
Chapter 6

Biofunctionalization of Metals with Polymers

Takao Hanawa

Abstract If the advantages of metals and polymers are mixed and disadvantages

are eliminated by manufacturing metal–polymer composite materials, humankind

will obtain ideal materials having excellent mechanical properties and biofunctions.

Two kinds of metal–polymer composite materials are feasible to design: one is a

combination of bulk polymeric materials and bulk metallic materials and the other

is immobilization of polymers to metal surfaces. In this chapter, the above metal–

polymer composite materials for biomedical use are demonstrated, and the

corresponding researches are reviewed, including chemical immobilization and

electrodeposition of biofunctional polymer; immobilization of biomolecules such

as peptide, protein, collagen, hydrogel, and gelatin; bonding of polymers with metal

through silane-coupling agent; and polymers condensed in porous titanium.

Keywords Biofunctional polymer • Immobilization • Electrodeposition •

Antibacterial property • Platelet adhesion • Bone formation • Soft tissue
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6.1 Introduction

Metals show high strength, elongation, fracture toughness, and durability, which

are specific advantages against ceramics and polymers. Therefore, metals are

widely used for medical devices especially implants (devices inserted in the

human tissues) to prevent the fracture or degradation of devices during use.

However, metals are typically artificial materials and have no biofunction, which

makes them fairly unattractive as biomaterials.

On the other hand, polymers are widely used as biomaterials because of their

high degree of flexibility, biocompatibility, and technologic properties [1]. Also, it

is relatively easy to design biofunctional polymers based on biomimic techniques,

because biofunctional polymers exist in the human body as parts of biomolecules,

cells, tissues, and organs.
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Therefore, some of polymeric materials are widely known as biocompatible and

biofunctional materials. The fast technological evolution of polymers has made it

possible to apply these materials to medical devices over the last three decades; in

fact, many devices made from metals have been replaced by others made from

polymers. In spite of this fact, about 80 % of implant devices are still made from

metals, and this percentage remains unchanged because of their high strength,

toughness, and durability. Medical devices consisting of metals cannot be replaced

by polymers at present.

If the above advantages of metals and polymers are mixed and disadvantages are

eliminated by manufacturing metal–polymer composite materials, humankind will

obtain ideal materials having excellent mechanical properties and biofunctions.

Two kinds of metal–polymer composite materials are feasible to design: one is a

combination of bulk polymeric materials and bulk metallic materials and the other

is immobilization of polymers to metal surfaces. In this chapter, the above metal–

polymer composite materials for biomedical use are demonstrated, and the

corresponding researches are reviewed.

6.2 Immobilization of Poly(ethylene glycol)

6.2.1 Chemical Immobilization

The immobilization of biofunctional polymers on noble metals such as Au is

usually conducted using the bonding –SH or –SS– group; however, this technique

can only be used for noble metals. The adhesion of platelets and adsorption of

proteins, peptides, antibodies, and DNA are controlled by modifications of the

above technique.

On the other hand, poly(ethylene glycol) (PEG) is a biofunctional molecule on

which adsorption of proteins is inhibited [2]. Therefore, immobilization of PEG to

metal surface is an important event to biofunctionalize the metal surface. A class of

copolymers based on poly(L-lysine)-g-poly(ethylene glycol), PLL-g-PEG, has

been found to spontaneously adsorb from aqueous solutions onto TiO2,

Si0.4Ti0.6O2, and Nb2O5 to develop blood-contacting materials and biosensors

[3, 4]. In another case, TiO2 and Au surfaces are functionalized by the attachment

of poly(ethylene glycol)–poly(DL-lactic acid), PEG–PLA, and copolymeric micelles.

The micelle layer can enhance the resistance to protein adsorption to the surfaces up

to 70 % [5]. Surface modification of stainless steel by grafting of poly(ethylene

glycol) was reported by Zhang et al. [6]. In their method, the surface of stainless steel

was first modified by a silane-coupling agent (SCA), (3-mercaptopropyl)

trimethoxysilane. The surface of the silanized stainless steel (SCA-SS) was subse-

quently activated by argon plasma and then subjected to UV-induced graft poly-

merization of poly(ethylene glycol)methacrylate (PEGMA). The PEGMA graft-

polymerized stainless-steel coupon (PEGMA-g-SCA-SS) has a high graft
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concentration, and the high PEG content was found to be very effective to prevent

the absorption of bovine serum albumin and γ-globulin. These processes require

several steps but are effective for immobilization; however, no promising technique

for the immobilization of PEG to a metal surface has been so far developed.

