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Preface

The 21st International Workshop on Cellular Automata and Discrete Complex Systems,
AUTOMATA 2015, was held in Turku, Finland, during June 8–10, 2015. It was orga-
nized by the Department of Mathematics and Statistics of the University of Turku, and
the conference venue was the Educarium building of the university. The event was an
IFIP Working Conference and it hosted a meeting of the IFIP Working Group 1.5.

AUTOMATA 2015 continued an annual series of events established in 1995 as
a forum for the collaboration of researchers in the field of cellular automata and re-
lated discrete complex systems. Topics of interest include, for example, the following
aspects and features of such systems: dynamical, topological, ergodic, and algebraic
aspects, algorithmic and complexity issues, emergent properties, formal language pro-
cessing aspects, symbolic dynamics, models of parallelism and distributed systems,
timing schemes, phenomenological descriptions, scientific modeling and practical ap-
plications. The conference attracted a good number of submissions, which indicates a
continued interest in the topics.

There were four invited talks in the conference, and I wish to thank the speakers
Andreas Deutsch, Turlough Neary, Ville Salo, and Luke Schaeffer for accepting the
invitation and for their presentations. The invited contributions are included in this vol-
ume.

There were 33 submissions in the conference. Each submission was reviewed by
three Program Committee members. Based on the reviews and discussions the commit-
tee decided to accept 15 papers to be presented in the conference and to be included in
the proceedings. I would like to thank all authors for their contributions. The conference
program involved also short presentations of exploratory papers that are not included in
this book, and I wish to extend my thanks to the authors of the exploratory submissions.

I am indebted to the Program Committee and the additional reviewers for their help
in selecting the papers. I extend my thanks to the members of the Local Organizing
Committee. I am also grateful for the support by the Federation of Finnish Learned
Societies, Turku Centre for Computer Science, the University of Turku, and the City
of Turku. Finally, I acknowledge the excellent cooperation from the Lecture Notes in
Computer Science team of Springer for their help in producing this volume in time for
the conference.

March 2015 Jarkko Kari
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Cellular Automaton Models
for Collective Cell Behaviour

Andreas Deutsch(B)

Cente for Information Services and High Performance Computing,
Technische Universität Dresden, Dresden, Germany

andreas.deutsch@tu-dresden.de

1 Introduction

Biological organisms are complex systems characterized by collective behaviour
emerging out of the interaction of a large number of components (molecules and
cells). In complex systems, even if the basic and local interactions are perfectly
known, it is possible that the global (collective) behaviour can not be obviously
extrapolated from the individual properties. Collective dynamics of migrating
and interacting cell populations drive key processes in tissue formation and
maintenance under normal and diseased conditions. For revealing the principles
of tissue organization, it is fundamental to analyze the tissue-scale consequences
of intercellular interaction [11,22]. Only an understanding of the dynamics of
collective effects at the molecular and cellular scale allows answering biological
key questions such as: what enables ensembles of molecules to organize them-
selves into cells? How do ensembles of cells create tissues and whole organisms?
What is different in diseased tissues as malignant tumors? Mathematical models
for spatio-temporal pattern formation can contribute to answer these questions.
The first models of spatio-temporal pattern formation focused on the dynamics
of diffusible morphogen signals and have been formulated as partial differential
equations (e.g. [30]). In addition to diffusible molecular signals, the role of cells
in morphogenesis can not be neglected. Living cells possess migration strate-
gies that go beyond the merely random displacements of non-living molecules
(diffusion) [22]. More and more evidence exists about how the self-organization
of interacting and migrating cells contributes to the formation of order in a
developing organism. Thereby, both the particular type of cell interaction and
migration are crucial and suitable combinations allow for a wide range of pat-
terns. The question is: What are appropriate mathematical models for analyzing
organization principles of moving and interacting cells cells?

Cellular automata (CA), in particular lattice-gas cellular automata (LGCA)
can model the interplay of cells with themselves and their heterogeneous envi-
ronment [17]. These models describe interactions at a cell-based local scale. Cell-
based models (for a review see [2,20]) are required if one is attempting to extract
the organization principles of interacting cell systems down to length scales of
the order of a cell diameter to link the individual (microscopic) cell dynamics
with a particular collective (macroscopic) phenomenon.

c© IFIP International Federation for Information Processing 2015
J. Kari (Ed.): AUTOMATA 2015, LNCS 9099, pp. 1–10, 2015.
DOI: 10.1007/978-3-662-47221-7 1



2 A. Deutsch

2 Cellular Automata and Lattice-Gas Cellular Automata

Cellular automaton models are a spatio-temporal modelling formalism and have
been introduced by J. v. Neumann and S. Ulam in the 1950s as a model of
individual (self-)reproduction [12]. They consist of a regular spatial grid in which
each grid point (or site) can have a finite, typically small number of discrete
states. The next state of a site depends on the states in the neighboring sites
and a next-state function, which can be deterministic or stochastic. Cellular
automata provide simple models of self-organizing complex systems in which
collective behaviour can emerge out of an ensemble of many interacting “simple”
components - being it molecules, cells or organisms [15,16,41].

Here, we suggest lattice-gas cellular automata which can be viewed as mod-
els for collective behaviour emerging from microscopic migration and interaction
processes. LGCA can be used to model the interplay of cells with each other and
with their heterogeneous environment by describing interactions at a cell-based
(microscopic) scale and facilitating both efficient simulation and theoretical anal-
ysis of emergent, tissue-scale (macroscopic) parameters [17]. Historically, LGCA
have been introduced as models of gas and fluid flows, through implementing
simplistic local collisions. Often, the overall macroscopic behaviour of the system
can be approximated very well if averages over larger spatial scales are consid-
ered [23,40]. In a biological context, LGCA particles are interpreted as cells and
cell migration is modeled by updating cell positions at each time step based on
local cell interactions. Local cell interactions are described by problem-specific
LGCA transition rules. These transition rules are different from the rules that
have been used for modelling fluid flows. LGCA transition rules in models of
cell migration, in general, do not assume energy or momentum conservation.
Biological LGCA models can be classified as stochastic cellular automata with
time-discrete, synchronous updates consisting of stochastic interaction and sub-
sequent deterministic migration steps. Implementing movement of individuals
in traditional synchronous-update cellular automaton models is not straightfor-
ward, as one site in a lattice can typically only contain one individual, and conse-
quently movement of individuals can cause collisions when two individuals want
to move to the same empty site. In a lattice-gas model this problem is avoided by
having separate channels for each direction of movement and imposing an exclu-
sion principle. In addition, rest channels can be added for non-moving cells. The
deterministic movement steps are alternated with stochastic interaction steps, in
which processes affecting cell number, e.g., birth and death can be implemented
(Fig. 1).

A major advantage of LGCA models compared to other cell-based models
for interacting cell systems, such as interacting particle systems, e.g. [29,39],
asynchronous cellular automata, e.g. [4–6], further agent-based models [24] or
systems of stochastic differential equations [37], is their computational efficiency.
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Fig. 1. Interaction and migration in a “biological LGCA”: Filled circles denote occu-
pied cells and open circles empty cells. a) part of the lattice before interaction, intera-
tion neighborhood is shown. b) after interaction: the configuration of the cells at several
nodes has changed. c) after migration: each cell has moved to the nearest neighbor cor-
responding to its orientation indicated by arrows (the lattice outside the part shown is
assumed to be empty, i.e. there is no migration of cells from outside).

3 LGCA Modelling and Analysis

The LGCA idea has led to models of morphogenetic motion describing migration
of individual cells during spatio-temporal pattern formation in microorganisms,
cell cultures and developing organisms [7,17,35]1. The essential modelling idea
is the definition of appropriate transition probabilities characterizing specific
cell interactions. In particular, morphogenetic cell motion may be influenced by
the interaction of cells with components of their immediate local surrounding
through haptotaxis or differential adhesion, interaction with the basal lamina
and the extracellular matrix, contact guidance, contact inhibition, and processes
that involve cellular responses to signals that are propagated over larger distances
(e.g. chemotaxis). LGCA models have also been used to study emergent collective
behaviour in cell swarming [14], angiogenesis [32] and Turing pattern formation
[19] (Fig. 2). Moreover, there are methods for parameter estimation in LGCA
models [31].

Deciphering the principles of collective cell behaviour is especially important
for a better understanding of tumour growth and invasion and might allow to
develop new therapy concepts. Besides more and more molecular investigations,
mathematical modelling of selected aspects of tumour growth has become attrac-
tive within the last years (e.g. [1,34,36]). Cellular automaton models have been

1 A simulation platform containing various LGCA models with biological motivations
can be found at www.biomodelling.info.
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Fig. 2. Spatio-temporal pattern formation in simulations (from a random initial cell
population) for a) LGCA model of adhesive interaction, b) LGCA model of alignment
interaction (see [14] and [17] for details). Colours indicate different cell numbers (a)
and different cell directions (b).

suggested for various aspects of tumour growth [34]. In particular, simulations
and analysis of appropriate LGCA models permit to characterize different growth
and invasion scenarios [9,18,28] (Fig. 3).

For a number of LGCA models a corresponding lattice-Boltzmann approxi-
mation can be adopted to analyze the emergence of spatio-temporal patterns [17].
The idea of the lattice-Boltzmann (mean-field) approximation is the reduction
of the description of a system with many interacting individuals (many degrees
of freedom), such as the CA, to the level of an effective, average description for
the behaviour of a single individual (low degree of freedom). The application
of the mean-field approximation allows for the transition from a microscopic to
a macroscopic description of the CA dynamics. The central step is the deriva-
tion of a spatio-temporal mean-field approximation of the stochastic automaton
process. Disregarding the spatial aspect completely leadd to qualitatively wrong
model predictions (Fig. 4). Based on a spatio-temporal mean-field description
of the microscopic process, one can often calculate a corresponding macroscopic
partial differential equation by means of a Chapman-Enskog expansion tech-
nique [16]. For example, from the mean-field PDE for a proliferation process one
can derive important macroscopic observables of biological growth, such as total
number of particles, per capita growth rate and invasion speed, and reveal their
dependence on the microscopic growth and migration parameters [28].
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Fig. 3. Simulation of the spatio-temporal development of a LGCA growth model start-
ing from a localized initial cell population in the centre of the lattice. The three pictures
show simulation snapshots for subsequent time steps. Contour plot where colors indi-
cate the cell density (from [27] with permission).
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Fig. 4. LGCA growth model: evolution of the per capita growth rate as a func-
tion of the total population density. Comparison of simulations, a spatial mean-field
approximation (fit) and a non-spatial mean-field approximation. The non-spatial mean-
field approximation completely fails to describe the LGCA dynamics (from [27] with
permission).

Typical examples for observables to study emergent collective behaviour are
cell density patterns and related quantities such as the dynamics of moving cell
fronts and cluster size distributions [8,26,32]. Cell density patterns can often
be assessed experimentally and thus provide a means to relate LGCA model
predictions to experimental observation. However, there are further experimen-
tal observables - particularly the trajectories of individual, selected cells - that
characterize emergent collective behaviour but which are not directly deducible
from cell density patterns. Classical LGCA, however, do not distinguish indi-
vidual cells. We have developed an approach to overcome this limitation and
which allows to translate classical LGCA into models where individual cells can
be tracked (Fig. 5). This is achieved by modifying the state space and the tran-
sition rules such that a cell identity can be transferred [33].

Based on these individual-based LGCA the establishment of a connection
between the LGCA transition rules and a stochastic differential equation (SDE)
description for the trajectories of single cells becomes possible. Comparable
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Fig. 5. LGCA simulations of single cell migration in a heterogeneous environment:
Trajectories of selected labeled cells are shown in red. The positions of the labeled cells
for t = 0 and t = 25 are marked by blue arrows. Simulation of the LGCA model for
different sensitivities to the environment β = 0 (A) and β = 0.5 (B) (from [33] with
permission).

approaches to derive equations for tagged particles in cellular automaton models
[3,25] are only applicable to equilibrium systems, i.e. where the cellular environ-
ment is in a steady state. Our approach allows to tackle LGCA models for
non-equilibrium systems, i.e. the cellular environment can evolve over time [33].
For fairly general, cell number conserving LGCA transition rules, we have shown
that the trajectories of individual cells can be described by an SDE whose param-
eters can be calculated directly from the LGCA transition rules. Cell number
conserving LGCA transition rules are applicable when cell migration is on a
much faster timescale than cell birth and death. The SDE description is derived
in the limit when lattice spacing and time step length tend to zero under diffu-
sive scaling. We have shown, for a variety of concrete models, that there is good
agreement between LGCA simulations and the SDE approximation (Fig. 6).
Individual-based LGCA facilitate individual cell trajectory analysis while still
allowing efficient simulations, thus opening up novel possibilities to investigate
LGCA behaviour and to compare model and experiment at the individual cell
level. Notice that the SDE approximation can be extended to other cell-based
models such as interacting particle systems and general stochastic CA.

4 Outlook

The mean-field (Boltzmann) equation characterizing a given LGCA model arises
under the assumption that the probability of finding two cells at specific positions
is given by the product of corresponding single particle distribution functions, i.e.
any correlations are neglected and distributions fully factorize. It is a challenge
to include two-, three-, etc. particle distribution functions which will allow a
systematic study of correlation effects. If pair correlations are taken into account,
but third and higher order correlations are neglected, a generalized Boltzmann
equation for the single particle distribution function is obtained, coupled to the
so-called ring equation describing the evolution of the pair correlation function.
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Fig. 6. Symmetric random walk in the low density regime. Simulations were carried
out for a single cell on a two-dimensional square lattice lattice. Distribution f(x) of
the cell position of a single cell at time t = 10. Time development of the mean square
displacement of an individual cell. Simulation data (symbols) and corresponding solu-
tions (lines) of stochastic differential equation for different numbers of rest channels
are shown. All solutions were obtained for deterministic initial data. The simulation
data were averaged over 500 independent simulations for each case. LGCA simulations
and the corresponding SDE approximations show good agreement for the mean square
displacement (from [33] with permission).

For the adhesive (density-dependent) cellular automaton the ring equation has
been successfully evaluated [13]. It is a challenge to determine corresponding
equations for other cellular automata. This analysis could particularly improve
our understanding of short and long time behaviour.

The need for discrete models, especially cellular automata, goes beyond the
analysis of collective behaviour in interacting cell populations. A discrete cell-
oriented approach is also required if the dynamic system behaviour depends on
fluctuations at the individual cell level. This is, for example, the case at the front
of invading tumours and crucial for the formation of metastases. Experimental
findings of Bru et al. [10] indicate that many tumours share the same surface
dynamics. This finding motivated the analysis of the tumour interface by means
of a fractal scaling analysis [21].

In order to represent more detail at the individual cell level, multiscale models
have been developed. For example, the user-friendly simulation platform Mor-
pheus integrates cell-based models, ordinary differential equations for subcellular
dynamics and reaction-diffusion systems for the extracellular environment [38].
While there exists a rich theory on ordinary and partial differential equations,
the theory for cell-based models, in particular cellular automata is comparably
young. Based on the variability in the local dynamics, we demonstrated that the
“interaction-modul oriented” cellular automaton modelling provides an intuitive
and powerful approach to capture essential aspects of collective cellular dynam-
ics [17]. In conclusion, there are both challenging future perspectives with regards
to interesting biological applications of the lattice-gas cellular automaton idea
and possible refinements of analytical tools for the investigation of lattice-gas
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cellular automata. Hopefully, the potential of cellular automata for modelling
essential aspects of biological systems will be further exploited in the future.

Acknowledgments. AD acknowledges the support of the German Research Foun-
dation (DFG) within the Cluster of Excellence “Center for Advancing Electronics
Dresden” and thanks H. Hatzikirou, C. Mente, R. Müller and J. Starruss (Dresden)
for comments and discussions.
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8. Böttger, K., Hatzikirou, H., Chauviere, A., Deutsch, A.: Investigation of the migra-
tion/proliferation dichotomy and its impact on avascular glioma invasion. Math.
Model. Nat. Phenom. 7(1), 105–135 (2012)
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Abstract. In this mini-survey we discuss time complexity and program
size results for universal Turing machines, tag systems, cellular automata,
and other simple models of computation. We discuss results that show
that many of the simplest known models of computation including the
smallest known universal Turing machines and the elementary cellular
automaton Rule 110 are efficient simulators of Turing machines. We also
recall a recent result where the halting problem for tag systems with only
2 symbols (the minimum possible) is proved undecidable. This result
has already yielded applications including a significant improvement on
previous undecidability bounds for the Post correspondence problem and
the matrix mortality problem.

1 Introduction

This brief survey is concerned with time complexity and program size results
for universal Turing machines, tag systems, cellular automata and other simple
models of computation. We pay particular attention to tag systems as they are
at the center of many of the results we discuss. Here we provide only a brief
glimpse at the above mentioned topics and we direct the reader who wishes to
learn more to other related surveys [17,27].

2 Program Size of Small Universal Machines

In 1956 Shannon [35] considered the question of finding the smallest possible uni-
versal Turing machine, where size is the number of states and symbols. Figure 1
summarises the state of the art for the smallest known standard, weakly and
semi-weakly universal Turing machines. Here we say a machine is standard if it
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: universal, direct simulation, O(t2), [23]
�� : universal, 2-tag simulation, O(t4 log2 t), [1,14,32]
� : universal, bi-tag simulation, O(t6), [26]
�� : semi-weakly universal, direct simulation, O(t2), [38]
� : semi-weakly universal, cyclic-tag simulation, O(t4 log2 t), [41]
� : weakly universal, Rule 110 simulation, O(t4 log2 t), [25]
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Fig. 1. State-symbol plot of small universal Turing machines. The type of simulation is
given for each group of machines. For example, each machine plotted as a hollow circle
simulates 2-tag systems, a technique introduced by Minsky [20]. The technique of Rule
110 simulation was devised by Cook [4] and later improved upon in [26] to give the
weakly universal machines plotted as solid squares. Direct simulation indicates that
a machine was proved universal by simulating Turing machines directly rather than
via some other system. Simulation time overheads are given in terms of simulating a
single-tape deterministic Turing machine that runs in time t.

is deterministic and has a single-tape. Semi-weakly universal machines generalise
the standard model by allowing an infinitely repeated word on one side of the
input, and the (standard) infinitely repeated blank symbol on the other. Weakly
universal machines are a further generalisation on the standard model as they
allow an infinitely repeated word to the left of the input, and another infinitely
repeated word to the right. It is often the case that generalising the model allows
us to find smaller universal programs. This notion is borne out when we compare
the standard, weak and semi-weak machines in Figure 1.

In Figure 1 the machines with the state-symbol pairs (2, 18), (3, 9), (4, 6),
(5, 5), (6, 4), (9, 3), and (15, 2) are the smallest known standard machines and
these machines define the universal curve (dashed line). Figure 1 also gives a
non-universal curve. This curve is a lower bound that gives the state-symbol
pairs for which it is known that the halting problem is decidable [11,13,28,
29]. It is currently unknown whether all of the lower bounds in Figure 1 hold
for weak and semi-weak machines. For example, the non-universality results of
Pavlotskaya [28,29] were proven under the assumption that the (standard) blank
symbol is infinitely repeated to the left and right of the input.
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3 Time Efficiency of Small Universal Machines

Cocke and Minsky [3] proved 2-tag systems universal via an exponentially slow
simulation of Turing machines. So for many years the smallest known uni-
versal Turing machines were also exponentially slow. However, following the
introduction of a new efficient 2-tag system algorithm for simulating Turing
machines [40], the smallest known universal machines were found to be efficient
simulators of Turing machines. To be more exact, given a single tape Turing
machine M that runs in time t the small machines given by hollow circles in
Figure 1 simulate M in time O(t8 log4 t) (this overhead was later improved [21]
to O(t4 log2 t)). Another consequence of this result is that many other sys-
tems [10,12,15,16,33,34,36] that simulate 2-tag systems, either directly or via
a chain of simulations, are polynomial (instead of exponential) time simulators
of Turing machines.

Rule 110 was proved universal by Matthew Cook via an impressive and intri-
cate simulation of cyclic tag systems, the result is described in [39] and a full
proof is given in [4]. Unfortunately, cyclic tag systems simulated Turing machines
via Cocke and Minsky’s exponentially slow 2-tag algorithm and so Rule 110 and
the small weakly universal machines mentioned earlier were exponentially slow
simulator of Turing machines. However, in [22] it was shown that cyclic tag sys-
tems simulate Turing machines in polynomial time. As a result, the following
problem is now P-complete for Rule 110: Given a number t in unary, an initial
configuration of Rule 110 and a cell ci, predict the state of ci after t timesteps.
Rule 110 is the simplest (one-dimensional, nearest neighbour) cellular automaton
that has been shown to have a P-complete prediction problem.

4 Universality of Binary Tag Systems

Tag systems are a type of rewriting system that use a very simple form of rule.
A tag system acts on a dataword, which is a string of symbols taken from a finite
alphabet Σ. There is a fixed set of rules R : Σ → Σ∗ and a deletion number
β ∈ N. In a single timestep, the leftmost symbol σj of the dataword is read,
if there is a rule σj → αj then the string αj is appended to the right of the
dataword and the leftmost β symbols are deleted. As an example we give the
first 4 steps of Post’s [31] binary tag system with deletion number 3 and the
rules 0 → 00 and 1 → 1101 on the input 0101110.

0101110 � 111000 � 0001101 � 110100 � 1001101 � · · ·

A tag system computation halts if its dataword is shorter than its deletion num-
ber. Surprisingly, the halting problem for the simple tag system given above
(which Post discovered in the 1920s) remains open to this day [6]. Another
remarkably simple tag system with an open halting problem was found by De
Mol [5] when she reduced the well known Collatz problem to the halting problem
for a tag system with only 3 rules and deletion number 2.
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Tag systems were introduced by Post [30,31] and proved universal by Min-
sky [19]. Soon after this Cocke and Minksy [3] proved 2-tag systems (tag sys-
tems with deletion number 2) universal. As mentioned earlier, 2-tag systems
have been used to prove universality for many of the smallest known univer-
sal Turing machines [1,14,20,32] and are central to many other universality
results [10,12,15,16,33,34,36]. Given that tag systems have been so useful in
the search for new simple universal systems, it is surprising that there have been
no attempts to simplify tag systems since the 1960s. All known universal tag sys-
tems [3,4,37] have a large number of symbols and thus a large number of rules.
Recently [24] it was shown that tag systems with only 2 symbols (the minimum
possible) are universal by showing that the simulate cyclic tag systems. Applica-
tions have already been found for this result. The undecidable halting problem
for binary tag systems reduces to the Post correspondence problem for 5 pairs
of words. The previous bound for undecidability in this problem, which is due to
Matiyasevich and Sénizergues [18], was 7 pairs. Following this new result, only
the cases for 3 and 4 pairs of words remain open, as the problem is known to be
decidable for 2 pairs [7]. Applying the reductions of Halava and Harju [8], and
Cassaigne and Karhumäki [2] to the Post correspondence problem for 5 pairs
of words shows that the matrix mortality problem is undecidable for sets with
six 3 × 3 matrices and for sets with two 18 × 18 matrices. The previous bounds
for the undecidability in this problem was seven 3 × 3 matrices and two 21 × 21
matrices [9].

Looking to the future, we expect that binary tag systems will have an impor-
tant role in proving further undecidability results and in the search for new
simple models of computation.
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Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol.
3850, pp. 356–362. Springer, Heidelberg (2006)

34. Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing
Machines, In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers: Proceed-
ing of a DIMACS Workshop, vol. 2055 of DIMACS, pp. 75–119. AMS, Princeton
University (1996)

35. Shannon, C.E.: A universal Turing machine with two internal states. Automata
Studies, Annals of Mathematics Studies 34, 157–165 (1956)

36. Siegelmann, H.T., Margenstern, M.: Nine switch-affine neurons suffice for Turing
universality. Neural Networks 12(4–5), 593–600 (1999)

37. Wang, H.: Tag systems and lag systems. Mathematical Annals 152(4), 65–74
(1963)

38. Watanabe, S.: 4-symbol 5-state universal Turing machine. Information Processing
Society of Japan Magazine 13(9), 588–592 (1972)

39. Wolfram, S.: A new kind of science. Wolfram Media Inc (2002)
40. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal

Turing machines. In: 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 439–446. IEEE, Berkeley, California, Oct. 2006

41. Woods, D., Neary, T.: Small semi-weakly universal Turing machines. Fundamenta
Informaticae 91(1), 179–195 (2009)



Groups and Monoids of Cellular Automata

Ville Salo(B)

Center for Mathematical Modeling, University of Chile, Santiago, Chile
vosalo@utu.fi

Abstract. We discuss groups and monoids defined by cellular automata
on full shifts, sofic shifts, minimal subshifts, countable subshifts and
coded and synchronized systems. Both purely group-theoretic proper-
ties and issues of decidability are considered.
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1 Motivation

1.1 From CA to Monoid Actions

Consider a system (X, f) with a (discrete) time-evolution rule f : X → X. The
set X is thought of as the set of all possible states of the system, and f tells
us how the system evolves as time progresses. If the system is currently in state
x ∈ X, it will be in state f(x) after one time step. Systems that fit this general
picture are studied in physics as models of the real world, in computer science
as models of computation, and in mathematics for their intrinsic interest. In the
world of cellular automata (CA), X is typically the set of bi-infinite sequences
over a finite alphabet, and f is a cellular automaton on this space.1

Questions we ask about such systems can be both dynamical and computa-
tional (or a combination of the two). When X has a topological or measurable
structure, often the motivating question on the side of dynamics is how ‘chaotic’
the system is. Trying to understand what is chaotic about a system leads to
the study of properties such as transitivity, mixing and entropy. The study of
what is not chaotic about it leads to the study of periodicity, almost periodic-
ity, equicontinuous factors and spectral theory. For cellular automata, a range
of different behaviors are known to be possible. Another common motivating
question on the side of both dynamics and computation is whether the system is
‘universal’. We wish to understand which other systems our system can simulate,
in one sense or another.

A particularly interesting case in all these considerations is when f is reversible,
that is, no information is lost when f is applied. Typically, we are interested in

The author was supported by FONDECYT Grant 3150552.
1 Later, we will instead fix f to be the left shift map on X, and see cellular automata

in another way.
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a strong, structural kind of reversibility where there is a concrete inverse time-
evolution rule g : X → X such that f ◦ g and g ◦ f are identity maps on X.
The importance of reversibility in physics is that the laws of nature seem to be
reversible, and thus it makes sense to make such an assumption on our models. In
computer science, reversible computation is an interesting programming paradigm
promising challenges for theoreticians, but also allows more energy-efficient com-
putation. In mathematics, reversibility often makes systems more malleable to the
development of theory.

Now, what happens if we have two rules? Suppose f : X → X and g : X → X
are two evolution rules on X, that is, we have two transformations on X which
we be applied in any order. This can model many situations. For example, we can
apply f and g at random, so that X has two ways to evolve at each time step,
and we want to understand what the limit behavior is likely to be. This is a very
simple example of a (discrete) random dynamical system. In parallel computing,
we can think of f and g as two computations that are happening in parallel,
and we need to understand their interaction to know the good or legal orders to
apply them in. In this case, the order in which the maps are applied might be
chosen by an adversary. The reversibility of a system with two evolution rules
can be defined as simply f and g being reversible: it automatically follows that
every finite composition of f and g is reversible, as one can apply the inverses
of f and g in the reverse order to undo their actions.2

Abstracting from this, in the not necessarily reversible case we obtain the
mathematical concept of a monoid action, where instead of a single function
on X, we have a countable discrete monoid M acting on X by functions. More
precisely, we associate to each m ∈ M a function φm : X → X, and write
m · x = φm(x) for short. We require that the obvious compatibility conditions
m · m′ · x = mm′ · x and 1 · x = x hold. The systems (X, f) with a single time-
evolution rule are modeled by setting M = N, and n · x = fn(x) for all n ∈ N.
The systems with two evolution rules are most generally modeled by setting M
to be the free monoid3 with two generators a, b and defining the action of M on
X by a · x = f(x) and b · x = g(x).

When the operations are reversible, we usually consider group actions instead,4

that is, we choose the monoid M to have multiplicative inverses (so that it is a
group). A group action should of course have the additional compatibility condi-
tion that the inverse g−1 of g ∈ G undoes the action of g on every element. This
is automatic: if a ∈ M and a−1 ∈ M is its inverse (that is, aa−1 = a−1a = 1),

2 Note that if f and g have been applied to x, the resulting state does not carry
information in which order, and how many times, f and g have been applied. We
can only reverse their action if we know in which order they have been applied.

3 This is just the set of all words over the alphabet {a, b} with concatenation as the
multiplication operation.

4 However, no-one forces us to: for example, from a reversible CA, we obtain both an
N-action and a Z-action. While these systems may look the same, their properties
may be different. For example, many N-actions of CA are expansive (that is, there are
positively expansive CA). A reversible CA cannot be expansive as an N-action, but
Z-actions by reversible CA can be expansive.
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then the action of a−1 ∈ M is automatically the inverse of the action a ∈ M by
the compatibility condition for the monoid action:

a · (a−1 · x) = aa−1 · x = 1 · x = x = a−1a · x = a−1 · (a · x).

Thus, the natural compatibility conditions for a group action are the same as for
a monoid action. If we have a single reversible time-evolution rule f , we obtain a
natural action of Z by the same formula as in the non-reversible case, but extending
to negative powers in the obvious way. In the case of two reversible actions, we
obtain an action of the free group on two generators (see Section 2), again by the
same formula. Considering the element 1 ∈ N or 1 ∈ Z, the same formula shows
that actions of N and Z are in one-to-one correspondence with systems with a time-
evolution rule, and ones with a reversible time-evolution rule, respectively.

For most of the notions for N-actions and Z-actions, such as expansivity,
transitivity, entropy and almost equicontinuity, there exist one or more corre-
sponding notions that apply more generally to monoid or group actions. For
example, one-dimensional expansivity for Z-actions is defined by the formula
∃ε > 0 : ∀x, y ∈ X : ∃n ∈ Z : d(fn(x), fn(y)) > ε. The formula defining expan-
sivity for a general monoid is obtained by replacing Z by the monoid and fn by
the action of n. Sometimes additional conditions are needed on the monoid for
the definition to work. For example, the entropy of a group action is measured
along a Følner sequence, and thus requires amenability.5

The generalization allows us to ask what the dynamics of a finite (or even
infinite) set of cellular automata looks like. We can choose a set of cellular
automata F , let them generate a free monoid or group, and investigate the
properties of the corresponding action. We can also fix the monoid to be M , and
ask what M -actions of cellular automata look like. For example, it is known that
the entropies of N-actions by cellular automata on one-dimensional full shifts are
precisely the class Π1 of positive real numbers [GZ12]. What is the corresponding
class for N

2-actions of cellular automata (given by two CA f and g satisfying
f ◦ g = g ◦ f)? For Z-actions?6

1.2 From Monoid Actions to the Endomorphism Monoid

Now, let us return to the simple systems (X,σ) with a single time-evolution
rule and suppose now that X is a compact Hausdorff space, and σ : X → X
is continuous. It turns out that there is a monoid that one can attach to any
such system: let End(X)7 be the set of all continuous functions f : X → X
such that σ ◦ f = f ◦ σ (as functions). Then End(X) becomes a monoid, called
the endomorphism monoid, under function composition. We define Aut(X), the
automorphism group, as the restriction of End(X) to the elements which are
5 Sofic entropy applies more generally to sofic groups.[Bow10]
6 The entropies of Z-actions are just the entropies of reversible cellular automata.

Characterizing the set of entropies in this case (on full shifts) seems to be essentially
harder than in the non-reversible case.

7 We omit σ from the notation End(X) since we consider it an intrinsic part of X.
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bijective. From the assumption that X is compact and Hausdorff, it follows that
every bijective continuous function on X has a continuous inverse. Since the
inverse is easily seen to also commute with σ, Aut(X) is indeed a group under
function composition. The endomorphism monoid and the automorphism group
act on X in the obvious way: f · x = f(x).

This gives another way to see the set of cellular automata on a full shift:
Let X = SZ and let σ : X → X be the left shift map defined by σ(x)i = xi+1.
Then End(X) is precisely the set of cellular automata on X: the continuous
shift-commuting maps are precisely the ones admitting a spatially uniform local
rule. Thinking of cellular automata as elements of the endomorphism monoid,
and considering its action on X, we get a more global way to look at cellular
automata, as this point of view encompasses not only the possible dynamics
and computational power of individual cellular automata, but also their possible
interactions.

In this paper we take a very simplified approach to this interaction, by forget-
ting the action of End(X) on X. Thus, we are interested in the abstract struc-
ture of the monoid End(X), and in particular the group Aut(X). This omits
many interesting questions – for example, chaoticity or universality of a cellular
automaton or a family of cellular automata does not (to our knowledge) in any
way differentiate it among the other elements of End(X).8 All that matters is
which equalities fn ◦ fn−1 ◦ · · · ◦ f1 = gm ◦ gm−1 ◦ · · · ◦ g1 hold, when fi and gi

are cellular automata. In the case of groups, it only matters which compositions
of cellular automata are equal to the identity map on X.

While dynamical properties are out of the question, there are many things
we can ask: For any property of groups (of which there are many), we can ask if
Aut(X) has this property. Is it abelian? Is it amenable? For many group-theoretic
decidability questions (of which there are many) we can ask if the question is
decidable for Aut(X). Is the word problem decidable? What about the torsion
problem? We can also ask if there are alternative descriptions of Aut(X), or
connections with previously known groups.

It turns out that many interesting things can be said when X is a full shift
over an alphabet S of size at least 2: For example, every finite group can be
embedded in Aut(X), as can Z and free groups with a countable number of
generators [Hed69,BLR88]. On the other hand, this group is residually finite
and has a decidable word problem.

Fixing the action σ on SZ makes it natural to consider also subshifts X ⊂ SZ,
where we forbid a possibly infinite set of finite words from appearing in points
of SZ. There are uncountably many subshifts X, and to each we associate the
monoid End(X) and the group Aut(X), which act on X by function application.
On each subshift X, End(X) still corresponds to the usual cellular automata,

8 It is a very interesting question which properties have such algebraic definitions.
Equicontinuity corresponds to eventual periodicity and by Ryan’s theorem the shift
maps are precisely the center of Aut(X) [Rya72] and more generally of End(X)
[Sal14b] on mixing SFTs, but we don’t know much more.
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defined by a local rule; of course, it may be hard or impossible to tell which local
rules give a well-defined map on X.

It turns out that the known constructions on full shifts can be carried out in
many subshift X under some chaoticity assumptions on the action of the shift
map on X. In fact, we show in Section 3 that we can embed the automorphism
group of a full shift in many subshifts, such as all positive entropy sofic shifts
[BLR88]. In Section 6, we show that similar constructions, and much more, can
be carried out on the larger classes of synchronized and coded systems – in
particular on coded systems we obtain a large set of groups as automorphism
groups [FF96].

We also show examples of subshifts on which the automorphism group is
essentially smaller, and some ways to control this. In Section 5 we discuss some
interesting recent results in the case where either the word complexity grows
slowly or recurrence times are short. In particular, in the case of subshifts with
linear word complexity (for example, ones generated by primitive substitutions),
we seem to be very close to a full understanding of the set of automorphism
groups. In the case of countable sofic shifts, the author is working on the char-
acterization of the automorphism groups, and we give an example of such a
computation in Section 4.

Remark 1. Since, on the full shift, Ryan’s theorem guarantees that there is an
algebraic way to separate the shift map from the others (as it is the center of the
group), we have no need to carry it in the structure Aut(X) explicitly. However,
this is not true in general, as for example in minimal and coded systems we
can have large abelian automorphism groups (so the group is its own center).
In this case, it makes sense to think of σ as part of the algebraic structure, and
consider for example the group Aut(X)/〈σ〉 instead of Aut(X). This simplifies
many problems, as for example the characterization of these groups is known in
the linear word complexity case.

2 Definitions and Basic Results

We give basic definitions of dynamical systems. In particular for the case of
subshifts with Z-actions, some standard references are [Kůr03,LM95,Kit98].

By a dynamical (M -)system we mean a pair (X,M,φ) where X is a compact
metric zero-dimensional space, M is a countable discrete monoid, and M acts
on X by φm : X → X for m ∈ M , that is,

φ1(x) = x and ∀m,m′ ∈ M : φm·m′(x) = φm(φm′(x)).

Usually, the action is left implicit, and we write simply (X,M) for the system
and m · x for φm(x). Of particular interest to us are the subshifts (X, Zd, σ),
topologically closed sets X ⊂ SZ

d

which are invariant under the shifts σv defined
by σv(x)w = xw+v, where S is some finite alphabet. The subshift SZ

d

is called
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the full shift (over S). A subshift X ⊂ SZ
d

is a dynamical system with a Z
d-

action given by the shifts. If d is not specified, we by default study the one-
dimensional setting where d = 1, that is, the set SZ of two-way infinite sequences,
and explicitly state when studying the multidimensional case d > 1.

In the one-dimensional case,9 subshifts are characterized as sets of sequences
in a full shift where none of a (possibly infinity) set of forbidden words occurs.
Yet another characterization is the following: Let L ⊂ S∗ be a set of words over
S. We say L is extendable if ∀w ∈ L : ∃a, b ∈ S : awb ∈ L. The factor-closure of
L is the set F (L) = {u ∈ S∗ | ∃v, v′ ∈ S∗ : vuv′ ∈ L}. Subshifts are precisely
the sets of infinite words whose finite subwords belong to the factor-closure of a
fixed extendable language. Thus, if L is extendable, we define

L−1(L) = {x ∈ SZ | ∀a, b : x[a,b] ∈ F (L)}.

We write L(X) for the language of X, that is, the set of words occurring in X.
It is always factor closed, and L(L−1(L)) = F (L) and L−1(L(X)) = X for an
extendable language L and a subshift X. We write Ln(X) = L(X) ∩ Sn.

A sofic shift is a subshift that can be defined by a regular language of for-
bidden words, or alternatively as L−1(L) for an extendable regular language L.
An SFT is a subshift that can be defined by a finite set of forbidden words.

The endomorphism monoid of a subshift consists of the continuous functions
on X which commute with the translations:

End(X) = {f : X → X | f continuous and ∀v ∈ Z
k : σv ◦ f = f ◦ σv}.

We give End(X) the structure of a monoid by function composition (f, g) �→
f ◦ g. The monoid End(X) acts on X from the left by f · x = f(x), and thus
(X, End(X)) is itself a dynamical system. We are interested in the following
family of questions:

Question 1. What can we say about End(X) as a monoid and Aut(X) as a
group by looking at properties of X? What can we say about X by looking at
properties of End(X) (or Aut(X))?

We emphasize in particular the automorphism group, since it is often easier
to understand than the endomorphism monoid, and since there is more literature
on it. For any property of groups, and any subshift X, we can ask if Aut(X) has
the property.

Some notions we need, mainly for Z-subshifts, are the following: (X,σ) is
transitive if there exists a transitive point, that is, a point x ∈ X such that⋃

n∈Z
σn(x) = X. If every point is transitive, the system is minimal, equivalently,

it has no proper subsystems except the empty one.
In terms of words, a minimal subshift is one where every word occurs with

bounded gaps, that is, in every long enough word that occurs in a point of

9 And in more dimensions with an obvious generalization.
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the subshift. Transitivity means ∀u, v ∈ L(X) : ∃w : uwv ∈ L(X). A subshift
X ⊂ SZ is mixing if

∀u, v ∈ L(X) : ∃n : ∀m ≥ n : ∃w ∈ Lm(X) : uwv ∈ L(X).

The entropy of a subshift X is limn→∞
log |Ln(X)|

n .

2.1 Properties and Examples of Groups

For a group G, we can ask which kind of subshifts (if any) can have it as an
automorphism group, or can have an embedded copy of it in the automorphism
group. Similarly, each property of groups gives a family of questions about auto-
morphism groups subshifts: Does there exist a subshift whose automorphism
group has that property? Does one exist in a particular class such as the class of
SFTs or minimal subshifts? What closure properties do automorphism groups
have when restricting to particular classes of subshifts? Can we characterize the
automorphism groups of some families of subshifts? A group is not determined
by its subgroups, and thus it is also interesting to ask what kind of subgroups
automorphism groups have. In this section, we give basic group theoretical defi-
nitions needed in later sections. The notation and definitions in this section are
mostly standard, but we give them for completeness. For more details, the reader
may consult any standard reference [Rot95].

In this section, and usually also in other sections a ‘group’ is a countable
(discrete) group. Thus, a group is a countable set of objects called elements,
where a mapping (·) : G × G → G satisfying a particular set of axioms is
defined. The axioms are associativity a · (b · c) = (a · b) · c, the existence of an
identity element ∃1 ∈ G : a·1 = 1·a = a (which is automatically unique) and the
existence of inverses ∀a : ∃a−1 : a · a−1 = a−1 · a = 1 (which are automatically
unique), where a, b, c are arbitrary elements of the group. We often drop the
symbol ‘·’ and write ab = a · b. Groups are usually denoted by G and H. If
g1, g2, · · · , gk ∈ G, the products of gi and g−1

i generate a subgroup of G, and
we write this group as 〈g1, g2, · · · , gk〉. This is the subgroup of G generated by
g1, g2, · · · , gk. This naturally generalizes to infinite sets of generators.

A group that has a finite set of generators is finitely generated. A group
is cyclic if it has only one generator, that is, G = 〈g〉 for some g ∈ G. The
only infinite cyclic group is the additive group of integers Z with the operation
a · b = a+ b.10 The finite cyclic groups are the groups Zn with elements [0, n−1]
and group operation a · b = ((a + b) mod n).11 A group is locally finite if its
finitely generated subgroups are finite.

There are many ways to build new groups from existing ones. If G is a group,
a subgroup H ≤ G of G is a subset of G which is closed under products and
10 Of course, Z has a natural multiplication operation as well, the multiplication of

integers, but it does not yield a group.
11 Again, multiplication could be defined on Zn by integer multiplication modulo n,

but this does not form a group. However, if 0 is omitted, we do obtain a group when
n is a prime.
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inverses, that is, g, h ∈ H =⇒ gh ∈ H ∧ g−1 ∈ H. When H is a subgroup, the
sets gH = {gh | h ∈ H} for g ∈ G are called cosets, and they form a partition
of G (that is, gH ∩ g′H �= ∅ =⇒ gH = g′H). The set of cosets is denoted by
G/H. We say H is normal and write H � G if gH = Hg for all g ∈ G, and then
the cosets G/H have a natural group structure given by gH · g′H = gg′H. The
cardinality of G/H is denoted by [G : H], and is called the index of H in G. If
the index is finite, H is called a finite-index subgroup. If H has a particular group
property P and H is a finite-index subgroup of G, then we say G is virtually P.

A function π : G → H satisfying π(gh) = π(g)π(h) is called a group homo-
morphism from G to H. We say H is a quotient of the group G if there is
a surjective group homomorphism π : G → H. A bijective group homomor-
phism is called an isomorphism, and we write G ∼= H if there is an isomorphism
between G and H. We say G and H are isomorphic, and consider them the same
group for most purposes. The kernel ker(π) ⊂ G of a homomorphism π consists
of the elements g ∈ G such that π(g) = 1H . It is always a normal subgroup,
and G/ker(f) ∼= π(G). The group G is residually finite if for all g ∈ G with
g �= 1 there exists a finite group H and a homomorphism φ : G → H such that
φ(g) �= 1H .

Given two groups G,H, one can construct larger groups in multiple ways. The
direct product of G and H is the group G × H whose elements are the elements
of the Cartesian product G × H and the operation is (g, h) · (g′, h′) = (gg′, hh′).
Generalizing this, we define the semidirect product of G and H as follows. Write
Aut(G) for the group of bijective group homomorphisms from G to itself. Let
ψ : H → Aut(G) be a group homomorphism, and define G�ψ H (or just G�H)
as the group with the Cartesian product G × H as elements, and

(g, h)(g′, h′) = (gψh(g′), hh′)

as the operation. The idea is that H is ‘acting’ on G. We show only associativity:

(a, b)((c, d)(e, f)) = (a, b)(cψd(e), df)
= (aψb(cψd(e)), bdf)
= (aψb(c)ψbd(e)), bdf))
= (aψb(c), bd)(e, f)
= ((a, b)(c, d))(e, f).

Both the direct and semidirect product have G and H as subgroups in a natural
way: G ∼= G × {1} and H ∼= {1} × H. Both subgroups are normal in G × H, but
(a priori) only G is normal in G � H.

A more general ‘construction’ is the following: suppose N � G, and φ : G →
H is a homomorphism with ker(φ) = N . Then G is a group extension of H by
N . If G is a direct product of N and H, then it can be seen as a group extension
of N by H, and of H by N . The semidirect product N � H is a group extension
of H by N . However, there are not the only possible extensions, and even among
finite groups, there is no full understanding of group extensions: the problem of
characterizing them is called the extension problem, and it is still a major open
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problem in group theory. Nevertheless, many properties of groups are closed
under group extensions, in the sense that if N and H have the property, then
also every group extension of H by N has this property.

We can also construct groups by combining infinitely many smaller groups.
We present (simplified versions of) two of the most basic constructions. If G1 ⊂
G2 ⊂ G3 ⊂ · · · is an increasing sequence of groups (by which we mean that
the elements of Gi are elements of Gi+1 for all i and the group operations are
compatible), then

⋃
Gi has an obvious group structure by g · h = g ·i h, where ·i

is the group operation of any Gi with g, h ∈ Gi. This is called the direct union
of the groups Gi. For an arbitrary countable family of groups G1, G2, G3, · · · ,
their direct sum is the group

⊕
i Gi whose elements are functions f : N → ⋃

i Gi

with f(i) ∈ Gi for all i and f(i) = 1Gi
for all but finitely many i, and whose

group operation is pointwise product: (f · g)(i) = f(i) ·i g(i).
We say G is abelian if ab = ba for all a, b ∈ G. The finitely generated abelian

groups are of the form Z
d × Zk1 × · · · × Zkn

for some k1, . . . , kn ∈ N. General
countable abelian groups are not obtained by extending this to infinite products
of this – in fact there is no full characterization of them. The best-known exam-
ple of a non-finitely generated abelian group is probably the additive group of
rational numbers Q with operation a · b = a + b.12

A notion generalizing abelianity is nilpotency. For a group G and g, h ∈ G,
define the commutator of g and h as [g, h] = ghg−1h−1 and the commutator
subgroup [A,B] generated by A,B ⊂ G as the one genenerated by [a, b] where
a ∈ A, b ∈ B. The lower central series of G is defined inductively by G1 = G
and Gi+1 = [Gi, G]. If Gi is the trivial group {1} for some i ∈ N, then G is said
to be nilpotent, and the smallest i such that Gi = {1} is the step of G. Every
abelian group is nilpotent, but the converse does not hold.

For a set S, the free group FS generated by S is defined as the group whose
elements are all words over the alphabet {s, s−1 | s ∈ S} where the subwords
of the form ss−1 and s−1s do not occur, and u · v is the word obtained from
uv by repeatedly erasing subwords of the form ss−1 and s−1s until none occur.
For n ∈ N, we write Fn for the free group with any n generators, as they are
all isomorphic. The free group F∞ with countably many generators is defined in
the obvious way, as a direct union of the Fn.

Generalizing the definition of the free group, a group presentation is a com-
binatorial way to describe a group. Given a list of generators g1, g2, g3, . . . (con-
sidered as formal symbols) and a list of words

w1, w2, w3, . . . ∈ {g1, g
−1
1 , g2, g

−1
2 , g3, g

−1
3 , · · · }∗

(either list of may also be finite), we define the group 〈g1, g2, g3 . . . | w1, w2, w3, . . .〉
as the group whose elements are equivalence classes of words over the symbols gi

and g−1
i under the equivalence relation ∼ generated as follows: λ ∼ 1, gg−1 ∼

g−1g = λ where λ is the empty word, and uwiv ∼ uv for all i ∈ N. If G ∼=
12 The usual multiplication of Q is again not a group, but if 0 is omitted we obtain

another non-finitely generated group, namely the free abelian group on countably
many generators, by the unique factorization theorem of rational numbers.
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{g1, g2, . . . | w1, w2, . . .}, then {g1, g2, . . . | w1, w2, . . .} is a group presentation
of G. A group presentation for Fn is 〈a1, a2, · · · , an | ∅〉 and one for Z

d is

〈a1, a2, · · · , ad | {aiaja
−1
i a−1

j | 1 ≤ i, j ≤ d}〉.
Every (countable) group G has a group presentation {g1, g2, . . . | w1, w2, . . .}
where the gi are an enumeration of elements of G and wi are all words in
{g1, g

−1, g2, g
−2, g3, g

−1
3 , · · · }∗ which present the identity element of G.

Using group presentations, we can define another product of G and H,
namely their free product. Choose presentations for the groups G and H, G ∼=
〈g1, g2, . . . | w1, w2, . . .〉 and H ∼= 〈h1, h2, . . . | u1, u2, . . .〉, and define

G ∗ H = 〈g1, h1, g2, h2, g3, h3, · · · | w1, u1, w2, u2, w3, u3, . . .〉.
This group is defined by G and H up to isomorphism, no matter which presenta-
tions are chosen. Its elements can be thought of as words w ∈ (G∪H)∗ such that
wi ∈ G ⇐⇒ wi+1 ∈ H, that is, elements of G and H alternate, where neither
1G nor 1H occurs in w. The product of u, v ∈ G ∗ H is obtained from the word
uv by repeatedly combining two adjancent elements of G into a single element
of G using the group operation of G, and symmetrically for H, and removing 1G

and 1H whenever they occur. The free product of finite groups can be infinite.
For example, the Z2 ∗ Z2 is virtually Z and Z2 ∗ Z2 ∗ Z2 is virtually F2.

A group G acts on a set X as explained already in the introduction, for each
g ∈ G, x �→ g · x is a bijection on X satisfying 1 · x = x and g · h · x = gh · x. The
orbit of x under the action is the set G · x = {g · x | g ∈ G}, and the stabilizer
of x is the subgroup Gx ≤ G of elements g ∈ G such that g · x = x.

The group Sn is the one acting maximally transitively on the set [1, n], that
is, it contains exactly the permutations of [1, n]. For f, g ∈ Sn, we define f ◦g by
(f ◦g)(a) = f(g(a)) where a ∈ [1, n]. The direct union of all such groups is called
S∞. Every finite group embeds in Sn for some n ∈ N by Cayley’s theorem.

2.2 Amenability, Cayley Graphs and Growth

Amenability is a notion which is extremely important in group theory.13 We say
G is amenable if it admits a Følner sequence, that is, a sequence A1 ⊂ A2 ⊂
A3 ⊂ · · · such that each Ai ⊂ G is finite, G =

⋃
i Ai and

∀g ∈ G :
|gAiΔAi|

|Ai| −→
i→∞

0.

Amenability is equivalent to (and often defined as) the existence of a left-
invariant mean on G, that is, a functional ν : �∞(G) → R (where �∞(G) are
the bounded real-valued functions on G) satisfying ν(1G) = 1 (where 1G is the
constant-1 function on G) and

∀f ∈ �∞(G) : (∀g ∈ G : f(g) ≥ 0) =⇒ ν(f) ≥ 0.

13 It is also very important in dynamics: as noted in the introduction, it is needed in
the direct generalization of entropy to group actions.
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All finite groups are amenable, as we can choose Ai = G for all i, and Z
d

is amenable because we can choose Ai = [−i, i]d as a Følner sequence.14 More
generally, every abelian group is amenable. Amenable groups also have various
closure properties: they are closed under subgroups, quotients, group extensions
and direct unions. Thus, it is natural to define elementary amenable groups as
the smallest class of groups which contains the finite and abelian ones, and
is closed under subgroups, quotients, group extensions and direct unions (and
isomorphism, naturally).

We usually explicitly discuss neither Følner sequences nor means: the following
theorem summarizes our typical way to prove amenability or non-amenability.

Theorem 1. An elementary amenability group is amenable, and a group con-
taining a free group on two or more generators is not amenable.

In general, an amenable group need not be elementary amenable [Gri85], and
a non-amenable group need not contain a free group [Ols83].

Let A = {g1, g2, . . . , gk} be a finite set of elements generating a group G,
where A−1 = A. The Cayley graph of G with respect to the generators A is the
directed edge-labeled countable graph with nodes G and for each a ∈ A an edge
(g, ga, a), where by (a, b, c) we mean an edge from a to b with label c. In a graph,
a natural notion of distance between nodes is the length of the shortest path
between them. We write dG,A for the distance function of G in its Cayley graph
with respect to generators A. We write BG,A(n) for the corresponding Cayley
ball of radius n, defined as

BG,A(n) = {g ∈ G | dG,A(1, g) ≤ n}.

Changing the generators of G only changes distances by a multiplicative
constant, that is, if 〈A〉 = 〈B〉 = G then

∃C > 1 : ∀g, h ∈ G : dG,B(g, h)/C ≤ dG,A(g, h) ≤ CdG,B(g, h).

Thus, the growth rate of balls in all Cayley graphs of G is similar. For finitely
generated groups, we define some notions giving a rough classification of this
growth rate. We say a (finitely generated) group G has polynomial growth rate
if

∃k ∈ N : ∀n : |BG,A(n)| ≤ nk + k

for some – and thus any – set of generators A. We say it has exponential growth
rate if

∃a > 1 : ∀n : |BG,A(n)| ≥ an

and say it is subexponential growth rate if it does not have exponential growth
rate. By Gromov’s theorem, a group with polynomial growth is virtually nilpo-
tent. A group of subexponential growth is amenable.
14 That is, the Cayley balls are a Følner sequence in the abelian case – we note that

this is not how Følner sequences look in general. For example, if the size of balls
grows exponentially, then the balls are never a Følner sequence.
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2.3 Decidability

Definitional Issues. In this section, we discuss mainly decidability questions
regarding the relationship between a CA and its local rule, for example the
decidability of reversibility. See [Kar12] for a survey of decidability in the theory
of cellular automata.

To ask decidability questions about a group or a monoid, we need to fix a com-
putational presentation of the elements. Let us choose such presentations for endo-
morphisms of subshifts: A cellular automaton on a subshift X ⊂ SZ

k

is a function
f : X → X which has a radius r ∈ N and a local rule F : S[−r,r]k → S such that
f(x)v = F (xv+[−r,r]k). It is well-known that cellular automata are precisely the
functions End(X). The local rule of a cellular automaton gives a computational
presentation of the function, and thus a way to give a finite list of elements of the
endomorphism monoid to an algorithm. This allows us to ask algorithmic ques-
tions about the monoid End(X), on any subshift X, even a highly uncomputable
one. Note that from the local rules of f, g : X → X, we can easily form a local
rule for the composition of two cellular automata by composing the local rules in
an obvious way, again no matter what the subshift is.

We make a few (mostly obvious) remarks about the canonicality and caveats
of this presentation of cellular automata. Every cellular automaton, on every
subshift, has an infinite family of presentations by local rules, as we can always
increase its radius. However, there is always a smallest possible radius.15 By also
using a local rule F : L2r+1(X) → S instead of F : S[−r,r]k → S (so that we only
define the cellular automaton on the words it actually sees), we obtain a unique
presentation. If the language of X is decidable, that is, given w ∈ S∗ we can
algorithmically check whether w ∈ L(X), then this minimization process can be
done algorithmically:

Lemma 1. Let X ⊂ SZ be a subshift such that L(X) is a decidable language.
Then, given F : S[−r,r] → S defining a CA f : X → X, we can compute r′ ≤ r
and G : L → S where L ⊂ S[−r′,r′] such that G defines the same CA f and both
r′ and L are minimal.

We mainly study decidability questions on subshifts with decidable lan-
guages, so the presentations can be thought of as unique, but when the subshift
is not a priori decidable, we feel it is more natural to assume the local rule given
as input is not minimized.

A more subtle issue is which local rules are actually endomorphisms or auto-
morphisms of a particular subshift X. More precisely, given a rule F : S[−r,r]k →
S, a CA f : SZ → SZ is defined, and we call the well-definedness problem the
question of whether f(X) ⊂ X holds (that is, whether f restricts to a CA on
X), and the reversibility problem the question of whether f |X ∈ Aut(X), where

15 We note that, except on full shifts, there is in general no minimal neighborhood, as
easy examples show – nevertheless, there must be a minimal radius simply because
the natural numbers are well-ordered.
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f |X is the restriction of f to X. The following simple example shows that nei-
ther problem is in general decidable even if the language of X is decidable, for
somewhat uninteresting reasons.

Example 1. Define the CA fn on the full shift {0, 1, 1′, 2, 3}Z which exhanges
10n2 and 1′0n2 and otherwise behaves as the identity map. Take the subshift X of
L−1(0∗10∗20∗30∗ +0∗1′0∗20∗30∗) where additionally 1′0n20k3 is forbidden if the
nth Turing machine halts on the kth step. Then fn restricts to an automorphism
on X if the nth Turing machine never halts, and otherwise it is not well-defined
on X – thus, both the well-definedness problem and the reversibility problem
are undecidable. The language of X is clearly decidable. �

We mainly study decidability questions for cellular automata on sofic shifts
in dimension one, and in this case both the well-definedness problem and the
reversibility problem are decidable by basic automata theory [LM95,HMU06].
We note that the picture is different in the case of multidimensional full shifts,
as checking whether a local rule corresponds to a reversible cellular automaton
is undecidable [Kar90]. Since every effective subshift – in particular the example
above – is a sofic shift in the next dimension [AS13,DRS12], checking well-
definedness of a CA on a multidimensional sofic shift with a decidable language
is undecidable. On multidimensional SFTs, a simple construction based on the
undecidability of the domino problem with a seed tile, or an application of the
result of [Gui11], shows that the well-definedness problem is undecidable on
general SFTs. We do not know if the language can be made decidable.

Question 2. Is there a two-dimensional SFT with a decidable language where
the well-definedness problem is undecidable?

Another basic issue is whether two given local rules are the same. As men-
tioned above, if the language of X is decidable, we can compute a canonical local
rule for each CA from any given local rule. Thus, to check whether two CA are
the same, we can simply compute their minimal local rules and compare them.
In particular the word problem of Aut(X) – the problem of checking whether
the product of a given list of automorphisms is the identity map, is decidable
for all subshifts X with a decidable language.

Again, this applies in particular to one-dimensional sofic shifts. In two dimen-
sions, SFTs need not have a decidable language, and indeed, using the undecidabil-
ity of the domino problem with a seed tile, one can easily build a two-dimensional
SFT X where the problem of deciding whether a given local rule represents the
identity element is undecidable, even when restricted to local rules that represent
reversible CA. Nevertheless we do not know whether there are two-dimensional
SFTs on which the word problem of a finitely generated subgroup of the auto-
morphism group is undecidable. See [Hoc10] for a related discussion.

Group-Related Issues. Sofar, we have mainly discussed definitional issues,
which, while necessary background information, have little to do with the actual
automorphism groups. The list of possible group-theoretical questions about
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automorphism groups is pretty much endless: for any subshift X and any fam-
ily of groups G, we can ask whether a given finitely generated subgroup G of
Aut(X) is in G. For example, we are interested in the decidability of abelianity,
cyclicity, finiteness and freeness of such groups. We can also ask whether the
subgroup generated by them has a particular property in the larger group, such
as normality or centrality.

There are also many well-known computational problems in pure group the-
ory, which we also discuss. We already discussed the word problem.

Remark 2. Note that we defined the word problem of the automorphism group
of a subshift in terms of local rules. For a finitely generated group, one can define
the word problem can be defined without actually knowing what the elements of
the group are: We choose a set of generators, and ask for the decidability of the
word problem over those generators. The decidability of the word problem will
be independent of the generators. Usually, it will be clear from context which
problem we mean, and in fact they are equivalent in the situations we consider.

A question related to the word problem is the geodesics problem, where given
a word w over a finite set of generators, we want to find the minimal word u
over the same generators which represents the same group element. While the
geodesics problem may take an exponentially longer time to solve than the word
problem, in the sense of decidability the questions are equivalent. There are many
variants of this problem, but as we do not address computational complexity in
this paper, all of these questions may be thought of as restatements of the word
problem. The conjugacy problem is the problem of, given two elements g, g′ of
the group, deciding whether g = hg′h−1 for some group element h.

A common question to ask about a group, and one that turns out quite
interesting in the case of automorphism groups, is the torsion problem of decid-
ing, given an element of the group, whether it generates an infinite group. For
example, it is known that the two-dimensional generalization 2V of Thompson’s
group V has an undecidable torsion problem [BB14], while Thompson’s group
V itself has a decidable torsion problem [BB14,BM14].

As noted in the introduction, many of the existing algorithmic questions
about cellular automata do not fit into our framework. Namely, the usual app-
roach to cellular automata is the study of the dynamics of the N-action (or
Z-action) of a CA f given by n · x = fn(x). A variety of dynamical and com-
putational behaviors is observed in these systems, yet the groups and monoids
generated by a single cellular automaton are not particularly interesting: they
are cyclic, and thus the groups obtained are isomorphic to either Z or Zn for
some n ∈ N (and the monoids are equally simple).

2.4 Showing Finiteness of a Group of CA

It is useful to note that a group of cellular automata is finite if and only if
the orbits under its action are finite (even bounded). We will use this result in
Section 3 to prove some undecidability results for the automorphism group of a
full shift.
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Lemma 2. Let X be a transitive subshift, and let x ∈ X be a transitive point.
Then the stabilizer of x in the action of Aut(X) is trivial, that is, if f, g ∈
Aut(X) and f(x) = g(x), then f = g.

Proof. If f �= g, then f(y)0 �= g(y)0 for some y ∈ X. Since x is transitive,
f(y)0 = f(σn(x))0 = g(σn(x))0 = g(y)0 for some n ∈ Z. ��

In other words:

Theorem 2. Let X be a transitive subshift and let G be any subgroup of Aut(X).
Then the following are equivalent:

– G is infinite,
– G · x is infinite for some x ∈ X,
– G · x can be arbitrarily large for x ∈ X.

In particular, it follows that if G is an infinite subgroup of Aut(X) for a
transitive subshift X, then G is infinite if and only if it has an infinite orbit. In
our main application, X is a full shift, and thus certainly transitive. The result
is true in much more generality, but we omit the discussion of this.

3 Full Shifts and Transitive Sofic Shifts

We now look at full shifts and transitive sofic shifts, perhaps the most natural
habitat of cellular automata. If the alphabet S is not explicitly specified, we
assume |S| > 1.

One of the main tools in the positive entropy case is Lemma 3 below. It
shows that it is usually enough to prove undecidability results and to perform
constructions of subgroups on full shifts. A proof in the mixing SFT case, and
restricted to automorphisms, appeared in [KR90]. The general proof for X a
positive entropy (equivalently, uncountable) sofic shift is also easy, and outlines
the idea of marker constructions (our version of the marker being the word u in
the proof). We sketch a proof.

An unbordered word u is one that does not overlap itself, that is, uw =
vu =⇒ |v| ≥ |u|.
Lemma 3 (essentially [KR90]). If X is a positive entropy sofic shift, then
End(X) contains a copy of End(SZ) for any alphabet S.

Proof (Proof sketch). Every infinite aperiodic word contains arbitrarily long
unbordered words, by Theorem 8.3.9 in [Lot02].16 Choose a positive entropy
transitive sofic Y subshift inside the X, and a long unbordered word u that
occurs in Y . If u is taken long enough, there are many words uvu where v is
of length �|u|/2�,17 and by the pigeonhole principle (and long enough u), many
16 A stronger version of this is shown in Lemma 2.2 of [BLR88].
17 This follows because every transitive sofic shift has a uniform distance k such that

if u and v occur in the language, then uwv occurs for some w of length at most k.
This is a direct application of the pigeonhole principle.
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such words which correspond to the same element of the syntactic monoid18 of
L(X). Since u is unbordered, a local rule can safely change the word v between
two occurrences of u, that is, compute a local transformation uvu �→ uv′u.

More precisely, let V with |V | = |S|2 be the a set of words v of length �|u|/2�
such that uvu is a word of X, and the words uvu for v ∈ V correspond to the
same element of the syntactic monoid. Choose a bijection π : V → S2. Now, we
map each f ∈ End(SZ) to a CA g ∈ End(X) with the following behavior: on
the points · · · uv−2uv−1uv0uv1uv2u · · · where vi ∈ V for all i, we apply f × fR

to the point · · · π(v−2)π(v−1)π(v0)π(v1)π(v2) · · · ∈ (S2)Z (which we think of
as two separate tracks each containing a point over the full shift SZ), where
yR = · · · y2y1.y0y−1y−2 · · · and fR(y) = f(yR)R. On points where no such
sequence appears, g is the identity map. When a partial such sequence occurs,
we glue the two tracks together like a conveyor belt at the end of the sequence,
and think of the first track turning 180 degrees and continuing backwards on
the second track. It is easy to check that this gives a consistent embedding of
the endomorphism monoid End(SZ) to End(X). ��

We note that we do not claim that Aut(X) embeds in Aut(Y ) when X and
Y are general mixing SFTs. We suspect this to be the case, but subtle problems
seem to arise when attempting to generalize the proof above. See [KR90] for an
example of this.

3.1 Subgroups of Aut(X) for a Transitive Sofic Shift X

In this section, we give some examples of what kind of subgroups can be created
with the marker construction, and end the section with a complete character-
ization of the locally finite subgroups that appear in the automorphism group
[KR90]. Most of the results in this section were essentially proved in [BLR88] or
[KR90].

While we know no restrictions on the groups Aut(X) for general subshifts
X, there are some restrictions when X has suitable dynamical properties.

Lemma 4 ([BLR88]). Let X be a subshift where periodic points are dense (for
example, a transitive sofic shift). Then Aut(X) is residually finite.

Since the class of residually finite groups is closed under taking subgroups,
we obtain nontrivial restrictions on the possible subgroups that can occur in
Aut(X) when X has periodic points dense. For example, Aut(X) cannot contain
a nontrivial divisible subgroup such as (Q,+), and cannot contain the infinite
permutation group S∞.

The decidability of the word problem restricts the possible subgroups further,
as we have already seen:

18 We omit the definition, but u and v corresponding to the same element of this monoid
means exactly that they occur in the same contexts, so we may exchange them. See
[HMU06].
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Lemma 5. If X is a subshift with a decidable language (for example, a sofic
shift), then every finitely generated subgroup of Aut(X) has a decidable word
problem.

Note that in the proof of Lemma 3, the CA in the image of the embedding
only change the points in subwords of the form · · · uv−1uv0uv1u · · · . Since u
can be taken arbitrarily long, the CA thus change only points in a subshift of
strictly smaller entropy. Using standard techniques, we can make sure that the
complement of this subshift still contains a positive entropy sofic shift. Using
this idea, we obtain the following generalization.

Lemma 6 (Essentially Theorem 2.6 in [BLR88]). If X is a positive
entropy sofic shift (equivalently, uncountable), then End(X) contains a copy of
the countable direct sum

⊕
i∈N

End(SZ) for any alphabet S.

Equivalently, we can have countably many distinct alphabets, by Lemma 3.
As a direct corollary, we obtain two closure properties for subgroups of auto-
morphism groups of full shifts.

Theorem 3. The set of subgroups of Aut(SZ) is closed under countable direct
sums for any alphabet S.

Of course, for this to be interesting, we need to have some subgroups to
begin with. A trivial observation is that σ generates a copy of Z on any infinite
subshift. Another observation, essentially Theorem 6.13 in [Hed69], is that every
finite group embeds in Aut(X) for a positive entropy sofic shift. Using Lemma 3,
this is very easy to show: a finite group G embeds in the permutation group Sk

for some k, and thus into Aut([1, k]Z) by symbol permutations.

Proposition 1. If X is a positive entropy sofic shift, then Aut(X) contains
every countable direct sum of finite groups and copies of Z.

In [BLR88], it is shown that the free group with infinitely many generators
embeds in the automorphism group of a mixing SFT. Applying Lemma 3, we
obtain the same result for the automorphism group of a positive entropy sofic
shift.

Theorem 4. If X is a positive entropy sofic shift, then Aut(X) contains F∞.

Corollary 1. If X is a positive entropy sofic shift, then Aut(X) is not amenable.

To prove Theorem 4, one embeds the free group Z2 ∗ Z2 ∗ Z2 in the auto-
morphism group using a marker construction. In [KR90], it is attributed to R.
C. Alperin that more generally any free product of finitely many finite groups
embeds in the automorphism groups. We make a slightly bolder conjecture:

Conjecture 1. If X is a positive entropy sofic shift, End(X) contains the copy of
the free product of countably many copies of End(SZ) for any alphabet S.
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Restricted to locally finite groups G, a full characterization of the subgroups
of Aut(X) is known. As observed in the beginning of this section, the auto-
morphism group of a transitive sofic shift is residually finite. This is the only
requirement:

Theorem 5 ([KR90]). Let X be a positive entropy sofic shift. Then a locally
finite group G is isomorphic to a subgroup of the automorphism group of X if
and only if G is residually finite and countable.

The paper [KR90] contains many more examples of subgroups that can be
embedded (for example, fundamental groups of 2-manifolds), and proves that
the set of subgroups of Aut(X) is closed under finite extensions when X is a full
shift. That is, if H ≤ Aut(X) where X is a full shift, and [G : H] < ∞, then
G ≤ Aut(X).

Note that by Lemma 3, the groups Aut({0, 1}Z) and Aut({0, 1, 2}Z) embed
into each other, and thus have the same subgroups. However, we do not know
whether there is an isomorphism between them.19 This is one of the open prob-
lems in symbolic dynamics listed in [Boy08].

Question 3. Are Aut({0, 1}Z) and Aut({0, 1, 2}Z) isomorphic?

It follows from Ryan’s theorem that Aut({0, 1}Z) and Aut({0, 1, 2, 3}Z) are
not isomorphic, because in Aut({0, 1, 2, 3}Z) that shift map has a square root,
while it does not have one in Aut({0, 1}Z).

3.2 Decidability on Positive Entropy Sofic Shifts

Most decidability problems for cellular automata are about their dynamical prop-
erties, such as mixing, transitivity, sensitivity and expansivity. These questions
are, at least a priori, outside our scope, as there is no known algebraic property
satisfied by, for example, the mixing CA, but not the rest.

However, the dynamical notion of equicontinuity turns out to be equivalent
to eventual periodicity on all subshifts. For automorphisms f ∈ Aut(SZ), this is
the question of whether fk = idX for some k ≥ 1, that is, the torsion problem.
Though the result is not stated in group-theoretic terms, in [KO08], this problem
is shown undecidable on full shifts. Using Lemma 3,20 we obtain the result for
all positive entropy sofic shifts.

Theorem 6 ([KO08]). Let X be a positive entropy sofic shift. Then the group
Aut(X) has an undecidable torsion problem.

