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Abstract. Semantic Web (SW) and web data have become increasingly impor-
tant sources to support Business Intelligence (BI), but it is difficult to manage due
to its scalability in their volumes, inconsistency in semantics and complexity in
representations. On-Line Analytical Processing (OLAP) is an important tool in
analysing large and complex BI data, but it lacks the capability of processing
disperse SW data due to the nature of its design. A new concept with a richer
vocabulary than the existing ones for OLAP is needed to model distributed
multidimensional semantic web databases. In this paper we proposed a newOLAP
framework with multiple layers including additional vocabulary, extended OLAP
operators, and SPARSQL to model heterogeneous semantic web data, unify
multidimensional structures, and provide new enabling functions for interopera-
bility. We present the framework with examples to demonstrate its capability to
unify RDF Data Cube (QB) [2] and QB4OLAP [1] with additional vocabulary
elements to handle both informational and topological data [3] in Graph OLAP. It
is also able to compose multiple databases (e.g. energy consumptions and property
market values etc.) to generate observations through semantic pipe-like operators.

Keywords: On-Line Analytical Processing � Business Intelligence � Semantic
web � Data management � RDF vocabulary

1 Introduction

In today’s business, the data (e.g. web data) obtained over the Internet and their semantics
can play an important role as resources in enhancing data analysis, when used in com-
bination with internal enterprise business information systems. The Semantic Web (SW)
technologies provide the capability of annotating web data with semantics hence gen-
erating Semantic Web data.

The information and activities in a typical BI scenario can be modelled by three
different layers [5]: the data source layer, the integration layer and the analysis layer.
The combination of Data Warehouses (DWs) and On-Line Analytical Processing
(OLAP) covers these layers in order to support BI efficiently. OLAP tools and
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algorithms have been used successfully in BI to query large multidimensional (MD)
databases or DWs for supporting decision making. In the middle layer the multidi-
mensional model is used for normalizing and formatting the data, gathered from other
sources, for subsequent analysis. The MD dataset representation is done through the
OLAP Cube which is built from the data source using the ETL (extract, transform and
load) process.

The evolution of the data management on SW data has recently showed an increase
in the use of the OLAP approaches to improve efficiency. In order to perform OLAP
over SW data, the data has to be modelled with a specific vocabulary and structure to
comply with the facilities or engines that OLAP requires. Various MD models for
enabling OLAP to operate over Semantic Web data resulted in the development of
different structures and vocabularies which form autonomous and heterogeneous
OLAP databases for handling semantic (linked) data [1, 2, 6, 7, 11, 12]. As a conse-
quence, different OLAP databases based on proprietary structures with inconsistent
query languages making it hard for individuals to communicate and share data with
each other when joined datasets are required from multiple individuals.

There was no research conducted so far towards a method that enables multiple SW
OLAP databases to be simultaneously accessible over the Internet, even though such
demand is increasing. To respond to such queries is a complex task which needs a
middleware with OLAP facilities and Semantic Web features to realize it. Furthermore,
this type of system should provide explicit, expressive and consistent vocabulary for
modelling data and offer full support for OLAP.

2 Research Context

An increasing number of large repositories containing semantically annotated data is
available over Internet, but summarising the semantic data to support decision making
is not a trivial task due to its scalability and complexity. The utilisation of OLAP
capability in organising semantic web data into statistical or concise information can
increase efficiency in analysis and visualisation. The implementation of OLAP analysis
over a semantic web (SW), however, was understood differently and as such two main
types of approach were adopted. Firstly, OLAP is performed after retrieving multidi-
mensional information from the Semantic Web and stored in traditional databases. The
second targets OLAP operations directly over RDF data. As for the first approach,
storage of semantic web data in local DWs conflicts with the dynamic nature of web
data, as OLAP is designed for static and batch offline processing. In addition, the
manually built DWs cannot automatically reflect changes in the sources so it is hard to
maintain the consistency between them.

