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Abstract Crowdsourcing has demonstrated its capability of supporting various
software development activities including development and testing as it can be seen
by several successful crowdsourcing platforms such as TopCoder and uTest. How-
ever, to crowd source large-scale and complex software development and testing
tasks, there are several optimization challenges to be addressed such as division of
tasks, searching a set of registrants, and assignment of tasks to registrants.Since in
crowdsourcing a task can be assigned to registrants geographically distributed with
various backgrounds, the quality of final task deliverables is a key issue. As the first
step to improve the quality, we propose a systematic and automated approach to
optimize the assignment of registrants in a crowdsourcing platform to a crowdsourc-
ing task. The objective is to find the best fit of a group of registrants to the defined
task. A few examples of factors forming the optimization problem include budget
defined by the task submitter and pay expectation from a registrant, skills required by
a task, skills of a registrant, task delivering deadline, and availability of a registrant.
We first collected a set of commonly seen factors that have impact on the perfect
matching between tasks submitted and a virtual team that consists of a selected set of
registrants. We then formulated the optimization objective as a fitness functionłthe
heuristics used by search algorithms (e.g., Genetic Algorithms) to find an optimal
solution.We empirically evaluated a set of well-known search algorithms in software
engineering, along with the proposed fitness function, to identify the best solution
for our optimization problem. Results of our experiments are very positive in terms
of solving optimization problems in a crowdsourcing context.
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1 Introduction

Crowdsourcing software engineering is gaining more and more attention these days
as increasing number of companies start looking for an innovative way to develop
software and conducting other software engineering activities such as testing. The
main reason is that the cost can be significantly reduced.Moreover some crowdsourc-
ing platforms such as Topcoder1 and UTest2 have shown their success and a large
number of registrants of these platforms form a large virtual pool for performing
tasks virtually. However, to compare with traditional software development prac-
tices, crowdsourcing software engineering is still at its early stage, which leaves a lot
of space for research. Especially large-scale software engineering on crowdsourcing
platforms are facing a lot of challenges, one of which is how to decompose, schedule
and integrate tasks such that the overall quality and productivity can be maintained
as they are developed in a traditional software development environment.

Towards supporting large-scale, crowdsourcing software engineering, in this
chapter, we propose a search-based approach, along with a series of experiments
to demonstrate how search-based software engineering can be applied to address
optimization problems in crowdsourcing software engineering. In this chapter, we
particularly focus on assisting platform managers to form a virtual team on a crowd-
sourcing platform for a submitted task such that the overall quality and productivity
of performing this task can be ensured to a certain extent. This is an optimization
problem as there are some constraints to find such a virtual team. For example, the
cost to hiring the team members of the virtual team should be within the budget,
the task should be completed within certain duration, and the task should match the
background of the virtual team members.

The core of Search Based Software Engineering (SBSE) are search algorithms
(e.g., Genetic Algorithms mimicking natural selection process) that can efficiently
find optimal solutions to the problems that have large complex search spaces. Typical
examples of such problems in software engineering include: optimal allocation of
requirements, optimal architecture design, test case generation, and test optimization.
According to the comprehensive review of Harman et al. [11], SBSE has been exten-
sively investigated to address various software engineering problems spanning from
requirements, testing to reengineering of a typical software development lifecycle.
Particularly for requirements, SBSE has been applied for various optimization prob-
lems such as requirements selection [6], prioritization [7], and assignment [10, 14],
with different objectives such as maximizing customers’/stakeholders’ satisfaction,
maximizing benefits/value and minimizing cost. For testing SBSE has been applied
to successfully address test generation and test optimization problems [1, 11]. To the
best of our knowledge, SBSE has never been applied to address optimization issues

1http://www.topcoder.com/.
2http://www.utest.com/.
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existing in crowdsourcing. In this paper, we mainly present a pilot study we recently
conducted to demonstrate that SBSE can also be applied for addressing optimization
issues in crowdsourcing.

The rest of paper is organized as follows. Section2 provides the overview of our
approach. Section3 presents a conceptual model that formalizes key elements of our
approach. In Sect. 4, our search-based crowdsourcing methodology and results of the
experiment we conducted to evaluate the fit-ness function, the key element of our
search-based crowdsourcing methodology. Section5 discusses the threats to validity
of our experiments and we conclude the paper and discuss the future work in Sect. 6.

