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Abstract. Semantic networks are often used to represent the meaning of a word in
the mental lexicon. To construct a large-scale network for this lexicon, text corpora
provide a convenient and rich resource. In this chapter the network properties of a
text-based approach are evaluated and compared with a more direct way of assessing
the mental content of the lexicon through word associations. This comparison indi-
cates that both approaches highlight different properties specific to linguistic and
mental representations. Both types of network are qualitatively different in terms of
their global network structure and the content of the network communities. More-
over, behavioral data from relatedness judgments show that language networks do
not capture these judgments as well as mental networks.

1 Introduction

In cognitive science semantic networks, in which words are connected with each
other through a set of links, have been introduced over 50 years ago in the work of
Collins and Quillian (1969) and Collins and Loftus (1975) and have remained an in-
fluential theoretical model of the mental lexicon ever since. Until very recently, this
model has been employed mainly as an elusive metaphor and idealized theoretical
construct, since sizable implementations of such a network were missing. This has
changed through a combination of factors such as the availability of large corpora,
increased computational resources, and accelerated advances in network theory.

In this chapter two approaches towards constructing a large-scale network model
of the mental lexicon are compared that make use of novel corpora. A first one is
based on word associations and a second one is based on linguistic representations
derived from a syntactically annotated text corpus.
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While previous work has looked into both types of corpora (De Deyne and Storms
2008; Kenett et al. 2011; Motter et al. 2002; Steyvers and Tenenbaum 2005; Solé
et al. 2010), the interpretation of the findings is complicated by the lack of con-
trol for factors such as the number of tokens or network size. Another reason why
such a comparison has been lacking is the limited size of around 5,000 nodes of
the frequently used word association networks based on the University of Florida
dataset (Nelson et al. 2004). In this chapter, a new word association corpus based on
over 12,000 cues and over 3 million responses will be described, which for the first
time enables a comparison with a similar-sized network derived from text resources.
Apart from comparability, the choice of these two types of corpora also allows for a
comparison between a representation based on purely linguistic materials from text
and a representation that accesses more mental properties present in the lexicon by
looking at word associations. In other words, by matching quantitative properties
regarding the size of the network, the comparison allows for the identification of
qualitative differences between the two networks.

This chapter will compare the networks’ structure at a global and intermediate
level by capitalizing on the innovative contributions of network science as a unifying
formal framework to examine the structure at different levels simultaneously.

1.1 Macro-, Meso-, and Microscopic Properties of the Mental
Lexicon

The fundamental strength of the network account lies in the way it addresses the
structure of the lexicon at the macroscopic, mesoscopic, and microscopic level si-
multaneously. The ability to do so is an important feat of network science, since
studies of complex systems indicate that different functional patterns emerge de-
pending on the level of analysis and complexity of the network.

The macroscopic or network level reflects the combined role of all the connec-
tions between the nodes of the network. In naturally occurring networks, this pattern
of connections is often very distinct from comparable random networks, for instance
in the case of small-world networks. Over the past years, studies have revealed a
small-world structure in both linguistic and word association networks (Steyvers
and Tenenbaum 2005; De Deyne and Storms 2008). In these small-world networks,
regardless of the starting node, any other node can be reached in less than four steps
on average. Moreover, in contrast to comparable random networks, the networks
also contain a small number of highly connected nodes or hubs. Similarly, the inter-
connectivity among neighboring nodes indicated by the clustering coefficient, tends
to be much larger in these networks than in comparable random networks.

The way a network is organized at the macroscopic level provides insight in its
robustness against damage and efficiency of information dissipation (Bullmore and
Sporns 2012). It also captures various dynamic properties such as the gradual growth
(Steyvers and Tenenbaum 2005), abrupt emergence of new cognitive functions dur-
ing development, as well as the degradation of these functions with aging or neu-
rodegenerative illness (Baronchelli et al. 2013).
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The mesoscopic or group level involves the properties of a considerable subset
of nodes in the network. The structure at the mesoscopic level in the mental lexicon
is informative of the meaning of words. This is achieved by computing the distance
between a set of words through a set of direct and indirect paths connecting them.
These distances allow us to identify closely knit regions in the network. In network
science, this method is called community detection. It has been successfully applied
in cognitive science to uncover the community structure of phonological networks
(Vitevitch 2008), and to identify different word senses in small word association net-
works (Lancichinetti et al. 2011). Identifying the communities in the mental lexicon
might reflect similarity in meaning on a variety of grounds. For instance, this could
be a taxonomic structure with groupings for different types of animals like birds,
mammals, or fish (Rosch 1973). Communities could also be thematic, where differ-
ent members of a community occur in a specific script, like a restaurant community
consisting of members such as eating, bill, waiter, and dessert (Schank and Abel-
son 1977). Perhaps the communities group together words in a manner reflecting the
neuro-anatomic properties of the brain leading to a distinction between living kinds
and artefacts (Warrington and Shallice 1984), abstract and concrete words (Crutch
and Warrington 2005) or categories grounded by emotional responses (Niedenthal
et al. 1999). These are just a few examples, and it is quite likely that the investigating
of a large network of words might point towards a structure different from these.

Focusing on just a pair of nodes rather than a larger subset, the mesoscopic level
is also informative about how related or close two nodes are and what types of paths
exist between them. Since the early propositional network model by Collins and
Quillian (1969), the closeness between a pair of nodes has been shown to predict
the time to verify sentences like a bird can fly (Collins and Quillian 1969). To ac-
commodate for a larger set of behavioral data, the theory was extended to include
the notion of spreading activation (Collins and Loftus 1975), in which both direct
and indirect paths contribute to the closeness of pairs of words. In network theory,
spreading activation is often thought of as a stochastic random walk, resulting in a
measure of relatedness that reflects both the number and the length of paths con-
necting two nodes in the network. Such a random walk model allows us to infer
additional information beyond the direct connection between two nodes, which has
been shown to improve predictions of human similarity judgments (Capitán et al.
2012; Van Dongen 2000), and the extraction of categorical relations between words
(Borge-Holthoefer and Arenas 2010).

A quintessential example of the role of these connections is the study of word
priming. In priming tasks, the processing of a word is enhanced when it is preceeded
by a related word. In the case of associative priming this involves the presentation of
a prime such as dog which facilitates processing of the word bone. In network terms,
such facilitation might be explained by the presence of an associative link between
these words. Closely related is mediated priming, whereby one word primes another
because they are connected through a mediated link, as in the example of stripes –
tiger – lion. This type of priming is of particular theoretical importance, as it allows
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testing the assumption of activation spreading throughout the network (Hutchison
2003) similar to the original proposals by Collins and Loftus (1975). A final type
of priming that is often considered distinct from the two previous ones, is semantic
priming. Here, an ensemble of shared features or links rather than a single connec-
tion determines whether or not priming occurs. From the provided examples it will
be clear that a network account provides an elegant way to understand many of the
documented priming effects. In this area as well, such an account has been mostly
influential at a theoretical level, rather than has made use of a fully implemented
model of the mental lexicon.

The microscopic or node level of analysis of the network focuses on how a single
node is connected with the rest of the network. Examples are node centrality mea-
sures, such as the number of in- or outgoing links. These type of centrality measures
have been studied quite extensively in psycholinguistics and explain why certain
words are processed more efficiently than others (Nelson and McEvoy 2000; Chum-
bley 1986; de Groot 1989; Hutchison 2003). In this case network-derived measures
provide a structural explanation for many lexical properties of words which have
been demonstrated to facilitate word processing.

Structural explanations have been given for the effects of variables such as age-
of-acquisition (Steyvers and Tenenbaum 2005) and word frequency (Monaco et al.
2007). An interesting example is the finding that highly imageable words such as
chicken will be processed faster and more accurately across a range of tasks, includ-
ing naming and lexical decision, compared to more abstract words such as intuition.
Such a finding can be explained by looking at the set-size (i.e., summed in- and out-
degree) of a word. Researchers believe concrete words have smaller associate sets
than abstract ones (Galbraith and Underwood 1973; Schwanenflugel et al. 1992)
while others believe that concrete words have more semantic properties than ab-
stract words (de Groot 1989; Plaut and Shallice 1993). A network approach has the
potential to tease these two explanations apart.

