
TRUSTIE: A Software Development
Platform for Crowdsourcing

Huaimin Wang, Gang Yin, Xiang Li and Xiao Li

Abstract Software development is either creation activities that rely on developers
creativity and talents, or manufacturing activities that follow the engineering proce-
sses. Engineering processes need to include creation activities to address tasks such
as requirement elicitation and bug finding. On the other hand, by exploiting the
crowd wisdom, open-source development has been demonstrated to be a suitable
environment for software creation. However, it also has several limitations, such
as guaranteeing the progress and quality of production process. This paper intro-
duces a software development platform and ecosystem that combines the strengths
of the two models. First, we propose the Trustworthy Software Model as a basis to
support such a hybrid development ecosystem. The core of this model contains a
novel lifecycle model, an evidence model and an evolution model. Second, based
on the model, we propose the Trustworthy Software Development and Evolution
Service Model. It integrates crowd collaboration, resource sharing, runtime moni-
toring, and trustworthiness analysis into an unified framework. Based on this inte-
grated model, we designed and implemented TRUSTIE, which distinguishes itself
from other software crowdsourcing platforms by providing the software collabora-
tive development service and the resource sharing service with the general support
of trustworthiness-analysis tools. TRUSTIE enables crowd-oriented collaboration
among internal development teams and the external crowds by combining the soft-
ware creation and software manufacturing in one ecosystem.

H. Wang · G. Yin (B) · X. Li · X. Li
National Laboratory for Parallel and Distributed Processing, School of Computer,
National University of Defense Technology, Changsha 410073, China
e-mail: jack_nudt@163.com

H. Wang
e-mail: whm_w@163.com

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_10

165

166 H. Wang et al.

1 Introduction

Software development is an intellectual activity [1]. During the early phases of
the software development, most of works are creative activities where people work
together to analyze requirements and design software. Once the initial specification
or design is available, automated algorithms are available to perform analysis for
producing quality code, such as completeness and consistency checkers, automated
code generators, and test case generators. The later processes, often rigorously, may
be considered as a software manufacturing process. In spite of significant progress in
software technology, many steps of software development processes are still manual.
For example, requirement elicitation and bug removal [2] are mostly creative tasks
in which automation plays a very limited role. Encouraging and facilitating creative
activities are very important.

1.1 Lessons from Open-Source Software Development

Recently, Open-Source Software (OSS) has significantly changed our understand-
ing of software development. Since the 1980s, OSS has continued to grow in both
quality and quantity, and has become a source of software for numerous organiza-
tions. OSS development is different from traditional software development in several
aspects: teams are decentralized; resources are rapidly shared; new versions are fre-
quently released; and online communities of developers have always been formed.
These characteristics enable people to create software in a distributed and collabora-
tive manner. For example, OSS websites like Github, Google Code and Sourceforge
make it possible for anyone to create and manage OSS projects at any time. Besides,
OSS projects are open to all the developers. For example, users from all over the
world, regardless of their prior training or experience, can engage in design dis-
cussion, contribute their code, and engage in testing through bug reporting. Thus,
software development is greatly facilitated through this openness and massive crowd
participation. Software development will profit greatly from an effective ecosystem
empowered by crowd wisdom.

1.2 Crowd Wisdom

In this paper, “crowd” means “an undefined large group of people” [3]. For exam-
ple, in Wikipedia, there are more than 19 million registered user accounts,1 who
have edited more than 30 million pages.2 Their accuracy was found to be similar to
the Encyclopedia Britannica [4]. Linus Torvalds, creator of the Linux Open Source

1http://en.wikipedia.org/wiki/Wikipedia:Wikipedians.
2https://en.wikipedia.org/wiki/Special:Statistics.

http://en.wikipedia.org/wiki/Wikipedia:Wikipedians
https://en.wikipedia.org/wiki/Special:Statistics

TRUSTIE: A Software Development Platform for Crowdsourcing 167

Operating System, said that “the most exciting developments for Linux will happen
in user space, not kernel space” [5], in which “the user space” is the environment
where a large number of people contribute their code. The Mozilla OSS project,
which produces the famous Firefox browser, has gathered a crowd of over 1,800
people as acknowledged contributors.3

Software creation activities are now becoming an active arena for crowd wisdom.
The success of this transformation is evidenced by the above-mentioned and other
successful OSS projects. The insight nature of this success can be explained by the
“wisdom-of-crowds” effect in cognition, coordination or cooperation problems [6].
The aggregated performance of a crowdwill often outperformany single elite or small
team of elites. Software creation tasks, such as eliciting requirement, negotiating the
design of modules, finding and fixing bugs, are indeed cognition, coordination or
cooperation problems. In traditional software engineering, these innovative tasks are
assigned to dedicated teams, and are performed under a central control. However,
as reported in [7], innovation and knowledge are essentially distributed and can
hardly be aggregated by using centralizedmodels. In OSS projects, software creation
is outsourced to an open crowd, where massive, diversified, and non-professional
contributions converge to the diffusion of innovation, resulting in the rise of wisdom-
of-crowds revolution in software development.

1.3 Ecosystem Incorporates Engineering and Crowd Wisdom

By exploiting crowd wisdom, OSS development can alleviate the problems encoun-
tered in software creationwhich are hard to tackle by engineeringmethods. However,
crowd wisdom method is not intended for all scenarios. The majority of commercial
or industrial software systems are still developed through traditional engineering
methods, though with the addition of agile elements recently. This is due to the
reason that the engineering methods and tools have central control over require-
ments management, progress scheduling and quality assurance. Crowd wisdom is
essentially elusive and unpredictable. Without central control, OSS development can
hardly guarantee anything ahead of time, which is intolerable for most commercial
products.

For the above reason, we do not advocate that the crowd wisdom method should
replace the engineeringmethod. Instead, we propose that these two paradigms should
be combined, so that traditional software production can benefit from crowdwisdom.
The end of this reasoning coincides with the business strategies of big companies,
such as IBM,who embraces open source to benefit its software business [8].However,
we take a different perspective as development platform designers in understanding
this end.

Our approach is to establish a software ecosystem that incorporates engineer-
ing methods and crowd wisdom. In the ecosystem, software creation activities are

3http://www.mozilla.org/credits/.

http://www.mozilla.org/credits/

168 H. Wang et al.

well-supported by exploiting crowd wisdom; meanwhile software manufacture is
well-supported through implements of engineering methods. While crowd wisdom
methods stress more in respecting the creativity of each individual [9], an important
goal of engineering is the quality or trustworthiness of the software system. A key
challenge in bridging these two types of developmentmethods is to ensure the quality
or trustworthiness of a software system up to an industrial standard and meanwhile
respecting the creativity of each member of the crowd.

In this paper, based on how software systems are actually evolved in crowd-
based development practices, we adopt a crowd-based approach, by proposing a
Trustworthy SoftwareModel (TSM) for quality assurance of the new ecosystemwith
a platform. We propose a new Software Development and Evolution Service Model
(SDESM) that offers crowd collaboration, resource sharing, runtime monitoring and
trustworthiness analysis as four basic services. Based on the TSM and SDESM, we
implemented TRUSTIE (Trustworthy software tools and Integration Environment),
a software development platform.

This paper is organized as follows: Sect. 2 describes the TSM; Sect. 3 proposes the
SDESM. Section4 introduces TRUSTIE including its architecture and application
practices; Sect. 5 covers related work; The last section concludes this paper.

