
Chapter 3
The Comparison of Observational
and Simulation Data

Cathie J. Clarke

Before we describe the results of star formation simulations in detail, we need to con-
sider how, in principle, one should decidewhether the output of a simulation is a good
match to reality. This issue is not entirely straightforward given the complex mor-
phology and hierarchical nature of observed molecular clouds (and also of numerical
simulations). For example, the fact that simulations generally produce filamentary
and highly structured clouds with a mixture of clustered and more distributed star
formation is at first sight encouraging, because these are broadly properties shared
by observed clouds (Men’shchikov et al. 2010; Peretto et al. 2012; Schneider et al.
2012). One however needs amore refinedmeasure of whether simulations and obser-
vations are indeed quantitatively consistent. We therefore conduct a brief survey of
statistical descriptors that have been applied to simulations and observations. We
follow this by applying some of these methods to the simplest class of star cluster
formation simulations (termed ‘vanilla’ calculations in these chapters) which contain
only the three most basic physical ingredients: gas pressure, turbulence and gravity.

3.1 The Characterisation of Observational
and Simulated Data

3.1.1 Characterising Gaseous Structures

There aremany alternative descriptors of the wealth of structures found in the density
and velocity fields of molecular clouds (see Blitz and Stark 1986 for early analyses
of the hierarchical nature of the interstellar medium). For example, Padoan et al.
(2003) analysed 13CO emission maps of Taurus and Perseus by computing structure
functions as a function of r (i.e. expectation values of the pth power of the difference
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in intensity between points in themap separated by distance r ): the power-law depen-
dence of the structure function on r indicates the scale-free nature of much of the
structure within molecular clouds. Padoan et al. (2003) attempted to compare these
results with the predictions of various turbulence models for the form of the structure
function for velocity. The relationship between structure functions for intensity and
those for velocity (as derived in the case of supersonic turbulence; Boldyrev 2002)
is however unclear.

A more intuitive method of analysing molecular cloud structures is via the use
of dendrograms. These can be visualised by considering a dataset (e.g. integrated
intensity as a function of two-dimensional position) as a topographical surface which
one then ‘thresholds’ at various levels, identifying the distinct peaks above each
threshold and tracing how these merge as the threshold level is reduced. (A good
analogy here is how the distribution of ‘islands’ changes as the water level around
a flooded mountain range is reduced.) The structure can then be depicted in terms
of a network of branches whose geometry reflects the hierarchical organisation of
the medium (see Fig. 3.1). Rosolowsky et al. (2008) applied such an analysis to the
L1448 region of the Perseus molecular cloud and compared this with simulations of
MHD turbulence by Padoan et al. (2006); they noted that dendrogram analysis can
in some cases identify discrepancies between simulations and observations that are
not discernible through analysis of the power spectrum (the power spectrum simply
counts entities on different scales without directly assessing the spatial relationship
between structures on different scales).

By far the most widely used algorithms for analysing the structure of molecular
clouds are those of a ‘friend of friends’ type, such as the CLUMPFIND algorithm
(Williams et al. 1994) which identifies peaks and then works downwards in intensity,
assigning neighbouring regions to their local intensity peak and otherwise creating a
new clumpwhich is treated in the sameway. Such an approach can be used to identify
distinct clumps either in positional data or else, in the case of line emission maps, in

Fig. 3.1 A schematic depiction of how dendrogram analysis leads to the rendering of intensity
positional data in terms of a root-branch-leaf structure. The left panel shows a one-dimensional
emission profile with three distinct local maxima. The dendrogram of the region is illustrated in
blue and shown in the right panel where the components of the dendrogram are labelled. Figure
from Rosolowsky et al. (2008)



