other words, the

http://dx.doi.org/10.1007/978-3-662-47334-4_5
http://dx.doi.org/10.1007/978-3-662-47334-4_4
http://dx.doi.org/10.1007/978-3-662-47334-4_12
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G-M dynamic system could be generalized to the case of complex matrices and
is a special case of the complex ZD models. This is quite a novel result beyond
our previous work. Following the literature [20], we have the theoretical results
of the convergence performance of complex ZD model (13.17). That is, given a
smoothly time-varying complex matrix C(t) ∈ C

m×n of full rank, if initial state
Z(0) satisfies ‖Z(0) − C+(0)‖F � β < ∞ and β ∈ R is sufficiently small, then
C(t)Z(t) − I → 0 as t → ∞, i.e., the state matrix Z(t) ∈ C

n×m of complex ZD
model (13.17) exponentially converges to the theoretical time-varying generalized
inverse of matrix C(t). It is worth noting that the initial condition of complex ZD
model (13.17) should be chosen as Z(0) ≈ C+(0) [i.e., Z(0) should be sufficiently
close to C+(0)].

In summary, we have constructed five different complex ZD models (13.7),
(13.11), (13.13), (13.15), and (13.17) by defining five different complex ZFs [i.e.,
complex ZFs (13.2)–(13.6)] to solve for time-varying complex generalized inverse
(in most cases, the pseudoinverse). For readers’ convenience and also for compari-
son purpose, we summarize these complex ZFs and the corresponding complex ZD
models in Table13.1.

Remark 13.1 Five complex ZFs have been elaborately constructed to obtain five dif-
ferent complex ZD models. There exist clear differences among such complex ZD
models. Specifically, the dynamic equations, model complexities and convergence
performance differ from each other. For instance, the fifth complex ZDmodel (13.17)
has the simplest network structure which can be more readily implemented, whereas
the first complexZDmodel (13.7) has better global convergence performance. There-
fore, in practical applications, the practitioner could find and choose themost suitable
complex ZF and the corresponding complex ZD model in accordance with specific
request.

Table 13.1 Different complex ZFs resulting in different complex ZD models for time-varying
complex generalized inverse (in most cases, the pseudoinverse) computation

Complex ZF Complex ZD model

(13.2) Ż(t)C(t)CH(t) = −γ (Z(t)C(t)CH(t)−CH(t))− Z(t)(Ċ(t)CH(t)+C(t)ĊH(t))
+ ĊH(t)

(13.3) (CH(t)C(t)+λI )Ż(t) = ĊH(t)−(ĊH(t)C(t)+CH(t)Ċ(t))Z(t)−γ ((CH(t)C(t)
+ λI )Z(t) − CH(t))

(13.4) (CH(t)C(t)+λI )Ż(t) = −CH(t)Ċ(t)Z(t)− γ ((CH(t)C(t)+λI )Z(t)− CH(t))

(13.5) Ż(t)C(t)CH(t) = −Z(t)Ċ(t)CH(t) − γ (Z(t)C(t)CH(t) − CH(t))

(13.6) Ż(t) = −Z(t)Ċ(t)Z(t) − γ (Z(t)C(t)Z(t) − Z(t))
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13.3 Illustrative Examples

In this section, the related simulation techniques are presented, and four illustrative
examples are given to substantiate the efficacy of the proposed complex ZD mod-
els [i.e., (13.7), (13.11), (13.13), (13.15), and (13.17)] on solving for time-varying
complex generalized inverse (in most cases, the pseudoinverse).

Kronecker product and vectorization In the previous sections, we have developed five
complex ZD models (13.7), (13.11), (13.13), (13.15), and (13.17) for time-varying
complex generalized inverse computation. Note that all the proposed complex ZD
models are described in matrix form, which cannot be directly simulated. Thus,
the Kronecker product and vectorization techniques [11, 25] are needed to transform
suchmatrix-form differential equations to vector-form differential equations for sim-
ulative purposes. Note that, for presentation convenience, B(t) = CH(t)C(t) + λI
is introduced [for complex ZD models (13.11) and (13.13)].

• For complex ZD model (13.7), based on the Kronecker product (denoted by the
symbol of “⊗”) and vectorization techniques, we can transform such a complex
ZD model into the following vector-form differential equation:

(
(CCH)T ⊗ I

)
vec(Ż) = vec(ĊH) − (

(ĊCH)T ⊗ I + (CĊH)T ⊗ I
)
vec(Z)

−γ
((

(CCH)T ⊗ I
)
vec(Z) − vec(CH)

)
.

• In view of B(t) = CH(t)C(t) + λI , complex ZD model (13.11) is rewritten as

B(t)Ż(t) = ĊH(t)−
(

ĊH(t)C(t) + CH(t)Ċ(t)
)

Z(t)−γ
(

B(t)Z(t) − CH(t)
)

.

Therefore, similar to (13.7), we obtain the vector form of (13.11) as follows:

(I ⊗ B) vec(Ż) = vec(ĊH) − (
(I ⊗ ĊHC) + (I ⊗ CHĊ)

)
vec(Z)

−γ
(
(I ⊗ B) vec(Z) − vec(CH)

)
.

• Similarly, for complex ZD model (13.13), we can have its vector form as

(I ⊗ B) vec(Ż) = −(I ⊗ CHĊ) vec(Z) − γ
(
(I ⊗ B) vec(Z) − vec(CH)

)
.

• Considering complex ZD model (13.15), we similarly have its vector form as

(
(CCH)T ⊗ I

)
vec(Ż) = − (

(ĊCH)T ⊗ I
)
vec(Z)

−γ
((

(CCH)T ⊗ I
)
vec(Z) − vec(CH)

)
.

• For complex ZD model (13.17), we can also obtain its vector form as

vec(Ż) = −(I ⊗ ZĊ) vec(Z) − γ ((I ⊗ ZC) vec(Z) − vec(Z)) .
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Besides, it is worth pointing out here that, in MATLAB, the Kronecker product
can be realized by using the routine “kron” [i.e., “Z ⊗ C” is realized by the code
“kron(Z,C)”], and “vec(Z)” is realized by the code “reshape(Z,n*m,1)”.

Therefore, based on the aforementioned vectorization technique, the following
four computer simulation examples are illustrated to substantiate the efficacy of
the proposed complex ZD models (13.7), (13.11), (13.13), (13.15), and (13.17) on
solving for time-varying complex generalized inverse.

Example 13.1 In this example, we consider the time-varying full-rank complex
matrix C(t) as follows:

C(t) =
[

i sin(3t) i cos(3t) −i sin(3t)
−i cos(3t) i sin(3t) i cos(3t)

]
∈ C

2×3. (13.18)

For checking the correctness of the ZD solution, according to (13.1), we can obtain
the theoretical time-varying pseudoinverse of matrix C(t) in (13.18) as

C+(t) =
⎡
⎣−0.5i sin(3t) 0.5i cos(3t)

−i cos(3t) −i sin(3t)
0.5i sin(3t) −0.5i cos(3t)

⎤
⎦ ∈ C

3×2.

Since we have obtained theoretical pseudoinverse C+(t), we can use it as an
analytic theoretical solution to verify the correctness of the solution synthesized by
complex ZD model (13.7). As illustrated in Fig. 13.3, starting from a randomly-
generated initial state Z(0) ∈ C

3×2, the state matrix Z(t) ∈ C
3×2 of complex ZD

model (13.7) with γ = 100 can converge to the theoretical pseudoinverse C+(t)
rapidly and accurately within a rather short time. In addition, we show the residual
errors ‖E(t)‖ = ‖Z(t)C(t)CH(t) − CH(t)‖F synthesized by the proposed complex
ZD model (13.7) starting from 10 randomly-generated initial states. From Fig. 13.4,
we can further find that the residual errors of (13.7) all diminish to zero within
around 0.06s. These simulation results demonstrate the efficacy of complex ZD
model (13.7) on solving for time-varying complex generalized inverse (specifically,
the pseudoinverse).

Example 13.2 In this example, we verify the efficacy of the proposed complex ZD
models (13.11) and (13.13) use a more general complex matrix. Let us consider the
following time-varying complex matrix:

C(t) =
[
exp(4it) i exp(4it) exp(−4it)

i exp(4it) exp(4it) i exp(4it)

]
∈ C

2×3. (13.19)
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Fig. 13.3 State trajectories of complex ZD model (13.7) with γ = 100, where dash-dotted curves
denote the theoretical time-varying pseudoinverse C+(t) in Example 13.1 and solid curves denote
the solution computed by complex ZD model (13.7)
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Fig. 13.4 Residual errors ‖E(t)‖F = ‖Z(t)C(t)CH(t) − CH(t)‖F synthesized by complex ZD
model (13.7) with γ = 100 for the time-varying pseudoinverse of matrix C(t) in (13.18)
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It follows from (13.1) that the theoretical time-varying pseudoinverse of matrix C(t)
in (13.19) is

C+(t) =
⎡
⎢⎣

3
8 exp(−4it) − 1

8 exp(4it) − 3
8 i exp(−4it) + 1

8 i exp(−12it)

− 3
8 i exp(−4it) − 1

8 i exp(4it) 3
8 exp(−4it) + 1

8 exp(−12it)
1
4 exp(4it) − 1

4 i exp(−4it)

⎤
⎥⎦ ∈C

3×2.