On the other hand in order to perform OLAP over SW data there are a set of key
aspects needed in the modelling process. There is a need for a precise, explicit
describing vocabulary in order to represent OLAP data consistently. The key concepts
of dimension and measure need to be introduced to support OLAP operations since
they employ measures such as AVG, MIN, SUM etc. and dimension related actions
such as roll-up, dice, slice, and drill.
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SW data are, however, often published on the web in different cube representations
for OLAP operations. As a consequence these generated multidimensional semantic
web databases become standalone databases, so they only offer limited OLAP capa-
bilities and only work with their own query languages. The information contained in
these web databases can be incomplete for complex applications which may require
information from multiple databases. Their proprietary specifications do not give the
possibility to communicate or share with each other to compose appropriate responses.
This is complicated when queries need to be performed over disparate data sources for
new multidimensional semantic web databases.

2.1 Household Energy Consumption Profile Example

There are situations in which it is beneficial and desirable that multiple databases can
be accessed simultaneously by complex queries in order to provide adequate answers.
Below we introduce such an example in which we consider two different databases
with complementary information, which if they are able to communicate, they can
provide the data consumers with complete and valuable information.

One large Semantic Web OLAP database DB1 contains detailed energy con-
sumption information of households from different countries as well as properties of
households like household income, accommodation size/layout (number of rooms),
number of inhabitants, appliances and so on. A separate Semantic OLAP database DB2
contains information about the historical value on the market of a specific property and
its layout.

Energy consumption for households can be viewed in conjunction with different
factors such as: number of inhabitants; household income; house size, or, house value,
in order to analyse correlations in energy consumption. House energy efficiency profile
can be a factor in a house acquisition or renting process, so it is desirable to have access
to multiple databases. For example, a natural language version of a query relating to
average energy consumption for houses within a selling price range and having a set of
other characteristics may be issued by the users as follows:

The average electricity consumption per year of households in a specific area and
with a specific layout, based on the number of occupants and the property market
value is between a specific ranges (meaning both actual and historical).

This new aggregation can be materialized and stored as a new observation in the
queried OLAP or in an independent OLAP structure. From the example, the following
features are essential in order to satisfy the requests from users:

• Perform OLAP operations over the data
• Access to both databases without changing their structure but being able to generate

the results
• Both databases have an OLAP structure in which basic OLAP operations such as

AVG, SUM, COUNT can be applied as multi-level and multi-dimensionally
• Build OLAP observations in a common format
• Be able to perform data merging for building the response or to materialise it in a

new database
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In order to offer a solution for the above example, we need to provide a way in
which the query is able to distribute to multiple databases, perform OLAP over each
database and compose the results retrieved from them.

2.2 Related Work

On-Line Analytical Processing (OLAP) has been undeniably proven a successful
approach to analysing large sets of data [5]. Furthermore OLAP is an approach that can
be built on top of different database models and respond to multi-dimensional queries as
long as they fall under some evaluation criteria regarding, but not limited to, multidi-
mensionality, accessibility, transparency, dimensions and aggregation levels. Recently,
a considerable stream of works [1–5, 9–11] was directed towards online analytical
processing on informational network and mostly focusing on the Semantic Web data.
Chen et al. [3, 9, 10] and Zhao et al. [4] both take the first step to introduce graphs in a
multidimensional and level context by proposing conceptual frameworks for graph data
cubes and a data warehousing model able to support graph OLAP queries. They both
consider attribute aggregations and structure summarization, where the authors in [3]
classify their framework into topological and informational OLAP based on the
dimension. They proposed different aggregation functions to build summarisations and
these cannot be mutually applied.

Kämpgen and Harth [12] introduce linked data transformations for OLAP analysis
and they [6] try to map statistical Linked Data to an OLAP to conform to the RDF Data
Cube Vocabulary [2] but they did not provide sufficient semantics that are required from
the topological elements to build parts of the multiple dimensions. Etcheverry and
Vaisman [11] introduce Open Cubes which focus on the publication of multidimen-
sional cubes on the Semantic Web and they found the limitation of the RDF Data
Cube [2] which can only address statistical data. Their work revolves around infor-
mational OLAP aggregations. Furthermore they revisit RDF Data Cube (DC) by
extending DC’s capabilities to support multidimensional levels to build hierarchies and
to implement other OLAP operators beside the sole Slice operator offered by DC.
Beheshti et al. [7] continue the work from [3, 4, 9, 10] and offered a graph data model for
OLAP informational networks. The approach supports the description of entities and
relationships between them and provides both topological aggregations. They use three
levels of partitioning conditions to implement their proposed model as well as an
adapted query language extended from SPARQL in order to support necessary
n-dimensional computations. The aforementioned works do not only show the diversity
of the approaches towards online analytical processing of Semantic Web but also the
rapid change in the research direction.