This trivially implies many undecidability problems, such as whether a given
finite set of elements generates an infinite group, or whether it generates a torsion
group. We now prove some slightly more interesting corollaries.
19 There certainly are non-isomorphic groups that embed into each other, for example

the free groups F2 and F3 are such a pair.
20 We also need to note that the embedding is explicitly computable – clearly it is.



Groups and Monoids of Cellular Automata 35

Thenotionof time-symmetrywas introduced for cellular automata in [GKM12].
We give this definition for an arbitrary subshift: a CA is time-symmetric if it is the
composition of two involutions, where an involution is a CA g ∈ Aut(X) satisfying
g2 = idX . That is, f ∈ Aut(X) is time-symmetric f = g◦h for some g, h ∈ Aut(X)
satisfying f2 = g2 = idX . The name comes from the equivalent condition that
g ◦f ◦ g = f−1 for some involution g ∈ Aut(X). It is shown in [GKM12] that time-
symmetric CA are intrinsically universal among the reversible cellular automata,
that is, every reversible automaton can be simulated by a time-symmetric one. The
proof of this claim gives the following theorem:21

Theorem 7. Given a finite set of finite order automorphisms of a positive
entropy sofic shift X, it is undecidable whether they generate a finite group.

Proof. Again, it is enough to prove the result for full shifts by Lemma 3. We
show that an algorithm for this problem would give an algorithm for the torsion
problem as well. Let f ∈ Aut(SZ) be given. Consider the full shift (S × S)Z,
and define g, h ∈ Aut((S ×S)Z) by g(x, y) = (f(y), f−1(x)) and h(x, y) = (y, x).
Then (g ◦ h)(x, y) = (f(x), f−1(y)). If 〈f〉 is infinite, then the orbit of some
point x is infinite by Theorem 2, and thus the orbit of (x, y) is of infinite order
by Theorem 2 for any y ∈ SZ. Let then |〈f〉| = k, and consider a point (x, y).
Clearly the orbit of (x, y) under the action of 〈g, h〉 is contained in the finite
set {(f i(x), f j(y)), (f i(y), f j(x)) | i, j ∈ Z}. Since every orbit is finite, 〈g, h〉 is
finite, again by Theorem 2. ��

The proof shows more precisely that given two automorphisms of order 2, it is
undecidable whether they generate a finite or an infinite group. More precisely, in
the construction, depending on whether f halts, we obtain either a finite dihedral
group Dn, or the infinite dihedral group D∞ = Z2 ∗ Z2. One can easily perform
a similar proof to for example show that the finiteness of a group generated by
automorphisms of order 3 is undecidable. We prove a more general result of this
form.

Theorem 8. Let X be a positive entropy sofic, and let G be an arbitrary nonempty
finite group. Then, given two finite subgroups F, F ′ ≤ Aut(X) with F ∼= F ′ ∼= G,
it is undecidable whether 〈F ∪ F ′〉 is finite.
Proof. Again, we only need to prove the claim on full shifts. Let f ∈ Aut(SZ)
be arbitrary. We again show that an algorithm for the problem in the statement
also decides whether 〈f〉 is finite. Without loss of generality, we may assume G
is a subgroup of a symmetric group Sk, so that G acts nontrivially on [1, k]. Let
F = {fg | g ∈ G} be the subgroup of Aut((Sk)Z) permuting the tracks according
to this embedding:

fg(x1, . . . , xk) = (xg−1(1), xg−1(2), . . . , xg−1(k)).

21 In fact, the CA constructed in [KO08] are already time-symmetric, but the idea on
permuting tracks illustrates Theorem 2 better.
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We now give another embedding, F ′, where in addition to permuting the tracks,
we apply a power of f to the tracks when they are moved. For this, choose a
function c : [1, k] → Z. The idea is that if track i is moved to track j by a
permutation g ∈ G, the corresponding CA f ′

g will apply fc(j)−c(i) to the ith
track xi before moving it. Thus, the jth track will always be c(j) − c(i) steps
ahead in time compared to the track i. This gives another embedding of G to
Aut((Sk)Z), since if g1 · g2 · · · g� = 1 for gi ∈ G, then f ′

g1
◦ f ′

g2
◦ · · · ◦ f ′

g�
permutes

every track to its starting position, and naturally the movements in time cancel
out, so that f ′

g1
◦ f ′

g2
◦ · · · ◦ f ′

gk
= id(Sk)Z .

More precisely, take a function c : G → Z and define C : G × [1, k] → Z by

C(g, i) = c(g · i) − c(i).

Define F ′ = {f ′
g | g ∈ G} by

f ′
g(x1, . . . , xk) = (fC(g,g−1·1)(xg−1·1), . . . , fC(g,g−1·k)(xg−1·k)).

It is easy to check that g �→ f ′
g gives an embedding of G into Aut((Sk)Z).22

We claim that if c is injective, then 〈F ∪ F ′〉 is finite if and only if 〈f〉 is.
Consider thus an arbitrary point (x1, x2, . . . , xk) ∈ (Sk)Z. First, if 〈f〉 is finite,
we are done: every point in the orbit of (x1, x2, . . . , xk) has a point from the
orbit of one of the points xi on each track, which gives a finite upper bound on
the size of orbits. Conversely, suppose x has an infinite orbit in the action of f .
Let g · i = j for g ∈ G and i, j ∈ [1, k] with i �= j (the action of G is nontrivial
on [1, k]). Since c is injective, C(g, i) = c(g · i) − c(i) = n �= 0. For notational
simplicity, suppose i = 1 and j = 2. Then

(x, y, · · · ) f ′
g�→ (y′, fn(x), · · · ) fg−1�→ (fn(x), y′′, · · · )

for some points y, y′, y′′ ∈ SZ. Clearly, this shows that the orbit of any point
(x, · · · ) is infinite.

Again, the alphabet Sk can be changed by applying Lemma 3. ��
There are many open questions about automorphism groups, even on full

shifts. For example, the decidability of time-symmetry is open in one dimension
(in two dimensions, it is undecidable [GKM12]).

Question 4. Is it decidable whether a given CA f ∈ Aut(SZ) is time-symmetric?

More generally, we do not know whether it is decidable if a given CA is
generated by involutions, or elements of finite order. For a more general question
in the same spirit, see the FOG conjecture (not true in general [KR91]) and
virtual FOG conjecture in [Boy08]. Another question whose solution we do not
22 Readers familiar with cohomology will notice that c is just an arbitrary 0-cochain

c ∈ Hom(C(G, [1, k]), Z) for the action of G on [1, k] and C is the corresponding
1-coboundary – in particular, C is a 1-cocycle, from which it follows that the action
of F ′ is well-defined.
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know is the conjugacy problem: is it decidable in Aut(SZ) whether two given
elements f, g are conjugate?

More in line with Theorem 8 and our constructions in this section, we state
the following conjecture.

Conjecture 2. It is undecidable whether two given automata generate a (non-
abelian) free group.

If Conjecture 1 is true, and the embedding is computable, then the previous
conjecture is true as well: given f ∈ Aut(SZ), consider the CA g, h ∈ Aut(SZ)
given by the embedding of Aut(SZ)∗Aut(SZ) into Aut(SZ), so that 〈f〉 ∼= 〈g〉 ∼=
〈h〉 and g and h generate the product 〈g〉 ∗ 〈h〉 in Aut(SZ). Then clearly g and
h generate a group isomorphic to F2 if and only if f has infinite order.

A simple decidable property is abelianness: to check whether a finite set F
of cellular automata generate an abelian group, we only need to check whether
the identity f ◦ g = g ◦ f holds for all pairs f, g ∈ F .

4 Countable Subshifts

The simplest countable subshifts (and the simplest subshifts in general) are
probably the finite ones. A finite subshift is always an SFT, and the auto-
morhism groups of such SFTs are simply the centralizers of permutations on
finite sets. The following characterization was given in [CK14]: Let Sn act on
Z

n
m by φ(g)(i1, i2, . . . , in) = (ig−1(1), ig−1(2), . . . , ig−1(n)) for g ∈ Sn.23 Define the

semidirect product S(m,n) = Z
n
m � Sn with respect to the action φ. For future

purposes, similarly define S(∞, n) = Z
n

� Sn.

Theorem 9. A group G is the automorphism group of some finite subshift if
and only if

G ∼= S(m1, n1) × S(m2, n2) × · · · × S(ms, ns)

for some m1 < m2 < · · · < ms and n1 < n2 < · · · < ns.

Equivalently, these are precisely the finite groups that occur as automorphism
groups of subshifts, since σ generates an infinite subgroup of Aut(X) if X is
infinite.

In [ST12], cellular automata on countable sofic shifts were discussed from the
point of view of computability. Unlike in the case of full shifts, many dynamical
behaviors (though not all!) of such automata are decidable. In particular, the
following is proved:

Theorem 10 ([ST12]). Let X be a countable sofic shift. Then the torsion prob-
lem is decidable for Aut(X).

23 In [CK14], the dual definition is used. Our definition must be used to obtain a
homomorphism when the composition of permutations is defined by (π ◦ π′)(a) =
π(π′(a)) (but also the dual definition is used by some authors).
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While undecidability results about the dynamics of cellular automata on
countable sofic shifts are shown in [ST12], we do not know any interesting unde-
cidability results about the automorphism group in the countable case.

This suggests that the automorphism group might be essentially simpler
in the countable case, and in a way it is: While Corollary 1 shows that the
automorphism group of an uncountable sofic shift is never amenable, the author
and Michael Schraudner are working on the proof that the automorphism group
of a countable sofic shift always is. We prove this for a simple example.

Proposition 2. For k ∈ N, let Xk ⊂ {0, 1}Z be the (countable sofic) subshift
whose forbidden words form the regular language (10∗)k1. Then Aut(Xk) is ele-
mentarily amenable.

Proof. We prove this by induction on k. The base case is the one-point subshift
X0 whose automorphism group is the trivial group, which is certainly elemen-
tary amenable. Now, let k > 0. The isolated points of Xk are exactly the ones
containing k 1-symbols. A homeomorphism must map isolated points to isolated
points, so if f ∈ Aut(Xk), then the restriction f |Xk−1 is well-defined. The map
φ : f �→ f |Xk−1 is a homomorphism from Aut(Xk) to Aut(Xk−1). Its image is
elementary amenable by induction, so we only need to show that ker(φ) is as
well.

For this, let r be the common radius of f, f−1 ∈ ker(φ). Let Yr be the set of
points y in X that contain k 1-symbols, which all occur in a single subword of y
of length 2r + 1. We claim that if x /∈ Yr, then f(x) = x. Otherwise, xi �= f(x)i

for some i. If x contains less than k 1-symbols, then f is not in the kernel of
φ. Otherwise, because x /∈ Yr, x[i−r,i+r] cannot contain all the 1-symbols. In
particular,the point y with y[i−r,i+r] = x[i−r,i+r] and yj = 0 for j /∈ [i−r, i+r] is
in Xk−1. But f(y)i �= yi, so again f cannot be in the kernel. This contradiction
shows that only points in Yr can be changed. The same reasoning applies to f−1,
so the set Yr is invariant under the action of f . In other words, the action of f
permutes Yr and leaves every point in X \ Yr invariant.24

Now, let Fr be the subgroup of ker(φ) that only permutes the points in Yr.
This is clearly a subgroup, and ker(φ) =

⋃
r∈N

Fr. Thus, it is enough to show
that Fr is elementary amenable. For this, observe that the set Yr consists of
finitely many orbits: Yr = O(x1) ∪ O(x2) ∪ · · · O(xn) for some n and xi ∈ X.
A permutation of Yr can, by shift-commutation, only permute the tracks and
shift them around. It is then easy to show that Fr embeds in the group Z

n
�Sn,

which is elementary amenable as a semidirect product of amenable groups. ��
On the other hand, unlike the automorphism group of a transitive sofic shift,

the automorphism group of a countable one need not be residually finite:

Proposition 3. There exists a countable sofic shift X with S∞ ≤ Aut(X). In
particular, Aut(X) is not be residually finite.

24 It is a general fact that if a group action on A maps B ⊂ A to C ⊂ B, then it maps
B exactly onto itself, and also A \ B onto itself.
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Proof. An example is X2 = L−1(0∗10∗10∗). If g ∈ S∞, define fg : X2 → X2 by

fg(∞0.10n10∞) = ∞0.10g(n)10∞.

Since g has finite support, fg simply permutes finitely many (orbits of) isolated
points and leaves everything else invariant. Continuity and shift-commutation
are clear, and it is easily verified that g �→ fg embeds S∞ into Aut(X2). ��

Every countable subshift has zero entropy, and it seems likely that this puts
severe restrictions on the automorphism group. For example, the only ways to
embed free groups into automorphism groups that the author is aware of generate
entropy. Nevertheless, from just the assumption that X is countable, we are not
able to prove any properties for Aut(X).

Question 5. If G is the automorphism group of a subshift, is it also the auto-
morphism group of a countable subshift? Are automorphism groups of countable
subshifts amenable? Can they contain a copy of F2?

5 Minimal Subshifts and Subshifts of Low Complexity

A substitution is a function τ : S → S+. We can apply such a map τ also to
finite words by τ(w) = τ(w0)τ(w1) · · · τ(w|w|−1). Suppose τ is primitive, that is,
∃n : ∀a, b ∈ S : ∃i : τn(b)i = a. For a ∈ S let La = {τn(a) | n ∈ N}. Then

Xτ = L−1(La),

for any a, is the subshift generated by τ . The substitution τ is binary if S = {0, 1}
and constant-length if ∃n : ∀a ∈ S : |τ(a)| = n. We say τ has a coincidence if
∃i : τ(a)i = τ(b)i for all a, b ∈ S.

The subshifts Xτ for primitive τ are always minimal. Due to their rigid self-
similar structure, one can often precisely compute their automorphism groups.
To our knowledge, the first explicit result was the following.

Theorem 11 ([Cov71]). Let τ be a binary primitive constant-length substitu-
tion. If τ has a coincidence, then Aut(Xτ ) = 〈σ〉. Otherwise, Aut(Xτ ) = 〈σ〉×f ,
where f is the binary flip CA defined by f(x)i = 1 − xi.

This was generalized in [HP89] to the non-binary case. We state only a weak
form of the theorem.

Theorem 12 ([HP89]). Let τ be a primitive constant-length substitution. Then
Aut(Xτ ) is virtually Z.

It is also shown in [HP89] that this is close to optimal, as Aut(Xτ ) can be of
the form G × Z for any finite group G. (This construction can also be found in
[DDMP14].) In [ST13], we generalized this result to all balanced substitutions –
ones where |τn(a)| = an + d(n) where a > 1 and d is a bounded function.
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A further generalization is the class of linearly recurrent minimal subshifts,
and even more general are the minimal subshifts with linear (factor) complexity :
the word complexity of X is the function n �→ pn(X) = |Ln(X)|, and X has linear
factor complexity if ∃C : ∀n : pn(X) ≤ Cn + C. We asked in [ST14] whether
it is true in general that linear factor complexity on a minimal subshift implies
virtually Z. It quickly turned out that the answer is ‘yes’:

Theorem 13 ([CY14,CK14,DDMP14]). The automorphism group of an
infinite minimal subshift with linear factor complexity is virtually Z.

In fact the result turned out to be, in some sense, folklore, though not explic-
itly published before. It can be proved quite quickly by using known properties
of asymptotic points in the linear complexity case.

The result of [CK14] is stated more generally for transitive subshifts, and all
papers show more general results, in different directions. For cellular automata,
we obtain in particular that for some k, every reversible CA f : X → X on
an infinite minimal subshift with linear factor complexity satisfies fk = σn for
some n ∈ Z. It is quite easy to see that a virtually Z group has a decidable word
problem and a decidable torsion problem in the purely group-theoretical sense.
Using the folklore result that a Π0

1 minimal subshift has a decidable language
(see [Sal14b]), we see that these problems are even uniformly decidable in the
following sense.

Theorem 14. Given a Turing machine T enumerating the forbidden patterns
of an infinite minimal subshift X and a cellular automaton f : X → X, we can
decide whether f = idX . If X has linear factor complexity, whether ∃n ≥ 1 :
fn = idX is decidable as well.

Proof. An algorithm for checking f = idX follows directly from the decidability
of the language of x, so in particular the word problem is decidable. As for
the torsion problem, iterating f , we obtain local rules for fn for all n. By the
assumption, fn = σm for some n,m. Since the word problem is decidable, it
is easy to find such n and m algorithmically.25 If m = 0, the answer is ‘yes’.
Otherwise it is ‘no’. ��

A result analogous to Theorem 13 can be shown for the endomorphism
monoid when the subshift is also linearly recurrent, that is, there exists n such
that every word u ∈ L(X) that appears in every word of Ln|u|(X) (see [DHS99]
for more on this concept). Namely, it is known that in this case the subshift is
coalescent, that is, Aut(X) = End(X) [Dur00].

We note that while it is known that the automorphism group is virtually Z

for a linear growth minimal subshift (in fact [CK14] shows the subtly stronger
result, that it is a semidirect product of a finite group and Z), and groups of the
form G× Z all occur as automorphism groups, we do not know what the precise
class of automorphism groups is even in the linear growth case. The answer is
presumably right around the corner, but we don’t know it:
25 For this, the assumption that f is indeed a cellular automaton on X is crucial. Given

a local rule not defining such a CA, it is not clear what can be said.
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Question 6. Which groups appear as Aut(X) for minimal subshifts X with linear
factor complexity?

Another class of subshifts that has been studied are the ones with sub-
quadratic factor complexity (for all C > 0, we have pn(X) < Cn2 for large
enough n):

Theorem 15 ([CK14]). Every cellular automaton on a transitive subshift of
subquadratic complexity is a root of a shift map.

In other words, if f : X → X is a CA and X is transitive and of subquadratic
complexity, then fk = σn for some k > 0, n ∈ Z. Unlike in the case of linear
complexity, there is no uniform bound on the k, that is, for a transitive subshift
X of subquadratic complexity, if k(f) is the least positive integer such that
fk(f) ∈ {σn | n ∈ Z}, then k : End(X) → N may be unbounded. An explicit
example of such a subshift is given in [Sal14a].

Theorem 16 ([Sal14a]). There exists a minimal Toeplitz subshift X with sub-
quadratic complexity whose automorphism group is not finitely generated:

Aut(X) ∼=
〈(

2
5

)i

| i ∈ N

〉

≤ (Q,+).

Of course, Theorem 14 extends to the subquadratic minimal case by the same
proof. Presumably it does not generalize to all minimal subshifts, but we have
no examples.

Question 7. Is there a minimal subshift with a decidable language whose auto-
morphism group does not have a decidable word problem? Can the automorphism
group have a finitely generated subgroup whose word problem is undecidable?

In [BLR88], a minimal subshift is constructed whose automorphism group
contains a copy of Q. There is much freedom in the construction, and they
explain how the group could be made precisely Q.

Theorem 17 ([BLR88]). There is a minimal subshift X with Aut(X) ∼= Q.

It seems likely that one can also modify the construction so that the subshift
has subquadratic factor complexity. With a similar construction, it seems that
one can also obtain for example S∞ as the automorphism group of a subquadratic
growth. Nevertheless, we have no conjecture what the characterization is.

All the examples above are locally virtually cyclic: every finitely generated
subgroup is virtually cyclic. This is not always the case on minimal subshifts,
as shown by the following example (although the group is still locally virtually
abelian):

Proposition 4. [DDMP14] For any d ∈ N, there exists a minimal subshift X
with limn→∞ pX(n)/nd+1 = 0 and Aut(X) ∼= Z

d.
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The following limitation is shown in [DDMP14] in the case that recurrence
times of words are polynomial (which is a stronger assumption than polynomial
complexity). For a subshift X, define

NX(n) = inf{m | w ∈ Lm(X) =⇒ ∀u ∈ Ln(X) : u occurs in w}.

Theorem 18 ([DDMP14]). Let X be a transitive subshift such that

sup
n≥1

NX(n)/nd < ∞

for d ≥ 1. Then, there is a constant C depending only on d, such that any finitely
generated subgroup of Aut(X) is virtually nilpotent of step at most C.

Like in the case of countable subshifts, we are not aware of any general results
about the possible automorphism groups of minimal subshifts.

Question 8. Which groups occur as automorphism groups of minimal subshifts?
In particular, if G is the automorphism group of a subshift, is it also the auto-
morphism group of a minimal subshift? Can F2 occur as a subgroup? Are the
automorphism groups of minimal subshifts amenable?

Let GM (resp. G′
M ) be the family of groups Aut(X) (resp. Aut(X)/〈σ〉) for

minimal subshifts X. Especially in conjunction with the case of coded subshifts,
the following question is particularly interesting:

Question 9. Is GM closed under subgroups? Is G′
M? More generally, what closure

properties do they have?

6 Coded and Synchronized Systems

We briefly describe two of the results shown in [FF96] about automorphism
groups of two families of transitive subshifts, namely the coded and synchronized
systems. A word w � X is synchronizing if uw,wv � X =⇒ uwv � X. This
means, in some sense, that no information travels over w. A synchronized system
is a transitive subshift with a synchronizing word. The following construction of
synchronized systems is shown in [FF96]:

Theorem 19 ([FF96]). Given any subshift X with periodic points dense, there
is a synchronized system Y such that Aut(Y ) contains a copy of Aut(X).

A coded system is a subshift X of the form X = L−1(W ∗), where W is any
countable set of words over a finite alphabet. In other words, points of X are
the limit points of infinite concatenations of words in W . Every synchronized
system is coded, but the converse does not hold.

There is much freedom in the construction of automorphism groups of coded
systems, as shown by the following strong result.
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Theorem 20 ([FF96]). If X has dense periodic points and G ≤ Aut(X), then
there is a coded system Y with Aut(Y ) ∼= G × Z, where the isomorphism maps
σ to (1G, 1).

We note that this allows the exact construction of automorphism groups,
not only subgroups of them, which separates coded systems from the families
discussed in the previous sections (at least when it comes to known results).
In particular, all finitely generated abelian groups can be obtained exactly as
automorphism groups of coded systems. Since coded systems themselves have
periodic points dense, the theorem also gives a kind of closure property for their
automorphism groups.

Corollary 2. Let G′
C be the set of groups G such that Aut(X) ∼= G×Z for some

coded subshift X. Then G′
C is closed under taking subgroups.

We are not aware of a similar closure property for any other natural class of
subshifts.

The family of coded systems contains only subshifts with periodic points
dense, and thus they have only residually finite automorphism groups. There
are some additional restrictions:

Lemma 7 ([FF96]). The residually finite group Z[1/2] is not the automorphism
group of any coded system.

Again, we do not know what the precise class of groups that occur is.
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Abstract. We explore a quantum version of Janzing’s “physical uni-
versality”, a notion of computational universality for cellular automata
which requires computations to be done directly on the cells. We discuss
physical universality in general, the issues specific to the quantum set-
ting, and give an example of a quantum cellular automaton achieving a
quantum definition of physical universality.

1 Introduction

Many cellular automata are known to be computationally universal, in the sense
that they can simulate Turing machines, and hence any other classical model of
computation. Shortly after Bernstein and Vazirani introduced quantum Turing
machines, Watrous [8] gave a definition for quantum cellular automata (QCA),
and showed that QCA can simulate arbitrary quantum Turing machines.
Raussendorf [4], van Dam [7], and others give QCA that achieve stricter notions
of universality for quantum circuits.

Recently, Janzing [2] defined physical universality for cellular automata.
A cellular automaton is physically universal if for any finite set of cells X, and
any transformation f on the region X, there is some way to initialize the comple-
ment of X such that, whatever initial configuration x is in the region X, after some
number of t timesteps, X contains f(x). In other words, it is possible to perform
any transformation on a region by initializing the surrounding cells and waiting
for some prespecified time. We will discuss physical universality in general, the
issues specific to the quantum setting, and finally give an example of a quantum
cellular automaton which is physically universal in the quantum sense.

2 Cellular Automata

We will consider only layered cellular automata in the classical setting.

Definition 1. A layered cellular automaton (LCA) is a 4-tuple
(L, V,Σ, ρ) consisting of

– a finite dimensional lattice L = Z
d,

– a list of shifts V = [v1, . . . , vk] for k different layers, where vi ∈ Z
d,
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– a finite set of states, Σ, and
– a rule ρ : Σk → Σk for updating a cell.

The points of in the lattice are called cells. Each cell in the lattice has k layers,
and each layer of a cell has some state in Σ. Each time step, we apply the cell
update rule ρ to every cell in the lattice, then shift each layer by the correspond-
ing shift vector vi. That is, the ith component of the state of a cell x ∈ Z

d is
moved to the cell x + vi ∈ Z

d.
A region of cells is any finite subset of the lattice. A configuration of a region

X ⊆ L is mapping from cells in X to states in Σk, and we let C(X) denote the set
of all configurations of X. Naturally, we can combine configurations x ∈ C(X)
and y ∈ C(Y ) of disjoint regions X and Y into a configuration x× y ∈ C(X ∪ Y )
of X ∪ Y .

A cellular automaton is reversible if every configuration of the automaton
has a unique predecessor (according to the update rule of the automaton). One
advantage of layered cellular automata is that it is trivial to check reversibility –
a LCA is reversible if and only if the cell update rule ρ is bijective.

3 Quantum Cellular Automata

A reader unfamiliar with quantum computation will find quantum cellular auto-
mata analogous to probabilistic cellular automata (PCA). Probabilistic cellular
automata (PCA) generalize (deterministic) cellular automata by letting the con-
figuration of the lattice be a probability distribution over deterministic configu-
rations, and letting the update rule map each classical state to a distribution of
states.

If we think of quantum mechanics as a theory of probability with complex
numbers [9], then quantum cellular automata (QCA) are very much like prob-
abilistic cellular automata, except the probability distribution is replaced with
a quantum superposition of classical configurations. That is, a quantum config-
uration is a map ψ : C(L) → C from classical configurations to complex number
amplitudes such that

�2(ψ) =
∑

x∈L

|ψ(x)|2 = 1.

The analogy between PCA and QCA does not end there. Given a distribu-
tion of deterministic configurations, each cell has a marginal distribution, but
the marginal distributions for all cells do not give us a complete picture of a
configuration because the states of cells may be correlated. Similarly, each cell
of QCA has a quantum state, but cells may be entangled.

Let us define quantum cellular automata more formally.

Definition 2. A layered quantum cellular automaton (LQCA) is a 5-tuple
(L, V,Σ, q, ρ) consisting of

– a finite dimensional lattice L = Z
d,

– a list of shifts V = [v1, . . . , vk] for k different layers, where vi ∈ Z
d,
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– a finite set of states, Σ,
– a special quiescent state q ∈ Σk, and
– a unitary transformation ρ on the Hilbert space

H = {f : Σk → C}

of functions from Σk to C.

In addition, we require that ρ fixes the quiescent state. That is, if ψ ∈ H is the
map that sends q to 1 and all other inputs to 0, then ρ(ψ) = ψ.

Intuitively, the state of a cell is a vector x in H such that ‖x‖2 = 1. The state
of a region, X, containing k cells is a vector x in the tensor product H⊗k such
that ‖x‖2 = 1, which makes sense because H⊗k is isomorphic to the Hilbert
space of functions from C(X) to C. We would like a quantum configuration for
the entire lattice to be a vector of

⊗

x∈L

H,

but this infinite tensor product is not well-defined. Instead, we say a finite con-
figuration is a classical configuration c ∈ C(L) such that all but finitely many
cells in the quiescent state, q. Let C∗(L) be the set of all finite (classical) configu-
rations the lattice L. Then the quantum configurations of the LQCA are defined
to be

Q(L) := {ψ : C∗(L) → C | �2(ψ(x)) = 1}.

That is, functions from finite configurations to amplitudes such that the �2-norm
is 1.

The evolution of the LQCA is defined by ρ, a unitary transformation on
the quantum state of a cell, and V , the list of shifts. As before, we apply ρ to
each cell, then shift each layer by the corresponding vector. Each step is linear
in the sense that if x, y ∈ Q(L) are quantum configurations which evolve to
x′, y′ ∈ Q(L) when we apply ρ to every cell, then αx + βy evolves to αx′ + βy′

(when we apply ρ) for all α, β ∈ C such that �2(αx + βy) = |α|2 + |β|2 = 1.
Therefore it suffices to define the two steps for quantum configurations where
for classical configurations (actually quantum configurations where one classical
configuration has amplitude 1).

Recall that a finite configuration has only finitely many cells which are not
in state q. Since ρ fixes state q, we can ignore all those cells (they remain in
state q), and consider a finite quantum system composed of the remaining cells.
The set of quantum states for the finite set of cells is in H⊗k for some k, and we
apply ρ to each cell in this finite dimensional space, i.e., apply ρ ⊗ ρ ⊗ · · · ⊗ ρ.
We have already seen how to shift the layers of a classical configuration; it is the
same in the quantum setting as it was in the classical setting.
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4 Physical Universality

Computational universality is well studied in cellular automata. There are cel-
lular automata which can simulate a wide variety of (formal) computational
devices: circuits, Turing machines, quantum circuits, other cellular automata,
etc. Almost all of these cellular automata require the “data” to be written in a
special form, usually distinct from the “program”.

– Conway’s Life encodes information as gliders, but the program must be laid
out as glider guns.

– Margolus’ billiard ball machine uses balls to represent data, and the config-
uration of the “table” determines the computation.

– Raussendorf’s universal quantum CA [4] puts quantum bits in even columns
(moving left), and the description of quantum gates in odd columns (moving
right). Computation occurs as the interleaving columns pass each other.

– Wim van Dam’s CA operates directly on qubits, but the program cells are
over a larger state space.

Janzing [2] defined physical universality as a stronger notion of universality
for cellular automata. Informally, a cellular automaton is physically universal if
one can implement any transformation on any finite set of cells by “program-
ming” the other cells. To state it more formally, we first need the following
definition.

Definition 3. Let M be a CA on a lattice L. Let X be a region of the lattice. We
say a configuration y ∈ C(L\X) implements a transformation f : C(X) → C(X)
in t time steps if for every configuration x ∈ C(X), there exists a configuration
y′ ∈ C(L\X) such that x × y evolves to f(x) × y′ in t timesteps.

Then physical universality (in the classical setting) is defined as follows.

Definition 4. Let M be a CA on a lattice L. Then M is physically universal
if for every finite set of cells X ⊆ L and for every function f : C(X) → C(X),
there exists a configuration y of L\X and a time t ∈ Z such that y implements
the transformation f on X in t timesteps.

There were no examples of physically universal CAs in Janzing’s original
paper. We now know that (classical) physically universal CAs exist, with rela-
tively simple examples due to Schaeffer [6], Salo and Törmä [5]. These examples
are all layered cellular automata, and the construction used to show physical
universality has the same general structure in each case:

1. First, show that any finite configuration eventually becomes inactive.
2. Allow the input configuration to become inactive, and collect whatever infor-

mation remains.
3. Use the reversibility and computational universality of the automaton to

forensically reconstruct the original configuration of the input region.
4. Use computational universality again to apply the given transformation on

the input.
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5. Find a way to put the desired output configuration in the output region, usu-
ally by appealing to reversibility and computational universality yet again.

We will follow exactly the same approach to show that a layered quantum cel-
lular automaton is physically universal, but first let us define quantum physical
universality.

5 Quantum Physical Universality

Before we introduce quantum physical universality in cellular automata, let us
discuss the inherent limitations of programmable quantum devices in the context
of quantum circuits. Nielsen and Chuang [3] call such circuits programmable
quantum gate arrays (PQGA).

Definition 5. Let G be a quantum circuit with a program register P, and a data
register D, each consisting of many qubits. Then G is a programmable quantum
gate array if there exist program states {Pi}i∈I , and unitary transformations
{Ui}i∈I of the data register such that for all i and d,

G(Pi ⊗ d) = P ′
i (d) ⊗ Ui(d)

where P ′
i (d), the garbage left in the program register, may depend on i and d.

In other words, there are |I| settings of the program register, which effect unitary
transformations {Ui}i∈I on a data register. Nielsen and Chuang make a num-
ber of observations about PQGAs in [3], which we summarize in the following
theorem.

Theorem 1. Let G be a PQGA, with Pi, P ′
i and Ui as above. Then

1. the garbage in the program register, P ′
i (d) = P ′

i , does not depend on d, and
2. if Ui and Uj are not the same (up to multiplication by eiθ) then Pi and Pj

are orthogonal.

This has several interesting consequences for quantum physical universality.

1. Since distinct programs have orthogonal program states, the number of uni-
tary operations is bounded by |C∗(P) |, the number of classical configurations
of the program register. It is natural to use classical program states (i.e., con-
figurations in C∗(P)), because there is apparently nothing to gain by making
them quantum superpositions.

2. The program register after the computation cannot depend on the input
in the data register. This is purely a side-effect of unitary evolution. Compare
this to the notion of reversible physical universality in the classical setting [6],
where the final value of the program register needs to be defined to be
independent of the data.



A Physically Universal Quantum Cellular Automaton 51

3. If the program register is finite then the PQGA has finitely many distinct
programs. In our cellular automaton, the program register is technically infi-
nite, but since only finitely many bits can interact with the data in any given
time, there are still only finitely many distinct programs. Hence, we must
abandon the idea of implementing all unitary transformations, and confine
ourselves to approximations of arbitary unitaries. Fortunately, this problem
is shared by quantum circuits, so there are procedures [1] for approximating
unitary transformations with a finite set of quantum gates.

This informs our definition of quantum physical universality.

Definition 6. Let M be a QCA on a lattice L, and let X ⊆ L be a region. We
say a configuration y ∈ Q(L\X) implements a transformation U : Q(X) → Q(X)
in t timesteps if for every configuration x ∈ Q(X), there exists a configuration
y′ ∈ Q(L\X) such that x ⊗ y evolves to U(x) ⊗ y′ in t timesteps.

Similarly, we say a configuration y of Y ε-approximately implements a trans-
formation U in t timesteps if y implements some transformation U ′ such that
‖U − U ′‖tr ≤ ε, where

‖·‖tr = trace(
√

A∗A)

is the trace norm.

Definition 7. Let M be a QCA on a lattice L. Then M is physically universal
if for every finite set of cells X ⊆ L, every unitary transformation U : Q(X) →
Q(X) and every ε > 0, there exists a configuration y ∈ Q(L\X) and a time t ∈ Z

such that y ε-approximately implements the transformation U on X in time t.

We will see an alternative definition later, once we have an example of a physi-
cally universal quantum cellular automaton.

6 A Physically Universal LQCA

Our physically universal LQCA is on the lattice L = Z, and has six layers
of qubits (i.e., classical state 0 or 1) with speeds −3,−2,−1, 1, 2, 3. Like the
reversibly physically universal CA of Salo and Törmä, we program a universal
set of gates into the update rule (see below) for automaton. Specifically, we use
the controlled-NOT CNOT, the π/8 gate T and the Hadamard gate H, described
briefly below.

CNOT: A two-bit classical gate common in reversible computation. If the control
bit is 1 then the other bit is negated, otherwise neither bit changes.

T : The pi/8 gate is a single qubit gate which changes the phase if the input is
1, but does nothing.

H: The Hadamard gate is a single qubit represented by the matrix

H =
1√
2

(
1 1
1 −1

)

In other words, H(0) is the superposition where 0 and 1 have weight 1√
2
,

and H(1) has the sign of 1 reversed.
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These three gates are known to be universal, and there exist algorithms for
approximating arbitrary unitary transformations [1] with this gate set .

We define ρ by defining it for classical inputs and extending linearly to quan-
tum superpositions thereof. Given a classical cell (x−3, x−2, x−1, x1, x2, x3), we
define ρ(x−3, x−2, x−1, x1, x2, x3) by the following list of rules. Use the first rule
that applies.

– If x−3 = x−2 = x−1 = 1 then cyclically permute x1 → x2 → x3 → x1.
Likewise, if x1 = x2 = x3 = 1 then cyclically permute x−1 → x−3 → x−2 →
x−1.

– If x2 + x3 = 1 = x−2 + x−3 then either swap x1 and x−1, or perform a
controlled-NOT on x1 and x−1 as follows.

• If x2 = x−2 = 1 or x3 = x−3 = 1 then swap x1 and x−1.
• If x2 = x−3 = 1 then apply CNOT to x1 and x−1 with x1 as the control

bit.
• If x−2 = x3 = 1 then apply CNOT to x1 and x−1 with x−1 as the control

bit.
– If x2 = x3 = x−3 = 1 and x−2 = 0 then apply H to x−1. Similarly, if

x3 = x−2 = x−3 = 1 and x2 = 0 then apply H to x1.
– If x2 = x3 = x−2 = 1 and x−3 = 0 then apply T to x−1. Similarly, if

x2 = x−2 = x−3 = 1 and x3 = 0 then apply T to x1.
– Otherwise, leave the cell unchanged.

Observe that the CA is almost entirely classical. If a cell is in a classical state
initially then, in most cases, ρ maps it to another classical state. The only excep-
tions are a handful of cases where change the phase (for T ) or introduce a super-
position (for H).

Our goal is to show that this LQCA is physically universal. Assume we are
given a finite region X, and a unitary transformation U on the cells in X. By
the Solovay-Kitaev theorem [1], for any ε > 0 there exists a circuit C (of H,
T and CNOT gates) which implements a unitary within ε of U . The problem is
then to implement the circuit C.

We follow the pattern used in Schaeffer [6], and Salo and Törmä [5], so we
start by showing that information contained in a bounded region will escape in a
recoverable format. To this end, we define the notion of a depleted configuration.

Definition 8. A quantum configuration x ∈ Q(Z) is depleted if, for every clas-
sical configuration with nonzero amplitude in x, there is at most one particle per
cell and no particle of speed vi occurs to the right of a particle of speed vj > vi,
for all i and j.

We show that any finite configuration quickly becomes depleted.

Theorem 2. Let X ⊆ Z be the region X = {1, . . . , n} and let Y be the comple-
ment. Suppose 0Y ∈ Q(Y ) is the configuration with all cells in the 0 state. Then
there is a time t = 5

2n + O(1) such that for any x ∈ Q(X), the configuration
x ⊗ 0Y evolves to a depleted configuration within time t.
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Proof. The update rule does nothing to a cell if either x−3 = x−2 = x−1 = 0
or x3 = x2 = x1 = 0. In particular, if there are no right-moving particles in
cells (−∞, j] at some time, then there are no right-moving particles in the range
(−∞, j + 1] on the following step, because all the right-moving particles have
moved right by at least one cell. Similarly for left-moving particles in [j,∞).

There are initially no right-moving particles (or particles of any kind) (−∞, 0],
and no left-moving particles in [n+1,∞). By the observation above, there will be
no right-moving particles in (−∞, �n+1

2 �) in �n+1
2 � steps, nor left-moving particles

in [n+1
2 �,∞). It follows that every cell contains only left-moving or right-moving

particles (or neither), and therefore particles move at constant speed without
interacting.

In �n+1
2 � time steps, a particle could move as far as 3

2n+1 cells from its initial
position. The right-moving particles, for instance, could be spread over a range
of 2n+O(1) cells between n

2 and 5
2n+2. So it will take at most 2n+O(1) steps

for the left-most speed 2 particles to overtake the right-most speed 1 particles,
or for the left-most speed 3 particles to overtake the right-most speed 2 particles.
Hence, the right-moving particles will be ordered by speed in at most 5

2n+O(1)
time steps. Similarly for the left-moving particles, so the configuration becomes
depleted in t = 5

2n + O(1) time steps. ��
Suppose we start with a finite configuration. Over time, it becomes depleted

according to the theorem above. At that point, whatever computation the config-
uration may have performed is over, since no interactions can occur in a depleted
configuration. Furthermore, the remains of the computation are readily available
in six groups of particles. Remember that each of these particles is present or
absent in each classical configuration, representing a bit, but since we are in a
quantum configuration, each particle is a qubit, and the qubits may be entan-
gled. We will collect these quantum particles, gather them together, perform a
quantum computation, and then place the result back into X.

Let us discuss how to manipulate these quantum particles. The way we
manipulate these particles is by placing purely classical particles, which we call
manipulators to distinguish them from the particles that come out of X, in the
complement of X. The manipulators will interact with the quantum particles
in such a way that quantum operations (H, T and CNOT) are performed on
the particles, yet the manipulators remain purely classical particles, and do not
change speed or direction.

By inspection of the cell update rule, we need at least three particles in a cell
for an interaction to occur. Two manipulators are required to perform a swap
or apply CNOT, and three are required for T and H. In the cases where only
two manipulators are required, the operation does nothing unless there is a third
particle present (usually in the speed 1 or speed −1 layer). We rely on the fact
that two particles or manipulators have at most one point of intersection. This
ensures that any pair of manipulators can only affect one particle, at a time and
place predetermined by the initial locations of the manipulators.
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We need to show how to do three things with manipulators:

1. Take the six groups of particles in a depleted configuration and redirect them
such that they all move in the same direction at speed 1, in a format suitable
for computation.

2. Approximate an arbitrary quantum computation. We do this by implement-
ing an arbitrary quantum circuit (with gates H, T , and CNOT) exactly.

3. Convert a single group of speed 1 particles back into six groups of different
speed, aimed towards the output region X.

The first step is a poor introduction to the manipulation of particles, so we
begin with the second step – computation – and prove Theorem 3. We will then
return to the problem of redirecting particles and prove Theorem 4. Finally we
argue that the third step is the reverse of the first step, and therefore follows
from the Theorem 4.

Theorem 3. Suppose X is a region of size 2n, containing particles x1, . . . , xn

of speed 1 in the even cells. Let C be a circuit on n inputs, composed of CNOT,
H, and T gates. Then there exists a time t (polynomial in n and the size of C),
such that we can implement the transformation defined by C on x1, . . . , xn in
time t, leaving the result in the even cells of a region Y of size 2n.

Proof. Let us call the area containing the particles the workspace. The workspace
is initially X, but moves right as the particles move right, and may grow as we
move particles around.

We need to show how to implement four operations: we must be able to
apply T , H and CNOT to quantum particles, and be able to move or swap
particles around. It suffices to be able to move a particle left relative to its
peers, since this allows us to completely reorder the particles if we need to.
Given these four operations, it is clear we can implement an arbitrary circuit C.

T and H: The easiest operation is T . We arrange three manipulators (of speed
2, −2, −3) to intercept the desired particle xi at some time. The update rule
causes an T gate to be applied to the speed 1 layer, containing xi. Similarly,
three manipulators (of speed 3, −2, −3) will apply a Hadamard gate H to a
speed 1 particle. Since none of the manipulators have the same speed as the
particles, they spend at most O(n) time steps in the workspace. After that,
the workspace is clear for the next operation.

Move left: If we meet a particle with two manipulators of speed 3 and −3, it
swaps the speed 1 and speed −1 particles. The speed −1 layer is kept empty,
so this effectively reverses the direction of the particle. After the particle has
travelled in the opposite direction for some time, we may reverse it again,
as long as there is no speed 1 particle already in this cell. This allows us to
move particles to the left. There are, however, a few limitations:

– A particle with speed −1 moves 2 cells per timestep relative to the
particles of speed 1. Hence, the distance between the initial and final
position is a multiple of two. This is why the particles are assumed to
be in even cells.
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– We must be careful not to let the manipulators from the two swaps meet.
If they do, they would perform another swap, potentially sending one of
the xi’s off in the wrong direction. The manipulators will meet if and
only if the time between the two reversals is a multiple of three, which
we can easily avoid. If we need to move a particle by a multiple of three
cells, we simply split the move into two parts.

As before, we wait until the manipulators have cleared the workspace before
performing another operation.

CNOT: For CNOT, the idea is to reverse the direction of one input, and then
at the moment it meets the other input, have two manipulators (speed −2
and 3) induce a CNOT operation (where the speed −1 particle controls the
speed 1 particle). We have already seen how to move particles, and how to
apply gates, so the only new problem is how to avoid interference between
the manipulators of the two swaps and the manipulators which implement
the CNOT.
If a speed −2 manipulator meets a speed 3 manipulator, it will implement a
CNOT on the speed 1 and speed −1 layers of that cell. However, the CNOT
does nothing unless there is a speed −1 particle, and the only speed −1
particle is the one we intend to use in the CNOT operation. Hence, we can
ignore speed −2 manipulators.
The speed 3 manipulators, as we have already discussed, will intersect if
the operations they implement are separated in time by a multiple of three.
Fortunately, we only have three operations here: two particle reversals and a
CNOT, so we can schedule these operations such that they do not interfere.
In particular, this means that the initial position (relative to the other par-
ticles) of the control particle (of the CNOT), the final position of the control
particle, and the position of the target particle must be distinct modulo 3.
We may be required to move some of the particles around to accommodate
this condition, but we have already seen how to do that.

We separate all operations by O(n) time steps to ensure that manipulators
from one operation leave the workspace entirely before the next operation, to
avoid collisions within the workspace. Manipulators will inevitably meet outside
the workspace, but there is no interaction unless there are at least three. It
is difficult, if not impossible, to avoid having two manipulators intersect, but
whenever three manipulators intersect, we can always postpone the last of the
three operations (corresponding to the manipulators) to avoid the collision. ��

Next we consider the problem of capturing the remains of X, once it has
reached a depleted configuration.

Theorem 4. Let X ⊆ Z be the region X = {1, . . . , n} and let Y be the comple-
ment. There is some configuration y ∈ Q(Y ) and some time t such that if we let
x ⊗ y evolve for t time steps, only the speed 1 layer, in even cells, depends on x.
In other words, the information from X is contained in the speed 1 layer of even
cells.
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Proof. First, Theorem 2 tells us the particles in X will separate out into six
groups by speed, with the fastest left-moving particles on the far left and the
fastest right-moving particles on the far right, in time O(n). We will show how
to change the speed of each group to 1.

Consider the group of speed 3 particles. The way we change the speed (but
not direction) of a particle is by intercepting it with three manipulators (one
of each speed) moving in the opposite direction. Applied to a speed 3 particle,
these manipulators will reduce its to speed 1. We manipulate particles from back
to front, so that the speed 1 particles fall behind the speed 3 particles, instead of
being overtaken. We also leave plenty of time between manipulations to ensure
that two manipulators ever intercept a particle, and three manipulators never
intersect, except at the planned times and locations of manipulations.

For speed 2 particles, we manipulate each particle to have speed 3, reducing
the problem to one we have already seen. This time we order the manipulations
from front to back so that the new speed 3 particles do not overtake the old
speed 2 particles. Similarly, we can convert speed −3 or speed −2 particles to
speed −1.

The final step is to reverse the speed −1 particles. We saw how to do this
in Theorem 3: two manipulators (speed 3 and −3) collide to swap the speed
−1 layer with the speed 1 layer. As before, we can avoid unintended collisions
between manipulators if we perform the manipulations in the right order, and
with sufficient time between them.

Now if some particles of speed 1 lie in odd cells, then use further manip-
ulations to increase their speed back to 2, breaking parity, and allowing us to
maneuver the particle to an even cell (more accurately, an even cell in even time
steps, an odd cell in odd time steps). Then we increase its speed to 3, and back
to 1 again, but in an even cell. ��

To finish the proof of physical univesrality, we need to show how to out-
put the computed configuration. This means taking a collection of particles of
speed 1, and dividing them into six groups. Then we accelerate each group to
a different speed, and aim them at the region X. We assume that the particles
output by the computational phase (i.e., the collection of particles of speed 1)
were computed to account for the interactions that occur when the particles
come together in region X, so they produce the desired output, namely U (or a
close approximation) applied to the initial contents of X.

Observe that our LQCA is reversible, so we can run it backwards. Further-
more, it is close to being the same automaton in reverse – the case which allows
us to change speed 1 to speed 2 to speed 3 cycles in the opposite direction,
gates are inverted (of course, H and CNOT are their own inverses), and parti-
cles move backwards, but the automaton is close enough that Theorem 2 and
Theorem 4 go through. Hence, we can construct a configuration (in the reverse
QCA) which takes the contents of the region X, reduces their speed, and col-
lects them together. The manipulators do not depend on the contents of X, so
we can compute their positions at the end (again, in the reverse QCA) of this
construction. Now let us run these manipulators forward in the (forward) LQCA.
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The manipulators take a group of speed 1 particles and force them into an output
region, which is exactly what we want!

In summary, we claim that the LQCA defined earlier is physically universal.
Given a region X and a unitary transformation U on X, we construct a circuit
(of T , H and CNOT gates) to implement some U ′ such that ‖U − U ′‖tr ≤ ε.
Then we implement U ′ in the LQCA in three steps:

– We extract the data initially in X by letting it reach a depleted configuration,
and rounding up the particles that escape.

– We decode the initial configuration from the particles, apply the circuit for
U ′, and encode the desired configuration as a collection of particles.

– We aim the particles at region X, and wait for them to interact in X and
produce the transformed output.

With sufficient time between these three phases, we can avoid collisions between
the manipulators. This concludes the proof of our main result.

Theorem 5. The LQCA described at the beginning of the section is physically
universal.

In fact, the LQCA achieves a stronger definition of physical universality where
the program configuration is not allowed to depend on ε. In other words, a single
configuration implements arbitrarily good approximations of U if we let it run
longer.

Definition 9. Let M be a QCA on a lattice L. Then M is strongly physically
universal if for every finite set of cells X ⊆ L, and every unitary transformation
U : Q(X) → Q(X) there exists y ∈ Q(L\X) such that for any ε > 0 there exists
a time t ∈ Z such that y ε-approximately implements the transformation U on
X in time t.

Corollary 1. The LQCA described at the beginning of the section is strongly
physically universal.

Proof. Suppose the input region is X0 and the unitary is U0. Let (εi)∞
i=0 be

a sequence of positive real numbers tending to zero. By physical universality,
there is a configuration y0 in Q(L\X0) and time t0 such that y ε0-approximately
implements the transformation U0 on X0 in time t0.

Now iteratively build programs on larger and larger regions. In general, let
Xi+1 be a region containing Xi plus 3ti cells on either side, and all non-quiescent
cells in yi. This region is large enough that no particle outside it can possibly
affect X0 in t0 steps. Apply physical universality to Xi+1 with error εi+1 > 0
and unitary Ui+1, where Ui+1 applies Ui to the region Xi, and the identity
transformation to the cells in Xi+1\Xi. Physical universality gives us a program
yi+1 ∈ Q(L\Xi+1) and time ti+1.

Finally, combine the yi configurations into a single large configuration y ∈
Q(L\X0). Given an ε > 0, find some εi < ε and let y run for ti time steps. This
is just enough time for the program yi to execute, but not enough time for the
later programs to interfere, so we get an εi < ε approximation of U applied
to X0. ��
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7 Future Work

– We leave the time and space complexity of this cellular automaton open for
analysis. Can we quantify the performance of the construction in the proof
of strong physical universality?

– The automaton is not as simple or aesthetically pleasing as its classical
counterparts. Can we construct a less obviously artificial LQCA in more
dimensions?

– Is there a notion of physical universality for unbounded computations on a
quantum Turing machine?
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Abstract. We study the attractor structure of standard block-sequential
threshold dynamical systems. In a block-sequential update, the vertex
set of the graph is partitioned into blocks, and the blocks are updated
sequentially while the vertices within each block are updated in parallel.
There are several notable previous results concerning the two extreme
cases of block-sequential update: (i) sequential and (ii) parallel. While
parallel threshold systems can have limit cycles of length at most two,
sequential systems can have only fixed points. However, Goles and Mon-
tealegre [5] showed the existence of block-sequential threshold systems
that have arbitrarily long limit cycles. Motivated by this result, we study
how the underlying graph structure influences the limit cycle structure
of block-sequential systems. We derive a sufficient condition on the graph
structure so that the system has only fixed points as limit cycles. We also
identify several well-known graph families that satisfy this condition.

Keywords: Graph dynamical systems · Generalized cellular automata ·
Threshold functions · Block decomposition

1 Introduction

In this paper, we study Boolean graph dynamical systems or automata networks
induced by threshold functions. Such systems are a natural choice to model
various biological and sociological phenomena (see [6–8,11] for example). We
consider standard Boolean threshold functions where, each vertex v is associated
with a threshold Tv, and the vertex function of v evaluates to 1 if and only if
at least Tv vertices in its closed neighborhood (v and its distance-1 neighbors)
are in state 1. These systems have been extensively studied [1,3,4]. Several gen-
eralizations of standard threshold functions have been considered in the past.
For example in [10], bi-threshold systems were studied where the thresholds for
the 0 to 1 and 1 to 0 transitions can be different. Multi-threshold systems with
more than 2 possible vertex states were considered in [4,9]. In [14], systems
with dynamic thresholds were considered where the vertex thresholds vary with
time. Another popular variant of the standard threshold function are Hopfield
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networks, where only the open neighborhood is considered while evaluating the
next state, i.e., the state of the vertex itself is ignored.

Our focus is on the limit set or the attractor structure of these systems
which captures their “long-term” behavior. The update scheme, i.e., the order in
which the vertex functions are evaluated, influences the attractor structure and
in general the phase space. Two update schemes (i) synchronous or parallel and
(ii) sequential are well-studied. In the synchronous update scheme, every vertex
function is applied simultaneously, while in a sequential update scheme, vertices
are updated one by one according to a total order defined on the vertex set.
A generalization of these schemes is the block-sequential update. Here, the ver-
tices are partitioned into blocks, and vertices within the blocks are updated syn-
chronously while the blocks themselves are updated sequentially. A more general
sequential scheme is the word update which is a generalization of the sequential
systems. Here, a vertex can be updated more than once in a single time step [12].

Two interesting questions which have been repeatedly addressed in the past
are: given a graph dynamical system, (i) what is the maximum possible length
of a limit cycle? (ii) what conditions lead to only fixed points as limit sets?
There are some notable results in the case of standard threshold systems. Goles
and Olivos [3] and Barrett et al. [1] independently, using different methods,
showed that sequential threshold systems exhibit only fixed points as limit cycles.
In [3,4], it was shown that for synchronous update there can be limit cycles
of length at most two. Their result is applicable for the more general case of
weighted threshold functions. Kuhlman et al. [10] considered these questions
regarding bi-threshold systems. They showed that, while synchronous systems
can have limit cycles of length at most two, sequential systems can have arbi-
trarily long limit cycles.

In this paper, we consider standard threshold systems with block-sequential
update. Mortveit [13] showed that if the blocks are of size at most 3, then there
will be only fixed points. The author also conjectured that the limit cycle length
can be at most two for arbitrary block size. However, this was disproved recently
by Goles and Montealegre [5]. Unlike the sequential or synchronous cases, these
systems can have arbitrarily long limit cycles. In [4], the more general setting
of weighted threshold functions was studied. They gave a sufficient condition
for the system to have only fixed points. In this work, we examine standard
threshold systems systems from a structural perspective. Our main objective
was to identify conditions on the underlying graph structure which lead to only
fixed points. Our main result is given below.

Theorem 1. Let X be a simple graph with vertex set V [X] and edge set E[X].
Let B be a block partition of V [X]. If every block B ∈ B satisfies Condition (1)
below, then, any block-sequential standard threshold system induced by B for any
update order on the blocks has only fixed points as limit sets. Also, the transient
length is at most (|E[X]| + |V [X]| + 1)/2.

For any non-empty B′ ⊆ B and any assignment y of vertex states
for B′, ‖B′‖ − 2|ΛB′(y)| − |B′| < 0, where, ‖B′‖ is the number of
edges in the subgraph induced by B′ and ΛB′(y) =

{{u, v} ∈ E[X] |
u, v ∈ B′, and yu = yv

}
.

(1)
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An interesting feature of Theorem 1 is that Condition (1) only applies to the
individual blocks and is independent of the connections between the blocks.
The proof uses the potential function argument introduced in [1]. We build on
the framework provided by [13] and extend the results of that paper. We also
show that simple graph classes such as trees and complete graphs satisfy Con-
dition (1). In addition, we show that any graph which can be block-decomposed
into subgraphs which satisfy Condition (1), also satisfies this condition.

We note that Condition (1) is not a necessary condition. Consider any graph
with arbitrary block partition where each vertex has threshold 1. This is a pro-
gressive threshold system, i.e., a vertex will never transition from 1 to 0. Hence,
it has only fixed points even though the blocks may not satisfy Condition (1).

The organization of the paper is as follows. We introduce the notation and
basic definitions in the next section. In Section 3, we prove Theorem 1. In
Section 4, we derive the block-decomposition result. In Section 5, we demonstrate
some graph classes which satisfy Condition (1) before we conclude in Section 6.

2 Preliminaries

Let X be a simple undirected graph on n vertices with vertex set V [X] and edge
set E[X]. Let B = {B1, B2, . . . , Bm} be a block partition of V [X]. For S ⊆ V [X],
let degS(v) denote the number of neighbors of v in the graph induced by S, and
let deg(v) be its degree in X. xv denotes the vertex state of v. Since we are
considering Boolean systems, xv ∈ {0, 1}. Let x = (x1, x2, . . . , xn) be the system
state. Let n[v] denote the sorted sequence of the closed neighborhood of v, and
let x[v] denote the restriction of x to n[v].

Every vertex is assigned a threshold function fv : {0, 1}deg(v)+1 −→ {0, 1}
defined as follows:

fv

(
x[v]

)
=

{
1, if

∑
w∈n[v] xw ≥ Tv,

0, otherwise,
(2)

where Tv ∈ N with Tv ≥ 1 is the threshold of v. For a block B and system state
x, the map FB(x) : {0, 1}n −→ {0, 1}n is given by

(
FB(x)

)
v

=

{
fv

(
x[v]

)
, if v ∈ B,

xv, otherwise.
(3)

The block-sequential map F : {0, 1}n −→ {0, 1}n is defined as

F = FBm
◦ FBm−1 ◦ · · · ◦ FB1 . (4)

The two special cases of the block-sequential update scheme are sequential
and parallel update schemes. The sequential update corresponds to each ver-
tex belonging to a distinct block, i.e., for i = 1, . . . , n, |Bi| = 1 and therefore,
m = n. In parallel update, there is only one block, i.e., m = 1 and B1 = V [X].
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3 Sufficient Condition for Fixed Points

3.1 Potential Function Method

For v ∈ V [X], let T0(v) denote the smallest number of vertices in n[v] that
must be in state 0 for xv to be mapped to zero. By the definition of threshold
function in (2), we have T0(v) + T (v) = deg(v) + 2. With each vertex and edge,
we associate a potential. The vertex potential for vertex v and system state x is

P (x, v) =

{
T (v), xv = 1,

T0(v), xv = 0 .
(5)

The edge potential for edge e = {v, v′} is

P (x, e) =

{
1, xv �= xv′ ,

0, otherwise.
(6)

The system potential function P : {0, 1}n → N for state x is defined as

P (x) =
∑

v∈V [X]

P (x, v) +
∑

e∈E[X]

P (x, e) . (7)

For sequential threshold systems, Barrett et al. [1] showed that for any x′ = F (x)
where x �= x′, P (x′) < P (x). Since P (x) ≥ 0 for all x, it follows that the limit
set is comprised of only fixed points. They also showed that the transient length
is at most (|E[X]| + |V [X]| + 1)/2 as a consequence of this result. The same
argument was applied by Mortveit [13] for block-sequential systems with blocks
of size at most three.

3.2 Proof of Theorem 1

Suppose the system transitions from state x to x′ when a block B is updated, i.e.
x′ = FB(x). Let ΔP = P (x′) − P (x). Let Pv(x) = P (x, v) +

∑
e∈Ev[X] P (x, e),

where Ev[X] is the set of edges incident with v. Let ΔPv = Pv(x′)−Pv(x) denote
the change in potential at vertex v. Note that since only block B is updated,
∀v /∈ B, xv = x′

v. Let B(x, x′) ⊆ B denote the set of vertices such that xv �= x′
v.

We use the following result from Mortveit [13].

Lemma 1 (Mortveit [13]). ΔP =
∑

v∈B(x,x′) ΔPv.

The lemma below gives an upper bound for ΔPv.

Lemma 2. For any v ∈ B(x, x′), let γv denote the number of neighbors of v
in B(x, x′) which have the same state as v in x (and therefore, in x′). Applying
FB, ΔPv ≤ degB(x,x′)(v) − 2γv − 2.

Proof. In [13], ΔPv is bounded as a function of degB(v) and the number of
vertices in state 1 in x. We apply the same approach here, but obtain a more
compact result. Let n1(x, v) and n0(x, v) denote the number of neighbors of v
in state 1 and 0 respectively. There are two possible cases: v transitions either
from 0 to 1 or 1 to 0. We consider these cases separately.
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Transition 0 → 1. Note that n1(x) ≥ T (v). We recall that T (v) + T0(v) =
deg(v) + 2. Also, since only vertices in B(x, x′) change state,

n0(x′, v) = n0(x, v) + (number of neighbors of v in B(x, x′) in state 1 in x)
− (number of neighbors of v in B(x, x′) in state 0 in x)

= n0(x, v) + (degB(x,x′)(v) − γv) − γv

= deg(v) − n1(x, v) + degB(x,x′)(v) − 2γv .

(8)

Now we compute ΔPv.

ΔPv =
(
T (v) + n0(x′, v)

) − (
T0(v) + n1(x, v)

)

= T (v) +
(
deg(v) − n1(x, v) + degB(x,x′)(v) − 2γv

)

− (
deg(v) + 2 − T (v) + n1(x, v)

)

= 2
(
T (v) − n1(x, v)

)
+

(
degB(x,x′)(v) − 2γv − 2

)

≤ degB(x,x′)(v) − 2γv − 2 .

Transition 1 → 0. In this case, we have n1(x) ≤ T (v) − 2. Following a similar
approach as in (8), it can be shown that n1(x′, v) = n1(x, v)+degB(x,x′)(v)−2γv.

ΔPv =
(
T0(v) + n1(x′, v)

) − (
T (v) + n0(x, v)

)

=
(
deg(v) + 2 − T (v)

)
+

(
n1(x, v) + degB(x,x′)(v) − 2γv

)

− T (v) − (
deg(v) − n1(x, v)

)

= 2
(
n1(x, v) − T (v)

)
+ 2 +

(
degB(x,x′)(v) − 2γv

)

≤ degB(x,x′)(v) − 2γv − 2 .

��
For a set of vertices S ⊆ V [X], let ‖S‖ denote the number of edges in X[S], the
subgraph induced by S. For a state vector x, let ΛS(x) =

{
(u, v) | u, v ∈ S, xu =

xv and {u, v} ∈ E[X]
}
, i.e., the set of all pairs of adjacent vertices in S which

have the same state.

Lemma 3. ΔP = P (x′) − P (x) ≤ 2
(‖B(x, x′)‖ − 2|ΛB(x,x′)(x)| − |B(x, x′)|).

Proof. From Lemma 1, P (x′) − P (x) =
∑

v∈B(x,x′) ΔPv. Applying Lemma 2,
P (x′) − P (x) ≤ 2(‖B(x, x′)‖ − ∑

v∈B(x,x′) γv − |B(x, x′)|). Note that for each
(u, v) ∈ ΛB(x,x′)(x), v contributes 1 to γu and u contributes 1 to γv. More-
over, if (u, v) /∈ ΛB(x,x′)(x), then, it does not contribute to the sum. Therefore,∑

v∈B(x,x′) γv =
∑

(u,v)∈ΛB(x,x′)(x)
2 = 2|ΛB(x,x′)(x)|. Hence proved. ��

Lemma 4. Let block B satisfy Condition (1). Then, for any x′ = FB(x) such
that x′ �= x, P (x′) < P (x).
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Proof. From Lemma 3, ΔP ≤ 2(‖B(x, x′)‖ − 2|ΛB(x,x′)(x)| − |B(x, x′)|). Let
B′ = B(x, x′) and y be the state vector restricted to B(x, x′). Since x′ �= x, B′

is not empty. Therefore, by Condition (1), ‖B′‖ − 2|ΛB′(y)| − |B′| < 0. ��
From Lemma 4, we note that if every block satisfies Condition (1), then, when-
ever a block is updated and some vertices change states, the system potential
decreases. Since the potential cannot be negative by definition, it follows that
there can be only fixed points as limit sets. Hence, we have proved Theorem 1.

4 Block Decomposition

In the graph theory literature, a block is a maximal connected subgraph without
a cut vertex [2]. Every block can either be a maximal 2-connected subgraph,
an edge, or an isolated vertex. Since the term “block” has already been used to
mean something else in this paper, we will henceforth refer to maximal connected
subgraphs as subblocks. Every graph can be decomposed into subblocks. Since
they satisfy maximality, any two subblocks overlap in at most one vertex, which,
if it exists, is a cut vertex of the graph. This is illustrated with an example in
Figure 1(a). Let C be the set of cut vertices and S be the set of subblocks. The
block graph is the bipartite graph on the vertex set C ∪ S where for c ∈ C and
S ∈ S, {c, S} is an edge if and only if c ∈ S. It can be easily shown that the
block graph is a tree. See Figure 1(b) for the block graph of the example.

Fig. 1. An example of (a) a block decomposition and (b) the corresponding block graph

Theorem 2. Let block B be such that all of its subblocks satisfy Condition (1).
Then, B satisfies Condition (1) too.

Proof. Let {S1, . . . , Sk} be the vertex partition of B where each Si induces a
subblock of B. From the block graph representation, it is easy to see that there
exists an ordering of the subblocks such that every subblock has at most one cut
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vertex in common with its previous subblocks. We will assume that the current
ordering satisfies this property, i.e.,

∣
∣
(∪j<iS

j
) ∩ Si

∣
∣ = 1, ∀i = 1, . . . , k . (9)

Let D ⊆ B and Di = D∩Si. From (9), we have |D| ≥ |D1|+∑k
i=2

(|Di|−1
)
. For

a subset of vertices S, let ES denote the edge set of the graph induced by S. We
observe that the edge sets ESi partition EB . This implies that EDi are mutually
disjoint. Since ΛDi(x) ⊆ EDi

, they are mutually disjoint, too. We have

‖D‖ − 2ΛD(x) − |D| ≤
k∑

i=1

(‖Di‖ − 2ΛDi(x)
) −

(
|D1| +

k∑

i=2

(|Di| − 1
))

=
(‖D1‖ − 2ΛD1(x) − |D1|) +

k∑

i=2

(‖Di‖ − 2ΛDi(x) − |Di| + 1
)
.

Since all the subblocks satisfy the Condition (1), the first term in the above
expression is negative while the second term is at most 0. Hence, ‖D‖−2ΛD(x)−
|D| < 0. ��

5 Simple Graph Classes which Satisfy Condition (1)

We will show that some graph classes such as trees, odd cycles, and complete
graphs satisfy Condition (1). Even though these are very simple graphs, to the
best of our knowledge, these results have not been obtained before using any
other method. Throughout this section, B corresponds to a block in X and
B′ ⊆ B.

Proposition 1. If B induces a tree in X, then it satisfies Condition (1).

Proof. Suppose B′ ⊆ B. If the graph induced by B′ is connected, then it still
corresponds to a tree. If not, then, each connected component (which is also a
tree) in the graph can be considered independent of the rest of the block. In
that case, effectively we are working with a smaller tree. Hence, without loss
of generality, we will assume that B′ is connected (and can be the same as B).
Since ‖B′‖ = |B′| − 1, it implies that B satisfies Condition (1). ��
Alternatively, we could have used Theorem 2 to prove the above proposition.

Proposition 2. If B induces an odd cycle in X, then it satisfies Condition (1).

Proof. If B′ ⊂ B, then it corresponds to a collection of disconnected paths. Then,
we can apply Proposition 1 to show that B′ satisfies the condition. Therefore, we
will assume that B′ = B. We first note that ‖B‖ = |B|. Since the cycle is odd,
there exists by the pigeonhole principle, at least one pair of vertices in ΛB′(y)
for any state vector y. Hence, for all B′ ⊆ B, ‖B‖ − 2ΛB(y) − |B| < 0. ��
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Proposition 3. If B induces a clique in X, then it satisfies Condition (1).

Proof. If B′ ⊂ B, then it still induces a clique. Hence, we will assume that
B′ = B. Let y be the state vector restricted to B. Let n0 denote the number
of vertices of B in state 0 and let n = |B|. Since B is a clique, |ΛB(x)| =(
n0
2

)
+

(
n−n0

2

)
, which attains a minimum value of 1

2

[⌊
n
2

⌋ (⌊
n
2

⌋−1
)
+

⌈
n
2

⌉ (⌈
n
2

⌉−1
)]

at n0 =
⌊

n
2

⌋
. Therefore,

‖B‖ − 2|ΛB(x)| − |B| =
(

n

2

)

− 2|ΛB(x)| − n

<
⌊n

2

⌋
− n = −

⌈n

2

⌉
.

��
The next result concerns systems with block size at most 4. This is an extension
of the result by Mortveit [13].

Proposition 4. Any block B of size 4, other than the 4-cycle, satisfies Condi-
tion (1).

Proof. If B′ ⊂ B, then it corresponds to a block of size 3 or less, for which
the result follows from [13]. Hence, we will assume that B′ = B. If B is a tree
or clique, then, by Propositions 1 and 3, the statement is true. The remaining
possibilities excluding the 4-cycle are isomorphic to one of the graphs illustrated
in Figure 2. We consider them one by one and in each case show that ‖B‖ −
2|ΛB(x)| − |B| < 0 and the rest follows from Lemma 3.

Graph (a) In this case, |B| = ‖B‖ = 4 and since {2, 3, 4} induces an odd cycle,
it implies that ΛB(x,x′)(x) is not empty and therefore |ΛB(x,x′)(x)| ≥ 1.

Graph (b) Here, ‖B‖ = 5 and again, since {2, 3, 4} (or {1, 3, 4}) induces an
odd cycle, |ΛB(x,x′)(x)| ≥ 1.

Graph (c) The argument is similar to the previous case. ��

1 2

34

(a)

1 2

34

(b)

1 2

34

(c)

Fig. 2. Possible connected graphs (up to isomorphism) of size 4 excluding trees and
4-cycle
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Remark 1. Note that one can configure an example corresponding to a 4-cycle
(C4) which does not satisfy Condition (1) (see Figure 3(a)). Moreover, this con-
figuration corresponds to a limit cycle of length 2. So, a natural question to ask
is whether graphs which do not have a C4 as a vertex-induced subgraph sat-
isfy Condition (1) for all x. Unfortunately, the answer is no. Figure 3(b) is an
example where an induced-C4-free graph has a limit cycle of length two.

T = 2

(a)

2

3

(b)

Fig. 3. Configurations which lead to a limit cycles of length two: if the black vertices are
in state 0, then the white are in 1, and vice versa. (a) Block C4 where all vertices have
threshold 2 and (b) an induced-C4-free graph with the black vertices having threshold
2 and white vertices 3.

Proposition 5. If B is a wheel graph with odd cycle, then it satisfies Condi-
tion (1).

Proof. A wheel graph is formed by connecting a single vertex to all vertices of a
cycle. See Figure 4 (a) as an illustration. Let B′ ⊆ B and y be the state vector
restricted to B′. There are three cases that need to be considered.