2 Overview

In this section, we provide an overview of the approach we propose in this paper
and its extensions for future, as shown in Fig. 1. We classify stakeholders that are
relevant to a crowdsourcing platform into four groups: Task Submitter, Crowd, Plat-
form Manager and Virtual Team. A task submitter is a person who submits a task
through the crowdsourcing platform and looks for a virtual team (from the crowd) to
complete the task. A platform manager (employee of the crowdsourcing platform) is
assigned tomanage the task (including assisting the formation of the virtual team and
negotiation between the task submitter and the crowd) on the behalf of the crowd-
sourcing platform. The virtual team is formed by selecting a group of registrants of
the crowdsourcing platform who expressed their willing to complete the task via the
crowdsourcing platform.

Our objective is to propose a solution, integrated as part of the services provided
by the crowdsourcing platform, to assist the platform manage to form a virtual team
according to the requirements from the task submitter (provided as part of the task
description) at the same time satisfying the expectation of the virtual team members.
In other words, such a solution aims to find a match between the task submitter
side and the virtual team members. Doing so, we believe, will indirectly improve
the quality and productivity of software development activities via a crowdsourcing
platform.

In Fig. 1, we highlight the key features, properties and technologies to apply of
our solution. It is important to notice that such a solution is Generic in the sense that
it is not specific to a particular type of task that a crowdsourcing platform can provide
such as testing. Therefore, the solution can be widely applied in any crowdsourcing
platform, as far as we can see.

The first key component of our solution is to provide a set of specificationmethod-
ologies for task submitters to specify tasks (including budget, duration, task content,
requirements) and for an individual to define her/his profile (e.g., experience, skills).
Such specification methodologies ideally should be easy to use for end users (in our
context, task submitters, crowd and platform manager). Submitted tasks and crowd
profiles specified using these methodologies could then be automatically collected,
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Fig. 1 Overview

analyzed to serve other components of the platform such as the automated formation
of fitness functions.

After all these information are collected by the crowdsourcing platform, our solu-
tion is then ready to take a task submitted by a task submitter and automatically
propose a solution, which is a virtual team selected from the crowd. The platform
manager can then coordinate the virtual team and the task submitter to complete the
task. We rely on search-based optimization methodologies to automatically identify
a virtual team that is optimal in the sense that in the scope of the crowd, the profiles
of the team members of the virtual team fit the requirements of the task best. It is
worth noting that search algorithms work together with carefully designed fitness
functions, which are used to guide search algorithms towards the direction of find-
ing an optimal solution. Such methodologies are Automated, Scalable and Efficient.
Details of the search-based methodologies will be provided in Sect. 4.1. In case that
all the required information to derive a fitness function for search algorithm can be
extracted automatically from the task specifications and crowd profile specifications,
the derivation of a fitness function can be Automated.

It is important to notice that we are not aiming to replace platform managers.
Instead, we aim to assist platformmanagers to better conduct their jobs. For example,
the process of identifying a virtual team from the crowd to perform a task, if it is
required to be manually done by a platform manager, she/he has to go through the
registrants’ profiles, their bids and try to, mostly based on their experience, to form
a virtual team that can complete the task submitted and satisfies the constraints such
as budget, time schedule and required expertise. One can instantly understand that
if the task is complex enough to require a virtual team with more than 10 members,
different expertise, and tight schedule, which is often the case for supporting large-
scale crowdsourcing software development, manually forming such a virtual team
satisfying all these constraints is simply unmanageable. Therefore, this inspires us
to pro-pose an automated, scalable, intelligent, robust and efficient solution to assist
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platform managers. In addition, our solution can be easily customized for catering
needs of various crowdsourcing platforms executing different business models.

Ideally a crowdsourcing platform should be able to provide an effective mecha-
nism to support the negotiation between a task submitter and the crowd in terms of
price, schedule, etc. The common practice is that a platformmanager plays the role to
coordinate the negotiation or bargaining process without any intelligent support from
the platform, which might lead to low productivity and therefore less customer satis-
faction. We however propose a simulation-based, intelligent negotiation/bargaining
process. Based on our search-based methodologies, we can instantly find a solution
that satisfies a set of constraints that are defined based on the results of a round of
negotiation. A new negotiation implies updating this set of constraints and there-
fore triggers the execution of our search-based optimization methodologies to find
another solution satisfying the updated set of constraints.

