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Abstract. In recent past, work has been done to parallelize pattern
detection queries over event stream, by partitioning the event stream on
certain keys or attributes. In such partitioning schemes the degree of par-
allelization totally relies on the available partition keys. A limited num-
ber of partitioning keys, or unavailability of such partitioning attributes
noticeably affect the distribution of data among multiple nodes, and is a
reason of potential data skew and improper resource utilization. More-
over, majority of the past implementations of complex event detection
are based on a single machine, hence, they are immune to potential data
skew that could be seen in a real distributed environment. In this study,
we propose an event stream partitioning scheme that without consid-
ering any key attributes partitions the stream over time-windows. This
scheme efficiently distributes the event stream partitions across network,
and detects pattern sequences in distributed fashion. Our scheme also
provides an effective means to minimize potential data skew and handles
a substantial number of pattern queries across network.

1 Introduction

Complex event detection is a growing field and a lot of work has been done to
efficiently detect sequence patterns [1–12]. Much of the past implementations
and research are aimed to process complex events on a single machine. Some
work has also been done to detect complex events in distributed environment
[1,13–15]. The focus of that work is partitioning the event stream on certain keys
or attributes, such as stock symbols. If no such partitioning attribute exists in
the query, or very few partitioning attributes/keys exist, then the event stream
can not be efficiently parallelized, and data being sent to various processing
nodes becomes very skewed, causing some machines to process much more data
than others, and ultimately leading to unfair distribution of processing load and
overall performance degradation.

Consider the case of two arch rival football teams playing in the world cup
final, where each team is supported by thousands of emotional supporters in
the stadium. To manage any health related emergency each person watching the
game in stadium is made equipped with a sensor that is continuously sending
the vital details about each person’s physical conditions as events, and each
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event consists of (heart rate, breathing rate, body temperature). As there is no
natural partitioning key or demarcation of events carrying information about
heart rate, breathing rate, and body temperature, hence, the best option is to
partition them on the basis of time windows. Moreover, if we assume that the
numbers of events generated by sensors are associated with every individual’s
heart rate, then a sudden and dramatic change in the game would greatly affect
the number of events generated throughout the game. To handle such situations
where the number of generated events change dramatically, and possibly out-
perform a single machine, a better option is to process them in a distributed
fashion.

Consider another case of event stream partitioning, if there are limited num-
ber of partitioning keys in a query, then the resultant stream partitions can be
too large to be processed on a single machine, and it would again require further
repartitioning. Our proposed scheme does not experience such problem as the
volume of data being processed by a machine, and the degree of the paralleliza-
tion is subject to the available machines.

Our proposed approach is based on partitioning the incoming data stream on
time-windows, it efficiently distributes fast data stream among multiple machines,
and detects sequence patterns [3] running queries on machines. The essence of this
approach is that, it can be used to parallelize processing of any sort of event stream
without need of any partitioning key or attribute in the pattern query. Simultane-
ously, while distributing the stream partitions, it ensures a fair and uniform data
distribution among multiple machines, avoiding any possible data skew.

The work presented in this paper is summarized as follows.
(i) An event stream partitioning strategy based on time-windows, that does not
take into account event stream attributes. (ii) A pattern sequence detection
strategy that distributes stream partitions across number of machines, and exe-
cutes pattern queries over stream partitions. (iii) Optimizations are proposed for
efficient distribution of overlapping stream partitions across number of machines
by removing duplicate events from consecutive partitions. (iv) A technique is
discussed to prevent data skew while distributing stream partitions to multiple
machines. (v) A simple cost model is proposed to evaluate the execution cost of
pattern queries, based on the structure and complexity of the pattern queries.

The remainder of the text is organized as follows. Section 2 discusses problem
description, and provides problem statement, system and cost model. Section 3
provides motivations of the research, challenges and an overview of the exist-
ing research work. Section 4 provides some background details. Section 5 briefly
explains the algorithms, proposed strategy and optimizations to the approach.
Section 6 presents the implementation details, evaluation and outcomes of the
experiments. Section 7 concludes the paper and discusses future research avenues.