2 Trustworthy Software Model (TSM)

In the crowd-based software development paradigm, the meaning of software trust-
worthiness is fundamentally different from that of the traditional software. It is the
foundation for designing a software development ecosystem built upon crowd wis-
dom.

2.1 Life Cycle Model

In the traditional lifecycle model, software consists of program and documentation,
and it has two phases: development phase and application phase [10], as shown in
Fig. 1a. After completing the development, a software system enters the application
phase through a distribution or releasing process. Any user feedbacks are returned
to the development team for software update for the next release.

In crowd-based development, huge amounts of software data can be generated
at different phases of software life cycle. These data are accumulated, and shared
in various developer communities, which not only reflect software functionality, but
also can be used to analyze and measure various software properties. Take OSS
as an example. The software data are spread mainly in collaborative development
communities (such as SourceForge andGitHub) and knowledge sharing communities
(such as StackOverflow). The former consists of software repositories that can be used
to analyze the quality of codes and software development processes, while the latter

TRUSTIE: A Software Development Platform for Crowdsourcing 169

(a) (b)

Fig. 1 Lifecycle models of a classic and b Trustworthy Software

can be used as the textual feedbacks from the crowds (such as comments, Q&As).
The corresponding life cycle model is shown in Fig. 1b.

In this newmodel, the contents of software are code andevidences, and specifically,
evidences as specific data that provide useful facts about various software proper-
ties. A software life cycle is now extended into three interwoven phases: develop-
ment, sharing and application. The sharing phase is important for the collection and
exploitation of crowdwisdom.When early versions of software (e.g., alpha versions)
enter the sharing phase through releases, they can be downloaded, tested, analyzed,
and assessed by the public. All user-generated data are then fed back to the develop-
ment team, so the developers can identify defects and possible extension points.

Based on this model, a software entity has different forms in the three phases:
software project, software resource and software instance. A software project con-
tains a set of software artifacts and development data generated by developers with
a roadmap. A software resource contains a set of software programs and evidences
published by its provider. A software instance contains a set of running programs,
status and application data of an online software system. The separation of the three
forms of software entities will make it clear how to support software development
in different software lifecycles.

2.2 Trustworthy Evidence Model

Software trustworthiness evidences are structured or unstructured data that can
directly or indirectly reflect trustworthiness attributes. Here, attributes include not
only objective quality attributes like correctness, reliability, performance, safety,
security [11], but also subjective attributes such as user evaluations. In some cases,
meta-attributes calculated by comparing different quality attributes can also be used
as evidence. In different phases of a software life cycle, different trustworthiness

170 H. Wang et al.

evidences can be generated. The trustworthiness evidence model mainly contains
three types of software evidences:

Development Evidences are evidences produced in the development phase,
including measurements and descriptions that reflect various attributes of a soft-
ware artifact, development process and teams. Examples are source code quality,
bug fix time, and measurements on the other development activities.

Sharing Evidences are evidence produced in the sharing phase, including
community-based measurements like number of downloads and followers, mea-
surements of project activities, and ranking results. Community evidences are data
generated fromonline sharing platforms. Thus, they are indirect attributes of software
systems. These reflect the social attributes of a software system.

Application Evidences are evidences produced in application activities, including
measurements and assessments given by users that reflect either the quality (avail-
ability, reliability, and security) or the functional and performance features (usability
and maintainability) of a software system.

Different kinds of software entities contain specified sets of software evidences. A
software project generally contains all development evidences of a software system.
Software resources usually include all the sharing evidences of a software system,
relevant parts of the development evidences and application evidences. A software
instance contains all application evidences of an online software system.

2.3 Software Evolution Model

Software evolution is a continuous process of modifications to meet application
requirements. It is an essential way towards producing quality software systems in
crowd-based development. During the software evolution process, developers mod-
ify and upgrade the software system based on existing trustworthiness evidences.
Evolution activities will also produce new trustworthiness evidences. Based on the
new software lifecycle model mentioned in previous subsection, evolution activities
fall into the following three categories: version evolution, resource evolution, and
runtime evolution. Each corresponds to the development, sharing and application
phase respectively. Given a specific software system, a version evolution can gener-
ate multiple instances of resource evolution that in turn generates multiple instances
of runtime evolution as shown in Fig. 2a.

Version Evolution is the continuous source code evolution of a software system
during the development phase. This includes the design, coding, testing and release
activities carried out in the face of changing requirements, and different development
processes might be involved. Version evolution activities produce development evi-
dences and it has a dependency on trustworthiness evidences produced by resource
evolution and runtime evolution activities.

Resource Evolution is the change of software trustworthiness attributes directly
or indirectly caused by continuous updates of software trustworthiness evidences.

TRUSTIE: A Software Development Platform for Crowdsourcing 171

(a)

(b)

Fig. 2 Three evolution models: a relations between three kinds of evolution. b The internal actions
in software evolution loops

The basic steps of resource evolution include the update of programs, evidences and
the recalculation of trustworthiness attributes.

Runtime Evolution is the changeof software runtimeactivities including software
update, application deployment, system maintenance, error handling and so on. Sys-
tems of different types or different scales evolve differently in their application phase.
Runtime evolution provides trustworthiness evidences generated in software sys-
tems’ application phase to resource evolution activities.

There are complicatedmutual impacts and restrictions between different evolution
activities. Malfunction of any type of evolution activity can cause serious negative
or harmful effect to the development of the software system. For example, the more
runtime evolution instances, the more trustworthiness evidences they can provide
to resource evolution instances and the quicker version evolution activities such
as bug fixing, hence the faster the maintenance and improvement process. Version
evolution is the original driving force of other evolution activities; malfunctioned
version evolution activities like poor project management might lead to software
runtime failure and sometimes force teams to start new version evolution activities.
Besides, resource evolution should focus on the aggregation, sharing and analysis of
software evidences. Suitable resource evolution mechanisms should be designed to
attract participations of software vendors and users.

Under specific circumstances, software vendorsmight directly offer their software
system as online services, which to some extend brings the above three types of
evolution activities together. This integration is meaningful to the improvement of
the overall efficiency and quality of crowd-based software evolution activities.

172 H. Wang et al.

3 Trustworthy Software Development and Evolution
Service Model

The TSDESM (Trustworthy Software Development and Evolution ServiceModel) is
an Internet-based software evolution model. It supports software evolution activities
in the development, sharing and application phases, and the formation, gathering,
sharing and utilization of trustworthiness evidences. It provides an evolution-based
approach for crowd-based software development paradigm. As shown in Fig. 3, this
service architecture centers on trustworthiness analysis, offers crowd collaboration,
resource sharing and runtime monitoring as basic services. Specifically, the crowd
collaboration service supports crowd creation and manufacture, and provides mech-
anisms for the integration or transformation between the two. The resource sharing
service provides mechanisms, like entity sharing and evidence sharing, to achieve
rapid prototype distribution and application feedback. The runtime monitoring ser-
vice provides services of data gathering, aggregation and analysis service during
the runtime. The trustworthiness analysis service is responsible for measuring and
analyzing the data generated in the crowd collaboration service, runtime monitor-
ing service and the resource sharing service. Meanwhile, it provides comprehensive
analysis mechanisms for various crowd-based development tasks.