Note that, in this example, the complex matrix C(t) in (13.19) is more general
since its elements have both real and imaginary parts. Furthermore, the varia-
tion frequency of such a complex matrix is greater than that of Example 13.1.
Figures13.5 and 13.6, respectively, illustrate the neural state Z(t) of complex ZD
models (13.11) and (13.13) by using γ = 100 and λ = 10−3, with the residual errors
‖E(t)‖F = ‖Z(t)C(t)CH(t) − CH(t)‖F shown in Fig. 13.7. As seen from Figs. 13.5
and 13.6, starting from a randomly-generated initial state Z(0), the neural states Z(t)
of complex ZD models (13.11) and (13.13) both converge to the theoretical time-
varying pseudoinverse C+(t). In addition, from Fig. 13.7, we can see that residual
errors ‖E(t)‖F of (13.11) and (13.13) all converge to zero. Therefore, the efficacy
of complex ZD models (13.11) and (13.13) on solving for the time-varying complex
generalized inverse (specifically, the pseudoinverse) is also substantiated.
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Fig. 13.5 State trajectories of complex ZD model (13.11) with γ = 100 and λ = 10−3, where
dash-dotted curves denote the theoretical time-varying pseudoinverse C+(t) in Example 13.2 and
solid curves denote the solution computed by complex ZD model (13.11)



188 13 Time-Varying Complex Matrix Generalized Inverse

−0.5 0
0.5

−0.5
0

0.5
0

5

10

−0.5 0
0.5

−0.5
0

0.5
0

5

10

−0.5
0

0.5
−0.5

0
0.5
0

5

10

−0.5 0
0.5

−0.5
0

0.5
0

5

10

−0.5 0
0.5

−0.5
0

0.5
0

5

10

−0.5
0 0.5

−0.5
0

0.5
0

5

10
t
(s
)

t
(s
)

t
(s
)

t
(s
)

t
(s
)

t
(s
)

z11(t) z12(t)

z21(t) z22(t)

z31(t) z32(t)

real axisreal axis

real axisreal axis

real axisreal axis

imaginary axisimaginary axis

imaginary axisimaginary axis

imaginary axisimaginary axis

Fig. 13.6 State trajectories of complex ZD model (13.13) with γ = 100 and λ = 10−3, where
dash-dotted curves denote the theoretical time-varying pseudoinverse C+(t) in Example 13.2 and
solid curves denote the solution computed by complex ZD model (13.13)
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Fig. 13.7 Residual errors ‖E(t)‖F = ‖Z(t)C(t)CH(t) − CH(t)‖F synthesized by complex ZD
models (13.11) and (13.13) with γ = 100 and λ = 10−3 for the time-varying pseudoinverse of
matrix C(t) in (13.19)
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Example 13.3 In this example, we consider a more complicated situation of the
time-varying complex generalized inverse (specifically, the pseudoinverse), which is
the pseudoinverse of the following time-varying full-rank complex matrix:

C(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11(t) c12(t) c13(t) · · · c1n(t)

c21(t) c22(t) c23(t) · · · c2n(t)

c31(t) c32(t) c33(t) · · · c3n(t)
...

...
...

. . .
...

cm1(t) cm2(t) cm3(t) · · · cmn(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ C
m×n, (13.20)

where m < n. Thereinto,

cmn(t) =

⎧⎪⎨
⎪⎩
exp(it), if m = n,

n + exp(−it), if m > n,

m + exp(−it), if m < n.

In this example, due to the complexity of matrix C(t) in (13.20) (with large
dimensions, i.e., m = 8 and n = 9), the analytical theoretical pseudoinverse solution
is difficult to be obtained. Therefore, we only present the convergence performance of
the residual errors ‖E(t)‖F = ‖Z(t)C(t)CH(t) − CH(t)‖F synthesized by complex
ZD model (13.15). The simulation results are shown in Fig. 13.8. As seen from the
figure, starting from 10 randomly-generated initial states, the residual errors ‖E(t)‖F
synthesized by complex ZD model (13.15) with γ = 100 can diminish to 0 within
a short time (also about 0.06s), which means that the corresponding solutions Z(t)
converge to the theoretical time-varying pseudoinverse of complex matrix matrix
C(t) in (13.20) rapidly and accurately. Thus, the efficacy of the proposed complexZD
model (13.15) on solving for themore complicated time-varying complex generalized

Fig. 13.8 Residual errors
‖E(t)‖F =
‖Z(t)C(t)CH(t) − CH(t)‖F
synthesized by complex ZD
model (13.15) with γ = 100
for the time-varying
pseudoinverse of matrix C(t)
in (13.20)
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inverse (specifically, the pseudoinverse) is substantiated evidently. Note that, based
on the above three examples, we can conclude that the convergence time of the
proposed complex ZD models does not increase as the matrix dimension increases.

Example 13.4 In this example, we investigate the important effect of the design para-
meter γ for the convergent rate of the proposed complex ZD models. For illustrative
purpose, we only exploit complex ZD model (13.17) to solve for the generalized
inverse of complex matrix C(t) in (13.19) (see also Example 13.2).

Note that, for complex ZD model (13.17), the initial state Z(0) should be suffi-
ciently close to C+(0). Moreover, C+(0) can be obtained from C+(t) presented in
Example 13.2 by setting t = 0. As displayed in Fig. 13.9, we can clearly find that
the residual errors ‖E(t)‖F = ‖C(t)Z(t) − I‖F synthesized by complex ZD model
(13.17) are decreasing faster as the value of design parameter γ increases (i.e., with
γ = 100, 200 and 500). That is, with γ = 100, 200 and 500, the convergence time of
the residual errors ‖E(t)‖F diminishes from about 0.06 to 0.03s, and even to 0.01s.
Note that the simulative results using other complex ZDmodels [i.e., (13.7), (13.11),
(13.13) and (13.15)] are similar to those shown in Fig. 13.9, and are thus omitted
due to results similarity. Being a topic of exercise, the corresponding simulative ver-
ifications of such four complex ZD models are left for interested readers. Thus, the
efficacy of complex ZD model (13.17) is demonstrated. Meanwhile, we can draw
the conclusion that the superior convergence performance of the proposed complex
ZD models can be achieved by choosing a larger value of design parameter γ .

In summary, from the above four illustrative examples, we have substantiated
the efficacy of the proposed complex ZD models (13.7), (13.11), (13.13), (13.15),
and (13.17) on solving for time-varying complex generalized inverse (in most cases,
the pseudoinverse). Besides, the important role of the design parameter γ in such
complex ZD models has also been discussed and illustrated.

Fig. 13.9 Comparison on
residual errors
‖E(t)‖F = ‖C(t)Z(t) − I‖F
synthesized by complex ZD
model (13.17) with γ = 100,
200 and 500 for the
time-varying pseudoinverse
of matrix C(t) in (13.19)
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13.4 Summary

In this chapter, by defining different complex ZFs [i.e., (13.2)–(13.6)], five differ-
ent complex ZD models [i.e., (13.7), (13.11), (13.13), (13.15), and (13.17)] have
been proposed, generalized, developed and investigated for time-varying complex
generalized inverse (in most cases, the pseudoinverse). Based on the complex ZF
and the ZD design method, the complex ZD model has fully utilized the first-order
time-derivative information of the time-varying complexmatrix and has achieved the
global convergence performance. In addition, the relationship between the proposed
complex ZD models and the G-M dynamic system for time-varying complex gen-
eralized inverse computation has been discovered and presented. Moreover, through
four illustrative examples, the efficacy of the proposed complex ZDmodels has been
substantiated evidently.
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Chapter 14
Application to Fixed-Base Robot RMP

Abstract In this chapter, the ZD approach presented in the previous chapters is
applied to repetitive motion planning (RMP) of fixed-base redundant robot manip-
ulators at the joint-acceleration level. Specifically, by introducing two different ZFs
and by exploiting the ZD design formula, an acceleration-level RMP performance
index is proposed, developed, and investigated. The resultant RMP scheme, which
incorporates joint-angle, joint-velocity and joint-acceleration limits, is further pre-
sented and investigated to remedy the joint-angle drift phenomenon of fixed-base
redundant robot manipulators. Such a scheme is then reformulated as a quadratic
program, which is solved by a primal–dual neural network. With three path-tracking
examples, simulation results based on PUMA560 robot manipulator substantiate
well the effectiveness and accuracy of the proposed acceleration-level RMP scheme,
as well as show the application prospect of the presented ZD approach.

14.1 Introduction

In recent years, robotic researchers have focused on solving a variety of tasks
requiring sophisticated motion in complex environment via various advanced robots
based on different planning and/or control methods [1–7]. Redundant robot manip-
ulators are robots having more degrees of freedom (DOF) than required to perform
a given end-effector primary task [6, 8, 9]. It has been argued that redundancy can
improve the performance and versatility of a robot manipulator in various aspects
such as obstacle avoidance [5, 10, 11], joint limits avoidance [6, 12, 13], and repeti-
tive motion planning (RMP) [6, 9, 14]. Therefore, a multipurpose robot manipulator
needs to be redundant if it is to be implemented effectively; e.g., a six-DOF PUMA560
robot manipulator has 3 redundant DOF when we consider only the end-effector’s
positioning, and it can thus perform various subtasks in addition to the end-effector’s
primary path-tracking task [6].

One fundamental issue on operating such a robot system is the redundancy-
resolution problem [6]. The conventional solution to such a redundancy-resolution
problem is the pseudoinverse-based method [15, 16]. The researches in recent years
[5, 6, 8–10, 13] show that the redundancy-resolution problem can be solved in a more
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favorable manner via optimization techniques based on quadratic programming. Gen-
erally speaking, such optimization techniques are usually unified and expressed as
a quadratic program (QP) which can incorporate equality, inequality, and bound
constraints [5, 10]. The resultant QP problem can be solved by many methods and
technics, such as dual neural network (DNN) [6, 8, 17] and primal–dual neural net-
work (PDNN) [6, 9, 18]. Note that, in [19], comparisons between the DNN and
the PDNN are demonstrated, which validates the latter has more advantages (e.g.,
PDNN is matrix-inversion free).

A redundancy-resolution scheme is called repetitive, if it maps closed paths in the
task space (i.e., cyclic sequences of tasks) to closed trajectories in the configuration
space (i.e., cyclic sequences of configurations) [6, 9, 14, 17, 18, 20, 21]. By contrast,
the non-repetitive problem is that the joint angles may not return to their initial values
when the end-effector traces a closed path in its workspace [6, 9, 14, 17, 18]. Note
that the non-repetitive problem results in a joint angle drift phenomenon and may
induce a problem that the manipulator’s behavior is hard to predict [6, 9, 17, 18]; and
it is then less efficient to readjust the manipulator’s configuration after every cycle
via self-motion [6, 9, 17, 18].

The previous researches on solving the non-repetitive problem are mainly at the
joint-velocity level [6, 14, 17, 18, 20, 21]. However, these may not be applicable
to the manipulators which are controlled at the acceleration and/or torque levels. In
addition, the joint-acceleration physical limits of the manipulators cannot be incor-
porated in the scheme resolved at the joint-velocity level [6, 17, 18]. Thus, the RMP
performance index at the joint-acceleration level is a very appealing and interesting
topic in robotics research domain. Moreover, the acceleration-level scheme can effec-
tively prevent the instability/divergence problem of joint accelerations and torques
caused by some velocity-level scheme in long-range motion [9, 22].