2 Problem Description

2.1 Definitions and Semantics

Event. A data stream consists of various events, each event can be identified
through it’s event id with respect to it’s arrival time t and associated values
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termed as attr values [16,17]. Time-window. A time-window can be described
as a time-interval/passage of time, between time t1 and time t2 such that t2 ≥ t1
[18]. The length of time-window is represented in units of time, as described in
WITHIN clause of query-1. Sequence pattern. A sequence pattern is a sequence
of events occurring in a sequential order. Such as (A; B; Q), a sequence query
detects all instances of event B that follows event A, and all instances of event Q
that follows B. Sequence query. A sequence query Qs detects all the occurrences
of relevant events in a time-window as depicted in Query-1.

Query 1. Pattern Sequence
PATTERN SEQUENCE (e3; e4; e5)

WITHIN 5 min

Relevant event. A relevant event e is an event of interest iff e belongs to a
sequence pattern Sp. Stream partition. A stream partition consists of a finite
number of events that arrive in the system between t1 and t2. Query semantics.
A sequence query evaluates all the events one at a time in their arrival order
in a partition. Matching of events is non-greedy and contiguous in a stream
partition [19], and every event is matched against a sequence pattern from t1 to
t2 where t2 ≥ t1 in a stream partition as shown in Fig. 1. Overlapping partitions.
While partitioning the event stream on time-windows it is possible that a stream
partition contained sequence of events which are also part of another pattern
sequence in successive stream partition as depicted in Fig. 2. In such a case
where consecutive stream partitions contain or share some of the events in the
identical sequence are termed as overlapping partitions.

Fig. 1. Query semantics Fig. 2. Overlapping partitions

2.2 Problem Statement and Formulation

The problem is formulated as: From an incoming event stream S, continuously
create stream partitions based on n units of time, send stream partitions to mul-
tiple machines over network, and while running sequence queries over stream
partitions, detect sequence patterns and simultaneously load balance the entire
system.

While detecting event sequences in distributed fashion, the stream partitions
and pattern queries should be distributed among machines in such a way, that
none of the machines should be overloaded, the objective function to achieve
this goal is described as follows:

wi ≤

m∑

i=1

wiα

m
, where α ≥ 1 and wiα ≤ T (1)
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where wi specifies average workload on a machine, α denotes a slight variation of
workload that can be caused by one or many new stream partitions received by
a machine, m is the number of available machines and T is a certain threshold
based on machine’s optimum level of processing that represents maximum load
to be allowed on any machine, at any time t. In this equation α ≥ 1 denotes that
average workload on a machine can vary by the processing load of one or many
stream partitions. This variation in average workload is caused by the arrival of
a single or multiple overlapping partitions.

The objective function is to share the processing load equally among all
machines. If on one or more machines wi >T at some point in time, then the load
would be readjusted among available machines. But, in case if average workload
on all machines is wi >T then to avoid any performance degradation a new
machine should be added in the system, or T should be adjusted accordingly.
The second objective function deals with minimizing communication cost and
can be described as follows: Assume that sending an event ei to a machine on
network would cost Ci then the total number of events sent over network would
cost:

n∑

i=1

Ci (2)

While sending stream partitions to machines, events or sequence of events which
are part of overlapping stream partitions can be just sent once over the network,
without causing common events to be sent in duplicates. This requires careful
planning while sending stream partitions to multiple machines. Sending dupli-
cate events can be avoided by considering the similarity of the sequence queries
running on a machine. Sending common events just once in the stream partitions
can reduce the overall communication cost as described below.

CT =
n∑

i=1

Ci −
m∑

j=1

Dj (3)

Here, CT represents the total cost of sending events without sending duplicate
events, Ci represents the total cost of sending events including the cost of sending
duplicates, Dj represents the cost of sending duplicate events. While maintaining
wiα ≤ T on a machine and removing duplicates from the consecutive event
stream partitions, we have certain constraints described as follows. Removing
duplicate events from the event stream partitions requires temporary buffering
of the events in main memory.

