
Progress in IS

Wei Li
Michael N. Huhns
Wei-Tek Tsai
Wenjun Wu Editors

Crowdsourcing
Cloud-Based Software Development

Progress in IS

More information about this series at http://www.springer.com/series/10440

http://www.springer.com/series/10440

Wei Li • Michael N. Huhns
Wei-Tek Tsai • Wenjun Wu
Editors

Crowdsourcing
Cloud-Based Software Development

123

Editors
Wei Li
State Key Laboratory of Software
Development Environment, School of
Computer Science and Engineering

Beihang University
Beijing
China

Michael N. Huhns
Department of Computer Science and
Engineering

University of South Carolina
Columbia, SC
USA

Wei-Tek Tsai
Department of Computer Science and
Engineering, School of Computing,
Informatics and Decision Systems
Engineering

Arizona State University
Tempe, AZ
USA

Wenjun Wu
School of Computer Science and
Engineering

Beihang University
Beijing
China

ISSN 2196-8705 ISSN 2196-8713 (electronic)
Progress in IS
ISBN 978-3-662-47010-7 ISBN 978-3-662-47011-4 (eBook)
DOI 10.1007/978-3-662-47011-4

Library of Congress Control Number: 2015938742

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Foreword

The last few years have seen a sea change in how computer science proceeds as a
profession. This change is motivated not only by advances in technology and
innovations in business models, but also by the emergence of new attitudes toward
technology, business, and work. In part, this has to do with lowered barriers to entry
into the profession; in part, with a new generation of software developers coming of
age, many of whom are not formally trained as computer scientists; in part, with
businesses pushing toward open innovation; and in part, with the continuing
internationalization of the economy and contributions by active participants from
virtually anywhere.

Regardless of the underlying causes, we are now seeing a new pattern of soft-
ware development gaining prominence. In this pattern, a programming project is
broken down into pieces of work; each piece is performed by one or more people;
the results come together; and the project is assembled. This, the idea of software
crowdsourcing, is the theme of this book.

A difference between software crowdsourcing and traditional crowdsourcing is
the presence of significant structure in the problems being solved, as well as in the
teams drawn from the “crowd” that solve these problems.

A difference between software crowdsourcing and traditional software con-
tracting is that each step of the above-mentioned pattern now may be achieved in a
proactive and team-oriented manner. For example, the selection of a problem to
solve, its breakdown into subproblems mapped to concrete tasks, the assignment of
tasks to different teams, the testing of their solutions or products, and the assembly
of the products into a solution to the original problem are all tasks that the crowd
would accomplish, potentially with limited or no control from a central party.

The chapters in this book address the numerous challenges to be overcome in
advancing the vision of software crowdsourcing and helping make it a dominant
approach in software development. In skimming a draft of this book, I see chapters
that take up major challenges.

• “Crowdsourcing for Large-Scale Software Development” and “The Five Stages
of Open Source Volunteering” provide a historical perspective and tutorial

v

http://dx.doi.org/10.1007/978-3-662-47011-4_1
http://dx.doi.org/10.1007/978-3-662-47011-4_2
http://dx.doi.org/10.1007/978-3-662-47011-4_2

material on the key concepts and best practices of software crowdsourcing, such
as they are established today.

• Some of these challenges apply to Internet applications in general, but are made
more acute in the case of software development. In this category I would include
the selection of workers, trust, and reputation, and broadly the nature of work.
“Worker-centric Design for Software Crowdsourcing: Towards Cloud Careers”
introduces these concepts.

• Some challenges pertain to new models for collaboration, including interaction
protocols, human participation, incentives, and team work as are required for this
setting. “Bootstrapping the Next Generation of Social Machines”–“AnEvolutionary
and Automated Virtual Team Making Approach for Crowdsourcing Platforms”
address these challenges through approaches that introduce a broad range of
concepts.

• Some challenges pertain to motivating humans to participate actively and posi-
tively. “Collaborative Majority Vote: Improving Result Quality in
Crowdsourcing Marketplaces” describes a voting method as a basis for crowd-
based quality assurance and “Towards a Game Theoretical Model for Software
Crowdsourcing Processes” an incentive mechanism for encouraging high quality.

• Some challenges apply to software development in general. Here, I would
include “TRUSTIE: A Software Development Platform for Crowdsourcing”,
which describes a software environment that realizes some of the concepts
introduced in “Crowdsourcing for Large-Scale Software Development”, “The
Five Stages of Open Source Volunteering”, and “Worker-centric Design for
Software Crowdsourcing: Towards Cloud Careers”.

• Some challenges apply to maintaining communities of participants as sustainable
ecosystems. In this category I would include “Social Clouds: Crowdsourcing
Cloud Infrastructure” and its notion of a Social Cloud.

• Some challenges become clearer when one attempts to pull together various
technical ideas into deployed software systems. “Recommending Web Services
Using Crowdsourced Testing Data” shows how to predict the quality of service
offered by a web service instance based on crowdsourced performance data. “A
Cloud-based Infrastructure for Crowdsourcing Data from Mobile Devices”
illustrates the practical challenges in connection with a crowd-sensing
application.

The book is a timely contribution to computer science that is at once both
practical and scholarly. I applaud and congratulate the authors and editors on a job
well done. Enjoy!

Munindar P. Singh
North Carolina State University

Raleigh, NC, USA

vi Foreword

http://dx.doi.org/10.1007/978-3-662-47011-4_3
http://dx.doi.org/10.1007/978-3-662-47011-4_4
http://dx.doi.org/10.1007/978-3-662-47011-4_7
http://dx.doi.org/10.1007/978-3-662-47011-4_7
http://dx.doi.org/10.1007/978-3-662-47011-4_8
http://dx.doi.org/10.1007/978-3-662-47011-4_8
http://dx.doi.org/10.1007/978-3-662-47011-4_9
http://dx.doi.org/10.1007/978-3-662-47011-4_9
http://dx.doi.org/10.1007/978-3-662-47011-4_10
http://dx.doi.org/10.1007/978-3-662-47011-4_1
http://dx.doi.org/10.1007/978-3-662-47011-4_2
http://dx.doi.org/10.1007/978-3-662-47011-4_2
http://dx.doi.org/10.1007/978-3-662-47011-4_3
http://dx.doi.org/10.1007/978-3-662-47011-4_3
http://dx.doi.org/10.1007/978-3-662-47011-4_11
http://dx.doi.org/10.1007/978-3-662-47011-4_11
http://dx.doi.org/10.1007/978-3-662-47011-4_12
http://dx.doi.org/10.1007/978-3-662-47011-4_12
http://dx.doi.org/10.1007/978-3-662-47011-4_13
http://dx.doi.org/10.1007/978-3-662-47011-4_13

Contents

Part I Software Crowdsourcing Concepts and Design Issues

Crowdsourcing for Large-Scale Software Development 3
Wei Li, Wei-Tek Tsai and Wenjun Wu

The Five Stages of Open Source Volunteering. 25
Dirk Riehle

Worker-Centric Design for Software Crowdsourcing:
Towards Cloud Careers . 39
Dave Murray-Rust, Ognjen Scekic and Donghui Lin

Part II Software Crowdsourcing Models and Architectures

Bootstrapping the Next Generation of Social Machines 53
Dave Murray-Rust and Dave Robertson

Multi-Agent System Approach for Modeling
and Supporting Software Crowdsourcing . 73
Xinjun Mao, Fu Hou and Wei Wu

Supporting Multilevel Incentive Mechanisms in Crowdsourcing
Systems: An Artifact-Centric View . 91
Ognjen Scekic, Hong-Linh Truong and Schahram Dustdar

An Evolutionary and Automated Virtual Team Making
Approach for Crowdsourcing Platforms . 113
Tao Yue, Shaukat Ali and Shuai Wang

vii

http://dx.doi.org/10.1007/978-3-662-47011-4_1
http://dx.doi.org/10.1007/978-3-662-47011-4_2
http://dx.doi.org/10.1007/978-3-662-47011-4_3
http://dx.doi.org/10.1007/978-3-662-47011-4_3
http://dx.doi.org/10.1007/978-3-662-47011-4_4
http://dx.doi.org/10.1007/978-3-662-47011-4_5
http://dx.doi.org/10.1007/978-3-662-47011-4_5
http://dx.doi.org/10.1007/978-3-662-47011-4_6
http://dx.doi.org/10.1007/978-3-662-47011-4_6
http://dx.doi.org/10.1007/978-3-662-47011-4_7
http://dx.doi.org/10.1007/978-3-662-47011-4_7

Collaborative Majority Vote: Improving Result Quality
in Crowdsourcing Marketplaces . 131
Dennis Nordheimer, Khrystyna Nordheimer,
Martin Schader and Axel Korthaus

Towards a Game Theoretical Model for Software
Crowdsourcing Processes . 143
Wenjun Wu, Wei-Tek Tsai, Zhenghui Hu and Yuchuan Wu

Part III Software Crowdsourcing Systems

TRUSTIE: A Software Development Platform for Crowdsourcing 165
Huaimin Wang, Gang Yin, Xiang Li and Xiao Li

Social Clouds: Crowdsourcing Cloud Infrastructure 191
Kyle Chard and Simon Caton

Recommending Web Services Using Crowdsourced Testing Data 219
Hailong Sun, Wancai Zhang, Minzhi Yan and Xudong Liu

A Cloud-Based Infrastructure for Crowdsourcing Data
from Mobile Devices . 243
Nicolas Haderer, Fawaz Paraiso, Christophe Ribeiro,
Philippe Merle, Romain Rouvoy and Lionel Seinturier

Index . 267

viii Contents

http://dx.doi.org/10.1007/978-3-662-47011-4_8
http://dx.doi.org/10.1007/978-3-662-47011-4_8
http://dx.doi.org/10.1007/978-3-662-47011-4_9
http://dx.doi.org/10.1007/978-3-662-47011-4_9
http://dx.doi.org/10.1007/978-3-662-47011-4_10
http://dx.doi.org/10.1007/978-3-662-47011-4_11
http://dx.doi.org/10.1007/978-3-662-47011-4_12
http://dx.doi.org/10.1007/978-3-662-47011-4_13
http://dx.doi.org/10.1007/978-3-662-47011-4_13

Overview

Summary of the Book

This book, Cloud-Based Software Crowdsourcing, brings together research efforts
on many areas such as software engineering, service oriented computing, social
networking and cloud computing, which are driving and shaping an emerging
research field C software crowdsourcing. In the chapters of this book, you will find
the perspectives of pioneering researchers on the fundamental principles, software
architecture, development process, and a cloud-based architecture to support dis-
tributed software crowdsourcing.

Crowdsourcing software development or software crowdsourcing is an emerging
software engineering approach. Software development has been outsourced for a
long time, but the use of a cloud to outsource software development to a crowd of
developers is new. All software development tasks can be crowdsourced, including
requirements, design, coding, testing, evolution, and documentation. Software
crowdsourcing practices blur the distinction between end users and developers, and
follow the co-creation principle, i.e., a regular end-user becomes a co-designer, co-
developer, and co-maintainer. This is a paradigm shift from conventional industrial
software development, with developers distinct from users, to a crowdsourcing-
based peer-production software development in which many users can participate.
A cloud provides a scalable platform with sufficient resources, including computing
power and software databases, for a large crowd of developers. With the increas-
ingly powerful cloud software tools, it significantly reduces the amount of manual
labor needed in setting up software production environments, thus empowering
peer developers to perform software crowdsourcing tasks efficiently in design,
coding, and testing. By taking advantage of the elastic resource provision and
infrastructure, software crowdsourcing organizers can swiftly orchestrate distrib-
uted and large-scale development over highly dynamic communities.

Preliminary crowdsourcing practices and platforms including Apples App Store,
TopCoder demonstrate this advantage of crowdsourcing in terms of software eco-
system expansion and product quality improvement. Recently, multiple seminars
and workshops have been held to start theoretical and empirical studies on software

ix

crowdsourcing. Many open questions need to be explored: What are the tenets for
the crowdsourcing development of socio-technical ecosystems? What are the unique
characteristics of the crowdsourcing method that distinguishes it from other classic
software development methods? What can one align the software architecture with
crowdsourcing organization of software ecosystems? How can one govern the social
structure of the socio-technical ecosystem to manage the community, regulate the
development activities, and balance the potential conflicts between project budget
and time constraint?

This book summarizes the state-of-art research in the emerging field and
introduces the important research topics including fundamental principles, theo-
retical frameworks and best practices of applications and systems. The book is a
collection of papers written by pioneers and researchers who attended the Dagstuhl
seminar in 2013. As this book is contributed by multiple authors with different
perspectives, each paper will have its own unique views and notations, but col-
lectively, these papers provide a comprehensive look of this new and exciting field.

Book Organization

The book is divided into three parts: Part I (“Crowdsourcing for Large-Scale
Software Development”–“Worker-centric Design for Software Crowdsourcing:
Towards Cloud Careers”) describes the basic concepts and notation in soft-
ware crowdsourcing. Part II (“Bootstrapping the Next Generation of Social
Machines”–“Towards a Game Theoretical Model for Software Crowdsourcing
Processes”) covers the theoretical frameworks and models on software crowd-
sourcing from different perspectives. Part III (“TRUSTIE: A Software Development
Platform for Crowdsourcing”–“A Cloud-based Infrastructure for Crowdsourcing
Data from Mobile Devices”) presents the software crowdsourcing platforms and
technologies.

Part I: Software Crowdsourcing Concepts and Design Issues

“Crowdsourcing for Large-Scale Software Development” defines the notation and
principles of software crowdsourcing and introduces a 4-level maturity model for
assessing software crowdsourcing ecosystems in terms of platform architecture,
community scale, organization fabric and development approaches. “The Five
Stages of Open Source Volunteering” reviews best practices of the open source
projects, and identifies a five-stage process for volunteering and recruitment that
can significantly increase the chances for a successful open source project.

Software crowdsourcing projects largely depend upon the global labor forces
consisting of temporary crowd workers. But it will be problematic if we expect
software crowdsourcing to become a sustainable industry where workers only need
to maintain reduced levels of commitment with their commissioners. “Worker-

x Overview

http://dx.doi.org/10.1007/978-3-662-47011-4_1
http://dx.doi.org/10.1007/978-3-662-47011-4_1
http://dx.doi.org/10.1007/978-3-662-47011-4_3
http://dx.doi.org/10.1007/978-3-662-47011-4_3
http://dx.doi.org/10.1007/978-3-662-47011-4_4
http://dx.doi.org/10.1007/978-3-662-47011-4_4
http://dx.doi.org/10.1007/978-3-662-47011-4_9
http://dx.doi.org/10.1007/978-3-662-47011-4_9
http://dx.doi.org/10.1007/978-3-662-47011-4_10
http://dx.doi.org/10.1007/978-3-662-47011-4_10
http://dx.doi.org/10.1007/978-3-662-47011-4_13
http://dx.doi.org/10.1007/978-3-662-47011-4_13
http://dx.doi.org/10.1007/978-3-662-47011-4_1
http://dx.doi.org/10.1007/978-3-662-47011-4_2
http://dx.doi.org/10.1007/978-3-662-47011-4_2
http://dx.doi.org/10.1007/978-3-662-47011-4_3

centric Design for Software Crowdsourcing: Towards Cloud Careers” analyzes the
relevant issues including: trust and reputation development between workers, team
selection and building for specific tasks, and contextualization of software
crowdsourcing projects as a motivating factor for workers.

Part II: Software Crowdsourcing Models and Architectures

“Bootstrapping the Next Generation of Social Machines”–“Towards a Game
Theoretical Model for Software Crowdsourcing Processes presents multiple
approaches to modeling and analyzing software crowdsourcing systems and
processes.

Both “Bootstrapping the Next Generation of Social Machines” and “Multi-
Agent System Approach for Modeling and Supporting Software Crowdsourcing”
attempt to create multi-agent models of software crowdsourcing systems but with
different viewpoints. “Bootstrapping the Next Generation of Social Machines”
develops the model on the basis of a conceptual notion called social machine, to
describe human behavior and interaction protocols. These social machines
emerging from human community and computing resources are governed by both
computational and collective social process. “Multi-Agent System Approach for
Modeling and Supporting Software Crowdsourcing” proposes an agent-based
analytic framework to model the organization and process of software crowd-
sourcing. Based on the model, the authors have developed a service-based multi-
agent system platform called AutoService to simulate software crowdsourcing
process and validate the theoretical framework. Adaptive and programmable
incentive mechanism is essential for software crowdsourcing systems to support
processing of complex and inter-dependent development tasks. “Supporting
Multilevel Incentive Mechanisms in Crowdsourcing Systems: an Artifact-centric
View” presents a novel, artifact-centric approach for modeling and deploying
incentives in software crowdsourcing environments. The proposed framework
augments the Artifact's lifecycle model with incentive mechanisms to facilitate team
formation, task orchestration, run-time management of data flow and dependencies,
collaboration and coordination patterns.

The last three chapters focus on modeling and optimization of software
crowdsourcing processes. “An Evolutionary and Automated Virtual Team Making
Approach for Crowdsourcing Platforms” proposes a systematic and automated
approach to optimize the assignment of crowd workers to a crowdsourcing task. By
considering the major constraints in software crowdsourcing processes, the authors
formulate this optimization problem with the framework of search-based software
engineering. Given the dynamic nature of crowd workers participating in software
crowdsourcing processes, it is essential to design effective quality-control man-
agement to ensure the quality of crowd submissions. “Collaborative Majority Vote:
Improving Result Quality in Crowdsourcing Marketplaces” introduces a collabo-
ration mechanism to extend majority vote, one of the most widely used quality-
assurance methods, enabling workers to interact and communicate during task

Overview xi

http://dx.doi.org/10.1007/978-3-662-47011-4_3
http://dx.doi.org/10.1007/978-3-662-47011-4_4
http://dx.doi.org/10.1007/978-3-662-47011-4_9
http://dx.doi.org/10.1007/978-3-662-47011-4_9
http://dx.doi.org/10.1007/978-3-662-47011-4_4
http://dx.doi.org/10.1007/978-3-662-47011-4_5
http://dx.doi.org/10.1007/978-3-662-47011-4_5
http://dx.doi.org/10.1007/978-3-662-47011-4_4
http://dx.doi.org/10.1007/978-3-662-47011-4_5
http://dx.doi.org/10.1007/978-3-662-47011-4_5
http://dx.doi.org/10.1007/978-3-662-47011-4_6
http://dx.doi.org/10.1007/978-3-662-47011-4_6
http://dx.doi.org/10.1007/978-3-662-47011-4_6
http://dx.doi.org/10.1007/978-3-662-47011-4_7
http://dx.doi.org/10.1007/978-3-662-47011-4_7
http://dx.doi.org/10.1007/978-3-662-47011-4_8
http://dx.doi.org/10.1007/978-3-662-47011-4_8

executions. “Towards a Game Theoretical Model for Software Crowdsourcing
Processes” introduces a conceptual framework of software crowdsourcing process
and develops a game theoretical model of peer software production to describe
competitive nature of software crowdsourcing. The analysis of the model indicates
that prize-only awarding mechanism in software crowdsourcing can only motivate
dominant developers with superior skills to other crowd developers.

Part III: Software Crowdsourcing Systems

“TRUSTIE: A Software Development Platform for Crowdsourcing”–“A Cloud-
based Infrastructure for Crowdsourcing Data from Mobile Devices” describes
software architectures and platforms to support Cloud-based software crowd-
sourcing and demonstrates examples of practices.

“TRUSTIE: A Software Development Platform for Crowdsourcing” and
“Recommending Web Services Using Crowdsourced Testing Data” present new
ideas about software crowdsourcing platforms from two different aspects.
“TRUSTIE: A Software Development Platform for Crowdsourcing” introduces a
software development environment named by Trustworthy Software Tools and
Integration Environment (Trustie), which supports a community oriented and
trustworthy software development framework. This framework integrates many
features including crowd collaboration, resource sharing, run-time monitoring and
trustworthiness analysis. “Social Clouds: Crowdsourcing Cloud Infrastructure”
proposes a novel approach of an infrastructure crowdsourcing model, termed as
Social Cloud, to facilitate a user-contributed cloud fabric to host software crowd-
sourcing activities on which software development services and systems can be
hosted.

The other chapters of this part are mainly about the applications of software
crowdsourcing. “Recommending Web Services Using Crowdsourced Testing Data”
focuses on improving the QoS prediction of service platforms using crowdsourced
testing data. “A Cloud-based Infrastructure for Crowdsourcing Data from Mobile
Devices” focuses on crowd sensing applications that often involve massive number
of smartphone users for collecting large scale of data. The author presents a multi-
cloud based crowd-sensing platform named by APISENSE, supporting participa-
tory sensing experiments in the wild.

Wei Li
Michael N. Huhns

Wei-Tek Tsai
Wenjun Wu

xii Overview

http://dx.doi.org/10.1007/978-3-662-47011-4_9
http://dx.doi.org/10.1007/978-3-662-47011-4_9
http://dx.doi.org/10.1007/978-3-662-47011-4_10
http://dx.doi.org/10.1007/978-3-662-47011-4_13
http://dx.doi.org/10.1007/978-3-662-47011-4_13
http://dx.doi.org/10.1007/978-3-662-47011-4_10
http://dx.doi.org/10.1007/978-3-662-47011-4_12
http://dx.doi.org/10.1007/978-3-662-47011-4_10
http://dx.doi.org/10.1007/978-3-662-47011-4_11
http://dx.doi.org/10.1007/978-3-662-47011-4_12
http://dx.doi.org/10.1007/978-3-662-47011-4_13
http://dx.doi.org/10.1007/978-3-662-47011-4_13

Part I
Software Crowdsourcing Concepts

and Design Issues

Crowdsourcing for Large-Scale Software
Development

Wei Li, Wei-Tek Tsai and Wenjun Wu

Abstract Large scale software systems with increasing complexity, variability and
uncertainty, brings about grand challenges for traditional software engineering.
Recently, crowdsourcing practices in the domain of software development such as
Apple App Store and TopCoder have exhibited a promising and viable solution to
the issues. The use of a crowd for developing software is predicted to take its place
alongside established methodologies, such as agile, global software development,
service-oriented computing, and the traditional waterfall. In this chapter, we propose
a conceptual framework for the emerging crowdsourcing development methodology.
We define the fundamental principles, software architecture, development process,
and maturity model of the methodology for crowd workforce motivation, coordina-
tion and governance.

1 Introduction

Crowdsourcing has captured the attention of the world recently [1]. Numerous tasks
or designs conventionally carried out by professionals are now being crowdsourced
to the general public whomay not know each other to perform in a collaborativeman-
ner. Specifically, crowdsourcing has been utilized for identifying chemical structure,
designingmining infrastructure, estimatingmining resources, medical drug develop-
ment, logo design, and even software design and development. Recently, crowdsourc-
ing has been adopted in the mobile phone market, where both Apple’s App Store [2]
and Google’s Android market open up their programming APIs and allow designers

W. Li ·W. Wu (B)
School of Computer Science and Engineering, Beihang University, Beijing, China
e-mail: wwj@nlsde.buaa.edu.cn

W. Li
e-mail: liwei@nlsde.buaa.edu.cn

W.-T. Tsai
School of Computing Informatics and Decision Systems Engineering,
Arizona State University, Tempe, AZ, USA
e-mail: wtsai@asu.edu

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_1

3

4 W. Li et al.

to upload their creative applications and make these software products available for
consumers to download and purchase. Such an innovative approach resulted in an
exponential growth in the number of applications hosted in both smartphone stores.
The proliferation of this practice indicates a paradigm shift from traditional software
factory to crowdsourcing based peer-production mode, where large numbers of regu-
lar end-users are empowered as co-creators or co-designers, and their creative energy
is coordinated to participant in large projects without a traditional organization. As
an emerging paradigm of software development, how can we generalize the practice
of software crowdsourcing and define an effective software engineering methodol-
ogy for the construction of real complex and large-scale software systems? Software
development is commonly considered as one of the most challenging and creative
activities. As one software problem is solved by a new solution, another new software
problem is subsequently created by the solution. Thus, the software engineering his-
tory has a long list of techniques, processes, and tools in the last 50years, yet the field
is still seeking for new solutions and new technologies each year as it encountered
new problems. Many traditional engineering techniques such as modeling, simula-
tion, prototyping, testing and inspection were invented to address the importance
of the engineering aspects of software development. Furthermore many new tech-
niques such as model checking, automated code generation, design techniques, have
been proposed for large-scale software development. The complex nature of software
engineering determines that software crowdsourcing has many unique features and
issues different from general crowdsourcing. Specifically, software crowdsourcing
needs to support.

• The rigorous engineering discipline of software development, such as rigid syntax
and semantics of programming languages, modeling languages, and documenta-
tion or process standards.

• The creativity aspects of software requirement analysis, design, testing, and evolu-
tion. The issue is to stimulate and preserve creativity in these software development
tasks through collective intelligence?

• The psychology issues of crowdsourcing such as competition, incentive, recog-
nition, sharing, collaboration, and learning. The psychology must be competitive
while at the same time friendly, socialable, learning, and personal fulfillment for
participants, requesters and administrators.

• The financial aspects of all parties including requesters, crowdsourcing platforms,
and participants.

• Quality aspects including objective qualities such as functional correctness, per-
formance, security, reliability, maintainability, safety, and subjective qualities such
as usability.

In this chapter, we intend to thoroughly discuss and explore fundamental prin-
ciples of software crowdsourcing to facilitate designing, development and main-
tenance of a variety of large-scale software systems. The rest of the chapter
is organized as follows: Sect. 2 defines the notion of “software crowdsourcing”
and compares it with other mainstream software development methods includ-
ing agile software development, outsourcing and open source. Section3 describes

Crowdsourcing for Large-Scale Software Development 5

the principles of software crowdsourcing including co-innovation, competitive
development and offense-defense based quality assurance. Section4 presents a
Cloud-based software crowdsourcing architecture for crowd workforce coordination
and governance. Section5 introduces a four-level maturity model for the assessment
software crowdsourcing process from the aspects of system’s scale, project time
spans, developers and software platforms.

2 Overview of Crowdsourcing Based Software Development

Modern large and complex software systems [3] demonstrate the followingprominent
characteristics: highly decentralization of systems with heterogeneous and varying
elements, inherently conflicting, unknowable, and diverse requirements as well as
continuous evolution and deployment. All these features totally contradict the most
common assumptions made by the mainstream software engineering methodologies.
As software development is highly iterative, software development processes often
emphasize on delivery of intermediate documents such as requirement documents,
design documents, test plans, test case documents. Especially, in plan-driven soft-
ware development methods such asWaterfall model, Spiral model, andmodel-driven
process, it is assumed that a group of software architects can make accurate analysis
of stakeholders’ requirements and define a consistent and systematic blueprint for
software architecture and detailed development plan to implement every functional
requirement. Moreover, all the software development activities can be well coor-
dinated and achieve steady progress towards the predefined milestones that lead to
fully tested releases of the working software systems. None of these methodologies
can support agile and adaptive software development of large-scale software sys-
tems in response to constant changes in user requirements and dynamic networked
environments.

To address these problems, software development processes have evolved from
the traditional plan-driven process to recent agile methods [4], distributed software
development [5], open-source approach [6], and community-driven software devel-
opment. These modern software methods propose three major elements to transform
software engineering methodologies.

(1) Adaptive Software Construction and Evolution: Software developers must be
able to constantly improve and update software systems to meet the dynamic of
user requirements.

(2) Community and Social Intelligence: To conquer the complexity of large-scale
software systems, software projects have to tap into collective intelligence and
manpower of developer communities to have an on-demand workforce with
diversified skills and talents.

6 W. Li et al.

(3) Open and Distributed Process for Software Innovation: An open and distributed
software process is vital for facilitating community-based software development
and innovation. Community members need to be well coordinated to solve chal-
lenging problems in software projects.

Crowdsourcing is an online, distributed problem solving and production model
that leverages the collective intelligence of online communities for specific manage-
ment goals. Apparently, it is promising to apply the principle of crowdsourcing in
the domain of software development and incorporates all the above ingredients to
enable a new software paradigm—software crowdsourcing.

2.1 What’s Software Crowdsourcing?

Software crowdsourcing is an open call for participation in any task of software
development, including documentation, design, coding and testing. These tasks are
normally conducted by either members of a software enterprise or people contracted
by the enterprise. But in software crowdsourcing, all the tasks can be assigned to
anyone in the general public. In this way, software crowdsourcing not only capture
high-level requirements and quality attributes in terms of community interests, but
also facilitate end-users to create their own customized software services. There-
fore, software crowdsourcing is essentially a community-based software develop-
ment paradigm.

Software crowdsourcing adopts an adaptive, open and distributed development
process. Rich engagement with both user and developer communities enables soft-
ware crowdsourcing practitioners to quickly respond to fresh feedbacks and demands
from their users and make frequent and in-time improvements on their software.
Internet-based software platform with built-in online community and market func-
tionalities facilitates coordinate millions of distributed community members in the
construction and evolution of large-scale software systems. Well-known software
crowdsourcing platforms including Apple’s App Store, TopCoder [7] demonstrate
the success of software crowdsourcing processes in terms of software ecosystem
expansion and product quality improvement.

(1) Online Software Marketplace for Software Crowdsourcing
Apple’s App Store is essentially an online IOS application marketplace where IOS
vendors can directly deliver their products and creative designs to smartphone end-
users. Thismobile softwaremarket introduced themicro-payment and rankingmech-
anism to enable designers to gain profits from application downloads. The high rank-
ing and download rate of a vendor’s iPhone application brings in considerable profit
for him. This market-oriented incentive motivates vendors to contribute innovative
designs to the marketplace and to attract more downloads from users of the App
Store. Also, by posting comments and reviews on the IOS applications available in
the marketplace, customers can explicitly present their requirements to application
designers. There are competitive relationships among vendors working on the same

Crowdsourcing for Large-Scale Software Development 7

category of IOS applications. They have to quickly respond to the feedbacks and
increasing demands from their customers and improve their software to secure their
advantage to other competitors and retain their customers. All these mechanisms of
the App Store promote the exponential growth in the IOS ecosystem. Within less
than 4years, Apple’s App Store has become a huge mobile application ecosystem
where up to 150,000 active publishers have created over 700,000 IOS applications.

Despite the official IOS developer program provided by Apple, many IOS appli-
cation designers still need convenient and transparent channels to seek funding and
programmers for developing novel application ideas, collecting more user reviews
and testing applications before releasing them on the marketplace. Therefore, many
community-based, collaborative platforms have been emerging as smart-phone appli-
cations incubators for the App Store. For instance, AppStori (www.appstori.com)
introduces a crowd funding approach to build an online community for developing
promising ideas about new iPhone applications. It provides a “preview” window for
iPhone application enthusiasts to choose their favorite ideas, support and actively
engage in the promising projects. Designers are encouraged to propose project con-
cepts to the review committee who evaluates the novelty of the project proposals and
grant them into the formal AppStori projects. After their proposals gets approval,
each AppStori project team estimates development effort including its deadline and
budget, and reaches out to crowd for funding support through the AppStori platform.

(2) Contests and Tournaments for Software Crowdsourcing
Another crowdsourcing example—TopCoder, creates a software contest model in
which all the software development tasks are organized as contests and the devel-
oper of the best solution wins the top prize. Since 2001, TopCoder has established
a commercial online platform to support its ecosystem and gather a virtual global
workforce with more than 250,000 registered members and 50,000 active partic-
ipants. Given such a global workforce, some large research institutes are taking
advantage of the TopCoder platform for their software crowdsourcing projects. For
instance, NASA, teamed up with Harvard University, has established NASA Tour-
nament Lab (NTL), to encourage competitions among talented young programmers
for the most creative algorithms needed by NASA researchers [8].

TopCoder’s idea of using contests to reach a board audience of developers with
various backgrounds and expertise has a long tradition in history. For decades, design
contests featuring competition between participants competing for the best idea. Top-
Coder’s crowdsourcing platform allows developers to competitively disclose their
creative software solutions and artifacts to the corporations to win the contest prizes.
Towards the same programming challenges, TopCodermembers can interact, discuss
and share their insights and experiences with like-minded peers on the Web forum,
and even build social networks to establish a sense of community. These patterns
of simultaneously cooperating and competing behavior resemble the concept of co-
opetition between firms, defined as a portmanteau of cooperation and competition
ties among units in the same social structure.

www.appstori.com

8 W. Li et al.

2.2 Comparison Between Software Crowdsourcing and Other
Software Development Methods

As a new software development method, software crowdsourcing inherits many
important ideas from other modern software development methods including agile
software development, outsourcing and open source. Essentially, software crowd-
sourcing is a distributed and open software development paradigm with the basis
of online labor market and developer community. As shown in Table1, the major
similarities and differences between software crowdsourcing and other methods are
summarized in the dimensions of distribution, coordination, openness and develop-
ment incentive.

(1) Agile Software Development Versus Software Crowdsourcing
Agile software development was proposed to address the weakness of plan-driven
approaches with the introduction of iterative and incremental development. With
adaptive planning, evolutionary development, and an iterative coding method, agile
approach can significantly accelerate the delivery of new software features in
response to the fast change in user requirement. Its organization emphasizes
co-located face-to-face interaction, in which software engineers and a customer rep-
resentative can have constant communication and discussion through the whole life-
cycle of software development. Apparently, pure agile processes are best suited for
small-sized or medium-sized projects, and attempts to scale them up for large and
complex projects, usually result in re-adoption of more traditional practices [9]. Cur-
rently, most research efforts on how to take a hybrid approach of plan-driven and
agile method focus on intra-organization scenario, where agile style development is
embraced at the team level and the traditional upfront planning as well as maturity
framework is adopted in the enterprise level. Even with the hybrid approach, all the
practices of agile methods are often limited within the boundary of companies and
organization. In contrast, crowdsourcing methods supports large-scale, distributed
online collaboration for market-driven massive software production, overcoming the

Table 1 Comparison between software crowdsourcing and other methods

Agile software
development

Global software
development and
outsourcing

Open source
software
development

Software
crowdsourcing

Distribution Co-located Globally
distributed

Globally
distributed

Globally
distributed

Coordination Face-to-face
meeting

Tightly coupled
collaboration
with online tools

Loosely coupled
and self-control
collaboration via
social network

Loosely coupled
coopetition via
social network

Openness Not necessary Not necessary Open source code
to community

Open process to
community

Incentive Permanent
employment

Contract-based
employment

Volunteers Online labor
market

Crowdsourcing for Large-Scale Software Development 9

limitation of both plan-driven process and agile approach. The community-oriented
governance structure of crowdsourcing enables us to efficiently harness the intellec-
tual resources for the development of large-scale software systems.More importantly,
driven by the reward and diverse user requirements, communitymembers can be self-
organized into many agile teams that can quickly accomplish development tasks and
deliver high quality products.

(2) Global Software Process Versus Software Crowdsourcing
With the wider adoption of outsourcing in global software companies, their software
engineers distributed across the world have to collaborate on software development
tasks via online environments. Such a distributed software process brings about
many research issues on software engineering such as knowledge sharing, collabo-
rative working and process management. Despite the distributed nature of software
crowdsourcing, it is completely different from distributed software development,
especially outsourcing. Software projects based on outsourcing depends upon pre-
arranged contracts between the companies and their consulting partners. Distributed
software process involves a stable and consistent collaboration among the develop-
ers located in different places. But software crowdsourcing targets the labor force
of developer communities via open solicitation, thus the collaboration in software
crowdsourcing process is more loosely coupled, temporary and task-driven than dis-
tributed software development, especially outsourcing. By engaging with open com-
munities, it can leverage creativity frommore diversified talented developers beyond
the boundaries of enterprises. Moreover, software crowdsourcing distinguishes from
distributed software development by introducing the competitive mechanism into
the organization of software development. Collaboration is no longer the only way
to orchestrating development activities. Instead, individual developers can compete
for prizes based on their performance in the same development tasks.

(3) Open Source Versus Software Crowdsourcing
There is high similarity between software crowdsourcing and open source. Both
methods emphasize the openness of software development but fromdifferent aspects.
Open source method values the openness of source code among software develop-
ment communities and encourages contribution from community members through
intrinsic and altruism incentives such as reputation, opportunity to learn program
skills, and willingness to address user needs. In contrast, software crowdsourcing
features the openness of software process, distributing all kinds of development tasks
to communities. Software crowdsourcing adopts explicit incentives, especially mon-
etary award such as contest prize, to stimulate participation of community members.
Therefore, software crowdsourcing can be regarded as an extension of open source,
which generalizes the practices of peer production via bartering, collaboration and
competition. But it doesn’t necessarily distribute end-products and source-material
to the general public without any cost. Instead, it emphasizes on the community-
driven software development on the basis of open software platforms, online labor
market and financial rewarding mechanism.

10 W. Li et al.

3 Principles of Software Crowdsourcing for Software
Ecosystem

Practices of software crowdsourcingmay take different strategies to achieve different
project goals such as broadening participation, seeking novel solutions, identifying
talents and acquiring high-quality software products. But they have to obey the
same principles that are vital to the growth and prosperity of a vibrant software
ecosystem.This section presents three commonprinciples of software crowdsourcing
including Co-Innovation, Competitive Software Development and Offense-Defense
based Quality Assurance.

3.1 Co-Innovation and Peer-Production

Crowdsourcing software development emphasizes the fundamental principle of Co-
Creation, Co-Design and Co-Development, which encourages wide engagement of
communitymembers in the construction of large-scale system ecosystems. This prin-
ciple enables every community member including end-users, professional program-
mers and domain experts with active roles in participation of software development,
which goes beyond the boundary of the conventional software development practices.

(1) Peer-Production and Egalitarian Design Process
The meaning of value and the process of value creation in modern software inno-
vation are rapidly shifting from a software product and developer-centric view to
personalized consumer experiences. Informed, networked and active consumers are
increasingly co-creating value with the professional developers. Peer-production of
software crowdsourcing follows an egalitarian design process, in which large num-
bers of regular end-users are empowered as co-creators or co-designers to engage
with all sorts of innovative activities relevant to software production, such as easy
idea validation, collaboration on requirements, comments on usability, and even pro-
gramming and testing.With intuitive and easy-to-use programming tools, regular end
users can not only rank software applications by comparing their performance and
quality, but also generate lightweight applications and customize specific features to
meet their diverse purposes and demands.

Peer-production fosters and accelerates the emergence of an open platform soft-
ware ecosystem by broadening crowd participation and connecting platform vendors,
software developers and customer communities. The success of a large-scale soft-
ware crowdsourcing project essentially depends upon the scale and activity of such
a developer community. Previous studies on open source ecosystems [10, 11] reveal
that most open source projects in the major open source platforms such as Source-
forge and Github only have limited number of active members. Thus, it is critical for
a software crowdsourcing project to take all the viable methods including financial
support, intellectual resource of development and learning to recruit as many partic-
ipants as possible.

Crowdsourcing for Large-Scale Software Development 11

In a software ecosystem, peer-production can drive Co-Innovation through its
online software marketplace and labor platform. The online software marketplace
enables large scale distribution for promoting technological adoption and integration
of software innovation. Novel software products and services are delivered instantly
to regular consumers so that they could do test-and-drive of the new products and
generate instant feedbacks for developers to perform full-fledged system analysis
and real-time refinement.

(2) Creativity and Diversity in Software Crowdsourcing Communities
Crowdsourcing needs a diverse community of crowdworkers in distributed locations
with different background to ensure a diversity of opinions are expressed to encour-
age creativity, and to avoid any biased of individual leaderships within a specific
community. Especially when the major goal of a software crowdsourcing project is
to explore novel and brilliant ideas for future research and development, designers
should be encouraged to propose a wide range of concepts and models for a public
solicitation.

This reflects one of creativity principles low threshold, high ceiling and wide
walls [12]. Software crowdsourcing often sets up a low threshold to encourage more
people to take a variety of software development tasks to broaden the community. It
also adopts high ceiling strategy to screen qualified programmers for complex and
challenging projects. According to the principle of wide wall, platforms and tools of
software crowdsourcing should present enough freedom for participants to explore
new dimensions and seek innovative solutions.

3.2 Competitive Software Development

Co-opetition relationship among its participants plays a vital role in efficient organi-
zation of peer-production in software crowdsourcing. Software crowdsourcing con-
tests encourage competition between participants competing for the best software
solution, thus facilitating the delivery of high quality software product with reduced
development costs. These contests with relevant coordination mechanisms, contest
rules, and prize structures actually generate monetary incentives for participation
and influence dynamic behavior of these participants. On the other hand, software
crowdsourcing platforms also provide collaboration and community functionalities
such as user profile, online forum, web chat, group voting and wiki. These collab-
oration services enable community members to vote on favorite ideas or software
solutions, discuss various topics, share of insights with other like-minded peers,
receive assistance from others and generally derive benefits through collaborative
innovating activities.

12 W. Li et al.

(1) Competition in Software Crowdsourcing
The process of software crowdsourcing often exhibits strong competitive
characteristics, which resembles the procedure of paper selection in a high-profile
conference. The specification of a software crowdsourcing task including the techni-
cal requirement, time constraint, and rewards for the work, is publically announced
to the community as an open call for the best solution via competition. As a massive
response to this call, community members, who are interested in this task, can start
to take on the task and submit their results to a review board of the community,
who is in charge of evaluating the quality of their pieces and make the final decision
for the final winners. TopCoder adopts such a competitive development process that
breaks down the basic software development steps in theWaterfall paradigm, such as
conceptualization, requirement analysis, architecture design, component production,
module assembly, software testing, into a series of online contests.

Figure1 illustrates the TopCoder process model where all the software compo-
nents in the software system need to be developed separately through online contests
and then assembled up for further testing and integration. These TopCoder contests
involve the following three phases:

Fig. 1 TopCoder competitive development process

Crowdsourcing for Large-Scale Software Development 13

• Task Solicitation:
A TopCoder project manager defines the requirement in natural language and pub-
lishes the specification of a task on the platform to call for the contribution of any
potential developers in the community. Sometimes he can specify the qualification
criteria of the task to allow only the developers with adequate skills and expertise
to register.

• Solution Bidding:
Developers with the right knowledge base and skill sets for the task register the
TopCoder contest and start to work on the task based on their understanding of
the requirement. If they finish the task within the time constraint, they can submit
their solutions to the review team of the task as bidding for the winner prize.

• Evaluation and Rewarding:
The review team evaluates all the submissions and determines two winners out
of the best submissions. Only the submissions with the best quality can possibly
win the prize eventually. And the selected solution and review suggestions can
be used as intermediate materials in the next step of the project. Apparently, such
a competitive process aims at seeking the best solution with the highest quality
frommultiple outputs for the same development tasks. In addition to the purpose of
quality screening, it also manages to reduce the cost of labor work by only paying
the winners among all the participants. However, this cost reduction has negative
impact on non-winning teams since their efforts and contributions are not going
to get any monetary payoff. Therefore, weak teams may lose their motivations to
undertake the task if they have few chance to outperform their competitors. To
address this issue, non-monetary rewards must be present in the contest as supple-
mentary incentives for the participants. For instance, a contest run by a famous IT
company can havemany contestants who are willing to participate to improve their
reputation ranking even if the company may offer relatively low winner prize. The
non-financial incentive has to function in the context of collaborative community
where members value reputation, learning opportunity, career development and
altruism.

(2) Collaboration in Software Crowdsourcing
As collaboration and coordination are the essential elements in any distributed soft-
ware process, all the software crowdsourcing platforms support more or less col-
laboration among their participates. For instance, many online IOS communities
such as AppStori (www.appstori.com) and iBetaTest (www.iBetaTest.com) provide
collaborative software crowdsourcing venues to bridge iPhone application design-
ers, IOS developers, beta-testers, funding donors and supportive customers together.
Therefore, small teams or individuals on iPhone application development can seek
external funding, obtain help to run beta-testing on early versions of their apps,
and collect preliminary customer feedbacks before releasing their products onto the

www.appstori.com
www.iBetaTest.com

14 W. Li et al.

Fig. 2 AppStori crowdsourcing development processes

very competitive App Store. Figure2 illustrates the major players in the platform of
AppStori:

• Crowdfunding and Stakeholders:
Similar to Kickstarter.com in the financial market, any AppStori member can post
a novel idea of IOS application onto the AppStori, specifying the project goals
and deadlines, and ask for funding. After the AppStori Review Board approves
the project, any people who love the idea of the project can become a stakeholder
by funding the project. Although a stakeholder cannot withdraw its fund before
the end of the project, the person can check the progress of the project and request
the project leader to finish the project within a specified time frame. Otherwise,
the funding will not be transferred to the developer team at the end.

• Transparency and Agile Development:
AppStori encourages 100% transparency between the developer team and the
community. Every team member must provide detailed personal profile to present
their background and role in the project. And the project status must be updated in
time to display the progress to the community. Anyone who is willing to be part of
the team can contribute ideas to guide the projects development process, provide
social support for the project via social media promotion, and even become beta
testers for quality assurance. The beta testers can evaluate early versions of the
application under test and give direct feedbacks and bug reports to the developers.

Crowdsourcing for Large-Scale Software Development 15

• Stimulating Creativity in Mobile Application Development:
AppStori encourages exploration diverse paths and embracing rich styles to create
innovativemobile applications.Web2.0 communicationsmake it easier for donors,
developers, and testers to exchange ideas, post comments and figure out brilliant
ideas. AppStoris open and creative environment enables numerous cycles of trial-
and-error towards the successful design until it can be ready for publication on
App Store.

• Knowledge sharing and Learning:
AppStori is a great place for people to learn new applications, technologies, and
trend in mobile applications, and mobile consumers and enthusiasts can connect
directly with mobile developers and entrepreneurs for direct feedbacks. These
feedbacks are expensive to obtain in the past.

3.3 Offense-Defense Based Quality Assurance

Obtaining quality software is a common but challenging goal for software crowd-
sourcing projects. Software quality has many dimensions including reliability, per-
formance, security, safety, maintainability, controllability, and usability. As the
breadth and diversity among crowdsourcing participants, workers and researchers
is immense, it is critical to find an effective way to rigorously evaluate crowd sub-
missions and assure the quality of the final outcome.

Basedon the observation of success practices of crowdsourcing software tests such
as TopCoder and uTest (www.utest.com), we find that the Offense-Defense based
quality assurance is the most fundamental way to eliminate the potential deficits
in the documents, models and codes submitted by crowd. Multiple groups from
the community undertake different responsibilities of software development tasks
and intensively cooperate with each other to find problems in their counterparts
work and reduce the bugs in their own work. Such cross-validation activities can be
characterized as offense (finding bugs in other peoples work) and defense (reducing
bug in peoples own work). Table2 gives the definition of offense and defense.

Table 2 Offense and defense definition

Offense activities Defense activities

Evaluate the inputs including any input
documents, prototypes, interviews and relevant
materials that will be used in performing the
tasks

Evaluate the outputs including any deliverables
such as documents and software

Goal: maximize the number of faults in the
input documents, and provide feedback to
those who prepared the inputs

Goal: minimize the number of bugs that will be
found by other teams or people (crowd)

www.utest.com

16 W. Li et al.

• Offense: To carry out the tasks, each team needs to understand its requirements,
and examine the validity of the inputs to determine if they are feasible, correct,
consistent and complete. This can be done by inspecting, reviewing, simulating,
model checking, verifying the contents of the inputs. This kind of process often
revealsmistakes, inconsistency, incompleteness, complex user interactions, invalid
assumptions, and other issues, which can be useful feedbacks to those who pre-
pared the input documents. Because any mistakes in the input documents may
cause significant problems in the current tasks. Thus, the goal is to maximize the
fault detection rate of the input documents.

• Defense: Once requirements are understood, the team needs to prepare its output.
However, the team realizes that their outputs will be cross examined by other teams
carefully, and the team may lose its creditability if its outputs are of low quality.
Thus, the team needs to spend significant time to check and verify its deliverables
to minimize both the probability of bugs and the damage of potential bugs.

The Offense-Defense quality assurance can be exemplified by Harvard-TopCoder
collaborative project [13], to facilitate Harvard biomedical scientists to work with the
TopCoder community on developing computational algorithms and software tools
for exploring highly uncertain innovation problems in the biomedical domain, which
are mostly related to large-scale biological data analysis. The process of this soft-
ware development project essentially involves three parties with their responsibilities
(Table3):

Table 3 Offense and defense analysis of Harvard-TopCoder teams

Main tasks Offense Defense

Catalysts Develop problem
statements with
Researchers for the
project and specify
final acceptance
criteria, secure funding
for crowdsourcing

Need to ensure the
problem is feasible,
thus go over with the
Research team to
maximize the
probability of
identifying problems
in requirements

Need to ensure that the
Researcher understand
the problem and well
decompose the
problem to minimize
the ambiguity in
problem statements

Researchers (domain
expert)

Decompose the
problem, develop the
high-level design for
the crowd to develop
components or
algorithms, develop
test cases for
acceptance testing,
and evaluate the
algorithm/code

Working with the
catalysts to develop
quality specification,
make sure that the
problem is feasible to
maximize the
probability of
identifying problems
in requirements

The specification/test
cases developed must
be of high quality, and
thus they need to
review and inspect the
specification carefully,
and answer any
inquiries from the
crowd

(continued)

Crowdsourcing for Large-Scale Software Development 17

Table 3 (continued)

Main tasks Offense Defense

Crowd (programmers) Develop algorithms or
components based on
specification supplied

The crowd will review
the specification
carefully to ensure
complete
understanding, and
identify any problems
in the specification,
and develop test cases
to test other
algorithms submitted
by other contestants

The crowd will
evaluate its algorithm
or components
carefully using test
cases developed to
minimize the
possibility of bugs in
the code

• Researchers: They are domain experts working with Catalysts to finalize the
submission to the crowd including problem statement, they also prepare test data,
and finally score algorithms submitted by the crowd.

• Catalysts: They prepare the needs and funding for Researchers and the crowd.
• Crowd: They are TopCoder members with programming skill, looking at the
problems issued by Researchers, participating in the competition by coming up
with new algorithms. And if they win, they will get rewards from Catalysts.

4 Software Crowdsourcing Architecture and Models

Because of diversity and distance among the participants of software crowdsourcing
projects, it is essential to have a Cloud-based software platform to support large-scale
open and distributed development processes in software crowdsourcing. Imagine a
large crowd of developers located in different time zones try to work together on the
same software project. A cloud provides themwith a scalable platformwith sufficient
resources, including computing power and software databases. With the emerging
cloud software tools such as DevOps (a portmanteau of development and operations)
[14] and large-scale software mining, it significantly reduces the amount of manual
labor needed in setting up software production environments and empowers peer
developers to perform software crowdsourcing tasks efficiently in design, coding,
and testing.

4.1 Software Crowdsourcing Architecture

Despite different needs and strategies adopted by software crowdsourcing processes,
they actually share much commonality in term of platform support. As an online
labor market where crowd workforce can autonomously choose a variety of software
development tasks requested by project initiators, a software crowdsourcing plat-
form needs to effectively facilitate synergy between two clouds C human cloud and

18 W. Li et al.

Fig. 3 Reference architecture for cloud-based software crowdsourcing

machine cloud. Many core services pertaining to the labor management and project
governance must be incorporated into the platform including expertise ranking, team
formatting, task matching, and rewarding as well as crowd funding. Moreover, each
individual should be able to easily initialize a virtual workspace with design and
coding software tools customized for specific tasks in a crowdsourcing project. All
these common elements are encapsulated in reference architecture of cloud-based
software crowdsourcing system, shown in Fig. 3.

There are three major groups of software tools in a cloud-based software crowd-
sourcing:

• Software Development Tools:
In any software crowdsourcing projects, crowd workforce needs modeling tools,
simulation tools, programming language tools such as compilers and intelligent
editors, design notations, and testing tools.An IDE for crowdsourcing can integrate
these tools for requirements, design, coding, compilers, debuggers, performance
analysis, testing, and maintenance. For example, cloud software configuration
tools such as Chef (www.opscode.com/chef/) and Puppet (puppetlabs.com) allow
community members to establish their own virtualized development environment.
Map-Reduce based log management tools support large-scale system log adminis-
tration and analysis, and enable communitymembers to resolve software problems
and enhance system reliability using log messages.

• Social Network and Collaboration Tools:
Facebook, twitters, wikis, blogs and other Web-based collaboration tools allow
participants to communicate for sharing and collaboration. For example, Facebook
profiles can be enhanced to facilitate the formation of a virtual crowdsourcing
team even if the participants do not previously know each other. A collaborative
blackboard-based platform can be used where participants can see a common area
and suggest ideas to improve the solutions posted there. Novel financial tools for
cloud payment and virtual credit management can support project funding supply
and monetary exchange between project initiators and crowd workforce.

www.opscode.com/chef/

Crowdsourcing for Large-Scale Software Development 19

• Project Management Tools:
Crowdsourcing project management should support project cost estimation,
development planning, decision making, bug tracking, and software repository
maintenance, all specialized for the context of the dynamic developer community.
In addition to these regular functions, it needs to incorporate crowdsourcing spe-
cific services such as ranking, reputation, and award systems for both products and
participants. For example, TopCoder introduces a sophisticated ranking scheme,
similar to sport tournaments, to rank the skills of community members in software
development. Community members often make up their mind to participate in a
specific contest if they know the ranking of the participants already enrolled.

Through DevOps technologies, Cloud platforms allow users to describe their own
software stacks in form of recipes and cookbooks. With the properly specified PaaS
recipes, software crowdsourcing project managers can establish a customized cloud
software environment to facilitate software crowdsourcing process:

(1) A manager utilizes software networking and collaboration tools to design
rewarding mechanism to motivate crowd workers and project management tools to
coordinate development tasks among crowd workforce by ranking expertise of each
individual and matching their skills with the different levels of tasks.

(2)Towards a specific software project, amanager sets up a virtual systemplatform
with all the necessary software development gears to assist crowd workers with their
crowdsourcing tasks.

(3) Both cloud platform and workflow can work in an elastic way to make cost-
efficient resource utilization. Depending on the value of software product and scale
of software development, a project manager can specify the appropriate budget to
attract as many talent developers as possible and provision computing resources to
sustain the development activities.

4.2 Software Crowdsourcing Models

Software crowdsourcing can be characterized in terms of the crowd size, software
scale and complexity, development processes, and competition or collaboration rules.
Formal models for designing and modeling software crowdsourcing can have the
following foundations:

• Game theory: The nature of contests in competition-based crowdsourcing can be
analyzed via game theory. For example, one can determine the reputation reward
value based on the number of participants and reward price, because often partic-
ipants are willing to compete to gain reputation rather than receiving the reward
price using Nash Equilibrium [15].

• Economic models: Economic competition models provide strategies and incen-
tives for a crowd to participate, and reward structuring rules for organizers to max-
imize their return from crowdsourcing. The recent development of contest theory

20 W. Li et al.

[16] introduced new mathematical tools, such as all-pay auction, to describe the
synergy among individual efforts, competition prize structure, and product quality.

• Optimization theory: Due to the competitive and dynamic nature of software
crowdsourcing processes, it is challenging to coordinate unstable virtual teams,
optimize the partition and allocation of development tasks, and balance costs,
time, and quality. Thus, a search-based software engineering approach [17] can
be applied in software crowdsourcing to address the optimization problems.

5 Maturity Model for Software Crowdsourcing

We introduce a maturity model as the basis for comparing and assessing software
crowdsourcing process. We define four levels of software crowdsourcing organiza-
tion. These levels of crowdsourcing projects are characterized by the size of develop-
ment teams, the scale of software systems under development, the project duration
and platforms support for software development processes. The definition of the
four-level maturity model is summarized in Table4.

• Level 1: A project of this level aims at developing a small-size software system
with well-defined modules. It often takes a limited amount of time span (less
than few months) for a single person to finish such a project. Currently, most
software crowdsourcing projects such as AppStori, TopCoder, and uTest, can be
categorized into this level. In these projects, both coders and software products
are ranked by their development performance and product quality. To facilitate
the collaboration between project representatives and community participants,
crowdsourcing platforms provide communication tools such as wiki, blogs, and
comments aswell as software development tools such as an IDE, testing, compilers,
simulation, modeling, and program analysis.

• Level 2: A project of this level aims at developing medium-size software sys-
tem with well-defined specifications. It often takes a medium time span (several
months to less than 1year) for teams of people (<10) to finish such a project. And
it adopts adaptive development processes with intelligent feedback in a common
cloud platform where people can freely share thoughts. At this level, a crowd-
sourcing platform supports an adaptive development process that allows concur-
rent development processes with feedback from fellow participants; intelligent
analysis of coders, software products, and comments; multi-phase software test-
ing and evaluation; Big Data analytics, automated wrapping of software services
into SaaS (Software-as-a-Service), annotations with terms from an ontology, cross
references to DBpedia, and Wikipedia; automated analysis and classification of
software services; ontology annotation and reasoning such as linking those ser-
vices with compatible input/output.

• Level 3: A project of this level aims at building large systemswith clearly specified
requirements. It often needs teams of people (<100 and >10) to work on such a
project across a long time span (<2years). The increase in scale and complexity of

Crowdsourcing for Large-Scale Software Development 21

Table 4 Offense and defense analysis of Harvard-TopCoder teams

Developers Software Time span Platform support

Level 1 Individuals or small
number of small
teams

Small applications
or software
modules

Less than 2months Developer ranking;
social networks;
software repository
of components;
communication
among participants

Level 2 Teams of people Well-defined
systems

Several months to
less than 1year

Level 1 tools +
automated code
analysis; wrapping
of software services
into SaaS; service
publication and
discovery

Level 3 Teams of people Well-defined large
systems

Long time span
(less than 2years)

Level 2 +
automated cross
verification,
automated
requirement;
design, service
matching;
automated
regression analysis

Level 4 Multinational teams
of developers

Large and adaptive
systems

Long time span or
perpetual evolving
software

Level 3 tools +
domain-oriented
ontology, reasoning
and annotation;
automated cross
verification and test
generation
processes;
automated
configuration of
platform

the systems brings challenges on the aspect of quality assurance. To ensure the high
quality of software products submitted by many community participants, it relies
upon automated cross verification and cross comparison among contributions. A
crowdsourcing platform at this level contains automatedmatching of requirements
to existing components including matching of specification, services, and tests;
and automated regression testing.

• Level 4: A project of this level involves multinational collaboration of large and
adaptive software ecosystems. The development process of such a complex and
large-scale project often takes years to accomplish. More intelligent software
development tools are necessary to conquer the complexity anduncertainty through
the long evolutionary lifecycle of the system. A crowdsourcing platform at this

22 W. Li et al.

level may contain domain-oriented crowdsourcing with ontology, reasoning, and
annotation; automated cross verification and test generation processes; automated
configuration of crowdsourcing platform; andmay restructure the platform as SaaS
with tenant customization.

6 Conclusion

Cloud-based software crowdsourcing is a new approach for low-cost rapid software
development, and the existence of large ecosystems has shown that this approach is
viable. This chapter gives the definition of software crowdsourcing and thoroughly
discusses both the fundamental principle and conceptual models of this emerging
methodology.

As an open call for participation in any task of software development, software
crowdsourcing can be organized in different ways such as online software mar-
ket,on-demand labor resource and collaborative communities. Essentially, software
crowdsourcing is a distributed and open software development paradigm that inherits
many important ideas from other modern software development methods including
agile software development, outsourcing and open source. But the distinguishing
features of software crowdsourcing including loosely coupled coordination, open
process and market-driven incentive mechanism, make it possible to tackle with the
challenges of large-scale software development.

In this chapter,we summarize three commonprinciples of software crowdsourcing
including Co-Innovation, Competitive Software Development and Offense-Defense
based Quality Assurance. To follow the principles and support large-scale software
development with crowd, a software crowdsourcing platform needs to adopt a Cloud-
based software architecture and incorporate core services for effectively facilitat-
ing synergy between two clouds C human cloud and machine cloud. Furthermore,
we introduce a four-level maturity model as the basis for comparing and assessing
software crowdsourcing process. These levels of crowdsourcing projects are char-
acterized by the size of development teams, the scale of software systems under
development, the project duration and platforms support for software development
processes.

Software crowdsourcing is a ripe and promising area for research including mod-
eling, analysis, simulation, experimentation, and support environment development.
There are many future research directions including theoretical models, optimization
methods, infrastructure support features, and social issues. Theoretical tools such as
game theory and economic models should be used to describe synergy among indi-
vidual efforts, incentive mechanisms, product quality and project constraints. For-
malized software crowdsourcing process models and optimization methods need to
be developed to fulfill the optimal goals of software crowdsourcing projects. Current
software crowdsourcing platforms have to incorporate more customizable features to
enable crowdsourcing project managers to design and adopt specific ways of crowd-
sourcing organization in terms of incentive scheme, quality assurancemechanism and

Crowdsourcing for Large-Scale Software Development 23

community governance. Lastly, more investigations need to be conduct on welfare
of crowdsourcing workers such as their health care, career development path, and
working ethnics.

References

1. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-wide web.
Commun. ACM 54(4), 86–96 (2011)

2. App Store: http://www.apple.com/iphone/from-the-app-store/ (2014). Accessed on 18 Aug
2014

3. Northrop, L., Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T., Kazman, R.,
Klein,M., Schmidt, D., Sullivan, K., et al.: {Ultra-Large-Scale Systems}-the software challenge
of the future (2006)

4. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices. Prentice Hall
PTR, Upper Saddle River (2003)

5. Herbsleb, J.D., Moitra, D.: Global software development. IEEE Softw. 18(2), 16–20 (2001)
6. Raymond, E.: The cathedral and the bazaar. Knowl. Technol. Policy 12(3), 23–49 (1999)
7. Lakhani, K., Garvin, D.A., Lonstein, E.: Topcoder (a): developing software through crowd-

sourcing. Harvard Business School General Management Unit Case (610–032) (2010)
8. Andy, L., Raugh, A., Erickson, K., Grayzeck, E.J., Knopf, W., Lydon, M., Lakhani, K.,

Crusan, J., Morgan, T.H.: The NASA tournament laboratory (“NTL”): improving data access at
PDS while spreading joy and engaging students through 16 micro-contests. In: AAS/Division
for Planetary Sciences Meeting Abstracts, vol. 44 (2012)

9. Barlow, J.B.,Giboney, J.S.,Keith,M.J.,Wilson,D.W., Schuetzler,R.M.,Lowry, P.B.,Vance,A.:
Overview and guidance on agile development in large organizations. Commun.Assoc. Inf. Syst.
29(1), 2 (2011)

10. Xu, J., Christley, S., Madey, G.: Application of social network analysis to the study of open
source software (2006)

11. Madey, G., Freeh, V., Tynan, R.: Modeling the free/open source software community: a quan-
titative investigation, In: Free/Open Source Software, Development, pp. 203–221 (2005)

12. Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., Selker, T., Eisenberg, M.:
Design principles for tools to support creative thinking (2005)

13. Lakhani, K.R., Boudreau, K.J., Loh, P.R., Backstrom, L., Baldwin, C., Lonstein, E., Lydon,M.,
MacCormack, A., Arnaout, R.A., Guinan, E.C.: Prize-based contests can provide solutions to
computational biology problems. Nat. Biotechnol. 31(2), 108–111 (2013)

14. Spinellis, D.: Don’t install software by hand. IEEE Softw. 29(4), 86–87 (2012)
15. Wu, W., Tsai, W.T., Li, W.: An evaluation framework for software crowdsourcing. Front.

Comput. Sci. 7(5), 694–709 (2013)
16. Corchón, L.C.: The theory of contests: a survey. Rev. Econ. Des. 11(2), 69–100 (2007)
17. Harman,M.: The current state and future of search based software engineering. In: 2007 Future

of Software Engineering, pp. 342–357. IEEE Computer Society (2007)

http://www.apple.com/iphone/from-the-app-store/

The Five Stages of Open Source Volunteering

Dirk Riehle

Abstract Today’s software systems build on open source software. Thus, we need
to understand how to successfully create, nurture, and mature the software devel-
opment communities of these open source projects. In this article, we review and
discuss best practices of the open source volunteering and recruitment process that
successful project leaders are using to lead their projects to success. We combine the
perspective of the volunteer, looking at a project, with the perspective of a project
leader, looking to find additional volunteers for the project. We identify a five-stage
process consisting of a connecting, understanding, engaging, performing, and lead-
ing stage. The underlying best practices, when applied, significantly increase the
chance of an open source project being successful.

1 Introduction

Open source software has become an important part of the Internet and today’s
enterprises. There is little software left that does not at least include some open
source components. Thus, understanding how open source projects work and how
to utilize them is a critical capability of software product companies who wish to
crowd-source some of their development work.

Open source software projects can be split into community open source and com-
mercial open source software projects [1, 2]. Community open source software is
software that is owned by a community, typically by way of distributed copyright
ownership or by ownership through a non-profit foundation. Commercial open source
software development is curated by a single company,whichmaintains the ownership
of all relevant intellectual property. According to Mickos, commercial open source
rarely receives and incorporates code contributions from their user communities [3];
however, community open source does.

D. Riehle (B)

Computer Science Department, Friedrich-Alexander-Universität Erlangen-Nüremberg,
Erlangen, Germany
e-mail: dirk@riehle.org; dirk.riehle@fau.de

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_2

25

26 D. Riehle

Community open source software projects rely on volunteerwork to a (significant)
extent. Projects which are more mature and relied upon by companies may gain
commercial support, which reduces reliance on volunteers [4]. Commercial support
can take the form of direct financial contributions, which allows foundations to
acquire employees. Also, companies may assign their own employees to contribute
to the project. Leaders of new and small community open source projects cannot
expect commercial support, and must learn how to recruit and retain volunteers if
they want their project to grow.

In this article we review best practices of open source community management,
specifically, how to find, keep, and grow volunteers. The article is based on a litera-
ture review and observation of existing open source projects. We identify five stages
of the open source volunteering process which we call the connecting, understand-
ing, engaging, performing, and leading stages. For each stage, we discuss the best
practices of the actors of that stage. In addition, we discuss the underlying guiding
principles that we found to be common to all the practices.

Thus, this article makes the following contributions:

• It defines guiding principles underlying the volunteering process;
• It presents a five-stage model of the open source volunteering process;
• It collects and catalogs best practices applicable to each stage.

The article is structured as follows. Section 2 presents the guiding principles,
Sect. 3 introduces the five-stage process and discusses its properties. Section 4 walks
through the stages in detail, discussing best practices and supporting tools. Related
work as relevant to the different sections is discussed in place. Section 5 concludes
the article.

2 Guiding Principles of Open Source Projects

In reviewing the literature (as referenced in place) and working with open source
communities as well as from prior work we identified the following three guiding
principles project leaders need to understand for an effective recruiting process:

• Recruiting is Investment [5, 6]
• Open Communication [5, 6]
• Open Collaboration [5, 7]

We discuss these principles in turn.

2.1 Recruiting is Investment

According to Fogel, every interactionwith a user is a chance to recruit a newvolunteer
[6]. At the same time, according to Fitzpatrick and Collins-Sussman, the scarcest

The Five Stages of Open Source Volunteering 27

resource that a project has is attention and focus [8]. In combination, this leads to
the primary guiding principle of open source volunteer recruiting:

• Recruiting volunteers is a project investment

Recruiting volunteers is obviously necessary for a project to grow. However, the time
spent on recruiting takes attention and focus away from actual software development.
Spending time on recruiting should therefore be viewed as an investment to be made
wisely.

Investments may or may not work out. The time spent on a potential volunteer
may or may not be wasted. Thus, if time is spent on recruiting, it should be spent
well, and it should be spent in a form commensurate with the likelihood of success,
in this case, of finding a new volunteer. The best practices of Sect. 4 all embed this
principle.

2.2 Open Communication

Open source projects follow a particular style of communication which helps support
a distributed volunteer community. Fogel, for example, argues that communication
styles portray project members (whomay never havemet in person) to each other [6].
He argues for general principles (all communication should be public) and very
specific principles (no conversations in the bug tracker). Using this and other sources,
we derived the following four fundamental maxims of open communication that
characterize open source projects and the way project members communicate with
each other and potential volunteers:

• Public. All communication should be public and not take place behind closed
doors; any private side-communication is discouraged.

• Written. All communication should be in written form; if this is not possible, any
relevant communication should be transcribed or summarized in writing.

• Complete. Communication should be comprehensive and to the extent possible,
complete. Assumptions are made explicit and key conclusions are summarized.

• Archived. All communication should get archived for search and later public
review. Thus, previous conversations are available for posterity.

Taken together, these maxims create transparency and discipline communication,
leading to more effective distributed collaboration. Although not all communication
within a project will embody all four maxims, a project which is motivated to be
transparent and grow its community will make the according effort, for example, by
transcribing or summarizing non-email forms of communication in order to provide
a public archive.

Public communication ensures that all members of the community have the oppor-
tunity to participate, which creates buy-in and trust. Written communication enables
asynchronous, distributed work. People who are less fluent in the language used for
communication also benefit from having additional time to absorb the meaning [9],

28 D. Riehle

which makes the project accessible to a wider audience. Complete communication
reduces opportunities for misunderstanding and ensures that the community shares a
common understanding of objectives. Archiving increases transparency by ensuring
that decisions can be understood in context.

Many of these concepts reinforce one another. Writing enables archiving, as cur-
rent search technology is text-based. The need to derive meaning from archives
encourages more complete communication. Archives are more comprehensive and
comprehensible if all conversation is public.

2.3 Open Collaboration

No two open source projects follow the same software development process. How-
ever, in prior work and by way of project reviews, we identified three underlying
fundamental components of open source collaboration [7]. These three maxims of
open collaboration are:

• Egalitarian. Everyone may join a project, no principled or artificial status-based
barriers to participation exist.

• Meritocratic. Decisions are made based on themerits of the arguments, and status
is determined by the merits of a person’s contributions.

• Self-organizing. Processes adapt to people rather than people to processes.

Related work frequently subsumes the first two maxims under the single concept of
meritocracy. We find it helpful to distinguish between them: Openness in the context
of egalitarianism means that all people have the opportunity to participate, whereas
openness in the context of meritocracy ensures that all work is evaluated on the basis
of its intrinsic value.

These concepts are in stark contrast to traditional work inside companies. Projects
are not egalitarian: Employees are assigned to work on them and cannot choose to
work on other projects. Decisions are not necessarily made on the basis of the merit
of the arguments, but are ultimately the choice of the person with the greatest power.
Finally, processes in a large company are typically defined by a central department
and employees are expected to adapt their work processes to the company environ-
ment.

Open source projects are different: It is recognized that any potential volunteer
could become a valuable resource. Thus, an effective project process must be open
to accepting volunteers (egalitarianism), must recognize quality regardless of the
source (meritocracy), and allow processes to develop according to the needs of the
community (self-organizing). The five stage process of open source volunteering
described in the following Section is based on the three guiding principles of the
open source volunteering process: recruitment is investment, open communication,
and open collaboration.