The basics of this architecture are themassive amount of trustworthiness evidences
generated in different software evolution processes. The four services not only output
different types of trustworthiness evidences, but also establish and optimize some
of their own functionalities by utilizing trustworthiness evidences, as depicted in
Fig. 3. Specifically, collaboration development activities are supported by the crowd
collaboration service. The development process data they produce are themain source
of development evidences, including version repositories, code commit logs, and

Fig. 3 Trustworthy software
development and evolution
environment architecture

TRUSTIE: A Software Development Platform for Crowdsourcing 173

issue tracking repositories. The resource sharing service continuously aggregates
and accumulates trustworthiness evidences from the crowd, including test reports,
use case description and comments. The runtimemonitoring service outputs behavior
data of software instances, such as running log, which is important for evaluating
and improving the runtime trustworthiness. The trustworthiness analysis service is
responsible for measuring, analyzing and evaluating various evidences, providing
developers and users with important statistical results and analysis tools.

Besides, the four services are not isolated. They provide services to each other
through open interfaces. For example, through the interfaces provided by the resource
sharing service, the crowdcollaboration service can recommenduseful software com-
ponents and services to programmers to facilitate agile development. The resource
sharing service can also call the interfaces of the trustworthiness analysis service to
get the trustworthiness evidences of a certain software resource. The crowd collab-
oration service uses these interfaces to evaluate on-going development activities in
the code quality and development efficiency. And the runtime monitoring service
can publish logs of critical system faults to resource sharing service, which in turn
publishes these log data to crowd for possible solution.

3.1 Crowd Collaboration Service

Software is the virtualization of real world objects and the incarnation of knowledge
andwisdom.All software development activities are essentially a kind of knowledge-
intensive collaboration activities [12, 13], be it software manufacture or software
creation. However, these two types of collaborations are different in many aspects.
Collaborations in software manufacture activities are conducted by a closed team
of developers, while collaborations in software creation often involve the external
crowds. This difference entails different mechanisms and tools for development,
interaction and rewarding systems.

The goal of the crowd collaboration service is to support the integration or trans-
formation of software creation and software manufacture. As an indispensable pro-
cedure in software creation activity, it means to make adaptation of selected works
of creation and integrate them into products of manufacture. Online communication
and sharing tools like BBS, blog, wiki, micro-blog, which can support collabora-
tions of a large crowd, are important for software creation activities. These tools can
help disseminate creative ideas and works in a short period of time, attracting more
potential users and contributors. Meanwhile, tools used in software manufacture are
mainly aimed at improving the level of development automation and better process
management. These include tools of desktop development, version management,
process management, bug management and so on.

The crowd collaboration service should provide the development tools of both
types and the mechanisms for their integration. These mechanisms can resolve their
inter-dependencies and conflicts. Besides, these mechanisms should be flexible and
adaptable, especially for projects which adopt engineering management on core

174 H. Wang et al.

members and crowd management on peripheral contributors. Here we propose three
reference models.

Community Model is the mechanism that supports communication and shar-
ing among a group of individuals with similar interests. Community tools include
BBS, blog and wiki and so on. The community model integrates community tools
with software manufacture tools, builds development communities around develop-
ment processes or software artifacts. For example, developers and users can create
a community for sharing and communicate development activities based on a cer-
tain software issue. The community mechanism supports and encourages individual
developers to be creative and in turn inspires crowd wisdom. See Fig. 4a.

Social Network Model is the mechanism for maintaining social relationships
among users. Basic elements of a social network are relations like “follow” , “friend”
and “group”.Users broadcast their dynamics to other relevant users through the social
network. Often, there are complicated social relations among software developers,
such as code committer network [14] and bug report network [15]. Social network
tools are mainly responsible for maintaining social relationships in software devel-
opment activities, achieving mutual awareness and seamless interaction. As depicted
in Fig. 4a.

Process Organization Model is the mechanism for organizing and reusing effi-
cient collaboration processes and tools for software development activities with a rel-
atively stable work flow. Software production line is a new network-based software
development environment which is integrative, extensible and collaborative [16].
Following a given development procedure, this new environment can organize and
customize software development elements related to developers, tools and artifacts.

Fig. 4 Network-based
crowd collaboration service:
a the two integration models
for software creation and
production. b The tool
integration model for
development progress
organization

(a)

(b)

TRUSTIE: A Software Development Platform for Crowdsourcing 175

In this way, it can easily customize a dedicated software development environment
for a particular team of developers. As depicted in Fig. 4b.

3.2 Resource Sharing Service

During the evolution of a software project, developers and users create various arti-
facts, tools and data. These resources are valuable to reuse and reference in later
development. Resource Sharing is an essential utility for both software manufac-
ture and software creation. For software manufacture activities, sharing of artifacts,
processes and information within a certain closed-team project should be supported
and encouraged in the platform. On the other hand, to attract a larger crowd to
participate in software creation activities, the platform should also encourage and
remind core developers to share tutorials and example codes. Oftentimes, resources
and knowledge shared in crowd development are not well-structured documentations
and goes beyond the boundary of any project or team. This implies that the platform
should have free sharing utility for the crowd to upload, edit, mark, comment and
vote for or against various kinds of resources.

The recourse sharing service is themajor platform for software resource evolution.
It can provide software program and evidence sharing utility to different groups of
developers. The challenge here is to continually collect and store massive amounts
of software resources. Two mechanisms are introduced in this service.

Program Sharing Mechanism supports publishing, accessing and updating of
software components, software services and other types of software programs. For
software services, the software entity data also include the interface descriptions
and URL addresses of each service instance. For open source software, software
entity data often include source code, compilation or installation scripts and the
address of the source code repository. The software program sharing mechanism
can accelerate software system’s distribution and dissemination. In other words, it
accelerates a software instance’s transformation from version evolution to runtime
evolution, speeding up the exposure of software bugs and other issues.

Evidence Sharing Mechanism supports publish, access and update of software
trustworthiness evidences generated in the development, sharing and application
phases. For software services, their evidences also include service instances’ real-
time availability status and operation status. For open source software systems,
the evidences include bug repositories, mailing lists, open source licenses, spon-
sors’ information and the activeness of development. The software evidence sharing
mechanisms can speed up software evidences’ dissemination and update; shorten the
response time on user feedbacks.

Currently, software resources are widely dispersed over various online software
resource sites. Take open source software resource sties as an example. They include
software community sites (e.g., Linux, Apache and Eclipse), project hosting sites
(e.g., SourceForge and Github), software directories (e.g., Softpedia.net and Ohloh)
and programming Q&A websites (e.g., StackOverflow and AskUbuntu). These sites

176 H. Wang et al.

Fig. 5 Core mechanisms of the software resource sharing service

contain huge amounts of publicly accessible software programs and various types of
trustworthiness evidences. These data are of different formats and their organizations
are different from one site to another, so it is challenging to discover quality software
resources (Fig. 5).

There are several techniques that can be used to collect massive quality software
resources. These include:

Resource Publication allowsusers to register and submit various software entities
and their trustworthy evidence to the resource sharing platform. Different types of
software resource data are organized and wrapped by a unified structure, e.g., the
RAS mechanism [17].

Resource Collection crawls and preprocesses software resources from various
online software resource platforms. It is an important automatic technique for estab-
lishing the large-scale software resources sharing service.

Resource Organization and Mining supports effective classification and ret-
rieval of massive software resources, and mines the data for software evaluation and
analysis based on trustworthiness evidences.

3.3 Runtime Monitoring Service

The runtimemonitoring service is an infrastructure for achieving trustworthy runtime
evolution in the application phase. The idea is to monitor the behavior and status
of software instances, and provide raw or filtered runtime log data for trustworthy
analysis service. By providing such information, the runtime monitoring service
can support fault localization and dynamic modification, and eventually support
trustworthy running of software systems.