(a) B′ does not contain the center vertex. In this case, B′ induces either an odd
cycle or a collection of paths. Then, from Propositions 1 and 2, ‖B′‖−2|ΛB′(y)−
|B′| < 0.

(b) B′ ⊂ B and contains the center vertex. In this case, the central vertex cor-
responds to a cut vertex (see Figure 4 (b)). Therefore, block decomposition of B′

yields subblocks, all of which have the following structure: a path graph where
each vertex is connected to a central vertex. Let B′′ be such a subblock (illus-
trated in Figure 4 (b)). We only need to show that ‖B′′‖ − 2ΛB′′(y) − |B′′| < 0.
The rest follows from Theorem 2. Let n = |B′′|. We have ‖B′′‖ = 2n − 3.

Without loss of generality, we will assume that the state of the center vertex
is 0. Let Q denote the remaining set of vertices and of these, let k be in state 0.
It is clear that the rest n − 1 − k vertices are in state 1. We have

|ΛB′′(y)| = k + |ΛQ(y)| . (10)

Now we claim that
|ΛB′′(y)| ≥ n − 2

2
. (11)
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嫗嫗

芸

Fig. 4. (a) An exemplary wheel graph. (b) Induced sub-graph B′ of a wheel graph by
removing multiple vertices from the cycle.

If k ≥ n−2
2 , (11) trivially holds. Thus, we will assume that k < n−2

2 . Note
that each edge on Q contributes 1 to |ΛQ(y)| if and only if the two vertices
associated with the edge are in the same state. Therefore, |ΛQ(y)| will achieve
its minimum value when all vertices in state 0 have their neighbors in state 1.
And since k < n−2

2 , it is guaranteed that such a configuration exists. In this case,
n − 2 − 2k edges will contribute to |ΛQ(y)|, i.e. we have, |ΛQ(y)| ≥ n − 2 − 2k .
This yields, |ΛB′′(y)| = k + |ΛQ(y)| ≥ n−2−k > n−2

2 . Hence, (11) holds, which
in turn implies that

‖B′′‖ − 2|ΛB′′(y)| − |B′′| ≤ 2n − 3 − 2 · n − 2
2

− n ≤ −1 .

Hence, proved.

(c) B′ = B, i.e. we consider the whole wheel graph. In this case, |B| = n and
‖B‖ = 2n − 2. Now, we will show that ‖B‖ − 2|ΛB(y)| − |B| < 0. The argument
is similar to the previous case. Let Q denote the set of vertices in the cycle. Now,
we will claim that

|ΛB(y)| ≥ n − 1
2

. (12)

Since |ΛB(y)| = k+ |ΛQ(y)|, if k ≥ n−1
2 , the above inequality holds. We can thus

assume k < n−1
2 . There are n−1 edges on the cycle. Using the same arguments as

in the previous case, at most 2k edges do not contribute to the value of |ΛQ(y)|,
which means |ΛQ(y)| ≥ n − 1 − 2k. It follows that

|ΛB(y)| = k + |ΛQ(y)| ≥ n − 1 − k >
n − 1

2
.

Hence, (12) holds. We have,

‖B‖ − 2|ΛB(y)| − |B| ≤ 2n − 2 − 2 · n − 1
2

− n ≤ −1 .

Hence, proved. ��
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Remark 2. Note that there exists a wheel graph with an even cycle corresponding
to a limit cycle of length 2, see Figure 5. In this example, suppose the threshold
value of the central vertex is 3 and all other vertices have threshold value 2.
Then, one can verify that the central vertex will remain 0 and the other vertices
will change states alternatively in pairs, i.e. this configuration leads to a length
2 limit cycle.

Fig. 5. Configuration over a wheel graph with an even cycle which leads to a limit
cycle of length 2. Black vertices are in state 0 and white are in state 1. The threshold
value for the central vertex is 3, and 2 for other vertices.

6 Conclusion

In this paper, we studied the limit cycle structure of standard threshold dynami-
cal systems with block-sequential update. We identified a sufficient condition for
the system to have only fixed points as limit sets. There are several possibilities
to consider for the future. Even though the condition depends only on the blocks
and not the graph as a whole, it seems to be restrictive. One direction to explore
is to find more general conditions which take into account edges between the
blocks too. Another direction would be to study bi-threshold block-sequential
systems.
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Abstract. We show that the winning positions of a certain type of
two-player game form interesting patterns which often defy analysis, yet
can be computed by a cellular automaton. The game, known as Block-
ing Wythoff Nim, consists of moving a queen as in chess, but always
towards (0,0), and it may not be moved to any of k − 1 temporarily
“blocked” positions specified on the previous turn by the other player.
The game ends when a player wins by blocking all possible moves of the
other player. The value of k is a parameter that defines the game, and the
pattern of winning positions can be very sensitive to k. As k becomes
large, parts of the pattern of winning positions converge to recurring
chaotic patterns that are independent of k. The patterns for large k dis-
play an unprecedented amount of self-organization at many scales, and
here we attempt to describe the self-organized structure that appears.

1 Blocking Queen Games (k-Blocking Wythoff Nim)

In the paper [Lar11], the game of k-Blocking Wythoff Nim was introduced, with
rules as follows.

Formulation 1: As in Wythoff Nim [Wyt07], two players alternate in removing
counters from two heaps: any number may be removed from just one of the
heaps, or the same number may be removed from both heaps. However, a
player is allowed to reject the opponent’s move (so the opponent must go
back and choose a different, non-rejected move), up to k−1 times, where k is
a parameter that is fixed for the game. The kth distinct attempted move must
be allowed. Thus, if there are at least k winning moves among the options
from a given position, then one of these winning moves can be played.

Formulation 2: There are k chess pieces on an infinite (single quadrant) chess
board: one queen, and k−1 pawns. On your turn you move the queen towards
the origin. (The first player who cannot do this loses.) The queen cannot be
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141029 and 200021-153295.

c© IFIP International Federation for Information Processing 2015
J. Kari (Ed.): AUTOMATA 2015, LNCS 9099, pp. 71–84, 2015.
DOI: 10.1007/978-3-662-47221-7 6



72 M. Cook et al.

moved to a position with a pawn, but it can move over pawns to an empty
position. After moving the queen, you complete your turn by moving the
k − 1 pawns to wherever you like. The pawns serve to block up to k − 1 of
the queen’s possible next moves.

Example Game: Consider a game with k = 5, where the queen is now at
(3, 3) (yellow in Figure 1). It is player A’s turn, and player B is blocking the
four positions {(0, 0), (1, 1), (0, 3), (3, 0)} (dark brown and light olive). This
leaves A with the options {(3, 1), (3, 2), (2, 2), (2, 3), (1, 3)} (each is black or
blue). Regardless of which of these A chooses, B will then have at least five
winning moves to choose from (ones marked yellow, or light, medium, or dark
olive). These are winning moves because it is possible when moving there to
block all possible moves of the other player and thereby immediately win.
Therefore player B will win.
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Fig. 1. Game 5: (0, 0) is the upper left position on this 11 × 11 chessboard, and the
queen is allowed to move north, west, or north-west. The colors represent the number
of winning moves available (ignoring blocking) from each position. 0: Dark Brown,
1: Dark Olive, 2: Olive, 3: Light Olive, 4: Yellow, 5: Black, 6: Blue, 7: Indigo. Since
k = 5, up to four moves can be blocked. This means that by moving to a position
with four or fewer winning moves available, it is possible to block all those winning
moves, thus preventing the other player from making a winning move. Therefore the
positions with four or fewer winning moves available (yellow, brown, and the olives) are
themselves winning moves. The remaining positions, with five or more winning moves
available (black, blue, and indigo), are losing moves, because if you move there, it is
not possible to prevent the other player from making a winning move. Thus the color
at any given position (the palace number, see text) can be computed by considering
the colors above and to the left of it.

As shown in Figure 1, there is a simple algorithm to compute the winning
positions for game k. These are known as P-positions in combinatorial game
theory, and we will refer to them as palace positions, the idea being that the
queen wants to move to a palace: if you move her to a palace, you can win,
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while if you move her to a non-palace, your opponent can win. To win, you must
always block (with pawns) all of the palaces your opponent might move to.

The idea is simply that a palace is built on any site that can see fewer than
k other palaces when looking due north, west, or north-west. In this way, the
pattern of palaces can be constructed, starting at (0,0) and going outward. For
efficiency, a dynamic programming approach can be used, storing three numbers
at each position, for the number of palaces visible in each of the three directions.
With this technique, each line can be computed just from the information in the
previous line, allowing significant savings in memory usage.

The case k = 1 corresponds to classical Wythoff Nim, solved in [Wyt07].
In [Lar11], the game was solved for k = 2 and 3. When we say a game is solved we
mean it is possible to give closed-form expressions for the P-positions, or at least
that a winning move, if it exists, can be found in log-polynomial time in the heap
sizes. For example, the set {(�nφ�, �nφ2�), (�nφ2�, �nφ�)}, where n runs over the
nonnegative integers and φ = 1+

√
5

2 is the golden ratio, provides a solution for
classical Wythoff Nim. Combinatorial games with a blocking maneuver appeared
in [GaSt04], [HoRe01], [HoRe] and [SmSt02], and specifically for Wythoff Nim
in [Gur10], [HeLa06], [Lar09] and [Lar15].

The new idea that we use in this paper is to look directly at the number of
palaces that the queen can see from each position on the game board, and to
focus on this palace number rather than just on the palace positions (P-positions).
(The palace positions are exactly the locations with palace numbers less than
k.) In previous explorations, the palace number was in fact computed but then
only used for finding the new palace positions, which when viewed on their own
give the appearance of involving long-range information transfer. By observing
the palace number directly, however, we can see that in almost all positions
the palace number is surprisingly close to k, and if we look at its deviation
from k then we are led to discover that these deviations follow a local rule that
does not even depend on k. The next section will present this local rule as a
cellular automaton (CA). A finite automaton for Wythoff Nim has been studied
in a different context in [Lan02]. Other recent results for cellular automata and
combinatorial games can be found in [Fin12], [Lar13] and [LaWa13].

The rest of the paper will present the rich structure visible in the patterns
of palace numbers for games with large k. A surprising number regions of self
organization appear, largely independent of the particular value of k, and some
of the self-organized patterns are quite complex, involving multiple layers of self-
organization. This is the first CA we are aware of that exhibits so many levels of
self-organization. So far, these patterns offers many more questions than answers,
so for now we will simply try to catalog our initial observations.

2 A Cellular Automaton Perspective

In this section we describe a cellular automaton that computes the palace num-
bers for blocking queen games.
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2.1 Definition of the CA

The CA we present is one-dimensional and operates on a diamond space-time
grid as shown in Figure 2, so that at each time step, each cell that is present
at that time step derives from two parents at the previous time step, one being
half a unit to the right, the other being half a unit to the left. On the diamond
grid, there is no cell from the previous step that is ‘the same’ as a given cell on
the current step. However, the three grandparents of a cell, from two steps ago,
do include a cell which is at the same spatial position as the grandchild cell.

Our CA rule is based not only on the states of the two parent cells, but also on
the state of the central grandparent cell, as well as its parents and central grand-
parent, all shown in blue in Figure 2. As such, this CA depends on the previous
four time steps, i.e. it is a fourth-order CA. It is the first naturally occurring
fourth-order CA that we are aware of. We say it is “naturally occurring” simply
because we discovered these pictures by analyzing the blocking queen game, and
only later realized that these pictures can also be computed by the fourth-order
diamond-grid CA we present here.1

The states in our CA are integers. In general they are close to 0, but the
exact bounds depend on the initial conditions. The formula for computing a
cell’s value, given its neighborhood, is described in Figure 2.

2.2 The Connection Between the CA and the Game

Since our definition of the CA appears to be completely different from the defi-
nition of the blocking queen game, we need to explain the correspondence.

The idea is that the states of this CA correspond to palace numbers minus k,
which are generally integers close to zero. One can easily prove a bound of 3k+1
for the number of states needed for the game with blocking number k, since each
row, column, and diagonal can have at most k palaces, so palace numbers are
always in the range [0, 3k]. However, in practice the number of states needed
(after the initial ramping-up region near the origin) appears to be far smaller,
more like log k. For example, when k = 500, only eight states are needed, ranging
between -4 and 3.

Surprisingly, this single CA is capable of computing the pattern of palace
numbers regardless of the value of k. Different values of k simply require different
initial conditions: The initial condition for a given value of k is that every site
in the quadrant opposite the game quadrant should be k, and every site in the
other two quadrants should be 0.

1 Using the dynamic programming approach described in Section 1, the information
for each cell can be computed from just its parents and central grandparent, so that
approach is also clearly a CA, but it needs a large number of states for the cells and
each different value of k requires a different rule. The CA we describe in this section
is much more surprising, being a single rule that is completely independent of k and
using very few states to produce all of the interesting parts of the pictures.
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Fig. 2. The CA rule. (left) The diamond grid on which the CA operates. The value of
the red cell is determined by the values of the blue cells. This neighborhood stretches
four steps back in time (i.e., four levels above the red cell), making it a 4th order CA.
(center) This diagram is rotated 45◦, so time flows in the direction of the diagonal
arrows. This is the orientation used in all the figures in this paper. The red cell’s value
is computed according to the formula g = a − b − c + e + f + p (right) These green
squares correspond to the blue cells and show the palace compensation terms. For any
blue cell containing a negative value (and therefore a palace, see Section 2.2), the
corresponding palace compensation term must be added. In the formula, p represents
the total contribution of these palace compensation terms. Note that location d only
affects g via its palace compensation term, so only its sign matters.

Theorem 1. The k-Blocking Wythoff Nim position (x, y) is a P-position if and
only if the CA given in Figure 2 gives a negative value at that position, when the
CA is started from an initial condition defined by

CA(x, y) =

⎧
⎨

⎩

k x < 0 and y < 0
0 x < 0 and y � 0
0 x � 0 and y < 0

Proof. irst we will consider the case of no P-positions occurring within the CA
neighborhood, so compensation terms can be ignored.

As shown in Figure 2, we will let v1 be the number of P-positions directly
above a and c, and similarly for v2 and v3, as well as for the diagonals di and
horizontal rows hi.

This gives us a = v1+d2+h1−k, and so on: when adding the k-value to each
cell this represents the sum of the numbers of P-positions in the three directions.

We would like to express g in terms of the other values. Notice that

a + e + f =
3∑

i=1

vi +
3∑

i=1

di +
3∑

i=1

hi − 3k = b + c + g

and therefore a+ e+f = b+ c+ g, allowing us to express g in terms of the other
values as g = a − b − c + e + f .

All that remains is to take any P-positions in the CA neighborhood into
account, so as to understand the compensation terms.

If there is a P-position at a, then b, c, d, and g (i.e. the positions in a line
to the right, down, or right-down) will all be one higher than they were before
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taking that palace into account. Since the equation a+e+f = b+c+g was true
when ignoring the palace at a, it becomes wrong when the palace at a produces
its effect of incrementing b, c, d, and g, because that makes the right hand side
go up by 3 while the left hand side is untouched. To compensate for this, we can
add a term pa to the left hand side, which is 3 if there is a palace at a, and 0
otherwise.

Similarly, if b is a P-position, then this increments d, e, and f , so to compen-
sate, we will need to subtract 2 from the left hand side of a + e + f = b + c + g
if b is a P-position.

We can see that we are computing exactly the compensation terms shown in
the green squares of Figure 2. Once we include all the compensation terms, the
formula for g becomes correct even in the presence of local P-positions, and it
corresponds exactly to the rule given in Figure 2.

The initial condition can be confirmed to produce (via the CA rule) the
correct values in the first two rows and columns of the game quadrant, and from
that point onwards the reasoning given above shows that the correct palace
numbers, and therefore the correct P-positions, are being computed by the CA
rule.

2.3 Notes on Reversability

The reversed version of this CA computes a, given b, c, d, e, f , and g. This is
done with the equation a = g − f − e + c + b − p, which is equivalent to the
equation in the caption of Figure 2. However, the palace compensation term p
can depend on a, so this equation has not fully isolated a on the left hand side.
(The forward direction did not have this problem, since p does not depend on g.)
Writing p = pa + pbcdef to separate the palace compensation term from a from
the other palace compensation terms, we get a + pa = g − f − e + c + b − pbcdef .
Since pa is 3 when a is negative, and 0 otherwise, this equation always yields
either one or two solutions for a. If the right hand side is 3 or more, then a must
be equal to it. If the right hand side is negative, then a must be 3 less than it.
And if the right hand side is 0, 1, or 2, then a can either be equal to it or be 3
less than it—we are free to choose. The reversed rule is non-deterministic, but
it can always find a compatible value. In other words, there is no “Garden of
Eden” pattern for this rule, if we assume that all integers are permissible states.

3 Self-Organization

The top row of Figure 3 shows the palace number patterns for games 100 and
1000. The patterns are strikingly similar, given that the value of k differs by
an order of magnitude. The pattern for game 1000 has the appearance of being
“the same, but ten times bigger” than the pattern for game 100. The middle
and lower rows of Figure 3 zoom in on subregions where the two patterns are in
fact identical, without any scaling factor.
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Fig. 3. Self-organized regions in game 100 (left, 300 × 300 region shown in top row)
and game 1000 (right, 3000 × 3000 region shown in top row). The lower images are
close-ups of the upper images, showing regions of identical behavior. The middle row
shows a 100 × 100 region by the nose, and the bottom row shows a 100 × 100 region
by the shoulder.
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3.1 Terminology

As an aid to our discussion of these complex images, we will give names to the
prominent features in them.

We can see that this system self-organizes itself into 11 regions with 14 bor-
ders and 6 junctions. Ignoring duplicates due to the mirror symmetry, there are
7 regions, 7 borders, and 4 junction points.

We will start by naming the 7 regions and some features inside them. The
region at the upper left (the game’s terminal region, and the CA’s starting
region), in the shape of a dented triangle, is the hood. The triangular regions
adjacent to the hood, with a periodic interior (visible in all panels of Figure 3),
are the épaulettes. The rhomboid region that emanates from between the pair
of épaulettes is the fabric. The solid black regions at the top and at the left
constitute the outer space. Between the outer space and the épaulettes we find the
arms (irregular yellow regions in Figure 3), which extend indefinitely. Extending
next to the arms, and of similar width, we have the warps. Each warp contains a
number of threads (strings of yellow dots, clearly visible in the top left panel of
Figure 3) which come out of the fabric. Between the warps lies the inner sector,
and the blue stripes in the warps and in the inner sector are the weft.

Next, we will name the 4 junction points. The hood, épaulettes, and fabric
all meet at the nose. The hood, épaulette, arm, and outer space all meet at the
shoulder. The warp, fabric, épaulette, and arm all meet at the armpit, which is
often a hotspot of highly positive palace numbers. And the fabric, warps, and
inner sector meet at the prism. The inner sector often contains slightly higher
palace numbers than the warps, especially near the main diagonal, giving the
impression of light being emitted from the prism.

Finally, we come to the 7 borders. The hood and épaulette meet cleanly at
the casing. The hood contains all the states from −k to 0, but after the casing,
the CA uses very few states. The épaulette and arm meet at the seam. The
épaulette and fabric meet at the rift, a narrow, relatively empty space which
appears to get wider very slowly. The fabric and warp meet at the fray, where
threads almost parallel to the fray unravel from the fabric, and threads in the
other direction exit the fabric and start merging to form thick threads in the
warp. There is no clear boundary where the warp meets the inner sector, since
the warp simply runs out of threads. The warp also meets the arm cleanly, at the
inside of the arm. At the boundary between the warp and the arm, it appears
that the yellow nature of the arm is due to being packed full of threads, and
the warp simply has a much lower density of threads. Threads that bend into
the inner sector, and stop being parallel to the rest of the warp, are often called
beams. The often-occurring slightly-separated periodic part of the arm, bordering
the outer space, is the skin.

The fray, warp, central sector, armpits, and prism are all very sensitive to k,
but all the other regions are not, with the exception of the fabric and the rift,
which are sensitive only to k mod 3. The fabric, fray, warp, prism, and central
sector are all full of weft. Often the centermost beams will communicate with
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each other via the weft, and this process can usually be analyzed to calculate
the slopes of these beams, which are generally quadratic irrationals.

This is the greatest complexity of self-organization that we have seen for a
system that has no structured input.

3.2 Structure Within the Regions

The hood and the épaulets have a very regular structure. The palace numbers
in the hood increase steadily in each row and column, increasing by one when
the higher coordinate is incremented, and by two when the lower coordinate is
incremented. Thus the hood contains all palace numbers from 0, at the upper
left corner, to k, where the hood meets the épaulettes at the casing, a line with
slope -1/2 (and -2) that connects the nose at (k/3, k/3) to the shoulder at (0, k)
(and (k, 0)). The hood is exactly the region where every move is a winning move,
because all possible further moves can be blocked, thereby immediately winning
the game. When players are not making mistakes, the game ends when (and
only when) somebody moves into the hood, thereby winning the game.

The palace numbers in the épaulettes form a two-dimensional periodic pat-
tern, with periods (5, 1) and (4, 3) (and all integral linear combinations of those
base periods). Only the palace numbers k − 1, k, and k + 1 appear in the

Fig. 4. (left) A comparison between k = 497 and k = 500. Positions where the two
images differ are masked in white. All other colors show places where the two images
match, meaning that if the palace number at position (x, y) is p in the image for
k = 497, then the palace number at position (x + 1, y + 1) is p + 3 in the image for
k = 500. P-positions are shown in yellow (and brown, in the hood), and N-positions are
shown in black and blue. Note that the hood, épaulettes, and fabric match perfectly.
(right) A comparison between k = 499 and k = 500. In this comparison, “matching”
means that if the palace number at position (x, y) is p in the image for k = 499, then
the palace number at position (x + 1, y) is p + 1 in the image for k = 500. Note that
the épaulette and arm match perfectly, as does half of the hood.
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épaulettes. In the épaulette’s periodic region of size 11, k − 1 (a P-position)
appears 5 times, and k and k + 1 (both N-positions (no palace)) each appear
3 times. The rift has a periodicity of (81,31), which is also a periodicity of the
épaulette.

The arms, shown in the bottom row of Figure 3 have a random appearance,
although they often contain temporary black stripes at one of the two angles
parallel to their sides. Despite this initial appearance of disorder, the arms have
many interesting properties, discussed in Section 3.4.

The fabric exhibits further self-organization. The larger black regions visible
in the middle row of Figure 3 form a rough grid, and in much larger pictures
(k � 1000) the grid morphs into a larger-scale grid, which is at a slightly different
angle and has cells about 3.5 times larger. Regions of the small-grid pattern
appear to travel through the large grid like meta-gliders, visible in the top right
of Figure 5. These grid cells are separated by threads of P-positions, which are
able to split and merge to form smaller and larger threads, and sometimes seem
to disappear.

Threads typically have a measurable (vertical, horizontal, and/or diagonal)
thickness, which is added when they merge, as happens frequently just after the
fray, as in Figure 5. For example, in the left-hand warp the threads have integer
vertical thicknesses, that is, each thread has a fixed number of P-positions that
occur in every column. Furthermore, this fixed number is always a Fibonacci
number.

Fig. 5. Game 9999. The armpit in the upper left corner is generated when the rift hits
the seam. This starts the fray, which separates the meta-glider behavior in the fabric
from the merging threads of the warp. If viewing this document electronically, zoom
in for detail.
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Fig. 6. Game 40003: A prism and its light beam. The slightly higher palace numbers
near the main diagonal can give the impression of a beam of light being emitted by
the prism. When the two fraying edges of the fabric meet at the prism, such higher
palace numbers are often produced. If viewing this document electronically, zoom in
for detail.

3.3 Region Prefix Properties

If we look around the nose, we see one of three pictures, depending on the value
of k mod 3, because this determines the precise pixel arrangement of the casing
at the nose. These three shapes are shown in Figure 7. Since there are only
three possibilities for the hood boundary shape at the nose, and the CA rule can
then be used to produce the épaulettes and fabric without knowing k, we see
that despite the chaotic nature of the fabric, there are in fact only three fabric
patterns that can be produced. Figures 3 and 4 both show examples of how the
full fabric area matches between different games with k congruent modulo 3.

Using the CA, starting from an infinite casing pattern, we can make any of
the three fabric patterns in an infinitely large version. The fabric patterns that
we see in practice are simply prefixes of one of these three infinite fabrics.

The arms similarly can be formed by the CA rule from the shoulder, and
in this case there is only one possible pattern. Figure 4 shows how this pattern
remains very stable as k increases.
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Fig. 7. The 3 fabrics. (left) k = 0 mod 3. (center) k = 1 mod 3. (right) k = 2 mod 3.
The upper row is the same as the lower row, but more zoomed in.

3.4 Properties of the Skin

Where the arm borders the outer space, the arm grows a periodic skin (see
Figure 8), which is slightly separated from the rest of the arm, except that it
emits a vertical (in the case of the upper arm) line once per period. This skin
consists of solidly packed P-positions, with a vertical thickness of f2n (or f2n +1
where a line is emitted), a diagonal thickness of f2n+1, a horizontal thickness of
f2n+2, a horizontal period of f2n+3, and a vertical period of f2n+1, where f2n is
the 2nth Fibonacci number. The skin originally forms at the top of the arm with
n = 1, and after about 200 pixels (horizontally, about 80 vertically) it changes
to the form with n = 2, then after about 7700 pixels it changes to the form
with n = 3. We conjecture that for large k, it will continue to thicken in this
manner, with n increasing by one each time, approaching a slope of φ2. In the
other direction, one can even see the n = 0 stage of this pattern as part of the
épaulette at the start of the arm for the first 10 pixels or so, although it is not
clearly visible due to the lack of black pixels between this skin and the rest of
the arm.

The boundary between the skin (which has palace numbers k − 2 and k − 1)
and the outer space (which has constant palace number k) consists of steps of
width 2 or 3. Each time the skin thickens, the pattern of steps expands according
to the rule {2 → 23, 3 → 233}, starting from the pattern of just 2 for the skin
n = 0. The skin pattern of positions of palace numbers k − 2 and k − 1 can
be computed from this pattern of steps and from the assumption that there are
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Fig. 8. Skin pattern

k − f2n+3 palaces to the left of the skin in each row. This pattern is rotationally
symmetric within each period (between the columns that produce the vertical
lines), and with each thickening follows the expansion rule (writing −2 for k−2,
etc.)
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−2 −2
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−2 −2 −2
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⎞
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⎛

⎝
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−2 −1 −1

⎞

⎠ ,

where one of the four expansion matrices is chosen based on the required size.
The widths are determined by the step pattern, and the heights are partially
defined by the property that all matrices produced by a given row should have
a row in common.

4 Conjectures and Questions

Most of the observations in Section 3 may be viewed as open problems. Here we
list of a few.

– Is it the case that a sufficiently thick arm will grow thicker and thicker skin
over time?

– The arm’s skin (as observed for n = 1 and n = 2) has a vertical thickness
of f2n (except where a line is emitted), a diagonal thickness of f2n+1, a
horizontal thickness of f2n+2, a horizontal period of f2n+3, and a vertical
period of f2n+1, where n is the thickness level (here fi is the ith Fibonacci
number). Can this pattern be explained, and does it continue?
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– Are the inner sectors beyond the fabric essentially different for different k,
starting with distinct armpits (see Figure 5), and eventually producing ever
different and irregular innermost P-threads?

– Are the armpits the unique regions from which the queen views the most
palaces (for large k)?

– Do the innermost P-threads always have slopes corresponding to algebraic
numbers? If there is only one innermost upper P-thread, is the slope a root
of a second degree polynomial with rational coefficients?

– How many non-periodic threads can there be for a given k? We conjecture at
most two upper ones, which must be the inner ones; with all others eventually
becoming periodic.

– Why is it that the threads of the warp merge in such a way that their
thickness is always a Fibonacci number?
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Abstract. We establish bounds for the entropy of the Hard Core Model/
Independent Sets on a few 2-d lattices. Our PCA-based sequential fill-in
method yields an increasing sequence of lower bounds for the topological
entropy. Additionally the procedure gives some insight on the support
of the measure of maximal entropy. The method also applies to other
lattices and models with appropriate sublattice splitting.

Keywords: Hard core model · Independent sets · Topological entropy

1 Introduction

The Hard Core Model/Golden Mean Subshift/Independent Sets is a
highly useful model in various disciplines as witnessed by its many appear-
ances under distinct names in fields like Statistical Mechanics/Symbolic Dynam-
ics/Theoretical Computer Science respectively. Simply described, one distributes
0’s and 1’s on each vertex of a given graph and requires an exclusion rule to
hold everywhere: no two 1’s can be nearest graph neighbors ([1]).

On a k-partite graph it is natural to associate with it a probabilistic cellular
automaton (PCA) which updates each of the k subgraphs from the others with
a local rule as follows: in an all-0 neighborhood update the center vertex to 1
with probability u ∈ (0, 1), otherwise update to 0. Running a sequential update
with the PCA (from any input) through the subgraphs yields eventually any
Hard Core configuration with positive probability (and no others).

The PCA behavior is of interest for different u-values. If u is near 1, we
are in the high density regime and the characterization of the allowed Hard
Core configurations is essentially a packing problem (studied e.g. in an earlier
paper [6]). In the dilute case i.e. u is near 0, the configurations are essentially
Bernoulli(ũ)-fields (sometimes called Hard Square Gas), 0 < ũ < u.

Here we concentrate on the intermediate entropic regime. The outstanding
open question near u = 1/2 is the exponential size of the configuration space. In
almost all two or higher dimensional set-ups the exact answer is unknown. We try
to alleviate the situation a little bit by establishing a procedure to estimate the
entropy from below and to characterize the typical configurations. For simplicity
we restrict here the graphs to be 2-d lattices. This facilitates comparison to
entropy approximations elsewhere via different methods (e.g. [2], [4], [7], [8], [9]).
Our ideas also generalize to more complicated and higher dimensional set-ups.
For a general percolation approach to Hard Core see e.g. [3].
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DOI: 10.1007/978-3-662-47221-7 7
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1.1 Set-up

Let L be a 2-dimensional lattice. Subsequently we will consider mostly one of
the regular lattices (square (Z2), honeycomb (H) or triangular (T)). In a few
cases we illustrate the principles developed on more exotic stages like square
lattice with the Moore neighborhood (Z2M, eight nearest Euclidean neighbors,
a non-planar graph) or the Kagomé lattice (K). Our method is not intrinsically
2-d but for understanding the clear geometry of 2-d serves best.

A configuration on L satisfying the Hard Core Rule is an element in X =
{0, 1}L where no two 1’s can be nearest neighbors. This rule can naturally be
viewed as a zero range infinite repulsive potential i.e. a hard exclusion rule not
unlike that in hard sphere packing. Call the collection of configurations Xhc

L .
The exclusion rule naturally imposes a sublattice split on L if it is a k-

partite graph. For example on Z2, a bipartite graph, one can man all sites on
2Z2 (Z2 rescaled by

√
2 and rotated by 45◦) with 1’s and the rest of Z2 must

then be all 0’s. Call the former the even sublattice, Le and the latter the odd
sublattice, Lo (it is a (1/2, 1/2)-shifted copy of the former). In rendering these
we will present the even/odd sublattices as circle/dot sublattices. In a similar
fashion H splits into two identical sublattices and T (a tripartite graph) into
three “thinned” copies of T. Both in the dense packing regime of [6] and in the
the entropic regime of this paper, this splitting will be highly relevant.

Let X0 ⊂ X = {0, 1}L. | · | means the cardinality and x|A means the restriction
of x to the set A. The standard measure of richness of the configuration set is

Definition 1. The topological entropy of the set X0 is

htop
X0

= lim
n→∞

1
n

ln |{x|An
| x ∈ X0}|

where |An| = n and the sequence {An} grows in a sufficiently regular fashion.

Remark. For the full shift on any lattice htop
X = ln 2 (indicating two independent

choices per lattice site). If L = Z the Hard Core model is explicitly solvable
and a standard transfer matrix argument implies that htop = ln

(
1+

√
5

2

)
(e.g.

[11]). For two and higher dimensional lattices the matrix argument breaks down
and the exact value of the Hard Core topological entropy remains an unsolved
problem except for T (see [1]). In this paper we try to approach and in particular
approximate it in a novel way.

From the general theory of lattice dynamical systems ([11]) it is known that
shift invariant probability measures on a space of configurations, M, satisfy
the maximum principle, htop = supM hμ, where hμ is the measure-entropy. The
special measures yielding the equality are measures of maximal entropy. For
two and higher dimensional systems they are in general not unique. In all our
cases they are believed to be so, but we do not actually need to know this.

For the idea of our approach recall that given the entropy function H(P) =
−∑

μ(Pi) ln μ(Pi) for a partition P, it holds H(P ∨ P ′) = H(P) + H(P ′|P).
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In the case of Z let P(e) = {{x|x0 = i}} and P(o) = {{x|x1 = i}} be the (gener-
ating) partitions for the even/odd sublattice for the left shift σ. P = P(e) ∨ P(o)

generates on Z and the conditional entropy formula above implies

hμ(σ) =
1
2
hμ(σ2|P) =

1
2
h(e)

μ + inf
n

1
2n

Hμ

(
n−1∨

k=0

σ−2kP(o)
∣
∣
∣

n−1∨

k=0

σ−2kP(e)

)

. (1.1)

The formula readily generalizes to Zd-actions, to multiple sublattices etc. The
last expression is trivial only in the independent case (equals 1

2h
(o)
μ ). It codes

the additional entropy to be gained from the odd sublattice, given the even. In
the case of Hard Core it is manageable since 1. the rule is of range one and 2. the
hard exclusion greatly simplifies the computation of the conditional probabilities
involved. This will become much more transparent in the subsequent analysis.

2 Lower Bounds

We now proceed to establish lower bounds for the topological entropy using
the sublattice partition representation (1.1) and a sequential fill-in scheme to
circumvent the dependencies. To keep the ideas clear we first present them in
the bipartite the case and then comment on the k-partite cases.

Let Ne denote an all-0 nearest neighbor neighborhood of a site on the odd lattice
in the even lattice. In the case of Z2 lattice the sites in Ne form the vertices of
an even unit diamond, ♦e (♦o). On the honeycomb and triangular lattices
these sites form triangular arrangements, � or � or a hexagon.

It will become quite useful to think the fill-in in terms of forming a tiling.
The pieces are 0/1-tiles which in Z2 case are either 0/1-diamonds (as above)
depending on whether the center site carries 0 or 1. On the hexagonal and tri-
angular lattices the tiles are 0/1-(unit) hexes. Once a sublattice is chosen, one
can tile the plane using any combination of 0/1-tiles centered on the sublattice.

Recall that the Bernoulli measure with parameter p, B(p), assigns 1’s inde-
pendently with probability p to each (sub)lattice site and 0’s otherwise. Its
entropy, denoted by hB(p), is −p ln p − (1 − p) ln (1 − p).

Proposition 1. The topological entropy of the hard core model on a lattice with
a two-way sublattice split is given by

htop =
1
2

{
h(e) + P (Ne) ln 2

}
, (2.1)

where h(e) is the entropy of the measure of maximal entropy computed from the
even sublattice alone.

Proof. We attain the maximum entropy by first assigning the marginal of the
measure of maximal entropy to the even lattice and then filling in the non-
blocked sites on the odd lattice. These are centered at the even unit diamonds,
which have probability P (Ne). B(1/2) is the maximal entropy measure among
B(p), hence this on the allowed odd sites and the factor hB(1/2) = ln 2. 	
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The principle in the Proposition can be directly applied to square and honey-
comb lattices. A further argument is required to cover all regular lattices. In
the following result we present these arguments and further extend to Kagomé
lattice, K (a tripartite graph), as well as to the square lattice with Moore neigh-
borhood, Z2M (eight nearest neighbors in Euclidean metric, a 4-partite graph).

Theorem 1. The topological entropy of the hard core model is bounded from
below on the square (m = 4) and honeycomb (m = 3) lattices by

hZ2/H(p) =
1
2

{
hB(p) + (1 − p)m ln 2

}
, (2.2)

on triangular (m′ = 3) and Kagomé (m′ = 2) lattices by

hT/K(p, q) =
1
3

{
hB(p) + (1 − p)m′

[ hB(q) + [1 − (1 − p)q]2 ln 2 ]
}

(2.3)

and on Z2M lattice by

hZ2M(p, q, r) =
1
4

{
hB(p) + (1 − p)2

[
hB(q) + [1 − (1 − p)q]4 hB(r)

+ (1 − p)2(1 − q)2
[
1 − (1 − (1 − p)q)2r

]2 ln 2
]}

(2.4)
where p, q and r ∈ (0, 1).

Proof. The lower bounds (2.2) follow simply from (2.1) by assigning B(p) to the
even sublattice since then P (Ne) = (1−p)|Ne| where the exponent is the number
of elements in Ne in Z2 and H respectively.

On the triangular lattice the sublattice partition is three-way. We call the
parts the dot, circle and triangle sublattices. They are filled in three stages in
the order ◦ → • → �. See Figure 1a and b for the notation and arrangement of
the sublattices in a neighborhood of a triangle site.

Suppose the three sublattices are initially all empty. First fill-in the circle
lattice with B(p), hence the entropy contribution 1

3hB(p). Then fill-in all dot
sites centered at � with B(q), this implies the entropy increase 1

3 (1 − p)3hB(p)

from the dot lattice.
To update the center site which is a triangle we need to know that its value

is not forced. Hence

P(center triangle not forced by nearest neighbor circle or dot)
= P(no 1′s in the hexagon of nearest neighbors of the triangle)
= P(� = 0 and � = 0) = P(c2 = c4 = c5 = 0 and d1 = d2 = d3 = 0)
= P(d1 = d2 = d3 = 0 | c2 = c4 = c5 = 0) P(c2 = c4 = c5 = 0)

= P(d1 = d2 = d3 = 0 | c2 = c4 = c5 = 0) (1 − p)3

= [ P(d1 = 0 | c2 = c4 = c5 = 0) ]3 (1 − p)3

= [ P (c1 = 1 or {c1 = 0 and d1 = 0} | c2 = c4 = c5 = 0) ]3 (1 − p)3

= [p + (1 − p)(1 − q)]3 (1 − p)3

(2.5)
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which together with the choice B(1/2) on the non-blocked dots gives (2.3).
The Kagomé lattice argument is similar to the triangular one. There are

three sublattices involved, all identical copies of the Kagomé, only thinned and
reoriented. For the nearest neighbors of a triangle-site see Figure 1c. Again we
fill in the order ◦ → • → �. In the last stage the probability of the triangle site
being unforced is now

P(c2 = c4 = 0 and d1 = d2 = 0)

= [ P (c1 = 1 or {d1 = 0 and c1 = 0} | c2 = c4 = 0) ]2 (1 − p)2

= [p + (1 − p)(1 − q)]2 (1 − p)2

In the case of the square lattice with Moore neighborhood there is a four-way
sublattice partitioning. We denote and fill them as follows: ◦ → • → � →  (see
Fig. 1d).

The two first terms of the formula (2.4) are straightforward since circles are
laid independently and each dot has exactly two circle neighbors. Furthermore
as above we can show that P(� unforced) = (1 − p)2 [p + (1 − p)(1 − q)]4 .

For the diamond site at the center of Fig. 1d to contribute to the entropy we
need to know the probability that it is unforced i.e. all entries in the punctured
square S rendered with dotted line in Fig 1d. are 0’s:

P
(
S = 0

)
= P

(
all �, • ∈ S are 0 | all ◦ ∈ S are 0

)
(1 − p)4

=P
(
� ∈ S are 0 | ◦, • ∈ S are 0

)
(1 − p)4(1 − q)2

=P
(
d1 = 1 or {d1 = d2 = 0 and t1 = 0} | ◦, • ∈ S are 0

)
(1 − p)4(1 − q)2

=
[
P

(
d1 = 1 | ◦, • ∈ S are 0

)

+ P
(
d1 = d2 = 0 and t1 = 0) | ◦, • ∈ S are 0

)]2 (1 − p)4(1 − q)2

(2.6)
One can compute the two probabilities in the last expression to be

2p(1 − p)q + (1 − p)2(2 − q)q and
[
p2 + 2p(1 − p)(1 − q) + (1 − p)2(1 − q)2

]
(1 − r)

respectively. From these the formula in the square brackets in (2.6) can finally
be simplified to the form 1 − [1 − (1 − p)q]2r. QED

The entropy bounds in (2.2) - (2.4) can be maximized with respect to the param-
eters using standard optimization routines in a desktop machine.

In the square lattice case the topological entropy has been computed to a
great accuracy (e.g. in [2] to some 40 decimal places) using the corner transfer
matrix methods. These numerical studies attack the problem in a very different
way. Our aim is not to compete in decimal count but rather present an alter-
native method applicable in many lattice set-ups to estimate the entropy which
simultaneously yields some explicit information on the generic configurations/the
measure of maximal entropy.
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Fig. 1. Tiling of the triangular lattice with hexagonal 1-tiles and neighborhoods in
triangular, Kagomé and Z2M cases

Table 1. First lower bounds for Hard Core topological entropy and the corresponding
sublattice densities for some 2-d lattices. To the right we have indicated the best
numerical estimates for the entropy and corresponding density (in parenthesis) found
in the literature.

L max hL sublattice densities best estimates

Z2 0.3924 (0.1702, 0.2370) 0.4075 (0.2266)[9],[2]
H 0.4279 (0.2202, 0.2371) 0.4360 (0.2424)[2]
T 0.3253 (0.1457, 0.1559, 0.1517) 0.3332 (0.1624)[2]
K 0.3826 (0.1944, 0.1948, 0.1866)
Z2M 0.2858 (0.119, 0.127, 0.130, 0.126)

The measure of maximal entropy doesn’t need to be unique for a 2-d lattice
model but in the case of hard square gas it is. This follows from the Dobrushin
criterion ([5], [10]). Using this knowledge and the results above we now establish
bounds for the density of 1’s in the generic configurations. The exact value of
the upper bound in the following result is in the Proof but we prefer to give the
statement in this more explicit form.

Proposition 2. In the square lattice case the density of 1’s at the equilibrium
is in the interval (0.21367, 0.25806).

Proof. Let ρe be the density of 1’s on the even lattice and let c denote the
expected number of 0’s that a 1 forces on the odd lattice. Since exactly half
of the non-forced sites will be 1’s it must by the uniqueness of the measure of
maximal entropy hold that (2 + c)ρe = 1. Hence under it

P(xi = 0) =
1 + c

2 + c
, P(xi = 1) =

1
2 + c

and P (♦e) =
2

2 + c

on both lattices. The last one is due to exactly half of ♦e giving rise to all the 1’s
on the other sublattice. (0-diamond as defined in the beginning of the section).

The entropy of any distribution on the even lattice with 1-density ρe is
bounded from above by the entropy of the Bernoulli distribution with parameter
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ρe. Hence the total entropy at that 1-density is bounded from above by

1
2

(

hB

(
1

2 + c

)

+
2

2 + c
ln 2

)

.

This expression bounded by htop of Table 1 ([2] or [9]) yields an upper bound
for c, 2.6801 which in turn gives the lower bound for ρe.

The upper bound for ρe follows from a lower bound for c which we establish
using a monotonicity argument. The 1’s on say the even lattice are B(1/2)-
distributed on the non-forced sites. Call this set F. Pick a site in it which has
symbol 1. How many sites will this entry block? Let F ′ be a superset of F. Then
clearly E(c| F ) ≥ E(c| F ′) as in a bigger domain the 1 is more likely to share the
blocking with a nearest neighbor 1 on the same sublattice. Hence a lower bound
is obtained by calculating the blocking for a 1 with its eight nearest neighbors
also in F . Enumerating the 28 possible neighborhood configurations and weight-
ing them uniformly according to the B(1/2)-distribution we get the lower bound
for c: 15/8. This in turn implies the upper bound for ρe, 8/31. QED

Since our first estimate for the lower bound on Z2 is associated with densities
incompatible with Proposition 2 we will try out a symmetric variant of the
theme. The (near) equality of the densities on the sublattices should be a natural
property of a measure corresponding to a good lower bound since the measure
of maximal density is believed to be unique in all our cases. In the last three
cases in Table 1. the non-equality of the densities isn’t far off but for the first
two we present an “equalization”.

Proposition 3. To achieve equal densities of 1’s on each of the sublattices one
needs to replace the B(1/2) distribution in the last stage of the measure con-
struction by B(p′) and thereby ln 2 in (2.2) by hB(p′), where p′ = p(1 − p)−|Ne|.

Proof. In the case of two sublattices after B(p) distribution of 1’s on the even
lattice there are a density of (1 − p)|Ne| unforcing neighborhoods on this sublat-
tice. These have to produce the correct density of 1’s on the odd lattice, hence
we need the even lattice flip probability p′ to satisfy p′(1 − p)|Ne| = p. QED

Using Proposition 3 one can optimize the square lattice topological entropy
bound to (a slightly worse value) 0.3921 at common density level 0.2015. In view
of Proposition 2 this indicates that the entropy generating 1’s are not yet packed
in densely enough. In the case of the honeycomb lattice the corresponding values
are 0.427875 at 0.2284.

3 Higher Order Blocks

To improve the entropy bounds and more importantly to get some insight into
the character of the measure of maximal entropy we now consider more compli-
cated optimization schemes involving Bernoulli-distributed blocks on sublattices.
We first illustrate the ideas on hexagonal and triangular lattices.
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A three-hex is obtained by gluing together three unit hexes so that each has
two joint sides. Figure 2a. illustrates three such three-hexes next to each other
(for reference lattice edges are indicated as thin dotted lines in one of the unit
hexes). Note that the unit tiles on each of them are all centered on the same
sublattice, the circle lattice in this case (call the tile a circle three-hex). The
dots of the other sublattice are all in the centers of the three-hexes or on their
extremities (three of them are indicated). Three-hexes of the same orientation
obviously tile the plane.

(a) a (b) b

1 0

0 0

0 0

0 0

(c) c

Fig. 2. 3-hex arrangements in hexagonal and triangular cases

Let B(p), p = (p0, p1, p2, p3) be the Bernoulli distribution on circle three-hexes
with the probability that the three-hex has exactly k 1-tiles in it in a given
orientation being pk (so p0 + 3p1 + 3p2 + p3 = 1). Its entropy is then h

(3)
B (p) =

−p0 ln p0 − 3p1 ln p1 − 3p2 ln p2 − p3 ln p3.

Theorem 2. Let a(p) = p0 + 2p1 + p2. For the hexagonal lattice the Hard Core
entropy is bounded from below by

h
(3)
H (p) =

1
6

{
h
(3)
B (p) +

[
p0 + 2a(p)3

]
ln 2

}
(3.1)

and for the triangular lattice a corresponding bound is

h
(3)
T (p, q) =

1
9

{
h
(3)
B (p) +

[
p0 + 2a(p)3

]
hB(q)

+ 3 [p1 + p0(1 − q)] a(p)3(2 − q)2 ln 2
} (3.2)

where pi, q ∈ (0, 1).

Proof. For the construction of the measure we will fill in the lattice in the order
◦ → •. If the circle three-hexes are distributed Bernoulli with parameter p the
entropy contribution from the circle lattice will be 1

2
1
3hB(p) where the factors

result from the sublattice density and the fact that we distribute triples. As in
Proposition 1. in the next stage the maximal entropy choice for the unforced
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sites on the dot lattice is the B(1/2) distribution. The total density of sites
available is computed at two different types of dot sites (as in Fig. 2a, the three
dots indicated) and is 1

3

[
p0 + 2 (p0 + 2p1 + p2)

3
]

where the coefficient 2 and the
power 3 follow from the fact that at two of the three dot sites three adjacent
three-hexes coincide. These formulas combined and simplified yield (3.1).

On the triangular lattice a third sublattice enters and the fill-in order is then
◦ → • → �. The entropy contribution from the Bernoulli circle three-hexes is
now 1

3
1
3hB(p) since each sublattice is identical, hence of density 1/3.

In the second stage the unforced dot sites are filled with B(q) distribution.
Their density is computed as above to be 1

3

[
p0 + 2 (p0 + 2p1 + p2)

3
]
, hence the

entropy contribution from dot lattice will be this expression multiplied by 1
3B(q).

In the final stage the unforced triangle sites are filled by B(1/2). Their density
in the full lattice is

1
3
P(nearest neighbor ◦ and • sites all 0′s)

=
1
3

{
p1(p0 + 2p1 + p2) [(p1 + 2p2 + p3) + (p0 + 2p1 + p2)(1 − q)]2

+p0(p0 + 2p1 + p2)(1 − q) [(p1 + 2p2 + p3) + (p0 + 2p1 + p2)(1 − q)]2
}

,

(3.3)

which results from considering the two different arrangements of four neighboring
three-hexes as shown in Fig. 2c. (top and bottom cases for the top and bottom
expressions in (3.3)). The formulas merged and simplified result in (3.2). QED

Table 2. Optimized lower bounds and densities for three-hex Bernoulli blocks

L max hL (p0, p1, p2, p3), q sublattice densities

H 0.4304 (0.504, 0.110, 0.048, 0.021) (0.2276, 0.2376)
T 0.3265 (0.64, 0.092, 0, 025, 0.010), 0.25 (0.153, 0.155, 0.151)

Remarks. 1. The Kagomé lattice case is treated in an analogous fashion to T.
2. Note that apart from improvements in the entropy bounds, almost all of the
sublattice densities have increased (in comparison to values in Table 1) indicating
a better packing of the 1’s on the sublattices. Moreover they have significantly
less variation which is to be expected since the densities are equal for the measure
of maximal entropy.

Let us now return to our original motivation, the Hard Core on the square lattice.
Compounding the principles above and some further ideas we will implement an
increasing sequence of lower bounds converging to the topological entropy. Along
the way we’ll get more explicit information on the configurations favored by the
measure of maximal entropy.

1-tiles in the Z2 case are diamonds of side length
√

2 centered on either of
the two sublattices. k-omino is formed by gluing together k such 1-tiles along
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edges. If k = n2 and the 1-tiles are in a diamond formation we call them a n×n
-blocks. There are 2n2

of them. The optimization results in Section 2 were for
the 1 × 1-blocks.

Consider next 2×2 -blocks. There are 16 of them, but after assuming isotropy
for them i.e. that blocks that are rotations of each other are distributed with
equal probability (inevitable when measure of maximal entropy is unique), there
are only five free parameters for Bernoulli distribution B(p) on them (p =
(p0, p1, p21, p22, p3, p4), p0 + 4p1 + 4p21 + 2p22 + 4p3 + p4 = 1. Here the first
subindex of p refers to the number of 1’s in the block and p22 and p21 denote
the two different arrangement of two 1’s in the block (side by side and across)).

The entropy contribution from the even lattice (on which we distribute first
the 1’s using B(p) is now

−1
4

{
p0 ln p0 + 4p1 ln p1 + 4p21 ln p21 + 2p22 ln p22 + 4p3 ln p3 + p4 ln p4

}
. (3.4)

The density of the unforced sites on the odd lattice can be computed from the
three cases indicated in Figure 3a. and results in

1
4

{
p0 + 2 (p0 + 2p1 + p21)

2 + (p0 + 3p1 + 2p21 + p22 + p3)
4
}

. (3.5)

These combined yield a lower bound for htop, which is optimized in Table 3
(second row).
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Fig. 3. n× n -blocks and update window in Z2 case. Reductions in a 3 × 3 -block and
the extension.

In the block size 3 × 3 there are initially 511 free block probabilities to opti-
mize. When rotational invariance is imposed the variable number is reduced and
additionally we will expect blocks that are reflections of each other to have equal
probabilities at the optimum. After these two types of symmetries are accounted
the number of free variables will be 101.

In this size and in larger blocks another feature appears which enables further
variable weeding. Consider the block in Figure 3c. The symbol assignments in
sites x, y and z are irrelevant in the sense that the existing 1’s in the 3×3 -block
already force all the odd sites (to carry 0’s) that x, y and z might force if any
of them were 1’s. Hence there are 23 blocks of equal probability. This combined
with the symmetry assumptions above yield the total of 64 blocks with identical
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Table 3. Optimized lower bounds and densities for a Bernoulli blocks on Z2

block size max hZ2 sublattice densities final/initial variables

1 × 1 0.392421 (0.1702, 0.2370) 1/1
2 × 2 0.39877 (0.1993, 0.2254) 5/15
3 × 3 0.4014 (0.2073, 0.2254) 46/511

probabilities at the optimum (this is actually the maximum reduction achievable
in this block size). Combing through the set of all blocks for this feature will
result in reduction by a factor about 11 to the final set of 46 variables. Their
optimal values have been computed and the results are in Table 3.

Subsequently we call sites like x, y and z above weak with respect to the
rest of the given block. Only the corner sites of a block cannot ever be weak.

The procedure of variable reduction is highly useful since the above rotational
and reflection symmetry search as well as the weak site identification can be
automated. Moreover the reduction improves significantly at every stage: for
example in the next block size of 4 × 4 the initial variable number of 65.536
shrinks 66-fold to 991 final free variables.

Note also that the optima in block size n × n can be utilized as indicated
in Figure 3d to initiate the search in the next larger block size. Once e.g. the
3 × 3 subblock optimum probability is known, the added half frame (e1, . . . , e7)
should be assigned B(p) entries with p computed from 3 × 3 blocks. With tai-
lored optimization routines one should be able to deal with several thousands
of variables in the larger block sizes. All the optimizations here were done with
non-specialized code using Mathematica.

The optimal block probabilities satisfy a useful monotonicity property, that we
establish next. For this let Bi, i = 1, 2 be n × n -blocks, whose subsets of 1’s
we refer to as B

(1)
i . There is a partial order on the blocks via B

(1)
i using the

ordinary set inclusion: Bi ≺ Bj if B
(1)
i ⊂ B

(1)
j . Let the optimal probabilities for

the blocks be p = (p0, p1, p2, p3, . . . , pl), l = 2n2
(no reductions done yet and no

particular order in the coordinates).

Theorem 3. Given two blocks B1 and B2 with optimal lower bound probabilities
p1 and p2, if B

(1)
1 ⊂ B

(1)
2 then p1 ≥ p2. If B

(1)
2 \ B

(1)
1 contains only weak sites

with respect to B
(1)
1 then p1 = p2, otherwise p1 > p2.

Proof. Theoptimal lowerboundisgivenbyh(p) = 1
n2 {−∑

i pi ln pi + P(Ne) ln 2}
where Ne is the even 2 × 2 -diamond of all 0’s as in Section 2. Let Bi be such that
B

(1)
1 ⊂ B

(1)
2 and let p1 = p + ε, p2 = p − ε, 0 ≤ |ε| < p. Denote by hε(p) the lower

bound with the given p1 and p2. To prove the result we will consider the entropy
variation under the probability change of the two blocks: Δhε(p) = hε(p)−h0(p).
More explicitly
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Δhε(p) =
1
n2

{[ − (p + ε) ln (p + ε) − (p − ε) ln (p − ε) + 2p ln p
]

+
[
P1,ε(Ne) − P1(Ne)

+ P2,ε(Ne) − P2(Ne)

+ P4,ε(Ne) − P4(Ne)
]
ln 2

}
,

(3.6)

where Pk,ε(Ne) and Pk(Ne) are the Ne-diamond probabilities computed from
the different arrangements involving k = 1, 2 or 4 n × n -blocks as in Figures 3a
and b, for the block probability choices p ± ε or p for both.

By ln (1 + x) ≈ x the first square bracket behaves for small ε like c1ε
2, c1 < 0.

If B
(1)
2 \ B

(1)
1 contains only weak sites with respect to B

(1)
1 then the blocks

Bi allow exactly the same sites to flip on the odd lattice hence each of the three
last lines in (3.6) vanishes. The sole contribution to Δhε(p) then comes from the
first square bracket and since this is negative for small but nonzero ε, it must be
that p1 = p2 at the optimum.

If B
(1)
2 \B

(1)
1 contains non-weak sites with respect to B

(1)
1 let us first assume

that they force k odd interior sites (recall that the odd sites are the vertices of
the grids in Figure 3. There are (n − 1)2 such interior sites in a n × n -block).
Let m be the number non-forced odd interior sites over block B1. Then

P1,ε(Ne) − P1(Ne) =
(

. . . +
(p + ε)m
(n − 1)2

+
(p − ε)(m − k)

(n − 1)2
+ . . .

)

−
(

. . . +
pm

(n − 1)2
+

p(m − k)
(n − 1)2

+ . . .
)

=
kε

(n − 1)2
,

where the dots refer to the contributions from the other blocks. All these terms
cancel out, since the other block probabilities are identical.

If non-weak sites only force odd interior sites then by geometry of the set-up
the two last lines in (3.6) are immediately zero. If e extra odd edge, off-corner
sites are forced, similar argument than above gives estimate (c2 + eε

4(n−1) )
2 −

c22, c2 > 0 for P2,ε(Ne) − P2(Ne) so the next to last line in (3.6) has the first
order behavior c3ε, c3 > 0. Some added bookkeeping yields P4,ε(Ne)−P4(Ne) =
(c4 + lε/4)4 − c44 ≈ c5ε, c5 > 0 (l is the number of odd corners forced).

The leading orders for the terms in the square brackets in (3.6) together yield
c1ε

2 + dε, c1 < 0, d ≥ 0. If there are non-weak sites in B
(1)
2 \ B

(1)
1 with respect

to B
(1)
1 , then d > 0. Hence p1 > p2 must prevail at the optimum. QED

Remarks. 1. Intuitively the result says that if neither of two even blocks gives
more subsequent choice on the odd lattice, for maximum entropy one should
weight them equally. Otherwise one should favor the one giving more choice on
the odd lattice.
2. One can readily see some chains imposed by the order in Figure 4: 0 ≺ 12 ≺
23 ≺ 31 or 0 ≺ 11 ≺ 21/22 ≺ 33 etc. The monotonicity can be utilized in limiting
the number of n × n -blocks optimized for larger values of n (dropping blocks
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Fig. 4. Prevalent 3 × 3 -blocks with optimal probabilities without multiplicities

with least probability as dictated by the Theorem and with least multiplicity
(most symmetric)).
The correlation structure inside the measure of maximal entropy gradually pres-
ents itself in the Bernoulli approximations when we consider higher order blocks.
Correlations between the blocks are zero because of independence, but within
the blocks it is worth making comparisons.

By adding the optimum probabilities of all 3 × 3 blocks at a given density
level k/9 = 0, 1/9, . . . , 1 we obtain the “density profile” of this measure (here k
is the number of 1’s in the block).

Suppose next that we generate the 3 × 3 blocks from 1 × 1 Bernoulli entries
with the appropriate optimal p for 1’s (as found above). By adding these up we
again obtain a density profile, this time for the 1 × 1 optimal Bernoulli measure
at the resolution level of the block size 3 × 3. The 3 × 3 blocks can of course be
generated using the optimal 2 × 2 blocks as well and yet another density profile
results. These three discrete plots are rendered as curves in Figure 5.

0 2 4 6 8 10
1 � k

0.05

0.1

0.15

0.2

0.25

0.3

P

Fig. 5. 3 × 3 -block occupation probabilities from Bernoulli blocks of size 3 × 3 (dia-
mond), 2 × 2 (square) and 1 × 1 (star). k ∈ {0, 1, . . . , 9} is the number of 1’s in the
block.

Perhaps the most notable feature here is the flattening of the distributions, as
the block size increases i.e. the total block probabilities move towards the tails
(while their means stay constant around 0.22). The curves cross between density
levels 1/3−4/9: below this cross over the shorter range Bernoulli measures favor
light 3 × 3 blocks, above it they discount heavier blocks in comparison to the
optimal 3 × 3 Bernoulli measure.
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When examined closer one will see that the total probability of 3 × 3 blocks
at a given density level essentially comes from at most three different kinds of
local configurations (up to reductions above that is). These seem to be “grown”:
when moving from density level d to level d + 1/9 the high probability blocks
are generated by adding a (contiguous) 1 into an existing high probability block.
This mechanism cannot prevail when the 3 × 3 blocks are generated indepen-
dently from smaller blocks. Consequently the small block curves in Figure 5.
have suppressed tails. We expect this phenomenon to prevail in the higher order
Bernoulli blocks as well and thereby to be a significant feature in the long range
correlations of the measure of maximal entropy.

Acknowledgments. The author would like to thank the referees for valuable sugges-
tions that led to the improvement of the exposition.
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Abstract. Topological conjugacy is the natural notion of isomorphism
in topological dynamics. It can be used as a very fine grained classifica-
tion scheme for cellular automata. In this article, we investigate different
invariants for topological conjugacy in order to distinguish between non-
conjugate systems. In particular we show how to compute the cardinal-
ity of the set of points with minimal period n for one-dimensional CA.
Applying these methods to the 256 elementary one-dimensional CA, we
show that up to topological conjugacy there are exactly 83 of them.

1 Introduction

One-dimensional cellular automata can be topologically characterized as the
continuous σ-commuting endomorphisms of the space AZ. Topological dynamics
is therefore a natural framework to study their dynamics and has shown to be
rather fruitful [6].

Topological dynamics in our sense is the study of compact metrizable space
X together with a continuous map F : X → X. The classical notion of isomor-
phism in this setting is that of a topological conjugacy. Two topological dynamical
systems F : X → X and G : Y → Y are called conjugate, if there is a homeomor-
phism ϕ : X → Y such that ϕ◦F = G◦ϕ [7]. It is easily seen that this defines an
equivalence relation on topological dynamical systems. A natural problem now
is to classify a certain class of such systems up to conjugacy.

This problem received a lot of attention for the case of subshifts of finite
type. While there has been substantial progress and some powerful invariants
have been found, there still remain many questions, ranging from the question
if conjugacy is decidable for SFTs, to the question of deciding conjugacy for two
concretely given edge shifts [2].

The corresponding problem of classifying CA up to topological conjugacy
has up to now seen very little activity, although many classification schemes for
CA have been proposed (see [8] for a survey). As a starting point we will classify
the elementary one-dimensional cellular automata, mainly using the cardinality
of the set of points with minimal period n, the Cantor-Bendixson derivative of
the periodic points and various ad-hoc arguments.
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J. Kari (Ed.): AUTOMATA 2015, LNCS 9099, pp. 99–112, 2015.
DOI: 10.1007/978-3-662-47221-7 8
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2 Definitions

Let A be a finite set with |A| ≥ 2, which we call our alphabet. The set of bi-
infinite sequences in A is denoted by AZ and set of words over A is denoted by
A∗. We endow AZ with the product topology turning it into a Cantor space. On
AZ we define the shift map σ by σ(x)k = xk+1. The dynamical system (AZ, σ) is
called the full shift over A. Replacing Z by N = {1, 2 . . . } we get the dynamical
system (AN, σ), called the one-sided full shift over A. A subshift is a closed σ-
invariant subset of AZ. The subshift X is a subshift of finite type (SFT) if there
is a finite list of words such that X consists of all configurations not containing
one of these words. For further information concerning shift spaces we refer to
the standard reference [7].

Denote by HA the set of all homeomorphisms from AZ to itself, and denote
by CAA the set of all cellular automata (CA), that is, the set of all continuous
maps F : AZ → AZ with σ ◦F = F ◦σ. By the Curtis-Lyndon-Hedlund Theorem
(see [7]) for each cellular automaton there is r ∈ N, called its radius, and a block
map f : A2r+1 → A with F (x)i = f(xi−r, . . . , xi+r). The block map also induces
a map f : A∗ → A∗ by f(x1, . . . , x�) = (f(x1,...,2r+1), . . . , f(x�−2r,...,�)).

Let (X,F ) be a dynamical system. A point x ∈ X is called periodic with
period n ∈ N, if Fn(x) = x. The minimal n, for which this equality holds is
called its minimal period. We denote by Pern(F ) the set of all n-periodic points
with respect to F and by P̃ ern(F ) the set of all points with minimal period n.
Thus Pern(F ) is the disjoint union of all sets in {P̃ erk(F ) ; k | n}. We also write
Per(F ) =

⋃
n∈N

Pern(F ) for the set of all periodic points.
When counting periodic points we will encounter sets of countable cardinality

and of cardinality equal to that of the continuum. We write these cardinalities
with the help of the Hebrew letter � (this notation is similar to the better known
notion of the ℵ cardinal numbers), so we define |N| =: �0 and |R| = |2N| =: �1.

For us digraphs are tuples G = (V (G), E(G), t, h) with V (G) and E(G) being
finite sets and t, h : E(G) → V (G) being the tail resp. the head of an edge. Thus
our edges are directed and we allow multiple edges as well as loops. A path (γi)i∈I

with I = {1, . . . , k} or I = Z is sequence of edges in G with h(γi) = t(γi+1).
We denote by Path(G) the set of all bi-infinite pathes in G. They form a SFT
contained in E(G)Z, the edge shift of the graph. A vertex path in G is a sequence
of vertices (vi)i∈{1,...,k} such that for each i ∈ {1, . . . , k − 1} there is an edge
ei ∈ E(G) with t(ei) = vi and h(ei) = vi+1.

3 Topological Conjugacies

Since the composition of cellular automata gives another cellular automaton,
the conjugation of a CA by an invertible one is again a cellular automaton.
The simplest instance of this is conjugacy by a symbol permutation (“exchaning
black and white”). Another way of getting a conjugate CA from a given one, is
to reflect the rule (“exchanging left and right”). This is equivalent to conjugation
by the reflection map τ : AZ → AZ, τ(x)k := x−k. See [3] for further properties
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of these conjugacies. The next theorem will show, that these are in a sense the
only general methods to get a conjugate CA from another.

Theorem 1. Let ϕ : AZ → AZ be a homeomorphism. Then the following are
equivalent.

(a) ϕ ◦ CAA ◦ ϕ−1 ⊆ CAA,
(b) ϕ ◦ CAA ◦ ϕ−1 = CAA,
(c) ∃H ∈ CAA : ϕ = H or ϕ = H ◦ τ .

Proof (of Theorem 1). (c) ⇒ (b) and (b) ⇒ (a) are trivial.
(a) ⇒ (c) Let F be an arbitrary CA. Then G := ϕ ◦ F ◦ ϕ−1 is again a CA by
the assumption and therefore commutes with σ. Hence

G = σ ◦ G ◦ σ−1 = σ ◦ ϕ ◦ F ◦ ϕ−1 ◦ σ−1,

F = ϕ−1 ◦ σ ◦ ϕ ◦ F ◦ ϕ−1 ◦ σ−1 ◦ ϕ

By setting F = σ, we see that ϕ−1 ◦ σ ◦ ϕ is a CA. Now Ryan’s theorem [9] tells
us that the center of the group HA ∩CAA consists only of powers of the shift, i.e.
if an invertible CA commutes with all other invertible CA, it must be a power of
the shift. Hence ϕ−1 ◦ σ ◦ ϕ = σk for some k ∈ Z or equivalently σ ◦ ϕ = ϕ ◦ σk.
This first of all implies that k �= 0. Now take any point y ∈ Per1(σk). Then
(σ◦ϕ)(y) = (ϕ◦σk)(y) = ϕ(y). Hence ϕ(y) ∈ Per1(σ) and therefore ϕ defines an
injective mapping from Per1(σk) into Per1(σ). Having a look at the cardinalities
we see that |A||k| = |Per1(σk)| ≤ |Per1(σ)| = |A|, implying k = ±1. In the case
of k = 1 we are done. In the other case

τ ◦ ϕ−1 ◦ σ ◦ ϕ ◦ τ−1 = τ ◦ σ−1 ◦ τ−1 = σ,

hence ϕ ◦ τ−1 is a CA. �
In the light of Theorem 1, we call a conjugacy ϕ ∈ CA ∪ CA ◦ τ a strong conju-
gacy. In Section 7 we will see conjugate cellular automata, that are not strongly
conjugate.

4 Periodic Points and the Cantor-Bendixson Derivative

Consider two conjugate cellular automata F and G := ϕ◦F ◦ϕ−1 with ϕ ∈ HA.
The first invariant of topological conjugacy normally considered is the number of
periodic points, for if F k(x) = x then (ϕ◦F ◦ϕ−1)k(ϕ(x)) = (ϕ◦F k)(x) = ϕ(x).
Hence ϕ maps Perk(F ) bijectively onto Perk(ϕ−1 ◦ F ◦ ϕ). While for shifts have
only finitely many periodic points of a given period, this is in general not true
any more for cellular automata.

To deal with this, we use standard cardinal arithmetic in order to extend the
addition on N to C := N ∪ {�0, �1} by defining

�1 + k := k + �1 := �1 for k ∈ C
�0 + k := k + �0 := �0 for k ∈ N ∪ {�0}.
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This turns C into a commutative monoid. The justification for this definition is
given by the fact, that for A1, . . . , A� pairwise disjoint sets with |Ai| ∈ C we
have |⋃�

i=1 Ai| =
∑�

i=1 |Ai|. Notice however, that for two disjoint sets A,B with
|A|, |B| ∈ C it is no longer possible to recover the cardinality of B from the
knowledge of |A| and |A ∪ B|.

In settings where only a finite number of periodic points can occur, one
can reconstruct P̃ ern(F ) from the knowledge of (Perk(F ))k≤p by P̃ ern(F ) =∑

d|n μ(n
d ) Perd(F ), where μ is the Möbius function. This no longer works in our

case where (P̃ er�(F ))�∈{1,...,n} carries more information then (Per�(F ))�∈{1,...,n}.
As an easy example consider a cellular automaton F with |Per1(F )| = �1.
Then |Perk(F )| = �1 for all k ∈ N. Therefore we are interested in determin-
ing (|P̃ er�(F )|)�∈{1,...,n}, which is harder to calculate than (|Per�(F )|)�∈{1,...,n},
though.

While these are already nice invariants they do not use the fact that ϕ is
continuous at all but only its bijectivity. However, two spaces with cardinality
�1 might look rather different from a topological point of view. We therefore
look at the set of all limit points D(Pern(F )) of Pern(F ) defined as follows.

Definition 2. Let B ⊆ AZ. The set of limit points of B, also called its Cantor-
Bendixson derivative, is defined by

D(B) := {x ∈ AZ ; ∃(yn)n∈N in B \ {x} : yn
n→∞−−−−→ x} =

⋂

x∈B

B \ {x}.

It is well known and easy to proof that ϕ(D(B)) = D(ϕ(B)) for any home-
omorphism ϕ : AZ → AZ. For a subshift (X,σ) and a subset B ⊆ X we can
characterize the set of limit points as follows. A configuration (xi)i∈Z is a limit
point of B if for all k ∈ N the word x−k,...,k can be extended to a configuration
in B different from X. We will use this characterization at the end of Section 5
to compute D(Pern(F )).

Now we fix n ∈ N and a cellular automaton F : AZ → AZ with radius r ≥ 1
and local rule f : A2r+1 → A, and try to determine quantities |P̃ ern(F )| and
|D(Pern(F ))|.

