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Introduction

Alexander Mehler, Andy Lücking, Sven Banisch,
Philippe Blanchard, and Barbara Frank-Job

1 On the Content of This Book

Currently, we observe an advent of approaches to analyzing linguistic networks with
the methods of stochastic physics and graph theory. Generally speaking, a linguis-
tic network is represented by a graph whose vertices denote linguistic units (e.g.,
words, sentences, or textual units) and whose edges model linguistic (e.g. syntac-
tic, semantic or pragmatic) relations of these units. The aim of models operating on
such networks is to capture the synchronic, topological or evolutionary dynamics
of linguistic systems, say, on the phonological, morphological, syntactic, semantic
or pragmatic level. What these approaches have in common is that they model the
structural or temporal dynamics of linguistic systems in order to test information-
theoretical or linguistic hypotheses on the grounds of complex network theory. This
is partly done in terms of a strong network perspective according to which the net-
work approach is seen to be indispensable to test the focal hypotheses. Apparently,
the area of language evolution provides a good test case for such an approach.
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Language evolution can be seen as a meso system that connects language as a
macro system with the micro system of cognitive processes of language process-
ing. Starting from such a unified approach to language structure, language change
and processing, network approaches try to gain insights into the laws of linguistic
information processing in communities of social agents.

In spite of the remarkable success regarding the development of expressive graph
models of linguistic systems, these approaches are still in need of a unifying frame-
work. To date, the models are connected by a common methodical stance based on
complex network theory in addition to quantitative linguistics. Thus, we face a range
of diverse network models that focus on laws of information processing without
clarifying their synergetic interdependencies. This is partly due to the lack of shared
standards of data modeling, of the interoperability of algorithmic graph models and
of the sustainability of the underlying linguistic resources and corpora. Obviously,
interdisciplinary research across the boarder of computer science, linguistics and
stochastic physics may profit from the availability of such standards.

This book aims at making first steps into the direction of filling this gap. It
presents theoretical and empirical results in support of a unifying approach to lin-
guistic networks that may help to overcome bottleneck problems of this field of
research. To this end, the book comprises recent research efforts in the area of lin-
guistic networks. It brings together scientists with diverse backgrounds ranging from
linguistics to text-technology, from computational humanities to statistical network
theory. The book is organized, roughly, into six parts including semantic and syn-
tactic networks, the interplay of language and cognition, the simulation of socio-
linguistic dynamics and text-technological resources of network modeling. Special
emphasis is put on critical articles and articles that review recent developments in
the field. This includes the following fields of research:

• Resources of linguistic network analysis.
• Principles of linguistic network induction.
• Topological models of language structure.
• Models of language dynamics: evolution, diachrony, change.
• Unified models from stochastic physics.
• Network models from cognitive linguistics.
• Network models of phonological, lexical, syntactic, semantic or pragmatic sys-

tems.
• Network models of text systems in contrast to language systems.

Dealing with these and related topics, the aim of the book is to advocate and promote
network models of linguistic systems that are both based on thorough mathematical
models and substantiated in terms of linguistic interpretations. In this way, the book
contributes first steps towards establishing a statistical network theory as a theoret-
ical basis of linguistic network analysis across the boarder of the natural sciences
and the humanities.
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2 Overview of the Book

2.1 Part I: Cognition

Successful applications of network analysis with a particular focus on the interplay
of language and cognition are reviewed in the chapter of Beckage and Colunga.
Concentrating on semantic and phonological networks, it explores network features
and their relation to human language performance including the application to cog-
nitive impairment and atypical behavior.

The chapter by Vitevitch, Goldstein and Johnson combines network tools and
data from a psycholinguistic experiment to explore speech perception errors with the
aim to understand better what is perceived when a spoken word is misperceived. The
experimental results of their phonological association task are evaluated in terms of
path’ on a network of phonological similarity.

The chapter by De Deyne, Verheyen and Storms compares semantic networks
derived from text corpora with networks obtained through word association exper-
iments by looking at macro- and mesoscopic properties of both types of graphs.
While the analysis reveals structural similarities at the global level, significant dif-
ferences between text and word association graphs emerge at a lower level of com-
munity structure or centrality. The chapter also presents a comparison with human
relatedness judgments.

2.2 Part II: Topology

The chapter by Biemann, Krumov, Roos and Weihe presents a statistical analysis
of the motif signatures of co-occurrence graphs including co-authorship networks,
communication networks and linguistic co-occurrence graphs of natural and arti-
ficial languages. Based on the hypothesis that different word classes serve differ-
ent functions in a language an analysis of co-occurrence graphs for different word
classes (verbs vs. nouns vs. adjectives etc.) is performed which shows that especially
verbs are distinguishable from other word classes by their motif signature – across
different languages.

The chapter by Araújo and Banisch highlights the need to consider different ways
of network induction in network-based analysis of language and reasons that induc-
tion and analysis are strongly interdependent tasks. Based on a framework compris-
ing different abstraction levels along with levels of statistical analysis, the authors
argue that the field of linguistic networks is challenged by the fact that an interpre-
tation of topological indicators used in network analysis becomes the harder, the
higher the abstraction level of the network.

The chapter by Masucci, Kalampokis, Eguı́luz and Hernández-Garcı́a presents
an information-theoretic approach to derive a directed network of semantic flow
between Wikipedia articles using a complete snapshot of the English Wikipedia.
The authors show that the resulting semantic space is characterized by a scale-free
behavior at different scales which implies a hierarchical organization of semantic
spaces.
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The chapter by Zweig confronts the physically-inspired context-free quest for
universal structures with the need of contextual interpretations in sociology and
in linguistics. Zweig questions the usefulness of network representations of word-
adjacency relations, because most of the well-known topological indicators rely on a
rather specific network process and they may therefore be misleading if this process
is not known or not adequately modeled by the process underlying the method.

2.3 Part III: Syntax

The chapter by Čech, Mačutek and Liu presents a critical review of the application
of complex network tools to the analysis of syntax and points out the main chal-
lenges for further research. Among many other things, the article discusses the im-
pact of syntax on network properties, the preprocessing of data, and the application
of network studies to language typology and acquisition.

A second chapter dealing with syntactic dependency networks is by Chen and
Liu. Based on two syntactic dependency networks from different genres this chapter
analyses the syntactic status of three function words in Chinese. The importance
(the authors propose the notion of syntactic centrality) of the words is analyzed
by independently removing them from the network and comparing their statistical
characteristics before and after removal.

The chapter by Ferrer i Cancho challenges the existing theory of syntax by con-
fronting the observation that syntactic dependencies between the words of a sen-
tence rarely cross when drawn over a sentence with two null hypotheses for the
expected number of crossings by chance. Relying on the trade-off between parsi-
mony and explanatory power, the chapter argues that the minimization of syntactic
dependency length (as a principle that derives from limited computational resources
of the brain) can explain uncrossing dependencies and that this explanation is, from
an economic point of view, preferable over explanations relying on grammar.

2.4 Part IV: Dynamics

The role of cultural transmission in language change across three generations is an-
alyzed on the basis of an extended simulation model by Gong and Shuai. While
transmission within the offspring generation and between the offspring and the par-
ent generation fosters language change and leads, at the same time, to mutual un-
derstandability within generations and across consecutive generations, interaction
between children and their grandparent’s generation plays an important role in pre-
serving mutual cross-generational understandability in the long run.

Another simulation study is presented by Baxter who complements his numerical
results with analytical arguments. Drawing on an evolutionary approach to language
change, the author looks in detail to the convergence behavior of the model on dif-
ferent social networks and with heterogeneous patterns of mutual influence that,
taken together, may encode a variety of social structures.
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The chapter by Maity and Mukherjee presents a simulation study of the effect
of inflexible individuals on the dynamics of the naming game and shows that rigid
minorities lead to the emergence of dominant states in the population. The model
is analyzed on a series of static networks of different complexity ranging from the
complete graph to scale-free topologies and a dynamic network obtained from real-
world time-varying face-to-face interaction data is also considered.

2.5 Part V: Resources

The requirements of a data format applicable to the wide range of linguistic network
data are discussed in the chapter by Stührenberg, Diewald and Gleim. The authors
analyze various existing graph formats in relation to their expressivity and support
by common tools for network analysis and propose an extension of GraphML as a
possibly complex data model of a graph which allows to quickly extract views for
specific tasks, rather than extracting incoherent different views from raw data. It is
noteworthy, that this chapter grew out of a working group that was constituted at the
MLN conference.

The book concludes with the chapter by Mehler and Gleim who present the LN
system, an online platform for the automatic generation of lexical networks from
texts. It addresses two communities: on the one hand humanities scholars (e.g., his-
torical semanticists) who aim at studying the change of language use as an indicator
of social-semantic change. On the other hand, network theorists who are in need
of null models for making linguistic networks comparable. The workflow of the LN
system – using GraphML as an output standard for linguistic networks – is explained
and exemplified.
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(UPC), Barcelona, Catalonia, Spain
e-mail: rferrericancho@lsi.upc.edu
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Language Networks as Models of Cognition:
Understanding Cognition through Language

Nicole M. Beckage and Eliana Colunga

Abstract. Language is inherently cognitive and distinctly human. Separating the
object of language from the human mind that processes and creates language fails to
capture the full language system. Linguistics traditionally has focused on the study
of language as a static representation, removed from the human mind. Network anal-
ysis has traditionally been focused on the properties and structure that emerge from
network representations. Both disciplines could gain from looking at language as a
cognitive process. In contrast, psycholinguistic research has focused on the process
of language without committing to a representation. However, by considering lan-
guage networks as approximations of the cognitive system we can take the strength
of each of these approaches to study human performance and cognition as related
to language. This paper reviews research showcasing the contributions of network
science to the study of language. Specifically, we focus on the interplay of cognition
and language as captured by a network representation. To this end, we review dif-
ferent types of language network representations before considering the influence
of global level network features. We continue by considering human performance
in relation to network structure and conclude with theoretical network models that
offer potential and testable explanations of cognitive and linguistic phenomena.

1 Introduction

Over the last 15 years network analysis has taken off as a rich and fruitful tool
to study complex systems across many disciplines. The strength of this approach

Nicole M. Beckage
University of Colorado Boulder, Department of Computer Science
e-mail: nicole.beckage@colorado.edu

Eliana Colunga
University of Colorado Boulder, Department of Psychology and Neuroscience
e-mail: eliana.colunga@colorado.edu

© Springer-Verlag Berlin Heidelberg 2016 3
A. Mehler et al. (eds.), Towards a Theoretical Framework for Analyzing Complex Linguistic Networks,
Understanding Complex Systems, DOI: 10.1007/978-3-662-47238-5_1

nicole.beckage@colorado.edu
eliana.colunga@colorado.edu


4 N.M. Beckage and E. Colunga

lies in the fact that one can formally study a system of objects (nodes) and re-
lations (edges). This is particularly important and relevant for studying language.
This framework allows for the interactions of objects to be as important as the ob-
jects themselves–allowing the system, as well as the constituents of the system, to
be studied. Language can be studied both as an object and as a process. Network
analysis techniques allow us to consider both structure and process in turn. The net-
work representation is both simple enough to be analyzed at the system level, and
detailed enough to be examined at a more local level (constituents or constituent
subgroups). The application of network analysis to language allows for the study of
not only how language is structured, but the influence of this structure on human
performance, and as we will argue, the cognitive processes that exploit and give rise
to this structure.

In this paper we will review research demonstrating the usefulness of network
representations for language. Importantly, we focus on the interplay of cognition
and language, as captured by a network representation. Language is inherently cog-
nitive and distinctly human. Separating the object of language from the human mind
fails to capture the language system fully. Similarly, considering just the emergent
properties of a language representation ignores the cognitive aspects of the repre-
sentation and use of language. Linguistics, traditionally, has been focused on the
study of language as a static representation, removed from the human mind. Net-
work analysis has traditionally been focused on properties and structure that emerge
from the network representation. Both disciplines could gain from looking at lan-
guage as a cognitive process. In contrast, psycholinguistic research has focused on
the process of language without committing to a representation. However, by con-
sidering language networks as approximations of the cognitive system, we can take
the strength of each of these approaches to study human performance and cognition
as related to language.

We review the successful demonstrations of applying network analyses to lan-
guage and discuss the implications of placing these results in the context of cogni-
tion. We specifically focus on lexical networks in which the nodes are words, and
edges are relations between the words. In the first section we introduce two main
classes of network representations corresponding to two parts of language – se-
mantics and phonology. We then consider network analysis techniques that have
uncovered consistent structures in naturally occurring networks, such as biolog-
ical networks or social networks. These structural features are also found in the
domain of language. We review this literature and its implications for language and
cognition.

Continuing our review of past work, we consider behavioral results as related to
networks. Just as network analysis has had an influence on the study of language,
psychological experiments have also defined aspects of human performance that
must be captured in language representations. So we move from focusing on struc-
tural features to reviewing studies that relate human performance to network struc-
ture. From there we consider how network analysis and psycholinguistics may be
able to offer a link between representation and process, explaining aspects of human
language use and acquisition. Finally, we show how language networks, and their
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relation to process, may allow for the characterization of different (sub)populations
of interest to cognitive scientists. We conclude by discussing claims made in this
paper, as well as future research directions.

2 Language as a Network

Language is the product of humans and changes over time both at the level of the
individual as well as at the level of the population. Work that discusses evolution
of language across populations in a network framework has been well reviewed by
Solé et al. (2010). Here we choose to focus on language at the level of the individual
– where cognitive processes occur. We focus on network representations that are
inherently cognitive, derived from individual language knowledge or human perfor-
mance. Specifically, for the sake of capturing the influence of cognition on language
networks, we focus on two broad classes of networks that have influenced linguistics
and psychology– 1) semantic networks and 2) phonological networks.

2.1 Semantic Networks

The intuition behind semantic networks is that words should be connected if they
are semantically related to other words. Further, the strength of the connection (edge
weight) should represent the semantic similarity between two words. In practice, it
is difficult to compute similarity. For one, words have multiple meanings and which
meaning is used can be dependent on context. For example, the word bone could
refer to the skeletal system or a treat for a dog. Also, semantic relations can cap-
ture more than shared meaning (cup-mug), referring to hierarchical relationships
(bird-robin), inclusional relationships (car-wheel) and relationships between oppo-
sites (hot-cold). These semantic relationships are inherently of human creation; they
are not necessarily directly measurable in the world, but are a product of human
cognition. There is no way to approximate semantic similarity without human in-
put. This human input can come from experiments, language databases or corpora
analyses. We briefly cover two datasets that are commonly used to build up seman-
tic networks–the Florida Free Association Norms and the McRae Feature Norms–
before turning to other sources of semantic similarity data.

In the study that we refer to as the Florida Free Association Norms (FFA), Nel-
son et al. (1999) asked participants to respond to a target word with a word that was
‘meaningfully related’ or ‘strongly associated’ to the target in a free association task.
All in all, over 6000 participants were asked to respond to over 5000 target words.
The targets and their responses provide (directed) edges in the network representa-
tion. Often these edges are weighted such that the edge weight is proportional to the
frequency of the response. In this way, associations were not only present or absent
but weighted to approximate similarity.
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The McRae Feature Norms are another normed experimental study that has come
to be used as the underlying edge list of many semantic networks. In this experiment,
participants were asked to list features of objects in an open-ended manner. This
dataset contains multiple types of relations that have been categorized into mutually
exclusive classes such as 1) perceptual (e.g. has hands) 2) functional (e.g. can be
eaten) and 3) taxonomic (e.g. is a vehicle). Two words are said to be connected if
they share the same feature. Edges can further be weighted by the number of shared
features of the two corresponding words. Since these norms are based on open-
ended responses, lack of shared features may not mean that two objects do not share
a specific feature but rather that the feature in common is not salient enough to be
generated as a response for at least one of the two objects.

Another source of semantic similarity can be language corpora. Here the edges
can be co-occurrence of words or some other statistical method to compute simi-
larity such as mutual information or vector representations. In all cases, there is an
embodiment of human cognition in this network since human-produced language is
used as the underlying input to the corpora. This is even further highlighted when
networks are built from thesauri or databases like WordNet in which individuals
explicitly state similarity between words.

In all these network representations, there is a common theme of relying on hu-
mans to provide the language input, if not directly, then at least the type and strength
of associations between words. This alone suggests that we cannot consider seman-
tic networks without considering cognitive processes. As we will see, many of these
semantic networks are used to examine cognitive processes of language but before
summarizing these results, we first explain phonological networks.

2.2 Phonological Networks

There have been important advances in our understanding of language and cogni-
tion through considering network representations constructed based on phonology.
There are multiple ways of measuring phonological similarity such as behavioral
measures of confusability, number of overlapping phonemes or how similar two
spectrograms are. In this review we focus on a measure of similarity based on edit
distance. In networks based on edit distance, an edge exists in the graph if one word
can be transformed into another word by a series of phoneme changes. For exam-
ple, given an edit distance of one, the word kit is connected to words like pit (sub-
stitution), skit (insertion) and it (deletion). The resulting graph is unweighted and
undirected, but can be weighted if extended to an edit distance greater than 1. The
cognitive implications of these phonological networks are as wide-ranging as for
the semantic networks, as we see in work reviewed below. Networks built from an
edit distance of one are the most commonly used networks, but it is a potential area
of future research to consider other types of phonological network representations.

For most of the phonological networks studied so far, there seem to be very con-
sistent structural properties in the network representation. We include them here
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because these features seem to be specific to phonological networks and do not ex-
tend to other language networks. One such feature is that there are a small number
(30-40%) of nodes in the giant component. Other lexical islands (smaller compo-
nents) or lexical hermits (isolates) reliably emerge in phonological network repre-
sentations based on edit distance as well (Vitevitch 2008). Some hypotheses as to
why this structure exists include the fact that longer words have fewer neighbors
(for example words ending in tion in English are not connected to any other words
because there is no single phoneme change that can lead to an English word not
ending in tion) and that there are certain allowable phonemes and transitions be-
tween phonemes in a given language, constraining possible words. Gruenenfelder
et al. even proposed that these types of structural features could emerge in a random
vocabulary with minimal linguistic constraints (Gruenenfelder and Pisoni 2009).
Another feature of the phonological network is the presence of assortative mixing
by degree. Specifically there is a positive correlation between a node’s degree and
the degree of its neighbors, where words with many neighbors are connected to
words that themselves have many neighbors. This property will come up later in
informing how individuals retrieve acoustic-phonetic input.

As we have seen in both semantic and phonological networks, the network repre-
sentation itself includes cognitive aspects. These aspects must be considered as they
have implications for the interpretation of any results within language models using
these networks. Further, these networks require constructions that indirectly take
into account ways in which humans process and use language. We cannot utilize
these networks (or variations of these networks) without considering the implicit
assumptions of, and implications for, cognition. In the next section, we consider
global level network structure that emerges consistently from these representations.

3 Global Level Network Structure

One strength of a network approach is that there are reliable and understood mea-
sures that can be considered when classifying networks. In many domains certain
properties are considered key to network efficiency and growth. We choose to focus
on a subset of these findings, specifically small-world structure and scale-free prop-
erties, as they have implications in other domains. Of particular interest is small-
world structure because of the results of Watts and Strogatz that suggest that this
type of organization strikes a balance between overly structured and completely un-
structured (Watts and Strogatz 1998). We move from there onto scale-free networks,
as this has been used as evidence for particular types of underlying growth pro-
cesses that may be useful in explaining language acquisition (Barabási and Albert
1999; Steyvers and Tenenbaum 2005). Since the network of interest is one related to
language, these claims need to be considered in light of cognitive implications and
empirical evidence from linguistics as well as cognitive psychology.
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3.1 Small-World Structure

It has been shown in a variety of areas that naturally occurring networks have sim-
ilar structural properties that have collectively been called small-world structure. A
network is said to have small-world structure if it is characterized by a high amount
of local clustering but an average shortest path length (geodesic) similar to a random
network, as defined by each pair of nodes having an equal probability of being con-
nected. These properties have been found in many types of networks across many
different fields including biological networks (Montoya and Solé 2002), information
networks (Albert et al. 1999) and social networks (Milgram 1967), among many oth-
ers. Watts and Strogatz studied these small-world properties in detail. In their paper,
they began with a network initialized to a regular graph in which every node has
the same degree and with nearest neighbors connected, forming a lattice. This net-
work was then rewired by giving each edge a certain probability of randomly being
reassigned. Even with retie probabilities as low as .01, path lengths near random
were seen and a high amount of local clustering was maintained (Watts and Stro-
gatz 1998). See Fig. 1 for a version of their experiment conducted on a language
network.

There is small-world structure in every network of language considered in this
review and possibly to date. Table 1 lists the graph statistics of the free-association
norms (FFA), McRae feature norms, a co-occurrence network and the giant compo-
nent of the English phonological network. For each of these networks we compute
basic global network statistics and compare these original networks to random. We
find that all of the observed networks show similar small-world structure, as defined
and classified by Watts and Strogatz (1998). Regardless of network size and density,
both the clustering coefficients and the average shortest path lengths lie in between
those of a regular and a random graph. Figure 1 and Table 2 show visualizations and
quantification of this analysis.

Table 1 Statistics associated with graphs reviewed in Section 2

vertices density avg. deg clustering avg path

FFA norms 2392 .004 20 .10 4.19
McRae norms 332 .327 107 .585 1.69
Co-Occurrence 5000 .006 62 .184 2.15
Phono (giant) 6508 .001 18 .313 6.05

Small-world structure itself is not specific to language, which suggests that it
may not be a property that emerges as a result of cognition. However, because of
the ubiquity of small-world structure in language networks, it is possible that this
structure can give us insight into human cognition. The fact that small-world struc-
ture occurs in many different language networks, at the very least, indicates that a
cognitive system may take advantage of these structural properties. Assuming that
this structure impacts cognition in some way, we can generate hypotheses and begin
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to ask questions about how small-world structure relates to language cognition. For
example, small-world structure may allow for efficient navigation within semantic
memory (Collins and Loftus 1975). Similarly, small-world structure may improve
the robustness of a network such that catastrophic failure may be less likely to hap-
pen in a language system (Borge-Holthoefer et al. 2011). This type of intuition as
to the efficiency of representation has been extended to a model of conversation.
Conversation partners want to maximize the understandability of their speech but
also want to put in minimal effort in communication. This trade-off between re-
dundancy and effort could lead to observable small-world properties in the repre-
sentation (Solé et al. 2010). In short, there are many reasons small-world structure
might be present in a language network. If small-world structure is really linked to
efficient and robust processing, this structure may suggest ways of investigating the
cognitive processes that underlie the emergence of this structure.

(a) Lattice (b) McRae feature norms (c) Random graph

Fig. 1 Networks with different structure. The first network (a) shows a highly structured,
size-matched lattice-like graph, the second network (b) is a semantic network and the third
network (c) is a size and density matched random network. Clustering decreases from left to
right as does average shortest paths.

Table 2 Statistics associated with graphs in Fig. 1

vertices density avg. deg clustering avg path

Lattice 40 .102 8 .446 4.21
McRae norms 40 .099 7.7 .439 2.87
Random graph 40 .103 8.1 .067 2.69
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3.2 Scale-Free Networks

Another common structural feature of natural occurring networks is that the degree
distribution is often well approximated by a power-law. This type of structure is ev-
idenced by a few central hubs (words with many connections), but with most nodes
having only a few connections. This network feature is important in the network
literature not only because many naturally occurring networks show this property,
but also because, as Barabasi and Albert suggest, this network structure may be
evidence of a specific process known as preferential attachment (Barabási and Al-
bert 1999). The basic idea is that nodes join a network by connecting to an already
present node in the network. The attachment probability to a given node is propor-
tional to the number of edges a node already has in the graph. This growth process
results in a ‘rich gets richer’ effect where few nodes have many neighbors and most
nodes have only a small number of neighbors.

Even though we reliably see power-law distributions in word frequency in lan-
guage (e.g. Zipf 1949), there is no reason to assume that network representations
would also give rise to this type of distribution. The results of analysis on language
networks suggest that a degree distribution similar to a power-law is present in many
different types of semantic networks, but not phonological networks. Steyvers and
Tenenbaum (2005) considered three types of semantic networks: WordNet, Roget’s
thesaurus, and the FFA norms. They showed that all three of these types of se-
mantic networks have degree distributions representing scale-free properties. The
authors used this result as evidence that learning precedes in a fashion similar to
preferential attachment. We will consider this finding in greater detail below when
we consider process models of language. Phonological networks, however, are bet-
ter fit by an exponential distribution as opposed to a power-law (Vitevitch 2008).
Vitevitch suggests that this finding is explained by language specific constraints
such as allowable phonemes and word length that may restrict the power-law for-
mation. Vitevitch found this to be a confusing result, under the assumption that a
process similar to preferential attachment likely leads to the observed phonological
network as well (Vitevitch 2008).

The authors of the papers mentioned above suggest that scale-free networks and
preferential attachment are inherently linked. They also indicate that finding scale-
free structure is evidence of preferential attachment or, conversely, that the lack of
this structure implies nothing like preferential growth can be happening. It is tempt-
ing to use structure as evidence of a specific process, especially when the process
itself may be extremely difficult to study empirically. The idea that by identifying
the structure of a representation, one can understand the underlying process is a
powerful one, but it must be reigned in and validated against theoretical models and
empirical findings. While the work of Barabási and Albert (1999) set forth to build a
model of how a scale-free structure might emerge, it is not the only way such struc-
ture could emerge and thus finding a power-law distribution should not be taken
as direct evidence of preferential attachment (Clauset et al. 2009). Nor should any
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structural feature be considered proof of a specific type of process. Instead structural
features should be used as a way of narrowing down the types of processes that
might be at play, and as a way of checking and verifying process models. In fact,
we see this as a strength for the cognitive approach. If the structural features of
language networks can be categorize and understood, testable hypotheses can be
set forth, and can then be evaluated and refined with human data. The presence
and emergence of network structure can be paralleled with human performance in
tasks in which the network representation may provide a useful approximation to
human language cognition. By keeping the representation of language in the mind
of humans instead of as an entity independent of individuals (and independent of the
cognitive processes that operate on the network) we can begin to study the whole
language system. With this in mind we move on to consider experimental results
that correspond, in one way or another, to a chosen network representation.

4 Human Performance in Relation to Network Structure

The global structural properties discussed above, and the hypotheses associated with
them, are linked directly to the network representation. Even though we are often
using human data to build up the network representation, it is a theoretical leap
to assume that the network representation is itself the representation that humans
store and use in their minds. If network representations are to be useful to language
modeling, then this representation must capture some aspect of cognition. Many re-
searchers have taken this approach to network analysis in language and have begun
to look at the relationship between structural network properties and human perfor-
mance in specific language tasks. We review some of this work in the remainder of
this section.

4.1 Spreading Activation

4.1.1 Semantic Networks

As early as the late 1960’s, Quillian (1967;1969) began to consider how semantic
knowledge might be stored as a representation in computer memory. The resulting
model is one in which words are stored with pointers to features and related words.
Words are organized with increasing specificity and features that are related to mul-
tiple words are stored at the highest relevant level. For example canary has a pointer
to is yellow and bird; features like has feathers are stored as pointers at the level
of bird (see Fig. 2a). Collins and Quillian (1969) extended this work to semantic
memory1 in humans, testing the hypothesis that, if semantic knowledge is stored
in such a fashion, the distance between the relevant concepts should affect retrieval

1 In psychology semantic memory includes properties of language storage and retrieval. It is
called semantic memory to contrast episodic memory, not to constrain the type of language
properties it includes.
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time. Specifically, it should take longer for individuals to retrieve feature informa-
tion stored at super- or sub-ordinate classes than to retrieve information that is stored
at the ordinate level. Participants had to evaluate sentences as true or false and their
response times were recorded. The authors predicted that participants would take
more time to process ‘A canary has feathers’ than ‘A canary is yellow’ since has
feathers is a feature stored at the level of bird and thus the path of evaluation re-
quires 2 steps (to bird and then to feathers) as opposed just one step for evaluation
directly from canary to is yellow. The results showed that 1-step relations (such as a
canary is yellow or a canary is a bird) took less time than 2-step relations (such as a
canary has feathers) to evaluate. The change in response time between 1 and 2-step
relations is the same as the change between 2 and 3 steps. This suggested to the
original authors that the amount of time it takes between levels in their graph repre-
sentation can be directly linked to cognition by means of response time, providing
evidence that their constructed graph captures some cognitive aspect of semantic
memory. In this way, Collins and Quillian provide the first link of geodesic dis-
tance to human search time in semantic memory, approximating the time it takes for
humans to traverse an edge in their graph.

This work was further expanded and refined into a model known as the spread-
ing activation model of semantic processing (Collins and Loftus 1975). This model
relaxes the hierarchical assumption of the original network of Quillian. The net-
work representation is similar to the semantic networks we defined above, with the
strength of edges derived from the number of shared features (see Fig. 2b). Collins
and Loftus successfully linked a variety of experimental results within semantic pro-
cessing to a model of activation operating on this network. In this model, a concept is
activated within the network; with time, this activation spreads in a decreasing fash-
ion along accessible links, activating other nodes to varying levels. Activation of a
single word is diffused throughout the network, taking into account both strength
of connections and a decay of activation with distance. Activation spreads from the
original, primed word to the primed word’s neighbors. If those neighbors are them-
selves connected, activation will spread and build within the cluster. Thus, if the
word bus is activated, car will also be activated since it is a neighbor of bus. Further
car will receive activation from the neighbors it shares with bus, such as truck and
wheels. This results in a high activation of car (among other words) from the orig-
inally primed word bus (see Fig. 2b, color scheme indicates activation if fish was
the originally primed word on the Collins and Loftus network representation). This
activation is assumed to be related to ease of retrieval. Among many other results,
one thing Collins and Loftus showed was that participants are quicker to respond to
‘name a fruit that is red’ than ‘name a red fruit.’ Their explanation was that, when
fruit was the first word said, activation began to spread within the category of fruit
and activate all types of fruit. Whereas when red was said first, activation began to
spread among all things red. The effect arises from the fact that the proportion of
fruit that is red is higher than the proportion of red things that are fruit. The work
of Collins and Loftus (1975) shows that human response times can be linked to
processes, such as the spread of activation, that operate on a network.
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(a)

(b)

Fig. 2 Two semantic networks based on different types of relatedness. (a): Quillian’s hier-
archical semantic network. (b): Collins and Loftus’ feature network based on approximate
semantic similarity. The color coding represents how activation could spread and accumlate
given initial priming or activation of the word fish. Darker color represents more activation.
This is according to a definition of spreading activation that behaves similar to, and is ap-
proximated by, eigenvector centrality.

4.1.2 Phonological Networks

Phonological processing results can also be explained using the spreading activation
model of semantic memory. This model has been useful in explaining and captur-
ing retrieval times, confusability, false-memory and other types of lexical access
results. However, the way in which this model has been applied has a slightly dif-
ferent history that we now review. The first exploration of the influence of network
structure on phonology did not directly consider a network representation. Instead,
psycholinguistic research considered the influence of phonologically similar words
on spoken word recognition (e.g. Cluff and Luce 1990; Luce and Pisoni 1998). Luce
and Pisoni saw linguistic structure and cognitive process as inextricably linked, so
much so that their neighborhood activation model assumes that studying linguistic
structure leads to understanding of lexical discrimination and vice versa. Luce and
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Pisoni developed a measure known as neighborhood density to account for lexical
retrieval times. This measure considers the degree2 (number) and edge-weights (de-
gree) of the neighborhood of a target word. The neighborhood density of a word is
shown to be related to the confusability of that word in lexical tasks. Specifically,
the authors looked at people’s ability to recognize a word in the presence of noise,
and found successful identification to be best predicted by a combination of the
stimulus intelligibility, degree of target word (confusability of its neighbors), and
frequency of the stimulus and its neighbors. The results showed that higher degree
words (higher confusability with neighbors) are more often incorrectly recognized.
Similar features were determined as important for detection of real vs. non-words.
These experiments suggest that the degree and connectivity of a word in the graph
(phonological neighborhood) influence recognition and retrieval of words. The re-
sults of their neighborhood activation model has been extended to account for many
phonological effects on spoken word production, word recognition and other pro-
cesses (for an overview, see Chan and Vitevitch 2010) and is even shown to relate
to early word learning in children (Storkel 2004).

This idea that degree (or neighborhood density) can influence lexical access and
retrieval was formalized in network terminology in a paper by Vitevitch (2008).
Specifically, he considered the role of network structure as related to word learn-
ing and lexical retrieval, providing a link between the spreading activation model
and a network representation of phonology. Vitevitch replicated Luce and Pisoni’s
work with small experimental variations, but recasting it in terms of network anal-
ysis. This reframing of lexical access as spreading activation led to new theoretical
insights and suggested new research directions. With this framework, the effect of
degree on lexical access can be readily explained and quantified. If the target word
is activated and activation runs along phonological links, a word with many neigh-
bors shares more of its activation with its neighbors than a word with few neighbors.
For high degree target words, the difference between activation of the word and the
activation of its neighbors is smaller than for low degree target words. Theoretically
and experimentally, this makes target identification more difficult. This framework
also suggests that other network features may influence lexical access. Such features
were tested by Vitevitch and Chan using the English phonological network, show-
ing that there is an influence of clustering coefficient (percent of neighbors who are
themselves connected) on perceptual identification and lexical decision tasks (Chan
and Vitevitch 2009). The results indicate that target words with lower clustering
coefficients (fewer neighbors are neighbors of each other) are more accurately iden-
tified than words with higher clustering coefficients. In the case of higher clustering,
activation is not only shared with the neighbors but, because of the cycles, this ac-
tivation builds within the neighborhood. This reduces the relative activation of the
target word, making identification more difficult for words in neighborhoods with
high clustering. Here we see an example of how using network analysis to look at

2 Because of the lack of a network formalization in the original paper, the terminology
used in this early model of neighborhood activation can be confusing. To counter this, we
include the standard network terminology in text and include the terminology of Luce and
Pisoni in parentheses.
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results in the domain of phonology provides a cognitive model that links phono-
logical space to lexical access and retrieval. By extending the theory of spreading
activation to phonology, we are able to refine models and test model predictions,
given human performance in language related tasks.

4.2 Frequency Effects

A language measure that has been consistently shown to have an effect on human
performance is word frequency. Words that are more frequent are recalled more
quickly (Balota and Spieler 1999; Seidenberg and McClelland 1989), acquired ear-
lier (Ellis and Morrison 1998) and are associated with more semantic relations
(Steyvers and Tenenbaum 2005). However, network analysis has brought into ques-
tion whether word frequency is the driving force of these findings or instead, a re-
sult of another process or phenomenon. Most lexical network representations do
not directly encode word frequency, however there may be a strong relationship
between frequency effects in language and lexical graph structure. In this section
we review two network papers that look at the interaction of word frequency and
human behavior. Together they show that network measures can account for fre-
quency effects, sometimes better than frequency alone, challenging the idea that the
underlying cause of performance differences is word frequency.

Griffiths, Steyvers and Firl use a semantic network representation to study word
choice in a fluency task (such as ‘name the first word that comes to mind starting
with the letter A’ or ‘name as many animals as you can in 60 seconds’ (Griffiths
et al. 2007)). Earlier experimental results have suggested that the responses to flu-
ency tasks are strongly biased by word frequency. The commonly offered expla-
nation is that individuals have quicker access to words they hear more often (e.g.
Balota and Spieler 1999; Seidenberg and McClelland 1989). Instead, Griffiths and
colleagues consider network structure as an alternative explanation of human re-
sponses in this task. Specifically, they used a network-motivated measure known as
PageRank (Brin and Page 1998). PageRank works similarly to spreading activation
except that there is no single point of activation. Each word gets a baseline strength
and this strength is shared with the node’s neighbors. This is then repeated until a
stable level of strength is attained. Once this stability is reached, the strength of each
node can be seen as a property of the word (node) that indicates how central each
node is to information flow or how ‘important’ the node is to the network. Nodes
with a high number of neighbors receive some activation from their neighbors, but
how much activation is passed on from the neighbor is dependent on how impor-
tant the neighbors themselves are. Thus nodes with only a few neighbors can have
higher activation than nodes with many neighbors, if the few neighbors are them-
selves important. The results of Griffiths et al. show that, when using the FFA norms,
PageRank outperformed word frequency or FFA degree (called associate frequency
in the paper) in predicting participant responses in a fluency task. In general, the
findings suggest not only that PageRank corresponds to fluency data, but that a net-
work representation, which inherently encodes the relational structure of language,
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is more capable of explaining human responses than raw word-level language statis-
tics such as word frequency. This also shows how a network representation supports
the creation of new hypotheses and provides a novel framework to reinterpret even
robust effects such as the word frequency effect.

The experiment of Griffiths et al. (2007) suggests that human performance and
behavior in a word fluency task may be better explained by the underlying graph
structure than by word frequency alone. In some cases it might be possible to ac-
count for human performance without including frequency; in other cases, word
frequency might interact with network structure. This is the case for work re-
lating age-of-acquisition to a network representation. Steyvers and Tenenbaum
considered the relationship between semantic connectivity, word frequency and
age-of-acquisition as a way of understanding language development (Steyvers and
Tenenbaum 2005). First, they found a strong correlation between high-frequency
words and high-degree words in a semantic network. This is to say, words that oc-
cur more frequently in speech often have more associates or semantic connections
(in the FFA norm network). Further, higher degree words are acquired earlier. Pre-
vious work has also shown an inverse relationship between age of acquisition and
word frequency (Ellis and Morrison 1998). Considering these factors together, the
authors showed an interaction of degree and word frequency on learning. The ef-
fect of degree on age of acquisition is strongest for words with high frequency. This
is possibly because children do not only receive a learning boost for words that
have many connections in the graph, but also are hearing these high degree words
more often. This work shows how raw language measures such as frequency can
be combined with relational language measures implicit in the network structure.
When combining these two features we are better able to account for behavioral
phenomena such as language learning and processing.

5 Network Models within Linguistic Networks

The idea that human performance can be related to network properties suggests that
these network properties might provide evidence of, or have an influence on, human
cognition as related to language. To fully understand the acquisition, evolution and
even use of language, we need to consider the influence of structure in relation to hu-
man processing and, importantly, the process of language and cognition themselves.
The idea that structure is evidence of process allows us to begin to build models of
cognitive process, and to verify those models using observed network structure and
measurable features of human behavior. We can extend the process models further
by verifying that these process models propose logical (and testable) hypotheses of
semantic or phonological processing and cognition in humans. Cognitive science
and psychology cannot simply build models that reproduce the statistical properties
and structures of interest. We must extend this further to build a model that seems
cognitively plausible. Then we must design, test and refine our model in light of hu-
man data. This makes the interaction of network modeling and cognitive modeling
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particularly strong because we have two sources of knowledge to test and inform
our theory–network theory and cognitive theory.

In organizing this section, we no longer distinguish between semantic and phono-
logical networks. We do this here because, when process is considered, it becomes
difficult to isolate the effect of semantics removed from phonology or phonology
removed from semantics. For example, it is widely accepted that to access semantic
meaning, the phonological word form must also be activated (Harley 1993) and thus
semantic models must include phonological information and effects. We will also
shortly see that in phonological research, semantic effects are needed to account for
differences across languages (Stamer and Vitevitch 2011). In the following sections
we focus on two areas of heavy research within network process modeling: language
acquisition and semantic search/navigation.

5.1 Acquisition

One of the earliest attempts to model language acquisition adapted the Barabasi-
Albert model of preferential attachment (BA model, Barabási and Albert 1999) to
language acquisition. In the original BA model, nodes are added to a graph one at a
time. Where they attach to the currently existing graph is proportional to the number of
neighbors the attachment node already has. This produces an effect where words that
have many neighbors will continue to gain more neighbors, giving rise to a scale-free
network. However, while this model maintains scale-free structure, it cannot account
for the high clustering found in language networks (Steyvers and Tenenbaum 2005;
Vitevitch 2008). As discussed earlier, scale-free structure is present in a variety of
different semantic networks but high local-level clustering is also reliably found (a
feature of small-world networks (Steyvers and Tenenbaum 2005)). To achieve high
clustering while still maintaining scale-free structure, Steyvers and Tenenbaum aug-
mented the BA-model. Their small modification was that a newly added word also
forms links to other neighboring nodes of the attachment node. With each new addi-
tion of a word to the existing graph, M links are added. First, the new word attaches
to an already existing node i, then M − 1 edges are added to the neighbors of i.
The bias for the new word to connect to already well-connected words allows scale-
free structure to emerge (as in the BA model) and the M − 1 edges attaching to
the neighbors of i maintains local clustering. Further, the authors suggest that the
M− 1 remaining edges be added proportionally to the degree of the neighbor. Thus
the preferential attachment idea is seen both in where the new word links to the
existing graph, as well as in which neighbors the new node links to. The resulting
network simulations showed similar network statistics and topology to the adult se-
mantic networks (FFA norms, Roget’s Thesaurus and WordNet). This not only fit
much of the language data, it also provided a testable hypothesis on how structure
in language might emerge during the process of acquisition.

While this work shows that it is possible to develop an end network that has
similar properties to the language networks of interest, it does not directly consider
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whether the intermediate stages of the modeled network are similar to what we see
in language acquisition. Hills and colleagues approached this aspect of the develop-
mental question by modeling acquisition trajectories directly using the MacArthur-
Bates Communicative Development Inventory (CDI, Dale and Fenson 1996). The
CDI is a parent report checklist of about 700 words in which parents indicate the
productive vocabulary of their child. For each word, the percentage of children at a
given age (between 16 and 30 months) that can produce it is known. These norms
(and individual checklists) can be used to study effects at the level of individual
words and, possibly, individual learners. By combining these CDI vocabulary re-
ports with network edge lists we can build developmental networks. This was first
done by Hills and colleagues (Hills et al. 2009b; Hills et al. 2009a) when they con-
sidered the acquisition of the 130 earliest learned nouns of a ‘normative child.’ This
normative vocabulary was built by considering a word to be part of the vocabulary
once more than 50% of children, at a given age, were reported to produce that word.
They used these developmental vocabularies as nodes in the graph and, in the origi-
nal network modeling paper (Hills et al. 2009a), co-occurrences of words provided
the graph edges. Considering each month to be a different network, they tested three
developmental models of acquisition 1) preferential attachment3, 2) preferential ac-
quisition and 3) lure of the associates. In preferential attachment, words are more
likely to enter the child’s vocabulary the more connected a word is to the already
known, well connected words. In preferential acquisition, words are more likely to
be learned if they are well connected in the learning environment. As implemented,
words are learned proportional to their in-degree in the adult (end) network. Lure of
the associates suggests new words are learned if they have connections coming from
already known words. This model lies between the two other models–it considers
how much associative strength a word receives (in-degree) but conditioned on that
the associative strength comes from already known words. See Fig. 3 for a graphical
representation of these models.

In three related papers, the authors tested the performance of their models on
the ability to account for the vocabulary trajectories of the ‘normative child’ (Hills
et al. 2009b; Hills et al. 2009a; Hills et al. 2010). The results suggest that for many
word classes, and specifically for nouns, preferential attachment fails to account for
vocabulary growth. This is an important result because it is widely accepted that
a scale-free structure is best accounted for by a model similar to preferential at-
tachment (Barabási and Albert 1999). The fact that the authors took a developmen-
tal perspective and found that the preferential attachment model could not account
for the intermediate observations suggests that there are other ways for scale-free
structure to emerge. Further, the authors conclude that, of the three models tested,
preferential acquisition is capable of modeling the developmental trajectory most
accurately. From this, we can conclude that the learning environment, as captured by

3 This is not the same as the other preferential attachment models because, unlike the BA-
model, a new node can connect to more than one word and, unlike the modified BA-model
(Steyvers and Tenenbaum 2005), the connections are not necessarily only to neighbors of
the attachment word. In fact, the models of Hills et al. have the same underlying edge list
such that when a word is added, the relations it forms are pre-defined by the end network.
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Fig. 3 Taken directly from Hills et al. 2009. The three growth models depicted in a simpli-
fied network. The network is the same in all three models, but the models assign different
values to the unknown words. Gray shading and solid lines indicate nodes and links in the
existing network (known words: A–D); no shading and dotted lines indicate nodes and links
not yet incorporated into the known network (possible new nodes: N1, N2, and N3). Black
lines indicate links relevant to the growth models, and gray lines indicate unimportant links.
The “Add” column in each illustration indicates which node is favored for learning by the
growth model in question; this is determined by the relative growth values of the possible
new nodes. The growth values computed in this example are based on indegree for a directed
network; arrow direction is important. For undirected networks, such as a feature network,
arrow direction is not relevant. In the preferential-attachment model, the value of a new node
is the average degree of the known nodes it would attach to (e.g., N1 is attached to A, which
has an indegree of 3). In the preferential-acquisition model, the value of a new node is its
degree in the learning environment – that is, the full network (e.g., N3 has an in-degree of
3, which includes one link from a known node and two links from unknown nodes). In the
lure-of-the-associates model, the value of a node is its degree with respect to known words
(e.g., N3 has a value of 1, based on its one connection from a known node).

the network, plays an important and non-negligible role in the process of language
acquisition. Hills and colleagues characterize the role of the learning environment
by emphasizing contextual diversity–words that occur in many different contexts
have higher contextual diversity– as approximated by in-degree in the end network.
Their findings indicate that words with higher contextual diversity are learned ear-
lier. This relationship may be due to more quickly learned or more accurate word-
meaning mappings from the varying presentation-contexts of a contextually diverse
word. After considering the network models and the cognitive implications of these
models, the authors also considered the network representation (Hills et al. 2009b).
They found that certain representations were better able to account for language
development than others. Specifically models based on the FFA norms accounted
for growth more accurately than the McRae perceptual and functional features. This
body of work suggests that researchers should consider not only the developmental
model, but also the underlying language representation. The modeling results, indi-
cating that preferential acquisition accounts for the developmental trajectories most
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accurately, suggest that we need to consider other growth processes than preferen-
tial attachment. Further, the developmental perspective offers us a domain where
language change and acquisition can be observed, modeled and studied.

Other work on acquisition has focused more on the effects of phonological fea-
tures and complexity on early learned words. Storkel considered the influence of
phonological similarity on word acquisition. The main question was whether chil-
dren build up dense phonological neighborhoods as they learn language. Her work
suggests that words with higher degree4 are learned earlier (Storkel 2004; 2009).
She also found significant effects of length (with shorter words being learned ear-
lier) and frequency (with more frequent words being learned earlier). Given that an
interaction between word frequency and degree is found in semantic networks, and
phonological networks show assortative mixing (Steyvers and Tenenbaum 2005;
Vitevitch 2008), we might expect the same interaction in word learning. However,
that is not the case–there is no interaction between degree and frequency in phono-
logical representations. This suggests that the process of building up a language
representation may be different at different times in the developmental process. We
know that in adult semantic networks a relationship between degree and frequency
exists (Steyvers and Tenenbaum 2005; Griffiths et al. 2007) but this may be a rela-
tionship that emerges only in mature language networks.

Vitevitch expands the results of Storkel and suggests how some basic stochastic
growth processes could account for some of the non-trivial structural properties of
the phonological network (Vitevitch 2008). Specifically, he considers the emergence
of 1) small-world structure and 2) the global network structure as characterized
by one giant component and many lexical islands and hermits. Using the psycho-
linguistic hypothesis of lexical restructuring in which children first learn very coarse
representations and only gradually learn more detailed ones (Metsala and Walley
1998), edges can be added similarly to randomly choosing pairs of nodes to connect
as an approximation of the early stages of the lexical restructuring hypothesis (Call-
away et al. 2001). As the children’s representation gains more detail, new edges are
added even between already existing words in the graph. This results in the emer-
gence of small-world structure over time. Further, an additional stochastic process
in which new nodes are not required to attach to already existing nodes, can ac-
count for the rise of lexical islands and hermits that are found in the phonological
graph. Such growth models give rise to network structure similar to the structure
of the observed phonological network. While these models are not directly tested
on developmental data, this exploration allows us to see how generic network pro-
cess models can be used to model the emergent structural properties of a variety
of graphs across domains. Such models can readily be adapted and used to test hy-
potheses of language processes. Importantly, this work shows how network models
and linguistic theory can inform each other.

While a few methods of modeling language acquisition have been reviewed in
this paper, these are still very rooted in network theory. Most of these models
stem from the idea that degree influences the words that a child will learn next.

4 Again we see differing notation. In the original work, degree is called density but refers to
the number of phonological neighbors and not the density of the network or neighborhood.
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Preferential attachment, and its variants, consider a word more likely to be learned
if it links up to already existing, well connected words. Other variations consider
the learning environment (the adult semantic network) or the interaction between
productive vocabulary and the learning environment. In the case of modeling the
phonological network, we see the application of random network models developed
outside of the domain of language. While it is possible to take the theoretical claims
of these models and map them to language processes, it would be interesting to ask
the question in the reverse direction–if a linguistic process was acting on a network
representation, how would it affect the network structure? We return to this idea in
the discussion section and discuss some of the implications. Another notable feature
of these acquisition models is that they mostly deal with semantic and phonological
features of the words separately. It is much more likely that there is an interaction of
phonology and semantics in early word learning. We return to this in the discussion
section as well.

5.2 Network Navigation

Another rich area of research on modeling process within linguistic networks is in
the domain of network navigation. We use this term very broadly to account for
anything that might require search within, or reference to, lexical representations.
We include tasks related to lexical retrieval search for a path between two words and
other linguistic search tasks. We explain the specifics of each experiment and model
in the context in which it is used. This area of research has been considered in more
detail than we give it here in reviews such as those of Borge-Holthoefer and Arenas
(2010) and Baronchelli et al. (2013).

A model of network navigation that was discussed above is that of spreading ac-
tivation (Collins and Quillian 1969; Collins and Loftus 1975). As reviewed above,
the degree of a word affects retrieval time and age of acquisition (Vitevitch 2008;
Storkel 2004). Further, we also reviewed that the spread of activation does not stop
after transferring to the nearest neighbors, instead the neighbors’ neighbors also
receive activation that can result in competition between neighbors and the target
word. Behaviorally, this results in slower retrieval time and decreased performance
(Chan and Vitevitch 2009). Considering this model as an approximation of a cog-
nitive process allows the extension of this model to other languages as well. This
model, when extended beyond English, captures differences across languages. In
Spanish, we see the opposite effect of high clustering than in English–words are
more quickly retrieved if the target word has higher clustering (Stamer and Vitevitch
2011). This is explained by the fact that semantic similarity varies across languages.
For example, in English, many of the phonological neighbors of a word are not se-
mantically related. However, in languages like Spanish, a much higher proportion
of neighbors are semantically related. Thus, the activation of these semantically re-
lated neighbors helps, rather than hinders, recognition of the target word (Arbesman
et al. 2010a; Arbesman et al. 2010b; Stamer and Vitevitch 2011). This highlights the
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fact that when we begin to consider network models as process models, we need to
extend our views not only beyond English but also beyond phonology in isolation
of semantics, or semantics removed from phonology.

The spreading activation model of semantic memory offers a cohesive framework
to explain which options are considered. The framework, however, does not help us
understand how individuals search through potential options. In an attempt to look
directly at search in memory, Beckage and colleagues conducted a behavioral ex-
periment to understand how individuals search within semantic memory (Beckage
et al. 2012). Participants were asked to navigate within a semantic network from
an arbitrary start word to arbitrary end word. To traverse the network, at each step,
participants chose a word out of a set of words related to the current word. Fig-
ure 4 shows an example problem with a selection of participant paths. The question
of interest is what information are people using to navigate the graph and com-
plete the task. Overall, participants were successful at navigating to the end word
73% of the time and 22% of paths were optimal in length. Random walks based
on the unweighted FFA network failed to model human performance. Even when
associative strength of semantic relatedness is added, these random walks still have
lower success rates than participants (Beckage et al. 2012). This difference in per-
formance suggests that participants have access to some global level information,
such as a general location of the goal word in semantic space, which is not avail-
able to random walks. Ongoing work shows that a dynamic programming algorithm
more accurately models human performance. This algorithm works by selecting the
option that minimizes approximate distance to the goal word. The ability of this
model to capture human performance suggests that participants must have access to
information related to the location of the goal word in semantic space. This is an
example of how a process model can offer insight into the information available to
humans during language processing.

A similar task was also conducted in orthographic/phonological space. In this
task, participants were given a three-letter start word and a three-letter end word.
They were then asked to build a path between the two words by changing one letter
at each time, such that each newly proposed step was to an existing word (Sudarshan
Iyengar et al. 2012). The authors compared performance in this task to landmark
navigation and human wayfinding (Moore and Golledge 1967), showing that par-
ticipants initially began by searching for words that shared a letter in common with
the goal word. Over time however, participants began to navigate to specific inter-
mediate words that then gave them access to many other words. These hubs offered
a ‘landmark’ in the semantic space that participants could use to orient themselves
before continuing their search for the goal word. Interestingly, these navigational
hub words varied across participants but participants tended to use the same hub
words across trials. Participants also went through stages of familiarity with the net-
work and the task just as they do when navigating in the real world. They update
their strategy and use the structure of the network differently at different points in
the task. This work introduces a new perspective yet unseen in this review – psy-
chological theory informing network modeling. Here the authors extend a theory of
wayfinding and navigation in physical space to that of lexical space. The fact that
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Fig. 4 Network based on successful paths in a semantic network navigation task. Paths are
built from participant responses from the start word ANYTHING to the goal word PEN.
Network neighbors of ANYTHING are SAY, NOTHING, SOMETHING, EVERYTHING.
The thickness of the edges indicates the number of participants who made a given choice.

people go through similar stages as they become more familiar with the search space
in both domains suggests that there are common principles of human cognition at
work in both cases.

6 Understanding Atypical Processes

In the above sections, we saw that we can consider the process of language acqui-
sition and navigation as opposed to just considering the relationship of structure to
performance. If we assume that different processes are operating on network rep-
resentations and, further, that the network structure is related to process, then we
should be able to use differences in network structure to make inferences about dif-
ferences in process. In the domain of cognitive science, this is an especially powerful
tool as we consider the role of network analysis in distinguishing and categorizing
atypical populations or individuals. In this section, we review work that attempts
to characterize cognitive processes in atypical populations. Specifically, we review
work looking at language degradation in Alzheimer patients and delayed language
acquisition in a population of children called late talkers.

The work of Lerner et al. used network analysis to capture structural network dif-
ferences in a category fluency task for elderly individuals, individuals showing mild
cognitive impairment and those with early Alzheimer disease (Lerner et al. 2009).
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This is of wide-ranging interest because Alzheimer patients show cognitive impair-
ments in many predictable ways but there is no comprehensive model to account for
this degradation. The original paper showed that it is possible to categorize these
three groups based on summary statistics from a semantic network representation.
Participants were asked to name as many animals as they could in 60 seconds and
for each participant these responses provided the nodes in their graph. The responses
from all participants were combined to construct the edge list, with an edge existing
if two animals were named in succession by at least one participants (though see
Goñi et al. (2011) for another way of building up these free-response networks).
The results showed that the more pronounced the cognitive impairment, the higher
the clustering and the lower the average shortest path. This suggests that partici-
pants with cognitive impairment may have more difficulty jumping between areas
of the network (e.g. making the move from pets to jungle animals) accounting for
less network traversal, and higher clustering of responses than individuals with no
cognitive impairment. This idea was further extended, though with a slightly differ-
ent task, by a model of semantic degradation (Borge-Holthoefer et al. 2011). In this
model, degradation happens throughout the graph with more distant and weaker as-
sociates being lost more quickly. There is also a renormalization phase in which the
remaining edges are strengthened, increasing clustering and decreasing path length
of predicted responses. These modeling results can categorize the performance of
individuals and also offer a potential explanation of a documented cognitive impair-
ment in which certain relations become more salient and other relations disappear
entirely (Borge-Holthoefer et al. 2011; Lerner et al. 2009; Goñi et al. 2011)

If we can model the decay of vocabulary structure, can we gain insight into lan-
guage acquisition through the structural differences in developing vocabularies? Ke
and Yao (2008) first looked at network structure differences in children acquiring
language. They used a corpus of child directed speech with samples of child-parent
interactions from 12 consecutive months (Manchester corpus from CHILDES,
Theakston et al. 2001). The authors constructed child-based or caretaker-base co-
occurrence networks, looking at both cumulative networks as well as networks built
from a subset of the 12 month period. They found that, with structural measures
such as network size and average degree, children could not be distinguished as
showing typical or delayed language development. While this suggests that there
may be no structural differences in the networks of late and typical talkers, they
were able to show that the network structure changed and emerged over time across
children. Beckage and colleagues asked a similar question on a larger sample of
children, attempting to distinguish late and typical talkers on vocabulary structure
alone (Beckage et al. 2011). Late talkers were defined to be children in the lower
25th percentile according to the CDI norms. By comparing a given child’s net-
work to a randomly generated bag-of-words model (random acquisition model),
differences between these talker groups were indeed found. Typical talkers showed
network structure that was indistinguishable from size-matched random acquisition
networks. However, late talkers showed network structure that was statistically dif-
ferent than these random networks–and in a direction the authors believe to be detri-
mental for language acquisition. Children classified as late talkers showed higher
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geodesic distance and lower clustering than expected by random and thus differed
from their typically developing peers. These structural differences correlated with
the CDI-based classification, confirming that, not only are vocabularies smaller for
these late talkers, but there are fundamental differences in the words and relations
among the words for the vocabularies of these children.

The idea that network process is reflected in structure is not new (Barabási and
Albert 1999) but utilizing these structural differences to distinguish different pro-
cesses, and thus different population of learners or language users, is a concept that
is especially important in psychology. If we are able to understand differences in
network structure across populations, we may be able to build more accurate and
specific models. These structural differences have potential use at distinguishing in-
dividuals in a population of concern earlier and with a higher diagnostic success.
In the future, it may be possible to know whether an individual is showing signs
of early cognitive impairment based on network structure before there is any other
evidence of cognitive impairment. Similarly, it may be possible for language dis-
orders to be diagnosed earlier based on emerging network structure. In the case of
language acquisition, we may be able to analyze the structure of a child’s vocabu-
lary as opposed to simply considering the vocabulary size and waiting for crucial
milestones to be missed. Along these same lines, by classifying different types of
processes, we may be able to offer not only evidence for categorization, but also po-
tential interventions. If structure and process are really as connected as they seem,
there is a chance that correcting structural deficits may result in the correction of the
underlying cognitive process. And even before classification and intervention can be
achieved, comparison studies have the ability to challenge and inform our current
understanding of linguistic and psychological performance in language.

7 The Future of Language Networks

In this review we attempted to highlight the role of cognition in understanding lan-
guage, specifically in the context of network models. We first considered the history
and evolution of lexical network representations before focusing on the classifica-
tion of language topology such as small-world structure and power-law degree dis-
tributions. We then showed how network features such as distance between words
or degree of a word are correlated with human performance on tasks related to lan-
guage processing. From there we attempted to highlight an important theoretical
shift from simply correlating human performance and network structure to con-
sidering language as a system that involves cognition. By modeling the process
of acquisition and navigation, we can begin to answer questions about the role of
cognition in language. The assumption that different language processes underlie
cognitive differences can be used to investigate atypical cognition.

We provide evidence that human cognition cannot be excluded from the study
of lexical networks. We further extend this claim to suggest that considering cog-
nition and cognitive representations provide a theoretical framework that one can
use to study language as a network. Importantly, with this framework, processes of
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growing a language network, and navigating on this network, become of crucial im-
portance. Modeling language as a process involving cognition lends itself to a wide
range of future research. One such area is to consider the intersection of phonol-
ogy and semantics on acquisition. We documented results in both independently,
but a network representation freely extends to include both of these language rep-
resentations in one framework. For example, we can begin to consider navigation
in semantic memory, capturing the influence of phonology on semantics in a new
way. Another area of future research would be to understand how the cognitive sys-
tem is able to take advantage of the structural features of a network. The very fact
that small world structure is found in almost every emergent network suggests there
may be some useful properties of ‘small-worldness’ that the cognitive system may
be able to exploit.

To the extent that we can consider network representations of language as an
approximation of semantic and phonological information in the brain, we can also
begin to uncover the underlying representation of language in the mind. This allows
us to ask new types of questions such as how an infant language network, and the
constraints that come with it, develops into an adult language network. If we can
model language acquisition as the growth of a network, we may begin to under-
stand acquisition of language knowledge. We can also begin to consider individual
differences in language acquisition and usage. We have already shown that different
processes result in different language networks and that these networks can help dis-
tinguish populations of interest. But this idea can be extended further to the level of
the individual. If we can model individual differences in processes, we can begin to
understand how cognition varies across individuals. In that sense, it may someday be
possible to model individual acquisition trajectories or individual search behaviors.
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Solé, R.V., Corominas-Murtra, B., Valverde, S., Steels, L.: Language networks: Their struc-

ture, function, and evolution. Complexity 22, 1–9 (2010)
Stamer, M.K., Vitevitch, M.S.: Phonological similarity influences word learning in adults

learning Spanish as a foreign language. Bilingualism: Language and Cognition 15(03),
490–502 (2011)

Steyvers, M., Tenenbaum, J.B.: The Large-Scale Structure of Semantic Networks: Statistical
Analyses and a Model of Semantic Growth. Cognitive Science, 3–27 (2005)

Storkel, H.L.: Developmental differences in the effects of phonological, lexical and semantic
variables on word learning by infants. Journal of Child Language 36, 291–321 (2009)

Storkel, H.L.: Do children acquire dense neighborhoods? An investigation of similarity neigh-
borhoods in lexical acquisition. Applied Psycholinguistics 25(2), 201–221 (2004)

Sudarshan Iyengar, S.R., Veni Madhavan, C.E., Zweig, K.A., Natarajan, A.: Understand-
ing human navigation using network analysis. Topics in Cognitive Science 4(1), 121–134
(2012)

Theakston, A.L., Lieven, E.V.M., Pine, J.M., Rowland, C.F.: The role of performance limi-
tations in acquisition of verb-argument structure: an alternative account. Journal of Child
Language 28, 127–152 (2001)

Vitevitch, M.S.: What Can Graph Theory Tell Us AboutWord Learning and Lexical Retrieval.
Journal of Speech, Language and Hearing Research 51, 408–422 (2008)

Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

Zipf, G.K.: Human Behavior and the Principle of Least Effort. An Introduction to Human
Ecology. Addison Wesley, Cambridge (1949)



Path-Length and the Misperception of Speech:
Insights from Network Science and
Psycholinguistics

Michael S. Vitevitch, Rutherford Goldstein, and Elizabeth Johnson

Abstract. Using the analytical methods of network science we examined what
could be retrieved from the lexicon when a spoken word is misperceived. To simu-
late misperceptions in the laboratory, we used a variant of the semantic associates
task—the phonological associate task—in which participants heard an English word
and responded with the first word that came to mind that sounded like the word
they heard, to examine what people actually do retrieve from the lexicon when a
spoken word is misperceived. Most responses were 1 link away from the stimu-
lus word in the lexical network. Distant neighbors (words >1 link) were provided
more often as responses when the stimulus word had low rather than high degree.
Finally, even very distant neighbors tended to be connected to the stimulus word
by a path in the lexical network. These findings have implications for the pro-
cessing of spoken words, and highlight the valuable insights that can be obtained
by combining the analytic tools of network science with the experimental tasks of
psycholinguistics.

1 Introduction

Network analysis has been used to examine semantic (De Deyne and Storms 2008;
Hills et al. 2009; Kenett et al. 2011) and phonological (Arbesman et al. 2010; Carl-
son et al. 2011; Sonderegger 2011) relationships among words in a variety of lan-
guages. Although analyses of the structure of networks formed by the semantic and
phonological relationships among words have provided unique insights into these
languages, it is important to also examine how that observed structure influences
language processing (Borge-Holthoefer and Arenas 2010). In the present chapter
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we used the analytic tools from network analyses and data from a psycholinguis-
tic experiment to explore (1) the structure that exists in the network formed when
words serve as vertices (or nodes) and edges (or links) connect words that sound
similar to each other (i.e., they are phonologically related) (Vitevitch 2008), and (2)
how that structure might influence what is perceived when listeners misperceive a
spoken word.

Analysis of speech production errors, such as slips of the tongue, malapropisms,
and tip-of-the-tongue experiences, has played an important role in increasing our
understanding of the processes involved in speech production (Brown and McNeill
1966; Fay and Cutler 1977; Fromkin 1971). Curiously, however, there has been con-
siderably less research examining speech perception errors, such as mondegreens
and slips of the ear (Bond 1999). Instead, most research on speech perception and
spoken word recognition has used laboratory-based tasks to examine how certain
characteristics of words—such as the frequency with which the word occurs in the
language—influence the speed and accuracy that a word can be successfully recog-
nized, with little attention paid to the errors that occurred. The dearth of research
on speech perception errors is unfortunate because analyses of such errors have the
potential to inform and constrain models of speech perception and spoken word
recognition just as similar analyses of speech production errors have informed and
constrained models of speech production

There are several models of speech perception and spoken word recognition that
have existed for several decades (Luce et al. 2000; Luce and Pisoni 1998; Marslen-
Wilson 1987; McClelland and Elman 1986; Norris 1994). However, (to our knowl-
edge) none of these models has been used to predict what will be perceived when
a spoken word is misperceived. Given the basic assumptions of these models—
multiple word-forms that resemble the acoustic-phonetic input are activated and
then compete with each other for recognition—what was perceived when a misper-
ception occurred might have appeared so obvious as to not require any further com-
ment: one of the other partially-activated competitors will be perceived if the word
that was actually spoken is not, for some reason, correctly perceived. This simple
assumption raises an interesting question, however: what do the partially activated
lexical competitors look like?

Of the studies that have examined speech perception errors, most have examined
collections of actual perception errors, so-called slips of the ear, as in Bond (1999).
Corpus analyses have much ecological validity and have increased our understand-
ing of the spoken word recognition system, but concerns are often raised about the
reliability of such data due to the possible influence of perceptual biases in the initial
collection of the errors.

In the present study, rather than analyze a corpus of perceptual errors to examine
the partially activated lexical competitors that might be erroneously perceived in a
slip of the ear, we instead used techniques from network science and a laboratory-
based psycholinguistic task. The techniques of network science enabled us to
determine the range of lexical competitors that could be perceived as activation
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diffuses through a network-like representation of the mental lexicon, like the model
described in Vitevitch et al. (2011). That is, on average, how many candidates might
one have to select from when a misperception occurs (and, to a lesser extent, what do
those candidates look like)? The laboratory-based psycholinguistic task allowed us
to examine in several ways (and, admittedly, in a somewhat contrived way) what
people might actually perceive when a misperception occurs. Both of these ap-
proaches provided us with information and insight that could not be examined using
the typical method of analyzing a corpus of extent perceptual errors.

2 Network Analysis: What Can Be Perceived When Speech
Is Misperceived?

Previous work on slips of the ear suggests that when a misperception of speech oc-
curs, what is perceived is phonologically rather than semantically similar to what
was uttered (Bond 1999). But how phonologically similar are the spoken and mis-
perceived words? A commonly used metric to compare the similarity of two strings
of characters—in this case, the phonemes in two words—is Levenshtein distance
(Levenshtein 1966) (see also Coltheart et al. (1977), Greenberg and Jenkins (1964),
Landauer and Streeter (1973), and Luce and Pisoni (1998)). That is, two words are
considered phonological neighbors if you can add, delete, or substitute a phoneme
in one word to form the other word (i.e., a Levenshtein distance of 1).

This same definition of phonological similarity was used in Vitevitch (2008)
to create a network of approximately 20,000 English word-forms. Nodes in the
network represented phonological word-forms, and links connected phonological
neighbors. As an example, the node for the word cat /kæt/ would have a link con-
necting it to the nodes representing the words hat /hæt/, cut /k∧t/, cap /kæp/, at /
æt /, scat /skæt/, etc. (the underlined phonemes indicate the location of the change

relative to /kæt/). A small portion of this network is illustrated in Fig. 1 showing the
word speech, the neighbors of speech, and the neighbors of those neighbors (i.e.,
the 2-hop neighbors of speech).

The analysis of the phonological network in Vitevitch (2008) showed that 53%
(10,265 of 19,340 words) of the words in the network were isolates, or did not have
a phonological neighbor; these words, like spinach and obtuse, have been referred
to as lexical hermits in Vitevitch (2008) and elsewhere. Furthermore, 13% (2,567
of 19,340 words) of the words in the network formed small components, referred to
as lexical islands (Vitevitch 2008), which contained words that were connected to
each other, but not to the rest of the network. The remaining 34% of the words in
the lexicon (6,508 of 19,340 words) formed what is known as a giant component, or
a group of nodes that are connected to each other in some way, but not connected to
the other (smaller) components, or to the isolates

In the present analysis, we used a Hop Plot to examine the shortest distance (or
shortest path length) that exists between two nodes in the network. This distribu-
tion of the distances in the network allows us to show the number of nodes (i.e.,
words) that can be reached by traversing d links in the network. The findings in
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Fig. 1 A small portion of the English phonological network analyzed in Vitevitch (2008).
Nodes represent words in the lexicon, and links connect words that are phonologically similar
(i.e., they differ by a single phoneme).

Bond (1999) suggest that when listeners misperceive a word, they “hear” something
that is phonologically similar to the word that was uttered. We, therefore, used the
Hop Plot to determine, on average, how many lexical competitors at different levels
of “phonological similarity” (as defined by d, or the number of links traversed) are
available to a listener when a misperception of a word occurs. This analysis gives
us a better understanding of the possible range of lexical competitors—in terms
of number of lexical competitors, and the extent to which they are phonologically
similar to the uttered word—that might be erroneously perceived.

Because isolates and nodes in the smaller components (i.e., lexical islands) are,
by definition, unreachable, this analysis, as is the convention in network science,
only considered the words in the giant component. Our focus on the words in the gi-
ant component is reasonable not only for computational reasons (i.e., the distance to
unreachable nodes is undefined), but from a theoretical perspective as well. Consider
that the distribution of words in a word co-occurrence network fall into a core and a
periphery (Dorogovtsev and Mendes 2001). The size of the core or “kernel lexicon”
remained relatively invariant as language evolved, and is comparable in size to the
giant component we examined in the present study. The existence of lexical islands
and lexical hermits in the phonological network (i.e., words in the periphery) raises
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interesting questions about how such items might be retrieved from the lexicon, but
those questions are beyond the scope of the present investigation.

Distance between nodes was assessed in terms of the smallest number of links
between the two selected nodes. Recall that in the context of the phonological net-
work, a link corresponds to a single phoneme change (i.e., an addition, deletion, or
substitution) between adjacent nodes.

Figure 2 shows the Hop Plot for the 6,508 words in the giant component of the
English phonological network examined in Vitevitch (2008). The x-axis is the num-
ber of links in the shortest path connecting two nodes. The y-axis is the cumulative
percentage of node pairs that are at most d links from each other. Thus, a distance
of 1 indicates the percentage of node pairs (i, j) that are reachable by 1-hop, or a
distance of 1 link. The longest shortest-path between two nodes in the giant com-
ponent consisted of 29 links, and exists between the words connect and rehearsal.
The path from the word connect to rehearsal included the following words (each
differing from immediately adjacent words by a single phoneme): connect, collect,
elect, affect, effect, infect, insect, inset, insert, inert, inurn, epergne, spurn, spin,
sin, sieve, live, liver, lever, leva, leaven, heaven, haven, raven, riven, rivet, revert,
reverse, rehearse, rehearsal.

The Hop Plot shows that, on average, .14% of the words in the giant component
(or 9.1 of 6,508 words) were reachable by going 1-link away from a given word.
Thus, if one were to randomly select a word in the lexicon and change 1 phoneme
in that word, one would have, on average, fewer than a dozen competitors (i.e., 9.1
words). If activation were to diffuse through the network to a distance of 2-hops
away from a given word, one would activate, on average, 1.33% of the words in
the giant component (86.6 of 6,508 words), increasing by an order of magnitude
the number of competitors. The number of “phonologically similar” competitors
continues to increase dramatically as the distance between words increases. At a
distance of 3-hops, 7.9% of the words in the giant component were reachable (or
514.1 words of the 6,508 words in the giant component), and at a distance of 4-
hops, 25.2% of the words in the giant component were reachable (or 1,640 words of
the 6,508 words in the giant component).

The rapidly increasing number of nodes that can be reached as distance slowly in-
creases visually illustrates one aspect of the small-world phenomenon (Albert et al.
1999; Kleinberg 2000; Watts and Strogatz 1998): despite the large number of items
in the system, a large system like the phonological network can nevertheless be
traversed quickly. However, the same small-world characteristic that contributes to
efficient navigation in a network—being able to reach a large number of nodes very
quickly—may lead to detrimental effects when trying to quickly and correctly per-
ceive a spoken word (Luce and Pisoni 1998), or when trying to recover from the
misperception of a spoken word. Restricting processing in some way to candidates
that are 1 or 2 hops away from a given node may keep the number of competitors to
a reasonable number, and may facilitate recovery when misperceptions do occur.

The “double-edged” nature of the path-length between two nodes should not be
surprising given the “double-edged” nature of other network characteristics. For
example, nodes with many connections, or a high degree (a.k.a. hubs), contribute
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Fig. 2 The Hop Plot for
the 6,508 words in the giant
component of the English
phonological network ana-
lyzed in Vitevitch (2008).
The x-axis is d, the distance
(i.e., number of links) of
the shortest path connecting
two nodes. The y-axis is the
cumulative percentage of
node pairs that are at most d
links from each other.

to the stability of scale-free networks when the system is randomly attacked, but
can also be the “Achilles heel” of the system when attacks target the hubs (Albert
et al. 2000). Also compare the effects of clustering coefficient on speech perception
(Chan and Vitevitch 2009) and production (Chan and Vitevitch 2010) to the effects
of clustering coefficient on certain memory processes (Vitevitch et al. 2012) for
another example of the “double-edged” nature of certain network characteristics.

3 Psycholinguistic Experiment: What Is Perceived When
Speech Is Misperceived?

To further examine what might be perceived when a spoken word is misperceived,
we used a variant of a well-known psycholinguistic task, the semantic associate task
(Nelson et al. 1998), as a laboratory analogue of what happens when one experiences
a slip of the ear. In a naturally occurring slip of the ear, a listener hears a word, but
does not perceive the word that was uttered. Instead the listener perceives a word
that is phonologically similar to the uttered word (Bond 1999).

In our variant of the semantic associate task—the phonological associate task—
we presented an English word over a pair of headphones to participants, and asked
them to respond with the first word that came to mind that sounded like the word
they heard (see also Luce and Large (2001)). Note that each participant was allowed
to define what “sounded like” meant. By leaving open the meaning of “sounded
like,” we were able to explore the parameters that listeners may use (implicitly) to
define phonological similarity. The responses would also allow us to examine other
characteristics of the words that listeners might perceive when they misperceive a
word.

Admittedly, this task is contrived, and lacks the ecological validity found in the
analysis of naturally occurring slips of the ear. However, the laboratory context of
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this task enables us to carefully control certain variables, and manipulate others to
better explore what might be perceived when a spoken word is misperceived. Such
precise control over relevant variables is not possible in analyses of naturally occur-
ring slips of the ear, where one is at the mercy of the material reported in the corpus.
For example, an analysis of slips of the ear showed that the words in the corpus
that had been misperceived tended to have a higher degree (i.e., more phonological
neighbors) than words in general (Vitevitch 2002b). Although this finding was con-
sistent with predictions derived from models of spoken word recognition regarding
the difficulty of recognizing spoken words with many phonological neighbors (Luce
and Pisoni 1998), the prevalence of naturally occurring slips of ear in words with
high degree limits our ability to understand what happens when one misperceives
a word with low degree (i.e., few phonological neighbors). Given the prevalence
of words with low degree in the network it is important to examine these words as
well. Using a laboratory-based psycholinguistic task as in the present experiment,
therefore enabled us to examine both types of words, those with high and those
with low degree (i.e., many and few phonological neighbors), thereby giving us a
more complete understanding of misperceived words than would be possible from
an analysis of a corpus of slips of the ear. Finally, our use of the present task gave
us the opportunity to obtain usable responses for every stimulus word rather than
limiting our analysis to the smaller number of errors that might be obtained in a
perceptual identification task, for example.