In this chapter, based on the ZD approach presented in the previous chapters,
we propose and investigate a novel RMP scheme at the joint-acceleration level to
remedy the joint-angle drift phenomenon. Specifically, by introducing two different
ZFs and by exploiting the ZD design formula [23], an acceleration-level RMP per-
formance index is proposed, developed, and investigated. To the best of the authors’
knowledge, such a new RMP performance index at the joint-acceleration level has
never been investigated before by others. In addition, the proposed acceleration-level
RMP scheme, which incorporates joint-angle, joint-velocity and joint-acceleration
limits, is reformulated as a QP, and is then solved by a PDNN [6, 9, 18]. Moreover,
simulation results based on PUMA560 robot manipulator performing different types
of end-effector path-tracking tasks substantiate well the effectiveness and accuracy
of the proposed acceleration-level RMP scheme, as well as show the application
prospect of the presented ZD approach. Besides, it is worth pointing out here that
our previous book [6] only presents and investigates RMP of redundant robot manip-
ulators at the joint-velocity level. By contrast, in this book (or specifically, in this
chapter), we focus on the investigation of RMP at the joint-acceleration level. Evi-
dently, this is a great contribution and improvement, as it promotes the RMP research
from joint-velocity level to joint-acceleration level.
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14.2 RMP Performance Index Derived via Different ZFs

In this section, the ZD approach presented in the previous chapters is applied to
deriving the RMP performance index at the joint-acceleration level.

To lay a basis for further discussion, some well-known essential equations for
redundant robot manipulators can be given below directly [9, 15, 16]:

f (θ) = r, (14.1)

J (θ)θ̇ = ṙ, (14.2)

J (θ)θ̈ = r̈ − J̇ (θ)θ̇ . (14.3)

For the above equations, (14.1) describes the relationship between the end-effector
position-and-orientation vector r ∈ R

m and joint-angle vector θ ∈ R
n , where f (·)

is a differentiable nonlinear function with a structure and parameters which are
known for a given robot manipulator. ṙ and θ̇ in (14.2) [by differentiating (14.1)
with respect to time t] denote respectively the end-effector velocity vector and the
joint-velocity vector, and J (θ) ∈ R

m×n is the Jacobian matrix defined as J (θ) =
∂ f (θ)/∂θ . In (14.3) [by differentiating (14.2)], r̈ and θ̈ denote, respectively, the end-
effector acceleration vector and the joint-acceleration vector, and J̇ (θ) is the time
derivative of Jacobian matrix J (θ). For redundant robot manipulators (i.e., m < n),
(14.1)–(14.3) are all underdetermined and generally admit an infinite number of
solutions in terms of inverse kinematics. Besides, it is worth mentioning here that
the RMP schemes investigated in [6, 17, 18] are based on (14.2) (i.e., at the joint-
velocity level), whereas the RMP scheme presented in this chapter is based on (14.3)
(i.e., at the joint-acceleration level).

Now we present the specific design procedure to obtain the acceleration-level
RMP performance index as follows:

• Firstly, to achieve RMP of both end-effector and joints, we require that r(Td) =
r(0) and θ(Td) = θ(0), where Td denotes the task duration of both path-tracking
and RMP, and θ(0) denotes the initial value of θ(t) [i.e., θ(0) = θ(t = 0)]. Thus,
by following the ZD approach, it is natural to define the following vector-valued
joint-displacement function (i.e., the first ZF):

e(t) = θ(t) − θ(0) ∈ R
n .

• Secondly, to eliminate every entry of the vector-valued joint-displacement function
e(t) over [0, Td], we exploit the ZD design formula [i.e., (4.2)] as follows:

ė(t) = −γ e(t) = −γ (θ(t) − θ(0)) (14.4)

http://dx.doi.org/10.1007/978-3-662-47334-4_4
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where design parameter γ > 0 ∈ R is used to adjust the exponential convergence
rate of e(t) to zero. Since the time derivative of e(t) is ė(t) = θ̇ (t), (14.4) is
rewritten as

θ̇ (t) + γ (θ(t) − θ(0)) = 0 ∈ R
n . (14.5)

• Thirdly, to achieve (14.5), we define the second ZF as follows:

e(t) = θ̇ (t) + γ (θ(t) − θ(0)) ∈ R
n .

By exploiting the ZD design formula (4.2) again, we have θ̈ (t) + γ θ̇(t) =
−γ (θ̇(t) + γ (θ(t) − θ(0))), which is reformulated as

θ̈ (t) + 2γ θ̇(t) + γ 2(θ(t) − θ(0)) = 0 ∈ R
n .

• Finally, as the end-effector’s task requirement and joint physical limits should
be considered, it is better to minimize the performance index ‖θ̈ (t) + 2γ θ̇(t) +
γ 2(θ(t) − θ(0))‖2

2/2, rather than using θ̈ (t) + 2γ θ̇(t) + γ 2(θ(t) − θ(0)) = 0
directly. Therefore, with h = 2γ θ̇(t) + γ 2(θ(t) − θ(0)) defined, we obtain

‖θ̈ (t) + 2γ θ̇(t) + γ 2(θ(t) − θ(0))‖2
2/2 = ‖θ̈ (t) + h‖2

2/2 = (θ̈ + h)T(θ̈ + h)/2,

(14.6)

which is the acceleration-level RMP performance index for fixed-base redundant
robot manipulators.

In summary, by using the ZD approach, we have developed the RMP performance
index (14.6) at the joint-acceleration level (showing the application prospect of such
a ZD approach). Note that, by minimizing the acceleration-level performance index
(14.6) [i.e., “minimize (θ̈ + h)T(θ̈ + h)/2”], the RMP purpose is thus achieved for
fixed-base redundant robot manipulators.

14.3 Scheme and QP Formulations

In this section, based on the proposed performance index (14.6), a novel RMP
scheme is further developed and investigated for fixed-base redundant robot manip-
ulators at the joint-acceleration level. In addition, such an acceleration-level RMP
scheme is reformulated as a QP, which is solved by a primal–dual neural network
[6, 9, 18, 19].

http://dx.doi.org/10.1007/978-3-662-47334-4_4
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14.3.1 Acceleration-Level RMP Scheme

With joint physical limits (i.e., joint-angle, joint-velocity, and joint-acceleration
limits) being considered, the acceleration-level RMP scheme is proposed as follows:

minimize (θ̈ + h)T(θ̈ + h)/2 (14.7)

subject to J (θ)θ̈ = r̈d − J̇ (θ)θ̇ , (14.8)

θ− � θ � θ+, (14.9)

θ̇− � θ̇ � θ̇+, (14.10)

θ̈− � θ̈ � θ̈+, (14.11)

where r̈d denotes the twice time derivative of the desired end-effector path rd ∈ R
m .

In addition, θ±, θ̇± and θ̈± denote the upper and lower limits of the joint-angle,
joint-velocity, and joint-acceleration vectors, respectively.

14.3.2 Bound Constraint Transformation Technique

Since the proposed RMP scheme (14.7)–(14.11) is resolved at the joint-acceleration
level, the constraints in (14.9)–(14.11) have to be converted to the expressions in
terms of joint acceleration θ̈ . In view of the inertia movement, the avoidance of the
upper limit of the i th joint (i.e., θ+

i ) in (14.9) can be converted as

θ̈i � κα(λθ+
i − θi ), (14.12)

and the avoidance of the lower limit of the i th joint (i.e., θ−
i ) in (14.9) can be

converted as

θ̈i �
{

κα(λθ−
i − θi ), for θ−

i < 0

κα(θ−
i + ϑ − θi ), for θ−

i � 0
(14.13)

where design parameters λ ∈ (0, 1) and ϑ > 0 ∈ R are selected (e.g., λ = 0.9 and
ϑ = 0.0524 rad), to define critical regions [θ−

i , λθ−
i ] or [θ−

i , θ−
i +ϑ] and [λθ+

i , θ+
i ]

for joint position variables such that there will appear a deceleration when the robot
manipulator enters them [9, 22]. In addition, κα > 0 ∈ R determines the magnitude
of such a deceleration. Similarly, the avoidance of the i th joint-velocity limits θ̇±

i in
(14.10) can be converted as

κβ(θ̇−
i − θ̇i ) � θ̈i � κβ(θ̇+

i − θ̇i ), (14.14)

which guarantees that joint acceleration changes its direction gradually as the
joint velocity approaches its limit. Design parameters κα and κβ are selected such
that the feasible region of θ̈ made by the conversion of joint-angle limits and
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joint-velocity limits [i.e., (14.9) and (14.10)] are normally not smaller than the
original one made by joint-acceleration limits, i.e., bound constraint (14.11). By
using (14.12)–(14.14), the acceleration-level avoidance of joint physical limits
(14.9)–(14.11) becomes ζ− � θ̈ � ζ+. Here, ζ− and ζ+ denote, respectively,
the resultant lower bound and upper bound synthesized by the joint-angle limits,
joint-velocity limits, and joint-acceleration limits. In addition, the i th elements of
ζ− and ζ+ are defined respectively as

ζ−
i =

{
max{κα(λθ−

i − θi ), κβ(θ̇−
i − θ̇i ), θ̈

−
i }, for θ−

i < 0

max{κα(θ−
i + ϑ − θi ), κβ(θ̇−

i − θ̇i ), θ̈
−
i }, for θ−

i � 0

ζ+
i = min{κα(λθ+

i − θi ), κβ(θ̇+
i − θ̇i ), θ̈

+
i }.

14.3.3 QP Reformulation

In (14.7), (θ̈ + h)T(θ̈ + h)/2 = (θ̈Tθ̈ + θ̈Th + hTθ̈ + hTh)/2. Since the proposed
RMP scheme is resolved at the joint-acceleration level and the decision variable
vector is joint acceleration θ̈ , the parameter h [i.e., h = 2γ θ̇ + γ 2(θ − θ(0)) in
(14.7)] is viewed as a constant in the performance index. In this situation, hTh/2
is also viewed as a constant (with respect to θ̈) and hTh/2 is thus set aside from
the performance index. Therefore, the minimization of (14.7) is equivalent to the
minimization of θ̈Tθ̈/2 + hTθ̈ (note that θ̈Th = hTθ̈ ).

In light of the above minimization formula and the above bound constraint con-
version, with x = θ̈ ∈ R

n and W = I ∈ R
n×n , the proposed acceleration-level RMP

scheme (14.7)–(14.11) for physically-constrained redundant robot manipulators is
reformulated finally as the following QP:

minimize xTW x/2 + hTx (14.15)

subject to Cx = d, (14.16)

ζ− � x � ζ+, (14.17)

where C = J (θ) and d = r̈d − J̇ (θ)θ̇ .

14.3.4 QP Solver

According to [6, 9, 18, 19], the presented QP problem (14.15)–(14.17) can be solved
by the following primal–dual neural network (PDNN):

u̇ = ν(I + MT){PΩ(u − (Mu + p)) − u} (14.18)
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where design parameter ν > 0 ∈ R is used to scale the convergence rate of the neural
network. The piecewise-linear activation-function array PΩ(·) can be implemented
by using operational amplifiers. In addition, Ω = {u ∈ R

n+m |u− � u � u+} ⊂
R

n+m ,

u =
[

x
y

]
∈ R

n+m, u− =
[

ζ−
−1v

]
∈ R

n+m, u+ =
[

ζ+
1v

]
∈ R

n+m,

M =
[

W −CT

C 0

]
∈ R

(n+m)×(n+m), p =
[

h
−d

]
∈ R

n+m, 1v = [1, . . . , 1]T ∈ R
m .