We define the De Bruijn graph D = (V,E, t, h) by

V := A2nr,

E := A2nr+1,

t(x1, . . . , x2nr+1) = (x1, . . . , x2nr),
h(x1, . . . , x2nr+1) = (x2, . . . , x2nr+1),

together with a homeomorphism

Ψ : AZ → Path(D), Ψ(x) = (xi−nr, . . . , xi+nr)i∈Z.

Next we annotate the edges of D by the function p : E(D) → {1, . . . , n}
with p(e1, . . . , e2nr+1) = {t ∈ {1, . . . , n} ; f t(e1, . . . , e2nr+1)nr−tr+1 = enr+1}.
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Fig. 1. Successive application of f := w28(x−1, x0, x1) �→ x−1(1 ⊕ x1 ⊕ x0x1) ⊕ x0 (see
Sec. 6 for notation) to 1011011

A direct calculation (see Fig. 1 for an illustration) shows, that F �(x) = x iff
� ∈ ⋂

i∈Z
p(ψ(x)i). Now we take the subgraph of D containing only those edges

e with n ∈ p(e) and then remove all edges not contained in any infinite path and
call the result G. By this construction Ψ(Pern(F )) = Path(G) =: Pern(G) and
Ψ(P̃ ern(F )) = {γ ∈ Path(G) ;

⋂
i∈Z

p(γi) = {n}} =: P̃ ern(G). See Fig. 2 for an
example.

5 Computing the Invariants

In this section we show how to compute P̃ ern(G) and D(Pern(G)). Let SG be
the set of strongly connected components of G, that is the maximal strongly
connected subgraphs of G. Define the strong component digraph SG (see [1]) of
G as the acyclic digraph with vertex set SG , edge set E(SG) := {(s1, s2) ; ∃e ∈
E(G) : t(e) ∈ s1 and h(e) ∈ s2} and tail resp. head being the first resp. second
entry of the edge. For each vertex i ∈ V (G) there is a unique component s(i) ∈ SG
such that i ∈ V (s(i)). Each bi-infinite path (γi)i∈Z in G induces a unique finite
vertex-path s(γ) = (s(γ)1, . . . , s(γ)�) in SG (since SG is a finite acyclic digraph,
it contains only finite paths) such that

{s(γ)1, . . . , s(γ)�} = {s(h(γi)) ; i ∈ Z}.

Thus s(γ) is the path in SG traversed by the vertices on γ.
For components s1, . . . , sk ∈ SG we define Path(s1, . . . , sk) as the set of all

bi-infinite paths in G that traverse the components s1, ..., sk in that order, i.e.

Path(s1, . . . , sk) = {γ ∈ Path(G) ; s(γ) = (s1, . . . , sk)}

We now annotate the vertices and edges of SG by three functions defined as
follows (remember that the vertices of SG are subgraphs of G).

c : V (SG) → N ∪ {�1} c(s) := |Path(s)| =

⎧
⎪⎨

⎪⎩

|E(s)| if s is a directed cycle
or a single vertex

�1 otherwise

ρ : V (SG) → {1, . . . , n} ρ(s) :=
⋂

{p(e) ; e ∈ E(G), t(e) ∈ V (s), h(e) ∈ V (s)}
P : E(SG) → 2{1,...,n} P(s1, s2) := {p(e) ; e ∈ E(G), t(e) ∈ V (s1), h(e) ∈ V (s2)}
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Fig. 2. The subgraph G of the De Bruijn graph for the CA W28 generated by w28 with
n = 2. Its strong component digraph SG is a directed line with vertices s1, s2, s3. The
edges are labelled by p.

With these annotations, we can calculate the cardinality of Path(s1, . . . , sk) as
follows:

|Path(s1, . . . , sk)| =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c(s1) if k = 1
0 if c(s1) = 0 or c(s2) = 0
�1 if c(s1) �= ∅, c(s2) �= ∅,

∃� ∈ {1, . . . , k} : c(s�) = �1

�0 otherwise

. (1)

Together with the following theorem this gives an algorithm for computing
|P̃ ern(F )| = |P̃ ern(G)|.
Theorem 3. Let m be the length of the longest vertex path in SG and let Mk

be the set of all vertex paths (s1, . . . , sk) in SG with c(s1) �= 0, c(sk) �= 0 and
{n} ∈ {p(s1)∩· · ·∩p(sk)∩z1∩· · ·∩zk−1 ; z1 ∈ P (s1, s2), . . . , zk−1 ∈ P (sk−1, sk)}.
Then |P̃ ern(G)| =

∑m
k=1

∑
(s1,...,sk)∈Mk

|Path(s1, . . . , sk)| ∈ C.
Proof. We first show that a vertex path (s1, . . . , sk) ∈ SG is in Mk if and only if
Path(s1, . . . , sk) ∩ P̃ ern(G) �= ∅.

Let γ ∈ Path(s1, . . . , sk)∩P̃ ern(G). Let �1, . . . , �k−1 ∈ Z be the indices where
γ goes from one strongly connected component to another, that is, t(γ�i) ∈
V (si), h(γ�i+1) ∈ V (si+1) for i ∈ {1, . . . , k − 1}. Then p(γ�i) ∈ P (si, si+1) for
i ∈ {1, . . . , k − 1}. This implies

{n} =
⋂

i∈Z

p(γi) ⊇
k−1⋂

j=1

p(γ�j ) ∩ p(s1) ∩ · · · ∩ p(sk) ⊇ {n},

and thus (s1, . . . , sk) ∈ Mk.
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On the other hand let (s1, . . . , sk) ∈ Mk. There are edges e1, . . . , ek−1 ∈ E(G)
with t(ei) ∈ V (si), h(ei) ∈ V (si+1) and p(s1) ∩ · · · ∩ p(sk) ∩ p(e1) ∩ · · · ∩ p(ek) =
{n}. Let L ⊆ Path(G) be the set of all bi-infinite paths containing all of the
edges in E(s1) ∪ · · · ∪ E(sk) ∪ {e1, . . . , ek−1} and no other edges. Then L ⊆
Path(s1, . . . , sk) and for γ ∈ L we have

{n} ⊆
⋂

i∈Z

p(γi) ⊆ p(s1) ∩ · · · ∩ p(sk) ∩ p(e1) ∩ · · · ∩ p(ek) ⊆ {n}.

Hence γ ∈ P̃ ern(G) and ∅ �= L ⊆ Path(s1, . . . , sk) ∩ P̃ er(G).
The set L contains �1 elements iff one of the components s1, . . . , sk is not

a directed circle or a single vertex. If this is not the case and there are at least
two components, then |L| = �0. If k = 1 and s1 is a directed circle or a sin-
gle vertex, then L = Path(s1, . . . , sk). Therefore by (1) |Path(s1, . . . , sk)| =
|Path(s1, . . . , sk) ∩ P̃ ern(G)| for (s1, . . . , sk) ∈ Mk. The result follows with
|P̃ ern(G)| =

∑m
k=1

∑
(s1,...,sk)∈Mk

|Path(s1, . . . , sk) ∩ P̃ ern(G)|. �

Determining the derived set of Pern(G) is simpler. By the definition of the
topology on E(G)Z we have that Path(s1, . . . , sk) �= ∅ is either contained in
D(Pern(G)) or its complement D(Pern(G))c. The first case happens if and only
if at least one of the following conditions is met

(i) c(s1) = �1 or c(sk) = �1,
(ii) ∃t ∈ SG with (t, s1) ∈ E(SG) or ∃t ∈ SG with (sk, t) ∈ E(SG).

6 Data for the 256 Elementary CA

Armed with the algorithm to compute the number of minimally p-periodic points
of a CA F we can now set forth and apply this to the classification of the 256
elementary CA, the CA with alphabet {0, 1} and radius 1. We enumerate them
according to their Wolfram code [10], so Wk is the CA with Wolfram code k.

There remains one issue. All periodic points of F lie in its eventual image
ω(F ) :=

⋂
t∈N

F t(AZ). If two CA are conjugate when restricted to their eventual
image but differ in their transient behaviour, we have no possibility to detect
this up to now. As a very simple invariant capturing some transient behaviour
we therefore check

(a) if F resp. F 2 is idempotent, that is, if F 2 = F resp. F 4 = F 2,
(b) if F is an involution, that is, if F 2 = id and
(c) if F 3 = F .

We already know from Section 3, that we can always get an conjugate ele-
mentary CA by conjugation with the homeomorphisms of {0, 1}Z induced by

υ : {0, 1} → {0, 1}, υ(a) = 1 − a,

τ : Z → Z, τ(k) = −k.
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Each equivalence class of CA up to conjugation with these two homeomorphisms
contains at most four elements (it contains less if e.g. F = υFυ−1). It is well
known that 88 of these equivalence classes remain [8]. We represent each of them
by the member with the smallest Wolfram code. For each equivalence class we
compute the invariants and group them by this data. The results are shown in
Table 1.

7 The Special Cases

We still have 10 classes of elementary cellular automata left, that we could not
distinguish with the invariants considered up to now. We start with the non-
trivially conjugate CA.

The following pairs of cellular automata are conjugate by

ϑ : {0, 1}Z → {0, 1}Z ϑ(x)k :=

{
1 − xk if k ≡ 0 (mod 2)
xk if k ≡ 1 (mod 2)

(a) (15, 170),W15 = σ ◦ υ, W170 = σ. Notice that W15 and W170 can not be
strongly conjugate since any cellular automaton commutes with σ and there-
fore the only other CA strongly conjugate to σ is σ−1.

(b) (77, 232),
(c) (23, 178).

Next we have the three rules 90, 105, 150 with

w90(x−1, x0, x1) = x−1 ⊕ x1,

w105(x−1, x0, x1) = 1 ⊕ x−1 ⊕ x0 ⊕ x1,

w150(x−1, x0, x1) = x−1 ⊕ x0 ⊕ x1.

These (together with their conjugates with respect to υ) are exactly the left-
and right-permutive elementary CA. Therefore by a result of Kurka and Nasu
[5] they are conjugate to the one-sided full shift with alphabet {1, . . . , 4} and in
particular they are conjugate to each other.

We will show on a case by case basis, that all CA in the remaining classes
are pairwise non-conjugate. For this we use two new invariants, again only using
the bijectivity of the conjugation ϕ. Let Fixk(F ) be the set of all fixed points of
F with k preimages, that is,

Fixk(F ) := {x ∈ Per1(F ) ; |F−1(x)| = k}.

It is straightforward to see, that |F−1(Per1(F ))| and |Fixk(F )| both remain
invariant under conjugation.

For each CA F with local rule f : {0, 1}3 → {0, 1} the De Bruijn graph
for n = 1 with edges annotated by f is shown. A edge is drawn thickly if
f(x−1x0x1) = x0, therefore the edge shift of the subgraph defined by the thick
edges is Ψ(Per1(F )) = Per1(G).
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Table 1. Invariants for the 88 equivalence classes of elementary CA (using N for �0

and C for �1)



108 J. Epperlein

11

10

00

01

0

00

00

1 0

1

(a) W6

11
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00

01

1

00

00

1 0

1

(b) W134

Fig. 3. De Bruijn graphs for W6 and W134

Rules 6 and 134

We have that

|W−1
6 (∞0∞)| = �1, |W−1

6 (∞(01)∞)| = 1,

|W−1
6 (∞(01).0∞) = �1.

Hence |W−1
6 (Per1(W6))| = �1. On the other hand

|W−1
134(

∞0∞)| = �0, |W−1
134(

∞1∞)| = 1,

|W−1
134(

∞(01)∞)| = 1, |W−1
134(

∞(01).0∞) = �0,

and thus |W−1
134(Per1(W134))| = �0. Therefore W134 and W6 are not conjugate.

Rules 18 and 126

11

10

00

01

0

01

00

1 0

0

(a) W18

11

10

00

01

0

11

10

1 1

1

(b) W126

Fig. 4. De Bruijn graphs for W18 and W126

Both of them have only one fixed point ∞0∞. From the De Bruijn graphs in
Fig. 4, we see that |W−1

18 (Per1(W18))| = �1 and |W−1
126(Per1(W126))| = 2, hence

these CA are not conjugate.

Rules 36 and 72

Because of the horizontal symmetry of the annotated De Bruijn graph in
Fig. 5a we see that Fix1(W36) = ∅. On the other hand ∞(011).(011)∞ ∈Fix1(W72).
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(a) W36

11
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00

01

0

10

00

0 1

0

(b) W72

Fig. 5. De Bruijn graphs for W36 and W72

Rules 78 and 140

From Fig. 6 we derive that ∞1∞ ∈ Fix1(W140), while Fix1(W78) = ∅ since
W−1

78 (∞0∞) = {∞0∞, ∞1∞) and each occurrence of 01010 resp. 10110 might
be replaced by 01110 resp. 10010 in fixed points of W78 without changing the
image.
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00

1 1

1

(a) W78

11

10

00

01

1

00

00

0 1

1

(b) W140

Fig. 6. De Bruijn graphs for W78 and W140

Rules 2, 24 and 46
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(a) W2
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(b) W24
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00
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00
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1

(c) W46

Fig. 7. De Bruijn graphs for W2, W24 and W46

These CA are equivalent to the shift, either σ or σ−1, on their eventual image.
For W2 the eventual image is reached in one time step, that is, W2({0, 1}Z) =
ω(W2), while the same is not the case for W24 and W46.

Now we have a look at the sets M24 := W−1
24 (Per1(W24)) and M46 :=

W−1
46 (Per1(W46)). Both are countable SFTs. M24 is generated by ∞0.(10)∞ and

∞1.(01)∞, while M46 is generated by ∞1.0∞. Therefore M24 has four accumu-
lation points, while M46 has only two of them.
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Rules 4, 12, 76 and 200
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(a) W4
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00
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(b) W12
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(c) W76
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10

00
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1

10

00
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0

(d) W200

Fig. 8. De Bruijn graphs for W4,W12,W76 and W200

These CA are all equal to the identity on their eventual image, or more
specifically Per1(F ) = ω(F ) = F (AZ) for F ∈ {W4,W12,W76,W200}. Their
eventual images are all homeomorphic to the Cantor set. Notice that Per1(W4) =
Per1(W12).

As a last invariant we look at the possible cardinalities of the preimage of
a point and define PF(F ) := {|F−1(x)| ; x ∈ AZ} ⊆ C. Let Fib be the set of
Fibonacci numbers, defined by a1 = 1, a2 = 2, ak+2 = ak+1 + ak for k ∈ N. We
will show that

PF(W200) = PF(W12)
= �1 ∪ {b1b2 . . . bk ; k ∈ N, bi ∈ Fib for i ∈ {1, . . . , k}}.

In the case of W200 the ambiguity in forming the preimage comes from blocks of
the form 110k11, see Fig. 9b. Since isolated 1s are erased by W200, the number of
preimages of ∞1.0k1∞ equals the number of words of length k − 2 containing no
two consecutive 1s, which equals ak−1 ∈ Fib. If more then one block of the form
110k11 occurs, one can independently put isolated 1s in these blocks without
changing the image, hence the number of the preimages is the product of those for
the single blocks. The same is true for W76 but here we look at blocks terminated
by 11 on each side and containing only isolated 1s, e.g. 11001001010001011. We
can replace 010k10 by 01k+20 without changing the image. But since we can not
do this for adjacent occurrences of 010k10, again the number of preimages of
∞10w01∞ with w containing � isolated 1s is a�.

(a) W76 (b) W200

Fig. 9. Space-Time-Diagrams of W76,W200 with random initial condition and periodic
boundary, black represents 0 and grey represents 1
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On the other hand

W−1
12 (∞(01).0∞) = {∞(01).1k0∞ ; k ∈ N0} ∪ {∞(01).1∞},

so �0 ∈ PF(W12). But �0 �∈ PF(W4), since any point having infinitely many
preimages wrt. W4 must contain infinitely many occurrences of blocks of the
form 10k1 with k ≥ 2 or start resp. end in ∞0 resp. 0∞, thus already having
uncountably many predecessors. Consequently W12 is not conjugate to any of
W4,W76 and W200.

This leaves us with these three cellular automata. Next we look at W−1
4 (x)

for
x = ∞(01).000000(10)∞).

Each element of this set has to coincide with x everywhere except for the under-
lined block of four consecutive zeros. In this block we only have to ensure that
no isolated 1s occur. So we have to determine the number of 0, 1 blocks of
length 4 where ones only occur in blocks of length at least two. Therefore there
can be only either zero or one block of ones, of length from 2 to 4. This gives
1 + 3 + 2 + 1 = 7 possibilities. But 7 is not a product of Fibonacci numbers,
hence W4 is not conjugate to either W76 or W200.

Finally we differentiate between these two CA. Notice that Fix3(W200) con-
sists of all configuration in Per1(W200) containing the block 11000011 but no
other block of zeros of length greater then two. Hence the closure of Fix3(W200)
is contained in Fix3(W200)∪Fix1(W200). On the other hand we have (∞0.10∞) ∈
Fix3(W76), hence there is (xn)n∈N in Fix3(W76) with xn → ∞0∞ ∈ Fix2(W76).
With that we have finally shown that W200 and W76 are not topologically con-
jugate.

Notice however, that |Fixk(W76)| = |Fixk(W200)| for all k ∈ C. Therefore
W76 and W200 are conjugate when {0, 1}Z is endowed with the discrete topology.

8 Conclusion

We showed that there are exactly 83 equivalence classes of topologically conju-
gate elementary CA. Among them we saw examples of pairs of CA that are

(a) conjugate, but not strongly conjugate, e.g. W170 = σ and W15 = σ ◦ ν,
(b) not conjugate, but conjugate if one neglects the topology, e.g. W200 and W76,
(c) not conjugate, but conjugate when restricted to their eventual image, e.g.

W4 and W12.

Our main tool in differentiating non-conjugate CA was the number of mini-
mally n-periodic points. In higher dimensions this is in general not computable,
as already being able to decide if |Per1(F )| = 0 is equivalent to deciding the
tiling problem. Therefore it would be interesting how far one can get in deciding
conjugacy of higher-dimensional CA with small radius and alphabet size.

A cellular automaton is nilpotent, iff restricted to its eventual image it is
conjugate to the dynamical system whose state space consists of a single point.
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This implies that all nilpotent CA are conjugate when restricted to their even-
tual image. Nilpotency is undecidable already in dimension one [4]. Hence it is
undecidable if two CA are topological conjugacy when restricted to their even-
tual image. But this does not immediately imply that topological conjugacy is
undecidable. Therefore we finish with the following conjecture.

Conjecture 4. Topological conjugacy of one-dimensional cellular automata is
undecidable.
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Abstract. The global synchronisation problem consists in making a cel-
lular automaton converge to a homogeneous blinking state from any ini-
tial condition. We here study this inverse problem for one-dimensional
binary systems with periodic boundary conditions (i.e., rings). For small
neighbourhoods, we present results obtained with the formulation of the
problem as a SAT problem and the use of SAT solvers. Our observa-
tions suggest that it is not possible to solve this problem perfectly with
deterministic systems. In contrast, the problem can easily be solved with
stochastic rules.

Keywords: Inverse problems · SAT solving · Stochastic vs. determin-
istic solutions

1 Introduction

The study of inverse problems is becoming a fertile field in the research on
cellular automata (CA). Among the recent achievements, we mention the con-
struction of an exact solution to the parity problem [1], the construction of exact
or approached solutions on the density classification problem [2,3,5,10] or the
re-interpretation of the solution to the Firing squad problem with fields [7].

A common feature of these problems is the need to reach a global consen-
sus: there exists a moment where all cells, or a large fraction, must agree on a
given state that is interpreted as the output of the algorithm. The difficulty is
related to the propagation of this information from a local to a global scale: in a
decentralised framework such as cellular automata, how do the cells “agree” on
a common state while they have only a local view of the system?

We here study the global synchronisation problem: in its original form, the
question is to find a CA rule such that, from any initial condition, the system
reaches a “blinking state” in which the two homogeneous configurations alter-
nate. This problem can be generalised to more states but we will here restrict
our study to the binary case.

Since its formulation by Das et al. in 1994 [4], the problem has received only
a limited attention. This lack of interest is probably due to the fact that it is
much easier to solve than other inverse problems such as the density classification
problem. In fact, solutions with “100% success rates” were presented in the
c© IFIP International Federation for Information Processing 2015
J. Kari (Ed.): AUTOMATA 2015, LNCS 9099, pp. 113–126, 2015.
DOI: 10.1007/978-3-662-47221-7 9
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very paper where the problem was formulated [4]. The authors used genetically
engineered solutions to show that it was possible to obtain a performance of
“100%” for ring sizes going up to 999. Their interest was to find rules which
attain a consensus by removing the “defects” that separate the non-synchronised
regions of the system.

Our purpose in this note is to go one step forward and to ask if perfect
solutions do exist. We will thus request that all initial conditions lead to the
blinking cycle and not only a sample of configurations, drawn at random. After
presenting the formal definitions of the problem (Sec. 2), we will present a simple
“manual proof” that no ECA solves the problem (Sec. 3). This construction will
guide us to formulate the problem as a SAT problem (Sec. 4) and to obtain
a first set of results for larger neighbourhoods (Sec. 5). We then show that, in
contrast, perfect solutions can easily been constructed (Sec. 6). We conclude by
formulating a few questions.

2 Fundamentals

2.1 CA Definitions

We here consider finite binary cellular automata with periodic boundary condi-
tions. The basic components of our systems are the cells; each cell can hold one
of the two states: 0 or 1. The variable n is used to denote the number of cells
that compose the system, the cells are arranged in a ring and the set of cells is
denoted by L = Z/nZ.

A configuration x = (xi)i∈L represents the state of the system at a given
time. The set of configurations is denoted by En = {0, 1}L. The interactions
between the cells are local, that is, each cell can only “see” a finite subset of the
cells of the system, the neighbourhood. Without loss of generality, we can con-
sider that the neighbourhood N of our cellular automata are formed of discrete
intervals: N = {−l, . . . , r}, with l ∈ N and r ∈ N

∗ = {1, 2, . . . }. The width of
this interval is called the size of the neighbourhood and is denoted by k, with
k = l + r + 1.

The evolution of a cell follows a function f : {0, 1}k → {0, 1}, called the local
rule. Following Wolfram’s notation, a local rule of size k, that is, defined on a
neighbourhood of size k, is assigned a code W which is an integer between 0 and
2k − 1. This code is given by the formula: W =

∑2k−1
i=0 f(bk(i), . . . , b1(i)) · 2i

where bj(i) is the value of the j-th bit of the binary representation of i.
For a given ring size n, the global transition function F : En → En associated

to the ring size n is the function that maps a configuration xt to a configuration
xt+1 = F (xt) such that x0 = x and:

∀i ∈ L, xt+1
i = f(xi−l, . . . , xi+r). (1)

Note that to be perfectly rigorous, we should denote F with indices showing that
it depends on f and n. We however drop these elements for the sake of clarity
since f and n will be made clear from the context.
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(a) (b) (c) (d)

Fig. 1. Four space-time diagrams for rule 1078270911 with k = 5 (see page 122). Time
goes from bottom to top, white and blue squares represent cells in state 0 and 1,
respectively. (a), (b): synchronised initial conditions with n = 11, (c) and (d): initial
conditions with n = 12, the last one is not synchronised.

2.2 Formulation of the Problem

We denote by 0 = 0L and 1 = 1L the two uniform configurations. In the
following, we will require that 0 and 1 are two non-quiescent states, that is,
f(0, . . . , 0) = 1 and f(1, . . . , 1) = 0. We call this condition the blinking condition.

We define the height h of a configuration x ∈ En as the time needed to reach
one of the two uniform configurations:

h(x) = min{t ∈ N, xt = F t(x) ∈ {0,1}}. (2)

with the convention that h(x) = ∞ if xt does not reach 0 or 1. Similarly, the
height of a given configuration space En is the maximum height of the configu-
rations of En.

We say that F synchronises a configuration x ∈ En if h(x) is finite. We also say
that x is synchronised on 0 (resp. on 1) if the first homogeneous configuration
that is met is 0 (resp. 1). Similarly, we say that F synchronises the size n if
it synchronises all the configurations of En. We can now formulate the global
synchronisation problem:

Does there exist a local rule f such that for
all n ∈ N

∗, the associated global function F
synchronises the size n?

2.3 Elementary Properties

Let f be a local rule of size k. The reflexion R(f) and the conjugate C(f) are the
local rules respectively obtained by the exchange of the left and right directions
and by the exchange of the 0 and 1 states. Formally, ∀(q1, . . . , qk) ∈ {0, 1}k,

R(f)(q1, . . . , qk) = f(qk, . . . , q1),
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and
C(f)(q1, . . . , qk) = f(q1, . . . , qk),

where q = 1−q denotes the inversion of states. Similarly, the reflexion-conjugate
rule RC(f) is the local rule obtained by composing the two previous symmetries:
RC(f) = R ◦ C(f) = C ◦ R(f).

Proposition 1 (rule symmetries). f is a solution to the global synchronisa-
tion problem if and only if R(f), C(f), RC(f) are also solutions.

Proof. Clearly, the property of synchronising a given size is preserved by the
reflection and conjugation symmetries: for a given size n, if F, Fr, Fc, Frc are
the global functions respectively associated to f,R(f), C(f) and RC(f), then F
synchronises the size n if and only if Fr, Fc, Frc synchronise the size n. ��

Let σ denote the (left) shift operator, that is, a function σ : En → En such
that ∀i ∈ E, σ(x)i = xi+1. We call the rotations of x the set of configurations
that are obtained by applying a positive number of shifts on x; this set is denoted
by [x] = {σk(x), k ∈ N}.

Proposition 2 (configuration symmetries). A global rule F synchronises
a configuration x if and only if it synchronises all the configurations of [x].

This simply results from the fact that: (a) F commutes with the shift and (b)
[0] = {0} and [1] = {1}. Note that the rotation [·] defines an equivalence class:
we say that a configuration y is equivalent to x if y is a rotation of x. It can be
easily verified that this is an equivalence relation.

The next proposition states that the iterates of a configuration can not be
contained in the rotations of this configuration.

Proposition 3 (images of a configuration). If F synchronises a configura-
tion x, then

(∪k≥1F
k([x])

) ⋂
[x] = ∅, that is, ∀x′ ∈ [x], ∀k ∈ N

∗, F k(x′) /∈ [x].

Proof. By contradiction, let us assume that there exists k ∈ N
∗ and i ∈ N

such that F k(x) = σi(x). By recurrence, using the commutation of the shift
with F , we have: F kn(x) = σin(x). Since the space is a ring of size n, we have
σin(x) = x, which implies x = F kn(x). The configuration x thus evolves on a
cycle of length k. The two homogeneous states 0 and 1 are excluded from this
cycle – otherwise x would be reachable from these two states – and x can not
be synchronised, which contradicts the hypothesis. ��
An immediate consequence of this proposition is that if F synchronises x, then x
can not be a fixed point (F (x) = x) or a blinking point (F (x) = x and F (x) = x)
or a translating point (F (x) = σix with i ∈ N

∗).

Proposition 4 (color-discernation). If a local rule f is a solution to the
problem, then it is not color-blind, that is, C(f) �= f .
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Proof. By contradiction, let us assume that we have C(f) = f . Let us take
an even size n = 2m with m ∈ N and consider the configuration x = (01)m.
Without loss of generality we can assume that x is synchronised on 0. Formally,
if we denote by T = h(x) the height of x, this reads: FT (x) = 0.

Then, if we consider x = (xi)i∈L, we have: FT
c (x) = FT (x) = 0 = 1.

On the other hand: FT (σx) = σFT (x) = σ0 = 0. Since x = σx, we remark
that these two equations are contradicting. ��

3 Direct Inspection of the ECA Space

As a starting point, let us consider Elementary Cellular Automata (ECA), that
is, binary CA with N = {−1, 0, 1}.

Proposition 5. There exists no ECA which solves the synchronisation problem.

Proof. We have 256 rules to consider, these rules are defined with:
a = f(0, 0, 0) b = f(0, 0, 1) c = f(1, 0, 0) d = f(1, 0, 1)
e = f(0, 1, 0) f = f(0, 1, 1) g = f(1, 1, 0) h = f(1, 1, 1) .
We now have to determine whether there exists an assignment of these eight
boolean variables a, . . . , h which satisfies the problem.

Case n = 1: Given the specification of the problem, the states 0 and 1 are
not quiescent: a = 1 and h = 0. We are thus left with 64 rules to search.

Case n = 2: Proposition 3 implies d = e. Indeed, if the two variables are not
equal, 01 would be either a fixed point or a blinking point. We are now left with
32 rules.

Case n = 3: By noting that the configuration 001 can not be a fixed point
and can not be translated (by Prop. 3), we obtain: s1 = b+ c+ e �= 1 (CondA).
By symmetry, we have s2 = d + f + g �= 2 (CondB).

The case where a configuration of [001] is transformed into a configuration
of [011] and vice-versa is also impossible, otherwise the uniform configurations
would never be reached (Prop. 3). We thus have (s1, s2) �= (2, 1) (CondC). It is
then easy to verify that these conditions are sufficient to achieve the synchroni-
sation of size 3.

We find the following set of remaining 8 rules, divided into three sets of rules:
(1, 127), (9, 65, 111, 125), (19, 55). The rules are grouped by their equivalence
with the conjugation and reflexion symmetries (see Prop. 1).

Case n = 4: It is easy to check that none of the remaining rules allows a
synchronisation of size 4. For instance, we remark that 0001 is a translating
point for rule 1 and 9 and that 0110 is a translating point for rule 19. ��

4 The Synchronisation Problem as a SAT Problem

The previous method required a methodical inspection of the space but this
approach can not easily been generalised to larger neighbourhoods. We now
propose to do an “automated filtering” of the rules by transforming the problem
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into a SAT problem. The idea is to model the transition table as sequence of
boolean variables and to express a boolean formula to state that a configuration
is synchronised. We want to examine more and more initial conditions until we
reach a point where we find that the problem is not satisfiable. If, on the contrary,
we find that there exists a rule which synchronises all the initial conditions
considered, then we would have a good “candidate” for solving the problem.

4.1 General SAT Formulation

A SAT problem consists in finding a assignment to boolean variables that sat-
isfies a given boolean formula. A clause is a conjunction of literals, that is, a
boolean formula defined only with the or operator (e.g., a ∨ b ∨ c). The conven-
tion is that a SAT problem is formulated in a conjunctive normal form (CNF):
it is a disjunction of clauses. In the sequel, we call a CNF formula any of such
disjunction of clauses.

Let k be the size of the neighbourhood and M = 2k the number of tran-
sitions1 of this neighbourhood. We introduce M boolean variables t0, . . . , tM−1

to encode the transitions of a rule f ; the convention is that ti is true if and
only if f

(
bk(i), . . . , b1(i)

)
= 1. For an initial condition x ∈ En, we also introduce

(τ + 1) · n additional variables, denoted by (ξ(t, i))t∈{0,...,τ},i∈{0,...,n−1}, which
correspond to the values (xt

i) ∈ {0, 1} taken by the cells in the evolution of x.

4.2 Blinking Condition

The blinking condition f(q, . . . , q) = q is simply expressed by a CNF formula
with two atomic clauses: Fbl = t0 ∧ ¬tM−1.

4.3 Initial State

Let us now see how to encode the states of an initial condition x ∈ En in a
formula. The operation simply consists in “translating” the initial condition x
into the CNF formula:

Fic(x) =
∧

i∈{0,...,n−1}
1{ξ(0, i), x0

i }. (3)

where 1{V, q} is a function which associates to the boolean variable V and to a
cell state q ∈ {0, 1} the variable V if q = 1 and the variable ¬V otherwise.

For instance if we have x = 0011 as an initial condition, the associated
formula will be:

Fic(x) = ¬ξ(0, 0) ∧ ¬ξ(0, 1) ∧ ξ(0, 2) ∧ ξ(0, 3). (4)

1 A transition is a tuple of size k which is given as an input to the local rule.
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4.4 Synchronisation Condition

Let τ be the maximum number of time steps to achieve the synchronisation. To
express the condition that x is synchronised in at most τ steps, we can write
xτ ∈ {0,1}. Unfortunately, this can not be translated in a straightforward way
into a CNF formula. Indeed, if we write:

Fsc(x, τ) =

⎛

⎝
∧

i∈{0,...,n−1}
ξ(τ, i)

⎞

⎠
∨

⎛

⎝
∧

i∈{0,...,n−1}
¬ξ(τ, i)

⎞

⎠ , (5)

we need to distribute the and operator over the orto obtain a CNF. This is why
we prefer to formulate this condition as:

Fsc(x, τ) =
∧

i∈{0,...,n−2}
ξ(τ, i) = ξ(τ, i + 1), (6)

which simply represents the fact that all the states of xτ are equal. By noting
that a = b is equivalent to (a ∨ ¬b) ∧ (¬a ∨ b), Fsc becomes:

Fsc(x, τ) =
∧

i∈{0,...,n−2}
(ξ(τ, i) ∨ ¬ξ(τ, i + 1)) ∧ (¬ξ(τ, i) ∨ ξ(τ, i + 1)). (7)

4.5 Consistency Conditions

We now need to write a CNF formula for the condition: xt+1 = F (xt) for
t ∈ {0, . . . , τ − 1}. We call this formulation the “consistency condition”, as it
expresses the fact a given boolean formula in consistent with the evolution of
the cellular automaton. We now give a precise description of this CNF formula.
In order to ease the notations, let us detail this operation for the specific case of
N = {−1, 0, 1}; it is easy to generalise it to other neighbourhoods. Locally, our
condition is expressed by

∀i ∈ L, xt+1
i = f(xt

i−1, x
t
i, x

t
i+1) (8)

which is translated as:

∀i ∈ {0, . . . , n − 1}, ϕ(ξ(t + 1, i), ξ(t, i−), ξ(t, i), ξ(t, i+)) (9)

where i− = (i − 1) mod n and i+ = (i + 1) mod n, and where ϕ is a function
that remains to be found.

Our goal is to find ϕ such that ϕ(y′, x, y, z) is a CNF formula that expresses
that y′ is the result of transition f(x, y, z). In a usual programming environ-
ment, one would need simply to calculate i = x + 2y + 4z and then to read the
value of ti and assign it to y′. Unfortunately, there is no direct way of “cod-
ing” these operations in a SAT formula. We thus need to enumerate all the
possible values for the variables y′, x, y, z and then write a consistency condition
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that expresses that y′ equals ti where i is the index which corresponds to the
transition (x, y, z).

For example, if we take transition f(0, 1, 1) = 1, we have i = 3 and we write
the formula with five clauses:

ϕ3 = ¬x ∧ y ∧ z ∧ t3 ∧ (y′ ∨ ¬t3) ∧ (¬y′ ∨ t3), (10)

where the two last clauses stand for y′ = t3.
Formally, we write: ϕ(y′, x, y, z) =

∨
λ∈{0,...,7} ϕλ with:

ϕλ = 1{x, λ1} ∧ 1{y, λ2} ∧ 1{z, λ3}∧
1{tλ, f(x, y, z)} ∧ (y′ ∨ ¬tλ) ∧ (¬y′ ∨ tλ), (11)

where λi = bi(λ) is the value of the i-th bit of the binary representation of λ.
By distributing the and operator over the or, ϕλ becomes:

ϕλ = (1{x, λ1} ∨ 1{y, λ2} ∨ 1{z, λ3} ∨ y′ ∨ ¬tλ)
∧

(1{x, λ1} ∨ 1{y, λ2} ∨ 1{z, λ3} ∨ ¬y′ ∨ tλ).
(12)

Each elementary transition of a given cell at a given time step is thus encoded
with a formula ϕ which contains 2M = 2k+1 = 16 clauses. As there are nτ such
elementary conditions, the consistency condition is given by Fe with 2k+1 · nτ
clauses:

Fe(x, τ) =
∧

t∈{0,...,τ−1},
i∈{0,...,n}

ϕ
(
ξ(t + 1, i), ξ(t, i−), ξ(t, i), ξ(t, i+)

)
. (13)

4.6 Combining Initial Conditions

The last step that remains is to combine various initial conditions in order to:
(a) either find out that the problem is not solvable for a given setting or (b)
exhibit a good candidate to solve the problem.

We proceed iteratively by increasing the size of the initial conditions to syn-
chronise. From Prop. 2, we know that we do not need to consider all the initial
conditions: for each size n, it is sufficient to select only one initial condition in
each possible set of rotations. Formally, we say that a set of configurations is
representative if the rotations of its members form a partition of the configura-
tion space. Formally, let us denote by χ(n) the set of representative conditions;
we write:

χ(n) = {X ⊂ En,∀x, y ∈ X, [x] ∩ [y] = ∅,
⋃

x∈X

[x] = En}. (14)

The following table shows the growth of these sets2:
n 1 2 3 4 5 6 7 8 9

|χ(n)| 2 3 4 6 8 14 20 36 60

2 It corresponds to sequence A000031 in the Online Encyclopedia of integer sequences.
One reads: “In music, |χ(n)| is the number of distinct classes of scales and chords in
an n-note equal-tempered tuning system”, see: https://oeis.org/A000031

https://oeis.org/A000031
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To sum up, if we fix a set of ring sizes S = {n1, . . . , ns}, and a maximum syn-
chronisation time τ , we construct a sequence of sets of configurations: X1, . . . , Xs

such that Xi ∈ χ(ni) and build the general formula:

Fsynch(S, τ) = Fbl

∧

i∈{1,...,s}

∧

x∈Xi

Fic(x, τ) ∧ Fsc(x, τ) ∧ Fe(x, τ). (15)

This is the final formula; it expresses the fact that all the configurations of size
n ∈ S are synchronised in at most τ time steps.

5 First Experimental Results

The use of SAT solvers is a well-explored field of research in Computer science.
As we are not a specialist of these questions, we did not endeavour to optimise the
search for a solution by any means. We simply used the minisat solver3 and gen-
erated the formulae with our cellular automata simulation program FiatLux4.

5.1 ECA Space

We take k = 3. The results with the SAT solver confirm the results of Sec. 3:
there exists no rule which is a solution for S = {2, 3, 4}. For S = {2, 3}, we find
that:

– (1, 127) have height of 1,
– (19, 55) and (9, 65, 111, 125) have height of 2, and
– no rule has height of 3.

We can also explore the synchronisation for other sets of ring sizes S. For
S = {4}, we find that:

– (37, 91) have a height of 3,
– (25, 67, 103, 61) and (45, 101, 75, 89) have height of 4 and,
– no rule has a height of 5.

For ECA 61, the synchronisation process is presented on Fig. 2, p. 122. Sur-
prisingly, for S = {5}, we find that (9, 65, 111, 125) synchronises with a height
of 5.

5.2 The k = 4 Space

We now examine a neighbourhood with one more cell: we take k = 4 and N =
{−1, 0, 1, 2}. The space contains 22

4
= 216 = 65536 rules.

By testing increasing values of n and setting the maximum synchronisation
time τ equal to χ(n) (see Prop. 3), we found that the maximum synchronisation
length of this neighbourhood is 6, that is, for S = {2, . . . , 7}, no solution is
found.

For S = {2, . . . , 6}, we find that:
3 see: http://minisat.se/
4 see http://fiatlux.loria.fr

http://minisat.se/
http://fiatlux.loria.fr
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Fig. 2. Transition graphs of ECA 61 for n = 3 and n = 4. An oriented link between a
configuration x and y represents the relationship y = F (x).

– 6 rules have a height of 4: (1077,21471), (4427,11639), (11893,20875),
– 6 rules have a height of 5: (1205,17461,21215,21469), (5419,11095),
– 2 rules have a height of 6: (4363,12151).

For rule 5419, the synchronisation process is presented on Fig. 3, p. 122.

Fig. 3. Neighbourhood of size k = 4: transition graphs of rule 5419 for n = 4 and
n = 5. For the sake of readability configurations have been represented by a number
which corresponds to the decimal conversion of their bits.

5.3 The k = 5 Space

We now examine a neighbourhood with one more cell: we take k = 5 and N =
{−2,−1, 0, 1, 2}. The space contains 22

5
= 232 ∼ 4.1010 rules. At this point, we

reach the limits of our approach: The CNF formula of the problem has 74768
variables and 4563060 clauses. By progressively increasing the values of n and τ ,
our best result was to find a rule which synchronises the size interval S =
{2, . . . , 11}: rule 1078270911. This rule has a height of 18 (see Fig. 1, p. 115).
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There are probably other rules which solve the problem for τ higher than 18,
but we leave this exploration for future work. For S = {2, . . . , 12}, no solution
was found for τ = 30. Surprisingly, the non-satisfiability of the formula is given
rapidly, which suggests that the maximum synchronisation length for k = 5 is
equal to 12.

We also tested the SAT solver for k = 6, but τ = 12 is sufficient to generate
SAT problems that are not solved after more than two hours of computation.
We thus leave the exploration of these greater spaces for future work.

6 “Perfect” Stochastic Solutions

We now propose to examine what is the situation of the stochastic rules. In
fact, if we allow randomness in the transitions of the rule, it becomes difficult
not to solve the problem! For the sake of simplicity we restrict our study to
the probabilistic ECA case. We thus take N = {−1, 0, 1} and define a local
transition function φ : Q3 → [0, 1], which associates to each neighbourhood
state its probability to be updated to 1.

Formally, starting from a configuration x, the system can be described by a
stochastic process (xt)t∈N. The sequence (xt) now denotes a sequence of random
variables, which is constructed recursively with: x0 = x (with probability 1) and

∀t ∈ N, ∀i ∈ L, xt+1
i = B(φ(xt

i−1, x
t
i, x

t
i+1)), (16)

where B(p) is the Bernoulli random variables, which equals 1 with probability p
and 0 with probability 1 − p. Note that strictly speaking, the definition above is
more a characterisation than a definition and that a “proper” definition would
require the use of tools from measure theory (see e.g. [8]).

We now need to redefine what it means to solve the problem perfectly. The
blinking condition is easily translated to φ(0, 0, 0) = 1 and φ(1, 1, 1) = 0. For a
rule which verifies the blinking condition and a given configuration x ∈ En, we
define the synchronisation time T (x) as the random variable which corresponds
to the number of steps needed to attain one of the two homogeneous configu-
rations: T (x) = min{t, xt ∈ {0,1}}. The average synchronisation time of x is
the expectancy of T (x), denoted by E{T (x)}. For a given size n, we define the
worst expected synchronisation time (WEST) of x and the expected average
synchronisation time (EAST) of x as:

WEST(n) = maxx∈En
E{T (x)}, (17)

EAST(n) = 1
2n

∑
x∈En

E{T (x)}. (18)

We say that f synchronises the size n if WEST(n) is finite. Clearly, this is
equivalent as having a finite EAST(n). By extension, f is a solution to the
global synchronisation problem if f synchronises all sizes n ∈ N.

Let us now examine how to build a solution. For a function φ, we introduce
the variables: p0 = φ(0, 0, 0), p1 = φ(0, 0, 1), . . . , p7 = φ(1, 1, 1).
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Proposition 6. Let φ be a probabilistic ECA such that p0 = 1, p7 = 0 and
∀i ∈ {1, . . . , 6}, pi ∈]0, 1[, then φ is a solution to the global synchronisation
problem.

Proof (Sketch). To show that T (x) is finite for every x ∈ E, it is sufficient to show
that there is a non-zero probability to reach 0 from x in a finite number of steps.

Let Z(x) be the function such that Z(x)i =

{
1 if (xi−1, xi, xi+1) = (0, 0, 0),
0 otherwise .

The effect of Z is to change a cell to a 0 whenever there is a non-zero probability
that this cells updates to 0. Let us denote by m the greatest time needed to
shrink the regions of ones; clearly, m = �n/2�. It can then easily be checked
that:

(a) ∀x �= 1, Zm(x) ∈ {0,1}, and
(b) there is a non-zero probability to have ∀t ∈ {1, . . . , m}, xt = Zt(x).

In other words, there is a non-zero probability that x is absorbed in the 0-1 cycle
in at most m time steps. Viewing the system as a Markov chain, this corresponds
to the fact that the only two recurrent states are 0 and 1 and all the other states
are transient5. ��

Note that the proposition above only gives sufficient conditions to solve the
problem; moreover, it does not give any idea on the time needed to converge to
a fixed point. This means in particular that the function WEST(n) may scale
exponentially with n, which is not what is expected for an efficient solution to
the problem.

Proposition 7. Consider the probabilistic ECA φ defined with the relationship:
φ(x, y, z) = (y + z)/2; this rule is such that: WEST (n) = Θ(n2).

Proof (Sketch). By construction, the rule is the composition of two (commuta-
tive) operations: (a) an α-asynchronous left shift with α = 1/2 and (b) a global
inversion (x → x). In the α-asynchronous updating each cell independently
applies the local rule with probability α and keeps its state with probability
1 − α. This rule was analysed in a previous work [6] and it was shown that its
WECT scales quadratically with n.

It can be verified that the global inversion preserves the dynamics of the
asynchronous shift. Indeed, the effect of φ is simply to shift the interfaces between
regions of 0s and regions of 1s. To formalise this, one could use a coupling between
the original process and the asynchronous shift. ��

The same construction can be applied to the rules proposed by Fukś and
Schüle to solve the density classification problem with stochastic rules. These
rules were also analysed and were shown to have a quadratic scaling of their
convergence time [5].
5 The definitions of recurrent and transient can be found in the introductions to

Markov chain theory. Informally, a recurrent state corresponds to a state who is
returned to an infinite number of times with probability 1 and a transient state is a
state which is not recurrent: it will then be “leaved” definitively with probability 1.
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It is however interesting to note that the Traffic-Majority rule [5], whose
convergence is conjectured to be linear with the ring size, does not obey the
invariance by global inversion. Intuitively, the reason of this non-symmetry is
that the Traffic rule (i.e., ECA 184) treats the 0s and 1s differently and that a
global inversion also reverses the direction in which each state is “translated”.
It is an open question to find a rule with a synchronisation time that has a linear
scaling.

7 Questions

We studied the global synchronisation problem and listed a few simple properties
the potential solutions. By formulating the problem as a SAT problem, we could
perform a first systematic exploration of the existence of perfect solutions and
give a different point of view than the techniques that have been used so far (see
e.g. Ref. [9]).

We also noted the existence of a huge gap between deterministic and stochas-
tic systems: the use of randomness allows one to easily obtain a “perfect” solution
in the sense that any configuration will be almost surely synchronised in finite
time. The precise estimation of the average time of convergence is a delicate
operation in all generality but insights could be given for some precise rules.

We end this note with a list of questions and indications:

Question 1. Does there a exist a deterministic rule which synchronises all sizes?

As many researchers do, we believe that the answer to this question is negative.

Question 2. If the answer is no, given a neighbourhood of size k, what is the
maximum ring size that can be synchronised? Is this function computable?

We have absolutely no hint on how to answer this question.

Question 3. Given a neighbourhood of size k and maximum synchronisation
time τ , what is a good algorithm to find all the rules with a height less or equal
to τ? What is the complexity of this problem?

The work presented here with the use of SAT solvers can largely be improved.
This is only a first attempt to use such techniques. Research could be contin-
ued by looking for other symmetries of the problem or other ways to add the
constraints expressed in Prop. 3. Naturally, other paths have also to be searched.

Question 4. Is there a stochastic solution the global synchronisation problem
whose WEST scales linearly with the ring size?

At the moment, we do not see how such a rule could be constructed.
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Question 5. To which general context is it worth to generalise the global syn-
chronisation problem?

One may think of higher dimensions, more states, non-homogeneous rules6,
Boolean networks, etc.
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3. Bušić, A., Fatès, N., Mairesse, J., Marcovici, I.: Density classification on infi-
nite lattices and trees. Electronic Journal of Probability 18(51), 1–22 (2013).
http://ejp.ejpecp.org/article/view/2325

4. Das, R., Crutchfield, J.P., Mitchell, M., Hanson, J.E.: Evolving globally syn-
chronized cellular automata. In: Proceedings of 6th ICGA, pp. 336–343. Morgan
Kaufmann, San Francisco (1995)

5. Fatès, N.: Stochastic cellular automata solutions to the density classification prob-
lem - when randomness helps computing. Theory of Computing Systems 53(2),
223–242 (2013)

6. Fatès, N., Regnault, D., Schabanel, N., Thierry, É.: Asynchronous behavior of
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Abstract. A polyomino is said to be L-convex if any two of its cells are
connected by a 4-connected inner path that changes direction at most
once. The 2-dimensional language representing such polyominoes has
been recently proved to be recognizable by tiling systems by S. Brocchi,
A. Frosini, R. Pinzani and S. Rinaldi. In an attempt to compare recog-
nition power of tiling systems and cellular automata, we have proved
that this language can be recognized by 2-dimensional cellular automata
working on the von Neumann neighborhood in real time.

Although the construction uses a characterization of L-convex poly-
ominoes that is similar to the one used for tiling systems, the real time
constraint which has no equivalent in terms of tilings requires the use of
techniques that are specific to cellular automata.

Introduction

Two-dimensional cellular automata and tiling systems are two different models
that can be considered to recognize classes of two-dimensional languages (or
picture languages). Although they share some similarities such as locality and
uniformity, the two models are fundamentally different.

Tiling systems as language recognizers were introduced by D. Giammarresi
and A. Restivo in 1992 [3] and are based on the model of tile sets introduced
by H. Wang [7]. The strength of the model lies in its inherent non-determinism.
The system itself is a set of local rules describing valid image patterns and a
picture language is recognized by the system if it is the image by a projection of
the set of configurations that verify all local rules.

Cellular automata on the contrary are deterministic dynamical models. Intro-
duced in the 1940s by S. Ulam and J. von Neumann [6] to study self replication
in complex systems they were rapidly considered as computation models and
language recognizers [4]. Contrary to some other classical computation models
that inherently work on words, they can be considered naturally in any dimen-
sion (the original cellular automata studied by Ulam and von Neumann were
2-dimensional) and are therefore particularly well suited to picture languages.
Language recognition is performed by encoding the input in an initial configu-
ration and studying the (deterministic) evolution of the automaton from that
configuration. Time and space complexities can be defined in the usual way.

c© IFIP International Federation for Information Processing 2015
J. Kari (Ed.): AUTOMATA 2015, LNCS 9099, pp. 127–140, 2015.
DOI: 10.1007/978-3-662-47221-7 10
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Because tiling systems lack dynamic behavior, some picture languages that
can be recognized by cellular automata with minimal space and time complexity
(in real time) cannot be recognized by tiling systems, such as the language of
square pictures with vertical symmetry.

Conversely, the non-determinism of tiling systems should allow the recogni-
tion of languages that cannot be recognized by cellular automata in low time
complexities. It is straightforward for instance to verify that the language con-
sidered in [5] as an example of language that cannot be recognized in real time
by a cellular automaton working on the Moore neighborhood but can be recog-
nized on the von Neumann neighborhood can be recognized by a tiling system,
thus proving that tiling systems and real time cellular automata on the Moore
neighborhood are incomparable.

Because the language of L-convex polyominoes was recently proved to be rec-
ognizable by tiling systems when it was previously though not to be, we decided
to investigate its recognizability by real time von Neumann neighborhood cellular
automata. Although the language was also recognized by cellular automata, the
construction turned out to be quite different from the case of tiling systems and
used some techniques specific to cellular automata (and possibly von Neumann
neighborhood cellular automata). This article describes said construction.

1 Definitions

1.1 Cellular Automata

Definition 1 (Cellular Automaton). A cellular automaton (CA) is a quad-
ruple A = (d,Q,N , δ) where

– d ∈ N is the dimension of the automaton ;
– Q is a finite set whose elements are called states ;
– N is a finite subset of Zd called neighborhood of the automaton ;
– δ : QN → Q is the local transition function of the automaton.

Definition 2 (Configuration). A d-dimensional configuration C over the set
of states Q is a mapping from Z

d to Q.
The elements of Zd will be referred to as cells and the set of all d-dimensional

configurations over Q will be denoted as Confd(Q).

Given a CA A = (d,Q,N , δ), a configuration C ∈ Confd(Q) and a cell c ∈ Z
d,

we denote by NC(c) the neighborhood of c in C :

NC(c) :
{N → Q

n �→ C(c + n)

From the local transition function δ of a CA A = (d,Q,N , δ), we can define
the global transition function of the automaton Δ : Confd(Q) → Confd(Q)
obtained by applying the local rule on all cells :

Δ(C) =
{
Z

d → Q
c �→ δ(NC(c))
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The action of the global transition rule makes A a dynamical system over the set
Confd(Q). Because of this dynamic, in the following we will identify the CA A
with its global rule so that A(C) is the image of a configuration C by the action of
the CA A, and more generally At(C) is the configuration resulting from applying
t times the global rule of the automaton from the initial configuration C.

Definition 3 (Von Neumann and Moore Neighborhoods). In d dimen-
sions, the most commonly considered neighborhoods are the von Neumann neigh-
borhood NvN = {c ∈ Z

d, ||c||1 ≤ 1} and the Moore neighborhood NM = {c ∈
Z

d, ||c||∞ ≤ 1}. Figure 1 illustrates these two neighborhoods in 2 dimensions.

Fig. 1. The von Neumann
(left) and Moore (right) neigh-
borhoods in 2 dimensions

Fig. 2. Three polyominoes. The center and right
ones are vertically convex, the right one is HV-
convex.

1.2 Picture Recognition

From now on we will only consider 2-dimensional cellular automata (2DCA),
and the set of cells will always be Z

2.

Definition 4 (Picture). For n,m ∈ N and Σ a finite alphabet, an (n,m)-
picture (picture of width n and height m) over Σ is a mapping

p : �0, n − 1� × �0,m − 1� → Σ

Σn,m denotes the set of all (n,m)-pictures over Σ and Σ∗,∗ =
⋃

n,m∈N
Σn,m

the set of all pictures over Σ. A picture language over Σ is a set of pictures
over Σ.

Definition 5 (Picture Configuration). Given an (n,m)-picture p over Σ,
we define the picture configuration associated to p with quiescent state q0 /∈ Σ
as

Cp,q0 :

⎧
⎨

⎩

Z
2 → Σ ∪ {q0}

x, y �→
{

p(x, y) if (x, y) ∈ �0, n − 1� × �0,m − 1�
q0 otherwise

Definition 6 (Picture Recognizer). Given a picture language L over an
alphabet Σ, we say that a 2DCA A = (2,Q,N , δ) such that Σ ⊆ Q recog-
nizes L with quiescent state q0 ∈ Q \ Σ and accepting states Qa ⊆ Q in time
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τ : N2 → N if, for any picture p (of size n×m), starting from the picture config-
uration Cp,q0 at time 0, the origin cell of the automaton is in an accepting state
at time τ(n,m) if and only if p ∈ L. Formally,

∀n,m ∈ N,∀p ∈ Σn,m, Aτ(n,m)(Cp,q0)(0, 0) ∈ Qa ⇔ p ∈ L

Because cellular automata work with a finite neighborhood, the state of the
origin cell at time t (after t actions of the global rule) only depends on the initial
states on the cells in N t, where N 0 = {0} and for all n, N n+1 = {x + y, x ∈
N n, y ∈ N}. The real time function is informally defined as the smallest time
such that the state of the origin may depend on all letters of the input :

Definition 7 (Real Time). Given a neighborhood N ⊂ Z
d in d dimensions,

the real time function τN : Nd → N associated to N is defined as

τN (n1, n2, . . . , nd) = min{t, �0, n1 − 1� × �0, n2 − 1� × . . . × �0, nd − 1� ⊆ N t}

When considering the specific case of the 2-dimensional von Neumann neigh-
borhood, the real time is defined by τNvN(n,m) = n + m − 2. There is however
a well known constant speed-up result :

Proposition 1 (folklore). For any k ∈ N, any language that can be recognized
in time (τNvN+k) by a 2DCA working on the von Neumann neighborhood can also
be recognized in real time by a 2DCA working on the von Neumann neighborhood.

So it will be enough to prove that a language is recognized in time (n,m) �→
n + m + k for some constant k to prove that it is recognized in real time.

1.3 Polyominoes

Definition 8 (Polyomino). A placed polyomino is a finite and 4-connected
subset of Z2. A polyomino is the equivalence class of a placed polyomino up to
translation.

Definition 9 (HV-Convexity). A polyomino p is said to be horizontally (resp.
vertically) convex if any cell between two cells of the polyomino on a same hor-
izontal (resp. vertical) line is also a cell of the polyomino :

∀x1, x2, x3, y ∈ Z, x1 ≤ x2 ≤ x3 ∧ (x1, y) ∈ p ∧ (x3, y) ∈ p ⇒ (x2, y) ∈ p

A polyomino is HV-convex if it is both horizontally and vertically convex (see
Figure 2).

We will now present the notion of L-convex polyomino, first introduced in [2]
to classify HV-convex polyominoes. Informally, an L-convex polyomino p is such
that for any two of its cells there exists a 4-connected path of cells of p that
connects them such that the path changes direction at most once (see Figure 3).
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Fig. 3. The polyomino on the left is L-
convex (the figure shows an inner path con-
necting two cells with at most one direction
change, and there is such a path for any pair
of cells). The polyomino on the right is HV-
convex but not L-convex as illustrated by
the pair of highlighted cells for which there
is no inner connecting path that changes
direction at most once.
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Fig. 4. A polyomino (left) and its cor-
responding picture over {0, 1} (right).
When this picture is encoded as a con-
figuration of a cellular automaton, the
origin of the automaton is on the lower
left corner of the picture.

The following remarks will lead to a formal definition of L-convex polyominoes:

– a path that changes direction at most once connecting two cells of a poly-
omino p on the same row (resp. column) is fully horizontal (resp. vertical)
therefore L-convex polyominoes are HV-convex ;

– if c1 = (x1, y1) and c2 = (x2, y2) are two cells in an L-convex polyomino p,
either a1 = (x1, y2) or a2 = (x2, y1) is a cell of p because a1 and a2 are the
angles of the only two paths connecting c1 and c2 that change direction at
most once ;

– if a polyomino p is HV-convex and such that for any two of its cells c1 =
(x1, y1) and c2 = (x2, y2) either a1 = (x1, y2) or a2 = (x2, y1) is a cell of p,
then p is L-convex since by HV-convexity, the whole path connecting c1 to
c2 going through a1 or a2 is in p.

Definition 10 (L-Convexity). A polyomino p is L-convex if it is HV-convex
and verifies

∀x1, x2, y1, y2 ∈ Z, (x1, y1) ∈ p ∧ (x2, y2) ∈ p ⇒ (x1, y2) ∈ p ∨ (x2, y1) ∈ p

Given a polyomino p, the picture over the alphabet {0, 1} associated to p
is the picture whose dimensions are the dimensions of the minimal bounding
rectangle of p, where the cell has state 1 if the corresponding cell is in the
polyomino and 0 otherwise (see Figure 4). We define the language LL-convex as
the picture language of all L-convex polyomino pictures.

2 Main Result

This section will be entirely devoted to the proof of the following result

Theorem 1. The picture language LL-convex of L-convex polyomino pictures is
recognizable in real time by a 2DCA working on the von Neumann neighborhood.
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The proof will be done by describing the behavior of a 2DCA working on
the von Neumann neighborhood that recognizes LL-convex in real time. In this
description we will use cardinal directions north, south, east and west to denote
the different directions on the configuration as follows :

– north is towards the increasing y axis ;
– south is towards the decreasing y axis ;
– east is towards the increasing x axis ;
– west is towards the decreasing x axis.

With such conventions, the origin of the automaton is located at the south-west
(SW) angle of the picture in the initial configuration and the picture therefore
extends from the origin eastward and northward.

2.1 Preliminary Check

First of all, the automaton must check that the input is the picture of a HV-
convex polyomino.

To do so, during the first step of the computation, each cell containing a 1
considers its neighbors and remembers which of them also contains a 1. Then a
signal moves westward from the eastmost point of each row and southward from
the northmost point on each column. These signals check that each row and
each column contains exactly one segment of connected 1 symbols. Moreover,
the signals check that the segment of 1 on each line and column is connected
to that of the neighbor rows and columns using the neighboring information
gathered during the first step.

These two properties guarantee that the polyomino is connected, HV-convex
and that the picture’s dimensions are that of the minimal bounding rectangle
(no empty row or column). If an error is found on a row or column, the signal is
directed towards the origin and the input is not accepted.

We can now assume that the input corresponds to a HV-convex polyomino
picture, and must determine whether it is also L-convex.

2.2 Characterization of L-Convex Polyominoes

We will now present the characterization of L-convex polyominoes that will be
used by the automaton. It is a slighly rephrased version of the characterization
presented in [1] (Theorem 2).

Given a polyomino p, we say that a cell of p is a corner if it has two consecu-
tive neighbors that are not in p. We classify corners depending on the directions
in which such neighbors not in p are located : a north-east (NE) corner is one such
that the northern and eastern neighbors are not in p, and we similarly have NW,
SW and SE corners (see Figure 5 for an illustration of NE corners). Note that
corner types are not exclusive : a cell can for instance be both a NE and NW
corner.
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Proposition 2 (Characterization of L-convex polyominoes [1]). A HV-
convex polyomino p is L-convex if and only if for every NE corner c = (x, y),
denote by (x, y′) the southest cell of p on the same column as c, and (x′, y) the
westmost cell of p on the same row as c, there is no cell (x′′, y′′) of p verifying
any of the following three conditions

(a). x′′ > x (resp. x′′ > x′) and y′′ < y′

(b). x′′ < x′ (resp. x′′ < x′) and y′′ > y′

(c). x′′ < x′ (resp. x′′ < x′) and y′′ < y′

and the symmetric conditions holds for all NW corners (in the South and East
directions).

Figure 5 illustrates this characterization.

NE corner s

(x, y)(x’, y)

(x, y’ )(x’, y’ )

a

b

c

h1

v1

h2

v2

Fig. 5. A HV-convex polyomino is L-convex is for any of its NE corners (represented as
dark grey cells), no cell of the polyomino lies in any of the three zones represented
in hatched light grey, and symmetrically for all of its NW corners. The illustrated
polyomino is not L-convex because there are two cells in the lower left hatched area
(these cells cannot be connected to the represented NE corner by an inner path with
at most one direction change)

Proof (sketch). It is enough to verify that all pairs of corners of a HV-convex
polyomino are connected by an inner path with at most one change of direction.
Moreover by symmetry we can consider only NW and NE corners.

The cells (x′, y), (x, y′) and (x′, y′) in the characterization represent the
farthest points that can be reached from a given corner in their respective direc-
tions. Cells of the three restricted areas cannot be connected to the corner and
conversely all cells not in these areas can be connected to the corner.

Note that because the polyomino is assumed to be HV-convex it is enough to
check that there is no polyomino cell on the two lines extending from the starting
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check point (represented in dark hatched grey in Figure 5). For instance, for the
condition (a), it is enough to check that there is no cell (x′′, y′ − 1) with x′′ > x
and no cell (x + 1, y′′) with y′′ < y′ in the polyomino. This follows from the
4-connectedness of the polyomino.

Although the conditions to verify are perfectly symmetric for NE and NW
corners, when implementing it on a real time cellular automaton the case of
NE corners is significantly simpler because all signals move towards the origin
at maximum speed so the result of the verification easily arrives on time. On
the other hand, for NW corners, some signals move eastward (away from the
origin) so it would take too much time to send the signal all the way to the east
side and back to the origin. We will therefore now focus on implementing the
characterization for NE corners and come back to the NW corners at the end of
the proof.

2.3 Compression and Marking

The characterization from Proposition 2 depends on cells being able to tell if
there is a polyomino cell in a given direction from them. To make sure that each
cell knows this information, consider signals going eastward from the west side of
each row. If the initial configuration is the picture configuration of a HV-convex
polyomino, there is exactly one segment of 1 symbols on each row. Before the
signal meets the first 1, cells can be notified that there is no 1 westward and
that there is at least one 1 eastward. On the segment of 1, cells are notified of
whether they are a border cell or an inner cell and, after the segment of 1, all
cells are notified that there is a 1 westward and none eastward. Of course the
same thing can be done on columns with northward signals.

Now consider a horizontal compression of the input as illustrated by Figure 6.
To compress the input, consider that each cell can now hold two initial states
instead of one (this can be done by increasing the number of states of the automa-
ton) and move all states westward unless the column in which they should go is
full (contains two states) or is out of the boudaries of the initial configuration
(ignore the darker dots from Figure 6 for the moment).

Such a compression takes �n
2 � time steps where n is the width of the input.

During these steps, no signal can propagate westward because the initial data
is already moving west at maximum speed but the time lost performing the
compression can be recovered afterwards because each cell now sees twice as
many states horizontally, which means that relatively to the original states,
horizontal signals can perform two steps at a time.

During the compression, signals can however be propagated eastward (as
illustrated by the darker dots in Figure 6). This means that while the compression
is taking place, the signal indicating to each cell if it has 1 symbols east or west
can propagate, so that at the end of the compression, cells have access to this
information.

By performing a vertical compression after the horizontal one we can otain
in half of the real time a compressed copy of the initial configuration on which
every cell now has the added information of whether there is a 1 in any of the
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t= 0 t=1 t= 4

...

Fig. 6. Horizontal compression of the input, with eastward transmission of information
(dark dots)

four directions. Moreover, later in the construction we will need to know which
columns correspond to the same horizontal segment on the southern border
of the polyomino, so we also propagate northward signals during the vertical
compression from the borders of all horizontal segments of the southern border
of the polyomino (see dashed northward arrows in Figure 8).

After both compressions, the computation of the automaton can properly
start and in this computation horizontal and vertical signals can propagate twice
as fast and all information is twice closer to the origin. This means that the com-
pressed run of the automaton can behave exactly as if the configuration was not
compressed but was given the extra information propagated by the eastward and
northward signals from the beginning1. We will now ignore the compression in
the following explanations, and simply consider that the information propagated
by the northward and eastward signals is readily available to each cell.

Remark: As it is described, it looks as if cells should know when the compression
is finished to start performing the next task (be it the second compression or
the accelerated simulation of the uncompressed automaton). However, one can
show that cells can asynchronously start the next task as soon as they have
the necessary information to do so. It is sufficient to detect when all cells in
their neighborhood have finished the compression to perform one step of the
next task. From there, we can show that if each cell advances the following task
as soon as it has enough information to do so, cells that have completed the
compression early will be slowed down progressively to wait for the further cells
to catch up. However, the last cells to finish the compression will never be slowed
down as all other cells have the necessary information available to them. This
means that by continuing the computation after the compression as soon as the
information is available, all cells are at least as advanced as if all had started
their computation at the time when the compression is finished, thus negating
the need to synchronize all cells after the compression.
1 This compression technique works in our case because the automaton (as it will be
described later) only uses horizontal and vertical signals that change directions a
bounded number of times. It is only possible to simulate two steps of the uncom-
pressed automaton if they only involve horizontal or vertical movement, not both.
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2.4 First Conditions of the Characterization

With the informations we have, checking conditions (a) and (b) of Proposition 2
is very easy as it is only a matter of sending a westward and a southward signal
from each NE corner. When these signals reach the border of the polyomino, they
check that there are no 1 in the corresponding area by using the information that
was transmitted to each cell during the compressions. If a 1 is found where it
should not be, a signal is directed towards the origin to indicate that the input
should not be accepted.

There are no conflicting signals during this step because there can be at most
one NE corner per column and one at most per row.

2.5 The Third Condition

The third condition from Proposition 2 is much more complex to implement. It
requires sending a westward signal h1 and a southward signal v1 from each NE
corner and having these signals generate secondary signals h2 (westward, from
the collision of v1 with the border of the polyomino) and and v2 (southward
from the collision of h1 and the border). The intersection of h2 and v2 indicate
the cell on which condition (c) should be checked, as illustrated by Figure 5.

Two problems arise when implementing this behavior :

– although v1 and h1 signals originating from different NE corners will never
overlap, if two signals arrive on the same row or column they will produce
v2 or h2 signals that might overlap ;

– h2 signals might intersect with many v2 signals, but only one of them origi-
nates from the same NE corner. It is therefore necessary to ensure that the
verification of condition (c) is not performed on cells that do not correspond
to a valid intersection of h2 and v2 signals.

Priority Rule. To solve the first problem, we use a simple priority rule : if two
NE corners c1 and c2 are north of the same horizontal segment on the southern
border of the polyomino, we can ignore the easternmost one. There are two cases
to consider (illustrated by Figure 7). Assume c1 lies north-west of c2 :

– if the westward h1 signal from c1 reaches the border east of that from c2
(left of Figure 7), then the area that would be checked by considering the
intersection of the signals v2 and h2 from c1 (dark grey area in the Figure)
is east of the one that would be considered by the intersection from c2 (light
grey area) and therefore contains it entirely, which means that it is not
necessary to check the area indicated from c2 ;

– if on the contrary the h1 signal from c1 arrives west of that from c2 (right
of Figure 7), the HV-convexity of the polyomino guarantees that there can
be no 1 in either of the two areas considered by the intersections from c1
and c2 since there is at least one 1 north west of where the h1 signal from
c2 arrives, no 1 west of that point so there cannot be any 1 west and south
of it. In this case, it doesn’t matter which intersection is considered since
neither will find a contradiction with the (c) condition from Proposition 2.
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c1 c1

c2 c2

Fig. 7. When two v1 signals arrive on the same row we can always safely ignore the
one originating from the eastmost NE corner

A symmetrical argument shows that it is sufficient to consider signals orig-
inating from the southernmost of two NE corners whose h1 signals arrive on
the same vertical segment of the western border of the polyomino. Horizontal
and vertical signals are however handled differently because the last part of the
construction is not symmetrical.

We want to make sure that there are as many v1 signals as there are distinct
(non-overlapping) h2 signals. To do so, v1 signals are not sent directly by NE
corners but rather sent by the h1 signal when the h1 signal knows that the corner
it originated from is the westmost of the corresponding horizontal segment in the
southern border (see Figure 8). When an h1 signal finds a cell of the polyomino
north before reaching the border of the southern segment (dashed line in the
figure), it knows there is another NE corner west for that segment and therefore
disappears. On the contrary, if such a signal reaches the border of the southern
segment it sends the v1 signal southward.

Counters. For v2 signals, we need to solve the second problem that was described
previously which is to determine which of the possibly many h2 signals inter-
sected is the one that originated from the same NE corner. To do so, h1 signals
produced by NE corners will count how many v2 signals they cross while going
west. If a h1 signal crossed n v2 signals, then the v2 signal it produces will con-
sider that its corresponding h2 signal is the (n + 1)-th to last one (the last n are
not the one that should be considered).