While buffering events we have to be careful about: (i) hardware limits
imposed by the unbounded nature of event stream, and (ii) timely response
needed by some time critical application. So, the size of the buffer should be
carefully chosen to remove maximum duplicates from the stream partitions, with-
out affecting the response required by the time-critical applications. A careful
buffering of events would allow us to send events into batches, causing efficient
use of network bandwidth, saving CPU cycles, as single interrupt required by
a batch vs. multiple interrupts required by events sent individually. But, there
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are two issues associated with creating batches of events: (i) Batching of events
would increase the communication latency. (ii) After removing duplicates, some
of the machines might receive less events to process then some others. If this
would continue for sometime, it would cause data skewness, poor workload dis-
tribution, and hence overall less efficient resource utilization. Therefore, to keep
communication latency at an acceptable level for time critical applications, the
following equation is devised.

LB ≤ TL (4)

Here, LB represents increased latency incurred while creating a batch, and TL

is the latency threshold. It means, that while creating a batch of events, the
latency must not exceed a certain threshold. The latency threshold is a tunable
parameter, tuned as per requirements of the time-critical applications. If latency
threshold satisfies the requirement of time critical applications, then it would also
satisfy the applications with flexible time constraints.

2.3 System Model

In our model, a machine receives an incoming, unbounded sequence of events,
referred to as an event stream. It is assumed that events in stream are externally
timestamped, and arriving in strict order. In our model a partition of an event
stream consists of a finite number of events that arrive in the system between
the start and end of a time-window denoted as tstart and tend. The length of a
time-window is specified in the WITHIN clause of a pattern query as mentioned
in Query 1.

Each pattern query before being executed is assigned a weight (see Sect. 2.4).
The terms weight, load and cost are used interchangeably in the same context in
our text. We assume that all the machines in the network have identical hardware
resources. A single machine termed as Stream Partitioner in the system handles
incoming event stream, partitions it and sends these partitions to other machines
termed as worker machines over network. Each worker after receiving a stream
partition executes a pattern query over the partition, and using NFA (Non-
deterministic Finite Automata) evaluates the pattern sequence.

Role of Workers. In our model, at the system startup time, every worker waits
in FIFO order for its turn, and receives a stream partition that turns it busy.
Stream partitions to be sent across workers are scheduled initially on the FCFS
basis and later as per current load of the worker. The current load of the work-
ers is maintained in a weight-lookup-table that keeps record of all the workers
participating in the pattern detection process. The load on the workers is deter-
mined through the cost (weight) of pattern queries being run and the number
of events being processed by the worker. If all workers have identical load then
a worker will randomly be selected to receive a new stream partition.

2.4 Cost Model

While maintaining the execution cost (associated wight) of pattern queries in
the weight-lookup-table, the following parameters would be considered.
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Length of the Time-Window. The size of a time-window determines the size of
a stream partition to be sent to a worker represented in units of time. A larger
partition usually means there would be more events to process, and more time
is required to evaluate a pattern sequence. Events’ arrival rate. The number of
events arrive in a time-window depends on the pace of data stream, a faster data
rate means there would be more events to process in a time-window, but in our
system we assume that events are arriving in order and in fixed time interval.

Number of Relevant Events Arrived in a Time-Window. The number of events
relevant to a sequence query may vary from one time-window to another. Multi-
ple relevant events in a time-window require us to evaluate all the combination
of relevant events, increasing the cost of pattern detection. Number of predicates
associated with the events. A pattern query may have some predicates, that
specify rules termed as attributes of the events. Events arrived in a time-window
will be evaluated against one or more query predicates. Evaluation of predicates
against number of events also affect the query execution time. As all of the
above factors play a combined role in the execution time taken by a pattern
query, hence, the cost metric can be described as follows.

2.5 Formal Definition of Cost Metric

Given a Query Q, detecting a pattern sequence P, comprised of R events, where
P=( e1, e2, e3...en), M predicates, within window-size of t time units, the cost of
query would be:

[ n∑

i=1

m∑

j=1

RiMj

]

+
[

C

n∏

i=1

Ri

]

(5)

Here, Ri in the left side of the addition denotes the number of relevant events
arrived in a time-window, and Mj denotes the number of predicates evaluated
against each relevant event. While evaluating a sequence using NFA, from all
possible combinations of relevant events denoted as Ri, a fraction of pertinent
combinations denoted as C would be considered.