The runtime monitoring service can be implemented in three modules as shown
in Fig. 6.

Monitoring Development Tool transfers normal software into monitoring-
enabled software. A general transformation approach is to insert monitoring probes
into the targeted software system. Specifically, the monitoring-enabled transfor-
mation process contains several sequential phases, including monitoring require-
ment description, monitoring probes generation, monitoring probes insertion and

TRUSTIE: A Software Development Platform for Crowdsourcing 177

Fig. 6 The model of software runtime monitoring service

software interface customization. In addition, the monitoring development tool can
also support dynamic adjustment by deploying evolution engine into a software sys-
tem. However, the implementation of evolution engine needs API support of targeted
software system.

Targeted Software System contains three general components. The monitoring
probes send system runtime status to a monitoring agent which deliveries these
information into the runtime monitoring service platform. For software systems that
change frequently, the targeted software system can deploy an evolution engine to
implement dynamic adjustment. In details, the evolution engine can either execute
evolution commands sent from the monitoring agent, or automatically adjust system
based on local monitoring data.

Runtime Monitoring Service Platform is a system-level remote service that sup-
ports monitoring of several targeted software systems. It contains APIs of monitoring
service, runtime analysis engine and runtime monitoring demonstration service and
so on. The monitoring database is responsible for storing raw monitoring data and
recognized faulty event data. For very large complex software system, themonitoring
database also needs mechanism to process stream data and the capacity of massive
data storage. The runtime analysis engine conducts data mining on monitoring data
through calling the APIs of trustworthy analysis service, to evaluate system running
status, diagnosis of system faults, and update monitoring database. The monitor-
ing agent can send monitoring data, acquire fault information or issue adjustment
commands through accessing the APIs of monitoring service.

The runtimemonitoring service can be regarded as a new service provided to soft-
ware system running in the network. By doing so, this not only simplifies application
logic of targeted software system, but also unleashes the advantage of data mining
to improve the effectiveness of monitoring.

178 H. Wang et al.

3.4 Trustworthiness Analysis Service

Trustworthiness analysis measures and evaluates various development behaviors,
software artifacts and components by mining massive software evidence data.
Resources and knowledge generated by software creation activities are neither well-
managed nor well-organized, thus posing challenges for effective data mining. For
example, in crowd wisdom methods, most requirements are hidden in comments
and discussions informally created by the crowd. Thus, data from crowd have to be
preprocessed and analyzed to be properly reused and referenced in software manu-
facture activities. Trustworthiness analysis service is the key to disclose and refine
them, making the transformation from creation to manufacture possible. Besides, for
both engineering methods and crowd wisdom methods, analysis is also crucial for
understanding development status and evaluating development problems. Finally,
results of analysis often act as useful references for optimizing future development.
For example, the analysis and monitoring of user feedback has become the norm to
evaluate existing software features and extract new requirements [18].

In the proposed software model, trustworthiness analysis service is the funda-
mental mechanism that makes trustworthy evolution during the development and
sharing phase possible. It measures and assesses development behaviors, software
artifacts and software products by analyzing and mining massive software evidence
data, thus leading software evolution activities towards the desired direction. The
trustworthiness analysis service contains three core mechanisms, i.e., development
data analysis (for development evidences), runtime data analysis (for trustworthiness
evidences) and resource trustworthiness rating (for runtime evidences).

Development Data Analysis consists of mechanisms which analyze software
development data (includingprocess data andwork-in-process) tomeasure and assess
software development activities and ultimately help improve project development
efficiency and software product quality. The core model of these mechanisms is
given in the left triangle of Fig. 7. The task of development evidence extraction is
to extract relevant development data from the software project environment. This
process in turn imposes new requirements on the reorganization or adjustment of
software project process data.Thedevelopment data analysismechanism is to analyze

Fig. 7 The coremodel of trustworthy software comprehensive analysis (from left to right): a devel-
opment data analysis model of software projects. b Trustworthiness evaluation model of software
resources. c Runtime data analysis model of software instances

TRUSTIE: A Software Development Platform for Crowdsourcing 179

and measure the extracted data. This helps assess development status and identify
software problems, providing important statistics for development optimization.

Resource Trustworthiness Evaluation gives the estimated rating of the target
software resource for the given trustworthiness attribute, by analyzing and evaluating
the evidences generated in the three phases of software life cycle. The core model
of these mechanisms is depicted in the central triangle Fig. 7. The rating of software
trustworthiness is based on the trustworthiness rating requirement model, which can
be established according to users’ expectation. Trustworthiness evidence model is
the set of pertinent evidences determined by the definition and assessment process of
trustworthiness rating. It is the basis of software trustworthiness rating. Trustworthi-
ness rating assessment is the method and mechanism which rates software entities’
trustworthiness, which is often domain specific. An example of the trustworthiness
rating from TRUSTIE can be seen in Sect. 4.3.

Runtime Data Analysis analyzes and mines the application evidences gener-
ated in software runtime to evaluate system running status and diagnose faulty. Bo
doing so, we can dynamically adjust software system to achieve trustworthy run-
ning and evolution of software. The core model of these mechanisms is given in the
right triangle of Fig. 7. The runtime state extraction component extracts and analyzes
important evidences related to the analyzed targets, including application indepen-
dent system-level evidences and application dependent logic-level evidences. The
runtime fault diagnosis component mainly analyzes and localizes evidences, and
diagnoses software runtime faults. The recognized faults can be taken as runtime
evolution evidences, and be published into resource sharing platform as application
evidences.

For the construction of any specific trustworthy software development environ-
ment, the software project data analysis model and resource trustworthiness rating
model in Fig. 7 are widely applicable. Software development data can be intermedi-
ate software artifacts like source code files or executable software modules. They can
also be procedure logs of a specific project task like development logs, issue lists and
mailing lists. The software trustworthiness ratingmodel can explicitly give a software
system’s trustworthiness rating and its definition. It may also give an unsupervised
ranking requirement according to some trustworthiness attribute. The measurements
and descriptions produced in the software project data analysis process are important
evidences of the software development phase.

4 TRUSTIE: Software Production and Evaluation
with Crowdsourcing

Based on the trustworthy software development service model, we designed and
implemented TRUSTIE (Trustworthy software tools and Integration Environment),
a platform for software production and evaluation with crowdsourcing (www.trustie.
net).

www.trustie.net
www.trustie.net

180 H. Wang et al.

The goal of TRUSTIE is to help internal development teams and external crowd
developers to improve the quality and the productivity of software. To achieve this
goal, TRRUSTIE uses software crowdsourcing to bridge the external crowd wisdom
and internal engineering by using various contributions from the crowds, which are
tasks that can be performed distributedly beyond the internal development team for
the software projects. In TRUSTIE, any software development tasks can be out-
sourced in an implied manner. Even the evaluations of the submitted contributions
are possible to be outsourced. The organizers of the outsourcing mechanism are
mainly the internal teams of the software projects (Fig. 8).

TRUSTIE employs five kinds of technologies, achieving the key mechanisms of
bridging the external crowd wisdom and internal engineering process, supporting
central control, decentralized contract, and three application models. The platform
has developed about 60 software tools covering software development activities
including requirement engineering, design, packaging and maintenance. We have
designed the system of software collaborative development analysis and the system
of software product-line framework. Based on the former system, we developed
four product-line systems for automatic software production. We also achieve the
integration of the collaborative development core service with those systems. The
technologies and platform of TRUSTIE have been used in China in various software
industries and research institutions.

