Social Clouds: Crowdsourcing Cloud
Infrastructure

Kyle Chard and Simon Caton

Abstract Software crowdsourcing is becoming an increasingly viable model for
creating production software addressing every aspect of the software development
lifecycle. However, as software development processes become yet more complex
requiring dedicated systems for development, testing, and deployment, software
crowdsourcing projects must also acquire considerable infrastructure in order to
facilitate development. We propose the use of an infrastructure crowdsourcing model,
termed a Social Cloud, to facilitate a user-contributed cloud fabric on which software
development services and systems can be hosted. Social Clouds are motivated by the
needs of individuals or groups for specific resources or capabilities that can be made
available by connected peers. Social Clouds leverage lessons learned through vol-
unteer computing and crowdsourcing projects such as the willingness of individuals
to make their resources available and offer their expertise altruistically for “good
causes” or in exchange for other resources or payment. In this chapter we present
the Social Cloud model and describe how it can be used to crowdsource software
infrastructure.

1 Introduction

Software crowdsourcing [33, 44] is a new approach to software engineering in
which individual tasks of the software development lifecycle such as coding, deploy-
ment, documentation and testing are outsourced to a potentially unknown group
of individuals from the general public. Building upon the wide-spread adoption
of crowdsourcing, which focuses on unskilled or semi-skilled participants collec-
tively achieving a given goal, software crowdsourcing further extends this model
by requiring sophisticated coordination of expert users who together—knowingly or

K. Chard (X))
Computation Institute, University of Chicago and Argonne National Laboratory, Lemont, USA
e-mail: chard @uchicago.edu

S. Caton
Karlsruhe Service Research Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: simon.caton @kit.edu

© Springer-Verlag Berlin Heidelberg 2015 191
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_11

192 K. Chard and S. Caton

unknowingly—participate in an orchestrated workflow. This model moves away from
traditional software development approaches towards a decentralized, peer-based
model in which open calls for participation are used to accomplish tasks.

Software crowdsourcing shows great promise as a model for developing produc-
tion software without requiring dedicated teams of developers. Software crowdsourc-
ing projects cover a wide array of efforts ranging from contribution to AppStores
(e.g. Apple AppStore or Google Play) through to individual fine grained contests
in tools such as TopCoder.! In TopCoder users set challenges (e.g., programming,
design or testing) along with a prize, deadline and requirements for completing the
challenge. Other users can then discover and accept challenges. Upon completion a
winning contribution is selected and the winner is rewarded. In this case, participants
are motivated by monetary rewards; however in other crowdsourcing scenarios they
may also be motivated by other factors such as altruism or standing in the community.

Like any software development model, software crowdsourcing requires signif-
icant computing infrastructure for all stages of the software development lifecycle.
For instance, storage resources are required for code repositories, databases, test
datasets, and documentation. Compute resources are required for testing, continuous
integration, and hosting of services. These requirements are in stark contrast to the
infrastructure requirements of other crowdsourcing models which typically require
only minimal infrastructure to track tasks and results across many thousands of users.
Existing crowdsourcing approaches will not scale to the sophisticated requirements
of software crowdsourcing. In a crowdsourced environment questions arise over who
should operate and maintain such infrastructure. Due to the collaborative nature of
most software development processes it is infeasible to operate all infrastructure on
individuals’ machines, rather, collaborative infrastructure is required so that all users
can access these systems.

Recent work has explored the use of cloud based approaches to support the require-
ments of software development activities. In fact, systems such as TopCoder offer the
ability to provision a cloud virtual machine (VM) for a given challenge. Cloud based
systems allow access by all participants and enable use of virtualized resources. This,
for example, allows participants to create sophisticated infrastructure with the same
ease at which they could do it locally. However, it does not solve the problem of
how these cloud resources are procured. And due to the predominant pay-as-you go
model of cloud usage it does not solve the problem of how these resources are paid
for.

In this chapter we present the use of a Social Cloud [9] as a model for providing
such shared infrastructure via an infrastructure crowdsourcing-like model. Originally
developed as a resource sharing framework for sharing resources between connected
individuals in a social network we suggest here that such approaches can also be
applied to form a crowdsourced resource fabric for software development. The Social
Cloud model is built upon the premise of virtualized resource contribution from semi-
anonymous (crowd) and socially connected users. Virtualization techniques enable
contributed resources to be used securely (from both the consumer’s and provider’s

Thitp://www.topcoder.com/.

http://www.topcoder.com/

Social Clouds: Crowdsourcing Cloud Infrastructure 193

perspectives) and to also provide an intuitive and sandboxed environment on which to
construct services. We present an overview of a social storage cloud, social content
delivery network (S-CDN) and social compute cloud to be used as the basis for
supplying shared infrastructure for software crowdsourcing and describe the use of
a currency-based, social network-based and matching-based model for allocating
resources in such environments.

2 Social Clouds

A Social Cloud is “a resource and service sharing framework utilizing relationships
established between members of a social network.” [9]. It is a dynamic environment
through which cloud-like provisioning scenarios can be established based upon the
implicit levels of trust represented between individuals in a social network. Where
a social network describes relationships between individuals and social networks
exist in, and can be extracted from, any number of multi-user system, including for
example, crowdsourcing systems.

In the remainder of this section we present an overview of Social Clouds and
describe the crowdsourcing calls that can be employed. We then present implemen-
tations of a Social Storage Cloud, Social Content Delivery Network (CDN), and
Social Compute Cloud. This will enable us to describe a general Social Cloud model
for crowdsourcing Cloud infrastructures (in Sect.4.1). In each of these settings, we
have also investigated different mechanisms for managing exchange using credit-
based, social network-based and preference-based models, each of which can be
viewed as a proxy for handling different types of crowdsourcing calls.

2.1 Motivation and Overview

The vision of a Social Cloud is motivated by the need of individuals or groups to
access resources they are not in possession of, but that could be made available by
connected peers. Later, we describe a Social Storage Cloud, a Social Content Delivery
Network and a Social Compute Cloud; however additional resource types (such as
software, capabilities, software licenses, etc.) could also be shared. In each case
a Social Cloud provides a platform for sharing resources within a social network.
Using this approach, users can download and install a middleware, leverage their
personal social network, and provide resources to, or consume resources from, their
connections.

The basis for using existing online social networks is that the explicit act of
adding a “friend” or deriving an association between individuals implies that a user
has some degree of knowledge of the individual being added. Such connectivity
between individuals can be used to infer that a trust relationship exists between them.
Similar relationships can be extracted between software crowdsourcing participants

194 K. Chard and S. Caton

due to the reliance on coordinated and collaborative development practices. In both
situations there may be varying degrees of trust between participants, for instance
family members have more trust in one another than acquaintances do. Likewise,
close collaborators in a software development process may have more trust in one
another than in members they do not know. The social network model provides a way
to encode this information as basic social relationships and to augment the social
graph with additional social or collaborative constructs such as groups (e.g. friend
or project lists), previous interactions, or social discourse.

Another way to think about a Social Cloud is to consider that social groups are
analogous to dynamic Virtual Organizations (VOs) [15]. Groups, like VOs, have
policies that define the intent of the group, the membership of the group and sharing
policies for the group. Clearly, in this model Social Clouds are not mutually exclusive,
that is, users may be simultaneously members of multiple Social Clouds. Whereas a
VO is often associated with a particular application or activity, and is often disbanded
once this activity completes, a group is longer lasting and may be used in the context
of multiple applications or activities. While Social Clouds may be constructed based
on Groups or VOs, we take the latter view, and use the formation of social groups to
support multiple activities. In addition, different sharing policies or market metaphors
can be defined depending on the group, for instance a user may be more likely to
share resources openly with close collaborators without requiring a high degree
of reciprocation, however the same might not be true for friends or more distant
collaborators.

Resources in a Social Cloud may represent a physical or virtual entity (or capa-
bility) of limited availability. A resource could therefore encompass people, skills,
information, computing capacity, or software licenses—hence, a resource provides
a particular capability that is of use to other members of a group or community.
Resources shared in a Social Cloud are by definition heterogeneous and potentially
complementary, for example one user may share storage in exchange for access to
compute. Or in the case of software crowdsourcing, a user may contribute compute
resources to a particular group of users associated with a particular project while
using storage resources associated with that same project.