The Five Stages of Open Source Volunteering 29

3 The Five-Stage Volunteering Process

In [10], Behlendorf illustrates a typical example of how a developer might join a
project, rise through the ranks, and become a project leader. The developer

1. needs to solve a problem,
2. searches the web for appropriate software,
3. finds a matching project,
4. checks out the project,
5. gives the project a try and is happy,
6. finds a bug and reports it,
7. makes a first contribution,
8. engages in a conversation,
9. keeps contributing,
10. receives a vote of trust, and
11. ultimately leads the project.

By correlating this 11-step process with Fogel’s work [6] and by aligning it with
the Onion model of roles in open source software development [11], we were led to
a simpler and denser five stage model of the open source volunteering process than
the one proposed by Behlendorf. This model is shown in Fig. 1.

An innovation of this model is the addition of the two complementary views of
volunteer and project (leader), which lead to complementary but mutually supporting
best practices and activities. The stages are defined in the following way:

• Stage 1: Connecting. In this stage, a potential volunteer stumbles over a project
by lucky chance or, after searching for something like it, finds the project through
a search engine. The project needs to prepare for this to happen, which requires
marketing itself through appropriate channels and at appropriate portals.

• Stage 2: Understanding. In this stage, once a potential volunteer is looking at a
project’s website, the website needs to draw him or her in. Using a variety of best
practices, the project helps the visitor quickly understand what the project is about
and whether it should be of interest to them.

Fig. 1 A five-stage model of the open source volunteering process

30 D. Riehle

• Stage 3: Engaging. In this stage, a potential volunteer is inspired to engage with
the project, for instance by installing the software or joining a mailing list. The
project strives to welcome users to the community and direct them toward the next
stage by providing information of simple ways to volunteer.

• Stage 4: Performing. In this stage, a volunteer contributes to the project. The
project community needs to be receptive to initial efforts by reacting quickly to
contributions and creating conversations to improve quality. The project needs to
guide users towards becoming regular contributors.

• Stage 5: Leading. In this stage, the volunteer accepts responsibility for the direc-
tion of the project or community. The project must have a mechanism for identi-
fying potential leaders and making decisions on their promotion to leader status
as well as for communicating this clearly.

Not all volunteers pass through all stages, but stages can only be taken one after
another. Each subsequent stage will be reached by fewer volunteers. The best prac-
tices described in the next section support each stage. For a project, they help increase
volunteer commitment. When recruitment is viewed as an investment, best practices
are aligned with promoting long-term involvement. For a volunteer, best practices
advise on how to achieve goals, from finding a project that fulfills a need to gain-
ing recognition within a project. We now describe each stage in detail, along with
selected best practices from each perspective and tools to support them.

4 Best Practices and Supporting Tools

A best practice “is a broadly-accepted, typically informally-defined, method for
achieving a particular goal that is considered superior to most other knownmethods”
(author’s adaptation of the Wikipedia entry on “best practice” [12]). Thus, a best
practice is amethod reflecting the state-of-the-art as applicable in a particular context.

The following best practices have been derived from the respective references,
in particular [6, 8, 10, 13–15]. They have been grouped according to the phases
described in Sect. 3 and divided into the two perspectives described there: the vol-
unteer’s view and the project leader’s view. They are based on the application of the
three principles of open source volunteering described earlier in Sect. 2. Due to the
large number of sometimes mundane best practices, not all are discussed in detail.

The principle which informs all best practices from the project view is that
of recruitment as an investment. In a project, time is the scarcest resource, and
recruitment takes time. Increasing the long-term return on time invested [6]—or
encouraging volunteers to move to each successive phase—is therefore the objective
of the project’s leadership. Open communication and open collaboration are also
reflected in the best practices; they are the underlying tenet that make open source
projects work.

A volunteer is not a passive subject to be recruited, but an individual with objec-
tives in mind. At each phase, a volunteer wants to ensure maximum value for the
investment, which is where best practices come into play. The volunteer who is pre-
pared will achieve better results than one who fails to consider the project’s needs.

The Five Stages of Open Source Volunteering 31

Fig. 2 Best practices of Stage 1, the Connecting stage

4.1 Stage 1: Connecting

Figure 2 displays all best practices of Stage 1, the Connecting stage. Volunteers
can be separated into two categories, those that stumble onto the project by luck,
and those that search for a solution to a problem they have. Project best practices
can be split into active outreach being performed and passive inflow that needs to
be prepared for. Two terms stick out among the project best practices, channel and
portal:

• An open source project channel is a communication channel for a project to reach
potentially interested parties, in particular volunteers. Examples of such channels
are:

– Social media channels like Facebook or Twitter
– Targeted communication channels like Slashdot or Hacker News
– Specific open source conferences like OSCON or ApacheCon

• An open source project portal is a portal website dedicated to open source projects.
Examples of such websites are:

– Project hosting sites like SourceForge or Github
– Meta-sites like Freshmeat or Open Hub

Channels are mostly used for active outreach and when the project has a story to tell,
for example, the initial release. Portals are used for passive inflow where searchers
can find them when they are seeking a solution.

A project should choose a good name that is easy to remember and ideally indica-
tive of the project’s purpose. As an alternative to descriptive names, wholly artificial

32 D. Riehle

names may serve the project equally well. Any communication then should stick to
that name and use it consistently. The relevant channels and portals (see above) need
to utilized repeatedly, consistently and predictably. Any communication should be
matter-of-fact rather than hyperbole-projects are trying to create a long-term reputa-
tion, not a short spike of attention followed by disappointment over the hyperbole.
The most common form of communication is the announcement of new releases of
the software, followed by announcements over major developments in the project
community or sponsorship.

4.2 Stage 2: Understanding

In the second stage, the emphasis is on communicating the project’s purpose to a
volunteer who wants to quickly learn if the project answers his or her need. Figure 3
lists relevant best practices.

Various pieces of information need to be easily accessible, both in terms of finding
and understanding the information. A first step is to have a clear mission statement
that spells out the project’s purpose and does so in a highly visible place, for example,
the front page of the project’s website on a software forge. Examples and screen-shots
should be easily accessible to make it straightforward for visitors to assess what the
software does in practical and tangible terms (short of downloading and installing
the software, which would be the next step). Words are only so good-examples and
screen-shots sometimes communicate more clearly.

Many visitors will also want to know about related project information like soft-
ware licenses or (assumed) quality of the software (by way of development status).
Thus, a project should display prominently which open source license it is using,
what state of development it is currently in, and what future expected develop-
ments are, including upcoming releases and key new features and functionalities. The

Fig. 3 Best practices of Stage 2, the Understanding stage

The Five Stages of Open Source Volunteering 33

visitor, who wants to try the software, may need user documentation, which should
therefore be provided.

Visitors have questions or may want to become volunteers, and hence a project is
well advised to spell whether volunteers are welcome and what the project rules are
so that someone considering to participate will know what they are getting into.

4.3 Stage 3: Engaging

In the engagement stage, the emphasis is on facilitating communication between the
project and the volunteer. Figure 4 lists relevant best practices.

It needs to be clear (and clearly displayed) how current project members can be
reached. At this stage, the project may only be perceived as an anonymous entity with
no particular face. Potential volunteers need starting points, for example, forums or
mailing lists where they can ask questions.

A first response should be welcoming of a new potential volunteer, and any pos-
sible rudeness, whether incidental or deliberate, needs to be stopped immediately.
It is paramount that any project member redirects any privately posed questions to
a public forum and avoids answering questions in private; this would be a highly
inefficient use of their time. Visitors need to understand that they consume time
and hence should do their homework or should be guided to do their homework
before asking. Doing one’s homework implies reading existing materials to avoid
redundant questions. Also, visitors have to learn to ask in public so that everyone can

Fig. 4 Best practices of Stage 3, the Engaging stage

34 D. Riehle

learn from their considerations and questions. Communication, both on the visitor
and the project side, should bematter of fact and content focused, trying to help solve
the problem or question at hand.

For more advanced visitors, or users of the software, it should be possible to learn
about simple tasks that the project would benefit from. The project should spell out
such tasks, even if writing them down may cost nearly as much time as performing
them, because simple tasks provide a mechanism to engage volunteers. Similarly,
there should be incremental tasks to be picked up, which will allow volunteers to
work with existing developers rather than alone. Incremental tasks also introduce
volunteers to existing technical aspects of the project.

A lot of things can go wrong when setting up a project for engaging potential
volunteers, and appropriate attention needs to be paid so that tools and project arti-
facts like task and requirements lists are accessible, and that developers can find
appropriate guidelines and documentation.

Underlying all these project best practices is the guiding principle of making it
as easy as possible for a volunteer to make a first contribution. Getting to that first
contribution is the single most important hurdle a project has to overcome. Thus,
many of the best practices work hand-in-hand to make that first contribution happen.

4.4 Stage 4: Performing

The performance stage is when the volunteer contributes to the project. It can be
subdivided into a first contribution and later more regular contributions. Figure 5
lists appropriate best practices for project leaders.

A volunteer’s first contribution is like dipping a toe into the water. Depending on
how the experience feels, the volunteer may not come back. Thus, it is important to
ensure that this first contribution becomes a positive experience. For one, a contri-
bution should be well received and reacted to. Nothing is worse than no reaction, for
example, by letting a patch sit idle. The appropriate reaction to a patch is to turn it
into a conversation, not only to say thanks, but also to encourage further contribu-
tions by pointing the volunteer to related issues. In all but the most simplest patches
or contributions, the volunteer may have to be guided to reworking the contribution,
for example, to ensure compliance with the project’s programming guidelines. Code
review of a patch submission is a general best practice, but also shows the volunteer
that their contribution is being taken serious, even if it leads to a request to fix a
problem with the submission. Finally, after a successful contribution, it is critical to
pay credit to who credit is due and list the volunteer as a contributor to the project.

Volunteers who have become regular contributors may then be willing to pick up
other tasks outside their original interests. Still, project leaders should track and play
to volunteer interests when asking them for help, for example, to work on a particular
feature. Volunteers, who have bought into the project are frequently willing to pick
up work that they originally did not join the project for. This includes unloved tasks
like project documentation and is not restricted to technical tasks alone.

The Five Stages of Open Source Volunteering 35

Fig. 5 Best practices of Stage 4, the Performing stage

A project leader who asked a contributor to perform some work and received a
commitment needs to fulfill a managerial role now. For example, if the contributor
is not providing the promised feature, the project leader may have to inquire about
progress, nudging the contributor along (and making mental notes as to whether
this was a good request that matched the volunteers interests). Sometimes, a project
may run into difficult people. “Difficult” or even “poisonous” people, according to
Fitzpatrick and Collins-Sussman, may waste a projects time or split and even ruin a
project [8]. Best practices to prepare for the problem are to

1. build a healthy community and
2. document all decisions.

It is necessary then to detect the problem: Difficult people typically don’t show
respect, miss social cues, are overly emotional, and make sweeping claims not based
on any data. Best practices to handle the problem are to

1. not engage them,
2. ignore them if possible,
3. remove them from the project if necessary.

36 D. Riehle

General engineering management advice applies as well. The system software
architecture needs to match its social structure, which typically implies a well-
componentized structure so that developers can work independently of each other
and in a distributed fashion. The requirements and open tasks in contrast should
be feature-oriented, as completing a feature is a major motivation for a developer
because it provides meaning to the work being performed.

Unlike in traditional (non-open) contexts, however, the principles of open com-
munication and open collaboration need to be maintained. This requires appropriate
consensus-oriented and merit-based discussion as to decisions to be taken. Voting to
make a decision is a last resort to resolve a conflict and should be used rarely.

4.5 Stage 5: Leading

In the final phase, the volunteer becomes a project leader and takes responsibility for
the best practices of the project view for the earlier phases. Figure 6 shows some of
the best practices at this level.

At this stage, a project leader is basically a manager, but without the power found
inside traditional organizations. He or she has to rely on the power of persuasion
and goodwill that contributors have developed towards the project. With increasing
commercialization and paid-for participation in open source, some of these chal-
lenges become less serious, and developers may need less intrinsic motivation. Still
it remains good practice to personallymotivate developers through their work beyond
the possible salary that an employer may be paying for their open source work.

The power of leadership rests on setting a good example by taking responsibility
and acting accordingly, by praising other people’s work and acknowledging their
contributions. Additional actions may be necessary to help contributors outside the
project, for example, if they are performing open source work on company-time

Fig. 6 Best practices of Stage 5, the Leading stage

The Five Stages of Open Source Volunteering 37

without the employer having a particular interest in the project. Then, the open source
project leadermay have to helpmotivatewhy the developer’swork ultimately benefits
his or her employer.

The open source project itself needs management in that contributors find the
work formally acknowledged in the form of traditional credits. Contributors are also
having a form of open source career. Taking steps in this career, most notably from
contributor to committer, may be touchy subjects, and are one of the few discussions
that the existing project leaders may have to decide privately and not in the public
eye. This is justified, because such a discussion is typically more about the social
aspects of working with the to-be-promoted person rather than his or her technical
capabilities. In case of a positive decision, the promotion needs to be announced
publicly and documented accordingly so that everyone in the project knows.

5 Conclusion

This article first identified the three guiding principles of open source projects. Vol-
unteers are the lifeblood of an open source project, and an effective recruiting process
considers all three principles.

First, recruiting is an investment: time and effort are invested in order to yield
long-term results. Second, open communication facilitates the volunteer process by
creating transparency. Third, open collaboration opens the recruitment process to
any potential volunteer and allows them to contribute to their fullest extent.

A model of five phases of engagement is presented. This model looks at the
different levels of volunteer commitment from both the perspective of the volunteer
and of the project.

The three volunteering principles are used to advance a number of best practices
which are tied to the five stages of engagement. At each phase—connecting, under-
standing, engaging, performing and leading—there are objectives and best practices
for both the volunteer and the project, as represented by its leadership. The best
practices are derived from existing literature and observation.

Acknowledgments I would like to thank Ann Barcomb and the anonymous reviewers for helpful
comments that improved the paper.

References

1. Riehle, D.: The economic motivation of open source software: stakeholder perspectives. Com-
puter 40(4), 25–32 (2007)

2. Riehle, D.: The economic case for open source foundations. Computer 43(1), 86–90 (2010)
3. Mickos, M.: Open for business: building successful commerce around open source, (2010)
4. Riehle, D. Riemer, P. Kolassa, C. Schmidt, M.: Paid vs. volunteer work in open source. In: 47th

Hawaii international conference on system sciences (HICSS), pp.3286–3295, January 2014

38 D. Riehle

5. Riehle, D.: The open source knowledge sharing and volunteering process, (2011)
6. Fogel, K.: Producing Open Source Software. O’Reilly, Farnham (2005)
7. Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh, B.,

Odenwald, T.: Open collaboration within corporations using software forges. IEEE Softw.
26(2), 52–58 (2009)

8. Fitzpatrick, B., Collins-Sussman, B.: How open source projects survive poisonous people,
(2008)

9. Carmel, E., Tija, P.: Offshoring Information Technology. Sourcing and Outsourcing to a Global
Workforce. Cambridge University Press, Cambridge (2006)

10. Behlendorf, B.: How to contribute to open source projects, (2011)
11. Crowston, K., Howison, J.: The social structure of free and open source software development.

First Monday 10(2) (2005). First Monday, Special Issue # 2: Open Source—3 October 2005
The social structure of free and open source software development (originally published in
Volume 10, Number 2, February 2005)

12. Wikipedia. Definition of Best Practice
13. Bacon, J.: The Art of the Community. O’Reilly, Farnham (2012)
14. Delacretaz, B.. Open source collaboration tools are good for you, (2009)
15. Gabriel, R., Goldman, R.: Innovation Happens Elsewhere. Elsevier (2005)

Worker-Centric Design for Software
Crowdsourcing: Towards Cloud Careers

Dave Murray-Rust, Ognjen Scekic and Donghui Lin

Abstract Crowdsourcing is emerging as a compelling technique for the cost-
effective creation of software, with tools such as ODesk and TopCoder supporting
large scale distributed development. From the point of view of the commissioners
of software, there are many advantages to crowdsourcing work—as well as cost,
it can be a more scalable process, as there is the possibility of selecting from a
large pool of expertise. From the point of view of workers, there is a different
set of benefits, including choice of when and how to work, providing a means to
build a portfolio, and a lower level of commitment to any particular employer. The
crowdsourcing of software development—in common with some other activities
such as design—represents an alternative to existing mechanisms that require skilled
workers. However, if crowdsourcing were to replace traditional employment for a
significant proportion of software developers, the reduced levels of commitment
between workers and commissioners could prove problematic for workers over time.
In this paper, explore three areas of interest: (i) trust and reputation development;
(ii) team selection and team building; (iii) contextualisation of the work carried out.
By drawing together work in these areas from the point of view of workers rather
than commissioners, we highlight some of the incipient issues with the growth of
crowdsourced labour. We also explore ways in which crowdsourcing of software
development—and other skilled practices—differers from microtasking.

D. Murray-Rust (B)

CISA, School of Informatics, University of Edinburgh, Edinburgh, UK
e-mail: d.murray-rust@ed.ac.uk
URL: http://www.cisa.inf.ed.ac.uk

O. Scekic
Distributed Systems Group, Vienna University of Technology, Vienna, Austria
e-mail: oscekic@dsg.tuwien.ac.at
URL: http://dsg.tuwien.ac.at

D. Lin
Department of Social Informatics, Kyoto University, Kyoto, Japan
e-mail: lindh@i.kyoto-u.ac.jp
URL: http://www.i.kyoto-u.ac.jp

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_3

39

40 D. Murray-Rust et al.

1 Introduction

Crowdsourcing is emerging as a powerful tool for carrying out many different tasks,
and commissioning work of different kinds. Organisations accrue many benefits
from crowdsourcing work, typically including: cost, quality, network effects, lower
commitment, greater pool of expertise, scalability and on-demand labour [8, 10, 22].

Most analyses of crowdsourcing take the point of view of the commissioners of
work rather than the workers themselves: how is it possible to get work done better,
more cheaply, more robustly or faster. When considered as an “outsider” technology,
this need to prove value to commissioners of work is completely understandable.
However, crowdsourcing is no longer a niche activity, however. In 2009, it was
estimated that cloudworkers had been paid up to $2Bn over the preceding decade
[9]; the number of participants has grown by over 100% per year, and there are now
over 6 million cloudworkers worldwide.

Mechanical Turk is seeing a shift from casual, spare time work carried out by
Americans, to Indian workers who derive essential income from the work that they
do [21]. This has led to some analysis of the ethics of “professional crowdsourcing”,
where the monetary rewards have a significant effect on the people carrying out
the work. Silberman et al. [25] discuss several problems faced by Mechanical Turk
workers (Turkers), such as employers who don’t pay, or reject work; conning naïve
users into downloading malware or participating in scams; and poorly defined or
structured tasks. Bederson and Quinn [2] discuss wage-based issues, and call for
hourly rates for crowdworkers, or at least an expected hourly rate to be published,
along with clear quality metrics which stop employers being able to arbitrarily reject
work after it has been done.On the positive side, Horton [12] finds some evidence that
online employers are seen as more trustworthy than local employers. Of particular
interest is Felstiner’s discussion of the crowdsourcing industry in the context of
labour laws [8].

Software crowdsourcing is markedly different to “Turking” and other similar
microtasking activities, for a number of reasons. Frei [9] divides crowd labour into
micro tasks, macro tasks, small projects and complex projects. While much of the
crowdsourcing industry focusses on microtasks, software creation tends to fall into
the small- or complex-project brackets, requiring workers to bring in existing skills,
and some degree of coordination or direct worker contact.

The software crowdsourcing industry is arguably older than micro-tasking:
RentACoder, Guru, LiveOps and Elance all began beforeMechanical Turkwas intro-
duced, and TopCoder and oDesk appeared prior to the explosion of crowd labour
platforms (2006 onwards [9, p. 4]). As such, software crowdsourcing can be seen as
a natural evolution of a freelancer-based industry: it is very common for developers
to work on a short term basis, being brought in for particular projects without expect-
ing a continuing relationship with the client. The crowdsourcing aspect is largely a
technological addition to simplify existing practices.

As well as commercial crowdsourcing, there is a grand tradition of free crowd-
sourcing exemplified by the Free and Libre Open Source Software (FLOSS)

Worker-Centric Design for Software Crowdsourcing: Towards Cloud Careers 41

movement, which has created many high profile, high quality complex pieces of
software (e.g. the Linux kernel). A side effect of this is the profusion of tools for
carrying out distributed programming tasks, such as chat applications, distributed
version control systems (DVCSs), bug and issue trackers, unit test frameworks, con-
tinuous deployment systems etc. This means that the software community as a whole
has greater literacy with the techniques and practices that allow and support distrib-
uted working than many other areas.

Just as the entry requirements for creating software are higher than those for
microtasking, the monetary incentives are greater too: as of 2010, on average, a
Turker earns $1.25/h, which is less than the minimum wage in India. In contrast,
an average developer on oDesk earns $15/h—double the US minimum wage, and
higher than designers ($10/h) or technical writers ($8/h) [8].

On the topic of payment, a concern for software creators is the cannibalisation
of their market; the average yearly wage for a software developer in the US is $92k
[27], approximately four times the oDesk average, and which also includes benefits
and a sense of job security; this economic advantage is one of the chief motiva-
tions for firms to crowdsource work (although there are others, such as innovation
and competitiveness [10]). An early article about crowdsourcing [13] examines the
disruptive effect that crowdsourced stock photo sites (e.g. iStockphoto.com) had
on the professional stock photography market. The article also hints that a large
part of professional photographer’s ability to charge for their work is dependent on
access to professional quality equipment (although this is a position professional
photographers may disagree with). Software development is different here: low-end
computers can be used to create high quality code, and programmer selection is more
likely to be carried out on the basis of a laundry list of technologies mastered than
computational hardware owned.

There is the questionofwhether this commoditisationof the lowend really disrupts
the lives of working professionals. In the design world, companies such as 99designs
produce give access to design at lower prices thanwere previously available; however,
it is an open question whether this represents lost sales for high end design houses,
or simply the opening up of the market to a new audience. Software development
already has a highly diverse ecosystem, with pricey, local “boutique” consultancies
pitted against low cost, low quality outsourcing houses. Software crowdsourcing has
the potential to impact on both of these communities, as (a) the price is low enough
to be competitive with the cheaper providers and (b) the quality can be high enough
to make some mid- to high-level providers worried.

Software development is typically seen as a long term career, with potential for
high earnings and a transition into management. Most jobs would include bene-
fits, job security and would provide necessary equipment. This can be contrasted
with crowdworking which is fraught with asymmetric power relationships and poor
conditions:

Depending on a firm’s quality standards, crowdsourcing can be astoundingly cheap. Crowd
workers receive lowwages, no benefits, no job security, and have notmuch prospect at present
of organizing to change these conditions. Employers do not need to provide facilities and
support for a workforce, nor do they need to pay overhead fees to an outside contractor. [8]

42 D. Murray-Rust et al.

In this paper, we set out our opinions around the question of what it would take
to make software crowdsourcing a sustainable industry. This means being able to
attract intelligent, motivated individuals, who can make enough money to satisfy
themselves. Essentially, we ask the question “What would we want from a crowd-
sourcing marketplace”, or, more eloquently:

Can we foresee a future crowd workplace in which we would want our children to partici-
pate? [16]

2 Themes of Interest

As noted previously, there are many issues faced by most crowdworkers, whether
performing relatively unskilled micro tasks or larger complex projects. However,
there are some issues that are particular to the situation where existing professional
activities are replaced with crowdsourcing. While microtasks create a new labour
market, there is already a large population of peoplewho expect to be able to construct
a career around software development. Here we attempt to tease out some of these
expectations and issues, and highlight where current and emerging technologies and
systems can help to support these workers.

These themes are by no means comprehensive; rather they represent a solid back-
bone around which to start building career ladders for cloud software developers,
and combatting the atomisation of workers and information asymmetry which are
endemic in the cloud.

2.1 Trust and Reputation as Prerequisite for “Cloud Careers”

Arguably, co-workers are one of the most important factors contributing to a pleas-
ant and productive working environment . In traditional companies workers usually
cannot directly select their co-workers. However, since the nature of the employment
relationship is a long-lasting one, it gives them time to get to know their colleagues
and forge working relationships. The management will actively monitor these rela-
tionships in order to achieve a more harmonic, and thus more productive or creative
environment.

In crowdsourcing environments, the relationship of workers with the platform
and co-workers are irregular and short-lived. This leaves no time to get to know and
other workers. Crowdsourced teams are often unique, both time- and composition-
wise. Co-workers are often hidden behind digital profiles, creating an atmosphere of
distrust and discomfort. Furthermore, such settings provide and ideal environment
for attempting fraudulent activities, such as multitasking, rent-seeking or tragedy of
the commons style exploitation [19].

Worker-Centric Design for Software Crowdsourcing: Towards Cloud Careers 43

Hence, managers and workers must be supported in the task of assembling teams;
while there are many different approaches to this, almost all of them rely directly or
indirectly on some sort of trust or reputation metrics.

Trust and reputation are two terms often used incorrectly and interchangeably, as
varying definitions for both terms exist, and are used in different contexts by different
authors. In this paper, we use a loose and operative description which we feel is in
general agreement with the majority of the crowdsourcing community.

Trust is a concept denoting one’s personal expectation of someone else. Repu-
tation is an aggregated, communal expectation of an individual.1 Trust influences
reputation, and vice versa:

• T (a, b)—denotes the level of trust which a has for b;
• Rc(x)—denotes an aggregate measure of worker x’s trustworthiness within com-
munity c.

In case of crowdsourcing and other socio-technical systems, this means that a worker
(Alice) can trust a co-worker (Bob), if her personal feeling or past experience supports
the trust. However, Alice’s high opinion of Bobmay not be shared, and he could have
a low reputation within the community. If the low reputation is simply a result of
having few collaborations, then over time as Bob works with people, the community
view will change and his reputation will increase.

This small example demonstrates two well-known problems: (a) bootstrapping of
trust/reputation; and (b) the dilemma of choosing trust over reputation.

The trust-reputation dilemma is reflected in the fact that although reputation
reflects an aggregated community view, depending on the particular collaboration
pattern in a team, it may be better to favour trust over reputation as ametric. However,
this depends on the confidence level of the trust metric, and a trade-off is usually
required.

Trust bootstrapping is related to the fact that the trust emerges only after several
interactions between the same two subjects have taken place. Reputation bootstrap-
ping is related to the fact that a subject’s good reputation can be established only
after the majority of community members (or its most influential members) have
interacted with the subject.

In crowdsourcing environments, it is often not realistic to expect enough interac-
tions to build up valid trust and reputation metrics. Teams are formed and dispersed,
people join and leave the community, and multiple crowdsourcing platforms exists
without pervasive identities.

Hence, a number of techniques and systems have been developed which aid the
building and management of trust and reputation [20]—see [15] for a survey, and
[6] for recent applications to open collaborative systems. Such systems help workers

1For a comprehensive and detailed discussion on different aspect and definitions of trust and repu-
tation, the reader is referred to [26].

44 D. Murray-Rust et al.

estimate their initial trust values for other workers based on evaluations of established
authorities or majority votes. The intention is that the assessed trust values will
exhibit a selective effect, encouraging workers to engage in interactions that will
subsequently allow more precise personal trust assessment. As the accuracy of the
trust values improves, so does the accuracy of the reputation metrics.

Trust and reputation systems can be highly context-specific [14, 18] and multi-
faceted (see Fig. 1 for an example). Each worker is valued differently by each prior
collaborator, in each context where they have worked. To form a full evaluation, the
opinions of all of those collaborators should be taken into account. However, experi-
ences are highly context dependant, and (for example) a worker’s natural behaviours
may align more closely with the norms of one context, leading to a higher perception
of their quality in that context than others.

This context-dependency is a barrier to trust and reputation metrics being trans-
ferable between different platforms/projects. We use the term reputation transfer to
denote any set of commonly-agreed and shared metrics, methods and data allowing
a unified view of a worker’s trust and reputation over different platforms.

Reputation transfer is one of the crucial requirements for emerging crowdsourcing
systems and one of the important research questions that still needs to be addressed.
Solving this problemwould allowworkers to maintain the reputation across different
platforms and avoid platform lock-ins, thus allowing for a more stable future career
as platforms come and go. The bootstrapping problem would be greatly reduced, as
when a new platform starts up, an initial set of data is available. Overall, it would
make the crowdsourced labour more attractive for skilled workers and complex tasks
by allowing the workers to move their careers entirely to a competitive and fair
crowdsourcing environment.

Fig. 1 Factors influencing trust in socio-technical systems (reproduced from [26]).When evaluating
a trustee n2, the trustor n1 must take into account: bilateral interactions in this context; bilateral
interactions in other contexts; relationships with others in this context; evaluations of recommenders
(and the profile of the recommender)

Worker-Centric Design for Software Crowdsourcing: Towards Cloud Careers 45

However, solving the problem of reputation transfer is far from trivial. A general
solution requires re-interpreting each worker’s past context-dependent performance
relative to the current context. The current contextmay have emerged since the design
of the original performance tracking system, so there may be types of data which are
unavailable. Additionally, as metrics change over time, behaviour changes to match
them, so it becomes unfair to judge past performance on the standards of today.

The proliferation of different metrics and trust models indicate that agreeing on a
uniform, context-independent trust and reputation model is practically unfeasible. A
new approach and some out-of-the-box thinking will be needed take to address this
problem.

2.2 Team Selection

In the crowdsourcing environment, large complex projects require cooperation
between a number of crowd workers. As well as the issues of trust and reputation
discussed previously, the composition of the team can have an effect on performance,
and also the satisfaction of the workers who constitute the teams.

Kittur et al. propose that crowdsourcing labour markets can be regarded as a
loosely coupled distributed computing system in with each crowd worker is analo-
gous to a processor [16]. Just as it is important to organize distributed processors for
various tasks, team formation and selection for crowdsourced software development
is an important issue. Twomajor areas which should should be dealt with here are the
possibility of self-organization of crowd workers, and the manner in which crowd
workers are matched to tasks.

2.2.1 Self-Organization of Crowd Workers

Existing crowdsourcing platforms do not have much support for coordination and
interaction among crowd workers. In some platforms like AmazonMechanical Turk,
tasks are separated in an atomic manner so that crowd workers do not need to collab-
orate with each other. Other platforms support complex projects with offline collab-
oration among crowd workers under the guidance of the work requester. However,
creative work like software development requires a large degree of knowledge inte-
gration, coordinated effort and interaction among workers.

Self-organization is a process of formation of global order and coordination based
on local interaction among individuals/components, which has been previously dis-
cussed in natural sciences, distributed computing environments,multi-agent systems,
and so on. To deal with organization issues, Crowston et al. have previously studied
self-organization of teams in open source software development [4], and illustrate the
effectiveness of self-assignment of tasks based on the experiences in several projects.
In software crowdsourcing, characteristics such as autonomy, decentralized control,
emergence, and adaptation should be considered with respect to the organisation

46 D. Murray-Rust et al.

of crowd workers. Methodologies for self-organization in multi-agent systems (e.g.
[23]) can be applied to software crowdsourcing, and to some extent a crowd work-
ing platform can be conceptualised as a multi-agent system, where reorganisation
happens “bottom-up”, with no explicit central control; or, under an internal central
control or planning by the work requester.

2.2.2 Task Matching for Crowd Workers

The task allocation problem has been discussed for decades in artificial intelligence
and distributed computing circles. In crowdsourcing environments, recent researches
focus on how tasks can be decomposed to allow modelling and execution as work-
flows with iterative tasks for the purpose of quality assurance [5]. However, in cre-
ative, complex crowdworking, the matching of tasks to workers is equally important.
Two main factors should be considered: the skills possessed by crowd-workers, and
the incentives needed to motivate them.

Chilton et al. investigate the task search behaviours of crowd workers, and find
that workers tend to gravitate towards the newest tasks on offer due to user interface
constraints of existing platforms [3]. Therefore, it is important that crowdsourcing
platforms for creative complex work support task matching mechanisms to make full
use of the skills of crowd workers. Anagnostopoulos et al. propose an optimization
solution for team formation in social networks to deal with following requirements
[1], which is also necessary in software crowdsourcing:

1. all skills required by the task should be satisfied;
2. communication overhead within the team should be small;
3. workload of tasks should be fairly balanced among people.

Another important factor in task matching is incentive of crowd workers, includ-
ing both financial incentive and social incentives [24]. Therefore, tasks, skills, and
incentives should be appropriately modelled when developing mechanisms for task
matching in software crowdsourcing.

Additionally, the Social Compute Unit [7] provides a framework for creating
teams of people and associated computing resources whose skills and incentives are
matched to solving particular problems.

It will become increasingly necessary to provide mechanisms by which software
crowdworkers can collaborate with people they know and trust; where they can
organise themselves effectively as situations and contexts evolve; and where they are
able to utilise—and improve—their skills on a variety of non-monotonous tasks.

2.3 Contextualisation

The context and purpose of software development can be a large motivating factor
for workers; Bederson and Quinn [2] call for reduced anonymity on both sides, and

Worker-Centric Design for Software Crowdsourcing: Towards Cloud Careers 47

provision of task content. Similarly, Zittrain [28] discusses how decontextualized
tasks remove the ability of workers to understand the moral valence of their labour,
and decide whether the task they are carrying out is morally acceptable to them.
Examples included range from spammers attempting to break Captchas to govern-
ments outsourcing recognition of persons of interest in photographs. Aworker identi-
fying people inCCTVphotos orwriting reviews of restaurants they have never visited
might have a feeling that they are complicit in something ethically questionable:

Do not do any HITs that involve: filling in CAPTCHAs; secret shopping; test our web page;
… If you feel in your gut it’s not on the level, IT’S NOT. Why? Because they are scams…
spamgirl on TurkerNation [25]

Harris [11] presents a taxonomy of ways in which people can be hired to carry
out morally ambiguous activities, and while software development is less prone to
some of these issues, the strong emphasis on modular design in software makes it
harder to divine the purpose of any particular code unit; a worker creating general
computational infrastructure may well not give any clue about the intended purpose
of the system.

When discussing general collective intelligence situations, Malone [17] describes
the reward for taking part as being based on “Money, Love or Glory”. The comple-
ment of this (leaving aside the pecuniary aspects) is that one should be engaged in
a task that one does not hate, and is not ashamed of. Additionally, Malone suggests
that commissioners of collective intelligence should engage with the design ques-
tions: What is being done? Who is doing it? Why are they doing it? How is it being
done? These questions can be reversed to create a list of questions which crowd-
workers should be able to ask, both for their own peace of mind and as a way for
commissioning entities to engage with the Love and Glory motivations:

• “What is the overall project?” At a basic level, it is important to worker to know
what the project it—are they building a recommendation system, or a face recog-
nition system, or a social network? This allows the worker to understand their
immediate moral or ethical stance with respect to the work, as well as building
commitment and fostering pride in work done.

• “Who is commissioning the work?” What does the worker feel about the organisa-
tion that is asking for the work to be done? By avoiding anonymity, commissioners
have the possibility to build loyalty within their atomized, cloud-based workforce.

• “Why they are commissioning it?” Beyond the simple specification of what the
system to be built is, there is the question of what is it to be used for, and what are
the overall goals and intentions of the commissioner.Aworkermight have different
feelings about creating a data integration tool dependant on whether it was going
to give people more useful information in their social networks, or be used by the
government to catch criminals. Workers should be able to understand whether the
goals of the project align with or conflict with their moral and ethical proclivities?
Again, this feeds into developing a sense of pride in the work—beyond technical
achievement in creating the software artefact, what is its effect on the world at
large going to be?

48 D. Murray-Rust et al.

• “How is it being done?” In the context of crowdsourced software development
becoming a viable, sustainable career choice, the mechanics of the commissioning
process are somethingwithwhich ethically consciousworkers will need to engage.
As noted previously, the mechanism of outsourcing work to crowds can have a
huge effect on the viability of the profession—if programming were to be carried
out through competitions where many teams create solutions, but only one team
gets paid, that would change the dynamics of the market. When thinking about
longer timescales, workers may want to be selective about what kinds of system
they engage with.

3 Discussion

The list of points we have raised here is far from complete. There is similar work
in the literature, although much of it is aimed at crowd-work in general, and this
tends to have a slant towards the Turking, micro-task end of the spectrum, and
hence addresses a different set of communities and issues. Some good overviews
are: [16], for describing several ways in which cloud work could be improved, and
in particular highlighting the need for creating career ladders, through addressing
questions of motivation, job design, reputation and hierarchy. Bederson and Quinn
[2] discuss wage issues for cloud workers, but also provide a set of guidelines for
improving the system as awhole, both in economic terms—disclosing pay, long-term
feedback, price tasks based on time, grievance processes etc.—an non-economically,
by providing task context and reducing anonymity; Harris deals with a related issue,
looking at the ease with which nefarious employers can contract out illegal, unethical
or just unsavoury activities [11].

Some of the key issues missing from this treatment are:

• We have discussed the need for trust and reputation between crowdworkers; there
is also the need for accountability for commissioners of work. Requesters on
Mechanical Turk currently are not bound by reputation systems. Silberman et al.
[25] have been building systems for workers to track and comment on the qualities
of the requesters, so that workers get a fairer deal.

• Traditional workers have the benefit of many organisational structures that support
them. Labour laws ensure a safe and healthy environment; employers are tasked
with managing the physical space that they inhabit in working hours; they will
meet other people in they workplace; advocacy groups and unions may exist to
represent the needs of workers. For a crowd working career, something providing
some of the properties of these structures would need to be created.

A question which comes to mind given that the discussion is generally concerned
with improving labour practices is:Why are we interested in people who are typically
relatively well off, rather than Turkers earning minimum wage?. Arguably, most
people who can participate in software crowdsourcing are quite well off, in that they
have been able to become educated, computer literate, and highly skilled. Hence,

Worker-Centric Design for Software Crowdsourcing: Towards Cloud Careers 49

they are in a relatively strong position when it comes to protecting their rights and
careers.However, it is exactly these qualitieswhichmake the software crowdsourcing
industry worth engaging with: it is an articulate and visible industry, and as such,
can lead the way in changing employment practices. There are battles which need to
be fought, and entitlements which need to be won, and hopefully fighting the easier
battles first can serve as a blueprint for other industries in the future.

Finally, beyond talking about this, what could we do to ensure that these things
happen? Is it primarily computational infrastructure?Or are there social organisations
that would need to be put in place? In general, in the area of socio-technical systems,
it is necessary to program the people as well as the machines; there is a confluence of
human behaviour change and computational support needed to create a sustainable,
profitable, long-term and above all humane marketplace for crowdsourced software.

References

1. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online team forma-
tion in social networks. In: Proceedings of the 21st International Conference on World Wide
Web, pp. 839–848. ACM (2012)

2. Bederson, B.B., Quinn, A.J.: Web workers unite! addressing challenges of online laborers.
In: Proceedings of the 2011 Annual Conference Extended Abstracts on Human Factors in
Computing Systems—CHI EA’11, pp. 97–106. ACM Press, New York (2011). doi:10.1145/
1979742.1979606

3. Chilton, L.B., Horton, J.J., Miller, R.C., Azenkot, S.: Task search in a human computation
market. In: Proceedings of the ACM SIGKDD Workshop on Human Computation, pp. 1–9.
ACM (2010)

4. Crowston, K., Li, Q., Wei, K., Eseryel, U.Y., Howison, J.: Self-organization of teams for
free/libre open source software development. Inf. Softw. Technol. 49(6), 564–575 (2007).
http://linkinghub.elsevier.com/retrieve/pii/S0950584907000080

5. Dai, P.,Weld,D.S.: Others: decision-theoretic control of crowd-sourcedworkflows. In: Twenty-
Fourth AAAI Conference on Artificial Intelligence (2010)

6. DeAlfaro, L., Kulshreshtha, A., Pye, I., Adler, B.T.: Reputation systems for open collaboration.
Commun. ACM 54(8), 81–87 (2011)

7. Dustdar, S., Bhattacharya, K.: The social compute unit. IEEE Internet Comput. 15(3), 64–69
(2011). doi:10.1109/MIC.2011.68

8. Felstiner, A.: Working the crowd : employment and labor law in the crowdsourcing industry
(2010)

9. Frei, B.: PaidCrowdsourcing. Technical Report. www.smartsheet.com. http://www.smartsheet.
com/paid-crowdsourcing-current-state-and-progress (2009)

10. Gassenheimer, J.B., Siguaw, J.A., Hunter, G.L.: Exploring motivations and the capacity for
business crowdsourcing. AMS Rev. 1–12 (2013). doi:10.1007/s13162-013-0055-8

11. Harris, C.G.: Dirty deeds done dirt cheap. In: 2011 IEEE International Conference on Privacy,
Security, Risk and Trust, pp. 1314–1317 (2011)

12. Horton, J.J.: The condition of the turking class: are online employers fair and honest?Econ. Lett.
111(1), 10–12 (2011). http://www.sciencedirect.com/science/article/pii/S0165176510004398

13. Howe, J.: The rise of crowdsourcing. Wired Mag. 14(6), 1–4 (2006)
14. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online ser-

vice provision. Decis. Support Syst. 43(2), 618–644 (2007). doi:10.1016/j.dss.2005.05.019.
http://linkinghub.elsevier.com/retrieve/pii/S0167923605000849

http://dx.doi.org/10.1145/1979742.1979606
http://dx.doi.org/10.1145/1979742.1979606
http://linkinghub.elsevier.com/retrieve/pii/S0950584907000080
http://dx.doi.org/10.1109/MIC.2011.68
www.smartsheet.com
http://www.smartsheet.com/paid-crowdsourcing-current-state-and-progress
http://www.smartsheet.com/paid-crowdsourcing-current-state-and-progress
http://dx.doi.org/10.1007/s13162-013-0055-8
http://www.sciencedirect.com/science/article/pii/S0165176510004398
http://dx.doi.org/10.1016/j.dss.2005.05.019
http://linkinghub.elsevier.com/retrieve/pii/S0167923605000849

50 D. Murray-Rust et al.

15. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service
provision. Decis. Support Syst. 43(2), 618–644 (2007)

16. Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, J., Lease, M.,
Horton, J.: The future of crowd work. In: Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, pp. 1301–1318. ACM (2013)

17. Malone, T.W., Laubacher, R., Dellarocas, C.: The collective intelligence genome. MIT
Sloan Manag. Rev. 51(3), 21–31 (2010). http://raptor1.bizlab.mtsu.edu/S-Drive/KJIH/
2010StudyAbroad/JournalArticles/TheCollectiveIntelligenceGenome.pdf

18. Marti, S., Garcia-Molina, H.: Taxonomy of trust: categorizing P2P reputation systems.
Comput. Netw. (April 2005), 1–20 (2006). http://www.sciencedirect.com/science/article/pii/
S138912860500215X

19. Prendergast, C.: The provision of incentives in firms. J. Econ. Lit. 37(1), 7–63 (1999).
http://www.jstor.org/stable/2564725

20. Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems. Commun. ACM
43(12), 45–48 (2000)

21. Ross, J., Irani, L., Silberman, M., Zaldivar, A., Tomlinson, B.: Who are the crowdworkers?
Shifting demographics in mechanical turk. In: CHI’10 Extended Abstracts on Human Factors
in Computing Systems, pp. 2863–2872 (2010). http://dl.acm.org/citation.cfm?id=1753873

22. Schenk, E., Guittard, C.: Towards a characterization of crowdsourcing practices. J. Innov. Econ.
Manag. 1(7), 93–107 (2011). http://www.cairn.info/revue-journal-of-innovation-economics-
2011-1-page-93.htm

23. Serugendo, G.D.M.: Self-organisation and emergence in multi-agent systems. Knowl. Eng.
Rev. 20(2), 165–189 (2005)

24. Shaw, A.D., Horton, J.J., Chen, D.L.: Designing incentives for inexpert human raters.
In: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work,
pp. 275–284. ACM (2011)

25. Silberman, M.S., Irani, L., Ross, J.: Ethics and tactics of professional crowdwork. XRDS:
Crossroads ACM Mag. Stud. 17(2), 39 (2010). doi:10.1145/1869086.1869100

26. Skopik, F.: Dynamic trust inmixed service-oriented systems. Ph.D. Thesis (2010). http://hydra.
infosys.tuwien.ac.at/Staff/sd/papers/Diss.F.Skopik.pdf

27. Software developer salary in United States. http://www.indeed.com/salary/q-Software-
Developer-l-United-States.html. Accessed 21 Nov 2013

28. Zittrain, J.: Ubiquitous human computing. Philos. Trans. Ser. A Math. Phys. Eng. Sci.
366(1881), 3813–3821 (2008). doi:10.1098/rsta.2008.0116

http://raptor1.bizlab.mtsu.edu/S-Drive/KJIH/2010StudyAbroad/JournalArticles/TheCollectiveIntelligenceGenome.pdf
http://raptor1.bizlab.mtsu.edu/S-Drive/KJIH/2010StudyAbroad/JournalArticles/TheCollectiveIntelligenceGenome.pdf
http://www.sciencedirect.com/science/article/pii/S138912860500215X
http://www.sciencedirect.com/science/article/pii/S138912860500215X
http://www.jstor.org/stable/2564725
http://dl.acm.org/citation.cfm?id=1753873
http://www.cairn.info/revue-journal-of-innovation-economics-2011-1-page-93.htm
http://www.cairn.info/revue-journal-of-innovation-economics-2011-1-page-93.htm
http://dx.doi.org/10.1145/1869086.1869100
http://hydra.infosys.tuwien.ac.at/Staff/sd/papers/Diss.F.Skopik.pdf
http://hydra.infosys.tuwien.ac.at/Staff/sd/papers/Diss.F.Skopik.pdf
http://www.indeed.com/salary/q-Software-Developer-l-United-States.html
http://www.indeed.com/salary/q-Software-Developer-l-United-States.html
http://dx.doi.org/10.1098/rsta.2008.0116

Part II
Software Crowdsourcing Models

and Architectures

Bootstrapping the Next Generation
of Social Machines

Dave Murray-Rust and Dave Robertson

Abstract The term “social machines” denotes a class of systems where humans and
machines interact so that computational infrastructure supports human creativity.
Flagship examples such as Wikipedia and Ushahidi demonstrate how computational
coordination can enhance information sharing and aggregation, while the Zooni-
verse family of projects show how social machines can produce scientific knowledge.
These socio-technical systems cannot easily be analysed in purely computational or
purely sociological terms, and they cannot be reduced to Turing machines. Social
machines are used in the creation of software, from software crowdsourcing projects
such as TopCoder and oDesk, to distributed development platforms such at GitHub
and Bitbucket. Hence, social machines are increasingly used to create the software
infrastructure for new social machine. However, social machine development is a
more complex process than software development, as the community must be “pro-
grammed” as well as themachines. This leads to development in the context evolving
and unknown requirements, and having to deal with more sociological concepts than
formal systems designers usually work with. We hence model the process using two
coupled social machines: the target social machine, with whatever purposes the cre-
ators envisions, and the development social machine which is used to create it. As
an example, oDesk can form part of a development social machine which might be
used to create a target social machine, e.g. “the next Facebook”. In this chapter, we
describe a formalism for social machines, consisting of i) a community of humans
and their “social software” interactingwith ii) a collection of computational resources
and their associated state, protocols and ability to analyse data and make inferences.
We draw on the ideas of ‘desire lines’ and ‘play-in’ to argue that top down design of
social machines is impossible, that we hence need to leverage computational support
in creating complex systems in an iterative, dynamic and emergent manner, and that
our formalism provides a possible blueprint for how to do this.

D. Murray-Rust (B) · D. Robertson
CISA, School of Informatics, University of Edinburgh, Edinburgh, Scotland, UK
e-mail: d.murray-rust@ed.ac.uk

D. Robertson
e-mail: dr@inf.ed.ac.uk

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_4

53

54 D. Murray-Rust and D. Robertson

1 Introduction

With the rise of the web, and social networking, there has been a shift from thinking
about systems which are programmed and then used to systems where users engage
with their computational environment and each other for a variety of purposes, from
frivolous banter on Twitter to crisis management in Ushahidi. In many cases, inter-
action in its many forms is now the central tenet of system design.

The term “social machines”, introduced by Berners-Lee [3, 9] describes a broad
class of systems “...in which the people do the creative work and the machine does
the administration”. Increasingly, the line between algorithms and human behaviour
is blurring, so that in order to understand and develop current and future systems, an
understanding of distributed complexity must be combined with insight into incen-
tives andmotivations—systems are no longer reducible to Turingmachines. Flagship
projects such as Wikipedia, Ushahidi and Zooniverse demonstrate the power of inte-
grating human andmachine intelligence to both create andmake sense of knowledge.

As a result of this change in thinking, and the growing complexity in intercon-
nectedness of systems, the practices used to develop architectures and infrastructures
must change. On the one hand, it is necessary to include a greater understanding of
the end user community and its behaviour throughout the development process. It
is increasingly difficult to write requirement specifications ahead of time, as they
must evolve in response to evolving user populations and cultures, and the scope has
to expand to include human behaviours and motivations as well as software func-
tionality. On the other hand, development is becoming more distributed, with larger,
more diffuse teams, increasingly dependent on computational coordination to glue
them together. Essentially, we need to use social machines to create future social
machines.

A wide spectrum of activities is carried out through integration of human and
machine intelligence, or “collective intelligence” (CI). Social machines occupy a part
of that space, where interaction and flexibility are key [27]. Another area in this space,
overlapping with social machines is crowdsourcing, where an evolving group of
participants is incentivised to carry out a common task. The utility of crowdsourcing
for simple tasks has been well demonstrated; additionally, the crowdsourcing of
complex, creative tasks has seen a dramatic growth in recent years. 99 designs is a
notable example, providing a platform for running design competitions.1 In a similar
vein, TopCoder2 decomposes “the entire digital lifecycle” into small, self-contained
tasks, and completes these by running competitions. In contrast, oDesk offers a more
traditional labour marked model, where jobs are posted, freelancers apply, and the
commissioner of the work selects someone to carry out the work.3

1http://99designs.co.uk/how-it-works.
2http://www.topcoder.com/whatiseoi/.
3https://www.odesk.com/info/howitworks/client/.

http://99designs.co.uk/how-it-works
http://www.topcoder.com/whatiseoi/
https://www.odesk.com/info/howitworks/client/

Bootstrapping the Next Generation of Social Machines 55

These software crowdsourcing systems are social machines for software
development—machine intelligence is used to coordinate human activity. However,
the emphasis is on human management to decompose and split up tasks, rather than
engagement with the end user community. Even systems designed to perform sim-
ple tasks rely on a community of people, as well as computational infrastructure to
tie them together. A key question hence becomes how to manage and influence the
community to achieve the desired results [11]. Essentially, one must think in terms
of programming social computers, and carry out tasks such as maintaining groups
and convincing people to take on roles as well as simply initiating computations
[25]; this prompts a move towards attempting to understand the science behind the
magic of crowd based systems [13] and how the communication between people is
as important as their individual or aggregate attributes [20]. To create a map of the CI
space, Malone et al. used analysis of over 250 CI systems to construct a CI genome,
defining the current solution space for the four major components of such systems:
“What is being done? Who is doing it? Why are they doing it? And, How?” [12].

In this chapter, we are concerned with techniques that can aid in the develop-
ment of the next generation of complex web based systems—social machines. This
means understanding (i) how the development social machines can be set up to create
software infrastructure and (ii) how the target social machines can be analysed and
monitored and brought into the development process.

2 Social Software Versus Machine Software

In the social machines discussed, part of the operation of the system is defined by the
affordances and pathways of the technical infrastructure—the machine software—
and part is defined by the social and cultural behaviour of the users—the social
software. To get a sense of the distinctions:

• When using a distributed version control system (DVCS), the machine software
provides a set of technical capabilities around creating newversions of source code,
annotating these with comments and structuring them using repositories, branches
and tags. It is up to any community to then formulate their social software to define
when things should be committed and pushed or pulled, which repository (if any)
is the master, who can commit, how pull-requests should be dealt with etc.

• Wikipedia provides quite basic machine software for collaboratively developing
articles. Editing and version histories are provided, as are some tools such as
locking pages from excessive editing. However, they have extensive—and well
documented—social software to decide which articles can be created, which edits
are appropriate, who can arbitrate on decisions etc.

• The Polymath blog collaboratively solves research level mathematical problems
[14]; the only machine software they use is a standard blogging platform which
supports Latex equations, and a wiki. The social software built on top of this is
generally around the process of carrying out the work, with some additional ideas
such as extracting finished outcomes from the blog comments to thewiki summary.

56 D. Murray-Rust and D. Robertson

From the point of view of a system designer, a natural question to ask is what
determines whether functionality should be carried out socially or mechanically.
Arguably, there is spectrum on which any operational feature can be placed, from
un-elucidated social norms, through general agreement to formal specification of
varying degrees and finally mechanical implementation. In general, following the
ideal in the vision of social machines given above, mechanisation of uninteresting
processes is desirable. Hence, we cast the question as “what prevents mechanisation
of processes encoded as social software”, and offer several reasons:

• There is no mechanical solution.Decidingwhether an edit onWikipedia represents
a neutral point of view computationally is currently not possible, even though it
has been strongly formalised in the community.4

• The desired functionality cannot be adequately formalised.
• The desired functionality is not known. Inmany crowdsourcing systems, the desired
macro-scale behaviour is well known, but the mechanisms by which to create it
are not known.

• There are many different use cases. In DVCS systems, there are many different
ways in which the end users need to use the software to fit in with their own
organisational structures (or lack of them). In this case, it is appropriate to provide
a generic set of functionality, and add structure through social software.

Inmany cases, there is a tensionbetween the overall purpose of the systemand con-
structing and maintaining the social fabric which allows it to function. For instance,
Wikipedia editors tend to be very strict when analysing changes made, and are quick
to revert unacceptable edits in the hope of maintaining high quality articles. How-
ever, this can also have the effect of disincentivising newcomers, and reducing the
available pool of editors [7]. Caring for the social fabric of a crowdsourcing platform
can be a complex process—Galaxy Zoo analyses the strength of at least 13 different
motivations for participation, across a diverse user population [21], while an even
larger set of motivations has been explored for the Zooniverse platform [22]. As
a result, the Zooniverse developers need to be able to experiment with both small
and large changes to the system; often, the changes which are most important to
maintaining the community are tangential to the main activity being carried out [1].

Taken together, these trends point to a world where software must increasingly
be developed with a fuzzy and changing user community; dynamic, unspecifiable
requirements towhich the outcome is highly sensitive; and by an anonymous group of
geographically diverse creators. We have a situation where pre-existing development
methodologies struggle, but we are dealing with developers and users who are used
to working with distributed, computationally mediated systems. Social machines
provide a useful abstraction here, to look at both the development and execution of
these systems.

4Wiki editors will use comments such as “violates WP:NPOV” to flag offending edits.

Bootstrapping the Next Generation of Social Machines 57

3 Social Machines for Social Software Development

We are concerned with using social machines to generate new social machines;
a development social machine is used to create the socio-technical infrastructure
of a target social machine. For example, a system like oDesk (the development
social machine) could be used to manage the development of a Zooniverse style
crowdsourcing system (the target social machine).

We will look at this in terms of constructing “social artifacts” to integrate with
communities of engaged participants. Artifacts have been used in the multi-agent
and computer supported collaborative work (CSCW) communities as a means of
enhancing the coordination of groups of agents, and providing automation which the
more goal directed actors in the system can leverage [19]. We use the term “social
artifacts” to differentiate those which are explicitly designed to be used by groups
of people, by providing the mechanical infrastructure of a social machine. There is
also strong overlap between our term social artifact and the electronic institutions
described in [5].

Figure1 gives a pictorial representation of a pair of social machines; the upper
“creation” social machine is used to construct and maintain the lower “target” social

Social
Software

Target Artefact

Analysis

P
ro

ve
na

nc
e

State

Protocols

Discover
Engage

Act

Social
Software

Discover
Engage

Act

Observe

Develop

Deploy

Development
Artefact

Analysis

P
ro

ve
na

nc
e

State

Protocols

Development Social Machine

Target Social Machine

Fig. 1 The development of social software can be seen as an interaction between two social
machines. The top artifact coordinates the development of software, providing tools for the organi-
sation of developers. The lower artifact is the software produced, which coordinates the activity of a
population of people around some common task. The coordinator can observe the state changes of
both of these, and make use of inference to understand the actions of both communities. The bottom
picture shows some pathways through this representation described in the following examples

58 D. Murray-Rust and D. Robertson

machine. Each machine is composed of a community of participants and a social
artifact, which carries out the mechanical side of the social machine. The artefact
takes over mechanical parts of tasks such as calculation, bookkeeping, message
passing, data analysis, digital asset management etc. allowing the humans to focus
on the creative side of their activities.

The community of people (on the left hand side of each machine) is defined at two
levels. Individuals have individual qualities—goals, skills, preferences etc. which are
heterogeneous across the population. The community as a whole has some level of
“social software”—the conventions and practices which the people engage in. This
social software may be explicit or implict; it may have different levels of uptake
among different groups; people may disagree on what exactly it should be; but in
most successful communities there are some norms and behaviours which emerge
and are important to the dynamics of that community.

In lieu of a formal specification, we will assume that artifacts are characterised by:

• Some internal state; this is likely to be a combination of desired output and book-
keeping. In a social network it would include a graph of people and their relations,
messages sent and received and user profiles. In a software development situation it
includes all of the source code produced, team assignments or other organisational
structure and any personal profiles. Generally, the state of any particular interaction
will be maintained by the artefact, removing overhead from the participants.

• Protocols to execute, which define the behaviour of the artefact. In a social net-
work, thesewould specifywhat happenswhen one user sends amessage to another,
or searches for “friends called Xwho live in Y”, or un-friends someone. In a devel-
opment environment, protocols would include best practices around committing
to source repositories and high level development workflows (e.g. waterfall model,
Agile development). Specifying protocols allows the system to know and explain:

– ways to initiate allowed operations,
– the effects of those operations,
– the actors involved in any given operation.

For social artefacts, we include two further desirable features. These are not hard
requirements, but part of making systems transparent and trusted by their human
participants:

• analysis, to aggregate and describe user behaviour and state changes in a way
which is useful both to machines and people. This helps the system to explain
itself to the participants, which can form part of an incentive mechanism, provide
feedback for more effective use and development, or simply be transparent about
what is happening at any given point in time.

• provenance—support for annotating the current state with where data came from,
how it has been used, and by whom. This is part of a system’s ability to explain
why the current state has been reached, and provides a foundation on which to
build accountability and trust within the system.

Bootstrapping the Next Generation of Social Machines 59

These qualities can be seen towards the right of Fig. 1: protocols (triggered through
some form of interaction)modify the internal state of the artifact. These state changes
are then analysed, and provenance is maintained at every step.

It is important in this discussion that the protocols embodied in artifacts are first
class objects. This means that the interactions carried out using the artifact can be
sufficiently formally described that they are separate from the code of the artifact
itself. The artifact provides an execution environment for an interaction protocol, by
providing an interpreter alongwith any necessary storage of state and communication
mechanisms. Making protocols first class objects give many advantages—see [16]
for an overview—but key here is that it allows many operations to be carried out
on them: they can be examined for a security analysis; modified based on a richer
interactionmodel; analysed as components of successful socialmachines; discovered
by and shared with other systemswhich would like to re-use successful protocols and
so on. Extracting out interactions supports artefacts in being self modifying—since
interaction protocols are first class objects, the artefact can contain protocols for
modifying it’s own protocols—a vital ability for systems in a dynamic and changing
environment.

In order for humans to interact with these artifacts, to make a coupling between
the user community and the social artifact, some steps are necessary:

• A user must discover an appropriate artifact to interact with, according to the
user’s desires. For developers, this might be selection of TopCoder or oDesk as
a means to acquire currency; for the general public, this might be selection of
Galaxy Zoo as a place to contribute to scientific knowledge.

• The user must then engage with the artifact, through understanding enough of its
functionality to be able to select and commit to a role in of the protocols. This
might be signing up as a freelancer on oDesk, or getting an account on Zooniverse.

• The user can then act, mediated through the artifact, by enacting the chosen role,
possibly in concert with other users. This could be bidding for, winning and then
completing an oDesk task, or classifying a stream of photographs on Galaxy Zoo.

There are, of course, shortcuts to this: once an artifact has been discovered, actors
can re-engage without having to rediscover it; similarly, many actions might be
carried out when performing a single role (or repeating a role indefinitely). However,
all of these steps are necessary for interactingwith any new social artifact. These steps
are shown in the centre of Fig. 1, as the coupling mechanism between the community
of participants on the left and the social artifacts on the right.

In this chapter, we use the Lightweight Coordination Calculus (LCC) [23, 24]
to describe the protocols contained in these social artifacts. LCC has been used for
general coordination, as well as to synthesise argumentation protocols [15], carry
out knowledge sharing in peer-to-peer architectures [28] and to add computational
support to interactions on Twitter [17].

LCC was designed to capture the idea of an institution: to allow the specification
of interactions separately from the agents involved in them. It attempts to avoid

60 D. Murray-Rust and D. Robertson

over-specification in terms of either ontologies or performatives, to provide just
enough coordination for agents to collaborate effectively. As well as being relatively
concise, as a declarative specification, LCC has the useful property of being both
normative and executable—aswell as describingwhat should happen, with a suitable
interpreter it can be run directly.

The main concepts defined within LCC are:

• The roles that actors take, along with any necessary parameters
• Messages sent from one actor to another, specified as both content and the role of
the sender/receiver

• Sequencing and choice between blocks of actions
• The flow of variables through interactions
• Other useful computational elements such as mathematics, filtering, solving for
variables (which can include general code execution), building and unpacking lists
etc.

However, the particular language used is not important, and other similar lan-
guages exist, e.g. [26], and translations have been made from LCC into BPEL4WS
and the ISLANDER electronic institution specification system [24].

Figure2 gives a quick sketch of how these ideas are represented syntactically in
LCC.

We will use these formulations to explore the question of how a social, artifact-
centric view of software development can lead to a more dynamic development
process, including transitions from social to machine software.

Fig. 2 Annotated example fragment of LCC. This is from a distributed hypothesis testing protocol,
where one agent wants to get the opinion of many of it’s friends about a hypothesis. This fragment
denotes the behaviour required of an agent to be a test subject. An agent A can be a subject if it
waits for a message from a tester (T) with a hypothesis Hyp in. The tester should then see if the
hypothesis holds true for it—i.e. attempt to satisfy it. If it does, it should send a message saying
yes to the tester, if not, one saying no. After the message has been sent, it should then take on the
role of being a subject again, ready for the next hypothesis

Bootstrapping the Next Generation of Social Machines 61

4 Illustrative Scenarios

Herewe describe two existing collective intelligence platforms, and provide example
scenarios showing how an artifact centric view of their development would work,
and what benefits it would bring. These are hypothetical descriptions rather than
implemented systems—thought experiments to illustrate how a system along the
lines suggested here could be used.

4.1 Learning Development Practices

The Collabode editor supports real-time collaborative software development [6],
allowing multiple users to work on the same collection of files (project) simulta-
neously. The biggest gains were seen in “microtasking”, where one main user was
responsible for structuring the code at a high level, and then parcelling out devel-
opment and testing of individual methods or components. The Collabode authors
suggest that it was not possible to design how this microtasking should be organised
ahead of time; looking at the synchronisation between a task organiser and a test
developer, they say:

Between these two extremes, we are continuing to prototype new synchronization strategies.
The key idea is to use signals for broken code compilation errors, failing test cases to
determine whether a given contributor’s changes are ready for sharing or not, and if so, to
share them automatically.

A typical test development procedure might run as follows:

1. Adam asks Bob to write some tests for a module
2. Bob writes a test for the first method
3. Bob runs the test and it passes
4. At this point, the tests all pass, but the code coverage of public API methods is

minimal
5. Bob then creates tests for the rest of the methods
6. Bob finds that several of the tests fail (but now top level coverage is 100%)
7. Bob messages Adam to say he’s completed the tests, and several of them fail
8. At this point, Adam merges in Bob’s changes, to be able to modify the main code

to pass the tests

Typically, this would be carried out some kind social software—agreements and
coordination betweenAdam andBob. However, as projects become large and distrib-
uted, this kind of social software becomes harder to maintain. In a fully distributed,
crowdsourcing system, developersmaywell not knoweach other, common languages
(both computational and natural) are not a given, and generally, increasing amounts
of coordination need to be carried out mechanically.

62 D. Murray-Rust and D. Robertson

Fig. 3 Observed sequence of development actions (top) and potential LSC program to be inferred.
The collaborators start as a general worker and a coordinator of tasks for a particular software
module M (Init). A decides to ask B to write some tests (0), and sends a message through the
coordination software to that effect (1). B accedes (2), and goes round a cycle of creating code
locally (3′), then checking it in and running it. When there are no more methods left to test, B sends
A a message to this effect (11) who then merges in the changes (12). Events and processes marked
in blue are not formally defined, while, those in orange represent changes of state for the social
artifact. At point (X), since no value can be found to satisfy not(tested(M,Method)), there are no
untested methods left, so the role is exited by the null instruction, and B returns to being a general
worker

An alternative approach is to define this as a formal workflow; The bottom part
of Fig. 3 gives a possible representation of this interaction using the LCC language.
Three roles are specified:

• a coordinator (coord) responsible for code within a particular module (M);
• a general worker who can be assigned to different tasks;
• a worker who is specifically working on creating tests for module M;

Bootstrapping the Next Generation of Social Machines 63

Within this formulation, three broad classes of action can be seen:

• actor/actor communication, where the two developers message each other to coor-
dinate actions and exchange information or requests;

• state modification, where an actor triggers changes in the state of the development
artifact, for example committing code;

• external input or computation; here agent A must decide which of the workers to
put to work on module M; agent B needs to actually create the test code before
submitting it.

This immediately brings up two intertwined questions: is it the onlyway to request
tests? and where might this formalisation come from?

Firstly, it is clearly not the only way that this kind of work could be parcelled out:
Bob might refuse to create the tests; Bob might only be able to write some of the
tests, at which point Chloe would have to take over; Adam might merge in Bob’s
code before all of the tests were written; Eva might be working on the module at the
same time, so in between Bob running out of methods to test andAdam carrying out a
merge, a collection of new methods are added. This is a case where, especially in the
case of developing a new kind of collaboration environment, the range of desirable
possibilities is unlikely to be clear ahead of time.

Secondly, while the protocol could be hand coded, the system would be far more
flexible if the protocols could be inferred, by analysing natural human interaction
and generalising this to create an abstracted formal representation. To give an indi-
cation of plausibility, the top part of Fig. 3 shows the observable interactions and
state changes triggered by the two developers separated from their internal state and
ex-system activities. The things that need to be inferred are:

• The interaction is bounded by two messages and a trailing commit—and here, the
closing commit might or might not be part of the interaction; also, it would be
possible to ask the developers to indicate when interactions begin and end. This
leads to the main coord and worker roles, as well as the two messages that
bind the coordination together.

• There is a variable M representing the module to be examined—it is present in the
initial message, and all of B’s actions relate to code in this module. This gives us
the unbound Ms that are threaded through the code.

• That B takes on a repetitive role related to writing code, committing it and running
tests—this would be built up over multiple interactions, and a real specification
would allow for more variation here. This leads to defining the worker(M) role,
for working on a particular module. The detail of the internal state representation
would affect the scope of possible inference here: could the system somehow
divine that B was creating tests for untested methods one by one, and create the
not(tested(M,Method)) clause, or just that B was writing some code and
checking it in?

• B stops and sends a message once complete API coverage is achieved—in a soft-
ware development environment, that is likely to be a key, visible metric, which

64 D. Murray-Rust and D. Robertson

would naturally be foregrounded in any inference routine. Depending on the infer-
ence, this might be a not(tested(M,Method)) clause failing to satisfy as
above, or it could be coverage(M) < 1.0 or similar.

• At the start of the interaction, A selected B to create the tests. It may be impossible
to infer how this selection came to be. However, it is clear that some selection
needed to be done, since another person was contacted, and that since the vari-
able M is involved, that should be part of the selection, leading to the signature
select(M,Tester).5

Given all the components in this list, it is not much of a leap to the formal specifi-
cation at the bottom of Fig. 3—indeed all the components except the initial roles and
the selection procedure have been covered. So now the selection procedure is left
as the part where human input is required—when initiating this protocol, A would
be asked, somehow “Choose a worker you would like to create tests for you”. The
computational infrastructure would then take care of all of the bookkeeping, up until
it could say “Right, all the methods are complete, why don’t you merge in the tests.”

This is a purposefully simple example, which is necessary to explain in detail
how all of the linkages would be constructed. Also, we have focussed on arguing
that the inference is completely automatable. In a real world, we would hope that
more complex tasks could be automated, and that ways to manage tasks could be
created, leading to high level workflows like Agile processes or even traditional
software development practises, depending on the community and their needs. At
the same time, we would expect a greater degree of human-computer interaction, in
deciding what should be extracted, refining example workflows and so on.

4.2 Mechanisms for Carrying Out Crowdwork

The Zooniverse project6 is designed to build on the success of Galaxy Zoo7 in
convincing humans to carry out microtasks for the advancement of science. Where
galaxy zoo focussed on a single application area (detection of galaxies), the Zooni-
verse commoditises this approach, and allows for the creation of many domain spe-
cific experiments. Part of the goal of Zooniverse is to understand the dynamics of
crowdsourcing communities, so they need to be able to experiment with different
approaches to initiating, building and maintaining communities.

Snapshot Serengeti8 is a typical Zooniverse project, where users are asked to look
at automatically captured photographs of the savannah and identify the number and
species of animals along with their activity. Once introductory training has been

5LCC is Prolog inspired; in imperative programming terms, the signature would be more akin to
Tester = select(M).
6http://www.zooniverse.org/.
7http://www.galaxyzoo.org/.
8http://www.snapshotserengeti.org.

http://www.zooniverse.org/
http://www.galaxyzoo.org/
http://www.snapshotserengeti.org

Bootstrapping the Next Generation of Social Machines 65

completed, users carry out the microtasks of classifying images according to the
number and activity of animals in them.

On the surface, this is a simple setup: after going through the introduction process,
each user repeatedly carries out tasks. However, this is where programming the social
software becomes deeply important—creating the community and incentives which
draw people back to a highly repetitive task. Taking an artifactual view, each atomic
task is represented by a protocol describing inputs and outputs; these atomic tasks
are then sequenced together into larger units that describe the movement through
the universe of possible activities. The manner in which these protocols are arranged
can have a huge influence on the people using the system: do they provide incentives
to carry out work? of what kind? is the system gamified and reputation based? is
there variation in the tasks to be done? is communication encouraged? and how? are
newcomers gently guided in? is there a transition arc from newbie to old hand?