1.2 Acquiring a Mental Lexicon through Language

The rationale of the current approach, in which the mental lexicon is implemented
as a network derived from language, is that this lexicon should reflect a repository
of shared subjective meaning, allowing language users to communicate efficiently.
It is shared under the assumption that with increasing proficiency a speaker acquires
a lexicon that mimics the linguistic properties of his or her environment. It is ef-
ficient, assuming that it is organized in a non-trivial fashion to meet information
retrieval demands. Represented as a network or graph, the mental lexicon consists
of nodes corresponding to lexicalized concepts, and links between these nodes indi-
cate lexico-semantic relationships between these nodes.
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We believe the mental lexicon acquires meaning through the continuous exposure
to words in context, following similar ideas by Wittgenstein (2001) and Firth (1968),
where word meaning is equated to its use in language. This is also the idea that un-
derlies many large-scale models which track the co-occurrence of words at the doc-
ument level (e.g. Landauer and Dutnais 1997) or at the sentence level (e.g., Lund
and Burgess 1996). However, as many studies have shown, humans do not merely
encode the surface level-properties of a single sentence or a larger discourse unit.
Instead, it is assumed that a mental model is constructed that conveys the crucial
information of the utterance beyond the verbatim format and involves comprehen-
sion of the syntactic nature of its constituents (Dennis 2005; Kintsch and Mangalath
2011) and the integration of its meaning with prior knowledge (Kintsch 1998; Prior
and Bentin 2003).

Indeed, in addition to learning about which words co-occur in language, knowl-
edge about different parts-of-speech and syntactic constructions are likely to be used
by humans to capture additional information about the meaning of an utterance
(Dennis 2005; Kintsch and Mangalath 2011). In many languages word meaning
and part-of-speech characteristics are highly correlated, which allows one to infer
what the actions (verbs), entities (nouns) and properties of these entities (adjectives)
are. Similarly, syntactic relationships between a subject and an object might reveal
something about agency. Furthermore, various studies have shown that linguistic
models that incorporate this information provide a better account of human related-
ness judgments compared to n-gram models that do not (Heylen et al. 2008; Padó
and Lapata 2007). Altogether, this suggests that a language network derived from a
syntactically annotated text corpus will lead to a representations that capture some
key properties of the mental lexicon.

One limitation of this linguistic approach is the fact that language is not merely
representational, as it is used to convey a message between a speaker and a listener.
Utterances comprise pragmatic factors as well. Compared to a text-based network,
this is one of the main reasons to assume that a word association model is likely
to encode mental representations differently, as they are considered to be free from
pragmatics or the intent to communicate some organized discourse, and believed
to be simply the expression of thought (Szalay and Deese 1978). Moreover, these
associations do not necessarily reflect propositional information derived from the
linguistic environment, but might reflect imagery, knowledge, beliefs, attitudes, and
affect as well (De Deyne and Storms 2008; De Deyne et al. 2013a; Szalay and Deese
1978; Rensbergen et al. 2014; De Deyne and Storms 2008; Simmons et al. 2008).
In other words, word associations tap directly into the semantic information of the
mental lexicon.

1.3 Chapter Outline

The remainder of this chapter starts with an explanation of how a language network
is derived from a syntactically annotated text corpus, and how a mental network is
derived from a large corpus of word associations. The language network chapter
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refers to a syntactic language network, where nodes are words and where two nodes
are connected through a syntactic dependency relationship such as the adjective red
modifying the noun car. The mental network refers to a network where nodes are
also words but the relationship between them is determined by how strongly a spe-
cific word is evoked by a cue word in a word association task. Compared to the
language networks, these responses are not constrained by syntax but reflect men-
tal constraints of what prominently comes to mind. Both networks aim to capture
the mental lexicon in an unsupervised way. This contrasts with the original hand-
crafted Collins and Loftus network (Collins and Loftus 1975) or WordNet (Fell-
baum 1998), where the representations are derived manually by expert linguists. It
also differs from connectionist approaches (Rogers and McClelland 2004), where
the set of nodes and types of relations is decided in advance and connection weights
are estimated using supervised learning.

The focus will be on the macroscopic and mesoscopic levels of the networks,
as these have only been recently introduced in the context of studying structure
in the mental lexicon (Baronchelli et al. 2013). First, the macroscopic stucture of
the networks will be addressed. It will provide a characterization of their global
organization and explore the nature of network hubs.

Next, community detection will be used to explore which types of clusters of
meaning are present in language and mental networks at a mesoscopic level. An
inspection of these communities can reveal what the underlying structural princi-
ples are and how various parts of the network relate to each other. For instance, one
possibility is that the hubs identified in the previous analysis are indicative of the
important domains of knowledge represented in the network. Another possibility is
that certain nodes in the network play a special role by connecting different clusters
in the graph, for instance in the case of polysemous words. In both cases, communi-
ties of limited size might allow us to interpret hubs much easier in comparison with
hubs identified at the macro-level. Community members can also provide us with
some information about the nature of the organization of the network. According
to the dominant view in psychology, concepts are organized in a hierarchical taxon-
omy of natural categories (Rosch 1973) on the basis of shared perceptual properties,
whereas other views attribute a larger role to a structure based on thematic relations
of the lexicon (Lin and Murphy 2001).

To test whether the communities correspond with a taxonomic organization, the
classification performance for basic-level categories such as birds or fish, obtained
from human behavioral data, will be used. This allows us to evaluate whether lan-
guage and mental networks make similar distinctions and provides the opportunity
to discuss alternative interpretations if such structure wouldn’t be evident.

The final part of the mesoscopic analysis complements the classification study
but uses a more direct way of assessing the underlying mesoscopic properties of
the network. This is accomplished by using network-derived similarity measures to
predict human relatedness judgments. Considering various levels of abstraction and
different types of semantic relations (e.g., relations at the basic and domain level,
and thematic relations) allows us to generalize the results beyond concrete basic
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level nouns, which have dominated the field of cognitive science for a long time
(Medin et al. 2000). However, because the large-scale networks in this chapter are
extremely sparse such an evaluation poses a specific challenge as a simple over-
lap measure for relatedness that only takes into account shared neighbors between
words might not suffice. To address this issue a spreading activation mechanism sim-
ilar to the one originally conceived by Collins and Loftus (1975) will be proposed.
One way of implementing this is by using Markov random walks over the network,
as these also take into account indirect paths that exist between a pair of nodes.
Just like dimension reduction in high dimensional semantic spaces like Latent Se-
mantic Analysis (Landauer 2007), the spreading activation mechanism introduces a
mechanism to infer indirect links. This allows us to deal with the sparsity associated
with linguistic representations and is assumed to lead to more reliable estimates of
relatedness. This sections ends with a brief discussion of the role of this spreading
activation for both language and mental networks in predicting different types of
semantic relations.

2 Constructing the Networks

In the following section, the derivation of several networks based on word asso-
ciation and text corpora are given. Both types of networks are implemented as a
unipartite localist network, where nodes correspond to words, and are connected
through weighted directed edges with other nodes. To make the networks compara-
ble, the set of words will be restricted to those that occur in both the text corpus and
word association data.

2.1 Mental Networks

The mental network was derived from a large scale word association study con-
ducted between 2003 and 2010 at the University of Leuven.1 This study is described
in detail in De Deyne et al. (2013a). In short, it involved a total of 71,380 native
Dutch speakers. The association procedure differed from most large-scale studies
(e.g. Kiss 1968; Nelson et al. 2004) because it used a continued response format,
where each participant generated three different responses for each cue instead of
one. This allows one to get a better approximation of weak links in the network
(De Deyne et al. 2013a). This way, a total of 300 responses were obtained from 100
participants per cue, corresponding to 100 primary, 100 secondary, and 100 tertiary
associations. In order to be able to compare the results with previous work based
on a single response procedure, an additional network will be derived which only
includes the primary responses.