RDF Data Cube Vocabulary (QB) [2] focuses on the adherence to Linked Data
principles while publishing statistical data and metadata using RDF. QB4OLAP [1]
introduces an extended vocabulary of QB in order to support OLAP operators directly
over RDF representation. As it will be seen in Sect. 3.1. QB4OLAP introduces levels,
members and aggregated functions in order to represent OLAP dimension structure
which is not offered by QB vocabulary.
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With all these, QB4OLAP, however, does not support a vocabulary to model online
analytical processing on graphs introduced by Chen et al. [3]. Zhao et al. [4] introduced
a data warehousing model that supports OLAP queries on graph and Graph Cube. None
of these [7] provides a semantic-driven framework considering both informational and
topological dimensions of graphs.

Beheshti et al. concentrate their approach on topological graphs without consid-
ering informational graphs. This is an important factor as semantic data is usually found
in a mix of topological and informational graphs. Furthermore, in order to address
topological dimensions constrains for OLAP, they use partitioning and an adapted
SPARQL query to operate over the data. This approach hinders the published datasets
being reused or being queried by applications and users against other datasets offering
automated OLAP observations.

In order to reuse and extend existent implementations while extending OLAP
capabilities to both topological and informational dimensions, we used the vocabulary
in QB and QB4OLAP as basis to form a new vocabulary. Furthermore we introduced
new elements and relationships able to model the topological OLAP. By describing
topological and informational elements in the same vocabulary and identifying the
relationships between entities we enable OLAP to operate over both aspects.

Research on bringing the pipe concept to the Semantic Web was introduced by
Morbidoni et al. [8], where their focus was to build RDF-mashups by fetching RDF
models on the Web and producing an accessible output. While the Semantic Pipes
operators can access different RDF graphs and produce outputs to be consumed by
other pipes, they do not offer means to access summary data or support OLAP
operations.

The brief introduction of the up-to-date research in the Semantic Web’s data
management shows that a new model is required to answer computational intensive
semantically queries but no existing OLAP system is capable of accessing, retrieving,
and reusing semantic OLAP databases efficiently. In order to address this challenge we
introduce a new model which can interpret a query based on the OLAP concept. The
model offers standard OLAP functionalities with a built-in Pipe concept by extending
existing OLAP systems with observations generated from individual RDF graphs or
other SW OLAP. This new model is equipped with facilities for composing multiple
queries to operate on multiple OLAP databases. It also provides an extended vocab-
ulary for modelling semantic data for OLAP operations.

3 Conceptual Framework

A key factor in successfully performing OLAP over Semantic data is to acknowledge
the characteristics and the relationship of data. The relationships between the data can
be divided in two categories: informational (dimensions are coming from node attri-
butes) and topological (when dimensions are coming from node and edge attributes).
Some databases may be structured using one type (e.g. DB2) while others may have a
mix of structures with the information offered from different dimensions (e.g. DB1).
An example of a mix structure can be found in Fig. 1.
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A middleware system is needed to perform collective OLAP operations over
multiple databases to store the newly generated views in a multidimensional database
as well as having an expressive vocabulary to model both topological and informa-
tional structure. Even though multiple semantic OLAP databases are accessible,
composing retrieved data from them is a complex process. A pipe architectural style
can be designed to handle RDF and summary data that can be fed into OLAP functions
to support decision making.

This paper asserts that the key elements for composing such complex results are not
yet fully available. Some related work, presented in the next subsection, has been
proposed but each approach has limitations.