3 The Comparison of Observational and Simulation Data 33

datacubes in joint positional and velocity space. Once such clumps have been iden-
tified, one can readily construct their mass spectrum (commonly termed the CMF:
clump mass function) and compare with the corresponding quantity derived from
simulations (see Klessen and Burkert 2000; Smith et al. 2008 for the application of
such analyses to datacubes generated by SPH simulations). The extraction of a clump
mass spectrum from either observations or simulations is however a non-unique pro-
cedure. As emphasised in their paper ‘The perils of CLUMPFIND...’, Pineda et al.
(2009) conclude that the derived clump spectrum is highly dependent on the obser-
vational resolution and that, in particular, kinematic data is required to disentangle
structures that are blended along the line of sight. In other studies, independent analy-
ses of millimetre maps of ρ Ophiuchus (Motte et al. 1998; Johnstone et al. 2000)
agree about the mass spectrum of the derived clumps but disagree about the masses
and locations of individual clumps. Moreover, Smith et al. (2008) found (through
applying the CLUMPFIND algorithm to simulation data) that the overall shape of
the derived clump mass spectrum was fairly insensitive to the CLUMPFIND para-
meters employed but that the location of apparent breakpoints was rather strongly
dependent on these algorithmic parameters. This result underlines the fact that such a
method can only be used to compare observations and simulations if the algorithmic
details, and the resolution, are well matched. It also raises obvious questions about
the physical significance (if any) of such breakpoints in the derived CMF.

3.1.2 Characterising Stellar Distributions

We now turn to the issue of characterising stellar spatial distributions. One of the
first measures to be applied to large-scale distributions of stellar positions was the
Mean Surface Density of Companions (MSDC, Larson 1995; Simon 1997; Bate et al.
1998). This measure is computed by counting all the stars within an annulus of given
radius (r ) centred on each star, dividing by the area of the annulus, repeating this
procedure with the annulus centred at every star in the region, and then averaging to
obtain the mean surface density at that separation. The MSDC is thus closely related
to the two-point correlation function which instead subtracts off the large-scale mean
surface density: although appropriate to cosmological studies (where the distribution
of galaxies is expected to be uniform on the largest scales) this is not useful in star-
forming regions which are generally inhomogeneous on scales extending up to the
size of the entire region analysed.

Analyses of nearby star-forming regions revealed a double power-law structure
in the MSDC: the inner power-law is readily identified with size scales where stars
have one companion on average—in other words it corresponds to the distribution of
nearest neighbour (in reality bound—i.e. binary star—companion) distances. Since
the binary separation distribution is rather flat in log separation, this translates into
a MSDC of slope −2. At larger separations it transitions to a shallower slope which
Larson (1995) interpreted as evidence of fractal clustering on larger scales (i.e. clus-
tering with no characteristic size scale but a self-similar relationship between surface
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density and size). Bate et al. (1998) however argued that this interpretation was not
unique and that global density gradients or non-fractal sub-clustering would also be
consistent with the data over the limited dynamic range of size scales (2–3 orders of
magnitude) between the binary regime and the total size of star forming regions.

Alternative measures of stellar distributions can be derived from the Minimum
Spanning Tree (MST), which is the unique connection of points in a dataset so as
to minimise the total length without involving any closed loops. Cartwright and
Whitworth (2004) proposed a single number (the Cartwright Q parameter) that can
be used to classify the nature of stellar distributions. Q is defined as the ratio of the
value of m̄ (the mean edge length normalised to the mean value for N random points
in the area) to s̄ (the ‘normalised correlation length’, i.e. mean separation divided by
the cluster radius). The important distinction is that whereas the mean edge length
refers to the mean separation of closest neighbours (i.e. those directly linked by the
MST), the mean separation is the mean (over all stars) of the distance to all the other
stars in the cluster.

We can start to understand how the Q parameter is able to distinguish qualitatively
different stellar distributions by first considering a uniform distribution of points—
empirically this yields a particular Q value (∼0.7). Now we consider two different
ways of driving the distribution away from the uniform: in both cases we move stars
around so that there is now a range of densities, but whereas in one case the high-
density regions are co-located (which we call the centrally concentrated case) in the
other the islands of high-density are spatially dispersed (which we call the fractal
case). As one moves away from the uniform distribution, both m̄ and s̄ are reduced
as stars are brought closer together. However, the reduction in s̄ is relatively small
in the fractal case because when stars are moved to isolated high-density peaks, this
affects the mean separation of relatively few stars. Consequently, Q falls as one
proceeds from a uniform distribution to fractal distributions with decreasing fractal
dimension (i.e. distributions that are more clumped); conversely Q increases as one
proceeds from uniform distributions to distributions that are increasingly centrally
concentrated. In general, real stellar distributions are neither necessarily centrally
concentrated nor strictly fractal so the real utility of the Q parameter is that it provides
a ready way to distinguish distributions in which high-density regions are co-located
from those in which they are spatially dispersed. As such it is a useful tool when one
compares the outcome of simulations with real observational data (see e.g. Schmeja
et al. 2008).