Depending on the business model adopted by a crowdsourcing platform, it might
be useful to make the formation of virtual teams, the negotiation process transpar-
ent to task submitters and the crowd as well. Doing so might somehow lead to a
healthier (virtual) working environment on the crowdsourcing platform and there-
fore indirectly contributing to a higher quality and productivity of the development
process via the crowdsourcing platform.

3 Conceptual Model

In this section, we formally specify concepts that are related to the method-ologies
we propose as a conceptual model in UML class diagram (Fig. 2). Each concept
is presented as a class and the relationships among concepts are captured as UML
associations or generalizations. From the figure, one can notice that we can clas-
sify stakeholders into three types: Registrant, Submitter, and Platform-
ProjectManager.
Registrant registered her/himself on the crowdsourcing platform and spec-

ified her/his profile accordingly. Such a Profile should contain a list of infor-
mation that is required to evaluate an individual based on his/her programming
language skills, natural language skills and rank at the platform, experience, etc.
It is important to notice that in our conceptual model, we capture the classifications
of expertise, programmingLanguageSkill and naturalLanguage-
Skill of a registrant’s profile as two enumerations: ExpertiseType,
ProgrammingLanguageType and NaturalLanguageType. Such enumer-
ations/classifications can be easily extended for different purposes. rankAtPlat-
form is an attribute of Profile that represents a rank of a registrant maintained
by the platform. A platform provides a mechanism to rank a registrant according
to her/his performance, which is usually evaluated by task submitters, and other
registrants who worked with this particular registrant. Experience of a regis-
trant is calculated based on the types of tasks that the registrant has completed
via the platform. averagePaymentPer-Task is derived from the information
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Fig. 2 General conceptual model

maintained by the platform as it has records all the payments that have been done for
the registrant. successRate is another factor that should be accounted for when
evaluating a registrant. It represents the rate of the successful task delivered via the
platform.

Another important concept is Task, which captures the task Description,
Duration, etc. We defined an enumeration TaskType to classify different
types of tasks including Requirements, Architecture, Development,
Testing and Assembly, which can be easily extended when needed. When a
task submitter submits a task, as part of the specification of the task, she/he has
to also define requiredExpertise, requiredNaturalLanguageSkill,
requiredProgrammingLanguageSkill, which are classified using the enu-
merations (ExpertiseType, ProgrammingLanguageType and Natural-
LanguageType) also referenced by three attributes of a registrant’s profile. There-
fore, it is easy to understand that ideally an optimal solution should match required
expertise and skills of a task and profiles of the virtual team members. Besides
these six attributes of class Task, we also capture Region, IndustryDomain,
ApplicationType and DeliverableType, which are useful information
needed to form a virtual team to finish a task. Two other important pieces of infor-
mation that are associated to a task are ExpectedTeamSize and Budget, which
are provided by a task submitter while submitting a task, which are constraints in
terms of forming a virtual team. The size of a formed virtual team should be within
the range of the expected team size of a submitted task and the budget should be
sufficient to pay the virtual team members.
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Fig. 3 Conceptual model for testing

After a virtual team is formed, a project is then created in the platform. Such a
project should define the real cost to complete a task and time required to finish the
task. Such information is used by a fitness function used by search-based algorithms
to find an optimal solution. Bid plays an important role in most of existing crowd-
sourcing platforms such as TopCoder by linking a registrant to a specific task. Bids
submitted by registrants for a task are used to check whether the cost to form a virtual
team (i.e., the sum of the bids submitted by the virtual team members) is within the
budget range of the task submitter.

Note that the conceptual model presented in Fig. 2 is generic and therefore not
targeting to any specific type of tasks. However, since it is generic, we show an exam-
ple (Fig. 2) how it can be extended for conducting a specific task. In the context of
Fig. 2, our general conceptual model is extended for capturing concepts for conduct-
ing testing tasks. For example, crowdsourcing platform UTest is a platform focusing
on testing tasks only. From Fig. 3, one can notice that for testing, four new enumera-
tions are defined to extend four enumerations defined in Fig. 2. By doing so, we can
extend the generic platform into a specialized one by introducing more specialized
information such as TestingType. Besides introducing additional enumerations,
we also define two next concepts (i.e., TestingTask and Tester) to extend
generic concepts Task and Registrant.

