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Abstract This paper developed a new method named as MPG/FEM method which
is constructed by coupling the meshfree poly-cell Galerkin method (MPG) with the
finite element method (FEM) for the analysis of elasticity problems. The present
MPG/FEM method synthesizes the advantages of both FEM and MPG. MPG/FEM
method not only simplifies the implementation of essential boundary conditions like
FEM, but also inherits good accuracy from MPG. The numerical tests in the present
work demonstrate that the results obtained by MPG/FEMmethod show an excellent
agreement with the theoretical results. The coupled method is very accurate and has
a promising potential for the analyses of more complicated elasticity problems.
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1 Introduction

The finite element method (FEM) has been widely applied to solve various types of
problems in science and engineering in the past several decades [1]. However, due
to its strong reliance on element mesh, it is always difficult (or even impossible) to
simulate some problems such as large deformation problems with severe element
distortions, crack growth problems with arbitrary and complex paths which do not
coincide with original element interfaces, and the problems of breakage of material
with large number of fragments [2]. In order to eliminate these shortcomings, the
meshfree methods (MMs) have been developed and achieved remarkable progress in
the recent years. They include the smoothed particle hydrodynamic method (SPH)
[3, 4], the element-free Galerkin method (EFG) [5], the reproducing kernel par-
ticle method (RKPM) [6], the meshless local Petrov-Galerkin method (MLPG)
[7, 8], etc.
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As elements are necessary inFEM, the integration cells based onbackgroundmesh
are also required in EFG regardless of the actual geometrics. Compared with FEM,
MMs have more difficulties in accurate integration, for the boundaries of integration
domains do not align with shape function supports [9]. Then, MLPG is developed
to waive the background cells [7], however, it resulted in an unsymmetrical stiffness
matrix and obviously led to additional difficulties and extra expenses for analysis.
The stabilized conforming nodal integration method is presented thereafter, but the
nodal volume is not easy to evaluate [10], especially for 3D problems with complex
geometries. To evaluate the volume of nodal support, the Voronoi diagram [11, 12]
and other meshfree methods based on it [3, 13, 14] are adopted, nevertheless, the
generation of Voronoi diagram is much more time-consuming and expensive than
Delaunay triangulation which is widely used in standard FEM [15, 16].

The meshfree poly-cell Galerkin method (MPG) [17] employed the ploy-cell
which is the local support domain surrounding the node and it can make sure of the
alignment of integration domains with shape functions supports. Moreover, unlike
the standard moving least-square approximation (MLS) applied in EFG and MLPG,
an improved MLS is introduced in MPG which can avoid the frequent matrix inver-
sion and improve the computation efficiency. However, like other MMs, the shape
functions of MPG do not satisfy the Kronecker delta property, and the treatment of
essential boundary conditions is not as straightforward as that inmeshbasedmethods.

In order to tackle these problems, a coupled method has developed. The present
work introduces a new simulation method called MPG/FEM method, it couples
MPG with FEM to synthesize their advantages and overcome their shortcomings. In
MPG/FEM method, the research domain is divided into two types of sub-domains:
the first type of sub-domain which needs to impose essential boundary conditions is
simulated by FEM, the other type of sub-domain is simulated by MPG, and these
two parts are connected by transition domain which is the subdomain of the second
sub-domain. The transition domain of MPG and FEM are discretized by interface
elements, and a hybrid displacement approximation is defined to make sure that the
shape functions of these interface elements can satisfy the delta Kronecker property.

This paper is organized as follows. Section2 gives a brief description of MPG
including the construction of poly-cell local support domain, MLS approximation
and discrete equations for elasticity problems. Section3 presents the coupled method
of MPG and FEM and briefs the coupling technique. Section4 gives two typical
numerical examples of the present MPG/FEM method. Finally, some conclusions
are drawn in Sect. 5.

2 Improved Poly-Cell Galerkin Method

In the construction of MPG trail function, the influenced domain is confirmed by
poly-cell, and the moving least-squares approximation (MLS)method is widely used
to construct shape functions.
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2.1 Poly-Cell Support Construction

In the construction of MPG trial function, the influenced domain possessed by an
interested node should be confirmed firstly. Unlike the traditional MMs, whose influ-
enced domain is usually a circular domain centered by the interested node, the influ-
enced domain of MPG is confirmed by poly-cell, as shown in Fig. 1. In the poly-cell
local domain, a background mesh is firstly generated that may cover the whole
research domain. The background mesh can be either Voronoi diagram or regular
mesh [15], and the regular mesh is preferred in this paper. For an arbitrary node, its
host cell needs to be found firstly, and then the local support domain can be obtained
by extending the size of its host cell in four directions (x+, x−, y+, y−) [17]. The
extending distance in direction x+ of the given node can be expressed as: dx+

eI = necx ,

where cx is the size of host cell in the x direction, ne is a constant integer (ne = 1
in this work). The extending distances in other directions are obtained in the similar
way.