Figure4 illustrates how these tasks might be sequenced if we were to implement it
using social artifacts. We start the Discover-Act-Engage cycle here by assuming that
users have already found the website, so the first task is engagement, where users

Introduction

Discuss

TaskTaskTaskTask

Repeat

Engagement Acting Discovery

Protocols

State

Inference

User Data
* Num photos
* Attrition rate
* Visit length
* Talk/discussion
* Agreement

User Data
* Attrition rate

Zooniverse

and History
* Related
projects

Zooniverse
Site

User Data
* Step X puts users off

User Data
* Ordering,
variety etc.
important
* Feedback
important
* Typologising
* Activity X is
hard

Zooniverse
* Factors for long
term commitment
* Initial growth
vs. community
maintennance
* Effects of
media

Fig. 4 Overview of the operation of Snapshot Serengeti, along with hypothesised states and infer-
ences which could be recorded. When a new user joins the site, they first carry out a series of
introductory tasks to familiarise themselves with the user interface and the domain of classification.
They then start identifying animals, with a constant option to look at the discussion page for each
photograph. There is also always the possibility to join general discussion groups, and explore the
wider Zooniverse community

66 D. Murray-Rust and D. Robertson

are gently led into the system via an interactive tutorial. Next, they progress onto
actually carrying out the task at hand, and act by tagging photos; while doing this,
they have the opportunity to break out into discussion of a particular photo. When
they have had enough tagging, they might explore the discussion section of the site,
or the wider Zooniverse, leading them to discover more machines and communities
to engage with.

As well as the protocols which are enacted, the social artefact keeps track of state.
In addition to the direct outcomes (i.e. tagged photos), socialmachines of this type are
beginning to be instrumented, to allow for analysis of their users: how long do they
carry out tasks for? Are there particular points where they drop out of the system?
The logical next step from observing user behaviour is to influence it and evaluate the
changes; and this is a particular point where computational infrastructure can have
a huge impact. Many large companies, notably Google are basing development on
computationally mediated large scale experiments such as A/B testing, where users
are randomly selected to receive control or test versions of a page. In order to carry
out well grounded experiments, it becomes necessary to have formalised protocols to
manage the deployment of nested test conditions across a changing population [29].

The bottom of Fig. 5 shows how this kind of workflow could be built based on
a social machine style analysis of the combined development and target systems.
User behaviour on the existing site is tracked and analysed, and the target system
can then carry out some inference to determine e.g. where most people are lost on
signup? what are the most problematic tasks? are there discrete user groups with
different requirements? The results of this inference are then visible to the human
developers and the automatic systems which form part of their development environ-
ment. Working with the protocols and computational intelligence embedded in their
development artifact, the developers can then identify the most important points to
address, and devise a computational experiment to test it. The code modifications are
then made—as state changes to the development environment—and then deployed
according to the computational experiment which has been designed. The experi-
mental protocol then observes the effects on the community, and feeds that back into
the development process.

This is just one pathway through the coupled social machines. Other pathways
could include user consultation, or be developer led, or be purely automated. The
example presented is a single illustration of the kinds of development process which
can be represented and modelled by taking a coupled social machines approach.

5 Discussion

Throughout this chapter, we have suggested that enabling transitions between social
andmachine software is a desirable course of action. Social software can arise dynam-
ically and change in response to the evolution of the community; what then is the
benefit of formalising this? We suggest several advantages:

Bootstrapping the Next Generation of Social Machines 67

Social
Software

Target Artefact

Analysis

P
ro

ve
na

nc
e

State

Protocols

Discover
Engage

Act

Social
Software

Discover
Engage

Act

Develop

Deploy

Development
Artefact

Analysis

P
ro

ve
na

nc
e

State

Protocols

Discover

Target Artefact

Analysis

P
ro

ve
na

nc
e

State

Protocols

Engage

Act

Social
Software

Discover
Engage

Act

Observe

Develop

Deploy

Development
Artefact

Analysis

P
ro

ve
na

nc
e

State

Protocols

1

2

3

4

5

6

7

8

1 The community uses the site

2 And changes the internal state

3 Inference is performed to understand
the changes

4 Human machine collaboration to
design new version and test protocol

5 Which results in a new version of the
target artefact

6 Artefact deployed according to test
protocol

7 Changing the protocols on the site

8 Comparison of the new community
behaviour, the cycle contintues

Initial setup

1
2

3

1 State changes are observed

2 Creation artefact infers patterns of
behaviour

3 Protocols are created based on
observed beahviour

Initial setup - developers are using
the system

(a)

(b)

Inference of development practices

Experiment-led development

4

4 developer community
...possibly in concert with the

Fig. 5 Two possible paths through connected social machines for dynamic development. a When
learning development practices, existing development is observed, and the behavioural patterns
behind it are inferred. This inference is then converted into a formal protocol which can be
re-used and shared as desired. b For Zooniverse style systems: Based on user behaviour, patterns of
behaviour can be inferred, which are analysed by both human developers and the machine protocols
which they are using. This results in a testing plan that allows for instrumented deployment of the
revised social protocols to analyse the effects of the modifications

• Re-use: by codifying behaviours deemed useful, they can be shared with others.
This avoids multiple groups having to recreate the same ideas, and gives com-
munities who just want to get things done a toolkit of tested techniques to work
with. This is similar to the way that knowledge sharing protocols were shared in
the OpenKnowledge project [28]. If a particular technique for committing source
code, or losing less users in introductory stages, or integrating the results of com-
putational analysis is extracted, it can then be shared with others facing similar
issues; in the case of Zooniverse, future site developers would have a library of
design patterns to draw on.

• Evaluation: if social workflows can be formalised, it becomes possible to track
when they occur, who is part of them, what the outcomes are and so on. This

68 D. Murray-Rust and D. Robertson

supports a quantitative analysis of what works for particular communities. If this
analysis is done over well defined, widely used protocols, then the results will
have greater impact. When provenance information is included, questions can be
asked post-hoc about which communities they worked for, what kinds of people
use particular techniques, or avoid certain ways of working.

• Objectivity and explanation: providing a canonicalmodel of behaviour provides an
object for examination—does the community agree on the process?Does everyone
consider it fair? If the model can be shown to new users, it may shorten their
learning curve when attempting to synchronise with an established community
with complex rules, and hence lower the barrier to entry.

• Automation and guidance: defining complex procedures formally allows for the
mechanical parts to be carried out automatically—getting the machines to do
the bookkeeping. At the same time, having a representation of the state of any
given process, and the possible next moves, allows for machine support of human
decision making, offering up possible courses of action which would advance the
interaction.

A central idea here is that natural human behaviour can be codified into formally
executable specifications. In this case, it makes sense to start with social software—
one can provide open ended tools, and allow users to explore what they would like to
dowith them. This bears a similarity to end user programming [10]: an open system is
created, which the developers can configure as they see fit. A closer relationship is to
the desire lines used by designers to understand howpeoplewant their creations to be.
In “The Oregon Experiment” [2], Alexander grapples with an analogous problem
to that of creating computational architecture for communities—that of creating
physical architecture for communities. In particular, he states that while a masterplan
can create a totality, it cannot create a whole [2, pp. 10]—that imposing a complete
order on human activities leads to chaos. His answer is to invoke organic growth; for
example, to leave empty, open spaces and observe the routes that people take through
them, before codifying these “pathways of desire” into paved paths. This principle
has been applied to computer human interaction many times—see [18] for some
examples; the author examines desire lines in everyday life, and relates them to the
operation of computer software. Of particular interest is the idea that it is the traces
of behaviour which constitute the desire line: the physical manifestation in trampled
grass, mis-filled forms or smashed cars. Part of the artifactual view of computing is
the capability and necessity of maintaining history, of instrumenting interaction so
that exactly these traces can be recorded, analysed and generalised. However, given
the size, complexity, detail and technicality of traces in social computational systems,
few humans are able to recognise and react to the desire lines encoded therein; it is
hence essential to bring computationalmachinery to bear on the problemof extracting
useful patterns from human behaviour.

Another viewpoint in this area is Harel’s concept of play-in [8]; here, initially
dumb interfaces are programmed by enacting short scenes, and then explaining to
the device what should have happened:

Bootstrapping the Next Generation of Social Machines 69

Hey phone, whenever I press this key and hold it down for at least a half-second, you should
switch on—meaning that your display should light up and show the cellular provider, my
name, and the time.

From multiple interactions such as this, the complete behaviour of the system can
be defined, in Harel’s case by creating a sequence chart [4]. Unfortunately this style
of programming has not become widespread, possibly due to the large number of
examples necessary to build up complete patterns of behaviour.

The immediate question is then what differentiates our social machine, artifact
oriented view of software development from Harel’s play-in such that we feel confi-
dent arguing its practicality? And more generally, why do we feel that the problem
of inferring useful, desired patterns of behaviour is soluble in this area.

Firstly, what does it mean for an inferred pattern to be useful? This can take
many forms: noticing a common pattern in messages and commits could allow a
particular coordination workflow to be generalised, which allows for automation and
sharing; noticing a common pattern of social interaction could lead to developing
mechanisms that support and encourage it, or, if it is deemed to have a negative effect,
mechanisms that suppress or warn about it. In many of these cases, patterns need not
be exact so long as working with them improves the system: perhaps the workflow
for committing was not optimal, or exactly what was in the developer’s minds, but
it can still be useful, so long as it can be understood and it aids coordination or one
of the other benefits listed above.

Secondly, we are not starting with a blank slate—we start with a system which
already does something, and we look for incremental improvements. This makes the
inference task much easier—people already have the tools to create the behaviour
they desire, so they do not have to explain it to the system; rather, it is up to the system
to attempt to improve their experience, whether it is streamlining their development
experience, or incentivising them to continue working for Zooniverse.

Next, since we are working with live systems, changes happen in realtime and
their effects can be monitored; just as Google’s rigorous A/B testing drives their
interface design, we can analyse our emerging protocols and ask if their presence is
helpful or detrimental? Are there similar protocols elsewhere which we could draw
on? Does this modification help or hinder? Does adding in gamification draw people
in or drive them away? And which people? There is also no requirement that any
analysis and extraction needs to be entirely automagical—these are fundamentally
social machines, so it makes perfect sense to involve the user community in what
happens: they can vote on alternative proposals, suggest modifications or co-create
their own protocols with machine support.

Finally, the nature of the communities makes a difference. In our examples here,
we have two interconnected social machines. The human population of one machine
is constituted by developers, who are technically skilled and motivated to spend
time working with the infrastructure. They are hence in a position to understand its
workings and be able to aid in the artifact modification process. The other machine
has a more general population, but typically much larger. This gives a far bigger
pool of behaviour from which to draw potential interaction patterns, and a lot of test
subject for assessing their effectiveness.

70 D. Murray-Rust and D. Robertson

6 Conclusion

In this chapter, we have set out a viewpoint, a vision for a particular way of concep-
tualising the creation of software artifacts, where coupled social machines provide
points of coordination for diverse communities of developers and participants, and
use computational intelligence to refine natural human behaviour into repeatable,
shareable, automatable, analysable protocols. This model will not apply to all soft-
ware development; it is an attempt to capture some of the trends which are setting the
direction of future software development. In particular, we argue that when creating
large scale social machines, where diverse communities of users are electronically
connected and supported to form social machines, it is necessary to have the kind of
computational support that we outline here.

Acknowledgments This work is supported under SOCIAM: The Theory and Practice of Social
Machines, a programme funded by the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC) under grant number EP/J017728/1, and a collaboration between the Universities of
Edinburgh, Oxford, and Southampton.

References

1. http://blog.galaxyzoo.org/2013/05/28/updates-to-talk/
2. Alexander, C.: The Oregon Experiment. Oxford University Press, Oxford (1975)
3. Berners-Lee, T., Fischetti, M., By-Dertouzos, M.F.: Weaving the Web: the original design and

ultimate destiny of the World Wide Web by its inventor. http://dl.acm.org/citation.cfm?id=
556560 (2000)

4. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Fom. Method. Syst.
Des. 19(1), 45–80 (2001)

5. D’Inverno,M., Luck,M.,Noriega, P., Rodriguez-Aguilar, J.A., Sierra,C.: Communicating open
systems. Artif. Intell. 186 38–94 (2012). doi:10.1016/j.artint.2012.03.004. http://linkinghub.
elsevier.com/retrieve/pii/S0004370212000252

6. Goldman, M., Little, G., Miller, R.: Collabode: collaborative coding in the browser.
In: CHASE11, Waikiki, Honolulu, pp. 65–68 (2011)

7. Halfaker, A., Kittur, A., Riedl, J.: Don’t bite the newbies (2011). doi:10.1145/2038558.
2038585. http://dl.acm.org/citation.cfm?id=2038558.2038585

8. Harel, D.: Can programming be liberated, period? Computer 41(1), 28–37 (2008).
doi:10.1109/MC.2008.10. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=44455
99. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4445599

9. Hendler, J., Berners-Lee, T.: From the semantic web to social machines: a research challenge
for AI on the World Wide Web. Artif. Intell. (2010). http://www.sciencedirect.com/science/
article/pii/S0004370209001404

10. Ko, A.J., Myers, B., Rosson, M.B., Rothermel, G., Shaw, M., Wiedenbeck, S., Abraham, R.,
Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J., Lieberman, H.:
The state of the art in end-user software engineering. ACM Comput. Sur. 43(3), 1–44 (2011).
doi:10.1145/1922649.1922658. http://portal.acm.org/citation.cfm?doid=1922649.1922658

11. Lepri, B., Salah, A., Pianesi, F., Pentland, A.: Human behavior understanding for inducing
behavioral change: social and theoretical aspects. Communications in computer and infor-
mation science, Constr. Ambient Intell. 252–263. (2012). http://link.springer.com/chapter/10.
1007/978-3-642-31479-7_44

http://blog.galaxyzoo.org/2013/05/28/updates-to-talk/
http://dl.acm.org/citation.cfm?id=556560
http://dl.acm.org/citation.cfm?id=556560
http://dx.doi.org/10.1016/j.artint.2012.03.004
http://linkinghub.elsevier.com/retrieve/pii/S0004370212000252
http://linkinghub.elsevier.com/retrieve/pii/S0004370212000252
http://dx.doi.org/10.1145/2038558.2038585
http://dx.doi.org/10.1145/2038558.2038585
http://dl.acm.org/citation.cfm?id=2038558.2038585
http://dx.doi.org/10.1109/MC.2008.10
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4445599
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4445599
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4445599
http://www.sciencedirect.com/science/article/pii/S0004370209001404
http://www.sciencedirect.com/science/article/pii/S0004370209001404
http://dx.doi.org/10.1145/1922649.1922658
http://portal.acm.org/citation.cfm?doid=1922649.1922658
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-31479-7_44
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-31479-7_44

Bootstrapping the Next Generation of Social Machines 71

12. Malone, T.W., Laubacher, R., Dellarocas, C.: Harnessing Crowds: Mapping the Genome of
Collective Intelligence, MIT Sloan (2009)

13. Malone, T.W., Laubacher, R., Dellarocas, C.: The Collective Intelligence Genome.
In: MIT Sloan Manage. Rev. 51(3), 21–31 (2010)

14. Martin, U., Pease, A.: Mathematical practice, crowdsourcing, and social machines.
In: Carette, J., Aspinall, D., Sojka, P., Lange, C., Windsteiger, W. (eds.) Intelligent Com-
puter Mathematics: MKM, Calculemus, DML, and Systems and Projects 2013, pp. 98–119.
Springer (2013). http://arxiv.org/abs/1305.0900

15. McGinnis, J., Robertson, D., Walton, C.: Protocol synthesis with dialogue structure theory.
In: Simon Parsons, Nicolas Maudet, Pavlos Moraitis, Iyad Rahwan (eds.) Argumentation
in Multi-Agent Systems, pp. 199–216. Springer (2006). http://link.springer.com/chapter/10.
1007/11794578_13

16. Miller, T., McGinnis, J.: Amongst first-class protocols. In: Alexander Artikis, Gregory M. P.
O’Hare, Kostas Stathis, George Vouros (eds.) Engineering Societies in the Agents World VIII,
pp. 208–223 (2008). http://link.springer.com/chapter/10.1007/978-3-540-87654-0_11

17. Murray-Rust, D., Robertson, D.: LSCitter: building social machines by augmenting existing
social networks with interaction models. In: SOCM at WWW, Seoul (2014)

18. Myhill, C.: Commercial success by looking for desire lines. Computer Human
Interaction, pp. 293–304. Springer, Berlin (2004)

19. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems.
Auton. Agents Multi-Agent Syst. (2008). http://link.springer.com/article/10.1007/s10458-
008-9053-x

20. Pentland, A.: The new science of building great teams. Harvard Bus. Rev. 90(4), 60–69 (2012).
http://www.citeulike.org/group/15592/article/10606943

21. Raddick, M.J., Bracey, G., Gay, P.L., Lintott, C.J., Cardamone, C., Murray, P., Schawinski,
K., Szalay, A.S., Vandenberg, J.: Galaxy Zoo: Motivations of Citizen Scientists. Astron. Educ.
Rev. 12(1) 010–106. American Astronomical Society (2013)

22. Reed, J., Raddick, M.J., Lardner, A., Carney, K.: An exploratory factor analysis of motivations
for participating in zooniverse, a collection of virtual citizen science projects. In: 2013 46th
Hawaii International Conference on System Sciences, pp. 610–619. IEEE (2013). doi:10.1109/
HICSS.2013.85. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6479908

23. Robertson, D.: A lightweight coordination calculus for agent systems. Declarative Agent Lan-
guages and Technologies II, pp. 183–197. Springer, Berlin (2005). doi:10.1007/11493402_
11

24. Robertson, D.: Lightweight coordination calculus for agent systems: retrospective and prospec-
tive. Declarative Agent Languages and Technologies 2011, LNAI 7169, pp. 84–89. Springer,
Berlin (2012). http://www.springerlink.com/index/R563456340176230.pdf

25. Robertson, D., Giunchiglia, F.: Programming the social computer. Philos. Trans. R. Soc. Ser.
A. Phy. Sci. Eng. 371(1987) (2013). http://rsta.royalsocietypublishing.org/content/371/1987/
20120379.short

26. Schall, D., Satzger, B., Psaier, H.: Crowdsourcing tasks to social networks in BPEL4People.
World Wide Web (2012). doi:10.1007/s11280-012-0180-6. http://link.springer.com/10.1007/
s11280-012-0180-6

27. Shadbolt, N., Smith, D., Simperl, E., VanKleek,M., Yang, Y., Hall,W.: Towards a classification
framework for social machines. In: SOCM2013: The Theory and Practice of Social Machines.
Rio de Janeiro, Brazil (2013)

28. Siebes, R., Dupplaw, D., Kotoulas, S., Pinninck, A.P.D., Harmelen, F.V., Robertson, D.: The
openknowledge system : an interaction-centered approach to knowledge sharing. On the Move
to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, pp. 381–390.
Springer, Berlin (2007)

29. Tang, D., Agarwal, A., O’Brien, D., Meyer, M.: Overlapping experiment infrastructure: more,
better, faster experimentation. In: Proceedings of the 16thACMSIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 17–26 (2010). http://dl.acm.org/citation.
cfm?id=1835810

http://arxiv.org/abs/http://arxiv.org/abs/1305.0900
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/11794578_13
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/11794578_13
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-540-87654-0_11
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10458-008-9053-x
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10458-008-9053-x
http://www.citeulike.org/group/15592/article/10606943
http://dx.doi.org/10.1109/HICSS.2013.85
http://dx.doi.org/10.1109/HICSS.2013.85
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6479908
http://dx.doi.org/10.1007/11493402_11
http://dx.doi.org/10.1007/11493402_11
http://www.springerlink.com/index/R563456340176230.pdf
http://rsta.royalsocietypublishing.org/content/371/1987/20120379.short
http://rsta.royalsocietypublishing.org/content/371/1987/20120379.short
http://dx.doi.org/10.1007/s11280-012-0180-6
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11280-012-0180-6
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11280-012-0180-6
http://dl.acm.org/citation.cfm?id=1835810
http://dl.acm.org/citation.cfm?id=1835810

Multi-Agent System Approach for Modeling
and Supporting Software Crowdsourcing

Xinjun Mao, Fu Hou and Wei Wu

Abstract The advent and successful practices of software crowdsourcing needs to
investigate its in-depth essence and seek effective technologies to support its activ-
ities and satisfy increasing requirements. We highlight crowdsourcing participants
consist of amulti-agent systemand software crowdsourcing is amulti-agent problem-
solving process. This paper discusses the characteristics and challenges of software
crowdsourcing in contrast to traditional software development, and present a general
analysis framework based on multi-agent system to examine the organization and
behaviours of software crowdsourcing. Several software crowdsourcing models per-
formed on typical platforms likeTopcode, uTest are established and their organization
and coordination are discussed. We have developed a service-based multi-agent sys-
tem platform called AutoService that provides some fundamental capabilities like
autonomy, monitoring, flexible interaction and organization, and can serve as an
infrastructure to support software crowdsourcing models and tackle its challenges.
A software crowdsourcing prototype is developed and some scenarios are exempli-
fied to illustrate our approach.

1 Introduction

In the past almost 50 years software engineering has obtained enormous and
continuous advances to solve software crisis, which can be divided into multiple
phases [1]. In each phase, the progresses of software engineering result from some

X. Mao (B)

Department of Computer Science and Technology, College of Computer Science,
National University of Defense Technology, Changsha, Hunan, China
e-mail: mao.xinjun@gmail.com; xjmao@nudt.edu.cn

F. Hou ·W. Wu
College of Computer Science, National University of Defense Technology,
Changsha, Hunan, China
e-mail: fu.houmail@gmail.com

W. Wu
e-mail: wuei08@gmail.com

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_5

73

74 X. Mao et al.

major sources of changes and concerns. We can also witness that a large number of
software systems have been successfully developed. However, software crisis still
exists with software taking longer and costing more to develop, and not working very
well when eventually delivered. The speed of software development can not keep
up with the increase of software systems that are expected by increasing potential
stakeholders. Moreover, the advances in hardware device and Internet technology
along with the vast amounts of potentially available data make software crisis much
worse [2].

In the literature of software engineering, researchers and practitioners in both
academic and industry take great efforts to seek effective approaches to tackling
software crisis. Various software development models, methodologies, languages
and platforms have been proposed like OOSE, agile methodology, service-oriented
approach, etc. Someof themaremutually contradictory such as heavyweightmethod-
ologies (likewaterfall developmentmodel) and lightweightmethodologies (like agile
methodology), which represents some changes of the thinking on the essences of
software development issues and solutions.

Traditionally software projects are developed under specific organizations (e.g., IT
Company). They are organized as structured teams, eachmember ofwhich is assigned
definite roles and development tasks. Developers are stable and pre-arranged, and
they normally cooperate with each other by direct interactions like weekly meetings
or face-to-face discussions to complete software development activities.

Recently, software crowdsourcing is emerging as a new software development
method and has attracted great attention from both practitioners in industry and
researchers in academic [3, 9, 10]. In such method, requestors of software devel-
opment can publish its development requirements in the Internet. Individuals that
intend to devote to the software development can submit their proposals. Requestors
then decide who and which proposals are accepted according to their provided solu-
tion, their experiences and past achievements, etc. The individuals that participate
in the software development are called as crowdsourcers. They can collaborate with
each other based on web 2.0 tools like Blog, Twitter, etc., and submit the resulting
artefacts like program, documents, or test cases. Requestors evaluate crowdsourcers
artifacts and pay their rewards. It is regarded as a novel business models that have
been successfully applied in Apple Store [4].

In contrastwith traditional developmentmethod, software crowdsourcing attempts
to utilize massive talents in the Internet and therefore decrease development costs,
seek potentially considerable spectrum of returned solutions and adopt competition
within the crowd to improve software quality [5, 19]. It is based on the Internet and
the emergingWeb 2.0 technologies to facilitate the connectivity and collaboration of
networked people crowdsourcers distributed in different sites. The power of software
crowdsourcing is that it can aggregate and utilize thousands of human beings and
their talents (e.g., application knowledge, program expertise) into software devel-
opment process, and therefore can solve the software development problems that
traditional software engineering is otherwise difficult or unsolvable (e.g., to find var-
ious developers and complete software development in a relative short period) [9].

Multi-Agent System Approach for Modeling and Supporting Software Crowdsourcing 75

Although it is still in an early stage, software crowdsourcing have gain successes
in several domains (e.g., mobile applications) andmany companies realized its poten-
tial business value and launched campaigns [12]. Apple Company established App
Store in 2008 that attracted millions of crowdsourcers. More than 775,000 apps have
been made available by crowdsourcing approach [4]. Several software crowdsourc-
ing platforms like Topcoder, uTest, etc., have been developed to aggregate millions of
skilled software engineers (e.g., programmers in C++ or Java, or software testers)
to support various crowdsourcing purposes (e.g., applications, algorithms, perfor-
mances and datasets [8]) and corresponding development activities [6, 7, 11, 13, 14,
18]. Moreover, various software crowdsourcing methods have been proposed and
practiced to satisfy different requirements and problem-solving ways [15–17].

Against the background, it is necessary to investigate the in-depth essence and
challenges of software crowdsourcing and seek effective technologies to support its
activities and satisfy increasing requirements. The remaining sections are organized
as follows. Section2 discusses the characteristics and potential challenges of software
crowdsourcing in contrast to traditional software development. Section3 present a
general analysis framework based onmulti-agent system to examine the organization
and behaviours of software crowdsourcing, with which several software crowdsourc-
ing models have been presented. Section4 introduces a service-based multi-agent
system platform called AutoService that provides some fundamental capabilities to
serve as infrastructure to support software crowdsourcing models. A crowdsourcing
prototype is developed and some scenarios are exemplified to illustrate our approach.
Last, some conclusions and future researches are discussed in Sect. 5.

2 Characteristics and Challenges of Software
Crowdsourcing

In contrast with traditional software development, software crowdsourcing has the
following characteristics (see Table 1). First, the developers in software crowdsourc-
ing are individuals in the Internet. Normally, they have expertise in specific domain
(e.g., mobile application) and skills to perform software development activities, e.g.,
finding bugs in the software system, constructing a program satisfying the require-
ments. Different from the developers in traditional software development, in which
the roles and tasks of developers are pre-defined and their development behaviors
are constrained by the organization norms and project constraints, crowdsourcers in
software crowdsourcing aremore autonomous in their behaviours. Second, the devel-
opment organizations in software crowdsourcing are formed dynamically in term of
the collaboration among requestors, organizers and developers. They actually are
virtual organizations consisting of various participants in the Internet and evolving
during the software crowdsourcing process (see Fig. 1). Third, in traditional software
development, the interactions betweendevelopers are tightly relatedwith the software
development details (e.g., requirement, design, testing) and are normally performed

76 X. Mao et al.

Table 1 Comparison between software crowdsourcing and traditional software development

Traditional Software
Development

Software Crowdsourcing

Developer Coming from development
organization

Coming from Individuals in
the Internet

Development Organization Real organization
well-structured beforehand,
Relatively stable

Virtual organization formed
dynamically, Evolving

Interaction Face-to-face By Internet and Web 2.0

Collaboration Cooperation Competition, cooperation,
negotiation, and hybrid

Fig. 1 Illustration of Software Crowdsourcings

by face-to-face meetings or discussions. However, in software crowdsourcing, inter-
actions between participants in software crowdsourcing are performed either to form
virtual development organizations or to exchange development details. For exam-
ple, requestors publish their requirements and the individuals submit their proposal.
These interactions are performed in term of the Internet and depending on Web 2.0
technologies. Therefore, specific platforms are necessary to support the interactions
among the participants. Lastly, the developers in traditional software development
form a team and cooperate with each other to complete the development tasks. How-
ever, the collaborations between participants in software crowdsourcing are various,
including competition, cooperation and negotiation. For example, individuals com-
pete with each other for some software crowdsourcing task, requestors negotiate with
crowdsourcers about their rewards.

There are numerous skilled software engineering talents distributed in the Internet.
The purpose of software crowdsourcing is to aggregate and utilize these talents for

Multi-Agent System Approach for Modeling and Supporting Software Crowdsourcing 77

the software development. However, the diversity, autonomy, dynamic of individual
challenges the software crowdsourcing in several aspects.

• Find expected objects Each individual in the Internet has their competences and
skills in some aspects like domain knowledge, architecture design, programming
in specific language or software testing. The requirements that requestors publish
for crowdsourcing need various talents. Therefore, on the one hand it is important
for requestor to find the qualified and competent individuals to participate the soft-
ware crowdsourcing. One popular way at present is to publish the requirements in
some crowdsourcing platform like TopCoder or uTest. Such approach is a passive
way to find the crowdsourcers. On the other hand, individuals in Internet need to
find the requirements that they are interested in and are qualified. At present indi-
viduals find the appropriate requirements by browsing the software crowdsourcing
websites. Such way can not provide time-fashion services for crowdsourcers to
get the requirements information.

• Support effective crowdsourcing activities and collaboration For complex
development requirements, software crowdsourcing needs multiple participants
that have various skills and play different roles. For example, Topcoder supports
requestors to publish requirements, Copilots to organize software development
and platform, and various crowdsourcer involving in the software development.
In addition to traditional development activities, these participants should per-
form a number of crowdsourcing activities like publishing, proposing, evaluation
and rewarding, etc. There are various collaboration among the participants, which
depending the software development requirements, the problem-solving way, the
roles that they play. Therefore, effective mechanisms and approaches for crowd-
sourcing activities and collaboration should be provided to organize the partici-
pants in software crowdsourcing and satisfy the development and collaborations
requirements.

• Tackle autonomy and dynamic issues One important characteristics of software
crowdsourcing is the dynamic. The requirements for crowdsourcing, individuals
involving in crowdsourcing, the artifacts and their quality, and the collaborations
among crowdsourcers dynamically evolves. Moreover, the individuals involving
in software crowdsourcing are autonomous in their behaviors, for example joining,
leaving software crowdsourcing and making their efforts on crowdsourcing. The
dynamic results in high risks of software crowdsourcing and need to effectively
manage the dynamic and autonomy. For example, it is necessary to perceive and
adapt to the dynamic.

3 Multi-Agent System Models of Software Crowdsourcing

In essence, software crowdsourcing is a distributed problem-solving, in which the
participating entities are autonomous individuals distributed over the Internet, and
the problem-solving is the process to complete the software development tasks

78 X. Mao et al.

by performing various software development activities and their collaborations.
Therefore, crowdsourcing participants consist of a multi-agent system. This section
presents a multi-agent system analysis framework for software crowdsourcing, with
which a number of software crowdsourcing models are established to examine their
common properties.

3.1 Multi-Agent System Analysis Framework for Software
Crowdsourcing

The individuals involving into the software crowdsourcing can be abstracted as
autonomous agents performing various development and collaboration behaviors.
Typically, there are multiple agents playing various roles and completing different
tasks in the process of software crowdsourcing. For example, the individual who has
development requirements (e.g., designing algorithms, finding bugs in the program,
or programming) to be performed is known as “requestor”, persons that are respon-
sible for organizing and managing software crowdsourcing are called as “organizer”
or “Copilots” in TopCoder, these who want to sign up to perform work are described
as “worker” or “crowdsourcer”. The software development requirements may have
an associated payment and a completion time. Workers can browse or query require-
ments along with the payment and time information before deciding whether to work
on them.

Software crowdsourcing process is actually a distributed problem-solving of
multi-agent system. Here, the problem corresponds to software development require-
ments, problem-solvingmeans completing software development tasks satisfying the
requirements, e.g., constructing a programming or finding bugs in the program. Typ-
ically, the process of software crowdsourcing can be described as follows. Requestor
identifies and publishes software development requirements together with the cor-
responding incentive policy like payment and constraints like competition rule and
completing time. Organizers are often necessarywhen the requirements are complex.
Some crowdsourcing platforms like Topcoder provide “Copilots” to decompose the
development tasks into a number of modular that are easy to be tackled. These devel-
opment tasks and requirements are then to be released online in some platforms like
Topcoder or uTest to a crowd of outsiders. The individuals that intend to participate in
the software development can undertake the tasks in a sole or collaborative way (e.g.,
based onWeb 2.0 tools in the Internet). Upon completion, the individuals should sub-
mit their software artifacts (e.g., documents that describe the designed algorithms,
program codes that implement the requirement, testing cases that can find bugs) to
the software crowdsourcing platform. The requestors or the organizers that are on
behalf of requestors will then assesses the quality of the submitted software artifacts
and provide rewards.

There are several platforms supporting the above process of software crowd-
sourcing like TopCoder, GetCoder, uTest, etc. However, as the diversity of software

Multi-Agent System Approach for Modeling and Supporting Software Crowdsourcing 79

Fig. 2 Multi-agent analysis
framework of software
crowdsourcing

development requirements and corresponding tasks, the involving individuals, their
roles and behaviours, problem-solving ways are various and different. In order to
define various software crowdsourcing models, clarify their differences and further
investigate the expected technologies, it is necessary to create an analysis framework
for software crowdsourcing.

Our proposed framework is based on multi-agent system approach to mod-
eling the individuals in the software crowdsourcing and their organization and
behaviors (see Fig. 2). Formally, the analysis framework is defined as 5-tuple =
<Tasks, Agents, Roles, Collaboration, Constraints>, where

• Tasks: the set of software development tasks that should be completed in the soft-
ware crowdsourcing. Some software crowdsourcing has single task, e.g., finding
bugs in the program, designing algorithm satisfying the requirements. Others may
have multiple and interrelated tasks, e.g., defining the requirements models, pro-
viding architecture designs, constructing the program modular, etc.

• Agents: the set of agents playing various roles to participate in the software crowd-
sourcing. Each agent has its responsibilities depending on the roles that it plays.
Typically, a software crowdsourcing consists of at least one requestor agent and a
number of crowdsourcing agents, i.e. crowdsourcers.

• Roles: the set of roles involving in the software crowdsourcing. Some software
crowdsourcing only involves with requestor and crowdsourcer to release require-
ments and perform development tasks. Others with complex development tasks
may need organizer tomanage requirements and crowdsourcing process, and third-
party to assess the quality of the submitted software artifacts.

• Collaboration: the structured interactions sequence that defines how agents in
software crowdsourcing collaborate with each other to complete the development
tasks. Some protocol of software crowdsourcing is simple only requiring limited
interactions between requestors and crowdsourcers. Others may consist of a num-
ber of interaction sequences to deal with the issues in the software crowdsourcing
process.

80 X. Mao et al.

• Constraints: the conditions that should be satisfied and the resources that the
software crowdsourcing provides. For example, software crowdsourcing typically
has time restriction and normally provides incentives (like rewards) to encourage
crowdsourcing.

3.2 Multi-Agent System Models of Software Crowdsourcing

There are kinds of software crowdsourcing provided by existing software crowd-
sourcing platforms to satisfy various demands on software crowdsourcing. To model
these software crowdsourcing manners is helpful to examine their fundamental ele-
ments and characteristics, and find which model is suitable for satisfying specific
crowdsourcing requirements. Moreover, it can also help us to identify the differ-
ences of various software crowdsourcing models, and seek effective technologies to
support these software crowdsourcing models.

From the viewpoint of requestors, the crowdsourcing can be performed into two
ways: direct and indirect. In the direct way, requestor directly to interact with crowd-
sourcers to obtain individual talents and complete development tasks, e.g. obtaining
and assessing the software artifacts. Generally, this kind of crowdsourcing is suitable
for simple development tasks. In the indirectway, requestors interactwith someproxy
like organizers or Copilots who are responsible for managing development tasks and
collaborating with crowdsourcers. This kind of crowdsourcing is more suitable for
complex development tasks that are difficult for requestors to manage. From the
viewpoint of crowdsourcers, they can participate in the crowdsourcing either in a
competition or independence way. In the competition way, crowdsourcers compete
with each other to satisfy the development requirements and win the rewards. Typi-
cally, if the requestor only needs limited solutions for their problems, such manner
can be used. For example, requestors seek the best algorithms to satisfy the require-
ments, then only parts of crowdsourcers canwin. In the independenceway, there is no
any relationship between crowdsourcers. They perform their development activities
in an independent way and anyone who can satisfy the development requirements
can win (see Table 2). In the following we will describe these models based on the
analysis framework proposed in Sect. 3.1.

• Direct and competing model of software crowdsourcing
Let DC = <Tasksdc,Agentsdc,Rolesdc,Collaborationdc,Constraintsdc> repre-
sents direct and competing model of software crowdsourcing, where

– T asksdc: the development tasks of crowdsourcing are simple and easy to be
managed by requestors, e.g., to construct a program or design an algorithm to
satisfy the requirements. Moreover, the tasks are required to be completed in a
competing way.

– Agentsdc: The agents in the models either play requestor role or crowdsourcer
role. There is competing relationship among agents playing crowdsourcer role.

– Rolesdc: there are only requestor and crowdsourcer roles in the model.

Multi-Agent System Approach for Modeling and Supporting Software Crowdsourcing 81

Table 2 Models of software crowdsourcing

Competing Independent

Direct • Requestors directly interact
with crowdsourcers to
complete crowdsourcing, e.g.,
releasing development tasks,
obtaining and assessing
software artifacts

• Requestors directly interact
with crowdsourcers to
complete crowdsourcing, e.g.,
releasing development tasks,
obtaining and assessing the
software artifacts

• Crowdsourcers compete with
each other to complete
software development tasks
and win the rewards

• Crowdsourcers are
independent with each other to
participate in the
crowdsourcing

Indirect • Organizer or Copilots act as
the proxy of requestors and are
responsible for managing
development tasks for
requestors

• Organizer or Copilots act as
the proxy of requestors and are
responsible for managing
development tasks for
requestors

• Requestors indirectly
interact with crowdsourcers to
complete crowdsourcing

• Requestors indirectly
interact with crowdsourcers to
complete crowdsourcing

• Crowdsourcers compete with
each other to complete
software development task and
win the rewards

• Crowdsourcers are
independent with each other to
participate in the
crowdsourcing

Fig. 3 Collaboration in direct and competing model of software crowdsourcing

– Collaborationdc: the collaborationoccurs between requestor agents and crowd-
sourcer agents. Typically, it is performed in a way described in Fig. 3.

– Constraintsdc: there are incentive policies for crowdsourcers to participate in
crowdsourcing. The crowdsourcers are required to compete with each other to
win the rewards.

• Indirect and competing model of software crowdsourcing
Let IC= <T asksic, Agentsic, Rolesic,Collaborationic,Constraintsic> rep-
resents indirect and competing model of software crowdsourcing, where

82 X. Mao et al.

Fig. 4 Collaboration in indirect and competing model of software crowdsourcing

– T asksic: the development tasks of software crowdsourcing are relatively com-
plex and difficult to be managed by requestors. For example, the tasks should
be decomposed into small ones for crowdsourcing, e.g., to analyze, design and
construct a software system satisfying the requirements. Moreover, the tasks are
required to be completed in a competing way.

– Agentsic: There are several kinds of agents in themodels, e.g., requestor, crowd-
sourcer, organizer, etc.

– Rolesic: In addition to the requestor and crowdsourcer roles, organizer and
other roles are introduced in the model to manage development tasks, assess the
quality of the submitted proposals and software artifacts.

– Collaborationic: the collaboration occurs between requestors, organizers and
crowdsourcers, etc. Typically, organizer is the proxy of requestors and the col-
laboration among them is performed in a way described in Fig. 4.

– Constraintsic: there are incentive policies for crowdsourcers to participate in
crowdsourcing. The crowdsourcers are required to compete with each other to
win the rewards.

• Direct and independent model of software crowdsourcing
Let DN = <T asksdn, Agentsdn, Rolesdn,Collaborationdn,Constraintsdn>

represents direct and independent model of software crowdsourcing, where

– T asksdn : the development tasks of crowdsourcing are simple and easy to be
managed by requestors, e.g., to test and find bugs in a program. Moreover, the
tasks need multiple and various results that are not conflicting with each other
and can be completed by crowdsourcers in an independent and non-competing
way.

– Agentsdn: The agents in the models either play requestor role or play crowd-
sourcer role.

– Rolesdn : there are only requestor and crowdsourcer roles in the model.
– Collaborationdn : the collaboration occurs between requestors and crowd-
sourcers. Typically, it is performed in a way described in Fig. 5.

– Constraintsdn : there are incentive policies for crowdsourcers to participate in
software crowdsourcing.

Multi-Agent System Approach for Modeling and Supporting Software Crowdsourcing 83

Fig. 5 Collaboration in direct and independent model of software crowdsourcing

Fig. 6 Collaboration in indirect and independent model of software crowdsourcing

• Indirect and independent model of software crowdsourcing
Let IN= <Tasksin,Agentsin,Rolesin,Collaborationin,Constraintsin> represents
indirect and independent model of software crowdsourcing, where

– Tasksin : the development tasks of software crowdsourcing are relatively com-
plex and difficult to be managed by requestors. For example, the tasks should
be decomposed into small ones for crowdsourcing. Moreover, the tasks need
multiple and various results that are not conflicting and can be completed by
crowdsourcers in an independent and non-competing way.

– Agentsin: There are several kinds of agents in the models, e.g., requestor, crowd-
sourcer, organizer, etc.

– Rolesin: In addition to the requestor and crowdsourcer roles, organizer and other
roles are introduced in themodel tomanagedevelopment tasks, assess the quality
of the submitted proposals and software artifacts.

– Collaborationin: the collaboration occurs between requestors, organizers and
crowdsourcers, etc. Typically, organizer is the proxy of requestors and the col-
laboration among them is performed in a way described in Fig. 6.

– Constraintsin : there are incentive policies for crowdsourcers to participate in
crowdsourcing.

84 X. Mao et al.

Existing software crowdsourcing platforms like Topcoder support the direct and
competing model of software crowdsourcing, indirect and competing model of
software crowdsourcing. Platforms like uTest,Bugfinders support the direct and inde-
pendent model of software crowdsourcing.

4 MAS Approach for Supporting Software Crowdsourcing

Doubtlessly software crowdsourcing involves with multiple agents playing various
roles and interacting with each other to complete software development tasks. It
can be modeled as multi-agent problem-solving and can borrow multi-agent system
technologies to support software crowdsourcing.

4.1 Software Crowdsourcing based on Multi-Agent
Technology

Multi-agent system provides a number of technologies that can be used in supporting
software crowdsourcing such as software architecture for autonomous behaviors,
communication languages, collaboration models, etc. Each individual in software
crowdsourcing such as requestor, crowdsourcer, organizer, etc., can be provided
with software agent that acts as personal assistant and supports their crowdsourcing
activities like publishing requirements, evaluating the artifacts, submitting software
artifacts or proposals, etc. All of software agents constitute a multi-agent virtual
organization in which they collaborate with each other to complete software crowd-
sourcing (see Fig. 7).

• Software agents as personal assistant Software agents for individuals in soft-
ware crowdsourcing are responsible for providing fundamental services of soft-
ware crowdsourcing (e.g., publish software crowdsourcing task, submit proposal,

Fig. 7 A view of software crowdsourcing based on multi-agent system technologies

Multi-Agent System Approach for Modeling and Supporting Software Crowdsourcing 85

evaluate the quality, pay the rewards), managing various resources for individuals
such as talents and skills, requirements and tasks, acquaintance, history of soft-
ware crowdsourcing, etc. They also provide autonomous and pro-active behaviours
that help individuals to participate in the software crowdsourcing when concerned
events occur. For example, they can classify the published tasks in the software
crowdsourcing platform and rank them according to the previous engagements,
interests and skills.

• Support various and flexible collaboration Various collaborations are needed in
the process of software crowdsourcing, which depends on the crowdsourcing tasks
and organization. For example, the crowdsourcer can negotiate with the requestors
about the rewards and payments, multiple crowdsourcers can cooperate with each
other and form a temporary team to participate in the software crowdsourcing
by self-organization. These collaboration models can be encapsulated into the
software agents and their organization.

• Manage crowdsourcing organization In the process of software crowdsourc-
ing, individuals constitute a multi-agent organization. As the autonomy of crowd-
sourcers and the dynamic of software crowdsourcing, the organization should
be effectively managed in order to satisfy the development requirements. Vari-
ous basic functionalities and services should be provided to form, adjust, evolve
and dismiss software crowdsourcing organization. For example, when the require-
ments are published, amulti-agent organization for the crowdsourcing tasks should
be established. Such organization should be maintained in the whole process of
software crowdsourcing, e.g., joining a crowdsourcer, dismiss a crowdsourcer.

• Response to Changes and Events Typically software crowdsourcing are per-
formed in the Internet, inwhichvarious events relatedwith software crowdsourcing
mayoccur. For example, a newcrowdsourcing task is published and a crowdsourcer
with specific skill like programming with JavaBeans is registered. Software agent
can provide sensor to perceive various events and changes in order to know what
happens and response in a time-fashion way. They can also provide self-adaptation
capabilities to adapt to the changes and support software crowdsourcing in a better
way, e.g., acquiring required talents of skills, experiences, reputations and domain
knowledge that crowdsourcing task requires.

4.2 AutoService Supporting Platform and Case Study

We have developed a service-based multi-agent system platform called AutoSer-
vice that provides some fundamental capabilities like autonomy, monitoring, flexi-
ble interaction and organization, and can serve as infrastructure to support software
crowdsourcing models and tackle its challenges.

In AutoService, services deployed in Internet are managed by software agents,
which means that any accesses to services firstly should be processed by the agents,
whether and how to provide a service depends on the autonomous decisions of soft-
ware agents that manage the services. Applications or software agent can access

86 X. Mao et al.

Fig. 8 Model of Autonomous Service and their access manners

services by SOA protocol or agent communication language (see Fig. 8). A soft-
ware agent can encapsulate one or more services and each service is managed by
at least one software agent. Therefore, each individual like crowdsourcer, requestor
or organizer, etc., can be equipped with a software agent that provides a number
of elementary services to support their crowdsourcing activities. The autonomous
behaviors based on the crowdsourcing services enable individual to participate in
software crowdsourcing in a better way. For example, crowdsourcing can actively
join a crowdsourcing organization when perceiving some new tasks to be published.

The services and the agent have their status that can be monitored in AutoService
and the monitored information is effectively managed and can be flexibly accessed
by software agent or services that intend to obtain. Autonomous service registry in
AutoService supports the registration of services, agents and their statuses. More-
over, in addition to query the registration and status information it also provides sub-
scribe/publish functions to actively obtain concerned information in a time-fashion
way. Therefore, the software agents for crowdsourcer, requestor or organizer, etc.,
can be monitored as for its availability, online, the involved crowdsourcing tasks,
etc. They can also know about the new published crowdsourcing tasks, the sta-
tus of involving crowdsourcer, the progress of the development tasks, etc. These
functionalities enable individuals in software crowdsourcing to participate in soft-
ware crowdsourcing in a better way and effectively deal with dynamic based on the
AutoService infrastructure, i.e., knowing what happens.

The agent and service in AutoService can interact with each other in term of two
ways. One is the low-level SOA protocols, with which services in the platform can
be accessed. For example, requestor in the software crowdsourcing can access the
services published by crowdsourcer agent to get its ongoing tasks. The other is the
high-level interactions and collaboration protocols specified in agent communication
language. Such interactions and encapsulated protocols support various collaboration
models (e.g., ones defined in Sect. 3.2).

Based on the development and running support of autonomous services, we have
developed a software prototype to simulate software crowdsourcing and validate
our proposed approach (see Fig. 9). Just described as above, several kinds of agents
that play various roles like crowdsourcer, requestor, organizer, etc., and encapsu-
late services related with the roles have been implemented and deployed in the

Multi-Agent System Approach for Modeling and Supporting Software Crowdsourcing 87

Fig. 9 Model of Autonomous Service and their access manners

AutoService platform. These agents together with the systems agents like registration
center, task center, etc., can collaborate with each other to publish/subscribe tasks,
bid and negotiation, call-for-proposals, etc. Requestor agent can publish crowdsourc-
ing tasks to the individuals that have the competences or skills, therefore improve
the effectiveness. The crowdsourcer can obtain the newly published tasks that are
suitable for their skills. They also can query the crowdsourcers that have registered in
the systems, find the crowdsourcers with same skills in order to know the adversary,
obtain their status.

Comparing with existing software crowdsourcing platforms, e.g. Topcoder and
uTest, our system has the following characteristics. First, if a task is released, our
platform can send message to the crowdsourcers who have the relevant expertises,
which will make the crowdsourcers more possible to complete in the task. Second,
our platform can monitor the process of the implementation of the published tasks.
For example, we can know howmuch the crowdsourcers have done, and whether the
crowdsourcer still works on the task. Last, the crowdsourcers who join in the task
can contact with each other. We can see the communication information among the
crowdsourcers by our platform.

5 Conclusion

The progresses of Internet technologies and social computing (e.g. Web 2.0) provide
novel approaches to tackling the issues of software development. Software crowd-
sourcing is an emerging area of software engineering that allowsmassive autonomous
crowds across the world to participate in the software development in term of
supporting platforms in Internet. It represents a new method to organize and

88 X. Mao et al.

manage software project development, in which developers come from crowds rather
than specialized software companies, interactions among developers occur in the
Internet virtual space rather than traditional meetings or face-to-face discussions,
crowdsourcers typically compete with each other to complete software development
tasks and win the rewards. In the past years, software crowdsourcing has gained great
successes in industry and several platforms like Topcoder, uTest have been developed
in support of software crowdsourcing.

The successful practices of software crowdsourcing inevitably need us to investi-
gate its essence behind various software crowdsourcing platforms and find its poten-
tial challenges to software technologies. Multi-agent system that consists of multi-
ple interacting autonomous agents to solve specific common problem can act as an
abstract approach to modeling the constituents of software crowdsourcing and an
enabling technology to support software crowdsourcing process. The individuals in
the software crowdsourcing can be modeled as autonomous agents that play various
roles and take corresponding behaviours to perform software development activities.
They constitute a virtual software development organization and collaborate with
each other to complete crowdsourcing tasks.Wepresent a general analysis framework
based on multi-agent system to examine the constituents of software crowdsourcing
organization, their roles and behaviours, especially collaborations. From the view-
points of crowdsourcing requestors and crowdsourcers respectively, we identify four
different software crowdsourcing models, including direct and competing model of
software crowdsourcing, indirect and competing model of software crowdsourcing,
direct and independent model of software crowdsourcing, indirect and independent
model of software crowdsourcing. Especially, we detail the characteristics of each
model and their collaboration process.

The autonomy of individuals in software crowdsourcing and their complex collab-
orations, together with dynamic and massive talents in Internet mean that technolo-
gies should be provided to support software crowdsourcing, promote themanagement
of crowdsourcing virtual organization, and enrich the utilization of various crowd-
sourcing resources.Multi-agent systemprovides such capabilities as autonomous and
pro-active behaviours of software agents, perceive of situated environment, various
collaboration among agents, which can act as an alternative technology to support
software crowdsourcing.Wehave developed a service-basedmulti-agent systemplat-
form called AutoService that provides some fundamental capabilities like autonomy,
monitoring, flexible interaction and organization, and can serve as infrastructure to
support software crowdsourcing models and tackle its challenges. A crowdsourcing
prototype is developed and some scenarios are exemplified to illustrate our approach.

Acknowledgments The authors gratefully acknowledge the financial support fromNatural Science
Foundation of China under granted number under Grant No. 61070034 and 61379051; Program for
New Century Excellent Talents in University NCET-10-0898; and Open Fund SKLSDE-2012KF-
0X from State Key Laboratory of Software Development Environment.

Multi-Agent System Approach for Modeling and Supporting Software Crowdsourcing 89

References

1. Boehm, B.: A view of 20th and 21st century software engineering. In: Proceedings of ICSE,
pp. 12–29 (2006)

2. Fitzgerald, B.: Software Crisis 2.0. Software technology. IEEE Comput. 45(4), 89–91 (2012)
3. Zhao, Y., Zhu, Q.: Evaluation on crowdsourcing research: current status and future direction.

Inf. Syst. Front., 1–18 (2012)
4. Bergvall-Kreborna, B. Howcroft, D.: The Apple business model: crowdsourcing mobile appli-

cations. Accounting Forum, Elsevier (2013)
5. Schall, D., Psaier, H., Treiber, M., Skopik, F.: Engineering service-oriented crowdsourcing for

enterprise environments (2010)
6. Vukovi, M.: Crowdsourcing for enterprises. In: Proceeding of Congress on Services, pp. 686–

682 (2009)
7. Fried, D.: Crowdsourcing in the software development industry. Nexus of Entrepreneurship

and Technology Initiative Fall (2010)
8. Yuen, M.-C., King, I., Leung, K.-S.: A survey of crowdsourcing systems. In: Proceedings of

IEEE International Conference on Social Computing, pp. 766–773 (2011)
9. Wenjun, W.U., W-T. Tsai. Wei L.I.: An evaluation framework for software crowdsourcing.

Front. Comput. Sci. 7(5), 694–709 (2013)
10. Pan, Y., Blevis, E.: A survey of crowdsourcing as a means of collaboration and the implica-

tions of crowdsourcing for interaction design. In: Proceedings of International Conference on
Collaboration Technologies and Systems, pp. 397–403 (2011)

11. Hetmank, L.: Components and functions of crowdsourcing systems: a systematic literature
review. In: Proceedings of 11th International Conference onWirtschafts Informatik, pp. 55–39
(2013)

12. Olson, D.-L., Rosacker, K.: Crowdsourcing and open source software participation. Service
Business, pp. 1–13 (2012)

13. Geiger, D.: Crowdsourcing information systems: a systems theory perspective. In: 22nd Aus-
tralasian Conference on Information Systems (2011)

14. Alonso, O.: Perspectives on infrastructure for crowdsourcing. In: Proceedings of International
Workshop on Crowdsourcing for Search and Data Mining (CSDM 2011), pp. 7–10 (2011)

15. Davis, J.G.: From crowdsourcing to crowdservicing. IEEE Internet Comput. 15(3), 92–94
(2011)

16. Iren, D., Bilgen, S.: Methodology for managing crowdsourcing in organizational
projects. http://www3.informatik.uni-wuerzburg.de/events/summerschool2012/proceedings/
Iren.pdf (2011)

17. Saxton, G.D., Oh, O., Kishore, R.: Rules of crowdsourcing: models, issues, and systems of
control. Inf. Syst. Manag. 30(1), 2–20 (2013)

18. Storey,M.A., Treude, C., vanDeursen, A., Cheng, L.-T.: The impact of socialmedia onsoftware
engineering practices and tools. In: Proceedings of FoSER (2010), pp. 359–363 (2010)

19. Baziliana, M., Rice, A., et al.: Open source software and crowdsourcing for energy analysis.
Energy Policy, 49(5): 149–153 (2012)

http://www3.informatik.uni-wuerzburg.de/events/summerschool2012/proceedings/Iren.pdf
http://www3.informatik.uni-wuerzburg.de/events/summerschool2012/proceedings/Iren.pdf

Supporting Multilevel Incentive Mechanisms
in Crowdsourcing Systems: An
Artifact-Centric View

Ognjen Scekic, Hong-Linh Truong and Schahram Dustdar

Abstract Crowdsourcing systems of the future (e.g., Social ComputeUnits—SCUs,
collective adaptive systems) need to support complex collaborative processes, such
as software development. This presupposes deploying ad-hoc assembled teams of
human and machine services that actively collaborate and communicate among each
other, exchanging different artifacts and jointly processing them. Major challenges
in such environments (e.g., team formation, adaptability, runtime management of
data-flow and collaboration patterns) can be somewhat alleviated by delegating the
responsibility and the know-how needed for these duties to the participating crowd
members, while indirectly controlling and stimulating them through appropriate
incentive mechanisms. Existing process-centric collaboration modeling approaches
(e.g., workflows) are incapable of encoding such incentive mechanisms. Therefore,
in this paper we analyze different interaction aspects that incentive mechanisms
cover and formulate them as requirements for future systems to support. We then
propose an artifact-centric approach for modeling incentives in rich crowdsourcing
environments that meets these requirements.

1 Introduction

Many previous works on crowdsourcing seem to assume that crowd is an unlimited
pool of adequate human workforce and typically focus on problems such as: locat-
ing the most appropriate candidates for performing the tasks, or comparing different
payment schemes. However, while the assumption of the practically unlimited crowd
may hold true in case of simple, independent tasks, the practice shows that the current

O. Scekic (B) · H.-L. Truong · S. Dustdar
Distributed Systems Group, Vienna University of Technology, Vienna, Austria
e-mail: oscekic@dsg.tuwien.ac.at

H.-L. Truong
e-mail: truong@dsg.tuwien.ac.at

S. Dustdar
e-mail: dustdar@dsg.tuwien.ac.at

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_6

91

92 O. Scekic et al.

crowdsourcing models (both from the technical and the from business perspective)
fail to attract and retain workers capable of performing complex/modular, interde-
pendent tasks [23, 27].

One of the reasons is that in the case of (highly-)skilled individuals, the crowd is,
in fact, a quite limited resource pool that an ever increasing number of crowdsourcing
efforts are trying to tap into. This means that the individuals need to be motivated
through diverse, elaborate incentive and rewarding strategies to join a particular
crowdsourcing effort and to provide their professional services at an expected level.

The other reason is that the existing crowdsourcing platforms do not offer flexible,
human-like collaboration platforms to the crowd workers. Rather, the tasks are either
assigned to the human workers by the system executing the workflow, or the humans
bid for tasks onmicro-task platforms. In both cases, themanaging system dictates the
orchestration, treating the crowd workers as machine computing elements, which are
requested to respect the prescribed orchestration and various functional and quality
constraints without being able to influence them.1

This situation contradicts the very reason why humans are included into compu-
tations in the first place—to do better what computers are not good in doing—i.e., to
bring in creativity, flexibility in unforeseen situations, but most importantly, ability
to quickly perform complex tasks by establishing ad-hoc collaborations and adapting
them when needed.

1.1 Motivation

Tomake humans first-class citizens, workers must be given more influence on select-
ing their collaboration partners, coordination patterns and communication channels.
Hard constraints and worker commitment protocols should be loosened to make the
systems more attractive for human workers. The price to pay for this is a degree
of outcome uncertainty that must be reckoned with. We can either embrace it as
an inherent property of these socio-technical/crowdsourcing systems (like we do in
most everyday life situations) or try to blindly follow the conventional paradigms and
seek to detect and/or correct those uncertainties. Embracing uncertainty, however,
does not mean promoting it, but rather implies usage of different passive measures
for reducing it to an acceptable level. This can be achieved through incentive mecha-
nisms motivating workers to self-organize and self-correct. To this end, in this paper
we investigate the necessary requirements for defining and enacting such incentive
mechanisms in the novel types of crowdsourcing systems [12].

To the best of our knowledge, incentives in crowdsourcing have so far been only
considered at the granularity level (scope) of a business process (Sect. 4.2). As a
business process typically contains a flow of different activities on multiple artifacts,
workers can exhibit different behaviors depending on which activity they perform,

1See [5] for an overview of task distribution and coordination models.

Supporting Multilevel Incentive Mechanisms … 93

on which artifact and with which co-workers. This means that the existing incentive
models are successfully applicable only in a limited number of cases, where business
processes are simple and dominated by a single activity. This is exactly the case with
today’s commercial crowdsourcing platforms that incentivize business processes that
typically require a single worker to process and return an artifact (e.g., describe a
bug, submit a design, tag a photo, translate a text). As these processes are simple, the
incentives need only to focus on the core activity, and to promote wanted behaviors,
like diligence and quality.

However, performing complex tasks, such as software development, with crowd-
sourced, ad-hoc teams involves many activities, workers and interactions that are not
predictable in advance. Developers may come and go; their performance may vary;
they may be using different tools to communicate, coordinate and produce code,
tests and documentation; they may be used to different development methodologies
and team organizations. It is not realistic to expect that a team formed out of such
diverse individuals will adhere to a prescribed execution plan. In fact, designing a
work process with so many unknowns will probably result in an inefficient workflow
at runtime [3]. And without a valid workflow, it is impossible to design appropriate
incentive mechanisms either.

Similar problems have previously been investigated by large traditional com-
panies trying to impose uniform work processes across geographically distributed
workforce. They discovered that different internal teams would agree more easily on
a common set of artifacts to use in interactions rather than on the common activity
flow [16]. This resulted in the birth of artifact-centric workflows [10]. The principal
idea is to focus on data (artifacts), rather than on processes, and to leave the actors
more freedom to self-organize, while controlling them indirectly through artifacts
augmented with a formal lifecycle model (see Sect. 4.1 for more information).

We believe that, if extended with incentive mechanisms, the artifact-centric
approach can be successfully used to describe and guide complex crowdsourcing
processes. Augmenting artifact models with incentive mechanisms creates entities
that self-motivate people to process and control them. By attracting workers to work
at them, the artifacts push their way through the lifecycle. In addition, if we encode
incentive application rules at the artifact-granularity level, we can express much finer
conditions. This opens up an array of new possibilities formotivating humans towork
in crowdsourcing platforms.

1.2 Contributions and Article Structure

In this paper we propose applying artifact-centric approach to designing incentives
for socio-techincal systems.We argue that this approachmay be better suited than the
traditional process-oriented approach, covering better the different possible aspects
of human behavior and business needs in complex collabrative environments. We
then identify the concrete requirements for designing such incentive systems.

94 O. Scekic et al.

The rest of the paper is structured as follows: Sect. 2 introduces some fundamental
notions that are used in the rest of the paper. The rest of Sect. 2 presents a motivating
example, and uses it to highlight important aspects when designing incentive mech-
anism models for crowdsourced, artifact-centric workflows. In Sect. 3 we further
analyze these aspects and identify important requirements for novel crowdsourcing
systems supporting artifact-centric incentive mechanisms. In Sect. 4 we present a
short review of related work on incentives in crowdsourcing and traditional artifact-
centric workflows. Section5 presents the summary and concludes the paper.

2 Artifact-Centric Incentives

We begin by defining some important terms as used throughout this paper:

Definition 1 (Incentive) Any scheme employed by the system to stimulate (moti-
vate) increased level of certain worker activities (e.g., productivity, speed, quality of
work, number of participants) or to discourage certain activities (e.g., drop-out rate),
before the actual execution of those activities.

Definition 2 (Reward) Any kind of recompense for worthy services rendered or
retribution for wrongdoing exerted upon workers after the completion of the activity.

Definition 3 (Incentive Mechanism) A clearly delimited incentive rule targeting a
specific dysfunctional behavior.

An incentive mechanism consists of the following three components [23]:

(1) Evaluation Method—used to assess the quality of worker’s performance from
different aspects. Provides input for making a decision whether to apply a
reward/sanction.

(2) Incentive Logic—represents the business logic behind the incentive mecha-
nism used to interpret evaluation results and decide on application of rewarding
actions.

(3) Rewarding Action—represents the concrete measure taken against individuals
or teams to influence one particular future behavior.

Definition 4 (Business Artifact) First-class entity of a business process encapsulat-
ing all the information necessary for its processing throughout the entire execution
of the business process. The notion of artifact includes not only the ‘raw’ data that is
produced or processed during the business process, but also the metadata describing
the lifecycle, relationships with other artifacts and context-dependent information.2

The artifacts are identified and described by domain experts. They can correspond
to the actual (physical or digital) entities used by the participants in a business process

2Adapted from [10].

Supporting Multilevel Incentive Mechanisms … 95

(such as invoices, bills, source code files, commitment history), or be abstract entities
that facilitate the process execution management.

Apart from the obvious purpose of capturing (intermediate) business process
goals, each artifact is also supposed to capture the information for evaluating if and
how well the goals have been achieved. For example, in addition to the description
of the problem and associated fix code, a software bug report artifact may contain
the history of actions taken, allowing to draw conclusions on the quality and speed
of the work performed on the artifact.

In order to control the evolution of the artifact, each artifactmust contain a lifecycle
(model).

Definition 5 (Artifact Lifecycle Model) The lifecycle model describes the crucial,
business-relevant states in which the artifact can be found, as well as rules and
constraints governing who, how and when can process the artifact.3

The lifecycle model is often formally encoded as a finite state-machine, although
other models can be used. It is used to monitor and control the progressing of the
artifact through the business process. While the business process owner cannot influ-
ence how exactly the process is executed, it can ensure that different artifacts fulfill
certain properties at certain times, and with respect to other artifacts, by encoding
these expectations and constraints into the lifecycle model. This way, the artifact
encapsulates enough information to be able to move through the workflow on its
own. Artifact states are used also to monitor the execution of the entire process. At
any point during the runtime, the state of the business process is represented by the
union of the current states of all the artifacts belonging to the process.

In general case, a single artifactmay be changed through different tasks at different
times or concurrently. In order to ensure consistency of artifacts’ states, these changes
need to be performed through transactions.

2.1 Applying Artifact-Centric Incentives in Crowdsourcing
Environments

Wepropose applying the artifact-centric paradigm for defining incentivemechanisms
for complex, crowdsourced business processes. Existing incentivemechanisms focus
only on the behavior of individuals and teams [23]. The approach we propose here
instead focuses on multiple aspects of human participation in business processes at
fine-grained levels. It incorporates the existing personal incentive mechanisms and
includes them into the novel incentive model.

The novel artifact-centric incentive model should be viewed as an integral part
of the artifact itself. This means that the artifact becomes self-sufficient in human-
based workflows, in the sense that the artifact itself attracts and motivates workers

3Adapted from [18].

96 O. Scekic et al.

Fig. 1 Artifact-centric representation of a simple software development process. Si—artifact states.
Ri—per-state rewards (incentives). ci—worker contributions to the artifact’s data model

to perform targeted actions and to work through the states of the artifact’s lifecycle,
effectively performing an artifact-driven orchestration.

To help us illustrate the idea better, let us introduce a simple motivating example
employing the concept of artifact-centric incentives that we will use in the rest of the
paper for identifying and analyzing various requirements for building such systems:

2.1.1 Motivating Example

Consider a service that crowdsources building of a simple web page for customers
(Fig. 1):

A customer submits an informal description of web page requirements (Product
Requirement Document—PRD). In order to build the web page, a professional is
required to discuss the requirements with the customer in detail and to produce an
artifact containing functional specification at the technical level (Functional Speci-
fication Document—FSD), which must be approved by the customer. Once the FSD
is available, a designer can produce the graphics (GR), and a web developer incorpo-
rate the graphics with the programming code to produce the html artifact embedding
the graphics (HTML). A tester then uploads the web page, tests it against the FSD,
producing a final report (FR), which must be finally approved by the customer.

To keep the use case simple, let us assume that the FSD contains just three
lifecycle states—IN_PROGRESS, CUSTOMER_APPROVED and DEVELOPER_
APPROVED. Upon submitting the PRD, the new FSD is created and put into
IN_PROGRESS state. An incentive associated with this state is offered, e.g., either
a FCFS strategy with monetary reward increasing over time, or a reverse auction,
as specified by the customer. The customer also specifies other constraints, such as
time constraints for setting the artifact into CUSTOMER_APPROVED state, and the
minimal quality metrics of workers (reputation, expertise).

Supporting Multilevel Incentive Mechanisms … 97

The FSD artifact is then offered in the crowdsourcing market. The system that
manages the market does not pick out the workers, but rather limits itself to advertis-
ing the task (artifact) to potentially interested candidates—those who are available
and fulfill the quality requirements.

Once a worker (requirements engineer) applies and commits to working on the
artifact, an activity is created for him, as in [30]. Although the creation of a func-
tional specification document usually requires many activities, iterations, document
changes and interactions with the customer, the system will not enforce any particu-
lar workflow on the worker, but will rather let him organize it completely to his will.
The customer’s approval will ultimately allow the FSD artifact to transition into the
CUSTOMER_APPROVED state.

The FSD now contains some precise graphical requirements and guidelines, out
of which a new artifact GR is created. The GR will be used for attracting graphical
designers, instructing them, rewarding them, and collecting the produced graphical
elements for the web page. It is in the form of a web page, stating the requirements,
and promising the reward. A potential incentive strategy here is the tournament
reward, where the best designs are awarded, based on the subjective evaluation of
the customer [23].

The web developer is chosen similarly to the requirements engineer. The HTML
artifact also contains 4 states: AWAIT_FSD_APPROVED, IN_PROGRESS, CUS-
TOMER_APPROVED, TESTER_APPROVED.Once the developer commits to pro-
ducing the HTML artifact, he finds the artifact initialized into the AWAIT_FSD_
APPROVED state. In order to push the HTML artifact into the IN_PROGRESS
state, the developer is required to check the FSD first. If the functional specification
is clearly written, and allows him to proceed with writing the code based on it, he
sets the FSR into the DEVELOPER_APPROVED state, automatically triggering the
transition of the HTML artifact into the IN_PROGRESS state. If the FSD still needs
to be improved, the developer resets the FSD into the IN_PROGRESS state, requir-
ing the requirements engineer to work more on it. The remainder of the use case is
easy to infer.

2.2 Discussion

Let us first explore how the artifact-centric approach influences modeling of incen-
tives. When the actual monetary reward will be paid to the requirements engineer
can depend on many different conditions, and it is exactly the expressive richness of
these conditions that makes the artifact-centric incentives so powerful. For example,
we may want to specify a much higher reward if the FSD gets developer-approved
in the first n iterations. Or, we may want to allow an unlimited number of iterations
between the developer and the requirements engineer, but tie the reward amount to
a time constraint. Or, most commonly, combine the two incentive mechanisms to
promote both speed and excellence.

98 O. Scekic et al.

If the customer expects the FSD to be a big document, the requirements engineer
may be incentivized to find and coordinate a small teamof helpers that will help speed
up the process. The customer can control the number of team members by limiting
the number of roles that can work on a particular artifact. Different team-incentive
mechanisms and reward sharing strategies can be used here—see [23].

The actual payments can be performed after certain state transitions, or only after
all the artifacts reach their final states. Furthermore, a deferred team bonus may be
promised to all the participants to promote good cooperation between different actors
in the process.

As explained in Sect. 4.2, each incentive scheme is vulnerable to the elaborate
forms of dysfunctional behavior. In our case, this can be a particular problem, as
workers are mostly expected to apply/bid for processing the artifacts themselves,
allowing them to coordinate and use different strategies to fool the system. This is
why it is very important to foresee and handle these situations. Different methods
are deployed to fight this kind of behavior:

• Combination of incentives. If we can foresee the negative application effects of a
single incentive mechanism, then we can also construct new incentive mechanism
to discourage this kind of behavior.

• Commitment protocols. Offering different commitment protocols restrictsworkers
from maliciously obtaining the benefits on account of other collaborators [7].

• Semi-activeworker selection and randomization. This presupposes initially choos-
ing the suitable (reputable) workers, and allowing only them to bid for tasks. Addi-
tionally, a non-best bid may be randomly chosen to discourage fixing of prices.

• Sealed-bid auctions. They prevent bidders from seeing the offered prices of others.

