
The Five Stages of Open Source Volunteering

Dirk Riehle

Abstract Today’s software systems build on open source software. Thus, we need
to understand how to successfully create, nurture, and mature the software devel-
opment communities of these open source projects. In this article, we review and
discuss best practices of the open source volunteering and recruitment process that
successful project leaders are using to lead their projects to success. We combine the
perspective of the volunteer, looking at a project, with the perspective of a project
leader, looking to find additional volunteers for the project. We identify a five-stage
process consisting of a connecting, understanding, engaging, performing, and lead-
ing stage. The underlying best practices, when applied, significantly increase the
chance of an open source project being successful.

1 Introduction

Open source software has become an important part of the Internet and today’s
enterprises. There is little software left that does not at least include some open
source components. Thus, understanding how open source projects work and how
to utilize them is a critical capability of software product companies who wish to
crowd-source some of their development work.

Open source software projects can be split into community open source and com-
mercial open source software projects [1, 2]. Community open source software is
software that is owned by a community, typically by way of distributed copyright
ownership or by ownership through a non-profit foundation. Commercial open source
software development is curated by a single company,whichmaintains the ownership
of all relevant intellectual property. According to Mickos, commercial open source
rarely receives and incorporates code contributions from their user communities [3];
however, community open source does.

D. Riehle (B)

Computer Science Department, Friedrich-Alexander-Universität Erlangen-Nüremberg,
Erlangen, Germany
e-mail: dirk@riehle.org; dirk.riehle@fau.de

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_2

25



26 D. Riehle

Community open source software projects rely on volunteerwork to a (significant)
extent. Projects which are more mature and relied upon by companies may gain
commercial support, which reduces reliance on volunteers [4]. Commercial support
can take the form of direct financial contributions, which allows foundations to
acquire employees. Also, companies may assign their own employees to contribute
to the project. Leaders of new and small community open source projects cannot
expect commercial support, and must learn how to recruit and retain volunteers if
they want their project to grow.

In this article we review best practices of open source community management,
specifically, how to find, keep, and grow volunteers. The article is based on a litera-
ture review and observation of existing open source projects. We identify five stages
of the open source volunteering process which we call the connecting, understand-
ing, engaging, performing, and leading stages. For each stage, we discuss the best
practices of the actors of that stage. In addition, we discuss the underlying guiding
principles that we found to be common to all the practices.

Thus, this article makes the following contributions:

• It defines guiding principles underlying the volunteering process;
• It presents a five-stage model of the open source volunteering process;
• It collects and catalogs best practices applicable to each stage.

The article is structured as follows. Section 2 presents the guiding principles,
Sect. 3 introduces the five-stage process and discusses its properties. Section 4 walks
through the stages in detail, discussing best practices and supporting tools. Related
work as relevant to the different sections is discussed in place. Section 5 concludes
the article.

2 Guiding Principles of Open Source Projects

In reviewing the literature (as referenced in place) and working with open source
communities as well as from prior work we identified the following three guiding
principles project leaders need to understand for an effective recruiting process:

• Recruiting is Investment [5, 6]
• Open Communication [5, 6]
• Open Collaboration [5, 7]

We discuss these principles in turn.

2.1 Recruiting is Investment

According to Fogel, every interactionwith a user is a chance to recruit a newvolunteer
[6]. At the same time, according to Fitzpatrick and Collins-Sussman, the scarcest



The Five Stages of Open Source Volunteering 27

resource that a project has is attention and focus [8]. In combination, this leads to
the primary guiding principle of open source volunteer recruiting:

• Recruiting volunteers is a project investment

Recruiting volunteers is obviously necessary for a project to grow. However, the time
spent on recruiting takes attention and focus away from actual software development.
Spending time on recruiting should therefore be viewed as an investment to be made
wisely.

Investments may or may not work out. The time spent on a potential volunteer
may or may not be wasted. Thus, if time is spent on recruiting, it should be spent
well, and it should be spent in a form commensurate with the likelihood of success,
in this case, of finding a new volunteer. The best practices of Sect. 4 all embed this
principle.