Photoreactive PEG is photoimmobilized on titanium (Ti) [7].

6.2.2 Electrodeposition

Both terminals of PEG (MW: 1,000) are terminated with –NH2 (NH2–PEG–NH2).

The cathodic potential is charged to Ti from the open-circuit potential to �0.5 V

vs. a saturated calomel electrode (SCE) and is maintained at this potential for 300 s.

During charging, the terminated PEGs electrically migrate to and are immobilized

on the Ti cathode, as shown in Fig. 6.1a. Not only electrodeposition but also

immersion leads to the immobilization of PEG onto a Ti surface. However, more

terminated amines combine with Ti oxide via an NH–O bond by electrodeposition,

while more amines randomly exist as NH3
+ in the PEG molecule by immersion

(Fig. 6.1b) [8, 9]. An atomic force microscopic image is also shown in Fig. 6.1c.

The amounts of the PEG layer immobilized onto the metals are governed by the

concentrations of the active hydroxyl groups on each surface oxide in the case of

electrodeposition, which is governed by the relative permittivity of the surface

oxide in the case of immersion [10]. The PEG-immobilized surface inhibits the

adsorption of proteins and cells, as well as the adhesion of platelets [11] and

bacteria [12] (Fig. 6.2), indicating that this electrodeposition technique is useful

for the biofunctionalization of metal surfaces. It is also useful for all

electroconductive materials and materials even having complex surface

topography.

6.3 Immobilization of Biomolecules

6.3.1 Immobilization of Biomolecules

Immobilization of biomolecules is a natural approach to obtain cell and tissue

compatibility and biofunctions. It has been found that these coatings act as local

mediators of cell adhesion and, in consequence, as a stimulating factor for the

growth and proliferation of the cells normally found around the substituted tissue.

The tight attachment at the surface of the metallic implant and the conservation of

the biological function of the proteins involved are prerequisites for obtaining these

highly desirable properties. On the other hand, organic coatings have been scarcely

used on metallic implants, because manufacturers hesitate to commercialize the
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biomolecules immobilized by metallic implant due to the problems on storage,

safety, sterilization, etc.

The immobilization of biomolecules on the metallic surface can be achieved

using self-assembled monolayers as cross-linkers. Self-assembled monolayers pro-

vide chemically and structurally well-defined surfaces that can often be manipu-

lated using standard synthetic methodologies [13]. Thiol on self-assembled

Fig. 6.1 Immobilization of NH2–PEG–NH2 by electrodeposition. The terminated PEGs electri-

cally migrate to and are immobilized on the Ti cathode (a). More terminated amines combine with

Ti oxide via an NH–O bond by electrodeposition, while more amines randomly exist as NH3
+ in

the PEG molecule by immersion (b). An atomic force microscopic image of the PEG-immobilized

Ti surface (c)
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monolayers [14, 15] and siloxane-anchored self-assembled monolayers [16] has

been particularly well studied. A problem related to the application of immobilized

biomolecules via silanization techniques is the hydrolysis of siloxane films when

exposed to aqueous (physiological) conditions [17]. More recently, alkyl phosphate

films that retain robust under physiological conditions [18] have been used to

provide an ordered monolayer on tantalum oxide surfaces [19, 20], and

alkalphosphonic acids have been used to coat the native oxide surfaces of metals

and their alloys inducing iron [21], steel [22], and Ti [23].

6.3.2 Peptide

In a living tissue, the most important role played by the ECM has been highlighted

to favor cell adhesion [24]. Studies have shown that interactions occur between cell

Fig. 6.2 Inhibition of platelet adhesion and biofilm formation on Ti through immobilization of

NH2–PEG–NH2 by electrodeposition. (a) Platelet adhesion and fibrin network on untreated Ti, (b)
inhibition of platelet adhesion on PEG-immobilized Ti by electrodeposition, (c) biofilm formation

on untreated Ti, and (d) inhibition of biofilm formation on PEG-immobilized Ti by

electrodeposition
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membrane receptors and adhesion proteins derived from the bone matrix, such as

type I collagen or fibronectin [25]. These proteins are characterized by a RGD

(Arg-Gly-Asp) motif which specially transmembrane connections between the

actin cytoskeleton and the RGD motif, and the whole system can activate several

intracellular signaling pathways modulating cell behavior (e.g., proliferation, apo-

ptosis, shape, mobility, gene expression, and differentiation) [26].