Figure 9 illustrates why the result of such a behavior is correct. Consider an
NE corner c2 such that its h1 signal crossed the v1 signal produced by an NE
corner c1 (top circled intersection)

– if the v1 signal produced by c2 arrives north of the one produced by c1 (left
part of the figure) then the real intersection of the v2 and h2 signals from c2
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Fig. 8. h1 signals from an NE corner are interrupted if they detect that there is another
NE corner west whose v1 signal would arrive on the same horizontal segment on the
southern border of the polyomino. v1 signals are sent by h1 signals on the westmost
column corresponding to the southern horizontal segment.

is the first that the v2 signal from c2 encounters, and the later one should
be ignored (lower circled intersection) ;

– if on the contrary the v1 signal from c2 arrives south of that of c1 (right part
of the figure), the real intersection that should be considered is the last one
but by considering the first the automaton will not find any contradiction
to condition (c) since by HV-convexity of the polyomino there are no 1
south and west of either of the two intersections (so it will pick the wrong
intersection but that will not change the final result).

c2

c1

c2

c1

Fig. 9. Considering that for each v2 signal crossed by the h1 signal from c2, one of the
last intersections with an h2 signal should be ignored by the subsequent v2 signal leads
to a correct characterization

In order to implement this rule, signals need to carry a binary counter. This
counter should follow the signal at maximal speed, and will be incremented by
the h1 signal for each v1 signal encountered (which can be easily done as incre-
mental binary counters can be implemented on one-way one dimensional CA).
For technical reasons, the counter has an initial value of 1.
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As for the v2 signal, as it crosses h2 signals it checks if the area south-west
of said intersection contains a 1 (which can be done instantly because of the
information gathered during the initial compressions), and if so decrements the
counter2. If the counter is equal to 0 (decreasing a 0 counter leaves it at 0) when
the v2 signal reaches the southernmost border of the picture, no error is detected,
but if it is positive then a message is sent to the origin to indicate that the input
is not L-convex.

This works because we know that if there is no 1 south-west of a cell c, there is
no 1 south-west of a cell south of c. If the h1 signal crosses n v1 signals the counter
indicates (n+1) when the v2 signal starts moving south and if the counter is at 0
it means that the (n + 1) last intersections were correct according to condition
(c) and therefore the (n + 1)-th to last was correct.

Checking that the counter is 0 takes log(n) steps where n is the maximal
value of the counter (log(n) is the maximal length of the counter). If the counter
is incremented to n it means that there are at least n NE corners north of the
one from which the signal originated. This means that if the signal moves from
this corner towards the origin (south or west) at maximal speed, it would reach
the origin at least n steps before the real time, and therefore it can spend log(n)
steps checking the value of the counter and still arrive in real time.

Moreover, conflicts of overlapping counters can be resolved by the priority
rule described previously. Precedence must always be given to the counter cor-
responding to the southernmost NE corner :

– when an h1 signal reaches the west border of the polyomino, it marks the
cell on which the v2 signal is produced ;

– if a v2 signal moves through such a marked cell, it is erased ;
– if the counter following a v2 signal is on a cell where a new v2 signal is created,

the counter is invalidated (the end symbol is erased) so that the new v2 signal
has precedence over it. An invalidated counter will ignore decrementations
and will ignore the test to 0 at the end.

2.6 The North-West Corners

The previous subsections describe how NE corners can properly implement the
characterization of L-convex polyominoes from Proposition 2. NW corners will
behave in a very similar fashion, but special care must be taken to prove that
the result of their verification can reach the origin in real time.

On a regular configuration, a signal issued from a NW corner needs to go
east through most of the polyomino, then south and then the result of the
verification should travel back west to the origin. In doing so the signal goes
twice through the width of the input which cannot be done in real time. To solve
this problem, we consider the path of the signal during a horizontal compression
of the configuration:
2 Decrementation can also be performed on a binary counter moving at maximal speed
but in that case the length of the counter is not reduced when going from an 2n to
(2n−1), but instead a leading 0 is added, which is not a problem for our construction.
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– the signal starts from the NW corner on the cell c = (x, y) ;
– during the x

2 first steps the signal moves west with the compression, and
when the cell is compressed, the h1 signal is sent eastward ;

– meanwhile, the cell (x′, y) that should have been the target of the h1 signal
moves left with the compression. The h1 signal and the cell arrive at the cell
(x′
2 , y) at time (x′

2 , y) ;
– the signal v2 from c moves south until it reaches the southern border of

the input after y steps. At this point a delay of at most log(h − y) steps
is incurred to check the value of the counter (h is the total height of the
input) ;

– the result of the verification is directed towards the origin, it arrives at time
x′
2 + y + log(h − y) + x′

2 < x′ + h which is before real time.

NW corners can therefore properly perform the necessary verifications to
implement the characterization from Proposition 2, which concludes the proof
of Theorem 1.
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Abstract. We investigate cellular automata as acceptors for formal
languages. In particular, we consider real-time one-way cellular automata
(OCA) with the additional property that during a computation any cell
of the OCA has the ability to dissolve itself and we call this model
shrinking one-way cellular automata (SOCA). It turns out that real-
time SOCA are more powerful than real-time OCA, since they can accept
certain linear-time OCA languages. Additionally, a construction is pro-
vided that enables real-time SOCA to accept the reversal of real-time
iterative array languages. Finally, restricted real-time SOCA are investi-
gated which are allowed to dissolve only a number of cells that is bounded
by some function. In this case, an infinite strict hierarchy of language
classes is obtained.

1 Introduction

Devices of homogeneous, interconnected, parallel acting automata have widely
been investigated from a computational capacity point of view. In particular,
many results are known about cellular automata (see, for example, the sur-
veys [10,11]) which are linear arrays of identical copies of deterministic finite
automata, where the single nodes, which are sometimes called cells, are homo-
geneously connected to their both immediate neighbors. Additionally, they work
synchronously at discrete time steps. The computational power of cellular auto-
mata (CA) can be measured by their ability to accept formal languages. Initially,
each word is written symbolwise into the cells. Then, the transition function
is synchronously applied to each cell at discrete time steps, and the input is
accepted if there is a time step at which the leftmost cell enters an accepting
state. The in a way simplest model of CA is that of real-time one-way cellular
automata (OCA) [4]. In this model, every cell is connected with its right neighbor
only which restricts the flow of information from right to left. Additionally, the
available time to accept an input is restricted to the length of the input. The class
of languages accepted by real-time OCA is properly included both in the class
of languages accepted by real-time CA and by linear-time OCA. Furthermore,
it is incomparable with the class of context-free languages. More results on real-
time OCA such as, for example, closure properties and decidability questions
and references to the literature may be found in [10,11].

The first notions of cellular automata date back to Ulam and von Neu-
mann [14] whose work was biologically motivated by finding a way to design
c© IFIP International Federation for Information Processing 2015
J. Kari (Ed.): AUTOMATA 2015, LNCS 9099, pp. 141–154, 2015.
DOI: 10.1007/978-3-662-47221-7 11
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a self-replicating machine. While the birth of new cells and the death of existing
cells are natural processes in biology, these features are not reflected, at least to
our knowledge and in connection with formal language recognition, in the exist-
ing literature. In this paper, we introduce shrinking one-way cellular automata
(SOCA). Here, the transition function of each cell is extended so that each cell
has the ability to dissolve itself. Dissolving of a cell means that the cell itself
and all information stored in the cell is deleted. Moreover, the cell to the left
of a dissolved cell is directly connected with the right neighbor of the dissolved
cell. In this way, the number of cells available is shrinking. Nevertheless, real-
time is still defined by the initial length of the input and the input is accepted
whenever the leftmost cell at some computation step enters an accepting state.
A related concept is that of fault tolerant CA (see, for example, [6,12,15,18]).
These are CA where cells may become defective, that is, they cannot process the
information from its neighbors any longer, but only can forward the unchanged
information to its neighbors. Hence, defective cells can no longer take part in
the computation, but they are still existing.

The paper is organized as follows. In Section 2 we provide a formal def-
inition of SOCA and an illustrating example. Moreover, real-time SOCA are
compared to conventional real-time OCA. To this end, a technique is developed
how to embed languages. It turns out that such embeddings of languages are
still acceptable by conventional OCA as long as the unembedded language is
accepted in time n + r(n), where r is some sublinear function. If the unem-
bedded language is accepted in time 2n, but not in real time, then it is shown
that the embedded language is accepted by a real-time SOCA, but not by any
real-time OCA. In Section 3 we investigate an interesting relation of real-time
SOCA to real-time iterative arrays (IA) which are similar to real-time CA, but
process their input sequentially. It is known due to Cole [3] that the language
classes induced by real-time IA and real-time OCA are incomparable. Here, we
obtain that real-time IA are very close to real-time SOCA. It is shown that for
every language L accepted by a real-time IA, a real-time SOCA can effectively
be constructed which accepts all words of even or odd length from L, or the
language $LR, that is, the reversal of L headed by a new symbol $. In Section 4
we study the relation between the dissolving of cells and additional time. It
turns out that real-time SOCA where the number of dissolved cells in accepting
computations is bounded by some function r depending on the length of the
input, can be simulated by conventional OCA which work in time n+r(n). This
enables us to utilize results known for the time hierarchy between real-time and
linear-time OCA and to obtain an infinite hierarchy with regard to the number
of dissolved cells.

2 Preliminaries and Definitions

We denote the set of non-negative integers by N. Let A denote a finite set of
letters. Then we write A∗ for the set of all finite words (strings) built with letters
from A. The empty word is denoted by λ, the reversal of a word w by wR, and
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for the length of w we write |w|. For the number of occurrences of a subword x
in w we use the notation |w|x. A subset of A∗ is called a language over A. We
use ⊆ for set inclusion and ⊂ for strict set inclusion. For a set S and a symbol a
we abbreviatory write Sa for S ∪ {a}. We use complexity functions f : N → R

+

tacitly assuming that the range are integers by setting f ′(n) = �f(n)� and
denote f ′ also by f . The i-fold composition of a function f is denoted by f [i],
i ≥ 1. Function f is said to be increasing if m < n implies f(m) ≤ f(n).
The inverse of an increasing and unbounded function f : N → N is defined
as f−1(n) = min{m ∈ N | f(m) ≥ n }. The notation f(O(n)) ≤ O(f(n)) means
∀ c ≥ 1 : ∃n0, c

′ ≥ 1 : ∀n ≥ n0 : f(c · n) ≤ c′ · f(n). In order to avoid technical
overloading in writing, two languages L and L′ are considered to be equal, if
they differ at most by the empty word, that is, L \ {λ} = L′ \ {λ}. Throughout
the article two devices are said to be equivalent if and only if they accept the
same language.

2.1 One-Way (Shrinking) Cellular Automata

A one-way cellular automaton is a linear array of identical deterministic finite
state machines, called cells. Except for the rightmost cell each one is connected
to its nearest neighbor to the right. The state transition depends on the current
state of a cell itself and the current state of its neighbor, where the rightmost cell
receives information associated with a boundary symbol on its free input line.
The state changes take place simultaneously at discrete time steps. A one-way
cellular automaton is said to be shrinking if the cells may dissolve themselves.
If a cell dissolves itself the next cell to its left is connected to the next cell to its
right. The input mode for cellular automata is called parallel. One can suppose
that all cells fetch their input symbol during a pre-initial step.

Definition 1. A shrinking one-way cellular automaton (SOCA) is a system
〈S, F,A, #, δ〉, where S is the finite, nonempty set of cell states, F ⊆ S is the
set of accepting states, A ⊆ S is the nonempty set of input symbols, # /∈ S is
the permanent boundary symbol, and δ : S × S# → S ∪ {dissolve} is the local
transition function.

A configuration ct of M at time t ≥ 0 is a string of the form S∗#, that reflects
the cell states from left to right. The computation starts at time 0 in a so-called
initial configuration, which is defined by the input w = a1a2 · · · an ∈ A+. We set
c0 = a1a2 · · · an#. Successor configurations are computed according to the global
transition function Δ. Let ct = x1x2 · · · xn#, t ≥ 0, be a configuration, then its
successor ct+1 = y1y2 · · · yn# is defined as follows:

ct+1 = Δ(ct) ⇐⇒
{

yi = h(δ(xi, xi+1)), i ∈ {1, 2, . . . , n − 1}
yn = h(δ(xn, #))

where h : S∪{dissolve} → S∪{λ} is the homomorphism that maps states to states
and erases dissolve, that is, h(p) = p for p ∈ S, and h(dissolve) = λ. Thus, Δ is
induced by δ.
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· · ·a1 a2 a3 an #

Fig. 1. A (shrinking) one-way cellular automaton

An SOCA is non-shrinking if δ(s1, s2) �= dissolve for all s1, s2 ∈ S#. Non-
shrinking SOCA are referred to as one-way cellular automata. They are denoted
by OCA.

An input w is accepted by an SOCA M if at some time step during the course
of its computation the leftmost cell enters an accepting state, that is, the leftmost
symbol of the configuration is an accepting state. The language accepted by M
is denoted by L(M). Let t : N → N be a mapping. If all w ∈ L(M) are accepted
with at most t(|w|) time steps, then M is said to be of time complexity t.

In general, the family of languages accepted by some device X with time com-
plexity t is denoted by Lt(X). The index is omitted for arbitrary time. Actually,
arbitrary time is exponential time due to the space bound. If t is the identity
function n, acceptance is said to be in real time and we write Lrt(X). The linear-
time languages Llt(X) are defined according to Llt(X) =

⋃
k∈Q, k≥1 Lk·n(X).

Example 1. The language L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } is accepted
by a real-time SOCA.

The basic idea to accept language L is that every cell x with x ∈ {a, b} having
the border cell as right neighbor sends a signal to the left that eventually dissolves
a cell y with y ∈ {a, b} and y �= x. Subsequently, this cell dissolves itself in the
following step. Meanwhile the signal is forwarded to the left by cells carrying the
same input symbol x. Thus, the transition function δ of an SOCA accepting L
may be sketched as follows with x ∈ {a, b}. We set δ(x, #) = δ(x′, #) = x,
δ(x, #) = dissolve, and δ(x, x) = δ(x, x′) = x′. If an x-signal reaches a cell
carrying an input symbol y ∈ {a, b} with y �= x, the cell dissolves itself as well.
We set δ(y, x) = δ(y, x′) = dissolve. If the input belongs to L, then all cells
carrying a’s and b’s have been dissolved up to the next to last computation step.
Thus, the only $ cell has the border symbol as right neighbor and can enter an
accepting state acc. If the only $ cell sees a state x′ or x to its right, it enters a
rejecting state rej. If the input contains no symbol $ at all, then the automaton
can never enter an accepting state. If the input contains more than one $, there
is a cell having a $-cell as right neighbor. This cell sends a signal to the left that
prevents all cells passed through from dissolving and accepting.

To show that the SOCA works in real time, notice that in every second
computation step the cell next to the border cell is dissolved. Furthermore, such
a cell initiates a signal to the left that will dissolve another cell somewhere to the
left. So, at some time step 2i there are i cells dissolved next to the border cell
and i signals for dissolving a cell are sent. In particular, for an input word $w with
w ∈ L, we have |w| is even and at time 2 |w|

2 exactly |w|
2 cells have been dissolved

next to the border cell and exactly |w|
2 cells have been dissolved somewhere to

the left. So, only the $-cell at the left border remains which accepts in the next,
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t

n

$ a b b a b b a a #

$ a b b a b b a a #

$ a b b a b b a′ #

$ a b b a b a #

$ a b b a #

$ a b b a #

$ a b #

$ a b #

$ #

acc #

$ b b a a a a #

$ b b a a a a #

$ b b a a a′ #

$ b b a a′ a #

$ b b a′ a′ #

$ b a′ a #

$ a′ #

rej a #

Fig. 2. The computation on the left accepts the input $abbabbaa and the computation
on the right rejects the input $bbaaaa. Cells to be dissolved in the next time step are
depicted with background.

that is, (|w| + 1)st step, hence, in real time. Two example computations can be
found in Figure 2. ��

It is worth mentioning that it is still an open problem whether or not the
deterministic context-free language L of Example 1 can be accepted by a real-
time OCA.

2.2 Does Shrinking Really Help?

It is well known that the family of real-time OCA languages is a proper subfamily
of the linear-time OCA languages [11]. This section is devoted to comparing the
power of real-time shrinking one-way cellular automata to the power of classical
real-time OCA. It turns out that the former are more powerful.

Let L ⊆ A∗ be a language and $ /∈ A be a letter. The embedding of a $ after
every symbol from A is given by the homomorphism emb : A∗ → A∗

$ , where
emb(a) = a$ for a ∈ A. Next we show that this embedding does not help OCA.
We consider time complexities from real time to linear time of the form n + r(n),
where r : N → N is a linear or sublinear function. In order to avoid functions with
strange behavior, we require that r meets the weak properties increasing and
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r(O(n)) ≤ O(r(n)). Recall that the latter means ∀ c ≥ 1 : ∃n0, c
′ ≥ 1 : ∀n ≥ n0 :

r(c ·n) ≤ c′ · r(n). It can easily be verified that many of the commonly considered
linear and sublinear time complexity functions have this property.

Lemma 1. Let r : N → N be an increasing function so that r(O(n)) ≤ O(r(n)).
A language L belongs to the family Ln+r(n)(OCA) if and only if emb(L) belongs
to Ln+r(n)(OCA).

Proof. Let M = 〈S, F,A$, #, δ〉 be an OCA accepting emb(L) ⊆ A∗
$ in n + r(n)

time. We construct an OCA M ′ = 〈S′, F ′, A, #, δ′〉 accepting L ⊆ A∗ as fol-
lows. The simple basic idea is to let each cell of M ′ simulate two adjacent cells
of M , that is, a cell receiving an input from A together with its neighboring
cell receiving a $. In each step of M ′ two steps of M are simulated, which is
possible since the simulated input of M appears compressed in M ′. A formal
construction is:

S′ = A ∪ S2, F ′ = { (q1, q2) ∈ S′ | q1 ∈ F },

δ′(p1, #) = (δ(δ(p1, $), δ($, #)), δ(δ($, #), #))
for all p1 ∈ A,

δ′(p1, q1) = (δ(δ(p1, $), δ($, q1)), δ(δ($, q1), δ(q1, $)))
for all p1, q1 ∈ A,

δ′((p1, p2), (q1, q2)) = (δ(δ(p1, p2), δ(p2, q1)), δ(δ(p2, q1), δ(q1, q2)))

for all (p1, p2), (q1, q2) ∈ S′2,

in all other cases δ′ does not change the current state of a cell. Let w be some word
in L. So, M may use 2|w|+r(2|w|) time steps to accept emb(w). In order to com-
plete the simulation on input w, the OCA M ′ takes at most |w|+ 1

2r(2|w|) steps.
Since r(O(n)) ≤ O(r(n)), there is a constant c′ ≥ 1 so that c′ · r(|w|) ≥ r(2|w|).
Therefore, M ′ takes at most |w|+ c′

2 · r(|w|) steps. Strong speed-up theorems for
several devices are obtained in [7,8]. In particular, it is possible to speed up the
time beyond real time linearly. Here we choose a speed-up constant 2

c′ and apply
this technique to M ′. The resulting OCA obeys the time complexity n + r(n)
and accepts L.

For the converse simulation, now let M be an n + r(n)-time OCA accepting
L ⊆ A∗. First, M is sped up to n + 1

2r(n) time. The further construction idea
for an OCA M ′ that accepts emb(L) in n + r(n) time is as follows.

At initial time a signal is sent from the right border to the left. It checks
the correct format of the input. If the format is incorrect the left border cell
is prevented from accepting. So we safely may assume the format to be cor-
rect. All cells remember whether their input symbol is a $ or a symbol from A
(the leftmost cell must be an A-cell). Now, in each other time step an A-cell
does nothing, while a $-cell copies the current state of its right neighbor as part
of its own state. In the following step, a $-cells does nothing, while an A-cell
simulates one transition of M .
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Let w be some word in L. So, M may use |w|+ 1
2r(|w|) time steps to accept w.

In order to complete the simulation on input emb(w), the OCA M ′ takes at most
2|w| + r(|w|) steps. Since | emb(w)| = 2|w| and r is increasing, this is less than
2|w| + r(2|w|) and M ′ obeys the time complexity n + r(n). ��

On the other hand, the embedding together with the possibility of cells to
dissolve themselves strengthens the power of real-time OCA significantly. As
mentioned before, the proper inclusion Lrt(OCA) ⊂ Llt(OCA) is known.

Lemma 2. Let L be a language from Llt(OCA) \ Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA).

Proof. As in the proof of Lemma 1, we utilize the speed-up techniques obtained
in [7,8]. So, we safely may assume that for any linear-time OCA language there
exists a (2n − 2)-time OCA M that accepts it.

Now let L ∈ Llt(OCA)\Lrt(OCA). A real-time SOCA M ′ accepting emb(L)
works as follows. During the first transition every cell checks whether its right
neighbor carries a correct input symbol. That is, a cell with input symbol belong-
ing to the alphabet of L must have a $ neighbor and vice versa (except for the
rightmost cell). If the input format is incorrect a failure signal is sent to the
left that prevents all cells passed through from dissolving and accepting. During
the second transition all cells with $ input dissolve themselves, while the others
remain in their states. Finally, the OCA M is simulated on the remaining cells.
On input of length n every other cell is dissolved during the first two time steps.
Then the simulation of M takes 2n

2 − 2 time steps. Altogether the SOCA M ′

works in n time steps, that is, in real time. ��
Lemma 1 and Lemma 2 have shown the next theorem.

Theorem 1. Let L be a language from Llt(OCA) \ Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA) but does not belong to Lrt(OCA). In particular, the family
Lrt(OCA) is properly included in Lrt(SOCA).

3 Real-Time Shrinking OCA and Iterative Arrays

Iterative arrays (IA) are another simple model for massively parallel computa-
tions, which sometimes are called cellular automata with sequential input. In
connection with formal language processing iterative arrays have been intro-
duced in [3]. What makes these devices interesting in the current context is the
incomparability of the families of languages accepted by OCA and IA in real
time. Moreover, the latter devices accept non-semilinear unary languages while
the former devices accept only regular unary languages. Conversely, for example,
all linear context-free languages belong to Lrt(OCA) but there is a deterministic
linear context-free language not accepted by any real-time iterative array. In the
following, we investigate to what extent real-time shrinking OCA can simulate
real-time IA.
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s0 s0 s0 s0 s0

a1a2a3 · · · an�

Fig. 3. An iterative array

For the formal constructions we need to introduce IA in more detail. Basi-
cally, they are semi-infinite linear arrays of finite automata, again called cells.
But now the information flow is two-way, that is, each cell except the leftmost
one is connected to its both nearest neighbors (one to the left and one to the
right). The input is supplied sequentially to the distinguished communication
cell at the origin which is connected to its immediate neighbor to the right only.
For this reason, we have two different local transition functions. The state tran-
sition of all cells but the communication cell depends on the current state of
the cell itself and the current states of its both neighbors. The state transition
of the communication cell additionally depends on the current input symbol
(or if the whole input has been consumed on a special end-of-input symbol).
The finite automata work synchronously at discrete time steps. Initially they
are in the so-called quiescent state.

Definition 2. An iterative array (IA) is a system 〈S, F,A,�, s0, δ, δ0〉, where S
is the finite, nonempty set of cell states, F ⊆ S is the set of accepting states, A
is the finite, nonempty set of input symbols, � /∈ A is the end-of-input symbol,
s0 ∈ S is the quiescent state, δ : S3 → S is the local transition function for
non-communication cells satisfying δ(s0, s0, s0) = s0, and δ0 : A� × S2 → S is
the local transition function for the communication cell.

The notions of configurations are a straightforward adaption from OCA. An
input is accepted if at some time step during the course of its computation the
communication cell enters an accepting state. Acceptance is said to be in real
time if all w in the accepted language are accepted within at most |w| + 1 time
steps.

The next result reveals an interesting relation between real-time IA and
SOCA. The proof shows a basic construction that will later be modified for
further relations.

Theorem 2. Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is even } is
accepted by a real-time SOCA.

Proof. Given a language L accepted by some IA M in real time, the claimed
real-time SOCA M ′ is constructed in three steps.

The first step is to embed the computation of M into a one-way device M ′.
To overcome the problem to simulate two-way information flow by one-way infor-
mation flow, the cells of M ′ collect the information necessary to simulate one
transition of M in an intermediate step. So, the first step of M is simulated in
the second step of M ′ and so on. Moreover, the configuration flows with speed
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Fig. 4. Simulation of two-way information flow by one-way information flow. The input
to the OCA is provided at the cells marked by the circled in.

1/2 to the left. The behavior is depicted in Figure 4, where for this step it is
assumed that the input is available where it is consumed.

The second step is to speed up the computation of M ′. Assume that in every
computation step two input symbols are fed to M ′. Since all cells of an IA are
initially in the same, that is, quiescent state, the computation can be set up such
that each cell simulates two cells of M . Hence, this together with the compressed
input allows some OCA M ′′ to simulate two steps of M ′ at once at every time
step.

The third step is to construct the desired real-time SOCA M ′′′. Based on M ′′

we first explain how cells dissolve themselves. This happens at every other time
step beginning at time step two. More precisely, all cells maintain an internal
counter modulo two. So, they can detect even time steps. At these time steps,
precisely the cell which carries two input symbols and whose right neighbor
simulates a state of M dissolves itself. Since the simulated configuration flows to
the left with speed 1/2 and at every other time step one cell dissolves itself, the
cell simulating the communication cell of M arrives at the leftmost cell at real
time as desired (see Figure 5). It remains to be shown how the input is provided
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s1,5 s2,5 s3,5 s4,5 s5,5 s0 s0 s0

s1,6 s2,6 s3,6 s4,6 s5,6 s6,6 s0 s0

s1,7 s2,7 s3,7 s4,7 s5,7 s6,7 s7,7 s0

s1,8 s2,8 s3,8 s4,8 s5,8 s6,8 s7,8 s8,8

IA M

Fig. 5. Simulation of a real-time IA by a real-time SOCA on even length input.
The internal modulo two counters are not depicted. The red cells dissolve them-
selves. The state of cell i at time k is denoted by si,k. We write si-j,k for
si,k, si+1,k, . . . , sj,k. The crosshatched cells are those who simulate a further transi-
tion under the assumption that they receive the last input symbol.

as requested. To this end, it is sufficient that during the first transition each cell
copies the state of its right neighbor, that is its input, as part of its own state.

The SOCA M ′′′ simulates the given IA M on even length inputs. However,
the last step of M depends on the end-of-input symbol. So far, M ′′′ does not sim-
ulate this last step of M . Therefore, the construction has slightly to be extended.
Whenever, a cell of M ′′′ storing input symbols changes to a state that simulates
states of M , it simulates one more transition of M under the assumption that
the cell has received the last input symbols and, thus, is the leftmost one. The
result is stored in an extra register. Finally, a state is accepting if this extra reg-
ister contains an accepting state of M . The transition that fills the extra register
of the real leftmost cell corresponds to the missing last transition of M . ��

The proof of Theorem 2 can be modified to accept inputs of odd length
instead of even length in a straightforward way. Even more complicated cycles
of move and dissolve operations can be realized.
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Theorem 3. Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is odd } is
accepted by a real-time SOCA.

Example 2. Basically, a function f : N → N is said to be IA-constructible if
there is an IA which indicates by states of the communication cell the time steps
f(n), for n ≥ 1. For details and further results on IA-constructibility we refer
to [1,5,13]. However, the family of such functions is rich. For example, the func-
tions f(n) = 2n and f(n) = pn, where pn is the nth prime number, are IA-
constructible. Therefore, the non-semilinear unary languages { a2n | n ≥ 0 } and
{ apn | n ≥ 2 } belong to the family Lrt(IA). By Theorems 2 and 3 they are
accepted by an SOCA in real time as well. On the other hand, real-time OCA
accept only regular, that is, semilinear unary languages [17]. ��

A further relation between real-time IA and SOCA has been foreshadowed
by Example 1. The words of the language of the example have the property that
the leftmost cell can identify itself. Clearly this is realized by concatenating a
fixed new symbol to the left. In general, we have the following result.

Theorem 4. Let L ⊆ A∗ be a language from Lrt(IA) and $ /∈ A be a letter.
Then { $w | wR ∈ L } is accepted by a real-time SOCA.

Example 3. It is shown in [16] that the real-time deterministic context-free lan-
guage L = { cmak0bak1b · · · bakmb · · · bak�bdn | m,n, ki ≥ 0, � ≥ 1, km = n } does
not belong to Lrt(OCA). Since the family Lrt(OCA) is closed under reversal
and left quotient with a fixed new symbol, the language $LR does not belong to
Lrt(OCA), neither. On the other hand, all real-time deterministic context-free
languages belong to Lrt(IA) [11]. Now Theorem 4 shows that $LR is accepted
by some SOCA in real time. ��

4 Dissolving Versus Time

In this section, we investigate to what extent the possibility of an SOCA to
dissolve cells can be captured by providing additional time. We will obtain that
this can always be achieved. This result enables us together with a suitable
embedding of symbols to translate the time hierarchy known to exist in between
real-time and linear-time conventional OCA ([9]) into a hierarchy for SOCA with
regard to the number of cells dissolved. We start by defining classes of SOCA
where the maximum number of dissolved cells in accepting computations is put
in relation to the length of the input processed.

Let M be an SOCA and f : N → N be an increasing function. If all w ∈ L(M)
are accepted with computations where the number of dissolved cells is bounded
by f(|w|), then M is said to be dissolving bounded by f . The class of SOCA that
are dissolving bounded by f is denoted by f -SOCA.

The next result says that every dissolving bounded SOCA can be simulated
by a conventional OCA with additional time steps depending only on the number
of dissolved cells.
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Theorem 5. Let M be an f-SOCA working in real time. Then an equivalent
conventional OCA M ′ working in time n + f(n) can effectively be constructed.

Next, we utilize results on a time hierarchy in between real-time and linear-
time known for OCA to obtain a hierarchy for SOCA according to the number
of dissolved cells. The hierarchy result uses the notion of OCA-constructible
functions. A function f : N → N with f(n) ≥ n, is OCA-constructible if there
exists a length-preserving homomorphism h and a language L ∈ Lrt(OCA) such
that h(L) = { af(n)−nbn | n ≥ 1 }. More details on OCA-constructibility may be
found in [2]. Further, the language Ld ⊂ {0, 1, (, ), |}+ is used whose words are
of the form x ( x1 | y1 ) · · · ( xn | yn ) y, where x, xi, y, yi ∈ {0, 1}∗ for 1 ≤ i ≤ n,
and (x | y ) = ( xi | yi ) for at least one i ∈ {1, . . . , n}.

Now, the witness languages for the time hierarchy defined in [9] are as fol-
lows. Let f : N → N be an increasing OCA-constructible function and language
L̂f ⊆ B+ be a witness for the constructibility, that is, L̂f ∈ Lrt(OCA) such
that h(L̂f ) = { af(n)−nbn | n ≥ 1 } for a length-preserving homomorphism h.
From L̂f and Ld the language Lf ⊆ ((A ∪ {�}) × B)+ is constructed as follows:

1. The second component of each word w in Lf is a word of L̂f that implies
that w is of length f(m) for some m ≥ 1.

2. The first component of w contains exactly f(m) − m blank symbols and m
non-blank symbols.

3. The non-blank symbols in the first component of w form a word in Ld.

Theorem 6. Let r1, r2 : N → N be two increasing functions. If r−1
1 is OCA-

constructible, r2(O(n)) ≤ O(r2(n)), and r2 · log(r2) ∈ o(r1), then

Lrt(r2-SOCA) ⊂ Lrt(r1-SOCA).

Proof. In [9] the proper inclusion Ln+r2(n)(OCA) ⊂ Ln+r1(n)(OCA) has been
shown with Lr−1

1
as witness language. Let A′ be the alphabet of Lr−1

1
and M1

be an (n + r1(n))-time OCA accepting Lr−1
1

. By applying speed-up techniques
we obtain an equivalent OCA M ′

1 working in time n + r1(n) − 2.
Here, we will consider language L$,r−1

1
instead, where a word w belongs to

L$,r−1
1

if and only if it is of the form A′∗(A′$)∗, |w|$ = r1(|w|), and h(w) ∈ Lr−1
1

,
for the homomorphism h(a) = a, for a ∈ A, and h($) = λ. That is, we take the
words from Lr−1

1
and insert exactly one $ after each of the rightmost r1(|w|)

symbols.
A real-time r1-SOCA M accepting L$,r−1

1
is constructed as follows. During

the first transition, every cell with input from A′ applies the homomorphism
that witnesses the time constructibility of r1 to the content of its second register
and checks whether its right neighbor carries a correct input symbol. That is, if
the homomorphic image is a b the cell must have a $ neighbor, if it is an a the
cell must not have a $ neighbor. In addition, every cell with input $ must have
a neighbor whose homomorphic image is b or the border symbol. If the check
fails, a failure signal is sent to the left that prevents all cells passed through
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from dissolving and accepting. During the second transition all cells with $
input dissolve themselves, while the others remain in their states. Finally, the
(n+r1(n)−2)-time OCA M ′

1 accepting Lr−1
1

is simulated on the remaining cells.
So, the SOCA M accepts an input w if and only if it is of the form A′∗(A′$)∗,

the input without $ symbols belongs to Lr−1
1

, that is h(w) ∈ Lr−1
1

, and the
number of $, that is the number of b, is m for input length |w| = r−1

1 (m).
The latter means |w|$ = r1(|w|). We conclude that M is an r1-SOCA that
accepts L$,r−1

1
.

In order to derive the time complexity of M , we recall that r1(n) cells are
dissolved during the second time step on inputs of length n. Then, the simulation
of M ′

1 on inputs of length n − r1(n) takes n − r1(n) + r1(n − r1(n)) − 2 ≤ n − 2
time steps, since r1 is increasing. Altogether the r1-SOCA M works in n time
steps, that is, in real time.

To show a proper inclusion between language classes Lrt(r2-SOCA) and
Lrt(r1-SOCA), we first notice that the first language class is included in the
latter since r2·log(r2) ∈ o(r1) holds. Now, we assume by way of contradiction that
the language classes Lrt(r2-SOCA) and Lrt(r1-SOCA) are identical. Then we
obtain that L$,r−1

1
is accepted by some real-time r2-SOCA as well. An application

of Theorem 5 gives that then L$,r−1
1

also belongs to Ln+r2(n)(OCA). So, it
remains to be shown that the latter is a contradiction.

The contradiction is derived along the lines of the proof of Lemma 1. Given
an (n + r2(n))-time OCA N accepting L$,r−1

1
, an OCA N ′ accepting Lr−1

1
is

constructed, such that each cell receiving an input symbol whose homomorphic
image is a b simulates two adjacent cells, that is, the cell itself together with its
neighboring cell receiving a $. In each such step two original steps are simulated.
The rightmost a-cell starts to simulate two steps at time step 1, the next a-cell
at time step 2 and so on. In this way, the leftmost cell starts to simulate two
steps from time step |w| − r1(|w|) on.

Let w be some word in Lr−1
1

. So, N may use |w| + r1(|w|) + r2(|w| + r1(|w|))
time steps to accept the associated padded word from L$,r−1

1
. In order to com-

plete the simulation on input w, the OCA N ′ takes at most

|w| − r1(|w|) +
1
2
(2r1(|w|) + r2(|w| + r1(|w|)))

= |w| +
1
2
r2(|w| + r1(|w|)) ≤ |w| +

1
2
r2(2|w|)

time steps. Since r2(O(n)) ≤ O(r2(n)), there is a constant c′ ≥ 1 so that
c′ · r2(|w|) ≥ r2(2|w|). Therefore, N ′ takes at most |w| + c′

2 · r2(|w|) steps. Now,
the time beyond real time is sped-up linearly by a constant 2

c′ . The resulting
OCA obeys the time complexity n + r2(n) and accepts Lr−1

1
, which is a contra-

diction. ��
Example 4. Let 0 ≤ p < q ≤ 1 be two rational numbers. Then there is the
following proper inclusion

Lrt(np-SOCA) ⊂ Lrt(nq-SOCA).
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Another example is given by the i-fold iterated logarithms log[i]. Let i < j be
two positive integers. Then there is the following proper inclusion

Lrt(log[j] -SOCA) ⊂ Lrt(log[i] -SOCA).

��
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Abstract. We show the existence of Turing-universal and intrinsically
universal cellular automata exhibiting both time symmetry and number
conservation; this is achieved by providing a way to simulate reversible
CA with time-symmetric CA, which preserves the number-conserving
property. We also provide some additional results and observations con-
cerning the simulation relations between reversible, time-symmetric and
number-conserving CA in the context of partitioned CA.

1 Introduction

Reversibility is an important property in the realm of cellular automata, both
because of its obvious theoretical consequences and because of the most practical
applications for massive distributed computing models where heat dissipation
would be unwanted. It has therefore been well studied (see reviews in [5,9]), and
some of this effort has been directed towards showing computational capabilities
(by showing the existence of universal reversible CA, under different notions of
universality) and towards the easy construction of reversible CA.

A more specific kind of reversibility, which is common in physical theories,
is that of time symmetry, and it has been only recently applied to cellular
automata [4]. In time-symmetric systems there is an involution (i.e., a root-
of-identity transformation) that reverses the flux of time, so that further appli-
cation of the system’s dynamics has the same effect as going back with the
inverse transformation, if the involution had not been applied. Time symme-
try is a natural property for study, because of its ubiquity in physical theories,
and also because of potential practical concerns: one of the advantages of using
reversible CA for distributed computation, besides heat minimization, is that
we may actually reverse time ocassionally, if we want to find the source of a
phenomenon or debug a computation mistake. In that case, using the same CA
(and, in a practical setting, the same circuits) to move backwards in time would
be certainly handy.
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A further CA property that has attracted some attention is number con-
servation: here the CA states are assumed to be numbers, and their sum over
finite -or periodic- configurations is preserved. The inspiration comes again from
physics, with its conservation laws, and from models of simple interacting agents,
when there is a fixed number of them. Number conservation can be seen as the
most simple case of more general additive conservation laws in cellular automata
(moreover, whatever is true for number-conserving CA usually carries on nicely
to the more general settings).

Despite apparently being a rather restrictive property, number conservation
allows the existence of intrinsically universal CA (roughly speaking, CA that can
simulate any other) and hence also of CA which are Turing-universal [7]. This is
also the case for time symmetry [4], with the caveat that intrinsic universality is
restricted to the simulation of all other reversible CA. This implies the existence
of full computational capabilities and of arbitrarily complex phenomena within
these classes. In this manuscript we show that this is also true for the CA that
share both properties. This is done in Section 3, by giving a general simulation
procedure that turns arbitrary reversible CA into time-symmetric ones while pre-
serving number conservation. The existence of reversible and number-conserving
Turing-universal CA was already proved by Morita [10].

While mapping the territory we came across a possible path to the same
result, which was not ultimately fruitful, but which yielded a few results and
observations that are presented here in Section 4. The main result is a generaliza-
tion of one from Morita [10], showing that any reversible partitioned CA can be
simulated by a reversible number-conserving CA. We also define “intrinsic time
symmetry” (ITS) in a natural way for partitioned CA, characterize ITS parti-
tioned CA in terms of their local function, and show that the number-conserving
CA simulating them (obtained through the generalized Morita construction) are
time-symmetric. This could have been a path to the result of Section 3 if we had
an example of intrinsic universality in ITS partitioned CA, which we currently do
not. Nevertheless, the generalization does bridge two CA classes through a simu-
lation relation. As a byproduct, it also gives a way to construct time-symmetric
(number-conserving) CA by starting with ITS partitioned CA, which are rather
easy to construct, and where ITS is a decidable property.

2 Definitions

Definition 1 (Cellular Automata). A 1-dimensional cellular automaton(CA)
A is a 4-tuple A = (Z, Q,N, f) where Q is a finite set called the state set,
N = (n1, ...nm) ∈ Z

m is the neighborhood, and f : Qm → Q is the local
transition function.

A CA defines a dynamics on the space QZ of configurations through the global
transition function

F : QZ −→ QZ,
F (α)i = f(αi+n1 , αi+n2 , ..., αi+nm

).
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The size of the neighborhood is m and when N = (−r,−r + 1, .., 0, .., r), we say
that it is a symmetric neighborhood of radius r. If r = 0, the CA is autar-
kic. When nj ≥ 0 for every j, the CA is one way. CA with the asymmetric
neighborhood (0, 1) are said to have radius 1/2.

Additive conservation laws occur in CA when some locally computed numeri-
cal attribute, added over periodic configurations, is preserved through time. The
simplest version happens when the states themselves are numbers, and their
sum is conserved. Here we give the definition based on finite configurations,
which are configurations where all the cells, except for a finite number, are equal
to 0. This has been shown to be equivalent to the definition based on periodic
configurations.

Definition 2 (Number Conservation). Given a CA A=(Z, {0, 1, ..., s},N,f),
we say that it is number-conserving (NCCA) if for every finite configuration c

∑

i∈Z

F (c)i =
∑

i∈Z

ci

Remark 1. The class of number-conserving CA is closed for composition and
inverse.

Remark 2. In NCCA all states are quiescent, i.e., all homogeneous configurations
are fixed points.

Definition 3 (Time Symmetry). Given a reversible CA A = (Z, Q,N, f),
we say that it is time-symmetric (TS) if there exists a CA with global transition
function H such that

H ◦ F ◦ H = F−1 ∧ H ◦ H = Id.

H in this case is an involution associated to the time-symmetric CA A.

Remark 3. A direct consequence of time symmetry is that

∀n ∈ Z, H ◦ Fn ◦ H = F−n.

Remark 4. The class of time symmetry CA is closed for inverse.

Working with reversible CA, and in particular constructing them, is a bit
cumbersome since identifying reversibility from the local transition function is
not direct, and only an exponential algorithm exists. This has led a number
of researchers to prefer the more convenient formalism provided by partitioned
cellular automata. They are a particular case of CA, but they are general in the
sense that every CA can be simulated by a partitioned CA.

Definition 4 (Partitioned Cellular Automaton). A partitioned cellular
automaton (PCA) is a 4-tuple P = (Z, Q = Qn1 × ... × Qnm

, (n1, ..., nm), f),
where Qi are finite sets and f : Q → Q is the local transition function of P .

The global transition function of P is F : QZ → QZ given by

F (α)i = f(αi+n1(n1), ..., αi+nm
(nm))

where α ∈ QZ, and αi(j) is the coordinate indexed by j of the i-th cell in α.
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It is practical to view PCA as the composition of two CA: a product of shifts
and an autarkic CA.

Proposition 1. Given a PCA P = (Z, Q = Qn1 × ... × Qnm
, (n1, ..., nm), f),

then its transition function F is equal to Af ◦ I(n1,...,nm), where

– Af is the autarkic CA defined by f : Af (α)i = f(αi),
– I(n1,...,nm) = σn1 ×σn2 × ...×σnm : (Qn1 × ...×Qnm

)Z → (Qn1 × ...×Qnm
)Z,

– σ is the shift of configurations and ∀n ∈ Z,∀i ∈ Z, σn(x)i = xi+n.

Definition 5 (Universality). In order to prevent unnecessary clutter here, we
will dispense with the formal definitions of universality. Turing-universality is
common lore by now, and as for intrinsic universality, we refer the reader to
[2] for definitions as well as excelent discussion. However, intrinsic universally
depends on the precise simulation relation being used, and it is therefore impor-
tant to remark that the simulations presented here comply with the definition
of “injective bulking” introduced in [2], and that is the sense in which intrinsic
universality must be understood.

3 Universality

In [4] arbitrary reversible CA are transformed into time-symmetric CA by using
the fact that the product CA F × F−1 simulates F and is time-symmetric. If
the original CA is number-conserving, the product CA does not have to be,
since there is no natural relabeling of its states (which are ordered pairs) that
may ensure number conservation. On the other hand, one of the ideas used
by Morita [10] to transform a reversible PCA into a number-conserving CA is
to represent vectors through numbers over a larger set. Here we combine these
two ideas to transform a reversible number-conserving CA into a time-symmetric
number-conserving CA.

Theorem 1. Given a reversible number-conserving CA there exists a time-sym-
metric number-conserving CA that simulates it.

Proof. Let A = (Z, Q = {0, 1, ..., s − 1}, N, f) be a reversible and number con-
serving CA. Let us define first the automaton A = (Z, Q,N, f) where Q = {ks :
k = 0, 1, ..., s− 1} and f(q1, ..., q|N |) = sf(q1/s, ..., q|N |/s). It is just A, but with
the states multiplied by s. Now let Q′ be Q′ = {0, 1, ..., s2 −1}; clearly, for every
q′ ∈ Q′ there is a unique pair (q, q) ∈ Q × Q such that q′ = q + q. We can thus
define two projections p : Q′ → Q and p : Q′ → Q such that for every q′ ∈ Q′,
q′ = p(q′) + p(q′). Let P and P be the natural generalizations of these functions
to Q′Z. Our time-symmetric number-conserving CA A′ = (Z, Q′, N, f ′) is defined
through the global transition function

F ′(α) = F (P (α)) + F
−1

(P (α))
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Such a cellular automaton exists because F is reversible, F is conjugated
to F , and because the addition of CAs is also a CA, by the Hedlund-Lyndon-
Curtis theorem. Clearly, F ′ simulates F , because Q ⊂ Q′, and if α ∈ QZ then
F ′(α) = F (α) + F

−1
(0) = F (α). Let us prove now that F ′ has the requested

properties.

Reversibility. The inverse of F ′ is given by F ′−1(α) = F−1(P (α)) + F (P (α)):

F ′−1(F ′(α)) = F ′−1
(
F (P (α))
︸ ︷︷ ︸

∈Q

+ F
−1

(P (α))
︸ ︷︷ ︸

∈Q

)

= F−1(F (P (α))) + F (F
−1

(P (α))

= P (α) + P (α)
= α.

Number conservation. Let α ∈ Q′Z be a finite configuration. Since both F
and F are number-conserving,

∑

i∈Z

F ′(α)i =
∑

i∈Z

(
F (P (α))i + F

−1
(P (α))i

)

=
∑

i∈Z

F (P (α))i +
∑

i∈Z

F
−1

(P (α))i

=
∑

i∈Z

P (α)i +
∑

i∈Z

P (α)i

=
∑

i∈Z

(
P (α)i + P (α)i

)

=
∑

i∈Z

αi

Time symmetry. The involution H that makes F ′ time-symmetric is defined

by H(α) = s · P (α)
︸ ︷︷ ︸

∈Q

+
1
s

· P (α)
︸ ︷︷ ︸

∈Q

. It is an autarkic CA, and H ◦ H = I. Let us

prove that H ◦ F ′ ◦ H = F ′−1,

H(F ′(H(α))) = H

(

F

(
1
s

· P (α)
)

+ F
−1

(s · P (α))
)

= sF

(
1
s

· P (α)
)

+
1
s
F

−1
(s · P (α))

= s
1
s
F

(
P (α)

)
+

1
s
sF −1(P (α))

= F ′−1(α)
	




160 D. Maldonado et al.

Corollary 1. There exists a Turing-universal time-symmetric and number-con-
serving CA.

Proof. This follows from the existence of a Turing-universal reversible number-
conserving CA, established by Morita [10] based on several of his previous results.

Corollary 2. There exists an intrinsically-universal time-symmetric and num-
ber-conserving CA within the class of reversible CA.

Proof. Durand-Lose [3] proves the existence of a reversible intrinsically universal
PCA of radius 1. On the other hand, Morita shows in [8] that any RPCA of
radius 1 can be simulated by a one-way RPCA of radius 1/2, and in [10] that
any one-way RPCA of radius 1/2 can be simulated by a reversible NCCA. Along
with the present theorem, these results imply the existence of a time-symmetric
intrinsically universal NCCA.

4 The Road Not Taken

In [10], in order to obtain a Turing-universal reversible NCCA with a small
neighborhood, Morita developed a way to transform a one way PCA of radius
1/2 into a number-conserving CA of radius 3/2 (i.e. neighborhood (−1, 0, 1, 2)).
His CA is not time-symmetric and it could not have been, since time symmetry in
a one way PCA implies equicontinuity (see Proposition in the Appendix), which
in turns implies periodicity. Nevertheless, his construction can be generalized
to PCA of arbitrary neighborhood, and as we shall see, it does preserve time
symmetry if it is present (in a sense to be defined) in the original PCA.

Proposition 2. Given a reversible PCA, there exists a reversible and number-
conserving CA that simulates it.

Proof. Let P be a reversible PCA with state sets Qi = {qi0, qi1, ..., qi(|Qi|−1)};
without loss of generality, and only for the sake of simplifying the proof, its
neighborhood can be assumed to have the form (−n, ..., n).

We follow the idea of Morita’s construction in [10], which is to duplicate each
set of states Qi into two sets that we call here Ŝi ⊆ N ∪ {0} and Ši ⊆ N ∪ {0},
so that for each qij there exist ŝij ∈ Ŝi and šij ∈ Ši satisfying that ŝij + šij is
a constant that depends only on i. In order to compute this numbers we define
two bijective funcions for each i: φ̂i and φ̌i, which also ensure that the ši and
ŝi of different i are on different scales and can be added into a single number
wihout losing information.

The k-th cell of a configuration is represented by two cells in the number
conserving CA, indexed by 2k and 2k + 1. In this way, the sum of the 2k-th and
2k + 1-th cells in the representing configuration will be equal to a constant K,
independent from the content of the original cell. Now we formally define all of
the needed sets and functions, for each i ∈ {−n, .., n}:
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– K−n−1 = 1, Ki =
∏i

j=−n 2|Qj |
– Ŝi = {kKi−1 : k = 0, ..., |Qi| − 1}
– Ši = {(k + |Qi|)Ki−1 : k = 0, ..., |Qi| − 1}
– φ̂i : Qi → Ŝi, φ̂i(qik) = kKi−1

– φ̌i : Qi → Ši, φ̌i(qik) = (2|Qi| − k − 1)Ki−1

– Ŝ =
∑n

i=−n Ŝi, Š =
∑n

i=−n Ši

– Si = Ŝi ∪ Ši, S =
∑n

i=−n Si

– φ̂ : Q → Ŝ, φ̂(a−n, ..., an) =
∑n

j=−n φ̂j(aj)
– φ̌ : Q → Š, φ̌(a−n, ..., an) =

∑n
j=−n φ̌j(aj)

With these definitions it is easy to see that

– there are projections pi : S → Si such that for s ∈ S, s =
∑n

i=−n pi(s);
– |Qi| = |Ŝi| = |Ši| = |Si|

2 ;
– ∀i,∀j, φ̂i(qij) + φ̌i(qij) = Ki − Ki−1; and
– Kn = |S|.

Each cell of P is transformed into two cells of the new automaton by an injective
but not surjective function Ψ : QZ → SZ, defined as follows.

Ψ(α)i =
{

φ̂(αi/2) if i is even
φ̌(α(i−1)/2) if i is odd

It is not difficult to define an F : SZ → SZ such that Ψ ◦ F = F ◦ Ψ over
the set Ψ(QZ); however, we need it to be number-conserving and reversible over
the whole set SZ. This will be done by considering a decomposition F = Āf ◦ Ī
(akin to that of Proposition 1) which makes the diagram below commute, and
choosing Āf and Ī in a way that ensures reversibility and number conservation
in each of them.

QZ I(−n,..,n)−−−−−−−−−−−−→ QZ Af−−−−−−−→ QZ

Ψ ↓ Ψ ↓ Ψ ↓

SZ Ī−−−−−−−−−−−→ SZ Āf−−−−−−−→ SZ

Ī : SZ → SZ is just the equivalent of I(−n,..,n):

Ī(α)i =
n∑

j=−n

pj(αi+2j).

When Ψ duplicates information into pairs of cells, we can distinguish between
the left member (L) and the right member (R) of each pair, and moreover,
these can be readily identified in configurations obtained through Ψ . In arbitrary
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configurations there can be wrong cells which are neither left nor right. Formally,
given a configuration α ∈ SZ, we define L(α), R(α),W (α) ⊆ Z as follows:

i ∈ L(α) ⇔ ∀j ∈ {−n, .., n}, pj(αi) ∈ Ŝj ∧ pj(αi) + pj(αi+1) = Kj − Kj−1,

i ∈ R(α) ⇔ ∀j ∈ {−n, .., n}, pj(αi) ∈ Šj ∧ pj(αi−1) + pj(αi) = Kj − Kj−1,

i ∈ W (α) ⇔ i �∈ L(α) ∧ i �∈ R(α).

The function Āf : SZ → SZ is then defined by

Āf (α)i =

⎧
⎨

⎩

φ̂ ◦ f ◦ φ̂−1(αi) if i ∈ L(α)
φ̌ ◦ f ◦ φ̌−1(αi) if i ∈ R(α)

αi if i ∈ W (α)

Let us remark that Āf is not autarkic, but of radius 1, since the neighbors of
a cell must be known in order to determine its class. It is clear that Ī is reversible
and number-conserving. To show that Āf has the same properties, we need to
follow Morita and prove first that it preserves the sets L, R and W .

To see this, first we notice that L and R cells come in pairs: if i ∈ L(α),
then for every j we have pj(αi+1) = Kj − Kj−1 − pj(αi) and pj(αi+1) ∈ Šj ,
and hence i + 1 ∈ R(α); the converse is analogous. Any configuration consists
therefore of blocks of L-R pairs, possibly separated by cells in W . Moreover,
when i ∈ L(α), we have φ̂−1(αi) = φ̌−1(αi+1). Therefore, when Āf is applied,
f(φ̂−1(αi)) = f(φ̌−1(αi+1)), Āf (α)i ∈ Ŝ and Āf (α)i+1 ∈ Š. This implies that
pj(Āf (α)i) + pj(Āf (α)i+1) = Kj − Kj−1, for each j, and thus i ∈ L(Āf (α)) and
i+1 ∈ R(Āf (α)). In other words, pairs in α are still pairs in Āf (α), and neither
cell can form a pair with a cell that was in W ; so, W is preserved too.

From this fact we can see that Āf is number-conserving, since cells in W are
not modified and the sum of the pairs is constant, equal to |S| − 1. Reversibility
is deduced from this too, since a bijective function is applied to each cell. Its
inverse is expressed as follows.

Āf
−1(α)i =

⎧
⎨

⎩

φ̂ ◦ f−1 ◦ φ̂−1(αi) if i ∈ L(α)
φ̌ ◦ f−1 ◦ φ̌−1(αi) if i ∈ R(α)

αi if i ∈ W (α)

We conclude that F̄ = Āf ◦ Ī is also reversible and number-conserving. 	

Since PCA are CA, the general definition of time symmetry applies to them: a

PCA F is time-symmetric if there is an involution H such that F ◦H = H ◦F−1.
Notice, however, that H does not need to be a PCA; in fact, neither does F−1. We
introduce a more convenient restricted notion of time symmetry, which requires
H to be a PCA with the same neighborhood of F .

Definition 6. Given a reversible PCA P =(Z, Q=Qn1×...×Qnm
,(n1, ..., nm), f)

we say that it is intrinsically time-symmetric (ITS) if there exists a PCA H =
(Z, Q = Qn1 × ... × Qnm

, (n1, ..., nm), h) such that

H ◦ F ◦ H = F−1 ∧ H ◦ H = Id.
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Proposition 3. A PCA P is intrinsically time-symmetric if and only if its
neighborhood (n1, ..., nm) is symmetric, and there exists a family of functions
hi : Qi → Q−i such that

– hj = h−1
m+1−j, and

– h = (h1, ..., hm) satisfies f ◦ h = h ◦ f−1.

Proof. As a first and also main step, we will prove that a PCA H = (Z, Q =
Qn1 × ...×Qnm

, (n1, ..., nm), h) is an involution if and only if its neighborhood is
symmetric, the components hj of h = (h1, ..., hm) depend only of their (m+1−j)-
th coordinate, and they verify hj = h−1

m+1−j .
Suppose that H is an involution and let hj be the components of h, so that

h = (h1, ..., hm). Notice that, a priori, each hj is a function with the whole
set Q as its domain. Let (gj : Q → Qj)m

j=1 be a family of functions such that
h−1 = g = (g1, ..., gm). Let H = Ah ◦ I be the decomposition of H as per
Proposition 1; recall that here I = I(n1,...,nm) is a product of shifts. Since H is
an involution we have

I ◦ Ah ◦ I = A−1
h = Ah−1

∀i ∈ Z, (I ◦ Ah ◦ I(α))i = (g1(αi), ..., gj(αi), ..., gm(αi))
(h1(I(α)i+n1), ...hj(I(α)i+nj

), ...hm(I(α)i+nm
)) = (g1(αi), ..., gj(αi), ..., gm(αi))

We obtain that gj(αi) = hj(I(α)i+nj
), for each j ∈ {1, ...,m}. However, if we

consider the decomposition of αi as (αi(1), ..., αi(m)), what we actually have is

gj(αi(1), ..., αi(k), ..., αi(m))=hj(αi+nj+n1(1), ..., αi+nj+nk
(k), ..., αi+nj+nm

(m))

These two maps are equal and they depend on different sets of variables. They
are not constant (since the global function is bijective), and must therefore really
depend only on the variables they have in common. There is at most one of these
for each j, and requires that for some k we have nj + nk = 0. This implies that
the neighborhood must be symmetric, gj = hj depends only on the (m+1−j)-th
variable, and |Qj | = |Qm+1−j |.

Now using that g = h−1, we obtain that h−1
j = gm+1−j = hm+1−j .

The converse is trivial: if h verifies the properties described above, it is easy
to show that indeed h = h−1, and H = H−1.

The only part of the proposition which remains to be proved is the time
symmetry relation verified at the local level. By using the decomposition of
Proposition 1, let us write the global transition functions of the PCA P and of
its PCA involution as F = Af ◦ I(n1,...,nm) and H = Ah ◦ I(n1,...,nm) respectively.
The time symmetry of F by way of H is equivalent to the next equations:

H ◦ F ◦ H = F−1

(Ah ◦ I) ◦ (Af ◦ I) ◦ (Ah ◦ I) = I−1 ◦ A−1
f

(I ◦ Ah ◦ I) ◦ Af ◦ (I ◦ Ah ◦ I) = A−1
f

Ah ◦ Af ◦ Ah = A−1
f = Af−1
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Since Af , Af−1 and Ah are autarkic, this last equation is equivalent to

h ◦ f ◦ h = f−1.

	

It was shown in [4] that every reversible autarkic CA is time-symmetric, that

is, for every bijective function f : Q → Q there exists some involution h : Q → Q
such that h◦f ◦h = f−1. Proposition 3 imposes additional conditions to h, which
will not be always verified. Thus, not every reversible f defines an ITS PCA. For
example, no involution h on Q = {0, 1} × {0} × {0, 1} satisfies h ◦ f ◦ h = f−1

for the function f that traverses the cycle ((0, 0, 1)(1, 0, 0)(1, 0, 1)(0, 0, 0)).

Proposition 4. If F is the transition function of an ITS PCA, then the number-
conserving function F produced by Proposition 2 is time-symmetric.

Proof. Let H be the involution that makes F time-symmetric; we can suppose
without loss of generality that the neighborhood is {−n, ..., n}. The involution
that will work for F̄ acts just like H on S, ignoring whether the coordinates are
in Ŝj or Šj . For this we define the signature of a number s ∈ S as the sets to
which its projections belong, as follows.

C : S → {∧,∨}{−n,...,n}

C(s) = (c−n(s), ..., cn(s))

∀j ∈ {−n, ..., n}, cj(s) =
{∧ if pj(s) ∈ Ŝj

∨ if pj(s) ∈ Šj

For convenience we define S∨
j = Šj , S∧

j = Ŝj , φ∨
j = φ̌j and φ∧

j = φ̂j . Now

Ãh is defined through the function h by using the functions φc : Q →
n∑

j=−n

S
cj
j ,

defined by φc(q) =
∑n

j=−n φ
cj
j (qj) to transform states to numbers with signature

c and vice versa. We will use the notation ←−c = (cn, .., c−n).

Ãh : SZ → SZ

Ãh(α)i = φ
←−−−C(αi)(h((φC(αi))−1(αi)))

Ãh is autarkic and it is an involution. Let us see that the associated automaton
H̄ = Ãh ◦ Ī is also an involution, with I taken from Proposition 2.

(Ãh ◦ Ī(α))i = φ
←−−−−−−
C(I(αi))

(

h

((
φC(I(αi))

)−1 (
I(αi)

)
))

=
n∑

j=−n

φ
c−j(I(αi))
j

⎛

⎝hj

⎛

⎝
(
φC(I(αi))

)−1

⎛

⎝
n∑

j=−n

pj(αi+2j)

⎞

⎠

⎞

⎠

⎞

⎠
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We use Proposition 3.

=
n∑

j=−n

φ
c−j(αi−2j)
j

(

hj

(((
φc−j(αi−2j)

)−1

−j
(p−j (αi−2j))

)))

We apply Ī from the left.

(
Ī ◦ Ãh ◦ Ī (α)

)

i
=

n∑

j=−n

pj

(
Ãh ◦ I(α)i+2j

)

=
n∑

j=−n

φ
c−j(αi+2j−2j)
j

(

hj

((
φc−j(αi+2j−2j)

)−1

−j
(p−j (αi+2j−2j))

))

=
n∑

j=−n

φ
c−j(αi)
j

(

hj

((
φc−j(αi)

)−1

−j
(p−j (αi))

))

=
n∑

j=−n

φ
c−j(αi)
j

(

hj

((
φC(αi)

)−1

−j
(αi)

))

= Ãh (α)i

Now we just need to prove that H̄ ◦ F̄ ◦ H̄ = F̄−1. As we saw in the proof
of the previous proposition, all we need to show is that Ãh ◦ Āf ◦ Ãh = (Āf )−1.
We analyze by cases depending on the class of cell i, and using the fact that if
s ∈ Ŝ (or Š) then φC(s)(s) = φ̂(s) (φC(s)(s) = φ̌(s)).

Case 1: i ∈ L(α).

Ãh ◦ Āf ◦ Ãh(α)i = φ̂ ◦ h ◦ φ̂−1 ◦ φ̂ ◦ f ◦ φ̂−1 ◦ φ̂ ◦ h ◦ φ̂−1(αi)

= φ̂ ◦ h ◦ f ◦ h ◦ φ̂−1(αi)

= φ̂ ◦ f−1 ◦ φ̂−1(αi)
= Āf−1(α)i

= Ā−1
f (α)i

Case 2: i ∈ R(α). It is analogous to Case 1.
Case 3: i ∈ W (α). We remark first that Ãh(α)i ∈ W . Thus Āf (Ãh(α)i) =

Ãh(α)i. Since Ãh is autarkic, (Ãh(Āf (Ãh(α))))i = (Ãh(Ãh(α)))i = αi =
(Āf )−1(α)i.

	


5 Final Remarks

The road described in Section 4 could have led to the corollaries of Section 3,
provided that universal ITS PCA had been known to exist. Let us briefly discuss
the situation for each kind of universality.
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Is there an ITS Turing-universal PCA? Probably. In 1989 Morita and Ha-
rao [11] showed a way to simulate any given reversible Turing machine with a
PCA of radius 1. We currently conjecture that the construction (perhaps with
slight modifications) yields an ITS PCA whenever the Turing machine is itself
“time-symmetric”. Since there has been little discussion of time symmetry in
Turing machines, the notion used in this case is the simple one given in [1],
where the involution consists of an autarkic CA involution on the tape, along
with an independent permutation of the machine’s state set. The Turing machine
needs to be expressed in quadruples in order to give sense to this notion, since
only in this case does its inverse transition function correspond to a Turing
machine. With this definition, universal time-symmetric Turing machines do
exist: following the technique of Kari and Ollinger [6], in order to obtain one, it
is enough to join the inverse and the direct machine into one.

Is there an ITS intrinsically universal PCA? The intrinsically universal PCA
built by Durand-Lose [3] is not ITS, but we believe that it could be modified to
make it comply. In any case, its construction is quite complex and requires many
states. Even if the modification worked, the existence of a simple intrinsically
universal ITS PCA (or indeed, time-symmetric CA) remains an open question.

Finally, please notice that Section 4 provides a path for the construction of
time-symmetric CA (possibly with the added bonus of number conservation), of
which there are not that many. Besides this, the alternatives previously known
to us were 1) to find involutions and blindly compose them, or 2) to design
reversible PCA with a prescribed behavior (something for which PCA are quite
useful), turn it into a reversible CA, and convert this into a time-symmetric CA.
The new option is to construct an ITS PCA and then use Proposition 2 to get
a time-symmetric CA. The ITS PCA could be designed by hand, or we could
construct reversible PCA and test for the existence of an appropriate involution
using Proposition 3, which is an improvement with respect to the general 1D
CA case, where time symmetry is conjectured to be undecidable.

6 Appendix

Definition 7 (Equicontinuity). A CA with transition function F is equicon-
tinous if for every N there exists M ∈ N such that α[−M,M ] = β[−M,M ] implies
that for every t ∈ N, F t(α)[−N,N ] = F t(β)[−N,N ].

Definition 8 (N-sensitivity). A configuration α is said to be N -sensitive if
for every M ∈ N there exists β and t ∈ N such that α[−M,M ] = β[−M,M ] and
F t(α)[−N,N ] �= F t(β)[−N,N ].

It is known that a CA is equicontinous if and only if none of its configurations
is N -sensitive, for any N ∈ N.

Proposition 5. A one way time-symmetric PCA must be equicontinuous.



Universal Time-Symmetric Number-Conserving Cellular Automaton 167

Proof. Let us first remark that one way CA can be time-symmetric without being
periodic, even if the inverse is also one way in the same direction; therefore, our
proof strongly relies on the partitioned nature of the CA.

Let P be a time-symmetric PCA which is one way in the right direction,
i.e., its neighborhood (n1, .., nm) contains only non-negative coordinates, with
nm being the biggest one.

Remark 5. A particular feature of reversible PCA is that when computing the
preimage of a configuration, the content of a given cell determines, without ambi-
guity, part of the contents of the m cells in its neighborhood. Which conversely
implies that if one cell i is perturbated, at least one cell in {i − n1, .., i − nm}
will ‘see’ the difference in the next iteration of P .

Let us suppose that P is time-symmetric with an involution H of radius r,
and that it is not equicontinuous. Let α be an N -sensitive configuration, and
β a configuration given by the definition for M = N + 2r. Furthermore, let t
be the least one for which F t(α)[−N,N ] �= F t(β)[−N,N ]. Since P is one way, we
can assure that the difference between these two last configurations lies between
N − nm and N . Moreover, we can assume that α[−∞,M ] = β[−∞,M ], because
differences to the left of −M will not perturbate cells in [−N,N ].

From time symmetry, we have that H(β) = F t(H(F t(β))). But

H(β)[−∞,N+r] = H(α)[−∞,N+r], and

H(F t(β))[N−nm−r,N+r] �= H(F t(α))[N−nm−r,N+r]

and using Remark 5, we obtain that

F t(H(F t(β)))[N−nm−r−tnm,N+r] �= F t(H(F t(α)))[N−nm−r−tnm,N+r], i.e.
H(β)[N−nm−r−tnm,N+r] �= H(α)[N−nm−r−tnm,N+r],

which is a contradiction. 	
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Abstract. We define, as local quantities, the least energy and momen-
tum allowed by quantum mechanics and special relativity for physical
realizations of some classical lattice dynamics. These definitions depend
on local rates of finite-state change. In two example dynamics, we see
that these rates evolve like classical mechanical energy and momentum.

1 Introduction

Despite appearances to the contrary, we live in a finite-resolution world. A finite-
sized physical system with finite energy has only a finite amount of distinct detail,
and this detail changes at only a finite rate [1–3]. Conversely, given a physical
system’s finite rates of distinct change in time and space, general principles of
quantum mechanics define its minimum possible average energy and momentum.
We apply these definitions to classical finite-state lattice dynamics.

1.1 Ideal Energy

It was finiteness of distinct state, first observed in thermodynamic systems, that
necessitated the introduction of Planck’s constant h into physics [4]. Quantum
mechanics manages to express this finiteness using the same continuous coordi-
nates that are natural to the macroscopic world. Describing reality as superpo-
sitions of waves in space and time, finite momentum and energy correspond to
effectively finite bandwidth; hence finite distinctness. For example [3], the aver-
age rate ν at which an isolated physical system can traverse a long sequence of
distinct states is bounded by the average (classical) energy E:

ν ≤ 2E/h , (1)

taking the minimum possible energy to be zero. Here E/h is the average fre-
quency of the state, which defines a half-width for the energy frequency distri-
bution. If we compare (1) in two frames, we can bound the average rate μ of
changes not visible in the rest frame, and hence attributable to overall motion:

μ ≤ 2 pv/h . (2)

Here p is the magnitude of a system’s average (classical) momentum, which is
also a half-width for a (spatial) frequency distribution; v is the system’s speed.
c© IFIP International Federation for Information Processing 2015
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DOI: 10.1007/978-3-662-47221-7 13
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These kinds of constraints are sometimes referred to as uncertainty bounds,
but they in no way preclude precise finite-state evolution. Given rates of change,
these bounds define ideal (minimum achievable) average energy and momentum
for finite state systems, emulated as efficiently as possible (with no wasted motion
or state) by perfectly-tailored quantum hamiltonians [3,5].

Clearly there can never be more overall spatial change μ than total change ν
in a physical evolution: this is reflected in pv/E = (v/c)2. From this and (2),

E ≥ (hμ/2)/(v/c)2 . (3)

Thus for a given rate μ of overall motional change, E can only attain its minimum
possible value if the motion is at the speed of light; then no energy is invested
in rest-frame dynamics (rest energy). In a finite-state dynamics with several
geometrically related signal speeds, to minimize all energies (3) the fastest signals
must move at the speed of light. If we then want to realize the dynamics running
faster, we must put the pieces of the system closer together: we can increase p
in (2), but not v. Of course in finite-state models of particular physical systems,
realistic constraints on speeds and separations may require higher energies.

These bounds can be used to define ideal local energies and momenta for
some invertible lattice dynamics, determined by rates of distinct change.

1.2 Local Change

We restrict our attention to finite-state lattice dynamics that emulate the local-
ity, uniformity and microscopic invertibility of physical law: invertible cellular
automata (CA). We assume the dynamics is defined as a regular arrangement of
invertible interactions (logic gates), repeated in space and time, each of which
independently transforms a localized set of state variables.

This kind of CA format, where the state variables are always updated in inde-
pendent groups, has sometimes been called partitioning CA, and encompasses a
variety of lattice formats that have been used to model physical dynamics [6–13].
It is interesting that all globally invertible CA can be recast in this physically
realistic format, as a composition of independent invertible interactions, even if
the CA was originally defined as a composition of non-invertible operations on
overlapping neighborhoods [14–16]. Historically, CA originated as physics-like
dynamics without invertibility [17–19].

Now, in the energy bounds above, only rates of change matter, not the
amount of state updated in a single operation. This is unrealistic. We can define
a large-scale synchronous dynamics, where the global rate of state change is inde-
pendent of the size of the system. Physically, total energy must be bounded by
the total rate of local changes, since each independent local update also obeys
an energy bound. We resolve this conflict by allowing synchronous definition,
but counting the global average rate of distinct change as if local updates were
non-synchronous—which would in fact be true in most relativistic frames.