Another use of the MST is that it can provide a simple empirical definition of a
‘cluster’: one can specify a ‘cut-length’ and sever all branches of the tree that exceed
this length, thereby dividing a distribution of points into a set of distinct ‘clusters’.
Naturally, the numbers and identities of such ‘clusters’ are highly sensitive to the cut-
length employed (see Fig. 3.2). Although the definition of clusters is thus arbitrary
(and certainly does not correspond to entities that are necessarily gravitationally
bound) it at least provides a consistent way to compare a simulation set with an
observational dataset (provided, of course, that both datasets are analysed with the
same cut-length; seeMaschberger et al. 2010 for an analysis of the ‘clustering’ within
the simulations of Bonnell et al. 2003, 2008 using this method).
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Fig. 3.2 Illustration of the
use of the minimum
spanning tree in identifying
‘clusters’ (numbered circles)
in the simulations of Bonnell
et al. (2008). The three
panels show how the
‘clusters’ identified depend
on the value of the cut-length
parameter dbreak adopted
(0.001, 0.025 and 0.05 from
top to bottom respectively).
Figure from Maschberger
et al. (2010)

One of the most widely used applications of the MST is to characterise mass seg-
regation within observational and simulation datasets. There is considerable interest
in whether massive stars are preferentially located in dense regions and whether this
is a consequence of two-body relaxation or instead reflects stellar birth sites. In the
case of spherically symmetric clusters, mass segregation may be evaluated by com-
paring the radial distributions of stars as a function of mass (e.g. Bate 2009; Moeckel
and Bonnell 2009). Such an approach is obviously not appropriate in the commonly
encountered situation where stellar distributions lack any clear symmetry and this is
where MST based techniques offer a clear advantage: Allison et al. (2009) proposed
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a method in which the mean edge length of the MST constructed from the i most
massive stars is calculated and then compared with the corresponding quantity con-
structed from aMST based on random samples of i stars. The ratio of these quantities
� is a measure of whether the i most massive stars are similarly distributed to the
general population: its particular advantage is that it is self-calibrating because when
one computes the mean edge length of i random stars through repeated sampling
one obtains also the standard deviation of that quantity and thus can readily assess
whether the value for the i most massive stars is significantly different. Results how-
ever need to be interpreted with care because the mean edge length is highly sensitive
to the maximum edge length in the distribution. For example, in Taurus the mean
edge length for massive stars is large because of a few massive stars lying at large
distances from the remainder; this can produce an apparent signature of ‘inversemass
segregation’ even though the majority of massive stars in Taurus are actually more
closely associated with each other than is the case for ‘typical’ (lower mass) stars in
the region (Parker et al. 2011). The interpretation of the � statistic is thus improved
if one also compares quantities (such as the median or geometric mean edge length,
Maschberger and Clarke 2011; Olczak et al. 2011) which are less sensitive to the
maximum edge length.

Finally it should be noted that MST-based methods can be applied to comparing
the spatial distributions of stars as a function of age (as proxied by their possession
of circumstellar disc diagnostics; see Ercolano et al. 2011).

3.1.3 Characterising the IMF

A widely used approach to describing the stellar mass function is to construct a log-
log histogram such that—for a power-law IMF—the slope of the histogram gives
the power-law index of the IMF. This is however problematical in several ways, as
pointed out by Maíz Apellániz and Úbeda (2005). Firstly the derived slope is often
sensitive to the binning. Secondly, Poissonian errorbars are largest in a log-log plot
in the case of bins containing few objects (i.e. generally at high masses) and such
errorbars are moreover asymmetric. This means that owing to Poisson noise, bins at
high mass can frequently be sparsely populated. This introduces a bias which results
in derived power laws being systematically too steep. The problem can be addressed
by adopting bin sizes such that bins all contain the same number of objects. However
this inevitably leads to large bin widths at the sparsely populated (high-mass) end of
the IMF and thus reduces discrimination in this regime.