4 Search-Based Crowdsourcing Methodologies

According to the comprehensive review of Harman et al. [11], Search Based Soft-
ware Engineering (SBSE) has been extensively investigated to address various soft-
ware engineering problems spanning from requirements, testing to reengineering
of a typical software development lifecycle. Particularly for requirements, SBSE
has been applied for various optimization problems such as requirements selection
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[6], prioritization [7], and assignment [10, 14], with different objectives such as
maximizing customers’/stakeholders’ satisfaction, maximizing benefits/value and
minimizing cost. For testing SBSE has been applied to successfully address test gen-
eration and test optimization problems [1, 11]. To the best of our knowledge, SBSE
has never been applied to address optimization issues existing in crowdsourcing. In
this section, we mainly present a pilot study we recently conducted to demonstrate
that SBSE can also be applied for addressing optimization issues in crowdsourcing
and it is promising in a future to integrate such as an optimization methodology as
part of crowdsourcing platforms.

Themain challenge in proposing a SBSE solution is to propose and assess a fitness
function for the intended optimization problem. In the rest of the section, we propose
the fitness function for our crowdsourcing problem and evaluate the fitness function
in conjunction with the following search algorithms, i.e., Genetic Algorithms (GAs),
(1+1) Evolutionary Algorithm (EA), Alternating Variable Method (AVM). Random
Search (RS)was used as the baseline to evaluate the performance of these algorithms.

4.1 Description on Selected Search Algorithms

The most common search algorithms that have been employed for SBSE are evolu-
tionary algorithms, simulated annealing, hill climbing (HC), ant colony optimization,
and particle swarm optimization [8]. Among these algorithms, HC is a simpler, local
search algorithm. The SBSE techniques using more complex, global search algo-
rithms are often compared with the techniques based on HC and random search to
determinewhether their complexity is warranted to address a specific SBSE problem.
The use of the more complex search algorithm may only be justified if it performs
significantly better than, for instance, random search.

To use a search algorithm, a fitness function needs to be defined. The fitness
function should be able to evaluate the quality of a candidate solution (i.e., an element
in the search space). The fitness function is problem dependent, and proper care needs
to be taken for developing adequate fitness functions. The fitness function will be
used to guide the search toward fitter solutions.

Below, we provide a brief description of the search algorithms that we used in the
pilot study and we will investigate more algorithms in the future. AVM was selected
as a representative of local search algorithms. GA was selected since it is the most
commonly used global search algorithm in SBSE [1]. (1+1) EA is simpler than GAs,
but in previous software testing work we found that it can be more effective in some
cases (e.g., see [3]). We used RS as the comparison baseline to assess the difficulty
of the addressed problem [1].
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4.1.1 Genetic Algorithms

Genetic Algorithms (GAs) are the most well-known [1] and are inspired by the
Darwinian evolution theory. A population of individuals (i.e., candidate solutions)
is evolved through a series of generations, where reproducing individuals evolve
through crossover and mutation operators. GAs are the most commonly used algo-
rithms and hence we do not provide further details; however an interested reader may
consult the following reference for more details [13].

4.1.2 (1+1) Evolutionary Algorithm

(1+1)EvolutionaryAlgorithm (EA) [9] is simpler thanGAs. In (1+1)EA, popu-lation
size is one, i.e., we have only one individual in the population and the individual is
represented as a bit string. As opposed to GAs, we do not use the crossover operator
but only rely on a bitwise mutation operator for exploring the search space. To
produce an offspring, this operator independently flips each bit in the bit string with
a probability (p) based on the length of the string. If the fitness of the child is better
than that of the parent (bit string of the child before mutation), the child is retained
for the next generation.

4.1.3 Alternating Variable Method

Alternating Variable Method (AVM) is a local search algorithm first introduced by
Korel [12]. The algorithm works in the following way: Suppose we have a set of
variables {v1, v2, vn}, we then try to maximize fitness of v1, while keeping the rest
of the variables constant, which are generated randomly. The search is stopped if a
solution is found; otherwise, if the solution is not found, butwe found aminimumwith
respect to v1, we switch to the second variable. Now, we fix v1 at the found minimum
value and try to minimize v2, while keeping the rest of the variables constant. The
search continues in this way, until we find a solution or we have explored all the
variables.