It is worth mentioning that PΩ(·) : R
n+m → Ω is a projection operator, with the

i th element of PΩ(u) defined as

⎧⎪⎨
⎪⎩

u−
i , if ui < u−

i ,

ui , if u−
i � ui � u+

i ,

u+
i , if ui > u+

i ,

∀i ∈ {1, 2, 3, . . . , n + m}.

y ∈ R
m is the dual decision vector defined for equality constraint (14.16), and

 � 0 is defined sufficiently large (e.g.,  = 106) to replace +∞ numerically.
Furthermore, we have the following theorem which guarantees that PDNN (14.18)
can globally generate optimal solution x∗ to QP (14.15)–(14.17) [6, 9, 18, 19].

Theorem 14.1 Assume the existence of optimal solution x∗ to QP (14.15)–(14.17).
Starting from any initial state u(0), state vector u(t) of PDNN (14.18) converges to
equilibrium point u∗, of which the first n elements constitute the optimal solution x∗
to QP (14.15)–(14.17).

14.4 Illustrative Examples

In this section, to substantiate the efficacy of the proposed acceleration-level RMP
scheme (14.7)–(14.11), computer simulations are performed based on PUMA560
robot manipulator, of which the mechanical configuration is shown in Fig. 14.1 and
the joint physical parameters (i.e., joint-angle limits θ±, joint-velocity limits θ̇±,
joint-acceleration limits θ̈±) used in the ensuing simulations are given in Table 14.1.
In the simulations, the end-effector of the PUMA560 robot manipulator is required
to track three different paths, i.e., a pentagram path, an East-Asian character looking
like symbol “�” which means “the sun” in Chinese, and the initial letter “V” of
the English word “VICTORY.” Note that, when we apply PDNN (14.18) to solving
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Fig. 14.1 Mechanical configuration of PUMA560 robot manipulator used in simulations

Table 14.1 Joint physical limits used in the PUMA560 simulations

# θ+ (rad) θ− (rad) θ̇+ (rad/s) θ̇− (rad/s) θ̈+ (rad/s2) θ̈− (rad/s2)

1 +2.775 −2.775 +1.5 −1.5 +6.0 −6.0

2 +0.750 −3.892 +1.5 −1.5 +6.0 −6.0

3 +4.049 −0.905 +1.5 −1.5 +6.0 −6.0

4 +2.967 −1.919 +1.5 −1.5 +6.0 −6.0

5 +1.745 −1.745 +1.5 −1.5 +6.0 −6.0

6 +4.625 −4.625 +1.5 −1.5 +6.0 −6.0

the presented QP problem (14.15)–(14.17) [as well as the proposed acceleration-
level RMP scheme (14.7)–(14.11)] for controlling the PUMA560 robot manipulator,
design parameter ν = 105 is used throughout this chapter.

14.4.1 Pentagram-Path Tracking

In the computer simulations of this subsection, the PUMA560 robot manipulator’s
end-effector is expected to move along a pentagram path with the side length being
0.0707 m. The X-axis, Y-axis, and Z-axis acceleration functions of the desired pen-
tagram path are
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r̈X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√

2lπ
T 2 cos(π

5 ) sin( 2π t
T ), ∀t ∈ [0, T ]

−
√

2lπ
T 2 cos(π

5 ) sin[ 2π(t−T )
T ], ∀t ∈ [T, 2T ]

√
2lπ
T 2 cos( 2π

5 ) sin[ 2π(t−2T )
T ], ∀t ∈ [2T, 3T ]

−
√

2lπ
T 2 cos(π

5 ) sin[ 2π(t−3T )
T ], ∀t ∈ [3T, 4T ]

√
2lπ
T 2 sin[ 2π(t−4T )

T ], ∀t ∈ [4T, 5T ]
√

2lπ
T 2 sin( π

10 ) sin[ 2π(t−5T )
T ], ∀t ∈ [5T, 6T ]

√
2lπ
T 2 sin( π

10 ) sin[ 2π(t−6T )
T ], ∀t ∈ [6T, 7T ]

√
2lπ
T 2 sin[ 2π(t−7T )

T ], ∀t ∈ [7T, 8T ]
−

√
2lπ
T 2 cos(π

5 ) sin[ 2π(t−8T )
T ], ∀t ∈ [8T, 9T ]

√
2lπ
T 2 cos( 2π

5 ) sin[ 2π(t−9T )
T ], ∀t ∈ [9T, 10T ]

r̈Y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√

2lπ
T 2 sin(π

5 ) sin( 2π t
T ), ∀t ∈ [0, T ]

−
√

2lπ
T 2 sin(π

5 ) sin[ 2π(t−T )
T ], ∀t ∈ [T, 2T ]

√
2lπ
T 2 sin( 2π

5 ) sin[ 2π(t−2T )
T ], ∀t ∈ [2T, 3T ]

√
2lπ
T 2 sin(π

5 ) sin[ 2π(t−3T )
T ], ∀t ∈ [3T, 4T ]

0, ∀t ∈ [4T, 5T ]√
2lπ
T 2 cos( π

10 ) sin[ 2π(t−5T )
T ], ∀t ∈ [5T, 6T ]

−
√

2lπ
T 2 cos( π

10 ) sin[ 2π(t−6T )
T ], ∀t ∈ [6T, 7T ]

0, ∀t ∈ [7T, 8T ]
−

√
2lπ
T 2 sin(π

5 ) sin[ 2π(t−8T )
T ], ∀t ∈ [8T, 9T ]

−
√

2lπ
T 2 sin( 2π

5 ) sin[ 2π(t−9T )
T ], ∀t ∈ [9T, 10T ]

r̈Z(t) = 0,∀t ∈ [0, 10T ]

where the task duration Td is 10T , and parameter l should be set appropriately
according to the desired length of the line segment in a path-tracking task. Specif-
ically, in the computer simulation of this subsection, l = 0.1 m and the task
duration Td is 3.9 s (i.e., T = 0.39 s). In addition, during such a task execution,
the joints of PUMA560 robot manipulator are expected to start from initial state
θ(0) = [0,−π/4, 0, π/2,−π/4, 0]T rad, and finally return to the initial state.

First, the inverse kinematics problem of PUMA560 robot manipulator is handled
via QP (14.15)–(14.17) with neither joint physical limits nor RMP criterion consid-
ered. That is, θ± in (14.9), θ̇± in (14.10) and θ̈± in (14.11) are set as ±1v, and in
(14.7), the RMP coefficient γ = 0. The corresponding simulation results are shown
in Fig. 14.2. It is seen from the upper graph of Fig. 14.2 that the end-effector’s trajec-
tory is the desired pentagram curve, which shows that the end-effector’s primary task



204 14 Application to Fixed-Base Robot RMP

Fig. 14.2 PUMA560
end-effector tracks a
pentagram path with neither
joint physical limits nor
RMP criterion considered
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is completed. However, the final state of the robot manipulator (denoted in black) has
not returned to the initial one (denoted in red). This can also be seen from the middle
graph of Fig. 14.2 which illustrates the θ profiles over the task duration. The exact
actual values of the final joints, θ(3.9), are shown in the second column of Table 14.2,
which are evidently different from the initial ones, θ(0), in the third column.
That is to say, the joint angle drift phenomenon has happened. It is worth
mentioning that this phenomenon is not desired in industrial applications because
we need extra self-motion to readjust the manipulator’s configuration. This would
thus lead to low efficiency. Besides, the θ and θ̈ profiles during the task execu-
tion are shown, respectively, in the middle and lower graphs of Fig. 14.2. Compared
with the joint physical limits in Table 14.1, the joint angles and joint velocities in
the simulations do not reach their corresponding limits; i.e., the joint-angle limits
and joint-velocity limits have not been activated. However, joint acceleration θ̈3(t)
exceeds its lower limit −6 rad/s2 at about t = 2.83 s and its upper limit +6 rad/s2

at about t = 3.03 s, which may lead to the damage to the manipulator and is less
desirable in applications.

Second, for comparison and for illustration, the simulation results with both joint
physical limits and RMP criterion considered are shown in Fig. 14.3. That is, θ±, θ̇±,
and θ̈± are set correctly according to Table 14.1, λ = 0.9, κα = κβ = 20, and γ = 6.
As seen from the upper left graph of Fig. 14.3, the end-effector of PUMA560 moves
along a pentagram path, which is sufficiently close to the desired one. In addition, this
solution is repetitive and applicable for PUMA560 working with a cyclic pentagram-
path tracking requirement, because the final and initial states coincide well with each
other (in the upper right graph of Fig. 14.3). Furthermore, as seen from Fig. 14.3 and
Table 14.3, all joint variables are kept within their limited ranges. Besides, the lower
left graph of Fig. 14.3 shows the motion trajectories of PUMA560 over the task
duration. The end-effector positioning error ε = rd − f (θ) is shown in the lower
right graph of Fig. 14.3, illustrating small deviations of the end-effector from the
desired path rd in the X-axis, Y-axis, and Z-axis of the base frame (i.e., εX, εY and
εZ, respectively). As seen from the figure, the maximal component of the positioning
error is less than 5.0×10−4 m, which illustrates the accuracy of the PUMA560 robot

Table 14.2 Joint drifts (rad) with neither joint limits nor RMP criterion considered when PUMA560
end-effector tracks the pentagram path

Joint θ(3.9) θ(0) θ(3.9) − θ(0)

θ1 +0.00957950482 +0.00000000000 +0.00957950482

θ2 −0.80021692574 −0.78539816340 −0.01481876234

θ3 +0.05479385946 +0.00000000000 +0.05479385946

θ4 +1.42816130434 +1.57079632680 −0.14263502246

θ5 −0.75586229472 −0.78539816340 +0.02953586868

θ6 +0.00000000000 +0.00000000000 +0.00000000000
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Fig. 14.3 PUMA560 end-effector tracks the pentagram path with both joint physical limits and
RMP criterion considered, where PUMA560 final state coincides with its initial state

manipulator synthesized by the proposed acceleration-level RMP scheme when the
end-effector tracks the desired pentagram path.