After obtaining the local support, the weight function requires to be defined based
on this poly-cell local domain. Suppose a node I has a local support shown in Fig. 2,
then the weight function of node I is defined by wI (x, y) = f (x)g(y), in which

f (x) =
⎧
⎨

⎩
e
−β

[
x−xI

0.5(xmax
I −xmin

I )

]2

, if xmin
I ≤ x ≤ xmax

I
0, else,

(1)

g(y) =
⎧
⎨

⎩
e
−β

[
y−yI

0.5(ymax
I −ymin

I )

]2

, if ymin
I ≤ y ≤ ymax

I
0, else,

(2)

where β is a constant parameter, which will be studied in Sect. 4.

Fig. 1 Schematic of constructing poly-cell local support based on regular background mesh
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Fig. 2 A sampling local
support of interested node I .
Note This node may not be at
the center of the support
domain

2.2 Moving Least-Squares Approximation

Lancaster andSalkauskas [18] presentedmoving least-squares approximation (MLS),
which is widely applied to form trial functions inMMs. Consider a field u(x) defined
in the 2D domain Ω with boundary Γ , which can be approximated in the following
form:

uh(x) =
m∑

i=1

pi (x)ai (x) = pT (x)a(x), (3)

p(x) = [
p1(x), p2(x), . . . , pm(x)

]T
, (4)

a(x) = [
a1(x), a2(x), . . . , am(x)

]T
, (5)

where p(x) is the vector of basis functions pi (x) built by the Pascal’s triangles, a(x)

is the vector of unknown nodal parameter of the field u(x), x is the space coordinates,
and m is the number of basis functions.

Todeterminea(x), a quadratic function J (x) is constructed by the value of approx-
imation function uh(x) and field function u(x) at arbitrary node i :

J (x) =
n∑

i=1

wi (x)
[
uh(xi ) − u(xi )

]2 (6)

=
n∑

i=1

wi (x)

[ n∑

i=1

p j (xi )a j (xi ) − ui

]2

,

where n is the number of nodes inside and on the boundary line of the local support,
and wi (x) is the value of the weight function. The partial derivative of J (x) with
respect to a(x) leads to the following equation:

A(x)a(x) = B(x)u, (7)
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where the moment matrix A and basic matrix B are expressed by

A(x) =
n∑

i=1

wi (x)p(xi )pT (xi ), (8)

B(x) = [
w1(x)p(x1), w2(x)p(x2), . . . , wn(x)p(xn)

]
, (9)

u = (u1, u2, . . . , un)T . (10)

Solving Eq. (7) yields:

a(x) = A−1(x)B(x)u. (11)

Substituting Eq. (11) back into Eq. (3) leads to:

uh(x) = pT (x)A−1(x)B(x)u = N (x)u, (12)

N (x) = pT (x)A−1(x)B(x), (13)

where N (x) is the vector of MLS shape functions.
In the improved MLS approximation, the Schmidt orthogonalizing formulas is

imported to orthogonalize the vector of basis functions r(x). Substituting r(x) as
p(x) into equations of the standardMLS.A similar formof equationswill be obtained
as follows:

A(x) =
n∑

i=1

wi (x)r(xi )r
T (xi ), (14)

B(x) = [
w1(x)r(x1), w2(x)r(x2), . . . , wn(x)r(xn)

]
. (15)

Since the vector r is an orthonormalized vector, matrix A will be an identical
matrix, and then the modified shape functions simplified as:

N (x) = r T (x)B(x). (16)

The advantage of using orthogonalized basis functions is that it not only reduces
the computational cost, but also improves the accuracy of interpolation [19].

2.3 Discrete Equations

Consider a solid problem defined in domain Ω bounded by Γ (Γ = Γt + Γu), the
governing equations of the problems can be expressed as follows:

∇σ + b = 0 (in Ω), (17)
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σ × n = t̄ (on Γt ), (18)

u = ū (on Γu), (19)

where ∇ is the divergence operator, σ = [σx , σy, σxy]T is the stress vector, u =
[u, v]T is the displacement field, b = [bx , by]T is the body force vector, t̄ is the
prescribed traction on natural boundary, ū is the prescribed displacement on essential
boundary, andn is the vector of unit outwardnormal at a point on the natural boundary.