In order to manage exchange, a Social Cloud requires mechanisms by which
resource sharing can be controlled and regulated. Like crowdsourcing applications,
in which contributors are rewarded for their contributions in different ways, a Social
Cloud must also support different models for reward. Crowdsourcing applications
often make use of monetary rewards for contribution (e.g., Amazon Mechanical
Turk) or leverage reputation-based rewards and altruism (e.g., Wikipedia). Simi-
larly, crowd workers have different motivations for participating (see: [43]), and we
argue that many of these are also present in a Social Cloud context. In a Social
Cloud we use the notion of a social marketplace as a model for facilitating and reg-
ulating exchange between individuals. A marketplace is an economic system that
provides a clear mechanism for determining matches between requests and con-
tributions. Importantly, a marketplace need not require monetary exchange, rather
non-monetary protocols such as reciprocation, preference matching, and social graph
based protocols can be used to determine appropriate allocations. If we compare

Social Clouds: Crowdsourcing Cloud Infrastructure 195

possible non-monetary incentives for participating in a Social Cloud (see: [21]) to
the motivation of participating in crowdsourcing platforms as defined in [43], there
is a resounding overlap.

2.2 Crowdsourcing Calls

As Social Clouds are a form of infrastructure crowdsourcing they can be constructed
with various calls depending on the purpose, and intent of the call. By leveraging
[40]’s definition of call types, we refer to the following types of call for a Social
Cloud:

e Open Hierarchical a call for resources to construct a personal Social Cloud. Here
the call initiator may specify policies that define which resources are accepted for
use. Where this could include specific relationship types, interaction histories or
competencies etc. The important thing to note in this case, however, is that the call
itself, is open; implying that anyone can offer to participate, but their participation
may be subjected to user-specific policies.

e Open Flat a call for platform resources in the management of a Social Cloud. In this
call, a Social Cloud platform asks for computational resources to facilitate its basic
functionality. Resources can be contributed by any member of the community. We
refer to this type of platform as a co-operative platform see: [22].

e Closed Hierarchical a call for resources from a specific social group. Here a call
is only visible to a specific (sub)set of a user’s friends and/or collaborators. Final
selection, as with the open hierarchical call, may still be subject to user-specific
policies.

e Closed Flat a call for platform resources from a specific (sub)community. Here
a user or set of users define the social boundaries of a Social Cloud, for instance
friends of friends, or a given social group or circle. Anyone within this community
may provide resources for the Social Cloud platform in a similar manner to the
Open Flat call.

From these call types, a given Social Cloud may enable contributions from a
tight group of participants or more widely across a social network (e.g., friends of
friends). Similarly, Social Clouds face the same difficulties as crowdsourcing appli-
cations with respect to quality, however, unlike typical crowdsourcing applications
simple approaches such as task redundancy are not applicable. For this reason, we
rely on interpersonal trust as a model for establishing reputation and predicting
quality. Software crowdsourcing approaches, given their requirement for expert user
contributions and complex tasks, may also leverage such approaches for establishing
contribution quality.

196 K. Chard and S. Caton

2.3 Social Storage Cloud

In [9, 10] we present a Social Storage Cloud designed to enable users to share elastic
storage resources. The general architecture of a Social Storage Cloud is shown in
Fig.1. We implement a Social Storage Cloud as a service-based Facebook appli-
cation. Where a social network (Facebook) provides user and group management
as well as the medium to interact with the Social Cloud infrastructure through an
embedded web interface (Facebook application) which in turn exposes the storage
service interfaces directly. To participate in a Social Storage Cloud users must deploy
and host a simple storage service on their resources. Consumers can then interact
directly with a specific storage service when allocated via a social/market protocol.
The social marketplace is responsible for facilitating sharing and includes compo-
nents for service registration and discovery, implementing and abstracting a chosen
market protocol, managing and monitoring provisions, and regulating the economy.
In this case we implement two economic markets: a posted price and a reverse auc-
tion. Both markets operate independently and are designed to work simultaneously.

Storage services are implemented as Web Services Resource Framework [12]
(WSREF) services and provide an interface for users to access virtualized storage.
Contributors must install this service on their local resources and register the service
with the Social Storage Cloud application to participate in the market. This service
exposes a set of file manipulation operations to users and maps their actions to oper-
ations on the local file system. Users create new storage instances by first requesting
an allocation from a Social Storage Cloud and then passing the resulting service level
agreement (SLA) (formed as the result of allocation) to a specific storage service, this
creates a mapping between a user, agreement, and a storage instance. Instances are
identified by a user and agreement allowing individual users to have multiple storage

Service Interaction (as consumer)\

N V=
Social Market Infrastructure Resource Fabrics
Network
N
Socially- . .
Oriented H%gilss(t::)avtlecin & <
Market Protocol v
—
)
Banking Agreement <
Service Management 3
-/ N 4
Monitoring
N)
Provider administration

Fig.1 Social Storage Cloud Architecture. Users register shared services, their friends are then able
to provision and use these resources through a Facebook application. Allocation is conducted by
an underlying market infrastructure

Social Clouds: Crowdsourcing Cloud Infrastructure 197

instances in the same storage service. The storage service creates a representative
WSREF resource and an associated working directory for each instance to sandbox
storage access. The resource keeps track of service levels as outlined in the agreement
such as the data storage limit. Additionally the service has interfaces to list storage
contents, retrieve the amount of storage used/available, upload, download, preview
and delete files. These interfaces are all made available via the integrated Facebook
application.

The two market mechanisms (posted price, and reverse auction) operate similarly,
allowing consumers to select and pay for storage resources hosted by their friends.
In a posted price market users select storage from a list of friends’ service offers. In
the reverse auction (tender) market, consumers outline specific storage requirements
and pass this description to the Social Cloud infrastructure; providers then bid to host
the storage. Both mechanisms result in the establishment of an SLA between users.
The SLA is redeemed through the appropriate storage service to create a storage
instance. An example summary user interface is shown in Fig. 2. This summary view
shows user allocations both on others’ resources as well as others’ allocations on
contributed resources.

facebook Home Profile Friends Inbox

Home Storage Summary Register Storage Service Posted Price Marketplace Dynamic Marketplace
SodialCloud
Kyle Chard Storage Summary
Avaiable Credits: 99989000
Available Storage Services

ID Provider Credits Storage Expires

id2 Omer F. Rana 1000 10 KB 11/11/2009 22:00:38 access storage
id4 Kyle Chard 75000 1S50KB 11/11/2009 22:42:46 access storage
id3 Smon Caton 10000 10KB 11/11/2009 23:32:01 access storage

Storage Currently Hosted

ID Consumer Credits Storage Expires Service Address

id4 Kyle Chard 75000 150 11/11/2009 22:42:46 http://socaldoud.dyndns.org/StorageServiceWeb/
History

Used/Hosted ID User Credits Storage Expired

Used id1 Kyle Chard -1000 100 11/11/2009 21:51:23

Hosted id1 Kyle Chard +1000 100 11/11/2009 21:51:23

3 Aoplcations ﬂﬁnmﬂ:_]o.oaodmakm:d 1e

Fig. 2 Social Storage Cloud user summary interface. This interface displays available storage
services in a user’s network. It also lists other users consuming storage resources as well as historical
reservations

198 K. Chard and S. Caton

The Social Storage Cloud is the simplest model with respect to issuing a call, and
it uses the most common approach for regulating exchange—a monetary model. Calls
in this case are closed. Only established social relationships (or friend in Facebook
terminology) are permitted. The call is also hierarchical in that requesting users
set the rules for the exchange through the use of an institutionalized (economic)
mechanism, which also performs the allocation process. In [9, 10], we explore the
use of a credit-based system that rewards users for contributing resources and charges
users for consuming resources. The use of a credit model requires the implementation
of services to manage the exchange of credits securely. We use a Banking service
to manage users’ credit balances and all agreements a user is participating (or has
participated) in. Credits are exchanged between users when an agreement is made,
prior to the service being used. The two concurrent economic markets, posted price
and reverse auctions, are designed to model different forms of exchange: a posted
price index, and a reverse Vickrey auction. Following an allocation, communication
between consumer and provider is through the establishment of an SLA (represented
using WS-Agreement [3]).