In psycholinguistic experiments in which a variable—like degree, or the number
of phonological neighbors of a word—is manipulated, a prediction regarding per-
formance as a function of that variable is often advanced. In the present case we are
using a psycholinguistic task in a more exploratory manner—we wished to simply
better understand what might be perceived when a spoken word is misperceived—so
we will not advance any specific hypotheses regarding performance. Our inclusion
of words with both high and low degree (i.e., many and few phonological neighbors)
allows us to explore this question more completely, despite the typical distribution
of such items in corpora of naturally occurring slips of the ear (i.e., predominantly
words with high degree), and the typical distribution of such items in the lexicon
itself (i.e., predominantly words with low degree).

3.1 Method

The same participants, materials, and procedure used in Experiment 2 of Vitevitch
et al. (2014) were used in the present investigation. The responses from that exper-
iment were analyzed in a different way in the present investigation. For the conve-
nience of the reader we provide some details regarding the participants, materials,
and procedure.

Fourteen native English-speaking students enrolled at the University of Kansas
gave their written consent to participate in the present experiment. None of the par-
ticipants reported a history of speech or hearing disorders.
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The materials consisted of 100 English monosyllabic words containing three
phonemes in a consonant-vowel-consonant syllable structure. A male native speaker
of American English (the first author) produced all of the stimuli by speaking at a
normal speaking rate and loudness in an IAC sound attenuated booth into a high-
quality microphone. The pronunciation of each word was verified for correctness.

The words differed in degree/neighborhood density, but were similar with regards
to a number of other lexical characteristics that are known to influence language
processing. Degree/Neighborhood density refers to the number of words that sound
similar to the stimulus word based on the addition, deletion or substitution of a
single phoneme in that word (Luce and Pisoni 1998). A word like cat, which has
many neighbors (e.g., at, bat, mat, rat, scat, pat, sat, vat, cab, cad, calf, cash, cap,
can, cot, kit, cut, coat), has high degree and (in Psycholinguistic terms) is said to
have a dense phonological neighborhood, whereas a word, like dog, that has few
neighbors (e.g., dig, dug, dot, fog) has low degree and (in Psycholinguistic terms)
is said to have a sparse phonological neighborhood (N.B., each word has additional
neighbors, but only a few were listed for illustrative purposes). Half of the stimuli
had high degree/dense phonological neighborhoods (mean = 27.7 neighbors, sd =
1.6), and the remaining stimuli had low degree/sparse phonological neighborhoods
(mean = 14.9 neighbors, sd = 1.5; F (1, 98) = 1648.62, p < .0001).

Although the stimuli differed in degree/neighborhood density, they were com-
parable with regards to the following characteristics. Subjective familiarity ratings
of the words, measured on a seven-point scale, were obtained from Nusbaum et al.
(1984). Words with high degree/dense neighborhoods had a mean familiarity value
of 6.87 (sd = .22) and words with low degree/sparse neighborhoods had a mean fa-
miliarity value of 6.82 (sd = .28, F (1, 98) = 1.50, p = .22). The mean familiarity
value for the words in the two groups indicates that all of the words were highly
familiar.

The mean frequency of occurrence in the language (log10 of the raw values from
Kučera and Francis (1967)) was 1.03 (sd = .58) for the words with high degree/-
dense neighborhoods, and 1.00 (sd = .58) for the words with low degree/sparse
neighborhoods (F (1, 98) = .08, p = .77).

Neighborhood frequency is the mean word frequency of the neighbors of the tar-
get word. Words with high degree/dense neighborhoods had a mean log neighbor-
hood frequency value of 2.03 (sd = .24), and words with low degree/sparse neigh-
borhoods had a mean log neighborhood frequency value of 1.94 (sd = .25; F (1, 98)
= 2.99, p = .09).

Phonotactic probability refers to how often a certain segment occurs in a certain
position in a word (positional segment frequency) and to how often two adjacent
segments occur next to each other in a certain position (biphone frequency; as in
Vitevitch and Luce (2005)). The mean positional segment frequency for words with
high degree/dense neighborhoods was .147 (sd = .02) and for words with low de-
gree/sparse neighborhoods was .140 (sd = .02, F (1, 98) = 2.11, p = .15). The mean
biphone frequency for words with high degree/dense neighborhoods was .007 (sd =
.003) and for words with low degree/sparse neighborhoods was .007 (sd = .003, F
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(1, 98) = .009, p = .93). These values were obtained from a web-based phonotactic
probability calculator (Vitevitch and Luce 2004).

Each participant was seated in front of a computer that controlled the presentation
of stimuli and the collection of responses. In each trial, the word “READY” appeared
on the computer screen for 500 ms. Participants then heard one of the randomly
selected stimulus words through a set of headphones at a comfortable listening level.
Each stimulus was presented only once. Participants were asked to type in the first
English word that came to mind that “sounded like” the word that they heard over
the headphones. The participants could use as much time as they needed to respond.
Participants were able to see their responses on the computer screen when they were
typing and could make corrections to their responses before they hit the RETURN

key, which initiated the next trial. Although different effects might be found when a
closed-response-set rather than an open-response-set is used, there does not appear
to be any difference in performance depending on whether responses are spoken
versus typed in tasks like that used in the present experiment (Clopper et al. 2006).

3.2 Results

Misspelled words and typographical errors in the responses were corrected to form
English words according to the following criteria: (1) transposition of adjacent let-
ters in the word was corrected, and (2) the addition of a single letter in the word was
removed if the letter was within one key of the target letter on the keyboard. Of the
1400 responses, 4.56% were misspellings or typographical errors that could not be
resolved into English words according to the criteria above, were semantically but
not phonologically related to the stimulus, or were repetitions of the stimulus word.
These responses could not be analyzed, leaving 1336 responses for examination.

Of the responses that we could analyze, 1125 (84.21% of the 1336 responses)
were 1 link away from the stimulus word. That is, the responses differed from the
stimulus word by one phoneme. We found 181 responses (13.54% of the 1336 re-
sponses) that were 2 links away from the stimulus word (i.e., differing from the
stimulus word by two phonemes), 28 responses (2.1% of the 1336 responses) that
were 3 links away from the stimulus word, 1 response (.07% of the 1336 responses)
that was 6 links away from the stimulus word, and 1 response (.07% of the 1336
responses) that was 8 links away from the stimulus word. Thus, when asked to pro-
duce a word that “sounded like” a given word, listeners overwhelmingly selected a
word that was a short path-length in the network of phonological word-forms away
from the stimulus word, and only occasionally selected words at longer path-lengths
from the stimulus, giving us additional insight into the criteria that typical users of
language (rather than trained language scientists) employ to define phonological
similarity.

We further examined in several ways the 1125 responses that differed from the
stimulus word by 1 link as a function of degree/neighborhood density of the stimulus
word. Our first analysis of these words examined how many different words were
given in response to a stimulus word. That is, when presented with cat, did everyone
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give hat as the response, or was there some variety in the words that “sounded like”
the word cat?

The 14 participants gave a mean of 9.16 different words (sd = 1.74) in response
to words with a high degree/dense phonological neighborhood, and 8.66 different
words (sd = 2.03) in response to words with a low degree/sparse phonological neigh-
borhood. The analysis of the path-length between words indicated that there was
remarkable consensus among participants regarding what “sounded like” the stim-
ulus word: a word that was 1 link away from the stimulus word. Despite that agree-
ment, the present analysis suggests that participants did not converge on the same
path in the lexical network. Participants instead indicated that a variety of words
in the phonological neighborhood (regardless of whether it was a dense or a sparse
neighborhood) “sounded like” the stimulus word.

It is striking that the number of different words that participants indicated
“sounded like” the stimulus word approximates the value of 9.1 obtained in the
Hop Plot in Fig. 2 for the average number of words that could be reached by 1 hop
in the network of phonological word-forms. Future research could explore whether
the recurrence of this value is simply a coincidence, or is indicative of some sort
of cognitive constraint on language processing, such as the well-known constraint
in short-term memory of 7 plus or minus 2 chunks (Miller 1956). One way to dis-
tinguish between these two possibilities is to increase the number of respondents in
this task. If, with additional participants, we obtain even more variety in the number
of different words that “sounded like” the stimulus word, then we can rule out the
possibility that the value of 9 is indicative of some sort of cognitive constraint on
language processing. If that value is again observed, then additional investigation of
some sort of cognitive constraint may be warranted.

A second analysis examined the percentage of responses that differed from the
stimulus word by 1 link as a function of degree/neighborhood density of the stimulus
word. For the stimulus words with high degree/dense phonological neighborhoods
we found that 84.86% (sd = 12.13) of the responses given to these words were 1 link
away from the stimulus word (meaning that 15.14% of the responses were more than
1 link away from the stimulus word), and for stimulus words with low degree/sparse
phonological neighborhoods 76.43% (sd = 16.78) of the responses given to these
words were 1 link away from the stimulus word (meaning that 23.57% of the re-
sponses were more than 1 link away from the stimulus word). This difference was
statistically significant (t (98) = 2.88, p< .01), and on the one hand is not surprising.
That is, words with low degree/sparse phonological neighborhoods have few words
that “sounded like” the stimulus word that are 1 link away, so activation may diffuse
across longer paths (i.e., two or more links) to activate a word that “sounded like”
the stimulus.

On the other hand, however, the finding that a smaller proportion of stimulus
words with low degree/sparse phonological neighborhoods had responses that were
1 link away from the stimulus word is peculiar, and raises additional questions. For
example, consider this result in conjunction with the previous finding regarding the
number of different words that participants indicated “sounded like” the stimulus
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word. If words with low degree/sparse phonological neighborhoods have few op-
tions to choose amongst for words that “sounded like” the stimulus word, then
why was there variability in the number of different words that participants in-
dicated “sounded like” the stimulus word? That is, why did participants give 2-
hop neighbors as responses instead of simply producing the same 1-hop neighbors
again and again (and therefore producing a smaller number of different types of
words that “sounded like” the stimulus word for the words with low degree/sparse
phonological neighborhoods)? This returns us to the provocative hypothesis that
there may be some sort of cognitive constraint on language processing: during spo-
ken word recognition a fixed number of candidates may be evaluated by the word
recognition system. In the case of words with high degree/dense phonological neigh-
borhoods, that fixed number of candidates may be reached (or exceeded) by 1-hop
neighbors. Whereas in the case of words with low degree/sparse phonological neigh-
borhoods, that fixed number of candidates may be reached only by considering more
distant phonological neighbors (i.e., words more than 1-hop away). Additional anal-
yses and psycholinguistic experiments may be warranted to examine further this
speculative hypothesis.

Our next analysis examined the 211 responses that were more than 1 link away
from the stimulus word. Given the insight provided by the Hop Plot, we again turned
to the tools of network science, and examined the phonological network analyzed
in Vitevitch (2008) to determine if a connected path of words existed between the
stimulus word and the more distant responses. To illustrate (see Fig. 1), imagine
spud was the stimulus, and the response was beach; one can get from spud to beach
by going through the words speed-speech-peach, a path length of 4 links.

In 205 of the 211 cases (97.16%) there existed a path of words between the
stimulus and the response. The 6 (2.84%) exceptions to this were (stimulus word
→ response): lag → stagnant, niche → kitchen, poach → potion, poach → ap-
proach, noose → caboose, and bib → bibliography. Note that the network analyzed
in Vitevitch (2008) contained fewer than 20,000 words. If a larger network were
analyzed—one that approached the higher estimates of vocabulary size offered by
some (e.g., 216,000 words (Diller 1978))—it is possible that a path might be found
between the stimulus and the response in these 6 cases as well.

Despite these 6 exceptions (less than .5% of the 1400 responses) the result of
this analysis suggests that words that “sounded like” each other—even distantly
related words—tend to connect to each other along a path of real words in the lexi-
con. The existence of lexical intermediaries observed in the present analysis raises
some concerns about measures of word-form similarity that ignore such items, such
as the Orthographic Levenshtein Distance-20 (OLD-20 (Yarkoni et al. 2008)), and
the Phonological Levenshtein Distance-20 (PLD-20 (Suárez et al. 2011)). In OLD-
20/PLD-20, Levenshtein distance is computed between a target word and all other
words in the lexicon. OLD-20/PLD-20 is then the mean edit distance of the 20
closest neighbors. The computations of OLD-20/PLD-20 do not consider whether
real-word intermediaries exist or not; the measure only considers the number of let-
ter/phoneme changes (respectively) that are required to turn one word into another.
However, the present findings show that distant phonological neighbors tend to be
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connected to a word via a path of real words, raising questions about the psycho-
logical validity of metrics such as OLD-20 and PLD-20 that do not consider the
absence (or existence) of lexical intermediaries.

4 Conclusion

In the present chapter we used analytical tools from network science and experimen-
tal methods from psycholinguistics to examine a question about language processing
that is less often examined: What is perceived when a spoken word is misperceived?
A Hop Plot was used to assess the proportion of nodes that can be reached (on av-
erage) at a given distance, thereby providing us with information about the number
of “phonologically similar” competitors one might expect to consider as activation
diffuses across the network. This analysis revealed that a relatively small proportion
of the network (.14% or 9.1 of 6,508 words) could be reached via 1 link. However,
the proportion of words that could be reached increased dramatically as the number
of links traversed increased.

With the information provided by our network analysis about how many candi-
dates one might choose amongst when one misperceives a spoken word, we turned
to the question of what those candidates actually look like, and examined that ques-
tion with the phonological associate task, in which participants heard a word and
responded with the first word that came to mind that “sounded like” that word. Al-
though this task is admittedly somewhat artificial, it does mimic certain important
aspects of the processes that are used “in the wild” to recover from the misperception
of spoken words. Furthermore, the ability to carefully select certain words to use as
stimuli enabled us to examine certain variables while controlling for other variables,
which is something that cannot be done easily when analyzing a corpus of speech
perception errors. Moreover, our ability to manipulate the variable of degree/neigh-
borhood density allowed us to examine what happens when misperceptions occur
in words with low degree/sparse neighborhoods; this is not possible in analyses of
extent speech perception errors because such words rarely appear in such corpora
(Vitevitch 2002b).

Several interesting results were observed in the phonological associate task: (1)
most responses were 1 link away from the stimulus word, (2) responses that were
more distant (>1 link away from the stimulus word) tended to occur more for
words with low degree/sparse neighborhoods than for words with high degree/dense
phonological neighborhoods, and (3) responses that were more distant tended to be
connected to the stimulus word by a path of real words in the lexicon.

The observation that most responses were 1 link away from the stimulus word
provides important insight into the criteria that listeners use to indicate that two
words “sounded like” each other. Other logical and linguistically motivated possibil-
ities exist, including responding with a longer word that contained the stimulus word
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(e.g., cat → catalog), or appending various morphemes to the stimulus word (e.g.,
dog → doggedly), but such alternative responses were quite rare in the present study.

The observation that distant responses (>1 link away from the stimulus word)
tended to occur more for words with low degree/sparse neighborhoods than for
words with high degree/dense phonological neighborhoods is also interesting, es-
pecially in light of the first observation. If most responses are 1 link away, one
might expect that participants would have more consistency amongst themselves in
identifying words that “sounded like” the stimulus words with low degree/sparse
neighborhoods. That is, most participants should have provided the same word as a
response to a given stimulus word instead of the wide variety of responses that was
observed for each stimulus word. The fact that listeners instead went beyond the 1-
hop neighbors even though there were still words to choose from—recall the mean
number of neighbors for the stimuli with low degree/sparse phonological neighbor-
hoods was 14.9 neighbors—is interesting, and opens up several new avenues for
future research, including the hypothesis that a fixed number of candidates might be
evaluated during spoken word recognition.

Another interesting avenue for future research is to examine the amount of time
it takes to recover from the misperception of a spoken word. Unfortunately we did
not measure the time to respond in the present study. Had we done so we could have
compared the response times of the items that were 1-2 hops away from the stimulus
to the response times of the items that were more than 2 hops away from the stimu-
lus. Future experiments that compare a free-response condition in the phonological
associate task to a condition with an imposed time-pressure to respond could shed
light on the mechanisms that may be employed to recover from the misperception
of a spoken word (De Deyne et al. 2012).

The present results also highlight the existence of lexical intermediates and the
potential importance they may play in certain language-related processes. In the
responses that were 2 or more hops away from the stimulus word, 97.16% of the re-
sponses had a path of extent words connecting the response to the stimulus. Recent
work using a game called word-morph—in which participants were given a word,
and asked to form a disparate word by changing one letter at a time—demonstrates
that participants can exploit their knowledge of the paths between words to effi-
ciently traverse large distances in a lexical network (Iyengar et al. 2012). For exam-
ple, when asked to “morph” the word car into the word shy participants might have
changed car into cat-pat-pet-set-see-she and finally into shy. Once participants in
this task identified certain “landmark” words in the lexicon, the task of navigating
from one word to another became trivial, enabling the participants to solve subse-
quent word-morph puzzles very quickly; solving times dropped from 10-18 minutes
in the first 10 games, to about 2 minutes after playing 15 games, to about 30 sec-
onds after playing 28 games. The results of the present study suggest that lexical
intermediaries may also play a role in the misperception of a spoken word.

Another recent study further highlights the importance of intermediate lexical
items (Geer and Luce 2012). In an auditory shadowing task and a lexical decision
task distant neighbors (i.e., words 2 links away from the target) inhibited lexical
intermediaries (i.e., words 1 link away from the target), thereby reducing the amount
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of inhibition that the target word receives from those intermediaries. Referring to
Fig. 1, if speech is the target word, the word spud would inhibit the word speed,
the word beach would inhibit peach, etc., thereby reducing the amount of inhibition
that speech receives from speed, peach, etc. Said another way, the words that inhibit
a target word are themselves inhibited by other words. Thus, the number of distant
neighbors can influence retrieval of a target word by moderating the influence that
near neighbors have on the target word (Geer and Luce 2012). The findings from
the present study together with the findings from the word-morph game and the
findings in Geer and Luce (2012) indicate that additional research on the role of
lexical intermediaries on processing is warranted.

More broadly speaking, the present chapter illustrates how network science can
be used to investigate questions related to complex cognitive systems, in addition to
questions related to complex social, biological, or technological systems, areas typ-
ically analyzed by network scientists (Albert and Barabási 2002). Combining the
power of laboratory-based experiments that are often used in the psychological sci-
ences with the analytical tools and system-wide view of network science—as in the
present chapter—holds much promise for advancing the psychological sciences into
new areas of inquiry and for resolving ongoing debates. This approach has already
increased our understanding of the brain (Sporns 2010), as well as the cognitive pro-
cesses involved in human navigation (Iyengar et al. 2012), semantic memory (Hills
et al. 2009; Marslen-Wilson 1987), and human collective behavior (Goldstone et al.
2008).

In the context of spoken language processing, the tools of network science have
enabled us to measure the global as well as the local structure of words stored in the
mental lexicon. Previous attempts to examine the structure of the lexicon have only
focused on one level. Consider the work of Zipf (Zipf 1935), which found (among
other things) a power-law relationship between the frequency with which a word
occurs and its rank order. Consider other analyses (Baayen 1991; Baayen 2001;
Frauenfelder et al. 1993; Landauer and Streeter 1973), which examined how certain
lexical characteristics, such as word-frequency or phoneme frequencies, were re-
lated to other lexical characteristics, such as neighborhood density. Consider further
the work on neighborhood spread (Vitevitch 2007), onset density (Vitevitch 2002a),
and phonotactic probability (Vitevitch and Luce 2005). We see these and many other
studies as attempts to measure some aspect of the structural relations among words
in the lexicon with the statistical tools that were available at the time. Each of these
attempts captured some aspect of that lexical structure, but only at one level of the
system. Network science offers a more complete set of methodological tools that
can be used to examine multiple levels of a system.

More important, network science offers a theoretical perspective that integrates
the observations made at each level of the system. Previous observations of the struc-
ture of the lexicon were not only limited to one level of the system, but were often
viewed as disparate findings instead of being cumulative, complementary, or some-
how connected. That is, each of these previous findings provided yet another entry
to the already long list of lexical variables that were known to influence processing
in some way (Cutler 1981), instead of contributing to a cohesive description of the
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lexical system. We believe that the methods and theory of network science offer
psychological scientists a unique and powerful framework to develop comprehen-
sive models of cognitive processes and representations that can then be subjected
to empirical tests. The present chapter serves as an example of how to combine
the analytic tools of network science with the experimental tasks of psychology to
examine (and raise) new questions about cognitive processing and representation.
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Structure and Organization of the Mental
Lexicon: A Network Approach Derived from
Syntactic Dependency Relations and Word
Associations

Simon De Deyne, Steven Verheyen, and Gert Storms

Abstract. Semantic networks are often used to represent the meaning of a word in
the mental lexicon. To construct a large-scale network for this lexicon, text corpora
provide a convenient and rich resource. In this chapter the network properties of a
text-based approach are evaluated and compared with a more direct way of assessing
the mental content of the lexicon through word associations. This comparison indi-
cates that both approaches highlight different properties specific to linguistic and
mental representations. Both types of network are qualitatively different in terms of
their global network structure and the content of the network communities. More-
over, behavioral data from relatedness judgments show that language networks do
not capture these judgments as well as mental networks.

1 Introduction

In cognitive science semantic networks, in which words are connected with each
other through a set of links, have been introduced over 50 years ago in the work of
Collins and Quillian (1969) and Collins and Loftus (1975) and have remained an in-
fluential theoretical model of the mental lexicon ever since. Until very recently, this
model has been employed mainly as an elusive metaphor and idealized theoretical
construct, since sizable implementations of such a network were missing. This has
changed through a combination of factors such as the availability of large corpora,
increased computational resources, and accelerated advances in network theory.

In this chapter two approaches towards constructing a large-scale network model
of the mental lexicon are compared that make use of novel corpora. A first one is
based on word associations and a second one is based on linguistic representations
derived from a syntactically annotated text corpus.
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While previous work has looked into both types of corpora (De Deyne and Storms
2008; Kenett et al. 2011; Motter et al. 2002; Steyvers and Tenenbaum 2005; Solé
et al. 2010), the interpretation of the findings is complicated by the lack of con-
trol for factors such as the number of tokens or network size. Another reason why
such a comparison has been lacking is the limited size of around 5,000 nodes of
the frequently used word association networks based on the University of Florida
dataset (Nelson et al. 2004). In this chapter, a new word association corpus based on
over 12,000 cues and over 3 million responses will be described, which for the first
time enables a comparison with a similar-sized network derived from text resources.
Apart from comparability, the choice of these two types of corpora also allows for a
comparison between a representation based on purely linguistic materials from text
and a representation that accesses more mental properties present in the lexicon by
looking at word associations. In other words, by matching quantitative properties
regarding the size of the network, the comparison allows for the identification of
qualitative differences between the two networks.

This chapter will compare the networks’ structure at a global and intermediate
level by capitalizing on the innovative contributions of network science as a unifying
formal framework to examine the structure at different levels simultaneously.

1.1 Macro-, Meso-, and Microscopic Properties of the Mental
Lexicon

The fundamental strength of the network account lies in the way it addresses the
structure of the lexicon at the macroscopic, mesoscopic, and microscopic level si-
multaneously. The ability to do so is an important feat of network science, since
studies of complex systems indicate that different functional patterns emerge de-
pending on the level of analysis and complexity of the network.

The macroscopic or network level reflects the combined role of all the connec-
tions between the nodes of the network. In naturally occurring networks, this pattern
of connections is often very distinct from comparable random networks, for instance
in the case of small-world networks. Over the past years, studies have revealed a
small-world structure in both linguistic and word association networks (Steyvers
and Tenenbaum 2005; De Deyne and Storms 2008). In these small-world networks,
regardless of the starting node, any other node can be reached in less than four steps
on average. Moreover, in contrast to comparable random networks, the networks
also contain a small number of highly connected nodes or hubs. Similarly, the inter-
connectivity among neighboring nodes indicated by the clustering coefficient, tends
to be much larger in these networks than in comparable random networks.

The way a network is organized at the macroscopic level provides insight in its
robustness against damage and efficiency of information dissipation (Bullmore and
Sporns 2012). It also captures various dynamic properties such as the gradual growth
(Steyvers and Tenenbaum 2005), abrupt emergence of new cognitive functions dur-
ing development, as well as the degradation of these functions with aging or neu-
rodegenerative illness (Baronchelli et al. 2013).
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The mesoscopic or group level involves the properties of a considerable subset
of nodes in the network. The structure at the mesoscopic level in the mental lexicon
is informative of the meaning of words. This is achieved by computing the distance
between a set of words through a set of direct and indirect paths connecting them.
These distances allow us to identify closely knit regions in the network. In network
science, this method is called community detection. It has been successfully applied
in cognitive science to uncover the community structure of phonological networks
(Vitevitch 2008), and to identify different word senses in small word association net-
works (Lancichinetti et al. 2011). Identifying the communities in the mental lexicon
might reflect similarity in meaning on a variety of grounds. For instance, this could
be a taxonomic structure with groupings for different types of animals like birds,
mammals, or fish (Rosch 1973). Communities could also be thematic, where differ-
ent members of a community occur in a specific script, like a restaurant community
consisting of members such as eating, bill, waiter, and dessert (Schank and Abel-
son 1977). Perhaps the communities group together words in a manner reflecting the
neuro-anatomic properties of the brain leading to a distinction between living kinds
and artefacts (Warrington and Shallice 1984), abstract and concrete words (Crutch
and Warrington 2005) or categories grounded by emotional responses (Niedenthal
et al. 1999). These are just a few examples, and it is quite likely that the investigating
of a large network of words might point towards a structure different from these.

Focusing on just a pair of nodes rather than a larger subset, the mesoscopic level
is also informative about how related or close two nodes are and what types of paths
exist between them. Since the early propositional network model by Collins and
Quillian (1969), the closeness between a pair of nodes has been shown to predict
the time to verify sentences like a bird can fly (Collins and Quillian 1969). To ac-
commodate for a larger set of behavioral data, the theory was extended to include
the notion of spreading activation (Collins and Loftus 1975), in which both direct
and indirect paths contribute to the closeness of pairs of words. In network theory,
spreading activation is often thought of as a stochastic random walk, resulting in a
measure of relatedness that reflects both the number and the length of paths con-
necting two nodes in the network. Such a random walk model allows us to infer
additional information beyond the direct connection between two nodes, which has
been shown to improve predictions of human similarity judgments (Capitán et al.
2012; Van Dongen 2000), and the extraction of categorical relations between words
(Borge-Holthoefer and Arenas 2010).

A quintessential example of the role of these connections is the study of word
priming. In priming tasks, the processing of a word is enhanced when it is preceeded
by a related word. In the case of associative priming this involves the presentation of
a prime such as dog which facilitates processing of the word bone. In network terms,
such facilitation might be explained by the presence of an associative link between
these words. Closely related is mediated priming, whereby one word primes another
because they are connected through a mediated link, as in the example of stripes –
tiger – lion. This type of priming is of particular theoretical importance, as it allows



50 S. De Deyne, S. Verheyen, and G. Storms

testing the assumption of activation spreading throughout the network (Hutchison
2003) similar to the original proposals by Collins and Loftus (1975). A final type
of priming that is often considered distinct from the two previous ones, is semantic
priming. Here, an ensemble of shared features or links rather than a single connec-
tion determines whether or not priming occurs. From the provided examples it will
be clear that a network account provides an elegant way to understand many of the
documented priming effects. In this area as well, such an account has been mostly
influential at a theoretical level, rather than has made use of a fully implemented
model of the mental lexicon.

The microscopic or node level of analysis of the network focuses on how a single
node is connected with the rest of the network. Examples are node centrality mea-
sures, such as the number of in- or outgoing links. These type of centrality measures
have been studied quite extensively in psycholinguistics and explain why certain
words are processed more efficiently than others (Nelson and McEvoy 2000; Chum-
bley 1986; de Groot 1989; Hutchison 2003). In this case network-derived measures
provide a structural explanation for many lexical properties of words which have
been demonstrated to facilitate word processing.

Structural explanations have been given for the effects of variables such as age-
of-acquisition (Steyvers and Tenenbaum 2005) and word frequency (Monaco et al.
2007). An interesting example is the finding that highly imageable words such as
chicken will be processed faster and more accurately across a range of tasks, includ-
ing naming and lexical decision, compared to more abstract words such as intuition.
Such a finding can be explained by looking at the set-size (i.e., summed in- and out-
degree) of a word. Researchers believe concrete words have smaller associate sets
than abstract ones (Galbraith and Underwood 1973; Schwanenflugel et al. 1992)
while others believe that concrete words have more semantic properties than ab-
stract words (de Groot 1989; Plaut and Shallice 1993). A network approach has the
potential to tease these two explanations apart.

1.2 Acquiring a Mental Lexicon through Language

The rationale of the current approach, in which the mental lexicon is implemented
as a network derived from language, is that this lexicon should reflect a repository
of shared subjective meaning, allowing language users to communicate efficiently.
It is shared under the assumption that with increasing proficiency a speaker acquires
a lexicon that mimics the linguistic properties of his or her environment. It is ef-
ficient, assuming that it is organized in a non-trivial fashion to meet information
retrieval demands. Represented as a network or graph, the mental lexicon consists
of nodes corresponding to lexicalized concepts, and links between these nodes indi-
cate lexico-semantic relationships between these nodes.
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We believe the mental lexicon acquires meaning through the continuous exposure
to words in context, following similar ideas by Wittgenstein (2001) and Firth (1968),
where word meaning is equated to its use in language. This is also the idea that un-
derlies many large-scale models which track the co-occurrence of words at the doc-
ument level (e.g. Landauer and Dutnais 1997) or at the sentence level (e.g., Lund
and Burgess 1996). However, as many studies have shown, humans do not merely
encode the surface level-properties of a single sentence or a larger discourse unit.
Instead, it is assumed that a mental model is constructed that conveys the crucial
information of the utterance beyond the verbatim format and involves comprehen-
sion of the syntactic nature of its constituents (Dennis 2005; Kintsch and Mangalath
2011) and the integration of its meaning with prior knowledge (Kintsch 1998; Prior
and Bentin 2003).

Indeed, in addition to learning about which words co-occur in language, knowl-
edge about different parts-of-speech and syntactic constructions are likely to be used
by humans to capture additional information about the meaning of an utterance
(Dennis 2005; Kintsch and Mangalath 2011). In many languages word meaning
and part-of-speech characteristics are highly correlated, which allows one to infer
what the actions (verbs), entities (nouns) and properties of these entities (adjectives)
are. Similarly, syntactic relationships between a subject and an object might reveal
something about agency. Furthermore, various studies have shown that linguistic
models that incorporate this information provide a better account of human related-
ness judgments compared to n-gram models that do not (Heylen et al. 2008; Padó
and Lapata 2007). Altogether, this suggests that a language network derived from a
syntactically annotated text corpus will lead to a representations that capture some
key properties of the mental lexicon.

One limitation of this linguistic approach is the fact that language is not merely
representational, as it is used to convey a message between a speaker and a listener.
Utterances comprise pragmatic factors as well. Compared to a text-based network,
this is one of the main reasons to assume that a word association model is likely
to encode mental representations differently, as they are considered to be free from
pragmatics or the intent to communicate some organized discourse, and believed
to be simply the expression of thought (Szalay and Deese 1978). Moreover, these
associations do not necessarily reflect propositional information derived from the
linguistic environment, but might reflect imagery, knowledge, beliefs, attitudes, and
affect as well (De Deyne and Storms 2008; De Deyne et al. 2013a; Szalay and Deese
1978; Rensbergen et al. 2014; De Deyne and Storms 2008; Simmons et al. 2008).
In other words, word associations tap directly into the semantic information of the
mental lexicon.

1.3 Chapter Outline

The remainder of this chapter starts with an explanation of how a language network
is derived from a syntactically annotated text corpus, and how a mental network is
derived from a large corpus of word associations. The language network chapter
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refers to a syntactic language network, where nodes are words and where two nodes
are connected through a syntactic dependency relationship such as the adjective red
modifying the noun car. The mental network refers to a network where nodes are
also words but the relationship between them is determined by how strongly a spe-
cific word is evoked by a cue word in a word association task. Compared to the
language networks, these responses are not constrained by syntax but reflect men-
tal constraints of what prominently comes to mind. Both networks aim to capture
the mental lexicon in an unsupervised way. This contrasts with the original hand-
crafted Collins and Loftus network (Collins and Loftus 1975) or WordNet (Fell-
baum 1998), where the representations are derived manually by expert linguists. It
also differs from connectionist approaches (Rogers and McClelland 2004), where
the set of nodes and types of relations is decided in advance and connection weights
are estimated using supervised learning.

The focus will be on the macroscopic and mesoscopic levels of the networks,
as these have only been recently introduced in the context of studying structure
in the mental lexicon (Baronchelli et al. 2013). First, the macroscopic stucture of
the networks will be addressed. It will provide a characterization of their global
organization and explore the nature of network hubs.

Next, community detection will be used to explore which types of clusters of
meaning are present in language and mental networks at a mesoscopic level. An
inspection of these communities can reveal what the underlying structural princi-
ples are and how various parts of the network relate to each other. For instance, one
possibility is that the hubs identified in the previous analysis are indicative of the
important domains of knowledge represented in the network. Another possibility is
that certain nodes in the network play a special role by connecting different clusters
in the graph, for instance in the case of polysemous words. In both cases, communi-
ties of limited size might allow us to interpret hubs much easier in comparison with
hubs identified at the macro-level. Community members can also provide us with
some information about the nature of the organization of the network. According
to the dominant view in psychology, concepts are organized in a hierarchical taxon-
omy of natural categories (Rosch 1973) on the basis of shared perceptual properties,
whereas other views attribute a larger role to a structure based on thematic relations
of the lexicon (Lin and Murphy 2001).

To test whether the communities correspond with a taxonomic organization, the
classification performance for basic-level categories such as birds or fish, obtained
from human behavioral data, will be used. This allows us to evaluate whether lan-
guage and mental networks make similar distinctions and provides the opportunity
to discuss alternative interpretations if such structure wouldn’t be evident.

The final part of the mesoscopic analysis complements the classification study
but uses a more direct way of assessing the underlying mesoscopic properties of
the network. This is accomplished by using network-derived similarity measures to
predict human relatedness judgments. Considering various levels of abstraction and
different types of semantic relations (e.g., relations at the basic and domain level,
and thematic relations) allows us to generalize the results beyond concrete basic
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level nouns, which have dominated the field of cognitive science for a long time
(Medin et al. 2000). However, because the large-scale networks in this chapter are
extremely sparse such an evaluation poses a specific challenge as a simple over-
lap measure for relatedness that only takes into account shared neighbors between
words might not suffice. To address this issue a spreading activation mechanism sim-
ilar to the one originally conceived by Collins and Loftus (1975) will be proposed.
One way of implementing this is by using Markov random walks over the network,
as these also take into account indirect paths that exist between a pair of nodes.
Just like dimension reduction in high dimensional semantic spaces like Latent Se-
mantic Analysis (Landauer 2007), the spreading activation mechanism introduces a
mechanism to infer indirect links. This allows us to deal with the sparsity associated
with linguistic representations and is assumed to lead to more reliable estimates of
relatedness. This sections ends with a brief discussion of the role of this spreading
activation for both language and mental networks in predicting different types of
semantic relations.

2 Constructing the Networks

In the following section, the derivation of several networks based on word asso-
ciation and text corpora are given. Both types of networks are implemented as a
unipartite localist network, where nodes correspond to words, and are connected
through weighted directed edges with other nodes. To make the networks compara-
ble, the set of words will be restricted to those that occur in both the text corpus and
word association data.

2.1 Mental Networks

The mental network was derived from a large scale word association study con-
ducted between 2003 and 2010 at the University of Leuven.1 This study is described
in detail in De Deyne et al. (2013a). In short, it involved a total of 71,380 native
Dutch speakers. The association procedure differed from most large-scale studies
(e.g. Kiss 1968; Nelson et al. 2004) because it used a continued response format,
where each participant generated three different responses for each cue instead of
one. This allows one to get a better approximation of weak links in the network
(De Deyne et al. 2013a). This way, a total of 300 responses were obtained from 100
participants per cue, corresponding to 100 primary, 100 secondary, and 100 tertiary
associations. In order to be able to compare the results with previous work based
on a single response procedure, an additional network will be derived which only
includes the primary responses.

1 The word association project is ongoing. In 2014, the project contained at least 300 re-
sponses per cue for 16,000 Dutch cues and 8,000 English cues. The studies can be accessed
from http://www.smallworldofwords.com.

http://www.smallworldofwords.com
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Data Preprocessing and Network Construction

The word association data consisted of 3.77 million responses for a total of 12,581
different cues. About 0.20 million different response types were represented in the
data. From these data, two weighted directed networks were derived. The first net-
work Gasso1, is based on the primary responses, comparable to the common single
response datasets (Nelson et al. 2004). The second network, Gasso123, includes the
secondary and tertiary responses as well. Reducing the network from a bipartite
representation to a unipartite representation involves the removal of responses that
were not members of the set of cues. The removal of these responses did not affect
the coverage in terms of token too much, as about 87% and 83% of the response to-
kens were retained in Gasso1 and Gasso123. To allow a comparison with the language
networks which will be explained in the next section, a total of 11,252 cues (94% of
the original) were retained. With a total of 0.85 million response tokens Gasso1 and
2.41 million tokens in Gasso123 it still represents a sizeable portion of nodes present
in the original networks.

2.2 Language Networks

An advanced syntactic dependency parser was used to build a network from a
small number of predefined syntactic relations (Heylen et al. 2008; Padó and La-
pata 2007). This approach offers a number of advantages in comparison to simple
n-gram models derived from raw text because it allows us to infer the part of speech
of the words and the syntactic relation between the constituents of a sentence. Be-
cause many sentences exhibit a complex nested structure, a second advantage of this
analysis is that it captures interesting relations between words even if they are not
adjacent within an n-gram window.

Corpus

The corpus described in this chapter consists of a variety of language resources
spanning three different registers (De Deyne et al. 2014): (1) text derived from
Dutch articles in newspapers and magazines from the Twente Nieuws Corpus (Or-
delman 2002) and the Leuven Newspaper Corpus (Heylen et al. 2008), (2) informal
language retrieved from Internet web pages collected between 2005 and 2007 and
the Dutch Wikipedia retrieved in 2008 (De Deyne 2008), and (3) spoken text from
Dutch movie subtitles (Keuleers et al. 2010) and the Corpus of Spoken Dutch (Oost-
dijk 2000).

Each sentence in the corpus was parsed using Alpino, an advanced Dutch de-
pendency parser (Bouma et al. 2000). Similar to Pereira et al. (1993) and Padó and
Lapata (2007), two words were connected by a small number of predefined depen-
dency paths. To reduce sparsity, part-of-speech tagged lemma forms provided by
Alpino were used instead of word forms. In other words, plurals and inflections were
all reduced to a more basic form. Next, all lemmas were counted and only adjec-
tives, adverbs, nouns, and verbs occurring at least 60 times were retained. Applying
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this cutoff removed very infrequent words and aided in keeping the computations
manageable. The resulting corpus vocabulary consisted of 157 million tokens and
103,842 different lemmas; 82.7% were nouns, 12.6% adjectives, 4.5% verbs, and
0.2% adverbs.

Table 1 Overview of the syntactic dependency paths p and examples

Abbreviation Full Path (p) Example

ObjHd V
object of head←−−−−−−−− N We need some more coffee.

HdMod N
modification−−−−−−−→ A This is, excuse me, damn good coffee.

HdModObj N
modification−−−−−−−→ NP

object of−−−−−→ N Lucy takes a loud sip of coffee

SuObj N
subject of object−−−−−−−−−→ N Coffee contains lots of caffeine.

SuHd N
subject of head−−−−−−−−→ V This coffee tastes delicious!

Cnj N
conjunction←−−−−−→ N Norma arrives with Cooper’s pie and coffee.

SuPredc N
subject of predicative phrase−−−−−−−−−−−−−−−−→ N Coffee is a drink.

HdPredc V
predicative complement−−−−−−−−−−−−−→ A This coffee tastes delicious!

Data Preprocessing and Network Construction

The syntactic relations coded as dependency paths, together with examples and the
number of pairs for each of the eight paths are shown in Table 1. With the exception
of the HdModObj pattern of length 2, all paths p had a length of 1. For each pattern
a reverse path was created by transposing the path-dependent graph. For example,
for pattern HdMod, the weight of a path for the adjective good and the noun coffee
is derived from the transposed dependency matrix GHdMod′ . An example of the ob-
tained dependencies based on the sum of the original and transposed paths for the
word coffee is shown in Table 2. It illustrates how the most frequent relations uncov-
ered by the syntactic dependencies are interpretable as corresponding to distinctions
in terms of function, attributes, and related entities.

To allow a comparison with the mental networks, the network Glex consisted only
of words that also occurred in the mental lexicon Gasso123 which resulted in a set of
11,252 cues. The total number of tokens in Glex was 83.87 million, while Gasso1 and
Gasso123 contained only a fraction of this amount of tokens (0.85 million and 2.41
million respectively).

To further improve comparability, a new network Glex123 was derived to closely
match the properties of Gasso123. This was accomplished by making two additional
assumptions. First, apart from vocabulary size, the number of tokens in both net-
works was matched. This was achieved by sampling responses in a way that matched
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Table 2 English translations of the 5 most frequent syntax dependencies derived for coffee in
the Glex network

ObjHd HdMod HdModObj SuObj SuHd Cnj SuPred HdPred

drink free hand visitor serve tea coffee ready
will strong man person offer pastry drink cold
poor fresh taste man grow tobacco tea free
get fair sugar someone drink soda water delicious
sell black chance company cool cookie product good

the out-strength (i.e. the total number of recorded association responses) of each cue
in the mental network. In addition, because participants in the continued word asso-
ciation task were not able to provide the same associate twice, a sampling without
replacement scheme was used.

3 Exploring the Structure of Language and Mental Networks

3.1 Macroscopic Structure

Previous studies have shown that a small-world structure is present in both language-
derived networks and word association networks (De Deyne and Storms 2008; Solé
et al. 2010; Steyvers and Tenenbaum 2005). In line with this work, such a structure
should be present in all four networks derived in the previous section. By controlling
the number of observations, the macroscopic network statistics of the language and
mental networks can be directly compared. Moreover, since two different sampling
regimes were applied, the effect of denser networks can be evaluated. Of particular
interest is the clustering coefficient of the networks, as this measure provides an
indication of the amount of structure present in the networks.

3.1.1 Network Statistics

For each of the four networks, the network statistics were calculated from the largest
strongly connected component. The results are presented in Table 3. The largest
difference between the two types of networks is based on their density D. In par-
ticular, the language network Glex was over thirty times denser than Gasso1. The
matched Glex123 had a higher density than the Gasso123 network, which indicates that
language-based representations are more heterogeneous in terms of connected nodes
even when the total number of responses is matched to those of Gasso123. Presum-
ably this reflects the fact that by definition most relations in the language network
are syntagmatic (i.e., fulfilling a different syntactic role, e.g., captain–ship), while
in word associations paradigmatic responses (i.e., fulfilling a similar syntactic role,
e.g., captain–boss) are more common (Cramer 1968).
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Density also differed between the single and continued word association net-
works. As indicated by Table 3, the single response network Gasso1 had a density of
0.22%. Including the secondary and tertiary responses increased the density consid-
erably, to 0.64% for Gasso123. This confirms that the continued procedure draws on a
more heterogeneous response set through the inclusion of weaker links that might go
undetected in single response procedures (De Deyne et al. 2013b). Despite this in-
crease, the density remains very small in comparison to Glex and Glex123. Related to
the observed differences in density, Table 3 also shows how the continued response
procedure increases the in-degree (kin) and out-degree (kout) substantially, from 24.3
for Gasso1 to 71.5 for Gasso123. These values are again considerably smaller than the
corresponding ones for the language networks Glex and Glex123, reflecting the same
heterogeneous distribution of edges in the networks.

Table 3 Descriptive network statistics for each of the four graphs

Gasso1 Gasso123 Glex Glex123

M SD M SD M SD M SD

D 0.0022 0.0064 0.0611 0.0091
L 3.77 0.824 2.85 0.57 1.98 0.33 2.68 0.61
max(L) 10 7 5 7
kin 24.3 51.9 71.5 140.9 687.0 870.5 102.9 226.2
kout 24.3 8.3 71.5 16.41 687.0 870.1 102.9 41.4
CC 0.0046 0.0036 0.0015 0.0006 0.0005 0.0010 0.0009 0.0027
CCrand 0.0004 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000

All networks were characterized by small average paths L (ranging from 1.98 to
3.77 steps) and network diameters max(L) ranging between 5 and 10. In compar-
ison to a matched random network (see CCrand), the clustering coefficient CC for
weighted directed networks (see Fagiolo 2007) was considerably higher for the real
networks indicating an extensive degree of organization. Moreover, combined with
the average short paths lengths, such structure indicates a small-world organization
and replicates earlier results for the language and mental networks (Steyvers and
Tenenbaum 2005; Solé et al. 2010).2

3.1.2 Network Hubs

A second way to characterize the macroscopic structure of the network is by looking
at the most central nodes or hubs in the network. For each of the four networks, the

2 Note that the absolute values are lower than that of previous reports. This is a side-effect
of using a weighted form of the clustering coefficient as defined by Fagiolo (2007).
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ten most central nodes in terms of in-strength and PageRank with α set to .80 (Page
et al. 1998) are listed in Table 4 and illustrated in Fig. 1. Using these measures to
identify network hubs allows us to evaluate the qualitative nature of the most central
words in the networks.

Fig. 1 Large-scale visualization of hubs and communities found in the Gasso123 network

If word associations are primarily based on associative learning from the linguis-
tic environment, this should lead to hubs that closely match those in the language
network. The hubs in the mental networks such as water (Dutch: water), food (eten),
money (geld), car (auto), and pain (pijn) seem to reflect something about the basic
human needs. The hubs in the language networks show some overlap with the men-
tal networks’ hubs, but tend to include more abstract words such as year (jaar),
new (nieuw), good (goed), human (mens), own (eigen), previous (vorig), and other
(ander).

Furthermore, despite the large differences in density, the hub nodes were quite
similar in the mental networks and almost identical in the lexical graphs. The in-
strength and PageRank measure of centrality capture slightly different patterns for
the hub nodes, but were highly correlated overall, between .88 and .95. More than
the type of centrality measure itself, the largest variability was due to the type of
graph. In this case, only a moderate correlation existed between the centrality in
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mental and language networks (between .45 and .46 for in-strength and between .32
and .34 for PageRank) indicating a substantial difference in the identity of central
nodes.

A final observation is that the hubs obtained here differ from those identified
in previous reports. Where syntactic network hubs have been found to correspond
to functional words, and semantic network hubs to polysemous words (Solé et al.
2010), the current results do not include functional hubs. This mainly reflects the fact
that closed-form class words were excluded from the analysis as it would obscure
any comparison between both types of graphs. In addition, hubs in both the language
and mental networks cannot be considered polysemous in a classical sense, which
likely reflects the fact that semantic networks reported in previous work (Solé et al.
2010), were based on linguistic expert knowledge derived from WordNet (Fellbaum
1998).

Table 4 Ten most central network hubs derived from in-strength and PageRank (α = .80)
centrality measures

In-strength PageRank

Gasso1 Gasso123 Glex Glex123 Gasso1 Gasso123 Glex Glex123

money water big big water sun big big

water money human human warm water year good

food food man man sun warm new new

car car new new money food good other

music pain good good green money other year

pain music child child food sea human human

child pretty other other car pretty man man

school school woman woman fun pain previous child

pretty warm year year sea green child own

sea sea small small pretty fun own woman

3.2 Mesoscopic Structure

The following analyses will compare clusters identified through community detec-
tion methods for language and mental networks. In particular, it will investigate
the size and type of communities that can be derived from these graphs. Next,
at the most detailed level of the community hierarchy, human data for basic-level
categories will be used to explore to what degree these communities provide evi-
dence for a hierarchical taxonomic structure of the kind proposed by Rosch and col-
leagues (Rosch 1973; Mervis and Rosch 1981) or supports alternative views based
on thematic relations (Gentner and Kurtz 2005; Lin and Murphy 2001; Wisniewski
and Bassok 1999). The last evaluation continues along these lines and uses human
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relatedness judgments to evaluate which relationships are best represented in the
mental and language networks.

3.2.1 Community Clustering

To identify which clusters are represented at the mesoscopic level, the Order
Statistics Local Optimization Method (OSLOM) community finding algorithm was
applied (Lancichinetti et al. 2011). Using this method, communities (also called
modules or clusters) can be identified by evaluating the likelihood that a found com-
munity can arise in a comparable random network (Lancichinetti et al. 2011). The
proposal has a number of advantages in comparison to the many alternatives such as
the Louvain method (Blondel et al. 2008). In particular, it operates on large, directed
weighted graphs and allows for overlapping and hierarchical communities. Another
advantage of OSLOM is that nodes that are not significantly associated with a com-
munity are not assigned. For each network, communities at different hierarchical
levels were extracted.3

Hierarchical Organization and Interpretation of Communities

One of the interesting features of the OSLOM community procedure is that it iden-
tifies a hierarchical organisation by grouping smaller communities in larger ones
by evaluating statistical evidence of such a structure to occur in random compara-
ble networks. This allows us to investigate different levels of abstraction along the
same lines of the hierarchical network as originally proposed by Collins and Quil-
lian (1969) and taxonomy-based theories derived from the work of Rosch (1973).
For Gasso1 the hierarical structure had a depth of 4, while in Gasso123 the depth was
5. The hierarchy was flatter for both language networks, with a depth of 3 in Glex

and a depth of 4 in Glex123.
Starting at the highest level of the hierarchy, only a handful of communities were

identified: 4 in Gasso1, 2 in and Gasso123. In the matched language networks the top
level distinguished 2 communities in Glex and 4 in Glex123. In general, the large
number of nodes in each community at the top level makes it difficult to interpret
the meaning of these communities.

As the best community solution was found for Gasso123 at the most detailed
level (see Table 5 below), this network will be used to illustrate the structure of
the communities at the higher levels of the hierarchy. To summarize the distinc-
tions at the highest level, the most central words in each community were obtained
by calculating the community specific in-strength. For each of the five levels of
the hierarchy, the five most central items were computed and represented in Fig. 2.

3 In contrast to the previous macroscopic analyses and similar to all subsequent analyses at
the mesoscopic level, the weights in the networks were transformed using positive point-
wise mutual information (PMI) weighting because of its good performance in the context
of word co-occurrence models (Bullinaria and Levy 2007).
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Table 5 Overview of community structure in the four networks at the lowest hierarchical level

Gasso1 Gasso123 Glex Glex123

# Communities 483 506 157 70

Average size 24 25 77 147

Standard dev. size 14 12 54 152

# Homeless nodes 1182 380 512 1721

# Overlapping nodes 3040 3624 2463 1509

Maximum overlap 8 5 5 15

Mean(p) 0.085 0.051 0.096 0.150

For illustration purposes, Dutch words that were synonymous in English (e.g., the
Dutch words fruit and vrucht) were listed once in each community to convey a
maximum of information.

At depth one, Fig. 2 shows the two distinct communities, with one of them con-
taining highly central words with a negative connotation. To see whether this level
distinguishes positive and negative words, a post-hoc test was set up using valence
judgments for a large set of words from Moors et al. (2012). Ratings for a total
of 3,642 non-overlapping words belonging to the two communities in the network
were obtained. The difference in terms of valence was significant in an independent
t-test (t(3640) = 7.367, CI = [0.190,0.327]). This finding is in line with previous
research that shows that valence is the most important dimension in semantic space
(De Deyne et al. 2013; Samsonovic and Ascoli 2010) and proposals of emotion-
based category structure (Niedenthal et al. 1999). However, a combination of fac-
tors might explain the observed high-level community structure and therefore strong
conclusions might be preliminary.

From level 2 to 4, the interpretation of the communities becomes increasingly
less abstract. For instance, level 2 shows that the “negative” community in level 1
also includes abstract words or words related to human culture (knowledge, school,
money, school, religion, time,...) which is now differentiated from a pure negative
community including community hubs like negative, sadness or crossed. The subdi-
visions of the “positive” community involve the central nodes nature, music, sports,
and food which might be interpreted as covering sensorial information and natural
kinds. At this level the communities point towards a distinction of concrete vs ab-
stract words (Crutch and Warrington 2005) or natural kinds vs artifacts (Warrington
and Shallice 1984) as structural principles of the lexicon. Clearly, such an interpre-
tation is also suggestive, given the large size of the mental network communities
and even larger size of the language network communities. More work is needed to
confirm this result.

In order to be able to compare the different networks, the lowest level of the com-
munity structure provides us with the best chance of directly comparing results. An
overview of the obtained community structure is shown in Table 5. In general, the
average size of the communities was strongly related to the number of communities,
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Fig. 2 Hierarchical tree visualization of communities in the Gasso123 network. Each commu-
nity is indicated by five central members. At each depth beyond depth 2 a single example is
shown of three descendant communities.

and the standard deviation for the community sizes in Table 5 was quite large. This is
not surprising given that earlier studies show that in most networks the communities
are not necessarily equal in size (Fortunato 2010).

Comparing the different networks, the most striking result is that both the number
of communities, and the average significance p of the communities differ between
the language and mental networks. The total number of communities was much
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smaller in the language networks than in the mental networks. The large difference
between the two language networks (157 in Glex vs 70 communities in Glex123)
can be explained by the difference in density between both graphs (see Table 3).
The number of communities was quite similar in Gasso1 and Gasso123, but the mean
p-values of the identified communities indicate higher significance of identifying
communities in the latter network when compared to a matched random network.
The effect of increased density was also apparent for the language graphs, where
in comparison with a random structure, the communities found in Glex were more
reliable, as the mean p was nearly half that of the sparser Glex123 network.

Similarly, there was a large difference in terms of the number of homeless nodes,
with over three times more homeless nodes in the sparser networks (Gasso1 and
Glex123). This could indicate that for these networks the density was simply too low
to reliably assign nodes with either low in-strength and/or highly heterogeneous
neighbors to a specific module. For example, in Gasso123 the in-degree for homeless
nodes was on average 17, compared to 71 for the entire graph and the clustering
coefficient was 0.0013 compared to 0.0015 (see Table 3).

At all hierarchical levels, nodes could be assigned to multiple communities and
a large number of overlapping nodes were also present at the lowest level. As can
be seen from Table 5, networks with many and highly significant communities also
assigned more nodes to multiple communities which could indicate the ability to dis-
tinguish different senses for a specific word at this level. Moreover, in various cases
words belonging to more than a single community corresponded to homonyms or
words with related senses. For example, in Gasso123, the Dutch word bank which
means bank or couch in English, belonged to both a community indicating fi-
nance and a community for furniture and sitting. Similarly, the word language was
attributed to four different communities related to nationality, speech, language edu-
cation, and communication. Again, the mental networks provided the clearest exam-
ple of this, while the communities in the language-based networks were too coarse
to uncover some of the polysemy or homonymy present in the mental networks.

3.2.2 Taxonomic Structure Evaluation

As mentioned in previous sections, there are many different ways in which the men-
tal lexicon can be structured at the mesoscopic level and the previous exploratory
approach indicates that various factors might contribute to the organization of the
mental lexicon. However, one of the most influential ideas in psychological theo-
ries about knowledge representation is that of a hierarchical taxonomy, in which
concepts are grouped in progressively larger categories (Collins and Quillian 1969;
Rosch 1973; Murphy 2002). An example of such a hierarchy would be living-thing
<animal <bird <sparrow <house sparrow. In this hierarchy, one particular level,
the basic level, is of special significance as categories at this level capture the psy-
chological structure of concepts that is maximal informative in communication. In
this example the basic level category is that of birds, because, this level of descrip-
tion provides the best compromise between maximizing within-category similar-
ity (birds tend to be quite similar to each other as they share many features) and
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minimizing between-category similarity (birds tend to be dissimilar to fish) (Medin
and Rips 2005).

Despite the large number of studies who have looked at hierarchical taxonomic
structures for concepts and explanations of basic-level effects, most of them have
limited themselves to concrete nouns (Medin et al. 2000). Moreover, as suggested
by the community structure in the mental graphs and literature on a thematically
or emotionally organized lexicon (Szalay and Deese 1978; Niedenthal et al. 1999;
Samsonovic and Ascoli 2010), the omnipresence of hierarchical taxonomies might
be partly due to a selection bias. The goal of this section is to evaluate whether the
communities identified at the most detailed level support the idea of a hierarchical
taxonomy with a special status for basic-level categories.

Data from an exemplar generation task were used to members of basic level cat-
egories. In this task, 100 participants generated as many exemplars they could think
of for a list of six artifact categories and seven natural kinds categories (Ruts et al.
2004). The names of the categories and the number of exemplars obtained through
this procedure are presented in the first two columns of Table 6.

If the communities in each network group together different types of birds, ve-
hicles, fruits, and so on, this would indicate a taxonomic organization of semantic

Table 6 F-values and corresponding community sizes for 13 basic level categories consisting
of human-generated category members

Category size F-values

Category Human Gasso1 Gasso123 Glex Glex123 Gasso1 Gasso123 Glex Glex123

Fruit 40 93 50 142 106 0.54 0.47 0.20 0.52
Vegetables 35 42 58 132 105 0.47 0.50 0.31 0.46
Birds 53 58 63 63 55 0.61 0.53 0.64 0.63
Insects 39 53 34 83 109 0.67 0.46 0.49 0.43
Fish 37 46 48 44 53 0.55 0.57 0.47 0.53
Mammals 61 32 21 217 212 0.30 0.20 0.38 0.34
Reptiles 23 18 22 83 109 0.59 0.62 0.19 0.18

Mean 41 49 42 109 107 0.53 0.48 0.38 0.44

Clothing 46 77 70 98 536 0.36 0.35 0.28 0.15
Kitchen Utensils 71 33 18 63 58 0.29 0.20 0.30 0.25
Musical
Instrum. 46 62 24 104 69 0.56 0.37 0.59 0.71

Tools 73 51 56 51 151 0.26 0.25 0.31 0.25
Vehicles 46 25 28 135 195 0.23 0.16 0.28 0.20
Weapons 46 33 25 51 151 0.30 0.37 0.27 0.17

Mean 55 47 37 84 193 0.33 0.28 0.34 0.29
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memory. Table 6 shows the size of the best matching communities and the Jaccard
index or F-measure for clustering performance based on precision and recall for
each basic level category (Ball et al. 2011). A good solution would be found for a
clustering with high precision and recall through a high number of true positives and
a low number of true and false negatives. Starting with the category size, Table 6
shows that on average the best matching communities were of comparable size in
Gasso1 and slightly smaller (and thus more specific) in Gasso123. The sizes of the
language network communities were larger than the number of generated exemplars
by humans. This indicates that in these networks the communities are too general,
which will affect their F-values.

For each of the four graphs, the F-values are generally not very high, which in-
dicates that the communities obtained from the language and mental networks do
not provide convincing evidence for a general and strict taxonomic organization.
Notable exceptions for natural kinds categories were birds (all networks except
Gasso123), insects (Gasso1) and reptiles (Gasso123). For artifacts, the only indication
of a possible taxonomic structure was musical instruments for Glex123.

Table 7 Top 5 false positives ordered by module in-strength for words belonging to the com-
munities derived from Gasso123

Category 1 2 3 4 5

Fruit fruit juicy pit pick summer

Vegetables vegetable healthy puree sausage hotchpotch

Birds bird beak nest whistle egg

Insects insect vermin beast crawl animal

Fish fish fishing rod slippery water

Mammals rodent gnaw tail pen marten

Reptiles reptile scales animal tail amphibian

Clothing clothing fashion blouse collar zipper

Kitchen Utensils cooking kitchen stove cooker hood burning

Musical Instruments wind instrument to blow fanfare orchestra harmony

Tools tool carpenter carpentry wood drill

Vehicles speed drive vehicle motor circuit

Weapons sharp stab blade point stake

On average, natural kinds resulted in higher F-values compared to artifacts.This
result supports previous findings, showing that the inter-category structure of arti-
facts does not have a generally accepted delineation compared to the natural kind
categories (Ceulemans and Storms 2010). A contributing factor for the higher F-
values for natural kind categories in the mental networks, is that many people are
less familiar with certain members of these categories, and predominantly generate
taxonomic associates in response to these words. For example, in the case of swal-
low the dominant response was bird. This would also explain the better performance
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of Gasso1 in this evaluation, as this network only contains the first responses, which
frequently correspond to the category-label.

If the communities do not primarily consist of category coordinates, but also
contain other words, one might question what factors other than taxonomic ones
contribute to the structure found at the most detailed hierarchical level. To address
this issue, the five most central false positives for each of the 13 categories were
derived by looking at the community specific in-strength as was done for Fig. 2.
The results in Table 7 are quite illuminating. First of all, for 8 out of 13 categories
the most central item was the category label, which is in line with what can be
considered a basic-level category in the literature (Ruts et al. 2004; Rosch 1973).
However, this table also shows categories where the representation was too specific,
for instance in the case of rodent or wind instrument, which is also confirmed by the
category sizes in Table 6. One could argue that the inclusion of these category-labels
might indicate that the F-values are actually underestimates of potential taxonomic
structure. Furthermore, the human generated exemplars are not necessarily exhaus-
tive (despite the fact that 100 participants generated exemplars for each category) or
correct. For example, marten was wrongly identified as a false positive, which sug-
gests this word might have been too infrequent to be captured by 100 participants.
However, it is unlikely that this explanation suffices, as the other false positives
clearly indicate that related properties, actions, and other thematic information are
central. For example, in the case of fruit, other central community members were
juicy, pick, and summer. Other examples at the most detailed level in Fig. 2 (e.g.,
score, music theory, piano, stave, violin) support this as well. Altogether, the ab-
sence of a basic-level taxonomy even for biological categories and the widespread
thematic structure across nearly all communities for both the language and mental
networks strongly suggest that multiple factors contribute to structure in the mental
lexicon, and thematic relations are a major one of them.

3.3 Semantic Relatedness Evaluation

So far, the community detection approach provided some valuable insights about
how the mental lexicon might be structured. However, the lack of well-defined small
communities in the language networks did not allow us to fully evaluate and com-
pare the language-based and word association-based network. A common direct
way to compare these networks and see what kind of relationships they capture uses
human relatedness judgments for pairs of words (e.g., Borge-Holthoefer and Arenas
2010; Capitán et al. 2012; Hughes and Ramage 2007). By manipulating the taxo-
nomic and semantic relations between words, it is possible to precisely quantify
to what extent each network captures various aspects of the mesoscopic structure.
Three studies that were set up for this purpose are described below. In all three stud-
ies participants provided relatedness judgments for pairs of words using a 20-point
Likert scale. The nature of the pairs differed between studies. They either captured
relations at the basic level, at a more general domain level, or thematic relations that
do not follow a classical taxonomy.
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In a first study, similarity judgments for exemplars from concrete and abstract ba-
sic level categories, derived from De Deyne et al. (2008) and Verheyen et al. (2011)
respectively, were used. The data consists of similarity judgments for all pairwise
combinations of exemplars from 5 animal categories (birds, fish, insects, mammals,
and reptiles), 6 artifact categories (clothing, kitchen utensils, musical instruments,
tools, vehicles, and weapons) and 6 abstract categories (art forms, crimes, diseases,
emotions, media, sciences, and virtues). Because the comparisons were performed at
a basic-category level, they required an evaluation of nuanced and detailed proper-
ties (for instance, when comparing hamster and mouse or kindness and helpfulness).

In contrast to the information encoded at the basic category level, it is possible
that the networks cover semantics at a wider range and capture a more course struc-
ture. According to this scenario, the networks would only capture a small amount
of the variability of the relatedness structure within basic-level categories, but are
well suited to distinguish between categories, at the domain level. This would mean
that for instance natural kinds and artifacts can be distinguished at a high level in
the hierarchy, perhaps at level 2 or 3 in Fig. 2. This might be especially true for the
language networks. Since they tend to have broader clusters, they might adequately
capture domain distinctions.

To test whether the networks differ in terms of how they capture domain differ-
ences apart, a second dataset was included. In this dataset, items from the 5 basic-
level animal or 6 basic-level artifact categories introduced previously were paired,
leading to pairs such as butterfly and eagle or accordion and fridge. If the networks
are primarily sensitive to domain-level differences, this would lead to better pre-
dictions compared to basic-level categories. Since it is not feasible to present to
participants all the pairwise combinations of the combined set of artifact or animal
items, only five items from each of the artifact and animal categories were selected.
Both items that were central to the category (e.g., swallow is a typical bird and thus
a central member) and items that were not (e.g., bat is an atypical member of the
mammals set, and is closely related to birds) were included.

As suggested by the findings on the network communities, it is quite likely that
the lexicon reflects a thematic rather than taxonomic organization. If this is the case,
this would suggest a high degree of agreement for human judgments of thematic
pairs, compared to the basic-level pairs and domain-level pairs. In contrast to the
previous pairs, thematic pairs can be closely related without necessarily belonging
to a common category or domain. To test these hypotheses thematically related pairs,
such as boat and captain and rabbit and carrot were used. The set of pairs included
among others the items from the study by Miller and Charles (1991), a widely used
benchmark test in computational linguistics.

For each of the three studies the number of pairs are listed in the first row of
Table 8. An average of 17 participants provided relatedness judgments for a pair of
words. The average judgments proved very reliable with Spearman-Brown split-half
correlations ranging between .85 and .99. For details and stimuli see De Deyne et al.
(2014).
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Besides addressing how the networks predict judgments for distinct types of se-
mantic relations, an important issue that remains is the role of sparsity in each graph.
While all networks are extremely sparse, the network statistics in Table 3 indicate
large differences in terms of network connectivity. The small out-degrees in the
mental networks and the matched lexical network Glex123 hint at potential limita-
tions when overlap measures of similarity are used based on common neighbors. To
investigate if indirect paths between nodes can contribute to model derived estimates
of relatedness by reducing sparsity, a random-walk based measure for relatedness
will be proposed.

3.3.1 Network Relatedness Measures

A widely used measure of similarity is the cosine measure. This distributional over-
lap measure captures the extent to which two nodes in the network share the same
immediate neighbors. Two nodes that share no neighbors have a similarity of 0, and
nodes that are linked to the exact same set of neighbors have similarity 1. Formally, it
is defined as follows. Let A denote a weighted adjacency matrix, whose element ai j

contains a count of the number of times word j is given as an associate of word i in
a word association task or the times it occurs in a syntactic dependency relationship.
Each row in A is therefore a vector containing the associate / syntactic dependency
frequencies for word i. The cosine measure of similarity is obtained by first normal-
izing each row so that all of these vectors are of length 1. This gives us a new matrix
G, where gi j = ai j/(∑ j ai j

2)1/2, and the matrix of all pairwise similarities is now:

S = GGT (1)

The cosine measure defined in the previous section depends solely on the local
structure of the graph: the similarity between two words is assessed by looking only
at the words to which they are immediately linked. A different approach to similar-
ity aims to take into account the overall structure of the entire network graph, and
thus reflects a broader view of the relationship between two nodes. In this approach
two nodes are similar if they share many direct or indirect paths. These paths are ex-
plored by a random walker, which stochastically follows local links in the network
until the proportion of time it visits each node in the limit converges to a stationary
distribution (Hughes and Ramage 2007).

Formally, this random walk corresponds to the regular equivalence measure by
Leicht et al. (2006) and is specified by beginning with the weighted adjacency ma-
trix A. This time, however, we normalize the rows so that each one expresses a prob-
ability distribution over words. That is, we use the matrix P where pi j = ai j/∑ j ai j,
and then calculate

G′ = (I−αP−1) (2)
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where I is a diagonal identity matrix and the α parameter governs the decay in
spread of activation by determining the relative contribution of short and longer
paths. A path of length r is assigned a weight of αr, so when α < 1, longer paths
get less weight than shorter ones.4

The resulting network G′ can be thought of as a network of weighted paths. The
similarity of two nodes in this network corresponds to the similarity of their station-
ary distributions. The value of α was fixed at 0.80 (similar to the α for PageRank
used in previous sections). This represents a reasonable trade-off between some
degree of decay and a non-trivial contribution of longer paths. As in the local re-
latedness measure above, a cosine measure can then be used to derive a pairwise
similarity matrix S using these distributions. In contrast to the local relatedness mea-
sure, such random-walk based measure involves the entire network and is therefore
sensitive to the global or macroscopic structure of the network.

3.3.2 Results

For each of the four graphs, relatedness measures were derived as defined above.
The measures of relatedness were correlated with the human judgments after stan-
dardizing the measures for each category.

Table 8 Results of the similarity analyses for the four datasets (concrete, abstract, domain
and thematic) and four graphs

Basic Level Domain Level Thematic

Concrete Abstract

N 4437 694 1470 126
Local Overlap (Cosine) Gasso1 .528 .505 .711 .567

Gasso123 .593 .617 .786 .769
Glex .338 .423 .623 .463
Glex123 .337 .319 .620 .481

Spreading Activation Gasso1 .564 .616 .793 .802
Gasso123 .590 .660 .824 .827
Glex .370 .433 .718 .523
Glex123 .361 .375 .653 .504

The results for the local overlap measure presented in the top part of Table 8
show moderate to strong correlations between human judgments of relatedness and
network-derived measures. One of the most striking patterns in Table 8 is the sys-
tematic difference between the amount of variability accounted for by the four
graphs. Regardless of the dataset, the denser Gasso123 network shows substantial

4 This approach is very similar to the PageRank measure (X = (I−αP−1)1).
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better agreement than all other graphs. Moreover, even the sparse mental network
Gasso1 outperforms the lexical networks in all cases. Since the Glex network is almost
20 times denser than Glex123 (see Table 3), one would expect a better result for this
denser graph, however, a significantly different correlation was only found for the
basic-level abstract words z = 2.25, p < .05. A closer look at the different seman-
tic relations indicates that the networks primarily capture the domain judgments,
followed by thematic, and basic-level judgments. In line with the community clus-
tering results, this confirms that the networks organize meaning in a thematic way
but also include some taxonomic structure.

Next, the role of spreading activation in predicting human relatedness judgments
was investigated. The results for the random walk-based spreading activation mea-
sure show a consistent improvement for all networks and datasets. The only ex-
ception were the results for the concrete words in Gasso123, where a slightly lower
correlation was found. In this case, the setting of α = 0.80 might have resulted in
a detrimental contribution of longer paths. When α was systematically varied, the
correlation improved to .601 for α = 0.6, indicating that the optimal value of this
parameter may depend on the type of relationships under consideration. However, in
general, the correlation changes were very moderate across various parameter set-
tings. Similar to the overlap measure, the large difference in density between Glex

and Glex123 did not systematically affect the performance in these language graphs,
as only for the domain dataset the correlation values were significantly different
z = 3.33, p < .05.

In conclusion, the use of human relatedness judgments to compare how different
taxonomic and thematic relations are represented in the language and mental net-
works, resulted in findings similar to those from the community clustering of these
networks described earlier. Language and mental networks capture primarily the do-
main level relations between words followed by the thematic relations. The mental
networks also capture the basic-level conceptual structure, but the strength of this
correlation was moderate. Regardless of the dataset, the mental networks provided
a clearly better prediction of human judgments. Using longer indirect paths derived
through a stochastic random walk led to systematic improvements in both types of
networks, but did not alter the basic findings regarding the relationships captured by
these networks.

4 Discussion

In this chapter, the main goal was to compare the macroscopic and mesoscopic
properties of language and mental graphs, derived from text corpora and word asso-
ciations, respectively. One of the key results was that representations systematically
differ between both graphs. These differences in itself provide us with important
pointers about what processes operate on the linguistic input humans are exposed
to.

At a global, macroscopic level, the network-based approach unveiled a highly
structured representation that is characterized by short average path-lengths and a
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significant degree of clustering in both language and mental graphs. This indicates
that both graphs have a small-world structure. While there is some overlap between
what constitutes a hub in the respective graphs, systematic differences between node
centrality emerged. In mental graphs, a larger role for nodes that are presumably
of psychological importance exists, while in the language networks hub nodes ap-
pear to be more abstract. The latter might reflect the frequency of words typical
for language derived from newspaper and other written sources. Moreover, what
constitutes a central hub in the mental network seems to be a universal property
shared among multiple languages. For instance, for a similar ongoing word asso-
ciation project in English, the ten largest hubs in terms of in-strength in a network
with 7,000 nodes corresponded to money, food, water, love, work, car, music, time,
happy, and green.

Furthermore, the structure of the network argues against the view of the men-
tal lexicon as exclusively and strictly taxonomically organised, where words are
grouped in coherent semantic domains and categories. First of all, a substantial
number of words were part of multiple communities, which argues against mutu-
ally exclusive categories. Second, while the representations can be described in a
hierarchical clustered decomposition of the graph, most clusters or communities are
characterized by thematic coherence rather than reflecting the type of structure that
underlies thesauri, natural taxonomies, or WordNET.

The thematic structure was wide-spread, showing up in nearly all investigated
communities at various depths of the hierarchy. The finding that many words from
domains like animals, which traditionally are considered taxonomic, are themati-
cally clustered at the lowest level of the hierarchy, corroborates the idea that the
networks are organized along primarily thematic rather than categoric lines. In addi-
tion, evaluating the obtained structure in the language and mental networks through
human relatedness judgments also confirmed the thematic nature of the networks as
indicated by the large proportion of variance that was explained for thematic com-
pared to basic-level judgments. This converges with recent evidence that highlights
the role of thematic representations even in domains such as animals (Wisniewski
and Bassok 1999; Lin and Murphy 2001; Gentner and Kurtz 2006) and the fact that
a taxonomic organization of knowledge might be both heavily culturally defined
(Lopez et al. 1997), a consequence of formal education (Sharp et al. 1979) or reflect
different levels of expertise (Medin et al. 1997).

A number of explanations can account for why thematic structure was so central
in both language and mental networks. One possible explanation is the wide cov-
erage of all kinds of words in the network in terms of their abstractness, emotional
connotation, and part of speech (verbs, adjectives, and nouns). By not restricting the
type of words in the network, the risk of a selection bias towards concrete nouns
(Medin et al. 2000) is reduced and the likelihood of identifying thematic relation-
ships increases. In addition, it is quite likely that this reflects an inherent property
of language, where most words are taxonomically related to only a small number
of other words, but might occur in a variety of thematic settings. This is in line
with previous findings showing that Zipf’s law reflects the tendency to avoid exces-
sive synonymy in semantic networks (Manin 2008). Clearly, many of these claims
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remain speculative, but given their potential implications for understanding the men-
tal lexicon, it is hoped they will motivate future work.

One of the key features in many psychological network proposals is the idea of
spreading activation. The current study showed that such a mechanism is of impor-
tance as it makes use of the network as a whole. The results show that by includ-
ing not only direct paths that exist between two nodes (neighbors) but also indirect
paths, leads to an improved ability to predict human judgments of relatedness. While
this measure led to improvements in all networks, the current results also showed
that the gain of indirect paths in predicting relatedness was modulated by the spar-
sity in the original graph, which is well exemplified by comparing the gains for
Gasso1 to those of Gasso123.