In order to provide OLAP functionality over multiple Semantic databases, our
proposed model (IGOLAP) in Fig. 2 presents a three level contribution:

• An integrated system for collective querying over multiple multidimensional
databases

• An extended vocabulary for multidimensional data representation
• A materialization of semantic OLAP database capability

The proposed conceptual framework with multiple layers is to address the issues
identified and discussed in the previous sections.

On the bottom layer we have the raw data from relational databases and web data in
different forms. In the case of data stored in relational databases, the layer on top of it
provides multidimensional modelling of data. For the web data, there is an intermediate
layer between raw data and data modelling for OLAP. This layer is described by linked
data, which is a specific type of the semantic web data. This layer can also be an
intermediate layer between data in relational databases and the modelling layer, when
data is transformed from relational databases to linked data [12] before further OLAP
analysis. Regarding the multidimensional modelling layer, the data is transformed into
cubes for multidimensional models. It contains a series of different vocabularies which
trigger different semantic OLAP databases, so this layer can have different representations
of data for OLAP.We introduce an extended representation with an enhanced vocabulary
and functionalities lacking in other existing vocabularies on the layer to support it. The
proposed vocabulary and the functionalities are presented in subsection 3.1.

Fig. 1. Connections between topological and informational dimensions
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The proposed framework is a multiple layer Semantic OLAP database which is able
to handle data in dimensions, levels and measures in order to respond to OLAP related
queries.

The top layer in the framework provides users with interfaces to specify queries and
visualise the retrieved information in relation to business intelligence or decision
making. The other layers provide necessary mechanisms and functions to transform the
requests into executable syntax. The framework also increases interoperability among
different semantic OLAP databases. So, a query can be executed to locate datasets,
retrieve data, summarise information and compose semantics from various semantic
OLAP databases. In order to support this functionality we introduce a pipe architecture
and distributed query processing as detailed in Sect. 3.2.

3.1 Vocabulary for Modelling Multidimensional Graph Data

As mentioned in Sect. 2, there is existing work regarding a vocabulary for multidi-
mensional data modelling for OLAP support. We consider that the QB vocabulary does
not have sufficient capabilities to handle OLAP, but it has adequate structure. The
QB4OLAP vocabulary is an extended version of QB, offering more functionality to
support OLAP. Both vocabulary sets have missing facilities in relation to modelling
two groups of data: Informational (dimensions are coming from node attributes) and
Topological (when dimensions are coming from node and edge attributes). Their
vocabulary needs to be extended and altered in order to provide full OLAP capabilities.
Since an informational graph is modelled by dimensions and hierarchical levels and the
topological graph is modelled in dimensions, members and defined relationships, the
type of aggregations over their measures are very different. On the informational graphs
the standard measure aggregations such as SUM, AVG, and COUNT are used to
summarise the data, but the topological graphs require relationship type of aggrega-
tions. To design a unified semantic OLAP to handle both graphs is not trivial.

Fig. 2. Conceptual framework
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Considering that the dimensions in the topological structure do not have levels but
direct members we introduced two different classes to model it: igolap:InfoDimension
and igolap:TopoDimension as subclasses of the qb:DimensionProperty class. The
property that connects these two classes to their superclass is: igolap:dimensionType.
The new vocabulary is presented in Fig. 3 and the comparison of the vocabularies’
capabilities is presented in Table 1.

The existing qb4o:LevelMember has to be altered in order to handle the topological
dimension. We introduced the modified igolap:Member which while keeping the
connection with qb4o:LevelProperty it also has a new connecting property to the
topological dimension: igolap:ofDimension. Since both topological and informational
dimension have attributes, the property qb4o:hasAttribute had to be altered to reflect
this. The informational dimension has levels which have members and the topological
dimension has direct members. In order for the property qb4o:hasAttribute to apply to
both topological and informational dimension, it has to connect the igolap:Member to
qb:AttributeProperty.

The topological dimensions can be connected to each other through a topological
property and each member of the dimension holds the property. We introduced the
igolap:topoDConnectedTo property to define those connections.

