
Theoretical and Experimental Analysis of WiFi
Location Fingerprint Sampling Period

Qin Wu, Hao Lin, and Jiuzhen Liang(B)

Department of Computer Science, Jiangnan University,
Jiangsu, Wuxi 214122, China
jzliang@jiangnan.edu.cn

Abstract. Indoor positioning with smartphones is of great importance
for a lot of applications and has attracted many researchers’ interests
these years. Received Signal Strength (RSS) fingerprinting has been con-
sidered as an efficient method for indoor positioning. Numerous systems
have been developed based on it. Location fingerprint sampling is the first
step of the RSS fingerprinting method. Slow sampling speed will delay
the positioning speed and will reduce the accuracy if the tracking object
is moving. Theoretically, the sampling period is about one fingerprint per
second. However, our experiments on some Android phones/pads show
that it may even take more than 10 s to sample a fingerprint occasionally.
By analyzing the Android WiFi scanning framework, it is easy to find
which part of the fingerprint sampling process costs more time. After
theoretically analysis and experimental measurement, we provide some
suggestions on how to improve sampling speed on some practical WiFi
positioning system architectures. To contribute to the research commu-
nity of WiFi positioning, we make all our measurement codes and our
data sets available as open source.

Keywords: Indoor positioning · WiFi · Location fingerprint · Sampling
period · Android

1 Introduction

Indoor positioning with smartphones is critical for many applications. In many
environment (e.g. airport terminals, conferences, shopping malls), indoor posi-
tioning of mobile phones helps users to realize indoor navigation or find friends.
Hospitals can use it to take care of patients. Businesses need it to analyze cus-
tomers’ group behaviour [1].

There are many methods for indoor positioning. And these methods can
be roughly classified into three categories: ranging based TOA/TDOA (Time
of Arrival/Time Differential of Arrival) [2], Radio Frequency (RF) Fingerprint-
ing [3,4], and Inertial Sensor based dead-reckoning [5]. WiFi Received Signal
Strength (RSS) Fingerprinting belongs to RF Fingerprinting. It is one of the most
outstanding indoor positioning methods. It depends on the WiFi RSS of smart-
phones. Current work on WiFi RSS Fingerprinting mainly focuses on design
c© Springer-Verlag Berlin Heidelberg 2015
L. Sun et al. (Eds.): CWSN 2014, CCIS 501, pp. 187–197, 2015.
DOI: 10.1007/978-3-662-46981-1 18



188 Q. Wu et al.

and implementation of WiFi based positioning systems [4,6], cutting down the
workload of WiFi site surveys [7], and improving the robustness of indoor posi-
tioning [8,9].

The procedure of RSS Fingerprinting can be divided into two stages: offline
stage and online stage. During the offline stage, a site survey is performed in
the location area. The collected location coordinates/labels and their correlation
RSS from nearby Access Points (APs) are saved into a database (also called
Radiomap). During the online stage, a location positioning technique uses the
currently observed RSS and previously collected information to calculate the
estimated location.

The fingerprint sampling is the first step for both offline stage and online
stage. It is often overlooked by many researchers. In this paper, the WiFi RSS
Fingerprint sampling speed procedure is analyzed theoretically based on IEEE
802.11 scanning scheme. And we did many experiments to measure the sampling
speed with different android phones/pads. Based on the theoretically analysis
and experimental measurements, fingerprint sampling selection strategies are
proposed for different indoor positioning system architectures. In order to con-
tribute to the WiFi positioning research community, we make all our data and
codes available as open source.

The rest of the paper is organized as follows. Section 2 introduces the IEEE
802.11 channel scanning mechanism, which is the theoretical foundation of WiFi
fingerprint sampling. In Sect. 3, Android WiFi scanning framework is introduced
and some experimental observations are presented. Some WiFi fingerprint sam-
pling strategies on different WiFi positioning system architectures are proposed
in Sect. 4. And conclusions are made in Sect. 5.

2 IEEE 802.11 Channel Scanning

Two scanning methods are defined in the IEEE 802.11 [10]: passive scanning and
active scanning, which are depend on the ScanType parameter of the MLME-
SCAN.request primitive. In the following, we discuss these two methods in details
and calculate the sampling period via theoretical analysis.