Similar to the spreading activation account at the mesoscopic level, access at the
microscopic level might be governed by more than just the in-strength of a specific
node. Measures such as eigen-centrality and PageRank make it conceptually clear
that central nodes are those nodes which are easily reached among many possible
paths in the graph. These measures are examples of recursive centrality measures,
in which centrality is not only influenced by the neighbors of a node, but also takes
into account the centrality of the neighbors themselves. This might result in similar
benefits found for the spreading activation mechanism operating on sparse graphs.
Support for this idea comes from recent studies showing that PageRank accounts
for more variance than simple measures of in-strength (Griffiths et al. 2007) and de-
tailed theoretical accounts that explain word frequency advantages in word recogni-
tion through higher level structural properties of the network (Monaco et al. 2007).
Again, this illustrates the benefits of a network approach which simultaneously de-
scribes a macro-, meso- and microscopic level.

4.1 Relationship between Language and Word Associations

A number of studies have tried to predict word associations from text corpora (e.g.
Griffiths and Steyvers 2003). While this prediction is often used as a yardstick to
compare different text-based models, one of the striking patterns is the overall poor
prediction. For instance, in a study by Griffiths and Steyvers (2003), the median rank
for predicting the first word association in the University of Florida norms (Nelson
et al. 2004) using a text-based topic model was 32. Prediction of the Dutch word
association norms (which are considerably larger than the University of Florida
norms) on the basis of Gasso123 resulted in a median rank of 129, and the correct
prediction of the first associate in only 5.4% of the cases. Similar results were found
when the overlap was calculated in terms of relatedness. Here both the association
graphs were strongly correlated (.99), and so were the lexical graphs (.88). Cru-
cially, between both types of graphs, the agreement was quite small: .14 for Gasso123

and Glex and .11 for Gasso123 and Glex123. Similar comparisons of microscopic mea-
sures of centrality showed only moderate correlations between language and word
association graphs. The choice of network - language or mental - might thus lead to
different conclusions about findings that show how semantic rich nodes (i.e., those
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with a high degree, or high clustering) are processed more efficiently in naming or
word recognition (Buchanan et al. 2001; Pexman et al. 2003; Pexman et al. 2008).

The limited agreement between the networks and the systematic differences in
how they account for specific types of words (especially concrete ones) provide
further support to the idea that the association task does not rely on the same prop-
erties as common language production, but should rather be seen as tapping into
the semantic information of the mental lexicon (Mollin 2009; McRae et al. 2011).
This view resonates with the original ideas of Collins and Loftus (1975), in which
the network depends both on semantic similarity and lexical co-occurrence in lan-
guage, and other works that highlight the role of imagery and affect in the production
of word associations (Szalay and Deese 1978). As mentioned in the introduction,
the role of pragmatics in natural language explains why mentally central properties
(e.g., the fact that bananas are yellow or apples are round) are very strong responses
in word association data but much less prominently expressed in conventional writ-
ten and spoken language. To some extent, this might also be the reason why the
language networks did not fully capture the human judgments for concrete words
(see Table 8). Of course, one could also argue that the language networks in this
study are simply too limited due to the vocabulary size restrictions. It seems un-
likely that this explanation can account for the entire set of findings. First of all, the
results for Glex and Glex123 showed that a sampled network based on only a frac-
tion of the tokens produced comparable results for a number of domains. Second, a
comparable study involving a language network consisting of a vocabulary of over
100,000 lemmas and the same human relatedness judgments, produced highly sim-
ilar results (De Deyne et al. 2014). Naturally, this is not to say that additional data
and pragmatics are irrelevant. In understanding a story, for instance, where repre-
sentations that go beyond the word level are required, pragmatics are likely to play
a more central role.

4.2 Final Words

In this chapter, a view of the mental lexicon, as a weighted directed graph, with
words for nodes, has been advanced as a useful way to explore the structure and pro-
cessing of word meaning. This account is limited in various ways and by no means
complete. For instance, further studies are needed to investigate whether qualita-
tively different links could lead to a better model of the lexicon through differential
weighting of different types of relations in the language network, either syntactic
(conjunctions, modification of nouns, etc.) or semantic (hyperonymy, meronymy,
etc.).

Similar to the language network, the connections in the word association network
are presumably governed by a set of latent relations. In this area as well, the use of
a multi-network representation with different weights for various types of relations
is likely to explain additional properties of the data. On the basis of these relations,
new studies might reveal distinct types of comparison processes as suggested by
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previous work on thematic and taxonomic comparisons (Wisniewski and Bassok
1999). In particular, a first type of process could be based on the integration of a
word in a thematic context (e.g., doctor and hospital) while a second type might
involve the alignment of shared properties between similar entities (e.g., cat and
tiger). Presumably these processes might reflect a highly probable path in the former
situation, while some kind of summation over a large number of different paths
could be involved in the second process. Knowing something about the properties
of nodes on a path (e.g., whether they refer to similar physical entities, a function, or
thematic property) requires the derivation of a multi-network as mentioned earlier,
and could inform us how such a differential comparison process takes place.

Of course, there are many other areas in which a network approach is likely to
contribute in future studies of the lexicon, for instance by studying the development
of the lexicon through dynamic networks (Beckage et al. 2010), the networks of in-
dividuals (Morais et al. 2013) or by comparing the networks of healthy individuals
with clinical populations (Kenett et al. 2013). Presumably, better assumptions about
how representations are extracted from the statistical regularities in the language
environment will play an important role in these endeavors. In this respect, the ap-
plication of a syntax-based dependency model represents a first, but certainly not the
last step to build a more appropriate mental model of the lexicon. The close relation
with empirical indices of mental organization such as human relatedness judgments,
but potentially also online measures such as priming (Chumbley and Balota 1984)
and word centrality (De Deyne et al. 2013a), suggests that a mental network derived
from word associations represents a valuable alternative to model cognitive func-
tions at various levels of abstraction offered through a network science framework.

Acknowledgements. My gratitude goes to Kris Heylen, Dirk Speelman, and Dirk Geeraerts
for making the LeNC corpus available, and to Yves Peirsman for collaboration during the
early stages of this project. This work was supported by Research Grant G.0436.13 from
the Research Foundation - Flanders (FWO) to the first author and by the interdisciplinary
research project IDO/07/002 awarded to Dirk Speelman, Dirk Geeraerts, and Gert Storms.
Steven Verheyen is a postdoctoral fellow at the Research Foundation - Flanders. Comments
may be sent to simon.dedeyne@adelaide.edu.au

References

Ball, B., Karrer, B., Newman, M.E.J.: Efficient and principled method for detecting commu-
nities in networks. Physical Review E 84(3), 036103 (2011)

Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., Christiansen, M.H.: Net-
works in cognitive science. Trends in Cognitive Sciences 17(7), 348–360 (2013)

Beckage, N.M., Smith, L.B., Hills, T.: Semantic network connectivity is related to vocabu-
lary growth rate in children. In: The Annual Meeting of The Cognitive Science Society
(CogSci), pp. 2769–2774 (2010)

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities
in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10),
P10008+ (2008)

simon.dedeyne@adelaide.edu.au


Structure and Organization of the Mental Lexicon 75

Borge-Holthoefer, J., Arenas, A.: Categorizing words through semantic memory naviga-
tion. The European Physical Journal B-Condensed Matter and Complex Systems 74(2),
265–270 (2010)

Bouma, G., van Noord, G., Malouf, R.: Alpino: Wide Coverage Computational Analysis
of Dutch. In: Eleventh Meeting of Computational Linguistics in the Netherlands, CLIN,
Tilburg, pp. 45–59 (2000)

Buchanan, L., Westbury, C., Burgess, C.: Characterizing the neighbourhood: Semantic neigh-
bourhood effects in lexical decision and naming. Psychonomics Bulletin and Review 8,
531–544 (2001)

Bullinaria, J.A., Levy, J.P.: Extracting semantic representations from word co-occurrence
statistics: A computational study. Behavior Research Methods 39, 510–526 (2007)

Bullmore, E., Sporns, O.: The economy of brain network organization. Nature Reviews Neu-
roscience 13(5), 336–349 (2012)
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Network Motifs Are a Powerful Tool
for Semantic Distinction

Chris Biemann, Lachezar Krumov, Stefanie Roos, and Karsten Weihe

Abstract. Motifs are a general network analysis technique, which statistically re-
lates network structure to epiphenomena on the network. This technique has been
developed and brought to maturity in molecular biology, where it has been success-
fully applied to network-based chemical and biological dynamics of various types.
Early on, the motif technique has been successfully applied outside biology as well
– to social networks, electrical networks, and many more. Results by Milo et al.
showed that the motif signature of a network varies from realm to realm to some
extent but is significantly more homogenous within a realm. This observation has
been the starting point of the thread of research presented in this paper. More specif-
ically, we do not compare networks from different realms but focus on networks
from a given realm. In several case studies on particular realms, we found that mo-
tif signatures suffice to distinguish certain classes of networks from each other. In
this paper, we summarize our previous work, and present some new results. In par-
ticular, in Biemann et al. (2012), we found that natural and artificially generated
language can be distinguished from each other through the motif signatures of the
co-occurrence graphs. Based on that, we present work on co-occurrence graphs that
are restricted to word classes. We found that the co-occurrence graphs of verbs (and
other word classes used like predicates) exhibit strongly different motif signatures
and can be distinguished by that. To demonstrate the general power of the approach,
we present further original work on co-authorship networks, peer-to-peer streaming
networks, and mailing networks.
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1 Introduction

The Basis: Motif Signatures

By a network, we mean an undirected graph G = (V,E), where, as usual, V is a
finite set of nodes and E a set of edges linking nodes to each other. In this paper, we
consider networks from several realms with thousands of nodes. We use the words
graph and network synonymously.

A motif M = (VM,EM) is a fixed graph and is typically very small, usually not
more than a few nodes. An occurrence of a motif M in a network G is a subset
V ′ ⊆ V of size VM such that the subgraph of V induced1 by V ′ is isomorphic to
M. For a fixed set of motifs, the motif signature of a network is a vector with one
component for each motif, and the component associated with a motif contains the
number of occurrences of this motif in the network. In order to compare networks
of different size, we normalize this vector with the overall count of all motifs of
fixed size, such that the sum of its entries is 1. In this way, values for single motifs
correspond to the fraction of single motif counts from the overall count of all motifs
in the network.

In this paper, the fixed sets of motifs are the one depicted in Fig. 1 and Fig. 2,
respectively.2 Note that motifs are defined over connected subgraphs, and do not
contain each other: e.g. if four nodes are fully connected, they exhibit only the clique
motif, and not e.g. any semi-clique motifs, as for a semi-clique, two of the four nodes
must NOT be connected.

Fig. 1 The undirected motifs of size 4 with their common names, which will be used in this
paper as well.

1 General definition of induced subgraphs: Let G1 = (V1,E1) and G2 = (V2,E2) such that
V1 ≤ V2, and let V ′

2 ⊆ V2 such that |V ′
2| = |V1|. Then we say that G1 is the subgraph of

G2 induced by V ′
2, if there is a bijection ϕ : V1 → V ′

2 such that for all v, w ∈ V1, it is
(v,w) ∈ E1 if and only if (ϕ(v),ϕ(w)) ∈ E2. In contrast to the unique induced subgraph,
an ordinary subgraph may contain fewer edges, that is, (ϕ(v)ϕ(w)) ∈ E2 does not imply
(v,w) ∈ E1.

2 Quite often in the literature, not all considered subgraphs are called motifs, but only the
ones that occur significantly more frequently than in some null model. The ones that occur
less frequently are then either called motifs as well, or they are called anti-motifs.
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Fig. 2 The directed motifs of size 3. Motif 1 is called V-Out, motif 3 is the 3-Chain, cf. Sect.
3.3.

Use of Motif Signatures

Generally speaking, every case study in this paper focuses on networks from a par-
ticular realm. Examples of realms are: co-occurrence networks, word similarity net-
works, lexical semantic networks, co-authorship networks, mailing networks, sub-
networks of the web, peer-to-peer streaming networks, etc. Even within a realm,
classes of networks are often difficult to distinguish from each other. For example,
for the type of co-occurrence graphs, all graphs derived from English text form a
subtype, and all graphs derived from language generated by a 3-gram model (Bie-
mann et al. 2012) form another subtype.

Our general working hypothesis is that networks may be classified to some extent
by their motif signatures. In this paper, we demonstrate that this hypothesis is indeed
true in various domains.

Presented Studies

More specifically, we present five case studies, in which two subtypes of a network
type can be quite accurately distinguished from each other through characteristic
differences in the motif signatures. In the fourth case study, the situation is a bit
more complex than in the first three ones. More specifically, it does not suffice to
look at a well-chosen single motif. Instead, we need conjunctions of single-motif
distinctions because here no single motif is distinctive for all instances. Finally, in
the fifth case study, our attempt was not successful but still exhibits a promising
tendency. The first case study has already been published, so we merely review it;
the other four case studies are original work.

• Section 3.1: Co-occurrence graphs of text: artificially generated language vs. nat-
ural language (Biemann et al. 2012).

• Section 3.2: Co-occurrence graphs of word classes: verbs vs. other word classes.
• Section 3.3: Artificially generated peer-to-peer streaming networks from two dif-

ferent generators: Partial Streams vs. Node-disjoint Streams
• Section 3.4: Co-authorship networks from two different sub-disciplines of

physics: condensed matter vs. astrophysics.
• Section 3.5: Mailing networks from two different contexts: the European Re-

search Institute vs. Enron.



86 C. Biemann et al.

Before we present the studies, we briefly review the state of the art in the next
section.

2 Related Work

Motif Analysis

Motif analysis has first been investigated in computational biology (Shen-Orr et al.
2002) and has since been applied to a variety of network types in biology and
biochemistry (Alon 2007; Schreiber and Schwöbbermeyer 2010). The underlying
insight is that biological and biochemical dynamics are statistically related to the
occurrence of small functional blocks, which have specific structures. This insight
is well captured by motif signatures, and in fact, many computational studies reveal
significant relations. Due to this success, it did not take long time until this technique
has been applied to networks from other domains. For example, Milo et al. (2002)
and Milo et al. (2004) compare networks from biology, electrical engineering, natu-
ral language and computer science and find that the motif signatures from different
domains are so different that they may serve as a “fingerprint” of the respective
domain.

The idea of functional blocks applies in domains beyond biology and biochem-
istry as well, surprisingly, even in social networks. In Krumov et al. (2011), we
analyze citation networks, which we model as undirected graphs on the authors. An
edge indicates at least one joint publication. In a sense, the citation numbers of indi-
vidual publications within an occurrence of a motif can be aggregated to a citation
number of the entire occurrence. We consider four natural ways for aggregation.
Roughly speaking, the main result of Krumov et al. (2011) is this: the average cita-
tion number of the box motif (#4 in Fig. 1), taken over all occurrences, is statistically
significantly larger than expected. This effect occurs for all four ways of aggrega-
tion. A deeper look revealed that certain occurrences of the box motif explain this
result: two ”seniors,” A and B, have jointly published, A has published with a ”ju-
nior” C, B with a junior D, and C and D have joint publications as well, but neither
A with D nor B with C. Among these occurrences, the ones that serve as ”bridges”
in the network in a certain sense are particularly responsible for the observed effect.

We further mention recent work that uses the concept of motifs for other purposes
than network analysis. Krumov, Andreeva, et al. (2010) and Krumov, Schweizer, et
al. (2010) develop an algorithm to optimize the structure of peer-to-peer networks
based on local operations only. Each node manipulates the local structure in its
vicinity in order to thrive the local motif signature towards the average local motif
signature of an optimal network. We are not aware of any other usage of motifs for
algorithmic purposes.

See Wong et al. (2012) for an overview of motif detection tools.
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Graph Classification

A domain of graphs may decompose into classes of graphs. Often, for a given graph,
the class to which it belongs cannot easily be identified. The general idea of graph
classification is to use additional structural properties that are characteristic of the
graph class. Chapter 11 of Aggarwal and Wang (2010) provides a good overview.

Using this terminology, the topic of the herewith presented paper and the five
case studies can be concisely characterized as graph classification using networks
motifs. Besides our own work, we are only aware of one other piece of scientific
work of this type, which we briefly discuss next (Juszczyszyn and Kolaczek 2011).

Anomaly detection can be regarded as a special case of graph classification: de-
termine whether or not the current state of a dynamically changing network exhibits
an anomaly of a certain type at some point in time amounts to deciding whether the
current snapshot of the network belongs to the class of abnormally shaped networks
or not. We are aware of only one original result where motifs were used for anomaly
detection. More precisely, the motif signature is observed to determine whether or
not a communication network is under attack. See Juszczyszyn and Kolaczek (2011)
for details.

In a broader sense, frequent pattern mining is the dual problem to graph classi-
fication using motifs: for some graph classification problem and some large set of
patterns (motifs), find a small subset such that the frequencies (i.e. the motif signa-
ture) has maximal discriminative power. Jin et al. (2009) may serve as a entry point
into the literature on frequent pattern mining.

3 The Case Studies

3.1 Co-occurrence Graphs from Natural Vs. Artificial Language

In this section, we review our work that has been previously published in Biemann
et al. (2012) and complement it with a more detailed analysis. Though it is gener-
ally accepted that language models do not capture all aspects of real language, no
adequate measures to quantify their shortcomings have previously been proposed.
We use n-gram model generators to demonstrate that the differences between natu-
ral and generated language are indeed quantifiable with motif analysis based on the
analysis of co-occurrence networks. The motif approach allows a deeper insight into
those semantic properties of natural language that evidently cause these differences:
polysemy and synonymy. With our method, it becomes possible for the first time to
measure deficiencies of generative language models with regard to lexical semantics
of natural language.

Our results are generated in a three-step process: First, the text needs to be se-
lected, respectively generated, before the graphs can be derived from the texts ac-
cording to a parameterizable strategy. In the last step, we evaluate our proposed
metrics on these graphs.
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For our experiments, we use corpora of different languages of one million sen-
tences each, provided by LCC3 (Biemann et al. 2007). We use the same corpus of
real language for training the n-gram model and for comparison. For comparison
between real and generated language, we generate text according to the same sen-
tence length (number of tokens) distribution as found in the respective real language
corpus, since we have found in preliminary experiments that co-occurrence network
structure is dependent on the sentence length distribution. We have found in fur-
ther experiments, that the general picture of results is stable for corpora of different
sizes, starting from about ten thousand sentences, and insensitive to changing the
parameters of graph construction (see below) in a wide range.

Text Generation with N-gram Models

For the scope of this work, we chose n-gram models, which are the standard
workhorses of language modeling. A language model assigns a probability to a
sequence of words, based on a probabilistic model of language. This can be used
to pick the most probable/fluent amongst several alternatives, e.g. in a statisti-
cal machine translation system (Koehn 2010). An n-gram language model (cf.
Manning and Schütze (1999)) over sequences of words is defined by a Markov
chain of order (n − 1), where the probability of the next word only depends
on the (n − 1) previous words, and the probability of a sentence is defined as
P(w1...wk) = ∏i=1..k P(wi|wi−1..wi−n+1). We add special symbols, BoS and EoS,
to indicate sentence beginning and end. Then we generate sentences word by word,
starting from a sequence of (n− 1) BoS-symbols, according to the probability dis-
tribution over the vocabulary. As soon as the EoS symbol is generated, we gen-
erate the next sentence. Probabilities are initialized by training on the respective
corpus of real text (see above) from the relative counts, i.e. P(wi|wi−1..wi−n+1) =
count(wi..wi−n+1)/count(wi−1..wi−n+1). Despite their simplicity, n-gram models
still excel in NLP applications (cf. Ramabhadran et al. (2012)).

Yet, shortcomings of n-gram models are obvious: no long-range relations are
modeled explicitly, thus n-gram models produce locally readable but semantically
incoherent text. This study is, to our knowledge, the first attempt to quantify this
phenomenon.

Network Generation from Text

The nodes of the derived graphs correspond to the m most frequent words in the
considered text. An edge from node A to B exists if the word corresponding to A co-
occurs, i.e. occurs together in a well-defined context, with the word corresponding
to B significantly often. Different kinds of co-occurrence contexts are considered,
as well as significance thresholds and graph sizes m. We consider co-occurrence

3 see http://corpora.informatik.uni-leipzig.de/
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within a sentence (sequences as limited by BoS and EoS). Thus, for each corpus of
text, composed of sentences, we can compute the co-occurrence graph by connect-
ing word nodes with edges, if words co-occur. It is known (Biemann et al. 2004)
that sentence-based co-occurrences, besides capturing collocations, often reflect se-
mantic relations and capture topical dependencies between words. Since mere co-
occurrence results in a large number of edges and very dense networks, we apply a
significance test that measures the deviation of the actual co-occurrence frequency
from the co-occurrence frequency that would have been observed if the two co-
occurring words would be distributed independently. Here, we use the log-likelihood
test (Dunning 1993) to prune the network: We only draw edges between word nodes,
if the words co-occur with a significance value above a certain threshold. We have
found in preliminary experiments that pruning non-significant edges moderately in-
creases the number of chain motifs for all graphs. We did not find any differences
when pruning with different levels of significance: no matter whether 10%, 50% or
80% of the non-significant or low-significant edges were pruned, the motif signa-
tures are indistinguishable except for absolute counts. In the interest of the speed of
the analysis, we apply a rather extensive pruning in our experiments.

Parameter Choice for Text and Network Generation

In our study, we used n-gram models with n ∈ {1,2,3,4}. The number of nodes m
in the graph, corresponding to the most frequent words in the considered text, was
set to be 5,000, as to match the commonly assumed size of the core vocabulary
of a language (Dorogovtsev and Mendes 2001). A number of thresholds for the
significance value were tested. For brevity, we only present the results for a threshold
of 10.83, which corresponds to a significance level of p < 0.001 and retains about
1/6th of edges of the co-occurrence graph. The co-occurrence graph was computed
using the TinyCC corpus production engine (Quasthoff et al. 2006).

How Motifs Capture Natural Language Semantics

Recall the concept of functional blocks from Section 2. Next we show that, in our
context here, the chain and the box motif are functional blocks in quite an anal-
ogous sense. Figure 3 shows the motif signatures of networks on a log-scale, de-
picting the motif signature for English networks of real and generated language for
n = 1,2,3,4. Real language networks exhibit fewer star (#1) motifs and a higher
amount of all other motifs. Differences for the chain (#2) and the box (#4) motifs
are especially pronounced. The observed features can be found in all observed lan-
guages, as exemplary shown in Fig. 4 for six languages. In particular, the fraction
of box motifs is reduced to less than 10%, 40% and 65% for 2-grams, 3-grams, and
4-grams, respectively, for all considered languages. As the absolute count of box
motifs for real language graphs ranges in the 100,000s and the absolute counts of
chains ranges in the millions in all experiments reported here, these differences can
hardly be explained by random fluctuations.
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Examining instances of these motifs more closely, we are able to link these dif-
ferences to properties of natural language semantics.
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Fig. 3 Motif signatures of English Language for real and generated text networks based on
sentence co-occurrence

Semantic polysemy refers to the phenomenon that a word, denoted as a string
of characters, can have different denotations in different contexts, e.g. ”board” as
an assembly or a piece of wood. In real sentences, words are not co-occurring at
random, but usually revolve around a certain topic. Thus, it is not likely to find the
word ”wood” in a sentence that talks about a ”board of directors”, and sentences
about wooden planks usually do not contain the word ”chairman”. In co-occurrence
networks, polysemy leads to chains: ambiguous words connect words that are not
connected to each other, and act as a bridge between different topical word clusters.
In a chain of length four, one more word from a topical cluster is observed, which
does not connect to the polysemous word since it seems that their occurrences are
deemed rather independent by the significance measure.

Enumerating the chain motif instances of the English real network, we exemplify
this point with the following chains (the ambiguous word is emphasized in each
line):

• total - km2 - square - root
• Democrats - Social - Sciences - Arts
• Number - One - Formula - Championship
• Abraham - Lincoln - Nebraska - Iowa
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Fig. 4 Motif signatures of various languages for real and generated text networks based on
sentence co-occurrence

N-gram models are oblivious to these sense distinctions. Thus, nothing prevents
e.g. a 3-gram model from generating e.g. a sequence ”Abraham Lincoln , Nebraska”
with high likelihood, confusing the two senses of ”Lincoln” as a last name and a city.
In the co-occurrence network, this can result in a connection between ”Abraham”
and ”Nebraska”, which decreases the chain motif count. The remaining chains of n-
gram networks, on the other hand, consist mostly of highly frequent words that occur
next to each other, e.g. ”slowly started on finals”, ”personal taste good advice”.
These are also present in the real language network. We observe a much smaller
number of chains formed of words of lower frequencies in n-gram generated text.
Note that it is neither the case that all polysemous words cause chains, nor do all
words in the central positions of a chain exhibit lexical ambiguity – differences in
chain motif counts rather quantitatively measure the amount of such polysemy than
qualify as an instrument to find single instances.

Hence, the lower amount of chain motifs can be explained by the creation of links
that are not present in real language. On the first glance, this should lead to a higher
clustering, contradictory to the results for motifs #3,5,6. Although some of the 4-
nodes sets that represent boxes or chains in real languages form (semi-)cliques in
n-grams, instances of motif #3,5,6 in real languages are replaced by stars in n-gram
graphs more frequently.

From these observations it becomes very clear that chain motif counts reflect
polysemy. The lower n is chosen in the generating n-gram model, the smaller is the
modelling context for ambiguities, resulting in lower chain motif counts.
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Synonymy means that different words refer to the same concept. Two words are
synonyms if they can be used interchangeably without changing the meaning, but
there are also rather syntactic variants of words that refer to the same concept, such
as nominalizations of adjectives or verb forms of different inflections.

In natural language, the principle of parsimony leads to the effect that the same
concept is rarely referred to several times in the same sentence. In fact, synonyms
usually do not co-occur, but they share a large number of significant co-occurrences
– an observation that leads to the operationalization of the distributional hypoth-
esis (Miller and Charles 1991). When two such concepts are mentioned together
frequently since they belong to the same topic, this leads to box motifs, as the fol-
lowing examples from the English real language network illustrate:

• - Ancient - Greek - ancient - Greece -
• - winning - award - won - price -
• - Ph.D - his - doctorate - University -
• - said - interview - stated - ” -
• - wrote - articles - published - poems -

We observe different kinds of word pairs for the same concept: synonyms like
(award, price), same word stem within or across word classes like (winning, won) or
(Greek, Greece), and artifacts of punctuation or spelling (ancient, Ancient) or (in-
terview, ”), Thus, box motifs capture a very loose notion of synonymy: ”interview”
and the double quote ”, e.g. both refer to a (indirect or direct) speech act. Also, in-
hibiting concepts need not be synonyms – co-hyponyms seem to inhibit each other
as well, as e.g. ”articles” and ”poems” above.

Again, n-gram models are not aware of concepts and references to them, so there
is no mechanism that prevents the n-gram model from generating sentences that re-
fer to the same concept several times or even use the same word repeatedly. This
possibly results in a connection between those pairs, reducing the box motif count.
Box motifs that can be found in both real and n-gram language are again resulting
from local sequences of highly frequent words that are possibly circular, not neces-
sarily from the same contexts. Examples include ”desktop cover art background”,
”hall nearby on church” and ”these will ask why”.

Quantitative Assessment

To quantify our observations, we randomly sampled 100 box motifs and chain mo-
tifs from the English real language network. We excluded motifs containing one
or more of the 100 most frequent words in order to concentrate our study on con-
tent words as opposed to words like prepositions, determiners and pronouns, and to
exclude syntactic patterns of highly frequent words as mentioned above.

In the sample of 100 box motifs, we found the following:

• 40 instances where the opposite nodes in the motif are semantically related –
sometimes as synonyms, but often as co-hyponyms or antonyms. While true syn-
onyms are mostly found as capitalized or plural variants (e.g. ”- board - member
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- Board - members -”, semantically close terms are more frequent, such as in ” -
Wednesday - night - Monday - morning - ”.

• 31 instances where only one of the two opposing node pairs stand in such a
semantic relation. Often, the other opposing nodes would be a compatible con-
nection, but their connection was pruned by the significance threshold, e.g. as in
”- Economists - polled - earnings - surveyed -”, where ”polled” and ”surveyed”
are almost synonymous, whereas ”Economists” and ”earnings” are not.

• 3 instances where the box motif was caused by ambiguous parts of (capitalized)
names

• 13 instances where the box was caused by the significance threshold, as all nodes
belong to the same topic, such as ”- court - case - trial - date -”.

• 13 instances that were unclear, such as ”- runs - seven - lead - gave - ”

In the sample of 100 chains, the distribution of classes was as follows:

• 26 instances with one ambiguous term, e.g. ”slot - machines - voting - Early”.
Many of them were found to be parts of names, e.g. ”First” in ”Baptist - Church -
First - Thomson” originating from some ”First Baptist Church” and from ”Thom-
son First Call”.

• 6 instances where both middle nodes correspond to ambiguous terms, as in ”Se-
ries - Division - II - War”, where ”Division” appears in a narrow sense of the
”Baseball Division Series” and a wider sense with a Division number II, whereas
II is part of ”Word War II”. All of these instances were parts of such named
entities.

• 15 instances where the set of nodes contains synonyms or co-hyponyms. These
would have fit the interpretation of a box pattern, except that one link was
dropped because of the significance threshold, e.g. ”Credit - card - credit - cards”

• 48 instances where the chain was caused by the significance threshold, i.e. all
nodes are topically related

• 5 unclear instances

This confirms that while motif analysis cannot be used as an instrument to find
synonymous resp. ambiguous words, the fraction of boxes and chains caused by
these words is nevertheless sizeable enough to cause measurable differences in the
motif signature.

Summary on Natural Vs. Artificial Language

These observations lead to the conclusion that synonymy of natural language leads
to box motifs in sentence-based co-occurrence networks, and the difference in the
box motif count quantifies the amount of capability of the language model to inhibit
the generation of words that refer to concepts which already have been mentioned.
N-gram models have this capability only for a very limited context, which again
increases with higher n.

In this work, we have demonstrated that motifs in fact capture natural language
semantics. Specifically, we were able to show that motifs detect deficiencies in n-
gram models that stem from their obliviousness towards synonymy and polysemy.
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An interesting fact to note here is that lexical meaning manifests itself in the absence
of connections in the co-occurrence network.

Since the concept of motifs has recently been used for a constructive purpose
(cf. Section 2), we anticipate that this change of perspective is also promising in
the realm of language networks and may well guide the design of new, semantically
more adequate, language models.

3.2 Co-occurrence Graphs from Verbs Vs. Other Word Classes

Now, we are interested in the difference of motif networks generated for different
parts of speech (POS). Starting from the hypothesis that different word classes (such
as verbs, common and proper nouns, adjectives, prepositions) serve different func-
tions in language, we expect to be able to distinguish their respective networks. For
experiments reported in this section, we use the same way of constructing sentence
co-occurrence graphs from text as outlined in the previous section. Using a POS tag-
ger (Schmid 1994) on real-language corpora of 1 million sentences, we can examine
subnetworks from the co-occurrence network that are produced by only selecting the
most frequent 3,000 nodes per open POS class: adjectives (ADJ), common nouns
(NOUN), proper nouns (NAME) and verbs (VERB).

Figure 5 depicts the motif signatures for three languages. It becomes apparent
that verbs show a pattern that is clearly distinct to the other open word classes.
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Fig. 5 Motif signatures for Parts-of-Speech by a linguistically motivated POS-tagger for three
languages

Verb networks are clustered much less (less cliques, semi-cliques, three-loop-
outs) than other word classes, and also form a smaller fraction of chains. This can
be linguistically explained as follows: There are only few verbs per sentence, usu-
ally one verb in the main clause, and one verb per subordinate clause. While cliques
are often formed by semantically similar words that occur together in enumerations
(nouns) or co-modifiers (adjectives), there is no frequent grammatical construction
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that yields a co-occurrence of many verbs. The high fraction of star motifs can be
explained by the co-occurrence of nearly all verbs with auxiliary or modal verbs,
such as ”have”, ”be”, ”shall”, ”can”, ”must” etc.

From this, we can conclude that motif analysis can distinguish sentence-based co-
occurrence graphs of verbs from the graphs of other word classes, which is rooted
in the fact that the function of verbs in natural language is very distinct from the
function of the other open word classes. Note that if we combine word classes,
e.g. verbs and adjectives, the distinctive features of verbs are lost, providing motif
signatures close to the non-verb class.

Now, we attempt to use this knowledge to find the verbs for languages where we
do not have a linguistically motivated POS tagger. In unsupervised natural language
processing, knowing which word in a sentence has the function of the predicate (i.e.
is a verb) greatly improves the induction of syntactic structures, see e.g. Søgaard
(2012) and Bisk and Hockenmaier (2013).

Motivated by the distinctive motif signatures of verbs, we want to categorize
verbs in an unsupervised manner as follows: First, an unsupervised POS tagger is
applied generating word clusters from a corpus. Secondly, we categorize clusters
into verb and non-verb clusters based on the motif signature and the transitivity4 of
their co-occurrence graphs.

The analyzed corpora consider a wide range of languages: Czech, Dutch, En-
glish, Estonian, French, German, Indonesian, Italian, Lithuanian, Portuguese, and
Russian. Two unsupervised POS tagger are applied to generate word clusters: The
first one (Biemann 2006) finds the number of tags automatically, whereas the ap-
proach by Clark (Clark 2003) requires setting the number of POS classes to a pre-
defined number. Only clusters of at least 1000 words are included in the analysis
because small cluster do not provide a sufficient sample of the motif signature.

After obtaining the word clusters, we first exemplary performed a manual catego-
rization. Furthermore, two potential categorization methods are compared by their
accuracy, recall, and precision. We define the accuracy as the fraction of clusters that
have been accurately classified as verb or non-verb. The recall is the fraction verb
clusters that were correctly classified, whereas the precision denotes the fraction of
verb clusters within all clusters that have been classified as verbs.

The first algorithm only considers a single-scalar metric M, either one motif
percentage or the transitivity. For each set of n clusters of the same corpus, the
values m1, . . . ,mn of M are sorted in ascending order. Then the two categories
c1 = {m1, . . . ,mt} and c2 = {mt+1, . . . ,mn} are determined, so that mt+1 −mt is
maximized. The verb cluster is chosen based on our observations: For the star motif
the cluster with the higher values is labeled as verbs, otherwise the cluster with the
lower values.

4 Transitivity: Let G = (V,E) be an undirected graph. A closed triangle is a set of three
nodes such that all three possible edges do exist. On the other hand, a triple is any set of
three nodes and two edges (in other words, a chain of two edges). The transitivity of T (G)
of G is three times the total number of closed triangles divided by the total number of
triples, as defined by Newman et al. (2002).



96 C. Biemann et al.

The second approach is to apply a 2-means clustering to the word clusters with
the goal of distinguishing verbs from non-verbs. The motif percentages as well as
the transitivity are identified with points in an Euclidean space. Initially, two cluster
centers are chosen uniformly at random from the hypercube defined by the lowest
and highest values of each single-scalar metric. Then the standard k-means cluster-
ing algorithm (MacQueen 1967) is performed for a maximum of 100 rounds with
k = 2, assigning each point to the closest cluster center and computing the new clus-
ter centers. Finally, the cluster with the lower value for the chain motif is categorized
as verbs. The experiment is repeated for 100 runs, and each word cluster is assigned
the category it was assigned the majority of runs.

Given the clear difference between verbs and the other open word classes, we
expect that verbs can be easily distinguished from other classes. However, the ex-
istence of additional classes and the distribution of verbs over various clusters can
be expected to complicate the categorization, possibly reducing the accuracy of the
algorithms.

We summarize the results achieved on clusters produced by the unsupervised
POS-tagging by Biemann (Biemann 2006). Figure 6 shows three exemplary motif
signatures for Portuguese, German, Italian, and Indonesian. The categorization for
Portuguese is obvious. There is only one verb cluster, which is identified by the
high fraction of stars as well as the low fractions of chains and cliques. For German,
there are two obvious verb candidates are given by clusters 7 and 18, which indeed
correspond to verb clusters. Furthermore, 12 is a verb cluster, which shows the char-
acteristic high fraction of stars as well as a low fraction of chains, but does not have
the distinctive features for cliques and semi-cliques. Such a clear distinction of the
most dominant verb cluster can be observed in other Germanic languages such as
Dutch and English, but also for Czech. Italian, too, exhibits clusters which are ob-
vious verb candidates, namely 19 and 1. However, these are not actually verbs, but
rather participles derived from verbs, e.g. insoluti, risucchiati, uguali, accadute, aff-
issi, determinanti. The actual verb clusters 3 and 9 are less distinguished, only show-
ing chain motif counts slightly below average. A similar, though less pronounced,
relation can be observed in French.

Another indefinite picture is presented by the motif signatures in Indonesian. In
contrast to most other languages, there are no obvious outliers. The verb clusters 14
and 15 show characteristic behavior for the semi-cliques and cliques. Furthermore,
the values for chains are slightly lower than for the remaining languages. However,
also 5 and 9, two clusters of nouns, could be identified as verbs by their high fraction
of star motifs or the slightly lower than average values for chains and cliques.

The results from this manual categorization can be summarized as that there
are features visible in verb clusters, however, these are not always as distinctive
as when using a language-specific supervised POS-tagging. Moreover, these fea-
tures can also be found in some non-verb classes. In particular, we also consider
participles as verbs, since they have a similar function in the sentence, i.e. lexicalize
a predicate. Furthermore, mixed classes are not considered verbs in our automatic
classification due to the observation that verb characteristics are lost when mixed in
with other classes.
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Fig. 6 Motif signatures of unsupervised POS-tagger

The performance results of our automatic algorithms differs for various languages.
When only considering a single-scalar metric, there is no metric that performs well
on all languages: For example, the transitivity is discriminative for Portuguese and
Estonian, achieving an accuracy of 100%, but not so much for the others. Motif 1, 2
and 4 on the other hand produced almost perfect results for German, English, Dutch,
Italian and Portuguese, but not for French, Estonian and Lithuanian. Motif 3 never
achieved good results, which is indicated in the data by the fact that verbs do never
show significantly higher or lower values.

As a consequence, the result of our first categorization is that threshold-based
one-dimensional categorization is not sufficient, despite the clear differences that
can be observed for some motifs in data from supervised POS taggers. The result
could be expected by looking at motif signatures due to the fact that some verb
clusters are clear outliers whereas some only show slight variations.

However, the results from this first experiment help us to identify potential sub-
sets of metrics that can be used for the 2-means clustering. Besides considering all
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metrics for the categorization, we also considered only the motifs, all metrics but
Motif 3, all motifs but motif 3, only the motifs 2 and 4, as well as the motifs 2,4,5
and 6.

The best results for all languages, presented in Table 1, are achieved when using
Motif 2,4,5, and 6. Interestingly, adding the star motif did not increase the per-
formance despite the observed high fraction of star motifs in verb clusters. Never-
theless, star motifs are mainly created by modal verbs, which are not contained in
many verb clusters, leading to a negative impact for categorizing these clusters. An
accuracy of 100% is achieved for Dutch and Portuguese. For English, German, and
Lithuanian, there is only one verb cluster that is frequently assigned to the wrong
category. When considering German, this is cluster number 12, which has already
been noted during our manual categorization. Having a closer look on the individual
runs of the algorithm, 12 is categorized as a verb cluster in about one third of the
runs, whereas the verb clusters 18 and 7 are categorized as verb clusters roughly 80
% of the time. Moreover, no non-verb cluster is ever categorized as a verb cluster in
case of German. Czech, French, and Italian exhibit two errors, which reduce either
precision or recall drastically due to the low number of verb clusters. For Italian, the
correctly identified verb clusters are actually participles, while the verb clusters are
not found. Note that for Indonesian, Estonian, and Russian, both recall and precision
are 0. This is due to the lacking distinctiveness of the verb features, the verb cluster
is in general empty. As for Indonesian, the verb patterns in those languages do not
seem to be distinctive enough to be detected by the clustering algorithm.

Table 1 Results for a categorization into verb vs. non-verb clusters based on Motif 2,4,5,
and 6. Accuracy is the percentage of POS clusters that are classified correctly into these two
classes; Precision is the percentage of classified verb clusters that are really verb clusters;
Rcall is the percentage of true verb clusters found by the algorithm.

Language Accuracy Precision Recall

Czech 0.8 0.3333 1.0
German 0.9091 1.0 0.6667
English 0.8333 0.6667 1.0
Estonian 0.8 0.0 0.0
French 0.6923 0.5 0.5
Indonesian 0.5833 0.0 0.0
Italian 0.8333 1.0 0.5
Lithuanian 0.9 0.6667 1.0
Dutch 1.0 1.0 1.0
Portuguese 1.0 1.0 1.0
Russian 0.8667 0.0 0.0

Applying the algorithm by Clark to the same data, we first noted that using a
low number of classes (32) produces very mixed POS clusters that did not result
in any distinctive outliers in the motif signature. When using a higher number of
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clusters (128), classes still are not separable into verbs and non-verbs, since verbs
get scattered over many small clusters, which inhibits our analysis: motif analysis
requires a certain number of nodes to produce stable results.

In summary, motif signatures for word clusters of verbs tend to have distinctive
features such as a high fraction of star motifs and a low fraction of clustered motifs
such as semi-cliques. Simple classification algorithms such as 2-means clustering
detect the predominant verb clusters, but miss some of those that offer less distinct
motif signatures. It might be possible to further improve the results by fine-tuning
the algorithm and normalizing the values for each dimension. We hope that in this
way, this approach extends also to the language families where our current setup
fails. This study is to our knowledge the first partially successful attempt to assign
linguistic word classes (here: verbs) to unsupervised POS classes.

3.3 Peer-to-Peer Streaming Networks

Peer-to-peer live-streaming networks are distributed communication architectures,
where the participants connect directly to each other, not to central servers. The
participants are represented by nodes. There is a directed edge from participant v to
participant w if, and only if, v sends a streaming signal to w. We consider two types
of generated streaming networks:

• The first type is the streaming topology of Strufe et al. (2006), abbreviated here
as BCBS, which splits the stream into several partial streams (commonly named
stripes) and then delivers these stripes along multiple paths in the network.

• The second type of streaming networks are a class of balanced topologies, which
exhibit short, node-disjoint paths and are hence optimally resilient to network
attacks and failures (Brinkmeier et al. 2009), abbreviated here as Optimal.

We generated 64 BCBS and 64 Optimal networks, each consisting of 250 nodes.
For each network we count the number of the two three-node directed motifs, see
Fig. 2. The first motif is the V-Out. It represents the case when the participant A
streams a signal to two other participants B and C simultaneously, that is, A→ B and
A →C. The second motif is the 3-Chain. It represents the case when the participant
B forwards to C the signal it has just received from A, that is, A → B →C.

For each network we calculate the percentage of V-Out and 3-Chain motifs from
the overall motif signature of the network. Thereafter, dividing the percentage of
the corresponding motifs in bins and plotting the classes of networks gives a clear
picture as displayed in Fig. 7, where the x-axis represents the bin size and the y-axis
the number of networks in that bin.

Evidently, each of V-Out and 3-Chain alone allows one to distinguish the BCBS
and the Optimal networks from each other, although all networks belong to the
same realm: live streaming networks. Thus, motif analysis can be used to analyze
real-world networks and to compare them to model topologies, such as the two
topologies discussed here.
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Fig. 7 Percentage of V-Out (left) and 3-Chain (right) motifs for both types of live streaming
networks. In both cases there is a clear distinction between the BCBS (red solid line) networks
and the Optimal (green dashed line) network types.

3.4 Co-Authorship Networks from Two Subdisciplines of Physics

We define co-authorship networks as follows. Every node represents an author; two
nodes are connected if, and only if, the authors have at least one joint publication.
The edges are undirected.

We analyze two different subdisciplines of physics: condensed matter and as-
trophysics. The condensed matter collaboration network comprises 23,133 nodes /
authors and 93,497 edges, whereas the astrophysics comprises 18,772 authors and
198,110 edges. Both data sets cover scientific publications over a period of 10 years
and represent the complete history of the Condensed Matter Physics section and the
Astro Physics section of the e-print arXiv up to April 2003, respectively. This data
is available from the Stanford SNAP5 Large Network Dataset Collection.

However, we do not need one network but a number of networks of either type
to determine the extent to which networks of both types may be distinguished from
each other. Therefore, we extract 10 connected subnetworks of 1,000 nodes from ei-
ther network. In each of the 20 subnetworks, we count the number of the undirected
motifs on four nodes, cf. Fig. 1.

The subnetworks are generated as follows. A random node is selected along with
all of its neighbors. The neighbors of the neighbors are selected next, and so forth.
The procedure stops once 1,000 nodes have been selected. Each edge that connects
two selected nodes is inserted, so the generated graph is the subgraph induced by
the selected nodes.

For each network we calculate the percentage of star, chain, semi-clique and
clique motifs from the overall motif signature of the network. Thereafter, dividing
the network in bins according to the percentage of the corresponding motif gives a

5 http://snap.stanford.edu
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Fig. 8 Percentage of star (left) and chain (right) motifs for both condensed matters (green)
and astro physics (red) subgraphs

Fig. 9 Percentage of semi-clique (left) and clique (right) motifs for both condensed matters
(green) and astro physics (red) subgraphs. In both cases there is a clear distinction between
the two network types.

clear picture as displayed in Fig. 8 and Fig. 9, where the x-axis represents the bin
size and the y-axis the number of networks in that bin.

In each of the four diagrams, we define a generous grey zone:

• Star: 30 . . .50
• Chain: 25 . . .35
• Semi-clique: 2 . . .3
• Clique: 1 . . .2

If an instance is above the specific grey zone in at least one of these four diagrams,
it is regarded as an astrophysics network. On the other hand, if an instance is below
the grey zone in at least one of the four diagrams, it is regarded as a condensed
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matter network. Since the grey zones are generously defined, this classification of
instances outside the grey zone might be more or less safe. Despite this generosity,
each of the 10 instances is indeed classified by that rule, for none of the instances is
the classification contradictory, and each classification is correct.

While results are promising, further work is needed to fully leverage motif anal-
ysis for co-authorship networks. In this case study, we ware able to reasonably sep-
arate networks from two communities. This shows that community-specific habits
for co-authorship are mirrored in the motif distribution.

3.5 Mailing Networks

Email networks are a special type of communication networks. The nodes are email
addresses; two nodes are connected if, and only if, at least one email has been sent
from one node to the other one. In particular, the edges are undirected. In this case
study we consider two email networks, which are again available from the Stanford
SNAP6 Large Network Dataset Collection:

• The first network was generated using email data from a large European re-
search institution, abbreviated here as EU. It comprises all incoming and out-
going emails over a period of 18 months. The network consists of 265,214 nodes
and 420,045 edges.

• The second network is generated from a dataset of around half a million emails
from the Enron email communication network. This data was originally made
public by the Federal Energy Regulatory Commission. Here we abbreviate the
network as Enron. It contains 36,692 nodes and 183,831 undirected edges. Here
the big picture its not as clear as for the case study in Sect. 3.4. Reasonable grey
zones do not allow a safe classification of all instances. Nonetheless, there is
a strong tendency in each of the three pictures, which is promising for future
investigations.

Again, we extract 10 connected subnetworks of 1,000 nodes from either network.
In each of the 20 subnetworks, we count the number of the undirected motifs on four
nodes, cf. Fig. 1. We use the same extraction principle as described in Section 3.4.

We then divide the networks in bins according to the percentage of the corre-
sponding motifs, where the x-axis represents the bin size and the y-axis the number
of networks in that bin. The corresponding histograms for the star, chain and three-
loop-out motifs are displayed in Fig. 10

All three motifs together allow one to distinguish the EU Enron networks from
one another, despite the fact that all network instances belong to the same network
realm.That is possible because each single motif represents an additional distinction
dimension.

6 snap.stanford.edu

snap.stanford.edu
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Fig. 10 Percentage of the star, chain and three-loop-out motifs (from left to right) for the EU
(green) and Enron (red) networks. In all three cases there is a visible distinction between the
two network types, although there is a region of overlap for all three motifs.

4 Conclusions and Outlook

The presented case studies demonstrate that motif signatures are a widely applicable
method to classify subtypes of network types by a purely structural analysis.

In particular, this opens up new, promising perspectives for the analysis of net-
works from various realms. As it has become clear from results we obtained on
networks from different realms, motif analysis is a general tool for network char-
acterization and classification, and not in any way restricted to particular network
classes.

We have demonstrated two uses of motif analysis for networks generated from
natural language, and could successfully discriminate between coherent (real) and
incoherent (n-gram-generated) language, as well as discriminate between verbs and
other syntactic word classes. Further work on natural language networks should in-
clude more sophisticated language models such as the syntactic topic model (Boyd-
Graber and Blei 2008), which explicitly models topicality, and studies involving
other methods for inducing syntactic word classes, such as class-based n-gram mod-
els (Brown et al. 1992).

While the case study on network topologies showed a good discriminating power
of network motifs, the last two case studies have shown that straightforward motif
counting does not necessarily suffice. While showing promising indications, motif
analysis should be complemented by additional features for discriminative tasks.
Just as measures like the clustering coefficient or the transitivity measure unveil
certain characteristics of networks, motif signatures provide yet another, more fine-
grained fingerprint of network properties.
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Multidimensional Analysis of Linguistic
Networks

Tanya Araújo and Sven Banisch

Abstract. Network-based approaches play an increasingly important role in the
analysis of data even in systems in which a network representation is not imme-
diately apparent. This is particularly true for linguistic networks, which use to be
induced from a linguistic data set for which a network perspective is only one out
of several options for representation. Here we introduce a multidimensional frame-
work for network construction and analysis with special focus on linguistic net-
works. Such a framework is used to show that the higher is the abstraction level of
network induction, the harder is the interpretation of the topological indicators used
in network analysis. Several examples are provided allowing for the comparison of
different linguistic networks as well as to networks in other fields of application of
network theory. The computation and the intelligibility of some statistical indicators
frequently used in linguistic networks are discussed. It suggests that the field of lin-
guistic networks, by applying statistical tools inspired by network studies in other
domains, may, in its current state, have only a limited contribution to the develop-
ment of linguistic theory.

1 Introduction

Network analysis is an integral component in the study of complex systems. This is
probably due to the generally accepted fact that complex systems are composed of
elementary units and structures of mutual dependencies between those units which
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directly suggests a network representation. However, network-based analyses are
nowadays quite common also in the analysis of systems where such a network rep-
resentation is not always that intuitive. There may be many ways in which the ele-
mentary units and the links between them are conceived and the choices may depend
strongly on the questions that a network analysis aims to address.

Here we discuss that case at the example of linguistic networks. Linguistic net-
works are characterized by a high level of abstraction compared to networks in other
areas of research. While in power grid networks, the world wide web or even gene
regulatory networks the nodes and links in between them are directly related to real
processes taking place in the system – to electricity flow, web links or respectively
biochemical reactions between DNA segments – this is not generally the case in lin-
guistic networks which are often induced or synthesized from a linguistic data set
for which a network perspective is only one out of several options for representation.

In this context, our main points are:

1. Although being different tasks, network design/induction and network analysis
are strongly interdependent

2. Linguistic networks are special both in the design and in the analytical setting
3. There is a need for a framework for network construction and analysis with spe-

cial focus on linguistic networks
4. A higher level of abstraction in network induction has an important bearing on

network analysis, particularly on the choice of appropriate topological indicators
and on the interpretation of their results
or

5. The higher is the abstraction level of network induction, the harder is the inter-
pretation of the topological indicators used in network analysis

The paper is organized as follows: Section 2 presents our main arguments on the
specificity of linguistic networks and on the consequent need for the identification
of different abstraction levels when dealing with network design. These abstrac-
tion levels make up the first dimension of a framework for network construction
and analysis. Section 3 is targeted at presenting the second dimension of such a
framework, i.e., the statistical levels of network analysis. It also includes a detailed
presentation of the statistical indicators most often used at each analytical level. In
Section 4, we discuss on the intelligibility of these statistical indicators when ap-
plied to the analysis of linguistic networks. Section 5 provides examples in different
fields of application together with a classification of the examples according with the
introduced framework. Section 6 discusses the classification presented in Section 5,
while Section 7 draws a conclusion on the paper as a whole.
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2 Linguistic Networks Are Special

2.1 Three Types of Networks

Linguistic networks are characterized by a high level of abstraction compared to
networks in other areas of research. They are usually induced or synthesized from a
linguistic data set – typically a series of letters organized into words, sentences, may
be paragraphs and so on – that does not obviously call for a network representation.
This synthesis involves several design decisions and entities (i.e., words) linked in
one design may not be linked in another. Moreover, there is no clear relation between
the connections in such a network and the dynamic processes taking place in the
system that created the data set. It is, for instance, in most cases not possible to state
which kind of flow processes take place along the links of a linguistic network which
makes the applicability of network measures that involve implicit assumptions about
network flow problematic (see Borgatti (2005) and below). For the purposes of this
paper, we differentiate roughly between three levels of abstraction by considering:

1. Abstraction Level-1: real networks of systems composed of elementary units
which are explicitly linked or in between which real processes take place,

2. Abstraction Level-2: proximity networks of systems composed of elementary
units and a well-defined measure of distance in between these units (shared fea-
tures, correlation or similarity),

3. Abstraction Level-3: induced networks that are synthesized out of data bases
(probably the outcome of a complex system) and in which the definition of ele-
ments and links is not explicit in the data.

Besides being of great importance at the very beginning of the network defini-
tion, the question whether a network or respectively a system falls into category
one, two or three has, we believe, an important bearing on network analysis, partic-
ularly on the choice of appropriate topological indicators and on the interpretation
of the results. As Borgatti (2005) has shown for centrality measures, the implicit
assumptions about network flow that certain measures make, may challenge the in-
terpretability of the measure. Namely, most of the well-known network structure
indicators have been designed in order to describe the different aspects of transport
phenomena where connectivity plays the important role and the mass conservation
principle features the dynamics of network flows. Therefore, the situation is even
worse if the dynamical processes between nodes are unspecified, as in linguistic
networks.

The aim of describing networks at different levels of abstraction is not to present a
rigorous classification of different systems or representations of systems. It is rather
to show that the topological interpretation of linguistic networks is different from
more concrete networks, because a rather abstract perspective has to be taken in
deriving a network representation which leads to a certain degree of arbitrariness
and a decrease in explanatory power.
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For the first type of network (henceforward called type-1), it is relatively obvi-
ous how elements and connections in between them must be defined in order to
obtain an operative description of the system. For instance, the system of air traffic
is constituted of airports and flight connections in between them (Li and Cai 2004;
Colizza et al. 2007; Opsahl et al. 2010; Konect 2014). A network which contains
just that binary information (flight connection or not) can already be quite informa-
tive of the entire air traffic system as questions of efficiency, vulnerability etc. can
be addressed at this level. Considering the amount of goods traveling from airport
to airport or the number of people will quickly lead to a very detailed description of
the whole system.

As another economic example, we mention networks of inter-bank dependen-
cies (Huizinga and Nicodème 2004; Boss et al. 2004; McGuire and Tarashev 2006;
Soramäki et al. 2007; Minoiu and Reyes 2011; Spelta and Araújo 2012). Payment
systems allow banks to move money and securities between banks and other large
financial institutions. Daily, a huge amount of capital flows arises from and depends
upon the coordination of payments among banks. Such a close coordination en-
gendered by payment systems creates a network of inter-bank dependencies, where
banks are nodes and transactions are represented as links of the network. In this
context, the main issue uses to be associated to the conditions that ensure network
robustness since failures of a bank to make payments can trigger a cascade of liq-
uidity losses.

Another example, already mentioned above, is the WWW (e.g., Albert et al.
(1999), Broder et al. (2000), and Meusel et al. (2014). Web pages are connected to
one another by hyperlinks and lot about the system can be understood on the basis
of such structural information. However, the WWW is also an area in which the sec-
ond type of network (type-2) can provide a complementary view on the system as a
whole. Instead of hyperlinks as a direct reference from page to page, one could look
at the similarity between the pages in terms of the information they provide. One
way to measure the similarity between two pages is to compare frequencies with
which words are used in the two pages, that is, vectorial semantics (Salton et al.
1975; Salton 1989; Landauer and Dutnais 1997) (for a related approach see also the
chapter of Masucci et al. in this volume), or to compare the HTML structure of the
documents (Mehler et al. 2007). Of course, the resulting similarity measure depends
strongly on the features that are used to span the semantic space. Another way to
construct a similarity network is to count the number of common references/hyper-
links or the geodesic distance in the type-1 network. That is to say, for networks
of type two, there is already a certain amount of freedom in the definition of the
network. It might so happen (even though this is not assumed the regular case) that
two nodes close to one another in one network representation are distant in another
depending essentially on the type of similarity measure used in the construction.

Some networks that go under the label of linguistic networks fall into this second
category. For instance, there are a word networks based on the number of shared let-
ters, phonemes or syllables (see, e.g., Soares et al. (2005), Mukherjee et al. (2009),
Arbesman et al. (2010), and Yu et al. (2011)), and, at a higher level, there are inter-
language networks based on lexical similarity (see, e.g., Blanchard et al. (2011) and
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Serva et al. (2011)). However, the number of ways to induce a linguistic network
is huge and the resulting information represented by the network may differ greatly
from one network to the other. This is because linguistics networks are often de-
fined on the basis of linguistic data, such as corpora of texts or annotated dialog
data so that many linguistic networks are of the third type, with still more freedom
in defining a network, compared to the second network type.

Words, for instance, can be linked because they frequently share the same context
(this is captured by co-occurrence networks), but the operationalisation of “sharing
the same context” is far from unique (see below).

Two words could also be linked because it is likely that I think of the second
when I hear the first (free association experiments; see, for instance, Nelson et al.
(2004), Borge-Holthoefer and Arenas (2010), and Gravino et al. (2012)) or if I am
asked to utter a sequence of words the two will probably appear together (verbal flu-
ency experiments; see, for instance, Storm (1980), Lerner et al. (2009), Goñi et al.
(2011), and Iyengar et al. (2012)). Free word association is probably the only ex-
ample of a linguistic network of type-1. Although the links between any two words
in any utterance sequence are not “hardwired”, they are directly related to a real
process taking place in the system (or the game) of free association. In this context,
a sequence of associated words itself is naturally seen as dynamical process since
it provides the unfolding of a flow of ideas. There, the network perspective comes
naturally and the definition of nodes and links is relatively obvious: words are nodes
and any link is defined as a connection between two spontaneously related words.

Still another way to come to word networks is to map the syntactic relations onto
the network connections (syntax dependency networks, see Ferrer i Cancho et al.
(2004) and Ferrer i Cancho et al. (2007)) or define a word network by considering
explicitly the semantic relations (synonymy, hypernomy, etc.) as the connections in
between words (Sowa 1991; Miller 1995). And so on. A further degree of freedom
in defining a linguistic network concerns the choice of the elementary units. It is not
explicit in the data what we should conceive as the nodes in a linguistic network and
therefore models at the level of words, but also at the sentence or paragraph level
are sometimes constructed.

The way how a network is defined in linguistics depends a lot on the question that
is to be addressed by the network study. If one aims at understanding the structure of
a language, syntax dependency network or co-occurence networks synthesized from
large corpora of texts are natural choices. If the structure of the conceptual space is
in the focus, free word association, verbal fluency experiments or explicit semantic
relations are a more appropriate source for network induction. The structure of these
different kinds of networks may be very different. The fact that so many different
perspectives can be taken on the linguistic system may be seen has an indication of
its increased complexity compared to other systems. There are several dimensions
of analysis.
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2.2 Network Induction

Network induction makes reference to the method by which networks are created
on the basis of a certain data set or system. In research dealing with network models
of type one, the method of “network induction” does not receive particular attention
and many researchers may actually wonder about the notion of “inducing” a net-
work. This is because in those systems the network representation is very natural
and requires only a small level of abstraction from the real situation. It is relatively
clear what should be considered as the elementary units of the system - the nodes -
and also the relation between the nodes - the edges - are given either by real “hard-
wired” connections or by processes or flows between the elementary units. Design
decisions, if any, concern the question whether the situation is best mapped onto a
binary graph or a weighted and directed network.

This is already different for networks of the second type. While, in general, it is
often clear what to conceive as the nodes in proximity networks, the nature of the
connections (despite that they are similar with respect to a chosen set of features)
it is not always clear. In functional brain networks, to make an example, different
brain regions are linked if they are jointly activated in certain working tasks (see
Sporns et al. (2005), Bassett and Gazzaniga (2011), and Menon (2011) and refer-
ences therein). Even if it is natural to assume that there is exchange of information
or signaling between the different regions during the working task, as a matter of
fact, all that can be said on the basis of functional brain network is that there is a
correlation of activity patterns across the different brain regions. The real processes
(that probably exist) are obscured by the network representation and one would have
to go to the micro level of neurons and synapses to obtain that information. That is
going to the type-1 network.

Take the similarity graph between articles from the “bibliography on linguistic,
cognitive and brain networks” compiled by Ramon Ferrer i Cancho (Ferrer i Cancho
2012) as another example for a type-2 network. This graph, one instance of which
is shown in Fig. 1, is obtained on the basis of similar words used in the abstract
of the articles. Nodes are labeled by the most frequent term in the respective ab-
stract. While the picture illustrates nicely the structure of similarities between the
articles - articles on linguistic networks are clustered into different modules depend-
ing on whether they deal with semantics, word networks, text systems or networks
of languages as a whole and the articles dealing with functional brain networks form
another rather independent cluster - it is not really clear whether linked articles in-
deed refer to one another and there is also no obvious functional relation or process
that is represented by a connection. As we will discuss below, the lack of knowl-
edge about the real relations between the elements has important consequences for
the choices and interpretations of certain topological indicators.

The example of a similarity network shown in Fig. 1 makes also clear that var-
ious design decisions have to be taken in the creation of such a network. First, in
this example, we have been interested in the thematic similarities of the publications
as opposed to, for instance, stylistic similarities between different authors. There-
fore, we disregarded functional words in the computation of the correlations and
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considered only words that do not appear in all the abstracts. If instead we were
interested in the identification of authors and similarities in their writing style con-
sidering functional words only would probably give the better result (see, e.g., Peng
and Hengartner (2002)). Second, once the correlation matrix is computed using the
reduced (“cleaned”) feature set, a network as shown in Fig. 1 is obtained only after
thresholding the correlation matrix such that only strong correlations are preserved.
This is also a rather decisive design decision to optimize the intelligibility of the
system because, in effect, there is at least a small positive correlation between all
pairs of abstracts. However, the complete graph resulting from that would not be
very informative about the modularity structure in the network of articles. In fact it
happens that when networks are induced from distance measures, the issue of de-
riving a sparse network from the complete one becomes the most important design
decision. The less arbitrary choices (or the most endogenously based ones) usu-
ally define the threshold as the distance value used in the last step of the minimum
spanning tree construction. In so doing we ensure the connectivity is preserved (the
resulting network is necessarily connected).
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Fig. 1 A similarity network of publications from the ”bibliography on linguistic, cognitive
and brain networks” compiled by Ramon Ferrer i Cancho (Ferrer i Cancho 2012). The data
has been retrieved on the third of December 2012, one week before the conference “Modeling
Linguistic Networks” was held. It is constructed by computing the correlation between the
abstracts of the articles on the basis of similar words they use. Node labels show the most
frequent word in the respective abstract.
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The induction process becomes more complex for type-3 networks, and some of
the most popular linguistic networks in particular. The number of different options
for network induction increases further and several design decisions must be taken
from the very beginning of the network creation procedure. Sticking to word net-
works, one must first be clear about whether phonemic, syntactic, semantic or still
other relations should be mapped onto the connections. Usually, this is determined
by the research question to be addressed by the network study. Let us assume that
the focus is on language structure. Then, we could map syntactic relations between
words as they are realized in a set of sentences. This leads to the syntax dependency
networks proposed by Ferrer i Cancho et al. (2004). But we could also decide to ap-
proach the question by considering shared context or word co-occurrences. Then an
important design decision concerns the size of window that is considered as context.
Words could be linked whenever they co-occur within at least one sentence, but one
could also use a window of fixed size and consider co-occurrence within that win-
dow. Another way (considered more realistic in Solé et al. (2010)) is to consider the
order in which words occur, most simply, we could say that there is an arrow from
word A to word B if B follows A in some sentence (this gives rise to precedence or
word-flow networks see, e.g., Grabska-Gradzinska et al. (2012) and below). Again,
in all these cases, the question whether links or arrows are weighted or not requires
a design decision. In other words, there is a large number of different ways to induce
a word network from linguistic data and the data itself does not clearly suggest if
one way is better than the other.

The need for a unifying framework for linguistic networks emerges from this di-
versity of network models. The fact that rather different networks can be obtained on
the basis of the same data set seems to be quite unique in the network sciences and
triggers, in fact, important epistemological questions concerning validity, compara-
bility and interpretability of linguistic network studies. The comparison of different
linguistic networks and a critical discussion of the relation of linguistic networks
to networks in other fields are essential for the future development of the field of
linguistic networks. First steps into that direction have already been taken (see, for
instance, Choudhury et al. (2010), Zamora-López et al. (2011), and Gravino et al.
(2012)).

3 Three Levels of Statistical Analysis

Closely related to network analysis and also grounded on a multilevel perspective
is the differentiation between statistical levels of analysis (and the corresponding
statistical tools). Here we identify three statistical levels inspired by statistical tools
originally developed for the characterization of stochastic processes, and their ap-
plication to the analysis of signals, i.e., signal processing on graphs.
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3.1 A Brief Note on Signal Processing on Graphs

Signals evolving in time may be considered as signals in a forward-connected graph,
the nodes being different points in time. The analysis of more general networks
such as social and economic networks, linguistic networks and biological networks
usually generates graphs with much more complex connections.1

Processing signals on graphs has been dealt with recently, in particular in the
context of discovering efficient data representations for large high-dimensional sys-
tems and other dynamical systems (Miller et al. 2010; Shuman et al. 2013). Here we
envision that, by analogy with signal processing on graphs, the statistical tools that
have been developed for the characterization of stochastic process are mathematical
devices that may be applied to the analysis of networks.

3.2 The Statistical Levels

When a phenomenon is measured with a set of statistical tools, what one registers is
a sequence of values of some variable X

· · ·X−2X−1X0X1X2 · · ·

which takes values in a space X . The space X is called state space and the space of
sequences X Z is referred to as path space. Statistical properties of the phenomenon
may be described at three different levels, (Vilela Mendes et al. 2002):

1. by the expectation values of the observables;
2. by the probability measures on the state space X ;
3. by the probability measures on path space X Z.

To obtain expectation values and probability measures we would require infinite
samples and a law of large numbers. For any finite sample we obtain finite versions
of the expectation values, of the probability on state space and of the probability on
path space which are called the mean partial sums, the empirical measures (or em-
pirical probability distribution functions - pdf’s) and the measures on the empirical
process.

The statistical levels represent successively finer levels of description of the sta-
tistical properties associated to the topological indicators used in network analysis.
We will call these three types of description, respectively, level 1, level 2 and 3-
statistical indicators.

1 A first step in analyzing data in such networks is the construction of the appropriate signal
transforms. For the forward-connected time graph the Fourier transform is a projection on
the eigenvectors of the adjacency matrix. Therefore it is natural to construct transforms
for general networks by projection on a basis constructed from the eigenvectors (or gener-
alized eigenvectors) of some matrix relevant to that network.
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1. Statistical Level-1 concerns the computation of the quantities related to averages
values of one or more topological coefficients defined at the node level, as for
instance: the average clustering coefficient, the network degree, the average path
length, among others. At this level, the phenomena are described by the expecta-
tion values of the observables, i.e., one or more topological coefficients defined
at the node level.

2. Statistical Level-2 concerns the computation of the quantities related to probabil-
ity distribution functions of the above mentioned topological indicators
computed at the node level. From this analysis it is possible to characterize
power-law shapes in the distribution of the degree of the nodes or in any other
indicator. Level-2 analysis allowed for the characterization of some important
network regimes and mechanisms as, for instance, the scale-free regime and its
associated preferential attachment mechanism.

3. Statistical Level-3 concerns the calculation of the probability measures on the
path space, i.e., the cylinder measures on the empirical process. At this level,
a phenomenon is described by the probability of a certain configuration of the
network that represents the empirical process. Level-3 analysis allowed for the
characterization of communities within the network structure.

Level-1 and level-2 analysis are the most common ones and their statistical indi-
cators the most commonly quoted when a stochastic process is analyzed. However
to the same expectation values for the observables or to the same pdf’s, different
processes may be associated. Therefore full understanding of the process requires
the determination of the level-3 indicators.

It has been shown (Vilela Mendes et al. (2002), among many others) that the
analysis and the reconstruction of a process involves two different but related steps.

• the first step is the identification of the grammar of the process, that is, the al-
lowed transitions in the state space or the subspace in path space that corresponds
to actual orbits of the system.

• the second step is the identification of the measure, which concerns the occur-
rence frequency of each orbit in typical samples.

Although largely independent from each other, this two features have a related effect
on the constraints they impose on the statistical indicators.

In the social sciences and particularly in Economics and Finance, the application
of such mathematical devices gave place to the description of a set of empirical
findings which are usually called stylized facts.

3.3 Stylized Facts in Network Analysis

The notion of stylized facts was once introduced by Nicholas Kaldor (Kaldor 1956)
and used thereafter as an encapsulation of regularities found in empirical researches
of economic processes. In performing network analysis by means of applying sta-
tistical tools developed for the characterization of stochastic process, the concept of
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a stylized fact is adequate to identify the empirical evidence of recursive events and
relations found in the description of real networks.

In Economics and Finance, some stylized facts use to be formalized as distribu-
tions describable by power laws. Others rely just on cross correlation values between
stock returns. The main variable that is used to construct the statistical indicators is
the differences of log-prices.

r(t,n) = log p(t + n)− log p(t) (1)

sometimes called the n−days return. From the return series of different stocks, there
are the following stylized facts:

1. cross correlations between stock returns,
2. non-linear dependencies in the trajectories through time (memory) of a stock

return,
3. volatility memory, i.e., memory in the second moment of the volatility of the

return of a stock.

Regardless the field of application, some stylized facts have been built on network
properties or on the topological coefficients that characterize some network regimes.
Most frequent examples are:

1. A power law signature of the distribution of the network degree (as in scale-free
networks) are used to characterize heterogeneity, a notion that is used to identify
the following different phenomena depending on the field of application, as for
instance:

• the Zipf law in linguistic networks,
• heterogeneity in word free association in linguistic networks (Solé et al.

(2010)),
• systemic risk in financial networks ( (Battiston et al. (2010) and Acemoglu et

al. (2013)),
• contagion phenomenon in epidemic networks (Newman et al. (2003)).

2. (Dis)Assortativeness of node degrees:

• disassortative mixing in syntactic dependency networks (Ferrer i Cancho et al.
(2004)),

• assortative mixing in semantic networks (Ferrer i Cancho et al. (2004)),
• capital flows in financial networks (Spelta and Araújo (2012)).

3. Phase transitions associated to characteristic values of topological coefficients:

• phase transitions in early language acquisition in syntax networks (Solé et al.
(2010)),

• phase transition and systemic risk in financial networks (Acemoglu et al.
(2013)).
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4. Preferential attachment as the underlying mechanism of network growth:

• preferential attachment in the evolution of scientific collaboration networks
(Newman (2004)),

• preferential attachment in financial networks (Podobnik et al. (2011)).

Here, some of these stylized facts are used to exemplify the three different levels
of statistical analysis and more specifically, the different statistical characterizations
that are performed in the analysis of linguistic networks. Several of these examples
are also shown in Table 2 (Sect. 5).

3.4 Levels in the Statistical Analysis of Networks

We now look at a set of well-known network measures from the point of view of the
statistical levels. Global network indicators typically map certain network properties
onto a single value and correspond therefore to the first level (density, clustering co-
efficient, diameter, etc.). It is clear that a level-1 characterization is relatively rough
because many different networks may give rise to the same measure. For instance,
a random graph, a regular lattice as well as a scale-free network may well result in
the same network density (average degree).

One possibility to differentiate between those cases is to compute a whole set
of global level-1 indicators. An example of such a “multi-dimensional” character-
ization is the so-called small-world regime which is settled on the simultaneous
observation, for the whole network, of a low value of the characteristic path length
and a high clustering coefficient.

Another way to differentiate between networks that share the same level-1 char-
acteristics is to include the second level of analysis. For instance, the differentiation
between a random, a regular and a scale-free graph will be straightforward on the
basis of the entire degree distribution. Other measures that are computed at the level
of nodes (we may refer to X as node space) include degree, local clustering and
various measures of node centrality.

The second aspect that this section aims to address is to point out that the com-
putation of many of these indicators are in fact based on the third level of analysis.
The network diameter (see below), for instance, defined as the longest path in the
set of shortest paths between all node pairs in a network, requires the computation
of all shortest paths between all node pairs which is related to the path space X Z.

3.4.1 Node Degrees

Among the main variables that are used to characterize a network is the degree (ki)
of the network nodes (i). For each experimental sample (each network), two main
statistical indicators are often computed: first, the average (over i) of ki, and second
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a power law exponent (if it exists) which characterizes the shape of the distribution
of P(k). The average degree, or density, is computed as

k = 〈ki〉= 1
n

n

∑
1

ki (2)

with 〈 〉 meaning the sample average and yielding the average degree (k) of the
network.

Second, the degree distribution P(k) of a network is defined as the fraction of
nodes in the network with degree k. When the network has n nodes and nk of them
have degree k, then P(k) = nk

n . In case the distribution P(k) follows a power law

P(k) = k−λ (3)

the shape of the distribution is often characterized by a constant λ (typically in the
range 2 < λ < 3) and the network is called scale-free.

While network density is probably the most typical level-1 indicator, the expo-
nent λ characterizes the distribution of node degrees and is therefore (by Eq. (3))
related to the second level. Notice however that the computation of both k and λ
involve the evaluation of all node degrees, that is P(k). Notice also that many net-
works may give rise to a certain degree distribution and that the set of networks with
the same average degree is even larger. As an additional degree characteristic one
may therefore look at the assortativity of node degrees which assesses the degree
correlation patterns between pairs of nodes. Despite the fact that assortativity char-
acterizes the network by a single-value and should therefore be considered a level-1
indicator, it assesses characteristics of node pairs, that is, on the space X 2.

3.4.2 Clustering Coefficient

The clustering coefficient is another typical example which is defined at the first and
the second statistical level. Namely, in the global variant a single mean clustering
value is used as a characterization of the network and this value contains no in-
formation about the contributions of individual nodes. On the other hand, the global
clustering coefficient is obtained on the basis of a local clustering coefficient defined
at the node level X . Consequently, the computation of the global clustering coeffi-
cient, while being a first-level indicator, involves the computation of the distribution
of the local clustering coefficient.

Notice, however, that the computation of clustering (local and therefore global)
involves the computation of the relative frequency of triangles in the network. That
is, it involves statistics at the level of triplets of nodes X 3. In Table 1 we denote this
as X 3 →X → R in order to make clear that the global clustering (R) is based on
local clustering (X ) which is computed at the as a statistic on node triplets (X 3).
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3.4.3 Average Path Length and Diameter

Two other rather typical global indicators (level-1 statistical measures) are the av-
erage path length and the network diameter. Both of them are based on network
geodesics, that is on the computation of shortest paths between pairs of nodes.
While the average path length informs about the average number of steps required
to go from one node to another, the diameter is the longest of those. It is clear that
both measures are based on the assumption that network trajectories follow shortest
paths. It is also clear that both measures map from the third level (X Z) to the first
(R or respectively N). There is also a node property associated to shortest paths,
namely, eccentricity. See Table 1.