Liu [20] presented the unconstrained Galerkin weak form for elasticity problems
as Eq. (20).

∫

Ω

(Lδu)T DLudΩ −
∫

Ω

δuT bdΩ −
∫

Γ t
δuT tdΓ = 0, (20)

where L is the differential operator.
In linear elasticity, the material matrix D for plane stress problem and plane strain

problem are expressed respectively as Eqs. (21) and (22):

D = E

1 − v2

⎡

⎣
1 v 0
v 1 0
0 0 1−v

2

⎤

⎦ , (21)

D = E(1 − v)

(1 + v)(1 − 2v)

⎡

⎣

1 v
1−v 0

v
1−v 1 0
0 0 1−2v

2(1−v)

⎤

⎦ , (22)

where E is Young’s modules and v is possion’s ratio.
Like FEM,MPG uses the similar global weak form given in Eq. (20). Substituting

the approximation equations into Galerkin weak form leads to K u = f, where

Ki j =
∫

Ω

BT
i DB j dΩ, (23)

fi =
∫

Γt

N T
i t̄dΓ +

∫

Ω

N T
i bdΩ, (24)

Bi =
[

∂ Ni
∂x 0 ∂ Ni

∂y

0 ∂ Ni
∂y

∂ Ni
∂x

]

. (25)

3 Coupling of MPG and FEM

In order to coupleMPG and FEM, the displacement compatibility and the force equi-
librium conditions on interface boundary should be satisfied. The hybrid displace-
ment approximation and hybrid shape functions are proposed in MPG/FEMmethod.



A Coupled Method of Meshfree Poly-Cell Galerkin and Finite Element … 95

1. Transition Condition
Consider a 2D solid problemwhose problem domain can be divided into two parts

Ω1 and Ω2, and these two sub-domains are connected by the interface boundary ΓI .
FEM is used in Ω1 and MPG is used in Ω2 as shown in Fig. 3. In the coupling of
MPG and FEM, the displacement compatibility and the force equilibrium conditions
on ΓI should be satisfied.

Thus, the nodal displacements U (1)
I and U (2)

I of node I on ΓI for Ω1 and Ω2
should be equal.

U (1)
I = U (2)

I = UI . (26)

And the summation of the nodal forces F (1)
I and F (2)

I of node I on ΓI for Ω1 and
Ω2 should be zero.

F (1)
I + F (2)

I = 0. (27)

In the coupled methods, it is ideal to satisfy the both two requirements. The
displacement compatibility is more important and must be satisfied precisely, while
the force equilibrium condition could be satisfied approximately by using themethod
of weighted residuals in some coupled methods [21].
2. Coupling Technique

Due to the shape functions of MPG lacking delta Kronecker property, it is impos-
sible to couple MPG and FEM directly. So, the transition domain is introduced in
MPG domain [21], in which the interface elements are discretized and the MLS
shape functions are constructed near the interface boundary ΓI . In these interface
elements, a hybrid displacement approximation is defined to make sure that the
MLS shape functions in the MPG domain along ΓI can satisfy the delta Kronecker
property. Figure3 shows the transition domain ΩI which is a layer of sub-domain

Fig. 3 Interface elements
used in MPG/FEM method
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along the interface boundary ΓI within MPG domain Ω2. The new displacement
approximation in MPG domain Ω2 can be rewritten as

uh(x) =
n∑

i=1

Ñi (x)ui , (28)

where the hybrid shape functions of the interface elements are defined as

Ñi (x) =
{[

1 − R(x)
]
Ni (x) + R(x)ϕ(x), x ∈ ΩI

Ni (x), x ∈ Ω2 − ΩI ,
(29)

where ϕ(x) is the FEM shape functions of an interface element, R(x) is a ramp
function and it is performed as

R(x) =
k∑

j=1

ϕ(x), x ∈ ΓI , (30)

where k is the number of nodes located on the interface boundary ΓI for an interface
element. According to the property of FEM shape functions, R(x)will be unity along
ΓI and vanish outside of the interface domain:

R(x) =
{
1, x ∈ ΓI

0, Ω2 − ΩI .
(31)

Therefore, the modified interface shape functions can satisfy both FEM interpo-
lation and MPG approximation, and it means that the coupling of MPG and FEM
can satisfy displacement consistency and interpolate a linear field precisely.

4 Numerical Examples

Two cases of 2D Elasticity problems have been studied in order to examine the
properties of the presented MPG/FEM. The variable units used in this paper are
based on international standard unit system unless specially denoted.