It is therefore preferable to use non-parametric tests (such as the Kolmogorov-
Smirnov [KS] test) to test the consistency between observational data and a range
of hypothesised functional forms. However, it needs to be borne in mind that the KS
test is notoriously insensitive to deviations between distributions that occur near
the extremes of the cumulative distribution: this is particularly problematical if
one is trying to test, for example, whether data is consistent with an unbounded
power-law or whether it requires a form that is truncated at high masses (this being
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an area of considerable debate: see discussion in Sect. 7.2.1 of Chap.7). This can be
remedied by applying a stabilising transformation to the variables (such that the test
is uniformly sensitive at all centile values; see Maschberger and Kroupa 2009).

3.2 Simulation Results: Bonnell et al. (2008) as a Case Study

In what follows we term as ‘vanilla’ calculations all those that incorporate the mini-
mum subset of physics that is required to produce a somewhat realistic star-forming
complex. Such calculations incorporate gravity (obviously!), a supersonic velocity
field and thermal properties prescribed according to a barotropic equation of state
(see Masunaga and Inutsuka 2000). In order to mimic ‘turbulent’ velocity fields,
a common expedient is to start with an unstructured cloud and then to impose a
divergence-free randomGaussian velocity fieldwith a power spectrum [P(k) ∝ k−4]
that is designed to reproduce the Larson size-linewidth relations (Larson 1981; see
Sect. 1.4 of Chap.1). We will start with the simplest case of a one-off injection of
‘turbulent’ kinetic energy and will contrast this in the following chapter with the case
of continually driven turbulence or cases where the turbulence is ‘settled’ prior to
the switch-on of gravity.

There is now a large body of such ‘vanilla’ calculations, following the pioneering
simulations of Bate et al. (2002a). These vary greatly in scale and numerical resolu-
tion and range from relatively cheap calculations (such as those of Delgado-Donate
et al. 2004; Goodwin et al. 2004a, b) where the small cloud masses permit multi-
ple realisations of a given parameter set, to very expensive ‘one-off’ calculations
which push the limits either in scale (e.g. Bonnell et al. 2008) or in resolution (e.g.
Bate 2009, 2012). Naturally, the introduction of additional physical effects involves
sacrifices in terms of scale and/or resolution.

From the point of view of simulating cluster formation, perhaps the most instruc-
tive are the largest scale simulations since they permit the treatment of an entire com-
plex of clusters and can trace the history of their hierarchical assembly. Accordingly
we start with a discussion of the largest scale star formation simulation conducted to
date, i.e. that of Bonnell et al. (2008) which models a cloud of 104 M�. At the end of
the simulation (at an age of 0.5Myr) around 1500M� of gas has been converted into
stars (i.e. sink particles) and these are distributed in a number of ‘clusters’ comprising
hundreds of stars as well as a distributed population.

The initial configuration of the simulation is a cylinder of radius 3pc and length
10pc with a mild axial density gradient which ensures that—following introduction
of the initial injection of turbulent energy—the cloud is overall marginally bound
(being mildly bound at one end and mildly unbound at the other).

The evolution follows a sequence that is characteristic of all similar calculations:
supersonic turbulence creates a web of shocked layers of compressed gas which
break up under the action of self-gravity to create a network of dense filaments
(note that this feature is broadly consistent with the widespread observations of
filaments in Herschel observations of molecular clouds (André et al. 2010; Juvela
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http://dx.doi.org/10.1007/978-3-662-47290-3_1


38 C.J. Clarke

et al. 2012) although the simulations donot reproduce the invariant filamentwidth that
has has been reported in observations (Arzoumanian et al. 2011). In the simulations,
small-scale inhomogeneities in the filaments are amplified by self-gravity and lead to
fragmentation. The minimum spacing of such fragments is set by the characteristic
(Jeans) length scale for collapse (see Eq.1.2) for which the sound crossing and free-
fall timescales along the length of the filament are similar. Stars (i.e. sinks) that form
in a filament then follow large-scale self-gravitating flows along the filament and are
thus transported towards the dense regions formed where filaments intersect (this
itself also being a location of further fragmentation and star formation). It is worth
noting at this stage that fragmentation often produces few body clusters and it is
these (rather than single stars) that are conveyed along filaments.