4.2 Problem Representation and Fitness Function

Our goal is to form a virtual team to complete a task within the budget specified
for a task by a submitter by accounting for an optimal matching between required
expertise, skills, and other relevant information with the team members’ experience,
expertise, skills and bids. The ultimate objective is to form a virtual team that should
work like in a real world in the sense that the real values of the virtual team should
be appreciated (reflected as payment received for the task) and deliver high quality
deliverables in a productive way. We believe, by doing so, the overall quality and
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productivity of software development via crowdsourcing platforms would be
improved. Moreover, we also expect this philosophy of forming a virtual teamwould
be very useful especially in the context of practicing large-scale software develop-
ment via crowdsourcing, as conducting large-scale software development tasks is
not anymore one person task. Teamwork in crowd should be taken into account for
managing and conducting this kind of tasks. The problem is more complicated if
we account for scheduling and dependencies among sub-tasks that are required to
be completed by more than one persons. To this end, a scalable, systematic task
scheduling, virtual team formation is a very important issue to tackle. In this paper,
we make a first step towards this direction.

Suppose we have a Crowd C with a set of m registrants C = {r1, r2, . . . , rm}.
A task submitter submits a task by defining the budget range: Budgetmin and
Budgetmax and team size range n: TeamSizemin and TeamSizemax .

TeamSizemin ≤ n ≤ TeamSizemax (1)

A solution would be a virtual team of registrants who bided for the task:
V = {r1, r2, rn}, where n ≤ m. Registrant i has a property defining his/her value
Valuei , which is calculated based on the four factors: SuccessfulRating(0 − 1),
CustomerRating(0 − 1), Experience(0 − 1), and PaymentHistory (average pay-
ment/task in the past).

Valuei =SuccessfulRating + CustomerRating + Experience + PaymentHistory

4
(2)

Notice that all these four values are normalized between 0 and 1. In the above
formula, we take average of all these four values and the resultant valuei will be
again between 0 and 1.

Each registrant i provides RBidi to complete the task. To form an optimal virtual
team, the solution must satisfy the following requirements: (1) Budget and team size
requirements; (2) A solution must provide a bid values for all registrants as much as
closer to their requested bids ( fbidGap(n)); (3) Each registrant in a virtual team must
be assigned a bid which is fair according to his/her experience, ratings, and payment
history ( fsimilarity(n)).

For optimization problem, our optimization parameter is Bidi corresponding to
registrant i . For the first requirement, for each registrant in a virtual team, a search
algorithm finds a bid value for each registrant (RBidi ≤ Bidi ≤ RBidi ) such that:

Budgetmin ≤ �n
i=1Bidi ≤ Budgetmax (3)

For the second requirement, we calculate fbidGap(n), whose formula is shown
below, where we try to make the Bidi as close as possible to RBidi for each regis-
trant.
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fbidGap(n) = �n
i=1nor(|RBidi − Bidi |)

n
(4)

In the formula below, nor() is a normalization function, which is calculated as
nor(x) = x/(x + 1). We adopted this normalization function from the literature and
has proven to be more robust than other normalization functions in the context of
search-based software engineering [2, 3].

For the third requirement, we calculate fsimilari t y(n), which is calculated by the
following formula:

fsimilari t y(n) = �n
i=1nor(|V aluei ∗ Budgetmax − Bidi |)

n
(5)

Based on the above requirements, our fitness function can be formulated as below:

fFitness(n) = ( fsimilarity(n) + xor( fbmax (n), fbmin(n)) + fbidGap(n))

3
(6)

where fbmax and fbmin are defined as follows:

fbmax (n) =
{

0, �n
i=1Bidi − Budgetmax ≤ 0

nor(�n
i=1Bidi − Budgetmax ), �n

i=1Bidi − Budgetmax > 0
(7)

fbmin(n) =
{

0, Budgetmax − �n
i=1Bidi ≤ 0

nor(Budgetmax − �n
i=1Bidi ), Budgetmax − �n

i=1Bidi > 0
(8)

4.3 Empirical Evaluation

This section discusses the experiment design, execution, and analysis of the eval-
uation of the fitness function with the four search algorithms for addressing our
optimization problem.