3.4.4 Centrality Measures

Centrality measures are a probably the most typical cases of per-node statistics
(level-2). They are usually considered as a measure of importance of a node in the
network. Various different measures have been proposed, such as degree, between-
ness, closeness and eigenvector centrality. All of these measures assess a nodes po-
sition in the network with respect to a set of trajectories between pairs of nodes
in the graph (see Borgatti (2005) and Borgatti and Everett (2006)). For instance,
betweenness quantifies the number of shortest paths in the networks that traverse
a given node. Eigenvector centrality, to make another example, is more related to
random walks on the network and the respective stationary probability of traversal.
Therefore, all of these measures (apart from degrees) define a mapping from the
path space of a network to node properties (X Z →X , see Table 1).

4 On the Intelligibility of Statistical Indicators in Linguistic
Networks

4.1 Path-Based Measures

Global statistical indicators in network theory typically try to map certain network
characteristics onto a single value in order to point out different network regimes
with respect to the property at question. However, as shown above, the computation
of most of these indicators involves the evaluation of statistics on the path space
X Z. For an overview, see Table 1 below. In this section, we follow the analysis
of centrality measures and network flow due to Borgatti (2005) and suggest that,
for the interpretation of such measures, it is important to be aware of the implicit
assumptions that certain indicators make on network trajectories. Above all in the
setting of linguistic networks.
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Table 1 High-level network characteristics are mapped onto low-level network indicators

Measure

density X → R

exp. degree dist. X ��� R
assortativity X 2 →X → R

avg. clustering X 3 →X → R

eccentricity X Z →X
diameter X Z →X → N

centralities X Z →X
avg. path length X Z →X → R

4.2 Links and Flows, Structure and Function

One of the main contributions of network science in the different areas is that it
helps understanding the relation between the structure and the function of a system.
For instance, it is now well-known that the connectivity patterns in functional brain
networks of Schizophrenia or Alzheimer patients differ in important ways from the
patterns in healthy people (e.g., Supekar et al. (2008), Bassett et al. (2009), He et
al. (2012), and Zhao et al. (2012)). Moreover, and very importantly, the observed
differences like the lack of small-worldness, or clustering enable plausible interpre-
tations about the respective dysfunctions in the brain and we gain, in this way, more
insight about the general functioning of that system. Likewise, in traffic networks,
power grid networks or networks of inter-bank money transfer the network perspec-
tive allows to study the susceptibility to system failure in dependence of certain
changes (such as removal of links or nodes) in the structure of the system. Various
measures of vulnerability, robustness and stability have been proposed the consid-
eration of which may have very important implications for the design of new, more
stable infrastructures.

A better understanding of the relation between the structure of the various lin-
guistic networks and the functioning of the linguistic system must also be at the
heart of a unified and applicable theory of linguistic networks. However, as opposed
to systems like inter-bank money transfer calling for a type-1 network representa-
tion with clear interpretations, in linguistic networks even the interpretation of the
functions or processes related to or mapped onto the single connections is not al-
ways straightforward, and differs moreover from network type to network type. It is
then even more difficult to think in terms of processes taking place in the network
as a whole which are typically related to the functioning of the system.

The previous considerations have shown that the majority of statistical network
indicators involve computations on the path space of the network and the applicabil-
ity of these measures is challenged if the question of what flows through the network
is undecidable. Borgatti (Borgatti 2005) has discussed these issues at the example
of different centrality measures by relating the type of network flow implicit in the
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computation of the different measures to the flow in the real system to which those
measures have been applied.

4.3 Types of Network Flow

In Borgatti (2005), Borgatti develops a typology of network flows based on two di-
mensions. The first one relates to different kinds of dynamical processes that flow
along the links of a network. Borgatti (2005) proposed that, according to the trajec-
tory, dynamical processes comprise the following types of flows:

1. Geodesics: shortest path to a target destination
2. Paths: no repetition of nodes or links
3. Trails: no repetition of links
4. Walks: no restriction

As a second dimension in this typology, Borgatti (2005) considers the mechanism
of node-to-node transmission. The author differentiates:

1. parallel duplication
2. serial duplication, and
3. transfer.

The first one refers to a parallel copying mechanism as present, for instance,
in news broad cast. Serial duplication, or copying, refers to the dyadic replication
mode in which the information is passed in a serial manner from one node to only
one other. As opposed to copying, where the sender does not “loose” the information
passed to other nodes, transfer refers to processes in which some thing is transferred,
that is, given away, from the sender to the receiver. For Borgatti, the purpose of
considering these different kinds of flows is to match different measures of centrality
to the different kinds of flows. It turns out that “the most commonly used centrality
measures are not appropriate for most of the flows we are routinely interested in”
(Borgatti (2005):55).

4.4 Flow in Linguistic Networks

As said, the specification of flow in linguistic networks is not generally straight-
forward. In networks of semantic relatedness, especially those obtained by word
association experiments (Nelson et al. 2004), one could argument on the basis of
cognitive processes by which concepts are linked even if a precise understanding of
these processes is still lacking. In co-occurrence or precedence networks the situa-
tion becomes rather intricate, because it is, in fact, a flow of words that is used to
construct a network representation. It is then true that “Paths on network (c) [refer-
ence to the co–occurence network] can be understood as the potential universe of
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sentences that can be constructed with the given lexicon” (Solé et al. (2010):21),
because a text or any other verbal utterance is in fact a sequence of words and
therefore naturally defines a trajectory on a word network. On the other hand, the
set of trajectories on a co-occurrence network certainly contains a lot of “sentences”
that are grammatically incorrect or do not make any sense.

Let us illustrate issues related to the interpretation of network flow with the dras-
tic but simple example of precedence networks. We may conceive a text as a se-
quence of symbols S = s0s1s2s3 . . .sN , where, depending on the problem of interest,
the symbols si correspond to words, lemmata, part-of-speech (PoS) or even to a
subset of items such as high-frequent, topic-related nouns. Here we consider words
and denote, for convenience, the set of words as si ∈ {A,B,C, . . .}. In a precedence
network (or flow network) an arc from word A to B exists whenever a word pair
(sisi+1) = (AB) is observed in the text S. In particular, we may put a weight on the
arcs corresponding to the frequency with which the associated word pair occurs. In
that case, the weighted adjacency matrix (say P) encodes the frequency of all word
pairs that are observed in S.

Notice that the degree in such a network representation corresponds to the word
frequency and the power law degree distribution is in essence due to the Zipf law.
It is noteworthy, moreover, that such a clear interpretation of the network degree in
terms of word use statistics is possible because the computation of degrees is based
only on node characteristics (X ) and not on the network paths.

What kind of network flow (according to Borgatti (2005) in terms of geodesics,
paths, trails and walks) can be associated to such a network? Clearly, sentences are
not forced to follow shortest paths from a source to a target; a thinking in terms
of sources and targets seems to be misplaced in that context. Also the repetition of
nodes (words) and links (word pairs) is clearly possible and in fact rather likely.
This would mean that sentences, seen as trajectories on word networks, are, in the
setting of Borgatti (2005), best classified as walks.

Accordingly, we could normalize the frequency matrix P appropriately in order
to contain the probabilities for all words to be followed by the other words, such that
P defines a Markov process on {A,B,C, . . .}. Clearly, such a “model” would be ca-
pable of generating all the sentences that have been in the original data S. However,
it would generate much more. While it might occasionally generate sentences that
make sense and are grammatically correct, this is clearly not the general case. The
reason is that the precedence network representation (and co-occurrence more gen-
erally) is constructed without sensitivity to grammatical and semantic constraints
that are at work in the construction of real sentences. All linguistic relations beyond
those to the next word, are just not captured by a precedence network.

In fact, the grammatical constraints in the construction of real sentences which
impose some (more complex) restrictions onto the trajectories are not accounted
for by the typology proposed in Borgatti (2005). They cannot be accounted for be-
cause the information that is needed is just not available in a network representa-
tion and its incorporation requires further analysis of the original sequence S. If
Borgatti (2005) shows that “centrality measures are not appropriate for most of the
flows”, the difficulty of interpreting linguistic network flow altogether challenges the
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appropriateness of centrality and other path-based measures and their interpretation
in the case of linguistic networks.

5 Examples

Table 2 helps to illustrate with some examples the application of the framework
for network construction and analysis. Although examples include different fields
of application, the purpose of such a framework has a special focus on linguistic
networks. The first column indicate the phenomenon at hand and the second column
gives an example of the occurrence of the phenomenon. As earlier presented, both
network induction and network analysis are performed at three different levels, these
correspond to the third and fourth columns, respectively. We recall that while in
network design leveling concerns three abstraction levels, in network analysis the
three different levels are grounded on the statistical indicators used at each level.
The last column in Table 2 provides the main bibliographic reference where the
example was reported.

6 Discussion

We classify networks according their level of abstraction and network measures
according to the statistical level on which they map. Obviously, the classification of
different types of networks according to the level of abstraction they involve is not
always clear-cut. Our aim here is not to present such a rigorous classification, but we
rather aim at a heuristic perspective to show in what sense linguistic networks are
particular. Clearly, in type-1 networks it is usually immediately clear which elements
of the real system are encoded into a network description. For instance, speaking of
“air traffic network” or “network of inter-bank money transfer” keeps very little
space for interpretation: the first one maps air traffic onto a network the second
money that is exchanged between banks. Of course, even in systems which call
for a network representation (type-1) there is a relative amount of freedom in the
design of such a representation. For instance, one could argue that there are many
dimensions of (say) air traffic that could be considered, such as passengers, goods,
or the number of flights, but it is always clear that a link indicates that something is
transfered from one airport to the other, that something flows through the net.

Similarly, for type-2 the meaning of the links is very clear: they indicate the
similarity of entities (nodes) with respect to certain features. However, the second
type is different from the first especially because the links – encoding similarity –
do not generally represent something that really happens between the entities. This
is what similarity networks share with type-3 networks.

Indeed, going to the third abstraction level is not such a big step as the pro-
posed classification might indicate. Words linked in a co-occurrence network, for
instance, can be seen as words that appear in a similar context, and in that sense,
co-occurrence is a kind of similarity. Co-occurrence networks are also nice exam-
ples to illustrate that the border between type-3 and type-1 is not always crystal
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Table 2 Statistical and abstraction level for several examples of linguistic networks and net-
works in other fields of application of network theory. In some cases, the classification is not
straightforward, see Discussion.

Phenomenon Example Sta Abs Ref

Small-World USA power grid 1 1 Watts and Strogatz (1998)

Small-World Film actors 1 1 or 3 Watts and Strogatz (1998)

Small-World Air Traffic 1 1 Li and Cai (2004)

Diameter WorldWideWeb links 1 2 Albert et al. (1999)

Degree,
Clustering

Synctatic, Semantic and
Co-occurrence

1 3 Solé et al. (2010)

Heterogeneity Synctatic, Semantic and
Co-occurrence

2 3 Solé et al. (2010)

Disassortative
mixing

Syntatic nets 2 3 Ferrer i Cancho et al. (2004)

Heterogeneity Syntatic nets 2 3 Ferrer i Cancho et al. (2004)

Heterogeneity VWoolf co-occurrence nets 2 3 Ferrer i Cancho et al. (2004)

Degree Vectorial Semantics 1 2 Salton et al. (1975)

TradeOff
Centralities

Airport nets 1 1 Borgatti (2005)

Betweenness Marriage in Renaissance
Florentine

1 1 Borgatti (2005)

Clustering Financial nets 1 2 Mantegna (1999)

Heterogeneity Cross-border Debts 2 2 Spelta and Araújo (2012)

Density Capital flow nets 1 1 Spelta and Araújo (2012)

Heterogeneity Word free association 2 1 Borge-Holthoefer and
Arenas (2010)

Systemic risk Banking nets 2 1 Battiston et al. (2010)

Systemic risk Board of Directors 2 3 (bi-
partite)

Battiston et al. (2010)

Systemic risk NYSE network 2 2 Battiston et al. (2010)

Communities SFI scientists 3 1 or 3 Fortunato and Barthelemy
(2007)
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clear. On the one hand, we would consider word co-occurrence networks as type-3,
corresponding to a high level of abstraction, due to the fact that a link between two
words is not obviously related to a process in between the two words. As a matter
of fact, there are several possibilities of defining a co-occurrence network depend-
ing on, for instance, the window size taken into account for the co-occurrence test,
and words linked in one co-occurrence design may not be linked in another. On the
other hand, however, there are co-occurrence networks in other domains – such as
co-authorship – which we might see as networks of a lower abstraction level. In co-
authorship networks, two scientists are linked if they are authors of the same article.
Even if the specific forms of interchange between the authors is in most cases not
visible, it is completely reasonable to consider that a link between the authors maps
their conjoint activity and information exchange.

Concerning the statistical levels our main objective is to show that the three dif-
ferent characterizations of a phenomenon at question represent successively finer
levels of description of the statistical properties of a network. The second aim is to
make clear to which level the different measures relate, because this is important for
whether there is a direct interpretation especially in the case of linguistic networks.

We admit that the example of precedence networks, for which we discuss these
issues with some detail, is a very special construction and that the argumentation
presented in Sect. 4 does not directly apply to all linguistic networks. We assume,
however, that the larger class of co-occurrence networks suffers from similar prob-
lems concerning the linguistic interpretability of measures that characterize the path
space X Z, because the relation between paths on networks and real word sequences
(sentences) is unclear. This may be different for networks of semantic similarity.

In many areas, network representations have proven to be a useful explanatory
device which can help to gain insight into the patterns of mutual interdependencies
characteristic of complex systems. The flexibility of networks and their applicability
to very different phenomena is one of the main reasons for their success and we
believe that they are a useful metaphor even if the entities represented by it rely
on indirect and observational evidence about the system at question. Accordingly,
using networks as an abstraction of linguistic patterns, as a way to map and visualize
dependencies between linguistic items may be appropriate and reasonable. In spite
of that, however, the transfer of the theory developed for networks to the linguistic
field requires a more careful consideration of the context in which this theory has
originated and respectively a linguistic assessment of the underlying assumptions.

7 Concluding Remarks

Our contribution relies on highlighting the importance of recognizing network de-
sign and network analysis as interdependent tasks. In so doing we developed a
framework for network construction and analysis with special focus on linguistic
networks. According to such a framework, both network induction and network
analysis are performed at three different levels. While in network design leveling
concerns three abstraction levels, in network analysis the three different levels are
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grounded on the statistical indicators used at each level. Together with the introduc-
tion of the framework where network design and network analysis are identified as
interdependent tasks, we argue that the level of abstraction at which a given net-
work is induced has an important bearing on this network analysis, particularly on
the choice of appropriate topological indicators and on the interpretation of their re-
sults. More precisely, we envision that the higher is the abstraction level of network
induction, the harder is the interpretation of the topological indicators used in net-
work analysis. We illustrate the framework using examples of linguistic networks
as well as some other fields of application of network theory.

These considerations indicate that the field of linguistic networks, by applying
well-known statistical tools inspired by network studies in other domains, may, in
its current state, have only a limited contribution to the development of linguistic
theory. A sophisticated analysis of what topological indicators represent as well as
of what they miss is needed in order to advance into that direction. Most importantly,
we do not yet have a clear understanding of the trajectories or dynamic processes
on the different linguistic networks which makes the use of path-based measures
(among them, centrality, average path length, etc.) problematic. On the other hand,
the structural differences between linguistic networks of different types (e.g., Pustyl-
nikov (2007)) are clearly indicative of their usefulness in a more applied context as
tools for information retrieval and text classification. As soon as we can relate those
structural differences to certain linguistic qualities, or show that they represent novel
aspects that provide new knowledge of the language system, we may approach to
a linguistic network theory. However, it may be that we must go beyond traditional
network representation in order to achieve that.

In that regard, we envision the possibility to take the space of linguistic paths
seriously in the definition of statistical indicators. Centralities, characteristic path
length and other network indicators could be redefined at the level of paths (may be
sentences) observed in the original data. Whether this provides new insight and in
what sense the resulting measures deviate from their network variant are interesting
questions for future research.
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Soramäki, K., Bech, M.L., Arnold, J., Glass, R.J., Beyeler, W.E.: The topology of interbank
payment flows. Physica A: Statistical Mechanics and its Applications 379(1), 317–333
(2007)

Sowa, J.F.: Principles of Semantic Networks. Morgan Kaufmann (1991)
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Semantic Space as a Metapopulation System:
Modelling the Wikipedia Information Flow
Network

A. Paolo Masucci, Alkiviadis Kalampokis,
Vı́ctor M. Eguı́luz, and Emilio Hernández-Garcı́a

1 Introduction

The meaning of a word can be defined as an indefinite set of interpretants, which
are other words that circumscribe the semantic content of the word they represent
(Derrida 1982). In the same way each interpretant has a set of interpretants repre-
senting it and so on. Hence the indefinite chain of meaning assumes a rhizomatic
shape that can be represented and analysed via the modern techniques of network
theory (Dorogovtsev and Mendes 2013).

The semantic or conceptual space (SS hereafter) has already been investigated
by different approaches. A common understanding within these approaches is that
the SS is made up of words or concepts that are connected by certain relationships.
Depending on the nature of these relationships different semantic webs have already
been considered. In the psycholinguistics approach the SS is often extracted via free
word association game and a network is constructed where two words are connected
if they appear to be consecutive in a free word association experiment (Steyvers and
Tenenbaum 2005; Borge-Holthoefer and Arenas 2010). Other semantic webs are
generated through linguistics approaches (Montemurro and Zanette 2010). Among
others, an interesting one is based on the dictionary, where the relationships between
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Centro Direzionale di Napoli - Isola C4, 80143 Napoli, Italy
e-mail: alkis@marine.aegean.gr

Vı́ctor M. Eguı́luz · Emilio Hernández-Garcı́a
Instituto de Fı́sica Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB),
E-07122 Palma de Mallorca, Spain
e-mail: {victor,emilio}@ifisc.uib-csic.es

© Springer-Verlag Berlin Heidelberg 2016 133
A. Mehler et al. (eds.), Towards a Theoretical Framework for Analyzing Complex Linguistic Networks,
Understanding Complex Systems, DOI: 10.1007/978-3-662-47238-5_6

paolo_masucci@yahoo.it
alkis@marine.aegean.gr
{victor,emilio}@ifisc.uib-csic.es


134 A.P. Masucci et al.

words are set to be of synonymy, antonymy, belonging to the same category or class,
etc. (Sigman and Cecchi 2002; Samsonovic and Ascoli 2010). In all the mentioned
cases a scale-free topology and small-world properties for the SS are found, sug-
gesting an intrinsic self-organising nature of the SS (Sigman and Cecchi 2002).
However it has been argued that networks derived by dictionaries and representing
the so called dictionary semantics, characterised by scale-free distribution for the
connectivity with exponents smaller than -2, reflect the properties of language use
more than the properties of the SS (de Jesus Holanda et al. 2004; Violi 2001).

In contrast to the dictionary representation of the SS, it has been suggested that
the meaning of a sign, where a sign can be a word, a concept, etc. can be recovered
within an encyclopedic model, where every sign is specified by a set of other signs
that interpret it (Eco 1986). “This notion of interpretants is fertile because it shows
how semiotic processes, via continuous movements that refer a sign to other signs
or sign chains, circumscribe the meanings in an asymptotic way. They never touch
them, and make them accessible via other cultural units [...]. In this way an open
system of connections between different signs is created that takes the shape of a
rhizome (Deleuze and Guattari 1977)” (Eco 1986).

Hence, in its encyclopedic semantics acception, the SS can be interpreted as a
metapopulation system where each page of an encyclopedia is a population of in-
terpretants/words characterising some meanings. Then the structure of SS assumes
a dynamical connotation, typical of population dynamics, where the different con-
cepts are born and grow in time, exchanging and inheriting attributes from other con-
cepts (it is interesting to notice how Deleuze and Guattari foresaw the very essence
of the semantic machine not as a machine producing meaning, but as a machine
producing its own structure (Deleuze and Guattari 1988)).

In this work, which summarizes results from Masucci et al. (2011b) and Masucci
et al. (2011a), we attempt to extract the SS in its encyclopedic semantics acception.
Following the semiotics rationale described above, we consider each entry of an en-
cyclopedia as a population of interpretants and we measure the correlations between
each pair of entries of that encyclopedia in terms of directional semantic flows. In
particular we analyse a whole dump of Wikipedia. Wikipedia is not only the largest
encyclopedia existing nowadays, but it is an open encyclopedia with its entries al-
ways growing in size and number, thus it represents well the idea of encyclopedic
semantics expressed above. The resulting network is a directed network of semantic
flows between the different concepts that are present in an encyclopedia and thus
portrays a snapshot of the dynamics of meaning in that representation of the SS.

The concept of information flow, as it is used in this context, is introduced in Ma-
succi et al. (2011b) to indicate the correlations between populations whose elements
are defined by abstract attributes. Those populations can be social, biological or, as
in this case, made of words. An encyclopedia could be considered as the record-
ing surface of a collective phenomenon that acts to store and transmit knowledge.
The term “information flow” is used in this context in order to stress that in those
systems correlations are often caused by migration or inheritance of a part of a pop-
ulation to another one, in the sense that the content of each page finds its meaning in
other pages that explain the underlying meaning of each concept contained in that
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page. Hence these correlations refer to a dynamical flow. Such a flow is measured
by bits of information, via the Shannon entropy. In this sense the term “information
flow” has to be considered technical and not a mere metaphor. It is important then
not to confuse such terminology with the concept of information flow as the one
introduced by Barwise (1997), which carries a complete different meaning. Thus
the very term of information flow, which can be ethnic, genetic or, as in this case,
semantic, gives an idea of such a dynamical process, where a movement of ele-
ments from a population to another one, corresponds to a flow of information in the
attribute space where those elements are defined.

Fig. 1 Cluster size dis-
tribution of the semantic
space. Cluster size distri-
bution P(S) of the semantic
network at the percolation
threshold. In the inset we
show the cumulative distri-
bution P(S > S∗).
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Fig. 2 Connectivity distribution of the semantic space. Out-degree distribution P(kout)
(left panel) and in-degree distribution P(kin) (right panel) of the semantic network at the
percolation threshold. In the insets the corresponding cumulative degree distributions P(k >
k∗) are displayed.
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2 The Dataset

We consider the articles of a complete snapshot of English Wikipedia dated June
20081, consisting of N ≈ 2×106 entries. To process our dataset first of all we get rid
of redirection pages. Then, in order to analyse the semantic content of the encyclo-
pedia, we process the text, cleaning it of punctuation and of the so called function
words like articles, pronouns, common adverbs, etc. (Hopper and Traugott 2003;
Ferrer i Cancho and Solé 2001). In fact those words are very frequent in each page
and often don’t contribute to its semantic characterisation. After that we lemmatize
the text, transforming the different words in their singular form or in their infinitive
form if they are verbs2. The resulting set of lemmas defines the interpretants or at-
tribute space where the different pages are defined and each Wikipedia page comes
out to be defined by its lemmas frequency distribution and by its size.

In order to compute the directional semantic flow between the pages we use the
method introduced in Masucci et al. (2011b). This method is very general and al-
lows the extraction of a directed information flow network from a set of popula-
tions whose elements are defined by an n-dimensional symbolic attribute vector. It
is based on the Jensen-Shannon divergence (Lin 1991) and within an information
theory approach it is able to measure the amount of information flow within a set
of populations of different sizes, defined in a symbolic attribute space. Moreover,
using concepts derived from geographical segregation, the methodology in Masucci
et al. (2011b) is able to infer the directionality of the information flow. More details
are given in the Appendix.

The resulting network representing the SS, as we show below, displays scale
invariant structures and small world properties, revealing a hierarchical SS, where
the semantic clusters are strongly connected and communication between different
areas of knowledge is fast.

3 Topology of the Semantic Space

To build the network, the directional semantic flow is measured between all the entry
pairs. Then the entry pairs are ordered by the increasing values of their semantic
distance, and a network of entries is defined considering two pages as linked when
their semantic distance is smaller than a given threshold.

By increasing the value of the threshold we obtain a growing network where the
first links to form are the strongest in a semantic sense. As the threshold is increased

1 Wikipedia: Database download website. Available at
http://en.wikipedia.org/wiki/Wikipedia:Database_download, ac-
cessed 2014 Sept.

2 For the lemmatization process, we use a public dictionary containing lemmas,
available from the Unitex website at http://infolingu.univ-mlv.fr/
DonneesLinguistiques/Dictionnaires/telechargement.html (ac-
cessed 2014 June), the process consisting of retrieving the word in the dictionary and
substituting it with the corresponding lemma.

http://en.wikipedia.org/wiki/Wikipedia:Database_download
http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html
http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html
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Fig. 3 Connectivity dis-
tribution of the minimum
spanning tree of the se-
mantic space. Degree dis-
tribution P(k) for the undi-
rected minimum spanning
tree for the whole network
representing the semantic
space. In the insets the cu-
mulative degree distribution
P(k > k∗) is displayed.
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further, very well connected clusters form, each cluster representing different se-
mantic areas. A significative threshold to analyse the network representing the SS
is the percolation threshold (PT hereafter), when a giant cluster forms and a phase
transition happens (Dorogovtsev and Mendes 2013; Stauffer and Aharony 1991).

The SS network reaches its PT at approximately 362000 pages, when the two
main clusters merge to form a giant cluster of 57800 pages. At the PT the network
has L ≈ 3× 108 links with an average degree 〈k〉 ≈ 1743. The very large average
degree means that the clusters are very densely connected. The network is composed
by 44500 disconnected clusters showing scale invariant cluster size distribution,
P(S)∼ S−2.1, with a fat tail (Fig. 1).

The scale-free cluster size distribution is the first important property we find for
the SS. It has been shown that in a random growing network at the PT the cluster size
distribution decays faster than a power law, P(S) ∼ 1/(S3 ln2 S) (Dorogovtsev and
Mendes 2013; Kim et al. 2002). Then it can be argued that the scale-free behaviour
we find for the cluster size distribution is not an effect of a random growing network,
but a peculiar property of the SS.

As a matter of fact at this threshold almost each cluster represents a well defined
semantic area. Hence the scale-free distribution implies a hierarchy between the
semantic areas and gives us a picture of the structure of the SS.

The largest clusters, representing the greater body of the SS, are composed of
large taxonomies, such as geographical places, biological species, etc... The largest
cluster is made of 38500 pages and consists of geographical places of USA, such
as villages, cities, rivers, etc... The second largest cluster is made of 19300 pages
and consists of taxonomies of living species as animal, plants, insects, bacteria,
etc...The third largest cluster is mainly made of Romanian geographical entries,
the fourth by French cities and villages and so on. In each of these clusters the
pages are very simple and have a structure very similar to each other. A typical
example of these kinds of pages is the Canarium Zeylanicum page, which is in the
second largest cluster: “Canarium Zeylanicum is a species of flowering plant in the
frankincense family, Burseraceae, that is endemic to Sri Lanka.”. The content word
lemmas of this page are: “Canarium Zeylanicum specie flower plant frankincense
family Burseraceae endemic Sri Lanka”. This page easily connects with all pages
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Fig. 4 Minimum spanning tree of the semantic space. A portion of the undirected mini-
mum spanning tree of the network representing the semantic space in the neighbourhood of
the entry nature until its third neighbour. The nodes represent different Wikipedia entries,
while the edges represent a semantic flow between the different entries. The colour partition
is based on the nodes modularity classes. Figure realised with the open source software Gephi
(Bastian et al. 2009).

containing “specie flower plant endemic Sri Lanka”, hence forming a taxonomy
with other pages as for example the Mastixia Nimali page: “Mastixia Nimali is a
species of plant in the Cornaceae family. It is endemic to Sri Lanka.”. It is interesting
to notice how the passage from a taxonomic page to another resides in the mutation
of a few rare words.

Then clusters are found at all scales of magnitude, consisting of any semantic area
one can possibly think of and generally the greater is the complexity of the page, the
smaller is the cluster which it belongs to. There are clusters of football players, small
clusters of different kind of bicycles, ethnicity clusters, language family clusters,
singers, technology, religions, etc...
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The out-degree and in-degree distribution of the network at the PT are scale-free
with a very slow decay, characterised by exponents: γout ≈ −1.28 and γin ≈ −1.27
(see Fig. 2). The distributions are scale invariant until very large scales where a
sharp cut-off appears, revealing that the SS is characterised by structures at all the
scales. The giant component of the network has a directed diameter d = 20 that is
of the order of the logarithm of the cluster size. Moreover its average clustering
coefficient is 〈C〉 = 0.87, that is larger than the clustering coefficient of a random
network of the same size, 〈C〉RAND = 0.17, revealing local small-world properties
of the SS (Watts and Strogatz 1998).

If the description at the cluster level represents the main body of the SS, the
minimum spanning tree (hereafter MST) represents its backbone. The MST of a
weighted network is an acyclic graph that has all the vertices of the network and
that minimises the sum of the distances between the pages (Macdonald et al. 2005).
It represents the skeleton of the network and in a sense it represents how semantic
information best flows throughout the SS.

We compute the undirected MST of the complete network of Wikipedia via the
Prim’s algorithm (Prim 1957). The degree distribution of the MST is scale free with
exponent -2.4 and a fat tail (see Fig. 3). Again the scale-free behaviour of the degree
distribution tells us about the hierarchical structure of the MST of the SS. If we
glimpse at Fig. 4, where a small portion of the MST centred on the Wikipedia entry
nature is shown, we can have a rough idea of how this hierarchy organises itself. A
very general concept, such as “nature”, hasn’t got a lot of connections, but it is an
important bridge for the semantic flow between less complex concepts. Those less
complex concepts, such as “earth”, “ecology”, etc. are in general more connected
and eventually form taxonomies, which are hubs in the MST.

From what has been said, we can draw a general picture of the SS as a space
whose body is mainly composed of simple concepts that are densely clustered in
taxonomies or classifications. Then, at higher levels, more complex concepts form,
creating smaller semantic clusters. This hierarchy goes further, in a scale-free fash-
ion, until the more general and elaborated concepts emerge and those create an
architecture of semantic flow channels that spans through the whole SS.

The values of the exponents of the degree distributions are too large to be ex-
plained by standard growing network models based on preferential attachment (Al-
bert and Barabási 2002). For the character of the system and its statistical properties,
the emerging topology of the SS is more likely to be represented by a new class of
models of stochastic content-based networks of the type presented in Balcan et al.
(2007), Mungan et al. (2005), and Bergmann et al. (2003), with the difference that
in the case of Wikipedia the correlations generated by the Zipfean distribution of
content words (Ferrer i Cancho and Solé 2001) play an important role on the topol-
ogy of the system as it is explained below. This observation relates the topology of
the SS to a wider range of biological phenomenology (Bergmann et al. 2003).
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Fig. 5 The stochastic model representing the semantic space. Numerical results of the
stochastic model representing the semantic space. This is a simulation of a toy-model for an
encyclopedia of 5×104 pages with size l log-normally distributed, with first moment l = 20
and second moment lσ = 0.5. The parameters of the model are α = 0.001, p= 0.7 and M = 5.
In the top panels the out-degree distribution P(kout) (left panel) and the in-degree distribution
P(kin) (right panel) of the semantic network at the percolation threshold are shown. The
corresponding cumulative distributions P(k > k∗) are displayed in the insets. In the bottom
left panel we show the cluster size distribution P(S) at the percolation threshold, the relative
cumulative distribution P(S > S∗) is displayed in the inset. In the right bottom panel we show
the frequency-rank distribution f (r) for the words in the model.
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The Heaps’-like law
Written human language displays a fascinating puzzle of empirical regu-

larities. Among them, the Heaps’ law states that the vocabulary V of a written
text is a function of its size L, V (L) ∝ Lβ , with 0 < β < 1. The Heaps’ law
is strictly related to the Zipf’s law for the word frequency distribution. The
Heaps’ law has been analytically and algorithmically derived from the Zipf’s
law (Leijenhorst and Van der Weide 2005; Serrano et al. 2009). In Zanette and
Montemurro (2005) and Gerlach and Altmann (2013) there is a derivation of
the Zipf’s law from the Heaps’ law, even if it is not straightforward.

In network theory a written text can be represented by a network whose
vertices are the words and two vertices are linked if they are adjacent in the
text (Dorogovtsev and Mendes 2001; Masucci and Rodgers 2006). A conve-
nient way to model a growing text in network theory is to assume that at each
time step t a new word and a fraction of old words 2α × t is introduced in
text, possibly preserving the Eulerianity of the system (Masucci and Rodgers
2007). Hence in this representation the discrete time t represents the size V
of the vocabulary. At each time step, 2α × t + 1 words are introduced in the
text and the size L of the text is a quadratic function of the vocabulary size,
L(t) = αt2 + t, so that at large sizes L ∼V 2.

4 Modelling the Semantic Space

The complexity of the system we are considering is large, since it relates the phe-
nomenology of page writing on different topics to the topology of the macroscopic
system of the SS.

Here we present a descriptive model that is able to catch the properties of the SS
at three different levels of complexity. In particular it is able to reproduce the scale-
free cluster size distribution, the exponents for the out and in-degree distribution
and the Zipf’s law for the word frequency distribution (Zipf 1949). It is a growing
stochastic model of content-based network generated by a copy and mutation algo-
rithm. This is intended on one hand to create a multiplicative process a la Simon
(Simon 1955), to reproduce the scale-free cluster distribution and on the other hand
to create, via mutation, very well connected taxonomic clusters to reproduce the
very low exponent of the degree distribution. In the overall process a Heaps’-like
law (Heaps 1978) for the text growth is imposed to produce correlations between
pages and to allow a phase transition and this finally generates the Zipf’s law for
the word frequency distribution (see the coloured box for more details about the
Heaps’-like law).
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The Model

We start the model with a few pages of random words. Then at each time-step:
1- we generate a new page as explained at point a.
2- We create M new pages copying M old pages picked up randomly from the

old pages and mutate them as explained at point b.
a- When we generate a new page we first extract its size l from a log-normal

distribution, with first moment l and second moment lσ . Then we fill the page with
some new words from a potentially infinite vocabulary and some old words picked
at random from the already written pages. To establish the balance between new
and old words we assume a variation of the Heaps’ law, frequently used in network
theory (Dorogovtsev and Mendes 2013), that states that the growth of the length L
of a written text is a quadratic function of the size of the vocabulary t, L(t) =αt2+t.
Then we assign to the page a random number m, so that 1 < m < l, representing the
size of the invariant part of the page.

b-When we mutate a page we keep unchanged the first m− 1 words of the page,
that is the page invariant part. For the last l−m+1 words of the page, each word is
changed with probability p and it is kept unchanged with probability 1− p, where p
is a random number between 0 and 1. When we change a word we substitute it with
an old or a new word considering the balance between vocabulary and text size as
in point a.

The important parameters of the model are M and α . M regulates the exponent
of the cluster size distribution that goes, increasing the value of M, from −3 to
−2. Moreover, increasing M, more connected clusters form and this increases the
exponent of the degree distribution from −1.5 to −1. The coefficient α regulates
the amount of correlations between the different semantic clusters and this gives the
possibility to tune the point of percolation of the system.

The generation of new pages in the model is intended to mimic the appearance
of new pages in the encyclopedia, which are formed partially by a new vocabulary
and partially by words which are inherited by already existing pages. Besides, the
generation of pages via the mutation mechanism allows creating the different grow-
ing taxonomies and in this way mimicking the phenomenology observed in the real
encyclopedia, where different pages belonging to the same taxonomy differ only by
a few rare words.

In Fig. 5, we show that with an opportune choice of the parameters3 this model
can generate a synthetic semantic space with the desired properties.

3 For the page length distribution we used a log-normal distribution, which is the actual
Wikipedia article length distribution, but we rescaled the parameters to the size of our
toy model. The parameters M, α and p have been tuned manually to obtain the required
exponents. In particular the M parameter is strictly related to the cluster size distribution
exponent, while α and p are related to the percolation threshold of the system. The exact
parameter values are given in the caption of Fig. 5.
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5 Discussion

Nowadays understanding the topology of the SS and the dynamics of meaning is a
fundamental issue in many fields of knowledge and technology (Menczer 2002). We
can think about its value for understanding the dynamics of language and its evolu-
tion (Skyrms 2010; Lieberman et al. 2007; Fitch 2007; Petersen et al. 2012; Aman-
cio, Oliveira Jr, and Fontoura Costa 2012), or its relevance in psycholinguistics and
psychology (Ratner et al. 1999). Also, apart for being one of the main research top-
ics in semiotics, linguistics and philosophy (Eco 1986), it has recently been a hot
topic in artificial intelligence and robotics (Baronchelli et al. 2010). Moreover, there
is an active effort in the information systems community to develop semantic-based
web research tools (Bizer et al. 2009; Amancio, Oliveira Jr, and Costa 2012; Navigli
2009).

The results of this research shed light upon the topology of the SS, represented
as an encyclopedic semantics. The empirical research is unique in two fundamental
aspects: the first one is the content analysis of a whole snapshot of Wikipedia, the
second one is that this analysis is directional.

The empirical analysis reveals interesting properties of the SS. On one hand,
we can observe that the SS cluster size distribution is scale-free. This observation
relates the SS to a wide range of scale-free phenomena (Albert and Barabási 2002).
On the other hand, we find a peculiar behaviour of the degree distribution. The
latter observation relates the SS to a recently observed class of molecular biology
phenomena, such as protein networks and more in general of genomic interaction
networks (Balcan et al. 2007; Bergmann et al. 2003) and draws a bridge between
phenomena whose underlying mechanism is a language, words for the SS and the
DNA alphabet for the genomic networks.

Moreover, the fact that the out and in-degree distribution of the SS are very sim-
ilar has not to be considered in any way a trivial result, which would in some sense
make the directional analysis a useless tool. Instead, it helps to contrast the topol-
ogy of the SS with other knowledge system networks such as citation networks, or
axiomatic systems such as the Principia Mathematica by B. Russell, or the Ethics
by Spinoza. These present a different out and in-degree distributions (namely, expo-
nential in-degree and scale-free out-degree distributions) which seem to be charac-
teristic of formal systems of knowledge (Masucci 2011). On the other hand, the fact
that the SS displays similar scale-free out and in-degree distributions does not mean
that the actual out and in- degrees for individual entries are the same. In fact, we
find consistent deviations from a linear relationship when correlating kin and kout at
each node. These evidences help to depict the highly rhizomic nature of the SS.

Models of content-based network are powerful tools and recently they have at-
tracted the attention of the scientific community especially for their relation to the
so called hidden variable graphs (Ramasco and Mungan 2008; Sinatra et al. 2010).
The presented stochastic model is descriptive and wants to individuate a few sim-
ple mechanisms that are able to reproduce some interesting statistical behaviours
of the SS. In particular, it is able to capture the statistical properties of Wikipedia
at three levels of complexity. At microscopic level it can reproduce the Zip’s law
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for the word frequency distribution, at mesoscopic level it generates the scale-free
distribution for the semantic cluster size and finally at macroscopic level it can re-
produce the exponents of the out and in-degree distribution. Interestingly enough,
we find again that the description of the SS at the model level resembles mecha-
nisms of DNA evolution, where the process involved is of copy and mutation. Such
a genetic-semantic parallel does not lack of depth. The fact that the SS structural
properties can be reproduced by a model based on copy and mutation mechanisms
highlights the organic nature of the SS, where structures form through an articulation
of relationships, which are able to generate a hierarchical and efficient knowledge
system.

It is straightforward to relate the presented analysis with previous works on
Wikipedia based on the analysis of the network of hyperlinks connecting the
Wikipedia different entries (Muchnik et al. 2007). In particular one of the questions
arising from those works is if the Wikipedia hyperlink network has any relation
to the underlying semantic network. Some attempts to answer this question are ex-
posed in Menczer (2002), where a positive correlation is found between hyperlinked
pages and their semantic content. In the light of this research we can say that the
topology of the SS is drastically different from the ones obtained by the hyperlinks
analysis. In the latter case the exponents of the degree distribution are smaller than
-2 and linear preferential attachment is recovered (Muchnik et al. 2007; Capocci
et al. 2006), revealing a dynamics based on popularity. However this should not be
a surprise since the network of hyperlinks is superimposed to the SS of the ency-
clopedia, so that it does not reflect the topology of the SS, but the structures locally
imposed by the writers of the different entries.

We also notice that the topological properties of the SS are different from the
ones obtained for dictionary semantics (Sigman and Cecchi 2002; de Jesus Holanda
et al. 2004). The topological properties of dictionary networks, characterised by
scale-free distribution with exponents smaller than -2, seem to be based again on
a popularity mechanism and to reflect properties of language use more than the
properties of the SS (Violi 2001). In contrast we find that the architecture of SS is
scale invariant, hierarchical, it has small-world properties, but it is not associated to
a rich get richer mechanism for the degree distribution.

In fact the SS structure is keen to be interpreted as an emerging property of a
content-based network, where the Zipf’s distribution of the content words is a key
feature for the resulting topology.

Other efficient approaches to text semantics are based on vector space models
(Salton 1989), which are capable to retrieve efficiently the similarity between words,
phrases and documents, and in this way to generate a symmetrical distance matrix
from a list a text entries. Even if these approaches are very interesting, they don’t
allow to our knowledge to generate a dynamical system of attribute flows, which
allows the creation of a directional network. A direct comparison of vector space
model with the Jensen-Shannon Divergence (JSD) is beyond the scope of this re-
search. Anyway a detailed description of the JSD is given in the Appendix.
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Appendix: Information Flow between Populations Defined in a
Symbolic Attribute Space

In literature there are different ways to compare probability distribution functions
(Rényi 1961). A convenient one for the kind of systems we want to study is the
Jensen-Shannon divergence (JSD hereafter) (Lin 1991). As we better explain below,
we choose it because it is framed in information theory, it takes into account the
different sizes of the populations and the probability distributions don’t have to be
absolutely continuous in each other domain (Grosse et al. 2002).

Given two probability distributions P = {p1, p2, ...} and Q = {q1,q2, ...} of a
discrete random variable, the JSD between P and Q is defined as:

JSD(P‖Q)≡ H(π1P+π2Q)−π1H(P)−π2H(Q) (1)

where πi are weights, that is π1 + π2 = 1 and H(P) = −∑i pi ln pi is the Shannon
entropy measured in nats (Shannon 2001).

JSD was introduced in Lin (1991) and its properties are well reviewed in Grosse
et al. (2002). For our purposes the most important feature of the JSD is that the two
distributions we want to compare have not to be absolutely continuous in each other
domain, as it happens for instance in the case of the Kullback-Leibler divergence
(Lin 1991). In fact we want to compare distributions of attributes that are not nec-
essarily shared by all the populations of the system. Moreover the JSD embeds a
weighting system for the different distributions and it was demonstrated in Grosse
et al. (2002) that the optimal choice for the weights is the statistical weight of the
samples. This feature is necessary in order to compare populations that are differ-
ent in size. Hence if the number of the elements of the population defined by the
distribution P is n1 and the number of elements of the population defined by the
distribution Q is n2, we define πi ≡ ni/(n1 + n2).

It has been demonstrated that the square root of JSD defines a metric in the case
of populations of the same size, π1 = π2 = 1/2, while for different population sizes
the triangular inequality has not been demonstrated yet (Briët and Harremoës 2009).
Moreover we have that 0 ≤ JSD(P‖Q)≤ −π1 lnπ1 −π2 lnπ2 ≤ ln2. JSD(P‖Q) =
0⇔P=Q and JSD(P‖Q)=−π1 lnπ1−π2 lnπ2 if and only if P and Q have disjoint
domains.

JSD measures the information flow between two distributions in terms of their
shared elements and non-shared elements. To understand the meaning of the JSD
we can refer to the example of the two probability distributions P and Q defined in
a certain attribute space showed in Fig. 6. P is defined on an attribute domain DP,
while Q is defined on a certain attribute domain DQ. Let us call X = DP

⋃
DQ and

suppose that J = DP
⋂

DQ �= /0 is the joint attribute domain of the two distributions,
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while D = X − J is the disjoint attribute domain of the distributions. Then Eq. (1)
can be split in the two different domains: JSD(P‖Q) = JSD(P‖Q)J + JSD(P‖Q)D,
where JSD(P‖Q)D = H(π1P+π2Q)D −π1H(P)D −π2H(Q)D = −π1 lnπ1 ∑D pi −
π2 lnπ2 ∑D qi. Then the contribution given to the JSD by the disjoint domains is a
statistical measure quantifying the non-shared attribute distribution sizes.

For the part of the joint domain we have that JSD(P‖Q)J = −∑J(π1 pi +π2qi)
ln(π1 pi + π2qi) + π1 ∑J pi ln pi + π2 ∑J qi lnqi. JSD(P‖Q)J is the entropy of the
weighted sum of the two distributions minus the weighted sum of the entropy of
the distributions, measured in the shared part of the attributes domain. From an in-
formational point of view we can say that if the sum of the distributions is broader
than the single distributions, it results in a large value of the divergence. Otherwise if
the weighted sum of the distribution has a larger informative value, hence a smaller
entropy than the one of the single distributions, then we obtain a small divergence
from the shared part of the attribute domain.

Fig. 6 An example of two
probability distributions
P(X) and Q(X) defined
in an attribute domain X
where a fraction J of the
domain is shared by the two
distributions
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The only issue we get through applying the JSD to a system composed by many
populations is that its maximum value depends on the population size. That means
that we can find cases where the JSD of two uncorrelated distributions is smaller
than the one of two correlated ones. To avoid this problem we introduce a new
index D defined as the JSD normalised to its maximum value:

D(P‖Q)≡ JSD(P‖Q)

−π1 lnπ1 −π2 lnπ2
. (2)

D(P‖Q) has the same properties of JSD(P‖Q)with the difference that 0≤D(P‖Q)≤
1, where D(P‖Q) = 0 ⇔ P = Q and D(P‖Q) = 1 ⇔ J = /0.

Directionality

D(P‖Q) as JSD(P‖Q) is a symmetric quantity in its arguments, that is D(P‖Q) =
D(Q‖P). Hence it doesn’t give information about the directionality of the interac-
tion. In order to infer directionality for the information flow we borrow a rationale
from sociology, in particular from the idea of geographical segregation.
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Geographical segregation is a concept that is widely used in many areas of sci-
ence, such as sociology (Duncan and Duncan 1955; Schelling 1969), economy
(Hutchens 2004), geography (Crooks 2010), physics and biology (Balloux and
Lugon-Moulin 2002). It refers to the inequality between population attribute distri-
butions inside of a metapopulation. In particular a population inside of a metapop-
ulation is said to be segregated in respect to some attributes if those attributes are
found with a consistent probability in that population and are not found with a sig-
nificative probability in the other populations of the system.
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Fig. 7 Following the notation of the example of Fig. 6, here we show the renormalized
distribution of the shared elements PJ and QJ , in the joint domain J. In this particular example
it is evident that PJ is a peaked distribution, while QJ is uniformly distributed. Hence the
distribution PJ is more segregated than QJ .

There are many indexes in literature to measure geographical segregation (Mora
and Ruiz-Castillo 2003). A popular one is the Theil’s segregation index (Theil and
Finizza 1971; Fuchs 1975) and it is based on information theory. The Theil index is
the difference between the total entropy of the system in respect to some attributes
and the weighted sum of the entropy of the different populations and it is defined as
T ≡ HT −∑i wiHi, where HT is the total Shannon entropy of the system, Hi is the
entropy of population i and wi is its statistical weight. If T is close to 0 it means
that those attributes are not segregated in the system, but they are distributed more
or less uniformly through it. If T is consistently larger than 0, it means that those
attributes are segregated in one or more populations of the system.

The Shannon entropy is a well defined measure to estimate the amount of in-
equalities represented by a probability distribution. It is large when the attribute
frequency distribution is uniform and it increases with population size. In our case a
large entropy for an attribute ensemble represents the fact that different attributes are
equally mixed and it is a hint of small segregation in the attribute space. Otherwise a
small value of Shannon entropy is associated to a large inequality between attribute
frequencies and to a small number of different attributes and it is an evidence of
segregation for the population in the attribute space, where exchanges with other
populations are a few. Then, in general terms, if an information flow is detected be-
tween two populations we can argue that the origin of the information is in the most
segregated distribution, where the Shannon entropy is smaller (see Fig. 7).
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Hence, given two distributions P and Q between which an information flow is
detected, to infer the directionality of the flow we first consider the inequality of the
two distributions in the joint domain. To do that we consider the distributions PJ

and QJ , that are the distributions of the elements of P and Q that belong to the joint
domain J, with their frequencies renormalized to unity in J (see Fig. 7).

The number of attributes shared by two distributions is the same for both distri-
butions, hence the entropy H measured over the joint domain J depends only on the
relative frequencies of the attributes. In particular more peaked distributions have
smaller entropy than broader distributions. Then we have to take into account the
fact that the population sizes are different. In particular it is important to understand
which is the ratio of the shared elements within the whole population. To do that we
define the index μP ≡ ∑J pi

∑X pi
, μQ ≡ ∑J qi

∑X qi
and we have 0< μP,Q ≤ 1. If for a certain dis-

tribution μ is close to one, it means that the shared attributes are the dominant part
of that sample. Then an estimator for the information flow directionality between P
and Q can be defined as

I(P → Q)≡−sign

[
H(PJ)

μP
− H(QJ)

μQ

]

. (3)

If I(P → Q) = +1 the information carried by the attributes in the joint domain
of P is larger than the information carried by the attributes in the joint domain of
Q. Then we can infer an information flow from the attribute distribution P to Q.
Otherwise, if I(P → Q) = −1, we can infer an information flow from the attribute
distribution Q to P.
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Are Word-Adjacency Networks Networks?

Katharina Anna Zweig

Abstract. This article discusses the question of whether word-adjacency relation-
ships are well-represented by a complex network. The main hypothesis of this work
is that network representations are best suited to analyze indirect effects. For an in-
direct effect to occur in a network, a network process needs to exist that uses the
network to exert an indirect effect, e.g., the spreading of a virus in a social network
after a small group of persons were infected. Given any sequence of words, it can be
represented by a so-called word-adjacency network by representing each word by a
node and by connecting two nodes if the corresponding words are directly adjacent
or at least close to each other in this sequence. It can be easily seen that the result of
a speech production process gives rise to a word-adjacency network but it is unlikely
that speech production uses an underlying word-adjacency network—at least not in
any easily describable way. Thus, the results of clustering algorithms, centrality in-
dex values, and the results of other distance-based measures that quantify indirect
effects cannot be interpreted with respect to speech production.

1 Introduction

Is it a reasonable question to ask whether something called a network should actu-
ally be represented by a complex network? In general, a complex network represents
a relationship between entities in the form of a relation between nodes. Mathemat-
ically, any kind of relationship can be represented by a complex network; certainly,
words that are directly adjacent to each other in some given text are in a clearly
defined relationship that can easily be represented as a network (cf. Mehler 2008);
however, representing a data set as a complex network is normally a preparation
step to apply network analytic methods to it. And the main statement is that for
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some complex networks, the resulting values cannot be meaningfully interpreted.
The question discussed in this article is whether the representation of the word-
adjacency relationship belongs to this latter kind of complex networks. It can, of
course, be argued that word-adjacency networks have already been used success-
fully in network analytic projects, e.g., by Milo et al. (2004). This is true as long
as word-adjacency networks have been used to find so-called universal structures,
a question of interest mainly for statistical physicists that try to identify universal
laws, which are thought to be valid in all kinds of complex systems. However, if
the complex network is used to understand the specific context of speech planning,
the word-adjacency network is likely to be misleading. To understand the difference
between the context-free search for universal structures and a contextual inter-
pretation of complex networks, it is instructive to summarize the recent history of
social and complex network analysis.

1.1 Perspectives of Network Analysis

The field of network analysis is an evolving field of study, situated at the border of
many different disciplines, foremost sociology and physics. Sociology started to de-
velop methods to analyze social networks in the 1950s; in the late 1990s, physicists
started to apply methods from statistical physics to large networks from any kind of
complex systems. Both fields have very different aims and perspectives when they
analyze networks; these are shortly sketched in the following.

1.1.1 The Shortest History of Social Network Analysis

Blau defined sociology as the field concerned with understanding how the differen-
tiation between people (e.g., by gender, race, status) leads to social structures (Blau
1974). In the beginning, sociology was then concerned with direct statistics of peo-
ple in a population, e.g., their age, gender, and income, and the analysis of possible
correlations between these parameters. In the 1950s, Moreno and others started to
look at interactions between people as another parameter to explain social posi-
tions (Freeman 2004). This approach evolved into the field of social network anal-
ysis and was already well-developed in the middle of the 1990s when Wasserman
and Faust published their classic textbook on “Social Network Analysis—Methods
and Applications”. Borgatti et al. (2009) state that social network analysis is mainly
concerned with two types of research questions: the first regards the connection
between network structure and the social environment they create, and the second
focuses on the question of how individuals perceive their social network. A typical
social network analysis question might, for example, ask how the communication
network of a company and the position of an individual in this network influence his
or her income. Another question would be how different communication structures
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influence the company’s overall performance. Social network analysis is thus inter-
ested in the context of a social network and tries to correlate external parameters
with the knowledge of the network’s structure.

1.1.2 The Shortest History of Complex Network Analysis

In the late 1990s, another discipline started to work with network analytic tools,
the field of (statistical) physics. Watts and Strogatz published their paper on small-
worlds in 1998, closely followed by a paper by Barabási and Albert on the “Emer-
gence of scaling in random network” in 1999. In contrast to social network analysis,
the newly christened complex network analysis based on statistical physics is not
limited to social relations: it tries to understand structures common to all complex
systems, be it between proteins, film actors, websites, or animals. The interest of
physicists in networks is a consequence of their expertise in the analysis of macro-
scopic behavior based on local interactions of atoms and molecules in matter like
magnets and gases. The pressure and temperature of a gas depends on the distri-
bution of the individual properties of its atoms, and the magnetic field of a piece
of matter depends on both, the local interaction between the individual’s spin and
the external magnetic field. Spin interactions are analyzed based on ideal models
in which either all atoms are placed on regular grids (called lattices, resulting in a
so-called Ising model) or one in which all pairs of atoms have a random chance of
interacting (spin glasses). This historical background is why the second sentence
of Watts and Strogatz’ paper claims that: “Ordinarily, the connection topology is
assumed to be either completely regular or completely random.” (Watts and Stro-
gatz 1998). In their ground-breaking paper, they then show that real-world networks
show a totally different structure: while they are locally densely connected as ex-
pected in a completely regular lattice, the average distance of their nodes is as small
as if they were connected in a totally random fashion. Watts and Strogatz already
observed this special structure in three very different types of complex networks
(a neural network, a co-actor network, and the power grid of the USA.) and in the
following it was shown for virtually every complex network. This so-called small-
world structure thus proved to be a universal structure. By definition, a universal
structure and the universal laws which produce it, can be found in every context,
they constitute a context-free finding, which is valid for a very broad range of dif-
ferent situations.

In summary, the statistical physic’s approach to network analysis is to find uni-
versal structures that can be found in many different complex networks from very
different complex systems. This approach can and should deal with large networks
and large sets of networks; the actual method to detect a universal structure is not
depending on the context. The classic social network analysis project focuses on a
small to medium network to better understand how the individual is embedded in
the network; these projects need a deep understanding of the context in which the
network emerges. I have observed that network analysis goes awry, when a network
is analyzed with a physicist’s approach in mind but when the results are later inter-
preted in a contextual manner like in sociology. It can be shown that word-adjacency
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networks were successfully used in the context-free quest for universal structures—
but that they do not lend themselves to a contextual interpretation as I will argue
below.

In the following, I will first give the necessary graph theoretic definitions in
Sect. 2, before I generalize a concept by Borgatti regarding the relationship be-
tween network flows and centrality indices to a more general relationship between
network flows and any kind of walk-based method in Sect. 3. The special case of
word-adjacency networks is discussed in Sect. 4. The article closes with a summary
in Sect. 5.

2 Definitions

A graph G is a combination of a set of vertices V and a set of edges E ⊆V ×V , i.e.,
E is a relation. If necessary for disambiguitation, E(G) and V (G) denote the edge
and vertex set of graph G. |V (G)| is defined as the order of G, |E(G)| as its size. The
graph can be directed, i.e., (v,w) might be in E while the converse is not necessarily
true. If the graph is undirected, i.e., there is no direction in the relation, edges are
written as sets: {v,w}

The degree deg(v) of a node is defined as the number of edges it is contained in:
deg(v) = |{(v,v j) ∈ E}|; equivalently, let N(v) denote the set of neighbors w of v,
i.e., (v,w) or (w,v) ∈ E , then deg(v) = |N(v)|.

A walk is a sequence of nodes v1,v2, . . . ,vk such that for any two subsequent
nodes vi,vi+1, 1 ≤ i < k there is an edge (vi,vi+1) in E(G); it can thus also be
defined as a sequence of edges e1 = (v1,v2), . . . ,ek−1 = (vk−1,vk) . The length of a
walk in a graph is defined as the number of edges in it; the walk with minimal length
between two nodes v,w is called a shortest path between v and w, and the length of
it is called the distance dist(v,w) of v and w. A trail is a walk that does not use any
edge twice; a path is a walk that does not use any node twice.

A triad is any subset of three nodes {A,B,C}. There are in total 4 different tri-
ads in an undirected network: an empty and a fully connected one, one with one
edge, and one containing two edges. If only connected triangles are regarded in the
directed case, there are 13 different triangles (Milo et al. 2004).

2.1 Definition of Word-Adjacency Networks

Word-adjacency networks belong to the large class of word co-occurrence networks.
Given a set of words W and a list of k corpora C = {c1,c2, . . . ,ck}, the undirected
co-occurence network is defined as G = (W,E(W,C)) where {wi,wj} ∈ E(W,C) if
wi and wj co-occur in at least one corpus.

Word-adjacency networks make the special requirement that words do not only
co-occur in any large text but that they are very close to each other. Let in gen-
eral k be the allowed number of words between two words such that they will be
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considered to be adjacent. In the strictest sense of adjacency, k is set to 0, i.e., wi

and wj need to be directly following one another in at least one of the texts such
that (wi,wj) ∈ E(W,C). Given a large body of text T as a sequence of words, the
following procedure will then build the word-adjacency network as a special case
of a word co-occurrence network: Given T , let C(T,k) be all subsequences of k+ 2
words in T and let W (T ) be all single words in T . Then, the word-adjacency network
is given by the word co-occurrence network of W (T ) and C(T,k).

There are multiple variants of the initial concept of word-adjacency networks, for
examply, by thresholding the number of times two words need to co-occur before a
link is built or by stemming before building W (T ) and C(T,k).

3 Walk-Based Methods and Network Flows

When searching for a universal structure, any kind of method from social network
analyis can be applied to any given network—the main question is only if a com-
mon structure can be found in all of these different networks. The interpretation of
why this structure emerges and what its function is in the system of interest is not
of prime concern. However, in the social sciences, the interpretation of any find-
ing is most important and depends strongly on the context of the network. In this
case, not every method can be meaningfully applied to all networks; the interpre-
tation of any method depends strongly on the research question and the specific
network representation—a situation that Dorn, Lindenblatt, and Zweig have called
the trilemma of social network analysis (Dorn et al. 2012).

How can the result of a network analytic method depend on the research ques-
tion? The choice and application of a centrality index to a network may serve as an
example for this connection. There are many ways to define the centrality of a node
in a network: the simplest is to rank the nodes by the number of edges they have (de-
gree centrality) or by the inverse of the total distance to all other nodes (closeness
centrality):

CC(v) =
1

∑w∈V dist(v,w)
. (1)

Another very popular centrality index is the betweenness centrality which is defined
as:

Cbetw(v) = ∑
s �=v,t �=v

σst(v)
σst

, (2)

where σst(v) is the number of shortest paths between s and t, containing v and σst is
the number of all shortest paths between them. Note, that despite the very common
description of the betweenness centrality saying that it was “counting the number of
all shortest paths containing v” it has a complicated normalization per pair of s and
t. The description is, however, correct for the stress centrality:
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CS(v) = ∑
s �=v,t �=v

σst(v). (3)

Next to these four, there are at least three dozens different ways to compute the
centrality of a node in a network (Koschützki, Lehmann, Peeters, et al. 2005;
Koschützki, Lehmann, Tenfelde-Podehl, et al. 2005). In his paper “Centrality and
Network Flow”, Borgatti brings order to chaos by stating that a centrality index
gives the expected importance of a node with respect to a certain type of network
flow or network process:

A key claim made in this paper is that centrality measures can be regarded as generat-
ing expected values for certain kinds of node outcomes (such as speed and frequency
of reception) given implicit models of how traffic flows, and that this provides a new
and useful way of thinking about centrality. (Borgatti 2005)

For example, if the network process of interest works only between direct neighbors,
then the degree centrality points to the nodes that have the most influence. If the
network process of interest flows only along shortest paths, if it furthermore flows
in a serial manner, and between all pairs of nodes, then the node with the highest
closeness centrality is the first one which is finished. However, if the centrality index
is not matched to the research question, Borgatti warns: “ It is shown that the off-
the-shelf formulas for centrality measures are fully applicable only for the specific
flow processes they are designed for, and that when they are applied to other flow
processes they get the ‘wrong’ answer.”

This insight can be easily generalized to all network analytic methods that are
designed to measure an indirect effect. In this article, an effect is defined as indirect
if node v changes its state and if node w not directly connected to it also changes its
status and there is a sequence of events along a walk in the network that causes this
status change of w. Thus, by definition, indirect effects rely on a network process
by which these indirect effects are mediated. In the following, a network process is
defined as:

1. It transports an object or data over entities that are interacting with each other in
a certain time; it thus has a dynamic dimension.

2. The transport may be stochastic or deterministic;
3. The process uses certain walks in the network, i.e., it is important to model this

set of used walks;
4. As already discussed by Borgatti (2005), the process may use only one walk at a

time or be able to use multiple walks at the same time, i.e., we differentiate serial
vs. parallel working network processes;

5. Following Borgatti (2005), the object or data transported by the process can be-
have differently while being transported: it may be at only one place at any given
time; it may be splittable like money, or it may be copied during the transfer like
a virus or information that is spread.

A method is said to be a walk-based method if it relies on measuring the length
of walks or the frequency with which walks are used. It is obvious that all centrality
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indices presented above belong to this kind of measure. However, many other meth-
ods are explicitly or implicitly based on walks. The clustering coefficient cc(v) of a
node v in an undirected graph is, e.g., normally defined as:

cc(v) =
2 · e(v)

deg(v) · (deg(v)− 1)
, (4)

where e(v) is the number of edges between v’s neighbors. However, let P2(v,w)
denote the number of walks of length two between v and w, then it can also be
rewritten as:

cc(v) =
∑w∈N(v) P2(v,w)

deg(v) · (deg(v)− 1)
. (5)

Similarly, most clustering procedures rely on walks of some sort which are devised
to identify groups of nodes which are tightly connected—in essence, all the more
interesting network analytic methods are walk-based methods in the sense of the
definition given above.

3.1 Models of Walks

So far, there are not very many different models of walks used by a network process.
Mainly there are the following three models:

1. The set of all walks, trails, or paths of a given length k or up to length k.
2. The set of all shortest paths of a given length k or up to a given length k;
3. The set of all random walks of length k or up to length k; a walk is a random walk

if, at any given node v, the next node in the walk is chosen uniformly at random
among all neighbors of v.

It is clear that no network process will strictly adhere to any of these models. Thus
it is necessary to find out whether any chosen model of walks is close enough to
approximate the walks really used by the network process of interest. For example,
data packets are usually routed on shortest paths in the internet unless they find that
the queue of the next router is already congested; in the latter case, they will take
a small detour. Under very small load, i.e., a very small number of packets to route
through the system, the betweenness centrality is a good predictor of the sensitive
points in the system, as shown by Holme (2003). However, Holme also showed that
by increasing the load just a little bit, the process will already deviate so markedly
from using shortest paths that the betweenness centrality is not anymore able to
detect the most important nodes in the network.

Applying a walk-based method to some complex network assumes that a network
process exists which is using the network whose preferred walks are well approx-
imated by the model of walks used in the method. If no such network process is
known that uses a given network to exert indirect effects—it might be more harmful
to represent a relation as a network than it does good. The question is now whether
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word-adjacency networks are the basis for any kind of network process whose walks
through the network follow one of these classical models of walks.

4 Word-Adjacency Networks in the Literature

The first to bring word adjacency networks to the attention of the network anal-
ysis community was Ferrer i Cancho’s and Solé’s paper on “The small world of
human language” (Cancho and Solé 2001), which will be discussed in more detail
below. Another milestone in increasing the word-adjacency network’s popularity is
the work by Milo et al. (2004), in which they used different word-adjacency net-
works to analyze their so-called triad significance profile. For this analysis, four
directed word-adjacency networks (k = 0) were built from texts in four different
languages and the occurrence of the 13 different types of connected, directed tri-
ads were counted. Then, their occurrence was compared to the expected number
of the respective triad in a suitably randomized network model by computing the
so-called z-score. The z-score quantifies the significance of a finding with respect
to an expected normal distribution; a triad can then either occur as often as ex-
pected or be significantly over- or underrepresented. The research showed that all
word-adjacency networks gave rise to the same kind of profile, i.e., the same kind
of triads were over- or underrepresented in all four cases. This is an interesting re-
sult as the languages were not only Indo-European but included Japanese as well.
Moreover, Milo et al. showed that the triad significance profile was also significantly
different from that of networks originating from other complex systems. This kind
of research question and result is typical for the physics-based approach discussed
above: Given a large set of networks from very different complex systems, is there
any kind of pattern that is common to all of them or that helps to classify data into
groups? Again, this approach is context-free and without aiming at a contextual in-
terpretation of the finding. It simply shows that there is a universal structure within
word-adjacency networks, without interpreting it.

Cancho and Solé (2001) start similarly by stating that they found that word-
adjacency networks are so-called small-worlds, i.e., those that have a small aver-
age distance and a reasonably large clustering coefficient in comparison to random
graphs of the same size and order (Watts and Strogatz 1998). However, according to
the above, the average distance of a graph is a walk-based method. It is thus instruc-
tive to state explicity to what kind of network process the average distance implicitly
refers to:

1. The network process uses only shortest paths;
2. All nodes of the network want to exert an indirect effect onto all other nodes of

the network and with the same frequency.
3. The network process is serial, i.e., if there is a path of nodes a−b−c−d, then a

talks to them independently but via the shortest path.



Are Word-Adjacency Networks Networks? 161

The question is whether there is any network process on word-adjacency net-
works that fulfills these criteria. Ferrer i Cancho and Solé interpret the finding as
follows:

In spite of the huge number of words that can be stored by a human, any word in
the lexicon can be reached with fewer than three intermediate words, on average. If
a word is reached during communication, jumping to another word requires very few
steps. Speed during speech production is important and can be more easily achieved
if intervening words are close to each other in the underlying structure used for the
construction of sentences. (Cancho and Solé 2001).

It is thus indicated that the speech planning process uses the word-adjacency net-
work to navigate. While it is clear that a word-adjacency network is the result of a
speech production process, does that mean that the word-adjacency network is used
for speech planning or speech production? And if it is: is it the basis for a speech
planning process that uses shortest paths in a serial manner—at least approximately?
Only in this case does it make sense to interpret the average distance with respect
to the speech production. The following argument make this rather unlikely: An
average distance smaller than 3 means that there is a combinatorial explosion of
reachable words in distance 1, 2, and 3, starting from almost every word. It is an old
finding that a high number of possible choices increases the reaction time rather than
to decreasing it (Hick’s law (Hick 1952)). In that sense, a “large” network would be
better for speech planning and a small-world network is unlikely to be the basis for
speech production.

If speech planning does not use the word-adjacency network, is there any other
network process that uses the word-adjacency network in a meaningful sense? Of
course, reading any kind of text uses some walks of this network by definition—
sentences are sequences of adjacent words, after all. But the question is whether
this set of walks can be modeled easily by any of the above models. Certainly, they
are not shortest paths in the word-adjacency network. Meaningful sentences with
k words also make only a tiny fraction of all the possible walks of k words in the
word-adjacency network, so that they are also not likely produced by a simple ran-
dom walk over the word-adjacency network—not even approximately so. If there is
thus no simple set of walks that approximates how humans build sentences based on
a word-adjacency network, it might then be better not to combine the sentences into
a complex network but to use walk-based statistics instead. A walk-based statistics
takes a set of observed walks, i.e., sequences of nodes used by some process, and
analyzes it directly without combining them into a network. For example, it was
claimed that there are so-called anomalous airports, i.e., regional, small airports
that are much more central as stop-overs than expected. This was analyzed by us-
ing the betweenness centrality on a network that connects two airports if there is at
least one scheduled flight between them (Guimerá et al. 2005). Travellers use this
network to fly from A to B, where sometimes they have to take a stop-over in one
or more airports. However, for this process of interest it does not make sense to use
the original betweenness centrality (Dorn et al. 2012). As explained above, the be-
tweenness centrality assumes that there is a process using shortest paths between all
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pairs of nodes in the network. Not suprisingly, however, travellers have distinct pref-
erences regarding their destinations and their origin is mainly determined by where
they live. For example, 40% of all possible origin-destination airports in the USA
are not once requested in a three-month period, as Dorn et al. state. Dorn et al. thus
proposed to use only the requested pairs of airports based on purchased tickets, and
to simply measure the betweenness centrality on the corresponding paths between
airports. Similarly, the stress centrality can be easily adapted to a set of walks as
defined by the sentences of a given text without producing a complex network first.
In that sense, the “new” stress centrality could just count how often a word is con-
tained in the set of walks defined by the sentences. However, one can quickly see
that such a walk-based statistics is identical to a word frequency statistic and does
not necessarily need any network representation.

Note that the case is different with other word-based networks like the word
association network: here, two words are connected if people associate them with
each other. Many processes seem to be based on word-association, e.g., creativity,
which is classically measured by using association tests (Gough 1976). It is less
clear how to describe the set of association chains (‘walks’) mathematically, which
makes it difficult to apply out-of-the-box network measures like the above named
centrality indices; it might also not be meaningful to find out what the ‘most central’
word in a word-association network is since most walks (association chains) will
have a small ‘horizon’ (length) in the sense of Friedkin (1983). However, since a
process is known that uses the network in a transitive way, walk-based methods can
be applied if the set of walks is adapted accordingly.

5 Summary

Without any question, the statistical analysis of co-occurrence and co-location of
words in texts has produced interesting and productive insights in the last decades.
Word-adjacency networks are also interesting in the search for universal laws and
universal structures as demonstrated by Milo et al. (2004). The question raised
in this article is whether we can learn more about speech or thought related pro-
cesses by representing text in the form of word-adjacency networks and by apply-
ing walk-based network analytic methods to it. While it is possible to represent
the word-adjacency relationship as a complex network, there does not seem to be
any such process that uses most of the possible walks in this network in a transi-
tive way. Walk-based methods from network analysis should thus not be applied
and interpreted with respect to speech or thought generation unless a process is
identified which at least approximately uses the walks as defined in the respective
method. Finally, if walk-based network analytic methods cannot be applied to a
word-adjacency network, a network representation of a sequence of words is not
necessary and might otherwise seduce one to apply methods to it that are not ap-
propriate for its analysis. Therefore, word-adjacency networks should not be repre-
sented as networks until a convincing network process using it in a meaningful and
easily describable way is defined.
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Part III
Syntax



Syntactic Complex Networks
and Their Applications

Radek Čech, Ján Mačutek, and Haitao Liu

Abstract. We present a review of the development and the state of the art of syntac-
tic complex network analysis. Some characteristics of such networks and problems
connected with their construction are mentioned. Relations between global network
indicators and specific language properties are discussed. Applications of syntactic
networks (language acquisition, language typology) are described.

1 Introduction

Syntax is considered to be a key component of human language. Its properties, ori-
gin, cognitive status etc. have been discussed intensively for decades by researchers
from different branches of science and it has caused tough controversies among
them. Despite a huge number of arguments it has been difficult, or still impossible,
to find a generally acceptable criterion or method which can help to solve funda-
mental problems considering syntax, especially its origin.

A theory of complex networks emerged at the turn of the millennium (Barabási
and Albert 1999; Barabási 2002) and its rapid and successful development appeared
to be a useful tool for an explanation of system properties in many branches of sci-
ence. It is not surprising that a use of this theory for an explanation of some funda-
mentals of syntax was tempting. And indeed, just after the beginning of the endeavor
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to study syntax properties by methods of complex network analysis Ferrer i Cancho
et al. (2005) brought promising explanation considering syntax origin. Specifically,
they introduced complex network based model of language which takes into account
(1) relationships between words and objects, (2) relationships among words related
to the same object, and (3) Zipf’s law; a property of the model (namely, connect-
edness) represents a precondition for syntax evolving, according to the authors (for
more details see Sect. 3). Afterwards, Solé (2005) presented the approach of Ferrer
i Cancho et al. in slightly changed form in popular science article in Nature, one
of the most prestigious scientific journals. Especially the article by Solé represents
some kind of “great expectations” (cf. its title: “Syntax for free?”) which could bring
the use of complex network analysis in language analysis.

After almost a decade, it seems reasonable to critically review the development
of syntactic complex network analysis and to try to answer the following questions:
What are the results of the application of complex network theory to syntax analy-
sis? Has the application met the expectations? What kind of explanation has com-
plex network analysis of syntax brought? Which new problems have emerged? What
is the actual scope of syntax network analysis now? What are the perspectives? In
this paper, we attempt to track main aspects of the development of syntactic network
analysis and to summarize the results of this scientific endeavor. Our article follows
a review presented by Mehler (2007). It can be considered as a complement to a
more general overview on network analysis (Baronchelli et al. 2013).

The review is organized as follows: first, main characteristics of syntactic net-
works are introduced in Sect. 2; then, an early development of syntactic network
analysis is presented (Sect. 3) and an impact of syntax on network properties is
discussed (Sect. 4); further, important problems related to data preprocessing (e.g.,
coordination and lemmatization) are discussed in Sect. 5; next, Sect. 6 is dedicated
to applications of syntactic networks in language typology and language acquisition;
and the article is finalized by Conclusions (Sect. 7).

2 Basic Characteristics of Syntactic Networks

A network is a set of nodes and links. Nodes represent some entities while links
represent relationships among nodes. As for syntactic network, nodes usually denote
either particular wordforms (e.g., sing, sings, sang, sung) or lemmas (in this case all
word forms are represented by the canonical form, e.g. sing, sings, sang, sung are
represented by the single lemma sing) (cf. Čech and Mačutek 2009).

Links denote the so-called dependencies, i.e., syntactic relationships between
pairs of words. For instance, there are four syntactic relationships in the sentence

(1) Peter gave Mary the pen,

specifically, between pairs of words Peter – gave, gave – Mary, gave – pen, and the
– pen. The notion of dependency expresses the fact that

one wordform must depend on another for its linear position and its grammatical form,



Syntactic Complex Networks and Their Applications 169

cf. Mel’čuk (2003, p. 188). This approach to syntax is called the dependency gram-
mar formalism Mel’čuk (2003) and Hudson (2007). It is the only syntactic formal-
ism which has been so far exploited for syntactic network analysis. Other ones (e.g.,
phrase structure or construction grammar) cannot be excluded, in principle; how-
ever, due to the lack of linguistic reasoning or interpretation they have not been
used, to our knowledge.

A sentence structure reflecting syntactic dependencies between pairs of words
can be described by a tree graph (all nodes in the tree graph must be connected and
no cycles are allowed in this type of graph, which is in accordance with the syntactic
dependency formalism), see Fig. 1.

Fig. 1 The structure of
sentence (1). Links be-
tween words represent the
syntactic dependency rela-
tionships, arrows express
the direction of the depen-
dency. However, there is no
general agreement among
linguists regarding the di-
rection; thus, one can find
dependency formalisms us-
ing opposite direction (from
modifier to head).