This sequence of events leads to the formation of clusters via a bottom-up (hierar-
chical) process as demonstrated by the analysis of merger trees based onMST cluster
identification (Maschberger et al. 2010). The ongoing merger sequence causes evo-
lution of the Cartwrigth Q parameter which is low (‘fractal’) during the stage that
(mini-)clusters are scattered along filaments but rises once mergers form a dominant
centrally concentrated cluster. It should be stressed that these are not ‘dry’ (gas-free
mergers) and that the gas (which remains the dominant mass component on large
scales throughout the duration of the simulations, ∼0.5Myr) plays an important role
in channeling clusters together and facilitating the merger process.

If one looks at the properties of the clusters formed after 0.5Myr (bearing in mind
that the definition of a cluster depends on a particular choice of the ‘cut-length’ for
theMST) one finds about 15 clusters containingmore than 10 stars; obviously it is not
sensible to define a formal cluster mass function from only 15 objects but it is clear
that low-N clusters aremore numerous and that the distribution is broadly compatible
with the observed cluster mass function (where the fraction of clusters between N
and N + dN scales as N−2; Lada and Lada 2003). The most populous cluster in
the simulations contains several hundred stars. These clusters are generally mildly
aspherical (i.e. most frequently with projected axis ratios on the sky in the range of
1–2, though a few objects are at times more drastically aspherical). The cluster shape
is sensitive to the history of mergers in the cluster, with highly aspherical shapes
during ongoing mergers but with stellar two-body relaxation effects reducing the
ellipticity between mergers. It is also found that these clusters are markedly mass
segregated (especially the more populous clusters i.e. N > 50) at an age of 0.5Myr;
technically, this mass segregation is not primordial but is the result of rapid two-
body relaxation within clusters that are assembled via mergers (see also McMillan
et al. 2007; Allison et al. 2009, 2010). From an observational perspective, however,
the system is so young that any observer would probably classify this situation as
one of primordial mass segregation. It is worth noting that—as in the case of the
ellipticity—the state of mass segregation changes during mergers: evidently while a
merger is ongoing, there are two nuclei containing the most massive stars within a
given cluster and this temporarily removes the mass segregation signature.

Before leaving this thumbnail portrait of cluster assembly in the Bonnell et al.
(2008) simulation it is worth noting that the demographics of clustering within
the simulation is quite sensitive to modest variations in the degree of gravitational

http://dx.doi.org/10.1007/978-3-662-47290-3_1
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Fig. 3.3 The gas and stellar distribution in the simulation of Bonnell et al. (2008) at an age of
∼0.5Myr. Note that the initial condition was cylindrical: the upper regions (where the populous
clusters have formed) were initially mildly bound, whereas the lower half (where star formation is
less intense) was initially mildly unbound. Figure from Bonnell et al. (2008)

boundedness in different regions of the simulation (see Fig. 3.3). As noted above,
the mild density gradient along the axis of the initial gas cylinder means that the
gas at one end is mildly unbound while it is mildly bound at the other end. Star
formation proceeds more rapidly in the bound end of the cloud and the converging
flows that develop along filaments lead to the formation of several populous clusters.
At the unbound end, by contrast, much of the gas avoids significant compression and
expands without forming stars: locally convergent flows do produce some stars even
here but the large-scale flows are not conducive to significant merging and the star
formation remains dispersed in rather small-N groupings.