4.3.1 Experiment Design

The objective of our experiments is to evaluate proposed fitness function in con-
junction with the selected search algorithms in terms of solving our optimization
problem: Find a virtual team (v) of size n from crowd C of size m registrants, such
that v meets all budget and team size requirements of a project, each registrant must
obtain a bid that is closer to what was requested, and each registrant must obtain a
bid value that matches his/her ratings, experience, and payment history.
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4.3.2 Research Questions

In these experiments, we address the following research question:
RQ1: Are the search algorithms effective to solve our optimization problem, to

compare with RS?
RQ2: Among AVM, (1+1) EA and GA, which one fares best in solving our

optimization problem?

4.3.3 Selection Criteria of Search Algorithms and Parameter Settings

In our experiments, we compared four search algorithms: AVM, GA, (1+1) EA, and
RS (Sect. 4.1). AVM was selected as a representative of local search algorithms. GA
was selected since it is the most commonly used global search algorithm in search-
based software engineering [1]. We selected steady state GA with a population size
of 100 and a crossover rate of 0.75, with a 1.5 bias for rank selection. We used a
standard one-point crossover, and mutation of a variable is done with the standard
probability 1/n, where n is the number of variables. Different settings would lead to
different performance of a search algorithm, but standard settings usually perform
well [5]. (1+1) EA is simpler than GAs, but in previous software testing work we
found that it can be more effective in some cases (e.g., [3]). We used RS as the
comparison baseline to assess the difficulty of the addressed problem [1].

4.3.4 Artificial Problems Design

In addition, to empirically evaluate whether the fitness function defined in Sect. 4.2
really address our optimization problem, we created artificial problems inspired from
famous crowdsourcing platforms such as TopCode and uTest. Topcoder has 480,000
software developers, algorithmists, and digital designers, whereas Utest has 60,000
testers. Keeping this information, we created a crowd C of size 60,000 for our pilot
study. For each bidder in the crowd, we assigned random values for the four parame-
ters: Success f ul Rating, Customer Rating, Experience, and Payment History.
Each value ranges from 0 to 1.

After populating the crowd, we created projects with various characteristics. In
total, we created 6000 projects. The budget for each project ranged from 100USD C
10000USD with the increment of 100USD. Since each project can have a minimum
and maximum budget value, the minimum value was set to 10% less of the given
project budget and the maximum value was set to 10% more of the given project
budget. For example, if the given project is 100USD, then the minimum budget
would be 90 and maximum budget would be 110. For each project, we set a series
of number of team sizes, which are as: 2–4, 5–7, 8–10, 11–13, 14–16.
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For each project, we set the number of bidders into the following three classes:

• Low (20, 50, 80, 100)
• Medium (200, 300, 400, 500)
• High (1000, 2000, 3000, 4000)

For each bidder, we randomly generate a value for RBid from 0 to Budgetmax
teamSizemax

of a
project and tomake RBid fair based on the four parameters, i.e., Success f ul Rating,
Customer Rating, Experience, and Payment History, wemodified the generated
RBid as follows:

SuccessfulRating + CustomerRating + Experience + PaymentHistory

4

∗ Budgetmax

teamSizemax
(9)

Moreover, we restricted search algorithms to generate a bid value ranging from
0.5RBid–1.5RBid. The purpose was to avoid generating unrealistic bids values.

4.3.5 Statistical Tests

To compare the obtained results of the four search algorithms, theKruskal-Wallis test,
the Wilcoxon signed-rank test and the Vargha and Delaney statistics are used, based
on the guidelines for reporting statistical tests for randomized algorithms presented
in [3, 8].

To check if there are significant differences across the four algorithms, we first
performed the KruskalCWallis test. Obtained p-value indicates whether there is sig-
nificant difference among the four algorithms. However this test does not tell us
which algorithm is significantly different with which algorithm. Therefore, we fur-
ther performed the Wilcoxon signed-rank test to calculate a p-value for deciding
whether there is a significant difference between a pair of search algorithms. We
chose the significance level of 0.05, which means there is a significant difference if
a p-value is less than 0.05.