1 The word association project is ongoing. In 2014, the project contained at least 300 re-
sponses per cue for 16,000 Dutch cues and 8,000 English cues. The studies can be accessed
from http://www.smallworldofwords.com.

http://www.smallworldofwords.com
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Data Preprocessing and Network Construction

The word association data consisted of 3.77 million responses for a total of 12,581
different cues. About 0.20 million different response types were represented in the
data. From these data, two weighted directed networks were derived. The first net-
work Gasso1, is based on the primary responses, comparable to the common single
response datasets (Nelson et al. 2004). The second network, Gasso123, includes the
secondary and tertiary responses as well. Reducing the network from a bipartite
representation to a unipartite representation involves the removal of responses that
were not members of the set of cues. The removal of these responses did not affect
the coverage in terms of token too much, as about 87% and 83% of the response to-
kens were retained in Gasso1 and Gasso123. To allow a comparison with the language
networks which will be explained in the next section, a total of 11,252 cues (94% of
the original) were retained. With a total of 0.85 million response tokens Gasso1 and
2.41 million tokens in Gasso123 it still represents a sizeable portion of nodes present
in the original networks.

2.2 Language Networks

An advanced syntactic dependency parser was used to build a network from a
small number of predefined syntactic relations (Heylen et al. 2008; Padó and La-
pata 2007). This approach offers a number of advantages in comparison to simple
n-gram models derived from raw text because it allows us to infer the part of speech
of the words and the syntactic relation between the constituents of a sentence. Be-
cause many sentences exhibit a complex nested structure, a second advantage of this
analysis is that it captures interesting relations between words even if they are not
adjacent within an n-gram window.

Corpus

The corpus described in this chapter consists of a variety of language resources
spanning three different registers (De Deyne et al. 2014): (1) text derived from
Dutch articles in newspapers and magazines from the Twente Nieuws Corpus (Or-
delman 2002) and the Leuven Newspaper Corpus (Heylen et al. 2008), (2) informal
language retrieved from Internet web pages collected between 2005 and 2007 and
the Dutch Wikipedia retrieved in 2008 (De Deyne 2008), and (3) spoken text from
Dutch movie subtitles (Keuleers et al. 2010) and the Corpus of Spoken Dutch (Oost-
dijk 2000).

Each sentence in the corpus was parsed using Alpino, an advanced Dutch de-
pendency parser (Bouma et al. 2000). Similar to Pereira et al. (1993) and Padó and
Lapata (2007), two words were connected by a small number of predefined depen-
dency paths. To reduce sparsity, part-of-speech tagged lemma forms provided by
Alpino were used instead of word forms. In other words, plurals and inflections were
all reduced to a more basic form. Next, all lemmas were counted and only adjec-
tives, adverbs, nouns, and verbs occurring at least 60 times were retained. Applying
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this cutoff removed very infrequent words and aided in keeping the computations
manageable. The resulting corpus vocabulary consisted of 157 million tokens and
103,842 different lemmas; 82.7% were nouns, 12.6% adjectives, 4.5% verbs, and
0.2% adverbs.

Table 1 Overview of the syntactic dependency paths p and examples

Abbreviation Full Path (p) Example

ObjHd V
object of head←−−−−−−−− N We need some more coffee.

HdMod N
modification−−−−−−−→ A This is, excuse me, damn good coffee.

HdModObj N
modification−−−−−−−→ NP

object of−−−−−→ N Lucy takes a loud sip of coffee

SuObj N
subject of object−−−−−−−−−→ N Coffee contains lots of caffeine.

SuHd N
subject of head−−−−−−−−→ V This coffee tastes delicious!

Cnj N
conjunction←−−−−−→ N Norma arrives with Cooper’s pie and coffee.

SuPredc N
subject of predicative phrase−−−−−−−−−−−−−−−−→ N Coffee is a drink.

HdPredc V
predicative complement−−−−−−−−−−−−−→ A This coffee tastes delicious!

Data Preprocessing and Network Construction

The syntactic relations coded as dependency paths, together with examples and the
number of pairs for each of the eight paths are shown in Table 1. With the exception
of the HdModObj pattern of length 2, all paths p had a length of 1. For each pattern
a reverse path was created by transposing the path-dependent graph. For example,
for pattern HdMod, the weight of a path for the adjective good and the noun coffee
is derived from the transposed dependency matrix GHdMod′ . An example of the ob-
tained dependencies based on the sum of the original and transposed paths for the
word coffee is shown in Table 2. It illustrates how the most frequent relations uncov-
ered by the syntactic dependencies are interpretable as corresponding to distinctions
in terms of function, attributes, and related entities.

To allow a comparison with the mental networks, the network Glex consisted only
of words that also occurred in the mental lexicon Gasso123 which resulted in a set of
11,252 cues. The total number of tokens in Glex was 83.87 million, while Gasso1 and
Gasso123 contained only a fraction of this amount of tokens (0.85 million and 2.41
million respectively).

To further improve comparability, a new network Glex123 was derived to closely
match the properties of Gasso123. This was accomplished by making two additional
assumptions. First, apart from vocabulary size, the number of tokens in both net-
works was matched. This was achieved by sampling responses in a way that matched
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Table 2 English translations of the 5 most frequent syntax dependencies derived for coffee in
the Glex network

ObjHd HdMod HdModObj SuObj SuHd Cnj SuPred HdPred

drink free hand visitor serve tea coffee ready
will strong man person offer pastry drink cold
poor fresh taste man grow tobacco tea free
get fair sugar someone drink soda water delicious
sell black chance company cool cookie product good

the out-strength (i.e. the total number of recorded association responses) of each cue
in the mental network. In addition, because participants in the continued word asso-
ciation task were not able to provide the same associate twice, a sampling without
replacement scheme was used.

3 Exploring the Structure of Language and Mental Networks

3.1 Macroscopic Structure

Previous studies have shown that a small-world structure is present in both language-
derived networks and word association networks (De Deyne and Storms 2008; Solé
et al. 2010; Steyvers and Tenenbaum 2005). In line with this work, such a structure
should be present in all four networks derived in the previous section. By controlling
the number of observations, the macroscopic network statistics of the language and
mental networks can be directly compared. Moreover, since two different sampling
regimes were applied, the effect of denser networks can be evaluated. Of particular
interest is the clustering coefficient of the networks, as this measure provides an
indication of the amount of structure present in the networks.

3.1.1 Network Statistics

For each of the four networks, the network statistics were calculated from the largest
strongly connected component. The results are presented in Table 3. The largest
difference between the two types of networks is based on their density D. In par-
ticular, the language network Glex was over thirty times denser than Gasso1. The
matched Glex123 had a higher density than the Gasso123 network, which indicates that
language-based representations are more heterogeneous in terms of connected nodes
even when the total number of responses is matched to those of Gasso123. Presum-
ably this reflects the fact that by definition most relations in the language network
are syntagmatic (i.e., fulfilling a different syntactic role, e.g., captain–ship), while
in word associations paradigmatic responses (i.e., fulfilling a similar syntactic role,
e.g., captain–boss) are more common (Cramer 1968).
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Density also differed between the single and continued word association net-
works. As indicated by Table 3, the single response network Gasso1 had a density of
0.22%. Including the secondary and tertiary responses increased the density consid-
erably, to 0.64% for Gasso123. This confirms that the continued procedure draws on a
more heterogeneous response set through the inclusion of weaker links that might go
undetected in single response procedures (De Deyne et al. 2013b). Despite this in-
crease, the density remains very small in comparison to Glex and Glex123. Related to
the observed differences in density, Table 3 also shows how the continued response
procedure increases the in-degree (kin) and out-degree (kout) substantially, from 24.3
for Gasso1 to 71.5 for Gasso123. These values are again considerably smaller than the
corresponding ones for the language networks Glex and Glex123, reflecting the same
heterogeneous distribution of edges in the networks.