QB4OLAP introduces qb4o:parentLevel property which connects levels and can
support the roll-up operation, but in order to offer a better support the Drill-down

Fig. 3. IGOLAP vocabulary
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operation we introduced the igolap:childLevel property which also connects levels and
is an inverse function to qb4o:parentLevel.

3.2 Integrated System for Collective Query of Semantic OLAP Databases

The proposed framework is based on a set of specialized OLAP operators (Federated
OLAP operators) that can operate over multiple semantic OLAP databases, merge the
outputs into a common format and translate them according to the desired output which
can be materialized or viewed.

The Federated OLAP operators need to interpret the requests according to a specific
OLAP database in order to retrieve the data and convert it to a requested output format.
The Federated OLAP operators represent an extension of the classic OLAP operations
as: roll-up, dice, drill down or slice.

A roll-up operation assumes a data summarization inside a given cube alongside a
given dimension such as a given Cube C, a dimension D ∊ C and a dimension level
lu∊ D, the Roll-up (C,D, lu) will return a new cube C’ where measures are aggregated
along D up to the level lu.

In the dice operation a new cube C’ is generated from a given cube C and a set of
constrains along its dimensions. The emerging cube has the same schema as the initial
cube C and the instances in C’ are also instances of C.

Slice operation receives a cube C, and a dimension D ∊ C and returns a sub cube
C’, with the same schema except the dimension D.

Drill down is considered to be the reverse of Roll up and assumes the disaggre-
gation on a previously stored aggregation.

Table 1. The differences between these three vocabularies, on both classes and properties

QB QB4O IGOLAP

New
classes

Attachable; DataSet; LevelProperty Member

CodedProperty; AttributeProperty; LevelMember InfoDimension
TopoDimnsionComponentProperty; ComponentSet; AggregateFunction

ComponentSpecification; SliceKey;
Observation; MeasureProperty;

DataStructureDefinition; Slice;

DimensionProperty

Properties attribute; codeList; componenet;
componentAttachment; component
Property; dimension;

level dimensionType, of
Dimension, topo
DConnectedTo

inLevel

componentRequired; measure; inDimension

concept; dataSet; slice; sliceKey; parentLevel member

measureDimension; subSlice; hasAggregate
Function

childLevel

measureType; observation; order;
sliceStructure; structure;

Altered
Classes

– LevelMember Member

Properties – has Attribute hasAttribute

inDimensioninDimension
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The dimension operations that are used in our approach are defined as F_Operators.
These include the standard dimension operators as F_ROLL_UP, F_DICE, F_SLICE
and F_DRILL. They are derived from the standard OLAP dimension operations, but
they are adapted to have the necessary functions to access multiple semantic databases.

The standard OLAP measure operations are used as restriction functions in the
dimension operations that include AVG for retrieving the arithmetical mean of a set of
numerical values, SUM for the sum of a set of numerical values, COUNT for the
cardinality of a set of elements and MIN and MAX for the minimum and maximum
element of a set of elements.

We briefly introduce the F_ROLL_UP operator in the following subsections.

3.2.1 F_ROLL_UP Overview
The F_ROLL_UP operator includes a set of processes. For the retrieval stage, the
operator identifies the targeted databases, builds the SELECT operators for each
database with given constraints and gathers information from multiple databases by
applying the built operators to specific datasets. In the building stage, the CON-
STRUCT operator is initiated to compose the response from the retrieved data. When
the datasets retrieved by each SELECT operator are in the same format, the CON-
STRUCT operator is applied directly, but if the datasets have different formats, data
normalisation is performed before generating the output. In order to handle the data
exchange, the F_ROLL_UP operator is described as a pipe architecture containing a
CONSTRUCT operator and a number of SELECT operators. If data normalisation is
required before the output is generated the third operator, the MERGE operator, is
included in the F_ROLL_UP pipe construction. The MERGE operator is used to
structure the partial RDF triple results from the SELECT operators using the same
vocabulary for the output construction. Even though the MERGE concept has some
similarity with the one in the semantic web pipes, the MERGE from semantic web
pipes is a simple join of the CONSTRUCT and/or SELECT operators output without
normalisation capabilities and facilities to support OLAP.