This short discussion demonstrates why incentive mechanisms need to be specified
at various finer-grained levels, rather than at the business process level only. In fact,
we can identify the following dimensions/levels for which incentive mechanisms
should be definable:

• State-dependent incentive mechanisms. Mechanisms associated with a state of
the artifact. The state can be represented not only by a “real” state in the life-
cycle model, but also by a combination of values of different metrics, such as:
current quality, the number of past contributors, current price, urgency, accuracy,
importance, etc.

• Temporal incentive mechanisms.Mechanisms conditioning the rewarding action
with temporal constraints, e.g., reward may increase as a deadline approaches.

• Artifact-interdependent incentive mechanisms. Mechanisms allowing users to
specify other artifacts to be processed together/dependently/independently (or in
different patterns) with this artifact; or, make the reward payment dependent on
the outcome/state of another artifact. These incentives would stimulate the crowd
to self-organize and loosely follow the data and control flow we envisaged.

Supporting Multilevel Incentive Mechanisms … 99

• Personal incentive mechanisms on:

– Individual level.Mechanisms targeting individuals, or intended to attract specific
types of workers (e.g., experienced, efficient, creative, reputable)

– Team level. Mechanisms designed to promote team efforts on the artifact, e.g.,
by promising team-based rewards.

3 Requirement Analysis

In Sect. 3.1 we will further analyze these abstraction dimensions, and formulate
requirements for designing a novel incentive mechanism model to cover them. This
model is meant to extend the conventional lifecycle model of the business artifacts.
In Sect. 3.2 we will then introduce and analyze a set of crucial requirements for
building and managing sustainable crowdsourcing careers over longer periods of
time and different employment providers.

3.1 Requirements for Artifact’s Incentive Model

3.1.1 State-Dependent Incentive Mechanisms

Finite statemachines are themost commonly used formalism to describe the lifecycle
model of an artifact due to their expressiveness, comprehensible semantics and tool
support.Consequently, it comesnatural to use artifact states in conditions for applying
incentive mechanisms. However, since most artifacts are documents intended to be
processed by humans, their lifecycle models need to be kept reasonably simple. This
means that we often lack the fine granularity needed for expressing an incentive
condition.

This is why we propose that, apart from the artifact’s regular lifecycle states
visible to humans and used for guiding the business process—hard states, a set of
machine-processable soft states for regulating incentives also be specified. Soft states
could be defined as sub- or super-states of existing states that contain no entry or exit
transitions, but are ‘entered’ whenever the lifecycle model is in the associated hard
state and the entry predicate for the soft state holds true.

Entry predicates would allow us to specify various metric thresholds as condi-
tions for applying an incentive mechanism. In our motivation example, this would
allow us to introduce a metric transCnt that would keep count of the number of
transitions between CUSTOMER_APPROVED and IN_PROGRESS hard-states
of the FSD artifact. A super-softstate DISAGREEMENT, comprising both CUS-
TOMER_APPROVED and IN_PROGRESS can be defined with the entry predicate:
transCnt > 5 (Fig. 2). Detecting that there is a disagreement on the functional speci-
fication between the requirements engineer and the developer is an important fact to

100 O. Scekic et al.

IN_PROGRESS

CUSTOMER_APPROVED

DEVELOPER_APPROVED

dev_reject/

cust_approve

dev_approve

DISAGREEMENT

Fig. 2 State-dependent incentives. Soft states are outlined with the dashed line

consider when deciding which incentive mechanisms to apply. In our case, entering
the DISAGREEMENT state could be used as signal for applying an incentive mech-
anism that will help resolve the issue, e.g., by promising a penalty if the agreement
is not met in a specified time, or by discontinuing the engagement of the workers.

Of course, incentive conditions could be specified just as predicates for the purpose
of constructing incentive mechanisms, i.e., without introducing the notion of soft
states. However, conceptualizing the conditions as states and associating them with
hard states forces incentive designers to use the artifact-centric paradigm, reducing
the number of possible conditions andmaking them addressable entities in themodel.
Also, in order to exhibit effect, certain incentive mechanisms must be presented in
advance to the workers. In these situations it is helpful to have a limited number of
incentive conditions associated with artifact states, making the incentives transparent
and understandable to workers.

However, the main advantage of this approach is separation of concerns; while
an artifact’s hard states can be standardized for use throughout different companies,
company-specific soft states can be defined to support specific incentives and applied
to existing artifact lifecycle models without affecting their primary usage.

3.1.2 Temporal Incentive Mechanisms

Including temporal dimension in the artifact’s lifecycle model is essential, as incen-
tivemechanisms exhibit their effects only if promised in advance and applied upon an
action is completed. Furthermore, it is essential to be able to encode proper/expected
ordering of events leading to a reward or punishment, or to detect activities taking
too much time. Therefore, the time management must include both time-interval
semantics, as well as the event ordering.

A way to meet these requirements would be incorporating the time model and the
operators of the Linear Temporal Logic (LTL). LTL operates on a simple, discrete,
linear time model, isomorphic to the set of natural numbers N. The time moments
(ticks) are therefore counted from the agreed ‘beginning of time’ onwards. The events

Supporting Multilevel Incentive Mechanisms … 101

Fig. 3 A temporal incentive
condition encoded in LTL

happen at ticks. Events and states are represented by logical propositions that can
treated with a set of temporal and standard logical operators.

While any platform-specific implementation of incentive mechanisms must
include time queries in some way, to the best of our knowledge, there are no known
systematic approaches to modeling temporal logic operators in the domain of incen-
tive management. In the area of BPM, on the other hand, we have seen successfull
attempts of including LTL into process models [19].

We propose introducing declarative LTL constructs for incentive mechanisms on
the artifact level by applying similar principles as in [19]. The LTL constructs can be
used to express temporal propositions for various incentive conditions. For instance,
looking back at our example, we can specify that after the HTML artifact gets into
the TESTER_APPROVEDstate, a BUG_REPORTartifact should never be approved
for a missing feature. Of course, in real systems, ‘never’ will have a limited duration,
after which the whole proposition should expire, e.g., after an iteration’s end (Fig. 3).

Another beneficial notion we suggest be introduced into the artifact lifecycle
model is the notion of iterations. Iterations are time intervals with just-in-time initial-
ization and finalization. They can be used for representing work phases meaningful
to humans that are inherently unstable, such as sick leave, working hours or project
phase. This means that we could define an iteration for the purpose of describing
that phase. However, when designing an incentive mechanism, we may not know
exactly when the iteration would start, nor when it would end. Therefore, we would
express the incentive conditions by using iterations, rather than ticks, and leave it
to the underlying system to signal the iteration’s starting and ending times and han-
dle the incentive execution. The iteration abstraction can be expressed in LTL, but
we suggest using it along with the standard LTL operators for simplifying the time
management as it corresponds better to the organization of human work.

Including declarative LTL constructs on the artifact level adds a new dimension
of expressiveness to the incentive mechanisms. In addition, the constructs can be
used for runtime monitoring of crowdsourcing platforms for specifying temporal
invariants.

3.1.3 Artifact-Interdependent Incentive Mechanisms

In complex collaborative efforts, such as software development processes, the life-
cycle of a single artifact cannot be considered independently of the states of other
artifacts in the business process. Therefore, it becomes imperative to formally capture
these dependencies in the lifecycle model.

102 O. Scekic et al.

Fig. 4 An example of artifact interdependency contexts (from [14])

We propose formalizing the dependencies among different artifacts so that they
can be used to express different incentive conditions. These conditions can then be
integrated into the incentivemodel used to augment the lifecyclemodel of the artifact.
To the best of our knowledge, the concept of relating the lifecycle states of different
artifacts to express incentive conditions has never been formally proposed before.

The paper [14] presents one possible formalism that could be adapted for such
a purpose. It enriches the conventional artifact lifecycle model by introducing the
notion of ‘state contexts’ and ‘context-aware state transitions’. The contexts are
defined graphically. Relationships between artifact and role entities in context def-
inition offer the expressiveness of the first-order predicate calculus. This allows us
to express the necessary artifact interdependencies. Figure4 (borrowed from [14])
displays an example of the graphical notation. For more information, the reader is
referred to the original paper.

For example, we could use this notation to express that the FSR needs to be
moved into the DEVELOPER_APPROVED state first in order for the HTML artifact
to move into the IN_PROGRESS state. But we can also use the same notation to,
for example, prevent a reward being paid if there is at least one bug report in the
unresolved state. The benefit of using a graphical notation that includes universal
and existential quantifiers is that it makes it easy for humans to specify and reuse
this type of conditions.

3.1.4 Personal Incentive Mechanisms

As each personality is different, a single incentive can never work the same way
on every person. The conventional approach when designing the incentives for a
particular crowd effort is to select those that suite best an average worker in the
targeted group. However, unless this group is large enough this approach may not
perform well. Indeed, in limited efforts, just a few participants with a particular

Supporting Multilevel Incentive Mechanisms … 103

interest or affinity for that task may contribute much more than the rest of the crowd
[21]. Therefore, for assembling small-scale teams focused on specific tasks/artifacts
it is important to identify and attract such individuals. One way of achieving this is
through personalized incentives.

For example, if we want to attract a promising, young software engineer to our
team, thenwe cannot expect him to be able to solve certain tasks as fast as an engineer
already experienced in that area. That is why we may be willing to value and reward
his effort levels rather than his speed. We may also tolerate certain errors (e.g., failed
code reviews, reopened bugs) and not penalize him, hoping to improve his engineer-
ing skills for future collaborations. On the other hand, employing an experienced
senior engineer implies paying him more, but also evaluating his performance on
speed and quality metrics.

Therefore, the artifact’s incentive model should offer different “incentive pack-
ages” (Fig. 5) that consider different metrics and promise different rewards appealing
to different groups of workers. Incentive packages are a way of including existing
research on modeling personal incentives (see [23]) into the new artifact-centric

State1 State2

cond
1 cond

2
cond

3

personalized
incentive
packages

lifecycle
model

data
model

Ar tifact

crowd
workers

Fig. 5 Personalized incentives help attract (groups of) workers with specific properties

104 O. Scekic et al.

paradigm. It should be possible to enable/disable incentive packages as needed, e.g.,
when enough workers apply for one incentive package, or when the reward money
runs out. Also, it should be possible to specify inter-package enabling conditions—
e.g., requiring a number of workers (non-)applying for another package first (or at
the same time). For instance, an incentive package targeting a team lead should be
enabled only if the packagemeant to attract developers managed to attract a sufficient
number of appropriate candidates.

Incentive packages could in special cases target particular individuals rather than
groups. In this case, we can rely on the particular worker’s behavioral history to
infer (by machine learning) potentially interesting activities, tasks and collaborators
to the worker. If the artifact’s lifecycle model foresees a potentially favorable set of
conditions that could attract this particular worker, then a tailored incentive can be
offered to attract him to work on the artifact. Multiple individuals could be targeted
in parallel, but each worker could only claim the reward of his personal incentive
package.

An interesting example where this approach could be successfully used are the
so-called structural incentives, i.e., incentives that motivate people by promising to
establish certain social or professional collaboration relationships/patterns between
workers. For example, young professionals may find the possibility to collaborate
with renowned experts to be more attractive in a short term than a higher salary
because of the prestige associated with it. Similarly, the possibility to collaborate
with known and trusted collaborators from the past [25] may be the determining
factor in choosing to work on one artifact over another.

For example, by analyzing the code repository logswe could determine that devel-
oper A often collaborated with developers B and C on the same .java files, and that
they were often reviewing each other’s code submissions. Based on the code snippets
they were submitting, we can infer their common expertise, e.g., which databases or
libraries they used [26]. This gives us reason to believe that the same three persons
collaborating on a new project within their area of expertise are probably going to
be productive. For this reason, we may want to incentivize them to join our effort,
and put out three individual incentive packages targeting them. The incentive for
developer A could contain the condition that at least one of the other two developers
would also have to accept working on the artifact. The packages for developers B
and C would be similar.

It is probable that the developers A, B and C would more likely join an effort with
known collaborators. Therefore, the application of multiple personalized incentives
can also exhibit a significant group effect, while transferring the organizational and
motivational burden onto workers themselves, since they would be persuading each
other much more efficiently than an automated system could do.

While personal incentives can achieve powerful motivating effects, their expres-
siveness and limitations fully depend on the adopted underlying model of personal
incentives. However, rather than discussing the properties and limitations of the dif-
ferent existing personal incentive models, here we limit ourselves to suggesting how
the existingmodels can be integrated into the encompassing artifact-centric incentive
model.

Supporting Multilevel Incentive Mechanisms … 105

3.2 Requirements for Sustainable Crowdsourcing Careers

One of the biggest problems when dealing with incentives in crowdsourcing in gen-
eral (and especially with personal incentives) is selecting and defining metrics to
accurately describe current worker contributions and appropriately interpret past
performance in the current context. Solving this problem would in theory allow dif-
ferent employers to track and update the performance history of the crowd workers
in a uniform way, and allow the workers to use the reputation records with different
employers very much like CVs and recommendation letters are used today. We call
this (temporal and locational) transfer of reputation. The notion of transferable rep-
utation is one of the key enabling conditions for successful application of personal
incentives.

Unfortunately, defining a comprehensive set of metrics to cover so many aspects
of humanwork that would allow us to build a uniform record of one’s working history
is impossible. Even though, for certain highly-specific domains, it may be possible
to define referent metrics ontologies, in majority of real-life applications this is not a
viable solution, nor one that will likely get embraced by the employers. Furthermore,
a metric’s relevance may change with time.

This is why we suggest not to predefine specific metrics to be kept, but rather keep
a public history of worker’s performance and employ a reputation service for just-in-
time metric assessment as a cost-effective alternative to the development of dedicated
metrics. In this way, the ad-hoc invoked service would map a worker’s performance
records spanning a specified time period into a set of given, context-specific metrics
of interest to the current employer.

Different reputation service providers could offer different QoS at different prices,
according to the needs of the employer (Fig. 6). For example, for performing a simple
programming task, the employer may require “someone with basic programming
skills”. This means that the reputation service needs to return a metric indicating
whether a candidate has done programming before. A software web service that will
check the candidate’s activity metrics on sites such as StackOverflow, or recommen-
dations on sites such as LinkedIn can be employed here to return/calculate a rough
estimate of the worker’s reputation. However, the service will produce results imme-
diately, and will cost little. On the other hand, if the employer needs “an Informix
database security expert” in his team, then the employer may want to use a human-
based service (HBS) [24] employing subjective evaluations [23] from other software
developers who would be asked to review the candidate’s personal work history or
even his code from open-source projects. BetterQoS, though, would probably imply
longer invocation times and higher price. Invocation results should be appended to the
existing worker’s history, and serve as another piece of data valuable for future eval-
uations, especially for monitoring the development of worker’s skills and working
attitude.

106 O. Scekic et al.

Fig. 6 Reputation is evaluated from worker’s public history records and interpreted upon request
through reputation service

This approach would allow employer to keep using any internal labor metrics he
wants, while allowing transfer of reputation through shared activity history whose
meaning is mapped to particular metrics via the reputation service.

3.3 Requirements Summary

In previous sections we explored the different aspects we find worth of including in
a future incentive model for socio-technical/crowdsourcing systems. We presented
suggestions in form of requirements, providing simple, but illustrative examples as
justification, and discussing potential issues and benefits. Table1 presents a high-
level summary of this requirement analysis. Although non-exhaustive, it provides
a useful overview of the different levels at which incentives need to be addressed,
opening up space for more focused research.

Supporting Multilevel Incentive Mechanisms … 107

Table 1 Summary of requirements for supporting artifact-centric incentive mechanisms in crowd-
sourcing environments

Application level Motivation Proposed requirements

Incentive model level Artifact state Defining per-state
incentive mechanisms

Incentive conditions as
soft states

Time Expressing temporal
incentive conditions

Time-interval
semantics and event
ordering

Scheduling of deferred
rewarding actions

Iterations

Evaluating/mining
past work

Inter-artifact Allowing the states of
other artifacts
influence incentives
offered for processing
this artifact

Formalism for
expressing artifact
inter-dependencies

Worker(s) Attracting particular
individuals to work on
artifact

Personalized incentive
packages

Inter-package
dependencies

Transferring
organizational effort to
humans

Structural incentives

Inter-organizational
level

Spanning multiple
crowdsourcing
employers

Enabling transfer of
worker reputation
between employers

Public record of
worker performance

Creating favorable
conditions for
sustainable “careers in
the cloud”

Ad-hoc, (human-)
service-based
interpretation of the
metrics in current
context

4 Related Work

4.1 Artifact-Centric Business Process Modeling

Artifact-centric BPM, also known as ‘document-centric’ or ‘data-driven’ BPM has
attracted a lot of research attention in the past. Here we will review only a small
selection of fundamental papers that enable the reader to understand the background
and motivation for our approach.

One of the landmark ideas of the artifact-centric paradigm is that it is possible to
design workflow systems without explicit control flow, where the actual execution
is governed by the artifacts themselves, also serving as input as outputs. The paper

108 O. Scekic et al.

[30] presets a prototype implementation of a document-driven workflow system,
demonstrating the feasibility of this approach. In [18] the authors informally describe
the business artifact concept and its lifecycle models, while [1] introduces a formal
model and operational semantics. Authors of [8] analyze the problem of verification
of artifact behavior in operational models. The paper [16] presents a methodology
and patterns for building up real business operational models using artifacts. Finally,
[10] presents a comprehensive survey of the fundamental research on artifact-centric
BPM.

For an overview of more recent developments in the area, the reader is referred
to the following publications: [3, 4, 6, 11, 28, 29].

4.2 Incentives and Rewarding

Related work in the area of incentives originates mostly from economics, game the-
ory, organizational science and psychology. The principal economic theory treating
incentives today is the Agency Theory [2, 13]. Incentives are defined as the princi-
pal mechanism for aligning interests of business owners and workers. As a single
incentive always targets a specific behavior and induces unwanted responses from
workers [13], multiple incentives are usually combined to counteract the dysfunc-
tional behavior and producewanted results. Opportunities for dysfunctional behavior
increase with the complexity of labor, and so does the need to use and combine mul-
tiple incentives. The paper [20] presents a comprehensive review and comparison of
different incentive strategies in traditional businesses.

The number of computer science papers treating these topics is limited. Incen-
tives are discussed usually within particular, application-specific contexts, like peer-
to-peer networks, agent-based systems and human-labor platforms (e.g., Amazon
Mechanical Turk), rather than being considered at a general level. In [22] the aim
is to introduce appropriate incentives to maximize peer-to-peer content sharing. In
[31] the authors seek to maximize the extent of social network by motivating people
to invite others to visit more content. In [15] the authors try to determine quality of
crowdsourced work when a task is done iteratively compared to when it is done in
parallel. In [17] the authors investigate how different monetary rewards influence the
productivity of mTurkers. In [21] the authors compare the effects of lottery incentive
and competitive rankings in a collaborative mapping environment. In [9] the authors
analyze two commonly used approaches to detect cheating and properly validate
submitted tasks on popular crowdsourcing platforms.

An overview of typical incentives and rewarding practices in crowdsourcing sys-
tems can be found in [23, 27]. A common conclusion is that incentives used in today’s
social computing platforms aremostly limited to simple piece-rates thatmaybe suited
for simple task processing, but are inappropriate for the more advanced collaborative
efforts such as software development. However, both studies suggest that, depending

Supporting Multilevel Incentive Mechanisms … 109

on the environment, there exist appropriate types of incentives that combined together
should succeed in motivating and rewarding workers taking part in more complex or
intellectually more challenging labor activities.

5 Conclusion

We believe that, in order to support collaborative processes of increased complexity,
the crowdsourcing platforms will need to leverage human-based services to tackle
important challenges such as team formation, adaptability and runtime management
of collaboration processes. However, introducing humans into the loop requires spe-
cific methods for attracting, motivating and controlling humans. We suggested this
could be done with a combination of artifact-centric workflows and rich incentive
mechanisms. We then analyzed different aspects that an incentive mechanism model
for such systems should cover, and suggested integrating it into the artifact lifecycle
model to create encapsulated units that can be offered to the crowd for processing.
The novel artifact model would allow the crowd workers to independently drive the
processing in the envisioned direction and tackle the aforementioned challenges. The
result of our analysis is a set of requirements that the future systems should support,
ultimately providing a working environment that would promote fairness, worker’s
reputation transfer and ultimately, a fundamental step towards building a framework
for managing “careers in the cloud”.

References

1. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Business Process Manage-
ment, pp. 288–304. Springer, Berlin (2007). doi:10.1007/978-3-540-75183-0_21

2. Bloom, M., Milkovich, G.: The relationship between risk, incentive pay, and organizational
performance. Acad. Manag. J. 41(3), 283–297 (1998)

3. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business operations
and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

4. Damaggio, E., Hull, R., Vaculín, R.: On the equivalence of incremental and fixpoint semantics
for business artifacts with Guard-Stage-Milestone lifecycles. Inf. Syst. 38(4), 561–584 (2013).
doi:10.1016/j.is.2012.09.002

5. Dustdar, S., Truong, H.L.: Virtualizing software and humans for elastic processes in multiple
clouds—a service management perspective. Int. J. Next-Gener. Comput. 3(2), 109–126 (2012)

6. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business processes.
In: International Conference on Database Theory (ICDT ’09), p. 225 (2009). doi:10.1145/
1514894.1514922

7. Gal, Y., Grosz, B., Kraus, S., Pfeffer, A., Shieber, S.: Agent decision-making in open mixed
networks. Artif. Intell. 174(18), 1460–1480 (2010). doi:10.1016/j.artint.2010.09.002

8. Gerede, C., Su, J.: Specification and verification of artifact behaviors in business process
models. In: International Conference on Service-Oriented Computing (ICSOC 2007), pp. 181–
192 (2007)

9. Hirth, M., Hossfeld, T., Tran-Gia, P.: Analyzing costs and accuracy of validation mechanisms
for crowdsourcing platforms. Math. Comput. Model. (2012). doi:10.1016/j.mcm.2012.01.006

http://dx.doi.org/10.1007/978-3-540-75183-0_21
http://dx.doi.org/10.1016/j.is.2012.09.002
http://dx.doi.org/10.1145/1514894.1514922
http://dx.doi.org/10.1145/1514894.1514922
http://dx.doi.org/10.1016/j.artint.2010.09.002
http://dx.doi.org/10.1016/j.mcm.2012.01.006

110 O. Scekic et al.

10. Hull, R.: Artifact-centric business process models: brief survey of research results and chal-
lenges. In: On the Move to Meaningful Internet Systems (OTM), pp. 1152–1163 (2008)

11. Hull, R.: Towards flexible service interoperation using business artifacts. In:15th IEEE Inter-
national Conference on Enterprise Distributed Object Computing (EDOC), pp. 20–21. (2011).
doi:10.1109/EDOC.2011.27

12. Kaganer, E., Carmel, E., Hirschheim, R., Olsen, T.: Managing the human cloud. MIT Sloan
Manag. Rev. 54(2), 22–32 (2013)

13. Laffont, J.J., Martimort, D.: The Theory of Incentives. Princeton University Press, New Jersey
(2002)

14. Liptchinsky, V., Khazankin, R.: A novel approach to modeling context-aware and social col-
laboration processes. In: 24th International Conference on Advanced Information Systems
Engineering (CAiSE’12). Springer, Gdansk (2012). doi:10.1007/978-3-642-31095-9_37

15. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Exploring iterative and parallel human
computation processes. In: Proceedings of the ACM SIGKDD Workshop on Human Compu-
tation, HCOMP’10, pp. 68–76. ACM, New York(2010). doi:10.1145/1837885.1837907

16. Liu, R., Bhattacharya, K., Wu, F.: Modeling business contexture and behavior using business
artifacts. In: J. Krogstie, A. Opdahl, G. Sindre (eds.) Advanced Information Systems Engineer-
ing. Lecture Notes in Computer Science, vol. 4495, pp. 324–339. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-72988-4_23

17. Mason, W., Watts, D.J.: Financial incentives and the performance of crowds. In: Proceedings
of the ACM SIGKDD Workshop on Human Computation (HCOMP’09), vol. 11, pp. 77–85.
ACM, Paris(2009). doi:10.1145/1600150.1600175

18. Nandi, P., Kumaran, S.: Adaptive business objects—a new component model for business inte-
gration. In: Proceeding of the 7th International Conference on Enterprise Information Systems
(ICEIS’07), pp. 179–188. Miami(2005)

19. Pesic, M., Schonenberg, H., van der Aalst, W.M.: DECLARE: full support for loosely-
structured processes. In: 11th IEEE International Conference on Enterprise Distributed Object
Computing (EDOC’07), pp. 287–287. IEEE (2007). doi:10.1109/EDOC.2007.14

20. Prendergast, C.: The provision of incentives in firms. J. Econ. Lit. 37(1), 7–63 (1999). http://
www.jstor.org/stable/2564725

21. Ramchurn, S., Huynh, T., Venanzi,M., Shi, B.: Collabmap: crowdsourcingmaps for emergency
planning. In: Proceedings of the ACMWeb Science, Paris, France (2013). http://eprints.soton.
ac.uk/350677/

22. Sato, K., Hashimoto, R., Yoshino, M., Shinkuma, R., Takahashi, T.: Incentive mechanism con-
sidering variety of user cost in P2P content sharing. In: Global TelecommunicationsConference
(IEEE GLOBECOM ’08), pp. 1–5. IEEE (2008). doi:10.1109/GLOCOM.2008.ECP.426

23. Scekic, O., Truong, H.L., Dustdar, S.: Incentives and rewarding in social computing. Commun.
ACM 56(6), 72 (2013). doi:10.1145/2461256.2461275

24. Schall, D., Dustdar, S., Blake, M.B.: Programming human and software-based web services.
Computer 43(7), 82–85 (2010). doi:10.1109/MC.2010.205

25. Schall, D., Skopik, F., Psaier, H., Dustdar, S.: Bridging socially-enhanced virtual communities.
In: Proceedings of the ACM SAC 2011 (2011)

26. Teyton, C., Falleri, J.R., Blanc, X.: Mining library migration graphs. In: 19th Conference on
Reverse Engineering, pp. 289–298. IEEE (2012). doi:10.1109/WCRE.2012.38

27. Tokarchuk, O., Cuel, R., Zamarian, M.: Analyzing crowd labor and designing incentives for
humans in the loop. IEEE Internet Computing, pp. 45–51. (2012). doi:10.1109/MIC.2012.66

28. Vaculin, R., Heath, T., Hull, R.: Data-centric web services based on business artifacts. In:19th
International Conference on Web Services (ICWS’12) (1), 42–49 (2012). doi:10.1109/ICWS.
2012.101

29. Vaculin, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declarative business
artifact centric modeling of decision and knowledge intensive business processes. In: 15th
International Conference on Enterprise Distributed Object Computing (EDOC’11), pp. 151–
160. IEEE (2011). doi:10.1109/EDOC.2011.36

http://dx.doi.org/10.1109/EDOC.2011.27
http://dx.doi.org/10.1007/978-3-642-31095-9_37
http://dx.doi.org/10.1145/1837885.1837907
http://dx.doi.org/10.1007/978-3-540-72988-4_23
http://dx.doi.org/10.1145/1600150.1600175
http://dx.doi.org/10.1109/EDOC.2007.14
http://www.jstor.org/stable/2564725
http://www.jstor.org/stable/2564725
http://eprints.soton.ac.uk/350677/
http://eprints.soton.ac.uk/350677/
http://dx.doi.org/10.1109/GLOCOM.2008.ECP.426
http://dx.doi.org/10.1145/2461256.2461275
http://dx.doi.org/10.1109/MC.2010.205
http://dx.doi.org/10.1109/WCRE.2012.38
http://dx.doi.org/10.1109/MIC.2012.66
http://dx.doi.org/10.1109/ICWS.2012.101
http://dx.doi.org/10.1109/ICWS.2012.101
http://dx.doi.org/10.1109/EDOC.2011.36

Supporting Multilevel Incentive Mechanisms … 111

30. Wang, J., Kumar, A.: A framework for document-driven workflow systems. In: W.M. van der
Aalst, B. Benatallah, F. Casati, F. Curbera (eds.) Proceedings of International Conference on
Business Process Management (BPM’05). Lecture Notes in Computer Science, vol. 3649,
pp. 285–301. Springer (2005). doi:10.1007/11538394_19

31. Yogo,K., Shinkuma,R., Takahashi, T.,Konishi, T., Itaya, S.,Doi, S.,Yamada,K.:Differentiated
Incentive Rewarding for Social Networking Services pp. 169–172 (2010). doi:10.1109/SAINT.
2010.65

http://dx.doi.org/10.1007/11538394_19
http://dx.doi.org/10.1109/SAINT.2010.65
http://dx.doi.org/10.1109/SAINT.2010.65

An Evolutionary and Automated Virtual
Team Making Approach for Crowdsourcing
Platforms

Tao Yue, Shaukat Ali and Shuai Wang

Abstract Crowdsourcing has demonstrated its capability of supporting various
software development activities including development and testing as it can be seen
by several successful crowdsourcing platforms such as TopCoder and uTest. How-
ever, to crowd source large-scale and complex software development and testing
tasks, there are several optimization challenges to be addressed such as division of
tasks, searching a set of registrants, and assignment of tasks to registrants.Since in
crowdsourcing a task can be assigned to registrants geographically distributed with
various backgrounds, the quality of final task deliverables is a key issue. As the first
step to improve the quality, we propose a systematic and automated approach to
optimize the assignment of registrants in a crowdsourcing platform to a crowdsourc-
ing task. The objective is to find the best fit of a group of registrants to the defined
task. A few examples of factors forming the optimization problem include budget
defined by the task submitter and pay expectation from a registrant, skills required by
a task, skills of a registrant, task delivering deadline, and availability of a registrant.
We first collected a set of commonly seen factors that have impact on the perfect
matching between tasks submitted and a virtual team that consists of a selected set of
registrants. We then formulated the optimization objective as a fitness functionłthe
heuristics used by search algorithms (e.g., Genetic Algorithms) to find an optimal
solution.We empirically evaluated a set of well-known search algorithms in software
engineering, along with the proposed fitness function, to identify the best solution
for our optimization problem. Results of our experiments are very positive in terms
of solving optimization problems in a crowdsourcing context.

T. Yue (B) · S. Ali · S. Wang
Certus Software V&V Center, Simula Research Laboratory, Oslo, Norway
e-mail: tao@simula.no

S. Ali
e-mail: shaukat@simula.no

S. Wang
e-mail: shuai@simula.no

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_7

113

114 T. Yue et al.

1 Introduction

Crowdsourcing software engineering is gaining more and more attention these days
as increasing number of companies start looking for an innovative way to develop
software and conducting other software engineering activities such as testing. The
main reason is that the cost can be significantly reduced.Moreover some crowdsourc-
ing platforms such as Topcoder1 and UTest2 have shown their success and a large
number of registrants of these platforms form a large virtual pool for performing
tasks virtually. However, to compare with traditional software development prac-
tices, crowdsourcing software engineering is still at its early stage, which leaves a lot
of space for research. Especially large-scale software engineering on crowdsourcing
platforms are facing a lot of challenges, one of which is how to decompose, schedule
and integrate tasks such that the overall quality and productivity can be maintained
as they are developed in a traditional software development environment.

Towards supporting large-scale, crowdsourcing software engineering, in this
chapter, we propose a search-based approach, along with a series of experiments
to demonstrate how search-based software engineering can be applied to address
optimization problems in crowdsourcing software engineering. In this chapter, we
particularly focus on assisting platform managers to form a virtual team on a crowd-
sourcing platform for a submitted task such that the overall quality and productivity
of performing this task can be ensured to a certain extent. This is an optimization
problem as there are some constraints to find such a virtual team. For example, the
cost to hiring the team members of the virtual team should be within the budget,
the task should be completed within certain duration, and the task should match the
background of the virtual team members.

The core of Search Based Software Engineering (SBSE) are search algorithms
(e.g., Genetic Algorithms mimicking natural selection process) that can efficiently
find optimal solutions to the problems that have large complex search spaces. Typical
examples of such problems in software engineering include: optimal allocation of
requirements, optimal architecture design, test case generation, and test optimization.
According to the comprehensive review of Harman et al. [11], SBSE has been exten-
sively investigated to address various software engineering problems spanning from
requirements, testing to reengineering of a typical software development lifecycle.
Particularly for requirements, SBSE has been applied for various optimization prob-
lems such as requirements selection [6], prioritization [7], and assignment [10, 14],
with different objectives such as maximizing customers’/stakeholders’ satisfaction,
maximizing benefits/value and minimizing cost. For testing SBSE has been applied
to successfully address test generation and test optimization problems [1, 11]. To the
best of our knowledge, SBSE has never been applied to address optimization issues

1http://www.topcoder.com/.
2http://www.utest.com/.

http://www.topcoder.com/
http://www.utest.com/

An Evolutionary and Automated Virtual Team Making … 115

existing in crowdsourcing. In this paper, we mainly present a pilot study we recently
conducted to demonstrate that SBSE can also be applied for addressing optimization
issues in crowdsourcing.

The rest of paper is organized as follows. Section2 provides the overview of our
approach. Section3 presents a conceptual model that formalizes key elements of our
approach. In Sect. 4, our search-based crowdsourcing methodology and results of the
experiment we conducted to evaluate the fit-ness function, the key element of our
search-based crowdsourcing methodology. Section5 discusses the threats to validity
of our experiments and we conclude the paper and discuss the future work in Sect. 6.

2 Overview

In this section, we provide an overview of the approach we propose in this paper
and its extensions for future, as shown in Fig. 1. We classify stakeholders that are
relevant to a crowdsourcing platform into four groups: Task Submitter, Crowd, Plat-
form Manager and Virtual Team. A task submitter is a person who submits a task
through the crowdsourcing platform and looks for a virtual team (from the crowd) to
complete the task. A platform manager (employee of the crowdsourcing platform) is
assigned tomanage the task (including assisting the formation of the virtual team and
negotiation between the task submitter and the crowd) on the behalf of the crowd-
sourcing platform. The virtual team is formed by selecting a group of registrants of
the crowdsourcing platform who expressed their willing to complete the task via the
crowdsourcing platform.

Our objective is to propose a solution, integrated as part of the services provided
by the crowdsourcing platform, to assist the platform manage to form a virtual team
according to the requirements from the task submitter (provided as part of the task
description) at the same time satisfying the expectation of the virtual team members.
In other words, such a solution aims to find a match between the task submitter
side and the virtual team members. Doing so, we believe, will indirectly improve
the quality and productivity of software development activities via a crowdsourcing
platform.

In Fig. 1, we highlight the key features, properties and technologies to apply of
our solution. It is important to notice that such a solution is Generic in the sense that
it is not specific to a particular type of task that a crowdsourcing platform can provide
such as testing. Therefore, the solution can be widely applied in any crowdsourcing
platform, as far as we can see.

The first key component of our solution is to provide a set of specificationmethod-
ologies for task submitters to specify tasks (including budget, duration, task content,
requirements) and for an individual to define her/his profile (e.g., experience, skills).
Such specification methodologies ideally should be easy to use for end users (in our
context, task submitters, crowd and platform manager). Submitted tasks and crowd
profiles specified using these methodologies could then be automatically collected,

116 T. Yue et al.

Fig. 1 Overview

analyzed to serve other components of the platform such as the automated formation
of fitness functions.

After all these information are collected by the crowdsourcing platform, our solu-
tion is then ready to take a task submitted by a task submitter and automatically
propose a solution, which is a virtual team selected from the crowd. The platform
manager can then coordinate the virtual team and the task submitter to complete the
task. We rely on search-based optimization methodologies to automatically identify
a virtual team that is optimal in the sense that in the scope of the crowd, the profiles
of the team members of the virtual team fit the requirements of the task best. It is
worth noting that search algorithms work together with carefully designed fitness
functions, which are used to guide search algorithms towards the direction of find-
ing an optimal solution. Such methodologies are Automated, Scalable and Efficient.
Details of the search-based methodologies will be provided in Sect. 4.1. In case that
all the required information to derive a fitness function for search algorithm can be
extracted automatically from the task specifications and crowd profile specifications,
the derivation of a fitness function can be Automated.

It is important to notice that we are not aiming to replace platform managers.
Instead, we aim to assist platformmanagers to better conduct their jobs. For example,
the process of identifying a virtual team from the crowd to perform a task, if it is
required to be manually done by a platform manager, she/he has to go through the
registrants’ profiles, their bids and try to, mostly based on their experience, to form
a virtual team that can complete the task submitted and satisfies the constraints such
as budget, time schedule and required expertise. One can instantly understand that
if the task is complex enough to require a virtual team with more than 10 members,
different expertise, and tight schedule, which is often the case for supporting large-
scale crowdsourcing software development, manually forming such a virtual team
satisfying all these constraints is simply unmanageable. Therefore, this inspires us
to pro-pose an automated, scalable, intelligent, robust and efficient solution to assist

An Evolutionary and Automated Virtual Team Making … 117

platform managers. In addition, our solution can be easily customized for catering
needs of various crowdsourcing platforms executing different business models.

Ideally a crowdsourcing platform should be able to provide an effective mecha-
nism to support the negotiation between a task submitter and the crowd in terms of
price, schedule, etc. The common practice is that a platformmanager plays the role to
coordinate the negotiation or bargaining process without any intelligent support from
the platform, which might lead to low productivity and therefore less customer satis-
faction. We however propose a simulation-based, intelligent negotiation/bargaining
process. Based on our search-based methodologies, we can instantly find a solution
that satisfies a set of constraints that are defined based on the results of a round of
negotiation. A new negotiation implies updating this set of constraints and there-
fore triggers the execution of our search-based optimization methodologies to find
another solution satisfying the updated set of constraints.

Depending on the business model adopted by a crowdsourcing platform, it might
be useful to make the formation of virtual teams, the negotiation process transpar-
ent to task submitters and the crowd as well. Doing so might somehow lead to a
healthier (virtual) working environment on the crowdsourcing platform and there-
fore indirectly contributing to a higher quality and productivity of the development
process via the crowdsourcing platform.

3 Conceptual Model

In this section, we formally specify concepts that are related to the method-ologies
we propose as a conceptual model in UML class diagram (Fig. 2). Each concept
is presented as a class and the relationships among concepts are captured as UML
associations or generalizations. From the figure, one can notice that we can clas-
sify stakeholders into three types: Registrant, Submitter, and Platform-
ProjectManager.
Registrant registered her/himself on the crowdsourcing platform and spec-

ified her/his profile accordingly. Such a Profile should contain a list of infor-
mation that is required to evaluate an individual based on his/her programming
language skills, natural language skills and rank at the platform, experience, etc.
It is important to notice that in our conceptual model, we capture the classifications
of expertise, programmingLanguageSkill and naturalLanguage-
Skill of a registrant’s profile as two enumerations: ExpertiseType,
ProgrammingLanguageType and NaturalLanguageType. Such enumer-
ations/classifications can be easily extended for different purposes. rankAtPlat-
form is an attribute of Profile that represents a rank of a registrant maintained
by the platform. A platform provides a mechanism to rank a registrant according
to her/his performance, which is usually evaluated by task submitters, and other
registrants who worked with this particular registrant. Experience of a regis-
trant is calculated based on the types of tasks that the registrant has completed
via the platform. averagePaymentPer-Task is derived from the information

118 T. Yue et al.

Fig. 2 General conceptual model

maintained by the platform as it has records all the payments that have been done for
the registrant. successRate is another factor that should be accounted for when
evaluating a registrant. It represents the rate of the successful task delivered via the
platform.

Another important concept is Task, which captures the task Description,
Duration, etc. We defined an enumeration TaskType to classify different
types of tasks including Requirements, Architecture, Development,
Testing and Assembly, which can be easily extended when needed. When a
task submitter submits a task, as part of the specification of the task, she/he has
to also define requiredExpertise, requiredNaturalLanguageSkill,
requiredProgrammingLanguageSkill, which are classified using the enu-
merations (ExpertiseType, ProgrammingLanguageType and Natural-
LanguageType) also referenced by three attributes of a registrant’s profile. There-
fore, it is easy to understand that ideally an optimal solution should match required
expertise and skills of a task and profiles of the virtual team members. Besides
these six attributes of class Task, we also capture Region, IndustryDomain,
ApplicationType and DeliverableType, which are useful information
needed to form a virtual team to finish a task. Two other important pieces of infor-
mation that are associated to a task are ExpectedTeamSize and Budget, which
are provided by a task submitter while submitting a task, which are constraints in
terms of forming a virtual team. The size of a formed virtual team should be within
the range of the expected team size of a submitted task and the budget should be
sufficient to pay the virtual team members.

An Evolutionary and Automated Virtual Team Making … 119

Fig. 3 Conceptual model for testing

After a virtual team is formed, a project is then created in the platform. Such a
project should define the real cost to complete a task and time required to finish the
task. Such information is used by a fitness function used by search-based algorithms
to find an optimal solution. Bid plays an important role in most of existing crowd-
sourcing platforms such as TopCoder by linking a registrant to a specific task. Bids
submitted by registrants for a task are used to check whether the cost to form a virtual
team (i.e., the sum of the bids submitted by the virtual team members) is within the
budget range of the task submitter.

Note that the conceptual model presented in Fig. 2 is generic and therefore not
targeting to any specific type of tasks. However, since it is generic, we show an exam-
ple (Fig. 2) how it can be extended for conducting a specific task. In the context of
Fig. 2, our general conceptual model is extended for capturing concepts for conduct-
ing testing tasks. For example, crowdsourcing platform UTest is a platform focusing
on testing tasks only. From Fig. 3, one can notice that for testing, four new enumera-
tions are defined to extend four enumerations defined in Fig. 2. By doing so, we can
extend the generic platform into a specialized one by introducing more specialized
information such as TestingType. Besides introducing additional enumerations,
we also define two next concepts (i.e., TestingTask and Tester) to extend
generic concepts Task and Registrant.

4 Search-Based Crowdsourcing Methodologies

According to the comprehensive review of Harman et al. [11], Search Based Soft-
ware Engineering (SBSE) has been extensively investigated to address various soft-
ware engineering problems spanning from requirements, testing to reengineering
of a typical software development lifecycle. Particularly for requirements, SBSE
has been applied for various optimization problems such as requirements selection

120 T. Yue et al.

[6], prioritization [7], and assignment [10, 14], with different objectives such as
maximizing customers’/stakeholders’ satisfaction, maximizing benefits/value and
minimizing cost. For testing SBSE has been applied to successfully address test gen-
eration and test optimization problems [1, 11]. To the best of our knowledge, SBSE
has never been applied to address optimization issues existing in crowdsourcing. In
this section, we mainly present a pilot study we recently conducted to demonstrate
that SBSE can also be applied for addressing optimization issues in crowdsourcing
and it is promising in a future to integrate such as an optimization methodology as
part of crowdsourcing platforms.

Themain challenge in proposing a SBSE solution is to propose and assess a fitness
function for the intended optimization problem. In the rest of the section, we propose
the fitness function for our crowdsourcing problem and evaluate the fitness function
in conjunction with the following search algorithms, i.e., Genetic Algorithms (GAs),
(1+1) Evolutionary Algorithm (EA), Alternating Variable Method (AVM). Random
Search (RS)was used as the baseline to evaluate the performance of these algorithms.

4.1 Description on Selected Search Algorithms

The most common search algorithms that have been employed for SBSE are evolu-
tionary algorithms, simulated annealing, hill climbing (HC), ant colony optimization,
and particle swarm optimization [8]. Among these algorithms, HC is a simpler, local
search algorithm. The SBSE techniques using more complex, global search algo-
rithms are often compared with the techniques based on HC and random search to
determinewhether their complexity is warranted to address a specific SBSE problem.
The use of the more complex search algorithm may only be justified if it performs
significantly better than, for instance, random search.

To use a search algorithm, a fitness function needs to be defined. The fitness
function should be able to evaluate the quality of a candidate solution (i.e., an element
in the search space). The fitness function is problem dependent, and proper care needs
to be taken for developing adequate fitness functions. The fitness function will be
used to guide the search toward fitter solutions.

Below, we provide a brief description of the search algorithms that we used in the
pilot study and we will investigate more algorithms in the future. AVM was selected
as a representative of local search algorithms. GA was selected since it is the most
commonly used global search algorithm in SBSE [1]. (1+1) EA is simpler than GAs,
but in previous software testing work we found that it can be more effective in some
cases (e.g., see [3]). We used RS as the comparison baseline to assess the difficulty
of the addressed problem [1].

An Evolutionary and Automated Virtual Team Making … 121

4.1.1 Genetic Algorithms

Genetic Algorithms (GAs) are the most well-known [1] and are inspired by the
Darwinian evolution theory. A population of individuals (i.e., candidate solutions)
is evolved through a series of generations, where reproducing individuals evolve
through crossover and mutation operators. GAs are the most commonly used algo-
rithms and hence we do not provide further details; however an interested reader may
consult the following reference for more details [13].

4.1.2 (1+1) Evolutionary Algorithm

(1+1)EvolutionaryAlgorithm (EA) [9] is simpler thanGAs. In (1+1)EA, popu-lation
size is one, i.e., we have only one individual in the population and the individual is
represented as a bit string. As opposed to GAs, we do not use the crossover operator
but only rely on a bitwise mutation operator for exploring the search space. To
produce an offspring, this operator independently flips each bit in the bit string with
a probability (p) based on the length of the string. If the fitness of the child is better
than that of the parent (bit string of the child before mutation), the child is retained
for the next generation.

4.1.3 Alternating Variable Method

Alternating Variable Method (AVM) is a local search algorithm first introduced by
Korel [12]. The algorithm works in the following way: Suppose we have a set of
variables {v1, v2, vn}, we then try to maximize fitness of v1, while keeping the rest
of the variables constant, which are generated randomly. The search is stopped if a
solution is found; otherwise, if the solution is not found, butwe found aminimumwith
respect to v1, we switch to the second variable. Now, we fix v1 at the found minimum
value and try to minimize v2, while keeping the rest of the variables constant. The
search continues in this way, until we find a solution or we have explored all the
variables.

4.2 Problem Representation and Fitness Function

Our goal is to form a virtual team to complete a task within the budget specified
for a task by a submitter by accounting for an optimal matching between required
expertise, skills, and other relevant information with the team members’ experience,
expertise, skills and bids. The ultimate objective is to form a virtual team that should
work like in a real world in the sense that the real values of the virtual team should
be appreciated (reflected as payment received for the task) and deliver high quality
deliverables in a productive way. We believe, by doing so, the overall quality and

122 T. Yue et al.

productivity of software development via crowdsourcing platforms would be
improved. Moreover, we also expect this philosophy of forming a virtual teamwould
be very useful especially in the context of practicing large-scale software develop-
ment via crowdsourcing, as conducting large-scale software development tasks is
not anymore one person task. Teamwork in crowd should be taken into account for
managing and conducting this kind of tasks. The problem is more complicated if
we account for scheduling and dependencies among sub-tasks that are required to
be completed by more than one persons. To this end, a scalable, systematic task
scheduling, virtual team formation is a very important issue to tackle. In this paper,
we make a first step towards this direction.

Suppose we have a Crowd C with a set of m registrants C = {r1, r2, . . . , rm}.
A task submitter submits a task by defining the budget range: Budgetmin and
Budgetmax and team size range n: TeamSizemin and TeamSizemax .

TeamSizemin ≤ n ≤ TeamSizemax (1)

A solution would be a virtual team of registrants who bided for the task:
V = {r1, r2, rn}, where n ≤ m. Registrant i has a property defining his/her value
Valuei , which is calculated based on the four factors: SuccessfulRating(0 − 1),
CustomerRating(0 − 1), Experience(0 − 1), and PaymentHistory (average pay-
ment/task in the past).

Valuei =SuccessfulRating + CustomerRating + Experience + PaymentHistory

4
(2)

Notice that all these four values are normalized between 0 and 1. In the above
formula, we take average of all these four values and the resultant valuei will be
again between 0 and 1.

Each registrant i provides RBidi to complete the task. To form an optimal virtual
team, the solution must satisfy the following requirements: (1) Budget and team size
requirements; (2) A solution must provide a bid values for all registrants as much as
closer to their requested bids (fbidGap(n)); (3) Each registrant in a virtual team must
be assigned a bid which is fair according to his/her experience, ratings, and payment
history (fsimilarity(n)).

For optimization problem, our optimization parameter is Bidi corresponding to
registrant i . For the first requirement, for each registrant in a virtual team, a search
algorithm finds a bid value for each registrant (RBidi ≤ Bidi ≤ RBidi) such that:

Budgetmin ≤ �n
i=1Bidi ≤ Budgetmax (3)

For the second requirement, we calculate fbidGap(n), whose formula is shown
below, where we try to make the Bidi as close as possible to RBidi for each regis-
trant.

An Evolutionary and Automated Virtual Team Making … 123

fbidGap(n) = �n
i=1nor(|RBidi − Bidi |)

n
(4)

In the formula below, nor() is a normalization function, which is calculated as
nor(x) = x/(x + 1). We adopted this normalization function from the literature and
has proven to be more robust than other normalization functions in the context of
search-based software engineering [2, 3].

For the third requirement, we calculate fsimilari t y(n), which is calculated by the
following formula:

fsimilari t y(n) = �n
i=1nor(|V aluei ∗ Budgetmax − Bidi |)

n
(5)

Based on the above requirements, our fitness function can be formulated as below:

fFitness(n) = (fsimilarity(n) + xor(fbmax (n), fbmin(n)) + fbidGap(n))

3
(6)

where fbmax and fbmin are defined as follows:

fbmax (n) =
{

0, �n
i=1Bidi − Budgetmax ≤ 0

nor(�n
i=1Bidi − Budgetmax), �n

i=1Bidi − Budgetmax > 0
(7)

fbmin(n) =
{

0, Budgetmax − �n
i=1Bidi ≤ 0

nor(Budgetmax − �n
i=1Bidi), Budgetmax − �n

i=1Bidi > 0
(8)

4.3 Empirical Evaluation

This section discusses the experiment design, execution, and analysis of the eval-
uation of the fitness function with the four search algorithms for addressing our
optimization problem.

4.3.1 Experiment Design

The objective of our experiments is to evaluate proposed fitness function in con-
junction with the selected search algorithms in terms of solving our optimization
problem: Find a virtual team (v) of size n from crowd C of size m registrants, such
that v meets all budget and team size requirements of a project, each registrant must
obtain a bid that is closer to what was requested, and each registrant must obtain a
bid value that matches his/her ratings, experience, and payment history.

124 T. Yue et al.

4.3.2 Research Questions

In these experiments, we address the following research question:
RQ1: Are the search algorithms effective to solve our optimization problem, to

compare with RS?
RQ2: Among AVM, (1+1) EA and GA, which one fares best in solving our

optimization problem?

4.3.3 Selection Criteria of Search Algorithms and Parameter Settings

In our experiments, we compared four search algorithms: AVM, GA, (1+1) EA, and
RS (Sect. 4.1). AVM was selected as a representative of local search algorithms. GA
was selected since it is the most commonly used global search algorithm in search-
based software engineering [1]. We selected steady state GA with a population size
of 100 and a crossover rate of 0.75, with a 1.5 bias for rank selection. We used a
standard one-point crossover, and mutation of a variable is done with the standard
probability 1/n, where n is the number of variables. Different settings would lead to
different performance of a search algorithm, but standard settings usually perform
well [5]. (1+1) EA is simpler than GAs, but in previous software testing work we
found that it can be more effective in some cases (e.g., [3]). We used RS as the
comparison baseline to assess the difficulty of the addressed problem [1].

4.3.4 Artificial Problems Design

In addition, to empirically evaluate whether the fitness function defined in Sect. 4.2
really address our optimization problem, we created artificial problems inspired from
famous crowdsourcing platforms such as TopCode and uTest. Topcoder has 480,000
software developers, algorithmists, and digital designers, whereas Utest has 60,000
testers. Keeping this information, we created a crowd C of size 60,000 for our pilot
study. For each bidder in the crowd, we assigned random values for the four parame-
ters: Success f ul Rating, Customer Rating, Experience, and Payment History.
Each value ranges from 0 to 1.

After populating the crowd, we created projects with various characteristics. In
total, we created 6000 projects. The budget for each project ranged from 100USD C
10000USD with the increment of 100USD. Since each project can have a minimum
and maximum budget value, the minimum value was set to 10% less of the given
project budget and the maximum value was set to 10% more of the given project
budget. For example, if the given project is 100USD, then the minimum budget
would be 90 and maximum budget would be 110. For each project, we set a series
of number of team sizes, which are as: 2–4, 5–7, 8–10, 11–13, 14–16.

An Evolutionary and Automated Virtual Team Making … 125

For each project, we set the number of bidders into the following three classes:

• Low (20, 50, 80, 100)
• Medium (200, 300, 400, 500)
• High (1000, 2000, 3000, 4000)

For each bidder, we randomly generate a value for RBid from 0 to Budgetmax
teamSizemax

of a
project and tomake RBid fair based on the four parameters, i.e., Success f ul Rating,
Customer Rating, Experience, and Payment History, wemodified the generated
RBid as follows:

SuccessfulRating + CustomerRating + Experience + PaymentHistory

4

∗ Budgetmax

teamSizemax
(9)

Moreover, we restricted search algorithms to generate a bid value ranging from
0.5RBid–1.5RBid. The purpose was to avoid generating unrealistic bids values.

4.3.5 Statistical Tests

To compare the obtained results of the four search algorithms, theKruskal-Wallis test,
the Wilcoxon signed-rank test and the Vargha and Delaney statistics are used, based
on the guidelines for reporting statistical tests for randomized algorithms presented
in [3, 8].

To check if there are significant differences across the four algorithms, we first
performed the KruskalCWallis test. Obtained p-value indicates whether there is sig-
nificant difference among the four algorithms. However this test does not tell us
which algorithm is significantly different with which algorithm. Therefore, we fur-
ther performed the Wilcoxon signed-rank test to calculate a p-value for deciding
whether there is a significant difference between a pair of search algorithms. We
chose the significance level of 0.05, which means there is a significant difference if
a p-value is less than 0.05.

As investigated in [3], it is not sufficient to interpret results only using p-values. To
better interpret the results, the statistical test resultsmust be interpreted in conjunction
with an effect size measure, which helps determining practical significance of the
results. We used the Vargha and Delaney statistics (Â12) to calculate the effect size
measure, which is selected based on the guidelines proposed in [3]. In our context,
given the fitness function FS (fFitness(n)), Â12 is used to compare the probability of
yielding highest fitness value (low FS value) for two algorithms A and B. If Â12 is
equal to 0.5, the two algorithms are equivalent. If Â12 is more than 0.5, it means the
first algorithm A has higher chances of obtaining higher fitness value than B.

126 T. Yue et al.

4.3.6 Experiment Execution

For each of the 100 artificial problems, we ran experiments 100 times for each of
the four search algorithms for each problem. We let all the four algorithms run up to
2000 generations for each problem and collected final fitness value calculated in the
2000th generation. We used a PC with Intel Core Duo CPU 2.20 GHz with 4 GB of
RAM, running Linux Ubuntu operating system for the execution of experiment.

4.3.7 Results and Analysis

To answer our research questions, we compared the three search algorithms with RS
based on mean fitness values achieved after 2000 generations for each algorithm and
each of the 100 problems. Recall that each problem was repeated for 100 times to
account for random variation.

Table1 provides the Vargha and Delaney statistics. The column A > B means
the number of problems out of 100 for which an algorithm A has higher chances of
obtaining higher fitness value than B, A < B means vice versa, and A = B means
the number of problems for which there were no differences between A and B as
Â12 equals to 0.5.

Table2 summarizes results of the Wilcoxon signed-rank test for RQ1 and RQ2.
The column A > B means the number of problems out of 100 for which an algorithm
A was significantly better than B, A < B means vice versa, and A = B means the
number of problems for which there were no significant differences between A and
B based on p-values calculated by the Wilcoxon test.

Results for RQ1
To answer RQ1, we compared each search algorithm with RS, based on the mean
fitness values of 100 runs obtained for each problem. Results for RQ1 are shown in
the first three rows of Tables1 and 2.

AVMversusRS:Aswe can see inTable1,AVMperformed better thanRS for 4045
problems but for 1889 problems the results were statistically significant (Table2).

Table 1 Results for the Vargha and Delaney Â12 statistics

Pair of Algorithms
(A vs. B)

A > B A < B A = B

RQ1 AVM versus RS 4045 1953 2

(1+1)EA versus RS 2847 3149 4

GA versus RS 2883 3115 2

RQ2 AVM vs (1+1)EA 4104 1892 4

AVM versus GA 4115 1880 5

(1+1)EA versus GA 2873 3127 0

An Evolutionary and Automated Virtual Team Making … 127

Table 2 Results for the Wilcoxon signed-rank test at significance level of 0.05-artificial problems

Pair of algorithms (A
vs. B)

A > B A < B A = B

RQ1 AVM versus RS 1889 28 4083

(1+1)EA versus RS 143 186 5671

GA versus RS 151 150 5699

RQ2 AVM vs (1+1)EA 1931 14 4055

AVM versus GA 1881 19 4100

(1+1)EA versus GA 156 158 5686

RS performed better for 1953 problems as shown in the first row of Table1, and there
were no significant differences for 4083 problems.

(1+1) EA versus RS: (1+1) EA performed better than RS for 2847 problems
(Table1), 143 problems out of which were significantly better than RS (Table2).
There were no significant differences for 5671 problems (Table2).

GA versus RS: In case of GA, it performed better than RS for 2883 problems
(Table1). Out of 2883, for 151 problems GA was significantly better than RS
(Table2). For 5699 problems there were no significant differences (Table2).

Concluding Remarks: Based on the above results, we can answer RQ1 as follows:
AVM is significantly better than RS for finding an optimal solution for our prob-
lem. For other two algorithms (GA and (1+1) EA), we didn’t observe significant
differences than RS.

Results for RQ2
The results to answer RQ2 are presented in the last three rows of Tables1 and 2.
These results are also based on the mean fitness values obtained for each problem
for each algorithm after running the problem 100 times.

AVM versus (1+1) EA: AVM performed better than (1+1) EA for 4104 problems
(Table1), but for 1931 problems it was significantly better than (1+1) EA (Table2).
AVM performed worse than (1+1) EA for 1892 problems (Table2) and in 14 out of
these 1892 problems (1+1) EA was significantly better than AVM (Table2). There
were no significant differences between the algorithms for 4055 problems as shown
in Table2.

AVMversusGA:AVMperformed better thanGA for 4115 problems (Table1) and
out of these 4115 problems AVM performed significantly better than GA for 1881
problems (Table2). AVM performed significantly worse than AVM for 19 problems
(Table2).

(1+1) EA versus GA: Regarding the (1+1) EA versus GA pair, as we can see from
Table2 that (1+1) EA was significantly better than GA for 156 problems, whereas
GA was significantly better than (1+1) EA for 158 problems. For the rest of the
problems, there were no significant differences.

Concluding Remarks: Based on the above results, we can answer RQ2 as follows:
AVM is the best algorithm in terms of finding an optimal solution in our context and

128 T. Yue et al.

the rest of the algorithms performed worse than AVM and there were no significant
difference between the performance of the three algorithms.

Discussion
In this section, we provide an overall discussion based on the results of the experi-
ments.

We observed from the results that AVM is significantly better than RS in finding
an optimal solution (RQ1) and for the rest of the algorithms there are no significant
differences than RS. Among all the studied algorithms, AVM is significantly better
than the rest of the algorithms (RQ2).

The performance of algorithms can be argued based on their working. AVMworks
is a local search algorithm. If the fitness function provides a clear gradient towards
the global optima, then AVM will quickly converge to one of them, which might
be the case for our current context. On the other hand, (1+1) EA puts more focus
on the exploration of the search landscape. When there is a clear gradient toward
global optima, (1+1) EA is still able to reach those optima in reasonable time, but
will spend some time in exploring other areas of the search space. This latter property
becomes essential in difficult landscapes where there are many local optima. In these
cases, AVM gets stuck and has to restart from other points in the search landscape.
On the other hand, (1+1) EA, thanks to its mutation operator, has always a non-zero
probability of escaping from local optima. Similar is the case for GA, which tries to
explore (mutation operator) and exploit (crossover) the search space and hence may
require more generations. By increasing the number of generations, we expect that
the performance of GA and (1+1) EA can be improved.

Based on the above results, we can conclude that in our current context AVM
has the ability to solve a wide range of problems. However, more experiments are
needed in the future to thoroughly evaluate our fitness function with the real data
from crowdsourcing platforms.

5 Threats to Validity

To reduce construct validity threats, we chose an effectiveness measure called fitness
value, which is comparable across all four search algorithms (AVM, (1+1) EA, GA
and RS. Furthermore, we used the same stopping criterion for all algorithms, i.e.,
number of generations. This criterion is a comparable measure of efficiency across
all the algorithms.

Themost probable conclusionvalidity threat in experiments involving randomized
algorithms is due to random variations. To address it, we repeated experiments 100
times to reduce the possibility that the results were obtained by chance. Furthermore,
we performed the Wilcoxon test to compare the algorithms mean fitness values of
100 runs and determine the statistical significance of the results. We chose this test
since it is appropriate for the continuous data [4], thus matching our situation. To
determine the practical significance of the results obtained, we measured the effect

An Evolutionary and Automated Virtual Team Making … 129

size using the Â12 values, which is recommended to be used in conjunction with the
Wilcoxon test to better interpret the results [3].

A possible threat to internal validity is that we have experimented with only
one configuration setting for the GA parameters. However, these settings are in
accordance with the common guidelines in the literature and our previous experience
on testing problems. Parameter tuning can improve the performance ofGAs, although
default parameters often provide reasonable results [5].

One common external validity threat in the software engineering experiments
is about generalization of results. To deal with this, we conducted an empirical
evaluation of our proposed fitness function using 6000 artificial problems of varying
complexity.

6 Conclusion and Future Work

To compare with traditional software engineering development, crowdsourcing soft-
ware engineering, especially for developing large-scale software, is still far away
from being mature. In this paper, we propose a search-based approach to make a
very first step toward this direction by providing an automated, scalable and intelli-
gent solution to assist platform managers to find an optimal solution when forming a
virtual team for a submitted task via a crowdsourcing platform.We conducted a pilot
study and results show that AVM is a promising search algorithm, together with the
defined fitness function, can efficiently find an optimal solution for our problems.
In the future, we plan to conduct more experiments based on real data that can be
collected from existing crowdsourcing platforms such as Topcoder and UTest. We
also plan to provide an integrated solution starting from specifying tasks and pro-
files of registrants, automatically collecting data for search, until providing feedback
to end users such as registrants, platform managers and submitters in a transparent
manner. By doing so, we hope, in certain extent, we can improve the quality and pro-
ductivityranking, repuation and reward system of the current practice of performing
soft-ware engineering tasks via crowdsourcing platforms.

References

1. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review of the appli-
cation and empirical investigation of search-based test case generation. IEEE Trans. Softw.
Eng. 36(6), 742–762 (2010)

2. Arcuri, A.: It does matter how you normalise the branch distance in search based software test-
ing. In: 2010 Third International Conference on Software Testing, Verification and Validation
(ICST), pp. 205–214. IEEE (2010)

3. Arcuri, A.: It really doesmatter howyou normalize the branch distance in search-based software
testing. Softw. Test. Verif. and Reliab. 23(2), 119–147 (2013)

130 T. Yue et al.

4. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized algo-
rithms in software engineering. In: 2011 33rd International Conference on Software Engineer-
ing (ICSE), pp. 1–10. IEEE (2011)

5. Arcuri, A., Fraser, G.: Search based software engineering. On Parameter Tuning in Search
Based Software Engineering, pp. 33–47. Springer, New York (2011)

6. Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The next release problem. Info. Softw.
Technol. 43(14), 883–890 (2001)

7. Baker, P., Harman, M., Steinhofel, K., Skaliotis, A.: Search based approaches to component
selection and prioritization for the next release problem. In: 22nd IEEE International Confer-
ence on Software Maintenance. ICSM’06. pp. 176–185. IEEE (2006)

8. Burke, E.K., Kendall, G.: Search Methodologies. Springer, New York (2005)
9. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+ 1) evolutionary algorithm. Theor.

Comput. Sci. 276(1), 51–81 (2002)
10. Finkelstein, A., Harman, M., Mansouri, S.A., Ren, J., Zhang, Y.: A search based approach to

fairness analysis in requirement assignments to aid negotiation,mediation and decisionmaking.
Requir. Eng. 14(4), 231–245 (2009)

11. Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: a comprehensive
analysis and review of trends techniques and applications. Technical Report Department of
Computer Science, Kings College London, TR-09-03 (2009)

12. Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng. 16(8), 870–879
(1990)

13. McMinn, P.: Search-based software test data generation: a survey. Softw. Test. Verif. Reliab.
14(2), 105–156 (2004)

14. Yue, T., Ali, S.: Applying search algorithms for optimizing stakeholders familiarity and balanc-
ing workload in requirements assignment. In: Proceedings of the 2014 Conference on Genetic
and Evolutionary Computation, pp. 1295–1302. ACM, New York (2014)

Collaborative Majority Vote: Improving
Result Quality in Crowdsourcing
Marketplaces

Dennis Nordheimer, Khrystyna Nordheimer, Martin Schader
and Axel Korthaus

Abstract Crowdsourcingmarkets, such asAmazon’sMechanicalTurk, are designed
for easy distribution of micro-tasks to an on-demand scalable workforce. Improving
the quality of the submitted results is still one of the main challenges for quality
control management in these markets. Although beneficial effects of synchronous
collaboration on the quality of work are well-established in other domains, inter-
action and collaboration mechanisms are not yet supported by most crowdsourcing
platforms, and thus, not considered as ameans of ensuring high-quality processing of
tasks. In this paper, we address this challenge and present a new method that extends
majority vote, one of the most widely used quality assurance mechanisms, enabling
workers to interact and communicate during task execution. We illustrate how to
apply this method to the basic scenarios of task execution and present the enabling
technology for the proposed real-time collaborative extension. We summarize its
positive impacts on the quality of results and discuss its limitations.

1 Introduction

Over the past few years, “Crowdsourcing” has evolved from a side issue to a success-
ful business model in the modern online world. The basic idea behind crowdsourcing
lies in outsourcing tasks to a large and undefined group of workers over the Internet

D. Nordheimer · K. Nordheimer (B) · M. Schader
Chair in Information Systems III, University of Mannheim, Schloss,
68131 Mannheim, Germany
e-mail: nordheimer@uni-mannheim.de

D. Nordheimer
e-mail: nordheimer@wifo.uni-mannheim.de

M. Schader
e-mail: martin.schader@uni-mannheim.de

A. Korthaus
College of Business, Victoria University International,
PO Box 14428, Melbourne, VIC 8001, Australia
e-mail: axel.korthaus@vu.edu.au

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_8

131

132 D. Nordheimer et al.

in the form of an open call [2]. Today, crowdsourcing is widely used in areas like
open innovation [1], competition markets [11], or collaborative knowledge creation.
By combining capabilities of humans and computers, it provides a powerful way to
solve complex problems that neither of them can solve alone [17].

In our paper, we focus on commercial crowdsourcing platforms like Amazon’s
Mechanical Turk (MTurk) that are designed for solving micro-tasks, such as data
categorization, image labeling, or product classification. These small tasks are usually
posted by requesters to a scalable workforce and can be done by any worker who
is allowed to perform the work. Because of the open nature of the crowdsourcing
platforms and the limited control over the workforce, the main challenge for quality
control management is to guarantee reliable results.

Until now, several quality assurance approaches have been developed for spe-
cific needs of crowdsourcing markets. One of the most widely used mechanisms
is majority voting [20, 21]. This method aggregates multiple results provided by
different workers on the same task in order to derive a single correct result or the
result with the highest probability of correctness [3, 6]. Obviously, majority vote is
suited only for quality control of a few task types that have a limited answer space
and one objectively correct solution. Another drawback is that, if the result is not
of the desired quality, the system will cause higher costs by assigning the same task
to other workers. However, the main weakness of majority vote lies in the fact that
good workers can be discouraged since correctly solved tasks can be voted down
by false results. By analyzing how workers on crowdsourcing platforms perceive
different quality assurance mechanisms, Schulze et al. found out that majority vote
is perceived as being unfair and should not be the criterion to decide whether workers
are paid or not [19].

Another commonly used quality assurance mechanism is peer review, also known
as validating review. This approach leverages a reviewer or a group of reviewers
verifying the submitted results [5]. In contrast to majority vote, this method can be
applied for quality control of non-deterministic tasks where different answers can be
considered valid, e.g., language translation or content creation. However, employing
reviewers who are usually more experienced workers causes more costs and requires
an additional effort in quality management. Since, again, false reviews can vote down
correct answers, peer review can demotivate goodworkers to perform such tasks [19].

There are several other approaches which are common practice for quality man-
agement on crowdsourcing marketplaces: Qualification tests or qualification restric-
tions can be applied to limit the worker pool to work on certain task types [4]. Gold
standard data sets (tasks with known answers) can bemixed into the stream of regular
tasks to establish the overall quality of results submitted by a worker [16]. Improving
peer reviews are used not only to provide a rating whether a result should be accepted
or rejected, but also to improve it [5].

To the best of our knowledge, all quality assurancemechanisms formicro-tasks do
not consider the collaborative aspects of working processes as a means for improv-
ing worker quality [8, 9]. Statistical quality control techniques (like dynamic major-
ity vote) even explicitly assume that workers must work independently and do not
collaborate with each other [7]. On the other hand, collaboration has for a long

Collaborative Majority Vote: Improving Result Quality in Crowdsourcing Marketplaces 133

time been known to be more beneficial than non-collaborative work because of
providing stronger socialization, better worker satisfaction and motivation, as well
as higher quality of produced results [8, 13, 14]. It also can assist to overcome differ-
ent viewpoints and skills of workers with different backgrounds as well as to reduce
understanding and interpretation issues regarding task description or task execution.
Finally, newer software technologies afford a new means toward the introduction
and the research of collaborative environments on crowdsourcing marketplaces.

Considering the above-mentioned challenges of quality control techniques and
the positive effects of collaboration on workers’ result quality, we propose to extend
the conventional quality assurance methods by providing collaborative capabilities
to working processes in crowdsourcing marketplaces. To simplify the solution and to
limit the scenarioswhere collaboration could be used, for this paper, we only focus on
majority vote as amethod for quality control of twomain types of tasks: deterministic
tasks (e.g., data categorization or image labeling) and non-deterministic tasks (e.g.,
content creation or language translation). As a first step in exploring the influence
of worker collaboration and interaction on the quality of the submitted results, we
want to answer the following research questions:

• How the traditional processing of tasks can be enhanced by collaborative capabil-
ities?