2.2 Open Communication

Open source projects follow a particular style of communication which helps support
a distributed volunteer community. Fogel, for example, argues that communication
styles portray project members (whomay never havemet in person) to each other [6].
He argues for general principles (all communication should be public) and very
specific principles (no conversations in the bug tracker). Using this and other sources,
we derived the following four fundamental maxims of open communication that
characterize open source projects and the way project members communicate with
each other and potential volunteers:

• Public. All communication should be public and not take place behind closed
doors; any private side-communication is discouraged.

• Written. All communication should be in written form; if this is not possible, any
relevant communication should be transcribed or summarized in writing.

• Complete. Communication should be comprehensive and to the extent possible,
complete. Assumptions are made explicit and key conclusions are summarized.

• Archived. All communication should get archived for search and later public
review. Thus, previous conversations are available for posterity.

Taken together, these maxims create transparency and discipline communication,
leading to more effective distributed collaboration. Although not all communication
within a project will embody all four maxims, a project which is motivated to be
transparent and grow its community will make the according effort, for example, by
transcribing or summarizing non-email forms of communication in order to provide
a public archive.

Public communication ensures that all members of the community have the oppor-
tunity to participate, which creates buy-in and trust. Written communication enables
asynchronous, distributed work. People who are less fluent in the language used for
communication also benefit from having additional time to absorb the meaning [9],



28 D. Riehle

which makes the project accessible to a wider audience. Complete communication
reduces opportunities for misunderstanding and ensures that the community shares a
common understanding of objectives. Archiving increases transparency by ensuring
that decisions can be understood in context.

Many of these concepts reinforce one another. Writing enables archiving, as cur-
rent search technology is text-based. The need to derive meaning from archives
encourages more complete communication. Archives are more comprehensive and
comprehensible if all conversation is public.

2.3 Open Collaboration

No two open source projects follow the same software development process. How-
ever, in prior work and by way of project reviews, we identified three underlying
fundamental components of open source collaboration [7]. These three maxims of
open collaboration are:

• Egalitarian. Everyone may join a project, no principled or artificial status-based
barriers to participation exist.

• Meritocratic. Decisions are made based on themerits of the arguments, and status
is determined by the merits of a person’s contributions.

• Self-organizing. Processes adapt to people rather than people to processes.

Related work frequently subsumes the first two maxims under the single concept of
meritocracy. We find it helpful to distinguish between them: Openness in the context
of egalitarianism means that all people have the opportunity to participate, whereas
openness in the context of meritocracy ensures that all work is evaluated on the basis
of its intrinsic value.

These concepts are in stark contrast to traditional work inside companies. Projects
are not egalitarian: Employees are assigned to work on them and cannot choose to
work on other projects. Decisions are not necessarily made on the basis of the merit
of the arguments, but are ultimately the choice of the person with the greatest power.
Finally, processes in a large company are typically defined by a central department
and employees are expected to adapt their work processes to the company environ-
ment.

Open source projects are different: It is recognized that any potential volunteer
could become a valuable resource. Thus, an effective project process must be open
to accepting volunteers (egalitarianism), must recognize quality regardless of the
source (meritocracy), and allow processes to develop according to the needs of the
community (self-organizing). The five stage process of open source volunteering
described in the following Section is based on the three guiding principles of the
open source volunteering process: recruitment is investment, open communication,
and open collaboration.



The Five Stages of Open Source Volunteering 29

3 The Five-Stage Volunteering Process

In [10], Behlendorf illustrates a typical example of how a developer might join a
project, rise through the ranks, and become a project leader. The developer

1. needs to solve a problem,
2. searches the web for appropriate software,
3. finds a matching project,
4. checks out the project,
5. gives the project a try and is happy,
6. finds a bug and reports it,
7. makes a first contribution,
8. engages in a conversation,
9. keeps contributing,
10. receives a vote of trust, and
11. ultimately leads the project.