Due to the main role of the RGD sequence in cell adhesion, several research

groups have developed biofunctionalized surfaces by immobilization of RGD

peptides. Grafting RGD peptides has been performed on different biomaterials,

such as Ti [27–29], and has been shown to improve osteoconduction in vitro.

Methodologies differ by the conformation of RGD and by the technique used for

peptide immobilization [24, 25, 28–30]. Since the graft of an RGD peptide is known

to be efficient in bone reconstruction [31], the challenge is to develop simple and

cheap methods to favor cell anchorage on biomaterial surfaces [29, 30]. Self-

assembled molecular monolayers bearing RGD moieties have been grafted to

numerous surfaces, using either silanes [32], phosphonates on oxidized surfaces

[29], or thiols on Au [30], but have encountered some application problems for

large-scale production. Phosphonates are known to adsorb on Ti. To be mechani-

cally and physiologically stable, phosphonate layers have to be covalently bound to

the material surface using drastic conditions [33, 34] which are not compatible with

biomolecule stability. Monolayers of RGD phosphonates have been achieved using

a complex multistep process which necessitates to tether a primer onto Ti surface,

then a linker, and finally the peptide [35]. To immobilize RGD to the

electrodeposited PEG on Ti, PEG with an -NH2 group and a -COOH group

(NH2–PEG–COOH) must be employed. One terminal group, �NH2, is required

to bind stably with a surface oxide on a metal. On the other hand, the other terminal

group,�COOH, is useful to bind biofunctional molecules such as RGD as shown in

Fig. 6.3 [36]. This RGD/PEG/Ti surface accelerates the calcification by MC3T3-E1

cell [37]. The calcification level is the highest on the RGD/PEG/Ti surface

Fig. 6.3 Immobilization of RGD peptide on Ti through electrodeposited NH2–PEG–COOH

132 T. Hanawa



(Fig. 6.4), and the bone formation on the RGD/PEG/Ti surface is accelerated

compared to RGD/Ti surface in rabbit [38].

Glycine (G)–arginine (R)–glycine (G)–asparaginic acid (D)–serine (S) sequence

peptide (GRGDS peptide) is coated through the chloride activation technique to

enhance adhesion and migration of osteoblastic cells [39]. The expression levels of

many genes in MC3T3-E1 cells are altered.

6.3.3 Proteins and Collagen

Among the relevant molecules involved in biochemical modification of bone-

contacting surfaces, growth factor, such as bone morphogenetic protein-2

(BMP-2), is of primary interest. BMP-2 has been known to play an important role

in bone healing processes and to enhance therapeutic efficiency. Ectopic bone

formation by BMP-2 in animals has been well established following the first reports

of BMP-2 by the Urist research group [40–42]. Synthetic receptor binding motif

mimicking BMP-2 is covalently linked to Ti surfaces through a chemical conjunc-

tion process [43]. A complete and homogeneous peptide overlayer on the Ti

surfaces; the content is further measured by gamma counting. Biological evalua-

tions show that the biochemically modified Ti is active in terms of cell attachment

behavior. Ti surfaces can enhance the rate of bone healing as compared with

untreated Ti surface. Bone morphogenetic protein-4 (BMP-4) is immobilized on a

Ti–6Al–4V alloy through lysozyme to improve the hard tissue response [44]. Pro-

teins are silane-coupled to the oxidized surfaces of the Co–Cr–Mo alloy, the Ti–

6Al–4V alloy, Ti, and the Ni–Ti alloy to improve tissue compatibility [45].

Biomolecules are also used to accelerate bone formation and soft tissue adhesion

on a material. Type I collagen is immobilized by immersion in the collagen solution

[46]. Type I collagen production increases with modification by ethane-1,1,2-

Fig. 6.4 Immobilization mode of RGD peptide on Ti and calcification by MC3T3-E1 cell on each

specimen
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triphosphonic acid and methylenediphosphonic acid grafted onto Ti [47]. Type I

collagen is grafted with glutaraldehyde as a cross-linking agent [48]. For the

electrodeposition, it is found that an alternating current (AC) between �1 and

+1 V vs. SCE with 1 Hz is more effective than direct current (DC) to immobilize

type I collagen to Ti and durability in water is high [49] as shown in Fig. 6.5.

Fibronectin is immobilized directly on Ti using a tresyl chloride activation

technique [50]. L-threonine and O-phospho-L-threonine are immobilized on acid-

etched Ti surface [51].