Table 3 Descriptive network statistics for each of the four graphs

Gasso1 Gasso123 Glex Glex123

M SD M SD M SD M SD

D 0.0022 0.0064 0.0611 0.0091
L 3.77 0.824 2.85 0.57 1.98 0.33 2.68 0.61
max(L) 10 7 5 7
kin 24.3 51.9 71.5 140.9 687.0 870.5 102.9 226.2
kout 24.3 8.3 71.5 16.41 687.0 870.1 102.9 41.4
CC 0.0046 0.0036 0.0015 0.0006 0.0005 0.0010 0.0009 0.0027
CCrand 0.0004 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000

All networks were characterized by small average paths L (ranging from 1.98 to
3.77 steps) and network diameters max(L) ranging between 5 and 10. In compar-
ison to a matched random network (see CCrand), the clustering coefficient CC for
weighted directed networks (see Fagiolo 2007) was considerably higher for the real
networks indicating an extensive degree of organization. Moreover, combined with
the average short paths lengths, such structure indicates a small-world organization
and replicates earlier results for the language and mental networks (Steyvers and
Tenenbaum 2005; Solé et al. 2010).2

3.1.2 Network Hubs

A second way to characterize the macroscopic structure of the network is by looking
at the most central nodes or hubs in the network. For each of the four networks, the

2 Note that the absolute values are lower than that of previous reports. This is a side-effect
of using a weighted form of the clustering coefficient as defined by Fagiolo (2007).
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ten most central nodes in terms of in-strength and PageRank with α set to .80 (Page
et al. 1998) are listed in Table 4 and illustrated in Fig. 1. Using these measures to
identify network hubs allows us to evaluate the qualitative nature of the most central
words in the networks.

Fig. 1 Large-scale visualization of hubs and communities found in the Gasso123 network

If word associations are primarily based on associative learning from the linguis-
tic environment, this should lead to hubs that closely match those in the language
network. The hubs in the mental networks such as water (Dutch: water), food (eten),
money (geld), car (auto), and pain (pijn) seem to reflect something about the basic
human needs. The hubs in the language networks show some overlap with the men-
tal networks’ hubs, but tend to include more abstract words such as year (jaar),
new (nieuw), good (goed), human (mens), own (eigen), previous (vorig), and other
(ander).

Furthermore, despite the large differences in density, the hub nodes were quite
similar in the mental networks and almost identical in the lexical graphs. The in-
strength and PageRank measure of centrality capture slightly different patterns for
the hub nodes, but were highly correlated overall, between .88 and .95. More than
the type of centrality measure itself, the largest variability was due to the type of
graph. In this case, only a moderate correlation existed between the centrality in
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mental and language networks (between .45 and .46 for in-strength and between .32
and .34 for PageRank) indicating a substantial difference in the identity of central
nodes.

A final observation is that the hubs obtained here differ from those identified
in previous reports. Where syntactic network hubs have been found to correspond
to functional words, and semantic network hubs to polysemous words (Solé et al.
2010), the current results do not include functional hubs. This mainly reflects the fact
that closed-form class words were excluded from the analysis as it would obscure
any comparison between both types of graphs. In addition, hubs in both the language
and mental networks cannot be considered polysemous in a classical sense, which
likely reflects the fact that semantic networks reported in previous work (Solé et al.
2010), were based on linguistic expert knowledge derived from WordNet (Fellbaum
1998).

Table 4 Ten most central network hubs derived from in-strength and PageRank (α = .80)
centrality measures

In-strength PageRank

Gasso1 Gasso123 Glex Glex123 Gasso1 Gasso123 Glex Glex123

money water big big water sun big big

water money human human warm water year good

food food man man sun warm new new

car car new new money food good other

music pain good good green money other year

pain music child child food sea human human

child pretty other other car pretty man man

school school woman woman fun pain previous child

pretty warm year year sea green child own

sea sea small small pretty fun own woman

3.2 Mesoscopic Structure

The following analyses will compare clusters identified through community detec-
tion methods for language and mental networks. In particular, it will investigate
the size and type of communities that can be derived from these graphs. Next,
at the most detailed level of the community hierarchy, human data for basic-level
categories will be used to explore to what degree these communities provide evi-
dence for a hierarchical taxonomic structure of the kind proposed by Rosch and col-
leagues (Rosch 1973; Mervis and Rosch 1981) or supports alternative views based
on thematic relations (Gentner and Kurtz 2005; Lin and Murphy 2001; Wisniewski
and Bassok 1999). The last evaluation continues along these lines and uses human
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relatedness judgments to evaluate which relationships are best represented in the
mental and language networks.

3.2.1 Community Clustering

To identify which clusters are represented at the mesoscopic level, the Order
Statistics Local Optimization Method (OSLOM) community finding algorithm was
applied (Lancichinetti et al. 2011). Using this method, communities (also called
modules or clusters) can be identified by evaluating the likelihood that a found com-
munity can arise in a comparable random network (Lancichinetti et al. 2011). The
proposal has a number of advantages in comparison to the many alternatives such as
the Louvain method (Blondel et al. 2008). In particular, it operates on large, directed
weighted graphs and allows for overlapping and hierarchical communities. Another
advantage of OSLOM is that nodes that are not significantly associated with a com-
munity are not assigned. For each network, communities at different hierarchical
levels were extracted.3

Hierarchical Organization and Interpretation of Communities

One of the interesting features of the OSLOM community procedure is that it iden-
tifies a hierarchical organisation by grouping smaller communities in larger ones
by evaluating statistical evidence of such a structure to occur in random compara-
ble networks. This allows us to investigate different levels of abstraction along the
same lines of the hierarchical network as originally proposed by Collins and Quil-
lian (1969) and taxonomy-based theories derived from the work of Rosch (1973).
For Gasso1 the hierarical structure had a depth of 4, while in Gasso123 the depth was
5. The hierarchy was flatter for both language networks, with a depth of 3 in Glex

and a depth of 4 in Glex123.
Starting at the highest level of the hierarchy, only a handful of communities were

identified: 4 in Gasso1, 2 in and Gasso123. In the matched language networks the top
level distinguished 2 communities in Glex and 4 in Glex123. In general, the large
number of nodes in each community at the top level makes it difficult to interpret
the meaning of these communities.

As the best community solution was found for Gasso123 at the most detailed
level (see Table 5 below), this network will be used to illustrate the structure of
the communities at the higher levels of the hierarchy. To summarize the distinc-
tions at the highest level, the most central words in each community were obtained
by calculating the community specific in-strength. For each of the five levels of
the hierarchy, the five most central items were computed and represented in Fig. 2.

3 In contrast to the previous macroscopic analyses and similar to all subsequent analyses at
the mesoscopic level, the weights in the networks were transformed using positive point-
wise mutual information (PMI) weighting because of its good performance in the context
of word co-occurrence models (Bullinaria and Levy 2007).
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Table 5 Overview of community structure in the four networks at the lowest hierarchical level

Gasso1 Gasso123 Glex Glex123

# Communities 483 506 157 70

Average size 24 25 77 147

Standard dev. size 14 12 54 152

# Homeless nodes 1182 380 512 1721

# Overlapping nodes 3040 3624 2463 1509

Maximum overlap 8 5 5 15

Mean(p) 0.085 0.051 0.096 0.150

For illustration purposes, Dutch words that were synonymous in English (e.g., the
Dutch words fruit and vrucht) were listed once in each community to convey a
maximum of information.

At depth one, Fig. 2 shows the two distinct communities, with one of them con-
taining highly central words with a negative connotation. To see whether this level
distinguishes positive and negative words, a post-hoc test was set up using valence
judgments for a large set of words from Moors et al. (2012). Ratings for a total
of 3,642 non-overlapping words belonging to the two communities in the network
were obtained. The difference in terms of valence was significant in an independent
t-test (t(3640) = 7.367, CI = [0.190,0.327]). This finding is in line with previous
research that shows that valence is the most important dimension in semantic space
(De Deyne et al. 2013; Samsonovic and Ascoli 2010) and proposals of emotion-
based category structure (Niedenthal et al. 1999). However, a combination of fac-
tors might explain the observed high-level community structure and therefore strong
conclusions might be preliminary.