• What are the application scenarios for solving micro-tasks in a collaborative envi-
ronment?

To answer these questions, we describe a new method for quality management
on crowdsourcing marketplaces, called Collaborative Majority Vote (CMV), which
extends the traditional majority vote by enabling a certain number of workers to
simultaneously work as a group on the same task.

2 Related Work

With the emergence of crowdsourcing and its recognition as a successful business
model, a large research agenda has emerged in quality management focusing on find-
ing the best suited methods to ensure high quality results. Depending on specific task
types, recent efforts have taken several directions including manual verification of
results, use of redundancy to aggregate correct answers, or identification of spammers
and their exclusion from further task execution. However, existing quality assurance
approaches do not consider real-time collaboration between workers as a means of
improving the quality of results. Since the collaborative aspects of task execution
and their implications on overall quality have not yet been sufficiently studied in the
context of crowdsourcing marketplaces, we first analyze the main advantages and
limitations of collaboration that have already been established in other domains and,
then, project them into the context of quality control in crowdsourcing markets.

In the area of collaborativewriting,McCarthy et al. found out that the synchronous
collaboration on a document produces more natural responses than asynchronous

134 D. Nordheimer et al.

collaborative work [14]. Synchronous collaboration also helps to resolve misunder-
standings and differing assumptions between individuals with regard to specific task
settings. Comparing synchronous and asynchronous collaborative writing, Lowry et
al. stated higher quality of produced results at greater efficiency [13]. The authors also
reported that collaborativework provides stronger socialization, communication, and
higher worker satisfaction.

Examining exploratory web search as a collaborative activity, Morris discov-
ered that providing explicit support for collaboration leads to better coverage of the
relevant information space, higher worker confidence in the completeness and cor-
rectness of search results, and increases the productivity of the search process [15].

Although collaboration during work execution is the norm rather than the excep-
tion and its positive impacts on the quality of results arewell-established, interactions
between workers in most of the common crowdsourcing platforms are not supported
and collaboration mechanisms are usually absent [8]. As a result, only sporadic
research is dedicated to the analysis of collaboration aspects in the crowdsourc-
ing area. For measuring the crowdsourcing performance of MTurk, Kosinski et al.
assume the independency of task execution and point out that their results may not
hold by taking collaborative aspects into consideration and that further research in
this direction is needed [9].

Little et al. explored parallel and iterative human computation processes onMTurk
and compared the quality of the received results [12].While in the first case, thework-
ers performed their work independently of each other, in the second case, the work
was iteratively based on the others’ work outcomes. The experiment showed that
simply applying iterative processes to work execution already increases the overall
quality of results. In order to analyze potential benefits of collaboration, Kittur con-
ducted an experiment for the collaborative translation of a poem, in which workers
had the possibility to interact during task execution [8]. As enabling technology the
author used an open-source platform Etherpad that allows users to synchronously
edit the text, marks a worker’s contribution in a different color, and supports real-
time communication among workers. To evaluate the quality of the received results,
16 bilingual workers on MTurk were asked to rate the crowdsourced translation
by comparing it to the original poem translation. As result, 14 of 16 raters pre-
ferred the crowdsourced version to the original translation. Regarding the perception
of the collaborative process, workers found it enjoyable and rewarding to interact,
communicate with each other, and monitor contributions of participating workers.
The experiment shows that letting workers interact and collaborate while solving
the crowdsourced tasks can significantly improve the quality of results, the overall
performance, and their motivation.

In summary, the above-mentioned studies give good reasons and motivation for
analyzing the applicability of collaboration to solving micro-tasks and studying its
impacts on the quality of results.

Collaborative Majority Vote: Improving Result Quality in Crowdsourcing Marketplaces 135

3 Conceptual Model

This section describes the CMV approach, which is the main contribution of our
paper. The method enhances the traditional majority voting procedure with collab-
orative functionality in order to improve the quality of results without causing any
additional effort in quality management. After the assumptions related to task types,
worker pool, and platform settings are clarified in Sect. 3.1, the concept of CMV is
established by Sect. 3.2. Subsequently, the applicability of CMV for solving deter-
ministic and non-deterministic tasks is described in Sects. 3.3 and 3.4.

3.1 Assumptions

For the basic scenarios in our model, we consider commercial crowdsourcing mar-
ketplaces like MTurk that are designed for solving micro-tasks such as product clas-
sification, data validation, or picture annotation. On these platforms, requesters (e.g.,
businesses or developers) outsource tasks to a scalable group of workers. They pub-
lish so-called Human Intelligence Tasks, denoted by HITs = {h1, h2, . . . , hm}, a set
of m similar tasks of the same task type. Each h ∈ HITs can be flexibly selected and
solved by any worker from the worker pool W = {w1,w2, . . . ,wn} that is allowed
to perform the work. The results are then submitted back to the platform in return
for a small compensation per completed h. In case of deterministic tasks, only one
result is assumed to be correct. The answer set can be predefined and provided to
the workers or not. In contrast, for non-deterministic tasks multiple answers can be
considered valid. At this point, note that in our approach we are going to relax the
restriction of applicability of majority vote only to deterministic task types.

3.2 Collaborative Majority Vote

The traditional majority vote consists of three steps: assignment of the same task to
multiple workers, solving the task, and deduction of a single result on the basis of the
individual results submitted by theworkers. Obviously, in the second step theworkers
work independently on their solution for the given task and submit this back to the
platform. In the third step, the system alone is responsible for deriving valid results.
With regard to these aspects, our method implies some significant modifications.

Compared to traditional majority vote, the process flow in our model is covered
by four main phases according to the desired activities. In the first phase, a predefined
number of workers from the worker pool W is assigned to the same task h ∈ HITs.
This number of workers is often called redundancy level; it has a direct influence
on the quality of results to be derived in the last phase. For simplicity, we set the
redundancy level to 3 and do not consider any impacts of its changes on the result’s

136 D. Nordheimer et al.

quality in ourmodel. During the assignment process, various factors can be taken into
account, e.g., mixing experienced and non-experienced workers or filtering workers
according to additional task restrictions that could not be applied in qualification tests.
The assignment and handling of available HITs is performed by the crowdsourcing
platform.

In the second phase, the individual answers of assigned workers, e.g., w1,w2,w3,
are recorded. We denote this set of individual answers as a∗. In our case with three
workers, this set is equal to a∗ = {

a∗
w1
, a∗

w2
, a∗

w3

}
. Up to this point, the process is

similar to the traditional procedure, and if applying the conventional majority vote at
this stage, a single result can be simply derived by comparing the answers a∗

w1
, a∗

w2
and a∗

w3
.

In CMV, we introduce an additional decision phase where the workers have the
possibility to inspect the answers of other workers in the group, to communicate and
to discuss in real-time, and to change or confirm their initial submissions. During
this phase, each worker can observe the decision making process of the others. This
approach requires lightweight software technologies that allow synchronization of
browser contents between workers in real-time, and especially, with regard to co-
scrolling and co-form filling. Furthermore, workers can collaborate by using the
provided real-time chat that can be seen as a means to resolve misunderstandings,
to adduce evidences, to share own skills, to supervise and educate new workers,
or to clarify specific settings of a task. The enabling technology for this real-time
collaborative extension and its technical realization is described in Sect. 4. Once
collaboration was terminated, workers have to confirm or change their initial results,
and thus, a new set of answers can be recorded. We denote this set of collaboration-
based answers as a∗∗, i.e., in our case a∗∗ = {

a∗∗
w1
, a∗∗

w2
, a∗∗

w3

}
. Now, a single result

needs to be aggregated on the basis of a∗∗ in some common way; then, the task can
be considered solved.

According to the above-mentioned description of the process flow in CMV,
we mark its four phases as follows: Assignment, Individual Decision, Collabora-
tive Decision, and Result Determination. The overall design phase of CMV differs
depending on the task types, as well as on the number of possible valid responses
and is described below in Sects. 3.3 and 3.4.

3.3 Deterministic Tasks

Scenario I A simple scenario using CMV for quality control of deterministic tasks
is shown in Fig. 1. As described above, the process starts with the assignment of a
certain number of workers (here: wk−1 ∈ W,wk ∈ W,wk+1 ∈ W) to an available
task (here: hx ∈ HITs) and can then successively be applied to each task in HITs =
{h1, h2, . . . , hx , . . . , hm}. Afterwards, the workers in the group work on the task
independently of each other and individually submit their primary decisions (here:

a∗ =
{

a∗
wk−1

, a∗
wk
, a∗

wk+1

}
) back to the system. As soon as all answers are received,

Collaborative Majority Vote: Improving Result Quality in Crowdsourcing Marketplaces 137

Fig. 1 Process flow of CMV for deterministic tasks

theworkers are put in collaborative decisionmodewhere they can see a∗, the answers
of all other workers. In the ideal case, where all of delivered answers are equal, i.e.,
a∗

wk−1
= a∗

wk
= a∗

wk+1
, workers obviously do not need to collaborate at all. Thus,

they can quickly finish the task by confirming their initial answers, so that a∗ = a∗∗.
This step can be automatically executed by the system as well. In the last phase, the
system derives a single result ahx for the task hx by applying the traditional majority
vote to the answer set a∗∗.

Scenario II The real-time collaboration between workers during solving the same
task in a group opens up methodically new perspectives for quality assurance in
crowdsourcing marketplaces. Up to now, the traditional majority vote, in which a
single result is derived based on the comparison or aggregation of multiple results, is
exclusively performed by the system. This is because the workers, who provide these
results, are not related to each other. In contrast, the CMVmethod offers the workers
the opportunity to participate in this procedure. To facilitate this, the possibilities to
complete the task in the collaborative mode have to be tightened by an additional
restriction: After completing the collaboration, all replies must be identical, i.e.,
according to the notions in Scenario I, the collaboration-based answer set a∗∗ must
consist of only one item with a∗∗

wk−1
= a∗∗

wk
= a∗∗

wk+1
. In other words, the workers

have to agree on the same answer and accept it as their own. Afterwards, the given
task can be regarded as solved, and therefore, the system does not need to perform
any additional computations in a last phase. At this point, it is important to mention
that this scenario may lead to a more lively collaboration, and accordingly, result
in a better impact on the quality of the submitted results. In case of disagreement
with the majority, a worker can interrupt the task execution and a new worker can be
assigned the group.

138 D. Nordheimer et al.

3.4 Non-deterministic Tasks

Scenario III The application of the CMV approach to non-deterministic task types
differs from the previously described scenarios in the design of the collaborative
mode as well as in the result set that can be considered valid. Figure2 illustrates the
overall process flow of the CMV for quality control of non-deterministic task types.

Similar to the steps in Scenario I, after assigning the task hx ∈ HITs to a group
of workers and submitting the set of the primary replies workers have the possibility
to inspect the answers of other workers, to discuss their decisions, and to change
or confirm the initial submissions. Additionally, they now have the possibility of
rating answers accepted by other workers in the group, and thus, of stating whether
opposing results are valid or not. Identifying a reply as valid, the workers accept
this answer as their own so that it can be added to their answer sets. After providing
ratings, which are invisible to other workers, the set of collaboration-based answers

a∗∗ =
{

a∗∗
wk−1

, a∗∗
wk
, a∗∗

wk+1

}
can be recorded and submitted to the system for further

calculations in order to derive the final set of valid answers for the task hx , i.e.,
to determine ahx ⊆ a∗∗. In contrast to Scenario I, where the collaboration-based
replies in the set a∗∗ are single items, a∗∗

wk−1
, a∗∗

wk
, a∗∗

wk+1
are subsets of answers, and

therefore, marked in bold. This is also the case for ahx .
The next simple example explains the rating procedure in CMV for non-determi-

nistic task types: Assigned to the same task h1 ∈ HITs, the workers w1,w2,w3 have
already taken their collaboration-based decisions so that a∗ = a∗∗ = {

a∗∗
w1
, a∗∗

w2
, a∗∗

w3

}
where a∗∗

w1
= {a1} , a∗∗

w2
= {a2}, and a∗∗

w3
= {a3}, i.e., all workers have confirmed

their answer. Based on implications of the communication, the worker w1 states that
a2 can also be considered valid. This results in a∗∗

w1
= {a1, a2}. In contrast, worker

w2 identifies the other results as false. The worker w3 considers a1 to be correct so
that a∗∗

w3
= {a1, a3}. Table1 summarizes these rating results. In the next step, the

system aggregates the set of valid results by calculating the best rated answers, and
identifies that ah1 = {a1, a2}.

Fig. 2 Process flow of CMV for non-deterministic tasks

Collaborative Majority Vote: Improving Result Quality in Crowdsourcing Marketplaces 139

Table 1 Exemplary application of the rating process in CMV for non-deterministic tasks

a1 a2 a3

w1 valid valid false

w2 false valid false

w3 valid false valid

Obviously, by combining the collaboration, the real-time communication and the
rating procedure, the CMV method exhibits the main advantage of peer review,
namely, the manual verification of the quality of the submitted results [3, 5]. Fur-
thermore, this kind of quality control can be used not only to evaluate the results
for a given task, but also to detect and to label spammers on the fly by analyzing
a certain set of completed tasks and the corresponding ratings provided by other
workers. Identifying and blocking low-performing workers requires more complex
methods, and usually imposes additional efforts in quality management [18, 24].

4 Discussion

Benefits The main weakness of traditional majority vote lies in the fact that correct
results may be rejected if they disagree with the wrong decision of the majority.
According to the process flow of CMV for deterministic tasks, the next example
demonstrates how our method can counteract this deficit (see Fig. 3): Resolving the
same task h10 ∈ HITs independently of each other, the workers w1,w2 and w3
produce the following results: a∗

w1
= a1, a∗

w2
= a3 and a∗

w3
= a1. Assume that only

the answer a3 is correct. Applying majority vote, the system will calculate the false
result a1 for h10 and correspondingly downgrade the failure rate of worker w2. In
contrast, CMV allows for the worker w2 to communicate and to affect the answers of
the others (e.g., by providing links to answer sources) so that worker w1 changes the
decision to a3. In this case, majority vote will result in the correct answer a3. Such
willingness of more experienced workers to correct errors of other participants was
observed in the experiment conducted by Kulkarni et al. [10].

The objective of the CMV method is to transfer the benefits of synchronous
collaboration, which have been already well-established in other domains to the area
of quality assurance in crowdsourcing marketplaces and to open up methodically
new perspectives for ensuring high-quality processing of tasks. In general, providing
mechanisms for real-time collaborations enables outsourcing a wider range of task
types that are currently out of scope of micro-task crowdsourcing.

Enabling Technology In order to implement and evaluate our approach, we need a
suitable software technology for supporting real-time collaboration and communica-
tion between workers. Special attention is hereby placed on co-scrolling and co-form
filling. After a comparison of existing tools we decided on the novel lightweight

140 D. Nordheimer et al.

collaboration solution, which enables two or more workers to connect and to work
together in a single web application at the same time [22, 23]. They can collabora-
tively click, type, navigate, and follow actions of other participants in real-time. In
contrast to other similar solutions, it requires no downloads or plug-in installations,
provides far better scaling and allows for the collaboration of 100 or more users in a
single session without experiencing significant time-lags.

Restrictions Because of the newness of the proposed CMV approach, its limita-
tions have yet to be studied depending on task types and scenarios of processing.
With regard to Scenario I in Sect. 3.3, low-performing workers and spammers can
continuously change their primary decisions aiming to reduce their failure rates. To
avoid this, suitable countermeasures are needed, e.g., such as the rating procedure
described in Sect. 3.4. In the case where workers have to agree on the same answer
(see Scenario II in Sect. 3.4), the collaboration may lead to an increase in abortion
rates during the process of task execution.

Propositions Based on the literature review and analysis we project the identified
positive effects of collaborative work into the proposed CMV approach and derive
the following tentative propositions:

P1 Knowing that the own contributions can be inspected by others prompts crowd
workers perform their work more efficiently and enables better spammer iden-
tification, thus improving the result quality.

P2 Real-time communication reduces problems regarding task understanding and
combines different worker skills and perspectives, thus improving the result
quality.

P3 Group work increases workers’ motivation and satisfaction, thus improving the
perception of the quality assurance mechanisms.

Fig. 3 Counteracting the wrong decision of majority

Collaborative Majority Vote: Improving Result Quality in Crowdsourcing Marketplaces 141

5 Conclusion and Further Work

In this paper we proposed a new method for quality management on crowdsourcing
market-places, which extends the traditional majority vote by real-time collaboration
capabilities and aims at improving result quality of submitted micro-tasks. First, we
presented the conceptual model by describing the general process flow in CMV and
assumptions made. Second, we illustrated three application scenarios with appro-
priate examples for deterministic and non-deterministic task types. At the end, we
discussed possible restrictions of our approach and derived three propositions. To
confirm or deny these propositions, to find out further limitations, as well as to iden-
tify possible improvements in the collaboration phase, in our ongoing researchwe are
working on testing and evaluating the proposed CMV approach. During the ongoing
experiment we aim to answer the following research questions:

• What effect does the collaboration have on the quality of work results?
• What types of micro-tasks can be solved more effectively in a collaborative envi-
ronment?

As soon as evaluation results are received, they will be published as a follow-up to
this research paper.

References

1. Chesbrough, H.W.: Open Innovation: The New Imperative for Creating and Profiting from
Technology. Harvard Business School Press Books, Boston (2003)

2. Howe, J.: Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business.
Crown Publishing Group, New York (2008)

3. Ipeirotis, P.G., Provost, F., Wang, J.: Quality management on Amazon Mechanical Turk. In:
Proceedings of the ACM SIGKDD Workshop on Human Computation (2010). doi:10.1145/
1837885.1837906

4. Kazai, G.: An exploration of the influence that task parameters have on the performance of
crowds. In: Proceedings of the CrowdConf (2010)

5. Kern,R., Bauer, C., Thies,H., Satzger,G.:Validating results of human-based electronic services
leveragingmultiple reviewers. In: Proceedings of the 16thAmericasConference on Information
Systems (2010)

6. Kern, R., Thies, H., Satzger, G.: Efficient quality management of human-based electronic
services leveraging group decision making. In: Proceedings of the 19th European Conference
on Information Systems (2011)

7. Kern, R., Thies, H., Zirpins, C., Satzger, G.: Dynamic and goal-based quality manage-
ment for human-based electronic services. Int. J. Coop. Inf. Syst. (2012). doi:10.1142/
S0218843012400011

8. Kittur, A.: Crowdsourcing, collaboration and creativity. XRDS: crossroads, the ACMmagazine
for students (2010). doi:10.1145/1869086.1869096

9. Kosinski, M., Bachrach, Y., Kasneci, G., Van-Gael, J., Graepel, T.: Crowd IQ: measuring the
intelligence of crowdsourcing platforms. In: Proceedings of the 3rd Annual ACMWeb Science
Conference (2012). doi:10.1145/2380718.2380739

10. Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: automatic recursive task and workflow
design for mechanical turk. In: Proceedings of ACM CHI Conference on Human Factors in
Computing Systems (2011)

http://dx.doi.org/10.1145/1837885.1837906
http://dx.doi.org/10.1145/1837885.1837906
http://dx.doi.org/10.1142/S0218843012400011
http://dx.doi.org/10.1142/S0218843012400011
http://dx.doi.org/10.1145/1869086.1869096
http://dx.doi.org/10.1145/2380718.2380739

142 D. Nordheimer et al.

11. Leimeister, J.M., Huber, M., Bretschneider, U., Krcmar, H.: Leveraging crowdsourcing:
activation-supporting components for IT-based ideas competition. J. Manag. Inf. Syst. (2009).
doi:10.2753/MIS0742-1222260108

12. Little, G., Chilton, L.B., Goldman, M., Miller R.C.: Exploring iterative and parallel human
computation processes. In: Proceedings of the ACM SIGKDD Workshop on Human Compu-
tation (2010). doi:10.1145/1837885.1837907

13. Lowry, P.B., Albrecht, C.C., Lee, J.D., Nunamaker, J.F.: Users’ experiences in collaborative
writing using collaboratus, an internet-based collaborative work. In: Proceedings of the 35th
Annual Hawaii International Conference on System Sciences (2002). doi:10.1109/HICSS.
2002.993879

14. McCarthy, J., Miles, V., Monk, A.: An experimental study of common ground in text-based
communication. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (1991). doi:10.1145/108844.108890

15. Morris, M.R.: Interfaces for collaborative exploratory web search: motivations and directions
for multi-user design. In: Proceedings of ACM SIGCHI Conference on Human Factors in
Computing Systems, Workshop on Exploratory Search and HCI: Designing and Evaluating
Interfaces to Support Exploratory Search Interaction, pp. 9–12 (2007)

16. Oleson, D., Sorokin, A., Laughlin, G., Hester, V., Le, J., Biewald, L.: Programmatic gold:
targeted and scalable quality assurance in crowdsourcing. In: The 3rd Human Computation
Workshop (2011)

17. Quinn, A.J., Bederson, B.B.: Human computation: a survey and taxonomy of a growing field.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2011).
doi:10.1145/1978942.1979148

18. Raykar, V.C., Yu, S.: Eliminating spammers and ranking annotators for crowdsourced labeling
tasks. J. Mach. Learn. Res. 13, 491–518 (2012)

19. Schulze, T., Nordheimer, D., Schader, M.: Worker perception of quality assurance mechanisms
in crowdsourcing and human computation markets. In: Proceedings of the 19th Americas
Conference on Information Systems (2013)

20. Snow,R., O’Connor, B., Jurafsky, D., Ng,A.Y.: Cheap and fast—but is it good? Evaluating non-
expert annotations for natural language tasks. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing (2008)

21. Sorokin, A., Forsyth, D.: Utility data annotation with Amazon Mechanical Turk. In: IEEE
Computer SocietyConference onComputerVision and PatternRecognitionWorkshops (2008).
doi:10.1109/cvprw.2008.4562953

22. Thum, C.: Enabling lightweight real-time collaboration. In: Becker, C., Gaul, W., Heinzl, A.,
Schader, M., Veit, D. (eds.) Informationstechnologie und Oekonomie, Band 41, Peter-Lang-
Publisher, Bern, Dissertation (2012)

23. Thum, C., Schwind, M.: Synchronite—a service for real-time lightweight collaboration. In:
Proceedings of the 2010 International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (2010). doi:10.1109/3PGCIC.2010.36

24. Vuurens, J., de Vries, A.P., Eickhoff, C.: How much spam can you take? An analysis of crowd-
sourcing results to increase accuracy. In: Proceedings of ACM SIGIR Workshop on Crowd-
sourcing for Information Retrieval (2011)

http://dx.doi.org/10.2753/MIS0742-1222260108
http://dx.doi.org/10.1145/1837885.1837907
http://dx.doi.org/10.1109/HICSS.2002.993879
http://dx.doi.org/10.1109/HICSS.2002.993879
http://dx.doi.org/10.1145/108844.108890
http://dx.doi.org/10.1145/1978942.1979148
http://dx.doi.org/10.1109/cvprw.2008.4562953
http://dx.doi.org/10.1109/3PGCIC.2010.36

Towards a Game Theoretical Model
for Software Crowdsourcing Processes

Wenjun Wu, Wei-Tek Tsai, Zhenghui Hu and Yuchuan Wu

Abstract Recently software crowdsourcing has become an emerging development
paradigm in software ecosystems. This paper first introduces a software crowd-
sourcing framework in the context of software ecosystems. The framework includes
a game-theoretical model for peer software production to describe the competitive
nature of software crowdsourcing. The analysis of this model indicates that if the
only reward is the prize, only superior developers will participate in the software
crowdsourcing. This explains the phenomenon that while software crowdsourcing
is open for anyone to compete, but only few will engage in competition. This is
validated by a large historical data collected from a popular software crowdsourcing
website over a 10-years period. Further, we perform a case study on aNASA software
crowdsourcing project to take a closer examination at how community developers
participate in different types of tasks through the software crowdsourcing process.

1 Introduction

With the increase in software system complexity, many companies open up their
platforms to embrace the collaborative effort from online developers to develop
software. Software crowdsourcing is a promising approach to allow organizations
to outsource software development tasks to a virtual and on-demand workforce. By
tapping into the collective intelligence of participants, organizations aim to acquire

W. Wu (B) · Z. Hu · Y. Wu
School of Computer Science and Engineering, Beihang University, Beijing, China
e-mail: wwj@nlsde.buaa.edu.cn

W.-T. Tsai
School of Computing Informatics and Decision Systems Engineering,
Arizona State University, Tempe, AZ, USA
e-mail: wtsai@asu.edu

Z. Hu
e-mail: waiaml@nlsde.buaa.edu.cn

Y. Wu
e-mail: wuyuchuan@nlsde.buaa.edu.cn

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_9

143

144 W. Wu et al.

the high quality software with a reduced cost while stimulating the community to
focus on certain skills or knowledge in various software ecosystems.

Currently, major software crowdsourcing platforms including Apples App Store,
TopCoder [1], and uTest [2], demonstrate the advantage of crowdsourcing in terms of
software ecosystem expansion and product quality improvement. Apples App Store
is an online IOS application market [3, 4], where developers can directly deliver
their creative designs and products to smartphone customers. These developers are
motivated to contribute innovative designs for both reputation and payment by the
micro-payment mechanism of the App Store. Around the App Store, there are many
community-based, collaborative platforms for the smart-phone applications incuba-
tors. For example, AppStori [5] introduces a crowd funding approach to build an
online community for developing promising ideas about new iPhone applications.
Another software crowdsourcing example C TopCoder, creates a software contest
model where programming tasks are posted as contests and the developer of the
best solution wins the top prize. Following this model, TopCoder has established
an online platform to support its ecosystem and gathered a virtual global workforce
with more than 250,000 registered members and nearly 50,000 active participants.
All these TopCoder members compete against each other in software development
tasks such as requirement analysis, algorithm design, coding, and testing.

The way of organizing software development in all these practices of software
crowdsourcing is changing from traditional software factory or distributed develop-
ment teams to decentralized, peer-production based ecosystems of software devel-
opers. Firstly, software crowdsourcing open up its development process to online
community. Its openness doesnt refer to free access to source code like open source
development. Instead, it denotes an OPEN call for participation in any tasks of soft-
ware development, including documentation, design, coding and testing. Secondly,
it depends upon community workforce in its decentralized development process.
Software development tasks are normally conducted by either internal staffs within a
software enterprise or people from contracting firms. For example, software compa-
nies can adopt global software development [6] where multiple teams of profession-
als work collaboratively in remote locations. But in software crowdsourcing, all the
tasks can be assigned to anyone from general public. Lastly, software crowdsourc-
ing introduces explicit incentives such as financial rewards to motivate community
developers. Open source projects usually rely upon volunteers with reputations to
accomplish tasks [7]. Thus, it greatly extends the concept of open source community
into the notion of market-driven software ecosystem.

Although software crowdsourcing indicates a new trend in software develop-
ment, fundamental principles behind software crowdsourcing are still being devel-
oped. There is a need to study software crowdsourcing processes in a market-driven
software ecosystem. Majority of publications on distributed software processes
[8–11] focus on facilitation of collaboration and information sharing among soft-
ware engineering teams or individual programmers. They did not propose frame-
works to model software crowdsourcing particularly those competitive software
crowdsourcing processes such as those practised by TopCoder. Interestingly, schol-
ars from the economics and management science have studied the mechanism of

Towards a Game Theoretical Model for Software Crowdsourcing Processes 145

crowdsourcing systems, such as pricing and bidding strategies as well as rewarding
rules [12–14]. But their approaches are limited in the scope of classic auctionmethod-
ology and are not directly related to software crowdsourcing process, i.e.,maximizing
the software quality and creativity via crowdsourcing.

This paper examines a variety of issues in software crowdsourcing including qual-
ity, costs, diversity of solutions, and competition scenarios. The success of a soft-
ware crowdsourcing process must be able to broaden participation, ensure quality
of solution, encourage diversity of solutions, identify potential talents and maximize
learning for both active participants and passive observers. This paper proposes a
new software process model to describe the competitive nature of software crowd-
sourcing process. The rest of the paper is organized as follows: Sect. 2 presents the
framework of software crowdsourcing for software ecosystem. Section3 develops a
theoretical model of peer software production in the process of software processing
based on contest theory. A case study is conducted to examine a NASA software
crowdsourcing project in Sect. 4. Section5 gives the conclusion.

2 Crowdsourcing for Software Ecosystem

A software ecosystem is a networked community of organizations, where they share
a common interest in a central software technology. Apples App Store is an exam-
ple of market-driven software ecosystem, where developers, vendors and end-users
exchange their values through IOS based smartphone applications. Crowdsourcing
can play as an essential social instrument to build a vibrant software ecosystem
and promote its growth. This section describes the major components in a software
ecosystem from the perspective for social-technical theory and presents a software
crowdsourcing process model for the development of a software ecosystem.

2.1 Socio-Technical Ecosystem

According to the framework defined in [15], a social-technical software ecosystem
has two major aspects: technical platform and stakeholder community built around
the platform. Figure1 illustrates such a social-technical ecosystem toward cloud
applications.

The bottom layers in the common cloud architecture: IaaS and PaaS specify the
standard API and reference implementation of a cloud-based platform. As SaaS
(Software-as-a-Service) is often about domain-specific application-level software,
it can be regarded as a collection of applications that can be further derived and
composed into more full-fledge application systems. Every application, no matter
whether atomic or composite, can be developed and contributed by community users
and developers.

146 W. Wu et al.

Fig. 1 Cloud based social-technical ecosystem

The collaboration infrastructure is a hierarchical community with passive end-
users, a set of internal and external developers as well as domain experts. Passive
end-users are interested in using applications provided by SaaS without making any
comments on the quality of the application. More active users will get involved in the
SaaS development by posting their feedbacks and testing the available application
services. Some of them can fix theminor issues and contribute patches to the software
repository. On the top levels of this hierarchy, there are project leaders and core
developers who are in charge of the major tasks in software design and maintenance.

The governance regime in this ecosystem should be the major stakeholders who
canmake strategic decisions and utilize coordinationmechanisms tomotivate people
to join in the community and make contributions. Common coordination mecha-
nisms include collaborative development, competition reward, crowd funding, self-
organized learning for knowledge transfer. Software crowdsourcing is an effective
governance paradigm when the project leaders need to open up its development
process and make open calls to the community for undertaking project tasks. It
enables the leading stakeholders in the ecosystem to seek innovative design ideas,
identify talents, increase participation from the crowd, improve software quality and
reduce development cost. The complexity and time-spanning of projects in the soft-
ware ecosystem determines the process of software crowdsourcing processes.

2.2 Software Crowdsourcing Process Model

Asoftware crowdsourcingprocess is tomotivate community developers to participant
in peer production tasks specified by stakeholders in a software ecosystem and deliver
the quality software products to the software ecosystem. Figure2 illustrates the basic

Towards a Game Theoretical Model for Software Crowdsourcing Processes 147

Fig. 2 Software crowdsourcing for developing software ecosystems

management structure of software crowdsourcing process, which consists of the
reward system, reputation ranking system, and quality assurance system as well as
governance regime.

The governance board is the top-level management body in charge of policy
design, strategic decision making and architectural planning as well as regulation.
The board has three essential tools to cultivate a healthy and vibrant community of
the software ecosystem: (1) a reward mechanism; (2) a reputation mechanism; and
(3) a quality assurance mechanism. The reward mechanism provides the incentive
for crowds in the community to participant in software development. The reputa-
tion ranking mechanism classifies the skill levels of each individual member in the
community and defines the foundations for the reward system. The quality assur-
ance system evaluates the quality of products contributed by crowds and selects the
best quality one to integrate it into the software ecosystem. Based on this human
infrastructure, project managers can adopt the peer production mode to innovate
their conventional software development life cycles and achieve multiple goals in
the development of software systems, including quality software, rapid acquisition,
talents identification, cost reduction, ideas creation and broadening participation.
After the priority of the specific goals is set, appropriate cooperation and compe-
tition mechanism of the project must be devised to steer the process towards these
goals.

148 W. Wu et al.

(1) Reward System
Crowdsourcing needs an effective rewarding system to attract the broader engage-
ment from the developer community, which is critical to maintain the community
diversity and vibrancy of a software ecosystem. For an open-source community, its
rewarding system often deeply relies upon its hacker cultures where people have
strong willingness to improve their coding skills, or to enjoy the challenging pro-
gramming tasks, or to achieve and enhance their reputation within the community
through voluntary contributions [16]. Although these social rewards mechanisms are
still effective in crowdsourcing-based software development, it is not enough to drive
loosely-coupled individuals to efficiently accomplish complex tasks. Financial incen-
tives provide powerful motivation to boost performance of crowd workforce [17].
According to various economic theories, rational workers will choose to improve
their performance in response to a scheme that rewards such improvements with
financial gain. Performance-based pay schemes can increase both the quantity of
work and the quality of product.

(2) Reputation System
Areputation systemgathers, distributes, and aggregates feedbacks about the behavior
and historical performance of both requestors and workers, and employs a ranking
scheme to generate scores for them. Such a rank scheme usually is developed on the
basis of user comments, third-party reviews, and competition performance evaluation
[18]. In general, the major components in a reputation mechanism often include:
evaluationmetrics for the task performed, feedback collectors, and reputation engine.

Evaluation metrics: Reputation rating can be either objective or subjective. Quan-
tity measurements of an individuals performance, such as the number of successful
submissions, total rewards and download counts, can demonstrate software design
skills. Othermetrics such as third-party rating and user comments can present subjec-
tive opinions on the quality of specific submissions. Not only the workers and their
work can be evaluated, the credibility of requestors can also be evaluated including
their history of delivering compensation in time.

Feedback collectors: A feedback collector can collect the reputation-related infor-
mation and build up a detailed profile for each person in this community to determine
their skillset.

Reputation engine: A reputation engine can compute the value of the users repu-
tation ratings from their profiles provider by the feedback collector and the latest
performance in the crowdsourcing. Rating scheme for crowdsourcing systems is still
in its early stage, the contest rating has been a research problem for a long time. For
example, the well-known Elo rating model [19] for calculating skill levels of chess
players based on the statistics has been widely used in a various contests ranging
from chess challenges to baseball games. Many improvements have been done based
on the Elo rating model to enhance the accuracy of the rating algorithm and han-
dle multiple player game situations by incorporating more factors such as players
volatility and Bayesian inference framework [20, 21].

Towards a Game Theoretical Model for Software Crowdsourcing Processes 149

(3) Min-Max Quality Assurance
Given the inherent diversity among the community in a software ecosystem, it is
unlikely that the quality of crowd submissions can stay stable for various projects.
Thus, software crowdsourcing process needs quality assurance mechanism to review
and evaluate the crowd submissions.Min-Maxmodel is introduced in [22] to describe
the quality assurance mechanism in a software process, where one party tries to
minimize an objective function, yet the other party tries to maximize the same objec-
tive function as though both parties compete with each other in a game. For example,
a specification team needs to produce quality specifications for the coding team to
develop the code; the specification teamwillminimize the potential errors in his spec-
ification document, while the coding team will identify as many bugs as possible in
the specification document before coding.

The Min-Max quality assurance mechanism involves two basic operations C
offense and defense:

Offense: each team needs to understand its requirements, and examine the validity
of the inputs to determine if they are feasible, correct, consistent and complete.
This can be done by inspecting, reviewing, simulating, model checking, verifying
the contents of the inputs. Because any mistakes in the input document may cause
significant problems in the current tasks. Thus, the goal is to maximize the fault
detection rate of the input documents.

Defense: Once requirements are understood, the team needs to prepare its output.
However, the team realizes that their outputs will be cross examined by other teams
carefully, and the team may lose its creditability if its outputs are of low quality.
Thus, the team needs to spend significant time to check and verify its deliverables to
minimize the probability of bugs and to minimize the damage of potential bugs.

There are two ways to implement quality assurance for software crowdsourcing:
central review and peer review. In the case of central review, the community gov-
ernance body set up a specialized team for undertaking offense duty in testing and
reviewing crowd submissions. It works well when the scale of crowd participation is
limited. When it comes to large scale of software crowdsourcing, it becomes infea-
sible to review massive number of submissions only through a central offense team.
In such a scenario, peer review needs to be adopted to scale up the process, which
means that crowd developers needs to perform both offense and defense operations
to eliminate unqualified submissions. For example, algorithm contests in TopCoder
have a special challenge phase where participants can eliminate their opponents by
finding bugs in their code.

(4) Crowdsourcing Governance
The governance of software crowdsourcing is a set of structures, processes and
policies by which the software development within the community is directed and
controlled to maximize the community value. A common approach is to use an
open technical platform and with an open architecture, the governance board can
continually align synergistic relationships of people, knowledge, and resources that
promote harmonious software growth in ever changing requirements.

150 W. Wu et al.

The governing board may include experts in the application domain and in soft-
ware engineering. The board is responsible for creating outlines for the project and
making strategic decisions to steer the progress as well as mitigating major risks
during development. The appropriate policies and rules in both rewarding and rep-
utation mechanism need to be designed and optimized by the board to expand the
scale of community network and maintain the skill levels among developers. More-
over, while the board should set policies and development guidelines to efficiently
regulate the practice of the community to create rules accepted by the community,
community members can also request the board for new or modifications of existing
rules.

The board also leads a working group who follows the policies set by the board to
coordinate individuals in the community for the project development. The members
in thisworking group can be elected from the crowdsourcing community. Theirmajor
responsibilities include: maintaining the crowdsourcing platform, leading the efforts
of software crowdsourcing activities, evaluating the outcomes from crowdsourcing
tasks and integrating crowd contributions into the software ecosystem.

3 Peer Productions and Contest Theory Model

This section presents a contest theory model to describe the peer production process
in software crowdsourcing, and the model can be used to analyse various factors
including the effort to finish the competing tasks, the award prize and skill level of
competing players. All the major software artifacts, such as requirement specifica-
tion, design scheme, software components, can be developed via peer production
through software crowdsourcing.

Each crowdsourcing task involves N workerswho independently produce M solu-
tions following the specification of the task. Normally the number of the solutions
is smaller than the number of the worker (M ≤ N), because not all the workers can
successfully finish the task within the specified time constraint. Afterward, these M
solutions are examined and evaluated to select P products that completely satisfy the
requirement of the task. Note that there are different ways to handle the candidate
solutions to create the final product. For example, P solutions are of the same func-
tions and only the best will be chosen as the final product. In other cases, P solutions
are merely partitions of the entire software product and need to be merged together.
The peer production model can be formally defined as follows:

Definition 3.1

• W worker, W = {w1, w2, ..., wN }
• T Task, T = t1, t2, ..., tM

• B Bid, Bw,t is the solution for the task t ∈ T, delivered by the worker w ∈ W
• C Cost, Cw,t incurred by the worker w ∈ W for the task t

Towards a Game Theoretical Model for Software Crowdsourcing Processes 151

• S Skill level of workers, Sw = Sw,t , represents the expertise of each worker in
the task t

• A Activity, A = [A1, A2, ..., AH], which define a sequence of activities in the
process of software crowdsourcing development.

Each Ai is a seven-element tuple, (Wi , ti , Bi , Ui , X, Y, Z), amongwhichWi ⊆ W
denotes all the participants of the activity, ti ∈ T represents the task of activity, and
Bi represents the solutions submitted by all the participants in this activity.

For each worker wk ∈ Wi , he creates a solution Bwk ,ti for the task ti . All the bids
submitted by the workers are defined as Bi = {Bw,ti | w1, ..., wM ∈ Wi }. The rest
element in the tuple U, X, Y, Z represents utility function, quality function, ranking
function and reward function respectively.

(1)Utility function,Ui , B M → V , describes the common value that the activity orga-
nizer can collect from all the bids Bw,t ∈ Bi submitted by the activity participants.
Depending upon the nature of development tasks, the utility function can be devised
in different forms. When the organizer manager wants to merge the valid bids into a
single product, he can set an aggregation function: Ut = ∑

V (Bw,t), where V is the
value mapping for each bid. When the organizer manager needs to select the best bid
as the final solution, he can set an maximization function: Ut = Max({V (Bw,t)}).
(2) TheQuality Function, X : B → Q, Quali t yQ = [0, 1], X (Bwk ,ti), describes the
evaluation criteria for judging the quality of submissions.
(3) The Ranking Function, Y : B × Q × S → S, S

′
wk

= Y (Bwk ,ti , X (Pwk ,ti),

Swk), specifies the mechanism to calculate the skill set of each participant based on
their performance in both the current activity and the past ones.
(4) The Reward Function, Z : B × Q × S → R, R is the set of all possible rewards,
where R is the reward for the participants. Normally, only part of the workers who
outperform others in the activity can be awarded in the form of prize. And the
majority workers can benefit from other forms of reward such as certificates, credits
and ranking scores.

Contest theory [23] introduces a theoretic framework to model competitive sce-
narios, where agents compete for scarce resources. In these situations agents can
influence the outcome of the process by actions. A contest theory to analyze the
factors among participation and prize structure of the peer-production model.

3.1 Contest Theory Model for Competitive Peer Production

Each activity Ai defined by the peer-productionmodel should be regarded as a contest
in the contest-theory framework. Assume there are a finite set of workers W who get
involved in this activity. And the quality of the solution submitted by a worker wi

determines his probability of obtaining the prize. One can define a contest success
function relating the quality of a workers solution to the probabilities that they obtain
the prize.

152 W. Wu et al.

Let pi = pi (Q1, Q2, ..., Qi , ..., Qn) be the probability that worker wi wins the
crowdsourcing contest when his product quality is Qi according to the quality func-
tion defined above. In addition, we need to define a cost functionCi (Qi) representing
the cost incurred by the workers effort and a prize function Vi (Q1, ..., Qn) represent-
ing the prize awarded to the worker. Based on these three functions, every worker
can calculate his possible payoff by considering all the solutions presented by the
participants:

The expected payoff function of worker i denoted by πi (), is

πi (Q1, ..., Qn) = pi (Q1, ..., Qn) × Vi (Q1, ..., Qn) − Ci (Qi) (3.1)

Contest theorymodels the competitive peer production as anN-player gamewhere
each worker makes his action according to the payoff function (3.1).When a workers
payoff expectance is higher than zero, he will certainly spend quality time and effort
on the task. Otherwise, he will lose the incentive to make contribution to the task.
To simplify the analysis of this N-player game, one can assume the contest success
function takes the form in (3.2):

pi = φ(Qi)

�n
j=1φ(Qi)

i f �n
j=1φ(Qi) > 0, pi = 1

n
i f �n

j=1φ(Qi) (3.2)

In most cases of crowdsourcing contest, we can confidently assume that the prize
awarded to the winners is constant, that is Vi (Q1, ..., Qn) = V .

Define xi = φ(Qi), and assume Ci (Qi) = Ci (φ
−1(xi)) = di xi , then (3.1) can be

transformed into

πi = xi

�n
j=1

V − di xi (3.3)

Proposition 3.1 There is a unique Nash equilibrium. The players can be divided into
active group and inactive group.

(1) Active Group with m workers m ≤ n, ∀wi i = 1, ... m, �m
1 d j > di (m − 1)

(2) Inactive Group with n − m workers: ∀wi i = m + 1, ... n, �m
1 d j ≤

di (m − 1)

Actually, d is the ratio of a workers effort against his chance to win the contest.
The proof of this proposition can be found in the survey paper of contest theory [24].

To illustrate this competition mechanism, we can calculate the active group and
inactive group in a peer-production contest with ten workers. And we assume the
Contest Success Function is φ(Qi) = Qi , the d values of each player are listed in
(3.4).

di = σ × i, i = 1, 2, ..., 10 (3.4)

Towards a Game Theoretical Model for Software Crowdsourcing Processes 153

σ is the gap between the consecutive elements in the sequence. If we replace di

of the inequality in Proposition 3.1 with the (3.4), it is easy to infer the following
inequality:

σm(m + 1)

2
> σm(m − 1) (3.5)

Thus, we can have m < 3, which means only two workers will actively make
contributions to the task.Clearly,whencompetitors haveheterogeneous abilities, they
will behave quite differently in a software crowdsourcing contest. We can examine
the worker behavior in a more general scenario. Assume d follow a probability
distribution. Since d depends upon a players skill. The higher his skill is, the lower
effort he needs to take to win the contest. When the skill levels among the players are
uniformly distributed or normally distributed, we can run a simple test to calculate
the division point M in both cases. Suppose the uniform distribution is d ∼ ∪(0, 1)
and the normal distribution is d ∼ ∪(0.5, 1). With the number of participant N
enumerated from 10 to 200, we can calculate the M-value according to Proposition
3.1. Figure3 demonstrates the results of both cases.

Interestingly, the M-value seems not be affected by the participant number and
completely determined by the random variable Ds distribution. When it is a uniform
distribution, M stays between 2 and 3, with the average value of 2.6. When it is a
normal distribution, M nearly remains within the range from between 3 and 4.5. The
partition of the players demonstrates the evidence of so-called superstar effect in

Fig. 3 M-value under different D values (uniform versus normal distribution)

154 W. Wu et al.

many competitive sporting environments where regular players have little incentive
to exert effort at the presence of super players.

3.2 TopCoder Participation and Prize

The theoretical results of the contest model can be validated by historical contest data
collected from the TopCoder website. The data included 1734 design contests and
910 development contests from 4/2004 to 2/2012. Figures4, 5 and 6 demonstrates
the number of registrations, submissions, and valid solutions under the influence of
prize reward.

Apparently, the averagenumber of submissions inTopCoder development contests
is much lower than the number of active coders available. The average registration
numbers for TopCoder design and development competitions are about 13 and 25
respectively. And out of these registrations, only 2 design submissions and 5 devel-
opment submissions have been delivered. This phenomenon confirms the theoretical
analysis in Sect. 3.1, where only 2 or 3 workers with superior skills will be active.
Once a potential participant senses that two strong contenders already signed up for
a competition, they will opt out from the competition.

The other important observation about the data is that prize value has little
influence on the motivation of community workers. Contrary to the common belief,
higher prize value will not attract more participation to compete. This may be caused
by the difficulty of those tasks with a high price. According to the statistics of Top-
Coder, the average completion duration of a TopCoder task is about two weeks. So
the tight time constraints of those challenging tasks can render too much risk for
most workers to take.

Fig. 4 Registration-reward curve in development contests of TopCoder

Towards a Game Theoretical Model for Software Crowdsourcing Processes 155

Fig. 5 Submission-reward curve in development contests of TopCoder

Fig. 6 Effective-reward curve in development contests of TopCoder

4 Case Study

This section presents a case study based on the research from MIT team [24]. This
software crowdsourcing project is about building a Web collaboratory named by
Zero Robotics where high school students can develop their robotic program on
SPHERES, a mini satellite device inside the International Space Station.

The software architecture of this collaboratory is a cloud-based science gateway
with a Web portal and a backend computation engine. The Web portal provides a
programming interface for students to write their codes and simulate the control
of the SPHERES device. And the distributed computation engine that can allocate
Amazon EC2 virtual machines on demand is responsible for user code compilation,
runtime linkage and execution. These two major components of Zero Robotics were
developed in different ways: the computation engine was implemented by in-house
programmers in the team, while the portal was crowdsourced to the TopCoder com-
munity.

156 W. Wu et al.

According to the design document of the project, the portal adopts Liferay Por-
tal, JBoss and MySQL, all of them are popular open-source Java Web application
frameworks. The MIT team aimed at utilizing the collective intelligence of thou-
sands of TopCoder programmers with Java expertise to complete this project. It
designed a development plan that divided the project into the eight phases including
conceptualization, requirement specification, UI prototype, architecture and compo-
nent design, component implementation, testing and deployment. The plan consists
of 54 design and development contests and 163 bug race contests from April 2011
to December 2011. Figure7 displays this software crowdsourcing process.

(1) Conceptualization: Only one conceptualization contest was held to produce the
documents including system overview, high-level workflow and use-case diagrams
pertaining to the Zero Robotics portal. Only two submissions were delivered from
19 registrants, with the total prize of $2,040.

(2) Requirement Specification: In specification contests, competitors collaborate
with the winners of previous contests and TopCoder clients in the project forums to
finalize the Application Requirement Specification for the new system. The average
cost of the three contests is $2,210.

(3) Architecture and Component Design: The purpose of architecture and com-
ponent contests is to seek optimal design for the overall framework and its major
components including user registration, system administration, simulation editor
and scoring engine based on the software requirements produced in the specification
contests. Totally 141 TopCoder members registered the 13 contests and delivered 17
submissions with the average cost of $2,367.

Fig. 7 Zero robotics software development processes

Towards a Game Theoretical Model for Software Crowdsourcing Processes 157

(4) UI Prototype: In addition to the design contests for software architecture and
components, the Zero Robotics project also organized seven contests to develop
innovative ideas and design scheme for the user interface via fast UI prototyping
tools. Interestingly, the project only spent $1,602 for 17 quality solutions out of
85 submissions among all the contests, whose cost was obviously lower than any
other types of the contests. The reason for the high production efficiency in the UI
prototype contests can be well explained by the Proposition 3.1. Because a UI design
activity usually needs less technical skills than other software development tasks such
as architecture design and coding, it tends to attract more active members with the
belief of high winner probability.

(5) Component Implementation: The Component Implementation and Assembly
has the largest number of contests—28 contests for developing Alliance Portlet,
Tournament Management Portlet, User Profile Portlet and other IDE components.
And it is the most expensive phase during which the MIT team spent $2981 for
each contest. Obviously, the component implementation contests often demands high
programming skills and require significant efforts to win the prizes, thus suppressing
the motivation of registrants without dominant skill levels. In fact, only 44 qualified
solutions were produced out of 401 registrations through the component contests.

In summary, all the Zero Robotics contests cumulatively received 149 full submis-
sions out of 700 registrations, and 57 prizes for these contests were awarded. There
have been a total of 239 unique participants in the 54 contests. We can visualize the
competitive relationship among these participants in Fig. 8. Each node represents a
participant and a link between two nodes indicates that the two participants have
engaged in the same contest.

This competitive graph contains a weakly connected component, indicating that
the participants in the Zero Robotics projects are interested on all kinds of contest
announcements. For instance, registrants in the assembly contests may also register
the UI prototype contests. Furthermore, the participants in the same type of the
contests exhibit similarity because their connections display the same modularity
class in the graph. The characteristics of the graph demonstrate that the project
successfully captured the attention of the community.

We can further examine the relationship between the contests and the contributing
participants by creating a bipartite graph with two separate node sets: contest nodes
and participant nodes. In the graph shown by Fig. 9, the large vertices represent the
contests and the small vertices represent the participants who delivered a submission
in the contests. We adopt a color scheme to distinguish different types of contests
and participants. There are seven types of contest nodes, each of which are designed
by a color. There are also two types of participant nodes: the nodes with the red color
refer to the contest winners and the other nodes with the light color refer to those
who regularly deliver submissions but fail to win.

Apparently, the bipartite graph doesnt have the same rich connectedness as the
graph in Fig. 8. Because we removed all the participant nodes from the graph, who
only register a contest but fail to deliver submissions, this graph contains much less
nodes than the one in Fig. 8. Moreover, the whole graph is clearly partitioned into

158 W. Wu et al.

Fig. 8 A competition network consisting of all the registrants

multiple communities according to the types of the contests.Within each community,
dominate players seem to win the prizes in the most contests. It can be explained
by the fact that normally an active TopCoder member only possesses skills for a
specific type of software contests and dedicates his efforts to those contests. For
example, when a player is good at developing requirement specifications, and has
gained valuable experience through the previous requirement contests in the project,
it is reasonable for the person to stay focused on the requirement contests, instead of
component development contests.

The case study confirms the contest theory model defined in Sect. 3. A dispropor-
tionately large number of people registered for these contests but cannot submit their
work to complete the contests regularly. It appears that they gauged their probability
of winning by the discussion forum content; and a small subset of the participants
ultimately followed through to submit a solution. Furthermore, the emergence of
players with superior skills in certain contests will discourage other participants
from engaging in the competition.

Towards a Game Theoretical Model for Software Crowdsourcing Processes 159

Fig. 9 A Bipartite graph consisting of contests and contributors

5 Conclusion

As the vital social instrument to a software ecosystem, software crowdsourcing can
foster community formation and leverage collective intelligence for quality software
development. This paper analyzes software crowdsourcing processes, and examines
its key characteristics. Specifically, it proposes a game-theoretical model to analyze
the relationship between crowd incentive, development skills and software quality
in competitive peer production. The analysis of the model indicates that the prize-
only awardingmechanism canmotivate developers with superior skills to participate.
This result is validated through historical data collected from the TopCoder website.
Further, we perform a case study on a NASA Zero Robotics collaborator project
that adopted the TopCoder platform for its portal development. By visualizing the
competitive interaction between community participants and development tasks via

160 W. Wu et al.

bipartite graph, we found that each type of design and coding tasks retains a handful
of contributors who kept winning the contests with qualified solutions.

There are still many open questions to be explored in future work:

(1) Currently our model has only been applied in the TopCoder process with the
prize awardingmechanism. It does not cover the cases when software crowdsourcing
process adopts other non-monetary and hybrid incentives as the award mechanisms.

(2) One of the major concerns on software process research is the optimization of the
project management with the constraint of both project budget and time schedule. It
is important to study the properties of Nash equilibrium in our model and design a
game theory based process allocation algorithm to fulfill the optimal goal of crowd
development.

We plan to investigate more case studies and gather more data from other crowd-
sourcing platforms to further validate the framework and its related mathematical
models. In addition, we will develop software tools to facilitate software architects to
design software crowdsourcing processes, estimate project costs and mitigate poten-
tial risk incurred by crowdsourcing.

Acknowledgments This work was supported by National High-Tech R&D Program of China
(Grant No. 2013AA01A210) and the State Key Laboratory of Software Development Environment
(Grant No. SKLSDE-2013ZX-03).

References

1. Lakhani, K., Garvin, D.A., Eric, L.: Topcoder (a): developing software through crowdsourcing
(15 January 2010). Harvard Business School General Management Unit Case No. 610-032
(2010)

2. uTest, https://www.utest.com/ (2013). Accessed 12 Jan 2013
3. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of the 13th

International Software Product Line Conference, SPLC’09, pp. 111–119. Carnegie Mellon
University, Pittsburgh (2009)

4. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community:a research agenda for soft-
ware ecosystems. In: Presented at the 31st International Conference on Software Engineering—
Companion Volume, ICSE-Companion 2009, pp. 187–190. IEEE (2009)

5. AppStori: http://appstori.com/ (2012). Accessed 10 Jun 2012
6. Herbsleb, J.D., Moitra, D.: Global software development. Softw. IEEE 18(2), 16–20 (2001)
7. Hars, A., Ou, S.: Working for free? Motivations of participating in open source projects. In:

Proceedings of the 34th Annual Hawaii International Conference on System Sciences, January
2001, 9 pp. (2001)

8. Crowston,K.,Wei, K., Howison, J.,Wiggins,A.: Free/libre open-source software development:
what we know and what we do not know. ACM Comput. Surv. 44(2):7:1–7:35 (2008)

9. Šmite, D., Wohlin, C., Gorschek, T., Feldt, R.: Empirical evidence in global software engineer-
ing: a systematic review. Empir. Softw. Eng. 15(1):91–118 (2010)

10. Ramasubbu, N., Cataldo, M., Balan, R.K., Herbsleb, J.D.: Configuring global software teams:
a multi-company analysis of project productivity, quality, and profits. In: Proceedings of the
33rd International Conference on Software Engineering, ICSE’11, pp. 261–270. ACM, New
York (2011)

https://www.utest.com/
http://appstori.com/

Towards a Game Theoretical Model for Software Crowdsourcing Processes 161

11. Scacchi, Walt, Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K.: Understanding free/open
source software development processes. Softw. Process: Improv. Pract. 11(2), 95–105 (2006)

12. Archak, N.:Money, glory and cheap talk: analyzing strategic behavior of contestants in simulta-
neous crowdsourcing contests on www.topcoder.com. In: Proceedings of the 19th International
Conference on World Wide Web, WWW’10, pp. 21–30. ACM, New York (2010)

13. Bacon, D.F., Chen, Y., Parkes, D., Rao, M.: A market-based approach to software evolution.
In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA’09, pp. 973–980. ACM, New York
(2009)

14. DiPalantino, D., Vojnovic,M.: Crowdsourcing and all-pay auctions. In: Proceedings of the 10th
ACM Conference on Electronic Commerce, EC’09, pp. 119–128. ACM, New York (2009)

15. Towne, W.B., Herbsleb, J., MllerBirn, C.: The vista ecosystem: current statusand future direc-
tions. Technical report, Institute for Software Research, Pittsburgh, PA (2010)

16. Ye,Y.,Kishida,K.:Toward anunderstandingof themotivationopen source software developers.
In: Proceedings of the 25th International Conference on Software Engineering, ICSE’03, pp.
419–429. IEEE Computer Society, Washington (2003)

17. Mason,W.,Watts, D.J.: Financial incentives and the “performance of crowds”. In: Proceedings
of the ACMSIGKDDWorkshop on Human Computation, HCOMP’09, pp. 77–85. ACM, New
York (2009)

18. Bled Electronic Commerce, Jsang, A., Ismail, R. The beta reputation system. In: Proceedings
of the 15th Bled Electronic Commerce Conference (2002)

19. Elo, A.: The Rating of Chessplayers, Past and Present. Arco Publishing, New York (1978)
20. Herbrich, R., Graepel, T.: Trueskilltm: a bayesian skill rating system. Technical report (2006)
21. TopCoder Inc., Algorithm competition rating system. Technical report (2008)
22. Wenjun, W., Tsai, W.-T., Li, W.: An evaluation framework for software crowdsourcing. Front.

Comput. Sci. 7(5), 694–709 (2013)
23. Corchn, L.C.: The theory of contests: a survey. Rev. Econ. Des. 11(2):69–100 (2007)
24. Nag, S., Heffan, I., Saenz-Otero, A., Lydon, M.: Spheres zero robotics software development:

lessons on crowdsourcing and collaborative competition. In: 2012 IEEEAerospaceConference,
March, 2012, pp. 1–17 (2012)

www.topcoder.com

Part III
Software Crowdsourcing Systems

TRUSTIE: A Software Development
Platform for Crowdsourcing

Huaimin Wang, Gang Yin, Xiang Li and Xiao Li

Abstract Software development is either creation activities that rely on developers
creativity and talents, or manufacturing activities that follow the engineering proce-
sses. Engineering processes need to include creation activities to address tasks such
as requirement elicitation and bug finding. On the other hand, by exploiting the
crowd wisdom, open-source development has been demonstrated to be a suitable
environment for software creation. However, it also has several limitations, such
as guaranteeing the progress and quality of production process. This paper intro-
duces a software development platform and ecosystem that combines the strengths
of the two models. First, we propose the Trustworthy Software Model as a basis to
support such a hybrid development ecosystem. The core of this model contains a
novel lifecycle model, an evidence model and an evolution model. Second, based
on the model, we propose the Trustworthy Software Development and Evolution
Service Model. It integrates crowd collaboration, resource sharing, runtime moni-
toring, and trustworthiness analysis into an unified framework. Based on this inte-
grated model, we designed and implemented TRUSTIE, which distinguishes itself
from other software crowdsourcing platforms by providing the software collabora-
tive development service and the resource sharing service with the general support
of trustworthiness-analysis tools. TRUSTIE enables crowd-oriented collaboration
among internal development teams and the external crowds by combining the soft-
ware creation and software manufacturing in one ecosystem.

H. Wang · G. Yin (B) · X. Li · X. Li
National Laboratory for Parallel and Distributed Processing, School of Computer,
National University of Defense Technology, Changsha 410073, China
e-mail: jack_nudt@163.com

H. Wang
e-mail: whm_w@163.com

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_10

165

166 H. Wang et al.

1 Introduction

Software development is an intellectual activity [1]. During the early phases of
the software development, most of works are creative activities where people work
together to analyze requirements and design software. Once the initial specification
or design is available, automated algorithms are available to perform analysis for
producing quality code, such as completeness and consistency checkers, automated
code generators, and test case generators. The later processes, often rigorously, may
be considered as a software manufacturing process. In spite of significant progress in
software technology, many steps of software development processes are still manual.
For example, requirement elicitation and bug removal [2] are mostly creative tasks
in which automation plays a very limited role. Encouraging and facilitating creative
activities are very important.

1.1 Lessons from Open-Source Software Development

Recently, Open-Source Software (OSS) has significantly changed our understand-
ing of software development. Since the 1980s, OSS has continued to grow in both
quality and quantity, and has become a source of software for numerous organiza-
tions. OSS development is different from traditional software development in several
aspects: teams are decentralized; resources are rapidly shared; new versions are fre-
quently released; and online communities of developers have always been formed.
These characteristics enable people to create software in a distributed and collabora-
tive manner. For example, OSS websites like Github, Google Code and Sourceforge
make it possible for anyone to create and manage OSS projects at any time. Besides,
OSS projects are open to all the developers. For example, users from all over the
world, regardless of their prior training or experience, can engage in design dis-
cussion, contribute their code, and engage in testing through bug reporting. Thus,
software development is greatly facilitated through this openness and massive crowd
participation. Software development will profit greatly from an effective ecosystem
empowered by crowd wisdom.

1.2 Crowd Wisdom

In this paper, “crowd” means “an undefined large group of people” [3]. For exam-
ple, in Wikipedia, there are more than 19 million registered user accounts,1 who
have edited more than 30 million pages.2 Their accuracy was found to be similar to
the Encyclopedia Britannica [4]. Linus Torvalds, creator of the Linux Open Source

1http://en.wikipedia.org/wiki/Wikipedia:Wikipedians.
2https://en.wikipedia.org/wiki/Special:Statistics.

http://en.wikipedia.org/wiki/Wikipedia:Wikipedians
https://en.wikipedia.org/wiki/Special:Statistics

TRUSTIE: A Software Development Platform for Crowdsourcing 167

Operating System, said that “the most exciting developments for Linux will happen
in user space, not kernel space” [5], in which “the user space” is the environment
where a large number of people contribute their code. The Mozilla OSS project,
which produces the famous Firefox browser, has gathered a crowd of over 1,800
people as acknowledged contributors.3

Software creation activities are now becoming an active arena for crowd wisdom.
The success of this transformation is evidenced by the above-mentioned and other
successful OSS projects. The insight nature of this success can be explained by the
“wisdom-of-crowds” effect in cognition, coordination or cooperation problems [6].
The aggregated performance of a crowdwill often outperformany single elite or small
team of elites. Software creation tasks, such as eliciting requirement, negotiating the
design of modules, finding and fixing bugs, are indeed cognition, coordination or
cooperation problems. In traditional software engineering, these innovative tasks are
assigned to dedicated teams, and are performed under a central control. However,
as reported in [7], innovation and knowledge are essentially distributed and can
hardly be aggregated by using centralizedmodels. In OSS projects, software creation
is outsourced to an open crowd, where massive, diversified, and non-professional
contributions converge to the diffusion of innovation, resulting in the rise of wisdom-
of-crowds revolution in software development.

1.3 Ecosystem Incorporates Engineering and Crowd Wisdom

By exploiting crowd wisdom, OSS development can alleviate the problems encoun-
tered in software creationwhich are hard to tackle by engineeringmethods. However,
crowd wisdom method is not intended for all scenarios. The majority of commercial
or industrial software systems are still developed through traditional engineering
methods, though with the addition of agile elements recently. This is due to the
reason that the engineering methods and tools have central control over require-
ments management, progress scheduling and quality assurance. Crowd wisdom is
essentially elusive and unpredictable. Without central control, OSS development can
hardly guarantee anything ahead of time, which is intolerable for most commercial
products.

For the above reason, we do not advocate that the crowd wisdom method should
replace the engineeringmethod. Instead, we propose that these two paradigms should
be combined, so that traditional software production can benefit from crowdwisdom.
The end of this reasoning coincides with the business strategies of big companies,
such as IBM,who embraces open source to benefit its software business [8].However,
we take a different perspective as development platform designers in understanding
this end.

Our approach is to establish a software ecosystem that incorporates engineer-
ing methods and crowd wisdom. In the ecosystem, software creation activities are

3http://www.mozilla.org/credits/.

http://www.mozilla.org/credits/

168 H. Wang et al.

well-supported by exploiting crowd wisdom; meanwhile software manufacture is
well-supported through implements of engineering methods. While crowd wisdom
methods stress more in respecting the creativity of each individual [9], an important
goal of engineering is the quality or trustworthiness of the software system. A key
challenge in bridging these two types of developmentmethods is to ensure the quality
or trustworthiness of a software system up to an industrial standard and meanwhile
respecting the creativity of each member of the crowd.

In this paper, based on how software systems are actually evolved in crowd-
based development practices, we adopt a crowd-based approach, by proposing a
Trustworthy SoftwareModel (TSM) for quality assurance of the new ecosystemwith
a platform. We propose a new Software Development and Evolution Service Model
(SDESM) that offers crowd collaboration, resource sharing, runtime monitoring and
trustworthiness analysis as four basic services. Based on the TSM and SDESM, we
implemented TRUSTIE (Trustworthy software tools and Integration Environment),
a software development platform.

This paper is organized as follows: Sect. 2 describes the TSM; Sect. 3 proposes the
SDESM. Section4 introduces TRUSTIE including its architecture and application
practices; Sect. 5 covers related work; The last section concludes this paper.

2 Trustworthy Software Model (TSM)

In the crowd-based software development paradigm, the meaning of software trust-
worthiness is fundamentally different from that of the traditional software. It is the
foundation for designing a software development ecosystem built upon crowd wis-
dom.

2.1 Life Cycle Model

In the traditional lifecycle model, software consists of program and documentation,
and it has two phases: development phase and application phase [10], as shown in
Fig. 1a. After completing the development, a software system enters the application
phase through a distribution or releasing process. Any user feedbacks are returned
to the development team for software update for the next release.

In crowd-based development, huge amounts of software data can be generated
at different phases of software life cycle. These data are accumulated, and shared
in various developer communities, which not only reflect software functionality, but
also can be used to analyze and measure various software properties. Take OSS
as an example. The software data are spread mainly in collaborative development
communities (such as SourceForge andGitHub) and knowledge sharing communities
(such as StackOverflow). The former consists of software repositories that can be used
to analyze the quality of codes and software development processes, while the latter

TRUSTIE: A Software Development Platform for Crowdsourcing 169

(a) (b)

Fig. 1 Lifecycle models of a classic and b Trustworthy Software

can be used as the textual feedbacks from the crowds (such as comments, Q&As).
The corresponding life cycle model is shown in Fig. 1b.

In this newmodel, the contents of software are code andevidences, and specifically,
evidences as specific data that provide useful facts about various software proper-
ties. A software life cycle is now extended into three interwoven phases: develop-
ment, sharing and application. The sharing phase is important for the collection and
exploitation of crowdwisdom.When early versions of software (e.g., alpha versions)
enter the sharing phase through releases, they can be downloaded, tested, analyzed,
and assessed by the public. All user-generated data are then fed back to the develop-
ment team, so the developers can identify defects and possible extension points.

Based on this model, a software entity has different forms in the three phases:
software project, software resource and software instance. A software project con-
tains a set of software artifacts and development data generated by developers with
a roadmap. A software resource contains a set of software programs and evidences
published by its provider. A software instance contains a set of running programs,
status and application data of an online software system. The separation of the three
forms of software entities will make it clear how to support software development
in different software lifecycles.

2.2 Trustworthy Evidence Model

Software trustworthiness evidences are structured or unstructured data that can
directly or indirectly reflect trustworthiness attributes. Here, attributes include not
only objective quality attributes like correctness, reliability, performance, safety,
security [11], but also subjective attributes such as user evaluations. In some cases,
meta-attributes calculated by comparing different quality attributes can also be used
as evidence. In different phases of a software life cycle, different trustworthiness

170 H. Wang et al.

evidences can be generated. The trustworthiness evidence model mainly contains
three types of software evidences:

Development Evidences are evidences produced in the development phase,
including measurements and descriptions that reflect various attributes of a soft-
ware artifact, development process and teams. Examples are source code quality,
bug fix time, and measurements on the other development activities.

Sharing Evidences are evidence produced in the sharing phase, including
community-based measurements like number of downloads and followers, mea-
surements of project activities, and ranking results. Community evidences are data
generated fromonline sharing platforms. Thus, they are indirect attributes of software
systems. These reflect the social attributes of a software system.

Application Evidences are evidences produced in application activities, including
measurements and assessments given by users that reflect either the quality (avail-
ability, reliability, and security) or the functional and performance features (usability
and maintainability) of a software system.

Different kinds of software entities contain specified sets of software evidences. A
software project generally contains all development evidences of a software system.
Software resources usually include all the sharing evidences of a software system,
relevant parts of the development evidences and application evidences. A software
instance contains all application evidences of an online software system.

2.3 Software Evolution Model

Software evolution is a continuous process of modifications to meet application
requirements. It is an essential way towards producing quality software systems in
crowd-based development. During the software evolution process, developers mod-
ify and upgrade the software system based on existing trustworthiness evidences.
Evolution activities will also produce new trustworthiness evidences. Based on the
new software lifecycle model mentioned in previous subsection, evolution activities
fall into the following three categories: version evolution, resource evolution, and
runtime evolution. Each corresponds to the development, sharing and application
phase respectively. Given a specific software system, a version evolution can gener-
ate multiple instances of resource evolution that in turn generates multiple instances
of runtime evolution as shown in Fig. 2a.

Version Evolution is the continuous source code evolution of a software system
during the development phase. This includes the design, coding, testing and release
activities carried out in the face of changing requirements, and different development
processes might be involved. Version evolution activities produce development evi-
dences and it has a dependency on trustworthiness evidences produced by resource
evolution and runtime evolution activities.

Resource Evolution is the change of software trustworthiness attributes directly
or indirectly caused by continuous updates of software trustworthiness evidences.

TRUSTIE: A Software Development Platform for Crowdsourcing 171

(a)

(b)

Fig. 2 Three evolution models: a relations between three kinds of evolution. b The internal actions
in software evolution loops

The basic steps of resource evolution include the update of programs, evidences and
the recalculation of trustworthiness attributes.

Runtime Evolution is the changeof software runtimeactivities including software
update, application deployment, system maintenance, error handling and so on. Sys-
tems of different types or different scales evolve differently in their application phase.
Runtime evolution provides trustworthiness evidences generated in software sys-
tems’ application phase to resource evolution activities.

There are complicatedmutual impacts and restrictions between different evolution
activities. Malfunction of any type of evolution activity can cause serious negative
or harmful effect to the development of the software system. For example, the more
runtime evolution instances, the more trustworthiness evidences they can provide
to resource evolution instances and the quicker version evolution activities such
as bug fixing, hence the faster the maintenance and improvement process. Version
evolution is the original driving force of other evolution activities; malfunctioned
version evolution activities like poor project management might lead to software
runtime failure and sometimes force teams to start new version evolution activities.
Besides, resource evolution should focus on the aggregation, sharing and analysis of
software evidences. Suitable resource evolution mechanisms should be designed to
attract participations of software vendors and users.