6.3.4 Hydrogel and Gelatin

Immobilization or coating of hydrogel to metal surface is currently being attempted

to add a drug delivery ability to orthopedic implant and stents or fluorescent sensing

ability to microchips. Currently, synthetic polymeric hydrogels like poly-

(hydroxyethylmethacrylate) (pHEMA) and poly(hydroxyethylacrylate) (pHEA)

are widely used as compliant materials particularly in the case of contact with

blood or other biological fluids [52]. Despite having good flexibility in the swollen

state, hydrogels usually lack suitable mechanical properties, and this could greatly

impair their use as coating materials for surgical procedure. Moreover, in case of

inadequate adhesion between the hydrogel coating and the metal surface, a break-

age at the coating–steel interface might occur [53]. A spray-coated method has been

set up with the aim to control the coating of pHEMA onto the complex surface of a

316L steel stent for percutaneous coronary intervention (PCI) [54]. The pHEMA

coating evaluation of roughness wettability together with its morphological and

chemical stability after three cycles of expansion–crimping along with preliminary

results after 6 months demonstrates the suitability of the coating for surgical

implantation of stent.

Fig. 6.5 Atomic force microscopic images of Ti surfaces with electrodeposited collagen using DC

potential or AC potential
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An alternative and very promising synthetic route is represented by electro-

chemical polymerization, which leads to direct thin film coatings on the metal

substrates with interesting applications either for corrosion protection or for the

development of bioactive films [55–58]. As far as orthopedic field is concerned, in

recent years, many procedures based on surface modification have been suggested

to improve the biocompatibility and biofunctionality of Ti-based implant [59].

2-hydroxy-ethyl-methacrylate (HEMA), a macromer poly(ethylene-glycol

diacrylate) (PEGDE), and PEGDE copolymerized with acrylic acid were used to

obtain hydrogels. A model protein and a model drug were entrapped in the hydrogel

and released according to pH change [60].

6.4 Other Polymer Coatings

6.4.1 Bonding of Polymers with Metals Through
Silane-Coupling Agent

The interfacial chemical structure governing the bonding strength, especially at the

nanometer level, is one of the most challenging aspects to the development of

composite materials. The combination of a Ti alloy with a resin for crown facings

has been attempted [61]. In particular, silane-coupling agents containing S–H

groups and Si–O–CH3 groups are widely used to combine dental alloys with resins

[62]. The S–H group works as a bonding agent with polymers, while the Si–O–CH3

group works as a bonding agent with metals. The mechanical properties and

durability of composite resin increase with the silanized filler [63–66]. However,

in most studies on materials using silane-coupling agents in the field of dentistry,

only the bonding strength is evaluated and discussed, and there are few reports that

examine and discuss the chemical structures at the bonding interface and how they

influence the bonding strength.

Studies on silane-coupling agents to combine polymers with metals have been

performed in other fields. An aluminum–vegetable oil composite using a silane-

coupling agent has been developed [67, 68]. Rubber-to-metal bonding by a silane-

coupling agent was investigated [69]. In addition, the surface modification of

stainless steel by grafting poly(ethylene glycol) using a silane-coupling agent has

been reported [6]. However, only the chemical structure is investigated in these

studies. In other words, the relationship between the bonding strength and the

interfacial chemical structure containing a silane-coupling agent layer has not

been studied.

The unequivocal relationship between the shear bonding strength and the chem-

ical structure at the bonding interface of a Ti–SPU composite through a silane-

coupling agent (γ-mercaptopropyl trimethoxysilane (γ-MPS)) is investigated

[70]. The bonding interface between SPU and Ti substrate is determined by the

thickness of γ-MPS layer as shown in Fig. 6.6. On the other hand, the shear bond

6 Biofunctionalization of Metals with Polymers 135



strength of the Ti/SPU interface increased with ultraviolet (UV) irradiation

according to the increase of the cross-linkage in SPU. Platelet adhesion to Ti is

inhibited by SPU, as shown in Fig. 6.7. This technique is used for the creation of a

new meta-based material having high strength, high toughness, and biofunction.

UV irradiation to a Ti–SPU composite is clearly a factor governing the shear bond

strength of the Ti/SPU interface [71]. In addition, active hydroxyl groups on the

surface oxide film are clearly factors governing the shear bond strength [72]. After

good bonding between metal and polymer is produced, biofunctionalization tech-

niques developed in the field of polymers could be applied to the composite

materials.