By correlating this 11-step process with Fogel’s work [6] and by aligning it with
the Onion model of roles in open source software development [11], we were led to
a simpler and denser five stage model of the open source volunteering process than
the one proposed by Behlendorf. This model is shown in Fig. 1.

An innovation of this model is the addition of the two complementary views of
volunteer and project (leader), which lead to complementary but mutually supporting
best practices and activities. The stages are defined in the following way:

• Stage 1: Connecting. In this stage, a potential volunteer stumbles over a project
by lucky chance or, after searching for something like it, finds the project through
a search engine. The project needs to prepare for this to happen, which requires
marketing itself through appropriate channels and at appropriate portals.

• Stage 2: Understanding. In this stage, once a potential volunteer is looking at a
project’s website, the website needs to draw him or her in. Using a variety of best
practices, the project helps the visitor quickly understand what the project is about
and whether it should be of interest to them.

Fig. 1 A five-stage model of the open source volunteering process



30 D. Riehle

• Stage 3: Engaging. In this stage, a potential volunteer is inspired to engage with
the project, for instance by installing the software or joining a mailing list. The
project strives to welcome users to the community and direct them toward the next
stage by providing information of simple ways to volunteer.

• Stage 4: Performing. In this stage, a volunteer contributes to the project. The
project community needs to be receptive to initial efforts by reacting quickly to
contributions and creating conversations to improve quality. The project needs to
guide users towards becoming regular contributors.

• Stage 5: Leading. In this stage, the volunteer accepts responsibility for the direc-
tion of the project or community. The project must have a mechanism for identi-
fying potential leaders and making decisions on their promotion to leader status
as well as for communicating this clearly.

Not all volunteers pass through all stages, but stages can only be taken one after
another. Each subsequent stage will be reached by fewer volunteers. The best prac-
tices described in the next section support each stage. For a project, they help increase
volunteer commitment. When recruitment is viewed as an investment, best practices
are aligned with promoting long-term involvement. For a volunteer, best practices
advise on how to achieve goals, from finding a project that fulfills a need to gain-
ing recognition within a project. We now describe each stage in detail, along with
selected best practices from each perspective and tools to support them.

4 Best Practices and Supporting Tools

A best practice “is a broadly-accepted, typically informally-defined, method for
achieving a particular goal that is considered superior to most other knownmethods”
(author’s adaptation of the Wikipedia entry on “best practice” [12]). Thus, a best
practice is amethod reflecting the state-of-the-art as applicable in a particular context.

The following best practices have been derived from the respective references,
in particular [6, 8, 10, 13–15]. They have been grouped according to the phases
described in Sect. 3 and divided into the two perspectives described there: the vol-
unteer’s view and the project leader’s view. They are based on the application of the
three principles of open source volunteering described earlier in Sect. 2. Due to the
large number of sometimes mundane best practices, not all are discussed in detail.

The principle which informs all best practices from the project view is that
of recruitment as an investment. In a project, time is the scarcest resource, and
recruitment takes time. Increasing the long-term return on time invested [6]—or
encouraging volunteers to move to each successive phase—is therefore the objective
of the project’s leadership. Open communication and open collaboration are also
reflected in the best practices; they are the underlying tenet that make open source
projects work.

A volunteer is not a passive subject to be recruited, but an individual with objec-
tives in mind. At each phase, a volunteer wants to ensure maximum value for the
investment, which is where best practices come into play. The volunteer who is pre-
pared will achieve better results than one who fails to consider the project’s needs.



The Five Stages of Open Source Volunteering 31

Fig. 2 Best practices of Stage 1, the Connecting stage

4.1 Stage 1: Connecting

Figure 2 displays all best practices of Stage 1, the Connecting stage. Volunteers
can be separated into two categories, those that stumble onto the project by luck,
and those that search for a solution to a problem they have. Project best practices
can be split into active outreach being performed and passive inflow that needs to
be prepared for. Two terms stick out among the project best practices, channel and
portal:

• An open source project channel is a communication channel for a project to reach
potentially interested parties, in particular volunteers. Examples of such channels
are:

– Social media channels like Facebook or Twitter
– Targeted communication channels like Slashdot or Hacker News
– Specific open source conferences like OSCON or ApacheCon

• An open source project portal is a portal website dedicated to open source projects.
Examples of such websites are:

– Project hosting sites like SourceForge or Github
– Meta-sites like Freshmeat or Open Hub

Channels are mostly used for active outreach and when the project has a story to tell,
for example, the initial release. Portals are used for passive inflow where searchers
can find them when they are seeking a solution.