Third, comparing Tables 14.2 and 14.3, we can see that the joint angle drifts in the
former (i.e., Table 14.2) are large; in contrast, the joint angle drifts in the latter (i.e.,
Table 14.3) are quite small (less than 3.41×10−3 rad). This shows quantificationally
the repetitive accuracy of the proposed RMP scheme. In summary, this example
has substantiated well the efficacy of the proposed acceleration-level RMP scheme
(14.7)–(14.11) and its QP solver (14.18) (i.e., a PDNN) on redundancy resolution
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Table 14.3 Joint drifts (rad) with both joint limits and RMP criterion considered when PUMA560
end-effector tracks a pentagram path

Joint θ(3.9) θ(0) θ(3.9) − θ(0)

θ1 +0.00000629838 +0.00000000000 +6.29838 × 10−6

θ2 −0.78469374929 −0.78539816340 +7.04414 × 10−4

θ3 −0.00096763343 +0.00000000000 −9.67633 × 10−4

θ4 +1.57045580322 +1.57079632680 −3.40524 × 10−3

θ5 −0.78474817868 −0.78539816340 +6.49985 × 10−4

θ6 +0.00000000000 +0.00000000000 +0.00000000000

of physically-constrained robot manipulators, and more importantly, has shown the
application prospect of the presented ZD approach.

14.4.2 East-Asian Character Writing

In the simulations of this subsection, the motion trajectory of the PUMA560 end-
effector is expected to be an East-Asian character looking like symbol “�” which
means “the sun” in Chinese. The word width is 0.1697 m and the word height is
0.3394 m. The X-axis, Y-axis, and Z-axis acceleration functions of the path are

r̈X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√

2ιπ
T 2 sin( 2π t

T ), ∀t ∈ [0, T ]
0, ∀t ∈ [T, 2T ]√

2ιπ
T 2 sin[ 2π(t−2T )

T ], ∀t ∈ [2T, 3T ]
0, ∀t ∈ [3T, 4T ]
−

√
2ιπ
T 2 sin[ 2π(t−4T )

T ], ∀t ∈ [4T, 5T ]
0, ∀t ∈ [5T, 6T ]√

2ιπ
T 2 sin[ 2π(t−6T )

T ], ∀t ∈ [6T, 7T ]

r̈Y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ∀t ∈ [0, T ]√
2ιπ
T 2 sin[ 2π(t−T )

T ], ∀t ∈ [T, 2T ]
0, ∀t ∈ [2T, 3T ]
− 2

√
2ιπ

T 2 sin[ 2π(t−3T )
T ], ∀t ∈ [3T, 4T ]

0, ∀t ∈ [4T, 5T ]√
2ιπ
T 2 sin[ 2π(t−5T )

T ], ∀t ∈ [5T, 6T ]
0, ∀t ∈ [6T, 7T ]

r̈Z(t) = 0,∀t ∈ [0, 7T ]
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where the task duration Td is 7T , and parameter ι should be set appropriately
according to the desired length of the line segment in a path-tracking task. Specif-
ically, in the simulations of this subsection, design parameter ι = 0.24 m and
the task duration Td is 4.55 s (i.e., T = 0.65 s). In addition, the initial joint state
θ(0) = [0,−π/4, 0, π/2,−π/4, 0]T rad.

First, we show, in Fig. 14.4, the redundancy-resolution results with joint physical
limits considered (i.e., λ = 0.9 and κα = κβ = 20) but without considering cyclic
motion criterion (i.e., γ = 0). As seen from the upper left graph of Fig. 14.4, the
end-effector of the PUMA560 robot manipulator moves along a “�” path, which
indicates that the robot manipulator completes the desired path-tracking task. From
the upper left graph of Fig. 14.4, we can also see that such a solution is not repetitive,
because the final and initial states of the manipulator are not equal. Thus, if such a
non-repetitive solution is exploited to control the PUMA560 robot manipulator, then
an additional self-motion readjustment is needed, which would be of low efficiency
in engineering applications.

Second, for comparison as well as for illustration, the inverse kinematics problem
is finally solved via the proposed acceleration-level RMP scheme (14.7)–(14.11) with
both joint physical limits and RMP criterion considered (i.e., λ = 0.9, κα = κβ = 20
and γ = 5). The corresponding simulation results are shown in the rest graphs
of Fig. 14.4. As seen from the upper right graph of Fig. 14.4, the end-effector of
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Fig. 14.4 PUMA560 end-effector tracks a path of an East-Asian character looking like “�” syn-
thesized by the scheme without and with RMP criterion considered
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PUMA560 robot manipulator tracks a “�” path, which is sufficiently close to the
desired one. In addition, this solution is repetitive and applicable for PUMA560
robot manipulator working with a cyclic motion requirement, because the final and
initial states of the robot manipulator coincide with each other as shown in the
upper right graph of Fig. 14.4, which can also be seen from the θ profiles in the
lower left graph of Fig. 14.4. Furthermore, as seen from the lower two graphs of
Fig. 14.4 and Table 14.1, the joint angles and joint accelerations are kept within their
limited ranges. Note that the joint velocities are also within their ranges and the
corresponding figure is omitted due to the space limitation. It is worth pointing out
that the maximum component of the robot end-effector’s positioning error is also
small during the “�” path tracking task execution, i.e., less than 8 × 10−4 m. The
efficacy of the proposed RMP scheme (14.7)–(14.11) at the joint-acceleration level
subject to joint-angle limits, joint-velocity limits and joint-acceleration limits is thus
well substantiated.

14.4.3 “V” Path Path Tracking

In order to further demonstrate the efficacy and the general applicability of the pro-
posed acceleration-level RMP scheme (14.7)–(14.11) as well as the corresponding
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Fig. 14.5 PUMA560 end-effector tracks the path of the initial letter “V” of English word “VIC-
TORY” synthesized by scheme (14.7)–(14.11) without and with RMP criterion considered (i.e.,
corresponding to γ = 0 and γ �= 0)
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QP solver [i.e., PDNN (14.18)], the initial letter “V” writing of English word “VIC-
TORY” is also performed based on PUMA560 robot manipulator in this subsection.

Figure 14.5 illustrates the simulation results of PUMA560 robot manipulator’s
end-effector tracking the “V” path. Specifically, the upper left graph of Fig. 14.5
shows the simulation result with joint physical limits considered but without con-
sidering RMP criterion (i.e., γ = 0). From such a figure, we can see that the initial
and final states of the robot manipulator do not match. For comparison, the simula-
tion results with both joint physical limits and RMP criterion considered are shown
in the rest graphs of Fig. 14.5. These simulation results illustrate that, by applying
the proposed acceleration-level RMP scheme (14.7)–(14.11) to the PUMA560 robot
manipulator, the joint drift phenomenon is remedied, all joint variables [i.e., joint
angle θ(t), joint velocity θ̇ (t) and joint acceleration θ̈ (t)] are kept within their lim-
ited ranges, and that the positioning error of the robot end-effector is small. These
comparisons of simulation results further substantiate the efficacy and accuracy of
the proposed RMP scheme (14.7)–(14.11), as well as the effectiveness of the PDNN
(14.18) as a QP solver.

14.4.4 Comparisons with Velocity-Level RMP Scheme

To substantiate the superiority of the proposed acceleration-level RMP scheme
(14.7)–(14.11), comparisons between the RMP schemes at the joint-acceleration
and joint-velocity levels are shown in this subsection. As presented in [6, 17, 18],
the velocity-level RMP scheme is formulated as follows:

minimize (θ̇ + ρ)T(θ̇ + ρ)/2 (14.19)

subject to J (θ)θ̇ = ṙd, (14.20)

θ− � θ � θ+, (14.21)

θ̇− � θ̇ � θ̇+, (14.22)

where ρ = γ (θ(t) − θ(0)), and ṙd ∈ R
m is the time derivative of the desired

end-effector path rd.
Comparing these two different level RMP schemes, we find that the proposed

acceleration-level RMP scheme (14.7)–(14.11) can incorporate the joint-acceleration
limits into the scheme formulation readily, but the presented velocity-level RMP
scheme (14.19)–(14.22) can not do it. In other words, the redundancy-resolution
results generated by the velocity-level scheme probably exceed the physical accel-
eration limits sometimes. To explain this point, without loss of generality, we still
take tracking the pentagram-path for example. The initial state θ(0), task duration
Td and the corresponding design parameters κα , κβ , λ, and γ are set the same as
before. In this comparison example, l = 0.12 m. The acceleration profiles of the
RMP scheme resolved, respectively, at the velocity level and acceleration level
when the end-effector of PUMA560 robot manipulator tracks the pentagram path
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Fig. 14.6 Profiles of the joint acceleration θ̈ ∈ R
6: comparisons between the RMP schemes,

respectively, resolved at the joint-velocity and joint-acceleration levels

are presented in Fig. 14.6. Note that, in Fig. 14.6, VRMP denotes the RMP scheme at
the joint-velocity level [i.e., (14.19)–(14.22)] and ARMP denotes the RMP scheme
at the joint-acceleration level [i.e., (14.7)–(14.11)]. As shown in Fig. 14.6, all the
joint-acceleration profiles generated by ARMP, denoted by the red dot line, are
constrained within the acceleration limits θ̈±

i (with i = 1, 2, . . . , 6) denoted by
the black dash line. Even some joint accelerations (i.e., θ̈3, θ̈4 and θ̈5) reach their
limits in some durations, the bound constraints keep them within their physical
limits. For instance, θ̈3 reaches its upper or lower limit many times (e.g., during
[1.828, 1.875], [2.801, 2.875], [2.978, 3.075], [3.175, 3.253] and [3.378, 3.428] s)
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as shown in Fig. 14.6, and it stops increasing in these durations. This illustrates that
the bound constraint (14.11) is activated effectively. On the contrary, joint acceler-
ation θ̈3 indirectly resolved by VRMP, denoted by the blue solid line, exceeds the
limits θ̈±

3 because the joint-acceleration limits have not been considered in the VRMP.
In actual application, the case of exceeding physical limits is unallowed, because it
may lead to the acceleration saturation and even destroy the physical robot. From this
point, the RMP scheme at the joint-acceleration level is readily applied and preferred.
Another advantage of the proposed acceleration-level RMP scheme (14.7)–(14.11)
is that, in applications, some robot manipulators are controlled by acceleration (such
as the robot in [24]). This kind of robot cannot directly use the redundancy-resolution
results generated by the presented velocity-level RMP scheme (14.19)–(14.22), and
it is less efficient to transform the resolution results (i.e., joint velocity θ̇) of the
velocity-level RMP scheme to joint acceleration θ̈ .

In summary, compared with the presented velocity-level RMP scheme (14.19)–
(14.22), the proposed acceleration-level RMP scheme (14.7)–(14.11) is safer and
more applicable (showing again the successful application of the presented ZD
approach to RMP of fixed-base redundant robot manipulators).