Fig. 8 The development environment, technology architecture and application practices of
TRUSTIE

TRUSTIE: A Software Development Platform for Crowdsourcing 181

4.1 Software Crowdsourcing Model and Process in TRUSTIE

Based on the theoretical framework proposed in [19], the software crowdsourcing
model in TUSTIE can be categorized as a non-competitive model. In TRUSTIE,
either individuals or development teams can participate in a collaborative manner
to create software. All the participants contribute code or resources throughout the
entire crowdsourcing process for better connection of internal software teams and
external Crowds. This is quite different from the competitive model (such as crowd-
sourcing platforms in TopCoder and AppStori), where people participate in a com-
petitive manner to create software. Only selected or highly talented developers (or
teams) can survive in the crowdsourcing process and become the only contributors
or be rewarded with funding.

As a non-competitive model, the process of software crowdsourcing in TRUSTIE
is to ease the collaboration burden and maximize the throughput of development
outcome. This is supported by the collaborative development service and resource
sharing service (explained later in Sects. 4.2 and 4.3) in TRUSTIE in an implied
style. Generally, TRUSTIE includes three crowdsourcing processes: (1) Develop-
ment outsourcing: TRUSTIE outsources the task pieces of software creation and
production to the crowds by using its network-based crowd collaboration service.
Currently, TRUSTIE is considering outsource the codes review tasks [20]. (2) Testing
outsourcing: TRUSTIE enables the collection and integration of public bug reports
and comments by software resource sharing service. (3) Maintenance outsourcing:
TRUSTIE enables the collection of runtime status of monitored systems for quick
runtime evolution. This may enable the outsourcing of system maintenance tasks
by recruiting skilled system administrators. Currently, these processes are mainly
driven by the interests and consumption requirements of the crowds.

The collaborative development service and resource sharing service are the keys
to support the non-competitive crowdsourcing model in TRUSITE. In the next two
subsections, we describe the two services in details.

4.2 Trustworthy Software Collaborative Development Service

The trustworthy software collaborative development service supports the crowd-
sourcing process with software creation tools and software manufacturing tools.
These tools are exposed to both internal development teams and external crowd with
configurable options. Their integration is achieved through the community model
and social network model. Based on this, we build the collaborative development
analysis system that can analyze and measure development behavior, and the soft-
ware product-line framework system that supports the organization of collabora-
tion process and the customization of the development environment. Specifically, it
consists of the following services:

182 H. Wang et al.

Social Collaborative Development Service: This service provides software
creation tools like project forums, collaborative editing tools,mailing lists, and instant
communication. It also provides manufacture tools like project management, config-
uration management, bug management and continuous integration tools. It combines
both kinds of tools into a unified development environment [21]. Besides, this ser-
vice supports the sharing of technical knowledge, and achieves developers’ mutual
awareness, and interaction through mechanisms applied in the community model
and the social network model.

Collaborative Development Analysis Service: this service has provided a plat-
form to fetch and store massive software development data. It has also integrated
various tools for measuring development behaviors into the configuration manage-
ment tool set. Behind this service is a comprehensive assessment technology which
concerns the evidences of software products and evidences of development teams
simultaneously [22]. Besides, it integrates a technology that analyzes a programmer’s
development capability and the traces of his or her technical improvement [23].

Software Product-Line Construction Service: specifically, this service orga-
nizes and customizes developers, software tools and software artifacts involved in a
specific software development process based on some given development steps. In
thisway, the service helps establish suitable software production lines and a dedicated
development environment for the developer team [24].

As of June 2013, TRUSTIE supported 600 software projects and 700 compe-
tition projects. Besides, by using a set of evidence standards, it has extracted the
development evidences of quality OSS projects from online OSS communities.

4.3 Trustworthy Software Resource Sharing Service

In TRUSTIE, the trustworthy software resource sharing service supports the crowd-
sourcing process by allowing users, either internal development teams or external
crowd, to publish, retrieve, and evaluate software resources. It can transfer the tradi-
tional closed static software component storage model into the open dynamic soft-
ware resource sharing model [25]. Combined with the software rating and evaluation
model [26], this mechanism integrates trustworthiness evidence framework into the
software resource information architecture [27]. It seamlessly integrates central, sta-
tic resource storage with open, dynamic resource aggregation technology.

Resource Collecting and Organization: this service collects massive software
resources by using the resource publishing and resource retrieval technology. Based
on the RAS technology standard, it achieves evidences’ packaging and utilization
throughout the whole software life cycle. In order to improve the effectiveness of
resource management, it classifies massive software resources from multiple sites
using text mining and tag mining technology [28] and feature analysis technology
[29]. Both extracted meta data and mined knowledge data is stored and indexed
in cloud-based persistent storage including relational and non-relational databases.
Up to June 2012, TRUSTIE has already published 170 self-developed software

TRUSTIE: A Software Development Platform for Crowdsourcing 183

resources and more than 61,000 software resources collected from other online soft-
ware libraries and open source communities.

Resource Trustworthiness Evaluation: this service provides automatic assess-
ment mechanisms and manual assessment mechanisms, e.g., the assessment mech-
anism for service trustworthy evolution [30, 31]. Though software trustworthiness
rating depends on specific application domain, we believe there can be a trustwor-
thiness rating reference model which captures universal software attributes. This
reference model can be customized for any specific application domain.

The trustworthiness rating model employed by TRUSTIE’s trustworthy software
resource repository system is a trustworthiness rating reference method whose rating
dimensions are from user expectation, application validation and the methodology of
evaluation [26], see Table1. For example, in some critical areas (like aerospace), even

Table 1 Software trustworthiness rating model

Level Name Content

0 Unknown The lowest trustworthiness level. It means no software
trustworthiness evidence is found. It cannot determine whether the
target software system satisfies users’ expectations of the
trustworthiness attributes of the same type of software systems

1 Available The software entity can be accessed, and can function as described by
the software provider. It implies that the target software system
satisfies users’ basic expectations over the functional attributes of the
same type of software systems

2 Verified On the basis of the Available level, software provider publishes a
declaration of the set of software trustworthiness attributes according
to some documented standards. This declaration can be verified
through domain-specific software assessment mechanisms. It
indicates that the target software system satisfies users’ general
expectations over the trustworthiness attributes of the same type of
software systems, and these user-expected trustworthiness attributes
are verified

3 Applied On the basis of the Verified level, software systems have been applied
in related domains and have verifiable cases of successful application.
It implies that the software system satisfies users’ general
expectations over the trustworthiness attributes of the same type of
software systems, and these user-expected trustworthiness attributes
have been verified by real application

4 Assessed On the basis of the Applied level, trustworthiness of an Assessed
software system should pass the assessment conducted by
authoritative software trustworthiness rating agencies according to
specific documented trustworthiness rating standards. This indicates
the software system satisfies relatively higher user expectations over
the trustworthiness attributes of the same type of software systems,
and these user-expected trustworthiness attributes are confirmed by
authorities

5 Proved The highest trustworthiness level. It means on the basis of the
Assessed level, the user-submitted software trustworthiness attributes
can be strictly proved

184 H. Wang et al.

the first applicable version of the target software system is required to reach a high
trustworthiness level (e.g., level 4). The prerequisite of reaching level 3 and above
is the evidence of successful case application of the software system. This requires
the trustworthiness rating standards of these areas to be customized according to
domain-specific descriptions. For example, aerospace software users can specify the
definition of “successful cases of application” as “successful experimentation under
simulated environment”.