In a posted price market a user can advertise a particular service in their Social
Cloud describing the capabilities of the service and defining the price for using
this service. Other users can then select an advertised service and define specific
requirements (storage amount, duration, availability, and penalties) of the provision.
This approach is analogous to the process followed by crowdsourcing applications
such as Amazon Mechanical Turk where requesters post tasks and advertise a stated
price for accomplishing the task. The Social Storage Cloud uses a simple index
service to store offers and provides an interface for other users to then discover and
select these offers. When a user selects a service offer they also specify their required
service levels, a SLA is created defining the requirements of the provision such as
duration and storage amount. Before using the service, the generated SLA must be
passed to the appropriate storage service to create an instance. The storage service
determines if it will accept the agreement based on local policy and current resource
capacity. Having instantiated storage the agreement is passed to the Banking service
to exchange credits. A copy of the agreement is stored as a form of receipt.

In a reverse auction (tender) market, a requesting user can specify their storage
requirements and then submit an auction request to the Social Storage Cloud. The
user’s friends can then bid to provide the requested storage. We rely on auction
mechanisms provided by the DRIVE meta-scheduler [8]. In particular, we use a
reverse Vickrey auction protocol as it has the dominant bidding strategy of truth
telling, i.e., a user’s best bidding strategy is to truthfully bid in accordance to their
(private) preferences, making the Vickrey auction more socially centric. It also means
that “anti-social” behavior such as counter speculation is fruitless. In areverse auction
providers compete (bid) for the right to host a specific task. The DRIVE auctioneer
uses the list of friends to locate a group of suitable storage services based on user
specified requirements; these are termed the bidders in the auction. Each bidder then
computes a bid based on the requirements expressed by the consumer. The storage
services include a DRIVE-enabled interface that is able to compute simple bids based
on the amount of storage requested. The auctioneer determines the auction winner

Social Clouds: Crowdsourcing Cloud Infrastructure 199

and creates an SLA between the consumer and the winning bidder. As in the posted
price mechanism, the agreement is sent to the specified service for instantiation and
the bank for credit transfer. In this model the consumer is charged the price of the
second lowest bid, as the Vickrey auction is a second-price mechanism.

When considering this market approach for crowdsourcing there are clear advan-
tages and disadvantages: The use of a virtual currency provides a tangible framework
for users to visualize their contribution and consumption rates in a way they can relate
to: if they run out of credits, they cannot consume resources; users can manage their
credits independently with respect to their personal supply and demand; any mecha-
nism or means of executing a call can be designed to facilitate exchange and achieve
specific design intentions; and, the design of the mechanisms have obvious parallels
to classic crowdsourcing call structures. Despite these advantages, however, there
is an obvious challenge: the need to manage and maintain economic stability, i.e.,
inflation/deflation over time and the dynamics of context: users, like workers can
come and go which can aggravate inflation/deflation. These challenges cannot be
understated.

2.4 Social Content Delivery Network

In [11, 32] we present the notion of a Social Content Delivery Network (CDN)
which builds upon the idea of a Social Storage Cloud to deliver scalable and effi-
cient distribution of shared data over user contributed resources. The Social CDN
is designed to enable data-based scientific exchanges via relationships expressed in
social or community networks. Figure3 illustrates the Social CDN model. Here a
user has produced a data artifact for a collaborative project (e.g. the results of a sci-
entific experiment, a new software component, bundle or library, or new data set for
analysis), which the user wishes to share with their collaborators. In the Social Stor-
age Cloud setting presented previously this would constitute a backup action being
performed by the user using the storage resources of a their social peers, similar to
that of a Dropbox storage action. In a Social CDN, however, the backup action is
secondary to the action of sharing and distributing data amongst collaborators.

The Social CDN model builds upon a network of Data Followers, analogous to
to Twitter followers, users that follow data status updates and data posts of a given
user. Note that users do not automatically reciprocally follow their data followers.
Therefore, like circles in Google+, a follower-followee connection is not considered
bilateral. However, the relationship between these users must be bilaterally authorized
for our assumptions on pre-existent trust to hold. In order to share data, a user appends
an artifact (via a social network application) to a status message or Tweet. This action
tells the Social CDN which dataset should be shared, in which data follower circle,
and invokes the Social CDN’s data transport and management algorithms to execute
the sharing action. Likewise, when users access data status messages they may also
be published to enable social interactions around data usage.

200 K. Chard and S. Caton

scu‘n:};‘uni-ur!‘edu}simon}siﬁ'l1
@SocialCloudProject

Storage
Server

Allocation
Server

Data Followers: Data Followers:
SocialCloudProject Colleagues

Fig. 3 Social CDN: usage and overview. Data followers of a user receive data updates when the
user shares a dataset with the Social CDN. Allocation servers determine the most efficient placement
and transfer of the dataset

As in the the Social Storage Cloud setting, users contribute storage resources to
the Social CDN, i.e., Social Cloud platform. This enables the Social CDN to use
storage resources located on the edge devices owned (and therefore contributed) by
members of data follower circles, including the user sharing the data. These servers
are used to share and access data, and also as temporary hosts for others’ data within
the network. Users who provide resources to the Social CDN can also have the data
encapsulated by a data post pushed to their resources in the form of replicas by the
Social CDN architecture.

By building on the notion of a Social Storage Cloud, storage resources contributed
to the Social CDN are used by the central Social CDN application to distribute
data across replica nodes. In this sense, the system constructs a distributed data
warehouse across resources networked in accordance to the social network of their
owners. However, rather than using proprietary storage services the Social CDN
builds upon Globus [14], a provider of high performance data transfer and sharing.
Globus uses’endpoints’ installed on users’ resources to enable transfer and sharing.
The Social CDN application uses the Globus APIs to alter sharing properties on an
endpoint to enable replicas to be stored and accessed. It then uses these same APIs
to transfer data between a replica and the requester’s endpoint. The Social CDN web
application is implemented as a Django application, it uses a social network adapter
to connect to Facebook for authentication and access to the user’s social graph, and
a local database to store and manage users and allocations.

In this setting, the main crowdsourcing-like call is in the construction of the
Social CDN infrastructure—an open flat call in that anyone can take part and provide
resources to the Social CDN. How these resources are then used, is another matter,

Social Clouds: Crowdsourcing Cloud Infrastructure 201

as we can assume that data is not shared universally. Therefore, there are a myriad
of ways in which to move data around the Social CDN. Unlike the Social Storage
Cloud, the incentives to take part in and contribute to a Social CDN are more closely
tied with personal and collective benefit. For this reason, we have not implemented
a market-like setting as we expect the Social CDN to be autonomically [28] self-
managed over time based on how interactions and data shares emerge over time.

Instead, we leverage the social basis of a Social Cloud to use network structure
and network analysis algorithms to select appropriate replica locations on which to
distribute data. This approach attempts to place replicas of each dataset on selected
available endpoints of the dataset’s owner’s friends (followers), where the replica-
tion factor (the number of nodes selected for replication) is a configurable system
parameter. The approach attempts to predict usage based on relationships between
users, for example by placing replicas on friends with the strongest connection to
the data contributor.

In the Social CDN we use social network analysis algorithms to rank potential
replica locations, for example determining important, well connected individuals in
the network. We use graph theory metrics such as centrality, clustering coefficient,
and node betweenness to determine nodes that are important within a network. In
each case the network analysis algorithms identify a ranked list of nodes (social
network members) that are used to place replicas. To address availability constraints
we construct a graph that has edges between nodes if the availability of two nodes
overlaps, and a “distance” weighting is assigned to each edge that describes the
transfer characteristics of the connection. When selecting replicas, we choose a subset
of nodes that cover the entire graph with the lowest-cost edges. In [11] we show that
using such approaches can improve the accessibility of datasets by preemptively
allocating replicas to nodes that are located “near” to potential requesters.

In a crowdsourcing context the use of social network based allocation strategies is
appropriate as it presupposes quality driven through matching individuals that know
one another, or have worked together in the past. For example, such approaches could
be used to select users (and their resources) that are central in a network and therefore
have strong bonds with other members of the network (or project). The use of a social
network-based allocation approach upon the premises and observation of previous
as well as existing collaborative actions suits the establishment of Social Clouds in
scenarios like software crowdsourcing. Such contexts are inherently network based,
and even if workers do not know each other in the physical world, they may have
digital (working) relationships in (semi)anonymous networks that can be seen as a
forms of pre-existent trust. Thus fulfilling the basic premises of a Social Cloud.