As investigated in [3], it is not sufficient to interpret results only using p-values. To
better interpret the results, the statistical test resultsmust be interpreted in conjunction
with an effect size measure, which helps determining practical significance of the
results. We used the Vargha and Delaney statistics ( Â12) to calculate the effect size
measure, which is selected based on the guidelines proposed in [3]. In our context,
given the fitness function FS ( fFitness(n)), Â12 is used to compare the probability of
yielding highest fitness value (low FS value) for two algorithms A and B. If Â12 is
equal to 0.5, the two algorithms are equivalent. If Â12 is more than 0.5, it means the
first algorithm A has higher chances of obtaining higher fitness value than B.
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4.3.6 Experiment Execution

For each of the 100 artificial problems, we ran experiments 100 times for each of
the four search algorithms for each problem. We let all the four algorithms run up to
2000 generations for each problem and collected final fitness value calculated in the
2000th generation. We used a PC with Intel Core Duo CPU 2.20 GHz with 4 GB of
RAM, running Linux Ubuntu operating system for the execution of experiment.

4.3.7 Results and Analysis

To answer our research questions, we compared the three search algorithms with RS
based on mean fitness values achieved after 2000 generations for each algorithm and
each of the 100 problems. Recall that each problem was repeated for 100 times to
account for random variation.

Table1 provides the Vargha and Delaney statistics. The column A > B means
the number of problems out of 100 for which an algorithm A has higher chances of
obtaining higher fitness value than B, A < B means vice versa, and A = B means
the number of problems for which there were no differences between A and B as
Â12 equals to 0.5.

Table2 summarizes results of the Wilcoxon signed-rank test for RQ1 and RQ2.
The column A > B means the number of problems out of 100 for which an algorithm
A was significantly better than B, A < B means vice versa, and A = B means the
number of problems for which there were no significant differences between A and
B based on p-values calculated by the Wilcoxon test.

Results for RQ1
To answer RQ1, we compared each search algorithm with RS, based on the mean
fitness values of 100 runs obtained for each problem. Results for RQ1 are shown in
the first three rows of Tables1 and 2.

AVMversusRS:Aswe can see inTable1,AVMperformed better thanRS for 4045
problems but for 1889 problems the results were statistically significant (Table2).

Table 1 Results for the Vargha and Delaney Â12 statistics

Pair of Algorithms
(A vs. B)

A > B A < B A = B

RQ1 AVM versus RS 4045 1953 2

(1+1)EA versus RS 2847 3149 4

GA versus RS 2883 3115 2

RQ2 AVM vs (1+1)EA 4104 1892 4

AVM versus GA 4115 1880 5

(1+1)EA versus GA 2873 3127 0
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Table 2 Results for the Wilcoxon signed-rank test at significance level of 0.05-artificial problems

Pair of algorithms (A
vs. B)

A > B A < B A = B

RQ1 AVM versus RS 1889 28 4083

(1+1)EA versus RS 143 186 5671

GA versus RS 151 150 5699

RQ2 AVM vs (1+1)EA 1931 14 4055

AVM versus GA 1881 19 4100

(1+1)EA versus GA 156 158 5686

RS performed better for 1953 problems as shown in the first row of Table1, and there
were no significant differences for 4083 problems.

(1+1) EA versus RS: (1+1) EA performed better than RS for 2847 problems
(Table1), 143 problems out of which were significantly better than RS (Table2).
There were no significant differences for 5671 problems (Table2).

GA versus RS: In case of GA, it performed better than RS for 2883 problems
(Table1). Out of 2883, for 151 problems GA was significantly better than RS
(Table2). For 5699 problems there were no significant differences (Table2).

Concluding Remarks: Based on the above results, we can answer RQ1 as follows:
AVM is significantly better than RS for finding an optimal solution for our prob-
lem. For other two algorithms (GA and (1+1) EA), we didn’t observe significant
differences than RS.

Results for RQ2
The results to answer RQ2 are presented in the last three rows of Tables1 and 2.
These results are also based on the mean fitness values obtained for each problem
for each algorithm after running the problem 100 times.

AVM versus (1+1) EA: AVM performed better than (1+1) EA for 4104 problems
(Table1), but for 1931 problems it was significantly better than (1+1) EA (Table2).
AVM performed worse than (1+1) EA for 1892 problems (Table2) and in 14 out of
these 1892 problems (1+1) EA was significantly better than AVM (Table2). There
were no significant differences between the algorithms for 4055 problems as shown
in Table2.

AVMversusGA:AVMperformed better thanGA for 4115 problems (Table1) and
out of these 4115 problems AVM performed significantly better than GA for 1881
problems (Table2). AVM performed significantly worse than AVM for 19 problems
(Table2).