Peter Mary pen

gave

the

A syntactic dependency complex network is constructed by accumulating sen-
tence structures and, thus, the network is an emergent property of these structures.
Specifically, the network contains all words which occur in a text corpus and words
are linked if the words appear syntactically linked at least once in a sentence of
the corpus (Ferrer i Cancho et al. 2004; Ferrer i Cancho 2005a). Figure 2 shows an
example of a small syntactic network containing 50 lemmas.

3 Early Development of Syntactic Complex Network Analysis

The early development of syntactic complex network analysis can be characterized
as an endeavor to show that (1) syntactic properties of human language follow some
universal patterns that are not observable by an analysis of particular sentences (Fer-
rer i Cancho et al. 2004; Ferrer i Cancho 2005a; Solé et al. 2010) and (2) that some
language properties which are modelled well by complex network represent a nec-
essary precondition for development of full syntax, cf. Ferrer i Cancho et al. (2005)
and Solé (2005). As for the former, the patterns emerge only if the language is ana-
lyzed from a global point of view as a complex system containing huge number of
language units and interrelations among them. Of course, it is nothing new to see
the language as a complex system – F. de Saussure (de Saussure 1979) was probably
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Fig. 2 The network containing the first 50 lemmas from the Penn TreeBank (Surdeanu et al.
2008).

the first one to stress this aspect. What is new, indeed, is the global point of view
which is represented by the complex network theory (cf. Newman 2011). In other
words, applying network models to language reveals that language networks share
the same statistical characteristics, for instance, small world structure, degree distri-
bution, betweenness centrality etc. Moreover, these statistical characteristics appear
in networks based on different language units (phonemes, syllables, words) and dif-
ferent kind of relationships among the units (co-occurrence, collocation, syntactic
dependency, semantic relationships). Therefore, these statistical characteristics are
considered to be universal patterns which could be candidates for new linguistics
universals (Ferrer i Cancho et al. 2004; Ferrer i Cancho 2005a; Solé et al. 2010;
Choudhury and Mukherjee 2009). Focusing on syntax, this line of thinking brings
an important implication. If syntactic networks display the same global character-
istics as other linguistic networks, a uniqueness or specificity of syntax is cast into
doubt (cf. Nowak et al. 2000, Hauser et al. 2002, and Fitch and Hauser 2004). Con-
sequently, syntax should be ruled by the same (or similar) general principles as other
language properties. Further, these principles should be rooted in a general cognitive
faculty of human mind (Ferrer i Cancho 2005a, p. 68):

the structure of global syntactic dependency networks mirrors the structure of brain. It is
obvious that the brain is made of millions of neurons connected through synapses but the
similarities go beyond mere physical resemblance. The activation of different brain areas
shows the small-world phenomenon and a power degree distribution (Eguı́luz et al.
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2005; Grinstein and Linsker 2005). (. . . ) While no one has ever found a rewriting rule
in the brain of a human, the web organization of the brain at many levels, with linguistic
networks on top, cannot be denied.

Naturally, this kind of findings opens questions on the origin of syntax. Complex
network analyses of many different systems (World Wide Web, social networks,
biochemical networks, ecological networks, neural networks etc.) reveal that a com-
plex structure of these systems is a result of self-organization which is based on
relatively simple principles, e.g., continuous growing of the system and preferential
attachment (Barabási and Albert 1999). Specifically, the outcome of self-organized
phenomena is a scale-free power-law distribution of degrees (i.e., numbers of links
connected to each node). Analogously, the origin of syntax can be considered to be
an outcome of the same principles.

As we noted in Sect. 1, Ferrer i Cancho et al. (2005) used the complex network as
a model of a certain combinatorial property of words, namely, their connectedness,
which is considered to be a necessary precondition for full syntax. According to
Ferrer i Cancho et al. (2005), the connectedness arises naturally from the Zipf’s
law, independently of details of the linguistics setting. Even though it is stated that
the model does not correspond to the complexity of human language, only a “small
step” from the model to full syntax and full human language is supposed, cf. Ferrer
i Cancho et al. (2005, p. 562)

For various reasons, our grammar is not a grammar in the strict sense, but rather a
protogrammar, from which full human language can easily1 evolve (. . . ) although our
model is obviously much simpler than present-day languages, it provides a basis for the
astronomically large number of sentences that human speakers can produce and process.

This aspect of the approach of Ferrer i Cancho et al. (2005) is strongly empha-
sized by Solé who links the property of the model to emerging of syntactic rules, cf.
Solé (2005)

. . . sometimes illogical and quirky appearance of syntactic rules might be nothing but
a by-product of scale-free network architecture. (. . . ) . . . Zipf’s law could have been a
precondition for syntax and symbolic communication.

According to us, a difference between 1) a conception of the complex network
model as a necessary precondition for syntax, which is the most important outcome
of the study (Ferrer i Cancho et al. 2005), and 2) a direct relationship between com-
plex network properties and full syntax claimed by Solé (2005), is fundamental. In
other words, the impact of complex network properties to syntax evolving radically
differs, if one (1) consider these properties of complex network to be necessary, but
not sufficient condition for full syntax, or (2) consider them to be both necessary
and sufficient condition.

Regardless of the scope of the interpretation, the reference to the Zipf’s law rep-
resents one of the most important aspects of the attempt to explain the origin of
syntax by network analysis. The Zipf’s law states that the relationship between the

1 Emphasized by the authors of this review.
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frequency of a word in a text and its rank is approximately linear when plotted on
the double logarithmic scale, which means that the word frequency distribution is a
power law. In Ferrer i Cancho et al. (2004) it is shown that the relationship between
word frequency and word degree in all observed syntactic networks is approximately
linear and, more interestingly, both distributions, those of word frequencies as well
as of word degrees, have approximately the same exponent. Based on these obser-
vations, Ferrer i Cancho concludes that word degree distribution could be a conse-
quence of word frequency and asks a fundamental question (Ferrer i Cancho 2005a,
p. 66):

If word degree is a consequence of the Zipf’s law for word frequencies, a pressing
question is: what is the origin of that law?

Since Zipf (1949) it has been known that power law distribution of word frequen-
cies could be explained by general communication principles, such as the principle
of least effort (Zipf 1949) or communication requirements (Köhler 1986; Köhler
2005). Roughly speaking, these principles are based on the idea that a general com-
munication strategy is to minimize the cost of word usage, on the side of speaker,
and the cost of word perception, on the side of hearer. These competitive strategies
lead to an equilibrium that has the main impact on the form of the language system
in general. The Zipf’s law represents one kind of the equilibrium, cf. Ferrer i Cancho
(2005b) and Ferrer i Cancho and Solé (2003).

To sum up, the early development of syntactic network analysis reveals a rela-
tionship between frequency of word and its syntactical properties expressed by the
degree distribution. However, the mere relationship between these two phenomena
does not explain the emerging of syntactic rules, i.e., if there is a linear correlation
between the word frequency and word degree in a syntactic complex network, an-
other question appears: what is the role of syntax in syntactic networks, if the word
degree can be seen as a consequence of word frequency? Attempts to answer this
question are presented in the next section.

4 Role of Syntax in Syntactic Dependency Complex Networks

Traditionally, syntax is considered to be, roughly speaking, a set of rules which
govern the behavior of words in a sentence. We emphasize that the rules should be
understood as probabilistic, not deterministic. The aim of syntax as a science is to
describe a sentence structure, the character of rules and, sometimes, to explain why
both, the structure and rules, are as they are. Regardless of different approaches to
syntax, there is a general agreement among linguists about the hierarchical sentence
structure – it means that “behind” the linearity of a sentence there are grammatical
relationships between words. This fact is clearly illustrated on the example of highly
inflected languages which have a flexible word order, cf. six grammatically well-
formed Czech sentences expressing the English sentence Peter beats Paul:

(2) Petr bije Pavla [Petrnoun-subject-nominative – bijeverb – Pavlanoun-object-accusative]
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(3) Pavla bije Petr [Pavlanoun-object-accusative – bijeverb – Petrnoun-subject-nominative]

(4) Petr Pavla bije [Petrnoun-subject-nominative – Pavlanoun-object-accusative – bijeverb]

(5) Pavla Petr bije [Pavlanoun-object-accusative – Petrnoun-subject-nominative – bijeverb]

(6) Bije Petr Pavla [Bijeverb – Petrnoun-subject-nominative – Pavlanoun-object-accusative]

(7) Bije Pavla Petr [Bijeverb – Pavlanoun-object-accusative – Petrnoun-subject-nominative]

In all these instances, the object of the sentence Pavla (Paul) is determined by its
accusative form which is a result of the syntactic rule; the object of the sentence is
not determined by the word order. Similarly, syntactic rules also determine the de-
pendency of Pavla (Paul) on the verb. Consequently, according to the dependency
grammar formalism, the structure of sentences (2)–(7), i.e. the relationships between
each pair of words, is expressed by the graph in Fig. 3, in accordance with depen-
dency grammar formalism.

Fig. 3 The hierarchical
structure of sentences (2)–
(7).

bije

Petr Pavla

but not by graphs in Fig. 4 (of course, there are more possibilities of non-correct
graphs).

Petr

bije Pavla

bije

Petr

Pavla

Pavla

bijePetr

Fig. 4 Examples of non-correct hierarchic representations (i.e. representations violating syn-
tactic rules) of the structure of sentence Petr bije Pavla.

Remember, a syntactic dependency complex network is constructed by accumu-
lating sentence structures (cf. Sect. 2) and it was assumed (Solé 2005) that

sometimes illogical and quirky appearance of syntactic rules might be nothing but a
by-product of scale-free network architecture.

If Solé’s statements were true, one should find radical differences between a net-
work based on “proper” syntactic rules, on the one hand, and a network based on
relationships between words which are not ruled by syntax (e.g, if relationships are
generated randomly), on the other.
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The idea to investigate the role of syntax in syntactic dependency networks was
introduced by Liu and Hu (2008). According to them, the fact that language net-
works built on different principles are small-world and scale-free just like other real
networks opens a problem with respect to a relation between these global network
indicators and specific language properties. They focused on syntax and asked the
following questions:

if all language networks have properties such as small-world and scale-free: Could
they be viewed as a general feature of a language network? What role does syntax play
in such a syntactic (language) network? If dependencies are built by randomly linking
words in the same sentence, would the network still follow the properties similar to the
syntactic one? Can the local (micro) syntactic analysis in a sentence be reflected in the
global (macro) properties of a language network?

As an attempt to answer these questions, Liu and Hu (2008) com-pared prop-
erties of three networks: 1) a syntactic network generated from a treebank based
on the dependency grammar formalism; 2) a network based on randomly generated
relationships between each pair of words within a sentence (sentences were taken
from the treebank): from each sentence one word was randomly selected as a root
(in accordance with the dependency grammar formalism) and for each of the re-
maining words a word of the same sentence was randomly selected as a governor;
3) a network based on randomly generated relationships between each pair of words
from a sentence which, however, respect the principle of continuity (also called pro-
jectivity) of a tree representing a sentence structure; this condition is added because
discontinuous (or non-projective) syntactic trees are rather exceptional in the natu-
ral language (Ferrer i Cancho 2006), so, this network should express more similar
properties to a syntactic network than the totaly random network.

A comparison of the networks was focused on five global network characteris-
tics, namely, the average path length, which is defined as the shortest distance be-
tween a pair of vertices; the diameter, which is defined as the longest shortest path
in a network; the average degree, i.e. the average number of links of a node; the
clustering coefficient, i.e. the probability that two nodes which are neighbors of a
given node are neighbors themselves; and the degree distribution. The analysis re-
vealed that all networks displayed very similar global network characteristics and
all of them were scale-free and small-world. Consequently, the fact that a network
is small-world or scale-free cannot alone explain the role of syntax in the network.
Obviously, this result seriously undermines the Solé’s statement which considers
the emergence of syntactic rules to be a by-product of the scale-free network ar-
chitecture (Solé 2005, similarly also Solé et al. 2010). The properties of small-
worldness and scale-freeness in random syntactic networks can be explained by
frequency characteristics of words (the Zipf’s law), not by syntax. A mere presence
of these statistical indicators in a syntactic network is not a consequence of syntac-
tic properties of language and, therefore, it cannot be considered to be a candidate
for a syntactic language universal. Results of Liu and Hu (2008) reveal that net-
work properties can be considered, at most, to be just the necessary precondition
for the emergence of syntax (in the sense of a set of rules). Consequently, it is not
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appropriate to suppose that full syntax can “easily evolve” as soon as the precondi-
tion is satisfied (Ferrer i Cancho et al. 2005; Solé 2005).

Interestingly, a similar attempt to build a random network (i.e., without
predefined syntactic rules) was presented by Corominas-Murtra et al.2 (2009, 2010).
The creation of a random network was based on two principles: 1) the frequency of
words followed the Zipf’s law, and 2) the length of a sentence corresponded to real
language data. The relationships between words were generated randomly. The re-
sulting random network had similar typical global network properties, such as the
clustering coefficient, the degree distribution or the average path lengths, like real
language syntactic networks. This fact was interpreted as a proof of emerging syn-
tax properties in a language evolution “for free” and led the authors to more general
arguments on the language evolution: specifically, its non-adaptive nature and in-
nateness of syntax.

However, there are several problems in the analysis. First, to interpret the emer-
gence of network properties as a result of innateness of syntax is not appropriate
for the following reasons: 1) there is not a clear and empirically proved connection
between the emergence of network properties and innateness; 2) both small number
of children and only one language (English) is analyzed; the results from so tiny a
sample cannot be interpreted in such a general way, for obvious reasons.

Further, the authors do not take into account a potential impact of the length of the
samples on network properties; in other words, the emergence of observed network
characteristics could be a side-effect of the fact that as time goes on, children speak
more and the length of their transcripts increases. Next, the model is based on the
assumption that the exponent of the Zipf’s law is equal one and that it remains
constant as a child evolves. However, this assumption is not correct (cf. Baixeries et
al. 2013); the change of the exponent can lead to different network characteristics.
Yet another problem is the absence of statistical testing.

Finally, in the light of the study Liu and Hu (2008), conclusions presented in
Corominas-Murtra et al. (2009) and Corominas-Murtra et al. (2010) seem to be not
acceptable because the global network properties emerge even if syntactic rules are
“deleted” by randomness involved in the process of the network creation. In other
words, the emergence of these global network properties is a result of frequency
characteristics of language, and does not have to do anything with syntax.

On the other hand, Liu and Hu (2008) obtained results which show that there are
some differences between syntactic and random networks (e.g., a syntactic network
has a lower average degree and clustering coefficient). Even though these differ-
ences are too small for classifying syntactic and random networks as different types
of complex networks, their existence indicates some influence of syntax on these in-
dicators. This means that a use of complex networks for a syntactic analysis has to
be focused on more fine-grained network properties in order to be useful. Moreover,
it should not be forgotten that a syntactic network analysis (as well as any language
network analysis) should be based linguistically which means that it is necessary to

2 Both papers, i.e., Corominas-Murtra et al. (2009) and Corominas-Murtra et al. (2010),
contain the same data and introduce the same procedure; actually, in Corominas-Murtra
et al. (2009) one can find a more thorough discussion and a more general explanation.
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explain observed network properties with regard to certain language characteristics
or (in the better case) a linguistic theory. In other words, to say that, for instance,
“syntax is small-world” without linguistic grounds can be misleading, as the anal-
ysis by Liu and Hu (2008) uncovered. The same conclusion was presented in the
analysis by Liu et al. (2010) focused on an impact of different annotation schemes
used for capturing syntactic coordination on global network properties.

In accordance with the approach from Liu and Hu (2008) and Liu (2008), which
emphasizes the need for a linguistic explanation of network properties, the analysis
of the role of syntax in syntactic complex networks in Čech et al. (2011) focused
on verb characteristics. Contradicting previous studies that revealed the linear re-
lationship between frequency and degree in a syntactic network in general, it was
hypothesized that verbs should play a central role (expressed by the degree of node)
in a syntactic network not due to their frequency but because of their syntactic prop-
erty called valency (Allerton 2005; Liu 2008).

The paper Čech et al. (2011) starts with the well-known idea on the relation-
ship between the shape of a network (its topological properties) and its function-
ality (Caldarelli 2007) and, further, it was deduced how a function of a verb in a
sentence should influence network characteristics. Specifically, verb valency deter-
mines, besides other things, the number of words obligatory dependent on the verb
in a sentence and it plays a decisive role in the sentence structure. Moreover, a verb
is present at least once in each sentence due to its syntactic function to be the pred-
icate of the sentence – this fact guarantees a relatively high frequency of verbs in
any language sample. However, it should be emphasized that verbs are not the most
frequent part of speech (nouns have the highest frequency, at least in languages used
for the analysis). Based on these properties of verbs (i.e., valency and a relative high
frequency caused by its function in a sentence), it was predicted (Čech et al. 2011,
p. 3616) that

verbs should play an important role in the network expressing syntactic relationships
in the language. In other words, it is predicted that verbs will occur among the most
important elements of the network.

The importance of an element was determined by its degree.
Six languages (Catalan, Czech, Dutch, Hungarian, Italian, and Portuguese) were

used for testing the hypothesis. The results reveal that proportions of verbs (with
regard to other parts of speech) in histogram bins of the ranked distributions of de-
grees tend to decrease while the proportions of verbs (again with regard to other
parts of speech) in histogram bins of the rank-frequency distribution of lemmas are
more or less constant and clearly tend to attain lower values than verb proportions in
the case of degrees. Differences between rank-degree and rank-frequency distribu-
tions are statistically significant. Thus, the results do not falsify the hypothesis and
allow to state that the topology of a syntactic dependency network is significantly
affected by syntax of the language, at least in the case of verb valency.

To sum up, studies focused on the analysis of the role of syntax show that it
is not acceptable to interpret and explain syntax properties of human language by
global network properties, such as the small-worldness and scale-freeness. Further,
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a network should be used as a tool for a linguistically well-grounded research in
order to avoid some mistakes which can be caused, for instance, by a non-proper
analogy with another kind of network analyses. However, one has to bear in mind
that all studies focused on this topic represent only first steps in an unexplored area.

5 Preprocessing of Data for a Syntactic Complex Network
Analysis – Pitfalls to be Avoided

Any complex network represents a relatively simple model of an observed system.
In many cases, it is not difficult to determine both units, which are represented by
nodes of the network, and relationships, which are represented by links connect-
ing the nodes: e.g., World Wide Web, sexual relationships among people, a co-
occurrence network of word forms. However, the analysis of syntactic networks
is not the case. Even though the dependency grammar formalism brings general
principles for sentence parsing, the variability of particular parsing systems is rather
large. Further, the majority of syntactic networks analyses uses syntactic treebanks
as the source of language data; the treebanks are language corpora containing a syn-
tactic annotation which is usually processed automatically. One should keep in mind
that there is not a unique annotation scheme for automatic parsing and that different
annotation schemes lead to different results (Boyd and Meurers 2008). To illustrate
that these differences are not negligible for network analysis, we present various
approaches to coordination (Liu et al. 2010) and the problem of lemmatization.

Coordination (Crysmann 2006, p. 183) is

a combination of like or similar syntactic units into some larger group of the same
category or status, typically involving the use of a coordinating conjunction, such as
and or or, to name just two. The units grouped together by means of a coordinating
conjunction are usually referred to as conjuncts (or conjoints).

This phenomenon is a difficult point especially for dependency syntax, in which
binary asymmetrical relations are basic elements (Lobin 1993; Osborne 2003; Tem-
perley 2005). The problem is that all members of a coordination group fill one
syntactic “slot”, in fact. For instance, there is one accusative object (Mary) in the
sentence (8)

(8) I see Mary,

while in the sentence (9)

(9) I see Peter, Paul, and Mary,

the accusative object – again one(!) object as well as in sentence (9), from the syn-
tactic point of view – is represented by three members (Peter, Paul, Mary). As the
development of syntactic studies reveals, it is impossible to find “the best” annota-
tion scheme of this phenomenon which would be broadly accepted among linguists.
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Following Liu et al. (2010), we can parse sentence (9) in three different ways, as
is presented in Figure 5. It should be emphasized that each parsing is linguistically
well grounded (Tesnière 1959; Schubert 1987; Mel’čuk 1988; Liu and Huang 2006;
Hudson 2007).
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Fig. 5 Three different representations of the structure of (9).

We remind again that a syntactic dependency network is constructed by accumu-
lating sentence structures, such as are in Fig. 5. At the first sight it is obvious that
syntactic networks based on different annotation schemes will have different struc-
tures. Specifically, the first approach (Fig. 5 on the top) will “favor” (with regard to
the node degree) the conjunction, the approach from Fig. 5 in the middle will lead to
a more uniform distribution of links in the network, while graph in the bottom will
“favor” verbs.” Naturally, the choice of an annotation scheme can strongly influence
tests of hypotheses, for instance the analysis of verbs presented in Sect. 4.

Not only differences among approaches to syntactic relationships can signifi-
cantly influence a syntactic network analysis. In addition, the annotation of linguis-
tic units, which are represented by nodes in a syntactic network, should always be
clearly presented. There are relatively few problems if one uses word forms. How-
ever, often word forms are not suitable units for the analysis, for many reasons. For
instance, if one aims at working with word as a semantic unit, the use of lemmas is a
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more reasonable approach. At the first sight, the use of lemmas is unproblematic; a
lemma represents the canonical form for all word forms, so, for instance, the lemma
sing represents the word forms sing, sings, sang, sung. However, the situation be-
comes more problematic when polysemy enters into the play; cf. different meanings
of the word school in sentence (10), (11), and (12):

(10) I visited her school

(11) This linguistic school has influenced the history of science in the U.S.A.

(12) My experience is drawn from the school of life

Can all these occurrences of the word school be represented by the unique
lemma? Or by two lemmas, one denoting a building and the other denoting an ab-
stract notion? Or even by three different lemmas because the meaning of school
seems not to be the same in sentences (11) and (12)? There are good linguistic
reasons to follow all of these three approaches. This fact is reflected by different
methods of lemmatization: some corpora annotate differences caused by polysemy
(but the question is how fine-grained the annotation is), while others not. As in the
case of coordination, it is obvious that different lemmatizations lead to different
network characteristics.

Coordination and lemmatization are obviously not the only phenomena which
can be (and actually they are) annotated differently in particular corpora – in fact,
they were used just for an illustration of a more general problem. We emphasize
the impact of the annotation scheme because this factor seems to be, in our opinion,
neglected in language complex network analyses. To avoid shortcomings of this
kind, it is necessary to know details of language data used for the analysis, especially
if one’s goal is to use complex networks for comparative studies (e.g., language
typology). The cases of coordination and lemmatization show that the problem of
preprocessing data for the network analysis is not trivial and that it needs to be taken
seriously. In the ideal case, in any analysis of this kind a technical report should be
enclosed which would provide an opportunity to critically analyze presented results.

6 Applications of Syntactic Complex Networks to Language
Typology and Acquisition

Syntactic networks are not applied only to syntax studies. The complex network
theory (Newman 2011) offers many ways how to analyze global network proper-
ties (not only small-world and scale-freeness) which can be used to compare indi-
vidual systems modeled by the network. There are currently two main directions
in the applications of syntactic network analysis: language typology and language
acquisition.
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6.1 Language Typology

Despite the problems related to the role of syntax (we mean full syntax properties
of present languages) in syntactic complex networks presented in Sect. 4, an appli-
cation of global network characteristics to language typology seems to be fruitful. It
is no surprise, if one realizes that some global network characteristics are connected
to word frequency and the Zipf’s law (see Sect. 4); many indexes based on word fre-
quency were used for language typological studies (Popescu, Altmann, et al. 2009;
Popescu, Mačutek, and Altmann 2009; Popescu et al. 2010; Popescu et al. 2011).
However, syntactic networks express more than frequency characteristics and, con-
sequently, their analysis could enhance typological characteristics of languages.

Studies focused on a typological interpretation of syntactic network properties
take global characteristics of syntactic networks and exploit a cluster analysis to
evaluate (dis)similarities among observed languages (Liu and Li 2010; Liu and
Xu 2012). Satisfactory results of these studies justify this approach, even though
some linguistic reasons (e.g., the impact of word frequencies vs. syntax proper-
ties) causing the differences remain unclear. From a linguistic point of view, a more
interesting approach is represented by studies which add an explanation of a lin-
guistic meaning of particular global network characteristics. Specifically, Čech and
Mačutek (2009) analyze in detail a potential impact of grammar on differences be-
tween lemma and word form syntactic networks (the average degree and cluster-
ing coefficient are scrutinized) and try to determine which properties should be in-
fluenced by a typological character of language, on the one hand, and which by
language usage (e.g., genre differences), on the other. Further, Liu and Xu (2011)
compare lemma and word form syntactic networks of 15 languages and show how
differences among global network characteristics reflect morphological variation de-
grees and a morphological complexity. Finally, Abramov and Mehler (2011) explain
and discuss the linguistic meaning of particular global network characteristics thor-
oughly whenever it is possible and, consequently, offer a deeper insight to the issue
(11 languages were used for the analysis).

It is important to note that there are great similarities between language typology
(i.e., language classification) and text classification; one conducts text classifica-
tion when the texts in question are from different genres of the same language and
language classification or typological identification of languages when the texts in
question are from different languages. This fact can have a significant impact on
the results of a complex network based language typology. Methodologically, there
is a fundamental problem related to a usage-based language typology analysis in
general, in the previous studies (Liu and Li 2010; Liu and Xu 2011; Liu and Xu
2012; Abramov and Mehler 2011). Specifically, the syntactic dependency networks
in these studies are based on language data which are not necessarily consistent in
semantic content and genre. The basic assumption of language classification based
on syntactic dependency networks is that the topological similarities and differences
of these networks (manifested by their complex network parameters) reflect the sim-
ilarities and differences of the corresponding languages. However, heterogeneity in
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the semantic content and genre of the language data selected, which is indepen-
dent of the similarities and differences of the languages, may also contribute to the
topological similarities and differences of the corresponding syntactic dependency
networks and thus may affect the results of language classification. Therefore, a
more desirable type of language data for complex network based language classi-
fication are parallel texts (i.e., a collection of texts with the same semantic content
but in different languages, e.g., a novel plus its translations in different languages),
which are consistent in both semantic content and genre (c.f. Kelih 2009). However,
a requirement to analyze parallel texts is constrained by technical reasons, up to
now; even though it is possible to annotate language data automatically, tools for
the annotation are usually not easily available and a manual annotation of syntax for
a network analysis is almost impossible because a huge amount of data is needed.
In addition, an existence of parallel treebanks (e.g., the Prague Czech-English De-
pendency Treebank 2.0; SMULTRON - Stockholm MULtilingual Treebank; GRUG
Parallel Treebank) is rather exceptional and their range (expressed by the number of
languages) is too small.

6.2 Language Acquisition

The complex network theory enables not only to model and interpret real systems
from a global point of view but also to analyze a global dynamic behavior of the sys-
tems. Consequently, the use of network analysis for modeling language acquisition
should be no surprise, because language acquisition is nothing else than a dynamic
process. What is more surprising is a relatively rare application of the network anal-
ysis in this branch of science; one could expect that a successful application of this
methodology to modeling other dynamic systems should trigger its usage in this re-
search area as well. Moreover, existing results are promising (Ninio 2006; Ke and
Yao 2008; Corominas-Murtra et al. 2009; Corominas-Murtra et al. 2010; Hills et al.
2009). According to us, both an unfamiliarity of scientists focused on the language
acquisition with the network theory and a relative technical difficulty (especially in
the case of syntactic networks) are the main reasons of this state.

Ninio (2006) was the first who tried to use the network theory for modeling lan-
guage acquisition focusing on syntax, to our knowledge. Despite an interest of syn-
tax, her approach cannot be interpreted as an analysis of syntactic networks in the
sense as is presented here (cf. Sect. 2). Specifically, she uses bipartite networks
(this kind of network contains different classes of nodes, here one class represents
speakers while the other words) to model language behavior of both mothers and
children and then observes distributions of words, verbs etc. Discovered similarities
of distributions (all are power-law) lead her to a conclusion as follows (Ninio 2006,
p. 141):

Application of Complexity Theory to language development sheds new light on the
stance of the learner vis-à-vis the linguistic environment. It sees language as a network
of speakers and the speech items they produce which children join when they, too,
start to produce similar items. Developmental data shows that children act just like
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Google when it searches the Web: they pick popular items, but only if their content
is relevant for them. The results support a view of children as free agents exercising
Preferential Attachment when they develop their minds and acquire knowledge in a
social environment.

Corominas-Murtra et al. (2009, 2010) focused on dynamics of a large-scale or-
ganization of the use of syntax. Particularly, they used language data from child’s
corpora, parsed them and, finally, modeled a development of syntactic networks
based on this data. As a result, they observed dynamics of the syntax behavior of
children between theirs 22 and 28 months. Their analysis reveals both two differ-
ent regimes of children’s syntactic behavior and a sharp transition between these
regimes. Specifically, a tree-like organization of a syntactic network before the tran-
sition (around 24 month) is suddenly replaced by a much larger, heterogeneous net-
work which has global properties similar to adults networks. Further, the transition
is accompanied by a strong reorganization of the network; in the pre-transition stage
degenerated lexical items, such as it, are words with the highest degree while after
the transition functional items, such as a or the, replaced them. Even though au-
thor’s conclusions regarding the innateness are not convincing, according to us, and
despite some methodological problems of the analysis (cf. Sect. 4), the study shows
that syntactic network analysis can bring interesting findings which contribute to a
better understanding of the process of language acquisition, at least heuristically.

7 Conclusion

Syntax is one of the main components of the human language system. However,
due to the lack of means, the emergence of syntax was difficult to study in the past.
Nowadays, complex networks provide a feasible tool. Therefore, in recent years,
the construction of syntactic networks and investigations of their properties have
become important and interesting fields in language research. Promising results on
syntactic global network characteristics were achieved in some branches of linguis-
tics, especially in language typology and language acquisition. On the other hand,
the development revealed also several pitfalls (some of which are, admittedly, al-
ready at least partially solved):

1. There are some exaggerated interpretations of (almost ubiquitous) small-world-
liness and scale-freeness of language networks (cf. Solé 2005, Solé et al. 2010,
Corominas-Murtra et al. 2009, and Corominas-Murtra et al. 2010).

The problem is more of a historical than a scientific character, as studies
of random language complex network clearly show (Liu and Hu 2008) that the
global properties of language complex networks are a consequence of word fre-
quencies rather than syntax. Therefore, the complex network properties are a
necessary, not a sufficient condition for syntax. However, given that the paper
Solé (2005) was published in one of the most prestigious scientific journals
(Nature), it remains to be influential.
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2. Automatic parsing is problematic in case of coordination – there are several lin-
guistically substantiated possibilities which result in dramatically different rep-
resentations, cf. Sect. 5.

3. Similarly, semantics also has an impact on syntactic complex networks (cf. the
example of polysemy in Sect. 5).

Consequently, we allow ourselves to summarize some challenges which a re-
searcher using syntactic complex network faces:

1. Particular characteristics of syntactic networks need more in-depth linguistic in-
terpretations.

2. Properties of full syntax of present-day language and their impact on network
characteristics should be analyzed in detail.

3. Either a universal syntactic dependency-based parsing formalism, which would
be a basis for a more detailed study on syntactic networks, must be searched for,
or, at least, one should take into account several possibilities of parsing and then
compare results.

4. The relationship between syntactic and cognitive networks should be investi-
gated.

These open problems are symptoms of the development, rather than indications
that complex networks should not be used to study the human language syntax. We
are convinced that the analysis of global syntactic dependency networks is a helpful
tool in language research. It can contribute – under the condition that the results ob-
tained be linguistically interpretable and interpreted – to a deeper understanding of
basic and important issues of the human language and cognition, such as, for exam-
ple, the emergence of syntax, syntactic relations, and connections between syntax
and cognition.
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Contemporary Linguistics 48, 597–625 (2012)

Liu, H., Zhao, Y., Huang, W.: How do local syntactic structures influence global properties in
language networks? Glottometrics 20, 38–58 (2010)

Lobin, H.: Koordinationssyntax als prozedurales Phänomen. Narr, Tübingen (1993)
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Pustet, R., Uhlı́řová, L., Vidya, M.N.: Word Frequency Studies. de Gruyter, Berlin (2009)
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Function Nodes in Chinese Syntactic Networks

Xinying Chen and Haitao Liu

Abstract. Based on two syntactic dependency networks derived from two Chinese
treebanks of different registers, a statistical study is conducted regarding word fre-
quency and distributions. We chose three grammatical (function) words as our re-
search objects and analyzed their network features, including degree, out-degree,
in-degree, closeness, in-closeness, out-closeness and betweenness. Then we re-
moved these three word nodes from the networks so as to see what consequences
may follow in the number of vertices, average degree, average path length, diam-
eter, the number of isolated vertices, domain and density. The results showed that
all three function words are central nodes of the Chinese syntactic networks but
have different status, since their influence to the overall structure is quite different.
The research provides not only a new way for the study on Chinese function words
but also a method for examining the influence of node characteristics to a complex
network.

1 Introduction

Network approaches are attracting increasing interest in contemporary linguistic
research, which is mainly due to two reasons: Firstly, language is physiognomi-
cally a network and modeling of language should follow this guiding principle, and
secondly, computational tools that have proven to be successful in sociology and
computer science may prove to be valid in the research of language networks.

The key interest of the network approach to linguistic research is that it provides
a new way to analyze language systems. A central assumption of modern linguistics
is that language is a system (De Saussure 1916; Kretzschmar 2009). This widely
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accepted point of view, however, has remained purely theoretic due to the absence
of an operational methodology, until corpora and modern network analysis tools
appeared. As a system, language is expected to include rules that cannot be pre-
dicted directly on the basis of the linguistic units (e.g., words, phrases, characters,
or syllables). So looking at some specific words (or the relationship between them)
may not be an efficient way for discovering the global features of a language sys-
tem. Modeling language as a network provides an operational way for observing the
macroscopic features of a language system and the relationships between the units
and the whole system. For example, the network approach can be used for deter-
mining the function or status of some units, such as words, in the language system
as a whole.

Secondly, the network approach agrees with long-standing linguistic theories and
finds supports in empirical data. De Saussure (1916) emphasized the importance of
the relationship between language units which can be understood as links in net-
works. Then Lamb and Newell’s stratificational grammar (Lamb and Newell 1962)
put forward a syntactic system of which the central idea is that a language is a net-
work of relationships. Hudson (2007) even named his book on word grammar The
Language Network. The idea is not new and it is widely accepted. In addition to
the assumption that languages are networks, linguistic research based on authentic
language data is become more and more popular since great efforts, monetary and
personal, go into all kinds of data-driven natural language processing, ranging from
machine translation to text classification. Many tools have been developed to facili-
tate collecting language data, building corpora and parsers, annotating and detecting
errors. More and more authentic language data are available for all kinds of linguis-
tic research. All these data can be used as sources of inducing language networks,
given the language network approach a solid data foundation.

So far, much research has been carried out, mainly concerned with the structure
of syntactic dependency networks (Ferrer i Cancho 2005; Liu 2008; Chen and Liu
2011; Čech et al. 2011), the patterns in syntactic dependency networks (Ferrer i
Cancho et al. 2004; Chen et al. 2011), language development or language evolution
(Ke and Yao 2008; Mukherjee et al. 2013; Mehler et al. 2011), language cluster-
ing and linguistic categorization (Liu 2010; Liu and Cong 2013; Gong et al. 2012;
Abramov and Mehler 2011), manual and machine translation (Amancio et al. 2008;
Amancio et al. 2011), word sense disambiguation (Christiano and Raphael 2013),
communication and interaction (Banisch et al. 2010; Mehler et al. 2010), the struc-
ture of semantic networks (Borge-Holthoefer and Arenas 2010; Liu 2009), phonetics
(Arbesman et al. 2010; Yu et al. 2011), morphology (Čech and Mačutek 2009; Liu
and Xu 2011), parts of speech (Ferrer i Cancho et al. 2007), Knowledge Networks
(Allee 2007), cognitive networks (Mehler et al. 2012).

Works on Chinese language include networks at different levels: networks taking
as nodes the Chinese characters (Li and Zhou 2007; Peng et al. 2008), words and
phrases (Li et al. 2005), phoneme and syllables (Yu et al. 2011; Peng et al. 2008),
syntactic structure (Liu 2008; Liu 2010; Chen and Liu 2011; Chen et al. 2011),
semantic structure (Liu 2009), etc.
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In general, the language network research, including those devoted to Chinese
language, is developing rapidly in recent years. But there is surely vast area to be
explored, with abundant issues awaiting investigation. Up till now, it seems that
most of the language networks studies put a heavy emphasis on common features of
various networks, such as ‘small world’ (Watts and Strogatz 1998) and ‘scale-free’
(Barabási and Bonabeau 2003) features, treating alike different levels of language
and different concerns on which the networks are built. At the same time, many
language networks were built without proper guide of a specific linguistic theory,
such as the co-occurrence networks of words, characters, or phrases (Li and Zhou
2007; Peng et al. 2008; Li et al. 2005; Liu and Sun 2007), lacking a strong connec-
tion to existing linguistic theories and research. But as more and more linguists get
involved in the study of language networks, this situation is gradually changing.

In this paper, we present a function words study which is based on Chinese de-
pendency syntactic networks, aiming to find different properties of language net-
works or different behavior models of specific nodes in language networks rather
than focusing on the common features.

2 The Chinese Dependency Networks for This Study

The basic idea underlying dependency networks is very simple: instead of viewing
the trees as linearly aligned on the sentences of the corpus, we fuse together each oc-
currence of the same word to a unique node, thus creating a unique and (commonly)
connected network of words, in which the tokens are the vertices and dependency
relations are the edges or arcs. This connected network is then ready to undergo
common network analysis with tools like UCINET (Borgatti et al. 2002), PAJEK
(Nooy et al. 2005), NETDRAW (Borgatti 2002), or CYTOSCAPE (Shannon et al.
2003).

In reality, extracting a network from a dependency treebank is slightly more com-
plicated, as we have to use some heuristics to fuse together only the words that be-
long to the same lexeme (same category, near meaning). We refer to Liu (Liu 2008)
for a description of multiple ways of network creation from dependency treebanks.

For the present work, we used a Chinese treebank of 37,024 tokens, which is
composed of 2 sections of different styles:

• “ ” xin-wen-lian-bo ‘news feeds’, hereinafter referred to as XWLB, is
a transcription of a famous Chinese TV news program. The style of text is quite
formal. The section contains 17,061 words.

• “ ” shi-hua-shi-shuo ‘straight talk’ (name of a famous Chinese talk
show), hereinafter referred to as SHSS, is more colloquial, containing sponta-
neous speech appearing in interviews of people of various social backgrounds.
The section contains 19,963 words. The text of this section was based on the
transcription provided by the program group of SHSS. The transcription con-
sists in plain text that includes the marks of speaking persons. For our study, we
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used only the text that contains the conversation sentences without the marks of
speaking persons.

Both sections have been annotated manually as described in Liu (2006). Table 1
shows the file format of this Chinese dependency treebank, which is similar to the
CoNLL dependency format, although a little more redundant (double information
on the governor’s POS) to allow for easy exploitation of the data in a spreadsheet
and converting to language networks. The data can be represented as a dependency
graph as shown in Fig. 1.

Table 1 Annotation of a sample sentence in the Treebank: zhe-shi-yi-ge-bo-luo ‘this is a
pineapple’

Sentence Dependent Governor Dependency

Order Order Character POS Order Character POS type

S1 1 zhe pronoun 2 shi verb subject
S1 2 shi verb 6 . punctuation main governor
S1 3 yi numeral 4 ge classifier compl. of classifier
S1 4 ge classifier 5 boluo noun attributer
S1 5 boluo noun 2 shi verb object
S1 6 . punctuation

.
This is a (classifier) pineapple .

subj qc atr

obj

s

Fig. 1 The graph of the dependency analysis of zhe-shi-yi-ge-bo-luo ‘this is a pineapple’

The POS tagging and dependency annotation is done on the transcribed texts.
As the treebank are built with texts of very different styles, the research findings,
despite the limited size of the treebank, may be seen as generally applicable to the
language as a whole, not register specific. Another benefit of the double nature of
the data is that we can do comparative work based on these 2 sections.

With words as nodes, dependencies as arcs, and the frequency of the dependen-
cies as the value of arcs, we can build a network. For example, the dependency tree
in Fig. 1 can be converted to a network as shown in Fig. 2 (excluding punctuation).

Following the same principle, our Chinese treebank can be converted into a net-
work as shown in Fig. 3, a visualization that gives an impression of the global struc-
ture of the treebank.
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Fig. 2 Network of zhe-
shi-yi-ge-bo-luo ‘this is a
pineapple’

(classifier)

a

pineapple

is

This

1

1

1

1

Fig. 3 The network of our Chinese treebank
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The resulting network has the following properties: it is fully connected and there
are no isolated vertices, it is a small word and has a scale-free structure. As we
mentioned before, only limited language characteristics can be directly derived from
this big picture. What we need to do is to look into the structure, concentrating on
some specific words in this big network, an approach that has brought about some
interesting findings (Čech et al. 2011). The first step is to decide on the words we
wanted to look into: function words.

3 Chinese Function Words

Chinese is an isolating language, relying primarily on function words and word
order rather than rich morphological information to encode functional relations be-
tween elements (Levy and Manning 2003). This means that there is (with the ex-
ception of plural) no distinction between word forms and lemmas. In the following,
therefore, we simply use the term ‘word’. Function words are generally words that
express grammatical relationships among other words with a sentence or specify the
attitude or mood of the speaker (Klammer et al. 2000), having little lexical mean-
ing. In Chinese, function words include prepositions, conjunctions, and auxiliary
and modal particles (Yu 1998).

As in any language, function words distinguish themselves not only by their syn-
tactic properties, but also simply by their frequency. The words we are interested in
are among the most common Chinese words: de ‘ablative cause suffix or posses-
sive particle similar to the English genitive marker ’s’, 1 zai ‘(to be located) in
or at’, le ‘perfective aspect marker or modal particle intensifying the preceding
clause’.

We compared the frequent function words in XWLB, SHSS, and the Modern
Chinese Frequency Dictionary and found that there are three function words that
appear in all these three resources, namely de, zai and le. The frequency information
of these three function words is shown in Table 22 and these three function words
are the objects we want to observe in the language networks.

The differences in word distribution between the two kinds of texts are mostly
due to the lexical poverty of spontaneous speech (SHSS), resulting in higher fre-
quencies (of the smaller number of types) in SHSS. Moreover, the notably higher
relative frequency of le in SHSS can be explained by the fact that the usage of le as
an intensifier is typical for spontaneous oral language. Inversely, zai can be omitted
before locatives in oral Chinese.

1 In Chinese, zai may be a verb, adverb or preposition. Here we only refer to the preposition.
2 Considering the size of XWLB and SHSS, we only paid attention to the function words

whose frequency is in the top 30 of all words that have shown in these transcriptions.
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Table 2 The frequency information of the three function words de, le and zai. R: rank, F1:
frequency, W : function word, F2: frequency in 10,000, MCFD: Modern Chinese Frequency
Dictionary∗.

XWLB SHSS MCFD

R F1 W R F1 W R F2 W

1 930 de 1 1,051 de 1 69,080 de
3 223 zai 6 429 le 2 26,342 le
4 202 le 21 124 zai 6 13,438 zai

* In Chinese, le and zai also can be content words even though these phenomena are not common.
The Modern Chinese Frequency Dictionary doesn’t distinguish these difference but we believe
the deviation of the data won’t change the fact that these two function words are among the
most common Chinese words.

4 Chinese Function Words in the Language Networks

4.1 Network Properties of Chinese Function Words

With the XWLB and SHSS syntactic networks, we studied several important net-
work parameters: degree, out-degree, in-degree, closeness, in-closeness, out-
closeness, and betweenness.

The degree of a vertex (a word) refers to the number of its neighbors. This vari-
able specifies the number of different word types which are connected with a spe-
cific word. The directions of the arcs make the distiction between in-degree and
out-degree. The in-degree of a word node is the number of arcs it receives while the
out-degree is the number of arcs it sends. Reformulated linguistically, the in-degree
reflects the number of governors of a word, and the out-degree reflects the number
of a word’s dependents.

The term ‘closeness’ is short for closeness centrality. It is measured by the in-
verse of the sum of the lengths of the paths to every other vertex. The larger the sum,
the smaller the closeness. The same holds for in-closeness and out-closeness, save
that in-closeness only counts the paths that point to the vertex in question, while
the out-closeness only counts the paths that point away from it. In linguistics, these
indices may describe the constructive complexity of language units that include a
specific word, the vertex, because, as shown in Fig. 4, the paths in a syntactic net-
work correspond to the vertical tree structures in treebanks and therefore somewhat
reflect the layers of the language structures.

The more layers the language structures have, the more complicated they are to
process for humans and machines. Since closeness, in-closeness, and out-closeness
are related to the paths, they may be able to describe the constructive complexity
of language units: higher closeness probably indicate smaller syntactic constructive
complexity of language units including a specific word.

‘Betweenness’ is short for betweenness centrality. It is a measure of a node’s cen-
trality in a network. It is measured by the number of shortest paths that pass through
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Fig. 4 Correspondence of paths in the network and the trees in the treebank

that node. Linguistically, the betweenness reflects the importance and unavoidability
of a word in the whole language network or system.

These network properties of the three function words are shown in Table 3.
In our study, although the sizes of the original texts of XWLB and SHSS are

similar in terms of word tokens, the sizes of the XWLB and SHSS networks are
quite different due to the difference in the lexical richness (word types). In order to
make the data more comparable, we standardized the original data. The results are
shown in Table 3. The table clearly shows that:

• le has a zero out-degree, out-closeness, and betweenness because it cannot gov-
ern other words in our analysis of Chinese while zai and de have both in-degree
and out-degree.

• de has the maximum value, that is, 1, for degree, in-degree, closeness, in-
closeness, and betweenness for both XWLB and SHSS. These parameters show
that de is the most important word, the center, in the syntactic networks.
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Table 3 The frequency information of the three function words le, de and zai. R: rank, F1:
frequency, W : function word, F2: frequency in 10,000, SD: standardized degree, SOD: stan-
dardized out-degree, SID: standardized in-degree, SOC: standardized closeness, SOC: stan-
dardized out-degree, SIC: standardized in-degree, SB: standardized betweenness, MCFD:
Modern Chinese Frequency Dictionary∗.

Features le zai de

XWLB SHSS XWLB SHSS XWLB SHSS

degree 133 234 222 131 964 830
SD 0.14 0.28 0.23 0.16 1 1
out-degree 0 0 88 61 504 405
SOD 0 0 0.17 0.12 1 0.82
in-degree 133 234 134 70 460 425
SID 0.29 0.55 0.29 0.16 1 1
closeness 0.35 0.44 0.41 0.44 0.50 0.56
SC 0.70 0.79 0.82 0.79 1 1
out-closeness 0 0 0.26 0.28 0.37 0.40
SOC 0 0 0.65 0.60 0.92 0.85
in-closeness 0.16 0.23 0.18 0.21 0.22 0.28
SIC 0.72 0.83 0.83 0.78 1 1
betweenness 0 0 0.03 0.01 0.32 0.27
SB 0 0 0.09 0.05 1 1

* In Chinese, le and zai also can be content words even though these phenomena are not common.
The Modern Chinese Frequency Dictionary doesn’t distinguish these difference but we believe
the deviation of the data won’t change the fact that these two function words are among the
most common Chinese words.

• le has zero betweenness, which means that it is not a global central node of the
networks. However, it does have a high degree which indicates it as a local central
node.

• In many ways, zai is a word somewhere between de and le. It has a high degree
which means that it is a local central node. At the same time, its closeness and
betweenness are higher than that of de and lower than that of le. So its importance
for the global structure is also between these two words.

• le’s degree is higher in SHSS than in XWLB, which shows that the combinatory
possibilities of le are more diverse in spontaneous speech. On the contrary, words
that zai can connect with are more diverse in written style, especially when it
comes to the in-degree, or rather, the words can zai syntactically depend on.



196 X. Chen and H. Liu

4.2 Network Manipulation

One advantage of the language network model is that it views a language as a con-
nected system. Without the language network approach, describing the language
system is more like talking about an unspecified abstract structure. The language
network model gives a more specific structure to the language system and provides
different computational tools that have proven to be successful in sociology and
computer science, able to describe the different elements of, as in our case, a lan-
guage system. So we tried to manipulate the XWLB and SHSS networks to find
out the roles of the three chosen function words in the language networks systems.
The way we tried follows a very simple logic. If you want to know the function
of one element in a system, the simplest way is to remove it from the system and
see what the consequences are. We respectively removed the vertices representing
zai, de, and le from XWLB and SHSS language networks to see what consequences
these removals may bring about with regard to some important network features,
including the number of vertices, the number of isolated vertices, average degree,
the average path length, and the diameter before and after removing the vertex. The
results are shown in Table 4.

Table 4 The network data before and after removing the function words. Num: Numbers of
vertices, IV: Isolated Vertices, AD: Average Degree.

network Num IV AD APL DR

XWLB

original 4,011 0 6.15 3.58 12
de removed 4,010 42 5.67 3.93 12
le removed 4,010 0 6.09 4.56 20
zai removed 4,010 17 6.04 4.59 20

SHSS

original 2,601 0 8.56 3.05 9
de removed 2,600 57 7.92 3.25 10
le removed 2,600 0 8.38 3.95 13
zai removed 2,600 5 8.46 3.96 13

The numbers of vertices are the numbers of word types in the treebank. Although
the sizes of XWLB and SHSS are similar, the numbers of vertices of XWLB and
SHSS networks, or the sizes of the networks, are obviously different due to the
difference in lexical richness.

The isolated vertices are those vertices without any neighbors. This is particu-
larly interesting. According to the data, removing the most frequent word de caused
the most isolated vertices in both XWLB and SHSS but there are no isolated ver-
tices after removing le. All the remained vertices are still fully connected. So, if we
see the network as the model of the syntactic structure of the language as revealed
in the treebank, then removing le seems to cause no significant trouble here. The
whole structure didn’t suffer from a systematic collapse, even though le was a high
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frequency word with very high degrees. At the same time, removing zai caused iso-
lated vertices in XWLB and SHSS networks, though the zai has lower frequency
than le in the treebank and lower degrees in the network. In other words, removing
this word node from the network led to systematic collapse. The reason is simple:
le can only be a dependent. As Fig. 5 shows: In the simple full connected network
there is a vertex A that only has in-degree and no out-degree. Therefore, vertex A is
dependent and requires a governor vertex. Furthermore, since you can’t reach any
other vertex via A, A doesn’t convey any unique information between its neighbors.
In other words, removing A from the network won’t render any vertex isolated. In
most of network-based linguistic studies, language networks were treated as undi-
rected so it is considered that removing le from undirected networks may give a
more abstract picture of the overall importance of this word. But even if we treated
the network in Fig. 5 as undirected, removing vertex A still does not create any iso-
late vertex. It seems that whether removing a word node would cause a systematic
collapse is irrelevant with the types of links, directed or undirected, in a network.

Fig. 5 A simple network
example

A

This result fits a common sense in syntax that the governors are somehow more
important than dependents when it comes to the structural completeness of sen-
tences. But it is very difficult to quantify this syntactic importance. We can see that
these three function words, though all having high frequency and high degrees, play
very different roles in the system. As a result, it seems safe to claim that de is the
most important function word and zai is more important than le in this network, or
the syntactic system. In other words, the syntactic importance of specific words can
be quantified in this way. Developing a numeric scale of a well-defined notion of
syntactic importance is left for future research.

Since le, de, and zai are all frequent words with high degrees, removing them
from the network reduces the average degree of the networks, which is correlated
with the degree of the removing word.

Other interesting parameters are the average path length and the diameter. Our
study shows that removing de didn’t cause the increase of the diameter of the XWLB
while removing le or zai did. Although removing de caused a slight increase of the
diameter in SHSS, removing le or zai reached a higher number. The diameter is
highly correlated with the size of the network. Since the size of the two networks
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are quite different, it is not so easy to define the real reason or reasons behind these
phenomena but it may be of some help to compare the phenomena in the same
network. It is obvious that removing le or zai would influence the diameter of the
networks more than removing de. Since the diameter is defined by the biggest dis-
tance of any two vertexes in the network, removing de did not change the distance at
all in XWLB and increase the diameter from 9 to 10 in SHSS while removing le or
zai made the distance increased by 8, or, by 66.67%, in XWLB and 4, or, 44.44%,
in SHSS.

Removing three function words all caused the increase of the average path length.
Removing de caused the least increase, removing le cased more increase, and re-
moving zai caused the most increase in both XWLB and SHSS.

Diameter and average path length are two parameters related to the distance be-
tween nodes. Linguistically, they can be seen as the index of ‘how any two words
are connected with each other?, how many intermediate words bridge these two
words? And what there intermediate words are?’. As mentioned before, the data
showed that removing le or zai would bring about more distance between words
than removing de does, although de is the center of the whole networks. The rea-
son is related to these two words’ ability in creating short cuts for other words and
the irreplaceability of this ability. As the center of networks, there are many paths
passing the node de and according to the closeness of de, we can see that de has the
shortest distance to all the other words. But removing de from the networks didn’t
create much trouble for other words to connect each other. The reason is either de
doesn’t have the ability of ‘creating short cuts for other words’ or this node has this
ability but it is replaceable. Removing le and zai caused more trouble, because le
and zai have this ability and they are irreplaceable. No other words can completely
replace their connecting roles. It also explains why the function word le is only a
local central node, but has a very high frequency: it can irreplaceably ‘create short
cuts’. The best explanation for this, to our mind, is that people tend to save time and
energy when sentences are understandable and make use of such system-inherent
properties of words we investigated here.

5 Conclusion

This paper addresses the importance of developing network techniques of treebank
exploitation for syntactic research ranging from theorem verification to discovery of
new relations invisible to the eye.

We attach much importance in particular to the network tools and show how a
treebank can, and, in our view, should be seen as a unique network.

We have shown in more detail, by comparing the function words le, de, and zai,
that the frequency of words is not equivalent to the word’s importance in the syn-
tactic structure, pointing to a notion that we may call the syntactic centrality of the
word. The importance in the syntactic structure is still a vague notion that needs to
be refined further, but simple network manipulations like removal of the word nodes
in question can reveal properties of the words that seem to be closely related to the
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their structural roles. For example, a word A whose removal breaks the network in
parts is clearly more important than a word B whose removal preserves the con-
nectedness of the network (as the word only occupies marginal nodes). Since the
results shown in this paper confirm well-known facts concerning these three func-
tion words, the same method can be applied to other function words, and perhaps
content words as well. Ongoing research includes analysis of following words: wo
‘I, me, myself’, shi ‘are, am, yes’, ge ‘individual, entries’, yi ‘one, single’, zhe ‘this,
it,these’, bu ‘do not, need not’, ta ‘he, him’, shuo ‘speak, talk, say’, ren ‘person,
people, human being’, and dao ‘arrive, reach, get to’.

We leave above words for further research, aiming to develop the notion of syn-
tactic centrality into a quantifiable value that could allow quantitative comparison
between any words.

This study shows that the language network approach can provide not only an
easy and direct access to getting a graphic output but also a fresh perspective on
language analyzing.
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nikov, O., Blanchard, P.: Evolution of Romance language in written communication: Net-
work analysis of late Latin and early Romance corpora. Leonardo 44(3), 244–245 (2011)

Mehler, A., Lücking, A., Menke, P.: Assessing Cognitive Alignment in Different Types of
Dialog by Means of a Network Model. Neural Networks 32, 159–164 (2012)

Mehler, A., Lücking, A., Weiß, P.: A Network Model of Interpersonal Alignment in Dialog.
Entropy 12(6), 1440–1483 (2010)

Mukherjee, A., Choudhury, M., Ganguly, N., Basu, A.: Language Dynamics in the Frame-
work of Complex Networks: A Case Study on Self-organization of the Consonant Invento-
ries. In: Villavicencio, A., Poibeau, T., Korhonen, A., Alishahi, A. (eds.) Cognitive Aspects
of Computational Language Acquisition, pp. 51–78. Springer, Netherlands (2013)

Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Network Analysis with Pajek. Cambridge
University Press, New York (2005)

Peng, G., Minett, J.W., Wang, W.S.Y.: The Networks of Syllables and Characters in Chinese.
Journal of Quantitative Linguistics 15(3), 243–255 (2008)

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N.,
Schwikowski, B., Ideker, T.: Cytoscape: A Software Environment for Integrated Models
of Biomolecular Interaction Networks. Genome Research 13(11), 2498–2504 (2003)

Watts, D.J., Strogatz, S.H.: Collective Dynamics of ’Small-world’ Networks. Na-
ture 393(6684), 440–442 (1998)

Yu, S.: Modern Chinese Grammatical Information Dictionary Explanation. Tsinghua Univer-
sity, Beijing (1998)

Yu, S., Liu, H., Xu, C.: Statistical Properties of Chinese Phonemic Networks. Physica
A 390(7), 1370–1380 (2011)



Non-crossing Dependencies: Least Effort, Not
Grammar

Ramon Ferrer-i-Cancho

Abstract. The use of null hypotheses (in a statistical sense) is common in hard
sciences but not in theoretical linguistics. Here the null hypothesis that the low fre-
quency of syntactic dependency crossings is expected by an arbitrary ordering of
words is rejected. It is shown that this would require star dependency structures,
which are both unrealistic and too restrictive. The hypothesis of the limited re-
sources of the human brain is revisited. Stronger null hypotheses taking into account
actual dependency lengths for the likelihood of crossings are presented. Those hy-
potheses suggests that crossings are likely to reduce when dependencies are short-
ened. A hypothesis based on pressure to reduce dependency lengths is more parsi-
monious than a principle of minimization of crossings or a grammatical ban that is
totally dissociated from the general and non-linguistic principle of economy.

1 Introduction

A substantial subset of theoretical frameworks under the general umbrella of “gen-
erative grammar” or “generative linguistics” have been kidnapped by the idea that
a deep theory of syntax requires that one neglects the statistical properties of the
system (Miller and Chomsky 1963) and abstracts away from functional factors such
as the limited resources of the brain (Chomsky 1965).

This radical assumption disguised as intelligent abstraction led to the distinction
between competence and performance (see Jackendoff 1999, Sect. 2.4 for a histori-
cal perspective from generative grammar), a dichotomy that is sometimes regarded
as a soft methodological division (Jackendoff 1999, p. 34) or as theoretically un-
motivated (Newmeyer 2001). A sister radical dichotomy is the division between
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Fig. 1 Top an English sentence without crossings. Bottom a variant of the previous sentence
with one dependency crossing (the dependency between “saw” and “yesterday” crosses the
dependency between “dog” and “was” and vice versa). Adapted from McDonald et al. (2005).

grammar and usage (Newmeyer 2003). A revision of those views has led to the
proposal of competence-plus, “a package consisting of the familiar recursive state-
ments of grammatical rules, plus a set of numerical constraints on the products
of those rules” (Hurford 2012). Interestingly, certain approaches reconcile com-
petence with performance by regarding grammar as a store of “frozen” or “fixed”
performance preferences (Hawkins 2004, p. 3) or by opening the set of numerical
constraints of competence-plus to performance factors (Hurford 2012). Other ex-
amples of approaches that reject the dichotomous view of language are emergent
grammar (Hopper 1998), synergetic linguistics (Köhler 2005) or probabilistic syn-
tax (Manning 2002). The challenges of the competence/performance are not specific
to generative linguistics. For instance, “the competence/performance distinction is
also embodied in many symbolic models of language processing” (Christiansen and
Chater 1999) and integrated with some refinements in language evolution research
(Hurford 2012).

Again from the perspective of standard model selection (Burnham and Anderson
2002), the competence/performance dichotomy, even in soft versions, has a seri-
ous risk: if a more parsimonious theory exists based on performance, one that has
the same or even superior explanatory power, it may not be discovered and if so, it
will not be sufficiently endorsed. Astonishingly, linguistic theories that belittle the
role of the limited resources of the human brain for structural constraints of syntax
are presented as minimalistic (e.g. Chomsky 1995). In contrast, standard model se-
lection favors theories with a good compromise between simplicity (often coming
from a suitable abstraction or idealization) and explanatory power (Burnham and
Anderson 2002).

A follower of the competence-performance split may consider that the oppo-
nents are unable to think in sufficiently abstract terms: opponents are being side-
tracked by actual language use and limited computational resources and do not
focus on the essence of syntax (in those views the essence of syntax is grammar
(Newmeyer 2003) or certain features of such as recursion (Hauser et al. 2002);
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in other approaches the essence of syntax is not grammar but dependencies (Hudson
2007; Frank et al. 2012)). The proponents of the split doctrine have not hesitated ei-
ther to advertise functional approaches to linguistic theory as wrong (Miller 1968)
or to attempt to dismantle attempts to turn research on language or communica-
tion more quantitative (e.g. Miller and Chomsky 1963; Niyogi and Berwick 1995;
Suzuki et al. 2005). A real scientist however, will ask for the quality of a theory or
a hypothesis in terms of the accuracy of its definitions, its testability, the statistical
analyzes that have been performed to support it, the null hypotheses, the trade-off
between explanatory power and parsimony of the theory, and so on.

If the limited resources of the brain are denied, one might be forced to blame
grammar for the occurrence of certain patterns. Using standard model selection
terms (Burnham and Anderson 2002), forwarding the responsibility to grammar im-
plies the addition of more parameters to the model, indeed unnecessary parameters,
as it will be shown here through a concrete phenomenon. The focus of the cur-
rent article is a striking pattern of syntactic dependency trees of sentences that was
reported in the 1960s: dependencies between words normally do not cross when
drawn over the sentence (Lecerf 1960; Hays 1964) – e.g., Fig. 1. The problem of
dependency crossings looks purely linguistic but it goes beyond human language:
crossings have also been investigated in dependency networks where vertices are
occurrences of nucleotides A, G, U , and C and edges are U-G and Watson-Crick
base pairs, i.e. A-U , G-C (Chen et al. 2009). Having in mind various domains of
application helps a researcher to apply the right level of abstraction. Becoming a
specialist in human language or certain linguistic phenomena helps to find locally
optimal theories, causes the illusion of scientific success when becoming the world
expert of a certain topic but does not necessarily produce compact, coherent, general
and elegant theories.

Here new light is shed on the origins of non-crossing dependencies by means
of two fundamental tools of the scientific method: null hypotheses and unrestricted
parsimony (unrestricted parsimony in the sense of being a priori open to favor theo-
ries that make fewer assumptions; not in the sense that parsimony has to be favored
neglecting explanatory power). Unfortunately, the definition of null hypotheses (in
a statistical sense) is rare in theoretical linguistics (although it is fundamental in bi-
ology or medicine). Even in the context of quantitative linguistics research, clearly
defined null hypotheses or baselines are present in certain investigations (e.g. Ferrer-
i-Cancho, Hernández-Fernández, et al. 2013; Ferrer-i-Cancho 2004) but are missing
in others (e.g. Ferrer-i-Cancho and Moscoso del Prado Martı́n 2011; Moscoso del
Prado 2013). When present, they are not always tested rigorously (Ferrer-i-Cancho
and Elvevåg 2009). In the context of quantitative research, claims about the effi-
ciency of language have been made lacking a measure of cost and evidence that
such a cost is below chance (Piantadosi et al. 2011). A deep theory of language
requires (at least) metrics of efficiency, tests of their significance and an understand-
ing of the relationship between the minimization of the costs that they define and the
emergence of the target patterns, e.g., Zipf’s law of abbreviation (Ferrer-i-Cancho,
Hernández-Fernández, et al. 2013).
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To our knowledge, claims for the existence of a universal grammar have never
been defended by means of a null hypothesis in a statistical sense (e.g. Jackendoff
1999; Uriagereka 1998), and a baseline is missing in research where grammar is
seen as a conventionalization of performance constraints (Hawkins 2004) or in re-
search where competence is complemented with quantitative constraints (Hurford
2012). As for the latter, baselines would help one to determine which of those con-
straints must be stored by grammar or competence-plus.

The first question that a syntactician should ask as a scientist when investigating
the origins of a syntactic property X is: could X happen by chance? The question is
equivalent to asking if grammar (in the sense of some extra knowledge) or specific
genes are needed to explain property X . Accordingly, the major question that this ar-
ticle aims to answer is: could the low frequency of crossings in syntactic dependency
trees be explained by chance, maybe involving general computational constraints of
the human brain?

The remainder of the article is organized as follows. Section 2 reviews our min-
imalistic approach to the syntactic dependency structure of sentences. Section 3
considers the null hypothesis of a random ordering of the words of the sentence
and shows that keeping the expected number of crossings small requires unrealistic
constraints on the ensemble of possible dependency trees (only star trees would be
possible). Section 4 considers alternative hypotheses, discarding the vague or heavy
hypothesis of grammar and focusing on two major hypotheses: a principle of min-
imization of crossings and a principle of minimization of the sum of dependency
lengths. The analysis suggests that the number of crossing and the sum of depen-
dency lengths are not perfectly correlated but their correlation is strong. Of the two
principles, dependency length minimization offers a more parsimonious account of
many more linguistic phenomena. Interestingly, that principle is motivated by the
need of minimizing cognitive effort. A challenge for the hypothesis that the rather
small number of crossings of real sentence is a side-effect of minimization of de-
pendency lengths is (a) determining the degree of that minimization that the real
number of crossings requires and (b) if that degree is realistic. Section 5 presents
a stronger null hypothesis that addresses the challenge with knowledge about edge
lengths. That null hypothesis allows one to predict the number of crossings when
the length of one of the edges potentially involved in a crossing is known but words
are arranged at random. Thus, that predictor uses the actual dependency lengths to
estimate the number of crossings. Interestingly, that predictor provides further sup-
port for a strong correlation between crossings and dependency lengths: analytical
arguments suggest that it is likely that a reduction of dependency lengths causes a
drop in the number of crossings. Section 6 considers another predictor based on a
stronger null hypothesis where the sum of dependency lengths is given but words
are arranged at random. Preliminary numerical results indicate a strong correlation
between the mean number of crossings and the sum of dependency lengths over all
the possible orderings of the words of real sentences. Interestingly, that null hypoth-
esis leads to a predictor that requires less information about a real sentence than
the previous predictor (only the sum of dependency lengths is needed) and paves
the way to understanding the rather low number of crossings in real sentences as a
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consequence of global cognitive constraints on dependency lengths. Section 7 com-
pares the predictions of the three predictors on a small set of sentences. The results
suggest that the predictor based on the sum of dependency lengths is the best can-
didate. There it is also demonstrated that p-value testing can be used to investigate
the adequacy of the best candidate. Interestingly, the best candidate was not rejected
in that sample of sentences. Finally, Section 8 reviews and discusses the idea that
least effort, not grammar, is the reason for the small number of crossings of real
sentences.

2 The Syntactic Dependency Structure of Sentences

This article borrows the minimalistic approach to the syntactic dependency struc-
ture of sentences of dependency grammar (Hudson 1984; Mel’čuk 1988) and recent
progress in cognitive sciences (Frank et al. 2012):

• No hierarchical phrase structure is assumed in the sense that the structure of
a sentence is defined simply as a tree where vertices are words and edges are
syntactic dependencies. This is a fundamental assumption of our approach: ten-
tatively, the network defining the dependencies between words might be a discon-
nected forest or a graph with cycles – these are possibilities that have not been
sufficiently investigated (Hudson 1984). A general theory of crossings in nature
cannot obviate the fact that RNA structures cannot be modeled with trees but can
be modeled with forests (Chen et al. 2009).1 Although the choice of a tree of
words as the reference model for sentence structure (e.g. McDonald et al. 2005)
is to some extent arbitrary, a tree is optimal for being the kind of network that is
able to connect all words with the smallest amount of edges (Ferrer i Cancho and
Solé 2003).

• Words establish direct relationships that are not necessarily mediated by syntac-
tic categories (non-terminals in the phrase structure formalism and generative
grammar evolutions). This skepticism about syntactic categories (as entities by
its own, not epiphenomena) goes beyond dependency grammar, e.g., construction
grammar (Goldberg 2003).

Along the lines of Frank et al. (2012), link direction is irrelevant for the arguments
in this article. Even within the dependency grammar formalism, dependencies are
believed to be directed (from heads to modifiers/complements; Mel’čuk 1988; Hud-
son 1984). A minimalistic approach to dependency syntax should not obviate the
fact that the accuracy of dependency parsing improves if link direction is neglected
(Gómez-Rodrı́guez et al. 2014).

1 In those RNA structures, vertex degrees do not exceed one (Chen et al. 2009) and thus
cycles are not possible but connectedness is not either (the handshaking lemma (Bollobás
1998, p. 4) indicates that such a graph cannot have more than n/2 edges, being n the
number of vertices, and thus cannot be connected because that needs at least n−1 edges).
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3 The Null Hypothesis

Let n be the number of vertices of a tree. Let ki be the degree of the i-th vertex of a
tree and k1, ...,ki, ...,kn its degree. By Kα , we denote

Kα =
n

∑
i=1

kα
i , (1)

where α is a natural number. In a tree, K1 only depends on n, i.e. (Noy 1998),

K1 = 2(n− 1) (2)

and thus the 1st moment of degree is

〈k〉= K1

n
= 2− 2

n
. (3)

Let E0[C] be the expected number of crossings in a random linear arrangement
of a dependency tree with a given degree sequence, i.e. (Ferrer-i-Cancho 2013b)

E0[C] =
n
6

(
n− 1− 〈

k2〉) , (4)

where
〈
k2
〉

is the 2nd moment of degree, i.e.

〈
k2〉=

K2

n
. (5)

Thus, the expected number of crossings depends on the number of vertices (n) and
the 2nd moment of degree (

〈
k2
〉
). The higher the hubiness (the higher

〈
k2
〉
) the

lower the expected number of crossings.

Fig. 2 Linear arrangements
of trees of nine vertices.
Top a linear tree. Center
quasi-star tree. Bottom star
tree.

A star tree is a tree with a vertex of degree n−1 while a linear tree is a tree where
no vertex degree exceeds two (Fig. 2; Ferrer-i-Cancho 2013b). For a given number
of vertices, E0[C] is minimized by star trees, for which E0[C] = 0, whereas E0[C]
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is maximized by linear trees, for which (Ferrer-i-Cancho 2013a; Ferrer-i-Cancho
2013b)

E0[C] =
1
6

n(n− 5)+ 1. (6)

As E0[C] depends on the
〈
k2
〉

of the tree, the null hypothesis that the tree struc-
tures are chosen uniformly at random among all possible labeled trees is considered
next. The Aldous-Brother algorithm allows one to generate uniformly random la-
beled spanning trees from a graph (Aldous 1990; Broder 1989). Here a complete
graph is assumed to be the source for the spanning trees. A low number of crossings
cannot be attributed to grammar if E0[C] is low.

E0[C] is the expectation of C given a degree sequence. Indeed, that expectation
can be obtained just from knowledge about

〈
k2
〉

and n (Eq. (4)). The expectation of
C for uniformly random labeled trees is

Proposition 3.1

E[E0[C]] =
1
6
(n− 1)

(

n− 5+
6
n

)

=
n2

6
− n+

11
6

− 1
n
. (7)

Proof. On the one hand, the degree variance for uniformly random labeled trees is
(Moon 1970; Noy 1998)

V [k] =
〈
k2〉−〈k〉2 =

(

1− 1
n

)(

1− 2
n

)

. (8)

Applying Eq. (3), it is obtained

〈
k2〉=

(

1− 1
n

)(

5− 6
n

)

. (9)

On the other hand,

E[E0[C]] = E
[n

6

(
n− 1− 〈

k2〉)
]

applying Eq. (4)

=
n
6

(
n− 1−E

[〈
k2〉])

=
n
6

(

n− 1−
(

1− 1
n

)(

5− 6
n

))

applying Eq. (9)

=
1
6
(n− 1)

(

n− 5+
6
n

)

.

��
Figure 3 shows that uniformly random labeled trees exhibit a high value of E0[C]

that is near the upper bound defined by linear trees. Thus, it is unlikely that the rather
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low frequency of crossings in real syntactic dependency trees (Mel’čuk 1988; Liu
2010) is due to uniform sampling of the space of labeled trees. However, one cannot
exclude the possibility that real dependency trees belong to a subclass of random
trees for which E0[C] is low (e.g., the uniformly random trees may not be spanning
trees of a complete graph). This possibility is explored next.

A quasi-star tree is defined as a tree with one vertex of degree n−2, one vertex of
degree 2 and the remainder of vertices of degree 1 (Fig. 2). A quasi-star tree needs
n ≥ 3 to exist (Appendix). The sum of squared degrees of such a tree is (Appendix)

Kquasi
2 = n2 − 3n+ 6 (10)

and thus the degree 2nd moment of a quasi-star tree is

〈
k2〉quasi

=
Kquasi

2

n
= n− 3+

6
n
. (11)

Eq. (4) and Eq. (11) allow one to infer that

E0[C] =
n
3
− 1 (12)

for a quasi-star tree. Figure 3 shows the linear growth of the expected number of
crossings as a function of the number of vertices in quasi-star trees. Interestingly, if a

tree has a value of
〈
k2
〉

that exceeds
〈
k2
〉quasi

, it has to be a star tree (see Appendix).
For this reason, Fig. 3 suggests that star trees are the only option to obtain a small
constant number of crossings. A detailed mathematical argument will be presented
next.

If it is required that the expected number of crossings does not exceed a, i.e.
E0[C]≤ a, Eq. (4) gives

〈
k2〉≥ n− 1− 6a

n
. (13)

Notice that the preceding result has been derived making no assumption about the
tree topology. We aim to investigate when a E0[C]≤ a implies a star tree.

As a tree whose value of
〈
k2
〉

exceeds
〈
k2
〉quasi

must be a star tree (Appendix),
Eq. (13) indicates that if

n− 1− 6a
n

>
〈
k2〉quasi

(14)

then E0[C] ≤ a requires a star tree. Applying the definition of
〈
k2
〉quasi

in Eq. (11)
to Eq. (14), we obtain that a star tree is needed to expect at most a crossings if

n > 3a+ 3. (15)

Thus, Eq. (15) implies that a hub tree is needed to expect at most one crossings by
chance (a= 1) for n> 6 (this can be checked with the help of Fig. 3). In order to have
at most one crossing by chance, the structural diversity must be minimum because
star trees are the only possible labeled trees. To understand the heavy constraints
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Fig. 3 The expected number of crossings as a function of the number of vertices of the tree
(n) in random linear arrangements of vertices for linear trees (black solid line), uniformly
random labeled trees (gray line) and quasi-star trees (dashed line). Top the whole picture up
to n = 50. Bottom a zoom of the left-bottom corner.
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imposed by a = 1 on the possible trees, consider t(n), the number of unlabeled trees
of n that can be formed (Table 1). When n = 4, the only trees than can be formed
are a star tree and a linear tree, which gives t(4) = 2. In contrast, the star tree is only
one out of 19320 possible unlabeled trees when n = 16. The decrease in diversity
is more radical as n increases (Table 1). The choice of a = 2 does not change the
scenario so much: Equation (15) predicts that sentences of length n > 9 should have
a star tree structure if no more than two crossings are to be expected. Real syntactic
dependency trees from sufficiently longer sentences are far from star trees, e.g.,
Fig. 1 (Mel’čuk 1988; Hays 1964; Lecerf 1960).