In the Social CDN, we do not adopt an SLA-based approach. The reason is
quite simple: replicas and their resources are assumed to be transient and, naturally,
also replicated. Similarly, there is no way of determining for how long a replica
should be available, or how long the follower-followee relationship will be required
or maintained. Furthermore, the Social CDN is responsible for the placement of
replicas and their migration (as appropriate) around the network, therefore it would
also be cumbersome to create and sign SLAs in this setting. This means a Social

202 K. Chard and S. Caton

CDN using the allocation method presented is constructed on a best-effort basis, and
inherently reliant on the collaborative impetus of its users.

2.5 Social Compute Cloud

In [5] we present a Social Compute Cloud designed to enable access to elastic com-
pute capabilities provided through a cloud fabric constructed over resources con-
tributed by users. This model allows users to contribute virtualized compute resources
via a lightweight agent running on their resources. Consumers can then lease these
virtualized resources and write applications using a restricted programming language.

The general architecture of the Social Compute Cloud is shown in Fig.4. The
Social Compute Cloud is built upon Seattle [4], an open source Peer-to-Peer (P2P)
computing platform. The Social Compute Cloud extends Seattle to use Facebook
APIs to authenticate users and to associate and access a user’s social graph. It uses
Seattle’s virtualized resource fabric to enable consumers to offer their resources to
the cloud by hosting sandboxed lightweight virtual machines on which consumers
can execute applications, potentially in parallel, on their computing resources. Con-
sumers can access these virtualized resources (via the secure virtual machine inter-
faces) to execute arbitrary programs written in a Python-based language. While the
concept of a Social Compute Cloud could be applied to any type of virtualization
environment we use lightweight programming (application level) virtualization as
this considerably reduces overhead and the burden on providers; in [42] we explore
the use of a more heavyweight virtualization environment based on Xen, however
the time to create and contextualize VMs was shown to be considerable.

‘Social Cloud Platform ™

Social Network

Sy

, ¢ -~ 2 p
] '; t ” p . T " | Sharing Preferences .
] f kg TATeeaten M '-_=
' IEEGRREIASE Resource Request(s) .
' .ﬂ > Csocaioe | | R S T4 | Consume
'\5 / Resources

o = " Provide R
i My A e rovide Resources

Compute Resources

Fig. 4 Social Compute Cloud Architecture

Social Clouds: Crowdsourcing Cloud Infrastructure 203

We chose to base the Social Compute Cloud on Seattle due to its lightweight
virtualization middleware and its extensible clearing house model which we extend
to enable social allocation. Building upon Seattle we leverage the same base imple-
mentation for account creation and registration, resource contribution infrastructure,
and resource acquisition mechanisms. We have extended and deployed a new social
clearing house that leverages social information derived from users’ Facebook pro-
files and relationships along with a range of different preference matching allocation
protocols. We have implemented a service that enables users to define sharing pref-
erences (e.g., a ranked order of other users) and new interfaces in Seattle that allow
users to view and manage these preferences.

Figure5 shows a user interface which presents the resources being used by a
particular user as well as the users that are using this particular user’s resources.
This interface, extended from Seattle, provides a model to renew and cancel existing
reservations.

The Social Compute Cloud poses one main type of call: a two-way closed hierar-
chical call for resources. Here, users specify preferences with whom they are willing
to consume resources from and provide resources to. These preferences, as will be
discussed in more detail later, are not binary, i.e., either provide or not provide, but
also rank users against one another. In a similar manner to the previous two Social
Cloud settings, an open/closed flat call for platform resources, could also be envis-
aged. Unlike the Social Storage Cloud, we move away from a credit model, but

anD Mv‘\l'esszls - Seattle Cle;riﬂghwu Ca
[My Vessels - Seattle Clearingho... | + |
\:, @ hitps:/ fseantie.cl.uchicago.edu/geni/htmi/get_resources & JB3- coogle RIE ARG JA1 « M)

Social Clearing House ..o

profile NG Friends | Get Donations | Help | Logged in as Simon, Logout
Total vessels available : 20 @ Total donations : 1
Get more resources Number of vessels | 1 :| Environment | wefareOpumal : Gat

|—mm—

x GenilUser:kyle 128.135.125.115 w4 0d 3h 26m]
| x GeniUser:kyle 107.22.114.143 vé 0d 3h 26m 5
| x Genilser:Kai 50.16.62.113 v 0d 3h 26m 9

Total 3 acquired vessel(s).

My Vessels (Used by others)

L Vessel User | Vessel Location -m-am

Cenilser:kyle 129.13.253.97 0d 3h 39m

Fig.5 Social Compute Cloud user summary interface showing current allocations for an individual
user

204 K. Chard and S. Caton

retain user involvement in call management. Similarly, to the Social CDN, we place
a heavier reliance on social network constructs, but instead of using social network
analysis methods to determine “good” allocations, we involve user choice in the form
of sharing preferences, and allocate (or match) based upon these preferences.

Preference matching algorithms allow consumers and producers to specify their
preferences for interacting with one another. This type of matching is successfully
applied in a variety of cases, including the admission of students to colleges, and
prospective pupils to schools. In the Social Compute Cloud we capture the supply and
demand of individual users through a social clearing house. As we use a centralized
implementation we can derive the complete supply and demand in the market and
therefore match preferences between all participants in a given Social Cloud. This
of course is only after users define their preferences towards other users, that is, their
willingness to share resources with, and consume resources from, other users in the
Social Cloud.

To determine the “best” matches between users, given the stated requirements, we
use several different matching algorithms. The chosen algorithms differ with respect
to their ability to satisfy different market objectives and performance. Commonly
used market objectives include finding solutions to the matching problem which
are stable (i.e., no matched user has an incentive to deviate from the solution) or
optimizing the total welfare of the users, the fairness between the two sides of the
market, or the computation time to find a solution. The choice of particular market
objectives in turn affects which allocation and matching strategies can be considered.
This can range from direct negotiation to a centralized instance that computes this
matching; and both monetary and non-monetary mechanisms can be applied. Our
approach considers non-monetary allocation mechanisms based on user preferences.
Depending on the specific market objective, several algorithms exist that compute a
solution to the matching problem, e.g. computing a particularly fair solution or one
with a high user welfare.

Two-sided preference-based matching is much studied in the economic litera-
ture, and as such algorithms in this domain can be applied in many other settings.
For this reason we developed a standalone matching service that enables clients to
request matches using existing protocols. This service is used by the Social Com-
pute Cloud (via the social clearing house) to compute matches for given scenarios.
The matching service includes three algorithms from the literature, and a fourth of
our own implementation. These algorithms have been selected to address limitations
when preferences are incomplete or specified with indifference, that is when not all
pairwise combinations have preferences associated or when users associate the same
preference to many other users. Briefly, the matching algorithms offered in the Social
Compute Cloud are:

e Deferred-Acceptance (DA) [16]: is the best known algorithm for two-sided
matching and has the advantages of having a short runtime and at the same time
always yielding a stable solution. However, it cannot provide guarantees about
welfare, and yields a particularly unfair solution where one side gets the best
stable solution and the other side gets the worst stable solution.

Social Clouds: Crowdsourcing Cloud Infrastructure 205

e Welfare-Optimal (WO) [26]: is a common matching algorithm that yields stable
solutions with the best welfare for certain preference structures. The approach
uses structures of the set of stable solutions and applies graph-based algorithms to
select the best matches.

e Shift [24]: is designed to find stable solutions with consideration for welfare and
fairness when indifference or incomplete lists are present. While DA and WO can
still be used in such settings, they can no longer guarantee to find the globally
best solution. In such settings, Shift can find a stable match, with the maximum
number of matched pairs for certain special cases. However, these scenarios are
in general hard to approximate, and consequently the standard algorithms are not
able to provide non-trivial quality bounds with respect to their objectives. Finding
the optimal solution for the matching problem with respect to the most common
metrics: welfare or fairness, is NP-hard [24].

e Genetic Algorithm with Threshold Accepting (GATA) [23]: is a heuristic-based
algorithm that yields superior solutions compared to the other algorithms. The GA
starts with randomly created (but stable) solutions and uses the standard mutation
and crossover operators to increase the quality of the solutions. GATA then uses
this solution as input for the TA algorithm, an effective local search heuristic that
applies and accepts small changes within a certain threshold of the current solution
performance.

Each of these algorithms have their specific performance merits and we have
studied their performance with respect to a Social Cloud in [5, 23]. The key find-
ings, however, suggest that the GATA or similar GATA-like approaches perform
well in larger problem sizes, with more complex preference structures and with sto-
chastic supply and demand, rather than a batch allocation mode in which two-sided
matching algorithms are often applied. This means for the purposes of facilitating
crowdsourcing calls, that users can be more involved in terms of how the call clears.