We now proceed to a more general discussion of how various simulations of this
‘vanilla’ variety have contributed to our understanding of a range of issues in star
and cluster formation.
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3.3 The Relationship Between Gas, Cores and Stars
in Simulations

Amongst the wealth of structures observed in molecular clouds there is a class of
dense regions (identified in dust emission or absorption or else in molecular lines;
see Chap.1, Sect. 1.2) that are termed ‘cores’. These are characterised by low inter-
nal velocity dispersions (comparable with the sound speed) and contain around a
Jeans mass of gas. Such cores are widely regarded as being stellar progenitors and
it is often claimed that the stellar mass function (IMF) is simply inherited from the
core mass function (CMF, Motte et al. 1998; Johnstone and Bally 2006). We have
already discussed ‘the perils of clumpfind’ (Pineda et al. 2009) and the difficulty
in unambiguously identifying cores in observational data and this introduces some
uncertainty about the reliability of observed CMFs. Nevertheless, from an observa-
tional perspective, comparison between the CMF and IMF is the only way to test the
hypothesis that cores can be mapped directly onto resulting stars. Such a comparison
has been claimed to indicate a systematic offset in logarithmic mass between the
CMF and IMF (Lada et al. 2008), which can be interpreted as a universal ‘efficiency’
factor as cores turn into stars (see Goodwin et al. 2008 for an analysis of how this
mapping is affected by the formation of multiple stars).

In the case of simulations, one has the luxury of being able to trace the fates of
individual gas particles and of determining whether cores indeed turn directly into
stars (bearing in mind the caveat that of course this does not necessarily indicate
that the same evolutionary sequence is followed in reality!). Smith et al. (2009)
identified gas cores in the simulations as local potential wells and showed that, in
the simulations, the CMF and resulting IMF were indeed of similar functional form.
However, they found that this situation represents a rather weak association between
the masses of individual cores and the masses of the stars they produced—there is
no more than a general tendency for more massive stars to form from more massive
cores as the correspondence is blurred by the effect of subsequent accretion. Bonnell
et al. (2004) also traced the assembly history of individual stars and showed that
whereas low-mass stars form from rather local collapse, higher mass stars have mass
contributions from a much larger volume. This is because stars that end up with high
mass in the simulations are those that arrive early in cluster cores and are then able
to accrete vigorously from a mass reservoir that is fed by material flowing in along
filaments.

3.4 The Origin of the Stellar IMF in ‘Vanilla’ Calculations

Simulations of this kind routinely produce stellar (i.e. sink) IMFs which can be
represented as a broken power-law—at high masses (above the so-called ‘knee’ of
the IMF), the fraction of stars with masses between m and m + dm is ∝ m−αdm
where α ∼ 2 (comparable with the observed ‘Salpeter’ value of 2.35). Below the

http://dx.doi.org/10.1007/978-3-662-47290-3_1
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knee, the mass function is flatter (i.e. with α ∼ 1.5) and this functional form imparts
the distribution with a ‘characteristic’ mass that is similar to the knee mass. Early
simulations were conspicuously successful in creating an IMF that is well matched
to the observed form (Bate et al. 2002a, b, 2003) with knee values of around a solar
mass. This is however entirely fortuitous (with regard to the value of the knee) since
in the case of an isothermal equation of state (as employed in all these simple ‘vanilla’
calculations) the knee value is simply related to the mean Jeans mass in the cloud at
the onset of the simulation (Bonnell et al. 2006). A simple dependence onmean Jeans
mass (and an insensitivity to theMach number of the turbulence) is in fact in contrast
to the conclusions based on studies of non-self-gravitating turbulence (Padoan and
Nordlund 2002; Hennebelle and Chabrier 2008) in which an IMF is constructed by
constructing nominally Jeans unstable peaks in the turbulent density field. In this
case, the mean stellar mass decreases at large Mach number, since this increases the
density of shocked layers and thus lowers the nominal Jeans mass associated with
such layers. It is interesting that whereas the self-gravitating simulations also produce
denser structures at high Mach number, this does not translate into lower mass stars
as would be suggested by application of this simple Jeans criterion. The reason for
this discrepancy is probably the inapplicability of a simple (density-based) Jeans
criterion in slab geometry: compression in such geometry—which changes neither
the lateral sound crossing time nor lateral free-fall time—has little effect on the Jeans
mass (see Lubow and Pringle 1993; Whitworth et al. 1994; Bonnell et al. 2004).