Under specific circumstances, software vendorsmight directly offer their software
system as online services, which to some extend brings the above three types of
evolution activities together. This integration is meaningful to the improvement of
the overall efficiency and quality of crowd-based software evolution activities.

172 H. Wang et al.

3 Trustworthy Software Development and Evolution
Service Model

The TSDESM (Trustworthy Software Development and Evolution ServiceModel) is
an Internet-based software evolution model. It supports software evolution activities
in the development, sharing and application phases, and the formation, gathering,
sharing and utilization of trustworthiness evidences. It provides an evolution-based
approach for crowd-based software development paradigm. As shown in Fig. 3, this
service architecture centers on trustworthiness analysis, offers crowd collaboration,
resource sharing and runtime monitoring as basic services. Specifically, the crowd
collaboration service supports crowd creation and manufacture, and provides mech-
anisms for the integration or transformation between the two. The resource sharing
service provides mechanisms, like entity sharing and evidence sharing, to achieve
rapid prototype distribution and application feedback. The runtime monitoring ser-
vice provides services of data gathering, aggregation and analysis service during
the runtime. The trustworthiness analysis service is responsible for measuring and
analyzing the data generated in the crowd collaboration service, runtime monitor-
ing service and the resource sharing service. Meanwhile, it provides comprehensive
analysis mechanisms for various crowd-based development tasks.

The basics of this architecture are themassive amount of trustworthiness evidences
generated in different software evolution processes. The four services not only output
different types of trustworthiness evidences, but also establish and optimize some
of their own functionalities by utilizing trustworthiness evidences, as depicted in
Fig. 3. Specifically, collaboration development activities are supported by the crowd
collaboration service. The development process data they produce are themain source
of development evidences, including version repositories, code commit logs, and

Fig. 3 Trustworthy software
development and evolution
environment architecture

TRUSTIE: A Software Development Platform for Crowdsourcing 173

issue tracking repositories. The resource sharing service continuously aggregates
and accumulates trustworthiness evidences from the crowd, including test reports,
use case description and comments. The runtimemonitoring service outputs behavior
data of software instances, such as running log, which is important for evaluating
and improving the runtime trustworthiness. The trustworthiness analysis service is
responsible for measuring, analyzing and evaluating various evidences, providing
developers and users with important statistical results and analysis tools.

Besides, the four services are not isolated. They provide services to each other
through open interfaces. For example, through the interfaces provided by the resource
sharing service, the crowdcollaboration service can recommenduseful software com-
ponents and services to programmers to facilitate agile development. The resource
sharing service can also call the interfaces of the trustworthiness analysis service to
get the trustworthiness evidences of a certain software resource. The crowd collab-
oration service uses these interfaces to evaluate on-going development activities in
the code quality and development efficiency. And the runtime monitoring service
can publish logs of critical system faults to resource sharing service, which in turn
publishes these log data to crowd for possible solution.

3.1 Crowd Collaboration Service

Software is the virtualization of real world objects and the incarnation of knowledge
andwisdom.All software development activities are essentially a kind of knowledge-
intensive collaboration activities [12, 13], be it software manufacture or software
creation. However, these two types of collaborations are different in many aspects.
Collaborations in software manufacture activities are conducted by a closed team
of developers, while collaborations in software creation often involve the external
crowds. This difference entails different mechanisms and tools for development,
interaction and rewarding systems.

The goal of the crowd collaboration service is to support the integration or trans-
formation of software creation and software manufacture. As an indispensable pro-
cedure in software creation activity, it means to make adaptation of selected works
of creation and integrate them into products of manufacture. Online communication
and sharing tools like BBS, blog, wiki, micro-blog, which can support collabora-
tions of a large crowd, are important for software creation activities. These tools can
help disseminate creative ideas and works in a short period of time, attracting more
potential users and contributors. Meanwhile, tools used in software manufacture are
mainly aimed at improving the level of development automation and better process
management. These include tools of desktop development, version management,
process management, bug management and so on.

The crowd collaboration service should provide the development tools of both
types and the mechanisms for their integration. These mechanisms can resolve their
inter-dependencies and conflicts. Besides, these mechanisms should be flexible and
adaptable, especially for projects which adopt engineering management on core

174 H. Wang et al.

members and crowd management on peripheral contributors. Here we propose three
reference models.

Community Model is the mechanism that supports communication and shar-
ing among a group of individuals with similar interests. Community tools include
BBS, blog and wiki and so on. The community model integrates community tools
with software manufacture tools, builds development communities around develop-
ment processes or software artifacts. For example, developers and users can create
a community for sharing and communicate development activities based on a cer-
tain software issue. The community mechanism supports and encourages individual
developers to be creative and in turn inspires crowd wisdom. See Fig. 4a.

Social Network Model is the mechanism for maintaining social relationships
among users. Basic elements of a social network are relations like “follow” , “friend”
and “group”.Users broadcast their dynamics to other relevant users through the social
network. Often, there are complicated social relations among software developers,
such as code committer network [14] and bug report network [15]. Social network
tools are mainly responsible for maintaining social relationships in software devel-
opment activities, achieving mutual awareness and seamless interaction. As depicted
in Fig. 4a.

Process Organization Model is the mechanism for organizing and reusing effi-
cient collaboration processes and tools for software development activities with a rel-
atively stable work flow. Software production line is a new network-based software
development environment which is integrative, extensible and collaborative [16].
Following a given development procedure, this new environment can organize and
customize software development elements related to developers, tools and artifacts.

Fig. 4 Network-based
crowd collaboration service:
a the two integration models
for software creation and
production. b The tool
integration model for
development progress
organization

(a)

(b)

TRUSTIE: A Software Development Platform for Crowdsourcing 175

In this way, it can easily customize a dedicated software development environment
for a particular team of developers. As depicted in Fig. 4b.

3.2 Resource Sharing Service

During the evolution of a software project, developers and users create various arti-
facts, tools and data. These resources are valuable to reuse and reference in later
development. Resource Sharing is an essential utility for both software manufac-
ture and software creation. For software manufacture activities, sharing of artifacts,
processes and information within a certain closed-team project should be supported
and encouraged in the platform. On the other hand, to attract a larger crowd to
participate in software creation activities, the platform should also encourage and
remind core developers to share tutorials and example codes. Oftentimes, resources
and knowledge shared in crowd development are not well-structured documentations
and goes beyond the boundary of any project or team. This implies that the platform
should have free sharing utility for the crowd to upload, edit, mark, comment and
vote for or against various kinds of resources.

The recourse sharing service is themajor platform for software resource evolution.
It can provide software program and evidence sharing utility to different groups of
developers. The challenge here is to continually collect and store massive amounts
of software resources. Two mechanisms are introduced in this service.

Program Sharing Mechanism supports publishing, accessing and updating of
software components, software services and other types of software programs. For
software services, the software entity data also include the interface descriptions
and URL addresses of each service instance. For open source software, software
entity data often include source code, compilation or installation scripts and the
address of the source code repository. The software program sharing mechanism
can accelerate software system’s distribution and dissemination. In other words, it
accelerates a software instance’s transformation from version evolution to runtime
evolution, speeding up the exposure of software bugs and other issues.

Evidence Sharing Mechanism supports publish, access and update of software
trustworthiness evidences generated in the development, sharing and application
phases. For software services, their evidences also include service instances’ real-
time availability status and operation status. For open source software systems,
the evidences include bug repositories, mailing lists, open source licenses, spon-
sors’ information and the activeness of development. The software evidence sharing
mechanisms can speed up software evidences’ dissemination and update; shorten the
response time on user feedbacks.

Currently, software resources are widely dispersed over various online software
resource sites. Take open source software resource sties as an example. They include
software community sites (e.g., Linux, Apache and Eclipse), project hosting sites
(e.g., SourceForge and Github), software directories (e.g., Softpedia.net and Ohloh)
and programming Q&A websites (e.g., StackOverflow and AskUbuntu). These sites

176 H. Wang et al.

Fig. 5 Core mechanisms of the software resource sharing service

contain huge amounts of publicly accessible software programs and various types of
trustworthiness evidences. These data are of different formats and their organizations
are different from one site to another, so it is challenging to discover quality software
resources (Fig. 5).

There are several techniques that can be used to collect massive quality software
resources. These include:

Resource Publication allowsusers to register and submit various software entities
and their trustworthy evidence to the resource sharing platform. Different types of
software resource data are organized and wrapped by a unified structure, e.g., the
RAS mechanism [17].

Resource Collection crawls and preprocesses software resources from various
online software resource platforms. It is an important automatic technique for estab-
lishing the large-scale software resources sharing service.

Resource Organization and Mining supports effective classification and ret-
rieval of massive software resources, and mines the data for software evaluation and
analysis based on trustworthiness evidences.

3.3 Runtime Monitoring Service

The runtimemonitoring service is an infrastructure for achieving trustworthy runtime
evolution in the application phase. The idea is to monitor the behavior and status
of software instances, and provide raw or filtered runtime log data for trustworthy
analysis service. By providing such information, the runtime monitoring service
can support fault localization and dynamic modification, and eventually support
trustworthy running of software systems.

The runtime monitoring service can be implemented in three modules as shown
in Fig. 6.

Monitoring Development Tool transfers normal software into monitoring-
enabled software. A general transformation approach is to insert monitoring probes
into the targeted software system. Specifically, the monitoring-enabled transfor-
mation process contains several sequential phases, including monitoring require-
ment description, monitoring probes generation, monitoring probes insertion and

TRUSTIE: A Software Development Platform for Crowdsourcing 177

Fig. 6 The model of software runtime monitoring service

software interface customization. In addition, the monitoring development tool can
also support dynamic adjustment by deploying evolution engine into a software sys-
tem. However, the implementation of evolution engine needs API support of targeted
software system.

Targeted Software System contains three general components. The monitoring
probes send system runtime status to a monitoring agent which deliveries these
information into the runtime monitoring service platform. For software systems that
change frequently, the targeted software system can deploy an evolution engine to
implement dynamic adjustment. In details, the evolution engine can either execute
evolution commands sent from the monitoring agent, or automatically adjust system
based on local monitoring data.

Runtime Monitoring Service Platform is a system-level remote service that sup-
ports monitoring of several targeted software systems. It contains APIs of monitoring
service, runtime analysis engine and runtime monitoring demonstration service and
so on. The monitoring database is responsible for storing raw monitoring data and
recognized faulty event data. For very large complex software system, themonitoring
database also needs mechanism to process stream data and the capacity of massive
data storage. The runtime analysis engine conducts data mining on monitoring data
through calling the APIs of trustworthy analysis service, to evaluate system running
status, diagnosis of system faults, and update monitoring database. The monitor-
ing agent can send monitoring data, acquire fault information or issue adjustment
commands through accessing the APIs of monitoring service.

The runtimemonitoring service can be regarded as a new service provided to soft-
ware system running in the network. By doing so, this not only simplifies application
logic of targeted software system, but also unleashes the advantage of data mining
to improve the effectiveness of monitoring.

178 H. Wang et al.

3.4 Trustworthiness Analysis Service

Trustworthiness analysis measures and evaluates various development behaviors,
software artifacts and components by mining massive software evidence data.
Resources and knowledge generated by software creation activities are neither well-
managed nor well-organized, thus posing challenges for effective data mining. For
example, in crowd wisdom methods, most requirements are hidden in comments
and discussions informally created by the crowd. Thus, data from crowd have to be
preprocessed and analyzed to be properly reused and referenced in software manu-
facture activities. Trustworthiness analysis service is the key to disclose and refine
them, making the transformation from creation to manufacture possible. Besides, for
both engineering methods and crowd wisdom methods, analysis is also crucial for
understanding development status and evaluating development problems. Finally,
results of analysis often act as useful references for optimizing future development.
For example, the analysis and monitoring of user feedback has become the norm to
evaluate existing software features and extract new requirements [18].

In the proposed software model, trustworthiness analysis service is the funda-
mental mechanism that makes trustworthy evolution during the development and
sharing phase possible. It measures and assesses development behaviors, software
artifacts and software products by analyzing and mining massive software evidence
data, thus leading software evolution activities towards the desired direction. The
trustworthiness analysis service contains three core mechanisms, i.e., development
data analysis (for development evidences), runtime data analysis (for trustworthiness
evidences) and resource trustworthiness rating (for runtime evidences).

Development Data Analysis consists of mechanisms which analyze software
development data (includingprocess data andwork-in-process) tomeasure and assess
software development activities and ultimately help improve project development
efficiency and software product quality. The core model of these mechanisms is
given in the left triangle of Fig. 7. The task of development evidence extraction is
to extract relevant development data from the software project environment. This
process in turn imposes new requirements on the reorganization or adjustment of
software project process data.Thedevelopment data analysismechanism is to analyze

Fig. 7 The coremodel of trustworthy software comprehensive analysis (from left to right): a devel-
opment data analysis model of software projects. b Trustworthiness evaluation model of software
resources. c Runtime data analysis model of software instances

TRUSTIE: A Software Development Platform for Crowdsourcing 179

and measure the extracted data. This helps assess development status and identify
software problems, providing important statistics for development optimization.

Resource Trustworthiness Evaluation gives the estimated rating of the target
software resource for the given trustworthiness attribute, by analyzing and evaluating
the evidences generated in the three phases of software life cycle. The core model
of these mechanisms is depicted in the central triangle Fig. 7. The rating of software
trustworthiness is based on the trustworthiness rating requirement model, which can
be established according to users’ expectation. Trustworthiness evidence model is
the set of pertinent evidences determined by the definition and assessment process of
trustworthiness rating. It is the basis of software trustworthiness rating. Trustworthi-
ness rating assessment is the method and mechanism which rates software entities’
trustworthiness, which is often domain specific. An example of the trustworthiness
rating from TRUSTIE can be seen in Sect. 4.3.

Runtime Data Analysis analyzes and mines the application evidences gener-
ated in software runtime to evaluate system running status and diagnose faulty. Bo
doing so, we can dynamically adjust software system to achieve trustworthy run-
ning and evolution of software. The core model of these mechanisms is given in the
right triangle of Fig. 7. The runtime state extraction component extracts and analyzes
important evidences related to the analyzed targets, including application indepen-
dent system-level evidences and application dependent logic-level evidences. The
runtime fault diagnosis component mainly analyzes and localizes evidences, and
diagnoses software runtime faults. The recognized faults can be taken as runtime
evolution evidences, and be published into resource sharing platform as application
evidences.

For the construction of any specific trustworthy software development environ-
ment, the software project data analysis model and resource trustworthiness rating
model in Fig. 7 are widely applicable. Software development data can be intermedi-
ate software artifacts like source code files or executable software modules. They can
also be procedure logs of a specific project task like development logs, issue lists and
mailing lists. The software trustworthiness ratingmodel can explicitly give a software
system’s trustworthiness rating and its definition. It may also give an unsupervised
ranking requirement according to some trustworthiness attribute. The measurements
and descriptions produced in the software project data analysis process are important
evidences of the software development phase.

4 TRUSTIE: Software Production and Evaluation
with Crowdsourcing

Based on the trustworthy software development service model, we designed and
implemented TRUSTIE (Trustworthy software tools and Integration Environment),
a platform for software production and evaluation with crowdsourcing (www.trustie.
net).

www.trustie.net
www.trustie.net

180 H. Wang et al.

The goal of TRUSTIE is to help internal development teams and external crowd
developers to improve the quality and the productivity of software. To achieve this
goal, TRRUSTIE uses software crowdsourcing to bridge the external crowd wisdom
and internal engineering by using various contributions from the crowds, which are
tasks that can be performed distributedly beyond the internal development team for
the software projects. In TRUSTIE, any software development tasks can be out-
sourced in an implied manner. Even the evaluations of the submitted contributions
are possible to be outsourced. The organizers of the outsourcing mechanism are
mainly the internal teams of the software projects (Fig. 8).

TRUSTIE employs five kinds of technologies, achieving the key mechanisms of
bridging the external crowd wisdom and internal engineering process, supporting
central control, decentralized contract, and three application models. The platform
has developed about 60 software tools covering software development activities
including requirement engineering, design, packaging and maintenance. We have
designed the system of software collaborative development analysis and the system
of software product-line framework. Based on the former system, we developed
four product-line systems for automatic software production. We also achieve the
integration of the collaborative development core service with those systems. The
technologies and platform of TRUSTIE have been used in China in various software
industries and research institutions.

Fig. 8 The development environment, technology architecture and application practices of
TRUSTIE

TRUSTIE: A Software Development Platform for Crowdsourcing 181

4.1 Software Crowdsourcing Model and Process in TRUSTIE

Based on the theoretical framework proposed in [19], the software crowdsourcing
model in TUSTIE can be categorized as a non-competitive model. In TRUSTIE,
either individuals or development teams can participate in a collaborative manner
to create software. All the participants contribute code or resources throughout the
entire crowdsourcing process for better connection of internal software teams and
external Crowds. This is quite different from the competitive model (such as crowd-
sourcing platforms in TopCoder and AppStori), where people participate in a com-
petitive manner to create software. Only selected or highly talented developers (or
teams) can survive in the crowdsourcing process and become the only contributors
or be rewarded with funding.

As a non-competitive model, the process of software crowdsourcing in TRUSTIE
is to ease the collaboration burden and maximize the throughput of development
outcome. This is supported by the collaborative development service and resource
sharing service (explained later in Sects. 4.2 and 4.3) in TRUSTIE in an implied
style. Generally, TRUSTIE includes three crowdsourcing processes: (1) Develop-
ment outsourcing: TRUSTIE outsources the task pieces of software creation and
production to the crowds by using its network-based crowd collaboration service.
Currently, TRUSTIE is considering outsource the codes review tasks [20]. (2) Testing
outsourcing: TRUSTIE enables the collection and integration of public bug reports
and comments by software resource sharing service. (3) Maintenance outsourcing:
TRUSTIE enables the collection of runtime status of monitored systems for quick
runtime evolution. This may enable the outsourcing of system maintenance tasks
by recruiting skilled system administrators. Currently, these processes are mainly
driven by the interests and consumption requirements of the crowds.

The collaborative development service and resource sharing service are the keys
to support the non-competitive crowdsourcing model in TRUSITE. In the next two
subsections, we describe the two services in details.

4.2 Trustworthy Software Collaborative Development Service

The trustworthy software collaborative development service supports the crowd-
sourcing process with software creation tools and software manufacturing tools.
These tools are exposed to both internal development teams and external crowd with
configurable options. Their integration is achieved through the community model
and social network model. Based on this, we build the collaborative development
analysis system that can analyze and measure development behavior, and the soft-
ware product-line framework system that supports the organization of collabora-
tion process and the customization of the development environment. Specifically, it
consists of the following services:

182 H. Wang et al.

Social Collaborative Development Service: This service provides software
creation tools like project forums, collaborative editing tools,mailing lists, and instant
communication. It also provides manufacture tools like project management, config-
uration management, bug management and continuous integration tools. It combines
both kinds of tools into a unified development environment [21]. Besides, this ser-
vice supports the sharing of technical knowledge, and achieves developers’ mutual
awareness, and interaction through mechanisms applied in the community model
and the social network model.

Collaborative Development Analysis Service: this service has provided a plat-
form to fetch and store massive software development data. It has also integrated
various tools for measuring development behaviors into the configuration manage-
ment tool set. Behind this service is a comprehensive assessment technology which
concerns the evidences of software products and evidences of development teams
simultaneously [22]. Besides, it integrates a technology that analyzes a programmer’s
development capability and the traces of his or her technical improvement [23].

Software Product-Line Construction Service: specifically, this service orga-
nizes and customizes developers, software tools and software artifacts involved in a
specific software development process based on some given development steps. In
thisway, the service helps establish suitable software production lines and a dedicated
development environment for the developer team [24].

As of June 2013, TRUSTIE supported 600 software projects and 700 compe-
tition projects. Besides, by using a set of evidence standards, it has extracted the
development evidences of quality OSS projects from online OSS communities.

4.3 Trustworthy Software Resource Sharing Service

In TRUSTIE, the trustworthy software resource sharing service supports the crowd-
sourcing process by allowing users, either internal development teams or external
crowd, to publish, retrieve, and evaluate software resources. It can transfer the tradi-
tional closed static software component storage model into the open dynamic soft-
ware resource sharing model [25]. Combined with the software rating and evaluation
model [26], this mechanism integrates trustworthiness evidence framework into the
software resource information architecture [27]. It seamlessly integrates central, sta-
tic resource storage with open, dynamic resource aggregation technology.

Resource Collecting and Organization: this service collects massive software
resources by using the resource publishing and resource retrieval technology. Based
on the RAS technology standard, it achieves evidences’ packaging and utilization
throughout the whole software life cycle. In order to improve the effectiveness of
resource management, it classifies massive software resources from multiple sites
using text mining and tag mining technology [28] and feature analysis technology
[29]. Both extracted meta data and mined knowledge data is stored and indexed
in cloud-based persistent storage including relational and non-relational databases.
Up to June 2012, TRUSTIE has already published 170 self-developed software

TRUSTIE: A Software Development Platform for Crowdsourcing 183

resources and more than 61,000 software resources collected from other online soft-
ware libraries and open source communities.

Resource Trustworthiness Evaluation: this service provides automatic assess-
ment mechanisms and manual assessment mechanisms, e.g., the assessment mech-
anism for service trustworthy evolution [30, 31]. Though software trustworthiness
rating depends on specific application domain, we believe there can be a trustwor-
thiness rating reference model which captures universal software attributes. This
reference model can be customized for any specific application domain.

The trustworthiness rating model employed by TRUSTIE’s trustworthy software
resource repository system is a trustworthiness rating reference method whose rating
dimensions are from user expectation, application validation and the methodology of
evaluation [26], see Table1. For example, in some critical areas (like aerospace), even

Table 1 Software trustworthiness rating model

Level Name Content

0 Unknown The lowest trustworthiness level. It means no software
trustworthiness evidence is found. It cannot determine whether the
target software system satisfies users’ expectations of the
trustworthiness attributes of the same type of software systems

1 Available The software entity can be accessed, and can function as described by
the software provider. It implies that the target software system
satisfies users’ basic expectations over the functional attributes of the
same type of software systems

2 Verified On the basis of the Available level, software provider publishes a
declaration of the set of software trustworthiness attributes according
to some documented standards. This declaration can be verified
through domain-specific software assessment mechanisms. It
indicates that the target software system satisfies users’ general
expectations over the trustworthiness attributes of the same type of
software systems, and these user-expected trustworthiness attributes
are verified

3 Applied On the basis of the Verified level, software systems have been applied
in related domains and have verifiable cases of successful application.
It implies that the software system satisfies users’ general
expectations over the trustworthiness attributes of the same type of
software systems, and these user-expected trustworthiness attributes
have been verified by real application

4 Assessed On the basis of the Applied level, trustworthiness of an Assessed
software system should pass the assessment conducted by
authoritative software trustworthiness rating agencies according to
specific documented trustworthiness rating standards. This indicates
the software system satisfies relatively higher user expectations over
the trustworthiness attributes of the same type of software systems,
and these user-expected trustworthiness attributes are confirmed by
authorities

5 Proved The highest trustworthiness level. It means on the basis of the
Assessed level, the user-submitted software trustworthiness attributes
can be strictly proved

184 H. Wang et al.

the first applicable version of the target software system is required to reach a high
trustworthiness level (e.g., level 4). The prerequisite of reaching level 3 and above
is the evidence of successful case application of the software system. This requires
the trustworthiness rating standards of these areas to be customized according to
domain-specific descriptions. For example, aerospace software users can specify the
definition of “successful cases of application” as “successful experimentation under
simulated environment”.

To ensure the reliability of trustworthy evaluation, the data assessed by TRUSTIE
platform are aggregated automatically from the software tools in TRUSTIE, such as
issue tracking tools, version control tools, resource sharing tools and communication
tools, without any intervention.

5 Related Work

Throughout the development of software technology, software development technol-
ogy and its supporting environment have always played important roles in driving
software technological innovation and industrial development. The rise of crowd-
based open source development has brought new opportunities. The vendors of soft-
ware development environments have shifted their attention from providing local
development support to facilitating globally distributed crowd development.

In software development methodology and development environment architec-
ture, researchers have studied the changes in software development technology.
Yang and colleagues [13] realized the profound impact of the Internet on soft-
ware systems and software development activities. They systematically proposed
the Internetware model and a set of architecture-centered software technologies and
development methods, which pave the way for establishing the conceptual model,
the evolution process and the supporting environment of trustworthy software sys-
tems. Based on Sourceforge and other similar open source project hosting platforms,
Booch and colleague [32] have described the definitions and basic characteristics
of software collaborative development environments. Using OSS development and
community-based service systems as prototypes, Kazman and colleague [33] have
proposed the Metropolis model which facilitates crowdsourcing software develop-
ment. The Metropolis model adopts a hierarchical software development architec-
ture, where participants are divided into the core, the peripheral and the mass. It
addresses principles like openness, mash-ups, unknown requirements, continuous
evolution, unstable resources and emergent behaviors. Through numerous case stud-
ies, Tapscott and colleague [34] have indicated that software development and more
and more other business models have begun to adopt the ideas and mechanisms
of mass collaboration, including openness, peering, sharing, and acting globally.
Herbsleb [2] has proposed the concept of Global Software Engineering. He dis-
cussed what new challenges global software development imply in aspects including
software architecture design, requirement elicitation, development environments and
tools. Possible future research directions have also been identified and illustrated.

TRUSTIE: A Software Development Platform for Crowdsourcing 185

For the crowdsourcing model, Howe [3] has illustrated its origin, present status and
future with several real world examples. He listed the open source movement, the
development of collaboration tools and the rise of vibrant community as the keys
to the rise of crowdsourcing, which is meaningful in establishing the crowd-based
software development ecosystem.

For collaborative development tools and technologies, recent years havewitnessed
numerous researches on the analysis of distributed, social development technologies
and practices. Mockus et al. [35] have analyzed the software development data of
the Apache Server open source project, which has a major impact in software engi-
neering research and has become the pioneer work in the field of Mining Software
Repositories. Crowston and Howison [36] have examined 120 OSS projects hosted
on Sourceforge.com. They have identified different patterns of developer interac-
tions and their relation with the team size. Sarma and colleague [37]have proposed
a browser named Tesseract for visualizing ‘socio-technical’ dependencies in devel-
opment activities, which aims at increasing mutual awareness among developers of
distributed teams. Dabbish et al. [38] analyzed Github.com, a project hosting and
social development website, and how transparency plays an important role in devel-
oper collaboration in Github. Posnett et al. [39] analyzed the focus and ownership
relations between software developers and artifacts in distributed development. They
propose a unified view of measuring focus and ownership by drawing the predator-
prey food web from ecology to model the developer-artifact contribution network.
They found through empirical studies that the number of defects is related to the
distribution of developer focus. Bird et al. [40] analyzed the development process
of Windows Vista. Specifically, they compared the post-release failures of compo-
nents that are developed by collocated teams with those developed in a distributed
manner. The difference is found to be insignificant. More recent researches on col-
laborative development analysis tend to focus on empirical study and aim at making
constructive suggestions and possible improvements on existing collaboration tools.

In OSS, resource sharing, mining, and trustworthiness evaluation become impor-
tant issues. SourceForge, Github and other project hosting sites have accumulated a
huge number of projects and data. In 2009, Mockus and colleague [41] have con-
ducted a preliminary census of OSS repositories. Their results indicate that more than
120,000 and130,000projectswere thenhosted onSourceForge.comandGithub.com,
respectively. In 2013, these two metrics are reported to be 470,000 and 4,000,000
respectively [42]. With the wide application of OSS, researchers began to focus on
the measurement of OSS trustworthiness. In its essence, software trustworthiness
is the natural extension of the notion of software quality in the Internet era [13].
How to scientifically assess software quality has always been one of the most chal-
lenging issues of software engineering research [43]. After 40years of development,
Software Metric has become an important software engineering research direction
concerning the problems of software quality. Quality assessment technologies have
become specialized and standardized. Numerous impactful software quality models
were then proposed [44, 45]. Based on these models, researchers and practitioners
have further designed quality models that take community factors into considera-
tion. These include the Navica [46], OpenBRR [47] and SQO-OSS [48] models.

186 H. Wang et al.

For example, the OpenBRR (Open Business Readiness Rating) model is a mature
OSS quality assessment model which aims to rate software projects and the code of
the entire OSS community in a standard and open fashion and eventually facilitates
the evaluation and application of OSS. Its assessment categories include Function-
ality, Usability, Quality, Security, Performance, Scalability, Architecture, Support,
Documentation, Adoption, Community and Professionalism. Its assessment process
involves ranking the importance of categories or metrics, processing the data, and
translating the data into the Business Readiness Rating. For the moment, assessment
and utilization of online OSS resources are still a hot topic for SE researchers.

In the industry, there is a major trend of the integration of software develop-
ment environment with online collaboration tools. CollabNet4 is one of the software
vendors who intentionally integrate OSS development methods into software devel-
opment environments. It has published the TeamForge platform which integrates
configuration management, continuous integration, issue tracking, project manage-
ment, lab management and collaboration tools into aWeb app life cycle management
platform. In thisway, it supports distributed collaborative development and high qual-
ity software delivery. The Visual Studio Integrated Development Environment5 is an
enterprise IDE for desktop development environment. Recently it has added TFS
(Team Foundation Server) that supports team collaboration mechanisms like ver-
sion control, iteration tracking and the task panel. IBM Rational Jazz6 is an open
and transparent collaborative development platform for commercial use. The team
collaboration, requirements composition and quality management tools of Rational
Jazz can support the development of trustworthy software products. Besides, IBM
has once encouraged the use of the IIOSB (IBM’s Internal Open Source Bazaar)
[8] in its commercial software development environment, which we believe is an
important attempt to integrate software creation and manufacture.

There are research efforts on approaches to harnessing crowdwisdom for software
development. Some emphasizes the importance of open, decentralized management.
Bird and colleague [49] found that the development of Firefox project is distributed
both geographically and organizationally. According to interviews with the creators
of Linux, Perl and Apache [50], letting the crowd takes over is an indispensable step
for the success of OSS projects. Project owners are thus encouraged to set up mech-
anisms and generate utilities for a larger crowd to participate easily, rather than act
against this openness. However, decentralization comes at a cost. Compared to tra-
ditional centralized, co-located projects, this globally distributed OSS development
model must face the challenge of incompatibilities and the risk of lack of awareness
[2]. To harness crowd wisdom, software projects should be equipped with tools and
practices that meet increasing coordination needs. The importance of accommodat-
ing diversities and conflicts has also been addressed in OSS practices and researches.
A typical OSS project uses issue tracking systems to manage bug reports and feature
requests. These bug reports cover various aspects of the target software project, and

4http://www.collab.net.
5http://www.visualstudio.com.
6http://www-01.ibm.com/software/rational/jazz/.

http://www.collab.net
http://www.visualstudio.com
http://www-01.ibm.com/software/rational/jazz/

TRUSTIE: A Software Development Platform for Crowdsourcing 187

some of them are conflicting with each other. However, there are no dictators who
make arbitrary decisions to cast aside any of these bugs. Instead, on which advice
to take is totally for the whole community to decide. Those not taken are also kept
in the project memory, and may have the opportunity to get re-opened [51]. Similar
mechanisms can also be seen in the way developers manage their code contribution.
For many successful Git-based OSS projects like the Android project and projects
on Github, contributors do not have to always follow the central code depot. They
can independently code on their own branch of the project, and merge the code back
as a patch whenever they want [52]. To accommodate diversity, project managers
are recommended to set up mechanisms to foster a culture that encourages different
opinions. Besides, communication tools are needed to resolve conflicts and build
consensus. For example, the Stack Overflow uses a voting mechanism to identify
high quality posts.

Recently, crowdsourcing software development or software crowdsourcing was
coined to identify an emerging area of software engineering [53]. It is described
to be an open call for participation in any task of software development, including
documentation, design, coding and testing. These tasks are normally conducted by
either members of a software enterprise or people contracted by the enterprise. But in
software crowdsourcing, all the tasks can be assigned to anyone in the general public.
Many software engineering researchers have studied the concept models, processes
and common architecture of software crowdsourcing. Wu et al. [54] has studied two
famous software crowdsourcing platforms, TopCoder and AppStori. By mining the
TopCoder data, authors found that the number of participants and hours spent on
competition are surprisingly smaller than expected. Clear problem definition, trans-
parency, diversity have been pointed out as the key lessons learned from current
software crowdsourcing. For both software crowdsourcing platforms, the Min-Max
nature among participants has been found to be a key design element. In another paper
[19], the authors proposed a novel evaluation framework for software crowdsourcing
projects. In the framework, the Min-Max relationship is used as a major aspect in
evaluating the competitions of crowdsourcing projects. In a previous Dagstuhl Sem-
inar [55], researchers from different domains have spent collective effort exploiting
and validating the new idea ofCloud-based Software Crowdsourcing, where the soft-
ware crowdsourcing processes andmodels are achievedwith computer cloud support.
Possible common architecture for Cloud-based Software Crowdsourcing has been
identified. Important issues related to concept models, processes and design patterns
have also been addressed. As discussed in the study of Tsai et al. [56], software
crowdsourcing has enabled the synergy architecture between a cloud of machines
and a cloud of humans. In such architecture, crowdsourcing models including game
theory, optimization theory and so on would be well supported by cloud-based tools.

188 H. Wang et al.

6 Conclusion

This paper proposes an ecosystem framework to deeply integrate the traditional
engineering methodology and the crowd-based development process. Based on this
framework, we develop the TRUSTIE, a non-competitive software crowdsourcing
platform. It supports crowd collaboration, resource sharing, runtime monitoring,
and trustworthiness analysis for trustworthy software evolution. TRUSTIE has been
used successfully in a number of software companies in China since 2008. Our
future work includes improving the evidence management and analysis capability of
TRUSTIE through infrastructure upgrade, improving the collaborative development
service and resource sharing service, and exploring the possibility of integrating
competitive crowdsourcing models, such as creative works competition.

Acknowledgments This research is supported by the National High Technology Research and
Development Program of China (Grant No. 2012AA011200), and National Natural Science Foun-
dation of China (Grant No. 61432020 and 61472430). Our gratitude goes to all members of the
TRUSTIE project, for their hard work and contribution, and also to the experts from the information
technology domain of the National 863 Plan, for their continuous support and guidance.

References

1. DeMarco, T., Lister, T.: Peopleware-Productive Projects and Teams. Dorset House Publishing
Co., New York (1987)

2. Herbsleb, J.D.: Global software engineering: the future of socio-technical coordination. In:
2007 Future of Software Engineering, pp. 188–198. IEEE Computer Society (2007)

3. Howe, J.: Crowdsourcing: Why the Power of the Crowd is Driving the Future of Business.
Random House, New York (2008)

4. Giles, J.: Internet encyclopaedias go head to head. Nature 438(7070), 900–901 (2005)
5. Torvalds, L.: The linux edge. Commun. ACM 42(4), 38–39 (1999)
6. Surowiecki, J.: The Wisdom of crowds: why the many are smarter than the few and how

collective wisdom shapes business. Economies, Societies and Nations (2004)
7. Lakhani, K.R., Panetta, J.A.: The principles of distributed innovation. Innovations 2(3), 97–112

(2007)
8. Capek, P.G., Frank, S.P., Gerdt, S., Shields, D.: A history of IBM’s open-source involvement

and strategy. IBM SYST. J. 44(2), 249–257 (2005)
9. Raymond, E.: The cathedral and the bazaar. Knowl. Technol. Policy 12(3), 23–49 (1999)
10. Xu, J.: System Programming Language. China Science Press, Beijing (1987)
11. Hasselbring, W., Reussner, R.: Toward trustworthy software systems. Computer 39(4), 91–92

(2006)
12. Robillard, P.N.: The role of knowledge in software development. Commun. ACM 42(1), 87–92

(1999)
13. Yang, F., Lü, J., Mei, H.: Technical framework for internetware: an architecture centric

approach. Sci. China Ser. F: Inf. Sci. 51(6), 610–622 (2008)
14. Huang, S.K.: Mining version histories to verify the learning process of legitimate peripheral

participants. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–5 (2005)
15. Zanetti, M.S., Scholtes, I., Tessone, C.J., Schweitzer, F.: Categorizing bugs with social net-

works: a case study on four open source software communities. In: Proceedings of the 2013
International Conference on Software Engineering, pp. 1032–1041. IEEE Press (2013)

TRUSTIE: A Software Development Platform for Crowdsourcing 189

16. Dou, W., Wei, G.W., Wei, J.C.: Collaborative software development environment and its con-
struction method. J. Front. Comput. Sci. Technol. 5(7), 624–632 (2011)

17. TrustieTeam: Trustie software resource management specification, trustie-srmc v2.0 (2011)
18. O’reilly, T.: What is web 2.0: design patterns and business models for the next generation of

software. Commun. Strateg. (65) (2007)
19. Wu, W., Tsai, W.T., Li, W.: An evaluation framework for software crowdsourcing. Front.

Comput. Sci. 7(5), 694–709 (2013)
20. Yu,Y.,Wang,H., Yin, G., Ling, C.: Reviewer recommender of pull-requests inGitHub. In: 2014

30th IEEE International Conference on International Conference on SoftwareMaintenance and
Evolution (ICSME 2014 TOOLS), pages to appear. IEEE (2014)

21. TrustieTeam: Trustie collaborative development environment reference specification, trustie-
forge v2.0 (2011)

22. Lin, Y., Huai-Min, W., Gang, Y., Dian-Xi, S., Xiang, L.: Mining and analyzing behavioral
characteristic of developers in open source software. Chin. J. Comput. 10, 1909–1918 (2010)

23. Zhou, M., Mockus, A.: Developer fluency: achieving true mastery in software projects. In:
Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 137–146. ACM (2010)

24. TrustieTeam: Trustie software production line integration specification, trustie-spl v3.1 (2011)
25. Zhao, J., Xie, B., Wang, Y., Xu, Y.: TSRR: A software resource repository for trustworthiness

resource management and reuse. In: SEKE, pp. 752–756 (2010)
26. TrustieTeam: Trustie software trustworthiness classification specification, trustie-stc v2.0

(2011)
27. Cai, S., Zou, Y., Shao, L., Xie, B., Shao, W.: Framework supporting software assets evaluation

on trustworthiness. J. Softw. China 21(2), 359–372 (2010)
28. Wang, T.,Wang, H., Yin, G., Ling, C.X., Li, X., Zou, P.:Mining software profile acrossmultiple

repositories for hierarchical categorization. In: 2013 29th IEEE International Conference on
Software Maintenance (ICSM), pp. 240–249. IEEE (2013)

29. Yu, Y.,Wang, H., Yin, G., Liu, B.:Mining and recommending software features across multiple
web repositories. In: Proceedings of the 5th Asia-Pacific Symposium on Internetware, p. 9.
ACM (2013)

30. Shao, L., Zhao, J., Xie, T., Zhang, L., Xie, B., Mei, H.: User-perceived service availability: a
metric and an estimation approach. In: IEEE International Conference onWeb Services, ICWS
2009, pp. 647–654. IEEE (2009)

31. Zeng, J., Sun, H.L., Liu, X.D., Deng, T., Huai, J.P.: Dynamic evolution mechanism for trust-
worthy software based on service composition. J. Softw. 21(2), 261–276 (2010)

32. Booch, G., Brown, A.W.: Collaborative development environments. Adv. Comput. 59, 1–27
(2003)

33. Kazman, R., Chen, H.M.: The metropolis model a new logic for development of crowdsourced
systems. Commun. ACM 52(7), 76–84 (2009)

34. Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everything.
Penguin, New York (2008)

35. Mockus, A., Fielding, R.T., Herbsleb, J.: A case study of open source software development: the
apache server. In: Proceedings of the 22nd International Conference on Software Engineering,
pp. 263–272. ACM (2000)

36. Crowston, K., Howison, J.: The social structure of free and open source software development.
First Monday 10(2) (2005)

37. Sarma, A., Maccherone, L., Wagstrom, P., Herbsleb, J.: Tesseract: interactive visual explo-
ration of socio-technical relationships in software development. In: IEEE 31st International
Conference on Software Engineering, ICSE 2009, pp. 23–33. IEEE (2009)

38. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J.: Social coding in GitHub: transparency and
collaboration in an open software repository. In: Proceedings of the ACM 2012 Conference on
Computer Supported Cooperative Work, pp. 1277–1286. ACM (2012)

39. Posnett, D., D’Souza, R., Devanbu, P., Filkov, V.: Dual ecological measures of focus in soft-
ware development. In: 2013 35th International Conference on Software Engineering (ICSE),
pp. 452–461. IEEE (2013)

190 H. Wang et al.

40. Bird, C., Nagappan, N., Devanbu, P., Gall, H., Murphy, B.: Does distributed development affect
software quality?: An empirical case study of windows vista. Commun. ACM 52(8), 85–93
(2009)

41. Mockus, A.: Amassing and indexing a large sample of version control systems: towards the
census of public source code history. In: 6th IEEE InternationalWorkingConference onMining
Software Repositories, MSR’09, pp. 11–20. IEEE (2009)

42. Begel,A.,Bosch, J., Storey,M.A.: Social networkingmeets software development: perspectives
from github, msdn, stack exchange, and topcoder. Softw. IEEE 30(1), 52–66 (2013)

43. Liu, K., Shan, Z., Wang, J., He, J., Zhang, Z., Qin, Y.: Overview on major research plan of
trustworthy software. Bull. Natl. Nat. Sci. Found. China 22(3), 145–151 (2008)

44. Boehm,B.W., Brown, J.R., Kaspar, H., Lipow,M.,MacLeod, G.J.,Merrit,M.J.: Characteristics
of Software Quality, vol. 1. North-Holland Publishing Company, Amsterdam (1978)

45. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality. General Electric
National Technical Information Service, Berlin (1977)

46. Golden, B.: Succeeding with Open Source. Addison-Wesley Professional, Boston (2005)
47. Wasserman, A., Pal, M., Chan, C.: The business readiness rating model: an evaluation frame-

work for open source. In: Proceedings of the EFOSS Workshop, Como, Italy (2006)
48. Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G.: Open Source Development, Com-

munities and Quality. Springer, Berlin (2008)
49. Bird, C., Nagappan, N.: Who? Where? What? examining distributed development in two large

open source projects. In: 2012 9th IEEEWorking Conference onMining Software Repositories
(MSR), pp. 237–246. IEEE (2012)

50. Barr, J.: The paradox of free/open source project management (2005). http://archive09.linux.
com/feature/42466. Accessed 6 May 2014

51. Aranda, J., Venolia, G.: The secret life of bugs: going past the errors and omissions in software
repositories. In: Proceedings of the 31st International Conference on Software Engineering,
pp. 298–308. IEEE Computer Society (2009)

52. Anonymous:Gerrit code review—aquick introduction, version 2.10-rc0-199-g60bca74 (2014).
https://gerrit-review.googlesource.com/Documentation/intro-quick.html

53. Anonymous: Crowdsourcing software development, from Wikipedia (2014). http://en.
wikipedia.org/wiki/Crowdsourcing_software_development

54. Wu, W., Tsai, W.T., Li, W.: Creative software crowdsourcing: from components and algorithm
development to project concept formations. Int. J. Creat. Comput. 1(1), 57–91 (2013)

55. Huhns, M.N., Li, W., Tsai, W.T.: Cloud-based software crowdsourcing (dagstuhl seminar
13362). Dagstuhl Rep. 3(9) (2013)

56. Tsai,W.T.,Wu,W.,Huhns,M.N.:Cloud-based software crowdsourcing. IEEE InternetComput.
18(3), 78–83 (2014). http://doi.ieeecomputersociety.org/10.1109/MIC.2014.46

http://archive09.linux.com/feature/42466
http://archive09.linux.com/feature/42466
https://gerrit-review.googlesource.com/Documentation/intro-quick.html
http://en.wikipedia.org/wiki/Crowdsourcing_software_development
http://en.wikipedia.org/wiki/Crowdsourcing_software_development
http://doi.ieeecomputersociety.org/10.1109/MIC.2014.46

Social Clouds: Crowdsourcing Cloud
Infrastructure

Kyle Chard and Simon Caton

Abstract Software crowdsourcing is becoming an increasingly viable model for
creating production software addressing every aspect of the software development
lifecycle. However, as software development processes become yet more complex
requiring dedicated systems for development, testing, and deployment, software
crowdsourcing projects must also acquire considerable infrastructure in order to
facilitate development.Wepropose the use of an infrastructure crowdsourcingmodel,
termed a Social Cloud, to facilitate a user-contributed cloud fabric on which software
development services and systems can be hosted. Social Clouds are motivated by the
needs of individuals or groups for specific resources or capabilities that can be made
available by connected peers. Social Clouds leverage lessons learned through vol-
unteer computing and crowdsourcing projects such as the willingness of individuals
to make their resources available and offer their expertise altruistically for “good
causes” or in exchange for other resources or payment. In this chapter we present
the Social Cloud model and describe how it can be used to crowdsource software
infrastructure.

1 Introduction

Software crowdsourcing [33, 44] is a new approach to software engineering in
which individual tasks of the software development lifecycle such as coding, deploy-
ment, documentation and testing are outsourced to a potentially unknown group
of individuals from the general public. Building upon the wide-spread adoption
of crowdsourcing, which focuses on unskilled or semi-skilled participants collec-
tively achieving a given goal, software crowdsourcing further extends this model
by requiring sophisticated coordination of expert users who together–knowingly or

K. Chard (B)
Computation Institute, University of Chicago and Argonne National Laboratory, Lemont, USA
e-mail: chard@uchicago.edu

S. Caton
Karlsruhe Service Research Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: simon.caton@kit.edu

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_11

191

192 K. Chard and S. Caton

unknowingly–participate in an orchestrated workflow. This model moves away from
traditional software development approaches towards a decentralized, peer-based
model in which open calls for participation are used to accomplish tasks.

Software crowdsourcing shows great promise as a model for developing produc-
tion softwarewithout requiring dedicated teams of developers. Software crowdsourc-
ing projects cover a wide array of efforts ranging from contribution to AppStores
(e.g. Apple AppStore or Google Play) through to individual fine grained contests
in tools such as TopCoder.1 In TopCoder users set challenges (e.g., programming,
design or testing) along with a prize, deadline and requirements for completing the
challenge. Other users can then discover and accept challenges. Upon completion a
winning contribution is selected and the winner is rewarded. In this case, participants
are motivated by monetary rewards; however in other crowdsourcing scenarios they
may also bemotivated by other factors such as altruism or standing in the community.

Like any software development model, software crowdsourcing requires signif-
icant computing infrastructure for all stages of the software development lifecycle.
For instance, storage resources are required for code repositories, databases, test
datasets, and documentation. Compute resources are required for testing, continuous
integration, and hosting of services. These requirements are in stark contrast to the
infrastructure requirements of other crowdsourcing models which typically require
onlyminimal infrastructure to track tasks and results acrossmany thousands of users.
Existing crowdsourcing approaches will not scale to the sophisticated requirements
of software crowdsourcing. In a crowdsourced environment questions arise over who
should operate and maintain such infrastructure. Due to the collaborative nature of
most software development processes it is infeasible to operate all infrastructure on
individuals’ machines, rather, collaborative infrastructure is required so that all users
can access these systems.

Recentwork has explored the use of cloudbased approaches to support the require-
ments of software development activities. In fact, systems such as TopCoder offer the
ability to provision a cloud virtual machine (VM) for a given challenge. Cloud based
systems allow access by all participants and enable use of virtualized resources. This,
for example, allows participants to create sophisticated infrastructure with the same
ease at which they could do it locally. However, it does not solve the problem of
how these cloud resources are procured. And due to the predominant pay-as-you go
model of cloud usage it does not solve the problem of how these resources are paid
for.

In this chapter we present the use of a Social Cloud [9] as a model for providing
such shared infrastructure via an infrastructure crowdsourcing-likemodel. Originally
developed as a resource sharing framework for sharing resources between connected
individuals in a social network we suggest here that such approaches can also be
applied to form a crowdsourced resource fabric for software development. The Social
Cloudmodel is built upon the premise of virtualized resource contribution from semi-
anonymous (crowd) and socially connected users. Virtualization techniques enable
contributed resources to be used securely (from both the consumer’s and provider’s

1http://www.topcoder.com/.

http://www.topcoder.com/

Social Clouds: Crowdsourcing Cloud Infrastructure 193

perspectives) and to also provide an intuitive and sandboxed environment onwhich to
construct services. We present an overview of a social storage cloud, social content
delivery network (S-CDN) and social compute cloud to be used as the basis for
supplying shared infrastructure for software crowdsourcing and describe the use of
a currency-based, social network-based and matching-based model for allocating
resources in such environments.

2 Social Clouds

A Social Cloud is “a resource and service sharing framework utilizing relationships
established between members of a social network.” [9]. It is a dynamic environment
through which cloud-like provisioning scenarios can be established based upon the
implicit levels of trust represented between individuals in a social network. Where
a social network describes relationships between individuals and social networks
exist in, and can be extracted from, any number of multi-user system, including for
example, crowdsourcing systems.

In the remainder of this section we present an overview of Social Clouds and
describe the crowdsourcing calls that can be employed. We then present implemen-
tations of a Social Storage Cloud, Social Content Delivery Network (CDN), and
Social Compute Cloud. This will enable us to describe a general Social Cloud model
for crowdsourcing Cloud infrastructures (in Sect. 4.1). In each of these settings, we
have also investigated different mechanisms for managing exchange using credit-
based, social network-based and preference-based models, each of which can be
viewed as a proxy for handling different types of crowdsourcing calls.

2.1 Motivation and Overview

The vision of a Social Cloud is motivated by the need of individuals or groups to
access resources they are not in possession of, but that could be made available by
connected peers. Later,we describe aSocial StorageCloud, a SocialContentDelivery
Network and a Social Compute Cloud; however additional resource types (such as
software, capabilities, software licenses, etc.) could also be shared. In each case
a Social Cloud provides a platform for sharing resources within a social network.
Using this approach, users can download and install a middleware, leverage their
personal social network, and provide resources to, or consume resources from, their
connections.

The basis for using existing online social networks is that the explicit act of
adding a “friend” or deriving an association between individuals implies that a user
has some degree of knowledge of the individual being added. Such connectivity
between individuals can be used to infer that a trust relationship exists between them.
Similar relationships can be extracted between software crowdsourcing participants

194 K. Chard and S. Caton

due to the reliance on coordinated and collaborative development practices. In both
situations there may be varying degrees of trust between participants, for instance
family members have more trust in one another than acquaintances do. Likewise,
close collaborators in a software development process may have more trust in one
another than in members they do not know. The social networkmodel provides a way
to encode this information as basic social relationships and to augment the social
graph with additional social or collaborative constructs such as groups (e.g. friend
or project lists), previous interactions, or social discourse.

Another way to think about a Social Cloud is to consider that social groups are
analogous to dynamic Virtual Organizations (VOs) [15]. Groups, like VOs, have
policies that define the intent of the group, the membership of the group and sharing
policies for the group.Clearly, in thismodel Social Clouds are notmutually exclusive,
that is, users may be simultaneously members of multiple Social Clouds. Whereas a
VO is often associated with a particular application or activity, and is often disbanded
once this activity completes, a group is longer lasting and may be used in the context
of multiple applications or activities. While Social Clouds may be constructed based
on Groups or VOs, we take the latter view, and use the formation of social groups to
supportmultiple activities. In addition, different sharing policies ormarketmetaphors
can be defined depending on the group, for instance a user may be more likely to
share resources openly with close collaborators without requiring a high degree
of reciprocation, however the same might not be true for friends or more distant
collaborators.

Resources in a Social Cloud may represent a physical or virtual entity (or capa-
bility) of limited availability. A resource could therefore encompass people, skills,
information, computing capacity, or software licenses—hence, a resource provides
a particular capability that is of use to other members of a group or community.
Resources shared in a Social Cloud are by definition heterogeneous and potentially
complementary, for example one user may share storage in exchange for access to
compute. Or in the case of software crowdsourcing, a user may contribute compute
resources to a particular group of users associated with a particular project while
using storage resources associated with that same project.

In order to manage exchange, a Social Cloud requires mechanisms by which
resource sharing can be controlled and regulated. Like crowdsourcing applications,
in which contributors are rewarded for their contributions in different ways, a Social
Cloud must also support different models for reward. Crowdsourcing applications
often make use of monetary rewards for contribution (e.g., Amazon Mechanical
Turk) or leverage reputation-based rewards and altruism (e.g., Wikipedia). Simi-
larly, crowd workers have different motivations for participating (see: [43]), and we
argue that many of these are also present in a Social Cloud context. In a Social
Cloud we use the notion of a social marketplace as a model for facilitating and reg-
ulating exchange between individuals. A marketplace is an economic system that
provides a clear mechanism for determining matches between requests and con-
tributions. Importantly, a marketplace need not require monetary exchange, rather
non-monetary protocols such as reciprocation, preferencematching, and social graph
based protocols can be used to determine appropriate allocations. If we compare

Social Clouds: Crowdsourcing Cloud Infrastructure 195

possible non-monetary incentives for participating in a Social Cloud (see: [21]) to
the motivation of participating in crowdsourcing platforms as defined in [43], there
is a resounding overlap.

2.2 Crowdsourcing Calls

As Social Clouds are a form of infrastructure crowdsourcing they can be constructed
with various calls depending on the purpose, and intent of the call. By leveraging
[40]’s definition of call types, we refer to the following types of call for a Social
Cloud:

• Open Hierarchical a call for resources to construct a personal Social Cloud. Here
the call initiator may specify policies that define which resources are accepted for
use. Where this could include specific relationship types, interaction histories or
competencies etc. The important thing to note in this case, however, is that the call
itself, is open; implying that anyone can offer to participate, but their participation
may be subjected to user-specific policies.

• Open Flat a call for platform resources in themanagement of aSocialCloud. In this
call, a Social Cloud platform asks for computational resources to facilitate its basic
functionality. Resources can be contributed by any member of the community. We
refer to this type of platform as a co-operative platform see: [22].

• Closed Hierarchical a call for resources from a specific social group. Here a call
is only visible to a specific (sub)set of a user’s friends and/or collaborators. Final
selection, as with the open hierarchical call, may still be subject to user-specific
policies.

• Closed Flat a call for platform resources from a specific (sub)community. Here
a user or set of users define the social boundaries of a Social Cloud, for instance
friends of friends, or a given social group or circle. Anyone within this community
may provide resources for the Social Cloud platform in a similar manner to the
Open Flat call.

From these call types, a given Social Cloud may enable contributions from a
tight group of participants or more widely across a social network (e.g., friends of
friends). Similarly, Social Clouds face the same difficulties as crowdsourcing appli-
cations with respect to quality, however, unlike typical crowdsourcing applications
simple approaches such as task redundancy are not applicable. For this reason, we
rely on interpersonal trust as a model for establishing reputation and predicting
quality. Software crowdsourcing approaches, given their requirement for expert user
contributions and complex tasks, may also leverage such approaches for establishing
contribution quality.

196 K. Chard and S. Caton

2.3 Social Storage Cloud

In [9, 10] we present a Social Storage Cloud designed to enable users to share elastic
storage resources. The general architecture of a Social Storage Cloud is shown in
Fig. 1. We implement a Social Storage Cloud as a service-based Facebook appli-
cation. Where a social network (Facebook) provides user and group management
as well as the medium to interact with the Social Cloud infrastructure through an
embedded web interface (Facebook application) which in turn exposes the storage
service interfaces directly. To participate in a Social Storage Cloud users must deploy
and host a simple storage service on their resources. Consumers can then interact
directly with a specific storage service when allocated via a social/market protocol.
The social marketplace is responsible for facilitating sharing and includes compo-
nents for service registration and discovery, implementing and abstracting a chosen
market protocol, managing and monitoring provisions, and regulating the economy.
In this case we implement two economic markets: a posted price and a reverse auc-
tion. Both markets operate independently and are designed to work simultaneously.

Storage services are implemented as Web Services Resource Framework [12]
(WSRF) services and provide an interface for users to access virtualized storage.
Contributors must install this service on their local resources and register the service
with the Social Storage Cloud application to participate in the market. This service
exposes a set of file manipulation operations to users and maps their actions to oper-
ations on the local file system. Users create new storage instances by first requesting
an allocation from a Social Storage Cloud and then passing the resulting service level
agreement (SLA) (formed as the result of allocation) to a specific storage service, this
creates a mapping between a user, agreement, and a storage instance. Instances are
identified by a user and agreement allowing individual users to have multiple storage

Market Infrastructure

Registration &
Discovery

Socially-
Oriented

Market Protocol

Banking
Service

Provider administration

Monitoring

Agreement
Management

User

Resource Fabrics

Service Interaction (as consumer)

Social
Network

Fig. 1 Social Storage Cloud Architecture. Users register shared services, their friends are then able
to provision and use these resources through a Facebook application. Allocation is conducted by
an underlying market infrastructure

Social Clouds: Crowdsourcing Cloud Infrastructure 197

instances in the same storage service. The storage service creates a representative
WSRF resource and an associated working directory for each instance to sandbox
storage access. The resource keeps track of service levels as outlined in the agreement
such as the data storage limit. Additionally the service has interfaces to list storage
contents, retrieve the amount of storage used/available, upload, download, preview
and delete files. These interfaces are all made available via the integrated Facebook
application.

The twomarket mechanisms (posted price, and reverse auction) operate similarly,
allowing consumers to select and pay for storage resources hosted by their friends.
In a posted price market users select storage from a list of friends’ service offers. In
the reverse auction (tender) market, consumers outline specific storage requirements
and pass this description to the Social Cloud infrastructure; providers then bid to host
the storage. Both mechanisms result in the establishment of an SLA between users.
The SLA is redeemed through the appropriate storage service to create a storage
instance. An example summary user interface is shown in Fig. 2. This summary view
shows user allocations both on others’ resources as well as others’ allocations on
contributed resources.

Fig. 2 Social Storage Cloud user summary interface. This interface displays available storage
services in a user’s network. It also lists other users consuming storage resources as well as historical
reservations

198 K. Chard and S. Caton

The Social Storage Cloud is the simplest model with respect to issuing a call, and
it uses the most common approach for regulating exchange–a monetary model. Calls
in this case are closed. Only established social relationships (or friend in Facebook
terminology) are permitted. The call is also hierarchical in that requesting users
set the rules for the exchange through the use of an institutionalized (economic)
mechanism, which also performs the allocation process. In [9, 10], we explore the
use of a credit-based system that rewards users for contributing resources and charges
users for consuming resources. The use of a credit model requires the implementation
of services to manage the exchange of credits securely. We use a Banking service
to manage users’ credit balances and all agreements a user is participating (or has
participated) in. Credits are exchanged between users when an agreement is made,
prior to the service being used. The two concurrent economic markets, posted price
and reverse auctions, are designed to model different forms of exchange: a posted
price index, and a reverse Vickrey auction. Following an allocation, communication
between consumer and provider is through the establishment of an SLA (represented
using WS-Agreement [3]).

In a posted price market a user can advertise a particular service in their Social
Cloud describing the capabilities of the service and defining the price for using
this service. Other users can then select an advertised service and define specific
requirements (storage amount, duration, availability, and penalties) of the provision.
This approach is analogous to the process followed by crowdsourcing applications
such as Amazon Mechanical Turk where requesters post tasks and advertise a stated
price for accomplishing the task. The Social Storage Cloud uses a simple index
service to store offers and provides an interface for other users to then discover and
select these offers. When a user selects a service offer they also specify their required
service levels, a SLA is created defining the requirements of the provision such as
duration and storage amount. Before using the service, the generated SLA must be
passed to the appropriate storage service to create an instance. The storage service
determines if it will accept the agreement based on local policy and current resource
capacity. Having instantiated storage the agreement is passed to the Banking service
to exchange credits. A copy of the agreement is stored as a form of receipt.

In a reverse auction (tender) market, a requesting user can specify their storage
requirements and then submit an auction request to the Social Storage Cloud. The
user’s friends can then bid to provide the requested storage. We rely on auction
mechanisms provided by the DRIVE meta-scheduler [8]. In particular, we use a
reverse Vickrey auction protocol as it has the dominant bidding strategy of truth
telling, i.e., a user’s best bidding strategy is to truthfully bid in accordance to their
(private) preferences,making theVickrey auctionmore socially centric. It alsomeans
that “anti-social” behavior such as counter speculation is fruitless. In a reverse auction
providers compete (bid) for the right to host a specific task. The DRIVE auctioneer
uses the list of friends to locate a group of suitable storage services based on user
specified requirements; these are termed the bidders in the auction. Each bidder then
computes a bid based on the requirements expressed by the consumer. The storage
services include aDRIVE-enabled interface that is able to compute simple bids based
on the amount of storage requested. The auctioneer determines the auction winner

Social Clouds: Crowdsourcing Cloud Infrastructure 199

and creates an SLA between the consumer and the winning bidder. As in the posted
price mechanism, the agreement is sent to the specified service for instantiation and
the bank for credit transfer. In this model the consumer is charged the price of the
second lowest bid, as the Vickrey auction is a second-price mechanism.

When considering this market approach for crowdsourcing there are clear advan-
tages and disadvantages: The use of a virtual currency provides a tangible framework
for users to visualize their contribution and consumption rates in away they can relate
to: if they run out of credits, they cannot consume resources; users can manage their
credits independently with respect to their personal supply and demand; any mecha-
nism or means of executing a call can be designed to facilitate exchange and achieve
specific design intentions; and, the design of the mechanisms have obvious parallels
to classic crowdsourcing call structures. Despite these advantages, however, there
is an obvious challenge: the need to manage and maintain economic stability, i.e.,
inflation/deflation over time and the dynamics of context: users, like workers can
come and go which can aggravate inflation/deflation. These challenges cannot be
understated.

2.4 Social Content Delivery Network

In [11, 32] we present the notion of a Social Content Delivery Network (CDN)
which builds upon the idea of a Social Storage Cloud to deliver scalable and effi-
cient distribution of shared data over user contributed resources. The Social CDN
is designed to enable data-based scientific exchanges via relationships expressed in
social or community networks. Figure3 illustrates the Social CDN model. Here a
user has produced a data artifact for a collaborative project (e.g. the results of a sci-
entific experiment, a new software component, bundle or library, or new data set for
analysis), which the user wishes to share with their collaborators. In the Social Stor-
age Cloud setting presented previously this would constitute a backup action being
performed by the user using the storage resources of a their social peers, similar to
that of a Dropbox storage action. In a Social CDN, however, the backup action is
secondary to the action of sharing and distributing data amongst collaborators.

The Social CDN model builds upon a network of Data Followers, analogous to
to Twitter followers, users that follow data status updates and data posts of a given
user. Note that users do not automatically reciprocally follow their data followers.
Therefore, like circles in Google+, a follower-followee connection is not considered
bilateral.However, the relationshipbetween these usersmust bebilaterally authorized
for our assumptions on pre-existent trust to hold. In order to share data, a user appends
an artifact (via a social network application) to a status message or Tweet. This action
tells the Social CDN which dataset should be shared, in which data follower circle,
and invokes the Social CDN’s data transport and management algorithms to execute
the sharing action. Likewise, when users access data status messages they may also
be published to enable social interactions around data usage.

200 K. Chard and S. Caton

Fig. 3 Social CDN: usage and overview. Data followers of a user receive data updates when the
user shares a dataset with the Social CDN.Allocation servers determine themost efficient placement
and transfer of the dataset

As in the the Social Storage Cloud setting, users contribute storage resources to
the Social CDN, i.e., Social Cloud platform. This enables the Social CDN to use
storage resources located on the edge devices owned (and therefore contributed) by
members of data follower circles, including the user sharing the data. These servers
are used to share and access data, and also as temporary hosts for others’ data within
the network. Users who provide resources to the Social CDN can also have the data
encapsulated by a data post pushed to their resources in the form of replicas by the
Social CDN architecture.

By building on the notion of a Social Storage Cloud, storage resources contributed
to the Social CDN are used by the central Social CDN application to distribute
data across replica nodes. In this sense, the system constructs a distributed data
warehouse across resources networked in accordance to the social network of their
owners. However, rather than using proprietary storage services the Social CDN
builds upon Globus [14], a provider of high performance data transfer and sharing.
Globus uses’endpoints’ installed on users’ resources to enable transfer and sharing.
The Social CDN application uses the Globus APIs to alter sharing properties on an
endpoint to enable replicas to be stored and accessed. It then uses these same APIs
to transfer data between a replica and the requester’s endpoint. The Social CDN web
application is implemented as a Django application, it uses a social network adapter
to connect to Facebook for authentication and access to the user’s social graph, and
a local database to store and manage users and allocations.

In this setting, the main crowdsourcing-like call is in the construction of the
Social CDN infrastructure—an open flat call in that anyone can take part and provide
resources to the Social CDN. How these resources are then used, is another matter,

Social Clouds: Crowdsourcing Cloud Infrastructure 201

as we can assume that data is not shared universally. Therefore, there are a myriad
of ways in which to move data around the Social CDN. Unlike the Social Storage
Cloud, the incentives to take part in and contribute to a Social CDN are more closely
tied with personal and collective benefit. For this reason, we have not implemented
a market-like setting as we expect the Social CDN to be autonomically [28] self-
managed over time based on how interactions and data shares emerge over time.

Instead, we leverage the social basis of a Social Cloud to use network structure
and network analysis algorithms to select appropriate replica locations on which to
distribute data. This approach attempts to place replicas of each dataset on selected
available endpoints of the dataset’s owner’s friends (followers), where the replica-
tion factor (the number of nodes selected for replication) is a configurable system
parameter. The approach attempts to predict usage based on relationships between
users, for example by placing replicas on friends with the strongest connection to
the data contributor.

In the Social CDN we use social network analysis algorithms to rank potential
replica locations, for example determining important, well connected individuals in
the network. We use graph theory metrics such as centrality, clustering coefficient,
and node betweenness to determine nodes that are important within a network. In
each case the network analysis algorithms identify a ranked list of nodes (social
network members) that are used to place replicas. To address availability constraints
we construct a graph that has edges between nodes if the availability of two nodes
overlaps, and a “distance” weighting is assigned to each edge that describes the
transfer characteristics of the connection.When selecting replicas,we choose a subset
of nodes that cover the entire graph with the lowest-cost edges. In [11] we show that
using such approaches can improve the accessibility of datasets by preemptively
allocating replicas to nodes that are located “near” to potential requesters.

In a crowdsourcing context the use of social network based allocation strategies is
appropriate as it presupposes quality driven through matching individuals that know
one another, or have worked together in the past. For example, such approaches could
be used to select users (and their resources) that are central in a network and therefore
have strong bonds with other members of the network (or project). The use of a social
network-based allocation approach upon the premises and observation of previous
as well as existing collaborative actions suits the establishment of Social Clouds in
scenarios like software crowdsourcing. Such contexts are inherently network based,
and even if workers do not know each other in the physical world, they may have
digital (working) relationships in (semi)anonymous networks that can be seen as a
forms of pre-existent trust. Thus fulfilling the basic premises of a Social Cloud.

In the Social CDN, we do not adopt an SLA-based approach. The reason is
quite simple: replicas and their resources are assumed to be transient and, naturally,
also replicated. Similarly, there is no way of determining for how long a replica
should be available, or how long the follower-followee relationship will be required
or maintained. Furthermore, the Social CDN is responsible for the placement of
replicas and their migration (as appropriate) around the network, therefore it would
also be cumbersome to create and sign SLAs in this setting. This means a Social

202 K. Chard and S. Caton

CDN using the allocation method presented is constructed on a best-effort basis, and
inherently reliant on the collaborative impetus of its users.

2.5 Social Compute Cloud

In [5] we present a Social Compute Cloud designed to enable access to elastic com-
pute capabilities provided through a cloud fabric constructed over resources con-
tributed by users. Thismodel allows users to contribute virtualized compute resources
via a lightweight agent running on their resources. Consumers can then lease these
virtualized resources andwrite applications using a restrictedprogramming language.

The general architecture of the Social Compute Cloud is shown in Fig. 4. The
Social Compute Cloud is built upon Seattle [4], an open source Peer-to-Peer (P2P)
computing platform. The Social Compute Cloud extends Seattle to use Facebook
APIs to authenticate users and to associate and access a user’s social graph. It uses
Seattle’s virtualized resource fabric to enable consumers to offer their resources to
the cloud by hosting sandboxed lightweight virtual machines on which consumers
can execute applications, potentially in parallel, on their computing resources. Con-
sumers can access these virtualized resources (via the secure virtual machine inter-
faces) to execute arbitrary programs written in a Python-based language. While the
concept of a Social Compute Cloud could be applied to any type of virtualization
environment we use lightweight programming (application level) virtualization as
this considerably reduces overhead and the burden on providers; in [42] we explore
the use of a more heavyweight virtualization environment based on Xen, however
the time to create and contextualize VMs was shown to be considerable.

Fig. 4 Social Compute Cloud Architecture

Social Clouds: Crowdsourcing Cloud Infrastructure 203

We chose to base the Social Compute Cloud on Seattle due to its lightweight
virtualization middleware and its extensible clearing house model which we extend
to enable social allocation. Building upon Seattle we leverage the same base imple-
mentation for account creation and registration, resource contribution infrastructure,
and resource acquisition mechanisms. We have extended and deployed a new social
clearing house that leverages social information derived from users’ Facebook pro-
files and relationships along with a range of different preference matching allocation
protocols. We have implemented a service that enables users to define sharing pref-
erences (e.g., a ranked order of other users) and new interfaces in Seattle that allow
users to view and manage these preferences.

Figure5 shows a user interface which presents the resources being used by a
particular user as well as the users that are using this particular user’s resources.
This interface, extended from Seattle, provides a model to renew and cancel existing
reservations.

The Social Compute Cloud poses one main type of call: a two-way closed hierar-
chical call for resources. Here, users specify preferences with whom they are willing
to consume resources from and provide resources to. These preferences, as will be
discussed in more detail later, are not binary, i.e., either provide or not provide, but
also rank users against one another. In a similar manner to the previous two Social
Cloud settings, an open/closed flat call for platform resources, could also be envis-
aged. Unlike the Social Storage Cloud, we move away from a credit model, but

Fig. 5 Social Compute Cloud user summary interface showing current allocations for an individual
user

204 K. Chard and S. Caton

retain user involvement in call management. Similarly, to the Social CDN, we place
a heavier reliance on social network constructs, but instead of using social network
analysis methods to determine “good” allocations, we involve user choice in the form
of sharing preferences, and allocate (or match) based upon these preferences.