A project should choose a good name that is easy to remember and ideally indica-
tive of the project’s purpose. As an alternative to descriptive names, wholly artificial



32 D. Riehle

names may serve the project equally well. Any communication then should stick to
that name and use it consistently. The relevant channels and portals (see above) need
to utilized repeatedly, consistently and predictably. Any communication should be
matter-of-fact rather than hyperbole-projects are trying to create a long-term reputa-
tion, not a short spike of attention followed by disappointment over the hyperbole.
The most common form of communication is the announcement of new releases of
the software, followed by announcements over major developments in the project
community or sponsorship.

4.2 Stage 2: Understanding

In the second stage, the emphasis is on communicating the project’s purpose to a
volunteer who wants to quickly learn if the project answers his or her need. Figure 3
lists relevant best practices.

Various pieces of information need to be easily accessible, both in terms of finding
and understanding the information. A first step is to have a clear mission statement
that spells out the project’s purpose and does so in a highly visible place, for example,
the front page of the project’s website on a software forge. Examples and screen-shots
should be easily accessible to make it straightforward for visitors to assess what the
software does in practical and tangible terms (short of downloading and installing
the software, which would be the next step). Words are only so good-examples and
screen-shots sometimes communicate more clearly.

Many visitors will also want to know about related project information like soft-
ware licenses or (assumed) quality of the software (by way of development status).
Thus, a project should display prominently which open source license it is using,
what state of development it is currently in, and what future expected develop-
ments are, including upcoming releases and key new features and functionalities. The

Fig. 3 Best practices of Stage 2, the Understanding stage



The Five Stages of Open Source Volunteering 33

visitor, who wants to try the software, may need user documentation, which should
therefore be provided.

Visitors have questions or may want to become volunteers, and hence a project is
well advised to spell whether volunteers are welcome and what the project rules are
so that someone considering to participate will know what they are getting into.

4.3 Stage 3: Engaging

In the engagement stage, the emphasis is on facilitating communication between the
project and the volunteer. Figure 4 lists relevant best practices.

It needs to be clear (and clearly displayed) how current project members can be
reached. At this stage, the project may only be perceived as an anonymous entity with
no particular face. Potential volunteers need starting points, for example, forums or
mailing lists where they can ask questions.

A first response should be welcoming of a new potential volunteer, and any pos-
sible rudeness, whether incidental or deliberate, needs to be stopped immediately.
It is paramount that any project member redirects any privately posed questions to
a public forum and avoids answering questions in private; this would be a highly
inefficient use of their time. Visitors need to understand that they consume time
and hence should do their homework or should be guided to do their homework
before asking. Doing one’s homework implies reading existing materials to avoid
redundant questions. Also, visitors have to learn to ask in public so that everyone can

Fig. 4 Best practices of Stage 3, the Engaging stage



34 D. Riehle

learn from their considerations and questions. Communication, both on the visitor
and the project side, should bematter of fact and content focused, trying to help solve
the problem or question at hand.

For more advanced visitors, or users of the software, it should be possible to learn
about simple tasks that the project would benefit from. The project should spell out
such tasks, even if writing them down may cost nearly as much time as performing
them, because simple tasks provide a mechanism to engage volunteers. Similarly,
there should be incremental tasks to be picked up, which will allow volunteers to
work with existing developers rather than alone. Incremental tasks also introduce
volunteers to existing technical aspects of the project.

A lot of things can go wrong when setting up a project for engaging potential
volunteers, and appropriate attention needs to be paid so that tools and project arti-
facts like task and requirements lists are accessible, and that developers can find
appropriate guidelines and documentation.