Like the Social CDN approach, there is currently no handling of SLAs in the Social
Compute Cloud. Rather, each compute node is reserved for a predetermined period
of time, if during this time a node goes offline the resource consumer will be notified
and as a form of “enforcement” may consequently update their sharing preferences.
Given the social context of a Social Cloud, it is foreseeable that any issue of this sort
be first discussed in order to find either a resolution or cause for the error. This social
process is important so as to not damage the real world relationship underpinning
the exchange. It is also similar to the feedback and discourse methods often used in
crowdsourcing platforms (like Amazon’s Mechanical Turk) when employers are not
satisfied with the quality of a worker’s results.

3 Quality Management, Trust, and Agreements

Having established the means to architect a Social Cloud, and allocate resources
in various settings, the question of (collaboration) quality arises with respect to the
actual infrastructure provided. This, for the moment, is even irrespective of how this

206 K. Chard and S. Caton

infrastructure is used. Instead, we refer here to quality of infrastructure instances that
are sourced from the community.

The crowdsourcing literature proposes many different means of assessing and
defining (worker) quality, reliability and trustworthiness with respect to (task) solu-
tions. Where examples include: redundant scheduling, gold standard questions, qual-
ification tests, peer review and employer acceptance rate. Whilst not all of these
approaches are relevant or meaningful in crowdsourcing computational infrastruc-
tures, it is still important to maintain a notion of quality that supports collaborative
processes. In terms of a computational infrastructure, there are several aspects that
can be used to denote and measure quality both quantitatively (e.g. availability, error
rate, mean error recovery time, etc.) and qualitatively (non-functional parameters
like owner’s technical competence, trustworthiness, responsiveness to crowd sourc-
ing calls, etc.).

Without delving into quality properties, the crowdsourcing literature does, in
general, differentiate between different methods of assessing quality. Where up-
front task design and post-hoc result analysis are the two main methods of controlling
work quality [30]. Up-front task design typically involves methods of pre-selection:
a means of ensuring a minimum ex-ante quality level of contributions [17] so that
an employer mitigates the risk of poor quality solutions through pre-selection tests
or processes. Typically, these are in the form of qualification tests, or thresholds for
worker attributes. Post-hoc result analysis, however, allows a worker to perform a
task before validating the result in some way. Here typical examples are the gold
standard (micro)task® [37], the redundant scheduling of tasks to multiple workers to
provide a basis for solution comparison and worker reliability [29], TopCoder-like
competitions, and peer review (for example as in Wikipedia). In fact, we see similar
approaches to these used in volunteer computing settings where compute nodes are
inherently unreliable e.g. [2, 7].

Despite the level of research into quantitative methods of deriving and defining
the quality and reliability of results in the crowdsourcing literature, it is hard to avoid
the more subjective issues surrounding the perception of quality with respect to the
qualifications and/or competence of a worker. We observed in [13] that although
crowdsourcing platforms use several mechanisms to assess worker reliability and
capabilities these methods can seldom be applied to identify actual worker abilities
or competencies. Instead, they reveal only whether the worker is likely to posses the
necessary abilities to perform a specific (micro) task and/or if they will do so dili-
gently. If we consider the notion of a Social Cloud, where computational resources
are crowdsourced within a specific (social) community, we can see that the “stan-
dard” means of assessing quality may not be sufficient. In [13], we attempted to
disentangle quality and competence; where the latter is potentially influential on ex-
ante expectations of quality, and thus in decisions related to resource allocations as
well as requests.

An alternative method to assessing quality was proposed by [25]: to infer a level
of trust in the worker via the accuracy of their solutions. For the purposes of a Social

2Tasks where the solution is known ex-ante to test worker accuracy.

Social Clouds: Crowdsourcing Cloud Infrastructure 207

Cloud, we can augment this approach by redefining accuracy as either perceived
quality ex-ante (in a qualitative sense) or observed quality ex-post using predefined
measures for quality of service (in a quantitative sense). This would capture the two
methods of assessing quality mentioned above. We can also augment [25]’s inference
of trust through the assumption of pre-existent inter-personal trust between members
of aSocial Cloud. In assessing quality in this manner, we are highlighting two artifacts
of a Social Cloud: trust and some form of provisioning agreement.

To avoid a lengthy discussion on trust, we refer to [6] where we defined trust
for the context of a Social Cloud as follows: “Trust is a positive expectation or
assumption on future outcomes that results from proven contextualized personal
interaction-histories corresponding to conventional relationship types and can be
leveraged by formal and informal rules and conventions within a Social Cloud to
facilitate as well as influence the scope of collaborative exchange”. Two of the most
relevant aspects in this definition from a crowdsourcing perspective are “interaction-
histories” and “conventional relationship types”. Where the former overlaps with ex-
post measures of prior performance (potentially) in various collaborative contexts,
the latter is somewhat abrasive in the context of crowdsourcing. We tend to view
workers as a part of a large anonymous human crowd of workers. In a Social Cloud
this is not the case (nor may it be the case in software crowdsourcing projects), and
consequently, we can view trust at a more subjective and personal level, and (at least)
assume that the existence of trust will be positively correlated to quality in the general
sense.

However, the ability of users to rely on trust alone is dependent on the type of rela-
tionship [41]. This differentiated view of trust means that in some circumstances some
form of collaborative agreement that clearly defines measures of quality is needed.
In [9, 10] we explored the implementation details of formal agreements or SLAs
(Service Level Agreements). However, this in retrospect was an over-engineered
approach. Reference [41] observed that in the relationship contexts (close) friend and
family, agreements are not perceived necessary by users. However, in relationship
contexts such as acquaintances and colleagues (the arguably more likely relationship
types in crowdsourcing contexts) some formalization of an agreement as well as
some form of explicit incentive to contribute is necessary. This does not, however,
imply the formal representation of a collaborative action using a standard like WS-
Agreement [3], but rather a leaner representation capturing: the minimum details
of the exchange (actors, and definition of instance); basic measures of quality (e.g.
availability); implications of failure; and (when applicable) a definition of reward be
it tangible, e.g., monetary payment, or intangible, e.g. reputation points.

4 A Social Cloud for Software Crowdsourcing

In this section we present a general Social Cloud architecture and describe how the
principles of Social Cloud Computing can be leveraged in software crowdsourcing
applications. As software development processes are inherently collaborative, they

208 K. Chard and S. Caton

involve groups of contributors who are in some cases unknown and in others based
on strong social ties between one another; they require sophisticated resources and
software to develop, test, deploy, integrate, and perform other common software
lifecycle processes; and they rely on contributions from various people to achieve
these goals. Thus, there are two areas in which Social Cloud principles can be applied
to software crowdsourcing: (1) as a model for supporting software crowdsourcing
infrastructure requirements, and (2) as a means of using social network analysis to
derive competency and quality.

4.1 General Social Cloud Architecture

Based on our previous experience, we now present a unified architecture that sup-
ports Social Storage, Social CDN and Social Compute Clouds. Like any Cloud model,
and as discussed above, a platform is required to coordinate and facilitate the basic
functionality of a Social Cloud (user management, resource allocation, etc.). The
resources to support this platform, can either be provided by a third party, or crowd-
sourced from the Social Cloud user base, as a form of co-operative platform [22].
Figure 6 shows the high level architecture for a Social Cloud and its key components,
which are as follows:

A Social Marketplace is an institutionalized microeconomic system that defines
how supply is allocated to demand. In other words, it is responsible for the facilitation,

Social Cloud Platform

_ Social
y Social Marketplace Network
Resource Allocation

Economic Social

H Protocols | Protocols
Preference |
Resource Endowment | Protocols |

g Platform Manager Ntk

Policies/Preferences

Social

Network

J91depy |B21UYy23) -0190§

Resource Middleware Fabric

N

Fig. 6 General Social Cloud Architecture

Social Clouds: Crowdsourcing Cloud Infrastructure 209

and clearing of calls. A social marketplace captures the following: the protocols used
for distributed resource allocation, the rules of exchange, i.e. who can take part and
with whom may they exchange, and the formalization of one or more allocation
mechanisms. A social marketplace is therefore the central point in the system where
all information concerning users, their sharing policies, and their resource supply and
demand is kept. For this reason, the social marketplace requires data stores: to capture
the participants, the social graph of its users, as well as their sharing policies; and a
resource manager to keep track of resource reservations, availability, and allocations.