3 Motivation and Challenges

3.1 Motivation

Centralized implementations of CEP systems like Cayuga and SASE+ can handle
pattern detection queries running on a single machine [1,13,15]. Single machine
CEP implementations are aimed to handle all the queries and event stream in a
centralized machine. But, a distributed stream processing approach is more suit-
able due the reasons as follows.

(i) Processing load can be distributed among multiple machines without
putting unnecessary load on a single machine. (ii) Local optimizations can be
done on the data available locally. (iii) Unwanted/irrelevant events as well as
noise can be filtered out on the server side while partitioning the event stream,
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and each machine on the network just has to process individual segment of data
stream. (iv) High degree of parallelization that can not be achieved on a single
machine.

Time-window based partitioning can also be reformed to enforce better secu-
rity control where each machine over the network would just receive the partition
that is relevant to that specific machine.

3.2 Challenges

There are various challenges to efficiently partition and distribute event stream
among number of machines. First, how to detect patterns involving sequence
operators, by partitioning the event stream without considering key attributes,
and running pattern queries in parallel on different machines. Second, what
should be the criteria to partition the event stream. Third, how to select a
machine that would receive a stream partition. Fourth, if there are some inter or
intra partition overlapping of pattern sequences then how to handle such situa-
tions. Fifth, how to load-balance this entire partitioning process to avoid a situ-
ation in which a machine receives multiple stream partitions continuously that
might overwhelm its processing capacity. The subsequent sections will briefly
explain the techniques and strategies to deal with the aforementioned issues.

4 Related Work

Issues related with event stream processing have been studied by many [2–7,14,
15,19–33]. However, the work that is most relevant to ours is done by Balkesen
et al. and Hirzel. Balkesen et al. in [14] proposes a run-based intra query paral-
lelism scheme called RIP for scalable pattern matching. The focus of his work
is to exploit multi-core architecture of a CPU. In his work an instance of Finite
State Machine (FSM) is termed as a run. RIP distributes input events that
belong to individual run instances of a pattern’s FSM to different processing
units or cores and each processing unit in a multi-core architecture performs
pattern matching on a given sequence of inputs. As this approach is based on
multi-core architecture of a single machine so it has some upper bound on the
number of queries processed in per unit time. Balkesen et al. termed their RIP
based approach skew-tolerant, but as their implementation is based on an iso-
lated pattern matching engine, exploiting the features of a multi-core CPU,
hence, their approach can not be compared with the data skew that could be
seen across multiple machines processing real distributed pattern matching.

Hirzel proposes in [19], a partitioning scheme and a SPL operator that parti-
tions and parallelizes the event stream [22]. It is based on partitioning the event
stream on some stream attributes, referred to as partitioning key. The parti-
tioning of event stream takes place using partitionBy clause that is identical to
SQL’s Group By clause. The partitionBy clause takes a key (or multiple keys)
as its parameter to partition the event stream, and the degree of paralleliza-
tion is dependent upon the number of distinct keys. If a parameter (partitioning
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key) is not passed to the partitionBy, or if partitionBy clause is not present in
the scheme then the event stream would not be partitioned and sent to a single
machine for processing. Hirzel’s scheme requires some attributes to partition and
parallelize the event stream.

Our work focuses on a different perspective i.e. time-windowing of event
stream. The approach we propose is suitable to partition and parallelize any
kind of event stream without taking key attributes and using any partitionBy
or GroupBy clause.

5 Proposed Method

5.1 Central Theme

Our proposed event stream partitioning method is based on the principle of
divide and conquer. A machine after receiving an event stream, partitions it
on time-windows, and sends these partitions to individual workers over a net-
work. Each worker after receiving a stream partition, executes a pattern query
(or number of queries) over that partition to detect pattern sequences. Assume
that Query 1 is registered as a pattern query to detect a pattern sequence over
an incoming event stream S, and the pattern sequence specified in the query is
comprised of events as shown in Fig. 3 by dotted rectangular. Algorithm 1 illus-
trates that upon receiving the event stream, the system will first detect event
e3, that is the first event in the required pattern sequence. Detection of e3 at
time t would be marked as start of the time-window or tstart and event e3 and
all subsequent relevant events from that point in time would be sent to a worker
that would further evaluate the pattern sequence. Figure 3 shows that multiple
identical events can arrive at any time, so each e3 would be considered as a start
of a new time-window or tstart (depicted by dotted line arrows), and would be
sent to a worker that would further detect the pattern sequence. All the events
that arrive after the detection of the first event until the end of five minutes time-
window would be considered as a partition. After the arrival of the last event in
that window that point in time is marked as tend denoting end of time-window,
and could be start of a new time-window. As shown in Fig. 3 by solid line arrows
that detection of the first event e3 at tstart, and end of a time-window at tend is
a logical partition on time.