Although there is some interest in studying the differences between the IMFs
inferred from non-self-gravitating density fields and those produced in simulations
which allow collapse and subsequent accretion, it should not detract from a much
more fundamental problemwith all isothermal calculations. It is strongly undesirable
to have a situation where the ‘knee’ of the IMF can be simply shifted around by a
change in mean cloud density and temperature (see Fig. 3.4). This is because the
observed IMF appears to be remarkably invariant in all well studied regions (see
Bastian et al. 2010 for a recent review of this issue) whereas star-forming clouds

Fig. 3.4 Illustration of the IMFs produced in three different isothermal calculations in which the
mean Jeans mass at the onset of the simulation is 1, 2 and 5M� (left to right respectively). The
‘knee’ of the IMF then simply tracks the initial Jeans mass. Figure from Bonnell et al. (2006)



42 C.J. Clarke

have a range of densities and temperatures which should—in this picture—cause
corresponding variations in the IMF. It is however found that the situation may be
remedied by using a rather modest departure from an isothermal equation of state.
Larson (2005) proposed a barotropic equation of state in which the temperature falls
mildly with increasing density (T ∝ ρ−0.25) in the regime dominated by line cooling
(at number densities less than 106 cm−3) but rises mildly with density (T ∝ ρ0.1) at
higher density where dust cooling becomes important (see alsoWhitworth et al. 1998
for a similar proposal that the conditions associated with the onset of dust cooling
imprint a characteristic Jeansmass on the IMF). Certainly, Bonnell et al. (2006) found
that this modest revision of the equation of state had a remarkably stabilising effect
on the IMF produced in simulations. Whereas in previous isothermal simulations,
the IMF ‘knee’ had simply followed variations in the initial cloud Jeans mass, it
was found that the modified equation of state produced similar IMFs for a range of
cloud initial conditions. These authors argued that the IMF is imprinted at this mass
scale because such an equation of state implies that the Jeans mass changes from
being respectively more (less) density dependent than the free-fall time for densities
below (above) this threshold. At higher density, the Jeans mass is less responsive to
density changes on the free-fall time and this tends to suppress further fragmentation.
Moreover, Larson (2005) argued that the relevant equation of state should not be very
sensitive to the metallicity either, so that this adjustment might provide a good route
to producing a near universal IMF. The recent hydrodynamic simulations of Dopcke
et al. (2013) confirm that the metallicity dependence of the effect of dust cooling on
the IMF is indeed rather mild, even down to extremely low (<10−4Z�) metallicities.

Whatever the details of the cooling physics invoked, it is encouraging that phys-
ically motivated modifications of the thermal physics can indeed stabilise the IMF.
It should however be stressed that this is only one of the currently discussed ways
in which ‘additional physics’ can achieve this stabilisation and we discuss other
ideas (such as those relating this stabilisation to radiative feedback) in the following
chapter.

Finally, we turn to the upper power-law of the IMF in simulations, i.e. in the
regime above the ‘knee’. Here the −2 power-law is generally ascribed to the role of
Bondi-Hoyle accretion along the lines of the analysis first proposed by Zinnecker
(1982). Such accretion gives rise to an accretion rate that scales quadratically with
stellar mass, and, for a given initial mass, Min, one can write an expression for
the stellar mass at time t . One can then map a given range of initial masses dMin
into the corresponding range of masses dM at time t , which yields the relationship
dMin = M2

indM/M2. This then demonstrates that if one startswith a given small range
of initial masses, these are transformed by accretion into a power-law probability
density function for stellar mass with slope −2. Bonnell et al. (2001) examined this
picture for the build-up of stellar mass through idealised simulations which placed
stellar sinks in smooth collapsing parent gas distributions; they argued that, while the
stars are more or less co-moving with the collapsing gas, the accretion cross-section
associated with Bondi-Hoyle accretion (which scales as the relative star-gas velocity
raised to the power of −4) is unphysically large and that instead the relevant cross-
section is the smaller tidal radius: they showed that in this case the IMF slope should
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scale as mass to the power of −1.5 and that this is well matched to the simulation
results at lowmass.However, once stars dominate the potential in the core of the cloud
they form a virialised sub-system in which stellar velocity directions are randomised
with respect to radially inflowing gas. The increased random velocity then reduces
the Bondi-Hoyle accretion cross-section to less than the tidal limit; hence Bondi-
Hoyle accretion becomes the dominant process, thus explaining the power-law tail
of the mass function with index −2.