A Platform Manager administrates the basic functionality of the Social Cloud.
The platform manager is a (semi-)autonomic co-operative system managing its
resources either through the creation of calls for platform resources, or syphoning
off parts of contributed computational resources. It is responsible for ensuring that
the Social Cloud is responsive and available. Such approaches may also be applied
more widely as a means of supporting other crowdsourcing platforms.

A socio-technical adapter provides access to the necessary aspects of users’
social networks, and acts as a means of authentication. The socio-technical adapter
could leverage any source for social information such as an existing social network
platform or a software crowdsourcing application. Once a user’s social network has
been acquired via the socio-technical adapter, the social marketplace requires the
preferences and policies of the user to facilitate resource allocation.

Data stores record state for the Social Cloud such as users, social graphs, resource
endowments, policies and preferences, and current and historical allocations. These
data stores are used by the social marketplace to influence allocation and by partici-
pants to manage their interactions with the social cloud.

A resource middleware fabric provides the basic resource fabrics, resource vir-
tualization and sandboxing mechanisms for provisioning and consuming resources.
In the examples above the middleware includes mechanisms to access the storage
and compute resources of participants. It defines the protocols needed for users
and resources to join and leave the system. The middleware is also responsible for
ensuring secure sharing of resources by implementing interfaces and sandboxed
environments that protect both providers and consumers.

Resources are the technical endowment of users that are provided to, and con-
sumed from, the Social Cloud. These resources could include personal computers,
servers or clusters and specifically the storage and compute capabilities that these
resources make available.

4.2 Crowdsourcing Infrastructure for Software
Crowdsourcing

Figure7 shows how the unified Social Cloud architecture can be used to crowd-
source infrastructure required to facilitate a software development project. In this
case, various users—some with existing relationships between one another and some

210 K. Chard and S. Caton

Software Crowdsourcing Platform

Social Network,
Authentication

Social Cloud Platform

Fig. 7 A software crowdsourcing model that leverages a Social Cloud contributed by participants
to facilitate operation of important software development services

without—are participating in a software crowdsourcing project. Not only are these
users contributing their software engineering capabilities to the software crowd-
sourcing project but some are also contributing resources via an associated Social
Cloud that allows the hosting and execution of various important software develop-
ment services for the project.

The Social Cloud leverages the social network derived from the software crowd-
sourcing platform or potentially from other social networks that exist between users.
We expect that in most cases the crowdsourcing platform will provide the authenti-
cation and authorization model as well as providing user and group information to
the Social Cloud. The Social Cloud uses this information (e.g., groups) to enable
user contributed resources and capabilities to be shared with other participants. By
establishing a network (based on groups) between users we can also enable other
techniques to improve collaboration including, for example, the ability to provide
communication between members and to facilitate rapid feedback. It may also pro-
vide mechanisms to more easily discover capable participants and motivate contri-
bution [27].

When selecting a software project for participation, participants will be able to
optionally contribute resources to the project. Users will be presented a Social Cloud

Social Clouds: Crowdsourcing Cloud Infrastructure 211

interface that enables the selection of local resources, and by using existing storage
and compute services they will be able to make their resources accessible to the
Social Cloud. At this stage agreement on the market model must be made (e.g.,
how are users rewarded for their contribution) at the same time as reaching agree-
ment regarding their participation in the project (e.g., rewards associated with their
software engineering contributions). Policies will need to be developed regarding
who can access a contributed resource and for what reason. For example, perhaps
resources will be contributed for short term leases to support testing; or alternatively
they might be contributed for longer periods to support project wide services such
as code repositories.

Other project members can then access and use resources contributed to the Social
Cloud through published interfaces and adhering to the market protocols selected.
Depending on the contribution and market model, they may be able to consume
resources at will by virtue of being a member of the project or they may require some
form of matching between their requirements and others capabilities. Resource allo-
cation will follow the general Social Cloud model in which virtualized and sandboxed
resources are offered and used by other participants.

There are several different market approaches that can be applied to a software
crowdsourcing Social Cloud: (1) The market may be tied to the model employed
by the crowdsourcing application, or (2) the market may be independent from the
crowdsourcing application and operate only within the context of the Social Cloud.

In the first model, the Social Cloud will use the credits (virtual or real) that
are associated with the software crowdsourcing platform. In this case, contributors
will associate a credit value with their resource contributions using an economic
model. For instance, a contributor may charge $1 credit per day for using their
compute resources. Similarly, consumers (or the project) will be charged credits
when accessing or using these resources. If resources are used for the project itself,
these credits may be taken from the overall reward associated with the project. We
expect that such capabilities are present in most crowdsourcing applications and that
we can leverage these workflows via published APIs or other means.

In the second model, the Social Cloud will apply an independent economic model
such as a credit model, social network model, or preference matching model. The
difference between an independent credit model and the credit model tied to the
crowdsourcing application is that all credits and exchanges will be managed entirely
by the Social Cloud. The social network model will allow project participants to share
resources with a group, enabling, for example specification of restrictions based on
relationships between individuals. Such restrictions may include allowing access to
only close friends or collaborators who have worked together on a previous project, or
who share a connection in an external social network. The preference model provides
a more regulated mechanism for members to control their contributions and use of
resources. In this model users will be able to contribute resources and optionally
define preferences for which members can use these resources. Consumers, when
requesting resources, may define preferences for which members they use resources
from.

212 K. Chard and S. Caton

4.3 Establishing Trust and Competency via Social Networks

Online social networks such as Facebook, Google+ and Twitter provide a model in
which relationships between individuals are encoded digitally and can be accessed
programmatically to develop socially-aware applications. Even implicit social net-
works formed via user accounts, groups, publications and online actions can be
extracted and used to establish linkages between individuals. The premise of a Social
Cloud builds upon these relationships to infer a level of trust between individuals.
This trust can be leveraged to encourage higher levels of quality of service in sharing
settings.

Asdiscussed in Sect. 3 such networks provide a powerful model for inferring capa-
bilities and competencies. In traditional crowdsourcing models such requirements
are less prevalent as tasks are often oriented around unskilled activities. However,
in software crowdsourcing projects it is important to establish levels of proficiency.
This is increasingly valuable as it is often difficult to determine the accuracy of
self-reported competency, and equally challenging to construct suitable measures
to capture, in general, transferable notions of competence for crowdsourcing [13].
While reputation measures provide a method to address these requirements, they
require bootstrapping and also reliability that the reputation model cannot be sub-
verted. We believe that the ability to leverage trusted connections between individuals
following a Social Cloud model is of particular value in the general crowdsourcing
domain for these reasons.

To do this, we first need to define the frames of reference when discussing trust for
a Social Cloud or in settings where social structures are used in crowdsourcing. We
identified in [6] three frames of reference for trust: (1) trust as an intrinsic (subjective)
attribute of an inter-personal social relation, i.e. trust as a basic foundation of social
actions; (2) trust in the competence of an individual to be able to deliver a given
resource or capability, i.e. a belief in the self-awareness and personal evaluation of
competence; and (3) trust in an individual to deliver, i.e. keep their promises, adhere
to any (informal) agreements etc. While it is easy to conceive the first and third frame
of reference being captured by the social network structure and any associated SLA,
soft agreement or “gentleman’s agreement” respectively, it is however, difficult to
interpret the second frame of reference without a basic definition of competence.

In [13] we provide an overarching summary of competence in crowdsourcing
scenarios. Where competence refers to an inflected action with respect to “practical
knowledge” and is characterized by “being able to”, “wanting to”, “being allowed
to”, and “being obliged to”” do something [39]. In crowdsourcing literature the term
of competence is often misused to refer to a capability or some form of (domain)
authority [13].

We argue that the premises of a Social Cloud could provide a basic framework for
(in)formally observing competence as a consequence of network effects: the social
ascription of competence by peers. For the ascription of competence a “social”
element comes into play as a reciprocal situational ascription of appropriateness
to specific actions by the actor themselves and another person or persons (e.g. a

Social Clouds: Crowdsourcing Cloud Infrastructure 213

collaborator) who are participating in the relevant situation [13]. Consider, for
example, a system similar to LinkedIn endorsements. While such a system would
be particularly apt in a software crowdsourcing model issues surround the inter-
pretation of reputation. Social networks, however, provide a mechanism to apply
transitive inference, that is, to traverse the graph of endorsements based on previous
interactions with a particular entity or project. Such approaches can be used to further
enhance the reliability of competence measures.