2.1 Passive Scanning

In the passive scanning (as shown in Fig. 1(a)), the Station(STA) switches to
a candidate channel and waits for a periodical Beacon from any AP on that
channel to announce its presence. Since the time span of beacons generated by
different AP is independent, the STA must therefore wait for a full period on
each channel. Thus,

tpassive = Nchannel · Tbeacon (1)

where tpassive is the total time for a round of passive scanning, Nchannel is the
number of channels used by the passive scanning, Nchannel is less than or equal to
the total number of channels used in a country. For example, there are 13 channels
available for usage in the 802.11 2.4 GHz WiFi frequency range in China.



Theoretical and Experimental Analysis of WiFi Location 189

With all the 13 channels to be scanned and a beacon period of 102.4 ms, it will
take roughly 1.33 s (we do not consider the channel switch time at this moment)
for a sampling period. The passive scanning scheme assumes that the target is
at a fixed location during the sampling period. However, in real application, the
target is usually moving. Suppose a person walks at a speed 2 m/s and starts from
the origin, then the distance that person walked is 2m/s× 1.33 s = 2.66m after
one sampling period. One may find that the sampling result is actually a blur line
in the interval [0m, 2.66m] of the walking distance. We call it motion blur. On
the other hand, if fingerprints from several sampling periods are collected and
their average is used to determine the location of an AP, then slow fingerprint
sampling speed will influence the result badly.

2.2 Active Scanning

In the active scanning (Fig. 1(b)), the STA will do the following procedure, when
it receives a MLME-SCAN.request primitive whose ScanType parameter is set
as ACTIVE.

1. Wait until the ProbeDelay time has expired or a PHYRxStart.indication prim-
itive has been received.

2. Contenting the media to send out the ProbeRequest frame.
3. Starting a ProbeTimer.
4. If the STA didn’t receive any frame before the ProbeTimer reaches MinChan-

nelTime, then the STA scans the next channel. Otherwise, the STA has to
wait until the ProbeTimer reaches MaxChannelTime, then scans the next
channel.

To determine the active scanning period, there are five parameters: ProbeDelay,
media contention time, MinChannelTime, MaxChannelTime, and channel switch-
ing time. The default value of ProbeDelay is negligible (<1 ms) [11,12]. And on
lightly loaded networks, the value of media contention time is also negligibly small.
The settings of MinChannelTime and MaxChannelTime have attracted many
research’s attentions [13,14]. The MinChannelTime is recommended to be set as
6–7 ms, and MaxChannelTime is recommended to be set as 10–15 ms by [13].
The last parameter, channel switching time, is dependent of 802.11 cards.

Fig. 1. Two types of scanning



190 Q. Wu et al.

For example, it is around 2.9 ms for cards with Intel chipsets, 4.8 ms for cards with
Atheros chipsets [15] and 19 ms for cards with Intersil Prism2 chipsets [11]. Thus,
the idealized bound of active scanning is calculated as

Nchannel · Tmin ≤ tactive ≤ Nchannel · Tmax (2)

where Nchannel is the number of channels used to do active scanning, Tmin is
MinChannelTime, Tmax is MaxChannelTime, tactive is the sampling period for
active scanning. If taking the hardware dependent channel switching time into
account, we should plus (Nchannel − 1) · Tswitch, where Tswitch is the channel
switching time. Since the smallest channel switching time of the above three
chipsets is 2.9 ms, MinChannelTime is 6 ms and there are 13 channels, then the
total time of active scanning for each round is 13 × 6 + 12 × 2.9 = 112.8 ms. If
the MaxChannelTime is set to be 15 ms and the Intersil Prisms chipsets (whose
channel switching time is 19 ms) is used, then the upper bound of the active
scanning is 13 × 15 + 12 × 19 = 423 ms.

A measurement conducted by [11] shows that, active scanning fired by Inter-
sil Prism2-based 802.11b NICs (Network Interface Cards) takes around 350 to
400 ms (based on a firmware initiated scan), and Atheros 5212-based NICs takes
roughly 500 ms (via a Windows XP driver-controlled scan).