14.5 Summary

In this chapter, by defining two different ZFs and by exploiting the ZD design formula,
the acceleration-level RMP performance index (14.9) has been proposed, developed,
and investigated. Based on such a performance index, the acceleration-level RMP
scheme (14.7)–(14.11) has been further presented and investigated to remedy the
joint-angle drift phenomenon of fixed-base redundant robot manipulators, which is
reformulated as a QP (14.15)–(14.17) and then is solved by PDNN (14.18). Computer
simulation results based on PUMA560 robot manipulator performing three different
types of end-effector path-tracking tasks have substantiated well the effectiveness,
accuracy, and safety of the proposed acceleration-level RMP scheme for physically-
constrained redundant robot manipulators, and more importantly, have shown the
application prospect of the presented ZD approach to robotic redundancy resolution.
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Chapter 15
Application to Mobile Robot RMP

Abstract In this chapter, the application of the ZD approach is further investigated
to the velocity-level RMP of mobile redundant robot manipulators. That is, by intro-
ducing three different ZFs and by exploiting the ZD design formula, we propose,
develop, and investigate a velocity-level RMP performance index. Then, based on
such a performance and with physical limits considered, the resultant RMP scheme
is presented and investigated to remedy the joint-angle drift phenomenon of mobile
redundant robot manipulators. Such a scheme is reformulated as a QP, which is solved
by a numerical algorithm. With two path-tracking examples, simulation results based
on a wheeled mobile robot manipulator substantiate well the effectiveness and accu-
racy of the proposed velocity-level RMP scheme (as well as show the application
prospect of the presented ZD approach once again).

15.1 Introduction

As presented in Chap. 14, fixed-base redundant robot manipulators (e.g., the PUMA
560 robot manipulator) have long been studied and widely applied in factory automa-
tion [1–8]. In addition, many techniques have been developed and investigated for
motion planning of fixed-base redundant robot manipulators. The most popular
method is to apply the pseudoinverse formulation for obtaining a general solution at
the joint-velocity and/or joint-acceleration level, which contains a minimum-norm
particular solution and a homogeneous solution [9–12]. However, this method has the
generally undesirable property that repetitive end-effector motions do not necessarily
yield repetitive joint motions. Thus, the manipulator’s behavior is difficult to predict
when the end-effector traces a closed path in its workspace. In addition, it is less
efficient to readjust the manipulator’s configuration after every cycle via self-motion
such that the joint angles return to their initial values. In the last three decades, a
large number of research on the topic of repetitive motion have been produced [5,
13–18] (see also Chap. 14).

With the evolution of the complex technological society and the introduction of
new notions and innovative theoretical tools in the field of intelligent systems, mobile
manipulators are attracting significant interest in the industrial, military, and public
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service communities [19–22], because of their large-scale mobility and manipulation
abilities, as compared to these of the fixed-base manipulators. In general, a mobile
manipulator is a robotic device composed of a mobile platform and a stationary robot
manipulator fixed to the platform. However, the integration of a redundant robot
manipulator and a mobile platform gives rise to many new difficulties; for example,
how to coordinate a given task into fine motions to be carried out by the robot manip-
ulator and the gross motions to be achieved by the mobile platform; and how to define
the repeatability of a redundancy-resolution scheme for a mobile robot manipulator.
It is well known that, for a stationary robot manipulator, an redundancy-resolution
scheme is called repetitive, if it maps closed paths in the task space to closed tra-
jectories in the configuration space (see also Chap. 14). However, for a mobile robot
manipulator, if the mobile platform does not return to the initial position, a repeti-
tive redundancy-resolution scheme for a stationary robot manipulator is no longer fit
for a mobile robot manipulator. Note that repetitive motion control of mobile robot
manipulators starts to play a more and more important role in practical applications,
which urgently requires an effective scheme for solving the non-repetitive problem
of mobile robot manipulators. In [23], Tchoń was the first to introduce the con-
cept of repeatability of inverse kinematics algorithms for mobile robot manipulators
by exploiting the endogenous configuration space approach; and further presented
repeatable inverse kinematics algorithms [24–26], which provides an insight into the
mechanism of repeatability. However, among these inverse kinematics algorithms
for repeatability of mobile robot manipulators, the physical constraints (e.g., joint-
angle limits and joint-velocity limits) are usually not taken into account. If these
physical limits are not considered, a saturation may occur in some cases. Thus, these
schemes may be less effective to control mobile robot manipulators for generating
cyclic motion.

In this chapter, based on the presented ZD approach, we propose and investigate
a novel redundancy-resolution scheme at the velocity level to achieve the RMP pur-
pose of mobile redundant robot manipulators (with physical constraints considered).
Specifically, by introducing three different ZFs and by exploiting the ZD design
formula [27], a velocity-level RMP performance index is proposed, developed and
investigated. To the best of the authors’ knowledge, such a new RMP performance
index for mobile redundant robot manipulators has never been investigated before by
others. Then, a novel RMP scheme is presented by combining the proposed perfor-
mance index, physical constraints, and integrated kinematical equations of mobile
robot manipulators, and further reformulated as a QP subject to equality and bound
constraints. As an illustrative example, a wheeled mobile robot manipulator is stud-
ied, which is composed of a mobile platform driven by two independent wheels,
and a six-DOF spatial robot manipulator mounted on the platform. Tracking-path
tasks based on such a wheeled mobile robot manipulator are performed, which fur-
ther substantiate the efficacy of the proposed RMP scheme and show once again
the application prospect of the presented ZD approach. Besides, it is worth pointing
out here that, in our previous book [5], the investigation of velocity-level RMP is
presented only for fixed-base redundant robot manipulators. By contrast, in this book
(or specifically, in this chapter), we focus on investigating the velocity-level RMP for

http://dx.doi.org/10.1007/978-3-662-47334-4_14
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mobile redundant robot manipulators. Thus, the velocity-level RMP investigation in
this chapter can be viewed as an extension of that in [5] (i.e., from the fixed-base
robot to the mobile one).

15.2 RMP Performance Index Derived via Different ZFs

In this section, the presented ZD approach is applied to deriving the velocity-level
RMP performance index for mobile redundant robot manipulators.

15.2.1 Kinematics Modeling of Mobile Robot Manipulators

In this subsection, a wheeled mobile redundant robot manipulator [21, 22, 28, 29]
is developed to lay a basis for further discussion and to substantiate the efficacy of
the proposed velocity-level RMP scheme (see Sect. 15.4).

The computer-aided design model of the mobile redundant robot manipulator is
shown in Fig. 15.1, which is composed of a wheeled mobile platform and a six-
DOF spatial robot manipulator. The mobile platform includes two independent drive
wheels and two omnidirectional passive supporting wheels. In this chapter, only the
end-effector position is considered, and thus the robot manipulator becomes a func-
tionally redundant robot manipulator. As for such a mobile redundant robot manipu-
lator, the integrated kinematics at the velocity level is obtained in the following form
(with the detailed derivation being shown in [22]):

ṙw = J (ϑ)q̇, (15.1)

Fig. 15.1 The computer-aided design model of the mobile redundant robot manipulator
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where ṙw ∈ R
m is the time derivative of the manipulator’s end-effector position-and-

orientation vector rw in Cartesian space with respect to the world coordinate frame.
In addition, J (ϑ) ∈ R

m×(2+n) is the Jacobian matrix with vector ϑ = [φ, θT]T ∈
R

1+n . Besides, φ ∈ R is the heading angle of the mobile platform, and θ ∈ R
n

denotes the joint-angle vector of the six-DOF robot manipulator. Note that we define
ϕ = [ϕl, ϕr]T ∈ R

2 as the driving wheel angle (angular position) vector, with ϕl and
ϕr being the angles of left and right driving wheel, respectively. Thus, we have the
combined angle vector q = [ϕT, θT]T ∈ R

2+n for the presented mobile redundant
robot manipulator, and its time derivative q̇ = [ϕ̇T, θ̇T]T (i.e., the combined velocity
vector).

15.2.2 Velocity-Level RMP Performance Index

In order to achieve the RMP purpose of the mobile robot manipulators, let us con-
sider three factors of mobile robot manipulators, i.e., the joint angle of the robot
manipulator θ ∈ R

n , the rotational angle of the mobile platform φ ∈ R and the
location of the robot manipulator on the mobile platform pC = [xC, yC]T ∈ R

2.
Evidently, the mobile robot manipulator can return to the original state if and only if
these three variables return to their initial positions, when the end-effector of mobile
robot manipulators performs a closed trajectory. That is to say, the repetitive motion
of mobile robot manipulators is equivalent to the repetitive motion of variables θ , φ,
and pC. Thus, by following the presented ZD approach, the repetitive motion of θ ,
φ, and pC can be achieved through the following design steps.

• First, to achieve the RMP purpose of the mobile robot manipulators, we define
three different ZFs as follows:

e(t) = θ − θ(0) ∈ R
n, (15.2)

e(t) = sin φ − sin φ(0) ∈ R, (15.3)

e(t) = pC − pC(0) ∈ R
2, (15.4)

where θ(0), φ(0), and pC(0) denote the initial states of θ , φ and pC, respectively.
It is worth pointing out that, when the mobile platform moves circularly (i.e., the
heading angle φ makes 360◦ turns), the heading angle can return to the initial
position. In this situation, the value of the heading angle is φ = φ(0) + 2kπ

(k = ±1,±2, . . .). If φ−φ(0) is used [instead of sin φ−sin φ(0)], the restrictions
become harsh and the resultant RMP scheme is difficult to realize. Thus, the sine
function is exploited, and the simulation and modeling of the velocity-level RMP
scheme become easy.

• Second, by combining the ZD design formula [27] and the above three ZFs, respec-
tively [i.e., (4.2) corresponding to (15.2), (15.4), and (1.2) corresponding to (15.3)],
three resultant differential equations are obtained as follows:

http://dx.doi.org/10.1007/978-3-662-47334-4_4
http://dx.doi.org/10.1007/978-3-662-47334-4_1
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θ̇ + γ1(θ − θ(0)) = 0 ∈ R
n, (15.5)

φ̇ cos φ + γ2(sin φ − sin φ(0)) = 0 ∈ R, (15.6)

ṗC + γ3(pC − pC(0)) = 0 ∈ R
2. (15.7)

For the above equations, θ̇ ∈ R
n is the joint-velocity vector of the robot manip-

ulator, φ̇ ∈ R is the heading velocity of the mobile platform (being the time
derivative of φ), and ṗC ∈ R

2 is the time derivative of pC. In addition, design
parameters γ1 > 0 ∈ R, γ2 > 0 ∈ R, and γ3 > 0 ∈ R are used for achieving the
RMP purpose. In addition, one can prove theoretically that, in equations (15.5)–
(15.7), as t → ∞, θ , sin φ and pC can converge to their initial states globally and
exponentially.