It is not clear howmuch this explanation based on ‘toy’ models applies to the large
range of subsequent turbulent fragmentation simulations which all show a similar
IMF morphology (i.e. slope changing from ∼ −1.5 to ∼ −2 at an IMF ‘knee’). At
first sight, these simulations—such as the Bonnell et al. (2008) simulation described
in detail above—bear little resemblance to the ‘toy’ model of a smooth radially
collapsing gaseous background, since the turbulence generates a complex velocity
and density field in the gas. Nevertheless, there may be more resemblance between
the two situations than is visually apparent: Offner et al. (2009) demonstrated that
when stars are formed in turbulent calculations their initial velocities with respect
to the local gas is indeed low. On the other hand Kruijssen et al. (2012) showed that
once clusters start to form via the hierarchical assembly process described above they
form sub-systems which are in rough virial equilibrium and for which the increased
relative velocity between stars and gas would make Bondi-Hoyle accretion a relevant
process. This is consistent with the result mentioned above in which low-mass stars
form from accretion of rather localised gas whereas more massive stars can attain
a large fraction of their mass via accretion in cluster cores. Although this picture
might still have some relevance to how the simulations build up stellar mass (and we
emphasise that this is of course not the same as demonstrating its relevance to stellar
mass acquisition in real systems), it should be noted that simulations apparently
do not obey the quadratic relationship between stellar mass and accretion rate that
under-pins the Bondi-Hoyle argument (Maschberger et al. 2014).

Before we leave such ‘vanilla’ calculations, it is worth dwelling further on the
result that we have just noted, i.e. that the stellar motions within forming clusters
appear to be in rough virial equilibrium with the potential produced by the stars
alone and thus that the clusters within the simulations are internally gas-poor. This
result does not appear to be a numerical issue with sink particle accretion inasmuch
as the rapid accretion of gas within the region of the clusters dominated by the stars
is insensitive to sink particle radius and resolution (Kruijssen et al. 2012) and also
to numerical method (i.e. a similar result is found in the AMR based simulations of
Girichidis et al. 2012). This result—if true also in the case of real protoclusters—
would have profound consequences for the issue of cluster survival which we will
discuss further inChap.6: it is often assumed thatmany star clusters become unbound
(so-called cluster ‘infant mortality’) when gas—which was previously assumed to
be the dominant mass component within embedded stellar clusters—was expelled.
If in fact the clusters are already gas-poor on the scale of the stars (i.e. if the mass
reservoir for further star formation is mainly located outside the stellar cluster) then
gas-loss becomes irrelevant for star cluster survival.

http://dx.doi.org/10.1007/978-3-662-47290-3_6
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3.5 Summary

We have surveyed the range of statistical descriptors that are used in the analysis
of both observational data and the output of simulations, considering such issues
as the spatial distribution of gas and stars, the stellar IMF, clustering and stellar
mass segregation. We have then proceeded to a thumb-nail portrait of the largest
scale simulation of cluster formation yet conducted—that of Bonnell et al. (2008)
which models a cloud of mass 104 M� which forms around 15 star clusters over a
timescale of∼0.5Myr. Although this simulation is considerably less sophisticated in
terms of the physical processes modelled than are some of the simulations described
in Chap.4, it has nevertheless introduced some of the generic properties of cluster
formation simulations. In particularwehave drawnattention to the hierarchical nature
of cluster assembly: the basic unit of cluster assembly on all scales is the small N
(<10) cluster and large-scale clustering proceeds through a process of successive
gas-mediated cluster mergers.
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