Table 1 t(n), the number of unlabeled trees of n vertices (Seoane 2013)

n t(n) n t(n) n t(n)

1 1 8 23 15 7741
2 1 9 47 16 19320
3 1 10 106 17 48629
4 2 11 235 18 123867
5 3 12 551 19 317955
6 6 13 1301
7 11 14 3159

4 Alternative Hypotheses

It has been shown that the low frequency of crossings is unexpected by chance in
random linear arrangements of real syntactic dependency trees. As scientists, the
next step is exploring the implications of this test and evaluating alternative hy-
potheses. Vertex degrees (

〈
k2
〉
), which are an aspect of sentence structure, have

been discarded as the only origin for the low frequency of crossings. This is relevant
for some views where competence or grammar concern the structure of a sentence
(Chomsky 1965; Jackendoff 1999; Newmeyer 2003). Discussing what competence
or grammar is or should be is beyond the scope of this article but it is worth exam-
ining common reactions of language researchers when encountering a pattern:

• For statistical patterns such as Zipf’s law for word frequencies and Menzerath’s
law, it was concluded that the patterns are inevitable (Miller and Chomsky
1963; Solé 2010) – see Ferrer-i-Cancho and Elvevåg (2009) and Ferrer-i-Cancho,
Forns, et al. (2013) for a review of the weaknesses of such conclusions.

• Concerning syntactic regularities in general, a naive but widely adopted approach
is blaming (universal) grammar, the faculty of language or similar concepts
(Newmeyer 2003; Hauser et al. 2002). The fact that one is unable to explain
a certain phenomenon through usage is considered as a justification for grammar
(e.g. Newmeyer 2003). However, a rigorous justification requires a proof of the
impossibility of usage to account for the phenomenon. To our knowledge, that
proof is never provided.
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• In the context of dependency grammar, crossings dependencies have been banned
(Hudson 1984) or it has been argued that most phrases cannot have crossings or
that crossings turn sentences ungrammatical (Hudson 2007, p. 130). It is wor-
rying that the statement is not the conclusion of a proof of the impossibility of
a functional explanation. Furthermore, the argument of “ungrammaticality” is
circular and sweeps processing difficulties under the carpet.

In the traditional view of grammar or the faculty of language, the limited resources
of the human brain are secondary or anecdotal (Hauser et al. 2002; Hudson 2007).
Recurring to grammar or a language faculty implies more assumptions, e.g. gram-
mar would be the only reason why dependencies do not cross so often, and an expla-
nation about the origins of the property would be left open (the explanation would
be potentially incomplete). The property might have originated in grammar as a
kind of inevitable logical or mathematical property, or might be supported by ge-
netic information of our species, or it might also have been transferred to grammar
(culturally or genetically) and so on. Thus, a grammar that is responsible for non-
crossing dependencies would not be truly minimalistic (parsimonious) at all if the
phenomenon could be explained by a universal principle of economy (universal in
the sense of concerning the human brain not necessarily exclusively). This is likely
the case of current approaches to dependency grammar at least (e.g. Hudson 2007;
Mel’čuk 1988; Hudson 1984).

Fig. 4 A linear arrange-
ments of the vertices of a
linear tree that maximizes
D (the sum of dependency
lengths) when edge cross-
ings are not allowed.

4.1 A Principle of Minimization of Dependency Crossings

A tempting hypothesis is a principle of minimization of dependency crossings (e.g.
Liu 2008) which can be seen as a quantitative implementation of the ban of cross-
ings (Hudson 1984; Hudson 2007). This minimization can be understood as a purely
formal principle (a principle of grammar detached from performance constraints but
then problematic for the reasons explained above) or a principle related to perfor-
mance. A principle of the minimization of crossings (or similar ones) is potentially
problematic for at least three reasons:

• It is an inductive solution that may overfit the data.
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• It is naive and superficial because it does not distinguish the consequences (e.g.,
uncrossing dependencies) from the causes. A deep theory of language requires
distinguishing underlying principles from products: the principle of compression
(Ferrer-i-Cancho, Hernández-Fernández, et al. 2013) from the law of abbrevia-
tion (a product), the principle of mutual information maximization from vocabu-
lary learning biases (another product, Ferrer-i-Cancho 2013c), and so on.

• If patterns are directly translated into principles, the risk is that of constructing
a fat theory of language when merging the tentative theories from every domain.
When integrating the principle of minimization of crossings with a general theory
of syntax, one may get two principles: a principle of minimization of crossings
and a principle of dependency length minimization. In contrast, a theory where
the minimization of crossings is seen as a side-effect of a principle of dependency
length minimization (Ferrer-i-Cancho 2006; Liu 2008; Morrill et al. 2009; Ferrer-
i-Cancho 2013a) might solve the problem in one shot through a single principle
of dependency length minimization. However, it has cleverly been argued that
a principle of minimization of crossings might imply a principle of dependency
length minimization (Liu 2008) and thus a principle of minimization of crossings
might not imply any redundancy.

Thus, it is important to review the hypothesis of the minimization of dependency
length and the logical and statistical relationship with the minimization of C.

4.2 A Principle of Minimization of Dependency Lengths

The length of a dependency is usually defined as the absolute difference between the
positions involved (the 1st word of the sentence has position 1, the 2nd has position
2 and so on). In Fig. 1, the length of the dependency between “John” and “saw” is
2− 1 = 1 and the length of the dependency between “saw” and “dog” is 4− 2 = 2.
In this definition, the units of length are word tokens (it might be more precise if
defined in phonemes, for instance). If di is the length of the i-th dependency of a
tree (there are n− 1 dependencies in a tree) and g(d) is the cost of a dependency of
length d, the total cost of a linguistic sequence from the perspective of dependency
length is the total sum of dependency costs (Ferrer-i-Cancho 2014; Ferrer-i-Cancho
2015), which can defined as

D =
n

∑
i=1

g(di), (16)

where g(d) is assumed to be a strictly monotonically increasing function of d
(Ferrer-i-Cancho 2015). The mean cost of a tree structure is defined as 〈d〉 =
D/(n− 1). If g is the identity function (g(d) = d) then D is the sum of depen-
dency lengths (and 〈d〉 is the mean dependency length). It has been hypothesized
that D or equivalently 〈d〉 is minimized by sentences (see Ferrer-i-Cancho (2015)
for a review). The hypothesis does not imply that the actual value of D has to be the
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minimum in absolute terms. Hereafter we assume that g(d) is the identity function
(g(d) = d).

The minimum D that can be obtained without altering the structure of the tree
is the solution of the minimum linear arrangement problem in computer science
(Chung 1984). Another baseline is provided by the expected value of D in a random
arrangement of the vertices, which is (Ferrer-i-Cancho 2004)

E0[D] = (n− 1)(n+ 1)/3. (17)

Statistical analyzes of D in real syntactic dependency trees have revealed that D
is systematically below chance (below E0[D]) for sufficiently long sentences but
above the value of a minimum linear arrangement on average (Ferrer-i-Cancho
2004; Ferrer-i-Cancho and Liu 2014).

D is one example of a metric or score to evaluate the efficiency of a sentence
from a certain dimension (see Morrill (2000) and Hawkins (1998) for similar met-
rics on syntactic structures). Stating clearly the metric that is being optimized is a
requirement for a rigorous claim about efficiency of language. For instance, con-
sider the sentence on top of Fig. 5 and the version below that arises from the right-
extraposition of the clause “who I knew”. Notice that the dependency tree is the
same in both cases (only word order varies). It has been argued that theories of
processing based on the distance between dependents “predict that an extraposed
relative clause would be more difficult to process than an in situ, adjacent rela-
tive clause” (Levy et al. 2012). However, that does not grant one to conclude that
the sentence on top of Fig. 5 should be easier to process than the sentence below
from that perspective: one has D = 3× 1+ 2+ 4+ 6= 15 for the sentence without
the extraposition and D = 3×1+2×2+3 = 10 for the one with right-extraposition
suggesting that the easier sentence is precisely the sentence with right-extraposition.
The prediction about the cost of extraposition in Levy et al. (2012) is an incomplete
argument. The ultimate conclusion about the cost of extraposition requires consid-
ering all the dependency lengths, i.e. a true efficiency score. A score of sentence
locality is needed to not rule out prematurely accounts of the processing difficulty
of non-projective orderings that are based purely on “dependency locality in terms
of linear positioning” (Levy et al. 2012). The issue is tricky even for studies where
a quantitative metric of dependency length such as D is employed: it is important to
not mix values of the metric coming from sentences of different length to draw solid
conclusions about a corpus or a language (Ferrer-i-Cancho and Liu 2014). The need
of strengthening quantitative standards (Gibson and Fedorenko 2010) and also the
need of appropriate controls (Culicover and Jackendoff 2010; Ferrer-i-Cancho and
Moscoso del Prado Martı́n 2011; Moscoso del Prado 2013) in linguistic research are
challenges that require the serious commitment of each of us.
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Fig. 5 Top an English sentence with a relative clause (“who I knew”). Bottom the same
sentence with a right extraposition of the relative clause. Adapted from Levy et al. (2012).

4.3 The Relationship between Minimization of Crossings and
Minimization of Dependency Lengths

Let us examine the logical relationship between the two principles above from the
perspective of their global minima. On the one hand, the minimum value of C is
0 (Ferrer-i-Cancho 2013a) and the minimum value of D is obtained by solving the
minimum linear arrangement problem (Baronchelli et al. 2013) or a generalization
(Ferrer-i-Cancho 2015), which yields Dmin. At constant n and

〈
k2
〉
, there are two

facts:

• C = 0 does not imply D = Dmin in general. This can be shown by means of
two extreme configurations, a star tree, which maximizes

〈
k2
〉

and a linear tree,
which minimizes

〈
k2
〉

(Ferrer-i-Cancho 2013b):

– A star tree implies C = 0 (Ferrer-i-Cancho 2013a). In that tree, D = Dmin

holds only when the hub is placed at the center (Ferrer-i-Cancho 2015). If
the hub is placed at one of the extremes of the sequence, D is maximized for
that tree (Ferrer-i-Cancho 2015). Those results still hold when g(d) is not the
identity function but a strictly monotonically increasing function of d (Ferrer-
i-Cancho 2015). Furthermore, the placement of the hub in one extreme implies
the maximum D that a non-crossing tree (not necessarily a star) can achieve,
which is D = n(n− 1)/2 (Ferrer-i-Cancho 2013a).

– A linear tree can be arranged linearly with C = 0 and D = Dmin = n− 1 (as
in Fig. 2), which has no crossings and coincides with the smallest D than an
unrestricted tree can achieve (as di ≥ 1 and a tree has n−1 edges). In contrast,
a linear arrangement of the kind of Fig. 4 has C = 0 but yields D= n(n−1)/2,
i.e. the maximum value of D that a non-crossing tree can achieve (Ferrer-i-
Cancho 2013a).
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• D = Dmin does not imply C = 0 in general. It has been shown that a linear ar-
rangement of vertices with crossings can achieve a smaller value of D than that of
a minimum linear arrangement that minimizes D when no crossings are allowed
(Hochberg and Stallmann 2003) – Fig. 6.

Thus, there is not a clear relationship between the minima of D and C when one
abstracts from the structural properties of real syntactic dependency trees. The im-
pact of the real properties of dependency structures for the arguments should be
investigated in the future.

�

�
�

�

�

Fig. 6 Minimum linear arrangements of the same tree (only the length of edges that are
longer than unity is indicated). Top a minimum linear arrangement of a tree. The total sum
of dependency lengths is D = 4+ 2+ 3+ 14 = 23. Bottom a minimum linear arrangement
of the same tree when crossings are disallowed. The total sum of dependency lengths is
D = 6+3+15 = 24. Adapted from Hochberg and Stallmann (2003).

As for the statistical relationship between C and D, statistical analyzes support
the hypothesis of a positive correlation between both at least in the domain between
n− 1, the minimum value of D, and D = E0[D] (Ferrer-i-Cancho 2006; Ferrer-i-
Cancho 2013b). For instance, crossings practically disappear if the vertices of a
random tree are ordered to minimize D. The relationship between C and D in ran-
dom permutations of vertices of the dependency trees is illustrated in Fig. 7: C tends
to increase as D increases from D = Dmin onwards. Results obtained with similar
metrics (Liu 2008; Liu 2007) are consistent with such a correlation. For instance,
a measure of dependency length reduces in random trees when crossings are disal-
lowed (Liu 2007).

This opens the problem of causality, namely if the minimization of D may cause
a minimization of C, or a minimization of C may cause a minimization of D, or both
principles cannot be disentangled or simply both principles are epiphenomena (cor-
relation does not imply causality). Solving the problem of causality is beyond the
scope of this article but we can however attempt to determine rationally which of
the two forces, minimization of D or minimization of C, might be the primary force
by means of qualitative version of information theoretic model selection (Burnham
and Anderson 2002). The apparent tie between these two principles will be bro-
ken by the more limited explanatory power of the minimization of C. The point
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Fig. 7 Predictions about number of dependency crossings (C) as a function of the sum of
dependency lengths (D) for dependency trees of real sentences. E[C|D], the average C in all
the possible permutations with a given value of D (circles), is compared against the average
E1[C] in those permutations (squares). E1[C] is a prediction about C based on information on
the distance of just one of the vertices potentially involved in a crossing. The vertical dashed
line indicates the value of E0[D] and the horizontal line indicates the value of E0[C] (given
a tree, those values are easy to compute with the help of Eqs. (17) and (4), respectively).
The value of E[C|D] and its prediction is only shown for values of D achieved by at least
one permutation because certain values of D cannot be achieved by a given tree. For a given
tree, Dmin and Dmax are, respectively, the minimum and the maximum value of D that can be
reached (Dmin ≤ D ≤ Dmax). Top-Left sentence on top Fig. 1 with Dmin = 11, Dmax = 45,
E0[D] = 26 and E0[C] = 6. Top-Right sentence at the bottom of Fig. 1 with Dmin = 13,
Dmax = 57, E0[D] = 33 and E0[C] = 8. Even values of D are not found. Bottom-Left results
for the two sentences in Fig. 5 with Dmin = 7, Dmax = 25, E0[D] = 16 and E0[C] = 3. Notice
that the results are valid for the couple of sentences in Fig. 5 because they have the same
structure in a different order. For this reason it is not surprising that Dmin, Dmax, E0[D], E0[C]
and E[C|D] coincide. Interestingly, E1[C] turns out to be the same for both, too.
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is focusing on the phenomena that a principle of minimization of C cannot illumi-
nate. A challenge for that principle is the ordering of subject (S), object (O) and
verb (V). The dependency structure of that triple is a star tree with the verb as the
hub (Ferrer-i-Cancho 2015). A tree of less than four vertices cannot have crossings
(Ferrer-i-Cancho 2013a). Thus, C = 0 regardless of the ordering of the elements of
the triple. Interestingly, the principle of minimization of C cannot explain why lan-
guages abandon SOV in favor of SVO (Gell-Mann and Ruhlen 2011). In contrast,
the attraction of the verb towards the center combined with the structure of the word
order permutation space can explain it (Ferrer-i-Cancho 2015). Another challenge
for a principle of the minimization of C are the relative ordering of dependents of
nominal heads in SVO orders, that have been argued to preclude regression to SOV
(Ferrer-i-Cancho 2015). To sum up, a single principle of minimization of C would
compromise explanatory power and if its limitations were complemented with an
additional principle of dependency length minimization then parsimony would be
compromised.

The reminder of the article is aimed at investigating a more parsimonious expla-
nation for the ubiquity of non-crossing dependencies based on the minimization of D
as the primary force (Ferrer-i-Cancho 2006; Liu 2008; Morrill et al. 2009; Ferrer-i-
Cancho 2013a). The minimization of D would be a consequence of the minimization
of cognitive effort: longer dependencies are cognitively more expensive (Liu 2008;
Morrill 2000; Gibson 2000; Hawkins 1994). We will investigate two null hypotheses
that allow one to predict the number of crossings as function of dependency lengths,
which are determined by cognitive pressures.

5 A Stronger Null Hypothesis

Here we consider a predictor for the number of crossings when some information
about the length of the arcs is known. The predictor guesses that number by con-
sidering, for every pair of edges that may potentially cross (pairs of edges sharing
vertices cannot cross), the probability that they cross knowing the length of one of
the edges and assuming that the vertices of the other edge have been arranged lin-
early at random. The null hypothesis in Sect. 3 predicts the number of crossings
in the same fashion but replacing that probability by the probability that two edges
cross when both are arranged linearly at random (no arc length is given).

The null hypothesis in Sect. 3 and the null hypothesis that will be explored in the
current section, are reminiscent of two null hypotheses that are used in networks the-
ory: random binomial graphs and random graphs with an arbitrary degree sequence
or degree distribution (Molloy and Reed 1995; Molloy and Reed 1998; Newman et
al. 2001). In our case, information about dependency length plays an equivalent role
to vertex degree in those models.
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5.1 The Probability That Two Edges Cross

Let π(v) be the position of the vertex v in the linear arrangement (π(v) = 1 if v is
the 1st vertex of the sequence, π(v) = 2 it is the 2nd vertex and so on). u ∼ v is used
to indicate an edge between vertices u and v, namely that u and v are connected.
A vertex position q is covered by the edge u ∼ v if and only if min(π(u),π(v)) <
q < max(π(u),π(v)). A position q is external to the edge u ∼ v if and only if q <
min(π(u),π(v)) or q > max(π(u),π(v)). s ∼ t crosses u ∼ v if and only if

• either π(s) is covered by u ∼ v and π(t) is external to u ∼ v
• or π(t) is covered by u ∼ v and π(s) is external to u ∼ v.

Notice that edges that share vertices cannot cross.
Let us consider first that no information is known about the length of two arcs.

The probability that two edges, s ∼ t and u ∼ v, cross when arranged linearly at
random is p(cross) = 1/3 if the edges do not share any vertex and p(cross) = 0
otherwise (Ferrer-i-Cancho 2013b). We will investigate p(cross|d), the probability
that two edges, s ∼ t and u ∼ v, cross when arranged linearly at random knowing
that (a) one of the edges has length d, e.g., |π(u)−π(v)|= d and (b) the edges do
not share any vertex.

If s ∼ t and u ∼ v share a vertex, then p(cross|d) = 0. If not,

Proposition 5.1

p(cross|d) = 2
(d− 1)(n− d− 1)
(n− 2)(n− 3)

=
2(−d2 + nd− n+ 1)

(n− 2)(n− 3)
. (18)

Proof. To see this notice that d − 1 is the number of vertex positions covered by
the edge of length d and n− d− 1 is the number of vertices that are external to that
edge. Once the edge of length d has been arranged linearly, there are

(
n− 2

2

)

=
(n− 2)(n− 3)

2
(19)

possible placements for the two vertices of the other edge of which only (d−1)(n−
d − 1) involve a position covered by the edge of length d and another one that is
external to that edge. ��

p(cross|d) and p(cross) = 1/3 are related, i.e.

n−1

∑
d=1

p(cross|d)p(d) =
1
3
, (20)

where

p(d) =
2(n− d)
n(n− 1)

(21)
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is the probability that the linear arrangement of the two vertices of an edge yields
a dependency of length d (Ferrer-i-Cancho 2004). Equation (20) is easy to prove
applying the definition of conditional probability (p(cross|d) = p(cross,d)/p(d)),
which gives

n−1

∑
d=1

p(cross|d)p(d) =
n−1

∑
d=1

p(cross,d) = p(cross) =
1
3
. (22)

When n takes the smallest value needed for the possibility of crossings, i.e.
n = 4 (Ferrer-i-Cancho 2013b), Eq. (18) yields p(cross|1) = p(cross|3) = 0 and
p(cross|2) = 1. It is easy to show that

• p(cross|d) is symmetric, i.e. p(cross|d) = p(cross|n− d),
• p(cross|d) has two minima (p(cross|d) = 0), at d = 1 and d = n− 1.
•

p(cross|d)≤ pmax(cross|d), (23)

where

pmax(cross|d) =
n2

2 − 2(n− 1)

(n− 2)(n− 3)
. (24)

To see this notice that p(cross|d) is a function (Eq. (18)) that has a maximum at
d = d∗ = n/2. Applying d = d∗, Eq. (18) gives Eq. (24). As p(cross|d) is not
defined for non-integer values of d, equality in Eq. (23) needs that d∗ is integer,
namely that n is even. In the limit of large n, one has that pmax(cross|d) = 1/2.

• Accordingly, p(cross|d) has either a maximum at d = n/2 if n is even or two
maxima, at d = �n/2� and d = �n/2� when n is even because d is a natural
number.

5.2 The Expected Number of Edge Crossings

Imagine that the structure of the tree is defined by an adjacency matrix A = {auv}
such that auv = 1 if the vertices u and v are linked and auv = 0 otherwise. Let C be
the number of edge crossings and C(u,v) be the number of crossings where the edge
formed by u and v is involved (C(u,v) = 0 if u and v are unlinked), i.e.

C =
1
4

n

∑
u=1

n

∑
v=1

auvC(u,v) (25)

and

C(u,v) =
1
2

n

∑
s=1,s �=u,v

n

∑
t=1,t �=u,v

astC(u,v;s, t), (26)
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where C(u,v;s, t) indicates if u,v and s, t define a couple of edges that cross
(C(u,v;s, t) = 1 if they cross, C(u,v;s, t) = 0 otherwise). Thus, the expectation of C
is

E[C] =
1
4

n

∑
u=1

n

∑
v=1

auvE[C(u,v)]. (27)

In turn, the expectation of C(u,v) is

E[C(u,v)] =
1
2

n

∑
s=1,s �=u,v

n

∑
t=1,t �=u,v

astE[C(u,v;s, t)]. (28)

As C(u,v;s, t) is an indicator variable,

E[C(u,v;s, t)] = p(s ∼ t & u ∼ v cross), (29)

namely E[C(u,v;s, t)] is the probability that the edges s ∼ t and u ∼ v cross knowing
that they do not share any vertex.

The number of edges that can cross the edge u ∼ v is n−ku−kv (edges that share
a vertex with u ∼ v cannot cross), which gives (Ferrer-i-Cancho 2013b)

E[C(u,v)] = (n− ku− kv)p(cross|u ∼ v) (30)

assuming that the probability that the edge u ∼ v crosses another edge depends at
most on u ∼ v. Applying the last result to Eq. (27), we obtain a general predictor of
the number of crossings under a null of hypothesis x, i.e.

Ex[C] =
1
4

n

∑
u=1

n

∑
v=1

auv(n− ku − kv)px(cross|u ∼ v), (31)

where x indicates if the identity of one of the edges potentially involved a crossing,
i.e. u ∼ v is actually known (x = 1 if it is known; x = 0 otherwise). Equation (31)
defines a family of predictors where x is the parameter. x = 0 corresponds to the null
hypothesis in Sect. 3. To see it, notice that x = 0, i.e.

px(cross|u ∼ v) = p(cross) = 1/3 (32)

transforms Eq. (31) into Eq. (4) (Ferrer-i-Cancho 2013b). Ex[C] can be seen as a
simple approximation to the expected number of crossings in a linear random ar-
rangement of vertices when all edge lengths are given. While E0[C] is a true expec-
tation, E1[C] is not for not conditioning on the same lengths for every pair of edges
that may cross.

A potentially more accurate prediction of C with regard to Eq. (4) is obtained
when x = 1. For simplicity, let us reduce the knowledge of an edge to the knowledge
of its length. Let us define duv = |π(u)−π(v)| as the distance between the vertices u
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and v. If x = 1, the substitution of px(cross|u ∼ v) by p(cross|duv) in Eq. (31) yields
E1[C], a prediction of C where, for ever pair of edges that many potentially cross,
the length of one edge is given and a random placement is assumed for the other
edge, i.e.

E1[C] =
1
4

n

∑
u=1

n

∑
v=1

auv(n− ku − kv)p(cross|duv). (33)

Figure 7 shows that E1[C] is positively correlated with D on permutations of the ver-
tices of the trees of a real sentences. Interestingly, the values of E1[C] overestimate
the average C when D < E0[D] and underestimate it when D > E0[D].

Variations in dependency lengths can alter E1[C]. A drop in p(cross|duv) leads to
a drop in E1[C]. It has been shown above that p(cross|duv) is minimized by d = 1 and
d = n−1 and maximized by duv ≈ n/2. When duv < n/2, a decrease in duv decreases
p(cross|duv). In contrast, a decrease in duv when duv > n/2, increases p(cross|duv).
However, the shortening of edges is more likely to decrease p(cross|d) because

• Tentatively, the linear arrangement of a tree can only have n− d edges of length
d (Ferrer-i-Cancho 2004).

• Under the null hypothesis that edges are arranged linearly at random, short edges
are more likely than long edges. In that case, p(d), the probability that an edge
has length d satisfies p(d) ∝ n− d (Eq. (21)).

• The potential ordering of a sentence is unlikely to have many dependencies of
length greater than about n/2 because the cost of a dependency is positively
correlated with its length (Morrill 2000; Gibson and Warren 2004).

• From an evolutionary perspective, initial states are unlikely to involve many long
dependencies (Ferrer-i-Cancho 2014).

Thus, it is unlikely that the shortening of edges increases E1[C]. Instead, this is likely
to decrease E1[C]. Figure 7 shows that

• the average E1[C] is tends to increase as D increases
• the mean C is bounded above by E1[C] (in the domain D ≤ E0[D])

in concrete sentences.
Applying the definition of p(cross|d), given in Eq. (18), to Eq. (33), yields

E1[C] =
B2 −B1

(n− 2)(n− 3)
, (34)

where

B2 =
1
2

n

∑
u=1

n

∑
v=1

auv(n− ku − kv)(n− duv)duv (35)

and
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B1 =
n− 1

2

n

∑
u=1

n

∑
v=1

auv(n− ku − kv)

=
n− 1

2

(

n
n

∑
u=1

n

∑
v=1

auv − 2
n

∑
u=1

kuv

n

∑
v=1

auv

)

=
n− 1

2

(

n
n

∑
u=1

ku − 2
n

∑
u=1

k2
u

)

=
n− 1

2

(
2n(n− 1)− 2n

〈
k2〉) applying Eqs. (2) and (5)

= n(n− 1)
(
n− 1− 〈

k2〉) . (36)

On the one hand, notice that B1 ≥ 0 because n≥ 1 and
〈
k2
〉≤ n−1 (Ferrer-i-Cancho

2013a). On the other hand, notice that B2 ≥ 0 because

• The fact that C(u,v) < 0 is impossible by definition and also the fact that
C(u,v)≤ n− ku− kv (Ferrer-i-Cancho 2013a) yields n− ku − kv ≥ 0.

• duv ≤ n− 1 by definition (Ferrer-i-Cancho 2013a).

Thus, E1[C] is proportional to the difference between two terms: a term B2 that
depends on dependency lengths and a term B1 that depends exclusively on vertex
degrees and sentence length (in words). Interestingly, Eq. (4) allows one to see E1[C]
as a function of E0[C] since B1 = 6(n− 1)E0[C].

6 Another Stronger Null Hypothesis

Another prediction from a stronger null hypothesis is E[C|D], the expected value
of C when one of the orderings (permutations) preserving the actual value of D is
chosen uniformly at random. Figure 7 shows that knowing the exact value of D, a
positive correlation between E[C|D] and D follows for a concrete sentence (this is
what circles are showing) and, interestingly, E[C|D] predicts a smaller number of
crossings than the average E1[C] as a function of D.

7 Predictions, Testing and Selection

Table 2 compares E0[C], E1[C] and E[C|D] for the example sentences that have
appeared so far. Table 2 shows that, according to the normalized error,

• E0[C] makes the worst predictions.
• The predictions of E[C|D] are the best except in one sentence where E1[C] wins.

The take home message here is that it is possible to make quantitative predictions
about the number of crossings, an aspect that theoretical approaches to the problem
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of crossing dependencies have missed (Morrill et al. 2009; Vries et al. 2012; Levy
et al. 2012). This quantitative requirement should not be regarded as a mathematical
divertimento: science is about predictions (Bunge 2013).

Table 2 The predicted crossings by each of the three null hypotheses, i.e. (1) random lin-
ear arrangement of vertices, (2) random linear arrangement with knowledge of the length of
one of the edges that can potentially cross, and (3) random linear arrangement of vertices
at constant sum of dependency lengths, for the example sentences employed in this article.
Results of p-value testing for the 3rd null hypothesis are also included. n is the number of
vertices of the tree,

〈
k2
〉

is the degree second moment about zero, D is the sum of depen-
dency lengths, C is the actual number of crossings, Cmax is the potential number of crossings,
i.e. Cmax = n

(
n−1−〈

k2
〉)

/2 (Ferrer-i-Cancho 2013a). E0[C], E1[C] and E[C|D] are the pre-
dicted number of crossings according to the 1st, 2nd and 3rd hypotheses, respectively. ε0[C],
ε1[C] and ε[C|D] are the normalized error of the 1st, 2nd and 3rd hypotheses, respectively,
i.e. εx[C] = |C −Ex[C]|/Cmax and ε[C|D] = |C−E[C|D]|/Cmax. Left and right p-values are
provided for two statistics, C and |C−E[C|D]| under the 3rd null hypothesis. R is the number
of permutations of the vertex sequence where D coincides with the original value.

Figure 1, top Figure 1, bot. Figure 5, top Figure 5, bot.

n 9 10 7 7〈
k2
〉

4 4.2 3.4 3.4
D 13 17 15 10
C 0 1 0 1
Cmax 18 24 9 9
E0[C] 6 8 3 3
ε0[C] 0.33 0.29 0.33 0.22
E1[C] 2.4 4.2 1.2 2.2
ε1[C] 0.13 0.14 0.13 0.13
E[C|D] 1.1 2 2.8 1.1
ε[C|D] 0.062 0.041 0.31 0.011
Left p-value of C 0.28 0.37 0.058 0.69
Right p-value of C 1 0.88 1 0.75
Left p-value of |C−E[C|D]| 0.94 0.54 0.97 0.43
Right p-value of |C−E[C|D]| 0.33 0.71 0.088 1
R 288 6664 548 102

Our exploration of some sentences suggest that E[C|D] makes better predictions
in general. Notwithstanding we cannot rush to claim that E[C|D] is the best model
among those that we have considered only for that reason. According to standard
model selection, the best model is one with the best compromise between the qual-
ity of its fit (the error of its predictions) and parsimony (the number of parameters,
Burnham and Anderson 2002). Applying a rigorous framework for model selection
is beyond the scope of this article but we can examine the parsimony of each model
qualitatively to shed light on the best model. Interestingly, the three predictors vary
concerning the amount of information that suffices to make a prediction. A com-
parison of the minimal information that each needs to make a prediction would be
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a better approach but that is beyond the scope of the current article. The value of
E0[C] can be computed knowing only n and

〈
k2
〉

(Eq. (4)). The value of E1[C] can
be computed knowing only n, the length of every edge and the degrees of the nodes
forming every edge (Eqs. (18) and (33)). The calculation of E[C|D] is less demand-
ing than that of E1[C] concerning edge lengths. i.e. the total sum of the their lengths
suffices (the length of individual edges is irrelevant), but still employs some infor-
mation about edges, e.g., the nodes forming every edge (Sect. 6). Our preliminary
results (Table 2) and our analysis of parsimony from the perspective of sufficient
information suggests that E[C|D] has a better trade-off between the quality of its
predictions and parsimony with respect to E1[C]. Interestingly, none of the mod-
els has free parameters if the ordering of the vertices and the syntactic dependency
structure of the sentence is known as we have assumed so far.

It is possible to perform traditional p-value testing of our models. For simplicity
we focus on the null hypothesis that is defined in Sect. 6, i.e. permutations of ver-
tices where the sum of edge lengths coincides with the true value (Table 2 shows the
number of permutations of this kind for each sentence). We consider two statistics
for test test. First, C, the actual number of crossings of a dependency tree. Then one
can define the left p-value as the proportion of those permutations with a number
of crossings at most as large as the true value. Similarly, one can define the right
p-value as the proportion of those permutations with a number of crossings at least
as large as the true value. One has to choose a significance level α . The significance
level must be such that there can be p-values bounded above by α a priori. Oth-
erwise, one is condemned to make type II errors. The smallest possible p-value is
1/R, where R is the number of permutations yielding the original value of D (there
is at least one permutation giving the same value of the statistic, i.e. the one that
coincides with the original linear arrangement). Thus, α must exceed 1/Rmin, being
Rmin the smallest value of R in Table 2. Rmin = 102 yields α ≥ 1/102 ≈ 0.01. Thus
we can safely choose a significance level of α = 0.05. Table 2 shows that the left
and right p-values are always below α , suggesting that the real numbers of crossings
are compatible with those of this null hypothesis. However, notice that the p-value
is borderline for one sentence (Fig. 5, top). Second, we consider |C−E[C|D]|, the
absolute value of the difference between the actual number of crossings and the ex-
pected value, as another statistic to perform p-value testing. Accordingly, we define
left and right p-values for the latter statistic following the same rationale used for
the p-values of C. Table 2 shows |C−E[C|D]| is neither significantly low nor signif-
icantly large, thus providing support for the hypothesis that the number of crossings
is determined by global constraints on dependency lengths.

Our p-value tests should be seen as preliminary statistical attempts. Future re-
search should involve more languages and large dependency treebanks. Moreover,
information theoretic models selection offers a much powerful approach over tradi-
tional p-value testing (Burnham and Anderson 2002) and should be explored in the
future.
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8 Discussion

In this article, the possibility that the low number of crossings in dependency trees
is a mere consequence of chance has been considered. As the expected number of
crossings (when edge lengths are not given) decreases as the degree 2nd moment in-
creases, a high hubiness could lead to a small number of crossings by chance, when
dependency lengths are unconstrained. However, it has been shown that the hubi-
ness required to have a small number of crossings in that circumstance would imply
star trees, which are problematic for at least two reasons: real syntactic dependency
trees of a sufficient length are not star trees and the diversity of possible syntactic
dependency structures would be seriously compromised (Sect. 3). One cannot ex-
clude that hubiness has some role in decreasing the potential number of crossings
in sentences (Ferrer-i-Cancho 2013a; Liu 2007) but it cannot be the only reason.
“Grammar” has been examined as an explanation for the rather low frequency of
crossings and the more parsimonious hypothesis of the minimization of syntactic
dependency lengths (Ferrer-i-Cancho 2006; Liu 2008; Morrill et al. 2009; Ferrer-
i-Cancho 2013a) has been revisited (Sect. 4). Stronger null hypotheses involving
partial information about dependency lengths suggest that the shortening of the de-
pendencies is likely to imply a reduction of crossings (recall empirical evidence
in Fig. 7 and general mathematical arguments based on one of those stronger null
hypotheses in Sect. 5.2). Moreover, it has been shown that a null hypothesis incor-
porating global information about dependency lengths, i.e. the sum of dependency
lengths (Sect. 6), allows one to make specially accurate predictions about the actual
number of crossings. The error of those predictions is neither surprisingly low nor
surprisingly high (Sect. 7). Our findings provide support for the hypothesis that un-
crossing dependencies could be a side-effect of dependency length minimization, a
principle that derives from the limited computational resources of the human brain
(Liu 2008; Morrill 2000; Gibson 2000; Hawkins 1994). A universal grammar, a fac-
ulty of language or a competence-plus limiting the number of crossings might not
be necessary. Just a version of Zipf’s least effort might suffice (Zipf 1949).

Upon a superficial analysis of facts, it is tempting to conclude that crossings cause
processing difficulties and thus should be reduced. That follows easily from the cor-
relation between crossings and dependency lengths that has been found in real and
artificial sentence structures (e.g. Ferrer-i-Cancho 2013b; Liu 2007). However, the
cognitive cost of crossings does not need to be a direct consequence of the crossing
(Liu 2008) but a side effect of the longer dependencies that crossings are likely to
involve (Ferrer-i-Cancho 2006; Morrill et al. 2009). It has been argued that a sin-
gle principle of minimization of dependency crossings would compromise seriously
parsimony and explanatory power (Sect. 4).

Although Fig. 7 shows that solving the minimum linear arrangement prob-
lem yields zero crossings for concrete sentences (E[C|D] = 0 and thus C = 0 for
D = Dmin), it is important to bear in mind that dependency length minimization can-
not promise to reduce crossings to zero in all cases: the minimum linear arrangement
of a tree can involve crossings (Fig. 6). Interestingly, this means that the presence of
some crossings in a sentence does not contradict a priori pressure for dependency



228 R. Ferrer-i-Cancho

length minimization or pressure for efficiency. Recall also the examples of real En-
glish in Fig. 5, showing that an ordering without crossings can have a higher sum of
dependency lengths than one with crossings. This is specially important for Dutch,
where crossing structures abound and have been shown to be easier to process that
parallel non-crossing structures in German (Bach et al. 1986). We believe that our
theoretical framework might help to illuminate experiments suggesting that order-
ings with crossings tax working memory less than orderings with nesting (Vries
et al. 2012).

In this article, we have addressed the problem of non-crossing dependencies from
a really theoretical perspective. The arguments are a priori valid for any language
and any linguistic phenomenon. This is a totally different approach from the in-
vestigation of non-crossing dependencies in a given language with a specific phe-
nomenon (e.g., extraposition of relative clauses in English as in Levy et al. (2012),
see also Bach et al. (1986) for other languages). With such a narrow focus, the de-
velopment of a general theory of word order is difficult. Generativists have been
criticized for not having developed a general theory of language but a theory of
English (Evans and Levinson 2009). If one takes seriously recent concerns about
the limits of building a theory from a sample of languages (Piantadosi and Gib-
son 2014), it follows that hypotheses about non-crossing dependencies that abstract
from linguistic details like ours (see also Vries et al. 2012) should receive more
attention in the future.

Although we believe that least effort is the main reason why crossings depen-
dencies do not occur very often in languages, we do not believe that pressure for
dependency length minimization is the only factor involved in word order phenom-
ena. The maximization of predictability or the structure of word order permutation
space are crucial ingredients for a non-reductionist theory of word order (Ferrer-i-
Cancho 2015; Ferrer-i-Cancho 2014). Word order is a multiconstraint engineering
problem (Ferrer-i-Cancho 2014).

Tentatively, a deep theory of syntax does not imply grammar or a language faculty
exclusively. A well-known example is the case of sentence acceptability that may
derive in some cases from processing constraints (Morrill 2000; Hawkins 2004).
Our findings suggest that grammar may not be an autonomous entity but a se-
ries of phenomena emerging from physical or psychological constraints. Grammar
might simply be an epiphenomenon (Hopper 1998). This is a more parsimonious hy-
pothesis than grammar as a conventionalization of processing constraints (Hawkins
2004). Grammar may require fewer parameters than commonly believed. This is
consistent with the idea that it would be desirable that the quantitative constraints
of competence-plus are replaced by a theory of processing complexity or that the
content of the “plus” derives from memory and integration costs (Hurford 2012).
Being the “plus” part non-empty, the point is elucidating whether the “competence”
part is indeed empty or at least lighter than commonly believed.

A deep theory of language cannot be circumscribed to language: a deep physi-
cal theory for the fall of inanimate objects is also valid for animate objects (with
certain refinements). A deep theory of syntactic structures and their linear arrange-
ment does not need to be valid only for human language but also for other natural
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systems producing and processing sequences and operating under limited resources.
For these reasons, our results should be extended to non-tree structures to investigate
crossings in RNA structures (Chen et al. 2009).
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Appendix

Tree Reduction

As any tree of at least two vertices has at least two leaves (Bollobás 1998, p. 11), a
tree of n+ 1 vertices (with n > 1) yields a reduced tree of n vertices by removing
one of its leaves. Notice that such a reduction from a tree of n+1 to a tree of n nodes
will never produce a disconnected graph.

Consider that a tree has a leaf that is attached to a vertex of degree k. Then, the
sum of squared degrees of a tree of n+ 1 vertices, i.e. K2(n+ 1), can be expressed
as a function of K2(n), the sum of squared degrees of a reduced tree of n vertices,
i.e.

K2(n+ 1) = K2(n)+ k2 − (k− 1)2+ 1

= K2(n)+ 2k (37)

with n ≥ 0.

The Only Tree That Has Degree Second Moment Greater Than
That of a Quasi-star Tree Is a Star Tree.

A quasi-star tree is a tree with one vertex of degree n−2, one vertex of degree 2 and
the remainder of vertices of degree 1. As a tree must be connected, that tree needs
n > 2. The sum of squared degrees of a quasi-star tree is

Kquasi
2 (n) = (n− 2)2+ 4+ n− 2= n2 − 3n+ 6. (38)

The sum of squared degrees of a star tree is (Ferrer-i-Cancho 2013a)

Kstar
2 (n) = n(n− 1). (39)
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Kstar
2 (n) is an upper bound of Kquasi

2 (n), more precisely,

Proposition 8.1. For all n ≥ 3,

Kquasi
2 (n)≤ Kstar

2 (n) (40)

with equality if and only if n = 3.

Proof. Applying the definitions in Eqs. (38) and (39) to Eq. (40), we obtain

n2 − 3n+ 6≤ n(n− 1), (41)

that is n ≥ 3. ��
K2(n) is maximized by star trees (Ferrer-i-Cancho 2013a). Quasi-star trees yield the
second largest possible value of K2(n), more precisely

Proposition 8.2. For all n ≥ 3, it holds that

K2(n)> Kquasi
2 (n) =⇒ K2(n) = Kstar

2 (n) (42)

for any tree with n vertices.

Proof. Denote the antecedent of the implication in Eq. (42) by L(n) and the conse-
quent by R(n). We show by induction that, for all n ≥ 3, L(n) =⇒ R(n).

For n = 3, the fact that the only possible tree is both a star and a quasi-star tree
implies that L(n) is false. Thus, Eq. (42) holds trivially.

Let n > 3. For the induction step, assume that L(n) =⇒ R(n), and also assume
that L(n+ 1) holds. We must show that then also R(n+ 1) holds.

Consider an arbitrary tree Tn+1 with n+ 1 vertices and consider the tree Tn, on n
vertices, with a leaf l removed from Tn+1.

If L(n) holds, then, by the induction hypothesis, R(n) holds, i.e., K2(n) =Kstar
2 (n).

A tree with n vertices for which R(n) holds must be a star tree (Ferrer-i-Cancho
2013b); thus, Tn is a star tree. Then, the leaf vertex l is

• either attached to the hub of the star tree, in which case the resulting tree Tn+1 is
also a star tree, so that K2(n+ 1) = Kstar

2 (n+ 1), i.e., R(n+ 1), holds.
• or attached to a leaf of Tn, in which case Tn+1 is a quasi-star tree, contradicting

that L(n+ 1) holds.

Conversely, if L(n) does not hold, then K2(n)≤ Kquasi
2 (n). Accordingly, a tree Tn+1

with a leaf of degree k satisfies (for any k)

K2(n+ 1) = K2(n)+ 2k ≤ Kquasi
2 (n)+ 2k = n2 − 3n+ 6+ 2k, (43)

being K2(n) the sum of squared degrees of the reduced tree. Now, we have assumed
that L(n+ 1) holds, i.e., that

K2(n+ 1)> Kquasi
2 (n+ 1) = n2 − n+ 4, (44)
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thanks to Eq. (38). Combining Eqs. (43) and (44), it is obtained

n2 − n+ 4< K2(n+ 1)≤ n2 − 3n+ 6+ 2k,

which implies

2n < 2+ 2k.

But this would require that k > n−1, that is, k = n, since the maximum degree of a
vertex in a tree with n+1 vertices is n. In other words, Tn+1 would be forced to have
a vertex of degree k = n, whence Tn+1 is a star tree, so that Tn also is a star tree (re-
moving a leaf from a star tree yields a star tree). But, this would contradict that L(n)
does not hold since Kstar

2 (n)> Kquasi
2 (n) for n > 3 (Proposition 8.1). ��
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Simulating the Effects of Cross-Generational
Cultural Transmission on Language Change

Tao Gong and Lan Shuai

Abstract. Language evolves in a socio-cultural environment. Apart from biological
evolution and individual learning, cultural transmission also casts important influ-
ence on many aspects of language evolution. In this paper, based on the lexicon-
syntax coevolution model, we extend the acquisition framework in our previous
work to examine the roles of three forms of cultural transmission spanning the off-
spring, parent, and grandparent generations in language change. These transmis-
sions are: those between the parent and offspring generations (PO), those within the
offspring generation (OO), and those between the grandparent and offspring gener-
ations (GO). The simulation results of the considered model and relevant analyses
illustrate not only the necessity of PO and OO transmissions for language change,
thus echoing our previous findings, but also the importance of GO transmission, a
form of cross-generational cultural transmission, on preserving the mutual under-
standability of the communal language across generations of individuals.

1 Introduction

As a socio-cultural phenomenon, language is acquired and exchanged in a popula-
tion of individuals during cultural transmission. Generally speaking, cultural trans-
mission is the process by which information is passed from individual to individual
via social learning mechanisms such as imitation, teaching, or language (Mesoudi
and Whiten 2008). In linguistics, cultural transmission refers to the process of lan-
guage adaptation in a community via communications of individuals from the same
or different generations (Christiansen and Kirby 2003b). Many traditional frame-
works of language evolution focused primarily on biological evolution and indi-
vidual learning. For example, Chomsky’s single-speaker-single-listener framework

Tao Gong · Lan Shuai
Haskins Laboratories, New Haven, CT, USA
e-mail: {gtojty,susan.shuai}@gmail.com

© Springer-Verlag Berlin Heidelberg 2016 237
A. Mehler et al. (eds.), Towards a Theoretical Framework for Analyzing Complex Linguistic Networks,
Understanding Complex Systems, DOI: 10.1007/978-3-662-47238-5_11

{gtojty,susan.shuai}@gmail.com


238 T. Gong and L. Shuai

(Chomsky 1972) ignored completely the socio-cultural factors during language in-
teractions, and many studies incorporating this framework examined primarily the
biological capacities for language and the nature of language learning abilities
(Hauser et al. 2002; Jackendoff 2002). However, the roles of cultural transmission
in the origin of human communication system and the evolution of human language
have been revealed in recent laboratory experiments (e.g., Galantucci (2005), Kirby
et al. (2002), Cornish (2010), and Scott-Phillips and Kirby (2002)), and typolog-
ical studies have suggested that cultural transmission might play important roles
in linguistic diversity (Evans and Levinson 2009) and shaping particular language
structures (Dunn et al. 2011). Noting these, evolutionary linguists start to reconsider
the roles of cultural transmission in language evolution (e.g., Christiansen and Kirby
(2003b), Labov (2001), Mufwene (2001)).

Apart from empirical explorations, computer models of language acquisition
and/or interactions (e.g., Cangelosi and Parisi (2002), Christiansen and Kirby (2003a),
Bickerton and Szathmáry (2009), and Steels (2012)) have long taken socio-cultural
factors into account (e.g., Ke et al. (2008), Gong et al. (2008), and Gong et al.
(2012)), and different models have incorporated various forms of cultural trans-
mission. For example, Axelrod adopted horizontal transmission (communications
among individuals of the same generation) into his model studying the effect of this
transmission on cultural dissemination (Axelrod 1997). Horizontal transmission was
also involved in many lexical or grammatical evolution models (e.g., Steels (2012)
and Ke et al. (2008)). Kirby simulated vertical transmission (a member of one gen-
eration talking to a biologically-related member of a later generation) in his iterated
learning model tracing the origin of compositionality via this transmission across a
series of single-member generations (Kirby 1999). Vertical transmission was also
set up in many laboratory experiments of language evolution (e.g., Kirby et al.
(2002) and Cornish (2010)). Together with horizontal and vertical transmissions,
oblique transmission (a member of one generation talking to a non-biologically-
related member of a later generation) was also implemented in some modeling stud-
ies (e.g., Smith and Hurford (2003) and Lenaerts et al. (2005)).

In order to simulate a realistic cultural environment and systematically analyze
the effect of cultural transmission on language evolution, we proposed an acquisi-
tion framework that unified the above three forms of cultural transmission between
consecutive generations of language learners (Gong et al. 2008; Gong 2010). Com-
pared with other studies that also involved more than one form of cultural trans-
mission (e.g., Vogt (2005)), this acquisition framework defined explicit parameters
to respectively control the ratios of these forms of transmission in the total number
of transmissions taking place during language acquisition. In this way, this frame-
work allows analyzing the respective and collective effects of those transmissions
on the origin and change of communal language across generations of individu-
als. Our simulations not only revealed an integrated role of oblique transmission
that combined the roles of horizontal and vertical transmissions in preserving lin-
guistic understandability within and across generations, but also showed that both
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horizontal and oblique transmissions were more necessary than vertical transmis-
sion for language evolution in a multi-individual cultural environment.

Despite of these insightful findings, this framework was restricted to two con-
secutive generations, within which all three forms of transmission took place. In
reality, cultural transmission and language acquisition may span more than two gen-
erations. For example, apart from parents, grandparents may also care for grandchil-
dren whose parents are unable or unwilling to do so, either as ”kinship care-givers”
where arrangements are made by social services (Farmer and Moyers 2008) or in
households where grandparents and grandchildren live together without a parent
present (Nandy and Selwyn 2011). The Childcare and Early Years Survey of Par-
ents 2009 in UK showed that around 26 percent of the 6,700 surveyed parents having
children under age 14 had received help with childcare from grandparents (Smith
et al. 2010). Analysis of care arrangements for children of different ages also re-
vealed that 44 percent of children were regularly cared for by grandparents (Fergus-
son et al. 2008). Apart from UK, in other communities such as China and Russia,
such grandparent-grandchild interactions are more frequent and childcare performed
by grand-parents becomes more prominent. Psychological research has suggested
that early child-care performed by grandparents could play important roles in de-
veloping child’s cognition, task-related behaviors, and language (Sylva et al. 2011).
Inspired by these studies, research in evolutionary linguistics needs to pay attention
to the role of such grandparent-grandchild transmissions in language evolution, and
examine whether the role of such cross-generational transmissions is similar to or
distinct from those of vertical, oblique, or horizontal transmissions that take place
between consecutive generations of individuals.

In order to discuss these issues, we extend our acquisition framework to incor-
porate cross-generational cultural transmission. Instead of both language origin and
change as in our previous work, we focus on language change, since the relatively
shorter life span of our ancestors at the early stage of language development might
not allow grandparent-grandchild transmissions (the late life survival, reaching the
4th decade of life as seen today, seldom occurred in early human populations before
the advent of settled agriculture (Crews and Gerber 2003), whereas a mature human
language must have already emerged during the stage of hunter-gatherers).

In the following sections, we describe our modified acquisition framework
(Sect. 2); illustrate the simulation results accordingly (Sect. 3); and finally, sum-
marize the roles of these forms of transmission on language change and discuss
other relevant issues concerning cultural transmission and the acquisition framework
(Sect. 4). In this study, we adopt the lexicon-syntax coevolution model (Gong 2009;
Gong 2011) as the language evolution model. The details of this model are briefly
introduced in Appendix.
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2 Modified Acquisition Framework

This acquisition framework (see Fig. 1) was modified from our previous work (Gong
2010). Instead of two consecutive generations, this framework consists of the grand-
parent (G), parent (P), and offspring (O) generations. In each round of generation
turnover (see Fig. 1(a)), first, half of the individuals in the P generation are chosen
to reproduce, each producing an offspring having no linguistic knowledge. These
offspring comprise the offspring generation. Then, a learning stage begins, during
which the offspring communicates either with another offspring, or with an individ-
ual from the P or G generation (note that in the first round of generation turnover,
there is not yet a G generation, learning occurs either within the O generation or
between the P and O generations). After that, the individuals in the P generation re-
place those in the G generation, and those in the O generation replace their parents
in the P generation. After replacement, a new round of reproduction, learning, and
replacement begins.

This framework incorporates three forms of cultural transmission that span over
the G, P, and O generations (see Fig. 1): transmissions between two offspring (OO,
offspring can be either speakers or listeners), transmissions between parents and
offspring (PO, parents are speakers and offspring are listeners), and transmissions
between grandparents and offspring (GO, grandparents are speakers and offspring
are listeners). Similar to the previous work, we define three parameters, OOrate,
POrate, and GOrate, respectively denoting the proportions of these three forms
of cultural transmission in the total transmissions taking place during the learn-
ing stage, OOrate+ POrate + GOrate = 1.0. After excluding some cases (e.g.,
GOrate = 0.0, which makes the framework identical to the original one consid-
ering only the P and O generations; OOrate = 1.0, POrate = GOrate = 0.0, which
is the unrealistic case of purely horizontal transmissions), we set up 54 cases based
on different combinations of OOrate, POrate, and GOrate (see Table 1). In each of
these cases, we conduct 20 simulations for statistical analysis, and in each simula-
tion, the population of the first generation contains 10 individuals and there are in
total 100 rounds of generation turnover. In order to illustrate the simulation results,
we also borrow the surface ternary plot used in our previous work (see Fig. 1(c) for
how to read such plot).

In the language change simulations based on the lexicon-syntax coevolution
model (see Appendix), the individuals in the first P generation share a complete
set of lexical and syntactic rules that are respectively associated to the correspond-
ing syntactic categories. This shared linguistic knowledge enables all individuals to
accurately produce and comprehend all integrated meanings in the semantic space,
and the mutual understandability of this initial communal language is 1.0. Due to
different combinations of the OO, PO, and GO transmissions, this communal lan-
guage may or may not be sufficiently transmitted across generations. Similar to
our previous work, we adopt two indices to evaluate the mutual understandability
of the communal language in later generations. These indices are: Understanding
Rate (UR) between individuals from two consecutive P generations (URcon), and
UR between individuals from the very first P generation and those from the later
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Fig. 1 The modified acquisition framework: (a) the reproduction, learning, and replacement
stages during generation turnover; (b) the three forms of cultural transmission in the learn-
ing stage, where different types of balls represent individuals from the G (white balls), P
(grey balls), and O (black balls) generations, and different types of arrows denote OO (dot-
ted arrows), PO (solid arrows), and GO (dashed arrows) transmissions; (c) an example of
the surface ternary plot showing the index value in the case OOrate = 0.5, POrate = 0.2,
GOrate = 0.3, the value can be read from the color map on the side.

P generation (URini) (see Eq. (1) and Eq. (2), where SemSize is the size of the se-
mantic space shared by all individuals, and PopSize is the population size). When
calculating these indices, we let each individual in the first P generation talk to each
individual in the second P generation, and record the ratio of the meanings that
are successfully produced by the speaker and accurately understood by the listener.
High URcon indicates that a communal language is well understood by individuals
from consecutive generations, and high URini indicates that individuals in a later
generation can well understand the language of the first generation. By analyzing
the average URcon and URini throughout 100 generations in different cases, we dis-
cuss the necessity of these forms of transmissions and identify in which cases an
initial communal language can be largely preserved across many generations.
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Table 1 The 54 cases
formed by different combi-
nations of OOrate, POrate,
and GOrate

Cases OOrate POrate GOrate

1 0.0 0.1 0.9
2 0.0 0.2 0.8
... ... ... ...
9 0.0 0.9 0.1

10 0.1 0.0 0.9
... ... ... ...
18 0.1 0.8 0.1
19 0.2 0.0 0.8
... ... ... ...
52 0.8 0.0 0.2
53 0.8 0.1 0.1
54 0.9 0.0 0.1

URcon =
∑Correctly Understood Meanings between Generations i-1 and i

SemSize×PopSize× (PopSize−1)
(1)

URini =
∑Correctly Understood Meanings between Generations 0 and i

SemSize×PopSize× (PopSize−1)
(2)

In this modified acquisition framework, we do not distinguish vertical and
oblique transmissions; both GO and PO transmissions can be either vertical (biolog-
ical parents or grandparents talk to their offspring) or oblique (non-biological par-
ents or grandparents talk to their offspring). Our previous work has already shown
that purely vertical transmissions failed to maintain good mutual understandability
of the communal language across multi-individual generations. In addition, we as-
sume that only offspring update their linguistic knowledge as listeners during trans-
missions, whereas individuals from the P or G generations do not. Such learning
constraint was also adopted in other studies (Hurford and Kirby 1999) (but also
see Sect. 4 for more discussions). Furthermore, instead of actual number of trans-
missions a particular offspring participants, the proportion parameters release the
dependence of simulation results on certain parameters, such as the number of indi-
viduals chosen for reproduction, the number of offspring, the number of individuals
in different generations, and the total number of transmissions during the learning
stage. Once the values of these parameters are reasonably assigned (excluding ex-
treme or unrealistic cases, such as the cases of single offspring or too few transmis-
sions, etc.), the simulation results show similar tendencies under identical settings
of OOrate, POrate, and GOrate.

3 Simulation Results

Based on the evaluating indices, URcon and URini, and the surface ternary plot, we
illustrate the simulation results in those 54 cases. These results are analyzed from
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Fig. 2 Effect of OOrate (a), POrate (b), and GOrate (c) on URcon (the dashed line) and URini

(the solid line). The error bars denote standard deviations.

two aspects: the respective effect of each form of transmissions and the collective
effect of all three forms of transmissions.

On the first aspect, we show respectively in Fig. 2(a)-(c) the average URcon and
the average URini of 20 simulations across 100 generations under cases with fixed
OOrate, POrate, and GOrate. Due to the correlation (OOrate+POrate+GOrate=
1.0), the number of cases having a particular OOrate (POrate or GOrate) is not
equal, and we take the mean values in cases all having a particular OOrate (POrate
or GOrate). This manipulation helps neutralize the effects of the other forms of
transmission to a certain extent, and allows focusing on the effect of a particular
form of transmission.

As shown in Fig. 2, URcon is always higher than URini throughout cases. This
echoes the dynamic equilibrium of language evolution shown in our previous work:
in the short run, individuals from consecutive generations can largely understand
each other, whereas in the long run, individuals of later generations may no longer
understand well those of early generations, i.e., language change is inevitable. In
addition, both higher URini and higher URcon tend to occur in cases having in-
termediate OOrate, POrate and GOrate. This indicates that all these forms of
transmissions are needed for preserving a communal language across generations.
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Fig. 3 Collective effects of OOrate, POrate, and GOrate on URcon (a) and URini (b). Circles
point out the regions having relatively high URcon and URini.

Furthermore, when OOrate is below 0.5, URcon increases, but URini does not change
much. This suggests that though helping maintain mutual understandability across
consecutive generations, OO transmission is not that efficient in preserving a com-
munal language across many generations. Finally, when OOrate is too high (around
0.7 to 0.9), there is a notable drop in URini and URcon (see Fig. 2(a)), and the val-
ues in these cases are even lower than those in cases OOrate=0.0. This also shows
that too many horizontal transmissions fail to maintain a communal language across
generations.

On the second aspect, we show respectively in Fig. 3(a) and Fig. 3(b) the average
URini and the average URcon in all 54 cases. As shown in these figures, the regions
having higher OOrate (around the top angle) have much lower URcon and URini.
This is consistent with the results shown in Fig. 2(a). However, in the regions having
either high POrate (around the right angle) or high GOrate (around the left angle),
the mutual understandability of the communal language is not low. This reveals the
important roles of PO and GO transmissions in preserving a communal language
across generations. As for URcon, there are two regions having relatively higher
URcon than others (as circled out in Fig. 3(a)), both of which have smaller OOrate,
but either high POrate or high GOrate. This reflects the similar roles of PO and GO
transmissions in maintaining the mutual linguistic understandability in consecutive
generations. As for URini, there is only one region having the highest URini (as
circled out in Fig. 3(b)), which has low OOrate (around 0.1), relatively low POrate
(around 0.3), but high GOrate (around 0.6 to 0.7). This suggests that compared with
PO transmission GO transmission is more efficient in keeping a communal language
with a relatively high mutual understandability in later generations.

4 Discussions and Conclusions

Based on the particular language model, our simulations of language change sug-
gest that all the three forms of cultural transmission are necessary for preserving
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the mutual understandability of the communal language. To be specific, PO and
GO transmissions are efficient at preserving the mutual understandability in both
the short (across consecutive generations) and long (across many generations) runs,
whereas OO transmission is only good at maintaining the mutual understandability
within generations. These roles of OO and PO transmissions in language change are
in line with those identified in our previous work.

As for the newly added cross-generational transmission (GO transmission), de-
spite of its similar roles to PO transmissions, we further show that GO transmission
is more efficient in keeping the mutual understandability in the long run; although lan-
guage change is inevitable, given fixed OOrate, similar proportions of GO transmis-
sions lead to higherURini compared with similar proportions of PO transmissions (see
Fig. 3(a)). To our knowledge, this is the first attempt that simulates cross-generational
cultural transmission and analyzes its roles in language evolution.

Language maintenance across generations relies upon cultural transmission be-
tween individuals from different generations. PO transmission offers fundamental
contacts between individuals of generation i and those of generation i+ 1, and GO
transmission offers opportunities for individuals of generation i to contact those of
generation i+ 2. Even if offspring fail to learn sufficient linguistic knowledge from
their parents, offspring can still obtain some shared linguistic knowledge from their
grandparents. In a cultural setting involving both PO and GO transmissions, the
language state of the new generation is collectively determined by the states of pre-
vious two generations. Although different types of linguistic knowledge may have
different efficiencies to be transferred during cultural transmission (in the adopted
lexicon-syntax coevolution model, learning lexical items based on detection of re-
current patterns is faster than learning syntactic rules, since the latter have to be ob-
tained based on similar usage of lexical items in exchanged sentences, see Appendix
for details), in terms of general information transmission, such setting is more re-
liable than the one in which the state of the new generation is dependent solely on
the state of the immediately previous generation. In analogy, this finding also dove-
tails with many theories of system control or prediction. For example, it has been
accepted that second or higher order Markov chain models (the state at time step i
is determined by previous states at i− 1, i− 2, . . . ) could be more reliable than a
first-order Markov chain model (the state at time step i is determined solely by the
state at i−1) in predicting future states of a system that involves correlations or mu-
tual influences between states at previous time steps and those at later ones, such as
weather forecast (Spoof and Pryor 2008), speech recognition and machine transla-
tion (Jurafsky and Martin 2009), etc. In other words, apart from language evolution,
the findings of this study are also insightful to other socio-cultural phenomena that
involve information transmission in a chain of multi-individual groups.

One may argue that in the current setting, the O generation at each time step
contains only 5 offspring, who will replace half of the adults in the P generation.
In other words, during generation turnover, some adults in the P generation will not
be replaced and become individuals in the G generation. Then, some GO transmis-
sions involving such individuals at the current time step may be identical to some
PO transmissions at the previous time step, both of which involve identical speakers
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Fig. 4 Effect of OOrate (a), POrate (b), and GOrate (c) on URcon (the dashed line) and
URini (the solid line) under the setting in which all adults produce offspring and are replaced
by those offspring at each round of generation turnover. The error bars denote standard devi-
ations.

and naive offspring. In order to show that such mixed transmissions do not affect
the simulation results, we further conduct simulations in which during each round
of generation turnover all individuals in the P generation produce offspring, and
all these individuals are replaced by these offspring after the learning stage. In this
setting, PO and GO transmissions in each generation involve totally different indi-
viduals. Since the number of offspring is doubled, we also double the total number
of cultural transmission in the learning stage. The simulation results under this set-
ting are shown in Fig. 4 and Fig. 5.

Due to the different number of offspring and the complete replacement of the P
generation in each new generation, these simulations report different results from
the previous setting. For example, when OOrate is low, URcon becomes lower than
that in the previous setting, which indicates that due to complete replacement OO
transmission helps contribute to the mutual understandability of the communal lan-
guage. Similarly, in this new setting, a certain proportion of PO transmission is also
needed to maintain a relatively high URcon. In addition, the regions having the best
URcon (circled in Fig. 5(a)) or the best URini (circled in Fig. 5(b)) do not overlap as
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Fig. 5 Collective effects of OOrate, POrate, and GOrate on URcon (a) and URini (b) under
the setting in which all adults produce offspring and are replaced by those offspring at each
round of generation turnover. Circles point out the regions having relatively high URcon and
URini.

in the previous setting, which clearly separate the roles of PO and GO transmissions
in maintaining the communal language in the short run (URcon) and in the long run
(URini). Finally, due to the different number of offspring, the regions having better
URcon and URini become different from those in the previous setting. Despite of
these interesting differences, we can still summarize some similar effects of OO,
PO and GO transmissions on language change in this new setting. This reflects the
fact that the general findings concerning the effect of OO, PO and GO transmissions
on language change are less dependent on particular settings of certain parameters.

The whole study is based upon the acquisition framework that explicitly defines
individuals from different generations and various forms of cultural transmission
within and across these generations. Though involving many arbitrary settings (e.g.,
it simulates only punctuated generation turnover, horizontal transmissions occur
only among individuals in the O generation, each individual in the P generation
only reproduces one offspring, etc.), this framework offers an efficient conceptual
tool to clarify the cultural environment in which language is learned and exchanged,
to quantify various forms of cultural transmission, and to evaluate their respective
and collective roles in language evolution. Apart from computer simulations, this
framework can also help set the cultural transmission environment in laboratory
experiments of language evolution. Moreover, based on this framework, we can
easily incorporate other forms of cultural transmission, which pay the way for the
future work exploring the effect of cultural transmission on language evolution. For
example, by allowing children to talk to adults and also allowing adults to occa-
sionally update their linguistic knowledge, we can incorporate children-talking-to-
parents/grandparents transmission in our study. Then, by evaluating the effect of
such transmissions on diffusion of linguistic innovation introduced by children, we
can evaluate some widely-discussed questions in evolutionary linguistics, such as
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who, children or adults, are the primary driving forces for language change (Gı́von
1998; Mufwene 2008).

Finally, note that although the simulations in this paper are based only on this
particular language model tracing the evolution of both lexical items and simple
syntax, some of the conclusions are informative and insightful to simulation stud-
ies based on other language models and general discussions on the roles of cultural
transmission in language evolution. For example, as shown in our previous work
(Gong 2010), apart from the lexicon-syntax coevolution model, simulations based
on the category game model (Baronchelli et al. 2010) report similar results. How-
ever, since the category game model cannot simulate language change, we cannot
use it to further verify the generality of the results in this paper. In addition, it is
worth noting some apparent differences between the simulation results and the re-
ality. For example, although the model seems complex in terms of involved behav-
ioral dynamics (these aspects of dynamics have been examined in detail in (Gong
2009; Gong 2011), it only takes account of most fundamental semantic structures
in language and general learning mechanisms particulary for acquiring simple word
orders. These simplifications make the simulation results only conceptually infor-
mative to empirical research. For example, our simulations only touch upon change
in fundamental expressions, whereas language change takes place in many aspects
and appears faster than what is simulated here. Nonetheless, compared with math-
ematical models that transform acquisition and communication processes into ab-
stract equations, our behavioral model implements detailed learning processes and
enables tracking the origin and evolution of specific linguistic features. Therefore, to
better understand the reality, we suggest that mathematical models, behavioral mod-
els, as well as generalizable frameworks are all necessary. With gradual increase in
the complexity of these models and frameworks, we may eventually understand and
predict many evolutionary phenomena involving language, individual learners, and
the socio-cultural environment.
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01A1). We thank Prof. Alexander Mehler from the Goethe University Frankfurt am Main for
inviting us to attend the Conference on Modeling Linguistic Networks, where we presented
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Appendix

The lexicon-syntax coevolution model encodes language as meaning-utterance
mappings (M-U mappings).

On the meaning side, individuals share a semantic space containing a fixed num-
ber of integrated meanings, each having a predicate-argument structure, e.g., “pred-
icate 〈 agent 〉” or “predicate 〈 agent, patient 〉”, where predicate, agent, and patient
are thematic notations. Predicates refer to actions that individuals conceptualize
(e.g., “run” or “chase”), and arguments entities on or by which those actions are
performed (e.g., “fox” or “tiger”). Some predicates each take a single argument,
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Fig. A1 Examples of lexical rules, syntactic rules, and syntactic categories. “�” denotes un-
specified semantic item, and “�” unspecified syllable(s). S, V, and O are syntactic roles of cat-
egories. Numbers enclosed by ( ) denote rule strengths, and those by [ ] association weights.
“�” denotes the local order before, and “�” after. Compositional rules can combine, if
specifying each constituent in an integrated meaning exactly once, e.g., rules (c) and (d) can
combine to form “chase 〈 wolf, bear 〉”, and the corresponding utterance is /ehfg/.

e.g., “run 〈 tiger 〉” (“a tiger is running”); others each take two, e.g., “chase 〈 tiger,
fox 〉” (“a tiger is chasing a fox”), where the first constituent within 〈〉, “tiger”,
denotes the agent (the action instigator) of the predicate “chase”, and the second,
“fox”, the patient (the entity that undergoes the action). Meanings having identical
agent and patient constituents (e.g., “fight 〈 fox, fox 〉”) are excluded.

On the utterance side, integrated meanings are encoded by utterances, each com-
prising a string of syllables chosen from a signaling space. An utterance encoding
an integrated meaning can be segmented into subparts, each mapping one or two se-
mantic constituents; and meanwhile, subparts can combine to encode an integrated
meaning. Using predicate-argument structures to denote semantics and combinable
syllables to form utterances has been adopted in many structured simulations (Wag-
ner et al. 2003).

Individuals are simulated as artificial agents. Via learning mechanisms, individ-
uals can: (i) acquire linguistic knowledge from M-U mappings obtained in previous
communications; and (ii) produce utterances to encode integrated meanings and
comprehend utterances in communications.

Linguistic knowledge is encoded by lexicon, syntax, and syntactic categories
(some examples are shown in Fig. A1).
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An individual’s lexicon consists of a number of lexical rules. Some of these rules
are holistic, each mapping an integrated meaning onto an utterance (sentence), e.g.,
“run 〈 tiger 〉” ↔ /abcd/ indicates that the meaning “run 〈 tiger 〉” can be encoded by
the utterance /abcd/, and also that /abcd/ can be decoded as “run 〈 tiger 〉”; others are
compositional, each mapping particular semantic constituent(s) onto a subpart of an
utterance, e.g., “fox” ↔ /ef/ (a word rule) or “chase 〈 wolf, � 〉” ↔ /gh � i/ (a phrase
rule, “↔” denotes an unspecified constituent, and “�” unspecified syllable(s)).

In order to form a sentence using compositional rules, the utterances of these
rules need to be ordered. A syntactic rule specifies an order between two lexical
items, e.g., “tiger” ↔ /ef/ � “fox” ↔ /abc/ denotes that the utterance /ef/ encoding
the constituent “tiger” lies before - but not necessarily immediately before - /abc/
encoding “fox”. Based on one such local order, “predicate 〈 agent 〉” meanings can
be expressed; based on combination of two or three local orders, “predicate 〈 agent,
patient 〉” meanings can be expressed.

Syntactic categories are formed in order for syntactic rules acquired from some
lexical items to be applied productively to other lexical items with the same thematic
notation. A syntactic category comprises a set of lexical rules and a set of syntactic
rules that specify the orders in utterance between these lexical rules and those from
other categories. For the sake of simplicity, we simulate a nominative-accusative
language and exclude the passive voice. A category associating lexical rules encod-
ing the thematic notation of agent can be denoted as a subject (S) category, since
that thematic notation usually corresponds to the syntactic role S. Similarly, patient
corresponds to object (O), and predicate to verb (V). A local order between two
categories can be denoted by their syntactic roles, e.g., an order before between an
S and a V category can be denoted by S � V, or simply SV.

Lexical and syntactic knowledge collectively encode integrated meanings. As
shown in Fig. A1, to express “fight 〈 wolf, fox 〉” using the lexical rules respectively
from the S, V, and O categories and the syntactic rules SV and SO, the resulting
sentence can be /bcea/ or /bcae/, following SVO or SOV.

Every lexical or syntactic rule has a strength, indicating the probability of suc-
cessfully using its M-U mapping or local order. A lexical rule also has an association
weight to the category that contains it, indicating the probability of successfully ap-
plying the syntactic rules of this category to the utterance of that lexical rule. Both
strengths and association weights lie in [0.0 1.0]. A newly-acquired rule has strength
0.5, the same as the weight of a new association of a lexical rule to a category. These
numeral parameters realize a strength-based competition during communications
and a gradual forgetting of linguistic knowledge. Forgetting occurs regularly after
a number (scaled to the population size) of communications. During forgetting, all
individuals deduct a fixed amount from each of their rules’ strengths and association
weights, after that, lexical or syntactic rules with negative strengths are discarded,
lexical rules with negative association weights to some categories are removed from
those categories, and categories having no lexical rules are discarded, together with
their syntactic rules.

Individuals use general learning mechanisms to acquire linguistic knowledge.
Lexical rules are acquired by detecting recurrent patterns (meanings and syllables
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appearing recurrently in at least two M-U mappings). Each individual has a buffer
storing M-U mappings obtained in previous communications. New mappings, be-
fore being inserted into the buffer, are compared with those already in the buffer. As
shown in Fig. A2(a), by comparing “hop 〈 fox 〉” ↔ /ab/ with “run 〈 fox 〉” ↔ /acd/,
an individual can detect the recurrent pattern “fox” and /a/, and if there is no lexical
rule recording such mapping in the individual’s rule list, a lexical rule “fox” ↔ /a/
with initial strength 0.5 will be acquired.

Syntactic categories and syntactic rules are acquired according to thematic nota-
tions of lexical rules and local order relations of their utterances in M-U mappings.
As shown in Fig. A2(b), evident in M-U mappings (1) and (2), syllables /d/ of rule
(i) and /ac/ of rule (iii) precede /m/ of rule (ii). Since both “wolf” and “fox” are
agents in these meanings, rules (i) and (iii) are associated into an S category (Cate-
gory 1), and the order before between these two rules and rule (ii) is acquired as a
syntactic rule. Similarly, in M-U mappings (1) and (3), /m/ of rule (ii) and /b/ of rule
(iv) follow /d/ of rule (i), thus leading to a V category (Category 2) associating rules
(ii) and (iv) and a syntactic rule after. Now, since Categories 1 and 2 respectively
associate rules (i) and (iii), and (ii) and (iv), the two syntactic rules are updated as
“Category 1 (S) � Category 2 (V)”, indicating that the syllables of lexical rules in
the S category should precede those in the V category.

Fig. A2 Examples of acquisition of lexical rules (a) and syntactic categories and syntactic
rules (b). M-U mappings are itemized by Arabic numbers, and lexical rules by Roman num-
bers.
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Fig. A3 Diagram of an utterance exchange. The dotted block indicates unreliable cues.

Such item-based learning mechanisms have been traced in empirical studies of
language acquisition (Mellow 2008), and the categorization process resembles the
verb-island hypothesis on language acquisition (Tomasello 2003).

A communication involves two individuals (a speaker and a listener), who per-
form a number of utterance exchange, each proceeding as follows (see Fig. A3).

In production, the speaker (hereafter as “she”) randomly selects an integrated
meaning from the semantic space to produce. She activates: (i) lexical rules encod-
ing some (compositional rules) or all (holistic rules) constituents in this meaning;
(ii) categories associating those lexical rules and having appropriate syntactic roles;
and (iii) syntactic rules in those categories that can regulate those lexical rules in
sentences. These rules form candidate sets for production. She calculates the com-
bined strength (CSprod) of each set (see Eq. (1), where Avg means taking average,
aso association weights, str rule strengths, Lex lexical rules, Cat categories, and Syn
syntactic rules):

CSprod = Avg(str(Lex(s)))+Avg(aso(Cat)× str(Syn(s))) (A1)

CSproduction is the sum of the lexical contribution (the average strength of the
lexical rules in this set) and the syntactic contribution (the average product of (i) the
strengths of the syntactic rules regulating the lexical rules and (ii) the association
weights of those lexical rules to the categories in this set). As shown in Fig. A1, the
three categories, three lexical rules encoding “wolf”, “fight 〈�, �〉” and “fox”, and
two syntactic rules SV and SO form a candidate set to encode “fight〈wolf, fox〉”.
Its CSprod is 0.98, where the lexical contribution is 0.6 ((0.7+0.6+0.5)/3) and the
syntactic contribution is 0.38 ((0.8(0.7+ 0.6)/2+ 0.4× (0.7+0.5)/2)/2).