4.1 Cantilever Beam

A 2D cantilever beam with length L , height D and unit thickness is studied as
a benchmark problem here. The beam is fixed at the left end and subjected to a
parabolic traction P at the free end as shown in Fig. 4. Timoshenko and Goodier [22]
calculated the theoretical solutions in stress for the plain strain case as follows.
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Fig. 4 A 2D cantilever
beam subjected to parabolic
traction on the right end

⎧
⎨

⎩

σxx = − P
I (L − x)(y − D

2 )

σyy = 0
σxy = − Py

2I (y − D),

(32)

where I is the moment of inertia of D3/12.
The parameters in the computation are taken as: L = 8, D = 1, P = −1,

v = 0.25, E = 3.0 × 107, and the plane strain condition is assumed.
As shown in Fig. 5, the beam is divided into two parts. FEM using the four-

node quadrilateral elements is used in the left part where the essential boundary
condition is included, and MPG is used in the right part where the traction boundary
condition is included. These two parts are connected by the transition region which is
a sub-domain of MPG domain and discretized by 10 regularly distributed transition
particles. Figure6 illustrates the error of stress in x direction at the cross-section of
x = L/2 with different value of β between calculated value and theoretical value.
The figure shows the error is smaller with a larger value of β , and β is selected to
be 0.8 as the optimal parameter.

Fig. 5 Discretized model of the cantilever beam

Fig. 6 Comparison for error
of stress in x direction at the
cross-section of x = L/2
with different value of β
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4.2 Hollow Cylinder Under Internal Pressure

A hollow cylinder with an internal radius a, an external radius b and unit thickness
is considered as another typical problems to validate the MPG/FEM. As shown in
Fig. 7, the uniform pressure p is applied to the inner surface (r = a), while the outer
surface (r = b) is free of traction. Due to the symmetry of the problem, only one-
quarter of the cylinder ismodeled. Also, Young andBudynas [23] gave the theoretical
solution.

⎧
⎪⎨

⎪⎩

σr = a2 p
b2−a2

(1 − b2

r2
)

σθ = a2 p
b2−a2

(1 + b2

r2
)

σrθ = 0.

(33)

In the numerical computations, the following parameters are chosen: a = 1,
b = 5, p = 1, and the plane stress conditions are assumed. The material used is
linear elastic with Young’s modules E = 1 × 103 and v = 0.25 unless specially
denoted.

As shown in Fig. 8, the hollow cylinder is also divided into several sub-domains.
FEM is used in the sub-domain where the essential boundary condition is included,
MPG is used in anther sub-domain, and these two sub-domains are connected by
transition domain. Figure9 contrasts the solution for stress in radial direction and
circumferential direction between theoretical and calculated value by the coupled
method with β equals 0.8, and they both show an excellent alignment between the
theoretical results and numerical results.

Fig. 7 A hollow cylinder subjected to internal pressure p and its quarter model
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Fig. 8 Discretized model of the hollow cylinder
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Fig. 9 Comparison of solutions for stress
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4.3 Results and Analysis

Numerical examples have shown an excellent consistency between the theoretical
and numerical results, and the following can be seen clearly:

(1) The improved poly-cell local support domain guarantees the alignment of inte-
gration domain and support of the shape functions, which can significantly
improve the accuracy of numerical integration.

(2) Comparing with FEM, the MPG/FEM method is more flexible in dealing with
the geometrical boundary, only the essential boundary which is limited in the
studied boundary is simulated with the same way to FEM.

(3) Comparing withMPG, the shape functions of MPG/FEMmethod can satisfy the
Kronecker delta property, so it is easier to impose essential boundary conditions.

(4) An excellent agreement has presented by comparing the solutions for stress
between the theoretical and numerical results, and it shows the MPG/FEM
method has a high precision in dealing with elasticity problems.

5 Conclusions

Formulations of a coupled method named asMPG/FEMmethod are presented in this
paper. Numerical examples such as hollow cylinder under internal pressure, shows an
excellent agreement between the theoretical and numerical results. The advantages
of MPG/FEM are as follows:

(1) The poly-cell local support domain guarantees the alignment of integration
domain and support of the shape functions, which can significantly improve
the accuracy of numerical integration.

(2) Comparing with FEM, the MPG/FEM method is more flexible in dealing with
the geometrical boundary, only the essential boundary which is limited in the
studied boundary is simulated with the same way to FEM.

(3) Comparing withMPG, the shape functions of MPG/FEMmethod can satisfy the
Kronecker delta property, so it is easier to impose essential boundary conditions.

(4) An excellent agreement has presented by comparing the solutions for stress
between the theoretical and numerical results, and it shows the MPG/FEM
method has a high precision in dealing with elasticity problems.
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