• Third, in (15.1), the variables of the velocity-level integrated kinematics of the
mobile root manipulator only include ϕ̇ and θ̇ (i.e., q̇ = [ϕ̇T, θ̇T]T), so Eqs. (15.5)–
(15.7) have to be converted into a q̇-based matrix-vector equation for meeting the
needs of the simulation modeling. Note that, as for the mobile platform shown in
Fig. 15.1, we have

Aϕ̇ = φ̇ and Bϕ̇ = ṗC,

where matrices A and B are defined respectively as follows:

A = r

2b

[−1
1

]T

∈ R
1×2, and B = r

2

[
cos φ − sin φ

sin φ cos φ

] [
1 1

−d/b d/b

]
∈ R

2×2,

with r being the radius of the drive wheels, b being the distance between the drive
wheels and the middle point of the two-drive wheel axis (denoted as P0), and d
being the distance between the point connecting the robot manipulator and the
mobile platform (corresponding to pC) and point P0. Thus, based on the above
analysis, Eqs. (15.6) and (15.7) are merged into an equation in the form of

[
B

A cos φ

]
ϕ̇ +

[
γ3(pC − pC(0))

γ2(sin φ − sin φ(0))

]
= 0 ∈ R

3. (15.8)

• Fourth, by defining a = [γ3(pC − pC(0)), γ2(sin φ − sin φ(0))]T ∈ R
3, C =

[BT, AT cos φ]T ∈ R
3×2, and c = γ1[θ − θ(0)] ∈ R

n , Eqs. (15.5) and (15.8) are
further combined into a unified matrix-vector equation as follows:

Dq̇ + z = 0 ∈ R
n+3, (15.9)

where matrix D and vector z are defined respectively as

D =
[

C 0
0 I

]
∈ R

(n+3)×(n+2) and z =
[

a
c

]
∈ R

n+3,
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with I ∈ R
n×n being the identity matrix. Therefore, from the above derivation,

one knows that solving (15.5)–(15.7) is equivalent to solving (15.9). In addition,
when (15.9) is solved, the resultant solutions can achieve the RMP purpose of
mobile redundant robot manipulators.

• Finally, because the end-effector motion-trajectory requirement has to be consid-
ered and physical constraints always exist in mobile manipulators, it is better to
minimize ‖Dq̇ + z‖2

2/2, rather than use Dq̇ + z = 0 directly. Thus, we obtain

‖Dq̇ + z‖2
2/2 = (Dq̇ + z)T(Dq̇ + z)/2, (15.10)

which is the velocity-level RMP performance index for mobile redundant robot
manipulators.

In summary, by using the ZD approach, we have developed the RMP performance
index (15.10) at the velocity level (showing the application prospect of such a ZD
approach once again). Note that, by minimizing the velocity-level performance index
(15.10) [i.e., “minimize (Dq̇ + z)T(Dq̇ + z)/2”], the RMP purpose is thus achieved
for mobile redundant robot manipulators.

15.3 Scheme and QP Formulations

In this section, based on the proposed performance index (15.10), a novel velocity-
level RMP scheme is further developed and investigated for mobile redundant robot
manipulators. In addition, such an acceleration-level RMP scheme is reformulated
as a QP, which is solved by a numerical algorithm.

15.3.1 Velocity-Level RMP Scheme

For mobile redundant robot manipulators, with physical limits considered, the
velocity-level RMP scheme is proposed as follows:

minimize (Dq̇ + z)T(Dq̇ + z)/2 (15.11)

subject to J (ϑ)q̇ = ṙdw, (15.12)

q− � q � q+, (15.13)

q̇− � q̇ � q̇+, (15.14)

where ṙdw ∈ R
m denotes the time derivative of the desired end-effector path rdw. In

addition, q− and q+ denote respectively the lower and upper limits of the combined
angle vector q. Furthermore, q̇− and q̇+ denote respectively the lower and upper
limits of the combined velocity vector q̇. Note that the physical limits (i.e., q−, q+,
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q̇− and q̇+) used in the wheeled mobile robot manipulator shown in Fig. 15.1 are
presented in Table 15.1.

15.3.2 QP Reformulation

As the proposed RMP scheme (15.11)–(15.14) is resolved at the combined-vector
velocity level (i.e., in terms of q̇), the limited combined angle vector range [q−, q+]
has to be converted into a q̇-based expression. The following conversion technique
is adopted:

μ(q− − q) � q̇ � μ(q+ − q),

where μ > 0 ∈ R is used to scale the feasible region of q̇ . Note that large val-
ues of μ may cause sudden deceleration for joints and wheels when the mobile
robot manipulator approaches their physical limits, and that, in mathematically,
μ � 2max1�i�n+2{q̇+

i /(q+
i − q−

i ),−q̇−
i /(q+

i − q−
i )}. Therefore, the following

new combined bound constraints can be used to replace (15.13) and (15.14):

ζ− � q̇ � ζ+,

where the i th elements of ζ− and ζ+ are, respectively, defined as (with i =
1, 2, . . . , n + 2) ζ−

i = max{μ(q−
i − qi ), q̇−

i } and ζ+
i = min{μ(q+

i − qi ), q̇+
i }.

By summarizing the above analysis and defining the decision variable vector
x = q̇ ∈ R

n+2, the proposed RMP scheme (15.11)–(15.14) for mobile redundant
robot manipulators is reformulated as the following QP, in view of (Dx + z)T(Dx +
z)/2 = xT DT Dx/2 + zT Dx + zTz/2:

minimize xTW x/2 + hTx (15.15)

subject to Cx = d, (15.16)

ζ− � x � ζ+, (15.17)

where W = DT D ∈ R
(n+2)×(n+2), C = J (ϑ) ∈ R

m×(n+2), h = DTz ∈ R
n+2, and

d = ṙdw ∈ R
m . As for the above QP, the performance criterion (15.15) is for the

RMP purpose and results from the simplification of (15.11). The equality constraint
(15.16) [i.e., (15.1) or (15.12)] describes the integrated kinematics relationship of
mobile robot manipulators at the combined-vector velocity level. The inequality
constraint (15.17) is used to equivalently replace constraints (15.13) and (15.14) by
exploiting a conversion technique.



15.3 Scheme and QP Formulations 223

15.3.3 QP Solver

Note that the presented QP formulation [i.e., (15.15)–(15.17)] is the same as the
one shown in Chap. 14. Thus, the PDNN (14.18) can also be used to solve such a
QP problem (15.15)–(15.17). In this subsection, being different from the PDNN, a
numerical algorithm is exploited to solve the presented QP problem [as well as the
proposed RMP scheme (15.11)–(15.14)].

In order to solve the QP problem (15.15)–(15.17), guided by [5, 6, 22, 30–32],
we define the following vector-valued error function:

e(u) = u − PΩ(u − (Mu + p)) ∈ R
n+m+2, (15.18)

where the formulations of matrix M ∈ R
(n+m+2)×(n+m+2), vectors u ∈ R

n+m+2 and
p ∈ R

n+m+2 are presented the same as those shown in Chap. 14, and PΩ(·) is the
projection operator.

Let S = {u∗|u∗is a zero point of (15.18)}. When the initial value of primal–dual
decision variable vector u0 ∈ R

n+m+2 is given, for iteration index k = 0, 1, 2, . . .,
if uk /∈ S, we have the following iteration formula for finding a zero point of (15.18)
[as well as for solving QP (15.15)–(15.17)]:

uk+1 = uk − ‖e(uk)‖2
2

‖(MT + I )e(uk)‖2
2

(MT + I )e(uk), (15.19)

where I ∈ R
(n+m+2)×(n+m+2) is the identity matrix.

An important criterion of measuring the performance of numerical algorithms is
their computational complexity. As seen from the above iteration formula (15.19),
within one iteration, it only contains 2α̂2 + 3α + 1 multiplications and 2α̂2 + 5α̂ − 2
additions, with α̂ = n + m + 2. Therefore, the discrete-time QP solver (15.19) has a
low computational complexity; i.e., O(α̂2). In addition, we usually choose the solu-
tion obtained in the previous time step as the initial value of the new time step, as
such, the discrete-time QP solver (15.19) has better real-time performance. Besides,
by following [5, 22, 30, 31], an important theorem about the global convergence of
the discrete-time QP solver (15.19) is presented.

Theorem 15.1 The sequence {uk} generated by the discrete-time solver (15.19) for
(15.18) as well as for QP (15.15)–(15.17) satisfies

‖uk+1 − u∗‖2
2 � ‖uk − u∗‖2

2 − ‖e(uk)‖2
2/‖MT + I‖2

F

for all u∗ ∈ S. In addition, the sequence {uk} globally converges to a solution u∗,
of which the first (n + 2) elements constitute the optimal solution x∗ to QP (15.15)–
(15.17).

http://dx.doi.org/10.1007/978-3-662-47334-4_14
http://dx.doi.org/10.1007/978-3-662-47334-4_14
http://dx.doi.org/10.1007/978-3-662-47334-4_14
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15.4 Illustrative Examples

In this section, computer simulations are conducted on the wheeled mobile redundant
robot manipulator shown in Fig. 15.1 to substantiate the efficacy of the proposed
RMP scheme (15.11)–(15.14). Note that the final error tolerance of ‖e(uk)‖2 is set
to be 1.0 × 10−6 for discrete-time QP solver (15.19). In the first example, the end-
effector of the mobile robot manipulator is expected to track a circular path, and in
the second example the end-effector is to follow a Lissajous path. Without loss of
generality, we set μ = 2, initial state θ(0) = [π/12, π/3, π/3, π/3, π/3, π/3]T rad,
and φ(0) = xC(0) = yC(0) = 0 rad, for the wheeled mobile robot manipulator.

15.4.1 Circular Path Tracking

In this subsection, the end-effector of the wheeled mobile robot manipulator is
expected to track a circular path with radius ψ being 0.3 m. The X-axis, Y-axis,
and Z-axis functions of the desired circular path are

⎧⎪⎨
⎪⎩

ṙdwX(t) = − 2π2ψ
T sin(2π sin2( π t

2T ) + π/6) sin( π t
2T ) cos( π t

2T ),

ṙdwY(t) = 2π2ψ
T cos(2π sin2( π t

2T ) + π/6) sin( π t
2T ) cos( π t

2T ),

ṙdwZ(t) = 0,

where task duration T = 5 s and t ∈ [0, T ].