From level 2 to 4, the interpretation of the communities becomes increasingly
less abstract. For instance, level 2 shows that the “negative” community in level 1
also includes abstract words or words related to human culture (knowledge, school,
money, school, religion, time,...) which is now differentiated from a pure negative
community including community hubs like negative, sadness or crossed. The subdi-
visions of the “positive” community involve the central nodes nature, music, sports,
and food which might be interpreted as covering sensorial information and natural
kinds. At this level the communities point towards a distinction of concrete vs ab-
stract words (Crutch and Warrington 2005) or natural kinds vs artifacts (Warrington
and Shallice 1984) as structural principles of the lexicon. Clearly, such an interpre-
tation is also suggestive, given the large size of the mental network communities
and even larger size of the language network communities. More work is needed to
confirm this result.

In order to be able to compare the different networks, the lowest level of the com-
munity structure provides us with the best chance of directly comparing results. An
overview of the obtained community structure is shown in Table 5. In general, the
average size of the communities was strongly related to the number of communities,
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Fig. 2 Hierarchical tree visualization of communities in the Gasso123 network. Each commu-
nity is indicated by five central members. At each depth beyond depth 2 a single example is
shown of three descendant communities.

and the standard deviation for the community sizes in Table 5 was quite large. This is
not surprising given that earlier studies show that in most networks the communities
are not necessarily equal in size (Fortunato 2010).

Comparing the different networks, the most striking result is that both the number
of communities, and the average significance p of the communities differ between
the language and mental networks. The total number of communities was much
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smaller in the language networks than in the mental networks. The large difference
between the two language networks (157 in Glex vs 70 communities in Glex123)
can be explained by the difference in density between both graphs (see Table 3).
The number of communities was quite similar in Gasso1 and Gasso123, but the mean
p-values of the identified communities indicate higher significance of identifying
communities in the latter network when compared to a matched random network.
The effect of increased density was also apparent for the language graphs, where
in comparison with a random structure, the communities found in Glex were more
reliable, as the mean p was nearly half that of the sparser Glex123 network.

Similarly, there was a large difference in terms of the number of homeless nodes,
with over three times more homeless nodes in the sparser networks (Gasso1 and
Glex123). This could indicate that for these networks the density was simply too low
to reliably assign nodes with either low in-strength and/or highly heterogeneous
neighbors to a specific module. For example, in Gasso123 the in-degree for homeless
nodes was on average 17, compared to 71 for the entire graph and the clustering
coefficient was 0.0013 compared to 0.0015 (see Table 3).

At all hierarchical levels, nodes could be assigned to multiple communities and
a large number of overlapping nodes were also present at the lowest level. As can
be seen from Table 5, networks with many and highly significant communities also
assigned more nodes to multiple communities which could indicate the ability to dis-
tinguish different senses for a specific word at this level. Moreover, in various cases
words belonging to more than a single community corresponded to homonyms or
words with related senses. For example, in Gasso123, the Dutch word bank which
means bank or couch in English, belonged to both a community indicating fi-
nance and a community for furniture and sitting. Similarly, the word language was
attributed to four different communities related to nationality, speech, language edu-
cation, and communication. Again, the mental networks provided the clearest exam-
ple of this, while the communities in the language-based networks were too coarse
to uncover some of the polysemy or homonymy present in the mental networks.

3.2.2 Taxonomic Structure Evaluation

As mentioned in previous sections, there are many different ways in which the men-
tal lexicon can be structured at the mesoscopic level and the previous exploratory
approach indicates that various factors might contribute to the organization of the
mental lexicon. However, one of the most influential ideas in psychological theo-
ries about knowledge representation is that of a hierarchical taxonomy, in which
concepts are grouped in progressively larger categories (Collins and Quillian 1969;
Rosch 1973; Murphy 2002). An example of such a hierarchy would be living-thing
<animal <bird <sparrow <house sparrow. In this hierarchy, one particular level,
the basic level, is of special significance as categories at this level capture the psy-
chological structure of concepts that is maximal informative in communication. In
this example the basic level category is that of birds, because, this level of descrip-
tion provides the best compromise between maximizing within-category similar-
ity (birds tend to be quite similar to each other as they share many features) and
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minimizing between-category similarity (birds tend to be dissimilar to fish) (Medin
and Rips 2005).

Despite the large number of studies who have looked at hierarchical taxonomic
structures for concepts and explanations of basic-level effects, most of them have
limited themselves to concrete nouns (Medin et al. 2000). Moreover, as suggested
by the community structure in the mental graphs and literature on a thematically
or emotionally organized lexicon (Szalay and Deese 1978; Niedenthal et al. 1999;
Samsonovic and Ascoli 2010), the omnipresence of hierarchical taxonomies might
be partly due to a selection bias. The goal of this section is to evaluate whether the
communities identified at the most detailed level support the idea of a hierarchical
taxonomy with a special status for basic-level categories.

Data from an exemplar generation task were used to members of basic level cat-
egories. In this task, 100 participants generated as many exemplars they could think
of for a list of six artifact categories and seven natural kinds categories (Ruts et al.
2004). The names of the categories and the number of exemplars obtained through
this procedure are presented in the first two columns of Table 6.

If the communities in each network group together different types of birds, ve-
hicles, fruits, and so on, this would indicate a taxonomic organization of semantic

Table 6 F-values and corresponding community sizes for 13 basic level categories consisting
of human-generated category members

Category size F-values

Category Human Gasso1 Gasso123 Glex Glex123 Gasso1 Gasso123 Glex Glex123

Fruit 40 93 50 142 106 0.54 0.47 0.20 0.52
Vegetables 35 42 58 132 105 0.47 0.50 0.31 0.46
Birds 53 58 63 63 55 0.61 0.53 0.64 0.63
Insects 39 53 34 83 109 0.67 0.46 0.49 0.43
Fish 37 46 48 44 53 0.55 0.57 0.47 0.53
Mammals 61 32 21 217 212 0.30 0.20 0.38 0.34
Reptiles 23 18 22 83 109 0.59 0.62 0.19 0.18

Mean 41 49 42 109 107 0.53 0.48 0.38 0.44

Clothing 46 77 70 98 536 0.36 0.35 0.28 0.15
Kitchen Utensils 71 33 18 63 58 0.29 0.20 0.30 0.25
Musical
Instrum. 46 62 24 104 69 0.56 0.37 0.59 0.71

Tools 73 51 56 51 151 0.26 0.25 0.31 0.25
Vehicles 46 25 28 135 195 0.23 0.16 0.28 0.20
Weapons 46 33 25 51 151 0.30 0.37 0.27 0.17

Mean 55 47 37 84 193 0.33 0.28 0.34 0.29
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memory. Table 6 shows the size of the best matching communities and the Jaccard
index or F-measure for clustering performance based on precision and recall for
each basic level category (Ball et al. 2011). A good solution would be found for a
clustering with high precision and recall through a high number of true positives and
a low number of true and false negatives. Starting with the category size, Table 6
shows that on average the best matching communities were of comparable size in
Gasso1 and slightly smaller (and thus more specific) in Gasso123. The sizes of the
language network communities were larger than the number of generated exemplars
by humans. This indicates that in these networks the communities are too general,
which will affect their F-values.

For each of the four graphs, the F-values are generally not very high, which in-
dicates that the communities obtained from the language and mental networks do
not provide convincing evidence for a general and strict taxonomic organization.
Notable exceptions for natural kinds categories were birds (all networks except
Gasso123), insects (Gasso1) and reptiles (Gasso123). For artifacts, the only indication
of a possible taxonomic structure was musical instruments for Glex123.

Table 7 Top 5 false positives ordered by module in-strength for words belonging to the com-
munities derived from Gasso123

Category 1 2 3 4 5

Fruit fruit juicy pit pick summer

Vegetables vegetable healthy puree sausage hotchpotch

Birds bird beak nest whistle egg

Insects insect vermin beast crawl animal

Fish fish fishing rod slippery water

Mammals rodent gnaw tail pen marten

Reptiles reptile scales animal tail amphibian

Clothing clothing fashion blouse collar zipper

Kitchen Utensils cooking kitchen stove cooker hood burning

Musical Instruments wind instrument to blow fanfare orchestra harmony

Tools tool carpenter carpentry wood drill

Vehicles speed drive vehicle motor circuit

Weapons sharp stab blade point stake

On average, natural kinds resulted in higher F-values compared to artifacts.This
result supports previous findings, showing that the inter-category structure of arti-
facts does not have a generally accepted delineation compared to the natural kind
categories (Ceulemans and Storms 2010). A contributing factor for the higher F-
values for natural kind categories in the mental networks, is that many people are
less familiar with certain members of these categories, and predominantly generate
taxonomic associates in response to these words. For example, in the case of swal-
low the dominant response was bird. This would also explain the better performance
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of Gasso1 in this evaluation, as this network only contains the first responses, which
frequently correspond to the category-label.