Fig. 3. Detection of an startup event
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Algorithm 1. CreatePartition /*Partitioning the event stream */
1: Input: S, denotes an event stream, ei denotes the starting event of a pattern

sequence, twindow, is size of the partition
2: Output: P , denotes a partition
3: while ei is detected in S do
4: Let tstart:= ei.ts
5: Let tend:= tstart+twindow

6: Start partition P
7: Let m:=Getmachine()
8: Send event ei in partition P to machine m
9: if t≥tend then

10: End partition
11: break while
12: end if
13: end while

Algorithm 1 deals with creation and termination of a single partition, multi-
ple partitions can be managed by calling the same operation multiple times. Each
partition if completes without any overlapped tstart would be of identical size (in
terms of time) while query 1 is being run, but the number of tuples (or events)
in each partition might vary due to some external factors which could affect the
occurrence of events. Machines across the network will initially receive partitions
in round robin fashion and then as per their respective processing load. For effi-
cient use of network bandwidth, unwanted or irrelevant events which would not
be part of any partition, or not be the start of any sequence, would be simply
skipped by the machine partitioning the event stream.

5.2 Processing Multiple Distinct Pattern Queries

A pattern detection system detects patterns with varying complexity, and each
distinct pattern has a different evaluation cost, as some patterns can be more
expensive to evaluate than others. Hence, to handle variety of queries it becomes
necessary to carefully distribute the processing workload across multiple
machines. Figure 4 depicts multiple varying length pattern sequences, to detect
pattern sequence 1, upon detecting the first event i.e. IBM, this point is marked
as the start of the window or tstart, and the end of the time-window would
be marked as the tend. After the start of time-window all the events includ-
ing the first event would be sent to a worker for further processing. The start

Algorithm 2. GetMachine Algorithm
1: Input: LM, a priority queue of all machines involved in pattern detection
2: Output: m, a worker machine with minimum load
3: LM:=Prioritize(LM)
4: m:=LM.getNext()
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Fig. 4. Processing multiple distinct pattern queries

Fig. 5. Distribution of load among multiple machines

time and end time of the window sets the boundaries for the stream partition.
Refer to Fig. 5, the stream partitioner after detecting the first relevant event
of a sequence, partitions the event stream, and the transmitter sends the event
stream partition to a worker. The worker after receiving a stream partition exe-
cutes a pattern query over partition using a Query Execution Engine (QEE).
The stream partitioner keeps a weight-lookup-table and ensures before sending
a stream partition that the recipient worker should have less load then the other
workers. The weight-lookup-table maintains processing load of all the workers
in a priority queue, Algorithm 2 takes this priority queue and returns a worker
with highest priority (with minimum load) to receive a partition.

5.3 Processing Multiple Overlapping Partitions

During processing of a huge number of complex patterns, it is possible that while
partitioning the event stream some of the stream partitions might overlap each
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other as shown in Fig. 2, in such scenario, a careful decision can increase through-
put, and cause efficient use of network bandwidth. While sending overlapping
partitions to machines, there are three possible choices: (i) To send entire parti-
tions (including common events in each) to different machines, this would lead to
transfer duplicate events and cause waste of network bandwidth, specially when
large partitions having multiple events in common sent over the network. (i) To
send entire partitions (including common events in each) to a single machine.
As, both partitions (including individual sets of common events) are sent, hence
it is also a waste of network bandwidth. (iii) To send partitions sharing events
with one another to a single machine, without sending common events twice.
The third approach is simple, and effective than the first and second to avoid
duplicate events to be sent across multiple machines, as it would send common
events just once, and save network bandwidth. To efficiently select the most
suitable worker machine to process overlapping partitions, we would maintain
an in memory list of workers, with respective partition overlaps (if there is any)
as depicted in Table 1. Before sending an overlapped partition to any worker, the
partitioner checks the list for number of events in overlap, and number of most
recent overlapping partitions sent to a worker. The new overlapping partition
would be sent to the worker with highest number of overlapping events, Iff there
is no other worker who received a non-overlapping partition in its most recent
turn.