Since F_OPERATOR’s are designed to access one or more than one OLAP
database, they require a set of arguments in order to interpret the requests. Based on the
arguments received, F_ROLL_UP distinguish between:

• single or multiple database access;
• formatted or unformatted output;
• request for view or request for materialization of the output, and, so on

This means that the parameters can be divided into two main categories: the
mandatory and the optional ones (e.g. materialised or immaterialised output represents
an optional parameter). The mandatory parameters that need to be passed on are:
location of accessed SW OLAP implementation(s) (URIs or IRIs), dimensions (and
dimension level for F_ROLL_UP) and some others.

Assuming the example of a request of a ROLL-UP operation across two databases,
defined by a F_ROLL_UP, the following steps describe the full process:
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Input: olapds1 is the data set of an implemented OLAP data cube C; 
 olapds2 is the data set of an implemented OLAP cube K 

constructSet is the observation building requirements set;  
 constrs1is the observation constrains for building for C, 
 constrs2is the observation constrains for building for K, 
 swOimpl1 represents the first SW OLAP that needs to be queried 
 swOimpl2 represents the second SW OLAP that needs to be queried 

Output:o1 is an observation generated by roll-up OLAP operation, from a specific
a given level which can be materialized or not. Since in this example there is no request
for materialization, the observation is outputted as a onetime view.

Firstly the request is validated by verifying the number of parameters and their
types. The second step is to determine if F_ROLL_UP needs to access a single data-
base or a multiple semantic OLAP databases. According to the outcomes of the pre-
vious steps, the operators decide the next tasks, to which a set of given parameters is
passed. Step 4 and 5 show the construction of roll-up operator accessing a single
database. Step 6 and 7 describe the multi-database access. In the above example no
parameter is given to instruct the production of a materialised output. In this case Step 9
and 10 are skipped and the response is produced only for visualisation.

3.3 Multidimensional and Multi-databases OLAP

In this section, we will use the scenario presented in Sect. 2 to show how both
informational and topological structures can be implemented using our new vocabulary
elements. The content and structure of DB1 in the scenario are described in Figs. 4 and
5 and it contained curated data of both type of structures. Due to space restrictions, we
omit the dataset prefixes, only introduce F_ROLL_UP operator, and demonstrate its
application to DB1. The descriptions of other operators will be covered in future
publications.

Figure 4 shows the structure of informational dimensions of an energy consumption
database, DB1. It shows the representation of time and location dimensions structure as
well as instances of the location. The structure of informational dimension is very similar
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to the QB4OLAP vocabulary, but the igolap:childLevel in association with qb4o:par-
entLevel property give the possibility of bidirectional navigation in order to support both
roll-up and drill-down OLAP operations.

Figure 5 shows the representation of the topological dimensions that include three
dimensions: income, household and appliances. These dimensions are connected by a
connecting property. These dimensions do not have a well-defined hierarchical struc-
ture but they define aggregations based on common attributes (e.g. number of bed-
rooms, or number of inhabitants, in the household dimension). We present in Fig. 5
instances of each dimension, with the necessary attributes to populate DB1, producing
possible observations.

Fig. 4. Informational dimensions: time and location schema and location instances

Fig. 5. Topological dimensions: income, household, appliance and instances
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We define the measure for the database and include attribute property which are
used in generating observations. In our scenario, we define a measure for consumption
(line 23) and its attribute which is measurement unit (e.g. kWh, line 26).

Using the structures, instances, measures and attributes mentioned we can obtain
different observations over both topological and informational dimensions, as shown in
Fig. 6. We use additional constraints over topological dimensions’ attributes and/or
different levels of the informational dimensions to structure the observations.

Assume that the proposed system needs to satisfy a query on yearly energy con-
sumption of households from a specific city, based on a set of constraints such as no. of
bedrooms and property price range. DB1 can only provide partial information and DB2
with informational dimensions regarding properties’ market values in different years,
based on the location and property layout details, can offer the complimentary infor-
mation. This requires federated OLAP operations to retrieve, summarise and compose
data from multiple semantic databases.