Preference matching algorithms allow consumers and producers to specify their
preferences for interacting with one another. This type of matching is successfully
applied in a variety of cases, including the admission of students to colleges, and
prospective pupils to schools. In the Social Compute Cloudwe capture the supply and
demand of individual users through a social clearing house. As we use a centralized
implementation we can derive the complete supply and demand in the market and
therefore match preferences between all participants in a given Social Cloud. This
of course is only after users define their preferences towards other users, that is, their
willingness to share resources with, and consume resources from, other users in the
Social Cloud.

To determine the “best” matches between users, given the stated requirements, we
use several different matching algorithms. The chosen algorithms differ with respect
to their ability to satisfy different market objectives and performance. Commonly
used market objectives include finding solutions to the matching problem which
are stable (i.e., no matched user has an incentive to deviate from the solution) or
optimizing the total welfare of the users, the fairness between the two sides of the
market, or the computation time to find a solution. The choice of particular market
objectives in turn affects which allocation andmatching strategies can be considered.
This can range from direct negotiation to a centralized instance that computes this
matching; and both monetary and non-monetary mechanisms can be applied. Our
approach considers non-monetary allocation mechanisms based on user preferences.
Depending on the specific market objective, several algorithms exist that compute a
solution to the matching problem, e.g. computing a particularly fair solution or one
with a high user welfare.

Two-sided preference-based matching is much studied in the economic litera-
ture, and as such algorithms in this domain can be applied in many other settings.
For this reason we developed a standalone matching service that enables clients to
request matches using existing protocols. This service is used by the Social Com-
pute Cloud (via the social clearing house) to compute matches for given scenarios.
The matching service includes three algorithms from the literature, and a fourth of
our own implementation. These algorithms have been selected to address limitations
when preferences are incomplete or specified with indifference, that is when not all
pairwise combinations have preferences associated or when users associate the same
preference tomany other users. Briefly, the matching algorithms offered in the Social
Compute Cloud are:

• Deferred-Acceptance (DA) [16]: is the best known algorithm for two-sided
matching and has the advantages of having a short runtime and at the same time
always yielding a stable solution. However, it cannot provide guarantees about
welfare, and yields a particularly unfair solution where one side gets the best
stable solution and the other side gets the worst stable solution.

Social Clouds: Crowdsourcing Cloud Infrastructure 205

• Welfare-Optimal (WO) [26]: is a common matching algorithm that yields stable
solutions with the best welfare for certain preference structures. The approach
uses structures of the set of stable solutions and applies graph-based algorithms to
select the best matches.

• Shift [24]: is designed to find stable solutions with consideration for welfare and
fairness when indifference or incomplete lists are present. While DA and WO can
still be used in such settings, they can no longer guarantee to find the globally
best solution. In such settings, Shift can find a stable match, with the maximum
number of matched pairs for certain special cases. However, these scenarios are
in general hard to approximate, and consequently the standard algorithms are not
able to provide non-trivial quality bounds with respect to their objectives. Finding
the optimal solution for the matching problem with respect to the most common
metrics: welfare or fairness, is NP-hard [24].

• Genetic Algorithm with Threshold Accepting (GATA) [23]: is a heuristic-based
algorithm that yields superior solutions compared to the other algorithms. The GA
starts with randomly created (but stable) solutions and uses the standard mutation
and crossover operators to increase the quality of the solutions. GATA then uses
this solution as input for the TA algorithm, an effective local search heuristic that
applies and accepts small changes within a certain threshold of the current solution
performance.

Each of these algorithms have their specific performance merits and we have
studied their performance with respect to a Social Cloud in [5, 23]. The key find-
ings, however, suggest that the GATA or similar GATA-like approaches perform
well in larger problem sizes, with more complex preference structures and with sto-
chastic supply and demand, rather than a batch allocation mode in which two-sided
matching algorithms are often applied. This means for the purposes of facilitating
crowdsourcing calls, that users can be more involved in terms of how the call clears.

Like the Social CDNapproach, there is currently no handling of SLAs in the Social
Compute Cloud. Rather, each compute node is reserved for a predetermined period
of time, if during this time a node goes offline the resource consumer will be notified
and as a form of “enforcement” may consequently update their sharing preferences.
Given the social context of a Social Cloud, it is foreseeable that any issue of this sort
be first discussed in order to find either a resolution or cause for the error. This social
process is important so as to not damage the real world relationship underpinning
the exchange. It is also similar to the feedback and discourse methods often used in
crowdsourcing platforms (like Amazon’s Mechanical Turk) when employers are not
satisfied with the quality of a worker’s results.

3 Quality Management, Trust, and Agreements

Having established the means to architect a Social Cloud, and allocate resources
in various settings, the question of (collaboration) quality arises with respect to the
actual infrastructure provided. This, for the moment, is even irrespective of how this

206 K. Chard and S. Caton

infrastructure is used. Instead, we refer here to quality of infrastructure instances that
are sourced from the community.

The crowdsourcing literature proposes many different means of assessing and
defining (worker) quality, reliability and trustworthiness with respect to (task) solu-
tions.Where examples include: redundant scheduling, gold standard questions, qual-
ification tests, peer review and employer acceptance rate. Whilst not all of these
approaches are relevant or meaningful in crowdsourcing computational infrastruc-
tures, it is still important to maintain a notion of quality that supports collaborative
processes. In terms of a computational infrastructure, there are several aspects that
can be used to denote and measure quality both quantitatively (e.g. availability, error
rate, mean error recovery time, etc.) and qualitatively (non-functional parameters
like owner’s technical competence, trustworthiness, responsiveness to crowd sourc-
ing calls, etc.).

Without delving into quality properties, the crowdsourcing literature does, in
general, differentiate between different methods of assessing quality. Where up-
front task design and post-hoc result analysis are the twomainmethods of controlling
work quality [30]. Up-front task design typically involves methods of pre-selection:
a means of ensuring a minimum ex-ante quality level of contributions [17] so that
an employer mitigates the risk of poor quality solutions through pre-selection tests
or processes. Typically, these are in the form of qualification tests, or thresholds for
worker attributes. Post-hoc result analysis, however, allows a worker to perform a
task before validating the result in some way. Here typical examples are the gold
standard (micro)task2 [37], the redundant scheduling of tasks to multiple workers to
provide a basis for solution comparison and worker reliability [29], TopCoder-like
competitions, and peer review (for example as in Wikipedia). In fact, we see similar
approaches to these used in volunteer computing settings where compute nodes are
inherently unreliable e.g. [2, 7].

Despite the level of research into quantitative methods of deriving and defining
the quality and reliability of results in the crowdsourcing literature, it is hard to avoid
the more subjective issues surrounding the perception of quality with respect to the
qualifications and/or competence of a worker. We observed in [13] that although
crowdsourcing platforms use several mechanisms to assess worker reliability and
capabilities these methods can seldom be applied to identify actual worker abilities
or competencies. Instead, they reveal only whether the worker is likely to posses the
necessary abilities to perform a specific (micro) task and/or if they will do so dili-
gently. If we consider the notion of a Social Cloud, where computational resources
are crowdsourced within a specific (social) community, we can see that the “stan-
dard” means of assessing quality may not be sufficient. In [13], we attempted to
disentangle quality and competence; where the latter is potentially influential on ex-
ante expectations of quality, and thus in decisions related to resource allocations as
well as requests.

An alternative method to assessing quality was proposed by [25]: to infer a level
of trust in the worker via the accuracy of their solutions. For the purposes of a Social

2Tasks where the solution is known ex-ante to test worker accuracy.

Social Clouds: Crowdsourcing Cloud Infrastructure 207

Cloud, we can augment this approach by redefining accuracy as either perceived
quality ex-ante (in a qualitative sense) or observed quality ex-post using predefined
measures for quality of service (in a quantitative sense). This would capture the two
methods of assessing qualitymentioned above.We can also augment [25]’s inference
of trust through the assumption of pre-existent inter-personal trust between members
of a SocialCloud. In assessing quality in thismanner,we are highlighting two artifacts
of a Social Cloud: trust and some form of provisioning agreement.

To avoid a lengthy discussion on trust, we refer to [6] where we defined trust
for the context of a Social Cloud as follows: “Trust is a positive expectation or
assumption on future outcomes that results from proven contextualized personal
interaction-histories corresponding to conventional relationship types and can be
leveraged by formal and informal rules and conventions within a Social Cloud to
facilitate as well as influence the scope of collaborative exchange”. Two of the most
relevant aspects in this definition from a crowdsourcing perspective are “interaction-
histories” and “conventional relationship types”. Where the former overlaps with ex-
post measures of prior performance (potentially) in various collaborative contexts,
the latter is somewhat abrasive in the context of crowdsourcing. We tend to view
workers as a part of a large anonymous human crowd of workers. In a Social Cloud
this is not the case (nor may it be the case in software crowdsourcing projects), and
consequently, we can view trust at a more subjective and personal level, and (at least)
assume that the existence of trust will be positively correlated to quality in the general
sense.

However, the ability of users to rely on trust alone is dependent on the type of rela-
tionship [41]. This differentiated viewof trustmeans that in somecircumstances some
form of collaborative agreement that clearly defines measures of quality is needed.
In [9, 10] we explored the implementation details of formal agreements or SLAs
(Service Level Agreements). However, this in retrospect was an over-engineered
approach. Reference [41] observed that in the relationship contexts (close) friend and
family, agreements are not perceived necessary by users. However, in relationship
contexts such as acquaintances and colleagues (the arguably more likely relationship
types in crowdsourcing contexts) some formalization of an agreement as well as
some form of explicit incentive to contribute is necessary. This does not, however,
imply the formal representation of a collaborative action using a standard like WS-
Agreement [3], but rather a leaner representation capturing: the minimum details
of the exchange (actors, and definition of instance); basic measures of quality (e.g.
availability); implications of failure; and (when applicable) a definition of reward be
it tangible, e.g., monetary payment, or intangible, e.g. reputation points.

4 A Social Cloud for Software Crowdsourcing

In this section we present a general Social Cloud architecture and describe how the
principles of Social Cloud Computing can be leveraged in software crowdsourcing
applications. As software development processes are inherently collaborative, they

208 K. Chard and S. Caton

involve groups of contributors who are in some cases unknown and in others based
on strong social ties between one another; they require sophisticated resources and
software to develop, test, deploy, integrate, and perform other common software
lifecycle processes; and they rely on contributions from various people to achieve
these goals. Thus, there are two areas in which Social Cloud principles can be applied
to software crowdsourcing: (1) as a model for supporting software crowdsourcing
infrastructure requirements, and (2) as a means of using social network analysis to
derive competency and quality.

4.1 General Social Cloud Architecture

Based on our previous experience, we now present a unified architecture that sup-
ports Social Storage, SocialCDNandSocialComputeClouds. Like anyCloudmodel,
and as discussed above, a platform is required to coordinate and facilitate the basic
functionality of a Social Cloud (user management, resource allocation, etc.). The
resources to support this platform, can either be provided by a third party, or crowd-
sourced from the Social Cloud user base, as a form of co-operative platform [22].
Figure6 shows the high level architecture for a Social Cloud and its key components,
which are as follows:

A Social Marketplace is an institutionalized microeconomic system that defines
how supply is allocated to demand. In otherwords, it is responsible for the facilitation,

Fig. 6 General Social Cloud Architecture

Social Clouds: Crowdsourcing Cloud Infrastructure 209

and clearing of calls. A social marketplace captures the following: the protocols used
for distributed resource allocation, the rules of exchange, i.e. who can take part and
with whom may they exchange, and the formalization of one or more allocation
mechanisms. A social marketplace is therefore the central point in the system where
all information concerning users, their sharing policies, and their resource supply and
demand is kept. For this reason, the socialmarketplace requires data stores: to capture
the participants, the social graph of its users, as well as their sharing policies; and a
resource manager to keep track of resource reservations, availability, and allocations.

A Platform Manager administrates the basic functionality of the Social Cloud.
The platform manager is a (semi-)autonomic co-operative system managing its
resources either through the creation of calls for platform resources, or syphoning
off parts of contributed computational resources. It is responsible for ensuring that
the Social Cloud is responsive and available. Such approaches may also be applied
more widely as a means of supporting other crowdsourcing platforms.

A socio-technical adapter provides access to the necessary aspects of users’
social networks, and acts as a means of authentication. The socio-technical adapter
could leverage any source for social information such as an existing social network
platform or a software crowdsourcing application. Once a user’s social network has
been acquired via the socio-technical adapter, the social marketplace requires the
preferences and policies of the user to facilitate resource allocation.

Data stores record state for the Social Cloud such as users, social graphs, resource
endowments, policies and preferences, and current and historical allocations. These
data stores are used by the social marketplace to influence allocation and by partici-
pants to manage their interactions with the social cloud.

A resource middleware fabric provides the basic resource fabrics, resource vir-
tualization and sandboxing mechanisms for provisioning and consuming resources.
In the examples above the middleware includes mechanisms to access the storage
and compute resources of participants. It defines the protocols needed for users
and resources to join and leave the system. The middleware is also responsible for
ensuring secure sharing of resources by implementing interfaces and sandboxed
environments that protect both providers and consumers.

Resources are the technical endowment of users that are provided to, and con-
sumed from, the Social Cloud. These resources could include personal computers,
servers or clusters and specifically the storage and compute capabilities that these
resources make available.

4.2 Crowdsourcing Infrastructure for Software
Crowdsourcing

Figure7 shows how the unified Social Cloud architecture can be used to crowd-
source infrastructure required to facilitate a software development project. In this
case, various users–some with existing relationships between one another and some

210 K. Chard and S. Caton

Fig. 7 A software crowdsourcing model that leverages a Social Cloud contributed by participants
to facilitate operation of important software development services

without–are participating in a software crowdsourcing project. Not only are these
users contributing their software engineering capabilities to the software crowd-
sourcing project but some are also contributing resources via an associated Social
Cloud that allows the hosting and execution of various important software develop-
ment services for the project.

The Social Cloud leverages the social network derived from the software crowd-
sourcing platform or potentially from other social networks that exist between users.
We expect that in most cases the crowdsourcing platform will provide the authenti-
cation and authorization model as well as providing user and group information to
the Social Cloud. The Social Cloud uses this information (e.g., groups) to enable
user contributed resources and capabilities to be shared with other participants. By
establishing a network (based on groups) between users we can also enable other
techniques to improve collaboration including, for example, the ability to provide
communication between members and to facilitate rapid feedback. It may also pro-
vide mechanisms to more easily discover capable participants and motivate contri-
bution [27].

When selecting a software project for participation, participants will be able to
optionally contribute resources to the project. Users will be presented a Social Cloud

Social Clouds: Crowdsourcing Cloud Infrastructure 211

interface that enables the selection of local resources, and by using existing storage
and compute services they will be able to make their resources accessible to the
Social Cloud. At this stage agreement on the market model must be made (e.g.,
how are users rewarded for their contribution) at the same time as reaching agree-
ment regarding their participation in the project (e.g., rewards associated with their
software engineering contributions). Policies will need to be developed regarding
who can access a contributed resource and for what reason. For example, perhaps
resources will be contributed for short term leases to support testing; or alternatively
they might be contributed for longer periods to support project wide services such
as code repositories.

Other project members can then access and use resources contributed to the Social
Cloud through published interfaces and adhering to the market protocols selected.
Depending on the contribution and market model, they may be able to consume
resources at will by virtue of being a member of the project or they may require some
form of matching between their requirements and others capabilities. Resource allo-
cationwill follow the general Social Cloudmodel inwhich virtualized and sandboxed
resources are offered and used by other participants.

There are several different market approaches that can be applied to a software
crowdsourcing Social Cloud: (1) The market may be tied to the model employed
by the crowdsourcing application, or (2) the market may be independent from the
crowdsourcing application and operate only within the context of the Social Cloud.

In the first model, the Social Cloud will use the credits (virtual or real) that
are associated with the software crowdsourcing platform. In this case, contributors
will associate a credit value with their resource contributions using an economic
model. For instance, a contributor may charge $1 credit per day for using their
compute resources. Similarly, consumers (or the project) will be charged credits
when accessing or using these resources. If resources are used for the project itself,
these credits may be taken from the overall reward associated with the project. We
expect that such capabilities are present in most crowdsourcing applications and that
we can leverage these workflows via published APIs or other means.

In the second model, the Social Cloud will apply an independent economic model
such as a credit model, social network model, or preference matching model. The
difference between an independent credit model and the credit model tied to the
crowdsourcing application is that all credits and exchanges will be managed entirely
by the Social Cloud. The social networkmodelwill allow project participants to share
resources with a group, enabling, for example specification of restrictions based on
relationships between individuals. Such restrictions may include allowing access to
only close friends or collaboratorswho haveworked together on a previous project, or
who share a connection in an external social network. The preferencemodel provides
a more regulated mechanism for members to control their contributions and use of
resources. In this model users will be able to contribute resources and optionally
define preferences for which members can use these resources. Consumers, when
requesting resources, may define preferences for which members they use resources
from.

212 K. Chard and S. Caton

4.3 Establishing Trust and Competency via Social Networks

Online social networks such as Facebook, Google+ and Twitter provide a model in
which relationships between individuals are encoded digitally and can be accessed
programmatically to develop socially-aware applications. Even implicit social net-
works formed via user accounts, groups, publications and online actions can be
extracted and used to establish linkages between individuals. The premise of a Social
Cloud builds upon these relationships to infer a level of trust between individuals.
This trust can be leveraged to encourage higher levels of quality of service in sharing
settings.

As discussed in Sect. 3 such networks provide a powerfulmodel for inferring capa-
bilities and competencies. In traditional crowdsourcing models such requirements
are less prevalent as tasks are often oriented around unskilled activities. However,
in software crowdsourcing projects it is important to establish levels of proficiency.
This is increasingly valuable as it is often difficult to determine the accuracy of
self-reported competency, and equally challenging to construct suitable measures
to capture, in general, transferable notions of competence for crowdsourcing [13].
While reputation measures provide a method to address these requirements, they
require bootstrapping and also reliability that the reputation model cannot be sub-
verted.We believe that the ability to leverage trusted connections between individuals
following a Social Cloud model is of particular value in the general crowdsourcing
domain for these reasons.

To do this, we first need to define the frames of reference when discussing trust for
a Social Cloud or in settings where social structures are used in crowdsourcing. We
identified in [6] three frames of reference for trust: (1) trust as an intrinsic (subjective)
attribute of an inter-personal social relation, i.e. trust as a basic foundation of social
actions; (2) trust in the competence of an individual to be able to deliver a given
resource or capability, i.e. a belief in the self-awareness and personal evaluation of
competence; and (3) trust in an individual to deliver, i.e. keep their promises, adhere
to any (informal) agreements etc.While it is easy to conceive the first and third frame
of reference being captured by the social network structure and any associated SLA,
soft agreement or “gentleman’s agreement” respectively, it is however, difficult to
interpret the second frame of reference without a basic definition of competence.

In [13] we provide an overarching summary of competence in crowdsourcing
scenarios. Where competence refers to an inflected action with respect to “practical
knowledge” and is characterized by “being able to”, “wanting to”, “being allowed
to”, and “being obliged to” do something [39]. In crowdsourcing literature the term
of competence is often misused to refer to a capability or some form of (domain)
authority [13].

We argue that the premises of a Social Cloud could provide a basic framework for
(in)formally observing competence as a consequence of network effects: the social
ascription of competence by peers. For the ascription of competence a “social”
element comes into play as a reciprocal situational ascription of appropriateness
to specific actions by the actor themselves and another person or persons (e.g. a

Social Clouds: Crowdsourcing Cloud Infrastructure 213

collaborator) who are participating in the relevant situation [13]. Consider, for
example, a system similar to LinkedIn endorsements. While such a system would
be particularly apt in a software crowdsourcing model issues surround the inter-
pretation of reputation. Social networks, however, provide a mechanism to apply
transitive inference, that is, to traverse the graph of endorsements based on previous
interactions with a particular entity or project. Such approaches can be used to further
enhance the reliability of competence measures.

Coming back to the original frames of reference the approaches put forth by
Social Clouds are equally applicable to a software crowdsourcing environment. The
implicit and explicit use of social networks provide models to: (1) establish trust
between individuals and projects; (2) provide the ability to infer competence based
on previous interactions and endorsements; and (3) utilize inherent social incentives
and disincentives associated with participation and delivery.

5 Related Work

Until now there has been little research into the implementation of software crowd-
sourcing applications. Most examples such as TopCoder, uTest and user-contributed
application stores are commercially developed and focus on specific aspects of
the software development lifecycle. As yet, these approaches offer only limited
infrastructure capabilities for their projects, for example TopCoder offers cloud
resources on specific projects.

There is however, much literature relating to the exchange or sharing of resources
using social fabrics. For example, Intel’s “progress thru processors”3 Facebook appli-
cation enables contribute of excess compute power to individually selected scientific
projects. Users are not rewarded for their contribution as such, however they can
view and publish statistics of their contributions. Upon joining the application users
may post information to their news feed, or inform friends of the application. The
progress thru processors application relies on a generic resource layer constructed
by deploying a BOINC [2] application on the users machine.

McMahon and Milenkovic [34] proposed Social Volunteer Computing, an exten-
sion of traditional Volunteer Computing, where consumers of resources have under-
lying social relationships with providers. This approach is similar to the nature of a
Social Cloud, but it does not consider the actual sharing of resources, as there is no
notion of bilateral exchange.

Pezzi [38] proposes a Social Cloud as a means of cultivating collective intelli-
gence and facilitating the development of self-organizing, resilient communities. In
this vision the social network and its services are provided by network nodes owned
bymembers of the network rather than by centralized servers owned by the social net-
work. Pezzi’swork is in its infancy and has no architectural details or implementation.

3http://www.facebook.com/progressthruprocessors.

http://www.facebook.com/progressthruprocessors

214 K. Chard and S. Caton

Ali et al. [1] present the application of our Social Cloud model to enable users
in developing countries to share access to virtual machines through platforms like
Amazon EC2. In effect they subdivide existing allocations to amortize instance cost
over a wider group of users. Using a cloud bartering model (similar to our previous
virtual credit model), the system enables resource sharing using social networks
without the exchange of money and relying on a notion of trust to avoid free riding.
Like our approach, they use a virtual container (LXC) to provide virtualizationwithin
the existing virtual machine instance.

Mohaisen et al. [35] present an extension to our definition of a Social Cloud.
The authors investigate how a Social Compute Cloud could be designed, and pro-
pose extensions to several well known scheduling mechanisms for task assignments.
Their approach considers resource endowment and physical network structure as
core factors in the allocation problem.

Gracia-Tinedo et al. [18–20] propose a Friend-to-Friend Cloud storage solution,
i.e. dropbox via a social network: F2Box. They analyze and discuss how to retain a
reliable service whilst using the best effort provisioning of storage resources from
friends. They identify that a pure friend-to-friend system cannot compare in terms
of quality of service with traditional storage services. Therefore, they propose a
hybrid approach where reliability and availability can be improved using services
like Amazon’s S3. This approach provides a valuable consideration in the realization
of a Social Cloud, but is not necessarily transferable to our setting.

Wu et al. [45, 46] describe a lightweight framework to enable developers to cre-
ate domain specific collaborative science gateways. They use social network APIs
(OpenID, OAuth and OpenSocial) and virtualized cloud resources to facilitate col-
laboration as well as fine grained and dynamic user controlled resource sharing using
social network-based group authorization. These same authorization models are then
used to facilitate execution of computational bioinformatics jobs on customized vir-
tual machines shared between users.

Kuada and Olesen [31] propose opportunistic cloud computing services (OCCS):
a social network approach for the provisioning and management of enterprise cloud
resources. Their idea is to provide a governing platform for enterprise level social
networking platforms consisting of interoperable Cloud management tools for the
platform’s resources, which are provided by the enterprises themselves. The authors,
present the challenges and opportunities of an OCCS platform, but there is no indi-
cation that they have yet built an OCCS. Similarly, Diaspora,4 and My3 [36] apply
similar concepts to host online social networks on resource provided by their users.

There have also been several publications on economicmodels for a Social Cloud.
Zhang et al. [47] and we [21] discuss different types of incentives users face during
their participation in a Social Cloud, and describe the challenges of providing the
right incentives to motivate participation. While in another study [22], we investi-
gated how the infrastructure of a Social Cloud can be co-operatively provided by
the participating members, and present an economic model that takes individual
incentives and resource availability into account.

4https://joindiaspora.com/.

https://joindiaspora.com/

Social Clouds: Crowdsourcing Cloud Infrastructure 215

6 Conclusion

As software crowdsourcing becomes an increasingly viable alternative to dedicated
software development teams the infrastructure required to support such dynamic
collaborations will continue to increase. Already, software crowdsourcing projects
are turning to cloud resources as a model for providing resources on which tasks
can be completed. However, we argue that these approaches will not scale and may
become costly as projects become larger and more common. In this chapter we have
described an alternative approach in which the very same crowdsourcing principles
are applied to acquire infrastructure resources. Through the use of an infrastructure
crowdsourcing model users can assemble a virtual infrastructure on which software
development processes can be performed.

Social Clouds are a well studied approach for facilitating the exchange of
infrastructure resources using various economic and non-economic protocols. They
provide a model for exchanging heterogeneous resources between individuals con-
nected via a social graph. Where the social graph provides the ability to derive
relationships and therefore infer pre-existent trust between users, which in turn can
be used to increase quality and trustworthiness with respect to shared infrastruc-
ture. Social Clouds provide the necessary mechanisms to ensure resources are used
securely and to manage allocation across a pool of participants. In previous work, we
have developed three Social Clouds, focused on storage, content delivery, and com-
pute. We have also explored the use of different allocation protocols based on credit,
social network, and preference models. These Social Clouds and their associated
allocation models provide a generic basis on which other services can be developed.

The use of a Social Cloud model as a basis for, or a companion to, a software
crowdsourcing system will enable individual projects to leverage not only the skills
contributed by participants but also their infrastructure resources. This integration
will allow the deployment and operation of important software development services
hosted collectively by the project’s members. The use of a infrastructure crowdsourc-
ing approach is perhaps the most appropriate model for provisioning infrastructure
given that the philosophies behind crowdsourcing software and infrastructure are the
same. Finally, the same social network analysis algorithms used in a Social Cloud
to infer trust and competency may also provide value in a software crowdsourcing
model.

References

1. Ali, Z., Rasool, R.U., Bloodsworth, P.: Social networking for sharing cloud resources. In: 2012
Second International Conference on Cloud and Green Computing (CGC), pp. 160–166 (2012)

2. Anderson, D.P.: Boinc: a system for public-resource computing and storage. In: 5th IEEE/ACM
International Workshop on Grid Computing, pp. 4–10 (2004)

3. Andrieux,A., Czajkowski,K.,Dan,A.,Keahey,K., Ludwig,H.,Nakata, T., Pruyne, J., Rofrano,
J., Tuecke, S., Xu, M.: Web services agreement specification (WS-agreement). In: Open Grid
Forum, vol. 128 (2007)

216 K. Chard and S. Caton

4. Cappos, J.,Beschastnikh, I.,Krishnamurthy,A.,AndersonT.: Seattle: a platform for educational
cloud computing. In: The 40th Technical Symposium of the ACM Special Interest Group for
Computer Science Education (SIGCSE’09), Chattanooga, TN USA (2009)

5. Caton, S., Haas, C., Chard, K., Bubendorfer, K., Rana, O.: A social compute cloud: allocating
and sharing infrastructure resources via social networks (2014)

6. Caton, S., Dukat, C., Grenz, T., Haas, C., Pfadenhauer, M.,Weinhardt, C.: Foundations of trust:
contextualising trust in social clouds. In: 2012 Second International Conference on Cloud and
Green Computing (CGC), pp. 424–429. IEEE (2012)

7. Caton, S., Rana, O.: Towards autonomic management for cloud services based upon volun-
teered resources. Concurr. Comput.: Pract. Exp. 23 (2011). Special Issue on Autonomic Cloud
Computing: Technologies, Services, and Applications

8. Chard, K., Bubendorfer, K.: Using secure auctions to build a distributed meta-scheduler for
the grid. In: Buyya, R., Bubendorfer, K. (eds.) Market Oriented Grid and Utility Computing.
Wiley Series on Parallel and Distributed Computing, pp. 569–588. Wiley, New York (2009)

9. Chard, K., Bubendorfer, K., Caton, S., Rana, O.: Social cloud computing: a vision for socially
motivated resource sharing. IEEE Trans. Serv. Comput. 99(PrePrints), 1 (2012)

10. Chard, K., Caton, S., Rana, O., Bubendorfer, K.: Social cloud: cloud computing in social
networks. In: 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD), pp.
99–106 (2010)

11. Chard, K., Caton, S., Rana, O., Katz, D.S.: A social content delivery network for scientific
cooperation: vision, design, and architecture. In: The Third International Workshop on Data
Intensive Computing in the Clouds (DataCloud 2012) (2012)

12. Czajkowski, K., Ferguson, D.F., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling, D.,
Tuecke, S., Vambenepe, W.: The WS-resource framework. Technical report, Globus. http://
www.globus.org/wsrf/specs/ws-wsrf.pdf (2004). Accessed Dec 2010

13. Dukat, C., Caton, S.: Towards the competence of crowdsourcees: literature-based consider-
ations on the problem of assessing crowdsourcees’ qualities. In: International Workshop on
Crowdwork and Human Computation at the IEEE Third International Conference on Cloud
and Green Computing (CGC), pp. 536–540. IEEE (2013)

14. Foster, I.: Globus online: accelerating and democratizing science through cloud-based services.
IEEE Internet Comput. 15(3), 70–73 (2011)

15. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual orga-
nizations. Int. J. High Perform. Comput. Appl. 15, 200–222 (2001)

16. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69,
9–15 (1962)

17. Geiger,D., Seedorf, S., Schulze, T.,Nickerson,R.C., Schader,M.:Managing the crowd: towards
a taxonomy of crowdsourcing processes. In: AMCIS (2011)

18. Gracia-Tinedo, R., Sanchez-Artigas, M., Garcia-Lopez, P.: Analysis of data availability in F2F
storage systems: when correlations matter. In: 2012 IEEE 12th International Conference on
Peer-to-Peer Computing (P2P), pp. 225–236. IEEE (2012)

19. Gracia-Tinedo, R., Sánchez-Artigas, M., Garcia-Lopez, P.: F2box: cloudifying F2F storage
systems with high availability correlation. In: 2012 IEEE 5th International Conference on
Cloud Computing (CLOUD), pp. 123–130. IEEE (2012)

20. Gracia-Tinedo, R., Sánchez-Artigas, M., Moreno-Martinez, A., Garcia-Lopez, P.: Friendbox: a
hybrid F2F personal storage application. In: 2012 IEEE 5th International Conference on Cloud
Computing (CLOUD), pp. 131–138. IEEE (2012)

21. Haas, C., Caton, S., Weinhardt, C.: Engineering incentives in social clouds. In: Proceedings of
the 11th IEEE/ACM International Symposium onCluster, Cloud andGrid Computing (CCGrid
2011), pp. 572–575 (2011)

22. Haas, C., Caton, S., Chard, K.,Weinhardt, C.: Co-operative infrastructures: an economicmodel
for providing infrastructures for social cloud computing. In: Proceedings of the Forty-Sixth
Annual Hawaii International Conference on System Sciences (HICSS), Grand Wailea, Maui,
USA (2013)

http://www.globus.org/wsrf/specs/ws-wsrf.pdf
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

Social Clouds: Crowdsourcing Cloud Infrastructure 217

23. Haas, C., Kimbrough, S., Caton, S.,Weinhardt, C.: Preference-based resource allocation: using
heuristics to solve two-sided matching problems with indifferences. In: 10th International
Conference on Economics of Grids, Clouds, Systems, and Services (Under Review) (2013)

24. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation results
for the stable marriage problem. ACM Trans. Algorithms (TALG) 3(3), 30 (2007)

25. Ipeirotis, P.G., Provost, F., Wang, J.: Quality management on Amazon Mechanical Turk.
In: Proceedings of the ACM SIGKDD Workshop on Human Computation, pp. 64–67. ACM
(2010)

26. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the optimal stable marriage.
J. ACM 34(3), 532–543 (1987)

27. John, K., Bubendorfer, K., Chard, K.: A social cloud for public eResearch. In: Proceedings of
the 7th IEEE International Conference on eScience. Stockholm, Sweden (2011)

28. Kephart, J.O., Chess,D.M.: The vision of autonomic computing.Computer 36(1), 41–50 (2003)
29. Kern, R., Zirpins, C., Agarwal, S.: Managing quality of human-based eservices. Service-

Oriented Computing-ICSOC 2008 Workshops, pp. 304–309. Springer, New York (2009)
30. Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, J., Lease, M.,

Horton, J.: The future of crowd work. In: Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, pp. 1301–1318. ACM (2013)

31. Kuada, E., Olesen, H.: A social network approach to provisioning and management of cloud
computing services for enterprises. In: The Second International Conference on Cloud Com-
puting, GRIDs, and Virtualization, CLOUD COMPUTING 2011, pp. 98–104 (2011)

32. Kugler, K., Chard, K., Caton, S., Rana, O., Katz, D.S.: Constructing a social content delivery
network for escience. In: 2013 IEEE 9th International Conference on eScience (eScience),
pp. 350–356 (2013)

33. Lonstein, E., Lakhani, K., Garvin, D.: Topcoder (a): developing software through crowdsourc-
ing. Technical report, Harvard Business School General Management Unit Case (2010)

34. McMahon, A., Milenkovic, V.: Social volunteer computing. J. Syst. Cybern. Inf. (JSCI) 9(4),
34–38 (2011)

35. Mohaisen, A., Tran, H., Chandra, A., Kim, Y.: Socialcloud: using social networks for building
distributed computing services. arXiv:1112.2254 (2011)

36. Narendula, R., Papaioannou, T.G., Aberer, K.:My3: a highly-available P2P-based online social
network. In: 2011 IEEE International Conference on Peer-to-Peer Computing (P2P), pp. 166–
167. IEEE (2011)

37. Oleson, D., Sorokin, A., Laughlin, G.P., Hester, V., Le, J., Biewald, L.: Programmatic gold:
targeted and scalable quality assurance in crowdsourcing. Hum. Comput. 11, 11 (2011)

38. Pezzi, R.: Information technology tools for a transition economy, September 2009
39. Pfadenhauer, M.: Competence-more than just a buzzword and a provocative term? Modeling

and Measuring Competencies in Higher Education, pp. 81–90. Springer, New York (2013)
40. Pisano, G.P., Verganti, R.: Which kind of collaboration is right for you. Harv. Bus. Rev. 86(12),

78–86 (2008)
41. Thal, R.: Representing agreements in social clouds. Master’s Thesis, Karlsruhe Institute of

Technology (2013)
42. Thaufeeg, A.M., Bubendorfer, K., Chard, K.: Collaborative eResearch in a social cloud.

In: 2011 IEEE 7th International Conference on E-Science (e-Science), pp. 224–231 (2011)
43. Tokarchuk, O., Cuel, R., Zamarian, M.: Analyzing crowd labor and designing incentives for

humans in the loop. IEEE Internet Comput. 16(5), 45–51 (2012)
44. Wu, W., Tsai, W.-T., Li, W.: An evaluation framework for software crowdsourcing. Front.

Comput. Sci. 7(5), 694–709 (2013)
45. Wu, W., Zhang, H., Li, Z.: Open social based collaborative science gateways. In: 2011

11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid),
pp, 554–559. IEEE (2011)

46. Wu,W., Zhang, H., Li, Z., Mao, Y.: Creating a cloud-based life science gateway. In: 2011 IEEE
7th International Conference on E-Science (e-Science), pp. 55–61. IEEE (2011)

47. Zhang, Y., van der Schaar, M.: Incentive provision and job allocation in social cloud systems.
To appear in IEEE J. Sel. Areas Commun. (2013)

http://arxiv.org/abs/1112.2254

Recommending Web Services Using
Crowdsourced Testing Data

Hailong Sun, Wancai Zhang, Minzhi Yan and Xudong Liu

Abstract With the rapid growth of Web Services in the past decade, the issue of
QoS-aware Web service recommendation is becoming more and more critical. Web
service QoS is highly relevant to the corresponding invocation context like invoca-
tion time and location. Therefore, it is of paramount importance to collect the QoS
data with different invocation context. We have crawled over 30,000 Web services
distributed across Internet. In this work, we propose to use crowdsourcing to collect
the required QoS data. This is achieved through two approaches. On the one hand,
we deploy a genericWeb service invocation client to 343 Planet-Lab nodes and these
nodes serve as simulated users distributing worldwide. The Web service invocation
client is scheduled to invoke target Web services from time to time. On the other
hand, we design and develop a mobile crowdsourced Web service tesing framework
on Android platform, with which a user can easily invoke selected Web services.
With the above two approaches, the observed service invocation data, e.g. response
time, will be collected in this way. Then we design a Temporal QoS-Aware Web
Service Recommendation Framework to predict missing QoS value under various
temporal context. Further, we formalize this problem as a generalized tensor fac-
torization model and propose a Non-negative Tensor Factorization (NTF) algorithm
which is able to deal with the triadic relations of user-service-time model. Extensive
experiments are conducted based on collected Crowdsourced testing data. The com-
prehensive experimental analysis shows that our approach achieves better prediction
accuracy than other approaches.

H. Sun (B) · W. Zhang · M. Yan · X. Liu
School of Computer Science and Engineering, Beihang University, Beijing, China
e-mail: sunhl@act.buaa.edu.cn

W. Zhang
e-mail: zhangwc@act.buaa.edu.cn

M. Yan
e-mail: yanmz@act.buaa.edu.cn

X. Liu
e-mail: liuxd@act.buaa.edu.cn

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_12

219

220 H. Sun et al.

1 Introduction

Service oriented computing [9] promises to enable efficient software development
through composing reusable services with standard interfaces. And Web services
[17] are the most important category of software services, which can be accessed
with standard protocols like SOAP (Simple Object Access Protocol) and HTTP. In
most cases, Web services are provided by third-party providers and users invoke
services with no need for knowing the details of service implementation and runtime
environment.

In Web service area, service discovery, which is known as a hot research issue,
aims at finding a best suitable service instance according to user requirements in
terms of both functionality and non-functionality. There has been a large body of
work [6, 8, 12] focusing on addressing discovery of services meeting users’ func-
tional requirements, and many approaches [5, 20] based on information retrieval
methods have been proposed to deal with the functional matchmaking between user
requirements and candidate services.

Typical non-functionality requirements include response time, reliability, cost,
availability, throughput etc. Usually non-functional attributes are called QoS (Qual-
ity of Services) attributes. In recent years, much attention has been drawn on rec-
ommending Web services to users by analyzing Web service invocation records of
users. In this regards,model-basedmethods and collaborative filtering basedmethods
[3, 7, 22] are utilized to achieve this goal. Service recommendation mainly considers
services’ non-functional properties. The emergence of multiple Web services with
the same functionality offers a set of alternatives for users to choose from based
on their QoS. With the growing number of functionally equivalent services on the
web, it is quite important to recommend services by considering their non-functional
QoS properties. The high QoS of Web services can help service users to reduce
re-engineering cost and to produce more effective service-oriented systems. There
are mainly three reasons that can explain why services with the same functionality
can have different non-functional attributes. First, there can be multiple versions
of implementation for the same service functionality, and each implementation can
produce different non-functional performance due to adoption of different architec-
ture and algorithms. Second, even for the same service implementation, there can
be multiple service instances deployed onto various runtime environments that can
greatly influence the delivered QoS attributes. Third, from the users’ perspective, in-
vocation time, physical location and client configuration will also leads to different
non-functional experience. It is necessary to take all these issues into consideration to
design a good service discovery solution. Intuitively, we can greatly improve recom-
mendation effectiveness if we have enough service invocation data with invocation
contexts similar to that of the target user. Thus it is highly desirable to collect a large
amount of invocation data from users, which cannot be done without large-scale user
participation.

Moreover, crowdsourcing [4], as a fast growing field, aims at leveraging an un-
defined set of people to build a distributed problem solving environment for certain

Recommending Web Services Using Crowdsourced Testing Data 221

task processing. Crowdsourcing is especially effective in solving problems that are
difficult for computers, e.g. image labeling, natural language processing, and object
recognition. Many successful applications like Wikipedia, reCaptcha, Google Image
Labeler have been built with crowdsourcing. In essence, the core concept of crowd-
sourcing is the active participation of users, in which users are not only application
consumers, but also application system contributors.

In thiswork,we propose to leverage the crowdsoucing approach to collect asmuch
as possible service QoS data. With this data, we hope to design effective recommen-
dation algorithms to recommend appropriate Web services for users in specific time
and location context. The data collecting is realized with the following two efforts:
on the one hand, we simulate service users with computing nodes in Planetlab1 test-
bed and the selected nodes are highly distributed in geographical location; on the
other hand, we develop an Android App that can be used by Android mobile device
users to invoke Web services. With the obtained service invocation data, we propose
a temporal QoS-Aware Web service prediction framework, which employs an novel
Collaborative Filtering (CF) algorithm for Web service recommendation. The CF
method can predict the missing QoS value of Web services by employing their his-
torical QoS values. So we should be able to predict the missing QoS value of Web
services from distribution location users at different invocation time to optimize the
Web services recommendation.

This chapter is organized as follows. In Sect. 2, we present the design and imple-
mentation of a crowdsourced testing framework for collectingWeb service QoS data.
Section 3 describe a tensor-based model and corresponding collaborative filtering al-
gorithms for recommending services to users. In Sect. 4, we perform an extensive set
of experiments with the obtained service QoS data to evaluate the recommendation
algorithms. Finally Sect. 6 concludes this work.

2 QoS Data Collection with Crowdsourced Testing

Since theWeb service QoS experienced by users are closely related to the invocation
context like client configuration, location and invocation time, we hope to obtain
as much invocation context data and corresponding observed QoS data as possi-
ble. According to the above analysis, crowdsourcing provides an effective means to
achieve this goal. Considering people are more and more reliant on mobile devices,
we design iTest, a mobile crowdsourcing based testing framework that can facilitate
the invocation of Web services fromMobile devices. With iTest, volunteers can help
test certain Web services whenever and wherever they go. However, crowdsourcing
applications usually face a challenge to design an effective incentive mechanism so
as to attract people to participate. To complement the weak points of mobile crowd-
sourcing approach, we simulate a large scale of users with cloud nodes to test the
targeted Web services.

1https://www.planet-lab.org/

https://www.planet-lab.org/

222 H. Sun et al.

2.1 Real Web Service Crawling

In this work, we are concerned with real Web services functioning over Internet.
Therefore we must collect the information of the target Web services, which is done
using Web crawling technique. Actually, this is part of work in our Service4All2

[16], a PaaS (Platform as a Service) platform facilitating the development of service
oriented software. ServiceXchange is a subsystem of Service4All, which is respon-
sible for collecting services on the web, analyzing the relationships of them, and
continuously monitoring their responses for fetching QoS information. Developers
can search services by keywords, names, tags and even potential service relations
with the QoS requirements.

Now there are about 30,000Web services collected in ServiceXchange. Develop-
ers can find their required services and then subscribe and reuse them to build com-
plex service-oriented applications. Although ServiceXchange has been integrated
with Service4All, it can still work as a stand-alone platform that support service
discovery for external users. In this work, we are mainly concerned with the testing
of the collected 30,000+ Web services in ServiceXchange.

2.2 Simulated Crowd Testing with Cloud

Although crowdsourcing is very helpful in obtaining the required data in this work,
there are still a few challenging issues to deal with to build an effective crowdsourced
service testing solution. As there are a lot of distributed computing nodes available
over Internet, we can approximate crowdsourcing by simulating various invoking
context in terms of invocation time and location with those real physical resources.
In this section, we give an overview of WS-TaaS [18], a Web service load testing
platform using Planetlab.

2.2.1 Requirements of WS-TaaS

To design a cloud-basedWebService load testing environment, we need to analyze its
requirements and take advantage of the strong points of cloud testing. Taking above
aspects into account, we conclude that the following features should be guaranteed
when buildingWS-TaaS: transparency, elasticity, geographical distribution, massive
concurrency and sufficient bandwidth.

• Transparency. The transparency inWS-TaaS is divided into two aspects. (1) Hard-
ware Transparency: testers have no need to know exactly where the test nodes are
deployed. (2)Middleware Transparency: when the hardware environment is ready,
the testing middlewares should be prepared automatically without tester involve-
ment.

2http://www.service4all.org.cn

http://www.service4all.org.cn

Recommending Web Services Using Crowdsourced Testing Data 223

• Elasticity. All the test capabilities should scale up and down automatically com-
mensurate with the test demand. In WS-TaaS, the required resources of every test
task should be estimated in advance to provision more or withdraw the extra ones.

• Geographical Distribution. To simulate the real runtime scenario of a web service,
WS-TaaS is required to provide geographically distributed test nodes to simulate
multiple users from different locations all over the world.

• Massive Concurrency and Sufficient Bandwidth. As in Web Service load testing
process the load span can be very wide, so WS-TaaS have to support massive con-
current load testing. Meanwhile, the bandwidth need to be sufficient accordingly.

2.2.2 Conceptual Architecture of WS-TaaS

In a cloud-based load testing environment for Web Service, we argue that these four
components are needed: Test Task Receiver &Monitor (TTRM), Test Task Manager
(TTM), Middleware Manager and TestRunner. Figure 1 shows the conceptual archi-
tecture of a cloud-based Web Service load testing system, including the four main
components above, which we explain as follows:

• Test Task Receiver & Monitor. TTRM is in charge of supplying testerswith friendly
guide to input test configuration information and submitting test tasks. The testing
process can also be monitored here.

• Test Task Manager. TTM manages the queue of test tasks and dispatchs them to
test nodes in the light of testers’ intention, and then gathers and merges the test
results.

• TestRunner. TestRunners are deployed on all test nodes and play the role of web
service invoker.They can also analyse thevalidity ofweb service invocation results.

• Middleware Manager. Middleware Manager manages all the TestRunners and
provide available TestRunners for TTM with elasticity.

TestRunner

TestRunner

WebServiceTestRunner

Test Task
Manager

…
.

Test Task
Receiver

&
Monitor

Middleware
Manager

Fig. 1 Conceptual architecture of a web service cloud Testing System

224 H. Sun et al.

Test Task
Receiving

Middleware
Provision

Test Task
Dispatching

Test Task
Execution & Task

Monitoring

Test Results
Gathering

Fig. 2 Workflow of WS-TaaS

2.2.3 Testing Workflow of WS-TaaS

The workflow of WS-TaaS is divided into five steps, as shown in Fig. 2.
(1) Firstly, TTRM receives configuration of a test task submitted by the tester

and transmit it to TTM. (2) Then TTM selects test nodes from available nodes in
terms of their performance, and asks Middleware Manager to provision TestRunners
on the test nodes selected. (Please see Sect. 4.1 for details). (3) After that, TTM
decides the numbers of concurrent request of each node selected and divides the test
task into subtasks with specific scheduling and dispatching strategies (The details
of the strategies are shown in Sect. 4.2), and then dispatches them to the test nodes
selected. (4) Then, after dispatching the test task, TTM notifies all the participanting
TestRunners to start invoking the target service simultaneously. During test task
execution, TTRM periodically sends query requests to TTM at a fixed time interval
to obtain the execution state. (5) In the meantime, TTM also periodically queries the
test results from all the involved TestRunners. On receiving a query response, the
intermediate test results will be displayed to users. The query and gathering process
will be continued until the test task finishes.

2.2.4 Test Mode of WS-TaaS

For different kinds of test needs, WS-TaaS provides three test modes as follows.

• Static Test. Static test is provided to test the performance of a web service under
user-specified load. In such a test, the test task is just deployed and executed once.

• Step Test. In a step test, the tester need to input the start number, step size and the
end number of concurrent requests. Then the test task is deployed and executes
step by step with different numbers of concurrent requests, which increase by the
step size from the start number till it meets the end one. Step test can tell the tester
how the web service would offer usability in a specific load span.

• Maximal Test. Maximal test is used to determine the load limit of a web service.
Like a step test, the start number and step size is needed, but the end number is
not needed. So the strategy for judging whether the current load is the load limit
is required. At present, we briefly define judgement principle as follows: If more
than 10% of the concurrent requests are failed (the invoking result is inconsistent

Recommending Web Services Using Crowdsourced Testing Data 225

with the expected result or the invoking process timed out) under a load, then we
define this failure and take this load amount as the load limit of the target web
service. This determination is made by Test Task Manager with the calculation of
failure percentage. Once the load limit is determined, this test task will be stopped
and the final report is generated for the tester.

2.3 iTest: Testing Web Services with Mobile Crowdsourcing

Considering that Web service invocation is highly related with invocation context
like time and location, we choose to leverage mobile phones to collect the Service
QoS data since the use of mobile phone is largely diversified in terms of geo-location,
time and client environments. Invoking a Web service usually involves a lot of pro-
gramming work to construct, send, receive and parse SOAP messages, therefore we
must hide the programming complexity so as to let users easily fulfill theWeb service
testing task without knowing too much technical details.

As mentioned in Sect. 2.1, we have collected over 30,000 Web services. The
WSDLfiles and corresponding information about these services are stored in a repos-
itory, i.e. WSR in Fig. 3. WSR maintains all the services needed to be tested. On the
client side,we have developed, iTest, anAndroidApp based on PhoneGap framework
that provides support for developing mobile apps with standard Web technologies.

Fig. 3 iTest: testing web services with mobile crowdsourcing

226 H. Sun et al.

Fig. 4 Screenshots of iTestClient

Currently, we only implement iTestClient on Android platform, as shown in Fig. 4.
Once iTestClient is installed on an Android mobile phone, the mobile phone will be
registered with the server side as a Web service testing volunteer called iTestWorker.
The iTestServer is responsible for managing all the registered volunteers, scheduling
testing tasks and maintaining QoS data. When an iTestWorker goes online, it will
notify iTestServer and the latter will respond with a list of Web services to be tested.
Then the user can select a Web service to test. iTestClient fetches the WSDL file
of the selected Web service through HTTP protocol and it then generate an GUI
interface for users to fill in with the necessary parameter values. Once the user click
the “invoke” button, a SOAP request for the target Web service will be sent out and
iTestClient will wait for the response from the target Web service synchronously.
During this process, iTestClient logs the GPS location, time to invoke the service
and time to get the response from the service. All the logged information will be sent
to iTestServer.

3 Temproal QoS-Aware Web Service Recommendation with
Crowdsourced Testing Data

Service QoS properties are not the same as what service providers have declared
since practical QoS data is influenced by user contexts. To obtain accurate Web
service QoS value for a certain service user, basing on the QoS dataset obtained
through crowdsourced testing described in Sect. 2 we propose a temporal QoS-aware
Web service recommendation framework [19] to make prediction of missing QoS

Recommending Web Services Using Crowdsourced Testing Data 227

Fig. 5 Temporal QoS-Aware Web Service Recommendation Framework

values. As shown in Fig. 5, our QoS prediction framework collects Web services
QoS information from different service users. A Web service user can obtain the
service QoS value prediction through our prediction framework, if the service QoS
information contributions of the user surpass the threshold. The more service QoS
information contributions, the higher QoS value prediction accuracy can be achieved.
After collecting a large number of QoS information, we filter some inferior QoS
information for the training data and employ the prediction engine to generate the
predictor model for predicting the missing QoS value. Due to the space limitation,
we mainly introduce the prediction algorithm principle in this paper.

3.1 Problem Formulation

The research problem studied in this work is stated as follows: Given a Web service
QoS dataset of temporal information with user-service interactions, recommend to
each user under a given temporal context an optimal services list. To illustrate these
concepts, the following example is given.

A Toy Example: Consider the instance of recommending services to users in
specific temporal context which is assigned to service invocation time in this paper.
Then the 〈user, service, time〉 triplets have the following attributes:

• User: the set of all service users to whom Web services are recommended; it is
defined as UserID.

• Service: the set of all the Web services that can be recommended; it is defined as
ServiceID.

• Time: the Web service invocation time when the user invoke the service; it is defined
as TimeID.

228 H. Sun et al.

Then the service QoS value assigned to a service invocation from a user also depends
on where and when the service was invoked. For instance, a specific service is
recommended to users in different locations, significantly depending on when they
are planning to invoke it.

Each QoS value is described by three dimensionality according to userID, ser-
viceID and timeID. Thus the QoS value is represented as points in the three-
dimensional space, with the coordinates of each point corresponding to the index
of the triplet 〈userID, serviceID, timeID〉. A straightforward method to capture the
three-dimensional interactions among the triplet 〈user, service, time〉 is to model
these relations as a tensor. The QoS value of Web service invocations from J ser-
vices by I users at K time intervals are denoted as a tensor YYY ∈ R

I×J×K , i.e., a
three-dimensional tensor, with I × J × K entries which are denoted as YYY i jk : (1)
YYY i jk = Rating indicates the missing QoS value that the service j has been invoked
by user i under the context type k, and Rating is this service QoS value; (2)YYY i jk = 0
indicates that the service has not been invoked. The real-world Service QoS value
dataset is very sparse, even though the density of the dataset collected by our system
is only 30%.

To obtain the missing QoS value in the user-service-time tensor, the Web service
QoS observed by other service users can be employed for predicting theWeb service
for the current user. Once these initialWeb service QoS value is obtained, our recom-
mendation system will try to estimate theWeb service QoS value which has not been
obtained for the 〈user, service, time〉 triplets by using the QoS value function T :

UserID × ServiceID × TimeID → Rating

where UserID, ServiceID and TimeID are the index of users, services and time peri-
ods, respectively and Rating is theQoSvalue corresponding to the three-dimensional
index.

As we can see from this example and other cases, an algorithm is needed to
estimate the QoS value function T . In this paper, CP decomposition model is used to
reconstruct the temporal three-dimensional user-service-time tensor. As mentioned
in Sect. 3, the main idea behind CP decomposition model is to find a set of low-rank
tensors to approximate the original tensor. Our approach is designed as a two-phase
process. Firstly, the temporal QoS value tensor composed of the observed QoS value
is constructed. Then we propose a non-negative tensor factorization approach to
predict the missing QoS value in the tensor.

3.2 Construct QoS Value Tensor

When a service user invokes a Web service, the QoS properties performance will
be collected by our recommendation system. After running a period of time, the
recommender accumulates a collection of Web service QoS property data, which
can be represented by a set of quadruplets 〈UserID, ServicID, TimeID, Rating〉

Recommending Web Services Using Crowdsourced Testing Data 229

(or 〈u, s, t, r〉 for short). Using the QoS value data, a temporal three-dimensional
tensorYYY ∈ R

I×J×K can be constructed, where I, J, K are the number of users, ser-
vices and time periods, respectively. Each entry of tensor represents the QoS value
of 〈u, s〉 pair at time period k.

The three-dimensional Temporal Tensor Construct algorithm is given in Algo-
rithm 1: the input is a set of Web service QoS value, and the output is the constructed
temporal tensorYYY ∈ R

I×J×K . Each frontal slice in tensorYYY corresponds to a 〈u, s〉
pair QoS value matrix for each time interval.

Algorithm 1: Temporal Tensor Construct
Input: a set of quadruplets 〈u, s, t, r〉 for Web service QoS value dataset.

Output: a temporal tensor YYY ∈ R
I×J×K.

1: load all quadruplets 〈u, s, t, r〉 of the Web service Qos value,
2: use the set of 〈u, s, 1, r〉 to construct a user, service matrix U(1) that takes all I users as the rows

and all J services as the columns in the time of period 1,
3: the element of thematrixU(1) is the r of the quadruplet 〈u, s, t, r〉 according to the corresponding

〈u, s, 1〉 triplet,
4: construct all the matrices U(1),U(2), · · · ,U(K) for K time periods,
5: an augmented matrix U can be built by horizontally concatenating all matrices as shown in Fig. 6

(a) denoted as Y(1),
6: Construct tensor YYY ∈ R

I×J×K as shown in Fig. 6b, each slice of tensor is one matrix of Y(1).
7: Return: YYY ∈ R

I×J×K

Fig. 6 Slices of time-specific matrices with users and services are transformed into a temporal
tensor

230 H. Sun et al.

3.3 Non-negative CP Decomposition

In the real-world, theWeb service QoS value is always non-negative, so the temporal
QoS value tensor is presented as an non-negative three-way tensor YYY ∈ R

I×J×K+ ,

and decomposed components are a set of matrices: U ∈ R
I×RYYY+ ,S ∈ R

I×RYYY+ and

T ∈ R
I×RYYY+ , here and elsewhere, R+ denotes the non-negative orthant with appro-

priate dimensions. As presented in the previous section, our goal is to find a set of
factor matrices as the to approximate the tensor, whose rank is the number of the
components. Adding the nonnegativity restriction to the CP decomposition model,
we can get a non-negative CP decomposition model (NNCP). Our three-dimensional
NNCP decomposition model is given by:

YYY =
RYYY∑
r=1

ur ◦ sr ◦ tr + EEE, (1)

where the vectors ur , sr , tr are restricted to have only non-negative elements and the
tensor EEE ∈ R

I×J×K+ is errors or noise depended on the application.
The QoS value tensor should be reconstructed for predicting all missing QoS

values. A new fitting algorithm which approximates the tensor with non-negative
value should be designed. Firstly, we define a cost function to quantify the quality of
approximation, which can be constructed using some measure of distance between
two non-negative tensors YYY and Ŷ̂ŶY . One useful measure is simply the square of the
Euclidean distance between YYY and ŶYY ,

‖YYY − ŶYY‖2F =
∑
i jk

(YYY i jk − ŶYY i jk)
2, (2)

whereYYY i jk is the Web service QoS value of j th service from i th user at k-time, ŶYY i jk

is the approximation value, the lower bound is zero, and clearly vanishes if and only
if YYY = ŶYY . Then, we consider the formulations of NNCP as a optimal problem:

min
ur ,sr ,tr

1

2
‖YYY i jk −

RYYY∑
r=1

ur ◦ sr ◦ tr‖2F ,

s.t. ur , sr , tr � 0. (3)

We use multiplicative updating algorithms [13] for factor matrices U,S and T to
approximate the non-negative tensor. Thenwe are easy to obtain the partial derivative
of the objective Eq. (3):

∂ f

∂u(i)
l

=
RYYY∑
r=1

u(i)
l (sr · sl)(tr · tl) −

∑
j,k

YYY i jks(j)
l t(k)l (4)

Recommending Web Services Using Crowdsourced Testing Data 231

where u(i)
l is the l-th column and i th row element of factor matrix U, sr is the r th

vector of factor matrix S, l ∈ RYYY , · denotes the inner product and for more details see
[15]. Then we can obtain the following update rule by using a multiplicative update
rule:

u(i+1)
l ← u(i)

l

∑
j,k YYY i jks(j)

l t(k)l∑RYYY
r=1 u(i)

r (sr · sl)(tr · tl)
, (5)

the updating rules for the rest of factor matrices can be easily derived in the same
way, s(n)l and t(n)l are shown as follows:

s(j+1)
l ← s(j)

l

∑
i,k YYY i jku(i)

l t(k)l∑RYYY
r=1 s(j)

r (ur · ul)(tr · tl)
; (6)

t(k+1)
l ← t(k)l

∑
i, j YYY iklu

(i)
l s(j)

l∑RYYY
r=1 t(k)r (ur · ul)(sr · sl)

, (7)

where the vectors ur , sr , tr are composed of non-negative value when they are ini-
tialized. So far we have described the details of NNCP algorithm for predicting the
missing QoS value with non-negative value. In summary, Algorithm 2 gives the
whole factorization scheme for NNCP. In each iteration of our algorithm, the new
value of Û, Ŝ, T̂ is calculated by multiplying the current value by a factor depended
on the quality of the approximation in Eq. (1). The quality of the approximation im-
proves monotonically with the application of these multiplicative update rules. The
convergence proof of the multiplicative rule was introduced by Lee and Seung [13].

Given the latent factor matrices Û, Ŝ, T̂, the prediction QoS value of Web service
j from service user i at time k is given by:

YYY i jk ≈
RYYY∑
r=1

u(i)
r s(j)

r t(k)r . (8)

Notice that increasing the number RYYY of components allows us to represent more
and more factor structures of the Web service QoS value. However, as the number of
components increases, we go from under-fitting to over-fitting these structures, i.e.,
we face the usual tradeoff between approximating complex structures and over-fitting
them.

4 Experiments

In this section, we introduce the experiment dataset, our evaluation metrics, and
the experiment results. We use the QoS prediction accuracy to measure prediction
quality, and address the following questions: (1) How do the tensor density and

232 H. Sun et al.

Algorithm 2: Non-negative CP decomposition algorithm

Input: the tensor YYY ∈ R
I×J×K+ , the rank R of tensor YYY .

Output: three non-negative factor matrices Û, Ŝ, T̂.

1: Procedure [Û, Ŝ, T̂] = NNCP(YYY, R)
2: Initialize: U ∈ R

I×R+ ,S ∈ R
J×R+ , and T ∈ R

K×R+ by small non-negative value.
3: Repeat
4: for l = 1, · · · , I do
5: Û ← Eq. (5)
6: end for
7: for l = 1, · · · , J do
8: Ŝ ← Eq. (6)
9: end for
10: for l = 1, · · · , K do
11: T̂ ← Eq. (7)
12: end for
13: Until convergence or maximum iterations exhausted.
14: Return: Û, Ŝ, T̂
15: EndProcedure

factor matrices dimensionality influence prediction accuracy? The factor matrices
dimensionality determines how many the latent factors which have direct influence
on prediction accuracy. (2) How does our approach compare with other CFmethods?

We implement the algorithms described in Sect. 3 with Matlab. For constructing
the temporal QoS value tensor and solving the non-negative CP decomposition,
we use the Matlab Tensor Toolbox [1]. The experiments are conducted on a Dell
PowerEdge T620 machine with 2 Intel Xeon 2.00 GHz processors and 16 GB RAM,
running Window Server 2008.

4.1 Dataset from Simulated Crowdsourced Testing

To evaluate the effectiveness of our recommendation methods, we use WS-TaaS,
the simulated crowdsourcing approach, to test the QoS of realworld Web services.
We use more than 600 distributed slices of Planet-Lab nodes and we select the
slices which have successfully invoked at least 50 Web services so that there are
enough observations to be split in various proportions of training and testing set for
our evaluation. Finally, 343 slices were selected as the Web service users, and 5,817
publicly available real-worldWeb services are monitored by each slice continuously.
The other of the more than 10,000 initially collected Web services are excluded in
this experiment due to: (1) authentication required; (2) refused by the provider (e.g.,
the Web service is hosted by a private golf club); (3) permanent invocation failure
(e.g., the Web service is shutdown). In this experiment, each 343 Planet-Lab slices
invokes all the Web services continuously. The QoS data has been continuously
collected from July 26. In this experiment, we only use a small dataset consisting of

Recommending Web Services Using Crowdsourced Testing Data 233

Table 1 Statistics of web service QoS Value

Statistics Response-Time Throughput

Scale 0–200s 0–1000kbps

Mean 0.6840 7.2445

Num. of service users 343 343

Num. of web services 5817 5817

Num. of time periods 32 32

these Web services QoS performances of 4 days from July 26 to 29 of 2013 in 32
time intervals lasting for 3 h.

We collect Web service invocation records from all the slices, and represent one
observation in the dataset as a quadruplet 〈u, s, t, r〉. The dataset contains more than
19 million quadruplets, 343 users, 5,817 services and 32 time periods. Finally, we
obtain two 343×5817×32 user-service-time tensors. One tensor contains response
time value, and the other one contains throughput value. Response time is defined
as the persistent time between a service user sending a request and receiving the
corresponding response, while throughput is defined as the average rate of successful
message size per second. The statistics of Web service QoS performance dataset are
summarized in Table 1. The distributions of response time and throughput are shown
in Fig. 7. In Table 1, the means of response-time is 0.6840 seconds and throughput
is 7.2445 kbps. In Fig. 7a shows that more than 95% of the response time elements
are smaller than 1.6 s, and Fig. 7b shows that more than 99% of the throughput
elements are smaller than 100 kbps. In this paper we only study the response-time
and throughput, our NNCP method can be used to predicting any other QoS value
directly without modifications. The value of the element in the three-dimensional
tensor is the corresponding QoS value, when predicting value of a certain QoS value
(e.g., popularity, availability, failure probability, etc.).

4.2 Evaluation Measurements

Given a quadruplet 〈u, s, t, r〉 as T = 〈u, s, t, r〉, we evaluate the prediction quality
of our method in comparison with other collaborative filtering methods using Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE) [23]. MAE is defined
as:

M AE = 1

|T |
∑
i, j,k

∣∣∣YYY i jk − ŶYY i jk

∣∣∣ (9)

where YYY i jk denotes actual QoS value of Web service j observed by user i at time

period k, ŶYY i jk represents the predicted QoS value of service j for user i at time
period k, and |T | is the number of predicted value. The MAE is the average absolute

234 H. Sun et al.

<0.1 0.1−0.2 0.2−0.4 0.4−0.8 0.8−1.6 1.6−3.2 3.2−6.4 6.4−12.8 >12.8
0

5

10

15

20

25

30

(a)

(b)
Response time (s)

S
er

vi
ce

 in
vo

ca
tio

n
nu

m
be

r
(%

)

<0.1 0.1−0.2 0.2−0.4 0.4−0.8 0.8−1.6 1.6−3.2 3.2−6.4 6.4−12.8 12.8−25.6 25.6−51.2 51.2−102.4 >102.4
0

5

10

15

20

25

Throughput (kbps)

S
er

vi
ce

 in
vo

ca
tio

n
nu

m
be

r
(%

)

Fig. 7 Web services QoS distribution

deviation of predictions to the ground truth data, and places the equal weight on each
individual difference. RMSE is defined as:

RM SE =
√√√√ 1

|T |
∑
i, j,k

(YYY i jk − ŶYY i jk)
2

(10)

where smaller MAE (or RMSE) indicates better prediction accuracy. Since the errors
are squared before they are averaged, the RMSE gives extra weight to relatively large
errors.

4.3 Baseline Algorithms

For comparison purpose, we investigate whether our approach can be captured by the
following 6 baseline algorithms, according to the prediction performance measured
on the dataset. The baselines involved in this comparative experiment are listed
below:

Recommending Web Services Using Crowdsourced Testing Data 235

• UMean: This method uses the mean QoS value of all Web services QoS value
from a service user who has invoked these services to predict the missing QoS
value which this service user has not invoked.

• IMean: This method uses the mean QoS value of each Web service QoS value
from all service users who have invoked this service to predict the missing QoS
value which other service users have not invoked this service.

• UPCC (User-based collaborative filteringmethod using PearsonCorrelationCoef-
ficient): This method is a classical CF algorithm that involves similar user behavior
to make prediction [14].

• IPCC (Item-based collaborative filtering method using Pearson Correlation Coef-
ficient): This method is widely used in e-commerce scenarios [11].

• WSRec: This method is a hybrid collaborative algorithm that combines both UPCC
and IPCC approaches, and employs both the similar users and similarWeb services
for the QoS value prediction [21].

• RSVD: SVD (Singular Value Decomposition) is proposed by [2] in Collaborative
Filtering area, and used to exploit the ‘latent structure’ of the original data. In this
paper, we use the regularized SVD method proposed in [10].

In this part, the above six baseline methods are compared with our NNCP ap-
proach given the same training and testing cases. Since the baseline algorithms can-
not be directly applied to context-aware prediction problem, we employ a special
formulation for making the comparison with our NNCP approach. We consider the
three-dimensional user-service-time tensor as a set of user-service matrix slices in
terms of time interval. Firstly, we compress the tensor into a user-service matrix.
Each element of this matrix is the average of the specific 〈user, service〉 pair during
all the time intervals. For each slice of the tensor, the baseline algorithms are applied
for predicting the missing QoS value. Secondly, we compute the MAE and RMSE
of these baselines, and make the comparison with our NNCP method.

In the real-world, the dataset is usually very sparse since a service user usually
only invokes a very small number of Web services. We randomly remove QoS value
to sparse the dataset, and obtain the sparser dataset with different density from 5% to
25%, ascending by 5% each time. For example, dataset density 5% means that we
randomly leave 5%of the dataset for training and the other value becomes testing set.
The parameter settings of our NNCPmethod is that latent features dimensionality set
as 20. The comparison result of this experiment are presented in Tables2 and 3, and
the detailed investigations of parameter settings will be provided in the following
subsections.

From Tables2 and 3, we can observe that our NNCP approach significantly im-
proves the prediction accuracy, and obtains smaller MAE and RMSE value consis-
tently for both response-time and throughput with different matrix densities. The
MAE and RMSE value of throughput are much larger than those of response-time,
because the range of throughput is 0-1000 kbps, while the range of response-time
is only 0-20 s. With the increase of dataset density from 5% to 25%, the MAE and
RMSE value of our NNCPmethod becomes smaller, because denser dataset provides
more information for the missing QoS value prediction. Our NNCPmethod achieves

236 H. Sun et al.

Table 2 Web service QoS performance comparison: MAE (mean average error)

WS QoS
Property

Method MAE

5% 10% 15% 20% 25%

Response time UMean 0.8156 0.7247 0.7161 0.6758 0.6361

IMean 0.5708 0.4919 0.4988 0.4158 0.4083

IPCC 0.6861 0.7972 0.5146 0.6014 0.4073

UPCC 0.5965 0.6627 0.6625 0.6014 0.5435

WSRec 0.5135 0.5252 0.5268 0.3947 0.3717

RSVD 0.9162 0.8375 0.8168 0.8088 0.7800

NNCP 0.4838 0.3589 0.3254 0.3178 0.3148

Throughput UMean 8.3696 8.4262 8.0827 7.7713 7.7113

IMean 6.7947 7.0433 6.4606 5.7356 5.2033

IPCC 8.2521 8.6508 8.1413 8.8179 8.3416

UPCC 8.0533 7.7259 7.1103 7.3437 7.0486

WSRec 6.3139 6.2608 5.9656 5.9222 4.7879

RSVD 9.6429 8.9885 7.5998 5.6261 5.1030

NNCP 6.0007 5.4889 4.9859 4.5001 4.0385

Table 3 Web service QoS performance comparison: RMSE (Root mean square error)

WS QoS
Property

Method RMSE

5% 10% 15% 20% 25%

Response time UMean 2.3807 1.9589 1.9937 1.6229 1.4217

IMean 2.3344 2.0264 2.4146 2.0878 1.7216

IPCC 3.8511 3.8336 3.3770 2.5129 1.9188

UPCC 2.3424 1.8843 1.9331 1.5129 1.2671

WSRec 2.1838 2.0207 2.1533 1.7144 1.2975

RSVD 6.6970 5.2284 3.8099 4.9581 3.6419

NNCP 1.1470 1.0685 1.0502 1.0434 1.0399

Throughput UMean 32.7424 35.3732 32.8413 44.4918 40.9749

IMean 33.5447 34.5250 25.6687 22.7903 19.3721

IPCC 41.4411 40.9693 37.4096 48.9877 42.6471

UPCC 31.8687 32.9089 29.6238 29.2614 25.1004

WSRec 23.0171 24.6223 22.4384 22.3709 17.9580

RSVD 23.5928 25.4172 20.3695 19.7478 19.9420

NNCP 10.8098 10.1738 9.57085 8.98722 8.43047

Recommending Web Services Using Crowdsourced Testing Data 237

better performance than the baselines. But some factors of disharmony in Tables2
and 3 are that the MAE and RMSE of baselines are not decreasing with the increase
of dataset density in the strict sense. The fluctuation is cause by that prediction value
of the baselines is only in one layer, and the value of testing set intersperse among
32 layers, which increase the uncertainty of prediction.