After calculation, she selects the set of winning rules having the highest CSprod,
builds up the sentence accordingly, and transmits it to the listener. If lacking suffi-
cient rules to encode the integrated meaning, she occasionally (based on a random
creation rate) creates a holistic rule to encode the whole meaning.
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In comprehension, the listener (hereafter as “he”) receives the sentence from the
speaker and an environmental cue (its meaning is set based on the reliability of cues
(RC), which is the probability for the cue contains the speaker’s intended meaning).
Based on his linguistic knowledge, he activates (i) lexical rules whose syllables ful-
ly/partially match the heard sentence, (ii) categories associating these lexical rules,
and (iii) syntactic rules in those categories whose orders match those of the lexical
rules in the heard sentence. Then, he compares the cue’s meaning with the one com-
prehended using the activated rules. According to the three conditions discussed in
the main texts, he forms candidate sets for comprehension, and calculates the com-
bined strength of each set (see Eq. (2)). For a set without a cue, the calculation is
identical to CSprod; for a set with a cue, cue strength is added; and for a set with
only a cue, cue strength is CScomp:

CScomp = Avg(str(Lex(s)))+Avg(aso(Cat)× str(Syn(s)))+ str(Cue) (A2)

After calculation, the listener selects the set of winning rules having the highest
CScomp to interpret the heard sentence. If CScomp of the winning rules exceeds a con-
fidence threshold, he adds the perceived M-U mapping to his buffer, and transmits a
positive feedback to the speaker. Then, both individuals reward their winning rules
by adding a fixed amount to their strengths and association weights, and penalize
other competing ones by deducting the same amount from their strengths and asso-
ciation weights. Otherwise, he discards the perceived mapping and sends a negative
feedback to the speaker. Then, both individuals penalize their winning rules. Such
linear inhibition mechanism has been used in many models (e.g., Steels (2005)),
though its details may be slightly different. For activated rules having initial strength
and association weight values, the linguistic (lexical and syntactic) contribution is
0.75 (0.5+0.5×0.5). In order to equally treat linguistic and non-linguistic informa-
tion, we set cue strength and confidence threshold as 0.75. Together with forgetting,
this strength-based competition leads to conventionalization of linguistic knowledge
among individuals.

Throughout the whole utterance exchange, there is no check whether the speaker’s
encoded meaning matches the listener’s decoded one. Equations (1) and (2) illus-
trate how non-linguistic information aids linguistic comprehension, by clarifying
unspecified constituent(s) and enhancing rules helping achieve similar interpreta-
tions. Recent neuroscience studies (e.g., Esterman et al. (2009)) have shown that
certain brain regions act as a domain-general cognitive control on categorization,
stimulus-response mapping, and voluntary attention shift among perceptual inputs
and memory representations. This provides the neural basis of the coordination of
various types of information.

Table A1 lists the values of the parameters defining the semantic and signaling
spaces, and acquisition and communication mechanisms. In language change simu-
lations, individuals of the first generation share 12 compositional rules each encod-
ing a semantic constituent, and 3 syntactic rules that can form a consistent global
word order. These compositional and syntactic rules are respectively assigned to an
S, a V and an O category. Based on these rules, individuals can accurately encode
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Table A1 Parameter setting (see Gong (2009) for discussions on their effects)

Parameters Values

Size of semantic space 64
Size of signaling space 30
Size of individual buffer 40
Size of rule list 60
No. utterance exchange per transmission 20
Random creation rate of holistic rules 0.25
Amount of adjustment on strengths/association weights in competition 0.1
Amount of adjustment on strengths/association weights in forgetting 0.01
Size of population 10
Forgetting frequency (scaled to population size) 10

all 64 integrated meanings in the semantic space, and offspring having no linguistic
knowledge try learning these rules via different forms of cultural transmission.

In summary, this model presumes that: (i) individuals can conceptualize semantic
constituents and integrated meanings having simple predicate-argument structures;
(ii) they can use general learning mechanisms to handle lexical and syntactic rules,
and compositional relationship; (iii) they can optimize their linguistic knowledge
during communications. It implements concrete instance-based, learning mecha-
nisms and major behaviors during linguistic communications, and traces a simulta-
neous acquisition and close interaction of lexical and syntactic knowledge.
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Social Networks and Beyond in Language
Change

Gareth J. Baxter

Abstract. We examine the effects of heterogeneous social interactions in a numer-
ical model of language change based on the evolutionary utterance based theory
developed by Croft. Two or more variants of a linguistic variable compete in the
population. Social interactions can be separated into a symmetric weighted network
of social contact probabilities, and asymmetric weightings given by speakers to each
other’s utterances, that is, social influence. Remarkably, when interactions are sym-
metric between speakers, the network structure has no effect on the mean time to
consensus. On the other hand large disparities in social influence, even in rather
homogeneous networks, can dramatically affect mean time to reach consensus (fix-
ation). We explore a range of representative scenarios, to give a general picture of
both aspects of social interactions, in the absence of explicit selection for any par-
ticular variant.

1 Introduction

The rich structures present in language are not static entities, but are fluid and chang-
ing. Over long time periods, every element of language can change, at every level
of structural hierarchy. From pronunciation, spelling, vocabulary, to grammatical
structures themselves. Yet, while language is constantly changing, it changes only a
little at a time, a relative stability being necessary for communication. A language is
useless if its speakers do not share a common idea of its meaning (McMahon 1994).
Language is therefore in balance between change and the formation and mainte-
nance of convention. Because of the social nature of language, it seems natural that
social interactions are the driving force both of language change and of the mainte-
nance of conventions, and the fixation of new conventions.
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In this Chapter we explore the effects of social networks and social influence in
language change through numerical modeling. We take as our starting point Croft’s
2000 usage-based account of language change. Croft’s theory assumes that speakers
learn and adapt to the usage patterns of those around them. The theory is formulated
as a generalized evolutionary process (Hull 2001) in which tokens of linguistic struc-
ture are replicated by speakers when they take part in conversation, so that language
change occurs through the accumulated effect of differential replication of variants
during conversation. A numerical model of language change, based on Croft’s the-
ory, was developed in Baxter et al. (2006). Here we explore the limits of the effects
of social network structure, and further social interaction effects, on the dynamics of
this model. Many of the results described have previously been presented in Baxter
et al. (2008) and Baxter et al. (2012). The advantage of creating numerical models
of social phenomena is that it allows us to repeat experiments numerous times, to try
out different parameters and assumptions, in a way that is simply impossible in the
real world. It also allows us to check whether certain proposed mechanisms really
do lead to the outcomes predicted.

Other models of language change have been proposed, based on different ex-
planations, for example, that change occurs during learning of a language (Niyogi
and Berwick 1997). Numerical modelling has been used by a number of groups in
the broader area of language change and evolution, studying phenomena such as
the emergence of universal grammars (Nowak et al. 2001), the emergence of lan-
guage structure using iterated learning (Kirby 2002), effects of social networks on
the establishment of a convention (Dall’Asta et al. 2006), the competition between
languages for speakers (Kandler and Steele 2008). For a further review of various
effort in modeling language evolution, see Vogt (2009). The model described in this
chapter has many mathematical similarities with models of semiotic dynamics or
opinion dynamics, see for example the review Castellano et al. (2009), biodiversity
(Hubbell 2001) and population genetics (Crow and Kimura 1970).

In the following Section we outline Croft’s theory and its assumptions in more
detail, including a summary of the different mechanisms of propagation of a lan-
guage change through a population. In Sect. 3 we describe the numerical model
based on this theory. In Sect. 4 we summarise a method for mathematical analysis
of this model. In Sects. 5 and 6 we use the model to explore the effects of social
network structure and social influence on change propagation.

2 Utterance Selection Model of Language Change

Croft’s framework treats language change as taking place through language use.
Whenever a speaker produces an utterance, he or she replicates examples of linguis-
tic structures (variables) that she or he has heard before, although the structures are
often combined in novel ways (Croft 2000). This replication process is mediated by
the speaker and her knowledge about her language, which is based in turn on the lan-
guage use she has been exposed to in the past. This is an example of a usage-based
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theory, in that linguistic behavior is determined by language use in communicative
interactions (see e.g. Bybee (2001) and Pierrehumbert (2003)).

A language variable may have two or more variants, essentially “different ways
of saying the same thing”, that coexist in the speech community. Examples include
different pronunciations of a phoneme, different terms for the same object, different
idiomatic expressions with the same meaning and so on. A language change then
consists of several steps. Suppose that a particular variant is predominantly used by
a given community. From time to time, a new variant may appear. Over time, this
variant may be adopted by more and more members of the population, until finally
it may become the new predominating variant. We can say that the old convention
has been replaced by a new one. Of course this is not the final state of the language,
as new variants are introduced in all parts of a language, and some of them go on
to replace older variants, so that when viewing the language as a whole, language
change is a continual process. In the present work, we wish to study the spreading
process in a single language change. We will assume that two or more discrete vari-
ants already exist, and model their competition and spread through the population,
until one variant becomes the new convention. In particular, we are interested in the
effect of social network structure and social influence on this process.

Croft’s account can be seen as a generalised evolutionary process (Hull 1988;
Hull 2001). An evolutionary process requires a replicator, which is the entity that is
replicated in some process, preserving most of its structure. For example, in biolog-
ical evolution, the replicator may be the gene. In language change, the replicator is
the variable, and the replication process is language use in face-to-face interaction.
Replication must preserve much of the replicator’s structure. For example, a speaker
more or less accurately replicates the phonetic, grammatical, and semantic structure
of the sounds, words, and constructions when she produces an utterance. The sec-
ond required element is an interactor. The interactor interacts with its environment
in such a way that it causes the differential replication of replicators. In biological
evolution, the interactor would be the organism. It interacts with its environment in
such a way that it causes differential replication of its replicators. This process is
selection. In language change, the speaker is the interactor. The speaker interacts
with her environment, in particular other speakers, causing differential replication
of linguemes. The result is language change.

A variety of factors influencing the spreading of a variant through the popula-
tion have been proposed. It is possible to classify these different mechanisms of
propagation in evolutionary terms (Baxter et al. 2009; Blythe and Croft 2012). In
a typical evolutionary selection model, each variant replicator has an associated fit-
ness value, and differences in fitness result in differential replication. We call this
selection mechanism replicator selection. In language change, replicator selection
corresponds to the situation in which one variant may be inherently more favoured
or more likely to be reproduced than another. This may be due to universal forces,
such as articulatory or acoustic properties of sounds, or syntactic processing factors
(Ohala 1983; Hawkins 2004). On the other hand, speakers may have a conscious or
unconscious preference for one variant over another, due to for example association
with certain subgroups of society and a speakers own identity (Labov 2001; LePage
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and Tabouret-Keller 1985). All of these mechanisms can be classified as replicator
selection.

However, variant frequencies may change without any form of replicator selec-
tion being present, but simply by random fluctuations in the replication process. In
population genetics, this process is called genetic drift (Crow and Kimura 1970),
or neutral evolution. We prefer this second terminology, to avoid confusion with
linguistic drift, which is an entirely unrelated phenomenon. In language change,
structured social networks mean that a speaker is more likely to interact with cer-
tain speakers rather than others (Labov 2001). Because some speakers may happen
to use some variants (replicators) more than others, it can bring about differential
replication. We call this type of selection neutral interactor selection, in that the only
factor that influences replication is the frequency of interaction with the interactor.

There is another type of interactor selection that is possible in language change.
Interactors (interlocutors) may be preferred or dispreferred by a speaker no mat-
ter how frequently or infrequently she or he interacts with them, and their linguis-
tic replications (utterances) are weighted accordingly. Thus, variants of a speaker
whose productions are weighted more heavily will be differentially replicated. This
type of interactor selection is unlike network structure, in which the weighting of
variants is simply a consequence of frequency of interaction with different speakers
producing different variants. We call this weighted interactor selection. Weighted
interactor selection implies that a speaker’s linguistic behavior is influenced not
just by frequency of interaction but also a differential social valuation of particular
speakers. These four mechanisms are summarized in Table 1.

Table 1 Types of selection present in language change

Interaction Frequency Interactor Behaviour Replicator Behaviour

Neutral Evolution equal symmetric symmetric

Neutral Interactor
Selection

unequal symmetric symmetric

Weighted Interactor
Selection

— non symmetric symmetric

Replicator Selection — — non symmetric

3 Numerical Model

These different forms of selection can be explored through numerical modelling
(Baxter et al. 2006). Here we are interested in the effects of social networks and in-
fluence, so we will focus on neutral evolution and on the different forms of interactor
selection. We focus on a single linguistic variable, which we assume to be suffi-
ciently independent of other language elements that it can be treated in isolation. Of
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course in reality language structures are interdependent, but for simplicity we con-
sider only a single variable. This is similar to, in population genetics, the modeling
the evolution of alleles of a single gene in early models (Crow and Kimura 1970). It
means that more complex interactions such as chain shifts cannot be acoomodated
in the present model.

Suppose that within a given speech community, one particular variant is repro-
duced much more than any other. This variant is the convention among that group
of speakers. It may be that, over time, a different variant becomes more widely used
amongst this group of speakers, eventually becoming dominant, i.e. becoming the
new convention. This is an example of a language change, and it is the process we
wish to model. We do not model the process of innovation, rather we assume the
existence of multiple discrete variants of a linguistic variable, and track their fre-
quency as they compete and propagate in the population through replication by the
speakers.

A speaker of a language is able to track the frequencies with which she has heard
particular variant forms used within speech community (Bybee 2001; Pierrehumbert
2003), and this knowledge in turn governs how she uses the variants. A speaker
retains then a language model or linguistic representation which in turn governs the
fruquency with which he or she uses the different variants.

Another important feature we wish to include is the observation that speakers
may use unconventional variants if they have become entrenched (Croft 2000). For
example, someone who has lived for a long time in one region may continue to
use parts of the dialect of that region after moving to a completely new area. This is
incorporated into our model in two ways. First, we shall assume that a given interac-
tion (conversation) between two speakers has only a small effect on the established
grammar. Second, speakers will reinforce their own way of using language by keep-
ing a record of their own utterances.

The model is then constructed as follows. We consider a speech community con-
sisting of N speakers, i= 1,2, ...,N. We focus on this community’s usage of a partic-
ular lingueme with a finite number V ≥ 2 of variant forms. Each individual retains
a model of the frequency with which the different variants are used in the speech
community. The variable xiv(t) reflects speaker i’s perception of the frequency with
which lingueme variant v (1 ≤ v ≤ V ) is used in the speech community at time t.
These variables are normalized

V

∑
v=1

xiv(t) = 1 ∀i, t . (1)

In the following we will assume, for simplicity, that only two variants are present,
a and b. We then need only a single variable to represent the grammar of each
speaker, xia(t)≡ xi(t), as the value of xib ≡ yi(t) is determined by the normalisation
constraint, xi(t)+ yi(t) = 1 at all times. The state of the system at time t is then the
aggregation of grammars x(t) = {x1(t), . . . ,xN(t)}.
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In this Chapter, we wish to understand the effects of the network of social inter-
actions. This is parametrised by the symmetric matrix G, which can be considered a
weighted adjacency matrix. If speaker i can interact with speaker j, the relative fre-
quency of their interactions is given by the matrix element Gi j. If they do not meet
(that is, they do not know each other), this element is zero. The matrix is necessarily
symmetric, because when i meets j, j always meets i. The elements Gi j are normal-
ized such that the sum over distinct pairs ∑〈i, j〉 Gi j = 1. Any particular network of
interactions and relationships can be encoded in this matrix.

Social influence is more than just a network of contacts, however. The influence
one speaker has on another is not necessarily the same as that which this other
speaker has on the first. We encode a social influence H. Unlike G, H may be asym-
metric. Its entries Hi j represent the relative value speaker i places on the utterances
of j. This may originate in different social class, age, social group membership
or simply personal preference. The entries in H do not need to be normalised. In
principle they can take any value, but consideration of the dynamics of the model
shows that values of a similar scale to λ , that is, much smaller than 1, have a signif-
icant effect. Generally we use values of this order, except in the cases of very broad
power-law distributions (see below), in which case some values may be much larger.

As described in the previous section, these social factors, from an evolutionary
standpoint, represent interactor selection. Neutral interactor selection can be en-
coded in the symmetric interaction network G, while weighted interactor selection
arises from the combination of G with asymmetric interactions encoded in the social
influence matrix H. The other main class of selection, replicator selection, acts as a
function of (preference for) the variants themselves. In general, replicator selection
is much stronger than interactor selection. Therefore, here we will generally assume
that replicator selection is absent, and focus in interactor selection, which is where
network effects are observed.

After choosing some initial values for speaker grammars xi, and defining the
network Gi j and influence Hi j, we allow the system to evolve by repeatedly iterating
the following three steps in sequence, each iteration having duration δ t:

1. Social interaction. A pair i, j of speakers is chosen with probability Gi j. See
Fig. 1(a).

2. Reproduction. Each of the speakers selected in step 1 produces a set of w
tokens, i.e., instances of variants. Each token is produced independently and at ran-
dom, with the probability that speaker i utters variant v equal to the production
probability, which for present purposes we set to be simply equal to the linguistic
representation value xiv. With two variants, the numbers of tokens ni(t) of variant a
produced by speaker i is simply drawn from the binomial distribution

P(ni|xi) =

(
w
ni

)

xni
i (1− xi)

w−ni . (2)

Speaker j similarly produces a sequence of tokens according to his or her mem-
ory x j. The randomness in this step is intended to model the observed variation in
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Fig. 1 (Color online) Stylised representation of the model algorithm. (a) Speakers in the speech
community interact with different probabilities according to a weighted social network (rep-
resented by different thicknesses of lines connecting them). Speakers i and j are chosen to
interact with probability Gi j . (b) During the interaction, each speaker produces tokens of the
linguistic variable according to their own internal linguistic representation. (c) Each speaker
modifies their linguistic representation by a small amount, according to the frequencies with
which the variants were reproduced in the conversation. A speaker records his or her own ut-
terances as well as those of her interlocutor, weighted by a social influence factor Hi j . The
update rule is given by Eq. (3). A new pair of speakers is then chosen, and the process repeats.

language use that was described in the previous section. This step is illustrated in
Fig. 1(b).

3. Retention. The final step is to update each speaker’s language model to reflect
the actual language used in the course of the interaction. A small fraction (∝ λ ) of
existing speaker’s memory is replaced by contributions which reflect both the tokens
produced by herself and by her interlocutor. The social influence factor appears as
a weighting factor Hi j applied to the tokens of his or her interlocutor, relative to her
own. These considerations imply that, for speaker i,

xi(t + δ t) =
1
Z

{

xi(t)+λ
[

ni(t)
w

+Hi j
n j(t)

w

]}

. (3)

where Z is needed to ensures normalisation is maintained. The fraction of the mem-
ory occupied by the second variant, yi(t) obeys a similar equation yi(t + δ t) =
1
Z

{
yi(t)+λ

[
w−ni(t)

w +Hi j
w−n j(t)

w

]}
and summing the two equations we find that

xi(t + δ t)+ yi(t + δ t) = 1
Z [1+λ (1+Hi j)]. Normalisation requires that xi + yi = 1,

so we must have Z = 1+λ (1+Hi j).
The same rule applies for speaker j after exchanging all i and j indices. Fig-

ure 1(c) illustrates this step. The parameter λ , which affects how much the grammar
changes as a result of the interaction is intended to be small, for reasons given in the
previous section.

In simulations we repeatedly apply these three steps: choose two speakers ac-
cording to G, each produces w tokens according to their current values of xi, and
then each speakers’ xi is updated using the update rule (3). The prevalence of the
variants fluctuates in the population, until eventually one or another variant wins
out, completely dominating the population, after which no further change occurs.
(We do not model the process of introduction of new variants, which happens in
real languages, and allows continual evolution of the language.) We call this fixa-
tion. The main quantities we may wish to understand, then, are the probability that
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a given variant is the one that fixes, and the mean time this takes to occur. These
depend on the social structure and interactions, and on the initial conditions. In the
following section we develop the mathematical analysis of the model, which allows
the calculation of fixation probabilities and mean fixation times.

4 Analysis

It is possible to understand the behaviour of the model through analytic calculations.
These are based on a so called continuous time approximation, where we define a
new time scale such that each interaction step in the model corresponds to a very
short time interval. The time can then be approximately treated as continuous, so
that we can derive differential equations for the evolution of the model. The model is
stochastic, that is, it contains random elements meaning that repeating a simulation
does not necessarily produce the same outcome. The differential equations we write
are therefore for the evolution over time of the probability distribution of the state
of the system.

We define the time scale such that δ t = λ 2, where λ is the small parameter con-
trolling the amount by which a speaker’s memory is updated after an interaction. We
choose this relationship because, it turns out, the behaviour of the model in this new
time scale is independent of λ (so long as it is small). Then taking the limit δ t → 0,
the time becomes continuous. Using the process described in Baxter et al. (2006),
which we recapitulate briefly in the Appendix here, we construct a Fokker-Planck
equation for the process described in the previous section. This is an equation for
the time evolution of the probability P(x, t) that the system is in state x at time t.
The equation reads

∂P(x, t)
∂ t

= ∑
i

∑
j �=i

mi j
∂

∂xi
[(xi − x j)P(x, t)]+

1
2

N

∑
i=1

Gi
∂ 2

∂x2
i

[xi (1− xi)P(x, t)] (4)

where Gi is the total interaction probability for speaker i, Gi ≡ ∑〈i j〉 Gi j and mi j ≡
Gi jhi j. Here Hi j has been rescaled by λ , hi j =Hi j/λ , which is necessary to maintain
proper scaling as λ → 0 as δ t → 0.

It is not possible to write an exact solution for this equation, which has N vari-
ables. However, as shown in Baxter et al. (2008) and Blythe (2010) remarkably,
progress can be made. We use the observation that, after a relatively short period,
the system relaxes to a quasi-stationary state, in which the change in the speakers
grammars effectively become coupled. After this point, the dynamics can be largely
described by a single collective variable

ξ (t) =
N

∑
i=1

Qixi(t), (5)
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where the coefficients Qi depend on the structure of the matrices G and H, in a
way that we will define shortly. The collective variable ξ does not have a direct
physical interpretation, but it can be viewed as an effective prevalence of variant a
in the population. The contribution from each speaker is weighted by the factor Qi

which captures the relative influence of that speaker in the population. See Blythe
(2010) for a detailed discussion of the validity of this approximation. It is appropri-
ate when the diameter of the network (the longest path in the network between two
speakers) is small compared to the population size, as we would expect it to be in a
social interaction network. As we will see, analytic results obtained are in excellent
agreement with numerical simulations.

We introduce a matrix M by

Mi j =

{
mi j, if j �= i
−∑k �=i mik, if j = i.

(6)

The center-of-mass weights Qi then correspond to the left eigenvector of Mi j:

N

∑
i=1

QiMi j = 0 with
N

∑
i=1

Qi = 1. (7)

The reason for this choice is that it implies that the average of ξ (t) is conserved
by the dynamics:

d〈ξ (t)〉
dt

=
N

∑
i=1

Qi
d〈xi(t)〉

dt
= ∑

i, j
QiMi j〈x j(t)〉= 0. (8)

where angled brackets 〈...〉 signify an expectation value, that is the value averaged
over many realisations.

Since every instance of the process eventually reaches xi = 1 or xi = 0∀i, the
probability that the final point is 1, i.e. fixation to variant a, is 〈ξ (∞)〉. But the
conservation of 〈ξ (t)〉 means that this is simply equal to its initial value ξ (0).

We proceed by assuming that once the quasi-stationary state is reached, after a
short initial relaxation time T0, the dynamics depend almost entirely on this one
variable. We can then write a Fokker- Planck equation for this single variable

∂P(ξ , t)
∂ t

=
1
2

N

∑
i=1

GiQ
2
i xi(t) [1− xi(t)]

d2P(ξ , t)
dξ 2 . (9)

This equation applies from T0, the time that the quasi-stationary state is reached
until fixation occurs at time Tf . Let T = Tf −T0. The time T will be a good approxi-
mation to Tf as long as T0 � Tf . Typically T0 is of the order of N. If the overall time
to fixation Tf is proportional to Nν , then the approximation is valid as long as ν is
larger than 1. As we will see, ν is normally equal to 2, but it may take smaller or
larger values. Whenever it becomes close to 1, our method of approximation fails.
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Taking T0 as the new initial time, the time T obeys a reversed-time version of
Eq. (9) (Gardiner 2004; Risken 1989):

−2 =
N

∑
i=1

GiQ
2
i xi(T0) [1− xi(T0)]

d2T
dξ (0)2 . (10)

This equation still depends on the variables xi at time T0. We approximate xi(1−
xi) in Eq. (10) by 〈xi(T0)〉− 〈xi(T0)

2〉, their expected values in the quasi-stationary
state. In this state, 〈xi〉 ≈ ξ (0). We estimate 〈xi(T0)

2〉 by assuming that xi and x j

are uncorrelated, and calculating the variance in the quasi-stationary state from the
original Fokker-Planck equation, assuming that the rate of change of the variance of
xi is negligibly small in the quasi-stationary state. This approximation is discussed
in more detail in Baxter et al. (2008) and Blythe (2010). The equation for T becomes

[ξ (0)(1− ξ (0))]
d2T

dξ (0)2 =−2/r (11)

where

r ≈ ∑
i

Q2
i Gi

2∑ j �=i mi j

2∑ j �=i mi j +Gi
. (12)

The mean fixation time is obtained by integrating the equation for T (ξ (0)), with the
boundary conditions T (0) = T (1) = 0 to give

T (ξ (0)) =−2
r
[ξ (0) lnξ (0)+ (1− ξ (0)) ln(1− ξ (0))] . (13)

This rather simple expression encapsulates the effects of arbitrary social network
and social influence structures. The probability that variant a eventually reaches
fixation can be read off as ξ (0) (the probability that b fixes is 1− ξ (0)), while the
mean time taken to reach consensus is given by (13). Given Gi j and Hi j, it remains
only to find Qi to complete the calculation.

In the next sections, we examine different social network structures G and social
influence H, representing examples of the different forms of selection described in
Sect. 2. Where possible the above formalism will be used to give analytic calcu-
lations, which we compare with numerical results. In more difficult cases, we give
only numerical results, but we see that they are consistent with the patterns observed
in the simple cases. To calculate mean fixation times, simulations were carried out
until a state of fixation was reached, and the time at which this occurred was av-
eraged over multiple runs. Unless otherwise stated, we used homogeneous initial
conditions, that is, all xi(0) are initially set to the same value x0.
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Fig. 2 Fixation times
within the socially-neutral
utterance selection model
(defined in the text) on
various networks with N
nodes. Networks are fully
connected (square symbols),
random regular graph with
each possible edge con-
nected with probability 0.2
(plusses) and hub-and-spoke
network (stars) in which
small groups of speakers are
arranged in a star pattern,
with speakers only inter-
acting with speakers from
the central group outside of
their own group.
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5 Social Networks in the Neutral Model

We begin with the simplest case, neutral interactor selection. That is, we examine
the effect only of heterogeneous social contact frequencies, given by Gi j, while all
other forms of selection are absent. This means that each speaker gives the same
importance to every other speaker’s utterances, and we set Hi j = H, a constant, for
all i and j.

Setting these values in Eq. (12), and using the fact that the symmetry of mi j im-
plies that all Qi are equal to 1/N (Baxter et al. 2008), we find that all dependence on
Gi j cancels, leading to the remarkable result that the mean fixation time T doesn’t
depend on the social network structure at all (Baxter et al. 2008), and (when mea-
sured in terms of number of interactions) is proportional to N2.

To confirm this results, in Fig. 2 we show numerical fixation times for a variety of
network structures. We see that, indeed, there is little variation in the mean fixation
times, across quite a diverse selection of network structures, and all are in agreement
with the theoretical calculation. Furthermore, the probability of fixation also does
not depend on network structure but simply on initial conditions.

These results enabled an evaluation of Trudgill’s theory of new-dialect formation,
as applied to the emergence of New Zealand English (Baxter et al. 2009). Trudgill
has postulated (Trudgill 2004) that the large quantity of data that exist on the emer-
gence on this English variant (Gordon et al. 2004) may be explained by assuming
that social factors (which are modeled by Hi j in our model) are unimportant, and
therefore this factor may be replaced by a constant. This meant that we did not need
to know the details of the social network in order to apply our model to this situa-
tion. Incidentally, it turned out that the probability of certain variants emerging as
the convention was indeed consistent with the neutral version of our model, but the
time taken for this convention to arise would be much longer than was observed in
New Zealand (Baxter et al. 2009).
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6 Weighted Interactor Selection

We now move beyond the simple social network to consider weighted interactor se-
lection. This is where the weight a speaker gives to the utterances of her interlocuter
are not the same as those he gives to hers. This can accommodate a variety of so-
cial phenomena, from differential preference for the speech of certain social classes,
groups, ages, or simply personal affinity.

Let us assume that Hi j is separable: Hi j = αiβ j. This is not an unreasonable
assumption, it allows us to look at the case where speakers are influenced by (the αi)
or influence (the β j) other speakers irrespective of the identity of their interlocutor.
That is, that Hi j depends only on characteristics of individual speakers, and not on
the social network.

Under this assumption, the solution for Qi becomes (Baxter et al. 2012):

Qi =
βi/αi

∑ j β j/α j
, (14)

and then Eq. (12) for r becomes

r =
1

[∑ j β j/α j]2
∑

i

β 2
i

α2
i

Gi
2αi ∑ j �=i Gi jβ j

2αi ∑ j �=i Gi jβ j +Gi
. (15)

The fixation time is proportional to 1/r, and so we will focus on the calculation of
r. Note, however, that ξ (0) will depend on the initial values of xi. This has an effect
on the fixation time, but only as a prefactor, and not on the scaling with population
size. Unless otherwise stated, we will assume that xi(0) = x0∀i, then ξ (0) = x0.

We further assume that the network of speaker interactions is large, random, and
uncorrelated. The number of neighbours ki that each speaker has, called their degree,
is drawn at random from some distribution. In a large population, the social network
is defined by this degree distribution. There is no correlation between the number of
neighbors that different speakers have, so that Gi j ∝ kik j. With proper normalisation
we have

Gi j ≈ 2kik j

(Nμ1)2 and Gi ≈ 2ki

Nμ1
, (16)

where μ1 is the mean of the degree distribution, that is, the mean number of neigh-
bours a speaker has. Under these two assumptions we then obtain

r =
1

Nμ1[∑ j β j/α j]2
∑

i

4β 2
i ki ∑ j �=i k jβ j

2α2
i ∑ j �=i k jβ j +αi(Nμ1)

. (17)

Under these two approximations, we can try out different schemes for the interaction
weightings. We are mainly interested in how the fixation time scales with N, and are
in particular looking for significant deviations from the baseline result (found in
Sect. 5) that T is proportional to N2.
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6.1 Asymmetry Independent of Network Structure

We first investigate the situation in which the social influence factors Hi j are as-
signed independently of the social network structure Gi j, so that there is no corre-
lation between them. Consider first the case that the αi are all equal, αi = 1, say,
while the βi take on arbitrary values. This means that different speakers’ utterances
carry different weights with their audience, but the importance given to them does
not vary from listener to listener. Then

r =
1

Nμ1[∑ j β j]2
∑

i

4β 2
i ki ∑ j �=i k jβ j

2∑ j �=i k jβ j +Nμ1
. (18)

Suppose that the βi are independently drawn from some distribution. Since they are
selected independently from ki,

∑
j �=i

k jβ j ≈ Nμ1〈β 〉− kiβi . (19)

For large N, we expand Eq. (18) in powers of kiβi/N to obtain

r ≈ 4
N2μ1〈β 〉2

{
μ1〈β 〉〈β 2〉
[1+ 2〈β 〉] −

μ2〈β 3〉
Nμ1[1+ 2〈β 〉]2

− 2μ3〈β 4〉
(Nμ1)2[1+ 2〈β 〉]3 − . . .

}

, (20)

where μn is the nth moment of the degree distribution.
If the βi are selected from a generic distribution, such as a Gaussian, the moments

are well behaved, that is, they tend to a finite value for N → ∞. This implies that
r ∝ N−2 for large N and so the mean time to fixation grows as N2 for large N. This
is identical to the result obtained in the previous Section, for the case where Hi j

had no structure at all, and suggests that if we are to look for deviations from this
behavior then we must investigate distributions where the moments depend on N
in some way. We therefore consider “fat tailed” distributions of βi, in which some
members of the community have a much larger influence than the norm. Consider a
power law distribution

P(β ) = Aβ−γ for β ≥ β0 . (21)

We find the dependence of r on N for different values of the exponent γ . In all ranges
of γ , we find that the first term of Eq. (20) dominates, so that

r ≈ 4〈β 2〉
N2〈β 〉[1+ 2〈β 〉] (22)

for large N.
Since for γ > 3 both 〈β 〉 and 〈β 2〉 have finite limits as N → ∞, we recover the

T ∝ N2 result found from more conventional distributions. For 1 < γ < 2, Eq. (22)



270 G.J. Baxter

Fig. 3 Mean fixation time
as a function of population
size for Hi j independent
of degree, as described in
Sect. 6.1. Results are for
a fully connected network
with βi following a power-
law distribution with decay
exponent γ = 2.0,2.2,2.6
and constant αi. Markers are
average fixation times for
5000 numerical runs. Solid
lines are expected scaling as
given by Eq. (22), dashed
lines are best fit curves of
the form T = ANζ .
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gives T ∝ N and for 2 < γ < 3, T ∝ N(5−3γ)/(γ−1), and so in this range the power of
N varies from 3/2 to 2, having the former value when γ = 2.

These calculations can be checked against numerical simulations of the model.
The results shown in Fig. 3 are for a fully connected network of speakers, that is,
each speaker is equally likely to speak with each of the other speakers, but similar
results are obtained for a sparse interaction network in which each speaker had ap-
proximately an equal number of neighbors. The β j were chosen from a power-law
distribution for various values of the power-law exponent γ , while setting all αi = 1.
The agreement with the predictions of Eq. (22) is very good so long as the predicted
exponent of growth of T with N is greater than 1, that is for γ > 2. This includes
the region 2 < γ < 3, in which the mean fixation time, T , grows more slowly with
N than in the usual situation where T ∝ N2. That is, the mean time to fixation may
be reduced without recourse to any special network structure, merely by allowing
heterogeneity in the response of speakers to the utterances of their interlocutors.

For γ ≤ 2, Eq. (22) predicts T ∝ N. As we approach this region, we find the the-
oretical predictions break down. This can be seen in the lowest set of data in Fig. 3.
This is not unexpected, if we consider the approximations made to derive our esti-
mates of the mean fixation time. We have assumed that there is a short relaxation
period after which the dynamics can be well described by considering only the col-
lective variable ξ (see Blythe (2010) for details). Our calculated fixation times are
only for this second stage. Typically the initial relaxation happens in a time of order
N. We see that if the calculated fixation time is of a similar time scale, the initial
relaxation can no longer be ignored.

So, in summary, choosing an extreme distribution for βi of the type described by
(21) can reduce the growth of T with population size, the slowest growth (and hence
the shortest fixation times) being when γ approaches 2 when T ∝ Nν tends to ν = 1.

The complementary situation is to set the βi to be all equal, while the αi vary.
In this situation, some speakers give more attention to others’ utterances, and some
less, but the identity of their interlocutor is not taken into account. However in this
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Fig. 4 Numerical results
for mean fixation time for
αi distributed according to
inverted power law distri-
butions, with values of γ
given in the legend. Top
line (squares, red online) is
for a fully connected graph
with γ = 2.6. Lower lines
(circles) are for a sparse
graph with mean degree 10
and γ = 2.8,2.6,2.4 from
top to bottom. Lines are
fitted functions of the form
T = aNξ . Dashed line is
aN2 for comparison.
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situation the method we used when the αi were all equal does not apply, and we
cannot obtain any simple analytic results. However, by examining Eq. (17), we see
that it is the smallest values of αi which contribute most to r. In fact we find that
r ∼ 〈1/α〉/N2. This result is similar to that found in Masuda et al. (2010) and Bax-
ter (2011) where different agents in the network could change state with different
rates: this is one way to interpret variation of the α parameter in the present work.
Consider a power-law distribution of values, such that P(α) ∝ α−γ . The moment
〈1/α〉 is independent of γ in this case, so we would expect to find T ∝ N2. Indeed
this is exactly what is observed through numerical simulations, with the mean fix-
ation time growing as N2, exactly as in the standard case, regardless of the value
of γ .

Considering the fact that the smallest α values make the largest contribution, we
can also consider an ‘inverted’ power-law distribution, P(1/α) ∝ (1/α)−γ , that is
P(α) ∝ α+γ with an imposed upper bound instead of a lower bound. In this case
we do see mean fixation times changing with γ , but rather than fixation being sped
up, it is slowed down. We find T ∝ Nν , with ν approaching the baseline value of
2 when γ = 3, and increasing as γ decreases, as shown in Fig. 4. Here we do find
a difference relative to other cases we investigated, in that the density of the graph
also has an effect on the exponent ν: it grows more quickly with decreasing γ on a
sparse network than a fully connected network.

Returning to heterogeneous βi values, let us investigate the effect of correlations
between the βi values of neighboring speakers. To do this, we place the speakers on
a random sparse network, in which each speaker has approximately the same num-
ber of neighbors. As before, power law distributed β values are chosen, but now the
largest value is assigned first to a randomly chosen speaker. The next largest values
are then assigned to this speaker’s neighbours, and so on. These correlations only
slightly affect the scaling of mean fixation time with population size N, with T grow-
ing as Nν with exponent ν similar to that found in the uncorrelated case described
above for the same γ . This is confirmed by simulation results, Fig. 5. Simulations
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Fig. 5 Numerical results
for mean fixation time for
correlated βi. Speakers are
located on a sparse network
and βi values distributed
according to a power law
with exponent γ = 2.4,
and correlated (see text)
from highest to lowest (tri-
angles), from lowest to
highest (inverted triangles)
and anti-correlated (cir-
cles). Lines are fitted func-
tions of the form T =aNν ,
with ν =1.44,1.63,1.72 re-
spectively. For comparison
the black dashed line has
ν = 1.57 which is the slope
expected for uncorrelated
βi.
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in which β values are assigned from lowest to highest, and also anticorrelations, in
which the lowest β values are located on the neighbors of the highest value show
similar results. In each case the growth of T with N was similar, though the overall
prefactor was different to that found in the uncorrelated case. Results are plotted in
Fig. 5, compare with Fig. 7.

Finally we consider the effect of inhomogeneity in the initial conditions. Af-
ter randomly assigning power law distributed βi values (without correlations), the
speakers with the largest βi’s have their initial grammar value xi(0) set to 1, while
the remainder were set to 0, such that the overall mean grammar was x0. In this case
T scales with N exactly as found above. The mean fixation time is affected by initial
conditions through the center-of-mass parameter ξ (0) which appears in Eq. (13).
This affects the prefactor but not the scaling of T with N. The value of ξ (0) dif-
fered from the homogeneous case value of x0, as expected, as evidenced by a much
greater probability of fixation to state 1.

These last numerical investigations thus support the value of the simpler cases
for which we made analytic predictions. They give a good indication of the general
conditions for finding fixation times shorter than the standard T ∝ N2.

6.2 Asymmetry Depends on Speakers Degree

We now consider the more general situation in which a speaker’s influence may
be related to his or her position in the network. This might occur, for example,
if a popular speaker (i.e., one with many neighbors) is given more weight by her
interlocutors, e.g. as in Fagyal et al. (2010). Alternatively, speakers might divide
their attention between all of their interlocutors.
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Fig. 6 (Color online.) Scal-
ing of mean time to reach
fixation with population
size. Shading represents the
value of exponent ν where
T ∝ Nν . The labels give
expressions for ν in each
region, with black lines
marking boundaries be-
tween regions. The diagonal
hatches cover the region in
which the approximations
used are not expected to be
accurate.
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We gain suppose that αi is independent of i, say α = 1, and now suppose that βi

is proportional to ki raised to some power,

β j = Akσ
j (23)

for some constants A and σ . This allows us to explore a range of both positive and
negative correlations between influence and degree.

We follow the same procedure as in Sec. 6.1, but now the moments of β are not
independent of the network degree moments. In fact, everything can be written in
terms of moments of the degree distribution μs. Expanding Eq. 12 for r in powers
of kσ+1

i /N we find

r ≈ 4
N2μ1μ2

σ

{
μσ+1μ2σ+1

[2μσ+1 + μ1A−1]
− μ3σ+2μ1A−1

N[2μσ+1 + μ1A−1]2

− 2μ4σ+3μ1A−1

N2[2μσ+1 + μ1A−1]3
− . . .

}

. (24)

For conventional degree distributions, all the moments tend to N-independent values
as N becomes large, and we have r ∼ 1/N2 as usual.

Suppose however that the degree distribution obeys a power law. In different
regions of the γ −σ plane different moments appearing in (24) diverge with N. By
carefully examining the ratios between subsequent terms in the series, we find that
the first term always dominates. This gives

r ≈ 4μσ+1μ2σ+1

N2μ1μ2
σ [2μσ+1 + μ1A−1]

. (25)

The scaling with respect to N depends on whether any or which combination of
the moments μ1,μσ ,μσ+1,μ2σ+1 diverge with N. This divides the σ–γ plane into a
number of regions, as seen in Fig. 6. The mean fixation time grows with population



274 G.J. Baxter

Fig. 7 Mean fixation time
as a function of population
size with βi depending on
speaker degree, as described
in Sect. 6.2. Results are for
a random network whose
degree distribution obeys a
power law p(k) ∝ k−γ . The
interaction weights depend
on degree through βi ∼
kσ

i . Markers are average
fixation times for 5000
numerical runs. Solid lines
are expected scaling as
given by Eq. (25) and Fig. 6,
dashed lines are best fit
curves of the form T = ANζ .
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size in general as T ∝ Nν , and we give expressions for ν in the various regions in
Fig. 6. We see that in a large area, ν = 2 as in the standard case. For γ < 3 and σ < 0
the mean time to fixation may grow faster than N2. On the other hand, for σ > 0
and above the line σ = γ − 1, T may grow more slowly than N2, with the slowest
growth rate T ∝ N1/2 being achieved when γ = 3 for σ ≥ 2 (though, as we will see,
our approximations start to break down when ν < 1).

In Fig. 7 we present simulation results for various representative locations in the
γ–σ plane (see Fig. 6). The numerical results are in excellent agreement with the
ν values predicted by Eq. (25) for values both smaller and larger than the baseline
value of 2. As before, the agreement fails when the predicted value of ν is 1 or less.
This occurs in the region marked with diagonal hatching in Fig. 6.

7 Conclusions

In this Chapter, we have investigated how social network and heterogeneous social
interactions in a model of language change affect the behaviour of the model, partic-
ularly the mean time to reach a state of fixation (all speakers using a common con-
ventional variant). Remarkably, when social interactions are symmetric, the details
of the network structure have no effect on the mean time to fixation, or the prob-
ability that a particular variant fixes. In contrast, the mean time to fixation can be
dramatically affected by the presence of large disparities in the influence of different
speakers, for example when the Hi j are constructed to be drawn from a power-law
distribution. This is the case even when the social network is rather homogeneous,
and the Hi j entries are separated as properties of individual speakers (e.g.. Hi j = βi,
independent of j). A wide variety of scaling relationships between the mean fixation
time and network size are possible when node influence and degree (a measure of
‘popularity’) co-vary. In different cases fixation may be accelerated or decelerated
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relative to the baseline case of uniform influence, depending on how influence and
degree are correlated. The derived analytical predictions hold when the initial relax-
ation to the quasi-stationary state is of a much shorter time scale than the overall
time to reach fixation. When the second period becomes close to order N1, this is no
longer true, and the analytical results are no longer valid.

In more general terms, the results obtained here underline the importance of de-
veloping numerical models from first principles, based on a careful consideration
of the phenomena occurring in the system under study. In this case, the distinction
of replicator selection from interactor selection emerged naturally from considera-
tion of this model (Baxter et al. 2009), something which might otherwise have been
missed. Here we have outlined in general terms the effects of neutral and weighted
interactor selection. These represent the complexities of social interactions: group
identity, social class, gender, age, etc. and it remains to apply the methods devel-
oped to specific linguistic problems. In many such systems, replicator selection is
of course also likely to be present. Nevertheless, effects of both types of selection
ought to occur simultaneously. It remains for future investigations to delineate these
situations and the interactions between the different forms of selection.

Acknowledgements. Many of the results presented here have previously been presented in
Baxter et al. (2008) and Baxter et al. (2012). Figures 3–7 are reproduced from Baxter et al.
(2012) with permission of the Authors.

Appendix: Derivation of Fokker-Planck Equation

Here we give a brief outline of the derivation of the Fokker-Planck Equation (4), us-
ing a standard method that can be found in, for example Risken (1989) and Gardiner
(2004). A similar derivation can be found in Baxter et al. (2006).

The time derivative of an evolving probability distribution can be related to
derivates of the state variables using the Kramers-Moyal expansion

∂
∂ t

P(x, t) =−
N

∑
i=1

∂
∂xi

{αi(x)P(x, t)}+ 1
2

N

∑
i=1

N

∑
j=1

∂ 2

∂xi∂x j

{
αi j(x)P(x, t)

}
+ . . . (26)

where the α functions are called the jump moments and are defined as

αi(x) = lim
δ t→0

〈δxi(t)〉
δ t

(27)

αi j(x) = lim
δ t→0

〈δxi(t)δx j(t)〉
δ t

, (28)

where δxi(t) ≡ xi(t + δ t)− xi(t), and angled brackets represent ensemble aver-
ages. The ellipsis indicates that this series continues indefinitely, to higher and
higher order derivatives. The Fokker-Planck equation is nothing more than the trun-
cation of this expansion at the level of the second derivatives. Derivation of the
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Fokker-Planck equation is then a matter of finding the jump moments. In the present
case, the jump moments can be found from Eq. (3). The change in xi(t) in a single
time increment, given that i has already been chosen to interact with j, is

δxi =
λ

1+λ (1+Hi j)

[ni

w
− xi +Hi j

(n j

w
− xiv

)]
. (29)

The expected change 〈δxi〉 can then be found using the fact that ni is a multinomial
sample of w trials with probability xi, and taking into account that the probability
that i interacts with j at time t is Gi j. We must then sum over all possible j, giving

〈δxi〉= λ 2 ∑
j �=i

λ
1+λ (1+λ hi j)

Gi jhi j(x j − xi) , (30)

where we have used the rescaled variable hi j = λ Hi j. Identifying δ t with λ 2 then
gives us the first term in the Fokker-Planck Equation (4).

For the second jump moment, we must use the variance of the multinomial dis-
tribution

〈nin j〉− 〈ni〉〈n j〉=
{

wxi(1− xi) i = j

0 i �= j
(31)

and following a similar procedure, one finds that

〈δxiδx j〉= ∑
i

∑
j

Gi j
λ 2

w
xi(1− xi) (32)

if i = j and 〈δxiδx j〉= 0 otherwise. Again, using δ t = λ 2 we immediately find the
required jump moment, giving the second term in (4).
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Emergence of Dominant Opinions
in Presence of Rigid Individuals

Suman Kalyan Maity and Animesh Mukherjee

Abstract. In this chapter, we study the dynamics of the so-called naming game
as an opinion formation model with a focus on how the presence of a set of rigid
minorities can result in the emergence of a dominant opinion in the system. These
rigid minorities are “speaker-only”, i.e., they only “speak” and never “listen” thus
strongly affecting the course of a social agreement process. We show that for a mod-
erate α (fraction of rigid minorities), the agreement dynamics results in an emer-
gence of a dominant opinion. We extensively study the property of such dominant
opinions and observe that the dominance is not the characteristic property of only
the “speaker-only” opinions; other opinions under certain circumstances can also
become dominant. However, with increasing α , the chances of a “speaker-only”
opinion becoming dominant increases. We also find early invented opinions pos-
sess higher chances of becoming dominant. We embed this model on various static
interaction topologies and real-world time-varying face-to-face interaction data. Im-
portantly, for a reasonably static societal structure the presence of rigid minorities
influences the emergence of a dominant opinion to a much larger extent than in case
where the societal structure is very dynamic.

1 Introduction

Our social behavior is to a large extent determined by the society we live in. The
social interactions among different individuals in a society shape/reshape or may
determine how an individual will adopt new ideas or opinions. A group of individu-
als that strongly advocate compelling points of view can influence public sentiments
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and opinions on a particular issue. This phenomenon is evident in multi-party elec-
tion campaigns where politicians belonging to multiple parties try to influence the
public and try to align their opinion toward that of the politician’s party. Each party
here represents a political ideology and is therefore representation of a rigid opin-
ion. Each politician bearing the rigid political ideology of a particular party tries to
win the votes of other individuals in the population. Each group of the rigid indi-
viduals convey the opinion of the party. Thus, the rigid group of individuals who
never change their opinions play a vital role in opinion formation and may influence
the agreement process. Such type of competition is also valid for describing the
language competition among variety of languages where a very few survive while
a majority die competing with others (MARIAN and SPIVEY 2003; Patriarca and
Leppänen 2004; Stauffer et al. 2007; COSTA et al. 2003).

In this chapter, we focus on the popular naming game framework (NG)
(Baronchelli et al. 2006) as a model of opinion formation to study how social dom-
inance emerge in the presence of rigid individuals and how such dominance could
influence societies to align toward the dominant opinion through negotiation. The
naming game is a simple multi-agent model that employs local communications
which leads to the emergence of a shared communication scheme/common opinion
in a population of agents. The system evolves through pairwise interactions among
agents that necessarily capture the generic and essential features of an agreement
process. This model was conceived to explore the role of self-organization in the
evolution of languages (Steels 1995; Steels 1996). Steels (1995) primarily focused
on the formation of vocabularies, i.e., a set of mappings between words and their
meanings (for physical objects). In this context, each agent develops its own vocab-
ulary in a random and private fashion. Agents are forced to align their vocabular-
ies, through successive conversation, in order to obtain the benefit of cooperating
through communication. Thus, a globally shared vocabulary emerges as a result
of local adjustments of individual word-meaning associations. The communication
evolves through successive conversations. It is worth pointing out that these conver-
sations are particular cases of language games, which are used to describe linguistic
behavior but can also describe non-linguistic behavior, such as pointing. As a prac-
tical example of this model, Talking Heads experiment in Steels (1999) was carried
out where robotic agents develop their vocabulary observing objects through dig-
ital cameras, assigning them randomly chosen names and sharing these names in
pairwise interactions. This model has also acquired attention in the field of semiotic
dynamics (Golder and Huberman 2006; Cattuto et al. 2007) that studies evolution
of languages through invention of new words, grammatical constructions and more
specifically, through adoption of new meanings for different words. For instance,
the proliferation of new generation of web-tools enabling human web-users to self-
organize a system of tags in such a way to ensure a shared classification of informa-
tion about different arguments, for example, del.icio.us or www.flickr.com has took
place (Cattuto et al. 2007).

The minimal naming game (NG) consists of a population of N agents observing
a single object in the environment (may be a discussion on a particular topic) and
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opining for that through pairwise interactions, in order to reach a global agreement.
We consider discrete opinions and the all the opinions to be distinct. We also assume
the opinions to be uncorrelated. The agents have at their disposal an internal inven-
tory, in which they can store an unlimited number of different words or opinions.
At the beginning, all the individuals have empty inventories. At each time step, two
individuals are chosen - the “speaker” chosen randomly and the “hearer” also cho-
sen randomly but from the neighborhood of the “speaker”. The speaker voices to
the hearer a possible opinion for the object under consideration; if the speaker does
not have one, i.e., his inventory is empty, he invents a brand new opinion which
is completely different from other opinions present before it. In case where he al-
ready has many opinions stored in his inventory, he chooses one of them randomly.
The hearer’s move is deterministic: if she possesses the opinion pronounced by the
speaker, the interaction is a “success”, and both speaker and hearer retain that opin-
ion as the right one, removing all other competing opinions/words from their inven-
tories; otherwise, the new opinion is included in the inventory of the hearer, without
any cancellation of opinions in which case the interaction is termed as a “failure”
(see Fig. 1).

We recast this model to incorporate a small set of rigid individuals and investi-
gate the effect of their presence on the overall dynamical properties of the system.
One of them could be the unwillingness to listen. This type of rigid individuals try
to speak a lot and never listen to the others. Therefore, these rigid individuals take
part in the interaction only as “speaker”, and never as hearer. Since, an adoption of
an opinion is only possible in the role of a hearer, these rigid agents never undergo
any change in their opinion. The interactions between pairs of rigid individuals are
therefore forbidden as they can never influence one another. Consequently, these
rigid/“speaker-only” agents do not allow the population to reach a global consensus
except the case where there is only one “speaker-only” agent in the population and
rest of the population adopts the opinion of this particular agent in order to reach
final agreement. However, in general, stable polarized/multi-opinion states are ob-
served in the system at long times; such multi-opinion states have also been reported
by Baronchelli et al. (2007) however, in a different context of modeling trust among
agents. Examples of such forms of rigidity are found in languages quite frequently;
for instance, some languages are very rigid in their word order (e.g., Irish, English,
Persian) as opposed to certain others (e.g., Turkish, Russian) that are very flexi-
ble (Odlin 1989).

The rest of the chapter is organized as follows. In section 2, we discuss the state-
of-the-art. In section 3, we describe the model in detail. Section 4 is devoted for
the discussion and analysis of interesting insights that we obtain from the model in
presence of a set of “speaker-only” agents for different social structures. In section
4, we draw conclusions and point to future direction of this research.
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Failure
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Speaker           Hearer Speaker           Hearer

Speaker           Hearer Speaker           Hearer

Who is the best soccer player?

Zidane
Maradona
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Zidane

Pele
 Pele

Maradona
Zidane
Beckenbauer
Pele

Maradona

Maradona
Messi
Cruyff

Maradona Maradona

Fig. 1 Agent’s interaction rules in NG on a topic, say “Who is the best soccer player?”.
The speaker selects the opinion highlighted. If the hearer does not possess that opinion she
includes it in her inventory and the interaction is a “failure” (top). Otherwise both agents erase
their inventories only keeping the winning opinion and interaction is a “success” (bottom).

2 Related Work

Opinion dynamics models involving committed individuals have been studied pre-
viously in Mobilia et al. (2007), Mobilia (2003), Galam and Jacobs (2007), Galam
(2010), Biswas and Sen (2009), Yildiz et al. (2011), Lu et al. (2009), Xie et al.
(2011), Xie et al. (2012). Mobilia et al. (2007) studied how the presence of zealots
(rigid individuals) affected the distribution of opinions in the case of the voter
model. Similarly, Mobilia et al. (2007) and Yildiz et al. (2011) studied the prop-
erties of steady-state opinion distribution for the voter model with stubborn agents,
but additionally considered the optimal placement of stubborn agents so as to max-
imally affect the steady-state opinion on the network. The effect of rigid/commit-
ted individuals has also been studied on the binary naming game (Lu et al. 2009;
Xie et al. 2011; Xie et al. 2012) where they introduce a set of individuals committed
to a single opinion and study how majority opinion get rapidly reversed by the pres-
ence of a small fraction of them. In our model, we consider every “speaker-only”
agent to possess one different opinion each and try to investigate the competition
dynamics in the population finally, leading to the emergence of a single dominant
opinion which is held by a majority of the agents. However, when the fraction of
“speaker-only” agents crosses a critical value in the population, no single dominant
opinion emerges, instead almost equal-sized multi-opinion clusters are formed. We
further investigate the specific properties of the opinion that manifests as the most
dominant one. In particular, we observe that those opinions that are invented early
and, in most cases, by one of the “speaker-only” agents get elected as the dominant
one. Nevertheless, for a reasonably low fraction of “speaker-only” agents an early
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invented opinion from the “non-speaker-only” group may also emerge as the most
dominant one - we investigate in details the properties of these opinions in order to
precisely reason for such a non-intuitive phenomena.

3 The Model Description

In this section, we discuss the model in detail. The population consists of N agents
and out of them αN no. of agents are “speaker-only” agents. In each iteration of the
game at t = 1,2, . . . following happens :

1. An agent is randomly selected from the population and act as “speaker”.
2. Another agent is chosen among the rest of the population except the “speaker-

only” agents and is designated as “hearer”
3. If there is no name for the object/topic the “speaker” invents one brand new name

otherwise he selects from list of already existing names/words and conveys it to
the “hearer”. Please note that every agent has an inventory/memory to keep the
names.

4. The hearer then searches for the topic name in her inventory. If the search is
successful, then the game is called “successful game” and both the agents delete
all other competing names from their inventory.

5. On an unsuccessful search, the “hearer” learns the name (adds the name/word
into the already existing name-inventory) and the game is termed as “failure”
interaction.

The emergent properties that are of interest in the naming game are the sum of
memory sizes of all agents at a particular time step t denoted by Nw(t), the number
of unique words/opinions/names in the system at t (Nd(t)) and the time needed to
reach the global consensus (tconv).

4 Results and Discussion

In this section, we shall try to elaborate the impact of having a fraction of “speaker-
only” agents (α) in the population embedded on various types of social graphs and
point to possible explanations of our findings.

4.1 The Mean-Field Case

The mean-field case corresponds to a fully connected network in which all agents are
in mutual contact. Thus, every individual can, in principle, talk to every other indi-
vidual. On this topology, we try to investigate the microscopic activity pattern of the
game dynamics driven by the parameter α where α is the fraction of “speaker-only”
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agents chosen uniformly at random from the population. In Figs. 2(a) and (b), we
have shown the time evolution of Nw(t) and Nd(t) where we observe that the system
does not reach consensus and we have αN number of opinions left even after 5x107

games. The acquired state is the steady state which does not change as we have al-
ready reached the lower bound on the number of opinions with small fluctuations
of Nw. Therefore, it is apparent that the system breaks down into clusters of opin-
ions. Now, if we find the typical cluster sizes, we observe that there is usually one
cluster which is extremely large compared to the other clusters. In other words, the
distribution of the frequency of opinions (describing the number of agents who have
possessed the opinion in their inventories) show skewness for lower values of α (see
Figs. 2(c) and (d) describing the relation between the frequency of opinions( f reqr)
vs the rank (r)) pointing to the emergence of a dominant opinion (the opinion that
is present in most of the agent’s inventories) in the system. However, for a large
enough α , the frequency of winner decreases allowing an increase in the size of the
other clusters. To find the cut-off α for which this phenomenon happens, we observe
the dependence of the frequency of the dominant opinion ( fw) on the “speaker-only”
fraction α and find a “mirrored” S-shaped curve - the first part shows a linear de-
crease, then an abrupt fall and then again a steady linear dependence (see Figs. 2(e)
and (f)). The cut-off value of α decreases with increasing N.
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Fig. 2 Time evolution of (a) Nw(t) and (b) Nd(t) for N = 1000, 5000 and α = 0.01, 0.5.
Frequency of the opinions ranked in order of decreasing frequency ( f reqr) present in the
system after 5x107 games for (c) N = 1000 (d) N = 5000. Relation between the frequency of
the dominant opinion ( fw) and α for (e) N = 1000 (f) N = 5000. The curves are averaged over
100 simulation runs.
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In particular, we shall attempt to understand the reasons for the high frequency
of the dominant opinion. Therefore, the natural question that arises is : Why does
a sheer majority in the population agree to this opinion? Do the “speaker-only”
opinions (opinions invented by “speaker-only” agents) always emerge as winners?
The answers to these questions can be found out from Fig. 3 where in Fig. 3(a), we
show the winning probability of the “speaker-only” opinions (Wsp) and its variation
with α . We refer to the winning probability as the fraction of simulations in which
a “speaker-only” opinion is elected as the most dominant one. We observe that for
a small enough α , the chance of winning of a “speaker-only” opinion is more than
50% and as we increase N the required value of α to guarantee more than 50%
winning chance is even lowered. Therefore, for a moderate α , “the speaker-only”
opinions suppress the chances of other opinions’ survival in the system and create a
sheer monopoly for themselves.
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Fig. 3 (a) Relation between the winning probability of “speaker-only” opinions (Wsp) and α
after 5x107 games for different N. Probability that a given opinion becomes the dominating
one (pnpos) is plotted as a function of the normalized invention position (npos) when b)
“speaker-only” opinions c) other opinions become the winner for α = 0.1. The curves are
averaged over 105 simulation runs.

Furthermore, we shall observe the effect of the creation time of the opinions on
the phenomenon of emergence of dominance in the system. It turns out that the
early invented opinions are in advantageous position in this context irrespective of
whether they are invented by a “speaker-only” agent or by any other agent in the
system. In Figs. 3(b) and (c), we plot the probability for an opinion to become the
dominating one as a function of its normalized creation position. This means that
each opinion is identified by its creation order: the first invented opinion is labeled
as 1, the second as 2 and so on. To normalize the labels, they are then divided by the
label of the last invented opinion. Clearly, the early invented opinions have higher
chances of becoming dominant compared to the others invented late in time. To
explore the property of the dominant opinion further, we delve deeper into the dy-
namics to identify the characteristic properties of the competing opinions invented
before the dominant opinion. From Table 1, it is clear that the dominant opinion has



286 S.K. Maity and A. Mukherjee

10
0

10
1

10
2x+110

-5

10
-4

10
-3

10
-2

10
-1

Sp
sp

(x
+

1)
α = 0.10

α = 0.12

10
0

10
1

10
2x+110

-5

10
-4

10
-3

10
-2

10
-1

R
e sp

(x
+

1)

α = 0.10

α = 0.12

(a) (b)

Fig. 4 Distribution of the number of “speaker-only” opinions before the winner when (a)
“speaker-only” opinion (Spsp(x)) (b) “non-speaker-only” opinion (Resp(x)) is the winner for
N = 1000. The curves are averaged over 105 simulation runs.

a fewer number of competitors facilitating its emergence as a winner. For an opinion
to become winner, there has to be less number of competing opinions invented be-
fore it. In addition, from among “speaker-only” and “non-speaker-only” opinions,
the proportion of “speaker-only” ones invented before the winner is significantly
lower since they have a higher potential to quickly modify the opinion of the others.
The presence of the “speaker-only” opinions are even much less in case a winner is a
“non-speaker-only” opinion. The number of such opinions are approximately half as
compared to the case when a “speaker-only” opinion emerges as winner. Now, if we
observe the typical distribution of “speaker-only” opinions invented before the win-
ing opinion, we find exponential-like distribution for both the cases (see Figs. 4(a)
and (b)). Therefore, fewer the number of “speaker-only” opinions invented before
an opinion, more is its chance to become the dominant or the wining opinion. This
quantity is even lesser for the case when the dominant opinion has been invented
from the “non-speaker-only” group as is also evident from the figure.

Table 1 Number of different types of opinions invented before the winner after 5x107 games,
averaged over 105 simulation runs. “spo” refers to “speaker-only” opinions.

N α Winner Earlier opinions (spo) Earlier opinions (Rest)

1000
0.10

Spo 20.6 151.4
Rest 12.1 96.4

0.12
Spo 25.2 149.1
Rest 14.3 92.7

5000
0.10

Spo 86.1 647.2
Rest 47.3 385.8

0.12
Spo 105.9 641.4
Rest 55.9 369.7

Although we observe that the presence of fewer competitors invented before the
invention of a particular opinion increases its chance of becoming dominant, an im-
portant question is that why exactly one of them emerge as a winner? It seems that
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Table 2 Percentages of successes for the winning opinion compared to other opinions in-
vented before it till dominance time, averaged over 105 simulation runs

N α Winner Earlier opinions

1000
0.10

Spo 88.9 5.36
Rest 93.1 3.07

0.12
Spo 89.0 6.2
Rest 93.5 3.42

5000
0.10

Spo 91.0 5.8
Rest 94.34 3.38

0.12
Spo 90.67 6.64
Rest 94.77 3.46

the winning opinion takes part in a significantly larger fraction of successful interac-
tions compared to the other competing opinions created before it till the dominance
time which helps in propelling its dominance in the system. We define dominance
time as the time when the most frequent opinion in the system reaches frequency ∼
(1−α)N and next most frequent opinion has frequency less than 10% of the popu-
lation. This phenomenon is supported by Table 2. The competition seems to be even
less pronounced if the winner has to be from the rest of the population as compared
to the case where a “speaker-only” opinion is the winner.

4.2 Scale-Free Networks

Social networks are far from being fully-connected or homogeneous. Most of them
show a large skew in the distribution of node-degrees resulting in the so-called scale-
free networks. In this section, we shall study the effect of α on the Barabási & Albert
(BA) network (Barabasi and Albert 1999) which follows a scale-free degree distri-
bution. Since low degree nodes form a vast majority in such networks, any randomly
chosen node is, with high probability, a low degree node. The neighbors of this low
degree node, however, should be high degree nodes (since the high degree nodes
tend to be connected to almost all low-degree nodes by virtue of their high degree).
Therefore, in this case we adopt two strategies while selecting the α fraction of
“speaker-only” agents - (a) we select uniformly at random and (b) we select pref-
erentially based on degree so that the high-degree hubs are more probable of being
selected as a “speaker-only” participant.

Similar to the mean-field case, we observe a single dominant opinion in the sys-
tem with majority of agents aligning to this opinion. Nevertheless for higher α , this
dominance of a single opinion does not persist in the system (see Figs. 5(a), (b), (e)
and (f)). The decomposition of the system into multiple similar size clusters occurs
for a lesser value of α as compared to the mean-field case. In fact, this decomposi-
tion is even more pronounced for the case where the “speaker-only” population is
chosen preferentially. A similar mirrored S-shaped dependence of the frequency of



288 S.K. Maity and A. Mukherjee

10
0

10
1

10
2r10

0

10
1

10
2

10
3

fr
eq

r
α  = 0.05

α  = 0.20

10
0

10
1

10
2

10
3r

10
1

10
2

10
3

fr
eq

r

α = 0.05

α = 0.20

0.12 0.16 0.2 0.24α
0

200
400
600
800

f w

0.05 0.1 0.15 0.2α
0

1000
2000
3000
4000
5000

f w

10
0

10
1

10
2r10

0

10
1

10
2

10
3

fr
eq

r

α = 0.05

α = 0.16

10
0

10
1

10
2r

10
1

10
2

10
3

fr
eq

r α = 0.05

α = 0.16

0 0.04 0.08 0.12 0.16 0.2
α

0
200
400
600
800

1000

f w

0.04 0.06 0.08 0.1
α

0
1000
2000
3000
4000
5000

f w

(a) (b)

(c) (d)

(e)

(f)

(g) (h)

Fig. 5 f reqr vs r after 5x107 games for “speaker-only” agents distributed randomly with (a)
N = 1000, (b) N = 5000 and preferentially with (e) N = 1000, (f) N = 5000 respectively. fw vs
α for (c) N = 1000, (d) N = 5000 when “speaker-only” agents are selected randomly and (g)
N = 1000, (h) N = 5000 when “speaker-only” agents are selected preferentially. The curves
are averaged over 100 simulation runs for 10 network realizations each.

the winning opinion on α is again observed. However, the sharp transition occurs at
a much lower α here and more so in case of preferential selection of the “speaker-
only” agents (see Figs. 5 (c), (d), (g) and (h)). This is the consequence of the fact that
social networks are sparse (with agents mostly interested in the local neighborhood)
and therefore more vulnerable to such decomposition than the mean-field scenario.
Further, selecting preferentially the hubs as the “speaker-only” agents help mani-
fold in propelling their opinions very fast in the population mostly because of their
disproportionately high connectivity. Next we study the relationship between the
winning probability of the “speaker-only” opinions and α . The winning probability
of the “speaker-only” opinion increases as we increase α . The typical α for which
the winning probability becomes 50% is much lower compared to the mean-field
case (see Figs. 6(a) and (b)).

The creation time of an opinion plays an important role in deciding the domi-
nance of the opinion. For the case when a “speaker-only” opinion becomes winner,
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irrespective of the way the “speaker-only” agents are selected (random/preferential)
the lately invented opinions seem to mostly emerge as the winner which is possibly
due to the inherent skewed degree distribution of agents (see Figs. 6(c) and (d)).
Note that this result is markedly in contrast with those observed for the mean-field
case. It is actually the late inventors in the “speaker-only” population who seem to
be in advantageous position because by being late they are able to align their lo-
cal neighborhood to their opinion in the last stages (i.e, there are no further scopes
of opinion switch) and the larger this neighborhood, the higher is the chance that
the lately invented “speaker-only” opinion is the winner. Further, a “speaker-only”
agent has mostly “non-speaker-only” agents in his local neighborhood which makes
it easy for the “speaker-only” agent to align them to his opinion and the later this
takes place, the higher is the chance that this “speaker-only” opinion would emerge
as the winner. However, the early invented opinions seem to be more probable win-
ners in case this opinion has been initiated by a “non-speaker-only” member of the
population (see Figs. 6(c) and (d)). We observe that the number of “speaker-only”
opinions invented before the dominant opinion is always less in case this opinion
is from the “non-speaker-only” group as in the mean-field scenario (see Table 3).
In addition, the number of “non-speaker-only” opinions invented before the winner
is larger compared to the “speaker-only” opinion pool. We also analyze the propor-
tion of successes of the winner in comparison to the opinions created before the
invention of the winner till the dominance time and observe that a huge majority of
the successful interactions are witnessed by the winner (see Table 4). Although the
mean-field trends are preserved here, one important point of difference is that the
proportion of successes witnessed by the competitors of the winner is much larger
here indicating a tougher competition.
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Table 3 Number of different types of opinions invented before the winner, averaged over 104

simulation runs for 10 network realizations each when the “speaker-only” agents are ran-
domly selected. The numbers in parentheses correspond to the case of preferential selection
of “speaker-only” agents.

N α Winner Earlier opinions (spo) Earlier opinions (Rest)

1000
0.01

Spo 3.9 ( 3.9) 318.9 (320.8)
Rest 3.1 ( 3.1) 240.1 (240.5)

0.03
Spo 12.8 (13.0) 315.5 (316.6)
Rest 9.2 ( 9.2) 234.6 (234.2)

5000
0.01

Spo 22.6 (22.4) 1670.3 (1654.7)
Rest 16.0 (16.0) 1245.3 (1247.0)

0.03
Spo 69.4 (70.4) 1643.6 (1649.4)
Rest 48.3 (49.0) 1248.8 (1228.8)

Table 4 Percentage of successes for the winner compared to other opinions invented before
it till the dominance time, averaged over 104 simulation runs for 10 network realizations
each when the “speaker-only” agents are randomly selected. The numbers in parentheses
correspond to the case of preferential selection of “speaker-only” agents.

N α Winner Earlier opinions

1000
.01

Spo 72.97 (72.68) 2.27 (2.50)
Rest 81.22 (81.41) 1.63 (1.76)

.03
Spo 91.57 (95.34) 2.49 (1.64)
Rest 97.43 (98.65) 0.84 (0.59)

5000
.01

Spo 90.01 (89.92) 1.51 (1.69)
Rest 95.68 (95.86) 0.65 (0.68)

.03
Spo 92.1 (93.3) 2.53 (2.48)
Rest 98.03 (99.05) 0.55 (0.43)

5 Time-Varying Networks

In all the above discussions, we have considered static graphs where the link struc-
ture is known a priori and the game is played on top of the same. However, real-
world social networks show dynamicity. Links appear and disappear over time.
Friendship relations change with due course of time. Hence, it could be interest-
ing to study the effect of rigid individuals embedded on such time-varying social
networks.
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5.1 Dataset Description

For the purpose of the investigation of the naming game dynamics on time-varying
networks, we consider two specific real-world face-to-face contact datasets and
present our results on each of them. Both the datasets are obtained from SocioPat-
terns Collaboration (http://www.sociopatterns.org/datasets/). The data collection in-
frastructure uses active RFID devices embedded in conference badges to detect and
store face-to-face proximity relations of persons wearing the badges. These devices
can detect face-to-face proximity (1–1.5 m) of individuals wearing the badge with
a temporal resolution of 20 sec. The first dataset comprises face-to-face interac-
tion data of visitors of the Science Gallery in Dublin, Ireland during the spring of
2009 (Isella et al. 2011). This dataset consists of time-varying snapshots of interac-
tions at 20 s time interval for 69 consecutive days. We investigate the time-varying
snapshots of one such representative day (22nd day). This network consists of 240
science gallery visitors. For future invocation of this dataset, we shall refer to it as
SG22. The other data consists of the conference attendees of ACM Hypertext 2009
held in ISI Foundation in Turin, Italy. The dataset contains the dynamical network of
face-to-face proximity of 113 conference attendees over about 2.5 days. For future
invocation of this dataset, we shall refer to it as HT.

5.2 The Model Adaptation in the Time-Varying Setting

The naming game on time-varying network has already been studied by Maity et al.
(2012) where they play the game in complete synchronization with real time, i.e.,
at each time step t = 1,2, . . . (the elementary unit of time being second), a game
is played among those agents that are alive at that particular instant of time (those
agents having degree at least one) in the network. In this setting, at each time in-
stant, the network snapshot of the agents at that particular time instant is considered.
Therefore, this essentially boils down to having a series of network snapshots (one
per second) and one game being played on each network snapshot. Please note that,
as the RFID device can only consider an interaction if it stays for 20 seconds, the
network of agents essentially change after 20 second. This study reports that behav-
ior of the emergent properties of the system for the time-varying case is markedly
in contrast with that of the static counterparts. Motivated by the above work, we
investigate how the presence of rigid individuals in the population shapes the agree-
ment process on the above real-world dataset. We adopt the same game playing
strategy as earlier mentioned with a set of rigid individuals marked before the game
starts.
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Fig. 7 Time evolution of Nw(t) for (a) HT and (b) SG22 data, Nd(t) for (c) HT and (d) SG22
data. f reqr vs r for (e) HT and (f) SG22 data. (g) fw vs α for HT and SG22 data. (h) Wsp vs
α for HT and SG22 data. The curves are averaged over 103 simulation runs.

5.3 Results and Discussion

The evolution of Nw(t) and Nd(t) on the time-varying graph of HT and SG22 data (see
Figs. 7(a), (b), (c) and (d)) show a drastically different behavior from the case where
these quantities are measured on the static networks. A global consensus usually
does not take place on such networks because of their inherent community struc-
ture and the openness of the system, i.e., the agents coming in and going out of
the system leading to late-stage failures in the system which hinders the consensus
(see Maity et al. (2012) for further details). Therefore, several opinion clusters get
already formed with one becoming the dominant one. The presence of rigid individ-
uals (chosen randomly from the population prior to the beginning of game) breaks
such large opinion clusters into several smaller clusters. To analyze this phenomenon
further, we observe the frequency of each opinion and find that the dominance of an
opinion is not as pronounced in case of time-varying networks (see Figs. 7(e) and
(f)) as in static social networks. As one increases α , the size of the clusters tend to
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become more and more uniform indicating that the frequency of the winner is almost
as close as the others. Further, we investigate the relationship between the frequency
of the winner in the system and α indicating a drastically different behavior as com-
pared to the static networks (see Fig. 7(g)). In particular, we do not observe the mir-
rored S-shaped curve and associated transition; instead, there is a steep drop from
the very beginning indicating that these networks already have a strong community
structure leading to such multi-opinion states and injecting “speaker-only” agents in
the system makes it even more fragmented. Figure 7(h) shows the relation between
the winning probability of the “speaker-only” opinions and the “speaker-only” frac-
tion α . As in case of static networks, here also the 50% winning probability is
achieved at a very low value of α .