In Table 1 it is shown that worker 2 is the one with highest partition overlap,
but as there is worker 3 whose most recent partition was non-overlapping or zero,
hence, the partition would be sent to worker 3 as it must have finished or could be
in the middle of processing it’s most recent partition. The above solution to send
overlapping partition is suitable for most of the cases. To handle a special case
where a stream partition has no or zero overlap with respect to the partitions
sent to all workers, and all workers have an equal partition count, such situation
would be handled using Algorithm 3. This algorithm while sending partitions
across workers considers an upper bound of processing capabilities of each worker
termed as threshold. The threshold is based on the hardware configurations of
the machines. A worker with minimum load is selected through calculating the
current load, plus load of the query. Let m1 denote the most recent machine that
has received a partition, and m2 denotes a machine with minimum processing
load; let T be the maximum threshold for machine load, p be the overlapping
partition, and Q be a pattern query to detect a pattern over p, then using this
algorithm if the current processing load on m1 plus the new processing load to
be assigned to it is less than T then it will receive the next stream partition
otherwise a suitable machine will be sought.

Optimization to the approach. As many of the real world applications require a
rapid detection of event patterns such as seismographic patterns, there are some
applications which do not require a real-time response, and their processing can
be delayed up to a certain time interval. Sending individual events to a worker
is not an efficient method that leads to poor CPU and bandwidth utilization.
Algorithm 4 groups individual events into batches and sends them as a single
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Table 1. Worker selection for overlapping partitions

Worker id Partition overlap Partition count

(#of overlap events) (# of partitions already received)

1 5 2

2 6 3

3 2 0

batch for further processing. In Algorithm 4, we assume that each pattern query
has a priority associated with it, this priority can be assigned to a pattern
query as per specific needs of an application. We have set a user defined priority
threshold for all the queries in the system. When a pattern query has a priority
equal to or higher than the priority threshold it requires that relevant events
should be sent without any delay, so, after detection of the very first event such
as ej , it would be checked that is there any existing batch ready to be sent to the
worker m, if such a batch exists then ej would be included in the batch and the
batch would be sent without any delay. If there is no existing batch, then ej (as
a start of the new partition) would be sent without any delay to the concerned
worker. But, when a query has priority less than the priority threshold, it means
that the nature of the application associated with the query can ignore a certain
delay and we will start creating a batch of events.

Algorithm 3. Machine selection for sending overlapping partition
1: if p is detected then
2: if m1.totalLoad+Q.load<T then
3: send p to m1;
4: else
5: send p to m2

6: end if
7: end if

The size of the batches would be based on a user defined threshold set as
per time critical needs of the applications. Creating batches of events can be
very useful when there is an overlapping between partitions, as certain events in
overlapping partitions can be just sent once to a worker, leading to a reduced
network traffic. The efficiency of sending events into batches is highly dependent
on the batch size, which is further dependent on the priority associated with the
query.

6 Experimental Evaluation

Our present work is an evaluation of our proposed method, in future the focus
of our work would be to extend our experiments to process real life large data
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Algorithm 4. BatchOfEvents /* Creating batch of events */
1: Input: Qi is the ith query, ej is the first event in the relevant partition, pk is the

priority associated with the query, BT is batch-size threshold
2: do
3: if pk ≥ pt */ pt is some priority threshold */ then
4: if Any BoE alreday exists then
5: Attach ej to BoE
6: else
7: CreatePartition() /* Call the partition procedure */
8: end if
9: else

10: if pk<pt */ pt is some priority threshold */ then
11: Start batching events (BoE)
12: BoE.end :=BoE.currentSize+twindow