Underlying all these project best practices is the guiding principle of making it
as easy as possible for a volunteer to make a first contribution. Getting to that first
contribution is the single most important hurdle a project has to overcome. Thus,
many of the best practices work hand-in-hand to make that first contribution happen.

4.4 Stage 4: Performing

The performance stage is when the volunteer contributes to the project. It can be
subdivided into a first contribution and later more regular contributions. Figure 5
lists appropriate best practices for project leaders.

A volunteer’s first contribution is like dipping a toe into the water. Depending on
how the experience feels, the volunteer may not come back. Thus, it is important to
ensure that this first contribution becomes a positive experience. For one, a contri-
bution should be well received and reacted to. Nothing is worse than no reaction, for
example, by letting a patch sit idle. The appropriate reaction to a patch is to turn it
into a conversation, not only to say thanks, but also to encourage further contribu-
tions by pointing the volunteer to related issues. In all but the most simplest patches
or contributions, the volunteer may have to be guided to reworking the contribution,
for example, to ensure compliance with the project’s programming guidelines. Code
review of a patch submission is a general best practice, but also shows the volunteer
that their contribution is being taken serious, even if it leads to a request to fix a
problem with the submission. Finally, after a successful contribution, it is critical to
pay credit to who credit is due and list the volunteer as a contributor to the project.

Volunteers who have become regular contributors may then be willing to pick up
other tasks outside their original interests. Still, project leaders should track and play
to volunteer interests when asking them for help, for example, to work on a particular
feature. Volunteers, who have bought into the project are frequently willing to pick
up work that they originally did not join the project for. This includes unloved tasks
like project documentation and is not restricted to technical tasks alone.



The Five Stages of Open Source Volunteering 35

Fig. 5 Best practices of Stage 4, the Performing stage

A project leader who asked a contributor to perform some work and received a
commitment needs to fulfill a managerial role now. For example, if the contributor
is not providing the promised feature, the project leader may have to inquire about
progress, nudging the contributor along (and making mental notes as to whether
this was a good request that matched the volunteers interests). Sometimes, a project
may run into difficult people. “Difficult” or even “poisonous” people, according to
Fitzpatrick and Collins-Sussman, may waste a projects time or split and even ruin a
project [8]. Best practices to prepare for the problem are to

1. build a healthy community and
2. document all decisions.

It is necessary then to detect the problem: Difficult people typically don’t show
respect, miss social cues, are overly emotional, and make sweeping claims not based
on any data. Best practices to handle the problem are to

1. not engage them,
2. ignore them if possible,
3. remove them from the project if necessary.



36 D. Riehle

General engineering management advice applies as well. The system software
architecture needs to match its social structure, which typically implies a well-
componentized structure so that developers can work independently of each other
and in a distributed fashion. The requirements and open tasks in contrast should
be feature-oriented, as completing a feature is a major motivation for a developer
because it provides meaning to the work being performed.

Unlike in traditional (non-open) contexts, however, the principles of open com-
munication and open collaboration need to be maintained. This requires appropriate
consensus-oriented and merit-based discussion as to decisions to be taken. Voting to
make a decision is a last resort to resolve a conflict and should be used rarely.

4.5 Stage 5: Leading

In the final phase, the volunteer becomes a project leader and takes responsibility for
the best practices of the project view for the earlier phases. Figure 6 shows some of
the best practices at this level.

At this stage, a project leader is basically a manager, but without the power found
inside traditional organizations. He or she has to rely on the power of persuasion
and goodwill that contributors have developed towards the project. With increasing
commercialization and paid-for participation in open source, some of these chal-
lenges become less serious, and developers may need less intrinsic motivation. Still
it remains good practice to personallymotivate developers through their work beyond
the possible salary that an employer may be paying for their open source work.