(1+1) EA versus GA: Regarding the (1+1) EA versus GA pair, as we can see from
Table2 that (1+1) EA was significantly better than GA for 156 problems, whereas
GA was significantly better than (1+1) EA for 158 problems. For the rest of the
problems, there were no significant differences.

Concluding Remarks: Based on the above results, we can answer RQ2 as follows:
AVM is the best algorithm in terms of finding an optimal solution in our context and
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the rest of the algorithms performed worse than AVM and there were no significant
difference between the performance of the three algorithms.

Discussion
In this section, we provide an overall discussion based on the results of the experi-
ments.

We observed from the results that AVM is significantly better than RS in finding
an optimal solution (RQ1) and for the rest of the algorithms there are no significant
differences than RS. Among all the studied algorithms, AVM is significantly better
than the rest of the algorithms (RQ2).

The performance of algorithms can be argued based on their working. AVMworks
is a local search algorithm. If the fitness function provides a clear gradient towards
the global optima, then AVM will quickly converge to one of them, which might
be the case for our current context. On the other hand, (1+1) EA puts more focus
on the exploration of the search landscape. When there is a clear gradient toward
global optima, (1+1) EA is still able to reach those optima in reasonable time, but
will spend some time in exploring other areas of the search space. This latter property
becomes essential in difficult landscapes where there are many local optima. In these
cases, AVM gets stuck and has to restart from other points in the search landscape.
On the other hand, (1+1) EA, thanks to its mutation operator, has always a non-zero
probability of escaping from local optima. Similar is the case for GA, which tries to
explore (mutation operator) and exploit (crossover) the search space and hence may
require more generations. By increasing the number of generations, we expect that
the performance of GA and (1+1) EA can be improved.

Based on the above results, we can conclude that in our current context AVM
has the ability to solve a wide range of problems. However, more experiments are
needed in the future to thoroughly evaluate our fitness function with the real data
from crowdsourcing platforms.

5 Threats to Validity

To reduce construct validity threats, we chose an effectiveness measure called fitness
value, which is comparable across all four search algorithms (AVM, (1+1) EA, GA
and RS. Furthermore, we used the same stopping criterion for all algorithms, i.e.,
number of generations. This criterion is a comparable measure of efficiency across
all the algorithms.

Themost probable conclusionvalidity threat in experiments involving randomized
algorithms is due to random variations. To address it, we repeated experiments 100
times to reduce the possibility that the results were obtained by chance. Furthermore,
we performed the Wilcoxon test to compare the algorithms mean fitness values of
100 runs and determine the statistical significance of the results. We chose this test
since it is appropriate for the continuous data [4], thus matching our situation. To
determine the practical significance of the results obtained, we measured the effect
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size using the Â12 values, which is recommended to be used in conjunction with the
Wilcoxon test to better interpret the results [3].

A possible threat to internal validity is that we have experimented with only
one configuration setting for the GA parameters. However, these settings are in
accordance with the common guidelines in the literature and our previous experience
on testing problems. Parameter tuning can improve the performance ofGAs, although
default parameters often provide reasonable results [5].

One common external validity threat in the software engineering experiments
is about generalization of results. To deal with this, we conducted an empirical
evaluation of our proposed fitness function using 6000 artificial problems of varying
complexity.

6 Conclusion and Future Work

To compare with traditional software engineering development, crowdsourcing soft-
ware engineering, especially for developing large-scale software, is still far away
from being mature. In this paper, we propose a search-based approach to make a
very first step toward this direction by providing an automated, scalable and intelli-
gent solution to assist platform managers to find an optimal solution when forming a
virtual team for a submitted task via a crowdsourcing platform.We conducted a pilot
study and results show that AVM is a promising search algorithm, together with the
defined fitness function, can efficiently find an optimal solution for our problems.
In the future, we plan to conduct more experiments based on real data that can be
collected from existing crowdsourcing platforms such as Topcoder and UTest. We
also plan to provide an integrated solution starting from specifying tasks and pro-
files of registrants, automatically collecting data for search, until providing feedback
to end users such as registrants, platform managers and submitters in a transparent
manner. By doing so, we hope, in certain extent, we can improve the quality and pro-
ductivityranking, repuation and reward system of the current practice of performing
soft-ware engineering tasks via crowdsourcing platforms.
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