3 WiFi Scanning on Android

3.1 Scanning Speed Measurements on Android

Last section shows the theoretically analysis of WiFi scanning and some measure-
ment results on computers. But there is little work discussing the experimental
measurement results based on popular Android phones/pads. So we conducted
WiFi scanning experiments on 8 different android phones/pads. Figure 2 shows
the phones/pads used in the experiments. The models and corresponding android
OS (Operating System) versions of the phones/pads (marked as ‘A’ - ‘H’ in Fig. 2)
are listed in Table 1.

Fig. 2. Android WiFi scanning experiment environment



Theoretical and Experimental Analysis of WiFi Location 191

Table 1. Phone/Pads’ models and OS versions

Phone Model Android version

A SAMSUNG GT-P6800 4.0.4

B HUAWEI C8650+ 2.3.6

C HUAWEI C8812 4.0.3

D HTC ONE X 4.0.4

E SAMSUNG GT-N7108 4.1.1

F COOLPAD 5860 2.3.5

G MEIZU M9 2.3.5

H GOOGLE NEXUS 7 4.2.1

The easiest and most stable way to let the Android phones/pads to do scanning
is using Android SDK API. Firstly, the WifiManager.startScan() is called to fire
a SCAN event, and the BroadcastReceiver.onReceive() is overridden to receive the
SCAN RESULTS AVAILABLE EVENT. When the SCAN RESULTS AVAIL-
ABLE EVENT is received, it means a round of scanning is done (this also means
that we have sampled one fingerprint). Then the scan result is saved in a file. Right
after it, another WifiManager.startScan() is fired and the procedure is repeated.
The procedure is shown in Fig. 3.

Fig. 3. SDK API scan procedure

We set AP generating beacons at channel 6, and used the 8 phones/pads to
run the scan procedure about five minutes. Then we calculated the fingerprint
sampling period by the difference the staring time of two successive WifiMan-
ager.startScan(). The results, which are shown in Fig. 4, are amazing. From Fig. 4,
one may find that Phone A, C, F, G took over 10 s to sample a fingerprint occasion-
ally. For Phone F, we sampled 103 times, and there were 12 times that the sampling
period of Phone F was greater than 10 s, so the percentage of sampling period over
10 s is 12/103×100% = 11.7%. We also find that phone G is interesting, its finger-
print sampling time alternates between 0 s and 0.6 s. We guess it is because that,
when the phone calls WifiManager.startScan(), the under layer started scan and
immediately returned a SCAN RESULTS AVAILABLE EVENT, which should
not occur logically. And after hardware finished the scan, it reportd another



192 Q. Wu et al.

SCAN RESULTS AVAILABLE EVENT, which eventually caused the SCAN
RESULTS AVAILABLE EVENT to be reported twice. Phone B also comes to
our attention as it used less than 0 s to sampling a fingerprint, we guess it was
caused by the background scanning and message queue mechanism. The scanning
time on Phone E and Phone H is stable, but 1.59 s and 0.87 s is a little larger than
the sampling period by theoretical analysis, which is around 400 ms to 500 ms (we
also used a PC to monitor the phones/pads’ Probe Request frames to confirm their
active scanning periods in another separate experiment).

Is the difference caused by the Android OS? Can we go over the WiFi scan-
ning framework on the android platform to improve the scanning speed? Is the
program still stable in that case? In the next subsection, we dig into details of the
Android based WiFi scanning framework, and find the keys to these questions.

Fig. 4. Scan time by using SDK API

3.2 WiFi Scanning Workflow on Android Platform

The Android WiFi Scanning Framework can be divided into the following parts:
SDK API, Android Framework, JNI Layer, HAL Layer, wpa supplicant and
network device driver. Figure 5 shows the more detailed partitions graphically.
WifiMonitor.MonitorThread.run, eloop run and inter layer socket communica-
tion represent time delays. In order to calculate these time delays, the most effi-
cient way is to record the time right before and right after them. As presented in
previous section, we already recorded SDK API time, here we also recorded
the scan starting time at wpa supplicant ctrl iface process(), where a branch
matches the “SCAN” event, we recorded the time in if (os strcmp(buf, “SCAN”)
== 0){...}. And we also record the receive time below the case NL80211 CMD
NEW SCAN RESULTS: ... in do process drv event() method.