We further analyze the effect of the presence of “speaker-only” agents on the
game interactions. We calculate the occurrence frequency of the number of “speaker-
only” agents actively present at different time steps denoted by size(sp) and observe
the number of success/failure interactions experienced by size(sp) “speaker-only”
agents. The smaller the value of size(sp) the larger is the number of success/fail-
ure interactions (success being orders of magnitude higher than failures) as is in-
dicated through Figs. 8(a) and (b). This is due to the fact that in majority of the
time steps size(sp) is relatively quite low (see Fig. 8’s insets). This indicates that
in time-varying networks, it is not only the fraction of “speaker-only” agents that
determine the winning opinion but also the number of such agents that are actu-
ally actively participating in the social interactions at a time step. The lower is the
number of such active participants the higher is the chance that a single dominant
opinion emerges.
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Figures in the insets display the occurrence frequencies of different sizes of active “speaker-
only” groups for HT and SG22 data respectively. The curves are averaged over 103 simulation
runs.
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6 Conclusions and Future Works

In conclusion, we have studied the effect of the rigid individuals on the naming
game dynamics and how such rigid minorities influence the emergence of a domi-
nant opinion in the system. We observe that the dominance is not the characteristic
property of only the “speaker-only” opinions; other opinions from the population
may also become dominant. However, with increasing α , the winning probability
for a “speaker-only” opinion increases. The dominance index (i.e., fw) decreases
linearly as one increases α and at critical α , it shows an abrupt transition point-
ing to fragmented state with similar opinion clusters formed around the stubborn
opinions. The creation time of an opinion also plays a vital role in the dynamics.
Opinions that are invented early in time, possess higher overall chances of becom-
ing the winner except for in the case of “speaker-only” opinions corresponding to
static scale-free networks. This observation is quite interesting as this suggest that
late-inventors can also produce dominant opinion. This is probably due to the high
network heterogeneity in terms of network connectivity. Opinions that are created
earlier in time compete among themselves to become the dominant one and the
characteristic property of such a dominant opinion is that it takes part in a dispro-
portionately large number of successful interactions (above 80%) compared to its
competitors. We have also elucidated the game dynamics on diverse topological
structures from homogeneous fully-connected network to heterogeneous scale-free
networks and on real world social networks. On static social networks we observe
similar results as in case of mean-field, however, for a significantly lower value of
α . This indicates that the presence of rigid minorities can strongly affect a society
that hardly changes over time. However, if the society is changing fast then such
minorities do not seem to have a pronounced effect on the dynamics of opinion
formation.

There are quite a few other interesting directions that can be explored in the fu-
ture. One such direction could be to investigate the effect of introducing a flexibility
component of the agents in adopting new opinions (traditionally modeled by a sys-
tem parameter β that encodes the probability with which the agents update their
inventories in case of successful interactions (Baronchelli et al. 2007)) rather than
making them fully rigid. Finally, a thorough analytical estimate of the important dy-
namical quantities and the cut-off α reported only through empirical evidence here
is needed to have a deeper understanding of the emergent behavior of the system.
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Considerations for a Linguistic Network
Markup Language

Maik Stührenberg, Nils Diewald, and Rüdiger Gleim

1 Introduction

As the previous chapters have shown, the possible ways of representing linguistic
data as a graph are as diverse as the data itself. For the process of graph modeling, the
decision as to what information will be represented as nodes and what information
as relations is of great importance. In addition, what kind of added value is going to
be expected by the representation of the data as a graph and what kinds of scientific
questions should be answerable by the model.

In this chapter we discuss the requirements of a data format that is neutral regard-
ing these questions while being applicable to a wide range of linguistic network data.
We look especially at existing formats and the applications that process them and
propose an extension of one of the afore-discussed formats in order to demonstrate
the use of the proposed markup language. We do this by the example of Wiki-Graphs
(Mehler 2008).

2 Data Formats

When speaking of a digital “format”, one usually refers to a specific method to rep-
resent a specific kind of information – either in memory, as a file, or as a database
entry. For example there are commonly known formats to represent formatted text,
such as HTML, RTF, LATEX or Microsoft DOC. Given a piece of formatted text
which is stored in those formats, the content of each file will be quite different (for
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example, when viewed in raw text or binary view) – even if they are rendered equally
by an application capable of processing different formats. Even though the formats
represent the same piece of information (based on a model reflecting paragraphs,
headlines and alike), the serialization into a file of a specific format can be very dif-
ferent. This example illustrates that when thinking of standard formats to represent
a specific kind of information such as graph structures, one should distinguish the
model from the form instances.

2.1 Data Models

The task to accurately model and describe linguistic information may result in com-
plex data models, although the established tools to analyze linguistic structures usu-
ally work on trees or directed graphs at best. So why invest time and energy into
corpora of linguistic data based on complex data models in the first place? The
question is intentionally provocative but nonetheless addresses the observation that
data models of corpora used in computational linguistic analyses tend to be more
complex than is actually needed by the algorithms being run on them.

A corpus which is richly annotated offers more degrees of freedom in terms of
possible analyses. A simple tree or graph view of a more complex data structure can
easily be extracted for a specific algorithm. Instead, using a simple data model from
the beginning narrows down the spectrum of possible applications for research (and
may lead to information loss and biased results). Therefore we argue for an adequate
and possibly complex data model of a graph which allows the quick extraction of
views for specific tasks, rather than extracting incoherent different views from raw
data.

Fig. 1 Network visualizations of a) simple graph, b) directed graph, c) mixed graph, d) multi-
graph, e) hypergraph, f) hierarchical graph, g) ordered graph, h) weighted graph, i) property
graph, and j) k-partite graph
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Formally, a graph is an ordered pair G = (V,E) which consists of a set of vertices
V 1 and a set of edges E ⊆V ×V . A graph is commonly understood to be undirected,
and to disallow self loops (reflexive arcs) and multiple edges. To emphasize these
properties such a graph is also referred to as a simple graph (see Fig. 1a). A directed
graph defines edges as ordered pairs of vertices (see Fig. 1b). Graphs which expli-
citly allow for directed and undirected edges are called mixed graphs (see Fig. 1c).
In contrast to a simple graph, a multigraph allows self loops and multiple edges
(see Fig. 1d). A hyperedge generalizes the notion of an edge by putting more than
two nodes into a relation. A graph supporting hyperedges is called hypergraph (see
Fig. 1e). When modeling data collections such as Wikipedia pages, it can be con-
venient to establish a hierarchical structure; a page is considered to be a node in
a graph but contains hierarchically subordinate graphs comprising the sections and
page internal links. A graph which allows nodes to contain subordinate graphs is
called a hierarchical graph (see Fig. 1f). Usually the order of incident edges of a
node is not defined – however, if the order is relevant and defined (e. g. in syntax
trees), such graphs are referred to as ordered graphs (see Fig. 1g). In a weighted
graph a function is defined which assigns each edge a specific numeric value (a
weight, see Fig. 1h). In computer science the notion of a property graph is used to
state that nodes and edges can be freely annotated with key-value pairs (see Fig. 1i).
In this sense a property graph is a generalization of a weighted graph. The nodes
of a k-partite graph can be (or already are) partitioned into k sub sets such that all
edges connect nodes of different partitions. When talking about linguistic networks,
we are refering to linguistic data being modeled following these principles.

2.2 Data Structures

Graph structures are commonly used in computational processing. Depending on the
nature of the graph and the types of planned processing, graphs can be represented
by different abstract data structures.

2.2.1 Adjacency Matrices

An adjacency matrix can represent a wide range of different types of graphs. A
graph comprising n nodes is represented by an n× n matrix. An edge between two
nodes is represented by a cell value in the matrix, which can represent a boolean
value in case of a simple graph (meaning two nodes are either connected or not),
a weight in case of weighted graphs, or the number of connections between two
nodes in the case of a multigraph. As the diagonal values in the matrix denote self
loops, this diagonal is empty for the simple graph. In case of an undirected graph,
the matrix is symmetric and can be reduced to n2−n

2 cells for the simple graph.

1 In this paper we use the terms “vertice” and “node” synonymously.
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The adjacency matrix given in Fig. 2 represents a graph consisting of the three
nodes A, B, and C and the directed edges (A,B) and (B,C).

Fig. 2 Adjacency matrix
and corresponding graph
visualization

Simple directed or undirected graphs can be efficiently represented for processing
as bit matrices, however, due to the square space complexity of this form, adjacency
matrices may be inefficient for large or sparsely connected graphs, especially with
complex edge weight. On the other hand, some graph algorithms rely on the repre-
sentation of the graph as a matrix for efficient processing.

2.2.2 Adjacency Lists

Adjacency lists are an alternative data structure for representing graphs. They only
store existing edges between two nodes, making this form space-efficient for even
sparse graphs. In a directed graph for each node all adjacent nodes are listed, possi-
bly with accompanied values for weight (in case of a weighted graph) or the number
of connections to the node (in case of a multigraph). In an undirected graph this may
lead to redundancy, so it is common to only represent the edge in the list of one of
two adjacent nodes. Edge lists may be seen as a special case of adjacency lists,
where each pair of nodes is listed separately.

The graph consisting of the three nodes A, B and C and the directed edges (A,B),
(A,C) and (B,C) can be represented in an adjacency list as the one shown in Fig. 3.

Fig. 3 Adjacency list and
corresponding graph visual-
ization

2.3 Data Serialization

In order to store adjacency matrices in files, a character separated value (CSV) rep-
resentation is typically used (see Listing 1). This simple format has the advantage
to be easily written and parsed. It is also natively supported by a wide range of
applications (cf. Sect. 4).
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Listing 1 Adjacency Matrix of Figure 2 on the preceding page as CSV

1 A B C
2 A 0 1 0
3 B 0 0 1
4 C 0 0 0

This serialization of the abstract data structure however does not contain further in-
formation regarding the types of nodes and edges, the directionality of the graph,
etc. The concrete data structure may contain this information and simple serializa-
tion formats may be applicable to resemble these structures. JSON (Crockford 2006)
– a popular character based data serialization format – can be used to serialize the
graph represented as an adjacency list in Fig. 3 (see Listing 2).

Listing 2 Adjacency list as JSON string

1 {
2 ”A”: [”B”, ”C”],
3 ”B”: [”C”],
4 ”C”: []
5 }

Most standardized serialization formats for data structures are limited to base data
types (such as strings, integers or booleans) and base data structures (like lists or
key-value pairs). As these base types are commonly understood by various program-
ming languages, serialized data structures can be used as an exchange format between
different systems that process the same data in the same manner. Using JSON, the
same graph can be enriched with further information upon the nodes and edges (see
Listing 3).

Listing 3 Adjacency list as JSON string with additional information

1 {
2 ”A”: {
3 ”name”: ”Alice”,
4 ”knows”: [”B”, ”C”]
5 },
6 ”B”: {
7 ”name”: ”Bob”,
8 ”knows”: [”C”]
9 },

10 ”C”: {
11 ”name”: ”Carol”
12 }
13 }

Computationally, serializing and deserializing data structures is in most cases faster
and less memory consuming than parsing more sophisticated data formats and build-
ing new internal data structures based on the information parsed. Other serialization
formats like CBOR (Bormann and Hoffman 2013) even create binary streams instead
of character based representations, being more compact and faster to deserialize.
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On the other hand, more sophisticated data formats may provide additional in-
formation independent of certain processing types, meaning they do not aim to just
represent concrete data structures. For example, a graph data format providing in-
formation about the positions of nodes in a visual layout, the thickness of edges de-
pending on a relational weight, or the color of nodes in addition to the network data,
can be used in computer vision applications, while a system to compute distance
measures on the graph data can parse the document ignoring all visual information.
In another example described later in this chapter, a wiki can be seen as a large com-
plex network, consisting of three component graphs: a social network of authors, the
hyperlinked network of documents, and a network of lexical entities (Mehler 2008).
Research questions (and therefore algorithms) may treat these levels of networks
separately, while others combined. The data formats described in the following sec-
tions are able to distinguish between these different types of processing, using either
adjacency matrices or adjacency lists as their foundation.

3 Existing Formats

In this section we give a survey of methods and formats to serialize graph struc-
tures into files. We start by examining the expressiveness of the underlying data
models and draw a connection from simple adjacency matrices to hierarchical hy-
pergraphs, describing the development of a selection of graph representation formats
afterwards. As the required expressiveness for modeling linguistic networks is not
fixed and depends highly on the data in question, the selection prefers more ex-
pressiveness to less expressiveness. Note that this selection focuses on formats that
emphasize an application-independent modeling of graphs, leaving out formats that
also more or less explicitly represent graphs, but do so for a specific application or
domain, e. g. the specific formats of the tools described in Sect. 4, or the Lexical
Markup Framework (LMF, ISO 24613:2008), the recent version of the Guidelines
of the Text Encoding Initiative (TEI P5 2.7.0), or the OWL 2 Web Ontology Lan-
guage (W3C Web Ontology Working Group 2012).

One of the main benefits of XML-based markup languages compared to pro-
prietary serialization formats is the possibility to define it via a formally adequate
document grammar (or schema) using one of the three main grammar formalisms:
DTD (Document Type Definition, defined in the XML specification Bray et al.
2008), XML Schema (XSD, Gao et al. 2012; Peterson et al. 2012), or RELAX NG
(ISO/IEC 19757-2:2003).2 In addition, there are a large number of XML-supporting
technologies available, ranging from XML-accompanying specifications such as
XSLT (for transformations, Clark 1999; Kay 2007), the traversal language XPath
(Clark and DeRose 1999; Berglund et al. 2010) or XQuery (Boag et al. 2010; Ro-
bie et al. 2013), up to the mature XML support in general purpose programming
languages by means of software libraries. Therefore, formally (and technically)

2 Regarding a discussion about the formal expressiveness of these formats, refer to Murata
et al. (2005) and Stührenberg and Wurm (2010).
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defined XML-based markup languages are application-independent, which is the
reason why they are the preferred way of storing graph-structured information.

3.1 GML

The Graph Modeling Language (GML, Himsolt 1997) is kind of a veteran com-
pared to other languages describing graphs. It has been designed as an interchange
format for Graphlet, a (now discontinued) toolkit for graph algorithms and graph
editing. The general structure of a GML document is defined in Backus-Naur-Form,
structuring all data as lists of key-value pairs. Values can be literals as well as lists,
which allows for a tree-like hierarchical structure. Himsolt (1997) encourages the
definition of custom attributes as long as they do not collide with the reserved keys
for representing graphs and their basic properties. An advantage of this pragmatic
approach is that GML can be extended ad hoc to any given representation needs. On
the other hand, there is no means to validate either the core GML or any extension
to it since there is no schema involved.

Formally speaking, GML is designed to represent directed or undirected at-
tributed graphs. The recursive definition of the document structure in terms of lists
of key-value pairs would allow for hierarchical graphs, but it is not explicitly de-
fined. Listing 4 gives an example of how two nodes representing a Wikipedia user
called Alice and an article about Graph Theory can be expressed using GML. The
two nodes are connected by a directed edge to denote the authorship of Alice. The
example also shows how custom attributes can be used.

Listing 4 GML

1 graph [
2 directed 1
3 label ”Wikipedia Graph”
4 node [
5 id 1
6 label ”Alice”
7 mycomment ”A registered User”
8 mycomplexattribute [
9 contributions 5

10 role ” editor ”
11 ]
12 ]
13 node [
14 id 2
15 label ”Graph Theory”
16 ]
17 edge [
18 source 1
19 target 2
20 label ”Authorship”
21 ]
22 ]
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3.2 XGMML

Due to the simplicity of the Graphlet Toolkit syntax, GML quickly gained in popu-
larity. But since it is a proprietary format, it cannot benefit from the range of tools
and libraries supporting a common standard. In order to fill this gap, Punin and Kr-
ishnamoorthy (2001) proposed the eXtensible Graph Markup and Modelling Lan-
guage (XGMML). This has been designed explicitly as a successor to GML, thus
keeping its vocabulary to describe graphs, but based on XML. As an extension,
XGMML explicitly introduces hierarchical graphs (see Fig. 1f) but is still limited to
binary edges.

Figure 4 shows a graph containing three nodes, A, B and C, representing inter-
linked articles of a Wikipedia graph. In this example we assume that the article being
represented by node C holds an inner structure in terms of sections. Thus “article”-
node C contains a subgraph with a “section”-node D. Listing 5 demonstrates how
this graph can be represented using XGMML. It also shows how simple as well as
complex custom attributes can be expressed. Note that in this and in the following
listings some attributes are left out for the sake of brevity.

Listing 5 XGMML

1 <?xml version="1.0" encoding="UTF-8"?>
2 <graph xmlns="http://www.cs.rpi.edu/XGMML"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://www.cs.rpi.edu/XGMML xgmml.xsd"

directed="1" id="0" label="Graph1">
5 <node id="1" label="A">
6 <att name="title" value="Linguistics"/>
7 <att name="namespace">
8 <att name="namespaceID" "0"/>
9 <att name="namespaceKey" "article"/>

10 </att>
11 </node>
12 <node id="2" label="B"/>
13 <node id="3" label="C">
14 <att>
15 <graph directed="1" id="4" label="Graph2">
16 <node id="5" label="D">
17 <att name="title" value="History"/>
18 </node>
19 </graph>
20 </att>
21 </node>
22 <edge source="1" target="2" label="wikiLink"/>
23 <edge source="2" target="3" label="wikiLink"/>
24 </graph>
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Metadata can be stored as an att element, that may occur as a child of the elements
graph, node and edge. Since the att element itself can be nested recursively,
the serialization of structured metadata is possible as well. Apart from that, there
are no means to store annotation.

Fig. 4 Hierarchical Graph
Structure as example for
graph representation

It is uncertain if there is still development going on, since the XGMML web site3

has not been updated since 2001. The latest specification of XGMML is dated from
2001, too. While Punin and Krishnamoorthy (2001) mentions an XML DTD for
validating XGMML instances, there is also an XSD file available on the web site.

3.3 GraphXML

GraphXML (Herman and Marshall 2001) is a graph format which specifically
addresses applications for graph layout and visualization. This is reflected by
various attributes of graphs and edges such as isPlanar, isAcyclic and
preferredLayout.4 Compared to the formats already presented, GraphXML
does not add to the expressiveness – but offers some alternative concepts to describe
graphs. One noticeable difference is the way the hierarchy of graphs is modeled.
Similar to XGMML, GraphXML uses XLink (DeRose et al. 2001) to refer to sub-
ordinate graphs rather than placing them as child nodes within the document object
model (DOM) tree. This approach allows to refer to external graph representations.

GraphXML offers three mechanisms to annotate graph elements. Where as the
name attribute allows to assign unique identifiers to graphs, nodes and edges,
labels can be used to annotate components with arbitrary string literals. If more
complex data is to be annotated, this can be done either inline by data elements
or by means of external references (dataref). The specification does not add any
constraints on the contents of data elements thus allowing arbitrary XML code.
On the one hand, this gives the adopter of this format the freedom to add any kind
of data. Specifying the structure of the data is neither required nor possible. On the

3 http://www.cs.rpi.edu/research/groups/pb/punin/public html/
XGMML

4 Note that these attributes, even though they are in part formal properties of graphs, are
primarily used by applications to layout and visualize graphs. For example acyclic graphs
can be layouted in a way to point out hierarchies. The information that a graph is planar
can be used to compute a corresponsing layout where no edges cross each other.

http://www.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML
http://www.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML
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other hand this arbitrariness impedes sustainability because of the lack of a proper
specification.

The code in Listing 6 shows the difference of representing hierarchical graphs.
It represents the graph structure shown in Fig. 4 which has already been used as an
example for XGMML. It also adopts the annotation examples of the graphs shown
earlier to illustrate the use of the three variants to annotate graph elements.

Listing 6 Code example of GraphXML

1 <?xml version="1.0"?>
2 <!DOCTYPE GraphXML SYSTEM "file:GraphXML.dtd">
3 <GraphXML>
4 <graph id="Graph1">
5 <node name="A">
6 <label>Linguistics</label>
7 <data>
8 <namespace>
9 <namespaceID>0</namespaceID>

10 <namespaceKey value="article"/>
11 </namespace>
12 </data>
13 <dataref>
14 <ref xlink:role="WebLink"
15 xlink:href="http://en.wikipedia.org/wiki/

Linguistics"/>
16 </dataref>
17 </node>
18 <node name="B"/>
19 <node isMetanode="true" name="C" xlink:href="#Graph2"/>
20 <edge source="A" target="B"/>
21 <edge source="B" target="C"/>
22 </graph>
23 <graph id="Graph2">
24 <node name="D">
25 <label>History</label>
26 </node>
27 </graph>
28 </GraphXML>

GraphXML is defined by an XML DTD. The DTD file itself is no longer available
at the GraphXML web site5 and GraphXML’s development came to an end years
ago.

5 http://projects.cwi.nl/InfoVisu/GraphXML/ – it
seems that a copy of the DTD is still available from
http://wiki.ikmemergent.net/files/hypergraph/GraphXML.dtd,
however, it is uncertain if this is the correct file and the latest version.

http://projects.cwi.nl/InfoVisu/GraphXML/
http://wiki.ikmemergent.net/files/hypergraph/GraphXML.dtd
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3.4 GraphML

The development of the Graph Markup Language (GraphML, Brandes et al. 2004)
was initiated during the Graph Drawing Symposium in 2000. Today it is considered
to be the most popular format for graph representations, at least in the scientific
community. Like XGMML and GraphXML it is based on XML and defined using
XML Schema (in fact, it uses four modular XML schema files which – like XG-
MML and GraphXML – import XLink for linking between graphs).6 Regarding the
formal expressiveness, GraphML extends the capability of the former approaches
by introducing hyperedges and nested graphs.

The code given in Listing 7 depicts the representation of a hierarchical graph struc-
ture as shown in Fig. 5. It extends the example of a Wikipedia graph which has already
been used to illustrate hierarchical graphs (see Fig. 4) by including a hyperedge.

Listing 7 Hyperedge in GraphML

1 <?xml version="1.0" encoding="UTF-8"?>
2 <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
5 http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
6 <graph id="Graph1" edgedefault="directed">
7 <node id="A"/>
8 <node id="B"/>
9 <edge source="A" target="B"/>

10 <hyperedge>
11 <endpoint node="B"/>
12 <endpoint node="C"/>
13 <endpoint node="D"/>
14 </hyperedge>
15 <node id="C">
16 <graph id="Graph2" edgedefault="directed">
17 <node id="D"/>
18 </graph>
19 </node>
20 </graph>
21 </graphml>

A distinctive feature of GraphML is the concept of ports. Each node can contain
an arbitrary number of labeled ports. Note that ports are a specific construct of
GraphML which do not have a direct counterpart in terms of graph theory. Rather,
they are introduced to solve specific problems, as for example to simplify the repre-
sentation of hyperlinks between Wikipedia pages: A hyperlink points from one page
to another. In addition, a hyperlink can specify a source and a target section within

6 The schema files consist of the graphml-structure.xsd,
graphml-attributes.xsd, and graphml-parseinfo.xsd schemas, plus an
additional graphml.xsd which redefines some of the before-mentioned elements and
types.
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Fig. 5 Hierarchical graph
structure including a hy-
peredge connecting three
nodes

the respective pages, similar to HTML. One way to represent such a hyperlink could
be to represent the anchors of pages as nodes of a subordinate graph. Hyperedges
would then be used to interrelate the the nodes representing the source and target
page as well as the source and target section. While this is a clean solution it also
bloats the representation. The concept of ports in GraphML allows for a more com-
pact representation: Rather than modeling sections of a page as nodes of a subgraph
they can be modeled as ports of a node. Thus an edge connecting two nodes can
optionally specify the ports it connects. The code in Listing 8 shows an alternative
representation of Fig. 5 defining node D as a port of node C rather than a node in
a subordinate graph. That way we can also use a simple binary edge containing the
additional information about the target port.

Listing 8 Ports in GraphML

1 <?xml version="1.0" encoding="UTF-8"?>
2 <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
5 http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
6 <graph id="Graph1" edgedefault="directed">
7 <node id="A"/>
8 <node id="B"/>
9 <node id="C">

10 <port name="D"/>
11 </node>
12 <edge source="A" target="B"/>
13 <edge source="B" target="C" targetport="D"/>
14 </graph>
15 </graphml>

Another advantage of GraphML is the strict separation of attribute specification
and value assignment. Attributes of graphs, nodes and edges are defined once and
can then be referred to throughout the document when assigning values. The follow-
ing code example demonstrates the definition of a node attribute named namespace
which is used to declare the namespace of a given Wikipedia page. Values need to
be of type string and the default value is set to category.

Listing 9 Key definition in GraphML

1 ...
2 <key id="k0" for="node"
3 attr.name="namespace"
4 attr.type="string">
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5 <default>category</default>
6 </key>
7 ...

This attribute can now be used to annotate nodes of a graph as the following code
illustrates:

Listing 10 Reference to former key definition in GraphML

1 ...
2 <node id="A">
3 <data key="k0">article</data>
4 </node>
5 ...

The data element can be stored underneath the graphml, graph, node, port,
edge, and hyperedge elements, making it a ubiquitous place to store annota-
tion. Beyond such simple attribute types as the ones shown in Listings 9 and 10,
GraphML also supports complex types as well as extensions thereof.

3.5 GXL

The Graph eXchange Language (GXL) has been proposed by Winter et al. (2002).
It benefits greatly from the experiences made with previous proposals and con-
cepts to represent graph structures. Initially GXL evolved from the GRAph eX-
change format (GraX, Ebert et al. 1999), the Tuple Attribute Language (TA, Holt
1997), as well as the format of the PROGRES graph rewriting system (Schürr et al.
1999). It aims at bringing together the concepts of GML, XGMML and GraphXML.
Formally speaking, GXL supports the representation of attributed, typed, directed
and undirected hierarchical hypergraphs. This expressiveness is also provided by
GraphML. In extension to that, GXL also provides ordered hyperedges and explicit
typing of elements, which is implemented separately from attributing graph ele-
ments. The representation of hyperedges is quite similar to GraphML where the
elements hyperedge and endpoint are used rather than rel and relend.7

Listing 11 shows the serialization of the graph as shown in Fig. 5.

Listing 11 Code example of GXL

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gxl-1.0.dtd">
3 <gxl>
4 <graph id="Graph1" edgemode="directed" hypergraph="true">
5 <node id="A"/>
6 <node id="B"/>
7 <edge id="EdgeAB" from="A" to="B"/>
8 <rel id="RelBCD">

7 See Brandes et al. (2005) for a comparison of both GraphML and GXL as well as the
transformation of instances from and to each other.
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9 <relend dir="in" target="B"/>
10 <relend dir="out" target="C"/>
11 <relend dir="out" target="D"/>
12 </rel>
13 <node id="C">
14 <graph id="Graph3">
15 <node id="D"/>
16 </graph>
17 </node>
18 </graph>
19 </gxl>

GXL offers an extensive attribute model to annotate graph elements. The attr
element is used to express named attributes, typed literals can be specified using
string, int, bool, float, enum or locator elements. Furthermore GXL
distinguishes four different kinds of containers, namely sets (set), lists (seq),
tuples (tup), and multisets (an unordered set in which multiplicity is significant,
called bag). This distinction is quite noticeable – however GXL does not allow to
type or name these containers beyond the ancestor attribute element. Listing 12
shows the use of attributes in GXL.

Listing 12 Attribute code example of GXL

1 ...
2 <node id="A">
3 <attr name="title">
4 <string>Linguistics</string>
5 </attr>
6 <attr name="ratings">
7 <set>
8 <tup>
9 <string>language</string>

10 <int>4</int>
11 </tup>
12 <tup>
13 <string>innovative</string>
14 <int>5</int>
15 </tup>
16 </set>
17 </attr>
18 </node>
19 ...

GXL is defined by an XML DTD and an XSD schema file which both can be ob-
tained from GXL web site.8 Technically speaking, the XSD schema is not valid,
because it uses a wrong (preliminary) XML Namespace for the root element, the
wrong xs:NMTOKEN data type and some obsolete attributes for default values.
However, these mistakes can easily be corrected.

8 http://www.gupro.de/GXL/

http://www.gupro.de/GXL/
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Although there is a section regarding possible future updates to GXL at its web
site (including an alpha version of a forthcoming GXL 1.1 DTD), the latest changes
originate in 2002, leaving GXL’s future development uncertain.

3.6 GrAF

The Graph Annotation Format (GrAF) is a so-called pivot format as part of the in-
ternational standard ISO 24612:2012, the Linguistic Annotation Framework (LAF).
LAF was developed for multiple annotated language corpora and has its roots in
the Corpus Encoding Standard (CES, Ide 1998; Ide et al. 1996) which started as
a TEI P3-based (P3) SGML application and later on evolved into the XML-based
XCES (Ide et al. 2000). Since LAF’s primary design goal is to store linguistic an-
notations, there are different data types to be stored, namely the metadata (divided
into resource header and document header) and the standoff annotation files which
are stored in a graph-based format, which makes GrAF an interesting candidate for
a linguistic network markup language.

LAF’s data model consists of three parts: (1) regions that are defined by anchors
referencing locations in the primary data (that is, the data to be annotated); (2) a di-
rected graph structure, consisting of nodes, edges and links to the before-mentioned
regions; and (3) an annotation structure comprising a directed graph referencing re-
gions or other annotations. The nodes and edges in this graph can be annotated via
feature structures (attribute-value-graphs). Language resources annotated according
to LAF confirm to the following architecture:

• At least one primary data file. Primary data may be in any format; if markup is
part of textual primary data it is treated as part of the data stream (in case of
XML-based markup, XPath expressions may be supported as well).

• Annotation documents containing linguistic annotation associated to the nodes
and edges of the graph structure.

• One or more documents defining regions as base segmentation of the primary data.
The concept of base segmentation is derived from Ide et al. (2000). The referenc-
ing and segmentation mechanism used is application-dependent, although each
anchor can be described by n-tuples containing sets of spatial or temporal offsets.

• A set of header files providing metadata for both the primary data and each an-
notation document.

This data model can be serialized in any given markup language. To assure the ex-
change of data between different LAF-based markup languages, the pivot format
GrAF should be used. GrAF’s serialization of this data model is defined by a nor-
mative RNG schema.9 Listing 13 shows a small GrAF instance.

9 Located at http://www.xces.org/ns/GrAF/1.0/graf-standoff.rng;
there are additional schema files for the resource and document header files and informa-
tive XSD versions of the schemas.

http://www.xces.org/ns/GrAF/1.0/graf-standoff.rng
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Listing 13 GrAF example

1 <?xml version="1.0" encoding="UTF-8"?>
2 <graph xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:schemaLocation="http://www.xces.org/ns/GrAF/1.0/
4 http://www.xces.org/ns/GrAF/1.0/graf-standoff.xsd"
5 xmlns="http://www.xces.org/ns/GrAF/1.0/" xml:id="graph_1">
6 <graphHeader>
7 <labelsDecl>
8 <labelUsage label="sentence" occurs="1"/>
9 </labelsDecl>

10 </graphHeader>
11 <anchor xml:id="a1" value="1"/>
12 <anchor xml:id="a2" value="4"/>
13 <anchor xml:id="a3" value="5"/>
14 <anchor xml:id="a4" value="10"/>
15 <region xml:id="r1" anchors="a1 a2"/>
16 <region xml:id="r2" anchors="a3 a4"/>
17 <node xml:id="n1">
18 <link targets="r1"/>
19 </node>
20 <node xml:id="n2">
21 <link targets="r2"/>
22 </node>
23 <edge xml:id="e1" from="n1" to="n2"/>
24 <a xml:id="anno1" ref="e1" label="sentence">
25 <fs>
26 <f name="s" fVal="#e1"/>
27 </fs>
28 </a>
29 </graph>

The a element in Line 24 contains the annotation of a given node or edge. In this
case the edge identified by e1 (Line 23) from the node n1 (Line 17) to the node n1
(Line 20) is annotated with a feature structure containing a simple feature (Line 26)
named s (for sentence). The order of the nodes determines the direction of an edge.
Annotations may use labels which should be defined in the labelsDecl element
of the graph header – in this example we use the more human-readable label “sen-
tence” instead of the feature s. The markup for the feature structure is compliant to
the one defined by the TEI (P5 2.7.0) and the International Standard ISO 24610-
1:2006.10 This is one of the most distinctive features that separates GrAF from the
other serialization formats discussed above, since GrAF allows for structured anno-
tation and not only attributes.

10 There is an additional and more concise form of the f element for simple features, that
consists of an empty f element and a name and value attribute. Since this concise form
is not compliant to the International Standard ISO 24610-1:2006, we use the longer form
in the example.
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The most prominent application of GrAF is the Manually Annotated Sub-Corpus
(MASC) project which provides a number of freely available corpus files,
including a corpus header, document headers, primary data files, segmentation files,
and annotation files (with annotation headers) for a number of annotation levels.11

3.7 Summary

The development of the different graph formats discussed in this section has shown
a natural evolution, in terms of underlying serialization (non-XML vs. XML-based)
and in terms of expressiveness. While most of the formats are quite similar regarding
their annotation inventory (each of them has a node and edge element for exam-
ple), GrAF differs in providing a specific place to store metadata (the graph header)
and handling of annotation as well as a more complex segmentation mechanism
(with a separate definition of anchors and regions). The reason for this is GraF’s
(and LAF’s) background of linguistic annotation.

From a technical point of view, it is interesting that XGMML, GraphXML and
GraphML use XLink (DeRose et al. 2001) which was supposed to be added as link-
ing mechanism in a Second Generation Web where specific document information
is encoded in XML (Bosak and Bray 1999). XLink never gained enough support in
browsers and although the specification itself has been updated recently (DeRose
et al. 2010), its future in the Web is uncertain.

Table 1 shows the differences in terms of formal expressiveness of the different
graph serialization formats.

Table 1 Expressiveness of Graph Formats

directed attributed typed hierarchical hyperedges ordered multiple graphs

GML x x (x) (x) – – –
XGMML x x (x) x – – –
GraphXML x x (x) x – – x
GraphML x x (x) x x – x
GXL x x x x x x x
GrAF x x (x) – – x –

4 Network Tools

An important research purpose when it comes to encoding linguistic data as a graph
and storing it in a serialized format is making this information accessible to network
science tools. These tools mainly help to analyze the data, describe the information
in algorithmic terms to make it possible to compare different linguistic corpora and

11 See http://www.anc.org/MASC/MASC_Structure.html for further details.

http://www.anc.org/MASC/MASC_Structure.html
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different linguistic structures, or even compare linguistic networks with networks
induced from other sources (e. g. by the average degree or the graph density).

Beside the mathematical analysis of this data, sometimes there is also a signif-
icant benefit in visualizing these graphs. This is especially true for data coming
from the humanities like linguistic data, as scientists working in this field some-
times prefer the visual demonstration and exploration of measures like density to
pure numerical representations.

The following list is just a small fraction of the wide variety of tools for analyzing
and visualizing network data, but can be seen as a list of major representatives.

Cytoscape12 (Smoot et al. 2011) is a network analysis tool with a focus on bioin-
formatics. It comes with similar visualizations as yEd (see below; by using the yFiles
visualizers), but with extensive possibilities for network analysis (including measure
calculations, but also distribution charts). In addition to that, Cytoscape is easily ex-
tensible, providing a plugin framework and an application store with user provided
plugins (not limited to bioinformatics; Saito et al. 2012). The software is distributed
as open source under the GNU Lesser General Public License and supports 14 dif-
ferent data formats in the tested version 3.0.2.

Gephi13 is a graph editing and visualization tool with a focus on real-time vi-
sualization and interactive manipulation of even large graphs (more than 20,000
nodes; Bastian et al. 2009). The Gephi marketplace14 provides plugins for addi-
tional features, and community driven support (for training and development) can
be announced as a service on the Gephi web site.

The software itself is available as open source with a dual license of the Common
Development and Distribtion License (CDDL) v1.0 and the GNU General Public
License (GPL) v3. The current version 0.8.2 Beta supports 12 different graph for-
mats, and can be connected to various relational database management systems for
importing edge and node lists.

Network Workbench (NWB)15 is a network analysis, modeling and visualization
tool, and a community web platform for network analysis (NWB Team 2006). 16 Its
main purpose is the access to well documented implementations of network analysis
and visualization algorithms as well as network data to compare networks through-
out different disciplines. NWB is open source and available under the Apache Li-
cense v2.0. Version 1.0.0 supports 13 different network formats.

yEd17 is mainly a graph editing and visualization tool, with just limited sup-
port for graph analyses (e. g. the calculation of centrality measures). Other than the
former mentioned tools, yEd is closed source and distributed under a commercial
license, however it can be downloaded and used freely. yEd is based on the yFiles

12 http://cytoscape.org/
13 http://gephi.org/
14 https://marketplace.gephi.org/
15 http://nwb.cns.iu.edu/
16 The community portal of Network Workbench at http://nwb.cns.iu.edu/ seems

to be no longer accessible (as of 06/01/2015).
17 http://www.yworks.com/en/products_yed_about.html

http://cytoscape.org/
http://gephi.org/
https://marketplace.gephi.org/
http://nwb.cns.iu.edu/
http://nwb.cns.iu.edu/
http://www.yworks.com/en/products_yed_about.html
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Table 2 Graph formats supported by different tools

Cytoscape Gephi NWB yEd
Version 3.0.2 0.8.2b 1.0.0 3.11.1
n supported Formats 14 12 13 7

GML X X – X
XGMML X – X –
GraphXML – – – –
GraphML X X X X
GXL – – – –
GraF – – – –
CSV X X X –

Java API18 which in contrast cannot be used beyond an evaluation phase. It supports
seven different graph formats in the tested version 3.11.1.

From the existing formats discussed in Sect. 3, GraphML has the best support
among these tools, followed by GML and its XML translation, XGMML19 (see Ta-
ble 2). The simple character separated value format (CSV), as discussed in Sect. 2.3,
is widely adopted as well. Most formats, however, can be transformed into each other
quite easily (e. g. in case of XML formats using XSLT stylesheets), but in some cases,
as shown in Table 1 regarding the different levels of expressiveness of the represented
graph models, this may come with information loss.

The choice, which tool to choose for the analysis of network data, however, has
more (and probably more important) aspects than supported data formats. Some
tools focus on certain types of networks (e. g. biological networks, social networks)
and therefore provide different feature sets to support different types and sizes of
networks. As with formats, sustainability is a major aspect, where it is important, if
a software will run on various operating systems20, if it is still under maintenance,
if the license allows a possible community driven continuation of maintenance, and
maybe if the software is designed for extensibility, providing an open API (Appli-
cation Programming Interface) to allow to add custom features. The stability and
documentation of the implemented algorithm is also an important aspect when it
comes to future reproducibility of research results. Obviously, the performance of
the software and the quality of the visualizations play a major role as well.

18 http://www.yworks.com/de/products_yfiles_about.html
19 yEd supports an XML variant of GML as well, called XGML, but the format differs to

XGMML, see http://docs.yworks.com/yfiles/doc/
developers-guide/xgml.html

20 All presented tools are available for the major platforms Linux, Windows and OS X. Other
tools are limited in this aspect, e. g. Pajek (http://pajek.imfm.si/doku.php?
id=pajek) natively runs on Windows only.

http://www.yworks.com/de/products_yfiles_about.html
http://docs.yworks.com/yfiles/doc/developers-guide/xgml.html
http://docs.yworks.com/yfiles/doc/developers-guide/xgml.html
http://pajek.imfm.si/doku.php?id=pajek
http://pajek.imfm.si/doku.php?id=pajek
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In addition to the aforementioned tools, mathematical software not primarily fo-
cusing on graph analysis like Matlab21, R22, or Wolfram Mathematica23, also support
certain graph formats. Graph databases like the popular Neo4j24 provide import han-
dlers for different graph formats. There are also numerous libraries focusing on either
the analysis or visualization of graphs. Regarding the latter it is worth to mention the
amount of upcoming JavaScript libraries for visualizing network data embedded on
the web, using modern techniques like SVG, HTML5 Canvas and WebGL. These
libraries mainly use graph data serialized in JSON, as introduced in Sect. 2.3.

5 Proposal for a Linguistic Network Markup Language

In the preceding sections we introduced several existing graph formats as candidates
for a Linguistic Network Markup Language. We also discussed the requirements of
such a candidate regarding the expressiveness of the graph model to cover most char-
acteristics of linguistic networks as presented in previous chapters. But beside the
graph model, a Linguistic Network Markup Language needs to provide a rich toolkit
for annotating linguistic phenomena. As the aforementioned graph formats are of a
general purpose nature, we have to discuss their capabilities in this aspect a little
further and possibly turn the perspective upside down, looking at linguistic markup
languages and how we can extend these to represent network information such as
the aforementioned WikiGraphs. However, since GrAF (cf. Sect. 3.6) is designed
to serialize only single graphs (e. g. those of a single article) without any support
for hyperedges or hierarchical graphs, it is not expressive enough for more complex
examples; we therefore stick to the general purpose formats as a starting point.

There are two options to define a new linguistic network markup language: the
extension of an already established markup language (candidates have been dis-
cussed in Sect. 3), or the creation of a new markup language that mimics familiar
languages but is defined by a markup grammar on its own. Both options have ad-
vantages and disadvantages. The extension of a markup language implies that the
document grammar is freely available and can be modified easily. In addition, it is
recommended that the newly introduced elements and attributes belong to a differ-
ent XML Namespace (Bray et al. 2009) to make it easy to distinguish the infor-
mation items defined in the host language from the others. XML Namespaces use
a unique URI reference that serves together with the local name of the elements
and attributes of a given markup language as an expanded name, similar to pack-
age names in programming languages such as Java. Therefore, two elements with
the same local name (e. g. title) can be treated differently (once as the title of
a book, the second time as academic title). However, XML Namespaces introduce
some pitfalls to the processing of XML instances and must be supported by the doc-
ument grammar formalism used to define the markup language in question (while

21 http://www.mathworks.de/products/matlab/
22 http://www.r-project.org/
23 https://www.wolfram.com/mathematica/
24 http://www.neo4j.org/

http://www.mathworks.de/products/matlab/
http://www.r-project.org/
https://www.wolfram.com/mathematica/
http://www.neo4j.org/
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XML DTD do not support XML Namespaces, both RNG and XSD do). A promi-
nent example of a markup language that allows the extension in such a way is the
TEI. The Guidelines of the Text Encoding Initiative consists of a highly modular
markup language that can be used to annotate various works of digital humanities
data, including literary texts, transcriptions, plays, and the like. Another example of
a meta markup language that makes heavy use of XML Namespaces is XStandoff
(Stührenberg and Jettka 2009; Stührenberg 2013).

A related aspect is the grammar formalism itself. DTD, XSD and RNG are differ-
ent in terms of their formal expressiveness. Candidate markup languages that easily
allow the extension of their markup inventory are especially those that use a recent
XML document grammar formalism. However, if one adapts a present markup lan-
guage, tools that are already available for the original markup language (such as
XSLT stylesheets) have to be adapted as well. Otherwise they are not aware of the
new markup items. In addition, markup languages that use a not so expressive doc-
ument grammar formalism or that undergo no active development anymore, are no
suitable candidates as a starting point. Apart from that it is sometimes not possible
to extend a markup language without removing already present markup items. In
this case it is more convenient to start over with a new markup language.

Crucial aspects are the handling of metadata and annotations, since we want to
define a markup language for describing linguistic data in networks. All three parts
of an instance, the graph (including nodes and edges), the annotation and the meta-
data, can be stored in a single instance, or – as it is in GrAF – the metadata can be
stored separately.

Another interesting aspect is the inclusion of reference points to taxonomies or
ontologies of linguistic annotation concepts. With the international standard ISO
12620:2009 (ISO 12620:2009) and its implementation ISOcat25 there is a reason-
able resource that can be used. The current version of the TEI document grammar
includes a schema file that defines the two attributes datcat and valueDatcat
which can easily be used to refer to ISOcat data categories and values (for further
information see Section 18.3, “Other Atomic Feature Values” in TEIP5 2.7.0). Since
the markup inventory (that is, the elements, attributes, and types) of the XML-based
markup languages already discussed is very similar, it is easy to start over with a
new markup language that takes advantages of the current versions of document
grammar formalisms (such as XML Schema 1.1; Gao et al. 2012) and international
standards available while still mimicking already-familiar annotation formats.

On the other hand, support of an already established markup language by anal-
ysis and visualization tools may be an added value which can be a decisive factor.
GraphML (see Sect. 3.4) is widely adopted by analysis and visualization tools (see
Table 2), while regarding its formal expressiveness, only GXL is stronger (see Ta-
ble 1; but less adopted, see Table 2). We therefore decided to extend GraphML.

25 See http://www.isocat.org for further details. Although ISOcat resembles an on-
tology, it is not one per design since agreement on relation and modeling strategies has
been considered stronger at the level of an individual application. By the time of writ-
ing, ISOcat’s future development is uncertain, however, similar data category registries
supporting the ISO standard will be available in the near future.

http://www.isocat.org
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5.1 Extending GraphML by Redefinition

GraphML is defined by a set of XML Schema files and supports XML Names-
paces. As an extension mechanism, GraphML supposes a set of pre-defined attribute
groups and the globally defined data-extension-type, applicable as a con-
tainer for user-defined extensions. This can be achieved by using XSD’s redefinition
mechanism (Walmsley 2012, pp. 448-459; Brandes et al. 2004, Section 4). Before
that, we have to streamline GraphML’s schema files, since they define a large num-
ber of global types that are only used once. In addition, there is a unique constraint
underneath the declaration of the data element, that should ensure uniqueness of
the key attributes of data child elements. However, the content model of the data
element does not allow any child elements at all. We have addressed this issue as
well.

If we want to extend GraphML’s data and desc elements (which both use the
data-extension.type as base type), we can create a new XML Schema con-
taining the redefinition of the data-extension.type (similar to the graphml-
.xsd which is part of the official schema files). For example, if we want to
model a graph of wiki articles written by one or more authors as a complex lin-
guistic network (Mehler 2008), we could redefine the data-extension.type
as shown in Listing 14. Note, that we have to alter the graphml.xsd file it-
self (or duplicate it), since it redefines elements and attributes from the other
schemas and if we want to redefine the data-extension.type (defined in
graphml-structure.xsd) we have to include every single redefinition of the
graphml.xsd schema as well to maintain compatibility.26

Listing 14 Redefining GraphML’s data-extension.type for describing Wiki-Graphs

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
3 targetNamespace="http://graphml.graphdrawing.org/xmlns"
4 xmlns:graphml="http://graphml.graphdrawing.org/xmlns"
5 elementFormDefault="qualified">
6

7 <xs:import namespace="http://www.w3.org/XML/1998/namespace"/
>

8

9 <xs:redefine schemaLocation="graphml-structure.xsd">
10 <xs:complexType name="data-extension.type" mixed="true">
11 <xs:complexContent>
12 <xs:extension base="graphml:data-extension.type">
13 <xs:choice minOccurs="0" maxOccurs="unbounded">

26 A redefinition of a type (or element, group, etc.) not directly defined in the referenced
schema is not allowed by the standard: “The definitions within the redefine element it-
self are restricted to be redefinitions of components from the redefined schema document,
in terms of themselves.” (Thompson et al. 2004, Sect. 4.2.2 and Schema Representation
Constraint: Redefinition Constraints and Semantics 4.1) The popular XSLT and XSD 1.1
schema processor Saxon throws a warning regarding this behavior, and although the cur-
rent version 9.5 does not enforce this rule, future versions will do.
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14 <xs:element name="author" minOccurs="0"
15 maxOccurs="unbounded">
16 <xs:complexType>
17 <xs:sequence>
18 <xs:element name="name" type="xs:string"/>
19 </xs:sequence>
20 <xs:attribute ref="xml:id"/>
21 </xs:complexType>
22 </xs:element>
23 <xs:element name="article">
24 <xs:complexType>
25 <xs:sequence>
26 <xs:element name="title" type="xs:string"

minOccurs="0"/>
27 </xs:sequence>
28 <xs:attribute ref="xml:id"/>
29 <xs:attribute name="topic" type="xs:string"/>
30 </xs:complexType>
31 </xs:element>
32 </xs:choice>
33 </xs:extension>
34 </xs:complexContent>
35 </xs:complexType>
36 </xs:redefine>
37

38 <!-- further refinements of graphml.xsd -->
39 </xs:schema>

In the example instance shown in Listing 15, we use the redefined complexType
to store structured information about authors working on wiki articles (articles not
shown in the graph).

Listing 15 Extended GraphML instance for describing relations between authors of wiki
articles

1 <?xml version="1.0" encoding="UTF-8"?>
2 <graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

GraphML-extended.xsd">
4 <key id="key1" for="graph" attr.name="author"/>
5 <graph id="AuthorGraph" edgedefault="undirected">
6 <node id="Author1">
7 <data key="key1">
8 <author>
9 <name>Alice</name>

10 </author>
11 </data>
12 </node>
13 <node id="Author2">
14 <data key="key1">
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15 <author>
16 <name>Bob</name>
17 </author>
18 </data>
19 </node>
20 <edge source="Author1" target="Author2"/>
21 </graph>
22 </graphml>

XML Schema’s redefinition feature is sometimes criticized because of its
complexity, possible side-effects, and inconsistent implementation among XSD pro-
cessors (Walmsley 2012, p. 447). Therefore, it was marked as deprecated in the cur-
rent version 1.1 (Gao et al. 2012; Peterson et al. 2012) and replaced with the new
override feature. However, compared to the latter, redefine is still supported
by a larger number of tools. In addition, it allows us to maintain backwards compat-
ibility with GraphML and the tools supporting it, therefore we will use it throughout
the remainder of this chapter as the method to extend this format. A future version
of the proposed format should make use XSD 1.1’s override feature.

5.2 Extending GraphML by XML Namespaces

If we want to use an already established markup language for structuring subtrees
underneath the data element, it is the canonical way to use XML Namespaces. We
have two options for such an extension: (1) We redefine the data-extension.
type complexType in the graphml.xsd schema file to include the corresponding
root element of the foreign markup language, or (2) we use element wildcards (Gao
et al. 2012, Section 3.10).

The XML Schema shown in Listing 16 uses the first option and extends the type
by adding an element sequence containing the fs element of the feature structure
format defined in the TEI and ISO 24610-1:2006. We have chosen this approach to
be compliant with the International Standard which is the base of a large number of
accompanying standards for the annotation of linguistic features.

Listing 16 Redefining GraphML’s data-extension.type by including TEI FS

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
3 targetNamespace="http://graphml.graphdrawing.org/xmlns"
4 xmlns:graphml="http://graphml.graphdrawing.org/xmlns"

xmlns:tei="http://www.tei-c.org/ns/1.0"
5 elementFormDefault="qualified">
6

7 <xs:import namespace="http://www.tei-c.org/ns/1.0"
schemaLocation="../tei_fs.xsd"/>

8 <xs:redefine schemaLocation="graphml-structure.xsd">
9 <xs:complexType name="data-extension.type" mixed="true">

10 <xs:complexContent>
11 <xs:extension base="graphml:data-extension.type">
12 <xs:sequence>
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13 <xs:element ref="tei:fs" minOccurs="0"
14 maxOccurs="unbounded"/>
15 </xs:sequence>
16 </xs:extension>
17 </xs:complexContent>
18 </xs:complexType>
19 </xs:redefine>
20

21 <!-- further refinements of graphml.xsd -->
22

23 </xs:schema>

An example using the extended schema can be seen in Listing 17.

Listing 17 Instance using TEI-FS-extended GraphML

1 <?xml version="1.0" encoding="UTF-8"?>
2 <graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xlink="http://www.w3.org/1999/xlink"
3 xmlns:tei="http://www.tei-c.org/ns/1.0"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

GraphML-TEI-FS.xsd">
6 <key id="key1" for="graph" attr.name="color"
7 attr.type="string">
8 <default>
9 <tei:fs>

10 <tei:f name="title">
11 <tei:string>Linguistics</tei:string>
12 </tei:f>
13 </tei:fs>
14 </default>
15 </key>
16 <graph id="Graph1" edgedefault="directed">
17 <node id="A">
18 <data key="key1">
19 <tei:fs>
20 <tei:f name="title">
21 <tei:string>Linguistics Online</tei:string>
22 </tei:f>
23 </tei:fs>
24 </data>
25 </node>
26 <node id="B">
27 <data key="key1"/>
28 </node>
29 <edge source="A" target="B"/>
30 </graph>
31 </graphml>
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To realize the second option, we only have to insert the xs:any wildcard as a child
element of the redefined data-extension.type complexType (as shown in
Listing 18).

Listing 18 Redefining GraphML’s data-extension.type with the xs:any wildcard

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
3 targetNamespace="http://graphml.graphdrawing.org/xmlns"
4 xmlns:graphml="http://graphml.graphdrawing.org/xmlns"

xmlns:dcr="http://www.isocat.org/ns/dcr"
5 elementFormDefault="qualified">
6

7 <xs:import namespace="http://www.w3.org/XML/1998/namespace"/>
8

9 <xs:import namespace="http://www.isocat.org/ns/dcr"
schemaLocation="dcr.xsd"/>

10

11 <xs:redefine schemaLocation="graphml-structure.xsd">
12 <xs:attributeGroup name="common.extra.attrib">
13 <xs:attributeGroup ref="common.extra.attrib"/>
14 <xs:attribute ref="dcr:datcat"/>
15 <xs:attribute ref="dcr:valueDatcat"/>
16 </xs:attributeGroup>
17 <xs:complexType name="data-extension.type" mixed="true">
18 <xs:complexContent>
19 <xs:extension base="data-extension.type">
20 <xs:choice minOccurs="0" maxOccurs="unbounded">
21 <xs:sequence>
22 <xs:any namespace="##other" maxOccurs="unbounded"

processContents="lax" minOccurs="0" />
23 </xs:sequence>
24 </xs:choice>
25 </xs:extension>
26 </xs:complexContent>
27 </xs:complexType>
28 </xs:redefine>
29

30 <!-- further refinements of graphml.xsd -->
31

32 </xs:schema>

Note that we use the value “lax” for the processContents attribute of the
xs:any element which allows for optional validation of embedded markup (if a
schema location is provided). A benefit of this solution is that elements of any other
markup language (as long as it is XML-based and defined via an XML schema)
can be used as a virtual root element of an element subtree underneath GraphML’s
default and data elements, allowing for a shallow or deeply structured annota-
tion of nodes and edges of linguistic networks and graphs.
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We have imported the dcr.xsd XSD file from TEI’s P5 as well, to include
the two datcat and valueDatcat ISOcat attributes in the common.extra.
attrib attribute group. As a result, we are able to add these two attributes that
store a reference to an ISOcat category and value as a means to provide a semantic
concept to a (linguistic) annotation.

5.3 Example Instance

For a brief demonstration of the outlined GraphML based format for describing lin-
guistic networks, we will prepare a small instance of a Wiki-Graph, roughly follow-
ing Mehler (2008).27 A Wiki-Graph consists of three graph components: (1) an agent
graph, with agents as vertices and collaborations as arcs, (2) a document graph, with
articles as vertices and intertextual relations as arcs, and (3) a word graph, with words
as vertices and word associations as arcs (Mehler 2008, p. 641 f.; see Fig. 6).

A possible serialization of an example instance of such a complex graph is shown
in Listing 19.

Listing 19 Example demonstrating Wiki-Graphs

1 <?xml version="1.0" encoding="UTF-8"?>
2 <graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dcr="http://www.isocat.org/ns/dcr"

3 xmlns:tei="http://www.tei-c.org/ns/1.0"
4 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

GraphML-wildcard_verbose-dcr.xsd">
5 <key id="pT" for="node" attr.name="pageType"
6 attr.type="string">
7 <default>
8 <tei:fs>
9 <tei:f name="pageType">

10 <tei:string>article</tei:string>
11 </tei:f>
12 </tei:fs>
13 </default>
14 </key>
15 <key id="pos" for="node"/>
16 <key id="documentStructureIntro" for="node">
17 <default>
18 <tei:fs>
19 <tei:f name="Part">
20 <tei:string>Introduction</tei:string>
21 </tei:f>
22 </tei:fs>
23 </default>
24 </key>
25 <graph id="WikiGraph" edgedefault="directed">

27 The presented model is simplified for demonstration purposes and not related to the ex-
pressiveness of the format.



326 M. Stührenberg, N. Diewald, and R. Gleim

26 <node id="Articles">
27 <graph id="ArticleGraph" edgedefault="directed">
28 <node id="Page1"/>
29 <node id="Page2">
30 <graph id="Page2SectionGraph" edgedefault="directed">
31 <node id="Page2Section1"/>
32 <node id="Page2Section2"/>
33 <edge source="Page2Section1" target="Page2Section2"/>
34 </graph>
35 </node>
36 <hyperedge>
37 <endpoint node="Page1"/>
38 <endpoint node="Page2"/>
39 <endpoint node="Page2Section1"/>
40 </hyperedge>
41 </graph>
42 </node>
43 <node id="Authors">
44 <graph id="AuthorGraph" edgedefault="undirected">
45 <node id="Author1"/>
46 <node id="Author2"/>
47 <edge source="Author1" target="Author2"/>
48 </graph>
49 </node>
50 <hyperedge>
51 <endpoint node="Author1"/>
52 <endpoint node="Page1"/>
53 </hyperedge>
54 <hyperedge>
55 <endpoint node="Author2"/>
56 <endpoint node="Page2"/>
57 <endpoint node="Page2Section2"/>
58 </hyperedge>
59 </graph>
60 </graphml>

Note that we neither include the full authors’ graph (underneath the node iden-
tified by “Authors”) nor the text internal structure of a wiki page due to space con-
straints. For the former, the graph serialization shown in Listing 15 can be used.
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Fig. 6 Visualization of a
Wiki-Graph

6 Conclusion

Since linguistic analysis is increasingly advancing in terms of heterogeneity of data,
adequate formats to describe this data are required. Graphs are able to model a
wide range of heterogeneous structures without narrowing the spectrum of possi-
ble research questions and without enforcing information loss. We have discussed
different data models and formats that may be taken into account when consid-
ering a markup language for linguistic networks. Among these, we have chosen
GraphML as an initial point, since it is reasonably expressive and supported by
a large number of existing tools for network analysis and visualization. A proper
new version of GraphML could include more aggressive cleaning of the underlying
schema, resulting in a loss of backwards-compatibility and tool support. Depending
on reactions from the GraphML community, however, such a development could
be worthwhile. For the time being, the extensions of GraphML by both redefinition
and XML Namespaces discussed in this chapter allow for additional annotations for
complex linguistic networks such as Wiki-Graphs.
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Linguistic Networks – An Online Platform
for Deriving Collocation Networks
from Natural Language Texts

Alexander Mehler and Rüdiger Gleim

1 Introduction

This section describes the Linguistic Networks System (LNS).1 Its primary goal is
to allow users for exploring texts from a network-oriented perspective. One aim
is to let researchers – especially from the area of historical semantics (Jussen et
al. 2007) – reveal particularities of the underlying texts that are hardly accessible
otherwise. This relates to research questions of the following sort: How is a given
lexical unit, sentence or historical text connected to other linguistic instances in
a usage-based manner? In which lexical context is it typically used and what are
the lexical contexts of the context-forming units when explored in a recursive man-
ner? Does this usage-based network reveal unexpected relations that can be related
to historical, social-semantic processes? Tackling such questions requires that the
views provided by LNS go beyond collocation tables (as they are still predominant
in historical semantics and corpus linguistics – cf. Evert (2008)). Networks may be
an alternative in this sense: ideally, users can grasp lexical characteristics of texts
visually by detecting clusters, extracting long-distance relations etc. Or they make
them input to text classification and, more generally, to text mining (Masucci and
Rodgers 2006; Amancio et al. 2008; Amancio et al. 2012). Networks may also be
used to approximate the expressiveness of collocation networks derived from syn-
tactic analyses (Ferrer i Cancho et al. 2004; Liu 2008; Liu and Hu 2008; Abramov
and Mehler 2011) since the latter are computationally still very expensive – all the

Alexander Mehler · Rüdiger Gleim
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more in the case low-resource languages for which parsers are out of reach. Fur-
ther, lexical networks as computed by LNS may be taken to derive null models that
serve for computing significance thresholds of graph invariants derived from lin-
guistic networks (Masucci and Rodgers 2009; Amancio et al. 2013). These is are
some tasks to be supported by LNS.

Table 1 gives an overview of different types of approaches to lexical-semantic
networks as currently discussed in the literature together with exemplary references.
In the cases 2–10, the collocation networks computed by LNS may be used as refer-
ence points (null models) to make the respective network models comparable (e.g.,
by the degree the latter depart from the former seen as null models, cf. Deyne et
al. 2015). Alternatively, LNS may be used as a starting point to approximate lexical
networks that are hard to observe empirically (e.g., association networks by example
of expert languages) or prohibitively complex to compute (e.g., syntactic networks
or historical lexico-semantic networks). In this way, LNS addresses two different
communities and their tasks: visualizing collocation statistics in computational (his-
torical) semantics for humanities scholars and inducing complex lexical networks
for experts in network theory. From a linguistic point of view, a network-related
variant of the contextual similarity hypothesis of Miller and Charles (1991) can be
seen to underly this approach: since the similarities of contextual representations
of words do not form equivalence classes when analyzed in a recursive manner, a
lexical network is a natural candidate to represent the graph of these (syntagmatic or
paradigmatic) relations. Note also that other than in the case of simple co-occurrence
networks, we deal with weighted collocation networks where the words’ edges are
weighted by some collocation measure that assesses frequencies of co-occurrences
in relation to some expected value (Evert 2008).

Generally speaking, to get from an input text to its quantitative analysis is a com-
plex task – especially for humanities scholars: starting from model selection over
linguistic preprocessing, network induction and edge weighting it traverses a huge
parameter space. The motivation of developing LNS is to enable researchers from
various disciplines to study their texts from a network perspective by bypassing
this complexity. LNS supports the latter workflow and guides the user throughout
the process of network induction. Once networks have been extracted the user can
query and browse the resulting network data. This is especially needed for human-
ities scholars, who ultimately aim at qualitative network analyses instead of quanti-
tative ones. However, since LNS stores network data in GraphML, it can be used to
start quantitative analyses too.

In this paper, we outline the workflow served by LNS, its underlying software
architecture and technical implementation. We also outline the parameter space that
is currently traversable by LNS. Finally, we conclude with a prospect on future
work.
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Fig. 1 Screenshot of the Linguistic Networks WebApp showing query results of “Dorian”
based on Oscar Wilde’s novel “Dorian Gray”

Input text

Model Selection Preprocessing Graph Induction Display &
Interaction

Fig. 2 The workflow of LN

2 On the Parameter Space of LN

Fig. 1 shows the interface of LNS. A sidebar to the left allows for selecting the
working language (currently, English, German or Latin – see Fig. 4), the corpus un-
derlying the analysis and the parameter setting of network induction. Query results
(which serve to traverse the output networks) are shown in a tab panel. The sidebar
holds additional panels depending on the active view in the center. It allows, for ex-
ample, filtering the network by the number of nodes to be displayed, the degree of
collocation (as a lower bound) and for projecting onto selected parts of speech. In
this way, the results of different lexical networks can be compared with each other
according to multiple settings and views.

As illustrated in Fig. 2, LNS manifests a typical NLP pipeline. Note that eval-
uation and quantitative network analysis occur outside of LNS (e.g., by means of
software like Gephi, see Bastian et al. 2009). From the user’s perspective the initial
step is to select an input text (corpus) together with the collocation model that under-
lies edge generation. Model selection (of a collocation measure and its parameters –
see below) determines the number of edges and the way they are weighted. Further,
by specifying the type of constituents (wordforms or lexemes) of the nodes to be
generated, the user determines indirectly the order (i.e., number of nodes) of the net-
work. By sending the text input together with the selected collocation model to the
server, text preprocessing and graph induction are triggered. To this end, the texts are
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automatically preprocessed and converted into TEI P52 (TEI Consortium 2007) – see
Mehler et al. (2015) for the most current description of this procedure by example of
Latin texts. The meaning of the preprocessing step is twofold: Firstly, by extracting
the logical document structure of a text and the sequence of its tokens, the counting
frames and the units of collocation statistics are determined (i.e., the entities that
generate the nodes). Secondly, by lemmatizing and PoS-tagging the tokens, infor-
mation is gained that allows for applying filters during network induction and sub-
sequent query processes. As soon as the computation is completed, the input texts
and the derived networks are accessible for querying. The user can browse through
different views of the data, query for specific nodes of selected types and filter their
contexts. Currently, the system includes views of the preprocessed text using the TEI
format, a graph view of the resulting network and two additional views (distribution
and word cloud) of the frequency distribution of the text’s lexical constituents. Once
the user has selected a sub-graph of interest, she can download it as a GraphML file
for further analysis. GraphML (GraphML Project Group 2014) is a standard format
of machine-based graph representation. It can be imported by Gephi (Bastian et al.
2009) to perform quantitative analyses of the networks generated by LNS. In this
way, LNS bridges between the original documents and state-of-the-art software for
network analysis using the standard approach of collocation statistics – without the
need of any programming expertise on the side of the user. There are currently only
few web-based systems like LN that make lexical networks in this way accessible to
the research community. A related example is ConText (Diesner 2014) which differs
from LN because of its more general network perspective and its integration of ML
components, while LN focuses more on linguistic networks of modern as well as
ancient languages.

w2 ¬w2

w1 O11 O12 = R1

¬w1 O21 O22 = R2

= C1 C2 = N

(a) contigency matrix

w2 ¬w2

w1 E11 = R1C1
N

E12 = R1C2
N

¬w1 E21 = R2C1
N

E22 = R2C2
N

(b) expected values

Fig. 3 Computation of the contingency matrix (left) and the matrix of expected values (right)
(Evert 2008)

The data model of LNS is general enough to support the level of texts, sentences
and tokens so that networks on these three levels can, in principle, be computed and
visualized. However, only lexical networks are currently supported – on the level
of lemmata and wordforms. The network induction supports a set of collocation

2 TEI is a de facto standard for text representation.
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measures to compute weighted edges. Parameterizing such a measure for network
induction includes the specification of its counting frame. This frame can be of type
textual (where sentences are selected as part of the logical document structure) or of
type surface structural (if skip-bigrams have to be explored). In the latter case, the
user needs to specify the size of the frame in terms of the number of left and right
neighbors around focal nodes. Intuitively, the degree of collocation of two words w1,
w2 should be rated higher if they co-occur more often in instances of the selected
frame than expected by chance. This intuition is reflected by collocation measures
(Evert 2008). The (absolute) number of observations of co-occurrences of pairs of
words is recorded in a contingency matrix (see figure 3a). In combination with the
respective expected values (see figure 3b) and the total number of co-occurrence
frames, the edges can be weighted. Table 2 lists the collocation measures that are
currently supported by LNS whose implementation allows for extensions of this list.
See Church and Hanks (1990), Evert (2008), Heyer et al. (2006), Pecina (2010) and
Rieger (1989) for more information about these and related measures.

The parameter space being implemented by LNS is summarized in Fig. 4. Using
large PoS tagsets (e.g., the Brown tagset in the case of English or (a subset of) the
STTS in the case of German), a huge set of alternative views can be laid over the
same output network. In this way, purely nominal networks or networks of personal
names can be computed as well as networks including only adjectives, adverbs,
nouns or verbs, or networks that focus on function words or pronouns. This gives ac-
cess to text representation models as recently used in text classification (Stamatatos
2011), network motif detection (Biemann et al. 2015) or in syntactic network anal-
ysis (Chen and Liu 2015). Note that as shown in Fig. 4, the choice of the type of
lexical network (wordform or lemma) does not restrict the subsequent query pro-
cess. That is, for example, lemma networks can be queried by means of wordforms.
This query component qualifies LNS for its usage in historical semantics, which, so
far, is restricted to concordances in the form of Key Word in Context-lists.

3 The Software Architecture of LN

LNS’ architecture is mainly driven by the requirement to combine generic, exten-
sible representations with efficient means to browse and query them. The aim is to
find a balance between performance and generality: (over-)optimization to a specific
task likely restricts extensibility. On the other hand, keeping every aspect generic in-
duces additional, time-consuming overhead. In this section, we outline the modular
approach chosen to implement LNS in the light of this trade-off.

Fig. 5 depicts LNS’ architecture: boxes represent modules implementing spe-
cific functionalities. Breaking down the overall architecture into modules helps to
abstract from implementation details and, if necessary, to replace a given solution
by another one. The LN Data Core provides means to specify classes of objects,
their attributes and interrelations as well as mechanisms to build and query them.
This module serves as a layer that abstracts from the storage engine representing
and holding the data. Generally speaking, by allowing the design of one module to
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Table 2 List of collocation measures implemented in Linguistic Networks

CHI Square ∑i j
(Oi j−Ei j)

2

Ei j

Binomial

⎧
⎪⎪⎨

⎪⎪⎩

0 if O11+1
E11

≤ 2.5
E11−O11∗log(E11)+log(O11!)

log(N) if 2.5 < O11+1
E11

≤ 10
O11∗(log(O11)−log(E11)−1)

log(N)
if O11+1

E11
> 10

Local Mutual Information O11 ∗ log2(
O11
E11

)

Log Likelihood ∑i j Oi j log2(
Oi j
Ei j

)

Log Odds Ratio log2(
(O11+

1
2 )∗(O22+

1
2 )

(O12+
1
2 )∗(O21+

1
2 )
)

Mutual Information log2(
OR

11
E11

)

Mutual Information R log2(
O11
E11

)

Rieger’s α (a correlation coefficient operating on certain observed and expected values)

Simple Log Likelihood 2(O11 · log2

(
O11
E11

)
− (O11 −E11))

T Score O11−E11√
O11

Z Score O11−E11√
E11

influence the one of other modules makes it difficult to replace and extend them.
Therefore, we use this abstraction layer.

Entities, attributes and relations are specified in terms of Contracts. Builders,
Queries and Cursors are built on top of contract specifications. The LN Data Core is
implemented in a generic manner so that storing and retrieving data is kept abstract.
A further component is given by Data formats. Clients connecting to the LN Server
can differ by required data formats: the LN WebApp relies on JSON, a format which
is common to JavaScript-based web applications. However, when acting as a web
service, XML formats are used instead. To keep the way data is returned to clients
flexible, the LN Data Core provides the Format API. It allows for rendering data
objects into different formats.

The current release of LNS uses Neo4j (Neo Technology 2014) a freely avail-
able3 graph database known for its performance and robustness. All aspects of data
modeling and retrieval left abstract in LN Data Core are implemented in the LN
Data Neo module. This module contains extensions to pick search strategies (index
vs. graph-based) for answering queries. Though Neo4j offers a query language for
graph databases called Cypher, we do not use it because it collides with the require-
ment to keep a generic design.

3 Neo4j is dual-licensed as GPLv3 and AGPLv3 as well as commercial.
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Corpus Language Co-Occurrence Width Parameter Measure

Binomial

χ2

Local Mutual
Information

English Textual Log-
Likelihood

Log-Odd’s
Ratio

German Surface

Left

[0, 7]

Right

[0, 7]

Sentence
Boundaries

adhere
ignore

Mutual
Information

Mutual
InformationR

Latin Rieger’s α

Simple Log-
Likelihood

T-Score

Z-Score

1 3 (+1 8 × 8 2) 11

Occurrence PoS Query Term Search Entity Network

Wordform Wordform

[min,max] {N, V, P, . . . } ?

Lemma Lemma

2 (249 − 1) 1 1 1

× × × × ×

××××=

×

4.792,956 × 10+18

Fig. 4 Overview of the parameter space of LNS

The number of networks to be hosted by LNS should not be limited by the ca-
pacity of a single DB instance. Even if a DB can hold dozens of large networks, it
complicates maintenance and backup. Therefore, we store networks derived from
corpora in separate Neo4j DBs. That is, LNS works on multiple databases. In cases
like this, it is common practice to use connection pools. Since opening and closing a
DB takes time, these operations should be avoided whenever possible. A connection
pool offers a solution for this task. If the server receives a request for a new corpus,
it checks whether the pool contains a fitting connection. If available, as in the case of
frequently queried databases, this connection is used. Otherwise, a new connection
is created and added to the pool. Since the number of connections kept in a pool is
limited by server memory, connections which have not been used for a longer time
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LN WebApp

ExtJS D3

eHumanities Desktop

CorpusManager eHuBase

LN Server

Requests CorpusManagement Authentication

LN Data Neo

Pattern Strategy

Data TEI

TEIDocument CollocationAlgo

NeoConnection Pool

MasterDB Corpora

LN Console

LN Data Core

DataObject Builder Query/Cursor

Contract Format Transaction

Fig. 5 Outline of the software architecture of LNS

are closed. Note that Neo4j does not provide mechanisms for connection pooling so
that we developed the NeoConnection Pool module for this task.

The Data TEI module completes the server components for data modeling and
representation. It provides all means to import, represent and browse TEI P5 doc-
uments. It also provides functions for inducing collocation networks including im-
plementations of the collocation measures of Table 2.

The LN Server is implemented as a RESTfull Web Service based on Jersey4. Its
primary function is to receive requests from clients, to use the underlying data mod-
ules and to return output according to the requested formats. LNS distinguishes
between public and private corpora. This requires a session management by the
LN Server: who is currently logged in and which corpora are visible to whom? LNS
does not maintain its own user database but uses the one of the eHumanities Desktop
(Gleim et al. 2012) for authentication. Thus, any user of the eHumanities Desktop
granted access to LNS, can log in, upload texts and create networks. In addition,
the eHumanities Desktop allows for directly sending documents from its Corpus
Manager to LNS. The Linguistic Networks web application (LN WebApp) is imple-
mented based on the ExtJS (Sencha 2014) JavaScript Framework and D3 (Bostock
2014) for visualization. Finally, the LN Console is a maintenance tool which can be
used, amongst others, to directly upload large corpora into the system.

Having all modules together, how is a document imported into the system and
what steps are involved to generate a network thereof? Typically, users login via
the LN WebApp. If authentication is successful, the user can upload documents as
plain text. Then, the source language, counting frame and collocation measure are
selected. Users can additionally decide to make the generated networks visible for

4 https://jersey.java.net

https://jersey.java.net
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other users. By activating the upload button, the computation is triggered and run
asynchronously in the background. On the server, the uploaded texts are prepro-
cessed and converted into TEI. The TEI document is parsed by the Data TEI mod-
ule and imported into a newly created Neo4j Graph database via LN Data Neo and
LN Data Core. Next, the network structure is extracted by the Data TEI module and
inserted into a new graph database. Finally, access permissions and meta data are
stored in the MasterDB to make the networks ready for qualitative analysis.

4 Summary

We presented the LNS web application. It enables users to upload texts, derive lin-
guistic networks thereof and explore their visualizations. LNS focuses on offering
views on linguistic networks derived per input text (corpus). Currently, the sys-
tem does not support automatic comparisons of search results and networks. The
former are still better done with the help of the Historical Semantics Corpus Man-
agement System (www.comphistsem.org) of the eHumanities Desktop. Thus,
future work focuses on integrating graph similarity measures for labeled graphs
(Schenker et al. 2005). Sentence and text networks are a second area of extension
as are visualizations of multilevel linguistic networks. A special task comes from
historical semantics that requires editable networks for eliminating preprocessing
errors, clustering semantically related units and, more generally, for curating the
edition of the networks. This requirement shows that whatever is provided by a tool
like LNS from the area of computational humanities, it has to allow for manual cor-
rections and additions by humanities scholars who expect error rates currently out
of reach for automatic text analysis.

Acknowledgements. LNS was developed in a research project funded by the German Fed-
eral Ministry of Education (BMBF). The first releases of LNS have been implemented by
Markus Lux, Christian Menßen and Uli Waltinger based on MySQL. The second release
based on Neo4j has been implemented by Christian Peil, Benjamin Bronder and Pavel Bal-
azki. Recent additions have been made by members of the Text Technology Lab at Frankfurt
University.
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