Coming back to the original frames of reference the approaches put forth by
Social Clouds are equally applicable to a software crowdsourcing environment. The
implicit and explicit use of social networks provide models to: (1) establish trust
between individuals and projects; (2) provide the ability to infer competence based
on previous interactions and endorsements; and (3) utilize inherent social incentives
and disincentives associated with participation and delivery.

5 Related Work

Until now there has been little research into the implementation of software crowd-
sourcing applications. Most examples such as TopCoder, uTest and user-contributed
application stores are commercially developed and focus on specific aspects of
the software development lifecycle. As yet, these approaches offer only limited
infrastructure capabilities for their projects, for example TopCoder offers cloud
resources on specific projects.

There is however, much literature relating to the exchange or sharing of resources
using social fabrics. For example, Intel’s “progress thru processors’> Facebook appli-
cation enables contribute of excess compute power to individually selected scientific
projects. Users are not rewarded for their contribution as such, however they can
view and publish statistics of their contributions. Upon joining the application users
may post information to their news feed, or inform friends of the application. The
progress thru processors application relies on a generic resource layer constructed
by deploying a BOINC [2] application on the users machine.

McMahon and Milenkovic [34] proposed Social Volunteer Computing, an exten-
sion of traditional Volunteer Computing, where consumers of resources have under-
lying social relationships with providers. This approach is similar to the nature of a
Social Cloud, but it does not consider the actual sharing of resources, as there is no
notion of bilateral exchange.

Pezzi [38] proposes a Social Cloud as a means of cultivating collective intelli-
gence and facilitating the development of self-organizing, resilient communities. In
this vision the social network and its services are provided by network nodes owned
by members of the network rather than by centralized servers owned by the social net-
work. Pezzi’s work is in its infancy and has no architectural details or implementation.

3http://www.facebook.com/progressthruprocessors.

http://www.facebook.com/progressthruprocessors

214 K. Chard and S. Caton

Ali et al. [1] present the application of our Social Cloud model to enable users
in developing countries to share access to virtual machines through platforms like
Amazon EC2. In effect they subdivide existing allocations to amortize instance cost
over a wider group of users. Using a cloud bartering model (similar to our previous
virtual credit model), the system enables resource sharing using social networks
without the exchange of money and relying on a notion of trust to avoid free riding.
Like our approach, they use a virtual container (LXC) to provide virtualization within
the existing virtual machine instance.

Mohaisen et al. [35] present an extension to our definition of a Social Cloud.
The authors investigate how a Social Compute Cloud could be designed, and pro-
pose extensions to several well known scheduling mechanisms for task assignments.
Their approach considers resource endowment and physical network structure as
core factors in the allocation problem.

Gracia-Tinedo et al. [18-20] propose a Friend-to-Friend Cloud storage solution,
i.e. dropbox via a social network: F2Box. They analyze and discuss how to retain a
reliable service whilst using the best effort provisioning of storage resources from
friends. They identify that a pure friend-to-friend system cannot compare in terms
of quality of service with traditional storage services. Therefore, they propose a
hybrid approach where reliability and availability can be improved using services
like Amazon’s S3. This approach provides a valuable consideration in the realization
of a Social Cloud, but is not necessarily transferable to our setting.

Wu et al. [45, 46] describe a lightweight framework to enable developers to cre-
ate domain specific collaborative science gateways. They use social network APIs
(OpenID, OAuth and OpenSocial) and virtualized cloud resources to facilitate col-
laboration as well as fine grained and dynamic user controlled resource sharing using
social network-based group authorization. These same authorization models are then
used to facilitate execution of computational bioinformatics jobs on customized vir-
tual machines shared between users.

Kuada and Olesen [31] propose opportunistic cloud computing services (OCCS):
a social network approach for the provisioning and management of enterprise cloud
resources. Their idea is to provide a governing platform for enterprise level social
networking platforms consisting of interoperable Cloud management tools for the
platform’s resources, which are provided by the enterprises themselves. The authors,
present the challenges and opportunities of an OCCS platform, but there is no indi-
cation that they have yet built an OCCS. Similarly, Diaspora,* and My3 [36] apply
similar concepts to host online social networks on resource provided by their users.

There have also been several publications on economic models for a Social Cloud.
Zhang et al. [47] and we [21] discuss different types of incentives users face during
their participation in a Social Cloud, and describe the challenges of providing the
right incentives to motivate participation. While in another study [22], we investi-
gated how the infrastructure of a Social Cloud can be co-operatively provided by
the participating members, and present an economic model that takes individual
incentives and resource availability into account.

“https://joindiaspora.com/.

https://joindiaspora.com/

Social Clouds: Crowdsourcing Cloud Infrastructure 215

6 Conclusion

As software crowdsourcing becomes an increasingly viable alternative to dedicated
software development teams the infrastructure required to support such dynamic
collaborations will continue to increase. Already, software crowdsourcing projects
are turning to cloud resources as a model for providing resources on which tasks
can be completed. However, we argue that these approaches will not scale and may
become costly as projects become larger and more common. In this chapter we have
described an alternative approach in which the very same crowdsourcing principles
are applied to acquire infrastructure resources. Through the use of an infrastructure
crowdsourcing model users can assemble a virtual infrastructure on which software
development processes can be performed.

Social Clouds are a well studied approach for facilitating the exchange of
infrastructure resources using various economic and non-economic protocols. They
provide a model for exchanging heterogeneous resources between individuals con-
nected via a social graph. Where the social graph provides the ability to derive
relationships and therefore infer pre-existent trust between users, which in turn can
be used to increase quality and trustworthiness with respect to shared infrastruc-
ture. Social Clouds provide the necessary mechanisms to ensure resources are used
securely and to manage allocation across a pool of participants. In previous work, we
have developed three Social Clouds, focused on storage, content delivery, and com-
pute. We have also explored the use of different allocation protocols based on credit,
social network, and preference models. These Social Clouds and their associated
allocation models provide a generic basis on which other services can be developed.

The use of a Social Cloud model as a basis for, or a companion to, a software
crowdsourcing system will enable individual projects to leverage not only the skills
contributed by participants but also their infrastructure resources. This integration
will allow the deployment and operation of important software development services
hosted collectively by the project’s members. The use of a infrastructure crowdsourc-
ing approach is perhaps the most appropriate model for provisioning infrastructure
given that the philosophies behind crowdsourcing software and infrastructure are the
same. Finally, the same social network analysis algorithms used in a Social Cloud
to infer trust and competency may also provide value in a software crowdsourcing
model.

References

1. Ali, Z., Rasool, R.U., Bloodsworth, P.: Social networking for sharing cloud resources. In: 2012
Second International Conference on Cloud and Green Computing (CGC), pp. 160-166 (2012)

2. Anderson, D.P.: Boinc: a system for public-resource computing and storage. In: 5th IEEE/ACM
International Workshop on Grid Computing, pp. 4-10 (2004)

3. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano,
J., Tuecke, S., Xu, M.: Web services agreement specification (WS-agreement). In: Open Grid
Forum, vol. 128 (2007)

216

4.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

K. Chard and S. Caton

Cappos, J., Beschastnikh, I., Krishnamurthy, A., Anderson T.: Seattle: a platform for educational
cloud computing. In: The 40th Technical Symposium of the ACM Special Interest Group for
Computer Science Education (SIGCSE’09), Chattanooga, TN USA (2009)

Caton, S., Haas, C., Chard, K., Bubendorfer, K., Rana, O.: A social compute cloud: allocating
and sharing infrastructure resources via social networks (2014)

Caton, S., Dukat, C., Grenz, T., Haas, C., Pfadenhauer, M., Weinhardt, C.: Foundations of trust:
contextualising trust in social clouds. In: 2012 Second International Conference on Cloud and
Green Computing (CGC), pp. 424-429. IEEE (2012)

Caton, S., Rana, O.: Towards autonomic management for cloud services based upon volun-
teered resources. Concurr. Comput.: Pract. Exp. 23 (2011). Special Issue on Autonomic Cloud
Computing: Technologies, Services, and Applications