Theoretical and Experimental Analysis of WiFi Location 193

Fig. 5. Android WiFi scanning architecture

We conducted this experiment on Phone H, and the results are shown in
Fig. 6. In the upper right corner of Fig. 6, one may find that the time used by all
layers above the wpa supplicant server is about 25 ms. We also calculated the
average fingerprint sampling time, which is 841.7 ms.

Our experimental results show that it is hard to make the android OS scan
faster even use the bottom layer. All the previous discussion is based on the gen-
eral application scenarios, that is, STA samples the fingerprint and all channels
have to be scanned. However, in some special scenarios, we can change WiFi
location system frameworks and fingerprint sampling strategies to improve the
sampling speed. We discuss fingerprint sampling strategies at different system
frameworks in next section.



194 Q. Wu et al.

Fig. 6. Wpa supplicant sampling speed

4 Fingerprint Sampling Strategies on Different
System Architecture

Based on where the fingerprint location is calculated, positioning systems can
be divided into four different system topologies according to [16] and [17]. The
first one is the remote positioning system. Its signal transmitter is mobile (in our
case, it can be looked as STA) and several fixed measuring units (they can be
looked as APs in our case) receive the signal emitted by the transmitter. All the
measurements are collected and used to compute the location of the transmit-
ter at a central station. The second one is self-positioning. The measuring unit
receives signals from several geographically distributed transmitters, and deter-
mine its position based on these measurements. The third one is indirect remote
positioning, where the self-positioning measuring unit sends the position mea-
sument to a remote side via a data link. Conversely, if the position measument
is transmitted from a remote positioning system to a mobile unit using a data
link, it is called indirect self-positioning, which is the fourth system topology. All
these four topologies are shown in Fig. 7.

Based on whether we have full control on APs, we add two classification cri-
teria: AP channel setting permission and AP fingerprint sampling permission.
AP channel setting permission is that we have the right to set the APs in the
location service area work at specific channels. If APs can report the RSS sam-
pling from STA (AP can measure the RSS of STA’s ProbeRequst frame) and
we have the right to collect these information to the Master Station, then we
say that we have the AP fingerprint sampling permission. Actually, the remote
positioning system and indirect self-positioning system implicitly need the AP
fingerprint sampling permission. Generally, We should not assume that we have



Theoretical and Experimental Analysis of WiFi Location 195

Fig. 7. Four different location system topologies

any permission to APs and we have to conduct the scanning procedure on every
channel one after another.

If we have the permission to set the AP working channel, then we can set all
APs in less than the max number of available channels defined by each country.
For example, we can just use 3 non-overlap (actually they may still be a little
overlap) channels: 1, 6, 11, to cover the location service area. In that circum-
stance, We can just scan 3 channels, and the scanning time will be less than
3 · Tmax + 2 · Tswitch in active scanning mode, and 3 · Tbeacon + 2 · Tswitch in
passive scanning.

If we have the AP sampling permission, what will happen? The STA can dwell
on each channel 0 second. Eventually, we need only (Nchannel−1)·Tswitch seconds
to scan all channels. If we also have the AP working channel set permission at
the same time, we need only 2 · Tswitch seconds to scan 3 channels.

5 Conclusion

In this paper, we studied the WiFi fingerprint sampling problem. We theoret-
ically analyzed the fingerprint sampling procedure, and calculated the finger-
print sampling speed. The Fingerprint sampling experiments were done on 8
phones/pads with Android SDK API. All our source codes and data are avail-
able as open source. We believe more measurements should be conducted on
different phones/pads. In order to explore whether WiFi location fingerprint
can be sampled more quickly, we analyzed the Android WiFi sampling frame-
work and measured the fingerprint sampling speed at different layers. If we have



196 Q. Wu et al.

full control on APs, we showed that it is possible to improve the fingerprint
sampling speed dramatically comparing to the general positioning systems. We
believe that our systematical analysis and practical measurement results will
contribute to the WiFi positioning research community and can provide some
reference to practical WiFi positioning system design.

Acknowledgement. This work is partially supported by Blue Project of Universities
in Jiangsu Province Training Young Academic Leaders Object, the six talent peaks
project of Jiangsu Province (No. DZXX-028) and National Natural Science Foundation
of China (No.61170121, 61202312).