If the communities do not primarily consist of category coordinates, but also
contain other words, one might question what factors other than taxonomic ones
contribute to the structure found at the most detailed hierarchical level. To address
this issue, the five most central false positives for each of the 13 categories were
derived by looking at the community specific in-strength as was done for Fig. 2.
The results in Table 7 are quite illuminating. First of all, for 8 out of 13 categories
the most central item was the category label, which is in line with what can be
considered a basic-level category in the literature (Ruts et al. 2004; Rosch 1973).
However, this table also shows categories where the representation was too specific,
for instance in the case of rodent or wind instrument, which is also confirmed by the
category sizes in Table 6. One could argue that the inclusion of these category-labels
might indicate that the F-values are actually underestimates of potential taxonomic
structure. Furthermore, the human generated exemplars are not necessarily exhaus-
tive (despite the fact that 100 participants generated exemplars for each category) or
correct. For example, marten was wrongly identified as a false positive, which sug-
gests this word might have been too infrequent to be captured by 100 participants.
However, it is unlikely that this explanation suffices, as the other false positives
clearly indicate that related properties, actions, and other thematic information are
central. For example, in the case of fruit, other central community members were
juicy, pick, and summer. Other examples at the most detailed level in Fig. 2 (e.g.,
score, music theory, piano, stave, violin) support this as well. Altogether, the ab-
sence of a basic-level taxonomy even for biological categories and the widespread
thematic structure across nearly all communities for both the language and mental
networks strongly suggest that multiple factors contribute to structure in the mental
lexicon, and thematic relations are a major one of them.

3.3 Semantic Relatedness Evaluation

So far, the community detection approach provided some valuable insights about
how the mental lexicon might be structured. However, the lack of well-defined small
communities in the language networks did not allow us to fully evaluate and com-
pare the language-based and word association-based network. A common direct
way to compare these networks and see what kind of relationships they capture uses
human relatedness judgments for pairs of words (e.g., Borge-Holthoefer and Arenas
2010; Capitán et al. 2012; Hughes and Ramage 2007). By manipulating the taxo-
nomic and semantic relations between words, it is possible to precisely quantify
to what extent each network captures various aspects of the mesoscopic structure.
Three studies that were set up for this purpose are described below. In all three stud-
ies participants provided relatedness judgments for pairs of words using a 20-point
Likert scale. The nature of the pairs differed between studies. They either captured
relations at the basic level, at a more general domain level, or thematic relations that
do not follow a classical taxonomy.
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In a first study, similarity judgments for exemplars from concrete and abstract ba-
sic level categories, derived from De Deyne et al. (2008) and Verheyen et al. (2011)
respectively, were used. The data consists of similarity judgments for all pairwise
combinations of exemplars from 5 animal categories (birds, fish, insects, mammals,
and reptiles), 6 artifact categories (clothing, kitchen utensils, musical instruments,
tools, vehicles, and weapons) and 6 abstract categories (art forms, crimes, diseases,
emotions, media, sciences, and virtues). Because the comparisons were performed at
a basic-category level, they required an evaluation of nuanced and detailed proper-
ties (for instance, when comparing hamster and mouse or kindness and helpfulness).

In contrast to the information encoded at the basic category level, it is possible
that the networks cover semantics at a wider range and capture a more course struc-
ture. According to this scenario, the networks would only capture a small amount
of the variability of the relatedness structure within basic-level categories, but are
well suited to distinguish between categories, at the domain level. This would mean
that for instance natural kinds and artifacts can be distinguished at a high level in
the hierarchy, perhaps at level 2 or 3 in Fig. 2. This might be especially true for the
language networks. Since they tend to have broader clusters, they might adequately
capture domain distinctions.

To test whether the networks differ in terms of how they capture domain differ-
ences apart, a second dataset was included. In this dataset, items from the 5 basic-
level animal or 6 basic-level artifact categories introduced previously were paired,
leading to pairs such as butterfly and eagle or accordion and fridge. If the networks
are primarily sensitive to domain-level differences, this would lead to better pre-
dictions compared to basic-level categories. Since it is not feasible to present to
participants all the pairwise combinations of the combined set of artifact or animal
items, only five items from each of the artifact and animal categories were selected.
Both items that were central to the category (e.g., swallow is a typical bird and thus
a central member) and items that were not (e.g., bat is an atypical member of the
mammals set, and is closely related to birds) were included.

As suggested by the findings on the network communities, it is quite likely that
the lexicon reflects a thematic rather than taxonomic organization. If this is the case,
this would suggest a high degree of agreement for human judgments of thematic
pairs, compared to the basic-level pairs and domain-level pairs. In contrast to the
previous pairs, thematic pairs can be closely related without necessarily belonging
to a common category or domain. To test these hypotheses thematically related pairs,
such as boat and captain and rabbit and carrot were used. The set of pairs included
among others the items from the study by Miller and Charles (1991), a widely used
benchmark test in computational linguistics.

For each of the three studies the number of pairs are listed in the first row of
Table 8. An average of 17 participants provided relatedness judgments for a pair of
words. The average judgments proved very reliable with Spearman-Brown split-half
correlations ranging between .85 and .99. For details and stimuli see De Deyne et al.
(2014).
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Besides addressing how the networks predict judgments for distinct types of se-
mantic relations, an important issue that remains is the role of sparsity in each graph.
While all networks are extremely sparse, the network statistics in Table 3 indicate
large differences in terms of network connectivity. The small out-degrees in the
mental networks and the matched lexical network Glex123 hint at potential limita-
tions when overlap measures of similarity are used based on common neighbors. To
investigate if indirect paths between nodes can contribute to model derived estimates
of relatedness by reducing sparsity, a random-walk based measure for relatedness
will be proposed.

3.3.1 Network Relatedness Measures

A widely used measure of similarity is the cosine measure. This distributional over-
lap measure captures the extent to which two nodes in the network share the same
immediate neighbors. Two nodes that share no neighbors have a similarity of 0, and
nodes that are linked to the exact same set of neighbors have similarity 1. Formally, it
is defined as follows. Let A denote a weighted adjacency matrix, whose element ai j

contains a count of the number of times word j is given as an associate of word i in
a word association task or the times it occurs in a syntactic dependency relationship.
Each row in A is therefore a vector containing the associate / syntactic dependency
frequencies for word i. The cosine measure of similarity is obtained by first normal-
izing each row so that all of these vectors are of length 1. This gives us a new matrix
G, where gi j = ai j/(∑ j ai j

2)1/2, and the matrix of all pairwise similarities is now:

S = GGT (1)

The cosine measure defined in the previous section depends solely on the local
structure of the graph: the similarity between two words is assessed by looking only
at the words to which they are immediately linked. A different approach to similar-
ity aims to take into account the overall structure of the entire network graph, and
thus reflects a broader view of the relationship between two nodes. In this approach
two nodes are similar if they share many direct or indirect paths. These paths are ex-
plored by a random walker, which stochastically follows local links in the network
until the proportion of time it visits each node in the limit converges to a stationary
distribution (Hughes and Ramage 2007).

Formally, this random walk corresponds to the regular equivalence measure by
Leicht et al. (2006) and is specified by beginning with the weighted adjacency ma-
trix A. This time, however, we normalize the rows so that each one expresses a prob-
ability distribution over words. That is, we use the matrix P where pi j = ai j/∑ j ai j,
and then calculate

G′ = (I−αP−1) (2)
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where I is a diagonal identity matrix and the α parameter governs the decay in
spread of activation by determining the relative contribution of short and longer
paths. A path of length r is assigned a weight of αr, so when α < 1, longer paths
get less weight than shorter ones.4

The resulting network G′ can be thought of as a network of weighted paths. The
similarity of two nodes in this network corresponds to the similarity of their station-
ary distributions. The value of α was fixed at 0.80 (similar to the α for PageRank
used in previous sections). This represents a reasonable trade-off between some
degree of decay and a non-trivial contribution of longer paths. As in the local re-
latedness measure above, a cosine measure can then be used to derive a pairwise
similarity matrix S using these distributions. In contrast to the local relatedness mea-
sure, such random-walk based measure involves the entire network and is therefore
sensitive to the global or macroscopic structure of the network.