But the dimensions from different databases can have mismatched structure such as
different level of detail in modelling. The location dimension in DB2 has a level called
area which is a smaller division of city in DB1. Another mismatch in structure among
them is the existence of a redundant level secondAdministrationDivision from DB1.
Figure 7 provides the structure and an instance of area level observation.

Other dimensions used in this database include time and property with the property
price as measure. Figure 8a shows observations over the price of a certain type of
property, based on the year and the layout of the property.

Fig. 6. Observations structure definitions and instances

Fig. 7. Structure and instance of DB2’s location dimension level
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These standalone observations from both databases give useful overviews of the
data but their combination can provide the complete output to the query, for example,
on yearly energy consumption of households by performing roll up operations over
these databases from and to different levels.

The structure of the desired observation that reflects our query is showed in Fig. 8b
and contains information extracted from both DB1 and DB2. The following is an
example showing the use of the federated roll-up operator to execute on the semantic
databases against a set of constraints.

The following parameters passed to F_ROLL_UP are:

swOimpl1 = “igolap”
swOimpl2 = “igolap”
olapds1 = “http://www.energydb.eu/YearlyByAppliances#”
olapds2 = “http://www.zooplainfodb.org/PriceByArea#”
constructSet = observationStructure.rdf
materialize_location = “http://www.energydb.eu/mixObservations#”

The target of the operator is to perform roll-up operation on olapds1 to summarise
energy consumption from yearly by-appliance to yearly by-household and from area to
city level over olapds2. The swOimpl parameter represents the type of the database,

Fig. 8a. Observation instance of DB2

Fig. 8b. Observation structure over DB1 and DB2
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which also identifies the vocabulary used to structure the data. The olapds1 and ola-
pds2 give the locations of data and constructSet sets the schema for the CONSTRUCT
operator, describing how the observation needs to be built. The constr1 and constr2
represent a set of constrains for each database in order to build the appropriate SELECT
pipe to retrieve data (e.g. city, price range and number of bedrooms for olapds2 and
household, year, consumption for olapds1).

The operator also has the capability to materialise the OLAP observations in
datasets that can be used for more complex processing. These can be published with
dataset attributes that show the level and type of summarisation performed.

The materialisation capability provides a big advantage when it comes to reanal-
ysing data, or building a new database containing summarised information from dif-
ferent databases.

The F_ROLL_UP operator above is required through the boolean “true” value, to
materialise the generated observations in a given location identified by the URI passed
through materlize_location parameter.

One of the observations generated from the F_ROLL_UP operator above is:

This example gives a brief introduction about how the vocabulary can describe
observations and use those observations or datasets to provide more meaningful
information through OLAP operators over multiple semantic databases.

4 Conclusion and Future Work

The need for accessing multiple Semantic Web multidimensional databases increases,
but there is a lack of effective and efficient solutions due to their complexity and
inconsistency, and the difficulty in providing scalability. We have shown that there are
cases in which standalone semantic web OLAP databases need to communicate with
each other, but the diversity of the existing designs on their structures has complicated
their interoperability. The incompatibility between informational and topological graph
OLAP has deepened the issue of having unified OLAP semantic system.

We proposed an OLAP framework with a multiple-layers mechanism in order to
address the challenges.

The requirements for designing the proposed framework have been identified and
addressed with a set of new federated OLAP operators, vocabulary and semantic pipe
like functions that can retrieve and merge the data from heterogeneous semantic web
OLAP databases. We presented one of the operators, F_ROLL_UP, in detail and
walked through the steps with an example to demonstrate how it executes queries,
locates the data, retrieves the information, and composes the outputs for visualisation.
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The proposed new operators and the extended interpreter capabilities to handle
multiple OLAP databases have been partially implemented and tested. The rest of the
outstanding operators will be implemented and applied to the complex case study in
order to evaluate its effectiveness and efficiency.

We recognise the need for querying and analysing data from semantic web and
relational multidimensional databases in the future. Our proposed framework is
extendable to include retrieval and composition to meet this need and to provide a basis
for further analysis. These functions can be realised from the composition of the OLAP
operators and the translation of SPARQL queries into specific SQL queries in order to
provide complex query responses.
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