The power of leadership rests on setting a good example by taking responsibility
and acting accordingly, by praising other people’s work and acknowledging their
contributions. Additional actions may be necessary to help contributors outside the
project, for example, if they are performing open source work on company-time

Fig. 6 Best practices of Stage 5, the Leading stage



The Five Stages of Open Source Volunteering 37

without the employer having a particular interest in the project. Then, the open source
project leadermay have to helpmotivatewhy the developer’swork ultimately benefits
his or her employer.

The open source project itself needs management in that contributors find the
work formally acknowledged in the form of traditional credits. Contributors are also
having a form of open source career. Taking steps in this career, most notably from
contributor to committer, may be touchy subjects, and are one of the few discussions
that the existing project leaders may have to decide privately and not in the public
eye. This is justified, because such a discussion is typically more about the social
aspects of working with the to-be-promoted person rather than his or her technical
capabilities. In case of a positive decision, the promotion needs to be announced
publicly and documented accordingly so that everyone in the project knows.

5 Conclusion

This article first identified the three guiding principles of open source projects. Vol-
unteers are the lifeblood of an open source project, and an effective recruiting process
considers all three principles.

First, recruiting is an investment: time and effort are invested in order to yield
long-term results. Second, open communication facilitates the volunteer process by
creating transparency. Third, open collaboration opens the recruitment process to
any potential volunteer and allows them to contribute to their fullest extent.

A model of five phases of engagement is presented. This model looks at the
different levels of volunteer commitment from both the perspective of the volunteer
and of the project.

The three volunteering principles are used to advance a number of best practices
which are tied to the five stages of engagement. At each phase—connecting, under-
standing, engaging, performing and leading—there are objectives and best practices
for both the volunteer and the project, as represented by its leadership. The best
practices are derived from existing literature and observation.

Acknowledgments I would like to thank Ann Barcomb and the anonymous reviewers for helpful
comments that improved the paper.

References

1. Riehle, D.: The economic motivation of open source software: stakeholder perspectives. Com-
puter 40(4), 25–32 (2007)

2. Riehle, D.: The economic case for open source foundations. Computer 43(1), 86–90 (2010)
3. Mickos, M.: Open for business: building successful commerce around open source, (2010)
4. Riehle, D. Riemer, P. Kolassa, C. Schmidt, M.: Paid vs. volunteer work in open source. In: 47th

Hawaii international conference on system sciences (HICSS), pp.3286–3295, January 2014



38 D. Riehle

5. Riehle, D.: The open source knowledge sharing and volunteering process, (2011)
6. Fogel, K.: Producing Open Source Software. O’Reilly, Farnham (2005)
7. Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh, B.,

Odenwald, T.: Open collaboration within corporations using software forges. IEEE Softw.
26(2), 52–58 (2009)

8. Fitzpatrick, B., Collins-Sussman, B.: How open source projects survive poisonous people,
(2008)

9. Carmel, E., Tija, P.: Offshoring Information Technology. Sourcing and Outsourcing to a Global
Workforce. Cambridge University Press, Cambridge (2006)

10. Behlendorf, B.: How to contribute to open source projects, (2011)
11. Crowston, K., Howison, J.: The social structure of free and open source software development.

First Monday 10(2) (2005). First Monday, Special Issue # 2: Open Source—3 October 2005
The social structure of free and open source software development (originally published in
Volume 10, Number 2, February 2005)

12. Wikipedia. Definition of Best Practice
13. Bacon, J.: The Art of the Community. O’Reilly, Farnham (2012)
14. Delacretaz, B.. Open source collaboration tools are good for you, (2009)
15. Gabriel, R., Goldman, R.: Innovation Happens Elsewhere. Elsevier (2005)


	The Five Stages of Open Source Volunteering
	1 Introduction
	2 Guiding Principles of Open Source Projects
	2.1 Recruiting is Investment
	2.2 Open Communication
	2.3 Open Collaboration

	3 The Five-Stage Volunteering Process
	4 Best Practices and Supporting Tools
	4.1 Stage 1: Connecting
	4.2 Stage 2: Understanding
	4.3 Stage 3: Engaging
	4.4 Stage 4: Performing
	4.5 Stage 5: Leading

	5 Conclusion
	References