Chard, K., Bubendorfer, K.: Using secure auctions to build a distributed meta-scheduler for
the grid. In: Buyya, R., Bubendorfer, K. (eds.) Market Oriented Grid and Utility Computing.
Wiley Series on Parallel and Distributed Computing, pp. 569-588. Wiley, New York (2009)
Chard, K., Bubendorfer, K., Caton, S., Rana, O.: Social cloud computing: a vision for socially
motivated resource sharing. IEEE Trans. Serv. Comput. 99(PrePrints), 1 (2012)

Chard, K., Caton, S., Rana, O., Bubendorfer, K.: Social cloud: cloud computing in social
networks. In: 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD), pp.
99-106 (2010)

Chard, K., Caton, S., Rana, O., Katz, D.S.: A social content delivery network for scientific
cooperation: vision, design, and architecture. In: The Third International Workshop on Data
Intensive Computing in the Clouds (DataCloud 2012) (2012)

. Czajkowski, K., Ferguson, D.F,, Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling, D.,

Tuecke, S., Vambenepe, W.: The WS-resource framework. Technical report, Globus. http://
www.globus.org/wsrf/specs/ws-wsrf.pdf (2004). Accessed Dec 2010

Dukat, C., Caton, S.: Towards the competence of crowdsourcees: literature-based consider-
ations on the problem of assessing crowdsourcees’ qualities. In: International Workshop on
Crowdwork and Human Computation at the IEEE Third International Conference on Cloud
and Green Computing (CGC), pp. 536-540. IEEE (2013)

Foster, I.: Globus online: accelerating and democratizing science through cloud-based services.
IEEE Internet Comput. 15(3), 70-73 (2011)

Foster, 1., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual orga-
nizations. Int. J. High Perform. Comput. Appl. 15, 200-222 (2001)

Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69,
9-15 (1962)

Geiger, D., Seedorf, S., Schulze, T., Nickerson, R.C., Schader, M.: Managing the crowd: towards
a taxonomy of crowdsourcing processes. In: AMCIS (2011)

Gracia-Tinedo, R., Sanchez-Artigas, M., Garcia-Lopez, P.: Analysis of data availability in F2F
storage systems: when correlations matter. In: 2012 IEEE 12th International Conference on
Peer-to-Peer Computing (P2P), pp. 225-236. IEEE (2012)

Gracia-Tinedo, R., Sanchez-Artigas, M., Garcia-Lopez, P.: F2box: cloudifying F2F storage
systems with high availability correlation. In: 2012 IEEE 5th International Conference on
Cloud Computing (CLOUD), pp. 123-130. IEEE (2012)

Gracia-Tinedo, R., Sanchez-Artigas, M., Moreno-Martinez, A., Garcia-Lopez, P.: Friendbox: a
hybrid F2F personal storage application. In: 2012 IEEE 5th International Conference on Cloud
Computing (CLOUD), pp. 131-138. IEEE (2012)

Haas, C., Caton, S., Weinhardt, C.: Engineering incentives in social clouds. In: Proceedings of
the 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid
2011), pp. 572-575 (2011)

Haas, C., Caton, S., Chard, K., Weinhardt, C.: Co-operative infrastructures: an economic model
for providing infrastructures for social cloud computing. In: Proceedings of the Forty-Sixth
Annual Hawaii International Conference on System Sciences (HICSS), Grand Wailea, Maui,
USA (2013)

http://www.globus.org/wsrf/specs/ws-wsrf.pdf
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

Social Clouds: Crowdsourcing Cloud Infrastructure 217

23.

24.

25.

26.

217.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

Haas, C., Kimbrough, S., Caton, S., Weinhardt, C.: Preference-based resource allocation: using
heuristics to solve two-sided matching problems with indifferences. In: 10th International
Conference on Economics of Grids, Clouds, Systems, and Services (Under Review) (2013)
Halldérsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation results
for the stable marriage problem. ACM Trans. Algorithms (TALG) 3(3), 30 (2007)

Ipeirotis, P.G., Provost, F., Wang, J.: Quality management on Amazon Mechanical Turk.
In: Proceedings of the ACM SIGKDD Workshop on Human Computation, pp. 64-67. ACM
(2010)

Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the optimal stable marriage.
J. ACM 34(3), 532-543 (1987)

John, K., Bubendorfer, K., Chard, K.: A social cloud for public eResearch. In: Proceedings of
the 7th IEEE International Conference on eScience. Stockholm, Sweden (2011)

Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),41-50 (2003)
Kern, R., Zirpins, C., Agarwal, S.: Managing quality of human-based eservices. Service-
Oriented Computing-ICSOC 2008 Workshops, pp. 304—309. Springer, New York (2009)
Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, J., Lease, M.,
Horton, J.: The future of crowd work. In: Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, pp. 1301-1318. ACM (2013)

Kuada, E., Olesen, H.: A social network approach to provisioning and management of cloud
computing services for enterprises. In: The Second International Conference on Cloud Com-
puting, GRIDs, and Virtualization, CLOUD COMPUTING 2011, pp. 98-104 (2011)

Kugler, K., Chard, K., Caton, S., Rana, O., Katz, D.S.: Constructing a social content delivery
network for escience. In: 2013 IEEE 9th International Conference on eScience (eScience),
pp. 350-356 (2013)

Lonstein, E., Lakhani, K., Garvin, D.: Topcoder (a): developing software through crowdsourc-
ing. Technical report, Harvard Business School General Management Unit Case (2010)
McMahon, A., Milenkovic, V.: Social volunteer computing. J. Syst. Cybern. Inf. (JSCI) 9(4),
34-38 (2011)

Mohaisen, A., Tran, H., Chandra, A., Kim, Y.: Socialcloud: using social networks for building
distributed computing services. arXiv:1112.2254 (2011)

Narendula, R., Papaioannou, T.G., Aberer, K.: My3: a highly-available P2P-based online social
network. In: 2011 IEEE International Conference on Peer-to-Peer Computing (P2P), pp. 166—
167. IEEE (2011)

Oleson, D., Sorokin, A., Laughlin, G.P., Hester, V., Le, J., Biewald, L.: Programmatic gold:
targeted and scalable quality assurance in crowdsourcing. Hum. Comput. 11, 11 (2011)
Pezzi, R.: Information technology tools for a transition economy, September 2009
Pfadenhauer, M.: Competence-more than just a buzzword and a provocative term? Modeling
and Measuring Competencies in Higher Education, pp. 81-90. Springer, New York (2013)
Pisano, G.P., Verganti, R.: Which kind of collaboration is right for you. Harv. Bus. Rev. 86(12),
78-86 (2008)

Thal, R.: Representing agreements in social clouds. Master’s Thesis, Karlsruhe Institute of
Technology (2013)

Thaufeeg, A.M., Bubendorfer, K., Chard, K.: Collaborative eResearch in a social cloud.
In: 2011 IEEE 7th International Conference on E-Science (e-Science), pp. 224-231 (2011)
Tokarchuk, O., Cuel, R., Zamarian, M.: Analyzing crowd labor and designing incentives for
humans in the loop. IEEE Internet Comput. 16(5), 45-51 (2012)

Wu, W., Tsai, W.-T., Li, W.: An evaluation framework for software crowdsourcing. Front.
Comput. Sci. 7(5), 694-709 (2013)

Wu, W., Zhang, H., Li, Z.: Open social based collaborative science gateways. In: 2011
11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid),
pp, 554-559. IEEE (2011)

Wu, W., Zhang, H., Li, Z., Mao, Y.: Creating a cloud-based life science gateway. In: 2011 IEEE
7th International Conference on E-Science (e-Science), pp. 55-61. IEEE (2011)

Zhang, Y., van der Schaar, M.: Incentive provision and job allocation in social cloud systems.
To appear in IEEE J. Sel. Areas Commun. (2013)

http://arxiv.org/abs/1112.2254

	Social Clouds: Crowdsourcing Cloud Infrastructure
	1 Introduction
	2 Social Clouds
	2.1 Motivation and Overview
	2.2 Crowdsourcing Calls
	2.3 Social Storage Cloud
	2.4 Social Content Delivery Network
	2.5 Social Compute Cloud

	3 Quality Management, Trust, and Agreements
	4 A Social Cloud for Software Crowdsourcing
	4.1 General Social Cloud Architecture
	4.2 Crowdsourcing Infrastructure for Software Crowdsourcing
	4.3 Establishing Trust and Competency via Social Networks

	5 Related Work
	6 Conclusion
	References