To ensure the reliability of trustworthy evaluation, the data assessed by TRUSTIE
platform are aggregated automatically from the software tools in TRUSTIE, such as
issue tracking tools, version control tools, resource sharing tools and communication
tools, without any intervention.

5 Related Work

Throughout the development of software technology, software development technol-
ogy and its supporting environment have always played important roles in driving
software technological innovation and industrial development. The rise of crowd-
based open source development has brought new opportunities. The vendors of soft-
ware development environments have shifted their attention from providing local
development support to facilitating globally distributed crowd development.

In software development methodology and development environment architec-
ture, researchers have studied the changes in software development technology.
Yang and colleagues [13] realized the profound impact of the Internet on soft-
ware systems and software development activities. They systematically proposed
the Internetware model and a set of architecture-centered software technologies and
development methods, which pave the way for establishing the conceptual model,
the evolution process and the supporting environment of trustworthy software sys-
tems. Based on Sourceforge and other similar open source project hosting platforms,
Booch and colleague [32] have described the definitions and basic characteristics
of software collaborative development environments. Using OSS development and
community-based service systems as prototypes, Kazman and colleague [33] have
proposed the Metropolis model which facilitates crowdsourcing software develop-
ment. The Metropolis model adopts a hierarchical software development architec-
ture, where participants are divided into the core, the peripheral and the mass. It
addresses principles like openness, mash-ups, unknown requirements, continuous
evolution, unstable resources and emergent behaviors. Through numerous case stud-
ies, Tapscott and colleague [34] have indicated that software development and more
and more other business models have begun to adopt the ideas and mechanisms
of mass collaboration, including openness, peering, sharing, and acting globally.
Herbsleb [2] has proposed the concept of Global Software Engineering. He dis-
cussed what new challenges global software development imply in aspects including
software architecture design, requirement elicitation, development environments and
tools. Possible future research directions have also been identified and illustrated.

TRUSTIE: A Software Development Platform for Crowdsourcing 185

For the crowdsourcing model, Howe [3] has illustrated its origin, present status and
future with several real world examples. He listed the open source movement, the
development of collaboration tools and the rise of vibrant community as the keys
to the rise of crowdsourcing, which is meaningful in establishing the crowd-based
software development ecosystem.

For collaborative development tools and technologies, recent years havewitnessed
numerous researches on the analysis of distributed, social development technologies
and practices. Mockus et al. [35] have analyzed the software development data of
the Apache Server open source project, which has a major impact in software engi-
neering research and has become the pioneer work in the field of Mining Software
Repositories. Crowston and Howison [36] have examined 120 OSS projects hosted
on Sourceforge.com. They have identified different patterns of developer interac-
tions and their relation with the team size. Sarma and colleague [37]have proposed
a browser named Tesseract for visualizing ‘socio-technical’ dependencies in devel-
opment activities, which aims at increasing mutual awareness among developers of
distributed teams. Dabbish et al. [38] analyzed Github.com, a project hosting and
social development website, and how transparency plays an important role in devel-
oper collaboration in Github. Posnett et al. [39] analyzed the focus and ownership
relations between software developers and artifacts in distributed development. They
propose a unified view of measuring focus and ownership by drawing the predator-
prey food web from ecology to model the developer-artifact contribution network.
They found through empirical studies that the number of defects is related to the
distribution of developer focus. Bird et al. [40] analyzed the development process
of Windows Vista. Specifically, they compared the post-release failures of compo-
nents that are developed by collocated teams with those developed in a distributed
manner. The difference is found to be insignificant. More recent researches on col-
laborative development analysis tend to focus on empirical study and aim at making
constructive suggestions and possible improvements on existing collaboration tools.

In OSS, resource sharing, mining, and trustworthiness evaluation become impor-
tant issues. SourceForge, Github and other project hosting sites have accumulated a
huge number of projects and data. In 2009, Mockus and colleague [41] have con-
ducted a preliminary census of OSS repositories. Their results indicate that more than
120,000 and130,000projectswere thenhosted onSourceForge.comandGithub.com,
respectively. In 2013, these two metrics are reported to be 470,000 and 4,000,000
respectively [42]. With the wide application of OSS, researchers began to focus on
the measurement of OSS trustworthiness. In its essence, software trustworthiness
is the natural extension of the notion of software quality in the Internet era [13].
How to scientifically assess software quality has always been one of the most chal-
lenging issues of software engineering research [43]. After 40years of development,
Software Metric has become an important software engineering research direction
concerning the problems of software quality. Quality assessment technologies have
become specialized and standardized. Numerous impactful software quality models
were then proposed [44, 45]. Based on these models, researchers and practitioners
have further designed quality models that take community factors into considera-
tion. These include the Navica [46], OpenBRR [47] and SQO-OSS [48] models.

186 H. Wang et al.

For example, the OpenBRR (Open Business Readiness Rating) model is a mature
OSS quality assessment model which aims to rate software projects and the code of
the entire OSS community in a standard and open fashion and eventually facilitates
the evaluation and application of OSS. Its assessment categories include Function-
ality, Usability, Quality, Security, Performance, Scalability, Architecture, Support,
Documentation, Adoption, Community and Professionalism. Its assessment process
involves ranking the importance of categories or metrics, processing the data, and
translating the data into the Business Readiness Rating. For the moment, assessment
and utilization of online OSS resources are still a hot topic for SE researchers.

In the industry, there is a major trend of the integration of software develop-
ment environment with online collaboration tools. CollabNet4 is one of the software
vendors who intentionally integrate OSS development methods into software devel-
opment environments. It has published the TeamForge platform which integrates
configuration management, continuous integration, issue tracking, project manage-
ment, lab management and collaboration tools into aWeb app life cycle management
platform. In thisway, it supports distributed collaborative development and high qual-
ity software delivery. The Visual Studio Integrated Development Environment5 is an
enterprise IDE for desktop development environment. Recently it has added TFS
(Team Foundation Server) that supports team collaboration mechanisms like ver-
sion control, iteration tracking and the task panel. IBM Rational Jazz6 is an open
and transparent collaborative development platform for commercial use. The team
collaboration, requirements composition and quality management tools of Rational
Jazz can support the development of trustworthy software products. Besides, IBM
has once encouraged the use of the IIOSB (IBM’s Internal Open Source Bazaar)
[8] in its commercial software development environment, which we believe is an
important attempt to integrate software creation and manufacture.