3.3.2 Results

For each of the four graphs, relatedness measures were derived as defined above.
The measures of relatedness were correlated with the human judgments after stan-
dardizing the measures for each category.

Table 8 Results of the similarity analyses for the four datasets (concrete, abstract, domain
and thematic) and four graphs

Basic Level Domain Level Thematic

Concrete Abstract

N 4437 694 1470 126
Local Overlap (Cosine) Gasso1 .528 .505 .711 .567

Gasso123 .593 .617 .786 .769
Glex .338 .423 .623 .463
Glex123 .337 .319 .620 .481

Spreading Activation Gasso1 .564 .616 .793 .802
Gasso123 .590 .660 .824 .827
Glex .370 .433 .718 .523
Glex123 .361 .375 .653 .504

The results for the local overlap measure presented in the top part of Table 8
show moderate to strong correlations between human judgments of relatedness and
network-derived measures. One of the most striking patterns in Table 8 is the sys-
tematic difference between the amount of variability accounted for by the four
graphs. Regardless of the dataset, the denser Gasso123 network shows substantial

4 This approach is very similar to the PageRank measure (X = (I−αP−1)1).
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better agreement than all other graphs. Moreover, even the sparse mental network
Gasso1 outperforms the lexical networks in all cases. Since the Glex network is almost
20 times denser than Glex123 (see Table 3), one would expect a better result for this
denser graph, however, a significantly different correlation was only found for the
basic-level abstract words z = 2.25, p < .05. A closer look at the different seman-
tic relations indicates that the networks primarily capture the domain judgments,
followed by thematic, and basic-level judgments. In line with the community clus-
tering results, this confirms that the networks organize meaning in a thematic way
but also include some taxonomic structure.

Next, the role of spreading activation in predicting human relatedness judgments
was investigated. The results for the random walk-based spreading activation mea-
sure show a consistent improvement for all networks and datasets. The only ex-
ception were the results for the concrete words in Gasso123, where a slightly lower
correlation was found. In this case, the setting of α = 0.80 might have resulted in
a detrimental contribution of longer paths. When α was systematically varied, the
correlation improved to .601 for α = 0.6, indicating that the optimal value of this
parameter may depend on the type of relationships under consideration. However, in
general, the correlation changes were very moderate across various parameter set-
tings. Similar to the overlap measure, the large difference in density between Glex

and Glex123 did not systematically affect the performance in these language graphs,
as only for the domain dataset the correlation values were significantly different
z = 3.33, p < .05.

In conclusion, the use of human relatedness judgments to compare how different
taxonomic and thematic relations are represented in the language and mental net-
works, resulted in findings similar to those from the community clustering of these
networks described earlier. Language and mental networks capture primarily the do-
main level relations between words followed by the thematic relations. The mental
networks also capture the basic-level conceptual structure, but the strength of this
correlation was moderate. Regardless of the dataset, the mental networks provided
a clearly better prediction of human judgments. Using longer indirect paths derived
through a stochastic random walk led to systematic improvements in both types of
networks, but did not alter the basic findings regarding the relationships captured by
these networks.

4 Discussion

In this chapter, the main goal was to compare the macroscopic and mesoscopic
properties of language and mental graphs, derived from text corpora and word asso-
ciations, respectively. One of the key results was that representations systematically
differ between both graphs. These differences in itself provide us with important
pointers about what processes operate on the linguistic input humans are exposed
to.

At a global, macroscopic level, the network-based approach unveiled a highly
structured representation that is characterized by short average path-lengths and a
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significant degree of clustering in both language and mental graphs. This indicates
that both graphs have a small-world structure. While there is some overlap between
what constitutes a hub in the respective graphs, systematic differences between node
centrality emerged. In mental graphs, a larger role for nodes that are presumably
of psychological importance exists, while in the language networks hub nodes ap-
pear to be more abstract. The latter might reflect the frequency of words typical
for language derived from newspaper and other written sources. Moreover, what
constitutes a central hub in the mental network seems to be a universal property
shared among multiple languages. For instance, for a similar ongoing word asso-
ciation project in English, the ten largest hubs in terms of in-strength in a network
with 7,000 nodes corresponded to money, food, water, love, work, car, music, time,
happy, and green.

Furthermore, the structure of the network argues against the view of the men-
tal lexicon as exclusively and strictly taxonomically organised, where words are
grouped in coherent semantic domains and categories. First of all, a substantial
number of words were part of multiple communities, which argues against mutu-
ally exclusive categories. Second, while the representations can be described in a
hierarchical clustered decomposition of the graph, most clusters or communities are
characterized by thematic coherence rather than reflecting the type of structure that
underlies thesauri, natural taxonomies, or WordNET.

The thematic structure was wide-spread, showing up in nearly all investigated
communities at various depths of the hierarchy. The finding that many words from
domains like animals, which traditionally are considered taxonomic, are themati-
cally clustered at the lowest level of the hierarchy, corroborates the idea that the
networks are organized along primarily thematic rather than categoric lines. In addi-
tion, evaluating the obtained structure in the language and mental networks through
human relatedness judgments also confirmed the thematic nature of the networks as
indicated by the large proportion of variance that was explained for thematic com-
pared to basic-level judgments. This converges with recent evidence that highlights
the role of thematic representations even in domains such as animals (Wisniewski
and Bassok 1999; Lin and Murphy 2001; Gentner and Kurtz 2006) and the fact that
a taxonomic organization of knowledge might be both heavily culturally defined
(Lopez et al. 1997), a consequence of formal education (Sharp et al. 1979) or reflect
different levels of expertise (Medin et al. 1997).

A number of explanations can account for why thematic structure was so central
in both language and mental networks. One possible explanation is the wide cov-
erage of all kinds of words in the network in terms of their abstractness, emotional
connotation, and part of speech (verbs, adjectives, and nouns). By not restricting the
type of words in the network, the risk of a selection bias towards concrete nouns
(Medin et al. 2000) is reduced and the likelihood of identifying thematic relation-
ships increases. In addition, it is quite likely that this reflects an inherent property
of language, where most words are taxonomically related to only a small number
of other words, but might occur in a variety of thematic settings. This is in line
with previous findings showing that Zipf’s law reflects the tendency to avoid exces-
sive synonymy in semantic networks (Manin 2008). Clearly, many of these claims
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remain speculative, but given their potential implications for understanding the men-
tal lexicon, it is hoped they will motivate future work.

One of the key features in many psychological network proposals is the idea of
spreading activation. The current study showed that such a mechanism is of impor-
tance as it makes use of the network as a whole. The results show that by includ-
ing not only direct paths that exist between two nodes (neighbors) but also indirect
paths, leads to an improved ability to predict human judgments of relatedness. While
this measure led to improvements in all networks, the current results also showed
that the gain of indirect paths in predicting relatedness was modulated by the spar-
sity in the original graph, which is well exemplified by comparing the gains for
Gasso1 to those of Gasso123.

Similar to the spreading activation account at the mesoscopic level, access at the
microscopic level might be governed by more than just the in-strength of a specific
node. Measures such as eigen-centrality and PageRank make it conceptually clear
that central nodes are those nodes which are easily reached among many possible
paths in the graph. These measures are examples of recursive centrality measures,
in which centrality is not only influenced by the neighbors of a node, but also takes
into account the centrality of the neighbors themselves. This might result in similar
benefits found for the spreading activation mechanism operating on sparse graphs.
Support for this idea comes from recent studies showing that PageRank accounts
for more variance than simple measures of in-strength (Griffiths et al. 2007) and de-
tailed theoretical accounts that explain word frequency advantages in word recogni-
tion through higher level structural properties of the network (Monaco et al. 2007).
Again, this illustrates the benefits of a network approach which simultaneously de-
scribes a macro-, meso- and microscopic level.