There is also an issue of what not to count. For a dynamics defined by
a set of gate operations, it might seem natural to include, in the minimum,
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energy required to construct the gates and to turn them on and off. This is the
energy needed to construct a perfectly-tailored hamiltonian. Here we ignore this
construction energy, and discuss the ideal case where the hamiltonian is given
for free (as part of nature), and we only need to account for energy required by
state change within the dynamics.

1.3 Two Examples

In the remainder of this paper, we introduce and discuss two 2×2 block par-
titioning CA (cf. [20]). These dynamics are isomorphic to classical mechanical
systems, and are simple enough that it is easy to compare energetic quantities,
defined by local rates of state change, with classical ones.

The first example is a scalable CA version of the Soft Sphere Model [21], which
is similar to Fredkin’s classical mechanical Billiard Ball Model [22]. This digital
system emulates the integer time behavior of an idealized classical mechanical sys-
tem of elastically colliding balls, and is computation universal. The CA is scalable
in that square blocks of ones (balls) of any size can be collided to simulate a billiard
ball computation. This model has not been published before.

The second example is a CA model of an elastic string that exhibits simple-
harmonic motion and exactly emulates the continuum wave equation at inte-
ger times, averaged over pairs of adjacent sites. This model has been discussed
before [7,23–25], but the analysis of overall translational motion, ideal energy,
and their relativistic interpretation, have not been previously published.

2 Scalable Soft Sphere CA

Many CA dynamics can be interpreted as the integer-time behavior of a contin-
uous classical mechanical system, started from an exactly specified initial state.
This is true, for example, for lattice gas models of fluids. Such stroboscopic
classical mechanical CA inherit, from their continuous counterparts, conserved
quantities such as energy and momentum that we can compare to ideal quanti-
ties determined by local rates of state change. Of course the continuum models
we have in mind would be numerically unstable if actually run as continuous
dynamics, but this issue is not inherited by the finite-state CA [26].

A famous stroboscopic dynamics of this sort is Fredkin’s billiard ball model
of computation, in which hard spheres moving in a plane, each with four possible
initial velocities, are restricted to a square lattice of initial positions. At each
integer time, the system is again in such a configuration. To guarantee this
property without additional restrictions on initial states, we let billiard balls
pass through each other in some kinds of collisions, without interacting.

Figure 1 shows a variant of this model in which the balls are much more
compressible, so collisions deflect paths inward rather than outward. This variant
has the advantage that it is more directly related to a simple partitioning CA
(cf. [6]). In the collision illustrated in Fig. 1a balls enter from the left with a
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(a) (b) (c) (d)

Fig. 1. Scalable Soft Sphere dynamics. (a) Stroboscopic view of continuous classical
collision, one time step per column. (b) Finite state collision, with particles drawn
lighter at odd time-steps. (c) 2D partitioning rule. Only these cases (and their rotations)
interact. Otherwise, all particles move diagonally, unchanged. (d) 1D version of the rule.

horizontal component of velocity of one column per time unit, so consecutive
moments of the history of a collision occur in consecutive columns.

The collision shown is energy and momentum conserving, and compression
and rebound take exactly the time needed to displace the colliding balls from
their original paths onto the paths labeled AB. If a ball had come in only at A
with no ball at B, it would have left along the path labeled AB̄: the collision
acts as a universal logic gate.

Figure 1b shows a realization of the collision as a simple partitioning dynam-
ics. Each time step in (a) corresponds to two in (b), and again particles are shown
at each integer time—drawn dark at even times and light at odd. The rule (c)
is inferred from (b), interpreting that diagram as showing the positions of two
streams of colliding particles at one moment (dark), and their positions at the
next moment (light). All particles move diagonally across a block, unchanged, in
the cases not defined explicitly in (c). If this rule is applied to just the dark par-
ticles in each of the dark-bordered 2×2 blocks in (b), ignoring the light particles,
it moves them to the light positions; applied to just the light particles in each
of the light-bordered blocks, it moves them to the dark positions. The dynamics
alternately applies the rule to these two partitions. To also allow collisions like
(b) for streams of balls arriving from the right, top, or bottom, we define the rule
(c) to have discrete rotational symmetry: in each of the cases shown in (c), each
of the four 90◦ rotations of the pattern on the left turns into the corresponding
rotation of the pattern on the right.

Note that (b) can also be interpreted as showing a time history of a collision
of two particles in a one-dimensional partitioning dynamics (the center of mass
dynamics). Then we get the rule (d), with the cases not explicitly shown inter-
changing the two cell values. Three dimensional versions of the dynamics can be
constructed as in [21].

It is not surprising that a time-independent continuous dynamics turns into
a time-dependent discrete partitioning. In the continuous model, balls approach
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a locus of possible collision, interact independently of the rest of the system, and
then move away toward a new set of loci. The partitions in the continuous case
are just imaginary boxes we can draw around places within which what happens
next doesn’t depend on anything outside, for some period of time. Thus it is also
not surprising that we can assign a conserved energy to partitioning dynamics.

2.1 Ideal Energy and Momentum

For a physical realization of the SSS dynamics, let τ be the time needed for gate
operations to update all blocks of one partition, and let v0 be the average speed
at which the physical representation of a fastest-moving particle travels within
the physical realization of the CA lattice (assuming discrete isotropy).

Equations (2) and (3) define an ideal (minimum) momentum and energy
for a block in which there is a distinct overall spatial change and direction of
motion. Clearly these ideal quantities are conserved overall in collisions, since
freely moving particles move diagonally at v0 before and after. Are they also
conserved in detail during collisions?

When two freely moving particles enter a single block in the collision of
Fig. 1b, the number of block changes is reduced: one instead of two. The ideal
magnitude of momentum for each freely moving particle before the collision is
p1 = (h/2τ)/v0. For two colliding particles moving horizontally within a block
the ideal is p2 = (h/2τ)/(v0/

√
2) = 2p1/

√
2, which is the same as the net

horizontal momentum before the collision. Ideal energy is similarly conserved.
Note, however, that the separate horizontal motions of the + and − particles

during the next step of the collision of Fig. 1b imply an increase in the minimum
energy and momentum for that step. This effect becomes negligible as we enlarge
the scale of the objects colliding.

2.2 Rescaling the Collision

If two columns of k particles are collided in the SSS dynamics, then the resulting
collision just shifts the output paths by k positions along the axis of the collision.
This is illustrated in Fig. 2a for k = 3. Thus k × k blocks of particles collide
exactly as in the classical collision of Fig. 1a: the SSS CA can perform logic
with diagonally-moving square “balls” of any size. When two balls of equal size
meet “squarely,” moving together along a horizontal axis, each pair of columns
evolves independently of the rest; colliding along a vertical axis, pairs of rows
evolve independently. Square balls can participate in both kinds of collisions.

During such a collision, from the blocks that change we can infer a net
momentum and hence a velocity for the motion of each colliding ball: Fig. 2b
illustrates this for k = 100, with the time unit being the time for a freely moving
k × k ball to travel its length (and width). Looking at just the changes in the
top half of (a), we determine the magnitude and direction of minimum average
momentum for each block that changes using (2), and hence determine a total
momentum. Half of the conserved total energy is associated with each ball, so
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(a) (b) (c)

Fig. 2. Multiple collisions in the SSS dynamics. (a) Colliding columns of particles are
displaced horizontally by the height of the column. (b) Each column is slowed down by
the collision. (c) The fraction of energy that is mass during a collision decreases with
increasing initial particle speed v0 (from top, 20% of c, 40%, 60%, 80%, 100%).

v/v0 = vEball/v0Eball = p/p0 gives the magnitude of velocity of a ball as a
function of time, as number and type of changes evolve. This is plotted in (b).

The fraction 1/γ of the total energy E that is mass energy depends on
(v/c)2 = (v/v0)2(v0/c)2. Thus given (b), it depends on an assumption about the
value of v0/c. The fraction 1/γ, as a function of time in the k = 100 collision,
is plotted in Fig. 2c under different assumptions. The bottom case, v0 = c, has
the greatest range but the smallest value at all times. The top case is v0 = .2c.
As expected, the faster the speed of the fastest signals, the less the energy tied
up in mass, hence the smaller the total energy. Ideally, v0 = c.

3 Elastic String CA

In this second example we discuss a classical finite state model of wave motion in
an elastic string. This stroboscopic classical mechanical model exactly reproduces
the behavior of the time-independent one-dimensional wave equation sampled at
integer-times and locations. As in the SSS example, a continuous model is turned
into a finite state one by restricting the initial state (in this case the initial
wave shape) to a perfect discrete set of possible initial configurations, and this
constraint reappears at each integer time. In the continuum limit the discrete
constraint on the wave shape disappears; the exactness of the wave dynamics
itself (at discrete times) is independent of this limit.

The elastic string CA uses partitioning, but in a different way than the SSS
CA: here the partitioning actually constrains the continuous classical dynamics
used to define the CA, but in a way that never affects the classical energy. In
the SSS case, the time dependence associated with the partitioning completely
disappears in the continuous classical-mechanical version of the dynamics.

3.1 Discrete Wave Model

Consider an ideal continuous string for which transverse displacements exactly
obey the wave equation. In Figure 3a we show an initial configuration with the
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(a) (b) (c)

Fig. 3. Discrete wave dynamics. Elastic string is held fixed where it crosses black bars.

string stretched between equally spaced vertical bars. The set of initial config-
urations we’re allowing are periodic, so the two endpoints must be at the same
height.1 Any configuration is allowed as long as each segment running between
vertical bars is straight and lies at an angle of ±45◦ to the horizontal.

Initially the string is attached at a fixed position wherever it crosses a ver-
tical bar. We start the dynamics by releasing the attachment constraint at all
of the gray bars. The attachment to the black bars remains fixed. In Figure 3b
the segments that are about to move are shown with dotted lines: the straight
segments have no tendency to move. Under continuum wave dynamics, the dot-
ted segments all invert after some time interval τ . This will be our unit of time
for the discrete dynamics. The new configuration at the end of this interval is
shown in Figure 3c, with segments that have just moved dotted. At this instant
in time all points of the string are again at rest and we are again in an allowed
initial configuration. Now we interchange the roles of the black and gray bars
and allow the segments between adjacent gray bars to move for a time interval τ .
The dynamics proceeds like this, interchanging the roles of the black and gray
bars after each interval of length τ . Since attachments are always changed at
instants when all energy is potential and the string is not moving, the explicit
time dependence of the system doesn’t affect classical energy conservation.

We express this dynamics as a purely digital rule in Figure 4. In Figure 4a we
show a wave with the black bars marking the attachments for the next step. To
simplify the figure we have suppressed the gray bars—they are always situated
midway between the black bars and so don’t need to be shown. We have also
added a grid of 45◦ dotted lines that shows all of the segments that the string
could possibly follow. In Figure 4b we add in horizontal black bars, in order to
partition the space into a set of 2×2 blocks that can be updated independently.
Note that in all cases the segments that are allowed to change during this update
step, as well as the cells that they will occupy after the update, are enclosed in
a single block. The long box below Figure 4b contains just the slope informa-
tion from the string. This array of gradients is clearly sufficient to recreate the
wave pattern if the height at one position is known. This is not part of the 2D
dynamics: it will be discussed as a related 1D dynamics.

1 Unless the right and left edges of the space itself are joined with a vertical offset.
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(a) (b) (c)

Fig. 4. Discrete wave dynamics. (a) A wave configuration. Possible wave paths are
indicated by dotted lines. (b) Horizontal and vertical lines indicate one of two partitions
used for discrete update rule. A 1D array summarizing wave gradients is shown below
(not part of the 2D dynamics). (c) Top, dynamical rule for 2D wave. Presence of wave-
path segments is indicated by 1’s. Bottom, equivalent 1D dynamical rule for gradients.

Figure 4c shows the dynamical rule for a block. Since the dotted lines indicate
the direction in which segments must run if they appear in any cell, the state
information for each segment is only whether it is there or not: this is indicated
with a 1 or a 0. The only segments that change are peaks /\ or valleys \/, and
these are represented by two 1’s at the top of a block or at the bottom of a
block respectively. The rule is that peaks and valleys turn into each other, and
nothing else changes. We apply the rule alternately to the blocks shown, and to
a complementary partition shifted half a block horizontally and vertically.

3.2 Exact Wave Behavior

At the bottom of Figure 4c we’ve presented a dynamics for the gradients of
the wave. The full 2D dynamics just turns peaks into valleys and vice versa,
leaving straight segments unchanged: we can do that equally well on the array of
gradients. As the 2D dynamics interchanges which blocking to use, the dynamics
on the gradients also alternates which pairs of gradients to update together. In
all cases, the dynamics on the gradients duplicates what happens on the string:
if the two dynamics are both performed in parallel, the gradient listed below a
column will always match the slope of the string in that column.

The dynamics on the gradients has an interesting property. Turning a peak
into a valley and vice versa is exactly the same as swapping the left and right
elements of a block. Leaving a // or \\ unchanged is also exactly the same as
swapping the left and right elements of a block. In all cases, the dynamics on
the gradients is equivalent to a swap.

This means that the left element of a block will get swapped into the right
position, and at the next update it will be the left element of a new block and will
again get swapped into the right position, and so on. Thus all of the gradients
that start off in the left side of a block will travel uniformly to the right, and all
that start in the right side of a block will travel uniformly to the left.
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This shows that the system obeys a discrete version of the wave equation. Half
of the gradients constitute a right-going wave, and half constitute a left-going
wave. At any step of the dynamics, the 2D wave in the original dynamics is just
the sum of the two waves: it is reproduced by laying gradients end to end.

If we refine the lattice, using more and more cells to represent a wave of given
width, smoother and smoother waves can be represented. Of course even without
going to a large-scale limit, the CA dynamics is already exactly equivalent to
a continuous wave equation with constrained initial wave shapes, sampled at
integer times: simply stretch the rightgoing and leftgoing waves constructed out
of gradients to the full width of the lattice. This just amounts to drawing the wave
shape corresponding to each block of the current partition a little differently.

3.3 Overall Transverse Motion

Assume the string carrying a discrete wave wraps around the space. We’ve dis-
cussed the horizontal motion of waves along such a string, but the string itself
can move vertically. For example, a pattern such as \/\/\/...\/ all the way
around the space reproduces itself after two partition update steps, but shifted
vertically by two lattice units. This is clearly the maximum rate of travel for a
string: one position vertically per update step. Call this v0.

We can express the net velocity of the string in terms of the populations of
rightgoing and leftgoing gradient segments. Let R+ be the number of rightgoing
segments with slope +1 (rightgoing /’s), and similarly for R−, L+ and L−. If the
width of the space is B blocks, then there are B = R+ + R− segments forming
the rightgoing wave, and B = L+ + L− forming the leftgoing one.

For the rightgoing or leftgoing wave, periodically repeating its sequence of
gradients corresponds to an unbounded wave with the same average slope. When
both waves have shifted horizontally the width of one period (after 2B partition
update steps), the net vertical shift is the sum of the slopes of the leftgoing
gradients, minus the sum for the rightgoing ones: (L+ − L−) − (R+ − R−). We
can compute this by summing the differences for each pair of slopes grouped
together in the columns of one partition. Only columns containing \/ or /\
contribute a non-zero difference, and so we only need to count the numbers of
blocks B\/ and B/\ that are about to change, to compute the constant velocity

v

v0
=

(L+ − L−) − (R+ − R−)
2B

=
B\/ − B/\

B
. (4)

3.4 Ideal Energy and Momentum

Only blocks that change have overall motion, and with τ the time taken to
update one partition, the frequencies of positive and negative motion are B\//τ
and B/\/τ . Thus from (2), attributing a momentum to each changing block, the
total ideal momentum up is hB\//2τv0, and down is hB/\/2τv0, so the net ideal
momentum p = (h/2τv0)(B\/ − B/\). From (4), the corresponding relativistic
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energy is E = c2p/v = (hB/2τ)/(v0/c)2. Letting v0 → c to minimize energy,
and choosing units with h = 2 and c = 1 and τ = 1, this becomes

E = B and p = B\/ − B/\ . (5)

Energy is the constant width (in blocks) of the string, and momentum is the
constant net number of blocks moving up.

There is an interesting subtlety involved in letting v0 → c in the 2D dynamics.
We interpret all gradient segments as always moving, swapping in pairs in each
update in order to recover the wave equation—even though some paired segments
are in different blocks when they “swap” identical values. If all block motion
forward or backward is at the speed c, each segment must be interpreted as
traveling at the speed c

√
2 as it swaps diagonally. If instead we interpret segments

as moving up and down (or not moving), none travel faster than light, but the
interaction is non-local at the scale of an individual block.

3.5 Rest Frame Energy

For the transverse motion of the string to approach the maximum speed, almost
all of the block updates must contribute to overall motion, and almost none to
just internally changing the string. This slowdown of internal dynamics is a kind
of time dilation, which is reflected in the rest frame energy

√
E2 − p2. From (5),

Er =
√

B2 − (B\/ − B/\)2 . (6)

The energy Er available for rest-frame state-change decreases as more blocks
move in the same direction. In this model total energy E is independent of v,
hence rest energy Er = E/γ must approach 0 as 1/γ → 0. This contrasts with
a normal relativistic system that can never attain the speed of light, which has
a constant rest energy Er and a total energy E that changes with v.

The analysis up to here applies equally well to both the 1D and 2D versions
of the dynamics of Fig. 4. In 2D, however, there is an additional constraint: there
must be an equal number B of positive and negative slopes, so that the string
meets itself at the periodic boundary. Since there are also an equal number B of
right and left going gradients, R+ = L− and R− = L+. Thus from (4) and (6),

Er = 2
√

R+L+ . (7)

If R+/B were the probability for a walker to take a step to the right, and L+/B
the probability to the left, then (7) would be the standard deviation for a 2B-
step random walk. Related models of diffusive behavior that make contact with
relativity are discussed in [24,27,28]. None of these define relativistic objects
that have an internal dynamics, however.

4 Discussion

Given the definition of a finite-state dynamics, we could try to assign intrinsic
properties to it based on the best possible implementation. For example, pro-
gramming it on an ordinary computer, a basic property is the minimum time
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needed, on average, to simulate a step of the dynamics. It would be hard, though,
to be sure we’ve found the most efficient mapping onto the computer’s architec-
ture, and the minimum time would change if we used a different computer, or
built custom hardware using various technologies. The true minimum time would
correspond to the fastest possible implementation allowed by nature! Such a def-
inition seems vacuous, though, since we don’t know the ultimate laws of nature,
and even if we did, how would we find the best possible way to use them?

Surprisingly, a fundamental-physics based definition of intrinsic properties is
not in fact vacuous, if we base it on general principles. Assuming the universe is
fundamentally quantum mechanical, we couldn’t do better than to simply define
a hamiltonian that exactly implements the classical finite-state dynamics desired
at discrete times, with no extra distinct states or distinct state change. This ideal
hamiltonian identifies the fastest implementation that is mathematically possible,
with given average energy.

This procedure assigns to every invertible finite-state dynamics an ideal
energy that depends only on the average rate of distinct state change. This is
generally not much like a physical energy, though, since we haven’t yet included
any realistic constraints on the dynamics. For example, each state change might
correspond to a complete update of an entire spatial lattice, as in the synchronous
definition of a CA. Then the energy would be independent of the size of the sys-
tem. We can fix this by constraining the finite-state dynamics to be local and not
require synchrony: defining it in terms of gates that are applied independently.

We expect the ideal energy, and distinct portions of it, to become more real-
istic with additional realistic constraints. For this reason, we studied invertible
lattice dynamics derived from the integer-time behavior of idealized classical
mechanical systems. In the examples we looked at, ideal energies and momenta
defined by local rates of state change evolve like classical relativistic quantities.

It seems interesting and novel to introduce intrinsic definitions of energy and
other physical quantities into classical finite-state systems, and to use these def-
initions in constructing and analyzing finite-state models of physical dynamics.
Since all finite-energy systems in the classical world actually have finite state,
and since classical mechanics doesn’t, this may be a productive line of inquiry
for better modeling and understanding that world. Moreover, inasmuch as all
physical dynamics can be regarded as finite-dimensional quantum computation,
finite-state models of classical mechanics may play the role of ordinary compu-
tation in understanding the more general quantum case.

Acknowledgments. I thank Micah Brodsky and Gerald Sussman for helpful discus-
sions.
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23. Hrgovčić, H.: Discrete representations of the n-dimensional wave equation. J. Phys.

A: Math. Gen. 25, 1329 (1992)
24. Toffoli, T.: Action, or the fungibility of computation. In: Hey, A. (ed.) Feynman

and Computation, p. 349. Perseus Books (1998)
25. Margolus, N.: Physics and computation. Massachusetts Institute of Technology

Ph.D. Thesis (1987)
26. Toffoli, T.: Cellular automata as an alternative to (rather than an approximation

of) differential equations in modeling physics. Physica D 10, 117 (1984)
27. Smith, M.: Representation of geometrical and topological quantities in cellular

automata. Physica D 45, 271 (1990)
28. Ben-Abraham, S.I.: Curious properties of simple random walks. J. Stat. Phys. 73,

441 (1993)

http://arxiv.org/abs/1109.4994
http://arxiv.org/abs/1109.4995
http://arxiv.org/abs/:comp-gas/9811002
http://arxiv.org/abs/0805.3357
http://arxiv.org/abs/0806.0127


On the Periods of Spatially Periodic Preimages
in Linear Bipermutive Cellular Automata

Luca Mariot and Alberto Leporati(B)

Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi
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Abstract. In this paper, we investigate the periods of preimages of
spatially periodic configurations in linear bipermutive cellular automata
(LBCA). We first show that when the CA is only bipermutive and y is a
spatially periodic configuration of period p, the periods of all preimages of
y are multiples of p. We then present a connection between preimages of
spatially periodic configurations of LBCA and concatenated linear recur-
ring sequences, finding a characteristic polynomial for the latter which
depends on the local rule and on the configurations. We finally devise
a procedure to compute the period of a single preimage of a spatially
periodic configuration y of a given LBCA, and characterise the periods
of all preimages of y when the corresponding characteristic polynomial
is the product of two distinct irreducible polynomials.

Keywords: Linear bipermutive cellular automata · Spatially periodic
configurations · Preimages · Surjectivity · Linear recurring sequences ·
Linear feedback shift registers

1 Introduction

It is known that if F : AZ → AZ is a surjective cellular automaton (CA) and
y ∈ AZ is a spatially periodic configuration, then all preimages x ∈ F−1(y) are
spatially periodic as well [2]. However, to our knowledge there are no works in
the literature addressing the problem of actually finding the periods of such
preimages.

The aim of this paper is to study the relation between the periods of spatially
periodic configurations and the periods of their preimages in the case of linear
bipermutive cellular automata (LBCA). Given a spatially periodic configuration
y ∈ AZ of period p, we first prove that in generic bipermutive cellular automata
(BCA) the period of a preimage x ∈ F−1(y) is a multiple of p, where the multiplier
h ranges in {1, · · · ,q2r}, with q being the size of the alphabet and r the radius of
the BCA. We then show that, in the case of LBCA, a preimage x ∈ F−1(y) can be
described as a concatenated linear recurring sequence (LRS) whose characteristic
polynomial is the product of the characteristic polynomials respectively induced
by the local rule f of the CA and by configuration y. Finally, we present a
c© IFIP International Federation for Information Processing 2015
J. Kari (Ed.): AUTOMATA 2015, LNCS 9099, pp. 181–195, 2015.
DOI: 10.1007/978-3-662-47221-7 14
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procedure which given a block x[0,2r−1] of a preimage x ∈ F−1(y) determines the
period of x, and we characterise the periods of all q2r preimages of y when their
characteristic polynomial is the product of two irreducible polynomials.

This research was inspired from the problem of determining the maximum
number of players allowed in a BCA-based secret sharing scheme presented in [10].

The rest of this paper is organised as follows. Section 2 recalls some basic def-
initions and facts about cellular automata, linear recurring sequences and linear
feedback shift registers. Section 3 shows that the periods of spatially periodic
preimages are multiples of the periods of their respective images, and charac-
terises preimages of LBCA as concatenated linear recurring sequences. Section 4
focuses on the characteristic polynomial of concatenated LRS, while Section 5
presents an algorithm to compute the period of a single LBCA preimage and
characterises the periods of all preimages of a spatially periodic configuration y in
the particular case of irreducible characteristic polynomials. Finally, Section 6
summarises the results presented throughout the paper and points out some
possible future developments on the subject.

2 Basic Definitions

2.1 Cellular Automata

Let A be a finite alphabet having q symbols, and let AZ be the full shift space
consisting of all biinfinite configurations over A. Given x ∈ AZ and i, j ∈ Z with
i ≤ j, by x[i, j] we denote the finite block (xi, · · · , x j). In what follows, we focus our
attention on one-dimensional cellular automata, formally defined below:

Definition 1. A one-dimensional cellular automaton is a function F : AZ → AZ

defined for all x ∈ AZ and i ∈ Z as:

F(x)i = f (x[i−r,i+r]) ,

where f : A2r+1 → A is the local rule of the CA and r ∈ N is its radius.

From a dynamical point of view, a CA can be considered as a biinfinite array of
cells where, at each time step t ∈ N, all cells i ∈ Z simultaneously change their
state si ∈ A by applying the local rule f on the neighbourhood {i− r, · · · , i+ r}.

The main class of CA studied in this paper consists of bipermutive CA,
defined as follows:

Definition 2. A CA F : AZ → AZ induced by a local rule f : A2r+1 → A is called
left permutive (respectively, right permutive) if, for all z ∈ A2r, the restriction
fR,z : A → A (respectively, fL,z : A → A) obtained by fixing the first (respectively,
the last) 2r coordinates of f to the values specified in z is a permutation on A.
A CA which is both left and right permutive is said to be a bipermutive cellular
automaton (BCA).
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Another class of CA which can be defined by endowing the alphabet with
a group structure is that of linear (or additive) cellular automata. We give the
definition for the particular case in which A is a finite field. Thus, we have A = Fq

with q = ρα, where ρ ∈ N is a prime number (called the characteristic of Fq) and
α ∈ N.

Definition 3. A CA F : FZq → F
Z
q with local rule f : F2r+1

q → Fq is linear if there
exists (c0, · · · ,c2r) ∈ F

2r+1
q such that f can be defined for all (x0, · · · , x2r) ∈ F

2r+1
q as:

f (x0, · · · , x2r) = c0 · x0 + · · ·+ c2r · x2r ,

where + and · respectively denote sum and product over Fq.

One easily checks that if both c0 and c2r in Definition 3 are nonzero then a linear
CA is bipermutive as well. Most of the results proved in this paper concern
cellular automata which are both linear and bipermutive.

A configuration x ∈ AZ is called spatially periodic if there exists p ∈ N such
that xn+p = xn for all n ∈ Z, and the least p for which this equation holds is called
the period of x. In this case, x is generated by the biinfinite concatenation of a
string u ∈ Ap with itself, denoted by ωuω. A proof of the following result about
preimages of spatially periodic configurations in surjective CA can be found
in [2].

Lemma 1. Let F : AZ → AZ be a surjective CA. Then, given a spatially periodic
configuration y ∈ AZ, each preimage x ∈ F−1(y) is also spatially periodic.

This lemma is a consequence of a theorem proved by Hedlund [7], which states
that every configuration x ∈ AZ has a finite number of preimages under a sur-
jective CA. In the same work, Hedlund showed that bipermutive CA are also
surjective. Indeed, given a BCA F : AZ → AZ induced by a local rule f : A2r+1 → A
and a configuration y ∈ AZ, a preimage x ∈ F−1(y) is determined by first setting
in x a block of 2r cells x[i,i+2r−1] ∈ A2r, with i ∈ Z. Then, denoting by f −1

R,z : A → A

and f −1
L,z : A → A the inverses of the permutations obtained by respectively fixing

the first and the last 2r coordinates of f to z ∈A
2r, for all n ≥ i+2r and n < i the

value of xn is determined through the following recurrence equation:

xn =

⎧
⎪⎪⎨
⎪⎪⎩

f −1
R,z(n)(yn−r), where z(n) = x[n−2r,n−1], if n ≥ i+2r (a)

f −1
L,z(n)(yn+r), where z(n) = x[n+1,n+2r], if n < i (b)

(1)

As a consequence, by Lemma 1 the preimages of spatially periodic configurations
under a BCA are spatially periodic as well. Moreover, since a preimage of y is
uniquely determined by a 2r-cell block using Equation (1), it follows that y has
exactly q2r possible preimages in F−1(y).

We now formally state the problem analysed in the remainder of this paper:

Problem. Let y ∈ AZ be a spatially periodic configuration of period p ∈N. Given
a BCA F : AZ → AZ, find the relation between p and the spatial periods of the
preimages x ∈ F−1(y).
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2.2 Linear Recurring Sequences and Linear Feedback Shift
Registers

We now recall some basic definitions and results about the theory of linear
recurring sequences and linear feedback shift registers, which will be useful to
characterise the periods of preimages in LBCA. All the proofs of the theorems
mentioned in this section may be found in the book by Lidl and Niederreiter [9].

Definition 4. Given k ∈N and a, a0, a1, · · · , ak−1 ∈Fq, a linear recurring sequence
(LRS) of order k is a sequence s = s0, s1, · · · of elements in Fq which satisfies the
following relation:

sn+k = a+a0sn +a1sn+1 + · · ·+ak−1sn+k−1 ∀n ∈ N . (2)

The terms s0, s1, · · · , sk−1 which uniquely determine the rest of the LRS are
called the initial values of the sequence. If a = 0 the sequence is called homoge-
neous, otherwise it is called inhomogeneous. In what follows, we will only deal
with homogeneous LRS.

A linear recurring sequence can be generated by a device called linear feedback
shift register (LFSR), depicted in Figure 1. Basically, a LFSR of order k is

D0

Output

a0 a1

+

D1

· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

Fig. 1. Diagram of a linear feedback shift register of length k

composed of k delayed flip-flops D0, D1, · · · , Dk−1, each containing an element
of Fq. At each time step n ∈ N, the elements sn, sn+1, · · · , sn+k−1 in the flip-flops
are shifted one place to the left, and Dk−1 is updated by the linear combination
a0 · sn + · · ·+ ak−1 · sn+k−1, which corresponds to the linear recurrence defined in
Equation (2).

It is straightforward to observe that the output produced by the LFSR (that
is, the LRS s = s0, s1, · · ·) must be ultimately periodic, that is, there exist p,n0 ∈N

such that for all n ≥ n0, sn+p = sn. In fact, for all n ∈ N the state of the LFSR is
completely described by the vector (sn, sn+1, · · · , sn+k−1). Since all the components
of such vector take values in Fq, which is a finite set of q elements, after at most
qk shifts the initial value of the vector will be repeated. In particular, in [9] it is
proved that if a0 � 0, then the sequence produced by the LFSR (or, equivalently,



On the Periods of Spatially Periodic Preimages in LBCA 185

the corresponding LRS) is periodic, i.e., it is ultimately periodic with preperiod
n0 = 0.

An important parameter of a k-th order homogeneous LRS s = s0, s1, · · · is its
characteristic polynomial a(x) ∈ Fq[x], defined as:

a(x) = xk −ak−1xk−1 −ak−2xk−2 −·· ·−a0 . (3)

The multiplicative order of the characteristic polynomial, denoted by ord(a(x)), is
the least integer e such that a(x) divides xe −1, and it can be used to characterise
the period of s. In fact, in [9] it is shown that if a(x) is irreducible over Fq and
a(0) � 0, then the period p of s equals ord(a(x)), while in the general case where
a(x) is reducible ord(a(x)) divides p.

A common way of representing a LRS s = s0, s1, · · · is by means of its gener-
ating function G(x), which is the formal power series defined as:

G(x) = s0 + s1x+ s2x2 + · · · =
∞∑

n=0

snxn (4)

In this case, the terms s0, s1, · · · are called the coefficients of G(x). The set of all
generating functions over Fq can be endowed with a ring structure in which sum
and product are respectively pointwise addition and convolution of coefficients.
The fundamental identity of formal power series states that the generating func-
tion G(x) of a k-th order homogeneous LRS s can be expressed as a rational
function:

G(x) =
g(x)
a∗(x)

=
−∑k−1

j=0

∑ j
i=0 ai+k− j six j

xka(1/x)
. (5)

where g(x) is the initialisation polynomial, which depends on the k initial terms
of sequence s (in which we set ak = −1), while a∗(x) = xka(1/x) is the reciprocal
characteristic polynomial of s.

It is easy to see that a given LRS s = s0, s1, · · · over Fq satisfies several linear
recurrence equations. Hence, several characteristic polynomials can be associated
to s, one for each recurrence equation which s satisfies. The minimal polynomial
m(x) associated to s is the characteristic polynomial which divides all other
characteristic polynomials of s, and it can be computed as follows:

m(x) =
a(x)

gcd(a(x),h(x))
, (6)

where a(x) is a characteristic polynomial of s and h(x) = −g∗(x) is the reciprocal
of the initialisation polynomial g(x) appearing in Equation (5), with the sign
changed. In [9] it is proved that the period of s equals the order of its minimal
polynomial m(x).

In order to study the periods of preimages of LBCA, we also need some results
about the sum of linear recurring sequences. Let s = s0, s1, · · · and t = t0, t1, · · · be
homogeneous LRS over Fq. The sum sequence σ = s+ t is defined as σn = sn + tn,
for all n ∈ N.
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Theorem 1. Let σ1 and σ2 be two homogeneous LRS having minimal polyno-
mials m1(x),m2(x) ∈ Fq[x] and periods p1, p2 ∈ N, respectively. If m1(x) and m2(x)
are relatively prime, then the minimal polynomial m(x) ∈ Fq[x] of the sum σ= s+ t
is equal to m1(x) ·m2(x), while the period of σ is the least common multiple of p1

and p2.

The following theorem gives a characterisation of the periods of LRS associ-
ated to an irreducible characteristic polynomial.

Theorem 2. Let S (a(x)) be the set of all homogeneous linear recurring sequences
over Fq with irreducible characteristic polynomial a(x) ∈ Fq[x], and let e be the mul-
tiplicative order of a(x). Then, S (a(x)) contains one sequence of period 1 and qk −1
sequences of period e.

3 Preliminary Results

3.1 Preimages Periods in Generic BCA

We begin our analysis of Problem 2.1 by considering the general case where only
bipermutivity holds. To this end, we first show a relation between finite blocks
in the preimages of BCA.

Lemma 2. Let F : AZ → AZ be a BCA with local rule f : A2r+1 → A. Then, given
a configuration y ∈ AZ and i, j ∈ Z, for all x ∈ F−1(y) there exists a permutation
between the blocks x[i,i+2r−1] and x[ j, j+2r−1].

Proof. Without loss of generality, let us assume i < j. Since y is fixed and F
is bipermutive, for all x[i,i+2r−1] ∈ A2r define ϕy : A2r → A2r as ϕy(x[i,i+2r−1]) =
x[ j, j+2r−1], where for each n ∈ { j, · · · , j+ 2r − 1} the value of xn is computed by
applying case (a) of Equation (1). We have to show that ϕy is a permutation on
A2r (Figure 2).

For all possible values of block x[ j, j+2r−1], the value of x[i,i+2r−1] is uniquely deter-
mined by applying case (b) of Equation (1). As a consequence, under ϕy each
image has a unique preimage, and thus ϕy is bijective. �	

y· · · · · ·

· · ·x[i,i+2r−1]· · · x[ j, j+2r−1] · · ·

ϕy is bijective

2r cells 2r cells

Fig. 2. By fixing y, function ϕy is a A2r-permutation
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Using Lemma 2, the following useful information about the periods of spa-
tially periodic preimages in BCA can be deduced:

Proposition 1. Let F : AZ → AZ be a BCA with local rule f : A2r+1 → A and let
y ∈ AZ be a spatially periodic configuration of period p ∈ N. Given a preimage
x ∈ F−1(y), the period m ∈ N of x is a multiple of p. In particular, it holds that
m = p ·h, where h ∈ {1, · · · ,q2r}.
Proof. Since y is spatially periodic of period p, we have that y = ωuω for a certain
u ∈ Ap. Given a preimage x ∈ F−1(y), denote by w1 ∈ A2r the block x[i−r,i+r−1], where
i ∈ Z is such that yi = yi+p = u1. In other words, w1 is a 2r-cell block of x placed
across the boundary between two copies of u in y (see Figure 3). By Lemma 2 we
know that block u fixes a permutation ϕu : A2r → A2r which maps block w1 to w2 =

x[i+p−r,i+p+r−1]. More in general, observe that for all j ≥ 2 the permutation which
associates block w j = x[i+p j−r,i+p j+r−1] to w j+1 = x[i+p( j+1)−r,i+p( j+1)+r−1] is always ϕu,
the reason being that the block below w j and w j+1 is a repetition of u. Since |A| = q,
the permutation ϕu can be composed by at most one cycle of length q2r. This means
that, after at most h ≤ q2r applications of ϕu, block wh = x[i+ph−r,i+ph+r−1] will be equal
to w1, and from then on the preimage will periodically repeat itself. Thus, it results
that xn = xn+ph for all n ∈ Z, from which we deduce that the period of x is p ·h. �	

u· · · · · · u u · · ·

w1· · · v1 w2 · · · wh−1 vh−1 w1 v1 w2 · · ·

h ≤ q2r copies of u

ϕu · · · ϕu ϕu

Fig. 3. After at most h ≤ q2r applications of ϕu, the 2r-cell block w1 will be repeated.
At this point, the subsequent p-cell block in the preimage will be a copy of v1w2

3.2 Characterising LBCA Preimages by LRS Concatenation

Proposition 1 limits the possible values of the periods attained by preimages
of spatially periodic configurations in BCA. In what follows we show that, by
narrowing the analysis to the class of LBCA, further information about the
periods of preimages can be obtained.

Let F : FZq → F
Z
q be a LBCA of radius r with local rule f : F2r+1

q → Fq defined
by a vector (c0, · · · ,c2r) ∈ F

2r+1
q , where c0 � 0 and c2r � 0. Given x ∈ F

2r+1
q and

y = f (x), the following equalities hold:

y = c0x0 + c1x1 + · · ·+ c2r−1x2r−1 + c2r x2r

x2r = c−1
2r (−c0x0 − c1x1 −·· ·− c2r−1x2r−1 + y) .
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Setting d = c−1
2r and ai = −d · ci for all i ∈ {0, · · · ,2r −1}, we obtain

x2r = a0x0 +a1x1 + · · ·+a2r−1x2r−1 +dy . (7)

Equation (7) defines the inverse f −1
R,z of the permutation fR,z : Fq → Fq obtained

by fixing the first 2r coordinates of f to the values of z = (x0, · · · , x2r−1). Hence,
given a configuration y ∈ F

Z
q and the 2r-cell block x[0,2r−1] ∈ F

2r
q in a preimage

x ∈ F−1(y), case (a) of Equation (1) yields

xn = a0xn−2r +a1xn−2r+1 + · · ·+a2r−1xn−1 +dyn−r ∀n ≥ 2r , (8)

and by setting k = 2r and vn = yn+r for all n ∈ N, Equation (8) can be rewritten
as

xn+k = a0xn +a1xn+1 + · · ·+ak−1xn+k−1 +dvn ∀n ≥ 2r . (9)

Equation (9) reminds the definition of a linear recurring sequence of order k = 2r,
with the exception of term dvn. However, if y is a spatially periodic configuration
of period p then it is possible to describe the sequence v = v0,v1, · · · as a linear
recurring sequence of order l ≤ p defined by

vn+l = b0vn +b1vn+1 + · · ·+bl−1vn+l−1 , (10)

where bi ∈ Fq for all i ∈ {0, · · · , l − 1}, and the initial terms of the sequence are
v0 = yr, v1 = yr+1, · · · , vl−1 = yr+l−1. In the worst case, the LRS v will have order
l = p, and it will be generated by the trivial LFSR which cyclically shifts a word
of length p.

As a consequence, preimage x ∈ F−1(y) is a linear recurring sequence of a
special kind, where xn+k is determined not only by the previous k = 2r terms, but
it is also “disturbed” by the LRS v. In particular, we define x as the concatenation
of sequences s and v, which we denote by s� v, where s = s0, s1, · · · is the k-th
order LRS satisfying the recurrence equation

sn+k = a0sn +a1sn+1 + · · ·+ak−1sn+k−1 , (11)

and whose initial values are s0 = x0, s1 = x1, · · · , sk−1 = xk−1.
Equivalently, a preimage x ∈ F−1(y) is generated by a LFSR of order k = 2r

where the feedback is summed with the output of an l-th order LFSR multiplied
by d = c−1

2r , which produces sequence v. Similarly to concatenated LRS, we call
this system a concatenation of LFSR. Figure 4 depicts the block diagram of this
concatenation.

In conclusion, we have shown that the periods of the preimages x ∈ F−1(y)
are equivalent to the periods of the concatenated LRS generated by the LFSR in
Figure 4, where the disturbing LFSR is initialised with the values yr, · · · , yr+l−1.
In particular, since multiplying the terms of a LRS by a constant does not change
its period, in what follows we will assume d = 1.
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E0

d

b0 b1

+

E1

· · ·

bl−2

+· · ·

El−2

bl−1

+

El−1

D0

x

a0 a1

+

D1

· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

+

Fig. 4. Diagram of two concatenated LFSR

4 Analysis of Concatenated LRS

4.1 Sum Decomposition of Concatenated LRS

In order to study the period of the concatenated linear recurring sequence s� v
giving rise to preimage x ∈ F−1(y), we first prove that it can be decomposed into
the sum of two LRS: namely, sequence s and the 0-concatenation u = s�0 v
satisfying the same recurrence Equation (9) of x, but whose k initial terms
u0, · · · , uk−1 are set to 0.

Theorem 3. Let s = s0, s1, · · · and v = v0,v1, · · · be the LRS respectively satisfying
Equations (11) and (10), whose initial terms are respectively s0 = x0, · · · , sk−1 = xk−1

and v0 = yr, · · · ,vl−1 = yr+l−1, and let x= s� v be the concatenation of s and v defined
by Equation (9), where d = 1. Additionally, let u = s�0 v be the 0-concatenation of
sequences s and v, where u0 = u1 = · · · = uk−1 = 0. Then, xn = sn +un for all n ∈ N.

Proof. Since u0 = u1 = · · · = uk−1 = 0, for all n ∈ {0, · · · ,k −1} it holds

sn +un = sn +0 = xn .

Therefore, it remains to prove xn = sn+un for all n ≥ k. We proceed by induction on
n. For n = k, we have

sk +uk = a0s0 + · · ·+ak−1sk−1 +a0u0 + · · ·+ak−1uk−1 + v0 =

= a0x0 + · · ·+ak−1xk−1 + v0 = xk .
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For the induction step we assume sn+un = xn for n ≤ k. The sum sn+1+un+1 is equal
to:

sn+1 +un+1 = a0sn−k+1 + · · ·+ak−1sn +a0un−k+1 + · · ·+ak−1un + vn−k+1 =

= a0(sn−k+1 +un−k+1)+ · · ·+ak−1(sn +un)+ vn−k+1 . (12)

By induction hypothesis, sn−k+i +un−k+i = xn−k+i for all i ∈ {1, · · · ,k}. Hence, Equa-
tion (12) can be rewritten as

sn+1 +un+1 = a0xn−k+1 + · · ·+ak−1xn + vn−k+1 = xn+1 .

�	

4.2 Characteristic Polynomial of Concatenated LRS

Theorem 3 tells us that a preimage x ∈ F−1(y) can be generated by the sum of
two LRS: the LRS generated by the concatenated LFSR of Figure 4, where the
disturbed LFSR is initialised to zero, and the LRS produced by the non-disturbed
LFSR, that is, the lower LFSR in Figure 4 without the external feedback, ini-
tialised to the values x0, · · · , xk−1.

We now show that this sum decomposition allows one to determine a charac-
teristic polynomial of the concatenated sequence x = s� v. To this end, we first
need a result proved by Chassé in [3] which concerns the generating function of
the 0-concatenation u = s�0 v. The proof stands on the observation that for all
n ∈ N, the n-th term of u is given by the linear combination

∑n−1
i=0 A(i)

n · vi, where
the terms A(i)

n depend only on the coefficients a j which define Equation (11). In
particular, we will need the values of A(0)

n for n ≥ 0, which can be computed by
the following recurrence equation:

A(0)
n =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑k−1
j=0 a jA

(0)
n−k+ j , if n > 1

1 , if n = 1

0 , if n = 0

(13)

where k = 2r and A(0)
n−k+ j = 0 if n− k+ j < 0. Using our notation and terminology,

Chassé’s result can thus be stated as follows:

Proposition 2. Let u= s�0 v be the 0-concatenation of the LRS s and v defined
in Theorem 3, and let V(x) be the generating function of v. Denoting by A(x) the
generating function of the sequence A = {A(0)

n+1}n∈N, the generating function of u
is

U(x) = x ·A(x) ·V(x) . (14)

Moreover, if a(x) ∈ Fq[x] is the characteristic polynomial of the sequence s associ-
ated to the recurrence equation (11), then a(x) is also a characteristic polynomial
of A.

We now prove that the characteristic polynomial of the concatenation s� v is
the product of the characteristic polynomials of s and v.
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Theorem 4. Let s� v be the concatenation of LRS s and v defined by Equa-
tion (9) with d = 1, and let a(x),b(x) ∈ Fq[x] be the characteristic polynomials of
s and v, respectively associated to the linear recurring equations (11) and (10).
Then, a(x) ·b(x) is a characteristic polynomial of s� v.

Proof. By Theorem 3 the concatenation of LRS s and v can be written as s� v=
s+u, where u= s�0 v is the 0-concatenation associated to s� v. By applying the
fundamental identity of formal power series (Equation (5)) and Proposition 2,
the following equalities hold:

S (x) =
gs(x)
a∗(x)

(15)

U(x) =
x ·gA(x) ·gv(x)

a∗(x) ·b∗(x)
, (16)

where gs(x), gA(x) and gv(x) are polynomials whose coefficients are computed
according to the numerator in the RHS of Equation (5). Hence, the generating
function of s� v is:

G(x) =
gs(x)
a∗(x)

+
x ·gA(x) ·gv(x)

a∗(x) ·b∗(x)
=

gs(x) ·b∗(x)+ x ·gA(x) ·gv(x)
a∗(x) ·b∗(x)

. (17)

By applying again the fundamental identity of formal power series to Equa-
tion (17), we deduce that the reciprocal of c(x) = a∗(x) · b∗(x) is a characteristic
polynomial of s� v. Denoting by k and l the degrees of a(x) and b(x) respectively,
it follows that c(x) = xk+l ·a(1/x) ·b(1/x), and thus the reciprocal of c(x) is

c∗(x) = xk+l · 1

xk+l
·a(x) ·b(x) = a(x) ·b(x) . (18)

Therefore, a(x) ·b(x) is a characteristic polynomial of s� v. �	
Theorem (4) thus gives a characteristic polynomial for all preimages

x ∈ F−1(y) of a spatially periodic configuration y ∈ F
Z
q . As a matter of fact, the

polynomials a(x) and b(x) do not depend on the particular value of the block
x[0,2r−1], but only on the local rule f and on configuration y, respectively. From
the LFSR point of view, this means that a preimage x ∈ F−1(y) can be generated
by a single LFSR implementing the (k+ l)-th order recurrence equation

σn+k+l = c0σn + c1σn+1 + · · ·+ ck+l−1σn+k+l−1 , (19)

where for all μ ∈ {0, · · · ,k+ l − 1} the term cμ is the μ-th convolution coefficient
in the multiplication a(x) ·b(x) given by

cμ =
∑

i+ j=μ

aib j, for i ∈ {0, · · · ,k} and j ∈ {0, · · · , l} . (20)

Additionally, the first k = 2r initial terms σ0, · · · ,σk−1 in Equation (19) are ini-
tialised to the values in x[0,2r−1], while the remaining l ones are obtained using the
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recurrence equation (9). Hence, by applying the fundamental identity of formal
power series, the numerator of Equation (17) can also be expressed as:

g(x) = −
k−1∑

j=0

j∑

i=0

ci+k− jσi x
j . (21)

5 Further Results

5.1 Computing the Period of a Single Preimage

To summarise the results discussed so far, we now present a practical procedure
to compute the spatial period of a single preimage. Given a LBCA F : FZq → F

Z
q

with local rule f : F2r+1
q → Fq of radius r ∈ N, a spatially periodic configuration

y ∈ F
Z
q and a 2r−cell block x[0,2r−1] ∈ F

2r
q of a preimage x ∈ F−1(y), the procedure

can be described as follows:

1. Find the minimal polynomial b(x)= xl −bl−1xl−1 · · ·−b0 of the linear recurring
sequence v, where vn = yn+r for all n ∈ N.

2. Set the characteristic polynomial a(x) associated to the inverse permutation
f −1
R,z to a(x) = xk −ak−1xk−1 −·· ·−a0, where k = 2r and the coefficients ai are

those appearing in the recurrence equation (11).
3. Compute the polynomial g(x) given by Equation (21), and set h(x) = −g∗(x).
4. Determine the minimal polynomial of the preimage by computing

m(x) =
a(x) ·b(x)

gcd(a(x) ·b(x),h(x))
. (22)

5. Compute the order of m(x), and output it as the period of preimage x.

For step 1, the minimal polynomial of v can be found using the Berlekamp-
Massey algorithm [11], by giving as input to it the string composed by the first
2p elements of v, where p is the period of y (and hence the period of v as well). The
time complexity of this algorithm is O(p2). Step 4 requires the computation of a
greatest common divisor, which can be performed using the standard Euclidean
division algorithm in O(n2) steps, where n=max{deg(a(x)b(x)),deg(h(x))}. Finally,
the order of m(x) in step 5 can be determined by first factorizing the polynomial,
for example by using Berlekamp’s algorithm [1] which has a time complexity of
O(D3), where D is the degree of m(x), if the characteristic ρ of Fq is sufficiently
small. Once the factorization of m(x) is known, ord(m(x)) can be computed using
the following theorem proved in [9]:

Theorem 5. Let m(x) ∈ Fq[x] be a polynomial having positive degree and such
that m(0) � 0. Let m(x) = a ·∏n

i=0 fi(x)bi be the canonical factorization of m(x),
where a ∈ Fq, b1, · · · ,bn ∈ N and f1(x), · · · , fn(x) ∈ Fq[x] are distinct monic irre-
ducible polynomials. Then ord(m(x)) = eρt, where ρ is the characteristic of Fq,
e is the least common multiple of ord( f1(x)), · · · ,ord( fn(x)) and t is the smallest
integer such that ρt ≥ max(b1, · · · ,bn).



On the Periods of Spatially Periodic Preimages in LBCA 193

0
y0

· · · 0
y1

1
y2

1
y3

0
y4

0
y5

1
y6

1
y7

0
y8

0
y9

1
y10

1
y11

0
y12

0
y13

· · ·
0

x1

1

x0

· · · 1

x2

0

x3

0

x4

0

x5

0

x6

1

x7

0

x8

1

x9

1

x10

1

x11

1

x12

0

x13

· · ·

Fig. 5. Block x[0,11] which generates preimage x ∈ F−1(y) under rule 150, computed
using case (a) of Equation (1). Notice that (x12, x13) = (x0, x1) and (y12,y13) = (y0,y1).
Hence, for n ≥ 12 and n < 0 the preimage will periodically repeat itself.

Notice that Theorem 5 depends on the knowledge of the orders of the irreducible
polynomials involved in the factorization of m(x). A method to determine the
order of an irreducible polynomial is also described in [9], which relies on the
factorization of qD − 1. There exist several factorization tables for numbers in
this form, especially for small values of q (see for example [4]).

We now present a practical application of the procedure described above. The
computations in the following example have been carried out with the computer
algebra system MAGMA.

Example 1. Let F : FZ2 → F
Z

2 be the LBCA with local rule f : F3
2 → F2 of radius

r = 1, defined as f (x1, x2, x3) = x1 + x2 + x3 for all (x1, x2, x3) ∈ F
3
2, which is the

elementary rule 150. Let y ∈ F
Z

2 be a spatially periodic configuration of period
p = 4 generated by the block y[0,3] = (0,0,1,1), and let x[0,1] = (1,0) be the initial
2-cell block of a preimage x ∈ F−1(y). Since r = 1, sequence v is generated by block
v[0,3] = (0,1,1,0). Feeding the string (0,1,1,0,0,1,1,0) to the Berlekamp-Massey
algorithm yields the polynomial b(x) = x3 + x2 + x+ 1, while the characteristic
polynomial associated to rule 150 is a(x) = x2+ x+1. Hence, it follows that c(x) =
a(x) · b(x) = x5 + x3 + x2 + 1 is a characteristic polynomial of the preimage. Since
the first 5 elements of preimage x are 1,0,1,0,0, the initialisation polynomial of
Equation (21) is g(x) = x4 + x3 + 1, from which we deduce that h(x) = x4 + x+ 1.
Considering that h(x) is irreducible, the greatest common divisor of c(x) and
f (x) is 1, and thus by Equation (22) c(x) is also the minimal polynomial of the
preimage. The factorization of c(x) is (x+1)3(x2+ x+1), and the orders of x+1 and
x2 + x+1 are respectively 1 and 3, from which it follows that the least common
multiple e is 3. Finally, the smallest integer t such that 2t ≥ 3 is t = 2. Therefore,
by applying Theorem 5 the period of preimage x is e2t = 12. Figure 5 shows the
actual value of the block x[0,11] which generates preimage x.

5.2 Characterisation of Periods When a(x) and b(x) Are Irreducible

As a further application of Theorem 4, we now show a complete characterisa-
tion of the periods of x ∈ F−1(y) in the special case where the characteristic
polynomials a(x) and b(x) are irreducible. To this end, we first report an addi-
tional theorem proved in [9] which concerns the sum of families of LRS.
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Theorem 6. Let f1(x), f2(x) ∈ Fq be non-constant monic polynomials, and let
S ( f1(x)) and S ( f2(x)) be the families of LRS whose characteristic polynomials
are respectively f1(x) and f2(x). Denoting by S ( f1(x))+S ( f2(x)) the family of all
LRS σ+τ where σ∈ S ( f1(x)) and τ∈ S ( f2(x)), it follows that S ( f1(x))+S ( f2(x)) =
S (c(x)), where c(x) is the least common multiple of f1(x) and f2(x).

Our characterisation result, which is analogous to Theorem 2, is the following:

Theorem 7. Let F : FZq → FZ
q be an LBCA having local rule f : F2r+1

q → Fq, and
let a(x) = xk − ak−1xk−1 −·· ·−a0 ∈ Fq[x] be the characteristic polynomial associ-
ated to the inverse permutation f −1

R,z , where k = 2r, a0, · · · ,ak−1 are the coefficients
appearing in Equation (11) and ord(a(x)) = e. Further, let y ∈ F

Z
q be a spatially

periodic configuration of period p > 1, and let b(x) be the minimal polynomial of
sequence v, where vn = yn+r for all n ∈ N. If a(x) and b(x) are both irreducible
and a(x) � b(x), then F−1(y) contains one configuration of period p and qk − 1
configurations of period m, where m is the least common multiple of e and p.

Proof. By Theorem (4), a(x) ·b(x) is a characteristic polynomial of the qk preim-
ages in F−1(y). Denote by S (a(x)) and S (b(x)) the sets of LRS having characteris-
tic polynomials a(x) and b(x), respectively. Since a(x) and b(x) are both irreducible
and a(x) � b(x), by Theorem 6 it follows that S (a(x) · b(x)) = S (a(x))+ S (b(x)).
Hence, F−1(y) is a subset of S (a(x))+S (b(x)), and as a consequence every preim-
age x ∈ F−1(y) can be written as x = σ+τ, where σ ∈ S (a(x)) and τ ∈ S (b(x)). In
particular, by applying Theorem 2 it results that S (a(x)) is composed by one
sequence of period 1 and qk − 1 sequences of period e, while since p > 1 the
sequence τ is necessarily one of the ql −1 sequences of period p of S (b(x)), where
l is the degree of b(x). Therefore, by making all possible sums for σ ranging in
S (a(x)), Theorem 1 yields that F−1(y) is composed by one configuration having
period p, which is the preimage x = σ+τ where σ has period 1, while the period
of all the remaining qk −1 configurations is the least common multiple of e and
p. �	

6 Conclusions

In this work, we studied the relation between the periods of spatially periodic
configurations of LBCA and the periods of their preimages, characterising the
latter as concatenations of linear recurring sequences. We remark that Theorem 4
can be straightforwardly generalised to the case x(t) ∈ F−t(y), i.e. preimages of y
with respect to the t-th iterate of the CA, where t ∈ N. Indeed, it can be shown
that a(x)t ·b(x) is a characteristic polynomial of x(t), which is thus generated by
a “cascade” of concatenated LFSR where each LFSR is initialised to a block
x(i)

[0,2r−1] of an intermediate preimage x(i) ∈ F−i(y), for i ∈ {1, · · · , t}. Of course in
this case we have to take into account the fact that the running time of the
procedure described in Section 5.1 grows exponentially in the degree D of the
minimal polynomial m(x), since it depends on the factorization of qD −1.

We conclude by discussing some possible future directions of research on
the subject. A first idea is to generalise the results presented in this paper to
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nonlinear BCA, where the preimages are generated by a Nonlinear Feedback
Shift Register (NFSR) disturbed by the LFSR which generates configuration y.
We remark that this concatenation is also the main primitive upon which the
stream cipher Grain is based [8]. Hence, finding a general method to study the
periods of preimages of nonlinear BCA could also be useful to cryptanalyse this
cipher. This study could be further generalised to generic surjective CA. In this
regard, a possible starting point could be a result reported in [5], which implies
that if F : FZq → F

Z
q is a surjective linear CA, then there exists t ∈N such that the

t-th iterate Ft is bipermutive. Finally, a further extension of this research would
be to analyse the periods of spatially periodic configurations in the case of multi-
dimensional cellular automata, by considering suitable notions of bipermutivity
such as the ones introduced in [6].
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Abstract. Understanding how the composition of cellular automata rules can 
perform predefined computations can contribute to the general notion of emerg-
ing computing by means of locally processing components. In this context, a 
solution has been recently proposed to the Modulo-n Problem, which is the de-
termination of whether the number of 1-bits in a binary string is perfectly divis-
ible by the positive integer n. Here, we show how to optimise that solution in 
terms of a reduction of the number of rules required, by means of a merging op-
eration involving of the rules´ active state transitions. The potential for a more 
general usage of the merging operation is also addressed. 

Keywords: Cellular automata · Emergent computation · Rule composition · 
Modulo-n problem · MODn problem · Merging · Active state transitions · Parity 
problem 

1 Introduction: The Modulo-n Problem Solution to be 
Optimised 

Cellular automata (CAs) are discrete dynamical systems with a grid-like regular lat-
tice of identical finite automata cells, each cell having an identical pattern of connec-
tions to its neighbours. The next state of each cell is given by the transition rule of the 
automaton, according to the current cell state and those of its neighbouring cells. CAs 
may perform arbitrary computations, even out of the action of simple local rules [6]. 

One of these computations consists in solving the parity problem, herein denoted 
the MOD2 problem, which consists of determining the parity of the number of 1s in a 
binary string: even parity, when the number of 1s modulo-2 is 0, or odd parity, when 
the number of 1s modulo-2 is 1.  

In its formulation for cellular automata, this computational problem is considered 
solved when any odd-sized (N) binary string initialising a cyclic lattice, is converted, 
after some time steps, into 0N or 1N, if the initial amount of 1-bits is even, or odd, 
respectively. The MOD2 problem is ill-defined for even-sized lattices because the 
initial configuration 1N  would have an even number of 1s, which would be a contra-
diction because 1N  should be the final configuration for lattices with odd number of 
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1s. Although it has been proved in [5] that a one-dimensional rule with radius at least 
4 is required to solve MOD2, [2] and [4] showed how to solve the problem with a 
composition of only two elementary rules. This makes it evident the power of rule 
compositions. 

As a general case, we refer to the MODn problem, which consists of determining 
whether the number of 1-bits in a cyclic binary string is multiple of n, with the con-
straint that it is always ill-defined for lattice sizes multiple of n. 

In [1], we described a generalised solution to the MODn problem, based upon the 
application of a set of one-dimensional CA rules, in a pre-determined order, which 
amounts to composing the individual rules employed. This solution is only con-
strained in that the lattice size N cannot be a multiple of n nor a multiple of any factor 
of n. Such a general solution (Sn) for the MODn problem, for any binary string σ with 

size N, is given below, where we name rules 0
nR  and 1

nR  as the Replacement rules, 

and 0
1G , 1

1G , 0
2G , 1

2G  and so on, as the Grouping rules, whose meanings are de-

fined in the next section. 
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The solution means that starting with the size-N initial configuration σ, the follow-
ing sequence of rule applications should be performed: 

1. Apply rule 0
nR  for  n

N  time steps, followed by rules 0
1G , 0

2G  and so on, up 

to 0
2−nG , for  2

N  time steps each.  

2. Apply rule 1
nR  for  n

N  time steps, followed by rules 1
1G , 1

2G  and so on, up 

to 1
2−nG , for  2

N  time steps each.  

3. Repeat the two previous procedures  n
N  times.  

4. Finalise the process, by applying elementary CA rule 254 for  2
N  time steps.  

Since the sequence of rules superscripted with 0 operate on the 0-bits and the ones 
superscripted with 1 operate on the 1-bits, the stages 1 and 2 above may be inverted, 
with the same global outcome. 

In this paper, we propose a simplification of the solution above, by performing a 
merging procedure of the rules´ active state transitions, that is, those that replace the 
state of the centre cell in the neighbourhood. 

In the next section, we present the Replacement rules, the Grouping rules and the 
result of their composition. In Section 3, we discuss the active state transitions of the 
rules present in Sn, as well as how they can be used to simplify their representations. 
The merging of these rules is then discussed in Section 4, as well as how the active 
transitions should be modified so as to render viable mergings. We conclude in Sec-
tion 5 with various remarks, in particular addressing some conditions we must respect 
in the choice of rules to be merged and the active transitions to be modified. 
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2 Replacement and Grouping Rules 

Two key roles are required for rules to solve the MODn problem: to transform certain blocks of 
states of a configuration, and to group together specific kinds of blocks; these roles are 
achieved by the Replacement rules (R) and the Grouping rules (G), respectively. Elementary 
rule 254 just finalises the problem, by preserving the configuration 0N, and transforming all the 
others to 1N. 

Replacement rules 0
nR  can replace n end 0s, of a sequence of n or more consecutives 0s, 

with n 1s, while, analogously, Replacement rules 1
nR  can replace n end 1s, of a sequence of n 

or more consecutives 1s, with n 0s. Both are, therefore, MODn-conserving rules. Considering 
the n end bits, 0s or 1s, that need to be replaced of a sequence of n or more consecutive identi-
cal bits, the following cases are possible: n bits from the left, n-1 from the left and 1 from the 
right, n-2 from the left and 2 from the right, …, 2 from the left and n-2 from the right, 1 from 
the left and n-1 from the right, and n bits from the right.  

Knowing that a one-dimensional CA rule that changes n end bits from one side of the string 
must have at least radius n, and that it suffices radius n-1 for a rule that is to change n-1 bits 
from one side and 1 from the other side, or n-2 bits from one side and 2 from the other side, and 
so on, we can consider only the smallest possible radius of these rules.  

So, there are n-1 rules that replace n end 0s, of a sequence of n or more 0s, with n 1s, 

namely, rule 0
1,1−nR  (n-1 bits from the left and 1 from the right), that transforms the strings 

10n-10x01 into 11n-10x11, rule 0
2,2−nR  (n-2 bits from the left and 2 from the right), that trans-

forms the strings 10n-20x001 into 11n-20x111, and so on, up to rule 0
1,1 −nR  (1 bit from the left 

and n-1 from the right), that transforms the strings   100x0n-11 into 110x1n-11; in all cases, for 
any integer x ≥ 0.  

By applying Replacement rules for  n
N  iterations, no sequence with n or more 

consecutive identical bits is left in the lattice, except if its configuration is 0N or 1N.  
In order to eliminate simultaneous occurrence of different blocks of the same bit left by the 

Replacement rules, the smaller blocks will be grouped into larger ones, moving themselves 
through the lattice, according to the Grouping rules.  

Grouping rules are those that can shift to the left or to the right, strings of m identical bits, in 
order to group them with larger strings of the same bit.  

We refer to a Grouping rule that can shift m 0s as 0
mG ; but since this movement may be 

possible to the left or to the right, we denote it 0
mG


 when the movement is to the left, and 

0
mG


 when the movement is to the right. Analogously, in order to shift and group m 1s, rules 

1
mG


 and 1
mG


 are employed, or just 1
mG , indistinctly.  

Rules that can only move an isolated bit, 0 or 1 ( 0
1G or 1

1G , respectively), should have, at 

least, radius 2. Rules that can only move an isolated pair of bits should have at least radius 3, 
and so on. These rules are also MODn-conserving rules.  
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For either 0 or 1, n-2 Grouping rules will be used, because, after the application of the Re-
placement rules, no strings of consecutive identical bits larger than n-1 will remain in the lat-
tice. So, we just have to move strings smaller than n-1 consecutive identical bits to group them 
into the larger blocks of the same bit.  

In order to solve the MOD2 problem, since n = 2, no Grouping rules are necessary, 
as demonstrated in [4].  

By composing only Replacement and Grouping rules, with no application of the 
elementary rule 254, any initial configuration is transformed into another that belongs 
to a reduced group of final configurations. We disregard differences due to rotational 
symmetry, which means that final configurations as 1100000000, 0110000000, ..., 
0000000110 are considered the same as 0000000011.  

Simplifying the possible relationships between initial and final configurations be-
fore applying rule 254, we have the following, where |σ|1 stands for the number of 1s 
in string σ: 

If MODn(N) = MODn(|σ|1) and both ≠ 0 (ill-defined problem): 

⎯ MODn(|σ|1) ≠ 0: 1N (meaning that, when MODn (|σ|1)=1, convergence is to 1N) 
If MODn(N) ≠ MODn(|σ|1): 
⎯ MODn(|σ|1) = 0: 0N  
⎯ MODn(|σ|1) ≠ 0: 0N-MODn(|σ|1)1MODn(|σ|1) or some necklaces  

We have already disregarded the lattices with size N multiple of n (ill-defined 
problem), where MODn(N) = 0.  

The predominance of 0s instead of 1s is because, at the end, we use the Replace-
ment rules that operate on the 1s, transforming them into 0s.  

Necklaces are configurations of the form  (0A1B)C,  for integers A, B and C,  where 
A < n and B < n, or A < n and B > n, but B is not multiple of n, or B < n and A > n but 
A is not multiple of n. For necklace configurations, the Grouping rules just cause 
shifts on the lattice, with no further effect; also, the Replacement rules cause no effect 
when A < n and B < n, or may lead to periodic regimes only when A > n or B > n, by 
continuously transforming (0A1B )C into (0A’1B’ )C, back and forth. 

If N is a prime number, no necklace will remain in the lattice.  
Therefore, for any initial configurations where MODn(|σ|1) = 0, the problem is already 

solved, as defined. However, for all the other configurations where MODn(|σ|1) ≠ 0 should be 
converted into 1N, elementary rule 254 can be used, without affecting the configuration 0N. 

All the details, lemmas and their proofs, and further explanations regarding this section can 
be found in [1]. 

3 Active State Transitions and the Simplified CA 
Representations  

A solution for the MOD3 problem was reported in [3] and further optimised and generalised in 
[1]. In order to solve the MOD3 problem we need radius 2 rules as Replacement rules and 
Grouping rules. A radius 2 rule has 32 state transitions that can be active or not: by active tran-
sition, we mean those that change the state value of the centre cell of the neighbourhood.  
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Fig. 1. State transitions of rules 0
1,2R and 0

1G


, with their simplified representations through 

their active transitions 

CA rules can be represented just through their active transitions, and grouped whenever possi-
ble, i.e., placed together at the same row of the state transition table, using symbol * to stand for 
either possibilities, 0 or 1 (see Figure 1). 

This figure shows all the state transitions of the rules 0
1,2R  and 0

1G


, separating and plac-

ing together only the active transitions as shown further down in the figure. The Replacement 

rule 0
1,2R  has only 6 active transitions, highlighted out of the 32 possibilities, and can be  

Transition Transition
31 1 1 1 1 1 1 31 1 1 1 1 1 1
30 1 1 1 1 0 1 30 1 1 1 1 0 1
29 1 1 1 0 1 1 29 1 1 1 0 1 0 1 on the left
28 1 1 1 0 0 1 28 1 1 1 0 0 1
27 1 1 0 1 1 0 27 1 1 0 1 1 1 Isolated 0
26 1 1 0 1 0 0 26 1 1 0 1 0 1 Isolated 0
25 1 1 0 0 1 0 25 1 1 0 0 1 0
24 1 1 0 0 0 1 1st 0 from the left 24 1 1 0 0 0 0
23 1 0 1 1 1 1 23 1 0 1 1 1 1
22 1 0 1 1 0 1 22 1 0 1 1 0 1
21 1 0 1 0 1 1 21 1 0 1 0 1 0 1 on the left
20 1 0 1 0 0 1 20 1 0 1 0 0 1
19 1 0 0 1 1 0 19 1 0 0 1 1 0
18 1 0 0 1 0 0 18 1 0 0 1 0 0
17 1 0 0 0 1 1 2nd 0 from the left 17 1 0 0 0 1 0
16 1 0 0 0 0 1 2nd 0 from the left 16 1 0 0 0 0 0
15 0 1 1 1 1 1 15 0 1 1 1 1 1
14 0 1 1 1 0 1 14 0 1 1 1 0 1
13 0 1 1 0 1 1 13 0 1 1 0 1 0 1 on the left
12 0 1 1 0 0 1 12 0 1 1 0 0 1
11 0 1 0 1 1 0 11 0 1 0 1 1 1 Isolated 0
10 0 1 0 1 0 0 10 0 1 0 1 0 1 Isolated 0
9 0 1 0 0 1 0 9 0 1 0 0 1 0
8 0 1 0 0 0 1 1st 0 from the left 8 0 1 0 0 0 0
7 0 0 1 1 1 1 7 0 0 1 1 1 1
6 0 0 1 1 0 1 6 0 0 1 1 0 1
5 0 0 1 0 1 1 5 0 0 1 0 1 0 1 on the left
4 0 0 1 0 0 1 4 0 0 1 0 0 1
3 0 0 0 1 1 1 1st 0 from the right 3 0 0 0 1 1 0
2 0 0 0 1 0 1 1st 0 from the right 2 0 0 0 1 0 0
1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

Active
Transition

Active
Transition

24 1 1 0 0 0 1 1st 0 from the left 29 1 1 1 0 1 0 1 on the left
17 1 0 0 0 1 1 2nd 0 from the left 27 1 1 0 1 1 1 Isolated 0
16 1 0 0 0 0 1 2nd 0 from the left 26 1 1 0 1 0 1 Isolated 0
8 0 1 0 0 0 1 1st 0 from the left 21 1 0 1 0 1 0 1 on the left
3 0 0 0 1 1 1 1st 0 from the right 13 0 1 1 0 1 0 1 on the left
2 0 0 0 1 0 1 1st 0 from the right 11 0 1 0 1 1 1 Isolated 0

10 0 1 0 1 0 1 Isolated 0
5 0 0 1 0 1 0 1 on the left

Active
Transitions

Active
Transitions

24 & 8 * 1 0 0 0 1 1st 0 from the left 27, 26, 11 & 10 * 1 0 1 * 1 Isolated 0
17 & 16 1 0 0 0 * 1 2nd 0 from the left 29, 21, 13 & 5 * * 1 0 1 0 1 on the left

3 & 2 0 0 0 1 * 1 1st 0 from the right

Output bit / Note

Output bit / Note

Neighbourhood Output bit / Note Neighbourhood

Neighbourhood Output bit / Note Neighbourhood

Rule 4.059.296.252          Rule 3.704.675.536          

Neighbourhood Output bit / Note Neighbourhood Output bit / Note

0
1G


0
1,2R
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represented by the three rows and the end of the figure. The Grouping rule 0
1G


 has 8 active 

transitions, and can be represented just by two rows. The written notes indicate which bit is 
been replaced by the Replacement rule or changed to make the shift by the Grouping rule. 