There are research efforts on approaches to harnessing crowdwisdom for software
development. Some emphasizes the importance of open, decentralized management.
Bird and colleague [49] found that the development of Firefox project is distributed
both geographically and organizationally. According to interviews with the creators
of Linux, Perl and Apache [50], letting the crowd takes over is an indispensable step
for the success of OSS projects. Project owners are thus encouraged to set up mech-
anisms and generate utilities for a larger crowd to participate easily, rather than act
against this openness. However, decentralization comes at a cost. Compared to tra-
ditional centralized, co-located projects, this globally distributed OSS development
model must face the challenge of incompatibilities and the risk of lack of awareness
[2]. To harness crowd wisdom, software projects should be equipped with tools and
practices that meet increasing coordination needs. The importance of accommodat-
ing diversities and conflicts has also been addressed in OSS practices and researches.
A typical OSS project uses issue tracking systems to manage bug reports and feature
requests. These bug reports cover various aspects of the target software project, and

4http://www.collab.net.
5http://www.visualstudio.com.
6http://www-01.ibm.com/software/rational/jazz/.

http://www.collab.net
http://www.visualstudio.com
http://www-01.ibm.com/software/rational/jazz/

TRUSTIE: A Software Development Platform for Crowdsourcing 187

some of them are conflicting with each other. However, there are no dictators who
make arbitrary decisions to cast aside any of these bugs. Instead, on which advice
to take is totally for the whole community to decide. Those not taken are also kept
in the project memory, and may have the opportunity to get re-opened [51]. Similar
mechanisms can also be seen in the way developers manage their code contribution.
For many successful Git-based OSS projects like the Android project and projects
on Github, contributors do not have to always follow the central code depot. They
can independently code on their own branch of the project, and merge the code back
as a patch whenever they want [52]. To accommodate diversity, project managers
are recommended to set up mechanisms to foster a culture that encourages different
opinions. Besides, communication tools are needed to resolve conflicts and build
consensus. For example, the Stack Overflow uses a voting mechanism to identify
high quality posts.

Recently, crowdsourcing software development or software crowdsourcing was
coined to identify an emerging area of software engineering [53]. It is described
to be an open call for participation in any task of software development, including
documentation, design, coding and testing. These tasks are normally conducted by
either members of a software enterprise or people contracted by the enterprise. But in
software crowdsourcing, all the tasks can be assigned to anyone in the general public.
Many software engineering researchers have studied the concept models, processes
and common architecture of software crowdsourcing. Wu et al. [54] has studied two
famous software crowdsourcing platforms, TopCoder and AppStori. By mining the
TopCoder data, authors found that the number of participants and hours spent on
competition are surprisingly smaller than expected. Clear problem definition, trans-
parency, diversity have been pointed out as the key lessons learned from current
software crowdsourcing. For both software crowdsourcing platforms, the Min-Max
nature among participants has been found to be a key design element. In another paper
[19], the authors proposed a novel evaluation framework for software crowdsourcing
projects. In the framework, the Min-Max relationship is used as a major aspect in
evaluating the competitions of crowdsourcing projects. In a previous Dagstuhl Sem-
inar [55], researchers from different domains have spent collective effort exploiting
and validating the new idea ofCloud-based Software Crowdsourcing, where the soft-
ware crowdsourcing processes andmodels are achievedwith computer cloud support.
Possible common architecture for Cloud-based Software Crowdsourcing has been
identified. Important issues related to concept models, processes and design patterns
have also been addressed. As discussed in the study of Tsai et al. [56], software
crowdsourcing has enabled the synergy architecture between a cloud of machines
and a cloud of humans. In such architecture, crowdsourcing models including game
theory, optimization theory and so on would be well supported by cloud-based tools.

188 H. Wang et al.

6 Conclusion

This paper proposes an ecosystem framework to deeply integrate the traditional
engineering methodology and the crowd-based development process. Based on this
framework, we develop the TRUSTIE, a non-competitive software crowdsourcing
platform. It supports crowd collaboration, resource sharing, runtime monitoring,
and trustworthiness analysis for trustworthy software evolution. TRUSTIE has been
used successfully in a number of software companies in China since 2008. Our
future work includes improving the evidence management and analysis capability of
TRUSTIE through infrastructure upgrade, improving the collaborative development
service and resource sharing service, and exploring the possibility of integrating
competitive crowdsourcing models, such as creative works competition.

Acknowledgments This research is supported by the National High Technology Research and
Development Program of China (Grant No. 2012AA011200), and National Natural Science Foun-
dation of China (Grant No. 61432020 and 61472430). Our gratitude goes to all members of the
TRUSTIE project, for their hard work and contribution, and also to the experts from the information
technology domain of the National 863 Plan, for their continuous support and guidance.

References

1. DeMarco, T., Lister, T.: Peopleware-Productive Projects and Teams. Dorset House Publishing
Co., New York (1987)

2. Herbsleb, J.D.: Global software engineering: the future of socio-technical coordination. In:
2007 Future of Software Engineering, pp. 188–198. IEEE Computer Society (2007)

3. Howe, J.: Crowdsourcing: Why the Power of the Crowd is Driving the Future of Business.
Random House, New York (2008)

4. Giles, J.: Internet encyclopaedias go head to head. Nature 438(7070), 900–901 (2005)
5. Torvalds, L.: The linux edge. Commun. ACM 42(4), 38–39 (1999)
6. Surowiecki, J.: The Wisdom of crowds: why the many are smarter than the few and how

collective wisdom shapes business. Economies, Societies and Nations (2004)
7. Lakhani, K.R., Panetta, J.A.: The principles of distributed innovation. Innovations 2(3), 97–112

(2007)
8. Capek, P.G., Frank, S.P., Gerdt, S., Shields, D.: A history of IBM’s open-source involvement

and strategy. IBM SYST. J. 44(2), 249–257 (2005)
9. Raymond, E.: The cathedral and the bazaar. Knowl. Technol. Policy 12(3), 23–49 (1999)
10. Xu, J.: System Programming Language. China Science Press, Beijing (1987)
11. Hasselbring, W., Reussner, R.: Toward trustworthy software systems. Computer 39(4), 91–92

(2006)
12. Robillard, P.N.: The role of knowledge in software development. Commun. ACM 42(1), 87–92

(1999)
13. Yang, F., Lü, J., Mei, H.: Technical framework for internetware: an architecture centric

approach. Sci. China Ser. F: Inf. Sci. 51(6), 610–622 (2008)
14. Huang, S.K.: Mining version histories to verify the learning process of legitimate peripheral

participants. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–5 (2005)
15. Zanetti, M.S., Scholtes, I., Tessone, C.J., Schweitzer, F.: Categorizing bugs with social net-

works: a case study on four open source software communities. In: Proceedings of the 2013
International Conference on Software Engineering, pp. 1032–1041. IEEE Press (2013)

TRUSTIE: A Software Development Platform for Crowdsourcing 189

16. Dou, W., Wei, G.W., Wei, J.C.: Collaborative software development environment and its con-
struction method. J. Front. Comput. Sci. Technol. 5(7), 624–632 (2011)

17. TrustieTeam: Trustie software resource management specification, trustie-srmc v2.0 (2011)
18. O’reilly, T.: What is web 2.0: design patterns and business models for the next generation of

software. Commun. Strateg. (65) (2007)
19. Wu, W., Tsai, W.T., Li, W.: An evaluation framework for software crowdsourcing. Front.