4.1 Relationship between Language and Word Associations

A number of studies have tried to predict word associations from text corpora (e.g.
Griffiths and Steyvers 2003). While this prediction is often used as a yardstick to
compare different text-based models, one of the striking patterns is the overall poor
prediction. For instance, in a study by Griffiths and Steyvers (2003), the median rank
for predicting the first word association in the University of Florida norms (Nelson
et al. 2004) using a text-based topic model was 32. Prediction of the Dutch word
association norms (which are considerably larger than the University of Florida
norms) on the basis of Gasso123 resulted in a median rank of 129, and the correct
prediction of the first associate in only 5.4% of the cases. Similar results were found
when the overlap was calculated in terms of relatedness. Here both the association
graphs were strongly correlated (.99), and so were the lexical graphs (.88). Cru-
cially, between both types of graphs, the agreement was quite small: .14 for Gasso123

and Glex and .11 for Gasso123 and Glex123. Similar comparisons of microscopic mea-
sures of centrality showed only moderate correlations between language and word
association graphs. The choice of network - language or mental - might thus lead to
different conclusions about findings that show how semantic rich nodes (i.e., those
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with a high degree, or high clustering) are processed more efficiently in naming or
word recognition (Buchanan et al. 2001; Pexman et al. 2003; Pexman et al. 2008).

The limited agreement between the networks and the systematic differences in
how they account for specific types of words (especially concrete ones) provide
further support to the idea that the association task does not rely on the same prop-
erties as common language production, but should rather be seen as tapping into
the semantic information of the mental lexicon (Mollin 2009; McRae et al. 2011).
This view resonates with the original ideas of Collins and Loftus (1975), in which
the network depends both on semantic similarity and lexical co-occurrence in lan-
guage, and other works that highlight the role of imagery and affect in the production
of word associations (Szalay and Deese 1978). As mentioned in the introduction,
the role of pragmatics in natural language explains why mentally central properties
(e.g., the fact that bananas are yellow or apples are round) are very strong responses
in word association data but much less prominently expressed in conventional writ-
ten and spoken language. To some extent, this might also be the reason why the
language networks did not fully capture the human judgments for concrete words
(see Table 8). Of course, one could also argue that the language networks in this
study are simply too limited due to the vocabulary size restrictions. It seems un-
likely that this explanation can account for the entire set of findings. First of all, the
results for Glex and Glex123 showed that a sampled network based on only a frac-
tion of the tokens produced comparable results for a number of domains. Second, a
comparable study involving a language network consisting of a vocabulary of over
100,000 lemmas and the same human relatedness judgments, produced highly sim-
ilar results (De Deyne et al. 2014). Naturally, this is not to say that additional data
and pragmatics are irrelevant. In understanding a story, for instance, where repre-
sentations that go beyond the word level are required, pragmatics are likely to play
a more central role.

4.2 Final Words

In this chapter, a view of the mental lexicon, as a weighted directed graph, with
words for nodes, has been advanced as a useful way to explore the structure and pro-
cessing of word meaning. This account is limited in various ways and by no means
complete. For instance, further studies are needed to investigate whether qualita-
tively different links could lead to a better model of the lexicon through differential
weighting of different types of relations in the language network, either syntactic
(conjunctions, modification of nouns, etc.) or semantic (hyperonymy, meronymy,
etc.).

Similar to the language network, the connections in the word association network
are presumably governed by a set of latent relations. In this area as well, the use of
a multi-network representation with different weights for various types of relations
is likely to explain additional properties of the data. On the basis of these relations,
new studies might reveal distinct types of comparison processes as suggested by
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previous work on thematic and taxonomic comparisons (Wisniewski and Bassok
1999). In particular, a first type of process could be based on the integration of a
word in a thematic context (e.g., doctor and hospital) while a second type might
involve the alignment of shared properties between similar entities (e.g., cat and
tiger). Presumably these processes might reflect a highly probable path in the former
situation, while some kind of summation over a large number of different paths
could be involved in the second process. Knowing something about the properties
of nodes on a path (e.g., whether they refer to similar physical entities, a function, or
thematic property) requires the derivation of a multi-network as mentioned earlier,
and could inform us how such a differential comparison process takes place.

Of course, there are many other areas in which a network approach is likely to
contribute in future studies of the lexicon, for instance by studying the development
of the lexicon through dynamic networks (Beckage et al. 2010), the networks of in-
dividuals (Morais et al. 2013) or by comparing the networks of healthy individuals
with clinical populations (Kenett et al. 2013). Presumably, better assumptions about
how representations are extracted from the statistical regularities in the language
environment will play an important role in these endeavors. In this respect, the ap-
plication of a syntax-based dependency model represents a first, but certainly not the
last step to build a more appropriate mental model of the lexicon. The close relation
with empirical indices of mental organization such as human relatedness judgments,
but potentially also online measures such as priming (Chumbley and Balota 1984)
and word centrality (De Deyne et al. 2013a), suggests that a mental network derived
from word associations represents a valuable alternative to model cognitive func-
tions at various levels of abstraction offered through a network science framework.
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Padó, S., Lapata, M.: Dependency-Based Construction of Semantic Space Models. Compu-
tational Linguistics 33(2), 161–199 (2007)

Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order
to the web. Tech. rep. Computer Science Department, Stanford University (1998)

Pereira, F., Tishby, N., Lee, L.: Distributional clustering of English words. In: Proceedings
of the 31st Annual Meeting on Association for Computational Linguistics, pp. 183–190.
Association for Computational Linguistics, Columbus (1993)

Pexman, P.M., Hargreaves, I.S., Siakaluk, P.D., Bodner, G.E., Pope, J.: There are many ways
to be rich: Effects of three measures of semantic richness on visual word recognition.
Psychonomic Bulletin & Review 15(1), 161–167 (2008)

Pexman, P.M., Holyk, G.G., Monfils, M.-H.: Number-of-features effects in semantic process-
ing. Memory & Cognition 31, 842–855 (2003)

Plaut, D.C., Shallice, T.: Deep dyslexia: A case study of connectionist neuropsychology. Cog-
nitive Neuropsychology 10, 377–500 (1993)

Prior, A., Bentin, S.: Incidental formation of episodic associations: the importance of senten-
tial contex. Memory & Cognition 31, 306–316 (2003)

Van Rensbergen, B., De Deyne, S., Storms, G.: Cue-association correspondence on valence,
dominance, and arousal. Manuscript submitted for publication (2014)

Rogers, T.T., McClelland, J.L.: Semantic cognition: A parallel distributed processing ap-
proach. MIT Press, Cambridge (2004)

Rosch, E.: Natural Categories. Cognitive Psychology 4, 328–350 (1973)
Ruts, W., De Deyne, S., Ameel, E., Vanpaemel, W., Verbeemen, T., Storms, G.: Dutch norm

data for 13 semantic categories and 338 exemplars. Behaviour Research Methods, Instru-
ments, and Computers 36, 506–515 (2004)

Samsonovic, A.V., Ascoli, G.A.: Principal semantic components of language and the mea-
surement of meaning. PloS One 5(6), e10921 (2010)

Schank, R.C., Abelson, R.P.: Scripts, plans, goals, and understanding: An inquiry into human
knowledge structures. Lawrence Erlbaum, Hillsdale (1977)

Schwanenflugel, P.J., Akin, C., Luh, W.M.: Context availability and the recall of abstract and
concrete words. Memory & Cognition 20, 96–104 (1992)

Sharp, D., Cole, M., Lave, C., Ginsburg, H.P., Brown, A.L., French, L.A.: Education and
cognitive development: The evidence from experimental research. In: Monographs of the
society for Research in Child Development, pp. 1–112 (1979)

Simmons, W.K., Hamann, S.B., Harenski, C.N., Hu, X.P., Barsalou, L.W.: fMRI evidence for
word association and situated simulation in conceptual processing. Journal of Physiology
- Paris 102, 106–119 (2008)
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