The effects of different kinds of terminal functional groups and the thickness of

the silane layers (SIL) on the adhesive strength between Ti–29Nb–13Ta–4.6Zr

(TNTZ) alloy and SPU were investigated by means of shear bonding tests. The

following silane-coupling agents were employed in this study:

3-methacryloxypropyltrimethoxysilane (γ-MPTS), aminopropyltriethoxysilane

(APS), and γ-MPS. Furthermore, the shear bonding strength of the TNTZ/SIL/

SPU interface was also characterized after immersion in water for 30 days. Silane-

coupling treatment produces a tenfold increase in the shear bonding strength,

Fig. 6.6 Difference in

bonding interface structure

between thin (left) and thick
(right) γ-MPS layers

Fig. 6.7 Inhibition of platelet adhesion and fibrin network formation on SPU-coated Ti
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independent of the type of terminal functional groups and the thickness of the silane

layers. The TNTZ/SIL/SPU composites are partially fractured at the interfaces of

the TNTZ/SIL, while the rest of the fracture occurs at the interfaces of the SIL/SPU

in single sample. The shear bonding strength decreases after immersion in water for

30 days when APS and γ-MPS are used as the silane-coupling agents, because

stable chemical bonding is not achieved between the silane layer and SPU, whereas

the bonding of the γ-MPTS composite is not affected by exposure to water [73]. The

number of hydroxyl groups increases with an increase in treatment time at a H2O2

concentration of 5 %. On the other hand, an increase from 5 to 30 % in H2O2

concentration leads to a decrease in the number of hydroxyl groups on the TNTZ

surface, because at higher H2O2 concentrations, the reaction that consumes the

hydroxyl groups is dominant. The shear bonding strength is doubled compared with

the untreated TNTZ/SIL/SPU interface. Although the shear bonding strength

decreases after immersion in water for 30 days when APS and γ-MPS are used,

TNTZ/γ-MPTS/SPU composites exhibit good durability to water and maintain an

equivalent shear bonding strength before immersion in water [74]. The adhesive

strength of the SPU coating on the nanotube structure formed on TNTZ by

anodization for 3,600 s increases by 50 %. These improvements in the adhesive

strength of SPU are the result of an anchor effect introduced by the nanostructures

formed by anodization. Fracture occurs at the interface of the nanoporous structure

and the SPU coating layer. In contrast, in the case that SPU coating has been

performed on the nanotube structure, fracture occurs inside the nanotubes [75].

6.4.2 Polymers Condensed in Porous Titanium

The Young’s modulus of metallic materials is relatively larger than that of cortical

bone: about 200 GPa in stainless steels and Co–Cr–Mo alloys, about 100 GPa in

α-type and (α+ β)-type Ti alloys, and 15–20 GPa in cortical bone. When fractured

bone is fixed with metallic bone fixator such as bone plate and bone nail, during

healing a load to fixation part is mainly received by metallic fixators because of the

difference in their Young’s modulus. This phenomenon is well known as so-called

“stress shielding” in orthopedics. This large Young’s modulus generates other

problems. When a metal is used as a metallic spacer in spinal fixation, the spacer

is mounted in matrix bone. In the case of dental implant, occlusal pressure is not

absorbed by the implant and directly conducts to jaw bone.

To solve the above problems, metals with low Young’s modulus are required.

Two approaches are feasible: the decrease of the Young’s modulus of a metallic

material itself and decrease of the apparent Young’s modulus by forming a porous

body. In the latter case, the pores are sometimes filled by polymers to control the

apparent Young’s modulus. Ultra-high-molecular-weight polyethylene

(UHMWPE) [76] and poly(methyl methacrylate) (PMMA) [77] are attempted to

fill the pores in porous Ti. Figure 6.8 shows porous Ti whose pores are filled by

UHMWPE.
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6.5 Conclusions

Metallic materials are widely used in medicine for not only orthopedic and dental

implants but also cardiovascular devices and other purposes. The metal surface may

be biofunctionalized by various techniques such as the immobilization of

biofunctional molecules and the creation of metal–polymer composites. These

techniques make it possible to apply metals to a scaffold in tissue engineering.

Artificial materials such as metal–polymer composites will continue to be used as

biomaterials in the future, because of their excellent tissue compatibility and

biofunctions. Some of metal–polymer composites are reviewed in other textbooks

[78–80].
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