The minimum required radius for a rule to perform as expected depends on the number of 
cells (excluding those with the * character), to the right or to the left, of the centre cell of the 
neighbourhood of all grouped active transitions. The highest value is the required radius. At the 
end of Figure 1 we can see that the minimum radius required to both rules is 2. 

4 Merging Replacement and Grouping Rules  

4.1 The Merging Operation 

The merging process should, in fact, be generally regarded as a two-stage process, consisting of 
joining together the active transitions of the rules involved, with subsequent editing of some of 
them, if required. Details are given throughout this section.  

The Replacement and Grouping rules to be joined in just one Merged rule do not operate on 
the same strings simultaneously, because these strings have different sizes for any value of n, 
i.e., while Replacement rules replace n bits (from strings with n or more consecutive identical 
bits), Grouping rules move m bits (from strings with just an isolated string of m bits), and m is 
always equal or smaller than n-2.  

Therefore, all effects of the Merged rule – such as the possibility of partition reduction, the 
formation of strings with only 0s or only 1s, or the formation of some necklaces – are the same 
when applying the separated rules. One exception is the formation of partial necklaces (de-
scribed in Section 4.2), that occurs because of the impossibility to join some isolated strings to 
their larger blocks (created by the Grouping rules), due to changes on the lattice, through the 
simultaneous action of the Replacement and Grouping rules. 

As a consequence, the same lemmas and proofs described in [1] should be considered, but 
the formation of partial necklaces must now be added to the possibilities of final configuration 
after applying the Merged rule. In the next subsections we address some specific cases, such as 
the merging of the rules that solve the problem MOD3 and the problem MOD4, so as to convey 
the underlying issues of the process more clearly. 

4.2 The MOD3 Case 

As is the case here, we may consider that a task of a CA rule can be performed by one or more 

active state transitions. Accordingly, the task performed by rule 0
1,2R , for example, is to elimi-

nate any string with three or more consecutive 0s in the lattice, conserving the Modulo-3 prop-

erty, while the task performed by the rule 0
1G


 is to shift isolated 0s to the left in order to group 

them with larger strings of the same bit, also conserving the Modulo-3 property. In what fol-
lows, we go about joining these functions into a single rule. 

Figure 1 shows that Replacement rule 0
1,2R  and Grouping rule 0

1G


 have different active 

state transitions. The resulting rule of the merging of a Replacement rule and one or more 
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Grouping rules is generically termed in this work as 0
nM  or 1

nM , according to the specific 

bit it manipulates. In the case of the MOD3 problem, for instance, merging rules 0
1,2R  and 

0
1G


 results the rule 0
1,2M


. 

Figure 2 shows the simplified representation of rule 0
1,2M


 from the perspective of its ac-

tive transitions.  

 

Fig. 2. Simplified representation of the rule 0
1,2M


 

Our goal is to ensure that these 3 alternatives can perform the same tasks:   
NNN

RG















0

1,2
0
1


 σ,  

NNN
GR
















0
1

0
1,2


σ,  or 

NN
M
















0

1,2


σ.  

The application to all possible initial configurations of a given size of the possible rule  
sequences – that is, the Replacement rule followed by the Grouping rule, or vice versa, or yet 
the Merged rule only – allows us to compare all resulting final configurations; this is what  
is summarised in Figure 3, for N = 13 (therefore, with respect to all 213 different initial  
configurations).  

Analysis of the data in Figure 3 indicates that the Modulo-3 property is preserved for all  
initial configurations, thus increasing their number of 1s, up to 11, 12 or 13 occurrences,  
correspondingly to the initial values of Modulo-3 equal to 2, 0 or 1, respectively. This occurs 
because the Replacement rule can transform three 0s into three 1s. The alternative that begins 
with the Grouping rule has an advantage in this replacement task, in that it shifts isolated 0s and 
groups them into larger chains before replacing the 0s. This increases the amount of strings 
with three or more consecutive 0s, therefore improving the effectiveness of the Replacement 
rule.  

Hence, the final configurations of the different alternatives are not necessarily the same, even 
disregarding differences due to rotational symmetries, because the number of 1s may be differ-
ent. Even with the same number of 1s, the spaces between isolated 0s may be also different.  

By a superficial analysis, we would say that there is no equivalence among the outcomes of 
the three possible processing alternatives; but, if we go back to our initial goals, it is possible to 
observe that, for all possible initial conditions, the application of any of the three alternatives  
 

Active
Transitions

27, 26, 11 & 10 * 1 0 1 * 1 Isolated 0
29, 21, 13 & 5 * * 1 0 1 0 1 on the left

24 & 8 * 1 0 0 0 1 1st 0 from the left

17 & 16 1 0 0 0 * 1 2nd 0 from the left

3 & 2 0 0 0 1 * 1 1st 0 from the right

Neighbourhood Output bit / Note

Rule 3.721.649.628          0
1,2M
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transforms the lattice into a final configuration as desired. In other words, all final configura-
tions have at most two consecutive 0s (because of the Replacement rule) and there are no iso-
lated 0s and isolated pairs of 0s occurring simultaneously (because of the Grouping rule).  
 

 

Fig. 3. Summary after the application to all possible initial configurations of a given size 
(N=13) of the different rule sequences 

So, if the desired task is exactly the latter (lattice with at most two consecutive 0s, and without 
isolated 0s and pairs of 0s simultaneously), the goal has been achieved, demonstrating the 
equivalence of these alternatives.  

We should remember that the solution to the MOD3 alternates the sequence of rules that op-
erate on the 0s with the sequence of rules that operate on the 1s, alternating the size of the bit 
strings with only 0s and 1s, until achieving the required condition for elementary rule 254 to 
finalise the solution.  

Therefore, applying rule 0
3M  instead of 0

3R and 0
1G , and rule 1

3M  instead of 1
3R  and 

1
1G , the solution S3 is simplified to Ss3, using only three rules, instead of five, as originally 

(according to [1]):  

Initial Final Initial Final Initial Final
0 0 1 0 0 1 0 0 1
1 13 13 1 13 13 1 13 13
2 11 78 2 11 78 2 11 78

9 78 9 104 9 78
12 208 12 182 12 208
7 52 7 65 7 52

10 130 10 130
13 533 13 650 13 533
5 13 5 13 5 13
8 13 8 13

11 1261 11 1274 11 1261
9 585 9 650 9 533

12 1131 12 1066 12 1183
7 78 7 78 7 78

10 455 10 650
13 1183 13 1638 13 988
8 91 8 91 8 91

11 1196 11 1196 11 1196
9 234 9 234 9 234

12 481 12 481 12 481
10 156 10 156 10 156
13 130 13 130 13 130

11 11 78 11 11 78 11 11 78
12 12 13 12 12 13 12 12 13
13 13 1 13 13 1 13 13 1

8192 8192 8192

Amount of 1s Amount of 
Configurations

Amount of 1s Amount of 
Configurations

Amount of 1s Amount of 
Configurations

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

Total Total Total

9 9 9

10 10 10

NNN
RG














0

1,2
0

1

 NNN
GR














0

1
0

1,2

 NN
M














0

1,2
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                           S3 = 

















































 3
32322 00

1
11

1 33254

N
NNNNN

RGRGE σ                           (2) 

                                     Ss3 = 





















 3
2 0

3
1
3254

N
N NN

MME σ.                                    (3) 

Disregarding the action of elementary rule 254 in the previous expressions, and letting S3’ and 
Ss3’ denote the remaining (partial) and simplified (partial) solutions, respectively, Figure 4 
compares them, displaying a summary of all final configurations left after applying these two 
solutions to all possible initial configurations with N=16. The final configuration 
1100000000000000 and all its equivalent configurations due to rotational symmetry are consid-
ered the same. 
 

 

Fig. 4. Summary after applying both partial solutions (original and simplified) to the MOD3 
problem on all possible initial configurations of size 16 

The simplified partial solution transforms some initial configurations into partial necklaces (i.e, 
configurations where only a part of it is a necklace), further to the necklaces that already had 
been transformed by the original partial solution.  

Necklaces and partial necklaces appear only when MODn(N) ≠ MODn(|σ|1); otherwise, 
the lattice converges to 0N or 1N.  

For the MOD3 problem, necklaces have the forms (01)8 or (0212)4, and partial necklaces be-

long to ((03)+(01)+)+; they are trapped in these forms because after 0
3M  has transformed the 

three 0s  into three 1s, only isolated 0s remain, that move synchronously, keeping the form 

((13)+(10)+)+, until 1
3M  is applied, thus reversing the configuration to ((03)+(01)+)+.  

For both alternatives, original and simplified partial solutions, any initial configurations 
where MODn(|σ|1) = 0 converges to 0N and the problem is already solved, as defined. However, 
in order for all the other configurations with MODn(|σ|1) ≠ 0 to end up in 1N, elementary rule 
254 is used, with no effect on the configuration 0N.  

4.3 The MOD4 Case and the Problem of Synchronised Displacements 

Following the same rationale for merging rules in the optimised MOD3 solution (i.e.,  merging 
Replacement and Grouping rules that work on the same bit), in order to optimise the solution to 

MOD4 we have to merge one Replacement rule with two Grouping rules. For the 0-bit, 0
4M  

Amount
of 1s

Final Configuration 
with some Necklaces

 No. Of
Configs. 

Amount
of 1s

Final Configuration 
with some Necklaces

 No. Of
Configs. 

Amount
of 1s

Final Configuration with 
some Partial Necklaces

 No. Of
Configs. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21845 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21845
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 19232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 14576 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 4768
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2608 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 656 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1568

0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 144
0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 64
0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 64

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 4
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21845 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21845
65536

Original Sequence S3' Simplified Sequence Ss3'

2 2 2

5

8 8

TOTAL TOTAL 65536
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results from merging rules 0
4R , 0

1G  and 0
2G , while for the 1-bit, 1

4M  results from merging 

rules 1
4R , 1

1G  and 1
2G . Rules 4R and 2G should have radius 3, at least. Therefore, the 

resulting 4M  rules should also have radius 3. We employ the ‘+’ symbol for the joining of 

active transitions of the rules. 
The problem in this merging is related to the Grouping rules. For instance, applying rules 
0
1G  and 0

2G , separately or joined, without editing some active transitions, does not lead to 

the same outcome because of possible synchronised movements of isolated 0s and isolated 
pairs of 0s.  

Figure 5 shows the joining of rules 0
2,2R , 0

1G


 and 0
2G


, and also shows the temporal evo-

lution of an initial configuration where the problem occurs. 
 

 

 

Fig. 5. Joining of rules 0
2,2R , 0

1G


 and 0
2G


,  and the temporal evolution of the configuration 

10000110011101 comparing two processing alternatives (joined or separate rules) 

4.4 Removing and Inserting Active Transitions to Change the Displacement 
Step of the Rule 

Hence, for the efficient merging of these three rules, we have to fix these synchronised move-
ments caused by the Grouping rules. A first idea would be to exchange one of them by a shift to 
the right, compensating for the current shift to the left. However, looking ahead to the context 

Output bit
112 80 48 16 * * 1 0 0 0 0 1
97 96 33 32 * 1 0 0 0 0 * 1
7 6 5 4 0 0 0 0 1 * * 1

67 66 3 2 * 0 0 0 0 1 * 1
123 122 107 106 91 90 75 74 59 58 43 42 27 26 11 10 * * * 1 0 1 * 0
119 118 117 116 87 86 85 84 55 54 53 52 23 22 21 20 * * 1 0 1 * * 1
121 105 89 73 57 41 25 9 * * * 1 0 0 1 0
103 102 101 100 39 38 37 36 * 1 0 0 1 * * 1

          +                 +                    =   Rule 321600197915107966665688126986998903292

Active State Transitions Neighbourhood

0
2,2R

0
1G


0
2G


0
2,2R 0

1G


0
2G


7

t 0
t 1
t 2
t 3
t 4
t 5
t 6
t 7
t 8
t 9

t 10
t 11
t 12
t 13  

t 14
t 15
t 16
t 17













 3
0

2,2

7
0
1

7
0
2 RGG







 ++ 0

2
0
1

0
2,2 GGR
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of the MOD5 problem, in order to optimise its solution with 3 Grouping rules, this method 
would no longer be sufficient.  

Since we are handling larger radius than in the MOD3 problem, a more robust solution is to 

change the displacement step of rule 0
1G


: instead of moving the isolated 0 just one position to 

the left, we had better move it two positions, whenever possible (which is not always the case). 

The new rule with this feature is denoted 2,0
1G


. Figure 6 shows its 8 active transitions (125, 

109, 93, 77, 61, 45, 29 and 13), but no longer the 8 others (123, 122, 91, 90, 59, 58, 27 and 26) 
that the previous rule had. 
 

 

Fig. 6. Rule 2,0
1G


 represented by its active transitions 

4.5 Removing Active State Transitions to Eliminate Remaining Synchronised 
Displacements 

Finally, there is a further problem yet to be solved: when the isolated 0 cannot be moved 2 
positions because of an isolated pair of 0s close to its left (as happens in the string *100101*), a 
synchronised displacement will continue to occur. Therefore, instead of transforming the string 
100101 into 001011 (as would happen due to the modification just proposed), we had rather 
transform it into 000111.  

To accomplish this some active state transitions should be turned off, as shown in Figure 7, 
indicated by two arrows. For clarity purposes of this process, notice that the string **0101* in 
Figure 6 has been instantiated into strings 000101*, 010101*, 100101* and 110101*, and that 
the string *1001** in Figure 5 gave rise to *100100, *100101, *100110 and *100111. 

The active transitions that should be deactivated are 75 and 74 from rule 2,0
1G


, and 101 

and 37 from rule 0
2G


. Rules 2,0
1G


 and 0
2G


 become 2,0
*1G


and 0
*2G


, respectively, after 

some of their original active transitions have been deactivated (see Figure 7). Rule 0
2,2M


 is 

derived from joining 0
2,2R , 2,0

*1G


 and 0
*2G


.  

The ideal merging of active state transitions to solve these conflicts is presented in Figure 8. 
 

Output bit
119 118 117 116 87 86 85 84 55 54 53 52 23 22 21 20 * * 1 0 1 * * 1

107 106 75 74 43 42 11 10 * * 0 1 0 1 * 0
125 109 93 77 61 45 29 13 * * * 1 1 0 1 0

             =  Rule 297668273963817264613187722719825810176

Active State Transitions Neighbourhood

2,0
1G
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Fig. 7. Rules 2,0
1G


and 0
2G


 represented by their active state transitions and pointing out those 

which have to be disabled (not highlighted output bit) 

 

Fig. 8. Rule 0
2,2M


represented by its active state transitions 

The same rationale lead us to rule 1
2,2M


, composed by 1

2,2R , 2,1
*1G


 and 1
*2G


, whose 

Wolfram number is 255816358659918533639648036274123862084. 
So, the solution S4 is simplified to Ss4, using only 3 rules instead of the 7 original rules: 

                      S4 = 
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422422 00

1
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1
2 44
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NNNNNN

RGGRGG σ                (4) 

Ss4 = 





2
254

N

E















 401
44

N

NN
MM σ.                                       (5) 

Testing the same procedure for MOD5 and obtaining similar results, we conclude that the  
simplified solution that can solve the MODn problem can have only 3 rules, one elementary  
 
 

Output bit
119 118 117 116 87 86 85 84 55 54 53 52 23 22 21 20 * * 1 0 1 * * 1

11 10 0 0 0 1 0 1 * 0
43 42 0 1 0 1 0 1 * 0

75 74 1 0 0 1 0 1 * 1
107 106 1 1 0 1 0 1 * 0

125 109 93 77 61 45 29 13 * * * 1 1 0 1 0

Output bit
121 105 89 73 57 41 25 9 * * * 1 0 0 1 0
103 39 * 1 0 0 1 1 1 1

102 38 * 1 0 0 1 1 0 1
101 37 * 1 0 0 1 0 1 0

100 36 * 1 0 0 1 0 0 1

Active State Transitions Neighbourhood

             =  Rule 336299833476273345402472786266733739264

Active State Transitions Neighbourhood

             =  Rule 2976682739638172646131877227198258101762,0
1G


0
2G


Output bit

112 80 48 16 * * 1 0 0 0 0 1
97 96 33 32 * 1 0 0 0 0 * 1
7 6 5 4 0 0 0 0 1 * * 1

67 66 3 2 * 0 0 0 0 1 * 1

119 118 117 116 87 86 85 84 55 54 53 52 23 22 21 20 * * 1 0 1 * * 1
11 10 0 0 0 1 0 1 * 0

43 42 0 1 0 1 0 1 * 0
107 106 1 1 0 1 0 1 * 0

125 109 93 77 61 45 29 13 * * * 1 1 0 1 0

121 105 89 73 57 41 25 9 * * * 1 0 0 1 0
103 39 * 1 0 0 1 1 1 1

102 38 * 1 0 0 1 1 0 1
100 36 * 1 0 0 1 0 0 1

                                                              =   Rule 295014986420811337252501870505639399932

Active State Transitions Neighbourhood

0
*2

2,0
*1

0
2,2

0
2,2 GGRM


++=
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(radius 1), and two others with radius n-1, as long as the size N of the binary string σ is not 
multiple of n neither multiple of any factor of n. This simplified solution then becomes:  

Ssn = 





2
254

N

E















 n

N

NN
nn MM 01 σ.                                       (6) 

5 Concluding Remarks  

We demonstrated how a simple action, locally coordinated, represented here by one-
dimensional cellular automata rules, can perform a solution to a complex global computation 
such as the MODn problem.  

The design of rules to compute some task may start from analysing these tasks, and maybe 
dividing them into smaller instances. For each minor task, we can select a single or a group of 
active state transitions to execute it.  

Different tasks performed by different CA rules, can be merged in a single rule, as long as 
there is no conflict among the individual tasks; this was the case of the task performed by the 
Replacement rules and the one performed by the Grouping rules in the MOD3 problem. 

Much study is still necessary for the understanding and the generalisation of these mergings. 
However, in our work we could realise some evidence which might help further studies.  

Rules classified with fixed point or null dynamical regimes according to [7] yield a predictable 
behaviour and render themselves, in some cases, to performing specific tasks. These rules are 
good candidates to have their active transitions joined or even separated, generating other rules 
that perform the same task. In contrast, rules with complex, chaotic or periodic dynamical behav-
iours are not candidates for these compositions or decompositions of their active transitions.  

Even for the candidate rules, it is not always possible to merge their tasks into a single rule, 
especially when there is an overlap among the active transitions, or when two tasks performed 
simultaneously do not perform as required; this is what occurred, for instance, in our attempt to 
join the two Grouping rules, where one of them grouped isolated bits and the other grouped 
isolated pairs of bits in the MOD4 problem.  

In order to merge rules for performing equivalent operation, we modified tasks and solved 
conflicts, following a standard that allowed us to generalise the MODn solution. As n increases, 
in order to solve the MOD5 problem, for instance, the number of synchronised displacements 
caused by merging Grouping rules also increases. So, in order to merge satisfactorily rules 

3,0
*1G , 2,0

*2G  and 0
*3G , or rules 3,1

*1G , 2,1
*2G  and 1

*3G , we have to disable active transi-

tions in the rule pairs involved in synchronised displacements of strings, as shown below 

(where −G stands for either 0G  or 1G ):  

10001001 (or 01110110): −
*3G    and 2,

*2
−G   (a single step for each rule); 

1000101 (or 0111010):    −
*3G    and 3,

*1
−G   (a single step for each rule); 

11001101 (or 00110010): 2,
*2

−G  and 3,
*1
−G  (2 steps for each rule); 

0100101 (or 1011010):    2,
*2

−G  and 3,
*1
−G  (a single step for each rule); and 

1100101 (or 0011010):    2,
*2

−G  and 3,
*1
−G  (2 steps for 2,

*2
−G and 1 for ). 3,

*1
−G
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For the suitability of 0
5M  and 1

5M , we then have to disable 5 pairs of groups of active tran-

sitions. In general, this number depends on n, as exemplified in Figure 9.  

 

Fig. 9. Number of groups of active state transitions to be disabled according to n 

The number of pairs of groups of active transitions to be disabled for each merging rule is  
Cn-2,2 + 2Cn-3,2 + 3Cn-4,2 + … + (n-3)C2,2 which can be calculated through the 4th degree 

polynomial ((n-3)4 + 6(n-3)3 + 11(n-3)2 + 6(n-3))/24. All these conflicts can be eliminated, and 
the merging process can always be carried out.  
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Abstract. In this paper we extend the notion of activity for Boolean
networks introduced by Shmulevich and Kauffman (2004). Unlike the
existing notion, we take into account the actual graph structure of the
Boolean network. As illustrations, we determine the activity of all ele-
mentary cellular automata, and d-regular trees and square lattices where
the vertex functions are bi-threshold and logical nor functions.

The notion of activity measures the probability that a perturbation
in an initial state produces a different successor state than that of the
original unperturbed state. Apart from capturing sensitive dependence
on initial conditions, activity provides a possible measure for the signifi-
cance or influence of a variable. Identifying the most active variables may
offer insight into design of, for example, biological experiments of systems
modeled by Boolean networks. We conclude with some open questions
and thoughts on directions for future research related to activity.

Keywords: Boolean networks · Finite dynamical system · Activity ·
Sensitivity · Network · Sensitive dependence on initial conditions

1 Introduction

A Boolean network (BN) is a map of the form

F = (f1, . . . , fn) : {0, 1}n −→ {0, 1}n . (1)

BNs were originally proposed as a model for many biological phenomena [9,10],
but have now been used to capture and analyze a range of complex systems
and their dynamics [2]. Associated to F we have the dependency graph of F
whose vertex set is {1, 2, . . . , n} and with edges all (i, j) for which the func-
tion fi depends non-trivially on the variable xj . See [8,14,17] for more general
discussions of maps F .
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The study of stability and the response to perturbations of Boolean networks
is central to increased understanding of their dynamical properties. Perturba-
tions may take many forms, with examples including perturbations of the depen-
dency graph [1,13,15], the vertex states [7,18,19], the vertex functions [20,21],
or combinations of these.

This paper is concerned with noise applied to vertex states. Specifically, we
want to know the following:

What is the probability that F (x) and F (x + ei) are different?

Here i is a vertex while ei is the ith unit vector with the usual addition mod-
ulo 2. In [19], Shmulevich and Kauffman considered Boolean networks over reg-
ular graphs with fj = f for all vertices j, that is, a common vertex function.
They defined the notion of activity of f with respect to its ith argument as the
expected value of the Boolean derivative of f with respect to its ith variable.
Under their assumptions, this may give a reasonable indication of the expected
impact of perturbations to the ith variable under the evolution of F . However,
this approach does not consider the impact of the dependency graph structure.
We remark that Layne et al. compute the activities of nested canalyzing functions
given their canalyzing depth, extending results in [19] on canalyzing functions,
see [12].

This question of sensitivity has also been studied when x is restricted to
attractors in order to assess stability of long-term dynamics under state noise.
The notion of threshold ergodic sets (TESs) is introduced in [16] and studied
further in [11,13]. The structure of TESs capture long-term stability under state
perturbations of periodic orbits and the resulting mixing between attractors that
may happen as a result.

Other tools for analyzing sensitivity of vertex noise includes Lyapunov expo-
nents, see for example [3,4], although this is perhaps mostly relevant or suited
for the infinite case such as cellular automata over (infinite) regular lattices.
Also, the notion of Derrida diagrams have been used to quantify how Hamming
classes of states separate on average [5,6] after one or k transitions under F .
Derrida diagrams, however, are mainly analyzed through numerical experiments
via sampling. Moreover, analyzing how Hamming classes of large distance sepa-
rate under F may not be so insightful – it seems more relevant to limit oneself
to the case of nearby classes of vertex states.

Returning to the original question, we note that F (x) and F (x + ei) may
only differ in the coordinates j for which fj depends on xi. The answer to the
question therefore depends on the vertex functions in the 1-neighborhood of i in
the dependency graph X, and therefore the structure of the induced subgraph
of the 2-neighborhood of i in X with the omission of edges connecting pairs
of vertices both of distance 2 from i. We denote this subgraph by X(i; 2), see
Figure 1.

To determine the activity of vertex i one will in general have to evaluate
F over all possible states of X(i; 2), a problem which, in the general case, is
computationally intractable. We will address three cases in this paper: the first
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case is when X(i; 2) is a tree, the second case is that of elementary cellular
automata (a special case of the former case), and the case where X is a regular,
square, 2-dimensional lattice. Work for other graph classes is in progress and we
comment on some of the challenges in the Summary section. Here we remark
that a major source of challenges for analytic computations is the introduction
of type-3 and type-4 edges as illustrated in Figure 1. Lack of symmetry adds
additional challenges. The activity of a vertex can be evaluated analytically
using the inclusion-exclusion principle, and type-3 and type-4 edges impact the
complexity of the combinatorics.

Fig. 1. The subgraph X(i; 2) of X induced by vertex i and its distance � 2 neighbors.
Vertices belonging to the closed 1-neighborhood n[i] of i are marked red. Type-3 edges
(relative to i) connect neighbors of i, while type-4 edges connect neighbors of j ∈ n′[i]
through a common neighbor different from i. Here n′[i] is n[i] with i omitted. Edges
connecting vertices of distance 2 from i in X do not belong to X(i; 2). For terminology
we refer to Section 2.

A goal of the work on activity started here is as follows: when given a network
X and vertex functions (fi)i, we would like to rank the vertices by activity in
decreasing order. Just being able to identify for example the ten (say) vertices
of highest activity would also be very useful. This information would allow one
to identify the vertices for which state perturbations are most likely to produce
different outcomes, at least in the short term. In a biological experiment for
which there is a BN model of the form (1), one may then be able to allocate
more resources to the measurement of such states, or perhaps ensure that these
states are carefully controlled and locked at their intended values.

Paper Organization. After basic definitions and terminology in Section 2 we
carefully define a new notion of activity denoted by ᾱF,i. Basic results to help
in analytic evaluations of ᾱF,i are given in Section 3 followed by specific results
for the elementary cellular automata in Section 4, d-regular trees in Section 5,
and then nor-BNs over square lattices in Section 6. A central goal is to relate
the structure of X(i; 2) and the functions (fj)j to ᾱF,i. We conclude with open
questions and possible directions for followup work in Section 7.
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2 Background, Definitions and Terminology

In this paper we consider the discrete dynamical systems of the form (1) where
each map fi is of the form fi : {0, 1}n −→ {0, 1}. However, fi will in gen-
eral depend nontrivially only on some subset of the variables x1, x2, . . ., xn,
a fact that is captured by the dependency graph defined in the introduction
and denoted by XF or simply X when F is implied. The graph X is generally
directed and will contain loops. We will, however, limit ourselves to undirected
graphs.

Each vertex i has a vertex state xi ∈ {0, 1} and a vertex function of the
form fi : {0, 1}d(i)+1 −→ {0, 1} taking as arguments the states of vertices in the
1-neighborhood of i in X. Here d(i) is the degree of vertex i. We write n[i] for
the ordered sequence of vertices contained in the 1-neighborhood of i (with i
included) and x[i] for the corresponding sequence of vertex states. We denote
the system state by x = (x1, . . . , xn) ∈ {0, 1}n.

We will write the evaluation of F in (1) as

F (x) =
(
f1(x[1]), f2(x[2]), . . . , fn(x[n])

)
.

The phase space of the map F in (1) is the directed graph Γ(F ) with vertex
set {0, 1}n and directed edges all pairs (x, F (x)). A state on a cycle in Γ(F ) is
called a periodic point and a state on a cycle of length one is a fixed point. The
sets of all such points are denoted by Per(F ) and Fix(F ) respectively. All other
states are transient states. Since {0, 1}n is finite, the phase space of F consists
of a collection of oriented cycles (called periodic orbits), possibly with directed
trees attached at states contained on cycles.

In this paper we analyze short-term stability of dynamics through the func-
tion αF,i : Kn −→ {0, 1} defined by

αF,i(x) = I[F (x + ei) �= F (x)] (2)

where I is the indicator function and ei is the ith unit vector. In other words,
αF,i(x) measures if perturbing x by ei results in a different successor state
under F than F (x).

Definition 1. The activity of F with respect to vertex i is the expectation value
of αF,i using the uniform measure on Kn:

ᾱF,i = E[αF,i] . (3)

The activity of F is the vector

ᾱF = (ᾱF,1, ᾱF,2, . . . , ᾱF,n) , (4)

while the sensitivity of F is the average activity ᾱ =
∑n

i=1 ᾱF,i

/
n .

For a randomly chosen state x ∈ Kn, the value ᾱF,i may be interpreted as the
probability that perturbing xi will cause F (x+ei) �= F (x) to hold. This activity
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notion may naturally be regarded as a measure of sensitivity with respect to
initial conditions.

From (2) it is clear that ᾱF,i depends on the functions fj with j ∈ n[i] and
the structure of the distance-2 subgraph X(i; 2), see Figure 1. The literature
(see, e.g. [12,19]) has focused on a very special case when considering activity.
Rather than considering the general case and Equation (2), they have focused
on the case where X is a regular graph where each vertex has degree d and all
vertices share a common vertex function f : Kd −→ K. In this setting, activity is
defined with respect to f and its ith argument, that is, as the expectation value
of the function I[f(x + ei) �= f(x)] where x ∈ Kd+1. Clearly, this measure of
activity is always less than or equal to E[αF,i]. Again, we note that this simpler
notion of activity does not account for the network structure of X(i; 2).

3 Preliminary Results

For the evaluation of ᾱF,i we introduce some notation. In the following we set
K = {0, 1}, write Ni for the size of X(i; 2), and K(i) = KNi for the projection
of Kn onto the set of vertex states associated to X(i; 2). For j ∈ n[i], define the
sets Aj(i) ⊂ K(i) by

Aj(i) = {x ∈ K(i) | F (x + ei)j �= F (x)j} .

These sets appear in the evaluation of ᾱF,i, see Proposition 1. For convenience,
we also set

Am
j (i) = {x ∈ Aj(i) | xi = m} ,

for m = 0, 1. We write Āj(i) = A0
j (i) and

(
n
k

)
for binomial coefficients using the

convention that it evaluates to zero if either k < 0 or n − k < 0.
The following proposition provides a somewhat simplified approach for eval-

uating ᾱF,i in the general case.

Proposition 1. Let X be a graph and F a map over X as in (1). The activity
of F with respect to vertex i is

ᾱF,i = Pr
( ⋃

j∈n[i]

Aj | xi = 0
)

= Pr
( ⋃

j∈n[i]

Āj

)
. (5)

Proof. As stated earlier, we can write

ᾱF,i = E[αF,i] =
∑

x∈Kn

αF,i(x)Pr(x) =
∑

x∈K(i)

αF,i(x)Pr(x) = Pr
[ ⋃

j∈n[i]

Aj

]

,

where probabilities in the first and second sum are in Kn and K(i), respectively.
This follows by considering the relevant cylinder sets. Equation (5) follows by
conditioning on the possible states for xi. Since we are in the Boolean case,
we have a bijection between each pair of sets A0

j and A1
j for j ∈ n[i] which

immediately allows us to deduce Equation (5).
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As an example, consider the complete graph X = Kn with threshold func-
tions at every vertex. Recall that the standard Boolean threshold function,
denoted by τk,n : Kn −→ K, is defined by

τk,n(x1, . . . , xn) =

{
1, if

∑n
j=1 xj � k,

0, otherwise.
(6)

Here we have

ᾱF,i =
(

n − 1
k − 1

)/

2n−1 .

To see this, note first that all the sets Āj(i) are identical. For a state x with
xi = 0 to satisfy τk(x) �= τk(x+ei) it is necessary and sufficient that x belong to
Hamming class k−1. Since xi = 0, it follows from Proposition 1 that Pr(Āj(i)) =

1
2n−1

∣
∣Aj

∣
∣ =

(
n−1
k−1

)/
2n−1 as stated.

Next, consider the Boolean nor-function norm : Km −→ K defined by

norm(x1, . . . , xm) = (1 + x1) · · · · · (1 + xm) , (7)

with arithmetic operations modulo 2. If we use the nor-function over Kn we
obtain

ᾱF,i = 1/2n−1 .

Again, Āj = Āk for all j, k ∈ n[i] and we have F (x + ei)i �= F (x)i precisely
when xj = 0 for all j ∈ n(i) leading to Pr

(
Āi

)
= 1

2n−1 . We record the previous
two results as a proposition:

Proposition 2. If F is the GDS map induced by the nor-function over Kn, then

−
αF,i =

1
2n−1

,

and if F is induced by the k-threshold function over Kn, then

ᾱF,i =
(

n − 1
k − 1

)/

2n−1 .

In the computations to follow, we will frequently need to evaluate the prob-
ability of the union of the Aj ’s. For this, let B denote the union of Aj ’s for all
j �= i. We then have

Pr
[ ⋃

j∈n[i]

Aj

]

= Pr(Ai ∪B) = Pr(B)+Pr(Ai ∩Bc) = 1−Pr(Bc)+Pr(Ai ∩Bc) ,

(8)
where Bc denotes the complement of B.
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4 Activity of Elementary Cellular Automata

The evaluation of Equation (5) can often be done through the inclusion-exclusion
principle. We demonstrate this in the context of elementary cellular automata
(ECA). This also makes it clear how the structure of X comes into play for the
evaluation of ᾱF,i.

Let F be the ECA map over X = Circlen with vertex functions given by
f : {0, 1}3 −→ {0, 1}. We will assume that n � 5; the case n = 3 corresponds
to the complete graph K3 and the case n = 4 can be done quite easily. Here we
have

ᾱF,i = Pr
(
Āi−1(i) ∪ Āi(i) ∪ Āi+1(i)

)
.

Applying the definitions,

Āj(i) =
{
x = (xi−1, xi−1, xi = 0, xi+1, xi+2) | and f

(
x[j]

) �= f
(
(x + ei)[j]

)}

(9)
for j ∈ n[i] = {i − 1, i, i + 1} with indices modulo n.

Proposition 3. The activity for k-threshold ECA is

ᾱF,i =

⎧
⎪⎨

⎪⎩

0, if k = 0 or k > 3 ,

1/2, if k = 1 or k = 3 ,

7/8, if k = 2 .

Proof. Clearly, for k = 0 and k > 3 we always have F (x+ ei) = F (x) so in these
cases it follows that ᾱF,i = 0. The cases k = 1 and k = 3 are symmetric, and,
using k = 1, we have

Āi−1 =
{
(0, 0, 0, xi+1, xi+2)

}
,

Āi =
{
(xi−2, 0, 0, 0, xi+2)

}
, and

Āi+1 =
{
(xi−1, xi−1, 0, 0, 0)

}
.

By the inclusion-exclusion principle, it follows that
∣
∣Āi−1 ∪ Āi ∪ Āi+1

∣
∣ =

∣
∣Āi−1

∣
∣ +

∣
∣Āi

∣
∣ +

∣
∣Āi+1

∣
∣

− ∣
∣Āi−1 ∩ Āi

∣
∣ − ∣

∣Āi−1 ∩ Āi+1

∣
∣ − ∣

∣Āi ∩ Āi+1

∣
∣

+
∣
∣Āi−1 ∩ Āi ∩ Āi+1

∣
∣

= 3 × 4 − 2 − 1 − 2 + 1 = 8 .

This yields ᾱF,i = 8/24 = 1/2. The proof for the case k = 2 is similar to that of
k = 1 so we leave this to the reader.

Remark 1. If we instead use the nor-function, then ᾱF,i = 1/2 when n � 5.

Remark 2. In [19], activity is defined with respect to f instead of F and its ith

argument. With this context, ᾱf,i(x) = E

[

I[f(x + ei) �= f(x)]
]

. Clearly, we

always have ᾱf,i � ᾱF,i. As an example, for circle graph of girth � 5 and
threshold-1 functions it can be verified that ᾱf,i = 0.25 and we have already
shown that ᾱF,i = 0.5 in this case.
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Fig. 2. Activity of ECA by rule number. With the exception of the constant rules of
activity 0, all rules have activity � 1/2 with most rules exceeding 3/4.

5 Activity over d-Regular Trees

The case of d-regular trees is natural as a starting point. Here the sets Aj (or
more precisely, the sets n[j]) with j �= i only overlap at vertex i. As a result,
when we condition on xi = m, the resulting sets are independent. More generally,
this will hold if the girth of the graph is at least 5.

The Boolean bi-threshold function τi,k01,k10,n : Kn −→ K generalizes stan-
dard threshold functions and is defined by

τi,k01,k10,n(x1, . . . , xn) =

⎧
⎪⎨

⎪⎩

1, if xi = 0 and
∑n

j=1 xj � k01

0, if xi = 1 and
∑n

j=1 xj < k10

xi, otherwise,
(10)

where the integers k01 and k10 are the up- and down-thresholds, respectively.
Here i is a designated vertex – it will be the index of a vertex function. If the
up- and down-thresholds are the same we get standard threshold systems.

Proposition 4. Let X be a d-regular graph of girth � 5, and F the GDS map
over X with the bi-threshold vertex functions as in Equation (10). Then the
activity of F with respect to vertex i is given by

ᾱF,i =1 −
[2d − (

d−1
k01−1

) − (
d−1

k10−2

)

2d

]d

+

1
2

∑

k=k01,k10

(
d

k−1

)

2d

[2d−1 − (
d−1

k10−2

)

2d−1

]k−1[2d−1 − (
d−1

k01−1

)

2d−1

]d−(k−1)

.

(11)
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Proof. Let B denote the union of Aj ’s for all j �= i as in (8) and note that Bc is
the event that none of the Aj ’s occur for j �= i. Using girth � 5 and the resulting
independence from conditioning on xi we can write

Pr(Bc) =
1
2
Pr(Bc | xi = 0) +

1
2
Pr(Bc | xi = 1)

=
1
2
( ⋂

j∈n[i]
j �=i

Ac
j | xi = 0

)
+

1
2
( ⋂

j∈n[i]
j �=i

Ac
j | xi = 1

)
=

( ⋂

j∈n[i]
j �=i

Ac
j | xi = 0

)

=
∏

j∈n[i]
j �=i

Pr
(
Ac

j | xi = 0
)

.

(12)
Next we have

Pr
(
Ac

j | xi = 0
)

=
1
2
Pr

(
Ac

j | xi = 0 and xj = 0
)

+
1
2
Pr

(
Ac

j | xi = 0 and xj = 1
)

=
1
2

· 2d−1 − (
d−1

k01−1

)

2d−1
+

1
2

· 2d−1 − (
d−1

k10−2

)

2d−1

= [2d −
(

d − 1
k01 − 1

)

−
(

d − 1
k10 − 2

)

]/2d ,

which substituted into Equation (12) yields

Pr(Bc) =
[2d − (

d−1
k01−1

) − (
d−1

k10−2

)

2d

]d

. (13)

Next, we compute the probability of Ai ∩ Bc as

Pr(Ai ∩ Bc) =
1
2
Pr(Ai ∩ Bc | xi = 0) +

1
2
Pr(Ai ∩ Bc | xi = 1)

=
1
2
Pr(Ai | xi = 0) · Pr(Bc | Ai and xi = 0)

+
1
2
Pr(Ai | xi = 1) · Pr(Bc | Ai and xi = 1)

=

(
d

k01−1

)

2d+1

[2d−1 − (
d−1

k10−2

)

2d−1

]k01−1[2d−1 − (
d−1

k01−1

)

2d−1

]d−(k01−1)

+

(
d

k10−1

)

2d+1

[2d−1 − (
d−1

k10−2

)

2d−1

]k10−1[2d−1 − (
d−1

k01−1

)

2d−1

]d−(k10−1)

=
1
2

∑

k=k01,k10

(
d

k−1

)

2d

[2d−1 − (
d−1

k10−2

)

2d−1

]k−1[2d−1 − (
d−1

k01−1

)

2d−1

]d−(k−1)

.

(14)
Substituting Equation (13) and (14) into Equation (8) leads to Equation (11),
which ends the proof.

Since the standard threshold function is a special case of the bi-threshold function
when k01 and k10 coincide, it is straightforward to obtain following corollary.
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Corollary 1. If F is the GDS map with k-threshold vertex functions over a
d-regular graph of girth � 5, then the activity of F with respect to vertex i is

ᾱF,i = 1 −
[2d − (

d
k−1

)

2d

]d

+

(
d

k−1

)

2d

[2d−1 − (
d−1
k−2

)

2d−1

]k−1[2d−1 − (
d−1
k−1

)

2d−1

]d−(k−1)

.

(15)

We next consider the nor-function.

Proposition 5. Let X be a d-regular graph of girth � 5 and F the GDS map
over X induced by the nor-function. Then the activity of F with respect to i is
given by

ᾱF,i = 1 −
(

1 − 1
2d

)d

+
(

1
2

− 1
2d

)d

. (16)

Proof. Conditioning on xi = 0 and using independence we have

Pr (Bc) = Pr

⎛

⎝
⋂

j∈n(i)

Ac
j

⎞

⎠ =
∏

j∈n(i)

Pr (Aj) . (17)

For a state x with xi = 0 to be in Āj all remaining d states of Āj must be zero
leading to Pr

(
Āc

j

)
= 1 − 1

2d and

Pr
(
B̄c

)
=

(

1 − 1
2d

)d

. (18)

In order to calculate Pr (Ai ∩ Bc) we note that Pr (Ai ∩ Bc) = Pr (Ai) Pr (Bc|Ai)
and again use independence to obtain

Pr
(
B̄c|Āi

)
=

∏

j∈n(i)

Pr
(
Āc

j |Āi

)
. (19)

Note that Pr
(
Āj |Āi

)
= 1/2d−1 so that Pr

(
Āc

j |Āi

)
= 1−Pr

(
Āj |Āi

)
= 1−1/2d−1

which substituted into (19) gives

Pr
(
B̄c|Āi

)
=

(

1 − 1
2d−1

)d

.

Noting that Pr(Āi) = 1/2d we obtain the third term in (15), finishing the proof.

6 Square Lattices

In this section we consider graphs with type-4 edges or girth 4. Here the
1-neighborhoods n[j] (with j �= i) may intersect, the key aspect we want to
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address here. As an example, the reader may verify that for threshold-2 func-
tions and Circle4, the activity of any vertex is 3/4 and not 7/8 as when n � 5
in Proposition 3.

As a specific case, take as graph X a regular, square 2-dimensional lattice. It
may be either infinite or with periodic boundary conditions. In the latter case,
we assume for simplicity that its two dimensions are at least 5. This graph differs
from the 4-regular tree by introduction of type-4 edges: sets Aj and Aj+1 of Ai,
when conditioned on the state of vertex i, are no longer independent. The graph
has cycles of size 4 containing i. We illustrate this case using nor-functions as
these allow for a somewhat simplified evaluation. We discuss more general cases
and girth-3 graphs in the Summary section.

Fig. 3. The subgraph of a torus that includes X(i; 2) at center. The subgraphs Sl, each
containing the vertices associated to an Al, l ∈ {1, 2, 3, 4}, are also shown separated
from the center torus, with “center” vertex j�. The overlapping or common vertices,
β�, are also denoted. We have vectors β = (β1, β2, β3, β4) and x̂j = (xj1 , xj2 , xj3 , xj4),
where xj� is the state of the “center” vertex j� of A�, and where β� is a common vertex
in A� and A�+1 (� is always modulo 4).

Proposition 6. Let X be the 2-dimensional lattice as above where every vertex
has degree 4, and let F be the GDS map over X induced by nor-functions. Then
the activity of F for any vertex i is ᾱF,i = 1040/212.

Proof. The neighborhoods of i involved are illustrated in Figure 3. We rewrite (8)
as follows

Pr

⎛

⎝
⋃

j∈n[i]

Aj

⎞

⎠ = Pr (B) + Pr (Ai) (1 − Pr (B|Ai)) . (20)
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To determine |B|, refer to Figure 3. With indices p, q, r, s ∈ {1, 2, 3, 4} we have

|A1 ∪ A2 ∪ A3 ∪ A4| =
4∑

p=1

Ap −
∑

p<q

|Ap ∩ Aq| +
∑

p<q<r

|Ap ∩ Aq ∩ Ar|

−
∑

p<q<r<s

|Ap ∩ Aq ∩ Ar ∩ As| ,

(21)

which, along with Equation (20), is also valid if we condition on xi = 0 in every
set. We take i �= j� with � ∈ {1, 2, 3, 4} and let j� denote the vertex at the center
of n[j�] and i the vertex at the center of n[i]. Here |X(i; 2)| = 13. Using the
symmetry of the sets Āj�

and the fact that a state x is in the set Āj�
precisely

when x[j�] = 0 leads to
4∑

�=1

|Āj�
| = 4 · 28 .

For the second term on the right in (21) we have two cases for intersections:
(i) two adjacent vertices j�, j�+1 ∈ n′[i] with all indices modulo 4, of which there
are four instances, and (ii) two non-adjacent vertices j�, j�+2 ∈ n′[i], of which
there are two instances. In the first case we obtain |Āj�

∩ Āj�+1 | = 25, while in
the second case we have |Āj�

∩ Āj�+2 | = 24, making the second term on the right
in (21) ∑

p<q

|Ājp
∩ Ājq

| = 4 · 25 + 2 · 24 . (22)

The third sum appearing on the right in (21) contains four terms all correspond-
ing to an intersection of three sets Aj�

, and we obtain
∑

p<q<r

|Ājp
∩ Ājq

∩ Ājr
| = 4 · 22 . (23)

Finally, the intersection of all four sets Āj�
has size 1, and we get

Pr(B̄) = |B̄|/212 =
[
4 · 28 − (4 · 25 + 2 · 24) + 4 · 22 − 1

]
/212 . (24)

We next determine Pr (B|Ai). For a state x to be in Ai we must have x[i] = 0
so that |Ai| = 28. Conditioning on this, we can calculate |⋃4

�=1 A
′
j�

| as above.
The reader can verify that

4∑

�=1

|A′
j�

| = 4 · 25 ,

∑

p<q

|A′
jp

∩ A
′
jq

| = 4 · 23 + 2 · 22 ,

∑

p<q<r

|A′
jp

∩ A
′
jq

∩ A
′
jr

| = 4 · 2 ,

|A′
j1 ∩ A

′
j2 ∩ A

′
j3 ∩ A

′
j4 | = 1 ,

(25)
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leading to the expression

Pr
(
Āi ∩ B̄c) = Pr

(
Āi

) (
1 − Pr

(
B̄|Āi

))
=

1

24

(
1 − 1

28

[
27 − 25 − 23 + 23 − 1

])
,

which, together with (24) in (20) gives the stated result of ᾱF,i = 1040/212.

7 Summary and Research Directions

We have introduced an extension of the notion of activity proposed by Shmule-
vich and Kauffman [19]. This extension takes into account the impact of the
network structure when studying E

[
I[F (x) �= F (x + ei)]

]
, which estimates how

likely the perturbation ei will cause successor states to diverge. Naturally, orbits
that initially separate may later converge. Nonetheless, this notion of activity
provides a measure for sensitivity with respect to initial conditions.

Possibly interesting avenues for further work includes studying asynchronous
systems. If the vertex functions are applied sequentially according to for example
a permutation update sequence, are there effective ways of relating activity and
the permutation? If so, are there principles connecting network structure and
update sequence that allows one to minimize or maximize the activity of one or
more vertices?

Square grids have type-4 edges and cycles of length 4 involving the vertex i.
If we permit more general graphs with type-3 edges we naturally obtain cycles
of length 3 containing i. The notion of cluster coefficient quantifies the number of
triangles incident to i. Is it possible to relate activity and cluster coefficient? Of
course, cluster coefficient is solely a graph property and includes nothing about
vertex functions. Can one still find such a relation for a specific choice of vertex
functions?

Finally, we considered arbitrary initial states x ∈ Kn. What can be said
about activity if we restrict x to be a periodic point? We invite the reader to
explore this – some initial results on attractor activity are given in [11].

Acknowledgments. We thank our external collaborators and members of the Net-
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Abstract. In the setting of symbolic dynamics on discrete finitely gen-
erated infinite groups, we define a model of multi-headed finite automata
that walk on Cayley graphs, and use it to define subshifts. We character-
ize the torsion groups (also known as periodic groups) as those on which
the group-walking automata are strictly weaker than Turing machines.

Keywords: Group-walking automaton · Torsion group · Periodic group ·
Multi-headed automaton · Subshift

1 Introduction

One of the central objects in symbolic dynamics is the dynamical system SG

(where G is a discrete group and S a finite alphabet), called the full shift, where
G acts by translations. In particular, one studies its subsystems, usually called
subshifts, and classes of such subsystems. Some of the important classes stud-
ied are the SFTs (subshifts defined by a finite set of forbidden patterns), sofic
shifts (the factors of SFTs) and the effective, or Π0

1 subshifts (defined by a recur-
sively enumerable set of forbidden patterns). SFTs and sofic shifts are natural
objects to study on all groups, and a robust notion of effectiveness of subshifts
on arbitrary groups is given in [2] (see also Section 5).

In this paper, continuing the work in [9], we define some new families of
subshifts on an arbitrary (discrete finitely generated infinite) group G. Namely,
we discuss the class of subshifts defined by certain multi-headed automata that
walk on the Cayley graph of the group G. We have studied the case G = Z

d

in [9], the main result being that three-headed finite-state automata define the
same subshifts as general Turing machines.1 It turns out that up to notational
complications and a few simple tricks, the same result can be shown on all groups
containing a copy of Z. We show this in Theorem 1.

Most finitely generated groups of practical interest contain a copy of Z. For
example, in addition to infinite (finitely generated) abelian groups, this is true
for free groups, Baumslag-Solitar groups, the Heisenberg group, the Thompson
groups F , T and V , and the general linear groups GL(n, Z). In fact, infinite
1 In the earlier article [4], essentially the same observation is made in a slightly different

setting on the group Z
2.
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finitely generated groups without a copy of Z, known as torsion groups, are quite
rare and hard to construct. Nevertheless, many examples exist in the literature.
The question is particularly hard in the case that the torsion is bounded, that
is, there exists n ∈ N such that every element of the group generates a subgroup
of order at most n. See [1] for a discussion of groups with bounded torsion. In
the case of unbounded torsion, there are examples that are relatively simple to
define, and simple to prove torsion. We mention in particular [5,6].

Given that such groups exist, an obvious question is whether we can extend
Theorem 1 to this case. It turns out that we cannot: in Theorem 2 we show that
a subshift on a torsion group accepted by a multi-headed automaton ‘cannot be
too sparse’, and as a further result we obtain Theorem 6, which characterizes
the torsion groups as those on which multi-headed automata are strictly weaker
than Turing machines.

2 Definitions and Examples

2.1 Subshifts

In this section, we define some basic notions of of symbolic dynamics and com-
putability. Some references on symbolic dynamics on general groups are [2,3],
and a standard reference on Z is [8].

Let G be a group with identity element 1G ∈ G. Our groups are always infinite
(the finite case being trivial) and finitely generated (since the notions we consider
are local). For convenience, if G is finitely generated, we fix a symmetric finite
set s(G) ⊂ G of generators for it. The set s(G)∗ consists of all finite words over
s(G), and for v, w ∈ s(G)∗, we denote v ∼ w and v ∼ g if the words correspond
to the same element g ∈ G. We denote by BG(n) the ball of radius n with respect
to the fixed set of generators: BG(n) = {g ∈ G | w ∈ s(G)∗, |w| ≤ n,w ∼ g}.

A torsion element of a group G is an element g ∈ G that satisfies gn = 1G for
some n ≥ 1. If all elements of G are torsions, then G is a torsion group. To each
torsion element g ∈ G we associate its order tG(g) = min{n ≥ 1 | gn = 1G},
and to each finitely generated torsion group we associate the torsion function
TG : N → N, defined by TG(n) = max{tG(g) | g ∈ BG(n)}. A non-torsion group,
conversely, is one containing an isomorphic copy of Z.

Both alphabet and state set mean any finite set. The symbol S always means
an alphabet, and the set SG is the full G-shift over S. Its elements, usually
denoted by x, y, z, are called configurations. We define both a left and a right
action of G on SG, called the left and right shifts. The left action is given by
(g · x)h = xg−1h. It is indeed an action because

(g2 · (g1 · x))h = (g1 · x)g−1
2 h = xg−1

1 g−1
2 h = x(g2g1)−1h = (g2g1 · x)h.

The right action is given by σR
g (x)h = xhg. It is indeed an action because

σR
g2

(σR
g1

(x))h = σR
g1

(x)hg2 = xhg2g1 = σR
g2g1

(x)h.
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We give SG the product topology induced by the discrete topology on S,
making it a compact metrizable space. It is easy to show that both actions are
continuous in this topology. A subshift of SG is a topologically closed subset of
SG closed under the left action of G. A cellular automaton on a subshift X ⊂ SG

is a continuous map f : X → X that commutes with the left shifts in the sense
that g · f(x) = f(g · x) holds for all x ∈ SG and g ∈ G. We denote by Aut(X)
the group of bijective cellular automata on X under composition.

For us, the main importance of the left action is that it allows for nice def-
initions of subshifts and cellular automata. On the other hand, when the right
action of an element g ∈ G is well-defined on a subshift, it is a cellular automa-
ton. In particular, the right actions show that Aut(SG) contains a copy of the
group G, by the injective group homomorphism g �→ σR

g .
A pattern (on G) is a function P ∈ SD, where D = D(P ) is a finite subset

of G, called the domain of P . Each pattern P defines a cylinder set [P ] =
{x ∈ SG | x|D = P}. The clopen (topologically closed and open) sets in SG

are precisely the finite unions of cylinders, and form a basis for the topology.
Subshifts can be characterized as sets X ⊂ SG for which there exists a set of
forbidden patterns F such that

X = {x ∈ SG | ∀P ∈ F : ∀g ∈ G : g · x /∈ [P ]}.

Each cellular automaton on X has a radius r ∈ N and a local rule F : SBG(r) → S
such that f(x)g = F (g−1 · x|BG(r)) holds for all x ∈ X and g ∈ G.

Example 1. Let G be the free group generated by g, h ∈ G, and X ⊂ SG the set

{x ∈ SG | ∀g ∈ G : ∀n ∈ Z : xghn = xg}.

We show that X is a subshift, and for that, let x ∈ X and g ∈ G. We need to
show g · x ∈ X. Given f ∈ G and n ∈ Z, we have

(f · x)ghn = xf−1ghn = xf−1g = (f · x)g

by the definition of the left action, and the fact x ∈ X.

Definition 1. If S 
 0 is a finite alphabet, then the one-S subshift on a group
G is the subshift XG

S ⊂ SG where a finite pattern P ∈ SD is forbidden if and
only if there exist d �= e ∈ D with Pe �= 0 �= Pd. If 0 /∈ S, we write XG

S = XG
S∪{0}.

The group G is usually clear from context, and we write XS for XG
S .

Definition 2. Let S 
 0 be a finite alphabet. A configuration x ∈ SG is k-sparse
if it satisfies |{g ∈ G | xg �= 0}| ≤ k. A subshift is k-sparse if each of its
configurations is k-sparse, and sparse if it is k-sparse for some k ∈ N.

The one-S subshift XS is of course a 1-sparse subshift on any group. Note
that in a sparse subshift, there is a global bound on the number of nonzero
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symbols. The sum x+ y of sparse configurations x, y ∈ SG with disjoint support
(no g ∈ G satisfies xg �= 0 and yg �= 0) is defined by

(x + y)g =
{

xg if xg �= 0,
yg otherwise.

A finite pattern is represented computationally as a finite list of word-symbol
pairs (w, d) ∈ s(G)∗ × S. Such a list is inconsistent if it contains two pairs (v, d)
and (w, e) with v ∼ w and d �= e (in this case, it does not actually encode a
pattern), and otherwise consistent.

Definition 3. The word problem of G is the set E = {w ∈ s(G)∗ | w ∼ 1G}
of words that represent the identity element of G. Whether the word problem is
decidable is independent of the chosen generator set. We say G is recursively pre-
sented if G ∼= 〈g1, . . . , gk | w1, w2, . . .〉, where (wi)i∈N is a computable sequence
of relations.2 This is equivalent to the set E being recursively enumerable.

If G has a decidable word problem, we say that a subshift X ⊂ SG is Π0
1

if there exists a Turing machine that enumerates a list of consistent forbidden
patterns defining it.

A subshift X is Π0
1 if and only if there exists an oracle Turing machine that,

given an oracle for a configuration x ∈ SG (which returns the symbol xw ∈ S
for a given word w ∈ s(G)∗), eventually halts if and only if x /∈ X.

2.2 Automata

We now define group-walking automata and the subshifts they recognize. Here
and henceforth, by πi we mean the projection to the ith coordinate of a finite
Cartesian product.

Definition 4. A k-headed group-walking automaton on the full shift SG is
a tuple A = (

∏k
i=1 Qi, f, I, F ), where Q1, Q2, . . . , Qk are state sets not con-

taining the symbol 0, I and F are finite clopen subsets of the product subshift
Y =

∏k
i=1 XQi

, and f : SG × Y → SG × Y is a CA satisfying π1 ◦ f = π1.
We denote by S(G, k) the class of subshifts X ⊂ SG for which there exists a

k-headed automaton A as above such that

X = {x ∈ SG | ∀g, h ∈ G, y ∈ I, n ∈ N : h · π2(fn(g · x, y)) /∈ F}.

We also write S(G) =
⋃

k≥1 S(G, k).

The intuition for these definitions is the following. A configuration y ∈ Y =∏k
i=1 XQi

consists of k layers πi(y), each of which contains at most one nonzero
symbol qi ∈ Qi, representing the i’th head of the automaton in state qi. The
cellular automaton f is the update function of the heads: since f has a finite
2 The term ‘recursively presented’ comes from the fact that one may always assume

{wi | i ∈ N} to be a recursive set of words.
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radius, the heads can only move at a bounded speed, and interact over bounded
distances. Also, the condition π1 ◦ f = π1 ensures that the automaton cannot
alter the configuration of SG that it runs on. The clopen sets I, F ⊂ Y are
the initial and final states of the automaton. Each of them is a finite union of
cylinder sets [P ], and since they are also finite as sets, each of the patterns P
necessarily contains all k heads of the automaton. Thus, an initial or finite state
specifies the position and internal state for each head, and we translate them by
every element of G in the definition of S(G).

The definition is given in dynamical terms to make the connection with
cellular automata clearer, and to facilitate the statement and proof of Lemma 3.
With some work, one can show that this model is equivalent to the one we gave
in [9] in terms of the classes of subshifts defined.

Example 2. Let G be again the free group generated by the elements g, h ∈ G,
and let S = {0, 1}. We define a two-headed group-walking automaton A =
(Q1 × Q2, f, I, F ) on G as follows. The local state sets are Q1 = {qg, qg−1}
and Q2 = {qh, qh−1}, the set of initial states I contains only the cylinder set
{x ∈ (Q1 × Q2)G | x1G = (qg, qh)}, and the set of final states F contains the
cylinder {x ∈ (Q1 × Q2)G | x1G = (qg−1 , qh−1)}. This means that the heads of
the automaton are initialized at the same coordinate in states qg and qh, and a
configuration is rejected if they ever return to the same coordinate in states qg−1

and qh−1 . The CA f moves each head by the step indicated in its state, and if a
head encounters a symbol 1 in state qg or qh, it assumes the respective inverse
state qg−1 or qh−1 .

In a run of the automaton, the heads start moving in the directions g and h
until they encounter symbols 1, and then turn back. If both of them turn at the
same time, they will meet again where they started, in the states qg−1 and qh−1 ,
so the configuration is rejected. If not, the configuration is not rejected. Thus
the automaton A defines the subshift X ⊂ SG with the forbidden patterns

{1G �→ 0, g �→ 0, h �→ 0, . . . , gn−1 �→ 0, hn−1 �→ 0, gn �→ 1, hn �→ 1}

for all n ≥ 1. It is not an SFT.

Naturally, Turing machines are stronger than multi-headed finite automata.

Lemma 1. If G has a decidable word problem and X ∈ S(G), then X ∈ Π0
1.

Proof. Let A be a group-walking automaton that defines X. We construct a
Turing machine TA that outputs its forbidden patterns. The machine TA enu-
merates all consistent patterns over G (using the fact that G has a decidable
word problem), and simulates a run of the automaton A on each of them, from
every initial state. If one of the heads exits the pattern during such a simulation,
or every head enters an infinite loop, that simulation is simply discarded. If one
of the runs enters a rejecting state on the pattern P before exiting it (from any
initial configuration and initial position on the domain D(P )), the machine TA

outputs the pattern P . It is clear that TA defines the same subshift as A. ��
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3 Non-torsion Groups with a Decidable Word Problem

On non-torsion groups, there are essentially no restrictions on the types of com-
putation a multi-headed finite state automaton can do, apart from the inherent
limits of computation. In fact, we will implement all Π0

1-subshifts on such groups,
using just three heads. The construction is similar to that in [4] and [9].

Theorem 1. If G is finitely generated, infinite and non-torsion, and has a
decidable word problem, then S(G, 3) is exactly the class of Π0

1-subshifts.

Proof. By Lemma 1, all S(G, 3)-subshifts are Π0
1. To show that S(G, 3) contains

all Π0
1-subshifts, we repeat the proof of Theorem 5 in [9], where the same problem

was considered for G = Z
d, with one additional detail in the non-abelian case.

Since there are not many changes, we refer to [9] for some of the details.
Let X ⊂ SG be a Π0

1-subshift, and let h ∈ G be an element of infinite order.
Given a Turing machine T enumerating a list of forbidden patterns for X, we
construct an automaton AT with three heads, the pointer head, the zig-zag head
and the counter head. The relative positions of these heads store a number,
which we increment, decrement, multiply and divide by suitable constants, and
test for equivalence and divisibility by constants, in order to perform arbitrary
computation: such a model is Turing-complete by the results of [10].

More precisely, all heads are initialized on the same element of G, which
we may assume to be 1G. The run of the automaton proceeds in sweeps, each
of which either corresponds to an arithmetical operation as described above,
or moves the heads in some direction. Between these sweeps, the location of
both the pointer head and the zig-zag head is some g ∈ G, and the position of
the counter head is ghp. The number p ∈ N is the counter value. Changes in
the counter value are used to perform computation, and changes to the value g
allow us to read the contents of every cell in the configuration.

The operations are implemented as in the case G = Zd (for example, see
Proposition 3 in [9]). The only operations that are nontrivial to implement are
multiplication and division, and they are dealt with by standard signaling tech-
niques. The details of this are omitted in [9], so we outline the construction here:
we explain how to multiply the counter value by a rational number 0 < m

n < 1
assuming the counter value is divisible by n; to multiply by a rational number
greater than 1, one essentially performs the same steps in reverse.

For this, let g ∈ G be the position of the pointer head. The idea is that the
zig-zag head moves to the counter head, which is at ghp, along the progression
g, gh, gh2, . . .. The two heads then perform a coordinated move along the path
g, gh, gh2, . . . , ghc, so that they meet exactly at gh

m
n p. The zig-zag head then

returns to the pointer head, and computation continues. We have much freedom
in performing these moves, but we fix a particular scheme that works: After
the zig-zag head and the counter head meet, the counter head starts moving in
steps of h towards the pointer head (so that from the cell ghj , it moves to the
cell ghj−1 in one step), until it meets the zig-zag head again. The zig-zag head
moves towards the pointer head by hn every step, until it meets the pointer
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head. Note that n divides p, so that the zig-zag head indeed reaches exactly the
cell g. After this, the zig-zag head starts moving back towards the counter head
at speed m

n−m−1 . More precisely, the zig-zag head carries a modular counter,
starting at 0, and at each step it increments this counter. When the modular
counter reaches n − m − 1, the zig-zag head resets it to 0 and moves by hm.
When the zig-zag head reaches the counter head, it turns back, and returns to
the pointer head. It is a simple calculation to check that the heads meet exactly
at gh

m
n p, as required, so the counter value has been changed correctly.

Now that we can do arbitrary computation in the counter value, we give
the algorithm we simulate in it. The algorithm is the same as in the proof of
Theorem 5 of in [9], and we reproduce it in Algorithm 1 with trivial modifications.
In the algorithm, objects related to the group are stored as they are output by
the Turing machine: group elements are finite words over s(G), and patterns
P ∈ SD are lists of pairs (w, s) ∈ s(G)∗ × S meaning Pw = s. We assume the
Turing machine T outputs an infinite list of forbidden patterns, and enters the
state qout every time it outputs a new pattern.

Algorithm 1. The algorithm that the three-headed automaton AT simulates.
1: c ← c0 � A configuration of T , set to the initial configuration
2: u ← 1G ∈ G � The position of the pointer head relative to the initial position
3: P : ∅ → S � A finite pattern at the initial position
4: loop
5: repeat
6: c ← NextConfT (c) � Simulate one step of T
7: until State(c) = qout � T outputs something
8: P ′ ← OutputOf(c) � A forbidden pattern
9: while D(P ′) �⊂ D(P ) do

10: w ← LexMin(D(P ) \ D(P ′)) � The lexicographically minimal element
11: for a = u−1

1 , u−1
2 , . . . , u−1

|u| , w1, w2, . . . , w|w| do
12: MoveBy(a) � Move all heads of AT by group element a

13: u ← w � New position of the pointer is w
14: b ← ReadSymbol � Read the symbol of x under the pointer head
15: P ← P ∪ {u 	→ b} � Expand P by one coordinate

16: if P |D(P ′) = P ′ then halt � The forbidden pattern P ′ was found

The function ReadSymbol gives the symbol currently under the pointer
head. The procedure MoveBy(a) causes the three heads to assume new posi-
tions: if the pointer head and zig-zag head are at g and the counter head is at
ghp, they are moved to ga and gahp, respectively. This step is the main difference
between the abelian and non-abelian cases, and we explain it below. We note
that there are only finitely many different messages sent between the abstract
computation and AT , namely the exchange related to ReadSymbol and the
commands MoveBy(a) for finitely many a ∈ G. This information exchange can
easily be performed by storing the state of the Turing machine T directly in the
finite state of the pointer head.
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It is easy to see that this algorithm does what we want: whenever the Turing
machine T enumerates a forbidden pattern P ′, we expand the stored pattern P
by reading the configuration until its domain contains that of P ′. If P ′ occurs
in the configuration, it is eventually found by the algorithm from some start-
ing position, and conversely, if the automaton halts, this is because it found a
forbidden pattern.

To finish the proof, we explain how to perform MoveBy(a). If G is abelian,
this can be done as in [9]: the zig-zag head moves to the counter head, informs
it of the element of G by which it should move, and returns back. The counter
head moves as instructed, and the pointer head does so as well. If the pointer
head was previously at g and the counter head at ghP , and both move by a ∈ G,
then after this sequence of moves, the pointer head will be at ga, and the counter
head at ghpa = gahp, as required. More generally, this works if h is in the center
of G. Otherwise, we may have ghpa �= gahp. Since we do not necessarily have
gahp ∈ g〈h〉a, the counter head may not even encode a valid counter value.

However, using the same trick we used to perform multiplications, we can
perform the movement in general. First, the zig-zag head moves to the counter
head. Then, both heads start moving toward the pointer head. The counter head
moves in steps of h−1, computing the parity of p on the way, and the zig-zag
head moves in steps of h−2. If p is even, then the zig-zag head reaches the anchor
head exactly, moves to ga, and starts moving along the sequence ga, gah, gah2, . . .
in steps of h. If p is odd, then the zig-zag head reaches the cell gh−1 instead,
moves to gah, and starts moving in steps of h as before. The counter head
performs the same task, but with the speeds reversed: after reaching the anchor
head with speed h−1, it starts moving from ga in steps of h2 if p was even, and
from gah in steps of h2 if p was odd. When the counter head reaches the pointer
head, the pointer head also moves to ga. It is easy to check that the counter
head and the zig-zag head meet at the cell gahp. The counter head stops, and
the zig-zag head returns to the pointer head. ��

4 Walking on Torsion Groups

A torsion group is one where every element generates a finite subgroup. In this
section, we show that on such groups, non-trivial sparse subshifts cannot be
recognized by multi-headed automata. We also show two results about cellular
automata and automorphism groups of sparse subshifts on torsion groups. These
follow from a curious property, Lemma 3, of CA on sparse subshifts on torsion
groups. In its proof, we use the following lemma about finite metric spaces.

Lemma 2. Let X be a finite metric space with |X| = k ≥ 2. For all c <
diam(X)/(k−1), there exists a nontrivial partition X = Y ∪Z with d(Y,Z) > c.

Proof. For a set E ⊂ X, write BE(r) for the closed ball of radius r ≥ 0 around
E. Let diam(X) = d(y, z) for some y, z ∈ X. Let X1 = {y}, and inductively
define Xi+1 = BXi

(c). For all i ≥ 1 we have either |Xi+1| > |Xi| or Xi+1 = Xi,
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and in the latter case we have Xj = Xi for all j ≥ i. It follows that Xi = Xi+1

holds for some i ≤ k.
If we have Xi = Xi+1 = X, then diam(X) ≤ (k − 1)c, since every element of

X, including z, is in the ball By((i−1)c) ⊂ By((k−1)c). This is a contradiction,
so it must be the case that Xi = Xi+1 �= X. Then Y = Xi and Z = X \ Xi give
the desired partition. ��
Lemma 3. For all torsion groups G, there exists a function d : N

3 → N with the
following property. For all k-sparse subshifts X ⊂ SG over all alphabets S 
 0
with |S| = q + 1, all cellular automata f : X → X with radius r ∈ N, and all
x ∈ X, we have

(∃n ∈ N : fn(x)g �= 0) =⇒ ∃h ∈ BG(d(k, q, r)) : xgh �= 0.