Non-repetitive motion First, we show the non-repetitive motion of the mobile robot
manipulator. Since γ1, γ2 and γ3 are greater than zero, a non-repetitive motion scheme
is produced when γ1 = γ2 = γ3 = 0. In this situation, the circular-path tracking
results are shown in Fig. 15.2. The upper graph of Fig. 15.2 shows the whole tracking
process of the mobile robot manipulator. It follows from such a graph that the final
state of the mobile robot manipulator does not return to the initial one, i.e., the solution
in this situation is not repetitive. For a better understanding, the middle graph of
Fig. 15.2 shows the top view of motion trajectories of the mobile robot manipulator,
and the lower graph of Fig. 15.2 shows the motion trajectories of the mobile platform.
It follows from such two graphs that the mobile platform is not repetitive after the end-
effector completing the circular-path tracking task. Besides, Fig. 15.3 shows profiles
of point of junction [xC, yC]T, heading angle φ, joint angle θ , left and right wheels
synthesized by the non-repetitive motion scheme when the mobile robot manipulator
tracks the given circular path. From Fig. 15.3, we can see that these variables do not
return to their initial values. In engineering applications, this situation may induce
a problem wherein the behavior of the mobile robot manipulator is hard to predict.
Readjusting the configuration of the manipulator through self-motion is inefficient.
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Fig. 15.2 Simulation results
when the mobile robot
manipulator tracks the given
circular path synthesized by
the non-repetitive motion
scheme
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Fig. 15.3 Profiles of point
of junction [xC, yC]T,
heading angle φ, joint angle
θ , left and right wheels for
the mobile robot manipulator
synthesized by the
non-repetitive motion
scheme
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Fig. 15.4 Simulation results
when the mobile robot
manipulator tracks the given
circular path synthesized by
the proposed RMP scheme
(15.11)–(15.14)
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Fig. 15.5 More simulation
results when the mobile
robot manipulator tracks the
given circular path
synthesized by the proposed
RMP scheme
(15.11)–(15.14)
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Repetitive motion To finish the circular-path tracking task in a repetitive manner,
the proposed RMP scheme (15.11)–(15.14) with γ1 = γ2 = γ3 = 105 and the
discrete-time QP solver are applied to the control of the mobile robot manipulator.
The corresponding simulation results are shown in Figs. 15.4, 15.5, 15.6, and 15.7.

Specifically, the upper graph of Fig. 15.4 shows the motion trajectories of the
mobile robot manipulator during the whole tracking process. As seen from such a
graph, the proposed RMP scheme (15.11)–(15.14) not only coordinates simultane-
ously the mobile platform and the manipulator to complete the given end-effector
task, but also makes the mobile manipulator return to the initial state. In addition,
from the middle graph of Fig. 15.4, we can see that the actual end-effector motion
trajectory is close enough to the desired circular path. The lower graph of Fig. 15.4
shows the corresponding tracking position errors. As seen from such a graph, the
corresponding X-axis, Y-axis, and Z-axis components of the tracking position error
are less than 5×10−6 m. These results substantiate that the mobile robot manipulator
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ẏC
φ̇
θ̇1
θ̇2
θ̇3
θ̇4
θ̇5
θ̇6

t (s)

0 1 2 3 4 5
−1

−0.5

0

0.5

1 x 10
−6

t (s)

ε̇X

ε̇Y
ε̇Z

m/s
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can finish the circular path tracking task well, as synthesized by the proposed RMP
scheme (15.11)–(15.14).

To further illustrate and verify the effectiveness of the proposed RMP scheme
(15.11)–(15.14), in Fig. 15.5, we show the movements of the mobile platform. Specif-
ically, the upper graph of Fig. 15.5 shows the top view of motion trajectories of the
mobile robot manipulator, the middle graph of Fig. 15.5 shows the motion trajectories
of the mobile platform, and the lower graph of Fig. 15.5 shows the corresponding left
and right wheel profiles. From Fig. 15.5, we can conclude that the mobile platform
is repetitive after the end-effector completing the circular-path tracking task.

Besides, what we are more interested in are some important variables, such as
point of junction [xC, yC]T, heading angle φ and joint angle θ . This reason lies in
that if and only if these variables return to their initial states, the mobile manipulator
can achieve the repetitive motion. Figure 15.6 shows the profiles of [xC, yC]T, φ, and
θ when the mobile manipulator tracks the given circular path. As seen from the left
graph of Fig. 15.6, xC, yC, and φ return to their initial states. In addition, the right
graph of Fig. 15.6 shows that θ also returns to its initial state θ(0). That is to say, these
variables all return to their initial states, so that the mobile robot manipulator can
achieve the repetitive motion. Figure 15.7 shows the profiles of [ẋC, ẏC]T, heading
velocity φ̇, joint velocity θ̇ , and the corresponding tracking velocity error when the
mobile manipulator tracks the given circular path. From Fig. 15.7, we can see that the
final states of the combined velocity equal zero, and that the corresponding X-axis,
Y-axis, and Z-axis components of the tracking velocity error are less 1×10−6 m. The
results further substantiate the high accuracy of the proposed RMP scheme (15.11)–
(15.14). It is worth pointing out that, in the left graph of Fig. 15.7, θ̇5 reaches its
upper bound θ̇+

5 , but never exceed the upper bound, which demonstrates that the
bound constraint (15.14) is activated and effective.

15.4.2 Lissajous-Figure Path Tracking

In this subsection, the end-effector of the mobile robot manipulator is expected to
track a Lissajous-figure path with parameter χ being 0.45 m. The X-axis, Y-axis, and
Z-axis velocity functions of the desired Lissajous-figure path are

⎧⎪⎨
⎪⎩

ṙdwX(t) = − 4π2χ
T sin(4π sin2( π t

2T ) + π/6) sin( π t
2T ) cos( π t

2T ),

ṙdwY(t) = 2π2χ
T cos(2π sin2( π t

2T ) + π/6) sin( π t
2T ) cos( π t

2T ),

ṙdwZ(t) = 0.

In order to investigate the effectiveness of the proposed RMP scheme (15.11)–(15.14)
for different values of parameters, in this example, we set task duration T = 10
s, γ1 = γ2 = 103, and γ3 = 102. Thus, the corresponding simulation results,
synthesized by the proposed RMP scheme (15.11)–(15.14) and the discrete-time QP
solver (15.19), are shown in Figs. 15.8, 15.9, 15.10, and 15.11.
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Fig. 15.8 Simulation results
when the mobile robot
manipulator tracks the given
Lissajous-figure path
synthesized by the proposed
RMP scheme
(15.11)–(15.14)
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Fig. 15.9 More simulation
results when the mobile
robot manipulator tracks the
given Lissajous-figure path
synthesized by the proposed
RMP scheme
(15.11)–(15.14)
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The upper graph of Fig. 15.8 shows the whole tracking process of the mobile
robot manipulator. As seen from such a graph, the RMP purpose of the mobile robot
manipulator is achieved. Besides, the middle graph of Fig. 15.8 shows the desired
Lissajous-figure path and the actual end-effector trajectory, and the lower graph of
Fig. 15.8 shows the corresponding tracking position errors. As observed from the
middle graph of Fig. 15.8, the actual motion trajectory of the mobile robot manip-
ulator’s end-effector is sufficiently close to the desired Lissajous-figure path. The
corresponding X-axis, Y-axis, and Z-axis components of the tracking position error
shown in the lower graph of Fig. 15.8 are less than 1 × 10−5 m. These demonstrate
that the given Lissajous-figure path tracking task is performed well via the proposed
RMP scheme (15.11)–(15.14).

To see more clearly the repetitive motion of the mobile robot manipulator, its
mobile platform is visualized in Fig. 15.9. Specifically, the upper graph of Fig. 15.9
shows the top view of motion trajectories of the mobile robot manipulator, the middle
graph of Fig. 15.9 shows the motion trajectories of the mobile platform, and the lower
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graph of Fig. 15.9 shows the corresponding left and right wheel profiles. It follows
from Fig. 15.9 that the mobile platform is repetitive after the end-effector completing
the Lissajous-figure path tracking task.

Figure 15.10 shows the profiles of [xC, yC]T, φ, and θ when the mobile manipu-
lator tracks the given Lissajous path. As seen from the left graph of Fig. 15.10, xC,
yC, and φ go back to their initial states. In addition, the right graph of Fig. 15.10
shows that θ also returns to its initial state θ(0). These illustrate and verify again
the effectiveness of such a repetitive motion scheme and the non-repetitive problem
of the mobile manipulator has been solved by using the repetitive motion scheme.
Figure 15.11 further shows the profiles of [ẋC, ẏC]T, heading velocity φ̇, joint veloc-
ity θ̇ and the corresponding tracking velocity error when the mobile manipulator
tracks the given Lissajous path. From the left graph of Fig. 15.11, we can see that
the final states of the combined velocity equal zero. Note that, if the final states of
combined velocity are not zero, the mobile manipulator will not stop immediately at
the end of the task duration; and thus the non-repetitive problem may happen. From
the right graph of Fig. 15.11, one can see that the corresponding X-axis, Y-axis, and
Z-axis components of the tracking velocity error are less 1 × 10−6 m. The results
further demonstrate the high accuracy of the proposed RMP scheme (15.11)–(15.14)
and discrete-time QP solver (15.19). It is also worth noting that all the variables
(e.g., θ , θ̇ , φ, and ϕ) in simulations are kept within their limits due to consideration
of physical constraints of mobile manipulators. Thus, the given end-effector task can
be completed successfully.

In summary, the presented two examples performed on the wheeled mobile robot
manipulator, i.e., tracking a circular path and a Lissajous-figure path, have both
substantiated the efficacy of the proposed RMP scheme (15.11)–(15.14) and the cor-
responding discrete-time QP solver (15.19), which can solve the non-repetitive prob-
lem well. Furthermore, the tracking position and velocity errors shown in Figs. 15.4,
15.7, 15.8 and 15.11, have validated well the high accuracy of such a RMP scheme
(15.11)–(15.14). Besides, these simulation results have shown again the success-
ful application of the presented ZD approach to RMP of mobile redundant robot
manipulators.

15.5 Summary

In this chapter, by defining three different ZFs and by exploiting the ZD design for-
mula, the velocity-level RMP performance index (15.10) has been proposed, devel-
oped, and investigated. Based on such a performance index, the velocity-level RMP
scheme (15.11)–(15.14) has been further presented and investigated for mobile redun-
dant robot manipulators, which is reformulated as a QP (15.15)–(15.17) and then is
solved by the numerical algorithm (15.19). Computer simulation results based on
the wheeled mobile robot manipulator with different illustrative examples have sub-
stantiated well the effectiveness, accuracy, and safety of the proposed velocity-level
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RMP scheme for physically-constrained mobile redundant robot manipulators, and
more importantly, have shown once again the application prospect of the presented
ZD approach to robotic redundancy resolution.
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