References

1. Lam, K.Y., Ng, J.K., Wang, J.T.: A business model for personalized promotion
systems on using WLAN localization and NFC techniques. In: 27th Advanced
International Conference on Information Networking and Applications Workshops
(WAINA), pp. 1129–1134 (2013)

2. Qi, Y., Soh, C.B., Gunawan, E., et al.: An accurate 3D UWB hyperbolic localiza-
tion in indoor multipath environment using iterative taylor-series estimation. In:
IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2013)

3. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building rf-based user location and
tracking system. In: Proceedings of IEEE INFOCOM, pp. 775–784 (2000)

4. Youssef, M., Agrawala, A.K.: The horus wlan location determination system. In:
Proceedings of ACM MobiSys, pp. 205–218 (2005)

5. Wang, H., Sen, S., Elgohary, A., et al.: No need to war-drive: unsupervised indoor
localization. In: Proceedings of ACM MobiSys, pp. 197–210 (2012)

6. Laoudias, C., Constantinou, G., Constantinides, M., et al.: The airplace indoor
positioning platform for android smartphones. In: IEEE 13th International Con-
ference on Mobile Data Management (MDM), pp. 312–315 (2012)

7. Yang, Z., Wu, C., Liu, Y.: Locating in fingerprint space: wireless indoor localization
with little human intervention. In: Proceedings of ACM MOBICOM, pp. 269–280
(2012)

8. Fang, S.-H., Lin, T.-N.: A dynamic system approach for radio location fingerprint-
ing in wireless local area networks. IEEE Trans. Commun. 58(4), 1020–1025 (2010)

9. Laoudias, C., Constantinou, G., Constantinides, M., Nicolaou, S., Zeinalipour-
Yazti, D., Panayiotou, C.G.: An online sequential extreme learning machine app-
roach to wifi based indoor positioning. In: IEEE World Forum on Internet of Things
(2014)

10. IEEE Computer Society LAN/MAN Standards Committee. Ieee standard for infor-
mation technology: Part 11: Wireless lan medium access control (MAC) and phys-
ical layer (PHY) specifications (2012)

11. Ramani, I., Savage, S.: Syncscan: practical fast handoff for 802.11 infrastructure
networks. In: Proceedings of IEEE INFOCOM, pp. 675–684 (2005)

12. Almulla, M., Wang, Y., Boukerche, A., et al.: A fast location-based handoff scheme
for vehicular networks. In: IEEE International Conference on Communications
(ICC), pp. 1464–1468 (2013)

13. Mishra, A., Shin, M., Arbaugh, W.A.: An empirical analysis of the ieee 802.11
MAC layer handoff process. ACM SIGCOMM Comput. Commun. Rev. 33(2), 93–
102 (2003)



Theoretical and Experimental Analysis of WiFi Location 197

14. Montavont, N., Arcia-Moret, A., Castignani, G.: On the selection of scanning para-
meters in IEEE 802.11 networks. In: IEEE 24th International Symposium on Per-
sonal Indoor and Mobile Radio Communications (PIMRC), pp. 2137–2141 (2013)

15. Chen, X., Qiao, D.: Hand: Fast handoff with null dwell time for ieee 802.11 net-
works. In: Proceedings of IEEE INFOCOM, pp. 1–9 (2010)

16. Liu, H., Darabi, H., Banerjee, P.P., et al.: Survey of wireless indoor positioning
techniques and systems. IEEE Trans. Syst. Man Cybern. 37(6), 1067–1080 (2007)

17. Drane, C., Macnaughtan, M., Scott, C.: Positioning GSM telephones. IEEE Com-
mun. Mag. 36(4), 46–54 (1998)


	Theoretical and Experimental Analysis of WiFi Location Fingerprint Sampling Period
	1 Introduction
	2 IEEE 802.11 Channel Scanning
	2.1 Passive Scanning
	2.2 Active Scanning

	3 WiFi Scanning on Android
	3.1 Scanning Speed Measurements on Android
	3.2 WiFi Scanning Workflow on Android Platform

	4 Fingerprint Sampling Strategies on Different System Architecture
	5 Conclusion
	References