Proof. We prove the existence of such a function d by induction. We define the
function so that it is monotone in all the three parameters. Let tG be the order
function and TG the torsion function of G.

Case 1: k = 1

First, let k = 1, and let f : X → X be a CA. It is easy to show that if
xgh = 0 for all h ∈ BG(r), then f(x)g = 0. Intuitively, this means that nonzero
symbols can ‘spread’ by at most r per time step, and one cannot appear from
nowhere. Since X is a k-sparse subshift and k = 1, every point x ∈ X contains
at most one nonzero coordinate xg �= 0. Intuitively, we want to give an upper
bound on how far the nonzero symbol can travel from its initial position g.

By shift-commutation, it is enough to analyze the case x1G �= 0. Combining
the previous observations and the fact |S| = q+1, it follows from the pigeonhole
principle that fn+m(x) = σR

h (fn(x)) for some 0 ≤ n < n + m ≤ q + 1 and h ∈
BG((q +1)r). Since f commutes with the shift, we have fn+�m(x) = σR

hk(fn(x))
for all � ∈ N. Since htG(h) = 1G, we have fn+tG(h)m(x) = fn(x). We have shown
that f j(x)h′ �= 0 for some j ∈ N implies h′ ∈ BG((q + 1)r(1 + tG(h))). Since
h ∈ BG((q + 1)r), we can define

d(1, q, r) = (q + 1)r(1 + TG((q + 1)r)).

Next, consider the case k > 1. To each configuration x ∈ X, we associate
the metric space A(x) whose points are the nonzero coordinates of x, and whose
distances are those induced by the natural (right) distance in G. We will split
the analysis of the dynamics of f on the point x into two cases, depending on
whether the diameter of A(fn(x)) stays bounded (by an explicit constant) as n
grows.

Intuitively, the idea is that as long as the diameter stays small, we can shrink
all the information in x into a single symbol, reducing to the case d(1, ·, ·), and if
the configuration starts expanding, then it splits into two pieces that can never
again communicate, and we apply induction to these smaller pieces.

More precisely, define A(x) = ({g ∈ G | xg �= 0}, δ) where

δ(g, h) = min{� ∈ N | ∃w ∈ s(G)� : h = gw}.
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Define also c = 2d(k − 1, q, r) + r, and note that since d is monotone, we in
particular have

c ≥ max
1≤�<k

d(�, q, r) + d(k − �, q, r) + r.

We say that a configuration x ∈ X is clustered if diam(A(x)) ≤ (k − 1)c holds,
and scattered otherwise.

Case 2: clustered configurations

First, suppose x ∈ X and N ∈ N are such that fn(x) is clustered for all
n ≤ N . We will give an upper bound on how far nonzero symbols can travel from
their original positions in these N steps. Let Z ⊂ X be the subshift generated
by the configurations fn(x) for n ≤ N . It is easy to see that every configuration
of Z is clustered. Note that that the subshift Z may not be closed under f .

Let Y = X{0}∪K , where K ⊂ LBG((k−1)c)(Z) is the set of patterns P of
shape BG((k − 1)c) occurring in Z such that P1G �= 0. Clearly, Y is a 1-sparse
subshift, and it should be thought of as a ‘compressed’ version of Z, where all
the nonzero symbols have been encoded into a single coordinate. The idea is to
simulate CA f on the compressed subshift Y , and reduce back to the k = 1 case.
Let φ : Y → SG be the ‘decompression function’ defined by

φ(y)h =
{

(yg)g−1h, if ∃g ∈ G : yg �= 0 ∧ g−1h ∈ BG((k − 1)c),
0, otherwise.

Let Y ′ = φ−1(Z), so that φ : Y ′ → Z is a surjective block map.3 A visualization
of φ is shown in Figure 1.
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Fig. 1. The decompression function φ applied to a configuration y ∈ Y . We have chosen
G = Z

2 here for simplicity, even though it is not a torsion group. Note that the alphabet
of Y consists of certain patterns of X and the symbol 0.

3 The fact that G is torsion prevents us, in general, from defining a bijective version
of φ. Also, the subshift Y ′ may be strictly smaller than Y .
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Claim. There exists a (not necessarily unique) cellular automaton fφ : Y ′ → Y ′

such that φ(fφ(y)) = f(φ(y)) holds for all y ∈ Y ′ such that f(φ(y)) ∈ Z.

Intuitively, the CA fφ simulates f on the compressed configurations of Y ′,
as long as their φ-images are clustered.

Proof (of claim). Observe that for each z ∈ Z and g ∈ G there is at most
one configuration y ∈ Y ′ such that yg �= 0 and φ(y) = z. Let then 1 = h1 <
h2 < h3 < · · · be any total order on the group G, not necessarily in any way
compatible with its algebraic structure. Then we can define a map fφ with
the desired properties as follows. First, for the all-0 configuration 0G ∈ Y ′, we
define fφ(0G) = 0G, and for all y ∈ Y ′ such that f(φ(y)) /∈ Z, we also define
f ′(y) = 0G. For all other y ∈ Y ′, let g ∈ G be the unique element with yg �= 0,
and let W ⊂ Y ′ be the set of configurations y′ ∈ Y ′ with φ(y′) = f(φ(y)). The
set W is nonempty since φ : Y ′ → Z is surjective, and it is finite because the
unique nonzero coordinate of each y′ ∈ W is among the coordinates gh where
h ∈ BG((k − 1)c + r), since we assumed P1G �= 0 for each P ∈ K. Now, we
choose fφ(y) to be the unique configuration y′ ∈ W with y′

gh �= 0, where h ∈ G
is minimal in the ordering h1 < h2 < · · · . It is easy to check that fφ is then
continuous and shift-commuting. In fact, from the way we defined it, we see that
its radius is at most (k − 1)c + r. ��

Recall the clustered configuration x ∈ SG. We have x ∈ Z by the definition
of Z, so there exists a configuration y ∈ Y ′ such that φ(y) = x. By the above
claim, we have φ(fn

φ (y)) = fn(x) for all n ≤ N . Since Y is a 1-sparse subshift
with alphabet of size |K|+1 and fφ is a CA on it with radius at most (k−1)c+r,
we have

(∃n : fn
φ (y)g �= 0) =⇒ ∃h ∈ BG(d(1, |K|, (k − 1)c + r)) : ygh �= 0 (1)

by Case 1 of this proof. We also remark that if we have N > |K|, then the
configuration fn(x) is clustered for all n ∈ N, since there exist i < j ≤ N such
that f i

φ(φ(y)) is a translated version of f j
φ(φ(y)).

It remains to prove a variant of the above formula for f , and for that, let
fn(x)g �= 0 for some g ∈ G. Since the block map φ has radius (k − 1)c, we have
φ(fn(x))gh′ = fn

φ (y)gh′ �= 0 for some h′ ∈ BG((k − 1)c). Equation (1) implies
that ygh′h �= 0 for some h ∈ BG(d(1, |K|, (k − 1)c + r)), and from the definition
of φ it follows that xgh′h �= 0 as well, since (ygh′h)1G �= 0. We have shown that
if fn(x) contains a nonzero symbol in some coordinate, then there is a nonzero
coordinate in x at distance at most d(1, |K|, (k − 1)c + r) + (k − 1)c. Note that
the cardinality of K is at most exponential in (k − 1)c.

Case 3: scattered configurations

Suppose finally that the configuration fn(x) is scattered for some n ∈ N,
which we assume to be minimal. By the remark at the end of Case 2, we have
n ≤ |K|. We apply Lemma 2 to the metric space A(fn(x)), and obtain a partition
for it into sets C,D ⊂ G with distance at least c.
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Denote y = fn(x). We define a partition of the configuration y by y = yC +
yD, where (yC)g = yg when g ∈ C and (yC)g = 0 otherwise, and yD is defined
analogously. By the definition of c, we have c ≥ d(|C|, q, r) + d(|D|, q, r) + r. It
is then easy to see that fn(y) = fn(yC) + fn(yD) for all n ∈ N. In particular,
if we have f j(y)g �= 0 for some j ∈ N and g ∈ G, then ygh �= 0 for some
h ∈ BG(max�<k d(�, q, r)) ⊂ BG(d(k − 1, q, r)) by the induction hypothesis.
Since we have n ≤ |K| and the CA f has radius r, this implies that xghh′ �= 0
for some h′ ∈ BG(r|K|), which implies hh′ ∈ BG(r|K| + d(k − 1, q, r)).

Putting all three cases together, we can define the function d recursively by

d(k, q, r) = d(1, |K|, (k − 1)c + r) + (k − 1)c + r|K| + d(k − 1, q, r)

for all k > 1. ��
The bounds we give are not very strong, but at least one can check that if

the torsion function TG is primitive recursive, then so is the function d.

Theorem 2. If G is finitely generated, infinite and torsion, and X ⊂ SG is
sparse and nontrivial, then X /∈ S(G).

Proof. Let A be a group-walking automaton and Y its associated subshift, and
let X ′ = {x + y | x, y ∈ X,∀g ∈ G : xg = 0 ∨ yg = 0}. Since X ′ × Y is sparse,
Lemma 3 implies that any head of A can only travel a bounded distance on any
configuration of X ′ × Y . Then, for all x ∈ X and all but finitely many g ∈ G,
the configuration x + (g · x) is rejected by A if and only if x is. If the support of
x is maximal, this configuration is not in X. Thus A does not define X. ��

Lemma 3 also restricts the structure of the automorphism group of a sparse
subshift on a torsion group.

Theorem 3. If G is torsion and X ⊂ SG is sparse, then Aut(X) is also torsion.

The last theorem has an obvious converse: if G is not torsion, then the shift
along a copy of Z is a non-torsion element of Aut(X) whenever X is sparse
and nontrivial. One can construct such examples even in the quotient group
Aut(G)/〈σR

g | g ∈ G〉.

5 Undecidable Word Problem

If the word problem for G is not necessarily decidable, one can give multiple
definitions of Π0

1. We give two, both of which correspond to our previous defini-
tion of Π0

1 when the word problem is decidable. Recall that finite patterns are
represented computationally as lists of pairs drawn from s(G)∗ × S.

Definition 5. A subshift on G is Π0
1 if there exists a Turing machine enumer-

ating a set of (possibly inconsistent) forbidden lists of word-symbol pairs for it.
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Definition 6. A subshift X on G is intrinsically Π0
1 if there exists an oracle

Turing machine that, given an oracle for the word problem of G, enumerates a
set of consistent forbidden lists of word-symbol pairs for X.

In [2], what we call intrinsically Π0
1 is called G-effective, and this notion was

first defined and studied there. Its actual definition in [2] uses ‘group-walking
Turing machines’, but it is also shown to be equivalent to Definition 6. The
following results, the first of which is a direct corollary of Theorem 1, relate
these classes of subshifts to the hierarchy of group-walking automata.

Theorem 4. If G is finitely generated, infinite and non-torsion, then S(G, 3)
contains the class of Π0

1-subshifts.

Theorem 5. If G is finitely generated, infinite and non-torsion, then S(G, 4)
is exactly the class of subshifts on G which are intrinsically Π0

1.

Proof. Clearly, all S(G, 4) subshifts are intrinsically Π0
1, since a Turing machine

with an oracle for the word problem of G can simulate a multi-headed finite
state machine on the group. The proof that S(G, 4) contains the intrinsically Π0

1

subshifts is similar to that of Theorem 1, except that we must simulate a Turing
machine with access to an oracle for G. Thus, we only need to describe how one
can use four heads to check whether the identity 1 ∼ w holds for an arbitrary
w ∈ s(G)∗. For this, we use three heads to move by the letters of w, and leave
the fourth head as a marker in the cell we started from. We return back on top
of the fourth head if and only if 1 ∼ w. We can then move back by w−1 and pick
up the fourth head. ��

From these results, we obtain a characterization of torsion groups.

Lemma 4. The XS subshift is intrinsically Π0
1 on every group.

Theorem 6. Let G be a finitely generated infinite group. Then G is torsion if
and only if S(G, 4) is not equal to the class of all intrinsically Π0

1 subshifts.

Proof. This follows from Lemma 4, Theorem 5 and Theorem 2. ��
Finally, we note that Lemma 4 requires the intrinsic notion of computability,

as shown by the following corollary of [2, Proposition 2.3] (also proved in [7]).

Proposition 1. Let G be a recursively presented and finitely generated group,
and S is a nontrivial finite alphabet. The subshift XG

S is Π0
1 if and only if G has

a decidable word problem.

6 Future Work and Open Questions

While we need four heads in the proof of Theorem 5, we are not able to separate
the class S(G, 3) from S(G, 4) on any group G. We do have a general construction
which separates these classes on all sufficiently complex torsion groups. Unfortu-
nately, we do not know how to construct a group with the necessary properties,
as the construction of torsion groups is quite complicated. Nevertheless, this
leads us to believe that the classes are not always equal.
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Conjecture 1. There exists an infinite finitely generated torsion group G such
that S(G, 3) � S(G, 4). In particular, S(G, 3) is not always equal to the class of
intrinsically Π0

1 subshifts.

We know that if G is not a torsion group, then the hierarchy S(G, k)k≥1

collapses to the fourth level (if not earlier), and S(G, 4) is exactly the class
of intrinsically Π0

1 subshifts. On torsion groups, the hierarchy never reaches all
intrinsically Π0

1 subshifts, but we have not shown that it is infinite. We believe
we have a general construction that proves exactly this, but it is relatively com-
plicated, so for now we only state its conclusion as a conjecture.

Conjecture 2. If G is an infinite finitely generated torsion group, then the hier-
archy S(G, k)k≥1 is infinite.

Some very basic questions about the abelian cases were left open in [9]. We
have no progress on these questions.

Question 1. Do we have S(Z, 2) = S(Z, 3) or S(Z2, 2) = S(Z2, 3)?

We note that in [4], a slightly different model of multi-headed group-walking
automaton is studied on the group Z

2, and it is shown that in this model, two-
headed machines are strictly weaker than three-headed ones. It seems that the
question is harder in our model. In [9], we only showed that S(Zd, 2) � S(Zd, 3)
holds for d ≥ 3.
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Abstract. The density classification task is to determine which of the
symbols appearing in an array has the majority. A cellular automa-
ton solving this task is required to converge to a uniform configura-
tion with the majority symbol at each site. It is not known whether
a one-dimensional cellular automaton with binary alphabet can clas-
sify all Bernoulli random configurations almost surely according to their
densities. We show that any cellular automaton that washes out finite
islands in linear time classifies all Bernoulli random configurations with
parameters close to 0 or 1 almost surely correctly. The proof is a direct
application of a “percolation” argument which goes back to Gács (1986).

Keywords: Cellular automata · Density classification · Phase transi-
tion · Spareness · Percolation

1 Introduction

An array containing symbols 0 and 1 is given. We would like to determine which
of the two symbols 0 and 1 appears more often in this array. The challenge is to
perform this task in a local, uniform and decentralized fashion, that is, by means
of a cellular automaton. A cellular automaton solving this problem is to receive
the input array as its initial configuration and to end by reaching a consensus,
that is, by turning every symbol in the array into the majority symbol. All
computations must be done on the same array with no additional symbols.

If we require the cellular automaton to solve the task for all odd-sized finite
arrays with periodic boundary conditions (i.e., arrays indexed by a ring Zn or
a d-dimensional torus Z

d
n, where n is odd), then no perfect solution exists [10]

(see also [1]). Indeed, the effect of an isolated 1 deep inside a large region of
0’s will soon disappear, hence its removal from the starting configuration should
not affect the end result. However, removing such an isolated 1 could shift the
balance of the majority from 1 to 0 in a borderline case.

Here, we consider a variant of the problem on infinite arrays, and focus on the
one-dimensional case. We ask for a cellular automaton that classifies a randomly
chosen configuration (say, using independent biased coin flips) according to its
density almost surely (i.e., with probability 1). We relax the notion of classifi-
cation to allow computations that take infinitely long: we only require that the
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content of each site is eventually turned into the majority symbol and remains
so forever, but we allow the fixation time to depend on the site.

Almost sure classification of random initial configurations is closely related
to the question of stability of cellular automata trajectories against noise and the
notion of ergodicity for probabilistic cellular automata. Constructing a cellular
automaton with at least two distinct trajectories that remain distinguishable in
presence of positive Bernoulli noise is far from trivial. Toom [12,13] produced
a family of examples in two dimensions. Each of Toom’s cellular automata has
two or more distinct fixed points that are stable against noise: in presence of
sufficiently small (but positive) Bernoulli noise, the cellular automaton starting
from each of these fixed points remains close to that fixed point for an indefinite
amount of time. The noisy version of each of these cellular automata is thus
non-ergodic in that it has more than one invariant measure.

The most well-known of Toom’s examples is the so-called NEC rule (NEC
standing for North, East, Center). The NEC rule replaces the symbol at each site
with the majority symbol among the site itself and its north and east neighbors.
Combining the combinatorial properties of the NEC rule and well-known results
from percolation theory, Bušić, Fatès, Mairesse and Marcovici [1] showed that the
NEC cellular automaton also solves the classification problem: starting from a
random Bernoulli configuration with parameter p on Z

2 (i.e., using independent
coin flips with probability p of having 1 at each site), the cellular automaton
converges almost surely to the uniform configuration 0 if p < 1/2 and to 1 if
p > 1/2.

The situation in dimension one is more complicated. No one-dimensional cel-
lular automaton with binary alphabet is known to classify Bernoulli random
configurations. Moreover, Toom’s examples do not extend to one dimension; the
only example of a one-dimensional cellular automaton with distinct stable trajec-
tory in presence of noise is a sophisticated construction due to Gács [5,6] based
on error-correction and self-simulation, which uses a huge number of symbols
per site.

There are however candidate cellular automata in one dimension that are sus-
pected to both classify Bernoulli configurations and to remain bi-stable in pres-
ence of noise. The oldest, most studied candidate is the GKL cellular automaton,
introduced by Gács, Kurdyumov and Levin [4]. Another candidate with similar
properties and same degree of simplicity is the modified traffic cellular automaton
studied by Kůrka [9] and Kari and Le Gloannec [8]. Both of these two automata
have the important property that they “wash out finite islands of errors” on
either of the two uniform configurations 0 and 1 [7,8]. In other words, each of
the two uniform configurations 0 and 1 is a fixed point that attracts all configu-
rations that differ from it at no more than finitely many sites. Incidentally, this
same property is also shared among Toom’s cellular automata, and is crucial
(but not sufficient) for its noise stability and density classification properties.

A cellular automaton that washes out finite islands of errors, also washes out
infinite sets of errors that are sufficiently sparse. In this context, a set should be
considered sparse if it can be covered with disjoint finite islands that are washed



240 S. Taati

out before sensing the effect of (or having an effect on) one another. It turns out
that a Bernoulli random configuration with sufficiently small parameter is sparse
with probability 1. The proof is via a beautiful and relatively simple argument
that goes back to Gács [5,6], who used it to take care of the probabilistic part
of his result. The author has learned this argument in a more streamlined form
from a recent paper of Durand, Romashchenko and Shen [2], who used it in the
context of aperiodic tilings. Given its simplicity and potential, we shall repeat
this argument below.

An immediate consequence of the sparseness of low-density Bernoulli sets
is that any cellular automaton that washes out finite islands of errors on 0
and 1 (e.g., GKL and modified traffic) almost surely classifies a Bernoulli random
configuration correctly, as long as the Bernoulli parameter p is close to either 0
or 1. It remains open whether the same classification occurs for all values of p
in (0, 1/2) ∪ (1/2, 1).

1.1 Terminology

Let us proceed by fixing the terminology and formulating the problem more
precisely. By a configuration, we shall mean an infinite array of symbols xi cho-
sen from an alphabet S that are indexed by integers i ∈ Z, or equivalently, a
function x : Z → S. The evolution of a cellular automaton is obtained by iter-
ating a transformation Φ : SZ → SZ on a starting configuration x : Z → S.
The transformation x �→ Φx is carried out by applying a local update rule f
simultaneously on every site so that the new symbol at site i reads (Φx)i �
f(xi−r, xi−r+1, . . . , xi+r). We call the sites i− r, i− r +1, . . . , i+ r the neighbors
of site i and refer to r as the neighborhood radius of the cellular automaton.

The density of a symbol a in a configuration x is not always well-defined or
non-ambiguous. We take as the definition,

ρa(x) � lim
N→∞

|{i ∈ [−N,N ] : xi = a}|
2N + 1

(1)

when the limit exists. According to the law of large numbers, the density of a
symbol a in a Bernoulli random configuration is almost surely the same as the
probability of occurrence of a at each site. Formally, if X is a random configu-
ration Z → S in which the symbol at each site is chosen independently of the
others, taking value a with probability p(a), then P{ρa(X) = p(a)} = 1.

When S = {0, 1}, we simply write ρ(x) � ρ1(x) for the density of 1’s in x.
We say that a cellular automaton Φ : {0, 1}Z → {0, 1}Z classifies a configuration
x : Z → {0, 1} according to density if Φtx → 0 or Φtx → 1 as t → ∞, depending
on whether ρ(x) < 1/2 or ρ(x) > 1/2. The notation a is used to denote a uniform
configuration with symbol a at each site. For us, the meaning of the convergence
of a sequence of configurations x(1), x(2), . . . to another configuration x is site-
wise eventual agreement : for each site i, there must be an index ni after which
all the following configurations in the sequence agree with x on the content of
site i. (Formally, x

(n)
i = xi for all n ≥ ni.) This is the concept of convergence in

the product topology of SZ, which is a compact and metric topology.
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2 Eroder Property

Let us describe two candidates that are suspected to solve the density classifi-
cation problem in one dimension: the cellular automaton of Gács, Kurdyumov
and Levin and the modified traffic rule. Both cellular automata are defined on
binary configurations Z → {0, 1} and have neighborhood radius 3.

The cellular automaton of Gács, Kurdyumov and Levin [4] (GKL for short)
is defined by the transformation

(Φx)i �
{

maj(xi−3, xi−1, xi) if xi = 0,
maj(xi, xi+1, xi+3) if xi = 1,

(2)

where maj(a, b, c) denotes the majority symbol among a, b, c.
The modified traffic cellular automaton [8,9] is defined as a composition of

two simpler automata: the traffic automaton followed by a smoothing filter. The
traffic automaton transforms a configuration by replacing every occurrence of 10
with 01. The follow-up filter replaces the 1 in every occurrence of 0010 with 0,
and symmetrically, turns the 0 in every occurrence of 1011 into a 1.

Sample space-time diagrams of the GKL and the modified traffic automata
are depicted in Figure 1. Note that both GKL and modified traffic have the
following symmetry: exchanging 0 with 1 and right with left leaves the cellular
automaton unchanged.

(a) GKL (b) modified traffic

Fig. 1. Finding the majority in a biased coin-flip configuration. Time goes downwards.

The uniform configurations 0 and 1 are fixed points of both GKL and modi-
fied traffic automata. The following theorem states that both automata wash out
finite islands of errors on either of the two uniform configurations 0 and 1. This is
sometimes called the eroder property. For the GKL automaton, the eroder prop-
erty was proved by Gonzaga de Sá and Maes [7]; for modified traffic, the result
is due to Kari and Le Gloannec [8]. Let us write diff(x, y) � {i ∈ Z : xi �= yi}
for the set of sites at which two configurations x and y differ. We call x a finite
perturbation of z if diff(z, x) is a finite set.

Theorem 1 (Eroder property [7,8]). Let Φ be either the GKL or the mod-
ified traffic cellular automaton. For every finite perturbation x of 0, there is a
time t such that Φtx = 0. If diff(0, x) has diameter at most n (i.e., covered by
an interval of length n), then Φ2nx = 0. The analogous statement about finite
perturbations of 1 holds by symmetry.
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Let us emphasize that many simple cellular automata have the eroder prop-
erty on some uniform configuration. For instance, the cellular automaton Φ :
{0, 1}Z → {0, 1}Z defined by (Φx)i � xi−1 ∧ xi ∧ xi+1 washes out finite islands
on the uniform configuration 0. What is remarkable about GKL and modified
traffic is the fact that they have the eroder property on two distinct configu-
rations 0 and 1. This double eroder property may lead one to guess that these
two cellular automata could indeed classify Bernoulli configurations according to
density or that the trajectories of the fixed points 0 and 1 are stable in presence
of small but positive noise.

3 Washing Out Sparse Sets

In this section, we consider a slightly more general setting. We assume that
Φ : SZ → SZ is a cellular automaton that washes out finite islands of errors
on a configuration z in linear time; that is, there is a constant m such that
Φmlx = Φmlz for any finite perturbation of x for which diff(z, x) has diameter
at most l. For GKL and modified traffic, z can be either 0 or 1, which are fixed
points (hence Φmlz = z), and the constant m can be chosen to be 2.

The above eroder property automatically implies that Φ also washes out (pos-
sibly infinite) sets of error that are “sparse enough”. Indeed, an island of errors
which is well separated from the rest of the errors will disappear before sensing
or affecting the rest of the error set. We are interested in an appropriate notion
of “sparseness” for diff(z, x) that guarantees the attraction of the trajectory of
x towards the trajectory of z.

To elaborate this further, let us denote the neighborhood radius of Φ by r.
Consider an arbitrary configuration x and think of it as a perturbation of z with
errors occurring at sites in diff(z, x). Let I ⊆ Z be an interval of length l such
that x agrees with z on a margin of width 2rml around I, that is, xj = zj for
j ∈ Z\I within distance 2rml from I. We call such an interval an isolated island
(of errors) on x. Let y be a configuration obtained from x by erasing the errors
on I, that is, by replacing xi with zi for each i ∈ I. (Note on terminology: we
shall use “erasure” to refer to this abstract construction of one configuration
from another, and reserve the word “washing” for what the cellular automaton
does.) Observe that within ml steps, the distinction between x and y disappears
and we have Φmlx = Φmly (see Figure 2). Namely, the island I is washed out
before time ml and the sites in diff(z, x) \ I = diff(z, y) \ I do not get a chance
to feel the distinction between x and y.

We find that erasing an isolated island of length at most l from x does not
affect whether the trajectory of x is attracted towards the trajectory of z or
not. Neither does erasing several (possibly infinitely many) isolated islands of
length ≤ l at the same time. On the other hand, erasing some isolated islands
from x makes the error set diff(z, x) sparser and possibly turns larger portions of
diff(z, x) into isolated islands (see Figure 3). Hence, we can perform the erasure
procedure recursively, by first erasing the isolated islands of length 1, then erasing
the isolated islands of length 2, then erasing the isolated islands of length 3 and so



Restricted Density Classification in One Dimension 243

ml

lrml rml rml rml

Fig. 2. Forgetting an isolated region of errors

Fig. 3. Washing out a sparse set of errors

forth. In this fashion, we obtain a sequence x(0), x(1), x(2), . . . with x(0) = x and
diff(z, x(l)) ⊇ diff(z, x(l+1)) obtained by successive erasure of isolated islands.
We say that the error set diff(z, x) is sparse if all errors are eventually erased,
that is, if

⋂
l diff(z, x(l)) = ∅.

However, this notion of sparseness still does not guarantee the attraction of
the trajectory of x towards the trajectory of z. (The trajectory of x is considered
to be attracted towards the trajectory of z if for each site i, there is a time ti
such that (Φtx)i = (Φtz)i for all time steps t ≥ ti. If Φz = z, this attraction
becomes equivalent to the convergence Φtx → z.) Note that it is well possible
that all errors are eventually washed out from x (hence, their information is lost)
but the washing out procedure for larger and larger islands affects a given site i
indefinitely, so that (Φtx)i �= (Φtz)i for infinite many time steps t (see Figure 4).

To clarify this possibility, note that an isolated island of length l can affect
the state of sites within distance rml up to time ml (see Figure 2). Let us denote
by Al � diff(z, x(l)) \ diff(z, x(l−1)) the union of isolated islands of length l that
are erased from x(l−1) during the l’th stage of the erasure procedure. The only
possibility for a site i to have a value other than (Φtz)i at time t is that site i
is within distance rml from Al for some l satisfying ml > t. In this case, we say
that i is within the territory of such Al. A sufficient condition for the attraction
of the trajectory of x towards the trajectory of z is that the error set diff(z, x)
is sparse, and furthermore, each site i is within the territory of Al for at most
finitely many values of l. If this condition is satisfied, we say that the error set
diff(z, x) is strongly sparse. In summary, the trajectory of x is attracted towards
the trajectory of z if diff(z, x) is strongly sparse.
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Fig. 4. Washing out but not attracting

4 Sparseness

The notion of (strong) sparseness described in the previous section can be formu-
lated and studied without reference to cellular automata, and that is what we are
going to do now. This notion is of independent interest, as it commonly arises
in error correcting scenarios. More sophisticated applications appear in [5,6]
and [2]. Our exposition is close to that of [2].

We refer to a finite interval I ⊆ Z as an island. Let k be a fixed positive
integer. The territory (or the interaction range) of an island I of length l is the
set of sites i ∈ Z that are within distance kl from I. We denote the territory of
I by R(I). Two disjoint islands I and I ′ of lengths l and l′, where l ≤ l′, are
considered well separated if I ′ ∩ R(I) = ∅, that is, if the larger island does not
intrude the territory of the smaller one. A set E ⊆ Z is said to be sparse if it can
be covered by a family I of (disjoint) pairwise well-separated islands. A sparse
set is strongly sparse if the cover I can be chosen so that each site i is in the
territory of at most finitely many elements of I.

Note that for k � 2rm, we get essentially the same notion of sparseness as in
the previous section. Indeed, let Il be the sub-family of I containing all islands
of length at most l, and denote by El � E \⋃

I∈Il
I the subset of E obtained by

erasing the islands of length at most l. Then, every island I ∈ I having length l
is isolated in El−1, because its territory is not intruded by El−1 \ I. The new
notion of strong sparseness might be slightly more restrictive, as we define the
territory by the constant k = 2rm rather than k/2 = rm, but the arguments
below are not sensitive to this distinction.

The most basic observation about sparseness is its monotonicity.

Proposition 1 (Monotonicity). Any subset of a (strongly) sparse set is
(strongly) sparse.

One expects a “small” set to be sparse. The following theorem due to Levin [11]
is an indication of this intuition.
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Theorem 2 (Sparseness of small sets [11]). There are constants ε, c ∈ (0, 1)
depending on the sparseness parameter k such that every periodic set E ⊆ Z with
period n and at most c nε elements per period is strongly sparse.

The reverse intuition is misleading: a sparse set does not need to be “small”.
In fact, there are sets with arbitrarily large densities that are sparse. The exis-
tence of such sets is demonstrated by Kari and Le Gloannec [8], and in special
cases, was also noted by Levin [11] and Kůrka [9].

Theorem 3 (Large sparse sets [8]). There are periodic subsets of Z with
density arbitrarily close to 1 that are strongly sparse.

It immediately follows that the set of possible densities of strongly sparse (peri-
odic) subsets of Z is dense in [0, 1]. A more important corollary is a strengthen-
ing of the impossibility result of Land and Belew [10] for cellular automata with
linear-time eroder property: for any such automaton, there are configurations x
with density ρ(x) close to any number in [0, 1] that are incorrectly classified.

The main result of interest for us is the sparseness of sufficiently biased
Bernoulli random sets.

Theorem 4 (Sparseness of Bernoulli sets [2,5,6]). A Bernoulli random
set E ⊆ Z with parameter p is almost surely strongly sparse as long as p <
(2k)−2, where k is the sparseness parameter.

Proof. For a set E ⊆ Z, we recursively construct a family I of pairwise well-
separated islands as a candidate for covering E. The family I will be divided into
sub-families Jl consisting of islands of length l, and El will be the set obtained
by erasing the selected islands of length at most l from E. Let E0 � E. For l ≥ 1,
recursively define Jl as the family of islands I ⊆ Z of length l that intersect El−1

and are isolated in El−1 (i.e., El−1 \ I does not intersect the territory of I), and
set El � El−1 \ ⋃

I∈Jl
I. Let I �

⋃
l Jl.

To see that the elements of I are pairwise well separated, let us first argue
that every island I ∈ Jl is minimal, in that, it is the smallest interval containing
I ∩ El−1. Indeed, let J ⊆ I be the smallest island containing I ∩ El−1, and
assume that |J | < l. Then, the endpoints of J must be in El−1. Therefore, every
island I ′ ∈ Jl′ with l′ < l must have been at distance more than kl′ from J , for
otherwise, I ′ would not have been isolated in El′−1. In particular, for l′ satisfying
|J | ≤ l′ < l, the island J has distance more than k |J | from every I ′ ∈ Jl′ . Since
the distance between J and El−1 is also more than kl ≥ k |J |, it follows that J is
isolated in E|J|−1. On the other hand, J intersects E|J|−1, because it intersects
El−1 and El−1 ⊆ E|J|−1. We find that J ∈ J|J|−1, which is a contradiction.
Therefore, I is minimal. The well-separation of two islands I ∈ Jl and I ′ ∈ Jl′

with l ≤ l′ follows from the minimality of I ′. We conclude that the elements of
I are also well separated.

Now, let E be a Bernoulli random configuration with parameter p. We choose
an appropriate sequence 0 < l1 < l2 < l3 < · · · (to be specified more explicitly
below) and observe whether a site u is in Eln . We will show that the probability
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that site u is in Eln is double exponentially small, that is, P(u ∈ Eln) ≤ α2n for
some α < 1.

Let u be an arbitrary site. In order for u to be in Eln , it is necessary that u is
also in Eln−1, and furthermore, u is not covered by any island in Jln . Therefore,
Eln−1 (which includes Eln−1) must contain two elements u0 � u and u1 that
are farther than ln/2 from each other but no farther than (k + 1/2)ln from each
other (see Figure 5). In a similar fashion, in order for u0 and u1 to be in Eln−1 ,

u0 = u u1

ln/2ln/2kln kln

Fig. 5. An evidence for u ∈ Eln in Eln−1 (see the proof of Theorem 4)

the set Eln−2 must contain elements u00 � u0, u01, u10 � u1 and u11 such that

1
2
ln−1 < d(u00, u01) ≤

(
k +

1
2

)
ln−1 , (3)

1
2
ln−1 < d(u10, u11) ≤

(
k +

1
2

)
ln−1 . (4)

Repeating this procedure, we find a binary tree of depth n with roots in E0 = E
that provides an evidence for the presence of u in Eln . We call such a tree an
explanation tree. Thus, in order to have u ∈ Eln , there must be at least one
explanation tree for it.

We estimate the probability of the existence of an explanation tree for u ∈
Eln . Let T = (u, u0, u1, u00, u01, . . . , u11···0, u11···1) be a candidate explanation
tree, that is, a tree with the right distances between the nodes. To simplify the
estimation, we choose the lengths l1, l2, . . . in such a way to make sure that the
leaves of T are distinct elements of Z. A sufficient condition for the distinctness
of the leaves of T is that for each m,

1
2
lm ≥ 2

(
k +

1
2

)
(lm−1 + lm−2 + · · · + l1) . (5)

This would guarantee that the two subtrees descending from each node do not
intersect. We choose lm � (4k + 3)m−1, which is a solution of the above system
of inequalities.

A candidate tree T is an explanation tree for u ∈ Eln if and only if all its
leaves are in E. Whether or not each leaf uw of T is in E is determined by a
biased coin flip with probability p of falling in E. With the above choice of lm,
the events uw ∈ E for different leaves of T are independent. It follows that T is
an explanation tree for u ∈ Eln with probability p2

n

.
Let us now estimate the number of candidate trees of depth m. Denote this

number by fm. Observe that fm satisfies the recursive inequality

fm ≤ 2klm f2
m−1 (6)
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with f0 � 1. Indeed, 2klm counts for the number of possible positions for u1 and
f2

m−1 counts the number of possibilities for each of the two subtrees. Letting
gm � log fm, we have

gm ≤ a m + b + 2gm−1 , (7)

where a � log(4k +3) and b � log 2k − log(4k +3). Expanding the last recursion
we get

gm ≤ 2m(2b + a

m∑

i=0

i

2i
) (8)

≤ 2m(2b + a
∞∑

i=0

i

2i
) (9)

= 2m+1(a + b) . (10)

Therefore,

fm ≤ (2k)2
m+1

. (11)

By the sub-additivity of the probabilities, we find that the probability of the
existence of at least one explanation tree for u ∈ Eln satisfies

P(u ∈ Eln) ≤ p2
n

fn ≤ α2n , (12)

where α � p(2k)2. Since p < (2k)−2, we get α < 1.
The probability that a given site u ∈ Z is in E but is not covered by I (i.e.,

never erased) is

P(u ∈
⋂

l

El) = P(u ∈
⋂

n

Eln) = lim
n→∞ P(u ∈ Eln) = lim

n→∞ α2n = 0 . (13)

Since Z is countable, we find, by sub-additivity, that P(
⋂

l El �= ∅) = 0, which
means, E is sparse with probability 1.

That E is strongly sparse with probability 1 follows by the Borel-Cantelli
argument. Namely, the event that a site u is in the territory of infinitely many
islands I ∈ I can be expressed as

⋂
m

⋃
n≥m{d(u,Eln) ≤ kln}. (Note that an

island covering a site in Eln has length greater than ln.) The probability that u
is within distance kln from Eln satisfies

P
(
d(u,Eln) ≤ kln

) ≤ (2kln + 1)α2n = (2k(4k + 3)n−1 + 1)α2n . (14)

Therefore,

P

( ⋃

n≥m

{d(u,Eln) ≤ kln}
)

≤
∑

n≥m

(2k(4k + 3)n−1 + 1)α2n < ∞ . (15)
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It follows that

P

( ⋂

m

⋃

n≥m

{d(u,Eln) ≤ kln}
)

≤ lim
m→∞

∑

n≥m

(2k(4k + 3)n−1 + 1)α2n = 0 . (16)

Using again the countability of Z, we find that, with probability 1, no site u is
in the territory of more than finitely may islands I ∈ I. That is, E is almost
surely strongly sparse. ��

Theorem 4, along with a standard application of monotonicity, shows that
when the Bernoulli parameter is varied, a non-trivial phase transition occurs.

Corollary 1 (Phase transition). There is a critical value pc ∈ (0, 1] depend-
ing on the sparseness parameter k such that a Bernoulli random set E ⊆ Z with
parameter p is almost surely strongly sparse if p < pc and is almost surely not
strongly sparse if p > pc.

Proof. First, observe that the (strong) sparseness of E is a translation-invariant
event (i.e., for a ∈ Z, the sparseness of a + E is equivalent to the sparseness
of E). Therefore, by ergodicity, the probability that a Bernoulli random set is
(strongly) sparse is either 0 or 1.

The presence of a threshold value pc ∈ [0, 1] (possibly 0) is a standard
consequence of monotonicity. Indeed, let Ui, i ∈ Z be a collection of indepen-
dent random variables with uniform distribution on the real interval [0, 1]. For
p ∈ [0, 1], define a set E(p) � {i ∈ Z : Ui < p}. Then, E(p) is a Bernoulli
random set with parameter p, and the collection of sets E(p) is increasing in p.
Let pc � sup{p : E(p) is almost surely (strongly) sparse}. By monotonicity, the
set E(p) is almost surely (strongly) sparse for p < pc and is almost surely not
(strongly) sparse for p > pc.

Finally, we know from Theorem 4 that pc > 0. ��

5 Restricted Classification

Let us state the claimed result of this paper explicitly as a corollary of Theorem 4
and the discussions in the previous sections.

Corollary 2 (Restricted classification). Let Φ : {0, 1}Z → {0, 1}Z be a
cellular automaton that washes out finite islands of errors on either of the two
uniform configurations 0 and 1 in linear time. Namely, suppose that there is a
constant m such that for every finite perturbation x of 0 for which diff(0, x) has
diameter at most l, we have Φmlx = 0, and similarly for 1. Then, there is a
constant pc ∈ (0, 1/2] such that Φ classifies a Bernoulli random configuration
with parameter p ∈ [0, pc) ∪ (1 − pc, 1] almost surely correctly.

For GKL and modified traffic, we have k = 2rm = 12. Therefore, Theorem 4
only guarantees correct classification if the Bernoulli parameter p is within dis-
tance (2k)−2 = 24−2 ≈ 0.0017 from either 0 or 1.
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6 Discussion

We conclude with few comments and questions.
Corollary 2 shows that the asymptotic behaviour of the GKL and modified

traffic automata starting from a Bernoulli random configuration undergoes a
phase transition: the cellular automaton converges to 0 for p close to 0 and to
1 for p close to 1. It remains open whether the transition occurs precisely at
p = 1/2, or if there are other transitions in between. The result of Bušić et al. [1]
shows that the transition in the NEC cellular automaton is unique and happens
precisely at p = 1/2.

Another open issue is the behaviour of the GKL and modified traffic auto-
mata on random configurations with non-Bernoulli distributions. One might
expect the sparseness argument to extend to measures that are sufficiently mix-
ing. For instance, it should be possible to show the same kind of classification
on a Markov random configuration that has density close to 0 or 1.

It would also be interesting to see if the sparseness method can be applied to
probabilistic cellular automata that are suggested for the density classification
task. Fatès [3] has introduced a parametric family of one-dimensional probabilis-
tic cellular automaton with a density classification property: for every n ∈ N and
ε > 0, there is a setting of the parameter such that the automaton classifies a
periodic configuration with period n with probability at least 1 − ε. Does the
majority-traffic rule of Fatès with a fixed parameter classify sufficiently biased
Bernoulli random configurations? A two-dimensional candidate would be the
noisy version of the nearest-neighbor majority rule, in which the noise occurs
only when there is no consensus in the neighborhood.

Finally, given its various applications, one might try to study the notion of
sparseness in a more systematic fashion, trying to capture more details about
the transition. It is curious that the notion of sparseness of Bernoulli random
sets supports a hierarchy of phase transitions, even in one dimension where the
standard notion of percolation fails.
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Abstract. A linear-slender context-free language is a context-free lan-
guage whose number of words of length n is linear in n. Its structure
has been finely characterized in a work of Ilie, Rozenberg and Salo-
maa. Thanks to this characterization, we show that every linear-slender
context-free language is recognizable by a real time one-way cellular
automaton.

1 Introduction

One-way cellular automaton (OCA) is one of the simplest parallel recognizing
devices. Since its introduction by Dyer [5], it has been the subject of much
interest. Numerous studies have been directed towards the real time OCA, the
class of languages decidable in minimal time, and have already provided a good
understanding of its abilities and limitations.

In particular, it is known that the real time OCA and the family of context
free languages are incomparable [12]. This calls into question which languages
they have in common. That is not the case for deterministic CFL: there exits a
LL(1) CFL which is not a real time OCA one [11]. On the other hand, linear
CFL and visible pushdown languages have been proved to be real time OCA
ones [3,11].

With the aim to identify more common languages, we will take into consid-
eration the counting function that measures the number of words of length n in
the language. Noticing that all CFL known to be not real time OCA have their
counting function of exponential order, the best is to look at sparse languages.
These are the poly-slender CFL whose counting functions are polynomial in n
and, more specifically, the linear-slender CFL whose counting functions are lin-
ear. The purpose here is to show that linear-slender CFL are real time OCA
ones.

The present work essentially relies on a paper by Ilie, Rozenberg and Salomaa
which presents a characterization of poly-slender CFL in terms of Dyck loops [7].
Čuĺık’s OCA which recognizes in real time the language {anbn+mam : n,m ≥ 0}
and Okhotin’s characterization of real time OCA by linear conjunctive grammars
will come also into play [2,10].
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2 Preliminary

2.1 Basic Notions

We first recall some basic definitions and notations.

For any language L, the number of words in L of length n is denoted by �n(L).
For an integer k, a language L is k-poly-slender if �n(L) is in O(nk).

A language L is poly-slender if L is k-poly-slender for some k. A language L
is linear-slender if �n(L) is in O(n).

A language L is bounded if there exists a finite number of words u1, u2, · · · , uk

such that L ⊆ u∗
1u

∗
2 · · · u∗

k.
For any word w ∈ Σ+, the primitive root of w is denoted by ρ(w) and corre-

sponds to the minimal word such that w ∈ (ρ(w))∗.

2.2 Poly-slender Context Free Languages

We review the definitions and results presented in [7] that will be fundamental
ingredients throughout this paper.

Definition 1 (Dyck loop). Let z = z1z2 · · · z2k be a Dyck word on {[, ]} of
length 2k. Let li and ri denote the respective positions of the i-th opening paren-
thesis [ and its corresponding closing one ] in z. Given some words y0, · · · , y2k,
x1, · · · , x2k, consider the map hn1,··· ,nk

(z1z2 · · · z2k) = y0x
e1
1 y1x

e2
2 y2 · · · xe2k

2k y2k

where each pair of parentheses shares the same exponent: eli = eri
= ni.

A k-Dyck loop is any set D = {hn1,··· ,nk
(z1z2 · · · z2k) : ni ≥ 0} for some under-

lying Dyck word z1z2 · · · z2k and words xi, yi.

Example 1. {abn1a(ba)n2+1an2+1(ba)n1+n3+2bn3 : n1, n2, n3 ≥ 0} is a 3-Dyck
loop for the underlying Dyck word [[]][] and words y0 = a, x1 = b, y1 = aba,
x2 = ba, y2 = a, x3 = a, y3 = ε, x4 = ba, y4 = bab, x5 = ab, y5 = a, x6 = b, y6 = ε.

Example 2. {an1bn1+n2an2 : n1, n2 ≥ 0} is a 2-Dyck loop for the underlying Dyck
word [][] and words x1 = x4 = a, x2 = x3 = b, y0 = y1 = y2 = y4 = ε.

The structure of poly-slender CFL finely corresponds to Dyck loops:

Theorem 1. For any k ≥ 0, a context-free language is k-poly-slender if and
only if it is a finite union of (k + 1)-Dyck loops.

The following notion captures whether the position of some word w can be
distinguished or not.

Definition 2 (Link). Let u, v ∈ Σ+ and w ∈ Σ∗. The word w links u with v
(link(u,w, v)) if and only if ρ(u)w = wρ(v). That means ρ(u) = pq, ρ(v) = qp
and w = (pq)∗p for some p, q. And so umwvn is a prefix of (pq)∗
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Example 3. With xi and yi as defined in Example 1, link(x4, y4, x5) holds but
link(xi, yi, xi+1) does not hold for i = 1, 2, 3, 5.
With xi and yi as defined in Example 2, link(x2, y2, x3) holds but neither
link(x1, y1, x2) nor link(x3, y3, x4) holds.

We will make great use of the following lemma:

Lemma 1. Consider some words xi ∈ Σ+ and yi ∈ Σ∗, and some non-negative
integers ni,mi. Denote w = y0x

n1
1 y1x

n2
2 y2 · · · xnr

r yr, w′ = y0x
m1
1 y1x

m2
2 y2 · · ·

xmr
r yr and assume that link(xi, yi, xi+1) holds for no i.

Then there is a constant N0, depending only on the lengths of the words xi and yi,
such that, if ni,mi are larger than N0 and there is i with ni �= mi, then w �= w′.

For a general overview, we recall the result of Latteux and Thierrin [8] and
the one of Ginsburg and Spanier [6]:

Theorem 2. A context-free language is poly-slender if and only if it is bounded.

Theorem 3. The family of bounded languages is the smallest family which con-
tains all finite languages and is closed under the following operations:

1. union
2. catenation
3. (x, y)�L =

⋃

n≥0

xnLyn for any x, y words

2.3 Real Time One-Way Cellular Automaton

A one-way cellular automaton is a one-dimensional array of finite automata (the
cells) indexed by N. The cells evolve synchronously at discrete time steps. Each
cell takes one value from a finite set of states Q. At each step, the evolution of
a cell is defined by its own state and the state of its right neighbor according to
a transition function δ. Formally, denoting 〈c, t〉 the state of the cell c at time t,
〈c, t + 1〉 = δ (〈c, t〉, 〈c + 1, t〉).

In order that an OCA acts as a language recognizer, we specify two subsets of
Q: the alphabet Σ of input symbols and the set of accepting states Qaccept. The
input mode is parallel. At initial time 0, the i-th bit of the input word w ∈ Σ∗

is fed to the cell i: 〈i, 0〉 = wi. An OCA is said to accept (resp. reject) a word w
in real time, if on input w the cell 0 enters an accepting (resp. non-accepting)
state at time |w| − 1. It corresponds to the minimal time for the cell 0 to know
the whole input. A language is a real time OCA language if there exists some
OCA (Q,Σ,Qaccept, δ) which accepts in real time exactly the words w ∈ L.

The computation of an OCA is usually represented by a time-space diagram
(see Fig 1). The t-row corresponds to the cellular array at time t. Only those
sites involved in the real time computation are depicted. As a matter of fact,
there are two topologically equivalent ways to display the time-space diagram.
We will use here the bilateral symmetric layout, i.e., the right one.

The real time OCA class is robust: introducing the notion of conjunctive
grammar, Okhotin has exhibited a characterization of real time OCA in terms
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w0 w1 w2 w3 w4 w5

Time

0

|w| − 1

w0 w1 w2 w3 w4 w5

Time

0

|w| − 1

Fig. 1. Time-space diagram of a real time OCA

of a generating device [10]. Let us recall its statement, it will be one of the
main ingredients in this paper. An alternating grammar is a grammar enhanced
with a conjunctive operation symbolized by &. Denoting N the set of variables
and Σ the set of terminals, each production is of the form A → α1 & · · · &αk

where A ∈ N and α1, · · · , αk ∈ (A ∪ Σ)∗. Such a production denotes that
the language generated by A is the intersection of the languages generated by
α1, · · · , αk. Analogously to linear context free grammars, a linear conjunctive
grammar is defined as an alternating grammar with the restriction that for every
production A → α1 & · · · &αk, no αi has more than one instance of a variable.
An algorithm describing how to recognize any linear CFL on a real time OCA
was already known [3]. More radically, to extend linear context free grammars
with the conjunctive operation & leads to a complete characterization of real
time OCA [10]:

Theorem 4. A language L is recognized in real time by an OCA if and only if
L is generated by a linear conjunctive grammar.

Let us recall the conversion from a real time OCA to a linear conjunctive
grammar that we will need later. See Fig. 2 to get some insight about the trans-
lation.

Lemma 2. Given any language L recognizable by some real time OCA
A = (Q,Σ,Qaccept, δ), L is generated by the linear conjunctive grammar
G = (Σ, {S} ∪ {Aq : q ∈ Q}, S,R) where R contains the following rules:

S → Aq for all q ∈ Qaccept

Aa → a for all a ∈ Σ
Aδ(g,d) → Agb & cAd for all g, d ∈ Q and all b, c ∈ Σ

At last, let us give some examples and properties of real time OCA to
illustrate their abilities and limits. The Dyck language, the linear-slender CFL
{anbn+mam : n,m ≥ 0}, the inherently exponentially ambiguous CFL L∗ with
L = {aibjck : i = j or j = k} [9], the non CFL languages {anbncn : n ≥ 0} and
{anb2

n

: n ≥ 0} with a non semilinear Parikh image, are all real time OCA lan-
guages. In addition, real time OCA languages include all linear CFL and visible
pushdown languages [3,11]. On the other hand, several languages are known
not to be real time OCA: all non regular languages over a one letter alphabet,
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δ(g, d)

g d

c · · · w · · · b

cw ∈ LG(Ag)

wb ∈ LG(Ad)

cwb ∈ LG(Aδ(g,d))

Fig. 2. The OCA’s transition δ(g, d) is converted into the rule Aδ(g,d) → Agb & cAd

the inherently ambiguous CFL L1L1 square of the linear CFL L1 = {1k0u10k :
k > 0, u ∈ {0, 1}∗}, the language {uvu : u, v ∈ {0, 1}∗, |u| > 1}, the determin-
istic CFL (to be more precise: LL(1) language) {cmal0bal1b · · · almb · · · alzbdn :
m,n, li ≥ 0, z ≥ 1, lm = n} [1,11–13].

Further, the real time OCA class is closed under boolean operations, reverse,
� operation (the one defined in Theorem 3), left and right concatenation with
regular languages. The proofs are folklore. A contrario, the real time OCA class
is not closed under morphism, concatenation, Kleene star and cycle [4,12,14].

2.4 Poly-slender Context Free Languages and Real Time One-Way
Cellular Automata

The question behind this paper is whether the poly-slender CFL are real time
OCA languages. According to Theorem 3, the poly-slender CFL are the smallest
family which contains all finite languages and is closed under union, concate-
nation and � operation. Of course, real time OCA languages include all finite
languages and are closed under union and � operation. This is easy to prove
using the grammar characterization of real time OCA. The problematic point is
concatenation: can we assert that the concatenation of two Dyck loops is a real
time OCA language? We do not answer this question but in the simple case:
1-Dyck loops. Precisely we will show the following result:

Theorem 5. Linear-slender context-free languages are recognizable in real time
by one-way cellular automata.

The rest of the paper will be devoted to the proof of this theorem. Concretely
we have to show that 2-Dyck loops are recognized in real time by OCA.

3 Recognition of 2-Dyck Loops by Real Time OCA

As an introduction, we may observe that 1-Dyck loops are real time OCA lan-
guages. Indeed a 1-Dyck loop corresponds to a set D = {y0x

n
1y1x

n
2y2 : n ∈ N}
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for some words y0, x1, y1, x2, y2. It is a linear CFL and so it is a real time OCA
language. As a consequence, all constant-slender languages are real time OCA
languages.

Let us now consider 2-Dyck loops. According to whether the underlying Dyck
word is [[]] or [][], they are of shape {y0x

n1
1 y1x

n2
2 y2x

n2
3 y3x

n1
4 y4 : n1, n2 ≥ 0} or

{y0x
n1
1 y1x

n1
2 y2x

n2
3 y3x

n2
4 y4 : n1, n2 ≥ 0} A first simplification is to assume that

the two ends y0 and y4 are empty knowing that if L is a real time OCA language
then so is {y0}L{y4} whatever the words y0 and y4 are. We will suppose also
that the words xi are non-empty, the degenerate cases being easy to handle.

3.1 The Underlying Dyck Word Is [[]].

That is the simple case. The corresponding Dyck loop {xn1
1 y1x

n2
2 y2x

n2
3 y3x

n1
4 : n1,

n2 ≥ 0} is clearly a linear CFL and so it is real time OCA recognizable. Here it
is basically the closure under the � operation which is involved.

3.2 The Underlying Dyck Word Is [][].

Now it is the closure under concatenation of 1-Dyck loops which is involved.

Case 1. link(xi, yi, xi+1) holds for no i = 1, 2, 3
Let N0 be a constant as defined in Lemma 1. The Dyck loop can be divided

into three subsets D1, D2 and D3, where

D1 = {xn1
1 y1x

n1
2 y2x

n3
3 y3x

n3
4 : n1 < N0, n3 ∈ N},

D2 = {xn1
1 y1x

n1
2 y2x

n3
3 y3x

n3
4 : n1 ∈ N, n3 < N0},

D3 = {xn1
1 y1x

n1
2 y2x

n3
3 y3x

n3
4 : n1, n3 ≥ N0}.

Observe that D1 =
⋃

0≤i<N0

{xi
1y1x

i
2y2x

n
3y3x

n
4 : n ∈ N} is a finite union of linear

CFL’s and thus is alinear CFL. The subset D2 is as well a linear CFL. Further,
Lemma 1 ensures that D3 can be specified as the intersection of two linear
CFL’s : D3 = {xn1

1 y1x
n1
2 y2x

n3
3 y3x

n4
4 : n1, n3, n4 ≥ N0} ∩ {xn1

1 y1x
n2
2 y2x

n3
3 y3x

n3
4 :

n1, n2, n3 ≥ N0} and so is real time recognizable by an OCA.

Case 2. link(xi, yi, xi+1) holds for one i = 1, 2, 3
The case where y1 links x1 with x2 (or in a symmetric way y3 links x3 with x4)

does not present any difficulty. By Definition 2, y1 links x1 with x2 if ρ(x1) = pq,
ρ(x2) = qp and y1 = (pq)γp for some words p, q and integer γ. Setting x1 = (pq)α,
x2 = (qp)β , xn1

1 y1x
n2
2 y2 can be rewritten as (pq)(α+β)n1+γpy2 and thus specifies

a regular language. Moreover xn3
3 y3x

n4
4 = xn3

3 y3x
n3
4 corresponds to a linear CFL.

Their concatenation is linear CFL and so real time recognizable by an OCA.

It remains to examine the most technical case where y2 links x2 with x3 but
link(xi, yi, xi+1) does not hold for i = 1 and i = 3. As y2 links x2 with x3 there
exists some p, q and α, β, γ such that x2 = (pq)α, x3 = (qp)β and y2 = (pq)γp.
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Then xn1
1 y1x

n2
2 y2x

n3
3 y3x

n4
4 can be rewritten as xn1

1 y1(pq)αn1+βn3+γpy3x
n3
4 . Set-

ting z1 = x1, z2 = y1, z3 = pq, z4 = py3, z5 = x4, such 2-Dyck loops can be
reshaped into zn1

1 z2z
αn1+βn3+γ
3 z4z

n3
5 with the properties that z2 does not link

z1 with z3 and, readily verifiable, z4 does not link z3 with z5. So our task is to
show that {zn

1 z2z
αn+βm+γ
3 z4z

m
5 : n,m ≥ 0} is a real time OCA language. It will

be done in two steps:

1. Given a five letters alphabet A = {a1, · · · , a5}, whatever α, β ≥ 1 and
γ ≥ 0 are, we will present a real time OCA which recognizes the language
Lα,β,γ = {an

1a2a
αn+βm+γ
3 a4a

m
5 : n,m ≥ 0}.

2. For any homomorphism h on A such that neither link(h(a1), h(a2), h(a3))
nor link(h(a3), h(a4), h(a5)) holds, we will verify that h(Lα,β,γ) is a real
time OCA language.

Proposition 1. The language Lα,β,γ = {an
1a2a

αn+βm+γ
3 a4a

m
5 : n,m > 0}, where

the symbols a1, · · · , a5 are distinct, is recognizable in real time by an OCA.

Proof. The main ingredient is Čuĺık’s OCA which recognizes in real time the
language {anbn+mam : n,m ≥ 0} [2]. His construction makes ingenious use of a
firing squad synchronization.

a2 a4a3 a3 a3 a3 a3 a3 a3 a5 a5 a5 a5 a5 a5 a5a1a1a1a1a1a1a1

Gg Gd

aj
3 ak

5aj−k
1

Fig. 3. Čuĺık’s OCA

Let us begin by recalling the process (see Fig. 3). For convenience, we identify
the sites of the OCA with integer coordinates (x, y) where x + y is even. In this
way, the input symbols are placed at positions (2x, 0). The unique symbol a2 is
chosen to be at the origin (0, 0) and, when the input is of shape a+

1 a2a
j
3a4a

+
5 ,

the unique symbol a4 is at (2j + 2, 0). The process is set up using a firing squad
synchronization with two generals Gg and Gd located according to the unique
symbols a2 and a4. Precisely, the left general Gg is at (3, 5) and the right general
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Gd at (2j − 1, 5). Thus the synchronization occurs at points (1 + 2k, 1 + 2j) for
all k with 0 < k < j. We check that the k-th firing points (1 + 2k, 1 + 2j)
corresponds to the output of the input subword which begins at (2(k−j), 0) and
ends at (2(1 + j + k), 0), namely the subword aj−k

1 a2a
j
3a4a

k
5 .

Next, Čuĺık showed that the construction can be adapted to recognize the
languages {aibjak : i, k ≥ 0,mj + c = i + k} for all m ≥ 1, c ≥ 0. Actually, the
same approach works in these more general settings: it exists a real time OCA
deciding the language Lα,β,γ = {ai

1a2a
j
3a4a

k
5 : i, j, k ∈ N, j = αi + βk + γ} for

every non-negative rational numbers α, β, γ. Let us outline the modified con-
struction. Be warned that we will use rational coordinates but the technique
to revert to an OCA diagram is standard. Firstly observe that we may reduce
the range of the synchronization in locating the two generals later: with the left
general Gg at (3 + γ, 5 + γ) and the right general Gd at (2j − 1 − γ, 5 + γ), the
set of firing points becomes {(1 + 2k + γ, 1 + 2j − γ) : k ∈ N, 0 < k < j − γ}. We
explain now the construction in terms of geometric transformations. It will be
achieved by the composition of two directional scalings (see Fig. 4).

a2 a4a3 a3 a3 a3 a3 a3 a3 a3 a3 a5a1a1a1

Gg Gd

a2 a4a3 a3 a3 a3 a3 a3 a3 a3 a3 a5 a5 a5a1

Gg Gd

(a) Scaling in the up-left to down-right
direction with factor 1/α = 4/3

(b) Scaling in the up-right to down-left
direction with factor 1/β = 2/3

Fig. 4. Two scalings

Initiated from the unique symbol a2, the first transformation starts at point
(0, 0) and applies on its cone of consequences {(c, t) : |c| ≤ t}, i.e., the future
light cone of (0, 0) which encompasses the set of points impacted by (0, 0). It
leaves the line t = c stable and scales by the factor 1/α in the up-left to down-
right direction according to the map Mg =

(
(1+α)/(2α) (α−1)/(2α)
(α−1)/(2α) (1+α)/(2α)

)
. Observe that

the transformation is workable. Inside the cone, the neighborhood constraints
are satisfied. The right side of the cone is stable. And the computation on the
subword a+

1 occurring below the left side can easily be scaled.
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The second transformation is symmetric. Initiated from the unique sym-
bol a4, it starts at point (2j + 2, 0) and applies on its cone of consequences
{(c, t) : |c − 2j − 2| ≤ t}. It leaves the line t + c = 2j + 2 stable and scales
by the factor 1/β in the up-right to down-left direction according to the map
Md =

(
(1+β)/(2β) (1−β)/(2β)
(1−β)/(2β) (1+β)/(2β)

)
.

a2 a4a3 a3 a3 a3 a3 a3 a3 a3 a3 a5 a5 a5 a5 a5 a5a1a1a1a1a1a1a1a1a1

Gg Gd

aj
3 a

k/β
5a

(j−k)/α
1

Fig. 5. Composition of two scalings

Now, the composition of these two scalings applies inside the cone of conse-
quences of (j+1, j+1): {c, t) : |c−j−1| ≤ t−j−1}, intersection of the two cones
issued from a2 and a4. See Fig. 5. It corresponds to the affine transformation
with origin (j +1, j +1) and matrix M = Mg ×Md =

(
(α+β)/(2αβ) (α−β)/(2αβ)
(α−β)/(2αβ) (α+β)/(2αβ)

)
.

Thus the firing points {(1+2k+γ, 1+2j−γ) : k ∈ N, 0 < k < j−γ} being inside
the cone of (j +1, j +1) are mapped to the points {(1+ j − (j − k − γ)/α + k/β,
1+ j +(j −k−γ)/α+k/β) : k ∈ N, 0 < k < j −γ}. Among these points, some of
them match OCA’s sites providing k/β and (j −k −γ)/α are integers. Moreover
such a point, with (j−k−γ)/α, k/β ∈ N, corresponds to the output of the input
subword that begins at (2(j − k − γ)/α, 0) and ends at (2j + 2 + 2k/β, 0), i.e.,
the subword an

1a2a
j
3a4a

m
5 with n = (j − k − γ)/α, m = k/β. To conclude just

note that αn + βm + γ = j. �
Proposition 2. For any homomorphism h on A such that neither
link(h(a1), h(a2), h(a3)) nor link(h(a3), h(a4), h(a5)) holds, h(Lα,β,γ) is a real
time OCA language.

Proof. One has to be careful because real time OCA is not closed under mor-
phism: each recursively enumerable language can be written as the image of a
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real time OCA language by a morphism [4]. But here we play with the image of
languages with very simple structure.

First observe that h({an
1a2a

αn+βm+γ
3 a4a

m
5 : n < N0 or m < N0}) is a linear

CFL, so to show that h({an
1a2a

αn+βm+γ
3 a4a

m
5 : n,m ≥ N0}) is a real time OCA

language will suffice. According to Proposition 1, there exists a real time OCA
(Q,A, Qaccept, δ) which recognizes the language L = {an

1a2a
αn+βm+γ
3 a4a

m
5 :

n,m ≥ N0}. Following Okhotin [10], L is defined by the linear conjunctive
grammar G = (A, {S} ∪ {Aq : q ∈ Q}, S,R) where R contains the following
rules:

S → Aq for all q ∈ Qaccept

Aa → a for all a ∈ A
Aδ(g,d) → Agb & cAd for all g, d ∈ Q and all b, c ∈ A

Now let us make explicit, in the grammar rules, the bounded feature of the
language. All words are of shape a+

1 a2a
+
3 a4a

+
5 . We denote by Follow(i) the

set of j such that aj follows immediately ai in the expression a+
1 a2a

+
3 a4a

+
5 :

Follow(1) = {1, 2}, Follow(2) = {3}, Follow(3) = {3, 4}, Follow(4) = {5},
Follow(5) = {5}. Then we rewrite G to G′ = (A, {S}∪{(Aq, 1, 5) : q ∈ Qaccept}∪
{(Aq, i, j) : q ∈ Q\Qaccept, 1 ≤ i ≤ j ≤ 5}, S,R′) where R′ contains the following
rules:

S → (Aq, 1, 5) for all q ∈ Qaccept

(Aai
, i, i) → ai for all i = 1, · · · , 5

(Aδ(g,d), i, j) → (Ag, i, s)aj & ai(Ad, r, j) for all g, d ∈ Q and all i, j, r, s
with 1 ≤ i ≤ r ≤ s ≤ j ≤ 5, r ∈ Follow(i), j ∈ Follow(s)

To gain a better understanding of the last derivation rule, see Fig. 6, it depicts the
corresponding OCA transition. With such refinements, we get that LG′(Aq, i, j)
is the subset of LG(Aq) whose words begin with ai, ends with aj and which are
factors of a+

1 a2a
+
3 a4a

+
5 .

δ(g, d)

g d

ai ar · · · as aj

Fig. 6. Interpretation of the rule (Aδ(g,d), i, j) → (Ag, i, s)aj & ai(Ad, r, j) with i ≤ r ≤
s ≤ j, r ∈ Follow(i), j ∈ Follow(s)

In addition, to meet later requirements, we replace all rules (Aai
, i, i) → ai

with the rules (Aδ(ai1 ,··· ,aiN0
), i1, iN0) → ai1 · · · aiN0

for all words ai1 · · · aiN0
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of length N0 which are factors of aN0
1 a2a

N0
3 a4a

N0
5 . It does not alter the expres-

siveness of the grammar.

Finally, in replacing each symbol ai with its image h(ai), G is rewritten to
H = (Σ, {S} ∪ {(Aq, i, j) : q ∈ Q, 1 ≤ i ≤ j ≤ 5}, S,R′′) where R′′ contains the
following rules:

S → (Aq, 1, 5) for all q ∈ Qaccept

(Aδ(ai1 ,··· ,aiN0
), i1, iN0) → h(ai1 · · · aiN0

) for all words ai1 · · · aiN0
of

length N0 which are factors of aN0
1 a2a

N0
3 a4a

N0
5

(Aδ(g,d), i, j) → (Ag, i, s)h(aj)&h(ai)(Ad, r, j) for all g, d ∈ Q and all
i, j, r, s with 1 ≤ i ≤ r ≤ s ≤ j ≤ 5, r ∈ Follow(i), j ∈ Follow(s)

Clearly, h(LG(S)) ⊆ LH(S). Let us ensure that they are equal and, more specif-
ically, that LH(A, i, j) ⊆ h(LG(A, i, j)) for every variable (A, i, j). The proof is
done by induction on the height of the parse trees. The inductive assumption is
that all words generated within H by a tree of height h and root node (A, i, j)
are images by h of words generated within G by a tree of height h and root node
(A, i, j).

The base case. The trees of height 1 within H display the derivations
(Aq, i1, iN0) → h(ai1 · · · aiN0

) whereas their counterparts within G display the
derivations (Aq, i1, iN0) → ai1 · · · aiN0

.
The inductive step. We focus on the trees with root node (Aq, 1, 5) and omit

the ones with root (Aq, i, j) when i > 1 or j < 5 that are easier to handle.
Given any tree T within H of height h+1 > 1 and root (Aq, 1, 5). The root node
expands into two subtrees of height at most h according to some rule (Aq, 1, 5) →
(Ag, 1, s)h(a5)&h(a1)(Ad, r, 5) where δ(g, d) = q, s is 4 or 5 and r is 1 or 2.
By assumption, (Ag, 1, s) produces the image by h of a word an1

1 a2a
n2
3 a4a

n3
5

with n1 > 0, n2 > N0, n3 ≥ 0 and (Ad, r, 5) produces the image by h of a
word am1

1 a2a
m2
3 a4a

m3
5 with m1 ≥ 0,m2 > N0,m3 > 0. Hence the root node

produces h(an1
1 a2a

n2
3 a4a

n3+1
5 ) = h(am1+1

1 a2a
m2
3 a4a

m3
5 ). Next we may notice that,

in the proof of Lemma 1, the hypothesis that the first exponents n1 and m1 are
greater than N0 is not used, as well, (in handling the word backward) for the last
exponents nr and mr. Bearing in mind that neither link(h(a1), h(a2), h(a3)) nor
link(h(a3), h(a4), h(a5)) holds, all prerequisites to apply Lemma 1 are satisfied.
So n1 = m1+1, n2 = m2, n3+1 = m3. It follows that an1

1 a2a
n2
3 a4a

n3+1
5 is indeed

represented by a tree within G structured as T . �

4 Conclusion

Based on the precise characterization of the poly-slender CFL in terms of Dyck
loops given by Ilie, Rozenberg and Salomaa, we have shown that linear-slender
CFL are real time OCA languages. More than the result in itself, the approach
appears interesting. It mixes algorithmic constructions with grammar tools and
combinatoric properties: Starting from a real time OCA recognizing a specific
language, here a variant of Čuĺık’s one, we make use of Okhotin’s result to
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translate it in terms of a linear conjunctive grammar. Then in modifying the
grammar, we capture a wider set of real time OCA languages structured like the
starting one.

Now the challenge would be to show that poly-slender CFL are also real
time OCA languages, in other words, that all Dyck loops are real time OCA
languages. For that purpose, a key step would be to exhibit a generalization of
Čuĺık’s construction to handle languages of shape a0b

n1
1 a1b

n2
2 a2 · · · bnr

r ar where
the integers n1, · · · , nr are linear combinations of k integers and the symbols ai,
bi are distinct.
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