Comput. Sci. 7(5), 694–709 (2013)
20. Yu,Y.,Wang,H., Yin, G., Ling, C.: Reviewer recommender of pull-requests inGitHub. In: 2014

30th IEEE International Conference on International Conference on SoftwareMaintenance and
Evolution (ICSME 2014 TOOLS), pages to appear. IEEE (2014)

21. TrustieTeam: Trustie collaborative development environment reference specification, trustie-
forge v2.0 (2011)

22. Lin, Y., Huai-Min, W., Gang, Y., Dian-Xi, S., Xiang, L.: Mining and analyzing behavioral
characteristic of developers in open source software. Chin. J. Comput. 10, 1909–1918 (2010)

23. Zhou, M., Mockus, A.: Developer fluency: achieving true mastery in software projects. In:
Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 137–146. ACM (2010)

24. TrustieTeam: Trustie software production line integration specification, trustie-spl v3.1 (2011)
25. Zhao, J., Xie, B., Wang, Y., Xu, Y.: TSRR: A software resource repository for trustworthiness

resource management and reuse. In: SEKE, pp. 752–756 (2010)
26. TrustieTeam: Trustie software trustworthiness classification specification, trustie-stc v2.0

(2011)
27. Cai, S., Zou, Y., Shao, L., Xie, B., Shao, W.: Framework supporting software assets evaluation

on trustworthiness. J. Softw. China 21(2), 359–372 (2010)
28. Wang, T.,Wang, H., Yin, G., Ling, C.X., Li, X., Zou, P.:Mining software profile acrossmultiple

repositories for hierarchical categorization. In: 2013 29th IEEE International Conference on
Software Maintenance (ICSM), pp. 240–249. IEEE (2013)

29. Yu, Y.,Wang, H., Yin, G., Liu, B.:Mining and recommending software features across multiple
web repositories. In: Proceedings of the 5th Asia-Pacific Symposium on Internetware, p. 9.
ACM (2013)

30. Shao, L., Zhao, J., Xie, T., Zhang, L., Xie, B., Mei, H.: User-perceived service availability: a
metric and an estimation approach. In: IEEE International Conference onWeb Services, ICWS
2009, pp. 647–654. IEEE (2009)

31. Zeng, J., Sun, H.L., Liu, X.D., Deng, T., Huai, J.P.: Dynamic evolution mechanism for trust-
worthy software based on service composition. J. Softw. 21(2), 261–276 (2010)

32. Booch, G., Brown, A.W.: Collaborative development environments. Adv. Comput. 59, 1–27
(2003)

33. Kazman, R., Chen, H.M.: The metropolis model a new logic for development of crowdsourced
systems. Commun. ACM 52(7), 76–84 (2009)

34. Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everything.
Penguin, New York (2008)

35. Mockus, A., Fielding, R.T., Herbsleb, J.: A case study of open source software development: the
apache server. In: Proceedings of the 22nd International Conference on Software Engineering,
pp. 263–272. ACM (2000)

36. Crowston, K., Howison, J.: The social structure of free and open source software development.
First Monday 10(2) (2005)

37. Sarma, A., Maccherone, L., Wagstrom, P., Herbsleb, J.: Tesseract: interactive visual explo-
ration of socio-technical relationships in software development. In: IEEE 31st International
Conference on Software Engineering, ICSE 2009, pp. 23–33. IEEE (2009)

38. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J.: Social coding in GitHub: transparency and
collaboration in an open software repository. In: Proceedings of the ACM 2012 Conference on
Computer Supported Cooperative Work, pp. 1277–1286. ACM (2012)

39. Posnett, D., D’Souza, R., Devanbu, P., Filkov, V.: Dual ecological measures of focus in soft-
ware development. In: 2013 35th International Conference on Software Engineering (ICSE),
pp. 452–461. IEEE (2013)

190 H. Wang et al.

40. Bird, C., Nagappan, N., Devanbu, P., Gall, H., Murphy, B.: Does distributed development affect
software quality?: An empirical case study of windows vista. Commun. ACM 52(8), 85–93
(2009)

41. Mockus, A.: Amassing and indexing a large sample of version control systems: towards the
census of public source code history. In: 6th IEEE InternationalWorkingConference onMining
Software Repositories, MSR’09, pp. 11–20. IEEE (2009)

42. Begel,A.,Bosch, J., Storey,M.A.: Social networkingmeets software development: perspectives
from github, msdn, stack exchange, and topcoder. Softw. IEEE 30(1), 52–66 (2013)

43. Liu, K., Shan, Z., Wang, J., He, J., Zhang, Z., Qin, Y.: Overview on major research plan of
trustworthy software. Bull. Natl. Nat. Sci. Found. China 22(3), 145–151 (2008)

44. Boehm,B.W., Brown, J.R., Kaspar, H., Lipow,M.,MacLeod, G.J.,Merrit,M.J.: Characteristics
of Software Quality, vol. 1. North-Holland Publishing Company, Amsterdam (1978)

45. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality. General Electric
National Technical Information Service, Berlin (1977)

46. Golden, B.: Succeeding with Open Source. Addison-Wesley Professional, Boston (2005)
47. Wasserman, A., Pal, M., Chan, C.: The business readiness rating model: an evaluation frame-

work for open source. In: Proceedings of the EFOSS Workshop, Como, Italy (2006)
48. Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G.: Open Source Development, Com-

munities and Quality. Springer, Berlin (2008)
49. Bird, C., Nagappan, N.: Who? Where? What? examining distributed development in two large

open source projects. In: 2012 9th IEEEWorking Conference onMining Software Repositories
(MSR), pp. 237–246. IEEE (2012)

50. Barr, J.: The paradox of free/open source project management (2005). http://archive09.linux.
com/feature/42466. Accessed 6 May 2014

51. Aranda, J., Venolia, G.: The secret life of bugs: going past the errors and omissions in software
repositories. In: Proceedings of the 31st International Conference on Software Engineering,
pp. 298–308. IEEE Computer Society (2009)

52. Anonymous:Gerrit code review—aquick introduction, version 2.10-rc0-199-g60bca74 (2014).
https://gerrit-review.googlesource.com/Documentation/intro-quick.html

53. Anonymous: Crowdsourcing software development, from Wikipedia (2014). http://en.
wikipedia.org/wiki/Crowdsourcing_software_development

54. Wu, W., Tsai, W.T., Li, W.: Creative software crowdsourcing: from components and algorithm
development to project concept formations. Int. J. Creat. Comput. 1(1), 57–91 (2013)

55. Huhns, M.N., Li, W., Tsai, W.T.: Cloud-based software crowdsourcing (dagstuhl seminar
13362). Dagstuhl Rep. 3(9) (2013)

56. Tsai,W.T.,Wu,W.,Huhns,M.N.:Cloud-based software crowdsourcing. IEEE InternetComput.
18(3), 78–83 (2014). http://doi.ieeecomputersociety.org/10.1109/MIC.2014.46

http://archive09.linux.com/feature/42466
http://archive09.linux.com/feature/42466
https://gerrit-review.googlesource.com/Documentation/intro-quick.html
http://en.wikipedia.org/wiki/Crowdsourcing_software_development
http://en.wikipedia.org/wiki/Crowdsourcing_software_development
http://doi.ieeecomputersociety.org/10.1109/MIC.2014.46

	TRUSTIE: A Software Development Platform for Crowdsourcing
	1 Introduction
	1.1 Lessons from Open-Source Software Development
	1.2 Crowd Wisdom
	1.3 Ecosystem Incorporates Engineering and Crowd Wisdom

	2 Trustworthy Software Model (TSM)
	2.1 Life Cycle Model
	2.2 Trustworthy Evidence Model
	2.3 Software Evolution Model

	3 Trustworthy Software Development and Evolution Service Model
	3.1 Crowd Collaboration Service
	3.2 Resource Sharing Service
	3.3 Runtime Monitoring Service
	3.4 Trustworthiness Analysis Service

	4 TRUSTIE: Software Production and Evaluation with Crowdsourcing
	4.1 Software Crowdsourcing Model and Process in TRUSTIE
	4.2 Trustworthy Software Collaborative Development Service
	4.3 Trustworthy Software Resource Sharing Service

	5 Related Work
	6 Conclusion
	References