13: while BoE.end ≤ BT do
14: Add ej to BoE /* Add every event to the batch of events */
15: end while
16: Let m:=GetMachine() /*Call GetMachine() Procedure */
17: Send BoE to m /* Send batch of events to machine m */
18: end if
19: end if
20: while(true)

sets increasing queries and machines. In our present study a system based on the
strategies and algorithms mentioned in Sect. 5 has been developed, and exper-
iments have been conducted on a cluster of four machines, each running Linux
on a dual core 2.6 GHz CPU and 4.8 GB of main memory, 4.6 GB of secondary
storage. Our setup was based on a single stream partitioner, and three worker
machines, all connected through a local area network. We expect that result
would differ on an overlay network due to a higher latency and communication
cost.

The experiments have been performed running sequence queries consisting
of random sequences of English alphabet with varying size of time-windows,
and without predicates. Processing sequence patterns involving predicates would
be extended in the future work. Each query detects a pattern similar to the
Query 1 discussed in Sect. 2.3. Initially, a synthetic stream of five thousand
events was generated, and to perform multiple experiments, the same stream was
used to construct ten thousand, fifteen thousand, twenty thousand and twenty
five thousand events. In each experiment pattern queries were divided in two
categories i.e. high priority queries, and low priority queries. High priority queries
were assigned priority than the other half of the queries, to mimic real world
scenario where some applications need a time critical response.

6.1 Results and Discussion

While conducting experiments, it was observed that the major factor that affects
the hardware resources and processing time is not just the event stream itself,
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Fig. 6. Processing time of various stream
inputs

Fig. 7. Distribtion of processing load

Fig. 8. Distribtion of processing load Fig. 9. Distribtion of processing load

but, the complexity of patterns and queries being processed by workers. The
complexity and structure of the pattern and the number of predicate decide the
evaluation time required by a sequence query. In the first experiment we tested
our approach on different sets of input streams, and running one hundred to
five hundred queries on each input set. Figure 6 depicts that during all experi-
ments the processing time(ms) shows a linear growth behavior. The reason for
this linear growth is that the event streams were distributed fairly well among
workers, and there was no worker machine that received huge processing load
that would have caused it to spend higher amount of time increasing the overall
processing time of the job. To observe the load balancing, possible data skew,
and duplicate removals (in overlapping partitions) we conducted many exper-
iments. Figures 7, 8, 9, 10 and 11 depict distribution of processing load among
workers, it can be observed that processing load (number of events processed)
are distributed fairly well in workers. But, some of the workers have slightly
lower processing load, this is due to the reason that overlapping partitions are
sent to the workers with maximum partition overlap as described in Sect. 5.3.
Sending duplicate events can be avoided while creating partitions by increas-
ing the size of the batches and sending overlapping partitions continuously to
some specific worker(s). But, creating larger size batches would effect the time
critical nature of some of the applications as well as potentially result in data
skew, and load balancing issues. Removing duplicate events to cut down the
communication cost is useful in cases where conservation of network bandwidth
is of primary concern, but as we have just single stream partitioner with fixed
hardware resources, creating larger size of batches can cause a performance bot-
tleneck at the partitioner side. So, the present load distribution among workers



Efficient Pattern Detection Over a Distributed Framework 147

Fig. 10. Distribtion of processing load Fig. 11. Distribtion of processing load

shows a mix of load balancing and duplicate removal. It must be noted that in
the figures the number of events processed by each approach are higher than the
actual number of events given as input, this is because an event can be associ-
ated with multiple sequence patterns, and hence, processed individually for each
sequence pattern by respective pattern query.

7 Conclusion and Future Work

Partitioning and distribution of event stream on partitioning keys are poten-
tially prone to data skew, as the parallelization relies on the number of keys. In
this paper we propose a stream partitioning scheme that is not dependent on the
partitioning attributes, it efficiently partitions and distributes the event stream,
and elegantly load balances the entire process of detection of sequence pattern
across multiple machines. In future we intend to extend our work to include pred-
icate handling, improved load balancing and want to repeat our experiments on
large real life data sets. We also want to introduce multiple stream partitioner
to avoid performance bottleneck and any single point of failure.
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