4.4 Impact of Dataset Sparseness

In this section,we investigate the impact of data sparseness on the prediction accuracy
as shown inFig. 8.Wevary the density of the trainingmatrix from5 to 25%with a step
of 5%. Figure 8a, b are theMAE andRMSE results of response-time. Figure 8c, d are
theMAE and RMSE results of throughput. Figure 8 shows that: (1)With the increase
of the training density, the performance of our method enhances indicating that better
prediction is achieved with more QoS data. (2) Our NNCP method outperforms
baselines consistently. The reason of this phenomenon is that baselines only utilize
the two-dimensional static relations of user-service model without considering the

5 10 15 20 25
0.3

0.35

0.4

0.45

0.5

(a) (b)

(c) (d)
Tensor Density (%)

M
A

E

Response Time

5 10 15 20 25
1

1.05

1.1

1.15

Tensor Density (%)

R
M

S
E

Response Time

5 10 15 20 25
3

3.5

4

4.5

5

5.5

6

6.5

Tensor Density (%)

M
A

E

Throughput

5 10 15 20 25
8

8.5

9

9.5

10

10.5

11

Tensor Density (%)

R
M

S
E

Throughput

Fig. 8 Impact of tensor density (Dimensionality = 20)

238 H. Sun et al.

more useful triadic relations of both the user and the service with the temporal
information in the user-service-time model.

4.5 Impact of Dimensionality

The parameter dimensionality determines how many latent factors involve to tensor
factorization. In this section, we investigate the impact of the dimensionality. We set
the tensor density as 25%, and vary the value of dimensionality from 1 to 20 with a
step value of one.

Figure 9a, b show the MAE and RMSE results of response-time, and Fig. 9c, d
show theMAEandRMSE results of throughput. Figure9 shows thatwith the increase
of latent factor number from 1 to 20, the value of MAE and RMSE keeps a declining
trend. These observed results coincide with the intuition that relative larger number
of latent factor produce smaller error ratio. But, more factors will require longer
computation time and storage space. Moreover, when the dimensionality exceeds
a certain threshold, it may cause the over-fitting problem, which will degrade the
prediction accuracy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345

(a) (b)

(c) (d)
Dimensionality

M
A

E

Response Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1.03

1.05

1.07

1.09

1.11

1.13

1.15

Dimensionality

R
M

S
E

Response Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4.02

4.04

4.06

4.08

4.1

4.12

4.14

4.16

4.18

4.2

Dimensionality

M
A

E

Throughput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Dimensionality

R
M

S
E

Throughput

Fig. 9 Impact of factor matrices dimensionality (Tensor Density = 25%)

Recommending Web Services Using Crowdsourced Testing Data 239

5 Discussion

In this work, we design a tensor factorization based approach to recommending
services to a user through leveraging crowdsourced testing data. The basic method is
collaborative filtering, which can make prediction for a user by analyzing the similar
users’ behaviors. In service oriented computing, services are provided by various
providers and it is impossible to obtain the attributes of a service by traditional
program analysis orwhite-box testing. One practical and effectivemethod tomeasure
the QoS of a service should be black-box testing. The more user data is collected,
the more probably we can find the users similar to the current user. In our scenario,
“similar” means similar users can get similar QoS values when they invoke similar
services. Crowdsourcing can help expand the scale of the potential users to participate
in service testing.

iTest is such a crowdsourcing framework to support mobile users to help test
services. Although many crowdsourcing applications rely on people’s volunteering
contributions, appropriate incentive mechanisms can attract people’s participation
and improve the quality of crowdsourcing tasks. Currently iTest totally depends on
users’ volunteering participation and we are still working on designing an effec-
tive incentive mechanism. The data we have obtained from testing with Planetlab
nodes does simulate the variety of crowdsourced data. However, this method has
the following limitations. First, crowdsourced data usually contains noise data while
our simulated approach does not consider this. For example, even two users at the
same location and time invoke the same service, however they may experience ob-
viously different response time. A user’s phone undergoing a high overload due to
the concurrent running of several resource-demanding applications need more time
to process the service invocation results. Therefore, filtering the abnormal crowd-
sourced testing data is of great importance to the recommendation algorithm. Second,
our simulation approach does not simulate the variety of mobile clients in terms of
browsers, operating systems, other software and hardware capabilities. In practice,
client compatibility testing is a critical step to ensure the provided Web service can
be run on various client environments. In light of this, detailed user contexts should
be considered in computing the similarity of users.

6 Conclusions

Service discovery is one of the most important research topics in service oriented
computing. In recent years, as the number of Web services has been continuously
growing, recommending functionally equivalent Web services with different QoS
properties is gaining momentum. Since the observed QoS data of users is dependent
not only on services themselves, but also on invocation contexts like location and
time, we need to collect as much as possible users’ invocation data. To this end, we
propose to leverage crowdsourcing to collectWeb serviceQoS data. On the one hand,

240 H. Sun et al.

we design a simulated crowdsourcing method by using Planetlab nodes to serve as
workers. On the other hand, we design a mobile crowdsourcing framework iTest
to test Web services with Android phones. In Web service recommendation, matrix
factorization is one of the most popular approaches to CF. But the two-dimension
model is not powerful to tackle the triadic relations of temporal QoS value. We ex-
tend the MF model to three dimensions through the use of tensor and employ the
non-negative tensor factorization approach to advance the QoS-aware Web service
recommendation performance in considering of temporal information.With a dataset
obtained through our simulated crowdsourcing approach, we conduct an extensive
set of experiments to evaluate our tensor factorization based methods. In the ex-
perimental results, a higher accuracy of QoS value prediction is obtained with the
three-dimensional user-service-time model when comparing our method with other
standard CF methods, which proves that crowdsourced testing can help improve
recommendation results.

Future work can leads to two directions. First, our iTest framework is limited to
a small scale of use due to lack of appropriate incentives. This is why we only use
the dataset from simulated crowdsourcing appraoch. We will study an effective in-
centive mechanisms for mobile crowdsourced testing. Second, our recommendation
approach only considers and models the relations between QoS value and the triplet
〈user, service, t ime〉. But in other cases, service users in different geographic lo-
cations at the same time may observe different QoS performance of the same Web
service. Besides the temporal contextual information, more contextual information
that influences the client-side QoS performance (e.g., the workload of the service
servers, network conditions of the users, etc.) should be considered to improve the
prediction accuracy. In our futurework,wewill continue to exploremore user context
information in the design of recommendation methods.

References

1. Bader B.W., Kolda T.G., et al. (2012) Matlab tensor toolbox version 2.5. http://www.sandia.
gov/tgkolda/TensorToolbox/

2. Billsus, D., Pazzani, M.J.: Learning collaborative information filters. In:ICML, vol. 98, pp.
46–54 (1998)

3. Chen, X., Zheng, Z., Liu, X., Huang, Z., Sun, H.: Personalized Qos-aware web service recom-
mendation and visualization. IEEE Trans. Serv. Comput. 6(1), 35–47 (2013)

4. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-wide web.
Commun. ACM 54(4), 86–96 (2011)

5. Dong X., Halevy A.Y., Madhavan J., Nemes E., Zhang J.: Simlarity search for web services.
In: VLDB, pp. 372–383 (2004)

6. He, Q., Yan, J., Yang, Y., Kowalczyk, R., Jin, H.: A decentralized service discovery approach
on peer-to-peer networks. IEEE Trans. Serv. Comput, 6(1), 64–75 (2013)

7. Li C., Zhang R., Huai J., Guo X., Sun H.: A probabilistic approach for web service discovery.
In: IEEE SCC, pp. 49–56 (2013)

8. Paliwal, A.V., Shafiq, B., Vaidya, J., Xiong, H., Adam, N.R.: Semantics-based automated
service discovery. IEEE Trans. Serv. Comput. 5(2), 260–275 (2012)

http://www.sandia.gov/tgkolda/TensorToolbox/
http://www.sandia.gov/tgkolda/TensorToolbox/

Recommending Web Services Using Crowdsourced Testing Data 241

9. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: state of
the art and research challenges. IEEE Comput. 40(11), 38–45 (2007)

10. Paterek, A.: Improving regularized singular value decomposition for collaborative filtering.
In: Proceedings of KDD cup. workshop, vol. 2007 pp. 5–8 (2007)

11. Sarwar B., Karypis G., Konstan J., Riedl J.: Item-based collaborative filtering recommenda-
tion algorithms. In: Proceedings of the 10th International Conference on World Wide Web,
pp. 285–295. ACM (2001)

12. Segev, A., Toch, E.: Context-based matching and ranking of web services for composition.
IEEE Trans. Serv. Comput. 2(3), 210–222 (2009)

13. Seung, D., Lee, L.: Algorithms for non-negative matrix factorization. Adv. Neural.Inf. Process.
Syst. 13, 556–562 (2001)

14. Shao L., Zhang J.,WeiY., Zhao J., Xie B.,MeiH.: PersonalizedQos prediction for web services
via collaborative filtering. In: IEEE International Conference on IEEE Web Services, ICWS
2007, pp. 439–446 (2007)

15. Shashua A., Hazan T.: Non-negative tensor factorization with applications to statistics and
computer vision. In: Proceedings of the 22nd International Conference on Machine learning,
pp. 792–799.ACM (2005)

16. Sun H., Wang X., Yan M., Tang Y., Liu X.: Towards a scalable paaS for service oriented
software. In: ICPADS, pp. 522–527 (2013)

17. W3C Web services activity. http://www.w3.org/2002/ws/ (2002)
18. Yan M., Sun H., Wang X., Liu X.: WS-TaaS: a testing as a service platform for web service

load testing. In: ICPADS, pp. 456–463 (2012)
19. Zhang W., Sun H., Liu X., Guo X.: Temporal Qos-aware web service recommendation via

non-negative tensor factorization. In: WWW, pp. 585–596 (2014)
20. Zheng, G., Bouguettaya, A.: Service mining on the web. IEEE Trans. Serv. Comput. 2(1),

65–78 (2009)
21. Zheng Z., Ma H., Lyu M.R., King I.: WSRec: a collaborative filtering based web service

recommender system. In: IEEE International Conference on IEEE Web Services ICWS 2009,
pp. 437–444 (2009)

22. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Qos-aware web service recommendation by collabo-
rative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

23. Zheng Z., Ma H., Lyu M., King I.: Collaborative web service Qos prediction via neighborhood
integrated matrix factorization (2012)

http://www.w3.org/2002/ws/

A Cloud-Based Infrastructure
for Crowdsourcing Data
from Mobile Devices

Nicolas Haderer, Fawaz Paraiso, Christophe Ribeiro, Philippe
Merle, Romain Rouvoy and Lionel Seinturier

Abstract In the vast galaxy of crowdsourcing activities, crowd-sensing consists in
using users’ cellphones for collecting large sets of data. In this chapter, we present the
APISENSE distributed crowd-sensing platform. In particular, APISENSE provides a
participative environment to easily deploy sensing experiments in the wild. Beyond
the scientific contributions of this platform, the technical originality of APISENSE
lies in its Cloud orientation, which is built on top of the soCloud distributed multi-
cloud platform, and the remote deployment of scripts within the mobile devices of
the participants. We validate this solution by reporting on various crowd-sensing
experiments we deployed using Android smartphones and comparing our solution
to existing crowd-sensing platforms.

1 Introduction

The wisdom of the crowd is extensively used in many activities of our ever more
connected world. Crowdsourcing denotes the practice of obtaining needed services,
ideas, or contents by soliciting contributions from a large group of people, and

N. Haderer · F. Paraiso · C. Ribeiro · P. Merle · R. Rouvoy · L. Seinturier (B)
University Lille 1 - Inria, Villeneuve d’Ascq, France
e-mail: Lionel.Seinturier@univ-lille1.fr

N. Haderer
e-mail: Nicolas.Haderer@inria.fr

F. Paraiso
e-mail: Fawaz.Paraiso@inria.fr

C. Ribeiro
e-mail: Christophe.Ribeiro@inria.fr

P. Merle
e-mail: Philippe.Merle@inria.fr

R. Rouvoy
e-mail: Romain.Rouvoy@inria.fr

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4_13

243

244 N. Haderer et al.

especially from an online community.1 As users are more than ever goingmobile, the
research activities have also taken the path of mitigating crowdsourcing with mobile
computing to give birth to the domain of crowd-sensing, which is the enlistment of
large numbers of ordinary people in gathering data.2 Using cellphones to collect user
activity traces is also reported in the literature either as participatory sensing [5],
which requires explicit user actions to share sensors’ data, or as opportunistic sensing
where the mobile sensing application collects and shares data without user involve-
ment. These approaches have been largely used inmultiple research studies including
traffic and road monitoring [2], social networking [17] or environmental monitor-
ing [18]. However, developing a sensing application to collect a specific dataset over
a given population is not trivial. Indeed, a participatory and opportunistic sensing
application needs to cope with a set of key challenges [7, 14], including energy limi-
tation, privacy concern and needs to provide incentive mechanisms in order to attract
participants.

In addition, crowd-sensing applications must also face the challenge of collecting
large sets of data emitted by numerous clients potentially distributed all over the
world. We believe that cloud computing infrastructures are solutions of choice for
this. Indeed, cloud computing emerged as away for “enabling convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction” [16].

In this chapter, we present the APISENSE environment for crowdsourcing data
from mobile devices. Interestingly, the backend of APISENSE is built on top of the
soCloud distributedmulti-cloud platform to scale the gathering of crowd-contributed
datasets.We therefore start by introducing soCloud in Sect. 2, and next,we present the
architecture ofAPISENSE in Sect. 3. Section4 reports on some experiments that have
been conducted with APISENSE. Section5 discusses some empirical validations.
Section6 compares our approach with existing solutions. Section7 concludes this
chapter.

2 soCloud Overview

In this section we present an overview of soCloud. After having discussed some
background elements (Sect. 2.1), we present the main features of soCloud (Sect. 2.2),
the way applications can be developed with soCloud (Sect. 2.3), and we report on the
integration of soCloud with existing IaaS and PaaS cloud environments (Sect. 2.4).

1https://en.wikipedia.org/wiki/Crowdsourcing.
2http://researcher.watson.ibm.com/researcher/view_project.php?id=3011.

https://en.wikipedia.org/wiki/Crowdsourcing
http://researcher.watson.ibm.com/researcher/view_project.php?id=3011

A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices 245

2.1 Service Component Architecture

soCloud is based on the Service Component Architecture (SCA) standard [19]. SCA
is a set of OASIS specifications for building distributed applications and systems
using Service-Oriented Architecture (SOA) principles [9]. SCA promotes a vision
of Service-Oriented Computing (SOC)where services are independent of implemen-
tation languages (e.g., Java, Spring, BPEL, C++, COBOL, C), networked service
access technologies (e.g., Web Services, JMS), interface definition languages (e.g.,
WSDL, Java) and non-functional properties. SCA thus provides a framework that
can accommodate many different forms of SOC systems.

soCloud is implemented with FraSCAti [22] that is an open source framework for
deploying and executing SCA-based applications. FraSCAti provides a component-
based approach to support the heterogeneous composition of various interface def-
inition languages (WSDL, Java), implementation technologies (Java, Spring, EJB,
BPEL,OSGI, Jython, Jruby,Xquery,Groovy,Velocity, FScript, Beanshell), and bind-
ing technologies (Web Services, REST, HTTP, JSON-RPC, UPnP, JavaRMI, JMS,
JGroups). Moreover, FraSCAti introduces reflective capabilities to the SCA pro-
gramming model, and allows dynamic introspection and reconfiguration via a spe-
cialization of the Fractal component model [4]. These features open new perspectives
for bringing agility to SOA and for the runtime management of SCA applications.
FraSCAti is the execution environment of both the soCloud multi-cloud PaaS and
soCloud SaaS applications deployed on the top of this multi-cloud PaaS.

2.2 Main Features of soCloud

soCloud is a service-oriented component-based PaaS for managing portability, elas-
ticity, provisioning, and high availability across multiple clouds. soCloud is a dis-
tributed PaaS, that provides a model for building distributed SaaS applications based
on an extension of the OASIS SCA standard.

Multi-cloud portability

The different layers of a cloud environment (IaaS, PaaS, SaaS) provide dedicated
services. Although their granularity and complexity vary, we believe that a principled
definition of these services is needed to promote the interoperability and federation
between heterogeneous cloud environments [20]. Hence, our multi-cloud infrastruc-
ture uses SCA both for the definition of the services provided by the PaaS layer and
for the services of SaaS applications that run on top of this PaaS. Therefore, soCloud
uses SCA as an open service model to provide portability.

Multi-cloud provisioning

soCloud provides a consistentmethodology based on the SCA standard that describes
howSaaS applications aremodelled. soCloud provides services based onFraSCAti to

246 N. Haderer et al.

deploy and allows runtimemanagement of SaaS applications and hardware resources.
This consistent methodology offers flexibility and choice for developers to provi-
sion and deliver SaaS applications and hardware resources across multiple clouds.
soCloud provides a multi-cloud service enabling policy-based provisioning across
multiple cloud providers.

Multi-cloud elasticity

The management of elasticity across multiple clouds is complex and appears to be
approaching the limits of what is done with managing elasticity in a single cloud.
In fact, systems become more interconnected and diverse, then latency and outages
can occur at any time. The soCloud architecture focuses on the interactions among
components, leaving such issues to be dealt with at runtime. Particularly, any auto-
mated set of actions aimed to modify the structure, behaviour, or performance of
SaaS applications deployed with the soCloud platform while it continues operating.
A remaining option is autonomic computing [12]. soCloud elasticity ismanagedwith
the MAPE-K (Monitor, Analyse, Plan, Execute, Knowledge) reference model [12]
for autonomic control loop.

Multi-cloud high availability

soCloud provides high availability in two ways [21]. Firstly, by using a multi-cloud
load balancer service to switch from one application to another when failure occurs.
Secondly, the soCloud architecture uses a replication strategy. Especially, soCloud
uses redundancy at all levels to ensure that no single component failure in a cloud
provider impacts the overall system availability.

2.3 soCloud Applications

Application specification

soCloud applications are built by using the SCA model. As illustrated in Fig. 1, the
basic SCA building blocks are software components [25], which provide services,
require references and expose properties. The references and services are connected
by wires. SCA specifies a hierarchical component model, which means that compo-
nents can be implemented either by primitive language entities or by subcomponents.
In the latter case the components are called composites. Any provided services or
required references contained within a composite can be exposed by the compos-
ite itself by means of promotion links. To support service-oriented interactions via
different communication protocols, SCA provides the notion of binding. For SCA
references, a binding describes the access mechanism used to invoke a remote ser-
vice. In the case of services, a binding describes the access mechanism that clients
use to invoke the service.

A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices 247

Fig. 1 An annotated soCloud application

We describe how SCA can be used to package SaaS applications. The first
requirement is that the package must describe and contain all artifacts needed for
the application. The second requirement is that provisioning constraints and elastic-
ity rules must be described in the package. The SCA assembly model specification
describes how SCA and non-SCA artifacts (such as code files) are packaged. The
central unit of deployment in SCA is a contribution. A contribution is a package that
contains implementations, interfaces and other artifacts necessary to run components.
The SCA packaging format is based on ZIP files, however other packaging formats
are explicitly allowed. As shown in Fig. 1, a three-tier application is packaged as
a ZIP file (SCA contribution) and its architecture is described. This application is
composed of three components. One component represents the frontend-tier of the
application. The second one represents the computing-tier of the application. The last
one represents the storage-tier of the application. Each component of this three-tier
application is packaged as an SCA contribution.

Annotations

Some cloud-based applications require a more detailed description of their deploy-
ment (see Fig. 1). The deployment andmonitoring of soCloud applications are bound
by a description of the overall software system architecture and the requirements of
the underlying components, that we refer to as the application manifest. In particular,

248 N. Haderer et al.

the application manifest should be platform-independent. Basically, the application
manifest consists of describing what components the application is composed, with
functional and non-functional requirements for deployment. In fact, the applica-
tion can be composed of multiple components (see Fig. 1). The application manifest
could define elasticity rules on each component (e.g., increase/decrease the num-
ber of instances of the component). Commonly, scale up or down, is translated to a
condition-action statement that reasons on performance indicators of the deployed
component. In order to fulfill the requirements for the soCloud application descriptor,
we propose to annotate the SCA components with the four following annotations:

1. placement constraint (@location) maps the components of a soCloud applica-
tion to available physical hosts within a geographical datacenter in a multi-cloud
environment,

2. computing constraint (@vm) provides necessary computing resources defined
for components of a soCloud application in a multi-cloud environment,

3. replication (@replication) specifies the number of instances of the component
that must be deployed in a multi-cloud environment,

4. elasticity rule (@elasticity) defines a specific elasticity rule that should be applied
to the component deployed in a multi-cloud environment.

For example, let us consider the three-tier web application described in Fig. 1,
which consists of three components: Frontend, computing, and storage. The annota-
tion @location=France on the frontend component indicates to deploy this compo-
nent on a cloud provider located in France. Next, the annotations @vm=medium on
the computing component specifies the computing resources required by this compo-
nent and can be deployed on any cloud provider. The annotation@elasticity=Scaling
up when responseTime > 4 S defines an elasticity rule on the computing component,
which scales up when the response time is superior to 4 s. Finally, the annotations
@location=Asia and @replication = 2 on the storage component indicate to deploy
this component on two different cloud providers located in Asia. soCloud automates
the deployment of this three-tier application in a multiple cloud environment by
respecting the given annotations.

2.4 Integration with Existing IaaS/PaaS

soCloud has been tested and can be deployed on ten target cloud environments that are
publicly accessible on the Internet:WindowsAzure,3 DELLKACE,4 Amazon EC2,5

3https://www.windowsazure.com.
4https://www.kace.com.
5http://aws.amazon.com/ec2.

https://www.windowsazure.com
https://www.kace.com
http://aws.amazon.com/ec2

A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices 249

Eucalyptus private clouds, CloudBees,6 OpenShift,7 dotCloud,8 Jelastic,9 Heroku,10

and Appfog.11 The first four cloud environments are IaaS platforms. In these cases,
a PaaS stack, that is composed of a Linux or Windows distribution, a Java virtual
machine (JVM), and FraSCAti, is deployed on top of these IaaS. The last six cloud
environments are PaaS platforms composed a Linux distribution, a JVM, and a Web
application container (e.g., Eclipse Jetty or Apache Tomcat). In these cases, soCloud
including FraSCAti is deployed as a WAR file on top of them. Then APISENSE is
deployed as a soCloud application, and is managed by soCloud autonomously.

3 The APISENSE Distributed Crowd-Sensing Environment

The main objective of APISENSE is to provide to scientists a crowd-sensing envi-
ronment, which is open, easily extensible and configurable in order to be reused in
various contexts. The APISENSE environment distinguishes between two roles. The
first role, called scientist, can be a researcherwhowants to define and deploy an exper-
iment over a large population of mobile users. The environment therefore provides a
set of services allowing her to describe experimental requirements in a scripting lan-
guage, deploying experiment scripts over a subset of participants and connect other
services to the environment in order to extract and reuse dataset collected in other
contexts (e.g., visualization, analysis, replay). The second role is played by mobile
phone users, identified as a participant. The APISENSE environment provides a
mobile application allowing to download experiments, execute them in a dedicated
sandbox and automatically upload the collected datasets on the APISENSE server.

Concerning the first role, scientist, we distinguish two tasks: (i) experiment design,
storage, and deployment, and (ii) data gathering. The first task consists in creating
the experiment script and making it available to participants. This task is performed
by the so-called experiment store. The second task consists in gathering data that is
sent by participants’ mobile phones. This is performed by the data gathering nodes.

The remainder of this section presents the experiment store (Sect. 3.1), the client-
side infrastructure that is used by participants (Sect. 3.2), and the data gathering
nodes (Sect. 3.3).

6http://www.cloudbees.com.
7https://openshift.redhat.com.
8https://www.dotcloud.com.
9http://jelastic.com.
10http://www.heroku.com.
11http://www.appfog.com.

http://www.cloudbees.com
https://openshift.redhat.com
https://www.dotcloud.com
http://jelastic.com
http://www.heroku.com
http://www.appfog.com

250 N. Haderer et al.

3.1 Experiment Store Infrastructure

Figure2 provides an overview of the APISENSE experiment store infrastructure.
This infrastructure is hosted on soCloud. The Scientist Frontend and Participant
Frontend components are the endpoints for the two categories of users involved
in the environment. Both components define all the services that can be remotely
invoked by scientists and participants.

Crowd-sensing Library. To reduce the learning curve, we decided to adopt stan-
dard scripting languages in order to ease the description of experiments by scientists.
We therefore propose the APISENSE crowd-sensing library as an extension of the
JavaScript, CoffeeScript, and Python languages, which provides an efficient mean
to describe an experiment without any specific knowledge of mobile device pro-
gramming technologies (e.g., Android SDK). The choice of these host languages
was mainly motivated by their native support for JSON (JavaScript Object Nota-
tion), which is a lightweight data-interchange format reducing the communication
overhead.

The APISENSE crowd-sensing library adopts a reactive programming model
based on the enlistment of handlers, which are triggered upon the occurrence of
specific events (cf. Sect. 4). In addition to that, the API of APISENSE defines a set
of sensing functions, which can be used to retrieve specific contextual data from
sensors. The library supports a wide range of features to build dataset from built-in
sensors proposed by smartphone technologies, such asGPS, compas, accelerometers,

Fig. 2 Architecture of the APISENSE experiment store infrastructure

A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices 251

bluetooth, phone call, application status (installed, running) in the context of
opportunistic crowd-sensing, but also to specify participatory sensing experiments
(e.g., surveys).

Privacy Filters. In addition to a crowd-sensing script, the scientist can configure
some privacy filters to limit the volume of collected data and enforce the privacy
of the participants. In particular, APISENSE currently supports two types of filters.
Area filter allows the scientist to specify a geographic area where the data requires to
be collected. For example, this area can be the place where the scientist is interested
in collecting a GSM signal (e.g., campus area). This filter guarantees the participants
that no data is collected and sent to the APISENSE server outside of this area. Period
filter allows the scientist to define a time period during which the experiment should
be active and collect data. For example, this period can be specified as the working
hours in order to automatically discard data collected during the night, while the
participant is expected to be at home.

By combining these filters, the scientist preserves the privacy of participants,
reduces the volume of collected data, and improves the energy efficiency of the
mobile application (cf. Sect. 5).

Deployment Model. Once an experiment is defined with the crowd-sensing library,
the scientist can publish it into the Experiment Store component in order to make
it available to participants. Once published, two deployment strategies can be con-
sidered for deploying experiments. The former, called the pull-based approach, is a
proactive deployment strategy where participants download the list of experiments
from the remote server. The latter, known as the push-based approach, propagates
the experiments list updates to the mobiles devices of participants. In the case of
APISENSE, the push-based strategywould induce a communication and energy over-
head and, in order to leave the choice to participants to select the experiments they are
interested in, we adopted the pull-based approach as a deployment strategy. There-
fore, when the mobile device of a participant connects to the Experiment Store, it
sends its characteristics (including hardware, current location, sensor available and
sensors that participants want to share) and receives the list of experiments that are
compatible with the profile of the participant. The scientists can therefore config-
ure the Experiment Store to limit the visibility of their experiments according the
characteristics of participants. In order to reduce the privacy risk, the device char-
acteristics sent by the participants are not stored by the infrastructure and scientists
cannot access to this information.

Additionally, the Experiment Store component is also used to update the behavior
of the experiment once deployed in the wild. When an opportunistic connection is
established between the mobile device and the APISENSE server, the version of the
experiment deployed in the mobile device is compared to the latest version published
in the server. The installed crowd-sensing experiment is automatically updated with
the latest version of the experiment without imposing participants to re-download
manually the experiment. In order to avoid any versioning problem, each dataset
uploaded automatically includes the version of the experiment used to build the

252 N. Haderer et al.

dataset. Thus, scientists can configure the Experiment Store component in order to
keep or discard datasets collected by older versions of the experiment.

3.2 Client-Side Infrastructure

Figure3 depicts theAPISENSE mobile application’s architecture. Building on the top
of Android SDK, this architecture is mainly composed of four main parts allowing (i)
to interpret experiment scripts (Facades, Scripting engine) (ii) to establish connection
with the remote server infrastructure (Network Manager), (iii) to control the privacy
parameters of the user (Privacy Manager), and (iv) to control power saving strategies
(Battery Manager).

Scripting Engine. The Scripting Engine is based on the JSR 223 specification, and
integrates the scripting languages that are supported by this specification. The Sensor
Facades bridge the Android SDK with the Scripting Engine. This Scripting Engine
covers three roles: A security role to prevent malicious calls of critical code for the
mobile device, an efficiency role by including a cache mechanism to limit system
calls and preserve the battery, and an accessibility role to leverage the development
of crowd-sensing experiments, as illustrated in Sect. 4.

Battery Manager. Although the latest generation of smartphones provides very
powerful computing capabilities, the major obstacle to enable continuous sensing
applications is related to their energy restrictions. This component monitors the
current battery level and suspends the Scripting Engine component when the battery
level goes below a specific threshold (20% by default) in order to stop all running
experiments. This threshold can be configured by the participant to decide the critical
level of battery she wants to preserve to keep using her smartphone.

Privacy Manager. In order to cope with the ethical issues related to crowd-sensing
activities, the APISENSE mobile application allows participants to adjust their

Fig. 3 Architecture of the APISENSE mobile application

A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices 253

Fig. 4 Participant privacy preferences

privacy preferences in order to constrain the conditions under which the experiments
can collect data. As depicted in Fig. 4, three categories of privacy rules are cur-
rently defined. Rules related to location and time specify geographical zone and time
interval conditions under which experiments are authorized to collect data, respec-
tively. All the privacy rules defined by the participant are interpreted by the Privacy
Manager component, which suspends the Scripting Engine component when one
of these rules is triggered. The last category of privacy rules refers to authorization
rules, which prevent sensors activation or access to raw sensor data if the partici-
pant does not want to share this information. Additionally, a built-in component uses
cryptography hashing to prevent experiments to collect sensitive raw data, such as
phone numbers, SMS text, or address book.

The APISENSE mobile application is based on the Android operating system for
the following reasons. First, the Android operating system is popular and largely
adopted by the population, unit sales for Android OS smartphones were ranked first
among all smartphone OS handsets sold worldwide in the third quarter of 2013
with a market share of 80% according to Gartner.12 Secondly, Android is an open
environment supporting all the requirements for continuous sensing applications
(e.g., multitasking, background processing and ability to develop an application with
continuous access to all the sensors). Yet, as a matter of future work, we can think
of porting the APISENSE mobile application on other systems, such as iOS 7 and
Windows Phone.

A participant willing to be involved in one or more crowd-sensing experiments
proposed by scientists can download the APISENSE mobile application by flash-
ing the QR code published on the APISENSE website,13 install it, and quickly

12http://www.gartner.com/newsroom/id/2623415.
13http://www.apisense.net.

http://www.gartner.com/newsroom/id/2623415
http://www.apisense.net

254 N. Haderer et al.

create an account on the remote server infrastructure. Once registered, the HTTP
communications between the mobile device of the participant and the remote server
infrastructure are authenticated and encrypted in order to reduce potential privacy
leaks. From there, the participant can connect to the Experiment Store, download
and execute one or several crowd-sensing experiments proposed by scientists. The
datasets that are collected by the experiments are sent to gathering nodes.

3.3 Data Gathering Nodes

When collected by participants’ mobile phones, data are sent to so-called data gath-
ering nodes. The data gathering nodes are the part of the server-side infrastructure
where mobile phones upload the pieces of data that are sensed. This is the second
task that is assigned to the scientist role. This task is decoupled from the first one that
consists in deploying experiment scripts. The rationale is that the experiment store
is an element which is rather central and well-known both by scientists to register
experiments and by participants to retrieve experiments. Although as for other online
stores, such as application stores, the experiment store can be replicated, we do not
expect to have a lot of different copies of public experiment stores. Note that this
may not be case, whenever organizations would want to set up private stores. How-
ever, the requirements are different when collecting data. It may be the case that, for
confidentiality reasons, for legal reasons, or for questions of data size, each scientist
may want to deploy her own gathering infrastructure to have some better guarantees
on the data that is being collected.

Figure5 presents the architecture of a data gathering node. Both scientists and
participants can access the service interface of a node. The main entry point is
for participants’ smartphone to upload sensed data. Yet a service interface is also
provided to scientists to enable managing the experiment and querying the dataset.

The uploading of data can be performed continuously, or delayed, for example
to enable scenarios where the sensing is performed while the phone is offline. In
addition, data can be sent as soon as they are produced, or in bulk mode, to optimize
network connectivity and/or to save power. In fact, the policy for uploading data is
fully under the control of the scientist. She can program in the experiment script any
policy she needs to put into practice.

As for the experiment store, the data gathering nodes are hosted on the soCloud
infrastructure.Webenefit from the elasticity property of soCloud to scale up anddown
the resources that are assigned to each gathering node. This is especially important
for experiments that generate large amounts of data.

A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices 255

Fig. 5 Architecture of a APISENSE data gathering node

4 Crowd-Sensing Experiments

This section reports on four experiments that have been deployed in the wild using
our platform. These examples demonstrate the variety of crowd-sensing experimen-
tations that are covered by the APISENSE infrastructure.

4.1 Revealing Users’ Identity from Mobility Traces

This first experiment aimed at identifying the potential privacy leaks related to the
sporadic disclosure of user’s locations. To support this experiment, we developed
an APISENSE script, which reports every hour the location of a participant, known
as Alice. Listing 1 describes the Python script we used to realize this experiment.
This script subscribes to the periodic scheduler provided by the time facade in
order to trigger the associated lambda function every hour. This function dumps a
timestamped longitude/latitude position of Alice, which is automatically forwarded
to the server.

256 N. Haderer et al.

Listing 1 Identifying GeoPrivacy Leaks (Python).

time.schedule ({’period ’: ’1h’},

lambda t: trace.add({ ’time’: t.timestamp ,

’lon’: gps.longitude(), ’lat’: gps.latitude () }))

While this periodic report can be considered as anonymous since no participant’s
identifier is included in the dataset, this study has shown that the identity of Alice can
be semi-automatically inferred from her mobility traces. To do so, we built a mobility
model from the dataset we collected in order to identify clusters of Alice’s locations
as her points of interest (POI). By analyzing the size of the clusters and their relative
timestamps, we can guess that the largest POI in the night relates to the house of
Alice. Invoking a geocoding service with the center of this POI provides us a postal
address, which can be used as an input to the yellow pages in order to retrieve a list of
candidate names. In parallel, we can identify the places associated to the other POIs
by using the Foursquare API, which provides a list of potential places where Alice is
used to go. From there, we evaluate the results of search queries made on Google by
combining candidate names and places, and we rank the names based on the number
of pertinent results obtained for each name. This heuristic has demonstrated that the
identity of a large population of participants can be easily revealed by sporadically
monitoring their locations [13].

4.2 Building WiFi/GSM Signal Open Data Maps

This second experiment illustrates the benefits of using APISENSE to automatically
build two open data maps from datasets collected in the wild. Listing 2 is a JavaScript
script, which is triggered whenever the location of a participant changes by a distance
of 10m in a period of 5min. When these conditions are met, the script builds a trace,
which contains the location of the participant, and attaches WiFi and GSM networks
characteristics.

Listing 2 Building an Open Data Map (JavaScript).

trace.setHeader(’gsm_operator ’, gsm.operator ());

location.onLocationChanged ({ period: ’5min’,

distance: ’10m’ }, function(loc) {

return trace.add({

time: loc.timestamp ,

lat: loc.latitude , lon: loc.longitude ,

wifi: { network_id: wifi.bssid(),

signal_strength: wifi.rssi() },

gsm: { cell_id: gsm.cellId(),

signal_strength: gsm.dbm() } });

});

From the dataset, collected by three participants over one week, we build an
QuadTree geospatial index to identify theminimum bounding rectangles that contain
at least a given number of signal measures. These rectangles are then automatically
colored based on the median signal value observed in this rectangle (cf. Fig. 6). This

A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices 257

Fig. 6 GSM open data map

map has been assessed by comparing it with a ground truth map locating the GSM
antennas and WiFi routers.14

4.3 Detecting Exceptions Raised by User Applications

The third experiment highlights thatAPISENSE does not impose to collect geolocated
dataset and can also be used to build a realistic dataset focusing on the exceptions
that are raised by the participants’ applications. To build such a dataset, Listing 3
describes a CoffeeScript script that uses the Android logging system (logCat) and
subscribes to error logs (‘*:E’). Whenever, the reported log refers to an exception,
the script builds a new trace that contains the details of the log and retrieves the name
of the application reporting this exception.

Listing 3 Catching Mobile Applications’ Exceptions (CoffeeScript).

logcat.onLog {filter: ’*:E’},

(log) -> if log.message contains ’Exception ’

trace.save

message: log.message ,

time: log.timestamp ,

application: apps.process(log.pid). applicationName ,

topTask: apps.topTask (). applicationName

Once deployed in the wild, the exceptions reported by the participants can be used
to build a taxonomy of exceptions raised by mobile applications. Figure7 depicts

14http://www.cartoradio.fr.

http://www.cartoradio.fr

258 N. Haderer et al.

Fig. 7 Type of exceptions
raised by mobile applications

the result of this experiment as a dataset collected by three participants over one
month. In particular, one can observe that a large majority of errors reported by the
participant’s applications are related to permission or database accesses, which can
usually be fixed by checking that the application is granted an access prior to any
invocation of a sensor or the database. This experiment is a preliminary step in order
to better identify bugs raised by applications once they are deployed in the wild as we
believe that the diversity of mobile devices and operating conditions makes difficult
the application of traditional in vitro testing techniques.

4.4 Experimenting Machine Learning Models

The fourth experiment does not only collect user-contributed datasets, but also deals
with the empirical validation of models on a population of participants. In this sce-
nario, the scientist wanted to assess the machine learning model she defined for
detecting the activity of the users: standing, walking, sitting, running, or jumping. To
assess this model, she deployed a script that integrates two phases: An exploration
phase and an exploitation one. To set up this experiment, we extended the scripting
library by integrating a popular machine learning tool [15] and adding a new facade
to use its features from scripts. The script (cf. Listing 4) therefore starts with an explo-
ration phase in order to learn a specific user model. During this phase, APISENSE
generates some dialogs to interact with the participant and ask her to repeat some
specific movements. The script automatically switches to the next movement when
the model has recorded enough raw data from the accelerometer to provide an

A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices 259

accurate estimation. Once the model is considered as complete, the script dynam-
ically replaces the timer handler to switch into the exploration phase. The dataset
collected by the server-side infrastructure of APISENSE contains the model statistics
observed for each participant contributing to the experiment.

Listing 4 Assessing Machine Learning Models (JavaScript).

var classes = ["walk","jog","stand", "sit", "up", "down"];

var current = 0; var buffer = new Array ();

var model = weka.newModel (["avrX","avrY" ,...], classes);

var filter = "|(dx >"+delta+")(dy>"+delta+")(dz >"+delta+")";

var input = accelerometer.onChange(filter ,

function(acc) { buffer.push(acc) });

var learn = time.schedule ({ period: ’5s’ }, function(t) {

if (model.learn(classes[current]) >= threshold) {

current ++;

}

if (current < classes.length) { // Learning phase

input.suspend ();

var output = dialog.display ({ message: "Select movement", spinner: classes });

model.record(attributes(buffer), output);

sleep(’2s’);

buffer = new Array ();

input.resume ();

} else { // Exploitation phase

dialog.display ({ message: "Learning phase completed"});

learn.cancel ();

model.setClassifier(weka.NAIVE_BAYES);

time.schedule ({ period: ’5s’ }, function(t) {

trace.add({

position: model.evaluate(attributes(buffer)),

stats: model.statistics () });

buffer = new Array ();

} } });

Table1 reports on the collected statistics of this experiment and shows that the
prediction model developed by the scientist matches quite accurately the targeted
classes.

Table 1 Representative confusion matrix

Predicted class Acc (%)

Walk Jog Stand Sit Up Down

Walk 66 0 4 0 0 0 94.3

Jog 0 21 0 0 0 0 100

Stand 4 0 40 0 0 0 90.9

Sit 0 0 2 83 0 0 97.6

Up stair 0 0 0 0 22 0 100

Down
stair

0 0 0 0 0 11 100

260 N. Haderer et al.

5 Empirical Validations

Evaluating the Programming Model. In this section, we compare the APISENSE
crowd-sensing library to two state-of-the-art approaches: AnonySense [24] and
Pogo [3]. We use the RogueFinder case study, which has been introduced by
AnonySense and recently evaluated by Pogo. RogueFinder is an application
that detects and reports WiFi access points. Listings 5 and 6 therefore report on
the implementation of this case study in AnonySense and Pogo, as decribed in
the literature, while Listing 7 describes the implementation of this case study in
APISENSE.

Listing 5 Implementing RogueFinder in AnonySense.

(Task 25043) (Expires 1196728453)

(Accept (= @carrier ’professor ’))

(Report (location SSIDs) (Every 1 Minute)

(In location

(Polygon (Point 1 1) (Point 2 2)

(Point 3 0))))

Listing 6 Implementing RogueFinder in Pogo (JavaScript).

function start () {

var polygon = [{x:1, y:1}, {x:2, y:2}, {x:3, y:0}];

var subscription = subscribe(’wifi -scan’, function(msg){

publish(msg , ’filtered -scans’);

}, { interval: 60 * 1000 });

subscription.release ();

subscribe(’location ’, function(msg) {

if (locationInPolygon(msg , polygon))

subscription.renew ();

else

subscription.release ();

});

}

Listing 7 Implementing RogueFinder in APISENSE (CoffeeScript).

time.schedule { period: ’1min’ },

(t) -> trace.add { location: wifi.bssid() }

One can observe that APISENSE provides a more concise notation to describe
crowd-sensing experiments than the state-of-the-art approaches. This concision is
partly due to the fact that APISENSE encourages the separation of concerns by
externalizing the management of time and space filters in the configuration of the
experiment.Adirect impact of this property is that the execution ofAPISENSE scripts
better preserves the battery of the mobile device compared to Pogo, as it does not
keep triggering the script when the user leaves the assigned polygon. Nonetheless,
this statement is only based on an observation of Pogo as the library is not made
freely available to confirm this empirically.

Evaluating the Energy Consumption. In this section, we compare the energy con-
sumption of APISENSE to a native Android application and another state-of-the-art
crowd-sensing solution: funf [1]. funf provides an Android toolkit to build custom

A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices 261

 4100

 4120

 4140

 4160

 4180

 4200

 0 200 400 600 800 1000 1200 1400

V
ol

ta
ge

 (
m

V
)

Time (s)

Android Native Application
Funf

APISENSE

Fig. 8 Energy consumptions of Android, APISENSE, and FUNF

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

B
at

te
ry

 le
ve

l (
%

)

Time (min)

APISENSE
APISENSE + GPS

APISENSE + Bluetooth
APISENSE + WiFi

Fig. 9 Impact of APISENSE on the battery lifespan

crowd-sensing applications “à la carte”. For each technology, we developed a sens-
ing application that collects the battery level every 10min. Figure8 reports on this
battery level, and consequently on the energy consumption of these applications. The
measured voltage reflects the battery level.

Compared to the baseline, which corresponds to the native Android application,
one can observe that the overhead induced by our solution is lower than the one
imposed by the funf toolkit. This efficiency can be explained by the various opti-
mizations included in our crowd-sensing library. Although more energyvorous than
a native application, our solution does not require advanced skills of the Android

262 N. Haderer et al.

development framework and covers the deployment and reporting phases on behalf
of the developer.

As the energy consumption strongly depends on (i) the nature of the experiment,
(ii) the types of sensors accessed, and (iii) the volume of produced data, we conducted
a second experiment in order to quantify the impact of sensors (see Fig. 9). For this
experiment, we developed three scripts, which we deployed separately. The first
script, labelled APISENSE + Bluetooth, triggers a Bluetooth scan every minute
and collects both the battery level as well as the resulting Bluetooth scan. The second
script,APISENSE+GPS, records everyminute the current location collected from
theGPS sensor,while the third script,APISENSE+WiFi, collects aWiFi scan every
minute. These experiments demonstrate that, even when stressing sensors, it is still
possible to collect data during a working day without charging the mobile phone
(40% of battery left after 10h of pulling the GPS sensor).

6 Related Work

A limited number of data collection tools are freely available on the market. Sys-
temSens [10], a system based on Android, focuses on collecting usage context (e.g.,
CPU, memory, network info, battery) of smartphones in order to better understand
the battery consumption of installed applications. Similarly, LiveLabs [23] is a tool
to measure wireless networks in the field with the principal objective to generate a
complete network coverage map in order to help client to select network interface or
network operators to identify blind spots in the network. However, all these tools are
closed solutions, designed for collecting specific datasets and cannot be reused in
unforeseen contexts in contrast toAPISENSE. Furthermore, these projects are typical
experiments deployed on mobile devices, without providing any privacy guarantee.

funf [1] is an Android toolkit focusing on the development of sensing applica-
tions. funf in a box is a service provided by funf to easily build a dedicated sensing
application from a web interface, while data is periodically published via the Drop-
box service. As demonstrated in Sect. 5, the current version of funf does not provide
any support for saving energy nor preserving user privacy. Furthermore, the current
solution does not support the dynamic re-deployment of experiments once deployed
in the wild.

More interestingly, MyExperience [11] is a system proposed for Windows
mobile smartphones, tackling the learning curve issue by providing a lightweight
configuration language based on XML in order to control the features of the appli-
cation without writing C# code. MyExperience collects data using a participatory
approach—i.e., by interacting with users when a specific event occurs (e.g., asking to
report on the quality of the conversation after a phone call ends). However,MyEx-
perience does not consider several critical issues, such as maintaining the privacy
of participants or the strategic deployment of experiments. Even if an experiment
can be modified in the wild, each experiment still requires a physical access to the

A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices 263

mobile device in order to be installed, thus making it difficult to be applied on a large
population of participants.

In the literature, several deployment strategies of crowd-sensing applications have
been studied. For example, AnonySense [24] uses—as APISENSE—a pull-based
approach where mobile nodes periodically download all sensing experiments avail-
able on the server. A crowd-sensing experiment is written in a domain-specific lan-
guage and defines when a mobile node should sense and under which conditions the
report should be submitted to the server. However, AnonySense does not provide
anymechanism to filter themobile nodes able to download sensing experiments, thus
introducing a communication overhead if the node does not match the experiment
requirements.

On the contrary, PRISM [8] and Pogo [3] adopt a push-based approach to deploy
sensing experiments over mobile nodes. PRISM is a mobile platform, running on
MicrosoftWindowsMobile 5.0, and supporting the execution of generic binary code
in a secure way to develop real-time participatory sensing applications. To support
real-time sensing, PRISM server needs to keep track of each mobile node and the
report they periodically send (e.g., current location, battery left) before selecting the
appropriatemobile phones to push application binaries.Pogo proposes amiddleware
for building crowd-sensing applications and using the XMPP protocol to disseminate
the datasets. Nonetheless, Pogo does not implement any client-side optimizations
to save the mobile device battery (e.g., area and period filters) as it systematically
forwards the collected data to the server.

SensorSafe [6] is another participatory platform, which allows users to share
data with privacy guaranties. As our platform, SensorSafe provides fine-grained
temporal and location access controlmechanisms to keep the control of data collected
by sensors onmobile phones. However, participants have to define their privacy rules
from a web interface while in APISENSE these rules are defined directly from the
mobile phone.

7 Conclusion

While it has been generally acknowledged as a keystone for the mobile computing
community, the development of crowd-sensing platforms remains a sensitive and crit-
ical task, which requires to take into account a variety of requirements covering both
technical and ethical issues. To address these challenges, we report in this chapter
on the design and the implementation of the APISENSE distributed platform. This
platform distinguishes between two roles: Scientists requiring a sustainable envi-
ronment to deploy sensing experiments and participants using their own mobile
device to contribute to scientific experiments. On the server-side, APISENSE is built
on the principles of Cloud computing and the soCloud distributed service-oriented
component-based PaaS, whichmanages portability, provisioning, elasticity, and high
availability of cloud applications across multiple clouds. Then APISENSE offers to
scientists a modular service-oriented architecture, which can be customized upon

264 N. Haderer et al.

their requirements. On the client-side, the APISENSE platform provides a mobile
application allowing to download experiments, executing them in a dedicated sand-
box and uploading datasets to the APISENSE server. Based on the principle of only
collect what you need, the APISENSE platform delivers an efficient yet flexible solu-
tion to ease the retrieval of realistic datasets.

Acknowledgments This work is partially funded by the ANR (French National Research Agency)
ARPEGE SocEDA project and the EU FP7 PaaSage project.

References

1. Aharony, N., Pan, W., Ip, C., Khayal, I., Pentland, A.: Social fMRI: investigating and shaping
social mechanisms in the real world. Pervasive Mob. Comput. 7(6), 643–659 (2011)

2. Biagioni, J., Gerlich, T., Merrifield, T., Eriksson, J.: EasyTracker: automatic transit track-
ing, mapping, and arrival time prediction using smartphones. In: 9th International Conference
on Embedded Networked Sensor Systems, pp. 68–81. ACM (2011). doi:10.1145/2070942.
2070950

3. Brouwers, N., Woehrle, M., Stern, R., Kalech, M., Feldman, A., Provan, G., Malazi, H.,
Zamanifar, K., Khalili, A., Dulman, S., et al.: Pogo, a middleware for mobile phone sens-
ing. In: 13th International Middleware Conference, pp. 106–113. Springer (2012)

4. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal component
model and its support in Java: experiences with auto-adaptive and reconfigurable systems.
Softw.: Pract. Exp. (SPE) 36(11–12), 1257–1284 (2006)

5. Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.:
Participatory sensing. In:Workshop onWorld-Sensor-Web (WSW’06): Mobile Device Centric
Sensor Networks and Applications, pp. 117–134 (2006)

6. Choi, H., Chakraborty, S., Greenblatt, M., Charbiwala, Z., Srivastava, M.: SensorSafe: man-
aging health-related sensory information with fine-grained privacy controls. Technical report,
TR-UCLA-NESL-201009-01 (2010)

7. Cuff, D., Hansen, M., Kang, J.: Urban sensing: out of the woods. Commun. ACM 51(3), 24–33
(2008)

8. Das, T., Mohan, P., Padmanabhan, V., Ramjee, R., Sharma, A.: Prism: platform for remote
sensing using smartphones. In: 8th International Conference onMobile Systems, Applications,
and Services, pp. 63–76. ACM (2010)

9. Erl, T.: SOA: Principles of Service Design, vol. 1. Prentice Hall, Upper Saddle River (2008)
10. Falaki, H., Mahajan, R., Estrin, D.: SystemSens: a tool for monitoring usage in smartphone

research deployments. In: 6th International Workshop on MobiArch, pp. 25–30. ACM (2011)
11. Froehlich, J., Chen, M., Consolvo, S., Harrison, B., Landay, J.: MyExperience: a system for in

situ tracing and capturing of user feedback on mobile phones. In: 5th International Conference
on Mobile Systems, Applications, and Services, pp. 57–70. ACM (2007)

12. Kephart, J.: An architectural blueprint for autonomic computing. IBM White paper (2006)
13. Killijian, M.O., Roy, M., Trédan, G.: Beyond Francisco cabs: building a *-lity mining dataset.

In: Workshop on the Analysis of Mobile Phone Networks (2010)
14. Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.: A survey of mobile

phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)
15. Liu, P., Chen, Y., Tang,W., Yue, Q.:MobileWEKA as data mining tool on android. Adv. Electr.

Eng. Autom. 139, 75–80 (2012)
16. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Technical report, National

Institute of Standards and Technology. http://www.nist.gov/itl/cloud/upload/cloud-def-v15.
pdf (2009)

http://dx.doi.org/10.1145/2070942.2070950
http://dx.doi.org/10.1145/2070942.2070950
http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf
http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf

A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices 265

17. Miluzzo, E., Lane,N., Lu,H., Campbell, A.: Research in theApp store era: experiences from the
CenceMe App deployment on the iPhone. In: 1st International Work. Research in the Large:
Using App Stores, Markets, and Other Wide Distribution Channels in UbiComp Research
(2010)

18. Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard, E., West,
R., Boda, P.: PEIR, the personal environmental impact report, as a platform for participatory
sensing systems research. In: 7th International Conference on Mobile Systems, Applications,
and Services, pp. 55–68. ACM (2009)

19. OASIS: Reference Model for Service Oriented Architecture 1.0. http://oasis-open.org/
committees/download.php/19679/soa-rm-cs.pdf (2006)

20. Paraiso, F., Haderer, N., Merle, P., Rouvoy, R., Seinturier, L.: A federated multi-cloud PaaS
infrastructure. In: 5th IEEE International Conference on Cloud Computing, pp. 392–399.
United States (2012). doi:10.1109/CLOUD.2012.79

21. Paraiso, F.,Merle, P., Seinturier, L.:Managing elasticity acrossmultiple cloud providers. In: 1st
International Workshop on Multi-Cloud Applications and Federated Clouds. Prague, Czech,
Republic (2013). http://hal.inria.fr/hal-00790455

22. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A component-
based middleware platform for reconfigurable service-oriented architectures. Softw.: Pract.
Exp. (SPE) 42(5), 559–583 (2012)

23. Shepard, C., Rahmati, A., Tossell, C., Zhong, L., Kortum, P.: LiveLab: measuring wireless
networks and smartphone users in the field. ACM SIGMETRICS Perform. Eval. Rev. 38(3),
15–20 (2011)

24. Shin, M., Cornelius, C., Peebles, D., Kapadia, A., Kotz, D., Triandopoulos, N.: AnonySense:
a system for anonymous opportunistic sensing. Pervasive Mob. Comput. 7(1), 16–30 (2011)

25. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. ACM Press and
Addison-Wesley, New York (1998)

http://oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://dx.doi.org/10.1109/CLOUD.2012.79
http://hal.inria.fr/hal-00790455

Index

A
Adaptive systems, 91
Agent, 177, 202
Agent-based analytic framework, 75
Agile software development, 4, 8, 22
Alternating Variable Method, 120, 121
Amazons mechanical turk, 194, 198, 205
Android, 187, 219, 221, 225, 226, 252, 253,

260–262
APISENSE, 250
APISENSE crowd-sensing library, 250
APISENSE mobile application, 253
Apple App Store, 3
AppStori, 181
Artifact-centric incentives, 94–96
Artifact lifecycle model, 95, 100–102, 109
Autonomous service, 86
AutoService, 73, 75, 85–88
AutoService platform, 73, 85, 87
Awarding mechanism, 159, 160

B
Bipartite graph, 157, 160
Bitbucket, 53
Bug finding, 165

C
Case study, 260
Cellphones, 244
Cloud computing, 207, 214, 244, 263
Co-innovation, 5, 10, 11, 22
Collaboration mechanism, 131, 134, 186
Collaborative filtering, 220, 221, 233, 239
Collaborative Majority Vote, 133, 135

Collective intelligence, 5, 6, 47, 54, 61, 143,
156, 159, 213

Competition, 187, 206
Competitive Software Development, 10, 11,

22
Computational coordination, 54
Computational infrastructure, 206
Computer science, 108, 130
Computing resources, 244
Contest theory, 20, 145, 150–152, 158
Contributor

help contributor, 36, see also Peripheral
contributors

regular contributor, 30, 34
Coordination, 167
Cost-effective creation, 40
Crowd collaboration, 165, 172, 173, 181,

188
Crowd-sensing, 244, 249–253, 255, 260,

261, 263
Crowd testing, 222
Crowd wisdom, 166–169, 178, 180, 186
Crowd worker, 194
Crowd workforce, 7, see also Global work-

force
on-demand scalable workforce, 5

Crowdsourced labour, 40, see also Crowd
labour

Crowdsourcing organization, 20, 85, 88

D
Deployment, 171, 191, 247, 248, 251, 263
Desire lines, 53, 68
Development creativity and talents, 166
Development lifecycle, 191, 192
Development paradigm, 22, 168

© Springer-Verlag Berlin Heidelberg 2015
W. Li et al. (eds.), Crowdsourcing, Progress in IS,
DOI 10.1007/978-3-662-47011-4

267

268 Index

Distributed software crowd sourcing, 9, 13,
144

E
Empirical studies, 185
Engineering processes, 165
Evidence sharing, 172, 175
Evolutionary algorithm, 120

F
Fitness function, 113, 116, 120, 123, 125,

128
Five-stage volunteering process, 29
Fundamental principle, 4, 10, 22, 144

G
Game theoretical model, 143
Game theory, 19
Genetic algorithms, 113, 120, 121
GitHub, 166, 168, 185, 187
Global labor force, 9
Governance of software crowdsourcing, 149
Guiding principle, 26, 28, 37

H
Human-based service, 105, 109
Human participation, 95
Hybrid development ecosystem, 165

I
Incentive, 46, 54, 65, 92, 93, 95, 97, 99, 100,

102, 104, 109, 201, 207, 213, 214,
221, 239, 240

Incentive mechanism
artifact-interdependent incentive mecha-
nisms, 98, 101

personal incentive mechanisms, 95, 102
state-dependent incentive mechanisms,
98

temporal incentive mechanisms, 98, 100
Incentive mechanism model, 94, 99
Incentive packages, 103
Integration environment, 11
Interaction and collaboration mechanisms,

134, 186
iTest, 221, 225, 239, 240
iTestClient

iTestServer, 226

L
Labor market, 8, 9, 17, see also Online labor

market
crowdsourcing labor market, 8, 9, 17

Large-scale software, 4, 5, 9, 17, 22, 122
Learning development practices, 67
Life cycle model, 168
Linear temporal logic, 100

M
Majority vote, 44
Manual labor, 17
Manufacturing activities, 166
Micro-tasks, 132, 133, 141
Min-Max Quality Assurance, 149
Mobile crowdsourcing, 225, 240
Multi-agent system, 45, 75, 79, 88
Multi-cloud infrastructure, 245

N
NASA, 7, 145
NASA Zero Robotics, 159
Nash equilibrium, 19
Non-negative CP decomposition, 230, 232
Non-negative tensor factorization, 219, 228

O
Odesk, 40, 41, 53, 59
Offense-defense, 5, 15, 22
On-demand scalable workforce, 5, 22
Open collaboration, 28, 36
Open communication, 27, 28, 36, 37
Open source community, 144, 148
Open source community management, 26
Open source project, 10, 25–28, 37, 184, 185
Open source software development, 25, 29,

45
Open source volunteering, 26, 28, 30
Optimization problems, 20, 113, 114, 119
Outsourcing, 47, 180, 181

P
Participation, 36, 95, 171, 187, 192, 195,

211, 221, 239
Peer-production, 4, 10, 11
Project budget, 124
Project hosting sites, 185
Project leader, 14, 26, 30, 36, 37
Protocols, 53, 58, 59, 63, 67, 194, 204, 220,

246
Prototype, 73, 86, 108, 172

Index 269

Q
QoS, 105
QoS-aware Web service recommendation,

219, 226, 240
temporal QoS-aware web service recom-
mendation framework, 220

Quality and productivity, 114, 115, 122, 129
Quality control, 132, 136, 139

R
Ranking, repuation and reward system, 129
Real-time collaborative extension, 136
Recommendation, 105, 219–221, 226–228,

232, 240
Reputation metric, 43, 44
Reputation transfer, 44, 109
Requirement elicitation, 166, 167, 184
Resource sharing, 165, 168, 172, 173, 175,

176, 181, 182, 184, 185, 188, 214
Runtime monitoring, 101, 165, 172, 173,

176, 177

S
SaaS (Software-as-a-Service), 20, 245–247
Scalable process, 40
Search algorithms, 113, 120, 125, 126
Search-based software engineering, 20, 114,

123
Self-organization, 45, 85
Self-organizing, 28
Sensing experiments, 251, 263
Service-oriented computing, 3
Simulated users, 219
Smartphone, 4, 250, 252–254, 262
Social Cloud, 192, 207, 215
Social Compute Cloud, 193, 202, 203, 214
Social Compute Unit, 91
Social Content Delivery Network, 193, 199
Social machine, 53–57, 59, 66, 69
Social marketplace, 194, 209
Social network analysis, 201, 204, 215
Social networking, 54, 214
Social software, 53, 55, 56, 58, 65, 68
Social Storage Cloud, 193, 196, 198–200
Socio-technical ecosystem, 145
SoCloud, 243–248, 254, 263
Software creation, 167, 173, 178, 182
Software crowdsourcing, 40, 45, 55, 74–79,

84, 86–88, 165, 180, 181, 187, 193
Software crowdsourcing process, 5, 9, 20,

22, 75, 78, 88
Software developer, 10, 41, 105, 174

Software development, 4, 5, 7–10, 16, 19, 20,
22, 28, 165, 166, 168, 172, 173, 178–
180, 184–187, 192, 194, 209, 213,
215, 220

Software ecosystems, 21, 144
Software engineering, 4, 9, 73, 76, 114, 167,

185, 187
Software infrastructure, 53
Software marketplace, 11
Software quality, 15, 185
Software requirement, 4
Software trustworthiness rating model, 179
Solution bidding, 13
Sustainable ecosystems, vi
Synchronous collaboration, 131, 133, 134,

139

T
Task allocation problem, 46
Task matching, 18, 46
Task orchestration, 92
Task solicitation, 13
Team building,40, see also Team formation
Team selection, 39, 45
Team work, 39, 45
Temporal incentive mechanisms, 100
Tensor

temporal tensor, 229
Testing, 21, 61, 67, 78, 114, 120, 170, 181,

221–226, 232, 237, 239, 258
Theoretical framework, 181
TopCoder, 7, 12, 13, 16, 54, 119, 192, 213
Traditional employment, 39
Traditional software development, 64, 75,

114, 166, 192
Trust and reputation, 39, 43–45
TRUSTIE, 165, 168, 179–184, 188
Trustworthiness analysis, 165, 168, 172,

173, 178, 188
Trustworthy Software Development and

Evolution, 172
Trustworthy Software Model, 168

U
User-contributed cloud fabric, 191
Ushahidi, 54
UTest, 88, 124, 213

V
Virtual machine, 192, 202, 214
Virtual organization, 75, 84, 194

270 Index

Virtual team, 20, 114–116, 118, 119, 129
Volunteer computing, 206, 213
Volunteering, 28, 37, 239

W
Web services, 219–222, 225, 227, 232, 239,

240

Wikipedia, 20, 54, 56, 166, 221
Workforce motivation, 3
WS-TaaS, 222–224, 232

Z
Zooniverse project, 64

	Foreword
	Contents
	Overview
	Part ISoftware Crowdsourcing Conceptsand Design Issues
	Crowdsourcing for Large-Scale Software Development
	1 Introduction
	2 Overview of Crowdsourcing Based Software Development
	2.1 What's Software Crowdsourcing?
	2.2 Comparison Between Software Crowdsourcing and Other Software Development Methods

	3 Principles of Software Crowdsourcing for Software Ecosystem
	3.1 Co-Innovation and Peer-Production
	3.2 Competitive Software Development
	3.3 Offense-Defense Based Quality Assurance

	4 Software Crowdsourcing Architecture and Models
	4.1 Software Crowdsourcing Architecture
	4.2 Software Crowdsourcing Models

	5 Maturity Model for Software Crowdsourcing
	6 Conclusion
	References

	The Five Stages of Open Source Volunteering
	1 Introduction
	2 Guiding Principles of Open Source Projects
	2.1 Recruiting is Investment
	2.2 Open Communication
	2.3 Open Collaboration

	3 The Five-Stage Volunteering Process
	4 Best Practices and Supporting Tools
	4.1 Stage 1: Connecting
	4.2 Stage 2: Understanding
	4.3 Stage 3: Engaging
	4.4 Stage 4: Performing
	4.5 Stage 5: Leading

	5 Conclusion
	References

	Worker-Centric Design for Software Crowdsourcing: Towards Cloud Careers
	1 Introduction
	2 Themes of Interest
	2.1 Trust and Reputation as Prerequisite for ``Cloud Careers''
	2.2 Team Selection
	2.3 Contextualisation

	3 Discussion
	References

	Part IISoftware Crowdsourcing Modelsand Architectures
	Bootstrapping the Next Generation of Social Machines
	1 Introduction
	2 Social Software Versus Machine Software
	3 Social Machines for Social Software Development
	4 Illustrative Scenarios
	4.1 Learning Development Practices
	4.2 Mechanisms for Carrying Out Crowdwork

	5 Discussion
	6 Conclusion
	References

	Multi-Agent System Approach for Modeling and Supporting Software Crowdsourcing
	1 Introduction
	2 Characteristics and Challenges of Software Crowdsourcing
	3 Multi-Agent System Models of Software Crowdsourcing
	3.1 Multi-Agent System Analysis Framework for Software Crowdsourcing
	3.2 Multi-Agent System Models of Software Crowdsourcing

	4 MAS Approach for Supporting Software Crowdsourcing
	4.1 Software Crowdsourcing based on Multi-Agent Technology
	4.2 AutoService Supporting Platform and Case Study

	5 Conclusion
	References

	Supporting Multilevel Incentive Mechanisms in Crowdsourcing Systems: An Artifact-Centric View
	1 Introduction
	1.1 Motivation
	1.2 Contributions and Article Structure

	2 Artifact-Centric Incentives
	2.1 Applying Artifact-Centric Incentives in Crowdsourcing Environments
	2.2 Discussion

	3 Requirement Analysis
	3.1 Requirements for Artifact's Incentive Model
	3.2 Requirements for Sustainable Crowdsourcing Careers
	3.3 Requirements Summary

	4 Related Work
	4.1 Artifact-Centric Business Process Modeling
	4.2 Incentives and Rewarding

	5 Conclusion
	References

	An Evolutionary and Automated Virtual Team Making Approach for Crowdsourcing Platforms
	1 Introduction
	2 Overview
	3 Conceptual Model
	4 Search-Based Crowdsourcing Methodologies
	4.1 Description on Selected Search Algorithms
	4.2 Problem Representation and Fitness Function
	4.3 Empirical Evaluation

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Collaborative Majority Vote: Improving Result Quality in Crowdsourcing Marketplaces
	1 Introduction
	2 Related Work
	3 Conceptual Model
	3.1 Assumptions
	3.2 Collaborative Majority Vote
	3.3 Deterministic Tasks
	3.4 Non-deterministic Tasks

	4 Discussion
	5 Conclusion and Further Work
	References

	Towards a Game Theoretical Model for Software Crowdsourcing Processes
	1 Introduction
	2 Crowdsourcing for Software Ecosystem
	2.1 Socio-Technical Ecosystem
	2.2 Software Crowdsourcing Process Model

	3 Peer Productions and Contest Theory Model
	3.1 Contest Theory Model for Competitive Peer Production
	3.2 TopCoder Participation and Prize

	4 Case Study
	5 Conclusion
	References

	Part IIISoftware Crowdsourcing Systems
	TRUSTIE: A Software Development Platform for Crowdsourcing
	1 Introduction
	1.1 Lessons from Open-Source Software Development
	1.2 Crowd Wisdom
	1.3 Ecosystem Incorporates Engineering and Crowd Wisdom

	2 Trustworthy Software Model (TSM)
	2.1 Life Cycle Model
	2.2 Trustworthy Evidence Model
	2.3 Software Evolution Model

	3 Trustworthy Software Development and Evolution Service Model
	3.1 Crowd Collaboration Service
	3.2 Resource Sharing Service
	3.3 Runtime Monitoring Service
	3.4 Trustworthiness Analysis Service

	4 TRUSTIE: Software Production and Evaluation with Crowdsourcing
	4.1 Software Crowdsourcing Model and Process in TRUSTIE
	4.2 Trustworthy Software Collaborative Development Service
	4.3 Trustworthy Software Resource Sharing Service

	5 Related Work
	6 Conclusion
	References

	Social Clouds: Crowdsourcing Cloud Infrastructure
	1 Introduction
	2 Social Clouds
	2.1 Motivation and Overview
	2.2 Crowdsourcing Calls
	2.3 Social Storage Cloud
	2.4 Social Content Delivery Network
	2.5 Social Compute Cloud

	3 Quality Management, Trust, and Agreements
	4 A Social Cloud for Software Crowdsourcing
	4.1 General Social Cloud Architecture
	4.2 Crowdsourcing Infrastructure for Software Crowdsourcing
	4.3 Establishing Trust and Competency via Social Networks

	5 Related Work
	6 Conclusion
	References

	Recommending Web Services Using Crowdsourced Testing Data
	1 Introduction
	2 QoS Data Collection with Crowdsourced Testing
	2.1 Real Web Service Crawling
	2.2 Simulated Crowd Testing with Cloud
	2.3 iTest: Testing Web Services with Mobile Crowdsourcing

	3 Temproal QoS-Aware Web Service Recommendation with Crowdsourced Testing Data
	3.1 Problem Formulation
	3.2 Construct QoS Value Tensor
	3.3 Non-negative CP Decomposition

	4 Experiments
	4.1 Dataset from Simulated Crowdsourced Testing
	4.2 Evaluation Measurements
	4.3 Baseline Algorithms
	4.4 Impact of Dataset Sparseness
	4.5 Impact of Dimensionality

	5 Discussion
	6 Conclusions
	References

	A Cloud-Based Infrastructure for Crowdsourcing Data from Mobile Devices
	1 Introduction
	2 soCloud Overview
	2.1 Service Component Architecture
	2.2 Main Features of soCloud
	2.3 soCloud Applications
	2.4 Integration with Existing IaaS/PaaS

	3 The APISENSE Distributed Crowd-Sensing Environment
	3.1 Experiment Store Infrastructure
	3.2 Client-Side Infrastructure
	3.3 Data Gathering Nodes

	4 Crowd-Sensing Experiments
	4.1 Revealing Users' Identity from Mobility Traces
	4.2 Building WiFi/GSM Signal Open Data Maps
	4.3 Detecting Exceptions Raised by User Applications
	4.4 Experimenting Machine Learning Models

	5 Empirical Validations
	6 Related Work
	7 Conclusion
	References

	Index

